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Abstract

Realizations of finite-dimensional Lie algebras on the real plane are reviewed. A com-
plete set of differential invariants and Lie determinants of continuous transformation
groups acting on the real plane is constructed.

1 Introduction

Differential invariants emerged as one of the most important tools in investigation of dif-
ferential equations in the works of S. Lie. In 1884 [8] he proved that any non-singular
invariant system of differential equations can be expressed in terms of differential invari-
ants of the corresponding symmetry group. In the same paper he also applied differential
invariants to integration of ODEs. If differential invariants of a Lie group are known, the
differential equations admitting this group can be easily described and the special repre-
sentation (so-called group foliation) of such differential equations can be constructed.

Differential invariants of all finite-dimensional local transformation groups on a space
of two complex variables were described by S. Lie himself in [10]. A modern treatment
of these results was adduced in [15]. Namely, functional bases of differential invariants,
operators of invariant differentiation and Lie determinants were constructed for all in-
equivalent realizations of point and contact finite-dimensional transformation groups on
the complex plane. The real finite-dimensional Lie algebras of contact vector fields and
their differential invariants were completely classified in [2]. Differential invariants of an
one-parameter group of local transformations in the case of arbitrary number of dependent
and independent variables were studied in [18].

The subject of this paper is exhaustive description of differential invariants and Lie
determinants of finite-dimensional Lie groups acting on the real plane. A necessary pre-
requisite to do it is the classification of Lie algebra realizations in vector fields on the real
plane up to local diffeomorphisms.

The plan of the paper is following. In Section 2 we discuss and compare different
classifications of realizations of finite-dimensional Lie algebras on the real and complex
planes, which are available in literature. In particular, we thoroughly study the question
of parametrization and equivalence in series of realizations. In Section 3 some definitions
and results concerning differential invariants are adduced. At the appendix of the paper
the classification of realizations of finite-dimensional Lie algebras of vector fields on the
real plane, the complete set of differential invariants, operators of invariant differentiation,
Lie determinants and transformations that reduce real Lie algebras to complex ones are
arranged in the form of Tables 1–3.
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2 Realizations of Lie algebras

on the real and complex planes

There exist two important classification problems in the classical theory of Lie algebras.
The first one is classification of Lie algebra structures, i.e. classification of possible

commutation relations between basis elements. All the possible complex Lie algebras of
dimensions no greater than four were listed by S. Lie himself [9]. The semisimple Lie
algebras [3] and the Lie algebras of dimensions no greater than six [12, 13, 14, 11, 21] over
the complex and real fields were classified later. Unfortunately, this problem can not be
solved in the case of arbitrary fixed dimension, since it is wild, i.e. it contains the problem
of reduction of two matrices to a canonical form as a subproblem. A wider review on the
subject can be found e.g. in [19].

The other problem established by S. Lie is the problem of description of different
Lie algebra representations and realizations, particularly, by vector fields up to local
diffeomorphisms. Realizations by vector fields are widely applicable in the general theory
of differential equations, integration of differential equations and their systems, group
classification of ODEs and PDEs, classification of gravity fields of a general form under
the motion groups etc.

Complete classifications of realizations of Lie algebras by vector fields in one real, one
and two complex variables were obtained by S. Lie [9]. In 1990 A. Gonzalez-Lopez and
coauthors ordered the Lie’s classification of complex Lie algebras [6] and extended it to
the the real case [7]. A complete set of inequivalent realizations of real Lie algebras of
dimension no greater than four in vector fields on a space of an arbitrary (finite) number
of variables was constructed in [19].

Starting from the above results, we detailed and amended the classification of realiza-
tions of finite-dimensional Lie algebras on the real plane. The obtained classification is
compared with real [7] and complex [9] classifications and arranged in the Table 1.

The nontrivial transformations over the complex field that reduce realizations from [7]
to realizations from [15] are adduced in Table 2.

Notations. Below we denote ∂/∂x, ∂/∂y, . . . as ∂x, ∂y, . . . . The indices i and j run
from 1 to r. The label N0 consists of two parts which denote the page (from 57 to 73)
and realization numbers in [9] correspondingly. The labels N1 and N2 coincide with the
numerations of real and complex realizations in [7, 15]. N3 corresponds to the numeration
of realizations introduced in [19] in accordance with the Mubarakzyanov’s classification
of real low-dimensional Lie algebras [12]. The symbol N without subscripts correspond
to the numeration used in the present paper.

Remark 1. The case N = 4 is missed in [7] but it can be simply joined to the case
N1 = 24 after replacement the condition r ≥ 1 by r ≥ 0.

Remark 2. There are two different approaches to classification of Lie algebra realizations
by vector fields. According to the first approach, one should start from classification of
Lie algebras of fixed dimension and then look for basis vector fields that satisfy the given
commutation relations. The second approach consists in the direct construction of finite-
dimensional spaces of vector fields, which are closed with respect to the standard Lie
bracket. If a complete list of realizations of a fixed dimension is constructed then the
problem of separation of the realizations for a given Lie algebra from others arises and
becomes nontrivial in the case of parameterized series of realizations.
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Example 1. Consider, for example, the series {Ab
4.8} [12] of real four-dimensional Lie

algebras parameterized with the parameter |b| ≤ 1. For a fixed value of b, the basis
elements of Ab

4.8 satisfy the canonical commutation relations

[e1, e3] = e1, [e1, e4] = (1 + b)e1, [e2, e3] = e2, [e3, e4] = be3.

In the framework of the first approach we obtain two inequivalent realizations in vector
fields on a space of two variables

〈∂x, ∂y, y∂x, (1 + b)x∂x + y∂y〉 and 〈∂x, y∂x, −∂y, (1 + b)x∂x + by∂y〉 (1)

of the algebra Ab
4.8 if |b| < 1. There is a unique inequivalent realization in the case b = ±1

since under this condition realizations (1) are equivalent and we have to choose only one
of them.

S. Lie [9] used the second approach to construct all possible realization of finite-
dimensional Lie algebras on the plane. The algebras from the series {Ab

4.8} are represented
in the obtained list by the following realizations

〈∂y, x∂y, ∂x, x∂x + b̃y∂y〉, b̃ ∈ R, and 〈∂y, x∂y, y∂y, ∂x〉. (2)

In fact, the sets of realizations (1) and (2) coincide. To show it, we redenote the variables x
and y in (2) (namely, x↔ y) at first and shift the parameter b̃: b̃ = 1+b′. After reordering
the basis in the first realization from (2) in the case |b′| ≤ 1, we obtain the first realization
from (1), where b = b′. If |b′| > 1, the first realization from (2) is reduced to the second
realization from (1) with b = 1/b′ by the additional simultaneous transformations of the
basis and realization variables: ẽ1 = b′e1, ẽ2 = e3, ẽ3 = −b′e2, ẽ4 = be4; x̃ = bx, ỹ = by.
The second realization from (2) coincides with the second one from (1), where b = 0.

The above consideration explains in some way why the parameter values b = ±1 are
singular for the Lie algebra series {Ab

4.8} from the viewpoint of number of realizations.

Remark 3. It is clear that realizations from different series adduced in Table 1 are
inequivalent each to other but there can exist equivalent realizations belonging to the
same series.

Example 2. Consider the series of realizations

N = 48 : 〈ξ1(x)∂y, ξ2(x)∂y , . . . , ξr(x)∂y〉, r ≥ 5, (3)

N = 49 : 〈y∂y, ξ1(x)∂y, ξ2(x)∂y, . . . , ξr(x)∂y〉, r ≥ 4 (4)

parameterized with arbitrary linearly independent real-valued functions ξi.
Any realization from series (3) or (4) pass into realizations from the same series under

the basis transformations with non-singular constant matrices (cij) and the non-singular
variable transformations x̃ = ϕ(x), ỹ = ψ(x)y. By means of these equivalence transforma-
tions the parameter-functions ξi change in the following way ξ̃i(x̃) = cijψ(x)ξj(x)| x̃=ϕ(x).

Consequently, without loss of generality we can put ξ̃1 = 1 and ξ̃2 = x̃. Hence, the series
of realizations (3) and (4) takes the form adduced in the Table 1, namely

〈∂ỹ, x̃∂ỹ, ξ̃3(x̃)∂ỹ, . . . , ξ̃r(x̃)∂ỹ〉 and 〈ỹ∂ỹ, ∂ỹ, x̃∂ỹ, ξ̃3(x̃)∂ỹ, . . . , ξ̃r(x̃)∂ỹ〉. (5)

Accurately speaking, the series with normalized forms (5) also contain equivalent realiza-
tions, and the corresponding equivalence transformations are restrictions of the aforesaid
ones.
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Example 3. Another example is given by two series of realizations

N = 50 : 〈∂x, η1(x)∂y, . . . , ηr(x)∂y〉, r ≥ 4, (6)

N = 51 : 〈∂x, y∂y, η1(x)∂y , . . . , ηr(x)∂y〉, r ≥ 3 (7)

parameterized with real functions ηi which form a fundamental system of solutions for an
r-order ordinary differential equation with constant coefficients

η(r)(x) + c1η
(r−1)(x) + · · · + crη(x) = 0.

The transformations that reduce any realization from the series N = 50 and N = 51 to
a realization from the same series are generated by the changes of basis with non-singular
constant matrices (cij) and the variable transformations x̃ = a1x + a0, ỹ = by + f(x),
where f(x) = b0η0(x) + b1η1(x) + · · · + brηr(x), a1, a0, b, b0, . . . , br ∈ R, a1b 6= 0. The

function η0(x) is a solution of the ODE η
(r)
0 (x)+ c1η

(r−1)
0 (x)+ · · ·+ crη0(x) = 1 and in the

case N = 51 additionally b0 = 0. These equivalence transformations act on the functions
ηi as follows: η̃i(a1x+ a0) = cijηj(x).

3 Differential invariants

Consider a local r-parametric transformation group G acting on M ⊂ X×Y = R×R and
denote a prolonged transformation group acting on the subset of jet space M (n) = M×R

n

as pr(n)G . Let g be the r-dimensional Lie algebra with basis of infinitesimal operators
{ei = ξi(x, y)∂x + ηi(x, y)∂y} which corresponds to G. Then the prolonged algebra pr(n)

g

is generated by the prolonged first-order differential operators [16, 17]:

e
(n)
i = ξi(x, y)∂x + ηi(x, y)∂y +

n
∑

k=1

ηk
i (x, y(k))∂y(k) .

Hereafter n ≥ 0, i = 1, . . . , r, the symbol y(k) denotes the tuple (y, y′, . . . , y(k)) of the
dependent variable y and its derivatives with respect to x of order no greater than k.

Definition 1 ([17]). A smooth function I = I(x, y(n)) : M (n) → R is called a differential

invariant of order n of the group G if I is an invariant of the prolonged group pr(n)G,
namely

I(pr(n)g · (x, y(n))) = I(x, y(n)), (x, y(n)) ∈M (n)

for all g ∈ G for which pr(n)g · (x, y(n)) is defined.

In infinitesimal terms, I(x, y(n)) is an n-th order differential invariant of the group G

if e
(n)
i I(x, y(n)) = 0 for any prolonged basis infinitesimal generators e

(n)
i of pr(n)

g.
Consider the series of the ranks rk = rank{(ξi, ηi, η

1
i , . . . , η

k
i ), i = 1, . . . , r}. For further

statements we introduce the number ν = min{k ∈ Z | rk = r}. Since the sequence {rk} is
nondecreasing, bounded by r and reachs the value r, the number ν exists and the relation
rν = rν+1 = · · · = r holds true.
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Definition 2 ([16]). Let pr(ν)
g is generated by the set of the prolonged infinitesimal

operators {e
(ν)
i } and L is the matrix formed by their coefficients:

L =











ξ1 η1 η1
1 . . . η

(ν)
1

ξ2 η2 η1
2 . . . η

(ν)
2

...
...

...
. . .

...

ξr ηr η1
r . . . η

(ν)
r











.

A maximal minor of L, which does not vanish identically, is called a Lie determinant.

Importance of the adduced notions follows from the fact that if a system of ordinary
differential equations is invariant under action of the prolonged group pr(n)G then it can
be locally presented as a union of conditions of vanishing Lie determinants and equations
written in terms of differential invariants of G.

A natural question is whether it is possible to choose a minimal set of differential
invariants that allows us to obtain all differential invariants of the given order by a finite
number of certain operations. The answer to this question is affirmative.

Below we will briefly state several results concerning differential invariants of Lie groups
acting on the plane. The presented statements are well known and adduced on purpose
to complete only the picture of differential invariants on the plane. Detailed definitions
and statements on the theory of differential invariants in general cases, review of main
results and approaches to differential invariants that are different from the presented one
(such as differential one-forms and moving coframes) and possibly more convenient for
other applications could be found in [4, 5, 16, 17].

Definition 3 ([17]). A maximal set In of functionally independent differential invari-
ants of order no greater than n (i.e. invariants of the prolonged group pr(n)G) is called
a universal differential invariant of order n of the group G.

Note, that dimension of the jet space M (n) is dimM (n) = n + 2 and the number of
functionally independent differential invariants of order n is dn = n + 2 − rn. Any n-th
order differential invariant I of G is necessarily an n+l-th order differential invariant of G,
l ≥ 0. Therefore for any n, l ≥ 0 a universal differential invariant In+l can be obtained by
extension of a universal differential invariant In.

Definition 4 ([17]). A vector field (or a differential operator) δ on the infinitely prolonged
jet space M (∞) is called an operator of invariant differentiation of the group G if for any
differential invariant I of G the expression δI is also a differential invariant of G.

Any operator δ commuting with all formally infinitely prolonged basis infinitesimal
generators e∞i of the corresponding Lie algebra is an operator of invariant differentiation
of G. For any Lie group acting on the real or complex planes, there exists exactly one
independent (over the field of invariants of this group) operator of invariant differentiation.

For any Lie group G there exists a finite basis of differential invariants, i.e. a finite
set of functionally independent differential invariants such that any differential invariant
of G can be obtained from it via a finite number of functional operations and operations
of invariant differentiation. A basis of differential invariants of the group G is always
contained in a universal differential invariant Iν+1.
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To describe completely differential invariants of all transformation groups acting on the
real plane, we obtain a functional basis of differential invariants and operators of invariant
differentiation for each algebra from the known list of inequivalent Lie algebras of vector
fields on the plane.

Bases of differential invariants are constructed as a part of (ν + 1)-th order universal
differential invariants using the infinitesimal approach. The constructive procedure for
finding invariant differentiation operators is directly derived from the condition of their
commutation with formally infinitely prolonged elements of the algebra. Namely, we look
for an operator of invariant differentiation as the operator of total differentiation Dx with
a multiplier λ depending on x and y(ν):

X = λ(x, y(ν))Dx, where λ : M (ν) → R.

The function λ is implicitly determined by the equation ϕ(x, y(ν), λ) = 0, where ϕ satisfies
the condition:

ζν
i ϕ = 0, ζν

i = ξi∂x + ηi∂y + η1
i ∂y′ + · · ·+ ην

i ∂y(ν) + (λDx)ξi∂λ.

In other words, ϕ(x, yν , λ) should be an invariant of the vector fields ζν
i . Let us note that

rank{(ζν
i ), i = 1, . . . r} = r. A universal invariant I of ζν

i can be presented as I = (Iν , Î),
where Î : M (ν) × R → R, ∂Î/∂λ 6= 0. So, the unknown function λ can be find from the
condition Î(x, yν , λ) = C for a fixed constant C.

All the results obtained are presented in the form of Table 3 and may be used for
group classification of ODEs of any finite order. So, in the future we plan to review
and to generalize results of group classification of the third and fourth order ODEs that
were obtained in [1, 20]. In a similar way one can describe the differential invariants of
the transformations groups acting in the spaces of more than two variables and having a
low number of parameters by means of using the classification of realizations of real low-
dimensional Lie algebras [19] and then apply them to investigation of systems of ODEs
or PDEs.

Remark 4. The form of differential invariants essentially depends on explicit form of
realizations. For example, for the realization

〈e−bx sin x∂y, e
−bx cosx∂y, ∂x〉,

where b ≥ 0 (N = 17), a fundamental differential invariant, an operator of invariant
differentiation and a Lie determinant are

I2 = y′′ + 2by′ + (b2 + 1)y, X = Dx, L = −e−2bx.

For the equivalent form

〈∂y, x∂y, (b− x)y∂y − (1 + x2)∂x〉

of this realization adduced in [19] the corresponding invariant values has the more com-
plicated form:

I2 = y′′(1 + x2)3/2eb arctan x, X = (1 + x2)Dx, L = −(1 + x2).

Remark 5. The cases marked with * in Table 3 are differ each from other by change of
dependent and independent variables. They are adduced simultaneously because different
forms may be convenient for different applications.
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Table 1. Realizations of Lie algebras on the plane.

N Realizations N1 N0 N3

1 ∂x 9 57, (1) R(A1, 1)

2 ∂x, ∂y 22 57, (2) R(2A1, 1)

3 ∂x, y∂x 20 57, (4) R(2A1, 2)

4 ∂x, x∂x + y∂y — 57, (3) R(A2.1, 1)

5 ∂x, x∂x 10 57, (5) R(A2.1, 2)

6 ∂y, x∂y, ϕ (x) ∂y 20 57, (14) R(3A1, 5)

7 ∂y, y∂y, ∂x 23 73, (10) R(A2.1 ⊕A1, 3)

8 e−x∂y, ∂x, ∂y 22 57, (8) R(A2.1 ⊕A1, 4)

9 ∂y, ∂x, x∂y 22 57, (9) R(A3.1, 3)

10 ∂y, ∂x, x∂x + (x+ y)∂y 25 57, (11) R(A3.2, 2)

11 e−x∂y, −xe
−x∂y, ∂x 22 57, (7) R(A3.2, 3)

12 ∂x, ∂y, x∂x + y∂y 12 57, (10) R(A3.3, 2)

13 ∂y, x∂y, y∂y 21 57, (15) R(A3.3, 4)

14 ∂x, ∂y, x∂x + ay∂y, 0 < |a| < 1 12 57, (10) R(Aa
3.4, 2)

15 e−x∂y, e
−ax∂y, ∂x, 0 < |a| < 1 22 57, (6) R(Aa

3.4, 3)

16 ∂x, ∂y, (bx+ y)∂x + (by − x)∂y, b ≥ 0 1
C
∼ 57, (10) R(Ab

3.5, 2)

17 e−bx sinx∂y, e
−bx cos x∂y, ∂x, b ≥ 0 22

C
∼ 57, (6) R(Ab

3.5, 3)

18 ∂x, x∂x + y∂y, (x2 − y2)∂x + 2yx∂y 2
C
∼ 57, (13); 73, (4) R(sl(2,R), 2)

19 ∂x + ∂y, x∂x + y∂y, x
2∂x + y2∂y 17 57, (13); 73, (4) R(sl(2,R), 3)

20 ∂x, 2x∂x + y∂y, x
2∂x + xy∂y 18 57, (16); 72, (10) R(sl(2,R), 4)

21 ∂x, x∂x, x2∂x 11
C
∼ 57, (16); 72, (10) R(sl(2,R), 5)

22
y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y,

2xy∂x + (1 + y2 − x2)∂y

3
C
∼ 57, (13); 73, (4) R(so(3), 1)

23 ∂y, x∂y, ϕ(x)∂y , ψ(x)∂y 20 58, (8) R(4A1, 11)

24 ∂x, ∂y, x∂x, y∂y 13 58, (6) R(2A2.1, 5)

25 e−x∂y, ∂x, ∂y y∂y 23 58, (1) R(2A2.1, 7)

26 e−x∂y, −xe
−x∂y, ∂x, ∂y 22 57, (21) R(A3.2⊕A1, 9)

27 e−x∂y, e
−ax∂y, ∂x, ∂y, 0 < |a| < 1 22 57, (20) R(Aa

3.4⊕A1, 9)

28 e−bx sinx∂y, e
−bx cos x∂y, ∂x, ∂y, b ≥ 0 22

C
∼ 57, (20) R(Ab

3.5⊕A1, 8)

29 ∂x, x∂x, y∂y, x
2∂x + xy∂y 19 58, (7) R(sl(2,R)⊕A1, 8)

30 ∂x, ∂y, x∂x, x2∂x 14 58, (3) R(sl(2,R)⊕A1, 9)
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Table 1. (Continued.)

N Realizations N1 N0 N3

31 ∂y, −x∂y,
1
2x

2∂y, ∂x 22 57, (23) R(A4.1, 8)

32 e−bx∂y, e
−x∂y, −xe

−x∂y, ∂x 22 57, (18) R(Ab
4.2, 8), b 6= 1

33 e−x∂y, −x∂y, ∂y, ∂x 22 57, (22) R(A4.3, 8)

34 e−x∂y, −xe
−x∂y,

1
2x

2e−x∂y, ∂x 22 57, (19) R(A4.4, 7)

35 ∂y, x∂y, ϕ(x)∂y , y∂y 21 58, (9) R(A1,1,1
4.5 , 10)

36 e−ax∂y, e
−bx∂y, e

−cx∂y, ∂x, a < b < c 22 57, (17) R(Aa,b,c
4.5 , 7)

37 e−ax∂y, e
−bx sinx∂y, e

−bx cos x∂y, ∂x 22
C
∼ 57, (17) R(Aa,b

4.6, 6)

38 ∂x, ∂y, x∂y, x∂x + (2y + x2)∂y 25 58, (5) R(A4.7, 5)

39 ∂y, ∂x, x∂y, (1 + b)x∂y + x∂y, |b| ≤ 1 24 58, (4) R(Ab
4.8, 5)

40 ∂y, −x∂y, ∂x, y∂y 23 58, (2); 72, (7) R(Ab
4.8, 7), b = 0

41 ∂x, ∂y, x∂x + y∂y, y∂x − x∂y 4
C
∼ 58, (6) R(A4.10, 6)

42 sinx∂y, x2 cos x∂y, y∂y, ∂x 23
C
∼ 58, (1) R(A4.10, 7)

43 ∂x, ∂y, x∂x − y∂y, y∂x, x∂y 5 71, (3) dimA = 5

44 ∂x, ∂y, x∂x, y∂y, y∂x, x∂y 6 71, (2) dimA = 6

45
∂x, ∂y, x∂x + y∂y, y∂x − x∂y,

(x2 − y2)∂x − 2xy∂y, 2xy∂x − (y2 − x2)∂y

7
C
∼ 73, (3) dimA = 6

46 ∂x, ∂y, x∂x, y∂y, x
2∂x, y2∂y 16 73, (3) dimA = 6

47
∂x, ∂y, x∂x, y∂y, y∂x, x∂y,

x2∂x + xy∂y, xy∂x + y2∂y

8 71, (1) dimA = 8

48 ∂y, x∂y, ξ1(x)∂y, . . . , ξr(x)∂y , r ≥ 3 20 73, (2) dimA ≥ 5

49 y∂y, ∂y, x∂y, ξ1(x)∂y, . . . , ξr(x)∂y , r ≥ 2 21 72, (8) dimA ≥ 5

50 ∂x, η1(x)∂y, . . . , ηr(x)∂y , r ≥ 4 22 73, (1) dimA ≥ 5

51 ∂x, y∂y, η1(x)∂y, . . . , ηr(x)∂y , r ≥ 3 23 72, (7) dimA ≥ 5

52 ∂x, ∂y, x∂x + cy∂y, x∂y, . . . , x
r∂y, r ≥ 2 24 72, (5) dimA ≥ 5

53 ∂x, ∂y, x∂y, . . . , xr−1∂y, x∂x+(ry+xr)∂y, r ≥ 3 25 72, (6) dimA ≥ 5

54 ∂x, x∂x, y∂y, ∂y, x∂y, . . . , xr∂y, r ≥ 1 26 72, (4) dimA ≥ 5

55
∂x, ∂y, 2x∂x + ry∂y, x

2∂x + rxy∂y,

x∂y, x
2∂y, . . . , x

r∂y, r ≥ 1
27 71, (4); 72, (1) dimA ≥ 5

56
∂x, x∂x, y∂y, x

2∂x + rxy∂y,

∂y, x∂y, x
2∂y, . . . , x

r∂y, r ≥ 0
15; 28 73, (5); 72, (2) dimA ≥ 5

Here ξi are linearly independent real-valued parameter-functions and {ηi} is a fun-
damental system of solutions for an r-order ordinary differential equation with constant
coefficients η(r)(x) + c1η

(r−1)(x) + · · · + crη(x) = 0.
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Table 2. Transformations of real realizations to complex ones.

N1
Transformation

of space variables
Transformation of basis elements N2

1 x̃ = x− iy, ỹ = x+ iy ẽ1 = 1+i
2 (e1 + e2), ẽ2 = 1

c+ie3, ẽ3 = 1−i
2 (e1 − e2) 2.7, k = 1

2 x̃ = x− iy, ỹ = 1
2iy ẽ1 = e1, ẽ2 = e2, ẽ3 = e3 2.2

3 x̃ = − 1
ix+y , ỹ = ix+y

1+x2+y2 ẽ1 = 1
2(ie2 + e3), ẽ2 = ie1, ẽ3 = 1

2(e3 − ie2) 2.2

4 x̃ = y−ix
2 , ỹ = −y+ix

2 ẽ1 = ie1 − e2, ẽ2 = ie1 + e2, ẽ3 = e3+ie4
2 , ẽ4 = e3−ie4

2 2.9, k = 1

7 x̃ = y + ix, ỹ = y − ix
ẽ1 = e1+ie2

2i , ẽ2 = e3−ie4
2 , ẽ3 = e6+ie5

2 ,

ẽ4 = ie2−e1
2i , ẽ5 = e3+ie4

2 , ẽ6 = e6−ie5
2

2.4

17 x̃ = y, ỹ = 1
x−y ẽ1 = e1, ẽ2 = e2, ẽ3 = e3 2.2

18 x̃ = x, ỹ = 1
y2 ẽ1 = e1, ẽ2 = 1

2e2, ẽ3 = e3 2.1

19 x̃ = x, ỹ = 1
y ẽ1 = e1, ẽ2 = e2, ẽ3 = −e3, ẽ4 = e4 2.3

Below in the Table 3 we use the following notations:

Sk+3 = (k + 1)2
(

y(k)
)2
y(k+3)− 3(k + 1)(k + 3)y(k)y(k+1)y(k+2) + 2(k + 2)(k + 3)

(

y(k+1)
)3
,

Qk+2 = (k + 1)y(k)y(k+2) − (k + 2)
(

y(k+1)
)2
, Q̃3 = y′′′B1 − 3y′(y′′)2,

B0 = 2 + x2 + y2 + x2y2 + 2x4 + 2y4, B1 = 1 + (y′)2,

Pi,j(ϕ, ψ) = ϕ(i)ψ(j) − ϕ(j)ψ(i), R4 = 3y′′yıv − 5(y′′′)2,

Ũ5 = 4yvB3
1Q+ 10yıvy′′B3

1

(

4y′′′y′ + 3(y′′)2
)

− 5(yıv)2B4
1 + 40(y′′′)2(y′′)2

(

(y′)2 − 2
)

B2
1

− 40(y′′′)3y′B3
1 − 180y′′′y′(y′′)4

(

(y′)2 − 1
)

B2
1 − (y′′)6

(

45(6(y′)2 + 1) − 135(y′)4
)

,

U5 = (y′)2
(

Q3D
2
xQ3 −

5
4
(DxQ3)

2
)

+ y′y′′Q3DxQ3 −
(

2y′y′′′ − (y′′)2
)

Q2
3,

V7 = (y′′)2
(

S5D
2
xS5 −

7
6
(DxS5)

2
)

+ y′′y′′′S5DxS5 −
1
2

(

9y′′yıv − 7(y′′′)2
)

S2
5 ,

W (f1, f2, . . . , fr) =

∣

∣

∣

∣

∣

∣

∣

∣

f ′

1(x) f ′

2(x) . . . f ′

r(x)
f ′′

1 (x) f ′′

2 (x) . . . f ′′

r (x)
. . . . . . . . . . . .

f
(r)
1 (x) f

(r)
2 (x) . . . f

(r)
r (x)

∣

∣

∣

∣

∣

∣

∣

∣

,

Kr(η1, η2, . . . , ηr) = y(r) + c1y
(r−1) + c1y

(r−1) + · · ·+ cry,

where c1, . . . , cr are the constant coefficients of the r-th-order ODE

η(r)(x) + c1η
(r−1)(x) + · · · + crη(x) = 0

which is satisfied by the functions η1(x), . . . , ηr(x).
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Table 3. Differential invariants and Lie determinants of real Lie algebras.

N Basis of differential invariants
Operator of invariant

differentiation
Lie determinant

1 y Dx const

1* x, y′ Dx const

2 y′, y′′ Dx const

3 y, y′3

y′′

1
y′Dx −(y′)2

3* x, y′′ Dx const

4 y′ yDx y

5 y, (y′)2

y′′

1
y′Dx y′

5* x, y′′

y′ Dx y′

6 x, y′′ϕ′′′(x) − y′′′ϕ′′(x) Dx ϕ′′(x)

7 y′

y′′ Dx y′

8 y′ + y′′ Dx −e−x

9 y′′ Dx const

10 y′′ey
′

ey
′

Dx const

11 y′′ + 2y′ + y Dx −e−2x

12 y′′′

(y′′)2
1
y′′Dx −y′′

13 x, y′′

y′′′ Dx −y′′

14 y′′y′
2−a
a−1 (y′)

1
a−1Dx (a− 1)y′

15 y′′ + (a+ 1)y′ + ay Dx (1 − a)e−(1+a)x

16 y′′e−c arctan y′

B
−3/2
1 e−c arctan y′

B
−1/2
1 Dx B1

17 y′′ + 2by′ + (b2 + 1)y Dx −e−2bx

18 (y′′y + (y′)2 + 1)B
−3/2
1 2yB

−1/2
1 Dx 2y2B1

19 (2y′(1 + y′) + y′′(x− y))(y′)−3/2 (x− y)(y′)−1/2Dx 2y′(x− y)2

20 y3y′′ y2Dx y2

21 x, (y′)−2Q3 Dx y(y − x)y′

21* y, (3y′′2 − 2y′y′′′)(y′)−4 1
y′Dx y′

22 y′′(1 + x2 + y2)B
−3/2
1 + 2(y − xy′)B

−1/2
1 (1 + x2 + y2)B

−1/2
1 Dx B0B1

23 x, y′′P4,3(ϕ,ψ) + y′′′P2,4(ϕ,ψ) + y(4) Dx P2,3(ϕ,ψ)

24 y′y′′′

(y′′)2
y′

y′′Dx y′y′′

25 y′′+y′

y′′′+y′′ Dx −e−x(y′ + y′′)

26 y′′′ + 2y′′ + y′ Dx −e−2x

27 y′′′ + (1 + a)y′′ + ay′ Dx a(a− 1)e−(1+a)x

10



Table 3. (Continued.)

N Basis of differential invariants
Operator of invariant

differentiation
Lie determinant

28 y′′′ + 2by′′ + (1 + b2)y′ Dx −(1 + b2)e−2bx

29 S3Q
−3/2
2

√

y
y′′Dx −2y2y′′

30 Q3(y
′)−4 1

y′Dx 2y′2

31 y′′′ Dx const

32 y′′′ + (b+ 2)y′′ + (2b+ 1)y′ + by Dx (b− 1)2e−(b+2)x

33 y′′′ + y′′ Dx −e−x

34 y′′′ + 3y′′ + 3y′ + y Dx −e−3x

35 x, P2,3(y, ϕ)P−1
2,4 (y, ϕ) Dx P3,2(y, ϕ)

36 y′′′ + (a+ b+ c)y′′ + (ab+ ac+ bc)y′ + abcy Dx
(b−a)(c−a)(c−b)

e(a+b+c)x

37 y′′′ + (2b+ a)y′′ + (b2 + 2ab+ 1)y′ + a(b2 + 1)y Dx ((b− a)2 + 1)e−(2b+a)x

38 y′′′e
y′′

2 e
y′′

2 Dx const

39 b = 1: y′′, yıv(y′′′)−2 1
y′′′Dx y′′′

b 6= 1: (y′′)
2−b
b−1 y′′

1
b−1Dx (1 − b)y′′

40 y′′

y′′′ Dx −y′′

41 (y′′)−2y′′′B1 − 3y′ B1
y′′Dx 3y′′B1

42 y′′+y
y′′′+y′ Dx y′′ + x

43 (3y′′yıv − 5(y′′′)2)(y′′)−8/3 (y′′)−1/3Dx y′′

44 S5R
−3/2
4 y′′R

−1/2
4 Dx (y′′)2R4

45 Ũ5Q̃
−3
3 B1Q̃

−1/2
3 Dx −16B1Q̃

2
3

46 U5Q
−3
3 y′Q

−1/2
3 Dx −4y′Q−2

3

47 V7S
−8/3
5 y′′S

−1/3
5 Dx −2y′′S2

5

48 x, W (y′, ξ′1, ξ
′

2, . . . , ξ
′

r) Dx W (ξ′1, ξ
′

2, . . . , ξ
′

r)

49 x, W (y′, ξ′1, ξ
′

2, . . . , ξ
′

r)/DxW (y′, ξ′1, ξ
′

2, . . . , ξ
′

r) Dx W (y′, ξ′1, . . . , ξ
′

r)

50 Kr(η1, . . . , ηr) Dx W (η′1, η
′

2, . . . , η
′

r)

51 Kr(η1, . . . , ηr)/DxKr(η1, . . . , ηr) Dx W (y′, η′1, . . . , η
′

r)

52 c 6= r + 1: (y(r+1))
2−c+r
c−r−1 y(r+2) (y(r+1))

1
c−r−1Dx y(r+1)

c = r + 1: y(r+1), y(r+3)

(y(r+2))2
1

y(r+2)Dx y(r+2)

53 y(r+1)e
y(r)

r! e
y(r)

r! Dx const

54 y(r+1)y(r+3)

(y(r+2))2
y(r+1)

y(r+2)Dx y(r+1)y(r+2)

55 Qr+3(y
(r+1))−

2r+8
r+2 (y(r+1))−

2
r+2Dx y(r+1)

56 Sr+4Q
−3/2
r+3 y(r+1)Q

−1/2
r+3 Dx y(r+1)Qr+3
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