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Abstract The solution of a class of third order ordi-
nary differential equations possessing two parameter
Lie symmetry group is obtained by group theoretic
means. It is shown that reduction to quadratures is pos-
sible according to two scenarios: (1) if upon first reduc-
tion of order the obtained second order ordinary differ-
ential equation besides the inherited point symmetry
acquires at least one more new point symmetry (possi-
bly a hidden symmetry of Type II). (2) First, reduction
paths of the fourth order differential equations with four
parameter symmetry group leading to the first order
equation possessing one known (inherited) symmetry
are constructed. Then, reduction paths along which a
third order equation possessing two-parameter symme-
try group appears are singled out and followed until a
first order equation possessing one known (inherited)
symmetry are obtained. The method uses conditions for
preservation, disappearance and reappearance of point
symmetries.
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1 Introduction

Providing a unified treatment the Lie group theory
has developed into a powerful tool for solving and
classifying differential equations even though the the-
ory does not apply to all equations. In order to broaden
and complement the already existing results various
group theoretic approaches have been devised relying,
for example, on hidden[1, 2], and nonlocal symmetries
[3, 13]. Specific results on certain classes of nonlocal
symmetries with numerous examples were analyzed
in [7], while useful comments on hidden symmetries
may be found in [8]. In this paper we use hidden and
convertible symmetries in order to expand the results
related to solutions of third order differential equa-
tions possessing two parameter symmetry group. We
define a convertible type of symmetry of order n − 1
as a point symmetry that disappears during the first re-
duction of order of an ordinary differential equation,
remains hidden (non-local) during n − 1 reductions,
and reappears as a point symmetry after n reductions.
Convertible symmetries may be regarded as a special
class of hidden symmetries of type II [1]. Integration of
third order differential equations which admit a three-
dimensional solvable and non-solvable symmetry al-
gebra has been previously discussed [6]. ln general,
third order ordinary differential equations possessing
two parameter symmetry group are not solvable. How-
ever, due to properties of hidden or convertible sym-
metries in certain cases this may be possible. Since
two parameter group is always solvable one symmetry
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generator may be used to reduce the order of the ini-
tial equation so that the other symmetry is inherited as
a local symmetry of the corresponding second order
equation. This property has been effectively used in
order to obtain the solution of a class of second-order
ordinary differential equations not possessing Lie point
symmetries [5]. In this approach, the order of the ini-
tial second order equation is increased and the solu-
tion of the new third order equation is sought in the
case that additional symmetries (for example hidden
symmetries of type II) appear both in the new third
order equation as well as in the reduced second order
equation.

For third order differential equations possessing two
point symmetries there are two possibilities for the
complete reduction i.e. reduction to quadratures:

Case 1. If upon first reduction of order, the obtained
second order ordinary differential equation besides the
inherited point symmetry possesses at least one more
new point symmetry which could be a type II hidden
symmetry.

Case 2. Following the first reduction of order the in-
herited point symmetry is the only point symme-
try of the obtained second order differential equa-
tion. Further reduction using that symmetry gener-
ates a first order equation with one known (inher-
ited) point symmetry so that the initial third order
equation may be solved (first order ordinary differ-
ential equations have infinite number of point sym-
metries however generally unknown). The idea is to
use properties of hidden (convertible) symmetries that
come up along the reduction paths of the fourth or-
der differential equations with four parameter symme-
try group that lead to the first order equation possess-
ing one known symmetry. Naturally, this method does
not enable the complete classification of third order
equations possessing two parameter symmetry group
since the source of hidden symmetries may be in equa-
tions of order higher than fourth, as well as in contact
symmetries.

Although some aspects of Case 1 have been previ-
ously discussed in relation to the second order equa-
tions not possessing Lie point symmetries [5], we give
a detailed account of it for completeness. A procedure
similar to Case 2 was applied to the third-order ODEs
[4]. Hence, a separate section of the paper is devoted

Table 1 Canonical form of two-dimensional Lie algebras

Type L2 structure Basis of L2 in canonical variables

I [X, Y ] = 0 X = ∂
∂y Y = ∂

∂x

II [X, Y ] = 0 X = ∂
∂y Y = x ∂

∂y

III [X, Y ] = X X = ∂
∂y Y = y ∂

∂y

IV [X, Y ] = X X = ∂
∂y Y = x ∂

∂x + y ∂
∂y

to each case, and the reduction paths pertaining to the
four-parameter symmetry groups are presented in the
Appendix A.

2 Case 1: The reduced second order equation

possesses an additional, second symmetry

The starting point of the analysis is a third order differ-
ential equation

y′′′ = F(x, y, y′, y′′), (1)

possessing two parameter Lie point symmetry group,
which is reduced to a second order equation using one
of the available symmetries. According to the Lie’s
classification there are four two-dimensional transitive
algebras of vector fields in R2[9]:

In the following exposition we consider each possi-
bility.

2.1 Type I X = ∂y, Y = ∂x

The general form of a differential equation invariant
under the action of symmetries

X = ∂y, Y = ∂x . (2)

is

y′′′ = F(y′, y′′). (3)

If Equation (3) is reduced using vector field X (setting
u = x and v = y′), a second order differential equation
is obtained

v′′ = F(v, v′), (4)
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or in terms of the canonical coordinates

u′′ = F̄(v, u′) = −u′3 F
(

v,
1

u′

)
. (5)

Equation (4) has an inherited symmetry

Ỹ (1) = ∂u,

so it may be further reduced to the first order differen-
tial equation. In our notation tilde denotes restriction
of the symmetry generator to corresponding local co-
ordinates (differential invariants), while superscript in-
dex in brackets denotes the order of the prolongation.
However in order to completely reduce Equation (3) to
quadratures, we suppose that Equation (4) possesses an
additional symmetry Z̃ which could be a hidden sym-
metry of type II. Now, there are also four possibilities
for Ỹ (1) and Z̃ :

2.1.1 Type IA

Comparison of Equation (5) with the canonical form of
equation corresponding to Type A shows that this case
would imply the existence of three point symmetries
for Equation (3) so that it does not belong to the class
considered here.

2.1.2 Type IB

For this type the canonical form of differential equation
is

u′′ = F̄(v),

so that

−u′3 F
(

v,
1

u′

)
= F̄(v),

or

F
(

v,
1

u′

)
= − 1

u′3 F̄(v).

Recalling that

u′ = 1

v′ ,

yields

v′′ = v′3 F(v).

Consequently, the initial third order equation corre-
sponding to Type B is

y′′′ = y′′3 f (y′). (6)

2.1.3 Type IC

This case

−vF
(

v,
1

u′

)
= 1

u′3 F̄(u′),

would imply the existence of three point symmetries,
so it does not belong to the class considered here.

2.1.4 Type ID

The condition

−u′3 F
(

v,
1

u′

)
= u′ F̄(v),

yields

y′′′ = y′′2 f (y) (7)

For Type IB the hidden symmetry coincides with the
contact symmetry while this is not the case for ID.

2.2 Type II X = ∂y, Y = x∂y

As for Type IA, Type IIA would imply existence of
three symmetries in the initial third order equation, so
this case does not belong to the class of interest. The
same applies to Type IIB and Type IIC. Following es-
sentially the same procedure as for Type I, in a straight-
forward manner one obtains the following third order
equation for the case IID:

2.2.1 Type IID

y′′′ = y′′ f (x). (8)
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For this type the hidden symmetry is also a contact
symmetry.

2.3 Type III X = ∂y, Y = y∂y

The form of (1) invariant under X = ∂y is

y′′′ = f (x, y′, y′′),

while the form of f under the prolongation of Y is
obtained by applying the condition

Y (3)(y′′′ − f )|(y′′′− f )=0 = 0,

yielding

y′′′ = y′′F
(

x,
y′′

y′

)
. (9)

In terms of the fundamental differential invariants of
the group generated by X and Y Equation (8) may be
written as

u′′ = u′F(v, u′) − u′2.

Comparison with the corresponding equations in
Table 2, implies that Type IIIA would require three
symmetries in the original third order differential equa-
tion, so this type does not belong to the class of interest
here.

2.3.1 Type IIIB

From

u′F(v, u′) − u′2 = F̄(v),

Table 2 Canonical forms of u′′ = F̃(v, u′) invariant under Ỹ (1)

and Z̃

[Ỹ (1), Differential

Type Z̃ ] Vector field equation

A 0 Ỹ (1) = ∂u Z̃ = ∂v u′′ = F̄(u′)

B 0 Ỹ (1) = ∂u Z̃ = v∂u u′′ = F̄(v)

C Ỹ (1) Ỹ (1) = ∂u Z̃ = u∂u + v∂v vu′′ = F̄(u′)

D Z̃ Ỹ (1) = ∂u Z̃ = u∂u u′′ = u′ F̄(v)

since

ln y′ = u, and u′ = y′′

y′ ,

it follows in a straightforward manner that the equation
we are looking for is

y′′′ = y′
(

f (x) +
(

y′′

y′

)2)
. (10)

2.3.2 Type IIIC

From

u′F(v, u′) − u′2 = 1

v
F̄(u′),

and Equation (8) in a straightforward manner one ob-
tains

y′′′ = y′
(

1

x
F

(
y′′

y′

)
+

(
y′′

y′

)2)
. (11)

2.3.3 Type IIID

From

u′F(v, u′) − u′2 = u′ F̄(v),

the following equation is obtained

y′′′ = y′
(

f (x)
y′′

y′ +
(

y′′

y′

)2)
. (12)

For Type III all hidden symmetries are also contact
symmetries of the obtained equations.

2.4 Type IV X = ∂y, Y = x∂x + y∂y

In a manner similar to the one applied to Type III, the
form of Equation (1) invariant under the canonical rep-
resentation of Type IV algebra is

y′′ = 1

x2
f (y′, xy′′). (13)
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In terms of the fundamental differential invariants of the
group generated by X and Y Equation (11) becomes

u′′ = −u′3 F
(

v,
1

u′

)
− u′2.

As in all previous cases Type IA would imply existence
of the third symmetry in the initial third order equation
so this case does not belong to the class in focus here.

2.4.1 Type IVB

Equation

u′′ = −u′3 F
(

v,
1

u′

)
− u′2 = F̄(v),

leads to

F
(

v,
1

u′

)
= 1

u′ + 1

u′3 F̄(v),

and after straightforward calculation to the equation

y′′′ = y′′

x
+ xy′′3 f (y′). (14)

2.4.2 Type IVC

From

u′′ = −u′3 F
(

v,
1

u′

)
− u′2 = 1

v
F̄(u′),

and

F
(

v,
1

u′

)
= − 1

u′3

(
1

v
F̄(u′) + u′2

)
,

the following equation is obtained

y′′′ = − y′′

x
− xy′′3

y′ F
(

1

xy′′

)
. (15)

2.4.3 Type IVD

The equation in Table 2, corresponding to Type IV
yields

u′′ = −u′3 F
(

v,
1

u′

)
− u′2 = u′ F̄(v),

so that the equation of interest is

y′′′ = − y′′

x

(
1 − y′′F(y′)

)
. (16)

For Type IVD hidden symmetry is not the contact sym-
metry of the obtained equation while for Types B and
C these symmetries coincide.

Therefore, the class of third order equations that re-
duce to second order ODEs which posses at least one
more new point symmetry (possibly a Type II hidden
symmetry) includes the equations whose general form
is given by expressions (6) and (7) (Type I), expression
(8) (Type II), (9), (10) and (11) (Type III) and (14),
(15) and (16) (Type IV). The results are summarized in
Table 3.

3 Case 2: Reduction to a first order equation

possessing one known (inherited) point symmetry

This approach uses properties of convertible (hidden)
symmetries that arise along reduction paths of the

Table 3 Third order equations of Case1 acquiring a second point symmetry upon first reduction of order

Type I II III IV

A

B y′′′ = y′′3 f (y′) y′′′ = y′
(

f (x) +
(

y′′
y′

)2)
y′′′ = y′′

x + xy′′3 f (y′)

C y′′′ = y′
(

1
x F

(
y′′
y′

)
+

(
y′′
y′

)2)
y′′′ = − y′′

x − xy′′3
y′ F

(
1

xy′′

)
D y′′′ = y′′2 f (y) y′′′ = y′′ f (x) y′′′ = y′

(
f (x) y′′

y′ +
(

y′′
y′

)2)
y′′′ = − y′′

x

(
1 − y′′ F(y′)

)
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fourth order differential equations with four parame-
ter symmetry group that lead to the first order equation
possessing one known symmetry, hence reducible to
quadratures. In our approach the method includes clas-
sification of all reduction paths of a fourth order ODE
possessing certain four dimensional algebra of local
symmetries to a one dimensional ODE, and choosing
ones that have third order ODE possessing two param-
eter symmetry group along one of the paths. Again
we stress the fact that complete classification is not at-
tempted here since the source of hidden symmetries
may be in the equations of order higher than four as
well as in contact symmetries. In the following exposi-
tion we use the notation of reference [10], so that An,m

denotes a Lie algebra of dimension n and isomorphism
type m. We illustrate the method using algebras A4,1

and A4,4.

3.1 Example 1: Algebra A4,1

The algebra A4,1 has a basis

X = ∂y, Y = x∂y, Z = x2∂y, U = ∂x , (17)

with nonzero commutator relations

[Y, U ] = X, [Z , U ] = Y. (18)

In reference [12] the vector field U is expressed as

U = −∂x + f (x)∂y . (19)

However it may be noticed that since canonical coordi-
nates are not uniquely defined and satisfy transforma-
tions

x̄ = F(x)
(20)

ȳ = y + G(x),

for arbitrary smooth functions F and G (with addi-
tional constraint F

′
(x) �= 0), expression (19) may be

reduced to the form in (17). Consequently, the most
general invariant fourth order equation admitting the
Lie symmetry algebra A4,1 has a simpler form

�4 : yiv = F(y′′′), (21)

where �n denotes a differential equation of order n. Al-
though Equation (21) may be easily integrated without
the use of symmetry methods, it is instructive to ana-
lyze the reduction paths for this equation. The reduction
scheme of A4,1 algebra is presented in Table A.1 of Ap-
pendix A. In the notation used superscript N denotes
nonlocal symmetry and tilde denotes restriction of the
inherited symmetry generator to corresponding funda-
mental differential invariants, while the superscript in
the parenthesis denotes the order of the prolongation.

In the construction of the reduction paths, well
known conditions for disappearance, preservation and
reappearance of point symmetries have been used. The
particular reduction path chosen for clarification of the
method is presented below in a schematic manner.

�4: A4,1(X, Y, Z , U )

⇓ Z

↙ �3: A2,1(X̃ (1); Ỹ (1)); Ũ (1),N ↘
⇓ X̃ (1) Ỹ (1) ⇓

�2: A1(Ỹ (2)); Ũ (2),N �2: A1(X̃ (2)); Ũ (2),N

⇓ Ỹ (2) ⇓ X̃ (2)

�1: A1(Ũ (3)) �1: A1(Ũ (3))

In terms of the fundamental differential invariants
r and v of the group generated by Z , Equation (21)
becomes

r2v
′′′ + 8rv′′ + 12v′ = F(r2v′′ + 6rv′ + 6v). (22)

Restrictions of the remaining vector fields in terms of
r and v are:

X̃ (1) = − 2

r3
∂v,

Ỹ (1) = − 1

r2
∂v,

Ũ (1),N = ∂r +
(

r2
∫

vdr − 2v

r

)
∂v.

In terms of the fundamental differential invariants of
symmetry X̃ (1) which we denote as x and y,

x = r,

y = −1

2
r3v.
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Table 4 Generators of
four-dimensional Lie
algebras whose most
general ODEs reduce to the
third order ODEs possessing
two point symmetries

Lie algebra Generators X, Y, Z, U

2A2 −x∂x , ∂y , −y∂y , ∂y

A3,2⊕A1 ∂y , −x∂x , ∂x + (y + f (x))∂y , ex∂y

A3,6 ⊕ A1 ∂y , (x2 − 1)1/2∂y , −x(x2 − 1)1/2∂x + ( f (x) − y(x2 − 1)1/2)∂y , x∂y

Aa
3,7 ⊕ A1(a > 0) ∂y , x∂y , −(1 + x2)∂x + ((a − x)y + f (x))∂y , (1 + x2)1/2earctan(x)∂y

A3,8 ⊕ A1 ∂y , y∂y , −y2∂y , f (x)∂x

A4,1 ∂y , x∂y , x2∂y , −∂x + f (x)∂y

Aa
4,2 (a �= 0, 1) e(1−a)x∂y , −∂y , x∂y , ∂x + y∂y

A4,3 ∂y , x∂y , −x log(x)∂y , x∂x + (y + f (x))∂y

A4,4 ∂y , x∂y , x2∂y , −∂x + (y + f (x))∂y

Aa,b
4,6 (a �= 0, b ≥ 0) (1 + x2)1/2e(b−a) arctan(x)∂y , x∂y , ∂y , (1 + x2)∂x + (xy + by)∂y

A4,8 ∂y , ∂x , x∂y , x∂x

A4,12 ∂y , x∂y , y∂y , −(1 + x2)∂x − xy∂y

A straightforward calculation turns Equation (21) into

y′′′ = y′′

x
+ x F

(
y′′

x

)
. (23)

This equation has two point symmetries X = ∂y, Y =
x∂y and reduces to quadrature as shown in the diagram
above. Naturally, as presented in the schematic form
above, reducing the order of a third order equation in
the reduction path using symmetry Ỹ (1) first also leads
to a first order equation solvable by quadrature. In terms
of the fundamental differential invariants of symmetry
Ỹ (1) = − 1

r2 ∂v, denoted by ρ and θ, an equation also
possessing two parameter symmetry group is obtained
however it is of slightly more complicated form. A
straightforward calculation for this case yields

ρ = r,

θ = −r2v,

so that with w = θ ′ Equation (21) becomes

w′′ + 2
w′

ρ
− 2

w

ρ2
= F

(
w′ + 2

w

ρ

)
. (24)

The restriction of the inherited symmetry to the funda-
mental differential invariants is

X̃ (2) = − 2

ρ2
∂w,

while the nonlocal symmetry is

Ũ (2),N = ∂ρ + 2

ρ2

∫
wdρ ∂w.

Further reduction using X̃ (2) yields the following first
order equation

y′ − 2
y
x

= x2 F
(

y
x2

)
, (25)

whose symmetry is

Ũ (3) = ∂x + 2
y
x
∂y .

Equation (25) is of Riccati type and easily solvable by
quadrature.

3.2 Example 2: Algebra A4,4

The algebra A4,4 has a basis

X = ∂y, Y = x∂y, Z = x2∂y, U = −∂x + y∂y,

(26)

with nonzero commutator relations

[X, U ] = X, [Y, U ] = X + U, [Z , U ] = Y + Z .

(27)
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1
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=
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−
3

y′′2
2
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2

X
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y′ y

′′
+
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−

1 2
y′2 )

A
4,

1
yiv

=
F

(y
′′′

)
Y

(o
r
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)
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F
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)

A
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2
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(a

−
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2
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+
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F
(ξ
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ξ

=
(a

−1
)y

′′ +
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ex
Z
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=

−
4

y′′ x
−

y′ (a
−

1)
2
+

2(
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1)
2

x
y+

ex
F

(ξ
)

x
,

ξ
=
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′ (x
(a

−
1)

+
3)

+
y′′ x

+
2

y(
1

−
a)

]

A
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3
yiv

=
2x

y′′ +
F

(x
y′′ +

x2
y′′′

)
x3

Z
y′′′

=
y′′ x
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−

1)
−

y′
η
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(3

+
14 η

)
)

+
y x3

(14 η
4

+
10 η

2
−

5 η
−

4)
+

F
(ξ

)
x3

,

η
=
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g

(x
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ξ
=

y
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η

xη
2

−
y′2

η
+1 η

−
y′′ x

A
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4
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=
e−x

F
(y

′′′
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)
Y
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r

Z
)

y′′′
=

y′′ x
+
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−x

F
(e

x
y′′ x

)

(C
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d
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)
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(8
x3
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2
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F
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Y
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2
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a
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2
+
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+
3x
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(x

)b

ξ
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(x
)b

(x
2
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1)
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2
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a
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b)
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+
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+
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y′′

+
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)

A
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8
yiv

=
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F
(y′′′2 y′
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)

Y
(o

r
Z

)
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=
7

yy
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6
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F
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y
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−
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)

A
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=
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)−
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(1
+x

2
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x2

y′′

(1
+x

2
)2

,

ξ
=

y′′′
(1

+x
2
)

y′
′

+
3x

X
y′′′

=
y′F

(ξ
)−

12
x2

(x
2
+1

)2
−

8x
(y

′′ +
y′2

)
1+

x2
+

y′ (3
y′′

+
y′2 ),

ξ
=

(y′′ y′
+

y′ )(
1

+
x2

)+
3x

The most general invariant fourth order equation ad-
mitting the Lie symmetry algebra A4,4 is

�4 : yiv = e−x F(ex y′′′). (28)

From the reduction paths presented in the Appendix,
the only reduction path of interest is presented below
in a schematic manner.

�4: A4,4(X, Y, Z , U )

⇓ Z

↙ �3: A2,1(X̃ (1); Ỹ (1)); Ũ (1),N ↘
⇓ X̃ (1) Ỹ (1) ⇓

�2: A1(Ỹ (2)); Ũ (2),N �2: A1(X̃ (2)); Ũ (2),N

⇓ Ỹ (2) ⇓ X̃ (2)

�1: A1(Ũ (3)) �1: A1(Ũ (3))

Calculations for this algebra are very similar to the
ones for algebra A4,1 so that the third order equation
possessing two parameter symmetry group reducible
to quadratures is

y′′′ = y′′

x
+ xe−x F

(
ex y′′

x

)
.

Following a straightforward calculation the first order
equation corresponding to the Equation (25) is

y′ − 2
y
x

= x2e−x F
(

ex y
x2

)
.

4 Tables

Tables 4 and 5 are presented in order to complement
the results of studies on fourth-order ODEs, such as
[12], while Table 6 contains reduction paths pertaining
to the Case 2 of this work.

In Table 4, we list the generators of the four-
dimensional real Lie algebras whose most general
ODEs of order four reduce to the third order ODEs pos-
sessing only two point symmetries. In this table f (x)
denotes an arbitrary function.

In Table 5 we list four-dimensional real Lie algebras,
the corresponding fourth-order equations, the operator
employed in the first reduction and the obtained third
order equation possessing only two point symmetries.

In Table 6 we list paths for complete integration of
third order equations possessing two point symmetries.
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Table 6 Paths for complete integration of third order equations possessing two point symmetries

�4 1st �3 2nd �2 3rd �1

2 A2 → X A2,2(Z̃ (1)
, Ũ (1)

); Ỹ (1),N → Ũ (1) A1(Z̃ (2)
); Ỹ (2),N → Z̃ (2) A1(Ỹ (3)

)

A3,2⊕ A1 → Y A2,1(X̃ (1)
, Ũ (1)

); Z̃ (1),N → Ũ (1) A1(X̃ (2)
), Z̃ (2),N → X̃ (2) A1(Z̃ (3)

)

A3,6⊕ A1 → X A2,1(Ỹ (1)
, Ũ (1)

); Z̃ (1),N → Ũ (1) A1(Ỹ (2)
); Z̃ (2),N → Ỹ (2) A1(Z̃ (3)

)

→ Y A2,1(X̃ (1)
, Ũ (1)

); Z̃ (1),N → Ũ (1) A1(X̃ (2)
); Z̃ (2),N → X̃ (2) A1(Z̃ (3))

Aa
3,7⊕ A1 → X A2,1(Ỹ (1)

, Ũ (1)
); Z̃ (1),N → Ũ (1) A1(Ỹ (2)

); Z̃ (2),N → Ỹ (2) A1(Z̃ (3)
)

→ Y A2,1(X̃ (1)
, Ũ (1)

); Z̃ (1),N → Ũ (1) A1(X̃ (2)
); Z̃ (2),N → X̃ (2) A1(Z̃ (3)

)

A3,8⊕ A1 → X A2,1(Ỹ (1)
; Ũ (1)

); Z̃ (1),N → Ỹ (1) A1(Ũ (2)
); Z̃ (2),N → Ũ (2) A1(Z̃ (3)

)

A4,1 → Y A2,1(X̃ (1)
, Z̃ (1)

); Ũ (1),N → Z̃ (1) A1(X̃ (2)
); Ũ (2),N → X̃ (2) A1(Ũ (3)

)

→ Z A2,1(X̃ (1)
, Ỹ (1)

); Ũ (1),N → X̃ (1) A1(Ỹ (2)
); Ũ (2),N → Ỹ (2) A1(Ũ (3)

)

→ Ỹ (1) A1(X̃ (2)
); Ũ (2),N → X̃ (2) A1(Ũ (3)

)

Aa
4,2 → Z A2,1(X̃ (1)

, Ỹ (1)
); Ũ (1),N → X̃ (1) A1(Ỹ (2)

); Ũ (2),N → Ỹ (2) A1(Ũ (3)
)

A4,3 → Z A2,1(X̃ (1)
, Ỹ (1)

); Ũ (1),N → X̃ (1) A1(Ỹ (2)
); Ũ (2),N → Ỹ (2) A1(Ũ (3)

)

A4,4 → Z A2,1(X̃ (1)
, Ỹ (1)

); Ũ (1),N → Ỹ (1) A1(X̃ (2)
); Ũ (2),N → X̃ (2) A1(Ũ (3)

)

Aa,b
4,6 → Y A2,1(X̃ (1)

, Z̃ (1)
); Ũ (1),N → X̃ (1) A1(Z̃ (2)

); Ũ (2),N → Z̃ (2) A1(Ũ (3)
)

→ Z A2,1(X̃ (1)
, Ỹ (1)

); Ũ (1),N → X̃ (1) A1(Ỹ (2)
); Ũ (2),N → Ỹ (2) A1(Ũ (3)

)

A4,8 → Y A2,1(X̃ (1)
, Ũ (1)

); Z̃ (1),N → Ũ (1) A1(X̃ (2)
); Z̃ (2),N → X̃ (2) A1(Z̃ (3)

)

→ Z A2,1(X̃ (1)
, Ũ (1)

); Ỹ (1),N → Ũ (1) A1(X̃ (2)
); Ỹ (2),N → X̃ (2) A1(Ũ (3)

)

A4,12 → X Aa
2,2(Ỹ (1)

, Z̃ (1)
); Ũ (1),N → Z̃ (1) A1(Ũ (2)

); Ỹ (2),N → Ũ (2) A1(Ỹ (3)
)

In the notation used superscript N denotes nonlocal
symmetry and tilde denotes restriction of the inherited
symmetry generator to the corresponding fundamen-
tal differential invariants, while the superscript in the
parenthesis denotes the order of the prolongation. Col-
umn labels 1st, 2nd and 3rd denote the operators used
in the first, second and third reductions. Known condi-
tions for disappearance, preservation and reappearance
of point symmetries have been used in the construction
of reduction paths along with conditions derived and
discussed in [11]. A complete set of paths for each four-
dimensional Lie algebra is presented in an extended
version of this work [14].
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