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Abstract

Complete sets of bases of differential invariants, operators of invariant differentiation
and Lie determinants of continuous transformation groups acting on the real plane
are constructed. As a necessary preliminary, realizations of finite-dimensional Lie
algebras on the real plane are revisited.

Keywords: differential invariant, operator of invariant differentiation, Lie determinant,
Lie algebra realization.

1 Introduction

Differential invariants emerged as one of the most important tools in investigation of dif-
ferential equations in the works of S. Lie. In 1884 [17] he proved that any non-singular
invariant system of differential equations can be expressed in terms of differential invari-
ants of the corresponding symmetry group. In the same paper he also applied differential
invariants to integration of ODEs. If differential invariants of a Lie group are known, the
differential equations admitting this group can be easily described and the special repre-
sentation (so-called group foliation) of such differential equations can be constructed.

Differential invariants of all finite-dimensional local transformation groups on a space
of two complex variables were described by S. Lie himself in [18]. A modern treatment
of these results was adduced in [26]. Namely, functional bases of differential invariants,
operators of invariant differentiation and Lie determinants were constructed for all in-
equivalent realizations of point and contact finite-dimensional transformation groups on
the complex plane. The real finite-dimensional Lie algebras of contact vector fields and
their differential invariants were completely classified in [9]. Differential invariants of an
one-parameter group of local transformations in the case of arbitrary number of dependent
and independent variables were studied in [33].

The subject of this paper is exhaustive description of differential invariants and Lie
determinants of finite-dimensional Lie groups acting on the real plane. A necessary pre-
requisite to do it is classification of Lie algebra realizations in vector fields on the real
plane up to local diffeomorphisms.

Realizations of Lie algebras by vector fields are widely applicable in the general theory
of differential equations, integration of differential equations and their systems [25,28], in
group classification of ODEs and PDEs [2], in classification of gravity fields of a general
form with respect to motion groups [32], in geometric control theory and in the theory
of systems with superposition principles [6, 36]. Such realizations are also applicable in
the difference schemes for numerical solutions of differential equations [4]. Description
of realizations is the first step for solving the Levine’s problem [16] on the second order
time-independent Hamiltonian operators which lie in the universal enveloping algebra of a
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finite-dimensional Lie algebra of the first-order differential operators. The Levine’s prob-
lem was posed in molecular dynamics. In such a way, realizations are relevant in the theory
of quasi-exactly solvable problems of quantum mechanics through the so-called algebraic
approach to scattering theory and molecular dynamics. The list of possible applications
of realizations of Lie algebras is not exhausted by the above-mentioned subjects.

The plan of the paper is following. In Section 2 we discuss and compare different
classifications of realizations of finite-dimensional Lie algebras on the real and complex
planes, which are available in literature. In particular, we thoroughly study the question
of parametrization and equivalence in series of realizations. The realizations of finite-
dimensional Lie algebras in vector fields on the real plane are arranged in the form of
Table 1. The transformations that reduce real Lie algebras to complex ones are presented
in Table 2. In Section 3 some definitions and results concerning differential invariants
are collected and detailed example of calculation is adduced. Using the results of Table
1 and technique proposed in Section 2, we obtain complete sets of bases of differential
invariants, operators of invariant differentiation and Lie determinants and collect them in
Table 3. Short overview of the obtained results as well as their possible applications and
development are presented in the conclusion.

2 Realizations of Lie algebras

on real and complex planes

There are two important classification problems among a variety of others in the classical
theory of Lie algebras.

The first one is classification of Lie algebra structures, i.e. classification of possible
commutation relations between basis elements. A list of isomorphism classes of the Lie
algebras is in use of many authors for different purposes e.g. [1, 2, 5, 10, 29, 30, 32]. But
the problem of unification and correction of the existing lists (see for example [3, 8, 19–
24, 31, 39]) is a very laborious task, even in the case of low dimensions, because the
number of entries in such lists rapidly increases with growing dimension and the problem
of classification of Lie algebras includes a subproblem of reduction of pair of matrices
to a canonical form [15]. Here we only remind that all possible complex Lie algebras of
dimensions no greater than four were listed by S. Lie himself [19] and later the semisimple
Lie algebras [11] and the Lie algebras of dimensions no greater than six [21–24, 39] over
the complex and real fields were classified.

S. Lie established the other problem of description of different Lie algebra representa-
tions and realizations, particularly, by vector fields up to local diffeomorphisms.

Realizations of Lie algebras by vector fields in one real, one and two complex variables
were classified by S. Lie [19]. In 1990 A. Gonzalez-Lopez et al. ordered the Lie’s classifi-
cation of realizations of complex Lie algebras [13] and extended it to the the real case [14].
A complete set of inequivalent realizations of real Lie algebras of dimension no greater
than four in vector fields on a space of an arbitrary (finite) number of variables was con-
structed in [34]. The mentioned works do not exhaust all papers devoted to realizations
of Lie algebras, but only them will be used in the present paper.

An extended overview on both these subjects is contained in the preprint math-ph/0301029v7.
Realizations of Lie algebras by vector fields in one real, one and two complex variables

were classified by S. Lie [19]. In 1990 A. Gonzalez-Lopez et al. ordered the Lie’s classifica-
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tion of realizations of complex Lie algebras [13] and extended it to the the real case [14].
Starting from the above results, we detailed and amended the classification of realiza-
tions of finite-dimensional Lie algebras on the real plane. The obtained classification is
compared in Table 1 with existing classifications on real [14] and complex [19] planes.

The nontrivial transformations over the complex field that reduce realizations from [14]
to realizations from [26] are adduced in Table 2.

Notations. Below we denote ∂/∂x, ∂/∂y , . . . as ∂x, ∂y, . . . . The indices i and j run from 1
to r, where variation range for r is to be determined additionally in each case. The labelN0

consists of two parts which denote the page (from 57 to 73) and realization numbers in [19]
correspondingly. The labels N1 and N2 coincide with the numerations of real and complex
realizations in [14,26]. N3 corresponds to the numeration of realizations introduced in [34],
namely R(A, n) denotes the n-th realization of the Lie algebra A from [34], or, if the
dimension of the algebra is larger then four, the corresponding dimension is indicated in
the column entitled N3. The symbol N without subscripts correspond to the numeration
used in the present paper.

Remark 1. The realization of rank two of the non-Abelian two-dimensional real Lie
algebra 〈∂x, x∂x + y∂y〉 (case N = 4) is missed in [14] from the formal point of view. But
it can be joined to the realization series 〈∂x, ∂y, x∂x + cy∂y, x∂y, . . . , x

r∂y〉, r ≥ 1 (case
N1 = 24) written in the form 〈∂x, x∂x +cy∂y, x

k∂y, k = −1, 0, . . . , r〉 under the supposition
that for k = −1: x−1 = 0 and c = 1.

Remark 2. There are two different approaches to classification of Lie algebra realizations
by vector fields. According to the first approach, one should start from classification of Lie
algebras and then look for basis vector fields that satisfy the given commutation relations.
The second approach consists in direct construction of finite-dimensional spaces of vector
fields, which are closed with respect to the standard Lie bracket. If a complete list of
realizations of a fixed dimension is constructed then the problem of separation of the
realizations for a given Lie algebra from others arises and becomes nontrivial in the case
of parameterized series of realizations.

Example 1. Consider the series {Ab
4.8} [22] of real four-dimensional Lie algebras param-

eterized with the parameter |b| ≤ 1. For a fixed value of b, the basis elements of Ab
4.8

satisfy the canonical commutation relations

[e2, e3] = e1, [e1, e4] = (1 + b)e1, [e2, e4] = e2, [e3, e4] = be3.

In the framework of the first approach we obtain two inequivalent realizations in vector
fields on a space of two variables [34]

〈∂x, ∂y, y∂x, (1 + b)x∂x + y∂y〉 and 〈∂x, y∂x, −∂y, (1 + b)x∂x + by∂y〉 (1)

of the algebra Ab
4.8 if |b| < 1. There is a unique inequivalent realization in the case b = ±1

since under this condition realizations (1) are equivalent and we have to choose only one
of them.

S. Lie [19] used the second approach to construct all possible realization of finite-
dimensional Lie algebras on the plane. The algebras from the series {Ab

4.8} are represented
in the obtained list by the following realizations

〈∂y, ∂x, x∂y, x∂x + b̃y∂y〉, b̃ ∈ R, and 〈∂y,−x∂y, ∂x, y∂y〉. (2)
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In fact, the sets of realizations (1) and (2) coincide. To show it, we redenote the variables x
and y in (2) (namely, x ↔ y) at first and then shift the parameter b̃: b̃ = 1 + b′. After
reordering the basis in the first realization from (2) in the case |b′| ≤ 1, we obtain the
first realization from (1), where b = b′. If |b′| > 1, the first realization from (2) is
reduced to the second realization from (1) with b = 1/b′ by the additional simultaneous
transformations of the basis and realization variables: ẽ1 = b′e1, ẽ2 = e3, ẽ3 = −b′e2,
ẽ4 = be4; x̃ = bx, ỹ = by. The second realization from (2) coincides with the second one
from (1), where b = 0.

The above consideration explains in some way why the parameter values b = ±1 are
singular for the Lie algebra series {Ab

4.8} from the viewpoint of number of realizations.

Remark 3. It is clear that realizations from different series adduced in Table 1 are
inequivalent each to other but there can exist equivalent realizations belonging to the
same series.

Example 2. Consider the series of realizations

N = 6, 23, 48 : 〈ξ1(x)∂y, ξ2(x)∂y, . . . , ξr+2(x)∂y〉, r ≥ 1, (3)

N = 35, 49 : 〈y∂y, ξ1(x)∂y , ξ2(x)∂y, . . . , ξr+2(x)∂y〉, r ≥ 1 (4)

parameterized with arbitrary linearly independent real-valued functions ξi.
Any realization from series (3) or (4) pass into realizations from the same series under

the basis transformations with non-singular constant matrices (cij) and the non-singular
variable transformations x̃ = ϕ(x), ỹ = ψ(x)y. By means of these equivalence transforma-
tions the parameter-functions ξi change in the following way ξ̃i(x̃) = cijψ(x)ξj(x)| x̃=ϕ(x).

Consequently, without loss of generality we can put ξ̃r+1 = 1 and ξ̃r+2 = x̃. Hence, the
series of realizations (3) and (4) takes the form adduced in the Table 1, namely

〈∂ỹ, x̃∂ỹ, ξ̃1(x̃)∂ỹ, . . . , ξ̃r(x̃)∂ỹ〉 and 〈ỹ∂ỹ, ∂ỹ, x̃∂ỹ, ξ̃1(x̃)∂ỹ, . . . , ξ̃r(x̃)∂ỹ〉. (5)

Accurately speaking, the series with normalized forms (5) also contain equivalent realiza-
tions, and the corresponding equivalence transformations are restrictions of the aforesaid
ones.

Example 3. Another example is given by two series of realizations

N = 50 : 〈∂x, η1(x)∂y, . . . , ηr(x)∂y〉, r ≥ 4, (6)

N = 51 : 〈∂x, y∂y, η1(x)∂y , . . . , ηr(x)∂y〉, r ≥ 3 (7)

parameterized with real functions ηi which form a fundamental system of solutions for an
r-order ordinary differential equation with constant coefficients

η(r)(x) + c1η
(r−1)(x) + · · · + crη(x) = 0.

The transformations that reduce any realization from the series N = 50 and N = 51 to
a realization from the same series are generated by the changes of basis with non-singular
constant matrices (cij) and the variable transformations x̃ = a1x + a0, ỹ = by + f(x),
where f(x) = b0η0(x) + b1η1(x) + · · · + brηr(x), a1, a0, b, b0, . . . , br ∈ R, a1b 6= 0. The

function η0(x) is a solution of the ODE η
(r)
0 (x)+ c1η

(r−1)
0 (x)+ · · ·+ crη0(x) = 1 and in the

case N = 51 additionally b0 = 0. These equivalence transformations act on the functions
ηi as follows: η̃i(a1x+ a0) = cijηj(x).
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3 Differential invariants

Foundations of the theory of differential invariants were established in classical works of
Lie, Tresse [37, 38] and Cartan and are developed in our days [12, 26–28]. We shortly
formulate necessary definitions and statements following [27] and [28] in general outlines.

Consider a local r-parametric transformation group G acting on M ⊂ X × Y = R×R

and denote a prolonged transformation group acting on the subset of jet space M (n) =
M × R

n as pr(n)G . Let g be the r-dimensional Lie algebra with basis of infinitesimal
operators {ei = ξi(x, y)∂x + ηi(x, y)∂y} which corresponds to G. Then the prolonged
algebra pr(n)

g is generated by the prolonged first-order differential operators [27, 28]:

e
(n)
i = ξi(x, y)∂x + ηi(x, y)∂y +

n
∑

k=1

ηk
i (x, y(k))∂y(k) .

Hereafter n, k ∈ N, i = 1, . . . , r, the symbol y(k) denotes the tuple (y, y′, . . . , y(k)) of the
dependent variable y and its derivatives with respect to x of order no greater than k.

Definition 1. A smooth function I = I(x, y(n)) : M (n) → R is called a differential in-

variant of order n of the group G if I is an invariant of the prolonged group pr(n)G,
namely

I(pr(n)g · (x, y(n))) = I(x, y(n)), (x, y(n)) ∈M (n)

for all g ∈ G for which pr(n)g · (x, y(n)) is defined.

In infinitesimal terms, I(x, y(n)) is an n-th order differential invariant of the group G

if e
(n)
i I(x, y(n)) = 0 for any prolonged basis infinitesimal generators e

(n)
i of pr(n)

g.
Consider the series of the ranks rk = rank{(ξi, ηi, η

1
i , . . . , η

k
i ), i = 1, . . . , r}. For further

statements we introduce the number ν = min{k ∈ Z | rk = r}. Since the sequence {rk}
is nondecreasing, bounded by r and reaches the value r, the number ν exists and the
relation rν = rν+1 = · · · = r holds true.

Definition 2. Let pr(ν)
g is generated by the set of the prolonged infinitesimal operators

{e
(ν)
i } and L is the matrix formed by their coefficients:

L =











ξ1 η1 η1
1 . . . η

(ν)
1

ξ2 η2 η1
2 . . . η

(ν)
2

...
...

...
. . .

...

ξr ηr η1
r . . . η

(ν)
r











.

A maximal minor of L, which does not vanish identically, is called a Lie determinant.

Importance of the adduced notions is explained by the following fact. If a system of
ordinary differential equations is invariant under action of the prolonged group pr(n)G
then it can be locally presented as a union of conditions of vanishing Lie determinants
and equations written in terms of differential invariants of G.

A natural question is whether it is possible to choose a minimal set of differential
invariants that allows us to obtain all differential invariants of the given order by a finite
number of certain operations. The answer to this question is affirmative.
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Below we will briefly state several results concerning differential invariants of Lie groups
acting on the plane. The presented statements are well known and adduced only on
purpose to complete the picture of differential invariants on the plane. Detailed definitions
and statements on the theory of differential invariants in general cases, review of main
results and approaches to differential invariants that are different from the presented one
(such as differential one-forms and moving coframes) and possibly more convenient for
other applications could be found e.g. in [12, 27, 28].

Definition 3. A maximal set In of functionally independent differential invariants of
order no greater than n (i.e. invariants of the prolonged group pr(n)G) is called a universal

differential invariant of order n of the group G.

Note that dimension of the jet space M (n) is dimM (n) = n + 2 and the number of
functionally independent differential invariants of order n is dn = n + 2 − rn. Any n-th
order differential invariant I of G is necessarily an (n + l)-th order differential invariant
of G, l ≥ 0. Therefore for any n, l ≥ 0 a universal differential invariant In+l can be
obtained by extension of a universal differential invariant In.

Definition 4. A vector field (or a differential operator) δ on the infinitely prolonged jet
space M (∞) is called an operator of invariant differentiation of the group G if for any
differential invariant I of G the expression δI is also a differential invariant of G.

Any operator δ commuting with all formally infinitely prolonged basis infinitesimal
generators e∞i of the corresponding Lie algebra is an operator of invariant differentiation
of G. For any Lie group acting on the real or complex planes, there exists exactly one
independent (over the field of invariants of this group) operator of invariant differentiation.

For any Lie group G there exists a finite basis of differential invariants, i.e. a finite
set of functionally independent differential invariants such that any differential invariant
of G can be obtained from it via a finite number of functional operations and operations
of invariant differentiation. A basis of differential invariants of the group G is always
contained in a universal differential invariant Iν+1.

To describe completely differential invariants of all transformation groups acting on the
real plane, we obtain a functional basis of differential invariants and operators of invariant
differentiation for each algebra from the known list of inequivalent Lie algebras of vector
fields on the plane.

Bases of differential invariants are constructed as a part of (ν + 1)-th order universal
differential invariants using the infinitesimal approach. The constructive procedure for
finding invariant differentiation operators is directly derived from the condition of their
commutation with formally infinitely prolonged elements of the algebra. Namely, we look
for an operator of invariant differentiation as the operator of total differentiation Dx with
a multiplier λ depending on x and y(ν): X = λ(x, y(ν))Dx, where λ : M (ν) → R. The
function λ is implicitly determined by the equation ϕ(x, y(ν), λ) = 0, where ϕ satisfies the
condition:

ζν
i ϕ = 0, ζν

i = ξi∂x + ηi∂y + η1
i ∂y′ + · · ·+ ην

i ∂y(ν) + (λDx)ξi∂λ.

In other words, ϕ(x, y(ν), λ) should be an invariant of the flows generated by vector fields

ζν
i . Let us note that rank{(ζν

i ), i = 1, . . . , r} = r. A universal invariant I of ζν
i can be
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presented as I = (Iν , Î), where Î : M (ν) × R → R, ∂Î/∂λ 6= 0. So, the unknown function
λ can be find from the condition Î(x, y(ν), λ) = C for a fixed constant C.

All the obtained results obtained are presented in the form of Table 3 and may be used
for group classification of ODEs of any finite order. In a similar way one can describe the
differential invariants of the transformations groups acting in the spaces of more than two
variables and having a low number of parameters by means of using the classification of
realizations of real low-dimensional Lie algebras [34] and then apply them to investigation
of systems of ODEs or PDEs.

Example 4. Let us illustrate the above statements by considering the Lie algebra Ab
3.5,

b ≥ 0, generated by the basis elements (case N = 17 in Tables 1 and 3):

e1 = ∂y, e2 = x∂y, e3 = −(1 + x2)∂x + (b− x)y∂y.

The second prolongations of these operators are:

e
(2)
1 = ∂y,

e
(2)
2 = x∂y + ∂y′ ,

e
(2)
3 = −(1 + x2)∂x + (b− x)y∂y − (y − (b+ x)y′)∂y′ + (b+ 3x)y′′∂y′′ .

Inasmuch as dimension of the algebra is r = 3 and the rank of the first prolongation
is r1 = 3, the ranks of all other prolongations also equal to 3: r1 = r2 = · · · = r = 3. In
this case ν = 1. Hence, the basis of differential invariants is contained in the universal
differential invariant Iν+1 = I2. The Lie determinant L is calculated as the determinant

of the matrix formed by coefficients of e
(2)
i , i = 1, 2, 3:

L = det





0 1 0
0 x 1

−(1 + x2) (b− x)y −(y − (b+ x)y′)



 = −(1 + x2).

It produces no invariant differential equations.
Let us look for a basis of differential invariants. There are no differential invariants of

orders 0 and 1 (because of d0 = 0 + 2 − 2 = 0 and d1 = 1 + 2 − r1 = 0). The universal
differential invariant I2, as well as the basis of differential invariants, is formed by a single
(because of d2 = 2+2− r2 = 1) function I = I(x, y, y′, y′′). It is defined by the conditions

e
(2)
i I = 0, i = 1, 2, 3, which are equivalent to the overdetermined system of first-order

linear PDEs

∂I

∂y
= 0,

x
∂I

∂y
+
∂I

∂y′
= 0,

−(1 + x2)
∂I

∂x
+ (b− x)y

∂I

∂y
− (y − (b+ x)y′)

∂I

∂y′
+ (b+ 3x)y′′

∂I

∂y′′
= 0.

It is follows from two first equations that I = I(x, y′′). The basis of differential in-
variants of the considered realization is obtained as the set of functionally independent
integrals for the reduced characteristic system of the third equation:

I2 = {y′′(1 + x2)
3
2eb arctan x}.
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The last task which should be solved in order to describe all differential invariants of
this realization is construction of an operator of invariant differentiation.

We look for the operator of invariant differentiation in the form λ(x, y, y′)Dx. Here Dx

is the operator of total differentiation. The function λ is implicitly given by the equation
ϕ(x, y, y′, λ) = 0, where ϕ is a nonconstant solution of the overdetermined system of
first-order linear PDEs

∂ϕ

∂y
= 0, x

∂ϕ

∂y
+
∂ϕ

∂y′
= 0,

(1 + x2)
∂ϕ

∂x
− (b− x)y

∂ϕ

∂y
+ (y − (b+ x)y′)

∂ϕ

∂y′
+ 2xλ

∂ϕ

∂λ
= 0.

Two first equations result in the condition ϕ = ϕ(x, λ). Then the latter implies
ϕ = ϕ(ω), where ω = λ(1 + x2)−1, i.e. the function λ can be found from the equation
λ(1 + x2)−1 = 1. The corresponding operator of invariant differentiation is (1 + x2)Dx.

Remark 4. Form of differential invariants essentially depends on explicit form of realiza-
tions. Therefore, to construct an optimal set of invariants, one should to choose an opti-
mal form of realizations. For example, for the realization 〈e−bx sin x∂y, e

−bx cos x∂y, ∂x〉,
where b ≥ 0 (N = 17), a fundamental differential invariant, an operator of invariant
differentiation and a Lie determinant have the following form:

I2 = y′′ + 2by′ + (b2 + 1)y, X = Dx, L = −e−2bx.

For the equivalent form 〈∂y, x∂y, −(1 + x2)∂x + (b − x)y∂y〉 which is considered in Ex-
ample 4, the corresponding invariant objects are more complicated:

I2 = y′′(1 + x2)3/2eb arctan x, X = (1 + x2)Dx, L = −(1 + x2).

Remark 5. The cases marked with “∗” in Table 3 differ from the cases with the same
numbers by changes of dependent and independent variables. They are adduced simulta-
neously because different forms may be convenient for different applications.

4 Concluding remarks

In this paper we provide a complete description of differential invariants and Lie deter-
minants of finite-dimensional Lie groups acting on the real plane. Obtained results are
presented in Table 3. As preliminaries of the above problem, known results on classifica-
tion of realizations of real Lie algebras in vector fields in two variables were reviewed and
amended (Table 1). Namely, the low dimensional Lie algebras were extracted from the
general cases and presented in explicit form, what made this classification more conve-
nient for applications. Additionally, the problem of equivalence of realizations belonging
to the same series of Lie algebra was discussed.

Results of the paper could be applied to group classification of ODEs of any finite
order over the real field. In the future we plan to review and to generalize results of group
classification of the third and fourth order ODEs that were obtained in [7,35]. In a similar
way one can describe the differential invariants of the transformations groups acting in
the spaces of more than two variables and having a low number of parameters by means
of using the classification of realizations of real low-dimensional Lie algebras and then
apply them to investigation of systems of ODEs or PDEs.
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Table 1. Realizations of Lie algebras on the real plane.

N Realizations N1 N0 N3

1 ∂x 9 57, (1) R(A1, 1)

2 ∂x, ∂y 22 57, (2) R(2A1, 1)

3 ∂x, y∂x 20 57, (4) R(2A1, 2)

4 ∂x, x∂x + y∂y — 57, (3) R(A2.1, 1)

5 ∂x, x∂x 10 57, (5) R(A2.1, 2)

6 ∂y, x∂y, ξ1(x)∂y 20 57, (14) R(3A1, 5)

7 ∂y, y∂y, ∂x 23 73, (10) R(A2.1 ⊕ A1, 3)

8 e−x∂y, ∂x, ∂y 22 57, (8) R(A2.1 ⊕ A1, 4)

9 ∂y, ∂x, x∂y 22 57, (9) R(A3.1, 3)

10 ∂y, ∂x, x∂x + (x + y)∂y 25 57, (11) R(A3.2, 2)

11 e−x∂y, −xe−x∂y, ∂x 22 57, (7) R(A3.2, 3)

12 ∂x, ∂y, x∂x + y∂y 12 57, (10) R(A3.3, 2)

13 ∂y, x∂y, y∂y 21 57, (15) R(A3.3, 4)

14 ∂x, ∂y, x∂x + ay∂y, 0 < |a| ≤ 1, a 6= 1 12 57, (10) R(Aa
3.4, 2)

15 e−x∂y, e−ax∂y, ∂x, 0 < |a| ≤ 1, a 6= 1 22 57, (6) R(Aa
3.4, 3)

16 ∂x, ∂y, (bx + y)∂x + (by − x)∂y, b ≥ 0 1
C
∼ 57, (10) R(Ab

3.5, 2)

17 e−bx sin x∂y, e−bx cos x∂y, ∂x, b ≥ 0 22
C
∼ 57, (6) R(Ab

3.5, 3)

18 ∂x, x∂x + y∂y, (x2 − y2)∂x + 2xy∂y 2
C
∼ 57, (13); 73, (4) R(sl(2, R), 2)

19 ∂x + ∂y, x∂x + y∂y, x2∂x + y2∂y 17 57, (13); 73, (4) R(sl(2, R), 3)

20 ∂x, x∂x + 1
2y∂y, x2∂x + xy∂y 18 57, (16); 72, (10) R(sl(2, R), 4)

21 ∂x, x∂x, x2∂x 11
C
∼ 57, (16); 72, (10) R(sl(2, R), 5)

22
y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y,

2xy∂x + (1 + y2 − x2)∂y

3
C
∼ 57, (13); 73, (4) R(so(3), 1)

23 ∂y, x∂y, ξ1(x)∂y, ξ2(x)∂y 20 58, (8) R(4A1, 11)

24 ∂x, x∂x, ∂y, y∂y 13 58, (6) R(2A2.1, 5)

25 e−x∂y, ∂x, ∂y, y∂y 23 58, (1) R(2A2.1, 7)

26 e−x∂y, −xe−x∂y, ∂x, ∂y 22 57, (21) R(A3.2⊕A1, 9)

27 e−x∂y, e−ax∂y, ∂x, ∂y, 0 < |a| ≤ 1, a 6= 1 22 57, (20) R(Aa
3.4⊕A1, 9)

28 e−bx sin x∂y, e−bx cos x∂y, ∂x, ∂y, b ≥ 0 22
C
∼ 57, (20) R(Ab

3.5⊕A1, 8)

29 ∂x, x∂x, y∂y, x2∂x + xy∂y 19 58, (7) R(sl(2, R)⊕A1, 8)

30 ∂x, ∂y, x∂x, x2∂x 14 58, (3) R(sl(2, R)⊕A1, 9)

9



Table 1. (Continued.)

N Realizations N1 N0 N3

31 ∂y, −x∂y,
1
2x2∂y, ∂x 22 57, (23) R(A4.1, 8)

32 e−bx∂y, e−x∂y, −xe−x∂y, ∂x 22 57, (18) R(Ab6=1
4.2 , 8)

33 e−x∂y, −x∂y, ∂y, ∂x 22 57, (22) R(A4.3, 8)

34 e−x∂y, −xe−x∂y,
1
2x2e−x∂y, ∂x 22 57, (19) R(A4.4, 7)

35 ∂y, x∂y, ξ1(x)∂y , y∂y 21 58, (9) R(A1,1,1
4.5 , 10)

36 e−ax∂y, e−bx∂y, e−x∂y, ∂x, −1 ≤ a < b < 1, ab 6= 0 22 57, (17) R(Aa,b,1
4.5 , 7)

37 e−ax∂y, e−bx sin x∂y, e−bx cos x∂y, ∂x, a > 0 22
C
∼ 57, (17) R(Aa,b

4.6, 6)

38 ∂x, ∂y, x∂y, x∂x + (2y + x2)∂y 25 58, (5) R(A4.7, 5)

39 ∂y, ∂x, x∂y, (1 + b)x∂x + y∂y, |b| ≤ 1 24 58, (4) R(Ab
4.8, 5)

40 ∂y, −x∂y, ∂x, y∂y 23 58, (2); 72, (7) R(A0
4.8, 7)

41 ∂x, ∂y, x∂x + y∂y, y∂x − x∂y 4
C
∼ 58, (6) R(A4.10, 6)

42 sinx∂y, cos x∂y, y∂y, ∂x 23
C
∼ 58, (1) R(A4.10, 7)

43 ∂x, ∂y, x∂x − y∂y, y∂x, x∂y 5 71, (3) dim A = 5

44 ∂x, ∂y, x∂x, y∂y, y∂x, x∂y 6 71, (2) dim A = 6

45
∂x, ∂y, x∂x + y∂y, y∂x − x∂y,

(x2 − y2)∂x − 2xy∂y, 2xy∂x − (y2 − x2)∂y

7
C
∼ 73, (3) dim A = 6

46 ∂x, ∂y, x∂x, y∂y, x2∂x, y2∂y 16 73, (3) dim A = 6

47
∂x, ∂y, x∂x, y∂y, y∂x, x∂y,

x2∂x + xy∂y, xy∂x + y2∂y

8 71, (1) dim A = 8

48 ∂y, x∂y, ξ1(x)∂y , . . . , ξr(x)∂y, r ≥ 3 20 73, (2) dim A ≥ 5

49 y∂y, ∂y, x∂y, ξ1(x)∂y , . . . , ξr(x)∂y, r ≥ 2 21 72, (8) dim A ≥ 5

50 ∂x, η1(x)∂y, . . . , ηr(x)∂y, r ≥ 4 22 73, (1) dim A ≥ 5

51 ∂x, y∂y, η1(x)∂y, . . . , ηr(x)∂y, r ≥ 3 23 72, (7) dim A ≥ 5

52 ∂x, ∂y, x∂x + cy∂y, x∂y, . . . , xr∂y, r ≥ 2 24 72, (5) dim A ≥ 5

53 ∂x, ∂y, x∂y, . . . , xr−1∂y, x∂x+(ry+xr)∂y, r ≥ 3 25 72, (6) dim A ≥ 5

54 ∂x, x∂x, y∂y, ∂y, x∂y, . . . , xr∂y, r ≥ 1 26 72, (4) dim A ≥ 5

55
∂x, ∂y, 2x∂x + ry∂y, x2∂x + rxy∂y,

x∂y, x2∂y, . . . , xr∂y, r ≥ 1
27 71, (4); 72, (1) dim A ≥ 5

56
∂x, x∂x, y∂y, x

2∂x + rxy∂y,

∂y, x∂y, x
2∂y, . . . , xr∂y, r ≥ 0

15; 28 73, (5); 72, (2) dim A ≥ 5

The functions 1, x, ξ1, . . . , ξr are linearly independent. The functions η1, . . . , ηr

form a fundamental system of solutions for an r-order ordinary differential equation with
constant coefficients η(r)(x) + c1η

(r−1)(x) + · · ·+ crη(x) = 0.
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Table 2. Transformations of real realizations to complex ones.

N1
Transformation

of space variables
Transformation of basis elements N2

1 x̃ = x − iy, ỹ = x + iy ẽ1 = 1+i
2 (e1 + e2), ẽ2 = 1

c+ie3, ẽ3 = 1−i
2 (e1 − e2) 2.7, k = 1

2 x̃ = x − iy, ỹ = 1
2iy ẽ1 = e1, ẽ2 = e2, ẽ3 = e3 2.2

3 x̃ = − 1
ix+y , ỹ = ix+y

1+x2+y2 ẽ1 = 1
2(ie2 + e3), ẽ2 = ie1, ẽ3 = 1

2(e3 − ie2) 2.2

4 x̃ = y−ix
2 , ỹ = −y+ix

2 ẽ1 = ie1 − e2, ẽ2 = ie1 + e2, ẽ3 = e3+ie4
2 , ẽ4 = e3−ie4

2 2.9, k = 1

7 x̃ = y + ix, ỹ = y − ix
ẽ1 = e1+ie2

2i , ẽ2 = e3−ie4
2 , ẽ3 = e6+ie5

2 ,

ẽ4 = ie2−e1
2i , ẽ5 = e3+ie4

2 , ẽ6 = e6−ie5
2

2.4

17 x̃ = y, ỹ = 1
x−y ẽ1 = e1, ẽ2 = e2, ẽ3 = e3 2.2

18 x̃ = x, ỹ = 1
y2 ẽ1 = e1, ẽ2 = 1

2e2, ẽ3 = e3 2.1

19 x̃ = x, ỹ = 1
y ẽ1 = e1, ẽ2 = e2, ẽ3 = −e3, ẽ4 = e4 2.3

In Table 3 we use the following notations:

Sk+3 = (k + 1)2
(

y(k)
)2
y(k+3)− 3(k + 1)(k + 3)y(k)y(k+1)y(k+2) + 2(k + 2)(k + 3)

(

y(k+1)
)3
,

Qk+2 = (k + 1)y(k)y(k+2) − (k + 2)
(

y(k+1)
)2
, Q̃3 = y′′′B1 − 3y′(y′′)2,

B0 = 1 + x2 + y2, B1 = 1 + (y′)2,

Pi,j(ϕ, ψ) = ϕ(i)ψ(j) − ϕ(j)ψ(i), R4 = 3y′′yıv − 5(y′′′)2,

Ũ5 = 4yvB3
1Q+ 10yıvy′′B3

1

(

4y′′′y′ + 3(y′′)2
)

− 5(yıv)2B4
1 + 40(y′′′)2(y′′)2

(

(y′)2 − 2
)

B2
1

− 40(y′′′)3y′B3
1 − 180y′′′y′(y′′)4

(

(y′)2 − 1
)

B2
1 − (y′′)6

(

45(6(y′)2 + 1) − 135(y′)4
)

,

U5 = (y′)2
(

Q3D
2
xQ3 −

5
4
(DxQ3)

2
)

+ y′y′′Q3DxQ3 −
(

2y′y′′′ − (y′′)2
)

Q2
3,

V7 = (y′′)2
(

S5D
2
xS5 −

7
6
(DxS5)

2
)

+ y′′y′′′S5DxS5 −
1
2

(

9y′′yıv − 7(y′′′)2
)

S2
5 ,

W (f1, f2, . . . , fr) =

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) . . . fr(x)
f ′

1(x) f ′
2(x) . . . f ′

r(x)
. . . . . . . . . . . .

f
(r−1)
1 (x) f

(r−1)
2 (x) . . . f

(r−1)
r (x)

∣

∣

∣

∣

∣

∣

∣

∣

,

Kr(η1, η2, . . . , ηr) = y(r) + c1y
(r−1) + c1y

(r−1) + · · ·+ cry,

where c1, . . . , cr are the constant coefficients of the r-th-order ODE

η(r)(x) + c1η
(r−1)(x) + · · · + crη(x) = 0

which is satisfied by the functions η1(x), . . . , ηr(x).
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Table 3. Differential invariants, operators of invariant differentiation
and Lie determinants of realizations of Lie algebras on the real plane.

N Basis of differential invariants Operator Lie determinant

1 y Dx const

1* x, y′ Dx const

2 y′, y′′ Dx const

3 y, y′′

y′3
1
y′ Dx −(y′)2

3* x, y′′ Dx const

4 y′ yDx y

5 y, y′′

(y′)2
1
y′ Dx y′

5* x, y′′

y′ Dx y′

6 x, y′′ξ′′′1 (x) − y′′′ξ′′1 (x) Dx ξ′′1 (x)

7 y′′

y′ Dx y′

8 y′′ + y′ Dx −e−x

9 y′′ Dx const

10 y′′ey′

ey′

Dx const

11 y′′ + 2y′ + y Dx −e−2x

12 y′′′

(y′′)2
1
y′′ Dx −y′′

13 x, y′′′

y′′ Dx −y′′

14 y′′y′
2−a
a−1 (y′)

1
a−1 Dx (a − 1)y′

15 y′′ + (a + 1)y′ + ay Dx (1 − a)e−(1+a)x

16 y′′e−c arctan y′

B
−3/2
1 e−c arctan y′

B
−1/2
1 Dx B1

17 y′′ + 2by′ + (b2 + 1)y Dx −e−2bx

18 (y′′y + (y′)2 + 1)B
−3/2
1 2yB

−1/2
1 Dx 2y2B1

19 (y′′(x − y) + 2y′(1 + y′))(y′)−3/2 (x − y)(y′)−1/2Dx 2y′(x − y)2

20 y3y′′ y2Dx y2

21 x, (y′)−2Q3 Dx y(y − x)y′

21* y, (3y′′2 − 2y′y′′′)(y′)−4 1
y′ Dx y′

22 y′′B0B
−3/2
1 + 2(y − xy′)B

−1/2
1 B0B

−1/2
1 Dx B2

0B1

23 x, y′′′P2,4(ξ1, ξ2) + y′′P4,3(ξ1, ξ2) + yıv Dx P2,3(ξ1, ξ2)

24 y′y′′′

(y′′)2
y′

y′′ Dx y′y′′

25 y′′′+y′′

y′′+y′ Dx −e−x(y′′ + y′)

26 y′′′ + 2y′′ + y′ Dx −e−2x

27 y′′′ + (1 + a)y′′ + ay′ Dx a(a − 1)e−(1+a)x
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Table 3. (Continued.)

N Basis of differential invariants Operator Lie determinant

28 y′′′ + 2by′′ + (1 + b2)y′ Dx −(1 + b2)e−2bx

29 S3Q
−3/2
2

√

y
y′′ Dx −2y2y′′

30 Q3(y
′)−4 1

y′ Dx 2y′2

31 y′′′ Dx const

32 y′′′ + (b + 2)y′′ + (2b + 1)y′ + by Dx (b − 1)2e−(b+2)x

33 y′′′ + y′′ Dx −e−x

34 y′′′ + 3y′′ + 3y′ + y Dx −e−3x

35 x, P2,4(ξ1, y)/P2,3(ξ1, y) Dx P2,3(ξ1, y)

36 y′′′ + (a + b + 1)y′′ + (ab + a + b)y′ + aby Dx
(b−a)(1−a)(1−b)

e(a+b+1)x

37 y′′′ + (2b + a)y′′ + (b2 + 2ab + 1)y′ + a(b2 + 1)y Dx ((b − a)2 + 1)e−(2b+a)x

38 y′′′e
y′′

2 e
y′′

2 Dx const

39 b = 1: y′′, yıv(y′′′)−2 1
y′′′ Dx y′′′

b 6= 1: (y′′)
2−b
b−1 y′′

1
b−1 Dx (1 − b)y′′

40 y′′′

y′′ Dx −y′′

41 (y′′)−2B1y
′′′ − 3y′ B1

y′′ Dx 3y′′B1

42 y′′′+y′

y′′+y Dx y′′ + y

43 (3y′′yıv − 5(y′′′)2)(y′′)−8/3 (y′′)−1/3Dx y′′

44 S5R
−3/2
4 y′′R

−1/2
4 Dx (y′′)2R4

45 Ũ5Q̃
−3
3 B1Q̃

−1/2
3 Dx −16B1Q̃

2
3

46 U5Q
−3
3 y′Q

−1/2
3 Dx −4y′Q−2

3

47 V7S
−8/3
5 y′′S

−1/3
5 Dx −2y′′S2

5

48 x, W (y′′, ξ′′1 , ξ′′2 , . . . , ξ′′r ) Dx W (ξ′′1 , ξ′′2 , . . . , ξ′′r )

49 x, Dx ln |W (y′′, ξ′′1 , ξ′′2 , . . . , ξ′′r )| Dx W (y′′, ξ′′1 , . . . , ξ′′r )

50 Kr(η1, . . . , ηr) Dx W (η1, η2, . . . , ηr)

51 Dx ln |Kr(η1, . . . , ηr)| Dx W (y, η1, . . . , ηr)

52 c 6= r + 1: (y(r+1))
2−c+r
c−r−1 y(r+2) (y(r+1))

1
c−r−1Dx y(r+1)

c = r + 1: y(r+1), y(r+3)

(y(r+2))2
1

y(r+2) Dx y(r+2)

53 y(r+1)e
y(r)

r! e
y(r)

r! Dx const

54 y(r+1)y(r+3)

(y(r+2))2
y(r+1)

y(r+2) Dx y(r+1)y(r+2)

55 Qr+3(y
(r+1))−

2r+8
r+2 (y(r+1))−

2
r+2Dx y(r+1)

56 Sr+4Q
−3/2
r+3 y(r+1)Q

−1/2
r+3 Dx y(r+1)Qr+3
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