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Preface to New Edition

These lecture notes are presented here unchanged from the 1974 edition (ex-
cept that the proof of Proposition 1.7.2 has been changed).

Since 1974 many books on nonlinear functional analysis have appeared. Fur-
thermore, variational methods in nonlinear functional analysis, which are not dis-
cussed here, have seen enormous development. Here are a few more up-to-date
references:

Ambrosetti, A., and Prodi, G.: A Primer of Nonlinear Analysis. Cam-
bridge Studies in Advanced Mathematics, 34. Cambridge University
Press, Cambridge, 1993.

Chang, K.-C.: Infinite-Dimensional Morse Theory and Multiple Solution
Problems. Progress in Nonlinear Differential Equations and Their Appli-
cations, 6. Birkhduser, Boston, 1993,

Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin—-New York,
1985.

Ekeland, 1.: Convexity Methods in Hamiltonian Mechanics. Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), 19. Springer, Berlin, 1990.

Ghoussoub, N.: Duality and Perturbation Methods in Critical Point The-
ory. Cambridge Tracts in Mathematics, 107. Cambridge University Press,
Cambridge, 1993.

Ize, J.: Bifurcation Theory for Fredholm Operators. Mem. Amer. Math.
Soc. 7 (1976), no. 174, viii + 128 pp.

Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value
Problems. Expository lectures from the CBMS Regional Conference held
at Harvey Mudd College, Claremont, Calif., June 9—15, 1977. CBMS Re-
gional Conference Series in Mathematics, 40. American Mathematical
Society, Providence, R.I., 1979.

Mawhin, J., and Willem, M.: Critical Point Theory and Hamiltonian Sys-
tems. Applied Mathematical Sciences, 74. Springer, New York—Berlin,
1989.

Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Ap-
plications to Differential Equations. CBMS Regional Conference Series
in Mathematics, 65. American Mathematical Society, Providence, R.I.,
1986.

Schechter, M.: Linking Methods in Critical Point Theory. Birkhiuser,
Boston, 1999.



Struwe, M.: Variational Methods: Applications to Nonlinear Partial Dif-
ferential Equations and Hamiltonian Systems. Springer, Berlin, 1990.
Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equa-
tions and Their Applications, 24. Birkhauser, Boston, 1996.

Zeidler, E.: Nonlinear Functional Analysis and Its Applications. 1. Fixed-
Point Theorems. Springer, New York-Berlin, 1986.

Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Non-
linear Monotone Operators. Springer, New York—Berlin, 1990.

A Russian edition of the notes was published in 1977. It contains an extra
section and a very long list of further references.



Preface

In this course we shall take up a variety of topological and analytic techniques
for the study of nonlinear problems, and we shall illustrate their use by applications
to nonlinear differential and integral equations, primarily to rather simple nonlinear
elliptic equations.

We begin with degree of mapping, first in finite dimensions and then in Banach
space—the Leray-Schauder degree theory—as well as extensions of this theory.
This is used in the study of existence of global solutions of nonlinear problems and
also in local, perturbation problems. Concerning the latter we shall spend consid-
erable time on bifurcation problems, i.e., problems in which various solutions may
branch from a particular one.

A few topics in the calculus of variations will be treated, such as monotone op-
erators and min-max theorems. We will also study the deep Nash-Moser extension
of the implicit function theorem.

Concerning the background for the course, students should know standard lin-
ear operator theory. We also assume familiarity with basic notions of differentiable
manifolds and differential forms. Almost no knowledge of topology is assumed.
Occasionally some well-known results of homotopy theory will be cited without
proof.

The principal reference for the course is the book:

Schwartz, J. T.: Nonlinear Functional Analysis. Gordon and Breach, New
York, 1969, [11].

We now list some references to degree theory, applications, and to bifurcation
theory. For general background on degree theory:

Krasnosel’skii, M. A.: Topological Methods in the Theory of Nonlinear In-
tegral Equations. Macmillan, New York, 1964, [6].

Milnor, J. W.: Topology from the Differentiable Viewpoint. University Press
of Virginia, Charlottesville, Va., 1965, [8].

Vainberg, M. M.: Variational Methods for the Study of Nonlinear Opera-
tors. Holden-Day, San Francisco-London-Amsterdam, 1964, [13].

A number of applications of degree theory may be found in the papers of

Zarantonello, E. H. (ed.): Contributions to Nonlinear Functional Analy-
sis. Academic Press, New York-London, 1971, [4].

For recent developments and extensions of degree theory and fixed-point the-
ory, see:



xii PREFACE

Granas, A.: Topics in Infinite Dimensional Topology. Sém. College de
France, 1969-70, [5].

On bifurcation theory:

Aizengendler, P. G., and Vainberg, M. M.: Methods of investigation in
the theory of branching of solutions. Mathematical Analysis 1965 (Rus-
sian), 7-69. Akad. Nauk SSSR Inst. Nau¢n. Informacii, Moscow, 1966.
Translation in 1-72, Progress in Math., vol. 2. Plenum, New York, 1968,
[1].

Keller, J. B., and Antman, S. (eds.): Bifurcation Theory and Nonlinear
Eigenvalue Problems. Benjamin, New York-Amsterdam, 1969, [3].

Rocky Mountain J. Math.: Spring 1973, vol. 3, no. 2, the entire issue, [9].

Sattinger, D. H.: Topics in Stability and Bifurcation Theory. Springer Lec-
ture Notes, No. 309. Springer, Berlin—-New York, 1973, [10].

Stakgold, L.: Branching of solutions of nonlinear equations. SIAM Rev. 13:
289-332, 1971, [12].

Vainberg, M. M., and Trenogin, V. A.: The Ljapunov and Schmidt meth-
ods in the theory of non-linear equations and their subsequent develop-
ment. (Russian) Uspehi Mat. Nauk 17(2/104): 1375, 1962. Translation
in Russian Math. Surveys 17: 1-60, 1962, [14].

Many other interesting nonlinear problems are treated in:

Berger, M., and Berger, M.: Perspective in Nonlinearity. Benjamin, New
York—Amsterdam, 1968, [2].

Lions, J. L.: Quelques méthodes de résolution des probléemes aux limites
non linéaires. Gauthier-Villars, Paris, 1969, [7].

Further references are given in the notes and are collected in the bibliography
at the end.

A number of people contributed greatly to the course and the notes. The latter
part of the course was conducted as a seminar, and the lectures of several partici-
pants, though not all, are included here. My warm thanks, in particular, to J. A. Ize
for Sections 4.4 through 4.7 and his contributions throughout the notes, and also
to E. Zehnder for his generous exposition on general implicit function theorems
for Chapter 6 (which he also wrote). I also wish to thank Ralph Artino for writing
the notes, and John Tavantzis for catching many errors. In addition, my thanks to
Connie Engle for her cheerful and excellent typing.



CHAPTER 1

Topological Approach: Finite Dimensions

1.1. A Simple Remark

Our aim throughout the course is, speaking loosely, to solve nonlinear equa-
tions of the form

(1.1) F(x)=0.

We begin with a very simple result illustrating the use of topology, in particular,
homotopy theory, in solving nonlinear problems.

Suppose F is a continuous map' of the closed unit ball B C R” into R, and
suppose

F(x)#A20 ondB.

If we let ¢ : 9B — R¥\{0} denote the restriction of F to 3 B, then the topological
result expresses a condition on ¢, which implies that for any extension' F of ¢ to
B, the equation (1.1) always possesses a solution.

THEOREM 1.1.1 Suppose ¢ maps B = S"~! into RF\{0}; set

ﬂ . Snfl N Sk*l

o

For every extension F of ¢ inside B there exists a solution of F(x) = 0 if and only
if the map v : S"~' — S~ is homotopically nontrivial, i.e., cannot be deformed
to a constant map.

w:

This simple result is left as an exercise.

In using the result, different cases have to be distinguished. If n < k, as is
easily seen, every map ¥ : §"~! — S¥~! is homotopically

trivial, so the theorem is not useful. If # > k, the art of homotopy theory is
still not such that one can tell whether a given map  is homotopically nontrivial.
Many examples are known and some will be used in our applications. When n =
k, the homotopy class of ¥ is determined by the “degree” of the map v, ¥ is
homotopically trivial if and only if this degree = 0. The topological degree of a
map is the first subject we will treat in detail. Intuitively speaking, the degree of a

map at some point in the target space is the number of times, counted algebraically,
the point is covered.

lThroughout the course all the mappings are assumed to be continuous even if not stipulated:
very often they are required to be smooth.
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1.2. Sard’s Theorem

In defining the degree of a mapping, we will make use of a special case of
Sard’s theorem.

Consider a mapping F : X — Y, where X and Y are open C*° (paracompact)
manifolds of dimension n and k, respectively, and F € C! n C"~*+1.

DEFINITION 1.2.1 (a) A point xo € X is a regular point of F if, in terms of
local coordinates, the Jacobian %f— (xo) has maximal rank (i.e., min(n, k)).
(b) If x, is not a regular point it will be called a critical point.
(c) A point yo in Y is called a critical value of F if its preimage F “H(yp)
contains a critical point; otherwise it is called a regular value.

THEOREM 1.2.2 (Sard’s Theorem) If F has the properties above, then the set of
its critical values has measure zeroin Y.

REMARKS. (1) Since a set of Lebesgue measure zero in R¥ is mapped
by a C'! mapping into one of measure zero, we see that the notion of a
set in Y having measure zero makes good sense. Furthermore, itk >n,
the whole image F(X) has k-dimensional measure equal to zero, since
F ¢ C', and thus Sard’s theorem in this case is trivial.

(2) The proof of Sard’s theorem in the general form as stated is not simple
and will not be given here (see [15]).

In defining degree, we will only need Sard’s theorem when F* € C'andn =k;
we will prove it under these conditions.

PROOF: (F € C!,n = k): It suffices to consider F on a closed cube Cy in R”
with side £. Subdivide this cube into N" equal pieces by dividing each edge into N
pieces. For any pair of points xo, x in one of these subcubes C, we have

F(x) = F(xo) + 8—F(xo)(x —Xo)+o0 (l> )
ax N

since the first derivatives of F are uniformly continuous in Co. If xq is a critical
point, then det (4£(x)) = 0, and therefore, the image of C lies in a cylinder with
base in a plane of dimension (n — 1) and base area < C (—1,‘\57)"‘1 and height < o(%)
for some constant C > 0. Since there are at most N” cubes containing critical
points, by summing over all these cubes, their images under F are contained in a
set of volume less than N" o(%). Letting N — oo the result follows. U

As an illustration of the use of Sard’s theorem we present a slightly curious
result:

LEMMA 1.2.3 Let Q be an open, bounded subset of Riand f : Q — R% f €
C2H(ONC(RQ), f = (fi, f2). Suppose that det(%’;) — M 26 _ 30 3 peyer changes

axy dxy  dxp dxp
sign, say > 0. Let xo € Q be such that det %(xo) > 0; then f, takes on the value
po = fi1(xg) at some point on the boundary.



PROOF: Suppose f1 # po on d€2. Applying Sard’s theorem to fi(n =2,k =
1), we see that the set of regular values of f; is dense. Therefore, there are numbers
P1 < Po, p2 > po arbitrarily close to py which are regular values of f; and such
that no value in [p;, p] is assumed by f; on 9 €.

Consider

Q={xeQ|p < filx) < p2}:

Q # @since xo € Qand 9% = {x | filx) = p}U{x | filx) = p,). Since
grad f1 # 0 at every point of 32, it follows that 32 consists of a finite number of
simple, closed C' curves y;. Using Green’s theorem

//det%dxldn:// dfl/\a’f2=/f1df2=2/f1df2=0,
& & 3% Y

since fi is constant on each y;. Hence det g-i =0in Q contradicting the fact that
X9 € Q. O

REMARK. The function f] need not assume in 92 every value that it takes on
in 2. For example, f; may be arbitrary and f, = 0. However, if in addition to the
hypotheses above, f satisfies f = grad u for some u, then it is true that every value
of f) taken on inside 2 is attained on 9€2.

1.3. Finite-Dimensional Degree Theory

Consider C* oriented manifolds X, Y of dimension »n (all manifolds are as-
sumed to be paracompact). Before defining the degree, we recall some notions from
differential geometry. The operator d of exterior differentiation maps j—forms to
J + 1 forms; in particular, if w is a smooth (n — 1)-form on Y

n

W= 2:(—-1)1_lgj(y)a’y1 Ao AdyTE A dyTUA A dY"
j=1

in local coordinates (y!, ..., y"), then

- ag] 1 n
dwzzwdy A A dy" .
j=1

For convenience, we write dy! A --- A dy" = . UnderaC!map¢ : X — 7,
forms pullback; in particular, if u is a smooth n—form on Y,

w=romldyl,

(ko @)(x) = f(p(x))Js(x)[dx],

where Jj is the Jacobian of the mapping ¢ (in local coordinates). Because of the
invariance property, the integral of an n—form u on an oriented manifold Y has

then its pullback is
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invariant sense. Green’s theorem takes the form: If w is an (n — 1)—form with
compact support on Y, then
/ dw =0.

Y
We recall in addition (from advanced calculus) the effect on an integral of a
one-to-one smooth change of variable y = ¢ (x) with nonsingular Jacobian:

/f(")=/f<¢<x))u¢,1_

Rn R"

Thus, for an n—form p = f(y) on Y, we have

/u:sgnJ¢/u0¢;

Y X

here X and Y are oriented, Jy is nowhere singular, and ¢ is one-to-one .

We are going to define degree for maps of class C ! and subsequently for con-
tinuous maps. We consider C* oriented (paracompact) manifolds X, and Y of di-
mension # and an open subset X of X with compact closure X = XUdX.Let¢ be
a continuous map of X into Y, which is of class C' in X. Suppose yo € Y\¢(3X)
is a regular value of ¢. We shall first define the degree of the map ¢ at yo. Since yo
is a regular value of @, it follows from the implicit function theorem that the set

¢ (o) = {x € X | p(x) = yo}

consists of isolated points in X. Since the set is compact, it is a finite set:
~1
¢ (o) = {xi, ..., Xt

DEFINITION 1.3.1 If y is a regular value of ¢, then
k

d(yp) = ngn Jp(xj) .
j=1

The following treatment of degree theory is a modification by P. Lax of that
given by E. Heinz (in Schwartz’ book [11]): We will say that a coordinate patch
of a point yo € Y is “nice” provided there are suitable coordinates, i.e., a mapping
g 1 Q — R", such that g(£2) is a cube in R".

DEFINITION 1.3.2 Let u = f(y) be a C*> n—form with support contained in
a nice coordinate patch  of yo and lying in Y\{¢ (9 X)} such that [y = 1;set

deg(¢, X, yo) = / Hoo.
X

Differential forms satisfying the above conditions will be called admissible for yo
and ¢.

That deg(¢, X, vo) is well-defined is a consequence of the following lemma:



LEMMA 1.3.3 Suppose p = f(y) is a C* n—form on Y with fy w = 0and
supp i contained in a nice coordinate patch Q, then there exists an (n — 1)~form
w such that suppw C Qand pu = dw.

Indeed, if v and w are admissible for y, and ¥, then v — . satisfies the condi-
tions of Lemma 1.3.3; hence v — u = dw with supp w € Q. We thus have

/vod)—/,uod):/(v—,u)o¢>:/dwo¢>=/d(wod)):O
X X X X X

by Green’s theorem.

PROOF OF LEMMA 1.3.3: It suffices to assume the supp u is contained in a

cube C in R". Thus, given p = f(y), f,u = 0, we must show that we can
write f as f(y) = >, g;f’j'(y) with supports of g; in C for each j. The proof
is by induction on the dimension n. When n = 1, g,(y) = f_yoo f(s)ds satisfies

fdy = dg,. Now suppose the lemma is true in n-dimensions; we wish to prove it
in n + 1 dimensions. Let y"“L1 =t,(y,t) = (yl, ..., y". 1), and

m(y) =/ fy,ndt.

Since [ m(y) = 0, by induction

—9g ()
m(y) = Z a’ij with suppg; C C.
j=1

Let (1) be a C* function with support on the corresponding side of C with

/ T(t)dt = 1.

Consider f(y,t) — t(t)m(y); its integral with respect to ¢ is zero, therefore,

gly, 1) = / (f(y,s) —t(s)m(y))ds
satisfies
%;f = f(y, ) —t@®ym(y),

and g has support in C. Thus,

n

d g (v
Flrym™Y) = =25 (v, ) +Z—gj(})r(y”+l).

- ayn+l 8\71

j=1



1.4. Properties of Degree
PROPOSITION 1.4.1 For y, close to vy, deg(¢. X, vo) = deg(¢. X. y)).

PROOF: If y is sufficiently close to vg, then any 4 admissible for yq is admis-
sible for y. It follows that the degree of a mapping is constant on any connected
component C of Y\{¢(dX)}, and we shall sometimes write this as deg(¢, X, C).

O

PROPOSITION 1.4.2 If vq is a regular point of ¢, then
d(yo) = deg(¢. X, yo) .
Consequently, we see that for yo ¢ ¢(X), so that yg is a regular value,
deg(¢, X, yo) = 0.
PROOF: Let ¢~ !(y9) = {x), ..., x;}. Then there exist disjoint neighborhoods

N; of x; such that ¢ is a one-to-one mapping on each N;. Now N = ﬂf:l ¢(Ny,)
is a neighborhood of yy. Let o be admissible with support in N, then

k
deg(@. X = [wod =3 [wos =Y sensotsy [
J Y

—
X J=N;

= Z sgn Jy (x;) = d(yo) .
J

d

It follows from Propositions 1.4.1 and 1.4.2, that deg(¢, X, yo) is an integer
equal to d(y) for any regular value y contained in the same connected component
Cof yoin Y\{¢p(3Y)}.

PROPOSITION 1.4.3 (Homotopy Invariance) Consider a one parameter family of
maps ¢,(x) : X x [0,1] — Y, continuous on X x [0, 1] and C'(X) for each
t € [0, 1]. Suppose for all t, yo & ¢,(3X), then deg(¢,, X, yo) is independent of t.

PROOF: The set of points Y = {d,(x) | x € 0X,t € [0, 1]} is closed and

doesn’t contain yo. Choose an admissible p with support in a small neighborhood
of y, disjoint from Y; then

deg(¢r, X, yo) = / Ko ¢
X
and this is clearly continuous as a function of . Since deg(¢,, X, vo) is an integer,
it must be constant for all ¢. O

The same proof yields a sharper form of the homotopy invariance.

PROPOSITION 1.4.4 (Proposition 1.4.3") Let Xy, Y be oriented manifolds of dimen-
sion n, and consider Xy x [0, 1] as a subset of Xo x R! with the induced topology.
Let A be a relatively open subset of Xo x [0. 1] with compact closure, and set

Ai={xeXy|(x,0) € A}, (0A), ={x € Xo | (x,1) € 0A}.



Let y(t) be a continuous map of [0, 1] into Y, and let ¢ be a continuous map of A
into R"™ which is of class C Vin each A, and such that

y(t) € ¢((0A),,t) foreachtinl0,1].
Then
deg(o(-, 1), A;, y(t)) is constant fort in [0, 1].

PROPOSITION 1.4.5 Suppose X;,i = 1,2,..., is a sequence of disjoint open sets
contained in the interior of X. Let yo & ¢(X\ U,oil X;); then deg(¢, X;, yo) is zero
except for finitely many i, and deg(¢, X, yo) = Y _ deg(¢, Xi, yo).

PROOF: Since ¢(X\ U, X;) is closed, there exists a neighborhood N of y,
disjoint from ¢ (X\ Uf’il X;), and let y be a regular value in N; then

deg(‘bv X’ yO) = deg(‘bv X’ y) ) deg(‘bv Xiv yO) = deg(‘bv Xiv y) .

Since y has a finite number of preimages, ¢! (y) is contained in a finite number of
the X;’s and the result follows immediately from Proposition 1.4.2. O

A particular case is

PROPOSITION 1.4.6 (Excision) If K is a closed set contained in X and y ¢
¢ (K) U @(3X), then

deg (e, X, yo) = deg(¢, X\K, yo).
PROOF: Let X| = X\K and apply the previous proposition. O

PROPOSITION 1.4.7 Suppose X, Y are manifolds of dimension n, X', Y' of dimen-
sion m, and

p:X—>Y, ¢ X =Y,
such that the degrees are defined at yo € Y, y, € Y'; then
deg(¢ x ¢', X x X', (o, ¥5)) = deg(e, X, yo) - deg(¢', X', yp) -

PROOF: Let w, ' be admissible for ¢ at y, and for ¢’ at y;, respectively; then
u - @' is an n + m form admissible for ¢ x ¢ at (yo, v;), and

/(u-u/)o¢><¢/=/u0¢-/u/0¢/-
X X'

XxX'

1.5. Further Properties and Remarks

PROPERTY 1.5.1 If ¢ is one-to-one and preserves (reverses) the orientation of X,
then at any point yo € ¢(X), yo ¢ ¢(3X), deg(¢, X. yo) = 1 (or —1). This follows
directly from the definition of the degree of ¢. In particular, if X and Y are on R"
and ¢ = Id (or — Id), then for yg € ¢(X) N {¥Y\¢(0X)},

deg(¢,X, VO) =1 (Or (_1)”)



PROPERTY 1.5.2 Suppose 3X = ¥ and Y is noncompact and connected. Then
deg(¢p. X. y) is defined for every v in Y. and we claim it is equal to zero. For
since ¢ (X) is compact. there is a point yo € Y that is not in ¢(X): but then
deg(¢p. X. ¥o) = 0 and since deg(¢. X. v) is independent of v. the result tollows.

PROPERTY 1.5.3 (Continuous Maps) An important result of degree theory is the
fact that the notion can be extended to maps ¢ which are merely continuous.
One does this by approximating ¢ by C' maps ¢, tending uniformly to ¢ on X.
Using Property 1.4.3 one shows that for n sufficiently large and vo & ¢(3X).
deg(¢,. X. ¥o) is independent of n. and one then defines this number as deg(¢. X.
vo). Incase Y is in R", such approximations are easily constructed (using, say, mol-
lifiers). In the general case one has to do more work. For instance, using Whitney’s
embedding theorem, one may suppose that Y is embedded as a regular submani-
fold of some RY. One can then use mollifiers to approximate ¢ by smooth maps
¥, into RY; projecting these onto Y one obtains the @,.

We shall not carry out the details here but shall suppose that our degree theory
holds for continuous maps. For such maps all the properties of this and the preced-
ing section whose formulations make sense for such maps continue to hold and are
proved by approximation by smooth maps.

PROPERTY 1.5.4 Suppose ¥ = R” and suppose ¥ is a given continuous map of
3 X into R™\ yo. Then deg(¢, X, yo) is defined for any continuous extension ¢ of ¥
to all of X and is independent of the extension. Indeed, if ¢, is another extension
form ¢, = t¢; + (1 — )¢, 0 < t < 1; by Proposition 1.4.3, deg(o,, X, yo) 1s
independent of ¢. It makes sense then to talk of

deg(wv X’ yO) .

PROPERTY 1.5.5 deg(y, X, vo) depends only on the homotopy class of ¥ : 80X —
R™\ yo. For if ¥,,0 <t < 1 is a homotopy deformation of ¥ = ¥, then, with the
aid of Tietze’s extension theorem, one extends ¥, as a map ¢ of X x [0, 1] into R",
and applies Proposition 1.4.3 1o ¢, = ¢|x -

We now give a generalization of the formula of Definition 1.3.2 used in defin-
ing the degree.

THEOREM 1.56 Let¢p : X — Y, ¢ € C(X). Let Q be a connected component of
Y\{¢(3X)}, and p a smooth n—form in Y with compact support in Q and [, p # 0;

then )
./x Lo
.[Y'“

EXAMPLE. Let X be a compact, smooth, oriented surface without boundary
in R?, Y = S?. Let ¢ be the Gauss mapping (spherical map) which takes x € X
into its unit normal at x. Take for u the area element on S%, then pogp = K(x)dA
where A is the area element on X. K is the Gaussian curvature. According to
Theorem 1.5.6,

deg(¢, X, ) =

deg(. X, S?) = Jymwod 1 / K(x)dA .
Joo 1t 4 v



Thus we obtain the Gauss-Bonnet formula: The integral of the Gaussian curvature
of a compact. smooth surface without boundary is 477m where m is an integer.

PROOF OF THEOREM 1.5.6: Let i, (v) be a partition of unity on Y such that
for each «. supp ¥, is contained in a nice coordinate patch €2,. Let u, = ¥, 1. and
choose v, € supp tiy. From Definition 1.3.2 we have

fﬂu o¢

deg(¢. X. Q) = deg(¢. X. vo) = f—u
Q, Mo

provided [, o # 0. or

deg(¢,X.Q)-/ua=/ua0¢-
Qy X

The last formula holds in any case since if an e = 0. we see by Lemma 1.3.3
that fx e 0 ¢ = 0. Summing over @ we obtain the desired result,

deg(d).X.Q):/u:/,uodx
Y X

a

THEOREM 1.5.7 (Composition of Maps-Leray Product) Let X be as before. and
let Y and Z be oriented manifolds of dimension n. Let ¢ : X — Y. ¢ - Y — Z
be continuous maps. If Q) are the connected components of Y\{¢(9Y)} having
compact closure in Y. then for 7 ¢ ¥ o ¢(3X).

deg(Y 0. X.2) = Y _deg(eh. X. @) - deg(yy. 2. 2) .

and the sum on the right is finite.

PROOF: We may suppose that ¢. ¥ € C' and 7 is a regular value of ¥ o ¢
and of the map . then,

deg(Yogp. X.2) = Y sgndyop(x)

xex
Yop(x)=<
= Z sgn Jy (¢ (x)) - sgn Jg(x)
xex
Yop(x)=:
= Z sgn Jy () Z sgn Jy(x)
vey reX
Y=z P(¥)=v
= Z sgn Jy (v) - deg(@. X. ).
yveY
Y(¥)=z

Now if v is contained in a component of Y\¢(3X) whose closure is not compact.
then this component contains points not in ¢(X). and so deg(¢. X. y) = 0. Thus.



we may restrict ourselves to 2,

deg(Y 0 ¢, X, 2) = Y deg(e, X, Q) Y sgnJy(y)
i ve;
Y=z

=) deg(¢. X, Q) - deg(y, . 7).

O

The following important corollaries will not be used; their proofs may be found
in Schwartz, [11, pp. 75-78]:

COROLLARY 1.5.8 (Jordan-Brouwer Theorem) Let F be a compact set in R" such
that R"\ F has a finite number k of components. Let ¢ be a homeomorphism of F
into R" such that ¢(F) = G; then R"\G has k components.

COROLLARY 1.5.9 (Invariance of Domain Theorem) The image of a continuous
one-to-one mapping of an open set in R" into R" is open.

REMARK 1.5.10. Let F be a continuous map of the closed unit ball in R”
into R* with F : 9B — R™\{0} so that deg(F, B, 0) is defined. Consider the
normalized map ¥ : 9B = §"~! — S"~! defined by

b =~ =
T FW) B

The degree of ¥ is defined for every point in "' and has the same value. So we
can write deg(y, S"~!, §"1). We claim that

deg(F, B,0) = deg (v, S, 8"7').
Indeed, we may suppose F is C!'(B). Now deg(F, B, 0) depends only on Fl33
and there we can deform F to y by

F(x)

V= TFer

0<r<1l.

?

So we may suppose F = y on dB. Since deg(F, B,0) is independent of any
extension of ¥ inside B, we may extend F inside B as

2
fixl
Now let y € S"~! be a regular value of ¥, then for ¢ > 0 small, yp = g’yisa

regular value of F. If v Uy) = {x1,...,x}, then G l(e?y) = {ex, ..., exi}.
We thus see that

G0)=0 and G(x):|x|ZW( ) forx #0.

sgn Jy (x;) = sgnJg(ex;), = I,...,k,

and the result follows.



1.6. Some Applications to Nonlinear Equations

B will denote the closed unit ball in R”.

SPECIAL 1.6.1 Let ¢ : B — R" such that ¢(x) never points opposite to x for
x € dB, i.e.,

o(x)+Arx =0 forallx >0, x €9B.
Then ¢{(x) = 0 has a solution inside B.

PROOF: By hypothesis ¢(x) # 0 on 9B, so deg(¢, B, 0) is defined. Deform
¢ on 3 B using the deformation

o(x)=tp(x)+ (1l —-Hx, 0=<r<1.
By hypothesis, ¢,(x) # 0 for x € 3B; hence
deg(¢, B, 0) = deg(¢,, B,0) =deg(ld, B,0) = 1.
O

REMARK. The same conclusion holds if on 3 B, ¢»(x) never points in the same
direction x, i.e.,

¢(x) #ix forallA >0,
simply apply the preceding to —¢(x).

THEOREM 1.6.2 (Brouwer Fixed-Point Theorem) Suppose that F : B — R”,
F € C%B) and F(3B) C B, then F has a fixed point.

PROOF: Set ¢(x) = x — F(x), on dB. Now suppose ¢(x) # 0 for x € 9B,
otherwise we are through. Then ¢ (x) never points opposite x € dB. Indeed, if

x—F(x)+Ax=0 forsomei >0,
then
F(x)=(4+Mx.

Now A > 0 is impossible since ||Fx|| < 1.If A = 0, F(x) = x on 3B, which we
have ruled out. So by the previous result, F(x) —x = 0 has a solution inside B. [

REMARK. The Brouwer fixed-point theorem holds in the form: A continuous
map of a closed, bounded, convex set in R” into itself has a fixed point.

The proof is left as an exercise.

SPECIAL 1.6.3 Suppose ¢(x) is a continuous mapping ¢ : R" — R" such that
(1.2) (@), x)

—+00
x|

uniformly as |x| — o0; then ¢ is onto R", i.e., for every v € R", the equation

Px) =y

has a solution.
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PROOF: We may suppose y = 0, since we may replace ¢ (x) by ¢(x) — v,
which continues to satisfy (1.2). For some R > 0, we have
(p(x),x) =0 if x| =R.

Suppose ¢(x) # 0 for |x| = R; otherwise we are through. Then (¢p(x).x) = 0
implies that ¢ (x) never points opposite to x for |x| = R. i.e.,

dp(x)+Arx #0 fora =0, |x| =R.
and the result follows from 1.6.1. ]

This lemma was used in one of the early proofs of the Brouwer fixed-point
theorem, and will be applied later in the course:

LEMMA 1.6.4 (Knaster, Kuratowski, and Mazurkiewicz Lemma [16]) Let X be an
arbitrary set in R". To each x € X, assign a closed set F(x) in R" satisfying:

(i) For one point xg € X, F(xq) is compact.
(ii) For any finite subset xi,...,x, of X, the convex hull of xy. ..., Xk is
contained in Ule F(x;); then

(N F&x) #0.

xeX

We shall present a proof due to H. Brézis.

PROOF: Since the sets G(x) = F(x¢) N F(x) are all compact, to show that
N,ex G(x) is nonempty, it suffices to show the family {F(x)},cx has the finite
intersection property. Suppose this were false, then there would be a finite set
X1, ..., X such that

k
(Fe)=0.
i=0
LetU; = f(\xj ) = the complement of F(x;); then
k
Yui=mr".
i=0
Let ; be a partition of unity in R" subordinate to the cover U;, i.e.,
k
Z%(JC) =1, suppy; CU.
i=0

Consider ¢(x) = Zf:o ¥i(x)x;. For any x, ¢(x) is contained in the closed, convex
hull of (x,, ..., x¢). So ¢ maps the convex hull K of (x|, ..., x;) into itself. By
the (extended) Brouwer fixed-point theorem, ¢ (x) has a fixed point x in K,

k
X = Z Vi(X)x; .
=0
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After reordering the indices if necessary, we may suppose that for some s (possi-
bly k),

Yi(¥) #0 fori <s, Yi(x) =0 fori>s,
so that ¥ is in the convex hull of xi, ..., x,. By our hypothesis, X € |J,_, F(x;),
so ¥ € F(x;) for somei < s. But this implies x ¢ U; and hence 1//,»(,?5 =0, a
contradiction. 0

1.7. Borsuk’s Theorem

THEOREM 1.7.1 (Borsuk's Theorem) Let X be a bounded open subset of R" sym-
metric about the origin such that 0 € X. Let ¥ : 9X — R"\{0} be a continuous
odd mapping (i.e., ¥ (—x) = —(x)); then deg(¥r, X, 0) is odd.

We note by hypothesis that the deg(y, X, 0) is defined and independent of any
extension of ¥ inside X. The proof of Borsuk's theorem is based on

PROPOSITION 1.7.2 Suppose X is an open bounded subset of R" symmetric about
0 such that 0 ¢ X, ¥ : X — R"\{0} is a continuous odd mapping; then
deg(yr, X, 0) is even.

PROOF OF BORSUK'S THEOREM: For & > 0 sufficiently small, B, = {x :
Ix| < e} NdX = @. Let ¢ be any extension of s that is the identity map on B;;
then

deg(y, X, 0) = deg(¢, X, 0) = deg(¢. X\ B, 0) + deg(¢, int B 0)

from Proposition 1.4.5. By Proposition 1.7.2, deg(¢, X\ B¢, 0) is even while deg(¢,
int B,, 0) = deg(identity, [ B,,0) = 1: thus deg(y, X, 0) is odd. 0

It seems natural to try to prove Proposition 1.7.2 in the following manner:
Consider

PROBLEM 1.7.3 Under the hypothesis of Proposition 1.7.2, is it true that for any
£ > 0, there is an odd C' map ¢, : X — R”, continuous in X, with o — | < €
on 8 X such that 0 in R” is a regular value of ¢,?

If the answer to the problem is in the affirmative, then, for ¢ sufficiently small,
deg(y, X,0) = deg(¢., X, 0). Since ¢, is odd, we see that ¢.(x) = 0 implies
¢ (—x) = 0; thus ¢! (0) consists of an even number of regular points and conse-
quently deg(¢,, X, 0) is even.

Problem 1.7.3 suggests another one:

PROBLEM 1.7.4 If X is as in Proposition 1.7.2 and ¢ is a continuous odd map of X
into R” with ¢(3X) € R"\{0}, can ¢ be uniformly approximated by odd C' maps
in X (continuous on X) for which 0 is a regular value?

REMARK (Added in 2000). Some years after these problems were posed in
these lecture notes, James Yorke provided a simple solution of Problem 1.7.4,

which we now present in place of the earlier one. The solution relies on a stan-
dard form of the transversality theorem.
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THEOREM 1.7.5 (Transversality Theorem) Let X and A be open subsets of R" and
RX, respectively. Let F be a smooth (C*) map of X x A into R™. Assume that O is
a regular value of the map F, i.e., for any point (xg. Ag) € X X A such that

F(xp.29) =0.
the total derivative (0x.9X) > Fy(xg. A0)8o + Fi(xo. A0)8A is surjective (from
R" x R* onto R™). Then the set
Z = {x € A | Ois aregular map of u — F(u. 1)}
is dense in A.

For a proof see Guillemin and Pollack [21].

SOLUTION OF PROBLEM 1.7.4 AND PROOF OF PROPOSITION 1.7.2:  Since
we may approximate ¢ by smooth odd maps, we may suppose the given ¢ is
smooth. Let A = R" = the space of all n x n matrices A. We apply the transver-
sality theorem in X x A, with ¥ = R", the mapping

F(x,A)=¢px)+Ax, x€X, AeA.

We claim that for some fixed, arbitrarily small matrix A, 0 is a regular value of
F(-. A). By the transversality theorem, it suffices to show that O is a regular value
of F. But his is trivial: If F(x, A) = 0, we have only to verify that for any y € R,
we can solve the linear equation
@' (x)8x + Adx + (8A)x =y fordx e R"and A € A.
Simply take 8x = 0 and, since x # 0, we can find a matrix §A so that
(BAX =Y.
Problem 1.7.4 is solved and Proposition 1.7.2 is proved. O
APPLICATIONS 1.7.6 (Applications of Borsuk’s Theorem) In all of the following

applications, X is a bounded, open subset of R", symmetric about the origin such
that 0 € X.

(1) Given an odd mapping ¢ : X — R*¥ ¢ R", k < n, then there exists
x € 3X for which ¥ (x) = 0.

PROOE: Suppose ¥/ (x) # 0 for x € 3X; by Borsuk’s theorem, deg(y. X, 0)
is odd. Let ¢ be an extension of ¥ to X as amap into R¥; then deg(¢, X, 0) is odd.
But if y, € R" is a point close to the origin and not in R*, we have deg(¢, X, yo) =
deg(¢, X. 0) while deg(¢. X, yo) = 0, a contradiction. O

(2) Lety : 0X — R* ¢ R", k < n, be any continuous map; then there exists
a point x € 3X such that

Y (x) = Y(—x).
PROOF: Apply (1) to ¥ (x) — ¥ (—x). O

(3) X C R" as above. Suppose 3 X is covered by n closed sets A;. Az, Aj,
..., A,. Then one of them contains a pair of antipodal points x and —x.



PROOE: Suppose not. Then ();_, A; is empty. For x € 9X, let
d;(x) = distance from x to A; ;

then

d(x) = Zd,-(x) >0.
i=1

() da)
ﬂx)‘(d(x)’”" d(x) )

of 3X into R"~! ¢ R”. By the previous result there is a point xo € dX such that

f(xg) = f(—x0). Now xq belongs to some A;, j < n. Suppose xo belongs to some
A; with i < n; then d;(xg) = 0, and since f(xg) = f(—xo), di(—xp) = 0 s0

Consider the map

xo and —xg belong to A;. Suppose now xo ¢ A; fori = 1,...,n — 1; then for
i=1,....,n—1,d;(xg) > 0 and hence d;(—xp) > 0. Thus xo and —x belong to
A,. O

(4) Sandwich Problem. Let A}, A;, A3 be three measurable sets in R? with
finite volume. Then there is a plane that simultaneously divides their vol-
umes equally. (The sets represent bread, ham, and cheese.)

PROOF: Let x € S? be any unit vector in R3. If we bring up a plane per-
pendicular to x from the direction —o0 - x, there is a first such plane dividing the
volume of Aj; in half, and also a last such plane. Let P(x) be the plane L x lying
midway between these P(x) = {y | y - x = c(x)}. Itis readily verified that c(x) is
continuous on S?. Set

vi(x) =meas{y € A; | y-x > c(x)}, i=1,2.
From the definition of P(x) we see that
vi(x) + vi(—x) = volume of 4;, i=1,2.

The map x — (v(x), v2(x)) is a continuous map of S? into R?. By (2) there
exists xo € S? such that v (xo) = vj(—xo0), j = 1,2, and P (xg) is then the desired
plane. O

The proof clearly yields the same result for n sets in R".

1.8. Mappings in Different Dimensions

In Section 1.1 we considered a continuous mapping F of the closed unit ball
B in R” into R* with F : 3B — R¥\{0}, together with the homotopy class of
its normalization ¢ on dB; ¢ = F/|F| maps $"~! into S*~!. Up to now, we have
concentrated on the case k = n; we showed that if the degree of the map ¢ =
deg(F. B, 0) is nonzero, then ¢ is not homotopically trivial. The converse (Hopf’s
theorem) is also true, but we will not prove it here.

Let us consider briefly the case n > k. Though much is known about homotopy
classes of maps of §"! into S*~!, their full classification is still not settled. In
particular, if we are given such a map, we still do not know how to tell whether it



is homotopically trivial or not—unlike the case k = n. where the integral formula
in Theorem 1.5.6 may be used by a computer (as long as the computational error
is smaller than 1) to calculate the degree. We shall list a few facts for n > k which
will be used later: their proofs may be found in any book on homotopy theory. For
n > 1. any continuous map of S" to S' is homotopically trivial. i.e.. 7,(SH =0
forn > 1.

The first nontrivial case is the Hopf map of S* to S* which we now describe:

Hopf Map. S* is the boundary of the unit ball in R+ that we look on as C-.
with complex coordinates (z. w); $* = {|z|* + |w|* = 1}. We may consider S° as
the Riemann sphere or the complex projective line CP!, ie., as points in C*\{0}
with the equivalence relation (z. w) ~ (rz. Tw) for complex 7 7 0. The Hopf map
¥+ S? — S?is defined by ¥(z. w) = the equivalence class of (z. w). Analytically
as a map into the unit vectors in R?,

(1.3) Y (z, w) = 2Rewz. 2Imwz, 1z — lw).

The Hopf map is homotopically nontrivial and generates the homotopy group
75(S?) of map of S to S2. We shall make use of the following fact about 7,41 (S")
— the homotopy group of maps of $"*! to §":

Forn > 3, m,.1(S") is cyclic of order 2, and the generator is ob-

(L4 tained from the Hopf map by (n — 2)-times iterated suspension.

The suspension operation y_ is a geometric construction on maps of " ! to
Sk, yielding maps of S" to S¥. It is defined as follows:

Suspension. Think of S"~} as the equator on S and of Sk as the equator on
Sk If ¥ is a map of S"7! to S¥71, the suspension construction extends the map '/
toamap ¥; = »_ ¥ of " to S¥ in the following simple way: v maps the north
(south) pole of S" to the north (south) pole of Sk, If y is a half great circle on S”
joining the poles, it hits the equator at some point x. Let y " be the half great circle
joining the poles on S* and passing through v (x). Define ¥/, on y mapping into
y ' as a linear map (with respect to arc length). This process defines a continuous
extension of ¥ to a map y/; of S" into Sk.

REMARK. It is clear that if ¢ and ¥ are homotopically equivalent maps of
S to S, then their suspensions ¢;. ¥, are homotopically equivalent. However,
suspension may kill homotopy; i.e., ¢; and ¥ may turn out to be equivalent even
if ¢ and ¥ are not. An important fact is that after a finite number m of iterated
suspensions (n — k will do) one reaches the so-called stable range after which no
more homotopy is killed; i.e., for j > m, ZH] Y is homotopically nontrivial if
and only if Y/ ¥ is nontrivial.

DEFINITION A map ¥ whose suspensions are all nontrivial is said to have non-
trivial stable homotopy.

Let us write an analytic expression for the suspension of a map ¥ : Sl —
S¥—!'. Consider, more generally, a continuous map F of B,. the closed unit ball in
R" into R* with F : 3B, — R*\{0} andyy = F/|F|on 3 B,,. Define the suspension



Fi =Y F as amap of B, ;. the closed unit ball in R"*' into R**! by
(1.5) Fi(x.t) = (F(x).1) € RE

Here x € B,, —1 <t < 1; B4 = {(x.1) | |x]*> + 1> < 1}. One can easily see that
Y, = F|/|Fi| on 3B, is homotopic to the suspension of ¥ defined above. The
j" iterated suspension of F is the map Fj : B,.; — R**/

(1.6) Fi(x.t) = (F(x).1) € R¥/

where x € B,, t € B;.

If y : §"~! — §"!, then we note that the degree of the map V¥ is unchanged
under suspension. If F is an extension of ¥ to B,, then this follows immediately
from the formula 1.5 and the results of Remark 1.5.10 and Property 1.4.7. We shall
have need of a more general result.

PROPOSITION 1.8.1 Let Q be an open, bounded set in R" and regard R" as a
direct sum of R" @ R"2, ny +n, = n, so that x € R" has the unique decomposition
X =x1 +x, x; € R, x, € R Consider amap F : Q — R" of the form

F(x)=x4+ ¢(x)
where ¢ : Q@ — R™. Suppose y € R" and y ¢ F(3Q); then
deg(F, Q.y) =deg(Flg,. 2:1.y)
where Q) = R N Q.

PROOF: We may suppose that F € C!in Q and y = 0 in R". For j =
1.2. let fj(x;) be C5° functions in R" with supports near the origin and such that

fR nj fix;) = 1. From our definition of degree we have

deg(F.Q,y)———/(fl-fz)oFdx.
Rn

Since det d F /dx = det(I + ¢,,), the latter being an n; x n; determinant, we see
that

deg(F.Q.y) =
/ filvy + @ (x; + x2)) frlx)| det(] + ¢, (x, +.\‘z))|.
R”I R”:

We may replace f>(x>) by a sequence of functions converging to the delta function
without changing the degree. Thus we find

deg(F. Q. y) = / fitx + @) detdd + ¢y, (x))l [di | = deg(Fla,. @10 v).
=M

Py

O






CHAPTER 2

Topological Degree in Banach Space

2.1. Schauder Fixed-Point Theorem

We wish now to extend our results to infinite-dimensional spaces, in particular,
Banach spaces. However, we have to take some care. For instance, the Brouwer
fixed-point theorem states that any continuous mapping taking a closed, bounded,
convex set K C R" into K has a fixed point. This is no longer true in infinite
dimensions.

EXAMPLE. Let X = £, (i.e., the space of sequences of complex numbers
x = (x1,x2,...) with Zil lx,'l2 < 400). Let B be the closed unit ball in £,,
and f : B — B be defined by f(x) = (/1 — |x|?, x|, x2,...). The map f(x)

is continuous but has no fixed points. In fact, if x = (x|, x2,...) were a fixed
point of f, then ||x|| = 1 since || f(x)|| = 1 for all ||x|| < 1. On the other hand,
x = (V1 —|x|? x1,x2,...) implies x; = 0, x, = x|, x3 = x2, etc.; hence x =

(0,0, ...), which contradicts the fact that ||x| = 1.

We see, therefore, that in infinite-dimensional spaces we must require more of
f than mere continuity. We shall require compactness.

DEFINITION A continuous map f defined on a set in a Banach space X and map-
ping into X is called compact if, for every bounded, closed subset £2, f() is
compact.

THEOREM 2.1.1 Let Q be any closed, bounded subset of X. Then f : @ — X
is compact if and only if f is a uniform limit of finite-dimensional mappings (i.e.,
mappings whose ranges lie in finite-dimensional subspaces).

PROOF: Suppose f is compact, then f(£2) is a compact subset of X. So given
¢ > 0, we can cover f(2) by open balls By, ..., Bj) with centers, x|, ..., Xj),
in £(). Let ¥, (x) be a partition of unity on £ () subordinate to the cover { B; }{:?
Le., ¥ (x) >0,

jte)

Z%(x):L x € f(R) and ¥; =0 outside B;.
i=1

Set
Jj&)
A ES PR ACICHS
i=1
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Then f.(x) belongs to the convex hull of the x;’s. Also,

If ) = fel =

JE)
\Z Y (f Ly — f(0)]

i=1

Now if ¥;(f(x)) > 0, then f(x) € B; and ||x; — f(O| < & sollf — 1ol < &,
uniformly in x. The argument the other way is a simple exercise. O

We can now prove the analogue of the Brouwer fixed-point theorem: the Schau-
der fixed-point theorem.

THEOREM 2.1.2 Let Q be a closed, convex, bounded subset of a Banach space X
and [ Q — Q a compact map; then f has a fixed point.

PROOE: Let f.(x) be an e-approximation of f as above and N, be the linear
space spanned by xi, ..., Xj()- Since § is convex and f.(€2) is contained in the
convex hull of f(2), we have fe(x) @ € — Q N N,. Therefore f, maps the
closed, bounded set N, N £, lying in N, into itself. By the Brouwer fixed-point
theorem, f. has a fixed point x, (ie., fo(xe) = x.); let ¢ — 0. By compactness
f.(x.) has a convergent subsequence, which we again denote by f.(x¢). Therefore,
Xe = fe(x.) = Xo. But

lxe — flx)ll = [ felxe) = fxe)ll = &

SO

f(xg) — xo, hence f(xo) =xo.

2.2. An Application

There are many interesting applications of the Schauder fixed-point theorem.
We shall present a recent one to the problem of invariant subspace for a bounded,
linear operator in Banach space X. It is not yet known whether every continu-
ous linear map A : X — X has a nontrivial invariant subspace (i.e., ¥ ; X,
A(Y) C Y).It was proved some years ago that if for some polynomial P, P(A) is
compact, then A has a nontrivial invariant subspace.

A more general result with a very simple proof was recently given by Lomono-
Sov:

THEOREM 2.2.1 If X is a Banach space, K # 0 is a linear, compact map X— X
and A - X — X a continuous, linear map commuting with K, then A has a
nontrivial invariant subspace.

We note that if K has a nonzero eigenvalue A, then N = ker(K — A[) is finite-
dimensional and is invariant under any operator A commuting with K forif x € N,
then (K — AI)Ax = A(K — AI)x = 0so Ax € N. We will prove the following
extension of Lomonosov’s result, which we learned from Felix Browder.
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THEOREM 2.2.2 X is a Banach space over the real or complex field and K #
0 is a compact linear operator on X. B is a continuous linear operator on X
which commutes with K. Suppose that B is not a multiple of the identity (if X is
a real Banach space assume, in addition, that B satisfies no identity of the form
B2+ cB+ pl =0, with p > 0 and c real constants). Then there exists a nontrivial
subspace Y which is invariant for all elements in comm(B) = {set of bounded
linear maps A : X — X such that AB = BA}.

PROOF: Suppose not. Assume ||K|| = 1 and choose a vector x, such that
|Kxoll > 1. Let By(xo) be the closed unit ball about xg, then 0 ¢ K B|(xg). For
any y # 0,

D ={z=Ty| T € comm(B)}
is a closed invariant subspace for all T € comm(B). Hence D = X— since we are

assuming there are no invariant subspaces. We can thus find a linear operator A, in
comm(B) such that

Ay (¥) = xoll < 1.
Let
Na, ={z [Ayz — xol < 1},
then N4, is an open set containing y. Since C = K B (xg) is compact, we may
cover it with a finite number of open sets

NA)']""’NA,\'r’ yl,...,yreC.

Let {B;(x)}_, be a partition of unity on C subordinate to the covering {N. Ay, Yier-
For x € B (xp) define

¢(x) =Y Bi(K(x)A,Kx.
ji=1
If B;(K(x)) > 0, then K(x) € NA»"/’ and so [[Ay, K (x) — x|l < 1. Hence ¢(x)
is a convex combination of elements in B;(xg) and so belongs to B;(xg). Thus

¢ : Bi(xg) — Bi(xo); furthermore, ¢ is compact. By the Schauder fixed-point
theorem, ¢ has a fixed point X # 0 in B;(xg). Set

Ko(x) =) Bj(KZ)Ay;Kx .
j=1
Then Kj is a compact, linear map having X as an eigenvector with eigenvalue 1.
Let M = ker(Ky — I), then M # { since £ € M. M is finite-dimensional and in-

variant under B because B commutes with K. (We have now proved Lomonosov’s
theorem with B = A.)

We have B : M — M. If the field is complex, B has an eigenvector u # 0 in
M with eigenvalue ¢, Bu = ¢u. The subspace

M, =ker(B —2¢1),

is not all of X, since B is not a multiple of the identity. However, M, is invariant for
comm(B), a contradiction. Suppose now the field is real. If B has no eigenvector in



M then M contains a two-dimensional subspace on which the operator B>+ ¢B +
pl vanishes, for suitable constants ¢ and p > 0. Setting

M, = ker(B> + c¢B + pl)

the proof proceeds as before. O

2.3. Leray-Schauder Degree

Let X be a Banach space, 2 a bounded, open subset of X, ¢ : Q- Xa
mapping of the form ¢ = I — K with K compact, and yo ¢ ¢(32). We wish to
define deg(¢, 2, yo). We first note that if S is a closed, bounded set, then ¢(S) =
(I — K)(8) is closed in X. Indeed, if x, € S, ¢(x,) — y;then x, — K(x,) — ».
Since K is compact, we can take a converging subsequence again denoted by x,
such that K (x,) — z. Then x,, — z+y = x and by continuity x — K (x) = y. This
implies that ¢ (3€2) is a closed set and so if yo ¢ ¢(3€2), yo has positive distance §
from 9. Now let ¢ < 8/2 and let K, be an -approximation of K mapping into a
finite-dimensional space N, = N containing yo. Then ¢ (x) = x — K¢(x) # yo on
9. Consider

¢e|Ngn§ :N.NQ— N,
then deg(¢., N. N €2, yo) is defined.

DEFINITION We set deg(¢, 2, yo) = deg(¢:, N. N 2, yo). We claim that this is
independent of K, and is then well-defined. To prove this we make use of Propo-
sition 1.8.1. Observe first that deg(¢., N. N , yo) is unchanged if dim N, is in-
creased, i.e.,if M = N, @ W, W finite-dimensional, then

deg(¢8’ Mn Q’ yO) = deg(¢8v NN Qv yO) .

This follows immediately from Proposition 1.8.1.

Next suppose K, is another approximation of K such that K, : €2 — N,
Let N be a finite-dimensional space containing N, and N,, then, again by Proposi-
tion 1.8.1,

deg(¢e, Ne N R, yo) = deg(¢e, N N 2, y0)

deg(¢,. Ny N Q, yo) = deg(é,, N N2, y0).
Letting ¢, = t¢. + (1 — t)¢,, we see by homotopy invariance that

deg(¢e, N N Q, yo) = deg(¢,. N N2, yo) .

We also note thatif = — K : 2 — X and yo ¢ ¢ (), then deg(¢, 2, yo) = 0.
Indeed, ¢ () is a closed set and so of positive distance from y,. Hence we can
use a finite-dimensional approximation ¢, of ¢ such that ¢, : N, N Q — N,
vo € ¢.(N. N Q). But then

deg(d’sv N, N Q, yO) =0.

One may now extend almost all of the results concerning degree of maps in
finite-dimensional space of Chapter 1 to our maps ¢ = I — K simply by applying
these results to the finite-dimensional approximations ¢,. In particular, the results



of Propositions 1.4.1 and 1.4.3-1.4.6 and Theorems 1.5.7 and 1.7.1 hold. In addi-
tion, the map ¢ need only be defined on 92, ¢ : 32 — X\{yo}, with K =1 — ¢
a compact mapping of 92 into X. Then we have:

deg(¢, 2, yo) depends only on the homotopy class of ¢ : 92 —
X {vo}, where the homotopy is to consist of maps of the form

o) =1-K(x), 0=tr<I,
with K a compact map of 322 x [0, 1] into X.
In addition, the theorem on invariance of domain of Section 1.5, as well as Borsuk’s

theorem of Section 1.7, hold for the maps ¢ = I — K. We shall assume that these
extensions have been carried out.

2.4. Some Compact Operators

We will give many applications of Leray-Schauder degree theory. First, let us
remark that integral operators, with nice kernels, acting on function spaces are typi-
cal examples of compact operators. As an illustration, consider an integral operator
K acting on X = C[0, 1]or X = L*(0, 1) is

1
Ku(s):/ K (s, Hu(t)dt
0

where the kernel K (s, t) is a continuous function on the closed square [0, 1] x
[0, 1]. Then K is a compact linear map of X into itself. This also maintains if
K (s, t) is measurable and continuous as a function of s, uniformly in ¢, and | K (s,1)|
uniformly bounded. Let us look at a nonlinear example,

1
2.1 Ku(s) :/ K(s,t) f(t,u(t))dt
0

where K (s, t) is continuous in the closed square and f is a continuous map of
[0, 1] x R — R which is bounded, | f (¢, u)| < M. If X = C|0, 1], the map K isa
compact map on any ball

lull = max u(®)| < N.

The proofs are left as exercises. As an illustration of the Schauder fixed-point
theorem we have

PROPOSITION 2.4.1 The integral operator (2.1) above has a fixed point u(s), i.e.,
a solution of

Ku(s) = u(s).
PROOF: For any u € C[0, 1] we have

|Ku(s)| < max |K(s,0)|-M =C;.
5.t

Thus K is a compact map of the ball ||u|| < C, into itself and so has a fixed
point. O



24 2. TOPOLOGICAL DEGREE IN BANACH SPACE

When applying Leray-Schauder degree theory. we shall often make use of the
classical Riesz-Schauder theory of linear compact operators: this may be found
in many introductory books on functional analysis. In particular, if K is a linear
compact map of a Banach space X into a Banach space Y. then I — K is a Fredholm
operator. i.e..

ker/ — K = {x | Kx = x} is finite-dimensional
and
range I — K is closed in Y and has finite codimension.
In addition, the index of I — K,
indI — K =dimker/ — K — codimrange / — K =0.

Later we shall make use of some standard properties of Fredholm operators (see,
for instance, [24]).

2.5. Elliptic Partial Differential Equations

Degree theory has played a fundamental role in the treatment of nonlinear el-
liptic boundary value problems, and we shall present some simple illustrations.
First, some basic facts concerning linear elliptic operators.

2.5.1. We shall consider real-valued functions u(x) defined in a bounded re-
gion G in R" having smooth C*° boundary, though everything can be carried over
to vector bundles on manifolds. Set

ad
— =9;. 0=(..... 9,). 9% =29a%...9".
8Xj
for any multi-index o = (a;. .. .. o,), o; = a nonnegative integer. 87 is a differen-

tial operator of order

Zaj = |al.

and any linear partial differential operator with real C™ coefficients a, (x) in G has

the form
P= Z ay (x)d% .

lal<m

Consider the polynomial associated with the operator P,

P(x.&)= Y au(x)&"

lae|<m
foré = (§..... &) e R

DEFINITION (Ellipticity) The operator P is called elliptic if the leading homoge-
neous part of P does not vanish for& # 0, i.e.,

pu(x.§) = Y aa(x)* #0 forx € G. & € R'\{0}.

laj=m



The most familiar example is the Laplace operator

A=Y pE =) &=k
|

In connection with elliptic operators one studies
Boundary Value Problems.

(2.2) Pu=finG, Bu=gondG, j=1,....k,

where f and g; are given functions in G and 9G, respectively, and B; are certain
partial differential operators defined at boundary points. We shall suppose that the
order of each B; is less than m. The boundary operators B = {B;} are to be chosen
so that the problem (2.2) is, in some sense, well-posed. In the best case this means
that there is existence and uniqueness of the solution. This may not hold and one
understands the notion of well-posedness in a more general sense. Let us restrict
ourselves to functions u satisfying homogeneous boundary conditions Bu = 0.
For P acting on such functions, we say the boundary value problem is well-posed
provided

(1) ker P belongs to C*° and dimker P =v < 00
(2) In suitable function spaces X, Y, the operator P : X — Y is continuous
and has closed range in Y, of finite codimension v*, i.e., P is Fredholm.
Then
index P =ind P = v — v*.

For example, the following are well-posed:

Au= finG, u=0o0ndG,

a a
Au= finG, a_u =0onadG (8_ is normal derivative)

n n
. ou
Au= finG, a(x)a—+b(x)u=00naG, a(x) >0,
n

and each has index zero.

Much of the theory of linear elliptic boundary value problems is taken up with
the problem of characterizing those boundary conditions Bu = 0 leading to well
posed problems, and also with investigating which function spaces may serve for
X and Y in condition 2. It is a fact of life (unfortunate or not) that the spaces
X = C*"(G), Y = C*(G), are not suitable candidates, though they are the first
to spring to mind. (Here k > 0 is an integer and C¥(G) represents the space of
functions having continuous derivatives up to order k in G.) For any nonnegative
integer k the operator

A CH? -k, u=00ndG,

1s continuous but does not have closed range in C*. In fact, for f € C the solution
of Au = f,u =0on dG, is in general not in C2.



2.5.2. Holder Spaces. A suitable choice of function spaces are the Hélder
spaces CK* k> 0an integer and 0 < u < 1;i.e., those functions u in cX(G)
with finite norm

[0%(x) — 3 — 3%u(y)]
(2.3) ulesn = luli + Y sup

|a‘:k.r¢_\‘€G |X - y|#

where
luly = Z max |0k“u(x)|.
lor| <k
It is a fact that for any integer k > 0and 0 < u < 1,
A CEPTHG) - CHH(G)

is an isomorphism onto; here the subscript 0 denotes the functions vanishing on the
boundary.

For general elliptic operators P the corresponding “nice” boundary operators
B have been characterized. These are the so-called coercive, or complementing, or
Lopatinsky-Shapira boundary conditions. (See, for example, [17] or section 19 in
[20].) For these one has the following basic results, assuming, as we always shall,
that the orders of the operators B; are all less than m:

Basic Results. Letk > O be anintegerand 0 < u < 1.

(1) The map
P:{ue C*™*(@G) | Bu=00ndG} - C**(G)

is Fredholm and its index [ is independent of k.
(2) If u is a suitably generalized solution of

Pu=f e C""*"G), Bu=0 ondG,
then u € C**"*#(G). Thus all functions in ker P belong to C®.
(3) For any u in C**# satisfying the nice boundary conditions Bu = 0,
(2.4) lulitmsp < ClPuliry + Clulo

where C is a constant depending on the operators and on &, 4 but not
on u.

It follows that if ker P = 0, then there is a constant C’ independent of u such
that the stronger inequality

(2.4) |u|k+m+u =< C/|Pu|k+u
holds.

2.5.3. Sobolev Spaces. Another class of spaces that are suitable for elliptic
equations are the spaces Hy ,, k > 0 an integer, and 1 < p < oo, with norm

Vp

lulle.p = /Zw“uV’dx

& loi<k

the space Hy , is the completion of C*°(G) in this norm.



Consider P acting on the functions in Hy, p satisfying Bu = 0 (ie., u €

Hiim.p and u is the limit in H,, , of C* functions in G satisfying Bu = 0in dG).
Then one has the corresponding results:
Basic Results in Hy p.

(1) The map
P:{u€ Hemp| Bu=00n3dG} — Hy,

is Fredholm and its index is i (as above).
(2) If u is a suitably generalized solution of

2.5) Pu=feH.,  Bu=00ndG,

then u < Hk+m,[)'
(3) A solution of (2.5) satisfies

(2.6) Nellksm,p < CNPulle,p + Cliullos
with a constant C independent of u. Furthermore, if ker P = 0, then
(2.6) lllitm,p < CUPulle,p

for a constant C’ independent of u.

With the aid of the theorem of Arzela-Ascoli one may prove that for any
M > 0:

o Ifk + p > k' + 1/, the bounded set [uly4, < M is compact in C¥ "

If k > K, the bounded set ||ull;,, < M is compact in Hy .
It follows, therefore, from the basic results that if
i=indP=0 and kerP =0,
so that P~! exists, then
the maps P~' : C*"™* — C*** and P™' : H, , —> H, , are compact.

It is naturally very useful to understand the relationships between the spaces
C**# and H,, ,. Some of these are described by the

THEOREM 2.5.1 (Sobolev Embedding Theorem) Consider functions u € H,, ,(G),
G is a bounded domain in R" with smooth boundary, m is a positive integer, and
1 <p<o

(1) If j is an integer, 0 < j < m, such that

then 3'u € Ly(G) and u € H; g, i.e., the inclusion map H,, , < H, 4 is
continuous. Furthermore, for q¢' < q the inclusion map H,, , < Hj 4 is
compact.



(ii) If j is an integer, 0 < j < m such that

0<u5m—£—j<l.
p

then u € CIt#(G).
Proofs may be found in sections 8-11 of the book by A. Friedman cited above.

2.5.4. A Nonlinear Elliptic Equation. We shall present here a simple appli-
cation of degree theory to a mildly nonlinear elliptic boundary value problem. Let
P be an elliptic operator of order m with “nice” associated boundary conditions
Bu = 0 on dG. We wish to solve

(2.8) Pu = g(x,u,d%u), Bu=0 ondG.

Here g is a C* function of x in G and of u and its derivatives up to order m — 1

growing less than linearly in these arguments; i.e., for some positive constants y <
l and M,

14

2.9) ‘g(x,u, aﬂu)’ <M|[Il+ Z 108 u|
1Bl<m—1

We shall consider only the simplest case, that is,
i=mdP =0 and kerP =0,
so that P! exists. Set g(x, u, 3%u) = G[u] and rewrite the equation as

(2.8 u— P 'Gul1=0.

THEOREM 2.5.2 Under the hypotheses above, (2.8) has a solution in C*(G).

To solve (2.8') we will apply degree theory in the Banach space X = {u €
C"'(G) | Bu =0 on dG). First we seek

A Priori Estimates for the Solution. Fix p > n and suppose there is a solution
uin H,, ,. Then, according to (2.6") for k = 0, we have

ry I/p
iy < CUGHI, = €0t | [ (14 Y 0ul] ax|  byeo
o |Bl<m

Since ¥ < 1 it follows easily that there is a constant C; such that the solution u
satisfies

“u”m.p = Cl .
If we apply the Sobolev embedding theorem (ii) (noting that p > n) we obtain the
a priori bound
(210) Iulm—l =< C2

for some constant Cs.



PROOF OF THE THEOREM: In the space X as defined above let §2 be the ball

in X
Iu|m~l < CZ + l.
In Q we define the map
pu) =u— P~'Glu].

In view of the a priori estimate (2.10) there is no solution of ¢(u) = 0 on N2
Furthermore, for u € € there is a constant C; such that |G[u](x)| < Cs; i.e., fixing
p > n as before,

[Glulllo., < Ca.
Hence, by (2.6'),

(2.1D) 1P~ Glmp = Cs

and, by the Sobolev embedding theorems,

|P_IG[M]|me—u < C() fOI',LL =1- 'n—
p

It follows that P—'G[] is a compact map of € into X. and it is easy to verify
that this map is continuous. Consequently,

deg(¢, 2, 0) is defined.
From our estimates it follows that for ¢, (4) = u — tP7'Glu],0 <t <1,
deg(¢r, 2, 0) 1s independent of z,

and hence equals the degree for z = 0, namely, one. Thus (2.8') has a solution in
Q.

To complete our proof we observe that from (2.11) it follows that the solution
u is in Hy ,. Since u € €, it follows easily that G[u] is in H, ,. Applying the
basic results in H , we find that u € H,,.1.p and hence, since p > n,u € C" (G).
Continuing in this way we find that u is a C*(G) solution of (2.8). 0

EXERCISE Prove the existence of a solution using the Schauder fixed-point theo-
rem in place of degree theory.

2.6. Mildly Nonlinear Perturbations of Linear Operators

We know that for a compact linear map 7 of a Banach space X into itself, / - T
is Fredholm with index zero, and that its adjoint 7* : X* — X* is also compact
with dim ker(I — T)* = dimker(/ — T'). Furthermore, for given y,

(I-Tx=y

has a solution x — x*(v) = O for all x* € ker(/ — T*). In this section we will
present some simple extensions to nonlinear operators.

First we study the effect on a linear operator due to a compact perturbation
which is suitably small at infinity.

THEOREM 2.6.1 Let X and Y be real Banach spaces and A : X — Y a bounded
linear map such that
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(i) range(A) is closed.

(ii) X| = ker A has a complementing closed subspace X».
Let K : X — Y be a nonlinear compact map such that

(iii) K(X) C range(A).

(iv) K(x) = o(llx|) as ||x|| = +oc uniformly.

Then
range(A + K) = range(A),

PROOF: Decompose X = X, ® X,;then A : X, — range(A) is an isomor-
phism with a bounded inverse A~ by the closed graph theorem. Write x = x; + X2
with x; € ker A, x; € X,. We shall prove more than is claimed, namely, that for
each y in range(A) and each x; € X, there is a solution x; of

Ax; + K(x1 +x2) =Y.
Set Ax; = z € range(A) and write x; = A~1z; the last equation takes the form
(2.12) t+K(n+A7'2)=y.

We will find a solution z = z(x;) of (2.12) with the aid of degree theory inrange(A)
for the map

(I+T)z, T(z)=K(xi+47'2).
Keep x; and y fixed. In the ball ||z|| < R = R(x1, y), for R sufficiently large,
deg(I + T, ||zl < R, y) is defined, since there are no solutions for ||z|| = R; this
follows from hypothesis (iv). By homotopy invariance we see that for0 <r <1,

deg(I + T, |zl < R, y) =deg( +1T, |z = R, y) = 1.
Hence z + T(z) = y has a solution. O
COROLLARY 2.6.2 [22] If T is a nonlinear compact mapping X — X such that
T(x) = Too(x) — K(x)

with Tao(x) a linear operator X — X and K(x) = o(||x|) as || x|| = oo uniformly,
then:

(i) Too(x) is compact.
(ii) Ifrange(K) C range(I — T), the equation

I-Tx=y
has a solution if and only if y € range(I — Tw).

PROOF: (i) If Ty is not compact, there is a sequence of unit vectors x;
such that | Toox; — Tooxjll = 8 > 0 for all i # j. Now for R large this
implies

IT(Rx;) = T(Rx)|| = R —o(R) > 1,

which contradicts the compactness of T'.
(ii) Write (I — T)x = y as (1 — Too)x + K(x) = y, then apply the Theo-
rem 2.6.1 with A = [ — Two.
O



The condition K(X) C range(A) in the previous theorem is rather restrictive
and sometimes difficult to verify. We present a variation on this result in which
this restriction is dropped. However, we impose other conditions enabling us to use
degree theory. It should be remarked that these conditions are not necessarily the
best or most natural; many alternative conditions can be invented.

We shall formulate a rather general result, but we shall only prove a special
case of it here using degree theory. The general case may be proved following the
proof of Theorem 4.1.4 in Section 4.1.

Let X, Y be Banach spaces and A : X — Y a continuous linear map which is
Fredholm of index i > 0, i.e.,

(i) ker A = X has dimension d < oc and
(i) range A = Y; is closed in Y with codimension d* =d —i.
Decompose as direct sums
X=X1®X,, Y=YVioh=0Yedu-Q)Y,

where Q is a projection operator in Y onto Y.

THEOREM 2.6.3 Let K : X — Y be a nonlinear compact map for which there
exist positive constants Ry, € such that

(i), QK@) = o(lx|)) uniformly as ||x|| — oo,
(i), (I — Q)K(x1 +x2) # 0forx; € X1, x2 € Xy and ||xi|| = Ro, llx2|| <
ellxill, and
(iv) the mapping (I — Q)K(x)) for |xill = Ro into Y>\{0} has nontrivial

stable homotopy;, i.e., all its suspensions are nontrivial. (In case d* = d
this means that the degree of this map at the origin is not zero.)

Then

(a) for any yy € Y\, there is a solution of
(2.13) Ax +K(x)=yp.
(b) The same is true for any yo € Y if K also satisfies (here x = x; + x2)
(iii)s [|(I — @)K (x)|| — oo uniformly as || x| — oo provided ||x;|| < &l|x:].

PROOF IN CASE d* = d: We note first that (b) follows from (a) and that in
either case it suffices to consider yo = 0, for it is easy to see that Ko(x) = K (x) —
yo satisfies the conditions (iii);, (iii);, and (iv) with different constants Ry, &, and
hence A(x) + Ko(x) = 0 has a solution. So we need only prove (a) with yo = 0.

Applying Q and (I — Q) to the equation Ax + K(x) = 0, we see that it is
equivalent to the system

Ax; + QK (x +x2) =0, (I - Q)K(x; +x) =0.
Writing z = Ax, € range(A) we obtain as before
2+ QK +47'2)=0, (-0 K(xi+A'2)=0.

Since X, and (I — Q)Y = Y, have the same dimension d, there is a linear iso-
morphism B : X; — Y,. Hence, setting Bx; = y,, we may rewrite the system



as
2.14) + QK(B v+ A7'5)=0. (I—Q)K(B'y2+A'2)=0.

The left-hand sides of these equations may be viewed as an operator of the
form I + C. C compact. mapping ¥ = 2+ ¥» € Y into Y. Here

Cz+y)=K(B '+ AT'Z) =
We claim that the degree of the map in a large ball ||¥|| < R is defined. For

suppose (2.14) has a solution y on || y{| = R, R large. Then from the first equation
in (2.14) and from (iii),, we see that

Izl < o(ly2ll + Izl and hence |iz]l = o(liy21)-

For R sufficiently large we see easily from (iii), that the second equation in (2.14)
cannot hold.

The preceding argument also shows that for the deformation, 0 <t < 1,
z+1 QK(B 'y, +A7'2)
(I—-0) K(B 'y2+1A7'2),
we have F,(y) # O for ||yl = R large. Thus
deg(F;, Iyl < R.0)
is independent of ¢. The map Fy is simply
4y 2+ U — QK(B ).

This is a product map (in fact suspension) and therefore has the same degree as the
finite-dimensional map (1 — 0)K (B~'yy) at the origin. Since B is an isomorphism,
this degree = = deg((/ — Q)K (x1), x|l < Ro,0) # 0 by (iv). Hence (2.14), and
so (2.13), has a solution. -

Fi(y):

REMARK. If (I — Q)Y = Y, has a scalar product (, ), then condition (iv)
automatically holds if K satisfies
(I - @)K (x)), Bx;) #0 for [x;ll = Ro .
The degree of (I — Q)K (x1) 1s then +1.

EXERCISE Prove the remark.

PROBLEM Using Theorem 2.6.3, formulate and prove an existence theorem for
an elliptic boundary value problem of the form (2.8) in which index P = 0 but
ker P # 0.

2.7. Calculus in Banach Space

In this section we will present several forms of the classical implicit function
theorem. This is based on the material in [19, 23].
Let X and Y be Banach spaces, and f : X — Y a continuous mapping de-

fined on an open subset of X. Let B(X.Y) denote the set of bounded linear maps
X —-Y.



UEFINITION f is (Frechet) differentiable at xy € X if there exists a bounded linear
mapping A € B(X, Y) such that

Il f(xo +u) — f(xo) — Aull = o(r)

for ju|| <rasr — 0.
We list several properties of the Frechet derivative A:

(1

(2)

3)
4)

If A exists it is unique; it is sometimes denoted by f,(xy), Df (xo), or
f'(x0).
If fi(xo) is a continuous linear map xo > B(X, Y), then f is said to be
of class C'. We can define, inductively, f € C?, p = 1,2,..., 1e.,if
D(D?7! f)(xg) is in

B(X,B(X,B(X,...,B(X,Y)--- ).

N e’
p

Compositions of C¥ maps are C”.
If X and Y are complex Banach spaces, U openin X, and f : U — X
is differentiable at each point in U (with f,(x) linear over the complex
field), then f is said to be holomorphic on U. One can show that if §
is any finite-dimensional subspace of X and f is continuous, then f is
holomorphic iff for any continuous linear functional y* on Y, y* o f is
holomorphic on U N §.

If X and Y are real Banach spaces, then f is real analytic in U if f
is the restriction to U of a holomorphic map of a neighborhood of U in
complexified-X into complexified-Y .

LEMMA 2.7.1 If f : X — Y is of class C' and is compact in a neighborhood of
Xo, then Df(xy) is a compact linear map X — Y.

PROOF: If Df (xp) were not compact, there would exist a sequence {x;}, ||x;]|
< 1, and ¢ > 0 such that

|Ax; — Axj|l > ¢ >0 foralliand .

Choose § > 0 small enough so that

k)
1f (o + 8x;1) — f(xg) — 8Ax; || < %;

then (setting x¢ = 0)

or

5
% > | f(8x)) — f(8x;) — 8Ax; + 8Ax,]|
> I8 A4x - A | — | (%) — f£(8x))]

> 8e — || f(8x;) — f(8x))l

|3

IfBx) — fxp)l =

?

contradicting the fact that f is compact.
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We shall often make use of the integral theorem of the mean: 1f feClona
convex open set U, then for any x, x € U
1 d 1
fxH)—fx)= / Ef(tx/ + (1 =px)dt = / fox' + (1 = nx)dt(x’ —x) .
0 0

We will prove the implicit function theorem with the aid of the strict contrac-
tion mapping principle, which asserts that if (X, d) is a complete metric space and
f : X — X is acontinuous map which is contracting, 1.e.,

d(f(x), f(y) <6d(x,y), 0<6 <1 forallx,yinX,
then f(x) has a unique fixed point. O
THEOREM 2.7.2 (Implicit Function Theorem') Let X, Y, and Z be Banach spaces
and f a continuous mapping of an open set U C X x Y — Z. Assume that f

has a Frechet derivative with respect to x, fx(x, y), which is continuous inU. Let

(x0, yo) € U and f(x0,y0) =0.If A= £ (x0, Yo) is an isomorphism of X onto Z
then:

(i) There is a ball {y : lly — yoll < r} = B,(yo) and a unique continuous
map u - B,(yo) = X such that u(yo) = xo and fu(y),y) =0.
(i) If f is of class C!, then u(y) is of class C' and

uy(y) = —[feu (), N1 o fru(), y).
(iii) u,(y) belongs to C? if fisinCP, p> 1

PROOF: We may suppose xo = 0, yo = 0. The equation f(x,y) = 0 may be
written in the form Ax = Ax — f(x,y) = R(x, y) or

x=x—A""f(x,y) = AR, y) =gx, y).

We will show that for suitable r, § > 0, and each fixed y € B, (0) the map g(x, y) :
B;s(0) — B;(0) is a strict contraction. So there is for each fixed y a unique x =
u(y) in Bs(0) such that g(u(y), y) = u(y) or

fu),y) =0.

Choose ¢ > 0 with e|]A7"|| < % (Note that as a consequence of the closed
graph theorem A~! is bounded.) We first show that || R (x;, y) — R(x2, I <ellx;—
x»|| when x; belongs to some ball B;(0) and y € B,(0).

R(x1,y) — R(x2,y) = Ax; — Axg — (f(x1,y) — f(x2,¥))
1
=AM —x2) — [/ feltxy + (1 = 1)x2), )’)dl] (x1 —x2)
0
1
= [A —/0 foxy + (A = Dxa, y)dt] (x; — x2)

1
_ fo L£u(0.0) — fultxs + (1 — Dxzs y)Mde (1 = %2)

IThe formulation is that of [18] (see p. 339).
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Since f; is continuous, we can choose r, § > 0 such that
1 f:(0,0) — fx(x, Wl < ¢
when ||x|| <8, lyll <r.Then
IR(x1, y) — R(x2, M < €llx1 — xall
and
(2.15) lg(x1, y) — g2, ML < el A7HHlxn — xall < T = x2ll -

This shows that g(x, y) is contracting for x € Bs (0) for each y € B,(0).
Next we show g(x, y) maps Bs(0) — B;s(0) when y is restricted to a suitable
ball. By continuity of g(x, y) at (0,0), restrict » > 0 small enough so that

lg (0. y) < 38
and (2.15) holds. Then
ligCx, Il < llg0, I+ 5llxll < 8.

Hence by the strict contraction mapping principle, there exists for each y € B, 0)
a unique x, denoted by u(y), such that

x| <& and f(u(y),y) =0.
Continuity of u(y). Let y1, y2 € B,(0); then

l(yr) — u(y2)ll

= lgu(y1), y1) — g (y2), y2)ll
gy, y1) — g2, yDIl + lg(y2), y1) — gu(y2), y2)l
Hlu(yr) — u(y)ll + ligu(y2), yv) = gu(y2), y)I,

IA

IA

or
() — w2l < 2lg(y2), y1) — gu(y2), 2l -
Since the right side of this equation approaches zero as y; — ¥, in view of
the continuity of g in the y variable, the result follows. Thus (i) is proved.
To prove (ii), consider y + 4y such that ||y 4+ 8y|| < r and set u = u(y +
8y) — u(y). Since u(y) is continuous in ||yl <r,8u — 0asédy — 0. Now by the
differentiability of f,

I fu(y + 8y), y +8y) — fu(y), y) — feu(y), y)du — Fuu(y), y)éyli
< &(||8yll + lI8ull) foranye >0

provided |8y is small enough, i.e.,
(2.16) | fe(u(y), ¥)8u + fru(y), »)8yll < e(lldyll + lldull) .

Since fi (u(y), y) = f:(0,0) and [fx (0, 0)]~! is bounded, we see that [ f; (u(y),
)]~! exists and is bounded for |||l sufficiently small. From (2.16) it follows that

181 + [fx (), VI fou(), )8yl < Ce(lidyll + 18ull)
for some constant C. Let v = [ fi(u(y). 17 fy(u(¥), y)8y; then
I6u + vl < Ce(I8yll + 18w + il + llvlD -



Choosing ¢ > 0 small enough so that Ce < % we find tfor some constants
Ci.C, >0,

18 + vll < eCr(lIdxll + llvl) < eCalldy .
This shows that 1 has a Frechet derivative at y,
(2.17) e (¥) = =L o) D17 f () v
Clearly. if f is C', then the right-hand side of the last equation is continuous in y:
we see that n(v) € C'.

Finally, if f € C*. the right-hand side of (2.17) is in C', and so u € C*: by
induction it follows that i € C? if f € CP. The theorem is proved. O

COROLLARY 2.7.3 If f isa C? map, p > 1, of a neighborhood of xy € X into
Y with vo = f(xo) and f(xo) an isomorphism onto Y, then there is a ball {v |
v — w2l < r} = B,(yo) for which there is a unique C” solution

x=uy) of fu(y)=y. xo=ulyo).
PROOF: Let F(x,y) = f(x)—y = 0and Z = Y in the previous theorem. U]
There is a useful global extension of this result due to Hadamard:

THEOREM 2.7.4 (Monodromy Type) Let f be a C! map of a Banach space X
to a Banach space Y. Assume that for each x € X, fo(x)~! exists and has norm
bounded by a fixed constant. Then f is a homeomorphism of X onto Y.

This is theorem 1.22 in Schwartz [11] and the proof will be omitted.

REMARK. If X, Y, and Z are complex Banach spaces and if f is holomorphic
from X x Y — Z. then so is the solution f(u(y),y) = 0. This is because the
solution is obtained, via the strict contraction mapping principle, as a unique limit
of iterates, all of which are holomorphic. Hence the limit is holomorphic. The
same is true for real analytic functions when X, Y, and Z are real Banach spaces,
by extending to the complexified spaces.

The following form of the implicit function theorem is often used:
THEOREM 2.7.5 Let f(x.y) be a C” map, p > 1. of a neighborhood of (0, 0) in
X x Y into a Banach space Z such that
(i) f(0.0) =0,
(ii) range f.(0,0) = Rf:(0,0) = Z,
(iii) ker f,(0,0) = X has a closed complementing subspace X, in X ie, X
is a direct sum X = X, @ X».

Then for each x1 € X1, x| <8 and y € Y. ||¥| < r, for suitably small 8. r > 0,
there is a unique C? solution x, = u(x,, y) of
flo 4+ ulxr, y),») =0
with u(0,0) = 0.
PROOF: Set ¥ = X, x Y.i.e., ¥ = (x;. )., and apply the implicit function

theorem to G(x,, ¥) = f(x; + x2.y), mapping a neighborhood of the origin in
X, x ¥ into Z. =



2.7.6 (Lyapunov-Schmidt Procedure) We will apply the preceding in a frame-
work that will occur often in bifurcation theory.

Let X. A.Y be Banach spaces (we think of A as the parameter space) and
f(x.A)yaC’map. p > I. of a neighborhood of (x¢, Ag) in X x A into Y, with
f(x0. ko) = 0. We wish to study the set of solutions near (xo. A¢) of

flx. ) =0.

Assuming fy(xq. Ag) is Fredholm, the Lyapunov-Schmidt procedure reduces this
problem to one of solving a finite number of equations, i.e., we make the

HYPOTHESES (a) ker fc(xg. Ao) = X is finite-dimensional and
(b) range f,(xg, A¢) = Y; is a closed linear subspace of Y of finite codimen-
sion.

We may suppose (xg, Ag) = (0.0). Decompose ¥ = Y, @ Y, as a direct sum
with dim Y> < oo, and let Q be the associated projection operator onto Y. We also
decompose X = X| @ X, as a direct sum. Applying Q and (I — Q) to the equation
f(x,A) = 0, we see that it is equivalent to the equations

Q(f(x,2)) =0. (=) (f(x,2) =0.
Applying Theorem 2.7.5 to
Of(xi+x2.0) : Xa x (Xy x A) = 11,
we see that there exists a unique solution x; = u(xy, ) near 0 of
Of (x; +ulxy,A),2) =0.
Hence x, + u(xy, A) is a solution of f(x, 1) = 0if and only if
(2.18) (I =) f G +ulxy,2),2)=0.

Since the range of (I — Q) is finite-dimensional, (2.18), called the bifurca-
tion equation, is a finite set of equations. If the parameter space A is aiso finite-
dimensional, then the local study of the equation f(x, &) = 0 is reduced to a finite
number of equations for a finite number of unknowns.

2.8. The Leray-Schauder Degree for Isolated Solutions, the Index

Suppose X is a Banach space  C X a bounded open set; let ¢ : Q- X.
¢ #00ndQ. ¢ € C'(Q) with K = I — ¢ compact. Assume that x, € € 1s an
isolated solution of ¢(xq) = 0 and that A = ¢,(xp) = I — K, (xp) is invertible.
Let B.(x,) be a ball with radius £ > 0 and center x. chosen so that B, (x() contains
no other solution of ¢(x) = 0. The existence of such a ball is ensured by the
implicit function theorem. By Lemma 2.7.1. T = K, (x) is compact. It is possible
to compute deg(¢. B.(xq). 0). For 0 < ¢ < g this is independent of ¢ and is called
the index of the map ¢ at xg.

Consider the set {1} of real eigenvalues of T bigger than 1. Clearly 1 is not an
eigenvalue since, by assumption. (I — T) is invertible. For such an eigenvalue A,



let 1, be its multiplicity:

o¢
ny, = dim | | JkeriI — T)?
p=1
That 7, is finite is part of the Riesz-Schauder theory for linear compact operators.

THEOREM 2.8.1 (Leray-Schauder) Under the preceding assumptions,

deg(¢, B.(x0),0) = (=1), B = an.
Ax1

The theorem is based on the corresponding result in finite dimensions:

REMARKS. (1) If A is a real nonsingular matrix in R", and T=1-A,

then
sgndetA = (=¥, p=>) m(D),
A1
where the sum is taken over the real eigenvalues of T that are greater than
one. This, in turn, is based on:
(2) If Ao is a real eigenvalue of T : R" — R" of multiplicity m, then for

small ¢ > 0

sgndet(ro + & — T) = (=1)" sgndet(ho — & — T).
Remark (2) is easily proved since
det(A] —t) = TTI(A — A;)™,
where A; are all the eigenvalues of T (including complex) and m; are the respective

multrphcrtres Remark (1) follows from Remark (2) by looking at the sgndet(A] —
T) for A large, and then letting A — 1.

PROOF OF THEOREM: We may assume xo = 0. By the deformation, %K(tx),
0 <t < 1of K to T, one sees easily that deg(I — K, B, 0) = deg(/ — T, B, 0).
We may decompose X = X; @ X, where X, is spanned by all the generalized
eigenvectors of T (i.e., U ker(Al — T)?,» > 1), and X is invariant under T.
Then, by the product property

deg(I — T, B, 0) = deg((I — T)|x,, B: N X1, 0) - deg((/ — T)lx,, BeN X3,0).

Now in B, N X the mapping I — T admits the deformation I — 7,0 <t < 1,to
the identity, since (I —tT)x; =0for0 <t < 1, x, € X, implies x; = 0. Thus,
deg(I — T, B;,0) = (deg(I — T)|x,, BeN X;,0) = (—=1)# by Remark (1).

O

EXERCISE Let © and ¢ be as above. Let G be a connected open set in X\¢(9€2)

consisting only of regular values of ¢; i.e., for any point y € G, ¢« (x) is 1nvert1ble

at each point x in ¢~'(y). Prove that n(y) = the number of points in ¢~ 1(y) is
constant on G.



CHAPTER 3

Bifurcation Theory

Let f be a mapping of a neighborhood of a point xq in a Banach space X into
a Banach space Y, with f(xo) = 0. We wish to study the set of solutions of

f(x)=0.

In this degree of generality we cannot hope to say much. Even in finite dimensions
the problem is extremely complicated; classical algebraic geometry is concerned
with the case that f is a polynomial.

The equation

flx,2) =0,

where f depends, in addition, on one or more parameters A, occurs often. It some-
times happens that, as A varies, there is a nice family of solutions x (1), but that
at some critical value of A this family may disappear, or may split into several
branches, hence the name bifurcation. A familiar example is the problem in elas-
ticity of a straight rod lying on a table which is being compressed by forces at the
ends. For small forces the rod maintains its shape, i.e., the only (local) solution of
the equations of elasticity is the trivial one. But as the forces increase they reach a
first critical value beyond which the rod may buckle.

In this chapter, with the aid of the tools developed earlier, we will study local
solutions under a variety of assumptions. In Section 3.4, we also present a global
result. We will usually suppose that f(x) is of class C?, p > 1, and that the Banach
spaces are over the real field (if they are over the complex field we do not assume
that f is holomorphic). We will also usually assume that f is Fredholm, i.e.,

ker f,(xo) = X has dimension d < o0,

(3.1)

range f,(xo) = Y is a closed subspace of Y of finite codimension.

If the range is not closed, then very little is known.

3.1. The Morse Lemma

Consider first the simplest case: Y| = Y. The implicit function Theorem 2.7.5
tells us that in a neighborhood of x, the set f~!(0) consists of a d-dimensional
submanifold of class C” through xq. If Y| # Y, the problem is then called, speaking
loosely, a bifurcation problem.

The next simplest case is

codimY, =1;



i.e.. for some continuous. linear tunctional v* # 0. yv* € Y*. ¥V, = {y € ¥ |
VE(v) = 0}. We may suppose xg = 0. In Section 2.7.6. we have seen that the local
study of f(x) = 0 reduces to the single biturcation equation

(3.2) Vg +ue) =0, x e X,

Here X is decomposed as X = X | @ X». and u(x;) € X- is a function of class C”.
The biturcation equation is thus one equation for ¢ unknowns.

Even for a single equation. however. the solution set may be very complicated.
Consider a single equation

F(x)=0.

where F is a C” tunction. p > 2. defined in a neighborhood ot the origin in R¢
with F(0) = 0. If F,(0) # 0. then. as we saw. the set of solutions of F(x) = 0
near the origin is a C” hypersurtace (i.e.. of dimension d — 1).

The next generic case is

F()=0. F.(0)=0.

3.3 L . . .
(3-3) and the matrix of second derivatives F,, (0) is nonsingular,

i.e., the origin is a nondegenerate stationary point of F. This is just the situation in
which one has the

THEOREM 3.1.1 (Morse Lemma) If F € C”, p > 2, and satisfies (3.3), there exists
a local CP~2 coordinate change v(x) defined in a neighborhood of the origin with
¥(0) =0, v (0) = I such that
1
Fx) = E(F.\:\'(O)y(x)y y(x))

near the origin.

In this case the solution set of F(x) = 0 is very easy to analyze. In particular,
we have

COROLLARY 3.1.2 Under the conditions of the lemma, if d = 2 and the quadratic
form (F(0)y, y) is indefinite, the set of solutions of F(x) = 0 near the origin
consists of two CP~2 curves intersecting only at the origin (transversally in case
p > 2).

In general for d > 2, it F\(0) is indefinite, the set of solutions of F(x) = 0
looks like a detormed cone (see Figure 3.1).

~.

~ ’
7 )(\
e G \\\

N — N

FIGURE 3.1. Example for d = 3.

In the next section we will apply the Morse lemma to a bifurcation problem.
The idea of applying it in such problems was suggested by J. Duistermaat. Indeed.
it's clear that whenever we can find a suitable change ot variable reducing some
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nonlinear equation. or finite system of equations F(x) = 0. in RY to normal forms
whose solution set can be easily analyzed, we can describe the structure of the
solutions of the original system. Thus, in particular. the Thom-Mather theory of
the stability of maps should play a very useful role in bifurcation theory.

We shall prove a generalized form of the Morse lemma which. together with
the proof, is taken from [29. lemma 3.2.3].

LEMMA 3.1.3 (Generalized Morse Lemma) Ler F(x,v), x € R4, v e R¥, be
a C? real function, p > 2, in a neighborhood of (0,0). with F,(0.0) = 0 and
Q = F..(0, 0) nonsingular. In a neighborhood of the origin there is a C? function
x(v), with x(0) = 0, satisfving

(3.4) Fe(x(v),») =0

and also a CP~2 Sfunction £(x, v) with values in RY of the form
E=x—x(3)+0(x —x(M)

such that

(3.5) Fx,y)=Fx(),» + %(Q(_v)é, £)

where Q(V) = Fuu|v=v(y)-

COROLLARY 3.1.4 If F(0,0) = 0 and Q(0) is indefinite, then for every v near
the origin, the equation F(x,v) = 0 has as solution set a (d — 1) dimensional
surface in CP~2 except for a possible conical singularity at x = x(v), in case
F(x(y),y) =0

PROOF: The implicit function theorem yields the solution x(v) of (3.4). If we
replace the variable x by x — x(y), we may suppose that F,.(0, v) = 0 for ¥ near
the origin.

We shall seek & of the form

£ =R(x.v)x

where R is a d x d matrix to be determined, with R(0. v) = [. so that (3.5) holds:
i.e., if R* is the adjoint of R.

1
;(R*Q(_\')R.\'. X)=F(x.v)— F(.v).
Writing F(x.v) — F(0.y) = /01 %F(t.\‘. v)dt and integrating by parts. we have
1
1
F(x.v)—F(@0.v)= / (1 = D)(Fy (tx. vy . v)de = ;(B(.\'. V)X.X) .
0 2

where B(x. v) =2 l/;)l (1 —1)F, (tx. v)dt; note that B is a symmetric matrix. Thus.
we wish to find R so that

(3.6) R*Q()R = B(x. V)
and R(0. v) = I.



We solve (3.6) with the aid of the implicit function theorem. At x = 0 we have
B(0, y) = Q(y), and R = I satisfies (3.6) there. The Frechet derivative of the map
R*Q(y)R at this point is the linear map

R R*Q(y)+ Q(R.

This map is onto the space of symmetric matrices, for if § is a symmetric matrix
then R = %Q"S satisfies R*Q + QR = S. It follows from the implicit function

theorem, Theorem 2.7.5, that (3.6) has a solution in CP~? in a neighborhood of
(0,0). O

REMARK. It is clear from the proof that the regularity assumptions, in particu-
lar, with respect to y, may be weakened. It is also clear that if F is C* or analytic,
so are x(y) and §(x, ¥).

3.2. Application of the Morse Lemma

Let us consider the case discussed above, in which f satisfies (3.1), with xo =
0, and codim Y; = 1; i.e., there is y* € Y*, y* # 0, such that
Yi={yeY |y (=0}

THEOREM 3.2.1 Assume that f is as above, in CP with p > 2, and that its restric-
tion to X satisfies

(3.7) thed x d symmetric matrix V* fx,x, (0) is nondegenerate and indefinite.

Then in a neighborhood of the origin, the set of solutions of f(x) = 0 consists
of a deformed cone of dimension d — 1 with vertex at the origin. In particular, if
d = 2, then it consists of two CP~% curves crossing only al the origin (transversally
if p > 2).

It is clear that if y* fx,x, (0) is definite, then x = 0 is the only local solution of
fx)=0.

PROOE: As we have remarked, the equation f(x) = 0 is equivalent to the
bifurcation equation (3.2):

F(x)) = y* f(x; +x20x1)) =0.

The Morse lemma applied to F (x;) yields the desired result. We have only to check
that the hypotheses of the lemma hold; namely, we show

(i) Fy,0) =0,
(11) FX1X1 (0) = y*fxlxl(o)-
To check these we recall that x;(x;) was obtained as the solution of
Qf (x1 +x2(x1)) =0, x2(0)=0.
Differentiating this, we find
0f:(0)(x; + x2,, (0)x;) = 0.
Since fx(0)x; = 0 and Q is projection into R( f:(0)), we see that
£ O)xz, (0)x; =0,
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and since f,(0) is an isomorphism on X, and X2, ®x; € X,, it follows that
Xz, (O)x =0, ie.,
(3.8) x2,,(0) =0.
Consequently, since y* f,, (0) = 0, we have
Fy(0) =y"f,(0) =0, Fi (0) = " f1,5,(0) .
]

REMARK. 3.8 Incased = 2and p > 3 in Theorem 3.2.1, it follows from the
Morse lemma and (3.8) that at the origin, the tangents of the two solution curves
lie in the plane X and thus have the directions v satisfying y*( fy,x, (0)(v, v)) = 0.

Let us apply Theorem 3.2.1 in a situation occurring frequently in bifurcation
theory. Consider f(x,A1) € CP, p > 1, mapping a neighborhood of (0, 1¢) in
X x Rinto a Banach space Y, with

(3.9) f0,40) =0.

DEFINITION The point (0, 1) is called a bifurcation point of f if every neighbor-
hood of (0, 4g) in X x R contains a solution (x, 1), x # 0 of

fx,2)=0.
In many problems f satisfies
(3.9) £(0,2) =0.
In this case it follows from the implicit function theorem that if f,(0, A¢) is an
isomorphism of X onto Y, then (0, Ag) is not a bifurcation point.
THEOREM 3.2.2 Let f(x,)) be a CP map, p > 2, of a neighborhood of (0, Ag) in
X x Rinto Y with f(0, ko) = 0. Suppose

(i) f2(0,20) =0,

(i1) ker f, (0, Ag) is one-dimensional, spanned by xy,
(iii) range f,(0, Ag) = Y has codimension 1, and
(iv) fix(0,20) € Yy and f,(0, ho)xo ¢ Y1.

Then (0, hg) is a bifurcation point of f. In fact, the set of solutions of f(x, 1)
near the origin consists of two CP=? curves Ty, T intersecting only at (0, ko).
Furthermore, if p > 2,

"y is tangent to the h-axis at (0, L) and so may be parametrized by \:
(x(2). 4), [l =e,
> may be parametrized by a variable s, |s| < ¢, as
(sxg + x2(5), A(5)) .
with x2(0) = x2,(0) =0, L(0) = Ap.
REMARK. In case f satisfies (3.9') the curve T is the A-axis. This theorem

has been observed by several authors using the implicit function theorem. See, for
example, theorem 1 in Crandall and Rabinowitz [18].



PROOF: We may suppose Ao = 0. Let X = X x Rand f(x,A) = f(&). Then
f:(0) = f:(0,0) & f,(0,0). From (i) and (ii) it follows that ker f;(0) is spanned
by (xo, 0) and (0.1), and so is two-dimensional. Let y* = 0 be a linear functional
annihilating Y,. We claim that f (%) satisfies the hypotheses of Theorem 3.2.1. We
have only to verify (3.7). The 2 x 2 matrix in question has the form, in rather
obvious notation,

0= (.\'*fm_m(O, 0) ¥ fi O, 0))
¥ fii(0,0) ¥ £55(0,0)
and from the hypotheses (iv) it follows that lower diagonal term is zero while the
off-diagonal terms are not zero. Hence det Q < 0 and therefore Q, is nonsingular
and indefinite.

Applying Theorem 3.2.1, we infer the existence of the two curves I'y, I'>. Sup-
pose now p > 3. These curves are then of class C P=2 and intersect transversally at
the origin. To complete the proof of the theorem we have only to prove that one of
them is tangent to the A-axis there. This follows from Remark 3.8 and the fact that
y* £:(0.0) = 0. U

Here is a very simple application to a nonlinear elliptic boundary value prob-
lem: Let G be a bounded region in R” with smooth boundary. Consider the bound-
ary value problem for a real function u

a
fu, ) =Au—32gu)y=0 inG, normal derivative a_u =oau ondG;
n

here « is a constant and g(0) = 0. Assume g'(0) # 0. The linearized problem at

u=>~0is

du

dn
Suppose A is an eigenvalue of this problem with null space spanned by ¢ (i.e.,

one-dimensional). The linearized problem is self-adjoint so that range f, (0, Ao) is

the set of elements ¥ 11, ¢. Since (f£,,(0, 20)¢. ¢) = —(g'(0)¢, ¢) and g'(0) #
0, we find

fu (0, MU =Au—2g'(Qu=0 inQ, =oqu ondf.

[0, 20)¢ ¢ Y1

By the preceding theorem we have therefore:

Conclusion. (0, Ag) is a bifurcation point. In fact, there is a one-parameter
family of nontrivial solutions (s¢ + u>(s), A(s)), |s| < &.

The same result holds for the Dirichlet boundary condition ¥ = 0 on 3G in
place of the one above.

As an application of the generalized Morse lemma, Lemma 3.1.3, we may
derive the following:

THEOREM 3.2.3 Let f(x,X) be a C? map, p > 2, of a neighborhood of (0,0) in
X x Rinto Y with £(0,0) = 0. Suppose
i) f(0,00=0,
(i1) X, = ker f:(0,0) is d-dimensional, d > 1,
(iii) range f(0, 0) = Y, has codimension 1,
(IV) f)\)\(o, 0) S Y], and



(v) for some xy € X, f,(0.0)xg ¢ Y.

Then (0. 0) is a bifurcation point of f. Furthermore, if we decompose X = {axo}®
X and X = lax)} ® X ® X, = PIX® P/ X ® P.X, where Py. P|. P> are the
associated projections, then for each (small) element x| € X|. the set of solutions
of f(x.X) near the origin with

Plx =x,

consists of two CP=2 curves. For p > 3, and each x| fixed, these two curves either
intersect transversally or else they look like two branches of a hyperbola.

EXERCISE Prove Theorem 3.2.3.

3.3. Krasnoselski’s Theorem

In chapter 4 of his book [6], Krasnoselski has given a general sufficient condi-
tion for a point to be a bifurcation point within the category of compact operators.
Though we will present a more general result later, we first present his result.

Let X be a Banach space and f(x, A) a map with domain D C X x Rinto X
of the form: f(x,2) = x — (o + 2)Tx + g(x, 1).

We will assume:

(1) o # 0and (0, uo) € D,

(2) T is alinear compact map X — X,

(3) g(x, A) is a nonlinear compact map D into X, and

(4) g(0,2) =0and g(x, A) = o(]|x]]) uniformly for |A| < €.

We wish to determine when (0,0) is a bifurcation point of f(x. 1) = 0.

We see immediately that a necessary condition is that / — o7 not be invertible.
Indeed, if I — uo T had a bounded inverse, the implicit function theorem would give
a unique local solution x (1), and this is x(x) = 0. (This is not quite correct, since
we have not assumed any regularity of g. However, it is easily verified that (0. 1)
is the only small solution of f(x. ) = O for |%| small by writing the equation in
the form x = (I — puoT) '[ATx — g(x. A)] and estimating the right-hand side.) So
(0,0) is not a bifurcation point.

Thus, a necessary condition for (0,0) to be a bifurcation point is that ugl is an
eigenvalue of T.

THEOREM 3.3.1 (Krasnoselski) Under assumptions 1—4 above. suppose 1/ is
an eigenvalue of T with odd multiplicity: then (0.0) is a bifurcation point of

flx. 2.

Recall that multiple p' = dim |~ ker(uy ' — T)7.

PROOF: Suppose (0.0) is not a bifurcation point then for ¢ > 0 sufficiently
small and A fixed and also sufficiently small. det( f(x. ). x|l < £.0) is defined
and independent of A. By Theorem 2.8.1. for ; > 0.

deg(f(x. ). [lxl} <e&.0) = (=D



where (1) = > multiplicities of eigenvalues of T which are > u_ol_fx and for

)»2<0,

deg(f(x. a). lx|| <&.0) = (=DF*?

and B(1,) — B(A;) = multiplicity of the eigenvalue p, ! Since the multiplicity of
pg ' is odd,

deg(f(x.22), x|l < &,0) = —deg(f(x, 1), x| <£.0),

contradicting the fact that deg(f(x, A), | x| < ¢, 0) is independent of A. U

EXAMPLES. (1) If 1/uo has even multiplicity, the conclusion of the the-

(2)

3)

orem need not hold. Let X = R?, x = (}!). Consider the equation

3
(x') ~ (1o +A)<xl) + ( x";) =0
X2 X2 X1
with no = 1. Then T = . Multiplying the equations by x; and x,
respectively, and subtracting, we find x5 + x} = Oor x; = x2 = 0,
as the only solution. Hence (0,0) is not a bifurcation point. In this case
ker(1 — T) = R2, so the multiplicity of o = 11is 2.
A similar example in R? in which ker(/ — T) = R}, ker(/ — T)? = R*is

XQ—)»)C]-{—X%:O, —)LXQ—X?IO.

Here I -T = (8 3). As above, one finds that any solution (x1, x2) satisfies
X3+ x} + x5 = 0, and so is trivial.

In the case that g is smooth and m = 1, Theorem 3.3.1 is a special
case of Theorem 3.2.2. In this case, in addition to the trivial line of solu-
tions (0, 1), we also have another smooth curve of solutions cutting this
transversally. If m > 1 this need not be the case. Consider the example in
X =R?*: T =1, up = 1 and g independent of A:

where v is a map of S? into R with v(y) L y for every y, and v vanishes
at only one point, the north pole. If x # 0 is a solution of

—Ax +g(x)=0

then, since g(x) L x, we see that A = 0 and x = (0, 0, x3), x3 > 0. Thus,
there is a nontrivial segment of solutions of the form (0, 0, x3), x3 > 0
and A = 0.

3.4. A Theorem of Rabinowitz

P. Rabinowitz has proved the following global extension of Krasnoselski’s the-
orem [31]:
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THEOREM 3.4.1 Let X be a Banach space and f(x, ) a continuous mapping of
a domain G in X x R into X of the form

fx,w)y = —uT)x —glx, 1)

satisfying
() T is a linear compact map of X into X,
(i) g is a nonlinear compact map of G into X with g(x, n) = o(|lxI}) uni-
formly on bounded . intervals, and
(i) (0, to) € G where uo # 0and ual is an eigenvalue of T odd multiplicity.

Let S denote the closure of the nontrivial (i.e., x # 0) solutions (x, u) of
f(x,n) =0in G, and C be the connected component of S containing (0, o).
Then either

(1) C is not compact in G (in case G = X ¥ R this means C is not bounded),
or

(2) C contains a finite number of points (0, p;) with 1/p; eigenvalues of T'.
Furthermore, the number of such points having odd multiplicity, includ-
ing (0, po), is even.

The proof that we present is due to J. Ize. It makes use of

LEMMA 3.4.2 (Ize) Consider f(x, ) as in the theorem. For i = Wo + A with
& #0, |A| small, w~'is not an eigenvalue of T and hence

i_ = index of 0 for (I — uT) =deg(d — uT, |Ix|| =1 0), A< 0,
for r = r()) sufficiently small is defined and independent of r and A.

So is
i, =deg(I — uT, x| =r.0) forx > 0.

For fixed small r > 0, consider the following map in a neighborhood of the origin
in X x R — X x R defined by H,(x, A) = (¥, 7) where

I = (o +MD)x — gl o+ M) =y, IxlP—rP=1.
CLAIM For suitably small Ao, r > 0,
deg (H,, [x)2 + 2% <72 +45,(0,0)) =i —is.

PROOE: Let Ao > 0 be so small that the only inverse of an eigenvalue of 7' in
the interval [(to — Ao, o + Aol 18 Ko- (Recall that nonzero eigenvalues of a compact
map are isolated.) As in the preceding section, [I — (i + o) 717! exists and is
bounded, and the only solution x, with ||x|| sufficiently small, of

(3.10) [I — (uxr)Tlx —g(x, o £ Ao) =0

isx=0.

We claim that for  small, H,(x, A) = (0, 0) has no solutions satisfying ||x %+
A2 = r2 + A2. Indeed, if (x, &) is such a solution, then A = +X, and, for r small,
the only solution of (3.10) is x = 0.



Consider the deformation. 0 < < 1.
Hi(x.n) =" 1.
Vi= (I — (o +MTHx —i1g(x. pho + A).
o=l = 1D+ (= 00g =2

As before. deg(H!(x. 2). |lx|I* + [A]° < r® + i. (0. 0)) is well-defined (i.e.. there
are no solutions on the boundary). Hence the degree is independent of 1. For r = 0

HO(x. ) = (I — (o + MT. A5 — A7)

If H,Q(x. A) = (0.0). then A = £Xy and x = 0. So the only solutions are
(0. Xp), (0. —Xo). However, the Frechet derivative of H,Q(x. A)at (0, A) is

DH"(0.0)(x. 2y = ((I — (o + 1) T)x. =221").

This is a product map, and so the degree at A = Xy is —i; and the degree at
A = —Xg isi_. Hence the total degree isi_ — i,. 0

PROOF OF RABINOWITZ’ THEOREM: Suppose C is compact in G. Recall
that the only possible accumulation point of the eigenvalues of a compact map is
zero, and so, in any finite interval in R there are a finite number of inverses of eigen-
values. Consequently, C contains at most a finite number of (0, u;), j =0..... k,
such that ,uj'l is an eigenvalue of T. Let Q be any open set in X x R contain-
ing C such that there are no nontrivial solutions (x. u), x # 0, of the equation
f(x, ) = 0on 3L, and so that 2 contains no other point (0. u) such that ulis
an eigenvalue of T, as in Figure 3.2.

In 2 for r > 0 consider the map f,(x, ) : @ - X x R,

Fre ) = (F 0o, X017 =)

-

/
7

FIGURE 3.2
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Now deg( f,(x. u). 2. (0.0)) is defined. since on 9<2 there are no nonzero
solutions of f(x, 1) = 0.and hence 0 = |lx[| <r for such a solution. Furthermore.
the degree is independent of r. For r large. f.(x. p) = 0 has no solutions in €2, and
hence has zero degree. On the other hand. for r small, if (x, p) is a solution of

f(x,u) = 0. then |x|| = r.and hence. as before. 1 is close to one of the p;.
j=0.1..... k. (Namely. if this is not the case. then (I — uT)~! is bounded and
x = 0 is the only solution of f(x,u) = 0. contradicting |lx|| = r > 0.) But then

the sum of the local degrees of f, in the neighborhoods of each of the u; 1s equal
to zero. By Lemma 3.4.2,

k
0= (i-()—is(j))-
j=0

Since i.(j) = (=1)™i_(j). where m; is the multiplicity of p;. the nonzero terms
involve only the p; with odd multiplicity. and since these terms add up to zero.
there must be an even number of them. U

3.5. Extension of Krasnoselski’s Theorem

A number of people have observed that with the aid of the Lyapunov-Schmidt
procedure, Krasnoselski's theorem may be considerably generalized. In particular.
compactness may be dropped: in place of Leray-Schauder degree. one uses degree
theory in finite dimensions.

The material in this section is taken from the doctoral dissertation [30] of J. Ize
(Courant Institute. 1974). A related reference is [28].

Let X be a Banach space over the real or complex field A with norm || ||.
Suppose Xy is a linear subspace of X complete under the norm | |lg with || [lo >
Il II. Then Xo <> X is a continuous injection. (Typical example: X is a space of
functions H,, ,. and X is a subspace of more regular functions.)

We wish to study the equation

3.1 (A-Mx—-Gx.n=0

near the origin. Here A is a continuous linear operator taking X, into X. and
G(x.*) a C' function' in a neighborhood of the origin of Xo X A into X satis-
fying:
(O |G, M) = O(||x|l(2) + ||A||”) for some power p (to be specified in
(3.17).
(2) A is a Fredholm operator of index zero. 1.e..
(a) dimkerA =g < o0
(b) range A is closed and has finite codimension equal to g.
(3) Zero is an eigenvalue of A with finite multiplicity. i.e..
dimUker Al =m < +oc.
ji=1

lBy this it is not meant that G is holomorphic in case A = C.



Here the domain of A/ = D(A/)) ={x € Xo | A*x € Xo. k=1,....j =1}

THEOREM 3.5.1 (Ize) Assume (1)-(3). Then in each of the following cases, the
origin (0,0) is a bifurcation point; i.e., there are nontrivial solutions (x. ), x #0
near (0,0), of
(A—Mx —Gx.»)=0.
The cases are:
(1) m is odd.
(i) A is complex and ¢ = dimker A = 1.
(iii) m is even, X is real or complex, and G satisfies some special (reasonable)
conditions.

The proof is somewhat technical and takes up the remainder of Section 3.5.

Reduction to Finite Dimensions. As in the Lyapunov-Schmidt procedure, the
first step will be the reduction of the problem to a finite-dimensional one. However,
the finite-dimensional space which we will consider is not X; = ker A but

oo
x' = Jkera’.
j=1
Let n be the first number such that
x!'= U ker Aj;
j=1

thus ker A" = ker A” for k > 0. Decompose
(3.12) Xo=X'®X;, X;closed.
LEMMA 3.5.2 X admits the direct sum decomposition
(3.13) X=X'o®AX;.
PROOF: With X| = ker A, decompose
(3.14) X'=X,®X,, s0Xo=X ®X20X3;

dim X, = g, dim X, = m — q. However, range A is spanned by AX, and AX3, and
we claim that, in fact, it has the direct sum decomposition

(3.15) range A = AX, ® AX3.

To verify this we have only to show that Ax; N AX; = 0. Suppose x € Xp,
x3 € X3, and Ax, = Axs;then x; — x3 € X;. By our direct sum decomposition
(3.14) it follows that x; = 0, x3 = 0. Thus (3.15) is verified.

The map A : X, — AX; is one-to-one and so has dim AX, = m — g. Since
range A has codimension g in X, it follows from (3.15) that AX3 has codimension
m in X. However, X! has dimension m. Thus to prove (3.13), we have only to show
that

X'NnAX;=0.
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Suppose, then, Ax; € X! for some x3 € Xs. By the definition of X! we have
Artly; = 0, and so by the property of n, A"x3 = 0, i.e., x3 € X3N X!. Thus,
x3 = 0 and the lemma is proved.

The lemma furnishes a splitting of the operator A

A: x> xt, A:X;— AXs,

with the latter mapping being one-to-one . By the closed graph theorem this map
A : X3 — AXj; has a bounded inverse. We can now reduce the problem to a finite-
dimensional one. Write x = x' +x3, x! € X!, x3 € X3, and let Q be the projection
in X onto AX; associated with the splitting (3.13). Then, since (A — M)x! € X1,
equation (3.11) is equivalent to the system

O(A — Mx3 = QG(x! +x3,4),
(I -0 A—-Nx'=U - Q)G +x3,0) +2( — Q)x3.

Using the fact that A : X3 — AX;hasa bounded inverse, there is a unique solution
near the origin of the first of these equations: x3 = x3(x!, 1), x3(0,0) = 0, by the
implicit function theorem. Thus equation (3.11) is reduced to the finite-dimensional
problem:

(3.16) (A—x' = — QG +x3(x',0), 1) + AT = Q)x3 = G(x', 1)
One verifies easily that
(3.17) G(x',2) = Odlx' g + 1417

The Value of p. We will now specify the value of p in Theorem 3.5.1. On
X! = the generalized null space of A, the operator A is nilpotent, A" = 0. Thus,
by introducing a suitable basis in X ! we may put A|x: into Jordan canonical form
with g = dimker A Jordan blocks of size ki, ..., k,. Setting

k = maxk;,
we choose
(3.17) p=2k+1.
O

REMARK. This value of p is optimal. Consider the following finite-dimen-
sional example in R™ with A consisting of one Jordan block:

0 1



Here ¢ = 1. k = m. The system. forx = (x, .. ) is

0
.\'] :
A— Ml Sl = ‘
( ) . 0
il |'\1‘_ _+_ |)\’\_I”
ie..
Ao — ANy = 0.
X3 — }\.\‘3 =0.
Xy — AXy— = 0.
—x, = P AP
Thus p = 2k. Solving for x,...... v,, in terms of x;. we find x» = Ax;, X3 =
MoX|e o Xy = 2"~!x,; hence the last equation yields

—)\,’”.’C] — IX1|2 + I)\’|2m ]
which has x; = 0, & = 0. as the only solution.

PROOF OF THEOREM 3.5.1: We have reduced the problem to the finite-di-
mensional one (3.16) with G satisfying (3.17); from now on we shall work only in
finite dimensions. Thus. we may assume that X = X! has dimension m, and that
A is nilpotent on X, with n the first integer such that A" = 0.

By choosing suitable coordinates in X. we may suppose that A is in Jordan
normal form with g blocks of size k;. .. .. k,. We shall denote these coordinates in
a special way

0 1 0 \
X
1 :
0 0 x
AX = 0o 1 0 '.2
X3
1
0 0

where x is a column vector. which for convenience we note here as a row vector:
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Thus, the vectors with all components zero except possibly for x;, x2, . .., x4, span
ker A. Equation (3.11) now consists of g blocks; the j  block has the form

le - }"x] = g]l (xa A’) I

sz — }\le = gjz(x, A,

3.11;)

ki—1 ki
x’ = Ax/

J Xy —g] (x A
ki—1

) =gl (),

By (3.17') and condition (1), each gj satisfies

(3.17") gi(x, 2) = O(Jx | + [A[**)
where k = maxk;.

In finite dimensions we are going to prove a sharper form of Theorem 3.5.1
in which the conditions depend more on the specific Jordan structure. Namely, in
place of (3.17”) we shall assume

3.18) gl d) = O(Ix > + M), i=1,....k, j=1,....q.

To prove this result we make a further reduction of the problem in X x Ato
one in X; x A where X; = ker A. Namely, with the aid of the implicit function
theorem we may solve the reduced system of g(j — 1) equations, consisting of
the first j — 1 equations in the j® block, j = 1,...,q, for the coordinates x;,

=14k, j= l,...,q,interms of xy, ..., x,. It1sclearfromtheformof
these equations that for j = 1,...,¢9

x} = x4 O(IxPP + A7),
x = Azx] + O(le + IM"“)

X = M+ O(Ix P AT

J
Thus, for j = 1, ..., g, the last equation in the j" block takes the form
(3.19) Mixj =gi(xi,....,xq, )

for functions g; satisfying

q
(3.18) g =0 (Z x| + |x|"+"f+'> .
1

We have reduced our system to the system (3.19) of g equations for (xy, ...,
x4, A). Theorem 3.5.1 then follows from the following result, in which we rename
(X1, ..., Xg) = x. O

THEOREM 3.5.3 Let X be RY or C4, let A be R or C, and let ky, ..., k; be non-
negative integers, with k = maxk; > 0. In a neighborhood of the origin in X X A,



forj=1,...,q let g(x, A) be a C' function with values in A satisfying (3.18").
For r > 0 consider the system
MWix; — g, ) =0, j=1...49,
Ix|* = =0.

(3.20)

Then for r > O sufficiently small, there is a solution of the system near the origin
in any one of the following cases:

(1) m= Z'f k; is odd,
(i) A=Candqg =1, and
(il) m = Y1 k; is even and, for some j, say j=q:k; >0 and g, is of the
form

321) g,(x,}) =rh(x. ),  hgeC' and hy= O(jx|? + A1) .

REMARK. Case (iii) follows from case (i) by replacing the equation

}\kf'xq —g;=0 by }\k"‘lxq —hy=0

and replacing k, by k; = kg — 1. Then we are exactly in case (i). Returning to our

larger system (3.5.1);, j = I, ..., g, we see that if g,];q is of the form
321" d9 ) = A h) with g = O(IxP + AT,

hZ" € C!, then the reduced system (3.20) satisfies (3.21). This is the class of terms
G referred to in Theorem 3.5.1(iii).

PROOF OF THEOREM 3.5.3: We consider two cases: A=Rand A =C.

If A = R, let F(x,A) = (v, 7) be the map defined in a neighborhood of the
origin in R? x R into R? x R:

yi =My —gxh), j=1....9,

T = x| —r.

(3.22)
We claim that for M a sufficiently large constant and all r > 0 sufficiently small,
deg (F, |x|* + A < r? + Mk 0)

is defined: i.e., there are no solutions of F(x, A) = 0 on the boundary. For suppose
(x, A) is such a solution; then A = M r1/¥ Furthermore,

x,-:A—kfgj=0(rkfr2+|x|k+1), j=1,....q.
Squaring and adding we find

2 =0 (r4 Z}\—ij 1 l>»|2k+2> ‘

or, since A = =M rl/*

’

L< | Cr?) (Mrt/hy=% + CM*F2 2K,
Jj
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We may choose M so large (and independent of r) that the first term on the right is
less than ; Fixing M, we then require 7 to be so small that the second term is less
than 1 3 and we have a contradiction.

Now consider the deformation, for0 <7 <1,

Aix; —1gi(x,2), 1<j=<gq,
t1(1x|2 = r?) + (1 = D(M2r* — AP

Just as above, zero is never attained on the boundary. Thus, the degree is indepen-
dent of ¢ and for r = 0 the map is

Feo ) = (Mg, o abg, MPr2E —22).

The preimages of zero are (0, +M rli/ey.
The Jacobian of F(x, X) is

Ak 0
R
JE(x,)) =
Ak
0 —2x
¢
~ Z k]'—l—l
det JF (A, X)) = =207 = 2t

Thus the points (0, £Mr'/¥) are regular points of the map, and the determinant of
the Jacobians at these points is —2(Zrg)™*!. Hence if m is odd, the degree is —2
and we have a nontrivial solution. For A = R the theorem is proved. Note that the
degree is zero if m 1is even.

Suppose A = C. In the complex case we consider the system

Wy =g =0 (Ll +bT) . =1

x> =r* =0,

as 2g + 1 real equations for 2g + 2 real unknowns.
As above, we see that there are no solutions of the system on the boundary of

D x4 AP <+ M

for suitably large M and all r > 0 sufficiently small.

Consequently, the map F(x,A) = (y,7) of a neighborhood of the origin in
C? x Cinto C? x R given by (3.22) maps D into C? x R\{0}. We may regard it
as a map

F: SZq—I—l > R2q+l\{0} .

We cannot use degree theory, but we wish to show that the homotopy class of
this map into R*9*1\ {0} is nontrivial.

As before we may deform this map on 9D to

(3.23) A > (Mx, o aRag, MPFE — (AP



By a series of deformations, which we postpone for the moment, we deform this
map on 9D to

(3.24) (x.2) > (Ax o v, | P = [A).m = ij .

We now use the results stated in Section 1.8. If m = 1 and ¢ = 1. this is
just minus the Hopf map ¥ (2. &) of (1.3). mapping S* — S*. and has nontrivial
homotopy type.

Form > 0.g > 1. this is a 2(g — 1)-fold suspension of —m times the Hopf
map

S2q+l s RZ([-H\{O}
and is nontrivial if and only if 7 is odd. In case ¢ = 1, there is no suspension;
hence the map is always nontrivial whether m is even or odd, proving case (ii) of
Theorem 3.5.3. (In this case, ¢ = 1, Ize’s thesis contains a stronger result.)

To complete the proof we have to show that in 3D the map (3.23) may be
deformed to (3.24) via maps into C¢ x R\{0}. We shall construct a permissible
deformation of (3.23) on 9 D to the map

(3.25)  (x.h) > (Mxy, o e o ake R e MEPE—A)
By repeating this, one obtains a deformation to
(x,2) > ()»’"xl,xz, C X, M2k — |A|2) :

Finally, via the deformation

@A) e (Wt P (=DM = AP) 0<x <0,
we obtain for t = 1 the desired map (3.24). Note that if for some ¢ and some
(x,A) on 3D, the point (x, ), = 0, then x; = --- = x, = 0 and either A or x,
is zero. If . = 0, then |x;)* = r? + M?r?/*_and so the last component of (x, 1),
cannot vanish. Likewise, if x; = 0, we have |A|> = r? + M?*r¥* and again the last
component # 0.

The deformation of (3.23) to (3.25) is obtained in two steps. First we construct
the deformation, 0 < ¢ < 1, in which only the (g — 1)*" and ¢'* components change:
G W) e (o (= ke — e b R+ (1= Défxg, )

Fort = 1 this gives the map
(x,A) — ( Co =Xy, )»k‘l"“‘fxq,], .. ) )
If we now perform the deformation, 0 <t < | where, again, only the (g — 1) and
g™ components change:
M) (e R (= Dxg. (L= A g e, ).
We obtain the desired map (3.25) fort = 1. ]
EXERCISE Prove that these deformations are admissible.

It is clear that in special circumstances the argument used here may apply un-
der weaker conditions than (1) or (3.18). Furthermore, the theorem holds under
considerable modification of these conditions:
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EXERCISE Prove Theorem 3.5.1 assuming,. in place of (1),
(1) IG G M) = O(llxlly + [A"*)
provided

a>1 and b >

a—1
For a and b as above, prove the sharper form in finite dimensions with (3.18) re-
placed by

g, 1) = O(Ix|*+ IAP*). i=1kij=1...q.
Prove Theorem 3.5.3 with (3.18') replaced by

q aj2
g =0 (Z |x.»|2) + A"
1

3.6. Stability of Solutions

A solution xy of a nonlinear problem f(x) = 0 may correspond to a steady
state solution of a time-dependent problem

dx .

ik f&x).
It is then of interest to know whether it is stable or not. If we perturb x, slightly to
Xo + dxg and solve the initial value problem x = f(x), x(0) = x¢ 4 dxp, assuming
this is well-posed, it is of interest to know if the resulting solution x(¢) is close
to xo for all ¢ or tends to xg as ¢ — oo. Some information may be obtained by
considering the linearized problem

8x = fi(xo)dx .

If the spectrum of f,(xg) lies to the left of the imaginary axis, the solution §x
decays exponentially as ¢ —> o0o. We then say that the solution xy of f(xg) is
(linearly) stable. If the spectrum contains points in the right half-plane, the solution
is called (linearly) unstable. In this section we wish to study the (linear) stability or
instability of solutions of certain bifurcation problems.

3.6.1. Some Examples of Bifurcation.

EXAMPLE 1. Consider G a bounded domain in R" with smooth boundary.
Consider the Dirichlet problem for u(x) in G

(A—[L)M=Ll2 inG, u=0 ondG.

The eigenvalues of A are --- < p> < pu; < po < 0 with pg simple and having
a positive eigenfunction ug. By the result that we proved as an application of The-
orem 3.2.2, we know that (0, ug) is a bifurcation point for this problem. In fact,
the set of solutions (u, i) near (0, (o) consists of the trivial curve (0, ) and an
analytic curve

(u(s). ju(5)) = (sug + uz(s). pu(s)). (u(0). 1(0)) = (0. o) .
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FIGURE 3.3

where u; € X, = space of functions in C % (@G) that are L, orthogonal to ug.
We wish to investigate the behavior of (u(s), u(s)) near s = 0. If the equation
with 1t — g = A(s)

Au =(A—u0)u:ku+u2
is differentiated with respect to s, we find, since & = ug + U2,
Ay (0) =0.

Hence it,(0) = 0 and 1(0) = ug, as we already know from Theorem 3.2.2. Differ-
entiating again, we have ii(0) = ii;(0) and, at s = 0,

Ay = 20t + 26 = 2huo + 2uj .

If we take the L, scalar product with ug, we find, assuming (uo, up) = 1,

2i(0)+2/ugdx = (Aiiy, ug) =0

G

since A is self-adjoint, ug L range A. Thus A(0) < 0, and we therefore have
Figure 3.3(a).

EXAMPLE 2. Consider G as in the previous example, and the Dirichlet prob-
lem

(A—pu=u>inG, u=0o0ndG.
We again have an analytic family of solutions

(u(s), u(s)) = (sup + u2(s), u(s)), wn=po+Ar(s).

By a similar analysis to the above, we find A(0) = A(0) = 0, A(0) = —2 [, ug dx
and the corresponding Figure 3.3(b).

We wish to investigate whether these solution branches are (linearly) stable
or not. In doing this we shall study, in general, the stability of the branches of
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the solution curves obtained in Theorem 3.2.2 (with p > 3).2 In that theorem we
obtained two C”~2 solution curves (x(s) = sxg +x2(s), A(s)) and (x = ¢(0), A =
o) with ¢(0) = q5(0) = (. Zero is an eigenvalue of f,(0, 0), and we are interested
in the spectrum of f,(x(s), A(s)) and fi(¢(0),0). We shall assume that aside from
an eigenvalue near zero, the remainder of the spectra of these operators lies in the
left half-plane.

DEFINITION (Crandall-Rabinowitz) Let Ty, K be bounded linear maps X — Y of
Banach spaces X, Y; uo is a K-simple eigenvalue of Ty if
(i) ker(Ty — noK) is one-dimensional spanned by some xo,
(ii) range(Ty — oK) is closed and of codimension 1, and
(iii) Kxg ¢ range(Ty — noK).

REMARK. If X = Y, K = I, Ty compact, then o being an I-simple eigen-
value of Ty is equivalent to po being a simple eigenvalue.

LEMMA 3.6.1 (Crandall-Rabinowitz) Suppose that g is a K -simple eigenvalue of
Ty. There is a number § > 0 such that for |T — Toy|l < 8, there is a unique u(T)
with u(T)g = o, which is a K-simple eigenvalue of T and ker(T — u(T)K) is
spanned by x(T) = xo + x2(T), where X = span{xg} ® X,, x2 € X». In addition,
w(T), x(T) are unique and analytic in T.

PROOF: We may suppose o = 0; we wish to solve
(T —w(T)K)x(T) =0
with x(T) = x¢ + x2(T). Consider the mapping (here r € R)
(T, r,x) > (T —rK)(xg +x2) .

For each T close to Ty, we will find a zero in the map with the aid of the implicit
function theorem. The Frechet derivative with respect to r and x; is

—8rKxg + Tpdx; .

Since 0 is a K-simple eigenvalue of Ty, it follows that this map is one-to-one onto
Y. By the implicit function theorem there is a unique analytic solution for T near
Ty, r(T): x2(T) with r(Tp) = 0, x,(Tp) = 0.

Next we have to check the uniqueness in the lemma. For § and r small, T—rK
is Fredholm of index zero, and since the dimension of the null space is upper-
semicontinuous, we see that

dimker(T —rK) <1.

We know that (T — r(T)K)(xg + x(T)) = 0. Suppose forsome T and r, T —rK
annihilates some vector {Bxg + x3) # 0, x, € X». Then

Toxo — rBKxg = (To — T)(Bxo + x2) +rKx;.

2This material is based on [27]. See also [32]. In his notes, Sattinger {10] has studied the stability
of a variety of problems.



As alinear map of X> ® Ry, the left-hand operator is an isomorphism onto Y. Thus,
for some constant C

1Br] + Ix2ll < C(IT — Toll(B1 + 21D + IrHix2l) -

For 8, r sufficiently small, it follows that 8 # 0; otherwise § = 0 and x; = 0.
So we may suppose S = 1. But then it follows from the preceding inequality
that ||x>|| is small. Thus, xo + x; is close to xy. From the uniqueness of the small
solution r(T'), x,(T) obtained from the implicit function theorem, we conclude that
r=r(T)and x, = x,(T).

Finally, we leave as an exercise to show that K (xo + x2(7")) ¢ range(T —
u(T)K).

Returning to our solution curves obtained in Theorem 3.2.2, we shall assume
that X is a linear subspace of ¥ and that the inclusion map i is continuous. We shall
apply the lemma to Ty = f,(0,0), and K = i = conclusion. Then 0 is an i-simple
eigenvalue of £, (0, 0). By the lemma there exist unique w1 (s) and w (s) = xo+x2(s)
in C?~? such that

Fx(x(s), A(s)e(s) = u()w(s) .
Similarly, along the other branch (¢ (o), o),

fx(@(0), 0)u(o) =y (0)u(o),

where u(0) = xo + %,(0) and y (o) are in C7~2. O

THEOREM 3.6.2 (Crandall-Rabinowitz) y '(0) # 0, s)l(s)y "(0) and w(s) vanish
together and have opposite sign. Furthermore, if u(s) # 0 for s # 0, then

si(s)y '(0)
n(s)

Before proving the theorem, let us apply it to the examples. In both cases o =

A @p0) =0, £:(0, Dug = (A — (o + A))ug = —Aug, i.e., y = —A, and we

therefore have stability of the solution (0, ) when A > 0, instability when A < 0.

We also note that ¥ '(0) < 0. In example 1 for s small, s > 0, A(s) <0,y(0) <O.
Then, by the theorem, 1 (s) < 0, which means stability.

For s < 0, we have A(s) < 0, y'(0) < 0, and so u(s) > 0, which means

instability; we therefore have Figure 3.4(a). Similarly, in example 2 we obtain Fig-
ure 3.4(b).

— —~1 ass —> 0.

PROOF OF THEOREM 3.6.2: On the branch (A = o,x = ¢(0), ¢(0) =
¢'(0) = 0, we have f,u(oc) = y(o)u(o). Differentiating with respect to o and
evaluating at 0 = 0, we find f,,(0, 0)u(0) + f,(0,0)u'(0) = y'(0)u(0). Sup-
pose y* # 0 is a continuous linear functional on Y that vanishes on range f,(0, 0);
applying v* we find

(3.26) (¥ 220, 0)x0) = ¥ "(0){y™, x0) ,

the left-hand side is not equal to zero since fy3 (0, 0)xg is not in range f, (0, 0).
Therefore we have y '(0) # 0 and (y*, x¢) # 0. On the other branch

fr(x(8), A($)w(s) = pn(s)w(s) .
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Differentiating f (x(s), A(s)) = 0, we have
Fe(x(s), AM()X(s) + fr(x(s), A(s)A(s) =0.

We also have x(s) = sxo + x2(s), x(0) = xo. Subtracting one equation from the
other gives

Fo(x(8), A(5)(x(8) — () + fx(s), As)NA(s) + p()w(s) =0.

Expand f(x(s), A(s)), f(x(s), A(s)) in Taylor series about s = 0 and substitute
in above:

(327) f2(0,0)((s) — @(5)) + O(D)(E(s) — @(5)) + fux(0, 0)x (0)sA(s)
+ (0,054 ()% + 0(8)A(s) + p($)x0 + p(s)0(1) =0.

Recall that x(s) — w(s) = xo + X2(s) — (xo + %2(5)) = X2(s) — X2(s) € X». Since
£.(0, 0) is invertible in X, with bounded inverse, we see that

(3.28) 1% (s) — @ ()] < CUAS)] + 11D -
Next, apply y* to (3.27); using (3.28) we find
S (8) ("5 fux (0, 0)x0) + () (¥, x0) = O(D(IsA($)] + (D) -
In view of (3.26) we have
(sh(s)y " (0) + () (¥*, x0) = O IsAE®)] + 1)) -

The assertion in the theorem follows easily from this. g

3.6.2. Another Application. Consider the ordinary differential equation
fu,n) —ii =h@* +iHu+ 1 —2u=0

on the interval (0, 7r) with Dirichlet conditions u©0) = u(wr) = 0. Let X be
the space of C? functions on [0, 7] satisfying the boundary conditions and Y =
C[0, ]. Here h(r) is areal C?2 function defined for r > 0, with 2(0) = 0.



We see that ker £, (0, 0) is spanned by uy = sint, and f,. (0, MHoéu = —du
$0 fiu (0, O)ug is not in range £, (0, 0). Consequently, we have a bifurcating curve
(u(s), A(s)); in fact, we observe that

u(s) = ssint, A= h(s?).

The other curve of solutions is the trivial one (0, A) so that ¥ (1) = —A. From the
theorem we conclude that for s # 0, p(s) and s'(s) have the same sign; i.e., 1 (s)
has the same sign as h(s?) for s # 0.

3.7. The Number of Global Solutions of a Nonlinear Problem

Lecture of M. Kalka

In this section we take up papers [25, 26]. These treat an elliptic boundary
value problem

(3.29) Au+ fux)=yx) inG, u=0 ondG,

where G is a bounded domain in R” with smooth boundary and f is a given convex
function R — R satisfying some additional conditions. The problem is to find for
which functions y(x) in G there exist solutions, and how many there are.

First we prove some general functional analytic results taken from [11] (with
minor changes).

DEFINITION A set M in a real Banach space X is said to be a C* manifold of
codimension 1 if for every point ug € M there is an open neighborhood U of ug
and a weak C* function I' defined on U with

(i) T'(ug) # 0 and

) MNU ={ueU|Tu) =0}

PROPOSITION 3.7.1 Let M be a closed connected C* manifold, k > 1, of codi-
mension 1 in the Banach space X. Then X — M has at most two components.

PROOF: Suppose Aj, Ay, A3 open in X — M (hence in X since M is closed)
such that | J°_, A; = X — M, A, N A; = @ifi # j.Let B = dA;, B; # ¢ for if
so A; is open and closed, implying A; = X. Also B; C M.

Now any ug € M has a neighborhood U such that U N (X — M) has exactly
twp components. Thus only two of the A; can have a nonempty intersection with
U. Hence U N M can be contained in at most two of the B;.

Also, if ug € B; and one of the two components of U N (X — M) is contained
in A;, then every boundary point on U N M is a boundary point of 4; (i.e., € B;).
Hence the B; are open and closed in M —M = B;. Butevery point ug € M belongs
to at most two B;. Il

Let X and Y be real Banach spaces and ¢ a Ck map, k > 1, of an open set €2
in X into Y.

DEFINITION xo € § is a singular point of ¢ if ¢'(xo) is not an isomorphism of X
onto Y. The set of singular points of ¢ is called the singular set W; ¢(W) is called
the set of singular values of ¢.
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THEOREM 3.7.2 Let ¢ : Q — Y be of class C*, k > 2, and assume that at xo € Q

(1) @'(xo) has kernel X, spanned by a vector v.
(ii) range ¢'(xo) = Y is a closed linear subspace of Y that is annihilated by
a linear functional y* # Q.
(iii) The linear functional on X : F(x) = y*(¢"(x0)(v, x)) is not identically
zero.

Then, in a neighborhood of xo, the singular set W of ¢ is a C*~' manifold of
codimension 1. If, in addition, we require

(i)' y*(¢"(x0)(v, v)) # 0,

then for some neighborhood U of xo, (W NU) is a C*~! manifold of codimension
linY.

A point x satisfying (i), (i1), and (iii)" is called an ordinary singular point of ¢.

PROOF: We may suppose xo = 0 and remark first that for x near 0, the linear
operator ¢'(x) is Fredholm of index zero and hence, since dim ker ¢’(x) is upper-
semicontinuous, ker ¢’(x) is either zero or one-dimensional. In addition, we know
from the theory of Fredholm operators that if ker ¢’(x) is nonempty, then it is
spanned by a vector close to v.

With this in mind, consider the following problem: Decompose X = X & X,
and Y = Y, @ Y,, where Y, is spanned by some vector y, # 0; we may suppose
y*y, = 1. For x near 0 in X, w near 0 in X, and ¢ near 0 in R, solve the equation

dX)w+w)+ty, =0

for w(x), t(x) as functions of x. It is immediately verified that the conditions of
the implicit function theorem are satisfied, so that one has a unique solution w(x),
t(x).

Near 0 the critical set W is simply the set

{xnear 0 | z(x) = 0} .

If we differentiate the equation with respect to x at x = 0 and apply y*, we find,
since y*(¢'(0)x) = 0and y*y, = 1,

y*(@"(0)(v,x)) +1,(0)x =0.

Therefore, by condition (iii), the linear functional ¢, (0) is not identically zero, and
hence, near the origin W is a C*~! manifold of codimension 1. The first assertion
of the theorem is proved.

To prove the second part of the theorem, consider the mapping defined in a
neighborhood U of the origin

Y (x) = ¢(x) + ¥ (@' () + w(x))y2.
By our choice of w(x), ¥(x) = ¢(x) on W N U. Differentiating, we have
' (0)x = ¢'(0)x + y*(@"(0)(v, x))¥2,



and from condition (iii)’, we easily see that ¢'(0) is an isomorphism of X onto Y.
Thus, by the implicit function theorem, ¥ is a C*~! diffeomorphism of a neigh-
borhood of the origin in X to a neighborhood of ¢ (0) in Y, and hence near ¢ (0),
$(W) = ¥ (W) is a C*! manifold of codimension 1. O

COROLLARY 3.7.3 Let @ C X open ¢ : Q — Y a map of class C¥, k > 2, and
xo € Q an ordinary singular point of ¢, with y*(¢”(xo)(v,v)) > Osay. If v, € Y
is a vector transversal to the set (W) at vo = ¢ (xg), where W is the singular set
of ¢, then there exist a neighborhood U of xg and ¢ € R such that
(1) Yy € (v, vo + £y:] the equation ¢ (x) = y has exactly two solutions in
U and
(ii) Yy € (yg, Yo — €¥2] the equation ¢ (x) = y has no solutions in U.

PROOF: By the theorem, xo has a neighborhood U such that ¢ (W N U) is
a C*~! manifold of codimension 1. For small real 7, set y = yq + 1y,. Using the
notation of the theorem we may assume that y*y, = land xo = 0, yo = ¢ (x9) = 0.

Using the by-now familiar Lyapunov-Schmidt procedure of Section 2.7.6, we
may reduce the equation for x = x; + x,, x; =av € X, x; € Xy,

O (x1 +x3) =1y,
by first solving for x,(x;) and then obtaining the bifurcation equation
F(a) = y*¢(av + xa(av)) = 7

to be solved for a. As in (3.8) we have

x5, (0)=0,
and therefore F(0) = F'(0) = 0, F"(0) = y*(¢"(0)(v, v)) > 0. Consequently,
F(a) = n for 0 < |n| small has two solutions for n > 0 and none for n < 0. Il

Now for a global form of these results.

THEOREM 3.7.4 Consider a C* map, k > 2, ¢ : X — Y satisfying

(1) ¢ is proper, i.e., the preimage of every compact set is compact,
(ii) the singular set W of ¢ is not empty, closed, and connected, and consists
entirely of ordinary singular points, and
(iii) the preimage of every point y € ¢ (W) consists of one point.
Then M = ¢(W) is a closed, connected C*~' manifold of codimension 1, and
Y\M contains exactly two connected components A\, A, such that

(@) ify € A then ¢~ ' (y) is empty and
(b) ify € A, then ¢~ (y) consists of two points.

PROOF: Since ¢ is proper and W is closed and connected, it follows that M =
¢ (W) is closed and connected. Furthermore, from (ii) and Theorem 3.7.2, we see
that M is a C*~! manifold of codimension 1 and, by (iii), ¢ is a homeomorphism
of W onto M. By Proposition 3.7.1, Y\ M has at most two connected components.

The points in Y\ M are all regular values of ¢, and since ¢ is proper, it follows
that any point y € Y\ M has a finite number N (y) of preimages. Furthermore, it is



easily seen that N(y) is locally constant and hence N is constant on each compo-
nent of Y\M. To determine N we note that for every neighborhood U of xy € W,
there is a neighborhood V of y, = ¢ (xy) such that ¢ ' (V) C U. Otherwise there
would exist a sequence of points x, bounded away from xy with ¢ (x,) — yg. Since
¢ is proper, a subsequence would converge to some point u # xo with ¢ (1) = yq,
contradicting (iii). Since xp is an ordinary singular point, we may apply Corol-
lary 3.7.3 to find, locally, the number of solutions of ¢(x) = y when y lies on a
line segment transversal to M at yo. The number of solutions is zero or two de-
pending on which side of M the point y lies, and the theorem is proved. U]

We turn now to the problem (3.29). Assume that f(u) satisfies

() fe C? and is real increasing,

(2) f7(t) = 0and f”(0) > 0,

3) lim,_, _o f/(1) =£,,0 <€) < Ay, and
(4) lim,, oo f'(2) = €3, A1 < £y < Ag,

where Aj, Ay are, respectively, the first and second eigenvalues for the equation
Au + iu = 0in G,ulse = 0. In [25, 26] it is supposed that f”(¢) > 0 and
f(0) = 0; however, the proof uses only (2).

Using the notation of Section 2.5, we consider y € ¥ = C*(G),0 < u < 1,
and look for solutions « in

X={ueC"(G)|u=00ndG}.

THEOREM 3.7.5 There exists in Y a closed connected C' manifold M of codi-
mension | such that Y\M consists exactly of two connected components Ay, As,
and

(1) ify € Ap, (3.29) has no solution;
(il) if y € Ay, (3.29) has exactly two solutions; and
(iii) ify € M, (3.29) has exactly one solution.

Ambrosetti and Prodi prove the theorem by showing that the map
o) =Au+ f(u) of XintoY

satisfies conditions (i), (ii), and (iii) of Theorem 3.7 .4.

In [26], Berger and Podolak give a somewhat different proof; they show, fur-
thermore, that M has a Cartesian representation. Following their paper, with some
difference in the details, we will also establish this stronger result.

Let ug(x) be an eigenfunction of A corresponding to the first eigenvalue ,; we
shall suppose that its L,-norm is one, (ug, ug) = 1. Itis well-known that ug(x) # 0
in G, and we shall suppose ug(x) > 0. Also, (A 4+ A,)X = Y, consists of those
functions in Y that are L»-orthogonal to ug. For s real and g € Y, we shall first
solve the following problem forv € X> ={v € X | v L up}:

(3.30) Av+ Pf(sup+v)=g(x) inG, v=0 ondG.

Here P is the L,-orthogonal projection in ¥ on Y;:



LEMMA 3.7.6 There exists a unique solution v(x) = v(x,s, g) in X, of (3.30)
which is of class C? in s and g. For fixed s the correspondence v <> g is a diffeo-
morphism of X, onto Y.

PROOF: We shall use degree theory to solve (3.30).

(1) First we derive an a priori estimate for the solution v and prove unique-
ness. This is done with the aid of the inequalities

If@)l < C+Glul,  [f@) = f@)] < blu—u'l,

for some constant C. Suppose v is a solution; multiplying (3.30) by v and
integrating by parts we find (here v; = 9v/dx;),

D IillP =, flsuo + ) = (v, 8) < [VII(C + Lals| + Ealvll)
J

for some different constant C depending also on g. Since (v, ug) = 0, we
infer that
D P = aalvl?.
J

Thus we obtain the a priori bound

3.31 V|| <
(3.31) ol = 5—
Before proceeding with more bounds, let us demonstrate uniqueness.
Let v’ be a solution for g’, and set w = v — v’. The same analysis shows

that

(C +1s1£7) .

Mlwli? < (w, flsug + v) — flsuop +v)) + (w, g’ — g)
<Lllwl*+ g — gl llwl
so that

331/ = — Y| <
(3.31%) lwl = llv vll_kz_e2

Having a bound for ||v|| we see from (3.30) that since f grows at
most linearly, we also have an a priori bound for

g — &Il

lAv].

Applying the results of Section 2.5.3, there is an a priori bound for

D g Il

We may now apply the Sobolev embedding theorem of that section and
derive a bound (depending on the dimension n) for ||v||;«, with some
g > 2, orfor vls, 0 < § < 1, ie., some Holder norm of v. But then
it follows, say in the first case, that || f (v)||;« < some constant, and we
infer again via the results of Section 2.5.3 that ||v||;- < some constant for
r > ¢, and so on. By repeating this argument a finite number of times,
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each time obtaining improved estimates for v, we may finally conclude
that

(3.31") Wl < Ci(l +IsD

for some constant C; depending of course on g.
(2) In the ball [v]24, < Ci(1 + |s]) + 1 in X, we will solve (3.30), which
we may write in the following form:

T =v+Kv=v+A""Pf(sug+v)—A~'g=0.
We note that if g L uo, then A~'g L ug. For if u is the solution of
Au=g inG, u=0 ondG,
then, taking the scalar product with 1o, we find by Green's theorem,
0 = (g, uo) = (Au, ug) = (u, Aug) = =1 (1, uo) .

The operator T (v) thus maps the ball in X into X,, and by the results
of Section 2.5.3, K is a compact operator. Since there are no solutions
on the boundary of Tv = 0, deg(7, ball,0) = degT is defined. Our
derivation of the a priori estimate also works if f and g are replaced by
tfand1g,0 <1t =<1, and we conclude by deformation that

degT =degl =1.

Thus, the existence and uniqueness of solutions of (3.30) are proved.

To prove the regularity of the solution in its dependence on s and g
is simply a somewhat tedious exercise, using the results of Section 2.5.3,
and is left to the reader. The fact that for fixed s the correspondence v <>
g is a diffeomorphism follows then from (3.31).

0
Returning to the equation
pw)=Au+ fw)=ykx), u=0 ondG,
let us write
u=suy+uy, uyLlug,
and
v(x) =tug+gx), g-Luos,t real.
Applying P and (I — P), we see that the equation may be written as a pair

Aus + Pf(sug +uz) = g(x). —shy + (f(sug + ux). ug) = 1.
By Lemma 3.7.6, this is equivalent to the pair
uy = (s, g), F(s) = F(s,8) = —sh + (f(suo + v(s, 8)), uo) =1.

For fixed s, v(s, g) is a diffeomorphism of g to u>, and this implies the first
part of



LEMMA 3.7.7 Suppose u = sug +u>» € X and y(x) = tup + g(x), g L ug. Then
u is a singular point of ¢ if and only if

(3.32) Fs.g)=-0 + / f'(sug + v(s, g))(uo + v, (s, g))uo dx =0.
Furthermore, u is then an ordinary singular point.

PROOF: It is clear from (3.32) that ker ¢'(u) is one-dimensional, spanned by
some function z(x). It is well-known that range ¢'(u) is closed in ¥ and consists
of those functions in Y which are L,-orthogonal to z. To check that u« is a regular
singular point, we have to verify 3’ of Theorem 3.7.2. Now, in that condition,

Y (@ W)z, 2) =/f"(u(x))z3(X)dX~

To complete the proof we show that z(x) # 0in G, say z(x) > 0; then the last
expression is positive. The function z satisfies

(3.33) Az+ f'(u)z=0 inG, z=0 onadG,

i.e., w = 1 is an eigenvalue of the problem Az + up(x)z = 0in G,z = 01in 3G,
where p(x) = f'(u(x)).

It is well-known that if p(x) > 0, then the eigenvalues of such a problem are
0 < p; < pp < ...;the first eigenvalue w, is simple and the corresponding eigen-
function does not vanish in G. Furthermore, the r eigenvalue 1, is a decreasing
functional of the coefficient p(x).

Since f'(u) < Az, we claim that the first eigenvalue p; of the problem (3.33)
is ; = 1. Indeed, u = 1 is the second eigenvalue of the problem Aw+ piw =0,
w = 0 on 3G, and by the preceding remarks it follows that the second eigenvalue of
Az+uf'(u)z =0,z = 0on G exceeds 1. Thus, ker A+ f'(u) is one-dimensional,
spanned by a positive function z, and so, as we observed,

Y (@"(u)(z,2) =/f”(u(x))z3(x)dx >0.
G

O

For each g € Y, we are going to show that there is exactly one value of
s = so(g) = sp for which (3.32) holds and that s¢(g) is the unique minimum point
of the function F (s). It then follows from Theorem 3.7.2 that so(g) isa C 2 function
of g. Thus, the set M has the following Cartesian representation: M consists of
points

y(x) = g(x) — so(@)huo + (f (so(g)uo + v(so(g). &), uo)ug, g €Y.
Furthermore, for
y(x) = g(x) + tug,
we have, for £9(g) = —so(g)A1 + (f(s0(g))uo + v(s0(g), &), Uo),
e if r < #5(g), the equation ¢(«) = y has no solutions,

e if t > t5(g) the equation ¢(u) = y has exactly two solutions, and
e if t = £(g), the equation ¢ (u) = y has exactly one solution.
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The set W of singular points also has a Cartesian representation; W consists of

so(g)ug + v(so(g), g) forgel,.

In particular, Theorem 3.7.5 is proved.

The existence of a unique minimum point so(g) of F (s, g) follows easily from
the following:

(1) At any point s where F,(s, g) = 0, we have Fy(s, g) > 0.
(2) For fixed g, F(s,g) = +ocass — £o0.

PROOF OF (1): Keeping g fixed, set v(s, g) = v(s) and sug +v(s, g) = u(s).
Thus,

Av(s) + Pf(u(s)) =g, F(s) = —si; + (f(u(s)), uo) .
Differentiating with respect to s, we find, since u;, = v,
(3.34) Av, + Pf'(u(s))u; =0, Avg + Pflvgs + Pful=0

If we take scalar products of the first equation with v, and the second with v; and
subtract, we find by Green’s theorem,

2
(f/u.h Vgs) — (f/vSS’ vs) — (f”usv vs) = 0
or, since u; = ug + vy,
2
(f/u()v vSS)(f”uSv US) .

Next, we have
Fyy = (f/u2, ug) + (f'vs, o) = (f"u2, ug) + (fu, v5)

by the preceding,

= (f//uf, ug) = / f(sug + v(s))u? dx .
Now we suppose that for some point s, F, = 0, 1.e.,
=+ (f(u(s)ug, up) =0.
Combining this with (3.34), we see that for this value of s, u; satisfies
Aug + f/(M(S))MS =0.

As in the proof of Lemma 3.7.7, we may show that u; = ug + v; does not vanish
in G. Since v, L ug and ug > 0in G, v; > 0 at some point in G, and hence u, > 0
in G. Consequently, for this value of s,

F., :/f”(u(s))ujdx >0.
G



PROOF OF (2): Up to now we have not used the hypothesis that £, < X;; it
is here that we use it. We will show that lim,_, . F(s, g) = 4+oc. Fors — 400
the argument is similar. In view of (1), it suffices to show that for some sequence
s = —00, F(s, g) = +oc.

Recalling the estimate (3.31") for v(s, g),

vy < Ci(l +Is)) .
We see that as s — —o0, v(s, g)/s is uniformly bounded in C>*#(G). Hence we
can choose a sequence s, — —oo for which
v(sg)

Sk

converges uniformly tow € C(G), w L ug.

Divide G into three sets G, G_, G according as ug(x) + w(x) is positive, nega-
tive, or zero. Conditions (3) and (4) (see p. 65) on f imply that
() fis)

lim =¥, lim
5§—>—00 Ry §—>+00 S

4.

By the Lebesgue dominated convergence theorem we find

) F(sy, 8)
lim

Sp—>—0 Sk

= =M + £ /(uo + wugdx + £, /(uo + wugdx .
Gy G_

Since w L ug, we have

(3.35) /(uo + wugdx + /(uo + w)ugdx = /u(z) dx =1,
Gy G_ G
and hence

F ’
lim (5. 8) =—-M+bhL+ ¢ —6) /(”o + w)ug dx

Sg—>—00 Sk

Gy

<=M+ + 4~ 2 by (3.35)

=El—}\1<0.

0

EXERCISE Under the conditions of Theorem 3.7.5, with f(0) = 0, consider the
equation Au + f (1) = 0. Show that it has exactly one nonzero solution if and only

if £/(0) £ Ay



CHAPTER 4

Further Topological Methods

In Section 1.8 we considered nonlinear mappings from R” into R with k <
n. We wish now to extend some of the results of that section to Banach space.
According to Theorem 1.1.1, if B is a closed unit ball in R", ¢ a map 4B —
R¥\{0}, k < n, then, for every continuous extension F of ¢ inside B, the equation
F(x) = 0O is solvable if and only if the map

¢ (x) k—1
=— " 3B S
VO =ser 08

is homotopically nontrivial.

DEFINITION Any map ¢ : dB — RK\{0} with the property that F(x) = 0 is
solvable for every continuous extension of F inside B is called essential.

A special case occurs when
R*=R"®R"™, x=x+x, and ¢(x)=¢¢(x; +x2) =x; + P(x3),
where ¢ maps the unit ball in R"? into a subspace R" of R"2 and
R @ R™ C RF.
Note that ¢(dB) # 0 implies ¢(x,) # O for ||x|| = 1. So the homotopy class

of ¢ : S*! — R*\{0} is obtained by n, suspensions of the map ® : S~! —
R"\{0}.

4.1. Extension of Leray-Schauder Degree

Suppose X is a real Banach space, B = B, the closed ball ||x|| < p,and T a
continuous map: B, — X of the form / — K, where K is a compact map. We will
assume 7 maps B into a closed subspace Y of X with finite codimension = { and
T(0B) # 0. Then, as we have seen earlier, there is an ¢ > O such that ||T(x)|| > ¢
forx € 9B. Let

T() = T|an T() 0B —> Y\{O} .

DEFINITION We say Ty is essential (relative to Y) if the equation 7 (x) = 0 is
solvable for every (permissible) extension T of Tj inside B,;ie., K =1 — T is
compact, and 7 maps into Y.

We remark here that the Leray-Schauder deg(7p, B, 0) is defined and is zero.
Indeed, deg(Ty, B, 0) = deg(T, B, x) for ||x|| small and x ¢ Y. Since x is not an
image point of T, deg(T, B, x) = 0.



DEFINITION A deformation 7, = I — K,, with K, a compact map of 3B, X
10,11 = X and T,(x) € Y\{O}, is called a permissible deformation.

REMARK. Consider amap Ty = I — K : 3B — Y\{0}. Then whether Tp
is essential or not depends only on its homotopy class, defined by permissible de-
formations. In fact, suppose Ty is not essentialand T, = I — K,, Ky = K, is a
permissible deformation. Then T, is not essential. Indeed, the map T, defined by

& _ |3@r - K@0) for ||x|} <
1=, . ‘

{7 — Kap—i (7)1 for vl =
is a continuous extension of Ty inside |x|| < 1 of the admissible form such that
T, (x) = 0 has no solution.

We shall determine necessary and sufficient conditions for a mapping Ty to be
essential. First,

b 1|

PROPOSITION 4.1.1 Suppose X = Xo® W, dmW =d, and V isa linear sub-
space of W of dimension d*. Let Fy be a map defined on d B, of the following form:
Forx e X, x =xptw,

Fo(x) = xo + ®(w)
where ® maps {w € W | |lw| < p}into V, and suppose ®(w) # 0 if |wll = p.
Then Fy is essential (for Y = Xo ® V) if and only if all suspensions of the map
Y(r) = LD for 7| = 1, ie, Y(T): Sd-1 5 S9! qre nontrivial (i.e.,  has

i)y
rontrivial, stable homotopy).

In order to characterize essential maps we show now that we can deform any
T, to a map Fy, as in the proposition (via a permissible deformation). Write X as a
direct sum
X=Y®Z withdmZ =i
so that any x € X has the unique decomposition x =y +2,y € Y,z € Z. We may
suppose Ty has the form

To(x) = To(y+2) =y +z— K(y+z), K compact.

Then To(x) = y — K;(x) with Ky compact and K,(x) € Y. For convenience, we
shall suppose p = 1.

We know that || To(x)|| > & > 0 when [lx| = 1. There exists a finite-dimen-
sional map K, such that

1K (x) — Kx(0)| <= with Ka(x) CV CY

N | ™

with dim V < +4o0. Using the deformation
Hx)=y— (1=K —1Kxx), 0<r<]1,
deform y — K (x) to Ty = y — Kz(x). For lxli =1,
1H, () = [y — K1) + (K (x) = K2() [ = I To(oll — 1K () = Ko (0]

v

£
- >0,
2

so that H,(x) is a permissible deformation.
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Decompose Y as a direct sum,
Y=V & Xy, y=v+Xxp,
with Xy a closed linear subspace of Y. Then
Ti=y—Kxx)=v+xy— Ksy(x) =x0 — K3(x) = x0 — K3(v +x0 + 2)
with K3(x) € V and K3 compact.
The deformation
G/(x) =x0— Ks(v+1txo+2)
is permissible. Indeed, if G,(x) = O for some v, z, t, xp with ||x|| = 1, then x, = 0,
which implies K3(v 4+ z) = 0. But T1(x) # 0 implies K3(x) # 0, which gives a
contradiction.
Writing
X=Y®Z=XdVPRZ=XodW, withW=VgpZ,
we have deformed T to the form
4.1) Go(x) =x0+ P(w),

where ® is a continuous map of ||lw|| < 1 into a closed linear subspace V of
W; ®(w) #0for |w|| = 1. IfdimW =danddimV = d* thend —d* =i =
dim Z.

The proposition thus implies:

THEOREM 4.1.2 Given Ty as above. There is a permissible deformation of Ty to a
map Gg of the form (4.1). For ||w|| = p, set T = w/p and

O (p1)
Do)

Then Ty is essential if and only if ¥(t) : S* ' — S¥~' has nontrivial stable
homotopy.

Y(t) =

PROOF OF PROPOSITION: We first prove sufficiency.

(1) Suppose X is finite-dimensional, dim X = j + d. Then our hypothesis
means that Fy, being the j-fold suspension of &, has nontrivial homotopy
as a map into Y\{0}. (Here Y = X, @ V.) Thus by Theorem 1.1.1, Fj is
essential.

(2) The next step is the standard reduction to finite dimensions. Let T =
I — K be a permissible extension of Fy inside B, T : B — Y. Using the
decomposition ¥ = Xo @ V, write T (x) = To(x) + T'(x), To(x) € Xo,
T'(x) € V, and using the decomposition X = Xo@ W, write x = xp+w.
Then

Xo—To) =KX +T'(x) —w
and is a compact map of B into Xy. For any ¢ > 0 we may approximate
xo — Ty(x) within £ by a mapping K. (x) of B into a finite-dimensional
subspace X; of Xy. Then the operator

Ke(x) = Kpe(x) +w — T'(x)



is compact and satisfies || K (x) — K. = llxo — To(x) — Ko (X)|| < &.

It suffices to show that there is an x, in BN (X; @ W) satisfying x, =
K.(x.). Letting ¢ — 0 through a sequence, and choosing a subsequence
for which K (x,) converges to some Xy in B, we have

lim(x, — xo) = lim(K. (x¢) — K(x.)) + lim(K (x;) — x0) = 0.
Hence, by continuity,

Xp = lin(l) K(x.) = K(xg).
£E—

To prove the existence of x, satisfying
T.(x)=x. — K(x) =0, x,e BN(X, & W)= B,

we have only to show that the homotopy class of T, : 9B’ — X, ® V\{0}
is nontrivial. On 9 B’ we may deform T, to T via

T,=0-0T +1T, 0<r=<1,

and then use the finite-dimensional result of (1).
O

We omit the proof of necessity; it may be found in [41]; see also [36, 38, 46].

REMARK 4.1.3 (P. Rabinowitz). Suppose X is a B-space and Y is a closed
subspace of X, with finite codimension i. Let T = I — K, with K compact; map
the unit ball B in X into Y and suppose T : 3B — Y\{0}. Then, as we have
seen, deg(T, B, 0) is defined and equal to zero. Suppose, now, that T is odd. Then
according to Borsuk’s theorem, deg(T, B, 0) is odd. Hence, the hypothesis that
T(dB) # 0 cannot hold for odd maps.

In fact, if T = I — K maps B — Y, Y aclosed subspace of X, Y # X, then
the equation T (x) = 0 has a solution with x|l =r < 1foranyr < 1.

We shall present an application of Theorem 4.1.2 to elliptic boundary value
problems as in [41]. In [34], J. Cronin has put that argument in a more abstract
setting, and we shall begin with that result.

X and Y are real Banach spaces. Consider a map

Ax —Gx : X -7

where G is compact and A is a continuous Fredholm map with index i > 0. This
means dimker A = d < oo, codimrange A =d* =d — 1.

With X; = ker A, Y, = range A, we can decompose X and Y into the direct
sums

X=X1®X;, x=x1+x, Y=Y &Y, dimY, =d*.

Let P be the associated projection in ¥ onto Yy. By the closed graph theorem,
A : X, — Y, has a bounded inverse with bound C.

THEOREM 4.1.4 Assume that for some positive constant M,
(@) PG| < M forall x,
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(ii) there exists a constant N > 0 such that (I — P)G(x; + x3) # 0 for
lx2l < CM and ||xi|| = N, and

(iii) the map (I — P)G : Xy — Yo\{0} for ||x;|| = N has nontrivial stable
homotopy.

Then A(x) — G(x) = 0 has a solution.

REMARKS. (1) (ii) and (iii) automatically hold if
(iv) For x; € Xy, lx1]] = 1 and |lx2)l < CM, ¢(x1) = limr oo —
P)G(rx; + x») exists (uniformly in x»), is independent of x,, and
satisfies

B lunit sphere in x; —> Y2 — {0} has nontrivial stable homotopy.

(2) Ifd = d*,then (I—P) : X; — Y2\{0} having nontrivial stable homotopy
means

deg((1 — P)G(x)), |x1ll = N,0) #0
and (iv) means deg(¢, ||x|| = N,0) # 0.

PROOF OF THEOREM: Ax — Gx = 0 is equivalent to the system

Ax; — PG(x) =0, (I —P)G(x;+x2) =0,
or
x»— AT'PG(x) =0, (I —P)Gx1+x)=0.

Suppose X is spanned by wy, ..., wy; then we can write x| = Zle ajw;.
Suppose that Y, is the subspace of ¥ on which the continuous linear functionals
(onY) ¥y, ..., L4 vanish. Then the system may be written

Xy — A'IPG(Zajwj +xw) =0
(Za,G(Zajwj+x2)):0, a=1,...4d".

From the first equation and condition (i), we see that a solution satisfies ||x2f| <
CM. By (ii), it therefore satisfies

(4.2) x2l <CM, il < N.

Let us give a different description of X. Write x; + X, as [x2, a] witha = (ay, .. ..
a,), and define the norm of [x;, a] as

ez alll = | Dy + x|

Thus, we may regard X as X = X; X R?. Consider the map X, x RY —
X, x RY" given by

X2 — A“PG(Zajwj +X3> ,
<€a,6<2ajwj+x3>>, a=1,...d.

To prove the theorem, we apply Theorem 4.1.2 in the ball
(4.4) Ix2,alll < CM + N+ 1.

(4.3)



Under the deformation,

X5 —tA”lPG(Zajwj +xQ>, 0<r<l,

(EQ,G(Zajwj-{—txg», a=1..... d*.

(4.3) deforms to

X2
(e, G(x1)), a=1,...,d".
In view of condition (iii), we may apply Theorem 4.1.2. tJ

Theorem 4.1.4 is related to Theorem 2.6.3.
EXERCISE Prove Theorem 2.6.3 for d* < d.

In [33] M. S. Berger and E. Podolak have observed that in some cases it suffices
to assume a weaker form of (iii): that only a finite number of suspensions of (I —
P)G (x,) are nontrivial. We present a form of their result.

THEOREM 4.1.5 Consider A and G as in Theorem 4.1.4, satisfying (1) and (i1).
The conclusion of the theorem holds if condition (iii) is replaced by (i) and (iil)’
below:

(i) There is a decomposition of X, as a sum of closed subspaces
X, =X, ® Xy, dimX,=m,
such that if we decompose
Y, = AX), ® AX,

and consider the associated projections P', P", 1 — P' — P"inY,

Y:AX’2®AX’2’EBY2:P’YGBP”Y-{-(I—P’—P”)Y.
Then

A~' P"G satisfies a Lipschitz condition with respect to x5

with Lipschitz constant C < 1.

(iliy The m-fold suspension of the map (I-P)G : X; = YL\{O for |lxill =N
is nontrivial. Here P = P' + P".

REMARK. The condition (i)’ may seem artificial, but in fact, it occurs in prac-
tice for elliptic operators A with discrete spectrum going to infinity. In such cases,
for any ¢ > 0, one can usually find such a decomposition, with X’ spanned by a
finite number of eigenvectors of A, such that gl|Ax5 |l > ||x5 |l In this case if P"G
satisfies some Lipschitz condition, then condition (ii) may be realized.

PROOF OF THEOREM 4.1.5: Write x = x; + x} 4 x5. We have to solve
(4.5) Axy 4+ AxY = G(x; + x3 + x3) .

Applying the projection P”:
Ax) = P'G(x), xj= AT PIG(x; + x5y + X5).
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Since the right-hand side satisfies a Lipschitz condition in x5 with constant C < 1,
the equation has a unique fixed point x3 (x; + x3), which one verifies is continuous
in x1 + x5. Inserting this in (4.5), we obtain the finite-dimensional system

Axy = P'Gxi + x5+ x5 (x +x3)) . (= P)G(x1 + x5 + x5 (x1 +x3)) = 0.

The argument used in proving Theorem 4.1.4 may now be employed in the
finite-dimensional space X, & X. First we obtain a priori bounds for a solution
x) + x5 analogous to (4.2). In fact, since x; + x5 + x5 (x1 +x5) is a solution of the
original problem, it follows from (4.2) that for some constant M',

Iy + x50 +x)l <CM, sl <M, xil<N.
We may now carry out the rest of the proof of Theorem 4.1.4, working in the
ball [|[x},alll <M+ N +1 in place of (4.4). O
4.2. Applications to Partial Differential Equations

We shall generalize the following results due to Landesman and Lazer [40]:

Let © be a bounded domain in R” with smooth boundary 9€2. Let L be a
formally self-adjoint, elliptic, second-order operator in Q. with real coefficients
C® in Q. We will assume all functions are real. Consider the Dirichlet problem

Lu= f(x)—gu) in§2, u=0 onad,

where f(x) is a given smooth function and g(u) is a continuous function having
limits as ¥ — $00:

uLiglmg(u) = g(£00)
with
(4.6) g(—00) < g(u) < g(oo).

Suppose ker L is one-dimensional, spanned by w(x). If we take the L, scalar prod-
uct (, ), we find a necessary condition for u to be a solution is that

(f—gw =Luw) =0,

since L is formally self-adjoint and Lw = 0. Applying (4.6), we obtain the neces-
sary condition for solvability of the Dirichlet problem above:

(f.w) < g(oo) / wdx + g(—o) / wdx .

(47) w>0 w<(
(f.w) > g(o0) / wdx + g(—00) / wdx .
w<0 w>0

Landesman and Lazer proved that the above condition is also sufficient for solv-
ability.

Note that if L had an inverse. then we could apply the Schauder fixed-point
theorem to solve

u=L"(f(x)=gw).



We shall present a generalization of this result (see reference {41, p. 133]). Using
the Leray-Schauder degree and the main theorem in the last section, we can derive
similar results for arbitrary, elliptic operators L with null space of any dimension,
and which are not necessarily self-adjoint.

Let L be a linear elliptic, partial differential operator with coefficients in
C>(§2), of order m acting on (for convenience) scalar functions u. satisfying “nice”
boundary conditions as in Section 2.5:

Bu=0 ondf2
expressed in terms of differential operators of order < m. Consider the problem
(4.8) Lu=gx,u,....,D" 'u) inG, Bu=0 ondQ.

The conditions Bu = 0 guarantee that for L acting on functions satisfying
Bu = 0, we have:

(1) ker L is finite-dimensional, spanned by wy, ..., wq,
(2) range L has finite codimension d*. There are C*°(£2) functions T
! ! . *
W), such that range L L, w; forj=1,...,d".
Assume that
d*<d.
Concerning g we assume: Writing n = (u, .. ., D" u):

(a) There is a constant M > 0O such that lg(x,n)| < M for all x in € and all
n, and g is C™ for x € Q and all 7. .
(b) h(x,n) = lim,_, o g(x, rn) for |n| = 1 exists uniformly for x in €2 and
Int=1.
Furthermore, we make the following technical hypotheses:
(¢) The only solution w of
Lw=0 inQ, Bw=0 ondf,

which vanishes on a set of positive measure in 2 is w = 0.
(d) Defineamap ¢ : S¢~' — R, ¢ = (¢1, ..., ¢a) by

d
$par, ... ag) = [ h | x. DY ayw;x) | wy |, B=1,....d",

j=1
dp(a) = dplar, ....az) = (h(x,w, ..., D" 'w), wp), p=1,....d",
d
where w = 3 ©_, a;w;.
THEOREM 4.2.1 If ¢ : S¢~' — R4"\{0} and has nontrivial stable homotopy, then

Lu=ginQ, Bu=0on 3 has a solution.

REMARKS. (1) If d = d*, our condition means that the degree of ¢ at
the origin is nonzero; for d = d* = 1 and g = g(x, u), this means simply
that if

he(x) = Mggloog(x, u),



then

A = / h+w/a’x+/h_w'a’x and A; = /h+w'a’x+ / h_w'dx
w>0 w<0 w<0 w>0

has opposite sign. This agrees with (4.7) in that particular problem.

(2) If L is self-adjoint, under the boundary conditions Bu = 0, then d = d*.
Then one may take w), = wy, @ = L,..., d. Suppose the following
condition is satisfied:

/h+wdx+/h_wdx>0

w>0 w<0

for every w # 0 in ker L. Then necessarily, the mapping ¢ has degree 1
and our problem is solvable.

SKETCH OF THE PROOF OF THE THEOREM: Set g(x,u,..., D" 'u) = G
[u]. Using the notation of Section 2.5, for some fixed 5,0 < § < 1, let X={ue
C"+(Q) | Bu = 0on 0K}, and let Y = C¥{Q}. Then G : X — Y is a compact
map. Let X, = kerL, X, = ker L+. We apply Theorem 4.1.4, with A = L; (a)
implies (i). Using the technical hypothesis (c), one proves (after some work) that

i (v 6 o +0)
exists and, for at least one B = 1, ..., d*, is not zero. The main condition in the
theorem then yields condition (iv). (See [41] for details.) O

We now present a result of P. Rabinowitz [43] related to Remark 4.1.3:

THEOREM 4.2.2 Consider the nonlinear elliptic problem (4.8) with L as in The-
orem 4.2.1 and dx < d. Assume that Glu] = g(x, u, ....D"™ ') is odd in u,
ie, G[—u] = —Glul, and that g is C* for x in Q and all values of the other
arguments. Then, for any r > 0, there exists a C* solution u in C"*8 with
|l 15 =r. (Here 0 < 8 < 1.)

PROOF: Let X = {u € C"(Q) | Bu = 0 on 3Q}, Y = C*(Q). Decompose
X=X1®X2, XlzkerL, Xz:_Lszl,
Y=Y1®Y2=PY®(I—P)Y wherelerangeL,YZJ_LzYl.

Write u = uy+uz, uy = Z‘f ajwj € Xy,uy € X,. Then problem (4.8) is equivalent
in the usual way to the system

wy — L PGluy + Y auy ] = 0. (I = PG+ Y ;| =0

as before, write this as a map of [X,, RY] — [X2, RY], d* < d.

If we now work in the space of functions [u> € C" %% | Bu = 0 on 0Q} and
apply Borsuk’s theorem, we obtain the desired solution in C m=1+8((y). Then we
can prove its regularity as in Section 2.5. O



REMARK. In this theorem, G need not be a differential operator. For instance,

we could take
Glu] = f(x) / (us + Z(a\-,u)3> dx
o i=1

If f(x) ¢ range L then it follows that there is a nontrivial function u € C>(Q)
with Bu = 0 on 0€2 such that Lu = 0 and

/ (Lt5 + Z(aiu)3> dx =0.

Q

4.3. Framed Cobordism

For mappings ¢ : X — Y between oriented manifolds of the same dimension,
we have defined deg(¢, X, yo) and used it to solve equations of the form ¢(x) =0
in case Y = R¥. In Section 1.8, for X = a closed ball B in R?. d > k, we were led
to consider the homotopy class of ¢|35 — R*\0. In the preceding sections of this
chapter these results were extended to infinite-dimensional spaces with the aid of
suspension and stable homotopy.

If X is not a ball, however, the methods we used are no longer applicable. To
treat a general manifold X, Pontrjagin introduced the notion of framed cobordism
to replace degree. A very elegant description of this is contained in [8, sec. 7]. In
this section we will give a brief description of this concept.

Let X} and Y* be two oriented manifolds of dimension »n and k, respectively,
with n > k. Let X be an open subset of X whose closure X is compact in Xg. If
¢ X — Y is a smooth map and y ¢ ¢(9X) is aregular value of ¢ (i.e., d¢(x)/0x
has rank = k for each x € ¢ '(y)), then it follows from the implicit function
theorem that ¢ ~! (y) is a compact submanifold N of X of dimension n — k without
boundary. Recall that when n = k, ¢ ' (y) consists of a finite number of points and

deg(#. Q,y) = Z (_I)Sgndet(’l‘;%) .
x€¢~H(y)

This is the algebraic count of the number of times y is covered. Heuristically in
the case n # k, we want a way to count the number of connected components of

¢~ (y).

DEFINITION Let X be an oriented n-dimensional manifold, and Ny, N; be two
oriented, compact submanifolds of dimension (n — k) in X without boundary. N,
is cobordant to N, within X if, for & > 0 small,

(Nt < [0,e)) U(N3 x (1 —¢g, 1]
can be extended to a compact manifold M in X x [0, 1] with
IM= (N Q{ODUN, x {1}, MN(X x{0HUX x{1})] =M.

The orientation of 3 M is then consistent with that of N; and N,. The manifold M
in the definition is said to be a cobordism between Ny and N,.



It is a straightforward exercise to show that the cobordism is an equivalence
relation on the oriented submanifolds of X of dimension (n — k) without boundary.

Suppose now that X is a Riemannian manifold (i.e., on T,(X), the tangent
space of X at x, there is a positive definite scalar product defined (u, v),, u,v €
T.(X), such that {u, v), is smooth in x).

DEFINITION A framing of a submanifold N C X of dimension n — k is the as-
signment v of k linearly independent vectors

W), ..., vE(x)) in T (X)
that are normal to N. The pair (N, v) is called a Pontrjagin framed manifold.

DEFINITION Let (N, vy), (N3, v») be two framed manifolds. (N, v;) is said to be
framed cobordant to (N,, v,) if there is a cobordism M C X x [0, 1] between N,
and N> and a framing u# of M such that
u'(x, 1) = v{(x) for (x,1) € Ny x [0, ¢)
=vi(x) for(x,1) € Ny x (1 —¢, 1].

Again it is an exercise to check that this defines an equivalence relation.

EXAMPLE. Consider asmooth map ¢ : X — Y fory € Y\¢(9X), aregular
value of ¢, set N = ¢~ ' (y). Letv', ..., v¥ be a positively-oriented basis for T,(Y).
Let ¢, be the natural map

¢« To(X) = Ty(X) induced by ¢ .

If x € ¢~ '(y), then %(x) has rank k and ¢, restricted to T, (N )*, the subspace
of T,(X) orthogonal to T,(N) is one-to-one and onto 7,(Y). The inverse gives a
framing for N, called a Pontrjagin framed manifold associated with the map ¢.

LEMMA 4.3.1 With v', ..., vk a given basis of Ty(Y), let (N.v) = (¢7'(y).v)
be the resulting framing of ¢~ (v): then the framed cobordism class of o' (y) is
independent of the choice of v', . .., vk,

PrOOF: If u', ..., u* is another similarly oriented basis for T, (Y), the pair
may be connected by v!, ..., v¥, where foreacht € [0, 1], v}, ..., v¥ is a basis for
T,(Y).

(Vgr -+ - » vy =@ ..., ), (v, ..., y=@', . db

This is simply because the set of k x k real matrices with positive determinant is
connected. Letting M = N x [0, 1], we see that (M, u) withu(x,t) = (v,1 (x), ...,
v¥(x)) is a framed cobordism between N and N. U

PROPOSITION 4.3.2 Suppose ¢.¥ : X — Y are smooth mappings where X
and Y are two Riemannian manifolds, X compact as before. Suppose y € Y
is a regular value of both maps and v ¢ ¢(0X), y ¢ ¥ (9X). If the distance
d(Yr, @) = sup,.x d(@(x), ¥(x)) is sufficiently small, then, with their framings,
¢~ (v) and ¥~ (y) are cobordant.



PROOF: To construct the cobordism M, let us first connect ¢ and i, using
the deformation ¢, : X — Y defined by moving along the shortest geodesic in Y
joining ¢ (x) to ¥ (x). By a suitable choice of parametrization, we may suppose ¢,
independent of ¢ in (0, £) and (1 — ¢, 1). Consider

®:X x[0.1] > Y suchthat® = ¢,(x).

If y were a regular value of ®, then ®~!(y), together with its framing, would
give the desired framed cobordism between ¢! (y) and ¥ ~!(v). However, if v is
not a regular value of ®, then ®~!(y) may not be a smooth manifold. In order to
get around this difficulty, we use the following theorem:

THEOREM 4.3.3 (Transversality Theorem) [15, chap. 4] Ler ¢ : Z — Y with ¢
a smooth mapping. Let vy be a fixed point in Y such that outside of a relatively
compact open set U C Z, ¢~ (y) consists of regular points. Then we can deform

o slzghtly to ® so that y is a regular value of ® and, in the complement of U,
¢ = b.

Returning to the proof, we may perturb ® slightly so that y is a regular value
of the perturbed map @ and @ is unchanged in X x (0, ) and X x (1 —&, 1). Then
@ !(y) is a cobordism of ¢~1(y) and ¥ ~!(y), and with its framing o l(y)isa
framed cobordism of ¢ 1 (Y) and ¥ ~1 (). O

LEMMA 4.3.4 Suppose ¢ : X — Y is smooth and yo ¢ Y\ (3X). Then there is a
neighborhood U of yo, such that for y\ and y, in U, with y1, y, regular values of
¢, o1 (y1) and ¢~ (y,) are framed cobordant.

COROLLARY 4.3.5 If y; and y, are regular values of ¢ in the same component C
of Y\¢(3X), then ¢~ (y1) and ¢ (y,) are framed cobordant.

The proof is a simple exercise.

PROOF OF LEMMA: If U is a small neighborhood of y, let g be a C* dif-
feomorphism of Y, which is the identity outside a neighborhood of U, and maps U
onto U and g(y,) = yi.

Consider ¢ (x) and v/ (x) = go¢. Since y, is a regular value of ¢, it follows that
yi is a regular value of ¥, and ¢ and y are close if we choose the diameter of U
small. By Proposition 4.3.2, ¢~'(y) is framed cobordant to vl = o7 ().

|

Extension to Continuous Maps. Let ¢ be a continuous map ¢ : X — Y and C
a component of Y\¢(3X). Approximating ¢ in the C° topology by a C*> mapping
$. we may associate with ¢ and C a well-defined framed cobordism class of X.

The following theorem connects the theory of framed cobordism classes with
homotopy classes, and its proof may be found in section 7 of Milnor’s book:

THEOREM 4.3.6 (Pontrjagin) If X is an n-dimensional compact manifold without
boundary and Y = S*, then there is a one-to-one correspondence between framed
cobordism classes (N"~%,v) in X and homotopy classes of maps X — Sk.
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Framed cobordism theory has been extended to infinite-dimensional spaces.
Some references which are also related to the material of the preceding two sections
are [36, 38, 42, 44]. '

In the next two sections we will take up a related theory of Geba and Granas.

4.4. Stable Cohomotopy Theorem
Lecture of J. I1ze

Recall some facts: Let §2 be an open, bounded set in R” and F : @ — R" a
continuous map such that F | 3 # {0}. Then deg F = degree(F, @, 0) is well-
defined and depends only on the homotopy type of F restricted to 2. Furthermore,
if deg F # 0, then every continuous extension of F | 92 to {2 has a zero.

Now let X be a closed bounded set in R? and F : X — R?"\{0} a continuous
map.

DEFINITION F is inessential iff for all Y closed bounded subsets of R¢ containing
X, Fextends to F : ¥ — R¥\{0}.

EXAMPLES. (1) X = S, F is inessential iff the homotopy class of
F/|F|in 74 1(ST ) is trivial.

(2) X is a compact manifold without boundary and F : X — S¥-L As
a consequence of the Pontrjagin-Hopf theorem, F is inessential iff the
framed cobordism class of F is trivial; i.e., given a regular value p of F,
in case F is smooth, then (F~!(p), F*TSg*_l) is the framed boundary
of a manifold M in X x [0, 1].

PROPOSITION 4.4.1 Fy, F) : X C RY — R¥\{0}. Suppose F, is homotopic to Fy
and Fy is inessential. Then Fy is inessential.

PROOF: Let Y be closed and bounded, X C ¥ C R?, and fo an extension of
Fy: FO Y > RY \{0}. Suppose F(t,s) : X x [0,1] — ]Rd*\{O} with F(0,x) =
Fo(x), F(1,x) = Fi(x).Let Z = {X x[0, I11}JU{Y x{0}}. Define F : Z — R¥\ {0}
as

Fx,t)=F(x,1), x€X,
F(r.00=Fo(y). vevY,

Z being closed, we may extend FtoG:Y x [0, 1] > RY by Tietze's extension
theorem. Let A = {y € Y | G(y,1t) = O for some t}: then AN X = @ and A and
X are closed in Y. There is a continuous separating function & : ¥ — [0, 1] such
that A(A) = 0, AX) = 1. Set G(\ 1) = G(y, A(y)t). Clearly G:Y x [0 1] —

Hﬁd \{0} for if G(v.1) = 0, then v € A and A(y) = 0. But G(»,0) = F(y.0) =
Fo(v) # {0}. Also fort = 1 and y in X, G(y.A(y)) = G(». 1) = F(x. 1) =
Fi(x),s0 G{(y, 1) extends F. O

COROLLARY 442 F : X — Rd*\{O} is inessential — F is homotopic to G :
X — pt in RT\{0}.



PROOF: = F inessential and X bounded, then X is contained in a large ball
B, centered at {0}, and F admits an extensmn F:B > R¥ \{0}. Define F(x,1t) :
X x [0.1] = RY\{0} by F(x.1) = F((1 — t)x). Thus F is homotopic to G :
X — F(0).

The converse follows from Proposition 4.4.1. |

In these lectures, we plan to study:
o Cohomotopy Groups. We shall investigate homotopy classes of maps
X — §".
e Extension to Banach Spaces E. If X is a closed, bounded set in E, we
will con51der compact vector fields into subspaces of finite codimension:

X __) EOO ll\
Here E*7" is a closed subspace of codimension n, and I — f is
compact. We study stable cohomotopy.
e Application. We will look at an extension of Rabinowitz’s theorem in
Section 3.4 on existence of solutions in the large for (I —AT)x = g(x, A)
to the complex case.

4.5. Cohomotopy Groups

Lecture of J. I1ze

(See [45].) Let X be a compact topological space of dim < 2m — 2, and A
closed in X. (Topological dimension n of X is defined as Infn for which for any
finite open covering of X, one has an open refinement such that the intersection of
any n 4 2 sets in it is empty.)

DEFINITION Let IT"(X, A) be the set of homotopy classes of continuous maps
(X, A) — (8", pr).

THEOREM 4.5.1 T1"(X, A) is an abelian group.

Idea of Proof When X Is a Complex. Let f, g - (X, A) — (S™, pt); approxi-
mate f and g by simplicial maps. Consider
(X, A)TIER Ay % (X, AYSS™ pry x (S pr) .
So (f x g) od is a simplicial map from a complex of dimension < 2m — 2 to a 2m
complex. Consequently, (f x g)-d(X) lies in the 2m — 2 skeleton of S” x $", and
furthermore, one can deform this to lie in S™ v, $” = two copies of S" wedged
at the point pr.

EXAMPLE. A closed curve on a torus 7" can be deformed to the generators of
IT(T).

Let w : §"v,, 8" — (S", pr) be the map w(x, pt) = w(pt, x) = x. Define
[f]+1g] = [w(f x g) - d] via this deformation. It is clear that this operation is
commutative. The extra free dimension is needed to prove that the “addition” is
independent of the representatives of the homotopy classes, since X x [0, 1] has
dim < 2m — 1, so one can move freely.



TRl Te WAL RAFAARNY Rl TR e

REMARKS. (1) Natural element: (X, A) — (pt, pt).

(2) Inverse of [f1: (X, A) —f—> (8™, pt) s (S, pt),i is an orientation
reversing map of degree —1.

(3) f : Y — X induces f* : TI"(X) — ["(Y) by ¥ Jox o,
frlgl=lgo fl

(4) Finally, we introduce the coboundary operator é . TI" (A) —> nm+l(x,
A). Suppose f 1 A — §", Eﬁ“ = upper hemisphere of S with S
the equator of S"*!, A C X. Since E™*! is contractible we may extend
fto fiX - Eﬂ“. Let & be a deformation of S™ to the south pole p
of §”*1, and stretch E™™" over S"*! — {p}. Then define 8[ f] = [A - f1:
(X, A) — ("™, pr).

This cohomotopy theory satisfies the Eilenberg-Steenrod axioms for cohomol-
ogy theory.

4.6. Stable Cohomotopy Theory
Lecture of J. Ize

Let E be a real Banach space. Give an orientation to E via a sequence of
subspaces E,, with dim E,, = n, and complementary closed subspaces E°°™" sat-
istying E, C Eps1 E = En ® EX7", Eyy = E, ® R EX" = E® " OR.
Let

pon — MR = {(x € B [x=x +rx € E¥ L r eRr <0}
DEFINITION L - S(E): Leray-Schauder category of E.

Objects: X C E, closed and bounded.
Morphisms: [ — compact.
Homotopies: x — F(x, t), F compact: Xx1—E,I=][01]

DEFINITION (X,A) € L-S(E),A C X. M (X, A) = set of homotopy classes
of maps f = I — F, in the category, with

I —F:X— E*"\{0}
A — P&
Define [T (X) = 1™ (X, ¥).

DEFINITION f 1 X — E>*7"\{0} is inessential iffforallYinL-S(E),Y DX, f
extends to f : Y — E>7"\{0} in the category.

REMARK 4.6.1. As before (replacing Tietze’s extension theorem with that of
Dugundji), if f is compactly homotopic to g and g is inessential, then f is inessen-
tial.

THEOREM 4.6.2 (Geba-Granas) [1°7"(X, A) is an abelian group.



Idea of Proof.

(a) A Finite-Dimensional Approximation. Let f = I — F map X into E>7m\
{0} and A into P>*~". F compact implies that f(X) and f(A) are closed
in E<7", Set ¢ < min{dist(f(X), E,), dist(f(A), E, ® 7€—+)}. Approxi-
mate F* within & by G, mapping X into a finite-dimensional subspace L
(assume E,; C Landdim L = n+m+1). Then g = I — G maps X into
an g-neighborhood of E>~". Let P, be the projection of E onto E*~"
parallel to E,,, and set f(x) = Pg(x) =x — (I — Py)x — P,G(x) =
X — F(x) with F(x) in L, since P\G = G — (I — Py))G, (I — Py)G
lies in E,, which is contained in L. Then f can be deformed to f via

Po((1 —1) f(x) +1tg(x)) by our choice of ¢. Set fL :(XNL,ANL) —f+
(E®™"NL—{0}, P*7"NL) = (E™\{0}, P"*1), since dim E®"N[ =
m + 1. P™"*! being contractible, the last pair is homotopy equivalent to
(S™, pt).

So we obtain an element in I1”(X N L, A N L) which is a group if
dmL=n+m+1<2m—2ie.m>n+3.

Also one can prove that f and g are homotopic in L - S(E) iff f, and
g1 are homotopic (the converse uses the homotopy extension theorem).

(b) Maps with Finite Range. Let L be a fixed (n + m + 1)—dimensional

subspace containing E,. ;. Define T1°7"(X, A) as the set of homotopy
classes of maps f : X — E®™™\{0}, A — P>®™, f = ] — F with
F(X) C L, and with homotopies x — H (x,t), H (x, t) C L.Let 1 be
the map: TI7°7"(X, A) SN [M™(X N L, AN L) induced by the above
restrictionto X N L : f — f,. Then 7 is one-to-one and onto.

PROOF THAT 1 1S ONTO: fL(xl) = X — fL(xl) represents an element of
"X N L,AN L) with x; in L. Writing any element x in E as x = X1 D x»,
set f(x) =x, ®x; — fL (x1); then f(x) is an appropriate extension of fL if one
chooses the complementing subspace of L in E to be contained in E®~" (possible
since E,.; C L). O

PROOF THAT 7 IS ONE-TO-ONE: Suppose f and g have f; and 3 g homo-
topic via hL(x N.Set Z = {X x {OJU{XNL x[0,1]} U{X x {1}} closed
in X x [0, 1]. Construct H(x,t) a map from Z and L (hence compact), defining
Hon X x {0} as x — f(x),on X NL x [0, 1] asx—hL(x t),on X x {l} as
x —gx). Extend Hto H : X x[0,1] — L (Dugundji’s theorem) and define
h(x,t) = Py(x — H(x,1)) = x — - Po)x — PyH(x,1), Py the projection of
E onto E*~7". (If h(x,t) = 0, then x — H(x, t) € E, C L,sox lies in L and
h(x.t) = hy(x,1).)

Thus, we can give to M777"(X, A) the group structure of [T"(X N L, ANL).

O

(¢) The Limit Process. If M is a finite-dimensional subspace containing
L, then there exists a Mayer-Vietoris homomorphism A : [1"(X N L,
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ANL) — MémM-l-n(x N M AN M), which, via 7, induces a homo-
morphism A : ITP7"(X, A) — II5;7"(X, A), well behaved with respect
to induced maps and coboundaries. So one obtains an inductive family of
abelian groups and

lim M5 (XN L, ANL) = ) (X, A)
L+o00
is called the stable cohomotopy group of (X, A). The limit of T gives an
isomorphism between > 7" (X, A) and I1®~"(X, A), which inherits all
the functorial properties of the stable group.
Note that from the corollary to Proposition 4.4.1 the neutral element in [1*°™"
(X) is represented by the set of inessential maps.

THEOREM 4.6.3 T1°°" defines a generalized cohomology functor for L - S(E).
f=1-F:(X,A) — (Y, B) induces f* : [1*°7"(Y, B) — II*7™"(X, A) by
frlgl=1go f1
(1) dd)*=1d
() (fe)r=g*f*
(iii) There exists a map § : TI®™"(A) — M™°"*1(X, A) such that if f, =
fla, then f*8 = 8f;.
(V) = M (X, A) — M°"(X) — [%°"(4) — M+ (X, A) is
exact, the other maps being induced by inclusions.
(v) If f is homotopic to g, then f* = g*.
(vi) Strong excision: X = AU B : [1°7"(X, A) = [1°7"(B, AN B).
(vii) TI®° " (pt) = 0.

Complete details may be found in [5, 37, 39].

EXAMPLES. (1) X = S unit sphere in E. Here there is no need of a
Mayer-Vietoris sequence; we use only suspension: I1%°™"(S) = [suspen-
sion of maps SN L = §"™" — §™] = I"™(S"*") = I, (S™) = I1,,.
So M®~0(8) = Z, M®1(S) = Z, generated by the suspension of the
Hopfmapn: C x C — R3, n(x,z) = Az, |z]? — |AP). I®7%(8) = Z,
M°73(8) = Zy, . ...

(2) X = B closed ball of radius R, then T1®°~"(B) = 0 for all n, for if
f(x) = x — F(x) is a map from B to E*"\{0}, then assuming that
B is centered at the origin, f (x) = ”‘“ F (“ |1) extends f to E for
lxll = R.

Connection with the Leray-Schauder Degree Theory. The Alexander-Pontr-
Jagin duality theorem between IT*°™"(X) and ) (E\X), the stable homotopy
group of E\ X, shows that I[1®°~%(X) = P Z, as many copies as there are bounded
components of E\X. Thus, if f is a map from X into E\{0}, then [f] = Y_ m;a;,
where o; is represented by x — x;, x; any point in the i*" bounded component of
EAX. If X = 9Q, Q an open, bounded subset of E, define degree (f, 2,0) =

2om;.



EXERCISE Show that this degree has the usual properties of the Leray-Schauder
degree.

For theories in other directions, see the references at the end of Section 4.3.
See also the survey article |35].

4.7. Application to Existence of Global Solutions
Lecture of J. Ize

We shall extend Rabinowitz's result on global solutions to complex Banach
spaces. (This material is taken from the doctoral dissertation of J. Ize, Courant
Institute, 1974.)

Recall the bifurcation result of Section 3.5. E is a complex Banach space, T
a compact linear map from E into E, g(x, 1) a compact map from its domain D
in E x Cinto E, with g(0, ) = 0 and |/g(x,A)| = o(llx|) as [lx]| = Oin D.
Consider the equation x — AT x — g(x, 2) = 0. Then (0, A¢) is a bifurcation point if
Ag 18 a characteristic value of T (1.e., Aal is an eigenvalue of T) of odd multiplicity.
Note that bifurcation occurs only at characteristic values of T'.

Let S be the closure in D of the nontrivial solutions (x,A), x # 0. Let &g
be a characteristic value of T at which bifurcation takes place, and C be the con-
nected component of S containing (0, Ag). Thus, if (0, A) belongs to C, then A is a
characteristic value of T.

THEOREM 4.7.1 C is either

(1) not compact in D (and if D = E x C, C is unbounded), or
(i1) C is bounded in D and contains a finite number of points (0, X;), i =
0...., p, Ai characteristic value of T, of multiplicity m;, and Y _§ m; is

This implies that the number of characteristic values of T of odd multiplicity,
in C, is even.

LEMMA 4.7.2 Let Ay be a characteristic value of T of multiplicity m. Forr > 0,
let

H.(x,)) = {(I —2T)x —g(x. A), |Ix|I> — rz} :D— ExC
and

S = {0, 2) LlIxl? + 12 = hol* = 7 + p7}.

Then there are two positive constants r and p such that the stable homotopy class
of H.(x, A) with respect to S is defined and equal to T(mn). (X suspension, n Hopf
map.)

PROOF: Since Ag 1s isolated, we may choose p > 0, so that for some constant
M >0, (I — (ko + pe?)T)™'|| < M for all 8. Using the smallness condition on
g. choose r so small that (I — AT)x — g(x, &) # O for A = Ay + pe™®, all 6, and
0 < |lx|| < r. Thus on the sphere S, one can deform H, to (I — AT)x, ||lx||I> —r?).
Let f(x) : [0, 1] — C be a path such that f(0) = 0, f(1) = I, and f(t)Ayisa
path from O to A avoiding all other characteristic values of T. Since these points
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are discrete, there is a §-neighborhood of the path which also avoids such points.
Choose p with p < 8/ max | f(r)|. We then have for a suitable «,

E =ker(I — »T)* @ R — »T)*, m =dimker(] —AT)",
x=x@®x:., x;inker(I —xT)*, and
Ho (e, h) = (1= AT)x & (I — AT)xa, xlP = r = p> = |A = Aol*) on S.

Deform this map to ((I — kT)xl @D x>, p — A= k0| yvia (I — AT)x, & (I —
AMOT)xa, p~ — A — xol?) on S. (If this is zero, then A = Ao + pe'’ . and so
x; = 0, and from the choice of p, Af (1) belongs to the §-neighborhood of the path,
s0 x; = 0 or Af(t) = Ao, which implies that x, is in ker(/ — AoT) and so x; = 0.
Then [|x|| cannot be equal to r.) Thus, [H (x, A)] = [suspension of ((I — AT )xy,
pr— A —xol?) on Ixi 24 1x = 2ol =72 +p *]. Using a Jordan form for I — 2T,
we may deform this map to ((Ag — A)xy, P’ — A — xo!?). and as in the proof of
Theorem 3.5.3 with A = C, a further deformation leads to ) mn. O

PROOF OF THE THEOREM: Suppose C is a compact set in D. As in the real
case, let Q be an open, bounded subset of D such that C is contained in €2, €2
contains no points (0, &) of S but (0,4;),i =0,..., p. as stated in the theorem,
and (I — AT)x — g(x. ) = 0 on 32 has no solution but x = 0.

Set E* 0 = Ex C, E®?2=E,E® ! = E x (Re C); then for all r > 0,
H,(x, X) represents the same element in [1°-1(3Q): H,(x, 1) avoids {0} x (Im C).
Note that by identifying R*" and C", we may use the stable cohomotopy theory of
Section 4.4.

(a) Global Class. For r :_R large, lx||> = R* < Oon €,s0 Hg(x, 1) defines
an element in [1°71 (2, 9K2) so that in the exact sequence,

N1 Q) — N°H(Q) — =15 Q)
[Hr(x, )] —— [Hg(x.2) —— [Hg(x, V)] =[H (x, D].

It follows that [H,(x, M) ]sel = 0, i.e., H.(x, X)|sq 18 inessential for all
r>0.
Choose r so small that any solution of H,(x,A) = 0 in £ must lie
inside a ball B; = {(x,3) | lx|> + 1A = &P <2 4+ 0L j =0, p.
Then Lemma 4.7.2 is applicable.
(b) Replacement of 1>=-1(3Q) by a Group Easier to Compute. Since H,(x,
A) is inessential on 39, let B be a ball containing €2 and extend H, to E
Set H (x. A) = this extension on B\, H, (x,2) on €. It is clear that H
is inessential on 8 B = S. By construction, H,(x. ») maps B\ UJ{ B; into

E>~"\{0}.
(¢) Local Classes. If §; = dB then H (x, A)| U0 S, represents an element
in 1>} S) = I”P‘ 1($) = @\ Z-, as noted in Section 4.4,

and the §; are dm]omt From the lemma, this element is @[> m;n] =
omia; |81



The situation is now the following:
. _.r i P
Me=!(5) < -t (B \ U B,-) 5 et (U S,-)
0

0= [H, — | H,
(1] - %
0 0
where /* and k* are induced by inclusions.
(d) i* an Isomorphism. By excision of U(’)’ B; we have

(- Gn ).

Moreover, in the exact sequence

P P
="t (UE,-) — " (E, UE,-) — M°™"(B)
0 0

the extreme groups are zero; hence so is T1°~"(B, s Ej). So we have
o P - " p
! (B -Us.U Sj) — = (B-J ) > m! (U S,-)
0 0 0
— > ( UB : U S)

the groups on both ends vanishing. This 1mplles that /* is an isomorphism,
and P} «; generate 1" 1(B — | J! B)).

(e) k* Onto. Choose any element x, of E, and decompose E as Y, & Cxg, so
that any x in E can be written as x = y, @ z, z € C. Then (y, (A — 1)z,
llx||? — r?), restricted to §;, represents «; and is inessential on S;, i # j
(the map is nonzero on B;). Moreover, it also represents the generator o of
[1°°~1(S), for it is just the suspension of the Hopf map. Hence k* (o) = «
forall j. k* belng a homomorphlsm k*(Q}0 mja;) = (ZO m;)a [8]. But
k*[H, I3 U B = [H,|s] = 0. Hence Y-F m; is even.

O

Generalization to the Case (I — T(A))x — g(x,A) = 0. Here T()) is a com-
pact operator from E x K into £, K = Ror C, and T(1) is analytic in A. We may
obtain exactly the same results as in the case where T(A) = AT, but with a different
notion of multiplicity. Namely, if ker(] — T'(Xq)) # @, then, setting A = I — T (1),
C(X) = T(x) — T(Ap), the above equation can be written

4.9) Ax — C(A)x — g(x,A) =0.

Here A is a Fredholm operator of index 0. Decompose E as E = ker A @ X;; then
Alx, has aninverse K : R(A) — X,. Write any element x of E as x = x| + X2, X,
in X,, and let Q be the projection on R(A). Apply Q to (4.9): Ax, — QC(A\)x; —
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OC(Mx; — Qg(x,») = 0. Apply K; then x; — KQC(M)x2 — KQC(M)x; —
K Qg(x, ) = 0. Since C(io) = 0, one has for A near Ay:

x— (I =KQC)) (KQCM)x) + K Qg(x, 1)) =0.

By the principle of contracting mappings, we may solve this for x; in terms
of x; and A. The other equation (I — Q)C(A)(x; +x) + (I — Q)g(x,2) = 0is
equivalent to

(I —Q)CU + U —KQC() 'KQC(M)x,
+I = QU +CMHUT - KQCM)'KQ)gx, 1) =0,

1e.,

I-QCHRNUI-KQCO) ' xi+(I—Q)(I—CMK Q)™ 'g(x1+x2(x1, 1)) =0.
Suppose there exists X such that I — T (1) is invertible; then the set of points A with
ker(I —T () = @ is discrete. So if B()) denotes (I —Q)C(AM)(I—=KQC (X)) xera,
then B()) is a matrix with entries analytic in A, B(Xy) = 0, and det(B(})) =
(A—rg)™a()) witha(Xg) # 0. (For g = 0, B(A) invertible means that A is isolated
in the spectrum of I — 7' (A).) Then, if one defines the algebraic multiplicity of g to

be m, the theorems on global solutions, in the real and the complex cases, remain
valid.






CHAPTER 5

Monotone Operators and the Min-Max Theorem

In this chapter we give a very brief introduction to the theory of monotone
operators and some related results. An excellent source of material is [47].

5.1. Monotone Operators in Hilbert Space
DEFINITION A mapping f : X — X of a Banach space is nonexpansive if
IfC) = FOIll < llx =yl
DEFINITION Let H be a Hilbert space; a mapping A : H — H is monotone if
(Ax — Ay), x —y) =0, Vx,ye H.

REMARK. A is monotone if and only if I + AA is expanding for all A > 0. In
fact, ||(x + 2Ax) — (y + LAy)|| > |lx — y|| because (x + AAx —y —AAy, x —y) =
llx — y||>. The converse is similarly easy to verify.

We first state and prove an extension of the contraction mapping principle for
nonexpansive maps in a Hilbert space.

THEOREM 5.1.1 Let H be a Hilbert space and B a bounded, closed, convex subset
of H. Let f : B — B be nonexpansive. Then f has a fixed point in B, and the set
of fixed points is convex.

Note that this theorem is not true in general Banach spaces. Indeed, let X be the
space of bounded sequences of real numbers x = (ay, g, ... ) such that |g;| — 0
asi — oo. Let | x|| = max; |g;|: then X is a Banach space. Define a mapping f on
the unit ball B in X by f(x) = (1,a;,a2,...). If y = (by, bs,...) € B, then

1f ) = fFOII=10.a1 = by ) = llx =¥,

so f : B — B is nonexpansive. Now if (ay, ..., a,,...) is a fixed point in B,
then (ay, a».az....) = (1,ay,as,...), but this implies a; = 1 for all i: hence
(ay,as,...) ¢ X since |a;| # 0.

The theorem is true in any uniformly convex Banach space (see [47]). It is an
open problem whether it holds in any reflexive Banach space. The proof is based
on the following lemma, which is a useful trick in many arguments dealing with
monotone operators:

LEMMA 5.1.2 (Minty) Let Q be a convex subset of H and A : Q — H monotone
and continuous on finite-dimensional subspaces. The following are equivalent for
Jixedu € Qand z in H:



() (Au—z,v—u) > O0forallv e Q, and
(i) (Av—z,v—u)>O0forallv e Q.

REMARK. Observe that if u is an interior point of €2, then condition (i) means
that Au = z.

PROOF OF LEMMA: It follows from the monotonicity of A that
(Au —z,v—u) — (Av —z,v —u) <0,

so (i) = (ii). Now forany w € Qand0 <t < 1, setv = tu + (1 — 1)w so that
v—u = (1 — t)(w — u). Suppose (Av — z, w — u) > 0; letting  — 1 and using
the continuity of A on line segments, we find (Au —z, w —u) > 0. |

PROOF OF THEOREM: We may suppose 0 € B. For0 < A < 1, consider
Af (x). By the contraction mapping principle the equation

Af(x) = x has aunique solution; x; in B.

Let A =1—f: B — H,then A is a monotone map; so is A, = I — Af,
0 <A < 1,and A,x;, = 0. Let x — 1 through a sequence and choose a weakly
convergent subsequence, again denoted by x;, such that x, —u € B.Forany v € B,

(Av, v —x) = (A, v —x) = 0.
Hence (Av, v — u) > 0. Using the lemma with z = 0, we find
(Au,v—u) >0 forallv e B.

So
u—fw),v—u)>0 foreveryveB.
Setting v = f(u), we have

u—f, f)—uw)=0=>u= fu).

So u is a fixed point of f.
We have just proved that for u € B,

Au=0— (Av,v—u) >0 forallveB.
It follows that the set of solutions of Au = 0 is convex. U
EXERCISE Prove the convexity in the above theorem directly.

EXERCISE Suppose f(x) is a real smooth function defined in some open set in a
real Hilbert space. Since f,(x) is a continuous linear functional, there isaz(x)in
H such that f,(x)y = (y, z(x)). Show that z(x) is monotone if and only if f is a
convex functional.

In what follows, we want to study solutions of Ax = 0 in a Hilbert space when
A is a monotone operator. In view of the last exercise, if A is the gradient of a
convex functional, this is related to the variational problem of minimizing convex
functionals. In this connection we recall the following well-known result:



‘I'HEOREM 5.1.3 Let X be a reflexive Banach space and K a closed convex sub-
set of X. Suppose f is a real convex functional on K, lower-semicontinuous and
bounded below on K. Suppose f(x) — oo as ||x|| — oo uniformly, then f
achieves its minimum on K. (f is lower-semicontinuous at xo means that if x; —
xo, thenlim f(x;) > f(xo), or, equivalently, for any constant c, the set {x | f(x) >
c} is open.)

The proof of this theorem is based on two results, the first of which shows how
compactness can be used:

PROPOSITION 5.1.4 (Eberlein-Smulyan) A Banach space X is reflexive if and only
if every closed, bounded convex set K is compact in the weak topology.

PROPOSITION 5.1.5 Mazur) If x,, — xq weakly, then there is a sequence of convex
combinations

n n
Vo = Za,,jxj oij/-s with Za,,j =1,0,>0

j=1 j=1

such that y, — xo strongly.

The proofs of both these theorems may be found in almost any book on func-
tional analysis.

PROOF OF THEOREM 5.1.3: Suppose d = inf,cx f(x). Let x; be a minimiz-
ing sequence, i.e., f(x;) — d, f(x;) > d for each i. The norms llx; || are bounded,
so x; has a weakly convergent subsequence, again denoted by x;, such that x; — x
weakly, x € K. We must prove that f(x) = d; clearly, f(x) > d. Now for any
e >0, f(x;) <d + ¢ fori sufficiently large.

Let y; be a sequence of convex combinations of x; such that y; — x strongly.
Since f is convex,

f) <d+e.
By the lower-semicontinuity of f,

fx)<d+e.
Since £ > 0 is arbitrary, f(x) < d.Thus f(x) =d. O
EXERCISE If xo is a minimum point of a smooth convex functional f(x) on a

closed, bounded convex set C in a Hilbert space, show that (A(xg), y — xo) > 0 for
all y in C. Here A(x) = fi(x).

We shall derive a similar result for any monotone operator A(x).

THEOREM 5.1.6 Suppose B is the closed unit ball in a real Hilbert space H and
A : B — H is a monotone operator that is continuous on finite-dimensional
subspaces. Then

(i) There is a point xq in B satisfying
5.1 (Axg,y —x9) >0 forallyinB.

Furthermore, the set of such points is convex.



(i) If. in addition, for everv x € 3B, Ax never points opposite to x, i.e.,
X+AAx #£0 forall >0, ||x|| =1,
then Axg = 0.

PROOF: (1) We note first that (ii) follows easily from (i), for if xo is an
interior point of B, then clearly A(xy) = 0, while if x, € 9B, then, if
A(xg) # 0, A(xp) points opposite to .

(2) Next we show that it suffices to prove (i) in finite dimensions. Suppose
we know the result in that case. For any v € B, let S(y) be the closed
convex set

S(») ={x € B|(Ay,y —x) >0}.

We claim that the sets S(y) for y € B have the finite intersection property.
Indeed, if yy, ..., v € B, let E be a finite-dimensional subspace contain-
ing these points. By the finite-dimensional result there exists x € £ N B
such that

(Ax,y —x)>0 forallye ENB.
Since A is monotone, it follows that
(Ay,y —x) > (Ax,y —x) >0 forally e ENB;

1.e., the claim holds. Now the sets S(y) are compact in the weak topology
and it follows that they have nonempty intersection; i.e., there exists x, €
B such that

(Ay,y —x9) >0 forally € B.

By Lemma 5.1.2 it follows that (Axy, ¥y — x¢) > 0 forall y € B.
That the set of all solutions of (5.1) is convex follows from the fact
that the set is also the set of solutions xq of (Ay, y—xo) > Oforall y € B.
(3) We now prove (i) in case F is finite-dimensional. If (i) is not true, then
for every x € 9B, Ax does not point opposite to x. Then, according to
the result in 1.6.1, Ax = 0 has a solution inside B.
O

REMARK. The proof of the theorem, and hence the theorem itself, holds if the
assumption that A is monotone is replaced by a weaker assumption:

(5.2) For every pair x, y € B, if (Ax,x — y) <0, then (Ay, y —x) > 0.

No application of this more general result is known. In case H = R and A :
R — R, the condition (5.2) means simply that if A(xg) = 0 for some Xg, then
A(x) = 0forx < xgand A(x) >0 for x > x,.

COROLLARY 5.1.7 Suppose H is a real Hilbert space and A : H — H satisfies
(i) A is monorone,
(1) A is continuous on finite-dimensional subspaces, and
(iii) % — 00 as ||x|| — oo uniformly.
Then A maps H onto H.
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PROOF: Since Av — v is also monotone and satisfies (iii), it suffices to solve
Ax = 0. Applying Theorem 5.1.6(ii) in a big ball about the origin, we obtain a
solution of Ax = 0. O

A stronger form of the above corollary is the following:

COROLLARY 5.1.8 Suppose A: H — H is

(1) monotone,
(ii) continuous on finite-dimensional subspaces, and
(iii)" JAx|| = oo as |x|| = oo uniformly.

Then A maps H onto H.

PROOF: For ¢ > 0, the operator A, = A 4 ¢/ is monotone and

(A0 e = A0 o gy 4 AO0

[l flxll llxl

Since (A(0), x)/||x|| is bounded, the right-hand side tends to oo as ||x|| — co. By
the corollary above, A, maps H onto H. Let x, be asolutionof A,.x =y € H.
We claim ||x,|| is bounded uniformly for all & > 0. Indeed,

(y, xe) . (Acxe, X;)

llxell llxe

> eflx: [l = 1A,

so gllx.|l < |AO)| + |yl = K, and K is independent of ¢. Since Ax, + ex, = y,
we have ||[Ax, || < |lexq|| + [|¥]| = constant independent of ¢. By (iii)’, this implies
lxe]] < constant independent of ¢.

Now let ¢ — 0 through a sequence; then x, has a weakly convergent subse-
quence, again denoted by x,, which converges weakly to x € H. Since

Ax, +ex, =y, Ax, -y,
by monotonicity,
(Ax, — Av,x, —v) >0 forallve H.
Letting ¢ — 0, we find
(v—Av,x—v)>0 forallve H.
By Lemma 5.1.2, we infer that
(v—Ax,x —v)>0 forallv.
As before, since v can take any direction, this implies

y—Axy=0.



Some Open Problems.

(1) Suppose T is a continuous map H — H which is expanding, i.e., | Tx —
Ty|l =z llx — yll and T(0) = 0. Suppose T maps a neighborhood of the
origin onto a neighborhood of the origin. Does T map H onto H?

(2) (R. Bott) Suppose B is the closed unit ball in a Hilbert space H and
A : B — H such that for some positive number 6 < 1,

(Ax,x) = —0[|Ax|| x|l when |x| =1
and that, instead of monotonicity, we have
(Ax — Ay, x —y) > —0||Ax — Ayll [lx — |

for all x,y € H. Assuming A continuous on finite-dimensional sub-
spaces, can we solve

Ax =0 onB?

5.2. Min-Max Theorem

Theorem 5.1.6, as well as the stronger form given in the subsequent remark,
are very special cases of a rather general result related to the min-max theorem. We
shall describe this result, which is taken from [48].

First we recall

THEOREM 5.2.1 (Von Neumann Min-Max Theorem) (In form given by M. Shiff-
man.) For X = R™, Y = R", let E C X, F C Y be convex compact sets and
K : E x F — R a function satisfying the following:

(1) Foreachy, K (x,y) is a continuous convex function x.

(1) For each x, K(x,y) is a continuous concave function of y. Then there
exists an (xq, yo) € E X F such that K (xq, yo) is minimum with respect
to x € E and maximum with respectto y in F, i.e.,

K(xo. y) < K(xo, y0) < K(x, yo) .
REMARKS. (1) This conclusion of the above theorem is equivalent to
max(min K (x, y)) = min(max K (x, y)).
y x X y
(2) Convexity and concavity can be replaced by quasi convexity and quasi

concavity, respectively.

DEFINITION A real function ¢ (x) defined on a convex set is guasi-convex if for

every real constant c, the set {x | ¢(x) < c} is convex. ¢(x) is quasi-concave if
—@(x) is quasi-convex.

Remark 1 is easily verified; suppose
max min K (x, y) = minmax K (x, y) .
y x X ¥

Let xg, yo be points in E, F such that

max K (xo, y) = minmax K (x, y) = & = max min K (x, y) = min K (x, Yo) .
v X v v x x
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Then
K(xo,v) <a < K(x,y),

and consequently o = K (xo, o).
EXERCISE Prove the other part of Remark 1.
We now describe a much more general form.

THEOREM 5.2.2 (Generalized Ky Fan Min-Max Theorem) Let F be a Hausdorff
topological vector space and G a vector space. Let A C F, B C G be convex sets
and K (u, v) a real function defined on A x B satisfying the following:

(i) Foreach v € B, K(u, v) is quasi-convex in u and lower-semicontinuous
in A.
(i) For eachu € A, —K(u, v) is quasi-convex in v and lower-semicontinu-
ous on the intersection of B with any finite-dimensional space.
(iii) For some U € B and some
A>supinf K(u,v) =a,

veB ucA

the set {u € A | K(u, v) < A} is compact. Then

a = supinf K (u, v) = infsup(K(u,v)) = 8.
v 4 oy

Question. Can (i) be replaced by the following: For each v, K (u, v) is lower-
semicontinuous in u on finite-dimensional subspaces?

Theorem 5.2.2 is proved with the aid of a result which is again a slight exten-
sion of a theorem of Ky Fan.

THEOREM 5.2.3 Let E be a Hausdorff topological vector space' and C a convex
set in E. Let f(x, V) be a real function defined on C x C satisfying the following:
i) flx.x) =<0
(ii) For every x € C, the set

{[veC| f(x.y) >0} isconvex.

(iii) Foreveryy € C, f(x,y) is lower-semicontinuous in x on the intersection
of C with finite-dimensional subspaces.
(iv) Whenever x, v € C and x is in the closure of a set G such that

fz(d=0Dx+1ty) <0 for0<t <1

and all z € G, then f(x.vy) <0.
(v) There is a compact subset L of E and a yo in LNC suchthat f(x. o) > 0
forxeC,x ¢ L.

In applications we often take E to be a reflexive Banach space with its weak topology. Then
any closed (in the norm topology), bounded convex set in E is compact in the weak topology.



Conclusion. There exists xo € L N C such that
fxo.») <0 forallveC.
The proof will be given below.

REMARK. Ky Fan assumed C to be compact and f lower-semicontinuous in
xonallof C.

Applications.

(1) Suppose E and C are as above and f is defined on C x C satisfying (i),
(111), (v), and, in addition:
(a) Forevery x € C and every k > 0, the set

{yveC| f(x,y) > K} 1isclosed and convex.

(b) Forevery x,y € Cif f(x,y) <0, then f(y,x) > 0.
(¢) If f(x,¥)) > f(x,y2) = 0, then

fx.ty+ (0 —1)y) > f(x,vy) forO<r<1.

Conclusion. There exists xg € L N C such that f(xg, y) < 0 for all y.

PROOF: We have to verify that f satisfies the conditions of Theorem 5.2.3.
Condition (a) implies condition (ii) of Theorem 5.2.3. So we have only to verify
condition (iv). Suppose then x, y, and G are as in condition (iv) but f(x, y) > 0.
By (b) we have

(A —x4+1ty,z2) >0 forO<r<landallze G,
and by (a) it follows that

(5.3) f(l—tx+ty,x) >0 forO=<r=<1.

Since f(v, y) is lower-semicontinuous as v = (1 — t)x + ty moves on the line
between x and y, we see that for small positive ¢, f (v, y) > 0. From (5.3) we have
f(v,x) = 0. Thus, from (a) it follows that f(v,v) > 0, a contradiction. For if
fv,x) = f(v,y), this follows from (a), while if f(v,x) # f(v,y), it follows
from (c).

As an application of this result, we may derive the following generalization of
Theorem 5.1.6 and the succeeding remark. U

(2) Suppose E and C are as above with C compact. Let A be a mapping of
C into E*, the dual of E, satisfying the following:
(a) For x, v in C, whenever (Ax, x — y) < 0, then (Ay, y —x) > 0.
(b) A is continuous on finite-dimensional linear subspaces.
Then there exists xy € C such that

(Axg,xg —¥) <0 forallyeC.

PROOF: Set f(x,y) = (Ax,x — y). Since f is linear in y, all the conditions
of (1) are easily checked. O
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The proof of Theorem 5.2.3 is based on an infinite-dimensional version of the
jemma of Knaster, Kuratowski, and Mazurkiewicz of Section 1.6.4. (The version
given here is a slight extension of Ky Fan’s.)

LEMMA 5.2.4 Let E be a Hausdorff topological vector space and X an arbitrary
subset of E. To each x € X, let a set F(x) in E be assigned to satisfy the following:
(i) F(xo) = L is compact for some xg € X.
(ii) The convex hull of every finite subset {x\, ..., X} of X is contained in the
corresponding union | J] F (x;).
(iii) For every x € X, the intersection of F(x) with any finite-dimensional
subspace is closed.
(iv) For every convex subset D of E we have

[W]HD:[ N F(x):lﬂD.

xeXND xeXND

Conclusion.

ﬂF(x);é@.

xeX

REMARK. Assumptions (iii) and (iv) clearly hold if F(x) is closed for every
x € X this is the case treated by Ky Fan.

PROOF: The result holds in finite dimensions; this is just the result of Sec-
tion 1.6.4. We may assume xo = 0. Let (E;);es be the class of all finite-dimensional
subspaces of E ordered by inclusion; i.e., i > j means E; C E;. By the finite-
dimensional result, it follows that for every i € I there is a u; € L N E; satisfying

u; € F(x) forallx e XNE;.

Let o, = U
mzeXﬂE,» F(Z) o
Suppose X € [;; @, which is not empty by the compactness of L, and let ip

be such that x € E, . For any x € X, we can find i > ip and x € E;. We have,
therefore,

{u;j}, sou € F(z) foru € ®; and z € X N E;; hence ®; C

j=i

fednEc| (| Fo|nE=| (] F@|NE
eXNE; zeXNE;
by (iv). Therefore ¥ € F(x) and consequently ¥ € [),ox F(x). O

PROOF OF THEOREM 5.2.3: We shall apply the preceding to the assignment:
Foreach y € C, let

Fy)={xeC| fx,y)=0}.
The conclusion of Theorem 5.2.3 is equivalent to the assertion [, F(y) # 9.

Properties (i), (iii), and (iv) of Lemma 5.2.4 follow from (v), (iii), and (iv) of The-
orem 5.2.3, respectively.



We have only to prove (ii); suppose that (ii) does not hold. Then for some
choice of y; and o; > 0, 1 </ < n, with >_a; = I, we have

n

Zai_y,. ¢ CJF(y,»), ie, f (Za,-y,»,yy) >0 forl <j<n.
1 )

By (ii) of Theorem 5.2.3, it follows that /(3 ] a;¥;. Y | o;¥;) > 0, contradicting
Theorem 5.2.3(3). O

We omit the proof of the generalized min-max theorem, Theorem 5.2.2. It is in
[48], referred to at the beginning of this section.

5.3. Dense Single-Valuedness of Monotone Operators
Lecture of N. Bitzenhofer

We have discussed single-valued monotone operators, but for certain prob-
lems, it is important to consider set-valued maps 7. This section is a report on
[53], showing that a monotone set-valued map is in fact single-valued at most
points. Some related references are [S1, 52]. We will be concerned with multi-
valued monotone mappings of a separable Banach space X to its dual X*, i.e.,
T:X—> XY= 2X* the power set of X*. If x € X, x* € X", we denote the
pairing x*(x) by (x*, x).

DEFINITION 5.3.1 Aset M C X x X* is monotone if for all pairs (x1, x), (x2, x3)
in M, we have (x{ —x3, x; —x2) = 0. M is maximal monotone if M is not properly
contained in any other monotone set. The set-valued map T : X — £ (X¥) is then
monotone if its graph is monotone, i.e., for any x, y € X and any choice of Tx,
Ty e X*, wehave (Tx — Ty, x—y) = 0. T is then maximal monotone if its graphs
are maximal monotone. Note that T is not assumed to be defined on all of X; its
domain of definition is denoted by D(T).

To prove our main result we will need the following definition and lemma
(see [6]):

DEFINITION Let X be a locally convex, real Hausdorff topological vector space.
Then a monotone operator T : X — £ X* is locally bounded at x € X if x has a
neighborhood U such that T (U/) C X* is an equicontinuous set. Note that for X a
Banach space, the equicontinuous sets are just the bounded sets.

LEMMA 5.3.2 If X is a Banach space, T : X — P X* is maximal monotone, and
int D(T) # B, then
(1) int D(T) is convex,
(i) int D(T) = D(T), and
(iii) T is locally bounded at each point of int D(T).

A particularly simple proot of (iii) can be found in [50].
Our principal result is the following:
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THEOREM 5.3.3 Let X be a separable Banach space, T : X — P (X*) mono-
tone. Then the set of points Z where T is not single-valued has empty interior. If
int D(T) #9, Z isan F,-set.” If X is finite-dimensional, Z has Lebesgue measure
zero.

PROOF: We assume int D (T) # @, or else there is nothing to prove. The the-
orem clearly holds for 7 if it holds for any extension of T', and, since any monotone
operator has a maximal extension, we may assume without loss of generality that
T is maximal monotone. By Lemma 5.3.2, int D(7T) is an open convex set whose
closure contains D (T), and T is locally bounded at each point of int D (7). In par-
ticular, the image Tx for x € int D(T) is a bounded set of functionals in X*. By
the maximality of T, this set is also closed and convex, for suppose x;, x; € Tx,
0 <a < 1. Then forany y € int D(T) and y* € Ty,

ax} + (1 —o)x3 —y",x = y)
= (axf + Q- —ay"— (1 —a)y", x— y)

=a(xf—y*,x—y)+(1—a)(xi‘—y*,x—y)
>0.

Thus, ax; + (1 — a)x; must be in T x too.
To prove the theorem, we must show that

7Z = {x € intD(T) | Tx is not a singleton}

has empty interior. To do this, we consider the real-valued function k(x,u) =
SUp ey (X, u), x € D(T),u € X.

Claim 1. For x € intD(T), k(x, u) is finite. This follows from the local
boundedness of T.

Claim 2. For fixed u € X, k(x, u) is an upper-semicontinuous function of x
on int D(T): We must show that for x € int D(T),

k(x,u) > lim k(y, u) .
y—ox

So let {x,}2, be a sequence in int D(T') converging to x, and pick a sequence
{x}22,, with x7 € Tx,, so that (x, u) — frﬁy%x k(y, u). By the local bound-
edness of T, we can assume {x}},—; is bounded in X*, so that by conditional
weak* compactness of bounded sets in X*, we can exiract a subsequence {x;.}
with (x;, u) — (x*, u) for some x* € X*. By the maximality of T, x* € Tx, and

)
k(x,u) > (x* u) = lim (x},u) = lim {x;, u) = Ii—mk(y. u).

. ng? n’
i—0oC n—oo

Thus claim 2 is established.
Now we need some inequalities based on the behavior of k(x. u) along lines
parallel to u € X.If x € int D(T), the line {x + tu}Z_ intersects int H(7T) in an

open segment. We will show that k(x. u) is monotone increasing in  along such a
line.

2That is, Z is the union of a denumerable number of closed sets, all without interiors.



Let s < f be two real numbers such that x + su and x + ru are in int D(T).
Thenif x} € T(x +tu), x; € T(x + su), we have
|

Sou)—(xTou) = t_s(x,*—x;‘.(x-}-tu)—(x-}-su))20.

by monotonicity. In particular, for any x* € T (x + ru), x’ € T(x + su), we have
(xf,u) > (x7.u), sothat

(5.4) inf  (xfu.) > sup (x7.u) =k(x +su,u).
A €T (xtru) xreT (x+su)

and the monotonicity follows.

Furthermore,
k(x +tu,u) = sup (x/,u)> inf (x}, u)
xFeT (x+iu) x; €T (x+1u)
=— sup (x,—u)=—k(x+tu,u)
x;eT(x+tu)
> sup (x;,u) (by (5.4)=k(x +su,u)).
xfeT(x+su)
Hence

O<k(x+tu,u)+k(x+rtu,—u) <k(x +rtu,u) —k(x+su,u)
and, letting s 1 ¢,
5.5) O<k(x+tu,u)+k(x~+rtu,—u) <k(x +rtu,u)— lipk(x + su,u).
STt

Now consider the quantity

k(x,u) +k(x,—u) = sup (x*,u) — inf (x*, u),
x*eTx x*elx
and let {u,} C X be a sequence such that if x* € X*and (x*, u,) = 0 Vn, then
x* = 0 (recall X is separable). It is easily seen that for x € int D(T),

T x is not a singleton iff for some n. k(x, u,) + k(x, —u,) > 0.

Thus, if we set
Zy={xeintD(T) | kix, u,) + k(x, —u,) > 0},

we have

oo
z:Uz,,.
n=1

From (5.5) we see that any point in Z, that is also on the line {x + ru,}°__
is associated with a jump in the nondecreasing function k(x + tu,, u,), and con-
sequently Z, intersects any line parallel to u, in at most a countable number of
points. Therefore int Z, = §. In the finite-dimensional case, we can immediately
conclude from Fubini’s theorem that each Z,,, and hence Z, has Lebesgue measure
Zero.

We still must show int Z = ¢, which entails a Baire category argument. Let
Znw = {x € intD(T) | k(x,u,) + k(x,—u,) > L}, m € ZT; then Z, =

Uni Zn.m» and by a characterization of upper-semicontinuity, each Z,, ,, is closed.
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If intZ # ), we could find a closed nonempty sphere B in Z, and then B =
U:‘;l‘m:](B N Z,m). B is of the second category and each B N Z,,, is closed,
so Z,m, and hence also Z,, would have to have nonempty interior, which is a
contradiction. Thus int Z = 4, and from Z = (J;~, ,._, Z, . we set that Z is an
F,-set. W]

COROLLARY 5.3.4 If{T,} is a sequence of set-valued monotone operators defined
on an open set A C X, then the set of points where all the T,’s are simultaneously
single-valued is dense in A.

PROOF: Since the countable union of F,-sets is an F,-set, the same Baire
category argument can be used here. O

Application to Subdifferential Maps. Again X is areal, separable Banach space,
and X* its dual.

DEFINITION A proper convex function on X is a convex function f : X — R U
{oo} that is not identically infinite. Let f be a proper convex function on X, and
let x € X. An element x* € X* is called a subgradient of f atx if forall y € X,
F(¥) = f(x)+(x*, y—x). The set of all subgradients x* of f atx is denoted 3f (x),
and the map of 9f : X — X* which sends x — 3f (x) is called the subdifferential
of f. Note that 3f is multivalued. For example, if f is convex on the open convex
set U C R" and if the gradient V f (Xy) exists, we know

f) = f(Zo) =2 VfG)(E —%) VxelU.
EXERCISE Prove that 9f : X — £ X* is a monotone operator.

As our first example, let K C X be a nonempty, closed convex set. Define the
indicator function of K as follows:

0, e K,
§ = 8x(x) = 8
oo, x¢K,

8k is a proper convex function on X. If x ¢ K, the inequality
() Zd(x)+{x*,y—x) VyeX
is not satisfied for any x* € X*, whereas if x € K, the inequality reduces to
(x*,y—x)<0 Vyek.
Thus, x* € 98 (x) iff
x€K and (x*.y—x)<0 VyeKk.

Such an x* € X* is called a normal to K at x.
We can similarly reverse the map and assign to each x* € X* the face of K
perpendicular to x*:

Fr(x*) = [x €K | (x*,x) = sup(x*,y)}.
yeK



Then x* is an outer normal to K at x, and since Fx is the (multivalued) inverse
of 38k, F, is also monotone, for the graphs are the same. Then if X* is separable,
our theorem yields the following:

COROLLARY 5.3.5 The set of normals to a closed convex set in a Banach space
with separable dual which exists at more than one point, has empty interior, and in
finite dimensions has measure 0.

Now consider the Minkowski functional or support function of a closed convex
set K,
px(x) =infla > 0| a"'x € K}.
Then applying our theorem to the subdifferential map dpg gives the following: If
a convex subset of a separable Banach space has nonempty interior, it has a unique
tangent functional at each point of a dense subset of its boundary. This follows
from the fact that if f € dpg (x), then

Pk —px(x) = f(0) = f(x) VYyeKk,

and consequently f satisfies the conditions necessary to be a tangent functional at
x (see [49, chap. V.9)).

We derive one more corollary. Let 7 : X — &£ X* be monotone as above. Let
L be a closed linear subspace of X, and let L+ denote its annihilator on X*. Then
X*/L+ >~ L*, and for arbitrary xo € X define T : L — X*/L* by Ty (x + xy) =
the coset in X* /L~ containing T (x + xo); i.e., T; is defined on the affine manifold
L+ x¢. T, is monotone since T is monotone. Applying our theorem, one can derive
the following:

COROLLARY 5.3.6 Let T : X —> X* be a monotone operator, and let M be a sepa-
rable affine manifold in X. Then the set of points in M where T x is not orthogonal
to M has no interior in M (if M is finite dimensional, the set has measure 0).

Here orthogonality means that the difference of any two points in 7x annihi-
lates the difference of any two points in M. That is, since T} is essentially single-
valued, two functionals in 7 x will lie in the same coset of X*/Ml, and hence their
difference is in M+,



CHAPTER 6

Generalized Implicit Function Theorems

Lecture and Notes by E. Zehnder

The classical implicit function theorem is concerned with the solvability of the
equation

F(fu)=0

where % is a smooth map of a neighborhood of (fy, up) in X x Y into Z; X, Y,
and Z are Banach spaces. Assuming

F (fo,u0) =0

and f close to fy, we wish to solve F(f,u) = 0 for u(f). If F.(fo,up) =
D2 F (fo, ug) has a bounded inverse F,( fo, uy)~! 1 Z — Y, then there is a unique
solution u( f) with u(fo) = uo. We shall use the notation L(Z, Y) to denote the
space of bounded linear maps of a Banach space Z to a Banach space Y.

Since Nash’s work [58], there has been great interest in such problems in situ-
ations where D% (fy, up) ™" is unbounded. For example, ¥ may act on functions
f, u defined in a compact manifold, with X = C***, Y = C**F, Z = C* ™ for
every £ > « (in the notation of Section 2.5). (D,F)~! may exist but may lose
derivatives, say D,F ! € (C*™, Ct*+P=%) for some § > 0. In such a case the
classical implicit function theorem does not apply, and the usual Picard iteration
scheme for solving the equation F (f, u) = 0 does not work. In his important pa-
per [56], J. Moser developed a general approach to such problems. This assumes
the invertibility of D> F (f, u) for (f, u) “near” (fo, uo) and replaces the usual Pi-
card iteration scheme by a more rapidly convergent one (of the type of Newton’s)
which is used in conjunction with smoothing operators. J. Schwartz presents a form
of this result in [11, chap. II]. A related technique, connected with earlier work of
Kolmogorov and Arnold on small-divisor problems in mechanics, works with ana-
lytic approximation of the functions; a variety of applications may be found in the
beautiful papers by Moser [S7].

There are many way in which one can present the generalized implicit func-
tion theorems, usually called Nash-Moser implicit function theorems, depending
on the application one has in mind. Often the difficulty occurs in showing that the
conditions are satisfied in some particular problem. In this chapter we will present
several forms of the method, some operating in a framework modeled after analytic
functions, others using the analogue of C* smoothing operators. In the last section
we will present an application to the conjugacy problem of vector fields in a torus.
In our treatment we will not assume that D, F (£, u) has an inverse, but will make



the weaker requirement that there exists an approximate inverse n(f, u); n is to be
such that, in terms of suitable norms,

ID2F (f,u) -n(f.u) —I| <const |F(fu,u).
Therefore, 7 is required to be a precise inverse only at points (f, u) that satisfy
F(fiu)=0.
In these lectures we describe some of the results of E. Zehnder [60]. We will
first take up the case of analytic functions, though placed in a more abstract setting.

6.1. C“ Smoothing: The Analytic Case

We begin with the abstract setup. This is somewhat similar to the setup used in
[54, 55, 59]. We consider three one-parameter families of Banach spaces X, Y,
and Z, in the closed unit interval 0 < o < 1suchthatfor0 <o’ <o <1,

(61) XODXG'/QXG'QXIv
and with norms | |, satisfying
(6.2) | flor <1 flo

forall f € X, and 0 < ¢’ < o (analogously for Y, and Z,).
An example of such spaces X, is the following:

Let T, = {complex strip of points x € C" | [Im x;| <o, j=1,...,n}.
For an integer m > 0, set

A(o, C™) = the set of holomorphic functions on T, u(x) which are
real for real arguments (i.e., which satisfy u(x) = u(x)) and which
are periodic in each x; of period 1.

Introduce norms
|ulg.cm = sup |[D*u(x),
strip
la|<m
ie., the sup of all derivatives of u up to order m in the strip. From the Cauchy
integral formula, one has

|l cm < const jo — a’le_"’lulmce for{ <mando' <o.

Set X, = A(o,C™) for 0 > 0 and Xg = C™(T") where T" is the real torus
(corresponding to period 1 in each x;). Other examples will occur later.
Let ¥ be a mapping defined in X x ¥, and with range in Zq such that

6.3) F (fo. o) =0

for (fo.up) € X x Y; (the smallest spaces!). In order to define the domain of
definition of ¥, we introduce the open balls B, C X, x Y,,

Ba:{(fvu)exaxyo||f‘—f0|a<Nv|u_u0|a <R}

for some fixed N > 0and 0 < R < 1. Assume ¥ is defined for (f,u) € By and
F(By,) C Z, forall0 <o < 1 with

(6.4) F B, —> Z,



continuous for every 0 < ¢ < 1. For given (f,u) € B,, 0 > 0, our aim is to
solve the equation % (f, v) = 0 for v close to u in some larger space Y,, 0’ <
o, assuming that |F (f, u)|, is sufficiently small. We make the following three
assumptions, in which M > 1, y > 0, and o > 0 are fixed constants.

Hypotheses.

(H1) Taylor Estimate. For every 0 < o < 1 and every f € X, N B,, the
mapping ¥ (f, -) from Y, N B, into Z,', 0’ < o, is differentiable. Denote
its Frechet derivative at (f, u) € B, by dF (f, u). For (f, u), (f,v) € By,
the quantity

O(fsu,v)y=F(fiu)—F(f,v)—dF(f,v)(u—v)

satisfies

lu —v|? forallo’ <o.

M
1Q(f;u, V)| £ ———~
(0 —

U/)2a
(H2) Uniform Lipschitz Condition in First Argument. For every 0 < o < 1, if
(f,u), (g, u) € By, then

|?(fvu)_?(gvu)la Sle—gla

(H3) Approximate Right Inverse of Loss y. Forevery 0 < o < l and (f, u) €
B, there is a linear map n(f,u) € L(Z,,Y,) for all 6’ < o such that
forallz € Z,:

In(f, w(@)ler <

P zlo

and
M
[dF (fow)-n(fiu) — D@)|er < (U—_Uml?(ﬂ wlolzlo -

Actually, we will need these estimates only for z = F (f, u).

THEOREM 6.1.1 Let F satisfy (H1) and (H3). Then there exists a constant C > 0,
depending on M, «, and y, such that if (f,u) € B,, for some o > 0, satisfies
lu — ugle < r < Rand

|F(fswle < C(R—r)o?

for some g > 2(a + y), then there exists a uy € Yo 2 0\ By such that
(i) F(f,us)=0and
() lug —ulop <C1 - |F(fru)le 7.

PROOF: We shall use Newton’s iteration method but with the approximate
right inverse n(f, u) of (H3) in place of the inverse of d¥ (f, u), which need not
exist. We will define inductively a sequence (u,), n > 0, which will converge in
Y,/ to a solution of F (f, u) = 0. Starting with ug = u (u as in the formulation of
the theorem), we set forn =0, 1, ...,

(65) Upt) = Uy —ﬂ(f, un)(?(fv Uy)) .



To carry out the induction step below, we introduce beforehand a sequence
(&x)n>0 of small numbers as follows:

(6.6) 1 =a-b'e; . 1 <k <2,
where a = M320++2 and b = 2X**V) For g, sufficiently small, this se-
. . _ 1y _1y1 12
quence converges exponentially to zero, for if §, = a1 pr—D F=Dg
Hy . e —1y" 1, 1y
then 8,41 = 8%, hence §, = 8(()'( , and we can write &, = g <~ pnk=DT _

(k — 1)48(()'("); go will be chosen sufficiently small during the proof. We shall make
use of the following estimates:

2 n 2
(6.7) g, <ab'e, <e,p1 < 1.

To label the spaces, we introduce for o > 0 the sequences (0,),>0 and (T,)n>1,
as o, = %(l +2™yand 1,4 = %(O’,,_H +0,) forn =0,1,.... Note 6y = o,

limo, = §asn — 00, and 0,11 < Tp4+1 < 0,. Choosing ¢ > 2(a + y), we are
going to prove that there is a constant C > 0 such that, if

|F (fiuw)le <v(R=r)a?C

for some 0 < v < I, then the following statements S, for the sequence (#,),>0.
defined inductively by (6.4), hold for all n > 0:

(Snl) (f’ un) € Ba,,lf(fv un)la,, f U(R - I")O’qé‘ﬁ,

(S,,Z) (f’ un-H) € Bt,,_HlurH—l - unlt,,H = U(R - ”)Uq*ysg,, and
(S,3) |upy1 — u|r,,+l < (R=r)(1 —g,).

The parameter v has been introduced for the following reason: If F (£, )|, <
(R—r)C -01, then there exists a 0 < v < | such that | (f, u)|, = v(R—r)Co¥9,
which then will allow us to estimate the solution in terms of |F (f, u)|,. From
(S,1) one concludes that # (f, u,) — 0in Z,,, as n — oc. By means of (§5,2),
the sequence (u,),>0 is a Cauchy sequence Y, ,,. Calling its limit u; = limu,
we conclude from the continuity of # that ¥ (f, uy) = 0. The statements (S,3)
guarantee that we stay in the domain of definition of ¥ and keep the induction
going, namely,

[tns1 — uOlr,,+1 < |ups1 — ulr,,_H + lu — uOlt,,+| <(R-r)1—-¢&)+r<R.

The proof of the statements S, is by induction. The statement Sq follows from
the smallness condition on |F (f, u)|,, namely, |F (f,u)|, < v(R — r)Co¥, if
C < 6‘8 . Here one uses the same estimates as in the induction step below. Assuming
now the validity of S; for 1 < j < n, we shall prove the statement S, ;. We know

(fsup), (f, unty) € By, C B, ,,, and using the definition (6.5) of u,.|, we can
write:

(68) f(fv urH—l) = _(d?(fv un) o 77(f, un) - 1)(37(f~ un)) + Q(fv Up+i, ll”) .
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Using (H3) and (H1) we reach the following estimate, in which we do not
indicate the dependence on f:

F (u =
| ( n+1)|0n+| — (Un _U'l+l)2(d+y)

|F ()12, 1) (F (un))|?

(Tus1 — Oni1) ftl

. ( " + i ) |F ()
< ul, .
(Un - Un+l)2(a+y) (fn+l - Un+l)2a(an - —n+l)2y "

Inserting the definitions of the sequences (g,) and (7,), we get
|F (s lapyy < 024 ab" (R — r)20 68

Since R, v,0 < l,and g > 2(a + y), this can be estimated by v(R — r)crqab"eﬁ <
V(R —r)o? 8n+1, where we have used (6.7); hence we have proved S, 1. Calling
Upys — Upyl = Upy1, We get by means of (6.5) and (H3) the estimate

|$d(un+l)|o,,+1 .

|Un+l |r =<
e (Un+l - fn+2)y

Using S, | and (6.6) we find

3
[Unt1l,y, < V(R —1)0” Vab" 41 <V(R—=r)o?” Venis

which proves S,2; that (f, u,+>) is in B, ., follows easily from

Tn+2
|un+2 - ulr,H_z < |un+1 - ulr,hq + |Un+1|r,,+2
3
SR=-nU—-¢e+¢e,.) <(R=r)—ény1)

for &y sufficiently small; here we have used S, 3. To prove estimate (ii) of the theo-
rem, observe that from the statements S, 2, we conclude that for alln > 1,

o
[y — tt|g2 < Z [Uplo2 < V- (R~ re? " ng,

n=0 n>0

which can be estimated by v(R —r)o 977, by choosing &g so small that Zn>0 g} <
1; therefore |us — ulg/2 < v - (R —r)o?77. Finally we choose C = 30, if now
|F(f,uw)|le < (R—r)C-c9, wetake v = |F (f, u)ls - C'"-(R-r)""-077and

find |y — uloj2 < CTIF(frt)lg -0 0

Observe that the approximate right inverse n(f, u) of d¥ (f, u) is an exact
right inverse for every solution of ¥ (f, u) = 0 in the following sense: If (f, u) €
B, for ¢ > 0 is such a solution, then, since n(f,u) € L(Z,,Y,), 0’ < &,
dF (f,u) - n(f,u) mapping Z, into Z,, ¢’ < o, is the continuous injection
Zs <> Z,. We proceed by briefly discussing uniqueness, parameter dependence,
and some modifications.

6.1.1. Uniqueness. Since we have no left inverse of d ¥ (f, u), uniqueness of
the solution cannot be expected. As a natural condition, which we show guarantees
local uniqueness, we assume the existence of an approximate left inverse: For every



o > 0and (f,u) € By, there is a linear map &§(f, u) € L(Z,.Y,) forallo’ < o
such that forall z € Z,, 0 € Y,

M
(6.9 E(fiu) (Do < mma
and
T ~ M ~
(6.10) [(E(fouw)odF (fou) — D], < mlf(f- )| |V]s .

Let F satisfy (H1), and assume we have an approximate left inverse. Let (f, u),
(f,v) € By, o > 0,suchthat F(f,u) = F(f,v) =0.1f lu —v|, <C-0%C
and g as in Theorem 6.1.1, then u = v in ¥, 5.

Indeed, denoting u — v = w € Y,, we get dF (f,w)w = Q(f;u,v) and
therefore

2
(6.11) 4F (fuwly < vl
forall o’ < s < . On the other hand, from (6.10) we getin Y,/, 0’ < o, §(f,u) o
dF (f,u)w = w. This leads with (6.9) and (6.11) to the estimates, for all o’ <
s<o.
M?222(@+y)

(6.12) lw]er <
(s —

_MTe T 2
o’)2(e+y) ws.,

Inductively it then follows from (6.12) that if |w|, < o?C, the estimates |w|,, <
o9¢4 hold, o, = (6/2)(1 +27"), and hence w = 0 in ¥, 5.

6.1.2. Parameter Dependence. We assume the approximate right inverse 7
in (H3) to be continuous, which means that for every (¢/,0), 0 < ¢’ < o, the
mapping 1 : B, = L(Z,,Ys), (f,u) — n(f, u) is continuous.

COROLLARY 6.1.2 Let F be as in Theorem 6.1.1, and let n be continuous. If ¢
¢:D— B,, >0,

D> wr ¢o(w) = (g1 (w), g(w)) € X, X Yy, is a continuous map defined on
an open set D C W of some Banach space W, satisfying for all w € D the two
estimates | (W)l < r < Rand |F o p(w)|, < C(R —r)o4, C and q as in
Theorem 6.1.1. Then there exists a continuous function 6 : D — Y52 0\ By such
that, for all w € D,

(i) F(p1(w),0(w)) =0, and
(i) 18(w) = pr(W)lg 2 < C7' - |F 0 p(w)y - 077
PROOF: Define, as in Theorem 6.1.1, 6 by 6(w) = limj_, o #;(w) in Ys2,
where ug(w) = ¢(w) € ¥, N B, and
ujr1(w) = uj(w) — n(pr(w), u;(W)F (p1(w)), u;(w))) € Yo, N By, |

to show that 6 is a uniform limit of continuous functions and therefore contin-
uous. Since 1 is continuous and 7(¢;(w), u;—;(w)) is linear, the functions u; :
D — By — Y, > are continuous. Furthermore, we have the uniform estimates
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supp [uj 1 (w) —u;(w)ly;,, < (R — r)cr"‘ysf; hence 6 is continuous. Estimate (ii)
follows as in Theorem 6.1.1. O

6.1.3. Modifications. There is, of course, a great amount of arbitrariness in
the formulation of the assumptions of generalized implicit function theorems like
Theorem 6.1.1. They are dictated by the type of problems one chooses to look at.
Our particular assumptions, chosen for their simplicity, cover many small-divisor
problems arising in celestial mechanics. However, various far-reaching modifica-
tions lead to the same type of existence statement. We mention just one.

The continuity condition in the setup (6.4) can be replaced by the condition
¥ :By— Zyo,F : B, > Z,,0 < ¢’ < o continuous. In (H1) the smoothness
can be replaced by the following assumption: For every o > 0 and (f, u) € By,
there is a mapping ¢ ( f, u) from Y, into Z, forall ¢’ < o satisfying the following
two estimates replacing (H1) and the second estimate in (H3): For (f, u), (f,v) €
B,,set Q(f;u,v) = F(fiu) — F(f,v) — ¢(f,v)(u —v);then forallo’ < o,

M
(6.13) |Q(f; u, V)|or < © —o (1F (f, V1P u = s + |u— v|T7)

and
(6.13")

M
(@) ontfv) = Do < gy (F (oIl + 1215™)

forall z € Z,, where B; > 0,1 < i < 4, are fixed constants. Under these modi-
fied assumptions the same statement as in Theorem 6.1.1 holds true with a possibly
larger g (but the same loss y!). The proof is completely analogous; one just replaces
dF (f, u) by ¢(f, u). The speed of the convergence of the iteration, however, mea-
sured by k > 1 in (6.6), is slower: 1 < k < 2 unless f; = lforl <i < 4.
(Observe that we can choose « = 2 in the proof of Theorem 6.1.1.)

Theorem 6.1.1 is quantitative in nature, and we shall use it in an iterative way
to extend the existence statement to larger spaces in order to deal later on with
spaces of differentiable functions. We shall squeeze in between X and X,,0 > 0,
an entire family (Xg)e>o of Banach spaces that are subspaces of X satisfying for
all0 < ¢ <f <ooandallo > 0,

XoD X, 2 XD (xgozﬂxg> DX, D Xi.
£>0
These new spaces will be characterized in a natural way by their approximation

properties with respect to the smaller spaces X, , o > 0, the characterization being
quantitative in nature.

6.1.4. The Spaces X,0<f€ <oo. ForO0 <€ <oocand0 < o < 1, we
shall call a sequence (h;);>0 C Xo a (o, £)-sequence if ho = 0, h; € X, .-, and
supj21(2ﬂ|hj —hj_1ly2-s) < oo. For such sequences we define
(6.14) [(h)] = sup(2/“|hj — hj_1]50-1) -

Jj=1



Note that every (o, £)-sequence (h;) satisfying |h; — h;j_ilo < 277¢[(h;)] for
all j > 1 and some £ > 0 is a Cauchy sequence in Xo—{ indicating the speed
of the convergence. Denoting its limits by &4 = lim;_, . h; € Xy, we can write
h= ijl(hj — hj_1) and read off the estimate

(6.15) |kl < (2 = D7'{(h))].

Forall 0 < £ < ooand 0 < o < 1, the linear subspaces Xég'[) C X, are now
defined as follows:

Xéa.l) = {h € X, | a (0. £)-sequence (h;) with h; — h in X,}.

Clearly X,» € X\ for all 6’ > 0. Indeed, if h € X,, take j, € Z such that
o 270 < ¢’ and define (h;) by h; = 0forO0 < j < jo—landh; =h € X, ;-
for j > jo. It then follows that h; — h in X and [(h;)] = 2j0l|h|0.27j0.

Denoting S(o,¢; h) the equivalence class of (o,£)-sequences (h;) with lim;_, o
h; = h on X, we introduce in Xég'l) the following norm:

6.16 hwe = inf [(h)], heXY;
( ) “ ”( 0 S(;I,ll;h)[( ])] € X

note that ||4|(s.¢y > (2° — 1)|k|o, which follows from (6.15).

LEMMA 6.1.3 The space Xég’l) with the norm || ||(c.¢y is a Banach space.

PROOF: To shorten the notation, we write for ||h||(,.¢ simply ||/].. We let

k"), c Xé”’l) be a Cauchy sequence. We choose a subsequence, which we call
(h'),,, such that

6.17) “h(") _ h("_H)”l < o+l

It is sufficient to show that there is an & € Xég‘l) such that for every & > 0, ||h" —

hll¢ < e forn > N(g). We can choose (o, £)-sequences (h;-"))jzo € S(o, £; k™)
such that, because of (6.17),

(6.18) (R — R )] <2

for all n. In order to show that for fixed j > 0, (h;"))nzo C X,.,-; is a Cauchy
sequence in X ,.,-j, we prove forn =0, 1, ..

(6.19) I =Pl 0y 27000 —6) 7

where § =27¢. (6.19) follows from the estimates |h;") — h;"+l) lgp-s <277 Zle 9°,

6 = 27¢, which will be proved by induction. For j = 0 we have h(o") = 0 for all
n > 0. For the induction step from j to j + 1, note that from (6.18),

620) | ) = () = By <202



therefore

(n) (n+1)
lhj+1 - hj+1 |,,,7_—1_/ +1)

(n) (n+1) (n) (n+1) (n) (n41)
= l(hj+1 - hj+1 ) — (hj - hj lg.2-0+0 + lhj - hj lg2- 0

J+1

< 2—(j+1)(f N jzes — 9 Zes ]
s=1

s=1

Denoting by h; = lim,_ hj(.") € X, , s, the limit of the Cauchy sequence
(h")n20 C Xg.0-5, we conclude from B — by =Y, — k™) and (6.19)
that
6.21) A" = hjlo.as <27 Do —o)t,

We next show that (h;);>o 1s a (o, ¢)-sequence. From (6.18) we conclude that
[(h;"))] < M for all n > 0 and some M > 0. Writing h; — h;_y = (hj — hj(.")) +

(hj(.") — hj."_)l) + (hj(."_)1 — hj_,), we obtain the estimate

j ¢ (n)
+ 24— b o2

it it (n) gy ()
2R — by ilgami < 200N — B g0 + 270 — Py

which is < 2M for n sufficiently large, since hj(.") — hjon X;,-i; hence

[(hj)] = sup(2“lh; — hj_1lp.2-5) < 2M < 00
jz1
and (h;) is a (o, £)-sequence € S(o, ¢; h) for aunique h € X(()a’e). Finally, we show
that [|h™ — hll, <27"(1 — 6)~!. Using the identity
(n) (n) (s) (s+1) (s) (s+1
hj —hjq—(hj—hj—l)zz{hj —hj —(thI_hj—l )}

+ " =B =y =Ry

we find with the aid of (6.20),
2R = B = (B = hj)lo e

< 9—n ZQJ + 2j€(i’1;ttz+l) _ hjia-?_*f + ihj("zTI) _ hj~l|a-2*.f)
s=0
S 2—)1(1 _ 9)*1
by letting m — co. According to the definition of the norm, the last estimate leads
to |h'" — hlle < [(h;") —hp)l <271 — 6)~!; hence the Cauchy sequence Rt

converges to h in X§" O

For later use we add the following trivial but typical lemma:



LEMMA 6.1.4 Let (h;);>0 be a (o, £)-sequence with limh; = h in Xy. Then
(hj)j=o0 C X(()a'e,) is a Cauchy sequence in X(()“’m forall £ < £, and
= il < 277701
and lim, .o h, = h in X(()a'm.
PROOF: To estimate ||/1, — h,_1 |l(s.¢"y, We pPick a sequence
(8))j>0 € S0, &', hy — hy_y)
as follows: g; =0,0 < j <n,and g; = h, — h,_1 € X, for j > n. Then
Iy — hualloey < [(g)] = jli?(zﬂ'lgj — gj-1lea-1) = 2lhy = iyt lg2en
< 27Ok

Assume lim,_, o, |4, —h*|l¢ = 0; it follows from |, —h*[l¢ = (2 — D]h, —h*|o
that h* = h. O

From the definition one sees immediately that for all 0 < £’ < £ < oo and for
allh € X\,

(6.22) PO X80 Nhleey <27 NAl o -

Obviously X(‘7 b = X(‘7 Dforall0 < 0’0 < 1, the corresponding norms being
equivalent, We shall therefore write X L= = X, (.0 forall o > O and | ||¢ for some
choice of norm fixed from now on. We also 1ntroduce the notation
(6.23) xe =) Xs-

>0
With these spaces in mind, we define the concept of analytic (C“-)smoothing.

DEFINITION 6.1.5 An analytic smoothing in (X,),>o with respect to (X(l))€>0 is a

family (S,),.¢ of linear operators S, € L(Xy, X,) together with constants k({) > 0
for every 0 < £ < oo such that the following three conditions are satisfied:

(6.24) lim [(S, — Dulo =0, u € Xo,
—o0
(6.25) |Sul-1 < k(O |ulle, u e X§,
(6.26) 1Sy — Spule—r < t7%k(@ully, weX fort>t>1.

From (6.24) it follows in particular, that X; C X is dense in X¢. (6.26) says
that the convergence S;u — u ast — oo is faster, the smaller the space X{ to
which u belongs. (6.25) and (6.26) are estimates in the spaces X,, o > 0.

THEOREM 6.1.6 Let F satisfy the setup and hypotheses (H1)—(H3). Assume there
exists an analytic smoothing (S,),-¢ in X, with respect to (XS)g>0. Let g > 2(a +
¥). Then there exist an open neighborhood D of fy in X} and a mapping ¥ : D —
Y™ such that

i) F(f,¥v(f) =0forall f € D and
() y(DNXY C Yy " forall £ > q.



In particular, ¥ (D N X{°) C Y§°. Furthermore, if f € DN X{, € > q. then
(i) 1 (f) — uollm < Cuell f = Solle
forallm < £ — y. Here C,¢ > 0 are constants depending on m and €. For £ > q,
set D' = D N X with the induced topology and D™ = D N X{°, and denote the
restrictions Y, = | D*. If n is also continuous, then the mappings v, € > q.
Yy : D' — Y
form < € —y are continuous: in particular, Y : D> — Y° is continuous.

REMARK. Statement (i) and estimate (iii) for £ = g follow without the as-
sumption of the existence of an analytic smoothing.

PROOF: The proof uses an idea of J. Moser that was elaborated by H. Ja-
cobowitz (see the references). Instead of working directly in the spaces (X ). (¥, .,
and (Z{), we go by means of the C® smoothing into the smaller spaces X,. The
method, quantitative in nature, is a double approximation: We are going to solve,
exactly, infinitely many approximate problems in the smaller spaces by repeated
use of Theorem 6.1.1. Doing so we retain maximal smoothness during the iteration
at the expense of accuracy. We start with the unperturbed solution ( fy, ug) of (6.3),

(6.27) F (fo.ug) =0,

which by assumption already belongs to the smallest spaces X; x Y;. We pick a
g > 2(a + y) and define the neighborhood D C X{ of f; by

(6.28) D={feXgIlf - folly <8

for some 0 < § < & sufficiently small, to be determined during the proof. We
define a sequence of mappings (¢;);>0

¢j :D — X,
by means of the smoothing as follows: For j =0, ¢o(f) = fo. while for j > 1
(6.29) & (f)— fo=5,(f — fo)-

Heret; = cr/-‘_ll, j =1l ando; = oy - 27J for j > 0 and for some positive oy < |
fixed from now on. Note 20,4 = 0, and 0, | 0 as n — oo. Note also that
i (f) = f =S, — D(f — fo), and therefore by (6.24)

lim 16;(f) ~ flo =0

Using Theorem 6.1.1, we shall construct inductively a sequence of mappings
(¥)j>0
lﬂj:D—) quﬂBaj
starting with ¥o( f) = up such that, for &, sufficiently small, the following state-
ments S, hold forall# > 1 and f € D:
(Sn l) (¢rt(f)w %(f)) € Bo,,w ~77(¢n(f) %(f)) - 0
(Snz) |¢n(f) - wn—l(f”a,, =< C71 *0,_ 1|3‘:(¢n(f) % l(f)|o,, 1

with the constant C > 1 of Theorem 6.1.1. For f € D we introduce the notation

fi=¢;(f). up =Y (f).



Step 1. We first check that for §y sufficiently small f; € Xo;.y N By, for all
j = 1. From the definition of (S,);..q, (6.26), we get for j = 1,
[y = foloy = 1S, (f = SO, < K@D = follg»
and for all j > 2 using (6.26)

| fi = f}_llaj—l = I(Sfj - Sfj—l)(f - fO)l,}*l = k((I)qu_QHf — Jollg

and therefore for all j > 1

oC
|f; fo|a,1§Z — factlowy < CUlLf = follg -

with C; = k{g)(1 + Ug(l — 279)~1). Hence in order to get lfi — fo|aj,1 < N as
required in the setup, we have to choose §y < C, LUN.

Step 2. Now we prove the induction statement S;. We know F (fo, ug) = 0
and ( f1, ug) € B,,. Using now (H2) for the first time, we can estimate

|F (firuo)loy = |F (fi.u0) — F (fo, uo)lo,
R
M| fi— foloy < ME@I f — folly < Ccroqz,

ifég<Cr,C, =C- croq(R/2)k(q)_1M_1. The assumptions of Theorem 6.1.1 are
satisfied for the pair (f, u) = (fi, ug) € B,,, 0 = og and r = R/2, and we get
uy € Yy, N B, such that F(fi, u1) =0, and |uy — ugly, < C‘lcrovyl?(fl, U)oy

Step 3. Assuming now the validity of the statements S; for | < j < n, we
shall prove the validity of S,.;. We know from S, that (f,.,,u,) € B,, and
F (fn,un) = 0; again by (H2) we estimate

If(fn—l—lsun)la,, = I-?‘(fn—l—lvun) - f(fnvun)la,, =< len—l—l - fnla,,
= Ml(Sr,,H - Sr,,)(f - fO)l,,;ll .

Using the fact that f — fy € Xg , this can be estimated further by means of (6.26),

R
< MK@2'o{If = fill, < Coy .
if only 89 < C3,C3 = C(R/2)M~" - k(g)~! - 279. In order to prove |u, — uglo, <
R/2, we make use of S;2 for all 1 < j < n and estimate

n
_1 -
_u0|a,, E |uj —U;_ llorj = E Uj_ll-?‘(fjv uj—l)laj,l

j=1

<C M K@ f - follg Y ol

n>0

=Ca-If = Sollg-

We have to choose 8y < c4'1 R/2 to get |lu, — upl,, < R/2. Recalling the above
estimates, we can apply Theorem 6.1.1 to the pair (f, ) = (f,+1, u,) € B,,, with

0 = o,, r = R/2, and conclude the existence of u,,,; € Y, , N B such that

n+1 Op+1
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F (fus1s Uny1) = Oand |up+1 —u, la,,+| = Culan~y |F (fus1> Un)lo,- Hence we have
proved the induction statement S, ;1.

Step 4. Here we consider the consequences of S,,n > 1. From the induc-
tion statements (S,2) we reach the following estimates for the sequence (¥;);>0 of
mappings ¥; : D — Y5, N By, with ¥o(f) = uo,

Y1(f) = uoloy < Clog V1S, (f = Sl
9, (f) = Y1y < C71- M -0 (S, = Sy ) = o)l -

Therefore, if f € D N Xo, £ > g, and hence f — fo € X§, we get by means of
(6.26) for all j > 1,

(6.30) W;(F) = i1 (Do, < KO0 Y N1f = folle

where K(€) = C~' - M - k(£)2¢c, “™7. Therefore, for each f € D N Xg, the
sequence (w;(f))jz0, w;(f) = V;(f) — uois a (oo, ¢ — y)-sequence in Y, and
(631)  sup QU g (f) = ¥-1(Dloy) < K@ - I1F = folle.
iz

Observe £ > g > y; hence (w;(f));=0 is a Cauchy sequence in Yy. Denoting
its limit by lim;_, o0 @; (f) = ¥ (f) — uo, we have, according to definition, ¥ (f) —
ug € Y(f_y; hence ¥ (f) € Y(f_y. On the other hand, we know lim;_, o ¢;(f) —
flo = 0, and using the fact that F : Xox Yy — Zo is continuous, we conclude from
S, 1 that F (f, ¥(f)) = 0 for all f € D. Moreover, as we have just seen, ¥ (D N
X§) C Y(f ¥ for all £ > g, hence we have proved (i) and (ii) of Theorem 6.1.6.
Moreover, by Lemma 6.1.4, the sequence (Wi (f))j=0. f € DN X¢, is a Cauchy
sequence in Y forallm < € —y, and by means of (6.30) we have

(6.32) 19 (F) = ¥ (o)l < 27K @OIf = folle

fore = £ —y —m > 0, from which the required estimate (iii) easily follows.
Step 5. Let n be continuous. We shall prove y : Dt > Y'\m <{—y,is
continuous. Since §;; € L(X§, Xt,-"l)’ the mappings ¢; : D¢ — By, N X, , are
continuous. Inductively applying the corollary to Theorem 6.1.1, we conclude that
the mappings ¥; : Dt — Y,, N B; — Y are continuous. Here we have used the
fact that the injection ¥, C Y{' is continuous. Since according to (6.32), (¥;(f))j=o0
is (if f € D% a locally uniform Cauchy sequence in Xg' for alm < £ — vy,
the mapping ¥, defined by ¥ (f) = lim;_,cc ¥; (f), is continuous from D* into
Y. O

6.2. Analytic Smoothing on Function Spaces and Analytic Mappings

In order to be able to apply Theorems 6.1.1 and 6.1.6 to mappings ¥ between
function spaces on compact analytic manifolds, we have to realize the setup of
these theorems. Since the general case can be reduced to the situation in which the
manifold is a torus, we restrict ourselves to function spaces on an n-dimensional
torus T. These are simply functions on R” that are periodic with period 1 in each
argument. We start with some notation and definitions.



We denote D; = 8/dx;, D = DY'o DY o---0 Dk, k| = Y""_| k;. For integers
p >0 we mtroduce the seminorms
(6.33) luller = sup |D*u(x)].
xeT
[kij=p
In C7(T) we have the norms |it|¢cr = SUPy<, < [l || cn. The Holder spaces C*(T)
C/(T). £ = p+a paninteger > 0. and ¢ € (0. 1). consist of functions y ¢

C”(T), such that |ut|c. = |u|cr + il < oc, where
D*u(x) — DFu(v)
(6.34) lte]l ¢ = sup | — |
XFEY |X - \l

Ikl=p
For p an integer > 1, we introduce a Banach space C” such that C” c P!
fali C Clforall ¢ < p, where CP~! is the space of functions whose derlvatlves
of order p — 1 are Lipschitz-continuous. C” is defined by the following Zygmund

condition: C”(T) ={feCr Y (T If le» < oo}, where the seminorm || f ||z, is
defined by the symmetric difference

D f(x) + DX f(y) — 2D f(3(x + )]

(6.35) | fllep = sup
lx — v

XFEY
ki=p—1
In 61’(T) we introduce the norm | f|z, = | flcp-1 + || fllg». Note CP~11 £ cr *
Ctforall ¢ < p.
In order to realize the setup of Theorem 6.1.1, the following spaces, described
earlier, of (real) holomorphic functions defined on complex neighborhoods of T

are important. For some fixed » > 0, we define the complex strips T, forall o > 0
as follows:

(6.36) I,={xeC"||Imx;| <ro, 1 <i<n}

for £ > 0; the Banach spaces A(o. CY), foro > 0, are then defined as spaces of real
holomorphic functions « defined on T, (« real means Tx) = u(x)), with period 1
in each variable and such that |u|, ¢ < oo, where the norms |u|, ¢+ are defined as
above, the supremum, however, being taken over the open neighborhood T, of T.
We have the following well-known Cauchy estimates for 0 < ¢ < m,

(6.37) lilo.cm < Ce - (0 — )" Ou| o

torall o' < o, where C,,, are constants depending only on m, £, and r (r as in the
definition of the domain T,). The estimates for m. ¢ integers follow simply from

the Cauchy formula
/ / u(Z)de
<2m)” D N A LA

B
with 9, = {¢ € P(z.p) | |&; — 2l = p} k! = (k) ...(k,!), and 0! = 1. The
generalization to m, ¢ not integers is then straightforward.

The one-parameter family (X5)550 defined by Xy = C"(T) and X, = A
(0.C™) for o > 0 and for some fixed m > 0 clearly satisfies Xg D X, 2 X, D

Du(z) =
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X, and |uly < |uly < |ul, forall0 < ¢’ <o andu € A(o, C™). We have used the
abbreviated notation |u|, = |u|,.c». The question arises: What are the subspaces
Xy C Xo. € > 0, characterized by their approximation properties with respect
to real holomorphic functions in X,? One might conjecture that X{ = CH(T),
¢ > 0; however, this is not true if ¢ is an integer. We therefore define the family
CY(T). ¢ > 0, by C' = C'if £ is not an integer, and C? for p > 1 an integer. We
shall prove the following characterization of ct:

PROPOSITION 6.2.1 Let m > 0, and let (X,), >0 be defined by Xo = C"(T) and
X, = A(o, C™) for o > 0 then

X( — 6(+nI(T) )

the corresponding norms bemg equivalent. There exists an analytic smoothing in
(X4 ) o0 With respect to (C Yoo (and with respect to (CYH4-0).

The proof of Proposition 6.2.1 follows from Lemmas 6.2.2 and 6.2.3 below.
For notational convenience we shall assume n — 1 (the dimension of the torus 7'),
and we also assume at first m = 0; the statement for m > 0 will then follow by
means of Cauchy estimates (6.37).

LEMMA 6.2.2 There exists an analytic smoothing in the family (X )q>o with re-
spect to (CH- (and (CHysy): ie., a family of linear continuous operators S, €
L(CY, A(1, C%)) together with constants k(£), 0 < £ < oo, such that forall £ > 0
andt > 0,

(6.38) lim |(S; = Duleo =0, ue CUT),
—0oC

(6.39) 1S,ul,-1 < k(O)|ulge. ueCt,

(6.40) r > 1 1(Ss = Soulyr <t k(@ |ulge. ueCt,

and in (6.39) and (6.40) the spaces C* can be replaced by the usual C ¢ spaces with
their norms |u|ce. S; is a convolution operator: Sju = spu, $(2) = ts(12), where
s(-) is an entire real holomorphic function.

PROOF: Take a function § € C{°(R) vanishing outside a compact set and
identically equal to 1 in a neighborhood of 0, and let s be its Fourler transform.
Clearly for any n, N we have the estimate |D"s(x)| < A, y(1+ |x])~N. Moreover,
since § is identically equal to 1 near 0, we have

(6.41) /s(x)P(x)dx = P(0)

for every polynomial P. In addition, s has an analytic continuation to an entire real
holomorphic function on C, which we shall denote by the same letter s. From the
definition of s, we see immediately that for any n, N there is a C,y > 0 such that

(6.42) DS < Cuy (1 + [z~ Ve ™™

for all z € C, where ¢ > 0 is a bound for the support of §: supp(s) C {x € R |
Ix| < c}. Shifting the path of integration and using the Cauchy integral formula,



we get from (6.41) and (6.42)

(6.43) / S — in) P(E)dE = P(in)

for all real 5 and every polynomial P. For later use we define for & > 0 the real
valued function ¢, (-) : R - R, by

1 o
(6.4 dum = . [[Iste — im g1 az

with the convention (—1)! = 0! = 1, ¢, € C°(R). With Yq (), we denote the
function from R* onto R*: v/, (0) = 2 sup ¢, (1), the supremum being taken over
[nl < p. On C%T) we now introduce the family of linear operators S, for t > 0,
S, € L(C°, A(l, C%Y), by means of the convolution S;u = s; x u, 5,(z) = ts(t2):

(6.45) Su(@) =1 / Sty — Du(dy,

which can be written, by the change of variable & =t Re(y — z) = ty —t Rez, as

t

(6.46) Su(z) = /S(E —1itIm z)u(Re Z+ E)df.

From (6.45) it is plain that S,u is an entire real holomorphic function on C. From
(6.46) we conclude that S,u has period 1 since u has period 1. Using (6.41), we
have for all x € Ru(x) — S,u(x) = fs,(f)[u(x) — u(x + &)]d&, from which it
follows that lim; o, [(S; — Dulcr = 0if u € CP?, since s € 8(R) and DPu is
uniformly continuous on R. Our aim, however, is to prove the following estimates,
which give more information about the speed of the above convergence: For all
> 0,if u € Ct, then

(6.47) (S, — Dulco <t e (0)||ullce , 1(Se = Spul—1 <t (D) |lullce

forallr2t>0;andifu€6”,p= 1,2, ..., then

1
[(S: — Dufeo <277 (5%—1(0) + 2¢p+1(0)) lyller
(6.48)

1
1(Se — Sul,— <177 (5%_1(1) + 2¢p+1(1)) llulles

forall T > ¢t > 0. In order to prove these estimates we shall make use of Taylor’s
formula with integral remainder in the following form: Letu € C*, ¢ = p+ «, p
an integer, and « € [0, 1); then

P
1
u(x +n) = E —n"D"u(x) + R (x,n),
n.
(6.49) n=0

l 1
R,(x,n) = p_l)!n”/o dp(l — WP YDPu(x + un) — DPu(x)}.

(
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Applying this to u(Re z + &/1) in (6.46), we obtain, by means of (6.43), the fol-
lowing identity for all z € C:

- 1. 1y 2}
Su(z) =y —(i Imz)"D"u(Re 2) + Ru(2. 1)
n!
(6.50) n=0
Ru(z.1) = /S(E —itIm2)R, (Re z, %)dé-
Observe that the first part of S;u in (6.50) is independent of ¢. Inserting the estimate

IDPu(x + p&/t) — DPu(x)| < ||lullce o |;i§/t|“ into (6.50), we end up with the
following estimate for the remainder term R, (z, 1):

6.51) IR.(z, )| <t ¢ (t Tm 2) |lu| e

for all (z,1) € C >iR+ and u € C¢ For z = x € R, it follows from (6.50) that
S,u(x) = u(x) + R,(x, 1), and using (6.51), we have |(S; — Du|co < t=4,(0) -
lle|lce; hence, the first estimate of (6.47). To prove the second, observe that by
means of (6.50),

(6.52) ISy — SHu@)| < |Ry(z, D] + |Ru(z, D]

Estimates (6.51) and (6.52) lead to |(S; — Spu(z)| < t =840, (1) ||u|l ce for all z with
t|Imz| < 1,7 >t > 0, hence we have proved (6.47).

We proceed to prove the estimates (6.48) for u € cr, p = 1,2,.... Since
Cr C CP~!, we can first obtain estimates in the C?~! norm; from these we will
derive the required CP estimates by a simple trick. We define the family of linear
operators M, € Lcr,crty, p =0,1,..., forall t > 0 as follows: M,u =
m; * u, where m,(x) = t for -2 ' < x < (2t)~! and m,(x) = 0 otherwise.
From the definition of M,, we immediately get the following estimates for u € C £
¢ =p+a,paninteger > 0 and o € (0, 1):

6.53)  IMullcrn <t lullee, I — Mouller <t [lullee
andifu € CP C CP~!, then
6.54)  |Mlullern < 2tllulle, 1 = MPullcrr < @0 Hluller -

Now let u € C”, and put u, = M?u; then from the linearity of S; and by means
of (6.47) and (6.54) for u = (u — u,) + u,, we find the estimates

1(S; — Duleo < (S = D@ — ug)|co + 1S Dy co
<17 P Vg O)lu — uller 4+ 7P Gy (O g llcrn

1
<r?r (§¢p—1(0) + 2¢p+1(0)> lulicr



and analogously,

1Sz = Suler < 1(Se = S — u) -1+ 1(S: — S)uy, -

<Py (D= e + Y (D) e

1
=t* (51//1,_1(1) +21/fp+1(1)> lulles

hence we have proved the required estimates (6.48). From definition (6.46), we get
immediately for all u € C(T)

|[Steli—1 < Yo(1)|u| o,

and therefore |S,ul,-1 < Yo(Dlulge if u e 65, hence (6.39), and the lemma is

proved.

O

LEMMA 6.2.3 For every 0 < o < | there exist two functions y,(-) and 8, (-) from
R into Ry such that the following statements hold:

(1)

(i1)

Let h € C%T); then there is a sequence (hj)i»o, hgp = 0 and hj €
A(0277,C° for j > 1, such that lim;, oo [hj — hlco = 0, and if h € C*
(or h € C*) for some real number ¢ ~ 0, then (hj);>0is a (o, £)-sequence
with

ke < Sull)(2]£|hj —hjotlg2) < va(0) - hla
iz
and lim; _, o |h; — h|ce-e =0 forall 0 < ¢ < ¢
Conversely, let (hj)jso be a (o, £)-sequence with hy = 0, h; € A(o -
277,CY, and supj2](2ﬂlhj —hj_1ly0-71) = M < 00; then there is an
h € Ct (not necessarily h € C) such that lim;_, o |h; — h|ce-e = 0 for
all0 < e < ¥, and

lhlee < 8,(6) - M.

PROOF: (1) Let h € C%T) be given. Define the sequence (h)j=0 as

(i)

follows: hy = 0, hy = Si(h), j > 1, with i = 0 '2 and S, ¢
L(CY, A(1, Cc%) according to Lemma 6.2.2. Then by (6.38) lim;_, o, |hj—
hlco = 0. If now & € C¥, then 2Ry < 2£k(5)|h|6l by (6.39) and
zﬂlhj —hj ilga-i < crék(ﬁ)lhlgz for j > 2 by (6.40). Define the function
Yo () bY ¥5 (£) = 2k(¥).

Let supjzl(2ﬂ|hj — hj_tly2-1) = M for some ¢ > 0. Using the Cauchy
estimates (6.37), we get [h; — h;j_|cr < M - Cpco- o 92-J¢ for
all 0 < ¢ < ¢; hence (hj)j=0 is a Cauchy sequence in C¢. To prove
the rest of the statement, it suffices to consider a sequence (h ;) satisfying
Sup;» (2% |h; — hj_i]y0-)) = M < oo for some a, 0 < < 1, and to
prove that the limit 4 = 3 >1(hj—h;_1)in C°, which as we already know

j
exists, actually belongs to C*. However, we do not claim that h; — h in
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ce. Clearly |h|co < M - Z/>] 27% =M -(2*—1)"".ForN € Z., we
consider x, y such that

(6.55) 27D iy — v <27V
Considering first the case 0 < « < 1, we define, for j > 1, Hi(x,y) =

(hj — hj_1)(x) — (hj — h;_1)(y) and write h(x) — h(y) = ijl Hi(x,y) +
> j=n+1 Hj(x, y). By means of the mean value theorem, we therefore get

N
(6.56)  1h(x) =R < Y 1hy =l ol —hl+2 Y Jhj = hjico.

j=1 >N+
Using our assumption, we have |h; — h;_|co < |hj — hj_y],2-) <27% - M, and
by means of (6.37), |hj —hj_1|c1 < 0 *2/1"*C, 4 M. From (6.56), we therefore
obtain the estimate |A(x) — h(y)| < M - 0 *Cq g2V (1 — 270 =T|x — y|+
2M2-NFba (] — 2={1=0y=1 ‘Observing now (6.55), we end up with

(6.57) lh(x) = h(V)] = 8, (a) - Mlx — y|“,

where 8, (@) = (607 %Cqo + 2)(1 — 271~ Turning to the case o = 1,
define, for j > 1, G;(x, y) = (hj —h;j_)(xX)+ (hj —h;_1)(y) — 2(h; "hj—l)(
and get the estimate

2)

<—Z|h, hiziler - e = yP?
+2 ) b= hjaleo.

J=N+1

hx) + h(y) — 2h ( )

(6.58)

Here we have used the fact that for u € C?, the estimate lu(x)+u(y)— 2u(x—+2—)—')| <
}—1|u|C2|x — y|? holds. This is easily verified by applying the mean value theo-
rem twice. Since « = 1, we have |h; — h;j_i|lco < M - 27/, and by Cauchy,
lhj — hj_qle2 < 0722/ Cy - M. Therefore, inserting these estimates into (6.58)
and observing (6.55), we end up with the estimate

(6.59) h(x) + h(y) — 2k (x;y>

<8 -M-|x—y|.

with 8,(1) = (672C20 + 4). We can prove estimates (6.58) and (6.59) for all
integers N, and since 8, (or) and &, (1) are independent of N, the result follows. [

From Lemmas 6.2.2 and 6.2.3, the proposition follows for m = 0. To estimate
the C"™ norms for some m > 0 and fixed, just observe that for u € C*™ we have
proved [(S; — S)ul,-1 <t " TOk(€ + m)|u|lgn+ . and by means of (6.37) we get

|(ST - S;)ll[rfllcm S I(ST - S,)llbr—l_cm S T’” . C,,1_0|(ST - S;)ll|rfl

IA

T m )
(—t—) Coo - k(& 4+ m)t " Yul| gasm

<t k(@) u)lpesm



for all T < 2t, where 12(8) = 2"C,, 0k(£ + m). This is all we need to prove the
statement for m > 0O (we have to restrict the smoothing estimates (6.40) to 2t >
T >1).

The new feature of the analytic smoothing is the fact that functions in C°(T")
are not only approximated by C* functions but by real holomorphic functions
defined in complex strips; this allows estimates of the differences (S, — S,)u in
the analytic spaces A(o, C™). For later use we shall also introduce at this point the
standard C* smoothing by proving the following well-known lemma.

LEMMA 6.2.4 There exists a C™ smoothing in the family (C%)s, i.e., a family
(80 of linear mappings S, : cYT) - C>(T) = ﬂe>0 Ct, together with con-
stants Cy,, 0 < A, u < oo, satisfying the following three conditions:

(6.60) lim [(S; — Dulco =0, wueCD),
=0

(6.61) ISutlon < O Cpmlul e

forallu € CK(T) and all 0 < € < m, and

(6.62) (S = Dulee <t O Coplulm
forallu e C"(T) and all0 < £ < m.

PROOF: Define §; as in Lemma 6.2.2 by S;u = 5, x u € C*(T) without,
however, going into the complex. We have already proved (6.60) and (6.62) for
integral £, observing that S, commutes with partial differential operators D¥. (6.61)
follows immediately from the definition if £, m are integers.

To estimate the Holder norms, write u = (1 — M,)u + M,u, use the estimates
(6.53), and observe the following trivial fact: For 0 < A < u < 1 there exists a
constant C > 0 such that for any ¢ with 0 < ¢ < 1 and any u € CH, we have the
estimate [|u|lcx < ellullcn + 7% - C - |u|co, where o = A(pu — A)~ L O

Analytic Mappings. Knowing Proposition 6.2.1, one can apply the abstract
generalized implicit function theorems to so-called analytic mappings. As a simple
example, we shall consider a mapping F,

F : CH(T™,R™) x CA(T™, R™) - C°(T™,R™),

continuous and defined in a certain open neighborhood of a solution ( fy, ug) of
F (fo.ug) = 0. We assume that (fy, ug) are analytic, and we assume that F is
analytic, meaning it maps analytic functions into such and moreover has a contin-
uation to the families (X, ), (¥5). (Z,), 0 < o < 1, satisfying the setup and the
hypotheses (H1)—(H3) of Theorem 6.1.1 with some constants N, R, M, o > 0 and
y > 0, where

Xoe:Xo=C", X,=A(ro,c", o>0,
Y, : Yo=CP, Y,=A(no,C", o>0,
Zy:Zyg=C", Z,=A@r0.C%, o >0,

for some ry, r,, r3 > 0. Theorem 6.1.1 and Proposition 6.2.1 now lead immediately
to the following statement:



THEOREM 6.2.5 Let (¥, fo., uo) be analytic as above and let ¢ = 2(at + y). Then
there exist a CI™* neighborhood of fo, call it D, and a mapping = D — C4+F~Y
such that

0 FSLYEN =0 _f €D, and

(i) ¥(DNCHH) C CHPr
forall £ > q, in particular, y (DNC*®) C C*®. For f € DNCHH, £ > g, we have
the estimates |V (f) —uolgm < Cmol f — folgern forallm < £4 B —y. Moreover, if
the approximate right inverse 1 is continuous, denoting e, = Y|DH, DR =
D N CY . then for £ > q,

wl%—u . DK_HI —> Cm
is continuous for allm < £+ B —y; in particular, Yo : D — C* is continuous.

This theorem can cover the situation F : Ct# x CHHF — C2 ¢ > q, differ-
entiable in a C* x C# neighborhood of an analytic solution ( fo, ug) of F ( fo, ug) =
0, and where we have only an approximate right inverse n(f, u) of D, F (f, u)
mapping C¢ into C*+#~7 for some y > 0, and where the ordinary implicit func-
tion theorem does not apply. The result is satisfying in the following sense. The
loss of derivatives (y) in solving the nonlinear problem agrees with the loss y
in approximately solving the linear problem. We achieved this optimal result by
means of the very strong assumption that the unperturbed solution ( fo, 4o) and the
mapping F itself are analytic by using the analytic smoothing. This assumption
is certainly a shortcoming from a differentiable point of view. But it seems, as we
shall show next, working with the much cruder C* smoothing technique, that if
(F, fo. uo) are only of finite but sufficiently higher order, the loss of derivatives
is higher. Studying the dependence of this loss on the order, we shall see however,
that the situation improves with increasing order.

6.3. C*® Smoothing and Mapping of Finite Order

Let (X,)s>0 be a one-parameter family of Banach spaces over the reals 0 <
o < 00, with norms | |,, such that forall 0 < ¢’ < 0 < 00,

(6.63) Xo2 Xy 2 Xs 2 Xoo =[] Xo.
o>0

(6.64) luly < luly,
foralu € X,,0’ <o.

DEFINITION 6.3.1 A C* smoothing in (X,) is a one-parameter family (S;),0 of
linear mappings S; : Xo — X, together with constants C;, for 0 < A, p < oo,
satisfying the following three conditions:

(6.65) ;lim [(S; — Dulp =0, ue€ Xy,
— 00

(6.66) |Sul, < t“ I Copluls,

forallu € X, and 0 < A <

(6.67) I(S; = Duly, < t7*MCy ululy



forallu € X, and 0 < A < p.

From (6.65) it follows in particular, that X,, C X, is dense in X,. (6.67)
says that S,u € X.. approximates u in X; more closely, the smaller the subspace
Xy > A, to which u belongs. (6.66) measures quantitatively for 1 € X; how
S:u blows up in higher norms. Such C™ smoothings exist for function spaces
C"?(M),0 < 0 < oc, and some m > 0 fixed. Over C> compact mani-
folds (Lemma 6.2.4 of Section 6.2) a trivial consequence of the existence of a
C™ smoothing is the following well-known convexity statement, which will be the
main tool later on:

LEMMA 6.3.2 Assume (X, )o>0 has a C*™ smoothing. Then for all 0 < i < Xy,
a €[0,1], andu € X;,,

tul, < Aa~;\,.x3|ll|il_a|u|§z, A=(l—a)A +ary,

where Ag ;, 5, = (1 —a)~1-0Cl o Ce,

PROOF: Forallt > 0, u = S,u + (1 — S,)u and therefore, if u € X,
lul,, < |Sul; + (1 = SHuj; < fA*MCx.AWhl + f_(kz_k)cuﬂuhz .

Computation of the minimum of the function in ¢ on the right-hand side of this
inequality leads immediately to the result. il

We shall use Lemma 6.3.2 in order to estimate norms of u that are between
two known norms.

Setup. In the following we consider three one-parameter families of Banach
spaces X,, Y5, Z,,0 < 0 < 00, each with a C* smoothing denoted with the same
letter (S;),-0 and a mapping ¥ with domain of definition in X, x ¥ and with range
in Z; such that

(6.68) F(fo,ug) =0

for some ( fo, uy) € Xo x Yy. We assume F : By — Z; to be continuous, where
foroc > 0,B, ={(f,u) € Xo x Y5 | |f — fols, lu — upl, < 1}. Our aim is to
solve for given f € Xy N By the equation ¥ ( f, u) = 0, assuming f is sufficiently
close to f. We shall make the following hypotheses:
Hypotheses.
(H1) Smoothness. Assume that F (£, -) : Yo — Z, is two times differentiable,
with the uniform estimate for all (£, u) € By,

(6.69) |DF (fou)o IDIF (f,w)lo < My,

for some My > 1.
(H2) F Uniformly Lipschitz in X,. For all ( f,u), (g, u) € By,

(6.70) [F(f,u)y —F (g, )0 < Mol f — glo.

(H3) Order. The triple (F, fy, ug) is of order s, s > y > | (s will be specified
later on, y appears in H4). Here we use the following definition:

DEFINITION (F, fo, uq) is called of order s, 1 < s < oo, if the follow-
ing three conditions are satisfied:



(i) (fo.up) € X, x Yy,
(i) F(BoN{(Xy xY,)) CZs, 1 <0 <5, and
(iii) there exist constants M,. 1 < ¢ < s, such that if (f,u) € (X, x
Y,) N By satisfies | f — fols, |4 — ttpls < K, then

(6.71) |F (f. )|y <M, max{K, K°}

for some fixed §.1 < § < 2. If (F, fy. up) is of order s for all

I <5 < oo, then we call the triple of order oc; in this case clearly
(f()-, MO) € Xoc X Y:x;

(H4) Existence of an Approximate Right Inverse of Loss y, | < y < s. For

every (f,u) € B, there exists a linear map n(f. u)(-) € L(Z,, Zy) such
that forall z € Z,

(6.72) In(f, )2 < Molzl, .
(6.73) (D F(fou) on(fiu) — (D)o < MolF (f. )], -1zl .

Moreover, forall y <o <s,if (f,u) € B, N (X, x Y;), then n(f, u) €
L(ZO—, YG,),), and lf |f - ﬁ)|(7* |M - u0|(7 f K, then

(6.74) In(fo u)(F (f.u))|o—y < M, max{K, K’}

with § as in (H3). Actually, we will need estimates (6.72) and (6.73) only
forz = F(f,u).

We call n continuous if n : B, N (X, x Ys) = L(Zs;,Y,_,) is
continuous forall y <o <s.

REMARK. Differential operators on function spaces over C* compact man-
ifolds are included in the setup and hypotheses above, since one just chooses
X, = C"*t7(M) for some fixed m > 0, and so on. The condition (6.71) will
normally hold with § = 1 for any map ¥ involving partial differentiation or func-
tional substitution. For instance, ®(x, D" f(x), D"u(x)) grows at most linearly
with | flsins [t]s10m. Indeed, if | flo.lulo < 1, then there is for every s a constant C,
such that |®(D" f, D"™u)|; < C(1 + | fls+n + |tls+m). This at first glance seems
surprising, but it follows easily using the chain rule and Lemma 6.3.2. Analogously
for compositions, if |uj|; < M, 1 < j < n, then for each s > | there is a constant
C > 0depending only on M such that | fouj, < C(|fls + 1 Z'j’:l lujls). Note
that we have to hold down the | | norms; for this reason the balls By are introduced
in (H3)(iii).

THEOREM 6.3.3 Let o, x. . p, y. 8, and s be positive real numbers satisfyving the
Sollowing set of inequalities:

(6.75) l<éd<k<?2, d<a, I<y<p<h<s.
(6.76) A > max{2¢y82 — k). k(y8 + pr)}.
(6.77) 5 > max{ay(aS)fl.)»—i—ay(K—8)71}.

Let (¥, fo.uy) be of order s and satisfy (H)—-(H4) with a loss y, and with § as
i (H3). Then there exist an open neighborhood D; C X; of fo, Dy = {f € Xi |
| f — foln < C}, and a mapping v : Dy — Y, such that



(1) ?(f’ W(f)):()vfe D)u
() ¥ (f) —uol, < C7Nf — fola

Moreover, if n is continuous, then  : D, — Y » IS continuous.

PROOF: The proof uses again an iteration technique similar to the Newton
method in which one replaces the inverse, which need not exist, by the approx-
imate right inverse, modified by a double C* smoothing. The first smoothing is
standard; it will be introduced in Y; in order to catch up with the loss y at each it-
eration step. The second smoothing, however, approximates elements in D, C X,
by smoother ones (in analogy with our procedure in the C¢ smoothing) in order
to retain maximal smoothness during the iteration in the Xg-space. This is at the
expense of the accuracy in approximately solving the linearized equation. In a dif-
ferent context, such a procedure is suggested in the Pisa lectures of J. Moser [57].

Our guiding principle will be the following: We shall estimate the lowest norms
| lo rather carefully to keep them down, but the highest norms | |, only crudely by
letting them grow, using the crude assumptions (6.71) and (6.74) on the growth of
the higher norms. The norms in between are then taken care of by the convexity
lemma, Lemma 6.3.2. It is essential to suppose § < 2 in order to achieve a contrac-
tion. Let M > max{Ay., My, Cy, for0 <a <1,0 <A, 1 <s,and0 <o < s},
Ay asin Lemma 6.3.2, M, as in (H1)~(H4), and C;, as in the definition of the
C* smoothing.

Define

(6.78) Dy={feXillf~ fol <&}
for some 0 < & < & sufficiently small, to be determined later on. We define a se-

quence (¢;);>0 of linear mappings ¢; : D; — X, by means of the C® smoothing
as follows: j =0: ¢y(f) = fyandfor j > 1,

(6.79) ()= fo=S,(f - fo),

where 7; = Q" for some Q > 1 sufficiently large to be chosen later. Observe
T; —> 00, since k¥ > 1. From oi(f)— f = Sy, — D(f — fo), we conclude
limy o0 |4 (f) — fl, =0forall 0 < pu < A by means of (6.67).

We shall construct inductively a sequence (¥j)j>0 of mappings y; : D; — Yo,
starting with yo(f) = uo, and for j > 0

(6.80) Vi1 () =¥ () = Sy (b (). () (F (=11, vi()))

with t; = T = Q. Note that we use two different rates of approximations,
employing S, (in X,) and Sy (in Y,). We shall show by induction that if £ 18
sufficiently small and f € D, satisfies |f — folx < veg forsome 0 < v < 1, then
the following statements S, hold for n > 1:

(Snl) (‘pn(f)v Wn(f)) € By N (Xoo X Y») and
|F (@n (), Y ()] < gg‘“” ,

(S,2) ¥ () — Un-1 (o< v- 4M4Q_()‘*"3’5)K"71’ and
(Sn3) ¥ (f) — Yuo1 (s <v- Q(S_A)K”H.
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We introduce the following abbreviated notation:

(6.81) fi=¢;(f) and w; =v;(f), j=0.

Step 1. Check that f; € B, N X if g is sufficiently small. Recalling 1 <y <
A < s, we get immediately from definition (6.79) by means of property (6.66) of
S; the following: For j > 1

(6.82) Ifi — foly = MIf — fol, <M|f — folx,
(6.83) 1fi = fols < MIf = foli - Q977 ,

and therefore | f; — foli < |fj — fol, < lifeo < M~".

Step 2. Statement S; follows from the smallness condition by choosing &y suf-
ficiently small. We assume now the validity of the statements S, for 1 <n < j and
prove S;i. We first prove S; 2. We already know (f;+1,u;) € B, from step 1
and S;1, and from definition (6.80) we conclude by means of property (6.66) and
(6.72)

lujr — ujlo = |Sy+1n(fj+1, up) (F (fi+1, ui)lo
< MIn(fj+1, up)(F (fi+1, 4o
(6.84) < M*|F (fjs1, uply -

In order to estimate this y-norm, we shall estimate the 0-norm and the s-norm
and then use the convexity lemma, Lemma 6.3.2. We can write F (fj41,u;) =
F (fj+1,uj) — F(fj, uj) + F (fj, u;) and find by means of (H2)

[F (fix1,uplo < M| fici — filo +1F (fj uplo-

Using (6.79) and property (6.67), we can estimate
| fic1 = filo 18541 — DU = fo)lo + 1(S;, = D(f = folo,
<2MIf = foli- Q7.

Therefore we find, using S;1, the estimate

N N
F(fior, uplo < 2M*1f — foli @7 + (5>Qa Ml < (2M2vso+5>Q el

and hence choosing g9 < (2M)~2, we have

(6.85) |F (fijs1>uj)lo < v
Observe next that
(6.86) |”j — Uols, |fj+1 = fols < 2UQ(‘Y_}»)Kj+| ‘

Indeed, from the induction statements S,3, 1 < n < j, we conclude |u; — up)l; <

Zi:l Uy — tyy], < 20Q6—2*! provided Q is sufficiently large. Here we have
used s > A. Using now (6.71), we conclude from (6.86), since 2° < 4, v¥ < v, and

0 <@,
(6.87) \F (fja1, 4]y < 4M - UQB(S—A)K/+1 ‘



We have assumed the existence of a C™ smoothing in (Z,); therefore, we get by
means of Lemma 6.3.2, together with estimates (6.85) and (6.87),
|F (fivr u)ly < MIF(fin. llj)l(lfy/slf"(ﬁﬂ- up)|?’

< 4M2U . Qf(AAKySJr%}\y(Kﬁ—l))k‘»’
3 kv SIS
(688) < AM- v . Q (A—KYIK .

since k8 > 1. Using (6.88) and (6.84), we obtain the estimate |iuj, — ujlp <
4M* v QY9 “and so we have proved S; 2.

We now turn to the proof of S; ;3. Here we make use of (6.74) from (H4).
estimate by means of property (6.66), and recall (6.86) as follows:
(6.89) |”j+l - “j‘s =< ijy+1|77(f}+l- “j)(fﬁ‘(fjﬁ—l-, uj))]s—y

< 4M2 . UQ(X&N“ . Q(S(s—}»)ﬁ(j+l ]

Since according to (6.77) ay + 8(s — A) < (s — A)«. the right-hand side can
be further estimated by < v - QU 2™ if @ is sufficiently large (independent
of j): hence we have proved S;.13. In order to prove S; ;1. we first show that

luj 1 — ugl, < 1. Calling v;yy = u;y — u; for j > 0, we get from S;,2 and
J v g v j j g j
S;+13. by means of Lemma 6.3.2,

jtly < Mlvpaly™ ol < vaMt Q7
withé = A —k(y8 +y«) > A —k(y8+ px) > 0, where we have used (6.76) and
¥ < pin (6.75). Therefore, for Q sufficiently large, we can estimate

j+1

luj1 — uoly < Z lvjly < 1.
n=0

Setting now
Q(fjsr i ) = F (fj i) — F (o ) — DaF (fjn, up) Wjgr uj)

we have by (H1) the estimate |Q(fj 1. #j 1. u;)o < Mu; —u; 5. where we have
used the Taylor estimate.
We now write

F(fip 1)) = —(D2F (figr.up) on(fi.uj) — D(F (fj1, 45))
+ D2 F (fi up)(d =S, (4. ui)(F (fj1. 1))
+ Q(fjvr 1 1))
which will be estimated as follows:
|F (fivr uplo < (D2F (fjp u) on(fio uy) — DIF (Fiprouplo
+ D2 F (fir up)| H( = S, I ) (F S i Nlo
+ MIS, 0 fin U F S u)g -
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We bound the first term on the right-hand side by M|F (fj+1, u;)|2, using (6.73).
We bound the second term, using (6.67) and (6.69), by

M I u) (F (S )y
and the third term, using (6.66) and (6.72), by

M2 fir u))(F fians g < MYF (fizr, up)ll
We thus find

IF (Fen uplo < 2MYUF (freu) 2+ ME ST I ) (F i u)s—y
which is bounded, using (6.88) and again (6.74) with (6.86), by
32M8 v Q—Z(A—KVS)Kf + 4M2 b Qfa(.s'~y)l<f+‘ QS(s—k)Kf+’ )

But this is bounded in turn by using (6.76) and (6.77) by (v/2)Q‘A"j+l if Q is
sufficiently large; hence we have proved S; 1.

Step 3. We now consider the consequences of S,,, n > 1. The sequence (u;);>0
is a Cauchy sequence in Y,; indeed, from S;2 and S;3 for all j > |, we conclude

for Uiyl = Ujp) — Llj,j >0,
—p/s 5 i
< My Ty < v - 4MOQ

(6.90) lvjs1lp <

with n = A — «(y8 + «p) > 0 according to (6.76). We define ¥ : D; —
Y, by ¥ (f) = lim;_o ¥;(f) in ¥,. We know lim;_ ¢;(f) = f, and since
F (fj,u;) > 0as j — oo according to S;1, we conclude from the continuity of

F that F(f, ¥ (f)) = 0 for all f € D;. Moreover, (6.90) gives for Q sufficiently
large for all f € D, such that |f — foli < veo,

(6.91) W (f) —uol, <Y _lufl, <v.

jz1
Therefore, if | f — folx < &, we choose v = 80_1|f — fol, and get the required
estimate (ii) for the solution. If 7 is continuous, then the functions v/; : Dy — ¥,

are continuous, and since the limit ¥ (f) = lim;_,« ¥;(f) in ¥, is uniform in
f € D, is continuous. The proof of Theorem 6.3.3 is complete. J

Observe we make a distinction between the orders of (¥, fy, i) and the
smoothness assumption represented by A, which allows us to study the dependence
of A and the loss A — p of the order s.

COROLLARY 6.3.4 If § = 1, then for all s,s > 8y, the following holds: Let
A(s) =2y +6ay’s”!, witha = %; there is in X; ) a neighborhood Dy = {f €
Xy | L — folasy < C()} and a mapping V¥, © Dy, — Y, such that for all
f € DMS)v

i) FU ¥s(f) =0and

(i) 1¥s(f) —uoly < CE7'NF ~ foliw-

PROOF: Take § = |, = %,K =l+ays ' a= %,p: y,and L =2y +
6ay>s~'. These numbers satisfy the set of inequalities (6.75)-(6.77) if s > 8y;
hence the result follows from Theorem 6.3.3. O



If § = 1. then we have for the minimal order 8y : 3y < A(8y) < 4y, and with
increasing order s. the loss of derivatives. A — p, in solving the nonlinear problem
tends to the loss y in approximately solving the linearized problem

(6.92) M) —y =y + 06,

The neighborhood D; (s). however. depends on s. and we cannot conclude that
A(2¢) — y = y.in contrast to the result for analytic mappings.

COROLLARY 6.3.5 Let § = | and let (¥ . fy.1y) be of order oc. Then for every
small ¢ > 0, there is a neighborhovod D C X>,1. of fo. D = {f € Xop4e |
| f — folay+e < Ce} and a mapping D — Y, such that for f € D,
) FLY))=0,
() W (f) —uoly < C;l I f = folay+e, and moreover,
(i) ¥(D N Xoo) C Ye.

PROOF: It remains to prove (iii). Let ¢ > 0 be fixed. We shall show. since
the order of (F. fy. ug) is oo, that there isa 7.0 < t < I. such that for every
n > 2y + ¢ the following holds true: If f € D N X,. then ¥ (f) € Y,, with
v =t(u—1)and [¥(f) —uoly < Culf — f0|L. Let f € DN X, and let
fi—fo= ST}. (f — fo) be the sequence (6.79) involved in the construction of ¥ ( ),
with 7; = 0, Q0 > 1 and fixed. By means of property (6.67), we then have
[ fis1— filumr = Cy- Q| f - fol,, for some constant C; depending on yt; hence
we find | f; — folu—1 < Co - |f — fol, for some C, depending on .

We shall first show that there is a constant C > C, depending on u such that
foralln > 1,

(6.93) luy — ol < CIf = fol . Q™
for some B. 8 > yoak(x — 1)~', with u, as in (6.80) and (6.81),

Upy1 = Uy — Sz,1+|77(fn+1, un)(?’(fn%—lv M,,)) .

Having such a constant C > C, for all n < N, we get for n > N by means of
(6.66) and (6.74),

e — M()‘u—l < lu, — ”0‘;471 +t,},/ 1C3 77(fn+l~ U ) (F (frrr, un) i
+ pu—1l-y

n+t

< |ty — ttoly1 +Ca - C- Q" \f = fol , 0%
< (L+ G0 )CIf — fol Q™.
If B > ayk(k — 1)~!, we can choose N so large that for n > N, (1 +
C4Q“}’K"“I)Qﬂ'(” < QﬂKM; hence we have (6.93) for all n > 1. Putting v, =

1, —u, 1, we get for all v < pu — 1 by means of Lemma 6.3.2, (6.93). and the
induction statement S,2, for T = v(u — 1)7!,

- . . —(h— 1-
!Un|v =< C5|Un|() Tlvn|r < CS(C|f _fOtu)TQ A

u—1 =

< Colf — fol;, Q%
where £ = (A —«ky) — t(Ah —ky + Bx), which is > 0 if we choose
T <(h—ky)h—ky+Br) .

n-1

Brrrt!
(6.94) ¢

-1



Here Cs and C, depend on jt. From (6.94) we conclude that v, is a Cauchy se-
quence in Y,, v = t(u — 1), and therefore y(f) € Y, for f € DN X,,, and since
7 is independent of x, the statement follows. ]

6.4. A Theorem of Kolmogorov, Arnold, and Moser

We shall apply Theorems 6.1.1 and 6.1.6 to a model problem. Before introduc-
ing the problem, let’s recall a result for vector fields on a 2-dimensional torus T2,
contrasting with the problem considered later on. If X is any smooth vector field
on T? such that

(1) X is not singular on T? (i.e., X (x) # 0, x € T?), and

(i1) X has no periodic orbits.
Then there is a homeomorphism of the torus that maps the flow of X without
parametrization into a linear flow; i.e., there is a smooth function & € C>®(T?),
h > 0, such that the flow ¢, belonging to & - X is topologically conjugate to a
linear flow by a homeomorphism

(6.95) Y odsot i (X1, x0) = (X1 s, xa+p5).

p is the so-called rotation number of X and is a topological invariant.

The proof is reduced to the Denjoy theorem of circle mappings. The homeo-
morphism 1/ is unique up to a linear map, and it makes sense to ask whether i is
smooth. One can show that there are irrational p such that v is not even absolutely
continuous despite the fact that ¢, is smooth. In contrast to this result for T2, we
shall consider a perturbation problem for vector fields on a torus T", n > 2, given
by

1 a
6.96 _—, = s Oy)
(6.96) f§¢k(x) o o=@ On)

with ¢ functions on R" periodic with period 2. The vector fields are close to
constant vector fields

6.97) Zwk—, w=(w,...  w,)€cR.

We shall look at the question of structural stability of such constant vector
fields under the group of diffeomorphisms of T". In other words. we ask: Given
a vector field ¢ = w + f. f small, does there exist a diffeomorphism g of T",
x = g(&) = & + v(§). v avector on R" periodic with period 2. transforming ¢
into the constant vector field w? This means

(6.98) dg(§)' poglt)=w.

This is clearly impossible, in general, for the following simple reason: Even if
B € R" is a constant vector field close to w, it cannot be transformed into @ unless
B = w; otherwise the flow £ = Bt would be transformed into the flow of w by
wt + const = Bt + v(Br), all t > 0, and therefore, since v is periodic, w = . We
shall therefore admit changes of the given vector ¢ by a constant vector A € R"
and ask the modified and artificial question: Does there exist for a given vector field



¢ = w+ f. f small. a constant vector A € R" and a ditfeomorphism g € Diff(T")
such that

(6.99) dg&) Mo+ f+Mogld) =w?

We reformulate the problem in terms of a functional. Observing g(&) = & +
v(&). for given f we seek a solution i« = (v. A) of the mapping

(6.100) F(fu)y=fo(id+v)+r—3dv.

where 0 is the following partial differential operator with constant coefficients
w e R™

n 8
6.101) 0= —
( g wy, ™
Clearly #(0.0) = 0; ¥ is continuous as a map

F - CU(’H‘H’RU) X (CI(T”, R”) X RH) N CO(T". R”)

and differentiable forall £ > 1, C! x (C!t' x R") —» C¢ L.
In order to apply any kind of implicit function theorem, we have to look at
D> F (f,u) for ( f. u) = (0.0). We have

(6.102) D>F(0,0)d = & — 9D

where i = (0. 1). The following well-known small-divisor lemma says that for
certain w € R”, the operator (6.102) has a right inverse, which, however, is un-
bounded:

LEMMA 6.4.1 Let w satisfy the following infinite set of inequalities:
(6.103) (. k)| ™" < Colkl”

Sor all integer vectors |k| = Z:.':l lki| > 0. Here Cy is a positive constant and T
some number > n — 1. Assume g € A(o. C) with mean value [g] = 0. Then there
is a unique v € A(o’, C®) for all 0' < o such that [v] = 0, satisfving dv = g.
Moreover,
lvlo < Ll |
"= o g8l

forallo' < o,andv = 1+ 1 > n. Here C denotes a constant depending on T, n,
and Cy only.

PROOF: We merely prove the statement for v = 7 + n; the estimate stated in
the lemma is more delicate and is based on the observation that only a few denomi-
nators {(w. k) actually are small. The solution can easily be found by Fourier expan-
sion. Let g(x) = ), gce'*; then we have the solution v(x) = 3, vpe k),
with

(6.104) v = —5%
i{w. k)

In order to estimate v, we use the tact that g € A(o, C"), which gives for the
Fourier coefficients |g;| < e %17 . |¢|,, by shifting the surface of integration to
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[Im x,| = Zo. Therefore we can estimate the solution v by means of (6.103) in
Imx{ <o’ <o.

|g" i T _—lklto—0c'
MmsZ@ﬁWWEQZmeW 'igls

k+£0 T k0

< Co/ x|"e™ M dx - gl

Rn
<Cio =) g,

v is real analytic: indeed, gy = g« and hence by (6.104) vy = v_. U

Since the spectrum of 8 has O as a cluster point, it is not clear at all whether
the operator D2 F (f. u). (f.u) # 0 has an unbounded right inverse. But here the
approximate right inverse will come in. First, we state the result.

THEOREM 6.4.2 (Kolmogorov, Arnold, Moser) Let w satisfy (6.103), ¢ =2t 16,
and y = 1+ 2. Then there exist an open neighborhood D of 0 in CY (see definition
on p. 120) and a mapping ¥ : D — (C9+1=Y x R") such that

1 F(f., w(f))—OforallfG D and
(i) Y(DNCYH C (CH'Y xR forall € > q.

In particular, y(D N C®) C (C* x R"). Moreover, the mappings VY, 1 D' —
C™ x R" are continuous forall £ > gandm < £+ 1 —y.

PROOE: We shall show that F satisfies the setup and the assumptions (H1)—
(H3) of Theorem 6.1.1 with @ = 1 and y = 7 + 2. The statement then follows
immediately from Theorem 6.1.6 and Proposition 6.2.1: ¥ maps analytic functions
into analytic functions, but we have to extend F to families X,.Y,. Z, of real
holomorphic functions defined in complex strips. Define

X, Xo=C", X, = AQ20.CY). o>0
(6.105) Y, Yo=C'xR'. Y,=A(0.CHxR"'. o>0
Z,: Zo=C, Z, = A(o. CY). o>0.

We know F(0,0) = 0. and we define the open neighborhoods B, of (0.0) as
follows:

(6.106) {(fu)eX x Y, || fle < 1. |14|0<R<%].
Note that |u|, stands for |u|, c1.

We first show that for ¢ > 0. ¥ : B, — Z, and is continuous. Clearly
dv € Z, ifv € Y,. Next we show that if f € X, andv € ¥,.then fo(id+v) € Z;.
which is a question of domain of definition. We claim [Im(¢§ + v(§))] < 3o if
IIm £| < o. To show that [Im v(§)| < % for [Im&| < o. weuse the fact that v

is real; Im v(§) = %(v(é) —v(E) = %(v(é) — v(£)); applying the mean value



theorem and using the estimate |dv(§)| < é from (6.106), we have

1
_ _ 1
(6.107) Im v(&)| = f ddvE + (e —Enime| < Slimé|.

0

To get (H1), one observes that £ (f,-): B, — Z,., o' < o is differentiable,
(6.108) DrF (fou)il = dfoigind + A — 3D,
i = (0, 1). By the Cauchy estimate (6.37),
ld futiarrPlo < | florct1bls < (0 =)' flolble < (0 —0") "Bl .

In order to estimate Q(f: u,v) = F(f.u)—F(f.v)— D>rF (f.v)(u —v), we use
the Taylor formula for functions and get for ( f, u), (f,v) € B,.

Q(f u. v)lo

= sup
Im &l<o’

l 1
-f du(l — Wd® f(E + poE) + (1 — wuENWE) — u(E))?
0

-2 2
< Elfla/czlv—ulfr <@ —-0)2v—ul’.

Hence (H1) is met.
(H2) is clear. In order to construct the approximate right inverse of D, ¥ ( f,

u), we shall first prove the following simple but crucial functional identity for equa-
tion (6.108):

(6.109) DaF (f.u)i = —(1 4+ dv)d(l +dv)™'d + i + dF (f, u)(1 + dv) 15,

where d denotes differentiation of functions in x. Differentiating the function
F(fou), we getd¥ (f, u) = dfoiasn)(1 + dv) — 3 dv, since 3 has constant coef-
ficients. Observe now, for @ a vector function,

@dvo =031 +dv) - o =31 +dv)d) — (1 +dv)-3b.
We therefore get
dF (fou) - (1 +dv)™'D = dfoigrnd — 00+ (1 + dv)d(1 + dv)~'D
=DyF(fou)i — h+ (1 +dv)a(l +dv) 19,

and formula (6.109) follows.

The existence of such an identity is no accident, as we shall see later on. It
is related to the fact that we deal with conjugacy problems; this is the important
algebraic feature of our problem and makes a solution possible. We write

(6.110) DyF (fouyit) = L, (i) + R (i1)

where L, (7)) = —(14+dv)d(1+dv) "9+ and Ripuw(@) = dF (fou)(1+dv)~'o.
From the small-divisor lemma, Lemma 6.4.1, we conclude that the operator L, has



an unbounded right inverse of loss y = 1 + 2, denoted by n,, = L,jl € L(Zs.Y,),
and given by

6111 7, () = (B4
b= —(1+dvn(( +dv)Hz = [0 +dv) 7 [ +dv)'2]}).
=0 +dn ][ +dv ']

for all z € Z,. where n denotes the right inverse of 9 in the space of functions

with mean value zero given by the lemma. We have used the constant vector A to
balance the mean values.

From (6.111) we find with the aid of the lemma and (6.37),

Izl
“io

12 M
(6.112) M. (D))o < m
for some constant M independent of u if (f.u) € B,. The mapping u — n, :
B, — (Z,.Y,) is clearly continuous for all ¢’ < o. We have so far

(6.113) DyF (fou) omy(2) — 2= (- Mu(2) -
By using (6.112) and (6.37), the right-hand side is estimated as follows:
1R oo a(@or < 1dF (foi)lor|(1 +dv) ™ o1 (D)o
<M —o) TINF(fw)l - 12ls
<M — o) *TNF (fo)lo - [2lo s

hence 7, is an approximate right inverse satisfying assumption (H3) for all (f, u) €
B, and some M > 0. The proof of the theorem is finished. 0

6.5. Conjugacy Problems

We give a heuristic argument showing why one should expect to have an
approximate right inverse in certain conjugacy problems. Consider an infinite-
dimensional manifold B since everything is local, B may be assumed to be a Ba-
nach space. Also consider a differentiable group action ®,® : B x G — B :
(f. g) — ®(f. g), where G, however, is an infinite-dimensional group. ® satisfies

(6.114) O(f.id) = f. ®(f.go0g) = D(@(f.8). 8-

For example, B is the space of functions on a manifold M, and G a subgroup
of the group of diffeomorphisms of M, the group action being the composition
f o g. Another example is the space of vector fields over a manifold M, the group
action being the transformation law under a group of diffeomorphisms of M. The
situation we want to study is the following. In B we single out a subset N C B and
ask whether there exists an open neighborhood U of N on B that belongs to the
orbits of N under G: in other words, for f sufficiently close to N, does there exist
a group element g € G such that ®(f. g) =n € N?

If the answer is yes, we shall say: The subset N is stable in B under the group
G. In order to formulate the assumptions on the group action @, we parametrize an



open neighborhood of id € G by a chart exp: V C Tq(G) — G, exp(0) = id, and
write simply ®( f, exp(y)) = ®(f, y). The mapping F is then defined as follows:

(6.115) F(fouy=o(f.y)—n,

where u stands foru = (y.n) € V x N.
For a given f sufficiently close to N, we look for a solution u of F(fiu)y=0
under the following assumptions: We assume we can solve the linearized equation

(6.116) DiF(fow)h = D, ®(f.y)y —hi=feB

for all given f, where ii = (y.n) € Tig x Nif f € N and y = 0. In other words,
we assume there is a right inverse

(6.117) M = DyF (n, (0, n))!

for all n € N. Note that we do not assume the existence of a right inverse of
Dy ¥ (f, (y,n)) for f in a full neighborhood of N and y in a neighborhood of 0.
The assumption will be rephrased by saying that the subset N is infinitesimally
stable in B under G. In case the right inverse 7, (6.117) is bounded, one would
apply the classical implicit function theorem. However, in the cases we are inter-
ested in, the right inverse 7, is unbounded (due, say, to the small divisors), and it
1s impossible to solve (6.116) for f notin N and y # 0.

The main observation now is that due to the conjugacy identity (6.114), we can
construct an approximate right inverse 7, of D, ¥ (f, u) for f in a full neighbor-
hood of N and y in a full neighborhood of 0 if we have a right inverse n,,n € N.
Namely, we claim that there exists a linear map 1, : B — Ty x N such that for all
f € B (and suitable norms)

(6.118) [(D2F (f,u) o n, — 1)(F)] < const |F(f, u)]|f].

In order to construct 7,, we introduce the function Xy by

exp(y) o exp(yo) = exp (xy (1))
and with the conjugacy identity (6.114), ®( f, Xy (¥0)) = ®(P(f, ¥), vo). Differ-
entiation of this identity in y; at yo = 0 gives
Dy®(f, y)dx, (0) = D1 (®(f, ), 0)p .

Introducing the linear operator L,, L, (i) = (dx,(0)y,n), & = (y,n), we can
write D2 F (f,u) o L,i = D, F(®(f, y), (0, n))i, and by means of the Taylor
formula we get

6.119)  DyF (fou) o L, (@) = DyF (n, (0, n))ii + B(1.u(P(f, ) — n, i)

with some bilinear operator B ).
Now, setting foru = (y, n),n, = L, on, (n, forn € N being the right inverse
of D, ¥ (n, (0, n)), which exists by assumption), we get the identity

(6.120) (DyF (fou) oy — D(F) = Biru(F(fo 1), na(F)),

which, with an estimate like |n,,( f )| < const | f |, gives the required estimate

(6.118). This is only a guiding principle in dealing with conjugacy problems. We
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have been vague about the topology, different norms, etc. Theorems 6.1.1, 6.1.6,
and 6.3.3 (which postulate the existence of an approximate right inverse) give pre-
cise conditions under which the following statement holds true:

N infinitesimally stable in B under G = N stable in B under G.
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