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Abstract

Analysis and Design of Nonlinear Control Systems Using Exterior Di�erential Systems
by

David Donald Niemann
Doctor of Philosophy in Mechanical Engineering

University of California at Berkeley
Professor J� Karl Hedrick� Chair

This dissertation discusses the modeling and analysis of nonlinear control systems using exterior
di�erential systems� The objectives of the dissertation are to provide a self	contained treatment of
the theory of exterior di�erential systems which focuses on the aspects of the theory most applicable
to the study of nonlinear control systems� to show how exterior di�erential systems theory can be
applied to the study of nonlinear control problems� and to explore the relationship between the
established vector 
eld approach to geometric nonlinear control theory and the exterior di�erential
systems approach�

The dissertation is divided into three parts� Part I contains the introductory material� Part II
develops the background material on exterior di�erential systems which is needed to study nonlinear
control systems� The presentation is arranged so that the topics which only involve 
nite	dimensional
vector spaces are discussed 
rst� This material includes tensors� forms� Grassmann manifolds� and
systems of exterior equations� Next� the concept of a 
bre bundle is introduced� and the discussion
shifts to techniques which can be used to extend the structures de
ned over a 
nite	dimensional
vector space to 
elds de
ned over the tangent bundle of a di�erentiable manifold� This material
includes a discussion of vector 
elds� tensor 
elds� Grassmann bundles� distributions� codistributions�
and exterior di�erential systems�

Part III uses the theory developed in Part II to model nonlinear control systems� This material
begins with a presentation on how a Grassmann bundle can be used to model an a�ne nonlinear
control system and a discussion of a prolongation process which can be used to model dynamic state
feedback� The last chapters of this section provide a comparison with the geometric theory based on
smooth vector 
elds� The topics discussed include invariant distributions� controlled invariant dis	
tributions� controllability distributions� the disturbance decoupling problem� and the noninteracting
control problem�

Based on these results� it appears that much of the existing theory can be reinterpreted using
exterior di�erential systems and that in many cases the results obtained using exterior di�erential
systems represent a generalization of the standard results in the vector 
eld approach�
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Chapter �

Introduction

Recently� there has been interest in applying a body of mathematics known as exterior di�erential
systems theory to nonlinear control problems� This work originated around ���� as a new method
of studying the geometric properties of control systems such as controllability and feedback lineariz	
ability� Gardner and Shadwick ��� wrote an in�uential paper in which they formulated the conditions
for feedback linearizability in terms of exterior di�erential equations� Signi
cant contributions have
also been made by Murray ���� Sluis ����� and Tilbury ���� ����

Murray and Sastry ��� provided the 
rst applications of this new approach in connection with
their study of nonholonomic path planning� Most of their work has centered on path planning for
steered vehicles such as truck	trailer combinations� These systems are characterized by the fact
that the velocity vector is subject to nonintegrable constraint equations which arise from the no	slip
conditions at the tires� Such constraints are called nonholonomic� The presence of nonholonomic
constraints makes these systems di�cult to analyze using the traditional vector 
eld approach� But
viewed as an exterior di�erential system� the nonholonomic constraints can be incorporated into the
system in a very natural way� Using this approach� Tilbury et� al� ��� have been able to generate
steering algorithms for very general multi	trailer combinations� From these results� it appears that
the exterior di�erential systems approach to studying nonlinear control problems may o�er some
enhancements to the more established vector 
eld approach�

The purpose of this dissertation is to further develop techniques for modeling and analyzing
nonlinear control systems using exterior di�erential systems� More speci
cally� the dissertation has
three main objectives� to provide a self	contained treatment of the theory of exterior di�erential
systems which focuses on the aspects of the theory most applicable to the study of nonlinear control
systems� to show how exterior di�erential systems theory can be applied to the study of nonlinear
control problems� and to explore the relationship between the established vector 
eld approach to
geometric nonlinear control theory and the exterior di�erential systems approach�

The 
rst objective is to provide a self	contained treatment of the theory of exterior di�erential
systems which focuses on the aspects of the theory most applicable to the study of nonlinear control
systems� Much of the existing mathematical literature on exterior di�erential systems is written
at a very high level and is not oriented towards applications in control theory� More elementary
treatments of some topics do exist� but they do not cover all the necessary material�

The second objective is to show how a nonlinear control system can be viewed as a geometric
object using the exterior di�erential systems approach� This object is called a Grassmann bundle�
and its structure incorporates both state transformations and a�ne state feedback� Although the
Grassmann bundle is an abstract object� it is a useful tool for visualizing a control system in a
coordinate	free way� and it often provides nice �pictorial� representations of theorems from nonlinear
control theory� The Grassmann bundle model of a control system can also be used to provide a
geometric model of a dynamic compensator� To some extent� this model allows one to visualize the
e�ect that the dynamic feedback will have on the nonlinear system�

�
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The third objective is to explore the relationship between the established vector 
eld approach
to geometric nonlinear control theory and the exterior di�erential systems approach� To this end�
the dissertation discusses how standard topics from the vector 
eld theory such as invariant distribu	
tions� controlled invariant distributions� and controllability distributions can be interpreted within
the exterior di�erential systems framework� In fact� in many cases the results obtained using the ex	
terior di�erential systems approach are actually more general because time variations in the system
parameters or inputs can be handled with minimal complication�

In order to facilitate this presentation� the dissertation is divided into three parts� Part I contains
the introductory material� Part II develops the background material on exterior di�erential systems
which is needed to study nonlinear control systems� Unfortunately� there is quite a bit of machinery�
but the sections are fairly self	contained� and some parts can probably be skipped depending on the
reader�s familiarity with the various topics� Part III uses the theory developed in Part II to model
nonlinear control systems� The emphasis is on comparisons with the geometric theory based on
smooth vector 
elds de
ned over a manifold� This approach is typi
ed in the books by Isidori ��
and Nijmeijer and van der Schaft ����� We will see that in many ways� the application of exterior
di�erential systems to control theory represents a direct extension of this established geometric
approach�



Chapter �

Modeling Systems on the

State�Time Space

Most of the basic elements in the exterior di�erential systems approach to modeling a nonlinear
control system can be introduced without using all the mathematical machinery which will be
developed in Part II of this dissertation� Therefore� in this chapter we will develop some basic
ideas about modeling di�erential equations and nonlinear control systems on the state	time space�
Although the mathematical prerequisites have been kept to a minimum� it is assumed that the reader
has a basic understanding of the elements of di�erential geometry� If needed� additional background
material on this topic can be found in Appendix A�

The material in this chapter is divided into two sections� The 
rst section discusses geometric
interpretations of a di�erential equation and its solutions� Particular emphasis is placed on the idea
that we can view the graph of a solution to a di�erential equation as a one	dimensional submanifold of
the state	time space� The second section generalizes the discussion to include a�ne control systems�
and concludes by asserting that a�ne control systems can be represented as a 
bre bundle over
the state	time space� Hopefully� this presentation will help to motivate the mathematical material
contained in Part II and to give the reader some idea where we are eventually headed�

��� Modeling Di�erential Equations on the State�Time

Space

We will begin by considering a di�erential equation de
ned over Rn by a smooth vector 
eld

�x � f�x�� �����

Geometrically� we can picture the vector 
eld as an assignment of one vector to each point of Rn� A
solution to the di�erential equation through x� � R

n is a function sf � ���� �� �Rn� which satis
es
sf ��� � x� and �sf �t� � f�sf �t�� for every t � ���� ��� Any such function is called an integral curve
of the vector 
eld f � The image of this curve forms a one	dimensional submanifold of Rn whose
tangent space at each point sf �t� contains the vector �sf �t�� The theory of ordinary di�erential
equations guarantees that there is a unique integral curve of f passing through each point x� � R

n�
Depending on the vector 
eld� the parameter � may be limited� or we may be able to expand the
interval ���� �� to be the whole real line� Since the function sf is unique� it has a unique graph

�sf �t�� t� � Rn � ���� ���

In the case n � �� this corresponds to the usual notion of the graph of a function y � R �R� Figure
��� gives a pictorial representation of these concepts� The picture on left shows the integral curve
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of the di�erential equations

�x� � �x� � �x�

�x� � �x� � ��x�

which passes through the point x� � �� x� � � at time t � �� The picture on the right illustrates
the graph of this curve in the state	time space�

x1

x2

x1

x2

t

Figure ���� An Integral Curve and Its Graph

We can construct the graph of the integral curve sf by taking the image of the integral curve of
the extended vector 
eld

�x � f�x� �����

�t � �

which passes through �x�� �� � Rn � R� As before� the theory of ordinary di�erential equations
ensures that there is a unique integral curve� �sf � ���� �� � M � R which satis
es equation ���
and the initial condition �sf ��� � �x�� ��� Furthermore� it is not hard to see that the image of this
curve corresponds with the graph of sf � However� it is important to realize that this is not the only
vector 
eld which generates an integral curve whose image corresponds with the graph of sf � Any
vector 
eld which is a pointwise scalar multiple of the extended vector 
eld ��� will also satisfy these
conditions�

Example	 Consider the smooth vector 
eld

�x � �x �����

�y � �x� y

which is de
ned over R� with respect to the coordinates �x� y�� The integral curve of this vector

eld which passes through the point �x�� y�� when t � � is

sx�t� � e�tx� ����

sy�t� � ��e�t � e�t�x� � e�ty��

and its graph is described by
�sx�t�� sy�t�� t� � R� �R �����



�

Equation ��� can be extended to the vector 
eld

dx

d�
� �x �����

dy

d�
� �x� y

dt

d�
� �

de
ned over R� with respect to the coordinates �x� y� t�� The integral curve of this extended vector

eld which passes through the point �x�� y�� �� when � � � is

sx�� � � e��x�

sy�� � � ��e�� � e�� �x� � e��y� �����

st�� � � ��

Comparing equations ��� and ��� it is clear that the image of the integral curve of the extended
vector 
eld ��� corresponds to the graph of equation ���

Alternately� we could have chosen the extended vector 
eld

dx

d�
� ��xt

dy

d�
� ��xt� yt �����

dt

d�
� �t�

The integral curve of this vector 
eld which passes through the point �x�� y�� �� when � � � is

sx�� � � e�e
��

x�

sy�� � � ��e�e
��

� e�e
��

�x� � e�e
��

y� �����

st�� � � e�� �

Again� it is not too hard to see that the image of this integral curve locally corresponds with the
graph of equation ���

The only di�erence between this integral curve and the integral curve of equation ��� is the rate
at which they �ow along the graph of equation ��� In the 
rst case� the time component moves at
a constant rate� while in the second case� the time component goes to zero exponentially� �

The point of this example is simply that vector 
elds are not the �right� geometric objects to
model di�erential equations on the state	time space Rn �R� On this extended space� all we really
care about is the graph of the integral curve sf � and this is not an integral curve� rather� it is a one	
dimensional submanifold ofRn�R� At each point �s���� �� the tangent space to this one	dimensional
submanifold is a one	dimensional subspace� or a line� in T�sf �t��t��R

n�R�� Consequently� each vector

eld on Rn maps to a unique distribution on Rn �R�

As an alternative to modeling the di�erential equation using the vector 
eld equation ���� we
can instead model the di�erential equation in its Pfa�an form

dx� � f��x�dt � � ������

���

dxn � fn�x�dt � ��

These equations are de
ned pointwise on the state	time space� and should be thought of as repre	
senting a set of constraint conditions on the components of the tangent vectors at the corresponding



�

point� If we represent an arbitrary tangent vector at the point �x� t� � Rn �R by

v�x�t� �
nX
i��

ai
�

�xi
� at

�

�t
�

then the constraint conditions ���� require that

a� � f��x�at � � ������

���

an � fn�x�at � ��

These constraint conditions are equivalent to the condition that

v�x�t� � at

�
nX
i��

f i�x�
�

�xi
� �

�

�t

�

which is exactly the requirement that v�x�t� be a pointwise scalar multiple of the extended vector

eld ���� Therefore� any vector 
eld which satis
es the equations ���� will also produce a �ow whose
image coincides with the graph of sf � Consequently� the solutions to the Pfa�an system form a
distribution

span

�
nX
i��

f i�x�
�

�xi
� �

�

�t

�

whose integral submanifold passing through �x�� �� coincides with the graph of sf � Thus� the passage
from vector 
elds on Rn to distributions on Rn �R is naturally induced by the equations �����

��� Modeling A�ne Nonlinear Control Systems on the

State�Time Space

We next turn our attention to nonlinear control systems� Speci
cally� we want to consider a�ne
nonlinear control systems de
ned over Rn by equations of the form

�x � f�x� �
mX
i��

gi�x�ui ������

where f�x� is a smooth vector 
eld called the drift� and the gi�x� are smooth vector 
elds which
locally span an m	dimensional distribution G�

Equation ���� can be viewed in two di�erent ways� First� we can look at this equation as
parameterizing a family of vector 
elds� From this viewpoint� each feedback control law ui � �i�x� t�
is equivalent to a time	varying vector 
eld

�x � �f �x� t� � f�x� �
mX
i��

gi�x��i�x� t��

From the discussion in the previous section� we know that this vector 
eld corresponds to the one	
dimensional distribution

l�x�t� � span

��
�

mX
j��

�
fj�x� �

mX
i��

gji �x��i�x� t�

�
�

�xj
� �

�

�t

��
	



�

de
ned over Rn � R� Therefore� each feedback control law is equivalent to a particular one	
dimensional distribution on the state	time space�

Second� we can look at equation ���� as a pointwise parameterization of the subset of all tangent
vectors vx at a point x � Rn which satisfy the equation

vx � f�x� �
mX
i��

gi�x�ci ������

for some arbitrary set of constants c�� � � � � cn� Viewed in this way� equation ���� is seen to parame	
terize an a�ne plane of the same dimension as G in each tangent space TxRn� Each vector vx which
satis
es equation ���� corresponds to the one	dimensional subspace

l�x�t� � span

��
�

mX
j��

�
fj�x� �

mX
i��

gji �x�ci

�
�

�xj
� �

�

�t

��
	

on Rn �R� As the control parameters change� this subspace will change� The value of u therefore
parameterizes a family of one	dimensional subspaces in the tangent space at �x� t�� Moreover� each
of these one	dimensional subspaces will lie in the m� � dimensional subspace

F � span

��
�

mX
j��

gj��x�
�

�xj
� � � � �

mX
j��

gjm�x�
�

�xj
�



� mX
j��

fj�x�
�

�xj
� �

�

�t

�
A
��
	 � �����

Thus we can think of the a�ne control system on Rn �R restricted to the point p as consisting of
the collection of one	dimensional subspaces contained in the subspace Fp� Note that it is important
to think of the choice of control input as specifying a whole subspace� rather than a particular vector

eld� Figure ��� illustrates these ideas� The picture on the left shows the tangent vectors f�p� and
g�p� in the tangent space of a 
xed state p � R�� The dotted line shows the locus of points in this
tangent space which can be generated using the control input� The picture on the right represents
the corresponding tangent space above the 
xed point �p� t� � R� �R� Each of the lines shown in
this tangent space can be generated using the control input� Note that all of these lines are contained
in the two dimensional subspace de
ned by

span

�
g�p�

�

�
�


f�p�

�

��
�

The collection of all one	dimensional subspaces of T�x�t��R
n �R� is called a

projectivization of T�x�t��R
n � R�� and its properties are well known� In fact� we can construct a

space consisting of all subspaces of T�x�t��R
n �R� of any dimension k � n� Such an object is called

a Grassmann Manifold and its properties will be discussed in Chapter ��
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Figure ���� The Fibres of an A�ne Control System



Part II

The Mathematics of Exterior

Di�erential Systems
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Chapter �

Introduction

The purpose of this part of the dissertation is to develop the mathematical structures which will be
used later in the dissertation� The reader is assumed to have an understanding of basic di�erential
geometric structures� manifolds� coordinate charts� tangent spaces� etc�� and basic algebraic struc	
tures� groups� rings� vector spaces� algebras� ideals� etc� A review of these topics is included in the
appendices�

The material in this part of the dissertation is essentially presented twice� The 
rst time through�
all the constructions are developed relative to the familiar space Rn� Next� we introduce the notion
of a 
bre bundle� and show how the constructions which were de
ned relative to Rn induce similar
constructions over the tangent bundle of a smooth manifold�

Much of the material in this part of the dissertation originated in a course taught at U�C�
Berkeley by Professor Sastry in the fall of ���� As a class project� George Pappas� Chris Gerdes�
and I prepared an expanded copy of the course notes on Exterior Di�erential Systems which was
published as an Electronics Research Laboratory memo ����� In turn� much of the material in this
memo was based on the books by Munkres ���� Spivak ���� and Bryant� et al� ���� Other useful sources
are the book by Yang ��� and the book by Flanders ����� In this reincarnation of the material� I have
tried to put much more emphasis on the geometric aspects of the subject and their relation to the
algebraic structures� In particular� I have added a chapter on Grassmann manifolds and a chapter
on 
bre bundles�

��



Chapter �

Tensors and Forms

This chapter introduces tensors and forms� These objects are basic building blocks for the bundle
structures which will be developed in the later chapters of Part II� The chapter is divided into 
ve
sections� The 
rst section discusses the notion of duality and de
nes the dual space associated with
a vector space� The second section presents the de
nition of a tensor as a real	valued multilinear
function� This section also introduces a bilinear operator called the tensor product� The third section
discusses alternating tensors and introduces the wedge product and interior product� The fourth
section discusses the transformation which is induced on a tensor space by a linear transformation
on the vector space over which the tensor space is de
ned� Finally� the 
fth section concludes the
chapter with a discussion of contravariant tensors�

��� The Dual Space of a Vector Space

Many of the ideas underlying the theory of multilinear algebra involve duality and the de
nition
of the dual space of a vector space� Therefore� we will begin by brie�y reviewing these concepts�
We will only consider 
nite	dimensional vector spaces de
ned over R� The dual space can also be
de
ned for an in
nite	dimensional vector space� but the theory becomes more involved�

De�nition ����� Let �V�R� denote a vector space over R� The dual space associated with �V�R�
is de�ned as the set of all linear mappings f � V � R� The dual space of V is denoted as V � and
the elements of V � are called covectors�

The next lemma gives the set V � the structure of a vector space�

Lemma ����� If for all �� � � V � and c � R� we de�ne

��� ���v� � ��v� � ��v�

�c���v� � c � ��v��

then V � is a vector space over R with dim�V �� � dim�V �� Furthermore� if we pick a set of basis
vectors fv�� � � � � vng for V � then the set of linear functions �i � V �R� � � i � n� de�ned by

�i�vj� �

�
� if i �� j
� if i � j

form a basis of V � called the dual basis�

Proof	 See Munkres ��� page ���� �

��



��

Example	 Let V � Rn with the standard basis e�� � � � � en� and let ��� � � � � �n be the dual basis� If

x � Rn �
nX
j��

xjej�

then evaluating each function in the dual basis at x gives

�i�x� � �i�
nX
j��

xjej� �
nX
j��

xj�i�ej� � xi�

Since the functions ��� � � � � �n form a basis for V �� a general covector in �Rn�� is of the form

f � a��
� � � � �� an�

n�

Evaluating this covector at x gives

f�x� � a�x
� � � � �� anx

n�

If we think of a vector as a column matrix and a covector as a row matrix� then

f�x� � �a� � � �an�

�
�� x�

���
xn

�
��

� �

For each subspace W � V � there is a corresponding �perpendicular� subspace W� � V ��

De�nition ����� Given a subspace W � V its annihilator is the subspace W� � V � de�ned by

W� �� f� � V � j ��v� � � � v � Wg�

Given a subspace X � V �� its annihilator is the subspace X� � V de�ned by

X� �� fv � V j ��v� � � � � � Xg�

Given a linear mapping between any two vector spaces F � V� � V� we can de
ne an induced
linear mapping between their dual spaces�

De�nition ���� Given a linear mapping F � V� � V�� its dual map is the linear mapping F � �
V �� � V �� de�ned by

�F ������v� � ��F �v��� � � � V �� � v � V��

Since V � is a vector space� it also has a dual space which is denoted as V ��� There exists a
�natural� identi
cation i � V � V �� which is de
ned for all v � V and � � V � by

�i�v����� � ��v��

For all 
nite	dimensional vector spaces� this fact allows us to treat V and V �� as essentially the
same object� For example� we could have de
ned the annihilator as

W� �� f� � V � j ��v� � � � v �W � V g�

Using this de
nition� the annihilator of a subspace W � � V � is de
ned as a subspace of V ���
However� we can use the natural identi
cation to map this subspace back to V in which case we
recover our original de
nition�



�

��� Multilinear Functions and Tensors

Let V�� � � � � Vk be a collection of real vector spaces� A function

f � V� � � � �� Vk �R

is said to be linear in the ith variable if the function T � Vi �R de
ned with 
xed vj �� vi as

T �v� � f�v�� � � � � vi��� vi� vi	�� � � � � vk�

is linear� A function is called multilinear if it is linear in each variable�
A multilinear function T � V k � R is said to be a covariant tensor of order k or simply a

k	tensor� The set of all k	tensors on V is denoted Lk�V �� For k � �� we have Lk�V � � V �� the dual
space of V � Therefore� we can think of covariant tensors as generalized covectors�

Examples	

�� A typical example of a multilinear function is the inner product of two vectors� From the
de
nition of the inner product� we know that for any vectors x� y� z � Rn

� a � x� y 	�� x� a � y 	� a� � x� y 	

� x� z� y 	�� x� y 	 � � x� z 	�� x� y � z 	 �

�� Another important example of a multilinear function is the determinant� If v�� v�� � � � � vn are
n column vectors in Rn� then

det�v� v� � � � vn�

is multilinear� This fact can be veri
ed using a row or column expansion which expresses the
determinant in terms of its minors�

�

As in the case of V �� each Lk�V � can be made into a vector space�

Lemma ����� If for S� T � Lk�V � and c � R we de�ne

�S � T ��v�� � � � � vk� � S�v�� � � � � vk� � T �v�� � � � � vk�

�cT ��v�� � � � � vk� � c � T �v�� � � � � vk��

then the set of all k�tensors on V� Lk�V �� is a real vector space�

Proof	 See Munkres ��� page ���� �

Because of their multilinear structure� two tensors are equal if they agree on any set of basis
elements�

Lemma ����� Let a�� � � � � an be a basis for V � Let f� g � V k �R be k�tensors on V � If

f�ai� � � � � � aik� � g�ai� � � � � � aik�

for every k�tuple �multi�index�

I � �i�� � � � � ik� � f�� �� � � �� ngk�

then f � g�



��

Proof	 See Munkres ��� page ���� �

Lemma ���� allows us to construct a basis for the space Lk�V ��

Lemma ���� Let a�� � � � � an be a basis for V � Let I � �i�� � � � � ik� � f�� �� � � �� ngk� Then there is a
unique tensor �I on V such that for every k�tuple

J � �j�� � � � � jk� � f�� �� � � � � ngk�

�I�aj� � � � � � ajk� �

�
� if I �� J
� if I � J�

and the collection of all the �I forms a basis for Lk�V ��

Proof	 Uniqueness follows from Lemma ����� To construct the functions �I � we start with a basis
for V �� �i � V �R� de
ned by

�i�aj� � 
ij �

We then de
ne each �I as
�I � �i��v�� � �

i��v�� � � � � � �
ik�vk�

and claim that these �I form a basis for Lk�V ��
To show this� we select an arbitrary k	tensor f � Lk�V � and de
ne the scalars

�I �� f�ai� � � � � � aik��

Next� we de
ne a k	tensor

g �
X
J

�J�
J

where
J � f�� � � � � ngk�

Then by Lemma ����� f 	 g� �

Since there are nk distinct k	tuples from the set f�� � � � � kg� the space Lk�V � has dimension nk�

Example	 Let V � Rn with the standard basis e�� � � � � en� and let ��� � � � � �n be the corresponding
dual basis� If

x � Rn �
nX
j��

xjej�

then evaluating each function in the dual basis at x gives

�i�x� � �i�
nX
j��

xjej� �
nX
j��

xj�i�ej� � xi�

Likewise� we can let I � �i�� � � � � ik� and vk �
Pn

i�� x
i
kei� Evaluating the basis vectors for Lk�V � at

�v�� � � � � vk� gives
�I�v�� � � � � vk� � �i��v�� � �

i��v�� � � � � � �
ik�vk�

� xi�� � x
i�
� � � � � � x

ik
k �

Since the tensors ��� � � � � �n form a basis for V �� evaluating a general �	tensor
f � �Rn�� at

Pn

i�� x
iei � Rn gives

f�x� � a�x
� � � � �� anx

n�



��

Evaluating a general �	tensor at �x� y� � R� gives

g�v�� v�� �
nX

i�j��

aijx
i
�x

j
�

and evaluating a general k	tensor at �v�� � � � � vk� � Rk gives

g�v�� v�� � � � � vk� �
nX

i������ik��

ai������ikx
i�
� � � � xikk �

�

����� Tensor Products

We now introduce a product operation into the set of all tensors on V and outline its basic properties�

De�nition ����� Let f � Lk�V � and g � Ll�V �� The tensor product f 
 g of f and g is a tensor

in Lk	l�V � and is de�ned by

�f 
 g��v�� � � � � vk	l� �� f�v�� � � � � vk� � g�vk	�� � � � � vk	l��

Lemma ����� Let f� g� h be tensors on V and c � R� Then we have

�� Associativity f 
 �g 
 h� � �f 
 g�
 h

�� Homogeneity cf 
 g � c�f 
 g� � f 
 cg

�� Distributivity �f � g� 
 h � f 
 h� g 
 h

	� Given a basis a�� � � � � an for V � the basis tensors satisfy �I � �i� 
 �i� 
 � � � 
 �ik

Proof	 See Munkres ��� page ��� �

We can also de
ne the tensor product of two subspaces U�W � V � as

U 
W �� spanfx � L��V � j x � u
w� u � U� w �Wg�

Therefore� from Lemma ���� we can conclude that

V � 
 V � � L��V ��

More generally we have

V � 
 � � �
 V �� �z �
k�times

�
kO
V � � Lk�V �

��� Alternating Multilinear Functions and Forms

In this section we introduce the concept of an alternating tensor� In order to do this� we need to
know some facts about permutations�



��

����� Permutations

De�nition ���� A permutation of the set of integers f�� �� � � � � kg is a one�to�one function � map�
ping this set onto itself�

The set of all permutations � is a group under function composition called the symmetric group
on f�� � � � � kg and is denoted by Sk� Permutations simply reshu�e the elements of a 
nite set� As a
result� the number of permutations in Sk is k �

De�nition ���� Given � � i � k� a permutation ei is called elementary if given some i �
f�� �� � � � � kg we have

ei�j� � j for j �� i� i � �

ei�i� � i� �

ei�i � �� � i

An elementary permutation leaves the set intact except for consecutive elements i and i � � which
are switched� The space Sk can be constructed from the elementary permutations�

Lemma ���� Every permutation � � Sk can be written as the composition of elementary permu�
tations�

Proof	 See Munkres ��� page ���� �

De�nition ��� Let � � Sk� Consider the set of all pairs of integers i� j from the set f�� � � � � kg
for which i � j and ��i� 	 ��j�� Each such pair is called an inversion in �� The sign of � is de�ned
to be the number �� if the number of inversions is odd and �� if it is even� We call � an odd or
even permutation respectively� The sign of � is denoted by sgn����

The following lemma helps us calculate the sign of permutations�

Lemma ���� Let �� � � Sk� Then

�� If � equals the composite of m elementary permutations� then sgn��� � ����m

�� sgn�� � � � � sgn��� � sgn�� �

�� sgn����� � sgn���

	� If p �� q� and if � is the permutation that exchanges p and q and leaves all other integers �xed�
then sgn�� � � ��

Proof	 See Munkres ��� page ���� �

����� Forms

We are now ready to de
ne forms�

De�nition ���� Let f be an arbitrary k�tensor on V � If � is a permutation of f�� � � � � kg� we de�ne
f� by the equation

f��v�� � � � � vk� � f�v����� � � � � v��k��� ����

Since f is linear in each of its variables� so is f� � The tensor f is said to be symmetric if f � fe

for each elementary permutation e� and it is said to be alternating if f � �fe for every elementary
permutation e�



��

In other words� f is symmetric if for all i

f�v�� � � � � vi� vi	�� � � � � vk� � f�v�� � � � � vi	�� vi� � � � � vk� ����

and alternating if

f�v�� � � � � vi� vi	�� � � � � vk� � �f�v�� � � � � vi	�� vi� � � � � vk�� ����

A real	valued alternating k	tensor is called a k	form� We will denote the set of all k	forms on V by
!k�V ��� The reason for this notation will be apparent when we introduce the wedge product in the
next section�

One can verify that the set of all k	forms is closed under addition and scalar multiplication�
Therefore� !k�V �� is a linear subspace of the space Lk�V � of all k	tensors on V �

In the special case of L��V �� elementary permutations cannot be performed and therefore every
�	tensor is vacuously alternating� Therefore !��V �� � L��V � � V �� Furthermore� for completeness�
we de
ne !��V �� � R�

Examples	 Elementary tensors are not alternating but the following linear combination

f � �i 
 �j � �j 
 �i

is alternating� To see this� let V � Rn and let �i be the usual dual basis� Then

f�x� y� � xiyj � xjyi � det


xi yi
xj yj

�

and it is easily seen that f�x� y� � �f�y� x�� Similarly� the function

g�x� y� z� � det

�
� xi yi zi
xj yj zj
xk yk zk

�
�

is an alternating �	tensor� �

We are interested in obtaining a basis for the linear space !k�V ��� We start with the following
lemma�

Lemma ��� Let f be a k�tensor on V and ��� � Sk� Then

�� The transformation f �� f� is a linear transformation from Lk�V �� to Lk�V ��� It has the
property that for all �� � � Sk�

�f��� � f��� �

�� The tensor f is alternating if and only if f� � sgn��� � f for all � � Sk�

�� If f is alternating and if vp � vq with p �� q� then f�v�� � � � � vk� � ��

Proof	 The linearity property is obvious since �af � bg�� � af� � bg�� Furthermore�

�f��� �v�� � � � � vk� � f��v����� � � � � v��k��

� f��w�� � � � � wk� wi � v��i�

� f�w����� � � � � w��k��

� f�v������� � � � � � v����k���

� f��� �v�� � � � � vk��
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Let � be an arbitrary permutation� We can write it as

� � �� � �� � � � � � �m

where each �i is an elementary permutation� so

f� � f�����������m

� ��� � � �f�m � � � ���� ���

� ����m � f

� sgn��� � f�

Finally� suppose vp � vq and p �� q� Let � be a permutation that exchanges p and q� Since vp � vq�

f� �v�� � � � � vk� � f�v�� � � � � vk��

and since � is an alternating tensor�

f� �v�� � � � � vk� � sgn�� � � f�v�� � � � � vk� � �f�v�� � � � � vk��

Therefore� f�v�� � � � � vk� � �� �

As a result of Lemma ����� if k 	 n� then the space !k�V �� is trivial since one of the basis
elements must appear in the k	tuple more than once� Hence� for k 	 n� !k�V �� � �� We have also
seen that for k � � we have !��V �� � L��V � � V �� so one can use the dual basis as a basis for
!��V ��� We are therefore left with the cases where � � k � n� The key argument here is that in
order to specify a form we simply need to de
ne it on an ascending k	tuple of basis elements since�
by applying Lemma ����� every other combination can be obtained by permuting the k	tuple�

Lemma ���� Let a�� a�� � � � � an be a basis for V � If f� g are forms on V and if

f�a�� a�� � � � � an� � g�a�� a�� � � � � an�

for every ascending k�tuple of integers f�� �� � � �� kg� then f � g�

Proof	 See Munkres ��� page ���� �

Lemma ���� Let a�� � � � � an be a basis for V � Let I � �i�� � � � � ik� � f�� �� � � �� ngk be an ascending
k�tuple� There is a unique form �I on V such that for every ascending k�tuple J � �j�� � � � � jk� �

f�� �� � � � � ngk�

�I�aj� � � � � � ajk� �

�
� if I �� J
� if I � J�

The forms �I form a basis for !k�V ��� The forms �I also satisfy the formula

�I �
X
��Sk

sgn�����I �� �

Proof	 See Munkres ��� pages ���	���� �

The forms �I are called the elementary forms on V corresponding to the basis a�� � � � � an for V �
Therefore� every k	form f may be uniquely expressed by

f �
X
J

dJ�
J

where J indicates that summation extends over all ascending k	tuples�



��

Since !��V �� is isomorphic to V �� it must have dimension n� In order to determine the dimension
of !k�V �� when k 	 �� we need to 
nd the number of possible ascending k	tuples from the set
f�� �� � � � � ng� If we choose k elements from a set of n elements� there is only one way to put them in
ascending order� Therefore the number of ascending k	tuples and the dimension of !k�V �� is

dim�!k�V ��� �

�
n
k

�
�

n 

k �n� k� 
�

����� The Wedge Product

Just as we de
ned the tensor product operation in the set of all tensors on a vector space V � we
can de
ne an analogous product operation� the wedge product� in the space of all forms� The tensor

product alone does not su�ce since even if f � !k�V �� and g � !l�V �� are alternating� their tensor
product f 
 g � Lk	l�V � need not be alternating� We therefore construct an alternating operator
taking k	tensors to k	forms�

Lemma ���� For any tensor f � Lk�V �� de�ne Alt � Lk�V � � !k�V �� by

Alt�f� �
�

k 

X
��Sk

sgn���f� �

Then Alt�f� � !k�V �� and if f � !k�V ��� then Alt�f� � f �

Proof	 The fact that Alt�f� � !k�V �� is a consequence of Lemma ���� parts ��� and ���� Simply
expanding the summation for f � !k�V �� yields that Alt�f� � f � �

Example	 Let f�x� y� be any �	tensor� Applying the alternating operator� we obtain

Alt�f� �
�

�
�f�x� y� � f�y� x��

which is clearly alternating� Similarly� for any �	tensor g�x�y�z�� we have

Alt�g� �
�

�
�g�x� y� z� � g�y� z� x� � g�z� x� y� � g�y� x� z�� g�z� y� x�� g�x� z� y���

�

De�nition ���� Given f � !k�V �� and g � !l�V ��� we de�ne the wedge or exterior product�

f � g � !k	l�V ��� by the equation

f � g �
�k � l� 

k l 
Alt�f 
 g��

Therefore� given two forms� the wedge product 
rst obtains the tensor product of the two forms�
then uses the alternating operator in order to obtain a new form� and 
nally normalizes it� There are
two reasons for the somewhat complicated normalization constant� The 
rst reason is so that if f is
alternating then Alt�f� � f � The second reason is that we want the wedge product to be associative�
The normalizing coe�cient ensures both properties� Since forms of order zero are elements of R�
we de
ne the wedge product of an alternating �	tensor and any alternating k	tensor to be the usual
multiplication� The following lemma lists some important properties of the wedge product�

Lemma ���� Let f � !k�V ��� g � !l�V ��� and h � !m�V ��� Then

�� Associativity f � �g � h� � �f � g� � h



��

�� Homogeneity cf � g � c�f � g� � f � cg

�� Distributivity �f � g� � h � f � h� g � h
h � �f � g� � h � f � h � g

	� Skew�commutativity g � f � ����klf � g

Proof	 Properties ���� ���� and �� follow directly from the de
nitions of the alternating operator
and the tensor product� Associativity� property ���� requires a few more manipulations �see Spivak
���� pages ��	���� �

Example	 Let f�x� � !��V �� and g�y� z� � !��V ��� Then

f � g �
�� � �� 

� � 

�

� 
�f�x� 
 g�y� z� � f�y� 
 g�z� x� �

� f�z� 
 g�x� y� � f�y� 
 g�x� z� � f�z� 
 g�y� x� � f�x� 
 g�z� y��

We can also check that

f � f �
�� � �� 

� � 

�

� 
�f�x� 
 f�x� � f�x� 
 f�x�� � �

which can also been seen from the skew	commutativity of exterior multiplication� �

We can now formulate a basis for !k�V �� more elegantly in terms of the dual basis for V �

Lemma ���� Given a basis a�� � � � � an for a vector space V � let ��� � � � � �n denote its dual basis�
and let �I denote an element in the corresponding set of elementary k�forms� If I � �i�� � � � � ik� is
any ascending k�tuple of integers� then

�I � �i� � �i� � � � �� �ik �

Proof	 May be deduced from the construction of the elementary k	forms in Lemma ����� �

By Lemma ����� any k	form f � !k�V �� may be expressed in terms of the dual basis ��� � � � � �n

as
f �

X
J

dj������jk�
j� � �j� � � � �� �jk ���

for all ascending k	tuples J � �j�� � � � � jk� and some scalars� dj������jk � If we require the coe�cients
to be skew	symmetric� then

di������il�il�������ik � �di������il���il�����ik� � l � f�� � � � � k � �g�

and we can extend this summation over all k	tuples

f �
�

k 

nX
i������ik��

di������ik�
i� � �i� � � � �� �ik � ����

The wedge product has a number of nice properties which make it a useful algebraic tool� For
example� the wedge product provides a way to check whether a set of �	forms is linearly independent�

Lemma ���� If �� � � � � k are ��forms over V then

� � � � � � �� k � �

if and only if �� � � � � k are linearly dependent�
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Proof	 Suppose that the �	forms �� � � � � k are linearly independent� and pick �k	�� � � � � �n to
complete a basis for V �� From Lemma ����� we know that

� � � � � � �� k

is a basis element for !k�V ��� Therefore� it must be nonzero�
If the �	forms �� � � � � k are linearly dependent� then at least one of them can be written as a

linear combination of the rest� Without loss of generality� assume that k is linearly dependent� We
then have

k �
k��X
i��

ci
i�

Furthermore� the skew	commutativity of the wedge product implies that

� � � � � � �� k � � � � � � � �� k�� � �
k��X
i��

ci
i� � �

�

This result allows us to give a geometric interpretation to a nonzero k	form

� � � � � � �� k �� �

by associating it with the subspace

W �� spanf�� � � � � kg � V ��

An obvious question which arises is what happens if we select a di�erent basis for W �

Lemma ����� Given a subspace W � V � and two sets of ��tensors which span W �

W � spanf�� � � � � kg � spanf��� � � � � �kg�

there exists a nonzero scalar c � R such that

c � � � � � � � �� k � �� � �� � � � �� �k �� �

Proof	 Each �i can be written as a linear combination of the i

�i �
kX
j��

aij
j �

Therefore� the product

�� � �� � � � �� �k � �
kX

j��

aj�
j� � � � �� �

kX
j��

ajk
j��

Multiplying this out gives

�� � �� � � � �� �k �
nX

i������ik��

bi������ik
i� � i� � � � �� ik �

Finally� using Lemma ���� and the skew	commutativity of the wedge product� we get

c � � � � � � � �� k � �� � �� � � � �� �k �� ��

�

Therefore� the k	fold wedge product of all sets of linearly independent �	forms which spans a
subspace of W � V � di�er by only a scalar constant� We can therefore de
ne an equivalence class
of basis sets for W �



��

De�nition ���� Let � � x� � � � �� xk� We de�ne an equivalence class

�x� � � �xk� �� f� � !k�V �� j � � c � �� for some nonzero c � Rg

called the Grassmann coordinate of ��

The set of all such equivalence classes can be put in one	to	one correspondence with the set of all
k	dimensional subspaces of V �� This set of subspaces is called the Grassmann manifold of k	planes
in V � and is denoted as GV �

k �

De�nition ���� A k�form � � !k�V �� is decomposable if there exist

x�� x�� � � � � xk � !��V ��

such that � � x� � x� � � � �� xp�

There exist k	forms which are not decomposable� To see this� consider the following example�

Example	 Let � � �� � �� � �� � �� � !���R����� If � is decomposable� then we must have
� � � � �� The reason for this is that if � can be expressed as

� � �� � �� � � � �� �k�

then it follows that
� � � � �� � �� � � � �� �k � �� � �� � � � �� �k � ��

In this case� we have
� � � � ��� � �� � �� � �� �� ��

Therefore� � is not decomposable� Notice that this is a necessary but not su�cient condition and�
in particular� it does not apply to odd	dimensional forms� �

Even if a k	form � is not decomposable� it may still be possible to factor out a �	form from every
term in the summation which de
nes it�

Example	 Let � � �� ��� ��� � �� ��� ��� � !���R����� From the previous example� we know
that this form is not decomposable� but the �	form �� can clearly be factored from every term

� � ��� � �� � �� � ��� � �� � �� � ��

�

De�nition ���� Let � � !k�V ��� We de�ne a subspace L� � V �

L� �� f � V � j � � �� �  for some �� � !k���V ��g

called the divisor space of �� Any  � L� is called a divisor of ��

Lemma ����� A ��form  � V � is a divisor of � � !k�V �� if and only if

 � � 	 ��



�

Proof	 Pick a basis ��� ��� � � � � �n for V � such that  � ��� With respect to this basis� � can be
written as

� �
nX
J

dj������jk�
j� � �j� � � � �� �jk ����

for all ascending k	tuples J � �j�� � � � � jk� and some scalars� dj������jk � If  is a divisor of �� then it
must be contained in each nonzero term of this summation� Therefore  � � must be identically ��

If  � � 	 �� then every nonzero term of � must contain � Otherwise� we would have for
j�� � � � � jk �� ��

 � �j� � � � �� �jk � �� � �j� � � � �� �jk

which is a basis element of !k	��V �� and therefore nonzero� This contradicts the assumption
 � � 	 �� �

If we select a basis ��� ��� � � � � �n for V � such that

spanf��� ��� � � � � �lg � L� �

then � can be written as
� � �� � �� � � � �� �l

where �� � !k�l�V �� is not decomposable and involves only the one	forms �l	�� � � � � �n�

����� The Interior Product

A second useful operation on tensors is called the interior product�

De�nition ���� The interior product is a linear mapping � V � Lk�V � � Lk���V � which

operates on a vector v � V and a tensor T � Lk�V � and produces a tensor �v T � � Lk���V �
de�ned by

�v T ��v�� � � � � vk��� �� T �v� v�� � � � � vk����

The interior product has the following properties�

Lemma ����� Let a� b� c� d be real numbers and v� w � V � g� h � Ll�V �� r � !s�V ��� and f �
!m�V ��� Then we have

�� Bilinearity
�av � bw� g � a�v g� � b�w g�

v �cg � dh� � c�v g� � d�v h�

�� v �f � r� � �v f� � ����mf � �v g�

Proof	 See Yang ��� page ��� �

The next result illustrates a useful property of the interior product�

Lemma ���� Let a�� � � � � an be a basis for V � Then the value of a k�form  � !k�V �� is inde�

pendent of a basis element ai if and only if ai  	 ��

Proof	 Let ��� � � � � �n be the dual basis to a�� � � � � an� Then  can be written with respect to the
dual basis as

 �
X
J

dJ�
j� � �j� � � � �� �jk �

X
J

dJ�
J

where the sum is taken oven all ascending k	tuples J � If a basis element �J does not contain �i�
then clearly

ai �J 	 ��
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If a basis element contains �i� then

ai �j� � �j� � � � �� �jk �	 �

because ai can always be matched with �i through a permutation which only a�ects the sign�
Consequently� �ai � 	 � if and only if the coe�cients dJ of all the terms containing �i are zero�
�

De�nition ����� Let  � !k�V ��� The associated space of  is de�ned as

A� �� fv � V jv  	 �g

The dual associated space of  is de�ned as A�� �

Recall that the divisor space L� of a k	form  contains all the �	forms which can be factored
from every term of � The dual associated space A�� contains all the �	forms which are contained
in at least one term of � Therefore� L� � A�� � The following result ties these notions together�

Lemma ����� The following statements are equivalent


�� A k�form  � !k�V �� is decomposable�

�� The divisor space L� has dimension k�

�� The dual associated space A�� has dimension k�

	� L� � A�� �

Proof	

���  ���� If  is decomposable� then there exists a set of basis vectors ��� ��� � � � � �n for V � such
that

 � �� � � � �� �k�

Therefore� L� � spanf��� ��� � � � � �kg which has dimension k� Conversely� if L� has dimension k�
then k terms can be factored from � Since  is k	tensor� it must be decomposable�

���  ���� Let a�� � � � � an be the basis of V which is dual to ��� ��� � � � � �n� Since

 � �� � � � �� �k�

 is not a function of ak	�� � � � � an� Therefore�

A� � spanfak	�� � � � � ang�

This implies that A�� has dimension k� Conversely� if A�� has dimension k� then A� has dimension
n� k which means that  is a k	form which is a function of k variables� Therefore� it must have the
form

 � �� � � � �� �k

for some linearly independent set of �	forms ��� ��� � � � � �k � V ��

���"���  ��� It is always true that L� � A�� � Therefore� if dim�L�� � dim�A�� �� then L� � A�� �
It is also always true that � � dim�L�� � k and k � dim�A�� � � n� Therefore� L� � A�� implies
that dim�L�� � dim�A�� � � k� �
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��� The Pull Back of a Linear Transformation

The pull back of a linear transformation is a generalization of the dual map which we introduced in
section ���

Let T be a linear map from a vector space V to a vector space W � and let f � Lk�W �� Using
T and f � a new multilinear function on V can be de
ned by mapping each k	tuple of vectors
v�� � � � � vk � V k to T �v��� � � � � T �vk� �W k and then apply the multilinear function f � More formally�

De�nition ����� Let T � V �W be a linear transformation� The dual or pull
back transformation

T � � Lk�W � � Lk�V �

is de�ned for all f � Lk�W � by

�T �f��v�� � � � � vk� �� f�T �v��� � � � � T �vk���

Note that T �f is multilinear since T is a linear transformation� The pull back map T � also has
the following properties�

Lemma ����� Let T � V �W be a linear transformation� and let

T � � Lk�W � � Lk�V �

be the dual transformation� Then

�� T � is linear�

�� T ��f 
 g� � T �f 
 T �g�

�� If S � W � X is linear� then �S � T ��f � T ��S�f��

Proof	 See Munkres ��� page ���� �

The following lemma says that the subspace of k	forms in Lk�V � is invariant under the action of
a pull back mapping�

Lemma ����� Let T � V �� W be a linear transformation� If f is an alternating tensor on W �
then T �f is also an alternating tensor on V � and

T ��f � g� � T �f � T �g�

Proof	 See Munkres ��� page ��� �

��� Contravariant Tensors

Up to this point� all the tensors which we have worked with have been de
ned as multilinear functions
over the vector space V � If we simply replace V with V � in all our de
nitions� then nothing is
changed� and we can de
ne an identical set of tensors over V ��

A multilinear function T � �V ��k �R is said to be a contravariant tensor of order k� The set of
all k	tensors on V � is denoted by Lk�V �� or V 
 � � �
 V� �z �

k�times

� Note that in this notation we are implicitly

using the natural identi
cation between V �� and V � For k � �� we have Lk�V �� � V � i�e�� the vector
space itself� For this reason� contravariant tensors are sometimes called multivectors�



Chapter �

Grassmann Manifolds

This chapter introduces a class of geometric objects called Grassmann manifolds� These manifolds
are another basic building block for the bundles which will be introduced in Chapter �� The chap	
ter is divided into four sections� The 
rst section de
nes a Grassmann manifold and discusses its
construction and topology� The second section introduces a set of standard coordinate charts which
provide a convenient local description of a Grassmann manifold� The third section discusses the
mappings between Grassmann manifolds which are induced by linear transforms of Rn� The projec	
tivized linear group is introduced in this section� and some of its properties are discussed� The fourth
section discusses the notion of an interval de
ned by two nested subspaces� For a more in	depth
treatment of projective geometry� the interested reader is referred to the book by Mihalek �����

��� The Topology of a Grassmann Manifold

Throughout this chapter� we will work with the set of all k	dimensional subspaces ofRn which we will
denote by Snk � We will endow this set with a topology which turns it into an �n�k��k dimensional
manifold called the Grassmann Manifold of k	planes in Rn� This manifold will be denoted by Gn

k �
We will construct a topology which turns Snk into a smooth manifold� We begin this construction

with the vector space Rn�k endowed with its standard topology� A point M � Rn�k can be regarded
as an n� k matrix� If this matrix has full rank� then its columns form a set of linearly independent
vectors which span a k	dimensional subspace V of Rn� We will use Q � Rn�k to denote the set of
all full rank matrices in Rn�k�

Two matrices M� �M � Q span the same subspace V if and only if M � �MT for some nonsingular
k � k matrix T � Therefore� we can form a set of equivalence classes in Q with M � �M if and
only if there exists a nonsingular matrix T � Rk�k such that M � �MT � We will use �M � to
denote the equivalence class which contains the matrix M and Q� � to denote the set of all such
equivalence classes� Since each matrix in the equivalence class maps to the same subspace� there is
a bijection # � Q� �� Snk between the set of equivalence classes and Snk � There is also a quotient
map $ � Q� Q� �� M � �M � which maps each element of Q to its corresponding equivalence class�

We are now ready to form a topology on Snk � We will proceed by 
rst forming a topology on Q� �
and then mapping this topology to Snk through the bijection #� We de
ne a subset of U � Q� � to
be open if and only if $���U � is open in Q� The collection of all such subsets will be denoted by T �
The topology on Snk is de
ned to be the collection of open subsets

�T � fU � Snk jU � #�V � V � T g�

Endowed with these topologies� Snk and Q� � are homeomorphic topological spaces� so we can treat
them as essentially the same object� and from this point on� we will not distinguish between the
two� We can now formally de
ne Gn

k to be the topological space �Snk � T ��

��
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��� Local Coordinate Charts on Gn
k

Up to this point� we have shown that Gn
k is a topological space� but we still need to show that it is a

manifold� To do this� we need to verify that every point has a neighborhood which is homeomorphic
to Rs for some 
nite integer s�

Associated with any n � k matrix� we have �nk� k � k minors� Let i � �� � � � � �nk � be an index
set for these minors� and de
ne Mi to be the k � k matrix corresponding to the ith minor� Let
Qi � Q denote the dense open subset of Q consisting of all M � Q such that the Mi is nonsingular�
We can de
ne a continuous onto map $i � Qi � R�n�k��k by setting $�M � equal to the rows of
MM��

i which are not in the ith minor� The ith minor of MM��
i will always be the identity� so this

mapping is completely determined by its other �n� k�� k elements� Furthermore� if M � Qi� then
so is MT for every nonsingular T � Rk�k� and the mapping $i maps the matrix MT to the rows
of MT �MiT ��� which are not in the ith minor� Simplifying this expression� we 
nd that

MT �MiT ��� � MTT��M��
i � MM��

i �

so the function $i maps any two matrices in the same equivalence class to the same point� Therefore�
$i induces a mapping �$i � Qi� �� R�n�k��k � �M � � $i�M � which is a homeomorphism�

Any matrix M � Q is nonsingular� so it must contain at least one full rank minor� therefore� it is
contained in some Qi� Furthermore� the fact that each element in the equivalence class �M � is also
contained in the same Qi implies that each equivalence class �M � � Q� � is contained in some open
set Qi� � which is homeomorphic to R�n�k��k� Consequently� Gn

k forms an �n� k�� k	dimensional

manifold� and the local coordinate charts �Qi� �$i� form a C� �actually analytic� coordinate atlas
for Gn

k �

Example	 The Manifold G�� As a speci
c example� we will consider the �� � �� � � � �

dimensional manifold G�
�� The space Q��� is equal to the set of all �� � full	rank matrices� and it

forms a dense open subset of R���� Let

M �

�
� m�� m��

m�� m��

m�� m��

�
�

be any element of Q���� It has ���� � � minors

M� �


m�� m��

m�� m��

�

M� �


m�� m��

m�� m��

�

M� �


m�� m��

m�� m��

�
The matrices MM��

i are given by

MM��
� �

�
� � �

� �
m��m���m��m��
m��m���m��m��

�m��m��	m��m��
m��m���m��m��

�
�

MM��
� �

�
� � �

m��m���m��m��
m��m���m��m��

�m��m��	m��m��
m��m���m��m��

� �

�
�
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MM��
� �

�
� m��m���m��m��

m��m���m��m��

�m��m��	m��m��
m��m���m��m��

� �
� �

�
� �

The space Q���
� is equal to the dense open subset of Q��� where m��m�� �m��m�� �� �� Similarly�

the spaces Q���
� and Q���

� are equal to dense open subsets of Q��� where m��m�� � m��m�� �� �
and m��m�� �m��m�� �� �� respectively� The maps $i are de
ned by

$� � M �
�

m��m���m��m��

m��m���m��m��

�m��m��	m��m��

m��m���m��m��

�
$� � M �

�
m��m���m��m��

m��m���m��m��

�m��m��	m��m��

m��m���m��m��

�
$� � M �

�
m��m���m��m��
m��m���m��m��

�m��m��	m��m��
m��m���m��m��

�
�

Finally� the induced maps �$i are de
ned by

�$� �

�
�
�
� � �

� �
a�� a��

�
�
�
�� �

a�� a��
�

�$� �

�
�
�
� � �

a�� a��
� �

�
�
�
�� �

a�� a��
�

�$� �

�
�
�
� a�� a��

� �
� �

�
�
�
�� �

a�� a��
�
�

�

��� Mappings Between Grassmann Manifolds

A linear automorphism A � Rn � Rn induces a unique di�eomorphism $�A� � Gn
k � Gn

k � �M � �
�AM � which makes the following diagram commute

Qn�k A
� Qn�k

$ � $ �

Gn
k


�A�
� Gn

k

The set of all such induced maps together with the composition operation forms a group which is
called the projective general linear group on Rn and is denoted by PGL�Rn�� To verify that this is
actually a group� we note that

�� For any $�A��$�B��$�C� � PGL�Rn�� we have that

$�A� � �$�B� �$�C�� � �$�A� �$�B�� �$�C�

since for all �M � � Gn
k �

$�A� � �$�B� �$�C����M �� � �A�BC�M �

� ��AB�CM �

� �$�A� �$�B�� �$�C���M ���



��

�� There is a neutral element $�I� � PGL�Rn� which satis
es

$�I� �$�A� � $�A� �$�I� � $�A�

for all A � GL�Rn��

�� For any A � GL�Rn�� $�A� has an inverse $���A� � $�A����

Furthermore� the mapping $ is a homomorphism from GL�Rn� onto PGL�Rn� since �$�A� �
$�B����M �� � �ABM � � $�AB���M ��� The kernel of the homomorphism $ is the set of all A �
GL�Rn� which satisfy $�A� � $�I�� This set is given by

ker�$� � fA � GL�Rn� j A � � � I� � � Rg

which is a closed subgroup of GL�Rn�� A standard result from group theory says that any homo	
morphism � � G � H which maps a group G onto a group H induces a group isomorphism from
G� ker��� to H� So� in this instance� we have that GL�Rn�� ker�$� is isomorphic to PGL�Rn� where
GL�Rn�� ker�$� is the set of equivalence classes corresponding to the equivalence relation

A � B  A � �B� � � R�

A subspace � � Rn which satis
es the equation A��� � � for a given automorphism A �
GL�Rn� is said to be an invariant subspace of A� It is easy to see that if �k is a k	dimensional
invariant subspace of A� then it is also a 
xed point of the induced map $�A� � Gn

k � Gn
k � We can

characterize the set of all k	dimensional invariant subspaces of A� To do this� we will work on the
coordinate chart of Gn

k de
ned by the matrix

� �

�
�����������

m�
� � � � m�

k
���

���

mn�k
� � � � mn�k

k

� � � � � �
� � �

�� �

� � � � � �

�
�����������
�

The action of the automorphism A on � can be represented by the matrix multiplication
A�
� A�

�

A�
� A�

�

� 
M
I

�
�


A�
�M � A�

�

A�
�M � A�

�

�
�


�A�

�M � A�
���A

�
�M �A�

��
��

I

�
�

From this equation� it is clear that � is a 
xed point of $�A� if and only if M is a solution to the
equation

�A�
�M � A�

���A
�
�M �A�

��
�� � M

MA�
�M � MA�

� � A�
�M �A�

�

MA�
�M �MA�

� � A�
�M � A�

� � ��

��� Intervals

Given two subspaces �� and �� which satisfy the condition �� � ��� their interval is de
ned to be
the collection of all subspaces D which satisfy

�� � D � ��� �����

We will denote this collection by S��� ���  and the set of all k	dimensional subspaces which satisfy

��� by S
������ 
k � Since S

��� ���
k � Snk � the topology of Gn

k induces a subspace topology for S
��� ��� 
k

which turns it into a smooth submanifold of Gn
k � We will use G

������ 
k to denote this submanifold�
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Lemma ����� Suppose that �� and �� are respectively s�dimensional and s � t�dimensional sub�

spaces of Rn� then the manifold G
������
s	k is di�eomorphic to the Grassmann manifold Gt

k for every
� � k � t�

Proof	 To prove this lemma� we need to show that there exists a linear map T taking Rn onto Rt

which satis
es

T ���� � � �����

T ���� � Rt�

If such a mapping exists� it will induce the desired di�eomorphism $�T � � G
��� ���
s	k � Gt

k� To show
that such a mapping exists� we form a basis of Rn using the columns of a matrix of the form�

� I V �
� V �

�

� I V �
�

� � I

�
�

where the right block of columns span �� and the middle and right blocks of columns span ��� The
inverse of this matrix is �

� I �V �
� �V �

� V
�
� � V �

� �
� I �V �

�

� � I

�
�

which we will view as a mapping taking Rn � Rn� Selecting the middle row of this matrix� we
obtain the matrix �

� I �V �
�

�
which corresponds to a mapping taking Rn � Rt� Furthermore� this mapping clearly satis
es the
conditions ���� �

As a consequence of lemma ����� if A � Rn � Rm� m � n is a surjective linear map� it

induces a di�eomorphism between the manifold Gm
k and the manifold G

�ker�A��Rn
�n�m	k� consisting of all

�k � n�m�	dimensional subspaces of Rn which contain the �n �m�	dimensional subspace ker�A��

The homeomorphism $�A� � G�ker�A��Rn
�n�m	k� � Gm

k is de
ned pointwise by the equations

� � Gm
k � � � A����� � $���A����

% � G
�ker�A��Rn
�n�m	k� % � A�%� � $�A��%��

Similarly� if A � Rm �Rn� m � n is an injective linear map� it induces a di�eomorphism between

the manifold Gm
k and the manifold G

���Im�A�
k consisting of all k	dimensional subspaces of Rn which

are contained in the m	dimensional subspace Im�A�� Finally� if A � Rn �Rm is an arbitrary linear

map with a kernel of dimension s� then it induces a di�eomorphism between the manifold G
���Im�A�
k

and the manifold G
�ker�A��Rn
�k	s� �



Chapter �

Exterior Algebra and Systems of

Exterior Equations

This chapter discusses exterior algebra and systems of exterior equations� In section ���� of Chapter
� we introduced the wedge product and interior product and discussed some of their properties� In
the 
rst section of this chapter� we will look more closely at the algebraic properties these operations
give to the space of all alternating tensors� In the second section of this chapter� we introduce systems
of exterior equations� This subject involves both the exterior algebra and Grassmann manifolds� and
will serve as a prototype for the discussion of exterior di�erential systems in Chapter ��

	�� The Exterior Algebra of a Vector Space

In this section� we will consider the direct sum of the space of all �	forms� �	forms� �	forms� etc�

!�V �� � !��V ��� !��V ��� !��V ��� � � � � !n�V ���

This is clearly a vector space� and the wedge product acts as a multiplication operator on it� so
it satis
es De
nition B���� of an algebra given in Appendix B� The pair �!�V ����� is called the
exterior algebra over V �� In this notation� any � � !�V �� may be written as

� � �� � �� � � � �� �n

where each �p � !p�V ���
Since �!�V ����� has the unity element � � !��V ��� Theorem B��� implies that the ideal gener	

ated by a 
nite set of elements & �� f�i � !�V ��� � � i � Kg can be written as

IS � f� � !�V ��j � �
KX
i��

�i � �i� �i � !�V ��g

	�� Systems of Exterior Equations

In this section� we are going to use the exterior algebra to study a system of equations of the form

�� � �� � � � � �K � �

where each �i � !�V ��� The 
rst thing we need to clarify is exactly what a �solution� to these
equations means�

��



��

De�nition ����� A system of exterior equations on V is a �nite set of linearly independent equa�
tions

�� � �� � � � � �K � �

where each �i � !k�V �� for some � � k � n� A solution to a system of exterior equations is any
subspace W � V such that

��jW 	 �� � � � � �KjW 	 �

where �jW means that the arguments of ��v�� � � � � vk� satisfy v�� � � � � vk �W�

A system of exterior equations generally does not have a unique solution since any subspace W� � W
will satisfy �jW� 	 � if �jW 	 �� In fact� rather than focusing on a particular solution� we will often
use a system of exterior equations to de
ne the submanifold of a Grassmann bundle of k	planes
consisting of all points in the Grassmann bundle which solve the system of exterior equations�

A central fact concerning systems of exterior equations is given by the following lemma�

Lemma ����� Given a system of exterior equations

�� � �� � � � � �K � � �����

and the corresponding ideal I� generated by the collection of alternating tensors

& �� f��� � � � � �Kg� �����

a subspace W solves the system of exterior equations if and only if it also satis�es �jW 	 � for every
� � IA�

Proof	 If � � IA� then � �
PK

i�� �
i � �i� Furthermore� if W satis
es �jW � �� then

�jW � �
KX
i��

�i � �i�jW 	 �

for some set of �i � !�V ��� Since this equation must hold for every � � IA and the �i are assumed
to be linearly independent� it implies

��jW 	 �� � � � � �KjW 	 �� �����

Conversely� if equation ��� holds� then �jW 	 � for all � � IA� �

Recall that an algebraic ideal was de
ned in a coordinate free way as a subspace of the algebra
satisfying certain closure properties� Thus� the ideal has an intrinsic geometric meaning� and we can
think of two sets of generators as representing the same system of exterior equations if they generate
the same algebraic ideal�

De�nition ����� Two sets of generators� &� and &�� are said to be algebraically equivalent if and
only if they generate the same ideal� i�e�� I�� � I�� �

����� The Associated and Retracting Spaces

We will exploit the notion of equivalence to represent a system of exterior equations in a simpli
ed
form� The main tools we need in order to do this are called the associated space and retracting
space of the system of exterior equations�

De�nition ���� Let & be a system of exterior equations and I� the ideal which it generates� The
associated space of the ideal I� is de�ned as

A�I�� �� fv � V jv � � I� � � � I�g�

The dual associated space or retracting space of the ideal is de�ned as A�I��� and denoted by C�I���



�

Once we have determined C�I��� we can 
nd an algebraically equivalent system &� which is a
subset of !�C�I����

Lemma ����� Let & be a system of exterior equations and I� its corresponding algebraic ideal�
Then there exists an algebraically equivalent system &� such that &� � !�C�I����

Proof	 Let v�� � � � � vn be a basis for V and ��� � � � � �n be the corresponding dual basis� Assume
that the basis has been selected such that the vectors vr	�� � � � � vn span A�I��� Consequently� the
covectors ��� � � � � �r must span C�I���

Let � be any k	form in &� Consider the form

�� � �� �r	� � �vr	� ���

Taking the interior product of �� with vr	� gives�

vr	� �� � vr	� �� vr	� �� �r	� � �vr	� �vr	� ��� 	 ��

Therefore� using lemma ������ we can conclude that �� has no terms involving �r	�� Since vr	� �

A�I��� we know that vr	� � � I� Therefore� we can replace � with �� in the set of generators� and
the ideal generated will be unchanged since

� � � � � � �� � � � �r	� � �vr	� ��

� � � � � � � �� mod I�

We can continue this process for vr	�� � � � � vn to produce a k	form �� which is generated by elements
of !�C�I���� �

The following example is taken from Yang ����

Example	 Let v�� � � � � v� be a basis for R�� and let ��� � � � � �� be the dual basis� Consider the
system of exterior equations

�� � �� � �� � ��

�� � �� � �� � ��

�� � �� � �� � �� � �� � ��

�� � �� � �� � �� � �� � �� � �� � ��

The set of generators & is given by

& � f��� ��� ��� ��g�

and the ideal I� is given by

I� �� f� � !�V �� j � �
�X
i��

�i � �i� �i � !�V ��g�

The associated space of I� is de
ned by

A�I�� �� fv � R� j v � � I� � � � I�g�

Because I� contains no �	forms� we can infer that

v �� � �� v �� � �� and v �� � �� � v � A�I���



��

Expanding the 
rst equation� we get

v �� � v ��� � ��� � �v ��� � �� � ������� � �v ��� � ���v��� � ���v��� � �

which implies that ���v� � � and ���v� � �� Similarly�

v �� � ���v��� � ���v��� � �

v �� � ���v��� � ���v��� � ���v��� � ���v��� � �

implying that ���v� � � and ���v� � �� Therefore� we can conclude that

A�I�� � spanfv�� v�g�

Evaluating the equation v �� gives

v �� � �v ��� � ���� � �� � �������� � ��� � �v ���

��v ��� � ���� � �� � �������� � ��� � �v ���

� ���v��� � �� � ���v��� � ��

� a��� � ��� � b��� � ��� � c��� � �� � �� � ����

Equating coe�cients� we 
nd that

���v� � ���v� � c� � v � A�I���

Now v must be of the form v � xv� � yv�� so we get

���xv� � yv�� � x � c

���xv� � yv�� � y � c�

Therefore� A�I�� � spanf�v� � v��g� If we select as a new basis for R� the vectors

wi � vi� i � �� � � � � � w� � v� � v�� w� � v� � v��

then the new dual basis becomes

�i � �i� i � �� � � � � � �� �
�� � ��

�
� �� �

�� � ��

�
�

With respect to this new basis� the retracting space C�I�� is given by

C�I�� � spanf��� � � � � ��g�

In these coordinates� the generator set becomes

&� � f�� � ��� �� � ��� �� � �� � �� � ��� �� � �� � ��g � !�C�I����

�

The following lemma allows us to 
nd the dimension of the retracting space in the special case
where the generators of the ideal are a collection of �	forms together with a single �	form�

Lemma ���� Let I� be an ideal generated by the set

& � f�� � � � � s�'g

where i � V � and ' � !��V ��� Let r be the smallest integer such that

�'�r	� � � � � � �� s � ��

Then the retracting space C�I�� is of dimension �r � s�
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Proof	 See Bryant ��� pages ��	��� �

����� Independence Conditions

A system of exterior equations with independence condition ' is a pair �&�'� where & is a set of
generators and ' is a decomposable k	form� A solution to the system �&�'� is any subspace � � V
which satis
es the conditions

�� For each � � &� �j� � ��

�� 'j� �� ��

The second condition implies that every solution must be at least k	dimensional� and also restricts
the set of k	dimensional solutions to lie in a local coordinate chart of the Grassmann manifold Gn

k �
The following example illustrates these points�

Example	 Let �&� ���� � ���m� be a system of exterior equations with an independence condition�
Let ��� � � � � ��n�m� be any collection of one	forms which� taken together with the ��s� forms a basis
for V ��

Rn� � spanf��� � � � � ��n�m�� ��� � � � � �mg ����

We can also form the basis for V which is dual to the cobasis ���

Rn � spanfe�� � � � � e�n�m�� v�� � � � � vmg �����

so that

ei �j � 
ji

ei �j � �

vi �j � 
ji

vi �j � ��

Any element � � Gn
m which satis
es the independence condition

�� � � � � � �mj� �� �

can be represented with respect to the basis ��� as the matrix
M
I

�

where the elements mi
j form a local coordinate chart for the Grassmann bundle� We can form a new

basis for V using the columns of the matrix 
I M
� I

�
�����

de
ned relative to the old basis ���� The inverse of this matrix is
I �M
� I

�
and its rows form a new cobasis which is dual to the basis ���� We will de
ne

i � �i �
mX
j��

mi
j�

j �����



��

so that this new cobasis can be described by

Rn� � spanf�� � � � � �n�m�� ��� � � � � �mg� �����

Suppose that �k � & is a one	form� With respect to the basis ���� this form can be written as

�k �

�n�m�X
j��

akj�
j �

mX
l��

bkl �
l �

With respect to the cobasis ���� this can be written as

�k �

�n�m�X
j��

akj
j �

mX
i��

�

�n�m�X
j��

akjm
j
i � bki ��i�

Therefore� the subspace �M � � Gn
m satis
es the one	forms in & if and only if

�n�m�X
j��

akjm
j
i � bki � �

for each one	form �k � &� In matrix form� this looks like

AkM � Bk�

so the set of all solutions forms an a�ne subset of R�n�m��m�
Next� we can consider a two form �k � &

�k �

�n�m�X
r��

�n�m�X
t��

�

�
akrt�

r � �t �

�n�m�X
p��

mX
q��

bkpq�
p � �q �

mX
v��

mX
w��

�

�
ckvw�

v � �w�

Written with respect to the new basis� this equation becomes

�k �
X

��l�j�m

�
��n�m�X

r��

�n�m�X
t��

akrtm
r
jm

t
l �

�n�m�X
p��

�bkpjm
p

l
� bkplm

p
j � � cklj

�
��l � �j

mod f�� � � � � �n�m�g�

Restricted to the plane �M �� this form will be identically zero if and only if the mi
j satisfy the

quadratic equations

�n�m�X
r��

�n�m�X
t��

akrtm
r
jm

t
l �

�n�m�X
p��

�bkpjm
p
l � bkplm

p
j � � cklj � �

which can be written in matrix form as

M tAkM � M tBk � �Bk�TM � Ck � �

with Ak � ��Ak�T and Ck � ��Ck�T � Therefore� if a system of exterior equations consists of
�	forms and �	forms� then the subset of points in Gn

m which are solutions will generally be described
by a collection of linear and quadratic algebraic equations� �



Chapter �

Bundle Structures

In this chapter� we are going to extend the objects which have been de
ned in the previous three
chapters with respect to a vector space to analogous objects which are de
ned with respect to the
tangent bundle of a smooth manifold� In order to do this in a rigorous fashion� we need to introduce a
class of objects called 
bre bundles� The 
rst part of this chapter discusses the general de
nition of a

bre bundle� as well as the de
nitions of and constructions for several special classes of 
bre bundles
which are analogous to tensor spaces and Grassmann manifolds� The second part of this chapter
discusses the concept of a section of a 
bre bundle� The presentation focuses on the sections of the

bre bundles which are described in the 
rst section� and discusses some of the algebraic operations
which are associated with these sections� A more comprehensive treatment of this material can be
found in the book by Husemoller �����


�� Fibre Bundles

A locally	
nite 
bre bundle consists of a sextuple �E�B� �� V�G�A� where

�� E� B� and V are topological spaces called the total space� base space� and standard 
bre of
the bundle� respectively�

�� � is a continuous map taking E onto B in such a way that the inverse image of each point
p � B� ����p�� is homeomorphic to V � The set ����p� is called the 
bre over p�

�� The space G is a topological group which has an associated left action on V �

� A is a maximal atlas of charts� A chart is a pair �U�#� where U � B is an open subset of
B� and # � ����U � � U � V is a homeomorphism taking 
bres of the bundle over U to the
product space U � V � The homeomorphism must induce the identity map on U � so for any
p � U � ����p� � fpg � V � An atlas of charts is any collection of charts �Ui�#i� de
ned such
that the Ui form an open cover of B and such that if �Ui�#i� and �Uj �#j� are two charts
which both contain a point p� then �#i �#��j ��p� � fpg� V � fpg� V is an element of G� An
atlas can be enlarged by adding other charts which satisfy these compatibility requirements� In
particular� there exists a unique maximal enlargement of any atlas consisting of all additional
charts which satisfy the compatibility requirements�

Although B need only be a topological space� we will only be concerned with 
bre bundles for
which the base space is a smooth manifold�

��



��

����� The Tangent Bundle of a Smooth Manifold

In Appendix A� the tangent bundle is de
ned as the union over M of the set of all point derivations
at each point p � M � Given a smooth manifold M with a coordinate atlas AM � we can construct
a 
bre bundle with base space M and group GL�Rn� which is isomorphic to the tangent bundle
which is de
ned in Appendix A� To do this� we will follow a standard construction which� with
slight variations� will be used to produce all the bundles discussed in this chapter� We will use AM

as an index set and form the disjoint union

N � ��Ux�x��AM
Ux �R

n�

If this set is given the maximal topology such that the inclusion maps

ix � Ux �R
n � N

are all continuous� it becomes a smooth manifold� Each point in this manifold is a triple of the form
��Ux� x�� p� v� where �Ux� x� � AM � p � Ux� and v � Rn� We will de
ne an equivalence relation on
this manifold by declaring two points ��Ux� x�� p� v� and ��Uy� y�� q� w� to be equivalent if and only if

p � q

w �
�y

�x

����
p

v� �����

We will denote the equivalence class of ��Ux� x�� p� v� by ���Ux� x�� p� v��� We will let E denote the
set of all such equivalence classes� and endow E with the quotient topology in the standard fashion
to turn it into a topological space� We can de
ne a projection � from E onto M by

�����Ux� x�� p� v���� p

and an atlas of charts of the form �Ux�#x� by

#x � ����Ux� � Ux �R
n � ���Ux� x�� p� v��� �p� v��

Using the equivalent relation ���� we 
nd that for any pair of charts �Ux�#x� and �Uy �#y�� the
mapping

#y �#��x � �Ux � Uy��Rn � �Ux � Uy��Rn

can be expressed pointwise as

#y �#��x � �p� v� � �p�
�y

�x
jx���p�v��

so that
#y �#��x jfpg�Rn � GL�Rn��

This collection of charts can then be extended to a maximal atlas which we denote by A� The
sextuple

TM �� �E�B� ��Rn� GL�Rn��A�

is the desired 
bre bundle� If one works through a few computations in local coordinates� it is
not di�cult to see how this de
nition corresponds to the de
nition of the tangent bundle given in
Appendix A� However� a formal proof that these bundles are isomorphic is rather long and will not
be included here� The interested reader is referred to Spivak ����
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����� Tensor Bundles

Once we have de
ned the tangent bundle as in the previous section� we can� with only slight modi	

cation� produce a bundle of tensors of any order over M � We will denote this bundle by

Lk�M � �� �E�B� ��Lk�Rn�� GL�Rn��A�

where T � GL�Rn� acts on Lk�Rn� through the pull back map

T � � Lk�Rn� � Lk�Rn� �  � T ��

As before� we will use AM as an index set and form the disjoint union

N �� ��Ux�x��AM
Ux � L

k�Rn��

Endowed with the maximal topology such that each of the inclusion maps

ix � Ux �L
k�Rn� � N

is continuous� N becomes a topological space� We de
ne an equivalence relation on N by declaring
any two points ��Ux� x�� p� � and ��Uy � y�� q� �� to be equivalent if and only if

p � q�

 �
�y

�x

�����
p

�� �����

If we denote the equivalence class corresponding to ��Ux� x�� p� � by ���Ux� x�� p� �� and denote
the topological space corresponding to the set of all such equivalence classes equipped with the
quotient topology as E� then we can de
ne a continuous surjection � � ���Ux� x�� p� ��� p and local
trivializations

#x � ����Ux� � Ux � L
k�Rn� � ���Ux� x�� p� ��� �p� �

which satisfy

�#y �#��x �jfpg � Lk�Rn� �

�
�y

�x

���������
p

�

����� Partial Frame and Coframe Bundles

In the construction for the tangent bundle� we can replace Rn with Rn�m� or equivalently Rn 

�Rm�

�
� and replace the equivalence relation with the equivalence relation

��Ux� x�� p�M �� ��Uy � y�� q� �M� 

p � q

�M �
�y

�x

����
p

M �����

where �M�M � Rn�m� A point ���Ux� x�� p�M �� corresponds to a selection of m tangent vectors at
the point p� Note that this is also equivalent to the condition that the two points ��Ux� x�� p� v
 ��
and ��Uy� y�� q� w 
 �� satisfy

p � q

� � �

w 
 � �

�
�y

�x

����
p

v

�

 �� ����



�

Similarly� in the construction of the tensor bundle Lk�Rn�� we can replace each standard 
bre
with the space Rm 
Lk�Rn� and the equivalence relation ��� with the equivalence relation

p � q

w � v

w 
 � � v 


�
�y

�x

�����
p

�

�
�����

where v� w � Rm and �� � � Lk�Rn�� Any element ofRm
Lk�Rn� is called a vector	valued k	tensor�
and the corresponding bundle is called a vector	valued k	tensor bundle� A point ���Ux� x�� p� w
��
in this bundle corresponds to the choice of m di�erent k	tensors at the point p�

In both of these constructions� it is sometimes useful to consider only collections of vectors or k	
tensors which are linearly independent� If m � n� the set of all elements of Rn
 �Rm�� in which the
columns are linearly independent forms a dense open subset of Rn
 �Rm��� We will denote this set
byQ � Rn
�Rm��� In the construction just outlined� we can replace the standard 
bre Rn
�Rm��

with Q and use the same equivalence relation� The resulting bundle is called an m	frame bundle
over M� Similarly� if m � dim�Lk�Rn��� then the set of points in the space Rm 
 Lk�Rn� at which
the collection of tensors is linearly independent forms a dense open subset which we can use as the
standard 
bre for a bundle�

����� Grassmann Bundles of k	planes in Rn

In this section� we will once again repeat the standard construction� but this time� we will use the
Grassmann manifold Gn

k as the standard 
bre�
Suppose that we are given an n	dimensional manifold M together with an atlas of coordinate

charts �Uj � xj�� We will form a new manifoldN which consists of the disjoint union of the manifolds
Uj � Gn

k � One can think of this as making a separate copy of the domain of each coordinate chart�
and then forming the product space with the Grassmann manifold of k	planes in Rn� We endow
N with the largest topology such that each inclusion map ij � Uj � Gn

k � N is continuous� Each
point of the manifold M has the form �xj� p��� where xj speci
es the coordinate chart� p � Uj
speci
es a point in the domain of xj� and � � Gn

k � We next form an equivalence class on N using
the equivalence relation �xj� p��� � �xr� q�%� if and only if

�� p � q

�� � � $
�
�xj
�xr

jp
�

�%� where $ is the mapping which takes the Jacobian matrix to its correspond	

ing element in PGL�Rn��

We will denote the equivalence class of �xj� p��� by �xj� p���� The set of such equivalence classes�
endowed with the quotient topology� will form the total space E of the Grassmann Bundle� The
projection � is de
ned pointwise by ���xj� p���� � p� Associated with each Uj � we can de
ne a
mapping $j � ����Uj� � Uj � Gn

k by the pointwise assignment $j��xj� p���� � �p���� so that the
pair �Uj �$j� forms a chart on the bundle� Finally� for any two charts �U��$��� �U��$��� we have
that at any point p � U� � U��

�$� �$��� ��p��� � $���x�� p���� �

$�

� 
x�� p�$

�
�xj
�xr

����
p

�

�!�
�

�
p�$

�
�xj
�xr

����
p

�

��
�

The Uj form an open cover of M � and the charts satisfy the compatibility conditions prescribed in
the de
nition of a Grassmann bundle� so they form an atlas for the bundle�



�


�� Sections of Fibre Bundles

A section of a 
bre bundle �E�B� �� V�G�A� is a function s � B � E de
ned such that ��s�p�� � p for
each p � B� In other words� the function maps each point p to an element in the 
bre ����fpg� over
p� The section is continuous if s is a continuous function� If E and B are both smooth manifolds�
then the section is said to be smooth if s is a smooth function� A local section over U � M is a
function su � U � ����U � which satis
es the condition that ��su�p�� � p for each p � U �

A vector 
eld is an important example of a bundle section� Other examples of bundle sections
include covector 
elds� tensor 
elds� distributions� and codistributions� In this section� we will
discuss each of these types of bundle sections and will develop some algebraic operations de
ned in
relation to them�

����� Vector Fields

A vector 
eld X � M � TM is a section of the tangent bundle TM � If X is of class C�� it is called
a smooth section of TM � Recall that with respect to a coordinate chart �U� x� containing a point
p � M � a tangent vector can be expressed as

Xp �
nX
i��

ai
�

�xi
�

Similarly� a vector 
eld X can be locally expressed as

X�p� �
nX
i��

ai�p�
�

�xi
�

From this equation� it is clear that the vector 
eld X is C� if and only if the scalar functions
ai � M �� R are C��

We will let V �M � denote the collection of all smooth sections of the tangent bundle� We can
give V �M � two di�erent algebraic structures� First� we can turn V �M � into an in
nite dimensional
vector space over R� Vector addition on this space is de
ned pointwise� so for every X�� X� � V �M ��

�X� �X���p� �� X��p� �X��p��

and scalar multiplication is de
ned pointwise by �aX��p� �� a �X�p� for every a � R� Second� we
can give V �M � the structure of a module over the ring of smooth functions on M � C��M �� In
this case� addition is de
ned pointwise as above� and scalar multiplication is de
ned pointwise by
aX �� a�p� �X�p� for every a � C��M ��

A vector 
eld provides a geometric description of a di�erential equation� An integral curve of
a vector 
eld X is a mapping c � ���� �� �� M whose tangent vector at each point is identically
equal to the vector 
eld at that point� The theory of ordinary di�erential equations guarantees that
every smooth vector 
eld determines a unique integral curve passing through each point p � M �
Depending on the vector 
eld� the parameter � may be limited� or we may be able to expand the
interval ���� �� to be the whole real line�

Given a function h � M �� R� we will often be interested in the rate at which h changes along
an integral curve of a vector 
eld� This rate of change is called the Lie derivative of h along the
vector 
eld X� The Lie derivative is denoted as LXh and is formally de
ned by the equation

LXh � X�h��

We can also de
ne a product operation on V �M � called the Lie bracket� Given two vector 
elds
X and Y � their Lie bracket is denoted by �X�Y � and is de
ned to be the unique vector 
eld which
satis
es the equation

�X�Y ��h� �� X�Y �h��� Y �X�h���



�

for every h � C��p�� In particular� if we choose the coordinate functions xi� we get

�X�Y ��xi� � �X�Y �i �
X
j

�Yi
�xj

Xj �
X
j

�Xi

�xj
Yj

and we therefore obtain

�X�Y ��x� �
�Y

�x
X�x� �

�X

�x
Y �x�

The Lie bracket is skew	symmetric

�X�Y � � ��Y�X�

and also satis
es the Jacobi identity

�X� �Y� Z�� � �Y� �Z�X�� � �Z� �X�Y �� � ��

The Lie bracket and the Lie derivative of a smooth function are related by the following equation

�aX� bY � � ab�X�Y � � a�LXb�Y � b�LY a�X �����

for every X�Y � V �M � and every a� b � C��M ��

����� Tensor Fields

A k	tensor 
eld  is a section of the bundle Lk�M �

 � M � Lk�M ��

At each point p � M � �p� de
nes a multilinear function mapping k	tuples of tangent vectors in
TpM to R� That is

�p� � TpM � � � � � TpM� �z �
k times

�R�

In particular� if  is a section of !k�M �� then  is called a di�erential form of order k or di�erential
k	form on M � In this case� �p� de
nes an alternating k	tensor at each point p �M � We will denote
the collection of all sections of the bundle !k�M � by 'k�M �� and the space of all sections of the
bundle !�M � will be denoted by

'�M � �� '��M �� � � ��'n�M ��

At each point p � M � let �
�x�

� � � � � �
�xn

denote standard basis for TpM � and let the �	forms �i

denote the dual basis de
ned such that

�i�p��
�

�xj
� � 
ij �

Recall that the set of k	tensors de
ned by

�I � �i� 
 �i� 
 � � �
 �ik

for each multi	index I � �i�� � � � � ik� form a basis for Lk�TpM � and that the set of all alternating
k	forms de
ned by

�I � �i� � �i� � � � �� �ik





for each ascending multi	index I � �i�� � � � � ik� form a basis for !k�TpM �� A k	tensor  on M can
be uniquely written as

�p� �
X
I

bI�p��
I�p�

for multi	index I and scalar functions bI�p�� Likewise� a k	form � can be written uniquely as

��p� �
X
I

cI�p��
I�p�

for ascending multi	index I and scalar functions cI � The k	tensor  and k	form � are of class C� if
and only if the functions bI and cI are of class C�� respectively� Given two forms  � 'k�M �� � �
'l�M �� we have

 �
X
I

bI�
I

� �
X
I

cI�
I

 � � �
X
I

X
J

bIcI�
I � �J �

Recall that we have de
ned !��TpM � � R� As a result� the space of di�erential forms of order �
on M is simply the space of all functions f � M �� R� and the wedge product of f � '��M � and
 � 'k�M � is de
ned as

�w � f��p� � �f �w��p� � f�p� �w�p��

����� The Exterior Derivative

The di�erential df of a �	form f is de
ned pointwise as the unique �	form which satis
es the equation

df�p��Xp� � Xp�f�

for every Xp � TpM � The operator d is linear on �	forms� that is�

d�af � bg� � a � df � b � dg�

This follows from the fact that Xp is a linear operator�
Using this operator d� we obtain a new way of expressing the elementary �	forms �i�p� on TpM �

Let x � M �� Rn be a coordinate function in a neighborhood of p� and consider the di�erentials of
the coordinate functions

dxi�p��Xp� � Xp�xi��

If we evaluate the di�erentials dxi at the basis tangent vectors of TpM � we obtain

dxi�p��
�

�xj
� � 
ij

and therefore the operator d maps each function xi to its corresponding element in the dual basis�
In short� dxi�p� � �i�p�� Consequently� the di�erentials dxi�p� form a basis for L��TpM � and any
k	tensor  can be uniquely written as

�p� �
X
I

bI�p�dx
I�p�

for multi	index I� Similarly� any k	form can be uniquely written as

�p� �
X
I

bI�p�dx
I�p�
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for ascending multi	index I� Therefore� any k	tensor  can be expressed in the chart �U� x� containing
p as

�p� �
nX
i��

bI�p�dx
� 
 � � � 
 dxn

while the k	form � is expressed as

��p� �
nX
i��

cI�p�dx
� � � � �� dxn�

Using this basis� we 
nd that the operator d takes any �	form f � C��M � to the �	form

df �
nX
i��

�f

�xi
dxi�

We now have an operator d which takes �	forms to �	forms� We would like to extend this operator
to all of '�M �� In order to accomplish this� we will inductively de
ne an operator d � 'k�M � ��
'k	��M �� We will then prove that this extension is unique in the sense that there is only one
operator d which is compatible with the operator which takes �	forms to �	forms and which satis
es
the properties listed in Theorem ����� below�

De�nition ����� Let  be a k�form on a manifold M which can be described with respect to the
coordinate chart �U� x� by the equation

 �
X
I

aIdx
I

for ascending multi�index I� The exterior derivative or di�erential operator� d� is a linear map taking
the k�form  to the �k����form d by

d �
X
I

daI � dx
I�

Notice that each aI is a smooth function whose di�erential daI is de
ned by

daI �
nX
j��

�aI
�xj

dxj�

Consequently� we 
nd that for any k	form�

d �
X
I

nX
j��

�aI
�xj

dxj � dxI �

One can see from the de
nition that this operator is certainly linear� The next theorem precisely
states the sense in which this operator is also unique�

Theorem ����� Let M be a manifold and let p � M � Then the exterior derivative is the unique
linear operator

d � 'k�M � � 'k	��M �

for k � � that satis�es

�� If f is a �form� then df is the ��form

df�p��Xp� � Xp�f�

�� If � � 'k�M �� � � 'l�M �� then

d�� � �� � d� � � � ����k� � d�

�� For every form � d�d� � ��
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Proof	 Property ��� can be easily checked from the de
nition of the exterior derivative� We now
prove property ���� Because of linearity of the exterior derivative it su�ces to consider the case
� � fdxI and � � gdxJ in some chart �U� x�� We have

d�� � �� � d�fg� � dxI � dxJ

� gdf � dxI � dxJ � fdg � dxI � dxJ

� d� � � � ����kfdxI � dg � dxJ

� d� � � � ����k� � d�

We now prove property ���� Again it su�ces to consider the case  � fdxI because of linearity�
Since f is a �	form�

d�df� � d�
nX
j��

�Djf�dxj� �
nX
i��

nX
j��

Di�Djf�dxi � dxj

� �Di�Djf� �Dj�Dif��dxi � dxj � �

where Dif is the standard derivative �f

�xi
� If  � fdxI is a k	form� then d � df � dxI� and since

d�dxI� � d�� � dxI� � d��� � dxI � ��

we get
d�d� � d�df� � dx� � df � d�dxI� � ��

We now show that d is the unique linear operator with the above properties� Assume that d�

is another linear operator with the same properties� Consider again a k	form  � fdxI � Since d�

satis
es property ���� we have

d��fdxI � � d�f � dxI � f � d��dxI��

From the above formula� we see that if we can show that d��dxI� � �� then we will get

d��fdxI� � d�f � dxI � d�fdxI�

which will complete the proof� We therefore need to show that

d��dx� � � � �� dxk� � �� �����

Both d and d� satisfy property ���� so we must have

dxI � dxi� � � � �� dxik � d�xi� � � � �� d�xik � d�xI

since the coordinate functions xi are �	forms�
We prove equation ��� by induction� It can be easily checked to hold for k � �� Assume that

equation ��� holds for k � �� Then de
ne

� � dx� � � � �� dxk�

Then
d��dxI� � d��d�xi� � d�xik� � d��d�xi�� � � � d�xi� � d

�� � �

since d� also satis
es property ��� and d�� � d� by the induction hypothesis� �

Now let f � M �� N be a smooth map between two manifolds� We have seen that the push
forward map� f�� is a linear transformation from TpM to Tf�p�N � Therefore� given tensors or forms
on Tf�p�N � we can use the pull back tranformation� f�� in order to de
ne tensors or forms on TpM �
The next theorem shows that the exterior derivative and the pull back transformation commute�

Theorem ����� Let f � M �� N be a smooth map between manifolds� If  is a k�form on N � then

f��d� � d�f��
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Proof	 See Spivak ��� pages ���	���� �

We can de
ne the interior product of a tensor 
eld and a vector 
eld pointwise as the interior
product of a tensor and a tangent vector�

De�nition ����� Given a k�form  � 'k�M � and a vector �eld X� the interior
product or anti�derivation of  with X is a �k � �� form de�ned pointwise by

�X�p� �p���v�� � � � � vk��� � �p��X�p�� v�� � � � � vk����

Therefore� an antiderivation of a k	form  simply substitutes the 
rst argument with the given
vector and thus results in a �k	��	form�

The following lemma establishes a relation between the exterior derivative and Lie brackets�

Lemma ����� �Cartan�s Formula� Let  � '��M � be a ��form and X�Y � V �M � be smooth
vector �elds� Then

d�X�Y � � X��Y � � Y ��x�� � ��X�Y ��

� X d�Y � � Y d�X � � �X�Y � �

Proof	 Because of linearity� it is adequate to consider  � fdg� The left	hand side of the above
formula is

d�X�Y � � df � dg�X�Y �

� df�X� � dg�Y � � df�Y � � dg�X�

� X�f� � Y �g�� Y �f� �X�g�

while the right	hand side is

X��Y ��� Y ��X�� � ��X�Y �� � X�fY �g�� � Y �fX�g�� � f�XY �g� � Y X�g��

� X�f� � Y �g� � Y �f� �X�g�

which completes the proof� �

The Lie derivative of a di�erential k	form  � 'k�M � with respect to a vector 
eld X is de
ned
by the equation

LX �� X d � d�X �� �����

Lemma ����� The operator LX ��� � '�M � � '�M � satis�es the following properties

�� For every a� b � C��M ��

LaX �b� � abLX � a�LXb� � bda� �X �

�� LX �� � �� � LX
� � � � � � LX�

�� LXd � dLX�

Proof	 Each of these statements can be veri
ed directly using equation ��� together with the
properties of the exterior derivative and the interior product� �

Finally� we have the following result�

Lemma ���� Let v� r � V �M � be two vector �elds over M � The operator

Lv�r ����� r Lv��� � '�M � � '�M � �����

is equal to the operator
�v� r� ��� � '�M � � '�M ��
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Proof	 Let K denote the set of all ascending k	tuples in f�� � � � � ng and  � 'k�M � be any k	form
which can be described relative to the basis

fdx�� � � � � dxng

by the equation

 �
X
I�K

aIdx
I

where I � fi�� � � � � ikg and
dxI � dxi� � � � � � dxik �

If we compute
Lv�r � � r �Lv��

we get

Lv�r
X
I�K

aIdx
I�� r Lv�

X
I�K

aIdx
I� �

X
I�K

�
Lv�aI��r dxI� � aILv�r dxI�� Lv�aI ��r dxI�� aI�r Lvdx

I�
�

�
X
I�K

aI

�
Lv�r dxI� � r Lvdx

I
�
�

We also have that
�v� r� �

X
I�K

aIdx
I� �

X
I�K

aI��v� r� dxI��

so the operators are equivalent if they are equivalent on a set of basis elements dxI�
If dxi is any �	form in the cobasis� then Cartan�s formula gives

� � v r d � dxi � r d�v dxi� � v d�r dxi� � �v� r� dxi�

Moving the 
rst two terms on the right over to the left� we have

v d�r dxi� � r d�v dxi� � �v� r� dxi

� Lv�r dxi� � r Lvdx
i � �v� r� dxi�

So the operators are equivalent on the set of �	forms� Suppose that the operators are equivalent on
the set of k	forms� Let I � K be any ascending k	tuple� If dxi is any basis element for which i �� I�
then the form dxi � dxI is a basis element for the �k � ��	forms� We 
rst compute

Lv�r �dxi � dxI�� � Lv��r dxi�dxI � dxi � �r dxI��

� Lv�r dxi�dxI � �r dxi�Lvdx
I � Lvdx

i � �r dxI� � dxi �Lv�r dxI�� ������

Similarly� we can compute

r Lv�dxi � dxI� � r ��Lvdx
i� � dxI� � r �dxi � Lvdx

I� �

�r �Lvdx
i��dxI � �Lvdx

i� � �r dxI� � �r dxi�Lvdx
I � dxi � �r Lvdx

I�� ������

Finally� subtracting equation ���� from equation ����� we get

Lv�r �dxi � dxI�� r Lv�dxi � dxI� �

Lv�r dxi�dxI � dxi � Lv�r dxI� � �r Lvdx
i��dxI � dxi � �r Lvdx

I�



�

which can be rearranged to give

� �Lv�r dxi� � �r Lvdx
i���dxI � dxi � �Lv�r dxI�� �r Lvdx

I���

Using the fact that the operators are equivalent on �	forms together with the induction hypothesis�
the above expression can be rewritten as

��v� r� dxi�dxI � dxi � ��v� r� dxI� � �v� r� dxi � dxI �

So the two operators are also equivalent on �k � ��	forms� and by induction� this must be true for
all k� �

����� Distributions and Codistributions

A smooth k	dimensional distribution is a smooth section of the Grassmann bundle of k	planes over a
manifoldM � Similarly� a smooth k	dimensional codistribution is a smooth section of the Grassmann
bundle GT�M

k �M � whose 
bres over a point p �M consist of all k	dimensional subspaces of T �pM �
In general� a Grassmann bundle may not have a smooth section� For example� consider the

Grassmann bundle of one	dimensional subspaces over the two	sphere G�
��S

��� This is a well	de
ned
Grassmann bundle whose 
bres above any point p � S� consist of all the one	dimensional subspaces
contained in TpS

�� but the topology of S� does not admit a smooth mapping f � S� � G�
��S

��
which satis
es � � f�p� � p� However� locally a Grassmann bundle will always have a smooth
section� Therefore� when working with distributions� we will often restrict our discussion to an open
neighborhood U �M over which a section exists� When dealing with the tangent bundle or a tensor
bundle� we do not have to worry about the existence of a smooth section because the zero section
always exists� but the topology of the base manifold may still place restrictions on the form of the
sections� For example� the tangent bundle of the two	sphere has smooth sections� but every section
must have at least one zero point�

In order to get around this complication� a distribution is often de
ned as the pointwise span
of collection of smooth vector 
elds� Since the dimension of the subspace spanned by a collection
of vector 
elds may change as the base point is varied� a distribution de
ned in this way need not
correspond to the section of any Grassmann manifold� Any point at which the span of the vector

elds is maximal is called a regular point of the distribution� and all other points are called singular
points� There is a neighborhood around any regular point on which the pointwise span of the vector

elds coincides with a local section of a Grassmann bundle�

A third way to de
ne a distribution or codistribution is as C��M � submodule of V �M � or '��M ��
respectively� This is the de
nition which will be adopted for the remainder of this section� This
de
nition is not quite equivalent to the second de
nition� In order to see this� consider the two vector

elds x �

�x
and x� �

�x
which are both de
ned over the manifoldR� Pointwise� these vector 
elds span

the same subspace� so according to the second de
nition� they de
ne the same distribution� However�
they do not generate the same submodule of V �R� since the vector 
eld x �

�x
�� span fx� �

�x
g� If the

dimension of the pointwise span of the submodule is constant on a neighborhood� U �M � then this
de
nition is locally equivalent to the other two�

Given a collection of vector 
elds v�� � � � � vr de
ned over a smooth manifold M � their span is the
C��M � module de
ned by

spanfv�� � � � � vrg �� fv � V �M � j v � aivi a
i � C��M �g�

Similarly� given a collection of covector 
elds �� � � � � r de
ned over a smooth manifold M � their
span is the C��M � module de
ned by

spanf�� � � � � rg �� f � '��M � j  � ai
i ai � C��M �g�

For the remainder of this section we will de
ne a smooth distribution to be any C��M � submodule
of V �M � and a smooth codistribution to be any C��M � submodule of '��M ��



��

Given two smooth distributions �� and ��� their sum will be denoted by �� � �� and de
ned
by

�� � �� �� spanfv � V �M � j v � v� � v�� v� � �� and v� � ��g�

The smooth intersection of �� and �� will be denoted by �� ��� and de
ned by

�� ��� �� fv � V �M � j v � �� and v � ��g�

Similarly� given two smooth codistributions I� and I�� their sum will be denoted by I� � I� and
de
ned by

I� � I� �� spanf � '��M � j  � I� or  � I�g�

The smooth intersection of I� and I� will be denoted by I� � I� and de
ned by

I� � I� �� f � '��M � j  � I� and  � I�g�

It is straightforward to verify that the smooth intersection of a distribution or codistribution is
closed under modular addition and scalar multiplication� hence� it forms a submodule of V �M � or
'��M �� respectively�

Finally� we will denote the smooth perp of a smooth distribution � �codistribution I� by ��

�I�� and de
ne it by

I� �� fv � V �M � j v  	 � for all  � Ig

�� �� f � '��M � j v  	 � for all v � �g�

Given any two subspace V� and V� of a 
nite	dimensional vector space V � the following relation	
ships hold

�V �� �� � V� ������

�V� � V��
� � V �� � V �� ������

�V� � V��
� � V �� � V �� � �����

We want to investigate the extent to which similar relationship hold between the operations
which we have de
ned for distributions and codistributions� Restricted to a point p � M � a dis	
tribution �looks� like a subspace of a 
nite	dimensional vector space� and a codistribution �looks�
like a subspace of the dual space to a 
nite	dimensional vector space� so we should expect similar
relationships to hold� However� there are some subtleties involved which are related to the fact that
we are working with C��M �	modules rather than vector spaces�

Lemma ����� The following relationships hold between the sum� intersection� and perp of a smooth
distribution or codistribution� Let D� D�� and D� be smooth� �nitely�generated distributions or
codistributions�

�� D � �D����

�� If D has constant dimension on an open set U � then� restricted to U � D � �D����

�� �D� � D��� � D�� �D
�
� �

	� D�� �D�� � �D� �D����

�� If D�� D�� and D� � D� have constant dimension on an open set U � then� restricted to U �
�D� �D��

� � D�� � D�� �



��

Proof	 The 
rst statement follows directly from the de
nition of the perp�

�D��� � fv � V �M � j v  	 � �  � D�g�

Since  � D� implies that v  	 � for all v � D� it follows that D � �D����
Assume that� restricted to U � D is a constant dimensional� 
nitely	generated distribution� Since

D has constant dimension on U � for every point p � U � there exists an open neighborhood Up and
a coordinate chart �x� Up� such that the following conditions hold

�� The matrix of coe�cients for the local representation of the generators can be written in the
form 

A��x�
A��x�

�
where A��x� has full rank�

�� Every element of D can be uniquely written as a linear combination of the columns of A�x��

�� The span of the columns of A�x� is equal to the span of the columns of
A��x�A��� �x�

I

�
�

If we form the block	triangular matrix

B�x� �


I A��x�
� A��x�

�
�

then the columns of B�x� span V �Up� and the rows of the inverse matrix

B���x� �


I �A��x�A��� �x�
� A��� �x�

�

span '��Up�� Consequently� any  � '��Up� can be written uniquely as some linear combination

�x� �
n�mX
j��

nX
i��

cj�x�bji �x�dxi �
nX

k�n�m	�

ck�x�dxk�

If  � D�� then v  	 � for all v � D� This can only happen if ck�x� 	 � for k 	 n � m�
Consequently�

D� � spanf
nX
i��

bji �x�dxig� j � �� � � � � n�m�

If we repeat the same argument starting with D�� then we 
nd that� restricted to Up� D � �D����
This construction can be repeated in an open neighborhood of every point p� so it must hold true
on all of U � Furthermore� if v�� � � � � vr are generators for D and v�� � � � � vn are generators for '��U ��
then v�r	�� � � � � v

�
n are generators for D��

To prove the second statement� we begin by noting that

D� � D� � D�

D� � D� � D�

which implies that

�D� � D��
� � D��

�D� � D��
� � D��



��

and

�D� �D��
� � D�� �D

�
� �

To prove equality� we also have to show that

D�� �D
�
� � �D� � D��

��

If  � D�� � D�� � then by de
nition� v�  	 � for all v� � D� and v�  	 � for all v� � D��
Consequently�

�� � v� � � � v��  	 �

for arbitrary �� � � C��M �� Every vector

v � D� � D�

can be written as v � � � v� � � � v� for some �� � � C��M �� v� � D�� and v� � D�� Therefore�
 � �D� � D����

To prove the third statement� we follow a similar sequence

D� �D� � D�

D� �D� � D�

which implies that

D�� � �D� �D��
�

D�� � �D� �D��
�

and

D�� � D�� � �D� �D��
�

If D� and D� have constant dimensions on U � then �D�� �� � D� and �D�� �� � D�� From the
second statement� we have that

�D�� � D�� �� � �D�� �� � �D�� ��

which implies
�D�� � D�� �� � �D�� �� � �D�� ���

The equality of the distributions with their double perps implies

�D�� � D�� �� � D� �D��

and
�D� �D��

� � ��D�� �D�� �����

Since D��D� has constant dimension� so does �D�� �D�� ��� and we must have that ��D�� �D�� ���� �
�D�� �D�� �� This implies that

�D� �D��
� � D�� �D�� �

Since we always have that
D�� � D�� � �D� �D��

��

we can conclude that� restricted to U �

�D� �D��
� � D�� �D�� �

��



��

Example	 The 
rst example illustrates that D can be a proper subset of �D���� Let �x� y� be
the standard coordinates on R�� Consider the distribution de
ned by D �� spanfy� �

�x
g� The perp

of this distribution is de
ned by

D� �� fa�x� y�dx� b�x� y�dy � '��R�� j v �a�x� y�dx� b�x� y�dy� �v � Dg�

Consequently� if a�x� y�dx� b�x� y�dy � D� � then for every c�x� y� � C��R��� the equation

�c�x� y�y�
�

�x
� �a�x� y�dx� b�x� y�dy� 	 �

must hold� This can be rewritten as

a�x� y�c�x� y�y� � b�x� y� � � 	 ��

The coe�cients a�x� y� 	 �� b�x� y� 	 � obviously satisfy this equation� so dy � D�� Furthermore�
any  � D� with a�x� y� 	 � can be written as a scalar multiple of dy� We still need to determine
if there are any elements of D� with nonzero a�x� y� coe�cients� If so� then the function a�x� y�
must satisfy a�x� y�c�x� y�y� 	 � for all c�x� y� � C��M �� In particular� this equation must hold
when c�x� y� 	 �� Wherever y �� �� the function a�x� y� � �� since this holds on a dense subset
of R�� the continuity of a�x� y� implies that the zero function a�x� y� 	 � is the only solution� So
D� � spanfdyg� A similar argument shows that �D��� � spanf �

�x
g� The distribution D is a proper

subspace of �D��� because dy cannot be written as any c�x� y��y�dx�� �

Example	 The second example illustrates that D�� �D�� can be a proper subset of �D��D���� Let
�x� y� z� be the standard coordinates on R�� Let D� �� spanf �

�y
� x �

�x
� �

�z
g and D� �� spanf �

�y
� �
�z
g�

Then D�� � spanfdx� xdzg� D�� � spanfdxg� and D� �D� � spanf �
�y
g� Computing �D� �D���

and D�� � D�� � we 
nd that �D� �D��� � spanfdx� dzg while D�� � D�� � spanfdx� xdz� dxg �
spanfdx� xdzg� The distribution spanfdx� xdzg is a proper submodule of spanfdx� dzg since dz is
not an element of spanfdx� xdzg� �

����
 Closure Properties of Distributions and Codistributions

We can de
ne operations on smooth distributions and codistributions which are induced by the Lie
bracket and Lie derivative� In this section� we will de
ne these induced operations� and examine
some closure properties which are related to them�

Let � and % be two smooth� nonzero distributions and I a smooth codistribution� We will de
ne
the submodules ���%� and L�I as follows

�� ���%� �� spanfv � TM j v � �r� s� for some r � �� s � %g�

�� L�I �� spanf � T �M j  � Lr� for some r � �� � � Ig�

Lemma ����� Let v�� � � � � vn be a collection of linearly independent vector �elds which span a dis�
tribution � and r�� � � � � rm a collection of linearly independent vector �elds which span a distribution
%� Then

���%�� spanf�vi� rj�� vk� rlg i� k � �� � � � � n j� l � �� � � � �m�

Furthermore� if � and % have constant dimension in a neighborhood U of a point p� then there exists
a neighborhood V � U of p on which

���%� � spanf�vi� rj�� vk� rlg i� k � �� � � � � n� j� l � �� � � � �m�



�

Proof	 The proof of the 
rst statement follows from the following identity� For any v� r � TM
and any a� b � C��M ��

�av� br� � ab�v� r� � �Lvb�ar � �Lra�bv� ������

Let �� �� spanf�vi� rj�� vk� rlg� For any v � �� r � %� and �v� r� � �aivi� b
jrj �� by equation ���� we

have that
�aivi� b

jrj � � aibj�vi� rj� � �Lvib
j�airj � �Lrj a

i�bjvi � ���

To prove the second statement� we need to show that locally� ���%� � ��� Pick any pair of basis
vectors vi � �� rj � %� By de
nition� �vi� rj� � ���%�� Now pick any a � C��M � such that locally
a �� � and Lrja �� �� The vector 
eld �avi� rj� � ���%� again by de
nition� Consequently� the linear
combination

a

Lra
�vi� rj��

�

Lra
�avi� rj� � rj � ���%��

The same argument can be used to show that locally vi � ���%�� �

Lemma ����� Let v�� � � � � vn be a collection of linearly independent vector �elds which span a dis�
tribution � and �� � � � � m a collection of linearly independent covector �elds which span a codis�
tribution I� If � � I�� then

L�I � spanfLvi
j� kg i� k � �� � � � � n j � �� � � � �m�

Furthermore� if the dimension of � is greater than zero in a neighborhood U of a point p� then there
exists a neighborhood V � U of p on which

L�I � spanfLvi
j� kg i� k � �� � � � � n j � �� � � � �m�

Proof	 The proof of the 
rst statement uses the following identity� For any v � V �M �� any
 � '��M �� and any a� b � C��M ��

Lav�b� � abLv � �Lvb�a � �v �bda� ������

Let �I �� spanfLvi
j � kg� i� k � �� � � � � n� and j � �� � � � �m� For any  � I and any v � ��

Lv � Laivibj
j and by equation ���� we have that

Laivibj
j � aibjLvi

j � �Lvib
j�aij � bj�vi j�dai � �I

which is in �I since by assumption vi j 	 ��
To prove the second statement� we have to show that locally �I � L�I� Pick any nonzero vi � �

and any j � I� By de
nition� Lvi
j � L�I� Now pick any b � C��M � such that locally b �� � and

Lvib �� �� Then the linear combination

b

Lrb
Lvi

j �
�

Lvib
Lvi�b

j� � j � L�I�

�

Lemma ����� Suppose that J is a codistribution which is a subspace of �� � I� then the following
statements are equivalent

�� L�J � I

�� LI�J � ��

�� ��� I�� � J�



��

Proof	 ��  �� Since J � �� � I� � J 	 � and I� J 	 �� Therefore� L�J � � dJ and

LI�J � I� dJ �

If L�J � � dJ � I� then we must have

I� �� dJ� � � �I� dJ� 	 �

which implies that I� dJ � ��� A symmetric argument gives the reverse implication�

��  �� Using Cartan�s formula and the facts that J � I� J � ���

� I� dJ � ��� I�� J 	 �

which implies that
��� I�� � J��

�

Lemma ����� Given a smooth codistribution I and a smooth distribution �� there exists a unique
maximal codistribution J� � I��� which satis�es L�J� � I� Furthermore� J� � ��� I����I����

Proof	 Consider the collection K of all codistributions which satisfy this property� The collection
contains f�g� so it is not empty� Let J�� J� � K� then

L�J� � L�J� � L��J� � J�� � I�

so K is closed under subspace addition� Therefore� it must contain a unique element of maximal
dimension�

The lemma assumes that J� � I ���� and using Lemma ������ we know that ��� I�� � J���
or equivalently� that J� � ��� I���� Therefore� we must have J� � ��� I��� � I � ��� Let
�J � ��� I��� � I ���� Using Cartan�s formula� we have that

��� I�� �J � � I� d� �J� 	 ��

From this� we infer that
L�� �J� � I�

From the maximality of J�� we conclude that �J � J�� Consequently� we must have that

��� I��� � I ��� � J��

�

Lemma ����� Given two smooth codistributions I and J satisfying J � I� there exists a unique
maximal distribution �� � I� which satis�es

L��J � I� ������

Furthermore� �I � LI�J�� � ���



��

Proof	 Let S denote the set of all distributions which satisfy equation ����� This set is not empty
since f�g always satis
es the condition� Suppose that �� and �� are both in S� It follows from this
that

L��J � L��J � ��� � ��� dJ � L���	���J � I�

so the collection S is closed under subspace addition� Therefore� it contains a unique maximal
element�

Let �� denote the maximal element of S� Using Lemma ������ we know that

L��J � I  LI�J � ����

Since the lemma assumes that I � ���� we must have

�LI�J � I� � ��� � �� � �LI�J � I���

De
ne K �� LI�J � I� Clearly� LI�J � K� Using Lemma ������ this implies that LK�J � I�
From the maximality of ��� we must have K� � ��� From this� we conclude that �I�LI�J�� � ���
�

Involutivity

A distribution is said to be involutive if and only if it is closed under the Lie bracket operation� so
that ������ �� A codistribution I is involutive if and only if LI�I � I�

Lemma ������ The following facts concerning involutivity hold

�� Given two involutive codistributions I and J � the codistribution I � J is also involutive�

�� Given two involutive distributions � and %� the distribution � � % is also involutive�

�� Given a codistribution I� there exists a unique maximal involutive codistribution �I which is
contained in I�

	� Given a distribution �� there exists a unique minimal involutive distribution �� which contains
��

Proof	 These results follow directly from the de
nition of involutivity� �

A distribution � is said to be completely integrable at a point p �M if and only if it has constant
dimension on a neighborhood U �M of p and at each point q � U � there exists a submanifold N of
U which contains q whose tangent space TrN � ��r� at each point r � N � The submanifold N is
called an integral manifold of the distribution ��

Similarly� a codistribution ' is said to be completely integrable at a point p if and only if it
has constant dimension on a neighborhood U � M of p and at each point q � U � there exists a
submanifold N of U which contains q whose cotangent space T �r N � '�r� at each point r � N � The
submanifold N is called an integral manifold of the codistribution '�

The following fundamental result� called the Frobenius theorem� provides us with a condition
under which a distribution or codistribution is completely integrable�

Theorem ���� �Frobenius Theorem� An m�dimensional distribution � is completely integrable
on a neighborhood U � M if and only if it is involutive on U � Furthermore� if � is completely
integrable� then there exists a set of local coordinates x�� � � � � xm� xm	�� � � �xn de�ned on U such that

� � spanf
�

�x�
� � � � �

�

�xm
g�

An m�dimensional codistribution ' is completely integrable on a neighborhood U � M if and
only if it is involutive on U � Furthermore� if ' is completely integrable� then there exists a set of
local coordinates x�� � � � � xm� xm	�� � � �xn de�ned on U such that

' � spanfdx�� � � � � dxmg�



��

Proof	 See Spivak ���� �



Chapter �

Exterior Di�erential Systems

In this chapter� we will extend the exterior algebra presented in Chapter � to a smooth manifold� We
will then discuss exterior di�erential systems which are the counterparts in this setting to systems
of exterior equations over a vector space�

��� The Exterior Algebra on a Manifold

The space of all forms on a manifold M �

'�M � � '��M � � � � ��'n�M ��

together with the wedge product is called the exterior algebra on M � An ideal of this algebra is
de
ned in Section ��� as a subspace I � '�M � which satis
es the requirement that if � � I� then
� � � � I for any � � '�M �� We will call this the algebraic ideal generated by &�

We are also interested in what happens when we perform exterior di�erentiation on the elements
of the ideal�

De�nition ����� An ideal I � '�M � is said to be closed with respect to exterior di�erentiation if
and only if

� � I �� d� � I

or more compactly dI � I� An ideal which is closed with respect to exterior di�erentiation is called
a di�erential ideal�

A 
nite collection of forms & �� f��� � � � � �Kg generates an algebraic ideal

I� �� f � '�M � j  �
KX
i��

�i � �i for some �i � '�M �g�

We can also talk about the di�erential ideal generated by &�

De�nition ����� Let Sd denote the collection of all di�erential ideals containing &� The di�erential
ideal generated by & is de�ned as

I� ��
"
I�Sd

I�

Theorem ����� Let & be a �nite collection of forms� and let I� denote the di�erential ideal gen�
erated by &� De�ne the collection

&� � & � d&

and denote the algebraic ideal which it generates by I�� � Then

I� � I�� �

��
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Proof	 By de
nition� I� is closed with respect to exterior di�erentiation� so &� � I�� Conse	
quently� I�� � I�� Conversely� the ideal I�� is closed with respect to exterior di�erentiation and
contains & by construction� Therefore� from the de
nition of I�� we have that I� � I�� � �

��� Exterior Di�erential Systems

In Section ���� we introduced systems of exterior equations on a vector space V and characterized
their solutions as subspaces of V � We are now ready to de
ne a similar notion for a collection
of di�erential forms de
ned on a manifold M � The basic problem will be to study the integral
submanifolds of M which satisfy the constraints represented by the exterior di�erential system�

De�nition ����� An exterior di�erential system is a �nite collection of equations

�� � �� � � � � �r � �� d�� � �� � � � � d�r � �

where each �i � 'k�M � is a smooth k�form� A solution to an exterior di�erential system is any
submanifold N of M which satis�es �i�p�jTpN 	 � and d�i�p�jTpN 	 � for all p � N and all
i � �� � � � � r� An integral k�plane is a point �p � Gn

k�M � which satis�es the equations �i�p�j�p
	 ��

d�i�p�j�p
	 � for all i � �� � � � � r�

Theorem ����� Given an exterior di�erential system

�� � �� � � � � �K � � �����

and the corresponding di�erential ideal I� generated by the collection of forms

& �� f��� � � � � �K� d��� � � � � d�Kg� �����

an integral submanifold N of M solves the system of exterior equations if and only if it also solves
the equation � � � for every � � IA�

Proof	 If an integral submanifoldN of M is a solution to &� then for all x � N and all i � �� � � � �K�

�i�x�jTxN 	 ��

Taking the exterior derivative gives
d�i�x�jTxN 	 ��

Therefore� the submanifold also satis
es the exterior di�erential system

�� � �� � � � � �K � �� d�� � �� � � � � d�K � ��

From Theorem ������ we know that the di�erential ideal generated by & is equal to the algebraic
ideal generated by the above system� Therefore� from Theorem ������ we know that N will also be
a solution for every element of I��

Conversely� if N solves the equation � � � for every � � I�� then in particular it must solve &�
�

The above theorem allows us to either work with the generators of an ideal or with the ideal
itself� In fact� some authors de
ne exterior di�erential systems as di�erential ideals of '�M ��

Because a set of generators & generates both a di�erential ideal I� and an algebraic ideal I��
we can de
ne two di�erent notions of equivalence for exterior di�erential systems�

De�nition ����� Two exterior di�erential systems� &� and &�� are said to be
algebraically equivalent if and only if they generate the same algebraic ideal� i�e�� I�� � I�� �

De�nition ���� Two exterior di�erential systems� &� and &�� are said to be
equivalent if and only if they generate the same di�erential ideal� i�e�� I�� � I�� �

Intuitively� we want to think of two exterior di�erential systems as equivalent if they have the same
solution set� Therefore� we will usually discuss equivalence in terms of this second de
nition�
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��� The Cauchy Characteristic Distribution

In Chapter �� we introduced the associated and retracting spaces for a system of exterior equations�
We will now introduce analogous concepts for an exterior di�erential system�

The associated space and retracting space of an ideal in '�M � are de
ned pointwise as in Section
���� The associated space of a di�erential ideal I is called the Cauchy characteristic distribution and
is denoted by A�I�� The main result of this section is a theorem which uses the Cauchy characteristic
to 
nd a set of generators &� which is equivalent to & and can be described using a minimal set of
coordinate functions� Before stating this theorem� we will 
rst prove that the Cauchy characteristic
distribution is involutive�

Theorem ���� The Cauchy characteristic distribution is involutive�

Proof	 Let I be a di�erential ideal� By de
nition� a vector 
eld v � V �M � is contained in the
Cauchy characteristic distribution A�I� if and only if

v I � I�

Given any two vector 
elds v� r � A�I� and any k	form  � I� we can apply Lemma ��� to compute

�v� r�  � Lv�r � � r Lv

� v d�r � � d�v r � � r v d � r d�v ��

Since I is closed with respect to the d operator and the v and r operators� we 
nd that

�v� r�  � I�

Since  was arbitrary� this implies that

�v� r� I � I�

Hence� for any v� r � A�I�� we have that �v� r� � A�I�� so A�I� is involutive� �

If the Cauchy characteristic distribution has constant dimension s on a neighborhood U � then
the Frobenius theorem says that there exists a set of n � s smooth functions y�� � � � � yn�s whose
di�erentials span the retracting space C�I� � A�I�� on this neighborhood� If we add an additional
set of functions x�� � � � � xs so that the y�s and x�s taken together form a coordinate chart over U �
then the retraction theorem� Theorem ������ says that at each point p � U � we can construct a set
of generators for I which only involves the �	forms fdy�� � � � � dyn�sg� Each k	form generator in this
set can be written with respect to the dy as

 �
X
I�K

aI�x� y�dy
I � �����

The following theorem considerably strengthens this result by showing that there exists a set of
generators of the form ��� in which the coe�cients are also only functions of the y coordinates�

Theorem ���� Let I be a �nitely generated di�erential ideal whose retracting space C�I� has
constant dimension s � n � p� Then there is a neighborhood in which there are coordinates
�x�� � � � � xp� y�� � � � � ys� such that I has a set of generators that are forms in y�� � � � � ys and their
di�erentials�

Before proving this theorem� it may prove helpful to discuss its geometric signi
cance� Suppose
that IM is an exterior di�erential system which is de
ned over a smooth manifoldM � If the Cauchy
characteristic distribution has constant dimension in a neighborhood U of some point p �M � then
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there exists a foliation of smooth manifolds in U and a coordinate chart de
ned on a neighborhood
V � U of p with component functions �x�� � � � � xp� y�� � � � � ys�� Each leaf of the foliation is described
by the equations y� � c�� � � � �ys � cs for some vector of constants �c�� � � � � cs�� Restricted to the
neighborhood V � this relationship de
nes a smooth surjection � � V � Rs� If  �

P
I�A aI�y�dy

I

is any form on Rs� then its pullback to V will still be described in local coordinates by �� �P
I�A aI�y�dy

I � Therefore� Theorem ����� can be interpreted as saying that there exists a set of
generators for I which locally coincide with a set of forms which have been pulled back from Rs�

The proof of Theorem ����� will make use of the following lemma�

Lemma ���� Let s� n� and p be positive integers satisfying the equation s � n� p� Let U � Rn be
an open subset with local coordinates x�� � � � � xp� y�� � � � � ys� and let B�� � � � � Bp be a set of p smooth
functions taking U to Rr�r � There exists a function D � U � Rr�r which satis�es the partial
di�erential equation

�Di
k

�xj
�

rX
l��

Di
lB

l
jk ����

if and only if

�Bl
tk

�xj
�
�Bl

jk

�xt
�

rX
v��

�Bl
jvB

v
tk �Bl

tvB
v
jk� � � �����

for � � l� k � r and � � j� t � p�

Proof	 The necessity of this condition can be seen taking the second partial derivatives of equation

�� and then using equation again �� to substitute for
�Di

l

�xt
�

��Di
k

�xt�xj
�

rX
l��

�Di
l

�xt
Bl
jk �

rX
l��

Di
l

�Bl
jk

�xt

�
rX
l��

rX
v��

Di
vB

v
tlB

l
jk �

rX
l��

Di
l

�Bl
jk

�xt
�

Permuting the t and j indices and subtracting gives

��Di
k

�xj�xt
�

��Di
k

�xt�xj
�

rX
l��

�
Di
l

�
rX

v��

Bl
jvB

v
tk �

�Bl
tk

�xj

�
�Di

l

�
rX

v��

Bl
tvB

v
jk �

�Bl
jk

�xt

��
� �

Since the matrix Di
l is nonsingular� this implies equation ����

To prove the su�ciency of this condition� we will work on the space FU �� U � Rr�r� At any
point �x� y�D�� the tangent space T�x�y�D�FU is locally spanned by the vector 
elds

T�x�y�D�FU � span

�
�

�D�
�

� � � � �
�

�D�
r

�
�

�D�
�

� � � � �
�

�Dr
r

�
�

�y�
� � � � �

�

�ys
�
�

�x�
� � � � �

�

�xp

#
�

We will consider the distribution � de
ned with respect to this basis by the last p columns of the
matrix �

������
Ir��r� �

Pr

v��D
i
vB

v
�k � � �

Pr

v��D
i
vB

v
pk

� Is�s � � � � �
� � � �

� � �
�� � �

� � � �

�
������
�
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The inverse of this matrix is given by�
������

Ir��r� � �
Pr

v��D
i
vB

v
�k � � � �

Pr

v��D
i
vB

v
pk

� Is�s � � � � �
� � � �

� � �
�� � �

� � � �

�
������

which implies that �� is spanned by the covectors

�� � span

��
�dy�� � � � � dys� dD�

� �

pX
j��

rX
v��

D�
vB

v
j�dx

j� � � � � dDr
r �

pX
j��

rX
v��

Dr
vB

v
jrdx

j

��
	 � �����

Taking the exterior derivative of the dD�
� �

Pp

j��

Pr

v��D
�
vB

v
j�dx

j � ��� we 
nd that

d�dD�
� �

pX
j��

rX
v��

D�
vB

v
j�dx

j� � �

pX
j��

rX
v��

Bv
j�dD

�
v � dx

j �

pX
j��

rX
v��

D�
vdB

v
j� � dx

j� �����

Examining the 
rst term on the right� we 
nd that

�

pX
j��

rX
v��

Bv
j�dD

�
v � dx

j � �

pX
j��

rX
v��

Bv
j�

�
pX
l��

rX
q��

D�
qB

q

lv

�
dxl � dxj mod ���

Similarly� expanding the second term on the right gives

�

pX
j��

rX
v��

D�
vdB

v
j� � dx

j � �

pX
j��

rX
v��

D�
v

�
pX
l��

�Bv
j�

�xl

�
dxl � dxj mod ���

Collecting terms� we 
nd that

d�dD�
� �

pX
j��

rX
v��

D�
vB

v
j�dx

j� � �

pX
j��

pX
l��

�
rX

v��

D�
v

�
�Bv

j�

�xl
�

rX
q��

Bq
j�B

v
lq

��
dxl � dxj mod��

�
X

��l�j�p

�
rX

v��

D�
v

�
�Bv

j�

�xl
�
�Bv

l�

�xj
�

rX
q��

Bq
j�B

v
lq �

rX
q��

Bq
l�B

v
jq

��
dxl � dxj mod ���

If equation ��� is satis
ed� then we 
nd that

d�dD�
� �

pX
j��

rX
v��

D�
vB

v
j�dx

j� � � mod ���

If we carry out these computations for each basis element of ��� we 
nd that the codistribution
satis
es the Frobenius condition� Consequently� the Frobenius theorem guarantees that there exists
a set of �r� � s� smooth functions whose di�erentials span ��� Furthermore� since we know that
fdy�� � � � � dysg � ��� we can select a set of functions �Di

j with � � i� j � r such that �� �

spanfdy�� � � � � dys� d �D�
�� � � �d

�Dr
rg� Finally� we know that none of the covectors fdx�� � � � � dxpg lie in

the span of ��� so

T �M � spanfdx�� � � � � dxp� dy�� � � � � dys� d �D�
�� � � � � d

�Dr
rg�
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The coordinate transformation taking the coordinates �D� y� x� � � �D� y� x� is of the form

�D� y� x� � �D�x� y�D�

�D� y� x� � y

�D� y� x� � x�

Each integral manifold of � can be described by the equations

�D�D� y� x� � c�

y � c�

where c� � R
r�r and c� � R

s are constants� Taking the di�erentials of the components of �D� we
obtain

d �Dw
t �

rX
i�k��

� �Dw
t

�Di
k

dDi
k �

sX
q��

� �Dw
t

�yq
dyq �

pX
l��

� �Dw
t

�xl
dxl � ���

The matrix � �D
�D

is always nonsingular� so it can be inverted to obtain the equations

rX
w�t��

�
� �D

�D

���
ti

wk

d �Dw
t �dDi

k�
rX

w�t��



� sX
q��

�
� �D

�D

���
ti

wk

� �Dw
t

�yq
dyq �

pX
l��

�
� �D

�D

���
ti

wk

� �Dw
t

�xl
dxl

�
A����

Comparing this expression to equation ���� we 
nd that

rX
w�t��

pX
l��

�
� �D

�D

���
ti

wk

� �Dw
t

�xl
dxl � �

pX
l��

rX
v��

Di
vB

v
lkdx

l� �����

Furthermore� because � �D
�D

is nonsingular� the implicit function theorem ensures that locally there

exists a function f � U � Rr�r satisfying �D�f�y� x�� y� x� � c�� Taking the exterior derivative of
this equation� we 
nd that

pX
l��

� �Dw
t

�xl
dxl �

sX
q��

� �Dw
t

�yq
dyq �

rX
i�k��

�
� �Dw

k

�Di
k

��
�f ik
�xl

dxl �
�f ik
�yq

dyq
�

� �

which implies that

pX
l��

rX
w�t��

�
� �D

�D

���
ti

wk

� �Di
k

�xl
dxl �

sX
q��

rX
w�t��

�
� �D

�D

���
ti

wk

� �Di
k

�yq
dyq �

pX
l��

�f ik
�xl

dxl �
sX

q��

�f ik
�yq

dyq � ��

Using equation ��� and the fact that the �	forms dxl are linearly independent� we can conclude that

�
rX

v��

f iv�y� x�Bv
lk �

�f ik
�xl

� ��

Hence� the function f is a solution to the partial di�erential equation ��� �

Proof of Theorem ���� We begin by noting that the involutivity of A�I� ensures that there
exists a local coordinate chart of the form y�� � � � � ys� x�� � � � � xp de
ned such that

C�I� � spanfdy�� � � � � dysg�
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Furthermore� the retraction theorem� Theorem ���� guarantees that we can always 
nd a set
of generators for the di�erential ideal which is contained in !�C�I�� so we can assume that each
generator �t � Ik can be written in the form

�t �
X
I�A

atI�x� y�dy
I

where A is the set of all ascending k	tuples in the set f�� � � � � sg and the sum is taken over all such
k	tuples�

For each k in the range � � k � s� we can select a basis of k	forms for the subspace I�!k�C�I�� �
!k�T �M � which we will denote by

I � !k�C�I�� � spanf��� � � � � �rkg

with each �m of the form

�m �
X
I�A

bmI �x� y�dyI

for � � m � rk� Each of the k	form generators must lie within the span of this set� In fact� since
each of these subspaces is contained in I and contains all the k	form generators� the set of all such
bases for all � � k � s can be used as a new set of generators for the exterior di�erential system�

Since I is closed under exterior di�erentiation and satis
es v I � I for every v � A�I�� each

k	form �m will satisfy v d�m � I� In particular� if we compute �
�xl

d�m with respect to the local
coordinates� we get

�

�xl
d�m �

�

�xl
�
X
I�A

dbmI �x� y� � dyI �

�
�

�xl

X
I�A

pX
i��

�bmI
�xi

dxi � dyI

�
�

�xl

X
I�A

sX
j��

�bmI
�yj

dyj � dyI

�
X
I�A

�bmI
�xl

dyI �

Since each �
�xl

d�m � I� there must exist a set of smooth functions cmls �x� y� such that

X
I�A

�bmI
�xl

dyI �
X
I�A

rkX
s��

cmls b
s
I�x� y�dy

I � �����

There exists another set of k	forms ��q� � � q � rk� which span I�!k�C�I�� and whose coe�cients
are only functions of the y coordinates if and only if there exists a set of smooth functions hqm�x� y�
which satisfy the equation

��q �

rkX
m��

hqm�x� y��m�

Written out in coordinates� this equation takes the form

X
I�A

�bqI�y�dy
I �

rkX
m��

hqm�x� y�
X
I�A

bmI �x� y�dyI � ������
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A set of functions hqm which satis
es equation ���� exists if and only if

�

�xl
d�

rkX
m��

hqm�x� y�
X
I�A

bmI �x� y�dyI � � �

for all � � l � p� This equation will be satis
ed if and only if for each I � A�

rkX
m��

bmI
�hqm
�xl

�
rkX
m��

hqm
�bmI
�xl

� ��

Using equation ���� this equation can be rewritten as

rkX
m��

bmI
�hqm
�xl

�

rkX
m��

rkX
t��

hqmc
m
lt b

t
I � ��

Changing the summation indexes in the 
rst term and collecting terms gives

rkX
t��

�
�hqt
�xl

�

rkX
m��

hqmc
m
lt �btI � ��

Finally� since each of the row vectors b�� � � � � bs is linearly independent� we must have

�hqt
�xl

�
rkX
m��

hqmc
m
lt � �

for all � � l � p and all � � t� q � rk�
Lemma ����� says that these partial di�erential equations have a solution if and only if for all

� � l� j � p and all � � m� t � rk�

�cmjt
�xl

�
�cmlt
�xj

�
rkX
i��

�cmjic
i
lt � cmli c

i
jt� � �� ������

Finally� equation ���� always holds� This statement can be proven using the equation ��� from
Lemma �����

L �

�xi
�
�

�xj
d�m��

�

�xj
L �

�xi
d�m � �

�

�xi
�
�

�xj
� d�m � ��

Expanding out this equation� we get

�

�xi
d�

�

�xj
d�m� � d�

�

�xi
�

�xj
d�m��

�

�xj
d�

�

�xi
d�m� � ��

The second term in this summation is zero because the form � �
�xj

d�m� only involves dyI terms�
Expanding the 
rst and third terms� we 
nd that

�

�xi
d�

�

�xj
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�

�xi
d�
X
I�A

rkX
v��
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v
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�
X
I�A
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bvI
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X
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v
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l
Idy

I
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�

�xj
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�

�xi
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�

�xj
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X
I�A

rkX
v��

cmivb
v
Idy

I �
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�
X
I�A

rkX
v��

bvI
�cmiv
�xj

dyI �
X
I�A

rkX
v��

rkX
l��

cmivc
v
jlb

l
Idy

I �

Subtracting these equations gives

X
I�A

�
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v��

bvI
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�
rkX
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�
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l��
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�
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X
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rkX
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�
�cmjl
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�xj
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rkX
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rkX
v��

cmivc
v
jl

�
blIdy

I �

rkX
l��

�
�cmjl
�xi

�
�cmil
�xj

�
rkX
v��

cmjvc
v
il �

rkX
v��

cmivc
v
jl

�
�l � ��

Since the k	forms �l are all linearly independent� each coe�cient must be identically zero and
the result follows� �
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Chapter �

Modeling a Control System Using

Grassmann Bundles

The introductory presentation in Chapter � asserted that a Grassmann bundle of one	dimensional
subspaces is the geometric object which correctly models an a�ne control system on the state	time
manifold� The purpose of this chapter is to give a precise description of this bundle and to discuss
how both static and dynamic feedback can be viewed geometrically within this framework�

The chapter is divided into four sections� The 
rst section describes a construction which gives
a precise de
nition of the Grassmann bundle which models an a�ne control system� The second
section looks at the local coordinate descriptions of this bundle and shows how they are related to the
standard vector 
eld description of an a�ne nonlinear control system� This section also discusses
a�ne static state feedback� and illustrates how this class of feedback is naturally incorporated
as a part of the structure of the Grassmann bundle� The third section discusses dynamic state
feedback� The discussion focuses on some of the di�erent classi
cations of dynamic state feedback
and singles out a particular class which will be used in the following sections� The Grassmann bundle
prolongation process is then introduced� and the relationship between a bundle prolongation and
dynamic state feedback is illustrated� The fourth section discusses how nona�ne control systems
can be modeled as Grassmann bundles� This section concludes with a discussion of the possibility
of 
nding a local di�eomorphism between an a�ne and a nona�ne control system� Some useful
references which are related the material in this chapter are the tract by Huijberts ����� the paper
by Sluis ����� and the paper by Sluis and Tilbury �����

��� The Grassmann Bundle Model of a Control System

Suppose we are given a state	space manifoldM and a smooth distribution � de
ned over the state	
time manifold M � R� We will require that dtj� �� � at every point �p� t� � M � R� so that � is
always transverse to the tangent plane of the state	space submanifold M � ftg� Our objective is
to construct a Grassmann bundle over M � R in such a way that the 
bre over each point �p� t�
consists of the collection of all one	dimensional subspaces of T�p�t��M �R� which are contained in

�� We will denote this bundle by G
����
� �M �R�� To do this� we will use a slightly modi
ed version

of the procedure which was used to construct a Grassmann bundle in Chapter ��
First� we form the index set ! which consists of all triples ��x� t�� F� U � where U is an open set

on M �R� �x� t� is a local coordinate chart taking U to Rn	�� and F is a local frame for � which
can be described relative to the basis �

�

�x�
� � � � �

�

�xn
�
�

�t

#

��



��

at every point �p� t� � U by

fi �
mX
j��

aji �x� t�
�

�xj
� at�x� t�

�

�t
�

Next� we form the disjoint union

U �
$

��x�t��F�U���

f��x� t�� F� U �g� U��x�t��F�U� � Gm	�
�

where U��x�t��F�U� is a copy of the domain of the coordinate chart �x� t�� Each point of U is a
triple ���x� t�� F� U �� �p� t�� l� which satis
es �p� t� � U � If the domains of two coordinate charts
��x� t�� Fx� Ux� and ��y� t�� Fy� Uy� have a nonempty intersection Ux � Uy �� �� then since Fy and Fx
are both frames which locally span �� there must exist a unique smooth function T � Ux � Uy �
R�m	����m	�� which satis
es the equation

FyT �
�y

�x
j�p�t�Fx�

From this equation� it is apparent that the de
nition of the function T depends on both the coor	
dinate systems �x� t� and �y� t� and the local frames Fx and Fy and that it is uniquely de
ned for
each pair of charts whose base sets intersect� We will use the function T to de
ne an equivalence
relation on U such that

���x� t�� Fx� Ux�� �p� t�� lx� � ���y� t�� Fy� Uy�� �q� � �� ly� �����

if and only if �p� t� � �q� � � and ly � $�T �p� t��lx� In this equation� $ � GL�Rm	�� � PGL�Rm	�� is
the group homomorphism discussed in Chapter �� We will denote the equivalence class of the point
���x� t�� Fx� Ux�� �p� t�� lx� by ���x� t�� Fx� Ux�� �p� t�� lx�� If we endow the set of all such equivalence
classes with the quotient topology� then we have a Grassmann bundle with standard 
bre Gm	�

� and
local trivializations given by the mappings

t��x�t��Fx�Ux� � ����U��x�t��Fx�Ux�� � U��x�t��Fx�Ux� �Gm	�
�

���x� t�� Fx� Ux�� �p� t�� l�� ��p� t�� l��

Every Grassmann bundle de
ned over a smooth base manifold is itself a smooth manifold� so it can

be given a smooth di�erentiable structure� We can construct an atlas for the bundle G
����
� �M �R�

by noting that each local trivialization U��x�t��Fx�Ux��Gm	�
� can be covered by m charts of the form

ci � Vi � U��x�t��Fx�Ux� �Gm	�
� �Rn	� �Rm

where the function ci takes �p� t� � U��x�t��Fx�Ux� � �x�p� t�� t� and l � Gm	�
� to the ith standard

coordinate chart on Gm	�
� � Since the bases of the local trivializations cover M �R� we can form an

atlas on the bundle G
����
� �M � by taking the compositions

%
ci � t��x�t��Fx�Ux�

&
jt��
��x�t��Fx�Ux�

�Vi�
�

��� Local Coordinate Descriptions of an A�ne Control Sys�

tem

The previous section presented a construction for the Grassmann bundle G
����
� �M � which models

an a�ne control system� A part of this construction involved the set of charts ! which consisted
of all triples ��x� t�� F� Ux� where �x� t� � Ux � R�n	�� is a local coordinate chart for M � R and
F is a partial frame which is de
ned at each point p � Ux and which satis
es the requirement
that spanfF �p�g � ��p� at each point p � �� In this section� we will examine how the charts



��

in ! are related to the vector 
eld description of an a�ne control system and to the notion of

feedback equivalence� The previous section also discussed the fact that the bundle G
����
� �M � could

be endowed with a set of local coordinate charts which turn it into a di�erentiable manifold� In this
section we will also examine what a neighborhood of the manifold G

����
� �M � looks like with respect

to these local coordinate charts�
We begin by recalling some concepts from the vector 
eld approach� An a�ne control system

with m inputs u�� � � � � um consists of a state space manifold M together with a collection of smooth
vector 
elds f� g�� � � � � gm de
ned over M � Over a local coordinate chart x � Ux � M � Rn� the
control system can be described by a set of di�erential equations of form

�x � (f �x� �
mX
i��

(gi�x�ui �����

where the ui are scalar variables and the local description of each vector 
eld has the form

(gi�x� ��
nX
j��

gji � x
���x�

�

�xj
�

At each point x� the variables ui parameterize an a�ne subset of the tangent space Tx�x�Ux���
If �y� Uy� is another coordinate system� the control system can also be described over Uy by the
equations

�y � �f �y� �
mX
i��

�gi�y�v
i � �����

If Ux � Uy �� �� then there is a local coordinate transformation y � x�� � x�Ux� � y�Uy� which we
will denote by y�x�� On Ux � Uy� the two local descriptions of the control system must satisfy the
relationships

�f�y�x�� �
�y

�x
(f �x�

�gi�y�x�� �
�y

�x
(gi�x�� ����

Any two local descriptions of a control system which satisfy equation �� are said to be equivalent
with respect to state transformation� If we were to form the disjoint union of all such local descrip	
tions and then form equivalence classes using equation �� as our equivalence relation� we would
produce a geometric object which would be isomorphic to our original description of the system as
a smooth manifold together with a collection of vector 
elds� Therefore� this description of an a�ne
control system really contains the notion of equivalence under state transformation as a part of its
structure�

We can also de
ne the two local representations of a control system de
ned by equations ��� and
��� to be equivalent if and only if they satisfy the relations

�y

�x
(f �x� �

�
�f �y�x�� �

mX
k��

�gk�y�x���k�x�

�

�y

�x
(gi�x� �

�
mX
k��

�gk�y�x���ki �x�

�
�����

for some set of smooth functions �k�x�� �ki �x� de
ned over x�Ux�Uy�� Any pair of local representa	
tions of a control system which satisfy the relations ��� are said to be equivalent with respect to state
feedback transformations� Thus� two local representations of a control system are equivalent with



��

respect to state feedback if there exists a change of coordinates on the state space together with
a state feedback such that one representation can be transformed into the other� We are going to

show that this notion of equivalence is built into the structure of the bundle G
����
� �M � R�� To

show this� we begin by extending each of the local descriptions ��� and ��� to Ux �R and Uy �R
by appending the dynamics �t � � to each system� The vector 
elds associated with these extended
systems can be viewed as two matrices� Over Ux �R� we have the matrix

(F ��


(g� � � � (gm (f
� � �

�

which is de
ned relative to the basis �
�

�x�
� � � � �

�

�xn
�
�

�t

#
�

and over Uy �R� we have the matrix

�F ��


�g� � � � �gm �f
� � �

�

which is de
ned relative to the basis �
�

�y�
� � � � �

�

�yn
�
�

�t

#
�

In matrix form� the equivalence relation ��� can be written as
�g� � � � �gm �f
� � �

� 
� �
� �

�
�


�y

�x
�

� �

�
(g� � � � (gm (f
� � �

�
� �����

From this equation� it is apparent that the two local representations of the control system are
equivalent with respect to state feedback if and only if their extensions span the same distribution
over the state	time manifold� Thus� the collection of all local representations of an a�ne system
which are equivalent with respect to state feedback de
ne a distribution over M �R� and the triples
��x� t�� (F�Ux� and ��y� t�� �F �Uy� are elements of the collection of frames� !� which is associated with
this distribution� If we denote the distribution de
ned by these local representations as �� then

we can generate the Grassmann bundle G
����
� �M � using the construction described in the previous

section� We can also follow the procedure described in the previous section to generate an atlas

of local coordinate charts on G
����
� �M � which give it the structure of a di�erentiable manifold�

Associated with each triple ��x� t�� (F�Ux�� we have a local trivialization

t��x�t�� �F�Ux� � ����Ux� � Ux � Gm	�
� �

On Ux �Gm	�
� � we will consider the open subset V which contains all points of the form

��p� t�� l� � ��p� t�� spanf�a� � � �amat�Tg�

with at �� �� On V � we can de
ne a coordinate chart c � V � Rn	m	� which maps any point
��p� t�� spanf�a� � � �amat�Tg� � V to the point �x�p�� t� a��at� � � � � am�at� � Rn	m	�� By taking
the composition of c with the local trivialization t��x�t�� �F�Ux�� we can form a coordinate chart for

G
����
� �M � over the open set de
ned by t��

��x�t�� �F�Ux�
�V �� On the intersection of any two such charts�

we have a local coordinate transformation

c � t��y�t�� �F�Uy� � t
��
��x�t�� �F�Ux�

� c���



��

To see what this looks like� we will 
rst consider the transformation

t��y�t�� �F�Uy� � t
��
��x�t�� �F�Ux�

� Ux � Uy �Gm	�
� � Ux � Uy �Gm	�

�

which can be described pointwise by the equation

��p� t�� spanf�u� � � �um ��Tg� � ��p� t��$�T ��spanf�u� � � �um ��Tg���

The transformation T in this equation is de
ned by the relation �FT � �y

�x
(F � We are assuming that

the charts de
ned by equations ��� and ��� satisfy equation ���� so we must have

T �


� �
� �

�
�

Consequently� the mapping $�T ��spanf�u� � � �um ��Tg� will have the form
u
�

�
�


� �
� �

� 
u
�

�
�

and the coordinate transformation c � t��y�t�� �F�Uy� � t
��
��x�t�� �F�Ux�

� c�� can be described pointwise by

the equation

�x� t� u�� �y�x�� t� ��x� �
mX
k��

�m�x�um��

��� Prolongation and Dynamic State Feedback

In this section� we will show how the Grassmann bundle model described in the previous sections
can be extended to encompass a class of dynamic state feedbacks� We will begin by giving a general
de
nition of dynamic state feedback� and then we will describe the class of dynamic state feedbacks
which we will be considering�

����� Dynamic State Feedback

De�nition ���� Given a control system which is locally described by the equation

�x � f�x� �
mX
i��

gi�x�ui� �����

an a�ne dynamic compensator or dynamic state feedback is de�ned as a system

�z � ��z� x� �
Pn

i�� �i�z� x�vi

u � ��z� x� �
Pn

i�� �i�z� x�vi

where z � Rq� � � Rq�M �Rq� � � Rq�M �Rq�m� � � Rq�M �Rm� and � � Rq�M �Rm�m

and v � Rm is a new control input�

The compensated system is obtained by interconnecting the compensator output with the inputs
of system ��� to obtain

�x �

�
f�x� �

mX
i��

gi�x��i�z� x�

�
�

nX
j��

�
mX
i��

gi�x��ij�z� x�

�
vj

�z � ��z� x� �
nX
i��

�i�z� x�vi�
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In the development which follows� we will consider the class of dynamic compensators which have
the form

�zi � vm�r	i

u �
%
��x� �

Pr

k�� �k	m�r�z� x�zk
&

�
Pm�r

j�� �j�z� x�vj
�����

where r � m and � � i � r� Any compensator of this type can be generated by 
rst applying a
static state feedback to system ��� and then appending integrators to the last r inputs� By iterating
this construction� we can also produce more complex dynamic compensators�

����� The Canonical Prolongation of a Control System

We are now going to show how a feedback compensator of the type ��� can be constructed geomet	
rically using the Grassmann bundle model of the control system�

We will 
rst consider the case where r � m� Physically� this corresponds to adding an integrator

to each control input� We will assume that we have constructed the Grassmann bundle G����
� �M�R�

which represents the control system ���� As part of the bundle structure� we have the projection map

� � G
����
� �M �R� �M �R which maps a point in the bundle to its corresponding base point on

the state	time space ��p� t�� l� � �p� t�� We can use the pullback map� ��� to de
ne a codistribution

' over G����
� �M �R� which is de
ned pointwise by the equation

'��p�t��l� � ���l��j�p�t��

Since l�p�t� is a one	dimensional subspace of an �n � ��	dimensional tangent space� �l��j�p�t� is a
n	dimensional subspace of the cotangent space and ' is an n	dimensional codistribution� The

Grassmann bundle G����
� �M �R� is an �n � m � ��	dimensional manifold� so the distribution '�

must be �m���	dimensional� We can use the distribution '� to construct a new Grassmann bundle

over G����
� �M �R�� We will denote this bundle by G

�����
�

�
G
����
� �M �R�

�
� It is not hard to see

that if we repeat this process again� we will obtain another �m � ��	dimensional distribution which
is de
ned over a ��m � n � ��	dimensional space� and that if we iterate the process p times� we
will obtain an �m � ��	dimensional distribution which is de
ned over a �pm � n � ��	dimensional
manifold�

To see what this process looks like with respect to a local coordinate chart on G
����
� �M �R��

we restrict our attention to an open neighborhood V � G
����
� �M �R� on which we have the local

coordinates x � t� and u� Each point �x� t� u� de
nes a line

span

�
f�x� t� �

Pm

j�� gj�x� t�u
j

�

�#
in the tangent space T�p�t��M �R� and a subspace l��x�t� of T ��p� t��M �R� which is spanned by the
covectors

fdx� � �f��x� t� �
mX
j��

g�j �x� t�uj�dt� � � � � dxn � �fn�x� t� �
mX
j��

gnj �x� t�uj�dtg�

Pulled back to V � these one	forms locally de
ne the codistribution '� The distribution '� will be
spanned by the tangent vectors

�

�u�
� � � � �

�

�um
�
nX
i��

�f i�x� t� �
mX
j��

gij�x� t�u
j�

�

�xi
� �

�

�t
�

Written in matrix form� this distribution looks like

'� � span

�
� � f �

Pm

j�� gj�x� t�u
j

Im�m �
� �

�
� �



�

If we were to iterate this process p times� we would obtain a distribution of the form

'�p � span

�
���������

� f �
Pm

j�� gj�x� t�u
j

� �u
���

�
�p�
u

Im�m �
� �

�
���������

which represents a system with p integrators appended to each input�

����� General Prolongations of a Control System

We now turn our attention to the more general case of dynamic state feedbacks of the type ���
in which r � m� In this more general case� the prolongation process is basically the same� but
in order to describe it� we 
rst need to de
ne a new Grassmann bundle� Suppose that we have
an a�ne control system of the form ��� and we want to append integrators to the last r inputs�
The vectors g�� � � � � gm�r which correspond to the una�ected inputs span an �m � r�	dimensional
distribution ��� This distribution forms a 
ltration �� � � over M �R� We can use this 
ltration
to construct a Grassmann bundle G

�����
�m�r	���M �R� whose 
bres over each point �p� t� consist of the

set of all �m � r � ��	dimensional subspaces of T�p�t��M � R� which contain the subspace ���p� t�
and are contained in the subspace ��p� t�� Recall that in Chapter � we showed that if �� is a
p	dimensional subspace� � is a r	dimensional subspace� and �� � �� then the Grassmann manifold

G
�����
p	k is di�eomorphic to the Grassmann manifold Gr�p

k � Using this fact� we 
nd that each 
bre

of G��� ��
�m�r	���M �R� is di�eomorphic to the Grassmann manifold Gr	�

� �

In order to construct this bundle� we form the collection ! of all quadruples of the form
��x� t�� F�� F�� Ux� where �x� t� is a local coordinate chart de
ned over Ux� F� is a local frame for
the distribution �� which is de
ned over Ux� and F� is an additional set of r linearly independent
vector 
elds such that F� and F� taken together span �� We will also assume that dtj�� 	 � and
dtj� �� �� If the domains of two charts ��y� t�� F�� F�� Uy� and ��x� t�� G�� G�� Ux� intersect� then on
Ux � Uy we must have that�

F� F�
�  M�

� M�
�

� M�
�

�
�


�y

�x
�

� �

� �
G� G�

�
for some set of smooth matrices M�

� � M�
� � and M�

� � Following the procedure introduced in Chapter
�� we form the disjoint union

U �
$

��x�t��F��F��Ux���

f��x� t�� F�� F�� Ux�g � U��x�t��F��F��Ux� � Gr	�
�

and then de
ne equivalent classes on U using the equivalence relation

���y� t�� F�� F�� Uy�� �p� t�� ly� � ���x� t�� G�� G�� Ux�� �q� � �� lx� �����

if and only if �p� t� � �q� � � and ly � $�M�
� �p� t��lx� The set of all equivalence classes endowed with

the quotient topology forms the total space of the bundle G
�����
�m�r	���M �R��

We can now form a codistribution ' over G
�����
�m�r	��

�M � R� which is de
ned pointwise by

'�p� t�D� � ��D��p�t� where D is a �m � r � ��	dimensional subspace of T�p�t��M �R� and D� is a

�n�m� r�	dimensional subspace of T ��p�t��M �R�� The manifold G
�����
�m�r	���M �R� is �n� r� ��	

dimensional� so the distribution '� has dimension �m���� This distribution can be used to construct

a new Grassmann bundle G
�����
�

�
G
�����
�m�r	���M �R�

�
which models the dynamically compensated

system�



��

��� Nona�ne Systems

In this section� we will consider systems which can be described locally by equations of the form

�x � f�x� u� t�� ������

Equations of this form can also be modeled as Grassmann bundles� but some modi
cations to

the theory are required� The Grassmann bundle G
����
� �M � R� associated with an a�ne control

system can be viewed as a subbundle of the bundle G
�n	��
� �M � R� whose 
bres over a point

�p� t� consist of the collection of all one	dimensional subspaces of the tangent space T�p�t��M �R��

Because of the a�ne structure� the 
bres of G
�n	��
� �M �R� over the point �p� t� span a �m � ��	

dimensional subspace of T�p�t��M�R�� We can view a nona�ne system as a more general subbundle

of G
�n	��
� �M �R� whose 
bres over �x� t� are di�eomorphic a to more general submanifold of the

Grassmann manifold G
�n	��
� � In equation ����� the function f�x� u� t� can be viewed as a local

parameterization of this submanifold� In order to study such systems� we will start with the 
rst

prolongation of the bundle G
�n	��
� �M�R� which is de
ned by the codistribution ' de
ned pointwise

for each �p� t� l� � G
�n	��
� �M �R� by

'�p� t� l� � ���l��p�t��

This codistribution can be locally described by the span of the one	forms

' � spanfdx� � �x�dt� � � � � dxn � �xndtg�

Restricted to the submanifold de
ned by �x � f�x� u� t�� these forms become

' � spanfdx� � f��x� u� t�dt� � � �� dxn � fn�x� u� t�dtg�

Note that if the control system is a�ne� then we obtain the forms

' � fdx� � �f��x� t� �
mX
j��

g�j �x� t�uj�dt� � � � � dxn� �fn�x� t� �
mX
j��

gnj �x� t�uj�dtg�

In the last section� we showed that these forms locally span the codistribution associated with the

rst canonical prolongation of the a�ne system� We can use this observation to consider the problem
of whether or not there exists a change of coordinates �x� t� u� � �y� t� v� which turns ���� into an
a�ne system�

Theorem ����� Let �x � f�x� u� t� be a local representation of a nona�ne control system which can
be modeled by a codistribution

' � spanfdx� � f��x� u� t�dt� � � � � dxn� fn�x� u� t�dtg ������

de�ned over an open subset of Rn �Rm �R� There exists a coordinate transformation �x� u� t� �
�z�x� t�� v�x� u� t�� t� and a set of one�forms of the type

dzi � �f i�z� t� �
mX
j��

gij�z� t�v
j�dt

which satis�es the relation

' � fdz� � �f��z� t� �
mX
j��

g�j �z� t�vj�dt� � � � � dxn � �fn�z� t� �
mX
j��

gnj �z� t�vj�dtg ������

if and only if the retracting space of the codistribution de�ned by

�' �� f � 'jd � � mod 'g

satis�es C��'� � span fdx�� � � � � dxn� dtg�



��

Proof	 If the exterior di�erential system ���� is feedback equivalent to an a�ne system� then we
can work relative to the exterior di�erential system ����� To compute �'� we will take the exterior
derivative of an arbitrary element

� �
nX
i��

ai�z� v� t��dz
i � �f i�z� t� �

mX
j��

gij�z� t�v
j�dt� � '

and 
nd the conditions under which it satis
es the condition

d� � � mod '� ������

The �	form d� can be written with respect to the local coordinates as

d� �
nX
i��

dai�z� v� t� � �dzi � �f i�z� t� �
mX
j��

gij�z� t�v
j�dt�

�
nX
i��

�ai�z� v� t��df
i�z� t� �

mX
j��

dgij�z� t�v
j �

mX
j��

gij�z� t�dv
j� � dt

� d� � �
nX
i��

mX
j��

ai�z� v� t�g
i
j�z� t�dv

j � dt mod '�

The coe�cients ai will satisfy this condition ���� if and only if they are in the left null space of the
n�m matrix �

g� � � � gm
�
� �����

Since we are assuming that the vectors gi are linearly independent� the left null space of the matrix
��� will be �n �m�	dimensional� Therefore� there will be �n �m� linearly independent one	forms
�k� � � k � n �m� which span �'� Furthermore� since the coe�cients of the gi�s are only functions
of the z and t coordinates� there exists coe�cients aki which are also only functions of z and t�
Consequently� each �k takes the form

�k �
nX
i��

aki �z� t��dzi � �f i�z� t� �
mX
j��

gij�z� t�v
j�dt�

� �k �
nX
i��

aki �z� t�dzi � �
nX
i��

aki �z� t�f i�z� t��dt

From this� it is clear that the generators of �' can be expressed solely in terms of the coordinates z and
t� Therefore� we must have C��'� � spanfdz�� � � � � dzn� dtg� Finally� the feedback transformation
takes �x� t� � �z�x� t�� t� so

dzi �
nX
j��

�zi

�xj
dxj �

�zi

�t
dt

and this implies that
spanfdz�� � � � � dzn� dtg � spanfdx�� � � � � dxn� dtg�

Consequently� C��'� � spanfdx�� � � � � dxn� dtg�
To prove the su�ciency of the condition that C��'� � spanfdx�� � � � � dxn� dtg in Theorem �����

we begin by computing the distribution �'� using the exterior di�erential system ����� Taking the
exterior derivative of an arbitrary �	form

� �
nX
i��

ai�x� u� t��dx
i� f i�x� u� t�dt� � '�



��

we 
nd that

d� �
nX
i��

dai�x� u� t�� �dxi � f i�x� u� t�dt�

�
nX
i��

�ai�x� u� t�df
i�x� u� t�� dt

�
nX
i��

dai�x� u� t���
i �

nX
i��

nX
j��

ai�x� u� t�
�f i

�xj
dxj � dt�

nX
i��

mX
k��

ai�x� u� t�
�f i

�uk
duk � dt

� d� � �
nX
i��

mX
k��

ai�x� u� t�
�f i

�uk
duk � dt mod '�

As before� the coe�cients ai�x� u� t� will only satisfy the condition ���� if they lie in the left null
space of the n �m matrix �f

�u
� Assuming that this matrix has full rank� its left null space will be

�n �m�	dimensional� so there will be �n �m� linearly independent one	forms �k� � � k � n �m�
which span �'�

Suppose that C��'� � span fdy�� � � � � dypg� Using Theorem ������ we know that we can select a
set of one	forms

k � aki �y�dyi � k � �� � � � � �n�m�

which span �' and whose coe�cients are only functions of the y coordinates� By assumption� we
also know that C��'� � span fdx�� � � � � dxn� dtg� so there must exist p linearly independent functions

yi�x� t� which satisfy dyi �
Pn

j��
�yi

�xj
dxj � �yi

�t
dt� Consequently� the coe�cients aki can also be

expressed as functions of x and t�
We can form a matrix �

���
A�
��x� t� A�

��x� t� � A�
t �x� t�

� I � �
� � I �
� � � �

�
���

which is de
ned relative to the cobasis fdx�� � � � � dxn� du�� � � � � duk� dtg� The 
rst �n � m� rows of
this matrix span �'� Inverting this matrix produces the matrix�

���
�A�

��
�� ��A�

��
��A�

� � ��A�
����A�

t

� I � �
� � I �
� � � �

�
���

which is de
ned relative to the basis
'

�
�x�

� � � � � �
�xn

� �
�u�

� � � � � �
�uk

� �
�t

(
� The last ��m � �� columns

of this matrix span �'�� The distribution �'� is also spanned by the last ��m � �� columns of the
matrix �

���
I �f�

�u
� f�

� �f�

�u
� f�

� � I �
� � � �

�
���

which is de
ned relative to the same basis� Therefore� there must exist a smooth ��m���� ��m���
matrix of function which satis
es�

���
��A�

��
��A�

� � ��A�
��
��A�

t

I � �
� I �
� � �

�
��� �

�
���

�f�

�u
� f�

�f�

�u
� f�

� I �
� � �

�
���
�
� T �

� T �
� T �

�

� I �
� � �

�
�
�
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It is not hard to see that the elements of this transformation matrix must satisfy T �
� � ��f

�

�u
����

T �
� � �� and T �

� � ���f
�

�u
���f�� Consequently� we must also have ��A�

��
��A�

��x� t� � �f�

�u
��f

�

�u
��� and

��A�
��
��A�

t �x� t� � f� � �f�

�u
��f

�

�u
���f�� Since the left	hand sides of these equations are functions of

x and t� the same must be true for the right	hand sides� Consequently� the �n�m� forms represented
by the matrix h

�f�

�u
��f

�

�u
��� � f� � �f�

�u
��f

�

�u
���f�

i
can be generated as the pull	backs of a set of forms ���� � � � � ��n�m de
ned over Rn �R�

Taking the 
rst prolongation of this system gives a system de
ned over G
������
� �Rn �R�� This

system can be locally described with respect to the coordinates x� t� and v by the matrix

�e �

�
����

�
�
�f�

�u
��f

�

�u
���v � f� � �f�

�u
��f

�

�u
���f�

�
� v
I �
� �

�
���� ������

which is de
ned relative to the basis
'

�
�x�

� � � � � �
�xn

� �
�v�

� � � � � �
�vk

� �
�t

(
� In order to complete the

proof� we need to show that there exists a local di�eomorphism � which maps an open subset of

G
������
� �Rn�R� onto Rn�Rm�R in such a way that ���e � '�� As a candidate transformation�

consider the mapping � de
ned such that ��� � �x� u� t� � �x� f��x� u� t�� t�� We are assuming that
�f�

�u
is nonsingular� so locally there exists a function g � �x� v� t� � u which for 
xed x and t satis
es

v � �f� � g��x�t��v�� Using the function g� the mapping � can be described by � � �x� v� t� �
�x� g�x� v� t�� t�� Pushing the distribution �e forward using ��� we get

�
���

I � � �
� I � �
�g
�x�

�g
�x�

�g
�u

�g
�t

� � � �

�
���
�
����

�
�
�f�

�u
��f

�

�u
���f�� � f� � �f�

�u
��f

�

�u
���f�

�
� f��x� u� t�
I �
� �

�
����

�

�
����

� f�

� f�

�g

�u

�
�g

�x
f � �g

�t

�
� �

�
����

Finally� applying the feedback
�u
�

�
�

 
� �g
�u

��� � �g
�u

���
�
�g

�x
f � �g

�t

�
� �

! 
��u
�

�

produces the desired transformation� �



Chapter �	

Invariance

This chapter is devoted to the development of several topics related to the invariance properties of
distributions and codistributions� This material is useful for studying questions related to control	
lability� observability� disturbance decoupling� and noninteracting controls�

��� Invariance of A Distribution with Respect to Vector

Fields

A distribution � de
ned over M is said to be invariant with respect to a vector 
eld f if and only
if �f��� � �� Similarly� a codistribution ' de
ned over M is said to be invariant with respect to a
vector 
eld f if and only if Lf' � '� The following lemma relates these two de
nitions�

Lemma ������ A distribution � is invariant with respect to a vector �eld f if and only if �� is
also invariant with respect to the vector �eld f �

Proof	 If we select any vector 
eld v � � and any codistribution  � ��� then� using equation
��� we can write

v Lf � v f dw� v d�f ��

Using Cartan�s formula� we also have

v f dw � v d�f � � f d�v �� �f� v� �

Combining these equations� we get

v Lf � ��f� v� �

Since this holds for any  � �� and any v � �� we 
nd that

� Lf�� � �f��� ���

The theorem follows from the following sequence of equivalent statements�

Lf�� � ��

 � Lf�� 	 �

 �f��� �� 	 �
 �� � �f����

 �f��� � ��

�

The next lemma presents some useful closure properties of invariant distributions�

��



��

Lemma ������ If two distributions �� and �� are invariant with respect to a vector �eld f � then
the following conditions also hold�

�� �f��� � ��� � �� � ���

�� �f��� ���� � �� ����

�� �f� �������� � ��������

	� �f�A����� � A����� where A���� denotes the Cauchy characteristic associated with ���

Proof	 Since �� and �� are assumed invariant with respect to f � the equations �f���� � ��

and �f���� � �� must hold� Using these two facts� we can prove statements ��� and ��� by direct
computation�

��� �f��� � ��� � �f���� � �� � �f���� � �� � �� � ���
��� �f��� ���� � �f���� � �f���� � �� ����

To prove statement ���� we note that the invariance of �� implies that

��f�������� � ��������

In particular� for any vector 
elds v�� v� � ��� we must have

��f� v��� v�� � �������

��f� v��� v�� � �������

� ��f� v��� v��� ��f� v��� v�� � �������� ������

The vectors v�� v� and f are also related through the Jacobi identity

��f� v��v��� ��f� v��� v�� � �f� �v�� v����

Substituting the right side of this equation into equation ���� gives

�f� �v�� v��� � ��������

Since v� and v� were arbitrary vector 
elds in ��� the result follows� Finally� to prove �� we will
use equation ���� For any v � A���� and any  � ��� applying equation ��� to d gives

Lf �v d�� v Lfd � �f� v� d

 Lf �v d�� v dLf � �f� v� d� ������

Since v � A����� and � is invariant with respect to f � both of the terms on the left	hand side of

equation ���� are in ��� so this equation implies that �f� v� d � ��� Similarly� applying equation
��� to  gives

Lf �v �� v Lf � �f� v� � ������

Again� both the terms on the left	hand side are in ��� so this equation implies that �f� v�  � ���
This is true for every  � ��� so �f� v� � A����� Furthermore� this is also true for every v � A�����
so we 
nd that �f�A����� � A����� and the result follows� �

As a corollary to Lemma ������� we can state the analogous closure properties for codistributions�

Corollary ������ If two codistributions '� and '� are invariant with respect to a vector �eld f �
then the following conditions also hold�

�� Lf �'� �'�� � '� �'��

�� Lf �'� � '�� � '� � '��

�� Lf �'� � �'� where �' �� f � 'jd � � mod 'g�

	� LfC���� � C���� where C���� denotes the retracting space associated with ���



��

Proof	 The proof follows by setting '� � ��
� and '� � ��

� and applying Lemma ������ to each
of the conditions in Lemma ������� �

If a distribution or codistribution is invariant with respect to a vector 
eld f � and the distribution
or codistribution is also completely integrable� then there exists a coordinate transformation such
that� in the transformed coordinates� the system assumes a particularly simple form�

Lemma ����� Let � be a nonsingular and involutive distribution of dimension d and suppose that
� is invariant under the vector �eld f � Then at each point p �M there exists a neighborhood Up of
p and a coordinate transformation z � $�x� de�ned on Up in which the vector �eld f is represented
by a vector of the form

f�z� �

�
���������

f��z�� � � � zd� zd	�� � � � � zn�
���

fd�z�� � � � zd� zd	�� � � � � zn�
fd	��zd	�� � � � � zn�

���
fn�zd	�� � � � � zn�

�
���������
�

�����

Proof	 Since � is completely integrable� there exists a set of coordinates zd	�� � � � � zn whose dif	
ferentials span ��� Since � is invariant with respect to f � Lemma ������ implies that �� is also
invariant with respect to f � so� for each i in the range d � � � i � n� the �	form dzi must satisfy
Lfdz

i � ��� Consequently�

Lfdz
i �

Pn

j�d	� a
i
j�z�dz

j

� dLfz
i �

Pn

j�d	� a
i
j�z�dz

j �

With respect to the z coordinates� the vector 
eld f can be written as

f ��
nX
i��

f i�z�
�

�zi
�

so the above equation can be written as

dLfz
i �

Pn

j�d	� a
i
j�z�dz

j

� df i�z� �
Pn

j�d	� a
i
j�z�dz

j �

Finally� this implies that for each i in the range d� � � i � n and each j in the range � � j � d

�f i

�zj
� ��

Consequently� the last �n� d� coe�cients of f are not functions of the coordinates z�� � � � � zd� �

Corollary ������ Let ' be a nonsingular and involutive codistribution of dimension �n� d� which
is invariant under the vector �eld f � Then at each point p �M there exists a neighborhood Up of p
and a coordinate transformation z � $�x� de�ned on Up such that the vector �eld f can represented
in the form ��	�

Proof	 Apply Lemma ������ to '�� �

Geometrically� Lemma ������ implies that the �ow associated with the vector 
eld f takes integral
surfaces of � into integral surfaces� This is illustrated in Figure ���� below� The surfaces in this
picture represent integral manifolds of a distribution �� The curves represent the �ow corresponding
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t = 0

t = 3

t = 2

t = 1

p2(0)
p1(0)

p1(3)
p2(3)

p1(2)
p2(2)

p1(1)

p2(1)

Figure ����� Flow of the Vector Field f Between Integral Submanifolds of �

to a vector 
eld f � Under this �ow� any two points p� and p� which begin on the same integral
surface at time t � � are mapped to the same integral surface at every subsequent time�

If f�� � � � � fm is a collection of vector 
elds then a distribution � is said to be invariant with
respect to the collection ff�� � � � � fmg if and only if

�f���� � �

�f���� � �

���

�fm��� � ��

If a completely integrable distribution or codistribution is invariant with respect to a collection of
vector 
elds� then Lemma ������ and Corollary ������ imply that each vector 
eld in the collection
can be represented in the form ���� We will formalize this statement in the following corollary to
Lemma �������

Corollary ����� Let � be a nonsingular and involutive distribution of dimension d and suppose
that � is invariant under the set of vector �elds ff�� � � � � fmg� Then at each point p �M there exists
a neighborhood Up of p and a coordinate transformation z � $�x� de�ned on Up on which the set
can be represented as the matrix

M �z� �

�
���������

f�� �z�� � � � zd� zd	�� � � � � zn� � � � f�m�z�� � � � zd� zd	�� � � � � zn�
���

���
fd� �z�� � � � zd� zd	�� � � � � zn� fdm�z�� � � � zd� zd	�� � � � � zn�

fd	�� �zd	�� � � � � zn� fd	�m �zd	�� � � � � zn�
���

���
fn� �zd	�� � � � � zn� � � � fnm�zd	�� � � � � zn�

�
���������

which is de�ned relative to the basis f �
�z�

� � � � � �
�zn

g�

We can exploit this fact to represent an a�ne control system in a form which isolates a set of
states which are not a�ected by the control inputs�
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Lemma ������ Let � be a nonsingular and involutive distribution of dimension d and suppose that
� is invariant under the vector �elds

f� g�� � � � � gm�

Furthermore� assume that
g�� � � � � gm � ��

Then at each point p � M there exists a neighborhood Up of p and a coordinate transformation
z � $�x� de�ned on Up such that the control systems is represented in the form

�z� � f��z�� z�� �
Pm

i�� g
�
i �z�� z��ui

�z� � f��z���

Proof	 The proof follows directly from Lemma ������ and the fact that the vector 
elds g�� � � � � gm
are assumed to be contained in the distribution �� �

If an a�ne control system has p outputs h��z�� � � � � hp�z�� Lemma ������ can also be used to
represent the control system in a form which isolates a set of states which are indistinguishable from
the outputs�

Lemma ������ Let � be a nonsingular and involutive distribution of dimension d and suppose that
� is invariant under the vector �elds f� g�� � � � � and gm� Furthermore� assume that the system has
linearly independent outputs h��x�� � � � � hp�x�� and that

� � kerfdh�� � � � � dhpg�

Then at each point p � M there exists a neighborhood Up of p and a coordinate transformation
z � $�x� de�ned on Up such that the control system with outputs is represented in the form

�z� � f��z�� z�� �
Pm

i�� g
�
i �z�� z��ui

�z� � f��z�� �
Pm

i�� g
�
i �z��ui

y � h�z���

Proof	 The representation of the vector 
elds follows directly from Lemma ������� The condition
that the outputs are only a function of the z� coordinates results from the assumption that � �
kerfdh�� � � � � dhpg� This fact implies that the �	forms dh�� � � � � dhp are contained in ��� In turn�
this implies that

�hi

�zj
� �

for each i in the range � � i � p and each j in the range � � j � d� Therefore� each output is only
a function of the z� coordinates� �

Corollary ������ applies equally to the vector 
elds which de
ne the standard extension of an
a�ne control system to the state	time space� which can be written in matrix form as

g� � � � gm f
� � �

�
�

������

Lemma ����� also applies to the extended system ���� without change� Lemma ������ also applies�
but with the understanding that the extended output function maps the state	time space to an
output	time space� This extended mapping has the form he � Rn �R� Rp �R � �z� t� � �h�z�� t��
As a consequence of this extension� we must modify Lemma ������ to require that the postulated
distribution � satis
es the condition

� � kerfdh�� � � � � dhp� dtg�
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Lemma ����� assumes the existence of an involutive distribution which contains the input vector

eld g�� � � � � gm and is invariant with respect to the vector 
elds g�� � � � � gm� and f � Such a distribution
always exists since we can take � to be the distribution de
ned at each point p �M by ��p� � TpM �
This distribution obviously satis
es the requirements of Lemma ������ but the resulting coordinates�
which can be taken to be the same as the original coordinates� provide no new insight into the
structure of the system� A more useful representation can be found by applying the closure properties
of Lemma ������ to 
nd the smallest distribution which satis
es the conditions of Lemma ������ To
this end� let � be a 
xed distribution and f�� � � � � fm be a collection of smooth vector 
elds which
are de
ned over a manifold M � Let S ���TM �M � denote the collection of all smooth distributions
containing �� We will to consider the subset of S ���TpM �M � consisting of all smooth distributions
which are involutive� contain �� and are invariant with respect to f�� � � � � fm� The following lemma
ensures that this set has a well	de
ne minimal element�

Lemma ������ The set S ���TM 
f �M � de�ned by

S
���TM 
f �M � �� fD � S ���TM �M � j �D� fi� � D� �D�D� � D � � i � mg

contains a unique involutive distribution �D � S
���TM 
f �M � of minimal dimension�

Proof	 If �� and �� are any two involutive distributions� then their intersection is also involutive�
and� from condition � in Lemma ������� we know that if �� and �� are both invariant with respect

to f � then so is their intersection� This implies that the set S
���TM 
f �M � contains a unique element

which is contained in every other element of S
���TM 
f �M �� �

Lemma ������ assumes the the existence of a constant	dimensional� involutive distribution which
is contained in the distribution kerfdh�� � � � � dhpg and is invariant with respect to the vector 
elds
g�� � � � � gm� and f � Such a distribution always exists since we can take � to be the distribution
de
ned at each point p � M by ��p� � spanf�g� Furthermore� the closure properties of Lemma
������ ensure that the set of all distribution which satisfy these conditions contains a unique maximal
element�

In order to state this more formally� let � be a 
xed distribution and f�� � � � � fm be a collection
of smooth vector 
elds which are de
ned over a manifold M � Let S �����M � denote the set of all
distributions which are contained in �� We are interested in the subset of S �����M � which consists
of all distributions which are both contained in � and invariant with respect to the vector 
elds
f�� � � � � fm� The following lemma ensures that this set has a well	de
ned maximal element�

Lemma ������ The set S ����f �M � de�ned by

S
����
f �M � �� fD � S �����M � j �D� fi� � D � � i � mg

contains a unique distribution �D � S ����f �M � of maximal dimension� Furthermore� if the distribution

� is involutive� then so is the distribution �D�

Proof	 The 
rst statement follows immediately from the 
rst condition in Lemma ������� If � is
involutive� then

�fi� �D� � �D � � �D� �D� � ������ ��

Since �D is invariant with respect to the vector 
elds f�� � � � � fm� the third condition in Lemma ������

ensures that � �D� �D� is also invariant with respect to f�� � � � � fm� Therefore� � �D� �D� � S
����
f �M ��

Finally� the maximality of �D implies that � �D� �D� � �D� This proves the second statement� �

In Chapter �� we discussed two di�erent de
nitions of equivalence for a�ne control systems�
equivalence with respect to state transformation and equivalence with respect to feedback transfor	
mation� If a distribution is invariant with respect to to the collection of vector 
elds g�� � � � � gm� f
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which de
ne an a�ne control system� then this fact remains true no matter what local coordinates
are used to describe the vector 
elds� Therefore� this property is invariant with respect to state
transformations� However� this property is not preserved under the more general feedback trans	
formations� Since feedback transformations are incorporated into the structure of the Grassmann
bundle model an a�ne control system� it is necessary to consider a type of invariance which is
preserved under feedback transformations� This topic is addressed in the next section�

��� Invariant Pairs of Distributions

Two distributions � and % are said to form an invariant pair if and only if

���%�� � � %� ������

If � and % form an invariant pair� then we will say that � is invariant with respect to %� and
symmetrically that % is invariant with respect to �� Two codistributions I and J are said to form
an invariant pair if and only if the distributions I� and J� form an invariant pair� If both � and
% are involutive� then this property has the following geometric interpretation

Lemma ������ Two involutive distributions � and % form an invariant pair if and only if the
distribution � � % is involutive�

Proof	 If ���%� is an invariant pair� then

�� � %�� � %� � ����� � �%�%� � ���%� � � � % � ���%��

and using equation ���� we obtain

�� � %�� � %� � � � %�

Conversely� if � � % is involutive� then since � and % are both subsets of the involutive distribution
� � %� we must have that

���%� � �� � %�� � %� � � � %�

�

Theorem ������ Let �� and �� be two distributions� The following statements are equivalent�

�� ������� � �� � ���

�� L�� ���
� ���

� � � ��
� �

�� L�� ���
� ���

� � � ��
� �

Proof	 Using Lemma ����� we have that ��� � ���
� � ��

� ���
� � Therefore� we 
nd that

������� � �� � ��

 ��
� ���

� � �������
�

 ������� ���
� ���

� � � ��

Using Cartan�s formula and the facts that �� ���
� ���

� � � � and �� ���
� ���

� � � �� we also

nd that

������� ���
� ���

� � � �� �� d����
� ���

� ��

Therefore�

������� ���
� ���

� � � �  �� �� d���
� ���

� � � �

 �� d���
� ���

� � � ��
�  �� d���

� ���
� � � ��

� �



��

Finally� using formula ��� and the facts that �� ���
� � ��

� � � � and �� ���
� ���

� � � �� it is
easy to show that

�� d����
� ���

� � � L����
�
� ���

� � and �� d����
� ���

� � � L�� ���
� ���

� ��

Hence� the three conditions are equivalent� �

The following lemma provides some useful closure properties of invariant pairs�

Lemma ������

�� If ����%� and ����%� are two invariant pairs of distributions� then ��� � ���%� is also an
invariant pair�

�� If ���%� is an invariant pair of distributions� then �������%� is also an invariant pair�

Proof	 To prove statement �� we note that since ����%� and ����%� are both invariant pairs�

����%� � �� � %

����%� � �� � %

� ����%� � ����%� � �� � �� � %

� ���� � ����%� � ��� � ��� � %�

Consequently� ��� � ���%� also forms an invariant pair�
To prove statement �� we note that if ���%� is an invariant pair� then

���%� � � � %

� ��� ���%�� � ������ ���%�

� ��� ���%�� � ������ %�

Therefore� if we pick any two vectors v�� v� � � and any vector w � %� they will satisfy the equations

�v�� �v�� w�� � ����� � %

�v�� �v�� w�� � ����� � %

� �v�� �v�� w��� �v�� �v�� w�� � ����� � %� ������

The vectors v�� v� and r are also related through the Jacobi identity

�v�� �v�� w��� �v�� �v�� w�� � ��v�� v��� w��

Substituting the right hand side of this expression into equation ���� gives

��v�� v��� w� � ����� � %�

Since this equation holds for arbitrary v�� v� � � and arbitrary w � %� it implies that

�������%� � ����� � %�

Therefore� �������%� is also an invariant pair� �

In the previous section� we discussed the invariance of distributions and codistributions with
respect to vector 
elds� We are now ready to show how this material is related to the concept of an
invariant pair of distributions�

Assume that we are given a pair of codistributions �I� J� which form an invariant pair� Then

LJ� �I � J� � I�
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If we make the additional assumption that J is involutive� then we have that

LJ� �I � J� � LJ�J � C�J� � J�

so we 
nd that
LJ� �I � J� � �I � J��

This implies that J� � A�I � J� or equivalently that C�I � J� � J� If the retracting space has
constant dimension� then Theorem ����� says that there exists a local coordinate chart and a set
of generators for �I � J� whose coe�cients are only functions of the coordinates whose di�erentials
span C�I � J��

Let I have dimension r� J have dimension p� and I�J have dimension q� Let fdz�� � � � � dzpg be a
collection of one	forms which span J and let fdx�� � � � � dx�n�p�g be a collection of one	forms which�
taken together with the dzi� form a basis of T �M � Any �	form  can be expressed with respect to
this cobasis as

i �

pX
j��

ai�jdz
j �

�n�p�X
k��

ai�kdx
k�

By Theorem ����� and the involutivity of J � there exists a basis of one	forms ��� � � � � �q which span
I � J and which can be expressed solely in terms of the zi coordinates

�i �

pX
j��

bij�z�dz
j �

Suppose that we select an additional set of one	forms f�� � � � � r�qg which� taken together with the
�i� form a cobasis of I and an additional subset of the dx and dz so that the entire collection forms
a cobasis of T �M � This cobasis can be represented as the matrix of coe�cient functions�

���
A��x� z� A��x� z� A��x� z� A��x� z�

� I � �
� � B��z� B��z�
� � � I

�
���

expressed with respect to the cobasis

fdx�� � � � � dxn�p� dz�� � � � � dzpg

By inverting this matrix� we obtain a matrix of coe�cient functions which represents a basis of TM�
���

A��� �A��� A� ��A��� A�B
��
� � �A��� A�B

��
� B� � A��� A��

� I � �
� � B��� �B��� B�

� � � I

�
���

expressed with respect to the standard coordinate basis�
�

�x�
� � � � �

�

�xn�p
�
�

�z�
� � � � �

�

�zp

#
�

Consequently� I� is spanned by the columns of the matrix�
���
�A��� A��x� z� �A��� A�B

��
� B� � A��� A���x� z�

I �
� �B��� B��z�
� I

�
��� ������
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which is also de
ned with respect to the standard coordinate basis�
To recap� we began the previous construction with two codistributions I and J � We supposed

that these distributions form an invariant pair� that the codistribution J is involutive� and that the
distribution C�I � J� has constant dimension� Based on this information� we deduced the existence
of a coordinate chart �x� z� such that the di�erentials dz�� � � � � dzp span C�I�J� and the existence of
set of vector 
elds which span the distribution I� and have the form of equation ����� Expressed in
the �x� z� coordinates� these vector 
elds have a triangular decomposition similar to that of Corollary
������� The following lemma makes this statement more precise�

Lemma ����� The codistribution J is invariant with respect to the set of vectors which make up
the frame ����

Proof	 Let fi denote the ith column of the matrix ����� Any �	form � � J can be expressed as

� �

qX
i��

ci�x� z��
i �

p�qX
j��

hj�x� z�dz
i�

We need to verify that � satis
es
Lfi� � J�

Writing this out in coordinates� we 
nd that

Lfi� �



� qX

i��

�fi dci� � �
i �

qX
i��

ci�x� z��fi d�i� �

p�qX
j��

�fi dhj� � dz
i

�
A

�



� qX

i��

dci � �fi �i� �

p�qX
j��

dhj � �fi dzi�

�
A

� d



� qX

i��

ci�x� z��fi �i� �

p�qX
j��

hj�x� z��fi dzi�

�
A �

If � � i � r � q� then fi � J�� and this implies that the last two lines of this summation are
identically zero� The 
rst and third terms on the 
rst line lie in the span of J � and� due to the
special structure of the �i� so does the second term on the 
rst line� If r � q � � � i � r then by
construction all the terms fi �j and fi dzj are constants� and the last two lines cancel each other�
Again� all the terms on the 
rst line lie in the span of J � so the proof is complete� �

This result also has a nice geometric interpretation� If J is an involutive� constant dimensional
distribution� then the functions z�� � � � � zp locally de
ne a smooth surjection � � U � M � Rp�
Which is de
ned with respect to the x� z coordinate system by � � �x� z� � z� Since the �	forms �i

depend only on the z coordinates� they are each equal to the pull	back of some form ��i de
ned on
Rp�

�i � ����i�

Furthermore� there is a bijective correspondence between the set of all �	dimensional integral el	
ements over a point z � Rp of the exterior di�erential system generated by f���� � � � � ��qg on Rp�
and the n � p � �	dimensional integral elements of the exterior di�erential system generated by
f��� � � � � �qg on M over any point p � ����z��

The concept of an invariant pair is also related to the concept of a controlled invariant distri	
bution� We begin by recalling the de
nition of a controlled invariant distribution in the standard
theory�
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De�nition ������ A distribution � is said to be controlled invariant with respect to an a�ne con�
trol system described by the vector �elds f� g�� � � � � gm de�ned over a smooth manifold M if and only
if there exists an a�ne state feedback ui � �i�x� �

Pm

j�� �
i
j�x�vj de�ned such that the transformed

system

�f � f �
mX
j��

gj�
j

�gi �
mX
j��

gj�
j
i

satis�es h
�f��

i
� �

��g���� � �

���

��gm��� � ��

There is a geometric test to see if a given distribution is controlled invariant which does not depend
explicitly on the feedback transformation�

Lemma ������ �Isidori� A necessary condition for a distribution � to be controlled invariant is
that

�f��� � � � G

�g���� � � � G

���

�gm��� � � � G

where G is the distribution de�ned by

G �� spanfg�� � � � � gmg�

If the distribution � is involutive� and the distributions �� G� and ��G are all nonsingular on an
open subset U � M � then this condition is also su�cient for � to be controlled invariant�

Proof	 See Isidori �� pages ���	���� �

The following lemma establishes the connection between the concept of controlled invariance and
the concept of an invariant pair of distributions�

Lemma ������ Let f� g�� � � � � gm be a collection of vector �elds which de�ned an a�ne control sys�
tem over a smooth manifold M � Let F be a the smooth distribution de�ned over M �R by

F �� span


g� � � � gm f
� � �

�
�

Let � be a smooth distribution de�ned over M � and let �e be the smooth distribution de�ned over
M �R by

�e �
%
������ � spanfdtg

&�



��

where � is the canonical projection � � M � R � M � Then the distributions �F��e� form an
invariant pair if and only if

�f��� � � � G ������

�g���� � � � G

���

�gm��� � � � G�

Proof	 Any vector 
eld w�x� t� � F can be written in the form

w�x� t� � ��x� t�


f�x�

�

�
�

mX
j��

��x� t�


gj�x�uj�x� t�

�

�
�������

and any vector 
eld v�x� t� � �e can be written in the form

v�x� t� �


v�x� t�

�

�
�

so the Lie bracket of any w�x� t� � F with any v�x� t� � �e can be written out as

�w�x� t�� v�x� t�� � ��x� t�


�v
�x

�v
�t

� �

�
f�x� � gi�x�ui�x� t�

�

�
�������

���x� t�


�f

�x
� �gi

�x
ui � gi�x��u

i

�x
�

� �

� 
v�x� t�

�

�
� Lv��x� t�


f�x� � gi�x�ui

�

�
�

which can be rewritten as

�w� v� � �


�v
�x
f�x� � �f

�x
v�x� t� � �v

�x
gi�x�ui�x� t�� �gi

�x
ui�x� t�v�x� t�

�

�

� �


gi�x��u

i

�x
v�x� t�

�

�
� �


�v
�t

�

�
� Lv�


f�x� � gi�x�ui�x� t�

�

�
� �������

If �F��e� forms an invariant pair� then

�F��e� � F � �e� �������

Consequently�

�w� v� � span

�
g� � � � gm f
� � �

�
�


�
�

�#
� ������

Comparing equations ���� and ������ it is apparent that if we 
x a time t � t�� and restrict the
vector 
elds to the submanifold M � ft�g� then the condition ����� implies the conditions �����
Conversely� if ���� is assumed to hold� then condition ����� must also hold� Note that in equation
������ the vector

vt ��


�v
�t

�

�
must always satisfy ��vt� � � since the distribution �e is not dependent on time� �

If the distribution � on M is involutive� then so is the distribution �e on M �R� In this case�
we get a nice geometric interpretation of the notion of a controlled invariant distribution� At a
point �x� t� �M �R� suppose that �e�p� t� is a k	dimensional subspace of T�p�t��M �R�� Consider

the collection G
��e���e	F �
k	� �M �R�j�p�t� of all k � �	dimensional subspaces of T�p�t��M �R� which

contain �ej�p� t� and are contained in ��e � F �j�p�t�� We have the following result�
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Lemma ������ There exists an output space Rp�R and an output mapping � � M �R� Rp�R
�x� t� � ���x�� t� such that

�� �e � ker�d�� � spanfd��� � � � � d�p� dtg�

�� The system ��
e �F

� is spanned by a set of ��forms which are the pull�backs of a set of ��forms
' de�ned on Rp �R�

�� There exists a bijection between the set G
��e���e	F �
k	� �M�R�j�p�t� and the set G

�������e	F �
� �Rp�

R�j���x��t� consisting of all one�dimensional subspaces satisfying ��
e � F� at at the point

���x�� t� � Rp �R�

Proof	 The 
rst statement is an immediate consequence of the involutivity of �e�
To prove the second statement� we will use that fact that �F��e� is an invariant pair and the

fact that �e is involutive� Since �F��e� is an invariant pair�

L�e
���

e � F
�� � F��

and since �e is involutive�
L�e

���
e �F

�� � L�e
��
e � �e�

Taking the intersection of the last two equations� we 
nd that

L�e
���

e � F
�� � ���

e � F
���

Therefore�
�e � A���

e �F
��  C���

e � F
�� � ��

e �

Using Theorem ����� we can conclude that ���
e �F

�� is spanned by a set of �	forms whose coe�cients
only involve the coordinates ��� � � � � �p� and t� Consequently� each of these forms represents the pull	
back of a form on Rp �R� We will use ' to denote the codistribution spanned by these forms on
Rp �R�

Since ���
e �F

�� � ���'�� we must also have that ����e �F � � '�� Furthermore� by construc	

tion ��
e � ker����� so any subspace D � G

��e���e	F �
k	� �M �R�j�p�t� must map to a one	dimensional

subspace ���D� � G
�������e	F �
� �Rp�R�j���x��t�� Since this is an onto mapping� Lemma ���� implies

that these two Grassmann manifolds are isomorphic� �

Let � and % be two distribution which are de
ned over a manifold M � Let S �����M � denote
the set of all distributions which are contained in �� We are interested in the subset of S �����M �
which consists of all the distributions which are contained in � and invariant with respect to %�

Lemma ������ The set S
����
� �M � de�ned by

S ����� �M � �� fD � S �����M � j �D�%� � D � %g

contains a unique distribution �D � S
����
� �M � of maximal dimension� Furthermore� if the distribution

� is involutive� then so is the distribution �D�

Proof	 The 
rst statement follows immediately from equation � of Lemma ������� If � is involutive�
then

� �D� �D� � ������ ��

Since �D is invariant with respect to %� equation � of Lemma ������ ensures that � �D� �D� is also

invariant with respect to %� Therefore� � �D� �D� � S ����� �M �� Finally� the maximality of �D implies

that � �D� �D� � �D� This proves the second statement� �
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������ The Filtration Associated With The Largest Distribution Con	
tained in �

Given an arbitrary distribution �� Lemma ������ says that there exists a unique distribution �D which
is contained in �� invariant with respect to %� and maximal in the sense that any other distribution
which satis
es the 
rst two properties is contained in �D� In what follows we will develop an algorithm
which can be used to explicitly compute �D�

We begin by setting J� � �� and recursively de
ne the codistributions

Jk	� � L��Jk � %�� � Jk� �������

If there exists a integer k� such that Jk��� �� Jk� and Jk� � Jk�	�� then

L��Jk� � %�� � Jk��

and the codistributions
J� � J� � � � � � Jk�

form a 
ltration of 
nite length�
If each of the codistributions Jk � %� and Jk has constant dimension on some neighborhood of

a point p �M � then p is called a regular point of Algorithm ������

Theorem ������ If the distribution � is involutive� and a point p � M is a regular point of
Algorithm ����� then each of the codistributions in the �ltration

J� � J� � � � � � Jk�

is involutive�

Proof	 Since we are assuming that � is involutive� the codistribution J� is obviously involutive�
Assume that the codistribution Jk is involutive� Since Jk and Jk � %� are constant dimensional�
locally there exist smooth functions z�� � � � � zpk such that

Jk � spanfdz�� � � � � dzpkg

and smooth one	forms �i � � i � rk which satisfy

Jk � %� � spanf��� � � � � �rkg�

If %� is m	dimensional� then we can select an additional set of one	forms �� � � � � m�rk so that

%� � spanf�� � � � � m�rk � ��� � � � � �rkg�

If we also select an additional set of smooth functions x�� � � � � xn�pk then� with respect to the basis

fdx�� � � � � dxn�pk� dz�� � � � � dzpkg� �������

each i can be expressed as

i �

n�pkX
j��

cij�x� z�dx
j �

pkX
j��

bij�x� z�dz
j�

and each �i can be expressed as

�i �

pX
j��

cij�x� z�dz
j�
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We can select a subset of the dx�s and dz�s so that� taken together with the ��s and �s� we have a
basis for T �M � The coe�cients of this basis form a matrix of smooth functions�

���
A��x� z� A��x� z� B��x� z� B��x� z�

� I � �
� � C��x� z� C��x� z�
� � � I

�
���

which is expressed with respect to the cobasis

fdx�� � � � � dxn�pk� dz�� � � � � dzpkg�

Since A� and C� are nonsingular� we can always produce an equivalent basis of the form�
���

I A��x� z� B��x� z� B��x� z�
� I � �
� � I C��x� z�
� � � I

�
���
�

If we invert this matrix� we obtain a matrix of coe�cient functions�
���
I �A� �B� �B�C� � B��
� I � �
� � I �C�

� � � I

�
���

which represents a basis of TM expressed with respect to the standard coordinate basis�
�

�x�
� � � � �

�

�xn�pk
�
�

�z�
� � � � �

�

�zpk

#
�

Consequently� % is spanned by the columns of the matrix�
���
�A��x� z� �B�C� � B���x� z�

I �
� �C��x� z�
� I

�
���
�

�������

In order to compute Jk	� we must compute Lf� for every f � % and every � � Jk � %�� An such
� can be written as

� �

qX
i��

ci�x� z��
i�

Since f � � �� Lf� � f d�� this operation can be viewed as a mapping taking TpM � T �pM �
T �pM which is linear with respect to the ring C��M � in the 
rst argument� Therefore� it su�ces
to work with any basis of %� and we will choose the basis described by the matrix ������ We will
denote the ith column of this matrix by fi and compute Lfi�� Writing this out in coordinates� we

nd that

Lfi� �

�
qkX
i��

�fi dci� � �
i �

qkX
i��

ci�x� z��fi d�i�

�

The 
rst term on the right hand side of this equation is in the span of Jk� so that any �	form in
Jk	� can be expressed as a linear combination of the �	forms fi d�j mod Jk� Therefore� we only
need to consider the one	forms Lfi�

j � Each �j has the form

�j � dzj �

pk�rkX
k��

cjk�x� z�dzk�



�

so the Lie derivative can be written out as

Lfi�
j �

�
pk�rkX
i��

�fi dcjk� � dzk

�
�������

�

�
pk�rkX
i��

dcjk � �fi dzk�

�

� d�fi dzj�

� d

�
pk�rkX
i��

cjk�fi dzk�

�
�

By construction� each of the terms fi dzk has a constant value of either � or �� so the second and
fourth lines cancel� Each term in the 
rst line lies in the span of Jk� so each of these expressions
can be simplied to

Lfi�
j � d�fi dzj� mod Jk� �������

Thus� the codistribution Jk	� is spanned by the di�erentials

Jk	� � spanfd�fi dzj�g� Jk�

Since Jk	� is locally spanned by exact di�erentials� it is also involutive� �

Since fi �j 	 �� we have that

fi dzj �

pk�rkX
i��

cjk�fi dzk� 	 ��

By construction� we also have that fi dzk � 
ki � Therefore� we 
nd that

Lfiz
j � fi dzj � cji �

Corollary ������ If the codistribution J is involutive� and the point x is a regular point of the
controlled invariant distribution algorithm� then

C�Jk � F
�� � Jk	��

Proof	 Since Jk	� � Jk � LF �F� � Jk�� we must have that LF �F� � Jk� � Jk	�� From Theorem
������ we know that Jk is involutive� so

LJ�
k

�F� � Jk� � LJ�
k
Jk � Jk � Jk	��

Forming the subspace sum of the last two equations� we 
nd that

L�F	J�
k
��F

� � Jk� � C�F� � Jk� � Jk	��

�

Corollary ������ There exists a coordinate system on M and integers r�� � � � � rk� and s�� � � � � sk�
such that

�� si � ri� for � � i � k��

�� spanfdx�� � � � � dxrkg � Jk�

�� spanf�� � � � � skg � F� � Jk�

	� i �
Prk

j�� a
i
j�x

�� � � � � xr�k��� �dxj�



��

Proof	 The proof follows immediately from Corollary ������ and Theorem ������ �

������ The Largest Controlled Invariant Distribution Contained
in ker�dh�

In the vector 
eld theory� an invariant codistribution of particular importance is the largest con	
trolled invariant distribution contained in ker�dh�� Isidori presents an algorithm for computing this
distribution which proceeds as follows

�� Set '� � spanfdh�� � � �dhpg�

�� Set 'k	� � 'k � Lf �'k �G�� �
Pm

i�� Lgi�'k �G���

Isidori also presents the following lemma

Lemma ������ �Isidori� Suppose there exists an integer k� such that 'k�	� � 'k� � if 'k� and
'k��G� are smooth� then '�k� is the maximal controlled invariant distribution contained in ker�dh��

This algorithm closely resembles algorithm ������ This relationship is made precise by the
following lemma�

Lemma ������ Let F denote distribution spanned by the columns of the matrix

F �� span


g� � � � gm f
� � �

�
�

Suppose that the codistribution J� � ker�dhe� � spanfdh�� � � � � dhp� dtg is de�ned over M � R� If
there exists a k� such that the algorithm � stabilizes� then Algorithm ���� which starts with the
codistribution J� stabilizes� and each Jk � ���'k� � spanfdtg�

Proof	 By construction� the statement is true for k � �� Suppose that it is true for some k � k��
so that

'k � spanf��� � � � � �pkg

and
Jk � spanf��� � � � � �pk � dtg�

Assume that on M � the perp of the distribution G is spanned by the covectors

G� � spanf�� � � � � �n�m�g�

and that the codistribution 'k �G� is spanned by the covectors

'k �G
� � spanf��� � � � � �lkg�

On M �R� we will have
Jk � spanf��� � � � � �pk � dtg�

F� � spanf� � �f ��dt� � � � � pk � �f pk �dtg�

and
�F� � Jk� � spanf�� � �f ���dt� � � � � �lk � �f �lk �dtg�

Using the controlled invariant distribution algorithm� we 
nd that

'k	� � spanf��� � � � � �pk � Lf�
�� � � � � Lf�

lk � Lg��
�� � � � � Lg��

lk � � � � � Lgm�
�� � � � � Lgm�

lkg�



��

On M �R let

g�e ��


g�
�

�
� � � � � gme ��


gm
�

�
� fe ��


f
�

�
�

Clearly� these vector 
elds span F � so we can compute LF �F� � Jk� by computing the covectors

Lgje��
i � �f �i�dt � Lgj�

i � Lgj �f �i�dt

Lfe��
i � �f �i�dt � Lf�

i � Lf �f �i�dt�

Using these covectors� we 
nd that

Jk	� � f��� � � � � �pk� dtg� LF �F� � Jk � ���'k� � spanfdtg�

�

������ Controllability Distributions

This section introduces a special class of controlled invariant distributions which are called control	
lability distributions� Roughly speaking� these distributions characterize the submanifolds which
can be controlled by a subset of the inputs� We will make use of this theory in Chapter �� when we
look at the noninteracting controls problem�

Lemma ������� Given any two distribution � and %� there exists a unique distribution �D � % of
minimal dimension which satis�es

�� � � % � �D � %�

�� ��� �D� � % � �D�

Proof	 Let T ��� %� denote the set of all distributions D satisfying

��� D�� % � D�

This set is not empty since
���%�� % � %�

If D�� D� � T ��� %�� then
� � % � D�� D� � � � % � D� �D�

��� D�� � % � D�

��� D�� � % � D��

� ��� �D� �D��� � % � D� �D�

Since T ��� %� is nonempty and closed under smooth intersections� it must contain a unique minimal
element�

Up to this point� we have shown that there exists a unique �D of minimal dimension which satis
es
��� �D� � % � �D� We still need to show equality� To do this� we begin by de
ning the distribution

K �� ��� �D� � %�

This distribution is a subset of �D� so we must have that

���K�� % � ��� �D�� % � K�

This distribution also contains ��%� so it is a member of K � T ��� %�� From the minimality of �D�
we conclude that K � ��� �D� � % � �D� �

Lemma ������� If the distribution % is involutive� then so is the distribution �D�



��

Proof	 To prove this lemma� we will use the fact that� given any distribution D� the Cauchy
characteristic of its perp� A�D��� is a subset of D� We will show that if % is involutive� then the
condition

��� �D� � % � �D

implies that h
�� A� �D��

i
� % � A� �D��� �������

Equation ����� is equivalent to showing that the retracting space of �D� satis
es

�
h
�� A� �D��

i
� %� C� �D�� 	 ��

We compute

�
h
�� A� �D��

i
� %� C� �D�� �

�
h
�� A� �D��

i
� %� L �D� �D�� �

�
h
�� A� �D��

i
� %� �D d� �D�� �

���� A� �D��� � %� �D� �D� � ���� A� �D���� �D� � % �D��

The last line follows from the involutivity of %� Using the Jacobi identity� we also get

���� A� �D���� �D� � % �D� � ��A� �D��� �D����� % �D��

Finally� using the fact that �A� �D��� �D� � �D� we arrive at

��A� �D��� �D����� % �D� � � �D���� % �D� � �D �D� 	 ��

From this result we gather that A� �D�� � T ��� %� whenever % is involutive� The minimality of
�D implies �D � A� �D��� and from Theorem ����� we know that A� �D�� is involutive� �

Lemma ������� If ���%� forms an invariant pair� then ��� �D� also forms an invariant pair�

Proof	 Since ���%� form an invariant pair

���%�� � � %�

If we let ��� �D� � T � then we have that �D � T � % and

��� T � %� � T�

From the invariance condition� we get that

��� T � %� � ���%�� � � %�

Forming the intersection� we get

��� T � %� � �� � %� � T�

By de
nition� � � T � so
��� T � %� � � � T � %�

or
��� �D� � � � �D�



��

�

We will de
ne a controllability distribution to be any involutive distribution % which forms an
invariant pair with �� and which is also the minimal element the collection T ��� %� of distributions
satisfying the conditions of Lemma ��������

If one tries to dualize the conditions in Lemma �������� the conditions obtained turn out to be
di�cult to work with� Instead� it is better to restate Lemma ������� in a slightly di�erent form and
then dualize the modi
ed requirements�

Lemma ������ Given any two distribution � and %� there exists a unique distribution �T of min�
imal dimension which satis�es

�� � � �T �

�� ��� �T � %� � �T �

Proof	 Let �T ��� %� denote the set of all distributions T satisfying

��� T � %� � T

This set is not empty since
��� V �M � � %� � V �M ��

If T�� T� � �T ��� %�� then
� � T�� T� � � � T� � T�

and

��� T� � %� � T�

��� T� � %� � T�

� ��� �T� � T�� � %� � T� � T��

Since �T ��� %� is nonempty and closed under smooth intersections� it must contain a unique minimal
element�

To show equality� we begin by de
ning the distribution

K �� ��� �T � %��

This distribution is a subset of �T � so we must have that

���K � %� � ��� �T � %� � K�

This distribution also contains �� so it is a member of K � �T ��� %�� From the minimality of �T � we
conclude that K � ��� �T � %� � �T � �

Note that the distributions �D and �T are related by �T�% � �D� In this modi
ed form the conditions
of this lemma can be dualized using Lemma ����� to require a unique maximal codistribution �T� �
�� which satis
es

L� �T� � �T� � %�� �������



��

��� Invariance and Dynamic State Feedback

In the previous section� we discussed an algorithm for 
nding the largest distribution which forms an
invariant pair with a 
xed distribution F and is contained in a 
xed distribution �� In this section�
we are going to examine how this distribution is a�ected if the control system corresponding to the
distribution F is prolonged using the procedure described in Chapter ��

To set this problem up� we will assume that we are given an s	dimensional distribution �� and
an �m � ��	dimensional distribution F which are both de
ned over the �n � ��	dimensional state	
time manifold M �R� Furthermore� we will assume that we are given a p	dimensional distribution
D � F � TM � f�g which generates the prolongation of F � The state	time space for the prolonged

system is the dense open subset of the bundle G
�D�F 
p	� �M�R� whose 
bres over a point �p� t� �M�R

consist of all the �p���	dimensional subspaces S � G
�D�F 
k	� �p� t� which satisfy dtjS �� �� The prolonged

distribution� which we will denote by FD� is de
ned at each point �p� 
� � G
�D�F 
p	� �M � R� by the

equation
F�D �p� 
� � ���
���

Since the distribution � typically corresponds to the kernel of an output map

H � M �R � N �R

and since the prolongation process induces a map

�H � G
�D�F 
p	� �M �R� � N �R

de
ned by �H �� �H ��� from the prolonged space to the output space� a natural way to extend the
distribution � to the prolonged space is to use the distribution ��������� which� if � corresponds
to the kernel of a map H� is equal to the kernel of the prolonged output map �H�

We want to try to 
nd a relationship between the largest distribution contained in � and invariant
with respect to F and the largest distribution contained in ��������� and invariant with respect to
FD� As a 
rst step toward this goal� we will compute one iteration of Algorithm ����� for each of the
pairs ��� F � and ��������� Fd� and compare the resulting codistributions� We will work in a local
coordinate system� and we will assume that � is involutive� that ��F has constant dimension� and
that ��F �D has constant dimension� Under these assumptions� there exists a coordinate system

X � V � U �Rn	� �������

consisting of functions

h�� � � � � hrh � x�� � � � � xrx � (y�� � � � � (yr�y � �y�� � � � � �yr�y � (z�� � � � � (zr�z � �z�� � � � � �zr�z � t�

where rh � rx � r�y � r�y � r�z � r�z � n� which are selected selected such that

� �� span

�
�

�x�
� � � � �

�

�xrx
�
�

�(y�
� � � � �

�

�(yr�y
�
�

��y�
� � � � �

�

��yr�y

#

and such that� with respect to the ordered basis

�
�h�

� � � � � �
�hrh

� �
�x�

� � � � � �
�xrx

� �
��y� � � � � �

�
��yr�y

� �
��y� � � � � �

�
��yr�y

�
�
��z� � � � � �

�
��zr�z �

�
��z� � � � � �

�
��zr�z �

�
�t
�

�������

the following conditions are satis
ed�



���

�� The distribution � � F �D is spanned by the columns of the matrix of functions�
���������

�
G�
�

G�
�

I
�
�
�

�
���������
�

�� The distribution � � F is spanned by the columns of the matrix of functions�
���������

� �
G�
� G�

�

I G�
�

� I
� �
� �
� �

�
���������
�

�� The distribution D is spanned by the columns of the matrix of functions�
���������

� G�
�

G�
� G�

�

G�
� G�

�

I �
� G�

�

� I
� �

�
���������
�

� The distribution F is spanned by the columns of the matrix of functions�
���������

� � G�
� G�

� F �

G�
� G�

� G�
� G�

� F �

I G�
� � G�

� �
� I � � �
� � I G�

� �
� � � I �
� � � � �

�
���������
�

������

Algorithm ����� is invariant under a�ne state feedback� so we can multiply the matrix ���� on the
right by the feedback matrix �

�����
I �G�

� � �G�
� �

� I � � �
� � I �G�

� �
� � � I �
� � � � �

�
�����

to get �
���������

� � G�
� �G�

� �G�
�G

�
�� F �

G�
� �G�

� � G�
�G

�
�� G�

� �G�
� � G�

�G
�
� �G�

�G
�
�� F �

I � � � �
� I � � �
� � I � �
� � � I �
� � � � �

�
���������
�



���

The the vectors corresponding to the columns of this matrix can be supplemented with the vectors�
�

�h�
� � � � �

�

�hrh
�
�

�x�
� � � � �

�

�xrx

#
to form a basis of T �M �R� which can be represented by the matrix�

���������

I � � � G�
� �G�

� �G�
�G

�
�� F �

� I G�
� �G�

� � G�
�G

�
�� G�

� �G�
� � G�

�G
�
� �G�

�G
�
�� F �

� � I � � � �
� � � I � � �
� � � � I � �
� � � � � I �
� � � � � � �

�
���������
�

The inverse of this matrix is�
���������

I � � � �G�
� �G�

�G
�
� � G�

�� �F �

� I �G�
� �G�

�G
�
� � G�

�� �G�
� �G�

�G
�
� �G�

�G
�
� �G�

�� �F �

� � I � � � �
� � � I � � �
� � � � I � �
� � � � � I �
� � � � � � �

�
���������
�

and its rows can be viewed as one	forms expressed with respect to the standard dual basis of ������
The 
rst two blocks of rows in this matrix span F�� the 
rst� fourth� 
fth� and sixth blocks of rows
span ��� and the 
rst block of rows spans F� ����

If we set J� � ��� then the 
rst iteration of Algorithm ����� is described by

J� � J� � LF �J� �F
���

In local coordinates� we have that

J� � spanfdh�� � � � � dhrh � d(z�� � � � � d(zr�z � d�z�� � � � � d�zr�z � dtg�

and using the procedure presented in the proof of Theorem ������ we can compute that

J� � spanfdh�� � � � � dhrh � d(z�� � � � � d(zr�z � d�z�� � � � � d�zr�z � dt� dG�
�� d�G�

�G
�
� � G�

��� dF
�g

where we use terms like dG�
� to denote the di�erentials of each of the elements in the matrix G�

��
Having obtained J� for the unprolonged system� we turn our attention to the prolonged system�

The prolongation process is equivalent to appending integrators onto the inputs associated with the

rst and third blocks of columns in the matrix ����� We can form a new local coordinate system on
the prolonged state	time space by adding the coordinates v�� � � � � vr�y � u�� � � � � ur�z to the coordinate
set ������ With respect to these coordinates� the distribution FD of the prolonged system is spanned
by the columns of the matrix�

�������������

� G�
� � � G�

�U � F �

G�
� G�

� � � G�
�V �G�

�U � F �

G�
� G�

� � � V
� G�

� � � U
I � � � �
� I � � �
� � I � �
� � � I �
� � � � �

�
�������������
�

�������



���

which is expressed relative to the ordered basis

span

�
�

�h
�
�

�x
�
�

�(y
�
�

�(z
�
�

��y
�
�

��z
�
�

�v
�
�

�u
�
�

�t

#
where we use terms like �

�h
to mean

�

�h
�

�
�

�h�
� � � � �

�

�hrh

#
�

As before� we can append the vectors �
�

�h
�
�

�x
�
�

�(y
�
�

�(z

#
to the columns of the matrix ����� to form a basis of the tangent space of the prolonged state	time
manifold� This basis can be represented by the matrix�

�������������

I � � � � G�
� � � G�

�U � F �

� I � � G�
� G�

� � � G�
�V � G�

�U � F �

� � I � G�
� G�

� � � V
� � � I � G�

� � � U
� � � � I � � � �
� � � � � I � � �
� � � � � � I � �
� � � � � � � I �
� � � � � � � � �

�
�������������
�

The inverse of this matrix is�
�������������

I � � � � �G�
� � � �G�

�U � F �

� I � � �G�
� �G�

� � � �G�
�V �G�

�U � F �

� � I � �G�
� �G�

� � � �V
� � � I � �G�

� � � �U
� � � � I � � � �
� � � � � I � � �
� � � � � � I � �
� � � � � � � I �
� � � � � � � � �

�
�������������
�

Identifying the rows of this matrix with di�erential one	forms expressed relative to the standard
cobasis for our local coordinates� we 
nd that the 
rst four blocks of rows span F�D � the 
rst� fourth�
sixth� and ninth blocks of rows span the codistribution K� � ���J��� and the 
rst and fourth blocks
of rows span K� �F

�
D � computing K� � K� � LFD �K� � F�D � we 
nd that

K� � spanfdh� d(z� d�z� dt� dU� dG�
�� dG

�
�� d�G�

�U � F ��g�

If we carry out the indicated di�erentiations� we can rewrite J� as

J� � spanfdh� d(z� d�z� dt� dG�
�� �G

�
�dG

�
� � dG�

��� dF
�g

and K� as
K� � spanfdh� d(z� d�z� dt� dU� dG�

�� dG
�
�� �dG

�
�U � dF ��g�

From these expressions� it is clear that the relationship between K� and J� is dependent on the
functions which determine the G matrices� For example� if G�

� is constant� then ��J� � K�� If� on
the other hand� G�

� is constant� then K���ker��� � J�� In particular� note that if we set D � ��F �
then this latter case will always occur� In fact we can show that this relationship holds for each of
the corresponding pairs Ji and Ki in the 
ltrations generated by Algorithm ������
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Lemma ����� Given an s�dimensional distribution �� and an �m����dimensional distribution F
which are both de�ned over the �n � ���dimensional state�time manifold M �R� assume that � is
involutive� and that ��F has constant dimension p Let D � ��F � and let FD denote the prolonged
distribution generated by D� Let J� � �� and K� � ��J�� If the �ltrations generated by applying
Algorithm ���� respectively to the pairs �J�� F � and �K�� FD� are both constant dimensional on a
neighborhood of the prolonged state�time space� and the codistributions F� � Ji all have constant
dimension on this neighborhood� then the �ltrations satisfy

��J� � ��J� � � � � � ��Ji � � � �
� � �

K� � �ker��� � K� � �ker��� � � � � � Ki � �ker��� � � � �

In particular� �K � �ker ��� � �� �J �

Proof	 Corresponding to the 
ltration of codistributions

J� � J� � � � � � Ji � � � � �

we have the 
ltration of distributions

�J� � � � � � J�i � � � � � J�� � ��

Let I be the lowest integer such that JI � �J � For simplicity� we will assume I � �� but the
proof of the general case will proceed in exactly the same way� Because of the constant dimension
assumptions� there must exist a set of coordinates

(h�� ���(hr�h� �h�� ����hr�h� (x�� ��� (xr�x� �x�� ��� �xr�x� (y�� ��� (yr�y � �y�� ��� �yr�y � (z�� ��� (zr�z � �z�� ��� �zr�z� t�

where r�h � r�h � r�x � r�x � r�y � r�y � r�z � r�z � n� which are selected selected such that

J�� � span

�
�

�(y
�
�

��y

#
�

J�� � span

�
�

�(y
�
�

��y
�
�

�(z
�
�

��z

#
�

J�� � span

�
�

�(y
�
�

��y
�
�

�(z
�
�

��z
�
�

�(x
�
�

��x

#
�

and such that F is spanned by the columns of the matrix of functions�
�������������

� � � G�
� F �

� � G�
� G�

� F �

� G�
� G�

� G�
� F �

G�
� G�

� G�
� G�

� F �

I � � � �
� I � � �
� � I � �
� � � I �
� � � � �

�
�������������

which is written relative to the ordered basis

�

�(h
�
�

�(x
�
�

�(z
�
�

�(y
�
�

��y
�
�

��z
�
�

��x
�
�

��h
�
�

�t
�
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Applying Algorithm ����� we 
nd that

J� � spanfd(h� d�h� dtg

J� � spanfd(h� d�h� dt� dG�
�� dF

�g

� spanfd(h� d�h� d(x� d�x� dtg

J� � spanfd(h� d�h� dt� dG�
�� dF

�� dG�
�� dG

�
�� dF

�g

� spanfd(h� d�h� d(x� d�x� d(z� d�z� dtg�

J� � spanfd(h� d�h� dt� dG�
�� dF

�� dG�
�� dG

�
�� dF

�� dG�
�� dG

�
�� dG

�
�� dF

�g

� spanfd(h� d�h� d(x� d�x� d(z� d�z� dtg�

Prolonging F about D � � � F produces the distribution FD which can be represented by the
matrix of functions �

���������������

� � � � U
� � � � G�

�U � F �

� � G�
� � G�

�U � F �

� G�
� G�

� � G�
�U � F �

G�
� G�

� G�
� � G�

�U � F �

I � � � �
� I � � �
� � I � �
� � � I �
� � � � �

�
���������������

which is written relative to the ordered basis

�

��h

�

�(h
�
�

�(x
�
�

�(z
�
�

�(y
�
�

��y
�
�

��z
�
�

��x
�
�

�u
�
�

�t
�

For each Ji� we will now compute the codistribution ��Ji � LFD ���Ji � F�D ��

'� � ��J� � LFD ���J� � F
�
D �

� fd�h� d(h� dt� d�G�
�U � F ��� dUg

'� � ��J� � LFD ���J� � F�D �

� fd�h� d(h� d�x� d(x� dt� dG�
�� d�G�

�U � F ��� d�G�
�U � F ��� dUg

� fd�h� d(h� dt� dG�
�� dF

�� dG�
�� d�G�

�U � F ��� dUg
'� � ��J� � LFD ���J� � F

�
D �

� fd�h� d(h� d�x� d(x� d(z� d�z� dt� dG�
�� dG

�
�� dG

�
�� d�G�

�U � F ���
d�G�

�U � F ��� d�G�
�U � F ��� dUg

� fd�h� d(h� dt� dG�
�� dF

�� dG�
�� dG

�
�� dF

�� dG�
�� dG

�
�� dG

�
�� d�G�

�U � F ��� dUg

From these computations� it is clear that

'� � �ker��� � ��J�

'� � �ker��� � ��J�

'� � �ker��� � ��J�

Furthermore� since F�D � �ker���� we must also have that

'� �F
�
D � ��J� � F

�
D

'� �F
�
D � ��J� � F

�
D

'� �F
�
D � ��J� � F

�
D �
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Since '� � K�� we obviously have that K� � �ker��� � ��J� and that K� � F�D � ��J� � F�D �
Assume that for some i � �� Ki �F�D � ��Ji �F�D � Expanding out the expression for Ki	�� we 
nd
that

Ki	� � Ki � LFD �Ki � F
�
D �

� K� � LFD �K� � F
�
D � � LFD �K� � F

�
D � � � � �� LFD �Ki � F

�
D �

� J� � LFD �Ki � F
�
D �

Using the induction hypothesis� we 
nd that

Ki	� � J� � LFD �Ji � F
�
D � � Ji � LFD �Ji � F

�
D � � 'i	�

which implies that Ki	� � �ker��� � Ji	�� �

Based on Lemma ������ it appears that a second prolongation might result in another layer of
nested codistributions� However� if we were to compute the codistribution K�

� �FD on the prolonged
space� we would 
nd that is equal to FD �TM � f�g� This distribution contains all the controls� so
the prolongation which it generates is equivalent to FD� Consequently� nothing is gained� However�
if we begin with the codistribution K�� then K��FD will generally be a proper subset of the controls
and there may be something to be gained from the prolongation� To formalize this procedure we
can de
ne a prolongation algorithm�

Algorithm ����� Given a distribution � and a distribution F which are both de�ned over a state�
time space M�R� de�ne K�

� � ��� F� � F � and M��R � M�R� At the ith step of the algorithm


�� Compute Di � �Ki��
i�� �� � Fi��� Let pi � dim�Di��

�� Form the prolongation of Fi�� generated by Di� Let Fi denote the distribution associated with
this prolongation�

�� Set Mi � R � G
�Di�Fi�� 
pi	� �Mi�� � R�� and and let �i denote the projection �i � Mi � R �

Mi�� �R�

	� De�ne Ki
i�� � ��iK

i��
i�� �

�� Compute Ki
i � Ki

i�� � LFi
%
Ki
i�� � F

�
i

&
�

At each step of this algorithm� Lemma ������ ensures that

��iK
i��
i�� � ��iK

i��
i � � � � � ��iK

i��
k

� � � �
� � �
Ki
i�� � �ker �i�� � Ki

i � �ker �i�� � � � � � Ki
k � �ker �i�� � � � � �

Consequently� if each of the 
ltrations

Ki
i � Ki

i	� � Ki
i	� � � � �

stabilizes after a 
nite number of iterations� then Algorithm ������ will also stabilize after a 
nite
number of iterations� This algorithm will prove useful when we look at the disturbance decoupling
and noninteracting controls problems� It is closely related to a procedure called Singh�s algorithm�
and the interested reader may want to consult ���� for a good treatment of this topic�



Chapter ��

The Disturbance Decoupling and

Noninteracting Control Problems

In this chapter� we will apply the material from Chapter �� to the disturbance decoupling and
noninteracting control problems�

The 
rst section of this chapter discusses the disturbance decoupling problem� This problem
arises when a control system is subjected to external disturbance inputs� In such cases� it is desir	
able to minimize the in�uence of these disturbances on the outputs of the system� Therefore� the
disturbance decoupling problem is posed by asking when a feedback transformation exists such that�
in the transformed system� the disturbance inputs do not in�uence the system outputs�

The second section of this chapter discusses the noninteracting control problem� This problem
arises in situations where it is conceptually or practically advantageous to treat a multi	input multi	
output system as if it consisted of a collection of disconnected subsystems� Since this is not always
possible� it is useful to have a test which allow the controls engineer to determine if a feedback
transformation exists which will will decouple the input	output behavior of the system�

���
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���� Disturbance Decoupling

This section discusses the disturbance decoupling problem� To set this problem up� we will consider
an a�ne control system which is de
ned by a distribution F over a smooth state	time manifold
M � R� We will assume that F is de
ned as the sum of two distributions F � Fu � Fd� The
distribution Fu is spanned by vectors of the form

fe �


f
�

�
gei �


gi
�

�

which represent the drift vector 
eld and the m inputs which can be used to control the system�
The distribution Fd is spanned by s vectors of the form

rei �


ri
�

�

which represent disturbance inputs over which we have no control� With respect to a local coordinate
chart �x� U �� this control system can then be represented by the equation

�xi � f ie �
mX
j��

gieju
j �

sX
k��

rekv
k�

We will call the inputs v�� � � � � vs the disturbance inputs�

Given a set of outputs functions y� � h��q�� � � � � yp � hp�q�� we will use yi�q�� t�� u� v� to denote
the time function which results when the system is started with initial condition �q�� t�� �M�R and
driven by the input function u�t� and the disturbance function v�t�� A disturbance input v�t� is said
to be decoupled from the output yi if and only if for every �q�� t�� �M�R� every u�t� � C��R�Rm��

and every v�t� � C��R�Rm�� yi�q�� t�� u� �� � yi�q�� t�� u� v�� In order to study this problem� we
need to de
ne the codistribution

Ofg � span
'
d� � T �M j � � LX�LX� � � �LXk

hj �k � �� Xk � ffe� ge�� � � � � gemg
(

� spanfdtg�

which is called the observability distribution associated with the control system de
ned by fe� ge��

� � � � gem� and h�� � � � � hp� The fg subscript is used to emphasize that this codistribution is dependent
on the choice of these vector 
elds and that this codistribution is invariant with respect to these
vector 
elds� With this setup� we now state a lemma which gives a necessary condition for an input
to be decoupled from an output�

Lemma ������ If a disturbance input vi�t� is decoupled from an output yj � hj�p� t�� then the
corresponding vector �eld rei lies in the perp of the codistribution Ofg

Proof	 Let v and (v be two arbitrary disturbance inputs and let yj �q�� t�� u� v� and yj�q�� t�� u� (v�
denote the corresponding outputs� Since the disturbances are assumed to be decoupled from the
outputs� these functions and all their time derivatives must be identical� The time derivate of
yj�q�� t�� u� v� is equal to the Lie derivate of hj with respect to the vector 
eld fe�geiu

i�t��rekv
k�t�

which is de
ned over M � R� Similarly� the time derivative of yj �q�� t�� u� (v� is equal to the Lie
derivative of hj with respect to the vector 
eld fe � geiu

i�t� � rek(vk�t�� This implies that

dyj

dt
�q�� t�� u� v� � Lfeh

j � Lgeih
jui�t� � Lrekh

jvk�t��
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Since the functions vk�t� are arbitrary� and this function is assumed to be independent of the distur	

bance inputs� we must have Lrekh
j � rek dhj 	 �� Taking the second derivative of yj�q�� t�� u� v�

d�yj

dt�
�q�� t�� u� v� � L�feh

j � LfeLgeih
jui�t� � LgejLfeh

juj�t� � LgejLgeih
jui�t�uj�t�

� Lgeih
j �ui�t� � LrekLfeh

jvk�t� � LrekLgeih
jui�t�vk�t��

Since the value of the second derivative is also assumed to be independent of the disturbance inputs�
and this condition is true for arbitrary ui�t�� we must also have LrekLfeh

j � rek dLfeh
j 	 � and

LrekLgeih
j � rek dLgeih

j 	 ��

By continuing to take higher order derivatives� we obtain the condition that rek d� 	 � for any
� � LX�LX� � � �LXk

hj where k � � and Xi � ffe� ge�� � � � � gemg� �

������ Disturbance Decoupling Using Static State Feedback

The problem which we will consider in this section is to determine whether or not there exists an
a�ne feedback transformation such that� in the transformed system� the disturbance inputs are
decoupled from the outputs� De
ne

J � spanfdh�� � � � � dhp� dtg�

and let �J denote the smallest codistribution which contains J and forms an invariant pair with F �
The following theorem provides necessary and su�cient conditions for the solvability of this problem
when �J has constant dimension�

Theorem ������ If the codistribution �J has constant dimension� then the disturbance decoupling
problem is solvable if and only if Fd � �J��

Proof	 If the disturbance inputs are decoupled from the outputs� then from Lemma ������� rei �
O�fg � Furthermore�

LfeOfg � O

LgeiOfg � O�

so LF �F� � Ofg� � Ofg � Therefore� �O�fg � F � is an invariant pair� The codistribution Ofg also

contains J � Consequently� �J � Ofg� These facts imply that rei � O
�
fg �

�J��

Conversely� if each rei � �J�� then Lemma ������ says that there exists a coordinate system and
a�ne state feedback such that the control system can be represented in the normal form

�z� � f��z�� z�� �
mX
i��

g�i �z
�� z��ui �

sX
k��

r�k�z�� z��vk

�z� � f��z�� �
mX
i��

g�i �z��ui

yj � hj�z���

Written in this form� it is clear that the outputs are not in�uenced by the disturbance inputs� so
this choice of feedback solves the disturbance decoupling problem� �
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������ Disturbance Decoupling Using Dynamic State Feedback

Even if the disturbance decoupling problem is not solvable using static state feedback� it may still be
possible to decouple the disturbance inputs using dynamic state feedback� This possibility is based
on the discussion in Section ���� which showed that by applying Algorithm ������ the size of the
largest invariant codistribution which contains J may be decreased on the prolonged space� To test
whether Fd can be decoupled using dynamic state feedback� the following procedure can be used�

�� Set K�
� � J � F� � F � and i � ��

�� If Fd �� �Ki
i �
� then the disturbance cannot be decoupled using further bundle prolongations�

�� If Fd � �Ki
i �
�� construct the 
ltration

Ki
i � Ki

i	� � � � � � �Ki

using Algorithm ������

� If Fd � � �Ki��� then Fd can be decoupled using static state feedback on the system Fi de
ned
over Mi �R�

�� If Fd �� � �Ki��� then set i � i � �� perform one iteration of Algorithm ������� and return to
step ��
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���� Noninteracting Controls

In this section� we will consider the block input	output decoupling problem� This problem can be
stated as follows� Given an a�ne system which is described by a distribution F de
ned over the state	
time manifold M �R and a collection of output blocks H� to Hk of the form Hi � �h�i � � � � � h

pi
i � t��

determine if there exists a decomposition of F of the form
G� � � � Gk F
� � �

�

and a state feedback transformation such that� in the transformed system� the ith output block
is in�uenced by the ith input block and is decoupled from the jth input block for j �� i� If the
control system is strongly accessible� then the following theorem provides a necessary and su�cient
condition for the existence of such a decomposition�

Theorem ������ Let Ji be the smallest codistribution which contains dHi and forms an invariant
pair with F � If the control system corresponding to F is strongly accessible� then the block input�
output decoupling problem is solvable if and only if each Ji satis�es

Ji � �
X
s	�i

Js� � spanfdtg� ������

Proof	 To prove the su�ciency of this theorem� we begin by noting that each of the codistributions
Ji is involutive� so there exist smooth functions ��i � � � � � �

ri
i such that

Ji � spanfd��i � � � � � d�
ri
i � dtg�

If we de
ne the codistributions Ki ��
P

s	�i Js� then condition ���� can be rewritten as

Ji �Ki � spanfdtg� � � i � k�

Using this fact� it can be shown that for each i � f�� � � � � kg�

K� �K� � � � � �Ki�� � Ji	� � � � �� Jk�

From this� it is easy to show that

K� �K� � � � � �Ki�� � K� �K� � � � � �Ki � Ji� ������

Suppose the codistribution K� �K� � � � � �Ki is spanned by a set of di�erentials

K� �K� � � � � �Ki � spanfd��� � � � � d�sg�

Since Ki � Ji � spanfdtg� the equation K� �K� � � � � �Ki � Ji � spanfdtg also holds� and this fact
together with equation ���� implies that the codistribution K� �K� � � � ��Ki�� will be spanned by
the di�erentials

K� �K� � � � �Ki�� � spanfd��� � � � � d�s� d��i � � � � � d�
ri
i � dtg�

Therefore� starting with i � k and working backwards recursively� we 
nd that K� is spanned by
the di�erentials

K� � spanfd���� � � � � d�
r�
� � d�

�
�� � � � � d�

r�
� � � � � � d�

�
k� � � � � d�

rk
k � dtg

and that
J � K� � J� � spanfd���� � � � � d�

r�
� � d�

�
�� � � � � d�

r�
� � � � � � d�

�
k� � � � � d�

rk
k � dtg�
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Consequently� all of the functions �ji can be taken together with t and an additional set of linearly
independent function x�� � � � � xq to form a local coordinate chart on T ��M �R��

Since each of the distributions J�i forms an invariant pair with F � we have that

C�J�i � F�� � Ji�

Therefore� Theorem ����� ensures that locally there exists a basis �� � � � � pi for Ji � F
� such that

each k can be expressed as

k �

riX
j��

aj��i�d�
j
i �

Since this is true for each Ji� there exists a basis for F� of the form�
����
I � � � � G�

����� t� � � F ����� t�

�
�� � � � � �

�� � �
���

� � I � � � � Gk
k	���k� t� F k��k� t�

� � � I Gk	�
� ��� x� t� Gk	�

� ��� x� t� � � � Gk	�
k	���� x� t� F k	���� x� t�

�
����

expressed relative to the ordered cobasis

d���� d���� � � � � d��k� d�x� d(��� d(��� � � � � d(�k� d(x� dt

where we have divided each set of coordinate functions into two blocks� d(�i and d��i and where terms
like dx denote the set fdx�� � � � � dxqg�

Furthermore this can be extended to a cobasis of the form�
���������������

I � � � � � � G�
����� t� � � � � F ����� t�

�
�� � � � � �

� � � �
���

� � I � � � � Gk
k	���k� t� F k��k� t�

� � � I Gk	�
� ��� x� t� Gk	�

� ��� x� t� � � � Gk	�
k	���� x� t� F k	���� x� t�

� � � � I � � � �
� � � � � I � � �

� � � � � �
� � � � �

� � � � � � � I �
� � � � � � � � �

�
���������������
�

Inverting this matrix� we set that F is spanned by the columns of the matrix of functions�
���������������

� �G�
����� t� � � �F ����� t�

� �
� � � �

���
� � � �Gk

k	���k� t� �F k��k� t�

�Gk	�
� ��� x� t� �Gk	�

� ��� x� t� � � � �Gk	�
k	���� x� t� �F k	���� x� t�

I � � � �
� I � � �

� �
� � � � �

� � � I �
� � � � �

�
���������������
� ������

Written in this form� it is clear that the inputs can be grouped into blocks such that the noninter	
action conditions are satis
ed� Assuming the input and drift vector 
elds for the uncompensated
system are known� a feedback which renders the system noninteractive will be given by the feedback



���

transformation which maps the matrix corresponding to the uncompensated system onto the matrix
����� Therefore� the problem is solvable�

In order to prove necessity� we will assume that the problem is solvable and will let Di denote
the distribution spanned by the ith control block� The noninteracting conditions require that Di be
decoupled from each block of outputs Hj for j �� i� From Theorem ������� we know that a necessary
condition for this to occur is that Di must be a subset of the largest controlled invariant distribution
contained in ker�

P
j 	�i dHj�� which we will denote by Ii� Since this codistribution is involutive� there

exists a set of di�erentials de
ned such that

Ii � fd(�� d��� dtg�

Since I�i forms an invariant pair with F � F� can be represented by the 
rst two blocks of rows in a
matrix of the form �

�����
I � � G�

���� t� F ���� t�
� I G�

���� x� t� G�
���� x� t� F ���� x� t�

� � I � �
� � � I �
� � � � �

�
�����

which is expressed relative to the ordered cobasis

d��� d�x� d(x� d(�� dt�

Furthermore� if we compute the largest controllability distribution contained in I�i � which we
will denote by Mi� then there exists a set of coordinates �� x� z� t such that

M�
i � spanfd�� dx� dtg�

and we can further re
ne this description to�
�������

I � � � G�
���� t� F ���� t�

� I � � G�
���� x� t� F ���� x� t�

� � I G�
���� x� z� t� G�

���� x� z� t� F ���� x� z� t�
� � � I � �
� � � � I �
� � � � � �

�
�������
�

expressed relative to the ordered cobasis

d��� d�x� d�z� d(z� d(x� d(�� dt�

Since the system is assumed to be decoupled� we must have that Ji �M
�
i � fdtg� If this were

not the case� then there would exist an  � Ji which is decoupled from the controls associated
with the block Di� Since the system is assumed to be strongly accessible� this would imply that
there is a one	form in Ji which is in�uenced by one of the other control blocks� and this contradicts
our assumption that the outputs Hi are decoupled from the inputs Dj for j �� i� Finally� it is
straightforward to verify that X

j 	�i

Jj � Ii � M�
i �

Therefore� we can conclude that if the system is strongly accessible and satis
es the noninteraction
conditions� then it must satisfy

Ji � �
X
j 	�i

Jj� � fdtg�

�



���

If we remove the assumption that the system is strongly accessible� then things still work out in
essentially the same way� but the condition that

Ji � �
X
j 	�i

Jj� � fdtg

is no longer necessary because two output blocks could both contain the same uncontrollable output�
It is insightful to look at the case when each output block involves only scalar output so that

dHi � spanfdhi� dtg� It will su�ce to consider only the part of the system spanned by the di�erentials
contained in Ji� Restricted to this subset� we have the matrix�

� I Gi
i	���i� t� F i��i� t�

� I �
� � �

�
�

which is expressed relative to the ordered cobasis d��� d(�� dt� The codistribution F� is spanned by
covectors of the form �j � j � �f j�dt where f is the drift vector� and j � F� � spanfdtg�
Each iteration of Algorithm ����� is of the form

Ii�k	�� � Iik � LF �F� � Iik��

For the 
rst iteration� we must compute Ii� � F� This will have dimension � or � depending on
whether or not dhi � F� � spanfdtg� If this condition is true� then one of the  can be replaced by
dhi and we can compute that Ii� � fdhi� dLfh

i� dtg� If this condition is not true� then the iteration
ends� Continuing in this fashion we 
nd that at each step� we either add one di�erential to Ii�k	���
or the iteration ends� Eventually� we 
nd that

Ii � spanfdhi� dLfh
�� � � � � dLri��f hi� dtg�

and that

Ii � F
� � spanfdhi � LfH

idt� dLfh
� � L�fh

idt� � � � � dLri��f hi � Lri��hidtg�

Furthermore� using the basis described by ���� we 
nd that gj Lri��f hidt � 
ij � Therefore� the
matrix �

�����
Lg�L

r���
f h� � � � LgmL

r���
f h�

Lg�L
r���
f h� � � � LgmL

r���
f h�

���
� � �

���

Lg�L
rp��
f hp � � � LgmL

rp��
f hp

�
�����

has full rank� This is called the decoupling matrix� Its rank is invariant under feedback transforma	

tions� so the fact the outputs h�� � � � � hp can be rendered noninteractive implies that this matrix has
full rank� Conversely� it is not di�cult to show that if this matrix has full rank� then there exists
a feedback transformation and a decomposition of the inputs which renders the system noninter	
active� A control system which satis
es these conditions in an open neighborhood is said to have
vector relative degree on this neighborhood� From the above discuss� it is apparent that when each
output block consists of a scalar output� then the noninteracting control problem is solvable if and
only if the system has vector relative degree on the region of interest�

Just as in the disturbance decoupling problem� even if there does not exist a static state feedback
transformation which solves the noninteracting controls problem� there may exist a dynamic state
feedback which does solve the problem� If so� it can be found by starting with the codistribution
dH� � dH� � � � �� dHp� and applying Algorithm ������ to obtain the prolonged system�



Chapter ��

Conclusion

���� Contributions of this Dissertation

In closing� perhaps it is appropriate to outline the contributions which� in the author�s opinion�
this dissertation makes to the knowledge base of nonlinear control theory� While it is not widely
used� the theory of exterior di�erential systems certainly is not new� Elements of the theory existed
in the early �����s� the 
rst modern formulation is due to the work of Cartan around the turn of
the century� Also� I am fairly sure that all of the results pertaining to nonlinear control theory
can be found in other sources 	 though they may be stated somewhat di�erently� Therefore� the
contribution of this thesis lies primarily in the connections which it establishes between the theory
of exterior di�erential systems and the theory of nonlinear control systems� More speci
cally� the
connection between Grassmann bundles and a�ne control systems� and the description of invariance
within this framework� The disturbance decoupling and noninteracting control problems have been
presented primarily to show how � standard � nonlinear controls problems can be e�ectively treated
using this theory� Therefore� the theorems presented cover fairly standard results� but the proofs
are in many cases quite di�erent from what one would 
nd in a standard treatment� Ultimately�
the true contribution of any work must be measured by its readers� In this sense� it is too early
to render any judgments� All I can say in this regards is that I have come away from this project
with a deeper� more geometric understanding of nonlinear control systems� and I sincerely hope this
presentation has been able to convey some of my insights and enthusiasm�

���� Future Directions

Although this dissertation has advocated the use of exterior di�erential systems theory in the study
of nonlinear control theory and has in some cases presented comparisons between the vector 
eld
approach and the exterior di�erential systems approach to modeling nonlinear control systems� the
intent has been more to supplement the vector 
eld approach than to supplant it� In fact� if the
exterior di�erential systems methodology gains in popularity� it will almost surely be due to the fact
that it helps to bridge the gap between the vector 
eld approach and other techniques for dealing
with nonlinear systems such as optimal control theory and input	output analysis� Although the
exterior di�erential systems approach is similar to the vector 
eld approach in many ways� it also
shares some common features with these other methodologies since it uses the state	time space�
There has been some work done in this area 	 for example� the book by Gri�ths ���� However� this
remains a wide	open area�

Another interesting area of investigation would be a study of the connections between exterior
di�erential systems theory and classical mechanics� Problems in classical mechanics provided the
initial impetus for many of the people who developed exterior di�erential systems theory� and it is

��
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closely associated with topics like contact transformations� Also� it is probably possible to give topics
like virtual displacements and virtual work a more rigorous foundation using this theory� From a
controls engineering standpoint� this type of investigation would also be useful since it would result
in a common set of tools for analyzing mechanical hardware and controllers�

Up to this point� stability has not been mentioned at all in this dissertation� The reason for this
omission is that stability is a relative property� i�e�� a �ow is only stable relative to something� an
equilibrium point� another trajectory� a limit cycle� etc� However� it should be relatively straight	
forward to come up with a useful de
nition of stability on the state	time manifold and to discuss
things like Lyapunov stability and bounded	input bound	output stability� A major part of this in	
vestigation would have to involve picking an appropriate metric to measure the distance between
any two solution trajectories�

Finally� the Grassmann bundle description of a control system may provide a convenient method
of describing uncertainty in system parameters� and it may even be possible to provide a of descrip	
tion of dynamic uncertainty within this framework� Again� a major part of the investigation would
have to involve picking an appropriate metric to describe the magnitude of the error�
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Appendix A

Manifolds and the Tangent Bundle

This appendix is intended to provide a condensed treatment of basic topics in Di�erential Geometry�
For a more detailed treatment� the reader may wish to consult one of the several books on the subject
such as ��� ��� �� ����

A�� Di�erentiable Manifolds

A manifold M of dimension n is a metric space which is locally homeomorphic to Rn�
The simplest example of a manifold is Rn itself� Other examples are the circle S� and the sphere

S�� The circle S� is locally homeomorphic to R while the sphere is locally homeomorphic to R��
Therefore the circle is a one dimensional manifold while the sphere is a two dimensional manifold�

A subset N of manifold M which is itself a manifold is called a submanifold of M � Any open
subset N of a manifold M is clearly a submanifold since if M is locally homeomorphic to Rn then
so is N �

A function f � Rm �Rn is said to be smooth� or C� at a point p � Rm if its partial derivatives
of all orders exist and are continuous at p� If this is true at every point of an open subset V � Rm�
then the function f is said to be C� on V � In order to de
ne a notion of smoothness for a mapping
between two manifolds� we need to endow the manifolds with some additional structure�

A coordinate chart on a manifold M is a pair �U� x� where U is an open set of M and x is a
homeomorphism of U on an open set of Rn� The function x is also called a coordinate function and
can also written as �x�� � � � � xn� where xi � M �� R� If p � U then x�p� � �x��p�� � � � � xn�p�� is
called the set of local coordinates in the chart �U� x��

Two charts �U� x� and �V� y� with U � V �� �� are called C� compatible if the map

y � x�� � x�U � V � � Rn �� y�U � V � � Rn

is a C� function� A C� atlas on a manifold M is a collection of charts �U	� x	� with � � A which
cover the manifold and are pairwise C� compatible� An atlas is called maximal if it is not contained
in any other atlas� A di�erentiable or smooth manifold is a manifold with a maximal� C� atlas�

Let f � M �� R be any real	valued function de
ned on M � If �U� x� is a chart on M then the
function

�f � f � x�� � x�U � � Rn �� R

is called the local representative of f in the chart �U� x�� We therefore de
ne the map f to be

C� or smooth if its local representative �f is C�� Notice that if f is C� in one chart� then it
must be C� in every chart since we required our charts to be C� compatible and our atlas to be
maximal� Similarly� if we have a map f � M �� N � where M �N are di�erentiable manifolds� the

���
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local representation of f given a chart �U� x� of M and �V� y� of N is

�f � y � f � x��

which makes sense only if f�U ��V �� �� Again� f is a C� map if �f is a C� map� and this property

of f is independent of the particular coordinate charts used to to construct �f �
Let f � M �� N be a map between two manifolds� The map f is called a di�eomorphism if

both f and f�� are smooth� In this case� manifolds M and N are called di�eomorphic�

Example	 We have seen that Rn is an example of a trivial but important manifold� The di�er	
entiable structure on Rn consists of the chart �Rn� i� where i is the identity function on Rn as well
as all other charts that are C� compatible with it�

The sphere� S� can be given a di�erentiable structure as follows� Consider the charts �UN � pN �
and �US � pS� where UN is the sphere minus the North pole� US is the sphere minus the South pole
and pN � pS are the stereographic projections of the sphere to the plane from the North and South
poles respectively� One can show that these charts are compatible� We can then extend our atlas to
a maximal one by consider all other charts that are compatible with �UN � pN �� �US � pS�� �

A�� The Tangent Bundle of a Smooth Manifold

Let p be a point on a manifoldM � Let C��p� denote the set of all smooth functions in a neighborhood
of p� The set C��p� is a vector space over R since the sum of two smooth functions and the scalar
multiple of a smooth function are smooth function themselves�

A tangent vector Xp at p �M is an operator from C��p� to R which satis
es for f� g � C��p�
and a� b � R � the following properties�

�� Linearity Xp�a � f � b � g� � a �Xp�f� � b �Xp�g�

�� Derivation Xp�f � g� � f�p� �Xp�g� � Xp�f� � g�p�

The set of all tangent vectors at p � M is called the tangent space of M at p and is denoted by
TpM �

The tangent space TpM becomes a vector space over R if for tangent vectors Xp� Yp and real
numbers c�� c� we de
ne

�c� �Xp � c� � Yp��f� � c� �Xp�f� � c� � Yp�f�

for any smooth function f in the neighborhood of p� The collection of all tangent spaces of the
manifold�

TM �
$
p�M

TpM

is called the tangent bundle�

Example	 Given the standard di�erentiable structure on Rn� the standard tangent vectors of Rn

at any point p are
�

�r�
� � �

�

�rn

Thus given any smooth function f�r�� � � � � rn� � U �� R where U is a neighborhood of p� we have

�

�ri
�f� �

�f

�ri

for i � �� � � � � n� �



���

Now let M be a manifold and let �U� x� be a chart containing the point p� In this chart we can
associate the following tangent vectors

�

�x�
� � � � �

�

�xn

de
ned by
�

�xi
�f� �

��f � x���

�ri

for any smooth function f � C��p��

Theorem A���� Let M be an n dimensional manifold and let TpM be the tangent space at p �M �
Then TpM is an n�dimensional vector space and if �U� x� is a local chart around p then the tangent
vectors

�

�x�
� � � � �

�

�xn

form a basis for TpM �

Proof	 See Spivak ��� pages ���	���� �

From the above theorem we can see that if Xp is a tangent vector at p then

Xp �
nX
i��

ai
�

�xi

where a�� � � � � an are real numbers� From the above formula we can see that a tangent vector is an
operator which simply takes the directional derivative of function in the direction of �a�� � � � � an��

Now let M and N be smooth manifolds and f � M �� N be a smooth map� Let p � M and
let q � f�p� � N � We wish to transport tangent vectors from TpM to TqN using the map f � The
natural way to do this is by de
ning a map f� � TpM �� TqN by

�f��Xp���g� � Xp�g � f�

for smooth functions g in the neighborhood of q� One can easily check that f��Xp� is a linear
operator and a derivation and thus a tangent vector� The map f� � TpM �� Tf�p�N is called the
push forward map of f �

Theorem A���� The push forward map f� � TpM �� Tf�p�N is a linear map�

Proof	 Let Xp and Yp be two tangent vectors in TpM � Then

�f��Xp � Yp���g� � �Xp � Yp��g � f�

� Xp�g � f� � Yp�g � f�

� �f��Xp���g� � �f��Yp���g�

and also for real number c�

�f��c �Xp���g� � �c �Xp��g � f�

� c �Xp�g � f�

� c � �f��Xp���g�

which completes the proof� �

Theorem A��� Let f � M �� N and g � N �� K� Then

�g � f�� � g� � f�

Proof	 See Spivak ��� page ���� �



Appendix B

Algebras and Ideals

We begin by introducing some algebraic structures which will be used in the development of the
exterior algebra�

De�nition B���� An algebra is a vector space V together with a multiplication operation � � V �
V � V which for every scalar � � R and a� b � V satis�es ��a� b� � ��a�� b � a � ��b��

De�nition B���� Given an algebra �V���� a subspace W � V is called an algebraic ideal if x �
W� y � V implies that x� y� y � x �W

Note that if W is an ideal and x� y �W then x� y � W since W is a subspace�

Example	 The set of all polynomials with real	valued coe�cients� R�s�� is a vector space over R
with vector addition and scalar multiplication de
ned by

�P� � P���s� � P��s� � P��s�

�� � P ��s� � � � P �s�

If we de
ne multiplication by
�P� �P���s� � P��s� � P��s�

then R�s� is also an algebra�
In R�s�� the set of all polynomials with a zero at s � �� is an algebraic ideal� This is true

because for all P��s�� P��s� � R�s� which satisfy

P����� � P����� � �

we have that
P����� � P����� � �� � � P� � �� P����� � P����� � �

so this set is a subspace ofR�s� which is closed under multiplication� Furthermore for all P �s�� R�s� �
R�s� with R���� � � we have that

P ���� �R���� � �

which veri
es that the set of all polynomials with a root at 	� is an ideal of R�s�� �

De�nition B��� Let �V��� be an algebra� Let the set A �� fai � V� � � i � Kg be any �nite
collection of linearly independent elements in V � Let S be the set of all ideals containing A

S �� fI � V jI is an ideal and A � Ig�

���
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The ideal IA generated by A is de�ned as

IA �
"
I�S

I

and is the minimal ideal in S containing A�

If �V��� is an algebra� and there exists an element e � V such that for all x � V� x�e � e�x � x
then e is called a unity element and is unique� If �V��� is an algebra with a unity element� then the
ideal generated by a 
nite set of elements can be represented in a simple form�

Theorem B���� Let �V��� be an algebra� A �� fai � V� � � i � Kg a �nite collection of elements
in V � and IA the ideal generated by A� Then for each x � IA� there exist vectors v�� � � � � vK such
that

x � v� � a� � v� � a� � � � �� vK � aK

Proof	 See Hungerford ��� pages ���	��� �

Example	 The polynomial �s � �� generates an ideal in R�s� which is equal to the set of all
polynomials with a zero at s � ��� We will denote this set as I��� In the previous example we
veri
ed that this set is an ideal� and the polynomial �s � �� is clearly contained in I��� Therefore�
in order to verify that I�� is the ideal generated by �s � �� we only need to show that any other
ideal which contains �s � �� also contains I��� Because a real root can always be factored� I�� can
be written as

I�� �� fP �s� � R�s� j P �s� � R�s��s � �� � R�s� � R�s�g �B���

If I is any other ideal containing �s � ��� then

�� R�s� � R�s�� R�s��s � �� � I

because of the de
nition of an ideal� Therefore� I�� � I� Consequently� I�� must be the ideal
generated by �s � ���

This result also follows directly from Theorem B���� since R�s� has the constant polynomial �
as a unity element� In order to see the importance of the unity element� suppose that we had taken
as our algebra the set I�� of all polynomials in R�s� with a root at 	�� It is easy to verify that this is
an algebra� and that the set I����� of all polynomials with roots at 	� and 	� is an ideal� However�

I����� �� fP �s� � R�s� j P �s� � R�s��s � ���s � �� � R�s� � I��g

because the set on the right contains only polynomials with roots of order � and higher at 	�� �

Example	 The two polynomials P��s� � �s����s�� and P��s� � �s����s��� generate an ideal
in R�s�

IP��P� �� fP �s� � R�s� j P �s� � Q�s�P��s� � R�s�P��s�� R�s�� Q�s� � R�s�g�

Although this ideal is generated by two linearly independent vectors� it is equivalent to the ideal
generated by the single vector P��s� � �s � ��� To demonstrate this fact� let P �s� � IP��P� � Then

P �s� � �Q�s��s � �� �R�s��s � ���s � ���

which implies that P �s� � I���
Now suppose P �s� � I�� Then

P �s� � Q�s��s � ��



���

for some Q�s� � R�s�� From the coprime factorization property of polynomials it can be shown that
there exists polynomials N �s��M �s� � R�s� such that

� � N �s��s � �� �M �s��s � ��

Using this identity we get that

P �s� � Q�s� � � � �s � �� � Q�s�N �s��s � ���s � �� � Q�s�M �s��s � ��s � ���

which implies that P �s� � IP��P� � This example shows that if we are given an arbitrary set of
generators� it may be possible to 
nd a smaller set of generators which will generate the same ideal�
�

De�nition B���� Let �V��� be an algebra� and I � V an ideal� Two vectors x� y � V are said to
be equivalent mod I if and only if x� y � I� This equivalence is denoted

x 	 y mod I

From the de
nition above we can see that

x 	 y mod I

if and only if
x� y � I

which simply means that

x� y �
KX
i��

�K � �K

for some �K � V � It is customary to abuse notation and denote this as

x 	 y mod ��� � � � � �K

where the mod operation is implicitly performed over the ideal generated by���� � �� �K�


