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Introduction

Shape is a fascinating and intriguing subject which has stimulated the imagination of
many people. It suffices to look around to become curious. Euclid did just that and came
up with the first pure creation. Relying on the common experience, he created an abstract
world that had a life of its own. As the human knowledge progressed so did the ability
of formulating and answering penetrating questions. In particular, mathematicians started
wondering whether Euclid’s “obvious” absolute postulates were indeed obvious and/or ab-
solute. Scientists realized that Shape and Space are two closely related concepts and asked
whether they really look the way our senses tell us. As Felix Klein pointed out in his Er-
langen Program, there are many ways of looking at Shape and Space so that various points
of view may produce different images. In particular, the most basic issue of “measuring
the Shape” cannot have a clear cut answer. This is a book about Shape, Space and some
particular ways of studying them.

Since its inception, the differential and integral calculus proved to be a very versatile
tool in dealing with previously untouchable problems. It did not take long until it found
uses in geometry in the hands of the Great Masters. This is the path we want to follow in
the present book.

In the early days of geometry nobody worried about the natural context in which the
methods of calculus “feel at home”. There was no need to address this aspect since for the
particular problems studied this was a non-issue. As mathematics progressed as a whole
the “natural context” mentioned above crystallized in the minds of mathematicians and it
was a notion so important that it had to be given a name. The geometric objects which
can be studied using the methods of calculus were called smooth manifolds. Special cases of
manifolds are the curves and the surfaces and these were quite well understood. B. Riemann
was the first to note that the low dimensional ideas of his time were particular aspects of a
higher dimensional world.

The first chapter of this book introduces the reader to the concept of smooth mani-
fold through abstract definitions and, more importantly, through many we believe relevant
examples. In particular, we introduce at this early stage the notion of Lie group. The
main geometric and algebraic properties of these objects will be gradually described as we
progress with our study of the geometry of manifolds. Besides their obvious usefulness in
geometry, the Lie groups are academically very friendly. They provide a marvelous testing
ground for abstract results. We have consistently taken advantage of this feature through-
out this book. As a bonus, by the end of these lectures the reader will feel comfortable
manipulating basic Lie theoretic concepts.

To apply the techniques of calculus we need “things to derivate and integrate”. These
“things” are introduced in Chapter 2. The reason why smooth manifolds have many dif-
ferentiable objects attached to them is that they can be locally very well approximated by
linear spaces called tangent spaces . Locally, everything looks like traditional calculus. Each
point has a tangent space attached to it so that we obtain a “bunch of tangent spaces” called
the tangent bundle. We found it appropriate to introduce at this early point the notion of
vector bundle. It helps in structuring both the language and the thinking.
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Once we have “things to derivate and integrate” we need to know how to explicitly
perform these operations. We devote the Chapter 3 to this purpose. This is perhaps
one of the most unattractive aspects of differential geometry but is crucial for all further
developments. To spice up the presentation, we have included many examples which will
found applications in later chapters. In particular, we have included a whole section devoted
to the representation theory of compact Lie groups essentially describing the equivalence
between representations and their characters.

The study of Shape begins in earnest in Chapter 4 which deals with Riemann manifolds.
We approach these objects gradually. The first section introduces the reader to the notion
of geodesics which are defined using the Levi-Civita connection. Locally, the geodesics play
the same role as the straight lines in an Euclidian space but globally new phenomena arise.
We illustrate these aspects with many concrete examples. In the final part of this section
we show how the Euclidian vector calculus generalizes to Riemann manifolds.

The second section of this chapter initiates the local study of Riemann manifolds. Up
to first order these manifolds look like Euclidian spaces. The novelty arises when we study
“second order approximations ” of these spaces. The Riemann tensor provides the complete
measure of how far is a Riemann manifold from being flat. This is a very involved object and,
to enhance its understanding, we compute it in several instances: on surfaces (which can be
easily visualized) and on Lie groups (which can be easily formalized). We have also included
Cartan’s moving frame technique which is extremely useful in concrete computations. As
an application of this technique we prove the celebrated Theorema Egregium of Gauss.
This section concludes with the first global result of the book, namely the Gauss-Bonnet
theorem. We present a proof inspired from [21] relying on the fact that all Riemann surfaces
are Einstein manifolds. The Gauss-Bonnet theorem will be a recurring theme in this book
and we will provide several other proofs and generalizations.

One of the most fascinating aspects of Riemann geometry is the intimate correlation
“local-global”. The Riemann tensor is a local object with global effects. There are currently
many techniques of capturing this correlation. We have already described one in the proof
of Gauss-Bonnet theorem. In Chapter 5 we describe another such technique which relies
on the study of the global behavior of geodesics. We felt we had the moral obligation
to present the natural setting of this technique and we briefly introduce the reader to the
wonderful world of the calculus of variations. The ideas of the calculus of variations produce
remarkable results when applied to Riemann manifolds. For example, we explain in rigorous
terms why “very curved manifolds” cannot be “too long” .

In Chapter 6 we leave for a while the “differentiable realm” and we briefly discuss the
fundamental group and covering spaces. These notions shed a new light on the results of
Chapter 5. As a simple application we prove Weyl’s theorem that the semisimple Lie groups
with definite Killing form are compact and have finite fundamental group.

Chapter 7 is the topological core of the book. We discuss in detail the cohomology of
smooth manifolds relying entirely on the methods of calculus. In writing this chapter we
could not, and would not escape the influence of the beautiful monograph [14], and this
explains the frequent overlaps. In the first section we introduce the DeRham cohomology
and the Mayer-Vietoris technique. Section 2 is devoted to the Poincaré duality, a feature
which sets the manifolds apart from many other types of topological spaces. The third
section offers a glimpse at homology theory. We introduce the notion of (smooth) cycle and
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then present some applications: intersection theory, degree theory, Thom isomorphism and
we prove a higher dimensional version of the Gauss-Bonnet theorem at the cohomological
level. The fourth section analyzes the role of symmetry in restricting the topological type
of a manifold. We prove Élie Cartan’s old result that the cohomology of a symmetric space
is given by the linear space of its bi-invariant forms. We use this technique to compute the
lower degree cohomology of compact semisimple Lie groups. We conclude this section by
computing the cohomology of complex grassmannians relying on Weyl’s integration formula
and Schur polynomials. The chapter ends with a fifth section containing a concentrated
description of Čech cohomology.

Chapter 8 is a natural extension of the previous one. We describe the Chern-Weil con-
struction for arbitrary principal bundles and then we concretely describe the most important
examples: Chern classes, Pontryagin classes and the Euler class. In the process, we com-
pute the ring of invariant polynomials of many classical groups. Usually, the connections in
principal bundles are defined in a global manner, as horizontal distributions. This approach
is geometrically very intuitive but, at a first contact, it may look a bit unfriendly in concrete
computations. We chose a local approach build on the reader’s experience with connections
on vector bundles which we hope will attenuate the formalism shock. In proving the various
identities involving characteristic classes we adopt an invariant theoretic point of view. The
chapter concludes with the general Gauss-Bonnet-Chern theorem. Our proof is a variation
of Chern’s proof.

Chapter 9 is the analytical core of the book. Many objects in differential geometry
are defined by differential equations and, among these, the elliptic ones play an important
role. This chapter represents a minimal introduction to this subject. After presenting some
basic notions concerning arbitrary partial differential operators we introduce the Sobolev
spaces and describe their main functional analytic features. We then go straight to the core
of elliptic theory. We provide an almost complete proof of the elliptic a priori estimates
(we left out only the proof of the Calderon-Zygmund inequality). The regularity results
are then deduced from the a priori estimates via a simple approximation technique. As a
first application of these results we consider a Kazhdan-Warner type equation which recently
found applications in solving the Seiberg-Witten equations on a Kähler manifold. We adopt
a variational approach. The uniformization theorem for compact Riemann surfaces is then
a nice bonus. This may not be the most direct proof but it has an academic advantage. It
builds a circle of ideas with a wide range of applications. The last section of this chapter is
devoted to Fredholm theory. We prove that the elliptic operators on compact manifolds are
Fredholm and establish the homotopy invariance of the index. These are very general Hodge
type theorems. The classical one follows immediately from these results. We conclude with
a few facts about the spectral properties of elliptic operators.

The last chapter is entirely devoted to a very important class of elliptic operators namely
the Dirac operators. The important role played by these operators was singled out in the
works of Atiyah and Singer and, since then, they continue to be involved in the most
dramatic advances of modern geometry. We begin by first describing a general notion of
Dirac operators and their natural geometric environment, much like in [10]. We then isolate
a special subclass we called geometric Dirac operators. Associated to each such operator is
a very concrete Weitzenböck formula which can be viewed as a bridge between geometry
and analysis, and which is often the source of many interesting applications. The abstract
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considerations are backed by a full section describing many important concrete examples.
In writing this book we had in mind the beginning graduate student who wants to

specialize in global geometric analysis in general and gauge theory in particular. The
second half of the book is an extended version of a graduate course in differential geometry
we taught at the University of Michigan during the winter semester of 1996.

The minimal background needed to successfully go through this book is a good knowl-
edge of vector calculus and real analysis, some basic elements of point set topology and
linear algebra. A familiarity with some basic facts about the differential geometry of curves
of surfaces would ease the understanding of the general theory, but this is not a must. Some
parts of Chapter 9 may require a more advanced background in functional analysis.

The theory is complemented by a large list of exercises. Quite a few of them contain
technical results we did not prove so we would not obscure the main arguments. There
are however many non-technical results which contain additional information about the
subjects discussed in a particular section. We left hints whenever we believed the solution
is not straightforward.

Personal note It has been a great personal experience writing this book and I sincerely
hope I could convey some of the magic of the subject. Having access to the remarkable
science library of the University of Michigan and its computer facilities certainly made my
job a lot easier and improved the quality of the final product.

I learned differential equations from Professor Viorel Barbu, very generous and enthusi-
astic person who guided my first steps in this field of research. He stimulated my curiosity
by his remarkable ability of unveiling the hidden beauty of this highly technical subject.
My thesis advisor, Professor Tom Parker, introduced me to more than the fundamentals of
modern geometry. He played a key role in shaping the manner in which I regard mathemat-
ics. In particular, he convinced me that behind each formalism there must be a picture and
uncovering it is a very important part of the creation process. Although I did not directly
acknowledge it, their influence is present throughout this book. I only hope the filter of my
mind captured the full richness of the ideas they so generously shared with me.

My friends Louis Funar and Gheorghe Ionesei read parts of the manuscript. I am grateful
to them for their effort, their suggestions and for their friendship. I want to thank Arthur
Greenspoon for his advice, enthusiasm and relentless curiosity which boosted my spirits
when I most needed it. Also, I appreciate very much the input I received from the graduate
students of my “Special topics in differential geometry” course at the University of Michigan
which had a beneficial impact on the style and content of this book.

At last, but not the least, I want to thank my family who supported me from the
beginning to the completion of this project.

Ann Arbor, 1996.
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Chapter 1

Manifolds

1.1 Preliminaries

1.1.1 Space and Coordinatization

Mathematics is a natural science with a special modus operandi. It replaces concrete natural
objects with mental abstractions which serve as intermediaries. One studies the properties
of these abstractions in the hope they reflect facts of life. So far, this approach proved to
be very productive.

The most visible natural object is the Space, the place where all things happen. The
first and most important abstraction of math is the notion of number. Loosely speaking,
the aim of this book is to illustrate how these two concepts, Space and Number, fit together.

It is safe to say that geometry as a rigorous science is a creation of ancient Greeks.
Euclid proposed a method of research which was later adopted by the entire mathematics.
We refer of course to the axiomatic method. He viewed the space as a collection of points and
distinguished some basic objects in the space such as lines, planes etc. He then postulated
certain (natural) relations between them. All other properties were derived from these
simple axioms.

Euclid’s work is a masterpiece of mathematics and has produced many interesting results
but it has its own limitations. For example, the most complicated figures one could rea-
sonably study using this method are the conics and/or quadrics and the Greeks certainly
did this. A major breakthrough in geometry was the discovery of coordinates by René
Descartes in the 17th century. Numbers were put to work in the study of space. Their idea
of producing what is now commonly referred to as Cartesian coordinates is familiar to any
undergraduate. These coordinates are obtained using a very special method (in this case
using three concurrent, pairwise perpendicular lines each one endowed with an identification
with R). What is important here is that they produced an one-to-one mapping

Euclidian Space → R3 P 7→ (x(P ), y(P ), z(P )).

We call such a process coordinatization. The corresponding map is called (in this case)
Cartesian system of coordinates. A line or a plane becomes via coordinatization an algebraic
object (more precisely an equation).

1



2 Manifolds

θ
r

Figure 1.1: Polar coordinates

In general, any coordinatization replaces geometry by algebra and we get a two-way
correspondence

Study of Space ←→ Study of Equations.

The shift from geometry to numbers is beneficial to geometry as long as one has efficient
tools do deal with numbers and equations. Fortunately, about the same time with the
introduction of coordinates Newton created the differential and integral calculus which
opened new horizons in the study of equations.

The Cartesian system of coordinates is by no means the unique or the most useful coor-
dinatization. Concrete problems dictate other choices. For example, the polar coordinates
represent another coordinatization of (a piece of the plane) (see Figure 1.1).

P 7→ (r(P ), θ(P )) ∈ (0,∞)× (−π, π).

This choice is related to the Cartesian choice by the well known formulae

x = r cos θ y = r sin θ. (1.1.1)

A remarkable feature of (1.1.1) is that x(P ) and y(P ) depend smoothly upon r(P ) and
θ(P ).

As science progressed so did the notion of Space. One can think of Space as a configura-
tion set, i.e. the collection of all possible states of a certain phenomenon. For example, we
know from the principles of dynamics that the motion of a particle in the ambient space can
be completely described if we know the position and the velocity of the particle at a given
moment. The space associated with this problem consists of all pairs (position, velocity) a
particle can possibly have. We can coordinatize this space using 6 functions: three of them
will describe the position and the other three of them will describe the velocity. We say the
configuration space is 6-dimensional. We cannot visualize this space but it helps to think
of it as an Euclidian space, only “roomier”.

There are many ways to coordinatize the configuration space of a motion of a particle
and for each choice of coordinates we get a different description of the motion. Clearly,
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all these descriptions must “agree” in some sense sense since they all reflect the same
phenomenon. In other words, these descriptions should be independent of coordinates.
Differential geometry studies the objects which are independent of coordinates.

The coordinatization process had been used by people centuries before mathematicians
accepted it as a method. For example, sailors used it to travel from one point to another on
Earth. Each point has a latitude and a longitude which completely determines its position
on Earth. This coordinatization is not a global one. There exist four domains delimited by
the Equator and the Greenwich meridian and each of them is then naturally coordinatized.
The points on the Equator for example admit two different coordinatizations which are
smoothly related.

The manifolds are precisely those spaces which can be piecewise coordinatized (with
smooth correspondence on overlaps) and the intention of this book is to introduce the
reader to the problems and the methods which arise in the study of manifolds. The next
section is a technical interlude. We will review the implicit function theorem which will be
one of the basic tools for detecting manifolds.

1.1.2 The implicit function theorem

We gather here, without proofs, a collection of classical analytical facts. For more details
one can consult [22].

Let X and Y be two Banach spaces and denote by L(X, Y ) the space of bounded linear
operators X → Y .

Definition 1.1.1. Let F : U ⊂ X → Y be a continuous function (U is an open subset of
X). F is said to be (Frechet) differentiable at u ∈ U if there exists T ∈ L(X, Y ) such that

‖F (u0 + h)− F (u0)− Th‖Y = o(‖h‖X) as h → 0.

Loosely speaking, a continuous function is differentiable at a point if near that point it
admits a “ best approximation ” by a linear map.

When F is differentiable at u0 ∈ U , the operator T in the above definition is uniquely
determined by

Th =
d

dt
|t=0 F (u0 + th) = lim

t→0

1
t

(F (u0 + th)− F (u0)) .

We will use the notation T = Du0F and we will call T the Frechet derivative of F at u0.
Assume F : U → Y is differentiable at each point u ∈ U . Then F is said to be of class C1

if the map u 7→ DuF ∈ L(X,Y ) is continuous. F is said to be of class C2 if u 7→ DuF is of
class C1. One can define inductively Ck and C∞ (or smooth) maps.

Example 1.1.2. Consider F : U ⊂ Rn → Rm. Using Cartesian coordinates x = (x1, · · · , xn)
in Rn and u = (u1, · · · , um) in Rm we can think of F as a collection of m functions on U

u1 = u1(x1, · · · , xn), · · · , um = um(x1, · · · , xn).

F is differentiable at a point x ∈ U if and only if the functions ui are differentiable at
x in the usual sense of calculus. The Frechet derivative of F at x is the linear operator
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DxF : Rn → Rm given by the Jacobian matrix

DxF =
∂(u1, · · · , um)
∂(x1, · · · , xn)

=
(

∂ui

∂xj

)

1≤i≤m, 1≤j≤n

.

F is smooth if and only if the functions ui(x) are smooth. ut

Exercise 1.1.1. (a) Let U ⊂ L(Rn,Rn) denote the set of invertible n× n matrices. Show
that U is an open set.
(b) Let F : U → U be defined as A → A−1. Show that DAF (H) = −A−1HA−1 for any
n× n matrix H.
(c) Show the Frechet derivative of the map det : L(Rn,Rn) → R ( A 7→ detA) at 1Rn ∈
L(Rn,Rn) is given by

DA |A=1 det(H) = tr H, ∀H ∈ L(Rn,Rn).

ut

Theorem 1.1.3. (The inverse function theorem) Let X, Y be two Banach spaces and
F : U ⊂ X → Y a smooth function. If at a point u0 ∈ U the derivative Du0F ∈ L(X,Y )
is invertible, then there exits a neighborhood U1 of u0 in U such that F (U1) is an open
neighborhood of v0 = F (u0) in Y and F : U1 → F (U1) is bijective, with smooth inverse.

The spirit of the theorem is very clear: the invertibility of the derivative Du0F “propa-
gates” (locally) to F because Du0F is a very good local approximation for F .

More formally, if we set T = Du0F , then

F (u0 + h) = F (u0) + Th + r(h)

where r(h) = o(‖h‖) as h → 0. The theorem states that for every v sufficiently close to v0

the equation F (u) = v has a unique solution u = u0 + h with h very small. To prove the
theorem one has to show that for ‖v − v0‖Y sufficiently small the equation below

v0 + Th + r(h) = v

has a unique solution. We can rewrite the above equation as

Th = v − v0 − r(h)

or
h = T−1(v − v0 − r(h)).

The last equation is a fixed point problem which can be approached successfully via the
Banach fixed point theorem.

Theorem 1.1.4. (The implicit function theorem) Let X, Y , Z be Banach spaces and
F : X×Y → Z a smooth map. Let (x0, y0) ∈ X×Y and set z0 = F (x0, y0). Set F2 : Y → Z,
F2(y) = F (x0, y). Assume Dy0F2 ∈ L(Y,Z) is invertible. Then there exist neighborhoods U
of x0 ∈ X, V of y0 ∈ Y and a smooth map G : U → V such that S = F−1(z0) ∩ (U × V ) is
the graph of G, i.e.

{(x, y) ∈ U × V ; F (x, y) = z0} = {(x,G(x)) ∈ U × V ; x ∈ U}.
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Proof Consider the map H : X × Y → X × Z, ξ = (x, y) 7→ (x, F (x, y)). H is a smooth
map and at ξ0 = (x0, y0) its derivative Dξ0H : X×Y → X×Z has the block decomposition

Dξ0H =
[

1X 0
−Dξ0F1 Dξ0F2

]
.

Above, DF1 (resp. DF2) denotes the derivative of x 7→ F (x, y0) (resp. the derivative of
y 7→ F (x0, y)). Dξ0H is invertible and its inverse has the block decomposition

(Dξ0H)−1 =
[

1X 0
(Dξ0F2)

−1 Dξ0F1() (Dξ0F2)
−1

]
.

Thus, by the inverse function theorem the equation

(x, F (x, y)) = (x, z0)

has a unique solution (x̃, ỹ) = H−1(x, z0) in a neighborhood of (x0, y0). It obviously satisfies
x̃ = x and F (x̃, ỹ) = z0. Hence, the set {(x, y) ; F (x, y) = z0} is locally the graph of
x 7→ H−1(x, z0).

ut

1.2 Smooth manifolds

1.2.1 Basic definitions

We now introduce the object which will be the main focus of this book, namely we will
define the concept of (smooth) manifold. It formalizes the general principles outlined in
Sec. 1.1.1.

Definition 1.2.1. A smooth manifold of dimension m is a locally compact, paracompact
Hausdorff space M together with the following collection of data (henceforth called atlas
or smooth structure) consisting of:
(a) an open cover {Ui}i∈I of M ;
(b) continuous, injective maps Ψi : Ui → Rm (called charts or local coordinates) such
that Ψi(Ui) is open in Rm for every i, and if Ui ∩ Uj 6= ∅ then the transition map

Ψj ◦Ψ−1
i : Ψi(Ui ∩ Uj) ⊂ Rm → Ψj(Ui ∩ Uj) ⊂ Rm

is smooth. (We say the various charts are compatible; see Figure 1.2).

The chart Ψi can be viewed as a collection of m functions (x1, . . . , xm) on Ui and
similarly, we can view Ψj as a collection of functions (y1, . . . , ym). The transition map
Ψj ◦Ψ−1

i can then be interpreted as a collection of maps

(x1, . . . , xm) 7→ (y1(x1, . . . , xm), · · · , ym(x1, . . . , xm)).

The first and the most important example of manifold is Rn itself. The natural smooth
structure consists of an atlas with a single chart 1Rn : Rn → Rn. To construct more
examples we will use the implicit function theorem .
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ψψ

ψ −1

i j

iψj

U U
i j

Rm R m

Figure 1.2: Transition maps

Definition 1.2.2. (a) Let M , N be two smooth manifolds of dimensions m and respectively
n. A continuous map f : M → N is said to be smooth if for any local chart φ on M and ψ
on N the composition ψ ◦ f ◦ φ−1 (whenever this makes sense) is a smooth map Rm → Rn.
(b) A smooth map f : M → N is called a diffeomorphism if it is invertible and its inverse
is also a smooth map.

Example 1.2.3. The map t 7→ et is a diffeomorphism (−∞,∞) → (0,∞). The map t 7→ t3

is a homeomorphism R→ R but it is not a diffeomorphism! ut

If M is a smooth manifold we will denote by C∞(M) the linear space of all smooth
functions M → R.

Remark 1.2.4. Let U be an open subset of the smooth manifold M (dimM = m) and
ψ : U → Rm a smooth, one-to one map with open image and smooth inverse. Then ψ
defines local coordinates over U compatible with the existing atlas of M . Thus (U,ψ) can
be added to the original atlas and the new smooth structure is diffeomorphic with the initial
one. Using Zermelo’s Axiom we can produce a maximal atlas (no more compatible local
chart can be added to it).

ut

Our next result is a general recipe for producing manifolds. Historically, this is how
manifolds entered mathematics.

Proposition 1.2.5. Let M be a smooth manifold of dimension m and f1, . . . , fk ∈ C∞(M).
Define

Z = Z(f1, . . . , fk) = {p ∈ M ; f1(p) = . . . = fk(p) = 0}.
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Assume the functions f1, . . . , fk are functionally independent along Z i.e., for each p ∈ Z
the matrix

(
∂fi

∂xj

)
1≤i≤k, 1≤j≤m

has rank k. Here x = (x1, . . . , xm) denotes a local chart of

M near p. Then Z has a natural structure of smooth manifold of dimension m− k.

Proof Step 1: Constructing the charts Let p0 ∈ Z and denote by (x1, . . . , xm)
local coordinates near p0 such that xi(p0) = 0. One of the k × k minors of the matrix(

∂fi

∂xj

)
1≤i≤k, 1≤j≤m

is non degenerate. Assume this is determined by the last k columns (and

all the k lines). We can now think of the functions f1, . . . , fk as defined on an open subset
U of Rm. Split Rm as Rm−k ×Rk and set x′ = (x1, . . . , xm−k), x′′ = (xm−k+1, . . . , xm). We
are now in the setting of the implicit function theorem with X = Rm−k, Y = Rk, Z = Rk

and F : X × Y → Z is x 7→ (f1(x), . . . , fk(x)). In this case DF2 =
(

∂F
∂x′′

)
is invertible since

it corresponds to our non degenerate minor. Thus, in a neighborhood U of p0, the set Z is
the graph of some function g : Rm−k → Rk, x′ 7→ x′′ = g(x′)

Z ∩ U = {(x′, g(x′)) ; |x′| small}.
We now define ψp0 : Z ∩ U → Rm−k by

p = (x′, g(x′)) 7→ x′ ∈ Rm−k.

ψp0 is a local chart of Z near p0.

Step2 The transition maps for the charts constructed above are smooth. The details are
left to the reader.

ut

Exercise 1.2.1. Complete Step 2 in the proof of Proposition1.2.5. ut

Definition 1.2.6. Let M be a m-dimensional manifold. A codimension k submanifold of
M is a subspace N ⊂ M locally defined as the common zero locus of functionally independent
functions f1, · · · , fk ∈ C∞(M).

Proposition1.2.5 shows that any submanifold has a natural smooth structure so it be-
comes a manifold per se.

1.2.2 Partitions of unity

This is a very brief technical subsection describing a trick we will extensively use in this
book.

Definition 1.2.7. Let M be a smooth manifold and (Uα)α∈A an open cover of M . A
(smooth) partition of unity subordinated to this cover is a family (fβ)β∈B ⊂ C∞(M) satis-
fying the following conditions.
(i) 0 ≤ fβ ≤ 1
(ii) ∃φ : B → A such that supp fβ ⊂ Uφ(β).
(iii) The family (supp fβ) is locally finite i.e. any point x ∈ M admits an open neighborhood
intersecting only finitely many supports supp fβ.
(iv)

∑
β fβ(x) = 1 for all x ∈ M .
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We include here for the reader’s convenience the basic existence result concerning par-
titions of unity. For a proof we refer to [73].

Proposition 1.2.8. (a) For any open cover U = (Uα)α∈A) of a smooth manifold M there
exists at least one smooth partition of unity (fβ)β∈B subordinated to U such that supp fβ is
compact for any β.
(a) If we do not require compact supports then we can find a partition of unity in which
B = A and φ = 1A.

Exercise 1.2.2. Let M be a smooth manifold and S ⊂ M a closed submanifold. Prove
that the restriction map

r : C∞(M) → C∞(S) f 7→ f |S
is surjective. ut

1.2.3 Examples

Manifolds are everywhere and in fact, to many physical phenomena which can be modeled
mathematically one can naturally associate a manifold. On the other hand, many problems
in mathematics find their most natural presentation using the language of manifolds. To
give the reader an idea of the scope and extent of modern geometry we present here a short
list of examples of manifolds. This list will be enlarged as we enter deeper into the study
of manifolds.

Example 1.2.9. (The round n-dimensional sphere) This is the codimension 1 sub-
manifold of Rn+1 given by the equation

|x|2 =
n∑

i=0

(xi)2 = r2, x = (x0, . . . , xn) ∈ Rn+1.

One checks that, along the sphere, the differential of |x|2 is nowhere zero so by Proposition
1.2.5 Sn is indeed a smooth manifold. In this case one can explicitly construct an atlas
(consisting of two charts) which is useful in many applications. The construction relies on
stereographic projections. Let N and S denote the north and resp. south pole of Sn (N =
(0, . . . , 0, 1) ∈ Rn+1, S = (0, . . . , 0,−1) ∈ Rn+1). Consider the open sets UN = Sn \ {N}
and US = Sn \ {S}. They form an open cover of Sn. The stereographic projection from the
north pole is the map σN : UN → Rn such that for any P ∈ UN , σN (P ) is the intersection
of the line NP with the hyperplane {xn = 0} ∼= Rn. The stereographic projection from the
south pole is defined similarly. For P ∈ UN denote by (y1(P ), · · · , yn(P )) the coordinates
of σN (P ) and for Q ∈ US denote by (z1(Q), · · · , zn(Q)) the coordinates of σS(Q). A
simple argument shows the map (y1(P ), · · · , yn(P )) 7→ (z1(P ), · · · , zn(P )) (P ∈ UN ∩ UN )
is smooth (see the exercise below. Hence {(UN , σN ), (US , σS)}. ut

Exercise 1.2.3. Show that the functions yi, zj constructed in the above example satisfy

zi =
yi

(∑n
j=1(yj)2

) , ∀i = 1, · · · , n.

ut
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Figure 1.3: The 2-dimensional torus

Example 1.2.10. (The n-dimensional torus) This is the codimension n submanifold of
R2n(x1, y1; ... ; xn, yn) defined as the zero locus

x2
1 + y2

1 = · · · = x2
n + y2

n = 1.

Note that T 1 is diffeomorphic with the 1-dimensional sphere S1 (unit circle). As a set Tn

is a direct product of n circles Tn = S1 × · · · × S1 (see Figure 1.3). ut

The above example suggests the following general construction.

Example 1.2.11. Let M and N be smooth manifolds of dimension m and respectively
n. Then their topological direct product has a natural structure of smooth manifold of
dimension m + n. ut

Example 1.2.12. (The connected sum of two manifolds) Let M1 and M2 be two
manifolds of the same dimension m. Pick pi ∈ Mi (i = 1, 2), choose small open neigh-
borhoods Ui of pi in Mi and then local charts ψi identifying each of these neighborhoods
with the ball of radius 2 in Rm, B2(0). Let Vi ⊂ Ui correspond (via ψi) to the annulus
{1/2 < |x| < 2} ⊂ Rm. Consider

φ : {1/2 < |x| < 2} → {1/2 < |x| < 2}, φ(x) =
x

|x|2 .

The action of φ is clear: it switches the two boundary components of {1/2 < |x| < 2}
and reverses the orientation of the radial directions. Now “ glue” V1 to V2 using the
“prescription” given by ψ−1

2 ◦ φ ◦ ψ1 : V1 → V2. In this way we obtain a new topological
space with a natural smooth structure induced by the smooth structures on Mi. Up to
a diffeomeorphism, the new manifold thus obtained is independent of the choices of local
coordinates ([16]) and it is called the connected sum of M1 and M2 and is denoted by
M1#M2 (see Figure 1.4).

ut

Example 1.2.13. (The real projective space RPn) As a topological space RPn is the
quotient of Rn+1 modulo the equivalence relation

x ∼ y
def⇐⇒ ∃λ ∈ R∗ : x = λy.

The equivalence class of x = (x0, . . . , xn) ∈ Rn+1 \ {0} is usually denoted by [x0 : . . . : xn].
Alternatively, RPn is the set of all lines (directions) in Rn+1. Traditionally one attaches to
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V V
1 2

Figure 1.4: Connected sum of tori

each direction in Rn+1 a point at infinity so that RPn can be thought as the collection of
all points at infinity along all directions.
RPn+1 has a natural structure of smooth manifold. To describe it consider the sets

Uk = {[x0 : . . . : xn] ∈ RPn ; xk 6= 0}, k = 0, . . . , n.

Now define

ψk : Uk → Rn [x0 : . . . : xn] 7→ (x0/xk, . . . , xk−1/xk, xk+1/xk, . . . xn).

The maps ψk define local coordinates on the projective space. The transition map on the
overlap region Uk ∩ Um = {[x0 : . . . : xn] ; xkxm 6= 0} can be easily described. Set

ψk([x0 : . . . : xn]) = (ξ1, . . . , ξn), ψm([x0 : . . . : xn]) = (η1, . . . , ηn).

The equality

[x0 : . . . : xn] = [ξ1 : . . . : ξk−1 : 1 : ξk : . . . : ξn] = [η1 : . . . : ηm−1 : 1 : ηm : . . . : ηn]

immediately implies (assume k < m)




ξ1 = η1/ηk, · · · , ξk−1 = ηk−1/ηk ξk+1 = ηk

ξk = ηk+1/ηk, · · · , ξm−2 = ηm−1/ηk ξm−1 = 1/ηk

ξm = ηmηk, · · · , ξn = ηn/ηk

(1.2.1)

This shows the map ψk ◦ ψ−1
m is smooth and proves that RPn is a smooth manifold. Note

that when n = 1, RP1 is diffeomorphic with S1. One way to see this is to observe that
the projective space can be alternatively described as the quotient space of Sn modulo the
equivalence relation which identifies antipodal points . ut
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Example 1.2.14. (The complex projective space CPn) The definition is formally
identical to that of RPn. CPn is the quotient space of Cn+1 \ {0} modulo the equivalence
relation

x ∼ y
def⇐⇒ ∃λ ∈ C∗ : x = λy.

The open sets Uk are defined similarly and so are the local charts ψk : Uk → Cn. They
satisfy transition rules similar to (1.2.1) so that CPn is a smooth manifold of dimension 2n.

ut

In the above example we encountered a special (and very pleasant) situation: the gluing
maps not only are smooth, they are also holomorphic as maps ψk ◦ ψ−1

m : U → V where
U and V are open sets in Cn. This type of gluing induces a “rigidity” in the underlying
manifold and it is worth distinguishing this situation.

Definition 1.2.15. (Complex manifolds) A complex manifold is a smooth, 2n-dimensional
manifold M which admits an atlas {(Ui, ψi) : Ui → Cn} such that all transition maps are
holomorphic.

The complex projective space is a complex manifold. Our next example naturally gen-
eralizes the projective spaces described above.

Example 1.2.16. (The grassmannians Gk,n(R) and Gk,n(C)) As a set Gk,n(R) consists
of all k-dimensional linear subspaces of Rn. To topologize it introduce (following [41]) the
notion of gap between two subspaces U, V ⊂ Rn as

δ(U, V ) = sup{dist(u, V ) ; u ∈ U, |u| = 1}.

The distance between two subspaces is then defined as

δ̂(U, V ) = max{δ(U, V ), δ(V, U)}.

One can show easily that (Gk,n(R), δ̂) is a metric space (exercise).
Let {e1, · · · , en} denote the standard basis of Rn. For any subset I ⊂ {1, · · · , n} with

#I = k define EI = span {ei ; i ∈ I} so that Ei ∈ Gk,n(R). Now define

DI = {V ∈ Gk,n(R) ; u ∩ E⊥
I = 0}.

Here E⊥
I is the orthogonal complement of EI in Rn with respect to the Euclidian inner

product. We leave the reader as an exercise the proofs of the following facts.
(a) D is a an open subset of Gk,n(R).
(b) The family (DI) covers Gk,n(R).
(c) Any U ∈ DI can be uniquely represented as the graph of a linear operator T = T (U) :
EI → E⊥

I , i.e.
U = {(x, Tx) ∈ EI × E⊥

I
∼= Rn ; x ∈ EI}.

We obtain continuous (why ?) maps ΨI : DI → L(EI , E
⊥
I ) ∼= M(n−k)×k(R) ∼= Rk(n−k). One

can show that
(d) the maps ΨI define an atlas on Gk,n(R). In particular Gk,n(R) has dimension k(n− k).
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Gk,n(C) is defined as the space of complex k-dimensional subspaces of Cn. It can be
structured as above as a smooth manifold of dimension 2k(n − k). Note that G1,n(R) ∼=
RPn−1 and G1,n(C) ∼= CPn−1. The grassmannians have important applications in many
classification problems. ut

Exercise 1.2.4. Prove the statements (a)-(d) in the above example. Show that Gk,n(C) is
a complex manifold (complex dimension k(n− k)). ut

Example 1.2.17. (Lie groups) A Lie group is a smooth manifold G together with a group
structure on it such that the map

G×G → G (g, h) 7→ g · h−1

is smooth. These structures provide an excellent way to formalize the notion of symmetry .
(a) (Rn, +) is a commutative Lie group.
(b) The unit circle S1 can be alternatively described as the set of complex numbers of
norm one and the complex multiplication defines a Lie group structure on it. This is a
commutative group. More generally the torus Tn is a Lie group as a direct product of n
circles1.
(c) The general linear group GL(n,K) defined as the group of invertible n × n matrices
with entries in the field K = R, C is a Lie group. Indeed, GL(n,K) is an open subset (see
Exercise 1.1.1) in the linear space of n × n matrices with entries in K. It has dimension
dKn2 where dK is the dimension of K as a linear space over R.
(d) The orthogonal group O(n) is the group of real n× n matrices satisfying

T · T t = 1.

To describe its smooth structure we will use the Cayley transform trick as in [65] (see also
the classical [74]). Set

Mn(R)# = {T ∈ Mn(R) ; det(1+ T ) 6= 0}.
The matrices in Mn(R)# are called non exceptional. Clearly 1 ∈ O(n)# = O(n)∩Mn(R)#

so that O(n)# is a nonempty open subset of O(n). The Cayley transform is the map
# : Mn(R)# → Mn(R) defined by

A 7→ A# = (1−A)(1+ A)−1.

The Cayley transform has some very nice properties.
(i) A# ∈ Mn(R)# for every A ∈ Mn(R)#.
(ii) # is involutory i.e. (A#)# = A for any A ∈ Mn(R)#.
(iii) For every T ∈ O(n)# the matrix T# is skew-symmetric and conversely if A ∈ Mn(R)#

is skew-symmetric then A# ∈ O(n).
Thus the Cayley transform is a homeomorphism from O(n)# to the space of non-

exceptional, skew-symmetric, matrices. The latter space is an open subset in the linear
space of real n× n skew-symmetric matrices, o(n).

1One can show that any connected commutative Lie group has the from T n × Rm.
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Any T ∈ O(n) defines a self-homeomorphism of O(n) by left translation in the group

LT : O(n) → O(n) S 7→ LT (S) = T · S.

We obtain an open cover of O(n):

O(n) =
⋃

T∈O(n)

T ·O(n)#.

Define ΨT : T ·O(n)# → o(n) by S 7→ (T−1 · S)#. One can show that the collection
(

T ·O(n)#, ΨT

)
T∈O(n)

defines a smooth structure on O(n). In particular we deduce

dimO(n) = n(n− 1)/2.

Inside O(n) lies a normal subgroup (the special orthogonal group)

SO(n) = {T ∈ O(n) ; detT = 1}.

SO(n) is a Lie group as well and dimSO(n) = dimO(n).

(e) The unitary group U(n) is defined as

U(n) = {T ∈ GL(n,C ; T · T ∗ = 1}

T ∗ denotes the conjugate transpose (adjoint) of T . To prove that U(n) is a manifold one
uses again the Cayley transform trick. This time we coordinatize the group using the space
u(n) of skew-adjoint (skew-Hermitian) n×n complex matrices (A = −A∗). Thus U(n) is a
smooth manifold of dimension

dimU(n) = dimu(n) = n2.

Inside U(n) sits the normal subgroup SU(n), the kernel of the group homomorphism det :
U(n) → S1. SU(n) is also called the special unitary group. This a smooth manifold of
dimension n2 − 1. In fact the Cayley transform trick allows one to coordinatize SU(n)
using the space

su(n) = {A ∈ u(n) ; trA = 0}.
ut

Exercise 1.2.5. (a) Prove the properties (i)-(iii) of the Cayley transform and then show
that

(
T ·O(n)#, ΨT

)
T∈O(n)

defines a smooth structure on O(n).
(b) Prove that U(n) and SU(n) are manifolds.
(c) Show that O(n), SO(n), U(n), SU(n) are compact spaces.
(d) Prove that SU(2) is diffeomorphic with S3 (Hint: think of S3 as the group of unit
quaternions.) ut



14 Manifolds

Exercise 1.2.6. Let SL(n;K) denote the group of n × n matrices of determinant 1 with
entries in the field K = R,C. Using the Cayley trick show that SL(n;K) is a smooth
manifold modeled on the linear space

sl(n,K) = {A ∈ Mn×n(K) ; trA = 0}.

In particular it has dimension dK(n2 − 1), where d = dimRK. ut

Exercise 1.2.7. (a) Let G be a connected Lie group and denote by U a neighborhood of
1 ∈ G. If H is the subgroup algebraically generated by U show that H is dense in G.
(b) Let G be a compact Lie group and g ∈ G. Show that 1 ∈ G lies in the closure of
{gn; n ∈ Z \ {0}}. ut

1.2.4 How many manifolds are there?

The list of examples in the previous subsection can go on for ever so one may ask whether
there is any coherent way to organize the collection of all possible manifolds. This is too
general a question to expect a clear cut answer. We have to be more specific. For example
we can ask

Question 1: Which are the compact manifolds of a given dimension d?

For d = 1 the answer is very simple: the only compact 1-dimensional manifold is the
circle S1. So we can raise the stakes and try the same problem for d = 2. Already the
situation is more elaborate. We know at least two surfaces: the sphere S2 and the torus
T 2. They clearly look different but we have not yet proved rigorously that they are indeed
not diffeomorphic. This is not the end of the story. We can connect sum two tori, three
tori or any number g of tori. We obtain doughnut-shaped surface as in Figure 1.5

Figure 1.5: Connected sum of 3 tori

Again we face the same question: do we get non-diffeomorphic surfaces for different
choices of g? Figure 1.5 suggests that this may be the case but this is no rigorous argument.

We know another example of compact surface, the projective plane RP2 and we naturally
ask whether it looks like one of the surfaces constructed above. Unfortunately, we cannot
visualize the real projective plane (one can prove rigorously it does not have enough room to
exist inside our 3-dimensional Universe). We have to decide this question using a little more
than the raw geometric intuition provided by a picture. To kill the suspense, we mention
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that RP2 does not belong to the family of donuts. The reason is that a torus for example
has two faces: an inside face and an outside face (think of a car rubber tube). RP2 has a
weird behavior: it has “no inside” and “no outside”. It has only one side! One says the
torus is orientable while the projective plane is not.

We can now connect sum any numbers of RP2’s to any donut an thus obtain more
and more surfaces, which we cannot visualize and we have yet no idea if they are pairwise
distinct. A classical result in topology says that all compact surfaces can be obtained in
this way (see [52]) but in the above list some manifolds are diffeomorphic and we have
to describe which. In dimensions ≥ 3 things are not settled and to make things worse in
dimension ≥ 4 Question 1 is algorithmically undecidable .

We can reconsider our goals and look for all the manifolds with a given property X. In
many instances one can give fairly accurate answers. Property X may refer to more than
the (differential) topology of a manifold. Real life situations suggest the study of manifolds
with additional structure. The following problem may give the reader a taste of the types
of problems we will be concerned with in this book.

Question 2 Can we wrap a planar piece of canvas around a metal sphere in a one-to-one
fashion? (The canvas is flexible but not elastic).

A simple do-it-yourself experiment is enough to convince anyone that this is not possible.
Naturally, one asks for a rigorous explanation of what goes wrong. The best explanation
of this phenomenon is contained the the celebrated Theorema Egregium (Golden Theorem)
of Gauss. Canvas surfaces have additional structure (they are made of a special material)
and for such objects there is a rigorous way to measure “how curved” are they. One then
realizes that the problem in Question 2 is impossible since a (canvas) sphere is curved in a
different way than a plane canvas.

There are many other structures Nature forced us into studying them but they may not
be so easily described in elementary terms.

A word to the reader. The next two chapters are the most arid in geometry but, keep
in mind that behind each construction lies a natural motivation and, even if we do not
always have the time to show it to the reader, it is there, and it may take a while to reveal
itself. Most of the constructions the reader will have to “endure” in the next two chapters
constitute not just some difficult to “swallow” formalism but the basic language of geometry.
Learning this language may not be the most pleasant thing, but surely enough, it is a very
rewarding enterprise.
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Chapter 2

Natural Constructions on
Manifolds

The goal of this chapter is to introduce the basic terminology used in differential geometry.
The key concept is that of tangent space at a point which is a first order approximation of
the manifold near that point. We will be able to transport many notions in linear analysis
to manifolds via the tangent space.

2.1 The tangent bundle

2.1.1 Tangent spaces

We begin with a simple example which will serve as a motivation for the abstract definitions.

Example 2.1.1. Consider the sphere

(S2) : x2 + y2 + z2 = 1 in R3.

We want to find the plane passing through the north pole N(0, 0, 1) which locally is “closest”
to the sphere. The natural candidate for this osculator plane would be a plane given by
a linear equation which best approximates the defining equation x2 + y2 + z2 = 1 in a
neighborhood of the north pole. The linear approximation of x2 + y2 + z2 near N is

x2 + y2 + z2 = 1 + 2(z − 1) + O(2)

where O(2) denotes a quadratic error. Hence, the osculator plane is z = 1 which is the
horizontal plane through the north pole. The linear subspace {z = 0} ⊂ R3 is called the
tangent space to S2 at N .

The above construction has one deficiency: it is not intrinsic since it relies on objects
“outside” the manifold S2. There is one natural way to fix this problem. Look at a smooth
path γ(t) on S2 passing through N at t = 0. Hence t 7→ γ(t) ∈ R3 and

|γ(t)|2 = 1. (2.1.1)

18
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If we derivate (2.1.1) at t = 0 we get (γ̇(0), γ(0)) = 0 i.e. γ̇(0) ⊥ γ(0) so that γ̇(0) lies in
the linear subspace z = 0. We deduce that the tangent space consists of the tangents to
the curves on S2 passing through N .

This is apparently no major conceptual gain since we still regard the tangent space as a
subspace of R3 and this is still an extrinsic description. However, if we use the stereographic
projection from the south pole we get local coordinates (u, v) near N and any curve γ(t) as
above can be viewed as a curve t 7→ (u(t), v(t)) in the (u, v) plane. If φ(t) is another curve
through N given in local coordinates by t 7→ (u(t), v(t)) then

γ̇(0) = φ̇(0) ⇐⇒ (u̇(0), v̇(0)) = (u̇(0), v̇(0)).

The right hand side of the above equality defines an equivalence relation ∼ on the set of
smooth curves passing trough (0,0). Thus, there is a bijective correspondence between the
tangents to the curves through N and the equivalence classes of “∼”. This equivalence
relation is now intrinsic modulo one problem: “∼” may depend on the choice of the local
coordinates. Fortunately, as we are going to see, this is a non-issue. ut

Definition 2.1.2. Let Mm be a smooth manifold and p0 a point in M . Two smooth paths
α, β : (−ε, ε) → M such that α(0) = β(0) = p0 are said to have a 1st order contact at p0

if there exist local coordinates (x) = (x1, . . . , xm) near p0 such that

ẋα(0) = ẋβ(0)

where α(t) = (xα(t)) = (x1
α(t), . . . , xm

α (t)) and β(t) = (xβ(t)) = (x1
β(t), . . . , xm

β (t)). We
write this α ∼1 β.

Lemma 2.1.3. ∼1 is an equivalence relation.

Sketch of proof ∼1 is trivially reflexive and symmetric so we only have to check the
transitivity. Let α ∼1 β and β ∼1 γ. Thus there exist local coordinates (x) = (x1, . . . , xm)
and (y) = (y1, . . . , ym) near p0 such that (ẋα(0)) = (ẋβ(0)) and (ẏβ(0)) = (ẏγ(0)). The
transitivity follows from the equality

ẏi
γ(0) = ẏi

β(0) =
∑

j

∂yi

∂xj
ẋj

β(0) =
∑

j

∂yi

∂xj
ẋj

α(0) = ẏj
α(0).

ut

Definition 2.1.4. A tangent vector to M at p is an equivalence class of curves through
p modulo the the first order contact relation. The equivalence class of a curve α(t) such
that α(0) = p will be temporarily denoted by [α̇(0)]. The set of these equivalence classes is
denoted by TpM and is called the tangent space to M at p.

Lemma 2.1.5. TpM has a natural structure of vector space.

Proof Choose (x1, . . . , xm) local coordinates near p such that xi(p) = 0, ∀i and let α, β
two smooth curves through p. In the above local coordinates the curves α, β become
(xi

α(t)), (xi
β(t)). Construct a new curve γ through p by

(xi
γ(t)) = (xi

α(t) + xi
β(t)).
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Set [α̇(0)] + [β̇(0)]
def
= [γ̇(0)]. For this operation to be well defined one has to check

(a) [γ̇(0)] is independent of coordinates.
(b) If [α̇1(0)] = [α̇2(0)] and [β̇1(0)] = [β̇2(0)] then

[α̇1(0)] + [β̇1(0)] = [α̇2(0)] + [β̇2(0)].

We let the reader supply the routine details. ut

Exercise 2.1.1. Finish the proof of the Lemma 2.1.5. ut

From this point on we will omit the [ , ] in the notation for a tangent vector. Thus
[α̇(0)] will be written simply as α̇(0).

As one expects, all the above notions admit a nice description using local coordinates.
Let (x1, . . . , xm) be coordinates near p ∈ M such that xi(p) = 0, ∀i. Consider the curves

ek(t) = (tδ1
k, . . . , tδ

m
k ), k = 1, . . . , m

where δi
j denotes Kronecker’s delta symbol. Equivalently, one can define the ek’s implicitly

by xi = 0, ∀i 6= k. We set
∂

∂xk
(p)

def
= ėk(0). (2.1.2)

Note that these vectors depend on the local coordinates (x1, · · · , xm). Often, when the
point p is clear from the context, we will omit it in the above notation.

Lemma 2.1.6.
(

∂
∂xk (p)

)
1≤k≤m

is a basis of TpM .

Proof It follows from the obvious fact that any curve through the origin in Rm has first
order contact with a line t 7→ (a1t, . . . , amt).

ut

Exercise 2.1.2. Let F : RN → Rk be a smooth map. Assume that
(a) M = F−1(0) 6= ∅;
(b) rankDxF = k, for all x ∈ M .
Then M is a smooth manifold of dimension N − k and

TxM = (DxF )−1(0), ∀x ∈ M. ut
Example 2.1.7. We want to describe T1G, where G is one of the Lie groups discussed in
Section 1.2.2.
(a) G = O(n). Let T (s) be a smooth path of orthogonal matrices such that T (0) = 1. Then
T t(s) · T (s) = 1. Differentiating this equality at s = 0 we get

Ṫ t(0) + Ṫ (0) = 0.

Ṫ (0) defines a vector in T1O(n) so the above equality says this tangent space lies inside the
space of skew-symmetric matrices i.e. T1G ⊂ o(n). On the other hand we proved in Section
1.2.2 that dimG = dim o(n) so that

T1O(n) = o(n).
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(b) G = SL(n;R). Let T (s) be a smooth path in SL(n;R) such that T (0) = 1. Then
det T (s) = 1 and differentiating this equality at s = 0 we get (see Exercise 1.1.1) tr Ṫ (0) = 0.
Thus the tangent space at 1 lies inside the space of traceless matrices, i.e. T1SL(n;R) ⊂
sl(n;R). Since (according to Exercise 1.2.6) dimSL(n;R) = dim sl(n;R) we deduce

T1SL(n;R) = sl(n;R). ut

Exercise 2.1.3. Show that T1U(n) = u(n) and T1SU(n) = su(n). ut

2.1.2 The tangent bundle

In the previous subsection we have naturally associated to an arbitrary point p on a manifold
M a vector space TpM . It is the goal of the present subsection to coherently organize the
family of tangent spaces (TpM)p∈M . In particular we want to give a rigorous meaning to
the intuitive fact that TpM depends smoothly upon p.

We will organize the disjoint union of all tangent spaces as a smooth manifold TM .
There is a natural surjection

π : TM =
∐

p∈M

TpM → M, π(v) = p ⇐⇒ v ∈ TpM.

Any local coordinate system x = (xi) defined over an open set U ⊂ M produces a natural
basis

(
∂

∂xi (p)
)

of TpM for any p ∈ U . Thus, an element v ∈ TU =
∐

p∈U TpM is completely
determined if we know to which tangent space it belongs (i.e. we know p = π(v)) and we
also know its coordinates in the basis

(
∂

∂xi (p)
)
:

v =
∑

i

Xi(v)
(

∂

∂xi
(p)

)
.

We thus have a bijection

Ψx : TU → Ux × Rm ⊂ Rm × Rm

where Ux is the image of U in Rm via the coordinates (xi). We can now transfer the
topology on Rm×Rm to TU via the map Ψx. Again we have to make sure this topology is
independent of local coordinates.

To see this, pick a different coordinate system y = (yi) on U . The coordinate indepen-
dence referred to above is equivalent to the statement that the transition map

Ψy ◦Ψ−1
x : Ux × Rm → TU → Uy × Rm

is a homeomorphism. Let A = (x,X) ∈ Ux×Rm. Then Ψ−1
x (A) = (p, α̇(0)) where x(p) = x

and α(t) ⊂ U is a curve through p given in the x coordinates as

α(t) = x + tX.

Denote by F : Ux → Uy the transition map x 7→ y. Then

Ψy ◦Ψ−1
x (A) = (y(x);Y 1, . . . , Y m))
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where α̇(0) = (ẏj
α(0)) =

∑
Y j ∂

∂yj
(p). ((yα(t)) is the defining equation for the curve α(t) in

the coordinates yj). Applying the chain rule we deduce

Y j = ẏj
α(0) =

∑

i

∂yj

∂xi
ẋi(0) =

∑

i

∂yj

∂xi
Xi. (2.1.3)

This proves that Ψy ◦Ψ−1
x is actually smooth.

The natural topology of TM is obtained by patching together the topologies of TUγ ,
where (Uγ , φγ)γ is an atlas of M . A set D ⊂ TM is open if its intersection with any TUγ is
open in TUγ . The above argument shows that TM is a smooth manifold with (TUγ , Ψγ) a
defining atlas. Moreover, the natural projection π : TM → M is a smooth map.

Definition 2.1.8. The smooth manifold TM described above is called the tangent bundle
of M .

Proposition 2.1.9. A smooth map f : M → N induces a smooth map Df : TM → TN
such that
(a) Df(TpM) ⊂ Tf(p)N , ∀p ∈ M
(b) The restriction to each tangent space DpF : TpM → Tf(p)N is linear. Df is called the
differential of f and one often uses the alternate notation f∗ = Df .

Proof Recall that TpM is the space of tangent vectors to curves through p. If α(t) is such
a curve (α(0) = p) then β(t) = f(α(t)) is a smooth curve through q = f(p) and define

Df(α̇(0)) = β̇(0).

One checks easily that if α1 ∼1 α2 then f(α1) ∼1 f(α2) so that Df is well defined. To prove
the map Df : TpM → TqN is linear it suffices to verify it in any particular local coordinates
(x1, . . . , xm) near p and (y1, . . . , yn) near q since any two choices differ (infinitesimally) by
a linear substitution. Hence we can regard f as a collection of maps

(x1, . . . , xm) 7→ (y1(x1, . . . , xm), . . . , yn(x1, . . . , xm)).

A basis in TpM is given by { ∂
∂xi
} while a basis of TqN is given by { ∂

∂yj
}. Then Df is the

linear operator given in these bases by the matrix
(

∂yj

∂xi

)
1≤j≤n, 1≤i≤m

. In particular, this

shows that Df is smooth. ut

Definition 2.1.10. A smooth map f : M → N is called immersion (resp. submersion) if
for every p ∈ M the differential Dpf : TpM → Tf(p)N is injective (resp. surjective).

Exercise 2.1.4. Let f : M → N be a submersion. Show that for every q ∈ N the fiber
f−1(q) is either empty or a submanifold of M of dimension dimM − dimN . ut

2.1.3 Vector bundles

The tangent bundle TM of a manifold M has some special features which makes it a very
particular type of manifold. We list now the special ingredients which enter the special
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structure of TM since they will occur in many instances. Set for brevity E = TM and
F = Rm (m = dimM).

(a) E is a smooth manifold and there exists a surjective submersion π : E → M . For every
U ⊂ M set E |U= π−1(U).
(b) From (2.1.3) we deduce that there exists a trivializing cover i.e. an open cover U of M
and for every U ∈ U a diffeomorphism

ΨU : E |U→ U × F, v 7→ (p = π(v), ΦU
p (v))

such that

(b1) Φp is a diffeomorphism Ep → F for any p ∈ U .

(b2) If U, V ∈ U are two trivializing neighborhoods with non empty overlap U ∩ V then
for any p ∈ U ∩ V the map ΦV U (p) = ΦV

p ◦ (ΦU
p )−1 : F → F is a linear isomorphism and

moreover, the map
p 7→ ΦV U (p) ∈ L(F, F )

is smooth.

In our special case the map ΦV U (p) is explicitly defined by the matrix (2.1.3)

A(p) =
(

∂yj

∂xi
(p)

)

1≤i,j≤m

.

In the above formula (xi) are local coordinates on U and (yj) are local coordinates on V .
The properties (a) and (b) make no mention of the special relationship between E = TM

and M . There are many quadruples (E, π, M, F ) with these properties and they deserve a
special name.

Definition 2.1.11. A quadruple (E, π, M, F ) (where E, M are smooth manifolds, π : E →
M is a surjective submersion and F a vector space, real or complex) satisfying conditions
(a) and (b) above is called a smooth vector bundle over M . E is called the total space
and M is called the base space. The vector space F is called the standard fiber and its
dimension (over its field of scalars) is called the rank of the bundle.

Roughly speaking, a vector bundle is a smooth family of vector spaces. Note that the
properties (b1) and (b2) imply that the fibers π−1(p) of a vector bundle have a natural
structure of linear space. In particular, one can add elements in the same fiber.

The above definition has an “impurity” built in coming from the choices of the open
cover (Uα) and trivializations ψα which are somewhat arbitrary. We can get rid of this
arbitrariness by introducing an equivalence relation.

An open cover (Uα) together with trivializations

φα : π−1(Uα) → Uα × F

is said to be equivalent to the open cover (Vi) with the trivializations

ψi : π−1(Vi) → Vi × F
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if ∀α, i there exists a smooth map gαi : Uα ∩ Vi → GL(F ) such that for any x ∈ Uα ∩ Vi

and any f ∈ F
φα ◦ ψ−1

i (x, f) = (x, gαif).

We will postulate that two equivalent trivializing covers define the same vector bundle
structures.

There is an equivalent way to define vector bundles. According to Definition 2.1.11, we
can find an open cover (Uα) of M such that each of the restrictions Eα = E |Uα is isomorphic
to a product Ψα : Eα

∼= Uα × F . Moreover, on the overlaps Uα ∩ Uβ, the transition maps
gαβ = ΨαΨ−1

β can be viewed as smooth maps

gαβ : Uα ∩ Uβ → GL(F )

where GL (F ) denotes the Lie group of linear automorphisms of F . They satisfy the cocycle
condition
(a) gαα = 1F

(b) gαβgβγgγα = 1F over Uα ∩ Uβ ∩ Uγ .
Conversely, given a cover (Uα) of M and a collection of smooth maps gαβ : Uα ∩ Uβ →

GL (F ) satisfying the cocycle condition we can reconstruct a vector bundle by gluing the
product bundles Eα = Uα × F on the overlaps Uα ∩ Uβ according to the gluing rules

(x, v) ∈ Eα is identified with (x, gβα(x)v) ∈ Eβ ∀x ∈ Uα ∩ Uβ.

We may say that gβα is the transition from α to β. In the sequel we will prefer to think
of vector bundles in terms of transition maps. A cover (Uα) as above will be called a
trivializing cover. The details are carried out in the exercise below.

Exercise 2.1.5. Consider a smooth manifold M , a vector space V , an open cover (Uα) and
smooth maps

gαβ : Uα ∩ Uβ → GL(V )

satisfying the cocycle condition. Set

X =
⋃
α

Uα × V × {α}.

We topologize X as the disjoint union of the topological spaces Uα × V . Define a relation
∼⊂ X ×X by

Uα × V × {α} 3 (x, u, α) ∼ (y, v, β) ∈ Uβ × V × {β} def⇐⇒ x = y, v = gβα(x)u.

(a) Show that ∼ is an equivalence relation and E = X/ ∼ equipped with the quotient
topology has a natural structure of smooth manifold.
(b) Show that the projection π : X → M , (x, u, α) 7→ x descends to a submersion E → M .
(c) Prove that (E, π, M, V ) is naturally a smooth vector bundle. ut

Definition 2.1.12. (a) A section in a vector bundle E
π→ M defined over the open subset

u ∈ M is a smooth map s : U → E such that s(p) ∈ Ep = π−1(p), ∀p ∈ U . Equivalently,
this means that π ◦ s = 1U . The space of smooth sections of E over U will be denoted by
Γ(U,E) or C∞(U,E). Note that Γ(U,E) is naturally a linear space.
(b) A section of the tangent bundle is called a vector field. The space of vector fields over
U is denoted by Vect (U).
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In terms of a trivializing cover (Uα) and transition maps (gαβ) a section can be defined
as a collection of smooth maps sα : Uα → F satisfying a gluing condition on the overlaps

sα(x) = gαβ(x)sβ(x) ∀x ∈ Uα ∩ Uβ.

Definition 2.1.13. Let Ei πi→ Mi be two smooth vector bundles. A vector bundle map
consists of a pair of smooth maps f : M1 → M2 and F : E1 → E2 satisfying the following
properties.
(a) The diagram below is commutative

E1 E2

M1 M2

u

π1

wF

u

π2

wf

,

i.e. ∀p ∈ M1, F (E1
p) ⊂ E2

f(p) (one says that F covers f).

(b) The induced map F : E1
p → E2

f(p) is linear.
The composition of bundle maps is defined in the obvious manner and so is the identity

morphism so that one can define the notion of bundle isomorphism in the standard way. If
E and F are two vector bundles over the same manifold then we denote by Hom (E, F ) the
space of bundle maps E → F which cover the identity 1M . Such bundle maps are called
bundle morphisms.

For example the differential Df of a smooth map f : M → N is a bundle map Df :
TM → TN covering f .

Definition 2.1.14. Let E
π→ M be a smooth vector bundle. A bundle endomorphism of E

is a morphism F : E → E. An automorphism (or gauge transformation) is an invertible
endomorphism.

Given a trivializing cover (Uα) we can view a bundle map as a collection of smooth maps
hα : Uα → GL(F ) such that

hα(x) = gαβ(x)hβ(x)(gαβ(x))−1 ∀x ∈ Uα ∩ Uβ.

Exercise 2.1.6. Let V be a vector space, M a smooth manifold, {Uα} an open cover of
M and gαβ, hαβ : Uα ∩Uβ → GL(V ) two collections of smooth maps satisfying the cocycle
conditions. Prove the two collections define isomorphic vector bundles if and only they are
cohomologous, i.e. there exist smooth maps φα : Uα → GL(V ) such that

hαβ = φαgαβφ−1
β . ut
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2.1.4 Some examples of vector bundles

In this section we would like to present some important examples of vector bundles and
then formulate some questions concerning the global structure of a bundle.

Example 2.1.15. The tautological line bundle over RPn and CPn First, let us
mention that a rank 1 vector bundle is usually called a line bundle. We consider only the
complex case. The total space of the tautological line bundle over CPn is the space

τn = {(Z, p) ∈ Cn+1 × CPn ; Z belongs to the complex line in CPn determined by p}.
Let π : τn → CPn denote the projection onto the second component. Note that for every
p ∈ CPn the fiber through p, π−1(p) = τn,p coincides with the 1-dimensional subspace in
Cn+1 defined by p. ut

Example 2.1.16. The tautological vector bundle over a grassmannian We consider
here for brevity only complex grassmannian Gk,n(C). The real case is completely similar.
The total space of this bundle is

τCk,n = {(Z, p) ∈ Cn ×Gk,n(C) ; Z belongs to the subspace defined by p}.
If π denotes the natural projection π : τk,n → Gk,n then for each p ∈ Gk,n the fiber at p
coincides with the subspace in Cn defined by p. Note that τn = τ1,n. ut

Exercise 2.1.7. Prove that τn and τk,n are indeed smooth vector bundles. Describe a
collection of transition maps for τCn . ut

The family of vector bundles is very large. The following construction provides a very
powerful method of producing vector bundles.

Definition 2.1.17. Let f : X → M be a smooth map and E a vector bundle over M defined
by an open cover (Uα) and transition maps (gαβ). The pullback of E by f is the vector
bundle f∗E over X defined by the open cover f−1(Uα) and the transition maps gαβ ◦ f .

One can check easily that the definition of the pullback is independent of the choice
of open cover and transition maps. The pullback operation defines a linear map between
the space of sections of E and the space of sections of f∗E. More precisely if s ∈ Γ(E) is
defined by the open cover (Uα) and the collection of smooth maps (sα) then the pullback
f∗s is defined by the open cover f−1(Uα) and the smooth maps sα ◦ f . Again there is no
difficulty to check the above definition is independent of the various choices.

Exercise 2.1.8. Let E → X be a rank k (complex) smooth vector bundle over the manifold
X. Assume E is ample, i.e. there exists a finite family s1, . . . , sN of smooth sections of E
such that for any x ∈ X the collection {s1(x), . . . , sN (x)} spans Ex. For each x ∈ X set

Sx = {v ∈ CN ;
∑

i

visi(x) = 0}

Note that dimSx = N − k. We have a map F : X → Gk,N (C) defined by x 7→ S⊥x .
(a) Prove that F is smooth.
(b) Prove that E is isomorphic with the pullback F ∗τk,n. ut
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Exercise 2.1.9. Show that any vector bundle over a smooth compact manifold is ample.
Thus any vector bundle over a compact manifold is a pullback of some tautological bundle!

ut

The notion of vector bundle is trickier than it may look. Its definition may suggest that
a vector bundle looks like a direct product -manifold× vector space- since this happens at
least locally.

Definition 2.1.18. A rank r vector bundle E
π→ M (over the field K = R,C) is called

trivial if there exists a bundle isomorphism E ∼= Kr ×M . Such an isomorphism is called
a trivialization of E. A pair (trivial vector bundle, trivialization) is called a trivialized
bundle.

A trivial rank n K-bundle over M will be denoted by Kn
M . One can naively ask the

following question. Is every vector bundle trivial? We can even limit our search to tangent
bundles. Thus we ask the following
QUESTION. Is it true that for every smooth manifold M the tangent bundle TM is trivial
(as a vector bundle)?

Let us look at some positive examples.

Example 2.1.19. TS1 ∼= RS1 Let θ denote the angular coordinate on the circle. Then ∂
∂θ

is a globally defined, nowhere vanishing vector field on S1. We thus get a map

RS1 → TS1, (s, θ) 7→ (s
∂

∂θ
, θ) ∈ TθS

1

which is easily seen to be a bundle isomorphism.
Let us carefully analyze this example. Think of S1 as a Lie group (group of complex

numbers of norm 1). The tangent space at z = 1 (i.e. θ, = 0) coincides with the subspace
Rez = 0 and ∂

∂θ |1 is the unit vertical vector j. Denote by Rθ the counterclockwise rotation
by an angle θ. Clearly Rθ is a diffeomorphism and for thus for each θ we have a linear
isomorphism

Dθ |θ=0 Rθ : T1S
1 → TθS

1,

and moreover, ∂
∂θ = Dθ |θ=0 Rθj. The existence of the trivializing vector field ∂

∂θ is due to
to our ability to “move freely and coherently” inside S1. One has a similar freedom inside
a Lie group as we are going to see in the next example. ut

Example 2.1.20. For any Lie group G the tangent bundle TG is trivial.
To see this let n = dimG and consider e1, · · · , en a basis of the tangent space at the

origin, T1G. We denote by Rg the right translation (by g) in the group defined by

Rg : x 7→ x · g, ∀x ∈ G.

Rg is a diffeomorphism with inverse Rg−1 so that the differential DRg defines a linear
isomorphism DRg : T1G → TgG. Set

Ei(g) = DRg(ei) ∈ TgG, i = 1, · · · , n.
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Since the multiplication G × G → G, (g, h) 7→ g · h is a smooth map we deduce that the
vectors Ei(g) define smooth vector fields over G. Moreover, for every g ∈ G, the collection
{E1(g), . . . , En(g)} is a basis of TgG so we can define without ambiguity a map

Φ : Rn
G → TG, (g;X1, . . . Xn) 7→ (g;

∑
XiEi(g)).

One checks immediately that Φ is a vector bundle isomorphism and this proves the claim.
In particular TS3 is trivial since the sphere S3 is a Lie group (unit quaternions). (Using
the Cayley numbers one can show that TS7 is also trivial; see [64] for details). ut

We see that the tangent bundle TM of a manifold M is trivial if and only if there exist
vector fields X1, · · · , Xm (m = dimM) such that for each p ∈ M , X1(p), . . . , Xm(p) span
TpM . This suggests the following more refined question.
Problem Given a manifold M compute v(M) the maximum number of pointwise linearly
independent vector fields over M . Obviously 0 ≤ v(M) ≤ dimM and TM is trivial if and
only if v(M) = dimM . A special instance of this problem is the celebrated vector field
problem: compute v(Sn) for any n ≥ 1

We have seen that v(Sn) = n for n =1,3 and 7. Amazingly, these are the only cases
when the above equality holds. This is a highly nontrivial result, first proved by J.F.Adams
in [2] using very sophisticated algebraic tools. This fact is related to many other natural
questions in algebra. For a nice presentation we refer to [53].

The methods we will develop in this book will not suffice to compute v(Sn) for any n
but we will be able to solve “half” of this problem. More precisely we will show that

v(S2n) = 0

for any n ≥ 1 so that in particular, TS2n is not trivial. In odd dimensions the situation is
far more elaborate (a complete answer can be found in [2]). However one can prove easily
the following.

Exercise 2.1.10. v(S2k−1) ≥ 1 for any k ≥ 1. ut

The quantity v(M) can be viewed as a measure of nontriviality of a tangent bundle.
Unfortunately, its computation is highly nontrivial. In the second part of this book we will
describe computable ways of measuring the extent of nontriviality of a vector bundle.

2.2 A linear algebra interlude

We collect in this section some classical notions of linear algebra. Most of them should
be familiar to the reader but we will present them in a form suitable for applications in
differential geometry. All vector spaces in this section will be assumed finite dimensional.

2.2.1 Tensor products

Let E, F be two vector spaces over the field K (K = R,C). Consider the (infinite) direct
sum

T(E, F ) =
⊕

(e,f)∈E×F
K.
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Equivalently, T(E, F ) can be identified with the space of functions c : E × F → K with
finite support. T(E, F ) has a natural basis consisting of “Dirac functions”

δe,f : E × F → K, (x, y) 7→
{

1 if (x, y) = (e, f)
0 if (x, y) 6= (e, f)

In particular we have an injection

δ : E × F → T(E, F ), (e, f) 7→ δe,f .

(A word of caution: δ is not linear!) Inside T(E, F ) sits the linear subspaceR(E, F ) spanned
by

λδe,f − δλe,f , λδe,f − δe,λf , δe+e′,f − δe,f − δe′,f , δe,f+f ′ − δe,f − δe,f ′

where e, e′ ∈ E, f, f ′ ∈ F and λ ∈ K. Now define

E ⊗K F
def
= T(E,F )/R(E, F ).

and denote by π the canonical projection π : T(E,F ) → E ⊗ F . Set

e⊗ f := π(δe,f ).

We get a natural map
ι : E × F → E ⊗ F, e× f 7→ e⊗ f.

Obviously ι is bilinear. The vector space E ⊗ F is called the tensor product of E and F .
Sometimes when we want to emphasize the field of scalars we write E ⊗K F . The tensor
product has the following universality property.

Proposition 2.2.1. For any bilinear map φ : E ×F → G there exists a unique linear map
Φ : E ⊗ F → G such that the diagram below is commutative.

E × F E ⊗ F

G

wι

'
'
'
'')φ u

Φ .

The proof of this result is left to the reader as an exercise. Note that if (ei) is a basis of
Eand (fj) is a basis of F then (ei ⊗ fj) is a basis of E ⊗ F and hence

dimE ⊗ F = (dimE) · (dimF ).

Exercise 2.2.1. Using the universality property of the tensor product prove that there
exists a natural isomorphism E ⊗ F ∼= F ⊗E uniquely defined by e⊗ f 7→ f ⊗ e. ut

The above construction can be iterated. Given three vector spaces E1, E2, E3 we can
construct two triple tensor products: (E1 ⊗ E2)⊗ E3 and E1 ⊗ (E2 ⊗ E3).

Exercise 2.2.2. Prove there exists a natural isomorphism (E1⊗E2)⊗E3
∼= E1⊗(E2⊗E3).

ut
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Thus there exists a unique (up to an isomorphism) triple tensor product which we denote
by E1 ⊗ E2 ⊗ E3. Clearly we can now define multiple tensor products: E1 ⊗ · · · ⊗ En.

Definition 2.2.2. The dual of a K-linear space E is the linear space E∗ defined as the
space of K-linear maps E → K.

For any e∗ ∈ E∗ and e ∈ E we set

〈e∗, e〉 := e∗(e).

Using the universality property of the tensor product one proves easily the following result.

Proposition 2.2.3. (a) There exists a natural isomorphism

E∗ ⊗ F ∗ ∼= (E ⊗ F )∗

uniquely defined by e∗ ⊗ f∗ 7→ Le∗⊗f∗ ∈ (E ⊗F )∗, where 〈Le∗⊗f∗ , x⊗ y〉 = 〈e∗, x〉〈f∗, y〉 for
all x ∈ e and y ∈ F . In particular this shows E∗ ⊗ F ∗ can be naturally identified with the
space of bilinear maps E × F → K.
(b) There exists a natural isomorphism

E∗ ⊗ F ∼= Hom(E, F )

uniquely determined by e∗ ⊗ f 7→ Te∗⊗f ∈ Hom(E, F ), where Te∗⊗f (x) = 〈e∗, x〉f for all
x ∈ E.

Exercise 2.2.3. Prove the above proposition. ut

The above constructions are functorial. More precisely, we have the following result.

Proposition 2.2.4. (a) Let Ti ∈ Hom(Ei, Fi), i=1,2 be two linear operators. Then they
naturally induce a linear operator T = T1 ⊗ T2 : E1 ⊗ E2 → F1 ⊗ F2 uniquely defined by

T1 ⊗ T2(e1 ⊗ e2) = (T1e1)⊗ (T2e2), ∀ei ∈ Ei.

(b) Any linear operator S : E → F induces a linear operator St : F ∗ → E∗ uniquely defined
by

〈Stf∗, e〉 = 〈f∗, Se〉.
St is called the transpose of S.

Let V be a vector space. For r, s ≥ 0 set

Tr
s(V ) := V ⊗r ⊗ (V ∗)⊗s,

where by definition V ⊗0 = (V ∗)⊗0 = K. An element of Tr
s is called tensor of type (r,s).

Note that according to Proposition 2.2.3 a tensor of type (1,1) is a linear endomorphism
of V . A tensor of type (r, 0) is called contravariant, while a tensor of type (0, s) is called
covariant. The tensor algebra of V is defined to be

T(V ) :=
⊕
r,s

Tr
s(V ).
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We use the term algebra since the tensor product induces bilinear maps

⊗ : Tr
s × Tr′

s′ → Tr+r′
s+s′ .

The elements of T(V ) are called tensors.

Exercise 2.2.4. Show that (T(V ), +, ⊗) is an associative algebra. ut

It is often useful to represent tensors using coordinates. To achieve this pick a basis (ei)
of V and let (ei) denote the dual basis in V ∗ uniquely defined by

〈ei, ej〉 = δi
j =

{
1 if i = j
0 if i 6= j

.

We then obtain a basis of Tr
s(V )

{ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs/ 1 ≤ iα, jβ ≤ dimV }.

Any element T ∈ Tr
s(V ) has a decomposition

T = T i1...ir
j1...js

ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs ,

where we use Einstein convention to sum over indices which appear twice, once as an upper
index and the second time as a lower index.

On the tensor algebra there is a naturalcontraction (trace) operation

tr : Tr
s → Tr−1

s−1

uniquely defined by

tr (v1 ⊗ · · · ⊗ vr ⊗ u1 ⊗ · · · ⊗ us) = 〈u1, v1〉v2 ⊗ · · · vr ⊗ u2 ⊗ · · · ⊗ us, ∀vi ∈ V, uj ∈ V ∗.

In the coordinates determined by a basis (ei) of V the contraction can be described as

(trT )i2...ir
j2...js

=
(
T ii2...ir

ij2...js

)
,

where again we use Einstein’s convention. In particular, we see that the contraction coin-
cides with the usual trace on T1

1(V ) = End (V ).

2.2.2 Symmetric and skew-symmetric tensors

Let V be a vector space over K = R,C and set Tr(V ) = Tr
0(V ). The permutation group Sr

acts naturally on T r(V ) by

σ(v1 ⊗ ... ⊗ vr) = vσ(1) ⊗ ... ⊗ vσ(r), σ ∈ Sr.

We denote this action of σ ∈ Sr on an arbitrary element t ∈ Tr(V ) by σt.
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In this subsection we will describe two subspaces invariant under this action. These
are special instances of the so called Schur functors. (We refer to [26] for more general
constructions.) Define

Sr : Tr(V ) → Tr(V ), Sr(t) =
1
r!

∑

σ∈Sr

σt

and

Ar : Tr(V ) → Tr(V ), Ar(t) =
{

1
r!

∑
σ∈Sr

ε(σ)σt if r ≤ dimV

0 if r > dimV
.

When r = 0 we set S0 = {1} so that A0 = S0 = 1K. Above ε(σ) denotes the signature of
the permutation σ. The following results are immediate. Their proofs are left to the reader
as exercises.

Lemma 2.2.5. Ar and Sr are projectors of T r(V ) i.e.

S2
r = Sr, A2

r = Ar.

Moreover
σSr(t) = Sr(σt) = Sr(t), σAr(t) = Ar(σt) = ε(σ)Ar(t).

Definition 2.2.6. A tensor T ∈ Tr(V ) is called symmetric (resp. skew-symmetric) if
Sr(T ) = T (resp. Ar(T ) = T ). r is called the degree of the (skew-)symmetric tensor.
The space of symmetric tensors (resp. skew-symmetric ones) will be denoted by SrV (resp.
ΛrV ).

Set S∗V =
⊕

r≥0 SrV and Λ∗V =
⊕

r≥0 ΛrV .

Definition 2.2.7. The exterior product is the bilinear map

∧ : ΛrV × ΛsV → Λr+sV

defined by

ωr ∧ ηs def
=

(r + s)!
r!s!

Ar+s(ω ⊗ η), ∀ωr ∈ ΛrV, ηs ∈ ΛsV.

Proposition 2.2.8. The exterior product has the following properties.
(a) Associativity: (α ∧ β) ∧ γ = α ∧ (β ∧ γ), ∀α, β γ ∈ Λ∗V . In particular

v1 ∧ ... vk = k!Ak(v1 ⊗ ... ⊗ vk) =
∑

σ∈Sk

ε(σ)vσ(1) ⊗ ... ⊗ vσ(k), ∀vi ∈ V.

(b) Super-commutativity:
ωr ∧ ηs = (−1)rsηs ∧ ωr.

Proof We first define a new product “∧1” by

ωr∧1η
s := Ar+s(ω ⊗ η),

which will turn out to be associative and will force ∧ to be associative as well.
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To prove the associativity of ∧1 consider the quotient algebra Q∗ = T∗/I∗, where T∗ is
the algebra (

⊕
r≥0 Tr(V ), +, ⊗) and I∗ is the bilateral ideal generated by the set of squares

{v ⊗ v/ v ∈ V }. Denote the (obviously associative) multiplication in Q∗ by ∪. The natural
projection π : T∗ → Q∗ induces a linear map π : Λ∗V → Q∗.
Step 1. π : Λ∗V → Q∗ is a linear isomorphism and moreover,

π(α∧1β) = π(α) ∪ π(β). (2.2.1)

In particular ∧1 is an associative product.
The crucial observation is

π(T ) = π(Ar(T )), ∀t ∈ Tr(V ). (2.2.2)

It suffices to check (2.2.2) on monomials T = e1 ⊗ ... ⊗ er, ei ∈ V . Since

(u + v)⊗2 ∈ I∗, ∀u, v ∈ V

we deduce u⊗ v = −v ⊗ u(mod I∗). Hence, for any σ ∈ Sr

π(e1 ⊗ ... ⊗ er) = ε(σ)π(eσ(1) ⊗ ... ⊗ eσ(r)) (2.2.3)

When we sum over σ ∈ Sr in (2.2.3) we obtain (2.2.2).
To prove the injectivity of π note that A∗(I∗) = 0. If π(ω) = 0 for some ω ∈ Λ∗V then

ω ∈ kerπ = I∗ ∩ Λ∗V so that
ω = A∗(ω) = 0.

The surjectivity of π follows immediately from (2.2.2). Indeed any π(T ) can be alternatively
described as π(ω) for some ω ∈ Λ∗V . It suffices to take ω = A∗(T ).

To prove (2.2.1) it suffices to consider only the special cases when α and β are monomials:

α = Ar(e1 ⊗ ... ⊗ er), β = As(f1 ⊗ ... ⊗ fs).

We have
π(α∧1β) = π (Ar+s(Ar(e1 ⊗ ... ⊗ er)⊗As(f1 ⊗ ... ⊗ fs)))

(2.2.2)
= π (Ar(e1 ⊗ ... ⊗ er)⊗As(f1 ⊗ ... ⊗ fs))

def
= π(Ar(e1 ⊗ ... ⊗ er)) ∪ π(As(f1 ⊗ ... ⊗ fs)) = π(α) ∪ π(β).

Thus ∧1 is associative.
Step 2. ∧ is associative. Consider α ∈ ΛrV , β ∈ ΛsV and γ ∈ ΛtV . We have

(α ∧ β) ∧ γ =
(

(r + s)!
r!s!

α∧1β

)
∧ γ =

(r + s)!
r!s!

(r + s + t)!
(r + s)!t!

(α∧1β)∧1γ

=
(r + s + t)!

r!s!t!
(α∧1β)∧1γ =

(r + s + t)!
r!s!t!

α∧1(β∧1γ) = α ∧ (β ∧ γ).

The associativity of ∧ is proved. The computation above shows that

e1 ∧ ... ∧ ek = k!Ak(e1 ⊗ ... ⊗ ek).

(b) The supercommutativity of ∧ follows from the supercommutativity of ∧1 (or ∪). To
prove the latter one uses (2.2.2). The details are left to the reader. ut
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Exercise 2.2.5. Finish the proof of part (b) in the above proposition. ut

Λ∗V is called the exterior algebra of V . ∧ is called the exterior product . The exterior
algebra is a Z-graded algebra i.e

Λ∗V =
⊕

r≥0

ΛrV

and (ΛrV ) ∧ (ΛsV ) ⊂ Λr+sV . In fact ΛrV = 0 for r > dimV (pigeonhole principle).

Definition 2.2.9. Let V be an n-dimensional K-vector space. The one dimensional vector
space ΛnV is called the determinant line of V and is denoted by detV .

There is a natural injection ιV : V ↪→ Λ∗V such that (ιV (x))2 = 0 in Λ∗V for all x ∈ V .
This map enters crucially the formulation of the universality property

Proposition 2.2.10. Let V be a vector space over K. For any K-algebra A and any linear
map φ : V → A such that (φ(x)2 = 0 there exists an unique morphism of K-algebras
Φ : Λ∗V → A such that the diagram below is commutative

V Λ∗V

A

y wιV

[
[
[[]φ

u
Φ ,

i.e. Φ ◦ ιV = φ.

Exercise 2.2.6. Prove Proposition 2.2.10. ut

The space of symmetric tensors S∗V can be similarly given a structure of associative
algebra with respect to the product

α · β := Sr+s(α⊗ β), ∀α ∈ SrV, β ∈ SsV.

The symmetric product “·” is also commutative.

Exercise 2.2.7. Formulate and prove the analogue of Proposition 2.2.10 for the algebra
S∗V . ut

It is often convenient to represent (skew-)symmetric tensors in coordinates. If e1, ... , en

is a basis of the vector space V then for any 1 ≤ r ≤ n the family

{ei1 ∧ ... ∧ eir/ 1 ≤ i1 < ... < ir ≤ n}

is a basis for ΛrV so that any degree r skew-symmetric tensor ω can be uniquely represented
as

ω =
∑

1≤i1< ... <ir≤n

ωi1 ... irei1 ∧ ... ∧ eir .

Symmetric tensors can be represented in a similar way.
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The Λ∗− and S∗− constructions are functorial, i.e. any linear map L : V → W naturally
induces morphisms of algebras

Λ∗L : Λ∗V → Λ∗W, S∗L : S∗V → S∗W

uniquely defined by their actions on monomials:

Λ∗L(v1 ∧ ... ∧ vr) = (Lv1) ∧ ... ∧ (Lvr)

and
S∗L(v1 · ... · vr) = (Lv1) · ... · (Lvr).

The functors Λ∗ and S∗ have an exponential like behavior, i.e. there exists a natural iso-
morphism

Λ∗(V ⊕W ) ∼= Λ∗V ⊗ Λ∗W. (2.2.4)

S∗(V ⊕W ) ∼= S∗V ⊗ S∗W. (2.2.5)

To define the isomorphism in (2.2.4) consider the bilinear map φ : Λ∗V ×Λ∗W → Λ∗(V ⊕W )
uniquely determined by

φ(v1 ∧ ... ∧ vr , w1 ∧ ... ∧ ws) = v1 ∧ ... ∧ vr ∧ w1 ∧ ... ∧ ws.

The universality property of the tensor product implies the existence of a linear map Φ :
Λ∗V ⊗ Λ∗W → Λ∗(V ⊕W ) such that Φ ◦ ι = φ where ι is the inclusion of Λ∗V × Λ∗W in
Λ∗V ⊗ Λ∗W . To construct the inverse of Φ note that Λ∗V ⊗ Λ∗W is naturally a K-algebra
by

(ω ⊗ η) ∗ (ω′ ⊗ η′) = (−1)deg η·deg ω′(ω ∧ ω′)⊗ (η ∧ η′).

V ⊕W is naturally embedded in Λ∗V ⊗ Λ∗W by

ψ(v, w) = v ⊗ 1 + 1⊗ w ∈ Λ∗V ⊗ Λ∗W.

Moreover, for any x ∈ V ⊕W we have ψ(x) ∗ ψ(x) = 0. The universality property of the
exterior algebra implies the existence of a unique morphism of K-algebras Ψ : Λ∗(V ⊕W ) →
Λ∗V ⊗Λ∗W such that Ψ◦ ιV⊕W = ψ. Note that Φ is also a morphism of K-algebras and one
verifies easily that (Φ◦Ψ)◦ιV⊕W = ιV⊕W . The uniqueness part in the universality property
of the exterior algebra implies Φ◦Ψ = identity. One proves similarly that Ψ◦Φ = identity
and this concludes the proof of (2.2.4).

We want to mention a few general facts about Z-graded vector spaces, i.e. vector spaces
equipped with a direct sum decomposition

V = ⊕n∈ZVn.

(We will always assume that each Vn is finite dimensional.) The vectors in Vn are said to be
homogeneous, of degree n. For example, the ring of polynomials K[x] is a K-graded vector
space. Λ∗V and S∗V are Z-graded vector spaces. The direct sum of two Z-graded vector
spaces V and W is a Z-graded vector space with (V ⊕W )n

def
= Vn⊕Wn. The tensor product

of two Z-graded vector spaces V and W is a Z-graded vector space with

(V ⊗W )n :=
⊕

r+s=n

Vr ⊗Ws.
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To any Z-graded vector space V one can naturally associate a formal series PV (t) ∈ Z[[t, t−1]]
by

PV (t) =
∑

n∈Z
(dimK Vn)tn.

PV (t) is called the Poincaré series of V .

Example 2.2.11. The Poincaré series of K[x] is

PK[x](t) = 1 + t + t2 + ... + tn−1 + ... =
1

1− t
. ut

Exercise 2.2.8. Let V and W be two Z-graded vector spaces. Prove the following state-
ments are true (whenever they make sense).
(a) PV⊕W (t) = PV (t) + PW (t).
(b) PV⊗W (t) = PV (t) · PW (t).
(c) dimV = PV (1). ut

Definition 2.2.12. Let V be a Z-graded vector space. The Euler characteristic of V,
denoted by χ(V ), is defined by (whenever it makes sense)

χ(V )
def
= PV (−1) =

∑

n∈Z
(−1)n dimVn.

Remark 2.2.13. If we try to compute χ(K[x]) using the first formula in Definition 2.2.12
we get χ(K[x]) = 1/2 while the second formula makes no sense (divergent series). ut

Proposition 2.2.14. Let V be a K-vector space of dimension n. Then

PΛ∗V (t) = (1 + t)n and PS∗V (t) =
(

1
1− t

)n

=
1

(n− 1)!

(
d

dt

)n−1 (
1

1− t

)
.

In particular, dimΛ∗V = 2n and χ(Λ∗V ) = 0.

Proof From (2.2.4) and (2.2.5) we deduce using Exercise 2.2.8 that for any vector spaces
V and W we have

PΛ∗(V⊕W )(t) = PΛ∗V (t) · PΛ∗W (t) and PS∗(V⊕W )(t) = PS∗V · PS∗W (t).

In particular, if V has dimension n then V ∼= Kn so that

PΛ∗V (t) = (PΛ∗K(t))n and PS∗V (t) = (PS∗K(t))n .

The proposition follows using the relations

PΛ∗K(t) = 1 + t; and PS∗K(t) = PK[x](t) =
1

1− t
. ut
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2.2.3 The “super” slang

The aim of this very brief section is to introduce the reader to the “super” terminology. We
owe the “super” slang to the physicists. In the quantum world many objects have a special
feature not present in the Newtonian world. They have parity (or chirality) and objects
with different chiralities had to be treated differently. The “super” terminology provides
an algebraic background which allows one to deal with different parities on an equal basis.
From a strictly syntactic point of view the “super” slang adds the attribute super to most
of the commonly used algebraic objects. In this book the prefix “s-” will abbreviate the
word “super”

Definition 2.2.15. (a) A s-space is a Z2-graded vector space V = V0 ⊕ V1.
(b) A s-algebra over K is a Z2-graded K-algebra, i.e. a K-algebra A together with a direct
sum decomposition A = A0 ⊕ A1 such that Ai · Aj ⊂ Ai+j (mod 2). The elements in Ai are
called homogeneous of degree i. For any a ∈ Ai we denote its degree (mod 2) by |a|. The
elements in A0 are said to be even while the elements in A1 are said to be odd.
(c) The supercommutator in a s-algebra A = A0 ⊕A1 is the bilinear map

[ · , · ]s : A×A → A

defined on homogeneous elements ωi ∈ Ai, ηj ∈ Aj by

[ωi, ηj ]s := ωiηj − (−1)ijηjωj .

A s-algebra is called s-commutative if [ · , · ]s ≡ 0. .

Example 2.2.16. Let E = E0 ⊕E1 be a s-space. Any T ∈ End (E) has a block decompo-
sition

T =
[

T00 T01

T10 T11

]

where Tji ∈ End (Ei, Ej). End (E) is naturally a s-algebra. The even endomorphism have
the form [

T00 0
0 T11

]

while the odd endomorphisms have the form
[

0 T01

T10 0

]
. ut

Example 2.2.17. Let V be a finite dimensional space. The exterior algebra Λ∗V is natu-
rally a s-algebra. The even elements are gathered in

ΛevenV =
⊕

r even

ΛrV

while the odd elements are gathered in

ΛoddV =
⊕

r odd

ΛrV.

Λ∗V is supercommutative. ut
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Definition 2.2.18. Let A = A0 ⊕ A1 be a s-algebra. A s-derivation on A is a linear
operator on D ∈ End (A) such that for any x ∈ A

[D, Lx]End(A)
s = LDx (2.2.6)

where [ , ]End(A)
s denotes the supercommutator in End (A) (with the s-structure defined in

Example 2.2.16) while for any z ∈ A we denoted by Lz the left multiplication operator
a 7→ z · a. A s-derivation is called even (resp. odd) if it is even (resp. odd) as an element
of the s-algebra End (A).

Remark 2.2.19. The relation (2.2.6) is a super version of the usual Leibniz formula.
Indeed, assuming D is homogeneous (as an element of the s-algebra End (A)) then equality
(2.2.6) becomes

D(xy) = (Dx)y + (−1)|x||D|x(Dy)

for any homogeneous elements x, y ∈ A. ut

Example 2.2.20. Let V be a vector space. Any u∗ ∈ V ∗ defines an odd s-derivation of
Λ∗V denoted by iu∗ uniquely determined by its action on monomials.

iu∗(v0 ∧ v1 ∧ ... ∧ vr) =
r∑

i=0

(−1)i〈u∗, vi〉v0 ∧ v1 ∧ ... ∧ v̂i ∧ · · · ∧ vr.

As usual, a hat indicates a missing entry. ut

Exercise 2.2.9. Prove the statement in the above example. ut

Definition 2.2.21. Let A = (A0 ⊕ A1; +; [ , ]) be a s-algebra over K, not necessarily
associative. For any x ∈ A denote by Rx the right multiplication operator a 7→ [a, x]. A is
called s-Lie algebra if it is s-anticommutative, i.e.

[x, y] + (−1)|x||y|[y, x] = 0, for all homogeneous elements x, y ∈ A

and ∀x ∈ A, Rx is a s-derivation. When A is purely even (i.e. A1 = {0}) then A is called
simply a Lie algebra. The multiplication in a (s-) Lie algebra is called the (s-)bracket.

The above definition is highly condensed. In more down-to-Earth terms the fact that
Rx is a s-derivation for all x ∈ A is equivalent with the super Jacobi identity

[[y, z], x] = [[y, x], z] + (−1)|x||y|[y, [z, x]] (2.2.7)

for all homogeneous elements x, y, z ∈ A. When A is a purely even K-algebra then A is
a Lie algebra over K if [ , ] is anticommutative and satisfies (2.2.7), which in this case is
equivalent with the classical Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, ∀x, y, z ∈ A. (2.2.8)

Example 2.2.22. Let E be a vector space (purely even). Then A = End (E) is a Lie
algebra with bracket given by the usual commutator: [a, b] = ab− ba. ut
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Proposition 2.2.23. Let A = A0 ⊕A1 be a s-algebra and denote by Ders(A) the space of
s-derivations of A.
(a) For any D ∈ Ders(A) its homogeneous components D0, D1 ∈ End (A) are also s-
derivations.
(b) ∀D, D′ ∈ Ders(A) the s-commutator [D, D′]End(A)

s is again a s-derivation.
(c) ∀x ∈ A the bracket Bx : a 7→ [a, x]s is a s-derivation called the bracket derivative
determined by x. Moreover

[Bx, By]End (A)
s = B[x,y]s , ∀x, y ∈ A.

Exercise 2.2.10. Prove Proposition 2.2.23. ut

Definition 2.2.24. Let E = E0 ⊕ E1 and F = F 0 ⊕ F 1 be two s-spaces. Their s-tensor
product is the s-space E⊗F with the grading (E⊗F )ε =

⊕
i+j≡ε (2) Ei⊗F j. To emphasize

the super-nature of the tensor product we will use the symbol “⊗̂” instead of the usual “⊗”.

Exercise 2.2.11. Show that there exists a natural isomorphism of s-spaces

V ∗⊗̂Λ∗V ∼= Ders(Λ∗V ),

uniquely determined by v∗ × ω 7→ Dv∗⊗ω where Dv∗⊗ω is s-derivation defined by

Dv∗⊗ω(v) = 〈v∗, v〉ω, ∀v ∈ V.

Notice in particular that any s-derivation of Λ∗V is uniquely determined by its action on
Λ1V . (When ω = 1, Dv∗⊗1 coincides with the internal derivation discussed in Example
2.2.20.) ut

Let A = A0 ⊕A1 be a s-algebra over K = R, C. A supertrace on A is a K-linear map

τ : A → K

such that
τ([x, y]s) = 0 ∀x, y ∈ A.

If we denote by [A, A]s the linear subspace of A spanned by the supercommutators

{[x, y]s ; x, y ∈ A}
we see that the space of s-traces is isomorphic with the dual of the quotient space A/[A, A]s.

Proposition 2.2.25. Let E = E0⊕E1 be a finite dimensional s-space and denote by A the
s-algebra of endomorphisms of E. Then there exists a canonical s-trace trs on A uniquely
defined by

trs1E = dim E0 − dimE1.

In fact, if T ∈ A has the block decomposition

T =
[

T00 T01

T10 T11

]

then
trsT = trT00 − trT11.

Exercise 2.2.12. Prove the above proposition. ut
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2.2.4 Duality

Duality is a subtle and fundamental concept which can be detected in all branches of
mathematics. This section is devoted to those aspects of the atmosphere called duality
which are relevant to differential geometry. In the sequel we will use Einstein’s convention
without mentioning it. K will denote one of the fields R or C.

Definition 2.2.26. A pairing between two finite dimensional K-vector spaces V and W is
a bilinear map B : V ×W → K.

Any pairing B : V ×W → K defines two linear maps

DV : V → W ∗, v 7→ B(v, • ) ∈ W ∗

and
DW : W → V ∗, v 7→ B( •, w) ∈ V ∗.

A pairing is called a duality if the the maps DV and DW are isomorphisms.

Example 2.2.27. The natural pairing 〈•, •〉 : V ∗ × V → K is a duality. One sees that
DV ∗ = 1V ∗ and DV = 1V . This is called the natural duality. ut

Example 2.2.28. Let V be a finite dimensional real vector space. Any symmetric non-
degenerate quadratic form (•, •) : V × V → R defines a (self)duality and in particular a
natural isomorphism L : V → V ∗. When (•, •) is positive definite the the operator L is
called metric duality. This operator can be nicely described in coordinates as follows. Pick
(ei) a basis of V and set gij = (ei, ej). Let (ej) denote the dual basis of V ∗ (defined by
〈ej , ei〉 = δj

i ). The action of L is then

Lei = gije
j . ut

Example 2.2.29. Consider V a real vector space and ω : V × V → R a skew-symmetric
bilinear form on V . In particular ω defines a pairing. ω is said to be symplectic if this
pairing is a duality. In this case the induced operator V → V ∗ is called symplectic duality.

ut

Exercise 2.2.13. Let ω : V × V → R define a symplectic duality. Prove the following.
(a) V has even dimension.
(b) If (ei) is a basis of V and ωij = ω(ei, ej) then det(ωij)1≤i,j≤dim V 6= 0. ut

The notion of duality is compatible with the functorial constructions introduced so far.

Proposition 2.2.30. Let Bi : Vi × Wi → R (i = 1, 2) be two pairs of spaces in duality.
Then there exists a natural duality

B = B1 ⊗B2 : (V1 ⊗ V2)× (W1 ⊗W2) → R

uniquely determined by

B(v1 ⊗ v2, w1 ⊗ w2) = B1(v1, w1) ·B2(v2, w2).
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Exercise 2.2.14. Prove Proposition 2.2.30. ut

Proposition 2.2.30 implies that given two spaces in duality B : V ×W → K there is a
naturally induced duality

B⊗n : V ⊗r ×W⊗r → K.

This defines by restriction a pairing

ΛrB : ΛrV × ΛrW → K

uniquely determined by

ΛrB (v1 ∧ ... ∧ vr, w1 ∧ ... ∧ wr) := det (B (vi, wj))1≤i,j≤r .

Exercise 2.2.15. Prove the above pairing is a duality. ut

In particular, the natural duality 〈 • , • 〉 : V ∗ × V → K induces a duality

〈 • , • 〉 : ΛrV ∗ × ΛrV → R

and thus defines a natural isomorphism

ΛrV ∗ ∼= (ΛrV )∗ .

Thus, the elements of ΛrV ∗ can be viewed as skew-symmetric r-linear forms V r → K.
Moreover, if n = dimK V then the natural duality

〈 • , • 〉 : ΛnV × ΛnV ∗ → K

defines a nontrivial element in ΛnV ⊗ ΛnV ∗ ∼= End (ΛnV ) (the identity operator) so that
End (ΛnV ) = End (detV ) is naturally identified with K. In particular any endomorphism of
V induces a linear map detV → det V which can be identified with a K-scalar: the classical
determinant of a linear operator detT .

A duality B : V ×W → K naturally induces a duality Bt : V ∗ ×W ∗ → K by

Bt(v∗, w∗) : =〈v∗, D−1
V w∗〉,

where DV : V → W ∗ is the linear isomorphism induced by the duality B.
Now consider a (real) Euclidean vector space V . Denote its inner product by ( • , • ).

The self-duality defined by ( • , • ) induces a self-duality

( • , • ) : ΛrV × ΛrV → R,

determined by
(v1 ∧ ... ∧ vr, w1 ∧ ... ∧ wr)

def
= det ( (vi, wj) )1≤i,j≤r (2.2.9)

The right hand side of (2.2.9) is a Gramm determinant and in particular the quadratic form
in (2.2.9) is positive definite. Thus, we have proved the following result.

Corollary 2.2.31. An inner product on a real vector space V naturally induces an inner
product on the tensor algebra T V and in the exterior algebra Λ∗V .
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In an Euclidean vector space V the inner product induces the metric duality L : V → V ∗.
This induces an operator L : T r

s (V ) → T r−1
s+1 (V ) defined by

L(v1 ⊗ . . .⊗ vr ⊗ u1 ⊗ . . .⊗ us) = (v2 ⊗ ... ⊗ vr) ⊗ ((Lv1 ⊗ u1 ⊗ ... ⊗ us). (2.2.10)

The operation defined in (2.2.10) is classically referred to as lowering the indices. The
reason for this nomenclature comes from the coordinate description of this operation. Thus
if T ∈ Tr

s(V ) is given by

T = T i1...ir
j1...js

ei1 ⊗ ... ⊗ eir ⊗ ej1 ⊗ ... ⊗ ejs

then
(LT )i2...ir

jj1...jr
= gijT

ii2...ir
j1...js

,

where gij = (ei, ej). The inverse of the metric duality L−1 : V ∗ → V induces a linear
operation Tr

s(V ) → Tr+1
s−1(V ) called raising the indices.

Exercise 2.2.16. (Cartan) Let V be an Euclidean vector space. For any v ∈ V denote by
ev (resp. iv) the linear endomorphism of Λ∗V defined by evω = v ∧ ω (resp. iv = ıv∗ where
ıv∗ denotes the interior derivation defined by v∗ ∈ V ∗-the metric dual of v; see Example
2.2.20). Show that for any u, v ∈ V

[ev, iu]s = eviu + iuev = (u, v)1Λ∗V . ut

Definition 2.2.32. Let V be a real vector space. A volume form on V is a nontrivial
linear form on the determinant line of V :

Det : detV → R.

Equivalently, a volume form on V is an element of detV ∗ (n = dimV ). Since detV is
1-dimensional a choice of a volume form corresponds to a choice of a basis of detV .

Definition 2.2.33. Two volume forms on V , Det1 and Det2 are said to be equivalent if
there exists a positive constant λ such that Det2 = λDet1. (There are only two equivalence
classes.) An orientation on a vector space is an equivalence class of volume forms. A pair
(vector space + orientation) is called an oriented vector space.

There is an equivalent way of looking at orientations. To describe it note first that
any volume form Det on V uniquely determines a basis ω of det V by the requirement
Det(ω) = 1. We say two bases ω1 and ω2 of detV are equivalent if there exists λ > 0 such
that ω2 = λω1. An orientation on V selects an equivalence class of bases of detV . A basis is
said to be positively oriented if it belongs to the equivalence class defining the orientation.
Otherwise, the basis is said to be negatively oriented.

To any basis {e1, ..., en} of V one can associate a basis e1 ∧ · · · ∧ en of detV . Note that
a permutation of the indices 1, . . . , n changes the orientation of the associated basis by a
factor equal to the signature of the permutation. Thus to define an orientation on a vector
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space it suffices to specify a total ordering of a given basis of the space. An ordered basis
of V is said to be positively oriented if so is the associated basis of detV .

Assume now V is an Euclidean space. Denote the Euclidean inner product by g( · , · ).
det V has an induced Euclidean structure and in particular there exist only two length-one-
vectors in detV , ±ω. If we fix one of them - say ω - as a basis in detV we achieve two
things. Firstly, there is a naturally associated volume form Detg defined by Detg(λω) =
λ. Secondly, the equivalence class of this volume form determines an orientation on V .
Conversely, an orientation on V uniquely selects a length-one-vector ω in detV thus defining
a volume form Detg. Thus, we have proved the following result.

Proposition 2.2.34. An orientation in an Euclidean vector space (V, g) canonically selects
a volume form on V , henceforth denoted by Detg

Exercise 2.2.17. Let (V, g) be an n-dimensional, oriented, Euclidean vector space and
denote by Detg the associated volume form. Show that for any basis v1, ..., vn of V we
have

Detg(v1 ∧ ... ∧ vn) = ε(v1, ..., vn)
√

(det g(vi, vj)).

where ε(v1, ..., vn) = +1 if the basis v1 ∧ ... ∧ vn of detV is positively oriented and −1
otherwise. For V = R2 with its standard metric and the orientation given by e1 ∧ e2 prove
that

|Detg(v1 ∧ v2)|
is the area of the parallelogram spanned by v1 and v2. ut

Definition 2.2.35. Let (V, g) be an oriented, Euclidean space and denote by Detg the
associated volume form. The Berezin integral or ( berezinian) is the linear form

∫̂
: Λ∗V → R

defined on homogeneous elements by

∫̂
ω =

{
0 if deg ω < dimV

Detgω if deg ω = dimV
.

Definition 2.2.36. Let ω ∈ Λ2V , where (V, g) is an oriented, Euclidean space. We define
its pfaffian as

Pf (ω)
def
=

∫̂
expω =

{
0 if dimV is odd

1
n!Detg(ω∧n) if dimV = 2n

expω denotes the exponential in the (nilpotent) algebra Λ∗V :

exp ω =
∑

k≥0

ωk

k!
.
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If (V, g) is as in the above definition (dimV = N) and A : V → V is a skew-symmetric
endomorphism of V we can form ωA ∈ Λ2V by

ωA =
∑

i<j

g(Aei, ej)ei ∧ ej =
1
2

∑

i,j

g(Aei, ej)ei ∧ ej

where (e1, ..., eN ) is a positively oriented orthonormal basis of V . The reader can check that
ωA is independent of the choice of basis as above. (Notice that ωA(u, v) = g(Au, v), ∀u, v ∈
V .)We define the pfaffian of A by

Pf(A)
def
= Pf(ωA).

Example 2.2.37. Let V = R2 denote the standard Euclidean space oriented by e1 ∧ e2,
where e1, e2 denotes the standard basis. If

A =
[

0 −θ
θ 0

]
,

then ωA = θe1 ∧ e2 so that Pf(A) = θ. ut

Exercise 2.2.18. Let A : V → V be a skew-symmetric endomorphism of an oriented
Euclidean space V . Prove that Pf(A)2 = detA. ut

Exercise 2.2.19. Let (V, g) be an oriented Euclidean space of dimension 2n. Consider A :
V → V a skewsymmetric endomorphism and e1, . . . , e2n a positively oriented orthonormal
frame. Prove that

Pf(A) =
(−1)n

2nn!

∑

σ∈S2n

ε(σ)aσ(1)σ(2) · · · aσ(2n−1)σ(2n)

= (−1)n
∑

σ∈S′2n

ε(σ)aσ(1)σ(2) · · · aσ(2n−1)σ(2n)

where aij = g(ei, Aej) is the (i, j) entry in the matrix representing A in the basis (ei) while
S′

2n denotes the set of permutations σ ∈ S2n satisfying

σ(2k − 1) < min{σ(2k), σ(2k + 1)}, ∀k. ut

Let (V, g) be an n-dimensional, oriented, Euclidean vector space. The metric duality
L : V → V ∗ induces both a metric and an orientation on V ∗. In the sequel we will continue
to use the same notation Lg to denote the metric duality Tr

s(V ) → Tr
s(V

∗) ∼= Ts
r(V ).

Definition 2.2.38. The Hodge pairing is defined by

Ξ : ΛrV × Λn−rV ∗ → R, Ξ(ωr, ηn−r) = Detg(ωr ∧ Lgη
n−r).

Exercise 2.2.20. Prove the Hodge pairing is a duality. ut
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Definition 2.2.39. The Hodge ∗-operator is the isomorphism

∗ : ΛrV → Λn−rV

induced by the Hodge duality.

The above definition obscures the meaning of the ∗-operator. We want to spend some
time clarifying its significance.

Let α ∈ ΛrV so that ∗α ∈ Λn−rV . Denote by 〈 , 〉 the standard duality ΛsV ×ΛsV ∗ → R
and by ( , ) the metric duality ΛsV × ΛsV → R. Then by definition ∗ satisfies

Detg(α ∧ Lgβ) = 〈∗α, β〉 def
= (∗α, Lgβ) ∀β ∈ Λn−rV ∗. (2.2.11)

Let ω denote the unit vector in detV defining the orientation. Then (2.2.11) can be rewritten
as

α ∧ Lgβ = (∗α, Lgβ)ω ∀β ∈ Λn−rV ∗.

Thus
α ∧ γ = (∗α, γ)ω ∀γ ∈ Λn−rV. (2.2.12)

Equality (2.2.12) uniquely determines the action of ∗.
Example 2.2.40. Let V be the standard Euclidean space R3 with standard basis e1, e2, e3

and orientation determined by e1 ∧ e2 ∧ e3. Then

∗e1 = e2 ∧ e3 ∗ e2 = e3 ∧ e1 ∗ e3 = e1 ∧ e2.

∗1 = e1 ∧ e2 ∧ e3 ∗ (e1 ∧ e2 ∧ e3) = 1.

∗(e2 ∧ e3) = e1 ∗ (e3 ∧ e1) = e2 ∗ (e1 ∧ e2) = e3. ut
The following result is left to the reader as an exercise.

Proposition 2.2.41. The Hodge ∗-operator satisfies (n = dim V )

∗(∗ω) = (−1)p(n−p)ω ∀ω ∈ ΛpV,

Detg(∗1) = 1,

and
α ∧ ∗β = (α, β) ∗ 1, ∀α ∈ ΛkV, ∀β ∈ Λn−kV.

Exercise 2.2.21. Let (V, g) be an n-dimensional, oriented, Euclidean space. Denote by gε

the rescaled metric gε = ε2g. If ∗ is the Hodge operator corresponding to the metric g and
∗ε is the Hodge operator corresponding to the metric gε show that

∗εω = ε2p−n ∗ ω ∀ω ∈ ΛpV. ut

We conclude this subsection with a brief discussion of densities.
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Definition 2.2.42. Let V be a real vector space. For any r ∈ R we define a r-density to
be a function f : detV \ {0} → R such that

f(λu) = |λ|rf(u), ∀u ∈ det V \ {0}, ∀λ 6= 0.

The linear space of r-densities on V will be denoted by |Λ|rV . When r = 1 we set

|Λ|V def
= |Λ|1V .

An orientation on V induces a natural isomorphism

ı : detV ∗ → |Λ|V ω 7→ (ı(ω) : det V \ {0} → R)

where ı(ω)(u) = sign (Det u)ω(u) and Det is an arbitrary volume form on V defining the
orientation. Notice that once we fix a volume form on V , one has identifications:

det V ∗ ∼= |Λ|V ∼= R.

In particular, an orientation in an Euclidean vector space canonically identifies |Λ|V with
R.

2.2.5 Some complex linear algebra

In this very short section we want to briefly discuss some aspects specific to linear algebra
on complex vector spaces.

Thus let V be a complex vector space. Its conjugate is the complex vector space V
which coincides with V as a real vector space but in which the multiplication by a scalar
λ ∈ C is defined by

λ · v := λv, ∀v ∈ V.

V has a complex dual V ∗
c which can be identified with the space of complex linear maps

V → C. If we forget the complex structure we obtain a real dual V ∗
r consisting of all

real-linear maps V → R.

Definition 2.2.43. A Hermitian metric is a complex bilinear map

(•, •) : V × V → C

satisfying the following properties.
(a) (•, •) is positive definite, i.e.

(v, v) > 0, ∀v ∈ V \ {0}.

(b) (u, v) = (v, u), ∀u, v ∈ V .

A Hermitian metric defines a duality V × V → C and hence it induces a complex linear
isomorphism L : V → V ∗

c , v 7→ (·, v) ∈ V ∗
c .

If V and W are complex Hermitian vector spaces then any complex linear map A : V →
W induces a complex linear map

A∗ : W → V ∗
c A∗w :=

(
v 7→ 〈Av,w〉

)
∈ V ∗

c ,
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where 〈·, ·〉 denotes the natural duality between a vector space and its dual. We can rewrite
the above fact as

〈Av, w〉 = 〈v, A∗w〉.
A complex linear map W → V ∗

c is the same as a complex linear map W → Vc
∗. The metric

duality defines a complex linear isomorphism Vc
∗ ∼= V so we can view the adjoint A∗ as a

complex linear map W → V .
Let h = (•, •) be a Hermitian metric on the complex vector space V . If we view (•, •)

as an object over R, i.e. as a real bilinear map V × V → C then the Hermitian metric
decomposes as

h = Reh− iω i =
√−1.

The real part is an inner product on the real space V , while ω is a real, skew-symmetric
bilinear form on V and thus can be identified with an element of Λ2

RV ∗. ω is called the real
2-form associated to the Hermitian metric.

Let V be an complex vector space and e1, · · · , en a basis of V (over C). This is not a
real basis of V since dimR V = 2 dimC V . We can however complete this to a real basis.
More precisely, the vectors e1, ie1, · · · , en, ien form a real basis of V .

Definition 2.2.44. The canonical orientation of a complex vector space is the orientation
defined by the basis e1 ∧ ie1 ∧ ... ∧ en ∧ ien above.

Exercise 2.2.22. Prove that the orientation defined above is indeed canonical, i.e. it is
independent of the complex basis e1, ..., en of V . ut

It is convenient to have a more explicit description of the abstract objects introduced
above. Let V be an n-dimensional complex vector space and h a Hermitian metric on it.
Pick an unitary basis e1, ..., en of V i.e. n = dimC V and h(ei, ej) = δij . For each j denote
by fj the vector iej . Then e1, f1, · · · , en, fn is a R-basis of V and e1 ∧ f1 ∧ · · · ∧ en ∧ fn

defines the canonical orientation of V . Denote by e1, f1, · · · , en, fn the dual R-basis in V ∗.
Then

Reh (ei, ej) = δij = Reh(fi, fj) and Reh (ei, fj) = 0

i.e.
Reh =

∑

i

(ei ⊗ ei + f i ⊗ f i).

Also
ω(ei, fj) = −Imh(ei, iej) = δij , ω(ei, ej) = ω(fi, fj) = 0 ∀i, j,

which shows that
ω = −Imh =

∑

i

ei ∧ f i.

In particular, if we denote by Pfh the pfaffian with respect to the canonical metric Reh
and orientation, we deduce

Pfh(ω) = 1.

Any complex space V can be also thought of as a real vector space. The multiplication by√−1 defines a (real) linear operator which we denote by J . Obviously J satisfies J2 = −1V .
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Conversely, if V is a real vector space then any real operator J : V → V as above defines a
complex structure on V by

(a + bi)v = av + bJv, ∀v ∈ V, a + bi ∈ C.

We will call an operator J as above a complex structure .
Let V be a real vector space with a complex structure J on it. J has no eigenvectors on

V . The natural extension of J to the complexification of V , VC = V ⊗C has two eigenvalues
±i and thus we get a splitting of VC as a direct sum of complex vector spaces (eigenspaces)

VC = ker (J − i)⊕ (kerJ + i).

Exercise 2.2.23. Prove that we have the following isomorphisms of complex vector spaces

V ∼= ker (J − i) V ∼= (kerJ + i).

ut

Set
V 1,0 = ker(J − i) ∼=C V V 0,1 = ker(J + i) ∼=C V .

Thus VC ∼= V 1,0 ⊕ V 0,1 ∼= V ⊕ V . We deduce from this an isomorphism of Z-graded
complex vector spaces

Λ∗VC ∼= Λ∗V 1,0 ⊗ Λ∗V 0,1.

If we set Λp,qV
def
= ΛpV 1,0 ⊗C ΛqV 0,1 then the above isomorphism can be reformulated as

ΛkVC ∼=
⊕

p+q=k

Λp,qV. (2.2.13)

Note that the complex structure J on V induces by duality a complex structure J∗ on V ∗
r

and we have an isomorphism of complex vector spaces

V ∗
c = (V, J)∗c ∼= (V ∗

r , J∗).

We can define similarly Λp,qV ∗ as the Λp,qconstruction applied to the real vector space V ∗
r

equipped with the complex structure J∗. Note that

Λ1,0V ∗ ∼= (Λ1,0V )∗c

Λ0,1V ∗ ∼= (Λ0,1V )∗c .

and more generally
Λp,qV ∗ ∼= (Λp,qV )∗c .

If now h is a Hermitian metric on the complex vector space (V, J) then we have a natural
isomorphism of complex vector spaces

V ∗
c
∼= (V ∗

r , J∗) ∼=C (V,−J) ∼=C V
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so that
Λp,qV ∗ ∼=C Λq,pV.

The Euclidean metric g = Reh and the associated 2-form ω = −Imh are related by

g(u, v) = ω(u, Jv), ω(u, v) = g(Ju, v) ∀u, v ∈ V.

Moreover ω is a (1,1)-form. To see this it suffices to pick an unitary basis (ei) of V and
construct as usual the associated real orthonormal basis {e1, f1, · · · , en, fn} (fi = Jei).
Denote by {ei, f i ; i = 1, · · · , n} the dual orthonormal basis in V ∗

r . Then J∗ei = −f i and
if we set

εi =
1√
2
(ei + if i) ε̄j 1√

2
(ej − if j)

then
Λ1,0V ∗ = spanC{εi} Λ0,1 = spanC{ε̄j}

and
ω = i

∑
εi ∧ ε̄i.

2.3 Tensor fields

2.3.1 Operations with vector bundles

We now return to geometry and more specifically to vector bundles. Let E → M be a
rank r vector bundle over the smooth manifold M . According to the definition of a vector
bundle we can find an open cover (Uα) of M such that each restriction E |Uα is trivial:
E |Uα

∼= Uα × V where V is an r-dimensional vector space over K = R,C. The bundle E is
obtained by gluing these trivial pieces on the overlaps Uα∩Uβ using a collection of transition
maps gαβ : Uα ∩ Uβ → GL(V ) satisfying the cocycle condition. Conversely, a collection of
gluing maps as above satisfying the cocycle condition uniquely defines a vector bundle. In
the sequel we will exclusively think of vector bundles in terms of transition maps.

Let E, F be two vector bundles over the smooth manifold M given by a (common) open
cover (Uα) and transition maps (gαβ) and respectively (hαβ). Then the collections

(gαβ ⊕ hαβ), (gαβ ⊗ hαβ), ((gt
αβ))−1, (Λ∗gαβ)

satisfy the cocycle condition and therefore define vector bundles which we denote by E⊕F ,
E⊗F , E∗ and respectively Λ∗E. The reader can check easily that these vector bundles are
independent of the choices of transition maps used to characterize E and F (use Exercise
2.1.6). The direct sum E⊕F is also called the Whitney sum of vector bundles. All functorial
constructions discussed in the previous section have a vector bundle correspondent.

These constructions are natural in the following sense. Let E′ and F ′ be vector bundles
over the same smooth manifold M ′. Any bundle maps S : E → E′ and T : F → F ′, both
covering the same diffeomorphism φ : M → M ′, induce bundle morphisms S⊗T : E⊗F →
E′ ⊗ F ′, covering φ and St : (E′)∗ → E∗, covering φ−1.

Exercise 2.3.1. Prove the assertion above.
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Example 2.3.1. Let E, F , E′ and F ′ be vector bundles over a smooth manifold M . Con-
sider bundle isomorphisms S : E → E′ and T : F → F ′ covering the same diffeomorphism
of the base, φ : M → M . Then (S−1)t : E∗ → (E′)t is a bundle isomorphism covering φ
so that we get an induced map (S−1)t ⊗ T : E∗ ⊗ F → (E′)∗ ⊗ F ′. Note that we have a
natural identification

E∗ ⊗ F ∼= Hom(E, F ). ut
Definition 2.3.2. Let E → M be a K-vector bundle over M . A metric on E is a section
h of E∗ ⊗K E∗ (E = E if K = R) such that for any m ∈ M , h(m) defines a metric on Em

(Euclidean if K = R or Hermitian if K = C).

2.3.2 Tensor fields

We now specialize the previous considerations to the special situation when E is the tangent
bundle of M , E ∼= TM . The cotangent bundle is then

T ∗M := (TM)∗.

We define the tensor bundles of M

Tr
s(M) : =Tr

s(TM) = (TM)⊗r ⊗ (T ∗M)⊗s.

Note that Tr
s(M) is naturally a C∞(M)-module; multiplication by a function is multiplica-

tion by a smoothly varying scalar in each fiber of TM .

Definition 2.3.3. (a) A tensor field of type (r, s) over the open set U ⊂ M is a section of
Tr

s(M) over U .
(b) A degree r differential form (r-form for brevity) is a section of Λr(T ∗M). The space of
(smooth) r-forms over M is denoted by Ωr(M). We set

Ω∗(M)
def
= ⊕r≥0Ωr(M).

(c) A Riemannian metric on a manifold M is a (0,2), symmetric, (pointwise) positive
definite tensor field on M .

If we view the tangent bundle as a smooth family of vector spaces then a tensor field
can be viewed as a smooth selection of a tensor in each of the tangent spaces. In particular
a Riemann metric defines a smoothly varying procedure of measuring lengths of vectors in
tangent spaces.

Remark 2.3.4. (a) A contravariant tensor field (i.e. a (0, s)-tensor field) S naturally defines
a C∞(M)-multilinear map

S :
s∏

1

Vect (M) → C∞(M) (X1, ... , Xs) 7→ (p 7→ Sp(X1(p), ... , Xs(p))) ∈ C∞(M).

Conversely any such map uniquely defines a (0, s)-tensor field. In particular an r-form η
can be identified with a skew-symmetric C∞(M) multilinear map

η :
r∏

1

Vect (M) → C∞(M).
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Notice that the wedge product in the exterior algebras induces an associative product in
Ω∗(M) which we continue to denote by ∧.
(b) Let f ∈ C∞(M). Its Frechet derivative Df : TM → TR ∼= R×R is naturally a 1-form.
Indeed, we get a smooth C∞(M)-linear map df : Vect (M) → C∞(M) defined by

df(X)m
def
= Df(X)f(m) ∈ Tf(m)R ∼= R.

In the sequel we will always regard the differential of a smooth function f as a 1-form and
to indicate this we will use the notation df (instead of the usual Df). ut

Any diffeomorphism f : M → M induces a bundle isomorphisms Df : TM → TM and
(Df−1)t : T ∗M → T ∗M covering f . Thus a diffeomorphism f induces a C∞(M) linear
map

f∗ : Tr
s(M) → Tr

s(M) (2.3.1)

called the push-forward map. Hence the group of diffeomorphisms of M acts naturally
(and linearly) on the space of tensor fields.

For contravariant tensor fields a more general result is true. More precisely any smooth
map f : M → N defines C∞(M)-linear map

f∗ : T0
s(N) → T0

s(M)

called the pullback by f . Explicitly, if S is such a tensor defined by a C∞(M)-multilinear
map

S : (Vect (N))s → C∞(N)

then f∗S is the contravariant tensor field defined by

(f∗S)p(X1(p), ... , Xs(p))
def
= Sf(p)(Df |p (X1), ... , Df |p (Xs))

∀X1, ... , Xs ∈ V ect(M), p ∈ M . Note that when f is a diffeomorphism we have

f∗ = (f−1
∗ )t

where f∗ is the push-forward map defined in (2.3.1).

Proposition 2.3.5. Let f : M → N be a smooth map. The pullback by f defines a
morphism of associative algebras

f∗ : Ω∗(N) → Ω∗(M).

Exercise 2.3.2. Prove the above proposition. ut

It is often very useful to have a local description of these objects. If (x1, ... , xn) are local
coordinates on an open set U ⊂ M then the vector fields ( ∂

∂x1 , ... , ∂
∂xn ) trivialize TM |U .

We can form a dual trivialization of T ∗M |U using the 1-forms dxi uniquely determined by

〈dxi,
∂

∂xj
〉 = δi

j .
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A basis in Tr
s(TxM) is given by

{
∂

∂xi1
⊗ ... ⊗ ∂

∂xir
⊗ dxj1 ⊗ ... ⊗ dxjs ; 1 ≤ i1, ... , ir ≤ n, 1 ≤ j1, ... , js ≤ n

}
.

Hence any tensor T ∈ Tr
s(M) has a local description

T = T i1...ir
j1...js

∂

∂xi1
⊗ ... ⊗ ∂

∂xir
⊗ dxj1 ⊗ ... ⊗ dxjs .

In particular an r-form looks like

ω =
∑

1≤i1<...<ir≤n

ωi1...irdxi1 ∧ · · · ∧ dxir .

Example 2.3.6. Consider the map

polar : R2 \ {0} → R2, (r, θ) 7→ (x = r cos θ, y = r sin θ).

The map polar defines the usual polar coordinates. We want to compute the pullback of
the volume form dx ∧ dy by polar. We have

dx ∧ dy = d(r cos θ) ∧ d(rsinθ)

= (cos θdr − rsinθdθ) ∧ (sinθdr + r cos θdθ)

= r(cos2 θ + sin2θ)dr ∧ dθ = rdr ∧ dθ. ut
All operations discussed in the previous section have natural extensions to tensor fields.

There is a tensor multiplication, a Riemann metric defines a duality L : Vect (M) → Ω1(M)
etc. In particular, there exists a contraction operator

tr : Tr+1
s+1(M) → Tr

s(M)

defined by

tr (X0 ⊗ · · · ⊗Xr)⊗ (ω0 ⊗ · · · ⊗ ωs) = ω0(X0)(X1 ⊗ · · ·Xr ⊗ ω1 ⊗ · · · ⊗ ωs).

(Xi ∈ Vect (M), ωj ∈ Ω1(M)) In local coordinates the contraction has the form
{

tr
(
T i0...ir

j0...js

)}
= {T ii1...ir

ij1...js
}.

2.3.3 Fiber bundles

We consider it is useful at this point to bring up the notion of fiber bundle. There are
several reasons to do this. On the first hand, they arise naturally in geometry and they
impose themselves as worth studying. On the second hand, they provide a very elegant and
concise language to describe many phenomena in geometry.

We have already met examples of fiber bundles when we discussed vector bundles. These
were “smooth families of vector spaces”. A fiber bundle wants to be a smooth family of
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copies of the same manifold. This is a very loose description but may offer a first glimpse
at the notion about to be discussed.

The model situation is that of direct product X = B × F where B and F are smooth
manifolds. It is convenient to regard this as a family of manifolds (Fb)b∈B. B is called the
base, F is called the standard (model) fiber and X is called the total space. This is an
example of trivial fiber bundle. In general, a fiber bundle is obtained by gluing a bunch of
trivial ones according to a prescribed rule. The gluing may encode a symmetry of the fiber
and we would like to spend some time explaining what do we mean by symmetry.

Definition 2.3.7. (a) Let M be a smooth manifold and G a Lie group. We say the group
G acts on M from the left (resp. right) if there exists a smooth map

Φ : G×M → M, (g, m) 7→ Tgm

such that T1 ≡ 1M and

Tg(Thm) = Tghm (resp. Tg(Thm) = Thgm) ∀g, h ∈ G, m ∈ M.

In particular, we deduce that ∀g ∈ G the map Tg is a diffeomorphism of M . For any m ∈ M
the set

G ·m = {Tgm; g ∈ G}
is called the orbit of the action through m.
(b) Let G act on M . The action is called free if ∀g ∈ G and ∀m ∈ M Tgm 6= m. The
action is called effective if ∀g ∈ G ∃m ∈ M such that Tgm 6= m.

It is useful to think of a Lie group action as defining a symmetry.

Example 2.3.8. Let G be a Lie group. A linear representation of G on a vector space V
is a left action of G on V such that each Tg is a linear map. One says V is a G-module. ut

Example 2.3.9. Let G be a Lie group. For any g ∈ G denote by Lg (resp. Rg) the left
(resp right) translation by g. In this way we get the tautological left (resp. right) action of
G on itself. ut

Definition 2.3.10. Let G be a Lie group. A G-fiber bundle is an object composed of the
following:
(a) a manifold E called the total space;
(b) a manifold B called the base;
(c) a manifold F called the standard fiber;
(d) a submersion π : E → B called the natural projection;
(e) A Lie group G with a fixed, effective left action on F , g 7→ Tg ∈ Diffeo (F ). G is called
the symmetry group of the bundle;
(f) a collection of local trivializations i.e. an open cover (Uα) of the base B and diffeomor-
phisms ψα : Uα × F → π−1(Uα) such that

π ◦ ψα(b, f) = b, ∀(b, f) ∈ Uα × F.
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We can form the transition (gluing) maps ψαβ : Uαβ × F → Uαβ × F (Uαβ = Uα ∩ Uβ)
defined by ψαβ = ψ−1

α ◦ ψβ. According to (f) these maps can be written as

ψαβ(b, f) = (b, Tαβ(b)f)

where Tαβ(b) is a diffeomorphism of F depending smoothly upon b ∈ Uαβ. The final condi-
tion to be imposed is G-compatibility i.e.
(g) There exist smooth maps gαβ : Uαβ → G satisfying the cocycle condition

gαα = 1 ∈ G,

gγα = gγβ · gβα,

and such that
Tαβ(b) = Tgαβ(b).

We will denote this fiber bundle by (E, π,B, F, G).

The choice of an open cover (Uα) in the above definition is a source of arbitrariness since
there is no natural prescription on how to perform this choice. We need to describe when
two such choices are equivalent.

Two open covers (Uα) and (Vi) together with the collections of local trivializations
φα : Uα × F → π−1(Uα) and ψi : Vi × F → π−1(Vi) are said to be equivalent if for all α, i
there exists a smooth map tαi : Uα ∩ Vi → G such that for any x ∈ Uα ∩ Vi and any f ∈ F

φ−1
α ψi(x, f) = (x, tαi(x)f).

A G-bundle structure is defined by an equivalence class of trivializing covers.
As in the case of vector bundles a collection of gluing data determines a G-fiber bundle.

Indeed, if we are given a cover (Uα)α∈A of the base B and a collection of transition maps
gαβ : Uα ∩Uβ → G satisfying the cocycle condition, then we can get a bundle by gluing the
trivial pieces Uα × F along the overlaps. More precisely if b ∈ Uα ∩ Uβ then the element
(b, f) ∈ Uα × F is identified with the element (b, gβα · f) ∈ Uβ × F where (g, f) 7→ g · f
denotes the left action of G on F .

Definition 2.3.11. Let E
π→ B be a G-fiber bundle. A G-automorphism of this bundle is

a diffeomorphism T : E → E such that π ◦ T = π (i.e. T maps fibers to fibers) and for
any trivializing cover (Uα) (as in Definition 2.3.10) there exists a smooth map gα : Uα → G
such that

ψ−1
α Tψα(b, f) = (b, gα(b)f)), ∀b, g, f.

Definition 2.3.12. (a) A fiber bundle is an object defined by conditions (a)-(d) and (f) in
the above definition. (One can think the structure group is the group of diffeomorphisms of
the standard fiber).
(b) A section of a fiber bundle E

π→ B is a smooth map s : B → E such that π ◦ s = 1B,
i.e. s(b) ∈ π−1(b), ∀ b ∈ B.

Example 2.3.13. A rank r vector bundle (over K = R,C) is a GL(r,K)-fiber bundle with
standard fiber Kr and where the group GL(r,K) acts on Kr in the natural way. ut
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Example 2.3.14. Let G be a Lie group. A principal G-bundle is a G-fiber bundle with
fiber G, where G acts on itself by left translations. Equivalently, a principal G-bundle over
a smooth manifold M can be described by an open cover U of M and a G-cocycle i.e. a
collection of smooth maps

gUV : U ∩ V → G U, V ∈ U

such that ∀x ∈ U ∩ V ∩W (U, V, W ∈ U)

gUV (x)gV W (x)gWU (x) = 1 ∈ G. ut

Exercise 2.3.3. (Alternative definition of principal bundle) Let P be a fiber bundle
with fiber a Lie group G. Prove the following are equivalent.
(a) P is a principal G-bundle.
(b) There exists a free, right action of G on G, (P × G → P, (p, g) 7→ p · g such that its
orbits coincide with the fibers of the bundle P and a trivializing cover

{
ψα : Uα ×G → π−1(Uα)

}
,

such that
ψα(u, hg) = ψα(u, h) · g ∀g, h ∈ G, u ∈ Uα. ut

Exercise 2.3.4. (The frame bundle of a manifold) Let Mn be a smooth manifold.
Denote by F (M) the set of frames on M i.e.

F (M) = {(m; X1, ... , Xn); m ∈ M, Xi ∈ TmM and span(X1, ... , Xn) = TmM} .

(a) Prove that F (M) can be naturally organized as a smooth manifold such that the natural
projection p : F (M) → M , (m; X1, ... , Xn) 7→ m is a submersion.
(b) Show F (M) is a principal GL(n,R)-bundle. F (M) is called the frame bundle of the
manifold M .
Hint: A matrix T = (T i

j ) ∈ GL(n,K) acts on the right on F (M) by

(m; X1, ..., Xn) 7→ (m; (T−1)i
1Xi, ..., (T−1)i

nXi). ut

Example 2.3.15. (Associated fiber bundles) Let π : P → G be a principal G-bundle.
Consider (Uα)α∈A a trivializing cover and denote by gαβ : Uα ∩ Uβ → G a collection of
gluing maps determined by this cover. Assume G acts (on the left) on a smooth manifold
F

τ : G× F → F, (g, f) 7→ τ(g)f.

The collection ταβ = τ(gαβ) : Uαβ → Diffeo (F ) satisfies the cocycle condition and can be
used (exactly as we did for vector bundles) to define a G-fiber bundle with fiber F . This
new bundle is independent of the various choices made (cover (Uα) and transition maps
gαβ). (Prove this!) It is called the bundle associated to P via τ and is denoted by P ×τ F .

ut

Exercise 2.3.5. Prove that the tangent bundle of a manifold Mn is associated to F (M)
via the natural action of GL(n,R) on Rn. ut
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Exercise 2.3.6. (The Hopf bundle) If we identify the unit odd dimensional sphere
S2n−1 with the submanifold

{
(z1, ... , zn) ∈ Cn; |z0|2 + · · ·+ |zn|2 = 1

}

then we detect an S1-action on S2n−1 given by

eiθ · (z1, ..., zn) = (eiθz1, ..., e
iθzn).

The space of orbits of this action is naturally identified with the complex projective space
CPn−1.
(a) Prove that p : S2n−1 → CPn−1 is a principal S1 bundle called Hopf bundle. (p is the
obvious projection). Describe one collection of transition maps.
(b) Prove that the tautological line bundle over CPn−1 is associated to the Hopf bundle via
the natural action of S1 on C1. ut

Exercise 2.3.7. Let E be a vector bundle over the smooth manifold M . Any metric h on
E (euclidian or Hermitian) defines a submanifold S(E) ⊂ E by

S(E) = {v ∈ E; |v|h = 1}.

Prove that S(E) is a fibration over M with standard fiber a sphere of dimension rankE−1.
S(E) is usually called the sphere bundle of E. ut



Chapter 3

Calculus on Manifolds

This chapter describes the “kitchen” of differential geometry. We will discuss how one can
operate with the various objects wehave introduced so far. In particular we will introduce
several derivations of the various algebras of tensor fields an we will also present the opposite
notion of integration.

3.1 The Lie derivative

3.1.1 Flows on manifolds

The notion of flow should be familiar to anyone who has had a course in ordinary differential
equations. In this section we only want to describe analytic facts in a geometric light. We
strongly recommend [4] for more details and excellent examples.

A neighborhood N of M × {0} in M × R is called balanced if ∀m ∈ M

({m} × R) ∩N = {m} × (−r, r), for some r > 0.

Definition 3.1.1. A local flow is a smooth map Φ : N → M , (m, t) 7→ Φt(m) (where N
is a balanced neighborhood of M × {0} in M × R) such that
(a) Φ0(m) = m, ∀m ∈ M .
(b) Φt(Φs(m)) = Φt+s(m) for all s, t ∈ R, m ∈ M such that (s,m), (s + t,m), (t,Φs(m)) ∈
N .

When N = M × R, Φ is called a flow or dynamical system.

The conditions (a) and (b) above show that a dynamical system is nothing but a left
action of the additive (Lie) group (R, +) on M .

Example 3.1.2. Let A be a n× n real matrix. It generates a flow Φt
A on Rn by

Φt
Ax = etAx =

( ∞∑

k=0

tk

k!
Ak

)
x.

ut
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Definition 3.1.3. Let Φ : N → M be a local flow on M . The infinitesimal generator of Φ
is the vector field X on M defined by

X(m) = XΦ(m)
def
=

d

dt
|t=0 Φt(m)

i.e. X(m) is the tangent vector to the smooth curve t 7→ Φt(m) at t = 0. This curve is
called flow line.

Exercise 3.1.1. Show XΦ is a smooth vector field. ut

Example 3.1.4. Consider the flow etA on Rn generated by an n×n matrix A. Its generator
is the vector field XA on Rn defined by

XA(u) =
d

dt
|t=0 etAu = Au.

ut

Proposition 3.1.5. Let M be a smooth n-dimensional manifold. The map

X : {Local flows on M} → Vect (M), Φ 7→ XΦ

is a surjection. Moreover, if Φi : Ni → N (i=1,2) are two local flows such that XΦ1 = XΦ2

then Φ1 = Φ2 on N1 ∩N2.

Proof Surjectivity. Let X be a vector field on M . An integral curve for X is a smooth
curve γ : (a, b) → M such that

γ̇(t) = X(γ(t)).

In local coordinates (xα) over on open subset U ⊂ M this condition can be rewritten as

ẋα(t) = Xα
(
x1(t), ..., xn(t)

)
, (3.1.1)

where γ(t) = (x1(t), ..., xn(t)) and X = Xα ∂
∂xα . (3.1.1) is an ordinary differential equation.

Classical existence results (see e.g. [4]) can be used to show that for any precompact open
subset K ⊂ U there exists ε > 0 such that for all x ∈ K there exists a unique integral curve
for X, γx : (−ε, ε) → M satisfying

γx(0) = x. (3.1.2)

Moreover, as a consequence of the smooth dependence upon initial data we deduce that the
map

ΦK : NK = K × (−ε, ε) → M, (x, t) 7→ γx(t)

is smooth.
Now we can cover M by open, precompact local coordinate neighborhoods (Ki)i∈I and

as above, we get smooth maps Φi : Ni = Ki × (−εi, εi) → M solving the initial value
problem (3.1.1-2). Moreover, by uniqueness we deduce

Φi = Φj on Ni ∩Nj .
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DefineN = ∪i∈INi and set Φ : N → M , Φ = Φi onNi. Clearly, Φ satisfies all the conditions
in the definition of a local flow. Tautologically, X is the infinitesimal generator of Φ. The
second part of proposition follows from the uniqueness in initial value problems. ut

The family of local flows on M with the same infinitesimal generator X ∈ Vect(M) is
naturally ordered according to their domains,

(Φ1 : N1 → M) ≺ (Φ2 : N2 → M)

iff N1 ⊂ N2. This family has a unique maximal element which is called the local flow
generated by X and is denoted by ΦX .

3.1.2 The Lie derivative

Let X be a vector field on the smooth n-dimensional manifold M and denote by Φ = ΦX the
local flow it generates. We assume Φ is actually a flow so its domain is actually M×R. The
local flow situation is conceptually identical but unpleasantly lengthens the presentation of
the facts to come.

For each t ∈ R, Φt is a diffeomorphism of M and so it induces a push-forward map on
the space of tensor fields. If S is a tensor field on M we define its Lie derivative along the
direction given by M in a natural way

LXSm
def
= − lim

t→0

1
t

(
(Φt

∗S)m − Sm

) ∀m ∈ M. (3.1.3)

Intuitively LXS measures how fast is the flow Φ changing the tensor S.
Clearly the limit in (3.1.3) exists and one sees that LXS is a tensor of the same type as

S. We want provide more explicit descriptions of this operation.

Lemma 3.1.6. For any X ∈ Vect (M) and f ∈ C∞(M) we have

Xf
def
= LXf = 〈df,X〉 = df(X).

Above, 〈•, •〉 denotes the natural duality between T ∗M and TM ,

〈•, •〉 : C∞(T ∗M)× C∞(TM) → C∞(M), C∞(T ∗M)× C∞(TM) 3 (α, X) 7→ α(X).

In particular, LX is a derivation of C∞(M).

Proof Let Φt = Φt
X be the local flow generated by X. Assume for simplicity that it is

defined for all t. Φt acts on C∞(M) by the pullback of its inverse i.e. Φt∗(f) = f ◦ Φ−t.
Hence

LXf(m) = lim
t→0

1
t
(f(m)− f(Φ−tm)) = − d

dt
|t=0 f(Φ−tm) = 〈df, X〉. ¤

Exercise 3.1.2. Prove that any derivation of the algebra C∞(M) is of the form LX for
some X ∈ Vect(M). Thus

Der(C∞(M)) ∼= Vect (M). ut
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Lemma 3.1.7. Let X, Y ∈ Vect (M). Then the Lie derivative of Y along X is a new vector
field LXY which, viewed as a derivation of C∞(M), coincides with the commutator of the
two derivations of C∞(M) defined by X and Y i.e.

LXY f = [X, Y ]f, ∀ f ∈ C∞(M).

The vector field [X,Y ] = LXY is called the Lie bracket of X and Y . In particular the Lie
bracket induces a Lie algebra structure on Vect (M).

Proof We will work in local coordinates (xi) near a point m ∈ M so that X = Xi ∂
∂xi

and
Y = Y j ∂

∂xj
. We first describe the commutator [X, Y ]. If f ∈ C∞(M) then

[X,Y ]f = (Xi ∂

∂xi
)(Y j ∂f

∂xj
)− (Y j ∂

∂xj
)(Xi ∂f

∂xi
)

=
(

XiY j ∂2f

∂xi∂xj
+ Xi ∂Y j

∂xi

∂f

∂xj

)
−

(
XiY j ∂2f

∂xi∂xj
+ Y j ∂Xi

∂xj

∂f

∂xi

)

so that the commutator of the two derivations is the derivation defined by the vector field

[X, Y ] =
(

Xi ∂Y k

∂xi
− Y j ∂Xk

∂xj

)
∂

∂xk
. (3.1.4)

Note in particular that [ ∂
∂xi

, ∂
∂xj

] = 0 i.e. the basic vectors ∂
∂xi

commute as derivations.
So far we have not proved the vector field in (3.1.4) is independent of coordinates. We

will achieve this by identifying it with the intrinsically defined vector field LXY .
Set γ(t) = Φtm so that we have a parametrization γ(t) = (xi(t)) with ẋi = Xi. Then

Φ−tm = γ(−t) = γ(0)− γ̇(0)t + O(t2) =
(
xi

0 − tXi + O(t2)
)

and

Y j
γ(−t) = Y j

m − tXi ∂Y j

∂xi
+ O(t2). (3.1.5)

Note that Φ−t∗ : Tγ(0)M → Tγ(−t)M is the linearization of the map (xi) 7→ (
xi

0 − tXi + O(t2)
)

so it has a matrix representation

Φ−t
∗ = 1− t

(
∂Xi

∂xj

)

i,j

+ O(t2).

In particular, using the Neumann’s series

(1−A)−1 = 1+ A + A2 + · · ·

(where A is a matrix of operator norm strictly less than 1) we deduce that Φt∗ = (Φ−t∗ )−1 :
Tγ(−t)M → Tγ(0)M has the matrix form

Φt
∗ = 1+ t

(
∂Xi

∂xj

)

i,j

+ O(t2). (3.1.6)
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Using (3.1.6) in (3.1.5) we deduce

Y k
m − (

Φt
∗YΦ−tm

)k = t

(
Xi ∂Y k

∂xi
− Y j ∂Xk

∂xj

)
+ O(t2).

This concludes the proof of the lemma. ut

We can now completely describe the Lie derivative on the algebra of tensor fields.

Proposition 3.1.8. Let X be a vector field on the smooth manifold M . LX is the unique
derivation of T∗∗(M) with the following properties.
(a) LXf = 〈df, X〉 = Xf , ∀f ∈ C∞(M).
(b) LXY = [X,Y ], ∀X,Y ∈ Vect (M).
LX commutes with the contraction tr : Tr+1

s+1(M) → Tr
s(M). Moreover, LX is a natural

operation i.e., for any diffeomorphism φ : M → N we have φ∗ ◦ LX = Lφ∗X ◦ φ∗, ∀X ∈
Vect (M) i.e. φ∗(LX) = Lφ∗X .

Proof The fact that LX is a derivation i.e.

LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT

follows easily from the definition (3.1.3). Properties (a) and (b) were proved above. As
for part (c) this is Leibniz’ rule in disguise. In its simplest form when T = Y ⊗ ω where
Y ∈ Vect (M) and ω ∈ Ω1(M) we have

trT = ω(Y )

and (c) is equivalent to

LX (ω(Y )) = (LXω)(Y ) + ω(LX(Y ). (3.1.7)

(3.1.7) follows immediately from (3.1.3) mimicking the proof of the usual product rule. In
particular (3.1.7) uniquely determines the Lie derivative of a 1-form ω by

(LXω)(Y ) = LX (ω(Y ))− ω([X,Y ]). (3.1.8)

Since LX is a derivation of the algebra of tensor fields, its restriction to C∞(M)⊕Vect (M)⊕
Ω1(M) uniquely determines the action on the entire algebra of tensor fields which generated
by the above subspace. The reader can check easily that property (c) is satisfied in its entire
generality. The naturality of LX is another way of phrasing the coordinate independence
of this operation. We leave the reader to fill in the routine details. ut

Corollary 3.1.9. For any X, Y ∈ Vect (M) we have

[LX , LY ] = L[X,Y ]

as derivations of the algebra of tensor fields on M . In particular this says that Vect (M) as
a space of derivations of T∗∗(M) is a Lie subalgebra of the Lie algebra of derivations.
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Proof [LX , LY ] is a derivation (as a commutator of derivations). By Lemma 3.1.7,
[LX , LY ] = L[X,Y ] on C∞(M). Also, a simple computation shows that

[LX , LY ]Z = L[X,Y ]Z, ∀Z ∈ Vect (M)

so that [LX , LY ] = L[X,Y ] on Vect(M). Finally, since the contraction commutes with both
LX and LY it obviously commutes with LXLY − LY LX . The corollary is proved. ut

Exercise 3.1.3. Prove that the map

D : Vect (M)⊕ End (TM) → Der(T∗∗(M))

given by D(X,S) = LX + S is well defined and is a linear isomorphism. Moreover,

[D(X1, S1),D(X2, S2)] = D([X1, X2], [S1, S2]). ut

LX is a derivation of T∗∗ with the remarkable property

LX(Ω∗(M)) ⊂ Ω∗(M).

The wedge product makes Ω∗(M) a s-algebra and it is natural to ask whether LX is a
s-derivation with respect to this product.

Proposition 3.1.10. The Lie derivative along a vector field X is an even s-derivation of
Ω∗(M) i.e.

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη), ∀ω, η ∈ Ω∗(M).

Proof Denote (as in Section 2.2.2) byA the anti-symmetrization operatorA : (T ∗M)⊗k →
Ωk(M). The statement in the proposition follows immediately from the straightforward
observation that the Lie derivative commutes with this operator (which is a projector). We
leave the reader to fill in the details. ut

3.1.3 Examples

Example 3.1.11. Let ω = ωidxi be a 1-form on Rn. If X = Xj ∂
∂xj is a vector field on Rn

then LXω = (LXω)kdxk is defined by

(LXω)k = (LXω)(
∂

∂xk
) = Xω(

∂

∂xk
)− ω(LX

∂

∂xk
) = X · ωk + ω

(
∂Xi

∂xk

∂

∂xi

)
.

Hence

LXω =
(

Xj ∂ωk

∂xj
+ ωj

∂Xj

∂xk

)
dxk. ut

Example 3.1.12. Consider X = F ∂
∂x + G ∂

∂y + H ∂
∂z a smooth vector field on R3. We want

to compute LXdv where dv is the volume form on R3, dv = dx ∧ dy ∧ dz. Since LX is an
even s-derivation of Ω∗(M) we deduce

LX(dx ∧ dy ∧ dz) = (LXdx) ∧ dy ∧ dz + dx ∧ (LXdy) ∧ dz + dx ∧ dy ∧ (LXdz).
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Using the computation in the previous example we get

LX(dx) = dF :=
∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz, LX(dy) = dG, LX(dz) = dH

so that

LX(dv) =
(

∂F

∂x
+

∂G

∂y
+

∂H

∂z

)
dv = (div X)dv.

In particular, we deduce that if div X = 0, the local flow generated by X preserves the
form dv. We will get a better understanding of this statement once we learn integration on
manifolds, later in this chapter. ut

Example 3.1.13. (The exponential map on Lie groups) Consider G a Lie group. Any
element g ∈ G defines two diffeomorphisms of G: the left (Lg) and the right translation
(Rg)on G. A tensor field T on G is called left (resp. right) invariant if for any g ∈ G
(Lg)∗T = T (resp. (Rg)∗T = T ). The set of left invariant vector fields on G is denoted by
LG. The naturality of the Lie bracket implies

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ]

so that ∀X, Y ∈ LG, [X, Y ] ∈ LG. Hence LG is a Lie subalgebra of Vect (G). LG is called
the Lie algebra of the group G.

FACT 1. dimLG = dimG. Indeed, the left invariance implies that the restriction map
LG → T1G, X 7→ X1 is an isomorphism (Exercise). We will often find it convenient to
identify the Lie algebra of G with the tangent space at 1. Any X ∈ LG defines a local flow
Φt

X on G.

FACT 2. Φt
X is defined for all t ∈ R so that it is a flow. (Exercise) Set exp(tX)

def
= Φt

X(1).
We thus get a map

exp : T1G ∼= LG → G, X 7→ exp(X)

called the exponential map of the group G.

FACT 3. Φt
X(g) = g · exp(tX) i.e.

Φt
X = Rexp(tX).

Indeed, it suffices to check that

d

dt
|t=0 (gexp(tX)) = Xg.

We can write (gexp(tX)) = Lgexp(tX) so that

d

dt
|t=0 (Lgexp(tX)) = (Lg)∗(

d

dt
|t=0 exp(tX))

= (Lg)∗X = Xg (by left invariance).

The reason for the notation exp(tX) is that when G = GL(n,K) the Lie algebra of G is
the Lie algebra gl(n,K) of all n× n matrices with the bracket given by the commutator of
two matrices (Exercise) and for any X ∈ LG, exp(X) = eX =

∑
k≥0

1
k!X

k (Exercise).
ut
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Exercise 3.1.4. Prove the statements left as exercises in the example above. ut

Exercise 3.1.5. Let G be a matrix Lie group i.e. a Lie subgroup of some general linear
group GL(N,K). This means the tangent space T1G can be identified with a linear space
of matrices. Let X,Y ∈ T1G and denote by exp(tX) and exp(tY ) the 1-parameter groups
with they generate and set

g(s, t) = exp(sX) exp(tY ) exp(−sX) exp(−tY ).

(a) Show that
gs,t = 1 + [X, Y ]algst + O((s2 + t2)3/2) as s, t → 0

where the bracket [X, Y ]alg (temporarily) denotes the commutator of the two matrices X
and Y .
(b) Denote (temporarily) by [X, Y ]geom the Lie bracket of X and Y viewed as left invariant
vector fields on G. Show that at 1 ∈ G

[X,Y ]alg = [X, Y ]geom.

(c) Show that o(n) ⊂ gl(n,R) (defined in Section 1.2.2) is a Lie subalgebra with respect to
the commutator [ · , · ]. Similarly, show that u(n), su(n) ⊂ gl(n,C) are real Lie subalgebras
of gl(n,C), while su(n,C) is even a complex Lie subalgebra of gl(n,C).
(d) Prove that we have the following isomorphisms of real Lie algebras. LO(n)

∼= o(n),
LU(n)

∼= u(n), LSU(n)
∼= su(n) and LSL(n,C)

∼= sl(n,C). ut

Remark 3.1.14. In general in a non-commutative matrix Lie group G the traditional
equality

exp(tX) exp(tY ) = exp(t(X + Y ))

no longer holds. Instead, one has the Campbell-Hausdorff formula

exp(tX) · exp(tY ) = exp
(

td1(X, Y ) + t2d2(X,Y ) + t3d3(X, Y ) + · · · )

where dk are homogeneous polynomials of degree k in X and Y where the multiplication be-
tween X and Y is given by their bracket. The dk’s are usually known as Dynkin polynomials.
For example

d1(X, Y ) = X + Y, d2(X, Y ) =
1
2
[X,Y ], d3(X,Y ) =

1
12

([X, [X,Y ]] + [Y, [Y, X]]) etc.

For more details we refer to [65]. ut

3.2 Derivations of Ω∗(M)

3.2.1 The exterior derivative

The super-algebra of exterior forms on a smooth manifold M has additional structure and
in particular its space of derivations has special features. This section is devoted precisely
to these new features.
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The Lie derivative along a vector field X defines an even derivation in Ω∗(M). The
vector field X also defines an odd derivation iX (called the interior derivative along X or
the contraction by X) via the contraction map

iXω
def
= tr (X ⊗ ω), ∀ω ∈ Ωr(M).

More precisely iXω is the (r − 1)-form determined by

(iXω)(X1, ... , Xr−1) = ω(X, X1, ... , Xr−1), ∀X1, ... , Xr−1 ∈ Vect (M).

The fact that iX is an odd s-derivation is equivalent to

iX(ω ∧ η) = (iXω) ∧ η + (−1)deg ωω ∧ (iXη), ∀ω, η ∈ Ω∗(M).

Often the contraction by X is denoted by

X ω := iXω.

Exercise 3.2.1. Prove that the interior derivative along a vector field is a s-derivation. ut

Proposition 3.2.1. (a) [iX , iY ]s = iXiY + iY iX = 0.
(b) The super-commutator of LX and iY as s-derivations of Ω∗(M) is given by

[LX , iY ]s = LXiY − iY LX = i[X,Y ].

The proof uses the fact that the Lie derivative commutes with the contraction operator
and it is left to the reader as an exercise.

The above s-derivations by no means exhaust the space of s-derivations of Ω∗(M). In
fact we have the following fundamental result.

Proposition 3.2.2. There exists an universal odd s-derivation on the s-algebra of differ-
ential forms Ω∗( · ) uniquely characterized by the following conditions.
(a) For any smooth function f ∈ Ω0(M), df coincides with the differential of f .
(b) d2 = 0.
(c) d is natural (universal), i.e. for any smooth function φ : N → M and for any form ω
on M we have

dφ∗ω = φ∗dω(⇐⇒ [φ∗, d] = 0).

d is called the exterior derivative.

Proof We first prove the uniqueness. Let U be a local coordinate chart on Mn with local
coordinates (x1, ... , xn). Then, over U , any r-form ω can be described as

ω =
∑

1≤i1<···<ir≤n

ωi1...irdxi1 ∧ ... ∧ dxir .

Since d is a s-derivation and d(dxi) = 0 we deduce that over U

dω =
∑

1≤i1<···<ir≤n

(dωi1...ir) ∧ (dxi1 ∧ · · · ∧ dxir)
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=
∑

1≤i1<···<ir≤n

(
∂ωi1...ir

∂xi
dxi

)
∧ (dxi1 ∧ · · · ∧ dxir). (3.2.1)

Thus the form dω is uniquely determined on any coordinate neighborhood and this com-
pletes the proof of the uniqueness of d.

Existence To prove the existence consider an r-form ω, and for each coordinate neighbor-
hood U we define dω |U as in (3.2.1). To prove this is a well defined operation we must show
that if U , V are two coordinate neighborhoods then

dω |U= dω |V on U ∩ V.

Denote by (x1, ... , xn) the local coordinates on U and by (y1, ... , yn) the local coordinates
along V so that on the overlap U ∩ V we can describe the y’s as functions of the x’s. Over
U we have

ω =
∑

1≤i1<···<ir≤n

ωi1...irdxi1 ∧ ... ∧ dxir

dω =
∑

1≤i1<···<ir≤n

(
∂ωi1...ir

∂xi
dxi

)
∧ (dxi1 ∧ ... ∧ dxir),

while over V we have

ω =
∑

1≤j1<···<jr≤n

ω̂j1...jrdyj1 ∧ · · · ∧ dyjr

dω =
∑

1≤j1<···<jr≤n

(
∂ω̂j1...jr

∂yj
dyj

)
(dyj1 ∧ · · · ∧ dyjr).

The components ωi1...ir and ω̂j1...jr are skew-symmetric, i.e. ∀σ ∈ Sr

ωiσ(1)...iσ(r)
= ε(σ)ωi1...ir ,

and similarly for the ω̂′s. Since ω |U= ω |V over U ∩ V we deduce

ωi1...ir =
∂yj1

∂xi1
· · · ∂yjr

∂xir
ω̂j1...jr .

Hence

∂ωi1...ir

∂xi
=

r∑

k=1

(
∂yj1

∂xi1
· · · ∂2yjk

∂xi∂xik
· · · ∂yjr

∂xir
ω̂j1...jr +

∂yj1

∂xi1
· · · ∂yjr

∂xir

∂ω̂j1...jr

∂xi

)
,

where in the above equality we also sum over the indices j1, ..., jr according to Einstein’s
convention. We deduce

∑

1≤i1<···<ir≤n

∂ωi1...ir

∂xi
dxi ∧ dxi1 ∧ ... ∧ dxir

=
∑

i

r∑

k=1

∂yj1

∂xi1
· · · ∂2xjk

∂xi∂xik
· · · ∂yjr

∂xir
ω̂j1...jrdxi ∧ dxi1 ∧ ... ∧ dxir
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+
∑

i

r∑

k=1

∂yj1

∂xi1
· · · ∂yjr

∂xir

∂ω̂j1...jr

∂xi
dxi ∧ dxi1 ∧ ... ∧ dxir . (3.2.2)

Notice that
∂2

∂xi∂xik
=

∂2

∂xik∂xi

while dxi∧dxik = −dxik∧dxi so that the first term in the right hand side of (3.2.2) vanishes.
Consequently on U ∩ V

∂ωi1...ir

∂xi
dxi ∧ dxi1 · · · ∧ dxir =

∂yj1

∂xi1
· · · ∂yjr

∂xir

∂ω̂j1...jr

∂xi
∧ dxi ∧ dxi1 · · · dxir

=
(

∂ω̂j1...jr

∂xi
dxi

)
∧

(
∂yj1

∂xi1
dxi1

)
∧ · · · ∧

(
∂yjr

∂xir
dxir

)

= (dω̂j1...jr) ∧ dyj1 ∧ · · · ∧ dyjr

=
∂ω̂j1...jr

∂yj
dyj ∧ dyj1 ∧ · · · ∧ dyjr .

This proves dω |U= dω |V over U ∩ V . We have thus constructed a well defined linear map

d : Ω∗(M) → Ω∗+1(M).

To prove that d is an odd s-derivation it suffices to work in local coordinates and show the
(super)product rule on monomials. Thus, let θ = fdxi1∧· · ·∧dxir and ω = gdxj1∧· · ·∧dxjs .
We set for simplicity dxI = dxi1 ∧ · · · ∧ dxir and dxJ = dxj1 ∧ · · · ∧ dxjs . Then

d(θ ∧ ω) = d(fgdxI ∧ dxJ) = d(fg) ∧ dxI ∧ dxJ

= (df · g + f · dg) ∧ dxI ∧ dxJ

= df ∧ dxI ∧ dxJ + (−1)r(f ∧ dxI) ∧ (dg ∧ dxJ)

= dθ ∧ ω + (−1)deg θθ ∧ dω.

We now prove d2 = 0. We check this on monomials fdxI as above.

d2(fdxI) = d(df ∧ dxI) = (d2f) ∧ dxI .

Thus it suffices to show d2f = 0 for all smooth functions f . We have

d2f =
∂f2

∂xi∂xj
dxi ∧ dxj .

The desired conclusion follows from the fact that ∂f2

∂xi∂xj = ∂f2

∂xj∂xi while dxi ∧ dxj = −dxj ∧
dxi.

Finally, let φ be a smooth map N → M and ω =
∑

I ωIdxI be an r-form on M . Here I
runs through all ordered multi-indices 1 ≤ i1 < · · · < ir ≤ dimM . We have

dN (φ∗ω) =
∑

I

(
dN (φ∗ωI) ∧ φ∗(dxI) + φ∗ωI ∧ d(φ∗dxI)

)
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For functions, the usual chain rule gives dN (φ∗ωI) = φ∗(dMωI). In terms of local coordinates
(xi) the map φ looks like a collection of n functions φi ∈ C∞(N) and we get

φ∗(dxI) = dφI = dNφi1 ∧ · · · ∧ dNφir .

In particular, dN (dφI) = 0. We put all the above together and we deduce

dN (φ∗ω) = φ∗(dMωI) ∧ dφI = φ∗(dMωI) ∧ φ∗dxI = φ∗(dMω).

The proposition is proved.
ut

Proposition 3.2.3. The exterior derivative satisfies the following relations ([ , ]s denotes
the super-commutator in the s-algebra of real endomorphisms of Ω∗(M)).
(a) [d, d]s = 2d2 = 0.
(b) (Homotopy formula) [d, iX ]s = diX + iXd = LX ∀X ∈ Vect (M).
(c) [d, LX ]s = dLX − LXd = 0, ∀X ∈ Vect (M).

An immediate consequence of the homotopy formula is the following invariant descrip-
tion of the exterior derivative:

(dω)(X0, X1, ... , Xr) =
r∑

i=0

(−1)iXi(ω(X0, ..., X̂i, ..., Xr))

+
∑

0≤i<j≤r

(−1)i+jω([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xr). (3.2.3)

Above, the hat indicates that the corresponding entry is missing.

Proof To prove the homotopy formula set D = [d, iX ]s = diX + iXd. D is an even s-
derivation of Ω∗(M). It is a local s-derivation i.e. if ω ∈ Ω∗(M) vanishes on some open
set U then Dω vanishes on that open set as well. The reader can check easily by direct
computation that Dω = LXω, ∀ω ∈ Ω0(M) ⊕ Ω1(M). The homotopy formula is now a
consequence of the following technical result left to the reader as an exercise.

Lemma 3.2.4. Let D, D′ be two local s-derivations of Ω∗(M) which have the same parity
(i.e. they are either both even or both odd). If D = D′ on Ω0(M)⊕Ω1(M) then D = D′ on
Ω∗(M).

Part (c) of the proposition is proved in a similar way. Equality (3.2.3) is a simple
consequence of the homotopy formula. We prove it in two special case r = 1 and r = 2.

The case r = 1. Let ω be an 1-form and let X, Y ∈ Vect (M). We deduce from the
homotopy formula

dω(X, Y ) = (iXdω)(Y ) = (LXω)(Y )− (dω(X))(Y ).

On the other hand, since LX commutes with the contraction operator, we deduce

Xω(Y ) = LX(ω(Y )) = (LXω)(Y ) + ω([X, Y ]).
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Hence

dω(X, Y ) = Xω(Y )− ω([X, Y ])− (dω(X))(Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).

This proves (3.2.3) in the case r = 1.

The case r = 2. Consider a 2-form ω and three vector fields X, Y and Z. We deduce from
the homotopy formula

(dω)(X, Y, Z) = (iXdω)(Y, Z) = (LX − diX)ω(Y, Z). (3.2.4)

Since LX commutes with contractions we deduce

(LXω)(Y, X) = X(ω(Y, Z))− ω([X,Y ], Z)− ω(Y, [X, Z]). (3.2.5)

We substitute (3.2.5) into (3.2.4) and we get

(dω)(X, Y, Z) = X(ω(Y,Z))− ω([X, Y ], Z)− ω(Y, [X,Z])− d(iXω)(Y, X). (3.2.6)

We apply now (3.2.3) for r = 1 to the 1-form iXω. We get

d(iXω)(Y, X) = Y (iXω(Z))− Z(iXω(Y ))− (iXω)([Y, Z])

= Y ω(X, Z)− Zω(X, Y )− ω(X, [Y, Z]). (3.2.7)

If we use (3.2.7) in (3.2.6) we deduce

(dω)(X, Y, Z) = Xω(Y, Z)− Y ω(X, Z) + Zω(X,Y )

−ω([X, Y ], Z) + ω([X, Z], Y )− ω([Y,Z], X). (3.2.8)

The general case in (3.2.3) can be proved by induction. The proof of the proposition is
complete.

ut

Exercise 3.2.2. Prove Lemma 3.2.4. ut

Exercise 3.2.3. Finish the proof of (3.2.3) in the general case. ut

3.2.2 Examples

Example 3.2.5. (The exterior derivative in R3)
(a) Let f ∈ C∞(R3) then

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz.

df looks like the gradient of f .
(b) Let ω ∈ Ω1(R3), ω = Pdx + Qdy + Rdz. Then

dω = dP ∧ dx + dQ ∧ dy + dR ∧ dz
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=
(

∂Q

∂x
− ∂P

∂y

)
dx ∧ dy +

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx

so that dω looks very much like a curl.
(c) Let ω = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy ∈ Ω2(R3). Then

dω =
(

∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dx ∧ dy ∧ dz.

This looks very much like a divergence. ut

Example 3.2.6. Let G be a connected Lie group. In Example 3.1.11 we defined the Lie
algebra LG of G as the space of left invariant vector fields on G. Set

Ωr
left(G) = left invariant r-forms on G.

In particular L∗G ∼= Ω1
left(G). If we identify L∗G ∼= T ∗1 G then we get a natural isomorphism

Ωr
left(G) ∼= ΛrL∗G.

The exterior derivative of a form in Ω∗left can be described only in terms of the algebraic
structure of LG.

Indeed, let ω ∈ L∗G = Ω1
left(G). For X, Y ∈ L∗G we have (see (3.2.3) )

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).

Since ω, X and Y are left invariant ω(X) and ω(Y ) are constants. Thus, the first two terms
in the above equality vanish so that

dω(X,Y ) = −ω([X, Y ]).

More generally, if ω ∈ Ωr
left then the same arguments applied to (3.2.3) imply that for all

X0, ..., Xr ∈ LG we have

dω(X0, X1, ..., Xr) =
∑

0≤i<j≤r

(−1)i+jω([Xi, Xj ], X1, ..., X̂i, ..., X̂j , ..., Xr). (3.2.9)

ut

3.3 Connections on vector bundles

3.3.1 Covariant derivatives

We learned several methods of differentiating tensor objects on manifolds. The tensor
bundles are not the only vector bundles arising in geometry and very often one is interested
in measuring the “oscillations” of sections of vector bundles.

Let E be a K-vector bundle over the smooth manifold M (K = R,C). For such an
arbitrary E we encounter a problem which was not present in the case of tensor bundles.
Namely, the local flow generated by a vector field X on M no longer induces bundle homo-
morphisms. For tensor fields the transport along a flow was a method of comparing objects



Connections on vector bundles 71

in different fibers which otherwise are abstract linear spaces with no natural relationship
between them.

To obtain something that looks like a derivation we need to formulate clearly what
properties we should expect from such an operation.
(a) It should measure how fast is a given section changing along a direction given by a
vector field X. Hence it has to be an operator

∇ : Vect (M)× C∞(E) → C∞(E), (X, u) 7→ ∇Xu.

(b) If we think of the usual directional derivative, we expect that after “rescaling” the
direction X the derivative along X should only rescale by the same factor i.e.

∀f ∈ C∞(M) : ∇fXu = f∇Xu.

(c) Since ∇ is to be a derivation it has to satisfy a sort of (Leibniz) product rule. The only
product that exists on an abstract vector bundle is the multiplication of a section with a
smooth function. Hence we require

∇X(fu) = (Xf)u + f∇Xu, ∀f ∈ C∞(M), u ∈ C∞(E).

Conditions (a) and (b) can be rephrased as follows: for any u ∈ C∞(E) the map

∇u : Vect (M) → C∞(E), X 7→ ∇Xu

is C∞(M) linear so that it defines a bundle map

∇u ∈ C∞(Hom (TM,E)) ∼= C∞(T ∗M ⊗ E).

Summarizing, we can formulate the following definition.

Definition 3.3.1. A covariant derivative (or linear connection) on E is a K-linear map

∇ : C∞(E) → C∞(T ∗M ⊗E)

such that ∀f ∈ C∞(M) and ∀u ∈ C∞(E).

∇(fu) = df ⊗ u + f∇u.

Example 3.3.2. Let KM
∼= M × Kr be the rank r trivial bundle over M . The space

C∞(KM ) of smooth sections coincides with C∞(M,Kr). We can define

∇0 : C∞(M,Kr → C∞(M, T ∗M ⊗Kr)

∇0(f1, ..., fr) = (df1, ..., dfr).

One checks easily that ∇ is a connection. This is called the trivial connection. ut

Remark 3.3.3. Let ∇0, ∇1 be two connections on a vector bundle E → M . Then for any
α ∈ C∞(M) the map

∇ = α∇1 + (1− α)∇0 : C∞(E) → C∞(T ∗ ⊗E)

is again a connection. ut
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Notation For any vector bundle F over M we set

Ωk(F )
def
= C∞(ΛkT ∗M ⊗ F ).

Proposition 3.3.4. Let E be a vector bundle. The space A(E) of linear connections on E
is an affine space modeled on Ω1(End (E)).

Proof We first show A (E) is not empty. To see this, choose {Uα} an open cover of M
such that E |Uα is trivial, ∀α. Next, pick (µβ) a smooth partition of unity subordinated to
this cover. Since E |Uα is trivial it admits at least one connection, the trivial one, as in the
above example. Denote such a connection by ∇α. Now define

∇ =
∑

α,β

µβ∇α.

One checks easily that ∇ is a connection so that A(E) is nonempty. To check that A (E)
is an affine space consider two connections ∇0 and ∇1. Their difference A = ∇1 −∇0 is an
operator

A : C∞(E) → C∞(T ∗M ⊗ E)

satisfying A(fu) = fA(u), ∀u ∈ C∞(E). Thus

A ∈ C∞(Hom (E, T ∗M ⊗ E)) ∼= C∞(T ∗M ⊗E∗ ⊗E) ∼= Ω1(E∗ ⊗E) ∼= Ω1(EndE).

Conversely, given ∇0 ∈ A(E) and A ∈ Ω1(EndE) one can verify that the operator

∇A = ∇0 + A : C∞(E) → Ω1(E).

is a linear connection. This concludes the proof of the proposition.
ut

The tensorial operations on vector bundles extend naturally to vector bundles with con-
nections. The key principle behind this fact is the Leibniz’ formula. More precisely if
Ei (i = 1, 2) are two bundles with connections ∇i then E1 ⊗ E2 has a naturally induced
connection

∇E1⊗E2(u1 ⊗ u2) = (∇1u1)⊗ u2 + u1 ⊗∇2u2.

The dual bundle E∗
1 has a natural connection ∇∗ defined by the identity

X〈v, u〉 = 〈∇∗Xv, u〉+ 〈v,∇1
Xu〉, ∀u ∈ C∞(E1), v ∈ C∞(E∗

1), X ∈ Vect (M)

where
〈•, •〉 : C∞(E∗

1)× C∞(E1) → C∞(M)

is the pairing induced by the natural duality between the fibers of E∗
1 and E1. In particular,

any connection∇E on a vector bundle E induces a connection∇End(E) on End (E) ∼= E∗⊗E
by

(∇End(E)T )(u) = ∇E(Tu)− T (∇Eu) = [∇E , T ]u (3.3.1)

∀T ∈ End (E) u ∈ C∞(E).
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It is often useful to have a local description of a covariant derivative. This can be
obtained using Cartan’s moving frame method.

Let E → M be a rank r K-vector bundle over the smooth manifold M . Pick a coordinate
neighborhood U such E |U is trivial. A moving frame is a a bundle isomorphism φ : U×Kr →
E |U . (A moving frame is what physicists call a choice of local gauge). Consider the sections
eα = φ(δα), α = 1, ..., r, where δα are the natural basic sections of U × Kr. As x moves
in U , the collection (e1(x), ..., er(x)) describes a basis of the moving fiber Ex and thus the
terminology moving frame. A section u ∈ C∞(E |U ) can be written as a linear combination

u = uαeα uα ∈ C∞(U,K).

Hence if ∇ is a covariant derivative in E we have

∇u = duα ⊗ eα + uα∇eα.

Thus, the covariant derivative is completely described by its action on a moving frame. To
get a more concrete description pick local coordinates (xi) over U . ∇eα ∈ Ω1(E |U ) so that
we can write

∇eα = Γβ
iαdxi ⊗ eβ, Γβ

iα ∈ C∞(U,K).

Thus, for any section uαeα of E |U we have

∇u = duα ⊗ eα + Γβ
iαuαdxi ⊗ eβ. (3.3.2)

It is convenient to view
(
Γβ

iα

)
as an r × r-matrix valued 1-form and we write this as

(
Γβ

iα

)
= dxi ⊗ Γi.

The form Γ = dxi ⊗ Γi is called the connection 1-form associated to the choice of local
gauge. A moving frame allows one to identify sections of E |U with Kr-valued functions on
U and we can rewrite (3.3.2) as

∇u = du + Γu. (3.3.3)

A natural question arises: how does the connection 1-form changes with the change of the
local gauge?

Let f = (fα) be another moving frame of E |U . The correspondence eα 7→ fα defines
an automorphism of E |U . Using the local frame e we can identify it with a smooth map
g : U → GL(r;K). g is called the local gauge transformation relating e to f.

Let Γ̂ denote the connection 1-form corresponding to the new moving frame i.e.

∇fα = Γ̂β
αfβ.

Consider σ a section of E |U . With respect to the local frame (eα) it has the decomposition

σ = uαeα

while with respect to (fβ) it has a decomposition

σ = ûβfβ.
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The two decompositions are related by

u = gû. (3.3.4)

Now, we can identify the E-valued 1-form ∇σ with a Kr-valued 1-form in two ways: either
using the frame e or using the frame f. In the first case ∇σ is identified with the Kr-valued
1-form

du + Γu

while in the second case it is identified with

dû + Γ̂û.

These two identifications are related by the same rule as in (3.3.4):

du + Γu = g(dû + Γ̂û).

Using (3.3.4) in the above equality we get

(dg)û + gdû + Γgû = gdû + gΓ̂û.

Hence
Γ̂ = g−1dg + g−1Γg.

The above relation is the transition rule relating two local gauge descriptions of the same
connection. The above argument can be reversed producing the following global result.

Proposition 3.3.5. Let E → M be a rank r smooth vector bundle and (Uα) a trivializing
cover with transition maps gαβ : Uα∩Uβ → GL(r;K). Then any collection of matrix valued
1-forms Γα ∈ Ω1(End,Kr

Uα
) satisfying

Γβ = (g−1
αβdgαβ) + g−1

αβΓαgαβ = −(dgβα)g−1
βα + gβαΓαg−1

βα over Uα ∩ Uβ

uniquely defines a covariant derivative on E.

Exercise 3.3.1. Prove the above proposition. ut

A word of warning. The identification

{moving frames} ∼= {local trivialization}
should be treated carefully. These are like an object and its image in a mirror and there
is a great chance of confusing the right hand with the left hand. More concretely, if tα :
Eα

∼= Uα ×Kr (resp. tβ : Eβ
∼= Uβ ×Kr) is a trivialization of a bundle E over an open set

Uα (resp. Uβ) then the transition map over Uα ∩ Uβ “from α to β” is gβα = tβ ◦ t−1
α . The

standard basis in Kr, denoted by (δi) induces two local moving frames on E:

eα = t−1
α (δ·) and eβ = t−1

β (δ·).

On the overlap Uα ∩ Uβ these two frames are related by the local gauge transformation

eβ = g−1
βαeα.

This is precisely the opposite way the two trivializations are identified.
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Example 3.3.6. (Complex line bundles) Let L → M be a complex line bundle over the
smooth manifold M . Let {Uα} be a trivializing cover with transition maps zαβ : Uα∩Uβ →
C∗ = GL(1,C). The bundle of endomorphisms of L, End (L) ∼= L∗⊗L is trivial since it can
be defined by transition maps (zαβ)−1⊗zαβ = 1. Thus the space of connections on L, A (L)
is an affine space modeled by the linear space of complex valued 1-forms. A connection on
L is simply a collection of C-valued 1-forms ωα on Uα related on overlaps by

ωβ =
dzαβ

zαβ
+ ωα = d ln zαβ + ωα.

ut

3.3.2 Parallel transport

As we have already pointed out, one reason we could not construct natural derivations on
the space of sections of a vector bundle was the lack of a canonical procedure of identifying
fibers at different points. We will see in this subsection that such a procedure is all we need
to define covariant derivatives. More precisely, we will show that once a covariant derivative
is chosen, it offers a simple way of identifying different fibers.

Let E → M be a rank r K-vector bundle and ∇ a covariant derivative on E. For any
smooth path γ : [0, 1] → M we will define a linear isomorphism Tγ : Eγ(0) → Eγ(1) called
the parallel transport along γ. More exactly, we will construct an entire family of linear
isomorphisms

Tt : Eγ(0) → Eγ(t).

One should think of this Tt as identifying different fibers. In particular, if u0 ∈ Eγ(0) then
t 7→ ut = Ttu0 ∈ Eγ(t) should be thought of as a “constant” path. The rigorous way of
stating this “constancy” is via derivations: a quantity is “constant” if its derivatives are
identically 0. Now, the only way we know how to derivate sections is via ∇ i.e. ut should
satisfy

∇ d
dt

ut = 0, where
d

dt
= γ̇.

The above equation offers a way of defining Tt. For each u0 ∈ Eγ(0) and t ∈ [0, 1] define
Ttu0 as the value at t of the initial value problem

{
∇ d

dt
u(t) = 0

u(0) = u0
. (3.3.5)

The equation (3.3.5) is a linear ordinary differential equation in disguise.
To see this let us make the simplifying assumption that γ(t) lies entirely in some coordi-

nate neighborhood U with coordinates (x1, ..., xn), such that E |U is trivial. This is always
happening at least on every small portion of γ. Denote by (eα)1≤α≤r a local moving frame
trivializing E |U so that u = uαeα. The connection 1-form corresponding to this moving
frame will be denoted by Γ ∈ Ω1(End (Kr)). Equation (3.3.5) becomes

{
duα

dt + Γα
tβuβ = 0

uα(0) = uα
0
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where
Γt =

d

dt
Γ ∈ Ω0(End (Kr)) = End (Kr).

This is obviously a linear ordinary differential equation whose solutions exist for any t. We
deduce

u̇(0) = −Γtu0. (3.3.6)

This gives a geometric interpretation of the connection 1-form Γ: for any vector field X the
contraction −iXΓ = −Γ(X) ∈ End (E) describes the infinitesimal parallel transport along
the direction prescribed by the vector field X, in the non-canonical identification of nearby
fibers via a local moving frame.

In more intuitive terms, if γ(t) is an integral curve for X and Tt denotes the parallel
transport along γ from Eγ(0) to Eγ(t) then, given a local moving frame for E in a neigh-
borhood of γ(0), Tt is identified with a t-dependent matrix which has a Taylor expansion
of the form

Tt = id− Γ0t + O(t2), t small (3.3.7)

with Γ0 = (X Γ) |γ(0).

3.3.3 The curvature of a connection

Consider E → M a rank r smooth vector bundle over the smooth manifold M and let ∇
be a covariant derivative on E:

∇ : Ω0(E) → Ω1(E).

Proposition 3.3.7. ∇ has an extension to an operator

d∇ : Ωr(E) → Ωr+1(E)

uniquely defined by the requirements:
(a) d∇ |Ω0(E)= ∇;
(b)∀ω ∈ Ωr(M), η ∈ Ωs(E)

d∇(ω ∧ η) = dω ∧ η + (−1)rω ∧ d∇η.

Brief outline of the proof Existence For ω ∈ Ωr(M), u ∈ Ω0(E) set

d∇(ω ⊗ u) = dω ⊗ u + (−1)rω∇u. (3.3.8)

Using a partition of unity one shows that any η ∈ Ωr(E) is a locally finite combination of
monomials as above so the above definition induces an operator Ωr(E) → Ωr+1(E). We let
the reader check that this extension satisfies conditions (a) and (b) above.
Uniqueness Any operator with the properties (a) and (b) acts on monomials as in (3.3.8)
so it has to coincide with the operator described above using a given partition of unity.

ut

Example 3.3.8. The trivial bundleKM has a natural connection∇0- the trivial connection.
This coincides with the usual differential d : Ω0(M) ⊗ K → Ω1(M) ⊗ K. d∇0

is the usual
exterior derivative. ut
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There is a major difference between the usual exterior derivative d and an arbitrary
d∇. In the former case we have d2 = 0 which is a consequence of the commutativity
[ ∂
∂xi

, ∂
∂xj

] = 0, where (xi) are local coordinates on M . In the second case, the equality
(d∇)2 = 0 does not hold in general. Still, something very interesting happens.

Lemma 3.3.9. For any smooth function f ∈ C∞(M) and any ω ∈ Ωr(E) we have

(d∇)2(fω) = f{(d∇)2)ω}.

Hence (d∇)2 is a bundle morphism ΛrT ∗M ⊗E → Λr+2T ∗M ⊗ E.

Proof We compute
(d∇)2(fω) = d∇(df ∧ ω + fd∇ω)

= −df ∧ d∇ω + df ∧ d∇ω + f(d∇)2ω = f(d∇)2ω.

ut

As a map Ω0(E) → Ω2(E), (d∇)2 can be identified with a section of

Hom (E, Λ2T ∗M ⊗ E) ∼= E∗ ⊗ Λ2T ∗M ⊗E ∼= Λ2T ∗M ⊗ End (E).

Thus (d∇)2 is an End (E)-valued 2-form.

Definition 3.3.10. For any connection ∇ on a smooth vector bundle E → M the object
(d∇)2 ∈ Ω2(End (E)) is called the curvature of ∇ and is usually denoted by F (∇).

Example 3.3.11. Consider the trivial bundle Kr
M . The sections of this bundle are smooth

Kr-valued functions on M . The exterior derivative d defines the trivial connection on Kr
M

and any other connection differs from d by a Mr(K)-valued 1-form on M . If A is such a
form then the curvature of the connection d + A denoted by F (A) is

F (A)u = (d + A)2u = (dA + A ∧A)u, ∀u ∈ C∞(M,Kr).

The ∧ operation above is defined for any vector bundle E as the bilinear map

Ωr(End (E))× Ωs(End (E)) → Ωr+s(End (E))

uniquely defined by

(ωr ⊗A) ∧ (ηs ⊗B) = ωr ∧ ηs ⊗AB, A,B ∈ End (E).

ut

We conclude this subsection with an alternate description of the curvature which hope-
fully will shed some light on its analytical significance.

Let E → M be a smooth vector bundle on M and ∇ a connection on it. Denote its
curvature by F = F (∇) ∈ Ω2(End (E)). For any X,Y ∈ Vect (M) the quantity F (X, Y )
is an endomorphism of E. In the remaining part of this section we will give a different
description of this endomorphism.
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For any vector field Z denote by iZ : Ωr(E) → Ωr−1(E) the C∞(M)− linear operator
defined by

iZ(ω ⊗ u) = (iZω)⊗ u, ∀ω ∈ Ωr(M), u ∈ Ω0(E).

The covariant derivative ∇Z extends naturally to elements of Ωr(E) by

∇Z(ω ⊗ u) = (LZω)⊗ u + ω ⊗∇Zu.

The operators d∇, iZ , ∇Z satisfy the usual super-commutation identities.

iZd∇ + d∇iZ = ∇Z . (3.3.9)

iXiY + iY iX = 0. (3.3.10)

∇XiY − iY∇X = i[X,Y ]. (3.3.11)

For any u ∈ Ω0(E) we compute using (3.3.9)-(3.3.11)

F (X, Y )u = iY iX(d∇)2u = iY (iXd∇)∇u

= iY (∇X − d∇iX)∇u = (iY∇X)∇u− (iY d∇)∇Xu

= (∇XiY − i[X,Y ])∇u−∇Y∇Xu

= (∇X∇Y −∇Y∇X −∇[X,Y ])u.

Hence
F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. (3.3.12)

If in the above formula we take X = ∂
∂xi

and Y = ∂
∂xj

where (xi) are local coordinates on
M we deduce (∇i = ∇ ∂

∂xi

, ∇j = ∇ ∂
∂xj

)

Fij = −Fji = F (
∂

∂xi
,

∂

∂xj
) = [∇i,∇j ]. (3.3.13)

Thus Fij measures the extent to which the partial derivatives ∇i, ∇j fail to commute.
This is in sharp contrast with the classical calculus and an analytically oriented reader
may object to this by saying we were careless when we picked the connection. Maybe an
intelligent choice will restore the classical commutativity of partial derivatives so we should
concentrate from the very beginning to covariant derivatives ∇ such that F (∇) = 0.

Definition 3.3.12. A connection ∇ such that F (∇) = 0 is called flat.

A natural question arises: given an arbitrary vector bundle E → M do there exist flat
connections on E? If E is trivial then the answer is obviously positive. In general the
answer is negative and this has to do with the global structure of the bundle. In the second
half of this book we will understand the motivation behind this fact.
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3.3.4 Holonomy

The reader may ask a very legitimate question: why have we chosen to name curvature,
the deviation from commutativity of a given connection. In this subsection we describe the
geometric meaning of curvature and maybe this will explain the terminology.

Let E → M be a smooth vector bundle and ∇ a connection on it. Consider (x1, ..., xn)
local coordinates on an open subset U ⊂ M such that E |U is trivial. Pick (e1, ..., er)
(r = rankE) a moving frame over U . The connection 1-form associated to this moving
frame is

Γ = Γidxi = (Γα
iβ)dxi, 1 ≤ α, β ≤ r.

It is defined by the equalities (∇i = ∇ ∂
∂xi

)

∇ieβ = Γα
iβeα. (3.3.14)

Using (3.3.13) we compute
Fijeβ = (∇i∇j −∇j∇i)eβ

= ∇i(Γjeβ)−∇j(Γieβ)

=
(

∂Γα
jβ

∂xi
− ∂Γα

jβ

∂xj

)
eα +

(
Γγ

jβΓα
iγ − Γγ

iβΓα
jγ

)
eα

(
∂Γj

∂xi
− ∂Γi

∂xj
+ ΓiΓj − ΓjΓi

)
. (3.3.15)

Though the above equation looks very complicated it will be the clue to understanding the
geometric significance of curvature.

p

p p

p
0 1

23

Figure 3.1: Parallel transport along a coordinate parallelogram.

Assume for simplicity the point of coordinates (0, ..., 0) lies in U . Denote by T s
1 the

parallel transport (using the connection ∇) from (x1, ..., xn) to (x1 + s, x2, ..., xn) along the
curve τ 7→ (x1 + τ, x2, ..., xn). Define T t

2 in a similar way using the coordinate x2 instead
of x1. Look at the parallelogram Ps,t in the “plane” (x1, x2) described in Figure 3.1. We
now perform the parallel transport along the boundary of Ps,t with the counterclockwise
orientation. The outcome is a linear map Ts,t : E0 → E0, where E0 is the fiber of E over
p0 = (0, ..., 0). Set F12 = F ( ∂

∂x1
∂

∂x2 ) |(0,...,0). F12 is an endomorphism of E0.
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Proposition 3.3.13. for any u ∈ E0 we have

F12u = − ∂2

∂s∂t
Ts,tu.

We see that the parallel transport of an element u ∈ E0 along a closed path may not
return it to itself. The curvature is an infinitesimal measure of this deviation.
Proof The parallel transport along ∂Ps,t can be described as

Ts,t = T−t
2 T−s

1 T t
2T

s
1 .

Label the vertices of Pst in counterclockwise order starting at p0, by p1, p2, p3. Fix u0 ∈ E0.
The parallel transport T s

1 : E0 → Ep1 can be approximated using (3.3.6)

u1 = u1(s, t) = T s
1 u0 = u0 − sΓ1(p0)u0 + C1s

2 + O(s3). (3.3.16)

C1 is a constant vector in E0 whose exact form is not relevant to our computations. In the
sequel the letter C (eventually indexed) will denote constants.

u2 = u2(s, t) = T t
2T

s
1 u = T t

2u1 = u1 − tΓ2(p1)u1 + C2t
2 + O(t3)

= u0 − sΓ1(p0)u0 − tΓ2(p1)(u0 − sΓ1(p0)u0) + C1s
2 + C2t

2 + O(3)

= {1− sΓ1(p0)− tΓ2(p1) + tsΓ2(p1)Γ1(p0)}u0 + C1s
2 + C2t

2 + O(3).

O(k) denotes an error that can be estimated from above by C(s2 + t2)k/2 as s, t → 0. Now
use

Γ2(p1) = Γ2(p0) + s
∂Γ2

∂x1
(p0) + O(2)

to deduce

u2 =
{

1− sΓ1 − tΓ2 − st

(
∂Γ2

∂x1
− Γ2Γ1

)}
|p0 u0

+C1s
2 + C2t

2 + O(3). (3.3.17)

Similarly we have

u3 = u3(s, t) = T−s
1 T t

2T
s
1 u0 = T−s

1 u2 = u2 + sΓ1(p2)u2 + C3s
2 + O(3).

The Γ-term in the right-hand-side can be approximated as

Γ1(p2) = Γ1(p0) + s
∂Γ1

∂x1
(p0) + t

∂Γ1

∂x2
(p0) + O(2).

Using u2 described as in (3.3.17) we get after an elementary computation

u3 = u3(s, t) =
{

1− tΓ2 + st

(
∂Γ1

∂x2
− ∂Γ2

∂x1
+ Γ2Γ1 − Γ1Γ2

)}
|p0 u0

+C4s
2 + C5t

2 + O(3). (3.3.18)
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Finally we have

u4 = u4(s, t) = T−t
2 = u3 + tΓ2(p3)u3 + C6t

2 + O(3)

with

Γ2(p3) = Γ2(p0) + t
∂Γ2

∂x2
(p0) + C7t

2 + O(3).

Using (3.3.18) we get

u4(s, t) = u0 + st

(
∂Γ1

∂x2
− ∂Γ2

∂x1
+ Γ2Γ1 − Γ1Γ2

)
|p0 u0

+C8s
2 + C9t

2 + O(3)

= u0 − stF12(p0)u0 + C8s
2 + C9t

2 + O(3).

Clearly ∂2u4
∂s∂t = −F12(p0)u0 as claimed. ¤

Remark 3.3.14. If we had kept track of the various constants in the above computation
we would have arrived at the conclusion that C8 = C9 = 0 i.e.

Ts,t = id− stF12 + O(3).

Alternatively, the constant C8 is the second order correction in the Taylor expansion of
s 7→ Ts,0 ≡ id so it has to be 0. The same goes for C9. Thus we have

−F12 =
dTs,t

dareaPs,t
=

dT√s,
√

s

ds
.

ut

The result in the above proposition is usually formulated in terms of holonomy.

Definition 3.3.15. Let E → M be a vector bundle with a connection ∇. The holonomy of
∇ along a closed path γ is the parallel transport along γ.

We see that the curvature measures the holonomy along infinitesimal parallelograms.
A connection can be viewed as an analytic way of trivializing a bundle. We can do so
along paths starting at a fixed point, using the parallel transport, but using different paths
ending at the same point we may wind up with trivializations which differ by a twist. The
curvature provides an infinitesimal measure of that twist.

Exercise 3.3.2. Prove that any vector bundle E over the Euclidean space Rn is trivializable.
Hint: Use the parallel transport defined by a connection on the vector bundle E to produce
a bundle isomorphism E → E0 × Rn, where E0 is the fiber of E over the origin.

ut
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3.3.5 Bianchi identities

Consider E → M a smooth vector bundle with a connection ∇ : Ω0(E) → Ω1(E). We have
seen that the associated exterior derivative d∇ : Ωp(E) → Ωp+1(E) does not satisfy the
usual (d∇)2 = 0 and the curvature is to blame for this. The Bianchi identity describes one
remarkable algebraic feature of the curvature.

Recall that ∇ induces a connection in any tensor bundle constructed from E. In partic-
ular it induces a connection in E∗ ⊗E ∼= End (E) which we continue to denote by ∇. This
extends to an “exterior derivative” D : Ωp(End (E)) → Ωp+1(End (E)).

Proposition 3.3.16. (The Bianchi identity) Let E → M and ∇ as above. Then

DF (∇) = 0.

Roughly speaking, the Bianchi identity states that (d∇)3 is 0.

Proof We will use the identities (3.3.9) -(3.3.11). For any vector fields X, Y , Z we have

iXD = ∇X −DiX .

Hence
(DF )(X, Y, Z) = iZiY iXDF = iZiY (∇X −DiX)F

= iZ(∇XiY − i[X,Y ])F − iZ(∇Y −DiY )iXF

= (∇XiZiY − i[X,Z]iY − iZi[X,Y ])F − (∇Y iZiX − i[Y,Z]iX −∇ZiY iX)F

= (i[X,Y ]iZ + i[Y,Z]iX + i[Z,X]iY )F

−(∇XiY iZ +∇Y iZiX +∇ZiXiY )F.

We compute immediately

i[X,Y ]iZF = F (Z, [X, Y ]) =
[∇Z ,∇[X,Y ]

]−∇[Z,[X,Y ]].

Also for any u ∈ Ω0(E) we have

(∇XiY iZF )u = ∇X(F (Z, Y )u)− F (Z, Y )∇Xu = [∇X , F (Z, Y )]u

=
[∇X ,∇[Y,Z]

]
u− [∇X , [∇Y ,∇Z ]] u.

The Bianchi identity now follows from the classical Jacobi identity for commutators.
ut

Example 3.3.17. Let K be the trivial line bundle over a smooth manifold M . As we have
seen any connection on K has the form

∇ω = d + ω

where d is the trivial connection and ω is a K-valued 1-form on M . The curvature of this
connection is

F (ω) = dω.

The Bianchi identity is in this case precisely the equality d2ω = 0. ut
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3.3.6 Connections on tangent bundles

The tangent bundles are very special cases of vector bundles so the general theory of con-
nections and parallel transport is applicable in this situation as well. However, the tangent
bundles have some peculiar features which enrich the structure of a connection.

Recall that when looking for a local description for a connection on a vector bundle
we have to first choose local coordinates and a moving frame and this is a very arbitrary
decision. For tangent bundles it happens that once local coordinates (xi) are chosen these
automatically define a moving frame of the tangent bundle

(
∂

∂xi

)
and it is thus very natural

to work with this frame. Hence, let ∇ be a connection on TM . With the above notations
we set

∇i
∂

∂xj
= Γk

ij

∂

∂xk
(∇i = ∇ ∂

∂xi

).

The coefficients Γk
ij are usually known as the Christoffel symbols of the connection. As usual

we construct the curvature tensor

F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] ∈ End (TM).

Still, this is not the only tensor naturally associated to ∇.

Lemma 3.3.18. For X, Y ∈ Vect (M) consider

T (X, Y ) = ∇XY −∇Y X − [X, Y ] ∈ Vect (M).

Then ∀f ∈ C∞(M)
T (fX, Y ) = T (X, fY ) = fT (X, Y ).

so that T (·, ·) is a tensor T ∈ Ω2(TM). T is called the torsion of the connection ∇.

The proof of this lemma is left to the reader as an exercise. In terms of Christoffel
symbols the torsion has the description

T (
∂

∂xi
,

∂

∂xj
) = (Γk

ij − Γk
ji)

∂

∂xk
.

Definition 3.3.19. A connection on TM is said to be symmetric if T = 0.

We guess by now the reader is wondering how the mathematicians came up with this
object called torsion. In the remaining of this subsection we will try to sketch the geometrical
meaning of torsion.

To seek such an interpretation we have to look at the finer structure of the tangent
space at a point x ∈ M . It will be convenient to regard TxM as an affine space modeled
by Rn, n = dim M . Thus, we will no longer think of the elements of TxM as vectors but
instead we will treat them as points. TxM can be coordinatized using affine frames. These
are pairs (p; e) where p is a point in TxM and e is a basis of the underlying vector space.
A frame allows one to identify TxM with Rn where p is thought of as the origin.

If A, B are two affine spaces, both modelled by Rn, and (p; e) , (p; f) are affine frames
of A and respectively B. Denote by (xi) the coordinates in A induced by the frame (p; e)
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and by (yj) the coordinates in B induced by the frame (q; f). An affine map T : A → B
can then be described using these coordinates as

T : Rn
x → Rn

y x 7→ y = Sx + v

where v is a vector in Rn and S is an invertible n × n real matrix. Thus an affine map is
described by a “rotation” S followed by a translation v. This vector measures the “drift”
of the origin.

If now (xi) are local coordinates on M then they define an affine frame Ax at each
x ∈ M : (Ax = (0;

(
∂

∂xi

)
). Given a connection ∇ on TM and γ : I → M a smooth path we

will construct a family of affine isomorphisms Tt : Tγ(0) → Tγ(t) called the affine transport
of ∇ along γ. In fact we will determine Tt by imposing the initial condition T0 = id and
then describing Ṫt.

This is equivalent to describing the infinitesimal affine transport at a given point x0 ∈ M
along a direction given by a vector X = Xi ∂

∂xi
∈ Tx0M . The affine frame of Tx0M is

Ax0 = (0;
(

∂
∂xi

)
).

If xt is a point along the integral curve of X, close to x0 then its coordinates satisfy

xi
t = xi

0 + tXi + O(t2).

This shows the origin x0 of Ax0 “drifts” by tX + O(t2). The frame ( ∂
∂xi

) suffers a parallel
transport measured as usual by id− tiXΓ + O(t2). The total affine transport will be

Tt = id + t(−iXΓ + X) + O(t2).

The holonomy of ∇ along a closed path will be an affine transformation and as such it has
two components: a “rotation”” and a translation. As in Proposition 3.3.13 one can show
the torsion measures the translation component of the holonomy along an infinitesimal
parallelogram. Since we will not need this fact we will not include a proof of it.

Exercise 3.3.3. Consider the vector valued 1-form ω ∈ Ω1(TM) defined by

ω(X) = X ∀X ∈ V ect(M).

Show that if ∇ is a linear connection on TM then

d∇ω = T∇

where T∇ denotes the torsion of ∇. ut

Exercise 3.3.4. Consider a smooth vector bundle E → M over the smooth manifold
M . We assume that both E and TM are equipped with connections and moreover the
connection on TM is torsionless. Denote by ∇̂ the induced connection on Λ2T ∗M⊗End (E).
Prove that ∀X, Y, Z ∈ Vect (M)

∇̂XF (Y, Z) + ∇̂Y F (Z, X) + ∇̂ZF (X, Y ) = 0.

ut
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3.4 Integration on manifolds

3.4.1 Integration of 1-densities

We spent a lot of time learning to derivate geometrical objects but, just as in classical
calculus, the story is only half complete without the reverse operation, integration.

Classically, integration requires a background measure and in this subsection we will
describe the differential geometric analogue of a measure, namely the notion of 1-density
on a manifold.

Let E → M be a rank k, smooth real vector bundle over a manifold M defined by an
open cover (Uα) and transition maps gαβ : Uαβ → GL(k,R) satisfying the cocycle condition.
For any r ∈ R we can form the real line bundle |Λ|r(E) defined by the same open cover and
transition maps tαβ = |det gαβ |−r. The fiber at p ∈ M of this bundle consists of r-densities
on Ep (see Section 2.2.4).

Definition 3.4.1. Let M be a smooth manifold. The bundle of r-densities on M is

|Λ|rM
def
= |Λ|r(TM).

When r = 1 we will use the notation |Λ|M = |Λ|1M . We call |Λ|M the density bundle of M .

Denote by C∞(|Λ|M ) the space of smooth sections of |Λ|M and by C∞
0 (|Λ|M ) its subspace

consisting of compactly supported densities.
It helps to have local descriptions of densities. To this aim, pick an open cover of M

consisting of coordinate neighborhoods, (Uα). Denote the local coordinates on Uα by (xi
α).

This choice of a cover produces a trivializing cover of TM with transition maps

gαβ =

(
∂xi

α

∂xj
β

)

1≤i,j≤n

,

where n is the dimension of M . Set δαβ = | det gαβ |. A 1-density on M is then a collection
of functions µα ∈ C∞(Uα) related by

µα = δ−1
αβµβ.

It may help to think that for each point p ∈ Uα the basis ∂
∂x1

α
, ..., ∂

∂xn
α

of TpM spans an
infinitesimal parallelepiped and µα(p) is its “volume”. A change in coordinates should be
thought of as a change in the measuring units. The gluing rules describe how the numerical
value of the volume changes from one choice of units to another.

The densities on a manifold resemble in many respects the differential forms of maximal
degree. A density can be viewed as a map

µ : C∞(det(TM)) → C∞(M)

such that µ(fω) = |f |µ(ω) for all smooth functions f and all ω ∈ C∞(detTM). In par-
ticular, any smooth map φ : M → N between manifolds of the same dimension induces a
pullback transformation

φ∗ : C∞(|Λ|N ) → C∞(|Λ|M ),

described by
(φ∗µ)(ω) = µ(detφω), ∀ω ∈ C∞(detTM).
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Example 3.4.2. Consider the special case M = Rn. Denote by e1, ..., en the canonical
basis. This extends to a trivialization of TRn and in particular the bundle of densities
comes with a natural trivialization. It has a nowhere vanishing section |dvn| defined by

|dvn|(e1 ∧ ... ∧ en) = 1.

In this case any smooth density on Rn takes the form µ = f |dvn| where f is some smooth
function on Rn. The reader should think of |dvn| as the standard Lebesgue measure on Rn.

If φ : Rn → Rn is a smooth map, viewed as a collection of n smooth functions φ1 =
φ1(x1, ..., xn),...,φn = φn(x1, ..., xn) then

φ∗(|dvn|) =

∣∣∣∣∣det

(
∂φi

∂xj

)∣∣∣∣∣ · |dvn|.

ut

The importance of densities comes from the fact that they are precisely the objects that
can be integrated. More precisely, we have the following abstract result.

Proposition 3.4.3. There exists a natural way to associate to each smooth manifold M a
linear map ∫

M
: C∞

0 (|Λ|M ) → R

uniquely defined by the following conditions:
(a)

∫
M is invariant under diffeomorphisms, i.e. for any smooth manifolds M , N of the

same dimension n, any diffeomorphism φ : M → N and for every µ ∈ C∞
0 (|Λ|M ) we have

∫

M
φ∗µ =

∫

N
µ;

(b)
∫
M is a local operation, i.e. for any open set U ⊂ M and any µ ∈ C∞

0 (|Λ|M ) with
suppµ ⊂ U we have ∫

M
µ =

∫

U
µ.

(c) For any ρ ∈ C∞
0 (Rn) we have

∫

Rn

ρ|dvn| =
∫

Rn

ρ(x)dx,

where in the right-hand-side stands the Lebesgue integral of the compactly supported function
ρ.

∫
M is called the integral on M .

Proof To establish the existence of an integral we associate to each manifold M a collec-
tion of data as follows.

(i) A smooth partition of unity A ⊂ C∞
0 (M) such that ∀α ∈ A the support suppα lies

entirely in some precompact coordinate neighborhood Uα and such that the cover (Uα) is
locally finite.
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(ii) For each Uα we pick a collection of local coordinates (xi
α) and we denote by |dxi

α|
(n = dim M) the density on Uα defined by

|dxi
α|

(
∂

∂x1
α

∧ ... ∧ ∂

∂xn
α

)
= 1.

For any µ ∈ C∞(|Λ|) αµ is a density supported in Uα and can be written as

αµ = µα|dxi
α|,

where µα is some smooth function compactly supported on Uα. The local coordinates allow
us to interpret µα as a function on Rn. Under this identification |dxi

α| corresponds to the
Lebesgue measure |dvn| on Rn and µα is a compactly supported, smooth function. We set

∫

Uα

αµ
def
=

∫

Rn

µα|dxi
α|.

Finally define ∫ A

M
µ =

∫

M
µ

def
=

∑

α∈A

∫

Uα

αµ.

The above sum contains only finitely many nonzero terms since suppµ is compact and thus
it intersects only finitely many of the U ′

αs which form a locally finite cover.
To prove property (a) we will first prove that the integral defined as above is independent

of the various choices, the partition of unityA ⊂ C∞
0 (M) and the local coordinates (xi

α)α∈A.

• Independence of coordinates. Fix the partition of unity A and consider a new col-
lection of local coordinates (yi

α) on each Uα. These determine two densities |dxi
α| and

respectively |dyj
α|. For each µ ∈ C∞

0 (|Λ|M ) we have

αµ = αµx
α|dxi

α| = αµy
α|dyj

α|

where µx
α, µy

α ∈ C∞
0 (Uα) are related by

µy
α =

∣∣∣∣det
(

∂xi
α

∂yj
α

)∣∣∣∣µx
α.

The equality ∫

Rn

µx
α|dxi

α| =
∫

Rn

µy
α|dyj

α|

is the classical change in variables formula for the Lebesgue integral.

• Independence of the partition of unity. Let A,B ⊂ C∞
0 (M) two partitions of unity

on M . We will show that ∫ A

M
=

∫ B

M
.

Form the partition of unity

A ∗ B = {αβ ; (α, β) ∈ A× B} ⊂ C∞
0 (M).
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Note that suppαβ ⊂ Uαβ = Uα ∩ Uβ. We will prove

∫ A

M
=

∫ A∗B

M
=

∫ B

M
.

Let µ ∈ C∞
0 (|Λ|M ). We can view αµ as a compactly supported function on Rn. We have

∫

Uα

αµ =
∑

β

∫

Uα⊂Rn

βαµ =
∑

β

∫

Uαβ

αβµ. (3.4.1)

Similarly ∫

Uβ

βµ =
∑
α

∫

Uαβ

αβµ. (3.4.2)

Summing (3.4.1) over α and (3.4.2) over β we get the desired conclusion.
To prove property (a) for a diffeomorphism φ : M → N consider a partition of unity A ⊂

C∞
0 (N). From the classical change in variables formula we deduce that for any coordinate

neighborhood Uα containing the support of α ∈ A and any µ ∈ C∞
0 (|Λ|N ) we have

∫

φ−1(Uα)
α ◦ φφ∗µ =

∫

Uα

αµ.

(
α ◦ φ

)
α∈A

forms a partition of unity on M . Property (a) now follows by summing over α

the above equality and using the independence of the integral on partitions of unity.
To prove property (b) on the local character of the integral pick U ⊂ M and then choose

a partition of unity B ⊂ C∞
0 (U) subordinated to the open cover (Vβ)β∈B. For any partition

of unity A ⊂ C∞
0 (M) with associated cover (Vα)α∈A we can form a new partition of unity

A ∗ B of U with associated cover Vαβ = Vα ∩ Vβ. We use this partition of unity to compute
integrals over U . For any distribution µ on M supported on U we have

∫

M
µ =

∑
α

∫

Vα

αµ =
∑

α∈A

∑

β∈B

∫

Vαβ

αβµ =
∑

αβ∈A∗B

∫

Vαβ

αβµ =
∫

U
µ.

Property (c) is clear since for M = Rn we can assume that all the local coordinates chosen
are cartesian. The uniqueness of the integral is immediate and we leave the reader fill in
the details.

ut

3.4.2 Orientability and integration of differential forms

Operating with densities on a smooth manifold is not always a very pleasant thing1 to do.
However, under some mild restrictions on the manifold, the calculus with densities can be
reduced to the friendlier calculus with differential forms.

The mild restrictions referred to above have a global nature. We have to restrict our
attention to oriented manifolds. Roughly speaking these are “2-sided manifolds” i.e. one

1This is always a matter of taste.
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Figure 3.2: The Mobius strip.

can distinguish between an “inside face” and an “outside face” of the manifold. ( Think
of a 2-sphere in R3 (a soccer ball) which is naturally a “2-faced” surface.) The 2-sidedness
feature is such a frequent occurrence in the real world that for many years it was taken
for granted. This explains the “big surprise” produced by the famous counter-example due
to Möbius in the first half of the 19th century. He produced a 1-sided surface nowadays
known as the Möbius strip using paper and glue. More precisely, he glued the opposite
sides of a paper rectangle attaching arrow to arrow as in Figure 3.2. The 2-sidedness can
be formulated rigorously as follows.

Definition 3.4.4. A smooth manifold M is said to be orientable if the determinant line
bundle det TM (or equivalently detT ∗M) is trivial. ut

We see that detT ∗M is trivial iff it admits a nowhere vanishing section. Such a section
is called a volume form on M . We say that two volume forms ω1 and ω2 are equivalent if
there exists f ∈ C∞(M) such that

ω2 = efω1.

This is indeed an equivalence relation and an equivalence class of volume forms will be called
an orientation of the manifold. An orientable connected manifold can have two orientations.
A pair (orientable manifold, orientation) is called an oriented manifold.

A natural question arises: how can one decide whether a given manifold is orientable
or not. We see this is just a special instance of the more general question we addressed
in Chapter 2: how can one decide whether a given vector bundle is trivial or not. The
orientability question can be given a very satisfactory answer using topological techniques.
However, it is often convenient to decide the orientability issue using ad-hoc arguments. In
the remaining part of this section we will describe several simple ways to detect orientability.

Example 3.4.5. If the tangent bundle of a manifold M is trivial then clearly TM is
orientable. In particular, all Lie groups are orientable. ut
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Figure 3.3: The normal line bundle to the round sphere.

Example 3.4.6. Suppose M is a manifold such that the Whitney sum Rk
M ⊕TM is trivial.

Then M is orientable. Indeed, we have

det(Rk ⊕ TM) = detRk ⊗ detTM.

Both detRk and det(Rk ⊕ TM) are trivial. We deduce detTM is trivial since

detTM ∼= det(Rk ⊕ TM)⊗ (detRk)∗.

This trick works for example when M ∼= Sn. Indeed, let ν denote the normal line bundle.
The fiber of ν at a point p ∈ Sn is the 1-dimensional space spanned by the position vector
of p as a point in Rn; (see Figure 3.3). This is clearly a trivial line bundle since it has a
tautological nowhere vanishing section p 7→ p ∈ νp. ν has a remarkable feature:

ν ⊕ TSn = Rn+1.

Hence all spheres are orientable. ut

Important convention The canonical orientation on Rn is the orientation defined by the
volume form dx1 ∧ · · · ∧ dxn where x1, ..., xn are the canonical cartesian coordinates.

The unit sphere Sn ⊂ Rn+1 is orientable. In the sequel we will exclusively deal with
its canonical orientation. To describe this orientation it suffices to describe a positively
oriented basis of detTpM for some p ∈ Sn. To this aim we will use the relation

Rn+1 ∼= νp ⊕ TpM.

An element ω ∈ det TpM defines the canonical orientation if ~p ∧ ω ∈ detRn+1 defines the
canonical orientation of Rn+1. Above, by ~p we denoted the position vector of p as a point
inside the euclidian space Rn+1. We can think of ~p as the “outer” normal to the round
sphere. We call this orientation outer normal first. When n = 1 it coincides with the
counterclockwise orientation of the unit circle S1.

ut
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Lemma 3.4.7. A smooth manifold M is orientable if and only if there exists an open cover
(Uα)α∈A and local coordinates (x1

α, ..., xn
α) on Uα such that

det

(
∂xi

α

∂xj
β

)
> 0 on Uα ∩ Uβ. (3.4.3)

Proof 1. det T ∗M is trivial iff there exists a volume form. Assume there exists an
open cover with the properties in the lemma. Consider B ⊂ C∞

0 (M) a partition of unity
subordinated to the cover (Uα)α∈A i.e. there exits a map ϕ : B → A such that

suppβ ⊂ Uϕ(β) ∀β ∈ B.

Consider
ω =

∑

β

βωϕ(β)

where for all α ∈ A we define ωα = dx1
α ∧ · · · ∧ dxn

α. The form ω is nowhere vanishing since
condition (3.4.3) implies that on an overlap Uα1 ∩ · · · ∩Uαm the forms ωα1 , ..., ωαm differ by
a positive multiplicative factor.

2. Conversely, let ω be a volume form on M and consider an atlas (Uα; (xi
α)). Then

ω |Uα= µαdx1
α ∧ · · · ∧ dxn

α where the smooth functions µα are nowhere vanishing and on the
overlaps they satisfy the gluing condition

∆αβ = det

(
∂xi

α

∂xj
β

)
=

µβ

µα
.

A permutation ϕ of the variables x1
α, ..., xn

α will change dx1
α ∧ · · · ∧ dxn

α by a factor ε(ϕ) so
we can always arrange these variables in such an order so that µα > 0. This will insure the
positivity condition

∆αβ > 0.

The lemma is proved. ut

From the above lemma we deduce immediately the following consequence.

Proposition 3.4.8. The connected sum of two orientable manifolds is an orientable man-
ifold

Exercise 3.4.1. Prove the above result. ut

Exercise 3.4.2. Prove that a complex manifold is orientable. In particular, the complex
grassmannians Gk,n(C) are orientable. ut

The reader can check immediately that the product of two orientable manifolds is again
an orientable manifold. Using connected sums and products we can now produce many
examples of manifolds. In particular, the connected sums of g tori is an orientable manifold.

By now the reader may ask where does orientability interact with integration. The
answer lies in Section 2.2.4 where we showed that an orientation on a vector space V
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Figure 3.4: Spherical coordinates.

induces a canonical isomorphism ı : det V ∗ → |Λ|V . Similarly, an orientation on a smooth
manifold M defines an isomorphism

ıM : C∞(detT ∗M) → C∞(|Λ|M ).

For any compactly supported differential form ω on M of maximal degree we define its
integral by ∫

M
ω

def
=

∫

M
ıMω.

We want to emphasize that this definition depends on the choice of orientation.

Example 3.4.9. Consider the 2-form on R3

ω = xdy ∧ dz

and let S2 denote the unit sphere. We want to compute
∫

S2

ω |S2

where S2 has the canonical orientation. To compute this integral we will use spherical
coordinates (r, ϕ, θ). These are defined by (see Figure 3.4.)





x = r sinϕ cos θ
y = r sinϕ sin θ
z = r cosϕ

At the point p = (1, 0, 0) we have

∂

∂r
=

∂

∂x
= ~p

∂

∂θ
=

∂

∂y

∂

∂ϕ
= − ∂

∂z
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so that the standard orientation on S2 is given by dϕ∧dθ. On S2 we have r ≡ 1 and dr ≡ 0
so that

xdy ∧ dz |S2= sinϕ cos θ (cos θ sinϕdθ + sin θ cosϕdϕ)) ∧ (− sinϕ)dϕ

= sin3 ϕ cos2 θdϕ ∧ dθ.

Finally, we compute
∫

S2

ω =
∫

[0,π]×[0,2π]
sin3 ϕ cos2 θdϕ ∧ dθ =

∫ π

0
sin3 ϕdϕ ·

∫ 2π

0
cos2 θdθ

=
4π

3
= volume of the unit ball B3 ⊂ R3.

As we will see in the next subsection the above equality is no accident. ut

Example 3.4.10. (Invariant integration on compact Lie groups.) Let G be a com-
pact,connected Lie group. Fix once and for all an orientation on LG. Consider ω ∈ det L∗G
a positively oriented volume element. By left translation we can extend ω to a left-invariant
volume form on G which we continue to denote by ω. This defines an orientation and in
particular, by integration, we get a positive scalar

c =
∫

G
ω.

Set dg = 1
cω so that ∫

G
dg = 1. (3.4.4)

dg is the unique left-invariant n-form (n = dimG) on G satisfying (3.4.4) (assuming a fixed
orientation on G). We claim dg is also right invariant. Assume for simplicity that G is
connected.

To prove this consider the modular function G 3 h 7→ ∆(h) ∈ R defined by

R∗
h(dg) = ∆(h)dg.

∆(h) is a constant because R∗
hdg is a left invariant form so it has to be a scalar multiple of

dg. Since (Rh1h2)
∗ = (Rh2Rh1)

∗ = R∗
h1

R∗
h2

we deduce

∆(h1h2) = ∆(h1)∆(h2) ∀h1, h2 ∈ G.

Hence h 7→ ∆h is a smooth morphism

G → (R \ {0}, ·).

Since G is connected ∆(G) ⊂ R+, and since G is compact ∆(G) is bounded. If there exists
x ∈ G such that ∆(x) 6= 1 then either ∆(x) > 1 or ∆(x−1) > 1 and in particular we would
deduce the set (∆(xn))n∈Z is unbounded. Thus ∆ ≡ 1 which establishes the right invariance
of dg.
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The invariant measure dg provides a very simple way of producing invariant objects on
G. More precisely, if T is tensor field on G, then for each x ∈ G define

T
`
x =

∫

G
((Lg)∗T )xdg.

Then x 7→ T x defines a smooth tensor field on G. We claim T is left invariant. Indeed, for
any h ∈ G we have

(Lh)∗T
` =

∫

G
(Lh)∗((Lg)∗T )dg =

∫

G
((Lhg)∗T )dg

u=hg
=

∫

G
(Lu)∗Td(h−1u) = T

` ( d(h−1u)) = L∗h−1du = du ).

If we average once more on the right we get a tensor

x 7→
∫

G
((Rg)∗T

`)xdg

which is both left and right invariant. ut

Exercise 3.4.3. Let G be a Lie group. For any X ∈ LG denote by ad(X) the linear map
LG → LG defined by

LG 3 Y 7→ [X,Y ] ∈ LG.

(a) If ω denotes a left invariant volume form prove that ∀X ∈ LG

LXω = tr ad(X)ω.

(b) Prove that if G is a compact Lie group then tr ad(X) = 0 for any X ∈ LG. ut

3.4.3 Stokes formula

The Stokes’ formula is the higher dimensional version of the fundamental theorem of calculus
(Leibniz-Newton formula) ∫ b

a
df = f(b)− f(a)

where f : [a, b] → R is a smooth function and df = f ′(t)dt. In fact, the higher dimensional
formula will follow from the simplest 1-dimensional situation. We will spend most of the
time finding the correct formulation of the general version and this requires the concept of
manifold with boundary. The standard example is the upper half-space

Hn
+ = {(x1, ..., xn) ∈ Rn ; x1 ≥ 0}.

Definition 3.4.11. A smooth manifold with boundary is a closed subset M of a smooth
manifold M̃ (dim M̃ = n) such that
(a) M0 = intM 6= ∅.
(b) For each point p ∈ ∂M = M \M0 there exist local coordinates (x1, ..., xn) defined on an
open neighborhood N of p in M̃ such that
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(b1) M0 ∩N = {(x1, ..., xn) ; x1 > 0}.
(b2) ∂M ∩N = {x1 = 0}.
∂M is called the boundary of M . A manifold with boundary (M,∂M) is called orientable
if M0 is orientable.

Example 3.4.12. A closed interval I = [a, b] is a smooth 1-dimensional manifold with
boundary ∂I = {a, b}. ut

Example 3.4.13. The closed unit ball B3 ⊂ R3 is an orientable manifold with boundary
∂B3 = S2. ut

Proposition 3.4.14. Let (M,∂M) be a smooth manifold with boundary. Then ∂M is also
a smooth manifold of dimension dim ∂M = dimM − 1. Moreover if M is orientable then
so is its boundary.

The proof is left to the reader as an exercise.

Important convention Let (M, ∂M) be an orientable manifold with boundary. There is
a (non-canonical) way to associate to an orientation on M0 an orientation on the boundary.
This will be the only way in which we will orient boundaries throughout this book. If we
do not pay attention to this convention then our results may be off by a sign.

We now proceed to described this induced orientation on ∂M . For any p ∈ ∂M choose
local coordinates (x1, ..., xn) as in Definition 3.4.11. Then the induced orientation of Tp∂M
is defined by

εdx2 ∧ · · · ∧ dxn ∈ det Tp∂M, ε = ±1

where ε is chosen so that for x1 > 0 (i.e. inside M ) the form

ε(−dx1) ∧ dx2 ∧ · · · ∧ dxn

is positively oriented. dx1 is usually called an inner conormal since x1 increases as we go
towards the interior of M . −dx1 is then the outer conormal for analogous reasons. The
rule by which we get the induced orientation on the boundary can be rephrased as

{outer conormal} ∧ {induced orientation on boundary} = {orientation in the interior}.

We may call this rule “outer (co)normal first” for obvious reasons.
ut

Example 3.4.15. The canonical orientation on Sn ⊂ Rn+1 coincides with the induced
orientation of Sn+1 as the boundary of the unit ball Bn+1. ut

Exercise 3.4.4. Consider the hyperplane Hi ⊂ Rn defined by the equation {xi = 0}. Prove
that the induced orientation of Hi as the boundary of the half-space Hn,i

+ = {xi ≥ 0} is
given by the (n− 1)-form (−1)idx1 ∧ · · · ∧ d̂xi ∧ · · · dxn where as usual the hat indicates a
missing term. ut
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Theorem 3.4.16. (Stokes formula) Let M be an oriented n-dimensional manifold with
boundary ∂M and ω ∈ Ωn−1(M) a compactly supported form. Then

∫

M0

dω =
∫

∂M
ω.

In the above formula d denotes the exterior derivative and ∂M has the induced orientation.

Proof Via partitions of unity the verification is reduced to the following two situations.
Case 1. ω is a compactly supported (n− 1) form in Rn. We have to show

∫

Rn

dω = 0.

It suffices to consider only the special case

ω = f(x)dx2 ∧ · · · ∧ dxn

where f(x) is a compactly supported smooth function. The general case is a linear combi-
nation of these special situations. We compute

∫

Rn

dω =
∫

Rn

∂f

∂x1
dx1 ∧ · · · ∧ dxn

=
∫

Rn−1

(∫

R

∂f

∂x1
dx1

)
dx2 ∧ · · · ∧ dxn = 0

since ∫

R

∂f

∂x1
dx1 = f(∞, x2, ..., xn)− f(−∞, x2, ..., xn)

and f has compact support.
Case 2. ω is a compactly supported (n− 1) form on Hn

+. Let

ω =
∑

i

fi(x)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Then

dω =

(∑

i

(−1)i+1 ∂f

∂xi

)
dx1 ∧ · · · ∧ dxn.

One verifies as in Case 1 that
∫

Hn
+

∂f

∂xi
dx1 ∧ · · · ∧ dxn = 0 for i 6= 1.

For i = 1 we have
∫

Hn
+

∂f

∂x1
dx1 ∧ · · · ∧ dxn =

∫

Rn−1

(∫ ∞

0

∂f

∂x1
dx1

)
dx2 ∧ · · · ∧ dxn

=
∫

Rn−1

(
f(∞, x2, ..., xn)− f(0, x2, ..., xn)

)
dx2 ∧ · · · ∧ dxn
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= −
∫

Rn−1

f(0, x2, ..., xn)dx2 ∧ · · · ∧ dxn =
∫

∂Hn
+

ω.

The last equality follows from the fact that the induced orientation on ∂Hn
+ is given by

−dx2 ∧ · · · ∧ dxn. This concludes the proof of the Stokes formula.
ut

Remark 3.4.17. Stokes formula illustrates an interesting global phenomenon. It shows
that the integral

∫
M dω is independent of the behavior of ω inside M . It only depends on

the behavior of ω on the boundary. ut

Example 3.4.18.
∫

S2

xdy ∧ dz =
∫

B3

dx ∧ dy ∧ dz = vol (B3) =
4π

3
.

ut

Remark 3.4.19. The above considerations extend easily to more singular situations. For
example, when M is the cube [0, 1]n its topological boundary is no longer a smooth manifold.
However, its singularities are inessential as far as integration is concerned. The Stokes
formula continues to hold

∫

In

dω =
∫

∂I
ω ∀ω ∈ Ωn−1(In).

The boundary is smooth outside a set of measure zero and is given the induced orientation:
“ outer (co)normal first”. The above equality can be used to give an explanation for the
terminology “exterior derivative” we use to call d. Indeed if ω ∈ Ωn−1(Rn) and Ih = [0, h]
then we deduce

dω |x=0= lim
h→0

h−n

∫

∂In
h

ω. (3.4.5)

When n = 1 this is the usual definition of the derivative. ut

Example 3.4.20. We now have sufficient technical background to describe an example of
vector bundle which admits no flat connections thus answering the question raised at the
end of Section 3.3.3.

Let M be the unit sphere in R3. As in Chapter 1, we have a distinguished cover of M,
{Un, Us} where Un = S2 \ {south pole} and Us = S2 \ {north pole}. Each of the two sets
can be identified with the complex plane C and we get coordinates zn on Un and zs on Us.
On the overlap Us ∩ Un the two sets of coordinates are related by

zn =
1
zs

.

Consider the complex line bundle L obtained by gluing two trivial line bundles Ln → Un

and Ls → Us via the transition map

gsn : Un ∩ Us
∼= {zn 6= 0} → C∗, gsn(zn) = zn.



98 Calculus on manifolds

A connection on L is a collection of two complex valued forms ωn ∈ Ω1(Un) ⊗ C, ωs ∈
Ω1(Us)⊗ C satisfying a gluing relation on the overlap (see Example 3.3.6)

ωn(z) =
dz

z
+ ωs(z), (z = zn).

If the connection is flat then

dωn = 0 on Un and dωs = 0 on ωs.

Let E+ be the equator equipped with the induced orientation as the boundary of the
northern hemisphere and E− the equator with the opposite orientation (as the boundary
of the southern hemisphere). The orientation of E+ coincides with the orientation given
by the form dθ where zn = exp(iθ). We deduce from the Stokes formula (which works for
complex valued forms as well) that

∫

E+

ωn = 0
∫

E−
ωs = −

∫

E+

ωs = 0.

On the other hand over the equator we have

ωn − ωs =
dz

z
= idθ

from which we deduce
0 =

∫

E+

ωn − ωs =
∫

E+

idθ = 2πi !!!

Thus there exist no flat connections on the line bundle L and at fault is the gluing cocycle
defining L. In a future chapter we will quantify the measure in which the gluing data
obstruct the existence of flat connections. ut

3.4.4 Representations and characters of compact Lie groups

The invariant integration on compact Lie groups is a very powerful tool with many uses.
Undoubtedly, one of the most spectacular application is Hermann Weyl’s computation of the
characters of representations of compact semi-simple Lie groups. The invariant integration
occupies a central place in his solution to this problem.

We devote this subsection to the description of the most elementary aspects of the
representation theory of Lie groups.

Let G be a Lie group. Recall that a (linear) representation of G is a left action on a
(finite dimensional) vector space V

G× V → V (g, v) 7→ T (g)v ∈ V

such that the map T (g) is linear for any g. One also says that V has a structure of G-
module. If V is a real (resp. complex) vector space then it is said to be a real (resp.
complex) G-module.

Example 3.4.21. Let V = Cn. Then G = GL(n,C) acts linearly on V in the tautological
manner. Moreover V ∗, V ⊗k, ΛmV and S`V are complex G-modules. ut
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Definition 3.4.22. A morphism of G-modules V1 and V2 is a linear map L : V1 → V2 such
that for any g ∈ G the diagram below is commutative, i.e. T2(g)L = LT1(g).

V1 V2

V1 V2

wL

u
T1(g)

u
T2(g)

wL

.

The space of morphisms of G-modules is denoted by HomG(V1, V2). The collection of iso-
morphisms classes of complex G-modules is denoted by G-Mod.

If V is a G-module than an invariant subspace (or submodule) is a subspace U ⊂ V
such that T (g)(U) ⊂ U , ∀g ∈ G. A G-module is said to be irreducible if it has no invariant
subspaces other than {0} and V itself.

Proposition 3.4.23. The direct sum “⊕” and the tensor product “⊗” define a structure
of semi-ring with 1 on G-Mod. 0 is represented by the null representation {0} while 1 is
represented by the trivial module G → Aut (C), g 7→ 1.

The proof of this proposition is left to the reader.

Example 3.4.24. Let Ti : G → Aut (Ui) (i = 1, 2) be two complex G-modules. Then U∗
1

is a G-module by
(g, u∗) 7→ T t

1(g
−1)u∗.

Hence Hom (U1, U2) is also a G-module. Explicitly, the action of g ∈ G is given by

(g, L) 7→ T2(g)LT1(g−1).

We see that HomG(U1, U2) can be identified with the linear subspace in Hom (U1, U2) con-
sisting of the linear maps U1 → U2 unchanged by the above action of G. ut

Proposition 3.4.25. (Weyl’s unitary trick) Let G be a compact Lie group and V a
complex G-module. Then there exists a Hermitian metric h on V which is G-invariant i.e.

h(gv1, gv2) = h(v1, v2) ∀v1, v2 ∈ V.

Proof Let h be an arbitrary Hermitian metric on V . Define its G-average by

h(u, v) =
∫

G
h(gu, gv)dg

where dg denotes the normalized bi-invariant measure on G. One can now check easily that
h is G-invariant.

ut

In the sequel, G will always denote a compact Lie group.
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Proposition 3.4.26. Let V be a complex G-module and h a G-invariant Hermitian met-
ric. If U is an invariant subspace of V then so is U⊥, where “⊥” denotes the orthogonal
complement with respect to h.

Proof Since h is G-invariant it follows that ∀g ∈ G, T (g) is an unitary operator,
T (g)T ∗(g) = 1V . Hence, T ∗(g) = T−1(g) = T (g−1), ∀g ∈ G.

If x ∈ U⊥ then for all u ∈ U and ∀g ∈ G

h(T (g)x, u) = h((x, T ∗(g)u) = h(x, T (g−1)u) = 0.

Thus T (g)x ∈ U⊥ so that U⊥ is G-invariant.
ut

Corollary 3.4.27. Every G-module V can be decomposed as a direct sum of irreducible
ones.

If we denoted by Irr(G) the collection of isomorphism classes of irreducible G-modules
then we can rephrase the above corollary by saying that Irr(G) generates the semigroup
(G-Mod, ⊕).

To gain a little more insight we need to use the following remarkable trick due to Isaac
Schur.

Lemma 3.4.28. (Schur lemma) Let V1, V2 be two irreducible complex G-modules. Then

dimCHomG(V1, V2) =
{

1 if V1
∼= V2

0 if V1 6∼= V2
.

Proof Let L ∈ HomG(V1, V2). Then kerL ⊂ V1 is an invariant subspace of V1. Similarly,
Range (L) ⊂ V2 is an invariant subspace of V2. Thus, either kerL = 0 or kerL = V1.

The first situation forces rangeL 6= 0 and since V2 is irreducible RangeL = V2. Hence
L has to be in isomorphism of G-modules. We deduce that if V1 and V2 are not isomorphic
as G-modules HomG(V1, V2) = {0}.

Assume now that V1
∼= V2 and S : V1 → V2 is an isomorphism of G-modules. According

to the previous discussion, any other nontrivial G-morphism L : V1 → V2 has to be an
isomorphism. Consider the automorphism T = S−1L : V1 → V1. Since V1 is a complex
vector space T admits at least one (non-zero) eigenvalue λ.

The map λ1V1 − T is an endomorphism of G-modules and ker (λ1V1 − T ) 6= 0. In-
voking again the above discussion we deduce T ≡ λ1V1 , i.e. L ≡ λS. This shows
dimHomG(V1, V2) = 1.

ut

Schur’s lemma is powerful enough to completely characterize S1-Mod.

Example 3.4.29. The irreducible (complex)representations of S1.) Let V be a
complex irreducible S1-module

(eiθ, v) 7→ Tθv,

where
Tθ1 · Tθ2 = Tθ1+θ2 mod 2π.
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In particular this implies that each Tθ is an S1-automorphism since it obviously commutes
with the action of this group. Hence Tθ = λ(θ)1V which shows that dimV = 1 since any
1-dimensional subspace of V is S1-invariant. We have thus obtained a smooth map

λ : S1 → C∗

such that
λ(eiθ · eiτ ) = λ(eiθ)λ(eiθ).

Hence λ : S1 → C∗ is a group morphism. As in the discussion of the modular function we
deduce that |λ| ≡ 1. Thus λ looks like an exponential (verify!)

λ(eiθ) = exp(iαθ).

Moreover, when exp(2πiα) = 1 so that α ∈ Z.
Conversely, for any integer n ∈ Z we have a representation

S1 ρn→ Aut (C) (eiθ, z) 7→ einθz.

The exponentials exp(inθ) are called the characters of the representations ρn. ut

Exercise 3.4.5. Describe the irreducible representations of Tn-the n-dimensional torus. ut

Definition 3.4.30. (a) Let V be a complex G-module, g 7→ T (g) ∈ Aut (V ). The character
of V is the smooth function

χV : G → C χV (g) = tr T (g).

(b) A class function is a continuous function f : G → C such that

f(hgh−1) = f(g) ∀g, h ∈ G.

(The character of a representation is an example of class function).

Theorem 3.4.31. Let G be a compact Lie group, U1, U2 complex G-modules and χUi their
characters. Then the following hold.
(a)χU1⊕U2 = χU1 + χU2, χU1⊗U2 = χU1 · χU1.
(b) χUi(1) = dimUi.
(c) χU∗i = χUi

-the complex conjugate of χUi.
(d) ∫

G
χUi(g)dg = dim UG

i ,

where UG
i denotes the space of G-invariant elements of Ui,

UG
i = {x ∈ Ui ; x = Ti(g)x ∀g ∈ G}.

(e) ∫

G
χU1(g) · χU2

(g)dg = dimHomG(U2, U1).
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Proof (a) and (b) are left to the reader. To prove (c) fix an invariant Hermitian metric
on U = Ui. Thus each T (g) is an unitary operator on U . The action of G on U∗ is given
by T t(g−1). Since T(g) is unitary we have T t(g1) = T (g). This proves (c).

Proof of (d). Consider

P : U → U Pu =
∫

G
T (g)udg.

Note that PT (h) = T (h)P , ∀h ∈ G i.e. P ∈ HomG(U,U). We now compute

T (h)Pu =
∫

G
T (hg)udg =

∫

G
T (γ)uR∗

h−1dγ

∫

G
T (γ)udγ = Pu.

Thus, each Pu is G-invariant. Conversely, if x ∈ U is G-invariant then

Px =
∫

G
T (g)xdg =

∫

G
xdg = x

i.e. UG = RangeP . Note also that P is a projector i.e. P 2 = P . Indeed

P 2u =
∫

G
T (g)Pudg =

∫

G
Pudg = Pu.

Hence P is a projection onto UG and in particular

dimC UG = trP =
∫

G
tr T (g)dg =

∫

G
χU (g)dg.

Proof of (e). ∫

G
χU1 · χU2

dg =
∫

G
χU1 · χU∗2 dg

=
∫

G
χU1⊗U∗2 dg =

∫

G
χHom(U2,U1)

= dimC (Hom (U2, U1))
G = dimCHomG(U2, U1)

since HomG coincides with the space of G-invariant morphisms.
ut

Corollary 3.4.32. Let U , V be irreducible G-modules. Then

(χU , χV ) =
∫

G
χU · χV dg = δUV =

{
1 , U ∼= V
0 , U 6∼= V

.

Proof Follows from Theorem 3.4.31 using Schur’s lemma.
ut
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Corollary 3.4.33. Let U , V be two G-modules. Then U ∼= V if and only if χU = χV .

Proof Decompose U and V as direct sums of irreducible G-modules

U = ⊕m
1 (miUi) V = ⊕`

1(njVj).

Hence χU =
∑

miχVi and χV =
∑

njχVj . The equivalence “representation” ⇐⇒ “charac-
ters” stated by this corollary now follows immediately from Schur’s lemma and the previous
corollary.

ut

Thus, the problem of describing the representations of a compact Lie group boils down
to describing the characters of its irreducible representations. This problem was completely
solved by Hermann Weyl. Its solution requires a lot more work and goes beyond the scope
of this book. We will spend the remaining part of this subsection analyzing the equality
(d) in Theorem 3.4.31.

Describing the invariants of a group action was a very fashionable problem in the second
half of the nineteenth century. Formula (d) mentioned above is a truly remarkable result.
It allows (in principle) to compute the maximum number of linearly independent invariant
elements.

Let V be a complex G-module and denote by χV its character. The complex exterior
algebra Λ∗cV ∗ is a complex G-module, as the space of complex multi-linear skew-symmetric
maps

V × · · · × V → C.

Denote by bc
k(V ) the complex dimension of the space of G-invariant elements in Λk

cV
∗. One

has the equality

bc
k(V ) =

∫

G
χΛk

c V ∗dg.

These facts can be presented coherently by considering the Z-graded vector space

Ic(V ) = ⊕kΛk
invV

∗.

Its Poincaré polynomial is

PIc(V )(t) =
∑

tkbc
k(V ) =

∫

G
tkχΛk

c V ∗dg.

To obtain a more concentrated formulation of the above equality we need to recall some
elementary facts of linear algebra.

For each endomorphism A of V denote by σk(A) the coefficient of tk in the characteristic
polynomial

σt(A) = det(1V + tA).

Explicitly, σk(A) is given by the sum

σk(A) =
∑

1≤i1···ik≤n

det
(
aiαiβ

)
(n = dimV ).
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Equivalently

σk(A) = tr (ΛkA)

where ΛkA is the endomorphism of ΛkV induced by A.
If g ∈ G acts on V by T (g) then g acts on ΛkV ∗ by ΛkT t(g−1) = ΛkT̄ (g). (We implicitly

assumed that each T (g) is unitary with respect to some G-invariant metric on V ). Hence

χΛk
c V ∗ = σk(T̄ (g)). (3.4.6)

We conclude that

PI(V )(t) =
∫

G

∑
tkσk(T (g))dg =

∫

G
det(1V + tT̄ (g))dg. (3.4.7)

Consider now the following situation. Let V be a complex V -module. Denote by Λ∗rV the
space of R-multi-linear, skew-symmetric maps

V × · · · × V → R.

Λ∗rV ∗ is a real G-module. We complexify it. Λ∗rV ⊗ C is the space of R-multi-linear,
skew-symmetric maps

V × · · · × V → C

and as such it is a complex G-module. The real dimension of the subspace Ik
r of G invariant

elements in Λk
rV

∗ will be denoted by br
k(V ) so that the Poincaré polynomial of I∗r(V ) = ⊕kI

k
r

is

PI∗r(V )(t) =
∑

tkbr
k(V ).

On the other hand br
k(V ) is equal to the complex dimension of Λk

rV
∗⊗C. Using the results

of Subsection 2.2.5 we deduce

Λ∗rV ⊗ C ∼= Λ∗cV
∗ ⊗C Λ∗cV

∗ =
⊕

k

(
⊕i+j=kΛi

cV
∗ ⊗ Λj

cV
∗)

. (3.4.8)

Each of the above summands is a G-invariant subspace. Using (3.4.6) and (3.4.8) we deduce

PIr(V ) =
∑

k

∫

G

∑

i+j=k

σi(T (g))tiσj(T̄ (g))tjdg

∫

G
det(1V + tT (g)) det(1V + tT (g))dg =

∫

G
| det(1V + tT (g))|2dg. (3.4.9)

We will have the chance to use this result in computing topological invariants of mani-
folds with a “high degree of symmetry” like e.g. the grassmannians.
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3.4.5 Fibered calculus

In the previous section we have described the calculus associated to objects defined on a
single manifold. The aim of this subsection is to discuss what happens when we deal with
an entire family of objects parameterized by some smooth manifold. We will discuss only
the fibered version of integration. The exterior derivative also has a fibered version but its
true meaning can only be grasped by referring to Leray’s spectral sequence of a fibration
and so we will not deal with it. The interested reader can learn more about this operation
from [32].

Assume now that instead of a single manifold F we have an entire (smooth) family
of them (Fb)b∈B. In more rigorous terms this means we are given a smooth fiber bundle
p : E → B with standard fiber F .

On the total space E we will always work with split coordinates (xi; yj) where (xi) are
local coordinates on the standard fiber F and (yj) are local coordinates on the base B (the
parameter space).

The model situation is the bundle

E = Rk × Rm p→ Rm = B (x, y)
p7→ y.

We will first define a fibered version of integration. This requires a fibered version of
orientability.

Definition 3.4.34. Let p : E → B be a smooth bundle with standard fiber F . The bundle
is said to be orientable if
(a) F is oriented;
(b) there exists an open cover (Uα) and trivializations

p−1(Uα)
ψα→ F × Uα

such that the gluing maps

ψβ ◦ ψ−1
α : F × Uαβ → F × Uαβ (Uαβ = Uα ∩ Uβ)

are orientation preserving in the sense that for each y ∈ Uαβ, the diffeomorphism

F 3 f 7→ ψαβ(f, y) ∈ F

is orientation preserving.

Exercise 3.4.6. If the the base B of an orientable bundle p : E → B is orientable, then so
is the total space E (as an abstract smooth manifold). ut

Important convention Let p : E → B be an orientable bundle with oriented basis B.
The natural orientation of the total space E is defined as follows.

If E = F × B then the orientation of the tangent space T(f,b)E is given by ΩF × ωB

where ωF ∈ detTfF (resp. ωB ∈ detTbB) defines the orientation of TfF (resp. TbB).
The general case reduces to this one since any bundle is locally a product and the gluing

maps are orientation preserving. This convention can be briefly described as

orientation total space = orientation fiber ∧ orientation base.
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The natural orientation can thus be called the fiber-first orientation. In the sequel all
orientable bundles will be given the fiber-first orientation.

ut

Let p : E → B be an orientable fiber bundle with standard fiber F .

Proposition 3.4.35. The integration along fibers is an operation

p∗ =
∫

E/B
: Ω∗cpt(E) → Ω∗−r

cpt (B (r = dim F ).

uniquely defined by its action on forms supported on domains D of split coordinates

D ∼= Rr × Rm p→ Rm (x; y) 7→ y.

If ω = fdxI ∧ dyJ (f ∈ C∞
0 (Rr+m)) then
∫

E/B
=

{
0 , |I| 6= r(∫

Rr fdxI
)
dyJ , |I| = r

.

The proof goes exactly as in the non-parametric case (i.e. when B is a point). One shows
using partitions of unity that these local definitions can be patched together to produce a
well defined map ∫

E/B
: Ω∗cpt(E) → Ω∗−r

cpt (B).

The details are left to the reader.

Proposition 3.4.36. Let p : E → B be an orientable bundle with an r-dimensional standard
fiber F . Then for any ω ∈ Ω∗cpt(E) and η ∈ ω∗cpt(B) such that deg ω + deg η = dimE we
have ∫

E/B
dEω = (−1)rdB

∫

E/B
ω.

If B is oriented and ω η ar as above then

∫

E
ω ∧ p∗(η) =

∫

B

(∫

E/B
ω

)
∧ η. (Fubini)

The last equality implies immediately the projection formula

p∗(ω ∧ p∗η) = p∗ω ∧ η.

Proof It suffices to consider only the model case

p : E = Rr × Rm → Rm = B (x; y)
p→ y

and ω = fdxI ∧ dyJ . Then

dEω =
∑

i

∂f

∂xi
dxi ∧ dxI ∧ dyJ + (−1)|I|

∑

j

∂f

∂yj
dxI ∧ dyj ∧ dyJ .
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∫

E/B
dEω =

(∫

Rr

∑

i

∂f

∂xi
dxi ∧ dxI

)
(−1)|I|




∫

Rr

∑

j

∂f

∂yj
dxI


 ∧ dyj ∧ dyJ .

The above integrals are defined to be zero if the corresponding forms do not have degree r.
The Stokes formula shows that the first integral is always zero. Hence

∫

E/B
dEω = (−1)|I|

∂

∂yj




∫

Rr

∑

j

dxI


 ∧ dyj ∧ dyJ = (−1)rdB

∫

E/B
ω.

The second equality is left to the reader as a practice exercise.
ut

Exercise 3.4.7 (Gelfand-Leray). Suppose p : E → B is an oriented fibration, ωE is a
volume form on E and ωB is a volume form on B.

(a) Prove that for every b ∈ B there exists a unique volume form ωE/B on Eb with the
property that for every x ∈ E we have

ωE(x) = ωE/B(x) ∧ (p∗ωB)(x) ∈ Λdim ET ∗xE.

This form is called the Gelfand-Leray residue of ωE rel p.

(b) Prove that for every compactly supported smooth function f : E → R we have

∫

E
fωE

∫

B

(∫

Eb

fωE/B

)
ωB

If we use the classical but less precise notations dVE = ωE , ωB = dVB, ωE/B = dVE
dVB

then
the above equality takes the form

∫

E
fωE

∫

B
=

∫

B

(∫

Eb

f
dVE

dVB

)

︸ ︷︷ ︸
df

dVB

dVB.

The smooth function df
dVB

: B → R is called the Gelfand-Leray form of f rel p.

(c) Consider the fibration R2 → R, (x, y)
p7→ t = ax + by, a2 + b2 6= 0. Compute the

Gelfand-Leray form dx∧dy
dt along the fiber p(x, y) = 0. ut

Definition 3.4.37. A ∂-bundle is a collection (E, ∂E, p,B) consisting of the following.
(i) A smooth manifold E with boundary ∂E.
(ii) A smooth map p : E → B such that the restrictions p : IntE → B and p : ∂E → B are
smooth bundles.

The standard fiber of p : IntE → B is called the interior fiber.

One can think of a ∂-bundle as a smooth family of manifolds with boundary.
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Example 3.4.38. The projection

p : [0, 1]×M → M (t; m) 7→ m

defines a ∂-bundle. The interior fiber is the open interval (0, 1). The fiber of p : ∂(I×M) →
M is the disjoint union of two points. ut

Standard Models A ∂-bundle is obtained by gluing two types of local models.

Interior models Rr × Rm → Rm

Boundary models Hr
+ × Rm → Rm where

Hr
+ =

{
(x1, · · · , xr) ∈ Rr ; x1 ≥ 0

}
.

Remark 3.4.39. Let p : (E, ∂E) → B be a ∂-bundle. If p : IntE → B is orientable and
the basis B is oriented as well, then on ∂E one can define two orientations.
(i) The fiber-first orientation as the total space of an oriented bundle ∂E → B.
(ii) The induced orientation as the boundary of E. ut

Exercise 3.4.8. Prove that the above orientations on ∂E coincide. ut

Theorem 3.4.40. Let p : (E, ∂E) → B be an orientable ∂-bundle with an r-dimensional
interior fiber. Then for any ω ∈ Ω∗cpt(E) we have

∫

∂E/B
ω =

∫

E/B
dEω − (−1)rdB

∫

E/B
ω (Homotopy formula).

The last equality can be formulated as
∫

∂E/B
=

∫

E/B
dE − (−1)rdB

∫

E/B
.

This is “the mother of all homotopy formulæ”. It will play a crucial part in Chapter 7 when
we embark on the study of DeRham cohomology.

Exercise 3.4.9. Prove the above theorem. ut



Chapter 4

Riemannian Geometry

Now we can finally put to work the abstract notions discussed in the previous chapters.
Loosely speaking the Riemannian geometry studies the properties of surfaces (manifolds)
“made of canvas”. These are manifolds with an extra structure arising naturally in many
instances. In particular we will study the problem formulated in Chapter 1: why a plane
(flat) canvas disk cannot be wrapped in an one-to-one fashinon around the unit sphere in
R3. Answering this requires the notion of Riemann curvature which will be the central
theme of this chapter.

4.1 Metric properties

4.1.1 Definitions and examples

To motivate our definition we will first try to formulate rigorously what do we mean by a
“canvas surface”.

A “canvas surface” can be deformed in many ways but with some limitations: it cannot
be stretched as a rubber surface and this is because the fibers of the canvas are flexible but
not elastic. Alternatively, this means that the only operations we can perform are those
which do not change the lengths of curves on the surface. Thus one can think of “canvas
surfaces” as those surfaces on which any “reasonable” curve has a well defined length.

Adapting a more constructive point of view one can say that such surfaces are endowed
with a clear procedure of measuring lengths of piecewise smooth curves.

Classical vector analysis describes one method of measuring lengths of curves in R3. If
γ : [0, 1] → R3 is such a curve then its length is given by

length (γ) =
∫ 1

0
|γ̇(t)|dt

where |γ̇(t)| is the euclidian length of the tangent vector γ̇(t).
We want to do the same thing on an abstract manifold and we are clearly faced with

one problem: how do we make sense of |γ̇(t)|? Obviously, this problem can be solved if we
assume that there is a procedure of measuring lengths of tangent vectors at any point on
our manifold. The simplest way to do achieve this is to assume that each tangent space is
endowed with an inner product (which can vary from point to point in a smooth way).

116
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Definition 4.1.1. (a) A Riemann manifold is a pair (M, g) consisting of a smooth manifold
M and a metric g on the tangent bundle i.e. a smooth, symmetric positive definite (0,2)
tensor field on M . g is called a Riemann metric on M .
(a) Two Riemann manifolds (Mi, gi) (i = 1, 2) are said to be isometric if there exists a
diffeomorphism φ : M1 → M2 such that φ∗g2 = g1.

If (M, g) is a Riemann manifold then for any x ∈ M the restriction gx : TxM×TxM → R
is an inner product on the tangent space TxM . We will frequently use the alternative
notation 〈·, ·〉x = gx(·, ·). The length of a tangent vector v ∈ TxM is defined as usual as

|v|x def
= gx(v, v)1/2.

If γ : [a, b] → M is a piecewise smooth curve then we define its length by

l(γ) =
∫ b

a
|γ̇(t)|γ(t)dt.

If we choose local coordinates (x1, · · · , xn) on M then we get a local description of g as

g = gijdxidxj , gij = g(
∂

∂xi
,

∂

∂xj
).

Proposition 4.1.2. Let M be a smooth manifold and denote by RM the set of Riemann
metrics on M . Then RM is a non-empty convex cone in the linear space of symmetric (0,2)
tensors.

Proof The only thing we have to prove is that RM is non-empty. We will use again
partitions of unity. Cover M by coordinate neighborhoods (Uα)α∈A. Let (xi

α) be a collection
of local coordinates on Uα. Using these local coordinates we can construct by hand the
metric gα on Uα by

gα = (dx1
α)2 + · · ·+ (dxn

α)2.

Now pick a partition of unity B ⊂ C∞
0 (M) subordinated to the cover (Uα)α∈A i.e. there

exits a map φ : B → A such that ∀β ∈ B suppβ ⊂ Uφ(β). Then define

g =
∑

β∈B
βgφ(β).

The reader can check easily that g is well defined and is indeed a Riemann metric on M .
ut

Example 4.1.3. (The Euclidean space) The space Rn has a natural Riemann metric

g0 = (dx1)2 + · · ·+ (dxn)2.

The geometry of (Rn, g0) is the classical Euclidean geometry. ut
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Example 4.1.4. (Induced metrics on submanifolds) Let (M, g) be a Riemann manifold
and S ⊂ M a submanifold. If ı : S → M denotes the natural inclusion then we obtain by
pull back a metric on S

gS = ı∗g = g |S .

For example, any invertible symmetric n×n matrix defines a quadratic hypersurface in Rn

by
HA = {x ∈ Rn ; 〈Ax, x〉 = 1}

where 〈·, ·〉 denotes the Euclidean inner product on Rn. HA has a natural metric induced
by the Euclidean metric on Rn. For example when A = In then HIn is the unit sphere in
Rn the induced metric is called the round metric of Sn−1. ut

Figure 4.1: The unit sphere and an ellipsoid look “different”.

Figure 4.2: A plane sheet and a half cylinder are “not so different”.

Remark 4.1.5. On any manifold there exist many Riemann metrics and there is no natural
way of selecting one of them. One can visualize a Riemann structure as defining a “shape”
of the manifold. For example the unit sphere x2 + y2 + z2 = 1 is diffeomorphic to the
ellipsoid x2

12 + y2

22 + z2

32 = 1 but they look “different ” (see Figure 4.1). However, appearances
may be deceiving. In Figure 4.2 it is illustrated the deformation of a sheet of paper to a
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half cylinder. They look different but the metric structures are the same since we have not
changed the lengths of curves on our sheet. The conclusion to be drawn from these two
examples is that we have to be very careful when we use the attribute “different”. ut

Example 4.1.6. (The hyperbolic plane) The Poincaré model of the hyperbolic plane
is the Riemann manifold (D, g) where D is the unit open disk in the plane R2 and the
metric g is given by

g =
1

1− x2 − y2
(dx2 + dy2).

Exercise 4.1.1. Let H denote the upper half-plane

H = {(u, v) ∈ R2 ; v > 0}

endowed with the metric
h =

1
4v2

(du2 + dv2).

Show that the Cayley transform

z = x + iy 7→ w = −i
z + i
z − i

= u + iv

establishes an isometry (D, g) ∼= (H, h). ut

Example 4.1.7. (Left invariant metrics on Lie groups.) Consider a Lie group G
and denote by LG its Lie algebra. Then any inner product 〈·, ·〉 on LG induces a Riemann
metric h = 〈·, ·〉g on G defined by

hg(X,Y ) = 〈X,Y 〉g = 〈(Lg−1)∗X, (Lg−1)∗Y 〉 ∀g ∈ G, X, Y ∈ TgG

where (Lg−1)∗ : TgG → T1G is the differential at g ∈ G of the left translation map Lg−1 .
One checks easily that g 7→ 〈·, ·〉g is a smooth tensor field and is left invariant i.e.

L∗gh = h ∀g ∈ G.

If G is also compact one then can use the averaging technique of Subsection 3.4.2 to produce
metrics which are both left and right invariant. ut

Exercise 4.1.2. Let M = Gk,n be the grassmannian of complex k-planes in Cn. For each
such k-plane V denote by PV the orthogonal projection onto V . Thus P ∗

V = PV = P 2
V and

Range (PV ) = V so that PV can be viewed as a complex, selfadjoint n× n matrix. Denote
by Sn the linear space of such matrices and by h0 the inner product

h0(A,B) = tr (AB∗) ∀A,B ∈ Sn.

(a) Prove that the map Pk : Gk,n → Sn defined by V 7→ PV is an embedding i.e. it is a
one-to-one immersion.
(b) Let k = 1 so that G1,n

∼= CPn−1. Describe the induced metric P ∗
1 h0 on CPn−1 using

the homogeneous coordinates introduced in Section 1.2.2. ut
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4.1.2 The Levi-Civita connection

To continue our study of Riemann manifolds we will try to follow a close parallel with
classical euclidian geometry. The first question one may ask is whether there is a notion
of “straight line” on a Riemann manifold. In the euclidian space R3 there are at least two
ways to define a line segment.
(i) A line segment is the shortest path connecting two given points.
(ii) A line segment is a smooth path γ : [0, 1] → R3 satisfying

γ̈(t) = 0. (4.1.1)

Since we have not said anything about the calculus of variations (which deals precisely with
problems of type (i) ) we will use the second interpretation as our starting point. We will
see however that both points of view yield the same conclusion.

Let us first reformulate (4.1.1). As we know the tangent bundle of R3 is equipped with
a natural trivialization and as such it has a natural trivial connection ∇0 defined by

∇0
i ∂j = 0 ∀i, j (∂i =

∂

∂xi
, ∇i = ∇∂i),

i.e. all the Christoffel symbols vanish. Moreover if g0 denotes the Euclidean metric then
(∇0

i g0

)
(∂j , ∂k) = ∇0

i δjk − g0(∇0
i ∂j , ∂k)− g0(∂j ,∇0

i ∂k) = 0

i.e. the connection is compatible with the metric. Condition (4.1.1) can be rephrased as

∇0
γ̇(t)γ̇(t) = 0 (4.1.2)

so that the problem of defining “lines” in a Riemann manifold reduces to choosing a “nat-
ural” connection on the tangent bundle. Of course we would like this connection to be
compatible with the metric but even so, there are infinitely many connections to choose
from. The following fundamental result will solve this dilemma.

Proposition 4.1.8. Consider a Riemann manifold (M, g). Then there exists a unique
symmetric connection ∇ on TM compatible with the metric g i.e.

T (∇) = 0 ∇g = 0.

∇ is usually called the Levi-Civita connection associated to the metric g.

Proof We first prove that there exists at most one connection with the required proper-
ties. We will achieve this by producing an explicit description of it.

Let ∇ be a connection with the desired properties, i.e.

∇g = 0 and ∇XY −∇Y X = [X, Y ] ∀X,Y ∈ Vect (M).

For any X, Y, Z ∈ Vect (M) we have

Zg(X, Y ) = g(∇ZX,Y ) + g(X,∇ZY )
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since ∇g = 0. Using the symmetry of the connection we compute

Zg(X, Y )− Y g(Z, X) + Xg(Y, X) = g(∇ZX, Y )− g(∇Y Z, X) + g(∇XY, Z)

+g(X,∇ZY )− g(Z,∇Y X) + g(Y,∇XZ)

= g([Z, Y ], X) + g([X, Y ], Z) + g([Z, X], Y ) + 2g(∇XZ, Y ).

We conclude that

g(∇XZ, Y ) =
1
2
{Xg(Y,Z)− Y g(Z, X) + Zg(X,Y )

−g([X,Y ], Z) + g([Y,Z], X)− g([Z, X], Y )}. (4.1.3)

The above equality establishes the uniqueness of ∇.
Using local coordinates (x1, · · · , xn) on M we deduce from (4.1.3) (with X = ∂

∂xi
, Y =

∂
∂xk

, Z = ∂
∂xj

) that

g(∇i∂j , ∂k) = gk`Γ`
ij =

1
2

(∂igjk − ∂kgij + ∂jgik) .

If (gi`) denotes the inverse of (gi`) we deduce

Γ`
ij =

1
2
gk` (∂igjk − ∂kgij + ∂jgik) . (4.1.4)

Existence It boils down to showing that (4.1.3) indeed defines a connection with the
required properties. The routine details are left to the reader.

ut

We can now define the notion of “straight line” on a Riemann manifold.

Definition 4.1.9. A geodesic on a Riemann manifold (M, g) is a smooth curve γ : (a, b) →
M satisfying

∇γ̇(t)γ̇(t) = 0, (4.1.5)

where ∇ is the Levi-Civita connection.

Using local coordinates (x1, ..., xn) with respect to which the Christoffel symbols are
(Γk

ij) and γ(t) = (x1(t), ..., xn(t)) we can reformulate the geodesic equation as a second
order nonlinear system of ordinary differential equations. Set d

dt = γ̇(t) = ẋi∂i. Then

∇ d
dt

γ̇(t) = ẍi∂i + ẋi∇ d
dt

∂i

= ẍi∂i + ẋiẋj∇j∂i

= ẍk∂k + Γk
jiẋ

iẋj∂k (Γk
ij = Γk

ji)

so that the geodesic equation is equivalent to

ẍk + Γk
ij ẋ

iẋj = 0 ∀k = 1, ..., n. (4.1.6)

Since the coefficients Γk
ij = Γk

ij(x) depend smoothly upon x we can use the classical Banach-
Picard theorem on existence in initial value problems (see e.g. [4]). We deduce the following
local existence result.
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Proposition 4.1.10. Let (M, g) be a Riemann manifold. For any compact subset K ⊂ TM
there exists ε > 0 such that for any (x,X) ∈ K there exists a unique geodesic γ = γx,X :
(−ε, ε) → M such that γ(0) = x, γ̇(0) = X.

One can think of a geodesic as defining a path in the tangent bundle t 7→ (γ(t), γ̇(t)).
The above proposition shows that the geodesics define a local flow Φ on TM by

Φt(x,X) = (γ(t), γ̇(t)) γ = γx,X .

Definition 4.1.11. The local flow defined above is called the geodesic flow of the Riemann
manifold (M, g). When the geodesic glow is a global flow i.e. any γx,X is defined at each
moment of time t for any (x, X) ∈ TM then the Riemann manifold is called geodesically
complete.

The geodesic flow has some remarkable properties.

Conservation of energy. If γ(t) is a geodesic then the length of γ̇(t) is independent of
time.

ut

Indeed
d

dt
|γ̇(t)|2 =

d

dt
g(γ̇(t), γ̇(t)) = 2g(∇γ̇(t), γ̇(t)) = 0.

Thus if we consider the sphere bundles

Sr(M) = {X ∈ TM ; |X| = r}

we deduce that Sr(M) are invariant subsets of the geodesic flow.

Exercise 4.1.3. Describe the infinitesimal generator of the geodesic flow. ut

Example 4.1.12. Let G be a connected Lie group and LG its Lie algebra. Any X ∈ LG

defines an endomorphism ad (X) of LG by

ad(X)Y = [X, Y ].

The Jacobi identity implies that

ad([X,Y ]) = [ad(X), ad(Y )],

where the bracket in the right hand side is the usual commutator of two endomorphisms.
Assume there exists an inner product 〈·, ·〉 on LG such that for any X ∈ LG, ad(X) is

skew-adjoint i.e.
〈[X, Y ], Z〉 = −〈Y, [X, Z]〉 (4.1.7)

We can now extend this inner product to a left invariant metric h on G. We want to
describe its geodesics. First, we have to determine the associated Levi-Civita connection.
Using (4.1.3) we get

h(∇XZ, Y ) =
1
2
{Xh(Y, Z)− Y (Z,X) + Zh(X, Y )
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−h([X, Y ], Z) + h([Y, Z], X)− h([Z, X], Y )}.
If we take X,Y, Z ∈ LG, i.e. these vector fields are left invariant, then h(Y, Z) = constant,
h(Z, X) = const., h(X,Y ) = const. so that the first three terms in the above formula
vanish. We obtain the following equality (at 1 ∈ G)

〈∇XZ, Y 〉 =
1
2
{−〈[X, Y ], Z〉+ 〈[Y,Z], X〉 − 〈[Z, X], Y 〉}.

Using the skew-symmetry of ad(X) and ad(Z) we deduce

〈∇XZ, Y 〉 =
1
2
〈[X,Z], Y 〉

so that at 1 ∈ G

∇XZ =
1
2
[X, Z] ∀X,Z ∈ LG. (4.1.8)

This formula correctly defines a connection since any X ∈ Vect (G) can be written as a
linear combination

X =
∑

αiXi αi ∈ C∞(G) Xi ∈ LG.

Now, if γ(t) is a geodesic we can write γ̇(t) =
∑

γiXi so that

0 = ∇γ̇(t)γ̇(t) =
∑

i

γ̇iXi +
1
2

∑

i,j

γiγj [Xi, Xj ].

Since [Xi, Xj ] = −[Xj , Xi] we deduce γ̇i = 0 i.e.

γ̇(t) =
∑

γi(0)Xi = X.

This means γ is an integral curve of the left invariant vector field X so that the geodesics
through the origin with initial direction X ∈ T1G are

γX(t) = exp(tX).

ut

Exercise 4.1.4. Let G be a Lie group and h a bi-invariant metric on G. Prove that its
restriction to LG satisfies (4.1.7). In particular, on any compact Lie groups there exist
metrics satisfying (4.1.7). ut

Definition 4.1.13. Let L be a finite dimensional real Lie algebra. The Killing pairing or
form is the bilinear map

κ : L× L → R, κ(x, y) = −tr (ad(x)ad(y)) x, y ∈ L.

The Lie algebra L is said to be semisimple if the Killing pairing is a duality. A Lie group
G is called semisimple if its Lie algebra is semisimple.



124 Riemannian geometry

Exercise 4.1.5. Prove that SO(n) and SU(n) and SL(n,R) are semisimple Lie groups but
U(n) is not. ut

Exercise 4.1.6. Let G be a compact Lie group. Prove that the Killing form is positive
semi-definite1 and satisfies (4.1.7).
Hint Use Exercise 4.1.4 ut

Exercise 4.1.7. Show that the parallel transport of X along exp(tY ) is

(Lexp( t
2
Y ))∗(Rexp( t

2
Y ))∗X.

ut

Example 4.1.14. (Geodesics on flat tori and on SU(2)) The n-dimensional torus
Tn ∼= S1× · · · ×S1 is an Abelian, compact Lie group. If (θ1, ..., θn) are the natural angular
coordinates on Tn then the flat metric is defined by

g = (dθ1)2 + · · · (dθn)2.

g is a bi-invariant metric on Tn and obviously its restriction to the origin satisfies the skew-
symmetry condition (4.1.7) since the bracket is 0. The geodesics through 1 will be the
exponentials

γα1,...,αn(t) t 7→ (eiα1t, ..., eiαnt) αk ∈ R.

If the numbers αk are linearly dependent over Q then obviously γα1,...,αn(t) is a closed
curve. On the contrary, when the α’s are linearly independent over Q then a classical result
of Kronecker (see e.g. [33]) states that the image of γα1,...,αn is dense in Tn!!! (see also
Section 7.4 to come)

The special unitary group SU(2) can also be identified with the group of unit quaternions

{a + bi + cj + dk ; a2 + b2 + c2 + d2 = 1}
so that SU(2) is diffeomorphic with the unit sphere S3 ⊂ R4. The round metric on S3 is
bi-invariant with respect to left and right (unit) quaternionic multiplication (verify this) and
its restriction to (1,0,0,0) satisfies (4.1.7). The geodesics of this metric are the 1-parameter
subgroups of S3 and we let the reader verify that these are in fact the great circles of S3

i.e. the circles of maximal diameter on S3. Thus, all geodesics on S3 are closed. ut

4.1.3 The exponential map and normal coordinates

We have already seen that there are many differences between the classical Euclidean geom-
etry and the the general riemannian geometry in the large. In particular we have seen
examples in which one of the basic axioms of Euclidean geometry no longer holds: two
distinct geodesic (read lines) may intersect in more than one point. The global topology of
the manifold is responsible for this “failure”.

1The converse of the above exercise is also true, i.e. any semisimple Lie group with positive definite
Killing form is compact. This is known as Weyl’s theorem. Its proof, which will be given later in the book,
requires substantially more work.
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Locally however, things are not “as bad”. Local Riemannian geometry is similar in many
respects with the Euclidean geometry. For example, locally, all of the classical incidence
axioms hold.

In this section we will define using the metric some special collections of local coordinates
in which things are very close to being Euclidean.

Let (M, g) be a Riemann manifold and U an open coordinate neighborhood with coor-
dinates (x1, ..., xn). We will try to find a local change in coordinates (xi) 7→ (yj) in which
the expression of the metric is as close as possible to the Euclidean metric g0 = δijdyidyj .

Let q ∈ U be the point with coordinates (0,...,0). Via a linear change in coordinates we
may as well assume that

gij(q) = δij .

We can formulate this by saying that (gij) is Euclidean up to order zero.
We would like to “spread” the above equality to an entire neighborhood of q. To achieve

this we try to find local coordinates (yj) near q such that in these new coordinates the metric
is Euclidean up to order one i.e.

gij(q) = δij
∂gij

∂yk
(q) =

∂δij

∂yk
(q) = 0. ∀i, j, k.

We now describe a geometric way of producing such coordinates using the geodesic flow.
Denote as usual the geodesic from q with initial direction X ∈ TqM by γq,X(t). Note

the following simple fact
∀s > 0 γq,sX(t) = γq,X(st).

Hence, there exists a small neighborhood V of 0 ∈ TqM such that for any X ∈ V the
geodesic γq,X(t) is defined for all |t| ≤ 1. We define the exponential map at q by

expq : V ⊂ TqM → M X 7→ γq,X(1).

TqM is an Euclidean space and we can define Dq(r) ⊂ TqM - the open “disk” of radius r
centered at the origin. We have the following result.

Proposition 4.1.15. Let (M, g) and q ∈ M as above. Then there exists r > 0 such that
the exponential map

expq : Dq(r) → M

is a diffeomorphism onto. The supremum of all radii r with this property is denoted by
ρM (q).

Definition 4.1.16. ρM (q) is called the injectivity radius of M at q. The infimum

ρM = inf
q

ρM (q)

is called the injectivity radius of M .

The proof relies on the following key fact.
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Lemma 4.1.17. The Frechet differential at 0 ∈ TqM of the exponential map

D0 expq : TqM → Texpq(0)M = TqM

is the identity TqM → TqM .

Proof of the lemma. Consider X ∈ TqM . It defines a line in TqM by t 7→ tX which is
mapped via the exponential map to the geodesic γq,X(t). By definition

(D0 expq)X = γ̇q,X(0) = X.

ut

Proposition 4.1.15 follows immediately from the above lemma using the inverse function
theorem.

ut

Now choose an orthonormal frame (e1, ..., en) of TqM and denote by (x1, ...,xn) the
resulting cartesian coordinates. For 0 < r < ρM (q) any point p ∈ expq(Dq(r)) can be
uniquely written as

p = expq(x
iei)

so the collection (x1, ...,xn) provides a coordinatization of the open set expq(Dq(r)) ⊂ M .
The coordinates thus obtained are called normal coordinates at q , the open set expq(Dq(r))
is called a normal neighborhood and will be denoted by Br(q) for reasons that will become
apparent a little later.

Proposition 4.1.18. Let (xi) be normal coordinates at q ∈ M and denote by gij the
expression of the metric tensor in these coordinates. Then we have

gij(q) = δij and
∂gij

∂xk
(q) = 0 ∀i, j, k.

Thus, the normal coordinates provide a first order contact between g and the Euclidean
metric.

Proof By construction, the vectors ei = ∂
∂xi form an orthonormal basis of TqM and this

proves the first equality. To prove the second equality we need the following auxiliary result.

Lemma 4.1.19. In normal coordinates (xi) (at q) the Christoffel symbols Γi
jk vanish at q.

Proof of the lemma. For any (m1, ..., mn) ∈ Rn the curve xi = mit is the geodesic
t 7→ expq

(∑
mi ∂

∂xi

)
so that

Γi
jk(x(t))mjmk = 0.

In particular
Γi

jk(0)mjmk = 0 ∀mj ∈ Rn

from which we deduce the lemma.
ut
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The result in the above lemma can be formulated as

g

(
∇ ∂

∂xj

∂

∂xi
,

∂

∂xk

)
= 0 ∀i, j, k

so that
∇ ∂

∂xj

∂

∂xi
= 0 at q ∀i, j. (4.1.9)

Using ∇g = 0 we deduce
∂gij

∂xk
(q) = (

∂

∂xk
gij) |q= 0.

ut

The reader may ask whether we can go one step further and find local coordinates
which produce a second order contact with the Euclidean metric. At this step we are in for
a big surprise. This thing is in general not possible and in fact there is a geometric way
of measuring the “second order distance” between an arbitrary metric and the Euclidean
metric. This is where the curvature of the Levi-Civita connection comes in, and we will
devote an entire section to this subject.

4.1.4 The minimizing property of geodesics

We defined geodesics via a 2nd order equation imitating the 2nd order equation defining
lines in an Euclidean space. As we have already mentioned, this is not the unique way of
extending the notion of Euclidian straight line to arbitrary Riemann manifolds. One may
try to look for curves of minimal length joining two given points. We will prove that the
geodesics defined as in the previous subsection do just that, at least locally. We begin with
a technical result which is interesting in its own. Let (M, g) be a Riemann manifold.

Lemma 4.1.20. For each q ∈ M there exists 0 < r < ρM (q) and ε > 0 such that ∀m ∈
Br(q) we have ε < ρM (m) and Bε(m) ⊃ Br(q). In particular, any two points of Br(q) can
be joined by a unique geodesic of length < ε.

We must warn the reader that the above result does not guarantee that the postulated
connecting geodesic lies entirely in Br(q). This is a different ball game.

Proof of the lemma. Using the smooth dependence upon initial data in ordinary
differential equations we deduce that there exists an open neighborhood V of (q, 0) ∈ TM
such that expm X is well defined for all (m,X) ∈ V . We get a smooth map

F : V → M ×M (m,X) 7→ (m, expm X).

We compute the differential of F at (q, 0). First, using normal coordinates (xi) near q we
get coordinates (xi;Xj) near (q, 0) ∈ TM . The partial derivatives of F at (q, 0) are

D(q,0)F (
∂

∂xi
) =

∂

∂xi
+

∂

∂Xi

D(q,0)F (
∂

∂Xi
) =

∂

∂Xi
.
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Thus the matrix defining D(q,0)F has the form
[
1 0
∗ 1

]

and in particular it is nonsingular.
It follows from the implicit function theorem that F maps some neighborhood V of

(q, 0) ∈ TM diffeomorphically onto some neighborhood U of (q, q) ∈ M × M . We can
choose V to have the form {(m,X) ; |X|m < ε, m ∈ Bδ(q)} for some sufficiently small ε
and δ. Choose 0 < r < min(ε, ρM (q)) such that

∀m1, m2 ∈ Br(q) (m1,m2) ∈ U.

In particular, it follows that for any m ∈ Br(q)

expm : Dε(m) ⊂ TmM → M

is a diffeomorphism onto, and

Bε(m) = expm(Dε(m)) ⊃ Br(q).

Clearly, for any m the curve t 7→ expm(tX) is a geodesic of length < ε joining m to expm(X).
It is the unique geodesic with this property since F : V → U is injective.

ut

We can now formulate the main result of this subsection.

Theorem 4.1.21. Let q, r and ε as in the previous lemma and consider γ : [0, 1] → M the
unique geodesic of length < ε joining two points of Br(q). If ω : [0, 1] → M is a piecewise
smooth path with the same endpoints as γ then

∫ 1

0
|γ̇(t)|dt ≤

∫ 1

0
|ω̇(t)|dt

with equality if and only if ω([0, 1]) = γ([0, 1]). Thus γ is the shortest path joining its
endpoints.

The proof relies on two lemmata. Let m ∈ M be an arbitrary point and assume
0 < R < ρM (m).

Lemma 4.1.22. (Gauss) In BR(m) the geodesics through m are orthogonal to the hyper-
surfaces

Σδ = expq(Sδ(0)) = {expm(X) ; |X| = δ} 0 < δ < R.

Proof Let t 7→ X(t), 0 ≤ t ≤ 1 denote an arbitrary smooth curve in TmM such that
|X(t)|m = 1 i.e. X(t) is a curve on the unit sphere S1(0) ⊂ TmM . We have to prove
that the curves t 7→ expm(δX(t)) are orthogonal to the radial geodesic s 7→ expm(sX(0)),
0 ≤ s ≤ R.
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Consider the parameterized surface

f(s, t) = expm(sX(t)) (s, t) ∈ [0, R)× [0, 1].

Set
∂f

∂s

def
= f∗

(
∂

∂s

)
∈ Tf(s,t)M.

Define ∂f
∂t similarly. ∂f

∂s and ∂f
∂t are not vector fields in the usual sense since the surface f

may have double points and at such point f∗ may associate two tangent vectors. One way
around this problem is to pullback everything (metric, connection etc.) to the rectangle
[0, R]× [0, 1] via f and everything will be correctly defined. We will denote the pulled-back
objects by the same symbols as the originals. It is convenient to view these “vector fields”
as the tangent vectors to the “coordinate lattice” f(t = const.), f(s = const.). We have to
show

〈∂f

∂s
,
∂f

∂t
〉 = 〈 ∂

∂s
,

∂

∂t
〉 = 0 ∀(s, t)

where 〈·, ·〉 denotes the inner product defined by g. The first equality is tautological. Using
the metric compatibility of the (pulled-back) Levi-Civita connection we compute

∂

∂s
〈 ∂

∂s
,

∂

∂t
〉 = 〈∇ ∂

∂s

∂

∂s
,

∂

∂t
〉+ 〈 ∂

∂s
,∇ ∂

∂s

∂

∂t
〉.

Since the curves f(t = const.) are geodesics we deduce

∇ ∂
∂s

∂

∂s
= 0.

On the other hand, since
[

∂
∂s ,

∂
∂t

]
= 0 we deduce (using the symmetry of the Levi-Civita

connection)

〈 ∂

∂s
,∇ ∂

∂s

∂

∂t
〉 = 〈 ∂

∂s
,∇ ∂

∂t

∂

∂s
〉 =

1
2

∂

∂t

∣∣∣∣
∂

∂s

∣∣∣∣
2

= 0

since
∣∣∣∂f

∂s

∣∣∣ = |X(t)| = 1. We conclude that the quantity 〈 ∂
∂s ,

∂
∂t〉 is independent of s. For

s = 0 we have f(0, t) = expm(0) so that ∂f
∂t = 0, and therefore

〈∂f

∂s
,
∂f

∂t
〉 = 0 ∀(s, t)

as needed.
ut

Now consider any continuous, piecewise smooth curve

ω : [a, b] → BR(m) \ {m}.

Each ω(t) can be uniquely expressed in the form

ω(t) = expm(ρ(t)X(t)) |X(t)| = 1 0 < |ρ(t)| < R.
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Lemma 4.1.23. The length of the curve ω(t) is ≥ |ρ(b) − ρ(a)|. The equality holds iff
X(t) = const and ρ̇(t) ≥ 0. In other words, the shortest path joining two concentrical shells
Σδ is a radial geodesic.

Proof Let f(ρ, t) = expm(ρX(t)) so that

ω(t) = f(ρ(t), t).

Then
ω̇ =

∂f

∂ρ
ρ̇ +

∂f

∂t
.

Since the vectors ∂f
∂ρ and ∂f

∂t are mutually orthogonal and since
∣∣∣∣
∂f

∂ρ

∣∣∣∣ = |X(t)| = 1

we get

|ω̇|2 = |ρ̇|2 +
∣∣∣∣
∂f

∂ρ

∣∣∣∣
2

≥ |ρ̇|2.

The equality holds if and only if ∂f
∂ρ = 0 i.e. Ẋ = 0. Thus

∫ b

a
|ω̇|dt ≥

∫ b

a
|ρ̇|dt ≥ |ρ(b)− ρ(a)|.

Equality holds if and only if ρ(t) is monotone and X(t) is constant. This completes the
proof of the lemma.

ut

The proof of Theorem 4.1.21 is now immediate. Let m0,m1 ∈ Br(q) and γ : [0, 1] → M
a geodesic of length < ε such that γ(i) = mi, i = 0, 1. We can write

γ(t) = expm0
(tX) X ∈ Dε(m0).

Set R = |X|. Consider any other piecewise smooth path ω : [a, b] → M joining m0 to m1.
For any δ > 0 this path must contain a portion joining the shell Σδ(m0) to the shell ΣR(m0)
and lying between them. By the previous lemma the length of this segment will be ≥ R−δ.
Letting δ → 0 we deduce

l(ω) ≥ R = l(γ).

If ω([a, b]) does not coincide with γ([0, 1]) then we obtain a strict inequality.
ut

Any Riemann manifold has a natural structure of metric space. More precisely we set

d(p, q) = inf
{

l(ω) ω : [0, 1] → M piecewise smooth path joining p to q
}

A piecewise smooth path ω connecting two points p, q such that l(ω) = d(p, q) is said to be
minimal. From Theorem 4.1.21 we deduce immediately the following consequence.
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Corollary 4.1.24. The image of any minimal path coincides with the image of a geodesic.
In other words, any minimal path can be reparameterized such that it satisfies the geodesic
equation.

Exercise 4.1.8. Prove the above corollary. ut

Theorem 4.1.21 also implies that any two nearby points can be joined by a unique
minimal geodesic. In particular we have the following consequence.

Corollary 4.1.25. Let q ∈ M . Then for all r > 0 sufficiently small

expq(Dr(0))(= Br(q)) = {p ∈ M ; d(p, q) < r} (4.1.10)

Corollary 4.1.26. For any q ∈ M we have the equality

ρM (q) = sup{r ; r satisfies (4.1.10)}.

Proof The same argument as in the proof of Theorem 4.1.21 shows that ∀r < ρM (q) the
radial geodesics expq(tX) are minimal.

ut

Definition 4.1.27. A subset U ⊂ M is said to be convex if any two points in U can be
joined by a unique minimal geodesic which lies entirely inside U .

Proposition 4.1.28. For any q ∈ M there exists 0 < R < ιM (q) such that for any r < R
the ball Br(q) is convex.

Proof Choose a small ε > 0 (0 < 2ε < ρM (q)) and 0 < R < ε such any two points m0,
m1 in BR(q) can be joined by a unique minimal geodesic γm0,m1(t) (0 ≤ t ≤ 1) of length
< ε (not necessarily contained in BR(q)). We will prove that ∀m0,m1 ∈ BR(q) the map
t 7→ d(q, γm0,m1(t)) is convex and thus it achieves its maxima at the endpoints t = 0, 1.
Note that

d(q, γ(t)) < R + ε < ρM (q).

The geodesic γm0,m1(t) can be uniquely expressed as

γm0,m1(t) = expq(r(t)X(t)) X(t) ∈ TqM with r(t) = d(q, γm0,m1(t)).

It suffices to show d2

dt2
(r2) ≥ 0 for t ∈ [0, 1] if d(q,m0) and d(q, m1) are sufficiently small.

At this moment it is convenient to use normal coordinates (xi) near q. The geodesic
γm0,m1 takes the form (xi(t)) and we have

r2 = (x1)2 + · · ·+ (xn)2.

We compute easily
d2

dt2
(r2) = 2r2(ẍ1 + · · ·+ ẍn) + |ẋ|2 (4.1.11)

where ẋ(t) =
∑

ẋiei ∈ TqM . γ satisfies the equation

ẍi + Γi
jk(x)ẋjẋk = 0
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Since Γi
jk(0) = 0 (normal coordinates) we deduce that there exists a constant C > 0

(depending only on the magnitude of the second derivatives of the metric at q) such that

|Γi
jk(x)| ≤ C|x|.

Using the geodesic equation we obtain

ẍi ≥ −C|x||ẋ|2.
We substitute the above inequality in (4.1.11) to get

d2

dt2
(r2) ≥ 2|ẋ|2 (

1− nC|x|3) . (4.1.12)

If we choose from the very beginning

R + ε ≤
(

1
nC

)1/3

then because along the geodesic |x| ≤ R + ε the right-hand-side of (4.1.12) is nonnegative.
This establishes the convexity of t 7→ r2(t) and concludes the proof of the proposition.

ut

In the last result of this subsection we return to the concept of geodesic completeness.
We will see that this can be described in terms of the metric space structure alone.

Theorem 4.1.29. (Hopf-Rinow) Let M be a Riemann manifold and q ∈ M . The follow-
ing assertions are equivalent:
(a) expq is defined on all of TqM .
(b) The closed and bounded (with respect to the metric structure) sets of M are compact.
(c) M is complete as a metric space.
(d) M is geodesically complete.
(e) There exists a sequence of compact sets Kn ⊂ M , Kn ⊂ Kn+1 and

⋃
n Kn = M such

that if pn 6∈ Kn then d(q, pn) →∞.
Moreover, on a (geodesically) complete manifold any two points can be joined by a min-

imal geodesic.

Remark 4.1.30. On a complete manifold there could exist points (sufficiently far apart)
which can be joined by more than one minimal geodesic. Think for example of a manifold
where there exist closed geodesic (e.g the tori Tn). ut

Exercise 4.1.9. Prove the Hopf-Rinow theorem. ut

Exercise 4.1.10. Let (M, g) be a Riemann manifold and let (Uα) an open cover consisting
of bounded geodesically convex open sets. Set dα = (diameter (Uα))2. Denote by gα the
metric on Uα defined by gα = d−1

α g so that the diameter of Uα in the new metric is 1. Using
a partition of unity (ϕi) subordinated to this cover we can form a new metric

g̃ =
∑

i

ϕigα(i) (suppϕi ⊂ Uα(i)).

Prove that g̃ is a complete Riemann metric. Hence, on any manifold there exist complete
Riemann metrics. ut
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4.1.5 Calculus on Riemann manifolds

The classical vector analysis extends nicely to Riemann manifolds. We devote this subsec-
tion to describing this more general “vector analysis”.

Let (M, g) be an oriented Riemann manifold. We now have two structures at our
disposal: a Riemann metric and an orientation and we will use both of them to construct
a plethora of operations on tensors.

First, using the metric we can construct by duality an isomorphism L : Vect (M) →
Ω1(M) (called lowering the indices).

Example 4.1.31. Let M = R3 with the Euclidean metric. A vector field V on M has the
form

V = P
∂

∂x
+ Q

∂

∂y
+ R

∂

∂z
.

Then
W = LV = Pdx + Qdy + Rdz.

If we think of V as a field of forces in the space then W is the infinitesimal work of V . ut

On a Riemann manifold there is an equivalent way of describing the exterior derivative.

Proposition 4.1.32. Let

ε : C∞(T ∗M ⊗ ΛkT ∗M) → C∞(Λk+1T ∗M)

denote the exterior multiplication operator

ε(α⊗ β) = α ∧ β, ∀α ∈ Ω1(M), β ∈ Ωk(M).

Then
d = ε ◦ ∇

where d denotes the exterior derivative and ∇ is the connection induced on ΛkT ∗M by the
Levi-Civita connection. ut

Proof We will use a strategy useful in many other situations. Our discussion about normal
coordinates will payoff. Denote temporarily by D the operator ε ◦ ∇. The equality d = D
is a local statement and it suffices to prove it in any coordinate neighborhood. Choose (xi)
normal coordinates at an arbitrary point p ∈ M and set ∂i = ∂

∂xi . Note that

D =
∑

i

dxi ∧∇i ∇i = ∇∂i
.

Let ω ∈ Ωk(M). Near p it can be written as

ω =
∑

I

ωIdxI

where as usual, for any ordered multi-index I: (1 ≤ i1 < · · · < ik ≤ n) we set dxI =
dxi1 ∧ · · · ∧ dxik . In normal coordinates at p we have (∇i∂i) |p= 0 from which we get the
equalities

(∇idxj) |p (∂k) = −(dxj(∇i∂k)) |p= 0.
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Thus at p
Dω =

∑

I

dxi ∧∇i(ωIdxI)

=
∑

I

dxi ∧ (∂jωIdxI + ωI∇i(dxI)) =
∑

I

dxi ∧ ∂jωI = dω.

Since the point p was chosen arbitrarily this completes the proof of Proposition 4.1.32.
ut

Exercise 4.1.11. Show that for any k-form ω on the Riemann manifold (M, g) the exterior
derivative dω can be expressed by

dω(X0, X1, · · · , , Xk) =
k∑

i=0

(−1)i(∇Xiω)(X0, · · · , X̂i, · · · , Xk)

for all X0, · · · , Xk ∈ Vect (M). (∇ denotes the Levi-Civita connection.) ut

The Riemann metric defines by duality a metric in any tensor bundle Tr
s(M) which we

continue to denote by g. Thus, given two tensor fields T1, T2 of the same type (r, s) we can
form their pointwise scalar product

M 3 p 7→ g(T, S)p = gp(T1(p), T2(p)).

In particular, any such tensor has a pointwise norm

M 3 p 7→ |T |g,p = (T, T )1/2
p .

Using the orientation we can construct (using the results in subsection 2.2.4) a natural
volume form on M which we denote by dvg and we call it the metric volume . This is the
positively oriented volume form of pointwise norm ≡ 1. If (x1, ..., xn) are local coordinates
such that dx1 ∧ · · · ∧ dxn is positively oriented then

dvg =
√
|g|dx1 ∧ · · · ∧ dxn

where |g| = det(gij). In particular we can integrate (compactly supported) functions on M
by ∫

(M,g)
f

def
=

∫

M
fdvg ∀f ∈ C∞

0 (M).

We have the following (not so surprising) result.

Proposition 4.1.33.
∇Xdvg = 0 ∀X ∈ Vect (M).

Proof We have to show that for any p ∈ M

(∇Xdvg)(e1, ..., en) = 0 (4.1.13)
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where e1, ..., ep is a basis of TpM . Choose (xi) normal coordinates near p. Set ∂i = ∂
∂xi ,

gij = g(∂i, ∂k) and ei = ∂i |p. Since the expression in (4.1.13) is linear in X we may as well
assume X = ∂k for some k = 1, ..., n. We compute

(∇Xdvg)(e1, ..., en) = X(dvg(∂1, ..., ∂n)) |p −
∑

i

dvg(e1, ..., (∇X∂i) |p, ..., ∂n). (4.1.14)

We consider each term separately. Note first that dvg(∂1, ..., ∂n) = (det(gij))1/2 so that
X(det(gij))1/2 |p= ∂k(det(gij))1/2 |p is a linear combination of products in which each
product has a factor of the form ∂kgij |p. Such a factor is zero since we are working in
normal coordinates. Thus the first term in(4.1.14) is zero. The other terms are zero as well
since in normal coordinates p

∇X∂i = ∇∂k
∂i = 0.

Proposition 4.1.33 is proved.
ut

Once we have an orientation we also have the Hodge ∗-operator

∗ : Ωk(M) → Ωn−k(M)

uniquely determined by

α ∧ ∗β = (α, β)dvg ∀α β ∈ Ωk(M). (4.1.15)

In particular
∗1 = dvg.

Example 4.1.34. To any vector field F = P∂x + Q∂y + R∂z on R3 we associated its
infinitesimal work

WF = L(F ) = Pdx + Qdy + Rdz.

The infinitesimal energy flux of F is the 2-form

ΦF = ∗WF = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy.

The exterior derivative of WF is the infinitesimal flux of the vector field curlF

dWF = (∂yR− ∂zQ)dy ∧ dz + (∂zP − ∂xR)dz ∧ dx + (∂xQ− ∂yP )dx ∧ dy

= ΦcurlF = ∗WcurlF .

The divergence of F is the scalar defined as

div F = ∗d ∗WF = ∗dΦF = ∗ {(∂xP + ∂yQ + ∂zR)dx ∧ dy ∧ dz} = ∂xP + ∂yQ + ∂zR.

If f is a function on R3 then we compute easily

∗d ∗ df = ∂2
xf + ∂2

yf + ∂2
xf = ∆f.

ut
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Definition 4.1.35. (a) For any smooth function f on M we denote by grad f the vector
field dual to the 1-form df . In other words

(grad f, X) = df(X) = X · f ∀X ∈ Vect (M).

(b) For any X ∈ Vect (M) we denote by div X the smooth function defined by the equality

LXdvg = (div X)dvg.

Proposition 4.1.36. Let X be a vector field on M and denote by α the 1-form dual to X.
Then
(a) div X = tr (∇X) where we view ∇X as an element of C∞(End (TM)) via the identifi-
cations

∇X ∈ Ω1(TM) ∼= C∞(T ∗M ⊗ TM) ∼= C∞(End (TM)).

(b) div X = ∗d ∗ α.
(c) If (x1, ..., xn) are local coordinates such that dx1 ∧ · · · ∧ dxn is positively oriented then

div X =
1√
|g|∂i(

√
|g|Xi)

where X = Xi∂i.

The proof will rely on the following technical result which is interesting in its own.

Lemma 4.1.37. Denote by δ the operator

δ = ∗d∗ : Ωk(M) → Ωk−1(M).

Let α be a (k−1)-form and β a k-form such that at least one of them is compactly supported.
Then ∫

M
(dα, β)dvg = (−1)νn,k

∫

M
(α, δβ)dvg

where νn,k = nk + n + 1.

Definition 4.1.38. Define d∗ : Ωk(M) → Ωk−1(M) by

d∗ = (−1)νn,kδ = (−1)νn,k ∗ d ∗ .

Proof of the lemma. We have
∫

M
(dα, β)dvg =

∫

M
dα ∧ ∗β =

∫

M
d(α ∧ ∗β) + (−1)k

∫

M
α ∧ d ∗ β.

The first integral in the right-hand-side vanishes by the Stokes formula since α ∧ ∗β has
compact support. Since

d ∗ β ∈ Ωn−k+1(M) and ∗2 = (−1)(n−k+1)(k−1) on Ωn−k+1(M)

we deduce ∫

M
(dα, β)dvg = (−1)k+(n−k+1)(n−k)

∫

M
α ∧ ∗δβ.
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This establishes the assertion in the lemma since

(n− k + 1)(k − 1) + k ≡ νn,k (mod 2).

ut

Proof of the proposition. Set Ω = dvg and let (X1, ..., Xn) be a local moving frame of
TM in a neighborhood of some point. Then

(LXΩ)(X1, ..., Xn) = X(Ω(X1, ..., Xn))−
∑

i

Ω(X1, ..., [X,Xi], ..., Xn). (4.1.16)

Since ∇Ω = 0 we get

X · (Ω(X1, ..., Xn)) =
∑

i

Ω(X1, ...,∇XXi, ..., Xn).

Using the above equality in (4.1.16) we deduce from ∇XY − [X, Y ] = ∇Y X that

(LXΩ)(X1, ..., Xn) =
∑

i

Ω(X1, ...,∇XiX, ...,Xn). (4.1.17)

Over the neighborhood where the local moving frame is defined we can find smooth functions
f j

i such that
∇XiX = f j

i Xj ⇒ tr (∇X) = f i
i .

Part (a) of the proposition follows after we substitute the above equality in (4.1.17).
Proof of (b) From (a) we deduce that for any f ∈ C∞

0 (M) we have

LX(fω) = (Xf)Ω + ftr (∇X)Ω.

On the other hand
LX(fΩ) = (iXd + d iX)(fΩ) = d iX(fΩ).

Hence
{(Xf) + ftr (∇X)} dvg = d(iXfΩ).

Since the form fΩ is compactly supported we deduce from Stokes formula
∫

M
d(iXfΩ) = 0.

We have thus proved that for any compactly supported function f we have the equality

−
∫

M
ftr (∇X)dvg =

∫

M
Xfdvg =

∫

M
df(X)dvg

=
∫

M
(grad f, X)dvg =

∫

M
(df, α)dvg.

Using Lemma 4.1.37 we deduce

−
∫

M
ftr (∇X)dvg = −

∫

M
fδαdvg ∀f ∈ C∞

0 (M).
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This completes the proof of (b).
Proof of (c) We use the equality

LX(
√
|g|dx1 ∧ · · · ∧ dxn) = div (X)(

√
|g|dx1 ∧ · · · ∧ dxn).

The desired formula follows derivating in the left-hand-side. One uses the fact that LX is
an even s-derivation and the equalities

LXdxi = ∂iX
idxi (no summation)

proved in Subsection 3.1.3.
ut

Exercise 4.1.12. Let (M, g) be a Riemann manifold and X ∈ Vect (M). Show that the
following conditions on X are equivalent.
(a) LXg = 0.
(b) g(∇Y X, Z) + g(Y,∇ZX) = 0 for all Y, Z ∈ Vect (M).
(A vector field X satisfying the above equivalent conditions is called a Killing vector field).

ut

Exercise 4.1.13. Consider a Killing vector field X on the Riemann manifold (M, g) and
denote by η the 1-form dual to X. Show that δη = 0 i.e. in other words div (X) = 0. ut

Definition 4.1.39. Let (M, g) be an oriented Riemann manifold (possibly with boundary).
For any k-forms α, β define

〈α, β〉 = 〈α, β〉M =
∫

M
(α, β)dvg =

∫

M
α ∧ ∗β

whenever the integrals in the right-hand-side are finite.

Let (M, g) be an oriented Riemann manifold with boundary ∂M . By definition, M is a
closed subset of a boundary-less manifold M̃ of the same dimension. Along ∂M we have a
vector bundle decomposition

(TM̃) |∂M= T (∂M)⊕ n

where n = (T∂M)⊥ is the orthogonal complement of T∂M in (TM) |∂M . Since both M
and ∂M are oriented manifolds it follows that n is a trivial line bundle. Indeed, over the
boundary

detTM = det(T∂M)⊗ n

so that
n ∼= det TM ⊗ det(T∂M)∗.

In particular n admits nowhere vanishing sections and each such section defines an orienta-
tion in the fibers of n. An outer normal is a nowhere vanishing section σ of n such that for
each x ∈ ∂M and any positively oriented ωx ∈ detTx∂M σx ∧ ωx is a positively oriented
element of detTxM . Since n carries a fiber metric we can select a unique outer normal of
pointwise length ≡ 1. This will be called the unit outer normal and will be denoted by ~ν.
Using partitions of unity we can extend ~ν to a vector field defined on M .
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Proposition 4.1.40. (Integration by parts) Let (M, g) be a compact, oriented Riemann
manifold with boundary, α ∈ Ωk−1(M) and β ∈ Ωk(M). Then

∫

M
(dα, β)dvg =

∫

∂M
(α ∧ ∗β) |∂M +

∫

M
(α, d∗β)dvg

=
∫

∂M
α |∂M ∧∗̂(i~νβ) |∂M +

∫

M
(α, d∗β)dvg

where ∗̂ denotes the Hodge ∗-operator on ∂M with the induced metric ĝ and orientation.

Using the 〈·, ·〉 notation of Definition 4.1.39 we can rephrase the above equality as

〈dα, β〉M = 〈α, i~νβ〉∂M + 〈α, d∗β〉M .

Proof of the proposition. As in the proof of Lemma 4.1.37 we have

(dα, β)dvg = dα ∧ ∗β = d(α ∧ ∗β) + (−1)kα ∧ d ∗ β.

The first part of the proposition follows from Stokes formula arguing precisely as in Lemma
4.1.37. To prove the second part we have to check that

(α ∧ ∗β) |∂M= α |∂M ∧∗̂(i~νβ) |∂M .

This is a local (even a pointwise) assertion so we may as well assume M = Hn
+ = {(x1, ..., xn) ∈

Rn ; x1 ≥ 0} and the metric is the Euclidean metric. Note that ~ν = −∂1. Let I be an
ordered (k − 1)-index and J an ordered k- index. Denote by Jc the ordered (n− k)-index
complementary to J so that (as sets) J ∪Jc = {1, ..., n}. By linearity, it suffices to consider
only the cases α = dxI , β = dxJ . We have

∗dxJ = εJdxJc
(εJ = ±1) (4.1.18)

and

i~νdxJ =
{

0 , 1 6∈ J

−dxJ ′ , 1 ∈ J

where J ′ = J \ {1}. Note that if 1 6∈ J then 1 ∈ Jc so that

(α ∧ ∗β) |∂M= 0 = α |∂M ∧∗̂(i~νβ) |∂M

so the only nontrivial situation left to be discussed is 1 ∈ J . On the boundary

∗̂(i~νdxJ) = −∗̂(dxJ ′) = −ε′JdxJc
(ε′J = ±1). (4.1.19)

We have to compare the two signs εJ and ε′J . in (4.1.18) and (4.1.19). εJ is the signature of
the permutation J~∪Jc of {1, ..., n} obtained by writing the two increasing multi-indices one
after the other, first J and then Jc. Similarly, since the boundary ∂M has the orientation
−dx2∧· · ·∧dxn, ε′J is (−1)×(the signature of the permutation J ′~∪Jc of {2, ..., n}). Obviously

sign (J~∪Jc) = sign (J ′~∪Jc)

so that εJ = −ε′J . The proposition now follows from (4.1.18) and (4.1.19).
ut
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Corollary 4.1.41. (Gauss) Let (M, g) be a compact, oriented Riemann manifold with
boundary and X a vector field on M . Then

∫

M
div (X)dvg =

∫

∂M
(X,~ν)dvg∂

where g∂ = g |∂M .

Proof Denote by α the 1-form dual to X. We have
∫

M
div (X)dvg =

∫

M
1 ∧ ∗d ∗ αdvg

=
∫

M
(1, ∗d ∗ α)dvg = −

∫

M
(1, d∗α)dvg

=
∫

∂M
α(~ν)dvg∂

=
∫

∂M
(X,~ν)dvg∂

.

Remark 4.1.42. The compactness assumption on M can be replaced with an integrability
condition on the forms α, β so that the previous results hold for noncompact manifolds as
well provided all the integrals are finite. ut

Definition 4.1.43. Let (M, g) be an oriented Riemann manifold. The geometric Laplacian
is the linear operator ∆M : C∞(M) → C∞(M) defined by

∆M = d∗df = − ∗ d ∗ df = −div (grad f).

A smooth function f on M satisfying the equation ∆Mf = 0 is called harmonic.

Using Proposition 4.1.36 we deduce that in local coordinates (x1, ..., xn) the geometric
laplacian takes the form

∆M = − 1√
|g|∂i

(√
|g|gij∂j

)

where (gij) denotes as usual the matrix inverse to (gij). Note that when g is the Euclidean
metric the geometric Laplacian is

∆0 = −(∂2
i + · · ·+ ∂2

n)

which differs from the physicists Laplacian by a sign.

Corollary 4.1.44. (Green) Let (M, g) as in Proposition 4.1.40 and f, g ∈ C∞(M). Then

〈f, ∆Mg〉M = 〈df, dg〉M − 〈f,
∂g

∂~ν
〉∂M .

〈f, ∆Mg〉M − 〈∆Mf, g〉M = 〈∂f

∂~ν
, g〉∂M − 〈f,

∂g

∂~ν
〉∂M .

Proof The first equality follows immediately from the integration by parts formula (Propo-
sition 4.1.40) with α = f and β = dg. The second identity is now obvious.

ut
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Exercise 4.1.14. (a) Prove that the only harmonic functions on a compact oriented Rie-
mann manifold M are the constant ones.
(b) If u, f ∈ C∞(M) are such that ∆Mu = f show that

∫

M
f = 0.

ut

Exercise 4.1.15. Denote by (u1, . . . , un) the coordinates on the round sphere Sn ↪→ Rn+1

obtained via the stereographic projection from the south pole.
(a) Show that the round metric g0 on Sn is given in these coordinates by

g0 =
4

1 + r2
{(du1)2 + · · ·+ (dun)2}

where r2 = (u1)2 + · · ·+ (un)2.
(b) Show that the n-dimensional “area” of Sn is

σn =
∫

Sn

dvg0 =
2π(n+1)/2

Γ(n+1
2 )

where Γ is Euler’s gamma function

Γ(s) =
∫ ∞

0
ts−1e−tdt.

ut

Hint: Need to know the “doubling formula”

π1/2Γ(2s) = 22s−1Γ(s)Γ(s + 1/2)

and (see [31]) ∫ ∞

0

rn−1

(1 + r2)n
dr =

(Γ(n/2))2

2Γ(n)
.

Exercise 4.1.16. Consider the Killing form on su(2) (the Lie algebra of SU(2)) defined by

〈X, Y 〉 = −trX · Y.

(a) Show that the Killing form defines a bi-invariant metric on SU(2) and then compute
the volume of the group with respect to this metric. SU(2) is given the orientation defined
by e1 ∧ e2 ∧ e3 ∈ Λ3su(2) where ei ∈ su(2) are the Pauli matrices

e1 =
[

i 0
0 −i

]
e2 =

[
0 1
−1 0

]
e3 =

[
0 i
i 0

]

(b) Show that the trilinear form on su(2) defined by

B(X,Y, Z) = 〈[X, Y ], Z〉
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is skew-symmetric. In particular B ∈ Λ3su(2)∗.
(c) B has a unique extension as a left-invariant 3-form on SU(2) known as the Cartan
formon SU(2)) which we continue to denote by B. Compute

∫
SU(2) B.

Hint: Use the natural diffeomorphism SU(2) ∼= S3 and the computations in the previous
exercise.

ut

4.2 The Riemann curvature

A Riemann metric on a manifold has roughly speaking the effect of “giving a shape” to
the manifold. Thus a very short (in diameter) manifold is different from a very long one.
A large (in volume) manifold is different from a small one. However there is a lot more
information encoded in the Riemann manifold than just its size. To recover it we need to
look deeper in the structure and go beyond the first order approximations we have used
so far. The Riemann curvature tensor achieves just that. It is an object which is very
rich in information about the “shape” of a manifold and loosely speaking provides a second
order approximation to the geometry of the manifold. As Riemann himself observed we do
not need to go beyond this order of approximation to recover all the informations. In this
section we introduce the reader to the Riemann curvature tensor and its associates. We
will describe some special examples and we will conclude with the Gauss-Bonnet theorem
which shows that the local object which is the Riemann curvature has global effects.

Unless otherwise indicated, we will use Einstein’s summation convention.

4.2.1 Definitions and properties

Let (M, g) be a Riemann manifold and denote by ∇ the Levi-Civita connection.

Definition 4.2.1. The Riemann curvature denoted by R = R(g) is defined as

R(g) = F (∇)

where F (∇) is the curvature of the Levi-Civita connection.

The Riemann curvature is a tensor R ∈ Ω2(End (TM)) explicitly defined by

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In local coordinates (x1, · · · , xn) we have the description

R`
ijk∂` = R(∂j , ∂k)∂i.

In terms of the Christoffel symbols we have

R`
ijk = ∂jΓ`

ik − ∂kΓ`
ij + Γ`

mjΓ
m
ik − Γ`

mkΓ
m
ij .

Lowering the indices we get a new tensor

Rijk` := gimRm
jk` = (R(∂k, ∂`)∂j , ∂i).
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Theorem 4.2.2. (The symmetries of the curvature tensor.) The Riemann curvature
tensor R satisfies the following identities (X, Y, Z, U, V ∈ Vect (M)).
(a) g(R(X, Y )U, V ) = −g(R((Y, X), U, V ).
(b) g(R(X,Y )U, V ) = −g(R(X,Y )V, U).
(c) (The 1st Bianchi identity)

R(X,Y )Z + R(Z,X)Y + R(Y, Z)X = 0.

(d) g(R(X, Y )U, V ) = g(R(U, V )X, Y ).
(e) (The 2nd Bianchi identity)

(∇XR)(Y, Z) + (∇Y R)(Z,X) + (∇ZR)(X, Y ) = 0

In local coordinates the above identities have the form

Rijk` = −Rjik` = −Rij`k,

Rijk` = Rk`ij ,

Ri
jk` + Ri

`jk + Ri
k`j = 0,

(∇iR)j
mk` + (∇`R)j

mik + (∇kR)j
m`i = 0.

Proof (a) It follows immediately from the definition of R as an End(TM)-valued skew-
symmetric bilinear map (X, Y ) 7→ R(X, Y ).
(b) We have to show the symmetric bilinear form

Q(U, V ) = g(R(X, Y )U, V ) + g(R(X,Y )V, U)

is trivial. Thus it suffices to check Q(U,U) = 0. We may as well assume that [X,Y ] = 0
since (locally) X, Y can be written as linear combinations (over C∞(M)) of commuting
vector fields. (E.g. X = Xi∂i). Then

Q(U,U) = g((∇X∇Y −∇Y∇X)U,U).

We compute
Y (Xg(U,U)) = 2Y g(∇XU,U)

= 2g(∇Y∇XU,U) + 2g(∇XU,∇Y U)

and similarly
X(Y g(U,U)) = 2g(∇X∇Y U,U) + 2g(∇XU,∇Y U).

Subtracting the two equalities we deduce (b).
(c) As before, we can assume the vector fields X, Y , Z pairwise commute. The 1st Bianchi
identity is then equivalent to

∇X∇Y Z −∇Y∇XZ +∇Z∇XY −∇X∇ZY +∇Y∇ZX −∇Z∇Y X = 0.

The identity now follows from the symmetry of the connection: ∇XY = ∇Y X etc.
(d) We will use the following algebraic lemma ([44], Chapter 5).
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Lemma 4.2.3. Let R : E × E × E × E → R be a quadrilinear map on a real vector space
E. Define

S(X1, X2, X3, X4) = R(X1, X2, X3, X4) + R(X2, X3, X1, X4) + R(X3, X1, X2, X4).

If R satisfies the symmetry conditions

R(X1, X2, X3, X4) = −R(X2, X1, X3, X4)

R(X1, X2, X3, X4) = −R(X1, X2, X4, X3)

then
R(X1, X2, X3, X4)−R(X3, X4, X1, X2)

=
1
2
{S(X1, X2, X3, X4)− S(X2, X3, X4, X1)− S(X3, X4, X1, X2) + S(X4, X3, X1, X2)} .

The proof of the lemma is a straightforward (but tedious ) computation which is left
to the reader. The Riemann curvature R = g(R(X1, X2)X3, X4) satisfies the symmetries
required in the lemma and moreover, the 1st Bianchi identity shows the associated form S
is identically zero. This concludes the proof of (d).
(e) This is the Bianchi identity we established for any linear connection (see Exercise 3.3.4).

ut

The Riemann curvature tensor is the source of many important invariants associated to
a Riemann manifold. We begin by presenting the simplest ones.

Definition 4.2.4. Let (M, g) be a Riemann manifold with curvature tensor R. Any two
vector fields X, Y on M define an endomorphism of TM by

U 7→ R(U,X)Y.

The Ricci curvature is the trace of this endomorphism i.e.

Ric (X,Y ) = tr (U 7→ R(U,X)Y ).

We view it as a (0,2)-tensor (X, Y ) 7→ Ric (X, Y ) ∈ C∞(M).

If (x1, · · · , xn) are local coordinates on M and the curvature R has the local expression
R = (R`

kij) then the Ricci curvature has the local description

Ric = (Rij) =
∑

`

R`
j`i.

The symmetries of the Riemann curvature imply that Ric is a symmetric (0,2)-tensor (as
the metric).

Definition 4.2.5. The scalar curvature s of a Riemann manifold is the trace of the Ricci
tensor, i.e. in local coordinates

s = gijRij = gijR`
i`j

where as usual (gij) is the inverse matrix of (gij).
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Let (M, g) be a Riemann manifold and p ∈ M . For any linearly independent X, Y ∈ TpM
set

Kp(X,Y ) =
(R(X, Y )Y,X)

|X ∧ Y | ,

where |X ∧ Y | denotes the Gramm determinant

|X ∧ Y | =
∣∣∣∣

(X, X) (X, Y )
(Y, X) (Y, Y )

∣∣∣∣

which is non-zero since X and Y are linearly independent. (|X ∧ Y |1/2 measures the area
of the parallelogram in TpM spanned by X and Y .)

Exercise 4.2.1. Let X,Y, Z,W ∈ TpM such that span(X,Y)= span(Z,W) is a 2-dimensional
subspace of TpM prove that Kp(X, Y ) = Kp(Z, W ). ut

According to the above exercise the quantity Kp(X, Y ) depends only upon the 2-plane
in TpM generated by X and Y . Thus Kp is in fact a function on Gr2(p) the grassmannian
of 2-dimensional subspaces of TpM .

Definition 4.2.6. The function Kp : Gr2(p) → R defined above is called the sectional
curvature of M at p. ut

Exercise 4.2.2. Prove that

Gr2(M) = disjoint union of Gr2(p) p ∈ M

can be organized as a smooth fiber bundle over M with standard fiber Gr2,n(R), n = dimM
such that if M is a Riemann manifold Gr2(M) 3 (p; π) 7→ Kp(π) is a smooth map. ut

4.2.2 Examples

Example 4.2.7. Consider again the situation discussed in Example 4.1.12. Thus G is a
Lie group and 〈·, ·〉 is a metric on LG satisfying

〈ad(X)Y, Z〉 = −〈Y, ad(X)Z〉

In other words, 〈·, ·〉 is the restriction of a bi-invariant metric m on G. We have shown that
the Levi-Civita connection of this metric is

∇XY =
1
2
[X, Y ] ∀X,Y ∈ LG.

We can now easily compute the curvature

R(X, Y )Z =
1
4
{[X, [Y,Z]]− [Y, [X, Z]]} − 1

2
[[X, Y ], Z]

(Jacobi identity) =
1
4
[[X,Y ], Z] +

1
4
[Y, [X,Z]]− 1

4
[Y, [X, Z]]− 1

2
[[X,Y ], Z] = −1

4
[[X, Y ], Z].
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We deduce
〈R(X,Y )Z, W 〉 = −1

4
〈[[X, Y ], Z],W 〉 =

1
4
〈ad(Z)[X, Y ],W 〉

= −1
4
〈[X,Y ], ad(Z)W 〉 = −1

4
〈[X, Y ], [Z, W ]〉.

Now let π ∈ Gr2(g) for some g ∈ G. If (X,Y ) is an orthonormal basis of π (viewed as left
invariant vector fields on G) then the sectional curvature along π is

Kg(π) =
1
4
〈[X, Y ], [X,Y ]〉 ≥ 0

Denote the Killing form by κ(X,Y ) = −tr (ad(X)ad(Y )). To compute the Ricci curvature
we pick an orthonormal basis E1, · · · , En of LG. For any X = XiEi, Y = Y jEj ∈ LG we
have

Ric (X, Y ) =
1
4
tr (Z 7→ [[X, Z], Y ])

=
1
4

∑

i

〈[[X, Ei], Y ], Ei)〉 = −1
4

∑

i

〈ad(Y )[X,Ei], Ei〉

=
1
4

∑

i

〈[X, Ei], [Y, Ei]〉 =
1
4

∑

i

〈ad(X)Ei, ad(Y )Ei〉

= −1
4

∑

i

〈ad(Y )ad(X)Ei, Ei〉 = −1
4
tr (ad(Y )ad(X)) =

1
4
κ(X, Y ).

In particular, on a compact semisimple Lie group the Ricci curvature is a symmetric positive
definite (0,2)-tensor (in fact it is a scalar multiple of the Killing metric.)

We can now easily compute the scalar curvature. Using the same notations as above we
get

s =
1
4

∑

i

Ric (Ei, Ei) =
1
4

∑
κ(Ei, Ei).

In particular, if G is a compact semisimple group and the metric is given by the Killing
form then the scalar curvature is

s(κ) =
1
4

dimG.

ut

Remark 4.2.8. Many problems in topology lead to a slightly more general situation than
the one discussed in the above example namely to metrics on Lie groups which are only
left invariant. Although the results are not as “crisp” as in the bi-invariant case many nice
things do happen. For details we refer to [57]. ut

Example 4.2.9. Let M be a 2-dimensional Riemann manifold (surface) and consider local
coordinates on M , (x1, x2). Due to the symmetries of R

Rijkl = −Rijlk = Rklij
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we deduce that the only nontrivial component of the Riemann tensor is R = R1212. The
sectional curvature is simply a function on M

K =
1
|g|R1212 =

1
2
s(g) where |g| = det(gij).

In this case K is known as the total curvature or the Gauss curvature of the surface. If
in particular M is oriented and the form dx1∧dx2 defines the orientation, we can construct
a 2-form

ε(g) =
1
2π

Kdvg =
1
4π

s(g)dvg =
1

2π
√
|g|R1212dx1 ∧ dx2.

ε(g) is called the Euler form associated to the metric g. We want to emphasize that this
form is defined only when M is oriented.

We can rewrite this using the pfaffian construction of Subsection 2.2.4. The curvature
R is a 2-form with coefficients in the bundle of skew-symmetric endomorphisms of TM so
we can write

R = A⊗ dvg A =
1√
|g|

[
0 R1212

R2112 0

]

Assume for simplicity that (x1, x2) are normal coordinates at a point q ∈ M . Thus at q,
|g| = 1 since ∂1, ∂2 is an orthonormal basis of TqM . Hence at q, dvg = dx1 ∧ dx2 and

ε(g) =
1
2π

g(R(∂1, ∂2)∂2, ∂1)dx1 ∧ dx2.

Hence we can write

ε(g) =
1
2π

Pfg(−A)dvg
def
=

1
2π

Pfg(−R).

The Euler form has a very nice interpretation in terms of holonomy. Assume as before
that (x1, x2) are normal coordinates at q and consider the square St = [0,

√
t] × [0,

√
t] in

the (x1, x2) plane. Denote the (counterclockwise) holonomy along ∂St by Tt. This is an
orthogonal transformation of TqM and with respect to the orthogonal basis (∂1, ∂2) of TqM
it has a matrix description as

Tt =
[

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
.

The result in Subsection 3.3.4 can be rephrased as

sin θ(t) = −tg(R(∂1, ∂2)∂2, ∂1) + O(t2)

so that
R1212 = θ̇(0).

Hence R1212 is simply the infinitesimal angle measuring the infinitesimal rotation suffered
by ∂1 along St. We can think of the Euler form as a “density” of holonomy since it measures
the holonomy per elementary parallelogram. ut
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4.2.3 Cartan’s moving frame method

This method was introduced by Elie Cartan at the beginning of this century. Cartan’s
insight was that the local properties of a manifold equipped with a geometric structure can
be very well understood if one knows how the frames of the tangent bundle (compatible
with the geometric structure) vary from one point of the manifold to another. We will begin
our discussion with the model case of Rn.

Example 4.2.10. Consider Xα = Xi
α

∂
∂xi

, α = 1, ..., n an orthonormal moving frame on Rn

where (x1, · · · , xn) are the usual cartesian coordinates. Denote by (θα) the dual coframe
i.e. the moving frame of T ∗Rn defined by

θα(Xβ) = δα
β .

The 1-forms measure the infinitesimal displacement of a point P with respect to the frame
(Xα). Note that the TM -valued 1-form θ = θαXα is the differential of the identity map
id : Rn → Rn expressed using the given moving frame.

Introduce the 1-forms ωα
β defined by

dXβ = ωα
β Xα (4.2.1)

where we set

dXα = (
∂Xi

α

∂xj
dxj)⊗ ∂

∂xi
.

We can form the matrix valued 1-form (ωα
β ) which measures the infinitesimal rotation

suffered by the moving frame (Xα) following the infinitesimal displacement x 7→ x + dx. In
particular ω = (ωα

β ) is a skew-symmetric matrix since

0 = d〈Xα, Xβ〉 = 〈ω ·Xα, Xβ〉+ 〈Xα, ω ·Xβ〉.
Since θ = did we deduce dθ = 0 and we can rewrite this as

dθα = θβ ∧ ωα
β

or
dθ = −ω ∧ θ. (4.2.2)

Using d2Xβ = 0 in (4.2.1) we deduce

dωα
β = −ωα

γ ∧ ωγ
β

or equivalently
dω = −ω ∧ ω. (4.2.3)

The equations (4.2.2)-(4.2.3) are called the structural equations of the Euclidean space.
The significance of these structural equations will become evident in a little while. ut

We now try to perform the same computations on an arbitrary Riemann manifold M .
We choose a local orthonormal moving frame (Xα) and construct similarly its dual coframe
(θα). Unfortunately, there is no natural way to define dXα to produce the forms ωα

β entering
the structural equations. We will find them using a different (dual) search strategy.
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Proposition 4.2.11. (E. Cartan) There exists a collection of 1-forms ωα
β uniquely defined

by the requirements
(a)ωα

β = −ωβ
α.

(b)dθα = θβ ∧ ωα
β , ∀α.

Proof Uniqueness Suppose ωα
β satisfy the conditions (a)&(b) above. Then there exist

functions fα
βγ and gα

βγ such that
ωα

β = fα
βγθγ

dθα =
1
2
gα
βγθβ ∧ θγ (gα

βγ = −gα
γβ).

Then the condition (a) is equivalent to
(a1) fα

βγ = −fβ
αγ

while (b) gives
(b1) fα

βγ − fα
γβ = gα

βγ

The above two relations uniquely determine the f ’s in terms of the g’s via a cyclic
permutation of the indices α, β, γ

fα
βγ =

1
2
(gα

βγ + gβ
γα − gγ

αβ) (4.2.4)

Existence Consider the functions gα
βγ defined by

dθα =
1
2
gα
βγθβ ∧ θγ (gα

βγ = −gα
γβ).

Next define ωα
β = fα

βγθγ where the f ’s are given by (4.2.4). We let the reader check that
the forms ωα

β satisfy both (a) and (b).
ut

The reader may now ask why go through all this trouble. What have we gained by
constructing the forms ω, and after all, what is their significance?

To answer these questions consider the Levi-Civita connection ∇. Define ω̂α
β by

∇Xβ = ω̂α
βXα.

Hence
∇XγXβ = ω̂α

β (Xγ)Xα.

Since ∇ is compatible with the Riemann metric we deduce in standard manner that ω̂α
β =

−ω̂β
α.
The differential of θα can be computed in terms of the Levi-Civita connection (see

Subsection 4.1.5) and we have

dθα(Xβ, Xγ) = Xβθα(Xγ)−Xγθα(Xβ)− θα(∇Xβ
Xγ) + θα(∇XγXβ)

(use θα(Xβ) = δα
β = const) = −θα(ω̂δ

γ(Xβ)Xδ) + θα(ω̂δ
β(Xγ)Xδ)

= ω̂α
β (Xγ)− ω̂α

γ (Xβ) = (θβ ∧ ω̂α
β )(Xβ, Xγ).
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Thus the ω̂’s satisfy both conditions (a) and (b) of Proposition 4.2.11 so that we must have

ω̂α
β = ωα

β .

In other words, the matrix valued 1-form (ωα
β ) is the 1-form associated to the Levi-Civita

connection in this local moving frame. In particular, the 2-form

Ω = (dω + ω ∧ ω)

is the Riemannian curvature (see the computation in Example 3.3.11). The structural
equations of a Riemann manifold take the form

dθ = −ω ∧ θ

dω + ω ∧ ω = Ω.

Comparing these with the Euclidean structural equations we deduce another interpretation
of the Riemann curvature: it measures “the distance” between the given Riemann metric
and the Euclidean one”. We refer to [70] for more details on this aspect of the Riemann
tensor.

The technique of orthonormal frames is extremely versatile in concrete computations.

Example 4.2.12. We will use the moving frame method to compute the curvature of the
hyperbolic plane i.e. the upper half space

H+ = {(x, y) ; y > 0}
endowed with the metric

g =
1
y2

(dx2 + dy2).

(y∂x, y∂y) is an orthonormal moving frame and (θx = 1
ydx, θy = 1

ydy) is its dual coframe.
We compute easily

dθx = d(
1
y
dx) =

1
y2

dx ∧ dy = (
1
y
dx) ∧ θy

dθy = d(
1
y
dy) = 0 = (−1

y
dx) ∧ θx.

Thus the connection 1-form in this local moving frame is

ω =

[
0 − 1

y
1
y 0

]
dx.

The Riemann curvature is

Ω = dω =

[
0 1

y2

− 1
y2 0

]
dy ∧ dx =

[
0 −1
1 0

]
θx ∧ θy.

The Gauss curvature is

K =
1
|g|g(Ω(∂x, ∂y)∂y, ∂x) = y4(− 1

y4
) = −1.

ut
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4.2.4 The geometry of submanifolds

We now want to apply Cartan’s method of moving frames to discuss the the local geometry
of submanifolds of a Riemann manifold.

Let (M, g) be a Riemann manifold of dimension m and S a k-dimensional submanifold
in M . The restriction of g to S induces a Riemann metric on S. We want to analyze the
relationship between the Riemann geometry of M (assumed to be known) and the geometry
of S with the induced metric.

Denote by ∇M (resp. ∇S) the Levi-Civita connection on (M, g) (resp on (S,g |S). The
metric g produces an orthogonal splitting of vector bundles

(TM) |S∼= TS ⊕NS .

NS is called the normal bundle of S ↪→ M . Thus, a section of (TM) |S , that is a vector field
X of M along S, splits into two components: a tangential component Xτ and a normal
component Xν .

Now choose a local orthonormal moving frame (X1, ..., Xk; Xk+1, ..., Xm) such that the
first k vectors (X1, ..., Xk) are tangent to S. Denote the dual coframe by (θα)1≤α≤m. Note
that

θα |S= 0 for α > k.

Denote by (µα
β), (1 ≤ α, β ≤ m) the connection 1-forms associated to ∇M in this frame

and let σα
β , (1 ≤ α, β ≤ k) be the connection 1-forms of ∇S . We will analyze the structural

equations of M restricted to S ↪→ M .

dθα = θβ ∧ µα
β 1 ≤ α, β ≤ m. (4.2.5)

We distinguish two situations.
A. 1 ≤ α ≤ k. Since θβ |S= 0 for β > k the equality (4.2.5) yields

dθα =
k∑

β=1

θβ ∧ µα
β , µα

β = −µβ
α 1 ≤ α, β ≤ k.

The uniqueness part of Proposition 4.2.11 implies that along S

σα
β = µα

β 1 ≤ α, β ≤ k.

This can be equivalently rephrased as

∇S
XY = (∇M

X Y )τ ∀X, Y ∈ Vect (S). (4.2.6)

B. k < α ≤ m. We deduce

0 =
k∑

β=1

θβ ∧ µα
β .

At this point we want to use the following elementary result.
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Exercise 4.2.3. (Cartan Lemma) Let V be a d-dimensional real vector space and
consider p linearly independent elements ω1, ... , ωp ∈ Λ1V , p ≤ d. If θ1, ... , θp ∈ Λ1V are
such that

p∑

i=1

θi ∧ ωi = 0,

then there exist scalars Aij , 1 ≤ i, j ≤ p such that Aij = Aji and

θi =
p∑

j=1

Aijωj .

ut

Using Cartan Lemma we can find smooth functions fλ
βγ , λ > k, 1 ≤ β, γ ≤ k satisfying

fλ
βγ = fλ

γβ.

µλ
β = fλ

βγθγ .

Now form
N = fλ

βγθβ ⊗ θγ ⊗Xλ.

We can view N as a symmetric bilinear map

Vect (S)×Vect (S) → C∞(NS).

If U, V ∈ Vect (S)
U = UβXβ = θβ(U)Xβ 1 ≤ β ≤ k

V = V γXγ = θγ(V )Xγ 1 ≤ γ ≤ k

then

N(U, V ) =
∑

λ>k





∑

β

(∑
γ

fλ
βγθγ(V )

)
θβ(U)



Xλ

=
∑

λ>k


∑

β

µλ
β(V )Uβ


Xλ.

The last term is precisely the normal component of ∇M
V U so that we have established

(∇M
V U

)ν
= N(U, V ) = N(V,U) =

(∇M
U V

)ν
. (4.2.7)

N is called the 2nd fundamental form2 of S ↪→ M .
There is an alternative way of looking at N. Choose U, V ∈ Vect (S), N ∈ C∞(NS). We

have (g(·, ·) = 〈·, ·〉)

〈N(U, V ), N〉 = 〈(∇M
U V

)ν
, N〉 = 〈∇M

U V, N〉
2The first fundamental form is the induced metric.
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= ∇M
U 〈V,N〉 − 〈V,∇M

U N〉
= −〈V,

(∇M
U N

)τ 〉.
We have thus established

−〈V,
(∇M

U N
)τ 〉 = 〈N(U, V ), N〉 = 〈N(V,U), N〉 = −〈U,

(∇M
V N

)τ 〉. (4.2.8)

The 2nd fundamental form can be used to determine a relationship between the curvature
of M and that of S. More precisely we have the following celebrated result.

THEOREMA EGREGIUM (Gauss) Let RM (resp. RS) denote the Riemann curva-
ture of (M, g) (resp. (S, g |S). Then for any X,Y, Z, T ∈ Vect (S) we have

〈RM (X,Y )Z, T 〉 = 〈RS(X, Y )Z, T 〉

+
〈
N(X, Z) , N(Y, T )

〉
−

〈
N(X, T ) , N(Y, Z)

〉
. (4.2.9)

Proof Note that
∇M

X Y = ∇S
XY + N(X, Y ).

We have
RM (X,Y )X = [∇M

X ,∇M
Y ]Z −∇M

[X,Y ]Z

= ∇M
X (∇S

Y Z + N(Y,Z))−∇M
Y (∇S

XZ + N(X,Z))−∇S
[X,Y ]Z −N([X, Y ], Z).

Take the inner product with T of both sides above. Since N(·, ·) is NS-valued we deduce
using (4.2.6)-(4.2.8)

〈RM (X, Y )Z, T 〉 = 〈∇M
X∇S

Y Z, T 〉+ 〈∇M
X N(Y,Z), T 〉

−〈∇M
Y ∇S

XZ, T 〉 − 〈∇M
Y N(X,Z), T 〉 − 〈∇S

[X,Y ]Z, T 〉
= 〈[∇S

X ,∇S
Y ]Z, T 〉 − 〈N(Y, Z), N(X, T )〉

+〈N(X, Z), N(Y, T )〉 − 〈∇S
[X,Y ]Z, T 〉.

This is precisely the equality (4.2.9). ut

The above result is especially interesting when S is a transversally oriented hypersurface,
i.e. a codimension 1 submanifold such that the normal bundle NS is trivial3. Pick an
orthonormal frame ~n of NS , i.e. a length 1 section of NS , and choose an orthonormal
moving frame (X1, ..., Xm−1) of TS. Then (X1, ..., Xm−1, ~n) is an orthonormal moving
frame of (TM) |S and the second fundamental form is completely described by

N~n(X, Y ) = 〈N(X, Y ), ~n〉.

N~n is a bona-fide symmetric bilinear form and moreover according to (4.2.8) we have

N~n(X, Y ) = −〈∇M
X ~n, Y 〉 = −〈∇M

Y ~n,X〉.
3Locally, all hypersurfaces are transversally oriented since NS is locally trivial by definition.



154 Riemannian geometry

Gauss formula becomes in this case

〈RS(X,Y )Z, T 〉 = 〈RM (X,Y )Z, T 〉 −
∣∣∣∣

N~n(X, Z) N~n(X, T )
N~n(Y, Z) N~n(Y, T )

∣∣∣∣ .

Let us further specialize and assume M = Rm. Then

〈RS(X, Y )Z, T 〉 =
∣∣∣∣

N~n(X, T ) N~n(X, Z)
N~n(Y, T ) N~n(Y, Z)

∣∣∣∣ . (4.2.10)

In particular, the sectional curvature along the plane spanned by X, Y is

〈RS(X, Y )Y, X〉 = N~n(X, X) ·N~n(Y, Y )− |N~n(X,Y )|2 .

This is a truly remarkable result. On the right-hand-side we have an extrinsic term (it
depends on the “space surrounding S ”) while in the left-hand-side we have a purely intrinsic
term (which is defined entirely in terms of the internal geometry of S). Historically, the
extrinsic term was discovered first (by Gauss) and very much to Gauss surprise (?!?) one
does not need to look outside S to compute it. This marked the beginning of a new era
in geometry. It changed dramatically the way people looked at manifolds and thus it fully
deserves the name of The Golden (egregium) Theorem of Geometry.

Example 4.2.13. (Quadrics in R3.) Let A : R3 → R3 be a selfadjoint, invertible linear
operator with at least one positive eigenvalue. This implies the quadric

QA = {u ∈ R3 ; 〈Au, u〉 = 1}

is nonempty and smooth (use implicit function theorem to check this). Let u0 ∈ QA. Then

Tu0QA = {x ∈ R3 ; 〈Au0, x〉 = 0} = (Au0)⊥.

QA is a transversally oriented hypersurface in R3 since the map QA 3 u 7→ Au defines a
nowhere vanishing section of the normal bundle. Set ~n = 1

|Au|Au. Consider (e0, e1, e2) an
orthonormal frame of R3 such that e0 = ~n(u0). Denote the cartesian coordinates in R3 with
respect to this frame by (x0, x1, x2) and set ∂i = ∂

∂xi
. Extend (e1, e2) to a local moving

frame of TQA near u0.
The second fundamental form of QA at u0 is

N~n(∂i, ∂j) = 〈∂i~n, ∂j〉 |u0 .

We compute

∂i~n = ∂i

(
Au

|Au|
)

= ∂i(〈Au,Au〉−1/2)Au +
1
|Au|A∂iu

= −〈∂iAu,Au〉
|Au|3/2

Au +
1
|Au|∂iAu.

Hence
N~n(∂i, ∂j) |u0=

1
|Au0| 〈A∂iu, ej〉 |u0
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=
1

|Au0| 〈∂iu,Aej〉 |u0=
1

|Au0| 〈ei, Aej〉. (4.2.11)

We can now compute the Gaussian curvature at u0.

Ku0 =
1

|Au0|2
∣∣∣∣
〈Ae1, e1〉 〈Ae1, e2〉
〈Ae2, e1〉 〈Ae2, e2〉

∣∣∣∣ .

In particular, when A = r−2I so that QA is the round sphere of radius r we deduce

Ku =
1
r2

∀|u| = r.

Thus, the round sphere has constant positive curvature.

We can now explain rigorously why we cannot wrap a plane canvas around the sphere.
Notice that when we deform a plane canvas the only thing that changes is the extrinsic
geometry while the intrinsic geometry is not changed since the lengths of the“fibers” stays
the same. Thus, any intrinsic quantity is invariant under “bending”. In particular, no
matter how we deform the plane canvas we will always get a surface with Gauss curvature 0
which cannot be wrapped on a surface of constant positive curvature! Gauss himself called
the total curvature a“bending invariant”.

Example 4.2.14. (Gauss) Let Σ be a transversally oriented, compact surface in R3. (E.g.
a connected sum of g tori). Note that the Whitney sum NΣ ⊕ TΣ is the trivial bundle R3

Σ.
We orient NΣ such that

orientationNΣ ∧ orientation TΣ = orientationR3.

Let ~n be the unit section of NΣ defining the above orientation. We obtain in this way a
map

G : Σ → S2 = {u ∈ R3 ; |u| = 1}, Σ 3 x 7→ ~n(x) ∈ S2.

G is called the Gauss map of Σ ↪→ S2. It really depends on how Σ is embedded in R3 so
it is an extrinsic object. Denote by N~n the second fundamental form of Σ ↪→ R3, and let
(x1, x2) be normal coordinates at q ∈ Σ such that

orientationTqΣ = ∂1 ∧ ∂2.

Consider εΣ the Euler form on Σ with the metric induced by the Euclidean metric in R3.
Then, taking into account our orientation conventions, we have

2πεΣ(∂1, ∂2) = R1212

=
∣∣∣∣

N~n(∂1, ∂1) N~n(∂1, ∂2)
N~n(∂2, ∂1) N~n(∂2, ∂2)

∣∣∣∣ . (4.2.12)

Now notice that
∂i~n = −N~n(∂i, ∂1)∂1 −N~n(∂i, ∂2)∂2.
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We can think of ~n, ∂1 |q and ∂2 |q as defining a (positively oriented) R3. The last equality
can be rephrased by saying that the derivative of the Gauss map

G∗ : TqΣ → T~n(q)S
2

acts according to
∂i 7→ −N~n(∂i, ∂1)∂1 −N~n(∂i, ∂2)∂2.

In particular, we deduce

G∗ preserves (reverses) orientations ⇐⇒ R1212 > 0 (< 0) (4.2.13)

because the orientability issue is decided by the sign of the determinant
∣∣∣∣∣∣

1 0 0
0 −N~n(∂1, ∂1) −N~n(∂1, ∂2)
0 −N~n(∂2, ∂1) −N~n(∂2, ∂2)

∣∣∣∣∣∣
.

At q, ∂1 ⊥ ∂2 so that

〈∂i~n, ∂j~n〉 = N~n(∂i, ∂1)N~n(∂j , ∂1) + N~n(∂i, ∂2)N~n(∂j , ∂2).

We can rephrase this coherently as an equality of matrices
[ 〈∂1~n, ∂1~n〉 〈∂1~n, ∂2~n〉
〈∂2~n, ∂1~n〉 〈∂2~n, ∂2~n〉

]

=
[

N~n(∂1, ∂1) N~n(∂1, ∂2)
N~n(∂2, ∂1) N~n(∂2, ∂2)

]
×

[
N~n(∂1, ∂1) N~n(∂1, ∂2)
N~n(∂2, ∂1) N~n(∂2, ∂2)

]t

.

Hence ∣∣∣∣
N~n(∂1, ∂1) N~n(∂1, ∂2)
N~n(∂1, ∂2) N~n(∂2, ∂2)

∣∣∣∣
2

=
∣∣∣∣
〈∂1~n, ∂1~n〉 〈∂1~n, ∂2~n〉
〈∂1~n, ∂2~n〉 〈∂2~n, ∂2~n〉

∣∣∣∣ . (4.2.14)

If we denote by dv0 the metric volume form on S2 induced by the restriction of the Euclidean
metric on R3 we see that (4.2.12) and (4.2.14) put together yield

2π|εΣ(∂1, ∂2)| = |dv0(∂1~n, ∂2~n)| = |dv0(G∗(∂1), G∗(∂2))|.

Using (4.2.13) we get

εΣ =
1
2π

G∗Σdv0 =
1
2π

G∗ΣεS2 . (4.2.15)

This is one form of the celebrated Gauss-Bonnet theorem . We will have more to say about
it in the next subsection.

Note that the last equality offers yet another interpretation of the Gauss curvature.
From this point of view the curvature is a “distortion factor”. The Gauss map “stretches”
an infinitesimal parallelogram to some infinitesimal region on the unit sphere. The Gauss
curvature describes by what factor the area of this parallelogram was changed. ut
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4.2.5 The Gauss-Bonnet theorem

We conclude this chapter with one of the most beautiful results in geometry. Its meaning
reaches deep inside the structure of a manifold and can be viewed as the origin of many
fertile ideas.

Recall one of the questions we formulated at the beginning of our study: explain unam-
biguously why a sphere is “different” from a torus. This may sound like forcing our way in
through an open door since everybody can “see” they are different. Unfortunately this is
not a conclusive explanation since we can see only 3-dimensional things and possibly there
are many ways to deform a surface outside our tight 3D Universe.

The elements of Riemann geometry we discussed so far will allow us to produce an
invariant powerful enough to distinguish a sphere from a torus. But it will do more than
that.

Theorem 4.2.15. (Gauss-Bonnet Theorem. Preliminary version.) Let S be
a compact oriented surface without boundary. If g0 and g1 are two Riemann metrics on S
and εgi(S) (i = 0, 1) are the corresponding Euler forms then

∫

S
εg0(S) =

∫

S
εg1(S).

Hence the quantity
∫
S εg(S) is independent of the Riemann metric g so that it really depends

only on the topology of S!!!

The idea behind the proof is very natural. Denote by gt the metric gt = g0 + t(g1− g0).
We will show

d

dt

∫

S
εgt = 0 ∀t ∈ [0, 1].

It is convenient to consider a more general problem.

Definition 4.2.16. Let M be a compact oriented manifold. For any Riemann metric g on
E define

E(g) =
∫

M
s(g)dvg,

where s(g) denotes the scalar curvature of (M, g). E(g) is called the Hilbert-Einstein
functional.

We have the following remarkable result.

Lemma 4.2.17. Let M be a compact oriented manifold without boundary and gt = (gt
ij) be

a 1-parameter family of Riemann metrics on M depending smoothly upon t ∈ R. Then

d

dt
E(gt) = −

∫

M
〈Ric− 1

2
s(gt)gt, ġt〉tdvgt ∀t.

In the above formula 〈·, ·〉t denotes the inner product induced by gt on the space of symmetric
(0,2)-tensors while the dot denotes the t-derivative.
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The (0, 2)-tensor

Eij = Rij(x)− 1
2
s(x)gij(x)

is called the Einstein tensor of (M, g).

Definition 4.2.18. A Riemann manifold (M, g) is said to be Einstein if the metric g
satisfies Einstein’s equation

Ricg =
1
2
s(g)g.

Remark 4.2.19. The attribute Einstein usually refers to a larger class of Riemann mani-
folds satisfying the condition

Ricg(x) = λ(x)g(x)

for some smooth function λ ∈ C∞(M). We refer to [12] for a comprehensive presentation
of this subject. In this book we reserve the name Einstein to the special case described in
the above theorem. ut

Exercise 4.2.4. Consider a 3-dimensional Riemann manifold (M, g). Show that

Rijk` = Eikgj` − Ei`gjk + Ej`gik − Ejkgi` +
s

2
(gi`gjk − gikgj`).

In particular, this shows that on a Riemann 3-manifold the full Riemann tensor is completely
determined by the Einstein tensor. ut

Exercise 4.2.5. (Schouten-Struik, [67]) Prove that the scalar curvature of an Einstein
manifold of dimension ≥3 is constant.
Hint Use the 2nd Bianchi identity. ut

Notice that when (S, g) is a compact oriented Riemann surface two very nice things
happen.
(i) (S, g) is Einstein. (Recall that only R1212 is nontrivial).
(ii) E(g) = 2

∫
S εg.

Theorem 4.2.15 is thus an immediate consequence of Lemma 4.2.17.
Proof of the lemma We will produce a very explicit description of the integrand

d

dt
(s(gt)dvgt = (

d

dt
(s(gt))dvgt + s(gt)(

d

dt
dvgt) (4.2.16)

of d
dtE(gt). We will adopt a “get down in the mud and just do it” strategy reminiscent

to the good old days of the tensor calculus frenzy. By this we mean that we will work in
a nicely chosen collection of local coordinates and keep track of the zillion indices we will
encounter. As we will see, “life in the mud” isn’t as bad as it may seem to be.

We will study the integrand (4.2.16) at t = 0. The general case is entirely analogous.
For typographical reasons we will be forced to introduce new notations. Thus, ĝ will denote
(gt) for t = 0, while gt will be denoted simply by g. A hat over a quantity means we think
of that quantity at t = 0 while a dot means differentiation at t = 0.
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Let q be an arbitrary point on S and denote by (x1, · · · , xn) a collection of ĝ-normal
coordinates at q. Denote by ∇ the Levi-Civita connection of g and let Γi

jk denote its
Christoffel symbols in the coordinates (xi).

Many nice things happen at q and we list a few of them which will be used later.

ĝij = ĝij = δij ∂kĝij = 0. (4.2.17)

∇̂i∂j = 0 Γ̂i
jk = 0. (4.2.18)

If α = αidxi is a 1-form then at q

δĝα =
∑

i

∂iαi. (δ := ∗d∗) (4.2.19)

In particular, for any smooth function u

(∆M,ĝu)(q) = −
∑

i

∂i
2u. (4.2.20)

Set
h = (hij) = (ġ) = (ġij).

h is a symmetric (0,2)-tensor. Its ĝ-trace is the scalar

trĝh = ĝijhij = trL−1(h)

where L is the lowering the indices operator defined by ĝ. In particular at q

trĝ h =
∑

i

hii. (4.2.21)

The curvature of g is given by

R`
ikj = −R`

ijk = ∂kΓ`
ij − ∂jΓ`

ik + Γ`
mkΓ

m
ij − Γ`

mjΓ
m
ik.

The Ricci tensor is

Rij = Rk
ikj = ∂kΓk

ij − ∂jΓk
ik + Γk

mkΓ
m
ij − Γk

mjΓ
m
ik.

Finally the scalar curvature is
s = trg Rij = gijRij

= gij
(
∂kΓk

ij − ∂jΓk
ik + Γk

mkΓ
m
ij − Γk

mjΓ
m
ik

)
.

Derivating s at t = 0 and then evaluating at q we obtain

ṡ = ġij
(
∂kΓ̂k

ij − ∂jΓ̂k
ik

)
+ δij

(
∂kΓ̇k

ij − ∂jΓ̇k
ik

)

= ġijR̂ij +
∑

i

(
∂kΓ̇k

ii − ∂iΓ̇k
ik

)
. (4.2.22)
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The term ġij can be computed by derivating the equality gikgjk = δi
k at t = 0. We get

ġikĝjk + ĝikhjk = 0

so that
ġij = −hij . (4.2.23)

To evaluate the derivatives Γ̇’s we use the known formulæ

Γm
ij =

1
2
gkm (∂igjk − ∂kgij + ∂jgik)

which upon derivation at t = 0 yield

Γ̇m
ij =

1
2

(∂iĝjk − ∂kĝij + ∂j ĝik) +
1
2
ĝkm (∂ihjk − ∂khij + ∂jhik)

=
1
2

(∂ihjm − ∂mhij + ∂jhim) . (4.2.24)

We substitute (4.2.23) -(4.2.24) in (4.2.22), and we get at q

ṡ = −
∑

i,j

hijR̂ij +
1
2

∑

i,k

(∂k∂ihik − ∂k
2hii + ∂k∂ihik)− 1

2

∑

i,k

(∂i
2hkk − ∂i∂khik)

= −
∑

i,j

hijR̂ij −
∑

i,k

∂i
2hkk +

∑

i,k

∂i∂khik

= −〈R̂ic, ġ〉ĝ + ∆M,ĝtrĝ ġ +
∑

i,k

∂i∂khik. (4.2.25)

To get a coordinate free description of the last term note that at q

(∇̂kh)(∂i, ∂m) = ∂khim.

The total covariant derivative ∇̂h is a (0,3)-tensor. Using the ĝ-trace we can construct a
(0,1)-tensor

trĝ(∇̂h) = tr(L−1
ĝ ∇̂h)

where L−1
ĝ is the raising the indices operator defined by ĝ. In the local coordinates (xi) we

have
trĝ(∇̂h) = ĝij(∇̂ih)jkdxk.

Using (4.2.17) and (4.2.19) we deduce that the last term in (4.2.25) can be rewritten (at q)
as

δtrĝ (∇̂h) = δtrĝ(∇̂ġ).

We have thus established that

ṡ = −〈R̂ic, ġ〉ĝ + ∆M,ĝtrĝ ġ + δtrĝ(∇̂ġ). (4.2.26)

The second term of the integrand (4.2.16) is a lot easier to compute.

dvg = ±
√
|g|dx1 · · · dxn
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so that
dv̇g = ±1

2
|ĝ|−1/2 d

dt
|g|dx1 · · · dxn.

At q the metric is Euclidian, ĝij = δij and

d

dt
|g| =

∑

i

ġii = |ĝ| · trĝ(ġ) = |ĝ|〈ĝ, ġ〉ĝ|ĝ|.

Hence
Ė(g) =

∫

M
〈1
2
s(ĝ)ĝ − Ric(ĝ), ġ〉ĝdvĝ +

∫

M

(
∆M,ĝtrĝ ġ + δtrĝ(∇̂ġ)

)
dvĝ.

Green’s formula shows the last two terms vanish and the proof of the Lemma is concluded.
ut

Definition 4.2.20. Let S be a compact, oriented surface without boundary. We define its
Euler characteristic as the number

χ(S) =
1
2π

∫

S
ε(g),

where g is an arbitrary Riemann metric on S. The number

g(S) =
1
2
(2− χ(S))

is called the genus of the surface.

Remark 4.2.21. According to the theorem we have just proved the Euler characteristic is
independent of the metric used to define it. Hence, the Euler characteristic is a topological
invariant of the surface. The reason for this terminology will become apparent when we
discuss DeRham cohomology, a Z-graded vector space naturally associated to a surface
whose Euler characteristic coincides with the number defined above. So far we have no idea
whether χ(S) is even an integer. ut

Proposition 4.2.22.
χ(S2) = 2 and χ(T 2) = 0.

Proof To compute χ(S2) we use the round metric g0 for which K = 1 so that

χ(S2) =
1
2π

∫

S2

dvg0 =
1
2π

areag0(S
2) = 2.

To compute the Euler characteristic of the torus we think of it as an Abelian Lie group with
a bi-invariant metric. Since the Lie bracket is trivial we deduce from the computations in
Subsection 4.2.2 that its curvature is zero. This concludes the proof of the proposition. ¤

Proposition 4.2.23. If Si (i=1,2) are two compact oriented surfaces without boundary
then

χ(S1#S2) = χ(S1) + χ(S2)− 2.
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Figure 4.3: Generating a hot-dog-shaped surface

Thus upon iteration we get

χ(S1# · · ·#Sk) =
k∑

i=1

χ(Si)− 2(k − 1)

for any compact oriented surfaces S1, . . . , Sk. In terms of genera, the last equality can be
rephrased as

g(S1# · · ·#Sk) =
k∑

i=1

g(Si).

In the proof of this proposition we will use special metrics on connected sums of surfaces
which require a preliminary analytical discussion.

Consider f : (−4, 4) → (0,∞) a smooth, even function such that
(i) f(x) = 1 for |x| ≤ 2.
(ii) f(x) =

√
1− (x + 3)2 for x ∈ [−4,−3.5].

(iii) f(x) =
√

1− (x− 3)2 for x ∈ [3.5, 4].
(iv) f is non-decreasing on [-4,0].
One such function is graphed in Figure 4.3

Denote by Sf the surface inside R3 obtained by rotating the graph of f about the
x-axis. Because of properties (i)-(iv) Sf is a smooth surface diffeomorphic to S2. (One
such diffeomorphism can be explicitly constructed projecting along radii starting at the
origin). We denote by g the metric on Sf induced by the euclidian metric in R3. Since Sf



The Riemann curvature 163
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Figure 4.4: Special metric on a connected sum

is diffeomorphic to a sphere
∫

Sf

Kgdvg = 2πχ(S2) = 4π.

Set
S±f = Sf ∩ {±x > 0} S±1

f = Sf ∩ {±x > 1}
Since f is even we deduce

∫

S±f

Kgdvg =
1
2

∫

Sf

Kgdvg = 2π. (4.2.27)

On the other hand, on the neck C = {|x| ≤ 2} the metric g is locally euclidian

g = dx2 + dθ2

so that over this region Kg = 0. Hence
∫

C
Kgdvg = 0. (4.2.28)

Proof of the Proposition 4.2.23 Let Di ⊂ Si (i = 1, 2) be a local coordinate neigh-
borhood diffeomorphic with a disk in the plane. Pick a metric gi on Si such that (D1, g1) is
isometric with S+

f and (D2, g2) is isometric to S−f . The connected sum S1#S2 is obtained
by chopping off the regions S1

f from D1 and S−1
f from D2 and (isometrically) identifying

the remaining cylinders S±f ∩ {|x| ≤ 1} = C and call O the overlap created by gluing (see
Figure 4.4). Denote the metric thus obtained on S1#S2 by ĝ. We can now compute

χ(S1#S2) =
1
2π

∫

S1#S2

Kĝdvĝ
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=
1
2π

∫

S1\D1

Kg1dvg1 +
1
2π

∫

S2\D2

Kg2dvg2 +
1
2π

∫

O
Kgdvg

(4.2.28)
=

1
2π

∫

S1

Kg1dvg1 −
1
2π

∫

D1

Kgdvg

+
1
2π

∫

S2

Kg2dvg2 −
1
2π

∫

D2

Kgdvg

(4.2.27)
= χ(S1) + χ(S2)− 2.

The proposition is proved.
ut

Corollary 4.2.24. (Gauss-Bonnet) Let Σg denote the connected sum of g-tori. (By
definition Σ0 = S2. Then

χ(Σg) = 2− 2g and g(Σg) = g.

In particular a sphere is not diffeomorphic to a torus.

Remark 4.2.25. It is a classical result that the only compact oriented surfaces are the
connected sums of g-tori (see [52]) so that the genus of a compact oriented surface is a
complete topological invariant. ut



Chapter 5

Elements of the calculus of
variations

This is a very exciting subject lieing at the frontier between mathematics and physics. The
limited space we will devote to this subject will hardly do it justice and we will barely
touch its physical significance. We recommend to anyone looking for an intellectual feast
the Chapter 16 in vol.2 of [27] which in our opinion is the most eloquent argument for the
raison d’être of the calculus of variations.

5.1 The least action principle

5.1.1 1-dimensional Euler-Lagrange equations

From a very “dry” point of view the fundamental problem of the calculus of variations can
be easily formulated as follows.

Consider a smooth manifold M and denote L : R×TM → R be a smooth function called
the lagrangian. Fix two points p0, p1 ∈ M . For any piecewise smooth path γ : [0, 1] → M
connecting these points we define its action by

S(γ) = SL(γ) =
∫ 1

0
L(t, γ(t), γ̇(t))dt.

In the calculus of variations one is interested in those paths as above with minimal action.

Example 5.1.1. Given U : R3 → R a smooth function called the potential we can form
the lagrangian

L(q, q̇) : R3 × R3 ∼= TR3 → R

as

L = Q− U = kinetic energy − potential energy =
1
2
m|q̇|2 − U(q).

(m is the mass). The action of a path (trajectory) γ : [0, 1] → R3 is a quantity called the
newtonian action. ut

165
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Example 5.1.2. To any Riemann manifold (M, g) one can naturally associate two la-
grangians L1, L2 : TM → R defined by

L1(q, v) = gq(v, v)1/2 (v ∈ TqM)

L2(q, v) =
1
2
g(v, v).

We see that the action defined by L1 coincides with the length of a path. The action defined
by L2 is called the energy of a path. ut

Before we present the main result of this subsection we need to introduce a bit of
notation.

Tangent bundles are very peculiar manifolds. Any collection (q1, . . . , qn) of local coordi-
nates on a smooth manifold M automatically induces local coordinates on TM . Any point
in TM can be described by a pair (q, v) where q ∈ M , v ∈ TqM . Furthermore, v has a
decomposition

v = vi∂i (∂i =
∂

∂qi
).

We set q̇i = vi so that
v = q̇i∂i.

The collection (q1, . . . , qn; q̇1, . . . , q̇n) defines local coordinates on TM . These are said to be
holonomic local coordinates on TM . This will be the only type of local coordinates we will
ever use.

Theorem 5.1.3. (The least action principle) Let L : R × TM → R be a lagrangian
and p0, p1 ∈ M two fixed points. If γ : [0, 1] → M is a smooth path such that
(i)γ(i) = pi, i = 0, 1.
(ii) SL(γ) ≤ SL(γ̃) for any smooth path γ̃ : [0, 1] → M joining p0 to p1.

Then γ satisfies the Euler-Lagrange equations

d

dt

∂

∂γ̇
L(t, γ, γ̇) =

∂L

∂γ
.

More precisely, if (qi; q̇j) are holonomic local coordinates on TM such that γ(t) = (qi(t))
and γ̇ = (q̇j(t)) then γ is a solution of the system of nonlinear ordinary differential equations

d

dt

∂L

∂q̇k
(t, qi; q̇j) =

∂L

∂qk
(t, qi; q̇j) k = 1, . . . , n = dim M.

Definition 5.1.4. A path γ : [0, 1] → M satisfying the Euler-Lagrange equations with
respect to some lagrangian L is said to be an extremal of L.

To get a better feeling of these equations consider the special case discussed in Example
5.1.1

L =
1
2
m|q̇|2 − U(q).
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The Euler-Lagrange equations become

mq̈ = −∇U(q). (5.1.1)

These are precisely Newton’s equation of the motion of a particle of mass m in the force
field −∇U generated by the potential U .

In the proof of the least action principle we will use the notion of variation of a path.

Definition 5.1.5. Let γ : [0, 1] → M be a smooth path. A variation of γ is a smooth map

α = αs(t) : (−ε, ε)× [0, 1] → M

such that α0(t) = γ(t). If moreover, αs(i) = pi ∀s (i=0,1) then we say that α is a variation
rel endpoints.

Proof of Theorem 5.1.3. Let αs be a variation of γ rel endpoints. Then

SL(α0) ≤ SL(αs) ∀s

so that
d

ds
|s=0 SL(αs) = 0.

Assume for simplicity that the image of γ is entirely contained in some open coordinate
neighborhood U with coordinates (q1, · · · , qn). Then for very small |s| we can write

αs(t) = (qi(s, t)) and
dαs

dt
= (q̇i(s, t)).

Following the tradition, we set

δα =
∂α

∂s
|s=0=

∂qi

∂s
∂i δα̇ =

∂

∂s
|s=0

dαs

dt
=

∂q̇j

∂s

∂

∂q̇j
.

δα is a vector field along γ called infinitesimal variation (see Figure 5.1). In fact, the pair
(δα; δα̇) ∈ T (TM) is a vector field along t 7→ (γ(t), γ̇(t)) ∈ TM . Note that δα̇ = d

dtδα and
at endpoints δα = 0.

Exercise 5.1.1. Prove that if t 7→ X(t) ∈ Tγ(t)M is a smooth vector field along γ such
that X(t) = 0 for t = 0, 1 then there exists at lest one variation rel endpoints α such that
δα = X.

(Hint: Use the exponential map of some Riemann metric on M .)
We compute (at s = 0)

0 =
d

ds
SL(αs) =

d

ds

∫ 1

0
L(t, αs, α̇s)

=
∫ 1

0

∂L

∂qi
δαidt +

∫ 1

0

∂L

∂q̇j
δα̇j

sdt.
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p

q

γ

Figure 5.1: Deforming a path rel endpoints

Integrating by parts in the second term we deduce

∫ 1

0

{
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)}
δαidt. (5.1.2)

The last equality holds for any variation α. From Exercise 5.1.1 deduce it holds for any
vector field δαi∂i along γ. At this point we use the following classical result of analysis.

“ If f(t) is a continuous function on [0,1] such that

∫ 1

0
f(t)g(t)dt = 0 ∀g ∈ C∞

0 (0, 1)

then f is identically zero.”
Using this result in (5.1.2) we deduce the desired conclusion.

ut

Remark 5.1.6. (a) In the proof of the least action principle we used a simplifying assump-
tion i.e. the image of γ lies in a coordinate neighborhood. This is true locally and for the
above arguments to work it suffices to choose only a special type of variations, localized on
small intervals of [0,1]. In terms of infinitesimal variations this means we need to look only
at vector fields along γ supported in local coordinate neighborhoods. We leave the reader
fill in the details.
(b) The Euler-Lagrange equations were described using holonomic local coordinates. The
minimizers of the action (if any) are objects independent of any choice of local coordinates
so that the Euler-Lagrange equations have to be independent of such choices. We check
this directly. If (xi) is another collection of local coordinates on M and (xi; ẋj) are the
coordinates induced on TM then we have the transition rules

xi = xi(q1, · · · , qn), ẋj =
∂xj

∂qk
q̇k
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so that
∂

∂qi
=

∂xj

∂qi

∂

∂xj
+

∂2xj

∂qk∂qi
q̇k ∂

∂ẋj

∂

∂q̇j
=

∂ẋi

∂q̇j

∂

∂ẋj
=

∂xj

∂qi

∂

∂ẋj

Then
∂L

∂qi
=

∂xj

∂qi

∂L

∂xj
+

∂2xj

∂qk∂qi
q̇k ∂L

∂ẋj
.

d

dt

(
∂L

∂q̇i

)
=

d

dt

(
∂xj

∂qi

∂L

∂ẋj

)

=
∂2xj

∂qk∂qi
q̇k ∂L

∂ẋj
+

∂xj

∂qi

d

dt

(
∂L

∂ẋj

)
.

We now see that the Euler-Lagrange equations in the q-variables imply the Euler-Lagrange
in the x-variable i.e. these equations are independent of coordinates.

The æsthetically conscious reader may object to the way we chose to present the Euler-
Lagrange equations. These are intrinsic equations we formulated in a coordinate dependent
fashion. Is there any way of writing these equation so that the intrinsic nature is visible
“on the nose”?

If the lagrangian L satisfies certain nondegeneracy conditions there are two ways of
achieving this goal. One method is to consider a natural nonlinear connection ∇L on TM
as in [59] . The Euler-Lagrange equations for an extremal γ(t) can then be rewritten as a
“geodesics equation”

∇L
γ̇ γ̇.

The example below will illustrate this approach on a very special case when L is the la-
grangian L2 defined in Example 5.1.2 in which the extremals are precisely the geodesics on
a Riemann manifold.

Another far reaching method of globalizing the formulation of the Euler-Lagrange equa-
tion is through the Legendre transform which again requires a nondegeneracy condition on
the lagrangian. Via the Legendre transform the Euler-Lagrange equations become a system
of first order equations on the cotangent bundle T ∗M known as the Hamilton equations.
These equations have the advantage that can be formulated on manifolds more general
than the cotangent bundles namely on symplectic manifolds. These are manifolds carrying
a closed 2-form whose restriction to each tangent space defines a symplectic duality (see
§2.2.4.) Much like the geodesics equations on a Riemann manifold the Hamilton equations
carry many informations about the structure of symplectic manifolds and are currently the
focus of very intense research. For more details and examples we refer to the monographs
[5] or [21]. ut

Example 5.1.7. Let (M, g) be a Riemann manifold. We will compute the Euler-Lagrange
equations for the lagrangians L1, L2 in Example 5.1.2.

L2(q, q̇) =
1
2
gij(q)q̇iq̇j
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so that
∂L2

∂q̇k
= gjkq̇

j ∂L2

∂qk
=

1
2

∂gij

∂qk
q̇iq̇j .

The Euler-Lagrange equations are

q̈jgjk +
∂gjk

∂qi
q̇iq̇j =

1
2

∂gij

∂qk
q̇iq̇j . (5.1.3)

Since gkmgjm = δm
j we get

q̈m + gkm

(
∂gjk

∂qi
− 1

2
∂gij

∂qk

)
q̇iq̇j = 0. (5.1.4)

When we derivate with respect to t the equality

gikq̇
i = gjkq̇

j

we deduce

gkm ∂gjk

∂qi
q̇iq̇j =

1
2
gkm

(
∂gik

∂qj
+

∂gjk

∂qi

)
q̇iq̇j .

We substitute this equality in (5.1.4) and we get

q̈m +
1
2
gkm

(
∂gik

∂qj
+

∂gjk

∂qi
− ∂gij

∂qk

)
q̇iq̇j = 0. (5.1.5)

The coefficient of q̇iq̇j in (5.1.5) is none other than the Christoffel symbol Γm
ij so this equation

is precisely the geodesic equation. ut

Consider now the lagrangian L1(q, q̇) = (gij q̇
iq̇j)1/2. Note that the action

∫ p1

p0

L(q, q̇)dt

is independent of the parameterization t 7→ q(t) since it computes the length of the path.
Thus, when we express the Euler-Lagrange equations for a minimizer γ0 of this action we
may as well assume it is parameterized by arclength i.e.

|γ̇0| = 1.

The Euler-Lagrange equations for L1 are

d

dt

gkj q̇
j

√
gij q̇iq̇j

=
∂gij

∂qk q̇iq̇j

2
√

gij q̇iq̇j
.

Along the extremal we have gij q̇
iq̇j = 1 (arclength parameterization) so that the previous

equations can be rewritten as

d

dt

(
gkj q̇

j
)

=
1
2

∂gij

∂qk
q̇iq̇j .

We recognize here the equation (5.1.3) which, as we have seen, is the geodesic equation in
disguise. This fact almost explains why the geodesics are the shortest paths between two
nearby points.
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5.1.2 Noether’s conservation principle

This subsection is intended to offer the reader a glimpse at a fascinating subject touching
both physics and geometry. We first need to introduce a bit of traditional terminology
commonly used by physicists.

Consider a smooth manifold M . The tangent bundle TM is usually referred to as the
space of states or the lagrangian phase space. A point in TM is said to be a state. A
lagrangian L : R× TM → R associates to each state several meaningful quantities.
(a) The generalized momenta: pi = ∂L

∂q̇i .
(b) The energy : H = piq̇

i − L.
(c) The generalized force: F = ∂L

∂qi .
This terminology can be justified by looking at the lagrangian of a classical particle in

a potential force field F = −∇U

L =
1
2
m|q̇|2 − U(q).

The momenta associated to this lagrangian are the usual kinetic momenta of the Newtonian
mechanics

pi = mq̇i

while H is simply the total energy

H =
1
2
m|q̇|2 + U(q).

It will be convenient to think of an extremal for an arbitrary lagrangian L(t, q, q̇) as de-
scribing the motion of a particle under the influence of the generalized force.

Proposition 5.1.8. (Conservation of energy) Let γ(t) be an extremal of a time
independent lagrangian L = L(q, q̇). Then the energy is conserved along γ i.e.

d

dt
H(γ, γ̇) = 0.

Proof By direct computation we get

d

dt
H(γ, γ̇) =

d

dt
(piq̇

i − L)

=
d

dt

(
∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i − ∂L

∂q̇i
q̈i

=
{

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

}
q̈i = 0 (by Euler− Lagrange).

ut

At the beginning of this century (1918) Emmy Noether discovered that many of the
conservation laws of the classical mechanics had a geometric origin: they were, most of
them, reflecting a symmetry of the lagrangian!!! This became a driving principle in the
search for conservation laws and in fact, conservation became synonymous with symmetry.
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It eased the leap from classical to quantum mechanics, and one can say it is a very important
building block of quantum physics in general. In the few instances of conservation laws
where the symmetry was not apparent the conservation was always “blamed” on a “hidden
symmetry”. What is then this Noether principle?

To answer this question we need to make some simple observations.
Let X be a vector field on a smooth manifold M defining a global flow Φt. This flow

induces a flow Ψt on the tangent bundle TM defined by

Ψt(x, v) = (Φt(x), Φt
∗(v)).

One can think of Ψt as defining an action of the additive group R on TM . Alternatively, the
physicists say that X is an infinitesimal symmetry of the given mechanical system described
by the lagrangian L.

Example 5.1.9. Let M be the unit round sphere S2 ⊂ R3. The rotations about the z-axis
define a 1-parameter group of isometries of S2 generated by ∂

∂θ (θ is the longitude on S2).

Definition 5.1.10. Let L be a lagrangian on TM and X a vector field on M . The la-
grangian L is said to be X- invariant if

L ◦Ψt = L ∀t.

Denote by X ∈ Vect (TM) the infinitesimal generator of Ψt and by LX the Lie derivative
on TM along X . We see that L is X-invariant iff

LXL = 0.

We describe this derivative using the local coordinates (qi, q̇j). Set (qi(t), q̇j(t)) = Ψt(qi, q̇j).

d

dt
|t=0 qi(t) = Xkδi

k.

To compute d
dt |t=0 q̇j(t) ∂

∂qj we use the definition of the Lie derivative on M

− d

dt
q̇j ∂

∂qj
= LX(q̇i ∂

∂qi
)

=
(

Xk ∂q̇j

∂qk
− q̇k ∂Xj

∂qk

)
∂

∂qj
= −q̇i ∂Xj

∂qi

∂

∂qj

since ∂q̇j/∂qi = 0 on TM . Hence

X = Xi ∂

∂qi
+ q̇k ∂Xj

∂qk

∂

∂q̇j
.

Corollary 5.1.11. L is X-invariant iff

Xi ∂L

∂qi
+ q̇k ∂Xj

∂qk

∂L

∂q̇j
= 0.
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Theorem 5.1.12. (E. Noether) If the lagrangian L is X-invariant then the quantity

PX = Xi ∂L

∂q̇i
= Xipi

is conserved along the extremals of L.

Proof Consider an extremal γ = γ(qi(t)) of L. We compute

d

dt
PX(γ, γ̇) =

d

dt

{
Xi(γ(t))

∂L

∂q̇i

}
=

∂Xi

∂qk
q̇k ∂L

∂q̇i
+ Xi d

dt

(
∂L

∂q̇i

)

= (Euler− Lagrange)
∂Xi

∂qk
q̇k ∂L

∂q̇i
+ Xi ∂L

∂qi
= 0 by Corollary 5.1.11.

ut

The classical conservation of momentum law is a special consequence of Noether’s the-
orem.

Corollary 5.1.13. Consider a lagrangian L = L(t, q, q̇) on Rn. If ∂L
∂qi = 0 (the i-th

component of the force is zero) then dpi

dt = 0 along any extremal (the i-th component of
the momentum is conserved).

To prove this it suffices to take X = ∂
∂qi in Noether’s conservation law..

The conservation of momentum has an interesting application in the study of geodesics.

Example 5.1.14. (Geodesics on surfaces of revolution.) Consider a surface of
revolution S in R3 obtained by rotating about the z-axis the curve y = f(z) situated in the
yz plane. If we use cylindrical coordinates (r, θ, z) we can describe S as

r = f(z).

In these coordinates the Euclidean metric in R3 has the form

ds2 = dr2 + dz2 + r2dθ2.

We can choose (z, θ) as local coordinates on S then the induced metric has the form

gS = {1 + (f ′(z))2}dz2 + f2(z)dθ2 = A(z)dz2 + r2dθ2. (r = f(z))

The lagrangian defining the geodesics on S is

L =
1
2

(
Aż2 + r2θ̇2

)
.

We see that L is independent of θ: ∂L
∂θ = 0 so that the generalized momentum

∂L

∂θ̇
= r2θ̇

is conserved along the geodesics.



174 Calculus of variations
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Figure 5.2: A surface of revolution

This fact can be given a nice geometric interpretation. Consider a geodesic γ =
(z(t), θ(t)) and compute the angle φ between γ̇ and ∂

∂θ . We get

cosφ =
〈γ̇, ∂/∂θ〉
|γ̇| · |∂/∂θ| =

r2θ̇

r|γ̇|
i.e. r cosφ = r2θ̇|γ̇|−1. The conservation of energy implies that |γ̇|2 = 2L = H is constant
along the geodesics. We deduce the following classical result.

Theorem 5.1.15. (Clairaut) On a a surface of revolution the quantity r cosφ is constant
along any geodesic. φ ∈ (−π, π) is the oriented angle the geodesic makes with the parallels
z = const.

Exercise 5.1.2. Describe the geodesics on the round sphere S2 and on the cylinder {x2 +
y2 = 1} ⊂ R3.

5.2 The variational theory of geodesics

We have seen that the paths of minimal length between two points on a Riemann manifold
are necessarily geodesics. Conversely, given a geodesic joining two points q0, q1 it may
happen it is not a minimal path. This should be compared with the situation in calculus
when a critical point of a function f may not be a minimum or a maximum. To decide this
issue one has to look at the second derivative. This is precisely what we intend to do in the
case of geodesics. This situation is a bit more complicated since the action functional

S =
1
2

∫
|γ̇|2dt

is not defined on a finite dimensional manifold. It is a function defined on the “space of all
paths” joining the two given points. With some extra effort this space can be organized as
an infinite dimensional manifold. We will not attempt to formalize these prescriptions but
rather follow the ad-hoc, intuitive approach of [55].
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5.2.1 Variational formulæ

Let M be a connected Riemann manifold and consider p, q ∈ M . Denote by Ωp,q = Ωp,q(M)
the space of all continuous, piecewise smooth paths γ : [0, 1] → M connecting p to q.

An infinitesimal variation of a path γ ∈ Ωp,q is a continuous, piecewise smooth vector
field V along γ such that V (0) = 0 and V (1) = 0. The space of infinitesimal variations of
γ is an infinite dimensional linear space denoted by Tγ = TγΩp,q.

Definition 5.2.1. Let γ ∈ Ωp,q. A variation of γ is a continuous map

α = αs(t) : (−ε, ε)× [0, 1] → M

such that
(i) ∀s ∈ (−ε, ε), αs ∈ Ωp,q.
(ii) There exists a partition 0 = t0 < t1 · · · < tk−1 < tk = 1 of [0,1] such that the restriction
of α to each (−ε, ε)× (ti−1, ti) is a smooth map.

Every variation α of γ defines an infinitesimal variation

δα
def
=

∂αs

∂s
|s=0 .

Exercise 5.2.1. Given V ∈ Tγ construct a variation α such that δα = V . ut

Consider now the energy functional

E : Ωp,q → R E(γ) =
1
2

∫ 1

0
|γ̇(t)|2dt.

Fix γ ∈ Ωp,q and let α be a variation of γ. The velocity γ̇(t) has a finite number of
discontinuities so that the quantity

∆tγ̇ = lim
h→0+

(γ̇(t + h)− γ̇(t− h))

is nonzero only for finitely many t’s.

Theorem 5.2.2. (The first variation formula)

E∗(δα)
def
=

d

ds
|s=0 E(αs) = −

∑
t

〈(δα)(t), ∆tγ̇〉 −
∫ 1

0
〈δα,∇ d

dt
γ̇〉dt. (5.2.1)

∇ denotes the Levi-Civita connection. (Note that the right-hand-side depends on α only
through δα so it is really a linear function on Tγ.)

Proof Set α̇s = ∂αs
∂t . We derivate under the integral sign using the equality

∂

∂s
|α̇s|2 = 2〈∇ ∂

∂s
α̇s, α̇s〉

and we get
d

ds
|s=0 E(αs) =

∫ 1

0
〈∇ ∂

∂s
α̇s, α̇s〉 |s=0 dt.
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Since the vector fields ∂
∂s and ∂

∂t commute we have ∇ ∂
∂s

∂α
∂t = ∇ ∂

∂t

∂α
∂s . Let 0 = t0 < t2 <

· · · < tk = 1 be a partition of [0,1] as in Definition 5.2.1. Since αs = γ for s = 0 we conclude

E∗(δα) =
k∑

i=1

∫ ti

ti−1

〈∇ ∂
∂t

δα, γ̇〉.

We use the equality
∂

∂t
〈δα, γ̇〉 = 〈∇ ∂

∂t
δα, γ̇〉+ 〈δα,∇ ∂

∂t
γ̇〉

to integrate by parts and we obtain

E∗(δα) =
k∑

i=1

〈δα, γ̇〉
∣∣∣titi−1

−
k∑

i=1

∫ ti

ti−1

〈δα,∇ ∂
∂t

γ̇〉dt.

This is precisely equality (5.2.1).
ut

Definition 5.2.3. A path γ ∈ Ωp,q is critical if

E∗(V ) = 0 ∀V ∈ Tγ .

Corollary 5.2.4. A path γ ∈ Ωp,q is critical if and only if it is a geodesic.

Exercise 5.2.2. Prove the above corollary. ut

Note that a priori a critical path may have a discontinuous first derivative. The above
corollary shows that this is not the case; the criticality also implies smoothness. This is a
manifestation of a more general analytical phenomenon called elliptic regularity. We will
have more to say about it in Chapter 9.

The map E∗ : Tγ → R, δα 7→ E∗(δα) is called the first derivative of E at γ ∈ Ωp,q. We
want to define a second derivative of E in order to address the issue raised at the beginning
of this section. We will imitate the finite dimensional case which we now briefly analyze.

Let f : X → R be a smooth function on the finite dimensional smooth manifold X. If
x0 is a critical point of f , i.e. df(x0) = 0, then we can define the hessian at x0

f∗∗ : Tx0X × Tx0X → R

as follows. Given V1, V2 ∈ Tx0X consider a smooth map (s1, s2) 7→ α(s1, s2) ∈ X such that

α(0, 0) = x0 and
∂α

∂si
(0, 0) = Vi, i = 1, 2. (5.2.2)

Now set

f∗∗(V1, V2) =
∂2f(α(s1, s2))

∂s1∂s2
|(0,0) .

Note that since x0 is a critical point of f the hessian f∗∗(V1, V2) is independent of the
function α satisfying (5.2.2).
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We now return to our energy functional E : Ωp,q → R. Let γ ∈ Ωp,q be a critical path.
Consider a 2-parameter variation of γ

αs1,s2(t) : U × [0, 1] → M.

U is the tiny square (−ε, ε) × (−ε, ε) ⊂ R2 and α0,0 = γ. α is continuous and has second
derivatives everywhere except maybe on finitely many “coordinate planes si = const or
t = const. Set δiα = ∂α

∂si
|(0,0), i = 1, 2. Note that δiα ∈ Tγ .

Exercise 5.2.3. Given V1, V2 ∈ Tγ construct a 2-parameter variation α such that Vi = δiα.
ut

We can now define the hessian of E at γ by

E∗∗(δ1α, δ2α)
def
=

∂2E(αs1,s2)
∂s1∂s2

|(0,0) .

Theorem 5.2.5. (The second variation formula)

E∗∗(δ1α, δ2α) = −
∑

t

〈δ2α, ∆tδ1α〉 −
∫ 1

0
〈δ2α,∇2 ∂

∂t
δ1α−R(γ̇, δ1α)γ̇〉dt, (5.2.3)

where R denotes the Riemann curvature. In particular, E∗∗ is a bilinear functional on Tγ.

Proof According to the first variation formula we have

∂E

∂s2
= −

∑
t

〈δ2α,∆t
∂α

∂t
〉 −

∫ 1

0
〈δ2α,∇ ∂

∂t

∂α

∂t
〉dt.

Hence
∂2E

∂s1∂s2
= −

∑
t

〈∇ ∂
∂s1

δ2α, ∆1γ̇〉 −
∑

t

〈δ2α,∇ ∂
∂s1

(
∆t

∂α

∂t

)
〉

−
∫ 1

0
〈∇ ∂

∂s1

δ2α,∇ ∂
∂t

γ̇〉dt−
∫ 1

0
〈δ2α,∇ ∂

∂s1

∇ ∂
∂t

∂α

∂t
〉dt. (5.2.4)

Since γ is a geodesic ∆tγ̇ = 0 and ∇ ∂
∂t

γ̇ = 0. Using the commutativity of ∂
∂t with ∂

∂s1
we

deduce

∇ ∂
∂s1

(
∆t

∂α

∂t

)
= ∆t

(
∇ ∂

∂s1

∂α

∂t

)
= ∆t

(
∇ ∂

∂t
δ1α

)
.

Finally, the definition of the curvature implies

∇ ∂
∂s1

∇ ∂
∂t

= ∇ ∂
∂t
∇ ∂

∂s1

+ R(δ1α, γ̇).

Putting all the above together we deduce immediately the equality (5.2.3).
ut

Corollary 5.2.6.
E∗∗(V1, V2) = E∗∗(V2, V1) ∀V1, V2 ∈ Tγ .
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5.2.2 Jacobi fields

In this subsection we will put to work the elements of calculus of variations presented so
far. Let (M, g) be a Riemann manifold and p, q ∈ M .

Definition 5.2.7. Let γ ∈ Ωp,q be a geodesic. A geodesic variation of γ is a smooth map
αs(t) : (−ε, ε)× [0, 1] → M such that α0 = γ and t 7→ αs(t) is a geodesic for all s. We set
as usual δα = ∂α

∂s |s=0.

Proposition 5.2.8. Let γ ∈ Ωp,q be a geodesic and (αs) a geodesic variation of γ. Then
the infinitesimal variation δα satisfies the Jacobi equation

∇2
t δα = R(γ̇, δα)γ̇ (∇t = ∇ ∂

∂t
).

Proof

∇2
t δα = ∇t

(
∇t

∂α

∂s

)
= ∇t

(
∇s

∂α

∂t

)

= ∇s

(
∇t

∂α

∂t

)
+ R(γ̇, δα)

∂α

∂t
= R(γ̇, δα)

∂α

∂t
.

ut

Definition 5.2.9. A smooth vector field J along a geodesic γ is called a Jacobi field if it
satisfies the Jacobi equation

∇2
t J = R(γ̇, J)γ̇.

Exercise 5.2.4. Show that if J is a Jacobi field along a geodesic γ then there exists a
geodesic variation αs of γ such that J = δα. ut

Exercise 5.2.5. Let γ ∈ Ωp,q and J a vector field along γ.
(a) Prove that J is a Jacobi field if and only if

E∗∗(J, V ) = 0 ∀V ∈ Tγ .

(b) Show that J ∈ Tγ (i.e. J is a vector field along γ vanishing at endpoints) is a Jacobi
field if any only if E∗∗(J,W ) = 0 for all vector fields W along γ. (It is important to
emphasize the point that not all vector fields W along γ belong to Tγ .) ut

Exercise 5.2.6. Let γ ∈ Ωp,q be a geodesic. Define Jp to be the space of Jacobi fields V
along γ such that V (p) = 0. Show that dimJp = dimM and moreover, the evaluation map

evq : Jp → TpM V 7→ ∇tV (p)

is a linear isomorphism. ut

Definition 5.2.10. Let γ(t) be a geodesic. Two points γ(t1) and γ(t2) on γ are said to
be conjugate along γ if there exists a nontrivial Jacobi field J along γ such that J(ti) = 0,
i = 1, 2.
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S

N γ

Figure 5.3: The poles are conjugate along meridians.

Example 5.2.11. Consider γ : [0, 2π] → S2 a meridian on the round sphere connection
the poles. One can verify easily (using Clairaut’s theorem) that γ is a geodesic. The
counterclockwise rotation by an angle θ about the z-axis will produce a new meridian,
hence a new geodesic γθ. Thus (γθ) is a geodesic variation of γ with fixed endpoints. δγ is
a Jacobi field vanishing at the poles. We conclude that the poles are conjugate along any
meridian (see Figure 5.3). ut

Definition 5.2.12. Let γ ∈ Ωp,q be a geodesic. γ is said to be nondegenerate if q is not
conjugated to p along γ.

The following result (partially) explains the geometric significance of conjugate points.

Theorem 5.2.13. Let γ ∈ Ωp,q be a nondegenerate, minimal geodesic. Then p is conjugate
with no point on γ other than itself. In particular, a geodesic segment containing conjugate
points cannot be minimal !

Proof We argue by contradiction. Let p1 = γ(t1) be a point on γ conjugate with p.
Denote by Jt a Jacobi field along γ |[0,t1] such that J0 = 0 and Jt1 = 0. Define V ∈ Tγ by

Vt =
{

Jt , t ∈ [0, t1]
0 , t ≥ t1

.

We will prove that Vt is a Jacobi field along γ which contradicts the nondegeneracy of γ.
In the sequel l denotes the length.
Step 1

E∗∗(U,U) ≥ 0 ∀U ∈ Tγ . (5.2.5)

Indeed, let αs denote a variation of γ such that δα = U . One computes easily that

d2

ds2
E(αs2) = 2E∗∗(U,U).
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Since γ is minimal for any small s we have l(αs2) ≥ l(α0) so that

E(αs2) ≥ 1
2

(∫ 1

0
|α̇s2 |dt

)2

=
1
2
l(αs2)2 ≥ 1

2
l(α0)2

=
1
2
l(γ)2 = E(α0).

Hence
d2

ds2
|s=0 E(αs2) ≥ 0.

This proves (5.2.5).
Step 2 E∗∗(V, V ) = 0. This follows immediately from the second variation formula and the
fact that the nontrivial portion of V is a Jacobi field.
Step 3

E∗∗(U, V ) = 0 ∀U ∈ Tγ .

From (5.2.5) and Step 2 we deduce

0 = E∗∗(V, V ) ≤ E∗∗(V + τU, V + τU) = fU (τ) ∀τ.
Thus, τ = 0 is a global minimum of fU (τ) so that

f ′U (0) = 0.

Step 3 follows from the above equality using the bilinearity and the symmetry of E∗∗. The
final conclusion (that V is a Jacobi field) follows from Exercise 5.2.5.

ut

Exercise 5.2.7. Let γ : R→ M be a geodesic. Prove that the set

{t ∈ R ; γ(t) is conjugate to γ(0)}
is discrete. ut

Definition 5.2.14. Let γ ∈ Ωp,q be a geodesic. We define its index, denoted by ind (γ),
as the cardinality of the set

Cγ = {t ∈ (0, 1) ; is conjugate to γ(0)}
which by Exercise 5.2.7 is finite.

Theorem 5.2.13 can be reformulated as follows: the index of a nondegenerate minimal
geodesic is zero.

The index of a geodesic obviously depends on the curvature of the manifold. Often, this
dependence is very powerful.

Theorem 5.2.15. Let M be a Riemann manifold with non-positive sectional curvature,
i.e.

〈R(X, Y )Y,X〉 ≤ 0 ∀X, Y ∈ TxM ∀x ∈ M. (5.2.6)

Then for any p, q ∈ M and any geodesic γ ∈ Ωp,q, ind (γ) = 0.
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Proof It suffices to show that for any geodesic γ : [0, 1] → M the point γ(1) is not
conjugated to γ(0).

Let Jt be a Jacobi field along γ vanishing at the endpoints. Thus

∇2
t J = R(γ̇, J)γ̇

so that ∫ 1

0
〈∇2

t J, J〉dt =
∫ 1

0
〈R(γ̇, J)γ̇, J〉dt = −

∫ 1

0
〈R(J, γ̇)γ̇, J〉dt.

We integrate by parts the left-hand-side of the above equality and we deduce

〈∇tJ, J〉|10 −
∫ 1

0
|∇tJ |2dt = −

∫ 1

0
〈R(J, γ̇)γ̇, J〉dt.

Since J(τ) = 0 for τ = 0, 1 we deduce using (5.2.6)
∫ 1

0
|∇tJ |2dt ≤ 0.

This implies ∇tJ = 0 which coupled with the condition J(0) = 0 implies J ≡ 0. The proof
is complete.

ut

The notion of conjugacy is intimately related to the behavior of the exponential map.

Definition 5.2.16. Let f : X → Y be a smooth map between the smooth manifolds x and
Y.
(a) A point x ∈ X is said to be critical if

rank (Dfx : TxX → Tf(x)Y ) < min {dimTxX, dimTf(x)Y }.
(b) A point y ∈ Y is called a critical value for f if f−1(y) contains at least one critical
point of f .
(c) y ∈ Y is a regular value if it is not a critical value.

Theorem 5.2.17. Let (M, g) be a connected, complete, Riemann manifold and q0 ∈ M . A
point q ∈ M is conjugated to q0 along some geodesic if and only if it is a critical value for
the exponential map

expq0
: Tq0M → M.

Proof Let q = expq0 v (v ∈ Tq0M). Assume first that q is a critical value for expq0
and

v is a critical point. Then Dv expq0
(X) = 0 for some X ∈ Tv(Tq0M). Let v(s) be a path

in Tq0M such that v(0) = v and v̇(0) = X. The map (s, t) 7→ expq0
(tv(s)) is a geodesic

variation of the radial geodesic γv : t 7→ expq0(tv). Hence the vector field

W =
∂

∂s
|s=0 expq0

(tv(s))

is a Jacobi field along γv. Obviously W (0) = 0 and moreover

W (1) =
∂

∂s
|s=0 expq0

(v(s)) = Dv expq0
(X) = 0.
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Figure 5.4: Lengthening a sphere.

On the other hand this is a nontrivial field since

∇tW = ∇s |s=0
∂

∂t
expq0

(tv(s)) = ∇sv(s) |s=0 6= 0.

This proves q0 and q are conjugated along γv.
Conversely, assume v is not a critical point for expq0

. For any X ∈ Tv(Tq0M) denote by
JX the Jacobi field along γv such that

JX(q0) = 0. (5.2.7)

The existence of such a Jacobi field follows from Exercise 5.2.6. As in that exercise denote
by Jq0 the space of Jacobi fields J along γv such that J(q0) = 0. The map

Tv(Tq0M) → Jq0 X 7→ JX

is a linear isomorphism. Thus, a Jacobi field along γv vanishing at both q0 and q must have
the form JX where X ∈ Tv(Tq0M) satisfies Dv expq0

(X) = 0. Since v is not a critical point
this means X = 0 so that JX ≡ 0.

ut

Corollary 5.2.18. On a complete Riemann manifold M with non-positive sectional curva-
ture the exponential map expq has no critical values for any q ∈ M .

We will see in the next chapter that this corollary has a lot to say about the topology
of M .

Consider now the following experiment. Stretch the round two-dimensional sphere of
radius 1 until it becomes “very long”. A possible shape one can obtain may look like in
Figure 5.4. The long tube is very similar to a piece of cylinder so that the total (= scalar)
curvature is very close to zero, in other words is very small. The lesson to learn from this
intuitive experiment is that the price we have to pay for lengthening the sphere is decreasing
the curvature. Equivalently, a highly curved surface cannot have a large diameter. Our next
result offers a more quantitative description of this phenomenon.
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Theorem 5.2.19. (Myers) Let M be an n-dimensional complete Riemann manifold. If
for all X ∈ Vect (M)

Ric (X,X) ≥ (n− 1)
r2

|X|2

then every geodesic of length ≥ πr has conjugate points and thus is not minimal. Hence

diam (M) = sup{dist (p, q) ; p, q ∈ M} ≤ πr

and in particular the Hopf-Rinow theorem implies that M must be compact.

Proof Fix a minimal geodesic γ : [0, `] → M of length ` and let ei(t) be an orthonormal
basis of vector fields along γ such that en(t) = γ̇(t). Set q0 = γ(0) and q1 = γ(`). Since γ
is minimal we deduce

E∗∗(V, V ) ≥ 0 ∀V ∈ Tγ .

Set Wi = sin(πt/`)ei. Then

E∗∗(Wi,Wi) = −
∫ `

0
〈Wi,∇tWi + R(Wi, γ̇)γ̇〉dt

=
∫ `

0
sin2(πt/`)

(
π2/`2 − 〈R(ei, γ̇)γ̇, ei〉

)
dt.

We sum over i = 1, . . . , n− 1 and we obtain

n−1∑

i=1

E∗∗(Wi,Wi) =
∫ `

0
sin2 πt/`

(
(n− 1)π2/`2 − Ric (γ̇, γ̇)

)
dt ≥ 0.

If ` > πr then
(n− 1)π2/`2 − Ric (γ̇, γ̇) < 0

so that
n−1∑

i=1

E∗∗(Wi,Wi) < 0.

Hence for at least for some Wi we have E∗∗(Wi,Wi) < 0. This contradicts the minimality
of γ. The proof is complete.

ut

Corollary 5.2.20. A semisimple Lie group G with positive definite Killing pairing is
compact.

Proof The Killing form defines in this case a bi-invariant Riemann metric on G. Its
geodesics through the origin 1 ∈ G are the 1-parameter subgroups exp(tX) which are
defined for all t ∈ R. Hence, by Hopf-Rinow theorem G has to be complete.

On the other hand we have computed the Ricci curvature of the Killing metric and we
found

Ric (X, Y ) =
1
4
κ(X,Y ) ∀X, Y ∈ LG.

The corollary now follows from Myers’ theorem.
ut
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Exercise 5.2.8. Let M be a Riemann manifold and q ∈ M . For the unitary vectors
X, Y ∈ TqM consider the family of geodesics

γs(t) = expq t(X + sY ).

Denote by Wt = δγs the associated Jacobi field along γ0(t). Form f(t) = |Wt|2. Prove the
following.
(a) Wt = DtX expq(Y ) = Frechet derivative of v 7→ expq(v)
(b) f(t) = t2 − 1

3〈R(Y, X)X, Y 〉qt4 + O(t5).
(c) Denote by xi a collection of normal coordinates at q. Prove that

gk`(x) = δk` − 1
3
Rkij`xixj + O(3).

det gij(x) = 1− 1
3
Rijxixj + O(3).

(e) Let
Dr(q) = {x ∈ TqM ; |x| ≤ r}.

Prove that if the Ricci curvature is negative definite at q then

vol0 (Dr(q)) ≤ volg (expq(Dr(q))

for all r sufficiently small. vol0 denotes the Euclidean volume in TqM while volg denotes
the volume on the Riemann manifold M . ut

Remark 5.2.21. The interdependence “curvature-topology” on a Riemann manifold has
deep reaching ramifications which stimulate the curiosity of many researchers. We refer
to [23] or [55] and the extensive references therein for a presentation of some of the most
attractive results in this direction. ut



Chapter 6

The fundamental group and
covering spaces

In the previous chapters we almost exclusively studied local properties of manifolds. This
study is interesting only if some additional structure is present since otherwise all manifolds
are locally alike.

We noticed an interesting phenomenon: the global “shape” (topology) of a manifold
restricts the types of structures that can exist on a manifold. For example, the Gauss-
Bonnet theorem implies that on a connected sum of two tori there cannot exist metrics with
curvature everywhere positive because the integral of the curvature is a negative universal
constant.

We used Gauss-Bonnet theorem in the opposite direction and we deduced-the intuitively
obvious fact- that a sphere is not diffeomorphic to a torus because they have distinct gen-
era. The Gauss-Bonnet theorem involves a heavy analytical machinery which obscures the
intuition. Notice that S2 has a remarkable property which distinguishes it from T 2: on the
sphere any closed curve can be shrunk to a point while on the torus there exist at least two
“independent” unshrinkable curves (see Figure 6.1). In particular this means the sphere is
not diffeomorphic to a torus.

This chapter will set the above observations on a rigorous foundation.

Figure 6.1: Looking for unshrinkable loops.

185
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6.1 The fundamental group

6.1.1 Basic notions

In the sequel all topological spaces will be locally path connected spaces.

Definition 6.1.1. (a) Let X and Y be two topological spaces and f0, f1 : X → Y continuous
maps. f0 and f1 are said to be homotopic if there exists a continuous map

F : [0, 1]×X → Y (t, x) 7→ Ft(x)

such that Fi ≡ fi for i = 0, 1. We write this as f0 'h f1.
(b) Two topological spaces X, Y are said to be homotopically equivalent if there exist maps
f : X → Y and g : Y → X such that f ◦ g 'h 1Y and g ◦ f 'h 1X . We write this X 'h Y .
(c) A topological space is said to be contractible if it is homotopically equivalent to a point.

Example 6.1.2. The unit disk in the plane is contractible. The annulus {1 ≤ |z| ≤ 2} is
homotopically equivalent with the unit circle. ut

Definition 6.1.3. (a) Let X be a topological space and x0 ∈ X. A loop based at x0 is a
continuous map

γ : [0, 1] → X such that γ(0) = γ(1) = x0.

The space of loops in X based at x0 is denoted by Ω(X, x0).
(b) Two loops γ0, γ1 : I → X based at x0 are said to be homotopic rel x0 if there exists a
continuous map

Γ : [0, 1]× I → X (t, s) 7→ Γt(s)

such that
Γi(s) = γi(s) i = 0, 1

and
(s 7→ Γt(s)) ∈ Ω(X,x0) ∀t ∈ [0, 1].

We write this as γ0 'x0 γ1.

Note that a loop is more than a closed curve; it is a closed curve + a description of a
motion of a point around the closed curve.

Example 6.1.4. The two loops γ1, γ2 : I → C, γk(t) = exp(2kπt), k = 1, 2 are different
though they have the same image. ut

Definition 6.1.5. (a) Let γ1, γ2 be two loops based at x0 ∈ X. The product of γ1 and γ2

is the loop

γ1 ∗ γ2(s) =
{

γ1(2s) , 0 ≤ s1/2
γ2(2s− 1) , 1/2 ≤ s ≤ 1

.

The inverse of a based loop γ is the based loop γ− defined by

γ−(s) = γ(1− s).

(c) The identity loop is the constant loop ex0(s) ≡ x0.
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Intuitively, the product of two loops γ1 and γ2 is the loop obtained by first following γ1

(twice faster) and then γ2 (twice faster).
The following result is left to the reader as an exercise.

Lemma 6.1.6. Let α0 'x0 α1, β0'x0β1 and γ0'x0γ1 be three pairs of homotopic based
loops.. Then
(a) α0 ∗ β0'x0α1 ∗ β1.
(b) α0 ∗ α−0 'x0ex0.
(c) α0 ∗ ex0'x0α0.
(d) (α0 ∗ β0) ∗ γ0'x0α0 ∗ (β0 ∗ γ0).

Hence the product operation descends to an operation “·” on Ω(X,x0)/'x0- the set of
homotopy classes of based loops. Moreover the induced operation is associative, it has a
unit and each element has an inverse. Hence (Ω(X, x0)/'x0 , ·) is a group.

Definition 6.1.7. The group (Ω(X,x0)/'x0 , ·) is called the fundamental group (or the
Poincaré group) of the topological space X and is denoted by π1(X, x0). The image of a
based loop γ in π1(X, x0) is denoted by [γ].

The elements of π1(X, x0) are the “unshrinkable loops” discussed at the beginning of
this chapter.

The fundamental group π1(X, x0) “sees” only the connected component of X which con-
tains x0. To get more information about X one should study all the groups {π1(X,x)}x∈X .

Proposition 6.1.8. Let X and Y be two topological spaces x0 ∈ X and y0 ∈ Y . Then any
continuous map f : X → Y such that f(x0) = y0 induces a morphism of groups

f∗ : π1(X, x0) → π1(Y, y0)

satisfying the following functoriality properties.
(a) (1X)∗ = 1π1(X,x0).
(b) If

(X,x0)
f→ (Y, y0)

g→ (Z, z0)

are continuous maps (such that f(x0) = y0 and g(y0) = z0) then (g ◦ f)∗ = g∗ ◦ f∗.
(c) Let f0, f1 : (X, x0) → (Y, y0) be two base-point-preserving continuous maps. Assume f0

is homotopic to f1 rel x0 i.e. there exists a continuous map F : I ×X → Y , (t, x) 7→ Ft(x)
such that Fi(x) ≡ fi(x) for i = 0, 1 and Ft(x0) ≡ y0. Then (f0)∗ = (f1)∗.

Proof Let γ ∈ Ω(X, x0) Then f(γ) ∈ Ω(Y, y0) and one can check immediately that

γ'x0γ
′ ⇒ f(γ) 'y0 f(γ′).

Hence the correspondence

Ω(X, x0) 3 γ 7→ f(γ) ∈ Ω(Y, y0)

descends to a map f : π1(X,x0) → π1(Y, y0). This is clearly a group morphism. (a) and
(b) are now obvious. We prove (c).
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x0
γ 1xα−

α

Figure 6.2: Connecting base points.

Let f0, f1 : (X,x0) → (Y, y0) be two continuous maps and Ft a homotopy rel x0 con-
necting them. For any γ ∈ Ω(X,x0)

β0 = f0(γ) 'y0 f1(γ) = β1.

The above homotopy is realized by Bt = Ft(γ).
ut

A priori, the fundamental group of a topological space X may change as the base point
varies and it almost certainly does if X has several connected components. However, if X is
connected (and thus path connected since it is locally so) all fundamental groups π1(X,x),
x ∈ X are isomorphic.

Proposition 6.1.9. Let X be a connected topological space. Any continuous path α :
[0, 1] → X joining x0 to x1 induces an isomorphism

α∗ : π1(X, x0) → π1(X, x1)

defined by
α∗([γ]) = [α− ∗ γ ∗ α]

(see Figure 6.2).

Exercise 6.1.1. Prove Proposition 6.1.9.

Thus, the fundamental group of a connected space X is independent of the base point
modulo some isomorphism. We will write π1(X, pt) to underscore this weak dependence on
the base point.

Corollary 6.1.10. Two homotopically equivalent connected spaces have isomorphic funda-
mental groups.

Example 6.1.11. (a) π1(Rn, pt) ∼ π1(pt, pt) = {1}.
(b) π1(annulus) ∼ π1(S1). ut

Definition 6.1.12. A connected space X such that π1(X, pt) = {1} is said to be simply
connected.

Exercise 6.1.2. Prove that the spheres of dimension ≥ 2 are simply connected. ut
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Exercise 6.1.3. Let G be a connected Lie group. Define a new operation “? ” on Ω(G, 1)
by

(α ? β)(s) = α(s) · β(s)

where · denotes the group multiplication.
(a) Prove that α ? β '1 α ∗ β.
(b) Prove that π1(G, 1) is abelian. ut

Exercise 6.1.4. Let E → X be a rank r complex vector bundle over the smooth manifold
X and let ∇ be a flat connection on E i.e. F (∇) = 0. Pick x0 ∈ X and identify the fiber
Ex0 with Cr. For any continuous, piecewise smooth γ ∈ Ω(X, x0) denote by Tγ = Tγ(∇)
the parallel transport along γ so that Tγ ∈ GL (r,C).
(a) Prove that α'x0β ⇒ Tα = Tβ.
(b) Tβ∗α = Tα ◦ Tβ.

Thus, any flat connection induces a group morphism

T : π1(X, x0) → GL (r,C) γ 7→ T−1
γ .

This morphism (representation) is called the monodromy of the connection. ut

Example 6.1.13. We want to compute the fundamental group of the complex projective
space CPn. More precisely, we want to show it is simply connected. We will establish this
by induction.

For n = 1, CP1 ∼= S2 and by Exercise 6.1.2 the sphere S2 is simply connected. We next
assume CPk is simply connected for k < n and prove the same is true for n.

Notice first that the natural embedding Ck+1 ↪→ Cn+1 induces an embedding CPk ↪→
CPn. More precisely, in terms of homogeneous coordinates this embedding is given by

[z0 : . . . : zk] 7→ [z0 : . . . : zk : 0 : . . . : 0] ∈ CPn.

Choose as base point pt = [1 : 0 : . . . : 0] ∈ CPn and let γ ∈ Ω(CPn, pt). We may assume γ
avoids the point P = [0 : . . . : 0 : 1] since we can homotop it out of any neighborhood of P .

We now use a classical construction of projective geometry. We project γ from P to the
“hyperplane” H = CPn−1 ↪→ CPn. More precisely, if ζ = [z0 : . . . : zn] ∈ CPn we denote by
π(ζ) the intersection of the line Pζ with the hyperplane H. In homogeneous coordinates

π(ζ) = [z0(1− zn) : . . . : zn−1(1− zn) : 0] (= [z0 : . . . : zn−1 : 0] when zn 6= 1).

Clearly π is continuous. For t ∈ [0, 1] define

πt(ζ) = [z0(1− tzn) : . . . : zn−1(1− tzn) : (1− t)zn].

Geometrically, πt flows the point ζ along the line Pζ until it reaches the hyperplane H.
Note that πt(ζ) = ζ ∀t and ∀ζ ∈ H. Clearly πt is a homotopy rel pt connecting γ = π0(γ)
to a loop γ1 in H ∼= CPn−1 based at pt. Our induction hypothesis shows that γ1 can be
shrunk to pt inside H . This proves CPn is simply connected. ut
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6.1.2 Of categories and functors

The considerations in the previous subsection can be very elegantly presented using the
language of categories and functors. This brief subsection is a minimal introduction to this
language. The interested reader can learn more about it from the monograph [51].

A category is a triple C=(Ob, Hom, ◦) where
(i) Ob is a collection of elements called the objects of the category.
(ii) Hom is a family of sets Hom (X,Y ), one for each pair of objects X and Y . The elements
of Hom (X, Y ) are called the morphisms (or arrows) from X to Y .
(iii) ◦ is a collection of maps

◦ : Hom (X,Y )×Hom(Y, Z) → Hom(X, Z)

(f, g) 7→ g ◦ f.

which satisfies the following conditions.
(C1) For any object X there exists a unique element 1X ∈ Hom(X, X) such that

f ◦ 1X = f g ◦ 1X = g ∀f ∈ Hom(X,Y ) ∀g ∈ Hom(Z,X).

(C2) ∀f ∈ Hom(X, Y ) g ∈ Hom(Y, Z) h ∈ Hom(Z,W )

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Remark 6.1.14. We note in passing that we were deliberately sloppy when we used the
term “collection” when we introduced Ob. It may happen Ob or Hom is not a set and
one has to deal with thorny foundational issues which are beyond the scope of this book ut

Example 6.1.15. • Top is the category of topological spaces. The objects are topological
spaces and the morphisms are the continuous maps.
• (Top, ∗) is the category of marked topological spaces. the objects are pairs (X, ∗) where
X is a topological space and ∗ is a distinguished point of X. The morphisms

(X, ∗) f→ (Y, ¦)

are the continuous maps f : X → Y such that f(∗) = ¦.
• FVect is the category of vector spaces over the field F. The morphisms are the F-linear
maps.
• Gr is the category of groups, while Ab denotes the category of abelian groups. The
morphisms are the obvious ones.
• RMod denotes the category of left R-modules, where R is some ring. ut

Definition 6.1.16. Let C1 and C2 be two categories. A covariant (resp. contravariant)
functor is a map

F : Ob (C1)×Hom (C1) → Ob (C2)×Hom (C2)

(X, f) 7→ (F(X), F(f))
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such that if X
f→ Y then F(X)

F(f)→ F(Y ) (resp.F(X)
F(f)← F(Y )) and

(i) F(1X) = 1F(X)

(ii) F(g) ◦ F(f) = F(g ◦ f) (resp. F(f) ◦ F(g) = F(g ◦ f)).

Example 6.1.17. Let V be a real vector space. Then right tensoring with V defines a
covariant functor

⊗V : RVect → RVect

defined by

U 7→ U ⊗ V (U1
L→ U2) 7→ (U1 ⊗ V

L⊗1V→ U2 ⊗ V ).

On the other hand, taking the dual

∗ : RVect → RVect

V 7→ V ∗ (U L→ V ) 7→ (V ∗ Lt→ U∗)

defines a contravariant functor.
The fundamental group construction of the previous is a covariant functor

π1 : (Top, ∗) → Gr.

ut

In Chapter 7 we will introduce other functors very important in geometry.

6.2 Covering spaces

6.2.1 Definitions and examples

As in the previous section we will assume that all topological spaces are locally path con-
nected.

Definition 6.2.1. (a) A continuous map π : X → Y is said to be a covering map if for
any y ∈ Y there exists an open neighborhood U such that π−1(U) is a disjoint union of open
sets Vi ⊂ X each of which is mapped homeomorphically onto U by π. Such an U is said to
be an evenly covered neighborhood. The sets Vi are called the sheets over U .
(b) Let Y be a topological space. A covering space of Y is a topological space X together
with a covering map π : X → Y .

If π : X → Y is a covering map then for any y ∈ Y the set π−1(y) is called the fiber
over y.

Example 6.2.2. Let D be a discrete set. Then for any topological space X the product
X ×D is a covering of X with covering projection π(x, d) = x. This type of covering space
is said to be trivial. ut

Exercise 6.2.1. Show that a fibration with standard fiber a discrete space is a covering. ut



192 The Fundamental group and covering spaces

Example 6.2.3. The exponential map exp : R → S1, t 7→ exp(2πit) is a covering map.
However its restriction to (0,∞) is no longer a a covering map. (Prove this!). ut

Exercise 6.2.2. Let (M, g) and (M̃, g̃) be two Riemann manifolds of the same dimension
such that (M̃, g̃) is complete. Let φ : M̃ → M a surjective local isometry i.e. Φ is smooth
and

|v|g = |Dφ(v)|g̃ ∀v ∈ TM̃.

Prove that φ is a covering map. ut

The above exercise has a particularly nice consequence.

Theorem 6.2.4. (Cartan-Hadamard) Let (M, g) be a complete Riemann manifold with
non-positive sectional curvature. Then for every point q ∈ M the exponential map

expq : TqM → M

is a covering map.

Proof Consider the pull-back h = exp∗q(g). h is a symmetric non-negative definite (0,2)-
tensor field on TqM . It is in fact a metric (i.e. it is positive definite) since the map expq

has no critical points due to the non-positivity of the sectional curvature.
The lines t 7→ tv through the origin of TqM are geodesics of h and they are defined for

all t ∈ R. By Hopf-Rinow theorem we deduce that (TqM,h) is complete. The theorem now
follows from Exercise 6.2.2.

ut

Exercise 6.2.3. Let G̃ and G two Lie groups of the same dimension and φ : G̃ → G a
smooth, surjective group morphism. Prove that φ is a covering map. In particular, this
explains why exp : R→ S1 is a covering map. ut

Exercise 6.2.4. Identify S3 ⊂ R4 with the group of unit quaternions

S3 = {q ∈ H ; |q| = 1}.
The linear space R3 can be identified with the space of purely imaginary quaternions

R3 = ImH = {xi + yj + zk}.
(a) Prove that ∀q ∈ S3 qxq−1 ∈ ImH.
(b) Prove that for any q ∈ S3 the linear map

Tq : ImH→ ImH x 7→ qxq−1

is an isometry so that Tq ∈SO(3). Moreover the map

S3 3 q 7→ Tq ∈ SO(3)

is a group morphism.
(c) Prove the above group morphism is a covering map. ut
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Example 6.2.5. Let M be a smooth manifold. A Riemann metric on M induces a metric
on the determinant line bundle detTM . The sphere bundle of detTM (with respect to this
metric) is a covering space of M called the orientation cover of M . ut

Definition 6.2.6. Let X1
π1→ Y and X2

π2→ Y be two covering spaces of Y . A morphism of
covering spaces is a continuous map F : X1 → X2 such that π2 ◦ F = π1 i.e. the diagram
below is commutative.

X1 X2

Y

[
[]

π1

wF

�
�� π2

If F is also a homeomorphism we say F is an isomorphism of covering spaces.
Finally, if X

π→ Y is a covering space then its automorphisms are called deck transfor-
mations. The deck transformations form a group denoted by Deck (X,π).

Exercise 6.2.5. Show that Deck (R exp→ S1) ∼= Z. ut

Exercise 6.2.6. (a) Prove that the natural projection Sn → RPn is a covering map.
(b) Denote by τ1

R the tautological (real) line bundle over RPn. Using a metric on this line
bundle form the associated sphere bundle S(τ1

R) → RPn. Prove that this defines a covering
space isomorphic with the one described at part (a). ut

6.2.2 Unique lifting property

Definition 6.2.7. Let X
π→ Y be a covering space and F : Z → Y a continuous map. A

lift of f is a continuous map F : Z → X such that π ◦ F = f , i.e. the diagram below is
commutative.

X

Z Y
u
π

�
�
��F

wf

Proposition 6.2.8. (Unique Path Lifting) Let X
π→ Y be a covering map, γ : [0, 1] → Y

a path in Y and x0 a point in the fiber over y0 = γ(0), x0 ∈ π−1(y0). Then there exists at
most one lift of γ, Γ : [0, 1] → Y such that Γ(0) = x0.

Proof We argue by contradiction. Assume there exist two such lifts, Γ1, Γ2 : [0, 1] → X.
Set

S = {t ∈ [0, 1] ; Γ1(t) = Γ2(t)}.
S 6= ∅ since 0 ∈ S. Obviously S is closed so it suffices to prove that it is also open. We
will prove that there exists r0 > 0 such that [0, r0] ⊂ S. The general situation is entirely
similar.

Pick a small open neighborhood U of x0 such that π restricts to a homeomorphism onto
π(U). There exists r0 > 0 such that γi([0, r0] ⊂ U , i = 1, 2. Since π ◦Γ1 = π ◦Γ2 we deduce
Γ1 |[0,r0]= Γ2 |[0,r0]. The proposition is proved.

ut
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Theorem 6.2.9. Let X
π→ Y be a covering space and f : Z → Y a continuous map, where

Z is a connected space. Fix z0 ∈ Z and x0 a point in π−1(y0), where y0 = f(z0). Then
there exists at most one lift F : Z → X of f such that F (z0) = x0.

Proof For each z ∈ Z let αz be a continuous path connecting z0 to z. If F1, F2 are two
lifts of f such that F1(z0) = F2(z0) = x0 then for any z ∈ Z the paths Γ1 = Fi(αz) and
Γ2 = F2(αz) are two lifts of γ = f(αz) starting at the same point. From Proposition 6.2.8
we deduce that Γ1 ≡ Γ2, i.e. F1(z) = F2(z) for any z ∈ Z.

ut

6.2.3 Homotopy lifting property

Theorem 6.2.10. (Homotopy lifting property) Let X
π→ Y be a covering space,

f : Z → Y a continuous map and F : Z → X a lift of f . If

h : [0, 1]× Z → Y (t, z) 7→ ht(z)

is a homotopy of f (h0(z) ≡ f(z)) then there exists a unique lift of h

H : [0, 1]× Z → X (t, z) 7→ Ht(z)

such that H0(z) ≡ F (z).

Proof For each z ∈ Z we can find an open neighborhood Uz of z ∈ Z and a partition
0 = t0 < t1 < · · · < tn = 1 (depending on z) such that h maps [ti−1, ti]× Uz into an evenly
covered neighborhood of hti−1(z). Following this partition can now succesively lift h |I×Uz

to a continuous map H = Hz : I × Uz → X such that H0(ζ) = F (ζ), ∀ζ ∈ Uz. By unique
lifting property the liftings on I×Uz1 and I×Uz2 agree on I× (Uz1 ∩Uz2) for any z1, z2 ∈ Z
and hence we can glue all these local lifts together to obtain the desired lift H on I × Z.

ut

Corollary 6.2.11. (Path lifting property) Let X
π→ Y be a covering space and γ :

[0, 1] → Y a continuous path starting at y0 ∈ Y . Then for every x0 ∈ π−1(y0) there exists
a unique lift Γ : [0, 1] → X of γ starting at x0.

Proof Use the previous theorem with f : {pt} → Y , f(pt) = γ(0) and ht(pt) = γ(t).
ut

Corollary 6.2.12. Let X
π→ Y be a covering space, y0 ∈ Y and γ0, γ1 ∈ Ω(Y, y0) If γ0 and

γ1 are homotopic rel y0 then any lifts Γ0, Γ1 which start at the same point also end at the
same point, i.e. Γ0(1) = Γ1(1).

Proof Lift the homotopy connecting γ0 to γ1 to a homotopy in X. By unique lifting
property this lift connects Γ0 to Γ1. We thus get a continuous path Γt(1) inside the fiber
π−1(y0) which connects Γ0(1) to Γ1(1). Since the fibers are discrete this path must be
constant.

ut
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Let X
π→ Y be a covering space and y0 ∈ Y . Then for every x ∈ π−1(y0) and any

γ(s) ∈ Ω(Y, y0) denote by Γx(s) the unique lift of γ starting at x. Set

x · γ =
def→ Γx(1).

By Corollary 6.2.12 if ω ∈ Ω(Y, y0) is homotopic to γ rel y0 then

x · γ = x · ω.

Hence x · γ depends only upon the equivalence class [γ] ∈ π1(Y, y0). Clearly

x · ([γ] · [ω]) = (x · [γ]) · [ω]

and
x · ey0 = x

so that the correspondence

π−1(y0)× π1(Y, y0) 3 (x, γ) 7→ x · γ ∈ x · γ ∈ π−1(y0)

defines a right action of π1(Y, y0) on the fiber π−1(y0). This action is called the monodromy
of the covering. The map x 7→ x · γ is called the monodromy along γ. Note that when Y is
simply connected the monodromy is trivial. The map π induces a group morphism

π∗ : π1(X, x0) → π1(Y, y0) x0 ∈ π−1(y0).

Proposition 6.2.13. π∗ is injective.

Proof Indeed, let γ ∈ Ω(X,x0) such that π(γ) is trivial in π1(Y, y0). The homotopy
connecting π(γ) to ey0 lifts to a homotopy connecting γ to the unique lift of ey0 at x0 which
is ex0 .

ut

6.2.4 On the existence of lifts

Theorem 6.2.14. Let X
π→ Y be a covering space, x0 ∈ X, y0 = π(x0) ∈ Y , f : Z → Y a

continuous map and z0 ∈ Z such that f(z0) = y0. Assume the spaces Y and Z are connected
(and thus path connected). f admits a lift F : Z → X such that F (z0) = x0 if and only if

f∗ (π1(Z, z0)) ⊂ π∗ (π1(X,x0)) . (6.2.1)

Proof Necessity. If F is such a lift then using the functoriality of the fundamental group
construction we deduce f∗ = π∗ ◦ F∗. This implies the inclusion (6.2.1).
Sufficiency For any z ∈ Z choose a path γz from z0 to z. Then αz = f(γz) is a path from
y0 to y = f(z). Denote by Az the unique lift of αz starting at x0 and set F (z) = Az(1). We
claim that F is a well defined map.



196 The Fundamental group and covering spaces

Indeed, let ωz be another path in Z connecting z0 to z. Set λz = f(ωz) and denote by
Λz its unique lift in X starting at x0. We have to show that Λz(1) = Az(1). Construct the
loop based at z0

βz = ωz ∗ γ−z .

f(βz) is a loop in Y based at y0. From (6.2.1) we deduce that the lift Bz of f(βz) at x0 ∈ X
is a closed path (i.e. the monodromy along f(βz) is trivial). We now have

Λz(1) = Bz(1/2) = Az(0) = Az(1).

This proves F is a well defined map. We still have to show this map is also continuous.
Pick z ∈ Z. Since f is continuous, for every arbitrarily small, evenly covered neigh-

borhood U of f(z) ∈ Y there exists a path connected neighborhood V of z ∈ Z such that
f(V ) ⊂ U . For any ζ ∈ V pick a path σ = σζ in V connecting z to ζ. Let ω denote the path
ω = γz ∗ σζ (go from z0 to z along γz and then from z to ζ along σζ). Then F (ζ) = Ω(1)
where Ω is the unique lift of f(ω) starting at x0. Since (f(ζ) ∈ U we deduce that Ω(1)
belongs to the local sheet Σ, containing F (z), which homeomorphically covers U . We have
thus proved z ∈ V ⊂ F−1(Σ). The proof is complete since the local sheets Σ form a basis
of neighborhoods of F (z).

ut

Definition 6.2.15. Let Y be a connected space. A covering space X
π→ Y is said to be

universal if X is simply connected.

Corollary 6.2.16. Let X1
pi→ Y (i=0,1) be two covering spaces of Y . Fix xi ∈ Xi such

that p0(x0) = p(x1) = y0 ∈ Y . If X0 is universal there exists a unique covering morphism
F : X0 → X1 such that F (x0) = x1.

Proof A bundle morphism F : X0 → X1 can be viewed as a lift of the map p0 : X0 → Y
to the total space of the covering space defined by p1. The corollary follows immediately
from Theorem 6.2.14 and the unique lifting property.

ut

Corollary 6.2.17. Every space admits at most one universal covering space (up to isomor-
phism).

Theorem 6.2.18. Let Y be a connected, locally path connected space such that each of
its points admits a simply connected neighborhood. Then Y admits an (essentially unique)
universal covering space.

Sketch of proof Assume for simplicity that Y is a metric space. Fix y0 ∈ Y . Let Py0

denote the collection of continuous paths in Y starting at y0. It can be topologized using
the metric of uniform convergence in Y . Two paths in Py0 are said to be homotopic rel
endpoints if they can be deformed from one to another keeping the endpoints fixed. This
defines an equivalence relation on Py0 . We denote the space of equivalence classes by Ỹ and
we endow it with the quotient topology. Define p : Ỹ → Y by

p([γ]) = γ(1) ∀γ ∈ Py0 .

Then (Ỹ , p) is an universal covering space of Y .
ut
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Exercise 6.2.7. Finish the proof of the above theorem. ut

Example 6.2.19. R exp→ S1 is the universal cover of S1. More generally, Exp : Rn → Tn

(t1, . . . , tn) 7→ (exp(2πit1), . . . , exp(2πitn))

is the universal cover of Tn. The natural projection

p : Sn → RPn

is the universal cover of RPn. ut

Example 6.2.20. Let (M, g) be a complete Riemann manifold with non-positive sectional
curvature. By Cartan-Hadamard theorem the exponential map expq : TqM → M is a
covering map. Thus the universal cover of such a manifold is a linear space of the same
dimension. In particular the universal covering space is contractible!!!

We now have another explanation why Exp : Rn → Tn is a universal covering space of
the torus: the sectional curvature of the (flat) torus is zero. ut

Exercise 6.2.8. Let (M, g) be a complete Riemann manifold and p : M̃ → M its universal
covering space.
(a) Prove that M̃ has a natural structure of smooth manifold such that p is a local diffeo-
morphism.
(b) Prove that the pullback p∗g defines a complete Riemann metric on M̃ locally isometric
with g. ut

Example 6.2.21. Let (M, g) be a complete Riemann manifold such that

Ric (X, X) ≥ const.|X|2g, (6.2.2)

where const denotes a strictly positive constant. By Myers theorem M is compact. Using
the previous exercise we deduce that the universal cover M̃ is a complete Riemann manifold
locally isometric with (M, g). Hence the inequality (6.2.2) continues to hold on the covering
M̃ . Myers theorem implies again that the universal cover M̃ is compact !! In particular, the
universal cover of a semisimple, compact Lie group is compact!!! ut

6.2.5 The universal cover and the fundamental group

Theorem 6.2.22. Let X̃
p→ X be the universal cover of a space X. Then

π1(X, pt) ∼= Deck (X̃ → X).

Proof Fix ξ0 ∈ X̃ and set x0 = p(ξ0). There exists a bijection

Ev : Deck (X̃) → p−1(x0)

given by the evaluation
Ev (F ) = F (ξ0).
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For any ξ ∈ π−1(x0) let γξ be a path connecting ξ0 to ξ. Any two such paths are homotopic
rel endpoints since X̃ is simply connected (check this). Their projections on the base X
determine identical elements in π1(X, x0). We thus have a natural map

Ψ : Deck (X̃) → π1(X,x0) F 7→ p(γF (ξ0)).

Ψ is clearly a group morphism. (Think monodromy!). The injectivity and the surjectivity
of Ψ are consequences of the lifting properties of the universal cover.

ut

Corollary 6.2.23. If the space X has a compact universal cover then π1(X, pt) is finite.

Proof Indeed the fibers of the universal cover have to be both discrete and compact.
Hence they must be finite. The map Ev in the above proof maps the fibers bijectively onto
Deck (X̃). ¤

Corollary 6.2.24. (H. Weyl) The fundamental group of a compact semisimple group is
finite.

Indeed, we deduce from Example 6.2.21 that the universal cover of such a group is
compact.

Example 6.2.25. From Example 6.2.5 we deduce that π1(S1) ∼= (Z,+). ut

Exercise 6.2.9. (a)Prove that π1(RPn, pt) ∼= Z2, ∀n ≥ 2.
(b) Prove that π1(Tn) ∼= Zn. ut

Exercise 6.2.10. Show that the natural inclusion U(n−1) ↪→ U(n) induces an isomorphism
between the fundamental groups. Conclude that the map

det : U(n) → S1

induces an isomorphism
π1(U(n)) ∼= π1(S1) ∼= Z.

ut
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Cohomology

7.1 DeRham cohomology

7.1.1 Speculations around the Poincaré lemma

To start off, consider the following partial differential equation in the plane: given two
smooth functions P and Q find a smooth function u such that

∂u

∂x
= P,

∂u

∂y
= Q. (7.1.1)

As is, the formulation is still fuzzy since we have not specified the domains of the functions
u, P and Q. As it will turn out, this aspect has an incredible relevance in geometry.

Equation (7.1.1) has another interesting feature: it is overdetermined ,i.e. it imposes
too many conditions on too few unknowns. It is therefore quite natural to impose some
additional restrictions on the data P , Q just like the zero determinant condition when
solving overdetermined linear systems.

To see what restrictions one should add it is convenient to introduce the 1-form α =
Pdx + Qdy. (7.1.1) can be rewritten as

du = α. (7.1.2)

If (7.1.2) has at least one solution u then

0 = d2u = dα

so that a necessary condition for existence is

dα = 0, (7.1.3)

i.e.
∂P

∂y
=

∂Q

∂x
.

A form satisfying (7.1.3) is said to be closed. Thus, if the equation du = α has a solution
then α is necessarily closed. Is the converse also true?

206
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Let us introduce a bit more terminology. A form α such that the equation (7.1.2) has a
solution is said to be exact. The motivation for this terminology comes from the fact that
sometimes du is called the exact differential of u. We thus have an inclusion of vector spaces

{exact forms} ⊂ {closed forms}.
Is it true the opposite inclusion also holds?

Amazingly, the answer to this question depends on the domain on which we study
(7.1.2). The Poincaré lemma comes to raise our hopes. It says that this is always true at
least locally.

Lemma 7.1.1. (Poincaré lemma) Let C be an open convex set in Rn and α ∈ Ωk(C).
Then the equation

du = α (7.1.4)

has a solution u ∈ Ωk−1(C) if and only if α is closed, dα = 0.

Proof The necessity is clear. We prove the sufficiency. We may as well assume 0 ∈ C.
Consider the radial vector field on C

~r = xi ∂

∂xi

and denote by Φt the flow it generates. Φt is the linear flow

Φt(x) = etx, x ∈ Rn.

Note that since C is convex the flow lines of Φt, which are the straight lines through the
origin, intersect C along connected segments originating at 0.

We begin with an a priori study of (7.1.4). Let u satisfy du = α. Using the homotopy
formula

L~r = di~r + i~rd

we get
dL~ru = d(di~r + i~rd)u = di~rα,

i.e.
d(L~ru− i~rα) = 0.

This suggests looking for solutions of

L~ru = i~rα. (7.1.5)

If u is a solution of this equation then

L~rdu = dL~ru = di~rα = L~rα− i~Rdα = L~rα.

Hence u also satisfies
L~r(du− α) = 0.

Set ω = du− α =
∑

I ωIdxI . Using the computations in Subsection 3.1.3 we deduce

L~rdxi = dxi
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so that
L~rω =

∑

I

(L~rωI)dxI = 0.

We deduce that L~rωI = 0 and consequently the coefficients ωI are constants along the the
flow lines of Φt which all converge at 0. Thus

ωI = cI = constant.

Each monomial cIdxI is exact i.e. there exits ηI ∈ Ωk−1(C) such that dηI = cIdxI . For
example, when I = 1 < 2 < · · · < k

dx1 ∧ dx2 ∧ · · · ∧ dxk = d(x1dx2 ∧ · · · ∧ dxk).

Thus, the equality L~rω = 0 implies ω is exact. Hence there exists η ∈ Ωk−1(C) such that

d(u− η) = α

i.e. u− η solves (7.1.4). Conclusion: any solution of (7.1.5) produces a solution of (7.1.4).
We now proceed to solve (7.1.5). At this point the flow Φt enters crucially. Define

u =
∫ 0

−∞
Φ∗t (i~rα)dt. (7.1.6)

Here the convexity assumption on C enters essentially since it implies that

Φt(C) ⊂ C ∀t ≤ 0

so that if the above integral is convergent then u is a form on C. If we write

Φ∗t (i~rα) =
∑

|I|=k−1

ηt
I(x)dxI

then

u(x) =
∑

I

(∫ 0

−∞
ηt

I(x)dt

)
dxI . (7.1.7)

We have to check two things.

A. The integral in (7.1.7) is well defined. To see this we first write

α =
∑

|J |=k

αJdxJ

and set
A(x) = max

J ;0≤τ≤1
|αJ(τx)|.

Then

Φ∗t (i~rα) = eti~r

(∑

J

αJ(etx)dxJ

)
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so that
|ηt

I(x)| ≤ Cet|x|A(x) ∀t ≤ 0.

This proves the integral in (7.1.7) converges.
B. u defined by (7.1.6) is a solution of (7.1.5). Indeed, on differential forms

L~ru = lim
s→0

1
s

(Φ∗su− u) = lim
s→0

1
s

(
Φ∗s

∫ 0

−∞
Φ∗t (i~rα)dt−

∫ 0

−∞
Φ∗t (i~rα)dt

)

= lim
s→0

(∫ s

−∞
Φ∗t (i~rα)dt−

∫ 0

−∞
Φ∗t (i~rα)dt

)
= lim

s→0

∫ s

0
Φ∗t (i~rα)dt = Φ∗0(i~rα) = i~rα.

The Poincaré lemma is proved.
ut

The local solvability does not in any way implies global solvability. Something happens
when one tries to go from local to global.

Example 7.1.2. Consider the form dθ on R2\{0} where (r, θ) denote the polar coordinates
in the punctured plane. To write it in cartesian coordinates (x, y) we use the equality

tan θ =
y

x

so that
(1 + tan2 θ)dθ = − y

x2
dx +

dy

x

(1 +
y2

x2
)dθ =

−ydx + xdy

x2
,

i.e.
dθ =

−ydx + xdy

x2 + y2
= α.

Obviously, dα = d2θ = 0 on R2 \ {0} so that α is closed on the punctured plane. Can we
find a smooth function u on R2 \ {0} such that du = α?

We know that we can always do this locally. However, we cannot achieve this globally.
Indeed, if this was possible then

∫

S1

du =
∫

S1

α =
∫

S1

dθ = 2π.

On the other hand, using polar coordinates u = u(r, θ) we get
∫

S1

du =
∫

S1

∂u

∂θ
dθ

=
∫ 2π

0

∂u

∂θ
dθ = u(1, 2π)− u(1, 0) = 0.

Hence on R2 \ {0}
{exact forms} 6= {closed forms}.

We see what a dramatic difference a point can make: R2 \ {point} is structurally very
different from R2. ut
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The artifice in the previous example simply increases the mystery. It is still not clear
what makes it impossible to patch-up local solutions. The next subsection describes two
ways to deal with this issue.

7.1.2 Čech vs. DeRham

Let us try to analyze what prevents the “spreading” of local solvability of (7.1.4) to global
solvability. We will stay in the low degree range.

The Čech approach Consider ω a closed 1-form on a smooth manifold. To solve the
equation du = ω, u ∈ C∞(M) we first cover M by geodesically convex open sets (Uα) (with
respect to some fixed Riemann metric). By Poincaré lemma we can solve du = ω on each
open set Uα so that we can find a smooth function fα ∈ C∞(Uα) such that dfα = ω. We
get a global solution if and only if

fαβ = fα − fβ = 0 on each Uαβ = Uα ∩ Uβ 6= ∅.

For fixed α the solutions of the equation du = ω on Uα differ only by additive constants
(i.e. closed 0-forms).

The quantities fαβ satisfy dfαβ = 0 on the (connected) overlaps Uαβ so they are constants.
Clearly they satisfy the conditions

fαβ + fβγ + fγα = 0 on Uαβγ 6= ∅. (7.1.8)

On each Uα we have as we have seen several choices of solution. Altering a choice is
tantamount to adding a constant fα → fα + cα. The quantities fαβ change according to

fαβ → fαβ + cα − cβ.

Thus the global solvability issue leads to the following situation. Pick a collection of local
solutions fα. The equation du = ω is globally solvable if we can alter each fα by a constant
cα such that

fαβ = (cβ − cα) ∀α, β such that Uαβ 6= ∅. (7.1.9)

We can start the alteration at some open set Uα and work our way up from one such open
set to its neighbors, always trying to implement (7.1.9). It may happen that in the process
we might have to return to an open set whose solution was already altered. Now we are
in trouble. (Try this on S1 and ω = dθ.) After several attempts one can point the finger
to the culprit: the global topology of the manifold may force us to always return to some
already altered local solution.

Notice that we replaced the partial differential equation du = ω with a system of linear
equations (7.1.9), where the constants fαβ are subject to the constraints (7.1.8). This is no
computational progress since the combinatorics of this system makes it impossible solve in
most cases.

The above considerations extend to higher degree and one can imagine the complexity
increases considerably. This is however the approach Čech adopted in order to study the
topology of manifolds and although it may seem computationally hopeless, its theoretical
insights are invaluable.
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The DeRham Approach This time we postpone asking why the global solvability is not
always possible. Instead, for each smooth manifold M one considers the Z-graded vector
spaces

B∗(M) = ⊕k≥0B
k(M), (B0(M)

def
= {0}) Z∗(M) = ⊕k≥0Z

k(M)

where
Bk(M) = {dω ∈ Ωk(M) ; ω ∈ Ωk−1(M)} = exact k − forms

and
Zk(M = {η ∈ Ωk(M) ; dη = 0} = closed k − forms.

Clearly Bk ⊂ Zk. Form the quotients

Hk(M) = Zk(M)/Bk(M).

Intuitively, this space consists of those closed k-forms ω for which the equation

du = ω

has no global solution u ∈ Ωk−1(M). Thus if we can somehow describe these spaces we may
get an idea “ who” is responsible for the global nonsolvability.

Definition 7.1.3. For any smooth manifold M the vector space Hk(M) is called the k-th
DeRham cohomology group.

Clearly Hk(M) = 0 for k > dimM .

Example 7.1.4. The Poincaré lemma shows that Hk(Rn) = 0 for k > 0. The discussion
in Example 7.1.2 shows that H1(R2 \ {0}) 6= 0. ut

Proposition 7.1.5. For any smooth manifold M

dimH0(M) = number of connected components of M.

Proof Indeed
H0(M) = Z0(M) = {f ∈ C∞(M) ; df = 0}

Thus H0(M) coincides with the linear space of locally constant functions. These are con-
stant on the connected components of M .

ut

Already H0(M) contains an important topological information. Obviously the groups
Hk are diffeomorphism invariants and its is reasonably to suspect the higher cohomology
groups may contain more topological information.

Thus, to any manifold we can now associate the graded vector space

H∗(M)
def
=

⊕

k≥0

Hk(M).
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A priori, the spaces Hk may be infinite dimensional. The Poincaré polynomial, denoted by
PM (t) is defined by

PM (t) =
∑

k≥0

tk dimHk(M)

every time the right-hand-side expression makes sense. The number dimHk(M) is usually
denoted by bk(M) and is called the k-th Betti number of M . Hence

PM (t) =
∑

k

bk(M)tk.

The alternating sum
χ(M) :=

∑

k

(−1)kbk(M)

is called the Euler characteristic of M .

Exercise 7.1.1. Show that PS1(t) = 1 + t. ut

We will spend the remaining of this chapter trying to understand what is that these
groups do and which (if any) is the connection between the two approaches outlined above.

7.1.3 Very little homological algebra

At this point it is important to isolate the common algebraic skeleton on which both DeR-
ham and Čech approaches are built. This requires a little terminology from homological
algebra. In the sequel all rings will be assumed commutative with 1.

Definition 7.1.6. (a) Let R be a ring, C = ⊕n∈ZCn and D = ⊕n∈ZDn two Z-graded left
R-modules. A degree k-morphism φ : C → D is a R-module morphism such that

φ(Cn) ⊂ Dn+k ∀n ∈ Z.

(b) Let C = ⊕n∈Z be a Z-graded R-module. A boundary (resp. coboundary) operator is a
degree -1 (resp. a degree 1) endomorphism d : C → C such that d2 = 0.

A chain (resp. cochain) complex over R is a pair (C, d) where C is a Z-graded R-module
and d is a boundary operator (resp. a coboundary operator).

In this book we will be interested mainly in cochain complexes so in the remaining part
of this subsection we will stick to this situation. In this case cochain complexes are usually
described as (C = ⊕n∈ZCn, d). Moreover we will consider only the case Cn = 0 for n < 0.

Traditionally, a cochain complex is represented as a long sequence of R-modules and
morphisms of R-modules

(C, d) : · · · → Cn−1 dn−1−→ Cn dn−→ Cn+1 → · · ·

such that range (dn−1) ⊂ ker (dn), i.e. dndn−1 = 0.
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Definition 7.1.7. Let

· · · → Cn−1 dn−1−→ Cn dn−→ Cn+1 → · · ·
be a cochain complex. Set

Zn(C) = ker dn Bn(C) = range (dn−1).

The elements of Zn(C) are called cocycles, while the elements of Bn(C) are called coboundaries.
Two cocycles c, c′ ∈ Zn(C) are said to be cohomologous if c − c′ ∈ Bn(C). The quotient
module

Hn(C)
def
= Zn(C)/Bn(C)

is called the n-th cohomology group (module) of C. It can be identified with the set of
equivalence classes of cohomologous cocycles. A cochain complex complex C is said to be
acyclic if Hn(C) = 0 for all n > 0. ut

For a cochain complex C one usually writes

H∗(C) =
⊕

n≥0

Hn(C).

Example 7.1.8. ( The DeRham complex) Let M be an m-dimensional smooth mani-
fold. Then the sequence

0 → Ω0(M) d→ Ω1 d→ · · · d→ Ωm(M) → 0

(where d is the exterior derivative) is a cochain complex called the DeRham complex. Its
cohomology is the DeRham cohomology of the manifold. ut

Example 7.1.9. Let (g, [·, ·]) be a real Lie algebra. Define

d : Λkg∗ → Λk+1g∗

by

(dω)(X0, X1, . . . , Xk) =
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

where as usual, the hat indicates a missing argument. According to the computations
in Example 3.2.6 d is a coboundary operator so that (Λ∗g∗, d) is a cochain complex. Its
cohomology is called the Lie algebra cohomology and is denoted by H∗(g). ut

Exercise 7.1.2. (a) Let g be a real Lie algebra. Show that

H1(g) ∼= (g/[g, g])∗

where [g, g] = span {[X, Y ] ; X, Y ∈ g}.
(b) Compute H1(gl(n,R)) where gl(n,R) denotes the Lie algebra of n × n real matrices
with the bracket given by the commutator.
(c) (Whitehead) Let g be a semisimple Lie algebra, i.e. its Killing pairing is nondegenerate.
Prove that H1(g) = {0}. (Hint: Prove that [g, g]⊥ = 0 where ⊥ denotes the orthogonal
complement with respect to the Killing pairing.) ut
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Proposition 7.1.10. Let

(C, d) : · · · → Cn−1 dn−1−→ Cn dn−→ Cn+1 → · · ·
be a cochain complex of R-modules. Assume moreover that C is also a Z-graded R-algebra,
i.e. there exists an associative multiplication such that

Cn · Cm ⊂ Cm+n ∀m,n.

If d is a quasi-derivation, i.e.

d(x · y) = ±(dx) · y ± x · (dy) ∀x, y ∈ C

then H∗(C) inherits a structure of Z-graded R-algebra.

A cochain complex as in the above proposition is called a differential graded algebra or
DGA.
Proof It suffices to show Z∗(C) · Z∗(C) ⊂ Z∗(C) and B∗(C) ·B∗(C) ⊂ B∗(C).

If dx = dy = 0 then d(xy) = ±(dx)y ± x(dy) = 0. If x = dx′ and y = dy′ then since
d2 = 0 we deduce xy = ±(dx′dy′).

ut

Corollary 7.1.11. The DeRham cohomology of a smooth manifold has an R-algebra struc-
ture induced by the exterior multiplication of differential forms.

Definition 7.1.12. Let (A, d) and (B, δ) be two cochain complexes.
(a) A cochain map is a degree 0 morphism φ : A → B such that φ ◦ d = δ ◦ φ i.e. the
diagram below is commutative for any n.

An An+1

Bn Bn+1

wdn

u

φn

u

φn+1

wδn

(b) Two cochain maps φ, ψ : A → B are said to be cochain homotopic and we write this
φ 'h ψ if there exists a degree -1 morphism χ : {An → Bn−1} such that

φ(a)− ψ(a) = ±δ ◦ χ(a)± χ ◦ d(a).

(c) Two cochain complexes (A, d) and (B, δ) are said to be homotopic if there exist cochain
maps

φ : A → B and ψ : B → A

such that ψ ◦ φ 'h 1A and φ ◦ ψ 'h 1B.

Example 7.1.13. The commutation rules in Subsection 3.2.1, namely [LX , d] = 0 and
[iX , d]s = LX show that for each vector field X on a smooth manifold M the Lie derivative
along X, LX : Ω∗(M) → Ω∗(M) is a cochain map homotopic with the trivial map (≡ 0).
The interior derivative iX is the cochain homotopy achieving this. ut
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Proposition 7.1.14. (a) Any cochain map φ : (A, d) → (B, δ) induces a degree zero
morphism in cohomology

φ∗ : H∗(A) → H∗(B).

(b) If the cochain maps φ, ψ : A → B are cochain homotopic then they induce identical
morphisms in cohomology, φ∗ = ψ∗.

(c) (1A)∗ = 1H∗(A) and if

(A, d)
φ→ (A′, d′) ψ→ (A′′, d′′)

are cochain maps then (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Proof (a) It boils down to checking the inclusions

φ(Zn(A)) ⊂ Zn(B) and φ(Bn(A)) ⊂ Bn(B).

These follow immediately from the definition of a cochain map.

(b) We have to show that

φ(cocycle)− ψ(cocycle) = coboundary.

Let da = 0. Then

φ(a)− ψ(a) = ±δ(χ(a)± χ(da) = δ(±χ(a)) = coboundary in B.

(c) Obvious.

ut

Corollary 7.1.15. If two cochain complexes (A, d) and (B, δ) are cochain homotopic then
their cohomology modules are isomorphic.

Proposition 7.1.16. Let

0 → (A, dA)
φ→ (B, dB)

ψ→ (C, dC) → 0

be a short exact sequence of cochain complexes. This means we have a commutative diagram
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...
...

...

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

...
...

...

w wφn+1

u

dA

u

dB

wψn+1

u

dC

w

w

u

dA

wφn

u

dB

wψn

u

dC

w

w

u

dA

wψn−1

u

dB

wψn−1

u

dC

wu

dA

u

dB

u

dC

(7.1.10)

in which the rows are exact. Then there exists a long exact sequence

· · · → Hn−1(C)
∂n−1→ Hn(A)

φ∗→ Hn(B)
ψ∗→ Hn(C) ∂n→ Hn+1(A) → · · · . (7.1.11)

We will not include a proof of this proposition. We believe this is one proof in homolog-
ical algebra the reader should try it on his/her own. We will just indicate the construction
of the connecting maps ∂n.

This construction and in fact the entire proof relies on a simple technique called diagram
chasing. Start with x ∈ Hn(C). x can be represented by some cocycle c ∈ Zn(C). Since
ψn is surjective there exists b ∈ Bn such that c = ψn(b). From the commutativity of the
diagram (7.1.10) we deduce 0 = dCψn(b) = ψn+1d

B(b) i.e. dB(b) ∈ kerψn+1 = rangeφn+1.
In other words, there exists a ∈ An+1 such that φn+1(a) = dB

n b. We claim a is a cocycle.
Indeed

φn+2d
A
n+1a = dB

n+1φn+1a = dB
n+1d

B
n b = 0.

Since φn+2 is injective we deduce dA
n+1a = 0 i.e. a is a cocycle.

If we trace back the path which lead us from c ∈ Zn(C) to a ∈ Zn+1(A) we can write

a = φ−1
n+1 ◦ dB ◦ ψ−1

n (c) = φ−1
n+1 ◦ dBb.

This is not entirely rigorous since a depends on various choices. We let the reader check
that the correspondence Zn(C) 3 c 7→ a ∈ Zn+1(A) above induces a well defined map in
cohomology, ∂n : Hn(C) → Hn+1(A) and moreover, the sequence (7.1.11) is exact.
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Exercise 7.1.3. 1 Suppose R is a commutative ring with 1. For any cochain complex
(K•, dK) of R-modules, and any integer n we denote by K[n]• the complex defined by
K[n]m = Kn+m, dK[n] = (−1)ndK . We associate to any cochain map f : K• → L• two new
cochain complexes:

(a) The cone
(
C(f)•, dC(f)

)
where

C(f)• = K[1]• ⊕ L•, dC(f)

[
ki+1

`i

]
=

[ −dK 0
f dL

]
·
[

ki+1

`i

]
.

(b) The cylinder
(
Cyl(f), dCyl(f)

)

Cyl(f)• ∼= K• ⊕ C(f)•, dCyl(f)




ki

ki+1

`i


 =




dK −1Ki+1 0
0 −dK 0
0 f dL


 ·




ki

ki+1

`i


 .

We have canonical inclusions α : L• → Cyl(f), f̄ : K• → Cyl(f)•, a canonical projections
β : Cyl(f)• → L•, δ = δ(f) : C(f)• → K[1]•, and π : Cyl(f) → C(f).

(i) Prove that α, βf̄ , δ(f) are cochain maps, β ◦ α = 1L and α ◦ β is cochain homotopic to
1Cyl(f).
(ii) Show that we have the following commutative diagram of cochain complexes, where the
rows are exact.

0 L• C(f)• K[1]• 0

0 K• Cyl(f) C(f) 0

K• L•

w

u

α

wπ̄

u

1C(f)

wδ(f) w

w

u

1K

wf̄

u

β

wπ w

wf

(iii) Show that the connecting morphism in the long exact sequence corresponding to the
shor exact sequence

0 → K• f̄−→ Cyl(f) π−→ C(f) → 0

coincides with the morphism induced in cohomology by δ(f) : C(f) → K[1]•.

(iv) Prove that f induces an isomorphism in cohomology if and only if the cone of f is
acyclic. ut

1This exercise describes additional features of the long exact sequence in cohomology. They are particu-
larly useful in the study of derived categories.
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Exercise 7.1.4. (Abstract Morse inequalities) Let C =
⊕

n≥0 Cn be a cochain com-
plex over the field F. Assume each of the vector spaces Cn is finite dimensional. Form the
Poincaré series

PC(t) =
∑

n≥0

tn dimF Cn

and
PH∗(C)(t) =

∑

n≥0

tn dimF Hn(C).

Prove that there exists a formal series R(t) ∈ Z[[t]] with non-negative coefficients such that

PC(t) = PH∗(C)(t) + (1 + t)R(t).

In particular, whenever it makes sense, the graded spaces C∗ and H∗ have identical Euler
characteristics

χ(C∗) = PC(−1) = PH∗(C)(−1) = χ(H∗(C)).

ut

Exercise 7.1.5. (Additivity of Euler characteristic) Let

0 → A → B → C → 0

be a short exact sequence of cochain complexes over the field F. Prove that if at least two
of the cohomology modules H∗(A), H∗(B) and H∗(C) have finite dimension over F then
the same is true about the third one and moreover

χ(H∗(B)) = χ(H∗(A)) + χ(H∗(C)).

ut

Exercise 7.1.6. (Finite dimensional Hodge theory) Let (⊕n≥0V
n, dn) be a cochain

complex over the reals such that dimV n < ∞ for all n. Assume each V n is an Euclidean
space and denote by d∗n : V n+1 → V n the adjoint of dn. We can now form the Laplacians

∆n : V n → V n ∆n = d∗ndn + dn−1d
∗
n−1.

(a) Prove that ∆nc = 0 iff dnc = 0 and d∗n−1c = 0.
(b) Let c ∈ Zn(C). Prove that there exists a unique c ∈ Zn(C) cohomologous to c such
that

|c| = min{|c′| ; c− c′ ∈ Bn(C)}
where | · | denotes the Euclidean norm in V n.
(c) Prove that c determined in part (b) satisfies ∆nc = 0. Deduce from all the above the
Hodge theorem

Hn(V ) ∼= ker∆n. ut
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Exercise 7.1.7. Let V be a real vector space and v0 ∈ V . Define dk : ΛkV → Λk+1V by
ω 7→ v0 ∧ ω.
(a) Prove that

· · · dk−1→ ΛkV
dk→ Λk+1V

dk+1→ · · ·
is a cochain complex (known as Koszul complex).
(b) Use the finite dimensional Hodge theory described in previous exercise to prove that
the Koszul complex is acyclic if v0 6= 0 i.e.

Hk(Λ∗V, d) = 0 ∀k ≥ 0. ut

7.1.4 Functorial properties of DeRham cohomology

Let M and N be two smooth manifolds and φ : M → N a smooth map. The pullback

φ∗ : Ω∗(N) → Ω∗(M)

is a cochain map, i.e.
φ∗dN = dMφ∗.

Thus φ∗ induces a morphism in cohomology which we continue to denote by φ∗;

φ∗ : H∗(N) → H∗(M).

In fact we have a more precise statement.

Proposition 7.1.17. The DeRham cohomology construction is a contravariant functor
from the category of smooth manifolds and smooth maps to the category of Z-graded vector
spaces with degree zero morphisms.

Note that the pull-back is an algebra morphism φ∗ : Ω∗(N) → Ω∗(M) and the exterior
differentiation is a quasi-derivation so that the map it induces in cohomology will also be a
ring morphism.

Definition 7.1.18. (a) Two smooth maps φ0, φ1 : M → N are said to be (smoothly)
homotopic (and we write this φ0 'sh φ1) if there exists a smooth map

Φ : I ×M → N (t,m) 7→ Φt(m)

such that Φi = φi for i = 0, 1.
(b) A smooth map φ : M → N is said to be a (smooth) homotopy equivalence if there exists
a smooth map ψ : N → M such that φ ◦ ψ 'sh 1N and ψ ◦ φ 'sh 1M .
(c) Two smooth manifolds M and N are said to be homotopically equivalent if there exists
a homotopy equivalence φ : M → N .

Proposition 7.1.19. Let φ0, φ1 : M → N be two homotopic smooth maps. Then they
induce identical maps in cohomology

φ∗0 = Φ∗1 : H∗(N) → H∗(M).
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Proof According to the general results in homological algebra it suffices to show the
pullbacks

φ∗0, φ
∗
1 : Ω∗(N) → Ω∗(M)

are cochain homotopic. Thus, we have to produce a map

χ : Ω∗(N) → Ω∗−1(M)

such that
φ∗1(ω)− φ∗0(ω) = ±χ(dω)± dχω.

At this point, our discussion on the fibered calculus of Subsection 3.4.5 will pay off.
The projection Φ : I ×M → M defines an oriented ∂-bundle (with standard fiber I).

For any ω ∈ Ω∗(N) we have the equality

φ∗1(ω)− φ∗0(ω) = Φ∗(ω) |1×M −Φ∗(ω) |0×M

=
∫

(∂I×M)/M
Φ∗(ω).

We now use the homotopy formula of Theorem 3.4.40 of Subsection 3.4.5. We get
∫

(∂I×M)/M
Φ∗(ω) =

∫

(I×M)/M
dI×MΦ∗(ω)− dM

∫

(I×M)/M
Φ∗(ω)

=
∫

(I×M)/M
Φ∗(dNω)− dM

∫

(I×M)/M
Φ∗(ω).

Thus
χ(ω) =

∫

(I×M)/M
Φ∗(ω)

is the sought for cochain homotopy. ut

Corollary 7.1.20. Two homotopically equivalent spaces have isomorphic cohomology rings.

Consider now a smooth manifold and U , V two open subsets such that M = U ∪ V .
Denote by ıU (resp. ıV ) the inclusions U ↪→ M (resp. V ↪→ M). These induce the restriction
maps

ı∗U : Ω∗(M) → Ω∗(U) ω 7→ ω |U
and

ı∗V : Ω∗(M) → Ω∗(V ) ω 7→ ω |V .

We get a cochain map
r : Ω∗(M) → Ω∗(U)⊕ Ω∗(V )

ω 7→ (ı∗Uω, ı∗V ω).

There exists another cochain map

δ : Ω∗(U)⊕ Ω∗(V ) → Ω∗(U ∩ V )

(ω, η) 7→ −ω |U∩V +η |U∩V .
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Lemma 7.1.21. The short Mayer-Vietoris sequence

0 → Ω∗(M) r→ Ω∗(U)⊕ Ω∗(V ) δ→ Ω∗(U ∩ V ) → 0

is exact.

Proof Obviously r is injective. The proof of the equality Range r = ker δ can be safely
left to the reader. The surjectivity of δ requires a little more effort.

{U, V } is an open cover of M so we can find a partition of unity

{ϕU , ϕV } ⊂ C∞(M)

subordinated to this cover, i.e.

suppϕU ⊂ U, suppϕV ⊂ V

0 ≤ ϕU , ϕV ≤ 1, ϕU + ϕV = 1.

Note that for any ω ∈ Ω∗(U ∩ V )

suppϕV ω ⊂ suppϕV ⊂ V

and thus, upon extending ϕV ω by 0 outside V we can view it as a form on U . Similarly,
ϕUω ∈ Ω∗(V ). Note that

δ(−ϕV ω, ϕUω) = (ϕV + ϕU )ω = ω.

This establishes the surjectivity of δ.
ut

Using the abstract results in homological algebra we deduce from the above lemma the
following fundamental result.

Theorem 7.1.22. (Mayer-Vietoris) Let M = U ∪ V be an open cover of the smooth
manifold M. Then there exists a long exact sequence

· · · → Hk(M) r→ Hk(U)⊕Hk(V ) δ→ Hk(U ∩ V ) ∂→ Hk+1(M) → · · ·
called the long Mayer-Vietoris sequence.

The connecting morphisms ∂ can be explicitly described using the prescriptions following
Proposition 7.1.16 in the previous subsection. Start with ω ∈ Ωk(U ∩ V ) such that dω = 0.
Writing as before

ω = ϕV ω + ϕUω

we deduce
d(ϕV ω) = d(−ϕUω) on U ∩ V.

Thus we can find η ∈ Ωk+1(M) such that

η |U= d(ϕV ω) η |V = d(−ϕUω).

Then
∂ω = η.

The reader can prove directly that the above definition is independent of the various choices.
The Mayer-Vietoris sequence has the following functorial property.
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Proposition 7.1.23. Let φ : M → N be a smooth map and {U, V } an open cover of N .
Then U ′ = φ−1(U), V ′ = φ−1(V ) form an open cover of M and moreover, the diagram
below is commutative.

Hk(N) Hk(U)⊕Hk(V ) Hk(U ∩ V ) Hk+1(N)

Hk(M) Hk(U ′)⊕Hk(V ′) Hk(U ′ ∩ V ′) Hk+1(M)

wr

u
φ∗

wδ

u
φ∗

w∂

u
φ∗

u
φ∗

wr′ wδ′ w∂′

Exercise 7.1.8. Prove the above proposition. ut

7.1.5 Some simple examples

The Mayer-Vietoris theorem established in the previous subsection is a very powerful tool
for computing the cohomology of manifolds. In principle, it allows one to recover the
cohomology of a manifold decomposed into simpler parts, knowing the cohomologies of its
constituents. In this subsection we will illustrate this principle on some simple examples.

Example 7.1.24. (The cohomology of spheres.) The cohomology of S1 can be easily
computed using the definition of DeRham cohomology. We have H0(S1) = R since S1 is
connected. The closed 1-forms on S1 have the form const.dθ so that H1(S1) ∼= R. Thus

PS1(t) = 1 + t.

To compute the cohomology of higher dimensional spheres we use Mayer-Vietoris theorem.
The (n + 1)-dimensional sphere Sn+1 can be covered by two open sets

Usouth = Sn+1 \ {north pole} and Unorth = Sn+1 \ {south pole}.
Each is diffeomorphic to Rn+1. Note that the overlap Unorth ∩ Usouth is homotopically
equivalent with the “Equator” Sn. The Poincaré lemma implies that

Hk+1(Unorth)⊕Hk+1(Usouth) ∼= 0

for k ≥ 0. The Mayer-Vietoris sequence gives

Hk(Unorth)⊕Hk(Usouth) → Hk(Unorth ∩ Usouth) → Hk+1(Sn+1) → 0.

For k > 0 the group on the left is also trivial so that we have the isomorphisms

Hk(Sn) ∼= Hk(Unorth ∩ Usouth) ∼= Hk+1(Sn+1) k > 0.

Denote by Pn(t) the Poincaré polynomial of Sn and set Qn(t) = Pn(t)−Pn(0) = Pn(t)− 1.
We can rewrite the above equality as

Qn+1(t) = tQn(t) n > 0.

Since Q1(t) = t we deduce Qn(t) = tn, i.e.

PSn(t) = 1 + tn.

ut
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Example 7.1.25. Let {U, V } be an open cover of the smooth manifold M. We assume that
all the Betti numbers of U , V and U ∩ V are finite. Using the Mayer-Vietoris short exact
sequence and Exercise 7.1.5 in Subsection 7.1.3 we deduce that all the Betti numbers of M
are finite and moreover we have

χ(M) = χ(U) + χ(V )− χ(U ∩ V ). (7.1.12)

This resembles very much the classical inclusion-exclusion principle in combinatorics. We
will use this simple observation to prove that the Betti numbers of a connected sum of g
tori is finite and then compute its Euler characteristic.

Let Σ be a surface with finite Betti numbers. From the decomposition Σ = (Σ \ disk)∪
disk we deduce (using again Exercise 7.1.5)

χ(Σ) = χ(Σ \ disk) + χ(disk)− χ ((Σ \ disk) ∩ (disk)) .

Since (Σ \ disk) ∩ disk is homotopically a circle and χ(disk) = 1 we deduce

χ(Σ) = χ(Σ \ disk) + 1− χ(S1) = χ(Σ \ disk) + 1.

If now Σ1 and Σ2 are two surfaces with finite Betti numbers then

Σ1#Σ2 = (Σ1 \ disk) ∪ (Σ2 \ disk)

where the two holed surfaces intersect over an entire annulus, which is homotopically a
circle. Thus

χ(Σ1#Σ2) = χ(Σ1 \ disk) + χ(Σ2 \ disk)− χ(S1)

= χ(Σ1) + χ(Σ2)− 2.

This equality is identical with the one proved in Proposition 4.2.23 of Subsection 4.2.5.
We can decompose a torus as a union of two cylinders. The intersection of these cylinders

is the disjoint union of two annuli so homotopically, this overlap is a disjoint union of two
circles. In particular, the Euler characteristic of the intersection is zero. Hence

χ(torus) = 2χ(cylinder) = 2χ(circle) = 0.

We conclude as in Proposition 4.2.23 that

χ(connected sum of g tori) = 2− 2g.

This is a pleasant, surprising connection with the Gauss-Bonnet theorem. And the story is
not over. ut

7.1.6 The Mayer-Vietoris principle

We describe in this subsection a “patching” technique which is extremely versatile in estab-
lishing general homological results about arbitrary manifolds building up from elementary
ones.
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Definition 7.1.26. A smooth manifold M is said to be of finite type if it can be covered
by finitely many open sets U1, . . . , Um such that any nonempty intersection Ui1 ∩ · · · ∩ Uik

(k ≥ 1) is diffeomorphic to Rdim M . Such a cover is said to be a good cover.

Example 7.1.27. All compact manifolds are of finite type. To see this it suffices to cover
such a manifold by finitely many open sets which are geodesically convex with respect to
some Riemann metric.

If M is a finite type manifold and U ⊂ M is a closed subset homeomorphic with the
closed unit ball in Rdim M them M \U is a finite type non-compact manifold. (It suffices to
see that Rn \ closed ball is of finite type).

The connected sums and the direct products of finite type manifolds are finite type
manifolds. ut

Proposition 7.1.28. Let p : E → B be a smooth vector bundle. If the base B is of finite
type then so is the total space E.

In the proof of this proposition we will use the following fundamental result.

Lemma 7.1.29. Let p : E → B be a smooth vector bundle such that B is diffeomorphic to
Rn. Then p : E → B is a trivial bundle !!!

Proof of Proposition 7.1.28. Denote by F the standard fiber of E. F is a vector space.
Let (Ui) be a MV-cover of B. For each ordered multi-index I : {i1 < · · · < ik} denote by
UI the multiple overlap Ui1 ∩ · · · ∩ Uik . Using the previous lemma we deduce that each
EI = E |UI

is a product F ×Ui and thus it is diffeomorphic with some vector space. Hence
(Ei) is a MV-cover.

ut

Exercise 7.1.9. Prove Lemma 7.1.29.
Hint Assume E is a vector bundle over the unit open ball B ⊂ Rn. Use ∇-parallel transport
along ~r = −xi ∂

∂xi
where ∇ is a connection on E.

ut

We organize the family of n-dimensional, finite type smooth manifolds as a category
Mn. The morphisms of this category are the embeddings (i.e. 1-1 immersions) M1 ↪→ M2

(Mi ∈ Mn).

Definition 7.1.30. Let R be a commutative ring with 1. A contravariant Mayer-Vietoris
functor (or MV-functor for brevity) is a contravariant functor from the category Mn to the
category of Z-graded R-modules

F = ⊕n∈ZFn → Grad RMod M 7→ ⊕Fn(M)

with the following property. If {U, V } is a MV-cover of M ∈ Mn, i.e. U, V, U ∩ V ∈ Mn,
then there exist morphisms of R-modules

∂n : Fn(U ∩ V ) → Fn+1(M)
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such that the sequence below is exact.

· · · → Fn(M) r∗→ Fn(U)⊕ Fn(V ) δ→ Fn(U ∩ V ) ∂n→ Fn+1(M) → · · ·
where r∗ is defined by

r∗ = F(ıU )⊕ F(ıV )

while δ is defined by
δ(x⊕ y) = F(ıU∩V )(y)− F(ıU∩V )(x).

(The maps ı• denote natural embeddings.) Moreover, if N ∈ Mn is an open submanifold of
N and {U, V } is a MV cover of M such that {U ∩N,V ∩N} is a MV-cover of N then the
diagram below is commutative.

Fn(U ∩ V ) Fn+1(M)

Fn(U ∩ V ∩N) Fn+1(N)

w∂n

u u
w∂n

.

The vertical arrows are the morphisms F(ı•) induced by inclusions.

The covariant MV-functors are defined in the dual way, by reversing the orientation of
all the arrows in the above definition.

Definition 7.1.31. Let F, G be two contravariant MV-functors Mn → Grad RMod. A
correspondence between these functors is a collection of R-module morphisms

φM =
⊕

n∈Z
φn

M : ⊕Fn(M) → ⊕Gn(M)

(one collection for each M ∈ Mn) such that for any embedding M1
ϕ
↪→ M2 the diagram

bellow is commutative
Fn(M2) Fn(M1)

Gn(M2) Gn(M1)

wF(ϕ)

u
φM2

u
φM1

wG(ϕ)

and for any M ∈ Mn and any MV cover {U, V } of M the diagram below is commutative.

Fn(U ∩ V ) Fn+1(M)

Gn(U ∩ V ) Gn+1(M)

w∂n

u

φU∩V

u
φM

w∂n

The correspondence is said to be a natural equivalence if all the morphisms φM are isomor-
phisms.
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Theorem 7.1.32. (Mayer-Vietoris principle)Let F, G be two (contravariant) Mayer-
Vietoris functors on Mn and φ : F → G a correspondence. If

φk
Rn : Fk(Rn) → Gk(Rn)

is an isomorphism for any k ∈ Z then φ is a natural equivalence.

Proof The family of finite type manifolds Mn has a natural filtration

M1
n ⊂ M2

n ⊂ · · · ⊂ Mr
n ⊂ · · ·

where Mr
n is the collection of all smooth manifolds which admit a good cover consisting of

at most r open sets. We will prove the theorem using an induction over r.
The theorem is clearly true for r = 1 by hypothesis. Assume φk

M is an isomorphism for
all M ∈ Mr−1

n . Let M ∈ Mr
n and consider a good cover {U1, . . . , Ur} of M . Then

{U = U1 ∪ · · · ∪ Ur−1, Ur}

is a MV-cover of M . We thus get a commutative diagram

Fn(U)⊕ Fn(Ur) Fn(U ∩ Ur) Fn+1(M) Fn+1(U)⊕ Gn+1(Ur)

Gn(U)⊕ Gn(Ur) Gn(U ∩ Ur) Gn+1(M) Fn+1(U)⊕ Gn+1(Ur)
u

w
u

w∂

u

w
u

w w∂ w
The vertical arrows are defined by the correspondence φ. Note the inductive assumption
implies that in the above infinite sequence only the morphisms φM may not be isomorphisms.
At this point we invoke the following technical result.

Lemma 7.1.33. (The five lemma) Consider the following commutative diagram of R-
modules.

A−2 A−1 A0 A1 A2

B−2 B−1 B0 B1 B2

w

u
f−2

w

u
f−1

w

u
f0

w

u
f1

u
f2

w w w w
If fi is an isomorphism for any i 6= 0 then so is f0.

Exercise 7.1.10. Prove the five lemma. ut

The five lemma applied to our situation shows that the morphisms φM must be isomor-
phisms.

ut

Remark 7.1.34. (a) The Mayer-Vietoris principle is true for covariant MV-functors as
well. The proof is obtained by reversing the orientation of the horizontal arrows in the
above proof.
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(b) The Mayer-Vietoris principle can be refined a little bit. Assume that F and G are
functors from Mn to the category of Z-graded R-algebras and φ : F → G is a correspondence
compatible with the multiplicative structures, i.e. each of the R-module morphisms φM are
in fact morphisms of R-algebras. Then if φRn are isomorphisms of Z-graded R-algebras
then so are the φM ’s for any M ∈ Mn.
(c) Assume R is a field. The proof of the Mayer-Vietoris principle shows that if F is a
MV-functor and dimR F∗(Rn) < ∞ then dimF∗(M) < ∞ for all M ∈ Mn. ut

Corollary 7.1.35. Any finite type manifold has finite Betti numbers.

7.1.7 The Künneth formula

We learned in principle how to compute the cohomology of an“union of manifolds”. We will
now use the Mayer-Vietoris principle to compute the cohomology of products of manifolds.

Theorem 7.1.36. (Künneth formula) Let M ∈ Mm and N ∈ Mn. Then there exists a
natural isomorphism of graded R-algebras

H∗(M ×N) ∼= H∗(M)⊗H∗(N) =
⊕

n≥0

(⊕p+q=nHp(M)⊗Hq(N)) .

In particular, we deduce
PM×N (t) = PM (t) · PN (t).

Proof We construct two functors

F,G : Mm → Grad RAlg

F : M 7→
⊕

r≥0

Fr(M) =
⊕

r≥0

{⊕p+q=rH
p(M)⊗Hq(N)}

G : M 7→ ⊕r≥0G(M) = ⊕r≥0G
r(M ×N).

F(f) =
⊕

r≥0

(⊕p+q=rf
∗ |Hp(M2) ⊗1Hq(N)

) ∀f : M1 ↪→ M2

G(f) =
⊕

r≥0

(f × 1N )∗ |Hr(M2×N) ∀f : M1 ↪→ M2.

We let the reader check the following elementary fact.

Exercise 7.1.11. F and G are contravariant MV-functors. ut

For M ∈ MM define φM : F(M) → G(N) by

φM (ω ⊗ η) = ω × η
def
= π∗Mω ∧ π∗Nη (ω ∈ H∗(M), η ∈ H∗(M))

where πM (resp. πN ) are the canonical projections M ×N → M (resp. M ×N → N). The
operation

× : H∗(M)⊗H∗(N) → H∗(M ×N) (ω ⊗ η) 7→ ω × η

is called the cross product. The Künneth formula is a consequence of the following lemma.
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Lemma 7.1.37. (a) φ is a correspondence of MV-functors.
(b) φRm is an isomorphism.

Proof of the lemma The only nontrivial thing to prove is that for any MV-cover {U, V }
of M ∈ Mm the diagram below is commutative.

⊕p+q=rH
p(U ∩ V )⊗Hq(N) ⊕p+q=rH

p+1(M)⊗Hq(N)

Hr((U ×N) ∩ (V ×N)) Hr+1(M ×N)
u

φU∩V

w∂

u
φM

w∂′

We briefly recall the construction of the connecting morphisms ∂ and ∂′. One considers
a partition of unity {ϕU , ϕV } subordinated to the cover {U, V }. Then ψU = π∗MϕU and
ψV = π∗MϕV form a partition of unity subordinated to the cover {U ×N, V ×N} of M ×N .
If ω ⊗ η ∈ H∗(U ∩ V )⊗H∗(N) then

∂(ω ⊗ η) = ω̂ ⊗ η

where
ω̂ |U= −d(ϕV ω) ω̂ = d(ϕUω).

On the other hand
φU∩V (ω ⊗ η) = ω × η

and
∂′(ω × η) = ω̂ × η.

This proves (a).
To establish (b) note that the inclusion

 : N ↪→ Rm ×N x 7→ (0, x)

is a homotopy equivalence with πN a homotopy inverse. Hence, by the homotopy invariance
of the DeRham cohomology we deduce

G(Rm) ∼= H∗(N).

Using the Poincaré lemma and the above isomorphism we can identify the morphism φRm

with 1Rm .
ut

Example 7.1.38. Consider the n-dimensional torus, Tn. By writing it as a direct product
of n circles we deduce from Künneth formula that

PT n(t) = {PS1(t)}n = (1 + t)n.

Thus

bk(Tn) =
(

n

k

)
, dimH∗(Tn) = 2n,
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and
χ(Tn) = 0.

One can easily describe a basis of H∗(Tn). Choose angular coordinates (θ1, . . . , θn) on Tn.
For each ordered multi-index I : 1 ≤ i1 < · · · < ik ≤ n we have a closed, non-exact form
dθI . These monomials are linearly independent (over R) and there are 2n of them. Thus,
they form a basis of H∗(Tn). In fact, one can read the multiplicative structure using this
basis. We have an isomorphism of R-algebras

H∗(Tn) ∼= Λ∗Rn.

ut

Exercise 7.1.12. Let M ∈ Mm and N ∈ Mn. Show that for any ωi ∈ H∗(M), ηj ∈ H∗(N)
(i,j=0,1) the following equality holds.

(ω0 × η0) ∧ (ω1 × η1) = (−1)deg η0 deg ω1(ω0 ∧ ω1)× (η0 ∧ η1).

ut

Exercise 7.1.13. (Leray-Hirsch)Let p : E → M be smooth bundle with standard fiber
F . We assume the following:
(a) Both M and F are of finite type.
(b) There exists cohomology classes e1, . . . , er ∈ H∗(E) such that their restrictions to any
fiber generate the cohomology algebra of that fiber.

The projection p induces a H∗(M)-module structure on H∗(E) by

ω · η = p∗ω ∧ η ∀ω ∈ H∗(M)η ∈ H∗(E).

Show that H∗(E) is a free H∗(M)-module with generators e1, . . . , er. ut

7.2 The Poincaré duality

7.2.1 Cohomology with compact supports

Let M be a smooth n-dimensional manifold. Denote by Ωk
cpt(M) the space of smooth

compactly supported k-forms. Then

0 → Ω0
cpt(M) d→ · · · d→ Ωn

cpt(M) → 0

is a cochain complex. Its cohomology is denoted by H∗
cpt(M) and is called the DeRham co-

homology with compact supports. Note that when M is compact this cohomology coincides
with the usual DeRham cohomology.

Although it looks very similar to the usual DeRham cohomology, there are many impor-
tant differences. The most visible one is that if φ : M → N and ω ∈ Ω∗cpt(N) is a smooth
map then the pull-back φ∗ω may not have compact support so this new construction is no
longer a contravariant functor from the category of smooth manifolds and smooth maps to
the category of graded vector spaces.
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On the other hand if dimM = dimN and φ is an embedding we can identify M with
an open subset of N and then any η ∈ Ω∗cpt(M) can be extended with 0 outside M ⊂ N .
This extension by zero defines a push-forward map

φ∗ : Ω∗cpt(M) → Ω∗cpt(N).

One can verify easily that φ∗ is a cochain map so that it induces a morphism

φ∗ : H∗
cpt(M) → H∗

cpt(N).

In terms of our category Mn we see that H∗
cpt is a covariant functor from the category Mn

to the category of graded real vector spaces. As we will see, it is a rather nice functor.

Theorem 7.2.1. H∗
cpt is a covariant MV-functor and moreover

Hk
cpt(Rn) =

{
0 , k < n
R , k = n

.

The last assertion of this theorem is usually called the Poincaré lemma for compact
supports.

We first prove the Poincaré lemma for compact supports. The crucial step is the follow-
ing technical result we borrowed from [10].

Lemma 7.2.2. Let E
p→ B be a rank r real vector bundle, orientable in the sense described

in Subsection 3.4.5. Denote by p∗ the integration-along-fibers map

p∗ : Ω∗cpt(E) → Ω∗−r
cpt (B).

Then there exists a smooth bilinear map

m : Ωi
cpt(E)× Ωj

cpt(E) → Ωi+j−r−1
cpt (E)

such that

p∗p∗α ∧ β − α ∧ p∗p∗β = (−1)rd(m(α, β))−m(dα, β) + (−1)deg αm(α, dβ).

Proof Consider the ∂-bundle

π : E = I × (E ⊕ E) → E

π : (t; v0, v1) 7→ (t; v0 + t(v1 − v0)).

Note that
∂E = ({0} × (E ⊕E)) t ({1} × (E ⊕ E)) .

Define πt : E ⊕ E → E as the composition

E ⊕E ∼= {t} × E ⊕ E ↪→ I × (E ⊕E) π→ E.
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Observe that
∂π = π |∂E= (−π0) t π1.

For (α, β) ∈ Ω∗cpt(E)× Ω∗cpt(E) define α¯ β ∈ Ω∗cpt(E ⊕ E) by

α¯ β := (π0)∗α ∧ (π1)∗β.

(Verify that α¯β has indeed compact support.) For α ∈ Ωi
cpt(E) and β ∈ Ωj

cpt(E) we have
the equalities

p∗p∗α ∧ β = π1
∗(α¯ β) ∈ Ωi+j−r

cpt (E)

α ∧ p∗p∗β = π0
∗(α¯ β) ∈ Ωi+j−r

cpt (E).

Hence
D(α, β) = p∗p∗α ∧ β − α ∧ p∗p∗β = π1

∗(α¯ β)− π0
∗(α¯ β)

=
∫

∂E/E
α¯ β.

We now use the fibered Stokes formula to get

D(α, β) =
∫

E/E
dET∗(α¯ β) + (−1)rdE

∫

E/E
T∗(α¯ β).

T is the natural projection E = I × (E ⊕ E) → E ⊕ E. The lemma holds with

m(α, β) =
∫

E/E
T∗(α¯ β). ut

Proof of the Poincaré lemma for compact supports Consider δ ∈ C∞
0 (Rn) such

that
0 ≤ δ ≤ 1

∫

Rn

δ(x)dx = 1.

Define the (closed) compactly supported n-form

τ = δ(x)dx1 ∧ · · · ∧ dxn.

We want to use Lemma 7.2.2 in which E is the rank n bundle over a point i.e. E =
{pt} × Rn p→ {pt}. The integration along fibers is simply the integration map.

p∗ : Ω∗cpt(Rn) → R

ω 7→ p∗ω =
{

0 , deg ω < n∫
Rn ω , deg ω = n

If now ω is a closed, compactly supported form on Rn we have

ω = (p∗p∗τ) ∧ ω.

Using Lemma 7.2.2 we deduce

ω − τ ∧ p∗p∗ω = (−1)ndm(τ, ω).
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Thus any closed, compactly supported form ω on Rn is cohomologous to τ ∧ p∗p∗ω. The
latter is always zero if deg ω < n. When deg ω = n we deduce that ω is cohomologous to
(
∫

ω)τ . This completes the proof of the Poincaré lemma. ut

To finish the proof of Theorem 7.2.1 we must construct a Mayer-Vietoris sequence. Let
M be a smooth manifold decomposed as an union of two open sets

M = U ∪ V.

The sequence of inclusions
U ∩ V ↪→ U, V ↪→ M

induces a short sequence

0 → Ω∗cpt(U ∩ V ) i→ Ω∗cpt(U)⊕ Ω∗cpt(V )
j→ Ω∗cpt(M) → 0

where
i(ω) = (ω̂, ω̂) j(ω, η) = η̂ − ω̂.

The hat denotes the extension by zero outside the support. This sequence is called the
Mayer-Vietoris short sequence for compact supports.

Lemma 7.2.3. The above Mayer-Vietoris sequence is exact.

Proof i is obviously injective. Clearly, Range (i) = ker(j). We have to prove that j is
surjective. Let (ϕU , ϕV ) a partition of unity subordinated to the cover {U, V }. Then for
any η ∈ Ω∗cpt(M)

ϕUη ∈ Ω∗cpt(U) ϕV η ∈ Ω∗cpt(V ).

In particular we have
η = j(−ϕUη, ϕV η).

Hence j is surjective. ut

We get a long exact sequence called the long Mayer-Vietoris sequence for compact
supports.

· · · → Hk
cpt(U ∩ V ) → Hk

cpt(U)⊕Hk
cpt(V ) → Hk

cpt(M) δ→ Hk+1
cpt → · · ·

The connecting homomorphism can be explicitly described as follows. If ω ∈ Ωk
cpt(M) is a

closed form then
d(ϕUω) = d(−ϕV ω) on U ∩ V.

We set δω = d(ϕUω). The reader can check immediately that the cohomology class of δω
is independent of all the choices made.

If φ : N ↪→ M is a morphism of Mn then for any MV-cover of {U, V } of M {φ−1(U), φ−1(V )}
is an MV-cover of N . Moreover, we almost tautologically get a commutative diagram

Hk
cpt(N) Hk+1

cpt (φ−1(U ∩ V ))

Hk
cpt(M) Hk+1

cpt (U ∩ V )
u

φ∗

wδ

u
φ∗

wδ

.
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This proves H∗
cpt is a covariant Mayer-Vietoris sequence. ut

Remark 7.2.4. To be perfectly honest (from a categorial point of view) we should have
considered the chain complex ⊕

k≤0

Ω̃k =
⊕

k≤0

Ω−k
cpt

and correspondingly the associated homology

H̃∗ := H−∗
cpt .

This makes the sequence

0 ← Ω̃−n ← · · · ← Ω̃−1 ← Ω̃0 ← 0

a chain complex and its homology H̃∗ is a bona-fide covariant Mayer-Vietoris functor since
the connecting morphism δ goes in the right direction H̃∗ → H̃∗−1. However, the simplicity
of the original notation is worth the small formal ambiguity so we stick to our upper indices.

ut

From the proof of the Mayer-Vietoris principle we deduce the following.

Corollary 7.2.5. For any M ∈ Mn and any k ≤ n we have dimHk
cpt(M) < ∞.

7.2.2 The Poincaré duality

Definition 7.2.6. Denote by M+
n the category of n-dimensional, finite type, oriented man-

ifolds. The morphisms are the embeddings of such manifold. The MV functors on M+
n are

defined exactly as for Mn.

Given M ∈ M+
n there is a natural pairing

〈•, •〉κ : Ωk(M)× Ωn−k
cpt (M) → R

defined by

〈ω, η〉κ :=
∫

M
ω ∧ η.

which is called the Kronecker pairing . We can extend this pairing to any (ω, η) ∈ Ω∗×Ω∗cpt

as

〈ω, η〉κ =
{

0 , deg ω + deg η 6= n∫
M ω ∧ η , deg ω + deg η = n

.

This pairing induces maps

D = Dk : Ωk(M) → (Ωn−k
cpt (M))∗

〈D(ω), η〉 = 〈ω, η〉κ.

〈•,
bullet〉 denotes the natural duality between a vector space and its dual, V ∗ × V → R. We
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continue to denote by D(ω) the restriction to the space of closed, compactly supported
(n − k)-forms, Zn−k

cpt . If moreover ω is closed, this functional on Zn−k
cpt vanishes on the

subspace Bn−k
cpt of exact, compactly supported (n − k)-forms. Indeed, if η = dη′, η′ ∈

Ωn−k−1
cpt (M) then

〈D(ω), η〉 =
∫

M
ω ∧ dη′ Stokes= ±

∫

M
dω ∧ η′ = 0.

Thus, if ω is closed D(ω) defines an element of (Hn−k
cpt (M))∗. If moreover ω is exact, a

computation as above shows that D(ω) = 0 ∈ (Hn−k
cpt (M))∗. Hence D descends to a map in

cohomology
D : Hk(M) → (Hn−k

cpt (M))∗

which is the same as saying that the Kronecker pairing descends to a pairing in cohomology.

Theorem 7.2.7. (Poincaré duality) The Kronecker pairing in cohomology is a duality
for all M ∈ M+

n .

Proof The functor
M+

n → Graded Vector Spaces

defined by
M →

⊕

k

H̃k(M) =
⊕

k

(Hn−k
cpt (M))∗

is a contravariant MV -functor. (The exactness of the Mayer-Vietoris sequence is preserved
by transposition. This is where the fact that all the cohomology groups are finite dimensional
vector spaces plays a very important role).

For purely formal reasons (which will become apparent in a little while) we define the

connecting morphism of the functor H̃k (H̃k(U ∩ V ) d̃→ H̃k+1(U ∪ V )) to be (−1)kδt,
where Hn−k−1

cpt (U ∩ V ) δ→ Hn−k
cpt (U ∪ V ) denotes the connecting morphism in the DeRham

cohomology with compact supports and δt denotes its transpose.
The Poincaré lemma for compact supports can be rephrased

H̃k(Rn) =
{
R , k = 0
0 , k > 0

.

The Kronecker pairing induces linear maps

DM : Hk(M) → H̃k(M).

Lemma 7.2.8.
⊕

k Dk is a correspondence of MV functors.

Proof We have to check two facts.

FACT A. Let M
φ
↪→ N be a morphism in M+

n . Then the diagram below is commutative.

Hk(N) Hk(M)

H̃k(N) H̃k(M)
u

DN

wφ∗

u
DM

wφ̃∗
.
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FACT B. If {U, V } is a MV -cover of M ∈ M+
n then the diagram bellow is commutative

Hk(U ∩ V ) Hk+1(M)

H̃k(U ∩ V ) H̃k+1(M)
u

DU∩V

w∂

u
DM

w(−1)kδt

.

Proof of FACT A. Let ω ∈ Hk(N). Denoting by 〈•, •〉 the natural duality between a
vector space and its dual we deduce that for any η ∈ Hn−k

cpt (M) we have
〈
φ̃∗ ◦DN (ω), η

〉
=

〈
(φ∗)tDN (ω), η

〉
=

〈
DN (ω), φ∗η

〉

=
∫

N
ω ∧ φ∗η =

∫

M↪→N
ω |M ∧η =

∫

M
φ∗ω ∧ η

= 〈DM (φ∗ω), η〉.
Hence φ̃∗ ◦DN = DM ◦ φ∗.

Proof of FACT B. Let ϕU , ϕV be a partition of unity subordinated to the MV -cover
{U, V } of M ∈ M+

n . Consider a closed k-form ω ∈ Ωk(U ∩ V ). Then the connecting
morphism in usual DeRham cohomology acts as

∂ω =
{

d(−ϕV ω) on U
d(ϕUω) on V

.

Choose η ∈ Ωn−k−1
cpt (M) such that dη = 0. We have

〈DM∂ω, η〉 =
∫

M
∂ω ∧ η

=
∫

U
∂ω ∧ η +

∫

V
∂ω ∧ η −

∫

U∩V
∂ω ∧ η

= −
∫

U
d(ϕV ω) ∧ η +

∫

V
dϕUω) ∧ η +

∫

U∩V
d(ϕV ω) ∧ η.

Note that the first two integrals vanish. Indeed, over U we have the equality

(d(ϕV ω) ∧ η = d (ϕV ω ∧ η)

and the vanishing now follows from Stokes formula. The second term is dealt with in a
similar fashion. As for the last term we have∫

U∩V
(dϕV ω) ∧ η =

∫

U∩V
dϕV ∧ ω ∧ η = (−1)deg ω

∫

U∩V
ω ∧ (dϕV ∧ η)

= (−1)k

∫

U∩V
ω ∧ δη = (−1)k〈DU∩V ω, δη〉

= 〈(−1)kδtDU∩V ω, η〉.
This concludes the proof of Fact B.

The Poincaré duality now follows from the Mayer-Vietoris principle. ut
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Remark 7.2.9. Using the Poincaré duality we can associate to any smooth map f : M → N
between compact oriented manifolds of dimensions m and respectively n a natural push-
forward morphism

f∗ : H∗(M) → H∗+q(N) (q = dim N − dimM = n−m)

defined by the composition

H∗(M) DM→ (Hm−∗(M))∗
(f∗)t

→ (Hm−∗(N))∗
D−1

N→ H∗+n−m(N)

where (f∗)t denotes the transpose of the pullback morphism. ut

Corollary 7.2.10. If M ∈ M+
n then

Hk
cpt(M) ∼= (Hn−k(M))∗.

Proof Since Hk
cpt(M) is finite dimensional the transpose

Dt
M : (Hn−k

cpt (M))∗∗ → (Hk(M))∗

is an isomorphism. On the other hand, for any finite dimensional vector space there exists
a natural isomorphism

V ∗∗ ∼= V. ut
Corollary 7.2.11. Let M be a compact oriented n-dimensional manifold. Then the pairing

Hk(M)×Hn−k(M) → R (ω, η) 7→
∫

M
ω ∧ η

is a duality. In particular bk(M) = bn−k(M), ∀k.

If M is connected H0(M) ∼= Hn(M) ∼= R so that Hn(M) is generated by any volume
form defining the orientation.

The symmetry of Betti numbers can be translated in the language of Poincaré polyno-
mials as

tnPM (
1
t
) = PM (t). (7.2.1)

Example 7.2.12. Let Σg denote the connected sum of g tori. We have shown that

χ(Σg) = b0 − b1 + b2 = 2− 2g.

Since Σg is connected, the Poincaré duality implies b2 = b0 = 1. Hence b1 = 2g i.e.

PΣg(t) = 1 + 2gt + t2. ut
Consider now a compact oriented smooth manifold such that dimM = 2k. The Kro-

necker pairing induces a non-degenerate bilinear form

I : Hk(M)×Hk(M) → R I(ω, η) =
∫

M
ω ∧ η.

I is called the cohomological intersection form of M . When k is even (so that n is divisible
by 4) I is a symmetric form. Its signature is called the signature of M and is denoted by
σ(M). When k is odd I is skew-symmetric, i.e. it is a symplectic form. In particular, we
deduce the following result.
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Corollary 7.2.13. For any compact manifold M ∈ M+
4k+2 the middle Betti number b2k+1(M)

is even.

Exercise 7.2.1. (a) Let P ∈ Z[t] be an odd degree polynomial with non-negative integer
coefficients such that P (0) = 1. Show that if P satisfies the symmetry condition (7.2.1)
there exists a compact, connected, oriented manifold M such that PM (t) = P (t).
(b) Let P ∈ Z[t] be a polynomial of degree 2k with non-negative integer coefficients. Assume
P (0) = 1 and P satisfies (7.2.1). If the coefficient of tk is even then there exists a compact
connected manifold M ∈ M+

2k such that PM (t) = P (t).
Hint: Describe the Poincaré polynomial of a connect sum in terms of the polynomials of
its constituents. Combine this fact with the Künneth formula. ut

Remark 7.2.14. The result in the above exercise is sharp. Using his intersection theorem
F. Hirzebruch showed that there exist no smooth manifolds M of dimension 12 or 20 with
Poincaré polynomials 1 + t6 + t12 and respectively 1 + t10 + t20. Note that in each of these
cases both middle Betti numbers are odd. For details we refer to J. P. Serre, “Travaux de
Hirzebruch sur la topologie des variétés”, Seminaire Bourbaki 1953/54,n◦ 88. ut

7.3 Intersection theory

7.3.1 Cycles and their duals

Definition 7.3.1. Let M ∈ M+
n . A k-dimensional cycle in M is a pair (S, φ) where S is

a compact, oriented k-dimensional manifold and φ : S → M is a smooth map.

We denote by Ck(M) the set of k-dimensional cycles in M .

Definition 7.3.2. (a)Two cycles (S0, φ0), (S1, φ1) ∈ Ck(M) are said to be cobordant (we
write this (S0, φ0) ∼c (S1, φ1)) if there exists a compact, oriented manifold with boundary Σ
and a smooth map Φ : Σ → M such that
(a1) ∂Σ = (−S0)tS1 where −S0 denotes the oriented manifold S0 with the opposite orien-
tation and t denotes the disjoint union.
(a2) Φ |Si= φi, i = 0, 1.
(b) A cycle (S, φ) ∈ Ck(M) is said to be degenerate if φ is homotopic to the constant map
S → M . We write (S, φ) ∼c 0.

We denote by Dk(M) the set of degenerate cycles.

Exercise 7.3.1. Let (S0, φ0) ∼c (S1, φ1). Prove that (−S0 t S1, φ0 t φ1) ∼c 0. ut

We denote by Zk(M) the free abelian group generated by Ck(M) and by Bk(M) ⊂
Zk(M) the subgroup generated by cycles cobordant to degenerated ones. We can form the
quotient group Hk(M). For any cycle (S, φ) ∈ Ck(M) we denote by [S, φ] its image in
Hk(M).

Exercise 7.3.2. (a) Prove that

[S0, φ0] + [S1, φ1] = [S0 t S1, φ0 t φ1] ∀(Si, φi) ∈ gCk(M)
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S0 S
1

Figure 7.1: A cobordism in R3

and
−[S, φ] = [−S, φ] ∈ Hk(M).

(b) Prove that[S, φ] = 0 in Hk(M) if and only if there exists a degenerate cycle (S′φ′) such
that (S, φ) ∼c (S′, φ′). ut

Any k-cycle (S, φ) defines a linear map Hk(M) → R by

Hk(M) 3 ω 7→
∫

S
φ∗ω.

Stokes formula shows that this map is well defined i.e. it is independent of the closed form
representing a cohomology class. Indeed, if ω is exact, i.e. ω = dω′ then

∫

S
φ∗dω′ =

∫

S
dφ∗ω′ = 0.

In other words, each cycle defines an element in (Hk(M))∗ which can be identified via the
Poincaré duality with Hn−k

cpt (M). Thus there exists δS ∈ Hn−k
cpt (M) such that

∫

M
ω ∧ δS =

∫

S
φ∗ω ∀ω ∈ Hk(M).

δS is called the Poincaré dual of (S, φ).
There exist many closed forms η ∈ Ωn−k

cpt (M) representing δS . When there is no risk of
confusion, we continue denote any such representative by δS .

Example 7.3.3. Let M = Rn and S is a point {pt} ⊂ Rn. pt is canonically a 0-cycle. Its
Poincaré dual is a compactly supported n-form ω such that for any constant λ (i.e. closed
0-form) ∫

Rn

λω =
∫

pt
λ = λ,
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Figure 7.2: The dual of a point is Dirac’s distribution

i.e. ∫

Rn

ω = 1.

Thus δpt can be represented by any compactly supported n-form with integral 1. In par-
ticular we can choose representatives with arbitrarily small supports. Their “profiles” look
like in Figure 7.2. “At limit” they approach Dirac’s delta distribution.

ut

Example 7.3.4. Consider an n-dimensional, compact, oriented manifold M . We denote
by [M ] the cycle (M,1M ). Then δ[M ] = 1 ∈ H0(M). ut

For any differential form ω we set (for typographical reasons) |ω| = deg ω.

Example 7.3.5. Consider the compact manifolds M ∈ M+
m and N ∈ M+

n . To any cycle
(S, φ) ∈ Cp(M) and (T, ψ) ∈ Cq(N) we can associate the cycle (S×T, φ×ψ) ∈ Cp+q(M×N).
We denote by πM (resp. πN ) the natural projection M × N → M (resp. M × N → N).
We want to prove the equality

δS×T = (−1)(m−p)qδS × δT (7.3.1)

where
ω × η

def
= π∗Mω ∧ π∗Nη ∀(ω, η) ∈ Ω∗(M)× Ω∗(N).

By Künneth formula we have H∗(M×N) ∼= H∗(M)⊗H∗(N) and the cohomology of M×N
is generated (as a linear space) by the cross products ω × η.

Pick (ω, η) ∈ Ω∗(M)×Ω∗(N) such that deg ω + deg η = (m + n)− (p + q). Then, using
Exercise 7.1.12

∫

M×N
(ω × η) ∧ (δS × δT ) = (−1)(m−p)|η|

∫

M×N
(ω ∧ δS)× (η ∧ δT ).

The above integral should be understood in the generalized sense of Kronecker pairing. The
only time when this pairing does not vanish is when |ω| = p and |η| = q. In this case the
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last term equals

(−1)q(m−p)

(∫

S
ω ∧ δS

)(∫

T
η ∧ δT

)
= (−1)q(m−p)

(∫

S
φ∗ω

)(∫

T
ψ∗η

)

= (−1)q(m−p)

∫

S×T
(φ× ψ)∗(ω ∧ η).

This establishes equality (7.3.1). ut

Example 7.3.6. Consider a compact manifold M ∈ M+
n . Fix a basis (ωi) of H∗(M) such

that each ωi is homogeneous of degree |ωi| = di and denote by ωi the basis of H∗(M) dual
to (ωi) with respect to the Kronecker pairing i.e.

〈ωi, ωj〉κ = (−1)|ω
i|·|ωj |〈ωj , ω

i〉κ = δi
j .

In M ×M there exists a remarkable cycle, the diagonal

∆ : M → M ×M x 7→ (x, x).

We claim that the Poincaré dual of this cycle is

δ∆ = dM
def
=

∑

i

(−1)|ω
i|ωi × ωi. (7.3.2)

Indeed, for any homogeneous forms α, β ∈ Ω∗(M) such that |α|+ |β| = n we have
∫

M×M
(ω × η) ∧ dM =

∑

i

(−1)|ω
i|

∫

M×M
(α× β) ∧ (ωi × ωi)

=
∑

i

(−1)|ω
i|(−1)|β|·|ω

i|
∫

M×M
(α ∧ ωi)× (β ∧ ωi)

=
∑

i

(−1)|ω
i|(−1)|β|·|ω

i|
(∫

M
α ∧ ωi

)(∫

M
β ∧ ωi

)
.

The i-th summand is nontrivial only when |β| = |ωi| and |α| = |ωi|. Using the equality
|ωi|+ |ωi|2 ≡ 0(mod 2) we deduce

∫

M×M
(α× β) ∧ dM =

∑

i

(∫

M
α ∧ ωi

) (∫

M
β ∧ ωi

)

=
∑

i

〈α, ωi〉κ〈β, ωi〉κ.

From the equalities
α =

∑

i

ωi〈ωi, α〉κ β =
∑

j

〈β, ωj , 〉κωj
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we conclude
∫

M
∆∗(α× β) =

∫

M
α ∧ β =

∫

M
(
∑

i

ωi〈ωi, α〉κ) ∧ (
∑

j

〈β, ωj〉κωj)

=
∫

M

∑

i,j

〈ωi, α〉κ〈β, ωj〉κωi ∧ ωj =
∑

i,j

〈ωi, α〉κ〈β, ωj〉κ〈ωi, ω
j〉κ

=
∑

i

(−1)|ωi|(n−|ωi|)〈α, ωi〉κ(−1)|ωi|(n−|ωi|)〈β, ωi〉κ =
∑

i

〈α, ωi〉κ〈β, ωi〉κ.

Equality (7.3.2) is proved. ut

Proposition 7.3.7. Let M ∈ M+
n and (Si, φi) ∈ Ck(M) (i = 0, 1) - two cycles in M .

(a) If (S0, φ0) ∼c (S1, φ1) then δS0 = δS1 in Hn−k
cpt (M)

(b) If (S0, φ0) is degenerate then δS0 = 0 in Hn−k
cpt (M).

(c) δS0tS1 = δS0 + δS1 in Hn−k
cpt (M).

(d) δ−S0 = −δS0 in Hn−k
cpt (M).

Proof (a) Consider a compact manifold Σ with boundary ∂Σ = S0 t S1 and a smooth
map Φ : Σ → M such that Φ |∂Σ= φ0 t φ1. For any closed k-form ω ∈ Ωk(M) we have

0 =
∫

Σ
Φ∗(dω) =

∫

Σ
dΦ∗ω

Stokes=
∫

∂Σ
ω =

∫

S1

φ∗1ω −
∫

S0

φ∗0ω.

Part (b) is left to the reader. Part (c) is obvious. To prove (d) consider Σ = [0, 1]× S0 and
Φ : [0, 1]× S0 → M , Φ(t, x) = φ0(x) ∀(t, x) ∈ Σ. Note that ∂Σ = (−S0) t S0 so that

δ−S0 + δS0 = δ−S0tS0 = δ∂Σ = 0. ut

The above proposition shows that the correspondence

Ck(M) 3 (S, φ) 7→ δS

descends to a map
δ : Hk(M) → Hn−k

cpt (M).

This is usually called the homological Poincaré duality.

7.3.2 Intersection theory

Consider M ∈ M+
n and S a k-dimensional compact oriented submanifold of M . We denote

by ı : S ↪→ M inclusion map so that (S, ı) is a k-cycle.
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1

2

-1 1
1

1C

C2

Figure 7.3: The intersection number of the two cycles on T 2 is 1

Definition 7.3.8. A smooth map φ : T → M from an (n − k)-dimensional, oriented
manifold T is said to be transversal to S (and we write this S t φ) if
(a) φ−1(S) is a finite subset of T;
(b) for every x ∈ φ−1(S) we have

φ∗(TxT ) + Tφ(x)S = Tφ(x)M (direct sum).

In this case, for each x ∈ φ−1(S) we define the local intersection number at x to be ( or=
orientation)

ix(S, T ) =
{

1 , or (Tφ(x)S) ∧ or(φ∗TxT ) = or(Tφ(x)M)
−1 , or(Tφ(x)S) ∧ or(φ∗TxT ) = −or(Tφ(x)M)

.

Finally, we define the intersection number of S with T to be

S · T =
∑

x∈φ−1(S)

ix(S, T ).

Our next result offers a different description of the intersection number indicating how
one can drop the transversality assumption from the original definition.

Proposition 7.3.9. Let M ∈ M+
n . Consider S ↪→ M a compact, oriented, k-dimensional

submanifold and (T, φ) ∈ Cn−k(M) a (n−k)-dimensional cycle intersecting S transversally,
i.e. S t φ. Then

S · T =
∫

M
δS ∧ δT , (7.3.3)

where δ• denotes the Poincaré dual of •.
The proof of the proposition relies on a couple of technical lemmata of independent

interest.
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Lemma 7.3.10. (Localization lemma) Let M ∈ M+
n and (S, φ) ∈ Ck(M). Then for

any neighborhood N of φ(S) in M there exists δNS ∈ Ωn−k
cpt (M) such that

(a) δNS represents the Poincaré dual δS ∈ Hn−k
cpt (M);

(b) supp δNS ⊂ N .

Proof Fix a Riemann metric on M . Each point p ∈ φ(S) has a geodesically convex
neighborhood entirely contained in N . Cover φ(S) by finitely many such neighborhoods
and denote by N their union. Then N ∈ M+

n and (S, φ) ∈ M+
n (N). Denote by δN

S the
Poincaré dual of S in N . It can be represented by a closed form in Ωn−k

cpt (N) which we
continue to denote by δN

S . If now we pick a closed form ω ∈ Ωk(M) then ω |N is also closed
and ∫

M
δN
S ∧ ω =

∫

N
δN
S ∧ ω =

∫

S
φ∗ω.

Hence, δN
S represents the Poincaré dual of S in Hn−k

cpt (M) and moreover, supp δN
S ⊂ N . ut

Definition 7.3.11. Let M ∈ M+
n and S ↪→ M a compact, k-dimensional, oriented sub-

manifold of M. A local transversal at p ∈ S is an embedding

φ : B ⊂ Rn−k → M (B = open ball centered at 0)

such that S t φ and φ−1(S) = {0}.

Lemma 7.3.12. Let M ∈ M+
n , S ↪→ M a compact, k-dimensional, oriented submanifold

of M and (B, φ) a local transversal at p ∈ S. Then for any sufficiently “thin” closed
neighborhood N of S ⊂ M we have

S · (B, φ) =
∫

B
φ∗δNS .

Proof Using the transversality S t φ, the implicit function theorem and eventually re-
stricting φ to a smaller ball, we deduce that (for some sufficiently “thin” neighborhood N
of S) there exist local coordinates (x1, . . . , xn) defined on some neighborhood U of p ∈ M
diffeomorphic with the cube

{|xi| < 1, ∀i}
such that
(i)S ∩ U = {xk+1 = · · · = xn = 0}, p = (0, . . . , 0)
(ii) The orientation of S ∩ U is defined by dx1 ∧ · · · ∧ dxk.
(iii) The map φ : B ⊂ Rn−k

(y1,...,yn−k)
→ M is expressed in these coordinates as

x1 = 0, . . . , xk = 0, xk+1 = y1, . . . , xn = yn−k.

(iv) N ∩ U = {|xj | ≤ 1/2 ; j = 1, . . . , n}.
Let ε = ±1 such that εdx1 ∧ . . . ∧ dxn defines the orientation of TM . In other words

ε = S · (B, φ).
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For each ξ = (x1, . . . , xk) ∈ S ∩ U denote by Pξ the (n− k)-“plane”

Pξ = {(ξ; xk+1, . . . , xn) ; |xj | < 1 j > k}.

We orient each Pξ using the (n− k)-form dxk+1 ∧ · · · ∧ dxn and set

v(ξ) =
∫

Pξ

δNS .

Equivalently,

v(ξ) =
∫

B
φ∗ξδ

N
S ,

where φξ : B → M is defined by

φξ(y1, . . . , yn−k) = (ξ; y1, . . . , yn−k).

To any function ϕ = ϕ(ξ) ∈ C∞(S ∩ U) such that

suppϕ ⊂ {|xi| ≤ 1/2 ; i ≤ k}

we associate the k-form

ωϕ = ϕdx1 ∧ · · · ∧ dxk = ϕdξ ∈ Ωk
cpt(S ∩ U).

Extend the functions x1, . . . , xk ∈ C∞(U ∩N ) to smooth compactly supported functions

x̃i ∈ C∞
0 (M) → [0, 1]

The form ωϕ is then the restriction to U ∩ S of the closed compactly supported form

ω̃ϕ = ϕ(x̃1, . . . , x̃k)dx̃1 ∧ · · · ∧ dx̃k.

We have ∫

M
ω̃ϕ ∧ δNS =

∫

U
ωϕ ∧ δNS =

∫

S
ωϕ =

∫

Rk

ϕ(ξ)dξ. (7.3.4)

The integral over U can be evaluated using the Fubini theorem. Write

δNS = fdxk+1 ∧ · · · ∧ dxn + %

where % is an (n− k)-form not containing the monomial dxk+1 ∧ · · · ∧ dxn. Then
∫

U
ωϕ ∧ δNS =

∫

U
fϕdx1 ∧ · · · ∧ dxn

= ε

∫

U
fϕ|dx1 ∧ · · · ∧ dxn| (|dx1 ∧ · · · ∧ dxn| = Lebesgue density)

Fubini= ε

∫

S∩U
ϕ(ξ)

(∫

Pξ

f |dxk+1 ∧ · · · ∧ dxn|
)
|dξ|
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= ε

∫

S
ϕ(ξ)

(∫

Pξ

δNS

)
|dξ| = ε

∫

S
ϕ(ξ)v(ξ)|dξ|.

Comparing with (7.3.4) and taking into account that ϕ was chosen arbitrarily we deduce

v(0) = ε.

If in the above equality we use the assumption (iii) we recognize in the left-hand-side the
integral ∫

B
φ∗δNS .

The local transversal lemma is proved. ut

Proof of Proposition 7.3.9 Let

φ−1(S) = {p1, . . . , pm}.
The transversality assumption implies that each pi has an open neighborhood Bi diffeomor-
phic to an open ball such that φi = φ |Bi is a local transversal at yi = φ(xi). Moreover, we
can choose the neighborhoods Bi to be mutually disjoint. Then

S · T =
∑

i

S · (Bi, φi).

The compact set
K = φ(T \ ∪Di)

does not intersect S so that we can find a “thin”, closed neighborhood” N of S ↪→ M such
that K ∩N = ∅. Then φ∗δNS is compactly supported in ∪Di

∫

M
δNS ∧ δT =

∫

T
φ∗δNS

=
∑

i

∫

Di

φ∗i δ
N
S .

From the local transversal lemma we get
∫

Di

φ∗δNS = (−1)k(n−k)S · (Bi, φ) = ipi(S, T ). ut

Equality (7.3.3) has a remarkable feature. Its right-hand-side is an integer but is defined
only for cycles S, T such that S is embedded and S t T , while the left-hand-side makes
sense for any cycles of complementary dimensions but a priori it may not be an integer. In
any event, we have a remarkable consequence.

Corollary 7.3.13. Let (Si, φi) ∈ Ck(M) and ((Ti, ψi) ∈ Cn−k(M) where M ∈ M+
n , i = 0, 1.

If
(a) S0 ∼c S1, T0 ∼c T1,
(b) the cycles Si are embedded and
(c) Si t Ti

Then
S0 · T0 = S1 · T1.
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Definition 7.3.14. The homological intersection pairing is the Z-bilinear map

I = IM : Hk(M)×Hn−k(M) → R

(M ∈ M+
n ) defined by

I(S, T ) =
∫

M
δS ∧ δT .

We have proved that in some special instances I(S, T ) ∈ Z. We want to prove that when
M is compact this is always the case.

Theorem 7.3.15. Let M ∈ M+
n be compact manifold. Then for any (S, T ) ∈ Hk(M) ×

Hn−k(M) the intersection number I(S, T ) is always an integer.

The theorem will follow from two lemmata. The first one will show that it suffices to
consider only the situation when one of the two cycles is embedded. The second one will
show that if one of the cycles is embedded then the second cycle can be deformed so that
it intersects the former transversally. (This is called a general position result.)

Lemma 7.3.16. (Diagonal trick) Let M , S and T as in Theorem 7.3.15. Then

I(S, T ) = (−1)n−k

∫

M×M
δS×T ∧ δ∆

where ∆ is the diagonal cycle ∆ : M → M × M , x 7→ (x, x). (It is here where the
compactness of M is essential, since otherwise ∆ would not be a cycle).

Proof We will use the equality 7.3.1

δS×T = (−1)n−kδS × δT .

Then

(−1)n−k =
∫

M×M
δS×T ∧ δ∆ =

∫

M×M
(δS × δT ) ∧ δ∆

=
∫

M
∆∗(δS × δT ) =

∫

M
δS ∧ δT . ut

Lemma 7.3.17. (Moving lemma) Let S ∈ Ck(M) and T ∈ Cn−k(M) be two cycles in
M ∈ M+

n . If S is embedded then T is cobordant to a cycle T̃ such that S t T̃ .

The proof of this result relies on Sard’s theorem. For details we refer to [35, Chap.3].
Proof of Theorem 7.3.15 Let (S, T ) ∈ Ck(M)× Cn−k(M). Then

I(S, T ) = (−1)n−kI(S × T, ∆).

Since ∆ is embedded we may assume by the moving lemma that (S × T ) t ∆ so that
I(S × T, ∆) ∈ Z. ut
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7.3.3 The topological degree

Consider two compact, connected, oriented smooth manifolds M , N having the same di-
mension n. Any smooth map F : M → N canonically defines an n-dimensional cycle in
M ×N

ΓF : M → M ×N x 7→ (x, F (x)).

ΓF is called the graph of F.
Any point y ∈ N defines an n-dimensional cycle M × {y}. Since N is connected all

these cycles are cobordant so that the integer ΓF · (M × {y}) is independent of y.

Definition 7.3.18. The topological degree of the map F is defined by

deg F
def
= (M × {y}) · ΓF .

Note that the intersections of ΓF with M × {y} correspond to the solutions of the
equation F (x) = y. Thus the topological degree counts these solutions (with sign).

Proposition 7.3.19. Let F : M → N as above. Then for any n-form ω ∈ Ωn(N)
∫

M
F ∗ω = deg F

∫

N
ω.

Remark 7.3.20. The map F induces a morphism

R ∼= Hn(N) F ∗→ Hn(M) ∼= R

which can be identified with a real number. The above proposition guarantees this number
is an integer. ut

Proof of the proposition Note that if ω ∈ Ωn(N) is exact then
∫

N
ω =

∫

M
F ∗ω = 0.

Thus, to prove the proposition it suffices to check it for any particular form which generates
Hn(N). Our candidate will be the Poincaré dual δy of a point y ∈ N . We have

∫

N
δy = 1

while equality (7.3.1) gives
δM×{y} = δM × δy = 1× δy.

We can then compute the degree of F using Theorem 7.3.15

deg F = deg F

∫

N
δy =

∫

M×N
(1× δy) ∧ δΓF

=
∫

M
Γ∗F (1× δy) =

∫

M
F ∗δy. ut



248 Cohomology

Corollary 7.3.21. (Gauss-Bonnet) Consider a connected sum of g-tori Σ = Σg em-
bedded in R3 and let GΣ : Σ → S2 be its Gauss map. Then

deg GΣ = χ(Σ) = 2− 2g.

This corollary follows immediately from the considerations at the end of Subsection
4.2.4.

Exercise 7.3.3. Consider the compact, connected manifolds M0,M1, N ∈ M+
n and the

smooth maps Fi : Mi → N , i = 0, 1. Show that if F0 is cobordant to F1 then deg F0 =
deg F1. In particular, homotopic maps have the same degree. ut

Exercise 7.3.4. Let A be a nonsingular n× n real matrix. It defines a smooth map

FA : Sn−1 → Sn−1 x 7→ Ax

|Ax| .

Prove that deg FA = sign detA.
Hint: Use the polar decomposition A = P ·O (where P is a positive symmetric matrix and
O is an orthogonal one) to deform A inside GL(n,R) to a diagonal matrix. ut

Exercise 7.3.5. Let M
F→ N be a smooth map (M , N are smooth, compact oriented of

dimension n). Assume y ∈ N is a regular value of F i.e. for all x ∈ F−1(y) the derivative

DxF : TxM → TyN

is invertible. For x ∈ F−1(y) define

deg(F, x) =
{

1 , DxF preserves orientations
−1 , otherwise

Prove that
deg F =

∑

F (x)=y

deg(F, x). ut

Exercise 7.3.6. Let M denote a compact oriented manifold and consider a smooth map

F : M → M.

Regard H∗(M) as a superspace with the obvious Z2-grading

H∗(M) = Heven(M)⊕Hodd(M)

and define the Lefschetz number λ(F ) of F as the supertrace of the pull back F ∗ : H∗(M) →
H∗(M). Prove that

λ(F ) = ∆ · ΓF .

and deduce from this the Lefschetz fixed point theorem: λ(F ) 6= 0 ⇒ F has a fixed point.
ut
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7.3.4 Thom isomorphism theorem

Let p : E → B be an orientable fiber bundle with standard fiber F and compact, oriented
basis B. Let dimB = m and dimF = r.

In this subsection we will extensively use the techniques of fibered calculus described in
Subsection 3.4.5. The integration along fibers

∫

E/B
= p∗ : Ω∗cpt(E) → Ω∗−r(B)

satisfies
p∗dE = (−1)rdBp∗

so that it induces a map in cohomology

p∗ : H∗
cpt(E) → H∗−r(B).

This induced map in cohomology is sometimes called the Gysin map.

Exercise 7.3.7. Consider a smooth map f : M → N between compact, oriented manifolds
M , N of dimensions m and respectively n. Denote by if the embedding of M in M ×N as
the graph of f

M 3 x 7→ (x, f(x)) ∈ M ×N.

The natural projection M × N → N allows us to regard M × N as a trivial fiber bundle
over N . Show that the push-forward map f∗ : H∗(M) → H∗+n−m(N) defined in Remark
7.2.9 can be equivalently defined by

f∗ = π∗ ◦ (if )∗

where π∗ denotes the integration along fibers while

(if )∗ : H∗
cpt(M) → H∗

cpt(N)

is the natural morphism defined by the embedding if . ut

Let us return to the fiber bundle p : E → B. Any smooth section

σ : B → E

defines an embedded cycle in E of dimension m = dim B. Denote by δσ its Poincaré dual
in Hr

cpt(E). Using the properties of the integration along fibers we deduce that for any
ω ∈ Ωm(B) we have ∫

E
δσ ∧ p∗ω =

∫

B

(∫

E/B
δσ

)
ω.

On the other hand by Poincaré duality we get
∫

E
δσ ∧ p∗ω = (−1)rm

∫

E
p∗ω ∧ δσ
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= (−1)rm

∫

B
σ∗p∗ω = (−1)rm

∫

B
(pσ)∗ω = (−1)rm

∫

B
ω.

Hence

p∗δσ =
∫

E/B
δσ = (−1)rm ∈ Ω0(B).

Proposition 7.3.22. Let p : E → B a bundle as above. If it admits at least one section
then the Gysin map

p∗ : H∗
cpt(E) → H∗−r(B)

is surjective.

Proof Denote by τσ the map

τσ : H∗(B) → H∗+r
cpt (E) ω 7→ (−1)rmδσ ∧ p∗ω = p∗ω ∧ δσ.

Then τσ is a right inverse for p∗. Indeed

ω = (−1)rmp∗δσ ∧ ω = (−1)rmp∗(δσ ∧ p∗ω) = p∗(τσω). ut

The map p∗ is not injective in general. For example, if (S, φ) is a k-cycle in F , then it
defines a cycle in any fiber π−1(b) an consequently in E. Denote by δS its Poincaré dual in
Hm+r−k

cpt (E). Then for any ω ∈ Ωm−k(B) we have

∫

B
(p∗δS) ∧ ω =

∫

E
δS ∧ p∗ω

= ±
∫

D
φ∗p∗ω =

∫

S
(p ◦ φ)∗ω = 0

since p ◦ φ is constant. Hence p∗δS = 0. Hence if F carries nontrivial cycles ker p∗ may not
be trivial.

The simplest example of standard fiber with only trivial cycles is a vector space.

Definition 7.3.23. Let p : E → B be an orientable vector bundle over the compact oriented
manifold B (dimB = m, rank (E) = r). The Thom class of E, denoted by τE is the
Poincaré dual of the cycle defined by the zero section ζ0 : B → E, b 7→ 0 ∈ Eb. Note that
τE ∈ Hr

cpt(E).

Theorem 7.3.24. (Thom isomorphism) Let p : E → B as in the above definition. Then
the map

τ : H∗(B) → H∗+r
cpt (E) ω 7→ τE ∧ p∗ω

is an isomorphism called the Thom isomorphism. Its inverse is the Gysin map

(−1)rmp∗ : H∗
cpt(E) → H∗−r(B).
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Proof We have already established that

p∗τ = (−1)rm

To prove the reverse equality τp∗ = (−1)rm we will use Lemma 7.2.2 of Subsection 7.2.1.
For β ∈ Ω∗cpt(E) we have

(p∗p∗τE) ∧ β − τE ∧ (p∗p∗β) = (−1)rd(m(τE , β))

where m(τE , β) ∈ Ω∗cpt(E). Since p∗p∗τE = (−1)rm we deduce

(−1)rmβ = (τE ∧ p∗(p∗β) + exact form,

i.e.
(−1)rmβ = τE ◦ p∗(β) in H∗

cpt(E). ut
Exercise 7.3.8. Show that τE = ζ∗1 where ζ∗ : H∗(M) → H∗+dim M

cpt (E) is the push-forward
map defined by a section ζ : M → E. ut

7.3.5 Gauss-Bonnet revisited

We now examine a very special type of vector bundle: the tangent bundle of a compact,
oriented, smooth manifold M . Note first the following fact.

Exercise 7.3.9. Prove that M is orientable if and only if TM is orientable as a bundle. ut

Definition 7.3.25. Let E → M be a real orientable vector bundle over the compact, ori-
ented n-dimensional smooth manifold. Denote by τE ∈ Hn

cpt(E) the Thom class of E. The
Euler class of E is defined by

e(E) = ζ∗0τE ∈ Hn(M),

where ζ0 : M → E denotes the zero section. e(TM) is called the Euler! class of M and is
denoted by e(M).

Note that the sections of TM are precisely the vector fields on M . Moreover, any such
section σ : M → TM tautologically defines an n-dimensional cycle in TM and in fact any
two such cycles are homotopic - try an affine homotopy along the fibers of TM . Any two
sections σ0, σ1 : M → TM determine cycles of complementary dimension and thus the
intersection number σ0 · σ1 is a well defined integer, independent of the two sections. It is
a number reflecting the topological structure of the manifold.

Proposition 7.3.26. Let σ0, σ1 : M → TM be two sections of TM . Then
∫

M
e(M) = σ0 · σ1.

In particular, if dimM is odd then
∫

M
e(M) = 0.
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Proof The section σ0, σ1 are cobordant and their Poincaré dual in Hn
cpt(TM) is the Thom

class τM . Hence

σ0 · σ1 =
∫

TM
δσ0 ∧ δσ1 =

∫

TM
τM ∧ τM

=
∫

TM
τM ∧ δζ0 =

∫

M
ζ∗0τM =

∫

M
e(M).

If dimM is odd then
∫

M
e(M) = σ0 · σ1 = −σ1 · σ0 = −

∫

M
e(M). ut

Theorem 7.3.27. Let M be a compact oriented n-dimensional manifold and denote by
e(M) its Euler class. Then the integral of e(M) over M is equal to the Euler characteristic
of M , ∫

M
e(M) = χ(M) =

n∑

k=0

(−1)kbk(M).

In the proof we will use an equivalent description of χ(M).

Lemma 7.3.28. Denote by ∆ the diagonal cycle in M ×M . Then

χ(M) = ∆ ·∆.

Proof of the lemma Consider a basis (ωj) of H∗(M) consisting of homogeneous ele-
ments. We denote by (ωi) the dual basis i.e.

〈ωi, ωj〉κ = δi
j .

According to (7.3.2) we have

δ∆ =
∑

i

(−1)|ω
i|ωi × ωi.

Similarly, if we start first with the basis (ωi) then its dual basis is

(−1)|ω
i|·|ωi|ωi

so we also have (taking into account that |ωj |+ |ωj | · |ωj | ≡ n|ωj | (mod 2))

δ∆ =
∑

i

(−1)n·|ωj |ωj × ωj .

Using Exercise 7.1.12 we deduce

∆ ·∆ =
∫

M×M

(∑

i

(−1)|ω
i|ωi × ωi

)
∧


∑

j

(−1)n|ωj |ωj × ωj
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=
∫

M×M


∑

i,j

(−1)|ω
i|(−1)n · |ωj |(−1)|ωi|·|ωj |ωi ∧ ωj


× (

ωi × ωj
)

=
∑

i,j

(−1)|ω
i|(−1)n · |ωj |(−1)|ωi|·|ωj |〈ωi, ωj〉κ 〈ωi, ω

j〉κ.

In the last expression we now use the duality equations

〈ωi, ω
j〉κ = (−1)|ωi|·|ωj |δj

i

and the congruence

|ωi|+ n|ωi|+ |ωi|2 + |ωi| · ||ωi| ≡ |ωi|+ n|ωi|+ |ωi|2 + |ωi|(n− |ωi|) ≡ |ωi| (mod 2)

to conclude that
∆ ·∆ =

∑

ωi

(−1)|ω
i| = χ(M). ut

Proof of theorem 7.3.27 The tangent bundle of M × M restricts to the diagonal ∆
as a rank 2n vector bundle. If we choose a Riemann metric on M × M then we get an
orthogonal splitting

T (M ×M) |∆= N∆ ⊕ T∆.

The diagonal map M → M ×M identifies M with ∆ so that T∆ ∼= TM . We now have the
following remarkable result.

Lemma 7.3.29. N∆
∼= TM .

Proof Use the isomorphisms

T (M ×M) |∆∼= T∆⊕N∆
∼= TM ⊕N∆

and
T (M ×M) |∆= TM ⊕ TM. ut

From this lemma we immediately deduce the equality of Thom classes

τN∆
= τM . (7.3.5)

At this point we want to invoke a technical result whose proof is left to the reader as an
exercise in Riemann geometry.

Lemma 7.3.30. Denote by exp the exponential map of a Riemann metric g on M ×M .
Regard ∆ as a submanifold in N∆ via the embedding given by the zero section. Then there
exists an open neighborhood N of ∆ ⊂ N∆ ⊂ T (M ×M) such that

exp |N : N → M ×M

is an embedding.
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Let N be a neighborhood of ∆ ⊂ N∆ as in the above lemma and set N = exp(N ). We
can view ∆ as a submanifold of both N and N . Denote by δN

δ (resp. δN∆ ) the Poincaré dual
of ∆ in N (resp. N ). δN∆ is the Thom class of N∆ → ∆ which in view of (7.3.5) means

δN∆ = τN∆
= τ∆ = τM .

We get

∆ ·∆ =
∫

∆
δN
∆ =

∫

∆
δN∆ =

∫

∆
ζ∗0τ∆

=
∫

M
ζ∗0τM =

∫

M
e(M).

Hence ∫

M
e(M) = χ(M). ut

If M is a connected sum of g tori then we can rephrase the Gauss-Bonnet theorem as
follows.

Corollary 7.3.31. For any Riemann metric h on a connected sum of g-tori Σg we have

1
2π

ε(h) =
1
4π

shdvh = e(Σg) in H∗(Σg).

The remarkable feature of the Gauss-Bonnet theorem is that once we choose a metric we
can explicitly describe a representative of the Euler class in terms of the Riemann curvature.
The same is true for any compact oriented even dimensional Riemann manifold. In this
generality the result is known as Gauss-Bonnet-Chern and we will have more to say about
it in the next chapter.

We now have a new interpretation of the Euler characteristic of a compact oriented
manifold M .

Given a smooth vector field X on M , its “graph” in TM

ΓX = {(x,X(x)) ∈ TxM ; x ∈ M}
is an n-dimensional submanifold of TM . The Euler characteristic is then the intersection
number

χ(M) = ΓX ·M
where we regard M as a submanifold in TM via the embedding given by the zero section.
In other words, the Euler characteristic counts (with sign) the zeroes of the vector fields on
M . For example if χ(M) 6= 0 this means that any vector field on M must have a zero ! We
have thus proved the following result.

Corollary 7.3.32. If χ(M) 6= 0 then the tangent bundle TM is nontrivial.

The equality χ(S2n) = 2 is particularly relevant in the vector field problem discussed in
Subsection 2.1.4. Using the notations of that subsection we can write

v(S2n) = 0.

We have thus solved “half” the vector field problem.
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Exercise 7.3.10. Let X be a vector field over the compact oriented manifold M . A point
x ∈ M is said to be a non-degenerate zero of X if X(0) = 0 and

det
(

∂Xi

∂xj

)
|x=x0 6= 0.

for some local coordinates (xi) near x0 such that the orientation of T ∗x0
M is given by

dx1 ∧ · · · ∧ dxn. Prove that the local intersection number of ΓX with M at x0 is given by

ix0(ΓX ,M) = sign det
(

∂Xi

∂xj

)
|x=x0 .

(This is sometimes called the local index of X at x0 and is denoted by i(X, x0). ut

From the above exercise we deduce the following celebrated result.

Corollary 7.3.33. (Poincaré-Hopf) If X is a vector field along a compact, oriented
manifold M with only non-degenerated zeros x1, . . . , xk then

χ(M) =
∑

j

i(X, xj).

Exercise 7.3.11. Let X be a vector field on Rn and having a non-degenerate zero at the
origin.
(a) prove that for all r > 0 sufficiently small X has no zeros on Sr = {|x| = r}.
(b) Consider Fr : Sr → Sn−1 defined by

Fr(x) =
1

|X(x)|X(x).

Prove that i(X, 0) = deg Fr for all r > 0 sufficiently small.
Hint: Deform X to a linear vector field. ut

7.4 Symmetry and topology

The symmetry properties of a manifold have a great impact on its global (topological)
structure. We devote this section to presenting some aspects of this avenue.

7.4.1 Symmetric spaces

Definition 7.4.1. A homogeneous space is a smooth manifold M acted transitively by a
Lie group G called the symmetry group.

Recall that a left action

G×M → M (g, m) 7→ g ·m
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is called transitive if for any m ∈ M the map

Ψm : G 3 g 7→ g ·m ∈ M

is surjective. For any point x of a homogeneous space M we define the isotropy group at
x by

Ix = {g ∈ G ; g · x = x}.
Lemma 7.4.2. Let M be a homogeneous space with symmetry group G and x, y ∈ M . Then
(a) Ix is a closed subgroup of G;
(b) Ix

∼= Iy.

Proof (a) is immediate. To prove (b), choose g ∈ G such that y = g · x. Then note that

Iy = gIxg−1.

ut

Remark 7.4.3. It is worth mentioning some fundamental results in the theory of Lie groups
which will shed a new light on the considerations of this section. Their proofs can be found
in the monograph [73].

FACT 1. Any closed subgroup of a Lie group is also a Lie group. In particular, the isotropy
groups Ix of a homogeneous space are all Lie groups. They are smooth submanifolds of the
symmetry group.

FACT 2. Let G be a closed group and H a closed subgroup. Then the space of left cosets

G/H = {g ·H ; g ∈ G}
can be given a smooth structure such that the map

G× (G/H) → G/H (g1, g2H) 7→ (g1g2) ·H
is smooth. G/H becomes a homogeneous space with symmetry group G. All isotropy
groups are isomorphic to H.

FACT 3. If M is a homogeneous space with symmetry group G and x ∈ M then M is
equivariantly diffeomorphic to G/Ix, i.e. there exists a diffeomorphism

φ : M → G/Ix

such that φ(g · y) = g · φ(y). ut

We will be mainly interested in a very special class of homogeneous spaces.

Definition 7.4.4. A symmetric space is a collection of data (M,h, G, σ, i) satisfying the
following conditions.
(a) (M,h) is a Riemann manifold.
(b) G is a connected Lie group acting isometrically and transitively on M

G×M 3 (g, m) 7→ g ·m ∈ M.
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(c) σ : M ×M → M is a smooth map (m1, m2) 7→ σm1(m2) such that
(c1) ∀m ∈ M σm : M → M is an isometry and σm(m) = m.
(c2) σm ◦ σm = 1M .
(c3) Dσm |TmM= −1TmM .
(c4) σgm = gσmg−1

(d) i : M ×G → G, (m, g) 7→ img is a smooth map such that
(d1) ∀m ∈ M , im : G → G is a homomorphism of G.
(d2) im ◦ im = 1G.
(d3) igm = gimg−1, ∀(m, g) ∈ M ×G.

(e) σmgσ−1
m (x) = σmgσm(x) = im(g) · x, ∀m, x ∈ M , g ∈ G.

Remark 7.4.5. This may not be the most elegant definition of a symmetric space and
certainly it is not the minimal one. Optimizing it will require a substantial amount of work
and we refer to [34] for an extensive presentation of this subject. This definition has one
advantage. It lists all the properties we need to establish the topological results of this
section. ut

The next exercise offers the reader a feeling of what symmetric spaces are all about. In
particular, it describes the geometric significance of the family of involutions σm.

Exercise 7.4.1. Let (M, h) be a symmetric space. Denote by ∇ the Levi-Civita connection
and by R the Riemann curvature tensor.
(a) Prove that ∇R = 0.
(b) Fix m ∈ M and let γ(t) be a geodesic of M such that γ(0) = m. Show that σmγ(t) =
γ(−t). ut

Example 7.4.6. Perhaps the most popular example of symmetric space is the round sphere
Sn ⊂ Rn+1. The symmetry group is SO(n + 1) - the group of orientation preserving
“rotations” of Rn+1. For each m ∈ Sn+1 we denote by σm the orthogonal reflection through
the 1-dimensional space determined by the radius Om. We then set im(T ) = σmTσ−1

m ,
∀T ∈ SO(n + 1). We let the reader check that σ and i satisfy all the required axioms. ut

Example 7.4.7. Let G be a connected Lie group and m a bi-invariant Riemann metric on
G. The direct product G×G acts on G by

(g1, g2) · h = g1hg−1
2 .

This action is clearly transitive and since m is bi-invariant its is also isometric. Define

σ : G×G → G σgh = gh−1g−1

and
i : G× (G×G) → G×G ig(g1, g2) = (gg1g

−1, gg2g
−1).

We leave the reader check that these data define a symmetric space structure on (G,m).
The symmetry group is G×G. ut
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Example 7.4.8. Consider the complex grassmannian M = Gk(n,C). Any element S ∈ M
can be identified with a rank k, selfadjoint idempotent

P : Cn → Cn P ∗ = P = P 2.

P = PS is the orthogonal projection onto the k-dimensional subspace S ⊂ Cn. Denote by
Symn the linear space of selfadjoint n× n complex matrices. The map

M 3 S 7→ PS ∈ Symn

is an embedding of M in Symn. The linear space Symn has a natural metric

g0(A,B) = Re tr (AB∗).

It defines by restriction a Riemann metric g0 on M .
The unitary group U(n) acts on Symn by

A 7→ T ? A
de= TAT ∗ T ∈ U(n) A ∈ Symn.

Note that U(n) ? M = M and g0 is U(n)-invariant. Thus U(n) acts transitively and
isometrically on M .

For each subspace S ∈ M define

RS = PS − PS⊥ = 2PS − 1.

RS is the orthogonal reflection through S⊥. Note that RS ∈ U(n) and R2
S = 2. The map

A 7→ RS ? A

is an involution of Symn. It descends to an involution of M . We thus get an entire family
of involutions

σ : M ×M → M, (PS1 , PS2) 7→ RS1 ? PS2 .

define
i : M × U(n) → U(n), iST = RSTRS .

We leave the reader check that the above collection of data defines a symmetric space
structure on Gk(n,C). ut

Exercise 7.4.2. Fill in the details left out in the above example. ut

7.4.2 Symmetry and cohomology

Definition 7.4.9. Let M be a homogeneous space with symmetry group G. A differential
form ω ∈ Ω∗(M) is said to be (left) invariant if `∗gω = ω ∀g ∈ G, where we denoted by

`∗g : Ω∗(M) → Ω∗(M)

the pullback defined by the left action by g: m 7→ g ·m.
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Proposition 7.4.10. Let M be a compact homogeneous space with compact, connected
symmetry group G. Then any cohomology class of M can be represented by a (not necessarily
unique) invariant form.

Proof Denote by dµg the normalized bi-invariant volume form on G. For any form
ω ∈ Ω∗(M) we define its G-average by

ω =
∫

G
`∗gωdµg.

ω is an invariant form on M . The proposition is a consequence of the following result.

Lemma 7.4.11. If ω is a closed form on M then ω is closed and cohomologous to ω.

Proof of the lemma The form ω is obviously closed so we only need to prove it is
cohomologous to ω. Consider a bi-invariant Riemann metric m on G. Since G is connected
the exponential map

exp : LG → G X 7→ exp(tX)

is surjective. Choose r > 0 sufficiently small such that

exp : Dr = {|X|m = r ; X ∈ LG} → G

is an embedding. Set Br = expDr. We can select finitely many g1, . . . , gm ∈ G such that

G =
m⋃

j=1

Bj (Bj = gjBr).

Now pick a partition of unity (αj) ⊂ C∞(G) subordinated to the cover (Bj), i.e.

0 ≤ αj ≤ 1, suppαj ⊂ Bj ,
∑

j

αj = 1.

Set
aj =

∫

G
αjdµg.

Since the volume of G is normalized to 1 and
∑

j αj = 1 we deduce
∑

j aj = 1. For any
j = 1, . . . , m define Tj : Ω∗(M) → Ω∗(M) by

Tjω =
∫

G
αj(g)`∗gωdµg.

Note that
ω =

∑

j

Tjω and dTjω = Tjdω.

Each Tj is thus a cochain map. It induces a morphism in cohomology which we continue to
denote by Tj . The proof of the lemma will be completed in several steps.

Step 1. `∗g = id on H∗(M) for all g ∈ G. Let X ∈ LG such that g = expX. Define

f : I ×M → M ft(m) = exp(tX) ·m = `exp(tX)m.
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f is a homotopy connecting 1M with `∗g. This concludes Step 1.

Step 2
Tj = aj1H∗(M).

For t ∈ [0, 1] consider φj,t : Bj → G defined as the composition

Bj

g−1
j→ Br

exp−1

→ Dr
t·X→ Dtr

exp→ Btr

gj
↪→ G.

Define Tj,t : Ω∗(M) → Ω∗(M) by

Tj,tω =
∫

G
αj(g)`∗φj,t(t)

ωdµg = Tjφ
∗
j,tω. (7.4.1)

We claim that Tj,0 is cochain homotopic to Tj,1.
To verify this claim set t = es, −∞ < s ≤ 0 and

gs = exp(es exp−1(g)) ∀g ∈ Br.

Then
Usω

def
= Tj,esω =

∫

Br

αj(gjg)`∗gjgs
ω =

∫

Br

α(gjg)`∗gs
`∗gj

ωdµg.

For each g ∈ Br the map
Ψs(m) = gs(m)

defines a local flow on M . We denote by Xg its infinitesimal generator. Then

d

ds
(Usω) =

∫

Br

αj(gjg)LXg`
∗
gs

`∗gj
ωdµg

=
∫

Br

αj(gjg)(dM iXg + iXgdM )(`∗gs
`∗gj

ω)dµg.

Consequently

Tj,0ω − Tj,1ω = U−∞ω − U0ω = −
∫ 0

−∞

(∫

Br

αj(gjg)(diXg + iXgd)(`∗gs
`∗gj

ω)dµg

)
ds.

(An argument entirely similar to the one we used in the proof of the Poincaré lemma shows
that the above improper integral is pointwise convergent). From the above formula we
immediately read a cochain homotopy χ : Ω∗(M) → Ω∗−1(M) connecting U−∞ to U0.
More precisely

{χ(ω)}|x∈M= −
∫ 0

−∞

(∫

Br

αj(gjg)
{

iXg`
∗
gs

`∗gj
ω
}
|x dµg

)
ds.

Now notice that

Tj,0ω =

(∫

Bj

αj(g)dµg

)
= aj`

∗
gj

ω
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while
Tj,1ω = Tjω.

Taking into account Step 1 we deduce Tj,0 = ajid. Step 2 is completed.

The lemma and hence the proposition follow from

1H∗(M) =
∑

j

aj1H∗(M) =
∑

j

Tj = G− average.

ut

The proposition we have just proved has a greater impact when M is a symmetric space.

Proposition 7.4.12. Let (M, h) be an, oriented symmetric space with symmetry group G.
Then the following are true.
(a) Every invariant form on M is closed.
(b) If moreover M is compact then the only invariant form cohomologous to zero is the
trivial one.

Proof (a) Consider an invariant k-form ω. Fix m ∈ M and set ω̂ = σ∗mω. We claim ω̂ is
invariant. Indeed, ∀g ∈ G

`∗gω̂ = `∗gσ
∗
mω = (σmg)∗ω

= (gigσmg)∗ω = σ∗m`∗i(g)ω = σ∗mω = ω̂.

Since Dσm |TmM= −1TmM we deduce that at m ∈ M

ω̂ = (−1)kω.

Because both ω and ω̂ are G-invariant we deduce that the above equality holds for any g ·m.
Invoking the transitivity of the G-action we conclude that

ω̂ = (−1)kω on M.

In particular
dω̂ = (−1)kdω on M.

The (k + 1)-forms dω̂ = σ∗mdω and dω are both invariant and as above we deduce

dω̂ = d̂ω = (−1)k+1dω.

The last two inequalities imply dω = 0.
(b) Let ω be an invariant form cohomologous to zero, i.e. ω = dα. Denote by ∗ the Hodge
∗-operator corresponding to the invariant metric h. Since G acts by isometries η = ∗ω is
also invariant so that dη = 0. We can now integrate (M is compact) and use Stokes theorem
to get ∫

M
ω ∧ ∗ω =

∫

M
dα∧ = ±

∫

M
α ∧ dη = 0.

This forces ω ≡ 0.
ut

Form Proposition 7.4.10 and the above theorem we deduce the following celebrated
result of Élie Cartan ([17])
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Corollary 7.4.13. (Cartan) Let (M, h) be a compact, oriented symmetric space with
compact, connected symmetry group G. Then the cohomology algebra H∗(M) of M is
isomorphic with the graded algebra Ω∗inv(M) of invariant forms on M .

In the coming subsections we will apply this result to the symmetric spaces discussed
in the previous subsection: the Lie groups and the complex grassmannians.

7.4.3 The cohomology of compact Lie groups

Consider a compact, connected Lie group G and denote by LG its Lie algebra. According to
Proposition 7.4.10, in computing its cohomology it suffices to restrict our considerations to
the subcomplex consisting of left invariant forms. This can be identified with the exterior
algebra Λ∗L∗G. We deduce

Corollary 7.4.14. H∗(G) ∼= H∗(LG) ∼= Λ∗invLG where Λ∗invLG denote the algebra of bi-
invariant forms on G, while H∗(LG) denotes the Lie algebra cohomology introduced in
Example 7.1.9.

Using the Exercise 7.1.2 we deduce the following consequence.

Corollary 7.4.15. If G is a compact semisimple Lie group then H1(G) = 0.

Proposition 7.4.16. Let G be a compact semisimple Lie group. Then H2(G) = 0.

Proof A closed bi-invariant 2-form ω on G is uniquely defined by its restriction to LG and
satisfies the following conditions.

dω = 0 ⇐⇒ ω([X0, X1], X2)− ω([X0, X2], X1) + ω([X1, X2], X0) = 0

and (right-invariance)

(LX0ω)(X1, X2) = 0 ∀X0 ∈ LG ⇐⇒ ω([X0, X1], X2)− ω([X0, X2], X1) = 0.

Thus
ω([X0, X1], X2) = 0 ∀X0, X1, X2 ∈ LG.

On the other hand since H1(LG) = 0 we deduce (see Exercise 7.1.2) LG = [LG, LG] so that
the last equality can be rephrased as

ω(X, Y ) = 0 ∀X, Y ∈ LG. ¤

Definition 7.4.17. A Lie algebra is called simple if it has no nontrivial ideals. A Lie group
is called simple if its Lie algebra is simple.

Exercise 7.4.3. Prove that SU(n) and SO(m) are simple. ut

Proposition 7.4.18. Let G be a compact, simple Lie group. Then H3(G) ∼= R. Moreover,
H3(G) is generated by the Cartan form

α(X, Y, Z) = κ([X,Y ], Z)

where κ denotes the Killing pairing.
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The proof of the proposition is contained in the following sequence of exercises.

Exercise 7.4.4. Prove that a simple Lie algebra is necessarily semi-simple. ut

Exercise 7.4.5. Let ω be a closed, bi-invariant 3-form on a Lie group G. Then

ω(X, Y, [Z, T ]) = ω([X, Y ], Z, T ) ∀X, Y, Z, T ∈ LG.

ut

Exercise 7.4.6. Let ω be a closed, bi-invariant 3-form on a compact, semisimple Lie group.
(a) Prove that for any X ∈ LG there exists a unique left invariant ηX ∈ Ω1(G) such that

(iXω)(Y, Z) = ηX([Y, Z]).

Moreover, the correspondence X 7→ ηX is linear.
Hint:Use H1(G) = H2(G) = 0.

(b) Denote by A the linear operator LG → LG defined by

κ(AX, Y ) = ηX(Y ).

Prove that A is selfadjoint with respect to the Killing metric.
(c) Prove that the eigenspaces of A are ideals of LG. Use this to prove Proposition 7.4.18.

ut

Exercise 7.4.7. Compute ∫

SU(2)
α and

∫

SO(3)
α

where α denotes the Cartan form. (These groups are oriented by their Cartan forms.)
Hint: Use the computation in the Exercise 4.1.16 and the double cover SU(2) → SO(3)
described in the Subsection 6.2.1. Pay very much attention to the various constants.

ut

7.4.4 Invariant forms on grassmannians and Weyl’s integral formula

We will use the results of Subsection 7.4.2 to compute the Poincaré polynomial of the
complex Grassmannian Gk(n,C). Set ` = n− k.

Gk(n,C) is a symmetric space with symmetry group U(n). It is a complex manifold
so that it is orientable (cf. Exercise 3.4.2). Alternatively, the orientability of Gk(n,C) is a
consequence of the following fact.

Exercise 7.4.8. If M is a homogeneous space with connected isotropy groups then M is
orientable.

We have to describe the U(n)-invariant forms on Gk(n,C). These forms are completely
determined by their values at a particular point in the Grassmannian. We choose this point
to correspond to the subspace S0 determined by the canonical inclusion Ck ↪→ Cn.
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The isotropy of S0 is the group H = U(k)×U(`). H acts linearly on the tangent space
V0 = TS0Gk(n,C). If ω is an U(n)-invariant form then its restriction to V0 is an H-invariant
skew-symmetric, multilinear map

V0 × · · · × V0 → R.

Conversely, any H-invariant element of Λ∗V ∗
0 extends via the transitive action of U(n) to

an invariant form on Gk(n,C). Denote by Λ∗inv the space of H-invariant elements of Λ∗V ∗
0 .

We have thus established the following result.

Proposition 7.4.19. There exists an isomorphism of graded R-algebras:

H∗(Gk(n,C)) ∼= Λ∗inv.

We want to determine the Poincaré polynomial of the complexified graded space, Λ∗inv⊗C

Pk,`(t) =
∑

j

tj dimC Λj
inv ⊗ C = PGk(n,C)(t).

Denote the action of H on V0 by

H 3 h 7→ Th ∈ Aut (V0).

Using the equality (3.4.9) of Subsection 3.4.4 we deduce

Pk,`(t) =
∫

H
| det(1V0 + tTh)|2dh (7.4.2)

where dh denotes the normalized bi-invariant volume form on H.
At this point the above formula may look hopelessly complicated. Fortunately, it can

be dramatically simplified using a truly remarkable idea of H.Weyl.
Note first that the function

H 3 h 7→ ϕ(h) = | det(1V0 + tTh)|2

is a class function, i.e. ϕ(ghg−1) = ϕ(h), ∀g, h ∈ H.
Inside H sits the maximal torus

T = Tk × T`,

where
Tk = {diag (eiθ1 , . . . , eiθk) ∈ U(k)},

and similarly
T` = {diag (eiφ1 , . . . , eiφ`) ∈ U(`)}.

Each h ∈ U(k)× U(`) is conjugate to diagonal unitary matrix, i.e. there exists g ∈ H such
that ghg−1 ∈ T.

We can rephrase this fact in terms of the adjoint action of H on itself

Ad : H ×H → H (g, h) 7→ Adg(h) = ghg−1.
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The class functions are constant along the orbits of the adjoint action and each such orbit
intersects the maximal torus T. In other words, a class function is completely determined
by its restriction to the maximal torus. Hence, at least theoretically, we should be able to
describe the integral in (7.4.2) as an integral over T. This is achieved in a very explicit
manner by the next result.

Define ∆n : Tn → C by

∆n(θ1, . . . , θn) =
∏

1≤i<j≤n

(eiθi − eiθj ), i =
√−1.

Proposition 7.4.20. (Weyl’s integration formula) Consider a class function ϕ on the
group G = U(k1)× · · · × U(ks). Then

∫

G
ϕ(g)dg =

1
k1! · · · ks!

∫

T
ϕ(t1, . . . , ts)|∆k1(t1)|2 · · · |∆ks(ts)|2dt1 ∧ · · · ∧ dts.

Above, dg denotes the normalized bi-invariant volume form on G. For each j = 1, . . . , s we
denoted by t = tj the collection of angular coordinates on Tk = Tkj while dt denotes the
normalized bi-invariant volume on Tk

dt =
1

(2π)k
dθ1 ∧ · · · ∧ dθk.

The remainder of this subsection is devoted to the proof of this proposition. The reader
may skip this part at the first lecture and go directly to Subsection 7.4.5 where this for-
mula is used to produce an explicit description of the Poincaré polynomial of a complex
Grassmannian.

Proof of Proposition 7.4.20 We will consider only the case s = 1. The general situation
is entirely similar. Thus G = U(k) and T = Tk. Denote the angular coordinates on T by
(θ1, . . . , θk). Given a class function ϕ : G → C form the complex valued form ωϕ = ϕ(g)dg.

Consider the homogeneous space G/T and the smooth map

q : T×G/T→ G (t, gT ) = gtg−1.

Note that if g1T = g2T then g1tg
−1
1 = g1tg

−1
2 so q is well defined. Pick a real metric m on

LG which is Ad-invariant i.e.
Ad∗gm = m ∀g ∈ G.

The natural choice
m(X,Y ) = −Re tr (XY ∗), u(k) = LG

will do the trick. The Lie algebra LG splits orthogonally as

LG = LT ⊕ LG/T. (LG/T
def
= L⊥T )

The tangent space to 1 · T ∈ G/T can be identified with LG/T.
Fix x ∈ G/T. Any g ∈ G defines a linear map Lg : TxG/T → TgxG/T. Moreover,

if gx = hx = y then Lg and Lh differ by an element in the stabilizer of x ∈ G/T. This
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stabilizer is isomorphic to T and in particular it is connected. Hence, if ω ∈ det TxG/T then
Lgω ∈ detTyG/T and Lhω ∈ detTyG/T define the same orientation of TyG/T. In other
words, an orientation in one of the tangent spaces of G/T “spreads” via the action of G
to an orientation of the entire manifold. Thus, we can orient G/T by fixing an orientation
on LG/T. We fix an orientation on LG and orient LT using the form dθ1 ∧ · · · ∧ dθk. The
orientation on LG/T will be determined by the condition ( or= orientation)

or(LG) = or(LT) ∧ or(LG/T).

The proof of Weyl’s integration formula will be carried out in two steps.

Step 1
∫

G
ω =

1
k!

∫

T×G/T
q∗ω ∀ω.

Step 2 For any class function ϕ on G we have
∫

T×G/T
q∗ωϕ =

∫

T
ϕ(t)|∆k(t)|2dt.

Step 1. We use the equality
∫

T×G/T
q∗ω = deg q

∫

G
ω

so it suffices to compute the degree of q.
Denote by N(T) the normalizer of T in G, i.e.

N(T) = {g ∈ G ; gTg−1 ⊂ T}

and then form the Weyl group
W = N(T)/T.

Lemma 7.4.21. W ∼= Sk-the group of permutations of k symbols.

Proof This is a pompous rephrasing of the classical statement in linear algebra that two
unitary matrices are similar iff they have the same spectrum (multiplicities included). The
adjoint action of N(T) on T= diagonal unitary matrices simply permutes the entries of
a diagonal unitary matrix. This action descends to an action on the quotient W so that
W ⊂ Sk.

Conversely, any permutation of the entries of a diagonal matrix can be achieved by a
conjugation. Geometrically this corresponds to a reordering of an orthonormal basis.

ut

Lemma 7.4.22. Let α1, . . . , αk) ∈ Rk such that 1, α1

2π , . . . , αk

2π are linearly independent over
Q. Set τ = (exp(iα1), . . . , exp(iαk)) ∈ Tk. Then the sequence (τn)n∈Z is dense in Tk. (τ is
said to be a generator of Tk.)

For the sake of clarity, we defer the proof of this lemma to the end of this subsection.
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Lemma 7.4.23. Let τ ∈ Tk ⊂ G be a generator of Tk. Then q−1(τ) ⊂ T × G/T consists
of |W| = k! points.

Proof
q(s, gT ) = τ ⇐⇒ gsg−1 = τ ⇐⇒ gτg−1 = s ∈ T.

In particular, gτng−1 = sn ∈ T, ∀n ∈ Z. Since (τn) is dense in T we deduce

gTg−1 ⊂ T⇒ g ∈ N(T).

Hence
q−1(τ) = {(g−1τg, gT ) ∈ T×G/T ; g ∈ N(T)}

and thus q−1(τ) has the same cardinality as the Weyl group W. ¤

The metric m on LG/T extends to a G-invariant metric on G/T. It defines a left-invariant
volume form on G/T, dvm. Let

v0 =
∫

G/T
dvm

and set dµ = 1
v0

dvm.

Lemma 7.4.24. q∗dg = |∆k(t)|2dt ∧ dµ. In particular, any generator τ of Tk ⊂ G is a
regular value of q since ∆k(σ) 6= 0, ∀σ ∈ q−1(τ).

Proof Fix x0 = (t0, g0T) ∈ T × G/T and set h0 = g0t0g
−1
0 . Via the action of T × G on

T × G/T we can identify Tx0(T × G/T) with LT ⊕ LG/T. Fix X ∈ LT and Y ∈ LG and
consider

hs = q(t0 exp(sX), g0 exp(sY )T) = g0 exp(sY )t0 exp(sX) exp(−sY )g−1
0 ∈ G.

We want to describe
d

ds
h−1

0 hs ∈ T1G = LG.

Using the Taylor expansions

exp(sX) = 1 + sX + O(s2) and exp(sY ) = 1 + sY + O(s2)

we deduce
h−1

0 hs = g0t
−1
0 (1 + sY )t0(1 + sX)(1− sY )g−1

0 + O(s2)

= 1 + s
(
g0t

−1
0 Y t0g

−1
0 + g0Xg−1

0 − g0Y g−1
0

)
+ O(s2).

Hence
Dx0 : Tx0(T×G/T) ∼= LT ⊕ LG/T → LT ⊕ LG/T ∼= LG

can be written as
Dx0q(X ⊕ Y ) = Adg0(Adt−1

0
− id)Y + Adg0X

or in block form

Dx0q = Adg0

[
1LT 0
0 Adt−1

0
− 1LG/T

]
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Adg is an m-orthogonal endomorphism of LG so that det Adg = ±1. On the other hand,
since G = U(k) is connected det Adg = det Ad1 = 1. Hence

det Dx0q = det(Adt−1 − 1LG/T).

We can identify LG/T with

{X ∈ u(k) ; Xjj = 0 j = 1, . . . , k}.

Given t = diag (exp(iθ1), . . . , exp(iθk)) ∈ Tk ⊂ U(k) we can explicitly compute the eigen-
values of Adt−1 acting on LG/T. They are

{exp(−i(θi − θj)) ; 1 ≤ i 6= j ≤ k}.

Consequently
detDx0q = det(Adt−1 − 1) = |∆k(t)|2.

ut

Lemma 7.4.24 shows that q is an orientation preserving map. Using Lemma 7.4.23 and
Exercise 7.3.5 we deduce deg q = |W| = k!. Step 1 is completed.

Step 2 follows immediately from Lemma 7.4.24. Weyl’s integration formula is proved.
ut

Proof of Lemma 7.4.22 We follow Weyl’s original approach ([75, 76]) in a modern
presentation.

Let X = C(T,C) denote the Banach space of continuous complex valued functions on
T. We will prove that

lim
n→∞

1
n + 1

n∑

j=0

f(τ j) =
∫

T
fdt, ∀f ∈ X. (7.4.3)

If U ⊂ T is an open subset and f is a continuous, non-negative function supported in U
(f 6≡ 0) then for very large n

1
n + 1

n∑

j=0

f(τ j) ≈
∫

T
fdt 6= 0.

This means that f(τ j) 6= 0, i.e. τ j ∈ U for some j.
To prove the equality (7.4.3) consider the continuous linear functionals Ln, L : X → C

Ln(f) =
1

n + 1

n∑

j=0

f(τ j),

and
L(f) =

∫

T
fdt.
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We have to prove that
lim

n→∞Ln(f) = L(f) f ∈ X. (7.4.4)

It suffices to establish (7.4.4) for any f ∈ S, where S is a subset of X spanning a dense
subspace. We let S be the subset consisting of the trigonometric monomials

eζ(θ1, . . . , θk) = exp(iζ1θ
1) · · · exp(iζkθ

k) ζ = (ζ1, . . . , ζk) ∈ Zk.

The Weierstrass approximation theorem guarantees that this S spans a dense subspace. We
compute easily

Ln(eζ) =
1

n + 1

n∑

j=0

ejζ(α) =
1

n + 1
eζ(α)n+1 − 1

eζ(α)− 1
.

Since 1, 1
2πα1, . . . ,

1
2παk are linearly independent over Q we deduce that eζ(α) 6= 1 for all

ζ ∈ Zk. Hence

lim
n→∞Ln(eζ) = 0 =

∫

T
eζdt = L(eζ).

Lemma 7.4.22 is proved.
ut

7.4.5 The Poincaré polynomial of a complex grassmannian

After this rather long detour we can continue our search for the Poincaré polynomial of
Gk(n,C).

Let S0 denote the canonical subspace Ck ↪→ Cn. The tangent space of Gk(n,C) at S0

can be identified with the linear space E of complex linear maps Ck → C`, ` = n− k. The
isotropy group at S0 is H = U(k)× U(`).

Exercise 7.4.9. Prove that the isotropy group H acts on E = {L : Ck → C`} by

(T, S) · L = SLT ∗ ∀L ∈ E, T ∈ U(k), S ∈ U(`). ut

Consider the maximal torus T k ×T ` ⊂ H formed by the diagonal unitary matrices. We
will denote the elements of T k by ε = (ε1, . . . , εk), εα = exp(iτα) and the elements of T ` by
e = (e1, . . . , e`), ej = exp(iθj). The normalized measure on T k is denoted by dτ while the
normalized measure on T ` is denoted by dθ.

The element (ε, e) ∈ T k × T ` viewed as a linear operator on E has eigenvalues

{εαej ; 1 ≤ α ≤ k 1 ≤ j ≤ `}.

Using the Weyl integration formula we deduce that the Poincaré polynomial of Gk(n,C) is

Pk,`(t) =
1

k!`!

∫

T k×T `

∏

α,j

|1 + tεαej |2|∆k(ε(τ))|2|∆`(e(θ))|2dτ ∧ dθ

=
1

k!`!

∫

T k×T `

∏

α,j

|εα + tej |2|∆k(ε(τ))|2|∆`(e(θ))|2dτ ∧ dθ.
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We definitely need to analyze the integrand in the above formula. Set

Ik,`(t) =
∏

α,j

(εα + tej)∆k(ε)∆`(e)

so that
Pk,`(t) =

1
k!`!

∫

T k×T `

Ik,`(t)Ik,`(t)dτ ∧ dθ. (7.4.5)

We will study in great detail the formal expression

Jk,`(t;x; y) =
∏

α,j

(xα + tyj).

The Weyl group W = Sk × S` acts on the variables (x; y) by separately permuting the
x-components and the y-components. If (σ, ϕ) ∈ W then

Jk,`(t;σ(x);ϕ(y)) = Jk,`(t; x; y).

Thus we can write Jk,` as a sum

Jk,`(t) =
∑

d≥0

tdQd(x)Rd(y)

where Qd(x) and Rd(y) are symmetric polynomials in x and respectively y.
To understand the nature of these polynomials we need to introduce a very useful class

of symmetric polynomials, namely the Schur polynomials. This will require a short trip in
the beautiful subject of symmetric polynomials. An extensive presentation of this topic is
contained in the monograph [50].

A partition is a compactly supported, decreasing function

λ : {1, 2, . . .} → {0, 1, 2, . . .}.

We will describe a partition by an ordered finite collection (λ1, λ2, . . . , λn) where λ1 ≥ · · · ≥
λn ≥ λn+1 = 0. The length of a partition λ is the number

L(λ) = max{n ; λn 6= 0}.

The weight of a partition λ is the number

|λ| =
∑

n≥1

λn.

Traditionally, one can visualize a partition using Young diagrams. A Young diagram
is an array of boxes arranged in left justified rows (see Figure 7.4). Given a partition
(λ1 ≥ · · · ≥ λn) its Young diagram will have λ1 boxes on the first row λ2 boxes on the
second row etc.

Any partition λ has a conjugate λ̂ defined by

λ̂n = #{j ≥ 0 ; λj ≥ n}.
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6
5
5
3
1

5
4
4
3
3
1

Figure 7.4: The conjugate of (6,5,5,3,1) is (5,4,4,3,3,1)

The Young diagram of λ̂ is the transpose of the Young diagram of λ (see Figure 7.4).
A strict partition is a partition which is strictly decreasing on its support. Denote

by Pn the set of partitions of length ≤ n and by P∗n the set of strict partitions λ of
length n − 1 ≤ L(λ) ≤ n. Clearly P∗n ⊂ Pn. Denote by δ = δn ∈ P∗n the partition
(n− 1, n− 2, . . . , 1, 0, . . .).

Remark 7.4.25. The correspondence

Pn 3 λ 7→ λ + δn ∈ P∗n

is a bijection. ut

To any λ ∈ P∗n we can associate a skew-symmetric polynomial

aλ(x1, . . . , xn) = det(xλi
j ) =

∑

σ∈Sn

ε(σ)xλi

σ(i).

Note that aδn is the Vandermonde determinant

aδ(x1, . . . , xn) = det(xn−1−i
i ) =

∏

i<j

(xi − xj) = ∆n(x).

For each λ ∈ Pn we have λ + δ ∈ P∗n so that aλ+δ is well defined and nontrivial.
Note that aλ+δ vanishes when xi = xj so that the polynomial aλ+δ(x) is divisible by

each of the differences (xi − xj) and consequently is divisible by aδ. Hence

Sλ(x) :=
aλ+δ(x)
aδ(x)

is a well defined polynomial. It is a symmetric polynomial since each of the quantities
aλ+δ and aδ is skew-symmetric in its arguments. Sλ(x) is called the Schur polynomial
corresponding to the partition λ. Note that each Schur polynomial Sλ is homogeneous of
degree |λ|. We have the following remarkable result.

Lemma 7.4.26.
Jk,`(t) =

∑

λ∈Pk,`

t|λ|Sλ̂(x)Sλ(y)

where
Pk,` = {λ ; λ1 ≤ k L(λ) ≤ `}.
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Figure 7.5: The complementary of (6, 4, 4, 2, 1, 0) ∈ P7,6 is (7, 6, 5, 3, 3, 1) ∈ P6,7

For each λ ∈ Pk,` we denoted by λ the complementary partition

λ = (k − λ`, k − λ`−1, . . . , k − λ1).

Geometrically, the partitions in Pk,` are precisely those partitions whose Young dia-
grams fit inside a ` × k rectangle. If λ is such a partition then the Young diagram of the
complementary of λ is (up to a 180◦ rotation) the complementary of the diagram of λ in
the `× k rectangle (see Figure 7.5).

For a proof of Lemma 7.4.26 we refer to [50, Section I.4, Example 5]. The true essence
of the Schur polynomials is however representation theoretic and a reader with a little more
representation theoretic background may want to consult the classical reference [49, Ch.VI,
Sec. 6.4,Thm. V] for a very exciting presentation of the Schur polynomials and the various
identities they satisfy, including the one in Lemma 7.4.26.

Using (7.4.5), Lemma 7.4.26 and the definition of the Schur polynomial we can describe
the Poincaré polynomial of Gk(n,C) as

Pk,`(t) =
1

k!`!

∫

T k×T `

∣∣∣∣∣∣
∑

λ∈Pk,`

t|λ|aλ̂+δk
(ε)aλ+δ`

(e)

∣∣∣∣∣∣

2

dτ ∧ dθ. (7.4.6)

The integrand in (7.4.6) is a linear combination of trigonometric monomials εr1
1 · · · εrk

k ·
es1
1 · · · es`

` where the r′s and s′ are nonnegative integers.
Note that if λ, µ ∈ Pk,` are distinct partitions then the terms aλ̂+δ(ε) and aµ̂+δ(ε) have

no monomials in common. Hence
∫

T k

aλ̂+δ(ε)aµ̂+δ(ε) dτ = 0.

Similarly ∫

T `

aλ+δ(e)aµ+δ(e)dθ = 0 if λ 6= µ.

On the other hand a simple computation shows that
∫

T k

|aλ̂+δ(ε)|2dτ = k!
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R

Rk+1

Rk+1
l+1 l+1

Figure 7.6: The rectangles R`+1 and Rk+1 are “framed” inside Rk+1
`+1

and ∫

T `

|aλ+δ(e)|2dθ = `!.

In other words, the terms (
1

k!`!

)1/2

aλ̂+δ(ε)aλ+δ(e)

form an orthonormal system in the space of trigonometric (Fourier) polynomials endowed
with the L2 inner product. We deduce immediately from (7.4.6) that

Pk,`(t) =
∑

λ∈Pk,`

t2|λ|. (7.4.7)

The map
Pk,` 3 λ 7→ λ ∈ P`,k

is a bijection so that
Pk,`(t) =

∑

λ∈P`,k

t2|λ| = P`,k(t). (7.4.8)

Computing the Betti numbers, i.e. the number of partitions in Pk,` with a given weight is
a very complicated combinatorial problem and currently there are no exact general formulæ.
We will achieve the next best thing and rewrite the Poincaré polynomial as a “fake” rational
function.

Denote by bk,`(w) the number of partitions λ ∈ P`,k with weight |λ| = w. Hence

Pk,`(t) =
k∑̀

w=1

bk,`(w)t2w.

Alternatively, bk,`(w) is the number of Young diagrams of weight w which fit inside a k× `
rectangle.

Lemma 7.4.27.
bk+1,`+1(w) = bk,`+1(w) + bk+1,`(w − `− 1).
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Proof Look at the (k + 1)× ` rectangle Rk+1 inside the (k + 1)× (l + 1)-rectangle Rk+1
`+1

(see Figure 7.6). Then

bk+1,`+1(w) = # {diagrams of weight w which fit inside Rk+1
`+1 }

= #{diagrams which fit inside Rk+1}
+#{diagrams which do not fit inside Rk+1}.

On the other hand
bk+1,` = #{diagrams which fit inside Rk+1}.

If a diagram does not fit inside Rk+1 this means that its first line consists of ` + 1 boxes.
When we drop this line we get a diagram of weight w− `−1 which fits inside the k× (`+1)
rectangle R`+1 of Figure 7.6. Thus, the second contribution to bk+1,`+1(w) is bk,`+1(w−`−1).

ut

The result in the above lemma can be reformulated as

Pk+1,`+1(t) = Pk+1,`(t) + t2(`+1)Pk,`+1(t).

Because the roles of k and ` are symmetric (cf. (7.4.8)) we also have

Pk+1,`+1(t) = Pk,`+1(t) + t2(k+1)Pk+1,`(t).

These two equality together yield

Pk,`+1(1− t2(`+1) = Pk+1,`(1− t2(k+1)).

Let m = k + ` + 1 and set Qd,m(t) = Pd,m−d(t) = PGd(m,C)(t). The last equality can be
rephrased as

Qk+1,m(t) = Qk,m · 1− tm−k

1− t2(k+1)

so that

Qk+1,m(t) =
1− t2(m−k)

1− t2(k+1)
· 1− t2(m−k+1)

1− t2k
· · · 1− t2(n−1)

1− t4
.

Now we can check easily that b1,m−1(w) = 1 i.e.

Q1,m(t) = 1 + t2 + t4 + · · ·+ t2(m−1) =
1− t2m

1− t2
.

Hence

PGk(m,C)(t) = Qk,m(t) =
(1− t2(m−k+1)) · · · (1− t2m)

(1− t2) · · · (1− t2k)

=
(1− t2) · · · (1− t2m)

(1− t2) · · · (1− t2k)(1− t2) · · · (1− t2(m−k))
.
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Remark 7.4.28. (a) The invariant theoretic approach in computing the cohomology of
Gk(n,C) was used successfully for the first time by C. Ehresmann[24]. His method was then
extended to arbitrary compact, oriented symmetric spaces by H. Iwamoto [38]. However,
we followed a different avenue which did not require Cartan’s maximal weight theory.
(b) We borrowed the idea of using the Weyl’s integration formula from Weyl’s classical
monograph [74]. In turn, Weyl attributes this line of attack to R. Brauer. Our strategy
is however quite different from Weyl’s. Weyl uses an equality similar to (7.4.5) to produce
an upper estimate for the Betti numbers (of U(n) in his case) and then produces by hand
sufficiently many invariant forms. The upper estimate is then used to established that these
are the only ones. We refer also to [70] for an explicit description of the invariant forms on
Grassmannians. ut

Exercise 7.4.10. Show that the cohomology algebra of CPn is isomorphic to the truncated
ring of polynomials

R[x]/(xn+1)

where x is a formal variable of degree 2 while (xn+1) denotes the ideal generated by xn+1.
Hint: Describe Λ∗invCP

n explicitly.
ut

7.5 Čech cohomology

In this last section we return to the problem formulated in the beginning of this chapter:
what is the relationship between the Čech and the DeRham approach. We will see that
these are essentially two equivalent facets of the same phenomenon. Understanding this
equivalence requires the introduction of a new and very versatile concept, namely that of
a sheaf. This is done in the first part of the section. The second part is a fast paced
introduction to Čech cohomology. A concise yet very clear presentation of these topics can
be found in [36]. For a very detailed presentation of this subject we refer to [29].

7.5.1 Sheaves and presheaves

Consider a topological space X. The collection OX of its open sets can be organized as a
category. The morphisms are the inclusions U ↪→ V . A presheaf of Abelian groups on X is
a contravariant functor S : OX → Ab.

In other words, S associates to each open set an Abelian group SU and to each inclusion
U ↪→ V a group morphism rU

V : SV → SU such that if U ↪→ V ↪→ W then rU
W = rU

V ◦ rV
W . If

x ∈ SV then for any U ↪→ V we set

x |U def
= rU

V (x) ∈ SU .

If f ∈ SU then we define dom f
def
= U .

The presheaves of rings, modules, vector spaces are defined in an obvious fashion.

Example 7.5.1. Let X be a topological space. For each open set U ⊂ X denote by C(U)
the space of continuous functions U → R. The assignment U 7→ C(U) defines a presheaf
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of R-algebras on X. The maps rU
V are determined by the restrictions |U : C(V ) → C(U). If

X is a smooth manifold we get another presheaf U 7→ C∞(U), of smooth function. More
generally the differential forms of degree k can be organized in a presheaf Ωk(•). If E is a
smooth vector bundle then the E-valued differential forms of degree k can be organized as
a presheaf of vector spaces

U 7→ Ωk
E(U) = Ωk(E |U ).

If G is an Abelian group equipped with the discrete topology then the G-valued continuous
functions C(U,G) determine a presheaf called the constant G-presheaf which is denoted by
GX . ut

Definition 7.5.2. A presheaf S on a topological space X is said to be a sheaf if the following
hold.
(a) If (Uα) is an open cover of the open set U and f, g ∈ SU satisfy f |Uα= g |Uα ∀α then
f = g.
(b) If (Uα) is an open cover of the open set U and fα ∈ SUα satisfy

fα |Uα∩Uβ
= fβ |Uα∩Uβ

∀Uα ∩ Uβ 6= ∅

then there exists f ∈ SU such that f |Uα= fα, ∀α.

Example 7.5.3. All the presheaves discussed in Example 7.5.1 are sheaves. ut

Example 7.5.4. Consider the presheaf S over R defined by

S(U) = continuous, bounded functions f : U → R.

We let the reader verify this is not a sheaf since the condition (b) is violated. The reason
behind this violation is that in the definition of this presheaf we included a global condition
namely the boundedness assumption. ut

Definition 7.5.5. Let X be a topological space and R a commutative ring with 1.
(a) A space of germs over X (“espace étalé ” in the french literature) is a topological space
E together with a continuous map π : E → X such that

(a1) π is a local homeomorphism (that is each point e ∈ E has a neighborhood U such
that π |U is a homeomorphism onto the open subset π(U) ⊂ X).

(a2)The stalk Ex = π−1(x) is an R-module ∀x ∈ X.
(a3) The module operations (u, v) 7→ (ru + sv) (r, s ∈ R, u, v ∈ π−1(x)) depend contin-

uously upon u, v.
(b) A section of a space of germs π : E → X defined over U ⊂ X is a continuous function
s : U → E such that s(x) ∈ Ex ∀x ∈ X. The spaces of sections defined over U will be
denoted by E(U).

Example 7.5.6. (The space of germs associated to a presheaf) Let S be a presheaf
of Abelian groups over a topological space X. For each x ∈ X define an equivalence relation
∼x on ⊔

U3x

SU
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by
f ∼x g ⇐⇒ ∃ open U 3 x such thatf |U= g |U .

The equivalence class of f ∈ ⊔
U3x SU is denoted by [f ]x and is called the germ of f at x.

Set
Sx = {[f ]x ; dom f 3 x}.

and
Ŝ =

⊔

x∈X

Sx.

There exists a natural projection π : Ŝ → X which maps [f ]x to x. The “fibers” of this map
are π−1(x) = Sx - the germs at x ∈ X. Any f ∈ SU defines a subset

f(U) = {[f ]u ; u ∈ U} ⊂ Ŝ

We can define a topology in Ŝ by indicating a basis of neighborhoods. A basis of open
neighborhoods of [f ]x ∈ Ŝ is given by the collection

{g(U) ; U 3 x, g ∈ SU [g]x = [f ]x}.

(We leave the reader check that this collection of sets satisfies the axioms of a basis of
neighborhoods as discussed e.g. in [43].) With this choice of topology each f ∈ SU defines
a continuous section of π over U

[f ] : U 3 u 7→ [f ]u ∈ Su.

Note that each fiber Sx has a well defined structure of Abelian group

[f ]x + [g]x = [(f + g) |U ]x U 3 x is open and U ⊂ dom f ∩ dom g.

(Check this addition is independent of the various choices.) Since π : f(U) → U is a
homeomorphism it follows that π : Ŝ → X is a space of germs. It is called the space of
germs associated to the presheaf S. ut

If the space of germs associated to a sheaf S is a covering space we say that S is a sheaf
of locally constant functions (valued in some discrete Abelian group). When the covering
is trivial i.e. it is isomorphic to a product X × {discrete set} then the sheaf is really the
constant sheaf associated to a discrete Abelian group.

Example 7.5.7. (The sheaf associated to a space of germs) Consider a space of
germs E

π→ X over the topological space X. For each open subset U ⊂ X denote by Ē(U)
the space of continuous sections U → E. The correspondence U 7→ Ē(U) clearly a sheaf. Ē

is called the sheaf associated to the space of germs. ut

Proposition 7.5.8. (a) Let E
π→ X be a space of germs. Then ˆ̄E = E.

(b) Let S be a presheaf over the topological space X. S is a sheaf if and only if ¯̂
S = S.

Exercise 7.5.1. Prove the above proposition. ut
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Definition 7.5.9. If S is a presheaf over the topological space X then ¯̂
S is called the sheaf

associated to S.

Definition 7.5.10. (a) Let A morphism between the (pre)sheaves of Abelian groups (mod-
ules etc.) S and S̃ over the topological space X is a collection of morphisms of Abelian
groups (modules etc.) hU : SU → S̃U , one for each open set U ⊂ X, such that when V ⊂ U
hV ◦ rV

U = r̃V
U ◦ hU . Above, rV

U denotes the restriction morphisms of S while the r̃V
U denotes

the restriction morphisms of S̃. A morphism h is said to be injective if each hU is injective.
(b) Let S be a presheaf over the topological space X. A sub-presheaf of S is a pair (T, ı)
where T is a presheaf over X and ı : T → S is an injective morphism. ı is called the
canonical inclusion of the sub-presheaf.

Let h : S → T be a morphism of presheaves. The correspondence U 7→ kerhU ⊂ SU

defines a presheaf called the kernel of the morphism h. It is a sub-presheaf of S.

Proposition 7.5.11. Let h : S → T be a morphism of presheaves. If both S and T are
sheaves then so is the kernel of h.

The proof of this proposition is left to the reader as an exercise.

Definition 7.5.12. (a)Let Ei
πi→ X (i = 0, 1) be two spaces of germs over the same topo-

logical space X. A morphism of spaces of germs is a continuous map h : E0 → E1 such
that
(a1) π1 ◦ h = π0, i.e. h(π−1

0 (x)) ⊂ π−1
1 (x) ∀x ∈ X.

(a2) For any x ∈ X the induced map hx : π−1
0 (x) → π−1

1 (x) is a morphism of Abelian groups
(modules etc.).
The morphism is called injective if each hx is injective.
(b) Let E

π→ X be a space of germs. A subspace of germs is a pair (F, ) where F is a space
of germs over X and  : F → E is an injective morphism.

Proposition 7.5.13. (a) Let h : E0 → E1 be a morphism between two spaces of germs over
X. Then h(E0)

π1→ X is a space of germs over X called the image of h and denoted by Imh.
It is a subspace of E1.

Exercise 7.5.2. Prove the above proposition. ut

Lemma 7.5.14. Consider two sheaves S and T and let h : S → T be a morphism. Then h
induces a morphism between the associated spaces of germs ĥ : Ŝ → T̂.

The definition of ĥ should be obvious. If f ∈ SU and x ∈ U then ĥ([f ]x) = [h(f)]x where
h(f) is now an element of T(U). We leave the reader check that ĥ is independent of the
various choices and it is a continuous map Ŝ → T̂ with respect to the topologies described
in Example 7.5.6.

The sheaf associated to the space of germs Im ĥ is a subsheaf of T called the image of
h and is denoted by Imh.

Exercise 7.5.3. Consider a morphism of sheaves (over X) h : S → T. Let U ⊂ X be an
open set. Show that a section g ∈ TU belongs to (Imh)U if an only if for every x ∈ X there
exists an open neighborhood Vx ⊂ U such that g |Vx= h(f) for some f ∈ SVx . ut
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Definition 7.5.15. (a) A sequence of sheaves and morphisms of sheaves

· · · → Sn
hn→ Sn+1

hn+1→ Sn+2 → · · ·
is said to be exact if Im hn = kerhn+1, ∀n.
(b) Consider a sheaf S over the space X. A resolution of S is a long exact sequence

0 ↪→ S
ı

↪→ S0
d0→ S1

d1→ · · · → Sn
dn→ Sn+1 → · · · .

Exercise 7.5.4. Consider a short exact sequence of sheaves

0 → S−1 → S0 → S1 → 0.

For each open set U define S(U) = S0(U)/S−1(U).
(a) Prove that U 7→ S(U) is a presheaf.
(b) Prove that S1

∼= ¯̂
S = the sheaf associated to the presheaf S. ut

Example 7.5.16. (The DeRham resolution) Let M be a smooth n-dimensional man-
ifold. Using the Poincaré lemma and the Exercise 7.5.3 we deduce immediately that the
sequence

0 ↪→ RM ↪→ Ω0
M

d→ Ω1
M

d→ · · · d→ Ωn
M → 0

is a resolution of the constant sheaf RM . Ωk
M denotes the sheaf of k-forms on M while d

denotes the exterior differentiation. ut

7.5.2 Čech cohomology

Let U 7→ S(U) be pre-sheaf of Abelian groups over a topological space X. Consider an open
cover U = (Uα)α∈A of X. A q-simplex (q ∈ Z+) is an ordered (q + 1)-uple

σ = (α0, α1, . . . , σq) ∈ Aq+1

such that

Uσ
def
=

q⋂

0

Uαi 6= ∅.

The set of all q-simplices is denoted by U(q). Their union
⋃
q

U(q)

is denoted by N (U) and is called the nerve of the cover. Define

Cq(S, U) =
∏

σ∈U(q)

Sσ (Sσ = S(Uσ)).

The elements of Cq(S,U) are called Čech q-cochains (subordinated to the cover U). In other
words, a q-cochain c associates to each q-simplex σ an element 〈c, σ〉 ∈ Sσ.

For each q-simplex σ = (α0, . . . , αq) we define its j-th boundary as the (q − 1)-simplex

∂jσ = ∂j
qσ = (α0, . . . , α̂j , . . . , αq) ∈ U(q−1),

where as usual a hat indicates a missing entry.
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Exercise 7.5.5. Prove that ∂i
q−1∂

j
q = ∂j−1

q−1∂
i
q for j > i. ut

We can now define an operator

δ : Cq−1(S, U) → Cq(S,U)

which assigns to each (q−1)-cochain c a q-cochain δc whose value on a q-simplex σ is given
by

〈δc, σ〉 =
q∑

j=0

(−1)j〈c, ∂jσ〉 |Uσ .

Using the Exercise 7.5.5 above one deduces immediately the following result.

Lemma 7.5.17. δ2 = 0 so that

0 ↪→ C0(S, U) δ→ C1(S, U) δ→ · · · δ→ Cq(S, U) δ→ · · ·

is a cochain complex.

The cohomology of this cochain is called the Čech cohomology of the cover U with
coefficients in the pre-sheaf S.

Example 7.5.18. Let U and S as above. A 0-cochain is is a correspondence which asso-
ciates to each open set Uα ∈ U an element cα ∈ S(Uα). It is a cocycle if for any 1-simplex
(α, β) of the nerve we have

cβ − cα = 0.

A 1-cochain associates to each 1-simplex (α, β) an element

cαβ ∈ S(Uαβ).

This correspondence is a cocycle if for any 2-simplex (α, β, γ) we have

cβγ − cαγ + cαβ = 0.

For example if X is a smooth manifold and U is a good cover then we can associate to each
closed 1-form ω ∈ Ω1(M) a Čech 1-cocycle valued in RX as follows.

First, select for each Uα a solution fα ∈ C∞(Uα) of

dfα = ω.

Since d(fα − fβ) ≡ 0 on Uαβ we deduce there exist constants cαβ such that fα − fβ = cαβ.
Obviously this is a cocycle and it is easy to see that its cohomology class is independent of
the initial selection of local solutions fα. Moreover, if ω is exact this cocycle is a coboundary.
In other words we have a natural map

H1(X) → H1(N (U),RX).

We will see later this is an isomorphism. ut
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Definition 7.5.19. Consider two open covers U = (Uα)α∈A and V = (Vβ)β∈B of the same
topological space X. We say V is finer than U and we write this U ≺ V if there exists a
map % : B → A such that

Vβ ⊂ U%(β) ∀β ∈ B.

The map % is said to be a refinement map.

Proposition 7.5.20. Consider two open covers U = (Uα)α∈A and V = (Vβ)β∈B of the same
topological space X such that U ≺ V. Fix a sheaf of Abelian groups S. Then the following
are true.
(a) Any refinement map % induces a cochain map

%∗ :
⊕

Cq(U, S) →
⊕

Cq(V, S).

(b) If r : A → B is another refinement map then %∗ is cochain homotopic to r∗. In particular,
any relation U ≺ V defines a unique morphism in cohomology

ıVU : H∗(U, S) → H∗(V, S).

(c) If U ≺ V ≺ W then
ıWU = ıWV ◦ ıVU.

Proof (a) We define %∗ : Cq(U) → Cq(V) by

S(Vσ) 3 〈%∗(c), σ〉 := 〈c, %(σ)〉 |Vσ ∀c ∈ Cq(U) σ ∈ V(q))

where by definition %(σ) ∈ Aq is the q-simplex (%(β0), . . . , %(βq)). The fact that %∗ is a
cochain map follows immediately from the obvious equality

% ◦ ∂j
q = ∂j

q ◦ %.

(b) We define hj : V(q−1) → U(q) by

hj(β0, . . . , βq−1) = (%(β0), . . . , %(βj), r(βj), · · · , r(βq−1)).

The reader should check that hj(σ) is indeed a simplex of U for any simplex σ of V. Note
that Vσ ⊂ Uhj(σ) ∀j. Now define

χ = χq : Cq(U) → Cq−1(V)

by

〈χq(c), σ〉 :=
q−1∑

j=0

(−1)j〈c, hj(σ)〉 |Vσ ∀c ∈ Cq(U) ∀σ ∈ V(q−1).

We will show that

δ ◦ χq(c) + χq+1 ◦ δ(σ) = %∗(c)− r∗(c) ∀c ∈ Cq(U).

Let σ = (β0, . . . , βq) ∈ V(q) and set

%(σ) = (λ0, . . . , λq), r(σ) = (µ0, . . . , µq) ∈ U(q)
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so that
hj(σ) = (λ0, . . . , λj , µj , . . . , µq).

Then
〈χ ◦ δ(c), σ〉 =

∑
(−1)j〈δc, hj(σ)〉 |Vσ

=
q∑

j=0

(−1)j(
q+1∑

k=0

(−1)k〈c, ∂k
q+1hj(σ)〉 |Vσ)

=
q∑

j=0

(−1)j

(
j∑

k=0

(−1)k〈c, (λ0, . . . , λ̂j , . . . , λj , µj , . . . , µq)〉 |Vσ

+
q∑

`=j

(−1)`+1〈c, (λ0, . . . , λj , µj , . . . , µ̂k, . . . , µq)〉 |Vσ




=
q∑

j=0

(−1)j

(
j−1∑

k=0

(−1)k〈c, (λ0, . . . , λ̂j , . . . , λj , µj , . . . , µq)〉 |Vσ

+
q∑

`=j+1

(−1)`+1〈c, (λ0, . . . , λj , µj , . . . , µ̂k, . . . , µq)〉 |Vσ




+
q∑

j=0

(−1)j {〈c, (λ0, . . . , λj−1, µj , . . . , µq)〉 |Vσ +〈c, (λ0, . . . , λj , µj+1, . . . , µq)〉 |Vσ} .

The last term is a telescopic sum which is equal to

〈c, (λ0, . . . , λq〉 |Vσ −〈c, (µ0, . . . , µq)〉 |Vσ= 〈%∗c, σ〉 − 〈r∗c, σ〉.
If we change the order of summation in the first two term we recover the term 〈−δχc, σ〉.
(c) is left to the reader as an exercise.

ut

We now have a collection of groups

{H∗(U, S) ; U− open cover of X}
and maps {

ıVU : H∗(U, S) → H∗(V, S); U ≺ V
}

such that
ıUU = id

and
ıWU = ıWV ◦ ıVU

whenever U ≺ V ≺ W. We can thus define the inductive limit

H∗(X, S)
def
= lim

U
H∗(U, S).
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H∗(X, S) is called the Čech cohomology of the space X with coefficients in the pre-sheaf S.
Let us briefly recall the definition of the direct limit. One defines an equivalence relation
on the disjoint union ∐

U

H∗(U, S)

by
H∗(U) 3 f ∼ g ∈ H∗(V) ⇐⇒ ∃W Â U, V : ıWU f = ıWV g.

We denote the equivalence class of f by f . Then

lim
U

H∗(U) =

(∐

U

H∗(U, S)

)
/ ∼ .

At limit we get maps
ıU : H∗(U, S) → H∗(X, S).

Example 7.5.21. Let S be a sheaf over the space X. For any open cover U = (Uα) a 0-cycle
subordinated to U is a collection of sections fα ∈ S(Uα) such that every time Uα ∩ Uβ 6= ∅

fα |Uαβ
= fβ |Uαβ

.

According to the properties of a sheaf, such a collection defines a unique global section
f ∈ S(X). Hence H0(X, S) = S(X). ut

Proposition 7.5.22. Any morphism of pre-sheaves h : S0 → S1 over X induces a morphism
in cohomology

h∗ : H∗(X, S0) → H∗(X, S1).

Sketch of proof Let U be an open cover of X. Define

h∗ : Cq(U, S0) → Cq(U, S1)

by
〈h∗c, σ〉 = hU (〈c, σ〉) ∀c ∈ Cq(U, S0) σ ∈ U(q).

The reader can check easily that h∗ is a cochain map so it induces a map in cohomology

hU
∗ : H∗(U, S0) → H∗(U, S1)

which commutes with the refinements ıVU. The proposition follows by passing to direct
limits.

ut

Theorem 7.5.23. Let
0 → S−1

→ S0
p→ S1 → 0

be an exact sequence of sheaves over a paracompact space X. Then there exists a natural
long exact sequence

· · · → Hq(X, S−1)
∗→ Hq(X, S0)

p∗→ Hq(X, S1)
δ∗→ Hq+1(X, S−1) → · · · .
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Sketch of proof For each open set U ⊂ X define S(U) = S0(U)/S−1(U). Then the
correspondence U 7→ S(U) defines a pre-sheaf on X. Its associated sheaf is isomorphic with
S1 (see Exercise 7.5.4). Thus for each open cover U we have a short exact sequence

0 → Cq(U, S−1)
→ Cq(U, S0)

π→ Cq(U, S) → 0.

We thus get a long exact sequence in cohomology

· · · → Hq(U, S−1) → Hq(U, S0) → Hq(U, S) → Hq+1(U, X) → · · · .

Passing to direct limits we get a long exact sequence

· · · → Hq(X, S−1) → Hq(X, S0) → Hq(X, S) → Hq+1(X, S−1) → · · · .

To conclude the proof of the proposition we invoke the following technical result. Its proof
can be found in [68].

Lemma 7.5.24. If two pre-sheaves S, S′ over a paracompact topological space X have
isomorphic associated sheaves then

H∗(X, S) ∼= H∗(X, S′).

ut

Definition 7.5.25. A sheaf S is said to be fine if for any locally finite open cover U =
(Uα)α∈A there exist morphisms hα : S → S with the following properties.
(a) For any α ∈ A there exists a closed set Cα such that Cα ⊂ Uα and hα(Sx) = 0 for
x 6∈ Cα where Sx denotes the stalk of S at x ∈ X. The set Cα is called a support of hα and
and we write this supphα ⊂ Cα.
(b)

∑
α hα = 1S. This sum is well defined since the cover U is locally finite.

Example 7.5.26. Let X be a smooth manifold. Using partitions of unity we deduce that
the sheaf Ωk

X of smooth k-forms is fine. More generally, if E is a smooth vector bundle over
X then the space Ωk

E of E-valued k-forms is fine. ut

Proposition 7.5.27. Let S be a fine sheaf over a paracompact space X. Then Hq(X, S) ∼= 0
for q ≥ 1.

Proof Because X is paracompact any open cover admits a locally finite refinement. Thus
it suffices to show that for each locally finite open cover U = (Uα)α∈A the cohomology
groups Hq(U, S) are trivial for q ≥ 1. We will achieve this by showing that the identity map
Cq(U, S) → Cq(U, S) is cochain homotopic with the trivial map. We thus need to produce
a map

χq : Cq(U, S) → Cq−1(U, S)

such that
χq+1δq + δq−1χq = id. (7.5.1)
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Consider the morphisms hα : S → S associated to the cover U postulated in the definition of
a fine sheaf. For each α ∈ A, σ ∈ U(q−1) and f ∈ Cq(U, S) we construct 〈tα(f), σ〉 ∈ S(Uσ)
as follows. Consider the open cover of Uσ

{V = Uα ∩ Uσ,W = Uσ \ Cα} (supphα ⊂ Cα).

Note that hαf |V ∩W = 0 and according to the axioms of a sheaf hα(f |V ) can be extended by
zero to a section 〈tα(f), σ〉 ∈ S(Uσ). Now, for every f ∈ Cq(U, S) define χqf ∈ Cq−1(U, S)
by

〈χq(f), σ〉 =
∑
α

〈tα(f), σ〉.

The above sum is well defined since the cover U is locally finite. We leave the reader check
that χq satisfies (7.5.1).

ut

Definition 7.5.28. Let S be a sheaf over a space X. A fine resolution is a resolution

0 → S ↪→ S0
d→ S1

d→ · · ·

such that each of the sheaves Sj is fine.

Theorem 7.5.29. (Abstract DeRham theorem) Let

0 ↪→ S → S0
d0→ S1

d1→ · · ·

be a fine resolution of the sheaf S over the paracompact space X. Then

0 → S0(X) d0→ S1(X) d1→ · · ·

is a cochain complex and there exists a natural isomorphism

Hq(X, S) ∼= Hq(Sq(X)).

Proof The first statement in the theorem can be safely left to the reader. For q ≥ 1
denote by Zq the kernel of the sheaf morphism dq. We set for uniformity Z0 = S. We get a
short exact sequence of sheaves

0 → Zq → Sq → Zq+1 → 0 q ≥ 0. (7.5.2)

We use the associated long exact sequence in which Hk(X, Sq) = 0 for k ≥ 1 since Sq is a
fine sheaf. This yields the isomorphisms

Hk−1(X,Zq+1) ∼= Hk(X,Zq) k ≥ 2.

We deduce inductively that

Hm(X,Z0) ∼= H1(X,Zm−1) m ≥ 1. (7.5.3)
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Using again the long sequence associated to (7.5.2) we get an exact sequence

H0(X,Zm−1)
dm−1∗→ H0(X,Zm) → H1(X,Zm−1) → 0.

We apply the computation in Example 7.5.21 we get

H1(X,Zm−1) ∼= Zm(X)/dm−1
∗ (Sm−1(X)) .

This is precisely the content of the theorem.
ut

Corollary 7.5.30. Let M be a smooth manifold. Then

H∗(M,RM ) ∼= H∗(M).

Proof M is paracompact. We conclude using the fine resolution

0 → RM ↪→ Ω0
M

d→ Ω1
M → · · · .

ut

Exercise 7.5.6. Describe explicitly the isomorphisms

H1(M) ∼= H1(M,RM )

and
H2(M) ∼= H2(M,RM ).

ut

Remark 7.5.31. The above corollary has a surprising implication. Obviously the Čech
cohomology is a topological invariant and thus, so must be the DeRham cohomology which
is defined in terms of a smooth structure. Hence if two smooth manifolds are homeomor-
phic they must have isomorphic DeRham groups! Such exotic situations do exist. In a
celebrated paper [54], John Milnor has constructed a family of nondiffeomorphic manifolds
all homeomorphic to the sphere S7. More recently, the work of Simon Donaldson in gauge
theory was used by Michael Freedman to construct a smooth manifold homeomorphic to
R4 but not diffeomorphic with R4 equipped with the natural smooth structure. (This is
possible only for 4-dimensional vector spaces!) These three mathematicians, J. Milnor, S.
Donaldson and M. Freedman were awarded Fields medals for their contributions. ut

Theorem 7.5.32. Let M be a smooth manifold and U = (Uα)α∈A a good cover of M i.e.

Uσ
∼= Rdim M .

Then
H∗(U,RM ) ∼= H∗(M).
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Proof Let Zk denote the sheaf of closed k-forms on M . Using the Poincaré lemma we
deduce

Zk(Uσ) = dΩk−1(Uσ).

We thus have a short exact sequence

0 → Cq(U,Zk) → Cq(U, Ωk−1) d∗→ Cq(U,Zk) → 0.

Using the associated long exact sequence and the fact that Ωk−1 is a fine sheaf we deduce
as in the proof of the abstract DeRham theorem that

Hq(U,RM ) ∼= Hq−1(U,Z1) ∼= · · ·
∼= H1(U,Zq−1) ∼= H0(U,Zq)/d∗H0(U, Ωq−1) ∼= Zq(M)/dΩq−1(M) ∼= H∗(M).

ut

Remark 7.5.33. The above result is a special case of a theorem of Leray: if S is a sheaf
on a paracompact space X and U is an open cover such that

Hq(Uσ, S) = 0 ∀q ≥ 1 σ ∈ U(k)

then H∗(U, S) = H∗(X, S). For a proof we refer to [29].
When GM is a constant sheaf (where G is an arbitrary Abelian group) we have a Poincaré

lemma (see [25, Chapter IX, Thm. 5.1])

Hq(Rn, G) = 0 q ≥ 1.

Hence for any good cover U

H∗(M, GM ) = H∗(U, GM ).

ut

Example 7.5.34. Let M be a smooth manifold and U = (Uα)α∈A a good cover of M . A
1-cocycle of RM is a collection of real numbers fαβ - one for each pair (α, β) ∈ A2 such that
Uαβ 6= ∅ satisfying

fαβ + fβγ + fγα = 0

whenever Uαβγ 6= ∅. The collection is a coboundary if there exist the constants fα such
that fαβ = fβ − fα. This is precisely the situation encountered in Subsection 7.1.2. The
abstract DeRham theorem explains why the Čech approach is equivalent with the DeRham
approach. ut

Remark 7.5.35. Often in concrete applications one finds it is convenient to work with
skew-symmetric Čech cochains. A cochain c ∈ Cq(S, U) is skew-symmetric if for any q
simplex σ = (α0, . . . , αq) and for all ϕ ∈ Sq+1 we have

〈c, (α0, . . . , αq)〉 = ε(ϕ)〈c, (αϕ(0), . . . , αϕ(q))〉.
One can then define a “skew-symmetric” Čech cohomology following the same strategy.
(The various intervening formulæ will be more elaborate.) The resulting cohomology coin-
cides with the cohomology described in this subsection. For a proof of this fact we refer to
[68]. ut
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Chapter 8

Characteristic classes

We now have sufficient background to approach a problem formulated in Chapter 2: find a
way to measure the “extent of nontriviality” of a given vector bundle. This is essentially a
topological issue but, as we will see, in the context of smooth manifolds there are powerful
differential geometric methods which will solve a large part of this problem. Ultimately,
only topological techniques yield the best results.

8.1 Chern-Weil theory

8.1.1 Connections in principal G-bundles

In this subsection we will describe how to take into account the possible symmetries of a
vector bundle when describing a connection.

All the Lie groups we will consider will be assumed to be matrix Lie groups i.e. Lie
subgroups of a general linear group GL(n,K).

This restriction is neither severe, nor necessary. It is not severe since, according to
a nontrivial result (Peter-Weyl theorem), any compact Lie group is isomorphic with a
matrix Lie group and these groups are sufficient for the applications in geometry. It is not
necessary since all the results of this subsection are true for any Lie group. We stick with
this assumption since most proofs are easier to “swallow” in this context.

For a matrix Lie group G, its Lie algebra g is a Lie algebra of matrices in which the
bracket is the usual commutator.

Let M be a smooth manifold. Recall that a principal G-bundle P over M can be defined
by an open cover (Uα) of M and a gluing cocycle

gαβ : Uαβ → G.

The Lie group G operates on its Lie algebra g via the adjoint action

Ad : G → GL(g), g 7→ Ad(g) ∈ GL(g)

where
Ad(g)X = gXg−1 ∀X ∈ g.

289
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We denote by Ad(P ) the vector bundle with standard fiber g associated to P via the adjoint
representation. In other words, Ad(P ) is the vector bundle defined by the open cover (Uα)
and gluing cocycle

Ad(gαβ) : Uαβ → GL(g).

The bracket operation in the fibers of Ad(P ) induces a bilinear map

[·, ·] : Ωk(Ad(P ))× Ω`(Ad(P )) → Ωk+`(Ad(P ))

defined by
[ωk ⊗X, η` ⊗ Y ] = (ωk ∧ η`)⊗ [X, Y ] (8.1.1)

for all ωk ∈ Ωk(M), η` ∈ Ω`(M) and X, Y ∈ Ω0(Ad(P )).

Exercise 8.1.1. Prove that for any ω, η, φ ∈ Ω∗(Ad(P )) the following hold.

[ω, η] = −(−1)|ω|·|η|[η, ω]. (8.1.2)

[[ω, η], φ] = [[ω, φ], η] + (−1)|ω|·|φ|[ω, [η, φ]]. (8.1.3)

In other words, Ω∗(Ad(P )), [ , ]) is a super Lie algebra. ut

Definition 8.1.1. (a) A connection on the principal bundle P defined by the open cover
Uα and the gluing cocycle gβα : Uαβ → Gis a collection

Aα ∈ Ω1(Uα)⊗ g

satisfying the transition rules

Aβ(x) = g−1
αβ (x)dgαβ(x) + g−1

αβ (x)Aα(x)gαβ(x) ∀x ∈ Uαβ.

(b) The curvature of the above connection is defined by the collection Fα ∈ Ω2(Uα) ⊗ g

where
Fα = dAα +

1
2
[Aα, Aα].

Proposition 8.1.2. (a) The set A(P ) of connections on P is an affine space modeled by
Ω1(Ad(P )).
(b) The collection (Fα) defines a global Ad(P )-valued 2-form.
(c) (The Bianchi identity)

dFα + [Aα, Fα] = 0 ∀α. (8.1.4)

Proof (a) If (Aα, (Bα) ∈ A(P ) then their difference Cα = Aα − Bα satisfies the gluing
rules

Cβ = gβαCαg−1
βα

so that it defines an element of Ω1(Ad(P )).
(b) We need to check that the forms Fα satisfy the gluing rules

Fβ = g−1Fαg
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where g = gαβ = g−1
βα . We have

Fβ = dAβ +
1
2
[Aβ, Aβ]

= d(g−1dg + g−1Aαg) +
1
2
[g−1dg + g−1Aαg, g−1dg + g−1Aαg].

Set $ = g−1dg. Using (8.1.2) we get

Fβ = d$ +
1
2
[$,$]

+d(g−1Aαg) + [$, g−1Aαg] +
1
2
[g−1Aαg, g−1Aαg]. (8.1.5)

We will check two things.
A. The Maurer-Cartan structural equations.

d$ +
1
2
[$, $] = 0.

B.
d(g−1Aαg) + [$, g−1Aαg] = g−1(dAα)g.

Proof of A. Let us first introduce a new operation. Let gl(n,K) denote the associative
algebra of K-valued n× n matrices. There exists a natural operation

∧ : Ωk(Uα)⊗ gl(n,K)× Ω`(Uα)⊗ gl(n,K) → Ωk+`(Uα)⊗ gl(n,K)

uniquely defined by
(ωk ⊗A) ∧ (η` ⊗B) = (ωk ∧ η`)⊗ (A ·B) (8.1.6)

where ωk ∈ Ωk(Uα), η` ∈ Ω`(Uα) and A,B ∈ gl(n,K) (see also Example 3.3.11). The space
gl(n,K) is naturally a Lie algebra with respect to the commutator of two matrices. This
structure induces a bracket

[ , ] : Ωk(Uα)⊗ gl(n,K)× Ω`(Uα)⊗ gl(n,K) → Ωk+`(Uα)⊗ gl(n,K)

defined as in (8.1.1). A very simple computation yields the following identity.

ω ∧ η =
1
2
[ω, η] ∀ω, η ∈ Ω1(Uα)⊗ gl(n,K). (8.1.7)

Assume the Lie group lies inside GL(n,K) so that its Lie algebra g lies inside gl(n,K). We
can think of the map gαβ as a matrix valued map so that we have

d$ = d(g−1dg) = (dg−1) ∧ dg = −(g−1 · dg · g−1)dg = −(g−1dg) ∧ (g−1dg)

= −$ ∧$
(8.1.7)

= −1
2
[$, $].

Proof of B. We compute

d(g−1Aαg) = (dg−1Aα) · g + g−1(dAα)g + g−1Aαdg
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= −g−1 · dg · g−1 ∧Aα · g + g−1(dAα)g + (g−1Aαg) ∧ g−1dg

= −$ ∧ g−1Aαg + g−1Aαg ∧$ + g−1(dAα)g
(8.1.7)

= −1
2
[$, g−1Aαg] +

1
2
[$, g1Aαg] + g−1(dAα)g

(8.1.2)
= −[$, g−1Aαg] + g−1(dAα)g.

Part (b) of the proposition now follows from A, B and (8.1.5).
(c) First, we let the reader check the following identity

d[ω, η] = [dω, η] + (−1)|ω|[ω, dη] (8.1.8)

where ω, η ∈ Ω∗(Uα)⊗ g. Using the above equality we get

d(Fα) =
1
2
{[dAα, Aα]− [Aα, dAα]} (8.1.2)

= [dAα, Aα]

= [Fα, Aα]− 1
2
[[Aα, Aα], Aα]

(8.1.3)
= [Fα, Aα].

The proposition is proved.
ut

Exercise 8.1.2. Let ωα ∈ Ωk(Uα)⊗ g satisfy the gluing rules

ωβ = gβαωαg−1
βα on Uαβ .

In other words, the collection ωα defines a global k-form ω ∈ Ωk(Ad(P )). Prove that the
collection

dωα + [Aα, ωα]

defines a global Ad(P )-valued (k + 1)-form on M which we denote by dAω. Thus, the
Bianchi identity can be rewritten as

dAF (A) = 0

for any A ∈ A(P ). ut

8.1.2 G-vector bundles

Definition 8.1.3. Let G be a Lie group and E → M a vector bundle with standard fiber a
vector space V . A G structure on E is defined by the following collection of data.
(a) A representation ρ : G → GL(V ).
(b) A principal G-bundle P over M such that E is associated to P via ρ. In other words,
there exists an open cover (Uα) of M and a gluing cocycle

gαβ : Uαβ → G

such that the vector bundle E can be defined by the cocycle

ρ(gαβ) : Uαβ → GL(V ).

We denote a G-structure by the pair (P, ρ).
Two G-structures (Pi, ρi) on E (i = 1, 2) are said to be isomorphic if ρ1 = ρ2 and the

principal G-bundles Pi are isomorphic.
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Example 8.1.4. Let E → M be a rank r real vector bundle over a smooth manifold M . A
metric on E allows us to talk about orthonormal moving frames. They are easily produced
from arbitrary ones via the Gramm-Schimdt orthonormalization technique. In particular,
two different orthonormal local trivializations are related by a transition map valued in
the orthogonal group O(r) so that a metric on a bundle allows one to replace an arbitrary
collection of gluing data by an equivalent (cohomologous) one with transitions in O(r). In
other words, a metric on a bundle induces an O(r) structure. The representation ρ is in
this case the natural injection O(r) ↪→ GL(r,R).

Conversely, an O(r) structure on a rank r real vector bundle is tantamount to choosing
a metric on that bundle.

Similarly, a Hermitian metric on a rank k complex vector bundle defines an U(k)-
structure on that bundle. ut

Let E = (P, ρ, V ) be a G-vector bundle. Assume P is defined by an open cover (Uα)
and gluing maps

gαβ : Uαβ → G.

If the collection {Aα ∈ Ω1(Uα)⊗g} defines a connection on the principal bundle P then the
collection ρ∗(Aα) defines a connection on E. Above, ρ∗ : g → End (V ) denotes the derivative
of ρ at 1 ∈ G. A connection of E obtained in this manner is said to be compatible with the
G-structure. Note that if F (Aα) is the curvature of the connection on P then the collection
ρ∗(F (Aα)) coincides with the curvature F (ρ∗(Aα)) of the connection ρ∗(Aα).

For example, a connection compatible with some metric on a vector bundle is com-
patible with the orthogonal/unitary structure of that bundle. The curvature of such a
connection is skew-symmetric which shows the infinitesimal holonomy is an infinitesimal
orthogonal/unitary transformation of a given fiber.

8.1.3 Invariant polynomials

Let V be a vector space over K = R, C. Consider the symmetric power

Sk(V ∗) ⊂ (V ∗)⊗k

which consists of symmetric, multilinear maps

ϕ : V × · · · × V → K.

Note that any ϕ ∈ Sk(V ∗) is completely determined by

Pϕ(v) = ϕ(v, . . . , v).

This follows immediately via the polarization formula

ϕ(v1, . . . , vk) =
1
k!

∂k

∂t1 · · · ∂tk
Pϕ(t1v1 + · · ·+ tkvk).

If dim V = n, then fixing a basis of V we can identify Sk(V ∗) with the space of degree k
homogeneous polynomials in n variables.
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Assume now that A is a K-algebra with 1. Starting with ϕ ∈ Sk(V ∗) we can produce a
K-multilinear map

ϕ = ϕA : (A⊗ V )× · · · × (A⊗ V ) → A
uniquely determined by

ϕ(a1 ⊗ v1, . . . , ak ⊗ vk) = ϕ(v1, . . . , vk)a1a2 · · · ak ∈ A.

If moreover the algebraA is commutative then ϕA is uniquely determined by the polynomial

Pϕ(x) = ϕA(x, . . . , x) x ∈ A⊗ V.

Let us emphasize that when A is not commutative the above function is not symmetric in
its variables. For example if a1a2 = −a2a1 then

P (a1X1, a2X2, · · · ) = −P (a2X2, a1X1, · · · ).

It will be so if A is commutative. For applications to geometry A will be the algebra
Ω∗(M) of complex valued differential forms on a smooth manifold M . When restricted to
the commutative subalgebra

Ωeven(M) =
⊕

k≥0

Ω2k(M)⊗ C.

we do get a symmetric function.
Let us point out a useful identity. If P ∈ Ik(g), U is an open subset of Rn,

Fi = ωi ⊗Xi ∈ Ωdi(U)⊗ g, A = ω ⊗X ∈ Ωd(U)⊗ g

then
P (F1, · · · , Fi−1, [A,Fi], Fi+1 · · · , Fk)

= (−1)d(d1+···di−1)ωω1 · · ·ωkP (X1, · · · , [X, Xi], · · ·Xk).

In particular, if F1, · · · , Fk−1 have even degree we deduce that for every i = 1, · · · , k we
have

P (F1, · · · , Fi−1, [A,Fi], Fi+1, · · · , Fk) = ωω1 · · ·ωkP (X1, · · · , [X, Xi], · · ·Xk)

Summing over i and using the Ad-invariance of P we deduce

k∑

i=1

P (F1, · · · , Fi−1, [A,Fi], Fi+1, · · · , Fk) = 0, (8.1.9)

∀F1 · · · , Fk−1 ∈ Ωeven(U)⊗ g, Fk, A ∈ Ω∗(U)⊗ g.

Example 8.1.5. Let V = gl(n,C). For each matrix T ∈ V we denote by ck(T ) the
coefficient of λk in the characteristic polynomial

cλ(T ) = det
(
1− λ

2πi
T

)
=

∑

k≥0

ck(T )λk, (i =
√−1).
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ck(T ) is a degree k homogeneous polynomial in the entries of T . For example

c1(T ) = − 1
2πi

trT, cn(T ) =
(
− 1

2πi

)n

det T.

Via polarization, ck(T ) defines an element of Sk(gl(n,C)∗).
If A is a commutative C-algebra with 1 then A ⊗ gl(n,C) can be identified with the

space gl(n,A) of n× n matrices with entries in A. For each T ∈ gl(n,A)

det
(
1− λ

2πi
T

)
∈ A[λ]

and ck(T ) continues to be the coefficient of λk in the above polynomial. ut

Consider now a matrix Lie group G. The adjoint action of G on its Lie algebra g induces
an action on Sk(g∗) still denoted by Ad. We denote by Ik(G) the Ad-invariant elements of
Sk(g∗). It consists of those ϕ ∈ Sk(g∗) such that

ϕ(gX1g
−1, . . . , gXkg

−1) = ϕ(X1, . . . , Xk)

for all X1, . . . , Xk ∈ g. Set
I∗(G) =

⊕

k≥0

Ik(G)

and
I∗∗(G) =

∏

k≥0

Ik(G).

The elements of I∗(G) are usually called invariant polynomials. I∗∗(G) can be identified
(as vector space) with the space of Ad-invariant formal power series with variables from g∗.

Example 8.1.6. Let G = GL(n,C) so that g = gl(n,C). The map

gl(n,C) 3 X 7→ tr exp(X)

defines an element of I∗∗(GL(n,C)). To see this we use the “Taylor expansion”

exp(X) =
∑

k≥0

1
k!

Xk

which yields

tr exp(X) =
∑

k≥0

1
k!

trXk.

For each k, tr Xk ∈ Ik(GL(n,C)) since

tr (gXg−1)k = tr gXkg−1 = trXk.

ut

Proposition 8.1.7. Let ϕ ∈ Ik(G). Then for any X,X1, . . . , Xk ∈ g

ϕ([X, X1], X2, . . . , Xk) + · · ·+ ϕ(X1, X2, . . . , [X,Xk]) = 0. (8.1.10)

Proof The proposition follows immediately from the equality
d

dt
|t=0 ϕ(etXX1e

−tX , . . . , etXXke
−tX) = 0. ut
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8.1.4 The Chern-Weil theory

Let G be a matrix Lie group with Lie algebra g and P → M a principal G-bundle over the
smooth manifold M .

Assume P is defined by an open cover (Uα) and a gluing cocycle

gαβ : Uαβ → G.

Pick A ∈ A(P ) defined by the collection Aα ∈ Ω1(Uα)⊗ g. Its curvature is then defined by
the collection

Fα = dAα +
1
2
[Aα, Aα].

Given φ ∈ Ik(G) we can define as in the previous section (with A = Ωeven(Uα), V = g)

Pφ(Fα) = φ(Fα, . . . , Fα) ∈ Ω2k(Uα).

Because φ is Ad-invariant and Fβ = gβαFαg−1
βα we deduce

Pφ(Fα) = Pφ(Fβ) on Uαβ

so that the locally defined forms Pφ(Fα) patch-up to a global 2k-form on M which we denote
by φ(F (A)).

Theorem 8.1.8. (Chern-Weil) (a) The form φ(F (A)) is closed ∀A ∈ A(P ).
(b) If A0, A1 ∈ A(P ) then the forms φ(F (A0)) and φ(F (A1)) are cohomologous. In other
words, φ(F (A)) defines a cohomology class in H2k(M) which is independent of the con-
nection A ∈ A(P ).

Proof We use the Bianchi identity dFα = −[Aα, Fα]. The Leibniz’ rule yields

dφ(Fα, . . . , Fα) = φ(dFα, Fα, . . . , Fα) + · · ·+ φ(Fα, . . . , Fα, dFα)

= −φ([Aα, Fα], Fα, . . . , Fα)− · · · − φ(Fα, . . . , Fα, [Aα, Fα])
(8.1.10)

= 0.

(b) Let Ai ∈ A(P ) (i = 0, 1) be defined by the collections

Ai
α ∈ Ω1(Uα)⊗ g.

Set Cα = A1
α − A0

α and for 0 ≤ t ≤ 1 we define At
α ∈ Ω1(Uα) ⊗ g by At

α = A0
α + tCα.

The collection (At
α) defines a connection At ∈ A(P ) and t 7→ At ∈ A(P ) is an (affine) path

connecting A0 to A1. Note that
C = (Cα) = Ȧt.

We denote by F t = (F t
α) the curvature of At. A simple computation yields

F t
α = F 0

α + t(dCα + [A0
α, Cα]) +

t2

2
[Cα, Cα]. (8.1.11)

Hence
Ḟ t

α = dCα + [A0
α, Cα] + t[Cα, Cα] = dCα + [At

α, Cα].
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Consequently

φ(F 1
α)− φ(F 0

α) =
∫ 1

0

{
φ(Ḟ t

α, F t
α, . . . , F t

α) + · · ·+ φ(F t
α, . . . , F t

α, Ḟ t
α)

}
dt

=
∫ 1

0

{
φ(dCα, F t

α, . . . , F t
α) + · · ·+ φ(F t

α, . . . , F t
α, dCα)

}
dt

+
∫ 1

0

{
φ([At

α, Cα], F t
α, . . . , F t

α) + · · ·+ φ(F t
α, . . . , F t

α, [At
α, Cα])

}
dt.

Because the algebra Ωeven(Uα) is commutative we deduce

φ(ωσ(1), . . . , ωσ(k)) = φ(ω1, . . . , ωk)

for all σ ∈ Sk and any ω1, . . . , ωk ∈ Ωeven(Uα)⊗ g. Hence

φ(F 1
α)− φ(F 0

α) = k

∫ 1

0
φ(F t

α, . . . , F t
α, dCα + [At

αCα])dt.

We claim that
φ(F t

α, . . . , F t
α, dCα + [At

α, Cα]) = dφ(F t
α, . . . , F t

α, Cα).

Using the Bianchi identity we get

dφ(F t
α, . . . , F t

α, Cα)

= φ(F t
α, · · · , F t

α, dCα) + φ(dF t
α, · · · , F t

α, Cα) + · · ·+ φ(F t
α, · · · , dF t

α, Cα)

= φ(F t
α, . . . , F t

α, dCα)− φ(Cα, [At
α, F t

α], F t
α, . . . , F t

α)− · · · − φ(Cα, F t
α, . . . , F t

α, [At
α, F t

α])

= φ(Cα], F t
α, . . . , F t

α, dCα + [At
α)

−φ(F t
α, . . . , F t

α, [At
α, Cα])− φ([At

α, F t
α], F t

α, . . . , F t
α, Cα)− · · · − φ(F t

α, . . . , F t
α, [At

α, F t
α], Cα)

(8.1.9)
= φ(F t

α, . . . , F t
α, dCα + [At

α, Cα]) = φ(dCα + [At
α, Cα], F t

α, . . . , F t
α).

Hence

φ(F 1
α)− φ(F 0

α) = d

∫ 1

0
kφ(Ȧt

α, F t
α, . . . , F t

α)dt
def
= dTφ(A1

α, A0
α). (8.1.12)

Since Cβ = gβαCαg−1
βα and Fβ = gβαFαg−1

βα on Uαβ we conclude from the Ad-invariance of
φ that the collection Tφ(A1

α, A0
α) defines a global (2k − 1)-form on M which we denote by

T (A1, A0) and we name it the φ-transgression from A0 to A1. We have thus established the
transgression formula

φ(F (A1))− φ(F (A0)) = d Tφ(A1, A0). (8.1.13)

The Chern-Weil theorem is proved.
ut



298 Characteristic classes

Example 8.1.9. Consider a matrix Lie group G with Lie algebra g and denote by P0

the trivial principal G-bundle over G, P0 = G × G. Denote by $ the tautological 1-form
$ = g−1dg ∈ Ω1(G)⊗ g. Note that for every left invariant vector field X ∈ g we have

$(X) = X.

Denote by d the trivial connection on P0. Clearly d is a flat connection. Moreover, the
Maurer-Cartan equation implies that d+$ is also a flat connection. Thus for any φ ∈ Ik(G)

φ(F (d)) = φ(F (d + $)) = 0.

The transgression formula implies that the form

τφ = Tφ(d + $, d) = k

∫ 1

0
φ($, F (d + t$), · · · , F (d + t$))dt ∈ Ω2k−1(G)

is closed. Clearly τφ is closed. A simple computation using the Maurer-Cartan equations
shows that

τφ =
k

2k−1

(∫ 1

0
(t2 − 1)k−1dt

)
· φ($, [$,$], · · · , [$, $])

= (−1)k−1 k

2k−1

22k−1k!(k − 1)!
(2k)!

φ($, [$, $], · · · , [$, $])

= (−1)k−1 2k

(
2k
k

) · φ($, [$,$], · · · , [$,$]).

We thus have a natural map τ : I∗(G) → Hodd(G) called transgression. The elements in
the range of τ are called transgressive. When G is compact and connected then a nontrivial
result due to the combined efforts of H. Hopf, C. Chevalley, H. Cartan, A. Weil and L.
Koszul states that the cohomology of G is generated as an R-algebra by the transgressive
elements. We refer to [18] for a beautiful survey of this subject. ut

Exercise 8.1.3. Let G = SU(2). The Killing form κ is a degree 2 Ad-invariant polynomial
on su(2). Describe τκ ∈ Ω3(G) and then compute

∫

G
τκ.

Compare this result with the similar computations in Subsection 7.4.3. ut

Let us now analyze the essentials of the Chern-Weil construction.
Input: (a) A principal G-bundle P over a smooth manifold M (defined by an open cover
(Uα) and gluing cocycle gαβ : Uαβ → G).
(b) A connection A ∈ A(P ) defined by the collection

Aα ∈ Ω1(Uα)⊗ g

satisfying the transition rules

Aβ = g−1
αβdgαβ + g−1

αβAαgαβ on Uαβ .
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(c) φ ∈ Ik(G).
Output: A closed form φ(F (A)) ∈ Ω2k(M) whose cohomology class is independent of the
connection A. We denote this cohomology class by φ(P ).

Thus, the principal bundle P defines a map, called the Chern-Weil correspondence

cwP : I∗(G) → H∗(M) φ 7→ φ(P ).

One can check easily the map cwP is a morphism of R-algebras.

Definition 8.1.10. Let M and N be two smooth manifolds and F : M → N a smooth
map. If P is a principal G-bundle over N defined by an open cover (Uα) and gluing cocycle
gαβ : Uαβ → G then the pullback of P by F is the principal bundle F ∗(P ) over M defined
by the open cover F−1(Uα) and gluing cocycle

F−1(Uαβ) F→ Uαβ
gαβ→ G.

The pullback of a connection on P is defined similarly.
The following result should be obvious.

Proposition 8.1.11. (a) If P is a trivial G-bundle over the smooth manifold M then
φ(P ) = 0 ∈ H∗(M) for any φ ∈ I∗(G).
(b) Let M

F→ N be a smooth map between the smooth manifolds M and N . Then for every
principal G-bundle over N and any φ ∈ I∗(G) we have

φ(F ∗(P )) = F ∗(φ(P )).

Equivalently, this means the diagram below is commutative.

I∗(G) H∗(N)

H∗(M)

wcwP

'
'')

cwF∗(P ) u F
∗

Denote by PG the collection of smooth principal G-bundles (over smooth manifolds).
For each P ∈ PG we denote by BP the base of P . Finally, we denote by F a contravariant
functor from the category of smooth manifolds (and smooth maps) to the category of abelian
groups.

Definition 8.1.12. An F-valued G- characteristic class is a correspondence

PG 3 P 7→ c(P ) ∈ F(BP )

such that
(a) c(P ) = 0 if P is trivial and
(b) F(F )(c(P )) = c(F ∗(P )) for any smooth map F : M → N and any principal G-bundle
P → N .

Hence, the Chern-Weil construction is just a method of producing G-characteristic
classes valued in the DeRham cohomology.
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Remark 8.1.13. (a) We see that each characteristic class provides a way of measuring the
nontriviality of a principal G-bundle.
(b) A very legitimate question arises. Do there exist characteristic classes (in the DeRham
cohomology) not obtainable via the Chern-Weil construction?

The answer is negative but the proof requires an elaborate topological technology which
is beyond the reach of this course. The interested reader can find the details in the mono-
graph [58] which is the ultimate reference on the subject of characteristic classes.
(b) There exist characteristic classes valued in contravariant functors other then the DeR-
ham cohomology. E.g., for each abelian group A the Čech cohomology with coefficients in
the constant sheaf A defines a contravariant functor H∗(−, A) and using topological tech-
niques one can produce H∗(−, A)-valued characteristic classes. For details we refer to [58]
or the classical [71]. ut

8.2 Important examples

We devote this section to the description of some of the most important examples of charac-
teristic classes. In the process we will describe the invariants of some commonly encountered
Lie groups.

8.2.1 The invariants of the torus T n

The n-dimensional torus Tn = U(1) × · · · × U(1) is an Abelian group so that the adjoint
action on its Lie algebra tn is trivial. Hence

I∗(Tn) = S∗((tn)∗).

In practice one uses a more explicit description. This is obtained as follows. Pick angular
coordinates 0 ≤ θi ≤ 2π (1 ≤ i ≤ n) and set

xj = − 1
2πi

dθj .

The x′js form a basis of (tn)∗ and now we can identify

I∗(Tn) ∼= R[x1, . . . , xn].

8.2.2 Chern classes

Let E be a rank r complex vector bundle over the smooth manifold M . We have seen
that a Hermitian metric on E induces an U(r)-structure (P, ρ) where ρ is the tautological
representation

ρ : U(r) ↪→ GL(r,C).

Exercise 8.2.1. Prove that different Hermitian metrics on E define isomorphic U(r)-
structures. ut
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Thus, we can identify such a bundle with a principal U(r) bundle in a tautological way.
A connection on the principal bundle is then equivalent with a linear connection ∇ on E
compatible with a Hermitian metric 〈•, •〉, i.e.

∇X〈λu, v〉 = λ{〈∇Xu, v〉+ 〈u,∇Xv〉}

∀λ ∈ C, u, v ∈ C∞(E), X ∈ Vect (M).
The characteristic classes of E are by definition the characteristic classes of the tauto-

logical principal U(r)-bundle. To describe these characteristic classes we need to elucidate
the structure of the ring of invariants I∗(U(r)).

I∗(U(r)) consists of symmetric, r-linear maps

φ : u(r)× · · · × u(r) → R

invariant under the adjoint action

u(r) 3 X 7→ TXT−1 ∈ u(r), T ∈ U(r).

It is convenient to identify such a map with its polynomial form

Pφ(X) = φ(X, . . . ,X).

The Lie algebra u(r) consists of r × r complex skew-adjoint matrices. Classical results
of linear algebra show that for any X ∈ u(r) there exists T ∈ U(r) such that TXT−1 is
diagonal

TXT−1 = idiag(λ1, . . . , λr).

The set of diagonal matrices in u(r) is called the Cartan algebra of u(r) and is denoted by
Cu(r). It is a (maximal) Abelian Lie subalgebra of u(r). Consider the stabilizer

FU(r) = {T ∈ U(r) ; TXT−1 = X ∀X ∈ Cu(r)}

and the normalizer
NU(r) = {T ∈ U(r) ; TCu(r)T

−1 ⊂ Cu(r)}.
FU(r) is a normal subgroup of NU(r) so we can form the quotient

W(U(r))
def
= NU(r)/FU(r)

called the Weyl group of U(r). As in §7.4.4 we see that it is isomorphic with the symmetric
group Sr because two diagonal skew-Hermitian matrices are unitarily equivalent if and only
if they have the same eigenvalues (including multiplicities).We see that Pφ is Ad-invariant
if and only if its restriction to the Cartan algebra is invariant under the action of the Weyl
group.

The Cartan algebra is the Lie algebra of the (maximal) torus Tn (consisting of diagonal
unitary matrices) and as in the previous subsection we introduce the variables

xj = − 1
2πi

dθj .
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The restriction of Pφ to Cu(r) is a polynomial in the variables x1, . . . , xr. The Weyl group
Sr permutes these variables so that Pφ is Ad-invariant if and only if Pφ(x1, . . . , xr) is a
symmetric polynomial in its variables. According to the fundamental theorem of symmetric
polynomials the ring of these polynomials is generated (as an R-algebra) by the elementary
ones

c1 =
∑

j xj

c2 =
∑

i<j xixj

...
...

...
cr = x1 · · ·xr

Thus
I∗(U(r)) = R[c1, c2, . . . , cr].

In terms of matrices X ∈ u(r) we have

∑

k

ck(X)tk = det
(
1− t

2πi
X

)
∈ I∗(U(r))[t].

The above polynomial is known as the universal Chern polynomial and its coefficients are
called the universal Chern classes.

Returning to our rank r vector bundle E we get the Chern classes

ck(E) = ck(F (∇)) ∈ H2k(M)

and the Chern polynomial

ct(E) = det
(
1− t

2πi
F (∇)

)
.

∇ denotes a connection compatible with a Hermitian metric 〈 , 〉 on E while F (∇) denotes
its curvature.

Remark 8.2.1. The Chern classes produced via the Chern-Weil method capture only a
part of what topologists usually refer to characteristic classes of complex bundles. To give
the reader a feeling of what the Chern-Weil construction is unable to capture we will sketch
a different definition of the 1st Chern class of a complex line bundle. The following facts
are essentially due to Kodaira and Spencer [45]; see also [32] for a nice presentation.

Let L → M be a smooth complex Hermitian line bundle over the smooth manifold M .
Upon choosing a good open cover (Uα) of M we can describe L by a collection of smooth
maps zαβ : Uαβ → U(1) ∼= S1 satisfying the cocycle condition

zαβzβγzγα = 1 ∀α, β, γ. (8.2.1)

If we denote by C∞(·, S1) the sheaf of multiplicative groups of smooth S1-valued functions
we see that the family of complex line bundles on M can be identified with the Čech
group H1(M,C∞(·, S1)). This group is called the smooth Picard group of M . The group
multiplication is precisely the tensor product of two line bundles. We will denote it by
Pic∞ (M).
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If we write zαβ = exp(2πiθαβ) (θβα = −θαβ ∈ C∞(Uαβ ,R)) we deduce from (8.2.1) we
deduce that ∀Uαβγ 6= ∅

θαβ + θβγ + θγα = nαβγ ∈ Z.

It is not difficult to see that ∀Uαβγδ 6= ∅
nβγδ − nαγδ + nαβδ − nαβγ = 0.

In other words nαβγ defines a Čech 2-cocycle of the constant sheaf Z.
On a more formal level we can capture the above cocycle starting from the exact sequence

of sheaves
0 → Z ↪→ C∞(·,R)

exp(2πi·)→ C∞(·, S1) → 0.

The middle sheaf is a fine sheaf so its cohomology vanishes in positive dimensions. The long
exact sequence in cohomology then gives

0 → Pic∞ (M) δ→ H2(M,Z) → 0.

The cocycle (nαβγ) represents precisely the class δ(L).
The class δ(L), L ∈ Pic∞ (M) is called the topological 1st Chern class and is denoted

by ctop
1 (L). This terminology is motivated by the following result of Kodaira and Spencer,

[45]:
“The image of ctop

1 (L) in the DeRham cohomology via the natural morphism

H∗(M,Z) → H∗(M,R) ∼= H∗
DR(M)

coincides with the 1st Chern class obtained via the Chern-Weil procedure.”.
The Chern-Weil construction misses precisely the torsion elements in H2(M,Z). For

example if a line bundle admits a flat connection then its Chern class is trivial. This may
not be the case with the topological one. The line bundle may not be topologically trivial.

ut

8.2.3 Pontryagin classes

Let E be a rank r real vector bundle over the smooth manifold M . An Euclidean metric
on E induces an O(r) structure (P, ρ). The representation ρ is the tautological one

ρ : O(r) ↪→ GL(r,R).

Exercise 8.2.2. Prove that two metrics on E induce isomorphic O(r)-structures. ut

Hence, as in the complex case, we can naturally identify the rank r real vector bundles
with principal O(r)-bundles. A connection on the principal bundle can be viewed as a
metric compatible connection in the associated vector bundle. To describe the various
characteristic classes we need to understand the ring of invariants I∗(O(r)).

As usual we will identify the elements of Ik(O(r)) with the degree k, Ad-invariant
polynomials on the Lie algebra o(r) consisting of skewsymmetric r × r real matrices. Fix
P ∈ Ik(O(r)). Set m = [r/2] and denote by J the 2× 2 matrix

J =
[

0 −1
1 0

]
.
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Consider the Cartan algebra

Co(r) =
{ {λ1J ⊕ · · · ⊕ λmJ ∈ o(r) ; λj ∈ R} , r = 2m
{λ1J ⊕ · · · ⊕ λmJ ⊕ 0 ∈ o(r) ; λj ∈ R} , r = 2m + 1

Co(r) is the Lie algebra of the (maximal) torus

Tm =
{

Rθ1 ⊕ · · · ⊕Rθm ∈ O(r) , r = 2m
Rθ1 ⊕ · · · ⊕Rθm ⊕ 1R ∈ O(r) , r = 2m + 1

where for each θ ∈ [0, 2π] we denoted by Rθ the 2× 2 rotation

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
.

As in Subsection 8.2.1 we introduce the variables

xj = − 1
2π

dθj .

Using standard results concerning the normal Jordan form of a skew-symmetric matrix
we deduce that for every X ∈ o(r) there exists T ∈ O(r) such that TXT−1 ∈ Co(r).
Consequently, any Ad-invariant polynomial on o(r) is uniquely defined by its restriction to
the Cartan algebra.

Following the approach in the complex case, we consider

FO(r) = {T ∈ O(r) ; TXT−1 = X ∀X ∈ Co(r)}

NO(r) = {T ∈ O(r) ; TCo(r)T
−1 ⊂ Co(r)}.

FO(r) is a normal subgroup in N(O(r)) so we can form the Weyl group

W(O(r)) = NO(r)/FO(r).

Exercise 8.2.3. Prove that W(O(r)) is the subgroup of GL(m,R) generated by the invo-
lutions

σij : (x1, . . . , xi, . . . , xj , . . . , xm) 7→ (x1, . . . , xj , . . . , xi, . . . , xm)

εj : (x1, . . . , xj , . . . , xm) 7→ (x1, . . . ,−xj , . . . , xm).

ut

The restriction of P ∈ Ik(O(r)) to Co(r) is a degree k homogeneous polynomial in the
variables x1, . . . , xm invariant under the action of the Weyl group. Using the above exercise
we deduce that P must be a symmetric polynomial P = P (x1, . . . , xm) separately even in
each variable. Invoking once again the fundamental theorem of symmetric polynomials we
conclude that P must be a polynomial in the elementary symmetric ones

p1 =
∑

j x2
j

p2 =
∑

i<j x2
i x

2
j

...
...

...
pm = x2

1 · · ·x2
m

.
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Hence
I∗(O(r)) = R[p1, . . . , p[r/2]].

In terms of X ∈ o(r) we have

pt(X) =
∑

j

pj(X)t2j = det
(
1− t

2π
X

)
∈ I∗(O(r))[t].

The above polynomial is called the universal Pontryagin polynomial while its coefficients
pj(X) are called the universal Pontryagin classes.

The Pontryagin classes p1(E), . . . , pm(E) of our real vector bundle E are then defined
by the equality

pt(E) =
∑

j

pj(E)t2j = det
(
1− t

2π
F (∇)

)
∈ H∗(M)[t]

where ∇ denotes a connection compatible with some (real) metric on E, while F (∇) denotes
its curvature. Note that pj(E) ∈ H4j(M).

8.2.4 The Euler class

Let E be a rank r, real oriented vector bundle. A metric on E induces an O(r)-structure
but the existence of an orientation implies the existence of a finer structure, namely an
SO(r)-symmetry.

The groups O(r) and SO(r) share the same Lie algebra so(r) = o(r). The inclusion

ı : SO(r) ↪→ O(r)

induces a morphism of R-algebras

ı∗ : I∗(O(r)) → I∗(SO(r)).

Because so(r) = o(r) one deduces immediately that ı∗ is injective.

Lemma 8.2.2. When r is odd then ı∗ : I∗(O(r)) → I∗(SO(r)) is an isomorphism.

Exercise 8.2.4. Prove the above lemma. ut

The situation is different when r is even, r = 2m. To describe the ring of invariants
I∗(SO(2m)) we need to study in greater detail the Cartan algebra

Co(2m) = {λ1J ⊕ · · · ⊕ λmJ ∈ o(2m)}

and the corresponding Weyl group action. The Weyl group W(SO(2m)), defined as usual
as the quotient

W(SO(2m) = NSO(2m)/FSO(2m)

is the subgroup of GL(Co(2m)) generated by the involutions

σij : (λ1, . . . , λi, . . . , λj , . . . , λm) 7→ (λ1, . . . , λj , . . . , λi, . . . , λm)
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and
ε : (λ1, . . . , λm) 7→ (ε1λ1, . . . , εmλm),

where ε1, . . . , εm = ±1 and ε1 · · · εm = 1. (Check this!)
Set as usual xi = −λi/2π. The Pontryagin invariants

pj(x1, . . . , xm) =
∑

1≤i1<···<ij≤m

(xi1 · · ·xij )
2

continue to be W(SO(2m)) invariants. There is however a new invariant

∆(x1, . . . , xm) =
∏

j

xj .

In terms of
X = λ1J ⊕ · · · ⊕ λmJ ∈ CSO(2m)

we can write

∆(X) =
(−1

2π

)m

Pf(X),

where Pf denotes the pfaffian of the skewsymmetric matrix X viewed as a linear map
R2m → R2m, when R2m is endowed with the canonical orientation. Note that pm = ∆2.

Proposition 8.2.3.

I∗(SO(2m)) ∼= R[Z1, Z2, . . . , Zm; Y ]/(Y 2 − Zm) (Zj = pj , Y = ∆)

where (Y 2 − Zm) denotes the ideal generated by the polynomial Y 2 − Zm.

Sketch of proof We follow an approach used by H. Weyl in describing the invariants of
the alternate group ([74], Sec. II.2). The isomorphism will be established in two steps.
Step 1 I∗(SO(2m)) is generated (as an R-algebra) by p1, · · · , pm, ∆.
Step 2 The kernel of the morphism

R[Z1, . . . , Zm, ; Y ]
ψ→ I∗(SO(2m))

defined by Zj 7→ pj , Y 7→ ∆ is the ideal (Y 2 − Zm).

Proof of Step 1 Note that W(SO(2m)) has index 2 as a subgroup in W(O(2m)). Thus
W(SO(2m)) is a normal subgroup and

G = W(O(2m))/W(SO(2m)) ∼= Z2.

G = {1, e} acts on I∗(SO(2m)) by

(eF )(x1, x2, . . . , xm) = F (−x1, x2, . . . , xm) = · · · = F (x1, x2, . . . ,−xm),

and moreover
I∗(O(2m)) = ker(1− e).



Important examples 307

For each F ∈ I∗(SO(2m)) we have

F+ def
= (1+ e)F ∈ ker(1− e)

so that
F+ = P (p1, . . . , pm).

On the other hand,
F− def

= (1− e)F

is separately odd in each of its variables. Indeed,

F−(−x1, x2, . . . , xm) = eF−(x1, . . . , xm)

= e(1− e)F (x1, . . . , xm) = −(1− e)F (x1, . . . , xm) = −F−(x1, . . . , xm).

Hence, F− vanishes when any of its variables vanishes so that F− is divisible by their
product ∆ = x1 · · ·xm

F− = ∆ ·G.

Since eF− = −F− and e∆ = −∆ we deduce eG = G i.e. G ∈ I∗(O(2m)). Consequently, G
can be written as

G = Q(p1, . . . , pm)

so that
F− = ∆ ·Q(p1, . . . , pm).

Step 1 follows from

F =
1
2
(F+ + F−) =

1
2
(P (p1, . . . , pm) + ∆ ·Q(p1, . . . , pm)).

Proof of Step 2. From the equality

detX = Pf(X)2 ∀X ∈ so(2m)

we deduce
(Y 2 − Zm) ⊂ kerψ

so that we only need to establish the opposite inclusion.
Let P = P (Z1, Z2, . . . , Zm; Y ) ∈ kerψ. Consider P as a polynomial in Y with coefficients

in R[Z1, . . . , Zm]. Divide P by the quadratic polynomial (in Y ) Y 2 − Zm. The remainder
is linear

R = A(Z1, . . . , Zm)Y + B(Z1, . . . , Zm).

Since Y 2 − Zm, P ∈ kerψ we deduce R ∈ kerψ. Thus

A(p1, . . . , pm)∆ + B(p1, . . . , pm) = 0.

Applying the morphism e we get

−A(p1, . . . , pm)∆ + B(p1, . . . , pm) = 0.
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Hence A ≡ B ≡ 0 so that P is divisible by Y 2 − Zm. ut

Let E be a rank 2m, real, oriented vector bundle over the smooth manifold M . As in
the previous subsection we deduce that we can use a metric to naturally identify E with
a principal SO(2m)-bundle and in fact, this principal bundle is independent of the metric.
Finally, choose a connection ∇ compatible with some metric on E.

Definition 8.2.4. (a) The universal Euler class is defined by

e = e(X) =
1

(2π)m
Pf(−X) ∈ Im(SO(2m)).

(b) The Euler class of E, denoted by e(E) ∈ H2m(M) is the cohomology class represented
by the Euler form

e(∇) =
1

(2π)m
Pf(−F (∇)) ∈ Ω2m(M).

(According to the Chern-Weil theorem this cohomology class is independent of the metric
and the connection.) ut

Example 8.2.5. Let (Σ, g) be a compact, oriented, Riemann surface and denote by ∇g the
Levi-Civita connection. The the Euler form

ε(g) =
1
4π

s(g)dvg

coincides with the Euler form e(∇g) obtained via the Chern-Weil construction. ut

Remark 8.2.6. Let E be a rank 2m, real, oriented vector bundle over the smooth, compact,
oriented manifold M . We now have two apparently conflicting notions of Euler classes.
A topological Euler class etop(E) ∈ H2m(M) defined as the pullback of the Thom class via
an arbitrary section of E.
A geometric Euler class egeom(E) ∈ H2m(M) defined via the Chern-Weil construction.

The most general version of the Gauss-Bonnet theorem, which will be established later
in this chapter, will show that these two notions coincide! ut

8.2.5 Universal classes

In each of the situations discussed so far we discussed characteristic classes for vector bundles
with a given rank. In this section we show how one can coherently present these facts all
at once, irrespective of rank. The algebraic machinery which will achieve this end is called
inverse limit. We begin by first describing a special example of inverse limit.

A projective sequence of rings is a a sequence of rings {Rn}n≥0 together with a sequence

of ring morphisms Rn
φn← Rn+1. The inverse limit of a projective system (Rn, φn) is the

subring
lim← Rn ⊂

∏

n≥0

Rn

consisting of the sequences (x1, x2, . . .) such that φn(xn+1) = xn, ∀n ≥ 0.
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Example 8.2.7. Let Rn = R[[X1, . . . , Xn]] be the ring of formal power series in n variables
with coefficients in the commutative ring with unit R. (R0 = R.) Denote by φn : Rn+1 → Rn

the natural morphism defined by setting Xn+1 = 0. The inverse limit of this projective
system is denoted by R[[X1, X2, . . .]].

Given a sequence Fn ∈ R[[X]] (n ≥ 1) such that Fn(0) = 1 we can form the sequence of
products

(1, F1(X1), F1(X1)F2(X2), . . . , F1(X1) · · ·Fn(Xn), . . .)

which defines an element in R[[X1, X2, . . .]] denoted by F1(X1)F2(X2) · · · . When F1 = F2 =
· · ·Fn = · · · = F the corresponding elements is denoted by (F )∞.

Exercise 8.2.5. (a) Let R[[x]][ denote the set of formal power series F ∈ R[[x]] such that
F (0) = 1. Prove that (R[[x]][, ·) is an abelian group.
(b) Prove that ∀F, G ∈ R[[x]][

(F ·G)∞ = (F )∞ · (G)∞

Similarly, given Gn ∈ R[[x]], (n ≥ 1) such that Fn(0) = 0 we can from the sequence of
sums

(0, G1(X1), G1(X1) + G2(X2), . . . , G1(X1) + · · · ⊕Gn(Xn), . . .)

which defines an element in R[[X1, X2, . . .]] denoted by G1(X1) + G2(X2) + · · · . When
G1 = G2 = · · · = Fn = · · · = F we denote the corresponding element (G)∞.

In dealing with characteristic classes of vector bundles one naturally encounters the
increasing sequences

U(1) ↪→ U(2) ↪→ · · · (8.2.2)

(in the complex case) and (in the real case)

O(1) ↪→ O(2) ↪→ · · · . (8.2.3)

We will discuss these two situations separately.
The complex case The sequence in (8.2.2) induces a projective sequence of rings

R← I∗∗(U(1)) ← I∗∗(U(2)) ← · · · . (8.2.4)

We know that I∗∗(U(n)) = Sn[[xj ]]= the ring of symmetric formal power series in n vari-
ables with coefficients in R. Set

S∞[[xj ]] = lim← Sn.

Given a rank n vector bundle E over a smooth manifold M and φ ∈ I∗∗(U(n)) the charac-
teristic class φ(E) is well defined since udim M+1 = 0 for any u ∈ Ω∗(M). Thus we can work
with the ring I∗∗(U(n)) rather than I∗(U(n)) as we have done so far. An element

φ = (φ1, φ2, . . .) ∈ I∗∗(U(∞))
def
= lim← I∗∗(U(n)) = S∞[[xj ]]
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is called universal characteristic class. If E is a complex vector bundle we set φ(E) =
φr(E) where r = rankE. More precisely, to define φr(E) we need to pick a connection ∇
compatible with some Hermitian metric on E and then set

φ(E) = φr(F (∇)).

Example 8.2.8. We denote by c
(n)
k (n ≥ k) the elementary symmetric polynomial in n

variables
c
(n)
k =

∑

1≤i1<···<ik≤n

xi1 · · ·xik .

Then the sequence
(0, . . . , 0, c

(k)
k , c

(k+1)
k , . . .)

defines an element in S∞[[xj ]] denoted by ck which we call the universal k-th Chern class.
Formally, we can write

ck =
∑

1≤i1<···<ik<∞
xi1xi2 · · ·xik .

We can present the above arguments in a more concise form as follows. Consider the function
F (x) = (1 + tx) ∈ R[[x]] where R = R[t]. Then (F )∞ defines an element in R[[X1, X2, . . .]].
One sees immediately that in fact (F )∞ ∈ S∞[[xj ]] [[t]] and moreover

(F )∞(x1, x2, . . .) = (1 + tx1)(1 + tx2) · · · = 1 + c1t + c2t
2 + · · · .

We can perform the above trick with any F ∈ R[[x]] such that F (0) = 1. We get a
semigroup morphism

(R[[x]][, ·) 3 F 7→ (F )∞ ∈ (S∞[[xj ]], ·).
(see Exercise 8.2.5) One very important example is

F (x) =
x

1− e−x
= 1 +

1
2
x +

1
12

x2 + · · · = 1 +
1
2
x +

∞∑

k=1

(−1)k−1 Bk

(2k)!
x2k ∈ R[[x]].

The coefficients Bk are known as the Bernoulli numbers. The product

(F )∞ =
(

x1

1− e−x1

)
·
(

x2

1− e−x2

)
· · ·

defines an element in S∞[[xj ]] called the universal Todd class and denoted by Td. Using
the fundamental theorem of symmetric polynomials we can write

Td = 1 + Td1 + Td2 + · · ·

where Tdn ∈ S∞[[xj ]] is an universal symmetric, homogeneous “polynomial” of degree n,
hence expressible as a combination of the elementary symmetric “polynomials” c1, c2, . . ..
By an universal“polynomial” we understand element in the inverse limit

R[x1, x2, . . .] = lim← R[x1, x2, . . .].
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An universal “polynomial” P is said to be homogeneous of degree d if it can be represented
as a sequence

P = (P1, P2, . . .)

where Pm is a homogeneous polynomial of degree d in m variables and

Pm+1(x1, x2, . . . , xm, 0) = Pm(x1, . . . xm).

For example

Td1 =
1
2
c1, Td2 =

1
12

(c2
1 + c2), Td3 =

1
24

c1c2 etc.

Analogously, any function G ∈ R[[x]] such that G(0) = 0 defines an element

(G)∞ = G(x1) + G(x2) + · · · ∈ S∞[[xj ]]

We have two examples in mind. First, consider G(x) = xk. We get the symmetric function

sk = (xk)∞ = (G)∞ = xk
1 + xk

2 + · · ·
called the universal k-th power sum. We will denote these by sk.

Next, consider

G(x) = ex − 1 =
∑

m≥1

xm

m!
.

We have
(ex − 1)∞ =

∑

m≥1

1
m!

(xm)∞ =
∑

m=1

1
m!

sm ∈ S∞[[xj ]]

Given a complex vector bundle E we define

ch(E) = rankE + (ex − 1)∞(E).

ch(E) is called the Chern character of the bundle E. If ∇ is a connection on E compatible
with some Hermitian metric then we can express the Chern character of E as

ch(E) = tr
(
eF (∇)

)

= rank (E) +
∞∑

k=1

1
k!

tr (F (∇)∧k)

where ∧ is the bilinear map

Ωi(End (E))× Ωj(End (E)) → Ωi+j(End (E))

defined in Example 3.3.11.

Proposition 8.2.9. Consider two complex vector bundles E1, E2 over the same manifold
M . Then

ch(E1 ⊕E2) = ch(E1) + ch(E2)

and
ch(E1 ⊗E2) = ch(E1) · ch(E2) ∈ H∗(M).
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Proof Consider a connection∇i on Ei compatible with some Hermitian metric hi, i = 1, 2.
Then ∇1⊕∇2 is a connection on E1⊕E2 compatible with the metric h1⊕h2 and moreover

F (∇1 ⊕∇2) = F (∇1)⊕ F (∇2).

Hence
exp(F (∇1 ⊕∇2)) = exp(F (∇1))⊕ exp(F (∇2))

from which we deduce the first equality. As for the second equality consider the connection
∇ on E1 ⊗E2 uniquely defined by the Leibniz rule

∇(s1 ⊗ s2) = (∇1s1)⊗ s2 + s1 ⊗ (∇2s2), si ∈ C∞(Ei)

where the operation
⊗ : Ωk(E1)× Ω`(E2) → Ωk+`(E1 ⊗E2)

is defined by
(ωk ⊗ s1)⊗ (η`s2) = (ωk ∧ η`)⊗ (s1 ⊗ s2) (8.2.5)

si ∈ C∞(Ei), ωk ∈ Ωk(M) and η` ∈ Ω`(M).
We compute the curvature of ∇ using the equality F (∇) = (d∇)2. If si ∈ C∞(Ei) then

F (∇)(s1 ⊗ s2) = d∇{(∇1s1)⊗ s2 + s1 ⊗ (∇2s2)}

=
{
(F (∇1)s1)⊗ s2 − (∇1s1)⊗ (∇2s2) + (∇1s1)⊗ (∇2s2) + s1 ⊗ (F (∇2))

}

= F (∇1)⊗ 1E2 + 1E1 ⊗ F (∇2).

The second equality in the proposition is a consequence the following technical lemma.

Lemma 8.2.10. Let A (resp. B) be a skew-adjoint, n× n (resp. m×m) complex matrix.
Then

tr (exp(A⊗ 1Cm + 1Cn ⊗B)) = tr (exp(A)) · tr (exp(B)).

Proof of the lemma Pick an orthonormal basis (ei) of Cn (resp. an orthonormal ba-
sis (fj) of Cm) such that with respect to this basis A = diag (λ1, . . . , λn) (resp. B =
diag (µ1, . . . , µm)). Then with respect to the basis (ei ⊗ fj) of Cn ⊗ Cm we have

(A⊗ 1Cm + 1Cn ⊗B) = diag(λi + µj).

Hence
exp(A⊗ 1Cm + 1Cn ⊗B) = diag(eλieµj )

so that
tr (A⊗ 1Cm + 1Cn ⊗B) =

∑
eλieµj = tr (eA) · tr (eB). ¤

The proposition is proved. ¤



Important examples 313

Exercise 8.2.6. (Newton’s formulæ) Consider the symmetric polynomials

ck =
∑

1≤i1≤···ik≤n

xi1 · · ·xik ∈ R[x1, . . . , xn]

and (r ≥ 0)
sr =

∑

j

xr
j ∈ R[x1, . . . , xn].

Set

f(t) =
n∏

j=1

(1− xjt).

(a) Show that
f ′(t)
f(t)

= −
∑

r

srt
r−1.

(b) Prove the Newton formulæ

r∑

j=1

(−1)jsr−jcj = 0 ∀1 ≤ r ≤ n.

(c) Deduce from the above formulae the following identities between universal symmetric
polynomials.

s1 = c1, s2 = c2
1 − 2c2, s3 = c3

1 − 3c1c2 + 3c3.

The real case The sequence (8.2.3) induces a projective system

I∗∗(O(1)) ← I∗∗(O(2)) ← · · · .

We have proved that I∗∗(O(n)) = S[n/2][[x2
j ]]= the ring of even, symmetric power series in

[n/2] variables. The inverse limit of this system is

I∗ ∗ (O(∞) = lim← I∗∗(O(r)) = S∞[[x2
j ]]

def
= lim← Sm[[x2

j ]].

As in the complex case, any element of this ring is called a universal characteristic class. In
fact, for any real vector bundle E and any φ ∈ S∞[[x2

j ]] there is a well defined characteristic
class φ(E) which can be expressed exactly as in the complex case, using metric compatible
connections. If F ∈ R[[x]][ then (F (x2))∞ defines an element of S∞[[x2

j ]].
In topology, the most commonly encountered situations are the following.

A.

F (x) =
√

x/2
sinh(

√
x/2)

= 1 +
∑

k≥1

(−1)k 22k−1 − 1
22k−1(2k)!

Bkx
k.

The universal characteristic class (F (x))∞ is denoted by Â and is called the Â − genus.
We can write

Â = 1 + Â1 + Â2 + · · ·
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where Ak are universal, symmetric, even, homogeneous “polynomials” and as such they can
be described using universal Pontryagin classes

pm =
∑

1≤j1<···jm

x2
j1 · · ·x2

jm
.

The first couple of terms are

Â1 = −p1

24
, Â2 =

1
27 · 32 · 5(−4p2 + 7p2

1) etc.

B. Consider

F (x) =
√

x

tanh
√

x
= 1 +

1
3
x +

1
45

x2 + · · · = 1 +
∑

k≥1

(−1)k−1 22k

(2k)!
Bkx

k.

The universal class (F (x2))∞ is denoted by L and is called the L-genus. As before we can
write

L = 1 + L1 + L2 + · · ·
where the Lj ’s are universal, symmetric, even, homogeneous “polynomials”. They can be
expressed in terms of the universal Pontryagin classes. The first few terms are

L1 =
1
3
p1, L2 =

1
45

(7p2 − p2
1) etc.

8.3 Computing characteristic classes

The theory of characteristic classes is as useful as one’s ability to compute them. In this
section we will describe some methods of doing this.

Most concrete applications require the aplication of a combination of techniques from
topology, differential and algebraic geometry and Lie group theory that go beyond the scope
of this book. We will discuss in some detail a few invariant theoretic methods and we will
present one topological result more precisely the Gauss-Bonnet-Chern theorem.

8.3.1 Reductions

In applications, the symmetries of a vector bundle are implicitly described through topo-
logical properties.

For example, if a rank r complex vector bundle E splits as a Whitney sum E = E1⊕E2

with rankEi = ri then E, which has a natural U(r)- symmetry, can be given a finer structure
of U(r1)× U(r2) vector bundle.

More generally assume that a given rank r complex vector bundle E admits a G-structure
(P, ρ), where P is a principal G bundle and ρ : G → U(r) is a representation of G. Then we
can perform two types of Chern-Weil constructions: using the U(r) structure and using the
G structure and in particular we obtain two collections of characteristic classes associated
to E. One natural question is whether there is any relationship between them.

In terms of the Whitney splitting E = E1⊕E2 above, the problem takes a more concrete
form: compute the Chern classes of E in terms of the Chern classes of E1 and E2. Our
next definition formalizes the above situations.
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Definition 8.3.1. Let ϕ : H → G be a smooth morphism of (matrix) Lie groups.
(a) If P is a principal H-bundle over the smooth manifold M defined by the open cover
(Uα) and gluing cocycle

hαβ : Uαβ → H

then the principal G-bundle defined by the gluing cocycle

gαβ = ϕ ◦ hαβ : Uαβ → G

is said to be the ϕ-associate of P and is denoted by ϕ(P ).
(b) A principal G-bundle Q over M is said to be ϕ-reducible if there exists a principal
H-bundle P → M such that Q = ϕ(P ).

The morphism ϕ : H → G in the above definition induces a R-algebra morphism

ϕ∗ : I∗(G) → I∗(H).

The elements of kerϕ∗ are called universal identities.
The following result is immediate.

Proposition 8.3.2. Let P be a principal G-bundle which can be reduced to a principal
H-bundle Q. Then for every η ∈ kerϕ∗ we have

η(P ) = 0 in H∗(M).

Proof Denote by ϕ∗ the differential of ϕ at 1 ∈ H

ϕ∗ : LH → LG.

Pick a connection (Aα) on Q and denote by (Fα) its curvature. Then the collection ϕ∗(Aα)
defines a connection on P with curvature ϕ∗(Fα). Now

η(ϕ∗(Fα)) = (ϕ∗η)(Fα) = 0. ¤

The above result should be seen as a guiding principle in proving identities between
characteristic classes rather than a rigid result. What is important about this result is the
simple argument used to prove it.

We conclude this subsection with some simple but very important applications of the
above principle.

Example 8.3.3. Let E and F be two complex vector bundles over the same smooth man-
ifold M of ranks r and respectively s. Then

ct(E ⊕ F ) = ct(E) · ct(F ) (8.3.1)

where the “·” denotes the ∧-multiplication in Heven(M). Equivalently, this means

ck(E ⊕ F ) =
∑

i+j=k

ci(E) · cj(F ).



316 Characteristic classes

To check this, pick a Hermitian metric g on E and a Hermitian metric h on F . g ⊕ h is
a Hermitian metric on E ⊕ F . Hence, E ⊕ F has an U(r + s) structure reducible to an
U(r)× U(s) structure.

The Lie algebra of U(r) × U(s) is the direct sum u(r) ⊕ u(s). Any element X in this
algebra has a block decomposition XE

X =
[

Xr 0
0 Xs

]
= Xr ⊕Xs

where Xr (respectively Xs) is an r × r (resp. s × s) complex, skew-adjoint matrix. Let ı

denote the natural inclusion u(r) ⊕ u(s) ↪→ u(r + s) and denote by c
(ν)
t ∈ I∗(U(ν))[t] the

Chern polynomial.
We have

ı∗(c(r+s)
t )(Xr ⊕Xs) = det

(
1r+s − t

2πi
Xr ⊕Xs

)

= det
(
1r − t

2πi
Xr

)
· det

(
1s − t

2πi
Xs

)

= c
(r)
t · c(s)

t (s).

The equality (8.3.1) now follows using the argument in the proof of Proposition 8.3.2.

Exercise 8.3.1. Let E and F be two complex vector bundles over the same manifold M .
Show that

Td(E ⊕ F ) = Td(E) ·Td(F ).

Exercise 8.3.2. Let E and F be two real vector bundles over the same manifold M . Prove
that

pt(E ⊕ F ) = pt(E) · pt(F ) (8.3.2)

where pt denotes the Pontryagin polynomials.

Exercise 8.3.3. Let E and F be two real vector bundles over the same smooth manifold
M . Show that

L(E ⊕ F ) = L(E) · L(F )

Â(E ⊕ F ) = Â(E) · Â(F ).

Example 8.3.4. The natural inclusion Rn ↪→ Cn induces an embedding ı : O(n) ↪→ U(n).
(An orthogonal map T : Rn → Rn extends by complexification to an unitary map TC :
Cn → Cn). This is mirrored at the Lie algebra level by an inclusion

o(n) ↪→ u(n)

and we obtain a morphism
ı∗ : I∗(U(n)) → I∗(O(n))

We claim that
i∗(c2k+1) = 0



Computing characteristic classes 317

and
ı∗(c2k) = (−1)kpk.

Indeed, for X ∈ o(n) we have

ı∗(c2k+1)(X) =
(
− 1

2πi

)2k+1 ∑

1≤i1<···<i2k+1≤n

λi1(X) · · ·λi2k+1
(X)

where λj(X) are the eigenvalues of X over C. Since X is in effect a real skew-symmetric
matrix we have

λj(X) = λj(X) = −λj(X).

Consequently

ı∗(c2k+1)(X) = ı∗(c2k+1(X)) =
(
− 1

2πi

)2k+1 ∑

1≤i1<···<i2k+1≤n

λi1(X) · · ·λi2k+1
(X)

= (−1)2k+1

(
− 1

2πi

)2k+1 ∑

1≤i1<···<i2k+1≤n

λi1(X) · · ·λi2k+1
(X) = −ı∗(c2k+1)(X).

The equality ı∗(c2k) = (−1)kpk is proved similarly.

From the above example we deduce immediately the following consequence.

Proposition 8.3.5. If E → M is a real vector bundle and E ⊗ C is its complexification
then

pk(E) = (−1)kc2k(E ⊗ C), k = 1, 2, . . . . (8.3.3)

In a more concentrated form this means

pt(E) = p−t(E) = cit(E ⊗ C).

Exercise 8.3.4. Let E → M be a complex vector bundle of rank r.
(a) Show that ck(E∗) = (−1)kck(E) i. e.

ct(E∗) = c−t(E).

(b) One can also regard E as a real, oriented vector bundle ER. Prove that
∑

k

(−1)kt2kpk(ER) = ct(E) · c−t(E)

i.e.
pit(ER) = ct(E) · c−t(E).

and moreover
cr(E) = e(ER).
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Exercise 8.3.5. (a) The natural morphisms I∗∗(U(r)) → I∗∗(O(r)) described above induce
a morphism

Φ∞ : I∗∗(U(∞)) → I∗∗(O(∞)).

As we already know, for any F ∈ R[[x]][, (F )∞ is an element of I∗∗(U(∞)) and if moreover
F is even then (F )∞ can be regarded as an element of I∗∗(O(∞)). Show that for every
F ∈ R[[x]][

Φ∞((F )∞) = (F · F−)∞ ∈ I∗∗(O(∞))

where F−(x) = F (−x).
(b) Let E be a real vector bundle. Deduce from part (a) that

Td(E ⊗ C) = Â(E)2.

Example 8.3.6. Consider the inclusion

ı : SO(2k)× SO(2`)) ↪→ SO(2k + 2`).

This induces a ring morphism

ı∗ : I∗(SO(2k + 2`) → I∗(SO(2k)× SO(2`)).

Note that
I∗(SO(2k)× SO(2`)) ∼= I∗(SO(2k))⊗R I∗(SO(2`).

Denote by e(ν) the Euler class in I∗(SO(2ν)). We want to prove that

ı∗(e(k+`)) = e(k) ⊗ e(`).

Let X = Xk ⊕X` ∈ so(2k) ⊕ so(2`). Modulo a conjugation by (S, T ) ∈ SO(2k) × SO(2`)
we may assume that

Xk = λ1J ⊕ · · · ⊕ λkJ

and
X` = µ1J ⊕ · · · ⊕ µ`J

where as usual J denotes the 2× 2 matrix

J =
[

0 −1
1 0

]

We have

ı∗(e(k+`))(X) =
(
− 1

2π

)k+`

λ1 · · ·λk · µ1 · · ·µ` = e(k)(Xk) · e(`)(X`)

= e(k) ⊗ e(`)(Xk ⊕X`).

The above example has an interesting consequence.
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Proposition 8.3.7. Let E and F be two real, oriented vector bundle over the same manifold
M and having even ranks. Then

e(E ⊕ F ) = e(E) · e(F )

where as usual the · denotes the ∧-multiplication in Heven(M).

Example 8.3.8. Let E be a rank 2k real, oriented vector bundle over the smooth manifold
M . We claim that if E admits a nowhere vanishing section ξ then e(E) = 0.

To see this, fix an Euclidean metric on E so that E is now endowed with an SO(2k)-
structure. Denote by L the real line subbundle of E generated by the section ξ. Clearly, L
is a trivial line bundle and E splits as an orthogonal sum

E = L⊕ L⊥.

The orientation on E and the orientation on L defined by ξ induce an orientation on L⊥ so
that L⊥ has an SO(2k − 1)-structure.

What we have just said shows that the SO(2k) structure of E can be reduced to an
SO(1)×SO(2k− 1) ∼= SO(2k− 1)-structure. Denote by ı∗ the inclusion induced morphism

I∗(SO(2k)) → I∗(SO(2k − 1)).

Since ı∗(e(k)) = 0 we deduce from the Proposition 8.3.2 that e(E) = 0.

The result proved in the above example can be reformulated more suggestively as follows.

Corollary 8.3.9. Let E be a real oriented vector bundle of even rank over the smooth
manifold M . If e(E) 6= 0 then any section of E must vanish somewhere on M !

8.3.2 The Gauss-Bonnet-Chern theorem

If E → M is a real oriented vector bundle over a smooth, compact, oriented manifold M
then there are two apparently conflicting notions of Euler class naturally associated to E.
The topological Euler class

etop(E) = ζ∗0τE

where τE is the Thom class of E and ζ0 : M → E is the zero section.
The geometric Euler class

egeom(E) =
{ 1

(2π)r Pf(−F (∇)) if rank (E) is even
0 if rank (E) is odd

where ∇ is a connection on E compatible with some metric and 2r = rank (E). The next
result, which generalizes the Gauss-Bonnet theorem, will show that these two notions of
Euler class coincide.

Theorem 8.3.10. (Gauss-Bonnet-Chern)Let E
π→ M be a real, oriented vector bundle

over the compact oriented manifold M . Then

etop(E) = egeom(E).
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Proof We will distinguish two cases.
A rank (E) is odd. Consider the automorphism of E

i : E → E u 7→ −u ∀u ∈ E.

Since the fibers of E are odd dimensional we deduce that i reverses the orientation in the
fibers. In particular, this implies

π∗i∗τE = −π∗τE = π∗(−τE)

where π∗ denotes the integration along fibers. Since π∗ is an isomorphism (Thom isomor-
phism theorem) we deduce

i∗τE = −τE .

Hence
etop(E) = −ζ∗0 i∗τE . (8.3.4)

On the other hand notice that
ζ∗0 i∗ = ζ0.

Indeed
ζ∗0 i∗ = (iζ0)∗ = (−ζ0)∗ = (ζ)∗ (ζ0 = −ζ0).

The equality etop = egeom now follows from (8.3.4).
B. rank (E) = 2k. We will use a variation of the original argument due to Chern ([19]).
Let ∇ denote a connection on E compatible with a metric g. The strategy of proof is very
simple. We will explicitly construct a closed form ω ∈ Ω2k

cpt(E) such that
(i) π∗ω = 1 ∈ Ω0(M).
(ii) ζ∗0ω = e(∇) = (2π)−kPf(−F (∇)).
The Thom isomorphism theorem coupled with (i) implies that ω represents the Thom class
in H2k

cpt(E). (ii) simply states the sought for equality etop = egeom.
Denote by S(E) the unit sphere bundle of E

S(E) = {u ∈ E ; |u|g = 1}.

S(E) is a compact manifold and

dimS(E) = dimM + 2k − 1.

Denote by π0 the natural projection S(E) → M and by π∗0(E) → S(E) the pullback of E to
S(E) via the map π0. π∗0(E) has an SO(2k)-structure and moreover it admits a tautological,
nowhere vanishing section

Υ : S(Ex) 3 e 7→ e ∈ Ex ≡ (π∗0(E)x)e (x ∈ M).

Thus according to Example 8.3.8 we must have

egeom(π∗0(E)) = 0 ∈ H2k(S(E))
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where egeom(π∗0E) denotes the differential form

egeom(π∗0∇) =
1

(2π)k
Pf(−F (π∗0∇)).

Hence there must exist ψ ∈ Ω2k−1(S(E)) such that

dψ = egeom(π∗0E).

The decisive step in the proof of Gauss-Bonnet-Chern theorem is contained in the following
lemma.

Lemma 8.3.11. There exists Ψ = Ψ(∇) ∈ Ω2k−1(S(E)) such that

dΨ(∇) = egeom(π∗0(E)) (8.3.5)

and ∫

S(E)/M
Ψ(∇) = −1 ∈ Ω0(M). (8.3.6)

The form Ψ(∇) is sometimes referred to as the global angular form of the pair (E,∇).
For the clarity of the exposition we will conclude the proof of the Gauss-Bonnet-Chern
theorem assuming Lemma 8.3.11 which will be proved later on.

Denote by r : E → R+ the norm function

E 3 e 7→ |e|g

If we set E0 = E \ {zero section} then we can identify

E0 ∼= (0,∞)× S(E) e 7→ (|e|, 1
|e|e).

Consider the smooth cutoff function

ρ = ρ(r) : [0,∞) → R

such that ρ(r) = −1 for r ∈ [0, 1/4] and ρ(r) = 0 for r ≥ 3/4. Finally define

ω = ω(∇) = −ρ′(r)dr ∧Ψ(∇)− ρ(r)π∗(e(∇)).

ω is well defined since ρ′(r) ≡ 0 near the zero section. Obviously ω has compact support
on E and satisfies the condition (ii) since

ζ∗0ω = −ρ(0)ζ∗0π∗e(∇) = e(∇).

From the equality ∫

E/M
ρ(r)π∗e(∇) = 0
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we deduce ∫

E/M
ω = −

∫

E/M
ρ′(r)dr ∧Ψ(∇)

= −
∫ ∞

0
ρ′(r)dr ·

∫

S(E)/M
Ψ(∇)

= −(ρ(1)− ρ(0))
∫

S(E)/M
Ψ(∇)

(8.3.6)
= 1.

To complete the program outlined at the beginning of the proof we need to show that ω is
closed.

dω = ρ′(r)dr ∧ dΨ(∇)− ρ′(r) ∧ π∗e(∇)

(8.3.5)
= ρ′(r)dr ∧ {π∗0e(∇)− π∗e(∇)}.

The above form is identically zero since π∗0e(∇) = π∗e(∇) on the support of ρ′. Thus ω is
closed and the theorem is proved. ¤

Proof of Lemma 8.3.11 We denote by ∇ the pullback of ∇ to π∗0E. The tautological
section Υ : S(E) → π∗0E can be used to produce an orthogonal splitting

π∗0E = L⊕ L⊥

where L is the line bundle spanned by Υ while L⊥ is its orthogonal complement in π∗0E
with respect to the pullback metric g. Denote by

P : π∗0E → π∗0E

the orthogonal projection onto L⊥. Using P we can produce a new metric compatible
connection ∇̂ on π∗0E by

∇̂ = (trivial connection on L)⊕ P∇P.

We have an equality of differential forms

π∗0e(∇) = e(∇) =
1

(2π)k
Pf(−F (∇)).

Since the curvature of ∇̂ splits as a direct sum

F (∇̂) = 0⊕ F ′(∇̂)

where F ′(∇̂) denotes the curvature of ∇̂ |L⊥ we deduce

Pf(F (∇̂)) = 0.

We denote by ∇t the connection ∇̂ + t(∇− ∇̂) so that ∇0 = ∇̂ and ∇1 = ∇. If F t is the
curvature of ∇t we deduce from the transgression formula (8.1.12) that

π∗0e(∇) = e(∇)− e(∇̂)
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= d

{(−1
2π

)k

k

∫ 1

0
Pf(∇− ∇̂, F t, . . . , F t)dt

}
.

We claim that the form

Ψ(∇) =
(−1

2π

)k

k

∫ 1

0
Pf(∇− ∇̂, F t, . . . , F t)dt

satisfies all the conditions in Lemma 8.3.11. By construction

dΨ(∇) = π∗0e(∇)

so all that we need to prove is
∫

S(E)/M
Ψ(∇) = −1 ∈ Ω0(M).

It suffices to show that for each fiber Ex of E we have
∫

Ex

Ψ(∇) = −1.

Along this fiber π∗0E is naturally isomorphic with a trivial bundle

π∗0E |Ex
∼= (Ex × Ex → Ex).

Moreover ∇ restricts as the trivial connection. By choosing an orthonormal basis of Ex

we can identify π∗0E |Ex with the trivial bundle R2k over R2k. The unit sphere S(Ex) is
identified with the unit sphere S2k−1 ⊂ R2k. The splitting L⊕ L⊥ over S(E) restricts over
S(Ex) as the splitting

R2k = ν ⊕ TS2k−1

where ν denotes the normal bundle of S2k−1 ↪→ R2k. The connection ∇̂ is then the direct
sum between the trivial connection on ν and the Levi-Civita connection on TS2k−1.

Fix a point p ∈ S2k−1 and denote by (x1, . . . , x2k−1) a collection of normal coordinates
near p such that the basis ( ∂

∂xi
|p) is positively oriented. Set ∂i = ∂

∂xi
for i = 1, . . . , 2k − 1.

Denote the unit outer normal vector field by ∂0. For α = 0, 1, . . . , 2k−1 set fα = ∂α |p. The
vectors fα form a positively oriented orthonormal basis of R2k.

We will use Latin letters to denote indices running from 1 to 2k − 1 and Greek letters
indices running from 0 to 2k − 1.

∇i∂α = (∇i∂α)ν + (∇i∂α)τ

where the superscript ν indicates the normal component while the superscript τ indicates
the tangential component. Since at p

0 = ∇̂i∂j = (∇i∂j)τ

we deduce
∇i∂j = (∇i∂j)ν at p.



324 Characteristic classes

Hence
∇i∂j = (∇i∂j , ∂0)∂0 = −(∂j ,∇i∂0)∂0.

Recall that ∇ is the trivial connection in R2k and we have

∇i∂0 |p=
(

∂

∂fi
∂0

)
|p= fi = ∂i |p .

Consequently
∇i∂j = −δji∂0 at p.

If we denote by θi the local frame of TS2k−1 to (∂i) then we can rephrase the above equality
as

∇∂j = −(θ1 + · · ·+ θ2k−1)⊗ ∂0.

On the other hand
∇i∂0 = ∂i

i.e.
∇∂0 = θ1 ⊗ ∂1 + · · ·+ θ2k−1 ⊗ ∂2k−1.

Since (x1, · · · , x2k−1) are normal coordinates with respect to the Levi-Civita connection ∇̂
we deduce that ∇̂∂α = 0, ∀α so that

A = (∇− ∇̂) |p=




0 −θ1 · · · −θ2k−1

θ1 0 · · · 0
θ2 0 · · · 0
...

...
...

...
θ2k−1 0 · · · 0




.

Denote by F 0 the curvature of ∇0 = ∇̂ at p. Then

F 0 = 0⊕R

where R denotes the Riemann curvature of ∇̂ at p. The computations in Example 4.2.13
show that the second fundamental form of the embedding

S2k−1 ↪→ R2k

coincides with the induced Riemann metric (which is the first fundamental form). Using
Teorema Egregium we get

〈R(∂i, ∂j)∂k, ∂`〉 = δi`δjk − δikδj`.

In matrix format we have
F 0 = 0⊕ (Ωij)

where Ωij = θi ∧ θj . The curvature F t at p of ∇t = ∇̂ + tA can be computed using the
equation (8.1.11) of subsection 8.1.4 and we get

F t = F 0 + t2A ∧A = 0⊕ (1− t2)F 0.
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We can now proceed to evaluate Ψ(∇).

Ψ(∇) |p=
(−1

2π

)k

k

∫ 1

0
Pf(A, (1− t2)F 0, · · · , (1− t2)F 0)dt

=
(−1

2π

)k

k

(∫ 1

0
(1− t2)k−1dt

)
Pf(A, F 0, F 0, · · · , F 0). (8.3.7)

We need to evaluate the pfaffian in the right-hand-side of the above formula. Set for
simplicity F = F 0. Using the polarization formula and Exercise 2.2.19 in Subsection 2.2.4
we get

Pf(A,F, F, · · · , F ) =
(−1)k

2kk!

∑

σ∈S2k

ε(σ)Aσ0σ1Fσ2σ3 · · ·Fσ2k−2σ2k−1
.

For i = 0, 1 define
Si = {σ ∈ S2k ; σi = 0}.

We deduce

2kk!Pf(A,F, · · · , F ) = (−1)k
∑

σ∈S0

ε(σ)(−θσ1) ∧ θσ2 ∧ θσ3 ∧ · · · ∧ θσ2k−2 ∧ θσ2k−1

+(−1)k
∑

σ∈S1

ε(σ)θσ0 ∧ θσ2 ∧ θσ3 ∧ · · · ∧ θσ2k−2 ∧ θσ2k−1 .

For each σ ∈ S0 we get a permutation

φ : (σ1, σ2, · · · , σ2k−1) ∈ S2k−1

such that ε(σ) = ε(φ). Similarly, for σ ∈ S1 we get a permutation

φ = (σ0, σ2, · · · , σ2k−1) ∈ S2k−1

such that ε(σ) = ε(φ). Hence

2kk!Pf(A,F, · · · , F ) = 2(−1)k+1
∑

φ∈S2k−1

ε(φ)θφ1 ∧ · · · · · · θφ2k−1

= 2(−1)k+1(2k − 1)!θ1 ∧ · · · ∧ θ2k−1

= 2(−1)k+1dvolS2k−1 .

Using the last equality in (8.3.7) we get

Ψ(∇) |p=
(−1

2π

)k

k

(∫ 1

0
(1− t2)k−1dt

)
· 2(−1)k+1(2k − 1)!dvolS2k−1

= − (2k)!
(4π)kk!

(∫ 1

0
(1− t2)k−1dt

)
dvolS2k−1 .
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Using the Exercise 4.1.15 we get that

V2k−1 =
∫

S2k−1

dvolS2k−1 =
2πk

(k − 1)!

and consequently
∫

S2k−1

Ψ(∇) = −V2k−1
(2k)!

(4π)kk!

(∫ 1

0
(1− t2)k−1dt

)

= − (2k)!
22k−1k!(k − 1)!

(∫ 1

0
(1− t2)k−1dt

)
.

The above integral can be evaluated inductively using the substitution t = cosϕ

Ik =
(∫ 1

0
(1− t2)k−1dt

)
=

∫ π/2

0
(cosϕ)2k−1dϕ

= (cosϕ)2k−2 sinϕ|π/2
0 + (2k − 2)

∫ π/2

0
(cosϕ)2k−3(sinϕ)2dϕ

= (2k − 1)Ik−1 − (2k − 2)Ik

so that
Ik =

2k − 3
2k − 2

Ik−1.

One now sees immediately that
∫

S2k−1

Ψ(∇) = −1.

Lemma 8.3.11 is proved. ¤.

Corollary 8.3.12. (Chern [Ch])Let (M, g) be a compact, oriented Riemann Manifold of
dimension 2n. If R denotes the Riemann curvature then

χ(M) =
1

(2π)n

∫

M
Pf(−R).

The next exercises provide another description of the Euler class of a real oriented vector
bundle E → M over the compact oriented manifold M in terms of the homological Poincaré
duality. Set r = rankE and let τE be a compactly supported form representing the Thom
class.

Exercise 8.3.6. Let Φ : N → M be a smooth map, where N is compact and oriented. We
denote by Φ# the bundle map Φ∗E → E induced by the pullback operation. Show that
Φ∗τE

def
= (Φ#)∗τE ∈ Ωr(Φ∗E) is compactly supported and represents the Thom class of

Φ∗E.

In the next exercise we will also assume M is endowed with a Riemann structure.
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Exercise 8.3.7. Consider a nondegenerate smooth section s of E i.e.
(i) Z = s−1(0) is a codimension r smooth submanifold of M .
(ii) There exists a connection ∇0 on E such that

∇0
Xs 6= 0 along Z

for any vector field X normal to Z (along Z).
(a) (Adjunction formula) Let ∇ be an arbitrary connection on E and denote by NZ
the normal bundle of Z ↪→ M . Show that the adjunction map

a∇ : NZ → E |Z
defined by

X 7→ ∇Xs X ∈ C∞(NZ)

is a bundle isomorphism. Conclude that Z is endowed with a natural orientation.
(b) Show that there exists an open neighborhood N of Z ↪→ NZ ↪→ TM such that

exp : N → exp(N)

is a diffeomorphism. (Compare with Lemma 7.3.30.) Deduce that the Poincaré dual of Z
in M can be identified (via the above diffeomorphism) with the Thom class of NZ .
(c) Prove that the Euler class of E coincides with the Poincaré dual of Z .

The part (c) of the above exercise generalizes the Poincare-Hopf theorem (see Corollary
7.3.33). In that case the section was a nondegenerate vector field and its zero set was a
finite collection of points. The local index of each zero measures the difference between two
orientations of the normal bundle of this finite collection of points: one is the orientation
obtained if one tautologically identifies this normal bundle with the restriction of TM to
this finite collection of points while and the other one is obtained via the adjunction map.

In many instances one can explicitly describe a nondegenerate section and its zero set
and thus one gets a description of the Euler class which is satisfactory for most topological
applications.

Example 8.3.13. Let τn denote the tautological line bundle over the complex projective
space CPn. According to Exercise 8.3.4

c1(τn) = e(τn)

when we view τn as a rank 2 oriented real vector bundle. Denote by [H] the (2n− 2)-cycle
defined by the natural inclusion

ı : CPn−1 ↪→ CPn, ; [z0 : . . . zn−1] 7→ [z0 : . . . : zn−1 : 0] ∈ CPn.

We claim that the (homological) Poincaré dual of c1(τn) is −[H]. We will achieve this by
showing that c1(τ∗n) = −c1(τn) is the Poincaré dual of [H].

Let P be a degree 1 homogeneous polynomial P ∈ C[z0, . . . , zn]. For each complex line
L ↪→ Cn+1 the polynomial P defines a complex linear map L → C and thus an element of
L∗ which we denote by P |L. We thus have a well defined map

CPn 3 L 7→ P |L∈ L∗ = τ∗n |L
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and the reader can check easily that this is a smooth section of τ∗n which we denote by [P ].
Consider the special case P0 = zn. The zero set of the section [P0] is precisely the image of
[H]. We let the reader keep track of all the orientation conventions in Exercise 8.3.7 and
conclude that c1(τ∗n) is indeed the Poincaré dual of [H].

Exercise 8.3.8. Let US = S2 \ {north pole} and UN = S2 \ {south pole} ∼= C. The
overlap UN ∩ US is diffeomorphic with the punctured plane C∗ = C \ {0}. For each map
g : C∗ → U(1) ∼= S1 denote by Lg the line bundle over S2 defined by the gluing map

gNS : UN ∩ US → U(1), gNS(z) = g(z).

Show that ∫

S2

c1(Lg) = deg g

where deg g denotes the degree of the smooth map g |S1⊂C∗→ S1.



Chapter 9

Elliptic equations on manifolds

Almost all the objects in differential geometry are defined by expressions involving partial
derivatives. The curvature of a connection is the most eloquent example.

One is often led to studying such objects with specific properties. For example, we
inquired whether on a given vector bundle there exist flat connections. This situation can
be dealt with topologically, using the Chern-Weil theory of characteristic classes.

Very often, topological considerations alone are not sufficient, and one has look into the
microstructure of the problem. This is where analysis comes in and more specifically, one
is led to the study of partial differential equations. Among them, the elliptic ones play a
crucial role in modern geometry.

This chapter is an introduction to this vast and dynamic subject which has numerous
penetrating applications in geometry and topology.

9.1 Partial differential operators: algebraic aspects

9.1.1 Basic notions

We first need to introduce the concept of partial differential operator (p.d.o. for brevity) on
a smooth manifold M . To understand what we are looking for we begin with the simplest
of the situations, M = RN .

Perhaps the best known partial differential operator is the Laplacian

∆ : C∞(RN ) → C∞(RN ), ∆u = −
∑

i

∂i
2u,

where as usual ∂i = ∂
∂xi

. This is a scalar operator in the sense that it acts on scalar valued
functions. Note that our definition of the Laplacian differs from the usual one by a sign.
The Laplacian defined as above is sometimes called the geometric Laplacian.

Next in line is the exterior derivative

d : Ωk(RN ) → Ωk+1(RN ).

This is a vectorial operator in the sense it acts on vector valued functions. A degree k form
ω on RN can be viewed as a collection of

(
N
k

)
smooth functions or equivalently, as a smooth

329
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function ω : RN → R(N
k ). Thus d can be viewed as an operator

d : C∞
(
RN ,R(N

k )
)
→ C∞

(
RN ,R( N

k+1)
)
.

It is convenient to think of C∞(RN ,Rν) as the space of smooth sections of the trivial bundle
Rν over RN

For any smooth K = R,C-vector bundles E, F over a smooth manifold M we denote
by Op(E,F ) the space of K-linear operators

C∞(E) → C∞(F ).

Op(E, E) is an associative K-algebra.
The spaces C∞(E), C∞(F ) are more than just K-vector spaces. They are modules over

the ring of smooth functions C∞(M). The partial differential operators are elements of Op
which interact in a special way with the above C∞(M)-module structures. First define

PDO0(E, F ) = Hom (E, F ).

Given T ∈ PDO0, u ∈ C∞(E) and f ∈ C∞(M) we have

T (fu)− f(Tu) = 0

or, in terms of commutators

[T, f ]u = T (fu)− f(Tu) = 0. (9.1.1)

Each f ∈ C∞(M) defines a map

ad(f) : Op (E,F ) → Op (E, F )

by
ad(f)T = T ◦ f − f ◦ T = [T, f ] ∀T ∈ Op (E, F ).

Above, f denotes the C∞(M)-module multiplication by f . We can rephrase the equality
(9.1.1) as

PDO0(E,F ) = {T ∈ Op (E, F ) ; ad(f)T = 0 ∀f ∈ C∞(M)} def
= ker ad.

Define

PDO(m)(E, F ) = ker adm+1 def
= {T ∈ ker ad(f0)ad(f1) · · · ad(fm) ; ∀fi ∈ C∞(M)}.

The elements of PDO(m) are called partial differential operators of order ≤ m. We set

PDO (E, F ) =
⋃

m≥0

PDO(m)(E, F ).

Remark 9.1.1. Note that we could have defined PDO(m) inductively as

PDO(m) = {T ∈ Op ; [T, f ] ∈ PDO(m−1) ∀f ∈ C∞(M)}.
This point of view is especially useful in induction proofs. ut
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Example 9.1.2. Denote by R the trivial line bundle over RN . The sections of R are
precisely the real functions on RN . We want to analyze PDO(1) = PDO(1)(R,R).

Let L ∈ PDO(1), u, f ∈ C∞(RN ). Then

[L, f ]u = σ(f) · u

where σ(f) ∈ C∞(RN ). On the other hand, for any f, g ∈ C∞(RN )

σ(fg)u = [L, fg]u = [L, f ](gu) + f([L, g]u) = σ(f)g · u + fσ(g) · u.

Hence σ(fg) = σ(f)g+fσ(g). In other words the map f 7→ σ(f) is a derivation of C∞(RN )
and consequently (see Exercise 3.1.2) there exists a smooth vector field X on RN such that

σ(f) = X · f, ∀f ∈ C∞(RN ).

Let µ = L(1) ∈ C∞(RN ). Then for all u ∈ C∞(RN ) we have

Lu = L(u · 1) = [L, u] · 1 + u · L(1) = X · u + µ · u.

ut

Lemma 9.1.3. Any L ∈ PDO(m)(E,F ) is a local operator i.e. ∀u ∈ C∞(E)

suppLu ⊂ suppu.

Proof We argue by induction over m. For m = 0 the result is obvious. Let L ∈
PDO(m+1) and u ∈ C∞(E). For every f ∈ C∞(M) we have

L(fu) = [L, f ]u + fLu.

Since [L, f ] ∈ PDO(m) we deduce by induction

suppL(fu) ⊂ suppu ∪ supp f∀f ∈ C∞(M).

For any open set O such that O ⊃ suppu we can find f ≡ 1 on suppu and f ≡ 0 outside
O so that fu ≡ u). This concludes the proof of the lemma.

ut

The above lemma shows that in order to analyze the action of a p.d.o. one can work
in local coordinates. Thus understanding the structure of an arbitrary p.d.o. boils down
to understanding the action of a p.d.o. in PDO(m)(Kp,Kq), where Kp and Kq are trivial
K-vector bundles over RN . This is done in the exercises at the end of this subsection.

Proposition 9.1.4. Let E, F, G be smooth K-vector bundles over the same manifold M .
If P ∈ PDO(m)(F, G) and Q ∈ PDO(n)(E,F ) then P ◦Q ∈ PDO(m+n)(E,G).
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Proof We argue by induction over m+n. For m+n = 0 the result is obvious. In general,
if f ∈ C∞(M)

[P ◦Q, f ] = [P, f ] ◦Q + P ◦ [Q, f ].

By induction, the operators in the right-hand-side have orders ≤ m+n−1. The proposition
is proved.

ut

Corollary 9.1.5. The operator

L =
∑

|α|≤m

aα(x)∂α : C∞(RN ) → C∞(RN ) (∂α = ∂α1
1 · · · ∂αN

N )

(α = (α1, . . . , αN ) ∈ ZN
+ , |α| = ∑

αi) is a p.d.o. of order ≤ m.

Proof According to the computation in Example 9.1.2 each partial derivative ∂i is a 1st
order p.d.o. According to the above proposition multiple compositions of such operators
are again p.d.o.’s.

ut

Lemma 9.1.6. Let E, F → M be two smooth vector bundles over the smooth manifold M .
Then for any P ∈ PDO (E, F ) and any f, g ∈ C∞(M)

ad(f) · (ad(g)P ) = ad(g) · (ad(f)P ).

Proof
ad(f) · (ad(g)P ) = [[P, g], f ] = [[P, f ], g] + [P, [f, g]

= [[P, f ], g] = ad(g) · (ad(f)P ).

ut

From the above lemma we deduce that if P ∈ PDO(m) then for any f1, . . . , fm ∈ C∞(M)
the bundle morphism

ad(f1)ad(f2) · · · ad(fm)P

does not change if we permute the f ’s.

Proposition 9.1.7. Let P ∈ PDO(m)(E, F ), fi, gi ∈ C∞(M) (i = 1, . . . ,m) such that at
a point x0 ∈ M

dfi(x0) = dgi(x0) ∈ T ∗x0
M ∀i = 1, . . . , m.

Then
{ad(f1)ad(f2) · · · ad(fm)P}|x0= {ad(g1)ad(g2) · · · ad(gm)P}|x0 .

In the proof we will use the following technical result which we leave to the reader as an
exercise.
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Lemma 9.1.8. For each x0 ∈ M consider the ideals of C∞(M)

mx0 = {f ∈ C∞(M) ; f(x0) = 0}

Jx0 = {f ∈ C∞(M) ; f(x0) = 0, df(x0) = 0}
Then

Jx0 = m2
x0

,

i.e. any function f which vanishes at x0 together with its derivatives can be written as

f =
∑

j

gjhj gj , hj ∈ mx0 .

Exercise 9.1.1. Prove the above lemma. ut

Proof Let P ∈ PDO(m) and fi, gi ∈ C∞(M) such that

dfi(x0) = dgi(x0) ∀i = 1, . . . , m.

Since
ad(const.) = 0

we may assume (eventually altering the f ’s and the g’s by additive constants) that

fi(x0) = gi(x0) ∀i.

We will show that

{ad(f1)ad(f2) · · · ad(fm)P}|x0= {ad(g1)ad(f2) · · · ad(fm)P}|x0 .

Iterating we get the desired conclusion.
Let φ = f1 − g1 and set Q = ad(f2) · · · ad(fm)P ∈ PDO(1). We have to show that

{ad(φ)Q}|x0= 0. (9.1.2)

Note that φ ∈ Jx0 so according to the above lemma we can write

φ =
∑

j

αjβj αj , βj ∈ mx0 .

We have

{ad(φ)Q}|x0=





∑

j

ad(αjβj)Q



 |x0

=
∑

j

{[Q, αj ]βj}|x0 +
∑

j

{αj [Q, βj ]}|x0= 0.

This proves the equality (9.1.2) and hence the proposition.
ut
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The proposition we have just proved has an interesting consequence. Given P ∈
PDO(m)(E,F ), x0 ∈ M and fi ∈ C∞(M) (i = 1, . . . , m) the linear map

{ 1
m!

ad(f1) · · · ad(fm)P}|x0 : Ex0 → Fx0

depends only on the quantities ξi = dfi(x0) ∈ T ∗x0
M . Hence for any ξi ∈ T ∗x0

M (i = 1, . . . , m)
the above expression unambiguously induces a linear map

σ(P )(ξ1, . . . , ξm)(P ) : Ex0 → Fx0

which moreover is symmetric in the variables ξi. Using the polarization trick of Chapter 8
we see this map is uniquely determined by the polynomial

σ(P )(ξ) = σm(P )(ξ) = σ(P )(ξ, · · · , ξ︸ ︷︷ ︸
m

).

If we denote by π : T ∗M → M the natural projection then for each P ∈ PDO(m)(E, F ) we
have a well defined map

σm(P )(·) ∈ Hom(π∗E, π∗F )

where π∗E and π∗F denote the pullbacks via π. Along the fibers of T ∗M σm(P )(ξ) looks
like a degree m homogeneous “polynomial” with coefficients in Hom (Ex0 , Fx0).

Proposition 9.1.9. Let P ∈ PDO(m)(E, F ) and Q ∈ PDO(n)(F,G). Then

σm+n(Q ◦ P ) = σn(Q) ◦ σm(P ).

Exercise 9.1.2. Prove the above proposition. ut

Definition 9.1.10. A p.d.o. P ∈ PDO(m) is said to have order m if σm(P ) 6≡ 0. In this
case σm(P ) is called the (principal) symbol of P .

The set of p.d.o.’s of order m will be denoted by PDOm.

Definition 9.1.11. Let P ∈ PDOm(E, F ). P is said to be elliptic if for any x ∈ M and
any ξ ∈ T ∗xM \ {0}

σm(P )(ξ) : Ex → Fx

is a linear isomorphism.

The following exercises provide a complete explicit description of p.d.o.’s on RN .

Exercise 9.1.3. Consider the scalar p.d.o. on RN described in Corollary 9.1.5

L =
∑

|α|≤m

aα(x)∂α.

Show that
σm(P )(ξ) =

∑

|α|≤m

aα(x)ξα =
∑

|α|≤m

aα(x)ξα1
1 · · · ξαN

N .

ut
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Exercise 9.1.4. Let C : C∞(RN ) → C∞(RN ) be a p.d.o. of order m. Its principal symbol
has the form

σm(L)(ξ) =
∑

|α|≤m

aα(x)ξα.

Show that
L−

∑

|α|=m

aα(x)∂α

is an p.d.o. of order ≤ m − 1. Conclude that the only scalar p.d.o. on RN are those
indicated in Corollary 9.1.5. ut

Exercise 9.1.5. Let L ∈ PDO(m)(E, F ) and u ∈ C∞(E). Show the operator

C∞(M) 3 f 7→ [L, f ]u ∈ C∞(F )

belongs to PDO(m)(RM , F ). ut

Exercise 9.1.6. Let Kp and Kq denote the trivial K-vector bundles over RN of rank p and
respectively q. Show that any L ∈ PDO(m)(Rp,Rq) has the form

L =
∑

|α|≤m

Aα(x)∂α

where for any α Aα ∈ C∞(RN , Hom(Kp,Kq)).
Hint: Use the previous exercise to reduce the problem to the case p = 1.

ut

9.1.2 Examples

At a first glance, the notions introduced so far may look too difficult to “swallow”. To help
the reader get a friendlier feeling towards them we included in this subsection a couple of
classical examples which hopefully will ease this process. More specifically, we will compute
the principal symbols of some p.d.o.’s we have been extensively using in this book.

In the sequel · will denote the multiplication by a smooth scalar function.

Example 9.1.12. (The Euclidean Laplacian) This is the second order p.d.o.

∆ : C∞(RN ) → C∞(RN ) ∆ = −
∑

i

∂i
2

Let f ∈ C∞(RN ). Then (∂i = ∂
∂xi

)

ad(f)(∆) = −
∑

i

ad(f) (∂i)
2 = −

∑

i

{ad(f)(∂i) ◦ ∂i + ∂i ◦ ad(f)(∂i)}

= −
∑

i

{fxi · ∂i + ∂i(fxi ·)}
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= −
∑

i

{fxi · ∂i + fxixi ·+fxi · ∂i}

= (∆f) · −2
∑

i

fxi · ∂i.

Hence
ad(f)2(∆) = ad(f)(∆f ·)− 2

∑

i

fxi · ad(f) (∂i)

= −2
∑

i

(fxi)2· = −2|df |2 · .

If we set ξ = df in the above equality we deduce

σ2(∆)(ξ) = −|ξ|2 · .

In particular this shows ∆ is an elliptic operator. ut

Example 9.1.13. (Covariant derivatives) Consider a vector bundle E → M over the
smooth manifold M and ∇ a connection on E. We can view ∇ as a p.d.o.

∇ : C∞(E) → C∞(T ∗M ⊗ E).

Its symbol can be read from ad(f)∇, f ∈ C∞(M). For any u ∈ C∞(E)

(ad(f)∇)u = ∇(fu)− f(∇u) = df ⊗ u.

By setting ξ = df we deduce
σ1(∇)(ξ) = ξ⊗,

i.e. the symbol is the tensor multiplication by ξ. ut

Example 9.1.14. (The exterior derivative) Let M be a smooth manifold. The exterior
derivative

d : Ω∗(M) → Ω∗(M)

is a first order p.d.o. To compute its symbol consider ω ∈ Ωk(M) and f ∈ C∞(M). Then

(ad(f)d)ω = d(fω)− fdω = df ∧ ω.

If we set ξ = df we deduce σ1(d) = e(ξ) = the left exterior multiplication by ξ. ut

Example 9.1.15. Consider an oriented, n-dimensional Riemann manifold (M, g). As in
Chapter 4 we can produce an operator

δ = ∗d∗ : Ω∗(M) → Ω∗(M)

where ∗ is the Hodge ∗-operator

∗ : Ω∗(M) → Ωn−∗(M).
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δ is a first order p.d.o. and moreover

σ1(δ) = ∗σ1(d)∗ = ∗e(ξ) ∗ .

This description can be further simplified.
Fix ξ ∈ T ∗xM and denote by ξ∗ ∈ TxM its metric dual. For simplicity we assume

|ξ| = |ξ∗| = 1. Extend ξ1 = ξ to an oriented orthonormal basis (ξ1, . . . , ξn) of T ∗xM and
denote by ξi the dual basis of TxM .

Consider ω ∈ ΛkT ∗xM a monomial dξI where I = (i1, . . . , ik) denotes as usual an ordered
multi-index. Note that if 1 6∈ I then

σ1(ξ1)ω = 0. (9.1.3)

If 1 ∈ I e.g. I = (1, . . . , k) then

∗e(ξ)(∗ω) = ∗(ξ1 ∧ ξk+1 ∧ · · · ∧ ξn) = (−1)(n−k)(k−1)ξ2 ∧ · · · ∧ ξk

= −(−1)νn,ki(ξ∗)ω (9.1.4)

where νn,k = nk + n + 1 is the exponent introduced in Subsection 4.1.5 while i(ξ∗) denotes
the interior derivative along ξ∗. Putting together (9.1.3) and (9.1.4) we deduce

σ1(δ)(ξ) = −(−1)νn,ki(ξ∗). (9.1.5)

ut

Example 9.1.16. (The Hodge-DeRham operator) Let (M, g) be as in the above
example. The Hodge-DeRham operator is

d + d∗ : Ω∗(M) → Ω∗(M)

where d∗ = (−1)νn,kδ. Hence d + d∗ is a first order p.d.o. and moreover

σ(d + d∗)(ξ) = σ(d)(ξ) + σ(d∗)(ξ) = e(ξ)− i(ξ∗).

The Hodge Laplacian is the operator (d + d∗)2. We call it Laplacian since

σ((d + d∗)2)(ξ) = {σ(d + d∗)(ξ)}2 = (e(ξ)− i(ξ∗))2

while Exercise 2.2.16 shows

(e(ξ)− i(ξ∗))2 = −(e(ξ)i(ξ∗) + i(ξ∗)e(ξ)) = −|ξ|2g · .
Notice that d + d∗ is elliptic (since the square of its symbol is invertible). ut

Definition 9.1.17. Let E → M be a smooth vector bundle over the Riemann manifold
(M, g). A second order p.d.o.

L : C∞(E) → C∞(E)

is called a generalized Laplacian if σ2(L)(ξ) = −|ξ|2g.
Notice that all generalized Laplacians are elliptic operators.
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9.1.3 Formal adjoints

For simplicity, all vector bundles in this subsection will be assumed complex, unless other-
wise indicated.

Let E1, E2 → M be vector bundles over a smooth oriented manifold. Fix a Riemann
metric g on M and Hermitian metrics 〈·, ·〉i on Ei, i = 1, 2. We denote by dvg = ∗1 the
volume form on M defined by the metric g. Finally, C∞

0 (Ei) denotes the space of smooth,
compactly supported sections of Ei.

Definition 9.1.18. Let P ∈ PDO (E1, E2). The operator Q ∈ PDO (E2, E1) is said to be
a formal adjoint of P if ∀u ∈ C∞

0 (E1) and ∀v ∈ C∞
0 (E2)

∫

M
〈Pu, v〉2dvg =

∫

M
〈u,Qv〉1dvg.

Lemma 9.1.19. Any P ∈ PDO (E1, E2) admits at most one formal adjoint.

Proof Let Q1, Q2 be two formal adjoints of P . Then ∀v ∈ C∞
0 (E2)

∫

M
〈u, (Q1 −Q2)v〉1dvg = 0 ∀u ∈ C∞

0 (E1).

This implies (Q1−Q2)v = 0 ∀v ∈ C∞
0 (E2). If now v ∈ C∞(E2) is not necessarily compactly

supported then , choosing (α) ⊂ C∞
0 (M) a partition of unity, we conclude using the locality

of Q = Q1 −Q2 that
Qv =

∑
αQ(αv) = 0.

ut

The formal adjoint of a p.d.o. P ∈ PDO (E1, E2) (whose existence is not yet guaranteed)
is denoted by P ∗. It is worth emphasizing that P ∗ depends on the choices of g and 〈·, ·〉i.
Proposition 9.1.20. (a) Let L0 ∈ PDO (E0, E1) and L1 ∈ PDO (E1, E2) admit formal
adjoints L∗i ∈ PDO (Ei+1, Ei) (i = 0, 1) ( with respect to a metric g on the base and metric
〈·, ·〉j on Ej, j = 0, 1, 2. Then L1L0 admits a formal adjoint and

(L1L0)∗ = L∗0L
∗
1.

(b) If L ∈ PDO(m)(E0, E1) then L∗ ∈ PDO(m)(E1, E0).

Proof (a) For any ui ∈ C∞
0 (Ei) we have

∫

M
〈L1L0u0, u2〉2dvg =

∫

M
〈L0u0, L

∗
1u0〉1dvg =

∫

M
〈u0, L

∗
0L

∗
1u2〉0dvg.

(b) Let f ∈ C∞(M). Then

(ad(f)L)∗ = (L ◦ f − f ◦ L)∗ = −[L∗, f ] = −ad(f)L∗.

Thus
ad(f0)ad(f1) · · · ad(fm)L∗ = (−1)m+1(ad(f0)ad(f1) · · · ad(fm)L)∗ = 0.

ut

The above computation yields the following result.
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Corollary 9.1.21. If P ∈ PDO(m) admits a formal adjoint then

σm(P ∗) = (−1)mσm(P )∗

where the ∗ in the right-hand-side denotes the conjugate transpose of a linear map.

Let E be a Hermitian vector bundle over the oriented Riemann manifold (M, g).

Definition 9.1.22. A p.d.o. L ∈ PDO (E, E) is said to be formally selfadjoint if L = L∗.

The above notion depends clearly on the various metrics

Example 9.1.23. Using the integration by parts formula of Subsection 4.1.5 we deduce
that the Hodge-DeRham operator

d + d∗ : Ω∗(M) → Ω∗(M)

on an oriented Riemann manifold (M, g) is formally selfadjoint with respect with the metrics
induced by g in the various intervening bundles. In fact d∗ is the formal adjoint of d. ut

Proposition 9.1.24. Let (Ei, 〈·, ·〉i) (i = 1, 2) be two arbitrary Hermitian vector bundle
over the oriented Riemann manifold (M, g). Then any L ∈ PDO (E1, E2) admits at least
(and hence exactly) one formal adjoint L∗.

Sketch of proof We prove this result only in the case when E1 and E2 are trivial vector
bundles over RN . However we do not assume the Riemann metric over RN is the Euclidean
one. The general case can be reduced to this via partitions of unity and we leave the reader
check it for him/her-self.

Let E1 = Cp and E2 = Cq. By choosing orthonormal moving frames we can assume the
metrics on Ei are the Euclidean ones. According to the exercises at the end of Subsection
9.1.1 any L ∈ PDO(m)(E1, E2) has the form

L =
∑

|α|≤m

Aα(x)∂α,

where Aα ∈ C∞(RN , Mq×p(C)). Clearly, the formal adjoint of Aα is the conjugate transpose

A∗α = A
t
α.

To prove the proposition it suffices to show that each

∂

∂xi
∈ PDO1(E1, E1)

admits a formal adjoint. It is convenient to consider the slightly more general situation.

Lemma 9.1.25. Let X = Xi ∂
∂xi

∈ Vect (RN ) and denote by ∇X the first order p.d.o.

∇Xu = Xi ∂

∂xi
u u ∈ C∞

0 (Cp).

Then
∇X = −∇X − divg(X)

where divg(X) denotes the divergence of X with respect to the metric g.
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Proof of the lemma Let u, v ∈ C∞
0 (RN ,Cp). Choose R À 0 such that the Euclidean

ball BR of radius R centered at the origin contains the supports of both u and v. From the
equality

X · 〈u, v〉 = 〈∇Xu, v〉+ 〈u,∇Xv〉
we deduce ∫

RN

〈∇Xu, v〉dvg =
∫

BR

〈∇Xu, v〉dvg

=
∫

BR

X · 〈u, v〉dvg −
∫

BR

〈u,∇Xv〉dvg. (9.1.6)

Set f = 〈u, v〉 ∈ C∞
0 (RN ,C) and denote by α ∈ Ω1(RN ) the 1-form dual to X with respect

to the Riemann metric g i.e.

(α, β)g = β(X) ∀β ∈ Ω1(RN ).

Equivalently
α = gijX

idxj .

The equality (9.1.6) can be rewritten
∫

BR

〈∇Xu, v〉dvg =
∫

BR

df(X)dvg −
∫

RN

〈u,∇Xv〉dvg

=
∫

BR

(df, α)gdvg −
∫

RN

〈u,∇Xv〉dvg.

The integration by parts formula of Subsection 4.1.5 yields
∫

BR

(df, α)gdvg =
∫

∂BR

(df ∧ ∗gα) |∂BR
+

∫

BR

fd∗αdvg.

Since f ≡ 0 on a neighborhood of of ∂BR we get
∫

BR

(df, α)gdvg =
∫

BR

〈u, v〉d∗α dvg.

Since d∗α = −divg(X) (see Subsection 4.1.5) we deduce
∫

BR

X · 〈u, v〉dvg = −
∫

BR

〈u, v〉divg(X)dvg =
∫

BR

〈u,−divg(X)v〉dvg.

Putting all the above together we get
∫

RN

〈∇Xu, v〉dvg =
∫

RN

〈u, (−∇X − divg(X))v〉dvg,

i.e.
∇∗X = −∇X − divg(X) = −∇X − 1√

|g|
∑

i

∂i(
√
|g|Xi). (9.1.7)

The lemma and consequently the proposition is proved.
ut
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Example 9.1.26. Let E be a rank r smooth vector bundle over the oriented Riemann
manifold (M, g), dimM = m. Let 〈·, ·〉 denote a Hermitian metric on E and consider a
connection ∇ on E compatible with this metric. ∇ defines a first order p.d.o.

∇ : C∞(E) → C∞(T ∗M ⊗ E).

The metrics g and 〈·, ·〉 induce a metric on T ∗M ⊗ E. We want to describe the formal
adjoint of ∇ with respect to these choices of metrics.

As we have mentioned in the proof of the previous proposition this is an entirely local
issue. So we fix x0 ∈ M and denote by (x1, . . . , xm) a collection of g-normal coordinates on
a neighborhood U of x. Next, we pick a local synchronous frame of E near x0 i.e. a local
orthonormal frame (eα) such that at x0

∇ieα = 0 ∀i = 1, . . . , m.

The adjoint of the operator

dxk⊗ : C∞(E |U ) → C∞(T ∗U ⊗ E |U )

is the interior derivative (contraction) along the vector field g-dual to the 1-form dxk i.e.

(dxk⊗)∗ = Ck def
= gjk · i(∂j).

Since ∇ is a metric connection we deduce as in the proof of Lemma 9.1.25 that

∇k
∗ = −∇k − divg(∂k).

Hence
∇∗ =

∑

k

∇k
∗ ◦ Ck =

∑

k

(−∇k − divg(∂k)) ◦ Ck

= −
∑

k

(∇k + ∂k(log(
√
|g|)) ◦ Ck. (9.1.8)

In particular, since ∂kg = 0 at x0 we get

∇∗ |x0= −
∑

k

∇k ◦ Ck.

The covariant Laplacian is the second order p.d.o.

∆ = ∆∇ : C∞(E) → C∞(E), ∆ = ∇∗∇.

To justify the attribute Laplacian we will show that ∆ is indeed a generalized Laplacian.
Using (9.1.8) we deduce that over U (chosen as above) we have

∆ = −
{∑

k

(∇k + ∂k log
√
|g|) ◦ Ck

}
◦

{∑

k

dxj ⊗∇j

}
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= −
{∑

k

(∇k + ∂k log
√
|g|)

}
◦

(
gkj · ∇j

)

= −
∑

k,j

{gkj∇k + ∂kg
kj + gkj∂k log

√
|g|} ◦ ∇j

= −
∑

k,j

{gkj∇k∇j +
1√
|g|∂k(

√
|g|gkj) · ∇j}.

The symbol of ∆ can be read easily from the last equality. More precisely

σ2(∆)(ξ) = −gjkξjξk = −|ξ|2g.
Hence ∆ is indeed a generalized Laplacian. ut

In the following exercise we use the notations in the previous example.

Exercise 9.1.7. (a) Show that

gk`Γi
k` = − 1√

|g|∂k(
√
|g|gik)

where Γi
k` denote the Christoffel symbols of the Levi-Civita connection associated to the

metric g.
(b) Show that

∆∇ = −Trg(∇T ∗M⊗E∇E)

where ∇T ∗M⊗E is the connection on T ∗M ⊗ E obtained by tensoring the Levi-Civita con-
nection on T ∗M and the connection ∇E on E while

Trg : C∞(T ∗M⊗2 ⊗E) → C∞(E)

denotes the double contraction by g

Trg(Sij ⊗ u) = gijSiju.

ut

Let E and M as above.

Proposition 9.1.27. Let L ∈ PDO2(E) be a generalized Laplacian. Then there exists a
unique metric connection ∇ on E and R = R(L) ∈ End (E) such that

L = ∇∗∇+ R.

The endomorphism R is known as the Weitzenböck remainder of the Laplacian L.

Exercise 9.1.8. Prove the above proposition.
Hint Try ∇ defined by

∇fgrad(h)u =
f

2
{(∆gh)u− (ad(h)L)u} f, h ∈ C∞(M), u ∈ C∞(E).

ut
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Exercise 9.1.9. (General Green formula) Consider a compact Riemannian manifold
(M, g) with boundary ∂M . Denote by ~n the unit outer normal along ∂M . Let E, F → M
be Hermitian vector bundles over M and suppose L ∈ PDOk (E,F ). Set g0 = g |∂M ,
E0 = E |∂M and F0 = F |∂M . The Green formula states that there exists a sesquilinear map

BL : C∞(E)× C∞(F ) → C∞(∂M)

such that ∫

M
〈Lu, v〉dv(g) =

∫

∂M
BL(u, v)dv(g0) +

∫

M
〈u, L∗v〉dv(g).

Prove the following.
(a) If L is a zeroth order operator (i.e. L is a bundle morphism) then BL = 0.
(b) If L1 ∈ PDO (F, G) and L2 ∈ PDO (E, F ) then

BL1L2(u, v) = BL1(L2u, v) + BL2(u, L∗1v).

(c)
BL∗(v, u) = −BL(u, v).

(d) Suppose ∇ is a Hermitian connection on E and X ∈ Vect (M). Set L = ∇X : C∞(E) →
C∞(E). Then

BL(u, v) = 〈u, v〉g(X,~n).

(e) Let L = ∇ : C∞(E) → C∞(T ∗M ⊗E). Then

BL(u, v) = 〈u, i~nv〉E .

where i~n denotes the contraction by ~n.
(f) Denote by ~ν the section of T ∗M |∂M g-dual to ~n. Suppose L is a first order p.d.o. and
set J := σL(~ν). Then

BL(u, v) = 〈Ju, v〉F .

(g) Using (a)-(f) show that for all u ∈ C∞(E), v ∈ C∞(F ) and any x0 ∈ ∂M the quantity
BL(u, v)(x0) depends only on the jets of u, v at x0 of order at most k − 1.

ut

9.2 Functional framework

The partial differential operators are linear operators in infinite dimensional spaces and this
feature requires special care in dealing with them. Linear algebra alone is not sufficient.
This is where functional analysis comes in.

In this section we introduce a whole range of functional spaces which represent the
suitable enviroment for p.d.o.’s to live in.

The presentation assumes the reader is familiar with some basic principles of functional
analysis. As a reference for these facts we recommend the excellent monograph [15] or the
very comprehensive [79].
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9.2.1 Sobolev spaces in RN

Let D denote an open subset of RN . We denote by L1
loc(D) the space of locally integrable real

functions on D, i.e. Lebesgue measurable functions f : RN → K such that ∀α ∈ C∞
0 (RN )

αf ∈ L1(RN ).

Definition 9.2.1. Let f ∈ L1
loc(D). A function g ∈ L1

loc(D) is said to be the weak k-th
partial derivative of f , and we write this g = ∂kf weakly, if

∫

D
gϕdx = −

∫

D
f∂kϕdx ∀ϕ ∈ C∞

0 (D).

Lemma 9.2.2. Any f ∈ L1
loc(D) admits at most one weak partial derivative.

The proof of this lemma is left to the reader.
Warning: Not all locally integrable functions admit weak derivatives.

Exercise 9.2.1. Let f ∈ C∞(D). Prove that the classical partial derivative ∂kf is also its
weak k-th derivative. ut

Exercise 9.2.2. Let H ∈ L1
loc(R) denote the Heaviside function, H(t) ≡ 1 for t ≥ 0,

H(t) ≡ 0 for t < 0. Prove that H is not weakly differentiable. ut

Exercise 9.2.3. Let f1, f2 ∈ L1
loc(D). If ∂kfi = gi ∈ L1

loc weakly then ∂k(f1 + f2) = g1 + g2

weakly. ut

The definition of weak derivative can be generalized to higher order derivatives as follows.
Consider L : C∞(D) → C∞(D) a scalar p.d.o. and f, g ∈ L1

loc(D). Then we say that Lf = g
weakly if ∫

D
gϕdx =

∫

D
fL∗ϕdx ∀ϕ ∈ C∞

0 (D).

Above, L∗ denotes the formal adjoint of L with respect to the Euclidean metric on RN .

Exercise 9.2.4. Let f, g ∈ C∞(D). Prove that

Lf = g classically ⇐⇒ Lf = g weakly.

ut

Definition 9.2.3. Let k ∈ Z+ and p ∈ [1,∞]. The Sobolev space Lk,p(D) consists of all
the functions f ∈ Lp(D) such that for any multi-index α satisfying |α| ≤ k the mixed partial
derivative ∂αf exists weakly and moreover ∂αf ∈ Lp(D). For every f ∈ Lk,p(D) we set

‖f‖k,p = ‖f‖k,p,D =


 ∑

|α|≤k

∫

D
|∂αf |pdx




1/p

if p < ∞ while if p = ∞
‖f‖k,∞ =

∑

|α|≤k

ess sup |∂αf |.

When k = 0 we write ‖f‖p instead of ‖f‖0,p.
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Definition 9.2.4. Let k ∈ Z+ and p ∈ [1,∞]. Set

Lk,p
loc (D) = {f ∈ L1

loc(D) ; ϕf ∈ Lk,p(D) ∀ϕ ∈ C∞
0 (D)}.

Exercise 9.2.5. Let f(t) = |t|α, t ∈ R, α > 0. Show that for every p > 1 such that
α > (p− 1)/p

f(t) ∈ L1,p
loc(R).

ut

Theorem 9.2.5. Let k ∈ Z+ and 1 ≤ p ≤ ∞. Then
(a) (Lk,p(RN ), ‖ · ‖k,p) is a Banach space.
(b) If 1 ≤ p < ∞ the subspace C∞

0 (RN ) is dense in Lk,p(RN ).
(c) If 1 < p < ∞ the Sobolev space Lk,p(RN ) is reflexive.

The proof of this theorem relies on a collection of basic techniques frequently used in
the study of partial differential equations. This is why we choose to cover the proof of this
theorem in some detail. We will consider only the case p < ∞ leaving the p = ∞ situation
to the reader.

Proof Using the exercise 9.2.3 we deduce that Lk,p is a vector space. From the classical
Minkowski inequality

(
ν∑

i=1

|xi + yi|p
)1/p

≤
(

ν∑

i=1

|xi|p
)1/p

+

(
ν∑

i=1

|yi|p
)1/p

.

we deduce that ‖ · ‖k.p is a norm. To prove that Lk,p is complete we will use the well
established fact that Lp is complete.

Convention: To simplify the notations, throughout this chapter all the extracted subse-
quences will be denoted by the same symbols as the sequences they originate from.

Let (fn) ⊂ Lk,p(RN ) be a Cauchy sequence i.e.

lim
m,n→∞ ‖fm − fn‖k,p = 0.

In particular, for each multi-index |α| ≤ k the sequence (∂αfn) is Cauchy in Lp(RN ) and
thus

∂αfn
Lp→ gα ∀|α| ≤ k.

Set f = limn fn. We claim that ∂αf = gα weakly.
Indeed, for any ϕ ∈ C∞

0 (RN )
∫

RN

∂αfnϕdx = (−1)|α|
∫

RN

fn∂αϕ.

Since ∂αfn → gα and fn → f in Lp and ϕ ∈ Lq(RN ) where 1/q = 1− 1/p) we conclude
∫

RN

gα · ϕdx = lim
n

∫

RN

∂αfn · ϕdx
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= lim
n

(−1)|α|
∫

RN

fn · ∂αϕdx = (−1)|α|
∫

RN

f · ∂αϕdx.

Part (a) is proved. To prove that C∞
0 (RN ) is dense we will use mollifiers. Their definition

uses the operation of convolution. Given f, g ∈ L1(RN ) define

(f ∗ g)(x) =
∫

RN

f(x− y)g(y)dy.

We leave the reader check that f ∗ g is well defined (i.e. y 7→ f(x− y)g(y) ∈ L1 for almost
all x).

Exercise 9.2.6. If f ∈ L1(RN ) and g ∈ Lp(RN ) then f ∗ g is well defined. Moreover
f ∗ g ∈ Lp(RN ) and

‖f ∗ g‖p ≤ ‖f‖1 · ‖g‖p. (9.2.1)

ut

To define the mollifiers one usually starts with a function ρ ∈ C∞
0 (RN ) such that

ρ ≥ 0, supp ρ ⊂ {|x| < 1}

and ∫

RN

ρdx = 1.

Next, for each δ > 0 we define
ρδ(x) = δ−Nρ(x/δ).

Note that supp ρδ ⊂ {|x| < δ} and
∫

RN

ρδdx = 1.

The sequence (ρδ) is called a mollifying sequence. The next result describes the main use
of this construction.

Lemma 9.2.6. (a) For any f ∈ L1
loc(RN ) the convolution ρδ ∗ f is a smooth1 function!

(b) If f ∈ Lp(RN ) (1 ≤ p < ∞) then

ρδ ∗ f
Lp→ f as δ → 0.

Proof of the lemma Part (a) is left to the reader as an exercise in the differentiability
of integrals with parameters.

To establish part (b) we will use the fact that C∞
0 (RN ) is dense in Lp(RN ). Fix ε > 0

and choose g ∈ C∞
0 (RN ) such that

‖f − g‖p ≤ ε/3.

1This explains the term mollifier: ρδ smoothes out the asperities.
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We have
‖ρδ ∗ f − f‖p ≤ ‖ρδ ∗ (f − g)‖p + ‖ρδ ∗ g − g‖p + ‖g − f‖p.

Using the inequality (9.2.1) we deduce

‖ρδ ∗ f − f‖p ≤ 2‖f − g‖p + ‖ρδ ∗ g − g‖p. (9.2.2)

We need to estimate ‖ρδ ∗ g − g‖p. Note that

ρδ ∗ g (x) =
∫

RN

ρ(z)g(x− δz)dz

and
g(x) =

∫

RN

ρ(z)g(x)dz.

Hence
|ρδ ∗ g (x)− g(x)| ≤

∫

RN

ρ(z)|g(x− δz)− g(x)|dz ≤ δ sup |dg|.

Since
supp ρδ ∗ g ⊂ {x + z ; x ∈ supp g ; z ∈ supp ρδ}

there exists a compact set K ⊂ RN such that

supp (ρδ ∗ g − g) ⊂ K ∀δ ∈ (0, 1).

We conclude that

‖ρδ ∗ g − g‖p ≤
(∫

K
δp(sup |dg|)pdx

)1/p

= vol (K)1/pδ sup |dg|.

If now we pick δ such that
vol (K)1/pδ sup |dg| ≤ ε/3

we conclude from (9.2.2) that
‖ρδ ∗ f − f‖p ≤ ε.

The lemma is proved.
ut

The next auxiliary result describes another useful feature of the mollification technique
especially versatile in as far as the study of partial differential equations is concerned.

Lemma 9.2.7. Let f, g ∈ L1
loc(RN ) such that ∂kf = g weakly. Then ∂k(ρδ ∗ f) = ρδ ∗ g.

More generally, if
L =

∑

|α|≤m

aα∂α

is a p.d.o with constant coefficients aα ∈ R and Lf = g weakly then

L(ρδ ∗ f) = ρδ ∗ g classically.



348 Elliptic equations on manifolds

Remark 9.2.8. The above lemma is a commutativity result. It shows that if L is a p.d.o.
with constant coefficients then

[L, ρδ∗]f = L(ρδ ∗ f)− ρδ ∗ (Lf) = 0.

This fact has a fundamental importance in establishing regularity results for elliptic opera-
tors. ut

Proof of the lemma It suffices to prove only the second part. We will write Lx to
emphasize that L acts via derivatives with respect to the variables x = (x1, . . . , xN ). Note
that

L(ρδ ∗ f) =
∫

RN

(Lxρδ(x− y))f(y)dy. (9.2.3)

Since
∂

∂xi
ρδ(x− y) = − ∂

∂yi
ρδ(x− y)

and
∂i
∗ = −∂i

we deduce from (9.2.3) that

L(ρδ ∗ f) =
∫

RN

(L∗yρδ(x− y))f(y)dy =
∫

RN

ρδ(x− y)g(y)dy = ρδ ∗ g

since Lf = g weakly and y 7→ ρδ(x− y) ∈ C∞
0 (RN ) ∀x. The lemma is proved.

ut

After this rather long detour we return to the proof of Theorem 9.2.5. Let f ∈ Lk,p(RN ).
We will construct fn ∈ C∞

0 (RN ) such that fn → f in Lk,p using two basic techniques:
truncation and mollification.

Step 1: Truncation The essentials of this technique are contained in the following result.

Lemma 9.2.9. Let f ∈ Lk,p(RN ). Consider for each R > 0 a smooth function ηR ∈
C∞

0 (RN ) such that η(x) ≡ 1 for |x| ≤ R, ηR(x) ≡ 0 for |x| ≥ R + 1 and |dηR(x)| ≤ 2 ∀x.
Then ηR · f ∈ Lk,p(RN ) ∀R ≥ 0 and moreover

ηR · f Lk,p→ f as R →∞.

Proof We consider only the case k = 1. The general situation can be proved by induction.
We first prove that ∂i(ηRf) exists weakly and as expected

∂i(ηR · f) = (∂iηR) · f + ηR · ∂if.

Let ϕ ∈ C∞
0 (RN ). Since ηRϕ ∈ C∞

0 (RN ) we have
∫

RN

(∂iηR)ϕ + ηR · ∂iϕdx =
∫

RN

∂i(ηRϕ)f = −
∫

RN

ηRϕ∂ifdx.
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This confirms our claim. Clearly (∂iηR)f + ηR∂if ∈ Lp(RN ) so that ηRf ∈ L1.p(RN ).
Note that ∂iηR ≡ 0 for |x| ≤ R and |x| ≥ R + 1. In particular we deduce

(∂iηR)f → 0 a.e.

Clearly |(∂iηR)f | ≤ 2|f(x)| so that by the dominated convergence theorem we conclude

(∂iηR) · f Lp→ 0 as R →∞.

Similarly
ηR∂if → ∂if a.e.

and |ηR∂if | ≤ |∂if | which implies ηR∂if → ∂if in Lp. The lemma is proved.
ut

According to the above lemma the space of compactly supported Lk,p-functions is dense
in Lk,p(RN ). Hence it suffices to show that any such function can be arbitrarily well ap-
proximated in the Lk,p-norm by smooth, compactly supported functions.

Let f ∈ Lk,p(RN ) and assume

ess supp f ⊂ {|x| ≤ R}.

Step 2: Mollification ρδ ∗ f
Lk,p→ f as δ → 0.

Note that each ρδ ∗ f is a smooth, function supported in {|x| ≤ R + δ}. According to
Lemma 9.2.7

∂α(ρδ ∗ f) = ρδ ∗ (∂αf) ∀|α| ≤ k.

The desired conclusion now follows using Lemma 9.2.6.

To conclude the proof of Theorem 9.2.5 we need to show that Lk,p is reflexive if 1 < p <
∞. We will use the fact that Lp is reflexive for p in this range.

Note first that Lk,p(RN ) can be viewed as a closed subspace of the direct product
∏

|α|≤k

Lp(RN ).

via the map
T : Lk,p(RN ) →

∏

|α|≤k

Lp(RN ) f 7→ (∂αf)|α|≤k

which is continuous 1-1 and and has closed range. Indeed, if

∂αfn
Lp→ fα

then arguing as in the proof of completeness we deduce that

fα = ∂αf0 weakly

where f0 = lim fn. Hence (fα) = Tf0. We now conclude that Lk,p(RN ) is reflexive as a
closed subspace of a reflexive space. Theorem 9.2.5 is proved.

ut
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Remark 9.2.10. (a) For p = 2 the spaces Lk,2(RN ) are in fact Hilbert spaces. The inner
product is given by

〈u, v〉k =
∫

RN


 ∑

|α|≤k

∂αu · ∂αvdx


 dx.

(b) If D ⊂ RN is open then Lk,p(D) is a Banach space, reflexive if 1 < p < ∞. However
C∞

0 (D) is no longer dense in Lk,p(D). The closure of C∞
0 (D) in Lk,p(D) is denoted by

Lk,p
0 (D). Intuitively, Lk,p

0 (D) consists of the functions u ∈ Lk,p(D) such that

∂ju

∂νj
= 0 on ∂D ∀j = 0, 1, . . . , k − 1

where ∂/∂ν denotes the normal derivative along the boundary. The above statement should
be taken with a grain of salt since at this point it is not clear how one can define u |∂D when
u is defined only almost everywhere. We refer to [Adm] for a way around this issue.

The larger space C∞(D) ∩ Lk,p(D) is dense in Lk,p(D) provided the boundary of D is
sufficiently regular. We refer again to [3] for details. ut

Exercise 9.2.7. Prove that the following statements are equivalent.
(a) u ∈ L1,p(RN ).
(b) There exists a constant C > 0 such that for all ϕ ∈ C∞(RN )

∣∣∣∣
∫

RN

u
∂ϕ

∂xi

∣∣∣∣ ≤ C‖ϕ‖Lp′ ∀i = 1, · · · , N

where p′ = p/(p− 1).
(c) There exists C > 0 such that for all h ∈ RN

‖∆hu‖Lp ≤ C|h|
where ∆hu(x) = u(x + h)− u(x). ut

Exercise 9.2.8. Let f ∈ L1,p(RN ) and φ ∈ C∞(R) such that

|dφ| ≤ const.

and φ(f) ∈ Lp. Then φ(f) ∈ L1,p(RN ) and

∂iφ(f) = φ′(f) · ∂if.

ut

Exercise 9.2.9. Let f ∈ L1,p(RN ). Show that |f | ∈ L1,p(RN ) and

∂i|f | =
{

∂if a.e. on {f ≥ 0}
−∂if a.e. on {f < 0}

Hint: Show that fε = (ε2 + f2)1/2 converges to f in L1,p as ε → 0.
ut
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9.2.2 Embedding theorems: integrability properties

The embedding theorems describe various inclusions between the Sobolev spaces Lk,p(RN ).
Define the “strength” of the Sobolev space Lk,p(RN ) as the quantity

σ(k, p) = σN (k, p) = k −N/p.

The “strength” is a measure of the size of a Sobolev size. Loosely speaking, the bigger the
strength the more regular are the functions in that space and thus it consists of “fewer”
functions.

Remark 9.2.11. The origin of the quantities σN (k, p) can be explained by using the notion
of conformal weight. A function u : RN → R can be thought as a dimensionless physical
quantity. Its conformal weight is 0. Its partial derivatives ∂iu are physical quantities
measured in meter−1= variation per unit of distance and they have conformal weight −1.
More generally, a mixed partial ∂αu has conformal weight −|α|. The quantities |∂α|p have
conformal weight −p|α|. The volume form dx is assigned conformal weight N : the volume
is measured in meterN . The integral of a quantity of conformal weight w is a quantity of
conformal weight w + N . For example

∫

RN

|∂αu|pdx

has conformal weight N − p|α|. In particular the quantity




∫
{

∑

|α|=k

|∂αu|p}dx




1/p

has conformal weight (N − kp)/p = −σN (k, p). Geometrically, the conformal weight is
captured by the behavior under the rescalings x = λy. If uλ(y) = u(λy) then

∂iuλ = λ(∂iu)λ

∂αuλ = λ|α|(∂αu)λ.

On an abstract manifold M of dimension N the quantities of conformal weight w are the
sections of the bundle of w/N -densities |Λ|w/N

M . For example a 1-density (measure) can be
integrated and has weight N . ut

Theorem 9.2.12. (Sobolev) If

σN (k, p) = σN (m, q) < 0 and k > m

then
Lk,p(RN ) ↪→ Lm,p(RN )

and the natural inclusion is continuous, i.e. there exists C = C(N, k, m, p, q) > 0 such that

‖f‖m,q ≤ C‖f‖k,p ∀f ∈ Lk,p(RN ).
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Proof We follow the approach of [63] which relies on the following elementary but inge-
nious lemma.

Lemma 9.2.13. Let N ≥ 2 and f1, . . . , fN ∈ LN−1(RN−1). for each x ∈ RN and 1 ≤ i ≤ N
define

ξi = (x1, . . . , x̂i, . . . , , xN ) ∈ RN−1.

Then
f(x) = f1(ξ1)f2(ξ2) · · · fN (ξN ) ∈ L1(RN )

and moreover

‖f‖1 ≤
N∏

i=1

‖fi‖N−1.

Exercise 9.2.10. Prove Lemma 9.2.13. ut

We first prove the theorem in the case k = 1, p = 1 which means m = 0 and q =
N/(N − 1). We will show that

∃C > 0 : ‖u‖N/(N−1) ≤ C‖ |du| ‖1 ∀u ∈ C∞
0 (RN )

where |du|2 = |∂1u|2+· · ·+|∂Nu|2. This result then extends by density to any u ∈ L1,1(RN ).
We have

|u(x1, . . . , xN )| ≤
∫ x1

−∞
|∂iu(x1, . . . , xi−1, t, xi+1, . . . , xN )|dt

def
= gi(ξi).

Note that gi ∈ L1(RN−1) so that

fi(ξi) = gi(ξi)1/(N−1) ∈ LN−1(RN−1).

Since
|u(x)|N/(N−1) ≤ f1(ξ1) · · · fN (ξN )

we conclude from Lemma 9.2.13 that u(x) ∈ LN/(N−1)(RN ) and

‖u‖N/(N−1) ≤
(

N∏

1

‖gi(ξi)‖1

)1/N

= (

(
N∏

1

‖∂iu‖1

)1/N

.

Using the classical inequality

geometric mean ≤ arithmetic mean

we conclude

‖u‖N/(N−1) ≤
1
N

N∑

1

‖∂iu‖1 ≤ const.

N

N∑

1

‖ |du| ‖1.

We have thus proved that L1,1(RN ) embeds continuously in LN/(N−1)(RN ).
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Now let 1 < p < ∞ such that σN (1, p) = 1 −N/p < 0 ( i.e. p < N). We have to show
that L1,p(RN ) embeds continuously in Lp∗(RN ) where

p∗ =
Np

N − p
.

Let u ∈ C∞
0 (RN ). Set v = |v|r−1v where r > 1 will be specified later. The inequality

‖v‖N/(N−1) ≤
(

N∏

1

‖∂iv‖1

)1/N

implies

‖u‖r
rN/(N−1) ≤ r

(
N∏

1

‖ |u|r−1∂iu‖1

)1/N

.

If q = p/(p− 1) is the conjugate exponent of p then using the Hölder inequality we get

‖ |u|r−1∂iu‖ ≤ ‖u‖r−1
q(r−1)‖∂iu‖p.

Consequently

‖u‖r
rN/(N−1) ≤ r‖u‖r−1

q(r−1)

(
N∏

1

‖∂iu‖p

)1/N

.

Now choose r such that rN/(N − 1) = q(r − 1). This gives

r = p∗
N − 1

N

and we get

‖u‖p∗ ≤ r

(
N∏

1

‖∂iu‖p

)1/N

≤ C(N, p)‖ |du| ‖p.

This shows L1,p ↪→ Lp∗ if 1 ≤ p < N . The general case

Lk,p ↪→ Lm,q if σN (k, p) = σN (m, q) < 0 k > m

follows easily by induction over k. We leave the reader fill in the details.
ut

Theorem 9.2.14. (Rellich-Kondratchov) Let (k, p), (m, q) ∈ Z+ × [1,∞) such that

k > m and 0 > σN (k, p) > σN (m, q).

Then any bounded sequence (un) ⊂ Lk,p(RN ) supported in a ball BR(0), R > 0 has a
subsequence strongly convergent in Lm,q(RN ).
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Proof We discuss only the case k = 1 so that the condition σN (1, p) < 0 imposes 1 ≤ p <
N . Let (un) be a bounded sequence in L1,p(RN ) such that

ess suppun ⊂ {|x| ≤ R} ∀n.

We have to show that for every 1 ≤ q < p∗ = Np/(N − p) the sequence (un) contains a
subsequence convergent in Lq. The proof will be carried out in several steps.

Step 1 We will prove that for every 0 < δ < 1 the mollified sequence un,δ = ρδ ∗ un admits
a subsequence uniformly convergent on {|x| ≤ R + 1}.

To prove this we will use the Arzela-Ascoli theorem and we will show there exists
C = C(δ) > 0 such that

|un,δ(x)| < C ∀n, ∀|x| ≤ R + 1

|un,δ(x1)− un,δ(x2)| ≤ C|x1 − x2| ∀n, ∀|x1|, |x2| ≤ R + 1.

Indeed

|ρδ ∗ u (x)| ≤ δ−N

∫

|y−x|≤δ
ρ

(
x− y

δ

)
|un(y)|dy

≤ δ−N

∫

Bδ(x)
|un(y)|dy

≤ C(N, p)δ−N‖un‖p∗ · vol (Bδ)(p
∗−1)/p∗

≤ C(δ)‖un‖1,p (by Sobolev embedding theorem).

Similarly

|un,δ(x1)− un,δ(x2)| ≤
∫

BR+1

|ρδ(x1 − y)− ρδ(x2 − y)| · |un(y)|dy

≤ C(δ) · |x1 − x2|
∫

BR+1

|un(y)|dy

≤ C(δ) · |x1 − x2| · ‖un‖1,p.

Step 1 is completed.

Step 2: Conclusion Using the diagonal procedure we can extract a subsequence of (un)
(still denoted by (un)) and a subsequence δn ↘ 0 such that (gn = un,δn)
(i) gn is uniformly convergent on BR.
(ii) limn ‖gn − un‖1,p,RN = 0.

We claim the subsequence (un) as above is convergent in Lq(BR) for all 1 ≤ q < p.
Indeed for all n, m

‖un − um‖q,BR
≤ ‖un − gn‖q,BR

+ ‖gn − gm‖q,BR
+ ‖gm − um‖q,BR

.

We now examine separately each of the three terms in the right-hand-side.
A. The first and the third term.

‖un − gn‖q
q,BR

=
∫

BR

|un(x)− gn(x)|dx
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( Hölder inequality) ≤
(∫

BR

|un(x)− gn(x)|qdx

)1/r

· vol (BR)(r−1)/r (r = p∗/q)

≤ C(R)‖un − gn‖q
p∗,RN

(Sobolev) ≤ C(R)‖un − gn‖1,p,RN → 0.

B. The middle term.

‖gn − gm‖q
q,BR

≤ {sup
BR

|gn(x)− gm(x)|}q · vol (BR) → 0.

Hence the (sub)sequence (un) is Cauchy in Lq(BR) and thus it converges. The compactness
theorem is proved.

ut

9.2.3 Embedding theorems: differentiability properties

A priori, the functions in the Sobolev spaces Lk,p are only measurable and are defined
only almost everywhere. However, if the strength σN (k, p) is sufficiently large then the
functions of Lk,p have a built-in regularity: each can be modified on a negligible set to
become continuous and even differentiable.

To formulate our next results we must introduce another important family of Banach
spaces, namely the spaces of Hölder continuous functions.

Let α ∈ (0, 1). A function u : D ⊂ RN → R is said to be α-Hölder continuous if

[u]α
def
= sup

0<R<1,z∈D
R−αosc (u; BR(z) ∩D) < ∞

where for any set S ⊂ D we denoted by osc (u; S) the oscillation of u on S i.e.

osc (u; S) = sup {|u(x)− u(y)| ; x, y ∈ S}.

Set
‖u‖∞,D = sup

x∈D
|u(x)|

and define
C0,α(D) = {u : D → R ; ‖u‖0,α,D

def
= ‖u‖∞ + [u]α < ∞}.

More generally, for every integer k ≥ 0 define

Ck,α(D) = {u ∈ Cm(D) ; ∂βu ∈ C0,α(D), ∀|β| ≤ k}.

Ck,α(D) is a Banach space with respect to the norm

‖u‖k,α =
∑

|β|≤k

‖∂βu‖∞,D +
∑

|β|=k

[∂βu]α,D.

Define the strength of the Hölder space Ck,α as the quantity

σ(k, α) = k + α.
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Theorem 9.2.15. (Morrey) Consider (m, p) ∈ Z+× [1,∞] and (k, α) ∈ Z+× (0, 1) such
that m > k and σN (m, p) = σ(k, α) > 0. Then Lm,p(RN ) embeds continuously in Ck,α(RN ).

Proof We consider only the case k = 1 and (necessarily) m = 0. The proof relies on the
following elementary observation.

Lemma 9.2.16. Let u ∈ C∞(BR) ∩ L1,1(BR) and set

u =
1

vol (BR)

∫

BR

u(x)dx.

Then

|u(x)− u| ≤ 2N

σN−1

∫

BR

|du(y)|
|x− y|N−1

dy. (9.2.4)

In the above inequality σN−1 denotes the “area” of the (N − 1)-dimensional round sphere
SN−1 ⊂ RN .

Proof of the lemma

u(x)− u(y) = −
∫ |x−y|

0

∂

∂r
u(x + rω)dr (ω = − x− y

|x− y|).

Integrating the above equality with respect to y we get

vol (BR)(u(x)− u) = −
∫

BR

dy

∫ |x−y|

0

∂

∂r
u(x + rω)dr.

If we set |∂ru(x + rω)| = 0 for |x + rω| > R then

vol (BR)|u(x)− u| ≤
∫

|x−y|≤2R
dy

∫ ∞

0
|∂ru(x + rω)|dr.

If we use polar coordinates (ρ, ω) centered at x then dy = ρN−1dρdω where ρ = |x− y| and
dω denotes the euclidian “area” form on the unit round sphere. We deduce

vol (BR)|u(x)− u| ≤
∫ ∞

0
dr

∫

SN−1

dω

∫ 2R

0
|∂ru(x + rω)|ρN−1dρ

=
(2R)N

N

∫ ∞

0
dr

∫

SN−1

|∂r(x + rω)|dωdr

=
(2R)N

N

∫ ∞

0
rN−1dr

∫

SN−1

1
rN−1

|∂ru(x + rω)|dω

(z = x + rω) =
(2R)N

N

∫

BR

|∂ru(z)|
|x− z|N−1

≤ (2R)N

N

∫

BR

|du(z)|
|x− z|N−1

dy.

The lemma is proved.
ut

We want to make two simple observations.
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1. In the above lemma we can replace the round ball BR centered at origin by any other
ball centered at any other point. In the sequel for any R > 0 and x0 ∈ RN we set

ux0,R =
1

vol (BR(x0))

∫

BR(x0)
u(y)dy.

2. The inequality (9.2.4) can be extended by density to any u ∈ L1,1(BR).

We will complete the proof of Morrey’s theorem in three steps.
Step 1: L∞-estimates. We will show there exists C > 0 such that ∀u ∈ L1,p(RN )∩C1(RN )

‖u‖∞ ≤ C‖u‖1,p.

For each x ∈ RN denote by B(x) the unit ball centered at x and set ux = ux,1. Using (9.2.4)
we deduce

|u(x)| ≤ |ux|+ CN

∫

B(x)

|du(y)|
|x− y|N−1

dy

C

(
‖u‖p +

∫

B(x)

|du(y)|
|x− y|N−1

dy

)
. (9.2.5)

Since σN (1, p) > 0 we deduce that p > N so that its conjugate exponent q satisfies

q =
p

p− 1
<

N

N − 1
.

In particular, the function y 7→ |x− y|−(N−1) lies in Lq(B(x)) and
∫

B(x)

1
|x− y|q(N−1)

dy ≤ C(N, q)

where C(N, q) is an universal constant depending only on N and q. Using the Hölder
inequality in (9.2.5) we conclude

|u(x)| ≤ C‖u‖1,p ∀x.

Step 2: Oscillation estimates. We will show there exists C > 0 such that for all u ∈
L1,p(RN ) ∩ C1(RN )

[u]α ≤ C‖u‖1,p.

Indeed, from the inequality (9.2.4) we deduce that for any ball BR(x0) and any x ∈ BR(x0)

|u(x)− ux0,R| ≤ C

∫

BR(x0)

|du(y)|
|x− y|N−1

(Hölder inequality) ≤ C‖ |du| ‖p ·
(∫

BR(x0)

1
|x− y|q(N−1)

dy

)1/q

(q = p/(p− 1))

≤ C‖ |du| ‖pR
ν
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where
ν =

1− (q − 1)N − 1)
q

= 1− 1
p
− N

p
+

1
p

= 1− N

p
= α.

Hence
|u(x)− ux0,R| ≤ CRα ∀x ∈ BR(x0)

and consequently
osc (u; BR(x0)) ≤ CRα.

Step 2 is completed.
Step 3: Conclusion. Given u ∈ L1,p(RN ) we can find (un) ∈ C∞

0 (RN ) such that

un → u in L1,p and almost everywhere.

The estimates established at Step 1 and 2 are preserved as n →∞. In fact these estimates
actually show the sequence (un) converges in the C0,α-norm to function v ∈ C0,α(RN ) which
agrees almost everywhere with u.

ut

Exercise 9.2.11. Let u ∈ L1,1(RN ) satisfy a (q, ν)-energy estimate i.e.

∃C > 0 :
1

rN

∫

Br(x)
|du(y)|qdy ≤ C1r

−ν ∀x ∈ RN , 0 < r < 2

where 0 ≤ ν < q and q > 1. Show that (up to a change on a negligible set) u is α-Hölder
continuous (α = 1− ν/q) and moreover

[u]α ≤ C2

where the constant C2 depends only on N, q, ν and C1.
Hint: Prove that ∫

Br(x)

|du(y)|
|x− y|N−1

≤ Crα

and then use the inequality (9.2.4).
ut

Remark 9.2.17. The result in the above exercise has a suggestive interpretation. If u
satisfies the (q, ν)-energy estimate then although |du| may not be bounded, on average, it
“explodes” no worse that rα−1 as r → 0. Thus

|u(x)− u(0)| ≈ C

∫ |x|

0
tα−1dt ≈ C|x|α.

The energy estimate is a very useful tool in the study of nonlinear elliptic equations. ut

The Morrey embedding theorem can be complemented by a compactness result. Let
(k, p) ∈ Z+ × [1,∞] and (m,α) ∈ Z+ × (0, 1) such that

σN (k, p) > σ(m,α) k > m.
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Then a simple application of the Arzela-Ascoli theorem shows that any bounded sequence
in Lk,p(RN ) admits a subsequence which converges in the Cm,α norm on any bounded open
subset of RN .

The last results we want to discuss are the interpolation inequalities. They play an
important part in applications but we chose not to include their proofs long but elementary
proofs since they do not use any concept we will need later. The interested reader may
consult [3] or [11] for details.

Theorem 9.2.18. (Interpolation inequalities) For each R > 0 choose a smooth, cutoff
function ηR ∈ C∞

0 (RN ) such that

ηR ≡ 1 if |x| ≤ R

ηR ≡ 0 if |x| ≥ R + 1

|dηR(x)| ≤ 2 ∀x ∈ RN .

Fix (m, p) ∈ Z+ × [1,∞) and (k, α) ∈ Z+ × (0, 1).
(a) For every 0 < r ≤ R + 1 there exists C = C(r,R, m, p) such that for every 0 ≤ j < m,
ε > 0 and for all u ∈ Lm,p(RN )

‖ηRu‖j,p,RN ≤ Cε‖ηRu‖m,p,RN + Cε−j(m−j)‖ηRu‖p,Br .

(b) For every 0 < r ≤ R + 1 there exists C = C(r,R, k, α) such that for every 0 ≤ j < k,
ε > 0 and for all u ∈ Ck,α(RN )

‖ηRu‖j,α,RN ≤ Cε‖ηRu‖k,α,RN + Cε−j(m−j)‖ηRu‖0,α,Br .

The results in this and the previous section extend verbatim to slightly more general
situations namely to functions

f : RN → H

where H is a finite dimensional Hilbert space.

9.2.4 Functional spaces on manifolds

The Sobolev and the Hölder spaces can be defined over manifolds as well. To define these
spaces we need two things: an oriented Riemann manifold (M, g) and a K-vector bundle
π : E → M endowed with a metric h = 〈•, •〉 and a connection ∇ = ∇E compatible with
h. The metric g = (•, •) defines two important objects:
(i) the Levi-Civita connection ∇g and
(ii) a volume form dvg = ∗1. In particular, dvg defines a Borel measure on M . We denote by
Lp(M,K) the space of K-valued p-integrable functions on (M, dvg) (modulo the equivalence
relation of equality almost everywhere).

Definition 9.2.19. Let p ∈ [1,∞]. An Lp-section of E is a Lebesgue measurable map
ψ : M → E (i.e. ψ−1(U) is Lebesgue measurable for any open subset U ⊂ E) such that:
(i) π ◦ ψ(x) = x for almost all x ∈ M except possibly a negligible set.
(ii) The function x 7→ |ψ(x)|h belongs to Lp(M,R).
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The space of Lp-sections of E (modulo equality almost everywhere) is denoted by Lp(E).
We leave the reader check the following fact.

Proposition 9.2.20. Lp(E) is a Banach space with respect to the norm

‖ψ‖p,E =

{ (∫
M |ψ(x)|pdvg(x)

)1/p if p < ∞
ess supx|ψ(x)| if p = ∞ .

Note that if p, q ∈ [1,∞] are conjugate, 1/p+1/q = 1, then the metric h : E×E → KM

defines a continuous pairing

〈•, •〉 : Lp(E)× Lq(E) → L1(M,K),

i.e. ∣∣∣∣
∫

M
〈ψ, φ〉dvg

∣∣∣∣ ≤ ‖ψ‖p,E · ‖φ‖q,E

This follows immediately from the Cauchy inequality

|h(ψ(x), φ(x)| ≤ |ψ(x)| · |φ(x)| a.e. on M

and the usual Hölder inequality.

Exercise 9.2.12. Let Ei → M (i = 1, . . . , k) be vector bundles with metrics and consider
a multilinear bundle map

χ : E1 × · · · × Ek → KM .

We regard χ as a section of E∗
1 ⊗ · · · ⊗ E∗

k . If

χ ∈ Lp0(E∗
1 ⊗ · · · ⊗E∗

k)

then for every p1, . . . , pk ∈ [1,∞] such that

1− 1/p0 = 1/p1 + · · ·+ 1/pk

and ∀ψj ∈ Lpj (Ej), j = 1, . . . , k

∣∣∣∣
∫

M
χ(ψ1, . . . , ψk)dvg

∣∣∣∣ ≤ ‖χ‖p0 · ‖ψ1‖p1 · · · ‖ψk‖pk
.

ut

For each m = 1, 2, . . . define ∇m as the composition

∇m : C∞(E) ∇
E→ C∞(T ∗M ⊗ E) ∇

T∗M⊗E−→ C∞(T ∗M⊗2 ⊗ E) ∇→ · · · ∇→ C∞(T ∗M⊗m ⊗ E)

where we used the symbol ∇ to generically denote the connections in the tensor products
T ∗M⊗j⊗E induced by ∇g and ∇E

The metrics g and h induce metrics in each of the tensor bundles T ∗M⊗m ⊗ E and in
particular, we can define the spaces Lp(T ∗M⊗m ⊗ E).
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Definition 9.2.21. (a) Let u ∈ L1
loc(E) and v ∈ L1

loc(T
∗M⊗m⊗E). We say that ∇mu = v

weakly if ∫

M
〈v, φ〉dvg =

∫
〈u, (∇m)∗φ〉dvg ∀u ∈ C∞

0 (T ∗M⊗m ⊗E).

(b) Define Lm,p(E) as the space of sections u ∈ Lp(E) such that ∀j = 1, . . . , m there exist
vj ∈ Lp(T ∗M⊗j ⊗ E) such that ∇ju = vj weakly. We set

‖u‖m,p = ‖u‖m,p,E =
p∑

j=1

‖∇ju‖p.

A word of warning The Sobolev space Lm,p(E) introduced above depends on several
choices: the metrics on M and E and the connection on E. When M is non-compact this
dependence is very dramatic and has to be seriously taken into consideration.

Example 9.2.22. Let (M, g) be the space RN endowed with the euclidian metric. The
trivial line bundle E = RM is naturally equipped with the trivial metric and connection.
Then Lp(RM ) = Lp(M,R). Denote by D the Levi-Civita connection. Then for every
u ∈ C∞(M) and m ∈ Z+ we have

Dmu =
∑

|α|=m

dx⊗α ⊗ ∂αu

where for every multi-index α we denoted by dx⊗α the monomial

dxα1 ⊗ · · · ⊗ dxαN .

The length of Dmu(x) is 
 ∑

|α|=m

|∂αu(x)|2



1/2

.

The space Lm,p(RM ) coincides as a set with the Sobolev space Lk,p(RN ). The norm
‖ • ‖m,p,RM

is equivalent with the norm ‖ • ‖m,p,RN introduced in the previous sections.
ut

Proposition 9.2.23. (Lk,p(E), ‖·‖k,p,E) is a Banach space which is reflexive if 1 < p < ∞.

The proof of this result is left to the reader as an exercise.
The Hölder spaces can be defined on manifolds as well. If (M, g) is a Riemann manifold

then g canonically defines a metric space structure on M (see Chapter 4) and in particular
we can talk about the oscillation of a function u : M → K. On the other hand, defining the
oscillation of a section of some bundle over M requires a little more work.

Let (E, h,∇) as before. We assume the injectivity radius ρM of M is positive. Set
ρ0 = min{1, ρM}. If x, y ∈ M are two points such that distg(x, y) ≤ ρ0 then they can
be joined by a unique minimal geodesic γx,y starting at x and ending at y. We denote by
Tx,y : Ey → Ex the ∇E-parallel transport along γx,y. For each ξ ∈ Ex and η ∈ Ey we set
by definition

|ξ − η| = |ξ − Tx,yη|x = |η − Ty,xξ|y.
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If u : M → E is a section of E and S ⊂ M has the diameter < ρ0 we define

osc (u ; S) = sup{|u(x)− u(y)| ; x, y ∈ S}.

Finally set
[u]α,E = sup{r−αosc (u ; Br(x)) ; 0 < r < ρ0, x ∈ M}.

For any k ≥ 0 define

‖u‖k,α,E =
k∑

j=0

‖∇ju‖∞,E + [∇mu]α,T ∗M⊗m⊗E

and set
Ck,α(E) = {u ∈ Ck(E) ; ‖u‖k,α < ∞}.

Theorem 9.2.24. Let (M, g) be a compact, N -dimensional, oriented Riemann manifold
and E a vector bundle over M equipped with a metric h and compatible connection ∇. Then
the following are true.
(a) The Sobolev space Lm,p(E) and the Hölder spaces Ck,α(E) do not depend on the metrics
g, h and on the connection ∇. More precisely, if g1 is a different metric on M and ∇1 is
another connection on E compatible with some metric h1 then

Lm,p(E, g, h,∇) = Lm,p(E, g1, h1,∇1) as sets of sections

and the identity map between these two spaces is a Banach space isomorphism. A similar
statement is true for the Hölder spaces.
(b) If 1 ≤ p < ∞ then C∞(E) is dense in Lk,p(E).
(c) If (ki, pi) ∈ Z+ × [1,∞) (i = 0, 1) are such that

k0 ≥ k1 and σN (k0, p0) = k0 −N/p0 ≥ k1 −N/p1 = σN (k1, p1)

then Lk0,p0(E) embeds continuously in Lk1,p1(E). If moreover

k0 > k1 and k0 −N/p0 > k1 −N/p1

then the embedding Lk0,p0(E) ↪→ Lk1,p1(E) is compact i.e. any bounded sequence of Lk0,p0(E)
admits a subsequence convergent in the Lk1,p1-norm.
(d) If (m, p) ∈ Z+ × [1,∞) and (k, α) ∈ Z+ × (0, 1) and

m−N/p ≥ k + α

then Lm,p(E) embeds continuously in Ck,α(E). If moreover

m−N/p > k + α

then the embedding is also compact.

We developed all the tools needed to prove this theorem and we leave this task to the
reader. The method can be briefly characterized by two phrases: partition of unity and
interpolation inequalities. We will see them at work in the next section.
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9.3 Elliptic partial differential operators: analytic aspects

This section represents the analytical heart of this chapter. We discuss two notions which
play a pivotal role in the study of elliptic partial differential equations. More precisely we
will introduce the notion of weak solution and a priori estimate.

Consider the following simple example. Suppose we want to solve the partial differential
equation

∆u + u = f ∈ L2(S2,R) (9.3.1)

where ∆ denotes the Laplace-Beltrami operator on the round sphere. Riemann suggested
one should consider the energy functional

E(u) =
∫

S2

{1
2
(|du|2 + u2)− fu

}
dvg.

If u0 is a minimum of E i.e.
E(u0) ≤ E(u) ∀u

then

0 =
d

dt
|t=0 E(u0 + tv) =

∫

S2

(du0, dv) + u0 · v − f · vdvg ∀v. (9.3.2)

Integrating by parts we get
∫

S2

(d∗du0 + u0 − f) · v dvg = 0 ∀v

so that necessarily
∆u0 + u0 = f.

There are a few grey areas in this approach and Weierstrass was quick to point them out:
what is the domain of E, u0 may not exist and if it does it may not be C2 so the integration
by parts is ilegal etc. This avenue was abandoned until the dawns of this century when
Hilbert reintroduced them into the spotlight and emphasized the need to deal with these
issues. His important new point of view was that the approach suggested by Riemann
does indeed produce a solution of (9.3.1) “ provided if need be that the notion of solution
be suitable extended ”. The suitable notion of solution is precisely described in (9.3.2).
Naturally, one asks when this extended notion of solution coincides with the classical one.
Clearly, it suffices that u of (9.3.2) be at least C2 so that everything boils down to a question
of regularity.

Riemann’s idea was first rehabilitated in Weyl’s faimous treatise [77] on Riemann sur-
faces. It took the effort of many talented people to materialize Hilbert’s program formulated
as his 19th and 20th problem in the famous list of 27 problems he presented at the Paris
conference at the beginning of this century. We refer the reader to [1] for more details.

This section takes up the issues raised in the above simple example. The key fact which
will allow us to legitimize Riemann’s argument is the ellipticity of the partial differential
operator involved in this equation.
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9.3.1 Elliptic estimates in RN

Let E = Cr denote the trivial vector bundle over RN . Denote by 〈•, •〉 the natural Hermitian
metric on E and by ∂ the trivial connection. The norm of Lk,p(E) (defined using the
Euclidean volume) will be denoted by ‖ • ‖k,p. Consider an elliptic operator of order m

L =
∑

|α|≤m

Aα(x)∂α
x : C∞(E) → C∞(E).

For each k ∈ Z+ and R > 0 define

‖L‖k,R =
∑

|α|≤m,|β|≤k+m−|α|
sup

BR(0)
‖∂β

x (Aα(x))‖.

In this subsection we will establish the following fundamental result.

Theorem 9.3.1. (a) Let (k, p) ∈ Z+ × (1,∞) and R > 0. Then there exists C =
C(‖L‖k+1,R, k, p, N, R) > 0 such that ∀u ∈ C∞

0 (E |BR(0))

‖u‖k+m,p ≤ C(‖Lu‖k,p + ‖u‖p). (9.3.3)

(b) Let (k, α) ∈ Z+ × (0, 1) and R > 0. Then there exists C = C(‖L‖k+1,R, k, α, N, R) > 0
such that ∀u ∈ C∞

0 (E |BR(0))

‖u‖k+m,α ≤ C(‖Lu‖k,α + ‖u‖0,α). (9.3.4)

The proof consists of two conceptually distinct parts. In the first part we establish the
result under the supplementary assumption that L has constant coefficients. In the second
part, the general result is deduced from the special case using perturbation techniques in
which the interpolation inequalities play an important role. Throughout the proof we will
use the same letter C to denote various constants C = C(‖L‖k+1,R, k, p,N,R) > 0

Step 1. We assume L has the form

L =
∑

|α|=m

Aα∂α
x

where Aα are r × r complex matrices , independent of x ∈ RN . We set

‖L‖ =
∑

‖Aα‖.

We will prove the conclusions of the theorem hold in this special case. We will rely on a
very deep analytical result whose proof goes beyond the scope of this book.

For each f ∈ L1(RN ,C) denote by f̂(ξ) its Fourier transform

f̂(ξ) =
1

(2π)N/2

∫

RN

exp(−ix · ξ)dx.
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Theorem 9.3.2. (Calderon-Zygmund) Let m : SN−1 → C be a smooth function and
define

m(ξ) : RN \ {0} → C

by

m(ξ) = m

(
ξ

|ξ|
)

.

Then the following hold.
(a) There exists Ω ∈ C∞(SN−1,C) and c ∈ C such that

(a1)
∫
SN−1 ΩdvSN−1 = 0.

(a2) For any u ∈ C∞
0 (RN ) the limit

(Tu)(x) = lim
ε↘0

∫

|y|≥ε

Ω(y)
|y|N u(x− y)dy

exists for almost every x ∈ RN and moreover

cu(x) + Tu(x) =
1

(2π)N/2

∫

RN

exp(ix · ξ)m(ξ)û(ξ)dξ.

(b) For every 1 < p < ∞ there exists C = C(p, ‖m‖∞) > 0 such that

‖Tu‖p ≤ C‖u‖p ∀u ∈ C∞
0 (RN ).

(c)(Korn-Lichtenstein) For every 0 < α < 1 and any R > 0 there exists C = C(α, ‖m‖0,α, R) >

0 such that ∀u ∈ C0,α
0 (BR)

[Tu]α ≤ C‖u‖0,α,BR
.

For a proof of part (a) and (b) we refer to [72], Chap II §4.4. Part (c) is “elementary”
and we suggest the reader to try and prove it. In any case a proof of this inequality can be
found in [11], Part II.5.

Let us now return to our problem. Assuming L has the above special form we will prove
(9.3.3). The proof of (9.3.4) is entirely similar and is left to the reader. We discuss first the
case k = 0.

Let u ∈ C∞
0 (E |BR

). u can be viewed as a collection

u(x) = (u1(x), . . . , ur(x))

of smooth functions compactly supported in BR. Define

û(ξ) = (û1(ξ), . . . , ûr(ξ)).

If we set v = Lu then for any multi-index β such that |β| = m we have

L∂βu = ∂βLu = ∂βv
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because L has constant coefficients. We Fourier transform the above equality and we get

(−i)m
∑

|α|=m

Aαξα∂̂βu(ξ) = (−i)mξβ v̂(ξ). (9.3.5)

Note that since L is elliptic the operator

σ(L)(ξ) = A(ξ) =
∑

|α|=m

Aαξα : Cr → Cr

is invertible for any ξ 6= 0. From (9.3.5) we deduce

∂̂βu(ξ) = ξβB(ξ) ˆv(ξ) ∀ξ 6= 0

where B(ξ) = A(ξ)−1. Note that B(ξ) is homogeneous of degree −m so that M(ξ) = ξβB(ξ)
is homogeneous of degree 0. Thus we can find functions mij(ξ) ∈ C∞(Rn \ {0}) which are
homogeneous of degree 0 such that

∂̂βui(ξ) =
∑

j

mij(ξ)v̂j(ξ).

Using Theorem 9.3.2 (a) and (b) we deduce

‖∂βu‖p ≤ C‖v‖p = C‖Lu‖p.

This proves (9.3.3) when L has this special form.

Step 2 The general case. L is now an arbitrary elliptic operator of order m. Let r > 0
sufficiently small (to be specified later). Cover BR by finitely many balls Br(xν) and consider
ην ∈ C∞

0 (Br(xν)) such that each point in BR is covered by at most 10N of these balls and

ην ≥ 0
∑

ν

ην = 1

‖∂βην‖ ≤ Cr−|β| ∀|β| ≤ m.

If u ∈ C∞
0 (BR) then

v = Lu = L

(∑
ν

ηνu

)
=

∑
ν

L(ηνu).

Set uν = ηνu and
Lν =

∑

|α|=m

Aα(xν)∂α.

We rewrite the equality vν
def
= Luν as

Lνuν = (Lν − L)uν + vν =
∑

|α|=m

εα,ν(x)∂αuν −
∑

|β|<m

Aβ(x)∂βuν + vν ,
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where εα,ν(x) = Aα(xν)−Aα(x). Using (9.3.3) we deduce

‖uν‖m,p ≤ C(‖uν‖p,Br(xν) + ‖vν‖p,Br(xν) +
∑

|α|=m

‖εα,ν(x)∂αu‖p,Br(xν) + ‖u‖m−1,p,Br(xν)).

Since |εα,ν(x)| ≤ Cr on Br(xν), where C = C(‖L‖1,R) we deduce

‖uν‖m,p,Br(xν) ≤ C(r‖uν‖p,Br(xν) + ‖uν‖p,Br(xν) + ‖vν‖p,Br(xν)).

We can now specify r > 0 such that Cr < 1/2 in the above inequality. Hence

‖uν‖m,p,Br(xν) ≤ C(‖uν‖p,Br(xν) + ‖vν‖p,Br(xν)).

We need to estimate ‖vν‖p. We use the equality

vν = L(ηνu) = ηνLu + [L, ην ]u

in which [L, ην ] = ad(ην)L is a p.d.o. of order m− 1 so that

‖[L, ην ]u‖p,Br(xν) ≤ Cr−(m−1)‖u‖m−1,p,Br(xν).

Hence
‖vν‖p,Br(xν) ≤ C(‖ηνLu‖p,Br(xν) + r−(m−1)‖u‖m−1,p,Br(xν))

so that
‖uν‖m,p,Br(xν) ≤ C(‖Lu‖p,BR

+ r−(m−1)‖u‖m−1,p,BR
).

We sum over ν taking into account that the number of spheres Br(xν) is O((R/r)N ) we
deduce

‖u‖m,p,BR
≤

∑
ν

‖uν‖m,p ≤ CRN (r−N‖Lu‖p,BR
+ r−(m+N−1)‖u‖m−1,p,BR

).

Note that r depends only on R, p, ‖L‖1,R so that

‖u‖m,p,BR
≤ C(‖Lu‖p,BR

+ ‖u‖m−1,p,BR
)

where C is as in the statement of Theorem 9.3.1.
We still need to deal with the term ‖u‖m−1,p,BR

in the above inequality. It is precisely
at this point where the interpolation inequalities enter crucially.

View u as a section of C∞
0 (E |B2R

). If we pick η ∈ C∞
0 (B2R) such that η ≡ 1 on BR we

deduce from the interpolation inequalities that there exists C > 0 such that

‖u‖m−1,BR
≤ ε‖u‖m,p,R + Cε−(m−1)‖u‖p,BR

.

Hence
‖u‖m,p,BR

≤ C(‖Lu‖p,BR
+ ε‖u‖m,p,BR

+ ε−(m−1)‖u‖p,BR
).

If now we choose ε > 0 sufficiently small we deduce (9.3.3) with k = 0.
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To establish it for arbitrary k we argue by induction. Consider a multi-index |β| = k.
If u ∈ C∞

0 (E |BR
) and Lu = v then

L(∂βu) = ∂βLu + [L, ∂β]u = ∂βv + [L, ∂β]u.

The crucial observation is that [L, ∂β] is a p.d.o. of order ≤ m + k − 1. Indeed

σm+k([L, ∂β]) = [σm(L), σk(∂β)] = 0.

Using (9.3.3) with k = 0 we deduce

‖∂βu‖m,p,BR
≤ C(‖∂βv‖p,BR

+ ‖[L, ∂β]u‖p,BR
+ ‖∂βu‖p,BR

)

≤ C(‖v‖k,p,BR
+ ‖u‖m+k−1,p,BR

+ ‖u‖k,p,BR
).

The term ‖u‖m+k−1,p,BR
+ ‖u‖k,p,BR

can be estimated from above by

ε‖u‖m+k,p,BR
+ C‖u‖p,BR

using the interpolation inequalities as before. The inequality (9.3.3) is completely proved.
The Hölder case is entirely similar. It is left to the reader as an exercise. Theorem 9.3.1 is
proved.

ut

Using the truncation technique and the interpolation inequalities we deduce the following
consequence.

Corollary 9.3.3. Let L as in Theorem 9.3.1 and fix 0 < r < R. Then for every k ∈ Z+,
1 < p < ∞ and α ∈ (0, 1) there exists C = C(k, p, α,N, ‖L‖k+1,R, R, r) > 0 such that
∀u ∈ C∞(E)

‖u‖k+m,p,Br ≤ C(‖Lu‖k,p,BR
+ ‖u‖p,BR

)

and
‖u‖k+m,α,Br ≤ C(‖Lu‖k,α,BR

+ ‖u‖0,α,BR
).

Exercise 9.3.1. Prove the above corollary. ut

9.3.2 Elliptic regularity

In this subsection we continue to use the notations of the previous subsection.

Definition 9.3.4. Let u, v : RN → Cr be measurable functions.
(a) u is a classical solution of the partial differential equation

Lu =
∑

|β|≤m

Aα(x)∂αu (x) = v(x) (9.3.6)

if there exists α ∈ (0, 1) such that v ∈ C0,α
loc (RN ), v ∈ Cm,α

loc (RN ) and (9.3.6) holds every-
where.
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(b) u is said to be an Lp strong solution of (9.3.6) if u ∈ Lm,p
loc (RN ) and v ∈ Lp

loc(R
N )

and (9.3.6) hold almost everywhere. (The partial derivatives of u should be understood in
generalized sense.)
(c) u is said to be an Lp weak solution if u, v ∈ Lp

loc(R
N ) and

∫

RN

〈u, L∗φ〉dx =
∫

RN

〈v, φ〉dx ∀φ ∈ C∞
0 (E).

Note the following obvious inclusion

{Lp weak solutions} ⊃ {Lp strong solutions}.

The principal result of this subsection will show that when L is elliptic then the above
inclusion is an equality.

Theorem 9.3.5. Let 1 < p < ∞ and L : C∞(E) → C∞(E) an elliptic operator of order
m. Then any Lp-weak solution u of

Lu = v ∈ Lp
loc(E)

is an Lp strong solution ,i.e. u ∈ Lm,p
loc (E).

Remark 9.3.6. Loosely speaking the above theorem says that if a “clever” (i.e. elliptic)
combination of mixed partial derivatives can be defined weakly then any mixed partial
derivative (up to a certain order) can be weakly defined as well. ut

The essential ingredient in the proof is the technique of mollification. For each δ > 0 set

uδ = ρδ ∗ u ∈ C∞(E) vδ = ρδ ∗ v ∈ C∞(E).

The decisive result in establishing the regularity of u is the following.

Lemma 9.3.7. Let wδ = Luδ − vδ ∈ C∞(E). Then for every φ ∈ C∞
0 (E)

lim
δ→0

∫

RN

〈wδ, φ〉dx = 0,

i.e. wδ converges weakly to 0 in Lp
loc.

Roughly speaking this lemma says that

[L, ρδ∗] → 0 as δ → 0.

We first show how one can use Lemma 9.3.7 to prove u ∈ Lm,p
loc (E). Fix 0 < r < R.

Note that uδ is a classical solution of

Luδ = vδ + wδ.

Using the elliptic estimates of Corollary 9.3.3 we deduce

‖uδ‖m,p,B2r ≤ C(‖uδ‖p,B3r + ‖vδ‖p,B3r + ‖wδ‖p,B3r).
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Since uδ → u and vδ → v in Lp(E |B3r) we deduce

‖uδ‖p,B3r , ‖vδ‖p,B3r ≤ C.

On the other hand, since wδ is weakly convergent in Lp(E |B3r) we deduce it must be
bounded in this norm. Hence

‖u‖m,p,Br ≤ C.

In particular, because Lm,p(E |B2r) is reflexive we deduce that a subsequence of (uδ) con-
verges weakly to some u ∈ Lm,p(E |B2r). Moreover, using Rellich-Kondratchov compactness
theorem we deduce that on a subsequence

uδ → u strongly in Lp(E |Br).

Since uδ → u in Lp
loc (as mollifiers) we deduce u |Br= u ∈ Lm,p(E |Br). This shows u ∈ Lm,p

loc

because r is arbitrary. Theorem 9.3.5 is proved.
ut

Proof of Lemma 9.3.7 Pick φ ∈ C∞
0 (E). Assume suppφ ⊂ B = BR. We have to show

lim
δ→0

(∫

B
〈Luδ, φ〉dx−

∫

B
〈vδ, φ〉dx

)
= 0.

We analyze each of the above terms separately. Assume the formal adjoint of L has the
form

L∗ =
∑

|β|≤m

Bβ(x)∂β
x .

We have ∫

B
〈Luδ, φ〉dx =

∫

B
〈uδ(x), L∗xφ (x)〉dx

=
∫

B

(∫

RN

〈ρδ(x− y)u(y), L∗xφ (x)〉dy

)
dx

=
∑

β

∫

B

(∫

RN

〈ρδ(x− y)u(y), Bβ(x)∂β
xφ (x)〉dy

)
dx

=
∑

β

∫

B

(∫

RN

〈u(y), ρδ(x− y)Bβ(x)∂β
xφ (x)〉dy

)
dx.

Similarly ∫

B
〈vδ(x), φ(x)〉dx =

∫

B

∫

RN

〈v(y), ρδ(x− y)φ(x)〉dydx

=
∫

B

∫

RN

〈u(y), L∗yρδ(x− y)φ(x)〉dydx

=
∑

β

∫

B

∫

RN

〈u(y), Bβ(y)∂β
y (ρδ(x− y)φ(x))〉dydx
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(switch the order of integration)

=
∑

β

∫

RN

∫

B
〈u(y), Bβ(y)∂β

y (ρδ(x− y)φ(x))〉dxdy

(∂xρδ(x− y) = −∂yρδ(x− y))

=
∑

β

(−1)β

(∫

RN

∫

B
〈u(y), Bβ(y)(∂β

xρδ(x− y))φ(x)〉dxdy

)

(integrate by parts in the interior integral)

=
∑

β

∫

RN

∫

B
〈u(y), Bβ(y)ρδ(x− y)∂β

xφ(x)〉dxdy

(switch back the order of integration)

=
∑

β

∫

B

∫

RN

〈u(y), Bβ(y)ρδ(x− y)∂β
xφ(x)〉dydx.

Hence ∫

B
〈Luδ, φ〉dx−

∫

B
〈vδ, φ〉dx =

=
∑

β

∫

B

∫

RN

〈u(y), ρδ(x− y) (Bβ(x)−Bβ(y)) ∂β
xφ(x)〉dydx.

We will examine separately each term in the above sum.
∫

B

∫

RN

〈u(y), ρδ(x− y) (Bβ(x)−Bβ(y)) ∂β
xφ(x)〉dydx

=
∫

B

∫

RN

ρδ(x− y)〈u(y), (Bβ(x)−Bβ(y))∂β
xφ(x)〉dydx

=
∫

B
〈
(∫

RN

ρδ(x− y)u(y)dy

)
, Bβ(x)∂β

xφ(x)〉dx

−
∫

B
〈
(∫

RN

ρδ(x− y)B∗
β(y)u(y)dy

)
, ∂β

xφ(x)〉dx

=
∫

B
〈uδ(x), Bβ(x)∂β

xφ(x)〉dx−
∫

B
〈(B∗

βu)δ(x), ∂β
xφ(x)〉dx

where (B∗
βu)δ denotes the mollification of B∗

βu. As δ → 0

uδ → u and (B∗
βu)δ → B∗

βu in Lp
loc.

Hence
lim
δ→0

∫

B

∫

RN

〈u(y), ρδ(x− y) (Bβ(x)−Bβ(y)) ∂β
xφ(x)〉dydx

=
∫

B
〈u(x), Bβ(x)∂β

xφ(x)〉dx−
∫

B
〈B∗

β(x)u(x), ∂β
xφ(x)〉dx = 0.

Lemma 9.3.7 is proved.
ut
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Corollary 9.3.8. If u ∈ Lp
loc(E) is weak Lp-solution of

Lu = v

(1 < p < ∞) and v ∈ Lk,p
loc (E) then u ∈ Lk+m,p

loc (E) and for every 0 < r < R

‖u‖m+k,p,Br ≤ C(‖v‖k,p,BR
+ ‖u‖p,BR

)

where as usual C = C(‖L‖k+m+1,R, R, r, . . .).

Proof We already know that u ∈ Lk+m,p
loc (E). Pick a sequence un ∈ C∞

0 (E) such that

un → u strongly in Lk+m,p
loc (E).

Then
Lun → Lu strongly in Lk+m,p

loc (E)

and
‖un‖m+k,p,Br ≤ C(‖un‖0,p,BR

+ ‖Lun‖k,p,BR
).

The desired estimate is obtained by letting n →∞ in the above inequality.
ut

Corollary 9.3.9. (Weyl Lemma) If u ∈ Lp
loc(E) is a weak Lp-solution of Lu = v and v

is smooth then u must be smooth.

Proof Since v is smooth we deduce v ∈ Lk,p
loc ∀k ∈ Z+. Hence u ∈ Lk+m,p

loc ∀k. Using
Morrey embedding theorem we deduce that u ∈ Cm,α

loc ∀m ≥ 0.
ut

The results in this and the previous section are local and so extend to the more general
case of p.d.o. on manifolds. They take a particularly nice form for operators on compact
manifolds.

Let (M, g) be a compact, oriented Riemann manifold and E, F → M two metric vector
bundles with compatible connections. Denote by L ∈ PDOm(E, F ) an elliptic operator of
order m.

Theorem 9.3.10. (a) Let u ∈ Lp(E) and v ∈ Lk,p(F ) (1 < p < ∞) such that
∫

M
〈v, φ〉F dvg =

∫

M
〈u, L∗φ〉Edvg ∀φ ∈ C∞

0 (F ).

then u ∈ Lk+m,p(E) and

‖u‖k+mp,E ≤ C(‖v‖k,p,F + ‖u‖p,E)

where C = C(L, k, p).
(b) If u ∈ Cm,α(E) and v ∈ Ck,α(F ) (0 < α < 1) are such that

Lu = v

then u ∈ Cm+k,α(E) and

‖u‖k+m,α,E ≤ C(‖u‖0,α,E + ‖v‖k,α,F )

where C = C(L, k, α).
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Remark 9.3.11. The regularity results and the a priori estimates we have established
so far represent only the minimal information one needs to become an user of the elliptic
theory. Regrettably we have mentioned nothing about two important topics: equations
with non smooth coefficients and boundary value problems. For generalized Laplacians
these topics are discussed in great detail in [28] and [61]. The boundary value problems for
first order elliptic operators require a more delicate treatment. We refer to [13] for a very
nice presentation of this subject. ut

Exercise 9.3.2. (Kato’s inequalities) Let (M, g) denote a compact oriented Riemann
manifold without boundary. Consider a metric vector bundle E → M equipped with a
compatible connection ∇.
(a) Show that for every u ∈ L1,2(E) the function x 7→ |u(x)| is in L1,2(M) and moreover

|d |u(x)| | ≤ |∇u(x)|
for almost all x ∈ M .
(b) Set ∆E = ∇∗∇ and denote by ∆M the scalar Laplacian. Show that for all u ∈ L2,2(E)
we have

∆M (|u|2) = 2〈∆Eu, u〉E − 2|∇u|2.
Conclude that ∀φ ∈ C∞(M) such that φ ≥ 0 we have

∫

M
(d|u|, d(φ|u|) )g d vg ≤

∫

M
〈∆Eu, u〉Eφd vg,

i.e.
|u(x)|∆M (|u(x)|) ≤ 〈∆Eu(x), u(x)〉E weakly.

ut

9.3.3 An application: prescribing the curvature of surfaces

In this subsection we will illustrate the power of the results we proved so far by showing how
they can be successfully used to prove an important part of the celebrated uniformization
theorem. In the process we will have the occasion to introduce the reader to some tricks
frequently used in the study of nonlinear elliptic equations. We will consider a slightly more
general situation than the one required by the uniformization theorem.

Let (M, g) be a compact, connected, oriented Riemann manifold of dimension N . Denote
by ∆ = d∗d : C∞(M) → C∞(M) the scalar Laplacian. We assume for simplicity that

volg(M) =
∫

M
dvg = 1

so that the average of any integrable function ϕ is defined by

ϕ =
∫

M
ϕ(x)dvg(x).

We will study the following partial differential equation.

∆u + f(u) = s(x) (9.3.7)
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where f : R→ R and s ∈ C∞(M) satisfy the following conditions.
(C1) f is smooth and strictly increasing.
(C2) There exist a > 0 and b ∈ R such that

f(t) ≥ at + b ∀t ∈ R.

Set
F (u) =

∫ u

0
f(t)dt.

We assume
(C3) lim|t|→∞(F (t)− st) = ∞ where s denotes the average of s

s =
∫

M
s(x)dvg.

Theorem 9.3.12. Let f and s(x) satisfy the conditions (C1 − C3) Then there exists a
unique u ∈ C∞(M) such that

∆u (x) + f(u(x)) = s(x) ∀x ∈ M.

The proof of this theorem will be carried out in two steps.

Step 1: Existence of a weak solution A weak solution of (9.3.7) is a function u ∈
L1,2(M) such that f(u(x)) ∈ L2(M) and

∫

M
{(du, dφ) + f(u)φ}dvg =

∫

M
s(x)φ(x)dvg(x) ∀φ ∈ L1,2(M).

Step 2: Regularity We show that a weak solution is in fact a classical solution.

Proof of Step 1 We will use the direct method of the calculus of variations (outlined at
the beginning of the current section). Consider the energy functional

I : L1,2(M) → R

I(u) =
∫

M
{1
2
|du|2 + F (u)− g(x)u(x)}dvg(x).

This functional is not quite well defined since there is no guarantee that F (u) ∈ L1(M) for
all u ∈ L1,2(M).

Leaving this issue aside for a moment we can perform a formal computation à la Rie-
mann. Assume u is a minimizer of I, i.e.

I(u) ≤ I(v) ∀v ∈ L1,2(M).

Thus for all φ ∈ L1,2(M)
I(u) ≤ I(u + tφ) ∀t ∈ R.

Hence t = 0 is a minimum of hφ(t) = I(u+ tφ) so that h′φ(0) = 0 ∀φ. A simple computation
shows that

h′φ(0) =
∫

M
{(du, dφ) + f(u)φ− s(x)φ(x)}dvg = 0
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so that a minimizer of I is a weak solution provided we deal with the integrability issue
raised at the beginning of this discussion. Any way, the lesson we learn from this formal
computation is that minimizers of I are strong candidates for solutions of (9.3.7).

We will circumvent the trouble with the possible non-integrability of F (u) by using a
famous trick in elliptic partial differential equations called the maximum principle

Lemma 9.3.13. Let h : R → R be a continuous, strictly increasing function and u, v ∈
L1,2(M) such that
(i) h(u), h(v) ∈ L2(M).
(ii) ∆u + h(u) ≥ ∆v + h(v) weakly i.e.

∫

M
{(du, dφ) + h(u)φ}dvg ≥

∫

M
{dv, dφ) + h(v)φ}dvg (9.3.8)

∀φ ∈ L1,2(M) such that φ ≥ 0 a.e. M . Then u ≥ v a.e. on M .

Proof of the lemma Let

(u− v)− = min{u− v, 0) =
1
2
{(u− v)− |u− v|}.

According to the Exercise 9.2.9 we have (u− v)− ∈ L1,2(M) and

d(u− v)− =
{

d(u− v) a.e. on {u < v}
0 a.e. on {u ≥ v}

Using φ = −(u− v) in (9.3.8) we deduce

−
∫

M
{(d(u− v), d(u− v)−) + (h(u)− h(v))(u− v)−}dvg ≥ 0.

Clearly
(d(u− v), d(u− v)−) = |d(u− v)−|2

and since h is nondecreasing

(h(u)− h(v))(u− v)− ≥ 0.

Hence ∫

M
|d(u− v)−|2dvg ≤ −

∫

M
(h(u)− h(v))(u− v)−dvg ≤ 0

so that
|d(u− v)−| ≡ 0.

Since M is connected this means (u− v)− ≡ c ≤ 0. If c < 0 then

(u− v) ≡ (u− v)− ≡ c

so that u = v + c < v. Since h is strictly increasing we conclude
∫

M
h(u)dvg <

∫

M
h(v)dvg.
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On the other hand, using φ ≡ 1 in 9.3.8 we deduce
∫

M
h(u)dvg ≥

∫

M
h(v)dvg!

Hence c cannot be negative so that (u− v)− ≡ 0 which is another way of saying u ≥ v. The
maximum principle is proved.

ut

Exercise 9.3.3. Assume h in the above lemma is only non-decreasing but u and v satisfy
the supplementary condition

u ≥ v.

Show the conclusion of Lemma 9.3.13 continues to hold. ut

We now return to the equation (9.3.7). Note first that if u and v are two weak solutions
of this equation then

∆u + f(u) ≥ (≤)∆v + h(v) weakly

so that by the maximum principle u ≥ (≤) v. This shows the equation (9.3.7) has at most
one weak solution.

To proceed further we need the following a priori estimate.

Lemma 9.3.14. Let u be a weak solution of (9.3.7). If C is a positive constant such that

f(C) ≥ sup
M

s(x)

then u(x) ≤ C a.e. on M .

Proof The equality f(C) ≥ sup s(x) implies

∆C + f(C) ≥ s(x) = ∆u + f(u) weakly

so the conclusion follows from the maximum principle.
ut

Fix C0 > 0 such that f(C0) ≥ sup s(x). Consider a strictly increasing C2-function
f̃ : R→ R such that

f̃(u) = f(u) for u ≤ C0

f̃(u) is linear for u ≥ C0 + 1.

The condition (C2) implies there exist A, B > 0 such that

|f̃(u)| ≤ A|u|+ B. (9.3.9)

Lemma 9.3.15. If u is a weak solution of

∆u + f̃(u) = s(x) (9.3.10)

then u is also a weak solution of (9.3.7).
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Proof We deduce as in the proof of Lemma 9.3.14 that u ≤ C0 which is precisely the
range where f coincides with f̃ .

ut

The above lemma shows that instead of looking for a weak solution of (9.3.7) we should
try to find a weak solution of (9.3.10). We will use the direct method of the calculus of
variations on a new functional

Ĩ(u) =
∫

M
{1
2
|du(x)|2 + F̃ (u(x))− s(x)u(x)}dvg(x)

where

F̃ (u) =
∫ u

0
f̃(t)dt.

The advantage we gain by using this new functional is clear. The inequality (9.3.9) shows
F̃ has at most quadratic growth so that F̃ (u) ∈ L1(M) for all u ∈ L2(M). The existence
of a minimizer is a consequence of the following fundamental principle of the calculus of
variations.

Proposition 9.3.16. Let X be a reflexive Banach space and J : X → R a convex, weakly
lower semi-continuous, coercive functional i.e. the level sets

Jc = {x ; J(x) ≤ c}

are respectively convex, weakly closed and bounded in X. Then J admits a minimizer i.e.
there exists x0 ∈ X such that

J(x0) ≤ J(x) ∀x ∈ X.

Proof Note that
inf
X

J(x) = inf
Jc

J(x)

Consider xn ∈ Jc such that
lim
n

J(xn) = inf J.

Since X is reflexive and Jc is convex, weakly closed and bounded in the norm of X we
deduce that Jc is weakly compact. Hence a (generalized) subsequence (xν) of xn converges
weakly to some x0 ∈ Jc. Using the lower semi-continuity of J we deduce

J(x0) ≤ lim inf
ν

J(xν) = inf J.

Hence x0 is a minimizer of J . The proposition is proved.
ut

The next result will conclude the proof of Step 1.

Lemma 9.3.17. Ĩ is convex, weakly lower semi-continuous and coercive (with respect to
the L1,2-norm).
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Proof The convexity is clear since F̃ is convex on account that f̃ is strictly increasing.
The terms

u 7→ 1
2

∫

M
|du|2dvg u 7→ −

∫

M
s(x)u(x)dvg(x)

are clearly weakly lower semi-continuous. We need to show the functional

u 7→
∫

M
F̃ (u)dvg

is also weakly lower semi-continuous.
Since F̃ is convex we can find α > 0, β ∈ R such that

F̃ (u)− αu− β ≥ 0.

If un → u strongly in L1,2(M) we deduce using the Fatou lemma that
∫

M
{F̃ (u)− αu− β}dvg ≤ lim inf

n→∞

∫

M
{F̃ (un)− αun − β}dvg.

On the other hand
lim
n

∫

M
αun + βdvg =

∫

M
αu + βdvg

which shows that ∫

M
F̃ (u)dvg ≤ lim inf

n

∫
F̃ (un)dvg.

This means the functional
L1,2(M) 3 u 7→

∫

M
F̃ (u)dvg

is strongly lower semi-continuous. Thus the level sets

{u ;
∫

M
F̃ (u)dvg ≤ c}

are both convex and strongly closed. Hahn-Banach separation principle can now be invoked
to conclude these level sets are also weakly closed. We have thus established that Ĩ is convex
and weakly lower semi-continuous.

Remark 9.3.18. We see that the lower semi-continuity and the convexity conditions are
very closely related. In some sense they are almost equivalent. We refer to [20] for a
presentation of the direct method of the calculus of variations were the lower semi-continuity
issue is studied in great detail. ut

The coercivity will require a little more work. The key ingredient will be a Poincaré
inequality. We first need to introduce some more terminology.

For any u ∈ L2(M) we denoted by u its average. Now set

u⊥(x) = u(x)− u.

Note the average of u⊥ is 0. This choice of notation is motivated by the fact that u⊥ is
perpendicular (with respect to the L2(M)-inner product) to the kernel of ∆ which is the
1-dimensional space spanned by the constant functions.
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Lemma 9.3.19. (Poincaré inequality) There exists C > 0 such that
∫

M
|du|2dvg ≥ C

∫

M
|u⊥|2dvg ∀u ∈ L1,2(M).

Proof We argue by contradiction. Assume that for any ε > 0 there exists uε ∈ L1,2(M)
such that ∫

M
|u⊥ε |2dvg = 1

and ∫

M
|duε|2dvg ≤ ε.

The above two conditions imply the family (u⊥ε ) is bounded in L1,2(M). Since L1,2(M) is
reflexive we deduce that on a subsequence

u⊥ε ⇀ v weakly in L1,2(M).

The inclusion L1,2(M) ↪→ L2(M) is compact (Rellich-Kondratchov) so that on a subse-
quence

u⊥ε → v strongly in L2(M).

This implies v 6= 0 since
∫

M
|v|2dvg = lim

ε

∫

M
|u⊥ε |2dvg = 1.

On the other hand
duε = du⊥ε → 0 strongly in L2.

We conclude ∫

M
(dv, dφ)dvg = lim

ε

∫

M
(duε, dφ)dvg = 0 ∀φ ∈ L1,2(M).

In particular ∫

M
(dv, dv)dvg = 0

so that dv ≡ 0. Since M is connected we deduce v ≡ c = const. and moreover

c =
∫

M
v(x)dvg(s) = lim

ε

∫

M
u⊥ε dvg = 0.

This contradicts the fact that v 6= 0. The Poincaré inequality is proved.
ut

We can now establish the coercivity of Ĩ(u). Let κ > 0 and u ∈ L1,2(M) such that
∫

M

1
2
|du|2 + F̃ (u)− s(x)udvg ≤ κ. (9.3.11)

Since ∫

M
|du|2dvg =

∫

M
|du⊥|2dvg
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and ∫

M
|u|2 = |u|2 +

∫

M
|u⊥|2dvg

it suffices to show the quantities

u,

∫

M
|u⊥|2dvg,

∫

M
|du⊥|dvg

are bounded. In view of the Poincaré inequality the boundedness of
∫

M
|du⊥|2dvg

implies the boundedness of ‖u⊥‖2,M so that we should concentrate only on u and ‖du⊥‖2.
The inequality (9.3.11) can be rewritten as

∫

M
{1
2
|du⊥|2 + F̃ (u)− s⊥u⊥}dvg − s · u ≤ c.

The Poincaré and Cauchy inequalities imply

C‖u⊥‖2
2 − ‖s⊥‖2 · ‖u⊥‖2 +

∫

M
F̃ (u)dvg − s · u ≤ κ.

Since volg(M) = 1 and F̃ is convex we have a Jensen inequality

F̃

(∫

M
udvg

)
≤

∫

M
F̃ (u)dvg

so that
C‖u⊥‖2

2 − ‖s⊥‖2 · ‖u⊥‖2 + F̃ (u)− s · u ≤ κ. (9.3.12)

Set P (t) = Ct2 − ‖s⊥‖2t and let m = inf P (t). From the inequality (9.3.12) we deduce

F̃ (u)− s · u ≤ κ−m.

Using condition (C3) we deduce that |u| must be bounded. Feed this information back in
(9.3.12). We conclude that P (‖u⊥‖2) must be bounded. This forces ‖u⊥‖2 to be bounded.
Thus Ĩ is coercive and Lemma 9.3.17 is proved.

ut

Step 2: The regularity of the minimizer. We will use a technique called bootstrapping
which blends the elliptic regularity theory and the Sobolev embedding theorems to gradually
improve the regularity of the weak solution.

Let u be the weak solution of (9.3.10). Then u(x) is a weak L2 solution of

∆u = h(x) on M

where h(x) = −f̃(u(x))− s(x). Note that since the growth of f̃ is at most linear f̃(u(x)) ∈
L2(M). The elliptic regularity theory implies that u ∈ L2,2(M). Using Sobolev (or Morrey)
embedding theorem we can considerably improve the integrability of u. We deduce that
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(i) either u ∈ Lq(M) if −N/q ≤ 2−N/2 ≤ 0 (dimM = N)
(ii) or u is Hölder continuous if 2−N/2 > 0

In any case this shows u(x) ∈ Lq1(M) for some q1 > 2 which implies h(x) ∈ Lq1(M).
Using again elliptic regularity we deduce u ∈ L2,q1 and Sobolev inequality implies that u ∈
Lq2(M) for some q2 > q1. After a finite number of steps we conclude that h(x) ∈ Lq(M) for
all q > 1. Elliptic regularity implies u ∈ L2,q(M) for all q > 1. This implies h(x) ∈ L2,q(M)
for all q > 1. Invoking elliptic regularity again we deduce that u ∈ L4,q(M) for any q > 1.
(At this point it is convenient to work with f rather than with f̃ which was only C2). Feed
this back in h(x) and regularity theory improves the regularity of u two orders at a time.
In view of Morrey embedding theorem the conclusion is clear: u ∈ C∞(M). The proof of
Theorem 9.3.12 is complete.

ut

From the theorem we have just proved we deduce immediately the following consequence.

Corollary 9.3.20. Let (M, g) be a compact, connected, oriented Riemann manifold and
s(x) ∈ C∞(M). Assume volg(M) = 1. Then the following two conditions are equivalent.
(a) s =

∫
M s(x)dvg > 0

(b) For every λ > 0 there exists a unique u = uλ ∈ C∞(M) such that

∆u + λeu = s(x). (9.3.13)

Proof (a) ⇒ (b) follows from Theorem 9.3.12.
(b) ⇒ (a) follows by multiplying (9.3.13) with v(x) ≡ 1 and then integrating by parts so
that

s̄ = λ

∫

M
eu(x)dvg(x) > 0.

ut

Although the above corollary may look like a purely academic result it has a very nice
geometrical application. We will use it to prove a special case of the celebrated uniformiza-
tion theorem.

Definition 9.3.21. Let M be a smooth manifold. Two Riemann metrics g1 and g2 are said
to be conformal if there exists f ∈ C∞(M) such that g2 = efg1.

Exercise 9.3.4. Let (M, g) be an oriented Riemann manifold of dimension N and f ∈
C∞(M). Denote by g̃ the conformal metric g̃ = efg. If s(x) is the scalar curvature of g and
s̃ is the scalar curvature of g̃ show that

s̃(x) = e−f{s(x) + (N − 1)∆gf − (N − 1)(N − 2)
4

|df(x)|2g}

where ∆g denotes the scalar Laplacian of the metric g while |·|g denotes the length measured
in the metric g. ut
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Remark 9.3.22. A long standing problem in differential geometry which was only relatively
recently solved is the Yamabe problem:

“If (M, g) is a compact oriented Riemann manifold does there exist a metric conformal
to g whose scalar curvature is constant?”

In dimension 2 this problem is related to the uniformization problem of complex analysis.
The Yamabe problem was solved in its complete generality due to the combined efforts of

T. Aubin, [7, 8] and R. Schoen [66]. For a very beautiful account of its proof we recommend
the excellent survey of J. Lee and T.Parker, [47].

One can formulate a more general question than the Yamabe problem. Given a compact
oriented Riemann manifold (M, g) decide whether a smooth function s(x) on M is the scalar
curvature of some metric on M conformal to g. This problem is known as the Kazdan-
Warner problem. The case dimM = 2 is completely solved in [42]. The higher dimensional
situation dimM > 2 is far more complicated both topologically and analytically. ut

Theorem 9.3.23. (Uniformization Theorem) Let (Σ, g) be a compact, oriented Rie-
mann manifold of dimension 2. Assume volg(Σ) = 1. If χ(Σ) < 0 (or equivalently if its
genus is ≥ 2) then there exists a unique metric g̃ conformal to g such that

s(g̃) ≡ −1.

Proof We look for g̃ of the form g̃ = eug. Using Exercise 9.3.4 we deduce that u should
satisfy

−1 = e−u{s(x) + ∆u},
i.e.

∆u + eu = −s(x)

where s(x) is the scalar curvature of the metric g. The Gauss-Bonnet theorem implies that

s = 4πχ(Σ) < 0

so that the existence of u is guaranteed by Corollary 9.3.20. The uniformization theorem is
proved.

ut

On a manifold of dimension 2 the scalar curvature coincides up to a positive factor
with the sectional curvature. The uniformization theorem implies that the compact ori-
ented surfaces of negative Euler characteristic admit metrics of constant negative sectional
curvature. Now, using the Cartan-Hadamard theorem we deduce the following topological
consequence.

Corollary 9.3.24. The universal cover of a compact, oriented surface of negative Euler
characteristic is diffeomorphic to R2.

In the following exercises (M, g) denotes a compact, oriented Riemann manifold without
boundary.
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Exercise 9.3.5. Fix c > 0. Show that for every f ∈ L2(M) the equation

∆u + cu = f

has an unique solution u ∈ L2,2(M). ut

Exercise 9.3.6. Consider a smooth function f : M × R → R such that for every x ∈ M
the function u 7→ f(x, u) is increasing. Assume the equation

∆gu = f(x, u) (9.3.14)

admits a pair of comparable sub/super-solutions i.e. there exist u0, U0 ∈ L1,2(M)∩L∞(M)
such that

U0(x) ≥ u0(x) a.e. on M

and
∆gU0 ≥ f(x,U0(x)) ≥ f(x, u0(x)) ≥ ∆gu0 weakly in L1,2(M).

Fix c > 0 and define (un)n≥1 ⊂ L2,2(M) inductively as the unique solution of the equation

∆un(x) + cun(x) = cun−1(x) + f(x, un−1(x))

(a) Show that

u0(x) ≤ u1(x) ≤ u2(x) ≤ · · · ≤ un(x) ≤ · · · ≤ U0(x) ∀x ∈ M.

(b) Show that un converges uniformly on M to a solution u ∈ C∞(M) of (9.3.14) satisfying

u0 ≤ u ≤ U0.

(c) Prove that the above conclusions continue to hold even if the monotonicity assumption
on f is dropped. ut

9.4 Elliptic operators on compact manifolds

The elliptic operators on compact manifolds behave in many respects as finite dimensional
operators. It is the goal of this last section to present the reader some fundamental analytic
facts which will transform the manipulation with such p.d.o. into a less painful task. What
makes these operators so “friendly” is the existence of a priori estimates. These coupled
with the Rellich-Kondratchov compactness theorem are the keys which will open many
doors.

9.4.1 The Fredholm theory

Throughout this section we assume the reader is familiar with some fundamental facts about
unbounded linear operators. We refer to [15] Ch.II for a very concise presentation of these
notions. An exhaustive presentation of this subject can be found in [41]. For the reader’s
convenience we describe the fundamental notions related to unbounded operators.
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Definition 9.4.1. (a) Let X, Y be two Hilbert spaces over K = R, C and

T : D(T ) ⊂ X → Y

a linear operator (not necessarily continuous) defined on the linear subspace D(T ) ⊂ X. T
is said to be densely defined if D(T ) is dense in X. T is said to be closed if its graph

ΓT = {(x, Tx) ∈ D(T )× Y ⊂ X × Y }

is a closed subspace in X × Y .
(b) Let T : D(T ) ⊂ X → Y be a closed, densely defined linear operator. The adjoint of T
is the operator T ∗ : D(T ∗) ⊂ Y → X defined by its graph

ΓT ∗ = {(y∗, x∗) ∈ Y ×X ; 〈x∗, x〉 = 〈y∗, Tx〉 ∀x ∈ D(T ).

where 〈·, ·〉 : Z × Z → K denotes the inner product on a generic Hilbert space Z.
(c) A closed, densely defined operator T : D(T ) ⊂ X → X is said to be selfadjoint if
T = T ∗.

Remark 9.4.2. (a) In more concrete terms T : D(T ) ⊂ X → Y is closed if for any sequence
(xn) ⊂ D(T ) such that (xn, Txn) → (x, y) it follows that (i) x ∈ D(T ) and (ii) y = Tx.
(b) If T : X → Y is a closed operator then T is bounded (closed graph theorem). Also
note that if T : D(T ) ⊂ X → Y is a closed, densely defined operator then kerT is a closed
subspace of X
(c) One can show that the adjoint of any closed, densely defined operator is a closed, densely
defined operator.
(d) The closed, densely defined operator T : D(T ) ⊂ X → X is selfadjoint if the following
two conditions hold.
(i) 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ D(T ) and
(ii)

D(T ) = {y ∈ X ; ∃C > 0 : |〈Tx, y〉| ≤ C|x| ∀x ∈ D(T )}.
If only the condition (i) is satisfied the operator T is called symmetric. ut

Let (M, g) be a compact, oriented Riemann manifold, E, F two metric vector bundles
with compatible connections and L ∈ PDOk = PDOk(E, F ) a k-th order elliptic p.d.o.
We will denote the various L2 norms by ‖ · ‖ and the Lk,2-norms by ‖ · ‖k.

Definition 9.4.3. The analytical realization of L is the linear operator

La : D(La) ⊂ L2(E) → L2(E)

which acts by u 7→ Lu for all u ∈ D(La) = Lk,2(E).

Proposition 9.4.4. (a) The analytical realization La of L is a closed, densely defined linear
operator.
(b) If L∗ : C∞(F ) → C∞(E) is the formal adjoint of L then

(L∗)a = (La)∗.
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Proof (a) Since C∞(E) ⊂ D(La) = Lk,2(E) is dense in L2(E) we deduce that La is
densely defined. To prove La is also closed consider a sequence (un) ⊂ Lk,2(E) such that

un → u strongly in L2(E) and Lun → v strongly in L2(F ).

From the elliptic estimates we deduce

‖un − um‖k ≤ C(‖Lun − Lum‖+ ‖un − um‖) → 0 as m,n →∞.

Hence (un) is a Cauchy sequence in Lk,2(E) so that un → u in Lk,2(E). Now it is clear that
v = Lu.
(b) From the equality

∫

M
〈Lu, v〉dvg =

∫

M
〈u, L∗v〉dvg ∀u ∈ Lk,2(E), v ∈ Lk,2(F )

we deduce
D((La)∗) ⊃ D((L∗)a) = Lk,2(F )

and (La)∗ = (L∗)a on Lk,2(F ). To prove that

D((La)∗) ⊂ D((L∗)a) = Lk,2(F )

we need to show that if v ∈ L2(F ) is such that ∃C > 0
∣∣∣∣
∫

M
〈Lu, v〉dvg

∣∣∣∣ ≤ C‖u‖ ∀u ∈ Lk,2(E)

then v ∈ Lk,2(F ). Indeed, the above inequality shows that the functional

u 7→
∫

M
〈Lu, v〉dvg

extends to a continuous linear functional on L2(E). Hence there exists φ ∈ L2(E) such that
∫

M
〈(L∗)∗u, v〉dvg =

∫

M
〈u, φ〉dvg ∀u ∈ Lk,2(E).

In other words, v is a weak L2-solution of the elliptic equation L∗v = φ. Using elliptic
regularity theory we deduce v ∈ Lk,2(M). The proposition is proved.

ut

Following the above result we will not make any notational distinction between an elliptic
operator (on a compact manifold) and its analytical realization.

Definition 9.4.5. (a) Let X and Y be two Hilbert space over K = R, C and T : D(T ) ⊂
X → Y a closed, densely defined linear operator. T is said to be semi-Fredholm if
(i) dimkerT < ∞ and
(ii) The range R(T ) of T is closed.
(b) The operator T is called Fredholm if both T and T ∗ are semi-Fredholm. In this case
the integer

indT
def
= dimK kerT − dimK kerT ∗

is called the Fredholm index of T .
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Remark 9.4.6. The above terminology has its origin in the work of Ivar Fredholm at the
beginning of this century. His result (later considerably generalized by F. Riesz) states
that if K : H → H is a compact operator from a Hilbert space to itself then 1H + K is a
Fredholm operator of index 0. ut

Consider again the elliptic operator L of Proposition 9.4.4.

Theorem 9.4.7. The operator La : D(La) ⊂ L2(E) → L2(F ) is Fredholm.

Proof The Fredholm property is a consequence of the following compactness result.

Lemma 9.4.8. Any sequence (un) ⊂ Lk,2(E) such that {‖un‖+‖Lun‖} is bounded contains
a subsequence strongly convergent in L2(E).

Proof of the lemma Using elliptic estimates we deduce that

‖un‖k ≤ C(‖Lun‖+ ‖un‖) ≤ const.

Hence (un) is also bounded in Lk,2(E). On the other hand, since M is compact Lk,2(E)
embeds compactly in L2(E). The lemma is proved.

ut

We will first show that dim kerL < ∞. In the proof we will rely on the classical result
of F. Riesz which states that a Banach space is finite dimensional if and only if its bounded
subsets are precompact (see [15], Chap. VI).

Note first that according to Weyl’s lemma kerL ⊂ C∞(E). Next, notice that kerL is
a Banach space with respect to the L2-norm since according to Remark 9.4.2 (a) kerL is
closed in L2(E). We will show that any sequence (un) ⊂ kerL which is also bounded in the
L2-norm contains a subsequence convergent in L2. This follows immediately from Lemma
9.4.8 since ‖un‖+ ‖Lun‖ = ‖un‖ is bounded.

To prove that the range R (T ) is closed we will rely on the following very useful inequality,
a special case of which we have seen at work in Subsection 9.3.3.

Lemma 9.4.9. (Poincaré inequality) There exists C > 0 such that

‖u‖ ≤ C‖Lu‖
for all u ∈ Lk,2(E) which are L2-orthogonal to kerL i.e.

∫

M
〈u, φ〉dvg = 0 ∀φ ∈ kerL.

Proof We will argue by contradiction. Denote by X ⊂ Lk,2(E) the subspace consisting
of sections L2-orthogonal to kerL. Assume that for any n > 0 there exists un ∈ X such
that

‖un‖ = 1 and ‖Lun‖ ≤ 1/n.

Thus ‖Lun‖ → 0 and in particular ‖un‖+‖Lun‖ is bounded. Using Lemma 9.4.8 we deduce
that a subsequence of (un) is convergent in L2(E) to some u. Note that ‖u‖ = 1. It is not
difficult to see that in fact u ∈ X. We get a sequence

(un, Lun) ⊂ ΓL = the graph of L
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such that
(un, Lun) → (u, 0).

Since L is closed we deduce u ∈ D(L) and Lu = 0. Hence u ∈ kerL ∩ X = {0}. This
contradicts the condition ‖u‖ = 1.

ut

We can now conclude the proof of Theorem 9.4.7. Consider a sequence (vn) ⊂ R (L)
such that vn → v in L2(F ). We want to show v ∈ R(L).

For each vn we can find an unique un ∈ X = (kerL)⊥ such that

Lun = vn.

Using the Poincaré inequality we deduce

‖un − um‖ ≤ C‖vn − vm‖.
When we couple this inequality with the elliptic estimates we get

‖un − um‖k ≤ C(‖Lun − Lum‖+ ‖un − um‖) ≤ C‖vn − vm‖ → 0 as m,n →∞.

Hence (un) is a Cauchy sequence in Lk,2(E) so that un → u in Lk,2(E). Clearly Lu = v so
that v ∈ R(L).

We have so far proved that kerL is finite dimensional and R (L) is closed i.e. La is
semi-Fredholm. Since (La)∗ = (L∗)a and L∗ is also an elliptic operator we deduce (La)∗ is
also semi-Fredholm. This completes the proof of Theorem 9.4.7.

ut

Using the closed range theorem of functional analysis we deduce the following important
consequence.

Corollary 9.4.10. (Abstract Hodge decomposition) Any k-th order elliptic operator
L : C∞(E) → C∞(F ) over the compact manifold M defines natural orthogonal decomposi-
tions of L2(E) and L2(F ). More precisely we have

L2(E) = kerL⊕ R(L∗) and L2(F ) = kerL∗ ⊕ R(L).

Corollary 9.4.11. If kerL∗ = 0 then for every v ∈ L2(F ) the partial differential equation

Lu = v

admits at least one weak L2-solution u ∈ L2(E).

The last corollary is really unusual. It states the equation Lu = v has a solution
provided the dual equation L∗v = 0 has no nontrivial solution. A nonexistence hypothesis
implies an existence result! This partially explains the importance of the vanishing results
in geometry, i.e. the results to the effect that kerL∗ = 0. With an existence result in our
hands presumably we are more capable of producing geometric objects. In the next chapter
we will describe one powerful technique of producing vanishing theorems based on the so
called Weitzenböck identities.



388 Elliptic equations on manifolds

Corollary 9.4.12. Over a compact manifold

kerL = kerL∗L kerL∗ = kerLL∗.

Proof Clearly kerL ⊂ kerL∗L. Conversely, let ψ ∈ C∞(E) such that L∗Lψ = 0. Then

‖Lψ‖2 =
∫

M
〈LψLψ〉dvg =

∫

M
〈L∗Lψ, ψ〉dvg = 0.

ut

The Fredholm property of an elliptic operator has very deep topological ramifications
culminating with one of the most beautiful results in mathematics: the Atiyah-Singer in-
dex theorems. Unfortunately this would require a lot more extra work to include it here.
However, in the remaining part of this subsection we will try to unveil some of the natural
beauty of elliptic operators. We will show that the index of an elliptic operator has many
of the attributes of a topological invariant.

We stick to the notations used so far. Denote by Ellk(E, F ) the space of elliptic operators
C∞(E) → C∞(F ) of order k. By using the attribute space when referring to Ellk we
implicitly suggested it carries some structure. It is not a vector space, it is not an affine
space it is not even a convex set. It is only a cone in the linear space PDO(m). But it
carries a natural structure of metric space which we now proceed to describe.

Let L1, L2 ∈ Ellk(E, F ). We set

δ(L1, L2) = sup{‖L1u− L2u‖ ; ‖u‖k = 1}.
Define

d(L1, L2) = max{δ(L1, L2), δ(L∗1, L
∗
2)}.

We let the reader check that (Ellk, d) is indeed a metric space. A continuous family of
elliptic operators (Lλ)λ∈Λ (where Λ is a topological space) is then a continuous map

Λ 3 λ 7→ Lλ ∈ Ellk.

In more intuitive terms this means that the coefficients of Lλ and their derivatives up to
order k depend continuously upon λ.

Theorem 9.4.13. The index map

ind : Ellk(E,F ) → Z, L 7→ ind (L)

is continuous.

The proof relies on a very simple algebraic trick which however requires some analytical
foundation.

Let X, Y be two Hilbert spaces. For any Fredholm operator L : D(L) ⊂ X → Y denote
by ıL : kerL → X (resp. by PL : X → kerL) the natural inclusion kerL ↪→ X (resp. the
orthogonal projection X → kerL). If Li : D(Li) ⊂ X → Y (i = 0, 1) are two Fredholm
operators define

RL0(L1) : D(L1)⊕ kerL∗0 ⊂ X ⊕ kerL∗0 → Y ⊕ kerL0
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by
RL0(L1)(u, φ) = (L1u + ıL∗0φ, PL0u), u ∈ D(L1), φ ∈ kerL∗0.

In other words RL0(L1) is given by the block decomposition

RL0(L1) =
[

L1 ıL∗0
PL0 0

]
.

We will call RL0(L1) is the regularization of L1 at L0. The operator L0 is called the pivot
of the regularization. For simplicity, when L0 = L1 = L, we write

RL = RL(L).

The result below lists the main properties of the regularization.

Lemma 9.4.14. (a) RL0(L1) is a Fredholm operator.
(b) R∗L0

(L1) = RL∗0(L
∗
1).

(c) RL0 is invertible (with bounded inverse).

Exercise 9.4.1. Prove the above lemma. ut

We strongly recommend the reader who feels less comfortable with basic arguments of
functional analysis to try to provide the no-surprise proof of the above result. It is a very
good “routine booster”.

Proof of Theorem 9.4.13 Let L0 ∈ Ellk(E, F ). We have to find r > 0 such that
∀L ∈ Ellk(E, F ) satisfying d(L0, L) ≤ r we have

ind (L) = ind (L0).

We will achieve this end in two steps.

Step 1 We will find r > 0 such that ∀L satisfying d(L0, L) < r the regularization of L at
L0 is invertible (with bounded inverse).

Step 2 We will conclude that if d(L,L0) < r where r > 0 is determined at Step 1 then
ind (L) = ind (L0).

Step 1 Since RL0(L) is Fredholm it suffices to show that both RL0(L) and RL∗0(L
∗) are

injective if L is sufficiently close to L0. We will do this only for RL0(L) since the remaining
case is entirely similar.

We argue by contradiction. Assume there exists a sequence (un, φn) ⊂ Lk,2(E)× kerL∗0
and a sequence (Ln) ⊂ Ellk(E,F ) such that

‖un‖k + ‖φn‖ = 1 (9.4.1)

RL0(Ln)(un, φn) = (0, 0) (9.4.2)

and
d(L0, Ln) ≤ 1/n. (9.4.3)
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From (9.4.1) we deduce that (φn) is a bounded sequence in the finite dimensional space
kerL∗0. Hence it contains a subsequence strongly convergent in L2 and in fact in any Sobolev
norm. Set φ = lim φn. Note that ‖φ‖ = limn ‖φn‖. Using (9.4.2) we deduce

Lnun = −φn,

i.e. the sequence (Lnun) is strongly convergent to −φ in L2(F ). The condition (9.4.3) now
gives

‖L0un − Lnun‖ ≤ 1/n,

i.e.
lim
n

Lnun = lim
n

L0un = −φ ∈ L2(F ).

Since un ⊥ kerL0 (by (9.4.2)) we deduce from the Poincaré inequality combined with the
elliptic estimates that

‖un − um‖k ≤ C‖L0un − L0um‖ → 0 as m,n →∞.

Hence the sequence un strongly converges in Lk,2 to some u. Moreover

lim
n
‖un‖k = ‖u‖k and ‖u‖k + ‖φ‖ = 1.

Putting all the above together we conclude that there exists a pair (u, φ) ∈ Lk,2(E)×kerL∗0
such that

‖u‖k + ‖φ‖ = 1

L0u = −φ and u ⊥ kerL. (9.4.4)

This contradicts the abstract Hodge decomposition which coupled with (9.4.4) implies u = 0
and φ = 0. Step 1 is completed.

Step 2 Let r > 0 as determined at Step 1 and L ∈ Ellk(E, F ). Hence

RL0(L) =
[

L ıL∗0
PL0 0

]

is invertible. We will use the invertibility of this operator to produce an injective operator

kerL∗ ⊕ kerL0 ↪→ kerL⊕ kerL∗0.

This implies dim kerL∗ + dim kerL0 ≤ dimkerL + dim kerL∗0 i.e.

ind (L0) ≤ ind(L).

A dual argument with L replaced by L∗ and L0 replaced by L∗0 will produce the opposite
inequality and thus finish the proof of Theorem 9.4.13. Now let us provide the details.

First, we orthogonally decompose

L2(E) = (kerL)⊥ ⊕ kerL
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and
L2(F ) = (kerL∗)⊥ ⊕ kerL∗.

Set U = kerL⊕ kerL∗0 and V = kerL∗ ⊕ kerL0. We will regard RL0(L) as an operator

RL0(L) : (kerL)⊥ ⊕ U → (kerL∗)⊥ ⊕ V.

As such it has a block decomposition

RL0(L) =
[

T A
B C

]
,

where
T : Lk,2(E) ∩ (kerL)⊥ ⊂ (kerL)⊥ → (kerL∗)⊥ = Range (L)

denotes the restriction of L to (kerL)⊥. T is an invertible operator with bounded inverse.
Since RL0(L) is invertible, ∀v ∈ V there exists a unique pair (φ, u) ∈ (kerL)⊥⊕U such

that

RL0(L)
[

φ
u

]
=

[
0
v

]
.

This means
Tφ + Au = 0 and Bφ + Cu = v.

Thus we can view both φ and u as (linear) functions of v, φ = φ(v) and u = u(v). We claim
the map v 7→ u = u(v) is injective. Indeed if u(v) = 0 for some v then Tφ = 0 and since
T is injective φ must be zero. From the equality v = Bφ + Cu we deduce v = 0. We have
thus produced the promised injective map V ↪→ U . Theorem 9.4.13 is proved.

ut

The theorem we have just proved has many topological consequences. We mention only
one of them.

Corollary 9.4.15. Let L0, L1 ∈ Ellk(E, F ) if σk(L0) = σk(L1) then ind (L0) = ind (L1).

Proof For every t ∈ [0, 1] Lt = (1 − t)L0 + tL1 is a k-th order elliptic operator de-
pending continuously on t. (Look at the symbols). Thus ind (Lt) is an integer depending
continuously on t so it must be independent of t.

ut

This corollary allows us to interpret the index as as a continuous map from the el-
liptic symbols to the integers. The analysis has vanished ! This is (almost) a purely
algebraic-topologic object. There is one (major) difficulty. These symbols are “polyno-
mials with coefficients in some spaces of endomorphism”. The deformation invariance of
the index provides a very powerful method for computing it by deforming a“complicated”
situation to a “simpler” one. Unfortunately our deformation freedom is severely limited
by the “polynomial” character of the symbols. There aren’t many polynomials around.
Two polynomial-like elliptic symbols may be homotopic in a larger classes of symbols (e.g.
symbols which are only positively homogeneous along the fibers of the cotangent bundle).
At this point one should return to analysis and try to conceive some operators that behave
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very much like elliptic p.d.o. and have more general symbols. Such objects exist and are
called pseudo-differential operators. We refer to [46] for a very efficient presentation of this
subject. We will not follow this long but very rewarding path but we believe the reader
who reached this point can complete this journey alone.

Exercise 9.4.2. Let L ∈ Ellk(E, F ). A finite dimensional subspace V ⊂ L2(F ) is called a
stabilizer of L if the operator

SL,V : Lk,2(E)⊕ V → L2(F ) SL,V (u⊕ v) = Lu + v

is surjective.
(a) Show that any subspace V ⊂ L2(F ) containing kerL∗ is a stabilizer of L. More gener-
ally, any finite dimensional subspace of L2(F ) containing a stabilizer is itself a stabilizer.
Conclude that if V is a stabilizer then

indL = dim kerSL,V − dimV.

ut

Exercise 9.4.3. Consider a compact manifold Λ and L : Λ → Ellk(E,F ) a continuous
family of elliptic operators.
(a) Show that the family L admits an uniform stabilizer i.e. there exists a finite dimensional
subspace V ⊂ L2(F ) such that V is a stabilizer of each operator Lλ in the family L.
(b)Show that if V is an uniform stabilizer of the family L then the family of subspaces
kerSLλ,V defines a vector bundle over Λ.
(c) Show that if V1 and V2 are two uniform stabilizers of the family L then we have a natural
isomorphism vector bundles

kerSL,V1 ⊕ V 2
∼= kerSL,V2 ⊕ V1.

In particular, we have an isomorphism of line bundles

det kerSL,V1 ⊗ det V ∗
1
∼= det kerSL,V2 ⊗ det V ∗

2 .

Thus the line bundle det kerSL,V ⊗ detV ∗ → Λ is independent of the uniform stabilizer V .
It is called the determinant line bundle of the family L and is denoted by det ind(L). ut

9.4.2 Spectral theory

We mentioned at the beginning of this section that the elliptic operators on compact man-
ifold behave very much like matrices. Perhaps nothing illustrates this feature better than
their remarkable spectral properties. This is the subject we want to address in this subsec-
tion.

Consider as usual a compact, oriented Riemann manifold (M, g) and a complex vec-
tor bundle E → M endowed with a Hermitian metric 〈•, •〉 and compatible connection.
Throughout this subsection L will denote a k-th order, formally selfadjoint elliptic operator
L : C∞(E) → C∞(E). Its analytical realization

La : Lk,2(E) ⊂ L2(E) → L2(E)
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is a selfadjoint, elliptic operator so its spectrum is an unbounded closed subset of R. Note
that for any λ ∈ R the operator λ − La is the analytical realization of the elliptic p.d.o.
λ1E − L and in particular λ− La is a Fredholm operator so that

λ ∈ σ(L) ⇐⇒ ker(λ− L) 6= 0.

Thus the spectrum of L consists only of eigenvalues of finite multiplicities. The main result
of this subsection states that one can find an orthonormal basis of L2(E) which diagonalizes
La.

Theorem 9.4.16. Let L ∈ Ellk(E) be a formally selfadjoint elliptic operator. Then the
following are true.
(a) The spectrum σ(L) is real σ(L) ⊂ R and for each λ ∈ σ(L) the subspace ker(λ − L) is
finite dimensional and consists of smooth sections.
(b) σ(L) is a closed, countable, discrete, unbounded set.
(c) There exists an orthogonal decomposition

L2(E) =
⊕

λ∈σ(L)

ker(λ− L).

(d) Denote by Pλ the orthogonal projection onto ker(λ− L). Then

Lk,2(E) = D(La) = {ψ ∈ L2(E) ;
∑

λ

λ2‖Pλψ‖2 < ∞}.

Part (c) of this theorem allows one to write

1 =
∑

λ

Pλ

and
L =

∑

λ

λPλ.

The first identity is true over the entire L2(E) while part (d) of the theorem shows the
domain of validity of the second equality is precisely the domain of L.

Proof (a) We only need to show that ker(λ− L) consists of smooth sections. In view of
Weyl’s lemma this is certainly the case since λ− L is an elliptic operator.
(b)&(c) We first show σ(L) is discrete. More precisely given λ0 ∈ σ(L) we will find ε > 0
such that ker(λ− L) = 0, ∀|λ− λ0|, ε, λ 6= λ0.

Assume for simplicity λ0 = 0. We will argue by contradiction. Thus there exist λn → 0
and un ∈ C∞(E) such that

Lun = λnun, ‖un‖ = 1.

Clearly un ∈ R(L) = (kerL∗)⊥ = (kerL)⊥ so that the Poincaré inequality implies

1 = ‖un‖ ≤ C‖Lun‖ = Cλn → 0.

Thus σ(L) must be a discrete set.
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Now consider t0 ∈ R \ σ(L). Thus t0 − L has a bounded inverse

T = (t0 − L)−1.

Obviously T is a selfadjoint operator. We claim that T is also a compact operator.
Assume (vn) is a bounded sequence in L2(E). We have to show un = Tvn admits a

subsequence which convergent in L2(E). Note that un is a solution of the partial differential
equation

(t0 − L)un = t0un − Lun = vn

so that using elliptic estimates we deduce

‖un‖k ≤ C(‖un‖+ ‖vn‖).

Obviously un = Tvn is bounded in L2(E) so the above inequality implies ‖un‖k is also
bounded. The desired conclusion follows from the compactness of the embedding Lk,2(E) →
L2(E).

Thus T is a compact, selfadjoint operator. We can now use the spectral theory of such
well behaved operators as described for example in [15], Chap. 6. The spectrum of T is a
closed, bounded, countable set with one accumulation point, µ = 0. Any µ ∈ σ(T ) \ {0} is
an eigenvalue of T with finite multiplicity and since kerT = 0

L2(E) =
⊕

µ∈σ(T )\{0}
ker(µ− T ).

Using the equality
L = t0 − T−1

we deduce
σ(L) = {t0 − µ−1 ; µ ∈ σ(T ) \ {0}}.

This proves (b)&(c).
To prove (d) note that if ψ ∈ Lk,2(E) then Lψ ∈ L2(E) i.e.

‖
∑

λ

λPλψ‖2 =
∑

λ

λ2‖Pλψ‖2 < ∞.

Conversely, if ∑

λ

λ2‖Pλψ‖2 < ∞

consider the sequence of smooth sections

φn =
∑

|λ|≤n

λPλψ

which converges in L2(E) to
φ =

∑

λ

λPλψ.
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On the other hand
φn = Lψn

where
ψn =

∑

|λ|≤n

Pλψ

converges in L2(E) to ψ. Using the elliptic estimates we deduce

‖ψn − ψm‖k ≤ C(‖ψn − ψm‖+ ‖φn − φm‖) → 0 as n, m →∞.

Hence ψ ∈ Lk,2(E) as a Lk,2-limit of smooth sections. The theorem is proved.
ut

Example 9.4.17. Let M = S1, E = CM and

L = −i
∂

∂θ
: C∞(S1,C) → C∞(S1,C).

L is clearly a formally selfadjoint elliptic p.d.o. The eigenvalues and the eigenvectors of L
are determined from the periodic boundary value problem

−i
∂u

∂θ
= λu, u(0) = u(2π)

which implies
u(θ) = C exp(iλθ) and exp(2πλi) = 1.

Hence
σ(L) = Z and ker(n− L) = spanC{exp(inθ)}.

The orthogonal decomposition

L2(S1) =
⊕

n

ker(n− L)

is the usual Fourier decomposition of periodic functions. Note that

u(θ) =
∑

n

un exp(inθ) ∈ L1,2(S1)

if and only if ∑

n∈Z
(1 + n2)|un|2 < ∞.

ut

The following exercises provide a variational description of the eigenvalues of formally
selfadjoint elliptic operator L ∈ Ellk(E) which is bounded from below i.e.

inf{
∫

M
〈Lu, u〉dvg ; u ∈ Lk,2(E), ‖u‖ = 1} > −∞.
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Exercise 9.4.4. Let V ∈ Lk,2(E) be a finite dimensional invariant subspace of L. Show
that
(a) V consists only of smooth sections.
(b) The quantity

λ(V ⊥) = inf{
∫

M
〈Lu, u〉dvg ; u ∈ Lk,2(E) ∩ V ⊥, ‖u‖ = 1}

is an eigenvalue of L. V ⊥ denotes the orthogonal complement of V in L2(E). ut

Exercise 9.4.5. Set V0 = 0 and denote λ0 = λ(V ⊥
0 ) According to the previous exercise λ0

is an eigenvalue of L. Pick φ0 an eigenvector corresponding to λ0 such that ‖φ0‖ = 1 and
form V1 = V0⊕span {φ0}. Set λ1 = λ(V ⊥

1 ) and iterate the procedure. After m steps we have
produced m + 1 vectors φ0, φ1, . . . , φm corresponding to m + 1 eigenvalues λ0, λ1 ≤ · · ·λm

of L. Set Vm+1 = spanC{φ0, φ1, . . . , φm} and λm+1 = λ(V ⊥
m+1) etc.

(a) Prove that
{φ1, . . . , φm, . . .}

is a Hilbert basis of L2(E) and

σ(L) = {λ1 ≤ · · · ≤ λm · · · }.

(b) Denote by Gm the grassmannian of m-dimensional subspaces of Lk,2(E). Show that

λm = inf
V ∈Gm

max{
∫

M
〈Lu, u〉dvg ; u ∈ V ‖u‖ = 1}.

ut

Exercise 9.4.6. Use the results in the above exercises to show that if L is a bounded from
below, k-th order formally selfadjoint elliptic p.do. over an N -dimensional manifold then

λm(L) = O(mk/N ) as m →∞

and
d(Λ) = dim⊕λ≤Λ ker(λ− L) = O(ΛN/k) as Λ →∞.

ut

Remark 9.4.18. (a)When L is a formally selfadjoint generalized Laplacian then the result
in the above exercise can be considerably sharpened. More precisely H.Weyl showed that

lim
Λ→∞

Λ−N/2d(Λ) =
rank (E) · volg(M)
(4π)N/2Γ(N/2 + 1)

.

The very ingenious proof of this result relies on another famous p.d.o. namely the heat
operator ∂t + L. For details we refer to [10].

(b) Assume L is the scalar Laplacian ∆ on a compact Riemann manifold (M, g) of
dimension M . Weyl’s formula shows that the asymptotic behavior of the spectrum of
∆ contains several geometric informations about M : we can read the dimension and the
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volume of M from it. If we think of M as the elastic membrane of a drum then the
eigenvalues of ∆ describe all the frequencies of the sounds the “drum” M can produce.
Thus “we can hear” the dimension and the volume of a drum. This is a special case of
a famous question raised by V.Kac in [39]: can one hear the shape of a drum? In more
rigorous terms this question asks how much of the geometry of a Riemann manifold can be
recovered from the spectrum of its Laplacian. This is what spectral geometry is all about.

It has been established recently that the answer to Kac’s original question is negative.
We refer to [30] and the references therein for more details. ut

Exercise 9.4.7. Compute the spectrum of the scalar Laplacian on the torus T 2 equipped
with the flat metric and then use this information to prove the above Weyl asymptotic
formula in this special case. ut

9.4.3 Hodge theory

We now have enough theoretical background to discuss the celebrated Hodge theorem. It
is convenient to work in a slightly more general context than Hodge’s original theorem.

Definition 9.4.19. Let (M, g) be an oriented Riemann manifold. An elliptic complex is
a sequence of first order p.d.o.’s

0 → C∞(E0)
D0→ C∞(E1)

D1→ · · · Dm−1→ C∞(Em) → 0

satisfying the following conditions.
(i) (C∞(Ei), Di) is a cochain complex, i.e. DiDi−1 = 0, ∀1 ≤ i ≤ m.
(ii) For each (x, ξ) ∈ T ∗M \ {0} the sequence of principal symbols

0 → (E0)x
σ(D0)(x,ξ)−→ (E1)x → · · · σ(Dm−1)(x,ξ)−→ (Em)x → 0

is exact.

Example 9.4.20. The DeRham complex (Ω∗(M), d) is an elliptic complex. In this case
the associated sequence of principal symbols is (e(ξ) = exterior multiplication by ξ)

0 → R e(ξ)→ T ∗xM
e(ξ)→ · · · e(ξ)→ det(T ∗xM) → 0

is the Koszul complex of Exercise 7.1.7 of Subsection 7.1.3 where it is shown to be exact.
Hence the DeRham complex is elliptic. We will have the occasion to discuss another famous
elliptic complex in the next chapter. ut

Consider an elliptic complex (C∞(E·, D·)) over a compact oriented Riemann manifold
(M, g). Denote its cohomology by H∗(E·, D·). A priori these may be infinite dimensional
spaces. We will see that the combination ellipticity + compactness prevents this from
happening. Endow each Ei with a metric and compatible connection. We can now talk
about Sobolev spaces and formal adjoints D∗

i . Form the operators

∆i = D∗
i Di + Di−1D

∗
i−1 : C∞(Ei) → C∞(Ei).

We can now state and prove the celebrated Hodge theorem.
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Theorem 9.4.21. (Hodge) Assume M is compact. Then the following are true.
(a) H i(E·, D·) ∼= ker∆i ⊂ C∞(Ei).
(b) dimH i(E·, D·) < ∞ ∀i.
(c) (Hodge decomposition) There exists an orthogonal decomposition

L2(Ei) = ker∆i ⊕ R(Di−1)⊕ R (D∗
i )

where we view both Di−1 and Di as bounded operators L1,2 → L2.

Proof Set
E = ⊕Ei, D = ⊕Di, D∗ = ⊕D∗

i

∆ = ⊕∆i, D̂ = D + D∗.

Thus D, D∗ and ∆ are p.d.o.’s C∞(E) → C∞(E). Since DiDi−1 = 0 we deduce D2 =
(D∗)2 = 0. We deduce

∆ = D∗D + DD∗ = (D + D∗)2 = D̂2.

We now invoke the following elementary algebraic fact which is a consequence of the ex-
actness of the symbol sequence. (Look back to the finite dimensional Hodge theory in
§7.1.3.)

Exercise 9.4.8. The operators D̂ and ∆ are elliptic formally selfadjoint p.d.o. ut

Note that according to Corollary 9.4.12 ker∆ = ker D̂ so that we have an orthogonal
decomposition

L2(E) = ker∆⊕ R(D̂). (9.4.5)

This is precisely part (c) of Hodge’s theorem.
For each i denote by Pi the orthogonal projection L2(Ei) → ker∆i. Set

Zi = {u ∈ C∞(Ei) ; Diu = 0}

and
Bi = Di−1(C∞(Ei−1))

so that
H i(E·, D·) = Zi/Bi.

We claim that the map Pi : Zi → ker∆i descends to an isomorphism

H i(E·, D·) → ker∆i.

This will complete the proof of Hodge theorem. The above claim is a consequence of several
simple facts.
Fact 1 ker∆i ⊂ Zi. This follows from the equality ker∆ = ker D̂.

Fact 2 If u ∈ Zi then u− Piu ∈ Bi. Indeed, using the decomposition (9.4.5) we have

u = Piu + D̂ψ ψ ∈ L1,2(E).
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Since u− Piu ∈ C∞(Ei) we deduce from Weyl’s lemma that ψ ∈ C∞(E). Thus there exist
v ∈ C∞(Ei−1) and w ∈ C∞(Ei) such that ψ = v ⊕ w and

u = Piu + Di−1v + D∗
i w.

Applying Di on both sides of this equality we get

0 = Diu = DiPiu + DiDi−1u + DiD
∗
i w = DiD

∗
i w.

Since kerD∗
i = kerDiD

∗
i the above equalities imply

u− Piu = Di−1v ∈ Bi.

We conclude that Pi descends to a linear map ker∆i → H i(E·, D·). Thus Bi ⊂ R (D̂) =
(ker∆)⊥ and we deduce that no two distinct elements in ker∆i are cohomologous since
otherwise their difference would have been orthogonal to ker∆i. Hence the induced linear
map Pi : ker∆i → H i(E·, D·) is injective. Fact 1 shows it is also surjective so that

ker∆i
∼= H i(E·, D·).

Hodge theorem is proved.
ut

Let us apply Hodge theorem to the DeRham complex on a compact oriented Riemann
manifold

0 → Ω0(M) d→ Ω1(M) d→ · · · d→ Ωn(M) → 0 (n = dimM).

We know the formal adjoint of d : Ωk(M) → Ωk+1(M) is

d∗ = (−1)νn,k ∗ d∗
where νn,k = nk+n+1 and ∗ denoted the Hodge ∗-operator defined by the Riemann metric
g and the fixed orientation on M . Set

∆ = dd∗ + d∗d.

Corollary 9.4.22. (Hodge) Any smooth k-form ω ∈ Ωk(M) decomposes uniquely as

ω = ω0 + dη + d∗ζ η ∈ Ωk−1(M), ζ ∈ Ωk+1(M)

and ω0 ∈ Ωk(M) is g-harmonic i.e.

∆ω0 = 0 ⇐⇒ dω = 0 and d∗ω = 0.

If moreover ω is closed then ζ = 0 and this means any cohomology class [z] ∈ Hk(M) is
uniquely represented by a harmonic k-form.

Denote by Hk(M, g) the space of g-harmonic k-forms on M . The above corollary shows

Hk(M, g) ∼= Hk(M)

for any metric g.



400 Elliptic equations on manifolds

Corollary 9.4.23. The Hodge ∗-operator defines a bijection

∗ : Hk(M, g) → Hn−k(M, g).

Proof If ω is g-harmonic then so is ∗ω since

d ∗ ω = ± ∗ d ∗ ω = 0

and
∗d ∗ (∗ω) = ± ∗ (dω) = 0.

∗ is bijective since ∗2 = (−1)k(n−k).
ut

Using the L2-inner product on Ω∗(M) we can identify Hn−k(M, g) with its dual and
thus we can view ∗ as an isomorphism

Hk ∗→ (Hn−k)∗.

On the other hand the Poincaré duality described in Chapter 7 induces another isomorphism

Hk PD→ (Hn−k)∗

defined by

〈PD(ω), η〉0 =
∫

M
ω ∧ η

where 〈·, ·〉0 denotes the natural pairing between a vector space and its dual.

Proposition 9.4.24. PD = ∗, i.e.
∫

M
〈∗ω, η〉gdvg =

∫

M
ω ∧ η ∀ω ∈ Hk η ∈ Hn−k.

ut

Proof We have

〈∗ω, η〉gdvg = 〈η, ∗ω〉gdvg = η ∧ ∗2ω = (−1)k(n−k)η ∧ ω = ω ∧ η.

ut

Exercise 9.4.9. Let ω0 ∈ Ωk(M) be a harmonic k form and denote by Cω0 its cohomology
class. Show that ∫

M
|ω0|2gdvg ≤

∫

M
|ω|2gdvg ∀ω ∈ Cω0

with equality if and only if ω = ω0. ut

Exercise 9.4.10. Let G denote a compact connected Lie group equipped with a bi-invariant
Riemann metric h. Prove that a differential form on G is h-harmonic if and only if it is
bi-invariant. ut



Chapter 10

Dirac operators

We devote this last chapter to a presentation of a very important class of first order elliptic
operators which have numerous applications in modern geometry. We will first describe
their general features and then we will spend the remaining part discussing some frequently
encountered examples.

10.1 The structure of Dirac operators

10.1.1 Basic definitions and examples

Consider a Riemann manifold (M, g) and a smooth vector bundle E → M .

Definition 10.1.1. A Dirac operator is a first order p.d.o.

D : C∞(E) → C∞(E)

such that D2 is a generalized Laplacian, i.e.

σ(D2)(x, ξ) = −|ξ|2g1Ex ∀(x, ξ) ∈ T ∗M.

The Dirac operator is said to be graded if E splits as E = E0 ⊕ E1 and D(C∞(Ei)) ⊂
C∞(E(i+1)mod 2). In other words, D has a block decomposition

D =
[

0 A
B 0

]
.

Note that the Dirac operators are 1st order elliptic p.d.o.

Example 10.1.2. (Hamilton-Floer) Denote by E the trivial vector bundle R2n over the
circle S1. Thus C∞(E) can be identified with the space of smooth functions

u : S1 → R2n.

Let J : C∞(E) → C∞(E) denote the endomorphism of E which has the block decomposition

J =
[

0 −1Rn

1Rn 0

]

401
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with respect to the natural splitting R2n = Rn⊕Rn. We define the Hamilton-Floer operator

F : C∞(E) → C∞(E)

by

Fu = J
du

dθ
∀u ∈ C∞(E).

Clearly, F2 = − d2

dθ2 is a generalized Laplacian. ut

Example 10.1.3. (Hodge-DeRham) Let (M, g) be an oriented Riemann manifold. Then,
according to the computations in the previous chapter, the Hodge-DeRham operator

d + d∗ : Ω∗(M) → Ω∗(M).

is a Dirac operator. ut

Let D : C∞(E) → C∞(E) be a Dirac operator over the oriented Riemann manifold
(M, g). Its symbol is an endomorphism

σ(D) : π∗E → π∗E,

where π : T ∗M → M denotes the natural projection. Thus, for any x ∈ M and any
ξ ∈ T ∗xM , c(ξ) = σ(D)(x, ξ) is an endomorphism of Ex depending linearly upon ξ. Since
D2 is a generalized Laplacian

c(ξ)2 = σ(D2)(x, ξ) = −|ξ|2g1Ex .

To summarize, we see that each Dirac operator induces a bundle morphism

c : T ∗M ⊗ E → E (ξ, e) 7→ c(ξ)e

such that c(ξ)2 = −|ξ|2. From the equality

c(ξ + η) = −|ξ + η|2 ∀ξ, η ∈ T ∗xM, x ∈ M

we conclude that
{c(ξ), c(η)} = −2g(ξ, η)1Ex ,

where for any linear operators A, B we denoted by {A,B} their anticommutator

{A, B} def
= AB + BA.

Definition 10.1.4. (a) A Clifford structure on a vector bundle E over a Riemann manifold
(M, g) is a bundle morphism

c : T ∗M ⊗E → E

such that
{c(ξ), c(η)} = −2g(ξ, η)1E .

c is usually called the Clifford multiplication of the (Clifford) structure. A pair (vector
bundle, Clifford structure) is called a Clifford bundle.
(b) A Z2-grading on a Clifford bundle E → M is a splitting E = E0 ⊕ E1 such that
∀α ∈ Ω1(M) the Clifford multiplication by α is an odd endomorphism of the superspace
C∞(E0)⊕ C∞(E1).
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Proposition 10.1.5. Let E → M be a smooth vector bundle over the Riemann manifold
(M, g). Then the following conditions are equivalent.
(a) There exists a Dirac operator D : C∞(E) → C∞(E).
(b) The bundle E admits a Clifford structure.

Proof We have just seen that (a)⇒(b). To prove the reverse implication let

c : T ∗M ⊗E → E

be a Clifford multiplication. Then for every connection

∇ : C∞(E) → C∞(T ∗M ⊗E)

the composition
D = c ◦ ∇ : C∞(E) ∇→ C∞(T ∗M ⊗ E) c→ C∞(E)

is a first order p.d.o. with symbol c. Clearly D is a Dirac operator.
ut

Example 10.1.6. Let (M, g) be a Riemann manifold. For each x ∈ M and ξ ∈ T ∗M define

c(ξ) : Λ∗T ∗M → Λ∗T ∗M

by
c(ξ)ω = (eξ − iξ)ω

where eξ denotes the (left) exterior multiplication by ξ while iξ denotes the interior differ-
entiation along ξ∗ ∈ TxM - the metric dual of ξ. The Exercise 2.2.16 of Section 2.2.4 shows
that c defines a Clifford multiplication on Λ∗T ∗M . If ∇ denotes the Levi-Civita connection
on Λ∗T ∗M then the Dirac operator c ◦ ∇ is none other than the Hodge-DeRham operator.

ut

Exercise 10.1.1. Prove the last assertion in the above example. ut

The above proposition reduces the problem of describing which vector bundles admit
Dirac operators to an algebraic-topological one: find the bundles admitting a Clifford struc-
ture. In the following subsections we will address precisely this issue.

10.1.2 Clifford algebras

The first thing we want to understand is the object called Clifford multiplication.
Consider (V, g) a (real) finite dimensional, Euclidean space. A Clifford multiplication is

then a pair (E, ρ) where E is a K-vector space and ρ : V → End (E) is an R-linear map
such that

{ρ(u), ρ(v)} = −2g(u, v)1E ∀u, v ∈ V.

If (ei) is an orthonormal basis of V then ρ is completely determined by the linear operators
ρi = ρ(ei) which satisfy the anticommutation rules

{ρi, ρj} = −2δij1E .

The collection (ρi) generates an associative subalgebra in End (E) and it is natural to try
to understand its structure. We will look at the following universal situation.
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Definition 10.1.7. Let V be a real, finite dimensional vector space and

q : V × V → R

a symmetric bilinear form. The Clifford algebra Cl(V, q) is the associative R–algebra with
unit, generated by V subject to the relations

{u, v} = uv + vu = −2q(u, v) · 1 ∀u, v ∈ V.

Proposition 10.1.8. The Clifford algebra Cl(V, q) exists and is uniquely defined by its
universality property: for every linear map  : V → A such that A is an associative R-
algebra with unit and {(u), (v)} = −2q(u, v)·1 there exists an unique morphism of algebras
Φ : Cl(V, q) → A such that the diagram below is commutative.

V Cl(V, q)

A

wı

[
[
[[]

u
Φ

ı denotes the natural inclusion V ↪→ Cl(V, q).

Sketch of proof Let A = ⊕k≥0V
⊗k (V ⊗0 = R) denote the free associative R–algebra

with unit generated by V . Set
Cl(V, q) = A/I,

where I is the ideal generated by

{ u⊗ v + v ⊗ u + 2q(u, v)⊗ 1 ; u, v ∈ V }.

ı is the composition V ↪→ A → Cl(V, q) where the second arrow is the natural projection.
We let the reader check the universality property.

ut

Exercise 10.1.2. Prove the universality property.

Remark 10.1.9. (a)When q ≡ 0 then Cl(V, 0) is the exterior algebra Λ∗V .
(b) In the sequel the inclusion V ↪→ Cl(V, q) will be thought of as being part of the defi-
nition of a Clifford algebra. This makes a Clifford algebra a structure richer than merely
an abstract R–algebra: it is an algebra with a distinguished real subspace. Thus when
thinking of automorphisms of this structure one should really concentrate only on those
automorphisms of R–algebras preserving the distinguished subspace. ut

Corollary 10.1.10. Let (Vi, qi) (i = 1, 2) be two real, finite dimensional vector spaces
endowed with quadratic forms qi : V → R. Then any linear map T : V1 → V2 such that
q2(Tv) = q1(v), ∀v ∈ V1 induces an unique morphism of algebras T# : Cl(V1, q1) →
Cl(V2, q2) such that T#(V1) ⊂ V2, where we view Vi as a linear subspace in Cl(Vi, qi).
The correspondence T 7→ T# constructed above is functorial i.e. (1Vi)# = 1Cl(Vi,qi) and
(S ◦ T )# = S# ◦ T# for all admissible S and T .
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The above corollary shows the algebra Cl(V, q) depends only on the isomorphism class
of the pair (V, q)= vector space + quadratic form. It is known from linear algebra that the
isomorphism classes of such pairs are classified by some simple invariants:

(dimV, rank q, sign q).

We will be interested in the special case when dimV = rank q = sign q = n, i.e. when
q is an Euclidean metric on the n-dimensional space V . In this case the Clifford algebra
CL(V, q) is usually denoted by Cl(V ) or Cln. If (ei) is an orthonormal basis of V then we
can alternatively describe Cln as the associative R–algebra with 1 generated by (ei) subject
to the relations

eiej + ejei = −2δij .

Using the universality property of Cln we deduce that the map

V → Cl(V ) v 7→ −v ∈ Cl(V )

extends to an automorphism of algebras α : Cl(V ) → Cl(V ). Note that α is involutive i.e.
α2 = 1. Set

Cl0(V ) = ker(α− 1), Cl1(V ) = ker(α + 1).

Note that Cl(V ) = Cl0(V )⊕ Cl1(V ) and moreover

Clε(V ) · Clη(V ) ⊂ Cl(ε+η) mod 2(V ),

i.e. the automorphism α naturally defines a Z2-grading of Cl(V ). In other words, the
Clifford algebra Cl(V ) is naturally a super-algebra.

Let (C̃l(V ),+, ∗) denote the opposite algebra of Cl(V ). C̃l(V ) coincides with Cl(V ) as
a vector space but its multiplication ∗ is defined by

x ∗ y
def
= y · x ∀x, y ∈ C̃l(V ),

where “·” denotes the usual multiplication in Cl(V ). Note that for any u, v ∈ V

u · v + v · u = u ∗ v + v ∗ u

so that using the universality property of Clifford algebras we conclude that the natural
injection V ↪→ C̃l(V ) extends to a morphism of algebras Cl(V ) → C̃l(V ). This may as
well be regarded as an antimorphism Cl(V ) → Cl(V ) which we call the transposition map,
x 7→ x[. Note that

(u1 · u2 · · ·ur)[ = u[
r · · ·u[

1 ∀ui ∈ V.

For x ∈ Cl(V ) we set x∗ = (α(x))[ = α(x[). x∗ is called the adjoint of x.
For each v ∈ V define c(v) ∈ End (Λ∗V ) by

c(v)ω = (ev − iv)ω ∀ω ∈ Λ∗V

where as usual ev denotes the (left) exterior multiplication by v while iv denotes the interior
derivative along the metric dual of v. Invoking again the Exercise 2.2.16 we deduce

c(v)2 = −|v|2g
so that by the universality property of the Clifford algebras the map c extends to a morphism
of algebras c : Cl(V ) → End (Λ∗V ).
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Exercise 10.1.3. Prove that ∀x ∈ Cl(V ) we have

c(x∗) = c(x)∗,

where the ∗ in the right-hand-side denotes the adjoint of c(x) viewed as a linear operator
on the linear space Λ∗V endowed with the metric induced by the metric on V . ut

For each x ∈ Cl(V ) c(x)1 is an element of Λ∗V called the symbol of x. The linear map
Cl(V ) 3 x 7→ σ(x) ∈ Λ∗V is called the symbol map. If (ei) is an orthonormal basis then

σ(ei1 · · · eik) = ei1 ∧ · · · ∧ eik ∀eij .

This shows the symbol map is bijective since the ordered monomials

{ei1 · · · eik ; 1 ≤ i1, · · · ik ≤ dimV }

form a basis of Cl(V ). The inverse of the symbol map is called the quantization map and
is denoted by q : Λ∗V → Cl(V ).

Exercise 10.1.4. Show that q(Λeven/oddV ) = Cleven/odd(V ). ut

Definition 10.1.11. (a) A K(=R-,C)-vector space E is said to be a K- Clifford module if
there exists a morphism of R–algebras

ρ : Cl(V ) → EndK(E).

(b) A K-superspace E is said to be a K-Clifford s-module if there exists a morphism of
s-algebras

ρ : Cl(V ) → ÊndK(E).

(c) Let E be a K-Clifford module, ρ : Cl(V ) → EndK(E). E (or ρ) is said to be selfadjoint
if there exists a metric on E (Euclidean if K = R, Hermitian if K = C) such that

ρ(x∗) = ρ(x)∗ ∀x ∈ Cl(V ).

We now see that what we originally called a Clifford structure is precisely a Clifford
module.

Example 10.1.12. Λ∗V is a selfadjoint, real Cl(V ) super-module. ut

In the following two subsections we intend to describe the complex Clifford modules.
The real theory is far more elaborate. For more information we refer the reader to the
excellent monograph [46].

10.1.3 Clifford modules: the even case

In studying complex Clifford modules it is convenient to work with the complexified Clifford
algebras

Cln = Cln ⊗R C.
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The (complex) representation theory of Cln depends on the parity of n so that we will discuss
each case separately. The reader may want to refresh his/her memory of the considerations
in Subsection 2.2.5.

Let n = 2k and consider an n-dimensional Euclidean space (V, g) . The decisive step in
describing the complex Cl(V ) modules is the following.

Proposition 10.1.13. There exists a complex Cl(V )-module S = S(V ) such that

Cl(V ) ∼= EndC(S) as C−algebras.

(The above isomorphism is not natural; it depends on several auxiliary choices.)

S(V ) is known as the (even) complex spinor module.
The reader familiar with the representation theory of associative algebras can imme-

diately grasp the relevance of this proposition since Weddeburn’s theorem completely de-
scribes the modules over the algebra of endomorphisms of a vector space. We will have to
say more about that a little later.

Proof Consider a complex structure on V i.e. a skew-symmetric operator J : V → V
such that J2 = −1V . Such a J exists since V is even dimensional. Let {e1, f1; . . . ; ek, fk}
be an orthonormal basis of V such that Jei = fi ∀i.

Extend J by complex linearity to V ⊗R C. We can now decompose V ⊗ C into the
eigenspaces of J

V = V 1,0 ⊕ V 0,1

where V 1,0 = ker(i− J) and V 0,1 = ker(i + J). Alternatively,

V 1,0 = spanC(ej − ifj), V 0,1 = spanC(ej + ifj).

The metric on V defines a Hermitian metric on the complex vector space (V, J)

h(u, v) = g(u, v) + ig(u, Jv)

which allows us to identify (see Subsection 2.2.5)

V 0,1 ∼=C (V, J) ∼=C V ∗
c
∼=C (V 1,0)∗.

(V ∗
c denotes the complex dual of the complex space (V, J)). With respect to this Hermitian

metric the collection
{εj =

1√
2
(ej − ifj) ; 1 ≤ j ≤ k}

is an orthonormal basis of V 1,0 while

{εj =
1√
2
(ej + ifj) ; 1 ≤ j ≤ k}

is an orthonormal basis of V 0,1. Set

S2k = Λ∗V 1,0 = Λ∗,0V.
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Any morphism
ρ : Cl(V ) → End (S2k)

is uniquely defined by its restriction to

V ⊗ C = V 1,0 ⊕ V 0,1.

We thus have to specify the action of each of the components V 1,0 and V 0,1. The elements
w ∈ V 1,0 will act by exterior multiplication

c(w)ω =
√

2e(w)ω =
√

2w ∧ ω ∀ω ∈ Λ∗,0V.

The elements w ∈ V 0,1 can be identified with complex linear functionals on V 1,0 and as
such they will act by interior differentiation

c(w)w1 ∧ · · · ∧ w` = −
√

2i(w)(w1 ∧ · · · ∧ w`)

=
√

2
∑̀

j=1

(−1)jgC(wj , w)w1 ∧ · · · ∧ ŵj ∧ · · · ∧ w`,

where gC denotes the extension of g to (V ⊗ C)× (V ⊗ C) by complex linearity.
To check that the above constructions do indeed define an action of Cl(V ) we need to

check that ∀v ∈ V
c(v)2 = −1S2k

.

This boils down to verifying the anticommutation rules

{c(ei), c(fj)} = 0, {c(ei), c(ej)} = −2δij = {c(fi), c(fj)}.

We have
ei =

1√
2
(εi + εi), fj =

i√
2
(εj − εj)

so that
c(ei) = e(εi)− i(εi), c(fj) = i(e(εj) + i(εj)).

The anticommutation rules follow as in the Exercise 2.2.16 using the equalities

gC(εi, εj) = δij .

This shows S2k is naturally a Cl(V )-module. Note that dimC S2k = 2k so that

dimC EndC(S) = 2n = dimCCl(V ).

A little work (left to the reader) shows the Clifford multiplication map c : Cl(V ) →
EndC(S2k) is injective. This completes the proof of the proposition.

ut

Using basic algebraic results about the representation theory of the algebra of endomor-
phisms of a vector space we can draw several useful consequences. (See [69] for a very nice
presentation of these facts.)
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Corollary 10.1.14. There exists an unique (up to isomorphism) irreducible complex Cl2k-
module and this is the complex spinor module S2k.

Corollary 10.1.15. Any complex Cl2k-module has the form S2k ⊗ W , where W is an
arbitrary complex vector space. The action of Cl2k on S2k ⊗W is defined by

v · (s⊗ w) = c(v)s⊗ w.

W is called the twisting space of the given Clifford module.

Remark 10.1.16. Given a complex Cl2k-module E its twisting space can be recovered as
the space of morphisms of Clifford modules

W = HomCl2k
(S2k, E).

ut

Assume now that (V, g) is an oriented, 2k-dimensional Euclidean space. For any posi-
tively oriented orthonormal basis e1, . . . , e2k we can form the element

Γ = ike1 · · · e2k ∈ Cl(V ).

One can check easily this element is independent of the oriented basis and thus it is an
element intrinsically induced by the orientation. It is called the chirality operator defined
by the orientation. Note that

Γ2 = 1 and Γx = (−1)deg xΓ ∀x ∈ Cl0(V ) ∪ Cl1(V ).

Let S = S(V ) denote the spinor module of Cl(V ). The chirality operator defines an involu-
tive endomorphism of S and thus defines a Z2-grading on S

S = S+ ⊕ S− (S± = ker(±1− Γ))

and hence a Z2-grading of End(S). Since {v, Γ} = 0 ∀v ∈ V we deduce the Clifford
multiplication by v is an odd endomorphism of S. This means any isomorphism Cl(V ) ∼=
End (S(V )) is an isomorphism of Z2-graded algebras.

Exercise 10.1.5. Let J be a complex structure on V . This produces two things: it defines
an orientation on V and identifies S = S(V ) ∼= Λ∗,0V . Prove that with respect to these data
the chiral grading of S is

S+/− ∼= Λeven/odd,0V.

ut

The above considerations extend to arbitrary Clifford modules. The chirality operator
introduces a Z2-grading in any complex Clifford module which we call the chiral grading.
However this does not exhaust the family of Clifford s-modules. The family of s-modules
can be completely described as

{S⊗̂W ; W complex s− space}
where ⊗̂ denotes the s-tensor product. The modules endowed with the chiral grading form
the subfamily in which the twisting s-space W is purely even.
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Example 10.1.17. Let (V, g) be a 2k-dimensional, oriented, Euclidean space. Then Λ∗RV ⊗
C is naturally a Clifford module. Thus it has the form

Λ∗RV ⊗ C ∼= S⊗W.

To find the twisting space we pick a complex structure on V whose induced orientation
agrees with the given orientation of V . This complex structure produces an isomorphism

Λ∗RV ⊗ C ∼= Λ∗,0V ⊗ Λ0,∗V ∼= S⊗ (Λ∗,0V )∗ ∼= S⊗ S∗.

This shows the twisting space is S∗.
On the other hand the chirality operator defines Z2 gradings on both S and S∗ so that

Λ∗RV ⊗ C can be given two different s-structures: the chiral superstructure (in which the
grading of S∗ is forgotten) and the grading as s-tensor product S⊗̂S∗. Using Exercise 10.1.5
we deduce that the second grading is precisely the degree grading

Λ∗RV ⊗ C = ΛevenV ⊗ C⊕ ΛoddV ⊗ C.

To understand the chiral grading we need to describe the action of the chiral operator on
Λ∗RV ⊗ C. This can be done via the Hodge ∗-operator. More precisely we have

Γ · ω = ik+p(p−1) ∗ ω ∀ω ∈ ΛpV ⊗ C. (10.1.1)

ut

Exercise 10.1.6. Prove the equality 10.1.1. ut

In order to formulate the final result of this subsection we need to extend the automor-
phism α and the anti-automorphism [ to the complexified Clifford algebra Cl(V ). α can be
extended by complex linearity

α(x⊗ z) = α(x)⊗ z ∀x ∈ Cl(V )

while [ is extends according to
(x⊗ z)[ = x[ ⊗ z.

As in the real case set y∗ = α(y[) = α(y)[ ∀y ∈ Cl(V ).

Proposition 10.1.18. Let S(V ) denote the spinor module of the 2k-dimensional Euclidean
space (V, g). Then for every morphism of algebras

ρ : Cl(V ) → EndC(S(V ))

there exists a Hermitian metric on S(V ) such that

ρ(y∗) = ρ(y)∗ ∀y ∈ Cl(V ).

Moreover, this metric is unique up to a multiplicative constant.
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Sketch of proof Choose an orthonormal basis {e1, . . . , e2k} of V and denote by G the
group generated by these elements. G is finite and it consists of the monomials

{ei1 · · · ei` ; 1 ≤ i1, . . . , i` ≤ 2k}.

As a set, G generates Cl(V ) as a complex vector space.
Pick a Hermitian metric h on S(V ) and for each g ∈ G denote by hg the pulled-back

metric
hg(s1, s2) = h(ρ(g)s1, ρ(g)s2) ∀s1, s2 ∈ S.

We can now form the averaged metric

hG =
1
|G|

∑

g∈G

hg.

Each ρ(g) is an unitary operator with respect to this metric. We leave the reader to check
that this is the metric we are after. The uniqueness follows from the irreducibility of S(V )
using Schur’s lemma.

ut

Corollary 10.1.19. Let (V, g) as above and ρ : Cl(V ) → EndC(E) be a complex Clifford
module. Then E admits at least one Hermitian metric with respect to which ρ is selfadjoint.

Proof Decompose E as S ⊗ W and ρ as ∆ ⊗ idW for some isomorphism of algebras
∆ : Cl(V ) → End(S). The sought for metric is a tensor product of the canonical metric on
S and some metric on W .

ut

10.1.4 Clifford modules: the odd case

The odd dimensional situation can be deduced using the facts we have just established
concerning the algebras Cl2k. The bridge between these two situations is provided by the
following general result.

Lemma 10.1.20. Clm ∼= Cleven
m+1.

Proof Pick an orthonormal basis {e0, e1, . . . , em} in the standard Euclidean space Rm+1.
These generate the algebra Clm+1. We view Clm as the Clifford algebra generated by
{e1, . . . , em}. Now define

Ψ : Clm → Cleven
m+1

by
Ψ(x0 + x1) = x0 + e0 · x1

where x0 ∈ Cleven
m and x1 ∈ Clodd

m . We leave the reader to check that this is indeed an
isomorphism of algebras.

ut
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Proposition 10.1.21. Let (V, g) be a (2k + 1)-dimensional Euclidean space. Then there
exist two complex, irreducible Cl(V ) modules S+(V ) and S−(V ) such that

Cl(V ) ∼= EndC(S+)⊕ EndC(S−) as ungraded algebras.

The direct sum S(V ) = S+
V ⊕ S−V is called the (odd) spinor module.

Proof Fix an orientation on V and a positively oriented orthonormal basis e1, e2, . . . , e2k+1.
Denote by S2k+2 the spinor module of Cl(V ⊕R) where V ⊕R is given the direct sum Euclid-
ean metric and the orientation

or(V ⊕ R) = or(V ) ∧ or(R).

Choose an isomorphism
ρ : Cl(V ⊕ R) → EndC(S2k+2).

Then S2k+2 becomes naturally a supermodule

S2k+2 = S+
2k+1 ⊕ S−2k+1

and we thus we get the isomorphisms of algebras

Cl(V ) ∼= Cl(V ⊕ R)even ∼= Endeven(S2k+2) ∼= End (S+
2k+2)⊕ End (S−2k+2).

ut

The above characterization can be used to describe the complex (super)modules of
Cl2k+1. We will not present the details since the applications we have in mind do not
require these facts. For more details we refer to [46].

10.1.5 A look ahead

In this heuristic section we interrupt a little bit the flow of arguments to provide the reader
a sense of direction. The next step in our story is to glue all the pointwise data presented
so far into smooth families (i.e. bundles). To produce a Dirac operator on an n-dimensional
Riemann manifold (M, g) one needs several things.
(a) A bundle of Clifford algebras C → M such that Cx

∼= Cln or Cln, ∀x ∈ M
(b) A fiberwise injective morphism of vector bundles ı : T ∗M ↪→ C such that ∀x ∈ M

{ı(u), ı(v)}C = −2g(u, v) ∀u, v ∈ T ∗xM.

(c) A bundle of Clifford modules i.e. a vector bundle E → M together with a morphism
c : C → End (E) whose restrictions to the fibers are morphisms of algebras.
(d) A connection on E.

The above collection of data can be constructed from bundles associated to a common
principal bundle. The symmetry group of this principal bundle has to be a Lie group with
several additional features which we now proceed to describe.

Let (V, g) denote the standard fiber of T ∗M and denote by AutV the group of automor-
phisms φ of Cl(V ) such that φ(V ) ⊂ V . The group AutcV is defined similarly, using the
complexified algebra Cl(V ) instead of Cl(V ). For brevity, we discuss only the real case.
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We need a Lie group G which admits a smooth morphism ρ : G → AutV . Tautologically,
ρ defines a representation ρ : G → GL(V ) which we assume is orthogonal.

We also need a Clifford module c : Cl(V ) → End (E) and a representation µ : G →
GL(E) such that for every v ∈ V and any g ∈ G the diagram below is commutative.

E E

E E
u

g

wc(v)

u
g

wc(g·v)

(10.1.2)

This commutativity can be given an invariant theoretic interpretation as follows. View the
Clifford multiplication c : V → End (E) as an element c ∈ V ∗ ⊗E∗ ⊗E. The group G acts
on this tensor product and the above commutativity simply means that c is invariant under
this action.

In concrete applications E comes with a metric and we need to require that µ is an
orthogonal/unitary representation.

To produce all the data (a)-(d) all we now need is a principal G-bundle P → M such that
the associated bundle P ×ρ V is isomorphic with T ∗M . (This may not be always feasible
due to possible topological obstructions). Any connection ∇ on P induces by association
metric connections ∇M on1 T ∗M and ∇E on the bundle of Clifford modules E = P ×µ E.
With respect to these connections the Clifford multiplication is covariant constant i.e.

∇E(c(α)u) = c(∇Mα) + c(α)∇Eu ∀α ∈ Ω1(M) u ∈ C∞(E).

This follows from the following elementary invariant theoretic result.

Lemma 10.1.22. Let G be a Lie group and ρ : G → Aut (E) a linear representation of G.
Assume there exists e0 ∈ E such that ρ(g)e0 = e0 ∀g ∈ G. Consider an arbitrary principal
G-bundle P → X and an arbitrary connection ∇ on P . Then e0 canonically determines
a section u0 on P ×ρ E which is covariant constant with respect to the induced connection
∇E = ρ∗(∇) i.e.

∇Eu0 = 0.

Exercise 10.1.7. Prove the above lemma. ut

Apparently the chances that a Lie group G with the above properties exists are very slim.
The very pleasant surprise is that all these (and even more) happen in many geometrically
interesting situations.

Example 10.1.23. Let (V, g) be an oriented Euclidean space. Using the universality prop-
erty of Clifford algebras we deduce that each g ∈ SO(V ) induces an automorphism of Cl(V )
preserving V ↪→ Cl(V ). Moreover it defines an orthogonal representation on the canonical
Clifford module

c : Cl(V ) → End (Λ∗V )
1In practice one requires a little more namely that ∇M is precisely the Levi-Civita connection on T ∗M .

This leads to significant simplifications in many instances.
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such that
c(g · v)(ω) = g · (c(v)(g−1 · ω)) ∀g ∈ SO(V ), v ∈ V, ω ∈ Λ∗V

i.e. SO(V ) satisfies the equivariance property (10.1.2).
If (M, g) is an oriented Riemann manifold we can now build our bundle of Clifford

modules starting from the principal SO bundle of its oriented orthonormal coframes. As
connections we can now pick the Levi-Civita connection and its associates. The correspond-
ing Dirac operator is the Hodge-DeRham operator. ut

The next two sections discuss two important examples of Lie groups with the above
properties. These are the spin groups Spin(n) and its “complexification” Spinc(n). It
turns out that all the groups one needs to build Dirac operators are these three classes:
SO, Spin and Spinc.

10.1.6 Spin

Let (V, g) be a finite dimensional Euclidean space. The group of automorphisms of the
Clifford algebra Cl(V ) contains a very rich subgroup consisting of the interior ones. These
have the form

ϕx : Cl(V ) → Cl(V ) u 7→ ϕx(u) = x · u · x−1 ∀u ∈ Cl(V ),

where x is some invertible element in Cl(V ). The candidates for the Lie groups with the
properties outlined in the previous section will be sought for amongst subgroups of interior
automorphisms. It is thus natural to determine the subgroup

{x ∈ Cl(V )? ; x · V · x−1 ⊂ V },
where Cl(V )? denotes the group of invertible elements. We will instead try to understand
the Clifford group

Γ(V ) = {x ∈ Cl?(V ) ; α(x) · V · x−1 ⊂ V }
where α : Cl(V ) → Cl(V ) denotes the involutive automorphism of Cl(V ) defining its
Z2-grading. In general, the map ρx = {Cl(V ) 3 u 7→ α(x)ux−1 ∈ Cl(V )} is not an
automorphism of algebras but, as we will see by the end of this subsection, if x ∈ Γ(V ) then
ρx = ±ϕx and hence a posteriori this alteration has no impact. Its impact is mainly on the
æsthetics of the presentation which we borrowed from the elegant paper [6].

By construction Γ(V ) comes equipped with a tautological representation

ρ : Γ(V ) → GL(V ) ρ(x) : v 7→ α(x) · v · x−1.

Proposition 10.1.24. ker ρ = (R∗, ·) ⊂ Cl(V )?.

Proof Clearly R∗ ⊂ ker ρ. To establish the opposite inclusion choose an orthonormal
basis (ei) of V and let x ∈ ker ρ. x decomposes into even/odd components

x = x0 + x1,

and the condition
α(x)eix

−1 = ei
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translates into
(x0 − x1)ei = ei(x0 + x1) ∀i.

This is equivalent to the following two conditions

[x0, ei] = x0ei − eix0 = x1ei + eix1 = {x1, ei} = 0 ∀i.

In terms of the s-commutator the above two equalities can be written as one

[ei, x]s = 0 ∀i.

Since [·, x] is a superderivation of Cl(V ) we conclude that

[y, x]s = 0 ∀y ∈ Cl(V ).

In particular, x0 lies in the center of Cl(V ). We let the reader check the following elementary
fact.

Lemma 10.1.25. The s-center2 of the Clifford algebra is the field of scalars R ⊂ Cl(V ).

Note that since {x1, ei} = 0 then x1 should be a linear combination of elementary
monomials ej1 · · · ejs none of which containing ei as a factor. Since this should happen for
every i this means x1 = 0 and this concludes the proof of the proposition.

ut

Definition 10.1.26. The spinorial norm is the map

N : Cl(V ) → Cl(V ) N(x) = x[x.

Proposition 10.1.27. (a) N(Γ(V )) ⊂ R∗.
(b) The map N : Γ(V ) → R∗ is a group morphism.

Proof Let x ∈ Γ(V ). We first prove that x[ ∈ Γ(V ). Since α(x)vx−1 ∈ V, ∀v ∈ V we
deduce that

α({α(x) · v · x−1}[) = −α(x) · v · x−1 ∈ V.

Using the fact that x 7→ x[ is an anti-automorphism we deduce

α( (x[)−1 · v · α(x[) ) ∈ V

so that
α((x[)−1) · v · x[ ∈ V,

that is (x[)−1 ∈ Γ(V ). Hence x∗ ∈ Γ(V ) ∀x ∈ Γ(V ). In particular, since α(Γ(V )) ⊂ Γ(V ),
we deduce N(Γ(V )) ⊂ Γ(V ). For any v ∈ V we have

α(N(x)) · v · (N(x))−1 = α(x[x) · v · (x[x)−1 = α(x[) · {α(x) · v · x−1} · (x[)−1.

2The super-center consists of those elements super-commuting with every element in the s-algebra.
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On the other hand y
def
= α(x) · v · x−1 is an element in V which implies y∗ = α(y[) = −y.

Hence
α(N(x)) · v · (N(x))−1 = −α(x[) · y∗ · (x[)−1

= −α(x[) · α(x[)−1 · v∗ · x[ · (x[)−1 = −v∗ = v.

This means N(x) ∈ ker ρ = R∗.
(b) If x, y ∈ Γ(V ) then

N(x · y) = (xy)[(xy) = y[x[xy = y[N(x)y = N(x)y[y = N(x)N(y).

ut

Theorem 10.1.28. (a) For every x ∈ Γ(V ) the transformation ρ(x) of V is orthogonal.
(b) There exists a short exact sequence of groups

1 → R∗ ↪→ Γ(V )
ρ→ O(V ) → 1.

(c) Every x ∈ Γ(V ) can be written (in a non-unique way) as a product x = v1 · · · vk, vj ∈ V .
In particular, every element of Γ(V ) is Z2-homogeneous i.e. it is either purely even or purely
odd.

Proof (a) Note that ∀v ∈ V we have N(v) = −|v|2g. For every x ∈ Γ(V ) we get

N(ρ(x)(v)) = N(α(x)vx−1) = N(α(x))N(v)N(x−1) = N(α(x))N(x)−1N(v).

On the other hand x2 = α(x2) = α(x)2 we deduce

N(x)2 = N(α(x))2

so that N(ρ(x)(v)) = ±N(v). Since both N(v) and N(ρx(v)) are negative numbers we
deduce that the only logical choice of signs in the above equality is +. Hence ρ(x) is an
orthogonal transformation.
(b) & (c) We only need to show ρ(Γ(V )) = O(V ). For x ∈ V with |x|g = 1 we have

α(x) = −x = x−1.

If we decompose v ∈ V as λx + u where λ ∈ R and u ⊥ x then we deduce

ρ(x)v = −λx + u.

In other words, ρ(x) is the orthogonal reflection in the hyperplane through origin which
is perpendicular to x. Since any orthogonal transformation of V is a composition of such
reflections we deduce that for each T ∈ O(V ) we can find v1, . . . , vk ∈ V such that

T = ρ(v1) · · · ρ(vk).

Incidentally this also establishes (c).
ut



The structure of Dirac operators 417

Set Γ0(V ) = Γ(V ) ∩ Cleven. Note that

ρ(Γ0(V )) ⊂ SO(V ) = {T ∈ O(V ) ; det T = 1}.

Hence we have a short exact sequence

1 → R∗ ↪→ Γ0(V )
ρ→ 1.

Definition 10.1.29. Set

Pin(V ) := {x ∈ Γ(V ) ; |N(x)| = 1},

and
Spin(V ) := {x ∈ Γ(V ) ; N(x) = 1} = Pin(V ) ∩ Γ0(V ).

The results we proved so far show that Spin(V ) can be alternatively described by the
following “friendlier” equality

Spin(V ) = {v1 · · · v2k ; k ≥ 0, vi ∈ V, |vi| = 1, ∀i = 1. . . . 2k}.

Proposition 10.1.30. There exist short exact sequences

1 → Z2 → Pin(V ) → O(V ) → 1

1 → Z2 → Spin(V ) → SO(V ) → 1.

Spin(V ) is a Lie group and ρ : Spin(V ) → SO(V ) is a covering map. It is connected if
dimV ≥ 2 and simply connected if dimV ≥ 3. In particular, Spin(V ) is the universal cover
of SO(V ) when dimV ≥ 3.

Proof The exactness of the two sequences is left to the reader. It is also fairly easy to
prove that ρ : Spin(V ) → SO(V ) is a covering map using the following simple observations:
(i) ρ is a group morphism ;
(ii) ρ is continuous;
(iii) ker ρ is discrete.
This shows that Spin(V ) can be naturally endowed with a smooth structure pulled back
from SO(V ) via ρ. Since SO(V ) is connected if dimV ≥ 2 the fact that Spin(V ) is
connected would follow if we showed that any points in the same fiber of ρ can be connected
by arcs. It suffices to look at the fiber ρ−1(1) = {−1, 1}.

Using Theorem 10.1.28(c) we see that

Spin(V ) = {v1 · · · v2k ; k ≥ 1, vj ∈ V, |vj | = 1}.

Thus if u, v ∈ V are such that |u| = |v| = 1, u ⊥ v the path

γ(t) = (u cos t + v sin t)(u cos t− v sin t), 0 ≤ t ≤ π/2

lies inside Spin(V ) and moreover

γ(0) = −1, γ(π/2) = 1.
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To prove that Spin(V ) is simply connected if dimV ≥ 3 it suffices to observe that each
closed path in Spin(V ) is homotopic to a “monomial loop”

γ(t) = v1(t) · · · v2k(t),

where vj(t) are closed,piecewise smooth paths in the unit sphere Sdim V−1 ⊂ (V, g). If
dimV ≥ 3 then the unit sphere Sdim V−1 is simply connected which forces Spin(V ) to be
simply connected.

ut

Corollary 10.1.31. π1(SO(n)) = Z2 if n ≥ 3.

Let Spin(n) = Spin(Rn) where Rn denotes the standard Euclidean space. Since the
natural map ρ : Spin(n) → SO(n) is a cover we deduce that its derivative at the “origin”
induces an isomorphism of Lie algebras

τ = ρ∗ : spin(n)
∼=→ so(n).

We would like to spend some time discussing some often confusing aspects of this isomor-
phism.

We can view Spin(V ) as a submanifold of Cl(V ) and as such we can identify its Lie
algebra spin(V ) with a linear subspace of Cl(V ). The next result offers a more precise
description.

Proposition 10.1.32. Consider the quantization map q : Λ∗V → Cl(V ). Then

spin(V ) = q(Λ2V ).

The Lie bracket is given by the commutator in Cl(V ).

Proof The group Γ(V ) is a Lie group as a closed subgroup of the group of linear trans-
formations of Cl(V ). Since the elements of Γ(V ) are either purely even or purely odd we
deduce that the tangent space at 1 ∈ Γ(V ) can be identified with the subspace

E = {x ∈ Cleven(V ) ; xv − vx ∈ V, ∀v ∈ V }.

Fix x ∈ E and let e1, . . . , en be an orthonormal basis of V . We can decompose x as

x = x0 + e1x1,

where x0 ∈ Cl(V )even and x1 ∈ Cl(V )odd are linear combinations of monomials involving
only the vectors e2, . . . en. Since [x0, e1] = 0 and {x1, e1} = 0 we deduce

e1x1 =
1
2
[e1, x1] =

1
2
[e1, x] ∈ V.

In particular this means x1 ∈ R ⊕ V ∈ Cl(V ). Repeating the same argument with every
vector ei we deduce that

x ∈ R⊕ span{ei · ej ; 1 ≤ i < j ≤ dimV } = R⊕ q(Λ2V ).
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Thus
T1Γ0(V ) ⊂ R⊕ q(Λ2V ).

The tangent space to Spin(V ) satisfies a further restriction obtained by differentiating the
condition N(x) = 1. This gives

spin(V ) ⊂ {x ∈ R⊕ q(Λ2V ) ; x[ + x = 0} = q(Λ2V ).

Since dim spin(V ) = dim so(V ) = dimΛ2V we conclude the above inclusion is in fact an
equality of vector spaces.

Now consider two smooth paths x, y : (−ε, ε) → Spin(V ) such that x(0) = y(0) = 1.
The Lie bracket of ẋ(0) and ẏ(0) is then found (using the Exercise 3.1.5) from the equality

x(t)y(t)x(t)−1y(t)−1 = 1 + [ẋ(0), ẏ(0)]t2 + O(t3) (as t → 0)

where the above bracket is the commutator of ẋ(0) and ẏ(0) viewed as elements in the
associative algebra Cl(V ).

ut

To get a more explicit picture of the isomorphism

ρ∗ : spin(V ) → so(V )

we fix an orientation on V and then choose a positively oriented orthonormal basis {e1, . . . , en}
of V , (n = dimV ). For every x ∈ spin(V ) the element ρ∗(x) ∈ spin(V ) acts on V according
to

ρ∗(x)v = x · v − v · x.

If
x =

∑

i<j

xijeiej

then
ρ∗(x)ej = −2

∑

i

xijei, (xij = −xji).

Note the following often confusing fact. If we identify as usual so(V ) ∼= Λ2V by

so(n) 3 A 7→ ωA =
∑

i<j

g(Aei, ej)ei ∧ ej = −
∑

i<j

g(ei, Aej)ei ∧ ej

then the Lie algebra isomorphism ρ∗ takes the form

ωρ∗(x) = −
∑

i<j

g(ei, ρ∗(x)ej)ei ∧ ej

= 2
∑

i<j

xijei ∧ ej = 2σ(x) ∈ Λ2V.

where σ : Cl(V ) → Λ∗V is the symbol map, eiej 7→ ei ∧ ej .
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A word of warning If A ∈ so(V ) has the matrix description

Aej =
∑

i

aijei

with respect to an oriented orthonormal basis {e1, · · · , en}, (n = dimV ) then the 2-form
associated to A has the form

ωA = −
∑

i<j

aijei ∧ ej

so that
ρ−1
∗ (A) = −1

2

∑

i<j

aijeiej = −1
4

∑

i,j

aijeiej !

The above negative sign is essential, and in many concrete problems it makes a world of
difference.

Any Clifford module φ : Cl(V ) → EndK (E) defines by restriction a representation

φ : Spin(V ) → GLK(E).

The (complex) representation theory described in the previous sections can be used to
determine the representations of Spin(V ).

Example 10.1.33. (The complex spinor representations) Consider a finite dimen-
sional oriented Euclidean space (V, g). Assume first that dimV is even. The orientation on
V induces a Z2-grading on the spinor module S = S+ ⊕ S−. Since Spin(V ) ⊂ Cleven(V )
we deduce that each of the spinor spaces S± is a representation space for Spin(V ). They
are in fact irreducible, nonisomorphic complex Spin(V )-modules. They are called the pos-
itive/negative complex spin representations.

Assume next that dimV is odd. The spinor module S(V )

S(V ) = S+(V )⊕ S−(V ).

is not irreducible as a Cl(V ) modules. Each of the modules S±(V ) is a representation
space for Spin(V ). They are irreducible but also isomorphic as Spin(V )-modules. If we
pick an oriented orthonormal basis e1, · · · , e2n+1 of V then the Clifford multiplication by
ω = e1 · · · e2n+1 intertwines the ± components. This is a Spin(V ) isomorphism since ω lies
in the center of Cl(V ). ut

Convention For each positive integer n we will denote by Sn the Spin(n) module defined
by

S2k
∼= S+(R2k)⊕ S−(R2k) (n = 2k),

and
S2k+1

∼= S+(R2k+1) ∼=Spin(2k+1) S−(R2k+1) (n = 2k + 1).

Sn will be called the fundamental complex spinor module of Spin(n).
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Exercise 10.1.8. Let (V, g) be a 2k-dimensional Euclidean space and J : V → V a complex
structure compatible with the metric g. Thus we have an explicit isomorphism

∆ : Cl(V ) → End (Λ∗,0V ).

Choose u ∈ V such that |u|g = 1 and then for each t ∈ R set

q = q(t) = cos t + u · v sin t, v = Jv.

Note that q ∈ Spin(V ) so that ∆(q) preserves the parities when acting on Λ∗,0(V ). Hence
∆(q) = ∆+(q) ⊕ ∆−(q) where ∆+/−(q) acts on Λeven/odd,0V . Compute tr (∆+/−(q)) and
then conclude that Λeven,/odd,0V are non-isomorphic Spin(V )-modules. ut

Proposition 10.1.34. Let φ : Cl(V ) → End (E) be a selfadjoint Clifford module. Then
the induced representation of Spin(V ) is orthogonal (unitary).

Exercise 10.1.9. Prove the above proposition. ut

Exercise 10.1.10. Prove that the group Spin(V ) satisfies all the conditions discussed in
Subsection 10.1.5. ut

10.1.7 Spinc

The considerations in the previous case have a natural extension to the complexified Clifford
algebra Cln. The canonical involutive automorphism α : Cln → Cln extends by complex
linearity to an automorphism of Cln while the adjoint anti-automorphism [ : Cln → Cln
extend to Cln according to the rule

(v ⊗ z)[ = v ⊗ z.

As in the real case set x∗ = α(x)[ and N(x) = x[ · x.
Let (V, g) be an Euclidean space. The complex Clifford group Γc(V ) is defined by

Γc(V ) = {x ∈ Cl(V )?;α(x) · v · x−1 ∈ V ∀v ∈ V }.
We denote by ρc the tautological representation

ρc : Γc(V ) → GL(V,R).

As in the real case one can check that

ρc(Γc(V )) = O(V )

and
ker ρc = C∗.

The spinorial norm N(x) defines a homomorphism

N : Γc(V ) → C∗.

Define
Pinc(V ) = {x ∈ Γc(V ) ; |N(x)| = 1}.

We leave the reader to check the following result.
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Proposition 10.1.35. There exists a short exact sequence

1 → S1 → Pinc(V ) → O(V ) → 1.

Corollary 10.1.36. There exists a natural isomorphism

Pinc(V ) ∼= (Pin(V )× S1)/ ∼
where “∼” is the equivalence relation

(x, z) ∼ (−x,−z) ∀(x, z) ∈ Pin(V )× S1.

Proof The inclusions Pin(V ) ⊂ Cl(V ), S1 ⊂ C induce an inclusion

(Pin(V )× S1)/ ∼→ Cl(V ).

The image of this morphism lies obviously in Γc(V ) ∩ {|N | = 1} so that (Pin(V )× S1)/ ∼
can be viewed as a subgroup of Pinc(V ). The sought for isomorphism now follows from the
exact sequence

1 → S1 → (Pin(V )× S1)/ ∼→ O(V ) → 1.

ut

We define Spinc(V ) as the inverse image of SO(V ) via the morphism

ρc : Pinc(V ) → O(V ).

Arguing as in the above corollary we deduce

Spinc(V ) ∼= (Spin(V )× S1)/ ∼∼= (Spin(V )× S1)/Z2.

Exercise 10.1.11. Prove Spinc(V ) satisfies all the conditions outlined in Subsection 10.1.5.
ut

Assume now dimV is even. Then any any isomorphism

Cl(V ) ∼= EndC(S(V ))

induces a complex unitary representation

Spinc(V ) → Aut (S(V ))

called the complex spinorial representation of Spinc. It is not irreducible since (once we fix
an orientation on V ), End (S(V )) has a natural superstructure and by definition Spinc acts
through even automorphism. As in the real case, S(V ) splits into a direct sum of irreducible
representations S±(V ).

Any complex structure J on V defines two things:
(i) a canonical orientation on V and
(ii) a natural subgroup

U(V, J) = {T ∈ SO(V ) ; [T, J ] = 0} ⊂ SO(V ).

Denote by ıJ : U(V, J) → SO(V ) the inclusion map.
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Proposition 10.1.37. There exists a natural group morphism

ξJ : U(V, J) → Spinc(V )

such that the diagram below is commutative.

U(V, J) Spinc(V )

SO(V )

wξJ

'
'
'')
ıJ

u
ρc

Proof Let ω ∈ U(V ) and consider a path γ : [0, 1] → U(V ) connecting 1 to ω. Via the
inclusion U(V ) ↪→ SO(V ) we may regard γ as a path in SO(V ). As such, it admits a unique
lift γ̃ : [0, 1] → Spin(V ) such that γ̃(0) = 1.

Using the double cover S1 → S1 z 7→ z2 we can find a path δ(t) in S1 such that

δ(0) = 1 and δ2(t) = det γ(t).

Define ξ(ω) to be the image of (γ̃(1), δ(1)) in Spinc(V ). We have to check that
(i) ξ is well defined and
(ii) σ is a smooth group morphism.

To prove (i) we need to show that if η : [0, 1] → U(V ) is a different path connecting 1
to ω and λ : [0, 1] → S1 is such that λ(0) = 1 and λ(t) = det η(t)2 then

(η̃(1), λ(1)) = (γ̃(1), δ(1)) in Spinc(V ).

The elements γ̃(1) and η̃(1) lie in the same fiber of the covering Spin(V )
ρ→ SO(V ) so that

they differ by an element in ker ρ. Hence

γ̃(1) = εη̃(1) ε = ±1.

We can identify ε as the holonomy of the covering Spin(V ) → SO(V ) along the loop γ ∗ η−

which goes from 1 to ω along γ and back to 1 along η−(t) = η(1− t).
The map det : U(V ) → S1 induces an isomorphism between the fundamental groups

(see Exercise 6.2.10 of Subsection 6.2.5). Hence in describing the holonomy ε it suffices to
replace the loop γ ∗ η− ⊂ U(V ) by any loop ν(t) such that

det ν(t) = det(γ ∗ η−) = ∆(t) ∈ S1.

Such a loop will be homotopic to γ ∗ η−1 in U(V ) and thus in SO(V ) as well. Select ν(t)
of the form

ν(t)e1 = ∆(t)e1, ν(t)ei = ei ∀i ≥ 2

where (ei) is a complex, orthonormal basis of (V, J). Set fi = Jei. With respect to the real
basis (e1, f1; e2, f2; · · · ) ν(t) (viewed as an element of SO(V )) has the matrix description




cos θ(t) − sin θ(t) · · ·
sin θ(t) cos θ(t) · · ·

...
... Id


 ,
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where θ : [0, 1] → R is a continuous map such that ∆(t) = eiθ(t). The lift of ν(t) to Spin(V )
has the form

ν̃(t) = (cos
θ(t)
2
− e1f1 sin

θ(t)
2

).

We see that the holonomy defined by ν̃(t) is nontrivial if and only if the holonomy of the

loop t 7→ δ(t) in the double cover S1 z2→ S1 is nontrivial. This means that δ(1) and λ(1)
differ by the same element of Z2 as γ̃(1) and η̃(1). This proves ξ is well defined. We leave
the reader to check that ξ is indeed a smooth morphism of groups.

ut

10.1.8 Low dimensional examples

In low dimensions the objects discussed in the previous subsections can be given more
suggestive interpretations. In this subsection we will describe some of these interpretations.

n = 1 The Clifford algebra Cl1 is isomorphic with the field of complex numbers C. The
Z2-grading is ReC⊕ ImC. The group Spin(1) is isomorphic with Z2.

n = 2 The Clifford algebra Cl2 is isomorphic with the algebra of quaternions H. This can
be seen by choosing an orthonormal basis {e1, e2} in R2. The isomorphism is given by

1 7→ 1, e1 7→ i, e2 7→ j, e1e2 7→ k,

where i, j and k are the imaginary units in H. Note that

Spin(2) = {a + bk ; a, b ∈ R a2 + b2 = 1} ∼= S1.

The natural map Spin(1) → SO(2) ∼= S1 takes the form eiθ 7→ e2iθ.

n = 3 As an (ungraded) algebra Cl3 is isomorphic to the direct sum H⊕H. More relevant
is the isomorphism Cleven

3
∼= Cl2 ∼= H given by

1 7→ 1, e1e2 7→ i, e2e3 7→ j, e3e1 7→ k

where {e1, e2, e3} is an orthonormal basis in R3. Under this identification the operation
x 7→ x[ coincides with the conjugation in H

x = a + bi + cj + dk 7→ x = a− bi− cj− dk.

In particular the spinorial norm coincides with the usual norm on H

N(a + bi + cj + dk) = a2 + b2 + c2 + d2.

Thus any x ∈ Cleven
3 \ {0} is invertible and

x−1 =
1

N(x)
x[.
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Moreover, a simple computation shows that xR3x−1 ⊂ R3 ∀x ∈ Cleven
3 \ {0} so that

Γ0(R3) ∼= H \ {0}.

Hence
Spin(3) ∼= {x ∈ H ; |x| = 1} ∼= SU(2).

The natural map Spin(3) → SO(3) is precisely the map described in the Exercise 6.2.4 of
Subsection 6.2.1.

The isomorphism Spin(3) ∼= SU(2) can be visualized by writing each q = a+bi+cj+dk
as

q = u + jv u = a + bi, v = (c− di) ∈ C.

To a quaternion q = u + jv one associates the 2× 2 complex matrix

Sq =
[

u −v̄
v ū

]
∈ SU(2).

Note that Sq̄ = S∗q , ∀q ∈ H. For each quaternion q ∈ H we denote by Lq (resp. Rq) the left
(resp. right) multiplication. The right multiplication by i defines a complex structure on
H. Define T : H→ C2 by

q = u + jv 7→ Tq =
[

u
v

]
.

A simple computation shows that
T (Riq) = iTq

i.e. T is a complex linear map. Moreover ∀q ∈ Spin(3) ∼= S3 the matrix Sq is in SU(2) and
the diagram below is commutative.

H C2

H C2

wT

u
Lq

u
Sq

wT

In other words, the representation

Spin(3) 3 q 7→ Lq ∈ GLC(H)

of Spin(3) is isomorphic with the tautological representation of SU(2) on C2. On the other
hand the correspondences

e1e2 7→ Si ⊕ Si ∈ End (C2)⊕ End (C2)

e2e3 7→ Sj ⊕ Sj ∈ End (C2)⊕ End (C2)

e3e1 7→ Sk ⊕ Sk ∈ End (C2)⊕ End (C2)

e1e2e3 7→ R = 1C2 ⊕ (−1C2) ∈ End (C2)⊕ End (C2)

extend to an isomorphism of algebras Cl3 → End (C2) ⊕ End (C2). This proves that the
tautological representation of SU(2) is precisely the complex spinorial representation S3
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From the equalities
[Rj, Lq] = {Rj, Ri} = 0

we deduce that Rj defines an isomorphism of Spin(3)-modules

Rj : S3 → S3.

This implies there exists a Spin(3)-invariant bilinear map

β : S3 × S3 → C.

This plays an important part in the formulation of the recently introduced Seiberg-Witten
equations (see [78]).

Exercise 10.1.12. The left multiplication by i introduces a different complex structure on
H. Prove the representation Spin(3) 3 q 7→ (Rq : H→ H) is
(i) complex with respect to the above introduced complex structure on H and
(ii) it is isomorphic with complex spinorial representation described by the left multiplica-
tion. ut

n = 4 Cl4 can be realized as the algebra of 2× 2 matrices with entries in H. To describe
this isomorphism we have to start from a natural embedding R4 ↪→ M2(H) given by the
correspondence

H ∼= R4 3 x 7→
[

0 −x
x 0

]

A simple computation shows that the conditions in the universality property of a Clifford
algebra are satisfied and this correspondence extends to a bona-fide morphism of algebras
Cl4 → M2(H). We let the reader check this morphism is also injective and a dimension
count concludes it must also be surjective.

Proposition 10.1.38. Spin(4) ∼= SU(2)× SU(2).

Proof We will use the description of Spin(4) as the universal (double-cover) of SO(4) so
we will explicitly produce a smooth 2− 1 group morphism SU(2)× SU(2) → SO(4).

Again we think of SU(2) as the group of unit quaternions. Thus each pair (q1, q2) ∈
SU(2)× SU(2) defines a real linear map

Tq1,q2 : H→ H x 7→ Tq1,q2x = q1xq2.

Clearly |x| = |q1| · |x| · |q2| = |Tq1,q2x| ∀x ∈ H so that each Tq1,q2 is an orthogonal trans-
formation of H. Since SU(2) × SU(2) is connected all the operators Tq1,q2 belong to the
component of O(4) containing 1 i.e. T defines an (obviously smooth) group morphism

T : SU(2)× SU(2) → SO(4).

Note that kerT = {1,−1} so that T is 2 − 1. In order to prove T is a double cover it
suffices to show it is onto. This follows easily by noticing T is an immersion (verify this !)
so that its range must contain an entire neighborhood of 1 ∈ SO(4). Since the range of T is
closed (verify this!) we conclude that T must be onto because the closure of the subgroup
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(algebraically) generated by an open set in a connected Lie group coincides with the group
itself (see Subsection 1.2.3).

ut

The above result shows that

so(4) ∼= spin(4) ∼= su(2)⊕ su(2) ∼= so(3)⊕ so(3).

Exercise 10.1.13. Using the identification Cl4 ∼= M2(H) show that Spin(4) corresponds
to the subgroup

{diag (p, q) ; p, q ∈ H, |p| = |q| = 1} ⊂ M2(H).

ut

Exercise 10.1.14. Let {e1, e2, e3, e4} be an oriented orthonormal basis of R4. Let ∗ denote
the Hodge operator defined by the canonical metric and the above chosen orientation. Note
that

∗ : Λ2R4 → Λ2R4

is involutive ∗2 = id so that we can split Λ2 into the ±1 eigenspaces of ∗

Λ2R4 = Λ2
+R4 ⊕ Λ2

−R4.

(a) Show that
Λ2
± = spanR{η±1 , η±2 , η±3 }

where
η±1 =

1√
2
(e1 ∧ e2 ± e3 ∧ e4)

η±2 =
1√
2
(e1 ∧ e3 ± e4 ∧ e2)

η±3 =
1√
2
(e1 ∧ e4 ± e2 ∧ e3).

(b) Show that the above splitting of Λ2R4 corresponds to the splitting so(4) = so(3)⊕so(3)
under the natural identification Λ2R4 ∼= so(4). ut

To obtain an explicit realization of the complex spinorial representations S±4 we need to
describe a concrete realization of the complexification Cl4. We start from the morphism of
R-algebras

H 3 x = u + jv 7→ Sx =
[

u −v̄
v u

]

This extends by complexification to an isomorphism of C-algebras

H⊗R C ∼= M2(C).

(Verify this!) We now use this isomorphism to achieve the identification.

EndH(H⊕H)⊗R C ∼= M2(H)⊗R C ∼= EndC(C2 ⊕ C2).
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The embedding R4 → Cl4 now takes the form

H ∼= R4 3 x 7→ Tx =
[

0 −Sx̄

Sx 0

]
∈ End (C2 ⊕ C2).

Note that the chirality operator Γ = −e1e2e3e4 is represented by the canonical involution

Γ 7→ 1C2 ⊕ (−1C2).

We deduce the S±4 representations of Spin(4) = SU(2)× SU(2) are given by

S+
4 : SU(2)× SU(2) 3 (p, q) 7→ p ∈ GL(2;C)

S−4 : SU(2)× SU(2) 3 (p, q) 7→ q ∈ GL(2;C).

As for Spin(3) these representations can be given quaternionic descriptions.

Exercise 10.1.15. The space R4 ∼= H has a canonical complex structure defined by Ri

which defines (following the prescriptions in §10.1.3) an isomorphism c : Cl4 → End (Λ∗C2).
Identify C2 in the obvious way with Λ1C2 and with ΛevenC2 via e1 7→ 1 ∈ Λ0C2, e2 7→ e1∧e2.
Show that under this identification we have

c(x) = Tx ∀x ∈ R4 ∼= (H, Ri) ∼= C2

where Tx is the odd endomorphism of C2 ⊕ C2 defined above. ut

Exercise 10.1.16. Let V be a 4-dimensional oriented Euclidean space. Denote by q :
Λ∗V → Cl(V ) the quantization map and fix an isomorphism ∆ : Cl(V ) → End (S(V )) of
Z2-graded algebras. Show that for any η ∈ Λ2

+(V ) the image ∆ ◦ q(η) ∈ End (S(V )) is an
endomorphism of the form T ⊕ 0 ∈ End (S+(V ))⊕ End (S−(V )). ut

Exercise 10.1.17. Denote by V a 4-dimensional oriented Euclidean space.
(a) Show that the representation S+

4 ⊗ S+
4 of Spin(4) descends to a representation of SO(4)

and moreover
S+(V )⊗C S+(V ) ∼= (Λ0(V )⊕ Λ2

+(V ))⊗R C
as SO(4) representations.
(b) Show that S+(V ) ∼= S̄+(V ) as Spin(4) modules.
(c)The above isomorphism defines an element φ ∈ S+(V ) ⊗C S+(V ). Show that via the
correspondence at (a) the isomorphism φ spans Λ0(V ). ut

10.1.9 Dirac bundles

In this subsection we discuss a distinguished type of Clifford bundle which is both frequently
encountered in applications and is rich in geometric informations. We will touch only the
general aspects. The special characteristics of the most important concrete examples are
studied in some detail in the following section. In the sequel all Clifford bundles will be
assumed to be complex.
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Definition 10.1.39. Let E → M be a Clifford bundle over the oriented Riemann manifold
(M, g). A Dirac structure on E is a pair (h,∇) consisting of a Hermitian metric h on E
and a Clifford connection i.e. a connection ∇ compatible with h such that
(i) ∀α ∈ Ω1(M) the Clifford multiplication by α is a skew-Hermitian endomorphism of E.
(ii) ∀α ∈ Ω1(M), X ∈ Vect (M), u ∈ C∞(E)

∇X(c(α)u) = c(∇M
X α)u + c(α)(∇Xu)

where ∇M denotes the Levi-Civita connection on T ∗M . (This condition means the Clifford
multiplication is covariant constant). A pair (Clifford bundle, Dirac structure) will be called
a Dirac bundle. A Z2-grading on a Dirac bundle (E, h,∇) is a Z2 grading of the underlying
Clifford structure E = E0⊕E1 such that h = h0⊕ h1 and ∇ = ∇0⊕∇1 where hi and resp.
∇i is a metric (resp. a metric connection) on Ei.

The next result addresses the fundamental consistency question: do there exist Dirac
bundles?

Proposition 10.1.40. Let E → M be a Clifford bundle over the oriented Riemann manifold
(M, g). Then there exist Dirac structures on E.

Proof Denote by D the (possible empty) family of Dirac structure on E. Note that if
(hi,∇i) ∈ D (i = 1, 2) and f ∈ C∞(M) then

(fh1 + (1− f)h2, f∇1 + (1− f)∇2) ∈ D.

This elementary fact shows the existence of Dirac structures is essentially a local issue: local
Dirac structures can be patched-up via partitions of unity.

Thus it suffices to consider only the case when M is an open subset of Rn and E is a
trivial vector bundle. On the other hand we cannot assume the metric g is also trivial (i.e.
Euclidean) since the local obstructions given by the Riemann curvature cannot be removed.
We will distinguish two cases.
A. n = dim M is even. The proof will be completed in three steps.

Step 1. A special example. Fix a selfadjoint endomorphism

c : Cln → End (Sn),

where Sn denotes the fundamental spinor representation. We will continue to denote by c
the restriction to Spin(n) ↪→ Cln.

Fix a global, oriented, orthonormal frame (ei) of TM and denote by (ej) its dual coframe.
Denote by ω = (ωij) the connection 1-form of the Levi-Civita connection on T ∗M with
respect to this moving frame i.e.

∇ej = ωej =
∑

i

ωij ⊗ ei, ω ∈ Ω(M)⊗ so(n).

Using the canonical isomorphism ρ∗ : spin(n) → so(n) we define

ω̃ = ρ−1
∗ (ω) = −1

2

∑

i<j

ωijei · ej ∈ Ω1(M)⊗ spin(n).
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This defines a connection ∇S on the trivial vector bundle SM by

∇Su = du− 1
2

∑

i<j

ωij ⊗ c(ei) · c(ej)u ∀u ∈ C∞(SM ).

The considerations in §10.1.5 show that ∇S is indeed a Clifford connection so that SM is a
Dirac bundle.

Step 2. Constructing general Dirac bundles Fix a Dirac bundle (E, hE ,∇E) over M . For
any Hermitian vector bundle (W,hW ) equipped with a Hermitian connection ∇W we can
construct the tensor product E ⊗W equipped with the metric hE ⊗ hW and the product
connection ∇E⊗W . These two data define a Dirac structure on E ⊗W (Exercise 10.1.18 at
the end of this subsection).

The representation theory of the Clifford algebra Cln with n even shows that any Clifford
bundle over M must be a twisting S⊗W of the spinor bundle S. This completes the proof
of the proposition when dimM is even.

Step 3 Conclusion. The odd case is dealt with similarly using the different representation
theory of the C2k+1. Now instead of one generating model S there are two but the proof is
conceptually identical. The straightforward details are left to the reader.

ut

Denote by (E, h,∇) a Dirac bundle over the oriented Riemann manifold (M, g). The
exists a Dirac operator on E canonically associated to this structure

D = c ◦ ∇ : C∞(E) ∇→ C∞(T ∗M ⊗ E) c→ C∞(E).

A Dirac operator associated to a Dirac structure is said to be a geometric Dirac operator.

Proposition 10.1.41. Any geometric Dirac operator is formally selfadjoint.

Proof The assertion in the above proposition is local so we can work with local ortho-
normal moving frames. Fix x0 ∈ M and denote by (xi) a collection of normal coordinates
near x0. Set ei = ∂

∂xi
. Denote by (ei) the dual coframe of (ei). If (h,∇) is a Dirac structure

on the Clifford bundle E then at x0 the associated Dirac operator can be described as

D =
∑

i

c(ei)∇i (∇i = ∇ei).

We deduce
D∗ = (∇i)∗c(ei)∗.

Since the connection ∇ is compatible with h and div(ei) |x0= 0 we deduce

(∇i)∗ = −∇i

while
c(ei)∗ = −c(ei)
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since the Clifford multiplication is skew-Hermitian. Hence, at x0

D∗ =
∑

i

∇i ◦ c(ei) =
∑

i

[∇i, c(ei)] + D.

Since the Clifford multiplication is covariant constant and (∇M
i ei) |x0= 0 we conclude

[∇i, c(ei)] |x0= 0 ∀i.

This concludes the proof of the proposition.
ut

Let D be a geometric operator associated to the Dirac bundle (E, h,∇). By definition
D2 is a generalized Laplacian and consequently

D2 = ∇̃∗∇̃+ R,

where ∇̃ is a connection on E and R is the Weitzenböck remainder − an endomorphism
of E. For geometric Dirac operators, ∇̃ = ∇ (!!!) and this remainder can be given a very
explicit description with remarkable geometric consequences. To formulate it we need a
little foundational work.

Let (E, h,∇) be a Dirac bundle over the oriented Riemann manifold (M, g). Denote by
Cliff(M) → M the bundle of Clifford algebras generated by (T ∗M, g).

The curvature F (∇) of ∇ is a section of Λ2T ∗M⊗End (E). Using the quantization map
q : Λ∗T ∗M → Cliff(M) we get a section

q(F ) ∈ Cliff(M)⊗ End (E).

On the other hand, the Clifford multiplication c : Cliff(M) → End (E) defines a linear
map

Cliff(M)⊗ End (E) → End(E) ω ⊗ T 7→ c(ω) ◦ T.

This map associates to the element q(F ) an endomorphism of E which we denote by c(F ).
If (ei) is a local, oriented, orthonormal moving frame for T ∗M then we can write

F (∇) =
∑

i<j

ei ∧ ej ⊗ Fij

and

c(F ) =
∑

i<j

c(ei)c(ej)Fij =
1
2

∑

i,j

c(ei)c(ej)Fij .

Theorem 10.1.42. (Bochner-Weitzenböck) Let D be the geometric Dirac operator
associated to the Dirac bundle (E, h,∇) over the oriented Riemann manifold (M, g). Then

D2 = ∇∗∇+ c(F (∇)).
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Proof Fix x ∈ M and then choose an oriented, local orthonormal moving frame (ei) of
TM near x such that

[ei, ej ] |x= (∇Mei) |x= 0,

where ∇M denotes the Levi-Civita connection. Such a choice is always possible because
the torsion of the Levi-Civita connection is zero. Finally denote by (ei) the dual coframe
of (ei). Then

D2 |x=
∑

i

c(ei)∇i


∑

j

c(ej)∇j


 .

Since [∇i, c(ej)] |x= 0 we deduce

D2 |x=
∑

i,j

c(ei)c(ej)∇i∇j = −
∑

i

∇2
i +

∑

i6=j

c(ei)c(ej)∇i∇j

= −
∑

i

∇2
i +

∑

i<j

c(ei)c(ej)[∇i,∇j ]

= −
∑

i

∇2
i +

∑

i<j

c(ei)c(ej)Fij(∇).

We want to emphasize again the above equalities hold only at x. The theorem now follows
by observing that

(∇∗∇) |x= −
(∑

i

∇2
i

)
|x .

ut

Exercise 10.1.18. Let (E, h,∇) be a Dirac bundle over the oriented Riemann manifold
(M, g) with associated Dirac operator D. Consider a Hermitian bundle W → M and a
connection ∇W compatible with the Hermitian metric hW .
(a) Show that (E⊗W,h⊗hW , ∇̂ = ∇⊗1W +1E⊗∇W ) defines a Dirac structure on E⊗W
in which the Clifford multiplication by α ∈ Ω1(M) is defined by

c(α)(e⊗ w) = (c(α)e)⊗ w, e ∈ C∞(E), w ∈ C∞(W ).

We denote by DW the corresponding geometric Dirac operator.
(b) Denote by cW (F (∇W )) the endomorphism of E ⊗W defined by the sequence

F (∇W ) ∈ C∞(Λ2T ∗M ⊗ End (W ))
q7→ C∞(Cl(T ∗M)⊗ End (W )) c7→ C∞(End (E ⊗W )).

Show that
D2

W = ∇̂∗∇̂+ c(F (∇)) + cW (F (∇W )).

ut
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10.2 Fundamental examples

This section is entirely devoted to the presentation of some fundamental examples of Dirac
operators. More specifically we will discuss the Hodge-DeRham operator, the Dolbeault
operator the spin and spinc Dirac. We will provide more concrete descriptions of the
Weitzenböck remainder presented in Subsection 10.1.9 and show some of its uses in estab-
lishing vanishing theorems.

10.2.1 The Hodge-DeRham operator

Let (M, g) be an oriented Riemann manifold and set

Λ∗CT ∗M = Λ∗T ∗M ⊗ C.

For simplicity we continue to denote by Ω∗(M) the space of smooth differential forms on
M with complex coefficients. We have already seen that the Hodge-DeRham operator

d + d∗ : Ω∗(M) → Ω∗(M)

is a Dirac operator. In fact, we will prove this operator is a geometric Dirac operator.
Continue to denote by g the Hermitian metric induced by the metric g on the complexi-
fication Λ∗CT ∗M . ∇g will denote the Levi-Civita and its associates. When we want to be
more specific about which Levi-Civita connection we are using at a given moment we will
indicate the bundle it acts on as a superscript. E.g., ∇T ∗M is the Levi-Civita connection
on T ∗M .

Proposition 10.2.1. The pair (g,∇g) defines a Dirac structure on the Clifford bundle
ΛCT ∗M and d + d∗ is the associated Dirac operator.

Proof In Subsection 4.1.5 we have proved that d can be alternatively described as the
composition

C∞(Λ∗T ∗M) ∇→ C∞(T ∗M ⊗ Λ∗T ∗M) ε→ C∞(Λ∗T ∗M),

where ε denotes the exterior multiplication map. Thus

d + d∗ = ε ◦ ∇+∇∗ ◦ ε∗.

If X1, · · · , Xn is a local orthonormal frame of TM and θ1, · · · , θn is its dual coframe then
for any ordered multi-index I we have

ε∗(θI) =
∑

j

iXjθ
I .

Thus, for any ω ∈ C∞(Λ∗T ∗M)

∇∗ ◦ ε∗ = −
∑

,

∇Xk
iXk

+ div (Xk)iXk
ω.

Fortunately, we have the freedom to choose the frame (Xk) in any manner we find con-
venient. Fix an arbitrary point x0 ∈ M and choose (Xk) such that at x0 we have Xk =
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∂
∂xk

, where (xk) denotes a collection of normal coordinates near x0. With such a choice
div (Xk) = 0 at x0 and thus

d∗ω |x0= −
∑

k

i∂k
∇∂k

ω.

This shows d + d∗ can be written as the composition

C∞(Λ∗T ∗M) ∇→ C∞(T ∗M ⊗ Λ∗T ∗M) c→ C∞(Λ∗T ∗M),

where c denotes the usual Clifford multiplication on an exterior algebra. We leave the
reader to verify that the Levi-Civita connection on Λ∗T ∗M is indeed a Clifford connection
i.e. the Clifford multiplication is covariant constant. This shows that d + d∗ is a geometric
Dirac operator.

ut

We want to spend some time elucidating the structure of the Weitzenböck remainder.
First of all, we need a better description of the curvature of ∇g viewed as a connection on
Λ∗T ∗M .

Denote by R the Riemann curvature tensor, i.e. the curvature of the Levi-Civita con-
nection

∇g : C∞(TM) → C∞(T ∗M ⊗ TM).

Thus R is a bundle morphism

R : C∞(TM) → C∞(Λ2T ∗M ⊗ TM).

We have a dual morphism

R̃ : C∞(T ∗M) → C∞(Λ2T ∗M ⊗ T ∗M)

uniquely determined by the equality

(R̃(Y, Z)α)(X) = −α(R(Y,Z)X) ∀α ∈ Ω1(M) X, Y, Z ∈ Vect (M).

Lemma 10.2.2. R̃ is the curvature of the Levi-Civita connection ∇T ∗M .

Proof The Levi-Civita connection on T ∗M is determined by the equalities

(∇T ∗M
Z α)(X) = Z · α(X)− α(∇TM

Z X) ∀α ∈ Ω1(M), X, Z ∈ Vect (M).

Derivating along Y ∈ Vect (M) we get

(∇Y∇Zα)(X) = Y · (∇Zα)(X)− (∇Zα)(∇Y X)

= Y · Z · α(X)− Y · α(∇ZX)− Z · α(∇Y X)− α(∇Z∇Y X).

Similar computations give ∇Z∇Y α and ∇[Y,Z] and we get

(RT ∗M (Y, Z)α)(X) = −α(RTM (Y, Z)X).

ut

The Levi-Civita connection ∇g = ∇T ∗M extends as an even derivation to a connection
on Λ∗T ∗M . More precisely, for every X ∈ Vect (M) and any α1, . . . , αk ∈ Ω1(M) we define

∇g
X(α1 ∧ · · · ∧ αk) = (∇g

Xα1) ∧ · · · ∧ αk + · · ·+ α1 ∧ · · · ∧ (∇g
Xαk).
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Lemma 10.2.3. The curvature of the Levi-Civita connection on Λ∗T ∗M is defined by

RΛ∗T ∗M (X, Y )(α1 ∧ · · · ∧ αk) = (R̃(X,Y )α1) ∧ · · · ∧ αk + · · ·+ α1 ∧ · · · ∧ (R̃(X,Y )αk)

for any vector fields X, Y and any 1-forms α1, . . . , αk.

Exercise 10.2.1. Prove the above lemma. ut

The Weitzenböck remainder of the Dirac operator d + d∗ is c(RΛ∗T ∗M ). To better
understand its action we need to pick a local, oriented, orthonormal moving frame (ei) of
TM . We denote by (ei) its dual coframe. The Riemann curvature tensor can be expressed
as

R =
∑

i<j

ei ∧ ejRij ,

where Rij is the skew-symmetric endomorphism

Rij = R(ei, ej) : TM → TM.

Thus

c(RΛ∗T ∗M ) =
∑

i<j

c(ei)c(ej)RΛ∗T ∗M (ei, ej) =
1
2

∑

i,j

c(ei)c(ej)RΛ∗T ∗M (ei, ej),

where c(ej) = e(ej)− i(ej).
Note that since both ∇∗∇ and (d+d∗)2 preserve the Z-grading of Λ∗CT ∗M = ⊕kΛk

CT ∗M
so does the Weitzenböck remainder and consequently it must split as

c(RΛ∗T ∗M ) = ⊕k≥0R
k.

Since R0 ≡ 0 so the first interesting case is R1. To understand its form pick normal
coordinates (xi) near x0 ∈ M . Set ei = ∂

∂xi
|x0∈ Tx0M and ei = dxi |x0∈ T ∗x0

M .
At x0 the Riemann curvature tensor R has the form

R =
∑

k<`

ek ∧ e`R(ek, e`)

where R(ek, e`)ej = Ri
jk`ei = Rijk`ei. Using Lemma 10.2.2 we get

R̃(ek, e`)ej = Rijk`e
i.

Using this in the expression of R1 at x0 we get

R1(
∑

j

αje
j) =

1
2

∑

k,`

∑

i,j

αjRijk`c(ek)c(e`)ei.

We need to evaluate the Clifford actions in the above equality.

c(e`)ei = e` ∧ ei − δi`
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and
c(ek)c(e`)ei = ek ∧ e` ∧ ei − δi`e

k − δk`e
i + δike

`.

Hence
R1(

∑

j

αje
j) =

1
2

∑

i,j,k,`

αjRijk`(ek ∧ e` ∧ ei − δi`e
k − δk`e

i + δike
`).

Using the first Bianchi identity we deduce that
∑

i,k,`

Rijk`e
k ∧ e` ∧ ei = −

∑

i,k,`

Rjik`e
i ∧ ek ∧ e` = 0 ∀j.

Because of the skew-symmetry Rijk` = −Rij`k we conclude that
∑

ijk`

αjRijk`δk`e
i = 0.

Hence
R1(

∑

j

αje
j) =

1
2

∑

i,j,k,`

αjRijk`(δike
` − δi`e

k)

=
1
2

∑

i,j,`

αjRiji`e
` − 1

2

∑

i,j,k

αjRijkie
k =

∑

i,j,k

αjRijike
k =

∑

jk

αjRjke
k,

where
Rjk =

∑

i

Rijik

denotes the Ricci tensor at x0. Hence

R1 = Ric. (10.2.1)

In the above equality Ric is regarded (via the metric duality) as a selfadjoint endomorphism
of T ∗M .

The identity (10.2.1) has a beautiful consequence.

Theorem 10.2.4. (Bochner) Let (M, g) be a compact, connected, oriented Riemann man-
ifold.
(a) If the Ricci tensor is non-negative definite then b1(M) ≤ dimM .
(b) If Ricci tensor is non-negative definite but is somewhere strictly positive definite then
b1(M) = 0.
(Recall that b1(M) denotes the first Betti number of M).

The above result is truly remarkable. The condition on the Ricci tensor is purely local
but with global consequences. We have proved a similar result using geodesics (see Myers
Theorem, Subsection 5.2.2 , 6.2.4 and 6.2.5). Under more restrictive assumptions on the
Ricci tensor (uniformly positive definite) one deduces a stronger conclusion namely that the
fundamental group is finite. If the uniformity assumption is dropped then the conclusion of
the Myers theorem no longer holds (think of the flat torus). In particular this result gives
yet another explanation for the equality

H1(G) = 0
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where G is a compact semisimple Lie group. Recall that in this case the Ricci curvature is
1
4 × {the Killing metric}.
Proof (a) Let ∆1 denote the metric Laplacian

∆1 = dd∗ + d∗d : Ω1(M) → Ω1(M).

Hodge theory asserts that
b1(M) = dim ker∆1

so that in order to estimate the first Betti number we need to estimate the “number” of
solutions of the elliptic equation

∆1η = 0 η ∈ Ω1.

Using the Bochner-Weitzenböck theorem and the equality (10.2.1) we deduce

∆1η = ∇∗∇η + Ric η = 0 on M.

Taking the L2-inner product by η and then integrating by parts we get
∫

M
|∇η|2dvg +

∫

M
(Ric η, η)dvg = 0. (10.2.2)

Since Ric is non-negative definite we deduce

∇η = 0.

Hence any harmonic 1-form must be covariant constant. In particular, since M is connected,
the number of linearly independent harmonic 1-forms is no greater than the rank of T ∗M =
dimM .
(b) Using the equality (10.2.2) we deduce that any harmonic 1-form η must satisfy

(Ric(x)ηx, ηx)x = 0 ∀x ∈ M.

If the Ricci tensor is positive at some x0 ∈ M then η(x0) = 0. Since η is also covariant
constant and M is connected, we conclude that η ≡ 0.

ut

Remark 10.2.5. For a very nice survey of some beautiful applications of this technique
we refer to [9]. ut

10.2.2 The Dolbeault operator

This subsection introduces the reader to the Dolbeault operator which plays a central role in
complex geometry. Since we had almost no contact with this beautiful branch of geometry
we will present only those aspects concerning the “Dirac nature” of these operators. To
define this operator we need a little more differential geometric background.
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Definition 10.2.6. (a) Let E → M be a smooth real vector bundle over the smooth manifold
M . An almost complex structure on E is an endomorphism J : E → E such that J2 =
−1E.
(b) An almost complex structure on a smooth manifold M is an almost complex structure
J on the tangent bundle. An almost complex manifold is a pair (manifold, almost complex
structure).

Note that any almost complex manifold is necessarily even dimensional and orientable
so from the start we know that not any manifold admits almost complex structure. In
fact the existence of such a structure is determined by topological invariants finer than the
dimension and orientability.

Example 10.2.7. (a) Any complex manifold is almost complex. Indeed any such manifold
is locally modeled by Cn and the transition maps are holomorphic maps Cn → Cn. The
multiplication by i defines a real endomorphism on R2n ∼= Cn which induces the almost
complex structure on TM .
(b) For any manifold M the total space of its tangent bundle TM is an almost complex
manifold. If (xi) are local coordinates on M and (Xj) are the coordinates introduced in the
fibers of TM (TM 3 X = Xi ∂

∂xi
) then the almost complex structure on TM is determined

by
∂

∂xi
7→ ∂

∂Xi

∂

∂Xi
7→ − ∂

∂xi
.

We let the reader check this is a well defined operator (independent of the choice of local
coordinates). ut

Let (M,J) be an almost complex manifold. Using the results of Subsection 2.2.5 we
deduce that the complexified tangent bundle TM ⊗ C splits as

TM ⊗ C = (TM)1,0 ⊗ (TM)0,1.

The complex bundle TM1,0 is isomorphic (over C) with (TM, J).
By duality J induces an almost complex structure in the cotangent bundle T ∗M and

similarly we get a decomposition

T ∗M ⊗ C = (T ∗M)1,0 ⊕ (T ∗M)0,1.

In turn this defines a decomposition

Λ∗CT ∗M =
⊕
p,q

Λp,qT ∗M.

We set Ωp,q(M) = C∞(Λp,qT ∗M).

Example 10.2.8. Let M be a complex manifold. If (zj = xj + iyj) are local holomorphic
coordinates on M then (TM)1,0 is generated (locally) by the complex tangent vectors

∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)
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while (T ∗M)1,0 is locally generated by the complex 1-forms

dzj = dxj + iyj .

(TM)1,0 is also known as the holomorphic tangent space while (T ∗M)1,0 is called the
holomorphic cotangent space. The space (T ∗M)0,1 is called the anti-holomorphic cotangent
space and is locally generated by the complex 1-forms

dzj = dxj − iyj .

Note that any (p, q)-form η ∈ Ωp,q(M) can be locally described as

η =
∑

|A|=p,|B|=q

ηA,BdzA ∧ dzB (ηA,B ∈ C∞(M,C))

where we use capital Latin letters A,B, C . . . to denote ordered multi-indices and for each
such index A

dzA = dzA1 ∧ · · · ∧ dzAp .

dzB is defined similarly. ut

Exercise 10.2.2. Let (M,J) be an arbitrary smooth almost complex manifold.
(a) Prove that

dΩp,q(M) ⊂ Ωp+2,q−1(M)⊕ Ωp+1,q(M)⊕ Ωp,q+1(M)Ωp−1,q+2(M).

(b) Show that if M is a complex manifold then

dΩp,q(M) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M). (10.2.3)

(The converse is also true and is known as the Newlander-Nirenberg theorem. Its proof is
far from trivial. For details we refer to the original paper [62]). ut

Definition 10.2.9. An almost complex structure on a smooth manifold is called integrable
if it can derived from a holomorphic atlas, i.e. an atlas in which the transition maps are
holomorphic.

Thus, the Newlander-Nirenberg theorem mentioned above states that the condition
(10.2.3) is necessary and sufficient for an almost complex structure to be integrable.

Exercise 10.2.3. Assuming the Newlander-Nirenberg theorem prove that an almost com-
plex structure J on the smooth manifold M is integrable if and only if the Nijenhuis tensor
N ∈ C∞(T ∗M⊗2 ⊗ TM) defined by

N(X,Y ) = [JX, JY ]− [X,Y ]− J [X,JY ]− J [JX, Y ] ∀X, Y ∈ Vect (M)

vanishes identically. ut
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In the sequel we will exclusively consider only complex manifolds. Let M be such a
manifold. The above exercise shows that the exterior derivative

d : Ωk
C(M) → Ωk+1

C (M)

splits as a direct sum
d = ⊕p+q=kd

p,q,

where
dp,q = {d : Ωp,q(M) → Ωp+1,q(M)⊕ Ωp,q+1(M)}.

The component Ωp,q → Ωp+1,q is denoted by ∂ = ∂p,q while the other component Ωp,q →
Ωp,q+1 is denoted by ∂ = ∂

p,q.

Example 10.2.10. In local holomorphic coordinates (zi) the action of the operator ∂ is
described by

∂


∑

A,B

ηABdzA ∧ dzB


 =

∑

j,A,B

(−1)|A|
∂ηAB

∂zj
dzA ∧ dzj ∧ dzB.

ut

It is not difficult to see that

∂
p,q+1 ◦ ∂

p,q = 0 ∀p, q.

In other words for any 0 ≤ p ≤ dimCM the sequence

0 → Ωp,0(M) ∂→ Ωp,1(M) ∂→ · · ·

is a cochain complex known as the p-th Dolbeault complex of the complex manifold M . Its
cohomology groups are denoted by Hp,q

∂
(M).

Lemma 10.2.11. The Dolbeault complex is an elliptic complex.

Proof The symbol of ∂
p,q is very similar to the symbol of the exterior derivative. For any

x ∈ M and any ξ ∈ T ∗X

σ(∂p,q)(ξ) : Λp,qT ∗xM → Λp,q+1T ∗xM

is (up to a multiplicative constant) the (left) exterior multiplication by ξ0,1, where ξ0,1

denotes the (0, 1) component of ξ viewed as an element of the complexified tangent space.
More precisely

ξ0,1 =
1
2
(ξ + iJ0ξ),

where J0 : T ∗xM → T ∗xM denotes the canonical complex structure induced on T ∗xM by the
holomorphic charts. The sequence of symbols is the cochain complex

0 → Λp,0 ⊗ Λ0,0 id⊗(−1)pξ0,1∧−→ Λp,0 ⊗ Λp,0 ⊗ Λ0,1 id⊗(−1)pξ0,1∧−→ · · · .
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This complex is the (Z-graded) tensor product of the trivial complex

0 → Λp,0 id→ Λp,0 → 0

with the Koszul complex

0 → Λ0,0 (−1)pξ0,1∧−→ Λ0,1 (−1)pξ0,1∧−→ · · · .

Since ξ0,1 6= 0 for any ξ 6= 0 the Koszul complex is exact (see Subsection 7.1.3) . This proves
the Dolbeault complex is elliptic.

ut

To study the Dirac nature of this complex we need to introduce a Hermitian metric h on
TM . Its real part is a Riemann metric g on M and the canonical almost complex structure
on TM is a skew-symmetric endomorphism with respect to this real metric. The associated
2-form Ωh = −Imh is nondegenerate in the sense that Ωn (n = dimCM) is a volume form
on M . According to the results of Subsection 2.2.5 the orientation of M defined by Ωn

coincides with the orientation induced by the complex structure.
We form the Dolbeault operator

∂ + ∂
∗ : Ωp,∗(M) → Ωp,∗(M).

Proposition 10.2.12.
√

2(∂ + ∂
∗) is a Dirac operator.

Proof We need to show that

(
σ(∂)(ξ)− σ(∂)(ξ)∗

)2 = −1
2
|ξ|2id ∀ξ ∈ T ∗M.

Denote by J the canonical complex structure on T ∗M and set η = Jξ. Note that ξ ⊥ η and
|ξ| = |η|. Then

σ(∂)(ξ) = (−1)p 1
2
e(ξ + iη) =

1
2
(e(ξ) + ie(η)),

where as usual e(·) denotes the (left) exterior multiplication. The adjoint of σ(∂)(ξ) is

(−1)pσ(∂)(ξ)∗ =
1
2
(i(ξ∗)− ii(η∗)),

where ξ∗ (resp. η∗) denotes the metric dual of ξ (resp. η). We deduce

(
σ(∂)(ξ)− σ(∂)(ξ)∗

)2 =
1
4
{e(ξ) + ie(η)− i(ξ∗) + ii(η∗)}2

=
1
4
{(e(ξ)− i(ξ∗)) + i(e(η) + i(η∗))}2 def

=
1
4
{c(ξ) + ic̃(η)}2

=
1
4

{
c(ξ)2 − c̃(η)2 + i(c(ξ)c̃(η) + c̃(η)c(ξ))

}
.

Note that
c(ξ)2 = −(e(ξ)i(ξ∗) + i(ξ∗)e(ξ)) = −|ξ|2
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and
c̃(η)2 = e(η)i(η∗) + i(η∗)e(η) = |η|2.

On the other hand since ξ ⊥ η we deduce as above that

c(ξ)c̃(η) + c̃(η)c(ξ) = 0.

(Verify this!) Hence

{
σ(∂)(ξ)− σ(∂)(ξ)∗

}2 = −1
4
(|ξ|2 + |η|2) = −1

2
|η|2.

ut

A natural question arises as to when the above operator is a geometric Dirac operator.
Note first that the Clifford multiplication is certainly skew-adjoint since it is the symbol of a
formally selfadjoint operator. Thus all we need to inquire is when the Clifford multiplication
is covariant constant. Since

c(ξ) =
(−1)p

√
2

(e(ξ) + ie(η)− i(ξ∗)− ii(η∗))

where η = Jξ we deduce the Clifford multiplication is covariant constant if ∇gJ = 0.

Definition 10.2.13. Let M be a complex manifold and h a Hermitian metric on TM
(viewed as a complex bundle). Then h is said to be a Kähler metric if ∇J = 0 where
∇ denotes the Levi-Civita connection associated to the Riemann metric Reh and J is the
canonical almost complex structure on TM . A pair (complex manifold, Kähler metric) is
called a Kähler manifold.

Exercise 10.2.4. Let (M, J) be an almost complex manifold and h a Hermitian metric on
TM . Let Ω = −Imh. Using the exercise 10.2.3 show that if

dΩh = 0

then the almost complex is integrable and the metric h is Kähler. Conversely, assuming
that J is integrable and h is Kähler show that

dΩ = 0.

ut

We see that on a Kähler manifold the above Clifford multiplication is covariant constant.
In fact, a more precise statement is true.

Proposition 10.2.14. Let M be a complex manifold and h a Kähler metric on TM . Then
the Levi-Civita induced connection on Λ0,∗T ∗M is a Clifford connection with respect to
the above Clifford multiplication and moreover the Dolbeault operator

√
2(∂ + ∂

∗) is the
geometric Dirac operator associated to this connection.

Exercise 10.2.5. Prove the above proposition. ut
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Example 10.2.15. Let (M, g) be an oriented 2-dimensional Riemann manifold (surface).
The Hodge ∗ operation defines an endomorphism

∗ : TM → TM

satisfying ∗2 = −1TM i.e. an almost complex structure on M . Using the Exercise 10.2.4
we deduce this almost complex structure is integrable since, by dimensionality

dΩ = 0,

where Ω is the natural 2-form Ω(X,Y ) = g(∗X,Y ) X,Y ∈ Vect (M). This complex struc-
ture is said to be canonically associated to the metric. ut

Example 10.2.16. Perhaps the favorite example of Kähler manifold is the complex projec-
tive space Cn. To describe this structure consider the tautological line bundle L1 → CPn.
It can be naturally viewed as a subbundle of the trivial bundle Cn+1 → CPn. Denote by h0

the canonical Hermitian metric on Cn+1 and by ∇0 the trivial connection. If we denote by
P : Cn+1 → L1 the orthogonal projection then ∇ = P ◦ ∇0 |L1 defines a connection on L1

compatible with h1 = h |L1 . Denote by ω the 1st Chern form associated to this connection

ω =
i

2π
F (∇)

and set
hFS(X,Y )x = −ωx(X,JY ) + iω(X, Y ) ∀x ∈ M, X, Y ∈ TxM.

Then hFS is a Hermitian metric on CPn (verify!) called the Fubini-Study metric. It is
clearly a Kähler metric since (see the Exercise 10.2.4) dΩh = −dω = −dc1(∇) = 0. ut

Exercise 10.2.6. Describe hFS in projective coordinates and then prove that h is indeed
a Hermitian metric, i.e. it is positive definite). ut

Remark 10.2.17. Any complex submanifold of a Kähler manifold is obviously Kähler. In
particular, any complex submanifold of CPn is automatically Kähler. A celebrated result
of Chow states that any complex submanifold of CPn is automatically algebraic i.e. it
can be defined as the zero set of a family of homogeneous polynomials. Thus all complex
nonsingular algebraic varieties admit a natural Kähler structure. It is thus natural to ask
whether there exist Kähler manifolds which are not algebraic. The answer is positive and
a very thorough resolution of this problem is contained in the famous Kodaira embedding
theorem which provides a simple necessary and sufficient condition for a compact complex
manifold to be algebraic. For this result (and many more others) Kodaira was awarded the
Fields medal in 1954. His proofs rely essentially on some vanishing results deduced from
the Weitzenböck formulæ for the Dolbeault operator ∂ +∂

∗ and its twisted versions. A very
clear presentation of this subject can be found in the beautiful monograph [32]. ut

10.2.3 The spin Dirac operator

Like the Dolbeault operator, the spin Dirac operator exists only on manifolds with a bit of
extra structure. We will first describe this new structure.
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Let (Mn, g) be an n-dimensional, oriented Riemann manifold. In other words, the
tangent bundle TM admits an SO(n) structure so that it can be defined by an open cover
(Uα) and transition maps

gαβ : Uαβ → SO(n)

satisfying the cocycle condition.
The manifold is said to posses a spin structure if there exist smooth maps

g̃αβ : Uαβ → Spin(n)

satisfying the cocycle condition and such that

ρ(g̃αβ) = gαβ ∀α, β,

where ρ : Spin(n) → SO(n) denotes the canonical double cover. The collection g̃αβ as
above is also called a lifting of the SO(n) structure. A pair (manifold, spin structure) is
called a spin manifold.

Not all manifolds admit spin structure. To understand what can go wrong let us start
with a trivializing cover U = (Uα) for TM with transition maps gαβ and such that all
multiple intersection Uαβ···γ are contractible. In other words, U is a good cover. Since each
of the overlaps Uαβ is contractible each map gαβ : Uαβ → SO(n) admits at least one lift

g̃αβ : Uαβ → Spin(n).

From the equality ρ(g̃αβ g̃βγ g̃γα) = gαβgβγgγα = 1 we deduce

εαβγ = g̃αβ g̃βγ g̃γα ∈ ker ρ = Z2.

Thus any lift of the gluing data gαβ to Spin(n) produces a degree 2 Čech cochain of the
trivial sheaf Z2 namely the 2-cochain

(ε•) : Uαβγ 7→ εαβγ .

Note that for any α, β, γ, δ such that Uαβγδ 6= ∅ we have

εβγδ − εαγδ + εαβδ − εαβγ = 0 ∈ Z2.

In other words, ε• defines a Čech 2-cocycle and thus defines an element in the Čech coho-
mology group H2(M,Z2). It is not difficult to see this element is independent of the various
choices: the cover U, the gluing data gαβ and the lifts g̃αβ. This element is intrinsic to the
tangent bundle TM . It is called the second Stiefel-Whitney class of M and it is denoted
by w2(M). We see that if w2(M) 6= 0 then M cannot admit a spin structure. In fact, the
converse is also true.

Proposition 10.2.18. An oriented Riemann manifold M admits a spin structure if and
only if w2(M) = 0.

Exercise 10.2.7. Prove the above result. ut



Fundamental examples 445

Remark 10.2.19. The usefulness of the above proposition depends strongly on the ability
of computing w2. This is a good news/bad news situation. The good news is that algebraic
topology has produced very efficient tools for doing this. The bad news is that we will not
mention them since it would lead us far astray. See [46] and [58] for more details. ut

Remark 10.2.20. The definition of isomorphism of spin-structures is rather subtle (see
[56]). More precisely, two spin structures defined by the cocycles g̃•• and h̃•• are isomorphic
if there exists a collection εα ∈ Z2 ⊂ Spin(n) such that the diagram below is commutative
for all x ∈ Uαβ

Spin(n) Spin(n)

Spin(n) Spin(n)

wεα

u
g̃βα(x)

u
h̃βα(x)

wεβ

The group H1(M,Z2) acts on Spin(M) as follows. Take an element ε ∈ H1(M,Z2) repre-
sented by a Čech cocycle, i.e. a collection of continuous maps εαβ : Uαβ → Z2 ⊂ Spin(n)
satisfying the cocycle condition

εαβ · εβγ · εγα = 1.

Then the collection ε•• · g̃•• is a Spin(n) gluing cocycle defining a spin structure we denote
by ε · σ. It is easy to check that the isomorphism class of ε · σ is independent of the various
choice, i.e the Čech representatives for ε and σ. Clearly the correspondence

H1(M,Z2)× Spin(M) 3 (ε, σ) 7→ ε · σ ∈ Spin(M)

defines a left action of H1(M,Z2) on Spin(M). This action is transitive and free. ut

Exercise 10.2.8. Prove the above proposition and the statement in the above remark. ut

Exercise 10.2.9. Describe the only 2 spin structures on S1. ut

Example 10.2.21. (a) A simply connected Riemann manifold M of dimension ≥ 5 admits
spin structures if and only if every compact orientable surface embedded in M has trivial
normal bundle.
(b) A simply connected four-manifold M admits spin structures if and only if the normal
bundle NΣ of any embedded compact, orientable surface Σ has even Euler class i.e.

∫

Σ
e(NΣ)

is an even integer.
(c) Any compact oriented surface admits spin structures. Any sphere Sn admits a unique
spin structure. The product of two spin manifolds is canonically a spin manifold.
(d) w2(RPn) = 0 iff n ≡ 3 (mod 4) while CPn admits spin structures iff n is odd. ut

Let (Mn, g) be a spin manifold. Assume the tangent bundle TM is defined by the open
cover (Uα) and transition maps

gαβ : Uαβ → SO(n).
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Moreover assume the spin structure is given by the lifts

g̃αβ : Uαβ → Spin(n).

As usual, we regard the collection gαβ as defining the principal SO(n) bundle of oriented
frames of TM . We call this bundle PSO(M). The collection g̃αβ defines a principal Spin(n)
bundle which we denote by PSpin(M). We can regard PSO(M) as a bundle associated to
PSpin(M) via ρ : Spin(n) → SO(n). Using the unitary spinorial representation

∆n : Spin(n) → Aut (Sn)

we get a Hermitian vector bundle

S(M) = PSpin(M) ×∆n Sn

called the complex spinor bundle.
From Lemma 10.1.22 we deduce that S(M) is naturally a bundle of Cl(TM) modules.

Then, the natural isomorphism Cl(TM) ∼= Cl(T ∗M) (via the metric) induces on S(M) a
structure of Cl(T ∗M)-module. As it turns out S(M) has a natural Dirac structure whose
associated Dirac operator is the spin Dirac operator on M . We will denote it by D.

Since ∆n is a unitary representation the spinorial bundle S(M) comes with a natural
metric with respect to which the Clifford multiplication is self-adjoint. All we now need is
to describe a natural connection on S(M) with respect to which the Clifford multiplication
is covariant constant.

We start with the Levi-Civita connection ∇g which we can regard as a connection on the
principal bundle PSO(M). Alternatively, ∇g can be defined by a collection of so(n)-valued
1-forms ωα ∈ Ω1(Uα)⊗ so(n) such that

ωβ = g−1
αβdgαβ + g−1

αβωαgαβ on Uαβ .

Denote by τ the canonical isomorphism of Lie algebras

τ : spin(n) → so(n).

Then the collection ω̃α = τ−1(ωα) defines a connection ∇̂ on the principal bundle PSpin(M)

and thus via the representation ∆n it defines a connection ∇ = ∇S on the spinor bundle
S(M).

The above construction can be better visualized if we work in local coordinates. Choose
a local, oriented orthonormal frame (ei) of TM |Uα and denote by (ej) is dual coframe. The
Levi-Civita connection has the form

∇ej = ek ⊗ ωi
kjei

so that ωα = ek ⊗ (ωj
ki) where for each k the collection (ωj

ki)i,j is a skew-symmetric matrix.
Using the concrete description of τ given in Subsection 10.1.6 we deduce

ω̃α = −
∑

k

ek ⊗ (
1
2

∑

i<j

ωi
kjeiej) = −1

4

∑

i,j,k

ωi
kje

k ⊗ eiej .
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Lemma 10.2.22. ∇̂ is a Clifford connection on S(M) so that (S(M), ∇̂) is a Dirac bundle
called the bundle of pure spinors.

Proof Use Lemma 10.1.22.
ut

We now want to understand the structure of the Weitzenböck remainder of the geometric
Dirac operator D associated to the bundle of pure spinors. If

R =
∑

k<`

ek ∧ e`Rk` Rk` = (Ri
jk`) = (Rijk`)

is the Riemann curvature tensor (in the above trivializations over Uα) we deduce that the
curvature of ∇̂ is

R̃ =
∑

k<`

ek ∧ e` ⊗ τ−1(Rk`) = −1
4

∑

k<`

∑

ij

ek ∧ e` ⊗Rijk`eiej .

From this we obtain

c(F (∇̂)) = −1
8

∑

ijk`

Rijk`c(ei)c(ej)c(ek)c(e`).

In the above sum the terms corresponding to indices (i, j, k, `) such that i = j or k = `
vanish due to the corresponding skew-symmetry of the Riemann tensor. Thus we can write

c(F (∇̂)) = −1
8

∑

i6=j

∑

k 6=`

Rijk`c(ei)c(ej)c(ek)c(e`)

Using the equalities c(ei)c(ej)+c(ej)c(ei) = −2δij we deduce that the monomial c(ei)c(ej)
anti-commutes with c(ek)c(e`) if the two sets{i, j} and {k, `} have a unique element in
common. Such pairs of monomials will have no contributions in the above sum due to the
curvature symmetry

Rijk` = Rk`ij .

Thus we can split the above sum into two parts

c(F (∇̂)) = −1
4

∑

i,j

Rijijc(ei)c(ej)c(ei)c(ej) +
∑

i,j,k,` distinct

Rijklc(ei)c(ej)c(ek)c(e`).

Using the first Bianchi identity we deduce that the second sum vanishes. The first sum is
equal to

−1
4

∑

i,j

Rijij(c(ei)c(ej))2 =
1
4

∑

i,j

Rijij =
s

4
,

where s denotes the scalar curvature of M . We have thus proved the following result.

Theorem 10.2.23. (Lichnerowicz) ([48])

D2 = ∇∗∇+
1
4
s.
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A section ψ ∈ C∞(S(M)) such that D2ψ = 0 is called a harmonic spinor. Lichnerowicz
theorem shows that a compact spin manifold with positive scalar curvature admits no
harmonic spinors.

Exercise 10.2.10. Consider an oriented 4-dimensional Riemann spin manifold (M, g) and
W → M a Hermitian vector bundle equipped with a Hermitian connection ∇. Form the
twisted Dirac operator

DW : C∞ (
(S+(M)⊕ S−(M))⊗W

) → C∞ (
(S+(M)⊕ S−(M))⊗W

)

defined in Exercise 10.1.18. DW is Z2-graded and hence it has a block decomposition

DW =
[

0 D∗
W,+

DW,+ 0

]
,

where DW,+ : C∞(S+(M)⊗W ) → C∞(S−(M)⊗W ). Show that

D∗
W,+DW,+ = ∇̃∗∇̃+

s

4
+ c(F+(∇)),

where ∇̃ denotes the product connection of S(M)⊗W while

F+(∇) =
1
2
(F (∇) + ∗F (∇))

denotes the self-dual part of the curvature of the bundle (W,∇). ut

10.2.4 The spinc Dirac operator

Our last example of Dirac operator generalizes both the spin Dirac operator and the Dol-
beault operator. The common ingredient behind both these examples is the notion of spinc

structure. We begin by introducing it to the reader.
Let (Mn, g) be an oriented, n-dimensional Riemann manifold. As in the previous section

we can regard the tangent bundle as associated to the principal bundle PSO(M) of oriented
orthonormal frames. Assume PSO(M) is defined by a good open cover U = (Uα) and
transition maps

gαβ : Uαβ → SO(n).

The manifold M is said to posses a spinc structure if there exists a principal Spinc(n)
-bundle PSpinc such that PSO(M) is associated to PSpinc via the natural morphism ρc :
Spinc(n) → SO(n):

PSO(M) = PSpinc ×ρc SO(n).

Equivalently, this means there exist smooth maps g̃αβ : Uαβ → Spinc(n), satisfying the
cocycle condition, such that

ρc(g̃αβ) = gαβ .

As for spin structures, there are obstructions to spinc structures as well which clearly are
less restrictive. Let us try to understand what can go wrong. We stick to the assumption
that all the overlaps Uαβ···γ are contractible.
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Since Spinc(n) = (Spin(n)×S1)/Z2, lifting the SO(n) structure (gαβ) reduces to finding
smooth maps

hαβ : Uαβ → Spin(n)

and
zαβ : Uαβ → S1

such that
ρ(hαβ) = gαβ

and
(εαβγ , ζαβγ)

def
= (hαβhβγhγα , zαβzβγzγα) ∈ {(−1,−1), (1, 1)}. (10.2.4)

If we set λαβ = z2
αβ : Uαβ → S1 we deduce from (10.2.4) that the collection (λαβ) should

satisfy the cocycle condition. In particular, it defines a principal S1 bundle over M , or
equivalently, a complex line bundle L. This line bundle should be considered as part of the
data defining a spinc structure. The collection (εαβγ) is an old acquaintance: it is a Čech
2-cocycle representing the 2nd Stiefel-Whitney class.

As in Subsection 8.2.2 we can represent the cocycle λαβ as

λαβ = exp(iθαβ).

The collection
nαβγ =

1
2π

(θαβ + θβγ + θγα)

defines a 2-cocycle of the constant sheaf Z representing the the topological 1st Chern class
of L. The condition (10.2.4) shows that

nαβγ = εαβγ (mod 2).

To summarize, we see that the existence of a spinc structure implies the existence of a
complex line bundle L such that

ctop
1 (L) = w2(M) (mod 2).

It is not difficult to prove the above condition is also sufficient. In fact one can be more
precise.

Denote by Spinc(M) the collection of isomorphism classes of spinc structures on the
manifold M . Any σ ∈ Spinc(M) is defined by a a lift (hαβ , zαβ) as above. We denote by
Lσ the complex line bundle defined by the gluing data (zαβ). We have seen that

ctop
1 (Lσ) ≡ w2(M) (mod 2).

Denote by LM ⊂ H2(M,Z) the “affine ” subspace consisting of those cohomology classes
satisfying the above congruence modulo 2. We thus have a map

Spinc(M) → LM , σ 7→ ctop
1 (Lσ).

Proposition 10.2.24. The above map is a surjection.
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Exercise 10.2.11. Complete the proof of the above proposition. ut

The smooth Picard group Pic∞(M) acts on Spinc(M) by

Spinc(M)× Pic∞(M) 3 (σ, L) 7→ σ ⊗ L.

More precisely if σ ∈ Spinc(M) is given by the cocycle

σ = [hαβ , zαβ] : Uαβ → Spin (n)× S1/ ∼

and L is given by the S1 cocycle
ζαβ : Uαβ → S1

then σ ⊗ L is given by the cocycle

[hαβ, zαβζαβ ].

Note that
Lσ⊗L = Lσ ⊗ L2

so that
ctop
1 (σ ⊗ L) = ctop

1 (σ) + 2ctop
1 (L).

Proposition 10.2.25. The above action of Pic∞(M) on Spinc(M) is is free and transitive.

Proof Consider two spinc structures σ1 and σ2 defined by the good cover (Uα) and the
gluing coycles

[h(i)
αβ , z

(i)
αβ], i = 1, 2.

Since ρc(h(1)
αβ) = ρc(h(2)

αβ) = gαβ we can assume (eventually modifying the maps h
(2)
αβ by a

sign) that
h

(1)
αβ = h

(2)
αβ

This implies that
ζαβ = z

(2)
αβ /z

(1)
αβ

is an S1-cocycle defining a complex line bundle L. Obviously σ2 = σ1 ⊗ L. This shows the
action of Pic∞(M) is transitive. We leave the reader verify this action is indeed free. The
proposition is proved.

ut

Given two spinc structures σ1 and σ2 we can define their “difference” σ2/σ1 as the unique
line bundle L such that σ2 = σ1 ⊗ L. This shows that the collection of spinc structures is
(non-canonically) isomorphic with H2(X,Z) ∼= Pic∞. It is a sort of affine space modelled on
H2(X,Z) in the sense that the “difference ” between two spinc structures is an element in
H2(X,Z) but there is no distinguished origin of this space. A structure as above is usually
called a H2(M,Z)-torsor.

Without a sufficient background in algebraic topology the above results may look of very
little help in detecting spinc structures. This is not the case and to convince the reader we
will list below (without proofs) some examples of spinc manifolds.
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Example 10.2.26. (a) Any spin manifold admits a spinc structure.
(b) Any almost complex manifold has a natural spinc structure.
(c) (Hirzebruch-Hopf, [37]; see also [61]) Any oriented manifold of dimension ≤ 4 admits a
spinc structure. ut

Let us analyze the first two example above. If M is a spin manifold then the lift

g̃αβ : Uαβ → Spin(n)

of the SO structure to a spin structure canonically defines a spinc structure via the trivial
morphism

Spin(n) → Spinc(n)×Z2 S1, g 7→ (g, 1) mod the Z2 − action.

We see that in this case the associated complex line bundle is the trivial bundle. This
is called the canonical spinc structure of a spin manifold. Thus on a spin manifold the
torsor of spinc-structures does in fact possess a “canonical origin” so in this case there is a
canonical identification

Spinc(M) ∼= Pic∞ ∼= H2(M,Z).

To any complex line bundle L defined by the S1-cocycle (zαβ) we can associate the spinc

structure defined by the gluing data

{(g̃αβ, zαβ)}.

Clearly, the line bundle associated to this structure is L2 = L⊗2. In particular this shows
that on a spin manifold M for any σ ∈ Spinc(M) there exists a square root L

1/2
σ of Lσ.

To understand why an almost complex manifold (necessarily of even dimension n = 2k)
admits a canonical spinc structure it suffices to recall the natural morphism U(k) → SO(2k)
factors through a morphism

ξ : U(k) → Spinc(2k).

The U(k)-structure of TM , defined by the gluing data

hαβ : Uαβ → U(k)

induces a spinc structure defined by the gluing data ξ(hαβ). Its associated line bundle is
given by the S1-cocycle

detC(hαβ) : Uαβ → S1

and it is precisely the determinant line bundle

detCT 1,0M = Λk,0TM.

The dual of this line bundle, detC(T ∗M)1,0 = Λk,0T ∗M plays a special role in algebraic
geometry. It usually denoted by KM and it is called the canonical line bundle. Thus the
line bundle associated to this spinc structure is K−1

M

def
= K∗

M .
From the considerations in Subsection 10.1.5 and 10.1.7 we see that many (complex)

vector bundles associated to the principal Spinc bundle of a spinc manifold carry natural
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Clifford structures and in particular one can speak of Dirac operators. We want to discuss
in some detail a very important special case.

Assume that (M, g) is an oriented, n-dimensional Riemann manifold. Fix σ ∈ Spinc(M)
(assuming there exist spinc structures). Denote by (gαβ) a collection of gluing data defining
the SO structure PSO(M) on M with respect to some good open cover (Uα). Moreover, we
assume σ is defined by the data

hαβ : Uαβ → Spinc(n).

Denote by ∆c
n the fundamental complex spinorial representation (defined in §10.1.6).

∆n : Spinc(n) → Aut (Sn).

We obtain a complex bundle
Sσ(M) = PSpinc ×∆n Sn

which has a natural Clifford structure. This is called the bundle of complex spinors associ-
ated to σ.

Example 10.2.27. (a) Assume M is a spin manifold. We denote by σ0 the spinc structure
corresponding to the fixed spin structure. The corresponding bundle of spinors S0(M)
coincides with the bundle of pure spinors defined in the previous section. Moreover for any
complex line bundle L we have

SL
def
= Sσ

∼= S0 ⊗ L.

where σ = σ0 ⊗ L. Note that in this case L2 = Lσ so one can write

Sσ
∼= S0 ⊗ L1/2

σ .

(b) Assume M is an almost complex manifold. The bundle of complex spinors associated
to the canonical spinc structure σ (such that Lσ = K−1

M ) is denoted by SC(M). Note that

SC(M) ∼= Λ0,∗T ∗M.

ut

We will construct a natural family of Dirac structures on the bundle of complex spinors
associated to a spinc structure. Consider for warm-up the special case when TM is trivial.
Then we can assume gαβ ≡ 1 and

hαβ = (1, zαβ) : Uαβ → Spin(n)× S1 → Spinc(n).

The S1 cocycle (z2
αβ) defines the line bundle Lσ. It this case something more happens. The

collection (zαβ) is also an S1-cocycle defining a complex Hermitian line bundle L̂ such that
L̂2 ∼= Lσ. Traditionally, L̂ is denoted by L

1/2
σ though the square root may not be uniquely

defined.
We can now regard Sσ(M) as a bundle associated to the trivial Spin(n)-bundle PSpin

and as such there exists an isomorphism of complex Spin(n) vector bundles

Sσ(M) ∼= S(M)⊗ L1/2
σ .
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As in the exercise 10.1.18 of Subsection 10.1.9 we deduce that twisting the canonical con-
nection on the bundle of pure spinors S0(M) with any Hermitian connection on L

1/2
σ we

obtain a Clifford connection on Sσ(M). Notice that if the collection

{ωα ∈ u(1)⊗ Ω1(Uα)}

defines a connection on Lσ, i.e.

ωβ =
dz2

αβ

z2
αβ

+ ωα over Uαβ

then the collection
ω̂α =

1
2
ωα

defines a Hermitian connection on L̂ = L
1/2
σ . Moreover if F denotes the curvature of (ω·)

then the curvature of (ω̂·) is given by

F̂ =
1
2
F. (10.2.5)

Hence any connection on Lσ defines in an unique way a Clifford connection on Sσ(M).
Assume now that TM is not necessarily trivial. We can however cover M by open sets

(Uα) such that each TUα is trivial. If we pick from the start a connection on Lσ this induces
a Clifford connection on each Sσ(Uα). These can be glued back to a Clifford connection on
Sσ(M) using partitions of unity. We let the reader check the connection obtained in this
way is independent of the various choices.

Example 10.2.28. Assume (M, g) is both complex and spin. Then a choice of a spin
structure canonically selects a square root KM

−1/2 of the line bundle K−1
M because K−1

M is
the line bundle associated to the spinc structure determined by the complex structure on
M . Then

SC ∼= S0 ⊗KM
−1/2.

Any Hermitian connection on KM induces a connection of SC. If M happens to be Kähler
then the Levi-Civita connection induces a complex Hermitian connection KM and thus a
Clifford connection on SC(M) ∼= Λ0,∗T ∗M . ut

Let ω be a connection on Lσ. Denote by ∇ω the Clifford connection it induces on Sσ(M)
and by Dω the associated geometric Dirac operator. Since the Weitzenböck remainder of this
Dirac operator is a local object so to determine its form we may as well assume Sσ = S⊗L

1/2
σ .

Using the computation of Exercise 10.1.18 and the form of the Weitzenböck remainder for
the spin operator we deduce

D2
σ,ω = (∇ω)∗∇ω +

1
4
s +

1
2
cLσ(F (ω)),

where F denotes the curvature of the connection ω on Lσ. Since F (ω) has the form

F = i× Ω, Ω ∈ Ω2(M)
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we deduce
cLσ(F ) = iq(Ω) ∈ Cl(T ∗M)⊗ C.

Hence
D2

σ,ω = (∇ω)∗∇ω +
1
4
s +

i
2
q(Ω). (10.2.6)

Exercise 10.2.12. Consider the canonical spinc structure σc on a compact Kähler manifold
(M, g, J). The Levi-Civita connection induces a Clifford connection on K−1

M and thus a
connection on the associated bundle of spinors

SC(M) = Λ0,∗T ∗M.

(a) Show that the associated spinc Dirac operator coincides with the Dolbeault operator.
(b) Assume L → M is a Hermitian line bundle over M equipped with a Hermitian connection
and denote by DL the corresponding spinc Dirac operator on

Sσc⊗L
∼= SC ⊗ L ∼= Λ0,∗T ∗M ⊗ L.

Prove that
¤L : C∞(Λ0,qT ∗M) ⊂ C∞(Λ∗,qT ∗M),

where ¤L is the generalized Laplacian D2
L.

(c)(Kodaira) Assume L is a positive line bundle, i.e.

h(X,Y ) := c1(∇)(X, JY ) =
i

2π
FL(∇)(X, JY ) ∀X, Y ∈ Vect (M).

defines a Riemann metric on M . Denote by H0,q(L) the kernel of the restriction of ¤L to
Λ0,qT ∗M . Show that there exists n0 ≥ 0 such that

H0,q(L⊗n) = 0 ∀n ≥ n0, ∀q ≥ 1.

ut
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div X, 136
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Tr

s(V ), 30
gl(n), 14, 64
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sl(n), 14, 64
su(n), 14, 64
u(n), 14, 64
~ν, 138
L-genus, 314

antipodal points, 10

atlas, 5
maximal, 6

berezinian, 43
Bernoulli numbers, 310
Betti number, 212
Bianchi identity, 82, 143
bootstrap, 380
bundle, 21

canonical line -, 451
Clifford, 402
complex spinor, 446
cotangent, 50
Dirac, 429
fiber, 52
frame, 55
G-fiber, 53
Hopf, 56
line, 26

tautological, 26
principal, 55, 289

pullback of a, 299
tangent, 22
vector, 23, 26

rank of a, 23
ample, 26
automorphism, 25
base of a, 23
endomorphism, 25
map, 25
morphism, 25
pullback, 26
section, 24
tautological, 26
total space of a, 23
trivial, 27, 81

Cartan algebra, 301, 304, 305
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Cartan form, 142
Cartan Lemma, 152
categories, 190
character, 101
characteristic class, 299

2nd Stiefel-Whitney, 444
universal, 310, 313

charts, 5
Chern classes, 302, 310

universal, 302
Chern polynomial, 302

universal, 302
Chern-Weil correspondence, 299
Christoffel symbols, 83
circle, 14
class function, 101
Clifford

algebra, 404
connection, 429
module, 406
multiplication, 402, 403
s-module, 406
structure, 402

coboundary, 213
cochain homotopy, 214
cocycle, 213

cohomologous, 213
cocycle condition, 24
cohomology

Čech, 283
Čech , 280
DeRham, 211

compact supports, 229
complex

chain, 212
cochain, 212

acyclic, 213
DeRham, 213
Dolbeault, 440
Koszul, 441

complex structure, 48
configuration space, 2
connection, 71, 290

flat, 78
Levi-Civita, 120

symmetric, 83
connection 1-form, 73
conormal, 95

inner, 95
outer, 95

contraction, 65
convolution, 346
coordinates, 1

Cartesian system, 1
local, 5
polar, 2

coordinatization, 1, 3
covariant derivative see connection 71
covering space, 191

sheets of a, 191
universal, 196

critical point, 181
critical value, 181
curvature, 77

Gauss, 147
Ricci, 144
Riemann, 142
scalar, 144
sectional, 145

cycle, 237
degenerate, 237
transversal, 242

cycles
cobordant, 237

deck transformation, 193
density bundle, 85
derivative, 3

Frechet, 3, 4
det V, 34
diffeomorphism, 6
differential form, 50

closed, 206
exact, 207

Dolbeault operator see complex 441
duality, 40

Hodge, 44
metric, 40
natural, 40
symplectic, 40
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Dynkin polynomials, 64

Einstein
convention, 31
equation, 158
manifold, 158
tensor, 158

elliptic complex, 397
Euler

characteristic, 36, 161, 212, 218, 223, 252
class, 251, 308

geometric, 308
topological, 308
universal, 308

form, 147, 155, 308
Euler-Lagrange equation, 166
exponential map see manifold 125
exterior, 34

algebra, 34
derivative, 65
product, 34

extremal, 166

five lemma, 226
flow, 57

infinitesimal generator of a, 58
local, 57, 59

Frechet derivative, 3
Fredholm index, 385
function, 3

Ck, 3
Frechet differentiable, 3
harmonic, 140
smooth, 3, 5

functors, 190
contravariant, 190
covariant, 190

gauge transformation, 25
Gauss

curvature, 147, 156
formula, 153
lemma, 128
map, 155

Gelfand-Leray
form, 107

residue, 107
genus, 161
geodesic, 121

flow, 122
index of a, 180
nondegenerate, 179

global angular form, 321
gluing condition, 25
Grassmannian, 263
grassmannian, 11, 26

complex, 11
real, 11

Green formula, 343
group, 12, 27

action, 53
effective, 53
free, 53
orbit, 53

Clifford, 414
complex Clifford, 421
connected, 14
fundamental, 187
left translation in a, 13
Lie, 12, 27, 63, 98, 122, 145, 262, 289,

296
exponential map of a, 63
representation, 53

orthogonal, 12
right translation in a, 27
special orthogonal, 13
special unitary, 13
unitary, 13

Gysin map, 249

hessian, 176
Hilbert-Einstein functional, 157
Hodge ∗-operator, see operator
holonomy, 81
homogeneous space, 255
homotopy, 219

immersion, 22
injectivity radius, 125
integral curve, 58
interior derivative, 65
intersection form, 236
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intersection number, 242
invariant integration, 93
invariant polynomials, 295
isometry, 117
isotropy, 256

Jacobi
equation, 178
field, 178

Jacobi identity, 38

Künneth formula, 227
Killing pairing, 123
Killing pairing, 213, 262
Kronecker pairing, 233

lagrangian, 165
invariant, 172

Laplacian, 140, 337
covariant, 341

least action, see Euler-Lagrange
Lefschetz number, 248
Lie

bracket, 60
derivative, 59
group, see group

Lie algebra, 38, 61, 63
simple, 262
semisimple, 123, 213, 263

Möbius strip, 89
manifold

with boundary, 94
almost complex, 438
complex, 11
connect sum, 15
connected sum, 9
direct product, 9
finite type, 224
Kähler, 442
orientable, 15, 89
orientation of a, 89
oriented, 88, 89
Riemann, 117

convex sets in a, 131
exponential map of a, 125

geodesically complete, 122
smooth, 5
spin, 444

manifolds, 3, 8
map, see function

gluing, 11
cochain, 214

cone of a, 217
cylinder of a, 217

covering, 191
degree of a, 247
homotopic, 186
lift of a, 193
quantization, 418
transition, 5, 24

cohomologous, 25
matrix, 4

invertible, 4
Jacobian, 4
orthogonal, 12
skew-Hermitian, 13
skew-symmetric, 12
unitary, 13

maximum principle, 375
Mayer-Vietoris

cover, 224
functors, 224

correspondence of, 225
long sequence, 221, 232
principle, 226
short sequence, 221, 232

metric, 46, 50
Hermitian, 46
conformal, 381
Kähler, 442
Riemann, 50

metric volume, 134
mollifier, 346
monodromy, 189, 195
moving frame, 73

nerve, 279
Newton formulæ, 313
normal coordinates, 126

operator, 3
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Hodge ∗, 45
boundary, 212
chirality, 409
closed, 384

Fredholm, 385
selfadjoint, 384
semi-Fredholm, 385
symmetric, 384

coboundary, 212
Dirac, 401
Fredholm, 385
geometric Dirac, 430
Hodge-DeRham, 402
linear, 3

transpose of a, 30
partial differential, see p.d.o.

orientation
canonical, 47

orientation cover, 193
orientationsee vector space 42
outer normal, 138

p.d.o., 329, 330
elliptic, 334
formal adjoint, 338
formally selfadjoint, 339
symbol of a , 334

pairing, 40
Hodge, 44

parallel transport, 75
partition, 270

conjugate of a, 270
length of a, 270
weight of a, 270

partition of unity, 7
pfaffian, 43
Pin(V), 417
Poincaré

duality, 234, 241
inequality, 378, 386
lemma, 207
polynomial, 212
series, 36

Pontryagin classes
universal, 305

Pontryagin polynomial
universal, 305

presheaf, 275
projection, 8

stereographic, 8
projection formula, 106
projective plane, see space
pullback, 51

quantization map, 406
quaternions, 124

r-density, 46
regular value, 181
Riemann metric, 117

Schur
lemma, 100
polynomial, 271

sheaf, 276
fine, 284
resolution, 279

fine, 285
smooth, see function

structure, 5
space

Banach, 3
complex projective, 11
locally compact, 5
paracompact, 5
real projective, 9
simply connected, 188
Sobolev, 344
tangent, 18, 21

space of germs, 276
morphism, 278
section of, 276
stalk of, 276

sphere, 8
sphere bundle, 56
Spin(V), 417
spinor, 407, 412
split coordinates, 105
Stokes formula, 96
structural equations, 148
submanifold, 7
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2nd fundamental form, 152
codimension of a, 7

submersion, 22
super, 37

algebra, 37
commutative, 37
commutator, 37
derivation, 38
Lie algebra, 38
space, 37
tensor product, 39

supertrace, 39
surface, 14

doughnut-shaped, 14
symbol map, 406
symmetric space, 256
symmetry, 12

tensor, 29
product, 29
algebra, 30
contravariant, 30
covariant, 30
field, 50

left invariant, 63
right invariant, 63

product
universality property of, 29

skew-symmetric, 32
exterior product of, 32

symmetric, 32
type (r,s), 30

theorem, 3
Banach fixed point, 4
Bochner vanishing, 436
Bochner-Weitzenböck, 431
Calderon-Zygmund, 365
Cartan, 262
Cartan-Hadamard, 192
Chern-Weil, 296
Clairaut, 174
Fubini, 106
Gauss-Bonnet, 156, 157, 223, 248
Gauss-Bonnet-Chern, 319
Hodge, 397, 399

Hopf-Rinow, 132
implicit function, 4
inverse function, 4
Leray-Hirsch, 229
Mayer-Vietoris, 221
Morrey, 356
Myers, 183
Noether, 173
Poincaré-Hopf, 255
Rellich-Kondratchov compactness, 353
Sobolev embedding, 351
uniformization, 382
Weyl, 198

Theorema egregium, 153
Thom class, 250
Todd class

universal, 310
torsion, 83
torsor, 450
torus, 9, 12

maximal, 264
transform, 12

Cayley, 12
Fourier, 364

trivializing cover, 23

unit outer normal, 138

variation, 167, 175
geodesic, 178
infinitesimal, 175

vector, 19
field, 24

Killing, 138
space, 19, 28
Z-graded, 35
determinant line of a, 34, 42
dual, 30
orientation of a, 42
oriented, 42
volume form in a, 42

tangent , 19
vector bundle, see bundle
volume form, 89

weak derivative, 344
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Weitzenböck
remainder, 342, 434, 447

Weyl
group, 266, 301, 304
integral formula, 265
lemma, 372
unitary trick, 99

Whitney sum, 49

Young diagram, 270


