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Convensions and Notations

A flat (known as affine) space is a non-empty set £ endowed with structure
by the prescription of

(i) a commutative subgroup V of the permutation group Perm & whose
action 7 : YV — Perm £ on £ is transitive,
(ii) a mapping sm : x ¥V — V which makes V a linear space when com-
position is taken as the addition and sm as the scalar multiplication
in V.
The linear space V is called the translation space of £. It is often happens
that a set &, a linear space V, and an action of the additive group of V on £ are
given. If this action is transitive and injective, then £ acquires the structure of a
flat space whose translation space is the isomorphic image of V in Perm £ under
the given action. Under such circumstances, we identify V with its isomorphic
image and call V an external translation space of £.

In this book, we assume that all flat spaces, all manifolds and all linear-
space bundles are real and of finite dimension. The notation and terminology of
“Finite-Dimensional Spaces; Algebra, Geometry, and Analysis” [FDS] are used

throughout.

Given any mappings f and g, we define the universal composite g o f by

gof:= (g ‘CodfﬁDomg> © (f|

(see FDS, Sec. 03). Note that

CodfﬂDomg)

Dom(go f) = f<(Codf N Domyg).

If Codf = Domg, then the universal composite reduces to the ordinary compos-
ite.

Let f be a mapping whose domain and codomain are open subsets of flat
spaces. Given r € , we say that f is of class C” if it has gradients up to order
r and if the gradient of order r is continuous. We say that f is of class C* if
it has gradients of all orders and we say that f is of class C“ if it is analytic.
We use the notation™ := U {oo,w} and consider " totally ordered in such a way
that n < oo < w for all n € . Given m,r € with m < r, we define

m..r:={s€~|m§s§r}.



Chapter 1

Preliminaries

11. Multilinearity

Let (V; | i € I) be a family of linear spaces, we define (see (04.24) of [FDS)),
for each j € I and each v € X, V;, the mapping (v.j) : V; — X1 V; by the
rule

v, if e I\{j}
((v.j)(u)); :== L for all ueV;. (11.1)
u if i=j

Definition : Let the family (V; | i € I) and W be linear spaces. We say that the
mapping M : X, V; — W is multilinear if, for every v € X,;c;V; and every
J € I the mapping Mo (v.j) : V; — W is linear, so that Mo (v.j) € Lin(V;, W).
The set of all multilinear mappings from X ,;c1 Vi to W is denoted by

LiIl]( Xie[ Vl y W) (11.2)

Let linear spaces V and W and a set I be given.

Let Perm I be the permutation group, which consists of all invertible map-
pings from I to itself. For every permutation ¢ € Perm I we define a mapping
Ty, : VI — VI by

T,(v)=voo forall veVl, (11.3)

that is (T, (v)); := V() for all i € I. In view of vo (cop) = (voo)op, we
have Ty,, = T, 0 T, for all o,p € Perm I. It is not hard to see that, for every
multilinear mapping M : V! — W and every permutation o, the composition
MoT, is again a multilinear mapping from V! to W, i.e. MoT, € Liny( VI, W).

Definition : A multilinear mapping M : VI — W is said to be (completely)
symmetric if
MoT, =M for all o € Perm I,

and is said to be (completely) skew if
MoT, =sgn(oc) M for all o € Perm I.

The set of all (completely) symmetric multilinear mappings and the set of
all (completely) skew multilinear mappings from VI to W will be denoted by
Sym;( VI, W) and by Skew;( VI, W); respectively.



Both Sym;( V!, W) and Skew;( V!, W) are subspaces of the linear space
Lin;( VI, W) with dimensions

i I—1
dim Sym, (V!, W) = (dlmV;I# )dimW (11.4)
and "
dim Skew;( V!, W) = ( l;énlv) dim W. (11.5)

For every k € , we write Ling(V*, W), Sym,( V¥, W) and Skewy(V*, W) for
Link](V’“],W), Symk}(V’“],W) and Skewk](Vk],W); respectively.
In applicatins, we often use the following identifications
Ling( VF, W) 2 Lin,_,(V*~1, Lin (V, W))
& Lin( V, Link_l( Vk_l, W))
and inclusions
Symk( Vk? W) - Symk—l( Vk_l? Lin ( V? W));
Skewy (VW) C Skew,_1( V¥~ Lin (V,W)).
In particular, we shall use Sym,(V?,) = Sym (V,V*) := Sym (V, Lin(V,))
and Skews(V?,) = Skew (V,V*) := Skew (V, Lin(V,)). It can be shown that

Skew (V,V*) has invertiable mapping if and only if dim V is even. (See Prop.3
of Sect.87, [FDS|. However, this property does not require an inner product.)

Given a number k£ € and a multilinear mapping A € Ling( V¥, W), the
mapping Y., cperm s (58010) A o Ty : VF — W is a completely skew multilinear
mapping. Moreover, it can be easily shown that

1

T Z (sgno) AoT, = A

oEPerm kl

for all skew multilinear mapping A € Skew( VE, W).

Definition : Given a number k € , we define the alternating assignment
Alt : Ling (V¥, W) — Skew(VE, W) by

1
Alt A = o > (sgno)AoT, (11.6)

ocE€Perm kl

for all linear spaces V and W and all A € Ling( V¥, W).

Given p € . We define, for each i € (p+1)!, a mapping del; : VP*1 — VP by

v, if 1<i<j—1
(del;(v)); == for all v e VP (11.7)
Vit if j S l S D



Intuitively, del;(v) is obtained from v by deleting the i-th term.
When the alternating assignment Alt restricted to the subspace
Lin (V, Skew,(V?,W)) of Lin (V, Lin,(V?,W)) = Lin,1( VPT1, W), we have
(p+1)(AltA)v = > (=1)"'A(v;,del;v) (11.8)
i€(p+1)!
for all v.€ VT and all A € Lin(V, Skew,(V?,W)). Similarly, when the
alternating assignment Alt restricted to the subspace Skew,( VP, Lin(V,W)) of
Lin (V, Lin,( VP, W)) = Liny 1 (VP W), we have
(p+1)(AltB)v = > (=1)P""B(del;v,v;) (11.9)
i€(p+1)]

for all v.€ VP*1 and all B € Skew, (V?, Lin(V, W)).

Definition: An algebra is a linear space V together with a bilinear mapping
B € Liny(V2,V). An algebra V is called a Lie Alegebra if the bilinear mapping
B is skew-symmetric, i.e. B € Skewo(V?,V), and satisfies Jacobi indetity

B(B(V17V2>,V3) + B(B(Vg,Vg),Vl> + B(B(Vg,vl),VQ) =0 (1110)
for all vi,vo, vy € V.

By using the inclusion Skewy(V2, V) C Lin(V, Lin(V,V)) and (11.9), we see
taht (11.10) can rewriten as

Alt(BoB) =0 (11.11)
where (B o B)(vy, vy, vs) := B(B(vy,va),vs) for all vi,va, vy € V.
Remark 1: In the literature the alternating assignment given in (11.6) is of-
ten called “skew-symmetric operator” ([B-W]), “complete antisymmetrization”

([F-C]). The symmetric assignment, “symmetric operator” or “complete sym-
metrization” Sym : Ling(VF, W) — Sym, (V¥, W) is given by

1
Sym M := - > MoT, (11.12)

o€Perm k!
for all linear spaces V and W and all M € Ling (V*, W). 1

Remark 2: Both assignments given in (11.6) and (11.12) are “natural linear
assignments” from a functor to another functor (see (13.16) of Sect.13). More
precisely, the alternating assignment is a natural linear assgnment from the
functor Lng to the functor Ski and the symmetric assignment is a natural linear
assgnment from the functor Lny to the functor Smy (see Sect. 13). 1



12. Isocategories, isofunctors and

Natural Assignments

An isocategory* * is given by the specification of a class OBJ whose mem-
bers are called objects, a class ISO whose members are called ISOmorphisms,

(i) a rule that associates with each ¢ € ISO a pair (Dom ¢, Cod ¢)
of objects, called the domain and codomain of ¢,

(ii) a rule that associates with each A € OBJ a member of ISO
denoted by 14 and called the identity of A,

(iii) a rule that associates with each pair (¢,) in ISO such that
Cod ¢ = Dom ¢ a member of ISO denoted by ¥ o ¢ and called
the composite of ¢ and 1, with Dom (1) o ) = Dom ¢ and
Cod (¢ 0 ¢) = Cod .

(iv) a rule that associates with each ¢ € ISO a member of ISO
denoted by ¢~ and called the inverse of ¢.

subject to the following three axioms:

(I1) ¢olpome =@ =lcoago¢ forall ¢ € ISO,

(I2) xo(Yo¢p) = (xoy)oep forall ¢,1,x € ISO such that
Cod ¢ = Dom v and Cod 1) = Dom .
(13) P o= 1D0m¢, and ¢o¢@T = 1Cod¢ for all ¢ € ISO.

Given ¢ € ISO, one writes ¢ : A — B or A %, B to indicate that
Dom ¢ = A and Cod ¢ = B.

There is one to one correspondence between an object A € OBJ and the
corresponding identity 14 € ISO. For this reason, we will usually name an
isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO’ with object-classes OBJ and OBJ' be
given. We can then form the product-isocategory ISO x ISO" whose object-
class OBJ x OBJ' consists of pairs (A, A’) with A € OBJ, A’ € OBJ' and
ISOmorphism-class ISO x ISO’ consists of pairs (¢, ¢’) with ¢ € ISO, ¢’ € ISO’
and the following

(a) For every (¢,¢') € ISO x ISO’, Dom (¢, ¢') := (Dom ¢, Dom ¢’)
and Cod (¢, ¢') := (Cod ¢, Cod ¢').

* A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the
axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose “morphisms”
are called ISO-morphisms.

1 Since isocategories are widely used in differential geometry, we introduced them directly instead

of making them as a special category.



(b) Composition in ISO x ISO’ is defined by termwise composition,

ie. by (,¢") o (¢,¢") = (o, o¢") for all ¢,1) € ISO and
¢, " € ISO’ such that Dom (1), %’) = Cod (¢, ¢').

(c) The identity of a given pair (A, A’) € OBJ x OBJ' is defined to
be 144 = (1a,1a).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISO’ of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n!, we

write ISO™ := ISO™ for short. For example, we write ISO? := ISO x ISO. We
identify ISO' with ISO and ISO™™" with ISO™ x ISO™ for all m,n € in the
obvious manner. The isocategory ISO? is the trival one whose only object is ()
and whose only ISOmorphism is 1.

A functor @ is given by the specification of:

(i) a pair (Dom ®, Cod ®) of categories, called the domain-category
and codomain-category of ¢,

(ii) a rule that associates with every ¢ € Dom ® a member of Cod ®
denoted by ®(¢),

subject to the following conditions:

(F1) We have Cod ®(¢) = Dom ®(¢0) and ®(1p o ¢) = () o ®(¢)
for all ¢, € Dom ® such that Cod ¢ = Dom ).

(F2) For every identity 14 in Dom ®, where A belongs to the object-
class of Dom ®, ®(14) is an identity in Cod ®.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO’ with object-classes OBJ and OB.J' be given.

We say that ® is an isofunctor from ISO to ISO’ and we write ISO 2, 180/
or ® : ISO — ISO’ to indicate that ISO = Dom ® and ISO’ = Cod ®. By (F2),
we can associate with each A € OBJ exactly one object in OBJ’, denoted by
P (A), such that

B(14) = La(a). (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor ® satisfies

d(p7) = (®(¢))” forall ¢ € Dom . (12.2)

One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03



and 04, [FDS].) Thus, if ® and ¥ are isofunctors such that Cod ® = Dom W, one
can define the composite isofunctor ¥ o ® : Dom ® — Cod ¥ by

(Vo d)(¢) :=V(P(¢)) forall ¢e& Domd (12.3)
Also, given isofunctors ® and ¥, one can define the product-isofunctor
®x¥: Dom® x DomV¥ — Cod P x Cod ¥
of ® and ¥ by

(X W)(,1)) := ((e), ¥(¥)) (12.4)

for all ¢ € Dom ® and all ¢» € Dom V.
Product-isofunctors of arbitrary families of isofunctors are defined in a sim-

ilar way. In particular, if a isofunctor ® and an index set I are given, we define
the I-power-isofunctor ®*! : (Dom ®)! — (Cod ®)! of ® by

O (p; |i€T)=(D(¢;) | i€T) (12.5)
for all families (¢; | ¢ € I) in Dom ®. We write ®*™ := " when n € .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO — ISO of ISO is defined by

Id(¢) = ¢ forall ¢ € ISO. (12.6)

We then have
Id(A) = A forall A€ OBJ. (12.7)

If I is an index set, then the identity-isofunctor of ISO? is Id*. In particular,
the identity-isofunctor of ISO x ISO is Id x Id.

Given an object C € OBJ. The trivial-isofunctor Tr. : ISO — ISO for C
is defined by
Tre(¢) = 1¢  for all ¢ € ISO. (12.8)

We then have
Tre(A)=C forall A€ OBJ. (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO? — ISO? is defined by

Sw(p,v) := (¢, ¢) for all ¢,¢ € ISO. (12.10)

Given any index set I, the equalization-isofunctor Eq; : ISO — ISO’ is
defined by
Eq;(¢):=(¢ | iel) forall ¢elSO. (12.11)



We write Eq,, := Eq,,) when n € .

Let a index set I and a family (®; | i € I) of isofunctors, with Dom ®; =
ISO for all i € I, be given. We then identify the family (®; | ¢ € I) with the
termwise-formation isofunctor

(®; | i€1):1SO0 - X Cod P,

iel
defined by
(®; | 1€1):= X ®;0Eq,,
el
so that
(®; | i€ I)(¢) = X ®;(¢p), forall ¢ e€ISO. (12.12)

el

In particular, if I = 2!, we then identify the pair (®;,Ps) with the pair-
formation isofunctor (¢, ®;) : ISO — Cod ®; x Cod D5.

Let isofunctors ® and V¥, both from ISO to ISO’, be given. A natural
assignment o form ® to VU is a rule that associates with each object F of ISO
a mapping

ay : ®(F) — W(F),

such that
W(X) 0 Qporny, = Cooay © P(X) for all x € ISO; (12.13)

i.e. the diagram

®(Dom x) Toomyx ¥ (Dom x)

‘P(X)l l\ll(x)

®(Cody) —— ¥(Cody)

OéCodX

is commutative. We write « : ® — V¥ to indicate that ® is the domain

isofunctor, denoted by Dmf,, and ¥ is the codomain isofunctor, denoted
by Cdf,.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments o :® — ¥
and f:¥ — O be given. We can define the composite assignment
Boa:®— O, by assigning to each object F of Dom® = Dom ¥ the map-
ping (foa), :=0,0a,. If a,f are natural assignment, one can define the
product-assignment « x [ by assigning to each pair (F,G) of objects the
mapping (o x 3) o) = @z X fBg.

Given a natural assignment o : & — ¥ and a isofunctor © such that
Cod® = Dom® = DomVW, one can define the composite assignment



aoB®:PoO — Vo by assigning to each object F of Dom® = Dom ¥ the
mapping (a0 0),. =«

O(F) "

12. Isocategories, isofunctors and
Natural Assignments

An isocategory™ * is given by the specification of a class OBJ whose mem-
bers are called objects, a class ISO whose members are called ISOmorphisms,

(i) a rule that associates with each ¢ € ISO a pair (Dom ¢, Cod ¢)
of objects, called the domain and codomain of ¢,

(ii) a rule that associates with each A € OBJ a member of ISO
denoted by 14 and called the identity of A,

(iii) a rule that associates with each pair (¢,v) in ISO such that
Cod ¢ = Dom v a member of ISO denoted by v o ¢ and called
the composite of ¢ and 1, with Dom (1) o ) = Dom ¢ and
Cod (¢ 0 ¢) = Cod 1.

(iv) a rule that associates with each ¢ € ISO a member of ISO
denoted by ¢~ and called the inverse of ¢.

subject to the following three axioms:

(I1) ¢olpome =@ =lcoago¢ forall ¢ € ISO,

(I12) xo(o@p) = (xow)op forall ¢,,x € ISO such that
Cod ¢ = Dom v and Cod 1) = Dom .

(I3) ¢~ 09 =1pomg¢ and ¢oo~ =lcoay forall ¢ €ISO.

Given ¢ € ISO, one writes ¢ : A — B or A %, B to indicate that
Dom ¢ = A and Cod ¢ = B.

There is one to one correspondence between an object A € OBJ and the
corresponding identity 14 € ISO. For this reason, we will usually name an
isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO’ with object-classes OBJ and OBJ' be
given. We can then form the product-isocategory ISO x ISO" whose object-
class OBJ x OBJ' consists of pairs (A, A’) with A € OBJ, A" € OBJ' and

* A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the
axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose “morphisms”
are called ISO-morphisms.

1 Since isocategories are widely used in differential geometry, we introduced them directly instead

of making them as a special category.



ISOmorphism-class ISO x ISO’ consists of pairs (¢, ¢’) with ¢ € ISO, ¢’ € ISO’
and the following

(a) For every (¢,¢') € ISO x ISO’, Dom (¢, ¢') := (Dom ¢, Dom ¢’)
and Cod (¢, ¢') := (Cod ¢, Cod ¢').
(b) Composition in ISO x ISO" is defined by termwise composition,

i.e. by (V,0") o (¢, ¢) := (o, o¢") for all ¢,1 € ISO and
¢',y" € ISO’ such that Dom (1), v’) = Cod (¢, ¢').

(c) The identity of a given pair (A, A") € OBJ x OBJ' is defined to
be Laany = (Ta,14).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISO’ of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n!, we
write ISO™ := ISO™ for short. For example, we write ISO? := ISO x ISO. We
identify ISO' with ISO and ISO™™ with ISO™ x ISO™ for all m,n € in the
obvious manner. The isocategory ISOY is the trival one whose only object is (}
and whose only ISOmorphism is 1.

A functor @ is given by the specification of:

(i) a pair (Dom ®, Cod ®) of categories, called the domain-category
and codomain-category of ¢,

(ii) a rule that associates with every ¢ € Dom ® a member of Cod ®
denoted by ®(¢),

subject to the following conditions:

(F1) We have Cod ®(¢) = Dom ®(¢)) and ®(¢ o ¢) = ®(1)) o D(¢)
for all ¢, € Dom ® such that Cod ¢ = Dom ).

(F2) For every identity 14 in Dom ®, where A belongs to the object-
class of Dom ®, ®(14) is an identity in Cod ®.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO’ with object-classes OBJ and OB.J' be given.

We say that ® is an isofunctor from ISO to ISO’ and we write ISO 2, 180/
or ® : ISO — ISO' to indicate that ISO = Dom ® and ISO’ = Cod ®. By (F2),
we can associate with each A € OBJ exactly one object in OBJ’, denoted by
P (A), such that

D(14) = loa). (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor ® satisfies

(7)) = (CID(QS))(_ for all ¢ € Dom . (12.2)



One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03
and 04, [FDS].) Thus, if ® and ¥ are isofunctors such that Cod ® = Dom ¥, one
can define the composite isofunctor ¥ o ® : Dom ® — Cod ¥ by

(Vod)(¢p):=V(P(p)) forall ¢ € DomP (12.3)
Also, given isofunctors ® and ¥, one can define the product-isofunctor
®x¥: Dom® x DomV¥ — Cod P x Cod ¥

of ® and ¥ by
(© x W)(),9) := ((e), ¥ (¢)) (12.4)

for all ¢ € Dom ® and all ¢» € Dom V.

Product-isofunctors of arbitrary families of isofunctors are defined in a sim-
ilar way. In particular, if a isofunctor ® and an index set I are given, we define
the I-power-isofunctor ®*! : (Dom ®)! — (Cod ®)! of ® by

(i [iel)= (o) | i) (12.5)
for all families (¢; | i € 1) in Dom ®. We write ®*™ := &*" when n € .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO — ISO of ISO is defined by

Id(¢) = ¢ forall ¢ € ISO. (12.6)
We then have
Id(A)=A forall A€ OBJ. (12.7)

If I is an index set, then the identity-isofunctor of ISO? is Id*!. In particular,
the identity-isofunctor of ISO x ISO is Id x Id.

Given an object C € OBJ. The trivial-isofunctor Tr. : ISO — ISO for C
is defined by
Tre(¢p) =1 for all ¢ € ISO. (12.8)

We then have
Tre(A)=C forall A€ OBJ. (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO? — ISO? is defined by

Sw(¢p, ) := (1, ¢) for all ¢, € ISO. (12.10)



Given any index set I, the equalization-isofunctor Eq; : ISO — ISO! is
defined by
Eq;(¢):=(¢ | i€1l) forall ¢ elSO. (12.11)

We write Eq,, := Eq,,) when n € .

Let a index set I and a family (®; | i € I) of isofunctors, with Dom ®; =
ISO for all i € I, be given. We then identify the family (®; | ¢ € I) with the
termwise-formation isofunctor

iel
defined by
((I)Z ‘ ZEI) = X (I)Z'OEqI,
iel
so that
(®; | 1€ I)(¢) = X ®;(¢p), forall ¢ e€ISO. (12.12)
iel

In particular, if I = 2!, we then identify the pair (®;,®5) with the pair-
formation isofunctor (®;, ®5) : ISO — Cod ®; x Cod Ps.

Let isofunctors ® and V¥, both from ISO to ISO’, be given. A natural
assignment o form ® to VU is a rule that associates with each object F of ISO
a mapping

o}

:O(F) — U(F),

F

such that
W(X) 0 Qo = Coay © P(X) for all x € ISO; (12.13)

i.e. the diagram

®(Dom ) Demy ¥ (Dom x)

@(x)l l‘lf(x)

®(Cody) —— ¥(Cody)

aCod X

is commutative. We write a : & — ¥ to indicate that ® is the domain
isofunctor, denoted by Dmf,, and ¥ is the codomain isofunctor, denoted
by Cdf,.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments a:® — ¥
and f:¥ — O be given. We can define the composite assignment
Boa:® — O, by assigning to each object F of Dom® = Dom V¥ the map-
ping (foa), :=0,0a,. If a,f are natural assignment, one can define the



product-assignment a x by assigning to each pair (F,G) of objects the

mapping (o x ) o, = @z X SBg.
Given a natural assignment o : & — V¥ and a isofunctor © such that
Cod® = Dom® = DomW, one can define the composite assignment

aoB:PoO — Vo by assigning to each object F of Dom® = Dom ¥ the
mapping (v o0 ©), =«

e(F) "

13. Tensor Functors

We say that an isocategory ISO is concrete if ISO consists of mappings,
the object-class OBJ consists of sets, and if domain and codomain, composi-
tion, identity and inverse have the meanning they are usually given for sets and
mappings. (See, e.g. Sect. 01 — 04 of [FDS]).

‘Examples of concrete isocategory‘

The following are some concrete isocategories to be used in this book:

(A) The category FIS whose object-class FS consists of all finite dimen-
sional flat spaces over and whose ISOmorphism-class FIS consists of all flat
isomorphism from one such space onto another or itself.

(B) Fix a field and we consider the concrete isocategory whose object-class
LS consists of all finite dimensional linear spaces over and whose ISOmorphism-
class LIS consists of all linear isomorphism from one such space onto another or
itself.

(C) Given s € , the category DIF® whose object-class DF consists of all
C® manifolds and whose ISOmorphism-class DIF?® consists of all diffeomorphism
from one such manifold onto another or itself.

From now on, in this section, we will deal only with LIS and the categories
obtained from it by product formation, such as LIS™ x LIS" when m,n € . We
use the term tensor functor of degree n € for functor from LIS™ to LIS.
(Under this definition, composition of tensor functors is somewhat strange: the

‘Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential
geometry:



(1) The product-space functor Pr : LIS* — LIS. Tt is defined by
Pr(A,B):=A xB forall (A,B)eLIS% (13.1)

We have Pr(V, W) :=V x W (the product-space of V and W) for all V, W € LS.

(2) Given k € , the k-lin-map-functor Liny : LIS x LIS — LIS. It assigns
to each list (V;|i € k') in LS and each W € LS the linear space

Ling((Vi|i € k1), W) := Lin ( X vy, W) (13.2)
i€kl

of all k-multilinear mappings from X,c.1 V; to W, and it assigns to every list
(A;|i € k') in LIS and each B € LIS the linear mapping

Ling((A; |7 € k), B) (13.3)
from Link( X ;e Dom A;, Dom B) to Link( X ;ew Cod Ay, Cod B) defined by

Ling((A;]i € ¥'),B)T:=BTo X A;' (13.4)
ick]

for all T € Lin( X ;ert Dom A;, Dom B).
When £ = 1, Lin; : LIS x LIS — LIS is called the lin-map-functor and
abreviated by Lin := Lin;.

(3) Given k € , the k-multilin-functor Ln;, : LIS?* — LIS. It is defined by
Lng := Ling o (Eq; x Id). (13.5)

We have
Lng(A,B)T := BT o (A71)** (13.6)

for all A,B € LIS and all T € Ling((Dom A)*, Dom B). and
Ln,(V, W) := Liny (V¥, W) (13.7)

for all V, W € LS

There are two very important “subfunctors” (see [E-M]), Smy, and Sky, given
in following. The symmetric-k-multilin-functor Smy, : LIS? — LIS assigns to
every pair of linear spaces (V, W) € LS 2 the linear sapce

Smy(V, W) := Sym, (V*, W) (13.8)
of all symmetric k-multilinear mappings from V* to W. It is clear that

Smy(A,B)T := BT o (A~1)*F (13.9)



for all A, B € LIS and all T € Sym,,((Dom A)*, Dom B). The skew-k-multilin-
functor Skj : LIS? — LIS is defined in the same manner as Smy, except that
Sym,, (V*, W) in (13.8) is replaced by the linear space Skewy,(V¥, W) of all skew
k-multilinear mappings from V¥ to W.

(4) Given n € , the k-linform-functor Lnfy, the k-symform-functor
Smfy, the k-skewform-functor Skfy, all from LIS to LIS. They are defined by

Lnfy, := Lng o (Id, Tr) , Smfy, := Smy o (Id, Tr) , Skfy := Sky o (Id, Tr). (13.10)

Given V € LS, we have
Lnfy (V) := Lin, (V*,), (13.11)

the space of all k-multilinear forms on V*. We have
Lnf(A)w :=wo (A™1)** forall w € Ling((Dom A)*)) (13.12)

and all A € LIS. The formulas (13.11) and (13.12) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

When k£ = 1, we have Lnf; = Smf; = Skf; which is called the duality-
functor and denoted by DI : LIS — LIS.

(5) The lineon-functor Ln : LIS — LIS. It is defined by
Ln := Lin o Eqs. (13.13)

We have
Ln(V) :=Lin(V,V) forall Ve LS (13.14)

and

In(A)T := ATA™! forall A LIS and T € Ln(DomA). (13.15)

‘It is clear that Liny; = Lny, however, Ln; # Ln! Notation?‘

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term “tensor” is limited to tensor functors of the form
T7 := Lin o (Lnf,, Lnf,.) : LIS — LIS with r, s € , or to tensor functors that are
naturally equivalent to one of this form. Given V € LS a member of the linear
space T7 (V) is called a “tensor of contravariant order r and covariant order s.”

Let a family of tensor functors (®; | ¢ € k') and a tensor functor ¥ with
Dom X;cp @ = LIS® = Dom ¥ be given. We say that a natural assignment
B: X,cw P — Vis a k-linear assignment if, for every F € LS*, the mapping

Br: X O;(F;) — VU(F) (13.16)
i€kl



is k-linear.

The following are examples for bilinear natural assignments.

(6) Given k € , the alternating assgnment Alt : Ln, — Skj it assigns
each pair (V, W) € LS? the mapping

Alt(, A = Z (sgno)AoT, (13.17)

o EPerm kl

where Perm £! is the permutation group of k! and T, is defined as in (11.3), for
all A € Ling(V*, W).

(7) The tensor product tpr : Id x Id — Lin o (DI x Id) o Sw assigns each
pair (V, W) € LS? the mapping

tPr(y ) 1 V X W — Lin(W*, V) (13.18)
defined by
tpry wy (v, W) i=ve@w forall veVandweW, (13.19)

where v ® w is the tensor product defined according to Def. 1 of Sect. 25, [FDS],
with the identification W = W**.

We use v @ w € Lin(WV*, V) but others use v ® w € Lin(V*, W) (see e.g.

The wedge product wpr : Id x Id — Lin o (DI x Id) o Sw is defined by
WDT'(y ) (V, W) i= v Aw forall veVandweW, (13.20)

where v Aw is the wedge product defined according to (12.9) of Sect. 12, [FDS],
Vol.2, with the identification W = W**,

We now assume that the field relative to which LS and LIS are defined in
above is the field of real number. Given V, W € LS, the set

Lis(V,W) := { A € LIS | DomA =V,Cod A =W} (13.21)

is then an open subset of the linear space Lin(V,W). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor ® be given. For every pair of objects (V, W) of Dom @,
we define the mapping

By : Lis(V, W) — Lis(d(V), (W) (13.22)



by
D,y (A) = ®(A) forall A €Lis(V,W). (13.23)

Indeed, we can view (13.22) as a bilinear assignment from Lin = Ln; to
Lin o (® x ®). The one to be used in (13.27)

@y vy ¢ Lis(V) — Lis(®(V))

is a linear assignment from Ln to Lno® and hence whose gradient is also a linear

We say that the tensor functor ® is analytic if ®,, ,,) is an analytic map-
ping for every pair of objects (V, W) of Dom ®. We say that a natural assignment
a:® — ¥ is an analytic assignment if the mapping a : ®(F) — ¥(F) is an
analytic mapping for every object F of Dom ®. All the tensor functors listed
in above are in fact analytic. (The fact that they are of class C* can easily be
inferred from the results of Ch.6 of [FDS]. Proofs that they are analytic can be
inferred, for example, from the results that will be presented in Ch.2 of Vol.2 of
[FDS].)

Theorem : Let an analytic tensor functor ® be given and associate with each
Y € Dom ® the mapping

@ : Ln(V) — Ln(®(V)) (13.24)

defined by .
Dy, = Vi, By (13.25)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then ® is a
linear assignment from Ln to Lno ®. We call ®° the derivative of .

Proof: Let a pair of objects (V,V) of Dom ® and A € Lis(V, W) be given. It
follows from (13.23), from axiom (F1), and from (12.2) that

Py ) (ALATY) = @(A)D(,, ) (L)R(A) ™" (13.26)
for all L € Lis(V,V). By (13.15) we may write (13.26) as
(®(w,w) © Ln(A)) (L) = (Ln(®(A)) o D)) (L) (13.27)

for all L € Lis(V, V). Taking the gradient of (13.27) with respect to L at L := 1y,
yields . .
¢, oln(A)=(Lno®)(A)od,. (13.28)

In view of (12.13) it follows that ®" is a natural assignment from Ln to Ln o ®.
The linearity of ®° follows from the definition of gradient. |

We now list the derivatives of a few analytic tensor functors. The formulas
given are valid for every V € LS.




(6) Ln,, : Ln(V) — Ln(Ln(V)) is given by
(Ln,L)M = LM — ML for all L,M € Ln(V) (13.29)

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).
(7) Let k € be given. In order to describe

(Lnfg),, : Ln(V) — Lo(Ling (VF))), (13.30)

we define, for every L € Ln(V) and every j € k!, D;(L) € (Ln(V))* by

L if 1=y
(Dj (L))z = for all i€ k. (1331)
1y if i#]
We then have
((Lnfy),, Z wo Dj( for all w € Ling (V")) (13.32)
jEk]

and all L € Ln(V). The formula (13.32) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors
Let ® and ¥ be analytic tensor functors. Then the composite functor W o ®
is also an analytic tensor functor and we have

(Tod) = (U 0d)od, (13.33)

where the composite assignments on the right are explained in the end of Sect.12.

For example, (13.33) shows that, for each V € LS,
(LnoLn),, : Ln(V) — Ln(Ln(Ln(V)))

is given by
(LnoLn), = = Ln,

In view of (13.29.) above, (13.34) gives

Ty L (13.34)

(((Ln o Ln), L)K)M = ((Ln, L)K — K(Ln,L))M

(13.35)
= L(KM) — (KM)L — K(LM — ML)



forall V € LS, all K € Ln(Ln(V)), and all L,M € Ln(V).
If ® and ¥ are analytic tensor functors so is Pro (®, ¥) and we have
(Pro(®,0));, = (®,L) X Ly + Ly x (L) (13.36)
for all V € LS and all L € Ln(V).

Let a be an analytic assignment of degree n € . If we associate with each
V € LS the mapping (Va), := V(ay,), the gradient of the mapping «,,, then
Va is again an analytic assignment of degree n and we have Dmfy, = Dmf,,
and Cdfy, = Lin o (Dmf,, Cdf,). We call Va the gradient of «.

Let tensor functors ®,, 5, U, all of degree n € but not necessarily analytic,
be given. Each bilinear assignment (3 : Pro (®;,®3) — V¥ is then analytic and
its gradient V3 : Pro (®7,®5) — Lino (Pro (®1,®3), V) is given by

((VB)v(v1,v2)) (w1, u2) = By (vi, uz) + By (ur, va) (13.37)

for all V € LS, all vi,u; € ®1(V), and all vo,uy € ®o(V).

If v is an analytic assignment of degree n € and if ® is any isofunctor from
LIS* to LIS™ with k € , then avo @ is an analytic assignment of degree k and we
have V(awo @) = (Va) o ®.



15. Brackets and Twists

We assume now that linear spaces V, W and Z and a short exact sequence

I P
—

Lin(W, Z) v 2w (15.1)

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse K of
P there corresponds exactly one linear left-inverse A(K) of I such that

Lin(W, 2) ﬁ) V o 4% (15.2)

is again a short exact sequence. In view of the identification

Lin (W, Lin (W, 2)) = Liny (W?, 2) (15.3)

we may identify the external translation space Lin (W, Lin (W, Z)) of Riv(P)
with Ling (W?2, Z).

Assumption : From now on, we assume that in this section, a flat F in Riv(P)
with direction space {I}Sym, (W?, Z) is given. Here Sym, (W?, Z) is regarded
as a subspace of Liny (W?, Z) = Lin (W, Lin (W, 2)).

Proposition 1: For every K;,Ks € F,

(A(K1)v)(PV') = (A(K)V) (Pv) = (A(K2)v)(PV') — (A(K2)V')(Pv) (15.4)

holds for all v,v' € V.

Proof: Let Ki,Ky € F be given. Then we determine L € Sym, (W?, Z) such
that K; — Ky = IL . It follows from Prop.3 of Sect.14 that

(A(Ky)v)(PV') — (A(K2)v)(PV') = —L(Pv,Pv/)

holds for all v,v' € V. By interchanging v and v’ and observing that L is
symmetric, we conclude that (15.4) follows. 1

Definition: In view of Prop. 1, the F-bracket Br € Skwy (V?,Z) can be
defined such that

Br(v,v) = (AK)v)(PV) — (A(K)V)(Pv) forall v,v eV  (15.5)
is valid for all K € F. Using the identification (15.3) we also have

Br € Lin (V,Lin (V, 2)).



Proposition 2: The F-bracket B € Lin (V, Lin (V, Z)) satisfies

Br(IM)=MP for all M e Lin(W, Z),

15.6
(Brv)K = A(K)v forall K& FandallvelV. (15.6)

If dim Z # 0, then Bg is injective; i.e. Null Bx = {0}.

Proof: The equations (15.6); and (15.6)2 follow from Definition (15.5) together
with A(K)I = 11y, z) and PK = 1,,, respectively.
Let v € Null Br be given, so that B v = 0 and hence
0 = (Bfv) IM = Bz (v,IM) = —(B(IM))v

for all M € Lin(W, Z). Using (15.6)1, it follows that —MPv = 0 for all
M € Lin(W, Z), which can happen, when dim Z # 0, only if Pv = 0 and hence
v € NullP = RngI. Thus we may choose M’ € Lin(W, Z) such that v = IM’
and hence BF(IM') = 0. Using (15.6); again, it follows that M'P = 0. Since
P is surjective , we conclude that M’ = 0 and hence v = 0. Since v € Null Bx
was arbitrary, it follows that Null B = {0}. I
Definition: The F-twist
Tr : Riv(P) — Skwy (W2, 2) (15.7)
18 defined by
Tr(K):= -Bro(KxK) forall K € Riv(P), (15.8)

where Br is the F-bracket defined by (15.5).

Proposition 3: For every H € F, we have
Ty =TH —TH~ (15.9)

where ~ denotes the value-wise switch, so that TR (K)(s,t) = TH(K)(t,s) for
all K € Riv(P) and all s,t € W.

Proof: Let K € Riv(P) and s,t € W be given. By (15.8) and (15.5), we see
that for every H € F we have

Tr(K)(s, t) = —Br(Ks, Kt)

= —-A(H)(Ks)P(Kt) + A(H)(Kt)P(Ks). (15.10)
We conclude from PK = 1y, (15.10) and (14.10) that

Tx(K)(s, t) = DH(K) (s, t) — TP (K) (s, t).

Y



Since s,t € W and K € Riv(P) were arbitrary, (15.9) follows. 1

Proposition 4: The F-torsion Tr is a surjective flat mapping whose gradient
VTr € Lin (Liny (W?, 2), Skwa (W?, Z))

s given by
(VIx)L=L —-L (15.11)

for all L € Ling (W?, Z).

Proof: Let H € F be given. It follows from (15.8) and (15.5)
Tr (H-iIL) =L  forall L € Skwy(W? 2)

and hence Tr is surjective.
Prop. 3 together with Prop. 4 in Sec. 14 shows that the F-torsion Tr is a
flat mapping whose gradient is given by (15.11). 1

In view of definitions (15.8), (15.5) and (15.11), we have T~ ({0}) = F.
Definition: We say that K € Riv(P) is F-twist-free (or F-symmetric) if
Tr(K) =0, ic. if K € F.

F is a flat in Riv(P) with the (external) direction space Sym, (W?, Z) and

hence
n+1)

dim Tx<({0}) = dim Sym, (W?, Z) = "( 5 (15.12)
where n := dim W and m := dim Z. The mapping
TF=({0})
Sr = (Irip) + 3ITF) ‘ (15.13)

is the projection of Riv(P) onto T5({0}) with NullVSz = Skw, (W?, 2). If

K € Riv(P), we call

S7(K) = K + J1(Tx(K)

the F-symmetric part of K.
Remark 1: It is clear from (15.9) and (11.6) that
Tr=2AltoT™  forall HeF

The numerical factor 2 is conventional which reduces some numerical factors in
calculations. I



Chapter 2
Manifolds and Bundles

21. Charts, Atlases and Manifolds

Let a set M and r € be given. A chart y for M is defined to be a bijection
whose domain is included in M and whose codomain is an open subset of a
specified flat space, denote by Pag x and called the page of x. The translation
space of Pag x is denoted by

V, := Pagxy — Pag x. (21.1)

Let f be a mapping whose domain is a subset of M and whose codomain
is an open subset D of a specified flat space. We say that f is C"-related to a
given chart x for M if

(R1) x>(Dom x NDom f) is an open subset of Pag x,
(R2) f o x™ :x>(Dom xNDom f) — D is of class C".

We say that two charts x and v for M are C"-compatible if v is C"-related to
x and y is C"-related to 7.

Pitfall: In general, C"-compatibility is not an equivalence relation. ]

A class 2 of charts for M is called a C"-atlas of M if
(A1) Any two charts in 2 are C"-compatible,

(A2) The domain of the charts in 2l cover M, i.e.
M =[] {Domy | x € A}. (21.2)

It is clear that a C"-atlas is also a C*-atlas for every s € 0. .r.

Proposition 1: Let 2 be a C"-atlas for M and let x be a chart that is C"-
compatible with all charts in . If f is a mapping that is C"-related to every
chart in 2 then it is also C"-related to x .

Proof: Let x € Dom y N Dom f be given. By (A2) we may may choose « € A
such that x € Dom a. We put

G := Dom y N Dom a N Dom f. (21.3)
Since « is injective we have

as(G) = as(Dom y NDom «) N as (Dom f N Dom «).



Since x and f are both C"-related to «, it follows from (R1) that both
as(Dom x NDom «) and a~ (Dom f N Dom «) are open subsets of Paga and
hence that a~(G) is also open in Paga. Since a = x is continuous by (R2),
it follows that x=(G) = (o o x*)<(a=(G)) is an open neighborhood of x(z) in
Pag x. Using (0.1) and (0.2) it is easily seen that

o - P o> (9)
(2 XD = F =0T gy 0@ o x D] g,

Since both f o ™ and a o x are of class C" by (R2), it follows from the chain
rule that the restriction of f o " to a neighborhood x= (G) of x(z) in Pag x is
of class C". Since z € Dom x N Dom f was arbitrary, it follows that the domain
X>(Dom x N Dom f) of f o x is open in Pag x and that f o x~ is of class C",
i.e. that f is C"-related to . I

We say that a C"-atlas 2 for M is C"-saturated if every chart for M that
is C"-compatible with all charts in 2l already belongs to 2[. The following is an
immediate consequence of Prop. 1.

Proposition 2: Let 2l be a C"-atlas for M. Then there is exactly one saturated
C"-atlas 2 that includes A. In fact, 2 consists of all charts that are C"-
compatible with all charts in 2 .

Definition: Let r € ™ be given. A C"-manifold is a set M endowed with
structure by the prescription of a saturated C"-atlas for M, which is called the
chart-class of M and is denoted by Ch" M, or if no confusion is likely, simply
by ChM .

In view of Prop. 2, the structure of a C"-manifold on M is uniquely deter-
mined by specifying a C"-atlas included in Ch.M. Of course, two different such
atlases may determine one and the same C"-structure.

Let M be a C"-manifold with chart-class Ch" M. Then, for every
s € 0..r, M has also the natural structure of a C®-manifold, determined by
Ch" M regarded as a C#®-atlas. Of course, the chart-class Ch® M of the C*-
manifold structure includes Ch" M, but we have Ch" M Ch*M if s < r.

Examples of manifold

Example 1: Let D be an open subset of a flat space. Then the singleton {1p} is
a C“-atlas of D. It determines on D a natural C“-structure and hence a natural
C"-structure for every r € .

Example 2: (Product manifold) Let M and A be manifolds of class C",
then the product M x N has the natural structure of a C" manifold. 1



We now assume that a C"-manifold M with chart-class Ch.M is given. We
use the notation

Chy,M :={ x € ChM | = € Domy } . (21.4)

It is easily seen that the spaces Pagx and 1, x € Ch,M, all have the same
dimension. This dimension is called the dimension of M at x, and is denoted
by dim, M.

The C"-manifold M is endowed with a natural topology, namely the coarsest
topology that renders all y € ChM continuous. A subset P of M is open if
and only if, for each x € ChM, the image x~ (P N Dom x) is an open subset of
Pagx. Given x € M, one can construct a neighborhood-basis 8, of z in M
in the following manner: Choose a chart x € Ch, M and a neighborhood-basis

M, () of x(z) in Pagx. Then put

B, :={ x“VNCody) | NNy }. (21.5)

Pitfall: The natural topology of M need not be separating.

Let P be an open subset of M. Then P has the natural structure of a
C"-manifold whose chart-class Ch P is

ChP = { x € ChM | Domy C P } (21.6)

The natural topology of P as a C"-manifold concides with the topology of P
induced by the topology of M.

Let f be a mapping whose domain is an open subset of M and whose
codomain is an open subset D of a specified flat space £ with translation space
V=& —E&. We say that f is of class C?, with s € 0..r, if it is C*-related to
every chart x € ChM, i.e. if f o x™ is of class C® for all charts y € ChM.
(Since Dom f is open, Dom f o x~ = x~ (Dom y NDom f) is automatically open
in Pag x when xy € ChoM.) It follows from Prop. 1 that f is of class C* if fox—
is of class C? for every chart y in some C"-atlas included in ChM. If f is of
class C* with s > 1 and if x € Ch.M, we define the gradient

Vyf : Dom x NDom f — Lin(V,, V)
of f in the chart y by
(Vi f)(x) == Vy@)(fox™) forall 2 € DomynDom f. (21.7)
More generally, for every s € 1..r, the gradient of order s

V) f: Dom x N Dom f — Sym,((Vy)*, V)



of f in the chart y defined by
(V;S)f)(:z;) = V)E?;)(f ox™) forall z € Dom xNDom f. (21.8)

The following transformation rules are easy concequences of the rules of calculus.

Proposition 3: Let f be a mapping of class C', z € Dom f and x,y € Ch, M.
Then
(Vyf)(x) = (Vi) () (Vyx) (). (21.9)

If f is also of class C?, then

(V2 £)(@) = (T f) (@) o (Vyx(@) x Vox(@)) + (Vi) (@) VP x (). (21.10)

In the case when f := 7 the formulas (21.7) and (21.8) reduce to
(Vy)(@) =1y,  and  (ViP9y)(z) = 0.

Hence Prop. 3 has the following consequence:

Proposition 4: Let © € M and x,y € Ch,M be given. If r > 1, then
(Vay)(z) € Lin (W, V) is invertible and

(Ve (@) ™" = (Vyx) (@) (21.11)
If r > 2, we also have

(Vi) = =(Vx) (@) (V) (@) 0 (Vyx (@) x Vax(2)))- (21.12)

If the manifold M is itself the underlying manifold of an open subset of a
flat space (see Example 1 above), then a mapping f is of class C*® as described
above if and only if it is of class C*® in the ordinary sence (see Notations).

Let f be a mapping whose domain is a neighborhood of a given point x € M
and whose codomain is an open subset of a specified flat space. We say that f is
differentiable at x if f o x is differentiable at x(x) for some, and hence all,
X € Ch, M. If this is the case, (21.7) remains meaningful for the given z € M
and the transformation formula (21.9) remains valid. The concept of “s times
differentiable at 2”7 when s € 0..r is defined in a similar way.

Definition: Let M be a C"-manifold and let P be a subset of M. We say that
P is a submanifold of M if for each point x € P there is a chart x € Ch, M
such that x> (P N Dom ) is an open subset of a flat F, of Pagyx.



Let P be a C" submanifold of the manifold M. We left it the readers to
show that P has the natural structure of a C” manifold. The natural topology
of P as a C"-manifold concides with the topology of P induced by the topology
of M, i.e. P a topological subspace of M.

Let f: S — M be a C° mapping from a manifold S to another manifold
M. We say that f is a C° immersion at x € S if f is injective and there exists
an open neighborhood N, of x (in 8) such that f<(N;) is a submanifold of M.
We say that f is an immersion if it is an immersion at every y € S. If f is
an immersion, the domain S called an immersed manifold of M. However,
being an immersion is a “local property” and hence the range Rng f := f~(S)
of f may not be a submanifold of M. For example (see [L]):

270degrees from300centerat3030units < 1pt, Ipt > —750300/ < 2.5pt > [.75, 2] from030to01.5}

Figue 11.1

An imbedding is an immersion f such that Rng f is a submanifold. The
domain of an imbedding is called an imbedded manifold of its codomain
manifold. It is clear that for every submanifold P of a given manifold M the
inclusion 1p-aq is an imbedding.

Still need more details on

submanifolds




22. Bundles

We assume that r € ~ with r > 2 and a C"-manifold M are given. Let a
number s € 0..r be given and let 7 : B — M be a surjective mapping from a
given set B to the manifold M.

Let a concrete isocategory ISO with object class OBJ be given with the
following properties:

(i) Each set in OBJ has the natural structure of a C*-manifold.
(ii) Every isomorphism in ISO is a C*®-diffeomorphism.

The most inportant special cases are (1) the isocategory of LIS consisting of
all linear isomorphisms, whose object class LS consist of all (finite dimensional)
linear spaces and (2) the isocategory of FIS consisting of all flat isomorphisms,
whose object class FS consist of all flat spaces. The object sets in LS and FS
have the natural structure of C“-manifolds and the isomorphisms in LIS and
FIS are C“-diffeomorphisms.

Definition: An ISO-bundle chart for B (for 7) is a bijection
¢ :7(04) — Oy X Vg,

where Oy is an open subset of M and Vy is a set in OBJ such that the diagram

T<(O¢>) L O¢ X V¢
< 3pt > [.25,1.5] from — 1515%4)?5)(@)10 lew . (22.1)
Oy
. . . Oy
1§ commutative, i.e. evy o ¢ = T|T<(O¢).

Notation: For every y € M, we denote B, = 7<({y}) and for every
ISO-bundle chart ¢ we use the following notations

¢l =evaodo(lg cre(o,): By = Vo (22.2)

Y

for ally € Oy, i.e. we have the following commutative diagram

< 3pt > [.25,1.5] from — 45 — 1062513 Tev;»

B, —— 1=(0y) P 04 x V4



Put (22.1) and (22.2) together, we have the following commutative diagram

< 3pt > [.25,1.5] from — 45 — 10t82513

B, —— 7<(0y) .

Vo

Od)X]/

< 3pt > [.25,1.5] from — 151554»?5(5 10 Jew
TS0

Let ¢ and v be ISO-bundle charts for B. We say that ¢ and ¢ are C*-
compatible if

Yo (0¢, N Ow) X Vg — (O¢ N Ow) X Vy (22.3)
is a C*-diffeomophism such that, for every y € Oy N Oy, the mapping
V] 0| Vs —Vy (22.4)

belongs to ISO.

A class 2 of ISO-bundle charts for B is called a C*® ISO-bundle atlas for
B if

(BA1) every two ISO-bundle charts in 2l are C*-compatiable,
(BA2) for every x € M there is a bundle chart ¢ € 2 with x € Oy; i.e.

we have
M=[]0,.

Proposition 1: Let A be a ISO-bundle atlas for B and let ¢ be a ISO-bundle
chart that is C*%-compatible with all ISO-bundle charts in UA. If 1 is a ISO-

bundle chart that is C®-compatible with every ISO-bundle chart in 2 then it is
also C?-compatible with ¢.

Proof: Let x € Oy N Oy be given. By (BA2), we may choose a ISO-bundle
chart 6 € 2 such that x € Op. Put O := Oy N Oy N Op. Since both ¢ and ¢
are C*-compatible with 8, we see that the restriction

_ P o

vee ‘ o(r<{0})

= (=67) o (050

0(r<{0})

o(r<{0})

on ¢(7<{0}) is a C*-diffeomorphism and the induced mapping

v],00), = @], 0], )0 0], 0¢],)

o



is a ISO-isomorphism. Since z € Oy N O, was arbitrary, we conclude that 1
and ¢ are C'*-compatible. 1

We say that a ISO-bundle atlas 2l of B is C*-saturated if every ISO-bundle
chart for B that is C*-compatible with all ISO-bundle charts in 2{ already belongs
to 2. The following is an immediate consequence of Prop. 1.

Proposition 2: Let 2 be a C° ISO-bundle atlas for B. Then there is exactly
one C*-saturated ISO-bundle atlas 2 that includes L. In fact, 2 consists of all
I[SO-bundle charts that are C*-compatible with all ISO-bundle charts in B .

Let 2 be a saturated ISO-atlas for B and let ¢ be a ISO-bundle chart in 2.
On each fibre B,, x € Oy, we can transport the ISO-structure of 1, by means
of qﬁjx : By — Vy. The result is independent of the choice of ¢, since every pair
of bundle charts ¢ and 1 in 2l are compatible and hence ij o (bj;_ Vs — Vy
is a ISO-isomorphism.

Definition: A C* ISO-bundle over M is a set B and a mapping 7 : B — M
endowed with structure by the prescription of a saturated C* ISO-bundle atlas
for B, which is called the bundle structure for B and is denoted by Ch®(B, M),
or if no confusion is likely, simply by Ch(B, M). We denote the ISO-bundle by
(B, 1, M) or simply by B.

The mapping 7 is called the bundle-projection. For every z € M,
B, :=7<({x}) is called the fiber over z and the inclusion mapping of B, in
B is called the bundle inclusion at x. Right inverses of 7 are called cross
sections of B. We also use the following notation

Chy, (B, M) := { ¢ € Ch(B,M) | z € O, }. (22.5)

As explained above, for every x € M, the fiber B, is naturally endowed
with the structure of a ISO-set in such a way that ngx : By — Vy is in ISO (is an
isomorphism) for all ¢ € Ch, (B, M). Thus the dimension of B, can be obtained
from all ¢ € Ch, (B, M).

Locally (relative to M), the manifold structure of the bundle manifold
B is completely determined by the manifold structure of the base manifold
M and the manifold structures of V, for a single ¢ € Ch(B, M). Every bundle
chart ¢ in Ch(B, M) transports the manifold structure from Oy x V, to 7<(0y),
and hence a manifold chart can be easily obtained from ¢.

Let b € B be given and put x := 7(b). The dimension of B at b can be
obtained from the codomain of each bundle chart ¢ € Ch, (B, M). We have

dimpB =m + n,



where dim , M = m and dim B, = n.

Let ISO-bundles (B',7/,M’) and (B,7,M) be given. ~We say that
(B, 7', M) is a ISO-subbundle of (B, 7, M) provided B’ is a submanifold of 1,
M’ is a submanifold of M and 7/ = 7"

33. Torsion

Let r €7, with r > 2, and a C"-manifold M be given. For every z € M, we
have; as described in Sect. 32 with B := TM,

Tlis, TM := | ] Lis(T,M, T, M). (33.1)
yeEM

We also have the following short exact sequence

I, B
—

Lin T, M S, TM T, M. (33.2)
The short exact sequence (33.2) is of the form (15.1) and hence all of the

results in Sect.15 can be used here.

For every manifold chart x € ChM, the tangent mapping tgt, ; as defined in
(22.13), is a bundle chart of the tangent bundle TM such that evy o tgt, = V.
Note that not every tangent bundle chart ¢ € Ch(T.M, M) can be obtained from
the gradient of a manifold chart. To avoid complicated notations, we replace
all the superscript of ¢ = tgt, by superscript of x; i.e. we use the following
notation -

AX = AEX TX.=T,%% and TX7.=T,5x"%" (33.3)

for all manifold charts y,v € ChM. Given y,y € ChM. It is easily seen from
(32.25) and (23.16) that
X7 = (%) ' ViP(@) o (Vex x V). (33.4)

It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that X belongs to the subspace Sym,(T,M? T, M) of
Ling(TzM?, T, M) = Lin(T, M, Lin T, M).

Proposition 1: There is exactly one flat F in Con,TM with direction
space {I,}Symy(T,M? T, M) which contains AX for every manifold chart
x € Chy M, so that

F = AX + {I,}Symy(T,M? T, M) forall x € Ch,M. (33.5)




Definition: The shift-bracket B, € Skws (S, TM?, T, M) of S, TM is de-
fined by

B, = Br (33.6)

where Br is defined as in (15.5).

Definition: The torsion-mapping T, : Con,TM — Skwy (T, M?2 T, M) of
Con,TM is defined by

T, .= Tr (33.7)

where Tr is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart y € Ch, M,
we have

T, = LX — TX~ (33.8)

where ~ denotes the value-wise switch, so that TX (K)(s,t) = LX(K)(t,s) for
all K € Con, M and all s,t € T, M.

The torsion-mapping T, is a surjective flat mapping with T,~({0}) = F
whose gradient

VT, € Lin ( Ling (T, M?, T, M) , Skwo (T, M?, T, M)) (33.9)

is given by
(VI,)L=L -L (33.10)

for all L € Liny (T, M?, T, M).

Definition: We say that a connector K € Con,TM is torsion-free (or (A x,,

B7¢XM’¢7M)' I



23. The tangent bundle

Let » €, a C"-manifold M, and a point = € M be given.

Definition: The tangent space of M at x is defined to be

T, M := { t e X Vv, | (23.2) holds } (23.1)
aeCh, M
where the condition (23.2) is given by
t, = Vyv(z) t, forall x,vye€ Ch, M. (23.2)

T, M is endowed with the natural structure of a linear space as shown below and
dim T, M = dim,M.

For every x € Ch, M, define the evaluation mapping ev, : T, M — 1
by
evy (t) ==t for all te T, M.

It follows from (21.10) that the evaluation mapping ev, is invertible
and that its inverse evy : ), — T, M is given by
(evy )(u) = ( Vya(z)u | € ChyM ) forall ue,.

Hence we have

evyoev, =V x(r) € Lis(1),)}) (23.3)
for all v,y € Ch, M. It follows from that the linear-space structure on
T, M obtained from that of ), by ev, does not depend on the choice
of x € Ch, M and hence is intrinsic to T, M. We consider T, M to be
endowed with this structure.

Let f be a mapping whose domain D is a neighborhood of z in M
and whose codomain is an open subset of a flat space with translation
space V. It follows from (23.3) and (21.7) that

Vif(z)oev, € Lin(T,M,V)

is the same for all y € Ch, M. Hence we may define the gradient of f
at r by
Vof ==V f(z)oev, € Lin(T,M,V) (23.4)

for all x € Ch, M. In particular, if we put f := x we get V,x = ev, and
hence

(Ve



34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle
(B, 7, M) of class C*, s > 2, is given. We also assume that both M and B
have constant dimensions, and put n := dim M and m := dim B —dim M.
Then we have, as in (32.1),

m =dim B, forall ze M. (34.1)

Definition: The connector bundle Con B of B is defined to be the union of
all the right-connector spaces

ConB := U Con,B . (34.2)

It is endowed with the structure of a C*~'-flat space bundle over M as shown
below.

If P is an open subset of M and = € P, we can identify Con,.A =
Con,B, where A := 7<(P), in the same way as was done for the tangent
space. Hence we may regard ConA as a subset of Con B.

Note that the family (Con,B|z € M) is disjoint. The bundle
projection p: Con B — M is given by

p(K):e{yeM | KeCon,B }, (34.3)

and, for every x € M, the bundle inclusion in, : Con,B8 — Con B at x is

inw = lConzBCConB . (344>
For every (x,¢) € ChM x Ch(B, M) we define

con®?) : Con(Dom¢) — (Dom x N Oy) x Lin(W, Lin)},) (34.5)

COD(X’¢)(H) = ( z ,ngZ A(Af)(H) (Vx ™ x ¢Jz_1) )
where z := p(H)

(34.6)

for all H € Con(Domg¢). It is easily seen that con*?) is invertible and

con®?” (2 L) = A2 + Lo| ' L (Vx x ¢ ) (34.7)



for all z € (Domyx N Oy4) and all L € Lin(),,Lin),). Let (x,¢),(y,¢) €
ChM x Ch(B, M) be given. We easily deduce from (34.7) and (34.6),
with (x, ¢) replaced by (7,9) and A(A?Y)(A?) = —-T¥¢ =T$¥, that

(Con(w,w) 5 COH(X’@(—) (z,L)
= (2, 0], T(VAT x0T+ L (RA X K(2)7T)) (348)
where \:=~yox~ and k:=vo¢ (see (22.7))

for all z € (DomxNO,)N(DomyNOy) and L € Lin(),, Lin)}). It is clear that
con(%) o con®# " is of class C*~!. Since (v,1), (x,¢) € ChM x Ch(B, M)
were arbitrary, it follows that {con(*?) | (a,¢) € ChM x Ch(B, M) } is
a C*~!-bundle atlas of Con B; it determines the natural structure of a
C*~! flat-space bundle over M.

The mappings p and in, defined by (34.3) and (34.4) are easily
seen to be of class C*~!.

Definition: Let O be an open subset of M. A cross section on O of the

connector bundle Con B
A:0O— ConB (34.9)

is called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
¢ in Ch(B, M), the connection A® on Oy is defined by

A?(z) := A? for all = € Oy, (34.10)
where A? is given by (32.21).
Definition: The tangent-space of Con B at K is denoted by
TxCon B. (34.11)
We define the projection mapping of TxConB by
P« := Ykp € Lin (TxCon B, T, M) (34.12)
and the injection mapping of TxCon B by
I := Y%in, € Lin (Lin(TyM, LinB,), T« Con B) (34.13)

where p and in, are defined by (34.3) and (34.4).
It is clear from (34.5) that

dim (Con B) = dim (T« Con B) = n + nm?. (34.14)



Proposition 1: The projection mapping Py is surjective, the injection mapping
I« is injective, and we have

Null Bx = Rng Ik (34.15)
i.€. ! p
Lin(T, M, LinB,) —— TxConB —— T, M (34.16)

1s a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence
all of the results in Sect.15 can be used here.

Proposition 2: For each (x,¢) € Chy M x Ch, (B, M), let
AX? € Lin (T, M, TxCon B)
be defined by A = Affn(x’d)) in terms of the notation (32.21); i.e.
AL = (Yecon®?) ™! o ins, . (34.17)

Then A&X’d)) is a linear right-inverse of Py, i.e. PKA&X’@ =17, M-

Proposition 3: If (v,1), (x,¢) € ChyM x Ch,(B, M), with A2 = K = AY,

then

(34.18)
A(AE,(X’¢)) _ A<A§Y’w)) — _I\I<(X7¢):(%1/})PK

con®:%) con(r¥)

where TP (0¥ . e in terms of the notation (32.25) is given by

RO () = (0],)H (VD (W0 )Vt By t))o],  (3419)

for all t,t' € T, M. We have I‘K(X’qb)’(%w) € Sym, (T, M?,LinB,). Here, the
notation (22.7) is used.

Proof: Let (v,v),(x,¢) € ChyM x Ch,(B,M), with A2 = K = AY, be
given. Then, we have V(¢ ¢ ¢) = A(A2)(K) = 0. It follows from (34.6)
that

con®? | (K) = 0. (34.20)

Using (34.8), (34.20) and (33.25), we obtain



24. Tensor Bundles

We now assume that a number s € and a C? linear-space bundle
(B, 7, M) are given.

With each analytic tensor functor ® one can construct what is
called the associated ®-bundle of B

®(B):= | ®(8B,). (24.1)
yeM

It has the natural structure of a C? linear-space bundle over M. For
every open subset P of M, we also use the following notation

B(r<(P)) == | ®(8,). (24.2)

yeP

We define the bundle projection 7% : ®(B) — M of the bundle
®(B) by
?(v):e{yeM | ved(B,) }. (24.3)

For every bundle chart ¢ : 7<(0,) — Oy x V},, we have

p(v) = (y, ®]y(t) ) where y:=7(t)
We define the mapping
B(¢) : B(7<(0y)) — Op x B(V)) (24.4)
by
(@(9)(v) == (y, ®(8),)v)  when y:=7%(v). (24.5)

It follows from the analyticity of the mapping (L — ®(L)) that
{@@) | seCnB M)}

is a C*-bundle-atlas of ®(B). It determines the C* linear-space bundle
structure of (®(B), 7%, M).

The bundle projection 7% : ®(B) — M defined by (24.3) is easily
seen to be of class C°.

Notation: For every p € 0..s, we denote the collection of all CP cross sections
of ®(B) by X (®(B)). The collection of all differentiable cross sections of ®(B)
is denoted by X (®(B)).

In the special case B = TM, we call ®(TM) the tansor bundle of
M of type ®. A cross section of the tensor bundle ®(TM) is called
a tensor-field of type ®. When ® := DI is the duality functor (see



Sect.13), we call DI(TM) the cotangent bundle of M which will be
denoted by T*M.

Remark: Let M be a C*-manifold. With every h € X (TM) we can
then associate a mapping h' : C*°(M) — C®(M) defined by

v

h(f):=(Vflh  forall  feC®(M) (24.6)

where the gradient Vf of f is the covector field of class C* given by
Vf(z):=V,f for all z € Dom f. It is clear that h is -linear. By using
the product rule Vfg = fVg+ gV f, we have

h (fg) = fh (9) + gh (f) forall f,geC®(M). (24.7)

This shows that h is a derivation of the module C>*(M). One can
prove that every derivation of C*°(M) can be obtained in this manner.
(The proof is fairly difficult.) I

Let a cross section section H : M — ®(B) be given. For every
bundle chart ¢ € Ch,(B, M) we define the mapping

H? : Op — ®(Vy)

by
H?(y) := ®(¢] JH(y), forall ye Oy (24.8)

Given z € 04, we define
VH = ®(¢| )V, H? € Lin (T, M, ®(B,)). (24.9)

When ® =1Id and B = TM, we have Vigtxh = ¥*h for all y € ChM and
all z € Dom y.

One defines value-wise addition of cross sections of ®(B) and value-
wise scalar multiplication of a real function on M and a cross section
of ®(B) in the obvious manner. X”®(B) has the natural structure of
a CP(M)-module, where CP(M) is the ring of all real-valued functions
of class CP on M.

Let (£1,71, M) and (L2, T2, M) be linear-space bundles over M and
let £, X,,L> be the fiber product bundle of £; and L£,;. For every
tensor bifunctor Y, it follows form (24.5) that for each bundle chart
¢1 € Ch(L1, M) and each buhdle chart ¢, € Ch(Ly, M)

Y (1 Xu¢2)(v) = (v, Y(ply x d]y)v) (24.10)



where y := (1, X,,72) Y (v) (see 24.3).

Let a cross section H: M — Y(£; X,,£>) be given. For each bundle
chart ¢; € Ch(£;, M) and each buhdle chart ¢, € Ch(Ly, M), we define
the mapping

H?192 0y — X (Vy, X V)

by
H? 2 (y) .= <I)(¢Jy)H(y), for all y e Oy, N Og,. (24.11)

Given z € Oy, N Oy,, we define
VIURH =Y, x 6], ) GH (24.12)

which is in Lin (T, M, Y (L1, X L2,)).



32. Transfer Isomorphisms, Shift Spaces

We assume that r € = with r > 2 and a C"-manifold M are given.
Let a number s € 1..r be given and let B be a C® linear-space bundle
over M. We assume that both M and B have constant dimensions,
and put n := dim M and m := dim B — dim M. Then

m =dim B, forall ze M. (32.1)

Now let £ € M be fixed. We define the bundle of transfer isomor-
phisms of B from z by

Tlis, B := | J Lis(B,, By). (32.2)
yeM

It is endowed with the natural structure of a C*-fiber bundle as shown
below. The corresponding bundle projection w, : Tlis,B — M is given
by

m.(T):€ { ye M | T € Lis(B,,B,) } (32.3)

and the bundle inclusion ¢, : Lis B, — Tlis, B at x is
ty = 1LisB, CTlis, B- (32.4)
For every bundle chart ¢ € Ch, (5, M), we define
tlis? : Tlis, (Oy) — Oy x Lis(By, V) (32.5)

by
tlis?(T) := (=, gZ)JZT ),  where z:=m,(T). (32.6)

It is easily seen that tlisjcs is invertible and that
tlis? (2,L) = (¢] ) 'L (32.7)

for all z € O,4 and all L € Lis(B;,V,). Moreover, if ¢, ¢ € Ch,(B, M), it
follows easily from (32.7) and (32.6) with ¢ replaced by v that

(tnsf . tnsgf) (L) = (2, (od)(2)L) (32.8)

for all z € O;NOy and all L € Lis(B;,Vy) (See (22.7) for the definition of
Yo¢). It is clear that tlis? o tlisf_ is of class C®. Since v, ¢ € Ch,(B, M)
were arbitrary, it follows that {tlis] | « € Ch,(B, M) } is a C*-bundle
atlas of Tlis,5. We consider (Tlist, 7Tw,./\/l) as being endowed with
the C?® fiber bundle structure over M determined by this atlas.



Remark : We may view Tlis, B as a Tran,-bundle, where Tran, is the
isocategory whose objects are of the form Lis(B,,V) with V € LS and
whose isomorphisms are of the form

(T — LT) : Lis(B,, DomL) — Lis(B,, CodL)
with L € LIS. I

It is easily seen that the mappings 7, and ¢, defined by (32.3) and
(32.4) are of class C°.

We now apply the results of Sect.31 by replacing the ISO-bundle
B there by the bundle Tlis, B and b € B there by 15, < Tlis,B.

Definition: The shift-space S.B of B at x € M is defined to be
SeB = Ty, Tlis,B. (32.9)
We define the projection mapping of S.B by
P, := Py, = Viy, 7 € Lin (S, B, T, M) (32.10)
and the injection mapping of S.B by
I, :=I1,, = Vig, te € Lin(LinB,,S,B) (32.11)

in terms of (31.5) and (31.6); respectively, where 7, and v, are defined by (32.3)
and (32.4).

It is clear from (32.5) that

dim (Tlis,B) = dim (S, B) = n + m?. (32.12)

Proposition 1: The projection mapping B, is surjective, the injection mapping
I, is injective, and we have

NullP, = RngI, (32.13)
1.€.
LinB, - S§,B 2 T,M (32.14)

is a short exact sequence.

Definition: A linear right-inverse of the projection-mapping B, will be called a
right shift-connector (or simply right connector) at x, a linear left-inverse



of the injection-mapping I, will be called a left shift-connector (or simply left
connector) at x. The sets

Reon, B := Reony, Tlis, B

. (32.15)
Leon, B := Lcony,; Tlis, B

of all right connectors at x and all left connector at x will be called the right
connector space at x and the left connector space at x, respectively.

The right connector space Rcon,B5 is a flat in Lin(T,M,S,B) with

direction space
{L.L | L € Lin (T, M, LinB,) }, (32.16)

and the left connector space Lcon,B is a flat in Lin (S,B, Lin B,)
with direction space

{ —LP, | L € Lin (T, M, LinB,) }. (32.17)
Using the identifications
Lin (T, M, LinB;){P,} = Lin (T;M, LinB,) = {I, }Lin (T, M, LinB,,),

we consider Lin (T, M, LinB3,) as the external translation space of both
Rcon, B and Leon,B. Since dim Lin (T, M, LinB,) = nm?, we have

dim Rcon,B = nm? = dim Lcon,B. (32.18)

The flat isomorphism
A : Rcon,B — Lcon,B
assigns to every K € Rcon, B an element A(K) € Lecon, B such that
Lin B, ATK) S:B o T, M (32.19)

is again a short exact sequence. We have

KP, +I,AK) =155 forall K € Rcon,B. (32.20)

Convention : Since there is one-to-one correspondence between right
connectors and left connectors, we shall only deal with one kind of
connectors, say right connectors. If we say ‘“connector”, we mean a
right connector. The notation

Con,B := Rcon,B



is also used.

Proposition 2: For each ¢ € Ch,(B, M), let A? € Lin (T, M, S.B) be defined
by A = Ctllsf in terms of (31.19); i.e.

Aft = (Vi tlis?) 7' (t,0)  forall teT, M. (32.21)

Then A$ is a linear right-inverse of By, i.e. A% € Con,B.

Let ¢ € Ch,(B, M) be given. We have the following short exact
sequence

LinB, +— &B «— T,M (32.22)
A(A2) A
and
AP, + T, A(A?) = 15, 5. (32.23)

Proposition 3: If ¢, ¢ € Ch,(B, M) are given, then

A —AY =1,T9Y

32.24
A(A?) — A(AY) = T9B, (3224
b . tlisﬁ,tlisf . .
where LYY := 1T in terms of (31.21) is of the form
TP = (] )7 (%W e ) o (L5 x 6],) (32.25)

which belongs to Lin (T, Lin B,). Here, the notation (22.7) is used.

Proof : Applying Prop. 3 in Sect. 32 with ¢ replaced by tlisi and v
replaced by tlis¥ together with (32.6) and (32.8), we obtain the desired
result (32.25). 1
Notation: Let ¢ € Ch,(B, M) be given. We define the mapping

].’f : Con, B — Lin (T, M, LinJ5,)
is? . .
by L := TAY = I‘;IB = qn terms of (14.10) and (31.24); i.e.

LK) = -AA2)K forall K € Con,B. (32.26)




If ¢ € Ch,(B, M), then (31.25) reduces to

Al -K=LT/(K)

32.27
A(A) - A(K) = TP (K)P; 9220

for all K € Con,B. Moreover; if ¢, ¢ € Ch,(B, M), then
LK) -LY(K)=T%% forall K € Con,B, (32.28)

where I'?% is defined by (32.25). It follows from (32.28) that I'¥>¢ =
~I'¥% and from I'Y (AY) = 0 that T (AY) = I'Y¥ for all bundle charts
¢7 ¢ € Chw(B’ M)'

For every cross section H : O — Tlis, B of the bundle Tlis, B, the
mapping T : M — Tlis, B defined by

T(y) := H(y)H (z) for all ye M (32.29)

is a cross section of the bundle Tlis, B with T(z) = 15, .

Definition: A cross section T : O — Tlis, B of the bundle Tlis, B such that
T(x) = 1p, is called a transport from x.

For every bundle chart ¢ € Ch(B, M), we see that
(y = (0] )7"¢],) : Op — Tlis, B
is a transport from z which is of class C?.

Remark 1: For every K € Con, B, there is a bundle chart ¢ € Ch, (B, M)
with ngm = 1p, such that

K=\,(¢]) ' =AL. (32.30)

K =V,T. (32.31)
There is a bundle chart ¢ : 7<(0) — O x B, induced from T by
o(v) = (y, T (y)v) where y:=7(Vv) (32.32)

for all v € 7<(0). It is easily seen that (¢|)~! = T. The first part of
(32.30) follows from (32.31). In view of (31.29) we have

A(A2) (Vi (8])7) = (eva o Vi, tlis?) V(o)) ™?

=ev oV, (y — tlisi((wy)_l)). (32.33)



Using (32.6) and ovbserving ngy € Lin (By, B;), we have

tlis? (6] )7 = (v, 8] (6] ,)7) = (v, Ls.)- (32.34)
Taking the gradient of (32.34) at x, we observe that
Vi (y = tlisg (6] )71) = (11,0, 0). (32.35)
It follows from (32.33) and (32.35) that
AAD) (Vo)) = 0.

This can happen only when V,(¢|)™' = AZ. I

T

33. Torsion

Let r €7, with r > 2, and a C"-manifold M be given. For every
r € M, we have; as described in Sect. 32 with B :=TM,

Tlis, TM := | ] Lis(T,M, T, M). (33.1)
yeEM

We also have the following short exact sequence

LinT,M -5 S, TM 2 T, M. (33.2)

The short exact sequence (33.2) is of the form (15.1) and hence
all of the results in Sect.15 can be used here.

For every manifold chart x € ChM, the tangent mapping tgt, ; as
defined in (22.13), is a bundle chart of the tangent bundle TM such
that ev; o tgt, = Vx. Note that not every tangent bundle chart ¢ €
Ch(TM, M) can be obtained from the gradient of a manifold chart. To
avoid complicated notations, we replace all the superscript of ¢ = tgt,
by superscript of y; i.e. we use the following notation

AX =AY TX =T, and TX7 =T, (33.3)

for all manifold charts x,y € Ch/M. Given yx,y € ChM. It is easily seen
from (32.25) and (23.16) that

X7 = (V) 7 VP y(2)) o (Vex X Vix). (33.4)



It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that I'X"” belongs to the subspace Sym, (T, M?, T, M)
of Liny (T, M2, T, M) = Lin(T, M, LinT,M).

Proposition 1: There is exactly one flat F in Con,TM with direction
space {I,}Symy(T,M? T, M) which contains AX for every manifold chart
x € Ch, M, so that

F = AX + {I,}Symy(T,M? T, M) for all x € Ch,M. (33.5)

Definition: The shift-bracket B, € Skwy (S,TM? T, M) of S,TM is de-
fined by
B, = Br (33.6)

where Br is defined as in (15.5).

Definition: The torsion-mapping T, : Con,TM — Skws (T, M2 T, M) of
Con,TM is defined by
T, = Tr (33.7)

where Tr is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart
x € Ch, M, we have
T, =LX-TLX" (33.8)

where ~ denotes the value-wise switch, so that TX(K)(s,t) = TX(K)(t,s)
for all K € Con, M and all s,t € T M.

The torsion-mapping T, is a surjective flat mapping with
T=({0}) = F whose gradient

VT, € Lin ( Ling (T, M? T, M) , Skws (T, M? T, M)) (33.9)

is given by
(VI,)L=L —-L (33.10)

for all L € Liny (T, M?, T, M).

Definition: We say that a connector K € Con, TM is torsion-free (or (A Xx,,

B,¢><M¢7M)- |

Skws (T, M?, T, M).I fKe Con, TM, we call S,(K) = K + 3L, (T,(K))
the symmetric part of K.




Theorem : A connector K € Con, TM is symmetric if and only if K = AX
for some x € Chy M. Thus Scon, M = { AX|x € Ch, M}.

Proof: Let K € Con, M be given. If K = AX for some y € Ch, M, then
IX(K) =0 and hence T,(K) =0 by (33.8).
Assume now that T, (K) = 0. We choose v € Ch, M and put

L:=VyL'(K)o (%) x (%)) (33.11)

It follows from (33.8) that L is symmetric, i.e. that L € Sym,(V?,)}).
We now define the mapping « : Dom vy — V), by

1

a(z) :=v(z) + QL(fy(z) —y(z), y(z) —v(z)) forall =€ Domv~ .

Take the gradient at =, we have V,a = Vv i.e. that is (V,a)(V,y) ™! =1y,
It follows from the Local Inversion Theorem that there exist an open
subset N of Dom a such that x := oz\:f(m is a bijection of class C". It
is easily seen that y € Ch, M and that
V#x(z) =L

Using (33.12), (32.25) and V,x = V7, we conclude that

I(K) = (vmx)—lvﬁx o (Vy x Vy) = TX.
Hence, by (32.24) and (32.27), we have

AT - AX=LI'*=LT)K)=A)-K

Y

which gives K = AX. ]



34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle
(B, 7, M) of class C*, s > 2, is given. We also assume that both M and B
have constant dimensions, and put n := dim M and m := dim B —dim M.
Then we have, as in (32.1),

m =dim B, forall ze M. (34.1)

Definition: The connector bundle Con B of B is defined to be the union of
all the right-connector spaces

ConB := U Con,B . (34.2)

It is endowed with the structure of a C*~'-flat space bundle over M as shown
below.

If P is an open subset of M and = € P, we can identify Con,.A =
Con,B, where A := 7<(P), in the same way as was done for the tangent
space. Hence we may regard ConA as a subset of Con B.

Note that the family (Con,B|z € M) is disjoint. The bundle
projection p: Con B — M is given by

p(K):e{yeM | KeCon,B }, (34.3)

and, for every x € M, the bundle inclusion in, : Con,B8 — Con B at x is

inw = lConzBCConB . (344>
For every (x,¢) € ChM x Ch(B, M) we define

con®?) : Con(Dom¢) — (Dom x N Oy) x Lin(W, Lin)},) (34.5)

COD(X’¢)(H) = ( z ,ngZ A(Af)(H) (Vx ™ x ¢Jz_1) )
where z := p(H)

(34.6)

for all H € Con(Domg¢). It is easily seen that con*?) is invertible and

con®?” (2 L) = A2 + Lo| ' L (Vx x ¢ ) (34.7)



for all z € (Domyx N Oy4) and all L € Lin(),,Lin),). Let (x,¢),(y,¢) €
ChM x Ch(B, M) be given. We easily deduce from (34.7) and (34.6),
with (x, ¢) replaced by (7,9) and A(A?Y)(A?) = —-T¥¢ =T$¥, that

(Con(w,w) 5 COH(X’@(—) (z,L)
= (2, 0], T(VAT x0T+ L (RA X K(2)7T)) (348)
where \:=~yox~ and k:=vo¢ (see (22.7))

for all z € (DomxNO,)N(DomyNOy) and L € Lin(),, Lin)}). It is clear that
con(%) o con®# " is of class C*~!. Since (v,1), (x,¢) € ChM x Ch(B, M)
were arbitrary, it follows that {con(*?) | (a,¢) € ChM x Ch(B, M) } is
a C*~!-bundle atlas of Con B; it determines the natural structure of a
C*~! flat-space bundle over M.

The mappings p and in, defined by (34.3) and (34.4) are easily
seen to be of class C*~!.

Definition: Let O be an open subset of M. A cross section on O of the

connector bundle Con B
A:0O— ConB (34.9)

is called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
¢ in Ch(B, M), the connection A® on Oy is defined by

A?(z) := A? for all = € Oy, (34.10)
where A? is given by (32.21).
Definition: The tangent-space of Con B at K is denoted by
TxCon B. (34.11)
We define the projection mapping of TxConB by
P« := Ykp € Lin (TxCon B, T, M) (34.12)
and the injection mapping of TxCon B by
I := Y%in, € Lin (Lin(TyM, LinB,), T« Con B) (34.13)

where p and in, are defined by (34.3) and (34.4).
It is clear from (34.5) that

dim (Con B) = dim (T« Con B) = n + nm?. (34.14)



Proposition 1: The projection mapping Py is surjective, the injection mapping
I« is injective, and we have

Null Bx = Rng Ik (34.15)
i.€. ! p
Lin(T, M, LinB,) —— TxConB —— T, M (34.16)

1s a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence
all of the results in Sect.15 can be used here.

Proposition 2: For each (x,¢) € Ch, M x Ch, (B, M), let
AL? € Lin (T, M, TxCon B)
be defined by AX? = Affn(x’d)) in terms of the notation (32.21); i.e.
AX? = (Vecon®?) ™! o ins; (34.17)

Then AE<X’¢) s a linear right-inverse of Pg; i.e. PKA&X’QS) =11, M.

Proposition 3: If (v,%), (x,¢) € ChyM x Ch,(B, M), with A2 = K = AY,

then
AE<X7¢) _ Ag,w) — IK FK(X,QS%(%w)

(34.18)
A(AE(X7¢)) _ A<A§Y’¢)) — _I\K(Xv¢)7(%1/’)PK

x:9) con¥)

where TYO? (1) . eon in terms of the notation (32.25) is given by

RO (4 8) = (0], ) (VR (W0 a) (Mt Bat))s), (34.19)

for all t,t' € T,M. We have I‘K(X’d))’(%d}) € Sym, (T, M?2,LinB,). Here, the
notation (22.7) is used.

Proof: Let (v,v),(x,¢) € ChyM x Ch,(B, M), with A? = K = AY, be
given. Then, we have V(¢ ¢ ¢) = A(A2)(K) = 0. It follows from (34.6)
that

con®? | (K) =0. (34.20)

Using (34.8), (34.20) and (33.25), we obtain



o con(e®) ) (-, conx:9) | x(K)))t) = ((Vf&g)(w 0 9)) Vv t)(1y, x

(6], o] 1))(34.21) forallte T, M. Using (34.22), (34.6) with (x,¢) re-
placed by (v,%) and applying Prop. 3 in Sect. 32 with ¢ replaced by
con>?) and ¢ replaced by con("*), we obtain the desired result (34.19).

x Y

(33.25). It follows from (21.9) that the right hand side of (34.19) does
not depend on the manifold charts y,vy € Ch, M. In particular, when

1 = ¢ we have ALX? = AL for all manifold charts X, € Ch, M.
By using the definition of the gradient

V,A? = (VKconX"p)_lVX(x) (COHX’¢ s A%o X*)Vxx

and (34.6), we can easily seen that for every bundle chart ¢ €
Ch, (B, M) with A? = K

VA = AX?  forall ye€ ChyM. (34.21)

for all bundle charts ¢ € Ch, (B, M) with A? = K.

Proof: The assertion follows from (34.23) together with (34.18) and
(34.19). I

Definition: The bracket By € Skwy (TxCon B2, T, M) of TxCon B is defined
by
BK = B}‘K (01)

where Br, is defined as in (15.5).

Definition: Let A : M — ConB be a connection which is differentiable at x.
The curvature of A at x, denoted by

R, (A) € Skw (T, M?, LinB,), (0.2)
1s defined by
R, (A> = T}—A(ac) (vﬂﬂA) (0'3)
where Tr, . is defined as in (15.8).
If A is

differentiable, then the mapping R(A) : M — Skwy(TanM?, LinB) defined
by
R(A)(z) :=R,(A) for all reM

1s called the curvature field of the connection A.



A fomula for the curvature field R(A) in terms of covariant gra-
dients will be given in Prop. 5. If the connection A is of class CP,
with p € 1..s — 1, then VA is of class CP~!, and so is the curvature field
R(A).

More generally, if ¢, € Ch,(B, M), without assuming that A? =
K = AY, then Eq. (34.19) must be replaced by

I‘K(X’qb)’(%w) (t, t’)
= LY ()L (K) () + L2 (K) (t)L2Y (t) + LY (K)TX (¢, ¢) (0.4)
— LV NLSY () + (] )TN (VP (P o 0)) () (Vv t, iy o]

for all t,t’ € T, M. If one of those two bundle charts, say ¢, satisfies
A? = K, then it follows from (34.28), L?(K) = 0 and —L%¥ = L[¥(K)
that

F}((x@)’(%w)(t’t/)
= LYWL (Kt + (], ) H (VP (W0 6)) (@) (v t, ey t)é)

for all t,t' € T, M.

(0.5)

Proposition 5: Let A : M — Con B be a connection that is differentiable at
x € M. The curvature of A at x is given by
(Rz(A))(s,t) = (V“T¥(A))(s, t) — (VYT (A))(t,5)

0.6
+ (B (ALY (A @)t - X AETY A)s)

for all (v,v) € Chy M x Ch, (B, M) and all s,t € T, M.

Proof: Let a bundle chart (vy,¢) € Ch,M x Ch,(B, M) be given. It
follows from (42.6) and A(AY)(A(z)) = ~LY(A(z)) that

con 0 A(2) = (2, ~v] LY (A() (W x v (0.7)
In view of (32.29), we have

A(Ag(f)))(v A) = con” w)J . (eV2 o VA () (con v 1/’))) (V A)
= con(%w)J; evy o (V, (con(v’w) oA))
= (= =) ) T AT e x ) o))

(0.8)
By using

Al =V (2= V'), AY =Vi(z — ¢

T

. ¥




and (42.38), we observe that

AAT(VA) = V(2= =6 0] THAE) VAV x 0] 1))
~(OLTY(A)) (AL A%
—
Together with (42.27) and (42.29), we prove (34.12). 1

Remark : When the linear-space bundle B is the tangent bundle T M,
we have

(Rz(A))(s,t) = (VYTX(A))(s,t) — (VXT*(A))(t,5)

(0.9)
+ (LX(A@)STX(A ()t — TX(A(2) tTX (A (2)s )

for all manifold chart y € Ch, M and all s,t € T, M.

If a transport T : M — Tlis, M from z is differentiable at y, we
define the connector-gradient, ¥, T € Lin (7,,S,), of T at y by

W T:=V,(z2— T()Ty)™). (0.10)

Theorem : A connection A : M — ConB is curvature-free if and only if,
locally A agrees with A? for some bundle chart ¢ € Ch(B, M). In other word,
for every x € M, there is an open neighbourhood N, of x and a transport
T : N, — Tlis,




36. Holonomy

Let a continuous connection C : M — ConB be given. For every
C! process p: [0,d,] — M there is exactly one parallelism T, : [0,d,] —
Tlis, B from x := p(0) along p for the connection C. The reverse process
p~ :[0,dp] = M of p:[0,dy] — M is given by

p(t) :=p(d, — t) for all ¢ € [0,d,).

Proposition 1: Let p~ : [0,dy] — M be the reverse process of a C' process
p:[0,dp] — M. We have

T,-(t) = Tp(d, — )T, (dp) forall t € [0,d,). (36.1)

Let C! processes p: [0,d,] — M and ,q: [0,d,] — M with ¢(0) = p(d,)
be given. We define the continuation process ¢*p: [0,d, + d4] — M of
p with ¢ by

p(t) t € [0,dp,
(g*p)(t) == (36.2)
gt —dy)  teldy,dy+dy).

If in addition that ¢ (0) =p’ (dp), then the continuation process ¢ p is
of class C! and

T, (t) t €10,dp],
T yup(t) = (36.3)
Tq(t - dp)Tp(dp) te [dpa dp + dq]'

Definition: For every pair of C1 processesp : [0,d,] — M and ,q: [0,d,] — M
with ¢(0) = p(d,) be given. We define the piecewise parallelism (along q *p)

Tyup : [0,dp + dy] — Tlis, B where z := p(0)

by
T,(t) t €[0,dp],

T yup(t) = (36.4)
Ty(t —dp)Tp(dp) t € [dy,dp +dg].

In view of (36.1), if ¢ := p~ we have T,-(t — d,)Tp(d,) = Tp(2d, — t)
and hence
T, (1) t € [0, dy],
T pup(t) := (36.5)
T,(2d, —t) t € [dp,2d,].



In particular, T,-,,(2d,) = T_,.,(0) = 15,.

Let O be an open neighboorhood of x € M and let £(O,z) be the
set of all piecewise C! loops p : [0,d,] — M at z with Rngp C O. It
is easily seen that (£(O,z),*) is a group. We also use the following
notation

H(O,z) == {T,(d,) | p € L(O,z)}. (36.6)

Proposition 3: For every q,p € L(O,z), we have
Tq*p(dp + dq) = Tq(dq)Tp(dp)~ (36.7)

Hence H(O, x) is a subgroup of LisB,, which is called the holonomy group on
O of the connection C at x.

Let T : M — Tlis, M be a transport from z € M of class C!. For
every differentiable process X : [0,1] — M, we see that To A : [0,1] —
Tlis, M is a transfer process from r and

sdT = ((VT) o M)A’
Hence T o )\ is the parallelism along A\ for the connection VT. For
every t € [0,1], (T o \)(t) = T(A(t)) depends on, of course, only on the

point y := A(t), not on the process \. When )\ is closed, beginning and
ending at A\(0) =z = A(1), then

(ToA)(1) = T(z) = 1,.

T

The following theorem is a immediated consequence of the above dis-
cussion and the Theorem of Sect.34.

Theorem : A continuous connection C : M — ConB is curvature-free; i.e.
R(C) = 0 if and only if locally the holonomy groups are H(O,z) = {1,} for
some open subset set O of M and all x € M.

Question ?7: Does there exist a connection C such that H(O, z) = LisB,
for some 7



Chapter 4

Gradients.

In this chapter, we assume a linear-space bundle (B, 7, M) of class
C?, s > 2, is given. We also assume that both M and B have constant
dimensions, and put n := dimM and m := dimB — dim M. Then we
have, as in (32.1), m = dim B, for all z € M.

41. Shift Gradients

Let x € M be fixed.
Let ® be an analytic tensor functor and let H : M — ®(B) be a
cross section of ®(B) that is differentiable at z. We define the mapping

H : Tlis, B — ®(B,) (41.1)

by
H(T) := ®(T) 'H(r,(T)) forall T € Tlis,B, (41.2)

where 7, is defined by (32.3). Since ® is analytic, it is clear that H is
differentiable at 15, .

Difinition: The shift-gradient of H at x is the linear mapping

O,H € Lin (S, B, ®(B,))

defined by

~

O0.H = Vy, H, (41.3)

where H is given by (41.2).
For every bundle chart ¢ € Ch, (B, M), the spaces RngI, and Rng A?
are supplymentary in S;B. Hence, for every s € S, B there is exactly

one pair (M, t) € Lin B, x T, M such that s = I,M + A%t and thus

(O0.H)s = (O, H)I,M + (O, H)A%.

Proposition 1: We have

(O, H)I,M = —(&

x

M)H(z) forall M € LinB,, (41.4)

where ®,, € Lin (Lin B,, Lin ®(B,.)) is defined to be the gradient of the mapping
(L— ®(L)) : Lis B, — Lis (®(B,)) at 15, .




Proof: In view of (32.4) and (41.2) we have Ho, : LisB, — ®(8B,) and
(Ho,)(L) = ®(L) 'H(z) forall L € LisB,.

Taking the gradient of (H, o) at 15, and using (32.11) and (41.3),
we obtain the desired result (41.4). I

Example 1: Let B* := DI (B), where DI is the duality functor.

Let h be a cross section of B, let w be a cross section of B*, let L be
a cross section of Lin B, let G be a cross section of Lin (B, B*) = Liny(B2,)
and

let T be a cross section of Lin (B, Lin B) = Liny (B2, B). Assume that
all of these cross sections are differentiable at x. Then

(0,h)I,M = —Mh(z); (41.5)

() LM = w(z)M; (41.6)

(0,L)I,M = L(z)M — ML(x); (41.7)
(0,G)IL,M = G(z) o (M x 15,) + G(2) o (15, x M) (41.8)

and
(O, T)I,M=T(zx)o (M x 15, )+ T(x) o (1, x M) — MT(x) (41.9)
for all M € Lin B,.
Let a bundle chart ¢ € Ch,(B, M) be given. We define the mapping
H?: Oy — ®(V,)

by
H?(y) := ®(¢] JH(y), forall ye Oy (41.10)

Proposition 2: We have

(O.H)AS = V/H = A(A5Y)) V.H (41.11)

where ®(¢p) is defined by (24.5), VfH is described in (24.9) and AE(((;Z; is defined
in terms of (31.19).

Proof: Let y € O4 be given. Substituting T := (gbjy)*lqéjw in (41.2)
gives
H((¢] ) 7'¢],) = ®((¢] ) "0],) " H(y)
= ®(¢],) " ®(¢] JH(y) = ®(¢],) TH(y).



Since tlis] (y,¢],) = (6] )7'¢], by (32.7), we obtain

(Hotlis? ) (y, ¢l )= @((ﬁjm)_lH‘b(y) for all y e Oy.
Taking the gradient with respect to y at  and observing (51.2) gives
(Vap, H)(Vi, tlis?) 7 (£,0) = B(¢] ) (H?) ¢

for all t € T, M. In view of definition (32.19) and (24.9) we obtain the
first equality of the desired result (41.11).

It follows from (41.2), (41.3) and (31.29) with ¢ replaced by ®(¢)
that

(O,H)A? = (Vi H)V (6]

¢],)
=Yy — ®(s], 0] JH())

= (®(¢))] " (ev2 0 Via( ®(6)) . H

_ ()
~ A(ARY) V.
Since ¢ € Ch, (B, M) was arbitrary, the second part of (41.11) follows.
|
The results of Props. 1 and 2 give the following commutative
diagram
. I, A2
Lin B, — S.B — T, M
(@;)NH(m)l (1)< 3pt > [.25,1.5] from1515to — 15 -5, H (2) H .
®(B,) — Ta@)®(B) < T.M
A(ag®) VaH o (41.12)

Prop. 1 and Prop. 2 are illustrated by (1) and (2) in the diagram,
respectively.

Let tensor functors ®;, ®, and ¥ and a natural bilinear assignment
B: (®,,®;) — ¥ be given. Also, let H; : M — ®,(B) be a cross section
of ®,(B) and let Hy : M — ®5(B) be a cross section of ®,(5). Then the
mapping B(H;,H,) : M — ¥ defined by

B(Hy,Hs)(z) := B, (Hy(z),Hz(x)) forall ze M (41.13)

T

is a cross section of ¥(B).



General Product Rule
If Hy and Hy are differentiable at x, then B(Hy,Hs) is also differentiable
at T and we have

(0.B(Hy,H,))s = By, ((O,H1)s,Hy(z)) + Bs, (Hi(z), @O,Hs)s) (41.14)

for all s € S,.B.

Proof: Put H:= B(H;,H>) in (41.2), we have

B(T) = By, (®1(T~)H; (m, (T)), (T~ Ha(r, (T)))
= BBx (ﬁl(T)v ﬁZ(T))

for all T € Tlis, B. Since B is bilinear, the desired result (41.14) follows
from (41.3) together with the General Product Rule in flat spaces
[FDS]. I

Example 2:

Let f be a scalar field, and let h: M — B be a cross section of B
and H : M — LinB be a cross section of Lin5 that are differentiable
at z. Then fH and Hh defined value-wise are also differentiable at x,
and we have

(O, fH)s = (O.f)s)H(z) + f(x) (@, H)s (41.15)
and

O,(Hh)s = ((d,H)s)h(x) + H(x)(d,h)s (41.16)
for all s € S B. |
Example 3:

Let w : M — Skw,(B?,) be a skew-p-form field and 7 : M —
Skw,(B1?,) a skew-g-form field that are differentiable at x. Then w A T
is a skew-(p+ ¢)-form field which is also differentiable at = and we have

Oz (wAT))s = (w)s AT+ wA (O,7)s (41.17)
for all s € S B. |

Let £, and £’ be linear-space bundles over M. For every x € M,
we denote the fiber product bundle (see Sect.22) of (Tlis, L, 7, M) and
(Tlis, L', 7., M) by

b x

<Tlism£ X, Tlis, £, w0 X, 70! M). (41.18)

x )

Taking the gradient of the mapping



o Xpg 0 Tlisy £ Xy Tlis, £/ —— M (41.19)

at 1., x 12, we have

PxXTzMPxI : S:r:£ ><TQCM Sm['/ - ng./\/l (41.20)

where P, =V, 7, and P/ =V, , 7. It follows from

/ /
Ty Xpg My = Ty O V] = T, O EVy

that
(B, Xy, uP))(s,8") = Pis = P/(s) (41.21)

for all (s,s’) € SuLXy, S L.
Let Y be a tensor bifunctor and let H be a cross section of
Y (LX\ L") which is differentiable at x. We define a mapping

H : Tlis, £ X,, Tlis, £’ — Y (L, x L) (41.22)

ﬁ(T X T’) — Y (T x T') "L H(y)
where y := m,(T) = 7, (T)

(41.23)

for all T x TV € Tlis, L X,, Tlis,£'. The shift-gradient of H at z is the
linear mapping

O.H: S, LX: S L — X (L, x L) (41.24)

defined in (41.3); i.e.
O0,H = Vy, H, (41.25)

where 1p, :=1,, X 1... We also use the following notations
I, :=Vi, in, and I, :=Vy,in,

where in, :== 1, -, and in/, := 17/ ¢ are inclusion mappings.

Proposition 3: We have
(O,H)(I,M,I.M’) = =Y. (M x M')H(z) (41.26)

for allM € Lin L, and all M’ € Lin L/

x’

(LXL/HT(LXL/>> atlﬁm Xlﬁ;.

where T; 1s the gradient of the mapping

Example 4:



Let ® be a analytic tensor functor and let £ := TM and £’ := B.
If L: M — Lin(TM,®(B)) and T : M — Liny (TM? ®(B)) are cross
sections that are differentiable at xz, we have

O.L : S, TM Xy S, B — Lin (T, M, ®(B,))
O, T : S, TM Xy S, B — Liny (T,M?, &(B,))

and

(0.L)(LM,T,M) = L(2)M — &, (M)L(z)

(0, T)(I,M, I,M') = T(z)M + T(z) ™M — &_,(M')T(x) 41.27)
for all M € Lin T, M and M’ € Lin B,.
Proposition 4: We have
(O.H)(A% A?) = VP72 H, (41.28)

where VP2 H is described in (24.12), for all bundle charts § € Ch, (L, M) and
¢ € Chy (L', M).

42. Covariant Gradients

Let z € M and a connector K € Con B be given.
Let ® be a tensor functor and H: M — ®(B) be a cross section of
®(B) that is differentiable at z.

Definition : We define the covariant gradient of H relative to K by
VkH := (O,H)K € Lin (T, M, ®(B,)), (42.1)

where O, H is the shift-gradient of H at x as defined by (41.3).

Given a bundle chart ¢ € Ch,(B, M). It follows from (41.11) and
(42.1) that
Voo H=Y/H.

If f: M — is a scalar field differentiable at x, then we have
O.f =V, f P, and hence

Y f =V, f for all K € Con,B. (42.2)




Proposition 1: For every bundle chart ¢ € Ch,(B, M) we have

(VH)t = (VPH)t + &, ([¢ (K)t)H(z) forall te T, M, (42.3)

where @ € Lin (Lin B,, Lin ®(,)) is defined as in Prop. 1 of Sect.41.

Proof: By (32.27), we have

(O.H)Kt = (O, H)A% + 0, H(K — A%)t

T

= (O,H)A% — O,H(IL,L?(K)t)
for all t € T, M. Using (32.4), we obtain
(O.H)Kt = (O,H)A% + & (L (K)t)H(x).
The result (42.3) follows from the definition (42.1). 1

Example 1:

Let h be a cross section of B, let w be a cross section of B*, let L be
a cross section of Lin B, let G be a cross section of Lin (B, B*) & Liny (B2, ),
and

let T be a cross section of Lin (B, Lin B) = Liny(B?, B). If these cross
sections are differentiable at x, we have

(Vkh)t = (Vh)t + L2 (K)(t, h(z)); (42.4)
(Vkw)t = (Vw)t — w(z)L? (K)t; (42.5)
(WL)t = (V'L)t — L(z) (L2 (K)t) + (L2 (K)t)L(x); (42.6)

T G(t,b) = (VG)(t,b) — (G(2)b) (L¢ (K)t) — G(z)(L(K)(t, b))  (42.7)

€T

and

Yk T(t,b) = (Vy'T)(t,b) — (T(x)b) (L (K)t) — T(z) (LS (K)(t, b))
+ (L2 (K)t) (T(z)b)

for all t € T,.M and all b € B,.

General Product Rule

Let Hi,Hy be cross sections as given in the General Product Rule of
Sect. 41, then we have

Vk B(Hy, Ho)t = By, ((VkH1)t, Ho(2)) + By, (Hi(z), (VkHo)t)  (42.9)

for allt € T, M.




Proof: Substituting s := Kt in (41.14) and observing (42.1), we obtain
(42.9).

The formulas (41.15), (41.16) and (41.17) remain valid if the shift
gradient [1, there is replaced by the covariant gradient Vi and s € 5,8

Let £ and £’ be linear-space bundles over M. Let YT be a tensor
bifunctor and let H: M — Y(LX,, L) be a cross section of Y(LX, L)
which is differentiable at 2. Let a pair of connectors (K,K’) € Con , L x
Con L’ be given.

Definition: The covariant-gradient of H at x relative to (K, K') is defined
by

which is in Lin(T, M, X (L, x L])).

Proposition 2: For every (K,K’) € Con L x Con L' and all bundle charts
¢ € Chy (L, M) and ¢’ € Ch, (L', M) we have

(Vik.x)H)t = (V2O H)t + Y, (L2 (K)t x T (K')t)H(z) (42.11)

for all t € T, M, where T; is described in Prop. 3 of Sect. 41.

Proof: Equation (42.11) follows from K = A? — I,T?(K), K' = A? —
I,[Y (K'), (42.10) and (41.28). i




43. Lie gradients, Lie brackets

In this section, we only deal with the tangent bundle of a given
C?®-manifold M, where 2 < s €™,

We assume that a vector-field h is given and that h is differentiable
at x.

Proposition 1: There is exactly one shift, which is called the shift of h at x
and is denoted by >, h € S, TM, such that

B, (>, h) = O,h, (43.1)

where By, is given in (33.6) and O,h € Lin (S, TM, T, M) is the shift-gradient
of h as defined by (41.3). We have

P, (>, h) = h(z) (43.2)

Proof: The injectivity of B, (see Prop. 2 of Sect.15) shows that there
is at most one >, h € S, TM with the property (43.1).
We now choose y € Ch, M and define

> h =1, (O,h) AX) + AXh(z). (43.3)
By (15.6); and (32.23) we have

B, (> h) = ([@;h)(AYR;) + B, (AY h(z))

(43.4)
=O,h (15,70 — I A(AY)) + B, (AX h(z)).

It follows from (41.4) and (15.6); that
O.h (L (A(AY)(5)) ) = —A(AX)(s) h()
~ B, (5)(A} h(x)) = (B. (AXh(2)))(5)

holds for all s € S, TM. Hence (43.4) reduces to (43.1). Applying P,
to (43.3) and observing P, I, =0 and P, AX = 11_, yields (43.2). |

Proposition 2: Let xy € Ch, M be given. The shift >, h of h at x satisfies

A(AX)(>, h) = V¥h (43.5)




Proof: The equality follows by operating on (44.3) with A(AX) and
observing A(AX)I, = 1y, and A(AX)AX = 0. g

For every manifold chart y € Ch, M, we have
AXh(z) + I,O,hAX = (Y, tlisY) " (hX(z), V,hX). (43.6)
In view of (43.3), we have
> h = (Vip,  tlisY) ™ (h¥(z), V,hX)
for every manifold chart xy € Ch, M.
Remark: By (43.1) and the injectivity of B,, we have

> k=0 if andonlyif O,k=0 (43.7)

Proposition 3: If f : M — is differentiable at x, so is the vector-field fh and
we have

> (fh) = f(z) > h+ L (h(z) ® V.. f). (43.8)

Proof: It follows from (15.6); with M := h(z) ® V,f that
B, (L (h(z) ® % f)) = (h(z) © V,.f) B, = h(z) © B VL. f.
In view of (43.4) and (41.15), it follows that
B, (>(fh)) =0,(fh) = f(2)O;h + h(z) 9 BV, f

— B, (f(z)xh+ L, (h(z) ® V.f))

Since B, is injective, (43.8) follows. g

Let ® be a functor as described in Sect.13 and let H: M — ®&(TM)
be a tensor-field that is differentiable at x. Also, let k be a vector-field
that is differentiable at x.

Definition: The Lie-gradient of H with respect to k at x is defined by
(LiexH), := 0O, H(> k), (43.9)

where O, H is the shift-gradient of H at x as defined by (41.3) and where >, k
is the shift of k at x as determined by (43.1).



Proposition 4: Let f: M — and H be differentiable at x. We have

(Liex fH) = f(z)(LiexH) + ((Vf) k(z)) H(z);

=7
. 43.9
(LiepH), = f(o) (LioH), + (®(k(x) %)) Bz, )

where &, € Lin(LinT,, Lin®(T,)) is defined as in Prop.1 of Sect.41.

General Product Rule
Let Hq, Hs be cross sections as given in the General Product Rule of Sect.41,
then we have

(LiekB(Hl, HQ))x = BBz ((Liekﬂl)x, HQ ($>) + BBI (Hl (CIZ‘), (LlekH2>m) .
(43.10)

Remark: We have
(Liex H), = (VH)k(z) + @ (To(K)k(z) + Vkk)H(x)
for all K € Com,(TM). |

We now assume that two vector-fields h and k, both are differen-
tiable at x, are given.

Definition: The Lie-bracket of h with k at x is defined by

[k, h]]x := B, (>, h, >, k). (43.11)

It follows from (43.1), (43.9) and (43.11) that

[k, h] = (Lieh), (43.12)

Proposition 5: We have
[k,h] =—-][h, k] . (43.13)
If f: M — s differentiable at x, then

[fh, k], =f@)[h, k], —((V%f)k(z))h(z). (43.14)




Proof: (43.13) follows from the skewness of B,. Substitution of fh
for h in (43.11) and use of (43.8) gives

[fh. k] =f(@)[h, k] -B, (I, (h(z)®%f),>k)
and hence, by (15.6),,
[fh, k], =f@)[h, k], - (hz)®V%f) (B 2 k)
The desired result (43.14) now follows from (43.2).

Remark: Let r = 0o, let h,k € XM and let h and K be the mappings
from C*°(M) to C°(M) defined by (24.6). One can easily show that
the mapping [h, k]]V : C®°(M) — C°°(M) corresponding to [ h, k]v is
given by

[h, k] =h oK —K oh (43.15)

If f € C>°(M), we then have

v

[/h, k] =f[b , kK] -K(f)n, (43.16)

which can be derived from (43.14) or directly from (43.15). |

Proposition 6: If both h and k are vector-fields that are differentiable at x,

then have
[h, k] = (VXk)h(z)— (Vh) k(). (43.17)

for every manifold chart x € Ch, M where VXk and VXh be defined according
to (23.26). Moreover, we have

(Vkk)h(z) — (Vkh)k(z) = [ h, k]x + T, (K)(h, k) (43.18)

for all K € Con,TM.

Proof: If we substitute s :=>, h and s’ := >,k in (33.6) and (12.5) we
obtain from (43.11) that

[h, k], =-DX(>,h)P, (>, k) + DX (>, k)P, (>, h)

The desired result (43.17) follows now from (43.5) and (43.2).
By (42.3) we have

(Vkh)k(z) = (V¥h)k(z) + LX(K) (k(z), h(z)).

Interchanging h and k and taking the difference, we obtain (43.18)
from (43.17) and (33.8). |




Let s € 1..(r — 1) and h, k € X*TM be given. Then the vector-field
|[h, k] is defined by

[h, k](z) ::[[h,k]]x forall ze M (43.19)

It is clear from Proposition 5 that |[h, k] e X 'TM. Using (23.6),
it follows from (43.17) and the definition (23.35) that

[h, k]* = (kX) hX — (Vh¥) kX. (43.20)

Proposition 7: (Jacobi identity): Let s € 2..(r—1) and hy,hy, hz € X*TM
be given, then

[[hi,ho] , hs]+[[he, bs], by ]+[[hs, hi],hs]=0 (43.21)

Proof: A straightforward but somewhat tedious calculation, using
(43.20) and the Symmetry Theorem for Second Gradients, yields the

desired result (43.21). §

If M is a C* manifold, then X°°TM together with the bilinear

mapping
[, ]:X"TMx X¥TM — XFTM

given in (43.21) is a Lie algebra, as defined in Sect.11.




44. Transport Systems and Lie Group

We assume that r € = with r > 2 and a C"-manifold M are given.
Let (B,7, M) be a C? linear-space bundle, s € 0..r.

We define the bundle of transfer isomorphisms of B by

TlisB:= | ] Ths,B= | Lis(B,,B,). (44.1)
reEM T, yeM

It is endowed with the natural structure of a C°-fiber bundle over
M x M whose bundle projection 7 : TlisB — M x M is

m(T) :€ { (z,y) € M x M | T € Lis(B,,By) }. (44.2)

Definition: A subset T of TlisB is called a C®° transport structure for B
if € is a C®-submanifold of Tlis B such that

(T1) forall A€, A1 €%,
(T2) for all A,B € T such that Cod A = DomB, BA € ¥,
(T3) for all z,y € M, TN Lis(B,, By) # { }.

It can be shown that ¥, := TNTlis, B is a C*-submanifold of Tlis, 5.

Theorem on Transport Structure and Parallelisms
Let C: M — ConB be a connection of class C*. Define

S={AcTlsB|------vre--- }.

Then § is a transport structure for B.

Proof:

A cross section F : M x M — % is called a (global) transport
system for B if

F(z,z2) =F(y, 2)F(z,y) for all z,y,z € M (44.3)

and
F(z,z) =15, for all z e M. (44.4)

Recall that a cross section T : M — Tlis, B of the bundle Tlis, B,
xr € M, with

T(z) = 15 (44.5)

x



is called a transport from z. It follows from (44.3), (44.4) and (44.5)
that, for each x € M, the mapping F(z,-) : M — Tlis, B is a transport
from x. Moreover, we have

F(y,) =F(z, )F(y,z) forall =z,ye M. (44.6)

Conversely, let x+ € M and a transport F, : M — Tlis, B from z be
given. For each y € M, we obtain a transport F, : M — Tlis,B from y
by

F,(2) == F.(2)F.(y)~" forall ze M. (44.7)

and, a transport system F : M x M — TlisB by
F(y,2) :=F,(2)F,(y)"! forall y,ze M. (44.8)

We conclude that, for each x € M, there is one to one correspon-
dent between the set of all transports from x for B and the set of all
transport systems for B.

Every transport system F : M x M — Tlis B induces a connection
C: M — ConB by

C(y) := Vi, F(y,-) forall yeM. (44.9)
Let a transport system F : M x M — Tlis B for B, a tensor functor
® and a cross section H : M — ®(B) be given. We say that H is

parallel with respect to F if

H(y) = ®(F(z,y))H(z) forall z,ye M. (44.10)

Proposition 1: Let C be the connection induced by a transport system F, as
given in (44.9). Let H : O — ®(B) be a cross section of class Ct. If H is
parallel with respect to ¥, then VcH = 0. Conwversely, if VeH = 0 and if M is
connected then H is parallel with respect to F.

Proof: Fix x € M and let T := F(z,-). Let y € M be given and define
H, : Tlis,B — B, in accord with (41.2). Then

H,(T(2)T(y)™ ') = ®(T(y)T(2) " HH(z) forall ze M.

Differentiation with respect to z at y gives, using (42.1), (41.3), (44.9),
and the chain rule,

(eH)(y) = (O,H)C(y) = ®(T(y))V,H, (44.11)

where H : M — ®(B,) is defined by H(z) := ®(T(z)"!)H(z) for all
z € M. Since y € M was arbitrary and since ®(T(y)) is invertible, we



conclude from (44.11) that S¢H = 0, if and only if VH = 0. Now if
H = &(T)v for some v € ®(1,), then H is a constant and hence VH = 0.
Conversely if M is connected and VH = 0, then H is a constant and
hence H = ®(T)v for some v € ®(1,). 1

Remark : Let a connection C, not necessarily induced by a transport
system, be given. Then the condition VcH = 0 does not equivalent
to to the condition that H is parallel with respective to a transport
system. |

Proposition 2: Let T : [0,d] — Tlis, B be a differentiable transfer process from
x, and put p := m, o T : [0,d] — M. For every differentiable cross section

H: M — ®(B), we have
(O H)(sdeT) = 3y ( s — ®(T(t)T~"(s))H(p(s)) ) (44.12)

for all t € [0,d], the derivative (44.12) may be interpreted, roughly, as the rate
of change of H at p(t) relative to the transfer process T.

Let C : M — ConB be a continuous connection and p : [0,d] — M
be a process of class C!, with 2 = p(0). Let T be the parallelism along
p for the connection C. It follows from (35.23), sdT = (C o p)p°®, that

(S(p(eyH)p* (1) = Oy H) (5d T). (44.13)

This result does not depend on the choice of the process p, and hence
does not depend on the parallelism T along p.

Proposition 3: Let C : M — ConB be a continuous connection and let the
cross section H : M — ®(B) be differentiable. Then YNcH = 0 if and only if,
for every differentiable process p : [0,d] — M,

(CH)op)(sdT)=0 (44.14)

where T 1is the parallelism along p for C.

Let z € M and a continuous vector field k : M — TM be given.
By the maximum local flow for k at + we mean a mapping

a: I xD—-s M

where [ is an open interval containing 0,and D containing =, and D is an
open subset of M containing x, such that for every y € D the mapping
a(y) : I — M is the maximum integral process (integral curve) of k
with the initial condition y; i.e. a(0,y) =y and k(a(t,y)) = (a*(-,1))(?).




Let z € M and a continuous vector field k : M — TM be given. It
is a well known theorem in O.D.E. (see Sect.1 of Ch.4, [L]) that there
is a maximum local flow

a:IxD—M
for k at x. We may define a mapping Ly : I — Tlis, M by
Ly(t) := Voa(t,:) forall tel.

It is clear that
L ()= |J  Lis(T.,T,).
yea(z)> (1)
Since Lk (0) = 1p,, Ly is a transfer process from z. We shall call Ly the
Lie transfer process from x of the vector-field k.

Proposition 4: Let © € M and a vector field k : M — TM be given. Let Ly
be the Lie transfer process from x of k. We have sdgLyx = >, k and

(LieH) () = 0o (t — ®(Lyc(t) " YH(p(t))). (44.15)

Proof: Define the processes H: I — LisV, and V : I — LisV, by

H(t) : = Vi i)xVeo, (Vix) ™ = Vi (XL (£) (V) ™
V(t) = Vax (t)X(D(ii (t) al>(t) k)(vaz (t)X>_1

Taking the gradient of H at 0 and observing Dg ® >o ik =
(Vam (t)X)_lvam kX, we have

H'(t) = 9, (s — V%(S)va&s(va)_l)

= (Y, X ((Va, ) ™ Vo, 09%) (Yo, (9X) ™) (Vo 09X Ve, (VX))
= (Yo, XDy B (Ve (90) ™) (Vo 09XVt (%))
= (VH)(1).

This shows that Ly is the only transfer process from z such that
sdLx = (> k) o ,. Since «a,(0) = z, we have sdoLx = >, k. The assertion
follows by applying Prop.2.



Definition: A Lie group is a set G endowed both with the structure of a group
and with the structure of a C¥-manifold in such a way that the group-operation
and the group-inversion are analytic mappings.

We use multiplicative notation and terminology for the group ¢
and denote its unity by u.

For every x € G, we define the left-multiplication le, : G — G by
le;(y) = zy for all yeQg. (44.16)
le, : G — @G, is invertible for all z € G; in fact,
(x—ley) : G — Perm G (44.17)
is an injective group-homomorphism, i.e. we have
le, =1g , legy=legole, , le,—1 =le (44.18)
for all x,y € G. Also, when x € G is given, le, is analytic and we have
V,le, € Lis(T, M, Ty M) C Tlis, G (44.19)
for all y € G. We define the analytic mapping
G: G — Tlis, G (44.20)

by
G(z) := V,le, for all reg. (44.21)

Taking the gradient of (44.18), at u gives
G(zy) = (Yley)G(y) for all x,y €G. (44.22)
For every t € T, M, we define the analytic vector field Gt : G — TG by
(Gt)(y) = G(y)t for all yeg. (44.23)
We have

G(u)=1r,m and (Gt)(u)=t forall teT, M. (44.24)

Proposition 5: For all t,s € T, M we have

[Gt, Gs]=G[Gt, Gs], (44.25)




Proof: Let t € T,M and x € G be given and choose xy € Ch,§G. Since
le, is analytic and invertible and le,(u) = x, we have x o le, € Ch,G.
Using the chain rule and (44.22), we obtain
V,(x o leg) = (Viyx)Vyle, = (mex)G(acy)G(y)_l forall yegG. (44.26)
Using the definitions (44.23) and (23.25), we see that
(Gt)X = (y) = V,(x = lea)G(y)t = (Vayx)G(zy)t
for all y € G and hence
(Gt)X 7 1= = (Gt)X o le,. (44.27)
Using the chain rule again, we find
Vi (Gt)X 7 1= = v (Gt)XG(x) for all te T, (44.28)
Now let s,t € T,M be given and put h := Gt, k := Gs. Using
(43.17) with x replaced by u and x by x o le, we conclude from
(44.28) that
[h, k], =V(x = le,) ' ((MWKY)h(z) — (hY)k(z)).
Using (44.26) with y := u and observing (44.23), we obtain

[h, k], =G(2)"V%x ' ((GkY)h(z) — (GhY)k(z)).

Since x € G was arbitrary, we obtain (44.25) by applying (43.17) again.
1

Proposition 6: Define
((t,s) = [t,s]) : T,M? — T, M (44.29)

by
t,s] =[Gt , Gs],, (44.30)

where G is defined by (44.21). Then (44.21) endows T, M with the structure of
a Lie-algebra, i.e. it is bilinear, skew, and satisfies the “Jacobi-identity”

[[t1, ta], ta] + [[to, ts], t1] + [[ta. t1], t2] = O (44.31)

for all t1,t5,t3 € T, M. We use the notation LaG := T, M for this Lie-algebra
and call it the Lie-algebra of G.




Proof: It is clear from the definition (44.30) and from (43.13) that
(t,s) — [t,s] is bilinear and skew. The Jacobi-indendity (44.31) follows
from Prop. 7 of Sect. 43, applied to h; := Gt; , i € 3/, and Prop. 5. |

For each y € G, define C(y) € Lin(T,M,S,TG) by
Cly) =V — GG ). (14.32)

Then (44.32) defines, as described in (44.9), a natural connection
C:G — CongG on G. This connection is analytic.

Let a vector fuield h € X¥'(TG) be given and let the lineon-field
S¢ch be defined according to (41.3). Then it follows from Prop.2 that
Vch =0 if h = Gt for some t € T, M, where G is defined by (44.21).
Conversely, if Vch = 0 and if G is connected, then h = Gt for some
t e T, M.

Proposition 7: The Lie-algebra-operation of T, M 1is the opposite of the torsion
T,(C(u)), i.e.

[t,s] = T, (C(u))(t,s) for all t,s € T,. (44.33)

Proof: Let t,s € T, be given. Application of (43.18) to h := Gt,
k := Gs, z := u gives (44.33) if (44.30) is observed and Vch = 0 = Yk,
as described in above, is applied. |

Remark : The curvature field R(C) =0 777

Proposition 8: Let d € * and p € [0,d] — G, of class C' and with p(0) = u,
be given. Then G o p:[0,d] — Tlis,G is the parallelism along p for C.

Proof: Put T := G o p. Then T(s)T(t)"! = G(p(s))G(p(t))~! for all
s,t € [0,d]. Hence, by (44.32), (35.10), and the chain rule,

sd; T = C(p(t))p"(t) for all t €10,d],
i.e. sdT = (C = p)p* . In view of (35.23) the assertion follows. J

An non-constant homomorphism ¢: — G from the additive group
of to G is called a one-parameter subgroup of G if it is of class C'.

Proposition 9: Let d € ¥ and p € [0,d] — G, of class C' and with p(0) = u,
be given. Then p is geodesic if and only if p = q|j0,q) for some one-parameter
subgroup q of G.




Proof: By Prop. 6 and (35.28), p is geodesic if and only if p*(0) # 0
and
G(p(t)p (0) = p*(t) for all t €10,d]. (44.34)

Let ¢ be a one-parameter subgroup of G and p = ¢[p q. Let t € [0,d]

be given. Then
lepyp(s) = q(t)q(s) = q(t + s) = p(t + )
for all se€[0,d]N(]0,d] —t) =1[0,d—t[

Differentiating with respect to s at 0 and using (44.21), we get

G(p(t))p*(0) = p(1).
Since t € [0.d] was arbitrary and since p* is continuous at d, (44.34)
follows.
Assume now that p is geodesic, i.e. that (44.34) holds. Let¢: [ — G
be the (unique) solution of the differential equation
? oqeC(,G) . (Gogp(0)=¢ (44.35)
whose domain [ is the maximal interval that contains 0 € . Then /
is an open interval, [0,d] C I, and p = ¢||p q by the standard uniqueness
theorem for differential equations. Let t € [ be given and define
u:I—-Gandv:(I —t)— G by
u(s) == q(t)q(s) = legw (q(s)) for all sel (44.36)
and
v(s) == q(t +s) for all sel—t (44.37)
Using the chain rule and (44.24), it follows from (44.36) that

u’(s) = (Vyes)legn)a'(s) = Gla(t)a(s)G(a(s)) ™ q" (s)
for all s € I and hence, by (71.23) and (71.24), that
w = (G e wp(0) , u0)=q@) (44.38)
On the other hand, it follows (44.35) and (44.36) that

vi(s) = ¢’ (t+s) = G(q(t + 5))p"(0)
for all s € I —t and hence that
v =(G ov)p(0) , v0)=qt). (44.39)
Comparing (44.38) and (44.39), we see that u and v satisfiy the
same differential equation and initial condition. Since the domain of
g is the maximal interval containng 0, it is clear that the domains of u
and v must both be the maximal interval containing 0. It follows that
I —t =1, which can be valid for all ¢t € [ only if I = . The standard
uniqueness theorem for differential equations shows that u = v and
hence, by (44.36) and (44.37), that ¢(t + s) = ¢(t)q(s) for all s €. Since

t € was arbitrary, it follows that ¢ must be a one-parameter subgroup
of G. 1



45. Alternating Covariant Gradients

Let a number p € , with p > 1, connections C : M — ConTM and
D : M — Con B of class C! be given.

Let ® be an analytic tensor functor. For every differentiable ®(5)-
valued skew-p-linear field S : M — Skw,(TMP?, ®(B)), the covariant gra-
dient of S at x € M relative to (C,D) is the mapping

v(C(x),D(x))S M — Lin(Tx./\/l, Skwp(Tpr, @(Bx)).

Taking the alternating part of Vic(,) pD(2))S, we obtain the skew (p+1)-
linear mapping

Alt (V(C(m),D(x))S) - SkWp+1(TmMp+1, (I)(Bx)) (45.1)

Proposition 1: Let x € M be given. For every manifold chart x € Ch, M and
every bundle chart ¢ € Chy(M, B), we have

(p + DALt (Vic() D) S) (V)
= (p+ 1Al (VX8 + (©}(T7 (D(2)))S(x)) ) (v)

— ) (=D)TIS(@) (Tu(C(2))(vi, v;), del V)

1<i<y<p+1

(45.2)

where del(; ;) : Yl Y=l s defined by del; ;) = delj odel;, i < j, for all
v e T,MPHL

Proof: Let y € Ch, M and ¢ € Ch,(B, M) be given. We have
C(z) = A ~LTX(C(z)) and D(z) = A? — LT (D(x))
For every i € (p+ 1), (42.11) gives
V(@) D)) S(vi, del;v) = TS (v;, del;v) + @, (T (D(2)v;)S(x)(del;v)
C Y S(@)(delyyv) ) TXCE) (v, v;)

F€(p+1)\{s}

(45.2)
for all v € (T, M)*(P+1), Sum up and rearrange all the terms, we obtain
the desired formula by observing that T, =X — X" ]

Prop.1 has several applications. The first application is given in
the following Prop.2. The second kind of applications are Bianchi
identities in Sect.46 and the third application leads to the definition
of exterior differential in Sect.47.




For every cross section H: M — ®(B) of class CP, p > 2, we define
the covariant gradient-mapping of H relative to D

oH : M — Lin(TM, ®(B))

by
YWwH(y) == pyH foral yeM. (45.3)

The second covariant gradient-mapping of H relative to (C,D) is de-
fined by

e oy H = Vie,p) (T H) : M — Liny (TM?, &(B) ). (45.4)

The second covarient gradient-mapping ’V((CQ)D)H is not necessarily sym-
metric. Indeed, we have the following:

Proposition 2: We have

Yoo H— (F8p )™ = @' (R(D)(-, ))H — (VpH)T(C) (45.5)

where, for each x € M, ®° (z) := ®, € Lin (Lin B,, Lin ®(B,)) is defined as in
Prop. 1 of Sect. /2.

Proof: Let z € M be given. Choose y € Ch, M and ¢ € Ch,(B, M).
Applying Prop. 1 with H replaced by Vp,)H and @ replaced by Lin o
(Id, @) (see [N2]), we have

2 2
Tertay by B V) = F&) ) HV, ) + (Fo ) H) T (C(@)) (u, v)
= (Yax.asy H)(1,v) = (Y ax a¢) H)(v, 1)
+ @, (T2(D(2)u) (Vo) H)v — @, (T2 (D(2))v) (Vb () H)u

(45.6)
for all u,v € T, M. Observing YpH = V. H + @, (I'*(D)), we have
Vax.at) oo H(u,v) *#iL AnHWY) + Yax.a0) 20 (T (D) H(u, v).
(45.7)

for all u,v € T, M. Since CD; is a natural linear assignment, the second
term on the right handside of the equality in (45.7) is

(Tax a2 @5 (0% (D))H) (u, v)
— ® (x40, T?(D)(w, v)) H(z) + &% (¥ (D(2))v) (V. H)u.
We also have, the third term on the right hand side of the equality

(45.6) satisfies

(45.8)

= (T (D(x))u) (V4o H+ @ (TP (D(2)))v
(LY (D(x))u) Ve Hv + &, (T (D(z)) )@, (T (D(x))v)
(F¢(D(a:)) Voo Hv + @;(I‘ (D(x))uF¢(D(x))v).

x

(45.9)



Combining (45.6) to (45.9) with (45.2) and observing that

Tk anH=206],)7 (WPH?)(Vox x Vix) (45.10)

is symmetric and z € M was arbitrary, we obtain (45.5). I



46. Bianchi Identities

Let connections C : M — ConTM and D : M — Con B of class C!
be given. Both of the torsion field T(C) : M — Skwy(TM? TM) of the
connection C and the curvature field R(D) : M — Skwo(TM?,LinB) of
the connection D are skew-2-linear fields. Applying Prop.1 of Sect.46,
the alternating part of VcT(C) gives the first Bianchi idetity and the
alternating part of V¢ p)R(D) gives the second Bianchi idetity.

Proposition 1: (First Bianchi idetity) We have

Alt (VeT(C) + T(C)T(C)) = Alt (R(C)) (46.1)

where T(C)T(C) is regarded as a cross section of Skwo(TM?, LinTM).

Proof: Applying Prop.1 of Sect.45, we have
Alt (VeT(C) + T(C)T(C)) = Alt (Vex T(C) + IT'X(C)™ T(C)). (46.2)
Using (33.8) and (34.30), we see that
Alt (VexT(C) + T'X(C)” T(C)) = Alt (R(C)). (46.3)
The desire result (46.1) follows from (46.2) and (46.3). I

Remark 1: When C is curvature-free (but not necessary torsion free),
Eq. (46.1) reduces to

Alt (Vc¢T(C) + T(C)T(C)) = 0. (46.4)
If in addition that Alt (VcT(C)) = 0, then
Alt (T(C)T(C)) = 0; (46.5)

that is T(C) satisfies Jacobi identity (cf. Lie Group, Prop.7 of Sect.44
)- I

Proposition 2: (Second Bianchi idetity) We have
Alt (V(CJ))R(D) +R(D)T(C)) = 0. (46.6)

where R(D)T(C) is regarded as a cross section of Skwa(TM?, Lin(TM, LinB)).

Proof: Applying Prop.1 of Sect.45, we have

Alt (Ve py R + R (C) (T (C)))
= Alt (V] p¢)R + T¢(D)" R, (C) — R, (C) (-, TL(D)).

( x



Applying Prop.5 of Sect.34, we obtain

Alt (Viax agy)R + F¢(D)~Rm(C) - R.(C)(-,-)T%(D))
46.8)
— 2) I¢(D 2) (D))~ (
= Al (VEA ant (VEAX anl (D)) )
In view of (44.5), we observe that
2) 2) ~ _
v‘ o an LD (v‘ aeTYD)” =0. (46.9)
The desired result follows from (46.7), (46.8) and (46.9). 1

Remark 2: When the given linear-space bundle is the tangent bundle
B :=TM of M, the Bianchi identities can be found in literatures (see
[P]) as

(VcT( DUV, W) + (VcT(C))(V,W,U) + (VcT(C))(W,U,V)
( )(T(C)(U,V),W)+T(C)(T(C)(V,W),U)+T(C)(T(C)(W,U),V)

R(C)(U,V W) +R(C)(V,W,U) + R(C)(W,U,V)
(46.10)
and

(YeR(C))(UVW) + (VcR(C))(VWDU) + (VcR(C))(WUYV)
+R(C)(T(C)(U,V),W)+R(C)(T(C)(V,W),U)+R(C)(T(C)(W,U),V)
=0
(46.11)
for all vector fields U, V,W ¢ XTM.

Remark 3: Most of the literatures, especially in physics, only deal with
the special case : in the absence of torsion. Under this assumption,
the Bianchi identities becomes

Alt (R(C)) =0 (46.12)

and
Alt (VcR(C)) = 0. (46.13)



47. Differential Forms

Let p € and a differentiable JV-valued skew p-linear field w be
given.

In this section, we apply Prop.1 of Sect.45 with the tensor functor
® :=Tr,,, the trival functor for a linear space V (see Sect.13).

Proposition 1: For every x € M, we have

Alt (VXw) = Alt (V] w) (47.1)

for all manifold charts x,vy € Ch, M.

Proof: The desire result (47.1) follows from Prop.1l of Sect.45 with
(Try,). = 0 and T,(AX) = 0 = T,(A)) (see Theorem in Sect.33) for all
manifold charts y,y € Ch, M.

Definition : The p'"-exterior differential at x € M

dP - X (Skw,(TMP,)) — Skw, 1 (T, MPT1) (47.2)
1s defined by
P = ]%Alt (VXw) forall w € X (Skw,(TMP,)) (47.3)

which is valid for all manifold chart x € Ch, M.
The pt"-exterior differential

d? : X°(Skw,(TMP,)) — X°7 1 (Skwppq (TMPTL))) (47.4)

18 defined by
dP(x):=dP forall =€ M. (47.5)

x

Remark : If M be the underline manifold of a flat space £, then
Vw = VXw for all manifold chart xy. The definition (47.3) of exterior
differential at x becomes

P = %Alt (Vo). (47.6)

Equation (47.4) can be found in Sect.2.3 of [CH] and in Sect.51 of
[B-W]. i



Proposition 2: Let W be a linear space and let w : M — Skw,(TMP, W) be
a differentiable WW-valued skew p-linear field. For every x € M,we have

1
diw(v) = (HAH (Vo@w))v

+ Y (D) w(@)(To(Clx)) (vi, vy), delg ) v)

1<i<i<p+1

(47.7)

for all connection C and all v € T,MP+!,

Proposition 3: We have
d’todl = 0. (47.7)




Chapter 5

Geometric Structures.

We assume in this chapter that numbers r,s €, with r > 3 and
s € 0..r, a C” manifold M and a C?® linear-space bundle B over the
manifold M are given. We also assume that both M and B have
constant dimensions, and put n := dimM and m := dimB — dim M.
Then we have n = dim T, M and m = dim B, for all x € M.

51. Compatible Connections

Let x € M be fixed. Let & be an analytic tensor functor and let
E € ®(B,) be given.

Notation: We define the mapping

E° : Tlis,B — ®(B) (51.1)
E°(T) := ®(T)E for all T € Tlis,5. (51.2)

Since & is analytic, it is clear that E° is differentiable at 13, .

Proposition 1: We have Vi, E® € Lin (S;B, Te®(B)) and, for every bundle
chart ¢ € Ch, (B, M),

(Vi E%)s = AR P,s + 1,8, (A(A2)s)E (51.3)

for all s € S,.B.

Proof: By using (51.2) and the definition (23.21) of gradient, we ob-

tain the desired result. 1
Taking the gradient of E° i(sl;“”) at 1z, we have
®(Bz) .
(vlgx E° [0 )L — (®,(L))E (51.4)

for all L € LinB,. For the sake of simplicity, we use the following

notation

B = Vi, (B[ L) (51.5)



Given r € \{0}, we observe from (51.5) that (rE)° = rE° and hence
Null E° = Null (+E)°. (51.6)
It is follows from (51.3) and (51.4) that
P, = B.(Vi, E°) and (Vi E°)L, = LE°,
i.e. the diagram

Lin B, L, S.B B, T, M

El Vi, El H (51.7)

B(B,) —=5 Te®B) —E5 T,M
commutes. And it also clear from (51.3) that
AS® = (W, E°)A? € Reong®(B) (51.8)
for all bundle chart ¢ € Ch, (B, M). More generally, we have
(Vis, E°)K € Reong ®(B) for all K € Con,B. (51.9)
In view of (51.9), the mapping V;,, E°® induces the following map-
ping.
Definition: We define the mapping

Jz : Con, B — Reong ®(B)

Je(K) := (V15 E°)K forall K € Con,B. (51.10)

Proposition 2: The mapping Jg, defined in (51.10), is flat. Hence, for every
D € RngJg, J=({D}) is a flat in Con,B with

dim JZ({D}) =7777.

Let a cross section H: M — ®(B), that is differentiable at x € M,
be given. The gradient of H at z is a tangent connector of ®(B); i.e.
V;H € Reong,., ®(B).



Proposition 3: We have
VkH = A((VlBZH(m)O)K)VxH (51.11)

for all K € Con,B and hence VkH = 0 if and only if Ju.,(K) = V,H, i.e.
K € J5,, ({zH}).

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1)
and Remark 1 of Sect. 32.

If K € Con,B be such that VixH = 0, then it follows from (51.11)
that A((V1,, H(z)°)K)V,H = 0. Applyiny Prop.1 of Sect.14, we see that
this can happen if and only if (V1, H(z)°)K = V;H. Since K € Con,B
was arbitrary, the assertion follows. ]

Now, let a differentiable cross section H: M — ®(B) be given.

Definition: A connection CM — ConB is called a H-compatible connec-
tion if Vo, )H =0 for all x € M, i.e.

VcH = 0. (51.12)
It clear from Prop.3 that a connection C is H-compatiable if and

only if
Ju (C(z)) = H for all x e M. (51.13)

Proposition 4: Let connectors K1, K» € I3, ({VeH}) be given and determine
L € Lin (T, M, Lin B,) such that K; — Ky = I,L; then we have

H(x)°(Lt) =0 forall te T, M. (51.14)




52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when ® = Smf; or Skf; (see example
(4) of Sect.13).
Let 2 € M be fixed and E € ®(B,), & = Smf; or Skfs, be given. We
have
E°(M)=Eo(Mx 1z,) +Eo (15, x M), (52.1)

where E° is given in (51.5), for every M € Lin53,.

Proposition 1: If E is invertiable, then E° is surjective; i.e.

Rng E° = Sym,(B2,) when & = Smf, (52.2)
i.e., E € Symy(B2,) and

RngE°® = Skwy(B2,) when & = Skf, (52.3)

i.e., B € Skwo(B2,).

Proof: By using (52.1). 1

Proposition 2: If E is invertiable, then the flat mapping Jg defined in (51.10)
18 surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and
the surjectivity of E°. 1

In view of Prop.2 we see taht, for every D € Rcong®(B), the preim-
age J5({D}) is a flat in Con,B. Let K;,K> € J5({D}) be given and de-
termine L € Lin(T, M, LinB3,) such that K, — K, = I, L. Applying (51.3),
we have 0 = Jg(K2) — Jg(K;) = E°(L), that is L € Lin(T, M, NullE®).
Since Ki,K, € J5({D}) were arbitrary, we conclude that

dim J5 ({D}) = dim Lin(T,M, NullE°). (52.4)

Definition: A cross section G : M — Smfy(B) is called a Riemannian field
if, for every x € M, G(x) is invertiable when regard as element of Sym(B,., By).

A cross section S : M — Skfs(B) is called a symplectic field of B if, for
every x € M, S(x) is invertiable when regard as element of Skw(B,, By).

We say that B is a C°* Riemannian linear space bundle if it is endowed
with additional structure by the prescription of a C*® Riemannian field.

We say that B is a C*° symplectic linear space bundle if it is endowed
with additional structure by the prescription of a C° symplectic field.



Remark 1: A symplectic field of B exist if and only if, for every x € M,
m := dim B, is even (see Sect.11). If m is odd, then

Skw (B, B:) N Lis(B,, BZ) = 0.

1
Proposition 3: If G : M — Smfy(B) is a Riemannian field, then
dim 35, ({V%,G}) = n(gl) for all € M. (52.5)
If S : M — Skfs(B) is a symplectic field, then
1
dim Jg;, ({V%S}) = n(m;— ) for all z € M. (52.6)
Proof: It following easily from (52.4), (52.2) and (52.3). 1

Remark 2: Let G be a Riemannian field and C : M — ConB be a
G-compatible connection. Let L : M — LisB be a cross section with
VcL = 0 be given. Then, it follows from VoG = 0 and VgL = 0 that
(G o (L x L)) = 0. Hence, the Riemannian field H := G o (L x L)
satisfies VocH = 0. ]



53. Riemannian and Symplectic Manifolds.

Definition: We say that M is a Riemannian manifold if the tangent bundle
TM is endowed with additional structure by the prescription of a C"~1 Rieman-
nian field.

We say that M is a symplectic manifold if the tangent bundle TM is
endowed with additional structure by the prescription of a C™~' symplectic field.

Let a Riemannian field G : M — Sym™ (TM,TM*) of class C"!
be given.

Proposition 1: For every x € M, the restriction

Telys (wop 35, ({MG}) — Skwa(T, M2, T, M) (53.1)

of the torsion mapping T, is bijective.

Proof: Given z € M. If K, K, € Con,(TM, M), then we have T,(K;) =
T, (Kz) if and only if K; — Ky = I,L for some L € Sym,((T,M)2, T, M)
and hence

(G(z)L)(t,b,d) = (G(z)L)(b, t,d) (53.2)

for all t,b,d € T, /\/l

Let K, K> € J5,,({V% G}) with T,(K;) = T,(K2) be given and de-
termining L € Liny((T,M)? T, M) such that K; — Ky = I,L. Applying
(52.1), (51.14) and (53.2), we have

(G(2)L)(t,b,d) = —(G(z)L)(t,d,b) = —(G(z)L)(d, t,b) =
(G(w)L)(d,bvt) (G(2)L)(b,d, t) =
—(G(z)L)(b,t,d) = —(G(x)L)(t,b,d)

for all t,b,d € T, M. This shown that G(z)L = 0. Since G(z) is
invertible, we observe that L = 0 and hence K; = K;,. In other words,
the restriction

Tolsz (may 960 (%G} = Skwa(ToMP, ToM) (53.3)

of the flat mapping T, is injective and hence bijective. Since x € M
was arbitrary, the assertion follows. ]



Proposition 2: For every x € M, we have

I ({%G}) = {K - %ImG(x)_l(S (VkG))|K € Cong(TM, M)} (53.4)

where

(S (VkG)) = WG + VG112 — e G~(19),
Moreover, if K1,Ks € Con, (7 M, M) with T, (K;) = T,(Ka), i.e.

K, — K, € {I,}Sym, (T, M?, T, M)),

then we have

K, — lImG(x)_l (Vik,G + Vi, G~ — e, GT9))
2
1 (53.5)
=K, — 5136(;(95)*1(%@2(; + Vi, G - v, G,
Proof: By (41.8), we have
(0.G)LG(z) "k G) (s, t,u) = WK G(s, t,u) + K G(s, u, t),
(O.G)LG(2) "G~ (s, t,u) = % G(t,s,u) + ¥ G(u,s,t), (53.6)

s, t)
(O.G)LG(2) "G~ (s, t,u) = % G(t, u,8) + ¥ G(u, t,s);

for all s,t,u € 7, M. Observing VG € Lin (T/\/l Sym, (7, M?,) ), we see
that (53 4)) follows easily from (53.6). 1

The more general version of “the fundamental theorem of Rie-
mannian geometry” follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion):

For every prescribed torsion field L : M — Skwo(TM?, TM) of class C*%,
s € 0..r — 2, there is exactly one G-compatible connection C, i.e. one satisfying
Ve G =0, such that T(C) = L. C is of class C*°.

Remark 1: When L = 0, the corresponding connection is called the
Levi-Civita connection. ]

Remark 2: It follows from Theorem 3 that for every connection C’ :
M — ConTM of class C*, s € 0..r — 2, there is exactly one connection
C: M — Con7M such that T(C) = T(C') and VcG = 0. Moreover, in
view of Prop. 2, we have

1
C=C-JIG7' (oG -V G + Yo G™Y), (53.7)



Now let a connection C: — ConTM be given. We may define, for
each r € M, a mapping

AC : Con, TM — Sym, (T, M? T, M) (53.8)
by
AC(K) := A(C(z))K + (A(C(2))K)™ forall K€ Con,TM.  (53.9)

Let a symplectic field S : M — Skw™ (TM, T*M) of class C"~! be
given.

Proposition 3: For every x € M, the restriction

AS 15 (%S J5., ({V%S}) — Symy (T, M?, To M) (53.10)

of the mapping AS is bijective.

Proof: Similar to the proof of Prop. 1. ]

Proposition 4: For every connection C and each prescribed symmetric field
L : M — Symy(TM?2 TM) of class C%, s € 0..r — 2, there is exactly one S-
compatible connection K, i.e. one satisfying VS = 0, such that A°(K) = L.
K is of class C°.

Proof: It follows immediately from Prop.3. ]

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Ge-
ometry given here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: “Perhaps its only defect [of the
fundamental theorem of Riemannian geometry| is the restriction to
symmetric connections.” We show that this restriction is not needed.
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