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Convensions and Notations

A flat (known as affine) space is a non-empty set E endowed with structure
by the prescription of

(i) a commutative subgroup V of the permutation group Perm E whose
action τ : V → Perm E on E is transitive,

(ii) a mapping sm : × V → V which makes V a linear space when com-
position is taken as the addition and sm as the scalar multiplication
in V.

The linear space V is called the translation space of E . It is often happens
that a set E , a linear space V, and an action of the additive group of V on E are
given. If this action is transitive and injective, then E acquires the structure of a
flat space whose translation space is the isomorphic image of V in Perm E under
the given action. Under such circumstances, we identify V with its isomorphic
image and call V an external translation space of E .

In this book, we assume that all flat spaces, all manifolds and all linear-
space bundles are real and of finite dimension. The notation and terminology of
“Finite-Dimensional Spaces; Algebra, Geometry, and Analysis” [FDS] are used
throughout.

Given any mappings f and g, we define the universal composite g f by

g f :=
(
g

∣∣
Codf∩Domg

)
◦

(
f

∣∣Codf∩Domg
)

(see FDS, Sec. 03). Note that

Dom(g f) = f<(Codf ∩Domg).

If Codf = Domg, then the universal composite reduces to the ordinary compos-
ite.

Let f be a mapping whose domain and codomain are open subsets of flat
spaces. Given r ∈ , we say that f is of class Cr if it has gradients up to order
r and if the gradient of order r is continuous. We say that f is of class C∞ if
it has gradients of all orders and we say that f is of class Cω if it is analytic.
We use the notation˜:= ∪ {∞, ω} and consider˜totally ordered in such a way
that n <∞ < ω for all n ∈ . Given m, r ∈˜with m ≤ r, we define

m. . r :=
{
s ∈ |̃ m ≤ s ≤ r

}
.



Chapter 1

Preliminaries

11. Multilinearity

Let (Vi | i ∈ I ) be a family of linear spaces, we define (see (04.24) of [FDS]),
for each j ∈ I and each v ∈×i∈I Vi, the mapping (v.j) : Vj →×i∈I Vi by the
rule

((v.j)(u))i :=





vi if i ∈ I\{j}

u if i = j



 for all u ∈ Vj . (11.1)

Definition : Let the family (Vi | i ∈ I ) andW be linear spaces. We say that the
mapping M :×i∈I Vi →W is multilinear if, for every v ∈×i∈I Vi and every
j ∈ I the mapping M◦ (v.j) : Vj →W is linear, so that M◦ (v.j) ∈ Lin(Vj ,W).
The set of all multilinear mappings from ×i∈I Vi to W is denoted by

LinI(×i∈I Vi , W ). (11.2)

Let linear spaces V and W and a set I be given.
Let Perm I be the permutation group, which consists of all invertible map-

pings from I to itself. For every permutation σ ∈ Perm I we define a mapping
Tσ : VI → VI by

Tσ(v) = v ◦ σ for all v ∈ VI , (11.3)

that is (Tσ(v))i := vσ(i) for all i ∈ I. In view of v ◦ (σ ◦ ρ) = (v ◦ σ) ◦ ρ, we
have Tσ◦ρ = Tρ ◦ Tσ for all σ, ρ ∈ Perm I . It is not hard to see that, for every
multilinear mapping M : VI → W and every permutation σ, the composition
M◦Tσ is again a multilinear mapping from VI toW, i.e. M◦Tσ ∈ LinI(V

I , W ).

Definition : A multilinear mapping M : VI → W is said to be (completely)
symmetric if

M ◦ Tσ = M for all σ ∈ Perm I ,

and is said to be (completely) skew if

M ◦ Tσ = sgn (σ) M for all σ ∈ Perm I .

The set of all (completely) symmetric multilinear mappings and the set of
all (completely) skew multilinear mappings from VI to W will be denoted by
SymI(V

I , W ) and by SkewI(V
I , W ); respectively.



Both SymI(V
I , W ) and SkewI(V

I , W ) are subspaces of the linear space
LinI(V

I , W ) with dimensions

dim SymI(V
I , W ) =

(
dim V + #I − 1

#I

)
dimW (11.4)

and

dim SkewI(V
I , W ) =

(
dim V

#I

)
dimW. (11.5)

For every k ∈ , we write Link(V
k,W), Symk(V

k,W) and Skewk(V
k,W) for

Link](Vk
]

,W), Symk](Vk
]

,W) and Skewk](Vk
]

,W); respectively.
In applicatins, we often use the following identifications

Link(V
k,W) ∼= Link−1(V

k−1, Lin (V,W))

∼= Lin(V, Link−1(V
k−1,W))

and inclusions

Symk(V
k,W) ⊂ Symk−1(V

k−1,Lin (V,W)),

Skewk(V
k,W) ⊂ Skewk−1(V

k−1,Lin (V,W)).

In particular, we shall use Sym2(V
2, ) ∼= Sym (V,V∗) := Sym (V, Lin (V, ))

and Skew2(V
2, ) ∼= Skew (V,V∗) := Skew (V, Lin (V, )). It can be shown that

Skew (V,V∗) has invertiable mapping if and only if dim V is even. (See Prop.3
of Sect.87, [FDS]. However, this property does not require an inner product.)

Given a number k ∈ and a multilinear mapping A ∈ Link(V
k,W), the

mapping
∑
σ∈Perm k](sgnσ)A ◦ Tσ : Vk → W is a completely skew multilinear

mapping. Moreover, it can be easily shown that

1

k!

∑

σ∈Perm k]

(sgnσ) A ◦ Tσ = A

for all skew multilinear mapping A ∈ Skewk(V
k,W).

Definition : Given a number k ∈ , we define the alternating assignment
Alt : Link(V

k,W)→ Skewk(V
k,W) by

Alt A :=
1

k!

∑

σ∈Perm k]

(sgnσ)A ◦ Tσ (11.6)

for all linear spaces V and W and all A ∈ Link(V
k,W).

Given p ∈ . We define, for each i ∈ (p+1)], a mapping deli : Vp+1 → Vp by

(deli(v))j :=





vj if 1 ≤ i ≤ j − 1

vi+1 if j ≤ i ≤ p



 for all v ∈ Vp+1. (11.7)



Intuitively, deli(v) is obtained from v by deleting the i-th term.
When the alternating assignment Alt restricted to the subspace

Lin (V, Skewp(V
p,W)) of Lin (V, Linp(V

p,W)) ∼= Linp+1(V
p+1,W), we have

(p+ 1) (AltA)v =
∑

i∈(p+1)]

(−1)i−1A(vi,deliv) (11.8)

for all v ∈ Vp+1 and all A ∈ Lin (V, Skewp(V
p,W)). Similarly, when the

alternating assignment Alt restricted to the subspace Skewp(V
p,Lin(V,W)) of

Lin (V, Linp(V
p,W)) ∼= Linp+1(V

p+1,W), we have

(p+ 1) (AltB)v =
∑

i∈(p+1)]

(−1)p+1−iB(deliv,vi) (11.9)

for all v ∈ Vp+1 and all B ∈ Skewp(V
p,Lin(V,W)).

Definition: An algebra is a linear space V together with a bilinear mapping
B ∈ Lin2(V

2,V). An algebra V is called a Lie Alegebra if the bilinear mapping
B is skew-symmetric, i.e. B ∈ Skew2(V

2,V), and satisfies Jacobi indetity

B(B(v1,v2),v3) + B(B(v2,v3),v1) + B(B(v3,v1),v2) = 0 (11.10)

for all v1,v2,v3 ∈ V.

By using the inclusion Skew2(V
2,V) ⊂ Lin(V, Lin(V,V)) and (11.9), we see

taht (11.10) can rewriten as

Alt (B ◦B) = 0 (11.11)

where (B ◦B)(v1,v2,v3) := B(B(v1,v2),v3) for all v1,v2,v3 ∈ V.

Remark 1: In the literature the alternating assignment given in (11.6) is of-
ten called “skew-symmetric operator” ([B-W]), “complete antisymmetrization”
([F-C]). The symmetric assignment, “symmetric operator” or “complete sym-
metrization” Sym : Link(V

k,W)→ Symk(V
k,W) is given by

Sym M :=
1

k!

∑

σ∈Perm k]

M ◦ Tσ (11.12)

for all linear spaces V and W and all M ∈ Link(V
k,W).

Remark 2: Both assignments given in (11.6) and (11.12) are “natural linear
assignments” from a functor to another functor (see (13.16) of Sect.13). More
precisely, the alternating assignment is a natural linear assgnment from the
functor Lnk to the functor Skk and the symmetric assignment is a natural linear
assgnment from the functor Lnk to the functor Smk (see Sect. 13).



12. Isocategories, isofunctors and

Natural Assignments

An isocategory* ‡ is given by the specification of a class OBJ whose mem-
bers are called objects, a class ISO whose members are called ISOmorphisms,

(i) a rule that associates with each φ ∈ ISO a pair (Domφ,Codφ)
of objects, called the domain and codomain of φ,

(ii) a rule that associates with each A ∈ OBJ a member of ISO
denoted by 1A and called the identity of A,

(iii) a rule that associates with each pair (φ, ψ) in ISO such that
Codφ = Domψ a member of ISO denoted by ψ ◦ φ and called
the composite of φ and ψ, with Dom (ψ ◦ φ) = Domφ and
Cod (ψ ◦ φ) = Codψ.

(iv) a rule that associates with each φ ∈ ISO a member of ISO
denoted by φ← and called the inverse of φ.

subject to the following three axioms:

(I1) φ ◦ 1Domφ = φ = 1Codφ ◦ φ for all φ ∈ ISO,

(I2) χ ◦ (ψ ◦ φ) = (χ ◦ ψ) ◦ φ for all φ , ψ , χ ∈ ISO such that
Codφ = Domψ and Codψ = Domχ.

(I3) φ← ◦ φ = 1Domφ and φ ◦ φ← = 1Codφ for all φ ∈ ISO.

Given φ ∈ ISO, one writes φ : A −→ B or A
φ
−→ B to indicate that

Domφ = A and Codφ = B.

There is one to one correspondence between an object A ∈ OBJ and the
corresponding identity 1A ∈ ISO. For this reason, we will usually name an
isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be
given. We can then form the product-isocategory ISO × ISO′ whose object-
class OBJ ×OBJ ′ consists of pairs (A,A′) with A ∈ OBJ , A′ ∈ OBJ ′ and
ISOmorphism-class ISO× ISO′ consists of pairs (φ, φ′) with φ ∈ ISO, φ′ ∈ ISO′

and the following

(a) For every (φ, φ′) ∈ ISO × ISO′, Dom (φ, φ′) := (Domφ,Domφ′)
and Cod (φ, φ′) := (Codφ,Codφ′).

* A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the

axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose “morphisms”

are called ISO-morphisms.
‡

Since isocategories are widely used in differential geometry, we introduced them directly instead

of making them as a special category.



(b) Composition in ISO × ISO′ is defined by termwise composition,
i.e. by (ψ,ψ′) ◦ (φ, φ′) := (ψ ◦ φ , ψ′ ◦ φ′ ) for all φ, ψ ∈ ISO and
φ′, ψ′ ∈ ISO′ such that Dom (ψ,ψ′) = Cod (φ, φ′).

(c) The identity of a given pair (A,A′) ∈ OBJ × OBJ ′ is defined to
be 1(A,A′) = (1A, 1A′).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISOI of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n], we

write ISOn := ISOn]

for short. For example, we write ISO2 := ISO × ISO. We
identify ISO1 with ISO and ISOm+n with ISOm × ISOn for all m,n ∈ in the
obvious manner. The isocategory ISO0 is the trival one whose only object is ∅
and whose only ISOmorphism is 1∅.

A functor Φ is given by the specification of:

(i) a pair (DomΦ,Cod Φ) of categories, called the domain-category
and codomain-category of Φ,

(ii) a rule that associates with every φ ∈ DomΦ a member of Cod Φ
denoted by Φ(φ),

subject to the following conditions:

(F1) We have Cod Φ(φ) = DomΦ(ψ) and Φ(ψ ◦ φ) = Φ(ψ) ◦ Φ(φ)
for all φ, ψ ∈ DomΦ such that Codφ = Domψ.

(F2) For every identity 1A in DomΦ, where A belongs to the object-
class of DomΦ, Φ(1A) is an identity in Cod Φ.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be given.

We say that Φ is an isofunctor from ISO to ISO′ and we write ISO
Φ
−→ ISO′

or Φ : ISO −→ ISO′ to indicate that ISO = DomΦ and ISO′ = Cod Φ. By (F2),
we can associate with each A ∈ OBJ exactly one object in OBJ ′, denoted by
Φ(A), such that

Φ(1A) = 1Φ(A). (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor Φ satisfies

Φ(φ←) =
(
Φ(φ)

)←
for all φ ∈ DomΦ. (12.2)

One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03



and 04, [FDS].) Thus, if Φ and Ψ are isofunctors such that Cod Φ = DomΨ, one
can define the composite isofunctor Ψ ◦ Φ : DomΦ→ Cod Ψ by

(Ψ ◦ Φ)(φ) := Ψ(Φ(φ)) for all φ ∈ DomΦ (12.3)

Also, given isofunctors Φ and Ψ, one can define the product-isofunctor

Φ×Ψ : DomΦ×DomΨ −→ CodΦ× Cod Ψ

of Φ and Ψ by
(Φ×Ψ)(φ, ψ) := (Φ(φ),Ψ(ψ)) (12.4)

for all φ ∈ DomΦ and all ψ ∈ DomΨ.
Product-isofunctors of arbitrary families of isofunctors are defined in a sim-

ilar way. In particular, if a isofunctor Φ and an index set I are given, we define
the I-power-isofunctor Φ×I : (DomΦ)I → (CodΦ)I of Φ by

Φ×I(φi | i ∈ I ) = (Φ(φi) | i ∈ I ) (12.5)

for all families (φi | i ∈ I ) in DomΦ. We write Φ×n := Φ×n
]

when n ∈ .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO→ ISO of ISO is defined by

Id(φ) = φ for all φ ∈ ISO. (12.6)

We then have
Id(A) = A for all A ∈ OBJ . (12.7)

If I is an index set, then the identity-isofunctor of ISOI is Id×I . In particular,
the identity-isofunctor of ISO× ISO is Id× Id.

Given an object C ∈ OBJ . The trivial-isofunctor TrC : ISO→ ISO for C
is defined by

TrC(φ) = 1C for all φ ∈ ISO. (12.8)

We then have
TrC(A) = C for all A ∈ OBJ . (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO2 → ISO2 is defined by

Sw(φ, ψ) := (ψ, φ) for all φ, ψ ∈ ISO. (12.10)

Given any index set I, the equalization-isofunctor EqI : ISO → ISOI is
defined by

Eq I(φ) := (φ | i ∈ I ) for all φ ∈ ISO. (12.11)



We write Eqn := Eqn] when n ∈ .

Let a index set I and a family (Φi | i ∈ I) of isofunctors, with DomΦi =
ISO for all i ∈ I, be given. We then identify the family (Φi | i ∈ I) with the
termwise-formation isofunctor

(Φi | i ∈ I) : ISO→×
i∈I

Cod Φi

defined by
(Φi | i ∈ I) :=×

i∈I
Φi ◦ EqI ,

so that
(Φi | i ∈ I)(φ) =×

i∈I
Φi(φ), for all φ ∈ ISO. (12.12)

In particular, if I = 2], we then identify the pair (Φ1,Φ2) with the pair-
formation isofunctor (Φ1,Φ2) : ISO→ Cod Φ1 × CodΦ2.

Let isofunctors Φ and Ψ, both from ISO to ISO′, be given. A natural
assignment α form Φ to Ψ is a rule that associates with each object F of ISO
a mapping

α
F

: Φ(F)→ Ψ(F),

such that
Ψ(χ) ◦ αDomχ

= α
Codχ

◦ Φ(χ) for all χ ∈ ISO; (12.13)

i.e. the diagram

Φ(Domχ)
α

Domχ

−−→ Ψ(Domχ)

Φ(χ)

y
yΨ(χ)

Φ(Codχ) −−→
α

Codχ

Ψ(Codχ)

is commutative. We write α : Φ −→ Ψ to indicate that Φ is the domain
isofunctor, denoted by Dmfα, and Ψ is the codomain isofunctor, denoted
by Cdfα.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments α : Φ→ Ψ
and β : Ψ→ Θ be given. We can define the composite assignment
β ◦ α : Φ→ Θ, by assigning to each object F of DomΦ = DomΨ the map-
ping (β ◦ α)

F
:= β

F
◦ α

F
. If α, β are natural assignment, one can define the

product-assignment α × β by assigning to each pair (F ,G) of objects the
mapping (α× β)

(F,G)
:= α

F
× β

G
.

Given a natural assignment α : Φ → Ψ and a isofunctor Θ such that
Cod Θ = DomΦ = DomΨ, one can define the composite assignment



α ◦Θ : Φ ◦Θ→ Ψ ◦Θ by assigning to each object F of DomΦ = DomΨ the
mapping (α ◦Θ)

F
:= α

Θ(F)
.
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Natural Assignments
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ISOmorphism-class ISO× ISO′ consists of pairs (φ, φ′) with φ ∈ ISO, φ′ ∈ ISO′

and the following

(a) For every (φ, φ′) ∈ ISO × ISO′, Dom (φ, φ′) := (Domφ,Domφ′)
and Cod (φ, φ′) := (Codφ,Codφ′).

(b) Composition in ISO × ISO′ is defined by termwise composition,
i.e. by (ψ,ψ′) ◦ (φ, φ′) := (ψ ◦ φ , ψ′ ◦ φ′ ) for all φ, ψ ∈ ISO and
φ′, ψ′ ∈ ISO′ such that Dom (ψ,ψ′) = Cod (φ, φ′).

(c) The identity of a given pair (A,A′) ∈ OBJ × OBJ ′ is defined to
be 1(A,A′) = (1A, 1A′).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISOI of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n], we

write ISOn := ISOn]

for short. For example, we write ISO2 := ISO × ISO. We
identify ISO1 with ISO and ISOm+n with ISOm × ISOn for all m,n ∈ in the
obvious manner. The isocategory ISO0 is the trival one whose only object is ∅
and whose only ISOmorphism is 1∅.

A functor Φ is given by the specification of:

(i) a pair (DomΦ,Cod Φ) of categories, called the domain-category
and codomain-category of Φ,

(ii) a rule that associates with every φ ∈ DomΦ a member of Cod Φ
denoted by Φ(φ),

subject to the following conditions:

(F1) We have Cod Φ(φ) = DomΦ(ψ) and Φ(ψ ◦ φ) = Φ(ψ) ◦ Φ(φ)
for all φ, ψ ∈ DomΦ such that Codφ = Domψ.

(F2) For every identity 1A in DomΦ, where A belongs to the object-
class of DomΦ, Φ(1A) is an identity in Cod Φ.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be given.

We say that Φ is an isofunctor from ISO to ISO′ and we write ISO
Φ
−→ ISO′

or Φ : ISO −→ ISO′ to indicate that ISO = DomΦ and ISO′ = Cod Φ. By (F2),
we can associate with each A ∈ OBJ exactly one object in OBJ ′, denoted by
Φ(A), such that

Φ(1A) = 1Φ(A). (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor Φ satisfies

Φ(φ←) =
(
Φ(φ)

)←
for all φ ∈ DomΦ. (12.2)



One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03
and 04, [FDS].) Thus, if Φ and Ψ are isofunctors such that Cod Φ = DomΨ, one
can define the composite isofunctor Ψ ◦ Φ : DomΦ→ Cod Ψ by

(Ψ ◦ Φ)(φ) := Ψ(Φ(φ)) for all φ ∈ DomΦ (12.3)

Also, given isofunctors Φ and Ψ, one can define the product-isofunctor

Φ×Ψ : DomΦ×DomΨ −→ CodΦ× Cod Ψ

of Φ and Ψ by
(Φ×Ψ)(φ, ψ) := (Φ(φ),Ψ(ψ)) (12.4)

for all φ ∈ DomΦ and all ψ ∈ DomΨ.
Product-isofunctors of arbitrary families of isofunctors are defined in a sim-

ilar way. In particular, if a isofunctor Φ and an index set I are given, we define
the I-power-isofunctor Φ×I : (DomΦ)I → (CodΦ)I of Φ by

Φ×I(φi | i ∈ I ) = (Φ(φi) | i ∈ I ) (12.5)

for all families (φi | i ∈ I ) in DomΦ. We write Φ×n := Φ×n
]

when n ∈ .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO→ ISO of ISO is defined by

Id(φ) = φ for all φ ∈ ISO. (12.6)

We then have
Id(A) = A for all A ∈ OBJ . (12.7)

If I is an index set, then the identity-isofunctor of ISOI is Id×I . In particular,
the identity-isofunctor of ISO× ISO is Id× Id.

Given an object C ∈ OBJ . The trivial-isofunctor TrC : ISO→ ISO for C
is defined by

TrC(φ) = 1C for all φ ∈ ISO. (12.8)

We then have
TrC(A) = C for all A ∈ OBJ . (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO2 → ISO2 is defined by

Sw(φ, ψ) := (ψ, φ) for all φ, ψ ∈ ISO. (12.10)



Given any index set I, the equalization-isofunctor EqI : ISO → ISOI is
defined by

Eq I(φ) := (φ | i ∈ I ) for all φ ∈ ISO. (12.11)

We write Eqn := Eqn] when n ∈ .

Let a index set I and a family (Φi | i ∈ I) of isofunctors, with DomΦi =
ISO for all i ∈ I, be given. We then identify the family (Φi | i ∈ I) with the
termwise-formation isofunctor

(Φi | i ∈ I) : ISO→×
i∈I

Cod Φi

defined by
(Φi | i ∈ I) :=×

i∈I
Φi ◦ EqI ,

so that
(Φi | i ∈ I)(φ) =×

i∈I
Φi(φ), for all φ ∈ ISO. (12.12)

In particular, if I = 2], we then identify the pair (Φ1,Φ2) with the pair-
formation isofunctor (Φ1,Φ2) : ISO→ Cod Φ1 × CodΦ2.

Let isofunctors Φ and Ψ, both from ISO to ISO′, be given. A natural
assignment α form Φ to Ψ is a rule that associates with each object F of ISO
a mapping

α
F

: Φ(F)→ Ψ(F),

such that
Ψ(χ) ◦ αDomχ

= α
Codχ

◦ Φ(χ) for all χ ∈ ISO; (12.13)

i.e. the diagram

Φ(Domχ)
α

Domχ

−−→ Ψ(Domχ)

Φ(χ)

y
yΨ(χ)

Φ(Codχ) −−→
α

Codχ

Ψ(Codχ)

is commutative. We write α : Φ −→ Ψ to indicate that Φ is the domain
isofunctor, denoted by Dmfα, and Ψ is the codomain isofunctor, denoted
by Cdfα.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments α : Φ→ Ψ
and β : Ψ→ Θ be given. We can define the composite assignment
β ◦ α : Φ→ Θ, by assigning to each object F of DomΦ = DomΨ the map-
ping (β ◦ α)

F
:= β

F
◦ α

F
. If α, β are natural assignment, one can define the



product-assignment α × β by assigning to each pair (F ,G) of objects the
mapping (α× β)

(F,G)
:= α

F
× β

G
.

Given a natural assignment α : Φ → Ψ and a isofunctor Θ such that
Cod Θ = DomΦ = DomΨ, one can define the composite assignment
α ◦Θ : Φ ◦Θ→ Ψ ◦Θ by assigning to each object F of DomΦ = DomΨ the
mapping (α ◦Θ)

F
:= α

Θ(F)
.

13. Tensor Functors

We say that an isocategory ISO is concrete if ISO consists of mappings,
the object-class OBJ consists of sets, and if domain and codomain, composi-
tion, identity and inverse have the meanning they are usually given for sets and
mappings. (See, e.g. Sect. 01 – 04 of [FDS]).

Examples of concrete isocategory

The following are some concrete isocategories to be used in this book:

(A) The category FIS whose object-class FS consists of all finite dimen-
sional flat spaces over and whose ISOmorphism-class FIS consists of all flat
isomorphism from one such space onto another or itself.

(B) Fix a field and we consider the concrete isocategory whose object-class
LS consists of all finite dimensional linear spaces over and whose ISOmorphism-
class LIS consists of all linear isomorphism from one such space onto another or
itself.

(C) Given s ∈ , the category DIFs whose object-class DF consists of all
Cs manifolds and whose ISOmorphism-class DIFs consists of all diffeomorphism
from one such manifold onto another or itself.

From now on, in this section, we will deal only with LIS and the categories
obtained from it by product formation, such as LISm × LISn when m,n ∈ . We
use the term tensor functor of degree n ∈ for functor from LISn to LIS.
(Under this definition, composition of tensor functors is somewhat strange: the
second one of those functors must be of degree 1!!!!!!!!!!!!!)

Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential
geometry:



(1) The product-space functor Pr : LIS2 → LIS. It is defined by

Pr(A,B) := A×B for all (A,B) ∈ LIS2. (13.1)

We have Pr(V,W) := V ×W (the product-space of V and W) for all V,W ∈ LS .

(2) Given k ∈ , the k-lin-map-functor Link : LISk×LIS→ LIS. It assigns
to each list (Vi | i ∈ k

] ) in LS and each W ∈ LS the linear space

Link((Vi | i ∈ k
] ),W) := Link

(
×
i∈k]

Vi , W
)

(13.2)

of all k-multilinear mappings from ×i∈k] Vi to W, and it assigns to every list
(Ai | i ∈ k

] ) in LIS and each B ∈ LIS the linear mapping

Link((Ai | i ∈ k
]) , B) (13.3)

from Link
(
×i∈k] DomAi,DomB

)
to Link

(
×i∈k] CodAi,CodB

)
defined by

Link((Ai | i ∈ k
] ),B)T := BT ◦ ×

i∈k]

A−1
i (13.4)

for all T ∈ Lin
(
×i∈k] DomAi,DomB

)
.

When k = 1, Lin1 : LIS × LIS → LIS is called the lin-map-functor and
abreviated by Lin := Lin1.

(3) Given k ∈ , the k-multilin-functor Lnk : LIS2 → LIS. It is defined by

Lnk := Link ◦ (Eqk × Id). (13.5)

We have
Lnk(A,B)T := BT ◦ (A−1)×k (13.6)

for all A,B ∈ LIS and all T ∈ Link((DomA)k,DomB). and

Lnk(V,W) := Link(V
k,W) (13.7)

for all V,W ∈ LS
There are two very important “subfunctors” (see [E-M]), Smk and Skk, given

in following. The symmetric-k-multilin-functor Smk : LIS2 → LIS assigns to
every pair of linear spaces (V,W) ∈ LS 2 the linear sapce

Smk(V,W) := Symk(V
k,W) (13.8)

of all symmetric k-multilinear mappings from Vk to W. It is clear that

Smk(A,B)T := BT ◦ (A−1)×k (13.9)



for all A,B ∈ LIS and all T ∈ Symk((DomA)k,DomB). The skew-k-multilin-
functor Skk : LIS2 → LIS is defined in the same manner as Smk, except that
Symk(V

k,W) in (13.8) is replaced by the linear space Skewk(V
k,W) of all skew

k-multilinear mappings from Vk to W.

(4) Given n ∈ , the k-linform-functor Lnfk, the k-symform-functor
Smfk, the k-skewform-functor Skfk, all from LIS to LIS. They are defined by

Lnfk := Lnk ◦ (Id,Tr) , Smfk := Smk ◦ (Id,Tr) , Skfk := Skk ◦ (Id,Tr). (13.10)

Given V ∈ LS , we have
Lnfk(V) := Link(V

k, ), (13.11)

the space of all k-multilinear forms on Vk. We have

Lnfk(A)ω := ω ◦ (A−1)×k for all ω ∈ Link((DomA)k, ) (13.12)

and all A ∈ LIS. The formulas (13.11) and (13.12) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

When k = 1, we have Lnf1 = Smf1 = Skf1 which is called the duality-
functor and denoted by Dl : LIS→ LIS.

(5) The lineon-functor Ln : LIS→ LIS. It is defined by

Ln := Lin ◦ Eq2. (13.13)

We have
Ln(V) := Lin(V,V) for all V ∈ LS (13.14)

and

Ln(A)T := ATA−1 for all A ∈ LIS and T ∈ Ln(DomA). (13.15)

It is clear that Lin1 = Ln1, however, Ln1 6= Ln! Notation?

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term “tensor” is limited to tensor functors of the form
Tr
s := Lin ◦ (Lnfs,Lnfr) : LIS→ LIS with r, s ∈ , or to tensor functors that are

naturally equivalent to one of this form. Given V ∈ LS a member of the linear
space Tr

s(V) is called a “tensor of contravariant order r and covariant order s.”

Let a family of tensor functors (Φi | i ∈ k
]) and a tensor functor Ψ with

Dom×i∈k] Φk = LISk = DomΨ be given. We say that a natural assignment

β :×i∈k] Φk → Ψ is a k-linear assignment if, for every F ∈ LSk, the mapping

βF : ×
i∈k]

Φi(Fi)→ Ψ(F) (13.16)



is k-linear.

The following are examples for bilinear natural assignments.

(6) Given k ∈ , the alternating assgnment Alt : Lnk → Skk it assigns
each pair (V,W) ∈ LS 2 the mapping

Alt(V,W)A :=
∑

σ∈Perm k]

(sgnσ)A ◦ Tσ (13.17)

where Perm k] is the permutation group of k] and Tσ is defined as in (11.3), for
all A ∈ Link(V

k,W).

(7) The tensor product tpr : Id× Id → Lin ◦ (Dl× Id) ◦ Sw assigns each
pair (V,W) ∈ LS 2 the mapping

tpr(V,W) : V ×W → Lin(W∗,V) (13.18)

defined by

tpr(V,W)(v,w) := v ⊗w for all v ∈ V and w ∈ W, (13.19)

where v⊗w is the tensor product defined according to Def. 1 of Sect. 25, [FDS],
with the identification W ∼=W∗∗.

We use v ⊗ w ∈ Lin(W∗,V) but others use v ⊗ w ∈ Lin(V∗,W) (see e.g.
[B-W]). Our definition of ⊗ bring up the switch functor Sw here!!!!!!!!!!!!!!!!!!!!

The wedge product wpr : Id× Id→ Lin ◦ (Dl× Id) ◦ Sw is defined by

wpr(V,W)(v,w) := v ∧w for all v ∈ V and w ∈ W, (13.20)

where v∧w is the wedge product defined according to (12.9) of Sect. 12, [FDS],
Vol.2, with the identification W ∼=W∗∗.

We have wpr = 1
2 Alt ◦ tpr. Need more development!!!!!!!!!!!!!!!!!!!

We now assume that the field relative to which LS and LIS are defined in
above is the field of real number. Given V,W ∈ LS , the set

Lis(V,W) :=
{
A ∈ LIS

∣∣ DomA = V,CodA =W
}

(13.21)

is then an open subset of the linear space Lin(V,W). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor Φ be given. For every pair of objects (V,W) of Dom Φ,
we define the mapping

Φ(V,W) : Lis(V,W)→ Lis(Φ(V),Φ(W)) (13.22)



by
Φ(V,W)(A) := Φ(A) for all A ∈ Lis(V,W). (13.23)

Indeed, we can view (13.22) as a bilinear assignment from Lin = Ln1 to
Lin ◦ (Φ× Φ). The one to be used in (13.27)

Φ(V,V) : Lis(V)→ Lis(Φ(V))

is a linear assignment from Ln to Ln◦Φ and hence whose gradient is also a linear
assignment from Ln to Ln ◦ Φ!!!!!!!!!!!!!!!!

We say that the tensor functor Φ is analytic if Φ(V,W) is an analytic map-
ping for every pair of objects (V,W) of Dom Φ. We say that a natural assignment
α : Φ→ Ψ is an analytic assignment if the mapping αF : Φ(F) → Ψ(F) is an
analytic mapping for every object F of Dom Φ. All the tensor functors listed
in above are in fact analytic. (The fact that they are of class C∞ can easily be
inferred from the results of Ch.6 of [FDS]. Proofs that they are analytic can be
inferred, for example, from the results that will be presented in Ch.2 of Vol.2 of
[FDS].)

Theorem : Let an analytic tensor functor Φ be given and associate with each
V ∈ DomΦ the mapping

Φ
•

V
: Ln(V)→ Ln(Φ(V)) (13.24)

defined by
Φ

•

V
:= ∇1V

Φ(V,V). (13.25)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then Φ
•

is a
linear assignment from Ln to Ln ◦ Φ. We call Φ

•

the derivative of Φ.

Proof: Let a pair of objects (V,W) of Dom Φ and A ∈ Lis(V,W) be given. It
follows from (13.23), from axiom (F1), and from (12.2) that

Φ(W,W)(ALA−1) = Φ(A)Φ(V,V)(L)Φ(A)−1 (13.26)

for all L ∈ Lis(V,V). By (13.15) we may write (13.26) as
(
Φ(W,W) ◦ Ln(A)

)
(L) =

(
Ln(Φ(A)) ◦ Φ(V,V)

)
(L) (13.27)

for all L ∈ Lis(V,V). Taking the gradient of (13.27) with respect to L at L := 1V
yields

Φ
•

W
◦ Ln(A) = (Ln ◦ Φ)(A) ◦ Φ

•

V
. (13.28)

In view of (12.13) it follows that Φ
•

is a natural assignment from Ln to Ln ◦Φ.
The linearity of Φ

•

follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors. The formulas
given are valid for every V ∈ LS .



(6) Ln
•

V
: Ln(V)→ Ln(Ln(V)) is given by

(Ln
•

V
L)M = LM−ML for all L,M ∈ Ln(V) (13.29)

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).

(7) Let k ∈ be given. In order to describe

(Lnfk)
•

V
: Ln(V)→ Ln(Link(V

k, )), (13.30)

we define, for every L ∈ Ln(V) and every j ∈ k], Dj(L) ∈ (Ln(V))k by

(Dj(L))i :=





L if i = j

1V if i 6= j



 for all i ∈ k]. (13.31)

We then have

((Lnfk)
•

V
L)ω = −

∑

j∈k]

ω ◦Dj(L) for all ω ∈ Link(V
k, ) (13.32)

and all L ∈ Ln(V). The formula (13.32) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors
Let Φ and Ψ be analytic tensor functors. Then the composite functor Ψ ◦Φ

is also an analytic tensor functor and we have

(Ψ ◦ Φ)
•

= (Ψ
•

◦ Φ) ◦ Φ
•

, (13.33)

where the composite assignments on the right are explained in the end of Sect.12.

For example, (13.33) shows that, for each V ∈ LS ,

(Ln ◦ Ln)
•

V
: Ln(V)→ Ln(Ln(Ln(V)))

is given by
(Ln ◦ Ln)

•

V
= Ln

•

Ln(V)Ln
•

V
. (13.34)

In view of (13.29.) above, (13.34) gives

((
(Ln ◦ Ln)

•

V
L

)
K

)
M =

(
(Ln

•

V
L)K−K(Ln

•

V
L)

)
M

= L(KM)− (KM)L−K(LM−ML)
(13.35)



for all V ∈ LS , all K ∈ Ln(Ln(V)), and all L,M ∈ Ln(V).

If Φ and Ψ are analytic tensor functors so is Pr ◦ (Φ,Ψ) and we have

(Pr ◦ (Φ,Ψ))
•

V
= (Φ

•

V
L)× 1Ψ(V) + 1Ψ(V) × (Φ

•

V
L) (13.36)

for all V ∈ LS and all L ∈ Ln(V).

Let α be an analytic assignment of degree n ∈ . If we associate with each
V ∈ LS the mapping (∇α)V := ∇(αV), the gradient of the mapping αV , then
∇α is again an analytic assignment of degree n and we have Dmf∇α = Dmfα
and Cdf∇α = Lin ◦ (Dmfα,Cdfα). We call ∇α the gradient of α.

Let tensor functors Φ1, Φ2, Ψ, all of degree n ∈ but not necessarily analytic,
be given. Each bilinear assignment β : Pr ◦ (Φ1,Φ2) → Ψ is then analytic and
its gradient ∇β : Pr ◦ (Φ1,Φ2)→ Lin ◦ (Pr ◦ (Φ1,Φ2),Ψ) is given by

(
(∇β)V(v1,v2)

)
(u1,u2) = βV(v1,u2) + βV(u1,v2) (13.37)

for all V ∈ LS , all v1,u1 ∈ Φ1(V), and all v2,u2 ∈ Φ2(V).

If α is an analytic assignment of degree n ∈ and if Φ is any isofunctor from
LISk to LISn with k ∈ , then α ◦Φ is an analytic assignment of degree k and we
have ∇(α ◦ Φ) = (∇α) ◦ Φ.



15. Brackets and Twists

We assume now that linear spaces V, W and Z and a short exact sequence

Lin(W,Z)
I
−→ V

P
−→ W (15.1)

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse K of
P there corresponds exactly one linear left-inverse Λ(K) of I such that

Lin(W,Z) ←−
Λ(K)

V ←−
K

W (15.2)

is again a short exact sequence. In view of the identification

Lin
(
W,Lin (W,Z)

)
∼= Lin2 (W2,Z) (15.3)

we may identify the external translation space Lin
(
W,Lin (W,Z)

)
of Riv(P)

with Lin2 (W2,Z).

Assumption : From now on, we assume that in this section, a flat F in Riv(P)
with direction space {I}Sym2 (W2,Z) is given. Here Sym2 (W2,Z) is regarded
as a subspace of Lin2 (W2,Z) ∼= Lin

(
W,Lin (W,Z)

)
.

Proposition 1: For every K1,K2 ∈ F ,

(Λ(K1)v)(Pv′)− (Λ(K1)v
′)(Pv) = (Λ(K2)v)(Pv′)− (Λ(K2)v

′)(Pv) (15.4)

holds for all v,v′ ∈ V.

Proof: Let K1,K2 ∈ F be given. Then we determine L ∈ Sym2 (W2,Z) such
that K1 −K2 = IL . It follows from Prop.3 of Sect.14 that

(Λ(K1)v)(Pv′)− (Λ(K2)v)(Pv′) = −L(Pv,Pv′)

holds for all v,v′ ∈ V. By interchanging v and v′ and observing that L is
symmetric, we conclude that (15.4) follows.

Definition: In view of Prop. 1, the F-bracket BF ∈ Skw2 (V2,Z) can be
defined such that

BF (v,v′) := (Λ(K)v)(Pv′)− (Λ(K)v′)(Pv) for all v,v′ ∈ V (15.5)

is valid for all K ∈ F . Using the identification (15.3) we also have

BF ∈ Lin
(
V,Lin (V,Z)

)
.



Proposition 2: The F-bracket BF ∈ Lin
(
V,Lin (V,Z)

)
satisfies

BF (IM) = MP for all M ∈ Lin(W,Z),

(BFv)K = Λ(K)v for all K ∈ F and all v ∈ V.
(15.6)

If dimZ 6= 0, then BF is injective; i.e. Null BF = {0}.

Proof: The equations (15.6)1 and (15.6)2 follow from Definition (15.5) together
with Λ(K) I = 1Lin(W,Z) and PK = 1W , respectively.

Let v ∈ NullBF be given, so that BF v = 0 and hence

0 =
(
BFv

)
IM = BF (v, IM) = −

(
BF (IM)

)
v

for all M ∈ Lin(W,Z). Using (15.6)1, it follows that −MPv = 0 for all
M ∈ Lin(W,Z), which can happen, when dimZ 6= 0, only if Pv = 0 and hence
v ∈ NullP = Rng I. Thus we may choose M′ ∈ Lin(W,Z) such that v = IM′

and hence BF (IM′) = 0. Using (15.6)1 again, it follows that M′P = 0. Since
P is surjective , we conclude that M′ = 0 and hence v = 0. Since v ∈ NullBF
was arbitrary, it follows that NullBF = {0}.

Definition: The F-twist

TF : Riv(P)→ Skw2 (W2,Z) (15.7)

is defined by

TF (K) := −BF ◦ (K×K) for all K ∈ Riv(P), (15.8)

where BF is the F-bracket defined by (15.5).

Proposition 3: For every H ∈ F , we have

TF = ΓH − ΓH˜ (15.9)

where ˜ denotes the value-wise switch, so that ΓH˜(K)(s, t) = ΓH(K)(t, s) for
all K ∈ Riv(P) and all s, t ∈ W.

Proof: Let K ∈ Riv(P) and s, t ∈ W be given. By (15.8) and (15.5), we see
that for every H ∈ F we have

TF (K)(s, t) = −BF (Ks,Kt)

= −Λ(H)(Ks)P(Kt) + Λ(H)(Kt)P(Ks).
(15.10)

We conclude from PK = 1W , (15.10) and (14.10) that

TF (K)(s, t) = ΓH(K)(s, t)− ΓH(K)̃ (s, t).



Since s, t ∈ W and K ∈ Riv(P) were arbitrary, (15.9) follows.

Proposition 4: The F-torsion TF is a surjective flat mapping whose gradient

∇TF ∈ Lin
(
Lin2 (W2,Z) , Skw2 (W2,Z)

)

is given by
(∇TF )L = L˜− L (15.11)

for all L ∈ Lin2 (W2,Z).

Proof: Let H ∈ F be given. It follows from (15.8) and (15.5)

TF
(
H− 1

2IL
)

= L for all L ∈ Skw2 (W2,Z)

and hence TF is surjective.
Prop. 3 together with Prop. 4 in Sec. 14 shows that the F-torsion TF is a

flat mapping whose gradient is given by (15.11).

In view of definitions (15.8), (15.5) and (15.11), we have TF
<({0}) = F .

Definition: We say that K ∈ Riv(P) is F-twist-free (or F-symmetric) if
TF (K) = 0, i.e. if K ∈ F .

F is a flat in Riv(P) with the (external) direction space Sym2 (W2,Z) and
hence

dim TF
<({0}) = dim Sym2 (W2,Z) =

n(n+ 1)

2
m, (15.12)

where n := dimW and m := dimZ. The mapping

SF :=
(
1Riv(P) + 1

2ITF
) ∣∣∣

TF
<({0})

(15.13)

is the projection of Riv(P) onto T<
F ({0}) with Null∇SF = Skw2 (W2,Z). If

K ∈ Riv(P), we call

SF (K) = K +
1

2
I
(
TF (K)

)

the F-symmetric part of K.

Remark 1: It is clear from (15.9) and (11.6) that

TF = 2 Alt ◦ ΓH for all H ∈ F

The numerical factor 2 is conventional which reduces some numerical factors in
calculations.



Chapter 2

Manifolds and Bundles

21. Charts, Atlases and Manifolds

Let a setM and r ∈˜be given. A chart χ forM is defined to be a bijection
whose domain is included in M and whose codomain is an open subset of a
specified flat space, denote by Pagχ and called the page of χ. The translation
space of Pagχ is denoted by

Vχ := Pagχ− Pagχ. (21.1)

Let f be a mapping whose domain is a subset of M and whose codomain
is an open subset D of a specified flat space. We say that f is Cr-related to a
given chart χ forM if

(R1) χ>(Dom χ ∩Dom f) is an open subset of Pagχ,

(R2) f χ← : χ>(Dom χ ∩Dom f)→ D is of class Cr.

We say that two charts χ and γ forM are Cr-compatible if γ is Cr-related to
χ and χ is Cr-related to γ.

Pitfall: In general, Cr-compatibility is not an equivalence relation.

A class A of charts forM is called a Cr-atlas ofM if

(A1) Any two charts in A are Cr-compatible,

(A2) The domain of the charts in A cover M, i.e.

M =
⋃
{Domχ | χ ∈ A}. (21.2)

It is clear that a Cr-atlas is also a Cs-atlas for every s ∈ 0. .r.

Proposition 1: Let A be a Cr-atlas for M and let χ be a chart that is Cr-
compatible with all charts in A. If f is a mapping that is Cr-related to every
chart in A then it is also Cr-related to χ .

Proof: Let x ∈ Dom χ ∩Dom f be given. By (A2) we may may choose α ∈ A
such that x ∈ Dom α. We put

G := Dom χ ∩Dom α ∩Dom f. (21.3)

Since α is injective we have

α>(G) = α>(Dom χ ∩Dom α) ∩ α>(Dom f ∩Dom α).



Since χ and f are both Cr-related to α, it follows from (R1) that both
α>(Dom χ ∩Dom α) and α>(Dom f ∩ Dom α) are open subsets of Pagα and
hence that α>(G) is also open in Pagα. Since α χ← is continuous by (R2),
it follows that χ>(G) = (α χ←)<(α>(G)) is an open neighborhood of χ(x) in
Pagχ. Using (0.1) and (0.2) it is easily seen that

(f χ←)
χ>(G)

= (f α←)
α>(G)

◦ (α χ←)
α>(G)

χ>(G)
.

Since both f α← and α χ← are of class Cr by (R2), it follows from the chain
rule that the restriction of f α← to a neighborhood χ>(G) of χ(x) in Pagχ is
of class Cr. Since x ∈ Dom χ ∩Dom f was arbitrary, it follows that the domain
χ>(Dom χ ∩Dom f) of f χ← is open in Pagχ and that f χ← is of class Cr,
i.e. that f is Cr-related to χ.

We say that a Cr-atlas A forM is Cr-saturated if every chart forM that
is Cr-compatible with all charts in A already belongs to A. The following is an
immediate consequence of Prop. 1.

Proposition 2: Let A be a Cr-atlas forM. Then there is exactly one saturated
Cr-atlas A that includes A. In fact, A consists of all charts that are Cr-
compatible with all charts in A .

Definition: Let r ∈ ˜ be given. A Cr-manifold is a set M endowed with
structure by the prescription of a saturated Cr-atlas for M, which is called the
chart-class of M and is denoted by ChrM, or if no confusion is likely, simply
by ChM .

In view of Prop. 2, the structure of a Cr-manifold onM is uniquely deter-
mined by specifying a Cr-atlas included in ChM. Of course, two different such
atlases may determine one and the same Cr-structure.

Let M be a Cr-manifold with chart-class ChrM. Then, for every
s ∈ 0. .r, M has also the natural structure of a Cs-manifold, determined by
ChrM regarded as a Cs-atlas. Of course, the chart-class ChsM of the Cs-
manifold structure includes ChrM, but we have ChrM ChsM if s < r.

Examples of manifold

Example 1: Let D be an open subset of a flat space. Then the singleton {1D} is
a Cω-atlas of D. It determines on D a natural Cω-structure and hence a natural
Cr-structure for every r ∈ .

Example 2: (Product manifold) Let M and N be manifolds of class Cr,
then the productM×N has the natural structure of a Cr manifold.



We now assume that a Cr-manifoldM with chart-class ChM is given. We
use the notation

ChxM :=
{
χ ∈ ChM x ∈ Domχ

}
. (21.4)

It is easily seen that the spaces Pagχ and Vχ, χ ∈ ChxM, all have the same
dimension. This dimension is called the dimension ofM at x, and is denoted
by dimxM.

The Cr-manifoldM is endowed with a natural topology, namely the coarsest
topology that renders all χ ∈ ChM continuous. A subset P of M is open if
and only if, for each χ ∈ ChM, the image χ>(P ∩Domχ) is an open subset of
Pagχ. Given x ∈ M, one can construct a neighborhood-basis Bx of x in M
in the following manner: Choose a chart χ ∈ ChxM and a neighborhood-basis
Nχ(x) of χ(x) in Pagχ. Then put

Bx :=
{
χ<(N ∩ Codχ) N ∈Nχ(x)

}
. (21.5)

Pitfall: The natural topology ofM need not be separating.

Let P be an open subset of M. Then P has the natural structure of a
Cr-manifold whose chart-class ChP is

ChP :=
{
χ ∈ ChM Domχ ⊂ P

}
. (21.6)

The natural topology of P as a Cr-manifold concides with the topology of P
induced by the topology ofM.

Let f be a mapping whose domain is an open subset of M and whose
codomain is an open subset D of a specified flat space E with translation space
V := E − E . We say that f is of class Cs, with s ∈ 0. .r, if it is Cs-related to
every chart χ ∈ ChM, i.e. if f χ← is of class Cs for all charts χ ∈ ChM.
(Since Dom f is open, Dom f χ← = χ>(Domχ∩Dom f) is automatically open
in Pagχ when χ ∈ ChM.) It follows from Prop. 1 that f is of class Cs if f χ←

is of class Cs for every chart χ in some Cr-atlas included in ChM. If f is of
class Cs with s ≥ 1 and if χ ∈ ChM, we define the gradient

∇χf : Dom χ ∩Dom f → Lin(Vχ,V)

of f in the chart χ by

(∇χf)(x) := ∇χ(x)(f χ←) for all x ∈ Dom χ ∩Dom f. (21.7)

More generally, for every s ∈ 1. .r, the gradient of order s

∇(s)
χ f : Dom χ ∩Dom f → Syms((Vχ)s,V)



of f in the chart χ defined by

(∇(s)
χ f)(x) := ∇

(s)
χ(x)(f χ←) for all x ∈ Dom χ ∩Dom f. (21.8)

The following transformation rules are easy concequences of the rules of calculus.

Proposition 3: Let f be a mapping of class C1, x ∈ Dom f and χ, γ ∈ ChxM.
Then

(∇γf)(x) = (∇χf)(x)(∇γχ)(x). (21.9)

If f is also of class C2, then

(∇(2)
γ f)(x) = (∇(2)

χ f)(x) ◦ (∇γχ(x)×∇γχ(x)) + (∇χf)(x)∇(2)
γ χ(x). (21.10)

In the case when f := γ the formulas (21.7) and (21.8) reduce to

(∇γγ)(x) = 1Vγ and (∇(2)
γ γ)(x) = 0.

Hence Prop. 3 has the following consequence:

Proposition 4: Let x ∈ M and χ , γ ∈ ChxM be given. If r ≥ 1 , then
(∇χγ)(x) ∈ Lin (Vχ,Vγ ) is invertible and

(∇χγ)(x)
−1 = (∇γχ)(x). (21.11)

If r ≥ 2, we also have

(∇(2)
γ χ)(x) = −(∇γχ)(x)

(
(∇(2)

χ γ)(x) ◦ (∇γχ(x)×∇γχ(x))
)
. (21.12)

If the manifold M is itself the underlying manifold of an open subset of a
flat space (see Example 1 above), then a mapping f is of class Cs as described
above if and only if it is of class Cs in the ordinary sence (see Notations).

Let f be a mapping whose domain is a neighborhood of a given point x ∈M
and whose codomain is an open subset of a specified flat space. We say that f is
differentiable at x if f χ← is differentiable at χ(x) for some, and hence all,
χ ∈ ChxM. If this is the case, (21.7) remains meaningful for the given x ∈ M
and the transformation formula (21.9) remains valid. The concept of “s times
differentiable at x” when s ∈ 0. .r is defined in a similar way.

Definition: Let M be a Cr-manifold and let P be a subset of M. We say that
P is a submanifold of M if for each point x ∈ P there is a chart χ ∈ ChxM
such that χ>(P ∩Domχ) is an open subset of a flat Fχ of Pagχ.



Let P be a Cr submanifold of the manifold M. We left it the readers to
show that P has the natural structure of a Cr manifold. The natural topology
of P as a Cr-manifold concides with the topology of P induced by the topology
ofM, i.e. P a topological subspace ofM.

Let f : S → M be a Cs mapping from a manifold S to another manifold
M. We say that f is a Cs immersion at x ∈ S if f is injective and there exists
an open neighborhood Nx of x (in S) such that f>(Nx) is a submanifold ofM.
We say that f is an immersion if it is an immersion at every y ∈ S. If f is
an immersion, the domain S called an immersed manifold of M. However,
being an immersion is a “local property” and hence the range Rng f := f>(S)
of f may not be a submanifold ofM. For example (see [L]):

270degreesfrom300centerat3030units < 1pt, 1pt > −750300/ < 2.5pt > [.75, 2]from030to01.5

Figue 11.1

An imbedding is an immersion f such that Rng f is a submanifold. The
domain of an imbedding is called an imbedded manifold of its codomain
manifold. It is clear that for every submanifold P of a given manifold M the
inclusion 1P⊂M is an imbedding.

Still need more details on

submanifolds



22. Bundles

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given. Let a
number s ∈ 0. .r be given and let τ : B → M be a surjective mapping from a
given set B to the manifoldM.

Let a concrete isocategory ISO with object class OBJ be given with the
following properties:

(i) Each set in OBJ has the natural structure of a Cs-manifold.

(ii) Every isomorphism in ISO is a Cs-diffeomorphism.

The most inportant special cases are (1) the isocategory of LIS consisting of
all linear isomorphisms, whose object class LS consist of all (finite dimensional)
linear spaces and (2) the isocategory of FIS consisting of all flat isomorphisms,
whose object class FS consist of all flat spaces. The object sets in LS and FS
have the natural structure of Cω-manifolds and the isomorphisms in LIS and
FIS are Cω-diffeomorphisms.

Definition: An ISO-bundle chart for B (for τ) is a bijection

φ : τ<(Oφ)→ Oφ × Vφ,

where Oφ is an open subset ofM and Vφ is a set in OBJ such that the diagram

τ<(Oφ)
φ
−−→ Oφ × Vφ

< 3pt > [.25, 1.5]from− 1515to15− 10τ

∣∣Oφ
τ<(Oφ)

yev1

Oφ

. (22.1)

is commutative, i.e. ev1 ◦ φ = τ
∣∣Oφ
τ<(Oφ)

.

Notation: For every y ∈ M, we denote By := τ<({y}) and for every
ISO-bundle chart φ we use the following notations

φ
⌋
y

:= ev2 ◦ φ ◦
(
1By⊂τ<(Oφ)

)
: By → Vφ (22.2)

for all y ∈ Oφ, i.e. we have the following commutative diagram

Vφ

< 3pt > [.25, 1.5]from− 45− 10to2513
φ⌋y

xev2

By −֒−→ τ<(Oφ)
φ
−−→ Oφ × Vφ

.



Put (22.1) and (22.2) together, we have the following commutative diagram

Vφ

< 3pt > [.25, 1.5]from− 45− 10to2513φ⌋y

xev2

By −֒−→ τ<(Oφ)
φ
−−→ Oφ × V

< 3pt > [.25, 1.5]from− 1515to15− 10τ

∣∣Oφ
τ<(Oφ)

yev1

Oφ

Let φ and ψ be ISO-bundle charts for B. We say that φ and ψ are Cs-
compatible if

ψ φ← : (Oφ ∩ Oψ)× Vφ → (Oφ ∩ Oψ)× Vψ (22.3)

is a Cs-diffeomophism such that, for every y ∈ Oφ ∩ Oψ, the mapping

ψ
⌋
y
◦ φ

⌋←
y

: Vφ → Vψ (22.4)

belongs to ISO.
A class A of ISO-bundle charts for B is called a Cs ISO-bundle atlas for

B if

(BA1) every two ISO-bundle charts in A are Cs-compatiable,

(BA2) for every x ∈ M there is a bundle chart φ ∈ A with x ∈ Oφ; i.e.
we have

M =
⋃

φ∈A

Oφ .

Proposition 1: Let A be a ISO-bundle atlas for B and let φ be a ISO-bundle
chart that is Cs-compatible with all ISO-bundle charts in A. If ψ is a ISO-
bundle chart that is Cs-compatible with every ISO-bundle chart in A then it is
also Cs-compatible with φ.

Proof: Let x ∈ Oφ ∩ Oψ be given. By (BA2), we may choose a ISO-bundle
chart θ ∈ A such that x ∈ Oθ. Put O := Oφ ∩ Oψ ∩ Oθ. Since both φ and ψ
are Cs-compatible with θ, we see that the restriction

ψ φ←
∣∣∣
φ(τ<{O})

= (ψ θ←)
∣∣∣
θ(τ<{O})

◦ (θ φ←)
∣∣∣
θ(τ<{O})

φ(τ<{O})

on φ(τ<{O}) is a Cs-diffeomorphism and the induced mapping

ψ
⌋
x
◦ φ

⌋←
x

= (ψ
⌋
x
◦ θ

⌋←
x

) ◦ (θ
⌋
x
◦ φ

⌋←
x

)



is a ISO-isomorphism. Since x ∈ Oφ ∩ Oψ was arbitrary, we conclude that ψ
and φ are Cs-compatible.

We say that a ISO-bundle atlas A of B is Cs-saturated if every ISO-bundle
chart for B that is Cs-compatible with all ISO-bundle charts in A already belongs
to A. The following is an immediate consequence of Prop. 1.

Proposition 2: Let A be a Cs ISO-bundle atlas for B. Then there is exactly
one Cs-saturated ISO-bundle atlas A that includes A. In fact, A consists of all
ISO-bundle charts that are Cs-compatible with all ISO-bundle charts in B .

Let A be a saturated ISO-atlas for B and let φ be a ISO-bundle chart in A.
On each fibre Bx, x ∈ Oφ, we can transport the ISO-structure of Vφ by means
of φ

⌋
x

: Bx → Vφ. The result is independent of the choice of φ, since every pair

of bundle charts φ and ψ in A are compatible and hence ψ
⌋
x
◦ φ

⌋←
x

: Vφ → Vψ
is a ISO-isomorphism.

Definition: A Cs ISO-bundle over M is a set B and a mapping τ : B → M
endowed with structure by the prescription of a saturated Cs ISO-bundle atlas
for B, which is called the bundle structure for B and is denoted by Chs(B,M),
or if no confusion is likely, simply by Ch(B,M). We denote the ISO-bundle by
(B, τ,M) or simply by B.

The mapping τ is called the bundle-projection. For every x ∈ M,
Bx := τ<({x}) is called the fiber over x and the inclusion mapping of Bx in
B is called the bundle inclusion at x. Right inverses of τ are called cross
sections of B. We also use the following notation

Chx(B,M) :=
{
φ ∈ Ch(B,M)

∣∣ x ∈ Oφ
}
. (22.5)

As explained above, for every x ∈ M, the fiber Bx is naturally endowed
with the structure of a ISO-set in such a way that φ

⌋
x

: Bx → Vφ is in ISO (is an
isomorphism) for all φ ∈ Chx(B,M). Thus the dimension of Bx can be obtained
from all φ ∈ Chx(B,M).

Locally (relative to M), the manifold structure of the bundle manifold
B is completely determined by the manifold structure of the base manifold
M and the manifold structures of Vφ for a single φ ∈ Ch(B,M). Every bundle
chart φ in Ch(B,M) transports the manifold structure from Oφ×Vφ to τ<(Oφ),
and hence a manifold chart can be easily obtained from φ.

Let b ∈ B be given and put x := τ(b). The dimension of B at b can be
obtained from the codomain of each bundle chart φ ∈ Chx(B,M). We have

dim bB = m+ n,



where dim xM = m and dim bBx = n.

Let ISO-bundles (B′, τ ′,M′) and (B, τ,M) be given. We say that
(B′, τ ′,M′) is a ISO-subbundle of (B, τ,M) provided B′ is a submanifold of B,
M′ is a submanifold ofM and τ ′ = τ

∣∣

33. Torsion

Let r ∈ ,̃ with r ≥ 2, and a Cr-manifoldM be given. For every x ∈M, we
have; as described in Sect. 32 with B := TM,

TlisxTM :=
⋃

y∈M

Lis(TxM,TyM). (33.1)

We also have the following short exact sequence

Lin TxM
Ix−→ SxTM

Px−→ TxM. (33.2)

The short exact sequence (33.2) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

For every manifold chart χ ∈ ChM, the tangent mapping tgtχ; as defined in
(22.13), is a bundle chart of the tangent bundle TM such that ev2 ◦ tgtχ = ∇χ.
Note that not every tangent bundle chart φ ∈ Ch(TM,M) can be obtained from
the gradient of a manifold chart. To avoid complicated notations, we replace
all the superscript of φ = tgtχ by superscript of χ; i.e. we use the following
notation

Aχ
x := A

tgtχ
x , Γχx := Γ

tgtχ
x and Γχ,γx := Γ

tgtχ,tgtγ
x (33.3)

for all manifold charts χ, γ ∈ ChM. Given χ, γ ∈ ChM. It is easily seen from
(32.25) and (23.16) that

Γχ,γx :=
(
(∇xγ)

−1∇(2)
χ γ(x)) ◦ (∇xχ×∇xχ). (33.4)

It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that Γχ,γx belongs to the subspace Sym2(TxM

2,TxM) of
Lin2(TxM

2,TxM) ∼= Lin(TxM,LinTxM).

Proposition 1: There is exactly one flat F in ConxTM with direction
space {Ix}Sym2(TxM

2,TxM) which contains Aχ
x for every manifold chart

χ ∈ ChxM, so that

F = Aχ
x + {Ix}Sym2(TxM

2,TxM) for all χ ∈ ChxM. (33.5)



Definition: The shift-bracket Bx ∈ Skw2 (SxTM
2,TxM) of SxTM is de-

fined by

Bx := BF (33.6)

where BF is defined as in (15.5).

Definition: The torsion-mapping Tx : ConxTM → Skw2 (TxM
2,TxM) of

ConxTM is defined by

Tx := TF (33.7)

where TF is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart χ ∈ ChxM,
we have

Tx = Γχx − Γχx ˜ (33.8)

where ˜ denotes the value-wise switch, so that Γχx ˜(K)(s, t) = Γχx (K)(t, s) for
all K ∈ ConxM and all s, t ∈ TxM.

The torsion-mapping Tx is a surjective flat mapping with T<
x ({0}) = F

whose gradient

∇Tx ∈ Lin
(

Lin2 (TxM
2,TxM) , Skw2 (TxM

2,TxM)
)

(33.9)

is given by

(∇Tx)L = L˜− L (33.10)

for all L ∈ Lin2 (TxM
2,TxM).

Definition: We say that a connector K ∈ ConxTM is torsion-free (or (A×
M

B , φ×
M
ψ ,M ).



23. The tangent bundle

Let r ∈˜×, a Cr-manifold M, and a point x ∈M be given.

Definition: The tangent space of M at x is defined to be

TxM :=

{
t ∈ ×

α∈ChxM
Vα (23.2) holds

}
, (23.1)

where the condition (23.2) is given by

tγ = ∇χγ(x) tχ for all χ, γ ∈ ChxM. (23.2)

TxM is endowed with the natural structure of a linear space as shown below and
dim TxM = dimxM.

For every χ ∈ ChxM, define the evaluation mapping evχ : TxM→ Vχ
by

evχ(t) := tχ for all t ∈ TxM.

It follows from (21.10) that the evaluation mapping evχ is invertible
and that its inverse ev←χ : Vχ → TxM is given by

(ev←χ )(u) =
(
∇χα(x)u

∣∣ α ∈ ChxM
)

for all u ∈ Vχ.

Hence we have

evχ ◦ ev←γ = ∇γχ(x) ∈ Lis (Vγ ,Vχ) (23.3)

for all γ, χ ∈ ChxM. It follows from that the linear-space structure on
TxM obtained from that of Vχ by evχ does not depend on the choice
of χ ∈ ChxM and hence is intrinsic to TxM. We consider TxM to be
endowed with this structure.

Let f be a mapping whose domain D is a neighborhood of x in M
and whose codomain is an open subset of a flat space with translation
space V. It follows from (23.3) and (21.7) that

∇χf(x) ◦ evχ ∈ Lin(TxM,V)

is the same for all χ ∈ ChxM. Hence we may define the gradient of f
at x by

∇xf := ∇χf(x) ◦ evχ ∈ Lin(TxM,V) (23.4)

for all χ ∈ ChxM. In particular, if we put f := χ we get ∇xχ = evχ and
hence

(∇x



34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle
(B, τ,M) of class Cs, s ≥ 2, is given. We also assume that bothM and B
have constant dimensions, and put n := dimM and m := dimB−dimM.
Then we have, as in (32.1),

m = dim Bx for all x ∈M. (34.1)

Definition: The connector bundle ConB of B is defined to be the union of
all the right-connector spaces

ConB :=
⋃

x∈M

ConxB . (34.2)

It is endowed with the structure of a Cs−1-flat space bundle over M as shown
below.

If P is an open subset of M and x ∈ P, we can identify ConxA ∼=
ConxB, where A := τ<(P), in the same way as was done for the tangent
space. Hence we may regard ConA as a subset of ConB.

Note that the family ( ConxB |x ∈ M ) is disjoint. The bundle
projection ρ : ConB →M is given by

ρ(K) :∈
{
y ∈M K ∈ ConxB

}
, (34.3)

and, for every x ∈M, the bundle inclusion inx : ConxB → ConB at x is

inx := 1ConxB⊂ConB . (34.4)

For every (χ, φ) ∈ ChM× Ch(B,M) we define

con(χ,φ) : Con(Domφ)→ (Domχ ∩ Oφ)× Lin(Vχ,LinVφ) (34.5)

by

con(χ,φ)(H) :=
(
z , φ

⌋
z
Λ(Aφ

z )(H) (∇zχ
−1 × φ

⌋−1

z
)

)

where z := ρ(H)
(34.6)

for all H ∈ Con(Domφ). It is easily seen that con(χ,φ) is invertible and

con(χ,φ)←(z,L) = Aφ
z + Izφ

⌋−1

z
L (∇zχ× φ

⌋
z
) (34.7)



for all z ∈ (Domχ ∩ Oφ) and all L ∈ Lin(Vχ,LinVφ). Let (χ, φ), (γ, ψ) ∈
ChM× Ch(B,M) be given. We easily deduce from (34.7) and (34.6),
with (χ, φ) replaced by (γ, ψ) and Λ(Aψ

z )(Aφ
z ) = −Γψ,φz = Γφ,ψz , that

(
con(γ,ψ) con(χ,φ)←

)
(z,L)

=
(
z , ψ

⌋
z
Γφ,ψz (∇zγ

−1 × ψ
⌋−1

z
) + κ(z)L

(
∇zλ× κ(z)

−1
))

where λ := γ χ← and κ := ψ ⋄ φ (see (22.7))

(34.8)

for all z ∈ (Domχ∩Oφ)∩(Domγ∩Oψ) and L ∈ Lin(Vχ,LinVφ). It is clear that
con(γ,ψ) con(χ,φ)← is of class Cs−1. Since (γ, ψ), (χ, φ) ∈ ChM×Ch(B,M)
were arbitrary, it follows that

{
con(α,φ)

∣∣ (α, φ) ∈ ChM× Ch(B,M)
}

is
a Cs−1-bundle atlas of ConB; it determines the natural structure of a
Cs−1 flat-space bundle over M.

The mappings ρ and inx defined by (34.3) and (34.4) are easily
seen to be of class Cs−1.

Definition: Let O be an open subset of M. A cross section on O of the
connector bundle ConB

A : O → ConB (34.9)

is called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
φ in Ch(B,M), the connection Aφ on Oφ is defined by

Aφ(x) := Aφ
x for all x ∈ Oφ, (34.10)

where Aφ
x is given by (32.21).

Definition: The tangent-space of ConB at K is denoted by

TKConB. (34.11)

We define the projection mapping of TKConB by

PK := ∇Kρ ∈ Lin (TKConB,TxM) (34.12)

and the injection mapping of TKConB by

IK := ∇Kinx ∈ Lin
(
Lin(TxM,LinBx),TKConB

)
(34.13)

where ρ and inx are defined by (34.3) and (34.4).

It is clear from (34.5) that

dim (ConB) = dim (TKConB) = n+ nm2. (34.14)



Proposition 1: The projection mapping PK is surjective, the injection mapping
IK is injective, and we have

NullPK = Rng IK (34.15)

i.e.
Lin(TxM,LinBx)

IK−−→ TKConB
PK−−→ TxM (34.16)

is a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence
all of the results in Sect.15 can be used here.

Proposition 2: For each (χ, φ) ∈ ChxM× Chx(B,M), let

A
(χ,φ)
K ∈ Lin (TxM,TKConB)

be defined by A
(χ,φ)
K := Acon(χ,φ)

K
in terms of the notation (32.21); i.e.

A
(χ,φ)
K :=

(
∇Kcon(χ,φ)

)−1
◦ ins1. (34.17)

Then A
(χ,φ)
K is a linear right-inverse of PK; i.e. PKA

(χ,φ)
K = 1TxM.

Proposition 3: If (γ, ψ), (χ, φ) ∈ ChxM× Chx(B,M), with Aφ
x = K = Aψ

x ,
then

A
(χ,φ)
K −A

(γ,ψ)
K = IK Γ

(χ,φ),(γ,ψ)
K

Λ(A
(χ,φ)
K )−Λ(A

(γ,ψ)
K ) = −Γ

(χ,φ),(γ,ψ)
K PK

(34.18)

where Γ
(χ,φ),(γ,ψ)

K := Γcon(χ,φ),con(γ,ψ)

K in terms of the notation (32.25) is given by

Γ
(χ,φ),(γ,ψ)

K (t, t′) = (ψ
⌋
x
)−1

(
∇

(2)
γ(x)(ψ ⋄ φ)(∇xγ t,∇xγ t′)

)
φ
⌋
x

(34.19)

for all t, t′ ∈ TxM. We have Γ
(χ,φ),(γ,ψ)

K ∈ Sym2(TxM
2,LinBx). Here, the

notation (22.7) is used.

Proof: Let (γ, ψ), (χ, φ) ∈ ChxM× Chx(B,M), with Aφ
x = K = Aψ

x , be
given. Then, we have ∇x(ψ ⋄ φ) = Λ(Aφ

x)(K) = 0. It follows from (34.6)
that

con(χ,φ)
⌋
x
(K) = 0. (34.20)

Using (34.8), (34.20) and (33.25), we obtain



24. Tensor Bundles

We now assume that a number s ∈˜and a Cs linear-space bundle
(B, τ,M) are given.

With each analytic tensor functor Φ one can construct what is
called the associated Φ-bundle of B

Φ(B) :=
⋃

y∈M

Φ(By). (24.1)

It has the natural structure of a Cs linear-space bundle over M. For
every open subset P of M, we also use the following notation

Φ(τ<(P)) :=
⋃

y∈P

Φ(By). (24.2)

We define the bundle projection τΦ : Φ(B) → M of the bundle
Φ(B) by

τΦ(v) :∈
{
y ∈M v ∈ Φ(By)

}
. (24.3)

For every bundle chart φ : τ<(Oφ)→ Oφ × Vφ, we have

φ(v) =
(
y , φ⌋y(t)

)
where y := τ(t)

We define the mapping

Φ(φ) : Φ(π<(Oφ))→ Oφ ×Φ(Vφ) (24.4)

by
(Φ(φ))(v) := ( y , Φ(φ⌋y)v ) when y := τΦ(v). (24.5)

It follows from the analyticity of the mapping (L 7→ Φ(L)) that

{
Φ(φ) φ ∈ Ch(B,M) }

is a Cs-bundle-atlas of Φ(B). It determines the Cs linear-space bundle
structure of (Φ(B), τΦ,M).

The bundle projection τΦ : Φ(B) → M defined by (24.3) is easily
seen to be of class Cs.

Notation: For every p ∈ 0. .s, we denote the collection of all Cp cross sections
of Φ(B) by X

p
(Φ(B)). The collection of all differentiable cross sections of Φ(B)

is denoted by X(Φ(B)).

In the special case B = TM, we call Φ(TM) the tansor bundle of
M of type Φ. A cross section of the tensor bundle Φ(TM) is called
a tensor-field of type Φ. When Φ := Dl is the duality functor (see



Sect.13), we call Dl (TM) the cotangent bundle of M which will be
denoted by T∗M.

Remark: Let M be a C∞-manifold. With every h ∈ X
∞

(TM) we can

then associate a mapping h
∇

: C∞(M)→ C∞(M) defined by

h
∇

(f) := (∇f)h for all f ∈ C∞(M) (24.6)

where the gradient ∇f of f is the covector field of class C∞ given by

∇f(x) := ∇xf for all x ∈ Dom f . It is clear that h
∇

is -linear. By using
the product rule ∇fg = f∇g + g∇f , we have

h
∇

(fg) = fh
∇

(g) + gh
∇

(f) for all f, g ∈ C∞(M). (24.7)

This shows that h
∇

is a derivation of the module C∞(M). One can
prove that every derivation of C∞(M) can be obtained in this manner.
(The proof is fairly difficult.)

Let a cross section section H : M → Φ(B) be given. For every
bundle chart φ ∈ Chx(B,M) we define the mapping

Hφ : Oφ → Φ(Vφ)

by
Hφ(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ. (24.8)

Given x ∈ Oφ, we define

∇–φxH := Φ(φ
⌋−1

x
)∇xH

φ ∈ Lin (TxM,Φ(Bx)). (24.9)

When Φ = Id and B = TM, we have ∇–
tgtχ
x h = ∇–χx h for all χ ∈ ChM and

all x ∈ Domχ.

One defines value-wise addition of cross sections of Φ(B) and value-
wise scalar multiplication of a real function on M and a cross section
of Φ(B) in the obvious manner. X

p
Φ(B) has the natural structure of

a Cp(M)-module, where Cp(M) is the ring of all real-valued functions
of class Cp on M.

Let (L1, τ1,M) and (L2, τ2,M) be linear-space bundles over M and
let L1×ML2 be the fiber product bundle of L1 and L2. For every
tensor bifunctor Υ, it follows form (24.5) that for each bundle chart
φ1 ∈ Ch(L1,M) and each buhdle chart φ2 ∈ Ch(L2,M)

Υ(φ1×Mφ2)(v) =
(
y , Υ(ϕ⌋y × φ⌋y)v

)
(24.10)



where y := (τ1×Mτ2)
Υ(v) (see 24.3).

Let a cross section H :M→ Υ(L1×ML2) be given. For each bundle
chart φ1 ∈ Ch(L1,M) and each buhdle chart φ2 ∈ Ch(L2,M), we define
the mapping

Hφ1,φ2 : Oφ → Υ(Vφ1 × Vφ2)

by
Hφ1,φ2(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ1 ∩ Oφ2 . (24.11)

Given x ∈ Oφ1 ∩ Oφ2 , we define

∇–φ1,φ2
x H := Υ(φ1

⌋−1

x
× φ2

⌋−1

x
)∇xH

φ1,φ2 (24.12)

which is in Lin (TxM,Υ(L1x × L2x)).



32. Transfer Isomorphisms, Shift Spaces

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given.
Let a number s ∈ 1. .r be given and let B be a Cs linear-space bundle
over M. We assume that both M and B have constant dimensions,
and put n := dimM and m := dimB − dimM. Then

m = dim Bx for all x ∈M. (32.1)

Now let x ∈M be fixed. We define the bundle of transfer isomor-
phisms of B from x by

TlisxB :=
⋃

y∈M

Lis(Bx,By). (32.2)

It is endowed with the natural structure of a Cs-fiber bundle as shown
below. The corresponding bundle projection πx : TlisxB →M is given
by

πx(T) :∈
{
y ∈M T ∈ Lis(Bx,By)

}
(32.3)

and the bundle inclusion ιx : LisBx → Tlisx B at x is

ιx := 1LisBx⊂TlisxB. (32.4)

For every bundle chart φ ∈ Chx(B,M), we define

tlisφx : Tlisx(Oφ)→ Oφ × Lis(Bx,Vφ) (32.5)

by
tlisφx(T) :=

(
z , φ

⌋
z
T

)
, where z := πx(T). (32.6)

It is easily seen that tlisφx is invertible and that

tlisφx
←

(z,L) = (φ
⌋
z
)−1L (32.7)

for all z ∈ Oφ and all L ∈ Lis(Bx,Vφ). Moreover, if ψ, φ ∈ Chx(B,M), it
follows easily from (32.7) and (32.6) with φ replaced by ψ that

(
tlisψx tlisφx

←
)

(z,L) =
(
z , (ψ ⋄ φ)(z)L

)
(32.8)

for all z ∈ Oψ∩Oφ and all L ∈ Lis(Bx,Vφ) (See (22.7) for the definition of

ψ ⋄φ). It is clear that tlisψx tlisφx
←

is of class Cs. Since ψ, φ ∈ Chx(B,M)
were arbitrary, it follows that

{
tlisαx α ∈ Chx(B,M)

}
is a Cs-bundle

atlas of TlisxB. We consider
(
TlisxB , πx,M

)
as being endowed with

the Cs fiber bundle structure over M determined by this atlas.



Remark : We may view TlisxB as a Tranx-bundle, where Tranx is the
isocategory whose objects are of the form Lis(Bx,V) with V ∈ LS and
whose isomorphisms are of the form

(T 7→ LT) : Lis(Bx,DomL)→ Lis(Bx,CodL)

with L ∈ LIS.

It is easily seen that the mappings πx and ιx defined by (32.3) and
(32.4) are of class Cs.

We now apply the results of Sect.31 by replacing the ISO-bundle
B there by the bundle TlisxB and b ∈ B there by 1Bx ∈ TlisxB.

Definition: The shift-space SxB of B at x ∈M is defined to be

SxB := T1Bx
TlisxB. (32.9)

We define the projection mapping of SxB by

Px := P1Bx
= ∇1Bx

πx ∈ Lin (SxB,TxM) (32.10)

and the injection mapping of SxB by

Ix := I1Bx
= ∇1Bx

ιx ∈ Lin (LinBx,SxB) (32.11)

in terms of (31.5) and (31.6); respectively, where πx and ιx are defined by (32.3)
and (32.4).

It is clear from (32.5) that

dim (TlisxB) = dim (SxB) = n+m2. (32.12)

Proposition 1: The projection mapping Px is surjective, the injection mapping
Ix is injective, and we have

NullPx = Rng Ix (32.13)

i.e.
LinBx

Ix−→ SxB
Px−→ TxM (32.14)

is a short exact sequence.

Definition: A linear right-inverse of the projection-mapping Px will be called a
right shift-connector (or simply right connector) at x, a linear left-inverse



of the injection-mapping Ix will be called a left shift-connector (or simply left
connector) at x. The sets

RconxB := Rcon1Bx
TlisxB

LconxB := Lcon1Bx
TlisxB

(32.15)

of all right connectors at x and all left connector at x will be called the right
connector space at x and the left connector space at x, respectively.

The right connector space RconxB is a flat in Lin(TxM,SxB) with
direction space {

IxL
∣∣ L ∈ Lin (TxM,LinBx)

}
, (32.16)

and the left connector space LconxB is a flat in Lin (SxB,LinBx)
with direction space

{
− LPx

∣∣ L ∈ Lin (TxM,LinBx)
}
. (32.17)

Using the identifications

Lin (TxM,LinBx){Px} ∼= Lin (TxM,LinBx) ∼= {Ix}Lin (TxM,LinBx),

we consider Lin (TxM,LinBx) as the external translation space of both
RconxB and LconxB. Since dim Lin (TxM,LinBx) = nm2, we have

dim RconxB = nm2 = dim LconxB. (32.18)

The flat isomorphism

Λ : RconxB → LconxB

assigns to every K ∈ RconxB an element Λ(K) ∈ LconxB such that

LinBx ←−
Λ(K)

SxB ←−
K

TxM (32.19)

is again a short exact sequence. We have

KPx + IxΛ(K) = 1SxB for all K ∈ RconxB. (32.20)

Convention : Since there is one-to-one correspondence between right
connectors and left connectors, we shall only deal with one kind of
connectors, say right connectors. If we say “connector”, we mean a
right connector. The notation

ConxB := RconxB



is also used.

Proposition 2: For each φ ∈ Chx(B,M), let Aφ
x ∈ Lin (TxM,SxB) be defined

by Aφ
x := C

tlisφx
1Bx

in terms of (31.19); i.e.

Aφ
x t := (∇1Bx

tlisφx)
−1(t,0) for all t ∈ TxM . (32.21)

Then Aφ
x is a linear right-inverse of Px, i.e. Aφ

x ∈ ConxB.

Let φ ∈ Chx(B,M) be given. We have the following short exact
sequence

LinBx ←−
Λ(Aφ

x)
SxB ←−

A
φ
x

TxM (32.22)

and

Aφ
xPx + IxΛ(Aφ

x) = 1SxB. (32.23)

Proposition 3: If ψ, φ ∈ Chx(B,M) are given, then

Aφ
x −Aψ

x = Ix Γφ,ψx

Λ(Aφ
x)−Λ(Aψ

x ) = −Γφ,ψx Px
(32.24)

where Γφ,ψx := Γ
tlisφx ,tlis

ψ
x

1Bx
in terms of (31.21) is of the form

Γφ,ψx := (ψ
⌋
x
)−1

(
∇x(ψ ⋄ φ)

)
◦ (1TxB × φ

⌋
x
) (32.25)

which belongs to Lin (Tx,LinBx). Here, the notation (22.7) is used.

Proof : Applying Prop. 3 in Sect. 32 with φ replaced by tlisφx and ψ
replaced by tlisψx together with (32.6) and (32.8), we obtain the desired
result (32.25).

Notation: Let φ ∈ Chx(B,M) be given. We define the mapping

Γφx : ConxB → Lin (TxM,LinBx)

by Γφx := ΓA
φ
x = Γ

tlisφx
1Bx

in terms of (14.10) and (31.24); i.e.

Γφx (K) = −Λ(Aφ
x)K for all K ∈ ConxB. (32.26)



If φ ∈ Chx(B,M), then (31.25) reduces to

Aφ
x −K = Ix Γφx (K)

Λ(Aφ
x)−Λ(K) = −Γφx (K)Px

(32.27)

for all K ∈ ConxB. Moreover; if ψ, φ ∈ Chx(B,M), then

Γφx (K)− Γψx (K) = Γφ,ψx for all K ∈ ConxB, (32.28)

where Γφ,ψx is defined by (32.25). It follows from (32.28) that Γψ,φx =
−Γφ,ψx and from Γψx

(
Aψ
x

)
= 0 that Γφx

(
Aψ
x

)
= Γφ,ψx for all bundle charts

ψ, φ ∈ Chx(B,M).

For every cross section H : O → TlisxB of the bundle TlisxB, the
mapping T :M→ TlisxB defined by

T(y) := H(y)H−1(x) for all y ∈M (32.29)

is a cross section of the bundle TlisxB with T(x) = 1Bx .

Definition: A cross section T : O → TlisxB of the bundle TlisxB such that
T(x) = 1Bx is called a transport from x.

For every bundle chart φ ∈ Ch(B,M), we see that

(
y 7→ (φ

⌋
y
)−1φ

⌋
x

)
: Oφ → TlisxB

is a transport from x which is of class Cs.

Remark 1: For every K ∈ ConxB, there is a bundle chart φ ∈ Chx(B,M)
with φ

⌋
x

= 1Bx such that

K = ∇x(φ
⌋
)−1 = Aφ

x. (32.30)

Proof: Let K ∈ ConxB be given. It is not hard to construct a transport
T : O → TlisxB from x such that (Ask Prof. Noll!!!!!!!!!!!!!!!!!!!!!)

K = ∇xT. (32.31)

There is a bundle chart φ : τ<(O)→ O×Bx induced from T by

φ(v) := ( y , T−1(y)v) where y := τ(v) (32.32)

for all v ∈ τ<(O). It is easily seen that (φ
⌋
)−1 = T. The first part of

(32.30) follows from (32.31). In view of (31.29) we have

Λ(Aφ
x)

(
∇x(φ

⌋
)−1

)
=

(
ev2 ◦ ∇1Bx

tlisφx
)
∇x(φ

⌋
)−1

= ev2 ◦ ∇x
(
y 7→ tlisφx((φ

⌋
y
)−1)

)
.

(32.33)



Using (32.6) and ovbserving φ
⌋
y
∈ Lin (By,Bx), we have

tlisφx((φ
⌋
y
)−1) = ( y , φ

⌋
y
(φ

⌋
y
)−1) = ( y , 1Bx). (32.34)

Taking the gradient of (32.34) at x, we observe that

∇x
(
y 7→ tlisφx((φ

⌋
y
)−1)

)
= (1TxM,0). (32.35)

It follows from (32.33) and (32.35) that

Λ(Aφ
x)

(
∇x(φ

⌋
)−1

)
= 0.

This can happen only when ∇x(φ
⌋
)−1 = Aφ

x.

33. Torsion

Let r ∈ ,̃ with r ≥ 2, and a Cr-manifold M be given. For every
x ∈M, we have; as described in Sect. 32 with B := TM,

TlisxTM :=
⋃

y∈M

Lis(TxM,TyM). (33.1)

We also have the following short exact sequence

LinTxM
Ix−→ SxTM

Px−→ TxM. (33.2)

The short exact sequence (33.2) is of the form (15.1) and hence
all of the results in Sect.15 can be used here.

For every manifold chart χ ∈ ChM, the tangent mapping tgtχ; as
defined in (22.13), is a bundle chart of the tangent bundle TM such
that ev2 ◦ tgtχ = ∇χ. Note that not every tangent bundle chart φ ∈
Ch(TM,M) can be obtained from the gradient of a manifold chart. To
avoid complicated notations, we replace all the superscript of φ = tgtχ
by superscript of χ; i.e. we use the following notation

Aχ
x := A

tgtχ
x , Γχx := Γ

tgtχ
x and Γχ,γx := Γ

tgtχ,tgtγ
x (33.3)

for all manifold charts χ, γ ∈ ChM. Given χ, γ ∈ ChM. It is easily seen
from (32.25) and (23.16) that

Γχ,γx :=
(
(∇xγ)

−1∇(2)
χ γ(x)) ◦ (∇xχ×∇xχ). (33.4)



It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that Γχ,γx belongs to the subspace Sym2(TxM

2,TxM)
of Lin2(TxM

2,TxM) ∼= Lin(TxM,LinTxM).

Proposition 1: There is exactly one flat F in ConxTM with direction
space {Ix}Sym2(TxM

2,TxM) which contains Aχ
x for every manifold chart

χ ∈ ChxM, so that

F = Aχ
x + {Ix}Sym2(TxM

2,TxM) for all χ ∈ ChxM. (33.5)

Definition: The shift-bracket Bx ∈ Skw2 (SxTM
2,TxM) of SxTM is de-

fined by

Bx := BF (33.6)

where BF is defined as in (15.5).

Definition: The torsion-mapping Tx : ConxTM → Skw2 (TxM
2,TxM) of

ConxTM is defined by

Tx := TF (33.7)

where TF is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart
χ ∈ ChxM, we have

Tx = Γχx − Γχx ˜ (33.8)

where ˜ denotes the value-wise switch, so that Γχx (̃K)(s, t) = Γχx (K)(t, s)
for all K ∈ ConxM and all s, t ∈ TxM.

The torsion-mapping Tx is a surjective flat mapping with
T<
x ({0}) = F whose gradient

∇Tx ∈ Lin
(

Lin2 (TxM
2,TxM) , Skw2 (TxM

2,TxM)
)

(33.9)

is given by

(∇Tx)L = L˜− L (33.10)

for all L ∈ Lin2 (TxM
2,TxM).

Definition: We say that a connector K ∈ ConxTM is torsion-free (or (A×
M

B , φ×
M
ψ ,M ).

Skw2 (TxM
2,TxM).IfK∈ ConxTM, we call Sx(K) = K + 1

2Ix
(
Tx(K)

)

the symmetric part of K.



Theorem : A connector K ∈ ConxTM is symmetric if and only if K = Aχ
x

for some χ ∈ ChxM. Thus SconxM = {Aχ
x |χ ∈ ChxM}.

Proof: Let K ∈ ConxM be given. If K = Aχ
x for some χ ∈ ChxM, then

Γχx (K) = 0 and hence Tx(K) = 0 by (33.8).

Assume now that Tx(K) = 0. We choose γ ∈ ChxM and put

L := ∇xγ Γγx (K) ◦
(
(∇xγ)

−1 × (∇xγ)
−1

)
. (33.11)

It follows from (33.8) that L is symmetric, i.e. that L ∈ Sym2(V
2
γ ,Vγ).

We now define the mapping α : Dom γ → Vγ by

α(z) := γ(z) +
1

2
L

(
γ(z)− γ(x) , γ(z)− γ(x)

)
for all z ∈ Dom γ .

Take the gradient at x, we have ∇xα = ∇xγ i.e. that is (∇xα)(∇xγ)
−1 = 1Vγ .

It follows from the Local Inversion Theorem that there exist an open

subset N of Domα such that χ := α|
α>(N)

N
is a bijection of class Cr. It

is easily seen that χ ∈ ChxM and that

∇(2)
γ χ(x) = L

Using (33.12), (32.25) and ∇xχ = ∇xγ, we conclude that

Γγx (K) = (∇xχ)−1∇(2)
γ χ ◦

(
∇xγ ×∇xγ

)
= Γγ,χx .

Hence, by (32.24) and (32.27), we have

Aγ
x −Aχ

x = IxΓ
γ,χ
x = IxΓ

γ
x (K) = Aγ

x −K ,

which gives K = Aχ
x .



34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle
(B, τ,M) of class Cs, s ≥ 2, is given. We also assume that bothM and B
have constant dimensions, and put n := dimM and m := dimB−dimM.
Then we have, as in (32.1),

m = dim Bx for all x ∈M. (34.1)

Definition: The connector bundle ConB of B is defined to be the union of
all the right-connector spaces

ConB :=
⋃

x∈M

ConxB . (34.2)

It is endowed with the structure of a Cs−1-flat space bundle over M as shown
below.

If P is an open subset of M and x ∈ P, we can identify ConxA ∼=
ConxB, where A := τ<(P), in the same way as was done for the tangent
space. Hence we may regard ConA as a subset of ConB.

Note that the family ( ConxB |x ∈ M ) is disjoint. The bundle
projection ρ : ConB →M is given by

ρ(K) :∈
{
y ∈M K ∈ ConxB

}
, (34.3)

and, for every x ∈M, the bundle inclusion inx : ConxB → ConB at x is

inx := 1ConxB⊂ConB . (34.4)

For every (χ, φ) ∈ ChM× Ch(B,M) we define

con(χ,φ) : Con(Domφ)→ (Domχ ∩ Oφ)× Lin(Vχ,LinVφ) (34.5)

by

con(χ,φ)(H) :=
(
z , φ

⌋
z
Λ(Aφ

z )(H) (∇zχ
−1 × φ

⌋−1

z
)

)

where z := ρ(H)
(34.6)

for all H ∈ Con(Domφ). It is easily seen that con(χ,φ) is invertible and

con(χ,φ)←(z,L) = Aφ
z + Izφ

⌋−1

z
L (∇zχ× φ

⌋
z
) (34.7)



for all z ∈ (Domχ ∩ Oφ) and all L ∈ Lin(Vχ,LinVφ). Let (χ, φ), (γ, ψ) ∈
ChM× Ch(B,M) be given. We easily deduce from (34.7) and (34.6),
with (χ, φ) replaced by (γ, ψ) and Λ(Aψ

z )(Aφ
z ) = −Γψ,φz = Γφ,ψz , that

(
con(γ,ψ) con(χ,φ)←

)
(z,L)

=
(
z , ψ

⌋
z
Γφ,ψz (∇zγ

−1 × ψ
⌋−1

z
) + κ(z)L

(
∇zλ× κ(z)

−1
))

where λ := γ χ← and κ := ψ ⋄ φ (see (22.7))

(34.8)

for all z ∈ (Domχ∩Oφ)∩(Domγ∩Oψ) and L ∈ Lin(Vχ,LinVφ). It is clear that
con(γ,ψ) con(χ,φ)← is of class Cs−1. Since (γ, ψ), (χ, φ) ∈ ChM×Ch(B,M)
were arbitrary, it follows that

{
con(α,φ)

∣∣ (α, φ) ∈ ChM× Ch(B,M)
}

is
a Cs−1-bundle atlas of ConB; it determines the natural structure of a
Cs−1 flat-space bundle over M.

The mappings ρ and inx defined by (34.3) and (34.4) are easily
seen to be of class Cs−1.

Definition: Let O be an open subset of M. A cross section on O of the
connector bundle ConB

A : O → ConB (34.9)

is called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
φ in Ch(B,M), the connection Aφ on Oφ is defined by

Aφ(x) := Aφ
x for all x ∈ Oφ, (34.10)

where Aφ
x is given by (32.21).

Definition: The tangent-space of ConB at K is denoted by

TKConB. (34.11)

We define the projection mapping of TKConB by

PK := ∇Kρ ∈ Lin (TKConB,TxM) (34.12)

and the injection mapping of TKConB by

IK := ∇Kinx ∈ Lin
(
Lin(TxM,LinBx),TKConB

)
(34.13)

where ρ and inx are defined by (34.3) and (34.4).

It is clear from (34.5) that

dim (ConB) = dim (TKConB) = n+ nm2. (34.14)



Proposition 1: The projection mapping PK is surjective, the injection mapping
IK is injective, and we have

NullPK = Rng IK (34.15)

i.e.
Lin(TxM,LinBx)

IK−−→ TKConB
PK−−→ TxM (34.16)

is a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence
all of the results in Sect.15 can be used here.

Proposition 2: For each (χ, φ) ∈ ChxM× Chx(B,M), let

A
(χ,φ)
K ∈ Lin (TxM,TKConB)

be defined by A
(χ,φ)
K := Acon(χ,φ)

K
in terms of the notation (32.21); i.e.

A
(χ,φ)
K :=

(
∇Kcon(χ,φ)

)−1
◦ ins1. (34.17)

Then A
(χ,φ)
K is a linear right-inverse of PK; i.e. PKA

(χ,φ)
K = 1TxM.

Proposition 3: If (γ, ψ), (χ, φ) ∈ ChxM× Chx(B,M), with Aφ
x = K = Aψ

x ,
then

A
(χ,φ)
K −A

(γ,ψ)
K = IK Γ

(χ,φ),(γ,ψ)
K

Λ(A
(χ,φ)
K )−Λ(A

(γ,ψ)
K ) = −Γ

(χ,φ),(γ,ψ)
K PK

(34.18)

where Γ
(χ,φ),(γ,ψ)

K := Γcon(χ,φ),con(γ,ψ)

K in terms of the notation (32.25) is given by

Γ
(χ,φ),(γ,ψ)

K (t, t′) = (ψ
⌋
x
)−1

(
∇

(2)
γ(x)(ψ ⋄ φ)(∇xγ t,∇xγ t′)

)
φ
⌋
x

(34.19)

for all t, t′ ∈ TxM. We have Γ
(χ,φ),(γ,ψ)

K ∈ Sym2(TxM
2,LinBx). Here, the

notation (22.7) is used.

Proof: Let (γ, ψ), (χ, φ) ∈ ChxM× Chx(B,M), with Aφ
x = K = Aψ

x , be
given. Then, we have ∇x(ψ ⋄ φ) = Λ(Aφ

x)(K) = 0. It follows from (34.6)
that

con(χ,φ)
⌋
x
(K) = 0. (34.20)

Using (34.8), (34.20) and (33.25), we obtain



con(χ,φ)←)
(
·, con(χ,φ)

⌋
x
(K)

))
t
)

=
((
∇

(2)
γ(x)(ψ ⋄ φ)

)
∇xγ t

)
(1Vγ ×

(φ
⌋
x
◦ ψ

⌋−1

x
))(34.21)forallt∈ TxM. Using (34.22), (34.6) with (χ, φ) re-

placed by (γ, ψ) and applying Prop. 3 in Sect. 32 with φ replaced by
con(χ,φ) and ψ replaced by con(γ,ψ), we obtain the desired result (34.19).

If φ, ψ ∈ Chx(B,M), with Aφ
x = K = Aψ

x , we have Γφ,ψx = 0 by
(33.25). It follows from (21.9) that the right hand side of (34.19) does
not depend on the manifold charts χ, γ ∈ ChxM. In particular, when

ψ = φ we have A
(χ,φ)
K = A

(γ,φ)
K for all manifold charts χ, γ ∈ ChxM.

By using the definition of the gradient

∇xA
φ = (∇Kconχ,φ)−1∇χ(x)

(
conχ,φ Aφ χ←

)
∇xχ

and (34.6), we can easily seen that for every bundle chart φ ∈
Chx(B,M) with Aφ

x = K

∇xA
φ = A

(χ,φ)
K for all χ ∈ ChxM. (34.21)

for all bundle charts φ ∈ Chx(B,M) with Aφ
x = K.

Proof: The assertion follows from (34.23) together with (34.18) and
(34.19).

Definition: The bracket BK ∈ Skw2 (TKConB2,TxM) of TKConB is defined
by

BK := BFK
(0.1)

where BFK
is defined as in (15.5).

Definition: Let A : M → ConB be a connection which is differentiable at x.
The curvature of A at x, denoted by

Rx(A) ∈ Skw2

(
TxM

2,LinBx
)
, (0.2)

is defined by
Rx(A) := TFA(x)

(∇xA) (0.3)

where TFA(x)
is defined as in (15.8).

If A is
differentiable, then the mapping R(A) : M → Skw2( TanM2 , LinB ) defined
by

R(A)(x) := Rx(A) for all x ∈M

is called the curvature field of the connection A.



A fomula for the curvature field R(A) in terms of covariant gra-
dients will be given in Prop. 5. If the connection A is of class Cp,
with p ∈ 1..s− 1, then ∇A is of class Cp−1, and so is the curvature field
R(A).

More generally, if φ, ψ ∈ Chx(B,M), without assuming that Aφ
x =

K = Aψ
x , then Eq. (34.19) must be replaced by

Γ
(χ,φ),(γ,ψ)

K (t, t′)

= −Γφ,ψx (t)Γφx (K)(t′) + Γφx (K)(t′)Γφ,ψx (t) + Γφx (K)Γχ,γx (t, t′)

− Γφ,ψx (t′)Γφ,ψx (t) + (ψ
⌋
x
)−1

(
∇(2)
γ (ψ ⋄ φ)

)
(x)(∇xγ t,∇xγ t′)φ

⌋
x

(0.4)

for all t, t′ ∈ TxM. If one of those two bundle charts, say φ, satisfies
Aφ
x = K, then it follows from (34.28), Γφx (K) = 0 and −Γφ,ψx = Γψx (K)

that

Γ
(χ,φ),(γ,ψ)

K (t, t′)

= −Γψx (K)t′Γψx (K)t + (ψ
⌋
x
)−1

(
∇(2)
γ (ψ ⋄ φ)

)
(x)(∇xγ t,∇xγ t′)φ

⌋
x

(0.5)

for all t, t′ ∈ TxM.

Proposition 5: Let A : M → ConB be a connection that is differentiable at
x ∈M. The curvature of A at x is given by

(
Rx(A)

)
(s, t) = (∇– γ,ψx Γψ(A))(s, t)− (∇– γ,ψx Γψ(A))(t, s)

+
(
Γψx (A(x))sΓψx (A(x))t− Γψx (A(x))tΓψx (A(x))s

) (0.6)

for all (γ, ψ) ∈ ChxM× Chx(B,M) and all s, t ∈ TxM.

Proof: Let a bundle chart (γ, ψ) ∈ ChxM × Chx(B,M) be given. It
follows from (42.6) and Λ(Aψ

z )(A(z)) = −Γψz (A(z)) that

con(γ,ψ) ◦A(z) =
(
z ,−ψ

⌋
z
Γψz (A(z)) (∇zγ

−1 × ψ
⌋−1

z
)

)
(0.7)

In view of (32.29), we have

Λ(A
(γ,ψ)
A(x) )(∇xA) = con(γ,ψ)

⌋−1

x

(
ev2 ◦ ∇A(x)

(
con(γ,ψ)

))(
∇xA

)

= con(γ,ψ)
⌋−1

x
ev2 ◦

(
∇x

(
con(γ,ψ) ◦A

))

= ∇x
(
z 7→ −ψ

⌋−1

x
ψ

⌋
z
Γψz (A(z))(∇zγ

−1∇xγ × ψ
⌋−1

z
ψ

⌋
x
)
)

(0.8)
By using

Aγ
x = ∇x(z 7→ ∇zγ

−1∇xγ) , Aψ
x = ∇x(z → ψ

⌋−1

z
ψ

⌋
x
)



and (42.38), we observe that

Λ(A
(γ,ψ)
A(x) )(∇xA) = ∇x

(
z 7→ −ψ

⌋−1

x
ψ

⌋
z
Γψz (A(z))(∇zγ

−1∇xγ × ψ
⌋−1

z
ψ

⌋
x
)
)

= −
(

xΓ
ψ(A)

)
(Aγ

x,A
ψ
x )

= −∇– γ,ψx Γψ(A).

Together with (42.27) and (42.29), we prove (34.12).

Remark : When the linear-space bundle B is the tangent bundle TM,
we have

(
Rx(A)

)
(s, t) = (∇–χx Γχ(A))(s, t)− (∇–χx Γχ(A))(t, s)

+
(
Γχx (A(x))sΓχx (A(x))t− Γχx (A(x))tΓχx (A(x))s

) (0.9)

for all manifold chart χ ∈ ChxM and all s, t ∈ TxM.

If a transport T : M → TlisxM from x is differentiable at y, we
define the connector-gradient, ∇cy T ∈ Lin (Ty,Sy), of T at y by

∇cy T := ∇y
(
z 7→ T(z)T(y)−1

)
. (0.10)

Theorem : A connection A : M → ConB is curvature-free if and only if,
locally A agrees with Aφ for some bundle chart φ ∈ Ch(B,M). In other word,
for every x ∈ M, there is an open neighbourhood Nx of x and a transport
T : Nx → TlisxM from x such that ∇c T = A

∣∣
Nx

Proof: Ask Prof. Noll!!!!!!!!!!!!!!!!!



36. Holonomy

Let a continuous connection C : M → ConB be given. For every
C1 process p : [0, dp]→M there is exactly one parallelism Tp : [0, dp]→
TlisxB from x := p(0) along p for the connection C. The reverse process
p− : [0, dp]→M of p : [0, dp]→M is given by

p−(t) := p(dp − t) for all t ∈ [0, dp].

Proposition 1: Let p− : [0, dp] → M be the reverse process of a C1 process
p : [0, dp]→M. We have

Tp−(t) = Tp(dp − t)T
−1
p (dp) for all t ∈ [0, dp]. (36.1)

Let C1 processes p : [0, dp]→M and , q : [0, dq]→M with q(0) = p(dp)
be given. We define the continuation process q ∗ p : [0, dp + dq]→M of
p with q by

(q ∗ p)(t) :=





p(t) t ∈ [0, dp],

q(t− dp) t ∈ [dp, dp + dq].
(36.2)

If in addition that q
•

(0) = p
•

(dp), then the continuation process q ∗ p is
of class C1 and

Tq∗p(t) =





Tp(t) t ∈ [0, dp],

Tq(t− dp)Tp(dp) t ∈ [dp, dp + dq].
(36.3)

Definition: For every pair of C1 processes p : [0, dp]→M and , q : [0, dq]→M
with q(0) = p(dp) be given. We define the piecewise parallelism (along q ∗ p)

Tq∗p : [0, dp + dq]→ TlisxB where x := p(0)

by

Tq∗p(t) :=





Tp(t) t ∈ [0, dp],

Tq(t− dp)Tp(dp) t ∈ [dp, dp + dq].
(36.4)

In view of (36.1), if q := p− we have Tp−(t− dp)Tp(dp) = Tp(2dp − t)
and hence

T−p∗p(t) :=





Tp(t) t ∈ [0, dp],

Tp(2dp − t) t ∈ [dp, 2dp].
(36.5)



In particular, Tp−∗p(2dp) = T−p∗p(0) = 1Bx .

Let O be an open neighboorhood of x ∈ M and let L(O, x) be the
set of all piecewise C1 loops p : [0, dp] → M at x with Rngp ⊂ O. It
is easily seen that (L(O, x), ∗) is a group. We also use the following
notation

H(O, x) := {Tp(dp) | p ∈ L(O, x)}. (36.6)

Proposition 3: For every q, p ∈ L(O, x), we have

Tq∗p(dp + dq) = Tq(dq)Tp(dp). (36.7)

Hence H(O, x) is a subgroup of LisBx, which is called the holonomy group on
O of the connection C at x.

Let T : M → TlisxM be a transport from x ∈ M of class C1. For
every differentiable process λ : [0, 1] → M, we see that T ◦ λ : [0, 1] →
TlisxM is a transfer process from x and

sdT = ((∇c T) ◦ λ)λ
•

.

Hence T ◦ λ is the parallelism along λ for the connection ∇c T. For
every t ∈ [0, 1], (T ◦ λ)(t) = T(λ(t)) depends on, of course, only on the
point y := λ(t), not on the process λ. When λ is closed, beginning and
ending at λ(0) = x = λ(1), then

(T ◦ λ)(1) = T(x) = 1Bx .

The following theorem is a immediated consequence of the above dis-
cussion and the Theorem of Sect.34.

Theorem : A continuous connection C : M → ConB is curvature-free; i.e.
R(C) = 0 if and only if locally the holonomy groups are H(O, x) = {1Bx} for
some open subset set O of M and all x ∈M.

Question ?: Does there exist a connection C such that H(O, x) = LisBx
for some x?



Chapter 4

Gradients.

In this chapter, we assume a linear-space bundle (B, τ,M) of class
Cs, s ≥ 2, is given. We also assume that both M and B have constant
dimensions, and put n := dimM and m := dimB − dimM. Then we
have, as in (32.1), m = dim Bx for all x ∈M.

41. Shift Gradients
Let x ∈M be fixed.
Let Φ be an analytic tensor functor and let H : M → Φ(B) be a

cross section of Φ(B) that is differentiable at x. We define the mapping

Ĥ : TlisxB → Φ(Bx) (41.1)

by
Ĥ(T) := Φ(T)−1H(πx(T)) for all T ∈ TlisxB, (41.2)

where πx is defined by (32.3). Since Φ is analytic, it is clear that Ĥ is
differentiable at 1Bx .

Difinition: The shift-gradient of H at x is the linear mapping

xH ∈ Lin
(
SxB,Φ(Bx)

)

defined by

xH := ∇1Bx
Ĥ, (41.3)

where Ĥ is given by (41.2).

For every bundle chart φ ∈ Chx(B,M), the spaces Rng Ix and Rng Aφ
x

are supplymentary in SxB. Hence, for every s ∈ SxB there is exactly
one pair (M, t) ∈ LinBx × TxM such that s = IxM + Aφ

xt and thus

( xH)s = ( xH)IxM + ( xH)Aφ
xt.

Proposition 1: We have

( xH)IxM = −(Φ
•

xM)H(x) for all M ∈ LinBx, (41.4)

where Φ
•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined to be the gradient of the mapping
(L 7→ Φ(L)) : LisBx → Lis (Φ(Bx)) at 1Bx .



Proof: In view of (32.4) and (41.2) we have Ĥ ◦ ιx : LisBx → Φ(Bx) and

(Ĥ ◦ ιx)(L) = Φ(L)−1H(x) for all L ∈ LisBx.

Taking the gradient of (Ĥx ◦ ιx) at 1Bx and using (32.11) and (41.3),
we obtain the desired result (41.4).

Example 1: Let B∗ := Dl (B), where Dl is the duality functor.
Let h be a cross section of B, let ω be a cross section of B∗, let L be

a cross section of LinB, let G be a cross section of Lin (B,B∗) ∼= Lin2(B
2, )

and
let T be a cross section of Lin (B,LinB) ∼= Lin2(B

2,B). Assume that
all of these cross sections are differentiable at x. Then

( xh)IxM = −Mh(x); (41.5)

( xω)IxM = ω(x)M; (41.6)

( xL)IxM = L(x)M−ML(x); (41.7)

( xG)IxM = G(x) ◦ (M× 1Bx) + G(x) ◦ (1Bx ×M) (41.8)

and

( xT)IxM = T(x) ◦ (M× 1Bx) + T(x) ◦ (1Bx ×M)−MT(x) (41.9)

for all M ∈ LinBx.

Let a bundle chart φ ∈ Chx(B,M) be given. We define the mapping

Hφ : Oφ → Φ(Vφ)

by
Hφ(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ. (41.10)

Proposition 2: We have

( xH)Aφ
x = ∇–φxH = Λ

(
A

Φ(φ)
H(x)

)
∇xH (41.11)

where Φ(φ) is defined by (24.5), ∇–φxH is described in (24.9) and A
Φ(φ)
H(x) is defined

in terms of (31.19).

Proof: Let y ∈ Oφ be given. Substituting T := (φ
⌋
y
)−1φ

⌋
x

in (41.2)

gives

Ĥ((φ
⌋
y
)−1φ

⌋
x
) = Φ((φ

⌋
y
)−1φ

⌋
x
)−1H(y)

= Φ(φ
⌋
x
)−1Φ(φ

⌋
y
)H(y) = Φ(φ

⌋
x
)−1Hφ(y).



Since tlisφx
←

(y, φ
⌋
x
) = (φ

⌋
y
)−1φ

⌋
x

by (32.7), we obtain

(Ĥ ◦ tlisφx
←

)(y, φ
⌋
x
) = Φ(φ

⌋
x
)−1Hφ(y) for all y ∈ Oφ.

Taking the gradient with respect to y at x and observing (51.2) gives

(∇1Bx
Ĥ)(∇1Bx

tlisφx)
−1(t,0) = Φ(φ

⌋
x
)−1(∇xH

φ) t

for all t ∈ TxM. In view of definition (32.19) and (24.9) we obtain the
first equality of the desired result (41.11).

It follows from (41.2), (41.3) and (31.29) with φ replaced by Φ(φ)
that

( xH)Aφ
x = (∇1Bx

Ĥ)∇x(φ
⌋−1

φ
⌋
x
)

= ∇x
(
y 7→ Φ(φ

⌋−1

x
φ
⌋
y
)H(y)

)

=
(
Φ(φ)

)⌋−1

x

(
ev2 ◦ ∇H(x)Φ(φ)

)
∇xH

= Λ
(
A

Φ(φ)
H(x)

)
∇xH.

Since φ ∈ Chx(B,M) was arbitrary, the second part of (41.11) follows.

The results of Props. 1 and 2 give the following commutative
diagram

LinBx
Ix−−→ SxB

A
φ
x←−− TxM

−
(
Φ

•

x

)
˜H(x)

y (1)< 3pt > [.25, 1.5]from1515to− 15− 5xH (2)

∥∥∥∥∥

Φ(Bx) ←−−
Λ

(
A

Φ(φ)

H(x)

) TH(x)Φ(B) ←−−
∇xH

TxM

.

(41.12)

Prop. 1 and Prop. 2 are illustrated by (1) and (2) in the diagram,
respectively.

Let tensor functors Φ1, Φ2 and Ψ and a natural bilinear assignment
B : (Φ1,Φ2)→ Ψ be given. Also, let H1 :M→ Φ1(B) be a cross section
of Φ1(B) and let H2 :M→ Φ2(B) be a cross section of Φ2(B). Then the
mapping B(H1,H2) :M→ Ψ defined by

B(H1,H2)(x) := B
Bx

(H1(x),H2(x)) for all x ∈M (41.13)

is a cross section of Ψ(B).



General Product Rule
If H1 and H2 are differentiable at x, then B(H1,H2) is also differentiable

at x and we have

(
xB(H1,H2)

)
s = BBx

(
( xH1)s,H2(x)

)
+BBx

(
H1(x), ( xH2)s

)
(41.14)

for all s ∈ SxB.

Proof: Put H := B(H1,H2) in (41.2), we have

Ĥ(T) = BBx

(
Φ1(T

−1)H1(πx(T)),Φ2(T
−1)H2(πx(T))

)

= BBx

(
Ĥ1(T), Ĥ2(T)

)

for all T ∈ TlisxB. Since B is bilinear, the desired result (41.14) follows
from (41.3) together with the General Product Rule in flat spaces
[FDS].

Example 2:
Let f be a scalar field, and let h :M→ B be a cross section of B

and H : M → LinB be a cross section of LinB that are differentiable
at x. Then fH and Hh defined value-wise are also differentiable at x,
and we have

( xfH)s = (( xf)s)H(x) + f(x) ( xH)s (41.15)

and

x(Hh)s = (( xH)s)h(x) + H(x)( xh)s (41.16)

for all s ∈ SxB.

Example 3:
Let ω : M → Skwp(B

p, ) be a skew-p-form field and τ : M →
Skwq(B

q, ) a skew-q-form field that are differentiable at x. Then ω ∧ τ

is a skew-(p+q)-form field which is also differentiable at x and we have

( x(ω ∧ τ ))s = ( xω)s ∧ τ + ω ∧ ( xτ )s (41.17)

for all s ∈ SxB.

Let L, and L′ be linear-space bundles over M. For every x ∈ M,
we denote the fiber product bundle (see Sect.22) of (TlisxL, πx,M) and
(TlisxL

′, π′x,M) by

(
TlisxL×M TlisxL

′ , πx×M π′x , M
)
. (41.18)

Taking the gradient of the mapping



πx×M π′x : TlisxL×M TlisxL
′ −−→ M (41.19)

at 1Lx × 1L′
x
, we have

Px×TxMP′x : SxL×TxM SxL
′ −−→ TxM (41.20)

where Px = ∇1Lx
πx and P′x = ∇1L′

x
π′x. It follows from

πx×M π′x = πx ◦ ev1 = π′x ◦ ev2

that
(Px×TxMP′x)(s, s′) = Pxs = P′x(s′) (41.21)

for all (s, s′) ∈ SxL×TxMSxL
′.

Let Υ be a tensor bifunctor and let H be a cross section of
Υ(L×ML

′) which is differentiable at x. We define a mapping

Ĥ : TlisxL×M TlisxL
′ → Υ(Lx × L

′
x) (41.22)

by

Ĥ
(
T×T′

)
:= Υ(T×T′)−1 H(y)

where y := πx(T) = π′x(T
′)

(41.23)

for all T × T′ ∈ TlisxL×M TlisxL
′. The shift-gradient of H at x is the

linear mapping

xH : SxL×TxMSxL
′ → Υ(Lx × L

′
x) (41.24)

defined in (41.3); i.e.

xH = ∇1Px
Ĥ, (41.25)

where 1Px := 1Lx × 1L′
x
. We also use the following notations

Ix := ∇1Lx
inx and I′x := ∇1L′

x
in′x

where inx := 1Lx⊂L and in′x := 1L′
x⊂L

′ are inclusion mappings.

Proposition 3: We have

( xH)(IxM, I′xM
′) = −Υ

•

x(M×M′)H(x) (41.26)

for all M ∈ LinLx and all M′ ∈ LinL′x, where Υ
•

x is the gradient of the mapping(
L× L′ 7→ Υ(L× L′)

)
at 1Lx × 1L′

x
.

Example 4:



Let Φ be a analytic tensor functor and let L := TM and L′ := B.
If L : M → Lin (TM,Φ(B)) and T : M → Lin2 (TM2,Φ(B)) are cross
sections that are differentiable at x, we have

xL : SxTM×TxMSxB → Lin (TxM,Φ(Bx))

xT : SxTM×TxMSxB → Lin2 (TxM
2,Φ(Bx))

and

( xL)(IxM, I′xM
′) = L(x)M−Φ

•

x(M
′)L(x)

( xT)(IxM, I′xM
′) = T(x)M + T(x)˜M−Φ

•

x(M
′)T(x)

(41.27)

for all M ∈ Lin TxM and M′ ∈ LinBx.

Proposition 4: We have

( xH)(Aθ
x,A

φ
x) = ∇–φ1,φ2

x H, (41.28)

where ∇–φ1,φ2
x H is described in (24.12), for all bundle charts θ ∈ Chx(L,M) and

φ ∈ Chx(L
′,M).

42. Covariant Gradients

Let x ∈M and a connector K ∈ Con xB be given.
Let Φ be a tensor functor and H :M→ Φ(B) be a cross section of

Φ(B) that is differentiable at x.

Definition : We define the covariant gradient of H relative to K by

∇–KH := ( xH)K ∈ Lin
(
TxM,Φ(Bx)

)
, (42.1)

where xH is the shift-gradient of H at x as defined by (41.3).

Given a bundle chart φ ∈ Chx(B,M). It follows from (41.11) and
(42.1) that

∇–
A
φ
x
H = ∇–φxH.

If f : M → is a scalar field differentiable at x, then we have

xf = ∇xf Px and hence

∇–Kf = ∇xf for all K ∈ Con xB. (42.2)



Proposition 1: For every bundle chart φ ∈ Chx(B,M) we have

(∇–KH)t = (∇–φxH)t + Φ
•

x

(
Γφx (K)t

)
H(x) for all t ∈ TxM, (42.3)

where Φ
•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined as in Prop. 1 of Sect.41.

Proof: By (32.27), we have

( xH)Kt = ( xH)Aφ
xt + xH(K−Aφ

x)t

= ( xH)Aφ
xt− xH

(
IxΓ

φ
x (K)t

)

for all t ∈ TxM. Using (32.4), we obtain

( xH)Kt = ( xH)Aφ
xt + Φ

•

x

(
Γφx (K)t

)
H(x).

The result (42.3) follows from the definition (42.1).

Example 1:
Let h be a cross section of B, let ω be a cross section of B∗, let L be

a cross section of LinB, let G be a cross section of Lin (B,B∗) ∼= Lin2(B
2, ),

and
let T be a cross section of Lin (B,LinB) ∼= Lin2(B

2,B). If these cross
sections are differentiable at x, we have

(∇–Kh)t = (∇–φx h)t + Γφx (K)(t,h(x)); (42.4)

(∇–Kω)t = (∇–φxω)t− ω(x)Γφx (K)t; (42.5)

(∇–KL)t = (∇–φx L)t− L(x)
(
Γφx (K)t

)
+

(
Γφx (K)t

)
L(x); (42.6)

∇–KG(t,b) = (∇–φxG)(t,b)−
(
G(x)b

)(
Γφx (K)t

)
−G(x)

(
Γφx (K)(t,b)

)
(42.7)

and

∇–KT(t,b) = (∇–φxT)(t,b)−
(
T(x)b

)(
Γφx (K)t

)
−T(x)

(
Γφx (K)(t,b)

)

+
(
Γφx (K)t

)(
T(x)b

) (42.8)

for all t ∈ TxM and all b ∈ Bx.

General Product Rule
Let H1,H2 be cross sections as given in the General Product Rule of

Sect. 41, then we have

∇–KB(H1,H2)t = BBx

(
(∇–KH1)t,H2(x)

)
+BBx

(
H1(x), (∇–KH2)t

)
(42.9)

for all t ∈ TxM.



Proof: Substituting s := Kt in (41.14) and observing (42.1), we obtain
(42.9).

The formulas (41.15), (41.16) and (41.17) remain valid if the shift
gradient x there is replaced by the covariant gradient ∇–K and s ∈ SxB
by t ∈ TxM.

Let L and L′ be linear-space bundles over M. Let Υ be a tensor
bifunctor and let H :M→ Υ(L×ML

′) be a cross section of Υ(L×ML
′)

which is differentiable at x. Let a pair of connectors (K,K′) ∈ Con xL×
Con xL

′ be given.

Definition: The covariant-gradient of H at x relative to (K,K′) is defined
by

∇–(K,K′)H := ( xH)(K,K′) (42.10)

which is in Lin
(
TxM,Υ(Lx × L

′
x)

)
.

Proposition 2: For every (K,K′) ∈ Con xL × Con xL
′ and all bundle charts

φ ∈ Chx(L,M) and φ′ ∈ Chx(L
′,M) we have

(∇–(K,K′)H)t = (∇–φ,φ
′

x H)t + Υ
•

x

(
Γφx (K)t× Γφ

′

x (K′)t
)
H(x) (42.11)

for all t ∈ TxM, where Υ
•

x is described in Prop. 3 of Sect. 41.

Proof: Equation (42.11) follows from K = Aφ
x − IxΓ

φ
x (K), K′ = Aφ′

x −
IxΓ

φ′

x (K′), (42.10) and (41.28).



43. Lie gradients, Lie brackets

In this section, we only deal with the tangent bundle of a given
Cs-manifold M, where 2 ≤ s ∈ .̃

We assume that a vector-field h is given and that h is differentiable
at x.

Proposition 1: There is exactly one shift, which is called the shift of h at x
and is denoted by �x h ∈ SxTM, such that

Bx (�x h) = xh, (43.1)

where Bx is given in (33.6) and xh ∈ Lin (SxTM,TxM) is the shift-gradient
of h as defined by (41.3). We have

Px (�x h) = h(x) (43.2)

Proof: The injectivity of Bx (see Prop. 2 of Sect.15) shows that there
is at most one �x h ∈ SxTM with the property (43.1).

We now choose χ ∈ ChxM and define

�x h := Ix
(
( xh)Aχ

x

)
+ Aχ

x h(x). (43.3)

By (15.6)1 and (32.23) we have

Bx (�x h) = ( xh)(Aχ
x Px) + Bx

(
Aχ
x h(x)

)

= xh (1SxTM − IxΛ(Aχ
x)) + Bx

(
Aχ
x h(x)

)
.

(43.4)

It follows from (41.4) and (15.6)2 that

xh
(
Ix

(
Λ(Aχ

x)(s)
))

= −Λ(Aχ
x)(s)h(x)

= −Bx (s)
(
Aχ
x h(x)

)
=

(
Bx

(
Aχ
x h(x)

))
(s)

holds for all s ∈ SxTM. Hence (43.4) reduces to (43.1). Applying Px
to (43.3) and observing Px Ix = 0 and PxAχ

x = 1TxM yields (43.2).

Proposition 2: Let χ ∈ ChxM be given. The shift �x h of h at x satisfies

Λ(Aχ
x)(�x h) = ∇–χx h (43.5)



Proof: The equality follows by operating on (44.3) with Λ(Aχ
x) and

observing Λ(Aχ
x)Ix = 1LinTxM and Λ(Aχ

x)Aχ
x = 0.

For every manifold chart χ ∈ ChxM, we have

Aχ
xh(x) + Ix xhAχ

x =
(
∇1TxM

tlisχx
)−1(

hχ(x) , ∇xh
χ

)
. (43.6)

In view of (43.3), we have

�x h =
(
∇1TxM

tlisχx
)−1(

hχ(x) , ∇xh
χ

)

for every manifold chart χ ∈ ChxM.

Remark: By (43.1) and the injectivity of Bx, we have

�x k = 0 if and only if xk = 0 (43.7)

Proposition 3: If f :M→ is differentiable at x, so is the vector-field fh and
we have

�x(f h) = f(x) �x h + Ix (h(x)⊗∇xf). (43.8)

Proof: It follows from (15.6)1 with M := h(x)⊗∇xf that

Bx

(
Ix (h(x)⊗∇xf)

)
= (h(x)⊗∇xf)Px = h(x)⊗P⊤x ∇xf.

In view of (43.4) and (41.15), it follows that

Bx

(
�x(f h)

)
= x(f h) = f(x) xh + h(x)⊗P⊤x ∇xf

= Bx

(
f(x) �x h + Ix (h(x)⊗∇xf)

)

Since Bx is injective, (43.8) follows.

Let Φ be a functor as described in Sect.13 and let H :M→ Φ(TM)
be a tensor-field that is differentiable at x. Also, let k be a vector-field
that is differentiable at x.

Definition: The Lie-gradient of H with respect to k at x is defined by

(LiekH)x := xH(�x k), (43.9)

where xH is the shift-gradient of H at x as defined by (41.3) and where �x k
is the shift of k at x as determined by (43.1).



Proposition 4: Let f :M→ and H be differentiable at x. We have

(
Liekf H

)
x

= f(x)
(
LiekH

)
x

+
(
(∇xf)k(x)

)
H(x);

(
LiefkH

)
x

= f(x)
(
LiekH

)
x

+
(
Φ

•

x

(
k(x)⊗∇xf

))
H(x),

(43.9)

where Φ
•

x ∈ Lin
(
LinTx,LinΦ(Tx)

)
is defined as in Prop.1 of Sect.41.

General Product Rule
Let H1,H2 be cross sections as given in the General Product Rule of Sect.41,

then we have

(LiekB(H1,H2))x = BBx

(
(LiekH1)x,H2(x)

)
+BBx

(
H1(x), (LiekH2)x

)
.

(43.10)

Remark: We have

(LiekH)x = (∇–KH)k(x) + Φ
•(

Tx(K)k(x) +∇–Kk
)
H(x)

for all K ∈ Comx(TM).

We now assume that two vector-fields h and k, both are differen-
tiable at x, are given.

Definition: The Lie-bracket of h with k at x is defined by

[[
k , h

]]
x

:= Bx(�x h,�x k). (43.11)

It follows from (43.1), (43.9) and (43.11) that

[[
k , h

]]
x

= (Liekh)x (43.12)

Proposition 5: We have

[[
k , h

]]
x

= −
[[
h , k

]]
x
. (43.13)

If f :M→ is differentiable at x, then

[[
f h , k

]]
x

= f(x)
[[
h , k

]]
x
−

(
(∇xf)k(x)

)
h(x). (43.14)



Proof: (43.13) follows from the skewness of Bx. Substitution of fh
for h in (43.11) and use of (43.8) gives

[[
f h , k

]]
x

= f(x)
[[
h , k

]]
x
−Bx

(
Ix (h(x)⊗∇xf),�x k

)

and hence, by (15.6)1,

[[
f h , k

]]
x

= f(x)
[[
h , k

]]
x
− (h(x)⊗∇xf)(Px �x k)

The desired result (43.14) now follows from (43.2).

Remark: Let r =∞, let h,k ∈ X
∞
M and let h

∇

and k
∇

be the mappings
from C∞(M) to C∞(M) defined by (24.6). One can easily show that

the mapping
[[
h , k

]]∇
: C∞(M)→ C∞(M) corresponding to

[[
h , k

]]∇
is

given by [[
h , k

]]∇
= h

∇

◦ k
∇

− k
∇

◦ h
∇

(43.15)

If f ∈ C∞(M), we then have

[[
fh , k

]]∇
= f

[[
h
∇

, k
∇ ]]
− k

∇

(f)h
∇

, (43.16)

which can be derived from (43.14) or directly from (43.15).

Proposition 6: If both h and k are vector-fields that are differentiable at x,
then have [[

h , k
]]
x

= (∇–χx k)h(x)− (∇–χx h)k(x). (43.17)

for every manifold chart χ ∈ ChxM where ∇–χx k and ∇–χx h be defined according
to (23.26). Moreover, we have

(∇–Kk)h(x)− (∇–Kh)k(x) =
[[
h , k

]]
x

+ Tx(K)(h,k) (43.18)

for all K ∈ ConxTM.

Proof: If we substitute s := �x h and s′ := �x k in (33.6) and (12.5) we
obtain from (43.11) that

[[ h , k ]]x = −Dχ
x (�x h)Px (�x k) + Dχ

x (�x k)Px (�x h)

The desired result (43.17) follows now from (43.5) and (43.2).
By (42.3) we have

(∇–Kh)k(x) = (∇–χx h)k(x) + Γχx (K)
(
k(x),h(x)

)
.

Interchanging h and k and taking the difference, we obtain (43.18)
from (43.17) and (33.8).



Let s ∈ 1..(r − 1) and h, k ∈ X
s
TM be given. Then the vector-field[[

h , k
]]

is defined by

[[
h , k

]]
(x) :=

[[
h , k

]]
x

for all x ∈M (43.19)

It is clear from Proposition 5 that
[[
h , k

]]
∈ X

s−1
TM. Using (23.6),

it follows from (43.17) and the definition (23.35) that

[[
h , k

]]χ
= (∇χk

χ)hχ − (∇χh
χ)kχ. (43.20)

Proposition 7: (Jacobi identity): Let s ∈ 2..(r−1) and h1,h2,h3 ∈ X
s
TM

be given, then

[[ [[
h1 , h2

]]
, h3

]]
+

[[ [[
h2 , h3

]]
, h1

]]
+

[[ [[
h3 , h1

]]
, h2

]]
= 0 (43.21)

Proof: A straightforward but somewhat tedious calculation, using
(43.20) and the Symmetry Theorem for Second Gradients, yields the
desired result (43.21).

If M is a C∞ manifold, then X
∞

TM together with the bilinear
mapping [[

,
]]

: X
∞

TM×X
∞

TM−→ X
∞

TM

given in (43.21) is a Lie algebra, as defined in Sect.11.



44. Transport Systems and Lie Group

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given.
Let (B, τ,M) be a Cs linear-space bundle, s ∈ 0. .r.

We define the bundle of transfer isomorphisms of B by

TlisB :=
⋃

x∈M

TlisxB =
⋃

x,y∈M

Lis(Bx,By). (44.1)

It is endowed with the natural structure of a Cs-fiber bundle over
M×M whose bundle projection π : TlisB →M×M is

π(T) :∈
{

(x, y) ∈M×M T ∈ Lis(Bx,By)
}
. (44.2)

Definition: A subset T of TlisB is called a Cs transport structure for B
if T is a Cs-submanifold of TlisB such that

(T1) for all A ∈ T, A−1 ∈ T,

(T2) for all A,B ∈ T such that CodA = DomB, BA ∈ T,

(T3) for all x, y ∈M, T ∩ Lis(Bx,By) 6= { }.

It can be shown that Tx := T∩Tlisx B is a Cs-submanifold of Tlisx B.

Theorem on Transport Structure and Parallelisms

Let C :M→ ConB be a connection of class Cs. Define

F := {A ∈ TlisB | · · · · · · · · · · · ·}.

Then F is a transport structure for B.

Proof:

A cross section F : M ×M → T is called a (global) transport
system for B if

F(x, z) = F(y, z)F(x, y) for all x, y, z ∈M (44.3)

and
F(x, x) = 1Bx for all x ∈M. (44.4)

Recall that a cross section T : M → TlisxB of the bundle TlisxB,
x ∈M, with

T(x) = 1Bx (44.5)



is called a transport from x. It follows from (44.3), (44.4) and (44.5)
that, for each x ∈ M, the mapping F(x, ·) :M→ TlisxB is a transport
from x. Moreover, we have

F(y, ·) = F(x, ·)F(y, x) for all x, y ∈M. (44.6)

Conversely, let x ∈ M and a transport Fx : M → TlisxB from x be
given. For each y ∈ M, we obtain a transport Fy :M→ TlisyB from y
by

Fy(z) := Fx(z)Fx(y)
−1 for all z ∈M. (44.7)

and, a transport system F :M×M→ TlisB by

F(y, z) := Fx(z)Fx(y)
−1 for all y, z ∈M. (44.8)

We conclude that, for each x ∈ M, there is one to one correspon-
dent between the set of all transports from x for B and the set of all
transport systems for B.

Every transport system F :M×M → TlisB induces a connection
C :M→ ConB by

C(y) := ∇1By
F(y, ·) for all y ∈M. (44.9)

Let a transport system F :M×M→ TlisB for B, a tensor functor
Φ and a cross section H : M → Φ(B) be given. We say that H is
parallel with respect to F if

H(y) = Φ(F(x, y))H(x) for all x, y ∈M. (44.10)

Proposition 1: Let C be the connection induced by a transport system F, as
given in (44.9). Let H : O → Φ(B) be a cross section of class C1. If H is
parallel with respect to F, then ∇–CH = 0. Conversely, if ∇–CH = 0 and if M is
connected then H is parallel with respect to F.

Proof: Fix x ∈ M and let T := F(x, ·). Let y ∈ M be given and define

Ĥy : TlisyB → By in accord with (41.2). Then

Ĥy(T(z)T(y)−1) = Φ(T(y)T(z)−1)H(z) for all z ∈M.

Differentiation with respect to z at y gives, using (42.1), (41.3), (44.9),
and the chain rule,

(∇–CH)(y) = ( yH)C(y) = Φ(T(y))∇yH̃, (44.11)

where H̃ : M → Φ(Bx) is defined by H̃(z) := Φ(T(z)−1)H(z) for all
z ∈ M. Since y ∈ M was arbitrary and since Φ(T(y)) is invertible, we



conclude from (44.11) that ∇–CH = 0, if and only if ∇H̃ = 0. Now if

H = Φ(T)v for some v ∈ Φ(Bx), then H̃ is a constant and hence ∇H̃ = 0.

Conversely if M is connected and ∇H̃ = 0, then H̃ is a constant and
hence H = Φ(T)v for some v ∈ Φ(Bx).

Remark : Let a connection C, not necessarily induced by a transport
system, be given. Then the condition ∇–CH = 0 does not equivalent
to to the condition that H is parallel with respective to a transport
system.

Proposition 2: Let T : [0, d]→ TlisxB be a differentiable transfer process from
x, and put p := πx ◦ T : [0, d] → M. For every differentiable cross section
H :M→ Φ(B), we have

( p(t)H)(sdtT) = ∂t
(
s 7→ Φ(T(t)T−1(s))H(p(s))

)
(44.12)

for all t ∈ [0, d], the derivative (44.12) may be interpreted, roughly, as the rate
of change of H at p(t) relative to the transfer process T.

Let C : M → ConB be a continuous connection and p : [0, d] → M
be a process of class C1, with x = p(0). Let T be the parallelism along
p for the connection C. It follows from (35.23), sdT = (C ◦ p)p•, that

(∇–C(p(t))H)p•(t) = ( p(t)H)(sdtT). (44.13)

This result does not depend on the choice of the process p, and hence
does not depend on the parallelism T along p.

Proposition 3: Let C : M → ConB be a continuous connection and let the
cross section H : M → Φ(B) be differentiable. Then ∇–CH = 0 if and only if,
for every differentiable process p : [0, d]→M,

(( H) ◦ p)(sdT) = 0 (44.14)

where T is the parallelism along p for C.

Let x ∈ M and a continuous vector field k : M → TM be given.
By the maximum local flow for k at x we mean a mapping

α : I ×D →M

where I is an open interval containing 0,and D containing x, and D is an
open subset ofM containing x, such that for every y ∈ D the mapping
α(·, y) : I → M is the maximum integral process (integral curve) of k
with the initial condition y; i.e. α(0, y) = y and k

(
α(t, y)

)
= (α•(·, y))(t).



Let x ∈M and a continuous vector field k :M→ TM be given. It
is a well known theorem in O.D.E. (see Sect.1 of Ch.4, [L]) that there
is a maximum local flow

α : I ×D →M

for k at x. We may define a mapping Lk : I → TlisxM by

Lk(t) := ∇xα(t, ·) for all t ∈ I.

It is clear that
Lk>(I) =

⋃

y∈α(·,x)>(I)

Lis(Tx,Ty).

Since Lk(0) = 1Tx , Lk is a transfer process from x. We shall call Lk the
Lie transfer process from x of the vector-field k.

Proposition 4: Let x ∈ M and a vector field k :M→ TM be given. Let Lk

be the Lie transfer process from x of k. We have sd0Lk = �x k and

(LiekH)(x) = ∂0

(
t 7→ Φ(Lk(t)−1)H(p(t))

)
. (44.15)

Proof: Define the processes H : I → LisVχ and V : I → LisVχ by

H(t) : = ∇αx (t)χ∇xαt(∇xχ)−1 = ∇αx (t)χLk(t)(∇xχ)−1

V(t) : = ∇αx (t)χ(Dχ

αx (t) �

αx (t)
k)(∇αx (t)χ)−1

Taking the gradient of H at 0 and observing Dχ

αx (t) �αx (t) k =

(∇αx (t)χ)−1∇αx (t)k
χ, we have

H
.
(t) = ∂t

(
s 7→ ∇αx (s)χ∇xαs(∇xχ)−1

)

= ∂t
(
s 7→ (∇xαs)

)χ
(∇xχ)−1

= ∇x
(
∂t(s 7→ α

s
)
)χ

(∇xχ)−1

= ∇x(k
χ ◦ α

t
)(∇xχ)−1

= ∇αx (t)k
χ∇xαt(∇xχ)−1

=
(
∇αx (t)χ

(
(∇αx (t)χ)−1∇αx (t)k

χ
)
(∇αx (t)χ)−1

)(
∇αx (t)χ∇xαt(∇xχ)−1

)

=
(
∇αx (t)χ(Dχ

αx (t) �

αx (t)
k)(∇αx (t)χ)−1

)(
∇αx (t)χ∇xαt(∇xχ)−1

)

= (VH)(t).

This shows that Lk is the only transfer process from x such that
sdLk = (�k) ◦ α

x
. Since α

x
(0) = x, we have sd0Lk = �x k. The assertion

follows by applying Prop.2.



Definition: A Lie group is a set G endowed both with the structure of a group
and with the structure of a Cω-manifold in such a way that the group-operation
and the group-inversion are analytic mappings.

We use multiplicative notation and terminology for the group G
and denote its unity by u.

For every x ∈ G, we define the left-multiplication lex : G → G by

lex(y) := xy for all y ∈ G. (44.16)

lex : G → G, is invertible for all x ∈ G; in fact,

(x 7→ lex) : G → Perm G (44.17)

is an injective group-homomorphism, i.e. we have

leu = 1G , lexy = lex ◦ ley , lex−1 = le←x (44.18)

for all x, y ∈ G. Also, when x ∈ G is given, lex is analytic and we have

∇ylex ∈ Lis(TxM,TxyM) ⊂ TlisyG (44.19)

for all y ∈ G. We define the analytic mapping

G : G → TlisuG (44.20)

by
G(x) := ∇ulex for all x ∈ G. (44.21)

Taking the gradient of (44.18)2 at u gives

G(xy) := (∇ylex)G(y) for all x, y ∈ G. (44.22)

For every t ∈ TuM, we define the analytic vector field Gt : G → TG by

(Gt)(y) = G(y)t for all y ∈ G. (44.23)

We have

G(u) = 1TuM and (Gt)(u) = t for all t ∈ TuM. (44.24)

Proposition 5: For all t, s ∈ TuM we have

[[ Gt , Gs ]] = G [[ Gt , Gs ]]u (44.25)



Proof: Let t ∈ TuM and x ∈ G be given and choose χ ∈ ChxG. Since
lex is analytic and invertible and lex(u) = x, we have χ lex ∈ ChuG.
Using the chain rule and (44.22), we obtain

∇y(χ lex) = (∇xyχ)∇ylex = (∇xyχ)G(xy)G(y)
−1 for all y ∈ G. (44.26)

Using the definitions (44.23) and (23.25), we see that

(Gt)χ lex(y) = ∇y(χ lex)G(y)t = (∇xyχ)G(xy)t

for all y ∈ G and hence

(Gt)χ lex = (Gt)χ lex. (44.27)

Using the chain rule again, we find

∇u(Gt)χ lex = ∇x(Gt)χG(x) for all t ∈ Tu (44.28)

Now let s, t ∈ TuM be given and put h := Gt, k := Gs. Using
(43.17) with x replaced by u and χ by χ lex we conclude from
(44.28) that

[[ h , k ]]u = ∇u(χ leu)
−1

(
(∇xk

χ)h(x)− (∇xh
χ)k(x)

)
.

Using (44.26) with y := u and observing (44.23), we obtain

[[ h , k ]]u = G(x)−1∇xχ
−1

(
(∇xk

χ)h(x)− (∇xh
χ)k(x)

)
.

Since x ∈ G was arbitrary, we obtain (44.25) by applying (43.17) again.

Proposition 6: Define

(
(t, s) 7→ [t, s]

)
: TuM

2 → TuM (44.29)

by
[t, s] := [[ Gt , Gs ]]u, (44.30)

where G is defined by (44.21). Then (44.21) endows TuM with the structure of
a Lie-algebra, i.e. it is bilinear, skew, and satisfies the “Jacobi-identity”

[
[t1, t2], t3

]
+

[
[t2, t3], t1

]
+

[
[t3, t1], t2

]
= 0 (44.31)

for all t1, t2, t3 ∈ TuM. We use the notation LaG := TuM for this Lie-algebra
and call it the Lie-algebra of G.



Proof: It is clear from the definition (44.30) and from (43.13) that
(t, s) 7→ [t, s] is bilinear and skew. The Jacobi-indendity (44.31) follows
from Prop. 7 of Sect. 43, applied to hi := Gti , i ∈ 3], and Prop. 5.

For each y ∈ G, define C(y) ∈ Lin(TyM,SyTG) by

C(y) := ∇y
(
z 7→ G(z)G(y)−1

)
. (44.32)

Then (44.32) defines, as described in (44.9), a natural connection
C : G → ConG on G. This connection is analytic.

Let a vector fuield h ∈ X
1
(TG) be given and let the lineon-field

∇–Ch be defined according to (41.3). Then it follows from Prop.2 that
∇–Ch = 0 if h = Gt for some t ∈ TuM, where G is defined by (44.21).
Conversely, if ∇–Ch = 0 and if G is connected, then h = Gt for some
t ∈ TuM.

Proposition 7: The Lie-algebra-operation of TuM is the opposite of the torsion
Tu(C(u)), i.e.

[t, s] = Tu(C(u))(t, s) for all t, s ∈ Tu. (44.33)

Proof: Let t, s ∈ Tu be given. Application of (43.18) to h := Gt,
k := Gs, x := u gives (44.33) if (44.30) is observed and ∇–Ch = 0 = ∇–Ck,
as described in above, is applied.

Remark : The curvature field R(C) = 0 ???

Proposition 8: Let d ∈ × and p ∈ [0, d] → G, of class C1 and with p(0) = u,
be given. Then G p : [0, d]→ TlisuG is the parallelism along p for C.

Proof: Put T := G p. Then T(s)T(t)−1 = G(p(s))G(p(t))−1 for all
s, t ∈ [0, d]. Hence, by (44.32), (35.10), and the chain rule,

sdtT = C(p(t))p.(t) for all t ∈ [0, d],

i.e. sdT = (C p)p. . In view of (35.23) the assertion follows.

An non-constant homomorphism q : → G from the additive group
of to G is called a one-parameter subgroup of G if it is of class C1.

Proposition 9: Let d ∈ × and p ∈ [0, d] → G, of class C1 and with p(0) = u,
be given. Then p is geodesic if and only if p = q|[0,d] for some one-parameter
subgroup q of G.



Proof: By Prop. 6 and (35.28), p is geodesic if and only if p.(0) 6= 0
and

G(p(t))p.(0) = p.(t) for all t ∈ [0, d]. (44.34)

Let q be a one-parameter subgroup of G and p = q|[0,d]. Let t ∈ [0, d[
be given. Then

lep(t)p(s) = q(t)q(s) = q(t+ s) = p(t+ s)

for all s ∈ [0, d] ∩ ([0, d]− t) = [0, d− t[.

Differentiating with respect to s at 0 and using (44.21), we get

G(p(t))p.(0) = p.(t).

Since t ∈ [0.d[ was arbitrary and since p. is continuous at d, (44.34)
follows.

Assume now that p is geodesic, i.e. that (44.34) holds. Let q : I → G
be the (unique) solution of the differential equation

? q ∈ C1(I,G) , (G q)p.(0) = q. (44.35)

whose domain I is the maximal interval that contains 0 ∈ . Then I
is an open interval, [0, d] ⊂ I, and p = q|[0,d] by the standard uniqueness
theorem for differential equations. Let t ∈ I be given and define
u : I → G and v : (I − t)→ G by

u(s) := q(t)q(s) = leq(t)(q(s)) for all s ∈ I (44.36)

and
v(s) := q(t+ s) for all s ∈ I − t (44.37)

Using the chain rule and (44.24), it follows from (44.36) that

u.(s) = (∇q(s)leq(t))q
.(s) = G(q(t)q(s))G(q(s))−1q.(s)

for all s ∈ I and hence, by (71.23) and (71.24), that

u. = (G u)p.(0) , u(0) = q(t). (44.38)

On the other hand, it follows (44.35) and (44.36) that

v.(s) = q.(t+ s) = G(q(t+ s))p.(0)

for all s ∈ I − t and hence that

v. = (G v)p.(0) , v(0) = q(t). (44.39)

Comparing (44.38) and (44.39), we see that u and v satisfiy the
same differential equation and initial condition. Since the domain of
q is the maximal interval containng 0, it is clear that the domains of u
and v must both be the maximal interval containing 0. It follows that
I − t = I, which can be valid for all t ∈ I only if I = . The standard
uniqueness theorem for differential equations shows that u = v and
hence, by (44.36) and (44.37), that q(t+ s) = q(t)q(s) for all s ∈ . Since
t ∈ was arbitrary, it follows that q must be a one-parameter subgroup
of G.



45. Alternating Covariant Gradients

Let a number p ∈ , with p ≥ 1, connections C :M→ Con TM and
D :M→ ConB of class C1 be given.

Let Φ be an analytic tensor functor. For every differentiable Φ(B)-
valued skew-p-linear field S :M→ Skwp(TM

p,Φ(B)), the covariant gra-
dient of S at x ∈M relative to (C,D) is the mapping

∇–(C(x),D(x))S :M→ Lin(TxM,Skwp(TxM
p,Φ(Bx)).

Taking the alternating part of ∇–(C(x),D(x))S, we obtain the skew (p+1)-
linear mapping

Alt (∇–(C(x),D(x))S) ∈ Skwp+1(TxM
p+1,Φ(Bx)). (45.1)

Proposition 1: Let x ∈M be given. For every manifold chart χ ∈ ChxM and
every bundle chart φ ∈ Chx(M,B), we have

(p+ 1)Alt (∇–(C(x),D(x))S)(v)

= (p+ 1)Alt
(
∇–χ,φx S +

(
Φ

•

x(Γ
φ
x (D(x)))̃ S(x)

))
(v)

−
∑

1<i<j<p+1

(−1)i+j−1S(x)
(
Tx(C(x))(vi,vj),del(i,j)v

) (45.2)

where del(i,j) : Vp+1 → Vp−1 is defined by del(i,j) := delj ◦ deli, i < j, for all
v ∈ TxM

p+1.

Proof: Let χ ∈ ChxM and φ ∈ Chx(B,M) be given. We have

C(x) = Aχ
x − IxΓ

χ
x (C(x)) and D(x) = Aφ

x − IxΓ
φ
x (D(x)).

For every i ∈ (p+ 1)], (42.11) gives

∇–(C(x),D(x))S(vi,deliv) = ∇–χ,φx S(vi,deliv) + Φ
•

x(Γ
φ
x (D(x)vi)S(x)(deliv)

−
∑

j∈(p+1)]\{i}

S(x)(del(i,j)v).j)Γχx (C(x))(vi,vj)

(45.2)
for all v ∈ (TxM)×(p+1). Sum up and rearrange all the terms, we obtain
the desired formula by observing that Tx = Γχx − Γχx .̃

Prop.1 has several applications. The first application is given in
the following Prop.2. The second kind of applications are Bianchi
identities in Sect.46 and the third application leads to the definition
of exterior differential in Sect.47.



For every cross section H :M→ Φ(B) of class Cp, p ≥ 2, we define
the covariant gradient-mapping of H relative to D

∇–DH :M→ Lin(TM,Φ(B))

by
∇–DH(y) := ∇–D(y)H for all y ∈M. (45.3)

The second covariant gradient-mapping of H relative to (C,D) is de-
fined by

∇–
(2)

(C,D)H := ∇–(C,D)(∇–DH) :M→ Lin2

(
TM2 , Φ(B)

)
. (45.4)

The second covarient gradient-mapping ∇–
(2)

(C,D)H is not necessarily sym-

metric. Indeed, we have the following:

Proposition 2: We have

∇–
(2)

(C,D)H− (∇–
(2)

(C,D)H)˜ = Φ
•

(R(D)(·, ·))H−
(
∇–DH

)
T(C) (45.5)

where, for each x ∈ M, Φ
•

(x) := Φ
•

x ∈ Lin (LinBx,Lin Φ(Bx)) is defined as in
Prop. 1 of Sect. 42.

Proof: Let x ∈ M be given. Choose χ ∈ ChxM and φ ∈ Chx(B,M).
Applying Prop. 1 with H replaced by ∇–D(x)H and Φ replaced by Lin ◦
(Id,Φ) (see [N2]), we have

∇–
(2)

(C(x),D(x))H(u,v)−∇–
(2)

(C(x),D(x))H(v,u) +
(
∇–D(x)H

)
Tx(C(x))(u,v)

= (∇–(Aχ
x ,A

φ
x)∇

–
DH)(u,v)− (∇–(Aχ

x ,A
φ
x)∇

–
DH)(v,u)

+ Φ
•

x(Γ
φ
x (D(x))u)(∇–D(x)H)v − Φ

•

x(Γ
φ
x (D(x))v)(∇–D(x)H)u

(45.6)
for all u,v ∈ TxM. Observing ∇–DH = ∇–CφH + Φ

•

x(Γ
φ(D)), we have

∇–(Aχ
x ,A

φ
x)∇

–
D(x)H(u,v) = ∇–

(2)

(Aχ
x ,A

φ
x)

H(u,v) +∇–(Aχ
x ,A

φ
x)Φ

•

x(Γ
φ(D))̃ H(u,v).

(45.7)
for all u,v ∈ TxM. Since Φ

•

x is a natural linear assignment, the second
term on the right handside of the equality in (45.7) is

(∇–(Aχ
x ,A

φ
x)Φ

•

x(Γ
φ(D))̃ H)(u,v)

= Φ
•

x(∇–(Aχ
x ,A

φ
x)Γ

φ(D)(u,v))H(x) + Φ
•

x(Γ
φ
x (D(x))v)(∇–

A
φ
x
H)u.

(45.8)

We also have, the third term on the right hand side of the equality
(45.6) satisfies

Φ
•

x(Γ
φ
x (D(x))u)(∇–D(x)H)v

= Φ
•

x(Γ
φ
x (D(x))u)

(
∇–
A
φ
x
H + Φ

•

x(Γ
φ
x (D(x))

)
v

= Φ
•

x(Γ
φ
x (D(x))u)∇–CφHv + Φ

•

x(Γ
φ
x (D(x))u)Φ

•

x(Γ
φ
x (D(x))v)

= Φ
•

x(Γ
φ
x (D(x))u)∇–CφHv + Φ

•

x(Γ
φ
x (D(x))uΓφx (D(x))v).

(45.9)



Combining (45.6) to (45.9) with (45.2) and observing that

∇–
(2)

(Aχ
x ,A

φ
x)

H = Φ(φ
⌋
x
)−1

(
∇(2)
χ Hφ

)
(∇xχ×∇xχ) (45.10)

is symmetric and x ∈M was arbitrary, we obtain (45.5).



46. Bianchi Identities

Let connections C : M → Con TM and D : M → ConB of class C1

be given. Both of the torsion field T(C) :M→ Skw2(TM
2,TM) of the

connection C and the curvature field R(D) :M→ Skw2(TM
2,LinB) of

the connection D are skew-2-linear fields. Applying Prop.1 of Sect.46,
the alternating part of ∇–CT(C) gives the first Bianchi idetity and the
alternating part of ∇–(C,D)R(D) gives the second Bianchi idetity.

Proposition 1: (First Bianchi idetity) We have

Alt (∇–CT(C) + T(C)T(C)) = Alt (R(C)) (46.1)

where T(C)T(C) is regarded as a cross section of Skw2(TM
2,LinTM).

Proof: Applying Prop.1 of Sect.45, we have

Alt (∇–CT(C) + T(C)T(C)) = Alt (∇–C
χT(C) + Γχ(C)˜ T(C)). (46.2)

Using (33.8) and (34.30), we see that

Alt (∇–C
χT(C) + Γχ(C)˜ T(C)) = Alt (R(C)). (46.3)

The desire result (46.1) follows from (46.2) and (46.3).

Remark 1: When C is curvature-free (but not necessary torsion free),
Eq. (46.1) reduces to

Alt (∇–CT(C) + T(C)T(C)) = 0. (46.4)

If in addition that Alt (∇–CT(C)) = 0, then

Alt (T(C)T(C)) = 0; (46.5)

that is T(C) satisfies Jacobi identity (cf. Lie Group, Prop.7 of Sect.44
).

Proposition 2: (Second Bianchi idetity) We have

Alt (∇–(C,D)R(D) + R(D)T(C)) = 0. (46.6)

where R(D)T(C) is regarded as a cross section of Skw2(TM
2,Lin(TM,LinB)).

Proof: Applying Prop.1 of Sect.45, we have

Alt (∇–(C,D)R + Rx(C)(Tx(C)))

= Alt (∇–(Aχ
x ,A

φ
x)R + Γφx(D)˜Rx(C)−Rx(C)(·, ·)Γφx(D)).

(46.7)



Applying Prop.5 of Sect.34, we obtain

Alt (∇–(Aχ
x ,A

φ
x)R + Γφx(D)˜Rx(C)−Rx(C)(·, ·)Γφx(D))

= Alt
(
∇–

(2)

(Aχ
x ,A

φ
x)

Γφ(D)−
(
∇–

(2)

(Aχ
x ,A

φ
x)

Γφ(D)
)
˜

)
.

(46.8)

In view of (44.5), we observe that

∇–
(2)

(Aχ
x ,A

φ
x)

Γφ(D)−
(
∇–

(2)

(Aχ
x ,A

φ
x)

Γφ(D)
)
˜ = 0. (46.9)

The desired result follows from (46.7), (46.8) and (46.9).

Remark 2: When the given linear-space bundle is the tangent bundle
B := TM of M, the Bianchi identities can be found in literatures (see
[P]) as

(∇–CT(C))(U,V,W) + (∇–CT(C))(V,W,U) + (∇–CT(C))(W,U,V)

+T(C)(T(C)(U,V),W)+T(C)(T(C)(V,W),U)+T(C)(T(C)(W,U),V)

= R(C)(U,V,W) + R(C)(V,W,U) + R(C)(W,U,V)
(46.10)

and

(∇–CR(C))(U,V,W) + (∇–CR(C))(V,W,U) + (∇–CR(C))(W,U,V)

+R(C)(T(C)(U,V),W)+R(C)(T(C)(V,W),U)+R(C)(T(C)(W,U),V)

= 0
(46.11)

for all vector fields U,V,W ∈ XTM.

Remark 3: Most of the literatures, especially in physics, only deal with
the special case : in the absence of torsion. Under this assumption,
the Bianchi identities becomes

Alt (R(C)) = 0 (46.12)

and

Alt (∇–CR(C)) = 0. (46.13)



47. Differential Forms

Let p ∈ and a differentiable W-valued skew p-linear field ω be
given.

In this section, we apply Prop.1 of Sect.45 with the tensor functor
Φ := TrW, the trival functor for a linear space W (see Sect.13).

Proposition 1: For every x ∈M, we have

Alt (∇–χx ω) = Alt (∇– γxω) (47.1)

for all manifold charts χ, γ ∈ ChxM.

Proof: The desire result (47.1) follows from Prop.1 of Sect.45 with
(TrW)

•

x = 0 and Tx(A
χ
x) = 0 = Tx(A

γ
x) (see Theorem in Sect.33) for all

manifold charts χ, γ ∈ ChxM.

Definition : The pth-exterior differential at x ∈M

d
p
x : X(Skwp(TM

p, ))→ Skwp+1(TxM
p+1, ) (47.2)

is defined by

d
p
xω :=

1

p!
Alt (∇–χx ω) for all ω ∈ X(Skwp(TM

p, )) (47.3)

which is valid for all manifold chart χ ∈ ChxM.
The pth-exterior differential

d
p : X

s
(Skwp(TM

p, ))→ X
s−1

(Skwp+1(TM
p+1, )) (47.4)

is defined by

d
p(x) := d

p
x for all x ∈M. (47.5)

Remark : If M be the underline manifold of a flat space E, then
∇ω = ∇–χω for all manifold chart χ. The definition (47.3) of exterior
differential at x becomes

d
p
ω =

1

p!
Alt (∇ω). (47.6)

Equation (47.4) can be found in Sect.2.3 of [CH] and in Sect.51 of
[B-W].



Proposition 2: Let W be a linear space and let ω :M→ Skwp(TM
p,W) be

a differentiable W-valued skew p-linear field. For every x ∈M,we have

d
p
xω(v) = (

1

p!
Alt (∇–C(x)ω))v

+
∑

1≤i<j≤p+1

(−1)i+j−1
ω(x)

(
Tx(C(x))(vi,vj),del(i,j)v

) (47.7)

for all connection C and all v ∈ TxM
p+1.

Proposition 3: We have
d
p+1 ◦ d

p = 0. (47.7)



Chapter 5

Geometric Structures.

We assume in this chapter that numbers r, s ∈ ,̃ with r ≥ 3 and
s ∈ 0..r, a Cr manifold M and a Cs linear-space bundle B over the
manifold M are given. We also assume that both M and B have
constant dimensions, and put n := dimM and m := dimB − dimM.
Then we have n = dim TxM and m = dim Bx for all x ∈M.

51. Compatible Connections

Let x ∈ M be fixed. Let Φ be an analytic tensor functor and let
E ∈ Φ(Bx) be given.

Notation: We define the mapping

E⋄ : TlisxB → Φ(B) (51.1)

by
E⋄(T) := Φ(T)E for all T ∈ TlisxB. (51.2)

Since Φ is analytic, it is clear that E⋄ is differentiable at 1Bx .

Proposition 1: We have ∇1Bx
E⋄ ∈ Lin (SxB,TEΦ(B)) and, for every bundle

chart φ ∈ Chx(B,M),

(∇1Bx
E⋄)s = A

Φ(φ)
E Pxs + IEΦ

•

x

(
Λ(Aφ

x)s
)
E (51.3)

for all s ∈ SxB.

Proof: By using (51.2) and the definition (23.21) of gradient, we ob-
tain the desired result.

Taking the gradient of E⋄
∣∣Φ(Bx)

LisBx
at 1Bx , we have

(
∇1Bx

E⋄
∣∣Φ(Bx)

LisBx

)
L =

(
Φ

•

x(L)
)
E (51.4)

for all L ∈ LinBx. For the sake of simplicity, we use the following
notation

E◦ := ∇1Bx

(
E⋄

∣∣Φ(Bx)

LisBx

)
. (51.5)



Given r ∈ \{0}, we observe from (51.5) that (rE)◦ = rE◦ and hence

Null E◦ = Null (rE)◦. (51.6)

It is follows from (51.3) and (51.4) that

Px = PE(∇1Bx
E⋄) and (∇1Bx

E⋄)Ix = IEE
◦,

i.e. the diagram

LinBx
Ix−−→ SxB

Px−−→ TxM

E
◦

y ∇1Bx
E

⋄

y

∥∥∥∥∥

Φ(Bx)
IE−−→ TEΦ(B)

PE−−→ TxM

(51.7)

commutes. And it also clear from (51.3) that

A
Φ(φ)
E = (∇1Bx

E⋄)Aφ
x ∈ RconEΦ(B) (51.8)

for all bundle chart φ ∈ Chx(B,M). More generally, we have

(∇1Bx
E⋄)K ∈ RconEΦ(B) for all K ∈ ConxB. (51.9)

In view of (51.9), the mapping ∇1Bx
E⋄ induces the following map-

ping.

Definition: We define the mapping

JE : ConxB → RconEΦ(B)

by
JE(K) := (∇1Bx

E⋄)K for all K ∈ ConxB. (51.10)

Proposition 2: The mapping JE, defined in (51.10), is flat. Hence, for every
D ∈ Rng JE, J<

E
({D}) is a flat in ConxB with

dimJ<
E

({D}) =????.

Let a cross section H :M→ Φ(B), that is differentiable at x ∈ M,
be given. The gradient of H at x is a tangent connector of Φ(B); i.e.
∇xH ∈ RconH(x)Φ(B).



Proposition 3: We have

∇–KH = Λ
(
(∇1Bx

H(x)⋄)K
)
∇xH (51.11)

for all K ∈ ConxB and hence ∇–KH = 0 if and only if JH(x)(K) = ∇xH, i.e.
K ∈ J<

H(x)({∇xH}).

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1)
and Remark 1 of Sect. 32.

If K ∈ ConxB be such that ∇–KH = 0, then it follows from (51.11)
that Λ

(
(∇1Bx

H(x)⋄)K
)
∇xH = 0. Applyiny Prop.1 of Sect.14, we see that

this can happen if and only if (∇1Bx
H(x)⋄)K = ∇xH. Since K ∈ ConxB

was arbitrary, the assertion follows.

Now, let a differentiable cross section H :M→ Φ(B) be given.

Definition: A connection CM → ConB is called a H-compatible connec-
tion if ∇–C(x)H = 0 for all x ∈M, i.e.

∇–CH = 0. (51.12)

It clear from Prop.3 that a connection C is H-compatiable if and
only if

JH(x)(C(x)) = ∇xH for all x ∈M. (51.13)

Proposition 4: Let connectors K1,K2 ∈ J<
H(x)({∇xH}) be given and determine

L ∈ Lin (TxM,LinBx) such that K1 −K2 = IxL; then we have

H(x)◦(Lt) = 0 for all t ∈ TxM. (51.14)



52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when Φ = Smf2 or Skf2 (see example
(4) of Sect.13).

Let x ∈M be fixed and E ∈ Φ(Bx), Φ = Smf2 or Skf2, be given. We
have

E◦(M) = E ◦ (M× 1Bx) + E ◦ (1Bx ×M), (52.1)

where E◦ is given in (51.5), for every M ∈ LinBx.

Proposition 1: If E is invertiable, then E◦ is surjective; i.e.

Rng E◦ = Sym2(B
2
x, ) when Φ = Smf2 (52.2)

i.e., E ∈ Sym2(B
2
x, ) and

Rng E◦ = Skw2(B
2
x, ) when Φ = Skf2 (52.3)

i.e., E ∈ Skw2(B
2
x, ).

Proof: By using (52.1).

Proposition 2: If E is invertiable, then the flat mapping JE defined in (51.10)
is surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and
the surjectivity of E◦.

In view of Prop.2 we see taht, for every D ∈ RconEΦ(B), the preim-
age J<

E
({D}) is a flat in ConxB. Let K1,K2 ∈ J<

E
({D}) be given and de-

termine L ∈ Lin(TxM,LinBx) such that K2−K2 = IxL. Applying (51.3),
we have 0 = JE(K2) − JE(K1) = E◦(L), that is L ∈ Lin(TxM,NullE◦).
Since K1,K2 ∈ J<

E
({D}) were arbitrary, we conclude that

dimJ<
E

({D}) = dim Lin(TxM,NullE◦). (52.4)

Definition: A cross section G :M→ Smf2(B) is called a Riemannian field
if, for every x ∈M, G(x) is invertiable when regard as element of Sym(Bx,Bx

∗).
A cross section S :M→ Skf2(B) is called a symplectic field of B if, for

every x ∈M, S(x) is invertiable when regard as element of Skw(Bx,Bx
∗).

We say that B is a Cs Riemannian linear space bundle if it is endowed
with additional structure by the prescription of a Cs Riemannian field.

We say that B is a Cs symplectic linear space bundle if it is endowed
with additional structure by the prescription of a Cs symplectic field.



Remark 1: A symplectic field of B exist if and only if, for every x ∈M,
m := dimBx is even (see Sect.11). If m is odd, then

Skw(Bx,Bx
∗) ∩ Lis(Bx,Bx

∗) = ∅.

Proposition 3: If G :M→ Smf2(B) is a Riemannian field, then

dim J<
G(x)({∇xG}) = n

(
m

2

)
for all x ∈M. (52.5)

If S :M→ Skf2(B) is a symplectic field, then

dim J<
S(x)({∇xS}) = n

(
m+ 1

2

)
for all x ∈M. (52.6)

Proof: It following easily from (52.4), (52.2) and (52.3).

Remark 2: Let G be a Riemannian field and C : M → ConB be a
G-compatible connection. Let L : M → LisB be a cross section with
∇–CL = 0 be given. Then, it follows from ∇–CG = 0 and ∇–CL = 0 that
∇–C(G ◦ (L × L)) = 0. Hence, the Riemannian field H := G ◦ (L × L)
satisfies ∇–CH = 0.



53. Riemannian and Symplectic Manifolds.

Definition: We say that M is a Riemannian manifold if the tangent bundle
TM is endowed with additional structure by the prescription of a Cr−1 Rieman-
nian field.

We say that M is a symplectic manifold if the tangent bundle TM is
endowed with additional structure by the prescription of a Cr−1 symplectic field.

Let a Riemannian field G : M → Syminv(TM,TM∗) of class Cr−1

be given.

Proposition 1: For every x ∈M, the restriction

Tx
∣∣
J
<

G(x)
({∇xG})

: J<
G(x)({∇xG})→ Skw2(TxM

2,TxM) (53.1)

of the torsion mapping Tx is bijective.

Proof: Given x ∈M. If K1,K2 ∈ Conx(TM,M), then we have Tx(K1) =
Tx(K2) if and only if K1 −K2 = IxL for some L ∈ Sym2((TxM)2,TxM)
and hence

(G(x)L)(t,b,d) = (G(x)L)(b, t,d) (53.2)

for all t,b,d ∈ TxM.

Let K1,K2 ∈ J<
G(x)({∇xG}) with Tx(K1) = Tx(K2) be given and de-

termining L ∈ Lin2((TxM)2,TxM) such that K1 −K2 = IxL. Applying
(52.1), (51.14) and (53.2), we have

(G(x)L)(t,b,d) = −(G(x)L)(t,d,b) = −(G(x)L)(d, t,b) =

= (G(x)L)(d,b, t) = (G(x)L)(b,d, t) =

= −(G(x)L)(b, t,d) = −(G(x)L)(t,b,d)

for all t,b,d ∈ TxM. This shown that G(x)L = 0. Since G(x) is
invertible, we observe that L = 0 and hence K1 = K2. In other words,
the restriction

Tx

∣∣
J
<

G(x)
({∇xG})

: J<
G(x)({∇xG})→ Skw2(TxM

2,TxM) (53.3)

of the flat mapping Tx is injective and hence bijective. Since x ∈ M
was arbitrary, the assertion follows.



Proposition 2: For every x ∈M, we have

J<
G(x)({∇xG}) =

{
K−

1

2
IxG(x)−1

(
S (∇–KG)

)∣∣K ∈ Conx(TM,M)
}

(53.4)

where (
S (∇–KG)

)
= ∇–KG +∇–KG˜(1,2) −∇–KG˜(1,3).

Moreover, if K1,K2 ∈ Conx(TM,M) with Tx(K1) = Tx(K2), i.e.

K1 −K2 ∈ {Ix}Sym2(TxM
2, TxM)),

then we have

K1 −
1

2
IxG(x)−1

(
∇–K1G +∇–K1G˜(1,2) −∇–K1G˜(1,3)

)

= K2 −
1

2
IxG(x)−1

(
∇–K2G +∇–K2G˜(1,2) −∇–K2G˜(1,3)

)
.

(53.5)

Proof: By (41.8), we have

(
( xG)IxG(x)−1∇–KG

)
(s, t,u) = ∇–KG(s, t,u) +∇–KG(s,u, t),

(
( xG)IxG(x)−1∇–KG˜(1,2)

)
(s, t,u) = ∇–KG(t, s,u) +∇–KG(u, s, t),

(
( xG)IxG(x)−1∇–KG˜(1,3)

)
(s, t,u) = ∇–KG(t,u, s) +∇–KG(u, t, s);

(53.6)

for all s, t,u ∈ TxM. Observing ∇–KG ∈ Lin
(
TxM,Sym2(TxM

2, )
)
, we see

that (53.4)) follows easily from (53.6).

The more general version of “the fundamental theorem of Rie-
mannian geometry” follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion):
For every prescribed torsion field L : M → Skw2(TM

2,TM) of class Cs,
s ∈ 0..r− 2, there is exactly one G-compatible connection C, i.e. one satisfying
∇–CG = 0, such that T(C) = L. C is of class Cs.

Remark 1: When L = 0, the corresponding connection is called the
Levi-Cività connection.

Remark 2: It follows from Theorem 3 that for every connection C′ :
M→ Con TM of class Cs, s ∈ 0..r − 2, there is exactly one connection
C :M→ Con TM such that T(C) = T(C′) and ∇–CG = 0. Moreover, in
view of Prop. 2, we have

C = C′ −
1

2
IG−1

(
∇–C′G−∇–C′G˜(1,2) +∇–C′G˜(1,3)

)
. (53.7)



Now let a connection C : → ConTM be given. We may define, for
each x ∈M, a mapping

AC

x : ConxTM→ Sym2(TxM
2,TxM) (53.8)

by

AC

x(K) := Λ(C(x))K +
(
Λ(C(x))K

)
˜ for all K ∈ ConxTM. (53.9)

Let a symplectic field S :M→ Skwinv (TM,T∗M) of class Cr−1 be
given.

Proposition 3: For every x ∈M, the restriction

AC

x

∣∣
J
<

S(x)
({∇xS})

: J<
S(x)({∇xS})→ Sym2(TxM

2,TxM) (53.10)

of the mapping AC
x is bijective.

Proof: Similar to the proof of Prop. 1.

Proposition 4: For every connection C and each prescribed symmetric field
L : M → Sym2(TM

2,TM) of class Cs, s ∈ 0..r − 2, there is exactly one S-
compatible connection K, i.e. one satisfying ∇–KS = 0, such that AC(K) = L.
K is of class Cs.

Proof: It follows immediately from Prop.3.

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Ge-
ometry given here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: “Perhaps its only defect [of the
fundamental theorem of Riemannian geometry] is the restriction to
symmetric connections.” We show that this restriction is not needed.
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