J. Phys. A: Math. Gen. 24 (1991) 2913-2941. Printed in the UK

Application of Lie groups and differentiable manifolds
to general methods for simplifying systems of partial
differential equations

J H Nixon
School of Physics, University of East Anglia, Norwich NR4 7TJ, UK

Received 1 June 1990, in final form 20 March 1991

Abstract. General techniques are developed to obtain: (1) the completion of a sys-
tem of nonlinear first-order partial differential equations (PDEs) which is an indepen-
dent set of further PDEs derivable from the system by differentiation and elimination;
and (2) simplifications of the system by choosing appropriate new independent and
dependent variables using a result from Lie group theory. The number of dependent
and independent variables is reduced to the minimum. The theory specializes to the
classical theory of a single nonlinear PDE with one unknown and can be combined
with the methods of Olver, Edelen and Estabrook and Wahlquist. Most of the meth-
ods appear to be sufficiently well defined for automation as are the techniques in
Olver. A second-order nonlinear equation in n dimensions is given which is related
to a functional differential equation in statistical mechanics. It is redudble to twe
dimensions for any value of n > 2.

1. Introduction

in this paper I will develop the idea of reduction of dimension for linear and nonlinear
systems of partial differential equations (PDEs). It is an extension of Monge’s method
for tackling single PDEs of first order with one unknown. The method is applicable
to any system defined with sufficiently differentiable functions but the result is not
usually one-dimensional; in fact there may be no reduction of dimension giving no
simplification at all. The result of the transformation is another system of PDEs having
the same set of solutions with a possibly smaller number of independent variables but
the number of dependent variables, which are the unknowns, may be increased initially
but their number will afterwards be minimized. From the point of view of the general
theory of systems of PDEs (called systems for brevity) the procedures indicated here
should be applied initially, then symmetry methods should be applied if necessary.
The best known of these are, firstly, looking for infinitesimal generators of geometrical
symmetries [1] (isovectors of the differential ideal [2, 3]) from which group invariant
solutions can be obtained and the generalized method of characteristics ([4, 5]). The
latter method requires the initial data to satisfy an extra condition but perhaps more
flexibility can be obtained by applying the method to a prolongation of the original
system (including derivatives of the dependent variables as new unknowns).
Secondly there are the related methods of Estabrook and Wahlquist {6] originally
applied to PDEs with two independent variables. They prolong the differential ideal
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in such a way that it remains closed and well posed introducing auxiliary variables
known as pseudopotentials [7]. If this is possible it leads to a set of conservation laws
and allows a calculation of Backlund transformations which, whether or not they form
a group, allow a new solution to the PDE to be obtained from one or more known
solutions. Denes and Finley [8] discuss the existence of Backlund transfermations for
a general PDE with any number of independent variables.

Many if not all of the methods presented here can be carried cut mechanically,
as can the calculation of symmetry groups, hence they can be done by computer.
These methods must be equivalent to a method for finding a minimal basis of 1-forms
(characteristic system) in which to express the closed differential ideal corresponding
to the system [9]. This method requires finding the first integrals of the characteristic
system. This may turn out to give an explicit procedure for carrying out the reduction
which can be stated more concisely, treating the dependent and independent variables
on the same footing. This is based on the Cartan theory of exterior differential systems
[16], a good introduction to which has been given recently [10].

Several examples are given which motivate the general theory but by far the most
important of these is the last example which is closely related to a functional differen-
tial equation in statistical mechanics. It shows that a second-order PDE in n indepen-
dent variables can be reduced to a system in two independent variables for any value
of n > 2. Hence there is a second-order functional differential equation closely related
to those arising in the classical statistical mechanics of the one-dimensional fluid [11,
12] which can be expressed with two independent variables. The consequences of a
generalization of this result will be explained in a future publication on statistical
mechanics [13].

The layout of the paper is as follows. In section 2 I start with the general linear
second-order PDE to motivate the general theory and to show some simple results
giving a powerful simplification of a class of PDEs. I then show (as is well known) how
any solution u, ... u, of any system can always be regarded as a subset of the unknowns
in a solution u, ... u, (p > ¢) of a corresponding first-order system introducing what I
refer to as the ‘standard’ method of obtaining such a first-order system. This justifies
restricting all further discussion to first-order systems but it raises the question of how
the different ways of reducing a system to first order are related. Ishow that they are
all related by a change of dependent variables.

A very important idea is how the solution of a system varies with the boundary or
initial conditions, A small change in these conditions will give usually a small change in
the solution, the difference satisfying, to first order, a linear system. I argue in section
3 that some properties of the original system also hold for the linearized system, hence
this can be used for classification purposes. This provides a motivation for studying
linear systems. For these systems I have formulated the minimization of dimension
by first applying a completion procedure analogous to the method used for treating
the system f,: V1w = 0 (the name being justified by Frobenius’s theorem) followed
by a change of dependent and independent variables applied to linear combinations
of the system in such a way that the number of independent and dependent variables
is minimized. This is straightforward provided one has familiarity with some of the
essential concepts of differentiable manifolds and functions, vectors and forms defined
on them, an excellent introduction to which is given by Boothby [14].

In section 4 I have extended the methods of section 3 to general nonlinear systems.
The concept of local solvability mentioned by Olver [1] is introduced and the proce-
dure for obtaining a locally solvable system is believed to require only the repeated
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elimination of the second derivatives from all the first total derivatives of each equa-
tion of the system. An extension of the argument to minimization of dimension for
nonlinear systems holds. In section 5 the number of unknowns is minimized by a
change of dependent variables, the number of them being determined by the rank of
a matrix. In section 6 general conclusions are given about the simplification methods
and it is shown that the ‘standard’ way to get a first-order system from a higher order
system by introducing auxiliary variables preserves local solvability provided some ex-
tra equations are added, thus showing that the completion procedure is not necessary
for higher order systems known to be locally solvable.

Finally in section 7 an example is given of a nonlinear equation of second order
in n independent variables which is reducible to two dimensions by this method for
any value of n. These equations can be regarded as a sequence of approximations to
a second-order functional differential equation as n increases which is therefore also
reducible in some sense to a two-dimensional system and it is consequently tractable
numerically if not by further analysis.

2. Minimization of the dimension of a second-order PDE and expression of
a general system as a first-order system

Consider the following class of PDEs

}jza,,(z)a 7 +Za(x)3 +a(z)u(z) =0 (1

i=1l j=1

where a;; is a symmetric matrix of rank 1 which is a function of z = (z,,...,2,) so
one can write a;; = b;b,.

(Note that all the arbitrary functions will be assumed to be sufficiently many times
differentiable for all the operations to be well defined and note that I have used the
same symbol a for three different functions, being distinguished by the number of
subscripts. I have done this throughout because it saves constantly having te find new
symbols.)

Consider the curves z;(¢) defined by the differential equations

dx;
=) @
then the first and second derivatives of v with respect to ¢ can be written n terms of

derivatives with respect to the z,,

T R I TR S

du_"@u% naub

and

;. Ou db;
Zb‘“( )""ZZ"'Ja 3z, +Z z@r oz, ®)
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Hence (1) can be written as

dzu ki Bu = ab.
N T A “

Suppose that the (n — 1) parameter set of curves z,(t) can be parametrized by y, =
T, |x —q where t could be gwen by t = 0 when 2z, = 0. Suppose that ( ) only relates
u ai points on the same surface and the whole space is filled with such surfaces, and
suppose initially that these surfaces or manifolds are of dimension n— 1 then there is a
one parameter family of them. Hence there is a function z, (z) whose level surfaces are
these manifolds which can be rewritten in terms of the y; and ¢ which are defined in
the region of 2 of interest. A necessary condition on the manifolds is that d/d¢|,,

Y-l
is an Interior derivative to them

dz

=0
dt

Y1---¥Yn-1

ie. z; depends only on y,...,y,_;.- Choose z,,...,2,_, also to be functions of
Yy---»Yn—1 Such that the Jacobian

zy,. 2y y)

a(yli' '?yﬂ 1) ?‘:0

so the transformation can be locally inverted. Then the coordinates @ can be replaced
by z;,...,2,_y,t. Making this change of variables in the second term of (4) gives

Su g, 32j i ab;
Bt - be +.z'67. %(“"gb’ax,)' ()

It is now clear that I still do not have a sufficient condition for the reduction of
dimension. It is also necessary that this expression does not involve du/dz,. This
requires that

= 8z, SN
a(“i'?’fax,) =0 ®)

i=1 1
in addition to the condition obtained previously
=
%
2 b, = 0. (7)
izl 1

This is a system of the form f,-Vu = 0 and general theory shows that this has

........... Bald L ood _k_.YThL
a nomn- LIlVld.l S()lUblOIl I()[‘ Zl ll dIlu Ulll_)’ Il bllb’ pcul u1 vector Nieilds v ald 4 U vu
generate a Lie group whose action on the coordinate space of points (z,,...,z,) gives

orbits of dimension at most n — 1 or equivalently the Lie algebra generated by taking
commutators of the vector fields repeatedly until closure yields at most n — 1 linearly
independent vector fields. From (6) and (7) it follows at once that the transformed
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equation is interior to the manifolds z; = constant i.e. the transformed equation does
not involve the independent variable z; in the derivatives. It is now easy to show
that if the dimension of these orbits is r then equation (1) can be expressed only In
terms of z,_,,1,...,7%,_1,t thus showing that it is reducible to r dimensions. This
is a great simplification of the original equation (1) but extensions of it to higher
order systems seem to be very complicated. The treatment of first-order equations is
easier to describe. Hence, because any system is expressible as a first-order system by
introducing auxiliary variables, I shall briefly discuss this and show how the various
forms it can take are related. The remainder of the paper concerns the analogous
technique of minimization of dimension for first-order systems, first the linear case
and then the general nonlinear case.
Consider a general system of differential equations for the unknown functions
up, ..., 4y, of the independent variables 2,,...,z,
du; Juy Ou, Ju,
Fk (ml...zn,ul ...up,a_xl,a—%',... E, 5;1"

du, 9 Gy
Gup 1 P -
”'an’axlaxz,"'{Bzil...axiq}> =9 )

for 1 € k < m, which can be written more compactly as F (z,u{?) = 0 where
u{® is the set of all gth and lower-order derivatives of u;,u,...u, including the
undifferentiated variables. By the following ‘standard’ method of introducing auxiliary
variables, the system can be expressed as a first-order system. Let

. i S A ¥ | (9)
= ik = =
Bz b dz;0z;, Oz,
elc up to
11y, aui.jlu-i -2 : . .
U jdeer = g 3:1:‘ = "oz % for 1 <jy,odgm M1 <isp

h Jq-1 Je-1

(10)

Then the original system (8) becomes the first-order equations

Ou; T
Fk’ (Z,U,{Ui‘j} ""{ui;j1-~~jq—1}’{_#——}) =0 (11)
\ ) ¢ e

1/

together with the auxiliary equations (9) up to (10}). The significance of the transfor-
mation is that any solution u of (8), when differentiated gives u(4~1) which satisfies
(9) up to (10) and (11) and conversly u and its derivatives satisfying this system im-
plies that u satisfies (8). Hence any solution % of the nonlinear system (8) is obtained
by picking out u from the solution 2%’ of the first-order system (9) to (10) and {11},
This justifies restricting attention to first-order systems.

Consider the most general possible way to introduce auxiliary variables into
(8) involving only first-order equations. Let v, = g,(z, %)) then introduce v, =

gz(:c,u(l),v(ll)) etc and in general v; = gi(m,u(l),vgl),.. .,'ugl_)l) for 1 € 1 < r. The
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auxiliary variables v, ...v, can now be related to the standard auxiliary variables
v 5, 5, Since v; = g, (=, u, {u,-d-}) it follows that

d
Z A I+EZ 91. i1

1131

d
'Uz = g5 (z,u(l), g1 (m’ u, {ui'j }) , { “a%})
2

which gives an expression depending on just z,u, {y; ;} and {u,-.j,}. In the same way,

and

if one has vy = g, (z,u(l), vﬁl), vgl)) differentiation of v, gives

dv, 8 d g 2y
6—:’%33%‘*‘ aff u+ZZ Tt ’J’+ZZZ i

i=1j=1 Uig i=1 j=1k=1 ‘-

which is now a function of =, {u;}, {u,-,j} , {u,»ljk} . {u,-’jk,} 50 by substitution v; can
be expressed in terms of these variables etc. Hence any new set of auxiliary dependent
variables v reducing the system to first order, can be expressed as v; = h;(z,u) for
some known functions h; where  is now the standard set of dependent variables {the
original ones and the auxiliary ones) making the system first order i.e. the u(¢) in this
argument. There are cases when the number of variables % to express the system can
be less than the standard method gives. Then the argument in section 5 shows how
their number can be obtained and their explicit forms.

3. Linearization and minimization of dimension for linear systems

It is of fundamental importance in the study of systems of FDEs to find the type of
boundary conditions under which a system has a unique solution or more generally
how the domain of uniqueness B of the solution is related to the set or manifold
A = {(=(8), u(3)):8 € 5} of initial data. The domain B is defined to be the region over
which all possible solutions of the system consistent with the initial data A coineide,
In general one can ask how the solution of a system is altered if the initial data are
varied by Of¢). On the assumption that this is also O(e) which one would expect if
the F, are C° this gives rise to a linearized form of the system and the argument
following shows that B for the original system with a given A is the same as B for
the linearized system with the initial data ¢(z) given on the same set {z(3) : s € S}
upon which A was defined showing that the equations are of the same character.
Let u satisfy the system

F, (z,u(l))zo forl<k<m VYaeD (12)

where D is some open subset of B” which may depend on u. Unless otherwise specified
the coordinate point = € D. Let the initial data be #(s),u(8), where 8 = (5,,...,5,).
Let % + $u satisfy the same system with initial data 2(s), u(s) + éu(s). Then

F, (z,u(l) +5u) =0, (13)
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Let du be small say O(¢) as ¢ — 0 so put du = e¢p and subtract {12) from (13) giving
F, (z,u(l) + cqu) - F, (z,u(l)) =0. (14)

Taking the leading terms which are Q(¢) as € — 0 by differentiating with respect to ¢
gives

nop
ZZ 3Fk afﬁ Zakai’ —0. (15)

j=1 |=1

This is the equation satisfied for small changes ¢ in u resulting from small changes in
the boundary conditions. The derivatives F, /0u; and 0F,/du, ; must be evaluated
for w equal to the original solution.

Suppose for definiteness that u is determined uniquely for # € B by the system
(12} and the initial conditions A. Now if w is altered to u(s) + e¢(s) and =z(s) is
kept fixed for 8 € S then u(z) may be altered for z € B. Bui if u is altered in
such a way that u(s) for s € S is unchanged, then u(z) for * € B is unchanged.
Hence obtaining this change approximately by linearization, ¢ must clearly be 0 for
® € B provided ¢(s) = 0 for s € §. If C is the set of & for which the linearized
equation has a unique solution, i.e. 0 when ¢(s} = 0 for all s € S, since z € B then
z € Uso B C C. Now conversely suppose ¢ € € so that ¢(z) = 0 satisfies the
linearized equation uniquely when ¢ = 0 for s € S. I need to consider an arbitrary
change in the data «x(s), u(s) leaving thern fixed for s € S. Let u,(z) satisfy (12)
and boundary conditions z(s),u;(s),s € T and let up(z) satisfy (12) and boundary
conditions z(s),up(s),s € T where u;(s) = up(s) for s € S C T. Let u;(s) =
up(8) + (i/N)(up(s) —u;(s)),s € T for 1 < i< N and consider u,{x) determined
by (12) and the boundary conditions #(s), u;(s),s € S. Let ¢ = 1/N then ¢¢,(z) =
u,; (&) —u,;_,(x) is obtained to O(¢?) by linearizing (12} about w,_, (=) with boundary
conditions e¢;(8) = (1/N) (up(8) — u;(s)) whichis0if s € §. Fori = 1,since z € C,
then ¢ = 0 and so u,(z) — uy{z) = O(e?). For i = 2,u,(x) — u,(z) is obtained by
linearizing (12} about w,(x) and applying the boundary condition which is again
ep(s) = 0 for s € S. The equation for ¢ from (15) differs from that for i = 1 by O(¢?)
80 u,(&) — u, (&) = Ofe 2) In the same way w;(®) — u;_;(2) = O(¢*) for l i< N
50 up(2) — uy(z) = uF —uy(x) = E, LO(e?) = O(¢) — 0 as N — co. Hence
up(x) = u;{z) and since u;(s) and up(s) are arbitrary, ® € B, hence C C B and
finally C = B. It follows that the domain B of dependence of u on the initial data
A = {{z(8),u(s)),s € S} for the nonlinear system (12) is the same as the domain of
dependence C of ¢ for the linearized equation, (evaluated about the solution u of (12)
with the same initial data A) with initial data ¢(s) = 0 for s € S. B will depend on A
and the relationship gives the qualitative properties of the system. A consequence of
this 1s that the full range of types of behaviour is exhibited locally by systems which
are of the form of the linearized system above i.e.

ZZ@ ,Jk(a:)+2u'a,k z)=0 for1<k<m, (16)
i=1 j=1 i=1

If the system (12} is analytic the relationship between A and D is expected to be
smooth {except when the topology of z(s) changes for example for an elliptic system
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in two independent variables B = A when A is given on an open curve but B is
the interior of the curve when A is defined on a closed curve). For linear systems
i.e. systems for which §F; /0u; and 9F,/8u, ; are independent of u, the relationship
between A and B is dependent only on . This implies that the standard classification
of PDEs in two independent variables and systems as elliptic, parabolic or hyperbolic is
independent of the solution w for the linear case i.e. the classification can be obtained
in terms of ® in advance of calculating the solution. But for nonlinear systems the
result will be dependent on the particular solution which in turn is dependent on
the boundary conditions. A similar remark holds for more than two independent
variables when the classification is more complicated [15]. With this notation (16) for
the general linear system, 1 shall now discuss them showing one parameter describing
different types of behaviour and the simplest form the equations take. This was mainly
inspired by the classification and canonical forms of second-order PDEs in two variables
[17). The type of behaviour in example (1) is that a set of linear combinations of the
system can be expressed in a family of submanifolds i.e. as another linear system
with fewer independent variables such that only derivatives interior to the manifolds
appear. If it is a complete set of linear combinations of the original system this will
result in the domain of dependence on the initial data being a subset of the manifold
on which the data appears. I refer to this as a complete reduction of dimension of the
system. In the example (27) some partial results are obtained in fewer dimensions.

Before looking for reduction of dimension note that the theory of linear systems
(16) must include the theory of systems of the form £+ Vu == 0. In this case extra
linearly independent (LI) equations obtained by differentiation and eliminating the
higher derivatives as described in Chester (i.e. forming the commutators of the f;)
must be found before the general solution can be described geometrically. A more
comprehensive account of the method with very compact notation is found in Schouten
and Kulk [18] where this is shown to be equivalent to the ‘outer problem’. Returning
to the system (16), combinations of the first derivatives of the system are sought
which involve only the first derivatives of u and which are linearly independent of the
original system. This procedure is then repeated starting with the augmented system
and continued until there are no new results after one step. Finally from this derived
system of the form (16) the systems with reduced dimension are sought

From \10) applymg the differential Upcrd.LUr "‘k -V io t:quo,uuu & and summmE,
over k gives (dropping the argument x)

m i
th'v EZ ijk+zuiaik =0. (17)
k=1 =1

i= 1]...1

The second-order terms can only arise from the terms

r " m aui
D33 kv (B‘}T) a5 (18)

f=1j=1k=1
et (h,); = hy; then the vanishing of the second-order terms i.e. those involving u; ;
is obtained by equating all their coefficients to zero which gives the equations
m
E (hk,a,-jk + hkja,-,k) =10 for1<jli<ml<ig<y (19)

k=1
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l.e. the matrix
(Ci)_f: = Z:hki'a:'jk (20)
k=1

is skew symmetric for 1 < 7 < p. Then the derived equation can be written as

+E ag k,} +Eu [iihka%?] - (21)

i=1 k=1 i=1

P

zza“ PPN

i=1j=1 k=11=1

which is a linear equation of the form (18) dependent on the matrix h,; regarded
as an mn dimensional vector. Hence at each step of the method, one must find a
complete set of linearly independent vectors hy; satisfying (20) then the corresponding
equations (21} are the extension obtained after one step. This is repeated until no
linearly independent equations appear and the resulting system I shall refer to as the
completion of (16) which is a basis of a vector space of linear PDEs which is again of
the form (16).

Now look for subspaces of this vector space of equations which is expressible in
r < n dimensions. For simplicity of notation I shall again use the notation (16) for

such a subspace. Let z,,...,z, be a new set of independent variables,then
Ou; _ Oy 0y
8z; 1 9z Bz
Changing variables from = to z, I will arrange that z,,...,2,_, are absent from the

derivatives in the system. These variables may still appear undifferentiated, in this
case the reduced form of the system will have only parametric dependence on them.
The system (16) becomes

L P
ZZ 3,,’ Bzr | + Zu;al.k =0 for1<k<m (22)
i=1

i=1I=1 i=
8o the previous condition gives

0z

-a?-a‘-ijU for1 <I<n—rl<i<pl<k<m (23)
=1 i

i.e. there are n — r functionally independent functions z satisfying

l%awzﬂ forl <i<p;1<k<m. (24)
Functional independence ensures that no equation of the form f(z;,...,2,_,) =0
holds identically so that the z; can vary independently. This system is of the form
Fir V2 =0 where g;;; = (_f,k) hence the set of vectors f,, generate a Lie algebra
with the correspondmg Lie group having orbits of dimension r. Roughly speaking this
is because in the orbits z is constant and the equations give no relationship between
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the values of z on different orbits so the most general solution is an arbitrary function
of the orbits which is an n — r parameter set, hence there are n — r independent
solutions if the orbits have dimension r. It follows that the £, are tangent to the set
of r-dimensional manifolds and if coordinate frames 8/ st,l < j < r are defined on
them giving a basis at each point,the f;, are linear combinations of these i.e.

fi = Z Amcba (25)
I=1

where b, - V = 8/8s, or equivalently a;;, = > 7= Aind);. Hence given a system of the
form (16), after the completion and choice of a linear subspace again of the form (16)
one should consider the a;;, to find out the dimension r of the orbits of the Lie group
generated by the vector fields f;,. This gives the reduced dimension r of the system.
The transformed system is easily found by substituting for the a,;; in (16} using (25).
This gives

P

ZZA,,k +Zula.k-—0 for 1 <k < m. (26)

i=l (=1

The variables s, ... s, are arbitrary coordinates which parametrize the r-dimensional
mantfolds. The reduced system (26) is again of the same form as (16) with coeflicients
A; which correspond to a set of vector fields which must have r as the dimension of
the orbits of the Lie group otherwise further reduction of dimension would have been
possible,

The system (26) is the result of a change of variables starting with a system of
the form (16} and exploiting the property that it is effectively a system involving
r < n independent variables. The systems (16) and (26) therefore have the same set
of solutions. Hence considering equations of the form

Zh* (Z dek ' + Zutatk) =0
k i=1 =1 8 i=1

which are first order where h}.V acts within the r-dimensional manifolds one sees at
once that it is equivalent to

P
DbV ZZ ;jk+zu,~a,—k =0
- :

i=l j=1 =1

which must also be first order, so it must be in the vector space of equations which are
the completion of the original system (16). Hence there are no new equations obtained
by repeating the completion procedure starting with the system (26) so the general
procedure to apply to a system of the form (16) is to do the completion, and look for
subspaces of this vector space of equations which have reduced dimension 1,2,3 etc in
turn. Each subspace is represented by a basis of equations.

As a very simple example of these ideas suppose that

3111 Ou,

bt -y, tu, =0
5z, " B 1 P)
. ;‘ (@1
ouy | Ju, —
a + —= 622 “1 + UQ = 0.
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Then by differentiation and elimination of second derivatives

8 i
3?2 (ug—uy) = 'gl'(“a — ) (28)

so Ov, [0z, = Ov, /8x, where v, = u, — u,. From (27) by subtraction
d d
5;(“1 +tuy) = 6_2:2'(“1 + ) (29)

combining this with (28) gives du,/0z, = du,/8z,. Hence the general solution of
(27) is of the form u, = g,(2, + z,),u, = g,(z; + z,) but substituting back gives

(91 +g,) = 9 — 92 (30)

This form of the general solution results from two independent equations derivable
from (27) which have r = 1 and are reduced in the same set of one-dimensional
manifolds, namely z, + z, = constant. The extra condition (30) relates the solution
on different manifolds to each other, hence (27) is not completely reducible to one
dimension. This shows an example of the significance of partial reductions.

As the example shows some of the reduced systerms may be further simplified by a
choice of dependent variables which minimizes the number of them appearing in the
derivatives. Consider again a system of the form (16) and introduce new variables v;
by the equations u; = 3 7_, d,v; where d;, are functions of z and det(d,;} # 0. Then

EZ by [Zd,,au,c] + Zu, [ZZ agy + idna.-k -0

=1 j=1 i=1 j=1 i=1
forl <k<m, (31)

Suppose that the system is independent of the derivatives of v; then
p
Za.'“a,-jkzo forl<k<m;1<j<n (32)
If the system is also independent of v, itself then

P n c‘id
z T th+§:dﬂagk‘“0 for1<k<m. (33)

i=l f=1 i=1

Using (32) equations (33) can be rewritten as
Fd n 6(1,- "
'Zl:d,-, a; ~ JZ—; ——-Lamj =10 for1<k<m (34)

so first one should find as many (p~— p’) LI solution vectors d; as possible satisfying the
equations (32). There may be a subspace of these satisfying (34) also, which should
be identified. Suppose it is (p—t)-dimensional then 0 < p—1 < p—p’ < p and suppose
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that d;,...d; ,_, satisfy (32) and (34) and d; ,_,,,...d; ,_,. satisfy (32) only, then

the set of vectors is completed so that d;; is a non-singular square matrix and the
systemn (31) simplifies to

P 31) P P n ad P
Z Z - [Z ddauk] + Z v ZZ ‘3‘_,8"_1“-';'1; + Zdﬂaik =0
l=p—p'+1 j= 1 l=p—t+1 i=1j=1 j i=1
for i1 <k <m. (35)

As shown later for the case p = m at this stage there can be no further first-order
PDEs amongst the variables; hence in particular the variables v,_,,,,...,v,_,., which
appear only undlfferentlat,ed in (35), are independent unless any lmear combination
of (35) gives such an equation. Hence they can be specified beforehand provided the
original system was consistent. Systems of low dimensionality n obtained in this way
will be particularly important, especially if p’ is small.

4. Nonlinear systems

ument dealineg with linearization stro pg|v suggests that a similar kind of

gument dealing with linearization strongly suggests that a similar kind of

analysn also works in the general nonlinear case. In this section I develop this theory
which includes these results and the general thecry of first-order PDEs as special cases
but note that in the introduction I made some remarks to the effect that there is
probably an equivalent meihod based on exterior differential systems. All the results
are now dependent not only on the point @ but also on the solution u there. Return
to consideration of the systern (12). The first step should be the completion which
requires finding the first-order equations which are functions of the mernbers of the
system and all their first total derivatives. (A total derivative is a derivative with
respect to any of the independent variables while regarding the w as fixed functions of
#.) This generalizes Jacobi’s method [17] for over determined first-order systems with
a single unknown which must only appear in the derivatives. From the chain rule the
total derivatives are

dFk dF, <= OF, Ou; 8Fk ,
% 8m,+§ ZZ forl<k<ml<li<n (36)

Consider a function h(®,w,{F.},{dF,/dz;}) which is independent of the second
derivatives u; ;. From the chain rule

i 2": h 6(dF,c/dx,.) _o

The last derivative can be evaluated from (36) as

Y 51

dFk/dI:- Zi ‘9"‘1 §({5°1"}, Li1))6ies

i*=1 %=1 * )

where the first & function is 1 if and only if the two sets are the same and 0 otherwise;
(actually the concept of a set with multiplicity is needed here, each element can appear
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any number of times.) If j =1, 6({jl}, {j*I*}) can be written as §.,6;.; but if j # ! it
is non-zero if and only if j*,I* are equal to j,{ in either order giving 6;;.6y. + 8;;0 &5+5
hence

6 ({jl}, {j*l*}) = 61"(6-.15[.’) + (1 — 6)1)(6_”‘ 6no + 6:-[. 511':)

= 6}-.’-.6”- + 6]" 6uo - 61'.}" 6J'Il 61’1'-

and the equation for £ becomes

n

OF, o e
Zz 6(dF,‘/d;.-,-, Zl 3u.-,j-6({ﬂ}’{3 r})=o.

k=11*=1

These equations can be written as
aF. ah arF. |
L h — + — —=| =0
la (dF,c/d:c,) Bu;;  O(dF,/d=;) au",l
forl<j<i<mnand 1<i<yp (37)

by considering the cases j = [ and j # ! separately. The equations {37) are the
necessary and sufficient conditions for A to involve no second derivatives of u.

In the first step of the completion procedure a functionally independent complete
set of solutions b of (37) which are zero for any solution u of (12) must be found.
They can be found from

h=Fh (x u, {F.}, {dpk}) ~ K(z,u,0,0)

where h satisfies (37). These include the original equations since if A = F then
0h/8 (dF, /dz;) are all zero and (37) is satisfied. As with the linear equations this
should be repeated, starting with the F} replaced by a complete independent set of
solutions f of (37) and continue to be repeated until no new functionally independent
results are obtained. The result of this is a set of functions h,(@,u, Vu) for 1 <i < m’
which are zero for any solution of the system {12) and such that any function of
z,u, h, {dh/dz;} necessarily involves some second derivatives of u after substituting
for h provided some of the first derivatives dh,/dz; actually appear. Hence one expects
that a function involving second derivatives of h to involve third derivatives of u. 1
will now show that this is true and a straightforward generalization of it leads to the
conclusion that no new results can be obtained from the completion procedure by
allowing higher derivatives of F, to appear in the expressions for h. The argument
is similar to the preceding one to get the equation for h but it is generalizable more
easily. Consider g(z,u,h,{dh/dz,;}), substituting for the hs in terms of (=, u(!)) ¢
becomes a function of (2, u(?)). From the chain rule

KRSt dg  0(dh,/dz,)

= (38)
au 131 a=1f=1 a (dh“/dzﬂ) 61'“ Kl
and from h similarly
dh, Oh, <E~8h, Ou; = Gh
o — __Cf+ —a—“""!'-}- —a_u-‘ iw e (39)
dxﬁ 31‘:3 ; 371:" 31.',3 "Z=11.2_1 aui.h". i*.6j
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Hence
o (dh, /dz " 8hy
"(Tu;,_ﬁ) = 1-2-:1 T =—5({85"}, (41D (40)

This is zero except when 4 is j or { 8o, to fix the order of j and {, let = #. Then if
(40) is non-zero, j # 3 implies j # { and § = [, a contradiction so 6,4 is a factor. If
Jj = 3 this simplifies to

", Bk
> ia‘%-r

io

j-=1 a l‘,_”‘

o (40) can be written as

8 (dh,/dz,) oh,,
5'“';)‘“ - 6"'6 au“ (41)

and the equations (38) become

dg i ag ' oh
& 42
Ou; Jf =0 (dha/d-’”j) 3“;’,: . (42)

which is a set of equations of the form W, = MV for 1 < j < n where each Wisa
vector of dimension pn and each V is a vector of dlmensmn m. Once the completion
has been done if at least one of the vectors V', ...,V say V_ is non-zero, at least one
of the vectors W, ..., W is non-zero which must be W,. Hence M has the property
that a non-zero argument gives a non-zero image so M has rank m, the dimension of
the space of V.

Next consider a function

g (= uh, {h},{hy;})

where I have used the notations h;, ; and d*h/dz, ...dw, for the total derivatives

of h interchangeably. Then

6 dh,
Bu Pkl Z Z By Do “¥

a=1 1(,@(‘{(!1 a gy Ot jui

The last derivative can be found by picking out the third-order terms from 4, 5, which
are

I\~ |0k
22 {ﬁ;“e-.w-} : (44)

i*=1j*=1 i
Hence
aha,_@‘y _ = Bh
For B = 3 e ({By5) A7) Wy
i 5k j*=1 (N
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If {8,7} € {J, k, I} the result is zero and if the inclusion does hold then choose indices
such that § = j,¥ = k where 8 < v. This fixes all the indices uniquely. Then if either
B # j or ¥ # k the right-hand side is zero. But if 7 = @ and k = v then it becomes
8h [Ou; 1; hence from (43)

89 _~x~ _8g &h,
3u,-,j“ - = oh 81‘"1

=1 " "ajk

(46)

where j < k. Comparing (42) with (46) one sees that (46) can also be written as

m
; )I:ZMMI(V;'I:)Q ot =MV for1<j<k<n
=1
(47)

where M is the same as in (42) with rank m; V' has dimension m and W' has
dimension prn. Hence one non-zere component of V;- ¢ Will give at least one non-zero
component of W_'T-k (with the same j and k) i.e. one non-zero value of dg/@h,, ;; will
give at least one non-zero value of 3¢/3u, ;;, (with the same j and k). This shows that
if the A, are obtained from the F. by the completion procedure then any function g
mvolvmg hg jx Must involve some third derivatives of u so it cannot be first order. This
shows that after completing the completion procedure previously described, no new
first-order equations can be derived by considering second-order differential functions
of the h. It is fairly straightforward to generalize this to any order.

Reasoning as before shows that at least one non-zero value of 8g/dh,, ; ;. will give
rise to at least one non-zero value of 8g/8u;; ; . soif g involves any sth derivatives
of any of the h,, when expressed in terms of 1 and its derivatives, g will involve an
(s + 1)th order - derivative of at least one of the u;. It shows that if the completion
procedure is extended to involve taking higher derivatives and trying to eliminate all
but first-order derivatives of u no new results can be obtained. The h obtained at
each step are a functionally independent set of solutions of (37) which is of the form
¥ *Vh = 0 where the independent variables are {dFk/dz,} which can be written in
terms of (ax, u(2)) Let the F, be the h obtained in the last step of the completion
which does give new functlonal]y independent results from (37) (which could be the
original functions Fy if the system is already complete). In the following step, done
to check completion, giving no functionally independent h, the h are some set of
functions related to the F} by a non-singular transformation.

The procedure gives all independent first-order equations derivable from the sys-
tem by repeated differentiation and elimination of the higher derivatives. This pre-
sumably generates a complete set of independent first-order equations derivable from
the original system i.e. any other first-order equation derivable from the system can
be obtained in the form (=, u, {F,})) = l(=z,u ,0) l.e. purely algebraically from the
set of equations F}, = 0 obtalned by this procedure. The concept of completeness is
here based on the somewhat vague notion of derivability which can be made precise
by the concept of local solvability (Olver [1] p 162) which results from considering the
problem geometrically in the space with coordinates (z, u{!)).

The original system (12) defines the submanifold S; of points {z,u("}). Each
solution u(z) of (12) has a first prolongation which is the set of points (z, u(}) which
is always a submanifold 5; of 5,. Let the union of the S, for all solutions u(x) be
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S, then through any point of S, there passes the prolongation of a solution u(z) of
(12) s0 S, C S,. The system (12} is said to be locally solvable at (z,u(})) € S, if
(z,uV) € S, and locally solvable if (z,u(")) € S, implies (=,u(!)) € S, ie. S, C S,
so §) = S;. This is equivalent to requiring that every point (z, uM) satisfying (12)
corresponds to at least one solution u(x} in a neighbourhood of z,. Any first-order
equations derivable from (12) not by algebra alone will force S, to be a proper subset
of 5,. The equations defining S, which must be first order and deducible from (12)
may be called the completion of (12). Therefore a locally solvable system must be the
same as its completion and therefore the same as the result of the procedure above
i.e. differentiation and elimination of higher derivatives. The completion of (12} must
be locally solvable and no further functionally independent equations are derivable
from them (this would further reduce the dimension of S,). It is therefore natural to
conjecture that the completion of the system {12) is the same as the system obtained
from (12) by the procedure above i.e. the deducibility referred to previously is just
repeated differentiation and elimination of the higher derivatives of u(z). This justifies
the term completion used above. This follows from the conjecture that this procedure
always generates a locally solvable system. This can be established for v = p for
analytic systems using Finzi’s theorem (Olver [1] p 172). Putn =k =1land ¢ =m
and taking its negation on both sides gives: Let Fy(x,u(’?) be a first-order system.

Than ' hao o nan_sharastarictis Airartian at (= fu(l) if and anlv if thare dn nat aviet
41180 & 188 a NON-CNaracicrisile GITeCLIon al \ &y, Uy 1andc omy il tnere ao noL CXist
operators
d -
D, = P — = total derivative
BT "d d
Z

such that 310 D Fy = Q(mu,ugl)). The latter condition follows from the result of
the completion procedure. Hence after the completion has been carried out the system
is normal. If the system is also analytic so is its completion and by corollary 2.80 it
is locally solvable.

Having carried out this procedure one obtains another system of the form (12}.
Consider a set of linear combinations of them

3 Fihos(z u) = 0 (48)
k=1

and ask what are the conditions under which equations (48) can be expressed with
fewer independent variables. This reduces to the corresponding treatment of the linear
case above and I will show how the theory of the single first-order nonlinear PDE in
one unknown comes out of this argument.

Suppose that the new independent variables are z,,z, ...z, and each equation of
(48) is independent of derivatives with respect to z,...z,_,. Introducing the new
variables into (48) the chain rule must be used to substitute for du,/dz; thus

3U,-. _ i an- 62;
Oz;. & 0z Oz

{49)

I require that, applying the chain rule again with these derivatives regarded as vari-
ables,

= 5 (Z Fihax( "))
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E 8 (Ou,. /0z;.)

= Z Z 3(3%& /62{ 6(3’” /3:!’.‘. (ZFJ; ak z, ﬂ))

for 1< i< p;1 <1< n—randfrom (49)

a(aui-/axj-) -—6 62‘
d(Ju,fdz) ~ oz

j-

Hence

8z i aF,
; (za(au ;a ak(z,u)) = 0. (50)

This holds for each value of o say 1 € a < m’ < m. Denoting the term in parentheses
by (f:q); which depends only on z for fixed u(x), the equations take the form

Jia' V=10 fori<i<pandli<a<s<m (51)

which is satisfied by the functionally independent variables z;,...,2, .. Hence the
Lie algebra generated by the set of vector fields f;, generates a Lie group with orbits
of dimension r. Let the b, = d/3s, define new coordinates s, ...s, which parametrize
the orbits which are surfaces of constant z, ...z, . sothat 2, ...z,_, .3, ...5, are a
new set of coordinates related to z,,...,z, by a non-singular transformation. Hence
there is a set of r commuting vector fields b;, 1 < ! < r spanning the tangent space of

the orbits at each point and the f,, are linear combinations of them:

f:c! = ZAitabl‘ (52)
t=1

For this to hold it is necessary that A, is such that for each fixed &, the corresponding
set of vectors f,, have a completion which spans a space of dimension at most r. From
(50) and (52)

< aF,
E)\tzu, u):i———k—-—— ERT
:a_;- flor 7 & (61‘1/8 ) o
forl<a<m;1<i<pl<j<n (53)

From (48), taking the total derivatives gives
d m
d_" (Z Fihoi(, u))

k=1
OF, | 0RO g~ OF, O ],
dz; Ou; Oz 9 (8u,/0z;) O, 0z; ak

2 i=1 i 7 {=1i=1

k
=0 (54)
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since Fy, = 0. The third term becomes, using (53),

ii aazaz Z"‘*“"““zz)‘"aas ( )

=1 =1 i=1 =1

—

giving the equations

[ {0F, &~ 8F, O,
Z Bz, + 6u Ba:
k=1 i

)“LZ Aita g (g;‘f)zo (55)

i=1t=1 J

for 1 < j<mnandl £ a < m'. From (53) once the f;,; and one set of vector
fields b; (independent of the h,;.) have been found for a particular example, such
that [b;, b;} = 0 for all 4, j (I am not sure how hard this will be to arrange in general)
the );;, can be written down as linear combinations of the h,;. Sets of values of
r,m’, X, b, h are obtained by searching first for cases with r = 1 then r = 2,3 etc. A
is a vector space of dimension ' any spanning set of which gives a set of f which are
in involution. These are substituted into (55) which results in nm' equations for the
np + p + n unknowns xJ,u,,au /6:!:3- in terms of s,,...,s, as independent variables.
In addition to these results one has two further sets of equations:

Oz, Su fu
9L _ ! i
ds, bij Bs, B:E 3z, 0 (56)

1] 1

If m’ = m the reduction of dimension from n to r will be called complete. In this case
all the coefficients of the h,, can be independently equated to zero as happens in the
last example in this paper. In the resulting system o« appears only in the unknowns
X, b, h and is therefore to be Lreated as a parameter. Hence using the notation

Ok, _ )
Buy, Gyij (a:,u ) (57)

equation (53) can be written as

r m
Z'\itbtj = ZGk:‘jhk' (58)
t=1 . k=1

Now a matrix Ay = (Ai)k has rank < r if and only if there exist r linearly indepen-
dent vectors ¢; such that

A= ZQ!J ¢ e 4 = zr:a'.jcik (59)

f=1

hence from (58) the condition on k, that the b,; exist is that

rank (EGwhak) <r forl1<a<m. (60)

k=1
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These are necessary conditions on h,, but they are clearly not sufficient unless
m’ = 1 because the b; do not depend on . In fact the rank of 370, Giihos
is the least dimension for expressing equation o of (48). Further from (53)
rank (3 1=, (0F, /6u,-’j)hak) = r where the argument is regarded as a matrix with
indices (¢,a), j and r is the least dimension for expressing the set of linear combina-
tions k. of the original equations. ‘This is clearly sufficient as well as necessary for
the existence of A and b satisfying (53} but it is not sufficient for the & to commute.

After all these calculations have been done for a system it is obvious from the
arguments that if w satisfies the original system then =, u{!) satisfy the derived system.
The converse can be assured by including the original system, now regarded as a set of
algebraic equations amongst the new unknowns, with the derived system. Since (54) is
satisfied everywhere it follows that Yy | Fih (=, u) = 0. Hence one set of solutions
of (63), as above, contributes m’ linear combinations of the original system, and when
a total of m independent linear combinations of the original system are obtained the
original system must hold. This shows that the method does not alter the set of
solutions provided care is taken ensure that a complete set of derived equations is
obtained. To look for one-dimensional systems resulting from (12), the most useful
for numerical calculation, put r = 1 then equation (53) becomes

so for fixed b one seeks all possible solutions X, h of

m

Xb; =D Giishy.

k=1

This implies that

X = z:‘zl Gh'!'hk

H bj
which is independent of j 1.
A = ket Gl _ Yopm1 Grishi  _ Zie: Grinlu 61
P = b, - b, B b ) (61)

If the ratios of the numerators are independent of ¢, this determines b up to a scalar
factor, otherwise there are no solutions for b. If such a b does exist, A is found at
once, and the equations can be solved for (some of) the k. The system (53}, (55) and
(56) are a generalization of the equations for the integral strips in the general theory
of first-order nonlinear PDEs with one unknown. For if m = p = 1 then m' = | and
trying r = 1, there is a single vector field f and A can be taken to be 1. Also h and &
are not needed. So put h = A = 1 and equation (53) gives simply

ar
3 (0ufdz;)
and (55) gives
OF OF du ( Bu

— = I1<j<n.
3z, T Guos; ' 9s ) 0 frlsjsn
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Hence introducing p; = du/0z; and eliminating b; from (56) one obtains

Op; __OF oF 9% OF
s Oz; Ou™’ Bs apJ
and hence
Bu _ <~ Ou Oty
s A r, ds
j=1 1

which are the equations for an integral strip for a single nonlinear first-order PDE.

5. Minimizing the number of dependent variables

Returning to the general case, the resulting system (53), (55) and (56) of the form
(12) may have an unnecessarily large number of unknowns. If there is a simpler way
than the standard method for writing the original higher-order system as a first-order
system i.e. involving fewer unknowns, then from section 1, these new unknowns are
functions of all the variables in the standard first-order system. To minimize their
number look for a change of dependent variables u; — v; for 1 < i < p given by
#; = ¢;(x, v) such that upon substituting for u; and du,/dx; using

Ou; _ Be; |y~ Oy
61'1' - ax_, = 31)’ 61:1 '
I obtain
__OF, i 8F,  0(8/0z;.) I oF, o
-t 62
e (Bv,/Bz 'Z;Jz_l 8 (0u,/8z;.) 8 (8v,/0x;) ; a (9, /0z;) dv, (62)

for: 1< j<n;p+1<!I<p;1<k<m;p chosen to be as small as possible.
Hence there are p — p’ linearly independent vectors 8/0v; acting on the manifold with
coordinates u,,...,u, which satisfy the system

Fd
aF, de, ' ‘
o Toa Bo = for I<j<ml<k<m 3
Za(au,—/amj) dv 0 orl<isnlsksm (63)

i=1

Hence the matrix 8F, /0u, ; = = f(j k)i has rank P’. Since the derivatives e, /0v are each
taken with all the other v, he]d constant, the vectors X; = 8/0v, forp +1 <1 <p

are in involution with v;,...,v,, as invariants of the (p — p') dimensional mtegral
manifolds. The equations (63) can be written as
Fijy-X =0. | (64)

From these equations a basis for the X, must be found and a complete set of invariants
of their integral manifolds gives the required new variables. Suppose for example that
the given systern is

f 0
Fl = _(ul + u4 -+ .‘L‘luz) + (u1u2 -+ u3)——'_(u1 + xluz =+ U4) =0 (65)
Oz, dz,



Application of Lie groups and differentiable manifolds 2933

8
Fy= F (uytp +ug) + 2, (u; + 2yuy + uglm—(u; + 2 uy +uy) = 0. (66)
T, dx,

Here p = 4,m = 2 and n = 2 and note that this system could have been disguised so
as to make the choice of new variables not immediately obvious. First the derivatives
OF, [8u; ; must be found which are as follows where the column headings are (k, j)
and i goes from 1 to 4 down each column:

(1,1) (1,2) (2,1) (2,2)
1 Uty + Uz uy, oz {uy + z,uy + uy)
2, #(uuytug)  wy o 25(uy + au, ) (67)
0 1
1 Uty + tg 0 2y(uy + 21y +uy).

This is easily seen to have rank 2, hence p’ = 2 and the equations (64) become

X1+:1’:1X2+X4:O

(68)
u Xt +u X2+ X% = 0.
To get the analytic form for the integral manifolds NV it is convenient to let u; and
u, be parameters within each member of N, hence choose X} = 1,XZ = 0 then
X3 = —u, and X3 = ~1. Similarly choose X! = 0,X7 = 1 then XJ = —u; and
X% = -z, so a basis of solutions is X = (1,0,—-u,,—1) and X, = (0,1, ~uy, —z,).
The integral curves of X, are given by

(=9

u1=1 %

4 dug
du, dug

du
=0 —3 — d = —
duy Y an dug

which can immediately be integrated to give

u = (V3 + €y, 09, —CaUs + C3, —U3 + Cy)
where vy = 0 gives u; = ¢; so u is the translation of ¢ a parameter distance v; along
X. Similarly the integral curves of X, may be found giving uw = (d, v, + dy, —d v, +
dg, —z,v4 + d,) is the image of d after translation by v, along X,. Hence applying
both the mappings (which must commute) to ¢ gives

U= ¢33°¢3‘(C) = (V3 + €1, Vg F 09, —Valy — €104 ~ Coug + €3 — Ty — V3 Cy). (69)

The problem is now to determine which functions are constant within the manifolds
obtained from the two families of integral curves. If from (69), v4 and v, are eliminated
by the relations

Uy = Uy =€ Uy = Uy — Cy

one obtains

Uy = —U Uy +Cyey + Cy Uy = —uy — TUg + 2,6+ ¢ F oy
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Hence the two functions e,cy + ¢4 and z,¢5 + ¢; + ¢, together with the parameters
u;,U, determine u and the two functions therefore parametrize the set of manifolds
so from the previous argument one should choose

vy = Uyt Uy = Tyt oy oy

as new variables in (65) and (66) giving the simplified equations

This argument generalizes the corresponding argument for linear systems. In gen-
eral one can expect parametric dependence on some of the variables in the set
{vprs1,-- ¥, } although their derivatives have been eliminated.

6. General conclusions

The procedure for analysing a first-order system now seems to be clear. Take the
completion of the system so that it becomes locally solvable (at least for the case
m = p). Then look for reduction of dimension of linear combinations of the equations
(coefficients depending on u and z) giving systems of dimension r = 1,2,3 etc in
turn. For each case look for a minimal set of unknowns as above. Each set of equations
obtained is a potentially useful consequence of the original problem (especially if m’ =
7 and r is small) whether the solution is obtained finally by numerical or analytic
means. If the original system (12) is inconsistent i.e. there are no solutions u, every
PDE for u is vacuously satisfied by every solution u of (12), hence any PDE should
be derivable from (12) using the completion procedure thus the inconsistency of (12)
would be expected to be made manifest. Another reason for wanting to use this
procedure is that for the case m = p it generates a locally solvable system therefore the
necessary and sufficient conditions for an infinitesimal geometrical symmetry operation
can be written down some uses of which are mentioned in the introduction.

Finally, it could be thought that the procedure can be repeated, giving results
not obtainable from one application of it, by applying it to the derived r-dimensional
system obtained from (55) and (56) as previously described. To show that this is not
so, regard (55) and (56) as a system of PDEs for the unknowns z;,u;,u,; ; for 1 <i <
pand 1 < j € n with independent variables s;,...,5,. Write down their first total
derivatives with respect to s as one would do for the first step of the completion.
The results are

&z, 8b,;
i _ My 7
Bs;0s5  Bsy (70)
o', o[ 8 [ou du, 9b,; |
= — ==L ]p, 4 =t 71
8s;0s4 oo lasﬁ (Bzcj bij + dz; dsy ()
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a m
=52

k=1

" 00, B [ Oy, 02 { oy,
+ZZ{6% B_s, b—g +’\‘t°‘63ﬂ631 Oz; =0. (1)

t=1 =1

OF, | N~OF du|,
ati i=1 9u; 3:t:j *

Equations (72) have second derivatives of the unknowns with respect to sg only in
the last term because F}, and their derivatives are now functions of the new unknowns
only, not their derivatives with respect to s. Can there be a linear combination of
(70}, (71) and (72) involving only the first derivatives of the unknowns i.e. only up to
the second derivatives of 47 Such a linear combination could clearly not involve either
of the sets of equations (70) or (71) because the second derivatives in them appear
once in each equation and nowhere else in the system. But the third set of equations
(72) is obtained algebraically from the second derivatives of the original system after
completion, hence from the completion procedure described in section 4 any linear
combinations of them must involve third derivatives of u i.e. second derivatives of the
new unknowns. This disproves this possibility of further reduction on the assumption
that the compleiion of the original system was found in the first step.

In the case of a single higher order equation which is locally solvable (this includes
all equations expressible in general Kovalevskaya form) the procedure can be simplified
because of the following argument. For simplicity I shall only prove the result for
second-order equations but generalization is straightforward.

If the equation

F(z,u,{%},{a—i%‘;;})zo (73)

is locally solvable so is the system (74)+(75). A corresponding first-order system
derived from (73) is

Op; du i
Ap ), ¢ -t =0 L= — <1 <
F (::,u {p:} {amj }) P= g forl<ign (74)
to which the extra equations

op; _ 9%

dz; — Oz

(75)

must be added, Suppose that

d
(%s“m{ﬁh}, {ézu‘

7

)
J)

)

satisfies (74) and (75), then

(%a"o:{l’;lo}, {'g—z&
i
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satisfies the first equation of (74) and (75) and the sarme values of (2, u,, {Bu [9z;10},
{0%u/dz;0z;|,}) satisfy (73) and hence there is a neighbourhood of , in which u
satisfies (73) and at z = x;,

Ou Bu 9%u 8%y
and

oz, . 9z, dz,02; ~ Ow.0%; |

From u compute du/dz; = p; then (74) and (75) are satisfied by u and p; in the same
neighbourhood, showing that (74) and (75) are locally solvable provided (73) is also.

A similar argument shows that any first-order system obtained from a higher order
locally solvable equation by the standard method is itself locally solvable, provided
the extra equations resulting from the commutativity of the partial derivatives are
included. This result can be further extended to any reduction of the equation to first

nrrln- "‘“"““"e th\. new "al'}ables are thcu fuuuthﬂS O1 (.p, u, {p }) and local DU‘]\'ablllhy

is a geometrical property independent of any particular coordinate system. This result
alsc holds for any number of equations. Its significance is that systems in Kovalevskaya
form can be directly written as a first-order system which is locally solvable which will
not require the completion procedure previously described.

7. An application connected with statistical mechanics

This is a standard problem in statistical mechanics. The objective is to calculate
thermodynamic properties (for example the relationship between the pressure, vol-
ume and temperature for unit mass of fluid) and correlation functions, describing the
distribution of distances between the atoms or molecules, from a knowledge of the po-
tential energy functions describing the law of force between the particles of the fluid.
Usually in applications one is concerned with three-dimensional systems (in contrast
to the one-dimensional systems treated here) for which many approximate methods
have been developed both by analytic means and computer simulation [19]. The gen-
eral statistical mechanics theory is based on Newton’s laws of motion together with
the standard statistical assumption of the Grand Canonical Distribution [20]. I have
shown in [11] that these, for the one-dimensional case, give rise to a functional equation
from which a hierarchy of approximations can be introduced obtained by truncating
the functional Taylor expansion of this equation after N terms. The first-order equa-
tion was shown to lead to a set of integral equations which are numerically tractable,
Later I attempted to solve the second-order equation [12]. The methods developed
in the present paper should be applicable to any member of such a hierarchy after
a discretizing approximation similar to those used in [12]. I will show here a related
example of a system with n independent variables which i1s completely reducible to a
system with of dimension r = 2 i.e. there are no more independent equations obtained
by looking for derived systems with r > 3. Hence going to the limit n — oo it gives
a PDE in infinite dimensions (a functional differential equation) which is reducible to
two dimensions. In a forthcoming paper I will report the details of the application of
these ideas to statistical mechanics.
Consider the following equation:

3

du o 1f~ 8 Z. du
= [ Soge o1 (Suar) (S o

i=1
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where the g; are constants. Equations (76) can be written as a first-order system thus

(77)
1o~ Ou,
FZ = 3— — exp (u2+ Ega,f) =0
To show that (77) is locally solvable, diflerentiation gives
oF, —a; i:=1;1.SJ'$"
3 =40 i=1;7=0 (78)
g .
0 i=2
and
1 i=1,35=0
0 i=1;1<j<n 79
0 i=2;5=0 (79)
\-3Fa;  i=21<j<n
where I have written exp (v, + 3 D 1, @;0u,/8z;) as E(z). Using the notation
Jh _i
8 (dF/da;) ~ ¥
I obtain from (37) for j ={ and i = 2
7 0 J=0 _
hz-"{—%Eaj 1Sj5n}—0 (80)
and likewise for { = 1
< —-a; 1<j<n < 1 Jj=0 _
h’lj{ 0’ 720 }+h2j{0 153'571}_0' (81)

From (80) and (81) it follows immediately that h =0for0<j<mnandi=12
except hm, provided all the a; are non-zero, but then (37) reduces to hmBF /Ou; 1= =0
forl<i<n;1<i<pso hm = 0, hence h is independent of dF/dz; giving only a
trivial solution. This shows that (77) is complete and locally solvable since m = p.

Next look for linear combinations of (77) which give reduction of dimension so
consider

h=h,(z,u)F, + ho(e,u)F, (82)
hence
h ar, 6F
Ba. hla + hy 25a, (83)

i.d
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First suppose that r = 1 then changing independent variables to zy,2,...,z, and
suppose that derivatives with respect to z,,...,z, do not appear. Then from (50)
2. 6h Oz
—L =0 forI1<I<mnand1<i<?2 (84)
= Ou, ; Oz,

Writing down the derivatives of h explicitly from (78), (79) and (83) gives

—h, (2)a; i=L1<j<n
h =1 . i=2:1<j<
d _ sho(z)E(z)a; z 2,1. <j<n (85)
0u; 5 | hyle) i=lj=0
0 i=2,9=0
hence (84) gives
2(:1!:) Zh :n)a fori=1
and
Bz,

2 3 hy(x)E(e) =0 fori=2

for 1 <1 < n. If there is a one-dimensional derived system, the Lie algebra generated
by the f, must have dimension one so they are parallel which implies that hy(x) = 0,
hence hy(x) = 0 so only a trivial result is obtained showing that no reduction to one
dimension is possible. Before searching systematically for reduced systems for small r
one should first identify the vector fields f of equation (51) which from (85) are

(f1); = f1; = habjp — hya;(1 = 650) (86)

(fz)j = fzj - ‘%th“J’(l - 63'0)- (87)

It is now straightforward to compute the derivatives of f, and f, and hence their
commutator

n

Un 2l = 1i8te) = Ful i) = 3 (Rt = Fagac i)

=0

The result is
T ANEE RS ST
vlalo =3 2\ T - "Bmi e

1, 1 dh 88
[£1 Faly = —5haoa; 5— (hE+Z[21,13 (h,E) - QhEa‘aJal] (88)

1<j<n
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If [f,,f,] = Af, + pf,, (the necessary and sufficient condition for r = 2 for a single
value of £ in (52)), then for component 0,

= iz,
50
1 _— Oh
A= — 2
QEZG‘ dz,

and for the other components, after dividing by a;, I get a single equation from which
4 may be determined thus

1. 8 1 ) oh, 1 & 8k, 1
— —he—— (B, Y4+ = R = E—L| = __ E —2 _ _,h,E.
9 2630( 2 )+2lz=;a:[ lami (h2E) h2 5z '] 2Eh1 la 2# 2

(89)

This shows that there is a non-trivial set of equations for r = 2 for arbitrary A i.e. any
" two LI vectors h, could be chosen each pair giving a complete set of two equations,
each member of the pair being reducible to two dimensions. But to get a closed system
in two dimensions requires the stronger condition that the set of vectors f, for each
choice of h, spans the same space i.e. equation (52) must hold

. i:)\ b = h’a26j0_hulaj(1—éj0) i=1
fias ot ~3hasEa;(1 =55 i=2

t=1

for 0 <j<ne=12.

(90)

Hence regarding this as a set of linear combinations of the vectors b, and b,, (90)
implies that the four vectors on the right for 7 = 1,2 and @ = 1,2 have rank 2. This
is easily shown to be true and the obvious choice of the b and A is

blj = 5;'0 sz = aj(l - ‘5;'0)

and

Arep = (hyg, _hll) Ayp = (hzza_hm)

1 (91)
Agy = (0, —Ehle) /\mz =(0,- 22E)

Now substituting into (55) and (56) gives all the reduced equations.
Denoting for simplicity the derivative of F, with respect to z; taken at constant
u, ; but varying u; appearing in (55) by dF, /dz, equation (55) becomes

2 2 2
dFk 3 au,- _
Z hak + Zm )‘uags—t (E) =0

k=1 i=1
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Inserting the values of A and because the b are independent of the h, the coefficients
of the h can be equated giving just two independent equations which are

an_ o (ow) o 4R, 0 (0w) 1,0 (ow)_
dz;  Os, (8zj)-0 dzj+831 dz; 2EE2- 3_'.1:: =0 (92)

Using the notation p;; = u; ; and from (77)

dF; _ dF, - _F
dxj 2 dI'J - 2j
where
1 n
E = exp ("2 + = Zﬂ':’?zi\ : (93)
\ < i=1 / -

Ouy du;
B, Pro oy ;PU &y

d & 1 0Py a4
p?j - a_szplj = 0 - EPEJ a plj 63: =0 ( )
Oz dx;
—d = 5. — - — 5.
8s, 10 3s, a;(1 = b0

together with (93). The 3n+5 unknowns are now z;,u,, py;; for i = 1,2;0 < j < n but
there are 4n + 8 equations for them where E has been introduced as an abbreviation
in (79). First consider the equations for z(s) which can be immediately integrated
giving

;= éjcsl + c; ;= aj(l - 5!-0)32 +dj. (95)

These can be regarded as the result of translating the points ¢ and d respectively
through parameter distances s,,s, along the respective integral curves. Consistency,
l.e.  is uniquely determined by (s,, 5,) for a given value of ®(0, 0), requires that these
mappings commute (as guaranteed by the general theory) which is obviously true.
Applying the mappings in succession gives

z; = aj(l - 6j0)52 + 51-05, +¢; for0<j<n (96)

From the second and third equations of (94), py; can be eliminated giving

dpy;  19%py; Ipy;
LS N1 F N (G R ) 97
E(asg T30 ) "B *7)

Hence p,; should be found in terms of E from (97), then differentiated to obtain py;.
Then u can be obtained from these by integration. Finally (93) allows the calculation
of £ which gives a closed set of equations to be solved by iteration or possibly by
further analysis.
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