Cartan's equivalence method and non-commutative derivations

Sylvain Neut and Michel Petitot

University of Lille, France

EACA 2004, Santander, 01/07/04-03/07/04

Plan

Necessary and sufficient conditions for the linearization of a third order ODE,

Classification results for some PDE systems.

• Main optimizations of our implementation of the Cartan's equivalence method.

Introduction

- The Cartan's equivalence method allows to decide if two differential equations (or systems of differential equations) are equivalent under the action of a given group of transformation.
- Input of the algorithm: Two differential equations and a group of transformations.
- Output of the algorithm: A complete system of fundamental invariants associated to the equivalence problem.
- See Olver (Equivalence, Invariants and Symmetry). See Cartan, Chern (Third order ODE), Gardner, Olver, Kamran, Fels.

Equivalence of third order ODE's

• Let $x := (x, y, p = y', q = y'') \in \mathbb{R}^4$ be a system of local coordinates of J^2 . Two equations $y_{xxx} = f(x, y, p, q)$ and $\bar{y}''' = \bar{f}(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$ are equivalent by a contact transformation $\bar{x} = \phi(x)$ when there exist functions (a_1, \dots, a_9) from J^2 to \mathbb{R} such that

$$\phi^* \begin{pmatrix} d\overline{q} - \overline{f}(\overline{x})d\overline{x} \\ d\overline{y} - \overline{p}d\overline{x} \\ d\overline{p} - \overline{q}d\overline{x} \\ d\overline{x} \end{pmatrix} = \underbrace{\begin{pmatrix} a_1(x) & a_2(x) & a_3(x) & 0 \\ 0 & a_4(x) & 0 & 0 \\ 0 & a_5(x) & a_6(x) & 0 \\ 0 & a_7(x) & a_8(x) & a_9(x) \end{pmatrix}}_{\theta(x)} \underbrace{\begin{pmatrix} dq - f(x)dx \\ dy - pdx \\ dp - qdx \\ dx \end{pmatrix}}_{\omega(x)}$$

The computation splits into two branches depending on the value of

$$I = -\frac{1}{3}f_p f_q + \frac{1}{2}D_x f_p - \frac{1}{6}D_x^2 f_q - f_y + \frac{1}{3}f_q D_x f_q - \frac{2}{27}f_q^3$$

where $D_x := \partial/\partial x + p \,\partial/\partial y + q \,\partial/\partial p + f(x, y, p, q) \,\partial/\partial q$.

Third order ODE's : the case I=0

The final structure equations containing 9 fundamental invariants are:

$$\begin{cases}
d\theta^{1} &= -\theta^{1} \wedge \theta^{5} - \theta^{3} \wedge \theta^{6}, \\
d\theta^{2} &= -\theta^{2} \wedge \theta^{5} - 2\theta^{2} \wedge \theta^{9} - \theta^{3} \wedge \theta^{4}, \\
d\theta^{3} &= -\theta^{1} \wedge \theta^{4} - \theta^{2} \wedge \theta^{6} - \theta^{3} \wedge \theta^{5} - \theta^{3} \wedge \theta^{9}, \\
d\theta^{4} &= -\theta^{2} \wedge \theta^{7} - \theta^{3} \wedge \theta^{8} - \theta^{4} \wedge \theta^{9}, \\
d\theta^{5} &= -2\theta^{1} \wedge \theta^{8} - \theta^{3} \wedge \theta^{7} - \theta^{4} \wedge \theta^{6}, \\
d\theta^{6} &= -\theta^{1} \wedge \theta^{7} - \theta^{3} \wedge \theta^{10} + \theta^{6} \wedge \theta^{9}, \\
d\theta^{7} &= I_{1}\theta^{1} \wedge \theta^{2} + I_{2}\theta^{1} \wedge \theta^{3} + I_{3}\theta^{2} \wedge \theta^{3} - \theta^{4} \wedge \theta^{10} - \theta^{5} \wedge \theta^{7} \\
&\quad -\theta^{6} \wedge \theta^{8} + \theta^{7} \wedge \theta^{9}, \\
d\theta^{8} &= I_{4}\theta^{1} \wedge \theta^{2} + I_{5}\theta^{1} \wedge \theta^{3} + I_{6}\theta^{2} \wedge \theta^{3} - \theta^{4} \wedge \theta^{7} - \theta^{5} \wedge \theta^{8}, \\
d\theta^{9} &= \theta^{1} \wedge \theta^{8} - \theta^{2} \wedge \theta^{10} + \theta^{4} \wedge \theta^{6}, \\
d\theta^{10} &= I_{7}\theta^{1} \wedge \theta^{2} + I_{8}\theta^{1} \wedge \theta^{3} + I_{9}\theta^{2} \wedge \theta^{3} - \theta^{5} \wedge \theta^{10} \\
&\quad -\theta^{6} \wedge \theta^{7} - 2\theta^{9} \wedge \theta^{10}.
\end{cases}$$
(1)

Third order ODE's : the case I=0

Theorem 1 Consider the equation $y_{xxx} = f(x, y, p, q)$. Then the three following conditions are equivalent:

- (i) The equation is equivalent to y''' = 0 by a contact transformation.
- (ii) The equation admits a 10 parameters contact symmetry group.
- (iii) I = 0 et $f_{qqqq} = 0$.
- The Poincaré's identity

$$d(d\theta^i) = R^i_{j,k,l}\theta^j \wedge \theta^k \wedge \theta^l = 0$$

gives the following differential relations between the invariants:

$$-I_{2} + I_{4} = 0, I_{1} + 2I_{6} = 0, \frac{\partial I_{3}}{\partial \theta^{4}} + I_{9} = 0,$$

$$\frac{\partial I_{4}}{\partial \theta^{4}} - I_{6} + I_{1} = 0, \frac{\partial I_{5}}{\partial \theta^{4}} + I_{4} + I_{2} = 0, \frac{\partial I_{6}}{\partial \theta^{4}} + I_{3} = 0,$$

$$-I_{6} - I_{8} = 0, \frac{\partial I_{8}}{\partial \theta^{4}} + I_{7} = 0.$$

• From the above relations we deduce that $I_5 = -f_{qqqq}/(6a_1^3a_9)$ is a base of the differential algebra generated by the nine invariants.

The final structure equations containing 16 fundamental invariants are:

$$\begin{cases}
d\theta^{1} = -\theta^{1} \wedge \theta^{5} + I_{1}\theta^{2} \wedge \theta^{3} + \theta^{2} \wedge \theta^{4} + I_{2}\theta^{3} \wedge \theta^{4}, \\
d\theta^{2} = I_{3}\theta^{2} \wedge \theta^{3} - \theta^{2} \wedge \theta^{5} - \theta^{3} \wedge \theta^{4}, \\
d\theta^{3} = I_{4}\theta^{1} \wedge \theta^{2} - \theta^{1} \wedge \theta^{4} + I_{5}\theta^{2} \wedge \theta^{3} + I_{6}\theta^{2} \wedge \theta^{4} - \theta^{3} \wedge \theta^{5}, \\
d\theta^{4} = I_{7}\theta^{1} \wedge \theta^{2} + I_{8}\theta^{1} \wedge \theta^{3} + I_{9}\theta^{2} \wedge \theta^{3} + I_{10}\theta^{2} \wedge \theta^{4}, \\
d\theta^{5} = I_{11}\theta^{1} \wedge \theta^{2} + I_{12}\theta^{1} \wedge \theta^{3} + I_{13}\theta^{1} \wedge \theta^{4} + I_{14}\theta^{2} \wedge \theta^{3} + I_{15}\theta^{2} \wedge \theta^{4} + I_{16}\theta^{3} \wedge \theta^{4}.
\end{cases} (2)$$

Third order ODE's : the case $I \neq 0$

In this case, the differential algebra of the invariants I_1, \ldots, I_{16} is generated by the four invariants : (I_8, I_3, I_{10}, I_2) .

Theorem 2 A third order differential equation $y_{xxx} = f(x, y, p, q)$ is equivalent to $y_{xxx} = y$ under the group of contact transformations if and only if:

$$\begin{cases}
J_{qq} = 0, \\
-4J_q f_q J + f_{qq}(J)^2 - 6J_p J + 6J_q D_x J = 0, \\
D_x J_p - D_x^2 J_q - J_y = 0, \\
-3(J)^2 f_p - (J)^2 f_q^2 + 3(J)^2 D_x f_q - 6J D_x^2 J + 9(D_x J)^2 = 0,
\end{cases}$$

where $J^3 = I$.

Third order ODE's: linearization conditions

• We used the above invariants to find necessary and sufficient condition so that the equation y''' = f(x, y, y', y'') is equivalent to the linear equation

$$y''' + a(x) y'' + b(x) y' + c(x) y = 0$$

by a contact transformation.

• Case I=0

For a linear equation, we have $f_{qqqq} = 0$. Therefore, every linear equation for which I = 0 is equivalent to y''' = 0. Then if I = 0, a differential equation is linearizable if and only if it is equivalent to y''' = 0, i.e $f_{qqqq} = 0$.

Third order ODE's: linearization conditions

• Case $I \neq 0$

Theorem 3 Consider y''' = f(x, y, y', y''), a third order ordinary differential equation such that $I \neq 0$. Then the five following conditions are equivalent:

(i) The equation is equivalent to the linear equation

$$y''' + a(x) y'' + b(x) y' + c(x) y = 0.$$

by a contact transformation.

- (ii) The equation is equivalent to the canonical form $y''' + 2I_2(x) y' + (1 + I'_2(x)) y = 0$ by a contact transformation.
- (iii) The invariants $(I_1, I_2, ..., I_{16})$ defined in (2), excepted eventually I_2 , are zero.
- (iv) The invariants $(I_1, I_3, I_8, I_{10}, I_{16})$ defined in (2) are zero.
- (v) The 2-forms $d\theta^4$ and $d\theta^5$ defined in (2) are zero.

Second order PDE systems with two independant variables

We have computed the invariants for the classification of second order pde systems

$$\begin{cases}
 u_{x^{1}x^{1}} = f_{11}(x^{1}, x^{2}, u, u_{x^{1}}, u_{x^{2}}) \\
 u_{x^{1}x^{2}} = f_{12}(x^{1}, x^{2}, u, u_{x^{1}}, u_{x^{2}}) \\
 u_{x^{2}x^{2}} = f_{22}(x^{1}, x^{2}, u, u_{x^{1}}, u_{x^{2}})
\end{cases} (3)$$

with one dependent variable u and two independent variables x^1, x^2 under the group of point transformations $\mathbb{R}^3 \ni (x^1, x^2, u) \to (\bar{x}^1, \bar{x}^2, \bar{u}) \in \mathbb{R}^3$.

• One can show that (3) is equivalent to the flat system

$$u_{x^1x^1} = u_{x^1x^2} = u_{x^2x^2} = 0$$

if and only if all the fundamental invariants are zero.

• These very large invariants occupy 1.1 Mega-bytes of memory. Using our software, we automatically prove that these equivalence conditions are reduced to the vanishing of a very small invariant.

Second order PDE systems with two independant variables

Theorem 4 The three following conditions are equivalent:

- (i) The system (3) can be mapped to the flat system $u_{xx} = u_{xy} = u_{yy} = 0$ by a point transformation.
- (ii) The system (3) admits a 15 parameters point symmetry group
- (iii) The functions f_{11} , f_{12} and f_{22} of (3) verify the following linear conditions:

$$\begin{cases} \frac{\partial^2 f_{11}}{\partial u_2 \partial u_2} = 0, \\ \frac{\partial^2 f_{22}}{\partial u_1 \partial u_1} = 0, \\ \frac{\partial^2 f_{12}}{\partial u_2 \partial u_2} - \frac{\partial^2 f_{11}}{\partial u_1 \partial u_2} = 0, \\ \frac{\partial^2 f_{12}}{\partial u_1 \partial u_1} - \frac{\partial^2 f_{22}}{\partial u_1 \partial u_2} = 0, \\ \frac{\partial^2 f_{11}}{\partial u_1 \partial u_1} - 4 \frac{\partial^2 f_{12}}{\partial u_1 \partial u_2} + \frac{\partial^2 f_{22}}{\partial u_2 \partial u_2} = 0. \end{cases}$$

Our Maple implementation of Cartan's equivalence method

• All the computations are done using non-commutative derivations. These derivations are dual of the forms ω^i . Such derivations naturally compress the invariants.

Example	use of $\partial/\partial x^i$	use of $\partial/\partial\omega^i$
y''' = f, I = 0	18 Kb (35 sec)	8 Kb (20 sec)
$y''' = f, I \neq 0$	57 Kb (7 sec)	7,5 Kb (3,5 sec)
$y^{(4)} = f$	280 Kb (38 sec)	36 Kb (9 sec)
PDE system (3)	Does not finish	1,1 Mb (3 h)

- The Poincaré's identity, $d(d\theta^i) = 0$, is automatically performed. It generates a lot of differential relations between the invariants.
- These relations are used to compute a base of the differential ideal or differential algebra of the invariants. It allows a great simplification of the equivalence conditions.
- You can find this 4500 lines maple package at www.lifl.fr/ _neut.