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Abstract

Analysis and Design of Nonlinear Control Systems Using Exterior Differential Systems
by
David Donald Niemann
Doctor of Philosophy in Mechanical Engineering
University of California at Berkeley
Professor J. Karl Hedrick, Chair

This dissertation discusses the modeling and analysis of nonlinear control systems using exterior
differential systems. The objectives of the dissertation are to provide a self-contained treatment of
the theory of exterior differential systems which focuses on the aspects of the theory most applicable
to the study of nonlinear control systems, to show how exterior differential systems theory can be
applied to the study of nonlinear control problems, and to explore the relationship between the
established vector field approach to geometric nonlinear control theory and the exterior differential
systems approach.

The dissertation is divided into three parts. Part I contains the introductory material. Part II
develops the background material on exterior differential systems which is needed to study nonlinear
control systems. The presentation is arranged so that the topics which only involve finite-dimensional
vector spaces are discussed first. This material includes tensors, forms, Grassmann manifolds, and
systems of exterior equations. Next, the concept of a fibre bundle 1s introduced, and the discussion
shifts to techniques which can be used to extend the structures defined over a finite-dimensional
vector space to fields defined over the tangent bundle of a differentiable manifold. This material
includes a discussion of vector fields, tensor fields, Grassmann bundles, distributions, codistributions,
and exterior differential systems.

Part III uses the theory developed in Part II to model nonlinear control systems. This material
begins with a presentation on how a Grassmann bundle can be used to model an affine nonlinear
control system and a discussion of a prolongation process which can be used to model dynamic state
feedback. The last chapters of this section provide a comparison with the geometric theory based on
smooth vector fields. The topics discussed include invariant distributions, controlled invariant dis-
tributions, controllability distributions, the disturbance decoupling problem, and the noninteracting
control problem.

Based on these results, it appears that much of the existing theory can be reinterpreted using
exterior differential systems and that in many cases the results obtained using exterior differential
systems represent a generalization of the standard results in the vector field approach.

Dissertation Chair
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Chapter 1

Introduction

Recently, there has been interest in applying a body of mathematics known as exterior differential
systems theory to nonlinear control problems. This work originated around 1992 as a new method
of studying the geometric properties of control systems such as controllability and feedback lineariz-
ability. Gardner and Shadwick [1] wrote an influential paper in which they formulated the conditions
for feedback linearizability in terms of exterior differential equations. Significant contributions have
also been made by Murray [14], Sluis [20], and Tilbury [18, 12].

Murray and Sastry [2] provided the first applications of this new approach in connection with
their study of nonholonomic path planning. Most of their work has centered on path planning for
steered vehicles such as truck-trailer combinations. These systems are characterized by the fact
that the velocity vector is subject to nonintegrable constraint equations which arise from the no-slip
conditions at the tires. Such constraints are called nonholonomic. The presence of nonholonomic
constraints makes these systems difficult to analyze using the traditional vector field approach. But
viewed as an exterior differential system, the nonholonomic constraints can be incorporated into the
system in a very natural way. Using this approach, Tilbury et. al. [3] have been able to generate
steering algorithms for very general multi-trailer combinations. From these results, it appears that
the exterior differential systems approach to studying nonlinear control problems may offer some
enhancements to the more established vector field approach.

The purpose of this dissertation is to further develop techniques for modeling and analyzing
nonlinear control systems using exterior differential systems. More specifically, the dissertation has
three main objectives: to provide a self-contained treatment of the theory of exterior differential
systems which focuses on the aspects of the theory most applicable to the study of nonlinear control
systems, to show how exterior differential systems theory can be applied to the study of nonlinear
control problems, and to explore the relationship between the established vector field approach to
geometric nonlinear control theory and the exterior differential systems approach.

The first objective is to provide a self-contained treatment of the theory of exterior differential
systems which focuses on the aspects of the theory most applicable to the study of nonlinear control
systems. Much of the existing mathematical literature on exterior differential systems is written
at a very high level and is not oriented towards applications in control theory. More elementary
treatments of some topics do exist, but they do not cover all the necessary material.

The second objective is to show how a nonlinear control system can be viewed as a geometric
object using the exterior differential systems approach. This object is called a Grassmann bundle,
and 1its structure incorporates both state transformations and affine state feedback. Although the
Grassmann bundle is an abstract object, it is a useful tool for visualizing a control system in a
coordinate-free way, and 1t often provides nice “pictorial” representations of theorems from nonlinear
control theory. The Grassmann bundle model of a control system can also be used to provide a
geometric model of a dynamic compensator. To some extent, this model allows one to visualize the
effect that the dynamic feedback will have on the nonlinear system.



The third objective is to explore the relationship between the established vector field approach
to geometric nonlinear control theory and the exterior differential systems approach. To this end,
the dissertation discusses how standard topics from the vector field theory such as invariant distribu-
tions, controlled invariant distributions, and controllability distributions can be interpreted within
the exterior differential systems framework. In fact, in many cases the results obtained using the ex-
terior differential systems approach are actually more general because time variations in the system
parameters or inputs can be handled with minimal complication.

In order to facilitate this presentation, the dissertation is divided into three parts. Part I contains
the introductory material. Part IT develops the background material on exterior differential systems
which is needed to study nonlinear control systems. Unfortunately, there is quite a bit of machinery,
but the sections are fairly self-contained, and some parts can probably be skipped depending on the
reader’s familiarity with the various topics. Part III uses the theory developed in Part II to model
nonlinear control systems. The emphasis is on comparisons with the geometric theory based on
smooth vector fields defined over a manifold. This approach is typified in the books by Isidori [4]
and Nijmeijer and van der Schaft [23]. We will see that in many ways, the application of exterior
differential systems to control theory represents a direct extension of this established geometric
approach.



Chapter 2

Modeling Systems on the
State-Time Space

Most of the basic elements in the exterior differential systems approach to modeling a nonlinear
control system can be introduced without using all the mathematical machinery which will be
developed in Part II of this dissertation. Therefore, in this chapter we will develop some basic
ideas about modeling differential equations and nonlinear control systems on the state-time space.
Although the mathematical prerequisites have been kept to a minimum, it is assumed that the reader
has a basic understanding of the elements of differential geometry. If needed, additional background
material on this topic can be found in Appendix A.

The material in this chapter is divided into two sections. The first section discusses geometric
interpretations of a differential equation and its solutions. Particular emphasis is placed on the idea
that we can view the graph of a solution to a differential equation as a one-dimensional submanifold of
the state-time space. The second section generalizes the discussion to include affine control systems,
and concludes by asserting that affine control systems can be represented as a fibre bundle over
the state-time space. Hopefully, this presentation will help to motivate the mathematical material
contained in Part II and to give the reader some idea where we are eventually headed.

2.1 Modeling Differential Equations on the State-Time
Space

We will begin by considering a differential equation defined over R™ by a smooth vector field
i = f(x). (2.1)

Geometrically, we can picture the vector field as an assignment of one vector to each point of R”. A
solution to the differential equation through x¢ € R” is a function s; : (—¢, €) — R”, which satisfies
57(0) = xo and $5(t) = f(sf(t)) for every t € (—¢,¢). Any such function is called an integral curve
of the vector field f. The image of this curve forms a one-dimensional submanifold of R"™ whose
tangent space at each point s;(¢) contains the vector $¢(¢). The theory of ordinary differential
equations guarantees that there 1s a unique integral curve of f passing through each point zg € R".
Depending on the vector field, the parameter € may be limited, or we may be able to expand the
interval (—e¢, €) to be the whole real line. Since the function s; is unique, it has a unique graph

(s§(t),t) CR"™ x (—¢,¢).

In the case n = 1, this corresponds to the usual notion of the graph of a function y : R — R. Figure
2.1 gives a pictorial representation of these concepts. The picture on left shows the integral curve



of the differential equations

it = —al =227

2 = 8z'— bx?
which passes through the point ' = 1, 2% = 1 at time ¢t = 0. The picture on the right illustrates
the graph of this curve in the state-time space.

x2

x2

x1

\J/ B

Figure 2.1: An Integral Curve and Its Graph

We can construct the graph of the integral curve s; by taking the image of the integral curve of
the extended vector field

& o= f(z) (2.2)
= 1
which passes through (z¢,0) € R™ x R. As before, the theory of ordinary differential equations
ensures that there is a unique integral curve, §; : (—e¢,¢) — M X R which satisfies equation 2.2
and the initial condition §;(0) = (z0,0). Furthermore, it is not hard to see that the image of this
curve corresponds with the graph of s;. However, it is important to realize that this is not the only
vector field which generates an integral curve whose image corresponds with the graph of s;. Any

vector field which is a pointwise scalar multiple of the extended vector field 2.2 will also satisfy these
conditions.

Example: Consider the smooth vector field
z = bz (2.3)
y = 3z+4y

which is defined over R? with respect to the coordinates (z,y). The integral curve of this vector
field which passes through the point (zg,yo) when ¢t =0 is

sx(1) = Sl (2.4)
sy(t) = 3(65t — e4t)x0 + ey,

and its graph is described by
(5:(1),8y(t),1) CR* x R (2.5)



Equation 2.3 can be extended to the vector field

dx

— = ) 2.6
dr v (2.6)
dy

— = 3 4

dr vty

dit

= -

dr

defined over R? with respect to the coordinates (z,y,t). The integral curve of this extended vector
field which passes through the point (zg, yo,0) when 7 =0 is

$p(T)
sy(1) = 3(e” —eMwo + ey (2.7)
51(7)
Comparing equations 2.5 and 2.7 it is clear that the image of the integral curve of the extended

vector field 2.6 corresponds to the graph of equation 2.4.
Alternately, we could have chosen the extended vector field

— 6571‘0

= T.

dx

— = —bat

dr v

dy

= = 3zt —4yt 2.8
7 xt — 4y (2.8)
@ _

dr ’

The integral curve of this vector field which passes through the point (zg,yo, 1) when 7 =0 is

sp(m) = e® 2o

s (T) _ 3(65€_T _ 646_")x 4e” 7T 9

y = ote Yo (2.9)
si(r) = e

Again, it 1s not too hard to see that the image of this integral curve locally corresponds with the
graph of equation 2.4.

The only difference between this integral curve and the integral curve of equation 2.6 is the rate
at which they flow along the graph of equation 2.4. In the first case, the time component moves at
a constant rate; while in the second case, the time component goes to zero exponentially. <&

The point of this example is simply that vector fields are not the “right” geometric objects to
model differential equations on the state-time space R” x R. On this extended space, all we really
care about is the graph of the integral curve sy, and this is not an integral curve; rather, it is a one-
dimensional submanifold of R™ X R. At each point (s(€), €) the tangent space to this one-dimensional
submanifold is a one-dimensional subspace, or a line, in 7(, ,(1),1)(R™ x R). Consequently, each vector
field on R™ maps to a unique distribution on R” X R

As an alternative to modeling the differential equation using the vector field equation 2.1, we
can instead model the differential equation in its Pfaffian form

de' — fH(z)dt = 0 (2.10)

dz” — f*(x)dt = 0.

These equations are defined pointwise on the state-time space, and should be thought of as repre-
senting a set of constraint conditions on the components of the tangent vectors at the corresponding



point. If we represent an arbitrary tangent vector at the point (x,¢) € R™ x R by

"9 .8
V)= Y0 5 T 5
i=1

then the constraint conditions 2.10 require that

a' — fl(x)dt = 0 (2.11)

a’ — f(x)a’ = 0.

These constraint conditions are equivalent to the condition that

; 0
V(z,t) = @ (Zf 815)

which is exactly the requirement that v, ;) be a pointwise scalar multiple of the extended vector
field 2.2. Therefore, any vector field which satisfies the equations 2.10 will also produce a flow whose
image coincides with the graph of s;. Consequently, the solutions to the Pfaffian system form a

distribution
0
span { E fl 6t}

whose integral submanifold passing through (o, 0) coincides with the graph of s;. Thus, the passage
from vector fields on R”™ to distributions on R” x R is naturally induced by the equations 2.11.

2.2 Modeling Affine Nonlinear Control Systems on the
State-Time Space

We next turn our attention to nonlinear control systems. Specifically, we want to consider affine
nonlinear control systems defined over R” by equations of the form

&= f(z)+ Zgi(x)ui (2.12)

where f(z) is a smooth vector field called the drift, and the g;(z) are smooth vector fields which
locally span an m-dimensional distribution G'.

Equation 2.12 can be viewed in two different ways. First, we can look at this equation as
parameterizing a family of vector fields. From this viewpoint, each feedback control law u’ = o*(z,t)
is equivalent to a time-varying vector field

f( +Zgz

From the discussion in the previous section, we know that this vector field corresponds to the one-
dimensional distribution

m

0 0
2.1y = span Z( +Zgz )a?“%

ji=1



defined over R™ x R. Therefore, each feedback control law is equivalent to a particular one-
dimensional distribution on the state-time space.

Second, we can look at equation 2.12 as a pointwise parameterization of the subset of all tangent
vectors v, at a point x € R” which satisfy the equation

ve = f(x) + Zgi(l‘)ci (2.13)

for some arbitrary set of constants ¢!, ..., ¢”. Viewed in this way, equation 2.12 is seen to parame-
terize an affine plane of the same dimension as (G in each tangent space T, R”. Each vector v, which
satisfies equation 2.13 corresponds to the one-dimensional subspace

n ) mo i 9 9
by = span § 37 (f @) Z%W) 507+ or

j=1 i=1

on R™ x R. As the control parameters change, this subspace will change. The value of u therefore
parameterizes a family of one-dimensional subspaces in the tangent space at (z,t). Moreover, each
of these one-dimensional subspaces will lie in the m + 1 dimensional subspace

_ j j j
F = span ]2_1 a1 (x) EyARE .,;:1 gl (x) pyel ]221 Fx) a7 + 1615 . (2.14)

Thus we can think of the affine control system on R” x R restricted to the point p as consisting of
the collection of one-dimensional subspaces contained in the subspace F},. Note that it is important
to think of the choice of control input as specifying a whole subspace, rather than a particular vector
field. Figure 2.2 illustrates these ideas. The picture on the left shows the tangent vectors f(p) and
g(p) in the tangent space of a fixed state p € R?. The dotted line shows the locus of points in this
tangent space which can be generated using the control input. The picture on the right represents
the corresponding tangent space above the fixed point (p,t) € R? x R. Each of the lines shown in
this tangent space can be generated using the control input. Note that all of these lines are contained
in the two dimensional subspace defined by

p{[ (1) ] [ o) ]}

The collection of all one-dimensional subspaces of T(xyt)(R” x R) is called a
projectivization of T(, ,y(R™ x R), and its properties are well known. In fact, we can construct a
space consisting of all subspaces of T(, )(R" x R) of any dimension & < n. Such an object is called
a Grassmann Manifold and its properties will be discussed in Chapter 5.
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Figure 2.2: The Fibres of an Affine Control System
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Chapter 3

Introduction

The purpose of this part of the dissertation is to develop the mathematical structures which will be
used later in the dissertation. The reader is assumed to have an understanding of basic differential
geometric structures: manifolds, coordinate charts, tangent spaces, etc., and basic algebraic struc-
tures: groups, rings, vector spaces, algebras, ideals; etc. A review of these topics is included in the
appendices.

The material in this part of the dissertation is essentially presented twice. The first time through,
all the constructions are developed relative to the familiar space R”. Next, we introduce the notion
of a fibre bundle, and show how the constructions which were defined relative to R” induce similar
constructions over the tangent bundle of a smooth manifold.

Much of the material in this part of the dissertation originated in a course taught at U.C.
Berkeley by Professor Sastry in the fall of 1994. As a class project, George Pappas, Chris Gerdes,
and I prepared an expanded copy of the course notes on Exterior Differential Systems which was
published as an Electronics Research Laboratory memo [17]. In turn, much of the material in this
memo was based on the books by Munkres [5], Spivak [6], and Bryant, et al. [8]. Other useful sources
are the book by Yang [7] and the book by Flanders [10]. In this reincarnation of the material, T have
tried to put much more emphasis on the geometric aspects of the subject and their relation to the
algebraic structures. In particular, I have added a chapter on Grassmann manifolds and a chapter

on fibre bundles.

11



Chapter 4

Tensors and Forms

This chapter introduces tensors and forms. These objects are basic building blocks for the bundle
structures which will be developed in the later chapters of Part II. The chapter is divided into five
sections. The first section discusses the notion of duality and defines the dual space associated with
a vector space. The second section presents the definition of a tensor as a real-valued multilinear
function. This section also introduces a bilinear operator called the tensor product. The third section
discusses alternating tensors and introduces the wedge product and interior product. The fourth
section discusses the transformation which is induced on a tensor space by a linear transformation
on the vector space over which the tensor space is defined. Finally, the fifth section concludes the
chapter with a discussion of contravariant tensors.

4.1 The Dual Space of a Vector Space

Many of the ideas underlying the theory of multilinear algebra involve duality and the definition
of the dual space of a vector space. Therefore, we will begin by briefly reviewing these concepts.
We will only consider finite-dimensional vector spaces defined over R. The dual space can also be
defined for an infinite-dimensional vector space, but the theory becomes more involved.

Definition 4.1.1 Let (V,R) denote a vector space over R. The dual space associated with (V,R)
1s defined as the set of all linear mappings f 'V — R. The dual space of V is denoted as V* and
the elements of V* are called covectors.

The next lemma gives the set V* the structure of a vector space.

Lemma 4.1.1 If for all o, € V* and ¢ € R, we define

(a+B)(v) = a(v)+0(v)
(ca)v) = ¢ afv),

then V™ is a vector space over R with dim(V™) = dim(V'). Furthermore, if we pick a set of basis
vectors {vy, ..., v,} for V, then the set of linear functions ¢* : V. — R, 1 <i < n, defined by

i L0 afi#g
¢'(v;) = { 1 ifi=j
form a basis of V™ called the dual basis.

Proof: See Munkres [5] page 220. 0

12
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Example: Let V = R" with the standard basis e;, ..., e,, and let ¢*, ..., ¢" be the dual basis. If
reR” = Z z €5,
j=1
then evaluating each function in the dual basis at z gives
Ol(a) = ¢'(Q_ale;) = > wloi(e;) = ',
j=1 ji=1

Since the functions ¢!, ..., ¢" form a basis for V*, a general covector in (R™)* is of the form
f=ai¢' + . +ano”.
Evaluating this covector at x gives
flx) = arzt + ..+ a,z”.

If we think of a vector as a column matrix and a covector as a row matrix, then

&
For each subspace W C V, there is a corresponding “perpendicular” subspace W+ C V*.

Definition 4.1.2 Given a subspace W C V its annihilator is the subspace WL C V* defined by
Wht={aeV |a(v)=0Yve W}

Given a subspace X C V*, ils annihilator is the subspace X+ C V defined by
Xt =weV]|aw)=0Yae X}

Given a linear mapping between any two vector spaces F' : Vi — V5 we can define an induced
linear mapping between their dual spaces.

Definition 4.1.3 Given a linear mapping ' : Vi — Vo, its dual map is the linear mapping ™ :
Vo — Vi* defined by
(F(@)(v) = a(F(v)), Va e V5, ve Vi

Since V* is a vector space, it also has a dual space which is denoted as V**. There exists a
“natural” identification ¢ : V' — V** which is defined for all v € V and o« € V* by

(i(0))(e) = a(v).

For all finite-dimensional vector spaces, this fact allows us to treat V and V** as essentially the
same object. For example, we could have defined the annihilator as

Wl;:{aev*|a(v):0Vv€WCV}.

Using this definition, the annihilator of a subspace W* C V* is defined as a subspace of V**.
However, we can use the natural identification to map this subspace back to V in which case we
recover our original definition.
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4.2 Multilinear Functions and Tensors
Let Vi,..., V% be a collection of real vector spaces. A function
fVix.. xVy—=R

is said to be linear in the ¢th variable if the function 7" : V; — R defined with fixed v; # v; as

T(v) = f(v1,. .., %1,V Vig1, ..., Vk)

is linear. A function is called multilinear if it is linear in each variable.

A multilinear function 7" : V¥ — R is said to be a covariant tensor of order k or simply a
k-tensor. The set of all k-tensors on V is denoted £*(V). For k = 1, we have £L¥(V) = V*, the dual
space of V. Therefore, we can think of covariant tensors as generalized covectors.

Examples:

1. A typical example of a multilinear function is the inner product of two vectors. From the
definition of the inner product, we know that for any vectors z,y,z € R"

<a-xyy>=<zxr,a-y>=a <x,y>
<zt zy>=<z,y>+<z,z>=<z,y+z2>.

2. Another important example of a multilinear function is the determinant. If vy, vs,..., v, are
n column vectors in R"™, then
det[vy va ... vy

i1s multilinear. This fact can be verified using a row or column expansion which expresses the
determinant in terms of its minors.

As in the case of V*, each £¥(V) can be made into a vector space. ¢
Lemma 4.2.1 If for S,T € L*(V) and ¢ € R we define
(S+T)v1,...,v5) = S(vi,...,v5) +T(v1,...,01)
(D) (v1,...,08) = ¢ T(vg, ... v5),
then the set of all k-tensors on V, L¥(V), is a real vector space.
Proof: See Munkres [5] page 220. O

Because of their multilinear structure, two tensors are equal if they agree on any set of basis
elements.

Lemma 4.2.2 Let ay, ... a, be a basis for V. Let f,g:VF — R be k-tensors on V. If
flaiy, .. ai) = g(ai,, ... ai,)

for every k-tuple (multi-index)
I=(iy,....ix) €{1,2,...,n}"

then f = g¢.
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Proof: See Munkres [5] page 221. O
Lemma 4.2.2 allows us to construct a basis for the space £¥(V).

Lemma 4.2.3 Let a1,...,a, be a basis for V. Let I = (d1,...,ix) € {1,2,.. .,n}k. Then there is a
unique tensor ¢! on 'V such that for every k-tuple

J =00 €{1,2,... 0},

{ 0 ifI#J]

¢I(aj1a~~~aajk): 1 ifl=1J

and the collection of all the ¢! forms a basis for L¥(V).

Proof: Uniqueness follows from Lemma 4.2.2. To construct the functions ¢!, we start with a basis
for V*, ¢! : V — R, defined by '
¢'(aj) = bij-
We then define each ¢! as ' ' '
¢f = ¢" (v1) - 9™ (v2) ... 6™ (vy)
and claim that these ¢ form a basis for £ (V).
To show this, we select an arbitrary k-tensor f € £¥(V) and define the scalars

ar = flaiy, ..., ).

Next, we define a k-tensor
g=> ase’
J

where

Je{l,....n"

Then by Lemma 4.2.2, f = g. a

Since there are n* distinct k-tuples from the set {1,...,k}, the space £¥(V) has dimension n*.

Example: Let V = R" with the standard basis ej, ..., e,, and let ¢', ..., ¢” be the corresponding
dual basis. If

n

xeR”? :ijej,

ji=1
then evaluating each function in the dual basis at z gives

n

¢'(x) = WZ plej) = wl¢i(es) =’

ji=1

Likewise, we can let T = (¢1,...,4;) and vy = 2?21 xﬁcei. Evaluating the basis vectors for £*(V) at
(v1,...,v5) gives ' ' '
qSI(vl, centp) = @ (vr) - ¢ (va) - T (vg)
:J;Zf xlszk
Since the tensors ¢!, ..., ¢" form a basis for V*, evaluating a general 1-tensor

FeERM)* at Si_, 2le; € R™ gives

flx) = arzt + ..+ a,z”.
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Evaluating a general 2-tensor at (z,y) € R? gives

n

g(vi,v2) = D agjix)

i,j=1
and evaluating a general k-tensor at (vy,...,v;) € R¥ gives

n

_ . R ik
g(vi,ve, ... o) = E iy, in 1

i1, ,0=1

4.2.1 Tensor Products

We now introduce a product operation into the set of all tensors on V and outline its basic properties.

Definition 4.2.1 Let f € L¥(V) and g € L!(V). The tensor product f @ g of f and g is a tensor
in LEH(V) and is defined by

(fonv,...,vpg1) = flor, o 05) - g(Vps1, - o Vbgl)-
Lemma 4.2.4 Let f,g,h be tensors on 'V and ¢ € R. Then we have
1. Associativity f@ (9@ h)=(f@9)@h
Homogeneily cf @ g=c(f@g)=[@cg
Distributivity (f +g)@h=f@h+gQh

Given a basis a1, ...,an for V, the basis tensors satisfy ¢ = ¢ @ 2 @ - - ® ¢'*

Proof: See Munkres [5] page 224. O
We can also define the tensor product of two subspaces U, W C V* as

U@ W :=span{r € L2(V) |z =u@w, u€ U, we W}
Therefore, from Lemma 4.2.3 we can conclude that
VEo V= LYV).
More generally we have

k
Vie ..oVt =Q V= LHV)
—_————

k—times

4.3 Alternating Multilinear Functions and Forms

In this section we introduce the concept of an alternating tensor. In order to do this, we need to
know some facts about permutations.
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4.3.1 Permutations

Definition 4.3.1 A permutatlion of the set of inlegers {1,2,... k} is a one-lo-one function o map-
ping this set onto itself.

The set of all permutations o 1s a group under function composition called the symmetric group
on {l,...,k} and is denoted by Si. Permutations simply reshuffle the elements of a finite set. As a
result, the number of permutations in Sy, is k!.

Definition 4.3.2 Given 1 < i < k, a permutation e; is called elementary if given some i €

{1,2,...,k} we have

elj) = J for JELI+1
ei(i) = i+l
e(itl) = i

An elementary permutation leaves the set intact except for consecutive elements ¢ and ¢ 4+ 1 which
are switched. The space Si can be constructed from the elementary permutations.

Lemma 4.3.1 Every permutation o € Sy can be written as the composition of elementary permu-
tations.

Proof:  See Munkres [5] page 227. 0

Definition 4.3.3 Let 0 € Si. Consider the set of all pairs of inlegers i,j from the set {1,... k}
for which i < j and o(i) > o(j). Fach such pair is called an inversion in o. The sign of o is defined
to be the number —1 if the number of inversions is odd and +1 if it is even. We call o an odd or
even permutation respectively. The sign of o is denoted by sgn(c).

The following lemma helps us calculate the sign of permutations.
Lemma 4.3.2 Let 0,7 € S;,. Then

1. If o equals the composite of m elementary permutations, then sgn(o) = (—1)™
sgn(c o) = sgn(o) - sgn(r)

sgn(o=1) = sgn(o)

Ifp # q, and if T is the permutation that exchanges p and q and leaves all other integers fized,
then sgn(r) = —1

Proof:  See Munkres [5] page 228. 0

4.3.2 Forms

We are now ready to define forms.

Definition 4.3.4 Let f be an arbitrary k-tensor on V. If o is a permutation of {1,... k}, we define
f7 by the equation

Foi, o vk) = f(voy, - Vo(r))- (4.1)
Since f s linear in each of its variables, so is f7. The tensor f is said to be symmetric of f = f°¢
for each elementary permutation e, and 1t is said to be alternating if f = —f° for every elementary

permutation e.
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In other words, f is symmetric if for all ¢
Flor, . o v, 041, o 08) = F(01, -0 Uig1, Uiy oo o, UR) (4.2)
and alternating if

Flor, .o v, v, 0p) = — (01, oo Vi1, U5y ey V). (4.3)

A real-valued alternating k-tensor is called a k-form. We will denote the set of all k-forms on V by
A¥(V*). The reason for this notation will be apparent when we introduce the wedge product in the
next section.

One can verify that the set of all k-forms is closed under addition and scalar multiplication.
Therefore, A¥(V*) is a linear subspace of the space £*(V') of all k-tensors on V.

In the special case of £1(V), elementary permutations cannot be performed and therefore every
I-tensor is vacuously alternating. Therefore A'(V*) = £1(V)) = V*. Furthermore, for completeness,

we define A°%(V*) = R.

Examples: FElementary tensors are not alternating but the following linear combination
f=d'0¢ —¢ ¢
is alternating. To see this, let V = R™ and let ¢’ be the usual dual basis. Then
flz,y) = ziy; — zy; = det [ z; Zj ]
and it is easily seen that f(x,y) = —f(y, ). Similarly, the function
i Yio %

glz,y,z) =det | ; y; 2
T Yk Zk

is an alternating 3-tensor. &
We are interested in obtaining a basis for the linear space A*(V*). We start with the following
lemma.

Lemma 4.3.3 Let f be a k-tensor on V and o,7 € Sy,. Then

1. The transformation f — f° is a linear transformation from L*(V*) to LX¥(V*). It has the
property that for all o, 7 € Sk,

(fO')T — fTOO'.
2. The tensor f is alternating if and only if f7 = sgn(o) - f for all o € S,.

3. If f is alternating and if v, = vy with p # q, then f(v1,...,v;) = 0.

Proof:  The linearity property is obvious since (af 4 bg)? = af? + bg?. Furthermore,

(F) (w1, ove) = f7(0ra)s o Vr(k))

Fo(wy, ... wy) Wi = vy
J(Wotys -+ Wo(r))
F(or(an)), -5 Vr(a(ry)

= f7%vi,. .., vp).
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Let o be an arbitrary permutation. We can write it as
0C=010050...00,

where each ¢; 1s an elementary permutation, so

o _ 010020...00,
=7

= ()
= g
sgn(c) - f.

Finally, suppose v, = vy and p # ¢. Let 7 be a permutation that exchanges p and ¢. Since v, = vy,

fT(Ula"'avk):f(vla"'avk‘)a

and since 7 is an alternating tensor,

FT (o1, .. op) = sgn(7) - flor, ... 08) = —f(v1, ..., vp).

Therefore, f(v1,...,vx) = 0. a

As a result of Lemma 4.3.3, if £ > n, then the space A¥(V*) is trivial since one of the basis
elements must appear in the k-tuple more than once. Hence, for k > n, A*(V*) = 0. We have also
seen that for k = 1 we have AY(V*) = £L1(V) = V*, so one can use the dual basis as a basis for
AL(V*). We are therefore left with the cases where 1 < k < n. The key argument here is that in
order to specify a form we simply need to define it on an ascending k-tuple of basis elements since,
by applying Lemma 4.3.3, every other combination can be obtained by permuting the k-tuple.

Lemma 4.3.4 Let ay,as,...,a, be a basts for V. If f, g are forms on V and 1f
f(alaGZa .. .,Cln) = g(alaGZa .. 'aan)
for every ascending k-tuple of integers {1,2,... k}, then f =g.
Proof:  See Munkres [5] page 231. O

Lemma 4.3.5 Let ay,...,a, be a basis for V. Let I = (i1, ...,4) € {1,2,.. .,n}k be an ascending
k-tuple. There is a unigue form ¢! on V such that for every ascending k-tuple J = (j1,...,jr) €

{1’2""’n}k’
I I B U )
’l/)(a]la"'aa]k)_{ 1 ZfIIJ
The forms ! form a basis for A¥(V*). The forms ! also satisfy the formula
Yl = Z sgn(o)(¢1)7.

TESk
Proof:  See Munkres [5] pages 232-233. O

The forms 1 are called the elementary forms on V corresponding to the basis ay, ..., a, for V.
Therefore, every k-form f may be uniquely expressed by

F=>dw’
J

where J indicates that summation extends over all ascending k-tuples.
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Since A1(V*) is isomorphic to V*, it must have dimension n. In order to determine the dimension
of A¥(V*) when k > 1, we need to find the number of possible ascending k-tuples from the set
{1,2,...,n}. If we choose k elements from a set of n elements, there is only one way to put them in
ascending order. Therefore the number of ascending k-tuples and the dimension of A*(V*) is

i ) = (1) =

4.3.3 The Wedge Product

Just as we defined the tensor product operation in the set of all tensors on a vector space V, we
can define an analogous product operation, the wedge product, in the space of all forms. The tensor
product alone does not suffice since even if f € A*(V*) and g € A/(V*) are alternating, their tensor
product f ® g € L¥*/(V) need not be alternating. We therefore construct an alternating operator
taking k-tensors to k-forms.

Lemma 4.3.6 For any tensor f € LX(V), define Alt : L¥(V) — A*(V*) by

Aty = 7 Y syn(o)f”

TESk

Then Alt(f) € A¥(V*) and if f € A*(V*), then AlL(f) = [.

Proof: The fact that Alt(f) € A¥(V*) is a consequence of Lemma 4.3.3 parts (1) and (2). Simply
expanding the summation for f € A*(V*) yields that Alt(f) = f. |

Example: Let f(z,y) be any 2-tensor. Applying the alternating operator, we obtain

Amﬁzéqu—fww)

which is clearly alternating. Similarly, for any 3-tensor g(x,y,z), we have

Alt(g) = é(g(r, v, 2)+9ly, z, )+ g(z, 2, y) — gy, x,2) — g(z,y,2) — g(z, 2, 9)).
O

Definition 4.3.5 Given f € A*(V*) and g € AY(V*), we define the wedge or exterior product,
fAgeAT(V™), by the equation
(k+ D!

FAg = Alt(f @ g).

Therefore, given two forms, the wedge product first obtains the tensor product of the two forms,
then uses the alternating operator in order to obtain a new form, and finally normalizes it. There are
two reasons for the somewhat complicated normalization constant. The first reason is so that if f 1s
alternating then Alt(f) = f. The second reason is that we want the wedge product to be associative.
The normalizing coefficient ensures both properties. Since forms of order zero are elements of R,
we define the wedge product of an alternating 0-tensor and any alternating k-tensor to be the usual
multiplication. The following lemma lists some important properties of the wedge product.

Lemma 4.3.7 Let f € A¥(V*), g € AY(V*), and h € A™(V*). Then

1. Associativity fA(gAh)=(fAg)AR
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2. Homogeneity cfANg=c(fANg)=FfAcg

3. Distributivity (f+g)ANh=fAh+gAh
hA(f+g)=hNf+hAg

4. Skew-commutativity g A f = (—1)klf Ag
Proof: Properties (2), (3), and (4) follow directly from the definitions of the alternating operator
and the tensor product. Associativity, property (1), requires a few more manipulations (see Spivak
[13] pages 80-81). O
Example: Let f(z) € AY(V*) and ¢(y,z) € A*>(V*). Then

(22—1_1!1)! %(ﬂ@ @9y, z) + fy) @ g(z,2) +

+ f(z)©@g(z,y) = f(y) @g9(z,2) = f(2) © g(y, x) — f(z) @ g(z,9))

Ay

We can also check that

1+D1
par="E ) ey - f@) 0 f@) = 0
which can also been seen from the skew-commutativity of exterior multiplication. <&

We can now formulate a basis for A*(V*) more elegantly in terms of the dual basis for V.

Lemma 4.3.8 Given a basis ai, ..., a, for a vector space V, let ¢, ... ¢" denote its dual basis,
and let ! denote an element in the corresponding set of elementary k-forms. If I = (i1, ... i) is
any ascending k-tuple of integers, then

e N N NC L

Proof: May be deduced from the construction of the elementary k-forms in Lemma 4.3.5. a
By Lemma 4.3.8, any k-form f € Ak(V*) may be expressed in terms of the dual basis ¢!, ..., ¢"
as
F=Ydi 8 AGTA LA (4.4)
J
for all ascending k-tuples J = (j1,...,jz) and some scalars, d;, ;.. If we require the coefficients

to be skew-symmetric, then
di1y~~~yil,iz+1,~~,ik = _di17~~~yil+lyilw~yik’ Vie {L k= 1}a
and we can extend this summation over all k-tuples
1 n
f=1 ST diy i 8T AN NG (4.5)
Tdy,.ig=1

The wedge product has a number of nice properties which make it a useful algebraic tool. For
example, the wedge product provides a way to check whether a set of 1-forms is linearly independent.

Lemma 4.3.9 Ifw!, ... w* are 1-forms over V then
WIAWEA LAWY =0

k

if and only if wb, ..., w* are linearly dependent.
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Proof: Suppose that the 1-forms w',... w* are linearly independent, and pick o**! ... a”

complete a basis for V*. From Lemma 4.3.8, we know that

to

wl/\wz/\.../\wk

is a basis element for A¥(V*). Therefore, it must be nonzero.
If the 1-forms w', ... w" are linearly dependent, then at least one of them can be written as a
linear combination of the rest. Without loss of generality, assume that w* is linearly dependent. We

then have
k-1

Wt = E c;w'.

i=1
Furthermore, the skew-commutativity of the wedge product implies that

k-1
wl/\wz/\,,,/\wk:wl/\wz/\.../\wk_l/\(zciwi):()

=1

This result allows us to give a geometric interpretation to a nonzero k-form
WEAWIA L AW £0
by associating it with the subspace
W= span{w',... W} C V*.
An obvious question which arises is what happens if we select a different basis for W.
Lemma 4.3.10 Given a subspace W C V* and two sets of 1-tensors which span W,
W = span{w?, ... W} = span{at,.. . o*},
there exists a nonzero scalar ¢ € R such that

cw AWIA L AW =alt Aa? AL AR £0

Proof: FEach o' can be written as a linear combination of the w®

Therefore, the product
k . .
ot A AL AGE :(Za]lw])/\.../\(Zaiw]).
Multiplying this out gives
" A AL ASE = Z bilymyikwil AW AL AW,
$1,..,0x=1
Finally, using Lemma 4.3.9 and the skew-commutativity of the wedge product, we get

cw AWIA L AW =at AaP AL AR £0.

O

Therefore, the k-fold wedge product of all sets of linearly independent 1-forms which spans a

subspace of W C V* differ by only a scalar constant. We can therefore define an equivalence class
of basis sets for W.
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Definition 4.3.6 Let € = z' A ... Ax*. We define an equivalence class
[¢h. . 2" = {m € A"(V*) | m = ¢ &, for some nonzeroc € R}

called the Grassmann coordinate of &.

The set of all such equivalence classes can be put in one-to-one correspondence with the set of all
k-dimensional subspaces of V*. This set of subspaces is called the Grassmann manifold of k-planes
in V* and is denoted as GZ .

Definition 4.3.7 A k-form £ € A*(V*) is decomposable if there exist
et et eb e ANV
such that ¢ = x' Ax? A ... AzP.

There exist k-forms which are not decomposable. To see this, consider the following example.

Example: Let € = ¢' A% + ¢® A ¢* € A?((RY)*). If € is decomposable, then we must have
EANE =0. The reason for this is that if £ can be expressed as

E=atANa’ A ANaF,

then 1t follows that
ENE=atAaPA A AP AGEA L AR =0,

In this case, we have

ENE=20"Nd" AG® A" #0.
Therefore, £ is not decomposable. Notice that this is a necessary but not sufficient condition and,
in particular, it does not apply to odd-dimensional forms. <&

Even if a k-form & is not decomposable, it may still be possible to factor out a 1-form from every
term in the summation which defines it.

Example: Let € = g1 Ag? Ad® + ¢3 Ad* A ¢® € A3((RP)*). From the previous example, we know
that this form is not decomposable, but the 1-form ¢° can clearly be factored from every term

E=(0"NP" + 6P NGNS =ENQ°

Definition 4.3.8 Let &€ € A*(V*). We define a subspace L¢ C V*
Le ={we V" |¢ = ¢ Aw for some & € AFTL(V*)}

called the divisor space of £. Any w € L¢ is called a divisor of €.

Lemma 4.3.11 A 1-formw € V* is a divisor of £ € A¥(V*) if and only if

wAE=D0.
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Proof: Pick a basis ¢!, ¢2,...,¢" for V* such that w = ¢'. With respect to this basis, £ can be
written as

E=D dj, 8 AGTA L AG (4.6)
J

for all ascending k-tuples J = (j1,...,ji) and some scalars, d;, ;.. If w is a divisor of £, then it
must be contained in each nonzero term of this summation. Therefore w A & must be identically 0.
If w A& = 0, then every nonzero term of £ must contain w. Otherwise, we would have for

jl""’jk#lﬁ . . . .
WAFTA . ANGE =Gt NG AP

which 1s a basis element of Ak+1(V*) and therefore nonzero. This contradicts the assumption
wAE=0. m]
If we select a basis ¢!, ¢2%,...,¢" for V* such that

span{',¢%,..., o'} = Lg,

then & can be written as R
E=ENG A NG

where &f € A*~!(V*) is not decomposable and involves only the one-forms ¢'*1 ... ¢".

4.3.4 The Interior Product

A second useful operation on tensors is called the interior product.

Definition 4.3.9 The interior product is a linear mapping 2 : V x LE(V) — L¥=YV) which

operates on a vector v € V and a tensor T € L¥(V) and produces a tensor (vIT) € LXYV)
defined by

(v 4T (o1, ..., vp—1) = T(v,01,...,05-1).

The interior product has the following properties.

Lemma 4.3.12 Let a,b,c,d be real numbers and v,w € V, g,h € LY(V), r € A*(V*), and f €
A™(V*). Then we have

(av+bdbw)dg = alvdg)+blwlyg
vd(eg+dh) = clvdg)+dvIh

2. vd(fAT)=(wI )+ (=D FA(vdyg)

~—

1. Bilinearity

~—

Proof: See Yang [7] page 12. O
The next result illustrates a useful property of the interior product.

Lemma 4.3.13 Let ay,...,a, be a basis for V. Then the value of a k-form w € A*(V*) is inde-
pendent of a basis element a; if and only if a; Jw = 0.

Proof: Let ¢!, ..., ¢" be the dual basis to ai,...,a,. Then w can be written with respect to the
dual basis as

w:ZdJ¢)]l/\¢)]2/\/\¢]k :Zd‘]’l/)‘]
J J

where the sum is taken oven all ascending k-tuples J. If a basis element ¢/ does not contain ¢,
then clearly
a; ’l/)'] =0.
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If a basis element contains ¢¢, then
aid ¢IVAGEN NG ED
because a; can always be matched with ¢’ through a permutation which only aﬂ’ects' the sign.
Consequently, (a; Jw) = 0 if and only if the coefficients ds of all the terms containing ¢* are zero.
O
Definition 4.3.10 Let w € A*(V*). The associated space of w is defined as
Av ={v eV]vJw =0}

The dual associated space of w is defined as AL .

Recall that the divisor space L, of a k-form w contains all the 1-forms which can be factored
from every term of w. The dual associated space A} contains all the 1-forms which are contained
in at least one term of w. Therefore, L, C AL. The following result ties these notions together.

Lemma 4.3.14 The following statements are equivalent:
1. A k-form w € A®(V*) is decomposable.
2. The dwisor space L, has dimension k.
3. The dual associated space AL has dimension k.

4. L, = AL,
Proof:

(1) & (2). Ifw is decomposable, then there exists a set of basis vectors ¢!, ¢? ..., ¢" for V* such
that
w=¢"A... A"

Therefore, L, = span{¢', ¢? ..., ¢*} which has dimension k. Conversely, if L, has dimension k,
then & terms can be factored from w. Since w is k-tensor, it must be decomposable.

(1) & (3). Let ay,...,a, be the basis of V which is dual to ¢*,¢? ... ¢". Since
w=¢' A ASF,
w 1s not a function of ax41,...,an. Therefore,
A, = span{ag41, ..., an}.

This implies that AL has dimension k. Conversely, if AL has dimension k, then A, has dimension
n — k which means that w is a k-form which is a function of k variables. Therefore, it must have the
form

w=¢' A Ak
for some linearly independent set of 1-forms ¢!, ¢?, ..., ¢F € V*.
(2)&(3) & (4). It is always true that L, C AL. Therefore, if dim(L, ) = dim(AL), then L, = AL.

It is also always true that 0 < dim(L,) < k and k < dim(AL) < n. Therefore, L, = AL implies
that dim(L,) = dim(AL) = k. O
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4.4 The Pull Back of a Linear Transformation

The pull back of a linear transformation is a generalization of the dual map which we introduced in
section 4.1.

Let T be a linear map from a vector space V to a vector space W, and let f € L*¥(W). Using
T and f, a new multilinear function on V can be defined by mapping each k-tuple of vectors
vi,..., v € VEto T(vy),...,T(vp) € W* and then apply the multilinear function f. More formally,

Definition 4.4.1 Let T : V — W be a linear transformation. The dual or pull
back transformation

T LRW) — LR (V)
is defined for all f € LX(W) by
(T (v, .y vk) = f(T(v1), ..., T(vr)).

Note that 7™ f is multilinear since T is a linear transformation. The pull back map 7™ also has
the following properties.

Lemma 4.4.1 Let T :V — W be a linear transformation, and let
T LRW) — LR (V)
be the dual transformation. Then
1. T 1s linear.
2T (fog=T"fol"y.
3. If S: W — X is linear, then (SoT)*f =T*(S*f).
Proof: See Munkres [5] page 225. O

The following lemma says that the subspace of k-forms in £*(V) is invariant under the action of
a pull back mapping.

Lemma 4.4.2 Let T : V — W be a linear transformation. If f is an alternating tensor on W,
then T* f is also an alternating tensor on V, and

T(fAg)=T"fFANT"g.

Proof: See Munkres [5] page 234. O

4.5 Contravariant Tensors

Up to this point, all the tensors which we have worked with have been defined as multilinear functions
over the vector space V. If we simply replace V' with V* in all our definitions, then nothing is
changed, and we can define an identical set of tensors over V*.

A multilinear function 7" : (V*)k — R is said to be a contravariant tensor of order k. The set of
all k-tensors on V* is denoted by £*(V*)or V @ ...® V. Note that in this notation we are implicitly

k—times
using the natural identification between V** and V. For k = 1, we have £*¥(V*) = V| i.e., the vector
space 1tself. For this reason, contravariant tensors are sometimes called multivectors.



Chapter 5

Grassmann Manifolds

This chapter introduces a class of geometric objects called Grassmann manifolds. These manifolds
are another basic building block for the bundles which will be introduced in Chapter 7. The chap-
ter is divided into four sections. The first section defines a Grassmann manifold and discusses its
construction and topology. The second section introduces a set of standard coordinate charts which
provide a convenient local description of a Grassmann manifold. The third section discusses the
mappings between Grassmann manifolds which are induced by linear transforms of R”. The projec-
tivized linear group is introduced in this section, and some of its properties are discussed. The fourth
section discusses the notion of an interval defined by two nested subspaces. For a more in-depth
treatment of projective geometry, the interested reader is referred to the book by Mihalek [25].

5.1 The Topology of a Grassmann Manifold

Throughout this chapter, we will work with the set of all k-dimensional subspaces of R™ which we will
denote by S7. We will endow this set with a topology which turns it into an (n — k) x k dimensional
manifold called the Grassmann Manifold of k-planes in R”. This manifold will be denoted by G7.

We will construct a topology which turns S} into a smooth manifold. We begin this construction
with the vector space R"** endowed with its standard topology. A point M € R"** can be regarded
as an n X k matrix. If this matrix has full rank, then its columns form a set of linearly independent
vectors which span a k-dimensional subspace V of R”. We will use @ C R"** to denote the set of
all full rank matrices in R"**.

Two matrices M, MeQ span the same subspace V if and only if M = MT for some nonsingular
k x k matrix T'. Therefore, we can form a set of equivalence classes in @ with M ~ M if and
only if there exists a nonsingular matrix 7' € R*** such that M = MT. We will use [M] to
denote the equivalence class which contains the matrix M and @/ ~ to denote the set of all such
equivalence classes. Since each matrix in the equivalence class maps to the same subspace, there is
a bijection ¥ : @/ ~— S} between the set of equivalence classes and S7. There is also a quotient
map ® : Q@ — Q/ ~: M — [M] which maps each element of Q to its corresponding equivalence class.

We are now ready to form a topology on Sj. We will proceed by first forming a topology on Q/ ~
and then mapping this topology to S through the bijection ¥. We define a subset of U C @/ ~ to
be open if and only if ®=(U) is open in Q. The collection of all such subsets will be denoted by 7.
The topology on S} is defined to be the collection of open subsets

T={UCS}|U=W(V)VeT}

Endowed with these topologies, S7 and @/ ~ are homeomorphic topological spaces, so we can treat
them as essentially the same object, and from this point on, we will not distinguish between the
two. We can now formally define G} to be the topological space (S, 7).
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5.2 Local Coordinate Charts on G}

Up to this point, we have shown that G is a topological space, but we still need to show that it is a
manifold. To do this, we need to verify that every point has a neighborhood which is homeomorphic
to R? for some finite integer s.

Associated with any n x k matrix, we have () k& x k& minors. Let ¢ € 1,..., () be an index
set for these minors, and define M; to be the k£ x k matrix corresponding to the ith minor. Let
Q; C Q denote the dense open subset of Q consisting of all M € Q such that the M; is nonsingular.
We can define a continuous onto map ®; : Q; — R*F)Xk by getting ®(M) equal to the rows of
]\4]\42»_1 which are not in the ¢th minor. The ¢th minor of ]\4]\42»_1 will always be the identity, so this
mapping is completely determined by its other (n — k) x k elements. Furthermore, if M € Q;, then
so is MT for every nonsingular 7' € R¥** and the mapping ®; maps the matrix M7 to the rows
of MT(M;T)~! which are not in the ith minor. Simplifying this expression, we find that

MT(M;T)™ ' = MTT=*M; " = MM ",

so the function ®; maps any two matrices in the same equivalence class to the same point. Therefore,
®; induces a mapping ®; : Qi) ~— R(n=k)xk . [M] — ®;(M) which is a homeomorphism.

Any matrix M € Q is nonsingular, so it must contain at least one full rank minor; therefore, 1t is
contained in some Q;. Furthermore, the fact that each element in the equivalence class [M] is also
contained in the same Q; implies that each equivalence class [M] € @/ ~ is contained in some open
set Q;/ ~ which is homeomorphic to R=k)xk - Consequently, G7 forms an (n — k) x k-dimensional
manifold, and the local coordinate charts (Q;, <i>z) form a C™ (actually analytic) coordinate atlas

for G7.

Example: The Manifold Gg. As a specific example, we will consider the (3 —2) x 2 = 2

dimensional manifold G3. The space @3%? is equal to the set of all 3 x 2 full-rank matrices, and it
forms a dense open subset of R3%?. Let

mi1 Mi2
M = moq Mmoo
ms31 M3z

be any element of @3%2. Tt has (3) = 3 minors

myp Mmi2
My, =
| 21 oz |
myp Mmi2
My =
| M31 M3z |
m21 M2z
M3 =
| M31 M3z |
The matrices ]\4]\42»_1 are given by
— 1 0 -
MMt = 0 1
M31Mo2—M32M2 —Ma1Mio+mMaami
L Mi1M22—M21M12 Mmi11Ma2—M21M12
— 1 0 -
-1 _ M21 M3z —Ma2Ms3 —Mo1Mio+MoamMmii
MM2 - M11M32—M31M12 M11M32—M31M12
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M11M32—M12M33 —M11Mao+Miamog
M21M32—M31M22 M21M32—M31M22

MM;!' =
0 1

The space Q?Xz is equal to the dense open subset of Q3%2 where my1mas — Moy M2 # 0. Similarly,
the spaces Q2%% and Q2%? are equal to dense open subsets of @3%2 where my1mss — msymys £ 0
p 2 3 q p

and may1maa — ma1maz £ 0, respectively. The maps ®; are defined by

M31Maz—M3am —ms3m M3am
(I)l:]‘[ [ 31M22 32M21 31M12+M32M11 ]

M11Ma2—M21M12 M11M22—M21M12
b, - M [ M21M32—=M32M3] —mMo1Mi2+Moomis ]
2 - M11M32—M31M12 M11M32—M31M12
Pa - M [ M11M32—="M12M31 —mMi11Moa+mMiaMma ]
3 M21M32—M31M22 M21M32—M31M22

Finally, the induced maps ®; are defined by

A 10

q)l . 0 1 — [ asy asza ]
LL 431 @32 | |

[0 ]

@, : az1 A2 — [ as1 as ]
L L 0 1 - d

R a1 @12

d3 1 0 — [ a1 @12 ]

0 1

5.3 Mappings Between Grassmann Manifolds

A linear automorphism A : R” — R” induces a unique diffeomorphism ®(A4) : G} — G} : [M] —
[AM] which makes the following diagram commute

ank i ank
P | P |
ar " oan

The set of all such induced maps together with the composition operation forms a group which is
called the projective general linear group on R"™ and is denoted by PGL(R™). To verify that this is

actually a group, we note that
1. For any ®(A), ®(B), ®(C) € PGL(R™), we have that
P(A) 0 (®(B) 0 ®(C)) = (B(A) 0 B(B)) 0 B(C)

since for all [M] € G7,
®(A) o (R(B) o ®(C))([M]) = [A(BC)

I
N
t
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2. There is a neutral element ®(I) € PGL(R™) which satisfies
S(I)o®(A) = P(A4) o ®(1) = (4)
for all A € GL(R™).
3. For any A € GL(R"), ®(A) has an inverse ®~1(A4) = ®(A~1).

Furthermore, the mapping ® is a homomorphism from GL(R"™) onto PGL(R™) since (P(A) o
O(B))([M]) = [ABM] = ®(AB)([M]). The kernel of the homomorphism @ is the set of all 4 €
GL(R™) which satisfy ®(A) = ®(I). This set is given by

ker(®) = {A € GL(R™) |A=A-1, A€ R}

which is a closed subgroup of GL(R™). A standard result from group theory says that any homo-
morphism ¢ : G — H which maps a group G onto a group H induces a group isomorphism from
G/ ker(¢) to H. So, in this instance, we have that GL(R")/ ker(®) is isomorphic to PGL(R™) where

GL(R™)/ ker(®) is the set of equivalence classes corresponding to the equivalence relation
A~B&s A=AB, AeR.

A subspace A C R™ which satisfies the equation A(A) C A for a given automorphism A €
GL(R™) is said to be an invariant subspace of A. Tt is easy to see that if Ay is a k-dimensional
invariant subspace of A, then it is also a fixed point of the induced map ®(A) : G} — G}. We can
characterize the set of all k-dimensional invariant subspaces of A. To do this, we will work on the
coordinate chart of GG} defined by the matrix

F ot mzlg _
m’f‘k mz_k
A= 1 0 0
0 1 0
| 0 0 1]

The action of the automorphism A on A can be represented by the matrix multiplication
At Al M _ ATM + Al - (ATM + ALY (AIM + A2~
A2 A2 1 AZM + A2 1

From this equation, it is clear that A is a fixed point of ®(A4) if and only if M is a solution to the
equation

(AIM + AD(AIM + A3 = M
& MAIM + MAZ = AIM + Al
&S MAIM + MAZ — AIM — A = 0.

5.4 Intervals

Given two subspaces Ay and A which satisfy the condition A; C As, their interval 1s defined to be
the collection of all subspaces D which satisfy

Ay CDCA,. (5.1)

We will denote this collection by S121:42] and the set of all k-dimensional subspaces which satisfy

5.1 by S,EAI’A2]. Since S,[CAI’AQ] C S, the topology of G% induces a subspace topology for S][CAI’AQ]

which turns it into a smooth submanifold of G7. We will use GECAI’Aﬂ to denote this submanifold.
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Lemma 5.4.1 Suppose that Ay and Ao are respectively s-dimensional and s 4 t-dimensional sub-
spaces of R™, then the manifold G[ﬁ_lk’Aﬂ is diffeomorphic to the Grassmann manifold G% for every

0<k<t.

Proof: To prove this lemma, we need to show that there exists a linear map 7" taking R"™ onto R!
which satisfies

T(A) = 0 (5.2)
T(As) = R

If such a mapping exists, it will induce the desired diffeomorphism &(7') : G[ﬁ_lk’Aﬂ — (. To show

that such a mapping exists, we form a basis of R™ using the columns of a matrix of the form
I v v
0 I z
0 O

b~

where the right block of columns span A; and the middle and right blocks of columns span A,. The
inverse of this matrix is

I=v (B =V3)
0 I —V2
0 0 I

which we will view as a mapping taking R™ — R". Selecting the middle row of this matrix, we
obtain the matrix

[0 I —Vi]
which corresponds to a mapping taking R" — R'. Furthermore, this mapping clearly satisfies the
conditions 5.2. a
As a consequence of lemma 5.4.1, if A : R" — R™, m < n is a surjective linear map, it

induces a diffcomorphism between the manifold G and the manifold GEl;ei(n’:_)l_’?)n]

(k 4+ n — m)-dimensional subspaces of R™ which contain the (n — m)-dimensional subspace ker(A4).

The homeomorphism ®(A) : G?;fi(n’j_)l_’?)n] — G is defined pointwise by the equations

consisting of all

AEGT, A— ATHA) = d7H(A)(A)
ker(A),R™
reGhrmRTr — Ar) = a(A)(D),
Similarly,if A : R™ — R™, m < n is an injective linear map, it induces a diffeomorphism between
the manifold G and the manifold G%O’Im(A)] consisting of all k-dimensional subspaces of R™ which
are contained in the m-dimensional subspace Im(A). Finally, if A:R™ — R™ is an arbitrary linear

map with a kernel of dimension s, then it induces a diffeomorphism between the manifold G%O’Im(A)]

and the manifold G?;cei(s’;‘)’nn].



Chapter 6

Exterior Algebra and Systems of
Exterior Equations

This chapter discusses exterior algebra and systems of exterior equations. In section 4.3.3 of Chapter
4 we introduced the wedge product and interior product and discussed some of their properties. In
the first section of this chapter, we will look more closely at the algebraic properties these operations
give to the space of all alternating tensors. In the second section of this chapter, we introduce systems
of exterior equations. This subject involves both the exterior algebra and Grassmann manifolds, and
will serve as a prototype for the discussion of exterior differential systems in Chapter 8.

6.1 The Exterior Algebra of a Vector Space
In this section, we will consider the direct sum of the space of all 0-forms, 1-forms, 2-forms, etc.
AVH) = A" (VY AN (VD A2 (VD @ ANV,

This 1s clearly a vector space, and the wedge product acts as a multiplication operator on it, so
it satisfies Definition B.0.1 of an algebra given in Appendix B. The pair (A(V*), A) is called the
exterior algebra over V*. In this notation, any & € A(V*) may be written as

E=¢6+&+...+&n

where each &, € AP(V*).
Since (A(V*), A) has the unity element 1 € A°(V*), Theorem B.0.4 implies that the ideal gener-
ated by a finite set of elements ¥ := {a’ € A(V*),1 <i < K} can be written as

K
Is={r e A(V)|m=> 6 Ao’ 0" € A(V")}

i=1

6.2 Systems of Exterior Equations

In this section, we are going to use the exterior algebra to study a system of equations of the form

where each o’ € A(V*). The first thing we need to clarify is exactly what a “solution” to these
equations means.
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Definition 6.2.1 A system of exterior equations on 'V is a finite set of linearly independent equa-
tions

at=0,...,a8 =0

where each o' € A¥(V*) for some 1 < k < n. A solution to a system of exterior equations is any
subspace W C V such that
Oz1|W EO,...,O[K|W =0

where o|w means that the arguments of a(vy, ..., vp) satisfy vy,..., vy € W.

A system of exterior equations generally does not have a unique solution since any subspace W, C W
will satisfy a|w, = 0 if ol = 0. In fact, rather than focusing on a particular solution, we will often
use a system of exterior equations to define the submanifold of a Grassmann bundle of k-planes
consisting of all points in the Grassmann bundle which solve the system of exterior equations.

A central fact concerning systems of exterior equations is given by the following lemma.

Lemma 6.2.1 Guwen a system of exterior equations
ol =0,...,08 =0 (6.1)
and the corresponding ideal I generated by the collection of alternating tensors
Yo={al, ... of} (6.2)
a subspace W solves the system of exterior equations if and only if it also satlisfies w|w = 0 for every

TE Iy,

Proof: If 7 € I4, then 7 = ZZK:1 0° A . Furthermore, if W satisfies 7| = 0, then
K
wlw =0 Aad)lw =0
i=1

for some set of # € A(V*). Since this equation must hold for every 7 € I4 and the a’ are assumed
to be linearly independent, it implies

Oz1|WEO,...,OzK|WEO. (63)

Conversely, if equation 6.3 holds, then #|y = 0 for all 7 € I4. a

Recall that an algebraic ideal was defined in a coordinate free way as a subspace of the algebra
satisfying certain closure properties. Thus, the ideal has an intrinsic geometric meaning, and we can
think of two sets of generators as representing the same system of exterior equations if they generate
the same algebraic 1deal.

Definition 6.2.2 Two sets of generators, X1 and Xs, are said to be algebraically equivalent if and
only if they generate the same ideal, 1.e., I, = Ix,.

6.2.1 The Associated and Retracting Spaces

We will exploit the notion of equivalence to represent a system of exterior equations in a simplified
form. The main tools we need in order to do this are called the associated space and retracting
space of the system of exterior equations.

Definition 6.2.3 Let X be a system of exterior equations and Is, the ideal which it generates. The
assoctated space of the ideal Is 1s defined as

A(ly) ={veVjpdaeIsVa e ls}.

The dual associated space or retracting space of the ideal is defined as A(Is)t and denoted by C(Ix).
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Once we have determined C'(Ig), we can find an algebraically equivalent system X/ which is a

subset of A(C(Ix)).

Lemma 6.2.2 Let X be a system of exterior equations and Is its corresponding algebraic ideal.
Then there exists an algebraically equivalent system X' such that ¥ C A(C(Ix)).

Proof: Let vy,...,v, be a basis for V and ¢',...,¢" be the corresponding dual basis. Assume
that the basis has been selected such that the vectors vy41,...,v, span A(Ig). Consequently, the
covectors @1, ... ¢" must span C(Ix).

Let a be any k-form in . Consider the form
o =a—g¢"tIA (Vp41 J ).
Taking the interior product of o’ with v,y gives,
vpy1 o = v da—vp da+e"THA (vp41 I (vp41 J ) = 0.

Therefore, using lemma 4.3.13, we can conclude that o has no terms involving ¢"*t1. Since v, 41 €

A(Ig), we know that v,y1 o € I. Therefore, we can replace o with o' in the set of generators, and
the ideal generated will be unchanged since

ONa=0A +0ANST A (v,41 J0)

=0Aa=0Aa modl.

We can continue this process for v,12,..., v, to produce a k-form & which is generated by elements
of A(C(Ix)). |
The following example is taken from Yang [7].

Example: Let vi,...,vs be a basis for R®, and let 6%, ... 0° be the dual basis. Consider the
system of exterior equations
at =0 NG =0,

a2 =0 NGO =0,
=N —P A0 =0,
at=0"ANOPANOP - 0P AP ANO° = 0.
The set of generators X is given by
E = {al,az,aS’ a4}’

and the ideal Iy is given by
Is={£eA(V") =) 7 Ad), 7' e AV}
i=1

The associated space of Iy is defined by
A(lg) ={v €RC |vamels V€ ls}.
Because Iy contains no 1-forms, we can infer that

vdal =0, vda? =0, andvda® =0, Vo € A(lz).
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Expanding the first equation, we get
vdal = v (0P A0 = (00N + (1)1 A (v 0%) = 01 (0)0? — 0P (v)0' =0
which implies that 6'(v) = 0 and 03(v) = 0. Similarly,
vda? =0 (v)o* —0*(v)t =0
vda® = 01 (v)07 — 0% (v)0" — 0°(v)0* + 0% (v)6° = 0
implying that 6%(v) = 0 and 6*(v) = 0. Therefore, we can conclude that
A(lg) C span{vs, vs}.
Evaluating the equation v Jo* gives
vdat = (vd (' AOH)AO® + (=120 AO*) A (v 0°)
—(v (P NOY))AO° — (—1)*(0° A O*) A (va6°)
=)0t AO? —0°(v)0° A O*
=a(@ AP+ (0" AOY) 4 (01 N 0T — 6P A GY).
Equating coefficients, we find that
0°(v) = 0°(v) = ¢, Vv € A(Ix).
Now v must be of the form v = zvs + yvg, so we get
95(1‘1}5 +yvg)=x=c

0% (xvs + yvs) = y = c.
Therefore, A(Is) = span{(vs + ve)}. If we select as a new basis for R® the vectors

w; = v, t=1,...,4, ws = v5 — vg, W = V5 + vg.

then the new dual basis becomes

i i 65 — 08 05 + 6°
A=0 i=1,...,4, 7 = 5 A 7

With respect to this new basis, the retracting space C'(Ig) is given by
C(Is) = span{y*,...,¥°}.
In these coordinates, the generator set becomes
= {y A AT A A A =AY A AT AT CA(C(T)).
&

The following lemma allows us to find the dimension of the retracting space in the special case
where the generators of the ideal are a collection of 1-forms together with a single 2-form.

Lemma 6.2.3 Let Is be an ideal generated by the set
Y= . Wt Q)
where W' € V* and Q € A%2(V*). Let r be the smallest integer such that
QT AW AL AW =0,

Then the retracting space C'(Is) is of dimension 2r + s.
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Proof: See Bryant [8] pages 11-12. O

6.2.2 Independence Conditions

A system of exterior equations with independence condition €2 is a pair (X,2) where X is a set of
generators and Q is a decomposable k-form. A solution to the system (X, Q) is any subspace A C V
which satisfies the conditions

1. For each o € &, a|a = 0.
2. Qla # 0.

The second condition implies that every solution must be at least k-dimensional, and also restricts
the set of k-dimensional solutions to lie in a local coordinate chart of the Grassmann manifold G7.
The following example illustrates these points.

Example: Let (X, ¢1A---Ay™) be a system of exterior equations with an independence condition.

Let ¢!, ..., ¢~ ") be any collection of one-forms which, taken together with the ¢’s, forms a basis
for V*.
R™ :span{qbl,...,¢("_m),1/)1,...,1/)m} (6.4)
We can also form the basis for V' which is dual to the cobasis 6.4.
R™ =span{ei,...,e(n-m) Vi, -, Vm} (6.5)
so that
e 1) = &
eidd = 0
vyl = 8l
v; J (f)j = 0.

Any element A € 7, which satisfies the independence condition

1/)1/\.../\1/)m|A7§0

can be represented with respect to the basis 6.5 as the matrix

7]

where the elements m; form a local coordinate chart for the Grassmann bundle. We can form a new

basis for V' using the columns of the matrix

I M
5l -
defined relative to the old basis 6.5. The inverse of this matrix 1s
I —-M
0 I

and its rows form a new cobasis which is dual to the basis 6.6. We will define

wh=¢' = miy (6.7)
ji=1
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so that this new cobasis can be described by
R™ :span{wl,...,w("_m),1/)1,...,1/)m}. (6.8)
Suppose that a* € ¥ is a one-form. With respect to the basis 6.5, this form can be written as

(n—m)

N ST ot
j=1 =1
With respect to the cobasis 6.8, this can be written as
(n—m) ' m (n—m) ' '
af = Z afw] —I—Z( Z afmf —l—bf)d)l.
j=1 i=1 =1

Therefore, the subspace [M] € G7, satisfies the one-forms in ¥ if and only if

(n—m)

Z afmg—i—bfzo

j=1
for each one-form o € ¥. In matrix form, this looks like
A*M = B*,
so the set of all solutions forms an affine subset of R(*=m)xm
Next, we can consider a two form % € &
(n=m)(n—m) 1 (n=m) m m_m g
Bh= 30 D0 GET A D0 DU AT YD Se A,
r=1 t=1 p=1 g=1 v=1w=1
Written with respect to the new basis, this equation becomes
(n=m)(n—m) (n—m)

o= T Y Y a0l — bt e | A
p=1

1<I<j<m r=1 t=1

mod {w',... """}

Restricted to the plane [M], this form will be identically zero if and only if the m; satisfy the
quadratic equations

(n—m)(n—m) (n—m)
Do D apmimi+ Y (bymf —bymb) 4y =0
r=1 t=1 p=1
which can be written in matrix form as
MUARM + M'BY — (BYYTM 4 C* =0

with A% = —(A%)T and C* = —(C*)T. Therefore, if a system of exterior equations consists of
1-forms and 2-forms, then the subset of points in G7}, which are solutions will generally be described
by a collection of linear and quadratic algebraic equations. <&



Chapter 7

Bundle Structures

In this chapter, we are going to extend the objects which have been defined in the previous three
chapters with respect to a vector space to analogous objects which are defined with respect to the
tangent bundle of a smooth manifold. In order to do this in a rigorous fashion, we need to introduce a
class of objects called fibre bundles. The first part of this chapter discusses the general definition of a
fibre bundle, as well as the definitions of and constructions for several special classes of fibre bundles
which are analogous to tensor spaces and Grassmann manifolds. The second part of this chapter
discusses the concept of a section of a fibre bundle. The presentation focuses on the sections of the
fibre bundles which are described in the first section, and discusses some of the algebraic operations
which are associated with these sections. A more comprehensive treatment of this material can be
found in the book by Husemoller [15].

7.1 Fibre Bundles

A locally-finite fibre bundle consists of a sextuple (E, B, 7, V, G, A) where

1. E, B, and V are topological spaces called the total space, base space, and standard fibre of
the bundle, respectively.

2. m is a continuous map taking F onto B in such a way that the inverse image of each point
p € B, 771(p), is homeomorphic to V. The set 7=1(p) is called the fibre over p.

3. The space G is a topological group which has an associated left action on V.

4. A is a maximal atlas of charts. A chart is a pair (U, ¥) where U C B is an open subset of
B, and ¥ : 7=}(U) — U x V is a homeomorphism taking fibres of the bundle over U to the
product space U X V. The homeomorphism must induce the identity map on U, so for any
pe U, 7~ p) — {p} x V. An atlas of charts is any collection of charts (U;, ¥;) defined such
that the U; form an open cover of B and such that if (U;, ¥;) and (U;, ¥;) are two charts
which both contain a point p, then (¥; o \Ilj_l)(p) {p} xV — {p} x V is an element of G. An
atlas can be enlarged by adding other charts which satisfy these compatibility requirements. In
particular, there exists a unique maximal enlargement of any atlas consisting of all additional
charts which satisfy the compatibility requirements.

Although B need only be a topological space, we will only be concerned with fibre bundles for
which the base space is a smooth manifold.
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7.1.1 The Tangent Bundle of a Smooth Manifold

In Appendix A, the tangent bundle is defined as the union over M of the set of all point derivations
at each point p € M. Given a smooth manifold M with a coordinate atlas Aas, we can construct
a fibre bundle with base space M and group GL(R™) which is isomorphic to the tangent bundle
which is defined in Appendix A. To do this, we will follow a standard construction which, with
slight variations, will be used to produce all the bundles discussed in this chapter. We will use Az
as an index set and form the disjoint union

N = U(Uz,x)EAMUx x R".
If this set is given the maximal topology such that the inclusion maps
ig :Ug X R" — N

are all continuous, it becomes a smooth manifold. Each point in this manifold is a triple of the form
((Ug,),p,v) where (Up,2) € Ay, p € Uy, and v € R™. We will define an equivalence relation on
this manifold by declaring two points (U, 2), p,v) and ((Uy, ), ¢, w) to be equivalent if and only if

r = 4q
dy
w B pv. (7.1)

We will denote the equivalence class of ((Uy, ), p,v) by [(Uyg, 2),p,v)]. We will let E denote the
set of all such equivalence classes, and endow F with the quotient topology in the standard fashion
to turn it into a topological space. We can define a projection = from F onto M by

T([((Uf’ l‘),p, U)]) — D

and an atlas of charts of the form (U,, ¥,) by
U, 7 N Uy) = Up x R™ & [(Us, %), p,v)] — (p,v).

Using the equivalent relation 7.1, we find that for any pair of charts (Uy, ¥;) and (Uy, ¥,), the

mapping
U, oWt (U, NU,) xR" — (Us NU,) x R"

can be expressed pointwise as

- dy
Wy oWt (pv) = (05 Lo o)),

so that
Wy oW {p1xrn € GL(R™).

This collection of charts can then be extended to a maximal atlas which we denote by A. The
sextuple

T™M = (F,B,x,R", GL(R"), A)

is the desired fibre bundle. If one works through a few computations in local coordinates, it is
not difficult to see how this definition corresponds to the definition of the tangent bundle given in
Appendix A. However, a formal proof that these bundles are isomorphic is rather long and will not
be included here. The interested reader is referred to Spivak [6].
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7.1.2 Tensor Bundles

Once we have defined the tangent bundle as in the previous section, we can, with only slight modi-
fication, produce a bundle of tensors of any order over M. We will denote this bundle by

LEM) = (E,B, 7, LF(R™), GL(R™), A)
where T' € GL(R™) acts on £*(R") through the pull back map
T LMR™) — LF(R™) + w— THw.
As before, we will use Ajys as an index set and form the disjoint union
N :=Uw, oyean Us x L5(R).
Endowed with the maximal topology such that each of the inclusion maps
iy Uy x LX(R™) = N

is continuous, N becomes a topological space. We define an equivalence relation on N by declaring
any two points ((Ug, z),p,w) and ((Uy,y), ¢, 8) to be equivalent if and only if

r = 4q.
_ oy

P

If we denote the equivalence class corresponding to ((Ug,),p,w) by [((Uy,x),p,w)] and denote
the topological space corresponding to the set of all such equivalence classes equipped with the
quotient topology as E, then we can define a continuous surjection # : [((Uy, z), p,w)] — p and local
trivializations

V, 7Y U,) = Uy x Ek(R”) [ (Ug, ), p,w)] — (pyw)
which satisfy

(¥ 0 W) [{p} x LYR") = (g_i_l)*

P

7.1.3 Partial Frame and Coframe Bundles

In the construction for the tangent bundle, we can replace R™ with R®*™ or equivalently R" @
(R™)", and replace the equivalence relation with the equivalence relation

((Ux,l‘),p,M)N ((Uy’y)aQaM) =

r = 4q
) dy
M = — )
oz , (7.3)

where M, M € R™ ™. A point [((Uy, x),p, M)] corresponds to a selection of m tangent vectors at
the point p. Note that this is also equivalent to the condition that the two points (U, z),p,v @ f)
and ((Uy,y), ¢, w ®~) satisfy

v
0
wRy = (_y
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Similarly, in the construction of the tensor bundle £*(R"), we can replace each standard fibre
with the space R™ @ L¥(R"™) and the equivalence relation 7.2 with the equivalence relation

p =
w o= v
_ oy
wRy = v®(6_xp9) (7.5)

where v,w € R™ and 7,60 € L¥(R"™). Any element of R™ @ L*(R") is called a vector-valued k-tensor,
and the corresponding bundle is called a vector-valued k-tensor bundle. A point [((Uy, 2), p, w @ w)]
in this bundle corresponds to the choice of m different k-tensors at the point p.

In both of these constructions, it is sometimes useful to consider only collections of vectors or k-
tensors which are linearly independent. If m < n, the set of all elements of R” @ (R™)* in which the
columns are linearly independent forms a dense open subset of R” @ (R™)*. We will denote this set
by @ C R"®(R™)*. In the construction just outlined, we can replace the standard fibre R” @ (R™)*
with @ and use the same equivalence relation. The resulting bundle is called an m-frame bundle
over M. Similarly, if m < dim(L*(R"™)), then the set of points in the space R™ @ L*¥(R") at which
the collection of tensors is linearly independent forms a dense open subset which we can use as the
standard fibre for a bundle.

7.1.4 Grassmann Bundles of k-planes in R”

In this section, we will once again repeat the standard construction, but this time, we will use the
Grassmann manifold G as the standard fibre.

Suppose that we are given an n-dimensional manifold M together with an atlas of coordinate
charts (U;, z;). We will form a new manifold N which consists of the disjoint union of the manifolds
U; x G%. One can think of this as making a separate copy of the domain of each coordinate chart,
and then forming the product space with the Grassmann manifold of k-planes in R”?. We endow
N with the largest topology such that each inclusion map ¢; : U; x G} — N is continuous. Each
point of the manifold M has the form (z;,p, A) where x; specifies the coordinate chart, p € U;
specifies a point in the domain of z;, and A € (7. We next form an equivalence class on N using
the equivalence relation (z;,p, A) ~ (2., ¢,T') if and only if

l.p=q

2. A= (gzi |p) (T') where @ is the mapping which takes the Jacobian matrix to its correspond-

ing element in PGL(R").

We will denote the equivalence class of (x;,p, A) by [z;,p, A]. The set of such equivalence classes,
endowed with the quotient topology, will form the total space F of the Grassmann Bundle. The
projection 7 is defined pointwise by w([z;,p, A]) = p. Associated with each U;, we can define a
mapping ®; : 771 (U;) — U; x G} by the pointwise assignment ®; ([z;, p, A]) = (p, A), so that the
pair (U;, ®;) forms a chart on the bundle. Finally, for any two charts (U, ®1), (Us, ®2), we have

that at any point p € Uy N Us,
(@3 0®7)(p, A) = Bo([z1,p, A]) =
A)) |
P

o s (2] )= o 2
v oz,

oz,
The U; form an open cover of M, and the charts satisfy the compatibility conditions prescribed in
the definition of a Grassmann bundle, so they form an atlas for the bundle.
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7.2 Sections of Fibre Bundles

A section of a fibre bundle (E, B, #,V, G, A) is a function s : B — F defined such that =(s(p)) = p for
each p € B. In other words, the function maps each point p to an element in the fibre 7=({p}) over
p. The section is continuous if s is a continuous function. If £/ and B are both smooth manifolds,
then the section is said to be smooth if s is a smooth function. A local section over U C M is a
function s, : U — 7~ 1(U) which satisfies the condition that (s, (p)) = p for each p € U.

A vector field is an important example of a bundle section. Other examples of bundle sections
include covector fields, tensor fields, distributions, and codistributions. In this section, we will
discuss each of these types of bundle sections and will develop some algebraic operations defined in
relation to them.

7.2.1 Vector Fields

A vector field X : M — T'M is a section of the tangent bundle TM . If X is of class €, it is called
a smooth section of TM. Recall that with respect to a coordinate chart (U, ) containing a point
p € M, a tangent vector can be expressed as

n

0
Xp = a; %

i=1

Similarly, a vector field X can be locally expressed as

n
: 0
_ g
X(p) = ;a (P57

From this equation, it is clear that the vector field X is C™ if and only if the scalar functions
a' M — R are C.

We will let V(M) denote the collection of all smooth sections of the tangent bundle. We can
give V(M) two different algebraic structures. First, we can turn V(M) into an infinite dimensional
vector space over R. Vector addition on this space is defined pointwise, so for every X1, X5 € V(M),

(X1 + X2)(p) == Xa(p) + Xa(p),

and scalar multiplication is defined pointwise by (aX)(p) := a - X(p) for every a € R. Second, we
can give V(M) the structure of a module over the ring of smooth functions on M, C*°(M). In
this case, addition 1s defined pointwise as above, and scalar multiplication i1s defined pointwise by
aX = a(p) - X(p) for every a € C*°(M).

A vector field provides a geometric description of a differential equation. An integral curve of
a vector field X is a mapping ¢ : (—¢,6) — M whose tangent vector at each point is identically
equal to the vector field at that point. The theory of ordinary differential equations guarantees that
every smooth vector field determines a unique integral curve passing through each point p € M.
Depending on the vector field, the parameter ¢ may be limited, or we may be able to expand the
interval (—¢, ) to be the whole real line.

Given a function h : M — R, we will often be interested in the rate at which h changes along
an integral curve of a vector field. This rate of change is called the Lie derivative of A along the
vector field X. The Lie derivative is denoted as Lx h and is formally defined by the equation

Lxh = X(h).

We can also define a product operation on V(M) called the Lie bracket. Given two vector fields
X and Y, their Lie bracket is denoted by [X,Y] and is defined to be the unique vector field which
satisfies the equation

[X, Y](h) := X(Y(h)) = Y (X(h)).



43

for every h € C°°(p). In particular, if we choose the coordinate functions z*, we get
[X,Y](z") = [X, Y] = ' %X]—Z%Y]
J J

and we therefore obtain
(X, Y](2) = -—X(2) — =Y (x)

The Lie bracket 1s skew-symmetric

and also satisfies the Jacobi identity
(X, [V, 2]+ [V, [Z, X]]+[Z,[X,Y]] = 0.
The Lie bracket and the Lie derivative of a smooth function are related by the following equation
[aX,bY] = ab[X, Y]+ a(Lx b)Y —b(Lya)X (7.6)
for every X, Y € V(M) and every a,b € C*(M).
7.2.2 Tensor Fields
A k-tensor field w is a section of the bundle £*(M)
w: M — LFM).

At each point p € M, w(p) defines a multilinear function mapping k-tuples of tangent vectors in
T,M to R. That is
w(p) : T,M x - -xT,M —-R.

k times

In particular, if w is a section of A*(M), then w is called a differential form of order k or differential
k-form on M. In this case, w(p) defines an alternating k-tensor at each point p € M. We will denote
the collection of all sections of the bundle A*(M) by Q¥(M), and the space of all sections of the
bundle A(M) will be denoted by

QM) = QM) & ..o Q" (M).

At each point p € M, let %, ..., 7% denote standard basis for T, M, and let the 1-forms @

Y P

denote the dual basis defined such that
¢ (P)57) = bij-
Recall that the set of k-tensors defined by
¢I:¢21®¢22®®¢2k

for each multi-index I = (i1, ...,4) form a basis for £¥(7, M) and that the set of all alternating
k-forms defined by

W= AP A LA P
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for each ascending multi-index I = (i1, ...,4) form a basis for A*(T,M). A k-tensor w on M can

be uniquely written as
w(p) = _bi(p)¢' (p)
I
for multi-index I and scalar functions by(p). Likewise, a k-form « can be written uniquely as
a(p) = > er(p)¥ (p)
I

for ascending multi-index I and scalar functions ¢y. The k-tensor w and k-form « are of class C°° if
and only if the functions b; and ¢; are of class C'°°, respectively. Given two forms w € Q¥ (M), 0 €

QY (M), we have
w=>Y brf
I

0="> ey

I

wAO =" et Ay
J

I

Recall that we have defined A°(7, M) = R. As a result, the space of differential forms of order 0
on M is simply the space of all functions f : M — R, and the wedge product of f € Q°(M) and
w € QF(M) is defined as

(wA f)(p) = (f Aw)(p) = f(p) - w(p).

7.2.3 The Exterior Derivative

The differential df of a O-form f is defined pointwise as the unique 1-form which satisfies the equation

df (p)(Xp) = Xp(f)
for every X, € T, M. The operator d is linear on 0-forms; that is,

dlaf+bg)=a-df +b-dg.

This follows from the fact that X, is a linear operator.

Using this operator d, we obtain a new way of expressing the elementary 1-forms ¢%(p) on M.
Let z : M — R” be a coordinate function in a neighborhood of p, and consider the differentials of
the coordinate functions

dxi(P)(Xp) = Xp(xi)~

If we evaluate the differentials dz® at the basis tangent vectors of T, M, we obtain

A (0) () =

and therefore the operator d maps each function z to its corresponding element in the dual basis.

In short, dz'(p) = ¢'(p). Consequently, the differentials dz’(p) form a basis for £L}(T, M) and any
k-tensor w can be uniquely written as

w(p) = _ br(p)dz (p)

for multi-index /. Similarly, any k-form can be uniquely written as

w(p) =Y br(p)dz’ (p)
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for ascending multi-index I. Therefore, any k-tensor w can be expressed in the chart (U, z) containing
p as

Zb; Yzt @ - @ da”

while the k-form « is expressed as
a(p) = Z cr(p)dat A A de™.
i=1
Using this basis, we find that the operator d takes any 0-form f € C°(M) to the 1-form

df Z 8$z

We now have an operator d which takes 0-forms to 1-forms. We would like to extend this operator
to all of Q(M). In order to accomplish this, we will inductively define an operator d : Q¥ (M) —
QFHL(M). We will then prove that this extension is unique in the sense that there is only one
operator d which is compatible with the operator which takes 0-forms to 1-forms and which satisfies
the properties listed in Theorem 7.2.1 below.

Definition 7.2.1 Let w be a k-form on a manifold M which can be described with respect to the
coordinate chart (U, x) by the equation
w= Z ardz!

I

for ascending multi-index I. The exterior derivative or differential operator, d, is a linear map taking

the k-form w to the (k+1)-form dw by

dw = Zda;/\dwl.
I
Notice that each ay is a smooth function whose differential day is defined by
da; = Z %d J

Consequently, we find that for any k-form,

dw_zzaﬂd N

I j=1

One can see from the definition that this operator is certainly linear. The next theorem precisely
states the sense in which this operator is also unique.

Theorem 7.2.1 Let M be a manifold and let p € M. Then the exterior deriwvative ts the unique
linear operator

d: Q¥ (M) — QFL (M)
for k > 0 that satisfies
1. If f 1s a O0-form, then df s the 1-form

2. Ifwt € QF(M),w? € QY(M), then
d((.u1 /\wz) =dw! Aw? + (—1)kw1 A dw?

3. For every form w, d(dw) = 0.
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Proof: Property (1) can be easily checked from the definition of the exterior derivative. We now
prove property (2). Because of linearity of the exterior derivative it suffices to consider the case
w! = fdz! and w? = gdz’ in some chart (U, z). We have
dw' Aw?) = d(fg) Adet Adx?

= gdf Ade! Ndz? + fdg A det A de?

= dw' A+ (=)F fde! ANdg A dax?

= dw' AW+ (=1)Fwt A dw?

We now prove property (3). Again it suffices to consider the case w = fdz! because of linearity.

Since f is a 0-form,

n

d(df) = (Y (D )de’) =Y > Di(D; f)de’ A da?

ji=1 i=1 j=1
= (Di(D; f) = Di(Dif))de’ Ade? =

where D; f is the standard derivative %. If w= fdz' is a k-form, then dw = df A dz!, and since

d(dz’) = d(1 A de") = d(1) Adx" =0,
we get
d(dw) = d(df) A de* — df Ad(dz") = 0.

We now show that d is the unique linear operator with the above properties. Assume that d’
is another linear operator with the same properties. Consider again a k-form w = fdz!. Since d’
satisfies property (2), we have

d'(fde"y = d'f Ade! + f A (dzh).
From the above formula, we see that if we can show that d’(dz!) = 0, then we will get
d'(fde") = d'f ANde' = d(fdx")
which will complete the proof. We therefore need to show that
d'(dz* A .. ANde®) = 0. (7.7)
Both d and d’ satisfy property (1), so we must have
del =de" A Ade™ =dz AL A Nd e = de!

since the coordinate functions 2’ are 0-forms.
We prove equation 7.7 by induction. It can be easily checked to hold for k¥ = 0. Assume that
equation 7.7 holds for £ — 1. Then define

n=de’A.. Adz*.
Then ' ' '
d'(de’y = d'(d'z ANd'z™) = d'(d'z) Ay —d'z;, Nd'n =0
since d’ also satisfies property (3) and d'n = dn by the induction hypothesis. a
Now let f: M —— N be a smooth map between two manifolds. We have seen that the push
forward map, fs, is a linear transformation from 7, M to T,y N. Therefore, given tensors or forms

on Ty,y N, we can use the pull back tranformation, f*, in order to define tensors or forms on T, M.
The next theorem shows that the exterior derivative and the pull back transformation commute.

Theorem 7.2.2 Let f: M — N be a smooth map between manifolds. If w is a k-form on N, then
Fdw) = d(f*w)
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Proof: See Spivak [6] pages 295-296. O
We can define the interior product of a tensor field and a vector field pointwise as the interior
product of a tensor and a tangent vector.

Definition 7.2.2 Given a k-form w € Q¥(M) and a vector field X, the interior
product or anti-derivation of w with X is a (k — 1) form defined pointwise by

(X(p) S ) (01, - vem1) = (P (X (). v, v5-).

Therefore, an antiderivation of a k-form w simply substitutes the first argument with the given
vector and thus results in a (k-1)-form.
The following lemma establishes a relation between the exterior derivative and Lie brackets.

Lemma 7.2.1 (Cartan’s Formula) Let w € QY(M) be a 1-form and X,Y € V(M) be smooth
vector fields. Then

do(X,Y) = X(w(¥)-Y(w(@) - w(X,Y])
= X1dYVdw)—-Y dd(X dw) — [X,Y] dw.

Proof: Because of linearity, it is adequate to consider w = fdg. The left-hand side of the above
formula is
dw(X,Y) = df Adg(X,)Y)
df(X) - dg(Y) = df(Y) - dg(X)
= X(f)-Y(9)—-Y(f) X(g)

while the right-hand side is
X(w(Y)) =Y(w(X)) —w(X,Y]) = X(fY(9) = Y(fX(g)) — f(XY(9) =Y X(g))
= X()-Y(9) =Y X(9)

which completes the proof. a
The Lie derivative of a differential k-form w € QF(M) with respect to a vector field X is defined

by the equation
Lxw:=X Jdw+d(X Jw). (7.8)

Lemma 7.2.2 The operator Lx(+) : Q(M) — Q(M) satisfies the following properties
1. For every a,b € C*°(M),
Lox(bw) = abLlxw + a(Lxb)w + bda A (X Jw)
2. Lx(w' Aw?) = Lxw! Aw? + wh A Lxw?
3. Lxdw=dLxw.
Proof: FEach of these statements can be verified directly using equation 7.8 together with the

properties of the exterior derivative and the interior product. a
Finally, we have the following result.

Lemma 7.2.3 Let v,r € V(M) be two vector fields over M. The operator
Ly(rd(:))—rdLy(-) : QM) — QM) (7.9)

1s equal to the operator

[v,7] J(+) : QM) — Q(M).
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Proof: Let K denote the set of all ascending k-tuples in {1,...,n} and w € Q¥(M) be any k-form
which can be described relative to the basis

{dz',. .. dz"}

by the equation

w = ardz’
> ag

IeK

where I = {iy,...,ix} and ' '
del =da' A A da.

If we compute
Ly(rJw) — r J(Lyw),

we get

Ly(r Z aIde) — rJLU(Z aIde) =

IeK IeK

Z (Lv(aj)(rJ de) +arLy(rJ de) — Ly(ar)(rJ de) —ay(rJ Lvdxl))

= Z ar (Lv(rdeI) — Lvdxj) .
IeK

We also have that

[v, r] 4 (Z arde’) = Z ar([v,r] 2 dz’),

IeK IeK

so the operators are equivalent if they are equivalent on a set of basis elements da’.
If dz’ is any 1-form in the cobasis, then Cartan’s formula gives

0=vdrddode’ =rJdd(vdda’)y —vdd(rdda’) + [v, 7] Jdz’.
Moving the first two terms on the right over to the left, we have

vdd(rdde’) —rJdd(vdde’) = [v,r]dda’

= Ly(rdde’) —rJ Lydet = [v,r]Jddz’.

So the operators are equivalent on the set of 1-forms. Suppose that the operators are equivalent on
the set of k-forms. Let I € K be any ascending k-tuple. If dz’ is any basis element for which ¢ ¢ I,
then the form dx’ A dz! is a basis element for the (k + 1)-forms. We first compute

Ly(rJ(da’ Adal)) = Ly ((r Jda®)da’ — dz® A (r 2 dat))

= Ly(r dxi)dxl +(rJ da:i)Lvde — Lydz' A (r da:I) —dz' A L, (r da:I). (7.10)

Similarly, we can compute
rJ Lv(dxi A da:I) =r ((Lvdxi) A da:I) +rd (dxi A Lvdxl) =

(r (Lvdxi))dxj — (Lvdxi) A(rd da:I) + (rJ dxi)Lvde —dz' A (rJ Lvdxl). (7.11)

Finally, subtracting equation 7.11 from equation 7.10, we get
Ly(r (dxi A de) —rd Lv(dxi A de) =

Ly(r dxi)dxl —dz' A L, (rJ da:I) —(rdJ Lvdxi))dxl +dz' A (rJ Lvdxl)
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which can be rearranged to give
= [Ly(rddz®) — (r J Lyde®))|de! — da' A [Ly(r 2 da’) — (r 2 Lyda?)).

Using the fact that the operators are equivalent on 1-forms together with the induction hypothesis,
the above expression can be rewritten as

([v, r] d da®)dat — da® A ([v, 7] 2 de?) = [v, 7] D da’ A da .

So the two operators are also equivalent on (k + 1)-forms; and by induction, this must be true for

all k. |

7.2.4 Distributions and Codistributions

A smooth k-dimensional distribution is a smooth section of the Grassmann bundle of k-planes over a
manifold M. Similarly, a smooth k-dimensional codistribution is a smooth section of the Grassmann
bundle G%*M(M) whose fibres over a point p € M consist of all k-dimensional subspaces of Ty M.

In general, a Grassmann bundle may not have a smooth section. For example, consider the
Grassmann bundle of one-dimensional subspaces over the two-sphere G%(5?). This is a well-defined
Grassmann bundle whose fibres above any point p € S? consist of all the one-dimensional subspaces
contained in 7,5%, but the topology of S? does not admit a smooth mapping f : S? — G%(5?)
which satisfies m o f(p) = p. However, locally a Grassmann bundle will always have a smooth
section. Therefore, when working with distributions, we will often restrict our discussion to an open
neighborhood U C M over which a section exists. When dealing with the tangent bundle or a tensor
bundle, we do not have to worry about the existence of a smooth section because the zero section
always exists, but the topology of the base manifold may still place restrictions on the form of the
sections. For example, the tangent bundle of the two-sphere has smooth sections, but every section
must have at least one zero point.

In order to get around this complication, a distribution is often defined as the pointwise span
of collection of smooth vector fields. Since the dimension of the subspace spanned by a collection
of vector fields may change as the base point is varied, a distribution defined in this way need not
correspond to the section of any Grassmann manifold. Any point at which the span of the vector
fields 1s maximal is called a regular point of the distribution, and all other points are called singular
points. There 1s a neighborhood around any regular point on which the pointwise span of the vector
fields coincides with a local section of a Grassmann bundle.

A third way to define a distribution or codistribution is as C°°(M ) submodule of V(M) or Q' (M),
respectively. This 1s the definition which will be adopted for the remainder of this section. This
definition is not quite equivalent to the second definition. In order to see this, consider the two vector
fields x(,?—x and ng’—x which are both defined over the manifold R. Pointwise, these vector fields span
the same subspace, so according to the second definition, they define the same distribution. However,
they do not generate the same submodule of V(R ) since the vector field -2 ¢ span {a?2}. If the
dimension of the pointwise span of the submodule is constant on a neighborhood, U C M, then this
definition is locally equivalent to the other two.

Given a collection of vector fields vy, ..., v, defined over a smooth manifold M, their span is the

C* (M) module defined by

span{vy, ..., v} :={v € V(M) | v =d'v; a' € C®(M)}.

Similarly, given a collection of covector fields w', ..., w" defined over a smooth manifold M, their
span is the C°° (M) module defined by

span{w! ... W™} = {w € QN M) |w = ajw’ a; € C°(M)}.

For the remainder of this section we will define a smooth distribution to be any C'*°(M) submodule
of V(M) and a smooth codistribution to be any C°°(M) submodule of Q(M).
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Given two smooth distributions A; and As, their sum will be denoted by Ay + A and defined
by
Ay + Ay :=span{v E V(M) |v=wv1 +v2, v1 €Ay and va € As}.

The smooth intersection of A; and Ay will be denoted by A; N As and defined by

ANAy:={veV(M)|veA and v € Ay}

Similarly, given two smooth codistributions /; and Iy, their sum will be denoted by 77 + 15 and
defined by
I + I := span{w € Ql(M) |w el orwé€ I}

The smooth intersection of I; and I, will be denoted by I; N I; and defined by

LNk ::{wEQl(M) |wel and w € Ir}.

It is straightforward to verify that the smooth intersection of a distribution or codistribution is
closed under modular addition and scalar multiplication; hence, it forms a submodule of V(M) or
QLY(M), respectively.

Finally, we will denote the smooth perp of a smooth distribution A (codistribution I) by A+
(It) and define it by

I ={veV(M)|vdw=0foralwe I}
At ={we Q' (M) |vdw=0forallve A}

Given any two subspace V7 and Vs of a finite-dimensional vector space V', the following relation-

ships hold

vhHt = n» (7.12)
Vi+W)t = vinvt (7.13)
Vinv)t = vit4+vit. (7.14)

We want to investigate the extent to which similar relationship hold between the operations
which we have defined for distributions and codistributions. Restricted to a point p € M, a dis-
tribution “looks” like a subspace of a finite-dimensional vector space, and a codistribution “looks”
like a subspace of the dual space to a finite-dimensional vector space, so we should expect similar
relationships to hold. However, there are some subtleties involved which are related to the fact that
we are working with C'*°(M )-modules rather than vector spaces.

Lemma 7.2.4 The following relationships hold between the sum, intersection, and perp of a smooth
distribution or codistribution. Let D, D1, and Dy be smooth, finitely-generated distributions or
codistributions.

1. Dc (DH)*t.

2. If D has constant dimension on an open set U, then, restricted to U, D = (D1)L.

3. (D1 + D2)t = DL nDF.

4. D + Dy C (D1 N Do)t

4. If Dy, Do, and Dy N Dy have constant dimension on an open set U, then, restricted to U,

(Dy N Do)t = Dt + DE.
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Proof: The first statement follows directly from the definition of the perp,
(DYt ={veV(M)|vdw=0Vwe DY

Since w € D+ implies that v Jw = 0 for all v € D, it follows that D C (D+)L.

Assume that, restricted to U, D is a constant dimensional, finitely-generated distribution. Since
D has constant dimension on U, for every point p € U, there exists an open neighborhood U, and
a coordinate chart (z,U,) such that the following conditions hold

1. The matrix of coefficients for the local representation of the generators can be written in the
form
Ay(z)
Az(l‘)
where As(#) has full rank.

2. Every element of D can be uniquely written as a linear combination of the columns of A(z).

3. The span of the columns of A(x) is equal to the span of the columns of

[ Al(x)}‘lle(x) ] |

If we form the block-triangular matrix

po=[ 4]

then the columns of B(x) span V(U,) and the rows of the inverse matrix
—1 _ I —Al(l‘)Az_l(l‘)
= [ UG

span ©'(U,). Consequently, any w € Q*(U,) can be written uniquely as some linear combination

w(z) = i Z cj(x)bg(x)dxi + Z ck(x)dxk.

k=n—-m+1

If w € DY, then vdw = 0 for all v € D. This can only happen if ¢x(z) = 0 for k > n — m.
Consequently,

Dt = span{z bg(x)dxi}, j=1,...,n—m.
i=1

If we repeat the same argument starting with D+, then we find that, restricted to Up, D= (D)L,
This construction can be repeated in an open neighborhood of every point p, so it must hold true
on all of U. Furthermore, if v1,...,v, are generators for D and vy, ..., v, are generators for Q(U),
then vy, ..., v, are generators for Dt

To prove the second statement, we begin by noting that

D1 C D1 =+ D2
D2 C D1 =+ D2

which implies that

(D1 + D)t C Df
(D1 + Do)t C Df
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and

(D1 +Ds)* C DynDi.
To prove equality, we also have to show that

Dy NDE C (Dy+ Do)t

Ifwe Dg‘ N Df‘, then by definition, v; Jw = 0 for all v1 € Dy and voJw = 0 for all vo € D5.
Consequently,
(- v1+ 5 v2) Jw=0

for arbitrary a, 8 € C*°(M). Every vector
v €& D+ D>y

can be written as v = o - vy + 3 - vy for some «, § € C°(M), v1 € Dy, and vy € Ds. Therefore,
w € (D1 + DQ)J‘.
To prove the third statement, we follow a similar sequence
DinDy, C Dy
DinDy C Dy

which implies that
Dy
Dy

(D; N Do)t

C
C (DinDy)t

and

Di + Dy C (DinDy)*t

If D; and D5 have constant dimensions on U, then (Di)t = D; and (D#)* = D,. From the
second statement, we have that

(Dt + D)t = (D)t n(Dy)*
which implies
(D + Dy)* C (DY)t n(Dy)*
The equality of the distributions with their double perps implies
(DY + D)t € DiNDs.

and
(D1 N Do)t C ((DF + Dy )h)*.

Since DN D3 has constant dimension, so does (Di + Dy )1, and we must have that ((Di +D$)4)t =
(Di + D7). This implies that
(D1 N Dy)*t C Dif + Dy.

Since we always have that
Di + Dy C (DN D),

we can conclude that, restricted to U,

(D10 Do)t = D + Dy
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Example: The first example illustrates that D can be a proper subset of (D1)L. Let (z,y) be
the standard coordinates on R?. Consider the distribution defined by D := span{yzg’—x}. The perp
of this distribution 1s defined by

D+ = {a(x,y)dz + b(x,y)dy € Q' (R?) | v (a(x, y)dz + b(x, y)dy) Vv € D}.

Consequently, if a(z, y)dz + b(x,y)dy € DL | then for every c(z,y) € C°(R?), the equation

0
(e(, y)yza—x) d(a(z,y)de + b(x,y)dy) =0
must hold. This can be rewritten as

a(zx, y)e(z, y)y* + b(x,y) -0 = 0.

The coefficients a(z,y) = 0, b(z,y) = 1 obviously satisfy this equation, so dy € D*. Furthermore,
any w € D+ with a(z,y) = 0 can be written as a scalar multiple of dy. We still need to determine
if there are any elements of DL with nonzero a(z,y) coefficients. If so, then the function a(z,y)
must satisfy a(z, y)e(z, y)y? = 0 for all ¢(x,y) € C°(M). In particular, this equation must hold
when e(z,y) = 1. Wherever y # 0, the function a(x,y) = 0, since this holds on a dense subset
of R?, the continuity of a(z,y) implies that the zero function a(z,y) = 0 is the only solution. So
Dt = span{dy}. A similar argument shows that (D+)+ = span{g’—x}. The distribution D is a proper
subspace of (D1)1 because dy cannot be written as any c(z, y)(y?dz). &

Example: The second example illustrates that Di- 4+ D3 can be a proper subset of (DaN Dy )L . Let
(z,y,7) be the standard coordinates on R®. Let D := span{%, x% + %} and Dy = span{%, %}.
Then Di = span{dx — zdz}, Dy = span{dz}, and D; N Dy = span{%}. Computing (D; N D)t
and Di + D, we find that (D; N D2)t = span{dz,dz} while D{ + D+ = span{dr — zdz,dz} =
span{dz, zdz}. The distribution span{da,zdz} is a proper submodule of span{dx,dz} since dz is
not an element of span{dz, xdz}. <&

7.2.5 Closure Properties of Distributions and Codistributions

We can define operations on smooth distributions and codistributions which are induced by the Lie
bracket and Lie derivative. In this section, we will define these induced operations, and examine
some closure properties which are related to them.

Let A and T' be two smooth, nonzero distributions and I a smooth codistribution. We will define
the submodules [A,T] and LaT as follows

1. [A,T]:=span{v € TM | v = [r, s] for some r € A /s € T'}.

2. Lal :=span{w € T"M |w = L.« for some r € A o € I}.

Lemma 7.2.5 Let vy,...,v, be a collection of linearly independent vector fields which span a dis-
tribution A and r1, ..., 7y a collection of linearly independent vector fields which span a distribution
L. Then

[A T C spand{[vi,rj], v, i} 1 k=1,...,n jl=1 ... m.

Furthermore, if A and ' have constant dimension in a neighborhood U of a point p, then there exists
a neighborhood V.C U of p on which

AT = spand{ (v, rj], v, 71} G k=1,...n, jl=1,...,m
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Proof: The proof of the first statement follows from the following identity. For any v,r € TM
and any a,b € C=(M),
[av, br] = ablv, r] + (Lyb)ar — (Lya)bv. (7.15)

Let A := span{[vi, 7], v, }. For any v € A, v € T, and [v, 7] = [a’v;, b/r;], by equation 7.15 we
have that . . . . . . . . ~
[a'vi, b/ r;] = a't [vg, 7] + (Lo, 0 )a'rj — (Ly;a" )b vy € AL

To prove the second statement, we need to show that locally, [A T] C A. Pick any pair of basis
vectors v; € A, r; € I'. By definition, [v;, ;] € [A,T]. Now pick any a € C*°(M) such that locally
a# 0 and L,;a # 0. The vector field [av;, ;] € [A,T] again by definition. Consequently, the linear
combination

a 1
m[viﬂ”j] - m[avi,m] =r; €[AT].
The same argument can be used to show that locally v; € [A T]. i
Lemma 7.2.6 Let vy,...,v, be a collection of linearly independent vector fields which span a dis-
tribution A and w', ..., w™ a collection of linearly independent covector fields which span a codis-

tribution I. If A C I'*, then
LAl Cspan{Ly,w’ w*} ik=1,...0n j=1,...,m.

Furthermore, if the dimension of A is greater than zero wn a neighborhood U of a point p, then there
exists a neighborhood V. .C U of p on which

Lal =span{L,w’ &*} i k=1,...,0n j=1,...,m.

Proof: The proof of the first statement uses the following identity. For any v € V(M), any
w e QY M), and any a,b € C*°(M),

Law(bw) = abLyw + (Lyb)aw + (v Jw)bda. (7.16)

Let I := span{L,w’ w"}, ik =1,...,n,and j = 1,...,m. For any w € I and any v € A,
Lyw = Lg4iy, b0’ and by equation 7.16 we have that

La,vlbjwj =a't/ L, w + (Lvlbj)aiwj + b (vs ij)dai el

which is in I since by assumption v; Jw’ = 0.

To prove the second statement, we have to show that locally I € Lal. Pick any nonzero v; € A
and any w’/ € I. By definition, L,,w’ € Lal. Now pick any b € C°°(M) such that locally b # 0 and
Ly;b# 0. Then the linear combination

b o
Ry S -
[

Ly, (bw’) = w! € Lal
O

Lemma 7.2.7 Suppose that J is a codistribution which is a subspace of A+ NI, then the following
statements are equivalent

1. LaJ C I
2. LynJC At
3. (AT Tt
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Proof: (1 < 2) Since J C At NI, AJJ =0and It 1J = 0. Therefore, LxJ = AJdJ and
Lyod =1t JdJ.
If LaJ = AddJ C I, then we must have

I J(AJd)y=Ad1(I1dN)=0
which implies that I+ JdJ C A+. A symmetric argument gives the reverse implication.

(2 < 3) Using Cartan’s formula and the facts that J C I, J C AL,
AT JdT =[A T 1T =0

which implies that
A T c Tt

O

Lemma 7.2.8 Guwen a smooth codistribution I and a smooth distribution A, there exists a unique
mazimal codistribution J* C INAL which satisfies LaJ* C I. Furthermore, J* = [A, It]tNINA*L.

Proof: Consider the collection K of all codistributions which satisfy this property. The collection
contains {0}, so it is not empty. Let Jy, Jo € K| then

LaJi+ Lady = LA(J1 + Jz) cl,

so K is closed under subspace addition. Therefore, it must contain a unique element of maximal
dimension.

The lemma assumes that J* C I N A*, and using Lemma 7.2.7, we know that [A, I+] C J*t,
or equivalently, that J* C [A,I1]*. Therefore, we must have J* C [A, [*]* N TN AL Let
J =[A, - NnINAL. Using Cartan’s formula, we have that

A Y aT=A0t Jd(J)=0.

From this, we infer that

LA(J) C 1.

From the maximality of J*, we conclude that JcJ* Consequently, we must have that
A, TP NInAt =g
O

Lemma 7.2.9 Guwen two smooth codistributions I and J satisfying J C I, there exists a unique
mazimal distribution A* C It which satisfies

LaJ c 1. (7.17)

Furthermore, (I + Ly J)t = A*.
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Proof: Let § denote the set of all distributions which satisfy equation 7.17. This set is not empty
since {0} always satisfies the condition. Suppose that A; and A5 are both in §. Tt follows from this
that
La,J+La,J = (Al + AQ)J dJ = L(A1+A2)J cl,
so the collection § is closed under subspace addition. Therefore, it contains a unique maximal
element.
Let A* denote the maximal element of §. Using Lemma 7.2.7, we know that

LaxJ C I L C A*L.
Since the lemma assumes that I C A*L we must have
(LynJ+T) C A — A" C (LpnJ + D).

Define K := Ly J + 1. Clearly, Ly J C K. Using Lemma 7.2.7, this implies that Lg.J C 1.
From the maximality of A*, we must have K+ C A*. From this, we conclude that (I4+L;.J)t = A*.
O

Involutivity

A distribution 1s said to be involutive if and only if it 1s closed under the Lie bracket operation, so
that [A, A] C A. A codistribution 7 is involutive if and only if L;. T C I.

Lemma 7.2.10 The following facts concerning involutivity hold

1. Gwen two wmvolutive codistributions I and J, the codistribution I + J s also involutive.
2. Gwen two wnvolutive distributions A and T, the distribution ANT is also involutive.

3. Given a codistribution I, there exisls a unique mazimal involutive codistribution I which is
contained i 1.

4. Gen a distribution A, there exists a unique minimal involutive distribution A which contains

A.

Proof: These results follow directly from the definition of involutivity. a

A distribution A is said to be completely integrable at a point p € M if and only if it has constant
dimension on a neighborhood U C M of p and at each point ¢ € U, there exists a submanifold N of
U which contains ¢ whose tangent space 7, N = A(r) at each point » € N. The submanifold N is
called an integral manifold of the distribution A.

Similarly, a codistribution 2 is said to be completely integrable at a point p if and only if it
has constant dimension on a neighborhood U C M of p and at each point ¢ € U, there exists a
submanifold N of U which contains ¢ whose cotangent space T*N = (r) at each point »r € N. The
submanifold N 1s called an integral manifold of the codistribution .

The following fundamental result, called the Frobenius theorem, provides us with a condition
under which a distribution or codistribution is completely integrable.

Theorem 7.2.3 (Frobenius Theorem) An m-dimensional distribution A is completely integrable
on a neighborhood U C M if and only of it is wmvolutive on U. Furthermore, if A 1s completely
integrable, then there exists a set of local coordinates ', ... ™, 2™t . . 2" defined on U such that
2
x
An m-dimensional codistribution € 1s completely integrable on a neighborhood U C M if and

only if it 1s involutive on U. Furthermore, if Q 1s completely integrable, then there exists a set of
local coordinates ', ... 2™ 2™t . 2" defined on U such that

Q = span{dz',. .. dx™}.

0
A= span{@, ..



Proof: See Spivak [6].
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Chapter 8

Exterior Differential Systems

In this chapter, we will extend the exterior algebra presented in Chapter 6 to a smooth manifold. We
will then discuss exterior differential systems which are the counterparts in this setting to systems
of exterior equations over a vector space.

8.1 The Exterior Algebra on a Manifold

The space of all forms on a manifold M,
QM)=Q"(M)&...e Q" (M),

together with the wedge product is called the exterior algebra on M. An ideal of this algebra is
defined in Section 6.1 as a subspace I C Q(M) which satisfies the requirement that if & € I, then
aApBelforany g€ Q(M). We will call this the algebraic ideal generated by X.

We are also interested in what happens when we perform exterior differentiation on the elements

of the ideal.

Definition 8.1.1 An ideal I C Q(M) is said to be closed with respect to exterior differentiation if
and only if

o€l =dael
or more compactly dI C I. An ideal which is closed with respect to exterior differentiation s called
a differential ideal

A finite collection of forms ¥ := {a',... o} generates an algebraic ideal

K
Is ={w e QM) |w= Zﬁi Ao’ for some 0° € Q(M)}.
i=1
We can also talk about the differential ideal generated by X.

Definition 8.1.2 Let Sy denote the collection of all differential ideals containing 2. The differential
tdeal generated by X 1s defined as
Iy:= () L.

IeSy

Theorem 8.1.1 Let X be a finite collection of forms, and let Ts. denote the differential ideal gen-
erated by . Define the collection

Y =Xuds
and denote the algebraic tdeal which it generates by Is:. Then
Is = Iss.

58
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Proof: By definition, Zx is closed with respect to exterior differentiation, so ¥’ C Zx. Conse-
quently, I C Ix. Conversely, the ideal s/ 1s closed with respect to exterior differentiation and
contains X by construction. Therefore, from the definition of Zx;, we have that 7y C Is:. a

8.2 Exterior Differential Systems

In Section 6.2, we introduced systems of exterior equations on a vector space V and characterized
their solutions as subspaces of V. We are now ready to define a similar notion for a collection
of differential forms defined on a manifold M. The basic problem will be to study the integral
submanifolds of M which satisfy the constraints represented by the exterior differential system.

Definition 8.2.1 An exterior differential system is a finite collection of equations

at=0,...,0" =0,da* =0,...,da" =0

where each o' € Q¥(M) is a smooth k-form. A solution to an exterior differential system is any
submanifold N of M which satisfies o/(p)|TpN = 0 and do/(p)|TpN =0 for allp € N and dll
iel,...,r. An integral k-plane is a point A, € G} (M) which satisfies the equations o/(p)|Ap =0,
do/(p)|Ap =0 forallicl,... r.

Theorem 8.2.1 Given an exterior differential system
ol =0,...,08 =0 (8.1)
and the corresponding differential ideal I, generated by the collection of forms
Yo={al, ..., of dat, ... do®}, (8.2)

an integral submanifold N of M solves the system of exterior equations if and only if it also solves
the equation m# = 0 for every w € Z4.

Proof: If an integral submanifold N of M is a solution to X, then forallz € N andalle e 1,..., K,
Ozi(l‘)|TzN =0.

Taking the exterior derivative gives '
do/(x)|TZN =0.

Therefore, the submanifold also satisfies the exterior differential system
at=0,...,a8 =0,dat =0,...,do" = 0.

From Theorem 8.1.1, we know that the differential ideal generated by X is equal to the algebraic
ideal generated by the above system. Therefore, from Theorem 6.2.1, we know that N will also be
a solution for every element of Zs.

Conversely, if N solves the equation # = 0 for every 7 € Iy, then in particular it must solve X.
O

The above theorem allows us to either work with the generators of an ideal or with the ideal
itself. In fact, some authors define exterior differential systems as differential ideals of Q(M).

Because a set of generators % generates both a differential ideal 7y and an algebraic ideal Iy,
we can define two different notions of equivalence for exterior differential systems.

Definition 8.2.2 Two exterior differential systems, X1 and Xo, are said to be
algebraically equivalent if and only if they generate the same algebraic ideal, 1.e., In,, = Is,.

Definition 8.2.3 Two exterior differential systems, X1 and Xo, are said to be
equivalent if and only if they generate the same differential ideal, i.e., Is, = Iyx,.

Intuitively, we want to think of two exterior differential systems as equivalent if they have the same
solution set. Therefore, we will usually discuss equivalence in terms of this second definition.
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8.3 The Cauchy Characteristic Distribution

In Chapter 6, we introduced the associated and retracting spaces for a system of exterior equations.
We will now introduce analogous concepts for an exterior differential system.

The associated space and retracting space of an ideal in Q(M) are defined pointwise as in Section
6.2. The associated space of a differential ideal 7 is called the Cauchy characteristic distribution and
is denoted by A(Z). The main result of this section is a theorem which uses the Cauchy characteristic
to find a set of generators ¥/ which is equivalent to ¥ and can be described using a minimal set of
coordinate functions. Before stating this theorem, we will first prove that the Cauchy characteristic
distribution is involutive.

Theorem 8.3.1 The Cauchy characteristic distribution is involutive.

Proof: Let 7 be a differential ideal. By definition, a vector field v € V(M) is contained in the
Cauchy characteristic distribution A(Z) if and only if

vdT CT.
Given any two vector fields v,r € A(Z) and any k-form w € 7, we can apply Lemma 7.9 to compute
[v,7] Jw = Ly(r Jw) —r J Lyw

=vddrdw)+dvIrdw)—rJdvddw—rJdd(vIw).

Since 7 is closed with respect to the d operator and the v 1 and r J operators, we find that

[v,r]Jw e T.
Since w was arbitrary, this implies that
[v,r] 4T C T.
Hence, for any v, r € A(Z), we have that [v,r] € A(T), so A(Z) is involutive. a
If the Cauchy characteristic distribution has constant dimension s on a neighborhood U, then
the Frobenius theorem says that there exists a set of n — s smooth functions y', ..., y"~* whose
differentials span the retracting space C'(Z) = A(Z)1 on this neighborhood. If we add an additional
set of functions x', ..., 2° so that the y’s and z’s taken together form a coordinate chart over U,
then the retraction theorem, Theorem 6.2.2, says that at each point p € U, we can construct a set
of generators for Z which only involves the 1-forms {dy!, ... dy"~*}. Each k-form generator in this

set can be written with respect to the dy as

w= Z ar(z,y)dy' . (8.3)

IeK

The following theorem considerably strengthens this result by showing that there exists a set of
generators of the form 8.3 in which the coefficients are also only functions of the y coordinates.

Theorem 8.3.2 Let T be a finitely generated differential ideal whose retracting space C(I) has

constant dimension s = n — p. Then there s a neighborhood in which there are coordinates
(zt .. 2Pyt oo y®) such that T has a set of generators that are forms in y, ... y° and their
differentials.

Before proving this theorem, it may prove helpful to discuss its geometric significance. Suppose
that Z 4 1s an exterior differential system which is defined over a smooth manifold M. If the Cauchy
characteristic distribution has constant dimension in a neighborhood U of some point p € M, then
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there exists a foliation of smooth manifolds in U and a coordinate chart defined on a neighborhood
V C U of p with component functions (z!,... 27, y*, ... y*). Each leaf of the foliation is described
by the equations y* = ¢!, ... y* = ¢* for some vector of constants (¢!, ... ¢*). Restricted to the
neighborhood V, this relationship defines a smooth surjection v : V. — R*. Ifw =3 ;4 ar(y)dy!
is any form on R?, then its pullback to V will still be described in local coordinates by y*w =
EIeA ar(y)dy!. Therefore, Theorem 8.3.2 can be interpreted as saying that there exists a set of
generators for Z which locally coincide with a set of forms which have been pulled back from R*.

The proof of Theorem 8.3.2 will make use of the following lemma.

Lemma 8.3.1 Let s,n, and p be positive integers satisfying the equation s = n —p. Let U CR™ be
an open subset with local coordinates x*, ... aP y' ... y*, and let By,..., B, be a set of p smooth
functions taking U to R™". There exists a function D : U — R"™ " which satisfies the partial

differential equation
-

aD;c il
oot =Y DiBj, (8.4)
=1

of and only if
aBl aBlk‘ - v v
L =+ Z(B‘;’UBtk - Bngjk) =0 (8.5)

v=1

Oxi Oxt

for 1<l k<randl<jt<p.

Proof: The necessity of this condition can be seen taking the second partial derivatives of equation

8.4 and then using equation again 8.4 to substitute for %Ix)t’l.

0°D; - l l
— = Bjy, D
oxtoxi - Z U ox t

:ZZDi k+ZDlat'

=1 v=1

Permuting the ¢ and j indices and subtracting gives
azD;c azD;c - 13 { v aBtk 7 v aBl
Oxidaxt  Oxtdel Z: Di ZB B - D Z By, B + N

Since the matrix Df 1s nonsingular, this implies equation 8.5.
To prove the sufficiency of this condition, we will work on the space F'U := U x R™". At any
point (z,y, D), the tangent space T(, , p)F'U is locally spanned by the vector fields

d d a 0 a 0 6}

Tiwy p FU = - , - A .
(.9,0) Span{am aDY 9DZ’ " aDr oyl By Ozl Qar

We will consider the distribution A defined with respect to this basis by the last p columns of the
matrix

Lo xre 0 22:1 Df; Bi)k T 22:1 Df; B;;)k
0 Isxs 0 0
0 0 1 0
0 0 0 0
0 0 0 1
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The inverse of this matrix is given by

Laxee 0 =30 DBy o =30 DyBy,
0 T 0 0
0 0 1 0
0 0 0 0
0 0 0 1

which implies that At is spanned by the covectors

P r P r
At =spandy', .. dy*,dD} = > DyBjdal, ... dD; =Y N " DB dal ;. (8.6)

j=lwv=1 j=lwv=1

Taking the exterior derivative of the dD] — ?:1 Sy D})B}fldxj € At we find that

d(dD} — Z Z D, B da?) Z Z BYdD} Ada’ = > " DIdBY, Ada. (8.7)

j=lv=1 j=lv=1 j=lv=1
Examining the first term on the right, we find that
por ' P r P r '
=3 > BjdDyAde? = =N "B (ZZD;B,QU) da' A de? mod At
j=lv=1 j=lv=1 =1 ¢=1

Similarly, expanding the second term on the right gives

p r p r p v
=3 > DldBl Ade? = =Y > D] (Z aaif'll) da' A dz? mod AL

j=lwv=1 j=lwv=1

Collecting terms, we find that

4

d(dD} —ZZT:D BYdx) ZP:ZP:(Z Dl( ” +Z B,”q)) da' A dz’ mod At

j=lwv=1 j=11=1

- Z (ZT:D}) (aﬁBxl 835] +ZT: 1 Biy — ZBq By )) dz' A de? mod AL,
4=

1<i<j<p \w=1
If equation 8.5 is satisfied, then we find that

d(dD}! — ZP:ZD BYyda’) = 0 mod At

j=lv=1

If we carry out these computations for each basis element of AL, we find that the codistribution
satisfies the Frobenius condition. Consequently, the Frobenius theorem guarantees that there exists
a set of (r? + s) smooth functions whose differentials span AL. Furthermore, since we know that
{dy*,... dy*} C AL, we can select a set of functions E; with 1 < 4,5 < r such that Al =

span{dy?, ..., dy*, dD%, .. dﬁf} Finally, we know that none of the covectors {dz!, ..., dzP} lie in
the span of AL, so

T*M = span{da®, ... da® dy',... dy*,dD} ... dD}.
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The coordinate transformation taking the coordinates (D, y, ) — (ﬁ, y, z) is of the form

(D,y,x) — D(x,y,D)
(D,y,2) — y
(D,y,2) — .

Each integral manifold of A can be described by the equations
ﬁ(D, y,x) = ¢
y = ¢

where ¢; € R™" and ¢y € R® are constants. Taking the differentials of the components of D, we

obtain
P

dDY = Z aDl Capi + > 68135) dy! +Y aaDt;U

k=1 g=1 =1

The matrix % is always nonsingular, so it can be inverted to obtain the equations

L\ 1 -1 . A\ 1L
- oD Fyw 6D7tvv q . a_D a t 1§ 1
Z (ap) Dy = +Z Z (ap) v« oy W +; (ap) o g B JEAT

k w,t=1 \ ¢g=1 wk

Comparing this expression to equation 8.6, we find that

r

S (0 LSS i o)

w,t=1 (=1 wk

Furthermore, because % is nonsingular, the implicit function theorem ensures that locally there

exists a function f : U — R"™" satisfying ﬁ(f(y, z),y,2) = c1. Taking the exterior derivative of
this equation, we find that

p ~ B3 ~ r ~ ;
oDy . oy ., ODY \ (0 af} i) =
D Gar e 4D G+ D A da' + g ydv' ) =0

=1 ¢=1 ik=1

which implies that

ro 2 (oD : oDl ofi f
>3 (55), e 3 (5], ok S o 43 Sy o

I=1lw,t=1 g=lw,t=1

Using equation 8.8 and the fact that the 1-forms da' are linearly independent, we can conclude that

Hence, the function f is a solution to the partial differential equation 8.4. a

Proof of Theorem 8.3.2 We begin by noting that the involutivity of A(Z) ensures that there
exists a local coordinate chart of the form y',..., y*, ', ..., 2P defined such that

C(T) = span{dy', ... dy'}.
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Furthermore, the retraction theorem, Theorem 6.2, guarantees that we can always find a set
of generators for the differential ideal which is contained in A(C(Z)) so we can assume that each
generator #' € Z; can be written in the form

6t = Z atj(x, y)dyI
IeA

where A is the set of all ascending k-tuples in the set {1,... s} and the sum is taken over all such
k-tuples.

For each k in the range 1 < k < s, we can select a basis of k-forms for the subspace ZNA*(C(Z)) C
A¥(T* M) which we will denote by

INA¥C(T)) = span{s!, ... ¢}

¢ = b (x, y)dy’

IcA

with each ¢™ of the form

for 1 < m < ri. Each of the k-form generators must lie within the span of this set. In fact, since
each of these subspaces is contained in Z and contains all the k-form generators, the set of all such
bases for all 1 <k <'s can be used as a new set of generators for the exterior differential system.

Since 7 is closed under exterior differentiation and satisfies v JI C T for every v € A(T), each
k-form ¢ will satisfy v Jd¢™ € Z. In particular, if we compute 5=+ Jd¢™ with respect to the local
coordinates, we get

d d

m  _ Y m I
2l Jdg¢ = o J(;dbl (z,y) Ady")

- ZZ@

IeA i=1

+ Zzabfdyf/\df

IeAj=1
aby

l
X
IcA d

Since each 57 Jd¢™ € T, there must exist a set of smooth functions ¢f}(x,y) such that

o
31 ZZc,sbI z,y)d (8.9)

IcA IeA s=1

There exists another set of k-forms ¢4, 1 < ¢ < rj,, which span INA*(C(Z)) and whose coefficients
are only functions of the y coordinates if and only if there exists a set of smooth functions ¢, (z,y)

which satisfy the equation
Tk
¢! = hi(z,y)¢
m=1

Written out in coordinates, this equation takes the form

qu Ydy! —th z,y) mexy (8.10)

IeA IeA
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A set of functions hZ, which satisfies equation 8.10 exists if and only if

thaijbI a:ydy =0

IeA
for all 1 <1 < p. This equation will be satisfied if and only if for each I € A,

i BLY i abm
pmm R L —.
mZ::l T ot + m ozl

Using equation 8.9, this equation can be rewritten as
Tk Tk Tk
0hd
DG 2L D ety = 0.
m=1 m=1t=1

Changing the summation indexes in the first term and collecting terms gives

Tk

aq
zh + 3 i

Finally, since each of the row vectors b',... b% is linecarly independent, we must have

ahq -
Z hi el =0

foralll<l!<pandalll <t g<r.
Lemma 8.3.1 says that these partial differential equations have a solution if and only if for all
1<l,j<pandall 1l <m,t<rg,

oty A o
a—x - a% + Z c]zclt clz ]t) 0. (811)
Finally, equation 8.11 always holds. This statement can be proven using the equation 7.9 from
Lemma 7.2.3 5 5 2 8
L dm——JL dm— - ——]Jdé™ =
o (5 ™) = o I e ™ = [ ] g™ = 0
Expanding out this equatlon, we get
0 0 0 0 0 0
.Jd—.Jdm d .J—,Jdm——.Jd .Jdm =
ox? (61‘] o) + (61” Oxl ") Oxl (61” ") =0

The second term in this summation is zero because the form (
Expanding the first and third terms, we find that

Jd¢™) only involves dy! terms.

Sz

0
Ox ;;
TR Tk
_Zva ¢ ehbh dyt
IeAv=1 IceAv=1[=1
and
a m m ’U
57 J (5 Jde™) = ZZ byd

IeAv=1



Tk Tk

Tk m
=> Zby%dg/ + DD enelbidy’

IcAv=1 IeAv=1I=1

Subtracting these equations gives

Tk Tk Tk Tk

dc

IeA \v=1 v=1 v=1 =1 v=1 (=1

Tk

IeA =1 v=1
Tk Hcm m Tk Tk
C. 80
E Jl 3l E m v E m v l
n _—+ C',UC“_ CZ"UC'I QS :0
pt xJ J J
=1 (a 9 v=1 v=1

Tk nz) Tk a m
DI POCEES L™ 35 %) WEETED B IEE

\ 667; 66;7 - m v m v ! I
Z Z oxt N Oz + ZC]'UC“ - Z CivCi1 bIdy =
v=1
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Since the k-forms ¢' are all linearly independent, each coefficient must be identically zero and

the result follows.

O
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Chapter 9

Modeling a Control System Using
Grassmann Bundles

The introductory presentation in Chapter 2 asserted that a Grassmann bundle of one-dimensional
subspaces is the geometric object which correctly models an affine control system on the state-time
manifold. The purpose of this chapter is to give a precise description of this bundle and to discuss
how both static and dynamic feedback can be viewed geometrically within this framework.

The chapter is divided into four sections. The first section describes a construction which gives
a precise definition of the Grassmann bundle which models an affine control system. The second
section looks at the local coordinate descriptions of this bundle and shows how they are related to the
standard vector field description of an affine nonlinear control system. This section also discusses
affine static state feedback, and illustrates how this class of feedback is naturally incorporated
as a part of the structure of the Grassmann bundle. The third section discusses dynamic state
feedback. The discussion focuses on some of the different classifications of dynamic state feedback
and singles out a particular class which will be used in the following sections. The Grassmann bundle
prolongation process is then introduced, and the relationship between a bundle prolongation and
dynamic state feedback is illustrated. The fourth section discusses how nonaffine control systems
can be modeled as Grassmann bundles. This section concludes with a discussion of the possibility
of finding a local diffeomorphism between an affine and a nonaffine control system. Some useful
references which are related the material in this chapter are the tract by Huijberts [11], the paper
by Sluis [21], and the paper by Sluis and Tilbury [22].

9.1 The Grassmann Bundle Model of a Control System

Suppose we are given a state-space manifold M and a smooth distribution A defined over the state-
time manifold M x R. We will require that dt|a # 0 at every point (p,t) € M x R, so that A is
always transverse to the tangent plane of the state-space submanifold M x {t}. Our objective is
to construct a Grassmann bundle over M x R in such a way that the fibre over each point (p,?)
consists of the collection of all one-dimensional subspaces of T{, ;)(M x R) which are contained in

A. We will denote this bundle by G[lo’A](M x R). To do this, we will use a slightly modified version
of the procedure which was used to construct a Grassmann bundle in Chapter 7.

First, we form the index set A which consists of all triples ((#,t), F,U) where U is an open set
on M xR, (x,t) is a local coordinate chart taking U to R"*! and F is a local frame for A which
can be described relative to the basis

0 0 0
{81‘1"”’836”’815}
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at every point (p,t) € U by
LA 0 0
;= al(x,t)— + a'(x,t)=.
fl ]Z_; z( ’ )ax] + ( ’ )at
Next, we form the disjoint union

U= U {((x,t), F U)} X U((x,t),F,U) X GT-H
((=,t),F,U)EA

where Uz 1), r,v) is @ copy of the domain of the coordinate chart (x,t). Each point of U is a
triple (((z,t), F,U), (p,t),{) which satisfies (p,t) € U. If the domains of two coordinate charts
((z,t), Fy,Uy) and ((y,t), Fy, Uy) have a nonempty intersection U, NU, # 0, then since Fyy and Fy
are both frames which locally span A, there must exist a unique smooth function 7' : U, N U, —
RMFDX(m+1) which satisfies the equation

Oy

F,T ===
Y oz

|(p,f)Fx'

From this equation, it is apparent that the definition of the function 7" depends on both the coor-
dinate systems (x,t) and (y,t) and the local frames F, and F, and that it is uniquely defined for
each pair of charts whose base sets intersect. We will use the function 7" to define an equivalence
relation on I such that

(2, 1), Fo, Uz), (1), 1) ~ (((9,0), By, Uy), (g, 7) y) (9-1)

if and only if (p,t) = (¢, 7) and I, = ®(T'(p,t))l;. In this equation, ® : GL(R™T!) — PGL(R™*1)is
the group homomorphism discussed in Chapter 5. We will denote the equivalence class of the point
(((2,1), e, Up), (p, 1), lz) by [((2,1), Fp,Uz), (p,1),lp]. If we endow the set of all such equivalence
classes with the quotient topology, then we have a Grassmann bundle with standard fibre GT‘H and
local trivializations given by the mappings

o) Pt - T Uiy, meva)) = Uty e vy X GTH

[((2,0), Fo, Uz), (p, ), ] = ((p, 1), 0).
Every Grassmann bundle defined over a smooth base manifold is itself a smooth manifold, so it can

be given a smooth differentiable structure. We can construct an atlas for the bundle G[lo’A](M X R)
by noting that each local trivialization Uiz ¢, F, v,) X GT‘H can be covered by m charts of the form

¢ Vi C U((x,t),Fz,Uz) X GT‘H — Rn+1 x R™

where the function ¢; takes (p,t) € U0y, r. v,y — (2(p,1),t) and | € GTt to the ith standard
coordinate chart on GT'H. Since the bases of the local trivializations cover M X R, we can form an

atlas on the bundle G[lo’A](M) by taking the compositions (ci ) t((x,t),Fz,Uz))

-1

|t<<z,t>,Fz,Uz>(V’)'

9.2 Local Coordinate Descriptions of an Affine Control Sys-
tem

The previous section presented a construction for the Grassmann bundle G[lo’A](M) which models
an affine control system. A part of this construction involved the set of charts A which consisted
of all triples ((x,t), F,U,) where (x,t) : U, — R+ is a local coordinate chart for M x R and
F is a partial frame which 1s defined at each point p € U, and which satisfies the requirement
that span{F(p)} = A(p) at each point p € A. In this section, we will examine how the charts
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in A are related to the vector field description of an affine control system and to the notion of
feedback equivalence. The previous section also discussed the fact that the bundle G[lo’A](M) could
be endowed with a set of local coordinate charts which turn it into a differentiable manifold. In this
section we will also examine what a neighborhood of the manifold G[lo’A](M) looks like with respect
to these local coordinate charts.

We begin by recalling some concepts from the vector field approach. An affine control system

with m inputs u', ..., u™ consists of a state space manifold M together with a collection of smooth

vector fields f,g1,..., gm defined over M. Over a local coordinate chart =z : U, C M — R”, the
control system can be described by a set of differential equations of form

&= f(z)+ Zﬁi(l‘)ui (9.2)

where the u’ are scalar variables and the local description of each vector field has the form

~ U J -1
gi(x) = ]2_1 gl oz (z) Eh

At each point z, the variables u’ parameterize an affine subset of the tangent space T (z(U,)).
If (y,Uy) is another coordinate system, the control system can also be described over U, by the
equations

v=fly)+ Zﬁi(y)vi~ (9.3)

If U, NUy # 0, then there is a local coordinate transformation y o 2=! : 2(U,) — y(U,) which we
will denote by y(z). On U, N Uy, the two local descriptions of the control system must satisfy the
relationships

o) = i)
o) = L) (9.4

Any two local descriptions of a control system which satisfy equation 9.4 are said to be equivalent
with respect to state transformation. If we were to form the disjoint union of all such local descrip-
tions and then form equivalence classes using equation 9.4 as our equivalence relation, we would
produce a geometric object which would be isomorphic to our original description of the system as
a smooth manifold together with a collection of vector fields. Therefore, this description of an affine
control system really contains the notion of equivalence under state transformation as a part of its

structure.
We can also define the two local representations of a control system defined by equations 9.2 and
9.3 to be equivalent if and only if they satisfy the relations

D) = (Z (o) m)) (95)

for some set of smooth functions a*(z), 8f(r) defined over x(U, NU,). Any pair of local representa-
tions of a control system which satisfy the relations 9.5 are said to be equivalent with respect to state
feedback transformations. Thus, two local representations of a control system are equivalent with
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respect to state feedback if there exists a change of coordinates on the state space together with
a state feedback such that one representation can be transformed into the other. We are going to
show that this notion of equivalence is built into the structure of the bundle G[lo’A](M x R). To
show this, we begin by extending each of the local descriptions 9.2 and 9.3 to U, x R and Uy, x R
by appending the dynamics ¢ = 1 to each system. The vector fields associated with these extended
systems can be viewed as two matrices. Over U, x R, we have the matrix

s_[a o G
F"[ol 0 1]

which is defined relative to the basis

which is defined relative to the basis

9 909
oy ey o)

In matrix form, the equivalence relation 9.5 can be written as

g gm FI[B )T 0][a - Gm f
0 0 1“0 1]_[60 1“01 0 1] (9:6)

From this equation, it is apparent that the two local representations of the control system are
equivalent with respect to state feedback if and only if their extensions span the same distribution
over the state-time manifold. Thus, the collection of all local representations of an affine system
which are equivalent with respect to state feedback define a distribution over M X R, and the triples
((x,1), F, U) and ((y, 1), F, Uy) are elements of the collection of frames, A, which is associated with
this distribution. If we denote the distribution defined by these local representations as A, then
we can generate the Grassmann bundle G[lo’A](M) using the construction described in the previous
section. We can also follow the procedure described in the previous section to generate an atlas
of local coordinate charts on G[lo’A](M) which give it the structure of a differentiable manifold.
Associated with each triple ((x,1), F, Uy), we have a local trivialization

Yoy i T (Un) = Us x GTFL

On U, x GT‘H, we will consider the open subset V' which contains all points of the form

((p,t), 1) = ((p,1), span{[a1 . ~amat]T})

with a® # 0. On V, we can define a coordinate chart ¢ : V — R?T™+l which maps any point
((p,t),span{[a’ - --a™a’]T}) € V to the point (z(p),t,a'/al,... a™/a’) € R+ By taking
the composition of ¢ with the local trivialization t((x 0,0, We can form a coordinate chart for

G[lo’A](M) over the open set defined by t(_(i AU )(V). On the intersection of any two such charts,

we have a local coordinate transformation

R -1 -1
oy, b, © e, i, © ¢
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To see what this looks like, we will first consider the transformation

L) BT ot(_(iyt)ijz) U, NU, x GPY = U, nU, x GPH

which can be described pointwise by the equation

((p, 1), span{[u - u™ 1T}) — ((p,1), ®(T)(span{[u - --u™ 1]71)).

The transformation 7" in this equation is defined by the relation FT = %F We are assuming that
the charts defined by equations 9.2 and 9.3 satisfy equation 9.6, so we must have

T:[g(f].

Consequently, the mapping ®(7)(span{[u’ - --u™ 1]7}) will have the form

HE NI

and the coordinate transformation c o t((y 0,00, © ~! can be described pointwise by

-1
b ®©
the equation
m

(z,t,u) = (y(x),t, a(z) + Zﬁm(l‘)um)

k=1

9.3 Prolongation and Dynamic State Feedback

In this section, we will show how the Grassmann bundle model described in the previous sections
can be extended to encompass a class of dynamic state feedbacks. We will begin by giving a general
definition of dynamic state feedback, and then we will describe the class of dynamic state feedbacks
which we will be considering.

9.3.1 Dynamic State Feedback

Definition 9.3.1 Given a control system which is locally described by the equation
z=f(z)+ Zgi(l‘)ui, (9.7)
i=1

an affine dynamic compensator or dynamic state feedback is defined as a system

o= gz )+ iy vz )
u = Oé(Zal’)+Z?:1 Bi(z’x)vl

where z € RY, ¢ : RIXM — RI, v :RIXM — R o :RIXM —R™, and 3 : RIx M — R™*™

and v € R™ s a new control input.

The compensated system is obtained by interconnecting the compensator output with the inputs
of system 9.7 to obtain

ro= (f($)+zgz’(l‘)ai(z,l‘)) +Z( gi(x)ﬁj(z,x)) v/

j=1

= ¢lz,2)+ Z%('Z’ z)t.
i=1
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In the development which follows, we will consider the class of dynamic compensators which have

the form

Z‘,z — Um—r+z

u = (@) + oy Brrmer(z,2)2") + 3075 By (2, )07
where » < m and 1 < ¢ < r. Any compensator of this type can be generated by first applying a

static state feedback to system 9.7 and then appending integrators to the last » inputs. By iterating
this construction, we can also produce more complex dynamic compensators.

(9.8)

9.3.2 The Canonical Prolongation of a Control System

We are now going to show how a feedback compensator of the type 9.8 can be constructed geomet-
rically using the Grassmann bundle model of the control system.

We will first consider the case where r = m. Physically, this corresponds to adding an integrator
to each control input. We will assume that we have constructed the Grassmann bundle G (M XR)
which represents the control system 9.7. As part of the bundle structure, we have the projection map

T G[lo’A](M X R) — M x R which maps a point in the bundle to its corresponding base point on
the state-time space ((p,t),{) — (p,?). We can use the pullback map, 7*, to define a codistribution

Q over G[lo’A](M x R) which is defined pointwise by the equation

.. = T ()ip.o)-
Since [(, 1) is a one-dimensional subspace of an (n + 1)-dimensional tangent space, (I J‘)|(p ¢ is a
n-dimensional subspace of the cotangent space and € is an n-dimensional codistribution. The
Grassmann bundle G (M x R) is an (n + m + 1)-dimensional manifold, so the distribution Q-+
must be (m—l— 1)- dlmensmnal. We can use the distribution Q+ to construct a new Grassmann bundle
L

over G (M x R). We will denote this bundle by G[lo’ﬂ ] (G[lo’A](M X R)) It is not hard to see
that if we repeat this process again, we will obtain another (m + 1)-dimensional distribution which
is defined over a (2m + n + 1)-dimensional space, and that if we iterate the process p times, we
will obtain an (m + 1)-dimensional distribution which is defined over a (pm 4+ n + 1)-dimensional
manifold.

To see what this process looks like with respect to a local coordinate chart on G (M X R),

we restrict our attention to an open neighborhood V C G (M x R) on which we have the local
coordinates z , t, and u. Each point (z,¢, u) defines a line

span { [ )+ Kyt ] }

in the tangent space T{, ;)(M x R) and a subspace I(J‘x 0 of T*(p,t)(M x R) which is spanned by the
covectors

{da' = (F 2.0+ Y g} )it da” = (2,0 + Y g (o, )t}

ji=1

Pulled back to V, these one-forms locally define the codistribution €. The distribution Q+ will be
spanned by the tangent vectors

0 6 0
§ i § ]
T B (f(z,t)+ g]a:tu .

Written in matrix form, this distribution looks like

0 fH+i gt
Qt =span | Lnwm 0
0 1
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If we were to iterate this process p times, we would obtain a distribution of the form

0 FH 377 g5z ) ]
0 U
QZJ; = span (1;)
0 u
Lnxm 0
L 0 1 -

which represents a system with p integrators appended to each input.

9.3.3 General Prolongations of a Control System

We now turn our attention to the more general case of dynamic state feedbacks of the type 9.8
in which » < m. In this more general case, the prolongation process is basically the same, but
in order to describe it, we first need to define a new Grassmann bundle. Suppose that we have
an affine control system of the form 9.7 and we want to append integrators to the last r inputs.
The vectors g1, ..., gm—r Which correspond to the unaffected inputs span an (m — r)-dimensional
distribution Ay. This distribution forms a filtration A; C A over M x R. We can use this filtration
to construct a Grassmann bundle GEﬁwl;ﬁJl—l)(M x R) whose fibres over each point (p, ) consist of the
set of all (m — r 4 1)-dimensional subspaces of Ti,, ;y(M x R) which contain the subspace A;(p,?)
and are contained in the subspace A(p,?). Recall that in Chapter 5 we showed that if A is a
p-dimensional subspace, A is a r-dimensional subspace, and Ay C A, then the Grassmann manifold

Gﬁfk’A] is diffeomorphic to the Grassmann manifold G} ". Using this fact, we find that each fibre
of GE?;_’?_]H)(M x R) is diffeomorphic to the Grassmann manifold G,

In order to construct this bundle, we form the collection A of all quadruples of the form
((x,t), F1, F5,U,) where (z,t) is a local coordinate chart defined over U,, Fi is a local frame for
the distribution A; which is defined over U, and Fs is an additional set of r linearly independent
vector fields such that F; and Fs taken together span A. We will also assume that dt|a, = 0 and
dt|a # 0. If the domains of two charts ((y,t), F1, F», Uy) and ((2,t), G1, G2, Uy ) intersect, then on
Uz NU, we must have that

M} My 9 g
[ Fy Fz][ . Mzz]:[aox 1][(;1 Gy |

for some set of smooth matrices M, M4, and MZ. Following the procedure introduced in Chapter
7, we form the disjoint union

U= U {((l‘,t), Fla FZa U@‘)} X U((l‘,t),Fth,UT_) X Gq-l—l
((z,),F1,F2,Uz)EA

and then define equivalent classes on U using the equivalence relation

(((y’t)’ Fu, By, Uy)’ (p,t), ly) ~ ((($’t)’ G, G, Ux)’ (q’ T)’ lx) (9'9)
if and only if (p,t) = (¢,7) and I, = ®(M3(p,1))l;. The set of all equivalence classes endowed with

the quotient topology forms the total space of the bundle GEﬁwl;ﬁJl—l)(M X R).
Aq,A]

m—r-l—l)(M x R) which is defined pointwise by
Qp,t, D) = T*D(Jz')yt) where D is a (m — r 4 1)-dimensional subspace of T, (M x R) and Dtisa

(n —m 4+ r)-dimensional subspace of T(’;yt)(M x R). The manifold GE?@E?}H)(M X R)is (n+r+1)-

dimensional, so the distribution Q+ has dimension (m+1). This distribution can be used to construct

a new Grassmann bundle G[lo’QL] (GE?;_’?_]H)(M X R)) which models the dynamically compensated

We can now form a codistribution € over GE

system.
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9.4 Nonaffine Systems

In this section, we will consider systems which can be described locally by equations of the form
z = f(z,u,t). (9.10)

Equations of this form can also be modeled as Grassmann bundles, but some modifications to
the theory are required. The Grassmann bundle G[lo’A](M x R) associated with an affine control

system can be viewed as a subbundle of the bundle G(ln+1)(M x R) whose fibres over a point
(p,t) consist of the collection of all one-dimensional subspaces of the tangent space T, (M x R).

Because of the affine structure, the fibres of G(ln+1)(M X R) over the point (p,t) span a (m + 1)-
dimensional subspace of T, ;j(M xR). We can view a nonaffine system as a more general subbundle

of G(ln+1)(M x R) whose fibres over (z,t) are diffecomorphic a to more general submanifold of the

Grassmann manifold G(ln+1). In equation 9.10, the function f(x,u,t) can be viewed as a local
parameterization of this submanifold. In order to study such systems, we will start with the first

prolongation of the bundle G(ln+1)(M xR ) which is defined by the codistribution € defined pointwise
for each (p,t,1) € G(ln+1)(M X R) by

Qp,t, ) =71 ).
This codistribution can be locally described by the span of the one-forms
Q = span{dx! — &'dt, ... da™ — i"dt}.

Restricted to the submanifold defined by & = f(#, u,t), these forms become

Q = span{de’ — fH(x,u, t)dt,... de"™ — f*(x,u,t)dt}.
Note that if the control system 1s affine, then we obtain the forms

Q= {de’ — (f(x,t) + ig}(r,t)uj)dt, conde = (" (e, ) + ig?(x,t)uj)dt}.
j=1 j=1

In the last section, we showed that these forms locally span the codistribution associated with the
first canonical prolongation of the affine system. We can use this observation to consider the problem
of whether or not there exists a change of coordinates (#,t,u) — (y,¢,v) which turns 9.10 into an
affine system.

Theorem 9.4.1 Let & = f(x,u,t) be a local representation of a nonaffine control system which can
be modeled by a codistribution

Q = span{da' — f(x,u,t)dt, ... de" — f*(x,u,t)dt} (9.11)

defined over an open subset of R™ X R™ x R. There exists a coordinate transformation (x,u,t) —
(z(x,t),v(x,u,t),t) and a set of one-forms of the type

dz' — (f'(z, )+ > g (=, )07 )t
ji=1
which satisfies the relation

Q= {d' = (f'(z,t) + Zg}(z,t)vj)dt, conde® = (M (20 + Zgy(z,t)vj)dt} (9.12)
j=1 ji=1
of and only if the retracting space of the codistribution defined by
Q= {w € Q|dw = 0 mod Q}
satisfies C(Q) C span {dz',... dz" dt}.
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Proof: If the exterior differential system 9.11 is feedback equivalent to an affine system, then we
can work relative to the exterior differential system 9.12. To compute €2, we will take the exterior
derivative of an arbitrary element

n

o= ai(zv,0)(de = (F1(z,0)+ > gz, )0 )dt) € Q

i=1 ji=1
and find the conditions under which it satisfies the condition

do = 0 mod Q. (9.13)

The 2-form da can be written with respect to the local coordinates as

do = Zda (z,v,1) —(fi(z, )+ Zg;:(z,t)vj)dt)

m

+ Y —ai(z v, (A (=, 8) + ) dgi(z, )0+ gz, t)dv?) Adt
i=1

j=1 ji=1

= doa = — ZZ zvtg]zt)dvj/\dtmon.
i=1 j=1
The coefficients a; will satisfy this condition 9.13 if and only if they are in the left null space of the
n X m matrix

[ - gm ] (9.14)

Since we are assuming that the vectors g; are linearly independent, the left null space of the matrix
9.14 will be (n — m)-dimensional. Therefore, there will be (n — m) linearly independent one-forms
a® 1<k <n—m, which span Q. Furthermore, since the coefficients of the ¢;’s are only functions
of the z and ¢ coordinates, there exists coefficients af which are also only functions of » and t.
Consequently, each o takes the form

of = 37 af(z 0 = (F(2,0) + Y g (=, )0 )dr)

= o = Zaf(Z,t)dZi - (Z af (z, 1) f'(z,1))dt

i=1 i=1

From this, it is clear that the generators of € can be expressed solely in terms of the coordinates z and
t. Therefore, we must have C'(Q) C span{dz!,... dz" dt}. Finally, the feedback transformation
takes (2,t) — (2(z,1),t) so
; 07 07
dz' = ——dad + —dt
T T
and this implies that
span{dz', ... dz" dt} = span{dz', ... dz", dt}.
Consequently, C’(Q) C span{dz!, ... dz", dt}. i
To prove the sufficiency of the condition that C'(Q) C span{dz!,... dz" dt} in Theorem 9.4.1,

we begin by computing the distribution Q- using the exterior differential system 9.11. Taking the
exterior derivative of an arbitrary 1-form

n

o= Zai(l‘, w, t)(da’ — fi(z,u, t)dt) € Q,

i=1
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we find that .
do = Zdai(x, w, t) A (de® — fi(x, u,t)dt)
—|—Z—ai(x,u,t)dfi(x,u,t)/\dt

i=1
Zd (xut/\oz—zz xut—dx]/\dt ZZ xut du A dt
i=1 i=1j=1 i=1 k=1

= da = — ZZaZ (x,u,1) —du A dt mod €.
i=1 k=1

As before, the coefficients a;(z, u,t) will only satisfy the condition 9.13 if they lie in the left null
space of the n X m matrix g— Assuming that this matrix has full rank, its left null space will be
(n — m)-dimensional, so there will be (n — m) linearly independent one- forms af 1 <k<n-—m,
which span Q.

Suppose that C’(Q) = span {dy',...,dy"}. Using Theorem 8.3.2, we know that we can select a
set of one-forms

JF=dfydy', k=1,... (n—m)

which span € and whose coefficients are only functions of the y coordinates. By assumption, we

also know that C’(Q) C span {dz!,... dx™, dt}, so there must exist p linearly independent functions
y'(z,t) which satisfy dy' = Z? 1 M] Y- dyd 4 6y dt. Consequently, the coefficients af can also be
expressed as functions of x and t.

We can form a matrix

Az, t)  Al(z,t) Al(z, 1)

O~ O O

0 I 0
0 0 0
0 0 1

which is defined relative to the cobasis {dxt, ... dz" dut,... du® dt}. The first (n — m) rows of
this matrix span . Inverting this matrix produces the matrix

(AD™H —(AD7HA; 0 —(AD)THA
0 I 0 0
0 0 I 0
0 0 0 1
which is defined relative to the basis {%, ce axin’ %, el auk’ at} The last (2m + 1) columns

of this matrix span QL. The distribution O+ is also spanned by the last (2m 4 1) columns of the
matrix

I 4 o f
6 2

0 6fu 0 f2

0O o0 I 0

0 0 0 1

which is defined relative to the same basis. Therefore, there must exist a smooth (2m+1) x (2m+1)
matrix of function which satisfies

_(A%)_lAl 0 _(A%)_lAtl Ei’)fu2 0 fl Tl Tl Tl
I 0 0 o9 12 ! 2 3
= du 0 I 0
0 I 0 0 I 0 0 0 1
0 0 1 0 0 1



78

It is not hard to see that the elements of this transformation matrix must satisfy T3 = (6f2)_1,
2

du
T4 =0,and T4 = —(%)_V’Z. Consequently, we must also have —(A$)~tAd(z,t) = %ful (%fu )=l and
—(ADTT Al (2, t) = 1 = %(%)_W’Z. Since the left-hand sides of these equations are functions of
z and ¢, the same must be true for the right-hand sides. Consequently, the (n—m) forms represented
by the matrix

aft (af? -1 1_ofrof2\—142
S AU e el )
can be generated as the pull-backs of a set of forms a',..., 4"~ defined over R” x R.

AL
Taking the first prolongation of this system gives a system defined over G[lo’ﬂ ](R” x R). This
system can be locally described with respect to the coordinates x, ¢, and v by the matrix

(Qﬁ(éﬁ)—lv + - %%1(%%2)—11:2)

0 ou \ du
A= 0 v 9.15
1 0 ( )
0 1
which is defined relative to the basis {%, el ai—n, %, ce a%’ %}. In order to complete the

proof, we need to show that there exists a local diffeomorphism ¢ which maps an open subset of

GEO’QL](R” x R) onto R™ x R™ x R in such a way that ¢.A, = Q1. As a candidate transformation,
consider the mapping ¢ defined such that ¢=1 : (z,u,t) — (z, f*(z,u,t),t). We are assuming that
% is nonsingular, so locally there exists a function ¢ : (z,v,t) — u which for fixed # and ¢ satisfies
v=(fo0 9)(e,t)(v). Using the function g, the mapping ¢ can be described by ¢ : (z,v,1) —
(z,9(x,v,t),t). Pushing the distribution A, forward using ¢., we get

100 0 ) o (FEDT s - D)
0 I 0 0 0 £ )
B9 099 b3 g
ozl  z?  ou Ot I 0
0 0 0 1 0 1

0 It

0 I

Tl (e )
0 1

Finally, applying the feedback

produces the desired transformation. a



Chapter 10

Invariance

This chapter is devoted to the development of several topics related to the invariance properties of
distributions and codistributions. This material is useful for studying questions related to control-
lability, observability, disturbance decoupling, and noninteracting controls.

10.1 Invariance of A Distribution with Respect to Vector
Fields

A distribution A defined over M 1is said to be invariant with respect to a vector field f if and only
if [f,A] C A. Similarly, a codistribution €2 defined over M is said to be invariant with respect to a
vector field f if and only if L; C Q. The following lemma relates these two definitions.

Lemma 10.1.1 A distribution A is invariant with respect to a vector field f if and only if A+ is

also invariant with respect to the vector field f.

Proof: If we select any vector field v € A and any codistribution w € A+, then, using equation
7.8 we can write
vdLiyw=vd fldw+vId(fIw).

Using Cartan’s formula, we also have
vd fddw+vdd(fJw) = fddviw)—[f,v]Jw.
Combining these equations, we get
vdLyw=—[fv]Jw.
Since this holds for any w € At and any v € A, we find that
AJL;AT = [f, A]JAL
The theorem follows from the following sequence of equivalent statements.

LfAJ' c At

Pt AJLJCAJ‘ = 0
< |, A]JAl = 0
& AL c [f,A¢
= [f,A] € A.

The next lemma presents some useful closure properties of invariant distributions.
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Lemma 10.1.2 If two distributions Ay and Ay are invariant with respect to a vector field f, then
the following conditions also hold.

1. [f, A1+ As] C Ay + As.
2. [[,AINA] C AN A,
3.1 [AL Al C [A A
4. [f, A(AD)] € A(AL), where A(AL) denotes the Cauchy characteristic associated with A*L.

Proof: Since A; and Ay are assumed invariant with respect to f, the equations [f, A1] C Ay
and [f, Ag] C Ay must hold. Using these two facts, we can prove statements (1) and (2) by direct
computation.

(1) LA+ 2] C [, A]4+A+[fA]+ Ay C A+ A,
(2) [f,A1NnAy] C If, AN [f, Ag] C AiNA,.

To prove statement (3), we note that the invariance of Ay implies that
[/, A, A C [AL A
In particular, for any vector fields vy, vs € Ay, we must have
[[f,v1], 0] C [A1,Aq]
[[f 2], 1] € [A1,Aq]
= [[f, o], va] = [[f,v2],01] € [Ag, Aq] (10.1)
The vectors vy, vy and f are also related through the Jacobi identity
[[f, v1]va] = [[f, vo], v1] = [, [v1, va]].
Substituting the right side of this equation into equation 10.1 gives
[f,[vr, ve]] C 0 [Ar, A4

Since v and ve were arbitrary vector fields in Ay, the result follows. Finally, to prove (4) we will
use equation 7.9. For any v € A(A1) and any w € AL applying equation 7.9 to dw gives

Li(vddw)—vdLydw = [f,v]ddw
& Li(vddw)—vIdLliw = [f,v]ddw. (10.2)
Since v € A(A1), and A is invariant with respect to f, both of the terms on the left-hand side of

equation 10.2 are in A, so this equation implies that [f, v] J dw € A+. Similarly, applying equation
7.9 to w gives

Livdw)—vILjw = [fv]dw. (10.3)
Again, both the terms on the left-hand side are in AL, so this equation implies that [f, v] Jw € A*L.
This is true for every w € AL so [f,v] € A(AL). Furthermore, this is also true for every v € A(AL),
so we find that [f, A(A1)] € A(AL), and the result follows. a

As a corollary to Lemma 10.1.2, we can state the analogous closure properties for codistributions.

Corollary 10.1.1 If two codistributions 1 and s are invartant with respect to a vector field f,
then the following conditions also hold.

L L2 M) C QN Q.

2. Le(21 4+ Q2) C Q1 + Q.

3. Lffh C Qq where Q = {w € Q|dw = 0 mod Q}.

4. LyC(AL) C C(AL) where C(AL) denotes the retracting space associated with A*.
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Proof: The proof follows by setting Q; = A{ and Q5 = Ay and applying Lemma 10.1.1 to each
of the conditions in Lemma 10.1.2. a

If a distribution or codistribution is invariant with respect to a vector field f, and the distribution
or codistribution is also completely integrable, then there exists a coordinate transformation such
that, in the transformed coordinates, the system assumes a particularly simple form.

Lemma 10.1.3 Let A be a nonsingular and involutive distribution of dimension d and suppose that
A is invariant under the vector field f. Then at each point p € M there exists a neighborhood U, of
p and a coordinate transformation z = ®(z) defined on U, in which the vector field f is represented
by a vector of the form

i Ca A e L

1= | el (10.4)

i Caa L)

d+1

Proof: Since A is completely integrable, there exists a set of coordinates z%7*, ..., 2" whose dif-

ferentials span AL. Since A is invariant with respect to f, Lemma 10.1.1 implies that AL is also
invariant with respect to f, so, for each ¢ in the range d + 1 < ¢ < n, the 1-form dz* must satisfy
Lidz € A+, Consequently,

LdeZ: = Z;:qu;(Z)dZ?
= dLjz* = Zj:d_l_la}(z)dz].

With respect to the z coordinates, the vector field f can be written as

i=1

so the above equation can be written as

deZi = Zn?:dﬂq;(z)d?j
= df'(z) = Yjoap aj(2)d

Finally, this implies that for each ¢ in the range d + 1 < i < n and each j in the range 1 < j <d

o )
f. =0
0z
Consequently, the last (n — d) coefficients of f are not functions of the coordinates z!,... 2% a

Corollary 10.1.2 Let Q2 be a nonsingular and involutive codistribution of dimension (n — d) which
15 invariant under the vector field f. Then at each point p € M there exists a neighborhood U, of p
and a coordinate transformation z = ®(x) defined on U, such that the vector field f can represented

wn the form 10.4.

Proof: Apply Lemma 10.1.3 to Q*. a

Geometrically, Lemma 10.1.3 implies that the flow associated with the vector field f takes integral
surfaces of A into integral surfaces. This is illustrated in Figure 10.1 below. The surfaces in this
picture represent integral manifolds of a distribution A. The curves represent the flow corresponding
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Figure 10.1: Flow of the Vector Field f Between Integral Submanifolds of A

to a vector field f. Under this flow, any two points p; and ps which begin on the same integral
surface at time ¢ = 0 are mapped to the same integral surface at every subsequent time.

If f1,..., f;m 1s a collection of vector fields then a distribution A is said to be invariant with
respect to the collection {fy,..., fin} il and only if
[fo,A] C A
[f2,A] C A
[fm,A] C A.

If a completely integrable distribution or codistribution is invariant with respect to a collection of
vector fields, then Lemma 10.1.3 and Corollary 10.1.2 imply that each vector field in the collection
can be represented in the form 10.4. We will formalize this statement in the following corollary to
Lemma 10.1.3.

Corollary 10.1.3 Let A be a nonsingular and involutive distribution of dimension d and suppose
that A is invariant under the set of vector fields {f1,..., fm}. Then at each point p € M there exists
a neighborhood U, of p and a coordinate transformation z = ®(x) defined on U, on which the set
can be represented as the matriz

I G AL e UUIE-L0) BRI = AL AL S SURNL0 B
M(z) = fld(zld,...zd,zd+1,...,z”) [ CaE LI L0
i G FIL(zHL )
i  E Caa kL) A CRa L) ]
which is defined relative to the basis {%, e a?n}'

We can exploit this fact to represent an affine control system in a form which isolates a set of
states which are not affected by the control inputs.
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Lemma 10.1.4 Let A be a nonsingular and involutive distribution of dimension d and suppose that
A 1s tnvariant under the vector fields

fagla"'agm~

Furthermore, assume that
gi,.-s9m C Al

Then at each point p € M there exists a neighborhood U, of p and a coordinate transformation
z = ®(x) defined on U, such that the control systems is represented in the form

S Ot I D DR CE R T
22 = Y.
Proof: The proof follows directly from Lemma 10.1.3 and the fact that the vector fields g1,..., g
are assumed to be contained in the distribution A. ad
If an affine control system has p outputs hl(z),...,h*(z), Lemma 10.1.3 can also be used to

represent the control system in a form which isolates a set of states which are indistinguishable from
the outputs.

Lemma 10.1.5 Let A be a nonsingular and involutive distribution of dimension d and suppose that
A is invariant under the vector fields f,g1,..., and g,,. Furthermore, assume that the system has
linearly independent outputs h'(zx),... hP(x), and that

A C ker{dh®,... dh"}.

Then at each point p € M there exists a neighborhood U, of p and a coordinate transformation
z = ®(x) defined on U, such that the control system with outputs is represented in the form

C T A O B D D T Ce I
£ o= P+ YL
y = h(z%).

Proof: The representation of the vector fields follows directly from Lemma 10.1.3. The condition
that the outputs are only a function of the z? coordinates results from the assumption that A C
ker{dh',...,dh*}. This fact implies that the 1-forms dh',... dhP are contained in AL. In turn,
this implies that

oh?
- =0
0z
for each 7 in the range 1 < ¢ < p and each j in the range 1 < j < d. Therefore, each output is only
a function of the 2? coordinates. ad

Corollary 10.1.3 applies equally to the vector fields which define the standard extension of an
affine control system to the state-time space, which can be written in matrix form as

noo gm S
0 o (10.5)

Lemma 10.1.4 also applies to the extended system 10.5 without change. Lemma 10.1.5 also applies,
but with the understanding that the extended output function maps the state-time space to an
output-time space. This extended mapping has the form A, : R" X R — RP x R : (z,t) — (h(2),1).
As a consequence of this extension, we must modify Lemma 10.1.5 to require that the postulated
distribution A satisfies the condition

A C ker{dh!, ..., dhP,dt}.
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Lemma 10.1.4 assumes the existence of an involutive distribution which contains the input vector
field g1, ..., g and 1s invariant with respect to the vector fields g1, . . ., gm, and f. Such a distribution
always exists since we can take A to be the distribution defined at each point p € M by A(p) = T, M.
This distribution obviously satisfies the requirements of Lemma 10.1.4, but the resulting coordinates,
which can be taken to be the same as the original coordinates, provide no new insight into the
structure of the system. A more useful representation can be found by applying the closure properties
of Lemma 10.1.2 to find the smallest distribution which satisfies the conditions of Lemma 10.1.4. To
this end, let A be a fixed distribution and fi,..., fi, be a collection of smooth vector fields which
are defined over a manifold M. Let S[A’TM](M) denote the collection of all smooth distributions
containing A. We will to consider the subset of S[A’TPM](M) consisting of all smooth distributions
which are involutive, contain A, and are invariant with respect to fi,..., f,,. The following lemma
ensures that this set has a well-define minimal element.

Lemma 10.1.6 The set SJ[CA’TM](M) defined by

SETM(N) = (D € S&TM(M) | [D, f] € D, [D,D]C D 1< i< m)
. . . . L . ~ [ATM] L. . .
contains a unique involutive distribution D € Sf (M) of minimal dimension.

Proof: If Ay and A, are any two involutive distributions, then their intersection is also involutive,
and, from condition 3 in Lemma 10.1.2, we know that if A; and As are both invariant with respect

to f, then so is their intersection. This implies that the set SJ[CA’TM](M) contains a unique element

which is contained in every other element of SJ[CA’TM](M). a

Lemma 10.1.5 assumes the the existence of a constant-dimensional, involutive distribution which
is contained in the distribution ker{dh®,... dhP} and is invariant with respect to the vector fields
g1,y 9m, and f. Such a distribution always exists since we can take A to be the distribution
defined at each point p € M by A(p) = span{0}. Furthermore, the closure properties of Lemma
10.1.2 ensure that the set of all distribution which satisfy these conditions contains a unique maximal
element.

In order to state this more formally, let A be a fixed distribution and fi, ..., f;, be a collection
of smooth vector fields which are defined over a manifold M. Let S[O’A](M) denote the set of all
distributions which are contained in A. We are interested in the subset of S[O’A](M) which consists
of all distributions which are both contained in A and invariant with respect to the vector fields
fi,-- ., fm. The following lemma ensures that this set has a well-defined maximal element.

Lemma 10.1.7 The set SEO’A](M) defined by

SUA (M) = {D e SOA(M) | [D, il C D 1 <i<m}

contains a unique distribution D € SJ[CO’A](M) of mazimal dimension. Furthermore, if the distribution

A is involutive, then so is the distribution D

Proof: The first statement follows immediately from the first condition in Lemma 10.1.2. If A is
involutive, then

[f;,D] C DC[D,D]C[A,A]CA.

Since D is invariant with respect to the vector fields fi, ..., fm, the third condition in Lemma 10.1.2
ensures that [D,D] is also invariant with respect to fi,..., f;,. Therefore, [ﬁ,D] € SJ[CO’A](M).
Finally, the maximality of D implies that [ﬁ, B] C D. This proves the second statement. a

In Chapter 9, we discussed two different definitions of equivalence for affine control systems:
equivalence with respect to state transformation and equivalence with respect to feedback transfor-
mation. If a distribution is invariant with respect to to the collection of vector fields g1,...,9m, f



85

which define an affine control system, then this fact remains true no matter what local coordinates
are used to describe the vector fields. Therefore, this property is invariant with respect to state
transformations. However, this property is not preserved under the more general feedback trans-
formations. Since feedback transformations are incorporated into the structure of the Grassmann
bundle model an affine control system, it is necessary to consider a type of invariance which is
preserved under feedback transformations. This topic is addressed in the next section.

10.2 Invariant Pairs of Distributions

Two distributions A and I' are said to form an invariant pair if and only if
[A,T]C A+T. (10.6)

If A and I form an invariant pair, then we will say that A is invariant with respect to I', and
symmetrically that [' is invariant with respect to A. Two codistributions I and J are said to form
an invariant pair if and only if the distributions I+ and J+ form an invariant pair. If both A and
I’ are involutive, then this property has the following geometric interpretation

Lemma 10.2.1 Two involutive distributions A and T' form an invariant pair if and only if the
distribution A 4+ 1" is involutive.
Proof: If (A,T) is an invariant pair, then
[A+T,A+T] = [AA]+[[LT]+[AT] € A4+T+[AT]
and using equation 10.6 we obtain
[A+T,A+T] C A+T.

Conversely, if A+ T is involutive, then since A and I" are both subsets of the involutive distribution
A + T, we must have that
A T]C[A+T,A+T]CA+T.

Theorem 10.2.1 Let Ay and Ao be two distributions. The following statements are equivalent.
1. [A1, A0 C Ay + As.
2 La(ALAAL)C AL
9. La,(ALAAL) C AL

Proof: Using Lemma 7.2.4, we have that (A; + As)t = A{ N AL, Therefore, we find that

[A, A] C AL+ Ay
& AlnAlcia, At
& [AL A (AT NAT) =0.

Using Cartan’s formula and the facts that A; J (AT NAF) = 0 and Ay J (AL NAL) = 0, we also
find that
[A, A] (AT NAT) = Ay JA Jd((AT NAT).
Therefore,
[AL A (AT NAT) =0 & A JAJd(ATNAL) =0
& AJdATNAT)CAY & Ay Jd(AT NAT) C AT
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Finally, using formula 7.8 and the facts that A; J(ALT N AT) = 0 and Ay J (AL NAT) = 0, it is
easy to show that

Ap Jd(AT NAY) = La, (AT NAT) and Ay Jd((AT NAT) = La, (AT N A7),

Hence, the three conditions are equivalent. a
The following lemma provides some useful closure properties of invariant pairs.

Lemma 10.2.2

1. If (A, T) and (A9, T) are two invariant pairs of distributions, then (A1 + Aq,T') is also an
mvariant pair.

2. If (A, T) is an invariant pair of distributions, then ([A,A],T') is also an invariant pair.

Proof: To prove statement 1, we note that since (A;,T') and (Az, T') are both invariant pairs,

[A,T] C A +T
[Ao,T] C As+T
= [A, T]+[A,T] € A +A+T
= (A1 4+ A9),T] C (A1+Ay)+T.

Consequently, (A; + A, T') also forms an invariant pair.
To prove statement 2, we note that if (A, T') is an invariant pair, then

[AT] ¢ A4T
= [AAT]] C [AA]+[AT]
= [A[AT]] C [AA]+T.

Therefore, if we pick any two vectors vy, v2 € A and any vector w € I', they will satisfy the equations

[v1,[v2, w]] C [A,A]+T
[vg, [v1,w]] C [A,A]+T
= [v1, [va, w]] — [ve, [v1,w]] C [A,A]+T. (10.7)

The vectors vy, vy and r are also related through the Jacobi identity
[v1, [v2, w]] = [v2, [o1, w]] = [[v1, vo], w].
Substituting the right hand side of this expression into equation 10.7 gives
[[v1,02),w] C [A AJ4+T.
Since this equation holds for arbitrary vi,v2 € A and arbitrary w € ', it implies that
[A,ALT] C [AA]4T.

Therefore, ([A, A],T) is also an invariant pair. a
In the previous section, we discussed the invariance of distributions and codistributions with
respect to vector fields. We are now ready to show how this material is related to the concept of an
invariant pair of distributions.
Assume that we are given a pair of codistributions (I, J) which form an invariant pair. Then

Lyc(InJ)cCl.
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If we make the additional assumption that J is involutive, then we have that
Lyp(INJ)YCLjpnd =CJ) =1,

so we find that
Lyo(InJycInlJ).

This implies that J+ C A(I N J) or equivalently that C(I N J) C J. If the retracting space has
constant dimension, then Theorem 8.3.2 says that there exists a local coordinate chart and a set
of generators for (I N J) whose coefficients are only functions of the coordinates whose differentials
span C(INJ).

Let I have dimension 7, J have dimension p, and INJ have dimension q. Let {dz!,... d2"} be a
collection of one-forms which span J and let {dz!,.. .,da:(”_p)} be a collection of one-forms which,
taken together with the dz’, form a basis of 7M. Any 1-form w can be expressed with respect to
this cobasis as

w' = Zalljdz] + Z agkdxk.
j=1 k=1
By Theorem 8.3.2 and the involutivity of J, there exists a basis of one-forms 6, ..., 8¢ which span

INJ and which can be expressed solely in terms of the 2’ coordinates
6" = bi(z)de.
ji=1

Suppose that we select an additional set of one-forms {w?, ..., w"~7} which, taken together with the
6*, form a cobasis of I and an additional subset of the dx and dz so that the entire collection forms
a cobasis of T* M. This cobasis can be represented as the matrix of coefficient functions

Az, z) Ag(e,z) As(x,z) Asz, z)
0 I 0 0
0 0 0 1

expressed with respect to the cobasis
{det, ... da"7P d2b, ... deP)
By inverting this matrix, we obtain a matrix of coefficient functions which represents a basis of T'M

AT —ATTAs (—ATTAsBTY) (AT'A3BTIBy — ATAY)

0 I 0 0
0 0 Byt — BBy
0 0 0 I

expressed with respect to the standard coordinate basis

S
FISR P L SRR e

Consequently, I+ is spanned by the columns of the matrix

—Al_lAz(l‘,Z) (Al_lAgBl_le —A1_1A4)(l‘,2)
I 0
0 — B ' By(2)
0 I

(10.8)
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which is also defined with respect to the standard coordinate basis.

To recap, we began the previous construction with two codistributions 7 and J. We supposed
that these distributions form an invariant pair, that the codistribution J is involutive, and that the
distribution C'(I N J) has constant dimension. Based on this information, we deduced the existence
of a coordinate chart (z, ) such that the differentials dz1, ... dzF span C(INJ) and the existence of
set of vector fields which span the distribution I+ and have the form of equation 10.8. Expressed in
the (z, z) coordinates, these vector fields have a triangular decomposition similar to that of Corollary
10.1.3. The following lemma makes this statement more precise.

Lemma 10.2.3 The codistribution J is invariant with respect to the set of vectors which make up
the frame 10.8.

Proof: Let f; denote the ¢th column of the matrix 10.8. Any l-form « € J can be expressed as

q
:chl‘zﬁl—l—Zh (z,2)
i=1

We need to verify that « satisfies
Lfloz € J.

Writing this out in coordinates, we find that

q q P—q
Ly = [ (fidde) N6+ ei(w,2)(fi 3d6°) + > (fi Idhy) Ad2’
j=1

i=1 i=1

P—q

- chz (fi 207) + > dhy A(fi 3d2Y)

ji=1

P—q

+ d Zci(l‘, 2)(fi d Hi) + Zhj(x, 2)(fi d dzi)

i=1 ji=1

If 1 <4< r—gq,then f; € J*, and this implies that the last two lines of this summation are
identically zero. The first and third terms on the first line lie in the span of J, and, due to the
special structure of the #?, so does the second term on the first line. If # — ¢+ 1 < ¢ < r then by
construction all the terms f; 2 #7 and f; 2 dz’ are constants, and the last two lines cancel each other.
Again, all the terms on the first line lie in the span of J, so the proof is complete. a

This result also has a nice geometric interpretation. If J is an involutive, constant dimensional
distribution, then the functions z',..., 2P locally define a smooth surjection = : U C M — RP.
Which is defined with respect to the x, z coordinate system by 7 : (z,2) — 2. Since the 1-forms ¢’
depend only on the z coordinates, they are each equal to the pull-back of some form 6! defined on
RE.

¢ = 76"

Furthermore, there is a bijective correspondence between the set of all 1-dimensional integral el-
ements over a point z € R?P of the exterior differential system generated by {él, . ..,éq} on R?,
and the n — p + 1-dimensional integral elements of the exterior differential system generated by
{6',...,07} on M over any point p € 7~ 1(z).

The concept of an invariant pair 1s also related to the concept of a controlled invariant distri-
bution. We begin by recalling the definition of a controlled invariant distribution in the standard
theory.
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Definition 10.2.1 A distribution A is said to be controlled invariant with respect to an affine con-
trol system described by the vector fields f,q1,...,9m defined over a smooth manifold M 1if and only
if there exists an affine state feedback u' = o' (2) + Z;nzl Bi(x)v’ defined such that the transformed
system

S~y
l

f F+Y gl
ji=1

m
gi = Zgyﬂf
ji=1

satisfies
1] ¢ oa
[91,A] C A
[6m,A] C A.

There is a geometric test to see if a given distribution is controlled invariant which does not depend
explicitly on the feedback transformation.

Lemma 10.2.4 (Isidori) A necessary condilion for a distribution A io be controlled invariant is
that

[[,A] € A+G
[¢g1,A] € A+4+GE

where G 1s the distribution defined by

G = span{gi,...,gm}

If the distribution A is involutive, and the distributions A, G, and ANG are all nonsingular on an
open subset U C M, then this condition is also sufficient for A to be controlled invariant.

Proof: See Isidori [4] pages 311-319. O
The following lemma establishes the connection between the concept of controlled invariance and
the concept of an invariant pair of distributions.

Lemma 10.2.5 Let f,g1,...,9m be a collection of vector fields which defined an affine control sys-
tem over a smooth manifold M. Let F be a the smooth distribution defined over M x R by

- g1 - gm [

F = span 0 01

Let A be a smooth distribution defined over M, and let A, be the smooth distribution defined over
M xR by

A, = (7 (AY) + span{dt})l
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where w is the canonical projection # © M x R — M. Then the distributions (F,A.) form an
wmvariant pair if and only if

[f,A] ¢ A+G (10.9)
11, A] C A+C

l9m, Al C A+G.

Proof: Any vector field w(z,t) € F' can be written in the form

w(z, t) = (e, 1) [ i) ] +§:a(x,t) [ gi(l’)%j(’“”t) ] (10.10)

j=1

and any vector field v(z,¢) € A, can be written in the form

o(@, ) = [ “(f)’t) ] ,

so the Lie bracket of any w(x,t) € F with any v(z,t) € A, can be written out as

[w(z, ), v(z, )] = a(z, ) [ % %_t ] [ f(x”gig’“’)“i(’“”t) ] (10.11)

—a(@,1) [ 5+ %‘i’uio+ gil0) %% 8 ] [ v(z,1) ] _ Lya(a,t) [ fl) + il ] .

which can be rewritten as

w,0] = [ 9 fx) — SLo(e,t) + 22g;(x)ul (2, 1) — Zui(x, t)v(x, 1) ]

0
_a[ gi(x)%—%v(x,t) ] +a[ %7 ] Lo [ f(x)+gi§x)ui(x,t) ] . (10.12)
If (F, A.) forms an invariant pair, then
[F,A]C F+A.. (10.13)
Consequently,
[w,v]Espan{[gol 96” {]Jr[ﬁ]} (10.14)

Comparing equations 10.14 and 10.12, it is apparent that if we fix a time ¢ = #y, and restrict the
vector fields to the submanifold M x {{p}, then the condition 10.13 implies the conditions 10.9.
Conversely, if 10.9 is assumed to hold, then condition 10.13 must also hold. Note that in equation
10.12, the vector
v
— | Bt
(4]

must always satisfy w(v;) € A since the distribution A, is not dependent on time. a

If the distribution A on M is involutive, then so is the distribution A, on M x R. In this case,
we get a nice geometric interpretation of the notion of a controlled invariant distribution. At a
point (z,1) € M x R, suppose that A.(p,t) is a k-dimensional subspace of T(,, (M x R). Consider

the collection GECA_H(A&F)](M X R)|(p,¢) of all k + 1-dimensional subspaces of T, ;)(M x R) which

contain A.|(p,t) and are contained in (A, + F')|(,,¢). We have the following result.
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Lemma 10.2.6 There exists an output space RY x R and an output mapping A : M X R — RP X R
(x,t) — (A=), 1) such that

1. A, = ker(d)) = span{dAt, ... dX\P, dt}.

2. The system AL NFL is spanned by a set of 1-forms which are the pull-backs of a set of 1-forms
Q defined on R X R.

3. There exists a bijection between the set GECA_I_el’(Ae-I_F)](MXR)ka) and the set GEO’A*(AG-I_F)] (RP x

R)l(r(e),t) consisting of all one-dimensional subspaces satisfying Al N FL at at the point
(A=), 1) e RP x R.

Proof: The first statement is an immediate consequence of the involutivity of A..
To prove the second statement, we will use that fact that (F,A.) is an invariant pair and the
fact that A, is involutive. Since (F, A.) is an invariant pair,

La (AL NFH)c FH

and since A, is involutive,
La(AFNFH)y cIa. AL CA..

Taking the intersection of the last two equations, we find that
La(AFnFYH c(atnFt).

Therefore,
A. CAAINFY & C(AINFY) C AL

Using Theorem 8.3.2 we can conclude that (AL NF7) is spanned by a set of 1-forms whose coefficients
only involve the coordinates A',..., A7, and ¢. Consequently, each of these forms represents the pull-
back of a form on R? x R. We will use €2 to denote the codistribution spanned by these forms on
R X R.

Since (AL N FL) = A*(Q), we must also have that A, (A, + F) = Q1. Furthermore, by construc-

tion A = ker(A.), so any subspace D € G%A_'_el’(Ae-l_F)](M X R)|(p,) must map to a one-dimensional

subspace A.(D) € GEO’A*(AG-I_F)] (RP X R)|(r(z),t)- Since this is an onto mapping, Lemma 5.4.1 implies
that these two Grassmann manifolds are isomorphic. a
Let A and I' be two distribution which are defined over a manifold M. Let S[O’A](M) denote
the set of all distributions which are contained in A. We are interested in the subset of S[O’A](M)
which consists of all the distributions which are contained in A and invariant with respect to I'.

Lemma 10.2.7 The set SILO’A](M) defined by
[0,A] — [0,A]
Sp o M) ={DeS3M) | [D,T]C D+T}

contains a unique distribution De SILO’A](M) of mazimal dimension. Furthermore, if the distribution
A is involutive, then so is the distribution D.

Proof: The first statement follows immediately from equation 1 of Lemma 10.2.2. If A is involutive,
then

[D,D] C [A Al C A,
Since D is invariant with respect to T', equation 2 of Lemma 10.2.2 ensures that [ﬁ,f)] 1s also
invariant with respect to I'. Therefore, [D, D] € SILO’A](M). Finally, the maximality of D implies
that [D, D] C D. This proves the second statement. O
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10.2.1 The Filtration Associated With The Largest Distribution Con-
tained in A

Given an arbitrary distribution A, Lemma 10.2.7 says that there exists a unique distribution D which
is contained in A, invariant with respect to I', and maximal in the sense that any other distribution
which satisfies the first two properties is contained in D. In what follows we will develop an algorithm
which can be used to explicitly compute D.

We begin by setting Jo = At and recursively define the codistributions

Jrp1 = Lr(Je NT) + g (10.15)
If there exists a integer &* such that Ji«_1 # Jp= and Jp» = Jp=41, then
Lr(Ji NTL) C Jpe,

and the codistributions
JoCch...CJk*

form a filtration of finite length.
If each of the codistributions J; N 't and Jj has constant dimension on some neighborhood of
a point p € M, then p is called a regular point of Algorithm 10.15.

Theorem 10.2.2 If the distribution A s involutive, and a point p € M 1is a regular point of
Algorithm 10.15, then each of the codistributions in the filtration

JoCJ1C---CJp,
15 involutive.
Proof: Since we are assuming that A is involutive, the codistribution Jy is obviously involutive.

Assume that the codistribution Jj is involutive. Since Jj and J; NI+ are constant dimensional,
locally there exist smooth functions z', ..., zP* such that

Jr = span{dzt, ... dzP*}
and smooth one-forms #° 1 < i < r;, which satisfy
JrN It =span{f*, ... 67}

If Tt is m-dimensional, then we can select an additional set of one-forms w',...,w™ " so that

't =span{w?t, ... W™ 0t 07 ).

1

If we also select an additional set of smooth functions z*, ..., 2" ~P* then, with respect to the basis

{de',. .. de"7P* dz', ... dePrY, (10.16)
each w? can be expressed as
w' = Z ci(x, z)da! + Z bi(z, z)dz’,
j=1 ji=1

and each 6" can be expressed as

P
0 = Z cj»(x, 2)d2.
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We can select a subset of the dz’s and dz’s so that, taken together with the #’s and w’s, we have a
basis for T* M. The coefficients of this basis form a matrix of smooth functions

Ai(z,2) As(x,z) Bi(x,z) Ba(z,z)

0 1 0 0
0 0 Ci(x,z) Co(z,z)
0 0 0 1

which 1s expressed with respect to the cobasis
{de',. .. de"7P* dz', ... dePrY

Since A; and C; are nonsingular, we can always produce an equivalent basis of the form

I As(x,z) Bi(x,z) Ba(z,z)
0 I 0 0
0 0 1 Ca(z, z)
0 0 0 1

If we invert this matrix, we obtain a matrix of coefficient functions

I —A2 —Bl (3102 — Bz)

0 I 0 0
0 0 I —C
0 0 0 I

which represents a basis of TM expressed with respect to the standard coordinate basis

9o 9 o0 9
Jrl’ " Gan—re 910 Garn [

Consequently, I' is spanned by the columns of the matrix

—Az(l‘,z) (3102 —OBQ)(l‘,Z)
—Cs(x, 2)
1

(10.17)

O O M~

In order to compute J;41 we must compute Lio for every f € I' and every o € J; N I'+. An such

« can be written as
o= Z ci(z, 2)0°.
i=1
Since fJa =0, Ly = f Jda, this operation can be viewed as a mapping taking 7, M x T;M —
15 M which is linear with respect to the ring C'°°(M) in the first argument. Therefore, it suffices
to work with any basis of I', and we will choose the basis described by the matrix 10.17. We will
denote the ith column of this matrix by f; and compute Ly «. Writing this out in coordinates, we

find that

Lya = (Zk:(fi Jde;) N0+ Z ci(z, 2)(fi - dei))

i=1 i=1
The first term on the right hand side of this equation is in the span of Jg, so that any 1-form in

Jr41 can be expressed as a linear combination of the 1-forms f; 1 d6/ mod Jj,. Therefore, we only
need to consider the one-forms Ly ¢’. Each ¢/ has the form



so the Lie derivative can be written out as

Lfﬁj =

94

(10.18)

By construction, each of the terms f; J dz* has a constant value of either 1 or 0, so the second and
fourth lines cancel. Each term in the first line lies in the span of Jg, so each of these expressions

can be simplied to

L, 69 = d(f; 2dz7) mod Jy,.
Thus, the codistribution Jy41 is spanned by the differentials
Jr41 = span{d(f; dzj)} + Ji.

Since Ji41 is locally spanned by exact differentials, it is also involutive.
Since f; 467 =0, we have that

Pe—Tk

£ Id + Z (fi Jdz") = 0.

By construction, we also have that f; 1dz* = 6¥. Therefore, we find that

Lflzj = finZj = Ci

(10.19)

Corollary 10.2.1 If the codistribution J s involutive, and the point x s a regular point of the

controlled invariant distribution algorithm, then

C(Jy N FY) C Jryr.

Proof: Since Jy11 = Jp + Lp(F+ N J;), we must have that Lg(FL N J;) C Jpy1. From Theorem

10.2.2 we know that Ji is involutive, so
LJ;(FL NJx) C Lyrdy CJp C 41
Forming the subspace sum of the last two equations, we find that

Lipst(FENTy) = C(FE 0 Jy) C Jiga

Corollary 10.2.2 There exists a coordinate system on M and integers ro, ...

such that
1. s; <y, for 1 <i<k,.
2. span{dz?, ... dx"*} = J;.
3. span{w!, wi} = FinJy.
4

L wp = Z;’;l aé(xl, co e Ydd

Tk, and Sg, ..., Sk,
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Proof: The proof follows immediately from Corollary 10.2.1 and Theorem 8.3.2. a

10.2.2 The Largest Controlled Invariant Distribution Contained
in ker(dh)

In the vector field theory, an invariant codistribution of particular importance is the largest con-
trolled invariant distribution contained in ker(dh). Isidori presents an algorithm for computing this
distribution which proceeds as follows

1. Set Qo = span{dh?,...dh*}.
2. Set Qk+1 =Qr + Lf(Qk N GJ‘) + E:nzl Lg,(Qk N GJ')
Isidori also presents the following lemma

Lemma 10.2.8 (Isidori) Suppose there exisls an inleger k* such thal Qpsy1 = Qg+, if Qg+ and
Qp« NG are smooth, then Qé‘* is the maxzimal controlled invariant distribution contained in ker(dh).

This algorithm closely resembles algorithm 10.15. This relationship is made precise by the
following lemma.

Lemma 10.2.9 Let F' denote distribution spanned by the columns of the matriz

g1 - gm [

F = span 0 01

Suppose that the codistribution Jo = ker(dh.) = span{dh, ..., dh, dt} is defined over M x R. If
there exists a k* such that the algorithm 2 stabilizes, then Algorithm 10.15 which starts with the
codistribution Jy stabilizes, and each Jy = 7 () + span{dt}.

Proof: By construction, the statement is true for ¥ = 0. Suppose that it is true for some &k < k.,
so that

Qk‘ = Span{¢1a ey ¢pk}
and

Jr, = span{¢’, ... ¢F* dt}.
Assume that on M, the perp of the distribution G is spanned by the covectors

Gt = span{w!, .. .,w("_m)},
and that the codistribution Q; N G* is spanned by the covectors
Qr NGt =spanfal, ... o}

On M x R, we will have
Jk‘ = Span{¢1a M 'a¢pkadt}a
Ft =spanfw! — (fawh)dt, ... wP* — (f dJwP*)dt},

and
(FEnJ;,) =span{al — (faab)dt, ... o — (fda'*)dt}.

Using the controlled invariant distribution algorithm, we find that

Qpy1 =span{et, ..., ¢P* Lol .. Lia™ Lyab ... Lya'* .. L, o .. L, o'*}.

sy Lig,
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On M xR let
gi1€ ‘= |: 0 :|a y Im€ = |: 0 :|afe = |: 1 :|

Clearly, these vector fields span F, so we can compute Lg(F1 N J;) by computing the covectors
Lye(a = (foa)dt = Lya'— L, (fJa')dt
Li(a' —(fda’)dt = Lja' — Li(fJda')dt.

Using these covectors, we find that

Jrp1 =146, ... ¢P* dt} + Lp(F- 0 J, = 7° () + span{dt}.

10.2.3 Controllability Distributions

This section introduces a special class of controlled invariant distributions which are called control-
lability distributions. Roughly speaking, these distributions characterize the submanifolds which
can be controlled by a subset of the inputs. We will make use of this theory in Chapter 11 when we
look at the noninteracting controls problem.

Lemma 10.2.10 Given any two distribution A and T, there exists a unique distribution D C T of
minimal dimension which satisfies

1. AnNTcDCT.
2. [A,DINT = D.

Proof: Let 7(A;T) denote the set of all distributions D satisfying
[A,D]NT C D.

This set 1s not empty since
[A,TINT CT.
If Dy, Dy € T(A;T), then
AﬂFCDl,DzzAﬂFCDlﬂDZ
[A, Dl] Nnr c D
[A, Dz] N C Ds.
= [A,(DinNDy)INT C DiNDy
Since 7 (A;T) is nonempty and closed under smooth intersections, it must contain a unique minimal
element.

Up to this point, we have shown that there exists a unique D of minimal dimension which satisfies
[A,D]NT C D. We still need to show equality. To do this, we begin by defining the distribution

K :=[A,D]NT.
This distribution is a subset of D, so we must have that
[A,K]NT C[A,DINT = K.

This distribution also contains ANT, so it is a member of K € T(A;T). From the minimality of D,
we conclude that K = [A, D]NT = D. O

Lemma 10.2.11 If the distribution I' is involutive, then so is the distribution D.
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Proof: To prove this lemma, we will use the fact that, given any distribution D), the Cauchy
characteristic of its perp, A(D'), is a subset of D. We will show that if ' is involutive, then the
condition

[A,D]NT =D

implies that
[A,A(Di)] AT C A(DY). (10.20)

Equation 10.20 is equivalent to showing that the retracting space of D satisfies
([a,a(ph)] nryscmhy =0,

We compute

(|a,ah)] nTyact) =
(|a, A Ny Ls(Dh) =
([A,a(DH)] nrys DDty =
[A, ADY]NT, Do DY c[[A ADY)], DINnT o DL
The last line follows from the involutivity of I'. Using the Jacobi identity, we also get
[[A, A(DY)], D)NT 2Dt = [[A(DY), D], A]nT 2 D+
Finally, using the fact that [A(El), D] = D, we arrive at
[[A(DY), D], AlnT D+ = [D,AInTaDt =DaDt =0.

~ From this result we gather that A(ﬁl) € T(A;T) whenever I' is involutive. The minimality of
D implies D = A(D%), and from Theorem 8.3.1 we know that A(D1) is involutive. a

Lemma 10.2.12 If (A, T) forms an invariant pair, then (A, D) also forms an invariant pair.

Proof: Since (A,T') form an invariant pair
[A,TJCA+T.
If we let [A, D] = T, then we have that D = TN T and
[A,TNT]=T.
From the invariance condition, we get that
[A/TNT]C[AT]C A+T.
Forming the intersection, we get
A, TNIC(A+T)NT.

By definition, A C T, so
A/ TNT]CA+TNT,

or

[A,D]CA+D.
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O
We will define a controllability distribution to be any involutive distribution I' which forms an
invariant pair with A and which is also the minimal element the collection 7 (A;T') of distributions
satisfying the conditions of Lemma 10.2.10.
If one tries to dualize the conditions in Lemma 10.2.10, the conditions obtained turn out to be
difficult to work with. Instead, it is better to restate Lemma 10.2.10 in a slightly different form and
then dualize the modified requirements.

Lemma 10.2.13 Given any two distribution A and T, there exists a unique distribution T of min-
mal dimenston which satisfies

1.ACT.
2. [A,TNT]=1T.
Proof: Let ’j'(A; ') denote the set of all distributions T' satisfying
A TNT]ICT
This set 1s not empty since
A, V(M)NT]C V(M).

If Ty, Ty € T(A;T), then
ACTy,Tha=>ACTiNT,

and

[A,Tl ﬂF] c 1
[A,Tz ﬂF] c Ty
=>[A(MinT)NT] € ThinTs.

Since ’j'(A; ') is nonempty and closed under smooth intersections, it must contain a unique minimal
element.
To show equality, we begin by defining the distribution

K :=[A,TNT).
This distribution is a subset of 7', so we must have that
[A,KNT]C[A,TNT] =K.

This distribution also contains A, so it is a member of K € ’j'(A; I'). From the minimality of T, we

conclude that K = [A, TNT] =1T. O

Note that the distributions D and 7" are related by TNC = D. In this modified form the conditions

of this lemma can be dualized using Lemma 7.2.7 to require a unique maximal codistribution T+ ¢
A* which satisfies

LATY ¢ T+ 41+, (10.21)
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10.3 Invariance and Dynamic State Feedback

In the previous section, we discussed an algorithm for finding the largest distribution which forms an
invariant pair with a fixed distribution F' and is contained in a fixed distribution A. In this section,
we are going to examine how this distribution is affected if the control system corresponding to the
distribution F is prolonged using the procedure described in Chapter 9.

To set this problem up, we will assume that we are given an s-dimensional distribution A, and
an (m + 1)-dimensional distribution F' which are both defined over the (n + 1)-dimensional state-
time manifold M x R. Furthermore, we will assume that we are given a p-dimensional distribution
D C FNTM x {0} which generates the prolongation of F. The state-time space for the prolonged

system is the dense open subset of the bundle GLI_I)_’f](M X R) whose fibres over a point (p,t) € M xR

Ef_)l_’f] (p,t) which satisfy dt|s # 0. The prolonged

distribution, which we will denote by Fp, is defined at each point (p,§) € GLI_I)_’f](M X R) by the
equation

consist of all the (p41)-dimensional subspaces S € G

F(p, &) = 7" (6%).
Since the distribution A typically corresponds to the kernel of an output map

H:-MxR—=NxR

and since the prolongation process induces a map

H:GE(MxR)—NxR

defined by H := (H o) from the prolonged space to the output space, a natural way to extend the
distribution A to the prolonged space is to use the distribution (7*(AL))% which, if A corresponds
to the kernel of a map H, is equal to the kernel of the prolonged output map H.

We want to try to find a relationship between the largest distribution contained in A and invariant
with respect to F' and the largest distribution contained in (7*(A1))+ and invariant with respect to
Fp. As afirst step toward this goal, we will compute one iteration of Algorithm 10.15 for each of the
pairs (A, F) and ((7* AL)L, F;) and compare the resulting codistributions. We will work in a local
coordinate system, and we will assume that A is involutive, that AN F has constant dimension, and

that AN F N D has constant dimension. Under these assumptions, there exists a coordinate system
X:VcU—R (10.22)

consisting of functions

1 r 1 re ~1 ~rg ol ~ryg o 3l zr: 31 sTs
Y L AU L Y 7 LY/ RNUNE | LE NS S AR A AL

where 13, + v, + 75 + 75 + 77 + r; = n, which are selected selected such that

A :=spanq — _@ ﬂ 0 0 0
‘= sp Gal B B g A By

and such that, with respect to the ordered basis

3 3 3 3 3 d 3 d

BRI BRTRE Drls ) Bpre) OGir I 558 gL 85 e

3 3 3 a8 v (10.23)
QFLY ) 9ETE Y 9FLY 0y §ETE ) )

the following conditions are satisfied:



1. The distribution AN F N D is spanned by the columns of the matrix of functions

2. The distribution A N F is spanned by the columns of the matrix of functions

3. The distribution D is spanned by the columns of the matrix of functions

4. The distribution F' is spanned by the columns of the matrix of functions

0

G

I

oo o o

0

G

&
I

0
0
0

0 0
GY G
I G3
0 I
0 0
0 0
0 0

0 Gl
a2 G2
e e
I 0
0 G
0 I
0 0

0 ¢ Gl
e e Ie”
e e
I 0 0
0 I G
0 0 I
0 0 0

100

(10.24)

Algorithm 10.15 is invariant under affine state feedback, so we can multiply the matrix 10.24 on the

right by the feedback matrix

to get

OOOONQQ

0

OO O ~O

OO OO~

(G3 - GiG)

—G‘;’

0 —G3
I 0 0
0 I -G
0 0 I
0 0 0
G

G5

0

0

I

0

0

_o O O o

0

O~ O O

(G4 — G3GY)
(GF - GiG4 - G3GY)

1

FZ
0

_ o O O
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The the vectors corresponding to the columns of this matrix can be supplemented with the vectors

N B B
Oht’ T Ok Gxl’ T Qe

to form a basis of T(M x R) which can be represented by the matrix

(7 0 0 0 G (G1 - GiGY) F1
0 I G} (G3-GiG3) Gf (G]—GiGE-G3G) F?
0 0 I 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
| 00 0 0 0 0 1]
The inverse of this matrix is
7 0 0 0 ~-Gi (GLG5 — GY) —F
0 I -Gf (GiG3-G3) -G (GiGi+G3GE—Gi) —F?
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

- )

and 1ts rows can be viewed as one-forms expressed with respect to the standard dual basis of 10.23.
The first two blocks of rows in this matrix span F'', the first, fourth, fifth, and sixth blocks of rows
span AL and the first block of rows spans F't N AL,

If we set Jog = AL, then the first iteration of Algorithm 10.15 is described by

Ji=Jo+ Lr(JoNFL).
In local coordinates, we have that
Jo =span{dh', ... dh"™ dz' ... dz"F dEY, ... diTE diY,
and using the procedure presented in the proof of Theorem 10.2.2 we can compute that
Jy =span{dh', ... dh™ dzt, .. dETE dE L dE dL, dGS d(GEGY — GY), dFY

where we use terms like dG3 to denote the differentials of each of the elements in the matrix G3.

Having obtained J; for the unprolonged system, we turn our attention to the prolonged system.
The prolongation process is equivalent to appending integrators onto the inputs associated with the
first and third blocks of columns in the matrix 10.24. We can form a new local coordinate system on
the prolonged state-time space by adding the coordinates v',...,v"# u', ..., u"* to the coordinate
set 10.22. With respect to these coordinates, the distribution Fp of the prolonged system is spanned
by the columns of the matrix

[0 GL 00 GLU + F*

G} G2 0 0 G2V +G3U+ F?

G G300 1%

0 G2 0 0 U

I 0 00 0 (10.25)
0 I 00 0

0 0 I 0 0

0 0 0 I 0
L0 0 0 0 1 ]
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which 1s expressed relative to the ordered basis

{686868686}

o_fo 9
Oh | OhY T ORm |

As before, we can append the vectors
9 9 9 9
Oh’ 0z’ 0y’ 0z

to the columns of the matrix 10.25 to form a basis of the tangent space of the prolonged state-time
manifold. This basis can be represented by the matrix

7T 0 0 0 0 G) 00 GiU + F!
0 I 00 G2 G2 0 0 G?V+GEU+F?
001 0 G5 G2 0 0 1%
00011 0 G 00 U
0 0 0 0 I 0 0 0 0
00 0 0 0 I 0 0 0
00 0 0 0 0 I 0 0
00 0 0 0 0 0 I 0
L0 0 0 0 0 0 0 0 1 ]
The inverse of this matrix is
[T 0 0 O 0 -GY 0 0 ~GLiU - F! T
0 I 00 —-G2 -G% 0 0 —-G3V-G3U - F*?
00 I 0 -G53 -G3 0 0 -V
0 0 0 I 0 -GS 0 0 -U
0 0 0 O 1 0 0 0 0
0 0 0 O 0 1 0 0 0
0 0 0 O 0 0 I 0 0
0 0 0 O 0 0 0 I 0
|00 0 0 0 0 0 0 1 |

Identifying the rows of this matrix with differential one-forms expressed relative to the standard
cobasis for our local coordinates, we find that the first four blocks of rows span Fi7, the first, fourth,
sixth, and ninth blocks of rows span the codistribution Ky = #*(.Jy), and the first and fourth blocks
of rows span Ko N F. computing Ky = Ko + Lp, (Ko N F) we find that

Ky =span{dh, dz,dz,dt,dU, dG5, dG}, d(G5U + F1)}.
If we carry out the indicated differentiations, we can rewrite J; as
J1 = span{dh, dz,dz, dt, dG3}, (GdG5 — dG}), dF'}
and K, as
K1 = span{dh, dz,dz, dt,dU, dG5, dG}, (dGLU + dFY)}.

From these expressions, it is clear that the relationship between K; and J; is dependent on the
functions which determine the G matrices. For example, if G3 is constant, then 7*J; C K;. If, on
the other hand, G§ is constant, then Ky N(ker 7)1 C J;. In particular, note that if we set D = ANF,
then this latter case will always occur. In fact we can show that this relationship holds for each of
the corresponding pairs J; and K; in the filtrations generated by Algorithm 10.15.
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Lemma 10.3.1 Given an s-dimensional distribution A, and an (m+1)-dimensional distribution I
which are both defined over the (n 4+ 1)-dimensional state-time manifold M x R, assume that A is
wmvolutive, and that ANF has constant dimension p Let D = ANF, and let Fp denote the prolonged
distribution generated by D. Let Jo = A+ and Ko = 7 Jo. If the filtrations generated by applying
Algorithm 10.15 respectively to the pairs (Jo, F') and (Ko, Fp) are both constant dimensional on
neighborhood of the prolonged state-time space, and the codistributions F'+ + J; all have constant
dimenston on this neighborhood, then the filtrations satisfy

™ Jo C T J1 c - C T J; C
U U U
Kon(kerm)t ¢ KiNn(kers)t c -+ Cc K;N(kerm)t C

In particular, K N (ker )t C ™.

Proof: Corresponding to the filtration of codistributions
JoCJiC---CJyCony

we have the filtration of distributions

Jtc..cJtc--cUy=A

Let I be the lowest integer such that J; = J. For simplicity, we will assume I = 2, but the
proof of the general case will proceed in exactly the same way. Because of the constant dimension
assumptions, there must exist a set of coordinates

RY,CRTRCRY LORTR RN L ETE Y L aTE g, L g gty B L BT B L T

bl bl bl bl

where r; + 7 +rz +7rs + 15 +rg + vz + 12 =n, which are selected selected such that

g o
1 _ -
72 _Span{ag’ﬁg}’
o & o o
1 - -
Ti _Span{ag’ag’az’az}’
Joizspan{iﬂiiii},

and such that F' is spanned by the columns of the matrix of functions

[0 0 0 GY F']
0 0 &2 & F?
0 3 G2 G 3
eTRe. e e
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0

0 0 0 0 1 |

which is written relative to the ordered basis

g o0 o0 0 0 o0 o0 0 0

on 0% 9z’ 9y 0y 9z’ 0z gh’ ot
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Applying Algorithm 10.15 we find that

Jo = span{dil,diz,dt}
Ji = span{dh,dh,dt,dG dF"'}
= span{dh,dh,di, di, dt}
Jo = span{dh,dh,dt,dG} dF", dG%, dG2,dF?}
= span{dh,dh,di, di, dz, dz, dt}.
Js = span{dh,dh,dt,dG} dF', dG% dG3,dF?, dG3, dG3, dG3, dF3)

span{dh, dh, dz, di, dz, dz, dt}.

Prolonging F' about D = AN F produces the distribution Fp which can be represented by the
matrix of functions

0 0 0 0 U
0 0 0 0 GLU+F!
0 0 G2 0 G2U+F?
0 G3 G3 0 G3U+F®
Gt Gl G oo GiU+ Tt
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
L0 0 0 0 I

which is written relative to the ordered basis

go o0 0 0 0 o0 o0 09 0

oh oh’ 0%’ 070y’ 9y’ 02’ 9z’ du’ It
For each J;, we will now compute the codistribution #*J; + Lp, (7*J; N F[J;)

Ql = 7T*J0—|—LFD(7T*JQHFIJ)')
{dh,dh,dt, d(GLU + F),dU}

Qz = 7T*J1—|—LFD(7T*J10FIJ)')
= {dh,dh,dz,dz,dt, dG3, d(GLU + F1), d(G3U + F?),dU}
= {dh,dh,dt,dGL, dF" dG2,d(G3U + F?),dU}

93 = 7T*J2—|—LFD(7T*J20FIJ)')

{dh,dh,d&, di,dz, dz, dt, dG3, dG3, dG3, d(GLU + F1),
d(G3U 4 F2),d(G3U + F?),dU}
= {dh,dh,dt,dG}, dF', dG3,dG3, dF?, dG3, dG3, dGE, d(G3U + F3),dU}

From these computations, it is clear that

Q5 N (ker 7T)J' c 7'
Qs N (ker 7T)J' Cc 7%J
Q3 N (ker 7T)J' Cc 7*J3

Furthermore, since FIJ)‘ C (ker 7)1, we must also have that

QNFy C mhNFp
QWNFy C 7 JaNFp
Q3sNFy C 7 JsNFp.
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Since ; = K, we obviously have that K; N (ker7)t C 7*J; and that K; N FIJ)‘ Cc 7 Ji N FIJ)‘.
Assume that for some i > 1, K; N FIJ)‘ cr ;N FIJ)‘. Expanding out the expression for K;41, we find
that

Kiyin = K+ Lp,(K;NFR)
Ko+ L, (KoNF) + Lp, (K1 NFp) + ...+ Lp, (K; N Fiy)
= Jo+ Lp,(KiNFg)

Using the induction hypothesis, we find that
Kiy1 CJo+ Lry (JiNF3) CJi 4+ Ly (Ji N F) = Qigy

which implies that K; 11 N (ker7)t C Jiqg. a

Based on Lemma 10.3.1 it appears that a second prolongation might result in another layer of
nested codistributions. However, if we were to compute the codistribution K3 NFp on the prolonged
space, we would find that is equal to Fp N"TM x {0}. This distribution contains all the controls, so
the prolongation which it generates 1s equivalent to Fp. Consequently, nothing is gained. However,
if we begin with the codistribution K;, then Ky N Fp will generally be a proper subset of the controls
and there may be something to be gained from the prolongation. To formalize this procedure we
can define a prolongation algorithm.

Algorithm 10.3.1 Given a distribution A and a distribution F' which are both defined over a state-
time space M xR, define KY = A+, Fy = F, and My xR = M xR. At the ith step of the algorithm:

1. Compute D; = (Kf:ll)l NFi_1. Let p; = dim(D;).

2. Form the prolongation of F;_1 generated by D;. Let F; denote the distribution associated with
this prolongation.

3. Set M; x R = GL?_;_’f’_l](Mi_l X R), and and let m; denote the projection m; : My X R —
Mi—l X R.

4. Define Ki_, =z KiZ].
5. Compute K! = K! | + Lp, (Kf_1 n Fz’l)~

At each step of this algorithm, Lemma 10.3.1 ensures that

K] c mK™! c - C mK! C
U U U
Ki_nkerm)t c Kinkerm)t c - c Kin(kerm)t C

Consequently, if each of the filtrations
K{CKl  CKl,,C--

stabilizes after a finite number of iterations, then Algorithm 10.3.1 will also stabilize after a finite
number of iterations. This algorithm will prove useful when we look at the disturbance decoupling
and noninteracting controls problems. It is closely related to a procedure called Singh’s algorithm,
and the interested reader may want to consult [11] for a good treatment of this topic.



Chapter 11

The Disturbance Decoupling and
Noninteracting Control Problems

In this chapter, we will apply the material from Chapter 10 to the disturbance decoupling and
noninteracting control problems.

The first section of this chapter discusses the disturbance decoupling problem. This problem
arises when a control system is subjected to external disturbance inputs. In such cases, 1t is desir-
able to minimize the influence of these disturbances on the outputs of the system. Therefore, the
disturbance decoupling problem is posed by asking when a feedback transformation exists such that,
in the transformed system, the disturbance inputs do not influence the system outputs.

The second section of this chapter discusses the noninteracting control problem. This problem
arises in situations where it is conceptually or practically advantageous to treat a multi-input multi-
output system as if it consisted of a collection of disconnected subsystems. Since this is not always
possible, it is useful to have a test which allow the controls engineer to determine if a feedback
transformation exists which will will decouple the input-output behavior of the system.

106



107

11.1 Disturbance Decoupling

This section discusses the disturbance decoupling problem. To set this problem up, we will consider
an affine control system which is defined by a distribution F' over a smooth state-time manifold
M x R. We will assume that F' is defined as the sum of two distributions F' = F, + F;. The
distribution F,, is spanned by vectors of the form

o [ - 5]

which represent the drift vector field and the m inputs which can be used to control the system.
The distribution Fj is spanned by s vectors of the form

Tei = "i
et — 0

which represent disturbance inputs over which we have no control. With respect to alocal coordinate
chart (2, U), this control system can then be represented by the equation

m 5
& Ife—I-de]»u]—l—Zrekv :
ji=1 k=1

We will call the inputs v', ..., v* the disturbance inputs.

Given a set of outputs functions y! = hl(q),...,y" = h¥(q), we will use y'(qo, %0, u,v) to denote
the time function which results when the system is started with initial condition (¢o,%g) € M xR and
driven by the input function u(¢) and the disturbance function v(¢). A disturbance input v(¢) is said
to be decoupled from the output y' if and only if for every (go,t0) € M xR, every u(t) € C*(R,R™),
and every v(t) € C®°(R,R™), y'(q0,%0,u,0) = ¥*(qo,t0,u,v). In order to study this problem, we
need to define the codistribution

Opp = span{dA\€T*M | A= Lx,Lx, - Lx,h Vk>0, X € {fe,get,-- -\ gem} }
+ span{dt}.

which is called the observability distribution associated with the control system defined by f., ge1,

., gem, and h', ... hP. The fg subscript is used to emphasize that this codistribution is dependent
on the choice of these vector fields and that this codistribution is invariant with respect to these
vector fields. With this setup, we now state a lemma which gives a necessary condition for an input
to be decoupled from an output.

Lemma 11.1.1 If a disturbance input v'(t) is decoupled from an output y = hi(p,t), then the
corresponding vector field ro; lies in the perp of the codistribution Oy,

Proof: Let v and @ be two arbitrary disturbance inputs and let y/ (o, %0, u,v) and ¥/ (qo,to, u,d)
denote the corresponding outputs. Since the disturbances are assumed to be decoupled from the
outputs, these functions and all their time derivatives must be identical. The time derivate of
¥ (qo,to, u,v) is equal to the Lie derivate of b/ with respect to the vector field f, + geju’ () +rerv* (t)
which is defined over M x R. Similarly, the time derivative of 3/ (qo,%0,u,?) is equal to the Lie
derivative of h/ with respect to the vector field f. + ge;u’(t) + rex9¥(¢). This implies that

dy’

(05 tos s 0) = Ly W 4 Ly, W (6) + Ly W08 (1),
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Since the functions v¥(¢) are arbitrary, and this function is assumed to be independent of the distur-
bance inputs, we must have L, , hY = r.; Jdh/ = 0. Taking the second derivative of ¥/ (qo,t0, u, v)

d2d . . . oo .
Wyz(qoa to,u,v) = LJZ‘e W + Ly Ly W u'(t) + Lg.; Ly, Rl (t) + Lg.; Ly W u' (t)u! (t)
+ Lo WU () + Ly Dp W0 () 4 Ly Ly W ()08 (1),

Since the value of the second derivative is also assumed to be independent of the disturbance inputs,
and this condition is true for arbitrary u'(t), we must also have L, , Ly h? = rop JdLs h) = 0 and

Lry Ly hd =vre 3dL, R = 0.
By continuing to take higher order derivatives, we obtain the condition that r.; JdA = 0 for any
A=Lx,Lx, - Lx,h where k >0 and X; € {f.;9c1,.- -, 9em}- a

11.1.1 Disturbance Decoupling Using Static State Feedback

The problem which we will consider in this section 1s to determine whether or not there exists an
affine feedback transformation such that, in the transformed system, the disturbance inputs are
decoupled from the outputs. Define

J =span{dh®, ... dhP dt},

and let J denote the smallest codistribution which contains J and forms an invariant pair with F'.
The following theorem provides necessary and sufficient conditions for the solvability of this problem
when J has constant dimension.

Theorem 11.1.1 If the codistribution AJA has constant dimension, then the disturbance decoupling
problem is solvable if and only if Fg C J*.

Proof: If the disturbance inputs are decoupled from the outputs, then from Lemma 11.1.1, r.; €
(’)j‘g. Furthermore,

Lfeofg c O
Lgezofg c 0,

so Lp(F+NOs,) C Op,. Therefore, ((’)j‘g,F) is an invariant pair. The codistribution Oy, also
contains J. Consequently, JC O;4. These facts imply that r.; € (’)j‘g cJt.

Conversely, if each r.; € fl, then Lemma 10.1.5 says that there exists a coordinate system and
affine state feedback such that the control system can be represented in the normal form

m s
Z;l — fl(zl’ZZ)_i_Zgil(Zl’ZZ)ui_1_27&%(2,1’22)0!6
i=1 k=1

32 P+ 6
i=1
yj = R (zz)

Written in this form, it is clear that the outputs are not influenced by the disturbance inputs, so
this choice of feedback solves the disturbance decoupling problem. a
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11.1.2 Disturbance Decoupling Using Dynamic State Feedback

Even if the disturbance decoupling problem 1s not solvable using static state feedback, 1t may still be
possible to decouple the disturbance inputs using dynamic state feedback. This possibility is based
on the discussion in Section 10.3 which showed that by applying Algorithm 10.3.1 the size of the
largest invariant codistribution which contains J may be decreased on the prolonged space. To test
whether Fyy can be decoupled using dynamic state feedback, the following procedure can be used.

1.
2.

Set KQ =J, Fp = F,and i = 0.
If Fy ¢ (K!)! then the disturbance cannot be decoupled using further bundle prolongations.
If Fy C (K!)t, construct the filtration

)

K{CKl,,C- CK
using Algorithm 10.15.

If Fy C (IA&’i)J‘, then Fy can be decoupled using static state feedback on the system Fj defined
over M; x R.

B (IA&’i)J‘, then set ¢ = i 4+ 1, perform one iteration of Algorithm 10.3.1, and return to

step 2.
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11.2 Noninteracting Controls

In this section, we will consider the block input-output decoupling problem. This problem can be
stated as follows. Given an affine system which is described by a distribution F' defined over the state-
time manifold M x R and a collection of output blocks Hy to Hy of the form H; = (h},... K" 1),
determine if there exists a decomposition of F' of the form

Gt ... gt F
0 0 1

and a state feedback transformation such that, in the transformed system, the ith output block
is influenced by the ith input block and is decoupled from the jth input block for j # 4. If the
control system is strongly accessible, then the following theorem provides a necessary and sufficient
condition for the existence of such a decomposition.

Theorem 11.2.1 Let J; be the smallest codistribution which contains dH; and forms an invariant
pair with F. If the control system corresponding to I is strongly accessible, then the block input-
output decoupling problem is solvable if and only if each J; satisfies

Jin (> J,) = span{dt}. (11.1)

s#1

Proof: To prove the sufficiency of this theorem, we begin by noting that each of the codistributions
Ji is involutive, so there exist smooth functions Al, ..., AI* such that

J; = span{d\}, ... d\/* dt}.
If we define the codistributions K; := Zs# Js, then condition 11.1 can be rewritten as
JiNK; =span{dt}, 1<i<k.

Using this fact, it can be shown that for each i € {1,... k},

KinKan---NK;o1=Jig1+ -+ Ji.
From this, 1t i1s easy to show that

KnNnkKnNn--NK;oi =K NK;nN---NK; 4+ J;. (11.2)

Suppose the codistribution K1 N Ko N ---N K; 1s spanned by a set of differentials

KinKyN---NK; =span{d@',...,d3*}.
Since K; N J; = span{dt}, the equation K; N Ko N---NK;NJ; = span{dt} also holds, and this fact
together with equation 11.2 implies that the codistribution K1 N Ky N -+ N K;_1 will be spanned by

the differentials
KiNKy---NK;_y =span{df,... d3* d\},... d\]' dt}.

Therefore, starting with ¢ = k& and working backwards recursively, we find that K; is spanned by
the differentials

Ky =span{d\}, ... dN? dAL, . dNR L dAL L dN dt)

and that
J=K +J = span{d/\%,...,d/\gl,d/\é,...,d/\’;,...,d/\llc,...,dAzk,dt}.
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Consequently, all of the functions /\g can be taken together with ¢ and an additional set of linearly
independent function z!,... 2% to form a local coordinate chart on T*(M x R).
Since each of the distributions J7 forms an invariant pair with F', we have that

C(JFnFH c .

Therefore, Theorem 8.3.2 ensures that locally there exists a basis w', ... wP? for J; N F'* such that

each w”® can be expressed as
T

W= ai (A

ji=1

Since this is true for each J;, there exists a basis for F'* of the form

I 0 00 0 Gy(A,t) 0 0 FY(\p,t)
0 . 00 0 0 0 :

0 0 I 0 0 0 0 GE (k) FEOw)
0 0 0 I Gz t) GEYY(O\ 1) - Gzﬁ(A, ) FRYON 1)

expressed relative to the ordered cobasis
dXi,dXs, ... dXg, de, dAy, d)s, . .. d)\y, dE, dt

where we have divided each set of coordinate functions into two blocks, d:\i and d;\i and where terms
like dz denote the set {dz?, ... dz?}.

Furthermore this can be extended to a cobasis of the form

M1 0 0 0 G (A1, 1) 0 FY(A,t) ]
0 . 00 0 0 : 0 :

0 0 I 0 0 0 0 Gh () FFOpt)

0 0 0 I GYM'(\zt) GSM'(\xt) - GiLi(A e t) FHYA 2,t)
0 0 0 0 I 0 0 0 0

0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 : 0 0

0 0 0 0 0 0 0 I 0

L0 0 0 0 0 0 0 0 1 |

Inverting this matrix, we set that 7' is spanned by the columns of the matrix of functions

r 0 —G(M,1) 0 0 —F'(A,t) ]
0 0 0 :
0 0 0 GE (A, 1) —F*(Ap, 1)

—GEL (N 2 t) —GETY(N 2 t) - —G’,gi}(x,x,t) FRY(N 2,1)

I 0 0 0 0 (11.3)
0 I 0 0 0
0 0 - 0 0
0 0 0 I 0

i 0 0 0 0 1 ]

Written in this form, it is clear that the inputs can be grouped into blocks such that the noninter-
action conditions are satisfied. Assuming the input and drift vector fields for the uncompensated
system are known, a feedback which renders the system noninteractive will be given by the feedback
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transformation which maps the matrix corresponding to the uncompensated system onto the matrix
11.3. Therefore, the problem is solvable.

In order to prove necessity, we will assume that the problem is solvable and will let 1J; denote
the distribution spanned by the ith control block. The noninteracting conditions require that I); be
decoupled from each block of outputs H; for j # 4. From Theorem 11.1.1, we know that a necessary
condition for this to occur is that D; must be a subset of the largest controlled invariant distribution
contained in ker(zj# dH;), which we will denote by I;. Since this codistribution is involutive, there
exists a set of differentials defined such that

I; = {dX,dA, dt}.

Since I forms an invariant pair with F', F'L can be represented by the first two blocks of rows in a
matrix of the form

10 0 Gi(At) FL(At)
0 I G\ z,t) GE(\ z,t) F*()\ x,t)
0 0 I 0 0

0 0 0 I 0

0 0 0 0 1

which 1s expressed relative to the ordered cobasis
d\, dz, dz, dX, dt.

Furthermore, if we compute the largest controllability distribution contained in I, which we
will denote by M;, then there exists a set of coordinates A, x, z, ¢ such that

Mt = span{d\, dx, dt},

K3

and we can further refine this description to

I 00 0 Gi(At) FL(At)

0 I 0 0 G3(A, 2, 1) F2(X\ z,t)
0 0 I GiXz,zt) Gi(A\z,z,t) F3(\w, z,1)
0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 1

expressed relative to the ordered cobasis
d\,dz, dz,dz, dz, d), dti.

Since the system is assumed to be decoupled, we must have that J; N M} = {dt}. If this were
not the case, then there would exist an w € J; which is decoupled from the controls associated
with the block D;. Since the system is assumed to be strongly accessible, this would imply that
there 1s a one-form in J; which is influenced by one of the other control blocks, and this contradicts
our assumption that the outputs H; are decoupled from the inputs D; for j # ¢. Finally, it is
straightforward to verify that

Y Jjclic Mt

J#!
Therefore, we can conclude that if the system is strongly accessible and satisfies the noninteraction
conditions, then it must satisfy

Tin (> J;) = {dt}.

i#i
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If we remove the assumption that the system is strongly accessible, then things still work out in
essentially the same way, but the condition that

Jin (Y J5) = {di}

J#i

is no longer necessary because two output blocks could both contain the same uncontrollable output.

It is insightful to look at the case when each output block involves only scalar output so that
dH; = span{dh?, dt}. It will suffice to consider only the part of the system spanned by the differentials
contained in J;. Restricted to this subset, we have the matrix

I Gl (N,t) Fi(ht)
0 I 0
0 0 1

which is expressed relative to the ordered cobasis d;\, d:\, dt. The codistribution F1 is spanned by
covectors of the form ¢/ = w/ — (f Jw/)dt where f is the drift vector, and w/ € FL + span{dt}.
Each iteration of Algorithm 10.15 is of the form

Ligey1y = Lig + Lr(F* N 1y).

For the first iteration, we must compute ;o N F'* This will have dimension 0 or 1 depending on
whether or not dh? € F'+ + span{dt}. If this condition is true, then one of the w can be replaced by
dh® and we can compute that I;; = {dh’, dehi, dt}. If this condition is not true, then the iteration
ends. Continuing in this fashion we find that at each step, we either add one differential to I;(41),
or the iteration ends. Eventually, we find that

g ri—1gz4
I; = span{dh’,dL¢h",. o dLFT R ,dt},
and that
LN F* =span{dh’ — LyH'dt,dLgh" — Lh'dt, ... dLy=*h' — L~ hidt}.

Furthermore, using the basis described by 11.3 we find that g; JL;’_lhidt = 6]2 Therefore, the
matrix

Ly Lp~'ht oo Ly L Hh!
Lo L'27'h% oo Ly L7~ th?
Ly L e e D, LT
g1y gmHf

has full rank. This is called the decoupling matrix. Its rank is invariant under feedback transforma-

tions, so the fact the outputs A', ..., AP can be rendered noninteractive implies that this matrix has
full rank. Conversely, it is not difficult to show that if this matrix has full rank, then there exists
a feedback transformation and a decomposition of the inputs which renders the system noninter-
active. A control system which satisfies these conditions in an open neighborhood is said to have
vector relative degree on this neighborhood. From the above discuss, it is apparent that when each
output block consists of a scalar output, then the noninteracting control problem is solvable if and
only if the system has vector relative degree on the region of interest.

Just as in the disturbance decoupling problem, even if there does not exist a static state feedback
transformation which solves the noninteracting controls problem, there may exist a dynamic state
feedback which does solve the problem. If so, it can be found by starting with the codistribution
dHy +dHs+ ---+dH,, and applying Algorithm 10.3.1 to obtain the prolonged system.




Chapter 12

Conclusion

12.1 Contributions of this Dissertation

In closing, perhaps it is appropriate to outline the contributions which, in the author’s opinion,
this dissertation makes to the knowledge base of nonlinear control theory. While it is not widely
used, the theory of exterior differential systems certainly is not new. Elements of the theory existed
in the early 1800’s, the first modern formulation is due to the work of Cartan around the turn of
the century. Also, I am fairly sure that all of the results pertaining to nonlinear control theory
can be found in other sources - though they may be stated somewhat differently. Therefore, the
contribution of this thesis lies primarily in the connections which it establishes between the theory
of exterior differential systems and the theory of nonlinear control systems. More specifically, the
connection between Grassmann bundles and affine control systems, and the description of invariance
within this framework. The disturbance decoupling and noninteracting control problems have been
presented primarily to show how “ standard ” nonlinear controls problems can be effectively treated
using this theory. Therefore, the theorems presented cover fairly standard results, but the proofs
are in many cases quite different from what one would find in a standard treatment. Ultimately,
the true contribution of any work must be measured by its readers. In this sense, it is too early
to render any judgments. All T can say in this regards is that I have come away from this project
with a deeper, more geometric understanding of nonlinear control systems, and I sincerely hope this
presentation has been able to convey some of my insights and enthusiasm.

12.2 Future Directions

Although this dissertation has advocated the use of exterior differential systems theory in the study
of nonlinear control theory and has in some cases presented comparisons between the vector field
approach and the exterior differential systems approach to modeling nonlinear control systems, the
intent has been more to supplement the vector field approach than to supplant it. In fact, if the
exterior differential systems methodology gains in popularity, it will almost surely be due to the fact
that it helps to bridge the gap between the vector field approach and other techniques for dealing
with nonlinear systems such as optimal control theory and input-output analysis. Although the
exterior differential systems approach is similar to the vector field approach in many ways, it also
shares some common features with these other methodologies since it uses the state-time space.
There has been some work done in this area - for example, the book by Griffiths [24]. However, this
remains a wide-open area.

Another interesting area of investigation would be a study of the connections between exterior
differential systems theory and classical mechanics. Problems in classical mechanics provided the
initial impetus for many of the people who developed exterior differential systems theory, and it 1s
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closely associated with topics like contact transformations. Also, it is probably possible to give topics
like virtual displacements and virtual work a more rigorous foundation using this theory. From a
controls engineering standpoint, this type of investigation would also be useful since 1t would result
in a common set of tools for analyzing mechanical hardware and controllers.

Up to this point, stability has not been mentioned at all in this dissertation. The reason for this
omission is that stability is a relative property, 1.e., a flow is only stable relative to something: an
equilibrium point, another trajectory, a limit cycle, etc. However, it should be relatively straight-
forward to come up with a useful definition of stability on the state-time manifold and to discuss
things like Lyapunov stability and bounded-input bound-output stability. A major part of this in-
vestigation would have to involve picking an appropriate metric to measure the distance between
any two solution trajectories.

Finally, the Grassmann bundle description of a control system may provide a convenient method
of describing uncertainty in system parameters, and it may even be possible to provide a of descrip-
tion of dynamic uncertainty within this framework. Again, a major part of the investigation would
have to involve picking an appropriate metric to describe the magnitude of the error.
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Appendix A

Manifolds and the Tangent Bundle

This appendix is intended to provide a condensed treatment of basic topics in Differential Geometry.
For a more detailed treatment, the reader may wish to consult one of the several books on the subject

such as [6, 16, 5, 19].

A.1 Differentiable Manifolds

A manifold M of dimension n is a metric space which is locally homeomorphic to R”.

The simplest example of a manifold is R” itself. Other examples are the circle S' and the sphere
S?. The circle St is locally homeomorphic to R while the sphere is locally homeomorphic to R2.
Therefore the circle is a one dimensional manifold while the sphere is a two dimensional manifold.

A subset N of manifold M which 1s itself a manifold is called a submanifold of M. Any open
subset N of a manifold M is clearly a submanifold since if M is locally homeomorphic to R” then
sois N.

A function f: R™ — R” is said to be smooth, or C*° at a point p € R™ if its partial derivatives
of all orders exist and are continuous at p. If this i1s true at every point of an open subset V' C R™,
then the function f is said to be C°° on V. In order to define a notion of smoothness for a mapping
between two manifolds, we need to endow the manifolds with some additional structure.

A coordinate chart on a manifold M is a pair (U, z) where U is an open set of M and z is a
homeomorphism of U on an open set of R™. The function z is also called a coordinate function and
can also written as (z!,...,2") where ' : M — R. If p € U then z(p) = (z!(p),...,=z"(p)) is
called the set of local coordinates in the chart (U, z).

Two charts (U, z) and (V,y) with U NV # (), are called C°° compatible if the map

yor l:x(UNV)CR" —y(UNV)CR"

is a € function. A C* atlas on a manifold M is a collection of charts (Uy, #4) with o € A which
cover the manifold and are pairwise C'™ compatible. An atlas is called maximal if it is not contained
in any other atlas. A differentiable or smooth manifold is a manifold with a maximal, C'*° atlas.

Let f: M — R be any real-valued function defined on M. If (U, z) is a chart on M then the
function

f=foae t:x(U)CR" —R
is called the local representative of f in the chart (U,z). We therefore define the map f to be

C* or smooth if its local representative f 18 C°. Notice that if f is C™° in one chart, then it
must be C'™ in every chart since we required our charts to be C'°° compatible and our atlas to be
maximal. Similarly, if we have a map f : M — N, where M N are differentiable manifolds, the
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local representation of f given a chart (U, ) of M and (V,y) of N is

f:yofox_l

which makes sense only if f(U)NV # 0. Again, f is a C° map if f is a C'°™° map, and this property
of f is independent of the particular coordinate charts used to to construct f

Let f: M — N be a map between two manifolds. The map f is called a diffeomorphism if
both f and f~1 are smooth. In this case, manifolds M and N are called diffeomorphic.

Example: We have seen that R” is an example of a trivial but important manifold. The differ-
entiable structure on R™ consists of the chart (R™, ) where i is the identity function on R as well
as all other charts that are C'*® compatible with it.

The sphere, S? can be given a differentiable structure as follows. Consider the charts (Un, py)
and (Ug, ps) where Uy is the sphere minus the North pole, Us is the sphere minus the South pole
and py,ps are the stereographic projections of the sphere to the plane from the North and South
poles respectively. One can show that these charts are compatible. We can then extend our atlas to
a maximal one by consider all other charts that are compatible with (Un, pn), (Us, ps)- &

A.2 The Tangent Bundle of a Smooth Manifold

Let p be a point on a manifold M. Let C'°°(p) denote the set of all smooth functions in a neighborhood
of p. The set C°°(p) is a vector space over R since the sum of two smooth functions and the scalar
multiple of a smooth function are smooth function themselves.

A tangent vector X, at p € M is an operator from C'°(p) to R which satisfies for f, g € C*°(p)
and a,b € R , the following properties,

L. Linearity X,(a-f+0b-g) =a- Xp(f) +b- Xp(g)

2. Derivation X, (f - ¢g) = f(p) - Xp(9) + Xp(f) - 9(p)
The set of all tangent vectors at p € M 1s called the tangent space of M at p and is denoted by
T, M.

The tangent space T, M becomes a vector space over R if for tangent vectors X,,Y, and real
numbers ¢, cs we define

(c1-Xp+ea - Yp)(f)=c1  Xp(f) + 2 Yo(f)

for any smooth function f in the neighborhood of p. The collection of all tangent spaces of the
manifold,
™ =) M
pEM

is called the tangent bundle.

Example: Given the standard differentiable structure on R”, the standard tangent vectors of R”
at any point p are

o 9
grt " orn
Thus given any smooth function f(r!,...,7"): U — R where U is a neighborhood of p, we have
0 of
o) = g

fori=1,...,n. <&
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Now let M be a manifold and let (U, z) be a chart containing the point p. In this chart we can
associate the following tangent vectors

oo
dzl’ 7 Oz
defined by 5 (s l
ox~
5\ ="

for any smooth function f € C'*(p).

Theorem A.2.1 Let M be an n dimensional manifold and let Ty M be the tangent space at p € M.
Then T, M is an n-dimensional vector space and if (U, z) is a local chart around p then the tangent
vectors

form a basis for T, M.

Proof: See Spivak [6] pages 107-108. O

From the above theorem we can see that if X, is a tangent vector at p then

n
0
Xp = ' ai@

i=1
where aq, ..., a, are real numbers. From the above formula we can see that a tangent vector is an
operator which simply takes the directional derivative of function in the direction of [ay, ..., a,].

Now let M and N be smooth manifolds and f : M — N be a smooth map. Let p € M and

let ¢ = f(p) € N. We wish to transport tangent vectors from T, M to T,N using the map f. The
natural way to do this is by defining a map f, : T, M — T, N by

(f«(Xp))(9) = Xp(go f)

for smooth functions g in the neighborhood of ¢. One can easily check that f.(X,) is a linear
operator and a derivation and thus a tangent vector. The map fi : T, M — T, )N is called the
push forward map of f.

Theorem A.2.2 The push forward map f. : T, M — Tj,\N 15 a linear map.

Proof: Let X, and Y, be two tangent vectors in T, M. Then
((Xp +Y))9) = (Xp+Yp)(g0f)
= Xplgof)+Yp(gof)
= (LX) + (£())(9)
and also for real number ¢,
(fule- Xp))9) = (c-Xp)(gof)
= ¢ Xp(gof)
= ¢ ((Xp))(9)
which completes the proof. a
Theorem A.2.3 Letf: M — N and g: N — K. Then

(gof)*:g*of*

Proof: See Spivak [6] page 101. O



Appendix B

Algebras and Ideals

We begin by introducing some algebraic structures which will be used in the development of the
exterior algebra.

Definition B.0.1 An algebra is a vector space V together with a multiplication operation © : V X
V — V which for every scalar o« € R and a,b € V satisfies a(a © b) = (aa) © b = a © (ab).

Definition B.0.2 Given an algebra (V,®), a subspace W C V is called an algebraic ideal if x €
W,y € V implies that c Oy, y Oz e W

Note that if W 1s an ideal and 2,y € W then & + y € W since W is a subspace.

Example: The set of all polynomials with real-valued coefficients, R[s], is a vector space over R
with vector addition and scalar multiplication defined by

(P1+ P2)(s) = Pi(s) + Pa(s)

(o P)(s) = a- P(s)

If we define multiplication by
(P1-Py)(s) = Pi(s) - Pa(s)

then R[s] is also an algebra.
In R[s], the set of all polynomials with a zero at s = —2 is an algebraic ideal. This is true

because for all Pi(s), P2(s) € R[s] which satisfy
Pl(—Q) == Pz(—?) == 0

we have that

Pl(—2)+P2(—2)IO, a~P1:0, Pl(—Q)Pz(—Q)IO

so this set is a subspace of R[s] which is closed under multiplication. Furthermore for all P(s), R(s) €
R[s] with R(—2) = 0 we have that
P(-2)-R(-2)=0

which verifies that the set of all polynomials with a root at -2 is an ideal of R[s]. <

Definition B.0.3 Let (V,©) be an algebra. Let the set A := {a; € V1 < i < K} be any finite
collection of linearly independent elements in V. Let S be the set of all ideals containing A

S:={I CV|Iisan ideal and A C I}.
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The ideal 14 generated by A is defined as

IA:ﬂI

IeS

and is the minimal ideal in S containing A.

If (V,®) is an algebra, and there exists an element e € V such that forallz € V,zGe=emr =2
then e is called a unity element and is unique. If (V, ®) is an algebra with a unity element, then the
ideal generated by a finite set of elements can be represented in a simple form.

Theorem B.0.4 Let (V,®) be an algebra, A := {a; € V,1 < i < K} a finite collection of elements
wm V', and I4 the ideal generated by A. Then for each @ € 14, there exist vectors vy, ..., vk such
that

r=v10a+va0as+...+vg ©ag

Proof: See Hungerford [9] pages 123-124. O

Example: The polynomial (s 4+ 2) generates an ideal in R[s] which is equal to the set of all
polynomials with a zero at s = —2. We will denote this set as I_5. In the previous example we
verified that this set is an ideal, and the polynomial (s + 2) is clearly contained in I_5. Therefore,
in order to verify that I_s is the ideal generated by (s 4+ 2) we only need to show that any other
ideal which contains (s 4+ 2) also contains I_5. Because a real root can always be factored, I_5 can
be written as

I_5:={P(s) € R[s]| P(s) = R(s)(s+2)V R(s) € R[s]} (B.1)
If I is any other ideal containing (s + 2), then

(v R(s) € R[s]) R(s)(s +2) € 1

because of the definition of an ideal. Therefore, I_5 C I. Consequently, /_; must be the ideal
generated by (s + 2).

This result also follows directly from Theorem B.0.4, since R[s] has the constant polynomial 1
as a unity element. In order to see the importance of the unity element, suppose that we had taken
as our algebra the set I_3 of all polynomials in R[s] with a root at -3. Tt is easy to verify that this is
an algebra, and that the set I_3 _5 of all polynomials with roots at -2 and -3 is an ideal. However,

I_a_s# (P(s) € R[s] | P(s) = R(s)(s +2)(s +3) V R(s) € s}

because the set on the right contains only polynomials with roots of order 2 and higher at -3. <

Example: The two polynomials Pi(s) = (s+2)(s+4) and Pa(s) = (s+2)(s+3) generate an ideal
in R[s]

Ip, P, = {P(s) € R[s] | P(s) = Q(s)P1(s) + R(s)Pa(s), R(s),Q(s) € R[s]}.
Although this ideal is generated by two linearly independent vectors, it is equivalent to the ideal
generated by the single vector Ps(s) = (s + 2). To demonstrate this fact, let P(s) € Ip, p,. Then

P(s) = (Q(s)(s+3)+ R(s)(s +4))(s + 2).

which implies that P(s) € I_s.
Now suppose P(s) € I_5 Then
P(s) =Q(s)(s + 2)
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for some Q(s) € R[s]. From the coprime factorization property of polynomials it can be shown that
there exists polynomials N(s), M(s) € R[s] such that

1=N(s)(s+3)+M(s)(s+4).
Using this identity we get that
P(s)=Q(s)-1-(s+2)=Q(s)N(s)(s +3)(s +2) + Q(s)M(s)(s + 4)(s + 2).

which implies that P(s) € Ip, p,. This example shows that if we are given an arbitrary set of
generators, it may be possible to find a smaller set of generators which will generate the same ideal.

&

Definition B.0.4 Let (V,®) be an algebra, and I CV an ideal. Two vectors x,y € V are said to
be equivalent mod I if and only if x —y € 1. This equivalence is denoted

x =y modl
From the definition above we can see that
x =y modl
if and only if
x—yel

which simply means that

K
l‘—y:Z@K@aK

i=1

for some 8 € V. It is customary to abuse notation and denote this as
x=ymod oy, ..., aK

where the mod operation is implicitly performed over the ideal generated by aq,. .., ax.



