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Abstract. General techniques are developed to obtain: (1) the completion of a sys- 
temof nonlinear first-order partid differential equations (PDES) which is an indepem 
dent set of further PDES derivable from the system by differentiation and elimination; 
and (2) simplifications of the system by choosing appropriate new independent and 
dependent variables using a result from Lie group theory The number of dependent 
and independent variables is reduced to the minimum. The theory specializes to the 
clasricd theory of a single nonlinear PDE with one unknown and can be combined 
with the methods of Olver, Edelen and Estabmok and Wahlquist. Most of the meth- 
ods appear to be sufficiently well defined for automation as are the techniques in 
Olvcr. A second-order nonlinear equation in n dimensions is given which is related 
to a fuoctional differential equation in statistical mechanics. It is reducible to two 

dimensions for any value of n 2 2. 

1. I n t r o d u c t i o n  

In this paper I will develop the idea of reduction of dimension for linear and nonlinear 
systems of partial differential equations (PDES). I t  is an extension of Monge's method 
for tackling single PDEs of first order with one unknown. The  method is applicable 
t o  any system defined with sufficiently differentiable functions but the result is not 
usually one-dimensional; in fact there may be no reduction of dimension giving no 
simplification a t  all. The  result of the transformation is another system of PDEs having 
the same set of solutions with a possibly smaller number of independent variables but 
the number of dependent variables, which are the unknowns, may be increased initially 
but their number will afterwards be minimized. From the point of view of the general 
theory of systems of PDEs (called systems for brevity) the procedures indicated here 
should be applied initially, then symmetry methods should be applied if necessary. 
The best known of these are, firstly, looking for infinitesimal generators of geometrical 
symmetries [l] (isovectors of the differential ideal [2, 31) from which group invariant 
solutions can be obtained and the generalized method of characteristics ([4, 51). The  
latter method requires the initial da t a  to satisfy an extra condition hut perhaps more 
flexibility can be obtained by applying the method to a prolongation of the original 
system (including derivatives of the dependent variables as new unknowns). 

Secondly there are the related methods of Estabrook and Wahlquist [6] originally 
applied to PDEs with two independent variables. They prolong the differential ideal 
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in such a way that i t  remains closed and well posed introducing auxiliary variables 
known as pseudopotentials [7]. If this is possible it leads to a set of conservation laws 
and allows a calculation of Backlund transformations which, whether or not they form 
a group, allow a new solution t o  the PDE to be obtained from one or more known 
solutions. Denes and Finley [a] discuss the existence of Backlund transformations for 
a general PDE with any number of independent variables. 

Many if not all of the methods presented here can be carried out mechanically, 
as can the calculation of symmetry groups, hence they can be done by computer. 
These methods must be equivalent t o  a method for finding a minimal basis of 1-forms 
(characteristic system) in which to express the closed differential ideal corresponding 
to the system [9]. This method requires finding the first integrals of the characteristic 
system. This may turn out to give an explicit procedure for carrying out the reduction 
which can be stated more concisely, treating the dependent and independent variables 
on the same footing. This is based on the Cartan theory of exterior differential systems 
[16], a good introduction to which has been given recently [lo]. 

Several examples are given which motivate the general theory but by far the most 
important of these is the last example which is closely related to a functional differen- 
tial equation in statistical mechanics. I t  shows that a second-order PDE in n indepen- 
dent variables can be reduced t o  a system in two independent variables for any value 
of n 2 2. Hence there is a second-order functional differential equation closely related 
to those arising in the classical statistical mechanics of the onedimensional fluid Ill, 
121 which can be expressed with two independent variables. The consequences of a 
generalization of this result will be explained in a future publication on statistical 
mechanics [13]. 

The layout of the paper is as follows. In section 2 I start  with the general linear 
second-order PDE to motivate the general theory and to show some simple results 
giving a powerful simplification of a class of PDEs. I then show (as is well known) how 
any solution u1 , . . uq of any system can always he regarded as a subset of the unknowns 
in a solution u1 . , , u p  ( p  2 q )  of a corresponding first-order system introducing what I 
refer to as the ‘standard’ method of obtaining such a first-order system. This justifies 
restricting all further discussion to first-order systems but it raises the question of how 
the different ways of reducing a system to first order are related. I show that they are 
all related by a change of dependent variables. 

A very important idea is how the solution of a system varies with the boundary or 
initial conditions, A small change in these conditions will give usually asmall change in 
the solution, the difference satisfying, to first order, a linear system. I argue in section 
3 that some properties of the original system also hold for the linearized system, hence 
this can be used for classification purposes. This provides a motivation for studying 
linear systems. For these systems I have formulated the minimization of dimension 
by first applying a completion procedure analogous to the method used for treating 
the system f r .  V u  = 0 (the name being justified by Frobenius’s theorem) followed 
by a change of dependent and independent variables applied to linear combinations 
of the system in such a way that the number of independent and dependent variables 
is minimized. This is straightforward provided one has familiarity with some of the 
essential concepts of differentiable manifolds and functions, vectors and forms defined 
on them, an excellent introduction to which is given by Boothby [14]. 

In section 4 I have extended the methods of section 3 to general nonlinear systems. 
The concept of local solvability mentioned by Olver [l] is introduced and the proce- 
dure for obtaining a locally solvable system is believed to require only the repeated 
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elimination of the second derivatives from all the first total derivatives of each equa- 
tion of the system. An extension of the argument to  minimization of dimension for 
nonlinear systems holds. In section 5 the number of unknowns is minimized by a 
change of dependent variables, the number of them being determined by the rank of 
a matrix. In section 6 general conclusions are given about the simplification methods 
and it is shown that the 'standard' way to get a first-order system from a higher order 
system by introducing auxiliary variables preserves local solvability provided some ex- 
tra equations are added, thus showing that the completion procedure is not necessary 
for higher order systems known to be locally solvable. 

Finally in section 7 an example is given of a nonlinear equation of second order 
in n independent variables which is reducible to  two dimensions by this method for 
any value of n. These equations can he regarded as a sequence of approximations to  
a second-order functional differential equation as n increases which is therefore also 
reducible in some sense to  a two-dimensional system and i t  is consequently tractable 
numerically if not by further analysis. 

2. Minimiza t ion  of the d imens ion  of a second-order PDE and expression of 
a general  system as a f i rs t -order  system 

Consider the following class of PDEs 

where ai, is a symmetric matrix of rank 1 which is a function of z = (x,, . . , , x,) so 
one can write aij = 6.b. 

(Note that  all the arbitrary functions will be assumed to  be sufficiently many times 
differentiable for all the operations to  be well defined and note that I have used the 
same symbol a for three different functions, being distinguished by the number of 
subscripts. I have done this throughout because i t  saves constantly having to find new 
symbols.) 

I J '  

Consider the curves z i ( t )  defined by the differential equations 

3 = bi (z ( t ) )  
dt 
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Hence (1) can be written as 

Suppose that the (n - 1) parameter set of curves z i ( t )  can be parametrized by yi = 
~ ~ I , ~ = , . w h e r e  t could be given by t = 0 when zn = 0. Suppose that (1) only relates 
U at points on the same surface and the whoie space is fiiied with such surfaces, and 
suppose initially that these surfaces or manifolds are of dimension n- 1 then there is a 
one parameter family of them. Hence there is a function zl(z) whose level surfaces are 
these manifolds which can be rewritten in terms of the yi and t which are defined in 
the region of 2 of interest. A necessary condition on the manifolds is that  d/dtly,,,,vm-, 
is an interior derivative to them 

%I = o  
dt Y , . - . Y n - ,  

i.e. z1 depends only on yl,, , , , Y,,-~. 
y,, . . . , yn-l such that  the Jacobian 

Choose z2,. . . , z , - ,  also to be functions of 

# O  
a(zl,. . . , Zn-,) 
a(y,, . . . , Y n - ~ )  

so the transformation can be locally inverted. Then the coordinates z can be replaced 
by z,, . . . , z " - ~ ,  t. Making this change of variables in the second term of (4) gives 

It is now clear that  I still do not have a sufficient condition for the reduction of 
dimension. I t  is also necessary that this expression does not involve au /az , .  This 
requires that 

This is a system of the form f, . V u  = 0 and general theory shows that this has 
fie!& 5 aiid ~ ~ b ~ V b  

generate a Lie group whose action on the coordinate space of points ( z l ,  . . . , z,) gives 
orbits of dimension at most n - 1 or equivalently the Lie algebra generated by taking 
commutators of the vector fields repeatedly until closure yields a t  most n - 1 linearly 
independent vector fields. From (6) and (7) it follows a t  once that the transformed 

a non-irivia; so;uiion for Zl if an: if the of 
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equation is interior to  the manifolds I ,  = constant i.e. the transformed equation does 
not involve the independent variable z1 in the derivatives. I t  is now easy to show 
that if the dimension of these orbits is r then equation (1) can be expressed only in 
terms of zn-?+,, . . . , zn-,, t thus showing that it is reducible to r dimensions. This 
is a great simplification of the original equation (1) but extensions of it to  higher 
order systems seem to be very complicated. The treatment of first-order equations is 
easier to describe. Hence, because any system is expressible as a first-order system by 
introducing auxiliary variables, I shall briefly discuss this and show how the various 
forms it can take are related. The remainder of the paper concerns the analogous 
technique of minimization of dimension for first-order systems, first the linear case 
and then the general nonlinear case. 

Consider a general system of differential equations for the unknown functions 
U,,. . . , u p  of the  independent variables I,, . . . ,zn 

Bu, au,  Bu, au, 
p ax ,  ax ,  ax,' ax, Fk(zl...z",u ," .U ,-,- , _ . .  - - 

. .  

for 1 5 L 5 m, which can be written more compactly as Fk ( z ,u (~ ' )  = 0 where 
~ ( 9 )  is the set of all qth and lower-order derivatives of u1,u2 . .  .up including the 
undifferentiated variables. By the following 'standard' method of introducing auxiliary 
variables, the system can be expressed as a first-order system. Let 

etc up to 

Then the original system (8) becomes the first-order equations 

together with the auxiliary equations (9) up t o  (10). The significance of the transfor- 
mation is that  any solution U of ( 8 ) ,  when differentiated gives U((-,) which satisfies 
(9) up to  (10) and (11) and conversly U and its derivatives satisfying this system im- 
plies that U satisfies (8). Hence any solution U of the nonlinear system (8) is obtained 
by pickiEg os! c from the so!~!ior? ~ ( 9 )  of the first-xder sys!em (9) to (!0) znd (I!). 
This justifies restricting attention to  first-order systems. 

Consider the most general possible way to introduce auxiliary variables into 
(8) involving only first-order equations. Let v, = gl (x ,u( ' ) )  then introduce U, = 
g2(z,u(1),v(I 1) ) etc and in general vi = gi (z ,u( l ) ,v :  1) , . .  .,vi!),) for 1 5  i 5 r. The 
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auxiliary variables ‘vl .. . v7 can now be related to the standard auxiliary variables 
u ~ , ~ ~ , , , ~ ~ .  Since u1 = g1 ( , ,U,  { u ~ , ~ } )  it follows that 

and 

which gives an expression depending on just z ,u ,  tui,,} and { u ~ , ~ ~ } .  In the same way, 
if one has u3 = g3 ( z ,u ( ’ ) ,  v(I1), u y ) )  differentiation of v2 gives 

which is now a function of z, tui), ( u ~ , ~ } ,  ( u ~ , ~ ~ } ,  (ui,jkl] so by substitution v3 can 
be expressed in terms of these variables etc. Hence any new set of auxiliary dependent 
variables 21 reducing the system to first order, can be expressed as ui = h , ( z , u )  for 
some known functions hi where U is now the standard set of dependent variables (the 
original ones and the auxiliary ones) making the system first order i.e. the U(() in this 
argument. There are cases when the number of variables U to express the system can 
be less than the standard method gives. Then the argument in section 5 shows how 
their number can be obtained and their explicit forms. 

3. Linearization and minimization of dimension for linear systems 

It  is of fundamental importance in the study of systems of PDEs to find the type of 
boundary conditions under which a system has a unique solution or more generally 
how the domain of uniqueness B of the solution is related to  the set or manifold 
A = { ( ~ ( s ) ,  u(a)):s E S) of initial data. The domain B is defined to be the region over 
which all possible solutions of the system consistent with the initial data A coincide. 
In general one can ask how the solution of a system is altered if the initial data are 
varied by O ( r ) .  On the assumption that this is also O ( r )  which one would expect if 
the Fk are Cm this gives rise to a linearized form of the system and the argument 
following shows that E for the original system with a given A is the same as B for 
the linearized system with the initial data +(z) given on the same set { z ( s )  : s E S }  
upon which A was defined showing that the equations are of the same character. 

Let U satisfy the system 

F~ (z,u(1)) = o for 15 k 5 m ~z E D (12) 

where D issome open subset of R“ which may depend on U. Unless otherwise specified 
the coordinate point z E D. Let the initial data be z ( s ) , u ( s ) ,  where s = (sI,. . . ,sn). 
Let U +&U satisfy the same system with initial data ~ ( s ) ,  U(.) + 64s). Then 
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Let 6u be small say O(c)  as 6 + 0 so put 6u = €4 and subtract (12) from (13) giving 

Taking the leading terms which are O(E) as e - 0 by differentiating with respect t o  c 
gives 

This is the equation satisfied for small changes 4 in U resulting from small changes in 
the boundary conditions. The derivatives aFk/aui and aF,/aui,j must be evaluated 
for U equal to the original solution. 

Suppose for definiteness that U is determined uniquely for z E B by the system 
(12) and the initial conditions A .  Now if U is altered to U(. )  + c4(s) and z ( s )  is 
kept fixed for 5 E S then u ( z )  may be altered for z E B. But if U is altered in 
such a way that u ( s )  for s E S is unchanged, then U(.) for z E B is unchanged. 
Hence obtaining this change approximately by linearization, 4 must clearly be 0 for 
z E B provided +(a) = 0 for s E S. If C is the set of z for which the linearized 
equation has a unique solution, i.e. 0 when +(a) = 0 for all a E S ,  since z E B then 
z E C so B C C. Now conversely suppose z E C so that + ( z )  = 0 satisfies the 
linearized equation uniquely when 4 = 0 for a E S.  I need to consider an arbitrary 
change in the data z ( s ) , u ( s )  leaving them fixed for s E S.  Let u,(z)  satisfy (12) 
and boundary conditions z ( s ) , u , ( s ) , s  E T and let uF(z )  satisfy (12) and boundary 
conditions z ( s ) , u F ( s ) , s  E T where u , ( s )  = u F ( s )  for s E S c T.  Let u i ( s )  = 
u,(a) + ( i / N )  (uF(s) - u , ( s ) ) ,  s E T for 1 5 i 5 N and consider ui(z) determined 
by (12) and the boundary conditions z(s),ui(s),s E S. Let c = 1/N then & ( z )  = 
ui(z) - U ~ - ~ ( Z )  is obtained to O(c2) by linearizing (12) about ui-](z) with boundary 
conditions zdi(s) = (1/N) ( u F ( a )  - u , ( s ) )  which is 0 ifs E S. For i = 1, since z E C, 
then 4 = 0 and so U,( . )  - uo(z)  = O(c2). For i = 2,u2(z) - u l ( z )  is obtained by 
linearizing (12) about ul(z) and applying the boundary condition which is again 
c4(s) = 0 for U E S. The equation for 4 from (15) differs from that for i = 1 by ()(e2) 
so uz(z )  - ul(z) = O(c2) .  In the same way ui (z )  - U ~ - ~ ( Z )  = o(c2) for 1 5 i 5 N 
so u N ( z )  - uo(z)  = uF(z )  - uI( z )  = E,"=, O(c') = O(c)  -+ 0 as N - ca. Hence 
u F ( z )  = u,(z) and since u , ( s )  and u p ( s )  are arbitrary, z E E ,  hence C B and 
finally C = B .  It follows that the domain B of dependence of U on the initial data 
A = { ( z ( s ) , u ( s ) )  ,s E S} for the nonlinear system (12) is the same as the domain of 
dependence C of 4 f o r  the linearized equation, (evaluated about the solution 78 of (12) 
with the same initial data A )  with initial data +(s) = 0 for s E S.  B will depend on A 
and the relationship gives the qualitative properties of the system. A consequence of 
this is that the full range of types of behaviour is exhibited locally by systems which 
are of the form of the linearized system above i.e. 

P "  P 

CCaUlajjI.(2)+Cuiaik(z)=0 for l < k < m .  (16) 
i = 1  

azj 
i = l  j = 1  

If the system (12) is analytic the relationship between A and B is expected to be 
smooth (except when the topology of z ( s )  changes for example for an elliptic system 
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in two independent variables B = A when A is given on an open curve but B is 
the interior of the curve when A is defined on a closed curve). For linear systems 
i.e. sys tem for which aFk/aui  and a F k / a q j  are independent of U, the relationship 
between A and B is dependent only on z. This implies that the standard classification 
of PDEs in two independent variables and systems as elliptic, parabolic or hyperbolic is 
independent of the solution U for the linear case i.e. the classification can be obtained 
in terms of z in advance of calculating the solution. But for nonlinear systems the 
result will be dependent on the particular solution which in turn is dependent on 
the boundary conditions. A similar remark holds for more than two independent 
variables when the classification is more complicated [15]. With this notation (16) for 
the general linear system, I shall now discuss them showing one parameter describing 
different types of behaviour and the simplest form the equations take. This was mainly 
inspired by the classification and canonical forms ofsecond-order PDEs in two variables 
[17]. The type of behaviour in example (1) is that a set of linear combinations of the 
system can be expressed in a family of submanifolds i.e. as another iinear system 
with fewer independent variables such that only derivatives interior to the manifolds 
appear. If it is a complete set of linear combinations of the original system this will 
result in the domain of dependence on the initial data being a subset of the manifold 
on which the data appears. I refer to this as a complete reduction of dimension of the 
system. In the example (27) some partial results are obtained in fewer dimensions. 

Before looking for reduction of dimension note that the theory of iinear systems 
(16) must include the theory of systems of the form f k  . V u  = 0. In this case extra 
linearly independent (LI) equations obtained by differentiation and  eliminating the 
higher derivatives as described in Chester (i.e. forming the commutators of the f k )  
must be found before the general solution can be described geometrically. A more 
comprehensive account of the method with very compact notation is found in Schouten 
and & i l l  [i8] where this is shown to be equivalent io the 'outer problem'. iieiurning 
to the system (16), combinations of the first derivatives of the system are sought 
which involve only the first derivatives of U and which are linearly independent of the 
original system, This procedure is then repeated starting with the augmented system 
and continued until there are no new results after one step. Finally from this derived 
system of the form (16) the systems with reduced dimension are sought. 

rrom (10, app'ying ~ u e  uiiicrenuai o p e r a ~ v r  h k .  V to eqiiation k and jiimming 
over k gives (dropping the argument z) 

n~~~~~ ,,e, 8 ~ ~ : ~ ~ ~  1 1 ~ ~  ,:=-..-A:., . . ~ ~ - - L . .  

The  second-order terms can only arise from the terms 

T n t  (1. - h 4h-n + h a  . r s n ; c h ; n r  n r t h o  ~ . m n A . n r A o r  tnrmc i 0 t.11n-r invnlvinlr 1 8 .  ., e -,,y Y C I  \.'k,, - , * k ,  Y l l F l ,  Y l l r  ,O..'m..'..6 Y L  ".,* IrC.Y..Y-YLUI. I- .I.. I ..". "..l"C .... " ..... 
is obtained by equating all their coefficients to zero which gives the equations 

m 

( h k , a i j k  + h k j a i l k )  = " for 1 5 j , r  5 n; 1 5 i 5 p 
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i.e. the matrix 

k=l 

is skew symmetric for 15 i 5 p. Then the derived equation can be written as 

which is a linear equation of the form (16) dependent on the matrix h,, regarded 
as an mn dimensional vector. Hence at each step of the method, one must find a 
complete set of linearly independent vectors h,, satisfying (20) then the corresponding 
equations (21) are the extension obtained after one step. This is repeated until no 
linearly independent equations appear and the resulting system I shall refer to as the 
completion of (16) which is a hasis of a vector space of linear PDEs which is again of 
the form (16). 

Now look for subspaces of this vector space of equations which is expressible in 
r < n dimensions. For simplicity of notation I shall again use the notation (16) for 
such a subspace. Let z l , .  . . ,I, he a new set of independent variables,then 

Changing variables from z to z ,  I will arrange that z l ,  . . . , zn-, are absent from the 
derivatives in the system. These variables may still appear undifferentiated, in this 
case the reduced form of the system will have only parametric dependence on them. 
The system (16) becomes 

so the previous condition gives 

i.e. there are n - r functionally independent functions z satisfying 

Functional independence ensures that no equation of the form f ( z l , .  . . , zn-,) = 0 
holds identically so that the zi can vary independently. This system is of the form 
f ir : .  Vr = 0 where aijk = ( f i k ) j ,  hence the set of vectors f i k  generate a Lie algebra 
with the corresponding Lie group having orbits of dimension r. Roughly speaking this 
is because in the orbits z is constant and the equations give no relationship between 
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the values of z on different orbits so the most general solution is an arbitrary function 
of the orbits which is an n - r parameter set, hence there are n - r independent 
solutions if the orbits have dimension r. It follows that the f i k  are tangent to the set 
of r-dimensional manifolds and if coordinate frames a/asj, 1 5 j 5 r are defined on 
them giving a basis at each point,the f i k  are linear combinations of these i.e. 

where 4 .  V = a/&, or equivalently aijk = C;=, Xieblj. Hence given a system of the 
form (16), after the completion and choice of a linear subspace again of the form (16) 
one should consider the aijk to find out the dimension r of the orbits of the Lie group 
generated by the vector fields f i b .  This gives the reduced dimension r of the system. 
The transformed system is easily found by substituting for the ai jk  in (16) using (25). 
This gives 

au .  P r  

~ ~ A i l k ~ + ~ u i a i k  = O  for 1 _<.E_< m. 
i= l  I = 1  i=1  

The variables s1 . . . sI. are arbitrary coordinates which parametrize the r-dimensional 
manifolds. The reduced system (26) is again of the same form as (16) with coefficients 
X i l k  which correspond to a set of vector fields which must have r as the dimension of 
the orbits of the Lie group otherwise further reduction of dimension would have been 
possible. 

The system (26) is the result of a change of variables starting with a system of 
the form (16) and exploiting the property that it is effectively a system involving 
T 5 n independent variables. The systems (16) and (26) therefore have the same set 
of solutions. Hence considering equations of the form 

which are first order where h;.V acts within the r-dimensional manifolds one sees at  
once that it is equivalent to 

which must also be first order, so it must be in the vector space of equations which are 
the completion of the original system (16). Hence there are no new equations obtained 
by repeating the completion procedure starting with the system (26) so the general 
procedure to apply to a system of the form (16) is to do the completion, and look for 
subspaces of this vector space of equations which have reduced dimension 1,2,3 etc in 
turn. Each subspace is represented by a basis of equations. 

As a very simple example of these ideas suppose that 

au au 1 + -2 - U, + U, = 0 az, ax, 
aU aU 
A +  2 - u , + u ,  = 0. az, ax, 
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Then by differentiation and elimination of second derivatives 

a a - (U2 - ul) = -(U2 - U J  
8x2 8x1 

so avl/az2 = av,/azl  where v1 = u2 - ul. From (27) by subtraction 

combining this with (28) gives aul /axl  = aul/ax2. Hence the general solution of 
(27) is of the form u1 = gl(zl  + z2),u2 = g2(z1 + z2) but substituting back gives 

(91 +d = 91 - 92. (30) 

This form of the general solution results from two independent equations derivable 
from (27) which have T = 1 and are reduced in the same set of one-dimensional 
manifolds, namely z1 + z2 = constant. The extra condition (30) relates the solution 
on different manifolds to each other, hence (27) is not completely reducible to one 
dimension. This shows an example of the significance of partial reductions. 

As the example shows some of the reduced systems may be further simplified by a 
choice of dependent variables which minimizes the number of them appearing in the 
derivatives. Consider again a system of the form (16) and introduce new variables vi 
by the equations ui = Cy,, dilvl where di, are functions of z and det(dil) # 0. Then 

for 1 5 k 5 m. 

Suppose that the system is independent of the derivatives of vi then 

If the system is also independent of v ,  itself then 

P adi, 
azj 

P 

-aijk + x d i r a i k  = 0 for 1 5 k 5 m. 
i 2 1  i= l  j=1 

Using (32) equations (33) can be rewritten as 

(33) 

so first one should find as many (p-p') LI solution vectors di as possible satisfying the 
equations (32). There may he  a subspace of these satisfying (34) also, which should 
be identified. Suppose it is (p-t)-dimensional then 0 5 p-t 5 p-p' 5 p and suppose 
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that di,l . . . di,p-t satisfy (32) and (34) and di,p-t+l . . . di,p-p, satisfy (32) only, then 
the set of vectors is completed so that dij is a non-singular square matrix and the 
system (31) simplifies to 

i=1 1 2 e z [ k d i l a i j k ] +  P 

= O  
I=p-p'+l j=1 1=1 

ior i 5 i 5 m. (35) 

As shown later for the case p = m at  this stage there can be no further first-order 
PDEs amongst the variables; hence in particular the variables . . . , which 
appear only undifferentiated in (35), are independent unless any linear combination 
of (35) gives such an equation. Hence they can be specified beforehand provided the 
original system was consistent, Systems of low dimensionality n obtained in this way 
will be particularly important, especially if p' is small. 

4. Nonlinear systems 

The e.r!ier .rg.F.& de.!ing with !ine&.a?ion strong!y s.gge.ts th.6 2 similzr kind of 
analysis also works in the general nonlinear case. In this section I develop this theory 
which includes these results and the general theory of first-order PDEs as special cases 
but note that in the introduction I made some remarks to the effect that there is 
probably an equivalent method based on exterior differential systems. All the results 
are now dependent not only on the point x but also on the solution U there. Return 
to consideration of the system (12). The first step should be the completion which 
requires finding the first-order equations which are functions of the members of the 
system and all their first total derivatives. (A total derivative is a derivative with 
respect to any of the independent variables while regarding the U as fixed functions of 
x.) This generalizes Jacobi's method [17] for over determined first-order systems with 
a single unknown which must only appear in the derivatives. From the chain rule the 
total derivatives are 

Consider a function h (x, U, {Fk} , {dFk/dzI))  which is independent of the second 
derivatives ui,jl. From the chain rule 

The last derivative can be evaluated from (36) as 

where the first 6 function is 1 if and only if the two sets are the same and 0 otherwise; 
(actually the concept of ase t  with multiplicity is needed here, eachelement can appear 
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any number of times.) If j = I ,  6 ( { j l } ,  {j'l.)) can be written a8 6j.r6r.r but if j # I it 
is non-zero if and only if j', I' are equal to  j, I in either order giving 6jj.6rr. + 6jl .6rj , ;  
hence 

6 ( { j I } ,  { j * l * } )  = 6 j j (6 j *& t )  + (1 - 6jr)(6jj.611. + 6 j j * 6 j j * )  

= & . . 6 p  11 t 6 j p 6 ~ j .  -6l.,.6,,.6rj. 

and the equation for h becomes 

" aFk 6( { j I } , { j * l ' } )  = O .  a h  m n  

k=11.=1 E E a(dF,/dz,.) ,.=I .x sui,. 
These equations can be written as 

f o r l < j < I < n a n d  l s i s p  (37) 

by considering the cases j = I and j # I separately. The equations (37) are the 
necessary and sufficient conditions for h to  involve no second derivatives of U .  

In the first step of the completion procedure a functionally independent complete 
set of solutions h of (37) which are zero for any solution U of (12) must be found. 
They can be found from 

where These include the original equations since if h = F, then 
a h / a  (dFk/dt j )  are all zero and (37) is satisfied. As with the linear equations this 
should be repeated, starting with the Fk replaced by a complete independent set of 
solutions h of (37) and continue to be repeated until no new functionally independent 
results are obtained. The result of this is a set of functions hi(z ,  U ,  Vu) for 1 5 i 5 m' 
which are zero for any solution of the system (12) and such that any function of 
z ,  U ,  h, {dhldz,} necessarily involves some second derivatives of U after substituting 
for h provided some of the first derivatives dhi/dxl actually appear. Hence one expects 
that a function involving second derivatives of h to  involve third derivatives of U .  I 
will now show that this is true and a straightforward generalization of i t  leads to  the 
conclusion that no new results can be obtained from the completion procedure by 
allowing higher derivatives of F, to  appear in the expressions for h. The argument 
is similar t o  the preceding one to get the equation for h hut i t  is generalizable more 
easily. Consider g ( z , u , h ,  {dhldo,)), substituting for the hs in terms of ( z , u ( ' ) ) , g  
becomes a function of (z,u(')). From the chain rule 

satisfies (37). 

and from h similarly 
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Hence 

ah, 
ani$ j.=1 aui,j. a(dha’dzp) = - & ( { p j * } , { j l } )  

This is zero except when /3 is j or 1 so, to fix the order of j and 1, let j = p. Then if 
(40) is non-zero, j # p implies j # 1 and p = I ,  a contradiction so 6j3 is a factor. If 
j = p this simplifies to 

so (40) can be written as 

and the equations (38) become 

which is a set of equations of the form Wj = M V .  for 1 5 j 5 n where each W is a 
vector of dimension pn and each V is a vector of dimension m. Once the completion 
has been done if at least one of the vectors V, ,  . . , , V, say V j  is non-zero, a t  least one 
of the vectors W,, , , , , W ,  is non-zero which must be W j .  Hence M has the property 
that a non-zero argument gives a non-zero image so M has rank m, the dimension of 
the space of V. 

Next consider a function 

where I have used the notations h,;,,,,;, and dshh/dz;, . . .dzi. for the total derivatives 
of h interchangeably. Then 

The last derivative can be found by picking out the third-order terms from ha,@, which 
are 

Hence 
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If {P ,  7) { j ,  k ,  I )  the result is zero and if the inclusion does hold then choose indices 
such that 0 = j ,  7 = k where p 5 7. This fixes all the indices uniquely. Then if either 
P # j or 7 # k the right-hand side is zero. But if j = P and k = 7 then it becomes 
8ha/8ui,,; hence from (43) 

m 

(46) 
-=E-- a g  a g  ah, 
a u i , j k l  aha, jk  aui,l 

where j 5 k .  Comparing (42) with (46) one sees that  (46) can also be written as 

( w i k ) j t =  cMail ( v i k ) a  or Wir = M Y ; ,  for 1 5 j 5 k 5 n 
0=l 

(47) 

where M is the same as in (42) with rank m; V' has dimension m and W' has 
dimension pn. Hence one non-zero component of V:k will give at  least one non-zero 
component of Wjk (with the same j and k) i.e. one non-zero value of a g / a h n J k  will 
give at least one non-zero value of Bg/aui,jkr (with the same j and k). This shows that 
if the ha are obtained from the Fk by the completion procedure then any function g 
involving hOJk must involve some third derivatives of U so it cannot be first order. This 
shows that after completing the completion procedure previously described, no new 
first-order equations can be derived by considering second-order differential functions 
of the h. It  is fairly straightforward to generalize this to any order. 

Reasoning as before shows that at  least one non-zero value of ag/ah,, , , . , , , ,  will give 
rise to at least one non-zero value of ag/aui , i3 , . . i ,+ ,  so if g involves any sth derivatives 
of any of the h,, when expressed in terms of U and its derivatives, g will involve an 
(s t 1)th order derivative of at  least one of the U,. It shows that if the completion 
procedure is extended to involve taking higher derivatives and trying to eliminate all 
but first-order derivatives of U no new results can be obtained. The h obtained at 
each step are a functionally independent set of solutions of (37) which is of the form 
f k .  V h  = 0 where the independent variables are {dFk/dz,)  which can be written in 
terms of (z,u(')). Let the pk be the h obtained in the last step of the completion 
which does give new functionally independent results from (37) (which could be the 
original functions Fk if the system is already complete). In the following step, done 
to check completion, giving no functionally independent h, the h are some set of 
functions related to the pk by a non-singular transformation. 

The procedure gives all independent first-order equations derivable from the sys- 
tem by repeated differentiation and elimination of the higher derivatives. This pre- 
sumably generates a complete set of independent first-order equations derivable from 
the original system i.e. any other first-order equation derivable from the system can 
be obtained in the form /(z,u,  {Fk}) = / ( z , u , o )  i.e. purely algebraically from the 
set of equations Fk = 0 obtained by this procedure. The concept of completeness is 
here based on the somewhat vague notion of derivability which can be made precise 
by the concept of local solvability (Olver [l] p 162) which results from considering the 
problem geometrically in the space with coordinates (2, U(')). 

The original system (12) defines the suhmanifold S, of points ( z , u ( ' ) ) .  Each 
solution U(.) of (12) has a first prolongation which is the set of points (z,dl))  which 
is always a suhmanifold S, of SI. Let the union of the S, for all solutions u(z) he 



2928 J H N i t o n  

S, then through any point of S, there passes the prolongation of a solution u(z)  of 
(12) so S, & S,. The system (12) is said to be locally solvable at (a!,&)) E S, if 
( z , u ( ' ) )  E S, and locally solvable if ( z ,u( l ) )  E S, implies (z ,&) )  6 S, i.e. S, C_ S, 
so S, = S,. This is equivalent to requiring that  every point ( z ,u ( ' ) )  satisfying (12) 
corresponds to at least one solution u(z) in a neighbourhood of z,,. Any first-order 
equations derivable from (12) not by algebra alone will force S, t o  be a proper subset 
of SI. The equations defining S, which must be first order and deducible from (12) 
may be called the completion of (12). Therefore a locally solvable system must be the 
same as its completion and therefore the same as the result of the procedure above 
i.e. differentiation and elimination of higher derivatives. The completion of (12) must 
be locally solvable and no further functionally independent equations are derivable 
from them (this would further reduce the dimension of S,). It  is therefore natural to 
conjecture that the completion of the system (12) is the same as the system obtained 
from (12) by the procedure above i.e. the deducibility referred to previously is just 
repeated differentiation and elimination of the higher derivatives ofu(z) .  This justifies 
the term completion used above. This follows from the conjecture that this procedure 
always generates a locally solvable system. This can be established for m = p for 
analytic systems using Finzi's theorem (Olver [l] p 172). Put n = IC = 1 and q = m 
and taking its negation on both sides gives: Let F,(z,u(')) be a first-order system. 
Than P h Q n  ,, nnn-oh..-q*tnr:F+:r rl;.alt:nn = t  I -  

operators 
l.lr.. ' .,- - .LV.,-C,,OI'LI~UC,,~Y.C. Y.LFLI.Y.. -" \."o,Ub')) if end d y  if there do nnt exist 

(-& = total derivative " d  D,  = E P i -  
dxi 

i=1  

such that  ET!, D,F, = Q(zo,u(ol)). The latter condition follows from the result of 
the completion procedure. Hence after the completion has been carried out the system 
is normal. If the system is also analytic so is its completion and by corollary 2.80 it 
is locally solvable. 

Having carried out this procedure one obtains another system of the form (12). 
Consider a set of linear combinations of them 

m 
L F k h , , ( z , a )  = 0 (48) 
k=l 

and ask what are the conditions under which equations (48) can be expressed with 
fewer independent variables. This reduces to the corresponding treatment of the linear 
case above and I will show how the theory of the single first-order nonlinear PDE in 
one unknown comes out of this argument. 

Suppose that the new independent variables are z l ,  z2 . . . I, and each equation of 
(48) is independent of derivatives with respect to z1 . , , z " - ~ .  Introducing the new 
variables into (48) the chain rule must be used to substitute for aui /axj  thus 

I require that, applying the chain rule again with these derivatives regarded as vari- 
ables, 
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for 1 5 i 5 p; 1 5 I <  n - r and from (49) 

Hence 

This holds for each value of a say 1 5 a 5 m' 5 m. Denoting the term in  parentheses 
by ( f i e ) j  which depends only on z for fixed U(.), the equations take the form 

f i e .  vx = 0 for 15 is p a n d  15 a 5 m' (51) 

which is satisfied by the functionally independent variables z l , .  . . ~ zZ-?. Hence the 
Lie algebra generated by the set of vector fields f i e  generates a Lie group with orbits 
of dimension P. Let the b, = a/as,  define new coordinates s, . . . sr which parametrize 
the orbits which are surfaces of constant zl . . . zn-, so that zl.. . I,-,, s1 . . . .9? are a 
new set of coordinates related to zl ,  . . . ,x, by a non-singular transformation. Hence 
there is a set of r commuting vector fields h,,  I 5 1 5 r spanning the tangent space of 
the orbits at  each point and the f i ,  .- are linear combinations of them: 

For this to hold i t  is necessary that he,  is such that for each fixed a,  the corresponding 
set of vectors f have a completion which spans a space of dimension a t  most P. From 
(50) and (52) 

From (48), taking the total derivatives gives 
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since F, = 0. The third term becomes, using (53), 

giving the equations 

for 1 5 j 5 n a n d  1 5 (I 5 m'. From (53) once the f i m j  and one set of vector 
fields bj (independent of the h m k )  have been found for a particular example, such 
that (bi, bj] = 0 for all i, j (I am not sure how hard this will be to arrange in general) 
the X i t o  can he written down as linear combinations of the ha,. Sets of values of 
r,m',X,b,h are obtained by searching first for cases with r = 1 then r = 2 , 3  etc. h 
is a vector space of dimension m' any spanning set of which gives a set o f f  which are 
in involution. These are substituted into (55) which results in nm' equations for the 
np + p + n unknowns zj,  ui ,  au,/az, in terms of s l , .  . . , s? as independent variables. 
In addition to these results one has two further sets of equations: 

If m' = m the reduction of dimension from n to r will be called complete. In this case 
all the coefficients of the h,, can be independently equated to zero as happens in the 
last example in this paper. In the resulting system a appears only in the unknowns 
A ,  b ,  h and is therefore to be treated as a parameter. Hence using the notation 

equation (53) can be written as 

m 

CAitbtj = x G k i j h k  
t=1  , k l  

Now a matrix A j k  = ( A j ) k  has  rank 5 r if and only if there exist r linearly indepen- 
dent vectors ci such that 

r 

Aj = c a i j c i  i.e. A i ,  = C a i j c i k  
i = l  i = 1  

(59) 

hence from (58) the condition on h, that  the b t j  exist is that 

Iank ( g G k i j  ' o k )  5 for 1 5 a 5 m'. (60) 
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These are necessary conditions on h,, but they are clearly not sufficient unless 
m' = 1 because the blj do not depend on e. In fact the rank of C F = l G k , j h , ~  
is the least dimension for expressing equation (I of (48). Further from (53) 
rank (Cr=l (aF, /aui , j )h ,k)  = r where the argument is regarded as a matrix with 

indices (i, w), j and r is the least dimension for expressing the set of linear combin% 
tions h,, of the original equations. This is clearly sufficient as well as necessary for 
the existence of X and b satisfying (53) but it is not sufficient for the b to commute. 

After dl these calculations have been done for a system it is obvious from the 
arguments that  ifu satisfies the original system then z, U(') satisfy the derived system. 
The converse can be assured by including the original system, now regarded as a set of 
algebraic equations amongst the new unknowns, with the derived system. Since (54) is 
satisfied everywhere it follows that CY=:=, F,h, , (z ,u)  = 0 .  Hence one set of solutions 
of (53), as above, contributes m' linear combinations of the original system, and when 
a total of m independent linear combinations of the original system are obtained the 
original system must hold. This shows that the method does not alter the set of 
solutions provided care is taken ensure that a complete set of derived equations is 
obtained. To look for one-dimensional systems resulting from (12), the most useful 
for numerical calculation, put r = 1 then equation (53) becomes 

m 

so for fixed b one seeks all possible solutions A, h of 
m ... 

Aibj = x G k i j h k  
k=1 

This implies that  

which is independent of j i.e 

If the ratios of the numerators are independent of i, this determines b up to a scalar 
factor, otherwise there are no  solutions for b. If such a b does exist, X is found at  
once, and the equations can be solved for (some of) the h, .  The system (53), (55) and 
(56) are a generalization of the equations for the integral strips in the general theory 
of first-order nonlinear PDEs with one unknown. For if m = p = 1 then m' = 1 and 
trying r = 1, there is a single vector field f and .A can be taken to be 1. Also h and k 
are not needed. So put h = A = 1 and equation (53) gives simply 

and (55) gives 

for 1 < j  5 n 
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Hence introducing p j  = au/azj  and eliminating bj from (56) one obtains 

and hence 

au a x .  aU -=c--1 
as j =1  a z j  as 

n 

which are the equations for an integral strip for a single nonlinear first-order PDE. 

5. Minimizing the number of dependent variables 

Returning to the general case, the resulting system (53), (55) and (56) of the form 
(12) may have an  unnecessarily large number of unknowns. If there is a simpler way 
than the standard method for writing the original higher-order system as a first-order 
system i.e. involving fewer unknowns, then from section 1, these new unknowns are 
functions of all the variables in the standard first-order system. To minimize their 
number look for a change of dependent variables ui -+ ui for 1 5 i 5 p given by 
ui = e i ( z ,  U) such that upon substituting for ui and aui/azj  using 

I obtain 

for: 1 5 j 5 n; p' + 1 5 I 5 p ;  1 5 k 5 m; pi chosen to be as small as possible. 
Hence there are p - p' linearly independent vectors 8 / a u l  acting on the manifold with 
coordinates ul,. . . ,up which satisfy the system 

Hence the matrix a F k / a u i , j  = f(j,k)i has rank p'. Since the derivatives a e i / a u  are each 
taken with all the other U; held constant, the vectors X ,  = a / a u ,  for p' + 1 5 I 5 p 
are in involution with u l , .  , . ,up, as invariants of the ( p  - p') dimensional integral 
manifolds. The equations (63) can be written as 

f ( j , t )  .x = 0. (64) 

From thesc equations a hasis for the X, must be found and a complete set of invariants 
of their integral manifolds gives the required new variables. Suppose for example that 
the given system is 

(65) 
a a 

F - -(U1 + uq + X1U2) + (uluz + U )--(Ul + ZIUZ + u4) = 0 
1 -  ax! 3 ax? 
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(66) 
. a  a 

2 -  a2, 322 
F - -(u1u, + u3) + zl(ul + 2121, + u4)-(u1 + 21u2 + u4) = 0. 

Here p = 4, m = 2 and n = 2 and note that this system could have been disguised SO 
as to make the choice of new variables not immediately obvious. First the derivatives 
aFk/au i , j  must he found which are as follows where the column headings are (k,j) 
and i goes from 1 to 4 down each column: 

To get the analytic form for the integral manifolds N it is convenient to let u1 and 
u2 be parameters within each member of N ,  hence choose X i  = 1,Xi  = 0 then 
X,J = -u2 and X i  = -1. Similarly choose Xl = 0,X: = 1 then X," = -ul and 
X,' = -zl so a basis of solutions is X3 = ( l ,O , -uz , - l )  and X, = (0, l , -u l ,  -zl). 
The integral curves of X3 are given by 

which can immediately be integrated to give 

'U = (Ug + Cl,CZ, -c2u3 + c3, -Ug + c4) 

where u3 = 0 gives ui = ci so U is the translation of c a parameter distance ug along 
X3. Similarly the integral curves of X4 may he found giving U = (dl, vq + d,, -dlu4 + 
d3, -z1u4 + d4)  is the image of d after translation by u4 along X,. Hence applying 
both the mappings (which must commute) to c gives 

3 4  
U = &O~* , (C)  = (113 + ~ 1 ,  ~q + ~ 2 , - ~ 3 ~ q  - clvq - ~ 2 ~ 3  + ~ 3 ,  - 2 1 ~ 4  - 213 + cq). (69) 

The problem is now to determine which functions are constant within the manifolds 
obtained from the two families of integral curves. If from (69), u3 and v4 are eliminated 
by the relations 

v3 = u1 - Cl v4 = U, - C? 

one obtains 

u3 = -uluz + C I C Z  + c3 u4 = -U1 - ZIU* + Z1C2 + c1 + c4 
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Hence the two functions clc2 + c3 and x1c2 + c,  + c4 together with the parameters 
u1,u2 determine U and the two functions therefore parametrize the set of manifolds 
so from the previous argument one should choose 

v, = u,uz + u3 U2 = X , U Z  + U, + U 4  

as new variables in (65) and (66) giving the simplified equations 

This argument generalizes the corresponding argument for linear systems. In gen- 
eral one can expect parametric dependence on some of the variables in the set 
{ up,+l,  . . . , v,} although their derivatives have been eliminated. 

6. General conclusions 

The procedure for analysing a first-order system now seems to be clear. Take the 
completion of the system so that  it becomes locally solvable (at least for the case 
m = p ) .  Then look for reduction of dimension of linear combinations of the equations 
(coefficients depending on U and z) giving systems of dimension r = 1 , 2 , 3  etc in 
turn. For each case look for a minimal set of unknowns as above. Each set of equations 
obtained is a potentially useful consequence of the original problem (especially if m' = 
p' and r is small) whether the solution is obtained finally by numerical or analytic 
means. If the original system (12) is inconsistent i.e. there are no solutions U, every 
PDE for U is vacuously satisfied by every solution U of (12), hence any PDE should 
be derivable from (12) using the completion procedure thus the inconsistency of (12) 
would be expected to be made manifest. Another reason for wanting to use this 
procedure is that  for the case m = p i t  generates a locally solvable system therefore the 
necessary and sufficient conditions for an infinitesimal geometrical symmetry operation 
can be written down some uses of which are mentioned in the introduction. 

Finally, i t  could be thought that  the procedure can be repeated, giving results 
not obtainable from one application of it, by applying i t  to the derived r-dimensional 
system obtained from (55)  and (56) as previously described. To show that this is not 
so, regard (55) and (56) as a system of PDEs for the unknowns xj ,ui ,  ui , j  for 1 5 i 5 
p and 1 5 j 5 n with independent variables s,, . . . , s,. Write down their first total 
derivatives with respect to sp as one would do for the first step of the completion. 
The results are 

a,+. a b . .  
asiaSp as, 
2 = 2  
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Equations (72) have second derivatives of the unknowns with respect t o  sB only in 
the last term because F, and their derivatives are now functions of the new unknowns 
only, not their derivatives with respect to S. Can there be a linear combination of 
(70), (71) and (72) involving only the first derivatives of the unknowns i.e. only up to 
the second derivatives of U? Such a linear combination could clearly not involve either 
of the sets of equations (70) or (71) because the second derivatives in them appear 
once in each equation and nowhere else in the system. But the third set of equations 
(72) is obtained algebraically from the second derivatives of the original system after 
completion, hence from the completion procedure described in section 4 any linear 
combinations of them must involve third derivatives of U i.e. second derivatives of the 
new unknowns. This disproves this possibility of further reduction on the assumption 
that the completion of the original system was found in the first step. 

In the case of a single higher order equation which is locally solvable (this includes 
all equations expressible in general Kovalevskaya form) the procedure can be simplified 
because of the following argument. For simplicity I shall only prove the result for 
second-order equations but generalization is straightforward. 

If the equation 

is locally solvable so is the system (74)+(75). A corresponding first-order system 
derived from (73) is 

to which the extra equations 

must be added. Suppose that 

satisfies (74) and (75), then 
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satisfies the first equation of (74) and (75) and the same values of ( zo ,uo ,  { a u / a z i l o ] ,  
{a2u/&iazj lo})  satisfy (73) and hence there is a neighbourhood of zo in which U 

satisfies (73) and at  z = zo, 

au 
azi azi aziaxj aziazj -=  el and 

From u compute au/azi = p i  then (74) and (75) are satisfied by U and p i  in the same 
neighbourhood, showing that (74) and (75) are locally solvable provided (73) is also. 

A similar argument shows that any first-order system obtained from a higher order 
locally solvable equation by the standard method is itself locally solvable, provided 
the extra equations resulting from the commutativity of the partial derivatives are 
included. This result can be further extended to any reduction of the equation to first 

is a geometrical property independent of any particular coordinate system. This result 
also holds for any number of equations. Its significance is that  systems in Kovalevskaya 
form can be directly written as a first-order system which is locally solvable which will 
not require the completion procedure previously described. 

nrrla. he*olscn thp no.., . , ~ . ~ ~ h I ~ ~  ~.~ thnn f n n n . - + ; n n c  n C ( r  .. I- I \  --,I l,.+-l -- l . .~L.: l :b. .  
V l U I L  " I I U Y I C  "sa- .>U" . Y I . U " L I _ I  Y L C  U l l r l l  LY.LCY." .L I  "L I", Y ,  ,pi,, a.1," lYCDl ""L'nurrru). 

7. A n  application connected with statistical mechanics 

This is a standard problem in statistical mechanics. The objective is to calculate 
thermodynamic properties (for example the relationship between the pressure, vol- 
ume and temperature for unit mass of fluid) and correlation functions, describiug the 
distribution of distances between the atoms or molecules, from a knowledge of the po- 
tential energy functions describing the law of force between the particles of the fluid. 
Usually in applications one is concerned with three-dimensional systems (in contrast 
to the one-dimensional systems treated here) for which many approximate methods 
have been developed both by analytic means and computer simulation [19]. The gen- 
eral statistical mechanics theory is based on Newton's laws of motion together with 
the standard statistical assumption of the Grand Canonical Distribution [20]. I have 
shown in [ll] that these, for the one-dimensional case, give rise to a functional equation 
from which a hierarchy of approximations can be introduced obtained by truncating 
the functional Taylor expansion of this equation after N terms. The first-order equa- 
tion was shown to lead to a set of integral equations which are numerically tractable. 
Later I attempted to solve the second-order equation [12]. The methods developed 
in the present paper should be applicable to any member of such a hierarchy after 
a discretizing approximation similar to those used in 1121. I will show here a related 
example of a system with n independent variables which is comple te ly  reducible to a 
system with of dimension T = 2 i.e. there are no more independent equations obtained 
by looking for derived systems with r 2 3. Hence going to the limit n - 00 i t  gives 
a PDE in infinite dimensions ( a  functional differential equation) which is reducible to 
two dimensions. In a forthcoming paper I will report the details of the application of 
these ideas to statistical mechanics. 

Consider the following equation: 
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where the ai are constants. Equations (76) can be written as a first-order system thus 

To show that (77) is locally solvable, differentiation gives 

-aj i = l ; l < j < n  
i = l ; j = O  
i = 2  

and 

where I have written exp (u2 + $ E:=, aiau2/8xi) as E ( z ) .  Using the notation 

I obtain from (37) for j = l and i = 2 

and likewise for i = 1 

From (80) and (81) it follows immediately that Lij = 0 for 0 5 j 5 n and i = 1 , 2  
except ile, provided all the (I, are non-zero, but then (37) reduces to hl ,aF!/au; ,  = 0 
for 1 5 I 5 n; 1 5 i 5 p so i,, = 0, hence h is independent of dFk/dxj giving only a 
trivial solution. This shows that (77) is complete and locally solvable since m = p .  

Next look for linear combinations of (77) which give reduction of dimension so 
consider 

.I. 

h = h : ( z ? u ) F !  + h 2 ( z , u ) F 2  (82) 

hence 
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First suppose that r = 1 then changing independent variables to zo, q,, , , , 2, and 
suppose that derivatives with respect to zl,. . . , z, do not appear. Then from (50) 

' = O  f o r l < l < n a n d l < i < 2 .  an at 
, =O 

Writing down the derivatives of h explicitly from (78), (79) and (83) gives 

-hl(z)aj i =  1 ; l  < j  5 n 
- ah = 1 - $ h z ( z ) E ( z ) a j  i = 2 ; l  5 j < n 
a"i,j h z ( z )  i = l ; j = O  

i = 2 . ' -  0 , J  - 0 

(84) 

(85) 

hence (84) gives 

and 

for i = 2 1 az, - - E - a . h  ( z ) E ( z ) = O  
2 j = l a z j  

for 1 5 I < n. If there is a one-dimensional derived system, the Lie algebra generated 
by the ft must have dimension one so they are parallel which implies that h z ( z )  = 0, 
hence h , ( z )  = 0 so only a trivial result is obtained showing that no reduction to one 
dimension is possible. Before searching systematically for reduced systems for small r 
one should first identify the vector fields f of equation (51) which from (85) are 

(fi)j = fij = W j o  - hia j (1-  6 j o )  (86) 

It is now straightforward to compute the derivatives of f l  and f z  and hence their 
commutator 

The result is 
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If [f,, f 2 ]  = X f l  + p f 2 ,  (the necessary and sufficient condition for r = 2 for a single 
value of k in (52)), then for component 0, 

1 "  
Zh2E Eai% = Ah, azi  i = l  

so 

1 ah, 
X = - E E a i -  axi 

i=1 

and for the other components, after dividing by aj, I get a single equation from which 
p may be determined thus 

(89) 

This shows that there is a non-trivial set of equations for P = 2 for arbitrary h i.e. any 
two LI vectors h, could be chosen each pair giving a complete set of two equations, 
each member of the pair being reducible to two dimensions. But to get a closed system 
in two dimensions requires the stronger condition that the set of vectors f ,  for each 
choice of h,  spans the same space i.e. equation (52) must hold 

h,,6,, - h,,aj(l - S,,) i = 1 
-$h,,Ea,(l - 6j,,) i = 2  

for 0 5 j _< n ; o ~  = 1 , 2 .  
2 

f. 101 . = CXit,btj = 
t= l  

(90) 

Hence regarding this as a set of linear combinations of the vectors b, and b,, (90) 
implies that the four vectors on the right for i = 1,2 and a = 1 , 2  have rank 2. This 
is easily shown to be true and the obvious choice of the b and A is 

blj = S,, b2j = aj( l  - S,,) 

and 

(91) 
A l t l  = (h12, -h1A A l t Z  = (h22,-h21) 

= (O,-$h12E) X2t2 = (03-ih22E). 

Now substituting into ( 5 5 )  and (56 )  gives all the reduced equations. 

ui,j but varying ui appearing in ( 5 5 )  by dFk/d.zj equation ( 5 5 )  becomes 
Denoting for simplicity the derivative of Fk with respect to .zj taken at  constant 
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Inserting the values of X and because the b are independent of the h, the coefficients 
of the h can he equated giving just two independent equations which are 

Using the notation p i j  = ui, j  and from (77) 

where 

Hence the complete set of equations for the reduction of (76) to r = 2 is 

together with(93). T h e 3 n + 5  unknownsarenowzi,ui ,pij  fori= 1,2;O_<js n but 
there are 4n + 8 equations for them where E has been introduced as an abbreviation 
in (79). First consider the equations for z(s) which can be immediately integrated 
giving 

X , = ~ ~ ~ S ~ + C ~  x-=~,(l-6,,)s,+d~. I (95) 

These can be regarded as the result of translating the points c and d respectively 
through parameter distances s1,s2 along the respective integral curves. Consistency, 
i.e. z is uniquely determined by (sl, s2) for a given value of z(0, 0), requires that these 
mappings commute (as guaranteed by the general theory) which is obviously true. 
Applying the mappings in succession gives 

xj=uj(l-6,,)s,+6. 10 s 1 + c j  f o r O 5 j I n .  (96) 

From the second and third equations of (94), p2, can he eliminated giving 

Hence p l j  should be found in terms of E from (97), then differentiated to obtain p2j. 
Then U can be obtained from these by integration. Finally (93) allows the calculation 
of E which gives a closed set of equations to be solved by iteration or possibly by 
further analysis. 
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