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Preface

Topology, created by H. Poincaré in the late 19th and early 20th century
as a new branch of mathematics under the name “Analysis Situs” differed
in its style and character from other parts of mathematics: it was less
rigorous, more intuitive and visible than the other branches. It was not by
chance that topological ideas attracted physicists and chemists of the 19th
century, for instance, Maxwell, Kelvin and Betti, as well as other scientists
residing at the junction of mathematics and physics, such as Gauss, Euler
and Poincaré. Hilbert thought it necessary to make this beautiful part of
mathematics more rigorous; as it was, it seemed to Hilbert alien.

As a result of the rapid development of 1930s–1960s, it was possible
to make all achievements of previously known topology more rigorous and
to solve many new deep problems, which seemed to be inaccessible before.
This leads to the creation of new branches, which changed not only the face
of topology itself, but also of algebra, analysis, geometry — Riemannian
and algebraic, — dynamical systems, partial differential equations and even
number theory. Later on, topological methods influenced the development
of modern theoretical physics. A number of physicists have taken a great
interest in pure topology, as in 19-th century.

How to learn classical topology, created in 1930s–1960s? Unfortunately,
the final transformation of topology into a rigorous and exact section of
pure mathematics had also negative consequences: the language became
more abstract, its formalization — I would say, excessive, took topology
away from classical mathematics. In the 30s and 40s of the 20-th century,
some textbooks without artificial formalization were created: “Topology”
by Seifert and Threlfall, “Algebraic Topology” by Lefschetz, “The topol-
ogy of fibre bundles” by Steenrod. The monograph “Smooth manifolds and
their applications in homotopy theory” by Pontrjagin written in early 50s
and, “Morse Theory” by Milnor, written later, are also among the best ex-
amples. One should also recommend Atiyah’s “Lectures on K-Theory” and
Hirzebruch’s “New Topological Methods in Algebraic Geometry”, and also
“Modern geometric structures and fields” by Novikov and Taimanov and
Springer Encyclopedia Math Sciences, vol. 12, Topology-1 (Novikov) and
vol. 24, Topology-2 (Viro and Fuchs), and Algebraic Topology by A.Hatcher
(Cambridge Univ. Press).

However, no collection of existing textbooks covers the beautiful ensem-

xi
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xii Preface

ble of methods created in topology starting from approximately 1950, that
is, from Serre’s celebrated “Singular homologies of fibre spaces”. The de-
scription of this and following ideas and results of classical topology (that
finished around 1970) in the textbook literature is reduced to impossible
abstractly and to formally stated slices, and in the rest simply is absent.
Luckily, the best achievements of this period are quite well described in the
original papers — quite clearly and with useful proofs (after the mentioned
period of time even that disappears — a number of fundamental “Theorems”
is not proved in the literature up to now).

We have decided to publish this collection of works of 1950s–1960s, that
allow one to learn the main achievements of the above mentioned period.
Something similar was done in late 1950s in the USSR, when the celebrated
collection “Fibre spaces” was published, which allowed one to teach topol-
ogy to the whole new generation of young mathematicians. The present
collection is its ideological continuation. We should remark that the En-
glish translations of the celebrated papers by Serre, Thom, and Borel which
are well-known for the excellent exposition and which were included in the
book of “Fibre spaces” were never published before as well as the English
translation of my paper “Homotopical properties of Thom complexes”.

Its partition into 3 volumes is quite relative: it was impossible to collect
all papers in one volume. The algebraic methods created in papers pub-
lished in the third volume are widely used even in many articles of the first
volume, however, we ensured that several of the initial articles of the first
volume employ more elementary methods. We supply this collection by the
graph which demonstrates the interrelation of the papers: if one of them
has to be studied after another this relation is shown by an arrow. We also
present the list of additional references to books which will be helpful for
studying topology and its applications.

We hope that this collection would be useful.

S. P. Novikov
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Preface xiii

The interrelation between articles listed in the Russian edition of the
Topological Library looks as follows:

Milnor’s books “Lectures on the h-cobordism Theorem” and “Lectures
of Characteristic Classes” (Milnor I.6 and Milnor II.2) are not included into
the present edition of the series.1

1Due to the omission of the two articles, the numerical order of the present edition
has been shifted.
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1

Smooth manifolds and their

applications in homotopy theory1

L. S. Pontrjagin

Introduction

The main goal of the present work is the homotopy classification of maps
from the (n+ k)-dimensional sphere Σk+n to the n-dimensional sphere Sn;
here we solve this problem only for k = 1, 2. The method described below
was published earlier in notes [1, 2]. It allowed V. A. Rokhlin [3] to solve
the problem also for k = 3. One has not yet obtained the results for
k > 3 in this way. The main obstruction comes from studying smooth
(differentiable) manifolds of dimensions k and k+1. After [1–3], a series of
works of French mathematicians [4] appeared, the authors succeeded much
more in the classification of a sphere to a sphere of smaller dimensions.
The methods of the French school principally differ from those applied
here.

Smooth manifolds are the main, and, perhaps, the only subject of this
research, thus we completely devote Chapter I to them; in that chapter we
investigate them more widely, which is necessary for future applications.
Besides main definitions, chapter I contains a simpler (resp. Whitney [5])
proof of embeddability of a smooth n-dimensional manifold into (2n+ 1)-
dimensional Euclidean space; we also state and investigate the question
concerning singular points of smooth mappings from an n-dimensional man-
ifold to the Euclidean space of dimension less than 2n+ 1.

In Chapter II we describe the way of applying smooth manifolds for
solutions of homotopy problems. First of all, we show that for the homotopy

1Л. С. Понтрягин, Гладкие многообразия и их применения в теории
гомотопий,Москва, Наука, 1976. Translated by V.O.Manturov

1
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2 L. S. Pontrjagin

classification of mappings from one manifold to another one may restrict
only to the case of smooth mappings and smooth deformations. Later on,
we describe our method of applying smooth manifolds to the homotopy
classification of mappings from the sphere Σn+k to the sphere Sn, which
goes as follows.

A smooth closed manifold k-dimensional manifold Mk lying in (n+ k)-
dimensional Euclidean space En+k is called framed if for any point x ∈Mk

a system U(x) = {u1(x), . . . , un(x)} of n linearly independent vectors or-
thogonal to Mk and smoothly depending on x is given; notation: (Mk, U).
Compactifying the space En+k by the infinite point q′, we get the sphere
Σn+k. Let e1, . . . , en be a system of linearly independent vectors tangent
to the sphere Sn ⊂ En+1 in its north-pole p. It turns out that there exists
a smooth mapping f from Σn+k to the sphere Sn such that f−1(p) = Mk,
whence the mapping fx obtained by linearisation of f at x ∈ Mk maps
the vectors u1(x), . . . , un(x), to e1, . . . , en, respectively. The homotopy
type of the mapping f enjoying these properties is uniquely defined by the
framed manifold (Mk, U). For each homotopy type of the mapping of Σn+k

to the sphere Sn there exists such a framed manifold that the corresponding
mapping belongs to the prescribed homotopy type. Two framed manifolds
(Mk

0 , U0) and (Mk
1 , U1) define one and the same homotopy type of mapping

from the sphere Σn+k to the sphere Sn, when they are homologous in the
following sense. Let En+k × E1 be the direct product of the Euclidean
space En+k by the line E1 of variable t. We think of the framed manifold
(Mk

0 , U0) lying in the space En+k × 0, and the framed manifold (Mk
1 , U1)

lying in En+k × 1. The framed manifolds (Mk
0 , U0) and (Mk

1 , U1) are
thought to be homologous if in the strip 0 6 t 6 1 there exists a smooth
framed manifold (Mk+1, U) with boundary consisting of Mk

0 and Mk
1 ,

whose framing U coincides with the framings U0 and U1 on the boundary
components.

The described construction allows one to reduce the homotopy classi-
fication question for mappings Σn+k → Σn to the homology classification
of framed k-dimensional manifolds. The role of k-dimensional and (k + 1)-
dimensional manifolds is clear here. The homology classification of zero-
dimensional framed manifolds is trivial; thus one easily classifies mappings
from Σn to the sphere Sn. The homology classification of one- and two-
dimensional manifolds is also not very difficult, and it leads to the homotopy
classification of mappings from Σn+k to Sn for k = 1, 2. We describe this
question in chapter IV of the present work. The homology classification
of three-dimensional framed manifolds meets significant difficulties. It was
obtained by V. A. Rokhlin [3].

For realising the homology classification of smooth manifolds in the
present work, we use homology invariants of these manifolds. With a
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framed submanifold (Mk, U) of the Euclidean space En+k we associate
a homology invariant of it, being at the same type a homotopy invariant
of the corresponding mapping of the sphere Σn+k to the sphere Sn. For
n = k + 1 there is the well-known Hopf invariant γ for mappings Σ2k+1

to Sk+1. The invariant γ can be easily interpreted as a homology invari-
ant of the framed manifold. In chapter III we give a definition of the
invariant γ based on the smooth manifold theory, and also give its in-
terpretation as a homologous invariant of framed manifolds. For k = 1,
the Hopf invariant is a classifying one; this fact is proved (in a known
way) in chapter IV. In chapter IV for k = 1, 2; n > 2 we construct an
invariant δ. This invariant is a residue class modulo 2. From its ex-
istence, one deduces that the number of mapping classes Σn+k → Sn

for k = 1, 2; n > 2 is at least two. The uniqueness of this invari-
ant for all cases except k = 1, n = 2 is based on the uniqueness of γ
for k = 1.

Chapter I

Smooth manifolds and their maps

§ 1. Smooth manifolds

Below, we first give the definition of smooth (differentiable) manifold
of finite class and simplest relevant notions; besides, we consider some
smooth manifolds playing an important role, more precisely: submanifolds
of smooth manifolds, manifold of linear elements of a smooth manifold, the
Cartesian product of two manifolds and the manifold of vector subspaces
of a given dimension for a given vector space. Together with finite dif-
ferentiable manifolds one can also define infinitely differentiable manifolds,
for which the functions in questions are infinitely differentiable and also
analytic manifolds where all functions in questions are analytic. In the
present paper, infinitely differentiable and analytic manifolds play no role;
thus they are out of question.

The notion of smooth manifold

A) Let Ek be a Euclidean space of dimension k provided with Cartesian
coordinates x1, . . . , xk. By a half-space of the space Ek we mean the set
Ek

0 , defined by the condition
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x1
6 0. (1)

By a boundary of the half-space Ek
0 we mean the hyperplane Ek−1 defined

as
x1 = 0. (2)

A domain of the half-space Ek
0 is an open subspace of it (which might not be

open for the whole space Ek). The points of the half-space Ek
0 , belonging to

the boundary Ek−1 are called its boundary points. A Hausdorff topological
space Mk with a finite base is a topological manifold if each point a of it
admits a neighbourhood Uk homeomorphic to a domain W k of the half-
space Ek

0 or of a space Ek. Obviously, each domain of the space Ek is
homeomorphic to some domain of the half-space Ek

0 , but for coordinate
systems, it is more convenient to consider both domain types. If a point
a corresponds to a boundary point of the domain W k, then it is called a
boundary point for the manifold Mk as well as for its neighbourhood Uk. It
is known that the notion of boundary point is invariant. A manifold having
boundary point is said to be a manifold with boundary, otherwise it is called
a manifold without boundary. A compact manifold without boundary is said
to be closed. It is easy to check that the set of all boundary points of a
manifold Mk is a (k − 1)-dimensional manifold.

Definition 1. Let Mk be a topological manifold of dimension k and
let Uk be some neighbourhood (being a subset) of this manifold homeo-
morphic to a domain W k of the half-space Ek

0 or of a space Ek. Defining
a homeomorphism between Uk and W k is equivalent to providing a coor-
dinate system X = {x1, . . . , xk} for Uk corresponding to the coordinate
system of the Euclidean space Ek. Herewith, two different coordinate sys-
tems X and Y in Uk are always connected by a one-to-one continuous
transformation

yj = yj(x1, . . . , xk), j = 1, . . . , k. (3)

Fix a positive integer m and assume that functions (3) are not just
continuous, but also m times continuously differentiable in the domain Uk

and the Jacobian

∣∣∣∣
∂yj

∂xi

∣∣∣∣ is non-zero. With that, we say that the coordinate

systems X and Y belong to the same smoothness class of order m. Ob-
viously, different classes do not intersect and each class is defined by any
coordinate system belonging to it. If there is a preassigned class, then the
neighbourhood Uk is called m times continuously differentiable. Thus, two
m times continuously differentiable neighbourhoods Uk, V k of the mani-
fold Mk always induce two coordinate classes for its intersection; if these
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classes coincide, we say that the neighbourhoods Uk and V k are compatibly
differentiable. If all neighbourhoods of some bases for a manifold Mk are
m times continuously differentiable and the classes are mutually compati-
ble, then the manifold Mk is called m times continuously differentiable or
smooth of class m; sometimes we refer just to smooth manifold without
indicating m which is always assumed to be sufficiently large for our pur-
poses. [Analogously, if the functions (3) are analytic, then the manifold is
called analytic.]

As seen from the definition given above, setting the differentiable struc-
ture for a manifold is obtained by setting some bases for any neighbourhood.
If two bases for a manifold define two smooth structures, they are thought
to be equivalent iff the union of these bases satisfies the condition 1. Indeed,
to define a smooth structure for a manifold, one should define it for any
neighbourhood of some covering of the manifold. Obviously, such a cov-
ering defines the topology of the manifold as well. If we restrict ourselves
to connected neighbourhoods, which is always possible, then in each neigh-
bourhoods all coordinate systems are split into two classes, such that the
transformation (3) inside one class has a positive Jacobian. Each of these
two classes is called an orientation of the given neighbourhood. Obviously,
a smooth manifold is orientable if and only if there exists a compatible
orientation for all neighbourhoods. With each such choice, one associates
an orientation of the manifold.

В) The boundary Mk−1 of a smooth manifold Mk is itself a smooth
manifold of the same class; this results from the following construction. Let
Uk be a neighbourhood in Mk provided with a fixed coordinate system X
such that the intersection Uk−1 = Uk ∩Mk−1 is non-empty. The equation
defining the subset Uk−1 in Uk, obviously, looks like x1 = 0; thus it is
natural to take x2, . . . , xk as preassigned coordinates in Uk−1. Let V k be
another neighbourhood in Mk (possibly, coinciding with Uk) with a fixed
coordinate system Y for which the intersection V k−1 = V k ∩Mk−1 is non-
empty. For the common part of neighbourhood Uk and V k we have

yj = yj(x1, . . . , xk), j = 1, . . . , k, (4)

from which at x1 = 0 we obtain

yj = yj(0, x2, . . . , xk), j = 2, . . . , k. (5)

From differentiability of relations (4) one obtains the differentiability of
relation (5). Furthermore, from the relation y1(0, x2, . . . , xk) = 0 we get
(for Uk−1 ∩ V k−1)

∂(y1, . . . , yk)

∂(x1, . . . , xk)
=
∂y1

∂x1

∂(y2, . . . , yk)

∂(x2, . . . , xk)
; (6)
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herewith, since the left-hand side is non-zero, we get
∂(y2, . . . , yk)

∂(x2, . . . , xk)
6= 0.

If the system X is orienting for the neighbourhood Uk, then we may take

x2, . . . , xk to be the orienting system for Uk−1. Because
∂y1

∂x1
> 0 then from

positivity of
∂(y1, . . . , yk)

∂(x1, . . . , xk)
we obtain the positivity of

∂(y2, . . . , yk)

∂(x2, . . . , xk)
. Thus,

the boundary of a smooth orientable manifold gets a natural orientation.
С) Let a be a point of a smooth manifold Mk. Each coordinate system

defined in a neighbourhood Uk of the point a belonging to the preassigned
class is called a local coordinate system at the point a. Obviously, each
point a of the manifold Mk can be treated as a base point of some local
coordinate system. By a vector (countervariant) on the manifoldMk at a we
mean a function associating with each local corrdinate system at a a system
of k real numbers called vector components with respect to this coordinate
system, in such a way that the components u1, . . . , uk and v1, . . . , vk of the
same vector seen from two coordinate systems x1, . . . , xk and y1, . . . , yk

are connected by the relation

vj =

k∑

i=1

∂yj(a)

∂xj
ui. (7)

Obviously, the vector is uniquely defined by its components given in one
local coordinate systems. Defining linear operations over vectors as linear
operations over their components, we define the k-dimensional vector space
structure Rk

a on the set of all vectors on the manifold Mk at the point
a; this space is called tangent to the manifold Mk at the point a. With
each local coordinate system at the point a one associates a basis in the
tangent space, where all vectors have the same components as with respect
to the coordinate system. If a point a belongs to the boundary Mk−1 of the
manifold Mk, then besides the tangent space Rk

a, one also defines the space
Rk−1

a tangent to the manifold Mk−1. Take the parameters x2, . . . , xk to
be local coordinates for Mk−1 (see sect. «B») and associate with the vector
from Rk−1

a having components u2, . . . , uk the vector from Rk−1
a having

components 0, u2, . . . , uk; thus we obtain a natural embedding of the space
Rk−1

a to Rk
a.

Smooth mappings

D) LetMk andN l be twom-smooth manifolds and let ϕ be a continuous
mapping of the first manifold to the second manifold. At the point a ∈Mk,
choose a local coordinate system X ; at the point b = ϕ(a) ∈ N l choose a
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local coordinate system Y ; then in the neighbourhood of the point a the
mapping ϕ will look as

yj = ϕj(x1, . . . , xk), j = 1, . . . , l. (8)

If the function ϕ is n times continuously differentiable, n 6 m, then it
will be n times continuously differentiable for any other choice of local
coordinates; thus, one may speak of the n-smoothness class of the mapping
ϕ. Later on, while speaking of smooth mapping, we shall always assume

that n is sufficiently large. If the rank of the matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥ at the point a

equals k, then the mapping ϕ is called regular at a. It is easy to see that if
the point a belongs to the boundary Mk−1 of the manifold Mk, then from
the regularity of the mapping ϕ at a follows its regularity at the point a
of the manifold Mk−1. If the mapping ϕ is regular at each point a ∈ Mk,
then it is called regular. It is easy to check that if the mapping ϕ is regular
at a, then it is regular and homeomorphic in some neighbourhood of the
point a. A regular homeomorphic mapping is called a smooth embedding.
The mapping ϕ is called proper at the point a ∈ Mk, if the rank of the

matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥ , j = 1, . . . , l; i = 1, . . . , k, equals l. It is easy to see

that the set of all nonproper points of the mapping ϕ is closed in Mk. A
point b ∈ N i is called proper for the mapping ϕ if the mapping ϕ is proper
at any point of the set ϕ−1(b) ⊂Mk. The point a is a singular point of the
mapping f if it is non-regular and nonproper at the same time, i.e. if the

rank of the matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥ , j = 1, . . . , l; i = 1, . . . , k, is less than any of k

and l.
E) Each smooth mapping ϕ of a smooth manifold Mk to a smooth

manifoldN l induces at each point a ∈Mk a linear mapping ϕa of the vector
space Rk

a tangent to the manifold Mk at a, to the vector space Rl
0 tangent

to N l at b = ϕ(a). Namely, if the local coordinate systems at points a and
b, are X and Y , respectively, then to the vector u ∈ Rk

a with components
u1, . . . , uk in the system X one associates the vector v = ϕa(u) ∈ Rl

0 with
components

vj =

k∑

i=1

∂ϕj(a)

∂xi
ui, j = 1, . . . , l, (9)

in the coordinate system Y . It is not easy to see that this correspondence
is well defined, i.e. for any choice of local coordinate it results in one and
the same mapping ϕa. If the mapping ϕ is regular at a, then the mapping
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ϕa is one-to-one and defines an embedding of the same Rk
a into Rl

b. If ϕ is
proper at a, then ϕa(Rk

a) = Rl
b.

Definition 2. A smooth mapping ϕ of class n from an m-smooth
manifold Mk onto the smooth m-manifold Nk, m > n, is called smooth
homeomorphism if it is regular. Obviously, if the mapping ϕ is a smooth
homeomorphism of class n then the inverse mapping ϕ−1 is also a smooth
homeomorphism of class n. Two manifolds are called smoothly isomorphic
if there exists a smooth homeomorphism from one manifold onto the other.

Certain ways of constructing smooth manifolds

F) Let P r be a subset of a smooth manifold Mk of class m, defined
in the neighbourhood of any point belonging to it by a system of k—r
independent equation. This means that for each point a ∈ P r there exists
a neighbourhood Uk in the manifold Mk with local system X that the
intersection P r ∩ Uk consists of all points with coordinates satisfying the
equations

ψj(x1, . . . , xk) = 0, j = 1, . . . , k − r. (10)

Herewith we assume that the function ψj is m times smoothly differentiable

and the functional matrix

∥∥∥∥
∂ψj(a)

∂xi

∥∥∥∥ , j = 1, . . . , k − r; i = 1, . . . , k, has

rank k−r; if a is a boundary point of the manifold Mk then we assume that

the reduced functional matrix

∥∥∥∥
∂ψj(a)

∂xi

∥∥∥∥ , j = 1, . . . , k − r; i = 2, . . . , k

has rank k − l. With the conditions above, the set P r turns out to have a
natural smooth r-dimensional m-smooth manifold structure; this manifold
is smoothly embedded into Mk. Such a manifold P r is called a submanifold
of the manifold Mk. Furthermore, it turns out that the boundaries P r−1

and Mk−1 of the manifolds P r and Mk enjoy the relation

P r−1 = P r ∩Mk−1, (11)

and if a ∈ P r−1 andRk
a, Rk−1

a , Rr
a, Rr−1

a are tangent spaces to the manifolds
Mk, Mk−1, P r, P r−1 at the point a, then

Rr−1
a = Rr

a ∩Rk−1
a . (12)

Here the spaces Rk−1
a , Rr

a, Rr−1
a are considered as subspaces of Rk

a (see
«С» and «E»).

To prove that P r is an r-dimensional manifold and to define the differ-
entiable structure on it, we change, if necessary, the enumeration of coor-

dinate for the Jacobian

∣∣∣∣
∂ψj(a)

∂xi

∣∣∣∣ , j = 1, . . . , k − r; i = r + 1, . . . , k to



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

§ 1. Smooth manifolds 9

be non-zero; in the case of boundary point we may not change the number
of the coordinate x1. Then the system (10) will be uniquely resolvable in
variables x1, . . . , xk:

xi = f i(x1, . . . , xr), i = r + 1, . . . , k. (13)

In the case of boundary point, the coordinate x1 is not among the indepen-
dent variables. The functions f i are defined, m times continuously differen-
tiable in some domain W r of the half-space Er

0 in variables x1, . . . , xr and
define a homeomorphic mapping of this domain onto some neighbourhood
U r of the point a in P r. Thus we have proved that P r is an r-dimensional
manifold. The differentiability for the neighbourhood U r is defined by co-
ordinates x1, . . . , xr.

The natural inclusion of the manifold P r in the manifold Mk is given
in U r by relations

xi = xi, i = 1, . . . , r;

xi = f i(x1, . . . , xr), i = r + 1, . . . , k,
(14)

where the parameters x1, . . . , xr on the right-hand sides are thought to be
coordinates in U r and the parameters x1, . . . , xr on the left-hand side be
the coordinates in Uk. The relation (11) is evident. Now, let a ∈ P r−1;
let us prove the relation (12). To local coordinates X , there correspond a
certain basis e1, . . . , ek in Rk

a; the basis of the spaceRk−1
a consists of vectors

e2, . . . , ek; the basis of the space Rk
a consists of vectors ei +

∑k
j=r+1

∂f j

∂xi
ej ,

i = 1, . . . , r; finally, the basis of the space Rr−1
a consists of the same

vectors except for the first one. Considering these bases, we easily get to
the relation (12).

To prove the compatibility of the coordinate systems we constructed for
P r consider together with the point a, another point b ∈ P r with local coor-
dinates Y and neighbourhoods V k and V r analogous to the neighbourhoods
Uk and U r. The relations analogous to (13), will look like

yi = gi(y1, . . . , yr), i = r + 1, . . . , k. (15)

Suppose that U r and V r have a non-empty intersection. Then Uk and V k

also have a non-empty intersection; let

yi = yi(x1, . . . , xk), i = 1, . . . , k; (16)

xi = xi(y1, . . . , yk), i = 1, . . . , k, (17)

be the coordinate changes from X and Y and back. Substituting
xr+1, . . . , xk from (13) for (16), we get for the first r variables y
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yi =
∗

yi(x1, . . . , xr), i = 1, . . . , r. (18)

In the same way substituting yr+1, . . . , yk from (15) for (17) we get

xi =
∗

xi(y1, . . . , yr), i = 1, . . . , r. (19)

The coordinate changes (18) and (19) are m times continuously differen-
tiable; since they are inverse to each other, their Jacobians are both non-
zero.

This completes the proof of Statement «F».
G) Let Mk be a smooth manifold of classm > 2 and let L2k be the set of

all tangent vectors to it (see «С»), i.e. pairs of type (a, u), where a ∈Mk,
u ∈ Rk

a. The set L2k naturally turns out to be a 2k-dimensional manifold
of class m− 1 according to the following construction. Let Uk be a certain
neighbourhood in the manifold Mk with local coordinate system X . By
U2k, denote the set of all pairs (x, u) ∈ L2k satisfying the condition x ∈ Uk.
Take the set U2k to be the neighbourhood in L2k; the fixed coordinate
system in it is constructed as follows. Let x1, . . . , xk be the coordinates of
the point x in the system X and let u1, . . . , uk be the components of the
vector u in the local coordinate system X ; then the coordinates of the pair
(x, u) are defined to be the numbers

x1, . . . , xk, u1, . . . , uk. (20)

If V k is a neighbourhood in Mk (possibly coinciding with Uk) with a
fixed system Y , for which x ∈ V k and the coordinates of the pair (x, u) in
the neighbourhood V 2k defined by Y are

y1, . . . , yk, v1, . . . , vk, (21)

then the coordinate change from (20) to (21) is, evidently, given by the
relation

yj = yj(x1, . . . , xk), j = 1, . . . , k; (22)

vj =
k∑

i=1

∂yj

∂xi
ui, j = 1, . . . , k (23)

[see (9)]. These relations are m − 1 times differentiable and have the Ja-

cobian equal to

∣∣∣∣
∂yj

∂xi

∣∣∣∣
2

; this Jacobian is, evidently, positive. Since the

neighbourhoods of type U2k cover L2k, the described construction turns
L2k into a smooth manifold of class m− 1.
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Н) Let Rk be a vector space of dimension k. By a ray u∗ in Rk passing
through the vector u 6= 0 we mean the set of all vectors tu where t is
some positive real number. Fix some basis for Rk and denote by Rk−1

i

the coordinate hyperplane ui = 0. If the ray u∗ does not lie in Rk−1
i , then

there exists a unique vector u on it satisfying the condition |ui| = 1; call this
vector the basic vector with respect to the plane Rk−1

i . The set of all rays
for which the basic vector with respect to Rk−1

i satisfies ui = +1 or ui =
−1, denote by Uk−1

i1 or, by Uk−1
i2 , respectively. For coordinates of the ray

u∗ ∈ Uk−1
ip , p = 1, 2, we take the components u1, . . . , ui−1, ui+1, . . . , uk

of the basic vector u of this ray with respect to Rk−1
i . Since the system of

all sets Uk−1
ip covers the set Sk−1 of all rays, the set Sk−1 becomes a smooth

manifold evidently homeomorphic to the (r − 1)-sphere.
I) Let Mk be a smooth manifold of class m. Linear element

manifold of it is the set L2k−1 of all pairs (x, u∗), where x ∈ Mk,
and u∗ is a ray in Rk

x; the natural differential structure is defined ac-
cording to the following construction. Let Uk be a neighbourhood
in Mk with a fixed system X . In the vector space Rk

x tangent to
Mk at x ∈ Uk we have a basis corresponding to the local system X ;
thus, in the set Sk−1

x of rays of the space Rk
x we have domains Uk−1

ip,x

(see «H») endowed with coordinate systems. By U2k−1
ip denote the

set of all pairs (x, u∗) satisfying the condition x ∈ Uk, u∗ ∈ Uk−1
ip,x ,

where the coordinates of the pair (x, u∗) in U2k−1
ip are taken to be the

numbers

x1, . . . , xk, u1, . . . , ui−1, ui+1, . . . , uk, (24)

where x1, . . . , xk are the coordinates of x in the system X , and
u1, . . . , ui−1, ui+1, . . . , uk are the coordinates of the ray u∗ in Uk−1

ip,x . It

can be easily checked that the system of neighbourhoods U2k−1
ip covers

L2k−1 and that the introduced coordinate systems are compatible with
each other; thus L2k−1 is a (2k − 1)-dimensional smooth manifold of class
m− 1.

J) Let Mk and N l be two smooth manifolds of class m; suppose Mk has
empty boundary. The direct product (Cartesian product) P k+l = Mk×N l,
i.e. the set of all pairs (x, y), where x ∈ Mk, y ∈ N l, is naturally a
smooth manifold of class m according to the following construction. Let
Uk and V l be arbitrary coordinate neighbourhoods in the manifolds Mk

and N l with coordinate systems X and Y . Consider the set Uk × V l ⊂
Mk × N l as the coordinate neighbourhood in the manifold P k+1: here
the coordinates of the point (x, y) ∈ Uk × V l are set to be the numbers
x1, . . . , xk, y1, . . . , yl, where x1, . . . , xk are the coordinates of the point x
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in the system X and y1, . . . , yl are the coordinates of y with respect to Y .
It follows from a straightforward check that the coordinate neighbourhood
system constructed above defines in P k+l a smooth structure of class m.
IfMk andN l are orientable manifolds and the systemsX and Y correspond
to the orientations of these manifolds, we define the orientation of P k+l

by the system X , Y . Herewith, the Cartesian product acquires a natural
orientation. If N l−1 is the boundary of the manifold N l, then the boundary
of the manifold Mk ×M l turns out to be Mk ×M l−1.

К) Let Ek+l be a vector space of dimension k+ l and let G(k, l) be the
set of all k-dimensional vector subspaces of it. The set G(k, l) is a smooth
(even analytic) manifold with respect to the following construction. Let
Ek

0 ∈ G(k, l) and let e1, . . . , ek, f1, . . . , fl be a basis of the space Ek+l

such that the vectors e1, . . . , ek lie in Ek
0 . Denote the linear span of vectors

f1, . . . , fl by El. Denote by Ukl the set of all vector subspaces Ek ∈ G(k, l)
the intersection of which with El consists of only the origin of coordinates.
If Ek ∈ Ukl then there exists a basis e′1, . . . , e

′
k of the vector space Ek

defined by the relations

e′i = ei +
i∑

j=1

xj
ifj , i = 1, . . . , k,

where
∥∥∥xj

i

∥∥∥ is a real number matrix. Consider the elements xj
i , i =

1, . . . , k, j = 1, . . . , l, of this matrix as coordinates of the element Ek

in the coordinate neighbourhood Ukl. It can be checked straightforwardly
that the set of coordinate neighbourhoods of type Ukl defines an analytic
structure in G(k, l); this G(k, l) is an analytic manifold of dimension kl.

§ 2. Embedding of a manifold into Euclidean space

In the present subsection we show that any compact k-dimensional
smooth manifold of classm > 2 can be regularly homeomorphically mapped
into the Euclidean space R2k+1 of dimension 2k + 1 and can be regularly
mapped into R2k; here the smoothness class of these mappings equals m.
These statements in a stronger form, i.e. for m > 1 and without compact-
ness assumptions, were proved by Whitney [5]; the proof given below is
somewhat easier.

In the proof, we shall rely on the following quite elementary Theorem 1.
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Smooth mapping of a manifold to a manifold of larger dimension

Theorem 1. Let Mk and N l be two smooth manifolds of dimensions
k and l, respectively, where k < l, and let ϕ be a smooth mapping of class
1 of the manifold Mk to the manifold N l. It turns out that the set ϕ(Mk)
has the first category in N1, i.e. it can be represented as a sum of countably
many nowhere dense sets in N l. In particular, if the manifold Mk is com-
pact, then the set ϕ(Mk) is compact as well; thus N l \ ϕ(Mk) is a domain
everywhere dense in N l.

Proof. Suppose a ∈ Mk, let b = ϕ(a), V i
b be some coordinate neigh-

bourhood of the point b in N l and let Uk
a be such a coordinate neighbour-

hood of the point a in Mk that ϕ(Uk
a ) ⊂ V l

b . Choose neighbourhoods Uk
a1

and Uk
a2 of the point a in Mk such that U

k

a1 ⊂ Uk
a , U

k

a2 ⊂ Uk
a1 and such

that the set U
k

a1 is compact. The domains U
k

a2, a ∈Mk, cover the manifold
Mk. From this cover, one can take a countable subcover; thus, in order to
prove the theorem it suffices to show that for any arbitrary choice of the

point a from Mk, the set ϕ(U
k

a2) is nowhere dense in V l
b . Since the domain

Uk
a is the homeomorphic image of a domain of the Euclidean subspace Ek

0 ,
we shall assume that Uk

a2 itself is a domain of the subspace Ek
0 . In the

same way, we assume that V l
b is a domain of the Euclidean subspace El

0.
Thus the mapping ϕ can be treated as a smooth mapping of class 1 from a
domain Uk

a to the Euclidean space El; thus it suffices to show that the set

ϕ(U
k

a2) is nowhere dense in El. Let us prove this.

The smoothness of ϕ and compactness of the mapping U
k

a1 result in the
existence of a positive constant c such that for any two arbitrary points x

and x′ from U
k

a1, the inequality

ρ(ϕ(x), ϕ(x′)) < cρ(x, x′) (1)

holds. Chose some ε-cubature of the Euclidean subspace Ek
0 , i.e. tile the

subspace Ek
0 into right-angled cubes with edge ε. Denote the set of all cubes

intersecting U
k

a2 by Ω. As the set U
k

a2 is compact and hence is bounded
by a rather large cube, the number of cubes in Ω does not exceed c1/ε

k

where c1 is some positive constant independent of ε. Let δ be the distance

between the sets Ek
0 \Uk

a1 and U
k

a2. Suppose that the diagonal length ε
√
k

of each cube from Ω is less than δ. Then each cube Ki from Ω lies in the
domain Uk

a1 and, by virtue of (1), the set ϕ(Ki) is contained in some cube
Li of the space El with edge length c

√
k · ε; the volume of the latter cube

equals clkl/2 · εl−k. Thus the whole set ϕ(U
k

a2) is contained in the union
of cubes Li, whose number does not exceed c1/ε

k; thus the total volume
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of the set ϕ(U
k

a2) does not exceed the number c1c
lkl/2 · εl−k. Since ε is

chosen arbitrarily small, from above it follows that the set ϕ(U
k

a2) does not
contain any domain and, being compact, it should be nowhere dense in El.

Thus, Theorem 1 is proved.

The projection operation in the Euclidean space

Later on, the projection operation will play a key role. Let Cr be a
vector space and let Bq be its vector subspace. Regarding the space Cr as
an additive group and the space Bq as a subgroup of it, we obtain a tiling
of the space Cr into conjugacy classes according to Bq; these conjugacy
classes form a vector space Ap of dimension p = r − q. Associating with
any element x ∈ Cr the corresponding conjugacy class π(x) ∈ Ap, we get
a linear mapping π of the space Cr onto the space Ap called the projection
along the projecting subspace Bq. More intuitively, the space Ap can be
realized as a linear subspace of dimension p of the space Cr intersecting the
space Bq only in the origin; then the operation π is just the original pro-
jection. If the space Cr is Euclidean, then defining Bq to be the orthogonal
complement to the given space Ap ⊂ Cr, we get an orthogonal projection
π of the space Cr to the subspace Ap.

A) Let ϕ be a smooth mapping of a smooth manifold Mk to some vector
space Cr regular at a point a ∈Mk, and let π be the projection of the space
Cr along the one-dimensional subspace B1 to the space Ar−1. It turns out
that the mapping πϕ from Mk to Ar−1 is not regular at a (see § 1, «D») if
and only if the line ϕ(a)+B1 passing through ϕ(a) parallel to B1 is tangent
to ϕ(Mk) at the point ϕ(a).

To prove this, choose some local coordinates x1, . . . , xk in the neigh-
bourhood of a; endow Cr with rectilinear coordinates y1, . . . , yr such that
the last axis coincides with B1. In the chosen coordinate system, the map-
ping ϕ looks like: yj = ϕ(x1, . . . , xk), j = 1, . . . , r, where the rank of the

matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥, j = 1, . . . , r; i = 1, . . . , k, at the point a, is, by regularity

assumption, equal to k. With each vector u on Mk at a one associates
the vector v = ϕa(u) ∈ Cr, which is tangent to ϕ(Mk) at the point ϕ(a)
and has components v1, . . . , vr [i.e. defined by relations (9) § 1, l = r].
Now, if the mapping πϕ is not regular at the point a, then the rank of

the matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥, j = 1, . . . , r − 1, i = 1, . . . , k, is less than k; thus

there exists a vector u 6= 0 such that for the vector v = ϕa(u) we have
v1 = . . . = vr−1 = 0, vr 6= 0; the latter means that v ∈ B1. If, on the
contrary, there exists a vector v = ϕa(u) 6= 0 belonging to B1 then the rank
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of the matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥, j = 1, . . . , r − 1; i = 1, . . . , k is less than k, i.e. the

mapping πϕ is not regular in a.
B) Let ϕ be a smooth regular mapping of class 2 from a smooth manifold

Mk to the vector space Cr of dimension r > 2k, and letBq ∈ ∈ G(q, r−q) be
the subspace of dimension q 6 r − 2k of projection for Cr onto the space
Ap. Denote the projection by π. By Ω′

q we denote the set of all such
projecting spaces Bq for which the mapping πϕ is not regular. It turns out
that the set Ω′

q has first category in the manifold G(q, r−q) of all projecting
directions.

Let (x, u∗) be an arbitrary linear element of the manifold Mk (see § 1,
«I») and let u be some non-zero vector of the ray u∗. To the vector u,
according to (9) § 1, there corresponds the vector v = ϕx(u) 6= 0. The
ray v∗ of the space Cr defined by the vector v depends only on the linear
element (x, u∗), and we set v∗ = Φ(x, u∗). It can be easily checked that the
mapping Φ from the manifold L2k−1 (see § 1, «I») to the manifold Sr−1

(see § 1, «H») has smoothness class one, thus Φ(L2k−1) is of first category
in Sr−1 (since r − 1 > 2k − 1, see Theorem 1). Thus, by virtue of «A», we
get «В» for q = 1.

Applying this construction consequently, we get the proof of the state-
ment «B» for any arbitrary q 6 r − 2k.

C) Let ϕ be a smooth of class one one-to-one mapping from the smooth
manifold Mk to the vector space Cr and let Bq ∈ G(q, r − q) be the pro-
jecting subspace of the dimension q 6 r − 2k − 1. Denote the projection
by π. By Ω′′

q , denote the set of all projecting subspaces Bq such that the
mapping πϕ is not one-to-one. It turns out that Ω′′

q has first category in
the manifold G(q, r − q).

Let x and y be two arbitrary different points of the manifolds Mk. By
Φ′(x, y) denote the ray consisting of all vectors of the type t(ϕ(y)− ϕ(x)),
where t is a positive number. Thus we get a mapping Φ′ from the manifold
M2k of all ordered pairs (x, y), x 6= y, to the manifold Sr−1 of all rays of the
space Cr. In the manifold M2k one naturally introduces differentiability,
and it can be easily checked that the mapping Φ′ is smooth of class 1. Thus,
Φ′(M2k) turns out to be of first category in Sr−1 (see Theorem 1), from
which follows «C» for q = 1. Applying this construction consequently we
get the proof of «C» for arbitrary q 6 r − 2k − 1.

From «B» and «C» one straightforwardly gets
D) Let ϕ be a smooth one-to-one regular mapping of class 2 of a smooth

manifold Mk to the vector space Cr and let Bq ∈ G(q, r − q) be the pro-
jecting space of dimension q 6 r − 2k − 1. Denote the projection mapping
by π, and denote by Ωq the set of all projecting spaces Bq such that the
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mapping πϕ is not one-to-one and regular. Since Ωq = Ω′
q ∪Ω′′

q Ωq has first
category in the manifold G(q, r − q).

The embedding theorem

E) Let ϕ1, . . . , ϕn be smooth (of class m) mappings of the smooth
manifold Mk to vector spaces C1, . . . , Cn, respectively. Denote by C the
direct sum of the spaces C1, . . . , Cn consisting of all systems [u1, . . . , un],
with ui ∈ Ci. Define the direct sum ϕ of mappings ϕ1, . . . , ϕn by ϕ(x) =
[ϕ1(x), . . . , ϕn(x)], x ∈ Mk. It is easy to see that ϕ is an m-smooth
mapping of the manifold Mk to C. It can be easily checked that if at least
one mapping ϕ1, . . . , ϕn is regular in a ∈ Mk then so is ϕ. Furthermore,
it can be easily checked that if two points a and b from Mk are mapped to
different points by one of the mappings ϕ1, . . . , ϕn then they have different
images under ϕ.

Theorem 2. Let Mk be a smooth compact manifold of class m > 2.
There exists a smooth embedding of class of the manifold Mk into a finite-
dimensional Euclidean space.

Proof. Denote by κ(t) some real function in the real variable t, which
is infinitely differentiable and satisfies the following properties:

κ(t) = 1 for |t| 6 1/2; κ(t) = 0 for |t| > 1;

for −1 6 t 6 −1/2 the function κ(t) monotonously increases; for 1/2 6

t 6 1, the function κ(t) monotonously decreases. Such a function can be
easily constructed.

Set
κi(t1, t2, . . . , tk) = ti · κ(t1) · κ(t2) . . .κ(tk),

for i = 1, . . . , k and

κk+1(t1, t2, . . . , tk) = κ(t1) · κ(t2) . . .κ(tk).

Let Rk be the Euclidean space with Cartesian coordinates t1, . . . , tk and
let Rk+1 be the Euclidean space with Cartesian coordinates y1, . . . , yk+1.
Denote by Q the cube in the space Rk defined by the inequalities |ti| < 2,
denote by Q′ the cube of the same space defined by the inequalities |ti| < 1
and by Q′′ the cube defined as |ti| < 1/2. By Q0 we denote the half-cube
cut out from the cube Q by the inequality t1 6 0. Now, define the mapping
from Rk to the space Rk+1 by the relations

yj = κj(t1, t2, . . . , tk), j = 1, . . . , k + 1. (2)
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It can be easily checked that this mapping is infinitely differentiable, maps
the set Rk \Q′ to the coordinate origin of the space Rk+1, its restriction to
the cube Q′ is a continuous and one-to-one mapping and its restriction to
the cube Q′′ is regular.

Now, let a be an arbitrary point of Mk and Uk
a be some coordinate

neighbourhood of it endowed with a coordinate system X having origin at
a; finally, let ε be a small positive number such that under the mapping

ti = xi

ε , i = 1, . . . , k, (3)

of the neighbourhood Uk
a to the space Rk the image of this neighbourhood

covers the whole cube Q, whence a is an interior point of Mk or the whole
half-cube Q0, whence a is a boundary point of Mk. Denote the pre-images
of the cubes Q′ and Q′′ under this mapping by Q′

a and Q′′
a, respectively.

Define the mapping ϕa of the manifold Mk to the Euclidean space Rk+1

by

yj = κj(x
1

ε ,
x2

ε , . . . ,
xk

ε )

for the point x ∈ Uk
a with coordinates x1, . . . , xk and by yj = 0 for the

point x ∈ ∈ Mk \ Uk
a . It can be easily checked that ϕa is an m-smooth

mapping of Mk to Rk+1, which is homeomorphic on Q′
a and regular on Q′′

a.
Selecting among neighbourhoods Q′′

a a finite cover Q′′
a1
, . . . , Q′′

an
of the

manifold Mk and taking the direct sum of mappings corresponding to these
cubes, ϕa1 , . . . , ϕan

(see «E»), we get the desired mapping ϕ of the mani-
fold Mk to a finite-dimensional Euclidean space.

From the statements proved above the theorem formulated earlier, fol-
lows straightforwardly. Indeed, the manifold Mk can be regularly and
homeomorphically embedded into a vector space C of rather high dimension
(see Theorem 2). Furthermore, in the space Cr there exists such a project-
ing direction Br−2k−1, such that the obtained projection of the manifold
Mk to the space A2k+1 is regular and homeomorphic (see «D»). In the
same way, in the space Cr there exists a projecting direction Br−2k such
that the projection of the manifold Mk to the space A2k is regular (see
«В»). Below we prove a stronger Theorem 3 showing that for any smooth
mapping of a manifold Mk to a Euclidean space C2k+1 there exists an ar-
bitrarily close regular and homeomorphic mapping of the same manifold,
and for any smooth mapping of Mk to the Euclidean space C2k there exists
an arbitrarily close regular mapping. For the precise formulation of Theo-
rem 3, one needs to introduce the notion of m-neighbourhood for mappings,
taking into account all derivatives up to order m, inclusively.

First note that if f is a smooth mapping of the domain W k of the
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Euclidean half-space Ek
0 to a vector space Cr then the partial derivatives

of the vector function f(x) = f(x1, . . . , xk) are vectors of the space Cr.
F) Let Mk be an m-smooth compact manifold and El be a vector space,

P be the set of all m-smooth mappings of the manifold Mk to the space
El. Introduce the topology for P by setting a metric depending on an
arbitrary choice of some constructed elements. Let Us, Vs, s = 1, . . . , n, be
a finite set of coordinate domains of the manifold Mk such that the domains
Us, s = 1, . . . , n, cover Mk and the inclusions Us ⊂ Vs, s = 1, . . . , n
hold, wherever in each domain Vs a preassigned coordinate system Xs is
chosen. Furthermore, let Y be a Cartesian coordinate system of the space
El. Define the distance ρ(f, g) between two mappings f and g from P
(depending on the choice of Us, Vs, coordinate systems Xs, s = 1, . . . , n,
and the coordinate system Y ). To do this, let us write the mappings f and
g of the domain Vs in coordinate form by setting

yj = f j
s (x) = f j

s (x1, . . . , xk), (4)

yj = gj
s(x) = gj

s(x
1, . . . , xk). (5)

Let i1, . . . , ik be a set of non-negative integers with sum not exceeding m.
Set

ωj
s(x; i1, . . . , ik) =

∣∣∣∣∣
∂i1+ . . . +ik(f j

s (x) − gj
s(x))

(∂x1)i1 . . . (∂xk)ik

∣∣∣∣∣ .

Denote the maximum of the function ωj
s(x; i1, . . . , ik) in the variable x at

x ∈ Us by ωj
s(i1, . . . , ik), and define the distance ρ(f, g) between f and

g to be the supremum of all numbers ωj
s(i1, . . . , ik), where i1, . . . , ik, s,

j run over all admissible values. It can be easily checked that the topol-
ogy of the space P does not depend on the arbitrary choice of the system
of Us, Vs, s = 1, . . . , n, and coordinate systems Xs, s = 1, . . . , n, Y .
The topological space P is called the class m mapping space of the man-
ifold Mk to the space El. The statement that for the map f there is an
arbitrary close map enjoying some property A means that in any neigh-
bourhood of the point f in the space P there exists a map enjoying the
property A.

Theorem 3. Let Mk be a class m > 2 smooth k-dimensional compact
manifold, let Ap be a vector space of dimension p and let P be the class
m mapping space from the manifold Mk to the space Ap. The set of all
regular mappings from the set P denoted by Π′; denote the set of all regular
and homeomorphic maps belonging to P by Π. It turns out that the sets
Π′ and Π are domains in the space P . Furthermore, if p > 2k then the
domain Π′ is everywhere dense in P and if p > 2k + 1 then the domain Π
is everywhere dense in P .
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Proof. First, show that the sets Π′ and Π are everywhere dense
in the space P for the values of p indicated in the theorem. Let f ∈
P and let e be a class m regular and homeomorphic mapping of the
manifold Mk to a vector space Bq of sufficiently large dimension (see
Theorem 2). Denote the direct sum of the vector spaces Ap and Bq by
Cr; here we assume the spaces Ap and Bq to be linear subspaces of the
space Cr. The mapping h, being a direct sum of the mappings f and e
(see «E») is regular and homeomorphic, and its projection to Ap along Bq

coincides with the mapping f . By virtue of statements «B» and «D», in
any neighbourhood of the projecting direction Bq there exists a project-
ing direction Bq

1 such that the projection g of the mapping h is regular
if p > 2k; it is regular and homeomorphic if p > 2k + 1. Thus, for a
given map f there exists an arbitrarily close map g enjoying the desired
properties.

Let us show that Π′ is a domain. Let f ∈ Π′. Since the map-

ping f is regular at x ∈ Us the rank of the matrix

∥∥∥∥
∂f j

s

∂xi

∥∥∥∥ at this

point equals k (see § 1, «F»). Consequently, the rank of a matrix close

to the matrix

∥∥∥∥
∂f j

s

∂xi

∥∥∥∥ also equals k. Thus, there exists such a small

positive number ε′ such that for ρ(f, g) < ε′ the mapping g is regu-
lar at the point x. Since the first derivatives of the functions f j

s (x)
are continuous and the sets Us are compact and one can choose a fi-
nite number of them to cover Mk, there exists a small positive num-
ber ε such that for ρ(f, g) < ε, the mapping g is regular at each
point x ∈Mk.

To prove that Π is a domain, first note the following:
a) In the set Q of all linear mappings of the Euclidean vector space Ek

to the Euclidean vector space Ap, let us introduce the metrics according to
some coordinate systems X and Y in these spaces. Let ϕ and ψ be elements
from Q written in coordinates as

yj =

k∑

i=1

ϕj
ix

i, j = 1, . . . , p;

yj =

k∑

i=1

ψj
i x

i, j = 1, . . . , p.

Define the distance ρ(ϕ, ψ) as the maximum of |ϕi
j − ψi

j |. It turns out
that for any compact set F of non-degenerate mappings there exists a small
positive δ such that for ρ(F, ψ) < δ we have
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|ψ(x)| > δ · |x|,
where x is an arbitrary vector from Ek.

Taking into account the continuity, one easily proves this statement by
reductio ad absurdum.

Let f ∈ Π. It turns out that there exist small numbers δ and ε such
that for ρ(f, g) < ε (see «F») the equality

ρ(g(a), g(x)) > δρ(f(a), f(x)) (6)

holds; here a and x are two arbitrary points from Mk.
Indeed, when ρ(f(a), f(x)) < α, where α is a positive constant the

mappings f and g in the neighbourhood of a are very exactly approximated
by linear ones, herewith this can be done uniformly with respect to a ∈Mk.
In this case the inequality (6) easily follows from statement «A». In the
case when ρ(f(a), f(x)) > α, the inequality (6) follows from the bijectivity
of f for ε being reasonably small. From inequality (6) and the bijectivity
of f one gets the bijectivity for any map g reasonable close to f .

Thus, Theorem 3 is proved.

§ 3. Nonproper points of smooth maps

First, recall the definition of nonproper point for a map (see § 1, «D»).
Let ϕ be a smooth mapping from a manifold Mk to a manifold N l. A
point a of the manifold Mk is called nonproper for the mapping ϕ if the
functional matrix of the mapping ϕ at the point a has rank strictly less than
l. A point b of the manifold N l is called nonproper with respect to ϕ if the
whole pre-image ϕ−1(b) of this point contains at least one nonproper point
a ∈Mk of ϕ. Thus, one should distinguish between nonproper points of ϕ
in Mk and nonproper points of ϕ in N l. If F is the set of all nonproper
points of ϕ in the manifold Mk, then ϕ(F ) is the set of all nonproper
points of the mapping ϕ in the manifold N l. Theorem 4 below due to
Dubovitsky [6] states that the set ϕ(F ) has first category in the manifold
N l, i.e. it can be represented as a countable union of compact sets nowhere
dense in N l. It follows from this that the set N l \ ϕ(F ) of all proper
points of the mapping ϕ in the manifold N l has second category N l, i.e.
«widely spread» and, in any case, everywhere dense. Informally speaking
this can be formulated by saying that the points of the manifold N l are,
in general, proper. Theorem 4 has some important applications in smooth
manifold theory; there are many corollaries saying that in general position
some “good” property obtains. To prove any result of such type one should
properly define the manifolds Mk and N l together with a mapping ϕ. This
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choice can be described by Statement «A» given below: rather general and
thus, not very formal.

General position argument

A) Let Q be a smooth manifold and let P be a set of operations over Q
that constitutes a smooth manifold as well. While performing an operation
p ∈ P over Q some point q ∈ Q can be singular in a certain sense, which
should be clearly described. The pair (p, q), p ∈ P , q ∈ Q is marked if
the point q is singular with respect to the operation p. It is assumed that
the set of all marked pairs (p, q) constitutes a smooth submanifolds Mk

of the manifold P × Q (see § 1, «J», «E»). With each point (p, q) ∈ Mk,
one associates the point ϕ(p, q) = p. Thus one gets a mapping ϕ from the
manifold Mk to the manifold N l = P . If the point p0 ∈ P is a proper point
of the mapping ϕ in the manifold P = N l, then any point q ∈ Q singular
with respect to p0, is in some sense typical, and the set Q0 of all points q of
the manifold Q which are singular with respect to the operation p0 consists
of typical singular points.

There are many applications of the construction «A»; some of them are
to be demonstrated in § 4. A very simple application of the construction
«A» having illustrative character is given below as Statement «B».

B) Let Ar and Bs be two smooth submanifolds of the vector space
En. One says that at a point a ∈ Ar ∩ Bs the manifolds Ar and Bs

are in general position if tangent planes to the manifolds Ar and Bs have
intersection of dimension r + s − n. One says that the manifolds Ar and
Bs are in general position if they are in general position at any common
point. It can be shown straightforwardly that if the manifolds Ar and Bs

are in general position then their intersection Ar ∩Bs is a submanifold of
dimension r+s−n in the space En. Let p ∈ En. Denote by Ar

p the manifold
consisting of all points of type p+ x, where x ∈ Ar. Thus the manifold Ar

p

is obtained from the manifold Ar by shifting along the vector p. It turns
out that the set of all vectors p ∈ En, for which the manifolds Ar

p and Bs

are in general position, is the set of second category in En; thus there exist
an arbitrarily small shift p for which the manifolds Ar

p and Bs are in general
position.

To prove Statement «B», let us use construction «A» by setting Q =
Ar × Bs, P = En and assuming the point q = (a, b) ∈ Ar × Bs to be
singular with respect to the operation p ∈ En if p+ a = b. The set Mk of
all marked pairs (p, q) where p ∈ En, q = (a, b) ∈ Ar × Bs is thus defined
by p = b− a, i.e. the pair (p, q) is uniquely defined by the point q = (a, b);
thus there is a natural smooth homeomorphism of the manifolds Mk and
Ar ×Bs that allows us to identify these manifolds. The mapping ϕ of the
manifold Mk = Ar × Bs to the manifold P = En is defined according
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to the formula ϕ(a, b) = b − a. Simple calculations show that a point
q = (a, b) ∈Mk is a proper point of the map ϕ if and only if the manifolds
Ar

b−a and Bs are in general position at their intersection point b. Thus, the
point p0 ∈ En is a proper point of the mapping ϕ if and only if the manifolds
Ar

p0
and Bs are in general position. From that and from Theorem 4 proved

below, one gets the claim of «B».

The Dubovitsky Theorem

In the formulation of the Dubovitsky theorem, the smoothness class m
of the map ϕ : Mk → N l is defined as m = k − l+ 1 and not as (1), as
given below. In this sense Theorem 4 is weaker than Dubovitsky’s theorem.
Since the exact estimate for the smoothness class m is not important, below
we give a weaker estimate (1), which allows us to simplify the proof.

Theorem 4. Let Mk and N l be two smooth manifolds of positive di-
mensions k and l and let ϕ be an

m = m(k, l) = 2 +
(k − l)(k − l + 1)

2
(1)

class smooth mapping from Mk to N l. It turns out that the set of all
nonproper points of ϕ in the manifold N l is of first category in N l. In
particular, if the manifold Mk is compact then the complement to this set
is an everywhere dense domain in the manifold N l.

Proof. First consider the case when the manifoldMk has no boundary.
Let a ∈ Mk, b = ϕ(a), and let V l

b be some coordinate neighbourhood of
the point b in the manifolds N l; let Uk

a be a coordinate neighbourhood
of the point a in the manifold Mk such that ϕ(Uk

a ) ⊂ V l
b . Let us choose

neighbourhoods Uk
a1 and Uk

a2 of the point a in Mk that U
k

a1 ⊂ Uk
a , U

k

a2 ⊂
Uk

a1 and such that the set U
k

a1 is compact. The domains Uk
a2, a ∈Mk, cover

the manifold Mk. Among them, one can select a finite cover, thus, to prove
the theorem, it suffices to prove it for mappings ϕ from Uk

a2 ⊂ Mk to the
manifold V l

b . Since the domain Uk
a is a homeomorphic image of a domain

in the Euclidean space Ek, we may just assume that Uk
a is a domain in the

space Ek. Analogously, we assume that V l
b is a domain in the Euclidean

space El. From this point of view, ϕ is an m-smooth mapping of the
domain Uk

a to the Euclidean space El, and it suffices to show that the set
of nonproper points has first category in El. Let us do it.

Fix the point a and remove the index a from the notation. The map-
ping ϕ of the domain Uk of Ek to El has the following form in Cartesian
coordinates:

yj = ϕj(x) = ϕj(x1, . . . , xk), j = 1, . . . , l. (2)
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Here the functions ϕj are m times continuously differentiable. By F0 we

denote the set of all points x ∈ Uk
2 where the functional matrix

∥∥∥∥
∂ϕj

∂xi

∥∥∥∥,
i = 1, . . . , k, j = 1, . . . , l has rank less than l. For k < l, Theorem 4
becomes Theorem 1 which has already been proved. Thus we will assume
that k > l. Set s = k− l+1. The function ϕl will play a special role. From
(1) it follows that m > s; thus the function ϕl is s + 1 times continuously
differentiable. Let r be a positive integer less than or equal to s. Denote by
Fr the set of all points from F0, where all the partial derivatives of orders
1, 2, . . . , r of the function ϕl equal zero. Then we evidently have

F0 ⊃ F1 ⊃ . . . ⊃ Fs.

We will show that the images of all sets F0 \ F1, . . . , Fs−1 \ Fs under ϕ
have first category in El. This will prove that the set ϕ(F0) of nonproper
points of the mapping ϕ is of first category in El as well.

First, let us consider the set Fs. The Taylor decomposition for ϕl at
the point p ∈ Fs does not contain terms of degrees 1, 2, . . . , s. From this
and from compactness of the set U1, it follows that there exists a constant
c such that for p ∈ Fs, x ∈ U1 we have

|ϕl(x) − ϕl(p)| < c · (ρ(p, x))s+1. (3)

For the remaining functions ϕj , j = 1, . . . , l− 1, the equalities

|ϕj(x)− ϕj(p)| < cρ(p, x) (4)

hold; they result from the continuity of the first derivatives and the com-
pactness of the set U1. The constant c in inequalities (3) and (4) is common
for all functions ϕj , j = 1, 2, . . . , l. Choose a certain ε-cubature for Ek,
i.e. tile the space Ek into proper cubes with edge length ε, and denote by Ω
the set of all closed cubes of this cubature intersecting the set Fs. Since the

set F s is compact, the number of cubes from Ω does not exceed
c1

εk
, where

c1 is a positive constant independent of ε. Let δ be the distance between
the sets Ek \ Uk

1 and U2. Assume that ε < δ/
√
k; then each cube Kq from

Ω is contained in Uk
1 . From that and from the fact that Kq contains the

point p ∈ Fs, and from inequalities (3), (4) it follows that the set ϕ(Kq)
is contained in some orthogonal parallelepiped Lq of the space El having

one edge length equal to 2c
√
k · εs+1 and the remaining l− 1 edges equal

to 2c
√
k · ε. The volume of this parallelepiped Lq equals 2lclkl/2 · εl+s. The

compact set ϕ(F s) is contained in the sum of closed parallelepipeds of type
Lq; the number of them does not exceed c1/ε

k. It follows that the volume
of the set ϕ(F s) does not exceed c1 · εl+s−k = c2 · ε (c2 does not depend on
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ε). Thus, since ε is chosen arbitrarily small, the compact set ϕ(F s) does
not contain any domain of the space El, thus is nowhere dense in El.

If k = 1, then, since k > l > 1 we have l = 1, s = 1. In this case
Fs = F0, and we arrive at the statement of the theorem for k = 1. This
gives us the induction hypothesis on k. We suppose that the theorem is
true for the case when the source manifold has dimension less than k. Let
us prove the theorem for dimension k.

Let us prove that for 0 6 r < s, the set ϕ(Fr\Fr+1) is of first category in
the space El. This is precisely the part of the proof to be done by induction.
Let p ∈ Fr \ Fr+1. Since p does not belong to the set Fr+1, there exists a
partial derivative of order r + 1 of the function ϕl taking a non-zero value
at p. Denote the value of this derivative at x ∈ Uk by ω1(x). Since ω1(x)
is a derivative of order r + 1 then ω1(x) = ∂ω(x)/∂xi, where ω(x) is the
derivative of order r for r > 0 or the function ϕl(x) itself for r = 0. For
definiteness, assume i = k. Set

zi = xi, i = 1, . . . , k − 1; zk = ω(x) = ω(x1, . . . , xk). (5)

It follows from ∂ω(p)/∂xk 6= 0 that the functional determinant of (5) is
non-zero at p; thus, this transformation introduces in some neighbourhood
W k

p of p new coordinates z1, . . . , zk. We shall assume that W k
p does not

intersect Fr+1 and choose a neighbourhood W k
p1 of the point p such that

its closure W
k

p1 is compact and is contained in W k
p . By varying the point

p, we can cover the set Fr \Fr+1 by a countable system of neighbourhoods
of type W k

p1. Thus, to prove that the set ϕ(Fr \Fr+1) has first category, it

is sufficient to show that ϕ(Fr ∩W
k

p1) is nowhere dense in El. Let us prove
this fact.

Let us fix the point p and omit the index p in the notation. Substi-
tuting in (2) the expressions x1, . . . , xk in terms of z1, . . . , zk, we get the
expression for ϕ in coordinates z1, . . . , zk for the domain W k. Suppose
this expression looks like

yj = ϕj(x) = ψj(z1, . . . , zk). (6)

Here z1, . . . , zk are the new coordinates of the point x. Consider the
domain W k with coordinates z1, . . . , zk as a smooth manifold. It fol-
lows from (5) that the mapping ϕ from W k to the space El given by
(6) has smoothness type m(k, l)− r. For r = 0 the smoothness class of
the map ϕ equals m(k, l) = m(k − 1, l − 1) [see (1)]. Choosing for r > 0
the worst estimate for the smoothness class, that is, r = s − 1 = k − l,
we see that for r > 0 the smoothness class of the considered map ϕ
equals m(k, l) − (k − l) = m(k − 1, l) [see (1)]. The set H ⊂ W k
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of all nonproper points of the mapping ϕ in the manifold W k is de-
fined by H = W k ∩ F0. This follows from the non-degeneracy of (5)
at W k. Denote by W k−1

t the submanifold of the manifold W k defined
by the equation zk = t. Note that the smoothness class of the map-
ping from W k−1

t to El equals m(k − 1, l − 1) for r = 0 and it equals
m(k − 1, l) for r > 0. Let us consider the cases r = 0 and r > 0 sepa-
rately.

Assume r = 0. Then ω(x) = ϕl(x) = zk. Thus, the expression (6) for
the mapping ϕ turns into

yj = ψj(z1, . . . , zk), j = 1, . . . , l − 1; yl = zk. (7)

Denote by El−1
t the linear subspace of the space El defined by the equation

yl = t. It follows from the relations (7) that ϕ(W k−1
t ) ⊂ El−1

t . Denote
by Ht ⊂ W k−1

t the set of all nonproper points of the mapping ϕ from the
manifold W k−1

t to the space El−1
t . It follows from the relations (7) that

Ht = H ∩ W k−1
t . If the set ϕ(F0 ∩ W

k

1) contained a domain, then there
would exist a value t such that the intersection ϕ(F0 ∩ W

k

1) ∩ El−1
t would

contain a domain in El−1
t . However, this is impossible because

ϕ(F0 ∩ W
k

1) ∩ El−1
t ⊂ ϕ(H) ∩ El−1

t = ϕ(H ∩ W k−1
t ) = ϕ(Ht),

and the set ϕ(Ht) has first category in El−1
t according to the induction

assumption. Thus, the set ϕ(F0 ∩ W
k

1) is nowhere dense in El; the case
r = 0 is discussed completely.

Now assume r > 0. Then ω(x) is a derivative of order r of the func-
tion ϕl; thus ω(x) = 0 for x ∈ Fr. Since for the neighbourhood W k we
have ω(x) = zk then

Fr ∩ W k ⊂ W k−1
0 . (8)

Let H ′ ⊂ W k−1
0 be the set of all nonproper points of the mapping ϕ :

W k−1
0 → El. It is easy to see that H ∩ W k−1

0 ⊂ H ′ [see (6)] and, since
Fr ∩ W k

1 ⊂ H then it follows from (8) that Fr ∩ W k
1 ⊂ H ′. By virtue

of the induction hypothesis, the set ϕ(H ′) has first category in El. Since
Fr ∩ W k

1 ⊂ H ′ the set ϕ(Fr ∩ W k
1 ) is nowhere dense in El. Thus we have

completed the proof for the case r > 0.
Thus, Theorem 4 is proved when Mk has no boundary.
Finally, suppose the manifold Mk has a non-empty boundary Mk−1.

Suppose F ′ ⊂ Mk−1 is the set of all nonproper points of the mapping
ϕ : Mk−1 → N l and F ⊂ Mk is the set of all nonproper points of the
mapping ϕ : Mk → N l. It is easy to see that

F ∩ Mk−1 ⊂ F ′.
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Thus,
F ⊂ (F \Mk−1) ∪ F ′.

The set F \ Mk−1 consists of all nonproper points of the mapping ϕ in
the manifold Mk \ Mk−1 with boundary deleted. Analogously, the set
F ′ consists of all nonproper points of the mapping ϕ on Mk−1 without
boundary. Thus, both sets ϕ(F \Mk−1) and ϕ(F ′) have first category in
N l. The set ϕ(F ) is contained in their union, thus it has the first category
in N l.

Therefore, Theorem 4 is proved.

§ 4. Non-degenerate singular points of smooth

mappings

Let f be a smooth mapping from a manifold Mk to a manifold N l. Let
a ∈Mk and b = f(a) ∈ N l be interior (non-boundary) points of the mani-
folds Mk and N l. In the neighbourhoods of a and b, let us introduce local
coordinates x1, . . . , xk and y1, . . . , yl taking these points to be coordinate
origins. Let

yj = f j(x) = f j(x1, . . . , xk)

be the coordinate expression for f in the chosen coordinate systems.
Suppose a is a regular point of f , i.e. that the rank of the matrix∥∥∥∥

∂f j(a)

∂xi

∥∥∥∥, j = 1, . . . , l, i = 1, . . . , k, equals k; to be more precise, we

shall assume that the determinant

∣∣∣∣
∂f j(a)

∂xi

∣∣∣∣, i, j = 1, . . . , k is non-zero.

With this assumption the relations

ξi = f i(x1, . . . , xk), i = 1, . . . , k,

may serve to define in the neighbourhood of a the new coordinates ξ1, . . . , ξk

of the point x. Let

yj = ξj , j = 1, . . . , k;

yj = ϕj(ξ1, . . . , ξk), j = k + 1, . . . , l,

be the expression of the mapping f in these new coordinates. Let us intro-
duce in the neighbourhood of the point b the new coordinates η1, . . . , ηl,
by setting

ηj = yj, j = 1, . . . , k;

ηj = yj − ϕj(y1, . . . , yk), j = k + 1, . . . , l.
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In coordinates ξ1, . . . , ξk, η1, . . . , ηl the mapping f looks like

ηj = ξj , j = 1, . . . , k; ηj = 0, j = k + 1, . . . , l. (1)

Now, let us assume that the point a is proper, i.e. the rank of the matrix∥∥∥∥
∂f j(a)

∂xj

∥∥∥∥, j = 1, . . . , l, i = 1, . . . , k equals l, and assume for definiteness

that the determinant

∣∣∣∣
∂f j(a)

∂xi

∣∣∣∣, i, j = 1, . . . , l is non-zero. Then the rela-

tions

ξi = f i(x1, . . . , xk), i = 1, . . . , l; ξi = xi, i = l+ 1, . . . , k,

may serve for introducing in a neighbourhood of a the new coordi-
nates ξ1, . . . , ξk of the point x. Furthermore, assuming

ηj = yj , j = 1, . . . , l,

we see that in coordinates ξ1, . . . , ξk, η1, . . . , ηl the mapping f can be
written as

ηj = ξj , j = 1, . . . , l. (2)

Thus, if the manifold Mk is closed and b ∈ N l is a proper point of the
mapping f , then f−1(b) is a smooth (k − l)-dimensional submanifold of
the manifold Mk with local coordinates ξl+1, . . . , ξk in the neighbourhood
of a. In the case when the manifolds Mk and N l are oriented and their
orientations are given by the coordinate systems ξl+1, . . . , ξk, ξ1, . . . , ξl

and η1, . . . , ηl, then the manifold f−1(b) gets a natural orientation given
by the coordinate system ξl+1, . . . , ξk.

We see that both in the case of a regular point a and in the case of
proper point a the mapping is written quite simply in the properly chosen
coordinate systems [see (1), (2)].

It was shown in § 2 that in any neighbourhood of any arbitrary smooth
mapping from Mk to the vector space A2k there exists a regular mapping,
and all mappings sufficiently close to a regular one, are regular as well
(see Theorem 3). In this sense, singular points (see § 1, «D») of mappings
Mk → A2k are unbalanced, that is, they are removable by a small pertur-
bation. For mappings from Mk to the vector space A2k−1 we have another
situation: singular points that occur there are, generally, balanced: they
cannot be removed by a small perturbation. This problem was solved by
Whitney. Here we give a simpler proof of his theorem (see Theorem 6).
We will not use this theorem in the sequel. The question about typical
singular points is solved here also for mappings of a manifold Mk to the
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one-dimensional space A1, i.e. to the line (see Theorem 5; it will have appli-
cations in the homotopy theory of mappings, see § 3, Chapter 4). Thus, the
question about typical singular points of a mapping is solved for mappings
from manifolds of dimension k to space of dimension 2k− 1 or 1. For other
dimension, it remains a quite actual open problem.

Generally, a regular mapping from Mk to the vector space A2k is not
homeomorphic: it has self-intersections, which might be non-removable by
small perturbation of the initial mapping. The question whether a self-
intersection is typical is also solved here (see «A» and «B»); these state-
ments will be used in the sequel.

For proving Theorems 5 and 6, and also Statement «B» we significantly
use the construction «A» (see page 21) and Theorem 4.

Typical self-intersection points of mappings Mk
→ E2k

A) Let f be a regular smooth mapping of class m > 1 from a closed
manifold Mk to the vector space A2k and let a and b be two different points
fromMk having the same image f(a) = f(b) ∈ A2k. Furthermore, let U and
V be neighbourhoods of points a and b in Mk such that the mapping f is
homeomorphic for any of these neighbourhoods, and T k

a and T k
b are tangent

planes at points f(a) and f(b) to the manifolds f(U) and f(V ), respectively.
Say that for a self-intersection pair (a, b) the mapping f is typical if the
tangent planes T k

a and T k
b are in general position, i.e. they intersect precisely

at one point f(a) = f(b). Obviously, in this case for sufficiently small
neighbourhoods U and V , the manifolds f(U) and f(V ) have a unique
common point f(a) = f(b) as well (implicit function theorem), and small
perturbations of the mapping preserve typical self-intersections. If f is
typical for any self-intersection pair and, furthermore, no three pairwise
different points have the same image, we say that f is typical. It follows
from closeness of the manifold Mk that, for a mapping f typical for any
self-intersection pair, there exists only a finite number of self-intersection
pairs.

B) Let f be a closed homeomorphic mapping of a closed manifold
Mk to a vector space C2k+1. The set P 2k of all pairs (x, y), where
x ∈ Mk, y ∈ Mk, x 6= y, naturally forms a smooth manifold of di-
mension 2k. With each point (x, y) = P 2k, associate a point σ(x, y) =
(f(y) − f(x))∗ ∈ S2k, i.e. the ray of the vector f(y) − f(x) (see § 1,
«Н»). Let e be an arbitrary non-zero vector from the space C2k+1 and
let πe be the projection along the one-dimensional space e∗∗ containing
e. It turns out that the regular mapping πef is typical for any self-
intersection pair (see «A») if and only if the mapping σ from the man-
ifold P 2k to the manifold S2k is proper in the point e∗ ∈ S2k. From
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this, by virtue of Theorem 4, it follows that for any given one-dimensional
projection direction there exists an arbitrarily closed projection direction
e∗∗ that the mapping πef is typical for each self-intersection pair. Fur-
thermore, it turns out that for any one-dimensional projection direction
there is an arbitrarily close direction e∗∗0 that the mapping πe0f is typi-
cal.

Let us prove Statement «B». Let e1, . . . , e2k+1 be a basis of a vector

space C2k+1. Denote by W the set of all vectors u =
∑2k+1

n=1 unen of the
space C2k+1 for which u2k+1 > 0, and denote by W ∗ the set of all rays
u∗ for u ∈ W . For coordinates of the ray u∗ ∈ W ∗, we take the numbers
u∗n = un/u2k+1, n = 1, . . . , 2k. Herewith we introduce local coordinates
for the domain W ∗ of the manifold S2k (see § 1,«Н»). Now, let a and b be
two different points of the manifold Mk. Choose a basis e1, . . . , e2k+1 in
such a way that e2k+1 = e = f(b)− f(a). In neighbourhoods of points a
and b of the manifold Mk, let us choose local coordinates x1, . . . , xk and
y1, . . . , yk; let

un = fn
a (x1, . . . , xk) = fn

a (x), n = 1, . . . , 2k + 1; (3)

un = fn
b (y1, . . . , yk) = fn

b (y), n = 1, . . . , 2k + 1, (4)

be a coordinate expression of the mapping f in the neighbourhoods of a and
b, respectively. While projecting along the vector e = f(b)−f(a), the points
b and a merge: πef(a) = πef(b); thus the condition that πef is typical for
the self-intersection pair (a, b), evidently, means that the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
a (a)

∂x1
. . .

∂f2k
a (a)

∂x1

. . . . . . . . . . . . . . . . . .

∂f1
a (a)

∂xk
. . .

∂f2k
a (a)

∂xk

∂f1
b (b)

∂y1
. . .

∂f2k
b (b)

∂y1

∂f1
b (b)

∂yk
. . .

∂f2k
b (b)

∂yk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5)

is non-zero. For a neighbourhood of the point (a, b) of the manifold
P 2k we may use the coordinate system consisting of numbers x1, . . . , xk,
y1, . . . , yk; thus the mapping σ has the following coordinate form:

u∗n =
fn

b (y)− fn
a (x)

f2k+1
b (y)− f2k+1

a (x)
, n = 1, . . . , 2k. (6)

In these coordinates, the functional determinant of the mapping σ at the
point (a, b), evidently, coincides with the determinant (5) up to sign. Thus
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we have proved that regular mapping πef is typical for each self-intersection
pair if and only if the mapping σ is proper at the point e∗.

Now, choose the ray e∗ in such a way that the vector e is not parallel
to any vector tangent to the manifold f(Mk) and that the mapping σ is
proper at the point e∗ ∈ S2k. By virtue of Theorems 1 and 4, the set of
rays enjoying the above properties, is everywhere dense in the manifold S2k.
Suppose there exist three pairwise distinct points a, b, c of the manifold
Mk such that πef(a) = πef(b) = πef(c). In the neighbourhood of c in Mk,
let us introduce the local coordinates z1, . . . , zk, and let

un = fn
c (z1, . . . , zk) = fn

c (z), n = 1, . . . , 2k + 1, (7)

be the coordinate expression of the mapping f in the neighbourhood of c,
analogous to the expressions (3) and (4). Now, if x, y, z are three points
of the manifold Mk close to a, b, c, respectively, such that the points f(x),
f(y), f(z) lie on the same line then we have

fn
a (x)− fn

c (z)

f2k+1
a (x)− f2k+1

c (z)
=

fn
b (y)− fn

c (z)

f2k+1
a (y)− f2k+1

c (z)
, n = 1, . . . , 2k. (8)

Here we have 2k equation. We may assume that these equations im-
plicitly define the functions x1, . . . , xk, y1, . . . , yk in independent vari-
ables z1, . . . , zk. For the initial value z = c we have the solu-
tion x = a, y = b. For these initial values of the functions and independent
variables, the functional determinant of the system (8) is non-zero, since
so is the determinant (5). Thus, the system (8) satisfies the condition of
the implicit function theorem. It follows now that the set of triples x, y,
z closed to the triple a, b, c and satisfying the condition that f(x), f(y),
f(z) lie on the same line, forms a k-dimensional manifold. Thus, by virtue
of Theorem 1, we see that for the point e∗ of the manifold S2k there is an
arbitrarily close point e∗0 satisfying the conditions of the Statement «B».

Typical critical points of a real-valued function on a manifold

С) Let f be a class m smooth mapping (m > 2) from a manifold Mk

to the one-dimensional Euclidean space E1, or, what is the same, to the
line. By choosing a coordinate system on the line E1, we write down the
mapping f as y1 = f1(x), x ∈ Mk, where f1 is a real-valued function of
class m, defined on Mk. In a neighbourhood of a certain point a ∈Mk, let
us introduce local coordinates x1, . . . , xk with the origin at a, and let

y1 = f1(x) = f1(x1, . . . , xk)

be the expression for f in these coordinates. The point a is called a critical
point of the function f1, and the number f1(a) is called the critical value



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

§ 4. Non-degenerate singular points of smooth mappings 31

of the function f1 at the point a if all derivatives of the first order of the
function f1 are zeros at a or, which is the same, if a is a singular point
of the function f (see § 1, «D»). Taking the Taylor decomposition for the
function f1 at the critical point a, we get

f1(x) = f1(a) +
∑

i,j

aijx
ixj + . . . . (9)

If the determinant |ai,j | 6= 0, then the critical point a is called non-
degenerate. It can be checked straightforwardly that for a critical point
a of the function f , any arbitrary coordinate change the matrix ‖ai,j‖
is transformed as coefficients of quadratic form. From this it follows, in
particular, that the non-degeneration of the singular point is its invariant
property, i.e. it does not depend on the choice of the coordinate system.

D) Let h be an m-smooth mapping (m > 2) of a manifold Mk to the
Euclidean vector space Cq+1. Let u be a non-zero vector from Cq+1 and
let u∗∗ be the one-dimensional subspace containing the vector u. Denote
by πu the orthogonal projection of the space Cq+1 to the line u∗∗. The
set N q of all pairs (x, u∗), where x ∈ Mk, and u∗ is a ray orthogonal to
the manifold h(Mk) at the point h(x) can be naturally seen as an (m− 1)-
smooth manifold of dimension q. With each point (x, u∗) ∈ N q, associate
a point ν(x, u∗) = u∗ ∈ Sq (see § 1, «H»). The mapping ν is a smooth
mapping of class m− 1 from N q to Sq. It turns out that the point a ∈Mk

is a singular point of the mapping πuh from Mk to u∗∗ if and only if the
ray u∗ is orthogonal to the manifold h(Mk) at the point h(a). Furthermore,
if the ray u∗ is orthogonal to the manifold h(Mk) at the point h(a) then
the singular point a of the mapping πuh is non-degenerate if and only if
(a, u∗) is a proper point of the mapping ν.

Let us prove Statement «D». Denote the scalar product of vectors
u and v from Cq+1, as usual, by (u, v). Let u ∈ Cq+1 and (u, u) = 1.
Indeed, the real-valued function (u, h(x)) in variable x ∈Mk defined on
Mk, corresponds to the mapping πuh of the manifold Mk to the axis u∗∗.
In the local coordinates x1, . . . , xk defined in a neighbourhood of a, one
has

∂

∂xi
(u, h(a)) =

(
u,
∂h(a)

∂xi

)
, i = 1, . . . , k. (10)

The fact that the left-hand sides of all relations (10) are all zeros means
that a is a singular point of the mapping πuh; the fact that all right-hand
sides are zeros means that the vector u is orthogonal to the manifold h(Mk)
at the point h(a). Thus, we have proved that the point a is a singular point
for the mapping πuh if and only if the ray u∗ is orthogonal to h(Mk) at
the point h(a).
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To establish a criterion whether a singular point a of the mapping πu0h
is degenerate, let us choose in the space Cq+1 such an orthonormal ba-
sis e1, . . . , eq+1 that the vectors e1, . . . , ek are tangent to the manifold
h(Mk) at the point h(a), and the vector eq+1 coincides with u0. In the
corresponding coordinates y1, . . . , yq+1 of the space Cq+1 the map h in the
neighbourhood of a looks like

yj = hj(x) = hj(x1, . . . , xk), j = 1, . . . , q + 1. (11)

Since the vectors e1, . . . , ek are tangent to the manifold h(Mk) at the point
h(a), it follows directly that

∣∣∣∣∣
∂hj(a)

∂xi
6= 0

∣∣∣∣∣ , i = 1, . . . , k,

From that we see that the relations

ξi = hi(x1, . . . , xk), i = 1, . . . , k

may serve for introducing new coordinates ξ1, . . . , ξk of the point x in the
neighbourhood of the point a in Mk. In these coordinates, the mapping h
looks like

h(x) =

k∑

i=1

ξiei +

q+1−k∑

j=1

ϕj(x) · ek+j . (12)

Because the vectors e1, . . . , ek are tangent to h(Mk) at the point h(a), it
follows that

∂ϕj(a)

∂ξi
= 0, i = 1, . . . , k; j = 1, . . . , q + 1− k. (13)

Let (x, u∗) be a point of the manifold N q close to the point (a, u∗) =
(a, e∗q+1). On the ray u∗, let us choose a vector u satisfying the condition

(u, eq+1) = 1.

Denote the remaining q components of the vector u in the basis e1, . . . , eq+1

by u1, . . . , uq: ui = (u, ei), i = 1, . . . , q. The orthogonality condition for
the vector u and h(Mk) at the point h(x) now looks like

0 =

(
u,
∂h(x)

∂ξi

)
= ui +

q−k∑

j=1

uk+j ∂ϕ
j(x)

∂ξi
+
∂ϕq+1(x)

∂ξi
, i = 1, . . . , k. (14)
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This relation shows that for coordinates of the element (x, u∗) of the man-
ifold N q we can choose the coordinates ξ1, . . . , ξk of the point x and the
components uk+1, . . . , uq of the vector u. For coordinates of the ray u∗ in
the manifold Sq, let us take the first q components of the vector u and de-
note these components by v1, . . . , vk in order not to mix them up with the
coordinates uk+1, . . . , uq of the element (x, u∗) in the manifold N q. Since
vi = ui, i = 1, . . . , q, then in the chosen coordinate system the mapping
ν : N q → Sq looks like [see (14)]

vi = −
q−k∑

j=1

uk+j ∂ϕ
j(x)

∂ξi
− ∂ϕq+1(x)

∂ξi
, i = 1, . . . , k,

vk+j = uk+j , j = 1, . . . , q − k.
The direct calculation [see (13)] shows that the Jacobian of the mapping

ν at the point (a, e∗q+1) is equal to (−1)k

∣∣∣∣
∂2ϕq+1(a)

∂ξi∂ξα

∣∣∣∣, i, α = 1, . . . , k.

Thus, the point (a, u0) is a proper point of the mapping ν if and only if the
following equation holds:

∣∣∣∣∣
∂2ϕq+1(a)

∂ξi∂ξα

∣∣∣∣∣ 6= 0. (15)

Since the mapping πu0h from Mk to the axis u∗∗0 is associated with the
function ϕq+1(x), the condition (14) coincides with the non-degeneracy
condition for the singular point a of the mapping πu0h. This completes the
proof of «D».

Theorem 5. Let Mk be a smooth compact manifold of class m > 3 with
boundary Mk−1 consisting of two closed manifolds Mk−1

0 and Mk−1
1 , each

of which possibly empty. Let f1 be a real-valued function of class m defined
on Mk. Suppose that the function f1 takes the same value ci, i = 0, 1 in all
points of the manifold Mk−1

i and c0 < c1, and that for any non-boundary
point x ∈Mk the inequality c0 < f(x) < c1 holds. Moreover, suppose that
no critical point of f1 lies on the boundary Mk−1. It turns out that for the
function f1 there exists an arbitrarily m-class close (see § 2, «F») function
g1 coinciding with f1 in some neighbourhood of the boundary such that all
critical points of the function g1 are not degenerate and critical values in
different critical points are pairwise distinct.

Proof. With the function f1, let us associate the mapping f from the
manifold Mk to the one-dimensional vector space A1. Let e be a home-
omorphic regular class m mapping from Mk to the Euclidean space Bq
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(see Theorem 2). Denote the direct sum of vector spaces A1 and Bq by
Cq+1; let us consider the spaces A1 and Bq as orthogonal subspaces of the
space Cq+1. Denote the direct sum of mappings f and e (see § 2, «E»)
by h. The mapping h is a regular homeomorphic class m mapping from
the manifold Mk to the Euclidean space Cq+1 such that the orthogonal
projection π of h to the line A1 coincides with f : f = πh. First of all,
let us show that in any neighbourhood of the line A1 there exists a line in
the orthogonal projection to which generates a function having only non-
degenerate critical values. The desired function in the formulation of the
theorem is to be obtained from this by some modifications.

Let N q be a manifold of all normal elements (x, u∗) of the manifold
h(Mk), as defined in «D», and let ν be the mapping from the manifold N q

to the manifold Sq also defined in «D». Let us show that if u∗ ∈ Sq is a
proper point of ν then all singular points of πuh are non-degenerate. Indeed,
if a is a singular point of the mapping πuh, then the ray u∗ is orthogonal to
h(Mk) at the point h(a); thus (a, u∗) ∈ N q. Since the mapping ν is proper
at (a, u∗) of the manifold N q, then the singular point a is non-degenerate
(see «D»). Let ε be a given positive number and let u be such a unit vector
of the spaces Cq+1 that the function h1 = (u, h(x)) is class m ε-close to
f1 and that u∗ ∈ Sq is a proper point of the mapping ν so that all critical
points of the function h1 are non-degenerate. By Theorem 4, such a vector
u does exist.

Let δ be such a small positive number that for f1(x) < c0 + 3δ and
for f1(x) > c1 − 3δ the point x is not a critical point of the function f1.
The existence of such δ follows from the conditions of the theorem, since
neither the boundary Mk−1 nor its small neighbourhood contains critical
points of f1. Furthermore, suppose χ(t) is a real-valued class m function
in variable t equal to zero at t 6 c0 + δ and t> c1−δ and equal to one at
c1−2δ> t>c0+2δ. Set

h2(x) = f1(x) + χ(f1(x))(h1(x)− f1(x)). (16)

It is easy to see that if ε that we have taken for constructing the function
h1(x), is chosen to be reasonably small then all critical points of the function
h2(x) defined by (16) coincide with the critical points of the function h1(x)
and thus they are non-degenerate. Since for t 6 c0 + δ and for t > c1 − δ
the function χ(t) equals zero it follows that for some neighbourhood of the
boundary Mk−1 the functions h2(x) and f1(x) coincide.

Typical singularities of mappings Mk
→ E2k−1

E) Let f be an m-class smooth (m > 2) mapping from the manifold Mk

to the vector space A2k−1. Let a be a singular point of the mapping f and
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let x1, . . . , xk be a local coordinate system in its neighbourhood such that

∂f(a)

∂x1
= 0. (17)

Such a coordinate system in a singular point neighbourhood always
exists. If the system

∂2f(a)

∂x1∂xi
,
∂f(a)

∂xj
, i = 1, . . . , k; j = 2, . . . , k, (18)

of 2k−1 vectors of the spaceA2k−1 is linearly independent, then the singular
point a is called non-degenerate. Later on, we shall show that the non-
degeneracy of a singular point is invariant, i.e. this notion is independent
of the coordinate system: if some coordinate system ξ1, . . . , ξk defined in
a neighbourhood of a satisfies the condition

∂f(a)

∂ξ1
= 0, (19)

then the vector systems (18) and

∂2f(a)

∂ξ1∂ξi
,
∂f(a)

∂ξj
, i = 1, . . . , k; j = 2, . . . , k, (20)

are either both linearly dependent or both linearly independent. It turns
out that in a sufficiently small neighbourhood of a non-degenerate singular
point there are no other singular points.

Let us prove that the non-degeneracy is invariant. Assume that the
relations (17) and (19) hold and that the vector system (20) is linearly
independent. Let us show that the system (18) is also linearly independent.
We have

∂f(a)

∂x1
=
∑

α

∂f(a)

∂ξα

∂ξα(a)

∂x1
,

from which, according to the assumption above, we deduce

∂ξα(a)

∂x1
= 0, α = 2, . . . , k. (21)

Since the Jacobian

∣∣∣∣
∂ξα(a)

∂xi

∣∣∣∣, α, i = 1, . . . , k, is non-zero, it follows from (21)

that

∂ξ1(a)

∂x1
6= 0,

∣∣∣∣∣
∂ξα(a)

∂xi

∣∣∣∣∣ 6= 0, α, i = 2, . . . , k. (22)



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

36 L. S. Pontrjagin

From the relations (21) we get

∂f(a)

∂xj
=

k∑

α=2

∂f(a)

∂ξα

∂ξα(a)

∂xj
, j = 2, . . . , k. (23)

Furthermore, taking into account (21) and (19), we get

∂2f(a)

∂x1∂xi
=

k∑

β=1

∂2f(a)

∂ξ1∂ξβ

∂ξ1(a)

∂x1

∂ξβ(a)

∂xi

+
k∑

α=2

∂f(a)

∂ξα

∂2ξα(a)

∂x1∂xi
, i = 1, . . . , k. (24)

From the relations (23), (24), (22) and linear independence of the sys-
tem (20) one gets the linear independence of the system (18).

Now, let us show that the singular point a is isolated. To do that, view
a as the origin for the coordinate system x1, . . . , xk and consider the Taylor

decomposition for vectors
∂f(x)

∂xi
, i = 1, . . . , k, in the neighbourhood of a in

coordinates x1, . . . , xk:

∂f(x)

∂x1
=

k∑

α=1

∂2f(a)

∂x1∂xα
xα + ε1, (25)

∂f(x)

∂xi
=
∂f(a)

∂xi
+ εi, i = 2, . . . , k, (26)

where ε1 is second-order small with respect to ̺ =
√

(x1)2 + . . .+ (xk)2,
and ε2, . . . , εk are first-order small with respect to ̺. Since the vectors of
the system (19) are linearly independent, it follows from (25) and (26) that

the vectors
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xk
are linearly independent for all points x 6= a

sufficiently close to a.
F) Let h be a regular class m mapping (m > 2) from the manifold Mk

to the vector space C2k. Denote the manifold of all rays u∗ of the manifold
C2k by S2k−1 (see § 1, «H») and denote by L2k−1 the manifold of all linear
elements of the manifold h(Mk), i.e. the manifold of all pairs (x, u∗), where
x ∈ Mk, and u∗ is the ray tangent to h(Mk) at h(x). Define the mapping
τ from the manifold L2k−1 to the manifold S2k−1 by setting τ(x, u∗) = u∗.
Denote the projection of the space C2k along the line u∗∗ containing u by
πu. As noticed before (see § 2, «A»), the point a ∈ Mk is a singular point
of πuh if and only if the ray u∗ is tangent to h(Mk) at the point h(x),
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i.e. if (a, u∗) ∈ L2k−1. It turns out that the singular point a of the mapping
πuh is non-degenerate if and only if the mapping τ is proper at the point
(a, u∗) ∈ L2k−1.

Let us prove the last statement. Let a be a singular point of f =
πu0h. Choose a basis e1, . . . , e2k of the vector space C2k in such a way that
the vectors e1, . . . , ek are tangent to h(Mk) at the point h(a) and so that
the vector e1 coincides with u0. Let yj = hj(x) = hj(x1, . . . , xk) be the
expression of the mappings h in the coordinates y1, . . . , y2k with respect to

the basis e1, . . . , e2k. Note that the absolute value of the Jacobian

∣∣∣∣
∂hj(a)

∂xi

∣∣∣∣,
i, j = 1, . . . , k, differs from zero, thus the relations

ξi = hi(x1, . . . , xk), m = 1, . . . , k,

can be used to introduce new coordinates ξ1, . . . , ξk of x in the neighbour-
hood of a. In the new coordinates, the vector h(x) will look like

h(x) =

k∑

i=1

ξiei +

k∑

i=1

ϕj(x)ek+j , (27)

where the functions ϕj(x) satisfy the condition

∂ϕj(x)

∂ξi
= 0, i, j = 1, . . . , k. (28)

Let (x, u∗) be an element of the manifold L2k−1 close to the element (a, u0).
The vector u is tangent to h(Mk) at the point h(x); thus it can be written
as

u =

k∑

i=1

ui ∂h(x)

∂ξi
=

k∑

i=1

uiei +

k∑

i,j=1

ui ∂ϕ
j(x)

∂ξi
ej+k. (29)

On the ray u∗, let us choose a vector u such that u1 = 1; then the expression
(29) looks like

u = e1 +

k∑

i=2

uiei +

k∑

j=1

∂ϕj(x)

∂ξ1
ek+j +

k∑

j=1

k∑

i=2

ui ∂ϕ
j(x)

∂ξi
ej+k. (30)

For coordinates of the elements (x, u∗) in L2k−1 we may take the num-
bers u2, . . . , uk, ξ1, . . . , ξ

k. Since the first component of the vector u in the
space C2k equals one [see (30)], the coordinates of the row u∗ in the man-
ifold S2k−1 can be set to be the remaining components v2, . . . , v2k of the
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vector u in the space C2k. In the chosen coordinates, the mapping τ is
written (according to (30)) as

vi = ui, i = 2, . . . , k;

vk+j =
∂ϕj(x)

∂ξ1
+

k∑
i=1

ui ∂ϕ
j(x)

∂ξi
, j = 1, . . . , k.

(31)

A simple calculation shows that the Jacobian of the mapping τ at the point
(a, u0) is equal to ∣∣∣∣∣

∂2ϕj(a)

∂ξ1∂ξi

∣∣∣∣∣ , i, j = 1, . . . , k. (32)

Consider now the mapping πu0h. Let us assume that it is a projection to
some vector space A2k−1 with basis e2, . . . , e2k along some line e∗∗1 . Then
we have [see (27)]

f(x) = πu0h(x) =
k∑

i=2

ξiei +
k∑

α=1

ϕα(x)ek+α. (33)

Thus we deduce

∂2f(a)

∂ξ1∂ξi
=

k∑

α=1

∂2ϕα(x)

∂ξ1∂ξi
· ek+α, i = 1, . . . , k,

∂f(a)

∂ξj
= ej, j = 2, . . . , k.

Thus, in this case the vectors of the system (19) are linearly independent
if and only if the Jacobian (32) is non-zero.

Statement «F» is proved.

Theorem 6. Let f be an m-class smooth (m > 3) mapping from a
compact manifold Mk of dimension k to the vector space A2k−1 of dimen-
sion 2k − 1. It turns out that for the mapping f there is an arbitrarily
m-close mapping g with all singular points non-degenerate and not lying on
the boundary Mk−1 of the manifold Mk.

Proof. Let us treat the vector space A2k−1 as a subspace of the vector
space C2k of dimension 2k. Let B1 be some one-dimensional subspace of
the space C2k not lying in A2k−1. Denote the projection of the space C2k

to the space A2k−1 along B1 by π. Fix a positive number ε; let h be a
regular mapping of Mk to the vector space C2k such that the mapping
πh is ε-close to f (see Theorem 3). Let L2k−1 be the manifold of linear
elements of the manifold h(Mk) (see «F»); let L2k−2 be the submanifold of
L2k−1 consisting of all elements of the type (x, u∗) where x ∈Mk−1, and let
τ be the mapping from L2k−1 to the sphere S2k−1 constructed in «F». It
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follows from «F» that if u∗ ∈ S2k−1 is not a singular point of the mapping
τ and does not belong to the set τ(L2k−2) then all singular points of the
mapping πuh are non-degenerate and do not belong to the boundary of the
manifold Mk. By virtue of Theorems 4 and 1, there exists a vector u such
that u∗ satisfies the conditions described above and the mapping πuh is
ε-close to πh. Thus, there is a 2ε-close to f mapping g = πuh satisfying
the conditions of the theorem.

Theorem 6 is proved.

Canonical form of typical critical points and typical singular
points

In Statements «C» and «E», several singular points of mappings from
manifolds Mk to vector spaces A1 and A2k−1, were found to be non-
degenerate. In Theorems 5 and 6, it was shown that all degenerate singular
points of the considered mappings are not balanced, i.e. removable by small
perturbations. However, we did not prove that those singular points called
non-degenerate are balanced, i.e. they are preserved by small perturbations.
The proof of this fact is not difficult, but we shall omit it. Also, we have
not described the structure of the mapping in the neighbourhood of a non-
degenerate singular point. It is not easy in the general situation; below we
present the results without proving them.

G) Let a be a non-degenerate critical point of a real-valued function
f1(x) defined on a manifold Mk. As noticed in Statement «A», the Taylor
decomposition of the function f1(x) in the neighbourhood of the point a
looks like (9). It turns out that (see [7]) by a coordinate change in the
neighbourhood of a this Taylor decomposition can be transformed to that
of the type

f1(x) = f1(a) + (x1)2 + . . .+ (xs)2 − (xs+1)2 − . . .− (xk)2, (34)

where the number s of positive squares is an invariant of the point a,
i.e. does not depend on the coordinate choice in the neighbourhood of this
point, and is not changed by a small perturbation. Thus, the function de-
fined on a k-dimensional manifold has k+1 possible types of critical points
(s = 0, . . . , k). Since the mapping f of the manifold Mk does not define the
function f1(x) directly, then the points of different type for the function
may happen to be of different type for a mapping. Indeed, changing the
sign of the function f1(x) interchanges the roles of s and k − s; thus the
corresponding critical points belong to the same type of mapping critical
points. It is worth mentioning that, in the general situation, one cannot
get from the expression (9) to the expression (34) by a linear coordinate
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change, as it might seem. An evident linear transformation is just the first
step of the transformation of (9) to (34). Under linear transformation the
third-order and higher-order terms are preserved, whence they are absent
in (34).

H) Let a be a non-degenerate critical point of f : Mk → A2k−1

(see «E»). It turns out (see [8]) that in the neighbourhoods of the points a
and f(a) one can change the coordinate systems (generally, the coordinate
change is not linear) such that the mapping f in the neighbourhood of a
has the following coordinate form:

y1 = (x1)2, y2 = x1x2, . . . , yk = x1xk,

yk+1 = x2, yk+2 = x3, . . . , y2k−1 = xk.
(35)

Here the points a and f(a) are taken to be the coordinate origins.
Statement «H» is quite a difficult theorem.
By using the expression (35), one can visualize the geometry of the

mapping f in the neighbourhood of a, especially in the case when k = 2.

Chapter II

Framed manifolds

§ 1. Smooth approximations of continuous mappings

and deformations

In the present section, we shall show that while studying the homotopy
types of mappings from one manifold to another it is sufficient to consider
only smooth mappings and smooth homotopies. This results from the fol-
lowing facts. Let Mk and N l be two m-smooth closed manifolds. It turns
out that in any homotopy class of mappings from N l to Mk there exists
an (m − 1)-smooth mapping, and if two (m − 1)-smooth mappings from
the manifold N l to the manifold Mk are homotopic, then there exists an
(m− 3)-smooth homotopy between these mappings. Thus, while studying
mappings of smoothness class m, one has to consider the homotopies of
class m− 3. This loss of smoothness class can be avoided by using several
tricks, but since the results of this section are to be used only for study-
ing maps from sphere to sphere and the sphere is an analytic manifold, we
need not worry about the loss of smoothness class; thus there is no sense
in giving a more difficult proofs of a more precise statements.
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The structure of neighbourhood of a smooth manifold

The statement given below will be used only for the case of closed man-
ifolds; the proof in this case is much simpler than that in the general case,
as seen from the proof itself. In the next section, we shall use the general
case.

A) Let En+k be the Euclidean space with a fixed Cartesian coordinate
system y1, . . . , yn+k, and let E0, E1 be two hyperplanes of the space En+k

defined by yn+k = c0 and yn+k = c1, where c0 < c1 and En+k is the
strip of the space En+k bounded by these hyperplanes, i.e. the set of points
satisfying the conditions c0 6 yn+k 6 c1. Furthermore, let Mk be an
m-class smooth (m > 4) compact submanifold (in the case of a closed
manifold Mk it is sufficient to take m > 2) (see § 1, «F») of the strip En+k,
with boundary Mk−1. Denote the total normal subspace at the point z
to Mk by Nz. This subspace is an n-dimensional linear subspace of the
Euclidean space En+k. We shall also assume that for any boundary point
z of the manifold Mk, this manifold is orthogonal to the boundary of the
strip En+k, i.e. that for x ∈Mk−1 we have

Nx ⊂ E0 ∪ E1. (1)

For the Euclidean space Nz denote the open ball centred at z with radius
δ > 0, by H(z) = Hδ(z) and denote the union of all balls Hδ(z) over all
z ∈ P , where P ⊂ Mk, by Hδ(P ). It turns out that there exists such a
small positive number δ that for z 6= z′ the balls Hδ(z) and Hδ(z

′) do not
intersect each other, whence the set Wδ = Hδ(Mk) forms a neighbourhood
of the manifold Mk in En+k. Associating with each point y ∈ Wδ the
unique point z ∈ Mk for which y ∈ Hδ(z) we obtain a smooth mapping
y → z = π(y) from the manifold Wδ to the manifold Mk; in the case when
Mk is smooth, this mapping is of class m− 1.

Let us prove Statement «A». Let a ∈ Mk;x1, . . . , xk be some local
coordinates defined in a neighbourhood of the point a taken to be the
origin, and let

yj = f j(x) = f j(x1, . . . , xk), j = 1, . . . , n+ k, (2)

be the parametric equation defining the manifold Mk in the neighbourhood
of a. The functions f j are defined for those values of x1, . . . , xk satisfying

∣∣xi
∣∣ < ε, i = 1, . . . , k, (3)

in the case when a is an interior point of Mk; they satisfy (3) and

x1
6 0 (4)
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if a is a boundary point of Mk. Thus the functions f j define the mapping
fa from the open cube Kε, defined by inequalities (3), or, respectively, from
the half-cube K ′

ε, defined by (3) and (4). In the case of boundary point a
we extend the function f j to the positive values x1 by setting

f j(x) = f j(x1, . . . , xk)

= f j(0, x2, . . . , xk) + ∂
∂x1

(0, x2, . . . , xk)x1

+ ∂2

(∂x1)2
f j(0, x2, . . . , xk) · (x1)2, x1

> 0.

The functions f j defined in this way define a regular homeomorphic map-
ping fa from the open cube Kε (where ε is a small positive number) for
any arbitrary point a ∈Mk−1.

The equation of the normal space Nfa(x) = Nx to the manifold fa(Kε)
at the point fa(x) has the following vector form:

(
∂fa(x)

∂xi
, y − fa(x)

)
= 0, i = 1, . . . , k. (5)

Here y is the vector describing the normal space Nx. We shall consider
the system of relations (5) as a system of equations in unknown functions
x1, . . . , xk of the independent variables y1, . . . , yn+k, which are the compo-
nents of the vector y. For the initial values y = fa(0) = a, the system (5)
has the evident solution xi = 0, i = 1, . . . , k. The functional determinant

of the system (5) for these values is equal to (−1)k

∣∣∣∣
(
∂fa(a)

∂xi
,
∂fa(a)

∂xj

)∣∣∣∣,
i, j = 1, . . . , k. This determinant is non-zero, since the mapping fa is reg-
ular at 0. Thus the system (5) is solvable. Let x = σ(y), or, in coordinate
form,

xi = σi(y1, . . . , yn+k), i = 1, . . . , k, (6)

be its solution defined for all points y belonging to some neighbourhood Va

of the point a in the neighbourhood En+k. For y ∈ Va, there exists thus
precisely one point x ∈ Kε satisfying the condition y ∈ Nx; this point x is
defined as x = σ(y). In other words, for each point y ∈ Va there passes
a unique normal space Nx, where x ∈ Kε. From the continuity of the
function σ(y), it easily follows that there exist small positive numbers δa
and εa that for δ 6 δa, ε 6 εa the set Hδ(fa(Kε)) is completely contained
in Va and it is a neighbourhood of the point a in the space En+k.

Let us show that for a boundary point a there exist some small positive
numbers δ′a and ε′a that for δ 6 δ′a and ε 6 ε′a the set Hδ(fa(K ′

ε)) is a
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neighbourhood of the point a in the strip En+k. For definiteness let us
assume that a ∈ E1; then we have

σ1(y1, . . . , yn+k−1, c1) = 0. (7)

It is clear that
∂σ1(y1, . . . , yn+k−1, c1)

∂yn+k
> 0. (8)

From the above it follows that for any point y sufficiently close to a the
sign of the function σ1(y1, . . . , yn+k) coincides with the sign of the number
yn+k− c1; this shows that for sufficiently small numbers at δ and ε we have

Hδ(fa(K ′
ε)) = Hδ(fa(Kε)) ∩ En+k

∗ . (9)

Since Hδ(fa(Kε)) is a neighbourhood of the point a in the space En+k then,
according to (9), the set Hδ(fa(K ′

ε)) is a neighbourhood of the point a in
the strip En+k

∗ .
For an interior point a ∈ Mk, set δ′a = δa, ε′a = εa. The set of all

domains Ua = fa(Kε′
a
) ∩Mk, a ∈ Mk, covers the manifold Mk. Suppose

Ua1 , . . . , Uap
is a finite cover of the manifold Mk. There exists a small num-

ber η > 0 such that any two pointsMk at distance less than η, are contained
in a domain from this cover. Now let δ be the minimum amongst δ′an

, n =
1, . . . , p, and η/2. Since Hδ(M

k) = Hδ(Ua1) ∪ . . . ∪ Hδ(Uap
) we see that

Hδ(M
k) is a neighbourhood of the manifold Mk in the strip En+k

∗ . Fur-
thermore, for two distinct points z ∈ Mk and z′ ∈ Mk, the balls Hδ(z)
and Hδ(z

′) do not intersect. Indeed, if ̺(z, z′) 6 2δ then the points z and
z′ belong to the same domain Uan

, thus, as shown above, the balls Hδ(z)
and Hδ(z

′) cannot intersect. If ̺(z, z′) > δ then these balls cannot intersect
because the distance between their centres is greater than the sum of their
radii.

Thus, Statement «A» is completely proved.

Smooth approximations

B) Let f1(x) be a continuous real-valued function defined on a class
m > 2 smooth compact manifold Mk and let ε be a positive number.
Then there exists a smooth real-valued function g1(x) of class m defined
on Mk and satisfying the condition |g1(x) − f1(x)| < ε. In other words, a
continuous function defined on Mk can be arbitrarily closely approximated
by a smooth function.

Let us prove Statement «B». By virtue of Theorem 2 we may assume
that the manifold Mk is embedded into the Euclidean space El of some
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high dimension. Let Q be a closed cube containing Mk. According to the
well-known Urysohn theorem (see [9]) the function f1(x) given on Mk can
be continuously extended to the whole cube Q. This function, defined on Q
can be ε-approximated by a polynomial g1(x) in the Cartesian coordinates
of the point x ∈ Q. The function g1(x) considered on Mk is a function we
are interested in.

Theorem 7. Let Mk be an m-smooth (m > 2) closed manifold, let N l

be an m-smooth compact manifold and let f be a continuous mapping from
the manifold N l to the manifold Mk. We shall treat Mk as a metric space.
It turns out that for any positive ε there exists a mapping h of class m− 1
from the manifold N l to the manifold Mk, such that ̺(f(x), h(x)) < ε,
x ∈ N l. In other words, a continuous mapping from the manifold N l to
Mk can be arbitrarily closely approximated by a smooth one.

Proof. By virtue of Theorem 2, we may assume that the manifold
Mk is a submanifold of some Euclidean space En+k. Let δ be a number

defined for this submanifold in Statement «A», and ε′ < δ√
n+ k

. De-

note the components of the vector f(x), x ∈ N l by f1(x), . . . , fn+k(x).
According to Statement «B», there exists a real-valued m-smooth func-
tion gi(x), i = 1, . . . , n + k, defined on N l and satisfying the inequality
|f i(x) − gi(x)| < ε, i = 1, . . . , n + k. Denote the vector with components
g1(x), . . . , gn+k(x) by g(x). The mapping g of the manifold N l to En+k

is m-smooth and g(N l) ⊂ Wδ (see «A»). For sufficiently small ε′, the
mapping h = πg (see «A») satisfies the conditions of the theorem.

C) A family of continuous mappings ft, 0 6 t 6 1 from a closed manifold
N l to a manifold Mk is called a continuous family or a deformation of the
mapping f0 to the mapping f1 if ft(x) is a continuous function in two
variables x, t. Let N l × I be the Cartesian product of N l and the real
closed interval I = [0, 1] (see § 1, «I»). Set f∗(x, t) = ft(x). It is clear that
the family ft is continuous if and only if the mapping ft of the manifold
N × I is continuous. We shall call the family ft smooth of class m (or ft is
an m-smooth deformation) if the mapping f∗ is m-smooth. If the mappings
f0 and ft are connected by a smooth deformation, they are called smoothly
homotopic. It is quite evident that the relation of smooth homotopy is
reflexive and symmetric. The transitivity of this relation is not totally
obvious and requires a proof. Let us prove it.

Let f−1, f0, f1 be three m-smooth mappings from N l to Mk; let ft,
−1 6 t 6 0, be an m-smooth deformation of the mapping f−1 to the
mapping f0 and let ft, 0 6 t 6 1, be a smooth m-deformation of the map-
ping f0 to the mapping f1. The deformation ft, −1 6 t 6 1, is, clearly,
continuous, but at t = 0 it might not be smooth, thus it is necessary to
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reconstruct it to get an m-smooth deformation. Let n be an odd natural
number such that n > m. Set gt(x) = ftn(x). It is easy to see that gt,
−1 6 t 6 1, is an m-smooth deformation of the mapping g−1 = f−1 to
the mapping g1 = f1. Thus, the transitivity of the m-smooth homotopy
relation is proved.

D) Let Mk and N l be two m-smooth closed manifolds, such that Mk

is a metric space. Then there exists a small number ε such that if f0 and
f1 are two m-smooth mappings from N l to Mk with distance less than ε,
i.e. satisfying the condition ̺(f0(x), f1(x)) < ε, x ∈ N l, then there exists
an (m− 1)-smooth deformation of the mapping f0 to the mapping f1.

Let us prove Statement «D». By virtue of Theorem 2, one may assume
that Mk is a submanifold of the Euclidean space En+k of some high dimen-
sion. Let δ be a number defined forMk ⊂ En+k in Statement «A». We shall
assume that the metrics in the manifold Mk is induced by Mk ⊂ En+k;
choose ε to be so small that for ̺(x, x′) < ε the interval connecting the
points x and x′ lies in Wδ. Set

ft(x) = π(f0(x)(1 − t) + f1(x)t).

It is evident that ft, 0 6 t 6 1, is an (m − 1)-smooth m − 1 deformation
from the mapping f0 to the mapping f1 (see «A»).

Theorem 8. Let ft, 0 6 t 6 1 be a continuous deformation of the
closed manifold N l to the closed manifold Mk such that the mappings f0
and f1 are m-smooth. Then there exists an (m − 2)-smooth deformation
from f0 to f1. In other words, if two smooth mappings can be connected by
a continuous deformation then they can be connected by a smooth deforma-
tion.

Proof. With the continuous deformation ft, associate (see «C») the
continuous mapping f∗ from the manifold N l × I to Mk. By virtue
of Theorem 7, the continuous mapping f∗ can be ε-approximated by an
(m − 1)-smooth mapping g∗ from N l × I to the manifold Mk. With the
mapping g∗, one associates a smooth deformation gt, 0 6 t 6 1 of mappings
from N l to Mk. For ε sufficiently small, the mappings fi and gi, i = 0, 1,
are close to each other, thus there exists an m− 2-homotopy between them
(see «D»). From the transitivity of smooth homotopy relation, it follows
that there is an (m− 2)-smooth homotopy between f0 and f1.

This completes the proof of Theorem 8.

§ 2. The basic method

In this section with each mapping from the (n+ k)-dimensional sphere
Σn+k to the n-dimensional sphere Sn we associate a smoothly framed sub-
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manifoldMk of the Euclidean space En+k. The framing of the manifoldMk

means that at each point x we define a system U(x) = {u1(x), . . . , un(x)}
of linearly independent vectors orthogonal to Mk, whence the vector ui(x)
depends smoothly on x ∈ Mk. The framing is called smooth if the vectors
ui(x) depend smoothly on x. The manifold Mk together with its fram-
ing U is called a framed manifold and is denoted by (Mk, U). It turns out
that each smoothly framed manifold (Mk, U) corresponds to some mapping
from the sphere Σn+k to the sphere Sn and that the mappings representing
the same smoothly framed manifolds are homotopic. The smooth mani-
folds corresponding to two homotopic smooth mappings might not coincide
and even not be homotopic. This leads to the definition of homological
equivalence of two framed manifolds (Mk

0 , U0) and (Mk
1 , U1) located in the

Euclidean space En+k. The two manifolds (Mk
0 , U0) and (Mk

1 , U1) are ho-
mological if in the Cartesian product En+k × I of the space En+k and the
interval I = [0, 1] there exists a compact framed submanifold (Mk+1, U)
whose boundary consists of Mk

0 × 0 and Mk
1 × 1 and the framing U of that

manifold restricted to the boundary coincides with the framings U0 × 0
and U1 × 1 defined on Mk

0 × 0 and Mk
1 × 1. It turns out that two map-

pings from the sphere Σn+k to the sphere Sn are homotopic if and only if
the corresponding smoothly framed manifolds are homological (the fram-
ing generating this homological equivalence is not assumed to be smooth).
Thus, the homotopy classification problem of mapping from a sphere to
a sphere is reduced to the homological classification of smoothly framed
manifolds. One should admit that the question of homology classification
of framed manifolds is not simple.

Framed manifolds

Definition 3. Let En+k be the Euclidean spaces with Cartesian coordi-
nates y1, . . . , yn+k and let E0 and E1 be two hyperplanes of the space En+k

defined by the equations yn+k = c0 and yn+k = c1, c0 < c1; let En+k
∗ be the

strip consisting of all points of the space En+k for which c0 6 yn+k 6 c1.
Furthermore, let Mk be an m-smooth compact submanifold (see § 1, «F»)
of the strip En+k

∗ with boundary Mk−1. If the manifold Mk is closed then
the hyperplanes E0 and E1 play no role and we assume that En+k

∗ = En+k.
Consider the total normal space Nx at the point x ∈Mk as a vector space
having origin at x; suppose that

Nx ⊂ E0 ∪ E1, x ∈Mk−1,

i.e. that the manifoldMk is orthogonal at its boundary points to the bound-
ary of the strip En+k

∗ (cf. § 1, Ch.2, «A»). Thus, lying inside the boundary
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En+k
∗ manifold Mk is framed, if in any vector space Nx a basis

u1(x), . . . , un(x),

is fixed, whence the vector ui(x), viewed as a vector of En+k, is a continuous
function of x ∈Mk. The system U(x) = {u1(x), . . . , un(x)} is to be called
the framing of the manifold Mk, and the manifold Mk together with U(x)
will be denoted by (Mk, U(x)) and called a framed manifold. A framing
U(x) is called orthonormal if for any point x ∈ Mk the basis U(x) is
orthonormal. The framing U(x) is called class m smooth if each vector
ui(x) is a class m smooth function of the point x ∈Mk.

One should point out that any framed manifold is oriented and it
inherits the natural orientation if the ambient Euclidean space En+k is
oriented. Indeed, let e1, . . . , ek be a linearly independent vector system
tangent to the manifold Mk at some point x. We say that the sys-
tem e1, . . . , ek defines the natural orientation of the manifold Mk if the
system e1, . . . , ek, u1(x), . . . , un(x) corresponds to the positive orientation
of the space En+k.

The definitions given below are devoted to the notion of homological
equivalence between two k-dimensional framed submanifolds of the Eu-
clidean space En+k.

Definition 4. Let (Mk
0 , U0) and (Mk

1 , U1) be two smooth framed sub-
manifolds of the Euclidean space En+k. Let En+k+1 = En+k × E1, where
E1 is the real line with variable t. Set Et = En+k × t, t = 0, 1 and denote
by En+k+1

∗ the strip of the space En+k+1 bounded by hyperplanes E0 and
E1. The framed manifolds (Mk

0 , U0) and (Mk
1 , U1) are homological if there

exists a framed submanifold (Mk+1, U) of the strip En+k+1
∗ such that

Mk+1 ∩E0 = Mk
0 × 0,

Mk+1 ∩E1 = Mk
1 × 1,

whence the framing U coincides on Mk
t × t with the framing Ut× t, t = 0, 1.

A framed manifold (Mk
0 , U0) is called null-homologous if it is homological to

the framed manifold (Mk
1 , U1) where Mk

1 is empty. In this case the framed
manifold (Mk+1, U) representing the homology has boundary Mk. It turns
out that the homological equivalence is reflexive, symmetric and transitive;
thus the set of all k-dimensional framed submanifolds of the Euclidean space
En+k is split into classes of homological ones.

It is obvious that this relation is reflexive and symmetric. Let us show
that it is transitive. Let (Mk

−1, U−1), (M
k
0 , U0) and (Mk

1 , U1) be three



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

48 L. S. Pontrjagin

framed manifolds of the Euclidean space En+k for which the following re-
lations hold:

(Mk
−1, U−1) ∼ (Mk

0 , U0),

(Mk
0 , U0) ∼ (Mk

1 , U1).

Now, let En+k+1 = En+k × E1 be the Cartesian product of the Euclidean
space En+k and the real line E1 with variable t, with two strips E∗i, i−1 6

t 6 i, i = 0, 1 selected. Set E∗ = E∗0 ∪ E∗1. We shall assume that
the homology (Mk

i−1, Ui−1) ∼ (Mk
i , Ui) is realized in the strip E∗i by a

manifold (Mk+1
i , U∗i), i = 0, 1. Now let m be a sufficiently large odd

natural number. Define the mapping ψ from the strip E∗ onto itself by
setting ψ(x, t) = (x, m

√
t), x ∈ En+k. The mapping ψ from the strip E∗ to

itself, is clearly, homeomorphic. It is regular in all points (x, t), where t 6= 0.
It is easy to check that Mk+1 = ψ(Mk+1

0 ∪Mk+1
1 ) is a smooth submanifold

of the frame E∗. Denote the vector system U∗i(x, t) by U∗(x, t). Let N ′
xt be

the normal subspace to the manifold Mk+1
0 ∪Mk+1

1 at (x, t), −1 6 t 6 1
and let Nxt be the normal subspace to the manifold Mk+1 at the point
ψ(x, t). It can be easily checked that the orthogonal projection of the
space N ′

xt to the space Nxt is non-degenerate. Thus, defining U(x, t) to be
the orthogonal projection of the system U∗(x, t) to Nxt, we get a framed
manifold (Mk+1, U) providing the homology (Mk

−1, U−1) ∼ (Mk
1 , U1) in the

strip E∗. Thus the transitivity of the homological equivalence is proved.

From mappings to framed manifolds

A) Let Er+1 be a Euclidean vector space. The sphere Sr of dimension
r and radius 1/2 is defined in Er+1 by

(x, x) = 1
4
.

Let p and q be two antipodal points of the sphere Sr. Call the first one the
north pole, and call the second one the south pole. Furthermore, let Tp and
Tq be the tangent spaces to the sphere Sr at p and q, respectively, and let
e1, . . . , er be an orthonormal basis of the space Tp generating the positive
orientation of Sr. We obtain the corresponding basis for Tq by parallel
transport of the vectors e1, . . . , er from p to q. These bases define some
coordinate systems for Tp and Tq. Now, let us introduce coordinates in
Sr\q, Sr\p by using (p; e1, . . . , er). To do that, define by ψ(x) the central
projection of the point x ∈ Sr\q from the centre q to the space Tp and take
coordinates x1, . . . , xr of the point ψ(x) in Tp to be the coordinates of the
point x in Sq\q. In the same way, by using central projection from p to Tq,
we define the coordinates y1, . . . , yr of the point x ∈ Sr\p. It is easy to see
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that for x ∈ Sr\(p ∪ q) we have

yi = xi

(x1)2 + . . .+ (xr)2
, (1)

xi =
yi

(y1)2 + . . .+ (yr)2
. (2)

Thus Sr is an analytic manifold.
To each smooth mapping from the (n+ k)-dimensional sphere Σn+k to

the n-dimensional sphere Sn associate a certain closed framed manifold
(Mk, U) of dimension k situated in the Euclidean space En+k of dimen-
sion n+ k.

Definition 5. Let f be a smooth mapping from the smooth oriented
sphere Σn+k to the smooth oriented sphere Sn. Fix the north pole p′ of the
sphere Σn+k; denote its south pole by q′; denote the tangent space at p′

by En+k and denote the central projection of the domain Σn+k\q′ to En+k

from the point q′ by ϕ. Define the north pole p of the sphere Sn to be an
arbitrary (but fixed) proper point of the mapping f distinct from f(q′) (see
Theorem 4). Let e1, . . . , en be a certain orthonormal vector system tangent
to Sn at the point p and defining the orientation of the sphere Sn. Denote
the tangent space to the sphere Sn at p by Tp. Since p is a proper point
of the mapping f , the set f−1(p) is a smooth k-dimensional submanifold
of Σn+k (see § 1, «F»). Since, moreover, the set f−1(p) does not contain
q′, Mk = ϕf−1(p) is a smooth closed submanifold of the Euclidean space
En+k. The mapping fϕ−1 from the manifold En+k to the manifold Sn is
proper at any point x ∈Mk. Denote the tangent space at x to the manifold
En+k by En+k

x (see § 1, «C»). Since the manifold En+k is the Euclidean
space, the space En+k

x can be identified with the space En+k, taking point
x to be the coordinate origin. Denote the total normal subspace and the
total tangent subspace to the manifold Mk at the point x by Nx and Tx,
respectively. Denote the linear mapping from the vector space En+k

x to the
vector space Tp corresponding to the mapping fϕ−1 by fx (see § 1, «E»).
Since the mapping fϕ−1 is proper at the point x, fx(En+k) = Tp, and, since
fϕ−1(Mk) = p, we have fx(Tx) = p. It thus follows that the mapping fx

from the vector spaceNx to the vector space Tp is a non-degenerate mapping
onto Tp. Denote the pre-image of the vector ei in the space Nx under fx by
ui(x). The system U(x) = {u1(x), . . . , un(x)}, x ∈Mk, generates a smooth
framing of the manifold Mk. We associate the framed manifold

(Mk, U) with the mapping f : f → (Mk, U). The correspondence f →
(Mk, U) depends on the arbitrary choice of the system p, e1, . . . , en; thus,
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more completely f → (Mk, U) should be written as

(f ; p, e1, . . . , en)→ (Mk, U).

The pole p′ of the sphere Σn+k is fixed, i.e. it will remain the same for
all mappings from the sphere Σn+k to the sphere Sn. The pole p of the
sphere Sn should be a proper point of the mapping f distinct from f(q′),
thus it cannot be fixed.

The theorem given below showing that for homotopic mappings we get
homological manifolds and particularly shows the independence of the ar-
bitrary choice of the system p, e1, . . . , en.

It will be shown later (see Theorem 10) that from the homological equiv-
alence of framed manifolds we get the homotopy of the corresponding map-
pings.

Theorem 9. Let f0 and f1 be two smooth mappings from the oriented
sphere Σn+k to the oriented sphere Sn (n > 2, k > 0) and let

(f0; p0, e10, . . . , en0)→ (Mk
0 , U0),

(f1; p1, e11, . . . , en1)→ (Mk
1 , U1)

(see Definition 5). It turns out that if for n > 2 the mappings f0 and
f1 are homotopic then the framed manifolds (Mk

0 , U0) and (Mk
1 , U1) are

homologous.

Proof. Since the orientations of the sphere Sn defined by the tan-
gent systems e10, . . . , en0 and e11, . . . , en1 coincide, there exists an isometric
mapping ϑ of the sphere Sn onto itself that can be realized by a continuous
twisting and thus is homotopic to the identity; moreover, such a mapping
maps p0, e10, . . . , en0 to the system p1, e11, . . . , en1. Set g0 = f0, g1 = ϑ−1f1.
Since the mapping ϑ is homotopic to the identity the mappings g0 and g1
are homotopic. Moreover, it is easy to see that

(g0; p, e1, . . . , en)→ (Mk
0 , U0),

(g1; p, e1, . . . , ep)→ (Mk
1 , U1),

where
(p, e1, . . . , en) = (p0, e10, . . . , en0).

Since the smooth mappings g0 and g1 are homotopic then there exists a
smooth homotopy gt connecting them (see Theorem 8); for this deformation
there corresponds a smooth mapping g∗ from the manifold Σn+k × I to Sn

(see § 1, Chapter 2, «C»). Define the mapping ϕ∗ from (σn+k\q′) × I to
the Cartesian product En+k × I by setting

ϕ∗(x, t) = (ϕ(x), t). (3)
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Let us consider the product En+k × I as the strip En+k+1
∗ in the space

En+k+1 = En+k×E1, where E1 is the real line. Let us make the following
assumption about g∗:

a) The point p is a proper point of the mapping g∗ from the mani-
fold Σn+k × I and it does not belong to g∗(q

′ × I).
It follows from «a» that the set Mk+1 = ϕ∗g

−1
∗ (p) is a smooth compact

submanifold of the strip En+k+1
∗ . Denote by Nx the normal subspace in

the space En+k+1 to the manifold Mk+1 at the point x ∈ Mk+1. Since
the mapping g∗ϕ

−1
∗ is proper at x then it is regular at x on Nx; thus, to

the system of vectors e1, . . . , en one naturally associates in Nx the system
of vectors U(x) = {u1(x), . . . , un(x)} (Cf. Definition 5). Let us make one
more assumption about g∗.

b) The manifold Mk+1 is orthogonal on its boundary to the boundary
of the strip En+k+1

∗ (see Definition 3).

It follows from the assumption «b» that U(x) is a framing of the man-
ifold Mk+1; it is easy to see that the framed manifold (Mk+1, U) provides
homology between the framed manifolds (Mk

0 , U0) and (Mk
1 , U1) (Cf. Defi-

nition 4). Thus, to prove the theorem it suffices to construct such a smooth
homotopy gt connecting g0 and g1 for which the assumptions «a» and «b»
hold. Let us do that.

Let ht be an arbitrary smooth homotopy connecting g0 and g1. Let
us correct it to make the assumption «a» hold. It is assumed that p is
a proper point of the mappings g0 and g1 and that it does not coincide
with the points g0(q

′) and g1(q
′). From this, it follows that there exists a

positive ε satisfying the following conditions. For p∗ ∈ Sn, ̺(p, p∗) < ε and
t 6 ε or t > 1 − ε the point p∗ is proper for both ht and ̺(ht(q

′), p) > ε.
Let us fix ε satisfying the conditions above. Let p∗ be a proper point for
h∗, not belonging to h∗(q

′ × I) and satisfying the condition ̺(p, p∗) < ε.
By virtue of Theorems 4 and 1 such a point p∗ does exist. We shall as-
sume that the sphere Sn is situated in the Euclidean vector space En+1;
let En−1 be the linear subspace of the space En+1 orthogonal to the vec-
tors p and p∗. Denote the α-twisting of the sphere Sn around the axis En−1

by ϑα; let ϑβ(p) = p∗, 0 < β < π. Let χ(t) be a smooth real-valued curve
parametrized by t defined on the interval 0 6 t 6 1 and satisfying the
following conditions:

0 6 χ(t) 6 1, χ(0) = χ(1) = 0;

χ(t) = 1 for ε 6 t 6 1− ε.

Set ηt = ϑβχ(t). The twisting ηt of the sphere Sn around En−1 depending
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on t defined as above moves p to p∗ as t changes from 0 to ε, and further,
returns the point p to the initial position as t changes from 1−ε to 1. Now,
let us define the family of mappings lt by setting

lt = (ηt)
−1ht.

This family is smooth and it connects g0 and g1. It turns out that for gt = lt
the assumption «a» holds. For 06 t6 ε or 1− ε6 t61 we have lt(g

′) 6= p.
For ε 6 t 6 1 − ε the set l−1

t (p) coincides with the set h−1
t (p∗); thus lt(q

′)
does not coincide with p in this case either. Let us prove that p is a proper
point of the mapping l∗. Let (a, t0) ∈ l−1

∗ (p) and let x1, . . . , xn+k be the
local coordinates in the neighbourhood of the point a. For the point (a, t0)
to be proper for the mapping l∗, it is necessary and sufficient that amongst
the vectors

∂ϕl∗(a, t0)

∂x1
, . . . ,

∂ϕl∗(a, t0)

∂xn+k
,
∂ϕl∗(a, t0)

∂t

there are n linearly independent ones. For 0 6 t0 6 ε or 1 − ε 6 t0 6 1
there are n such vectors even amongst the first n + k ones because of the
choice of ε. For ε 6 t 6 1 − ε, amongst the n + k + 1 vectors in question
there are n linearly independent ones because of the choice of the point p∗.
Thus, for gt = lt the assumption «a» holds.

In order to realize the condition «b», let us construct an integer-valued
function s(t) of the parameter t, 0 6 t 6 1, satisfying the conditions:

s(t) = 0 for 0 6 t 6 1/3,

s(t) = 1 for 2/3 6 t 6 1,

ds
dt
> 0 for 1/3 < t < 2/3,

and set
gt = ls(t).

First of all, show that for the homotopy gt the condition «a» holds as
well. Since ls(t)(q

′) 6= p, gt(q
′) 6= p. Now let (a, t0) be an arbitrary point

of the set g−1
∗ (p) ⊂ Σn+k × I and x1, . . . , xn+k be the coordinates in the

neighbourhood of the point a in σn+k. It follows from (a, t0) ∈ g−1
∗ (p)

that (a, s(t0)) ∈ l−1
∗ (p). For the mapping g∗ to be proper at (a, t0), it is

necessary and sufficient to have among vectors

∂ϕg∗(a, t0)

∂x1
, . . . ,

∂ϕg∗(a, t0)

∂xn+k
,
∂ϕg∗(a, t0)

∂t
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n linearly independent ones. For the point (a, s(t0)) to be proper with
respect to l∗, it is necessary and sufficient that among the vectors

∂ϕl∗(a, s(t0))

∂x1
, . . . ,

∂ϕl∗(a, s(t0))

∂xn+k
,
∂ϕl∗(a, s(t0))

∂s

there are n linearly independent ones. For 1/3 6 t0 6 2/3 we have
∂ϕg∗(a, t0)

∂t
=
∂ϕl∗(a, s(t0))

∂s
· ds(t0)

dt
, for

ds(t0)

dt
> 0; thus, because the point

(a, s(t0)) is proper with respect to the l∗, it follows that the point (a, t0) is
a proper point of the mapping g∗. For 0 6 t 6 1/3 or 2/3 6 t 6 1 the point
a belongs to l−1

0 (p) or l−1
1 (p), respectively; thus, even amongst the vectors

∂ϕg∗(a, t0)

∂x1
, . . . ,

∂ϕg∗(a, t0)

∂xn+k

there are n linearly independent ones. Thus, for the mapping gt the as-
sumption «a» holds.

Since for 0 6 t 6 1/3 or 2/3 6 t 6 1 we have gt = g0 or, respectively,
gt = g1 then the orthogonality of the manifold Mk+1 to the boundary of
the strip En+k+1

∗ is evident.
Thus, Theorem 9 is proved.
Theorem 9 is proved here only for the case n > 2; it is not difficult to

prove it for n = 1. However, in this case we have no interest of it since the
classification of mappings from the sphere Σk+1 to the sphere S1 is quite
elementary (see Theorem 12 concerning the case k = 0 and Theorem 18
concerning the case k > 0).

From framed manifolds to mappings

B) Let N r be a vector space with a fixed basis u1, . . . , ur. Denote by
K ′

α the domain of the space N r generated by vectors ξ = ξ1u1 + . . .+ ξrur

satisfying the inequality (ξ1)2 + . . . + (ξr)2 < α2. Define the mapping λα

from the space N r to the sphere Sr by taking any point ξ ∈ K ′
α to the

point Sr with coordinates

xi =
ξiα2m

[α2 − (ξ1)2 − . . .− (ξr)2]m

(see «A») and taking the whole set N r\K ′
α to the point q ∈ Sr. It follows

directly from (1) and (2) that the mapping λα is m-smooth. Furthermore,
it is checked straightforwardly that the functional matrix of the mapping
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λα at ξ = (0, . . . , 0) is the identity matrix. Now, let N r be the space Tp

with basis e1, . . . , er and set ωα(x) = λαϕ(x), x ∈ Sr\q and ωα(q) = q.
The m-smooth mapping ωα of the sphere Sr to itself obtained in this way
is homotopic to the identity mapping. This mapping is homeomorphic,
it maps the ball neighbourhood Kα = ϕ−1(K ′

α) onto Sr\q and maps the
whole set Sr\Kα to the point q.

Theorem 10. Let Σn+k and Sn be two oriented spheres and let p′ be
a fixed point of Σn+k and En+k be the space tangent to Σn+k at the
point p′. Furthermore, let p0 and p1 be two points of the sphere Sn and
let e10, . . . , en0; e11, . . . , en1 be the orthonormal vector systems tangent to
Sn at p0 and p1, respectively. Let (Mk

0 , U0) and (Mk
1 , U1) be some two ho-

mologous smoothly framed manifolds in En+k. It turns out that there exists
a mapping g0 from the sphere Σn+k to the sphere Sn such that

(g0; p0, e10, . . . , en0)→ (Mk
0 , U0).

Moreover, it turns out that if f0 and f1 are two mappings from Σn+k to the
sphere Sn such that

(f0; p0, e10, . . . , en0)→ (Mk
0 , U0),

(f1; p1, e11, . . . , en1)→ (Mk
1 , U1),

then the mappings f0 and f1 are homotopic.

Proof. Since the tangent vector systems e10, . . . , en0 and e11, . . . , en1

define the same orientation of the sphere Sn, there exists an isometric map-
ping ϑ from the sphere Sn onto itself obtained from the identity mapping by
a continuous twisting, such that the system p0, e10, . . . , en0 is transformed
to the system p1, e11, . . . , en1. The mappings f1 and ϑ−1f1 are homotopic
and

(ϑ−1f1; p0, e10, . . . , en0)→ (Mk
1 , U1).

Thus, to prove the second part of the theorem, it is sufficient to consider
only the case when

(p0, e10, . . . , en0) = (p1, e11, . . . , en1),

i.e. we have to show that the relations

(f0; p, e1, . . . , en)→ (Mk, U), (4)

(f1; p, e1, . . . , en)→ (Mk, U) (5)

imply the homotopy of the mappings f0 and f1.
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First of all, let us show that if

(Mk
0 , U0) = (Mk

1 , U1) = (Mk, U), (6)

then the mappings f0 and f1 are homotopic.
Let Na be the normal subspace at the point a to the manifold Mk in the

Euclidean space En+k and let η1, . . . , ηn be the components of the vector
η ∈ Na in the basis u1(a), . . . , un(a) if the space Nα. For the neighbour-
hood Sn\q of the point p in the sphere Sn, let us introduce the coordi-
nates x1, . . . , xn induced by the north pole p and the orthonormal system
e1, . . . , en given at p (see «A»). It follows from (4)–(6) that the coordinate
form of the mappings f0 and f1 from Na to Sn near the point a looks like

xi = ηi + . . . , i = 1, . . . , n,

xi = ηi + . . . , i = 1, . . . , n,

where only the first-order terms are given, and the higher-order terms are
omitted. Thus, the mappings f0 and f1 from the space Na to Sn near the
point a coincide up to second-order terms. This implies that for η ∈ Wδ,
where δ is small enough (see § 1, Chapter 2, «A»), the geodesic interval
(f0ϕ

−1(η), f1ϕ
−1(η)) on the sphere Sn connecting f0ϕ

−1(η) to f1ϕ
−1(η)

does not pass through the point p. Set W ′
δ = ϕ−1(Wδ). Since the do-

main W ′
δ contains the set f−1

0 (p) = f−1
1 (p) = ϕ−1(Mk), the closed sets

f0(S
n\W ′

δ) and f1(S
n\W ′

δ) do not contain the point p. For ξ ∈ W ′
δ, set

σ(ξ) = ̺(ϕ(ξ), πϕ(ξ)). Now, let us make the point f0(ξ), ξ ∈ W ′
δ, move

uniformly along the geodesic interval (f0(ξ), f1(ξ)) in such a way that it
passes this interval in the unit period of time. Denote the position of the
moving point at the moment t, 0 6 t 6 1, by h(ξ, t). Let χ(σ) be a real-
valued function of σ, defined on the interval 0 6 σ 6 δ and satisfying the
following conditions:

χ(σ) = 1 for 0 6 σ 6
1
2
δ, χ(δ) = 0,

0 6 χ(σ) 6 1 for 0 6 σ 6 δ.

Set
ht(ξ) = h(ξ, tχ(σ(ξ))) for ξ ∈W ′

δ,

ht(ξ) = f0(ξ) for ξ ∈ Sn\W ′
δ.

The family of mappings ht, 0 6 t 6 1, provides a continuous deforma-
tion from the mapping f0 = h0 to the mapping h1. Here the mapping h1
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possesses the following properties. There exists a small ball neighbourhood
Kα of the point p in the sphere Sn such that

h−1
1 (Kα) = f−1

1 (Kα) = V ⊂W ′
δ,

and for ξ ∈ V we have
h1(ξ) = f1(ξ). (7)

Now, it is easy to show that the mappings f0 and f1 are homotopic. Indeed,
it follows from (7) that the mappings ωαh1 and ωαf1 (see «B») coincide.
Since the mapping ωα is homotopic to the identity the mappings h1 and f1
are homotopic; thus so are f0 and f1.

Thus, it is proved that if (6) holds, then (4) and (5) yield the homotopy
of the mappings f0 and f1.

Now, let us show that if the framed manifolds (Mk
0 , U0) and (Mk

1 , U1)
corresponding to the mappings f0 and f1, are null-homologous then these
mappings are homotopic. Let (Mk+1, U) be a framed submanifold of the
strip En+k× I ⊂ En+k×E1 = En+k+1 providing a homotopy between the
framed manifolds (Mk

0 , U0) and (Mk
1 , U1) (see Definition 4). Denote the

normal subspace a ∈Mk+1 to the manifold Mk+1 in the space En+k+1 by
Na and let Wδ be the neighbourhood of the manifold Mk+1 in the strip
En+k × I constructed as in § 1, Chapter 2, «A». In the vector space Na we
have a basis U(a). Let us choose a positive number α in such a way that
for any arbitrary point a ∈Mk+1 the inclusion K̄α ⊂Wδ holds (see «B»).
Now, define the mapping g∗ from the manifold Σn+k × I to the sphere Sn

by setting

g∗(ξ) = λα(ϕ∗(ξ)) for ϕ∗(ξ) ∈ Hδ(a) (see § 1, Chapter 2, «A»),

g∗(ξ) = q for ϕ∗(ξ) 6∈ Wδ(a) [see (3)].

For the mapping g∗ from the manifold Σn+k × I to the sphere Sn there
corresponds a deformation gt of mappings from the sphere Σn+k to the
sphere Sn. It follows from the properties of the mapping λα (see «B») that
the framed manifolds corresponding to the mappings g0 and g1 coincide with
the given framed manifolds (Mk

0 , U0) and (Mk
1 , U1). Since the mappings f0

and g0 have the same corresponding framed manifold (Mk
0 , U0) then the

mappings f0 and g0, are homotopic, as shown above. Reasoning as above,
the mappings f1 and g1 are homotopic as well. Since the mappings g0 and
g1 are connected by a homotopy gt then they are homotopic as well. From
that and from the transitivity of homotopy it follows that f0 is homotopic
to f1.

Thus, the second part of the theorem is proved. The proof of the first
part is contained in the last construction. Let us present this proof. We
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are given a framed manifold (Mk, U). Denote the normal subspace at the
point a ∈Mk by Na. In the vector space Na we have a basis U(a). Define
a positive number α in such a way that for any point a ∈Mk the inclusion
K̄α ⊂ Wδ holds (see § 1, Chapter 2, «A»). Define the mapping g from the
sphere Σn+k to the sphere Sn by the following relations:

g(ξ) = λα(ϕ(ξ)) for ϕ(ξ) ∈ Hδ(a),

g(ξ) = q for ϕ(ξ) 6∈ Wδ(a).

It follows straightforwardly from the properties of λα that the framed man-
ifold corresponding to g is (Mk, U). Thus, the first part of the theorem is
proved.

Theorem 10 is completely proved.
It is easy to show that each framed submanifold (Mk, U) of the Eu-

clidean space Ek+1 is null-homologous. Thus, for n = 1, Theorems 9 and 10
are not interesting.

§ 3. Homology group of framed manifolds

In this section we first define the notion of deformation for framed man-
ifolds. If the manifold in question is smooth, has no intersections and
its framing varies continuously together with it, one says that one has a
smooth deformation of the framed manifold. It can be easily shown that
two framed manifolds obtained from each other by a deformation are ho-
mologous. Later on, we introduce the sum operation for the homology
classes of framed manifolds in the given Euclidean space, so that the set of
these classes is naturally endowed with a commutative group structure. If
π1 and π2 are two homology classes and (Mk

1 , U1) ∈ π1 and (Mk
2 , U2) ∈ π2,

then the sum π1 + π2 is defined as the class containing the union of these
two framed manifolds. It is necessary here that the manifolds Mk

1 and Mk
2

do not intersect and that they are unknotted; the knottedness is possible if
the dimension of the ambient Euclidean space is strictly less than 2k + 2.
The unknottedness means that the manifolds Mk

1 and Mk
2 can be moved

away from each other by a deformation of each of them. To satisfy these
conditions, it is assumed that the manifolds Mk

1 and Mk
2 lie on different

sides of some hyperplane.

Homotopy of framed manifolds

A) Let Er be a Euclidean space, let X be some compact metric space
and let Nn

x,t be a linear subspace of Er with the fixed origin O(x, t),
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that continuously depends on the pair (x, t), x ∈ X , 0 6 t 6 1. Fur-
thermore, let U(x) = {u1(x), . . . , un(x)} be a basis of the vector space
Nn

x,0 continuously depending on x ∈ X . Then there exists a basis
U(x, t) of the space Nn

x,t continuously depending on the pair (x, t) and
coinciding with U(x) at t = 0. If, moreover, the vector space Nn

x,t

does not depend on t for x ∈ Y ⊂ X , then we have U(x, t) = U(x)
for x ∈ Y .

Let us prove Statement «A». Let ε be a small positive number such
that for |t − t′| 6 ε, x ∈ X , the orthogonal projection of the space Nn

x,t

to the space Nn
x,t′ is non-degenerate. Set U(x, 0) = U(x). Suppose that

the basis U(x, t) is already constructed for 0 6 t 6 pε < 1, x ∈ X (p is
a non-negative integer). For pε 6 t 6 (p + 1)ε, let us construct the basis
U(x, t) by transporting the basis U(x, pε) parallel to the point O(x, t) and
then projecting it orthogonally to Nn

x,t.
B) Let En+k be the Euclidean space endowed with the Cartesian coordi-

nate system y1, . . . , yn+k; let En+k
∗ be the strip defined by c0 6 yn+k 6 c1,

restricted by the hyperplanes E0 and E1, and let Mk be a smooth submani-
fold of the strip En+k

∗ orthogonal on the boundary to the boundary E0∪E1

of the strip En+k
∗ (see § 1, Chapter 2, «A»). A smooth family of mappings

et, 0 6 t 6 1, from the manifold Mk to the strip En+k
∗ is called a smooth

deformation of the sumbanifold Mk of the strip En+k
∗ if e0 is the identity

mapping and et is a regular homeomorphic mapping from the manifold Mk

to the submanifold et(M
k) of the strip En+k

∗ orthogonal at the boundary
to the boundary of the strip En+k

∗ . If U is a framing of Mk and there is a
framing et(U) of et(M

k) depending continuously on t such that e0(U) = U ,
we say that et is a deformation of the framed manifold (Mk, U). (In the
case of closed Mk we assume that En+k

∗ = En+k.) If for arbitrary t, the
mapping et of the manifold Mk is the identity, then et provides a deforma-
tion for framing U of the fixed manifold Mk. This deformation provides a
homotopy of the framings e0(U) and e1(U) of the manifold Mk. It turns
out that if et is a smooth deformation of the submanifold Mk of the strip
En+k

∗ and some framing U ofMk is given, then there exists a deformation et

of the framed manifold (Mk, U). Furthermore, if et preserves the boundary
points of the manifold Mk fixed then the framing et(U), 0 6 t 6 1, of the
manifold et(M

k) can be constructed in such a way that on the boundary
of the manifold et(M

k) this framing coincides with the initial framing U .
Let us prove Statement «B». Let (Mk, U) be a framed submanifold

of the strip En+k
∗ and let et be a given smooth deformation of the sub-

manifold Mk in the strip En+k
∗ . Let us construct a framing et(U) for the

submanifold et(M
k) depending continuously on the parameter t in such a

way that e0(U) = U . Denote the normal subspace at et(x) to the manifold
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et(M
k) by Nn

xt. Taking the vector system U(x) to be the initial basis of the
space Nn

x0 we get, according to «A», a basis U(x, t) of the vector space Nn
xt

with origin at the point et(x). The vector systems U(x, t), x ∈ Mk at a
fixed t provide the desired framing et(U). This completes the proof of «B».

C) Let (Mk, U) be a smoothly framed submanifold of the Euclidean
space En+k and let et be its deformation in En+k. It turns out that the
framed manifolds (e0(M

k), e0(U)) and (e1(M
k), e1(U)) are homologous.

Let us prove this fact. Set s(t) = 3t2 − 2t3. It follows immediately that
the function s(t) satisfies the conditions

s(0) = 0, s(1) = 1, s′(0) = 0, s′(1) = 0,

s′(t) > 0 for 0 < t < 1.

Define the deformation ft of the framed manifold (Mk, U) by setting ft =
es(t). Obviously, we have

f0 = e0, f1 = e1.

To prove that the manifolds (f0(M
k), f0(U)) and (f1(M

k), f1(U)) are ho-
mologous in the strip En+k+1

∗ = En+k × I ⊂ En+k+1, define the manifold
Mk+1 as the set of all points of the type (ft(x), t), x ∈ Mk, 0 6 t 6 1.
Let N ′

xt be the normal subspace at ft(x) to ft(M
k) in the space En+k. In

the space En+k+1, denote the normal subspace to the manifold Mk+1 at
(ft(x), t) by Nxt. It is easy to see that Nxt = (N ′

xt, t) for t = 0, 1, i.e. in
the boundary points, the manifold Mk+1 is orthogonal to the boundary of
the strip En+k+1

∗ . At those points (ft(x), t), where t is distinct from 1 and
0, the normal subspaces (N ′

xt, t) and Nxt are distinct, and thus the system
ft(U(x)) does not lie in Nxt. To transform the system ft(U(x)) to some sys-
tem U(x, t) lying in Nxt, let us project the system ft(U(x)) orthogonally to
the spaceNxt. It is easy to see that this projection is non-degenerate. Thus,
the system U(x, t) is linearly independent, thus it constitutes a framing for
Mk+1. Since on the boundary components (f0(M

k), 0) and (f1(M
k), 1), the

framing U(x, t) coincides with the given framings (f0(U), 0) and (f1(U), 1),
the framed manifold (Mk+1, U) provides the homology between the framed
manifolds

(f0(M
k), f0(U)) and (f1(M

k), f1(U)).

D) Each m-smooth framing is homotopic to an (m−1)-smooth framing
of the same manifold.

Let Mk be an m-smooth submanifold of the strip En+k
∗ and let U(x) =

{u1(x), . . . , un(x)} be some framing of it. Denote the components of the
vector ui(x) in the space En+k by u1

i (x), . . . , u
n+k
i (x). Let ε be a positive
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number and let vj
i (x) be a real-valued m-smooth function on Mk such that

|uj
i (x) − vj

i (x)| < ε (see § 1, Chapter 2, «B»). Denote the vector of the
space En+k with components v1

i (x), . . . , vn+k
i (x) by vi(x); let wi(x) be the

orthogonal projection of the vector vi(x) to Nx. Set

Wt(x) = {ui(x) · (1− t) + wi(x) · t}, i = 1, . . . , n.

The system Wt(x) is non-degenerate for ε sufficiently small; thus it provides
a deformation of the source framing U(x) = W0(x) to the (m− 1)-smooth
framing W1(x).

In § 2, Chapter 2, it was shown that the homotopy classification of
mappings from the sphere Σn+k to the sphere Sn is equivalent to the ho-
mology classification of smoothly framed k-dimensional submanifolds of
En+k (see Theorems 9 and 10). By virtue of statements «C» and «D»
we may omit the smoothness assumption and consider arbitrary contin-
uous framings of smooth manifolds. Indeed, each smooth framing of
a smooth manifold is homotopic to a smooth one (see «D»), and (not
necessarily smoothly) homotopic smooth framings of the same manifold
are homologous (see «C»); thus they correspond to homotopic map-
pings of spheres.

The homology group Πk
n of framed manifolds

E) Let (Mk, U) be a framed submanifold of the Euclidean space En+k

and let f be a homothetic mapping of En+k onto itself. It is evident
that (f(Mk), f(U)) is also a framed submanifold of the Euclidean space
En+k. If the mapping f preserves the orientation of the space En+k, then
it is easy to see that there exists a family ft (smoothly depending on t,
0 6 t 6 1) of the homothety mappings from En+k onto itself such that the
mapping f0 is identical and f1 = f . The family ft, 0 6 t 6 1, provides a
smooth deformation of the framed manifold (Mk, U) to the framed manifold
(f(Mk), f(U)). Thus, these framed manifolds are homological (see «C»).
From the above, it follows that if we move a framed manifold in the space
as a rigid body and shrink it homothetically, we will preserve the homology
class of the framed manifold.

Definition 6. Split the totality of all framed k-dimensional manifolds
in the Euclidean space En+k into classes of pairwise homological ones. De-
note the set of all homology classes by Πk

n. Define the sum as follows.
Let π1 and π2 be two elements from Πk

n. Choose an arbitrary hyper-
plane En+k−1 ⊂ En+k and choose representatives (Mk

1 , U1) and (Mk
2 , U2)

for each of the two classes π1 and π2 in such a way that the manifolds
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Mk
1 and Mk

2 lie on different sides of the hyperplane En+k−1. Accord-
ing to Statement «E», this is always possible. Define the framed mani-
fold (Mk, U) = (Mk

1 , U1) ∪ (Mk
2 , U2) as the union of the manifolds Mk

1

and Mk
2 taken together with their framings. It turns out that the homol-

ogy class π of the framed manifold (Mk, U) does not depend on the arbi-
trary choice of the hyperplane En+k−1; it does not depend on the choice
of representatives (Mk

1 , U1), (Mk
2 , U2) of homology classes π1, π2 either.

By definition, set π = π1 + π2. It turns out that, according to this defi-
nition, the set Πk

n becomes a commutative group. The zero of the group
Πk

n is the class of null-homologous framed manifolds. The element −π
opposite to the element π can be described as follows. Let En+k−1 be an
arbitrary hyperplane from En+k, and let (M̂k, Û) be some framed man-
ifold representing the class π and let σ be the reflection of En+k in the
hyperplane En+k−1. The homology class −π contains the framed mani-
fold (σ(Mk), σ(U)).

First, prove that the operation defined in this way for the set Πk
n, is

invariant. Choose, together with the hyperplane En+k−1 and framed man-
ifolds (Mk

1 , U1) and (Mk
2 , U2) in the space En+k, a hyperplane Ên+k−1

and framed manifolds (M̂k
1 , Û1) and (M̂k

2 , Û2) representing the classes π1

and π2. Let us show that the framed manifolds (Mk
1 , U1) ∪ (Mk

2 , U2) and
(M̂k

1 , Û1) ∪ (M̂k
2 , Û2) belong to the same homology class. This will show

that the sum operation is well defined. Clearly, there exists an orientation-
preserving isometric mapping f of the space En+k onto itself such that
f(Ên+k−1) = En+k−1 and the manifolds f(M̂k

1 ) and Mk
1 lie on the same

side of the hyperplane En+k−1. By virtue of «E», we have

f(M̂k
i , Ûi) ∼ (M̂k

i , Ûi), i = 1, 2;

f((M̂k
1 , Û1) ∪ (M̂k

2 , Û2)) ∼ (M̂k
1 , Û1) ∪ (M̂k

2 , Û2).

Thus, we reduced the question to the case when Ên+k−1 = En+k−1

and both representatives (M̂k
1 , Û1) and (Mk

1 , U1) of the class π1 lie on
the same side (with respect to En+k−1) in the half-space En+k

− whence

both representatives (M̂k
2 , Û2) and (Mk

2 , U2) of the class π2 lie on the
other side away from the hyperplane En+k−1 in the half-space En+k

+ . Let

(Mk+1
1 , U∗

1 ) be a framed submanifold of the strip En+k × I providing a

homology (M̂k
1 , Û1) ∼ (Mk

1 , U1) and let (Mk+1
2 , U∗

2 ) be a framed subman-

ifold of En+k × I, providing homology (M̂k
2 , Û2) ∼ (Mk

2 , U2). If Mk+1
1 ⊂

En+k
− × I and Mk+1

2 ⊂ En+k
+ × I then the framed manifolds (Mk+1

1 , U∗
1 )

and (Mk+1
2 , U∗

2 ) do not intersect and their union, being a framed manifold,

would provide a homology (M̂k
1 , Û1) ∪ (M̂k

2 , Û2) ∼ (Mk
1 , U1) ∪ (Mk

2 , U2).
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Let e be the vector of the space En+k orthogonal to En+k−1 and directed
toward En+k

+ . Denote by gt the mapping of the space En+k onto itself and
taking x to x + te. Choose the vector e to be so long that the following
inclusions are obtained:

g−1(M
k+1
1 ) ⊂ En+k

− × I, g1(M
k+1
2 ) ⊂ En+k

+ × I.

Finally, note that the framed manifold g−t(M̂
k
1 , Û1) ∪ gt(M̂

k
2 , Û2) pro-

vides a deformation from the manifold (M̂k
1 , Û1)∪(M̂k

2 , Û2) to the manifold
g−1(M̂

k
1 , Û1) ∪ g1(M̂k

2 , Û2); thus, by virtue of «C», we have the homology
g−1(M̂

k
1 , Û1) ∪ g1(M̂k

2 , Û2) ∼ (M̂k
1 , Û1) ∪ (M̂k

2 , Û2). In the same way we
get g−1(M

k
1 , U1) ∪ g1(Mk

2 , U2) ∼ (Mk
1 , U1) ∪ (Mk

2 , U2). Thus,

(M̂k
1 , Û1) ∪ (M̂k

2 , Û2) ∼ (Mk
1 , U1) ∪ (Mk

2 , U2).

It follows from the independence of the sum operation on the choice of
representatives that the zero of the group Πk

n is represented by the class
containing the empty manifold, i.e. the class of null-homologous framed
manifolds. Let us prove that the opposite element −π for the element π is
described as follows.

Assume that the Euclidean space En+k lies in the Euclidean space
En+k+1 where it is defined as yn+k+1 = 0. Let us also assume that all
points of the manifold Mk are at the distance less than one from the hy-
perplane En+k−1 (see «C»). Let En+k

+ and En+k
− be the half-spaces of

the space En+k separated by En+k−1, so that Mk ⊂ En+k
+ . Let us rotate

the half-space En+k
+ in the half-space yn+k+1 > 0 of the space En+k+1

until it coincides with the half-space En+k
− ; then during the process, the

manifold (Mk, U) circumscribes the framed submanifold (Mk+1, U∗) of the
half-space yn+k+1 > 0. The framed manifold (Mk+1, U∗) lies completely in
the strip 0 6 yn+k+1 6 1 of the space En+k+1 and provides the homology
between the manifold (Mk, U) ∪ (σ(Mk), σ(U)) and zero.

Split the set of all mappings from the sphere Σn+k to the sphere Sn

into sets of pairwise homotopic classes; denote the set of such classes
by πn+k(Sn). Since between elements of the group Πk

n and elements of
πn+k(Sn) there is a one-to-one correspondence (see § 2, Chapter 2), the
sum operation defined in Πk

n induces the sum operation in πn+k(Sn).
It is easy to show that the sum operation on the set πn+k(Sn) defined
in this way coincides with the usual sum operation of the homotopy
group (see [10]). However, we shall neither prove nor use this fact. A
reader familiar with elements of homotopy theory can easily prove this
fact.



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

§ 3. Homology group of framed manifolds 63

Orthogonalization of framings

Statement «G» given below shows that in the homology theory of framed
manifolds, it is sufficient to restrict ourselves to orthonormal framings.
Statement «H» provides an approach to the orthonormal framing homo-
topy classification question.

F) Let U = {u1, . . . , un} be a linearly independent vector system of the
space El. Let us undertake the orthogonalization process, i.e. let us find
the orthonormal system Ū = {ū1, . . . , ūn} obtained from the system U by
formulae

ūj =

n∑

i=1

ai
juj , j = 1, . . . , n,

where the coefficients ai
j satisfy the conditions

ai
j = 0 at i > j; ai

j > 0 at i = j.

These conditions uniquely define the coefficients ai
j ; the latter can be ex-

pressed in terms of scalar products of vectors of the system U . If U is
orthonormal, then Ū = U . Set

U t = {ut
1, . . . , u

t
n},

where
ut

i = ui(1− t) + ūit.

The system U t is linearly independent since the matrix ‖(1 − t)δi
j − tai

j‖
is non-degenerate. Thus, the system Ū = U1 is obtained from the system
U = U0 by using a continuous deformation uniquely defined by the system
U .

G) Let U(x) be some framing of the manifold Mk. The framing U t(x)
(see «F») provides a continuous deformation from the initial framing U(x)
to the orthonormal framing Ū(x). If the initial framing is m-smooth, then
the whole deformation U t is so. Finally, if there exists a deformation Ut(x),
0 6 t 6 1 from some orthonormal framing U0(x) to some other orthonormal
framing U1(x) then there exists an orthonormal deformation Ūt(x) from
U0(x) to U1(x).

H) Let (Mk, V ) be an orthonormally framed submanifold of the ori-
entable Euclidean space En+k. According to the remark for Definition 3,
the manifold Mk has a fixed orientation, and we shall say that V is a fram-
ing of the oriented manifold Mk. Let U be a certain orthonormal framing
of the oriented manifold Mk. Let us compare the framings V and U . For
each normal subspace Nx to the manifold Mk, there are two orthonormal
vector systems:

V (x) = {v1(x), . . . , vn(x)} U(x) = {u1(x), . . . , un(x)};
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thus we have

ui(x) =

n∑

j=1

fij(x)vj(x), i = 1, . . . , n,

where f(x) = ‖fij(x)‖ is an orthogonal matrix with positive determinant.
Thus, with each orthonormal framing U for V being fixed, we associate
a mapping f from the manifold Mk to the manifold Hn of all orthogonal
matrices with positive determinant: U → f . Clearly, we have the converse
as well: for each mapping f from Mk to Hn there corresponds a unique
framing U : f → U . Assume that together with a fixed framing V there
are two orthonormal framings U0 and U1 of the oriented manifold Mk, and
let U0 → f0, U1 → f1. It is easy to see that the framings U0 and U1 are
homotopic if and only if the mappings f0 and f1 are homotopic. Thus, the
homotopy classification of all framings of the oriented manifold Mk in the
oriented Euclidean space En+k is equivalent to the homotopy classification
of mappings from the manifold Mk to the manifold Hn of all orthogonal
matrices of order n with positive determinant.

§ 4. The suspension operation

In this section, we shall define and investigate (to some extent) the sus-
pension operation for framed manifolds; this operation plays an important
role in the question of homotopy classification for mappings from sphere
to sphere. Let (Mk, U) be a framed submanifold of the Euclidean space
En+k situated in the Euclidean space En+k+1. For any point x ∈ Mk

construct in En+k+1 the unit vector un+1(x) perpendicular to the hyper-
plane En+k in such a way that all vectors un+1(x), x ∈Mk have the same
direction and set EU(x) = {u1(x), . . . , un(x), un+1(x)}. The framed man-
ifold E(Mk, U) = (Mk, EU) of the Euclidean space En+k+1 is called the
suspension of the framed manifold (Mk, U). It turns out that the suspen-
sions for homological framed manifolds are homological as well and that
the mapping E from the group Πk

n to the group Πk
n+1 (see Definition 6) is

a homomorphism. It is proved in Theorem 11 that for n > k + 1 the ho-
momorphism E is an epimorphism and for n > k+ 2 it is an isomorphism,
so that the groups Πk

n+2, Πk
n+3, . . . are all naturally isomorphic.

In terms of sphere-mappings, the suspension operation can be described
as follows. Let p′ and q′ be the poles of the sphere Σn+k+1 and let Σn+k be
its equator, i.e. the section by the hyperplane perpendicular to the interval
p′q′ and passing through the centre of this interval. Analogously, let p
and q be the poles of the sphere Sn+1 and let Sn be its equator. With any
mapping f from Σn+k to Sn, let us associate the mapping Ef from Σn+k+1

to Sn+1 which maps the meridian p′xq′, x ∈ Σn+k, of the sphere Σn+k+1 to
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the meridian pf(x)q of the sphere Sn+1. The suspension Ef of the mapping
f in the form described above was introduced by Freudenthal [11]. We will
not use it here, however. The fact that the suspension of a mapping and the
suspension over a framed manifold correspond to each other in the sense of
Definition 5 can be easily proved; however, we shall not prove it.

Definition 7. Let (Mk, U), U(x) = {u1(x), . . . , un(x)}, be a framed
submanifold of the oriented Euclidean space En+k and let En+k+1 be an
orientable Euclidean space containing En+k. Let e1, . . . , en+k be a basis
of En+k generating its orientation and let en+k+1 be a unit vector of the
space En+k+1 orthogonal to En+k such that the basis e1, . . . , en+k, en+k+1

generates the orientation of the space En+k+1. Denote by un+1(x) the
vector emanating from the point x ∈Mk obtained from en+k+1 by parallel
transport. Set

EU(x) = {u1(x), . . . , un(x), un+1(x)}.

Then E(Mk, U) = (Mk, EU) is a framed submanifold of the Euclidean
space En+k+1. The framed manifold E(Mk, U) is called the suspension
of the framed manifold (Mk, U). It turns out that from (Mk

0 , U0) ∼
(Mk

1 , U1) it follows that E(Mk
0 , U0) ∼ E(Mk

1 , U1). Thus, the correspon-
dence (Mk, U)→ E(Mk, U) generates the mapping from the group Πk

n to
the group Πk

n+1. This mapping turns out to be a homomorphism. We shall
denote it also by E.

Let us show that if (Mk
0 , U0) ∼ (Mk

1 , U1) then E(Mk
0 , U0) ∼ E(Mk

1 , U1).
Let (Mk+1, U∗) be the framed submanifold of the strip En+k × I pro-
viding the homology (Mk

0 , U0) ∼ (Mk
1 , U1). In the strip En+k+1 × I

at the point y ∈ Mk+1, let us choose the unit vector u∗n+1(y) or-
thogonal to the strip En+k × I and collinear with the vector en+k+1.
Set EU∗(y) = {u∗1(y), . . . , u∗n(y), u∗n+1(y)}. Clearly, the framed subman-
ifold E(Mk+1, U∗) = (Mk+1, EU∗) of the strip En+k+1 × I provides the
homology E(Mk

0 , U0) ∼ E(Mk
1 , U1).

The fact that E is a homomorphism is even simpler. The homomor-
phism E from the group Πk

n to the group Πk
n+1 is in several cases an epi-

morphism and even an isomorphism. Let us consider these cases. Before
that, let us prove the following statement.

A) Let En+k+1 be the oriented Euclidean space and let En+k be its ori-
ented hyperplane. Furthermore, let (Mk+1, V ) be an orthonormally framed
submanifold of the strip En+k+1×I such that the manifold Mk+1 itself lies
in the frame En+k × I. Mk+1 might possibly be closed. Assume that the
boundary of the manifold Mk+1 consists of manifolds Mk

0 × 0 and Mk
1 × 1,

so that Mk
0 ⊂ En+k, Mk

1 ⊂ En+k. Suppose that the framing V restricted
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to the boundary components Mk
1 × 0 and Mk

1 × 1 is a suspension, i.e.

V (x, τ) = EUτ (x) × τ, τ = 0, 1,

where Uτ is a framing of the manifold Mk
τ , τ = 0, 1, in the space En+k. At

each point x ∈Mk+1, let us choose the unit vector un+1(x) to be orthogonal
to En+k×I and directed in a proper way. In the normal subspace Nx to the
manifold Mk+1 at x in the space En+k+1×I, fix a basis v1(x), . . . , vn+1(x).
Thus, for the vector un+1(x) also lying in Nx, we have

un+1(x) = ψ1(x)v1(x) + . . .+ ψn+1(x)vn+1(x). (1)

LetN be the Euclidean space of dimension n+1 with preassigned coordinate
system and let Sn be the unit sphere of this space centred at the origin of
coordinates. Denote the point (0, . . . , 0, 1) of the sphere Sn by P. Now,
with each point x ∈Mk+1, associate the point ψ(x) of the sphere Sn with
coordinates ψ1(x), . . . , ψn+1(x). Thus, ψ is a mapping from the manifold
Mk+1 to the sphere Sn taking the whole boundary to the point P. Suppose
there exists a continuous deformation ψt, 0 6 t 6 1 from the mapping
ψ = ψ0 to the mapping ψ1, so that ψ takes the whole manifold Mk+1

to the point P, and ψt takes the boundary of the manifold Mk+1 to P

for arbitrary t. It turns out that then there exists a deformation of the
framing V to the framing EU where U is a framing of the submanifold
Mk+1 in En+k×I, and during the whole deformation, the framing remains
the same on the boundary of the manifold Mk+1. For the case of closed
Mk+1 this means that the framed manifold (Mk+1, V ) is homologous to
the framed manifold E(Mk+1, U). For a non-closed manifold Mk+1 this
allows us to deduce from the homology E(Mk

0 , U0) ∼ E(Mk
1 , U1) provided

by (Mk+1, V ) the homology (Mk
0 , U0) ∼ (Mk

1 , U1).
Let us prove «A» now. Introduce in Nx the Cartesian coordinates cor-

responding to the basis v1(x), . . . , vn+1(x). Let λx be the coordinate-wise
mapping from N onto Nx. Set ψ(x, t) = λxψ1−t(x). The vector ψ(x, t)
of the space En+k+1 × I lies in Nx and depends continuously on the vari-
ables (x, t) so that ψ(x, 0) = vn+1(x), and ψ(x, 1) = un+1(x). Denote
the subspace of N orthogonal to ψ(x, t), by Pxt. Since ψ(x, 0) = vn+1(x)
the vectors v1(x), . . . , vn+1(x) form a basis of the space Px0. Taking it to
be the initial basis and applying to the variable vector space Pxt State-
ment «A» § 3, Chapter 2, we get a basis U(x, t) of this space. Together
with the vector ψ(x, t) this basis gives us the desired deformation for the
framing V . Thus, Statement «A» is proved.

Theorem 11. The homomorphism E from Πk
n to Πk

n+1 is an epimor-
phism for n > k + 1 and an isomorphism for n > k + 2. Thus, the groups
Πk

k+2,Π
k
k+3, . . . are all naturally isomorphic.
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Proof. Let n > k + 1, π̂ ∈ Πk
n+1 and let (M̂k, Û) be a framed sub-

manifold of the Euclidean space En+k+1 representing the homology class
π̂. According to Statement «D» § 2, there exists such a one-dimensional
projecting direction E1 along which the manifold M̂k is projected regularly
without intersection to the manifold Mk. We shall project along E1 to the
hyperplane En+k of the space En+k+1 orthogonal to E1 in such a way that
Mk ⊂ En+k. We shall make each point x ∈ M̂k move in a straightfor-
ward line towards E1 until it coincides with its projection to Mk in such
a way that it passes the whole way in unit time. This gives a deformation
of the manifold M̂k to the manifold Mk. According to Statements «B»
and «G» § 7, there exists a deformation of the framed manifold (M̂k, Û) to
the orthonormally framed manifold (Mk, U). Since n > k+1, the mapping
ψ from Mk to the sphere Sn, constructed in Statement «A», is homotopic
to the mapping of the manifold Mk to the point P; thus the framing V of
the manifold Mk is homotopic to the framing EU of the same manifold. By
virtue of Statement «C» § 7 we have (M̂k, Û) ∼ E(Mk, U). Let π ∈ Πk

n be
the homology class of the framed manifold (Mk, U); then we have π̂ = Eπ.
Thus it is proved that Πk

n+1 = EΠk
n for n > k + 1.

Suppose now that n > k + 2; let us show that E is an isomorphism,
i.e. that for π0 ∈ Πk

n, π1 ∈ Πk
n the relation Eπ0 = Eπ1 implies that π0 =

π1. Let (Mk
0 , U0) and (Mk

1 , U1) be orthonormally framed manifolds in the
Euclidean space En+k ⊂ En+k+1 belonging to homology classes π0 and π1.
Furthermore, let (M̂n+k, Û) be a framed submanifold of the strip En+k+1×
I providing the homology E(Mk

0 , U0) ∼ E(Mk
1 , U1). Denote by Ê1 the

one-dimensional direction in the space En+k+1 × I orthogonal to the strip
En+k × I. By virtue of Statement «D» § 2 there exists an arbitrarily close
to Ê1 projecting direction E1 such that the projection of Mk+1 along it
is regular without intersection. Choose E1 to be so close to Ê1 that the
projection Mk+1 of the manifold M̂k+1 along E1 lies in the strip En+k× I.
The deformation of the manifold M̂k+1 to Mk+1 preserves the boundary
pointwise fixed, thus the deformation of the framed manifold (M̂k+1, Û)
to the orthonormally framed manifold (Mk+1, V ) (which exists according
to Statements «B» and «G» § 3, Chapter 2) preserves the framing on the
boundary. Now, the homology E(Mk

0 , U0) ∼ E(Mk
1 , U1) is represented by

the framed manifold (Mk+1, V ); here Mk+1 ⊂ En+k×I, i.e. the conditions
of Statement «B» hold; thus, the framed manifolds (Mk

0 , U0) and (Mk
1 , U1)

are homologous. Thus π0 = π1.
Thus, Theorem 11 is proved.
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Chapter III

The Hopf invariant

§ 1. Homotopy classification of mappings of

n-manifolds to the n-sphere

Here we present a homotopy classification of mappings of smooth closed
orientable n-manifolds to the n-sphere. This result is well known even for
non-smooth manifolds, however, this plays an auxiliary role here. The
proof is performed by using specific methods for smooth manifolds. This
simplifies the ways of applying the result in the sequel. First, we define
the mapping degree and prove its simplest properties. Later, based on
the theory constructed, we present a classification of mappings from the
n-dimensional sphere to itself; this gives an illustration of general results
presented in previous sections. Finally, we reduce the classification of map-
pings from an n-manifold to the n-sphere to the classification of mappings
from the n-sphere to itself.

Mapping degree

Definition 8. Let f be a smooth mapping from an r-dimensional ori-
ented manifold P r to an r-dimensional oriented manifold Qr and let b be an
interior point of the manifold Qr which is a proper point of f , such that the
full pre-image of this point is compact and does not intersect the boundary
of the manifold P r. With the assumptions above, the full pre-image f−1(b)
consists of a finite number of points a1, . . . , ap and the functional determi-
nant of f is non-zero; thus, it has a well-defined sign (the manifolds P r

and Qr are oriented). Denote the sign of the functional determinant of the
mapping f at the point a by εi(= ±1), i = 1, . . . , p. Call this determinant
the degree of f at ai. The sum ε1 + . . . + εp is called the mapping degree
of f at b. Now, if both manifolds P r and Qr are closed, then the set G
of all those points b for which the conditions above hold is an everywhere
dense domain in Qr (see Theorem 4). It will be shown later (see «B») that
if, furthermore, the manifold Qr is connected then for all points b ∈ G the
degree of f is the same; it is called the mapping degree of 1f . It will also
be shown later (see «B») that the degrees of homotopic mappings coincide.
Thus, in the case of closed P r and connected closed Qr, the mapping degree
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is an invariant of the homotopy class of mappings; thus, it is well defined
for any mapping.

A) Let Qr be a connected closed manifold, let P r+1 be a compact mani-
fold with boundary P r; let f be a smooth mapping from the manifold P r+1

to the manifold Qr; finally, let b ∈ Qr be a proper point of the mapping f
from P r to Qr. It turns out that the degree of f at b is zero.

Let us prove this fact. Let V be a connected neighbourhood of the point
b in Qr consisting of proper points of the mapping f : P r → Qr. It is easy to
see that for all points b′ ∈ V , the mapping degree of f : P r→Qr is the same.
Thus, without loss of generality, we may assume the point b to be a proper
point of the mapping f from P r+1 to Qr (see Theorem 4). Thus, f−1(b)
is a one-dimensional submanifold M1 of the manifold P r+1, consequently,
it consists of finitely many components, some of which are homeomorphic
to the circle, the remaining ones being homeomorphic to the interval. All
points of the full pre-image of the point b in P r are endpoints of components
of M1. Let L1 be a component of M1 homeomorphic to the interval; denote
its endpoints by a0 and a1. According to the results of § 4 [see (2)], for a
given coordinate system y1, . . . , yr with the origin at b defined in some
neighbourhood of b, one can choose such coordinates x1, . . . , xr+1 in the
neighbourhood of a ∈ L1 that the mapping f looks like

yi = xi, i = 1, . . . , r.

We shall assume that the coordinates y1, . . . , yr generate the orientation of
the manifold Qr. In coordinates x1, . . . , xr+1, the curve L1 is defined by
the equations x1 = 0, . . . , xr = 0, i.e. xr+1 can be treated as a variable
parameter on L1. We shall assume that as the parameter xr+1 increases,
the point on the curve L1 moves from a0 to a1. With that assumption,
the coordinates x1, . . . , xr+1 might not define the orientation of the mani-
fold P r+1; denote by ε(= ±1) the corresponding sign that distinguishes the
orientation fixed for P r+1 from the orientation defined by the coordinates
x1, . . . , xr+1. It can be easily checked that ε does not depend on the arbi-
trary choice of coordinates x1, . . . , xr+1 and does not change while moving
the point a along L1. It follows from the definition of the orientation for the
boundary (see § 1, «B») that the mapping degree of f defined on P r equals
−ε · (−1)r at the point a0 and equals ε · (−1)r at the point a1. Assuming
that all components of M1 are homeomorphic to the interval, we see that
the mapping degree of f at b equals zero.

B) Let f0 and f1 be two homotopic mappings from a closed oriented
manifold P r to a closed oriented manifold Qr; let Gt be the set of all proper
points b ∈ Qr of ft, t = 0, 1. It turns out that for b ∈ G0 ∩G1, the degrees
of f0 and f1 at b, are equal. Furthermore, it turns out that if b0 and b1 are
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two points from G0 then the mapping degrees of the mapping f0 for the
points b0 and b1 are equal, too.

Let us prove Statement «B». Since the mappings f0 and f1 are ho-
motopic, there exists a smooth family ft connecting these maps (see
Theorem 8). For the family ft, we have the corresponding mapping f∗
from the product P r × I (see § 1, Chapter 2, «C»). The boundary of the
manifold P r × I consists of manifolds P r × 0 and P r × 1. Choose the ori-
entation for the manifold P r × I in such a way that the manifold P r × 0 is
represented in the boundary of the product P r × I with the positive sign;
then the manifold P r × 1 in the boundary of P r × I will have the minus
sign. From this and from Statement «A» it follows now that the degrees of
mappings f0 and f1 at b, coincide.

Let us show now that the degrees of f0 coincide for all points b ∈ G0.
Let X be a coordinate system having origin at the point c ∈ Qr; let V be a
ball neighbourhood of the point c in this coodinate system. Furthermore,
let b0 and b1 be two points from V ∩ G0. It is easy to construct a regular
homeomorphic mapping ϕ of the manifold Qr to itself that fixes all points
Qr\V and takes the point b0 to the point b1. Such a mapping ϕ is, clearly,
homotopic to the identity. Clearly, the degree of ϕf0 at the point b1 equals
the degree of f0 at b0; and since the mappings ϕf0 and f0 are homotopic,
their degrees at the point b1 coincide. Thus, the degrees of the mapping f0
coincide for all points b ∈ V ∩G. Now, since the manifold Qr is connected
and the set G0 is everywhere dense in Qr, it follows that the degree of f0
is the same for all points b ∈ G0.

Mappings from Sn to Sn

C) Let (M0, U) be a zero-dimensional framed submanifold of the framed
Euclidean space En. Since M0 is a compact submanifold; it consists of
finitely many points a1, . . . , ar. Associate with ai the index +1 if the vectors
u1(ai), . . . , un(ai) generate the positive orientation of the space En, and
the index −1, otherwise. Call the sum I(M0, U) of indices of all points
a1, . . . , ar the index of the framed manifold. It is clear that the index of the
framed manifold (M0, U) equals the degree of the corresponding mapping
(see Definition 5) from the oriented sphere Σn to the oriented sphere Sn.

Theorem 12. If two mappings f0 and f1 from the oriented sphere Σn

to the oriented sphere Sn are of the same degree, then they are homotopic.
Moreover, there exists a mapping with any preassigned degree.

Proof. From Statement «C» and Theorem 10 it follows that to prove
this theorem, it is sufficient to prove that any two framed zero-dimensional
manifolds having the same index are homologous and that there exist zero-
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dimensional manifolds with any preassigned index. It is easy to see that
the two framed manifolds (M0

0 , U0) and (M0
1 , U1) each consisting of one

point and having index equal to +1 can be obtained from each other by a
deformation (see § 3, Chapter 2, «B»); thus they belong to the same homol-
ogy class (see § 3, Chapter 2, «C»), Thus, all one-point framed manifolds
having index +1 belong to one and the same homology class ε. In the
same way, all one-point framed manifolds with index −1 belong to one and
the same homology class ε′. Since after symmetry in each hyperplane, the
space En changes the orientation, we have ε′ = −ε (see Definition 6). Since,
moreover, each zero-dimensional framed manifold (M0, U) is a union of fi-
nite number of one-point framed manifolds, some of them with index +1,
the other ones having index −1, then ε is a generator of the group Π0

n,
and (M0, U) belongs to the class I(M0, U) · ε. Thus, two framed zero-
dimensional manifolds with the same index are homologous. Obviously,
there exist framed zero-dimensional manifolds with any preassigned index.

Thus, Theorem 12 is proved.
It follows from Theorem 12 and «C» that the group Π0

n, or, what is the
same, the group πn(Sn), is free cyclic.

D) Let f be a smooth mapping from the oriented sphere Σn+k to the
oriented sphere Sn and let g be a smooth mapping of the sphere Σn+k onto
itself having degree ν. Denote the element of the group Πk

n corresponding
to the mapping f by π and denote the element of Πk

n corresponding to fg
by π′. Then it turns out that

π′ = νπ. (1)

Let us prove Statement (1). Let p′ and q′ be the north pole and the
south pole of Σn+k; let En+k be the tangent space at p′ to the sphere
Σn+k and let ϕ be the central projection from the point q′ of the domain
Σn+k\q′ to the space En+k. For ν = 1, the mapping g is homotopic to the
identity (see Theorem 12), thus, in this case, the relation (1) holds. Let
us prove it for ν = −1. Since all mappings of the sphere Σn+k onto itself
having degree −1 are homotopic to each other, it is sufficient to consider
one concrete mapping g of degree −1. Let En+k−1 be a hyperplane of the
space En+k passing through the point p′ and let σ be a symmetry of the
space En+k in this hyperplane. The mapping

g = ϕ−1σϕ

of the domain Σn+k\q′ onto itself extended by g(q′) = q′ is a degree −1
mapping of the sphere Σn+k onto itself. For the mapping g constructed in
this way, the relation (1) is evident.
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Now let g be a smooth mapping of the sphere Σn+k onto itself, for
which the set g−1(p′) consists of proper points of the mapping g and does
not contain the point g′; this can be reached by a small perturbation of the
given mapping g. Let

ϕg−1(p) = {a0, . . . , ar};

denote the sign of the functional determinant of the mapping g in ϕ−1(ai)
by εi. Let Vi be the ball of radius δ in the space En+k centred at ai.
We assume δ to be so small that there exists a hyperplane En+k−1

1 of the
space En+k disjoint from the balls Vi such that any preassigned part of the
set {a1, . . . , ar} lies on one side with the remaining part lying on the other
side. Choose a small positive α such that for the ball neighbourhood Kα of
the point p′, the full pre-image g−1(Kα) consists only of proper points of
the mapping g and is split into domains A1, . . . , Ar; ai ∈ Ai each of which
maps diffeomorphically to Kα by g. Furthermore, suppose α to be so small
that ϕ(Ai) ⊂ Vi. Now, define the mapping hi of the sphere Σn+k to coincide
with ωαg (see «B») on Ai and taking the set Σn+k\Ai to the point q′. Since
the degree of hi is equal to εi, the framed manifold En+k−1

1 corresponding
to fhi belongs to the homology class εiπ. It is clear that Mk

i ⊂ Vi and that
the mapping fωαg generates the framed manifold (Mk

1 , U1)∪. . .∪(Mk
r , Ur).

Since the mappings ωαg and g are homotopic, the existence of a hyperplane
En+k−1

1 with the properties described above yields the relation (1).

Mappings from n-dimensional manifold to the n-sphere

Theorem 13 below resolves completely the classification question for
mappings from orientable closed n-manifolds to the n-sphere. Theorem 13
follows from Theorem 12 on the classification of mappings from the n-sphere
to the n-sphere.

Theorem 13. Two continuous mappings f0 and f1 of a smooth ori-
ented manifold Mn to the smooth oriented sphere Sn are homotopic if and
only if they have the same degree (see Definition 8). If the degree equals
zero, then the mapping is zero-homotopic, i.e. contractible to a point. Thus,
there exist mappings of any arbitrary degree.

Proof. To prove the first part of the theorem, it suffices to show that
if two mappings f0 and f1 are smooth and have the same degree then they
are homotopic. To reduce the proof of this fact to Theorem 12, show that
for any finite set Q of points of the manifold Mn there exists a smoothly
homeomorphic to the open ball domain B ⊂ Q of the manifold Mn.

It is easy to construct a simple closed curve K embedded in Mn and
containing all points of Q. Let us assume that Mn is a submanifold of
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the Euclidean space E2n+1; denote by Nx the normal space to K in E2n+1

at the point x ∈ K. As in Statement «A» § 1, Chapter 2, denote by
Hδ(x) the ball of the Euclidean space Nx centred at x and having radius
δ. Then there exists a small positive δ such that the set Wδ = Hδ(K) is a
neighbourhood of the curve K in E2n+1 and, if we take any point y ∈ Wδ to
the point x = π(y) for which y ∈ Hδ(x), we get a smooth mapping π from
the manifold Wδ to the curve K (see § 1, Chapter 2, «A»). Take a closed
interval L of the curve K containing all the points Q. Let us introduce a
smooth parameter t for this interval −1 6 t 6 1. Thus, for each value of the
parameter t, −1 6 t 6 1, there corresponds a point x(t) ∈ K. Denote the
tangent space to the manifoldMk in x ∈ K, by Tx; setN ′

t = Nx(t)∩Tx(t). In
the vector space N ′

t, let us choose an orthonormal basis e1(t), . . . , en−1(t).
By using «A» § 3, Chapter 2, and the orthogonalization process described
in § 3, Chapter 2, «G», it is possible to choose the basis e1(t), . . . , en−1(t)
to depend smoothly on t. Let W ′

δ = Mn ∩Wδ and let π′ be the mapping
π restricted to W ′

δ. Denote the full pre-image of the point x(t) ∈ L in W ′
δ

under the mapping π′ by H ′
t. Let ε be a positive number. Denote by H∗

t the
ball of radius ε

√
1− t2 in N ′

t centred at x(t). The orthogonal projection
χt of the manifold Mn to the space Tx(t) takes some neighbourhood of
the point x(t) in Mn smoothly regularly and homeomorphically to some
neighbourhood of the point x(t) in Tx(t). From this, it follows that for
δ small enough, the projection χt is smooth, regular and homeomorphic
mapping of the manifold H ′

t to some neighbourhood of the point x(t) in
N ′

t; thus, there exists a small ε such that

H∗
t ⊂ χt(H

′
t), −1 6 t 6 1.

Denote the coordinates of z ∈ H∗
t in the basis e1(t), . . . , en−1(t) by

εz1, . . . , εzn−1; take the numbers z1, . . . , zn−1, t to be the coordinates of
χ−1

t (z). The set B of all points χ−1
t (z), −1 6 t 6 1, z ∈ H∗

t , constitutes a
domain in Mn endowed with smooth coordinates z1, . . . , zn−1, t satisfying
the condition

(z1)2 + . . .+ (zn−1)2 + t2 < 1.

Thus, the domain B is smoothly homeomorphic to the open n-ball.
Choose a point p of the sphere Sn in such a way that the set f−1

t (p) = Pt,
t = 0, 1, consists of proper points of the mapping ft (see Theorem 4). Set
Q = P0 ∪ P1; let B be a ball domain of the manifold Mn containing the
finite set Q. Take p to be the north pole of Sn and denote the south pole
of this sphere by q. Let α be a small positive number such that the ball
neighbourhood Kα (see § 2, Chapter 2, «B») of the point p satisfies the
conditions

Āt ⊂ B, where At = f−1
t (Kα), t = 0, 1, (2)
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and let ωα be a mapping of the sphere Sn onto itself corresponding to the
chosen α (see § 2, Chapter 2, «A»). Since the mapping ωα is homotopic to
the identity, the mappings ωαft and ft, t = 0, 1 are homotopic. Assume
that B is a unit ball of some Euclidean space Rn. Then there exists such a
positive number β < 1 that the ball Bβ of radius β concentric to B contains
the sets Āt, t = 0, 1. Let λβ be the mapping of the space Rn to the sphere
Sn described in Statement «B» § 2, Chapter 2. Define the mapping ϑ from
Mn to the sphere Sn to coincide with λβ on the ball B and to take the
set Mn\B to the point q. Since the set Āt, t = 0, 1 is contained in Bβ the
mapping ϑ is homeomorphic on Āt.

Now, let us define the mapping gt, t = 0, 1 of the sphere Sn onto itself
as follows. On the set ϑ(At), we set gt = ωαftϑ

−1, and for x ∈ Sn\ϑ(At)
we put gt(x) = q. From this definition of gt it follows that

gtϑ = ωαft, t = 0, 1. (3)

The mappings ft and ωαft, clearly, have the same degree at p, and from (3)
it follows that the mappings gt and ft have the same degree p as well. Since
the mappings f0 and f1 have the same degree, so do the mappings g0 and
g1 of the sphere Sn onto itself. Thus, the mappings g0 and g1 of the sphere
Sn onto itself are homotopic (see Theorem 12). This yields the mappings
g0ϑ and g1ϑ from Mn to Sn are homotopic, thus, so are the mappings ωαf0
and ωαf1 from Mn to Sn [see (3)]. Since the mappings ωαf0 and ωαf1 are
homotopic to f0 and f1, respectively, the latter two are homotopic.

One can easily construct a mapping Mn → Sn of any preassigned de-
gree.

Thus, Theorem 13 is proved.

§ 2. The Hopf invariant of mappings Σ2k+1
→ Sk+1

The Hopf invariant plays an important role in the homotopy classifica-
tion of mappings from sphere to sphere. This invariant was first introduced
for constructing infinitely many mapping classes of S3 → S2 [12]. Later,
this invariant was defined by Hopf for mappings from the (2k + 1)-sphere
to the (k + 1)-sphere. However, for even k, this invariant always equals
zero. The Hopf invariant is defined to be the link coefficient of the pre-
images of two different points of the sphere Sk+1 in the sphere Σ2k+1. In
the present section, we first give the definition of the linking coefficient for
two manifolds according to Brouwer [13], i.e. by means of the mapping de-
gree, and not by means of the intersection index, as is usually done now.
The form presented here is more convenient for this work. Later, we de-
fine the Hopf invariant and, finally, this invariant is described in terms of
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framed manifolds corresponding to the mapping. Besides, we establish sev-
eral connection between properties of framed manifolds and properties of
the Hopf invariant. These connections play a key role for the classification
of mappings from Sn+2 to Sn.

The linking coefficient

Definition 9. Let Mk and N l be two closed smooth oriented manifolds
of dimensions k and l, respectively, and let f and g be their continuous
mappings to the oriented Euclidean space Ek+l+1 of dimension k+ l+ 1 so
that the sets f(Mk) and g(N l) are disjoint. Furthermore, let Sk+1 be the
unit sphere of the space Ek+l+1 centred at an arbitrary point O taken with
the orientation representing it as the boundary of the ball, and let Mk×N l

be the oriented direct product (see § 1, Chapter 1, «K») of the manifoldsMk

and N l. To each point (x, y) ∈Mk×N l, x ∈Mk, y ∈ N l, there corresponds
a non-zero interval (f(x), g(y)) in the space Ek+l+1, going from the point
f(x) to the point g(y). Construct a ray emanating from O and parallel
to (f(x), g(y)). Denote the intersection of this ray with Sk+1 by χ(x, y).
The mapping degree of χ : Mk × N l → Sk+l (see Definition 8) is called
the linking coefficient of the manifolds (f,Mk) and (g,N l); it is denoted
by v((f,Mk), (g,N l)). It is evident that if we continuously deform the
mappings f and g: f = ft, g = gt in such a way that the sets ft(M

k) and
gt(N

l) remain disjoint for arbitrary t, then the mapping χ = χt is deformed
continuously as well, thus, the linking coefficient does not change. In the
partial case when Mk and N l are submanifolds of the space Ek+l+1, and
the mappings f and g are identical, the linking coefficient is defined as well;
it is then denoted by v(Mk, N l). It turns out that

v((f,Mk), (g,N l)) = (−1)(k+1)(l+1)v((f,Mk), (g,N l)). (1)

Let us prove (1). Let χ′ be the mapping fromN l×Mk to Sk+1 analogous
to χ constructed above. Denote by λ the mapping fromN l×Mk to Mk×N l

taking (y, x) to (x, y); let µ be the mapping of the sphere Sk+1 onto itself
taking each point to its antipode. It is clear that the mapping degree of λ
is equal to (−1)kl, and the degree of µ equals (−1)k+l+1. It is easy to see
that χ′ = µχλ. From the above we get (1).

A) Suppose instead of one manifold (g,N l) we have two mapped man-
ifolds (g0, N

l
0) and (g1, N

l
1). Furthermore, assume there exists an oriented

bounded compact manifold N l+1 with oriented boundary consisting of the
manifolds N l

0 and −N l
1, and there exists a mapping g from N l+1 to Ek+l+1

coinciding with g0 on N l
0 and coinciding with g1 on N l

1 such that the sets
f(Mk) and g(N l+1) are disjoint. Then it turns out that

v((f,Mk), (g0, N
l
0)) = v((f,Mk), (g1, N

l
1)). (2)
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Let us prove this fact. The boundary of the manifold Mk × N l+1

is Mk×N l
0−Mk×N l

1. To each point (x, y) ∈Mk×N l+1, there corresponds
the interval (f(x), g(y)). Let us draw a ray from O parallel to the inter-
val (f(x), g(y)). Denote the intersection of this ray with the sphere Sk+1

by χ(x, y). Thus, we get a continuous mapping χ from Mk ×N l+1 to the
sphere Sk+1; thus the degree of χ on its boundary equals zero (see § 1, «A»).
Thus yields (2).

The Hopf invariant

Definition 10. Let f be a smooth mapping from the oriented sphere
Σ2k+1 of dimension 2k + 1 to the oriented sphere Sk+1 of dimension k +
1, k > 1. Let p′ and q′ be the north pole and the south pole of the
sphere Σ2k+1; let E2k+1 be the tangent space to the sphere Σ2k+1 at the
point p′ and let ϕ be the central projection from Σ2k+1\q′ to the space
E2k+1. On the sphere Sk+1, let us choose (see Theorem 4) two distinct
proper points a0 and a1 from f(q′) of the mapping f ; then Mk

0 = ϕf−1(a0)
and Mk

1 = ϕf−1(a1) are closed oriented submanifolds of the Euclidean
space E2k+1 (see Introduction to § 4, Chapter 1: orientation for the pre-
image of a point). Set

γ(f) = γ(f, p′, a0, a1) = v(Mk
0 ,M

k
1 ). (3)

It turns out that γ(f) is a homotopy invariant of the mapping f , which
does not depend on the choice of points p′, a0 and a1, and that for even k
this invariant is equal to zero.

Let us prove the invariance of γ(f).
Let f0 and f1 be two smooth homotopic mappings from Σ2k+1 to Sk+1

and let ft be a smooth deformation connecting them. For the deformation
ft, we have the corresponding mapping f∗ from the product Σ2k+1 × I to
Sk+1 (see § 1, Chapter 2, «C»). Note that for a small enough movement of
a0 and a1, the number γ(ft), t = 0, 1, does not change since the manifolds
ϕf−1

t (ai) are not drastically deformed. Thus, we may assume that the
curve ft(q

′), 0 6 t 6 1 does not pass through a0 or a1. Let r be such a

large positive integer that for |t′− t| < 1
r , the sets f−1

t (a0) and f−1
t (a1) are

disjoint. Now, let us move the points a0 and a1 in such a way that they
become proper points of the mapping f∗ and the mappings

ft; t = 0, 1r , . . . ,
r − 1
r , 1.

Let us prove that
γ(f1) = γ(f0).



11th April 2007 14:21 WSPC/Book Trim Size for 9in x 6in main

§ 2. The Hopf invariant of mappings Σ2k+1 → Sk+1 77

Denote the part of I, consisting of those points for which s
r 6 t 6

s+ 1
r ,

by Is. Let Mk+1
s,i be the full pre-image of the point ai in the strip Mk × Is

under f∗. According to the conditions on a0 and a1, the set Mk+1
s,i is

an oriented submanifold of the manifold Σ2k+1 × I, having the mani-
fold −f−1

s/r(ai) + f−1
(s+1)/r(ai) as its boundary. Denote the projection oper-

ator from Σ2k+1× I along I to the sphere Σ2k+1 by π. The mapping ϕπ of
the manifold Mk+1

s,i defines the mapped manifold (ϕπ,Mk+1
s,i ) with bound-

ary −ϕf−1
s/r(ai) + ϕf−1

(s+1)/r(ai). Since the sets ϕπ(Mk+1
s,0 ) and ϕπ(Mk+1

s,1 )

are disjoint, it follows from «A» that

γ(f(s+1)/r) = γ(fs/r);

thus, γ(f1) = γ(f0).
Let us prove now that γ(f, p′, a0, a1) does not depend on the choice of

the points a0 and a1. Suppose instead of a0 and a1, we have chosen b0
and b1. Then there exists a smooth homeomorphism λ of the sphere Sk+1

onto itself homotopic to the identity, such that λ(ai) = b, i = 0, 1. Clearly,
γ(λf, p′, b0, b1) = γ(f, p′, a0, a1), and since the mappings λf and f are
homotopic, according to what we have proved above, we get γ(f, p′, b0, b1) =
γ(f, p′, a0, a1).

Analogously, it can be proved that γ(f, p′, a0, a1) does not depend on
the choice of p′, since there exists a twisting of the sphere Σ2k+1 taking p′

to any preassigned point of the sphere Σ2k+1.
Finally, let us show that for even k the invariant γ(f) is equal to zero.

Since γ(f) does not depend on the choice p0 and p1, we may change their
roles; thus we have

v(Mk
0 ,M

k
1 ) = v(Mk

1 ,M
k
0 ).

Since, moreover, we have (1),

v(Mk
1 ,M

k
0 ) = (−1)(k+1)2v(Mk

0 ,M
k
1 ),

then for even k we get v(Mk
0 ,M

k
1 ) = 0.

The Hopf invariant of a framed manifold

Since homotopy classes of mappings from the (2k + 1)-sphere to the
(k + 1)-sphere are in one-to-one correspondence with homology classes of
k-dimensiobnal framed manifolds of the Euclidean (2k+1)-space, the invari-
ant γ(f) can be interpreted as an invariant of homology classes of framed
k-dimensional manifolds in the (2k + 1)-space. Let us give this interpreta-
tion of γ(f) explicitly.
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B) Let (Mk, U), U(x) = {u1(x), . . . , uk+1(x)}, be a framed submanifold
of the oriented Euclidean space E2k+1 and let Nx be the normal subspace
to the manifold Mk at x ∈ Mk. The normal subspace is a vector space
having origin at x; thus U(x) is a basis of the space Nx. Let us choose
an arbitrary vector c = {c1, . . . , ck+1} of the Euclidean space N (with
Cartesian coordinates fixed) and associate with any point x ∈ Mk the
point c(x) = c1u1(x)+ . . .+ ck+1uk+1(x) of the space Nx. For c reasonably
small, the map c is a homeomorphism from Mk to the space E2k+1 (see § 1,
Chapter 2, «A»). It is evident that for c 6= 0 the manifolds Mk and c(Mk)
are disjoint and that for two distinct non-zero vectors c and c′, the manifolds
c(Mk) and c′(Mk) are homotopic in the space E2k+1\Mk. Thus, for c
reasonably small (but non-zero) the linking coefficient v(Mk, c(Mk)) does
not depend on c; set

γ(Mk, U) = v(Mk, c(Mk)).

It turns out that if f → (Mk, U) (see Definition 5) then

γ(f) = γ(Mk, U). (4)

Since γ(f) is a homotopy invariant of f , γ(Mk, U) is a homology invariant
of the framed manifold (Mk, U).

Let us prove (4). Let f be a smooth mapping from the sphere Σ2k+1

to the sphere Sk+1 and let p ∈ Sk+1 be a proper point of f , distinct from
f(q′). Then, in order to construct the manifold (Mk, U) corresponding to
the map f , one should take p to be the north pole of the sphere Sk+1 (see
Definition 5). Let e1, . . . , ek+1 be an orthonormal basis of the plane, tangent
at the point p to the sphere Sk+1 and let x1, . . . , xk+1 be the coordinates
corresponding to this basis in the domain Sk+1\q (see § 2, Chapter 2, «A»).
In order to construct the invariant γ(f), we take the point a0 to be p, and set
a1 to be the point with coordinates x1 = c1, . . . , xk+1 = ck+1. Such a choice
of the points a0 and a1 means that the manifold Mk

0 coincides with the
manifoldMk, whence the manifoldMk

1 is second-order close to the manifold
c(Mk) with respect to the length of the vector c. Thus, v(Mk, c(Mk)) =
v(Mk

0 ,M
k
1 ), and (4) is proved.

C) Let Πk
k+1 be the homology group of framed k-dimensional manifolds

of the Euclidean space E2k+1. With each element π ∈ Πk
k+1 we associate the

integer γ(π) = γ(Mk, U), where (Mk, U) is a framed manifold representing
the class π. As shown above (see «B»), the number γ(π) depends only on
π and does not depend on the arbitrary choice of the manifold (Mk, U). It
turns out that γ is a homeomorphism from the group Πk

k+1 to the additive

group of integers. Thus, it follows that the set Π̂k
k+1 of all elements π ∈

Πk
k+1 for which γ(π) = 0 is a subgroup of Πk

k+1.
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Let us prove statement «C». Let π1 and π2 be any two elements of the
group Πk

k+1 and let (Mk
1 , U1) and (Mk

2 , U2) be the framed manifolds rep-
resenting the classes π1 and π2, respectively, and lying on different sides of
some hyperplane E2k of the space E2k+1. Furthermore, let S2k be the unit
sphere of the space E2k+1 centred at O ⊂ E2k. Let us choose an arbitrarily
small vector c defining the shift of the manifold Mk

1 ∪Mk
2 (see «B»). We

have
γ(π1 + π2) = v(Mk

1 ∪Mk
2 , c(M

k
1 ∪Mk

2 )).

The linking coefficient in the right-hand side is defined as the degree of the
mapping χ from (Mk

1 ∪Mk
2 ) × c(Mk

1 ∪Mk
2 ) to the sphere S2k; herewith

the mapping χ is constructed as in Definition 9. Let us define the degree
of χ in some point p of the sphere S2k, lying close to the hyperplane E2k.
Such a choice of the point p guarantees that the interval (x, c(y)), where
x ∈ Mk

1 , y ∈ Mk
2 , is not parallel to the interval (O, p). Analogously, the

interval (x, c(y)), where x ∈Mk
2 , y ∈Mk

1 , is not parallel (O, p). This yields
that

v(Mk
1 ∪Mk

2 , c(M
k
1 ∪Mk

2 )) = v(Mk
1 , c(M

k
1 )) + v(Mk

2 , c(M
k
2 )),

that is,
γ(π1 + π2) = γ(π1) + γ(π2).

Thus, «C» is proved.
D) Let f be a smooth mapping from the oriented sphere Σ2k+1 to the

oriented sphere Sk+1, and let g be the mapping of Σ2k+1 onto itself having
degree σ, and let h be the mapping of the sphere Sk+1 onto itself of degree
m. Set f ′ = hfg. It turns out that

γ(f ′) = στ2γ(f). (5)

It is sufficient to prove statement «D» separately for the case when h
is the identity and for the case when the mapping g is the identity. The
relation (5) in the case of h being the identity follows from Statement «C»
of the present section and from Statement «D» § 1, Chapter 3. Let us
consider the case when g is the identity, i.e. when f ′ = hf . Let a0 and a1

be two different points of Sk+1 distinct from f ′(q′), which are proper points
of the mappings h and hf . Then h−1(at) = {at1, . . . , atrt

}, t = 0, 1, whence
the mapping f is proper at any of the points ati, t = 0, 1; i = 1, 2, . . . , rt.
Denote the sign of the functional determinant of the mapping h at the point
ati by εti, i = 1, . . . , rt; t = 0, 1. Denote the tangent subspace at the north
pole p′ of the sphere Σ2k+1 by E2k+1 and denote the central projection
mapping from the set Σ2k+1\q′ to the tangent space of the point q′ by ϕ.
Set ϕf ′−1(at) = Mk

t , t = 0, 1; ϕf−1(ati) = Mk
ti. It is easy to see that

Mk
t = εt1M

k
t1 ∪ εt2M

k
t2 ∪ . . . ∪ εtrt

Mk
trt
, (6)
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where the signs εti agree with the orientations of the pre-images. Since a0i

and a1j are two distinct points of the sphere Sk+1 which are proper points
of the mapping f then the invariant γ(f) can be defined as v(Mk

0i,M
k
1j).

From this and from (6) we have

γ(f) = v(ε01M
k
01 ∪ . . . ∪ ε0r0M

k
0r0
, ε11M

k
11 ∪ . . . ∪ ε1r1M

k
1r1

)

=

r0∑

i=1

r1∑

j=1

ε0iε1jγ(f) = γ(f)(

r0∑

i=1

ε0i)(

r1∑

j=1

ε1j) = τ2γ(f).

Thus, Statement «D» is proved.
E) Let (Mk, V ), V (x) = {v1(x), . . . , vk+1(x)}, be an orthonormally and

smoothly framed submanifold of the oriented Euclidean space E2k+1, and
assume that the manifold Mk lies in a hyperplane E2k of the ambient space.
Denote by u(x) the unit vector emanating from x ∈Mk and perpendicular
to E2k. Then we have

u(x) = ψ1(x)v1(x) + . . .+ ψk+1(x)vk+1(x). (7)

Here ψ(x) = {ψ1(x), . . . , ψk+1(x)} is a unit vector of the coordinate Eu-
clidean space N such that ψ maps the manifold Mk to the unit sphere
Sk of the space N (the mapping ψ was considered in Statement «A» § 4,
Chapter 2). It turns out that the degree of the mapping ψ is equal
to εγ(Mk, V ), where ε = ±1 and the sign depends only on k.

Let us prove «E». Assume that P = (0, . . . , 0, 1) ∈ ∈ Sk is a proper
point of ψ. If this were not so, we could easily obtain it by an orthogonal
transformation of all systems V (x), x ∈ Mk. To calculate γ(Mk, V ), let
us choose in the space E2k+1 the unit sphere S2k centred at some point O
and take the vector c to be the vector {0, . . . , 0, δ}. If we move the vector
u(x) parallel to the point O then its end will lie on the sphere S2k at some
point; denote the latter point by u. Draw a ray from O, parallel to the
interval (x, c(y)); x, y ∈ Mk; denote the intersection of this ray with S2k

by χ(x, y). By definition, γ(Mk, V ) is the degree of the mapping χ from
Mk ×Mk to S2k. We shall calculate the degree of this mapping at the
point u. While calculating, we will show that u is a proper point of the
mapping χ. Let χ(a, b) = u, then the interval (a, c(b)) is orthogonal to
the hyperplane E2k and directed along the vector u in such a way that
c(b) ∈ Hδ(a) (see § 1, Chapter 2, «A»). Since, furthermore, c(b) ∈ Hδ(b),
it follows that for δ small enough, we have b = a (see § 1, Chapter 2,
«A»). Thus, for χ(a, b) = u we have b = a and ψ(a) = P. Conversely, if
ψ(a) = P, then χ(a, a) = u. Take a to be the origin of coordinates O of
the space E2k+1; take its basis to consist of vectors u1 = u1(a), . . . , uk+1 =
uk+1(a), uk+2, . . . , u2k+1, where uk+2, . . . , u2k+1 is an orthonormal vector
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system tangent to the manifold Mk at the point a. Denote the coordinates
of x ∈Mk in this basis by z1(x), . . . , z2k+1(x). In a neighbourhood of a in
Mk, it is easy to introduce coordinates x1, . . . , xk of the point x such that
the equation defining the manifold Mk looks like

z1 = z1(x), . . . , zk+1 = zk+1(x), zk+2 = zk+2(x) = x1, . . .

. . . , z2k+1 = z2k+1(x) = xk,
(8)

where zi(x), i = 1, . . . , k + 1, is second-order small with respect to ρ(a, x).
Transporting the system V (y) parallel to the point O = a, we express its
vectors in terms of u1, . . . , u2k+1:

vj(y) =

k+1∑

α=1

ajα(u)uα +

2k+1∑

β=k+2

bjβ(y)uβ. (9)

Here bjβ are second order small with respect to ρ(a, y) and ajα, α 6= j, are
first-order small with respect to ρ(a, y). Thus, since V (y) is orthonormal,
we see that, up to second-order small values (resp. to ρ(a, y)) the following
equalities hold:

aji(y) = 1, aji(y) = −aji(y), i 6= j. (10)

Since aij(y) = (ui, vj(y)), i, j = 1, . . . , k + 1 then, by (7), (9)
and (10), we have (up to second order) ρ(a, y) ψj(y) = −ak+1,j(y),
j = 1, . . . , k; ψk+1(y) = 1. Thus, up to the second order in ρ(a, y)
the point c(y) has in the basis u1, . . . , u2k+1 the following coordinates:
−δψ1(y), . . . ,−δψk(y), δ, y1, . . . , yk. Analogously, the point x (up to sec-
ond order) has in the basis u1, . . . , u2k+1 the coordinates [see (8)]

0, . . . , 0, x1, . . . , xk.

Thus, the components of the interval (x, c(y)) in the basis u1, . . . , u2k+1 are

−δψ1(y), . . . ,−δψk(y), δ, y1 − x1, . . . , yk − xk

up to second order with respect to ρ(a, x)+ρ(a, y). From this, it follows that
at the point (a, a) the sign of the functional determinant of the mapping χ
differs from that of the functional determinant of ψ in a by a factor ε = ±1,
which depends only on k. Thus, «E» is proved.

§ 3. Framed manifolds with Hopf invariant equal to

zero

The main goal of this section is to prove Theorem 16 that any framed
manifold having Hopf invariant equal to zero is homologous to a suspension.



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

82 L. S. Pontrjagin

Thus the theorem is a sequel to Theorem 11. Since the Hopf invariant of an
even-dimensional manifold always equals zero, it follows from Theorem 16
that each even-dimensional framed sumbanifold (Mk, U) of E2k+1 is homol-
ogous to a suspension. This statement will be used in the present work only
for the case k = 2 while classifying mappings Σn+2 → Sn. From this and
Theorem 11 it follows that the number of mapping classes for Σn+2 → Sn,
n > 2, does not exceed the number of mapping classes Σ4 → S2.

While proving Theorem 16 as well as in some other cases it is desirable to
deal with connected framed manifolds. Theorem 14 says that each framed
manifold is homologous to a smooth one. To prove this theorem, it is
sometimes necessary to perform a surgery of a manifold in order to make it
connected. Such a surgery has a rather bergthy description in the following
Statement «A», but its geometrical sense is clear and means the following.

The equation
x2 + y2 − z2 = −t

represents a two-sheeted hyperboloid for t > 0 and a one-sheeted hyper-
boloid for t < 0. In the strip of the space of the variables x, y, z, t, defined
by the inequality−1 6 t 6 1, the above equation defines a submanifold with
boundary consisting of the two parts: the disconnected one lying in t = −1,
and the connected part lying in t = 1.

In Statement «A», the surgery described above, is performed for a pair
of parallel planes. In these planes, we get “dents”, which move towards
each other like sheets of the two-sheeted hyperboloid, then form a tube
connecting the holes in the planes. To perform the operation described
above to an arbitrary manifold, we prove an almost obvious Statement «C»
that in a neighbourhood of any point, the manifold can be deformed to a
plane. Making the manifold planar in the neighbourhood of two points,
we may perform the surgery «A» connecting the two components into a
single one. Since we have to reconstruct framed manifolds, one should
also care about what happens to the framings. These constructions are
discussed in Statements «B» and «D». The surgery «A» can be applied
not only in order to get a connected manifold but also in order to embed a
k-dimensional manifold in 2k-space.

The surgery

A) Let Ek+2 be the Euclidean space with coordinates ξ1, . . . , ξk, η, τ ;
let Ek+2

∗ be the strip defined by inequalities −1 6 τ 6 +1, with boundary
consisting of two hyperplanes Ek+1

−1 and Ek+1
+1 defined by τ = −1 and τ =

+1. Let Hk+2 be the part of Ek+2 defined by the inequalities

(ξ1)2 + . . .+ (ξk)2 6 1, −1 6 η 6 1.
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It turns out that in the strip Ek+2
∗ there exists a smooth submanifold P k+1

orthogonal to the boundary of the strip Ek+2
∗ in its boundary points and

possessing the following properties (see Fig. 3.1):

Figure 3.1.

a) outsideHk+2 the manifold P k+1 consists of all points satisfying |η| = 1;

b) the manifold P k
−1 = P k+1∩Ek+1

−1 consists of all points of the hyperplane

Ek+1
−1 satisfying |η| = 1;

c) the intersection of P k
1 = P k+1 ∩ Ek+1

+1 with the hyperplane defined
by η = α, for |α| < 1 is a sphere of radius ̺(α) < 1, defined in the
plane η = α, τ = 1 by the equation (ξ1)2 + . . .+ (ξk)2 = ̺2(α), where
̺(α) tends to 1 as |α| tends to 1. Thus, the set P k

1 ∩Hk+2 intersects
the line ξ1 = 0, . . . , ξk = 0; τ = 1; moreover, this set is connected for
k > 1 and consists of two simple arcs for k = 1.

For constructing P k+1, let us first consider the case k = 1. Rename the
coordinates ξ1, η, τ in E3 as x, y, t. Let

ϕ(x, y, t) = y2 − (1 + t)x2 + t.

Consider the surface Q2 given by the equation ϕ(x, y, t) = 0. It can be
checked straightforwardly that this surface has no singular points, i.e. that
the equations

∂ϕ

∂x
= 0,

∂ϕ

∂y
= 0,

∂ϕ

∂t
= 0, ϕ = 0

are not compatible. Consider the section Cβ of the surface Q2 by the plane
t = β (|β| 6 1). The curve C−1 then becomes a pair of parallel lines
y = ±1. For −1 < β < 0, the curve Cβ is a hyperbola whose real axis
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is the line t = β, x = 0. The curve C0 represents a pair of intersecting
lines y = ±x. Finally, for 0 < β < +1 the curve Cβ is a hyperbola with
real axes being t = β, y = 0. For all values of β, the curve Cβ passes
through the points (±1,±1, β); furthermore, it is symmetric with respect
to x = 0 and y = 0. In our case, the set H3 is a cube defined by |x| � 1,
|y| � 1, |t| � 1. Let us complete the part Q2∗ of the surface Q2, lying in
the cube H3, by the points satisfying |y| = 1, |x| � 1, |t| � 1. Denote
the obtained surface by P̂ 2. The surface P̂ 2 satisfies the conditions «(a)»—
«(c)», but it is not smooth; moreover, it is not orthogonal to the strip of
the boundary E3

∗ (|t| � 1).
Now, consider the case of arbitrary k. Define the function

ϕ(x1, . . . , xk, y, t) by setting

ϕ(x1, . . . , xk, y, t) = y2 − (1 + t)((x1)2 + . . .+ (xk)2) + t.

It follows straightforwardly that the hypersurface Qk+1 defined in the space
Ek+2 with coordinates x1, . . . , xk, y, t by ϕ(x1, . . . , xk, y, t) = 0 has no sin-
gular points, i.e. the equations

∂ϕ

∂x1
= 0, . . . ,

∂ϕ

∂xk
= 0,

∂ϕ

∂y
= 0,

∂ϕ

∂t
= 0, ϕ = 0

are not compatible. The hypersurface Qk+1 can be intuitively represented
if we note that its section by any 3-space containing (y, t) is the surface Q2

described above. Set Qk+1
∗ = Qk+1 ∩ Hk+2. Now, complete the set Qk+1

∗
by the points satisfying |y| = 1, (x1)2 + . . . + (xk)2 > 1, |t| � 1. The set
P̂ k+1, obtained, is a manifold satisfying the conditions «(a)»—«(c)», but
it is not smooth in the points where it intersects the boundary of Hk+2.
Moreover, it is not orthogonal to the boundary of the strip Ek+2

∗ . Let us
now correct the manifold P̂ k+1.

Let χ(s) be an m-smooth (m � 1), odd, monotonically increasing func-
tion of one variable s, defined on the interval −1 � s � 1, enjoying the
following properties:

χ(−1) = −1, χ(1) = 1,

χ′(−1) = χ′′(−1) = . . . = χ(m)(−1)

= χ′(1) = χ′′(1) = . . . = χ(m)(1) = 0,

χ′(s) > 0 for |s| < 1.

Clearly, such a function exists. Now, let us define the mapping σ

σ(x1, . . . , xk, y, t) = (ξ1, . . . , ξk, η, τ)
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of Hk+2 onto itself by

ξ1 = x1, . . . , ξk = xk, η = χ(y), τ = χ−1(t),

where χ−1 is the function inverse to χ. Obviously the mapping σ of Hk+2

onto itself is homeomorphic and the mappings σ and σ−1 are smooth at
all points of the set Hk+2. The map σ is not smooth only for t = ±1, and
σ−1 is not smooth only for η = ±1. It is easy to check that if we replace
the part Qk+1

∗ of the manifold P̂ k+1 by the set σ(Qk+1
∗ ), we get a manifold

P k+1 satisfying all properties of Statement «A».
B) Let W k+2 be the ε-neighbourhood of the set Hk+2 in the Eu-

clidean space Ek+2 (see «A») and let ϑ be a smooth homeomorphism
to the Euclidean space En+k+1. Then there exists a framing V (ζ) =
{v1(ζ), . . . , vn(ζ)} of the manifold ϑ(P k+1 ∩W k+2) in the space En+k+1,
inducing the given orientation of the manifold.

Let us prove Statement «B». Let O be the centre of the figure Hk+2 and
let X be the boundary of the convex set W k+2. Furthermore, let ζ be an
arbitrary point from W k+2 and let (O, x) be the interval passing through
ζ and connecting the point O with a boundary point x ∈ X . Denote the
ratio of the lengths (O, ζ) and (O, x) by t and set ζ = (x, t). Thus, we have
introduced a polar coordinate system in the domain W k+2; here (x, 0) = O.
Denote the normal subspace at the point ϑ(ζ) to the manifold ϑ(W k+2) in
the space En+k+1 by Nxt. In the space Nx0, let us choose an arbitrary
basis v1, . . . , vn−1. By virtue of Statement «A» §3, Chapter 2 the basis
v1(x, t), . . . , vn−1(x, t) of the normal Nxt can be chosen to depend smoothly
on the pair (x, t) and to coincide for t = 0 with the basis v1, . . . , vn−1. Set
v1(ζ) = vi(x, t), i = 1, . . . , n − 1. The vector vn(ζ) at the point ϑ(ζ),
where ζ ∈ P k+1 ∩W k+2, is then chosen to be the unit vector normal to the
manifold ϑ(P k+1) at the point ϑ(ζ) and tangent to the manifold ϑ(W k+2).
These conditions define the vector vn(ζ) up to sign. Since the manifold
P k+1 ∩ W k+2 is connected, the whole field vn(ζ) is uniquely defined up
to sign;, thus, choosing the direction of vn(ζ) in a proper way, we may
guarantee that the constructed framing V (ζ), ζ ∈ P k+1 ∩ W k+2 induces
the given orientation on ϑ(P k+1 ∩W k+2).

C) Let Mk be a smooth submanifold of the Euclidean space En+k, a ∈
Mk; and let T k be the tangent subspace to Mk at a and let δ be a positive
number. It turns out that there exists a smooth deformation τt, 0 6 t 6 1,
of the manifold Mk, enjoying the following properties. Let x ∈Mk; then:

a) for ̺(a, x) > δ we have τt(x) = x;

b) for ̺(a, x) 6 δ the value ̺(x, τt(x)) is second-order small with respect
to ̺(x, a), i.e. ̺(x, τt(x)) < c̺2(x, a), where c is a constant independent
of δ;
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c) for ̺(x, a) < δ/2 we have τ1(x) ∈ T k.

Let us prove Statement «C». Assume δ to be so small that the orthogonal
projection π to the plane T k maps the δ-neighbourhood of the point a in
Mk to T k smoothly, regularly and homeomorpichally. Then let µ(s) be a
smooth even function of the parameter s, −∞ < s < +∞, equal to zero at
0 < s < δ/2, monotonically increasing for δ/2 6 s 6 δ and equal to 1 for
s > δ. Then the desired deformation τt is defined by

τt(x) = xλt+ π(x)(1 − λ)t + x(1− t),
where λ = µ(̺(x, a)).

D) Let (Mk, U) be a framed submanifold of the strip En+k
∗ of the Eu-

clidean space En+k, and let K ′ be such a neighbourhood of some interior
point a ∈Mk that its closure K̄ ′ is homeomorphic to the k-ball. We assume
K̄ ′ to be a ball centered at a; and let K be a smaller ball concentric with
K ′. If for a part K̄ ′ of the manifold Mk, there is some framing V , inducing
the same orientation of K ′ as the framing U then there exists a framing
U ′ of the whole manifold Mk, homotopic to U and coinciding with it on
Mk\K ′ and coinciding with the framing V on K.

Let us prove «D». Let

U(x) = {u1(x), . . . , un(x)}, V (x) = {v1(x), . . . , vn(x)};
then we have

ui(x) =

n∑

j=1

λij(x)vj(x), x ∈ K̄ ′,

where λ(x) = ‖λij(x)‖ is a positive determinant matrix depending contin-
uously on the point x ∈ K̄ ′ in such a way that λ is a continuous mapping
from the ball K̄ ′ to the manifold Ln of all n×n having positive determinant.
We shall consider K̄ ′ as a ball of the Euclidean space Ek, the latter being a
hyperplane of the space Ek+1; let L be a linear interval of Ek+1 perpendic-
ular to the hyperplane Ek with one end at the centre a of K̄ ′. Denote the
other end of the interval L by b. One can easily construct a deformation
ψt of the mapping from K̄ ′ to the set K̄ ′ ∪ L, under which all points of
the boundary of K̄ ′ remain fixed and as a result of this deformation the
ball K is taken to the point b, i.e. ψ1(K) = b. Since Ln is connected, then
the mapping λ defined on K̄ ′ can be extended to a continuous mapping
λ from K̄ ′ ∪ L to Ln taking the point b to the identity matrix. Thus,
‖µij(x)‖ = µ(x) = λψ1(x) is a matrix with positive determinant depending
continuously on x ∈ K̄ ′. Denote the framing U ′ for the ball K̄ ′ by setting

u′i(x) =

n∑

j=1

µij(x)vj(x).
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On the set Mk\K ′, we define the framing U ′ to coincide with U . Clearly,
U ′ is precisely what we need.

Manifolds with zero Hopf invariant

Theorem 14. Each framed submanifold of a Euclidean space is homol-
ogous to a connected framed submanifold of the same Euclidean space.

Proof. Let (Mk
−1, U) be an oriented framed submanifold of the ori-

ented space En+k, and let n > 2. The case n = 1 is not interesting since in
this case the framed manifold is always null-homologous (see the end of § 2,
Chapter 2). Suppose Mk

−1 is not connected. Let us show that there exists
a framed manifold (Mk

1 , U∗) homologous to the initial one with one fewer
connected component than Mk

−1. This will prove the Theorem. Let a−1

and a1 be two points of Mk
−1 belonging to different components of it. By

virtue of Statement «C», we may assume that in the neighbourhood of a−1

and a1 the manifold Mk
−1 is planar. Since n > 2, the manifold Mk

−1 does
not divide the space En+k. This yields that in En+k there exists a simple
closed curve L given by the parametric equation

y = y(η), −2 6 η 6 2; y(−2) = y(2),

intersecting Mk only in a−1 and a1 for η = −1 and 1, respectively. Fur-
thermore, suppose that L is orthogonal to Mk

−1 at a−1 and a1. By using
Statement «A» § 3, Chapter 2, and the orthogonalization process, we may
endow the interval −1.5 6 η 6 1.5 of L with an orthonormal framing,
i.e. for each point y(η) of this segment, construct a system of vectors
e1(η), . . . , en+k−1(η), orthogonal to L at y(η) and depending smoothly on
η. We shall assume the vectors e1(−1), . . . , ek(−1) to be tangent to the
manifold Mk

−1 at a−1 and define the orientation of this manifold, whence
the vectors e1(1), . . . , ek(1) are tangent to Mk

−1 at a1 and define the orien-
tation opposite to the orientation of Mk

−1. This can be reached by apply-
ing an orthogonal transformation smoothly depending on η to the vectors
e1(η), . . . , en+k−1(η). Let En+k+1

∗ = En+k × I, where I is the interval
−1 6 t 6 1; consider the Cartesian product En+k+1

∗ as a strip in the Eu-
clidean space En+k+1. Now, let us construct the mapping ϑ of the subset
Hk+2 (see «A») of Ek+2 to En+k+1, depending smoothly on positive pa-
rameter ̺, and mapping the point (ξ1, . . . , ξk, η, τ) ∈ Hk+2 to the point
(z, t) ∈ En+k+1

∗ :

z = y(η) +
k∑

i=1

̺ξiei(η),

t = τ.

(1)

Here z, y(η) are vectors in En+k. The relations above define the mapping
ϑ not only on the set Hk+2 but also on some ε-neighbourhood W k+2 of
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this set in Ek+2. Obviously, for ̺ small enough the mapping ϑ is a smooth
regular homeomorphism of the manifold W k+2. For ̺ small enough the
intersection of ϑ(W k+2) with the manifold Mk

−1 × (−1) is contained in
neighbourhoods of points a−1× (−1) and a1× (−1). We assume ̺ so small
that this intersection is contained in those neighbourhoods of a−1 × (−1)
and a1 × (−1) where the manifold Mk

−1 × (−1) is planar. In the strip
En+k × I we have the submanifold Mk

−1 × I. In this submanifold, let us
replace its part lying in ϑ(Hk+2) by ϑ(P k+1 ∩ Hk+2) (see «A»); namely,
we set

Mk+1 = (Mk
−1 × I\ϑ(Hk+2)) ∪ ϑ(P k+1 ∩Hk+2).

Then Mk+1 is a smooth submanifold of the strip En+k+1
∗ orthogonal at its

boundary points to the boundary of this strip; moreover, the part of the
boundary of Mk+1 lying in the hyperplane En+k × (−1) coincides with the
manifold Mk

−1× (−1), and the part Mk
1 ×1 lying in En+k×1 has one fewer

component than the manifold Mk
−1.

Now, let us construct the framing V of the manifold Mk+1 that we
need to prove the homology (Mk

−1, U) ∼ (Mk
1 , U∗). The framing V of

ϑ(P k+1 ∩Hk+2) we chose in «B» is in such a way that in a−1 × (−1) the
vectors v1, . . . , vn have positive determinant with respect to the vectors
u1×(−1), . . . , un×(−1). By virtue of Statement «D», we may assume that
the vectors u1 × (−1), . . . , un × (−1) coincide with the vectors v1, . . . , vn

in Mk
−1 × (−1) ∩ ϑ(Hk+2). Thus, we have constructed V for part of the

manifoldMk+1, namely, for ϑ(P k+1∩Hk+2). For the part, Mk+1\ϑ(P k+1∩
Hk+2), at a point (x, t), x ∈ Mk+1, t ∈ I, we define v1, . . . , vn to be
parallel to the vectors u1× (−1), . . . , un× (−1). Thus, the framed manifold
(Mk+1, V ) is constructed.

Theorem 14 is proved.

Theorem 15. Let (Mk
−1, U) be a framed manifold of En+k, n > k+1.

Then there exists a framed submanifold (Mk,W ) of En+k homologous
to (Mk

−1, U) such that the manifold Mk is connected and lies in a 2k-
dimensional linear subspace E2k of the space En+k.

Proof. By virtue of Theorems 11 and 14, it is sufficient to prove
Theorem 15 only for the case when n = k + 1 and the manifold Mk

−1

is connected. According to Statement «B» § 4, Chapter 1, there exists a
hyperplane E2k of the space E2k+1 such that the orthogonal projection π
of the manifold Mk

−1 to this plane is typical. Let a−1 and a1 be two distinct
points from Mk

−1 satisfying π(a−1) = π(a1). There exist only finitely many
such pairs in Mk

−1 (see § 4, Chapter 1, «A»). Let us perform a surgery
of Mk

−1 in a neighbourhood of (a−1, a1). One should perform analogous
surgeries for any intersection pair of the mapping π of Mk

−1.
By virtue of «C» we may assume that the manifold Mk

−1 is planar in
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the neighbourhoods of a−1 and a1. Let e1, . . . , ek be a system of linearly
independent vectors tangent to Mk

−1 in a−1 that generate the orientation of
Mk

−1 and let ek+1, . . . , e2k be a system of linearly independent vectors tan-
gent to Mk

−1 in a1 and generating the orientation opposite to the orientation
of Mk

−1. Denote by e2k+1 the vector emanating from the middle point O of
the segment (a−1, a1) and with the endpoint at a1. Taking the point O to
be the origin of coordinates and transporting all the vectors to it, we get
the basis e1, . . . , e2k+1 of the vector space E2k+1. Let E2k+2

∗ = E2k+1 × I
where I is the interval −1 6 t 6 1; we shall consider the product E2k+2

∗ as
a strip of the Euclidean space E2k+2. Let us construct a mapping ϑ from
the subset Hk+2 (see «A») of the space Ek+2 to the space E2k+2 such that
the mapping depends on the positive-valued parameter ̺, the latter being
small enough for further construction; let ϑ take (ξ1, . . . , ξk, η, τ) ∈ Hk+2

to the point (z, t) ∈ E2k+2
∗ :

z = ηe2k+1 + ̺
k∑

i=1

ξi

(
cos

(
π
4
η + π

4

)
ei

+ sin

(
π
4
η + π

4

)
ei+k

)
, t = τ.

The relations above define the mapping ϑ not only on the set Hk+2 but
also for some ε-neighbourhood W k+2 of this set in the Euclidean space
Ek+2. Here z is a mapping from the set Hk+1

τ0
of points (ξ1, . . . , ξk, η, τ0)

satisfying (1) to the vector space E2k+1. Note that the mapping πz is
regular and homeomorphic everywhere except for the points of the interval
ξi = 0, |η| 6 1, so that the mapping πz from the manifold P k

1 ⊂ Hk+1
1

to the space E2k is regular and homeomorphic. Now, in the submanifold
Mk

−1 × I of the strip E2k+1 × I, we replace the part lying in ϑ(Hk+2) by
ϑ(P k+1 ∩Hk+2) (see «A»); namely, we set

Mk+1 = (Mk
−1 × I\ϑ(Hk+2)) ∪ ϑ(P k+1 ∩Hk+2).

It can be easily seen that Mk+1 is a smooth submanifold of the strip E2k+2
∗

which is orthogonal to the boundary of the strip; herewith the part of
the boundary of Mk+2 lying in E2k+1 × (−1) coincides with Mk

−1 × (−1),
whence the part of Mk × 1, lying in the hyperplane E2k+1 × 1 is such that
the projection π makes for Mk

1 is one intersection pair less than for Mk
−1. If

k > 1, then the connectedness of the manifoldMk
−1 yields the connectedness

of the manifold Mk
1 . For k = 1, Theorem 15 will follow immediately from

Statement «B» § 2, Chapter 4; the proof given here is not valid for k = 1
since the constructed manifold M1

1 might not be connected.
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Now, let us construct the framing V of the manifold Mk+1 needed for
the proof of the homology (Mk

−1, U) ∼ (Mk
1 , U∗).

We construct V for the manifold ϑ(P k+1 ∩ Hk+2) as shown in «B»
(here n = k + 1), in such a way that at the point a−1 × (−1) the vec-
tors v1, . . . , vk+1 are obtained from the vectors u1 × (−1), . . . , uk+1 × (−1)
by a positive determinant transformation. By virtue of Statement «D»,
one may assume that in the intersection Mk

−1 × (−1) ∩ ϑ(Hk+2), the vec-
tors u1 × (−1), . . . , uk+1 × (−1) coincide with the vectors v1, . . . , vk+1 pre-
viously constructed. The framing V of Mk+1 is already constructed for
ϑ(P k+1 ∩Hk+2). For the part Mk+1\ϑ(P k+1 ∩Hk+2), in any point (x, t),
x ∈ Mk+1, t ∈ I, define the vectors v1, . . . , vk+1 to be parallel to the vec-
tors u1 × (−1), . . . , uk+1 × (−1). Thus, the framed manifold (Mk+1, V ) is
constructed.

We shall assume that the surgery of Mk
−1 described above is performed

for all self-intersection pairs of the mapping π. Then the obtained manifold
Mk

1 is projected by π regularly and homeomorphically to the submanifold
Mk = π(Mk

1 ) of the space E2k. This projection might be performed as a
deformation of the smooth submanifoldMk

1 to the smooth manifoldMk. By
virtue of Statement «B» § 3, Chapter 2, this deformation can be extended
to get a deformation of the framed manifold. In this way we obtain the
desired submanifold (Mk,W ) of the space E2k+1.

Thus, Theorem 15 is proved.

Theorem 16. Let (Mk
0 , U0) be a framed submanifold of the Euclidean

space E2k+1 for which γ(Mk
0 , U0) = 0 (this is always true for even k, see

Definition 10) (see § 2, Chapter 3, «B»). Then, in the hyperplane E2k

of the space E2k+1 there exists a framed submanifold (Mk
1 , V1) such that

(Mk
0 , U0) ∼ E(Mk

1 , U1) (see Definition 7).

Proof. By virtue of Theorems 14 and 15, there exists a connected
framed submanifold (Mk

1 , U1) of the space E2k+1 homologous to the given
one (Mk

0 , U0), such that Mk
1 ⊂ E2k. By virtue of Statement «B» § 2,

Chapter 3, we have γ(Mk
1 , U1) = 0. Thus, Statement «E» § 2, Chapter 3,

yields that the degree of ψ : Mk
1 → Sk equals zero; thus the mapping

ψ is null-homotopic (see Theorem 13). By virtue of Statement «A» § 4,
Chapter 2, the framed manifold (Mk

1 , U1) is homologous to the framed
manifold E(Mk

1 , V ), where (Mk
1 , V ) is a framed submanifold of the space

E2k.
Thus, Theorem 16 is proved.
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Chapter IV

Classification of mappings of the

(n + 1)-sphere and (n + 2)-sphere to

the n-sphere

§ 1. The Euclidean space rotation group

The main goal of this section is to establish the basic topological prop-
erties of the group Hn of all rotations of the n-dimensional Euclidean space
En, needed for the classification of mappings Σn+k → Sn for k = 1, 2. It
will be proved (see Theorem 17) that manifold Hn is connected and that
for n > 3 there exist precisely two homotopy classes of mappings S1 → Hn.
In order to prove these properties of Hn, we use a well-known covering
homotopy lemma; this lemma is of independent interest; besides, we use
the description of H3 by employing quaternions; this also has independent
interest and it is used in the future.

Quaternions

We recall the notion of quaternion, which we shall need in the rest of
this work.

A) Let K be the four-space with fixed Cartesian coordinate system.
Let us write arbitrary vector x = (x1, x2, x3, x4) ∈ K of the space as
x = x1 + ix2 + kx3 + kx4, where i, j, k are the unit quaternions. Define
the multiplication law for the set K according to the following axioms: it
is distributive; real numbers commute with unit quaternions and the mul-
tiplication of quaternion units looks like follows

ij = −ji = k, jk = −kj = i, ki = −ik = j, ii = jj = kk = −1. (1)

It is easy to see that the multiplication defined in K in this way is as-
sociative. Define the adjoint quaternion x̄ to the quaternion x by setting
x̄ = x1 − ix2 − jx3 − kx4. It can be easily checked that

xy = ȳx̄. (2)

Define the modulus of x as the non-negative real number

|x| =
√
xx̄ =

√
(x1)2 + (x2)2 + (x3)2 + (x4)2.
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We have |xy|2 = xyxy = xyȳx̄ = x · |y|2 · x̄ = |y|2 · xx̄ = |x|2 · |y|2. Thus,

|xy| = |x| · |y|. (3)

If x 6= 0, then |x| 6= 0, thus there exists a quaternion x−1, which is the
inverse of the quaternion x, namely, x−1 = x̄/|x|2. Thus, the set of all
quaternions K constitutes an algebraic skew field. The skew field K con-
tains the field D of real numbers that consists of all quaternions of the
type x = x1 + 0 · i+ 0 · j + 0 · k. The set G of all quaternions x satisfying
|x| = 1 constitutes a group with respect to the multiplication operation,
according to (3). The set G is the 3-sphere of the Euclidean space K. The
quaternions of the type x2i + x3j + x4k are called purely imaginary. The
set J of all such quaternions forms a 3-space in K, which is orthogonal to
the line D.

B) Let K be the skew field of quaternions containing the field D of
real numbers, and let J be the set of all imaginary quaternions; let G be
the group of quaternions having absolute unit value (see «A»). With each
quaternion g ∈ G we associate a mapping ψg of K onto itself by setting

ψg(x) = gxg−1. (4)

Thus, by virtue of (3), we have |gxg−1| = |x|, so, the mapping ψg, being
linear, is a rotation of the space K. Since ψg(D) = D, the orthogonal
complement to D (the space J) is mapped by ψg to itself, i.e. we get a
rotation of J . It turns out that, by associating with each quaternion g ∈ G
the corresponding rotation v(g) = ψg of the space J , we get a homomorphic
mapping v of the group G to the group H3 of all rotations of the space J .
The kernel of v consists of the two elements, 1 and −1. Furthermore, it
turns out that the subgroup S1 of all quaternions g ∈ G satisfying ψg(i) = i
consists of all quaternions of the type cosα+ i sinα.

Let us prove Statement «B». First of all, we have

ψgh(x) = ghxh−1g−1 = ψg(hxh
−1) = ψgψh(x),

thus, v is a homomorphic map from G to H3. Let us show that v(G) = H3.
Let l = aj + bk, where a2 + b2 = 1. It is easy to see that

l2 = −1, li = −il. (5)

Now let g = cosβ + l sinβ. From (5) it follows that

ψg(i) = (cosβ + l sinβ)i(cos β − l sinβ)

= (cosβ + l sinβ)2i = (cos 2β + l sin 2β)i

= i cos 2β + (bj − ak) sin 2β, (6)
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thus, with an appropriate choice of a, b and β, we can map the quaternion
i by ψg to any preassigned quaternion of the set S2 = J ∩G. Furthermore,
by setting a = 0, b = 1, we get from (6)

ψg(i) = i cos 2β + j sin 2β, (7)

and, since g commutes with k, then by using transformations like ψg we
can perform any rotation of J around k. Since G is a group, this yields that
by using transformations ψg, g ∈ G, we may perform any rotation of the
space J . Note that from the multiplication law (1) it follows that the only
quaternions which commute with i are just those of the type cosα+ i sinα;
thus the group S1 consists of all quaternions of this type. Analogously, j
commutes with only those quaternions from G of the type cosα + j sinα.
Thus, the kernel of v consists precisely of +1 and −1.

This completes the proof of «B».

Covering homotopy

Lemma 1. Let ϕ be a smooth mapping from a closed manifold P p to
a closed manifold Qq, p > q, which is proper in all points. Later let f be
a continuous mapping from a compact metric space R to P p and let gt,
0 6 t 6 1 be a deformation of mappings from R to Qq such that g0 = ϕf .
Then there exists a continuous deformation ft of mappings from R to the
manifold P p such that f0 = f and ϕft = gt. Then the deformation ft is
called a covering for the deformation gt. If for some point x ∈ R we have
gt(x) = g0(x) for all t, 0 6 t 6 1 then ft(x) = f0(x). Furthermore, if
R is a smooth manifold and f is a smooth mapping and gt is a smooth
deformation then the mapping ft is smooth as well.

Proof. Denote the full preimage of y ∈ Qq in P p under ϕ by
My : My = ϕ−1(y). It follows from (2) § 4, Chapter 1 that My is a (p− q)-
dimensional submanifold of the manifold P p. By virtue of Theorem 2, we
may assume that P p is a smooth submanifold of some high-dimensional
Euclidean space A. Denote the normal subspace at x0 ∈ My0 to the man-
ifold My0 in A, by Nx0 . Now, let us show that if y is close enough to y0
then there exists precisely one point γ(x0, y) of the intersection between
the normal subspace Nx0 and the manifold My, which is close to x0. To
prove this fact, let us introduce in the neighbourhoods of points x0 and y0
in P p and Qq such local coordinates x1, . . . , xp and y1, . . . , yq with origins
at x0 and y0, where the mapping ϕ looks like

y1 = x1, . . . , yq = xq (8)

[see § 4, Chapter 1, formula (2)]. Let x = ϑ(x1, . . . , xp) be the parametric
equation of the manifold P p in a neighbourhood of x0. Then Nx0 in A is
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defined by the system of equations(
x− x0,

∂ϑ(0, . . . , 0)

∂xi

)
= 0, i = q + 1, . . . , p, (9)

where x is the radius vector with endpoint running over the space Nx0 . The
parametric equation of the manifold Ny looks like

x = ϑ(y1, . . . , yq, xq+1, . . . , xp), (10)

where y1, . . . , yq are the coordinates of the point y and xq+1, . . . , xp are
the local coordinates in My. Thus, in order to find the point γ(x0, y),
one should substitute the value of x from (10) into the equations (9), and
then solve the obtained system in the unknown variables xq+1, . . . , xp. The
above substitution leads to
(
ϑ(y1, . . . , yq, xq+1, . . . , xp)

− ϑ(y1
0 , . . . , y

q
0 , x

q+1
0 , . . . , xp

0),
∂ϑ(0, . . . , 0)

∂xi

)
= 0,

i = q + 1, . . . , p. (11)

Here we have a system of p − q equations in p − q unknown variables
xq+1, . . . , xp. With the initial conditions y1 = 0, . . . , yq = 0, the system (11)
has the evident solution xq+1 = 0, . . . , xp = 0. The functional determinant
of the system (10) then equals the determinant

∣∣∣∣∣

(
∂ϑ(0, . . . , 0)

∂xj
,
∂ϑ(0, . . . , 0)

∂xi

)∣∣∣∣∣ , i, j = q + 1, . . . , p,

which is non-zero since the vectors
∂ϑ(0, . . . , 0)

∂xi
, i = q + 1, . . . , p are lin-

early independent. Thus, for a point y sufficiently close to y0, there exists
precisely one point x close to x0 and satisfying the condition

x = γ(x0, y) ∈ Nx0 ∩My.

From the compactness of P p we see that there exists a small positive δ such
that for ̺(y, ϕ(x0)) < δ the function γ(x0, y) is defined and is continuous
with respect to its arguments x0 ∈ P p and y ∈ Qq. This function enjoys
the following two properties:

γ(x0, ϕ(x0)) = x0, (12)

ϕ(γ(x0, y)) = y. (13)

These are just those properties we shall need in the sequel.
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Let us now construct the deformation ft; for this purpose, we shall
use the function γ(x0, y). Define f0 by setting f0 = f . Let ε be a small
positive number such that for |t − t′| 6 ε we have ̺(gt(u), gt′(u)) < δ,
u ∈ R. Assume that the mapping ft is defined for all values of t satisfying
0 6 t 6 nε < 1, where n is a non-negative integer. Define ft for t, satisfying
nε 6 t 6 (n+ 1)ε, by setting

ft(u) = γ(fnε(u), gt(u)). (14)

It follows from (12) and (13) that the mapping ft defined in this way
gives a continuous deformation and satisfies the condition gt = ϕft.

Thus, Lemma 1 is proved.

Torsion group of Euclidean space

C) Let En be the Euclidean vector space and let Sn−1 be the sphere in
this space defined by (x, x) = 1; let Hn be the rotation group of En and let
a be a fixed point from Sn−1. It turns out that Hn is a smooth manifold

of dimension
n(n− 1)

2
; moreover, if we associate with each element h the

point χ(h) = h(a), we get a smooth, everywhere proper mapping χ from
the manifold Hn to the manifold Sn−1.

Let us prove Statement «C». Let e1, . . . , en be some orthonormal basis
of the space En. If h ∈ Hn, then

h(ej) =
∑

i

hijei. (15)

Thus, to each rotation h of the space En there corresponds some orthogonal
matrix ‖hij‖ with positive determinant: h→ ‖hij‖; conversely, to each or-
thogonal matrix ‖hij‖ with positive determinant there corresponds, by (14),
a certain rotation of En. The correspondence h→ ‖hij‖ identifies the group
Hn with the group of all orthogonal matrices of order n having positive de-
terminant. It is well known that the orthogonality conditions for a matrix
look like

Fij = δij , where Fij =
∑

α

hiαhjα. (16)

Let us show that in a neighbourhood of the identity matrix ‖δij‖ we can
take the numbers Hij , i > j for local coordinates of the matrix h ∈ Hn.
To do it, it is sufficient to show that for the initial values hij = δij the
system (16) is solvable in hij , where i 6 j. Note that since Fij = Fji, we
may consider only those Fij for i 6 j; thus the number of equation equals
the number of variables. We have

∂Fij

∂hkl
=
∑

α

(δikδαlhjα + hiαδjkδαl);
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for hij = δij this gives
∂Fij

∂hkl

= δikδjl + δjkδil. If at least one of the inequal-

ities i 6 j, k 6 l is strict then the equalities j = k, i = l are impossible,
thus the second summand equals zero. Thus, the functional matrix of the
system Fij , i 6 j in the variables hkl, k 6 l, is a diagonal matrix with
all ones and twos on the diagonal. Thus, the system (2) is solvable. Let
U be a neighbourhood of the identity matrix where this resolvability takes
place, and where we can take hij , i > j to be the coordinates. Let h0 ∈ Hn;
then Uh0 is a neighbourhood of the matrix h0, and we define the coordinates
of the element hh0 ∈ Uh0 in the neighbourhood Uh0 as the coordinates of
the element h in the neighbourhood U . Let Uh0 and Uh1 be two disjoint
neighbourhoods. It is easy to see that the coordinate transformation from
those coordinates in Uh0 to the coordinates in Uh1, is smooth. Thus, Hn

is a smooth manifold.
Since Hn is a group, which can map the point a to any arbitrary point

of the sphere, then χ(hn) = Sn−1; thus, it is sufficient to prove that the
mapping χ is proper in one point of the manifold Hn, e. g., in ‖δij‖. For a =
e1, with the matrix ‖hij‖, we associate (according to χ), the point of the
sphere Sn−1 with coordinates hi, i = 1, . . . , n. Because h21, h31, . . . , hn1

are the coordinates of the element hij in U , and the coordinates of the
point χ(h) ∈ Sn−1 can be defined as h21, . . . , hn1, then the properness of
the mapping χ in ‖δij‖ is evident.

Thus, Statement «C» is proved.

Theorem 17. Let Hn be the rotation group of the Euclidean vector
space En, n > 3. It turns out that Hn is a closed manifold and there exist
precisely two homotopy classes of mappings from S1 to Hn, one of which
consists of all null-homotopic mappings, the other one consisting of all map-
pings not homotopic to zero. The latter ones can be described as follows.
Let E2 be an arbitrary two-dimensional subspace of the vector space En and
let En−2 be its orthogonal complement. It is natural to consider the group
H2 of rotations of the Euclidean plane E2 (this group is homeomorphic to
the circle) as a subgroup of the group Hn if we extend any rotation of the
plane to the whole space En, assuming this rotation to be the identity on
En−2. It turns out that the mapping g from the circle S1 to the circle H2

is null-homotopic in Hn if and only if the mapping degree of g is even.
It turns out that each mapping h from the circle S1 to the manifold Hn

can be continuously transformed to a mapping g from S1 to H2 in such a
way that during the whole deformation the images of all points x, for which
h(x) ∈ H2 remain fixed.

Proof. Let Sn−1 be the unit sphere of the space En, a ∈ Sn−1, and let
χ be a mapping from the manifold Hn to the sphere Sn−1 constructed in
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«C». It is clear that the set χ−1(a) is a subgroup Hn−1 of Hn, representing
all rotations of the space En−1 orthogonal to the vector a.

Let f0 be a smooth mapping from a compact manifold M r, r 6 n− 2,
to Hn. Let us show that there is a deformation ft, 0 6 t 6 1 of the map-
ping f0 which fixes all points of the manifold M r mapped to Hn−1, and
maps the whole manifold M r to Hn−1: f1(M

r) ⊂ ⊂ Hn−1. By virtue of
Theorem 1, the set χf0(M

r) is nowhere dense in Sn−1; thus, there exists
a smooth deformation gt of the mapping g0 = χf0 for which each point
of M r, mapped to a, remains fixed, and the mapping g1 takes the whole
manifold M r to a. Then the deformation ft covering the deformation gt is
just what we wanted (see Lemma 1).

Applying the above consideration to the case M r = S1, we see that
any mapping S1 → Hn is homotopic to some mapping of the circle to
Hn−1. If n − 1 > 3, then, repeating the same argument, we see that any
mapping of the circle S1 to Hn is homotopic to some mapping of the circle
to Hn−2, where Hn−2 is the rotation group of some subspace En−2 of the
space En−1. Arguing as above, we conclude that each mapping from S1 to
Hn is homotopic to some mapping of the circle to H2 ⊂ Hn.

Let us show that if a mapping g : S1 → H2 is null-homotopic in Hn,
then it is null-homotopic in H3 as well, where H2 ⊂ H3 ⊂ Hn. Let K2 be
a certain disc bounded by the circle S1. Since the mapping g of the circle
S1 is null-homotopic in H2 then it can be extended to a mapping g of the
whole disc K2 to Hn. Applying this argument to the case M r = K2, we see
that the mapping g : S1 → H2 is null-homotopic in H3. To conclude the
proof, it remains to show that the mapping g : S1 → H2 is null-homotopic
in H3 if and only if the degree σ of the mapping g is even.

To prove this fact, let us use a homomorphism v of the group G to the
group H3 (see «B»). The mapping v is smooth, it is everywhere proper
and maps precisely two points from G to any preassigned point from H3.
Furthermore, note that Σ1 = v−1(H2) is a circle, which is taken by v to
the circle H2 with mapping degree two [see (7)].

Assume that σ = 2̺, and let v be a mapping of S1 to Σ1 of degree ̺.
Then the mapping vν of the circle S1 to the circle H2 has degree 2̺ = σ,
thus being homotopic to the mapping g. Since the mapping ν is null-
homotopic in the sphere G, then vν is null-homotopic in H3. Thus, the
mapping g is null-homotopic in H3 as well.

Now assume that g : S1 → H2 is null-homotopic in H3, so that there
exists such a continuous deformation gt, 0 6 t 6 1, of mappings S1 → H3

that g1 = g and the image g0(S
1) consists of precisely one point from

H3. Let p be a point from G such that v(p) = g0(S
1), and let f0 be the

mapping taking all of S1 to the point p; then vf0 = g0, and, according to
Lemma 1, there exists a covering deformation ft for the deformation gt.
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Thus, vf1 = g1, and, respectively, f1 is a mapping from the circle S1 to
the circle Σ1; since vf1 = g1, the degree of f1 should be even (because the
degree of v equals two).

The connectedness of the manifold Hn is proved straightforwardly. It
follows from the fact that there exists precisely one class of null-homotopic
mappings from S1 to Hn.

Thus, Theorem 17 is proved.
D) With each mapping h from M1 to the group Hn of rotations of the

n-space, n > 2, we associate the residue class β(h) modulo 2. For n > 3 for
one-component M1, the residue class β(h) is assumed to be zero when h
is null-homotopic in Hn, and equal to one, otherwise. For multicomponent
M1 we define β(h) to be the sum of residue classes β(h) over all connected
components. For n = 2, define the residue class β(h) as the degree of the
mapping from M1 to H2 taken modulo two. Having two mappings, f and
g of S1 to the group Hn, define their group product h = fg by setting

h(x) = f(x)g(x), x ∈ S1,

where on the right-hand side we have the group product of the elements
f(x) and g(x) from the group Hn. It turns out that

β(h) = β(f) + β(g). (17)

Let us prove (17). Let T 2 = S1×S1 be the direct product of two copies
of the circle S1, i.e. the set of all pairs x, y, where x ∈ S1, y ∈ S1. Define
the mapping ϕ of the torus T 1 to Hn by setting

ϕ(x, y) = f(x)g(y).

Now, let a be a fixed point of S1. Without loss of generality, we may assume
that f(a) = g(a) = e ∈ Hn. Let us define the three mappings f ′, g′, h′ from
S1 to the torus T 2 by setting

f ′(x) = (x, a), g′(x) = (a, x), h′(x) = (x, x).

It is evident that
ϕf ′ = f, ϕg′ = g, ϕh′ = h.

It is well known (and it can be easily checked) that the mapping h′ from

the circle S1 to the torus T 2 is homotopic to the mapping ĥ from S1 to the
lemniscate S1 × a ∪ a× S1, that maps S1 with degree one both for S1 × a
and for a × S1. Thus, the mappings ϕh′ and ϕĥ are homotopic. Besides,
for the mapping ϕĥ it can be checked straightforwardly that β(ϕĥ) =
β(ϕh′) + β(ϕg′). Thus, formula (17) is proved.
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§ 2. Classification of mappings of the three-sphere to

the two-sphere

In this section, we give a homotopy classification of mappings from Σ3

to S2; namely, we prove that the Hopf invariant γ (see §2, Chapter 3) is
the only homotopy invariant and it can take any integer value. We use the
Hopf mapping ω from Σ3 to S2 as an important tool for this classification.
This mapping can be well described in terms of quaternions. Let K be
the skew field of quaternions and let G be the set of all quaternions with
absolute value equal to one, and let J be the set of all purely imaginary
quaternions (see § 1, «A»). We consider the group G as the sphere Σ3

and the intersection G ∩ J as the sphere S2. With each element g ∈ G
we associate the element ω(g) by setting ω(g) = gig−1, where i is the
quaternionic unit. It turns out that the mapping ω defined in this way
is everywhere proper and has Hopf invariant equal to one. We shall use
these two properties of the mapping ω for the classification of mappings
Σ3 → S2. To perform this classification, we shall also use the fact that any
mapping from Sn, n > 2, to the circle S1, is null-homotopic. The proof of
this elementary theorem is also given here.

Sphere-to-circle mappings

Theorem 18. Every mapping Sn → S1 for n > 2 is null-homotopic.

Proof. Let p and q be the north pole and the south pole of the
sphere Sn and let Sn−1 be the equator of this sphere, i.e. its section by the
hyperplane perpendicular to the segment pq and passing through its middle
point. For any point x ∈ Sn−1 there exists a unique meridian pxq of the
sphere Sn passing through the point x, i.e. a great half-circle of the sphere
Sn connecting the poles p and q and passing through x. Let us introduce
the angle coordinate α on pxq; we count the angle from p. Define the point
of pxq with coordinate α, by (x, α). We have (x, 0) = p, (x, π) = q, and
any point y ∈ Sn\(p ∪ q), can be uniquely presented as y = (x, α), where
0 < α < π.

Let f be an arbitrary mapping from Sn to S1. Let us introduce an an-
gular coordinate β for the circle S1 taking f(p) to be the base point. The
coordinate β of f(x, α) is a number defined up to a multiple of 2π. Now,
let us define a continuous function g(x, α) which is equal to f(x, α) when
reduced modulo 2π. To do this, set g(x, 0) = 0 and for any fixed point
x ∈ Sn−1 we define the function g(x, α) to be continuous with respect to α,
0 6 α 6 π. It is evident that the function g(x, α) constructed in this way
is a continuous function of variables x, α. Let us show that g(x, π) is a con-
stant. Let x0 and x1 be two arbitrary points from Sn−1 and let xt be a point
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S1 depending continuously on the parameter t, 0 6 t 6 1. The numerical
function g(xt, π) of the parameter t is continuous and, being reduced mod-
ulo 2π it does not depend on t, because f(xt, π) = f(q); thus the function
g(xt, π) does not depend on t either. Thus, g(xt, π) is a constant. Reducing
the function (1− t)g(x, α) modulo 2π, we get the angular function ft(x, α)
in two variables, x and α, satisfying the conditions f0(x, α) = f(x, α),
f1(x, α) = 0. The function ft(x, α) defines a deformation of the mapping
f = f0 to the mapping f1; the latter maps the whole sphere Sn to a point.

Thus, Theorem 18 is proved.

Hopf mapping of the 3-sphere to the 2-sphere

A) In the Euclidean space E3 with coordinates y1, y2, y3 and origin O,
for a given integer r, let us construct a framed manifold (S1, V(r)), where
S1 is a circle parametrically defined by

y1 = cosx, y2 = sinx, y3 = 0, (1)

and γ(S1, V(r)) = r (see § 2, Chapter 3, «B»). Define the normal subspace
N2

x at the point x of the circle S1 by the parametric equation

y1 = (1 + t1) cosx, y2 = (1 + t1) sinx, y3 = t2, (2)

where t1, t2 are the Cartesian coordinates in the plane N2
x with origin x.

Denote the basis vectors in this coordinate system in N2
x by u1(x) and

u2(x): u1(x) = {1, 0}, u2(x) = {0, 1}. Define the vectors v1(x) and v2(x)
of the framing V(r) by the relations

v1(x) = u1(x) cos rx + u2(x) sin rx,

v2(x) = −u1(x) sin rx + u2(x) cos rx.
(3)

To calculate γ(S1, V(r)), let us use Statement «E» § 2, Chapter 3. We
have

u2(x) = v1(x) sin rx+ v2(x) cos rx,

which yields that the degree of the mapping ψ from S1 to S1 is equal to ±r.
Thus, for an appropriate orientation of the space E3, we get γ(S1, V(r)) =
+r.

Lemma 1. There exists a smooth mapping ω from Σ3 to S2, which is
proper in all points, such that the preimage ω−1(y) of each point y ∈ S2 is
homeomorphic to the circle, and γ(ω) = +1.

Proof. Let K be the skew field of quaternions, and let G be the group
of all quaternions with unit absolute value; let J be the set of all purely
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imaginary quaternions (see § 1, «A»). Let Σ3 = G, S2 = J ∩G; define ω by
setting ω(g) = ψg(i) = gig−1 (see § 1, «B»). Since for each element y ∈ S2

there is such an element g ∈ G that ψg(i) = y, then the preimages of all
points of the sphere S2 under ω are homeomorphic, and since the preimage
of the point i is homeomorphic to the circle (see § 1 «B»), then each of
them is homeomorphic to the circle.

The mapping ω is proper because ω = χv (see § 1 «B» «C») and each
of the mappings χ, v is proper at every point.

Now, let us construct the framed manifold (S1, V ) corresponding (see
Definition 5) to the mapping ω. To do this, we take the north pole p′

of the sphere Σ3 = G to be the quaternion k and define the mapping ϕ
as the projection of G\k from k to the space E3, the latter consisting of
quaternions of the type y1 + iy2 + jy3. Though this plane is not tangent
to the sphere G at k, it is parallel to the latter; thus, such a replacement
results in a homothetic transformation of the framed manifold, which does
not change its homology class. For the pole p of the sphere S2 we take the
quaternion i; then ω−1(p) = S1, whence ϕ(S1) = S1 (see § 1 «B»). Here
S1 consists of all quaternions of the type cosx+ i sinx.

Let I be the subspace of the vector space K with basis j, k. Denote
by P 3

x the tangent space to the sphere G at the point cosx + i sinx ∈
S1, and denote by R2 the tangent space to the sphere S2 at the point i.
Associating with ξ ∈ I the point qx(ξ) = cosx + i sinx + ξ, we get an
isometric mapping qx from the plane I to the plane Qx, the latter contained
in P 3

x . Analogously, associating with ξ ∈ I the point r(ξ) = i+ ξi, we get
an isometric mapping of the plane I to the plane R2. The mapping ω from
G to S2 then corresponds to the linear mapping ωx of the tangent space P 3

x

to the tangent space R2 (see § 1, Chapter 1, «E») and, in particular, the
mapping ωx from Qx to R2. In the sequel, we consider the mapping ωx only
restricted to Qx and, for the study of this map, we set ω̃x = r−1ωxqx. Thus,
ω̃x is a linear mapping from the vector space I to itself. Let us calculate
the mapping ω̃x. Let

g = 1 + x3j + x4k + ε

be the element of the group G, close to the identity, where ε is a quaternion,
which is second order small with respect to

√
(x3)2 + (x4)2. From the

formula (6) § 1 we see that, up to second-order terms, we have

ω(g) = i+ 2(x3j + x4k) · i. (4)

Now, let

h = cosx+ i sinx+ x3j + x4k

= [1 + (x3j + x4k)(cosx− i sinx)](cosx+ i sinx)
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be an element of the group G which is close to cosx + i sinx; we omit
the second order terms. Since the element cosx+ i sinx commutes with i,
from (4), omitting second-order terms, we get

ω(h) = i+ 2(x3j + x4k)(cosx− i sinx)i. (5)

From this we get
ω̃x(ξ) = 2ξ(cosx− i sinx). (6)

Thus, if we write the quaternions ξ in the polar coordinates ̺, β, i.e. if we
set

ξ = j̺(cosβ − i sinβ),

we see that ω̃x is an x-rotation of the plane I together with a homothety
of coefficient two.

The normal space N2
x at cosx− i sinx to the circle S1 in the space E3 is

described parametrically by (2). As in Statement «A», set u1(x) = {1, 0},
u2(x) = {0, 1}. To the mapping ϕ, there corresponds a mapping ϕx of
the tangent space P 3

x to the sphere G at x to the linear space E3 (see § 1,
Chapter 1, «E»). It can be readily seen that

ϕxqx(j) = u2(x), ϕxqx(k) = u1(x). (7)

According to Definition 5, in order to construct the framing V =
{v1(x), v2(x)} corresponding to ω, we have to choose in R2 two vec-
tors e1 and e2; for the linear mapping (ωϕ−1)x from N2

x to R2 we have
to find vectors v1(x) and v2(x) in N2

x such that e1 = (ωϕ−1)xv1(x),
e2 = (ωϕ−1)xv2(x). In order to choose the vectors e1 and e2 and calculate
the vector v1(x) and v2(x), note that

(ωϕ−1)−1
x = ϕxω

−1
x = ϕxqxq

−1
x ω−1

x rr−1 = (ϕxqx)ω̃−1
x r−1. (8)

Thus, taking e1 = r
(
k
2

)
, e2 = r

(
j

2

)
, we get, according to (6)–(8),

v1(x) = (ϕxqx)ω̃−1
x

(
k
2

)
= ϕxqx(k(cosx+ i sinx))

= ϕxqx(k cosx+ j sinx) = u1(x) cos x+ u2(x) sin x,

v2(x) = (ϕxqx)ω̃−1
x

(
j

2

)
= ϕxqx(j(cos x+ i sinx))

= ϕxqx(−k sinx+ j cosx) = −u1(x) sinx+ u2(x) cos x.

Thus, by virtue of «A», we get γ(S1, V ) = 1, which yields γ(ω) = 1.
Thus, Lemma 1 is proved.
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Classification of mappings S3
→ S2

Lemma 2. Let πn(Sr) be the set of all homotopy classes of mappings
from Sn to Sr, n > 3, r = 2, 3, and let ω be the mapping from Σ3 to
S2, constructed in Lemma 1. Obviously, if f0 and f1 are two homotopic
mappings from Sn to Σ3 then the mappings ωf0 and ωf1 from Sn to S2

are also homotopic. Thus, for α ∈ πn(Σ3), the set ωα belongs to the same
class ω̂(α) ∈ πn(S2). It turns out that ω̂ is a mapping of the set πn(Σ3) to
the whole set πn(S2) and that the pre-image of the zero element of πn(S2)
under ω consists only of the zero element of the set πn(Σ3).

It follows from the definition of the sum operation in πn(Sr) (which is
not given in the present work) that ω̂ is a homomorphism from the group
πn(Σ3) to the group πn(S2). Thus, from Lemma 2 it follows that ω is an
isomorphism of the group πn(Σ3) to the group πn(S2). However, we shall
not use this result.

Proof. First, let us show that the only element which is mapped to
the zero element of the set πn(S2) is the zero element of the set πn(Σ3).
Let f be a mapping from Sn to the sphere Σ3 such that ωf is a null-
homotopic mapping from the sphere Sn to the sphere S2. Then there
exists a continuous family of mappings gt, 0 6 t 6 1 from Sn to S2 such
that g0 = ωf , and g1 is a mapping of the sphere Sn to a fixed point c of
the sphere S2. By virtue of Lemma 1, there exists a continuous family ft of
mappings from Sn to Σ3 such that f0 = f and ωft = gt (see Lemma 1 § 1).
Since g1(S

n) = c then f1(S
n) ⊂ ω−1(c), and, by virtue of Lemma 1, the

set ω−1(c) is homeomorphic to the circle. Thus, the mapping f1 is null-
homotopic by Theorem 18; consequently, so is f0.

Let us show now that for any element β ∈ πn(S2) there exists such
an element α ∈ πn(Σ3) that ω̂(α) = β. We shall think of Sn as a sphere
of unit radius centred at the origin of coordinates of the Euclidean space
En+1 with some fixed coordinate system x1, . . . , xn+1. Denote the set of
all points of Sn satisfying the condition xn+1 6 0, by E−, and denote
the set of all points of Sn satisfying xn+1 > 0 by E+; finally, denote the
set of points of Sn satisfying xn+1 = 0 by Sn−1. We take the point p =
(0, 0, . . . , 0, 1) to be the north pole of the sphere Sn, and the south pole to
be the point q = (0, 0, . . . , 0,−1). It is evident that there exists a mapping
of Sn onto itself homotopic to the identity, which takes the half-sphere E−

to the point q. This yields that in the mapping class β, one may choose
such a mapping g taking the half-sphere E− to one point c ∈ S2. Let P 2

x be
the half-plane of the space En+1, bounded by the line passing through
p, q, and containing the point x ∈ Sn−1. Denote the intersection of the
half-plane P 2

x of the sphere Sn and the hyperplane xn+1 = 1 − t by (x, t).
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Thus, to each pair (x, t), x ∈ Sn−1, there corresponds a point (x, t) ∈ E+,
and each point y ∈ E+ can be written in the form y = (x, t); this pair
is unique for y 6= p, аt p = (x, 0), where x is an arbitrary point of the
sphere Sn−1. Set gt(x) = g(x, t). Thus, we have defined the family gt,
0 6 t 6 1 of mappings from Sn−1 to the sphere S2, here g1(S

n−1) = c,
and g0(S

n−1) = g(p) = b. Let a be an arbitrary point of the circle ω−1(b)
and let f be a mapping from Sn−1 to Σ3, taking the whole sphere to one
point a. By virtue of Lemma 1 § 1, there exists a deformation ft, 0 6 t 6 1
of mappings Sn−1 → Σ3 such that f0 = f , and ωft = gt. Now, set
f(x, t) = ft(x). This defines the mapping f from the half-sphere E+ that
takes Sn−1 to the circle ω−1(c). Since the mapping of the sphere Sn−1 is
zero-homotopic in the circle ω−1(c) (see Theorem 18), the mapping f from
the half-sphere E+ can be deformed to a mapping f of the whole sphere
Sn such that f(E−) ⊂ ω−1(c). Such a mapping f satisfies ωf = g.

Thus, Lemma 2 is proved.

Theorem 19. The homomorphism γ of the group Π1
2 to the group

of integers is epimorphic (see § 2, Chapter 3, «C»). From this we have
that two mappings f0 and f1 from Σ3 to S2 are homotopic if and only if
γ(f0) = γ(f1), and, furthermore, for any integer c there exists a mapping
f from Σ3 to the sphere S2 such that γ(f) = c.

Proof. First of all show that the kernel of the homomorphism γ con-
tains only the zero element of the group Π1

2. It is sufficient to show that
the mapping g : Σ3 → S2, satisfying γ(g) = 0, is null-homotopic. By virtue
of Lemma 2, there exists such a mapping f of the sphere Σ3 to itself such
that the mapping ωf is homotopic to g, and, consequently, γ(ωf) = 0. By
virtue of Statement «D» § 2, Chapter 3, the degree σ of mapping f of the
sphere Σ3 to itself is defined as γ(ωf) = 12 · σ, so that σ = 0. Thus (see
Theorem 12), the mapping f of Σ3 to itself is null-homotopic, thus, so are
ωf and g.

Let us show that for any integer σ there exists a mapping g from Σ3 to
S2 such that γ(g) = σ, i.e. that γ is an epimorphism. Indeed, let f be a
mapping of Σ3 to itself having degree σ. Then for the mapping g = ωf , we
have, according to «D» § 2, Chapter 3, γ(ωf) = σ · 1 = σ.

Thus, Theorem 19 is proved.
B) Comparing Statement «A» and Theorem 19, we see that each one-

dimensional framed manifold of the three-dimensional Euclidean space is
homologous to the framed manifold (S1, V(r)) constructed in «A», for some
r.
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§ 3. Classification of mappings from (n + 1)-sphere to

n-sphere

In this section we prove that for n > 3 there exist precisely two ho-
motopy classes of mappings from Σn+1 to Sn. The proof is based on a
homological invariant δ(M1, U) of framed manifolds in En+1, n > 2, which
is a mod 2 residue class and can take both values, 0 and 1. Thus, even
from the existence of δ, it follows that there exist at least two mapping
classes of Σn+1 → Sn for n > 2. The invariant δ is described as fol-
lows. Let U(x) = {u1(x), . . . , un(x)} be an orthonormal framing of M1

and let un+1(x) be the unit vector tangent to M1 at some point x ∈ M1.
The system U ′(x) = {u1(x), . . . , un+1(x)} can be obtained from some fixed
orthonormal basis of the space En+1 by the rotation h(x). Thus we get a
continuous mapping h from the manifold M1 to the manifold Hn+1 of all
rotations of the space En+1. In the case of one-component curve M1, the
invariant δ is defined to be zero if the mapping h is not zero-homotopic,
and equal to one, otherwise. In the case of a multicomponent curve, the
invariant δ is defined as the mod 2 sum of the values of δ on the components.

To prove the invariance of δ, we preliminarily prove the general
Lemma 1, where we improve the framed manifold (Mk+1, U) realizing the
homology. The improved manifold (Mk+1, U) enjoys the property that its
section by the plane En+k×t is a framed manifold (Mk

t , Ut) for all values of
the parameter t, except for a finite number of critical ones. Since for non-
critical values of the parameter t, the framed manifold (Mk

t , Ut) depends
continuously on t, the invariance of the residue class δ should be proved only
when passing of t passes through a critical value. When it passes through
a critical value, the manifold (Mk

t , Ut) is reconstructed rather easily, thus,
it is possible to prove the invariance of δ.

For a one-dimensional framed submanifold of the 3-space we define the
invariants γ and δ; it turns out that δ is the residue class obtained by
taking the integer γ modulo 2. Since every framed one-manifold is ob-
tained by means of suspensions from a one-submanifold of the three-space
(see Theorem 11), then for the classification of mappings Σn+1 → Sn for
n > 3 one may use the classification of mappings from the 3-sphere to the
two-sphere. Namely, in this vein we prove that if γ(M1, U) is even then
E(M1, U) ∼ 0. Thus, we show that there exist no more than two mapping
classes for Σn+1 → Sn, n > 3.

Improving the framed manifold that performs the homology

Lemma 1. Let (Mk
0 , U0) and (Mk

1 , U1) be two homologous framed sub-
manifolds of the Euclidean space En+k, in such a way that there exists a
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framed submanifold (Mk+1, U) of the strip En+k×I, realizing the homology
(Mk

0 , U0) ∼ (Mk
1 , U1). A point (x0, t0) of the manifold Mk+1 is called crit-

ical (then we call the corresponding value t0 of the parameter t critical) if
the tangent space T k+1

0 to the manifold Mk+1 at the point (x0, t0) lies in the
hyperplane En+k×t0. It turns out that the framed manifold (Mk+1, U) real-
izing homology between framed manifolds can be chosen in such a way that:

a) there exist only finitely many critical points of the manifold Mk+1 with
different critical values of the parameter t (for distinct points)

b) for each critical point (x0, t0) of Mk+1 one may choose an orthonor-
mal basis e1, . . . , en+k such that in the corresponding coordinates
x1, . . . , xn+k with origin at x0 the manifold Mk+1 in a neighbourhood
of x0 is given by the equations

t = t0 +

k+1∑

i=1

σi(xi)2, σi = ±1; xk+2 = . . . = xn+k = 0, (1)

and the framing U = {u1(x, t), . . . , un(x, t)} in a neighbourhood of the
point (x0, t0) is given by

u1(x, t) = σ

(
e−

k∑
i=1

2σixiei

)
, σ = ±1;

u2(x, t) = ek+2, . . . , un(x, t) = en+k,

(2)

where e is the unit vector of the strip En+k×I directed along the t-axis.

Proof. Let (Nk+1
0 , V0) be some framed manifold realizing the homol-

ogy (Mk
0 , U0)∼(Mk

1 , U1). To each point y=(x, t) of the manifold Nk+1
0 we

associate the number f(y)=f(x, t)=t. By virtue of Theorem 5 there exists
such a real-valued function q(y) defined on the manifold Nk+1, coinciding
with f(y) near the boundary of Nk+1

0 , and being first-order close (with
respect to ε) to the function f , with all critical points non-degenerate and
all critical values distinct. Now, we associate with each point y = (x, t) of
the manifold Nk+1

0 the point ϕs(y) = (x, t + s(g(y) − f(y))), where s is a
fixed number, 0 6 s 6 1. For ε small enough, the mapping ϕs is regular and
homeomorphic (see Theorem 3). Thus, ϕs is a deformation of the smooth
submanifold Nk+1

0 to the submanifold Nk+1
1 = ϕ1(N

k+1
0 ).

It turns out that the critical points of the function g(y) coincide with
the critical points of the manifold Nk+1

1 . Thus, the condition «a» holds for
the manifold Mk+1 = Nk+1

1 .
Now, let us make a further improvement of the manifold Nk+1

1 in order
to make the condition «b» hold.
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Let y0 = (x0, t0) be an arbitrary critical point of the manifold Nk+1
1

and let T k+1
0 be the tangent space to the manifold Nk+1

1 at the point y0.
The plane T k+1

0 lies in En+k × t0; thus T k+1
0 = T k+1 × t0; T k+1 ⊂ En+k.

In the space En+k, let us choose a basis e1, . . . , en+k in such a way that
the vectors e1, . . . , ek+1 lie in T k+1. In a neighbourhood of (x0, t0), the
manifold Nk+1

1 is described in these coordinates as

t = t0 + ϕ(x1, . . . , xk+1) + ψ(x1, . . . , xk+1), (3)

xk+j = ψj(x1, . . . , xk+1), j = 2, . . . , n, (4)

where ϕ is a non-degenerate quadatic form in the variables x1, . . . , xk+1;
here ψ is third-order small with respect to ξ =

√
(x1)2 + . . .+ (xk+1)2, and

ψj is second-order small with respect to ξ. Choosing the axes in the plane
T k+1 in a proper way, we can transform ϕ to the form

ϕ =

k+1∑

i=1

λi(xi)2, (5)

where λi are non-zero real numbers. Let us improve the manifold Nk+1
1 in

a neighbourhood of the point (x0, t0). Let χ(η) be a smooth real-valued
monotonic function in the variable η > 0, satisfying the conditions

χ(η) = 0 for 0 6 η 6
1
2
; χ(η) = 1 for η > 1.

Set

χ(ξ, s) = sχ

(
ξ
α

)
+ (1− s),

where α is a small positive number. Define the manifold Nk+1
1+s by

t = t0 +
k+1∑
i=1

λi(xi)2 + χ(ξ, s)ψ(x1, . . . , xk+1),

xk+j = χ(ξ, s)ψj(x1, . . . , xk+1), j = 2, . . . , n,

for ξ 6 α, |t− t0| 6 α; we shall assume that Nk+1
1+s = Nk+1

1 in the remaining

points. It is evident that the submanifold Nk+1
1+s realizes a smooth deforma-

tion of the submanifold Nk+1
1 to the submanifold Nk+1

2 , so that the latter
one for |t− t0| 6 α is defined by

t = t0 +

k+1∑

i=1

λi(xi)2 + χ

(
ξ
α

)
ψ(x1, . . . , xk+1), (6)
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xk+j = χ

(
ξ
α

)
ψj(x1, . . . , xk+1), j = 2, . . . , n. (7)

It is evident that in a small neighbourhood of the point (x0, t0), more
precisely, for ξ < α

2
, the manifold Nk+1

2 is given by the equations

t = t0 +

k+1∑

i=1

λi(xi)2; xk+j = 0, j = 2, . . . , n. (8)

Let us show that the manifold Nk+1
2 has no critical points distinct from

those of the manifold Nk+1
1 . For that, it is sufficient to study those points

of Nk+1
2 , defined by (6), (7) and satisfying ξ 6 α, and to show that among

them the only critical point is ξ = 0.
We have

dt

dxi
= 2λi(xi + ϑi),

where

2λiϑi =

χ′

(
ξ
α

)

α
xi

ξ
ψ(x1, . . . , xk+1) + χ

(
ξ
α

)
∂ψ(x1, . . . , xk+1)

∂xi
.

Thus,

|ϑi| 6 c1
α ξ

3 + c2ξ
2.

It is clear that for α small enough, we have

|ϑi| 6 1
k + 1

ξ, ξ 6 α.

Now, if for ξ 6 α we have dt

dxi
= 0, i = 1, . . . , k + 1, then

xi = −ϑi. (9)

Thus, by summing the squares of the equalities (9), we get ξ2 =
∑
ϑ2

i <
k + 1

(k + 1)2
ξ2, so that ξ2 6

1
k + 1

ξ2, which is possible only for ξ = 0.

Let us now perform further corrections of Nk+1
2 in such a way that its

equations in the neighbourhood of the critical point (x0, t0) look like (1).

Let us write the numbers λi as λi = σi

a2
i

, where ai is a positive number and

σi = ±1. Let α′ be such a small positive number that for |xi| 6 α′, |t−t0| 6
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α′ the manifold Nk+1
2 is defined by (8). Let us now define the smooth

function κa(η) > 0 of η, |η| � α′ depending on the positive parameter a

and satisfying κ′
a(η) > 0; κa(η) = aη for |η| < β; κa(η) = η for |η| > α′

2
.

Here β is a small positive number such that the function κa(η), satisfying
the conditions above, exists. Now, define the manifold Nk+1

2+s for |xi| � α
as

t = t0 +
k+1∑
i=1

λi · [(1 − s)xi + sκai(xi)]2;

xk+j = 0, j = 2, . . . , n,

(10)

elsewhere this manifold coincides with Nk+1
2 . It can be easily checked that

Nk+1
2+s realizes a smooth deformation of Nk+1

2 to Nk+1
3 and that the critical

points of Nk+1
2 coincide with those of Nk+1

3 . Here the equations of the
manifold Nk+1

3 near the point (x0, t0) look like (1).
Performing such a surgery near each critical point of Nk+1

1 , we construct
the manifoldMk+1, and, since it is obtained fromNk+1

0 as a result of several
smooth deformations then there exists a framing V of Mk+1 such that the
framed manifold (Mk+1, V ) realizes the homology (Mk

0 , U0) ∼ (Mk
1 , U1).

Taking an appropriate value of σ = ±1 in (2), we can make the framings
U and V define the same orientation of Mk+1; thus near the critical point
(x0, t0), one can deform the framing V in order to get the framing U (see § 3,
Chapter 3, «D»). Performing such an improvement of the framing near each
critical point of Mk+1, we get the desired framing U .

Thus, Lemma 1 is proved.

Invariant δ of mappings Σn+1 → Sn

Theorem 20. Let (M1, U) be a one-dimensional framed submanifold of
the oriented Euclidean space En+1, n � 2, U(x) = {u1(x), . . . , un(x)}. At
each point x ∈ M1, let us draw the unit vector un+1(x) tangent to the curve
M1 and directed in such a way that the vectors u1(x), . . . , un(x), un+1(x)
determine the positive orientation of En+1. Furthermore, let e1, . . . , en+1 be
some orthonormal basis of the space En+1 defining its positive orientation.
Then

ui(x) =
n+1∑
j=1

hij(x)ej , i = 1, . . . , n+ 1, (11)

where h(x) = ‖hij(x)‖ is an orthogonal matrix with positive determinant
depending continuously on x ∈ M1. Thus, h is a continuous mapping of
the curve M1 to the manifold Hn+1 of all rotations of the Euclidean space
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En+1. Set
δ(M1, U) ≡ β(h) + r(M1) (mod 2),

where r(M1) is the number of components of M1, and the residue class
β(h) is defined as in Statement «D» § 1. It turns out that the residue class
δ(M1, U) is a homology class invariant of the framed manifold (M1, U),
so that if the mapping f from Σn+1 to Sn is associated with the framed
manifold (M1, U), then, by setting

δ(f) = δ(M1, U),

we get an invariant δ(f) of the homotopy class of f . The residue class
δ(M1, U) does not depend on the orientation of En+1 and on the arbitrari-
ness in the choice of the basis e1, . . . , en+1.

Proof. First, let us prove the invariance of δ(M1, U) under the change
of e1, . . . , en+1. Let e′1, . . . , e

′
n+1 be some orthonormal basis defining the

positive orientation of En+1 obtained from the initial one; then

ej =
n+1∑

k=1

ajke
′
k, j = 1, . . . , n+ 1,

where a = ‖ajk‖ is an orthogonal matrix with positive determinant. In
the basis e′1, . . . , e

′
n+1, the matrix corresponding to the manifold (M1, U) is

not h(x), but h′(x) = h(x) · a. Since the manifold Hn+1 is connected then
there exists a matrix at ∈ Hn+1 depending continuously on the parameter
t, 0 6 t 6 1 such that a1 = a, and a0 is the identity matrix. The mapping
ht = hat performs a continuous deformation of h to the mapping h′, so
that these mappings are homotopic, thus δ(M1, U) does not depend on the
choice of e1, . . . , en+1.

Let us now prove the independence of δ(M1, U) on the orientation of
En+1. To change the orientation of En+1, let us replace the vector un+1(x)
with the vector −un+1(x); in the basis e1, . . . , en+1 we can perform the
orientation change by replacing the vector en+1 with the vector −en+1.
Thus, instead of h(x) we get the matrix h′(x), which is obtained from h(x)
by multiplying both the last row and the last column by −1. Associate
with each matrix l ∈ Hn+1 the matrix l′ obtained from l by multiplying the
last row and the last column of it by −1. If we take the plane E2 to be the
plane with basis e1, e2, then we see that the mapping l→ l′ takes the curve,
H2 from Theorem 17, which is not zero-homotopic in Hn+1, identically to
itself. Thus, the orientation change of the space En+1 does not change the
residue class δ(M1, U).

Finally, let us prove the main property of δ(M1, U), i.e. its invariance
under the choice of the framed manifold (M1, U) from the given homology
class.
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Let (M1
0 , U0) and (M1

1 , U1) be two framed submanifolds of the space
En+1 and let (M2, U) be a framed submanifold of the strip En+1 × I real-
ising the homology (M1

0 , U0) ∼ (M1
1 , U1) and chosen in such a way that the

conditions «a» and «b» of Lemma 1 hold. The intersection M2∩(En+1×t)
lies in En+1 × t; thus, it looks like M1

t × t, where M1
t ⊂ En+1. It is

easy to see that if the point (x, t) is not a critical point of the surface
M2 (see Lemma 1) then the set M1

t represents a smooth curve in the
neighbourhood of the point x; thus when t is not a critical value of the
parameter, M1

t is a smooth submanifold of the space En+1. Let us con-
struct the framing Vt of the manifold M1

t . Let (x, t) be a non-critical point
of M2; let V (x, t) × t be the orthogonal projection of the vector system
U(x, t) to the hyperplane En+1 × t and let Vt(x) be the system obtained
from V (x, t) by using the orthogonalization process (see § 3, Chapter 2,
«G»). Since all vectors of the system U(x, t) are orthogonal to M2 at
the point (x, t), all vectors of the system V (x, t) are orthogonal to M1

t at
x. Since the point (x, t) is not critical, we see that the vectors of the
system V (x, t) are linearly independent. Thus, the system Vt(x) gives
a framing of the manifold M1

t for any non-critical value of t. To the
framed manifold (M1

t , Vt), there corresponds a mapping ht of the curve
M1

t to Hn+1. From the continuity argument it follows that when the pa-
rameter t changes continuously without passing through critical values, the
residue class δ(M1

t , Vt) remain unchanged. Let us prove that it remains un-
changed while passing through a critical value t0 of the parameter t. From
that, by virtue of the relation V0 = U0, V1 = U1, we shall get the invariance
of δ(M1, U).

Let (x0, t0) be the unique critical point of the manifold M2, where the
parameter t has critical value t = t0. Near the point (x0, t0), the manifold
M2 is defined by the equations

t = t0 + σ1(x1)2 + σ2(x2)2, σ1 = ±1, σ2 = ±1,

x3 = . . . = xn+1 = 0

[see (1)]. From this we have that for t close to t0, the equations of the
manifold M1

t near x0 look like

σ1(x1)2 + σ2(x2)2 = t− t0, x3 = . . . = xn+1 = 0. (12)

Furthermore, it follows from (2) that the system Vt(x) for |t − t0| small
enough and for x close to x0 is defined by the formulae

(vt)1(x) = σ

(
σ1 x1

ξ
e1 + σ2 x2

ξ
e2

)
;

(vt)j(x) = ej+1, j = 2, . . . , n,

(13)
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where ξ =
√

(x1)2 + . . . + (x2)2. To find δ(M1
t , Vt) we take the plane E2

(see Theorem 17) to be the plane with the basis e1, e2. Now, let us consider
the following cases: 1) σ1 = σ2 and 2) σ1 = −σ2.

In the first case, we may assume σ1 = σ2 = −1. According
to this assumption, the manifold M1

t for t < t0 contains a compo-
nent defined by (12) and representing the usual metric circle of small
radius. Denote this component by S1. It can be readily seen that
the mapping ht takes the circle S1 to the circle H2 with degree one.
For t > t0 the component defined by the equations (12) becomes
imaginary, i.e. it disappears, since all other components of the curve
M1

t together with their framings are changed continuously. Thus, in
the first case as the parameter t passes through the value t0, the
residue class β(ht) is changed by one as well as the number of com-
ponents of the manifold M1

t ; thus, the residue class δ(M1
t , Vt) does not

change.
In the second case the set M1

t0 near the point x0 is given by (x1)2 −
(x2)2 = 0, i.e. it is a crossKt0 , which is a union of two intervals intersecting
at a point. From this we see that the component Lt0 of the set M1

t0 ,
containing the cross Kt0 , is homeomorphic to the lemniscate. Since the
surface M2 is orientable, the neighbourhood of the lemniscate Lt0 in M2 is
homeomorphic to a 2-connected plane domain; thus, the part Lt of the set
M1

t located near the lemniscate Lt0 , consists of two components S1
1 and S1

2

for those values of t, lying on one side from t0, and of one component of Ŝ
for those values of t lying on the other side of t0. We shall assume that Lt

consists of two components for t < t0 and of one component for t > t0. If
we denote the residue classes β(ht) corresponding to the components S1

1 , S1
2

and Ŝ β(ht) by β1, β2, β̂ then for the invariance of δ(M1, U) it is sufficient

to show that β1 + β2 ≡ β̂ + 1(mod 2). Let us prove this fact. Denote the
part of Lt lying near the cross Kt0 by Kt. This part is described by the
equation (x1)2 − (x2)2 = σ1(t− t0), i.e. it represents the hyperbola. From
the formulae (13) we see that ht(Kt) ⊂ H2; here we see that for t < t0 the
set ht(Kt) covers two fourth parts of the circle H2, and for t > t0 it covers
the remaining part of Hn. By virtue of Theorem 17, the mapping ht of the
curve Lt can be replaced with a homotopic mapping h′t in such a way that
h′t(Lt) ⊂ H2 and the mappings h′t and ht coincide for Kt. From the above
it follows that the sum of the degrees of h′t for S1

1 and S1
2 when t < t0 differs

from the degree of h′t for Ŝ with t > t0, by one. Thus, β1 + β2 ≡ β̂ + 1
(mod 2), and the invariance of δ(M1, U) is proved completely.

Thus, Theorem 20 is proved.
Let us mention some properties of δ(M1, U), which are easy to check.
A) Let Π1

n be the group of homology classes of framed one-dimensional
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submanifolds of the Euclidean space En+1. Since δ(M1, U) is an invariant
of the homology class, we may set δ(π) = δ(M1, U), where (M1, U) is the
framed manifold of the class π ∈ Π1

n. It can be easily checked that δ is
a homomorphism from the group Π1

n to the group of modulo 2 residue
classes. Furthermore, it is clear that if Eπ is a suspension over the class π,
i.e. E(M1, U) ∈ Eπ (see § 4), then δ(Eπ) = δ(π).

The classification of mappings Σn+1
→ Sn

Theorem 21. For n > 3, the homomorphism δ of the group Π1
n

to the group of residue classes modulo 2 is an epimorphism, since the
group Π1

n is cyclic of the order two. Thus, there exist precisely two
homotopy classes of mappings from the sphere Σn+1 to the sphere Sn

(n > 3). Furthermore, the homomorphism δ from the group Π1
2 to

the group of residue classes modulo 2 is an epimorphism and, since
the group Π1

2 is mapped isomorphically to the group of integers under
γ (see Theorem 19), then the homomorphism δγ−1 from the group of
integers to the group of residue classes is just the reduction modulo
2.

Proof. Let (S1, U) be some orthonormally framed submanifold
of the Euclidean space Sn+1 homeomorphic to the circle, U(x) =
{u1(x), . . . , un(x)}. To calculate the invariant δ(S1, U), denote by un+1(x)
the corresponding unit vector tangent to S1 in x (with appropriate direc-
tion), and let e1, . . . , en+1 be a basis of En+1. We have

ui(x) =

n+1∑

j=1

hij(x)ej , i = 1, . . . , n+ 1, (14)

so that h(x) = ‖hij(x)‖ is an orthogonal matrix with positive determinant
and h is a continuous mapping from S1 to Hn+1. By definition of δ(M1, U)
(see Theorem 20), we have

δ(S1, U) ≡ β(h) + 1 (mod 2). (15)

Furthermore, let g(x) = ‖gij(x)‖ be the orthogonal matrix of order n with
positive determinant, so that g is a continuous mapping from S1 to Hn.
Set

vi(x) =

n∑

j=1

gij(x)uj(x); i = 1, . . . , n,

and denote by g[U ] the framing V (x) = {v1(x), . . . , vn+1(x)}. In order
to calculate δ(S1, g[U ]), set vn+1(x) = un+1(x) and denote by g′(x) the
matrix of order n+1 obtained from the matrix g(x) by adding the elements
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gi,n+1(x) and gn+1,i(x); here only one of these elements, gn+1,n+1(x), is
non-zero; it is equal to one. Clearly, for n � 2 we have

β(g′) = β(g) (16)

(see § 1 «D»). Later, we have

vi(x) =
n+1∑
j,k=1

g′ij(x) · hjk(x) · ek, i = 1, . . . , n+ 1.

Thus, by virtue of Statement «D» § 1, we have

δ(S1, g[U ]) = β(g′h) + 1 = β(g′) + β(h) + 1

= δ(S1, U) + β(g).
(17)

From Theorem 11 and Statement «B» § 2, it follows straightforwardly
that for any framed manifold (M1,W ) of the Euclidean space En+1, the
following homology occurs:

(M1,W ) ∼ En−2(S1, V(r)), (18)

where (S1, V(r)) is the framed submanifold of the 3-space E3 constructed
in Statement «A» § 2, and En−2 is the (n − 2)-fold suspension operation.
We have

V(r) = g(r)[V(0)], (19)
where

g(r)(x) =

∥∥∥∥∥∥
cos rx sin rx

− sin rx cos rx

∥∥∥∥∥∥
(see § 2, «A»). Thus,

β(g(r)) ≡ r (mod 2). (20)

It can be easily checked that δ(S1, V(0)) = 0. Thus, by virtue
of (17), (19) and (20), it follows that

δ(S1, V(r)) ≡ r (mod 2). (21)

Since γ(S1, V(r)) = r (see § 2 «A»), it follows from (21) that the homo-
morphism δγ−1 from the group of integers to the group of residue classes
modulo 2 is the modulo 2 reduction. This completes the proof of the second
part of Theorem 21.

Furthermore, we have

EV(r) = g′(r)[EV(0)],
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where

g′(r)(x) =

∥∥∥∥∥∥∥∥∥
cos rx sin rx 0

− sin rx cos rx 0

0 0 1

∥∥∥∥∥∥∥∥∥ ,
thus β(g′(r)) ≡ r (mod 2). Since γ(S1, V(0)) = 0, then we have (S1, V(0)) = 0
(see Theorem 19); thus E(S1, V(0)) ∼ 0. Consequently, E(S1, V(r)) ∼ 0, if
the mapping g′(r) from S1 to H3 is null-homotopic (see § 3, Chapter 2, «H»);
this is true for even r. So, E(S1, V(r))∼0 if δ(E(S1, V(r)))=0. From this and
from (18) we see that for n � 3 the equality δ(M1,W ) = 0 yields (M1,W ) ∼
0. Because δ(En−2(S1, V(1))) = 1, the framed manifold En−2(S1, V(1)) is
not null-homologous. Thus we have shown that the homomorphism δ from
the group Π1

n to the group of residue classes modulo 2 is an epimorphism.
Thus, Theorem 21 is completely proved.

§ 4. Classification of mappings from the (n + 2)-sphere
to the n-sphere

In this section we show that for n � 2 there exist precisely two homotopy
classes of mappings from Σn+2 to Sn. This proof is based on a homological
invariant δ(M2, U) of framed manifolds (M2, U) of the Euclidean space
En+2, which is a residue class modulo 2, and may take any of the two
values, 0 and 1. Thus, the existence of δ yields the existence of at least two
mapping classes Σn+2 → Sn. The invariant δ is described as follows. Let
U(x) = {u1(x), . . . , un(x)} be the orthonormal framing ofM2, and let C be
a smooth simple closed curve on M2. Denote the unit normal to C tangent
to M2 at x ∈ C by un+1(x) and set V (x) = {u1(x), . . . , un+1(x)}. For the
one-dimensional framed manifold (C, V ) the invariant δ(C, V ) (see § 3) is
well defined. In this case, we denote this invariant by δ(C). First assume
that M2 is a connected surface; denote its genus by p. Then there exists on
M2 a system A1, . . . , Ap, B1, . . . , Bq of closed simple closed curves such that
the curves Ai and Bi, i = 1, . . . , p, have a unique non-tangent intersection
point, and any two other curves do not intersect at all. It turns out that
the residue class

δ(M2, U) =
p∑

i=1

δ(Ai)δ(Bi)

does not depend on the arbitrariness; it is a homological invariant of the
framed manifold (M2, U). In the case of a multicomponent surface, the
invariant δ is defined as the sum of its values over the components.
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From Theorems 11 and 16 it follows that the number of mapping classes
for Σn+2 → Sn does not exceed the number of mappings from Σ4 to S2.
The number of mapping classes from the sphere Σ4 to the sphere S2, by
Lemma 2 § 2, does not exceed the number of mapping classes of Σ4 → S3;
the latter is equal to two by virtue of Theorem 21. Thus, we see that the
number of mapping classes of Σn+2 → Sn does not exceed two.

A) Let M2 be an orientable surface, i.e. smooth orientable manifold
of dimension two, and let M1 be a curve, i.e. a smooth one-dimensional
manifold. Furthermore, let f be a smooth regular mapping from the curve
M1 to the surface M2 such that no three distinct points of M1 are mapped
to the same point of the surface M2. We shall also assume that if two
distinct points a and b of the curve M1 are taken by f to one point c =
f(a) = f(b) of the surfaceM2 then the neighbourhoods of points a and b on
the curve M1 are mapped by f to curves having different tangent vectors
at the point c. Under the above conditions, the set C = f(M1) is called
a smooth curve on M2. If the manifold M1 is orientable, then the curve
C = f(M1) is also said to be orientable. The points of type c = f(a) = f(b)
where a 6= b, are called double points of the curve C. It is easy to see
that a curve on a surface can have only finitely many double points. If
C = f1(M

1
1 ) = f2(M

1
2 ), i.e. if the curve C is obtained from two different

maps f1 and f2 of two different curves M1
1 and M1

2 , and for f1 and f2
the conditions above hold, then there exists a smooth homeomorphism ϕ
of M1

1 to M1
2 such that f2ϕ = f1. Thus, components of C can be defined

as images of the components of M1. We shall deal with empty curves as
well. It is easy to see that if C = f(M1) is a curve on a surface, then if f ′

is sufficiently close to f (with respect to class 1), then the set C′ = f ′(M1)
is also a curve on the surface. We shall say that C′ is obtained from C by
a small shift.

B) A curve C on M2 is zero-homologous (more, precisely, mod 2 - zero
homologous, if there exists on M2 an open set G that C = Ḡ\G and such
that in any neighbourhood of any point x ∈ C there are points belonging
to M2, and not belonging to Ḡ; notation, C = △G,C ∼ 0. Obviously,
a small shift of a zero-homologous curve is a zero-homologous curve. Let
C1 and C2 be two such curves on M2 such that double points of each of
them do not belong to the other one and in any intersection point of the
two curves the tangent vectors to them are distinct. In this case we say
that C1 ∪ C2 is a curve and we shall also say that C1 and C2 admit a
summation; denote their sum C1 ∪ C2 by C1 + C2. It is easy to see that
if we have any two curves on M2, then, after a small shift of one of them,
we get two curves admitting summation. If two curves C1 and C2 on M2

admit a summation and each of them is zero-homologous then their sum is
also zero-homologous. Indeed, let C1 = △G1, C2 = △G2.
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Put G = (G1 ∪ G2)\(Ḡ1 ∩ Ḡ2). It is easy to see that C1 + C2 =
�G. We shall also write C1 + C2 ∼ 0 as C1 ∼ C2. Thus, the relation
C1 ∼ C2 makes sense only in the case when the curves C1 and C2 admit
a summation. If the curves C1 and C2 do not admit summation, then,
applying a small translation to one of them, say, to C1, we get two curves
C′

1 and C2 admitting summation. If, furthermore, C′
1 ∼ C2, then one says

that C1 ∼ C2. This is well defined since the definition is invariant upon
passing from C1 to the curve C′

1. The relation C1 ∼ C2 turns out to be
reflexive, symmetric and transitive; thus the set of all curves on the surface
M2 is divided into classes of homologoical curves. Denote the set of these
classes by �1(M2) = �1. In the set �1, we have the well-defined sum
operation. If z1, z2 are two elements from �1, and C1 ∈ z1 and C2 ∈ z2 so
that the curves C1 and C2 admit a summation then the class z containing
the curve C1 +C2, is, by definition, set to be the sum of the classes z1 and
z2, z = z1+z2. This rule does not depend on the arbitrariness of the choice
of C1 and C2 representing the classes z1 and z2. The group �1 is called
connection group of the surface M2. All elements of this group are of order
two. A finite system of curves C1, . . . , Cq onM2 is called the homology base
if for any curve C on the surface M2 the relation

C ∼
q∑

i=1

εiCi

holds, where εi ≡ 0 or 1(mod 2), and if the relation

C ∼ 0

yields that all residue classes εi are equal to zero.
C) Let C1 and C2 be two curves on the surface M2, admitting summa-

tion. The number of intersection points of these curves taken modulo two
is denoted by J(C1, C2) and called the intersection index. It is easy to see
that

J(C1 + C2, C3) = J(C1, C3) + J(C2, C3)

and that from C1 ∼ 0 it follows that J(C1, C2) = 0. From this we have
that if C1 ∼ D1, C2 ∼ D2 then J(C1, C2) = J(D1, D2). Thus, by set-
ting J(z1, z2) = J(C1, C2), where C1 ∈ z1, C2 ∈ z2, we get a definition
of the intersection index J(z1, z2) for two homology classes. It turns out
that on any surface M2 there exists a homology basis consisting of curves
A1, . . . , Ap, B1, . . . Bp, for which the equations

J(Ai, Aj) = J(Bi, Bj) = 0, J(Ai, Bj) = δij ,

i, j = 1, . . . , p
(1)
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hold. Any such basis is called canonical. From this, it follows immediately
that for any homology class z ∈ △1 the relation

J(z, z) = 0,

holds, and, furthermore, if z1 is a non-zero homology class then there exists
a homology class z2 such that

J(z1, z2) = 1.

Since M2 is connected, we can set the curves A1, . . . , Ap, B1, . . . Bp to
be those curves giving the canonical cut of the surface M2. In this case, p is
the genus of the surface. In the case of a disconnected surface the homology
basis is obtained as a union of the bases of connected components. In this
case, p is the sum of the genera of the connected components constituting
M2.

Theorem 22. Let (M2, U) be an orthonormally framed surface of the
oriented Euclidean space En+2 with basis e1, . . . , en+2, defining its orienta-
tion, U(x) = {u1(x), . . . , un(x)}, and let C = f(M1) be an oriented curve
on M2.

Let y ∈ M1. Denote by ûn+2(y) the unit vector tangent at f(y) to
the curve f(M1) and corresponding to the orientation of it, and denote
by ûn+1(y) the unit vector tangent to M2 at f(y), orthogonal to ûn+2(y)
and directed in such a way that the vectors u1(f(y)), . . . , un(f(y)), ûn+1(y),
ûn+2(y) give the positive orientation of the space En+2. For notational
convenience we set ûi(y) = ui(f(y)), i = 1, . . . , n. We have

ûi(y) =

n+2∑

j=1

hij(y) · ej , i = 1, . . . , n+ 2,

where h(y) = ‖hij(y)‖ is an orthogonal matrix with positive determinant,
so that h is a continuous mapping from M1 to the group Hn+2. Set

δ(M2, U, C) = δ(C) ≡ β(h) + r(C) + s(C), (2)

where β(h) is defined in Statement «D» § 1, and r(C) is the number of
components of the curve C, and s(C) is the number of double points of C. It
turns out that δ(C) is an invariant of the homology class z ∈ △1 containing
the curve C; thus we may set δ(M2, U, z) = δ(z) = δ(C). Furthermore,
it turns out that for any two arbitrary homology classes z1 and z2 of the
surface M2 we have

δ(z1 + z2) = δ(z1) + δ(z2) + J(z1, z2). (3)
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Proof. First of all, let us prove that β(h) does not depend on the
basis choice, e1, . . . , en+2, nor on the orientation of C = f(M1). If instead
of e1, . . . , en+2 we take another basis e′1, . . . , e

′
n+2 then we shall get

ej =
n+2∑

k=1

ljke
′
k, j = 1, . . . , n+ 2,

where l = ‖ljk‖ is an orthogonal matrix with positive determinant. Such a
substitution will lead to the matrix h′(y) = h(y)l instead of h(y). Since the
manifold Hn+2 is connected, the mappings h and h′ are homotopic; this
yields the independence of β(h) from the choice of e1, . . . , en+2. Now, if
we change the orientation of the one-component curve C = f(S1) to the
opposite one, then the vectors ûn+1(y) and ûn+2(y) are to be replaced by
the vectors −ûn+1(y) and −ûn+2(y). This leads to the replacement of h(y)
by the matrix h′y = l · h(y), where lij = 0 for i 6= j,

l11 = . . . = lnn = 1, ln+1,n+1 = ln+2,n+2 = −1.

Since the matrix l = ‖lij‖ belongs to the manifold Hn+2, then the mappings
h and h′ are homotopic; thus β(h) does not depend on the orientation of
the one-component curve C. Clearly, the same is true for any arbitrary
curve.

To prove that δ(C) is an invariant of the homology class z containing the
curve C, let us introduce the following surgery operation for an orientable
curve C near its double point a; as a result the curve C will be transformed
to the oriented curve Ca = fa(M1

a ). We shall denote the mapping from M1
a

to Hn+2, corresponding to the curve Ca, by ha. The surgery operation will
be defined in such a way that the curve Ca has one double point less than
the curve C; moreover, the conditions

Ca ∼ C, δ(Ca) = δ(C)

hold.
By virtue of Statements of «C» and «D» § 3, Chapter 3, one may assume

that near the point a the surface M2 coincides with the plane E2, the curve
C coincides with two intersecting lines and the vectors ui(x) coincide with
ei, t = 1, . . . , n. We take these lines to be the coordinate axes of the
coordinate system x1, x2 defined near the point a on M2. We choose the
direction of axes in such a way that as any coordinate increases, we move
along the curve in the positive direction. We shall assume that the curves
Ca and C coincide outside a neighbourhood of the point a and that near
the point a the curve Ca is given by the equation x1 ·x2 = −ε, where ε > 0
(see Fig. 4.1). Thus, the orientation of the curve C naturally generates the
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Figure 4.1.

orientation of Ca. It is easy to see that if both branches of the curve C
passing through a belong to the same component of it then, after performing
the surgery on this component, we get two different components of the
curve Ca. Conversely, if two branches of C passing through a belong to
different components of C, then, as a result of the surgery, instead of these
two components of C, we get one component of Ca. Thus, in both cases
r(C) + s(C) ≡ r(Ca) + s(Ca)(mod 2).

Let us show that β(h) = β(ha). Indeed, the mapping hf−1 takes the
neighbourhood of the point a on the curve C to two points on the circle H2

(see Theorem 12), and the mapping haf
−1
a takes the parts of the curve Ca

close to a to the circle H2 with mapping degree equal to zero. From this
it follows that δ(C) = δ(Ca). Now, it is evident that the curves C and Ca

are homologous.
As a result of finitely many surgeries as above, we transform C to a

curve O(C) without double points, for which the relations

O(C) ∼ C, δ(O(C)) = δ(C) (4)

hold.
Let us show now that if the curve C without double points is null-

homologous on M2 then
δ(C) = 0. (5)

Let C = �G; then Ḡ is a smooth surface bounded by the curve C.
It is easy to define on Ḡ a smooth function χ, which is positive and less
than 1 in G and equal to zero on C, so that the full differential of this
function is non-zero on C. Inside the strip En+2 × I, where I is the unit
interval 0 � t � 1, consider the surface P 2, defined by the equation

t = +
√
χ(x), x ∈ Ḡ.
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It is easy to see that the boundary of this surface is the curve C × 0;
moreover, the surface is orthogonal to the boundary En+2 × 0 of the strip
En+2 × I. Since the surface P 2 is homeomorphic to the orientable surface
Ḡ, we assume the former to be orientable. Since vectors of the system U(x)
are orthogonal to the surface Ḡ at x, the vectors of the system U(x) × t
are orthogonal to P 2 at x × t. Let us complete the vectors of the system
U(x) × t by the unit vector un+1(x, t)× t in such a way that the obtained
system Ũ(x, t)× t contains an orthonormal framing of the oriented surface
P 2 in the oriented strip En+2 × I. The vector un+1(x, 0) obtained in this
way, is orthogonal to the curve C and tangent to M2 at the point x. Thus,
by completing the system U(x) by un+1(x, 0), we get a framing V (x) of
the curve C such that the framed curve (C, V ) is zero-homologous. Fur-
thermore, by completing the system V (x) by the vector un+2(x) tangent to
C at x, we get precisely the system Û(x) needed to calculate δ(C). Com-
paring the construction of the residue class of δ(C), given here, with the
construction of δ(C, V ) (see Theorem 20), we see that

δ(C) = δ(C, V ).

Since the framed manifold (C, V ) is null-homologous, then δ(C) =
δ(C, V ) = 0 (see Theorem 20). Thus, (5) is proved.

Let C1 and C2 be two arbitrary curves on M2 admitting summation.
We have

s(C1 + C2) ≡ s(C1) + s(C2) + J(C1, C2) (mod 2),

r(C1 + C2) = r(C1) + r(C2),

β(C1 + C2) = β(C1) + β(C2).

From this we have that

δ(C1 + C2) = δ(C1) + δ(C2) + J(C1, C2). (6)

If, in particular, C1 ∼ C2 then J(C1, C2) = 0 and from the relations (6), (5)
we get

δ(C1) + δ(C2) = δ(C1 + C2) = δ(O(C1 + C2)) = 0.

Thus, we have proved that δ(C) is a homology invariant. From this and
from the relation (6) applied to arbitrary curves C1 and C2 admitting sum-
mation, we obtain (3).

Thus, Theorem 22 is proved.

Theorem 23. Let (M2, U) be an orthonormally framed submanifold of
the Euclidean space En+2 and let

A1, . . . , Ap, B1, . . . , Bp (7)
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be any arbitrary canonical basis of the surface M2. It turns out that the
residue class

δ = δ(M2, U) =
p∑

i=1

δ(Ai)δ(Bi) (8)

does not depend on the arbitrary choice of the canonical basis (7) and it is
an invariant of the framed manifold (M2, U).

Proof. Let us consider some canonical basis

A′
1, . . . , A

′
p, B

′
1, . . . , B

′
p (9)

of the surface M2 and show that
p∑

i=1

δ(Ai)δ(Bi) =
p∑

i=1

δ(A′
i)δ(B

′
i). (10)

The direct proof of the equality (10) in the case of arbitrary canonical
bases (7) and (9) has several technical difficulties; thus we shall consider
three particular types of transformations of the canonical basis; for any of
these types the proof of formula (10) is quite easy. Finally, we shall show
that any canonical basis transformation from (7) to (9) can be obtained
as a sequence of the partial cases described above. This will complete the
invariance of the residue class δ.

Transformation 1. Let j be a positive integer which does not exceed p.
Set

A′
j = Bj , B′

j = Aj , A′
i = Ai, B′

i = Bi, i 
= j. (11)

Clearly, the basis A′
1, . . . , A

′
p, B

′
1, . . . , B

′
p defined by these relations, is

canonical and the relation (10) holds in this case.
Transformation 2. Set

A′
i =

p∑
k=1

aikAk, i = 1, . . . , p, (12)

B′
i =

p∑
k=1

bjkBk, j = 1, . . . , p, (13)

where aik and bjk are residue classes modulo two. In order for the ba-
sis (12)–(13) to be canonical, it is necessary that the matrix a = ‖aij‖ be
non-degenerate, i.e. it should have determinant +1, and that the matrix
b = ‖bij‖ be connected with a by∑

k

aikbjk = δij , (14)
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i.e. if we denote the unit matrix by e and the matrix obtained from b by
transposing, by b′, then ab′ = e, or, equivalently a−1 = b′; thus b′a = e.
The latter relation gives

p∑

i=1

aijbik = δjk. (15)

Thus,

∑

i

δ(A′
i)δ(B

′
i) =

∑

i

δ




p∑

j=1

aijAj


 δ

(
p∑

k=1

bikBk

)

=

p∑

i,j,k=1

aijbikδ(Aj)δ(Bk) =

p∑

j,k=1

δjkδ(Aj)δ(Bk)

=

p∑

j=1

δ(Aj)δ(Bj)

[see (3)], and the relation (10) in the case of transformation 2 holds. Note
that transformation 2 is completely defined by the matrix a, giving the
transformation (12). The transformation (13), by virtue of formula (14),
is uniquely defined by (12). We shall say that the transformations (12)
and (13) are coordinated if the relation holds (14).

Transformation 3. Set

A′
i = Ai +

∑

k

cikBk, i = 1, . . . , p, (16)

B′
i = Bi, i = 1, . . . , p. (17)

In order to get J(A′
i, A

′
j) = 0, i, j = 1, . . . , p, it is necessary and sufficient

that
cij = cji. (18)

Indeed

J(A′
i, A

′
j) = J

(
Ai,
∑

k

cjkBk

)
+ J

(
∑

k

cikBk, Aj

)

=
∑

k

cjkδik +
∑

k

cikδjk = cji + cij .
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If the relation (18) holds then the basis (16)–(17) is canonical. Let us show
that under the transformation 3, the relation (10) holds. We have

∑

i

δ(A′
i)δ(B

′
i) =

∑

i

δ

(
Ai,
∑

k

cikBk

)
δ(Bi)

=
∑

i

(
δ(Ai) +

∑

k

cikδ(Bk) +
∑

k

cikJ(Ai, Bk)

)
δ(Bi)

=
∑

i

δ(Ai)δ(Bi) +
∑

i,k

cikδ(Bk)δ(Bi) +
∑

i,k

cikδikδ(Bi).

Then,
∑

i,k

cikδ(Bi)δ(Bk) =
∑

i

ciiδ(Bi)δ(Bi) =
∑

i

ciiδ(Bi)

(since we deal with residue classes modulo 2) and

∑

i,k

cikδikδ(Bi) =
∑

i

ciiδ(Bi).

Thus, relation (10) holds.
Now, let us consider an arbitrary canonical basis transformation from

(7) to the basis (9). We have

A′
i =

∑

j

rijAj +
∑

k

sikBk. (19)

The rank of the rectangular matrix of p rows and 2p columns, defining this
transformation, is equal to p, i.e. one of its minors of order p is non-zero.
Applying to the basis (7) the transformation 1 several times, we may arrive
at such a new basis (which we shall denote again by A1, . . . , Ap, B1, . . . , Bp)
that in the formula (19) the minor |rij | will be non-zero. Applying to
the obtained basis A1, . . . , Ap, B1, . . . , Bp the transformation 2 with matrix
‖aij‖ = ‖rij‖, we shall make the transformation (19) look like (16). Now,
let us introduce a new canonical basis A′′

1 , . . . , A
′′
p , B

′′
1 , . . . , B

′′
p , by applying

the transformation 2:

A′′
i = Ai +

p∑

k=1

cikBk, B′′
i = Bi.

From (9), we get this basis by the following formulae



2nd May 2007 16:22 WSPC/Book Trim Size for 9in x 6in main

§ 4. Classification of mappings Σ(n+2) → Sn 125

A′
i = A′′

i ,

B′
i =

p∑
j=1

r′ijA
′′
j +

p∑
k=1

s′ikB
′′
k .

(20)

The relation J(A′
i, B

′
j) = δij gives

∑
k

s′jkδik = δij , or s′ij = δij . Thus, the

transformation (20) will look like

A′
i = A′′

i ,

B′
i = B′′

i +
p∑

j=1

r′ijA
′′
j ,

i.e. it is a transformation of the third type where the roles of the curves
Ai and Bi are interchanged. Thus, we can get from the basis (7) to the
basis (9) by a sequence of transformations 1–3.

Thus, Theorem 23 is proved.

Theorem 24. If two framed submanifolds (M2
0 , U0) and (M2

1 , U1) of
the Euclidean space En+2 are homologous, then we have

δ(M2
0 , U0) = δ(M2

1 , U1) (21)

[see (8)]. Thus, to each element π of the group Π2
n there corresponds a

unique residue class δ(π) defined by the relation δ(π) = δ(M2, U), where
(M2, U) is a framed manifold of class π. It turns out that for n � 2, δ is an
isomorphism of the group Π2

n to the group of residue classes modulo two.
From the above it follows that there exist precisely two classes of mappings
Σn+2 → Sn, n � 2.

Proof. First, let us prove the relation (21). Let (M3, U) be the framed
submanifold of the strip En+2 × I, realising the homology (M2

0 , U0) ∼
(M2

1 , U1), which is constructed in Lemma 1 § 3. Set M2
t ×t = M3 ∩(E2 ×t).

If the point (x, t) ∈ M3 is not a critical point of the manifold M3 then the
neighbourhood of the point x in the set M2

t is a smooth surface, so that
for a non-critical value of the parameter t the set M2

t is a surface. In this
case, if (x0, t0) is a critical point of the manifold M3 then the set M2

t for a
small value of |t − t0| is defined by

σ1(x1)2 + σ2(x2)2 + σ2(x3)2 = t − t0,

x4 = . . . = xn+2 = 0
(22)

near x0 [see § 3, formula (3)]. If (x, t) ∈ M3 is not a critical point of M3

then the orthogonal projection of U(x, t) to the plane En+2 × t is a linearly
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independent system of vectors. Denote the system obtained from it by
the orthogonalization process, by Vt(x) × t. For a non-critical value of the
parameter t, the system Vt gives an orthonormal framing of the manifold
M2

t . As t continuously increases without passing through critical values,
the framed manifold (M2

t , Vt) is continuously deformed; thus, it follows
from the continuity argument that δ(M2

t , Vt) does not change. Thus, to
prove Statement (21), it suffices to show that δ(M2

t , Vt) does not change
as t passes through the critical point t = t0. Let us do this. We have two
different cases.

Case 1. Assume σ1 = σ2 = σ3. For definiteness, we shall assume
that σ1 = σ2 = σ3 = +1. Under this assumption, after passing through a
critical value, the surface M2

t acquires a new component, which is a small
sphere, and the remaining part of M2

t is transformed continuously together
with its framing. Since the attachment of a sphere as a separate component
does not increase the genus of the surface, then the canonical basis may be
thought to remain the same thus δ(M2

t , Vt) does not change.
Case 2. Assume that among σ1, σ2, σ3 there are distinct numbers. For

definiteness, we shall think that σ1 = σ2 = +1, σ3 = −1. Under this
assumption, the surface M2

t for t < t0 near the point x0 looks like a two-
sheeted hyperboloid and for t > t0 it looks like a one-sheeted hyperboloid.
Thus surgery is identical to a tube attachment to the surface M2

t , t < t0.
If the tube connects two different components of the surface M2

t , t < t0,
then the basis of the surface M2

t does not change while passing through
t0; thus the residue δ(M2

t , Vt) remains invariant. If the tube is attached
to one component, then the basis of the surface should be completed by
two curves. Let us be more detailed. Let A1, . . . , Ap, B1, . . . , Bp be the
canonical basis of the surface M2

t , t < t0. We may assume that the curve
composing this basis avoids from the point x0; thus, as the parameter t
passes through the critical value t0, the basis changes continuously, so that
the residue classes δ(Ai) and δ(Bi), i = 1, . . . , p, remain unchanged. We
define the curve Ap+1 on M2

t to be the circle cut from the part of M2
t close

to x0, by the hyperplane x3 = ε, where ε is a small positive number. For
t < t0, it is evidently null-homologous on M2

t , and, since the framing of
it changes continuously as t passes through t0; then δ(Ap+1) = 0. Now
let B′

p+1 be an arbitrary curve on M2
t , t > t0 having with Ap+1 intersection

index equal to one. Clearly, such a curve exists. Now, set

Bp+1 = B′
p+1 +

p∑

j=1

J(Bi, B
′
p+1)Ai +

p∑

i=1

J(Ai, B
′
p+1)Bi.

Obviously, the curves A1, . . . , Ap+1, B1, . . . , Bp+1 form a canonical basis of
the surface M2

t , t > t0, and since δ(Ap+1) = 0 then δ(Ap+1)δ(Bp+1)=0.
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Thus, the residue class δ(M2
t , Vt) remains unchanged as t passes through

the critical value t0; thus, δ(M2
0 , V0) = δ(M2

1 , V1). Since U0 = V0, U1 = V1,
the relation (21) holds.

From the above argument it follows that δ is a mapping from the group
Π2

n to the group of residue classes modulo two. It follows from the definition
of the sum operation in Π2

n that δ is a homomorphic mapping.
Now let us prove that δ is an epimorphic mapping to the whole group

of residue classes modulo two. For that, it suffices to show that there exists
a framed manifold (M2, U) for which δ(M2, U) = 1. Since, evidently,

δ(E(M2, U)) = δ(M2, U), n > 2,

where E is the suspension operation, it suffices to consider the case n = 2.
Let E4 be the Euclidean space having orthonormal basis e1, e2, e3, e4

and coordinates x1, x2, x3, x4; let E3 be the linear subspace of E4 defined
by the equation x4 = 0 and let M2 be the usual metric torus, lying in E3

and having the rotation axis e3. Let us introduce on M2 the usual cyclic
coordinates ϕ, ψ and define the surface M2 by the equations

x1 = (2 + cosϕ) cosψ,

x2 = (2 + cosϕ) sinψ,

x3 = sinϕ.

(23)

Denote by A1 the curve on M2 defined by ψ = 0 and denote by B1 the
curve defined by ϕ = 0. It is evident that the system A1, B1 forms a
canonical basis of the surface M2. Denote by v1(x) the unit vector in E3

which is normal to M2 at x = (ϕ, ψ) and directed outwards, and denote by
v2(x) the vector emanating from x and parallel to e4. Define the framing
U(x) = {u1(x), u2(x)} by the relations

u1(x) = v1 cos(ϕ− ψ)− v2(x) sin(ϕ− ψ),

u2(x) = v1 sin(ϕ− ψ) + v2(x) cos(ϕ− ψ)
(24)

and let us show that
δ(M2, U) = 1. (25)

Let C be any simple closed curve on M2. Denote the unit tangent vector
to C at the point x = (ϕ, ψ) ∈ C, by v4(x), and denote the unit vector
tangent to M2 at x and orthogonal to v4(x), by v3(x). Let us add to (24)
the relations

u3(x) = v3(x), u4(x) = v4(x). (26)
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The relations (24) and (26), taken together, transform the system V (x) to
the system U(x). Denote the corresponding matrix by f(x), x ∈ C. It is
easy to see that for C = A1 and for C = B1 we have

β(f) = 1. (27)

Furthermore, for C = A1 we have

x = (ϕ, 0), v1(x) = e1 cosϕ+ e3 sinϕ, v2(x) = e4,

v3(x) = e2, v4(x) = −e1 sinϕ+ e3 cosϕ,

thus, the transfer from e1, e2, e3, e4 to the system V (x) is defined by the
orthogonal matrix g(x), so that

β(g) = 1. (28)

For C = B1, we have analogously

x = (0, ψ), v1(x) = e1 cosψ + e2 sinψ, v2(x) = e4,

v3(x) = −e3, v4(x) = −e1 sinψ + e2 cosψ,

so that the transfer from e1, e2, e3, e4 to V (x) is defined by g(x), herewith

β(g) = 1. (29)

In both cases for C = A1 and for C = B1, the transfer from e1, e2, e3, e4 to
U(x) is defined by the matrix h(x) = g(x)f(x), where

δ(h) = δ(g) + δ(f) = 0

[see (27)–(29) and «D» § 1]. Thus, by virtue of (2) and (8), we have

δ(A1) = 1, δ(B1) = 1, δ(M2, U) = 1.

Thus, (25) is proved.
Finally, let us show that δ is an isomorphism. To do this, it suffices

to show that the group Π2
n contains no more than two elements, since it is

mapped to the whole group of residue classes modulo 2. From Theorems 11
and 16 it follows that for any framed manifold (M2, U) of the Euclidean
space En+2 we have

(M2, U) ∼ En−2(N2, V ),
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where (N2, V ) is a framed manifold of the four-space, and En−2 is the
(n − 2)-times suspension operation. Thus, it suffices to show that Π2

2 con-
tains no more than two elements, i.e. there exist no more than two mapping
classes Σ4 → S2. By virtue of Lemma 2 § 2, the number of mapping classes
from the sphere Σ4 to the sphere S2 does not exceed the number of mapping
classes from Σ4 to S3; the latter equals two by virtue of Theorem 21.

Thus, Theorem 24 is proved.
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Some “global” properties of

differentiable manifolds1

R.Thom

Introduction

The present work is devoted to the proof of results announced in the au-
thor’s note [28]. It is divided into four chapters. In Chapter I, we consider
some questions of approximation of differentiable manifolds. The theorems
proved there, which are analogous to the topological simplicial approxima-
tion theorem, allow one to avoid references to the triangulation theorem
for manifolds. Chapter II is devoted to the realisation problem of homol-
ogy classes of manifolds by means of cycles. The main results obtained in
this chapter are the following: a mod 2 homology class of any manifold is
realisable by means of a submanifold if the dimension of this class is less
than half the dimension of the manifold. For any integer homology class z
of an orientable manifold V there exists a non-zero integer number N such
that the class Nz is realisable by a submanifold. In Chapter III, the results
obtained in Chapter II are applied for the solution of the following Steenrod
problem: can any homology class of a finite polyhedron be represented as
an image of the fundamental class of some manifold? It is shown that for
mod 2 homologies the answer is affirmative. On the contrary, in any dimen-
sion > 7 there exist integral homology classes which are not representable as
images of fundamental classes of compact differentiable manifolds. Finally
Chapter IV is devoted to the conditions sufficient for a manifold to be a
boundary and to the conditions under which two manifolds are cobordant.

1Thom R., Quelques proprietés globales des variétés differentiables, Comm. Math.
Helv., 28 (1954), 17–86. Reprinted with permission from Birkhäuser. Translated by
V.O.Manturov with M.M.Postnikov’s comments (1958).
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Here we obtain quite complete results only for mod 2 cobordism classes,
when we do not pay attention to the orientability of the manifolds. On the
contrary, for the groups Ωk, which appear in the classification of orientable
manifolds, we have obtained only partial results. The difficulties which ap-
pear in this direction are of an algebraic nature, and they are connected
with the behaviour of Steenrod’s degrees in spectral sequences of bundles.
The results of Chapter IV are closely connected with the question of the
topological value of Pontrjagin’s characteristic numbers.

The methods used in this work are based almost always on the consid-
eration of some auxiliary polyhedra M(SO(k)) and M(O(k)). The study
of geometric properties of these polyhedra uses methods of H.Cartan and
J.-P.Serre. In particular, the Eilenberg-MacLane polyhedra play a key role.
I wish to thank them for communicating these results to me before the
publication. In particular, I would like to mention J.-.P.Serre’s help both
in editing the manuscript and for improving many proofs.

Chapter I

Properties of differentiable mappings

In the sequel, by V n we mean any paracompact1 differentiable n-
manifold of class C∞.

1. Definitions

Let f be a mapping of class Cm, m > 1, from V n to some manifold Mp.
By a critical point we mean a point x of V n where the rank of f is strictly
less than the dimension p of the manifold Mp. The set Σ of critical points
x or the critical set of the mapping f , is closed in V n. Any point y in the
image f(Σ) ⊂ Mp of this set is called a critical value of f . Any point y of
Mp not belonging to f(Σ) is a regular value2.

2. Pre-image of a regular value

The pre-image f−1(y) of a regular value y ∈ Mp might be empty. For
instance, if the dimension n of the manifold V n is strictly less than the

1Recall that a connected paracompact manifold can be defined as a manifold which
is a union of countably many compacta.

2Note that this definition of critical values differs from the usual one: if the dimension
n of the manifold V is strictly less than the dimension p of the manifold M then any
point of the image f(V ) is a critical value, even for mapping f having maximal rank in
any point of f−1(x). Conversely, any point not belonging to the image f(V ) is a regular
value.
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dimension p of the manifold Mp then the pre-image f−1(y) is empty for
any regular value y. Assuming that the pre-image f−1(y) is non-empty,
let us consider an arbitrary point x ∈ f−1(y). Let y1, y2, . . . , yp be some
local coordinates of the manifold Mp in some neighbourhood of the point
y. Since the mapping f has rank p at the point x, then in some reasonably
small neighbourhood Ux of the point x in the manifold V n, there exists
a local coordinate system of the type (y1, . . . , yp, xp+1, . . . , xn). In these
coordinates, the pre-image f−1(y) is defined in the neighbourhood of Ux

by the equations y1 = y2 = . . . = yp = 0. Consequently, the point x has a
neighbourhood in f−1(y), which is homeomorphic to the Euclidean space
Rn−p. Since this is true for any point x ∈ f−1(y), the pre-image f−1(y) is
a differentiable class Cm manifold V n. Below, we denote this manifold by
Wn−p.

Let Vx be a tangent space at the point x of V n, and let Wx be the sub-
space of Vx consisting of those vectors tangent to the submanifold Wn−p.
Furthermore, let My be the tangent space to Mp at y. The condition that f
has rank p in x means that the tangent space mapping f̄ defines an isomor-
phism mapping from the factor-space Vx/Wx to the space My. Admitting
some non-exact terminology, we call the factor-space Vx/Wx transverse to
the manifold Wn−p in x. If the ambient manifold V n is endowed with a
Riemannian metric then we have a well-defined space Hx, normal to Wn−p

at x. It is clear that the spaces Vx/Wx and Hx are isomorphic, and the iso-
morphism can be defined globally, i.e. for all points of the manifold Wn−p.
All normal (resp., transversal) vectors to the submanifold Wn−p form a
normal (resp., transversal) fibre. According to the arguments above, these
spaces are isomorphic.

Collecting the arguments above, we have: the pre-image f−1(y) =
Wn−p of any regular value y of the function f is a submanifold of the man-
ifold V n and the corresponding mapping f̄ induces a natural isomorphism
between the normal fibre for Wn−p and the Cartesian product Wn−p×My,
where My ≈ Rp is the tangent space to Mp at the point y.

Remark. The statement above is true even in the case when y is a limit

point of the set of critical values. Note that if f is proper1 (in particular, if the
manifold V n is compact) then the set f(Σ) of critical values is closed in Mp. In the
latter case, any regular value y has a neighbourhood Uy , for which the mapping
f is locally fibre. This is the local form of Ehresmann’s theorem [10].

1A mapping f is called proper if the full pre-image f−1(K) of any compact subset
K ⊂ Mp is a compact subset of the manifold V n. — Editor’s remark.
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3. Properties of the critical values set f(Σ)

The subset of interior points of the set f(Σ) might be non-empty. For
example, Whitney constructed in [30] a numerical C1-function defined on
the square for which any value is critical. However, this phenomenon can
take place for Cm-mappings f only if m is strictly less than the dimension
n of the mapped manifold. Indeed, Morse [16] has proved the following
theorem.

Theorem I.1. The set of critical values of a numerical function of
class Cm, defined in Rn where m > n, has measure zero.

(For functions of class Cr, r < n, this theorem is not true.)
Any paracompact manifold V n can be covered by countably many neigh-

bourhoods homeomorphic to the space Rn; and, since the union of count-
ably many sets of measure zero is a set of measure zero, we get the following

Theorem I.2. If m > n then the set of critical points of any numerical
class Cm function defined on an n-dimensional manifold V n has measure
zero.

Now, let us prove the following Theorem1.

Theorem I.3. If m > n then for each mapping f of class Cm from a
manifold V n to a manifold Mp, in any open set of the manifold Mp there
exist regular values of the mapping f .

In other words, the set f(Σ) of critical values of the mapping f has no
interior points.

Since this theorem deals with a local property of the manifold Mp, we
may take the Euclidean space Rp instead of this manifold. Note that for
p = 1 the theorem is a straightforward corollary of Theorem I.2. Let us
prove it by induction on p. Thus, supposing that if the theorem is true for
manifolds of dimension less than or equal to p− 1, consider an arbitrary
mapping f of class Cn from V n to the space Rp. Let y1, y2, . . . , yp be the
coordinates in the space Rp and let U be an arbitrary open set in the space
Rp and let (a, b) be some open interval of values that the function yp takes
on the set U . Since on V n the coordinate yp is a smooth function of class
Cn, then, by Theorem I.2, the interval (a, b) contains some regular value
c of the function yp. We may assume that the pre-image Wn−1 = y−1

p (c),
being an (n−1)-dimensional submanifold of the manifold V n, is non-empty
(otherwise the Theorem is trivial). Let x be an arbitrary point of the

1As de Rham communicated to me, this result is a partial case of a theorem by Sard
(A. Sard. The measure of the critical values of differentiable maps. Bull. Amer. Math.
Soc., 48 (1942), 883–890).
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submanifold Wn−1. In a small neighbourhood Vx of x in the manifold V n

there exists a local coordinate system (x1, x2, . . . , xn−1, yp) that contains
the coordinate yp. Let Uc be a section of the domain U by the hyperplane
{yp = c}. The restriction fc of f to the manifold Wn−1 is a mapping
of class Cn. Consequently, according to the induction hypothesis, for the
mapping fc : Wn−1 → Rp−1, where Rp−1 is the hyperplane {yp = c}, there
exists in Uc some regular value a. Let x ∈ V n be an arbitrary point of the
pre-image f−1

c (a) = f−1(a, c) (we may assume that this pre-image is non-
empty). Since a is a regular value of fc then in the neighbourhood Vx of x
this mapping has rank p−1. On the other hand, let f(x1, x2, . . . , xn−1, c) =

(y1, y2, . . . , yp−1). Then for yp = c at least one of the minors

∣∣∣∣
∂yi

∂xj

∣∣∣∣ is non-

zero. Consequently, by continuity argument, this minor is non-zero for
all values of the coordinate yp close to c. From this it follows that in a
neighbourhood V ′

x ⊂ Vx, the functions x1, x2, . . . , xn−p, y1, y2, . . . , yp form
a local coordinate system. In other words, in x the mapping f has maximal
rank. Since this is true for any point x of the pre-image f−1(a, c), the point
(a, c) ∈ U is a regular value of the mapping f . Thus, Theorem I.3 is proved.

If f is a proper mapping (in particular if the manifold V n is compact)
then the set f(Σ) of critical values of the mapping f is a closed set with-
out interior points, i.e. a sparse, according to Bourbaki’s terminology, [6],
IX, set of the manifold Mp. For an arbitrary mapping f , consider first
a covering V n = ∪jKj of the manifold V n by some compacta Kj. Each
intersection Σj = Kj ∩ Σ is a compact set, thus f(Σj) is a sparse compact
set of the manifold Mp. Thus, the set f(Σ) = ∪jf(Σj) is a continuous
union of sparse closed sets, i.e. according to [6], IX, it is a thin subset of the
manifold Mp.

3a. Pre-image of a manifold1

Definition. Tubular neighbourhood of a manifold. Let Np−q be some
compact class C∞ submanifold of the manifold Mp. Assume that Mp

is endowed with a class C∞ Riemannian metric, and consider the set T
of all points of the manifold Mp located at distance 6 ε from Np−q. If
ǫ is small enough, then through any point x ∈ T there passes a unique
geodesic normal to the submanifold Np−q. Denote the intersection point
of this normal with the submanifold Np−q by y = p(x). Thus, we get a
mapping p : T → Np−q, which is indeed a bundle whose fibres p−1(y) are
q-dimensional geodesic balls. The boundary F of T is a (p−1)-dimensional
manifold fibred by p into (q − 1)-sphere (with the base space Np−q). The
above neighbourhood T of the submanifold Np−q is called the normal tubu-

1In the original text, this subsection was numbered wrongly as 3. — Editor’s remark
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is some subgroup of the orthogonal group O(q). The fibre space T obtained
in this way is naturally isomorphic to the normal (and thus, transversal)
bundle of the manifold Np−q in Mp.

On differentiable homeomorphisms of balls. LetBq be the closed
q-ball centred at O, and A a homeomorphic class C∞ mapping of this ball
onto itself. If the inverse homeomorphism A−1 is differentiable then the
mapping A has the same rank q at each point of Bq. Denote the group
of all homeomorphisms satisfying this condition and coinciding with the
identity on the boundary Sq−1 of the ball Bq by G.

For any interior point c of the ball Bq, one may construct a homeomor-
phism A ∈ G for which A(c) = O. Furthermore, one can show that there
exists a homeomorphism with this property, which is homotopic in G to
the identity mapping, i.e. in G one can construct a homeomorphism At

depending continuously on the parameter t (0 6 t 6 1), for which A0 = A,
and A1 is the identity mapping. Here, we mean that in the group G there
is a topology in which some sequence of mappings is thought to converge if
and only if this sequence and all sequences obtained from it by (partial) dif-
ferentiation up to order n are uniformly convergent as well as all sequences
obtained from the above ones by passing to inverse maps.

The group H of the normal tubular neighbourhood homeo-
morphisms. Let T be a normal tubular neighbourhood of a submanifold
Np−q of Mp. Consider the group H of Cn-homeomorphisms of T satisfying
the following conditions:

1) any homeomorphism A ∈ H maps every fibre p−1(y) onto itself;

2) any element of the group H is the identical mapping on the boundary
F of T .

In the group H , one introduces a topology analogous to the one intro-
duced above in the group G. (In order to define partial derivatives of the
mapping A : T → T , one may embed T into the Euclidean space Rk; the
resulting topology of the group H , as one may see, does not depend on this
embedding.) With respect to the topology defined in this way, the group
H is a Bär space 1 and even a complete metric space. Indeed, let (Aι) be
an arbitrary Cauchy filter in the group H . Then for each point x ∈ T the
points Aι(x) form a Cauchy filter in T . Let J(x) ∈ T be a limit point of
this filter. It is easy to see that the obtained limit mapping J belongs to
the class Cn. Analogously, the Cauchy filter A−1

ι (x) converges and defines
a mapping J−1 of class Cn; this mapping is the inverse for J . Thus, any

1I.e. a second category space. — Editor’s remark

lar neighbourhood of the manifold Np−q. Note that the structure group of p
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Cauchy filter (Aι) of the group H converges to the homeomorphism J , that
evidently belongs to the group H . Thus, the statement is proved.

Definition. Mapping, t-regular on a submanifold. Let f be a differ-
entiable mapping from a manifold V n to a manifold Mp and let y be an
arbitrary point of the submanifold Np−q ⊂ Mp. Denote by My the tan-
gent space at y to the manifold Mp and denote by Ny the subspace of
this tangent space consisting of vectors tangent to the submanifold Np−q.
Furthermore, let x be an arbitrary point of the full pre-image f−1(y) and
let Vx be the tangent space to V n at x. One says that y is a t-regular value of
f if at any point x ∈ f−1(y) the composition map f̄ : Vx →My →My/Ny

has rank q and is an epimorphism1.

4. Pre-image of a manifold under a t-regular mapping

We say that the mapping f : V n → Mp is t-regular on a submanifold
Np−q ⊂Mp if any point y ∈ Np−q is a t-regular value of f . In a neighbour-
hood of y, choose a local coordinate system y1, y2, . . . , yp where the sub-
manifold Np−q is defined (locally) by the equations y1 = y2 = . . . = yq = 0.
Let x be any arbitrary point from the pre-image f−1(y) (we assume that
this pre-image is not empty). If y is a t-regular value then on the man-
ifold V n in some neighbourhood Ux of x there exists a local coordinate
system of the type (x1, x2, . . . , xn−q, y1, y2, . . . , yq). In this case, the pre-
image f−1(Np−q) is defined in the neighbourhood Ux by the equations
y1 = y2 = . . . = yq = 0. Consequently, x has in the pre-image f−1(y)
a neighbourhood which is homeomorphic to Rn−q. In other words, the
pre-image f−1(Np−q) is a differentiable (Cn) submanifold Wn−q.

Let Vx be the tangent space at x to V n, and let Wx be the tangent
space at x to the manifold Wn−q. Because y = f(x) is a t-regular value,
then, by definition, the linear part f̄ of f generates an isomorphism of the
transversal space Vx/Wx to the space My/Ny transverse to the subman-
ifold Nn−q in y. Consequently, the transverse (or normal) bundle of the
submanifold Wn−q in V n is naturally isomorphic (by the map induced by
f) to the transverse bundle of Np−q in Mp.

Let y be an arbitrary point of the submanifold Np−q. In Np−q, consider
the open ball X centred in y and having radius r and the ball concentric
to it X ′ of radius 2r. In order for X ′ to be really a ball, assume r to
be sufficiently small. Since any bundle over the ball is trivial then the
subsets D = p−1(X) and D′ = p−1(X ′) of the tubular neighbourhood T
are homeomorphic to the products X×Bq and X ′×Bq, respectively. Such
a homeomorphism generates a mapping k : D′(or D) → Bq. Let us prove
the following lemma.

1The pre-image f−1(y) of a t-regular value y ∈ Np−q might be empty; in this case
one says that y is a trivial t-regular value.



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

138 R. Thom

Lemma I.4. For any class Cn mapping f : V n →Mp, the set A ∈ H

of homeomorphisms of the tubular neighbourhood T for which the composite
mapping A ◦ f is not t-regular on X, is a thin subset of the Bär subspace
H .

The fact that the mapping G : V n → Mp is not t-regular on X means
that the composite mapping k ◦G defined on g−1(D), has a critical value
at the centre O of the fibre Bq. Indeed, the linear part k̄ of k in y ∈ Mp,
is, by definition, a mapping from the tangent space My to the factor-space
by the space Ny which is tangent to the submanifold Np−q.

Let Ki be compact subsets whose union forms a manifold V d. A home-
omorphism A ∈ H is i-critical if the composite mapping k ◦ A ◦ f defined
on f−1(D) has in Ki at least one critical point x, for which1 f(x) ∈ X . Let
σi be the set of all i-critical homeomorphisms A ∈ H . Let us show that σi

is closed in H and has no interior points.

1) σi is closed. Let A be an arbitrary element of the group H not belong-
ing to the set σi, i.e. an element such that for the composite mapping
k◦A◦f onKi∩f−1(D), the point O is a regular value. Let y1, y2, . . . , yq

be some coordinates a q-ball Bq. By assumption, in the intersection
Ki ∩ f−1 ◦ A−1(Np−q) the absolute values of the Jacobians |∂yi/xk|
of order q have a positive lower bound; denote it by 3B, B > 0. Con-
sequently, in Ki there exists a closed, thus compact, neighbourhood
J of the set Ki ∩ f−1 ◦ A−1(Np−q), where the absolute values of the
Jacobians |∂yi/xk| are greater than 2B.

Now, let us consider the set of all homeomorphisms A′ ∈ H close to A
such that:

a) the intersection Ki ∩ f−1 ◦ A′−1(Np−q) is contained in J . This
condition will hold if we restrict the distance from A to A′ (in Mp) in
a proper way. For instance, it is sufficient to assume that ‖A′(y)−A(y)‖
is less than the distance from O to the boundary of the set k ◦Af(J);

b) In J , the absolute values of the Jacobians |∂yj/∂xk|, corresponding
to k ◦A′ ◦ f , are greater than B > 0. We may obtain this condition if
we choose first order partial derivatives of the mapping A′ close enough
to the corresponding partial derivatives of the mapping A. Indeed, the
Jacobians |∂yj/∂xk| are continuous functions in the first order partial
derivatives of A.

For all homeomorphisms A′ so close to A that these two conditions
hold, the Jacobians |∂yj/∂xk| are non-zero on Ki ∩ f−1A′−1(Np−q),
and, consequently, the mapping A′ ◦ f is regular on the ball X .

1I.e. point O ∈ Bq is a critical value of k ◦ A ◦ f considered on Ki ∩ f−1(D). —
Editor’s remark.
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2) σi has no interior points. Let A ∈ σi. Then for the composite map
k◦A◦f the point O is a critical value. On the other hand, this mapping,
being a mapping of class Cn, admits, by Theorem I.3, a regular value
c which can be chosen arbitrarily close to the point O. Let G be a
homeomorphism of the q-ball Bq taking c to O and being identical on
the boundary Sq−1 of the ball Bq, and let Gt be a homeomorphism
depending continuously on the parameter t ∈ J , for which G0 = G,
and G1 is the identity mapping. Furthermore, let d be a function of
class C∞ that vanishes on X̄ , equals one on the boundary of the ball
X ′ and increases from zero to one as the geodesic distance from the
centre y of X increases from r to 2r. By using the homeomorphism
D′ ≈ X ′×Bq, where D′ = p−1(X ′), let us define the homeomorphism
E of D′ onto itself by setting:

E(y1, z) = (y1, Gd(y)(z)), yi ∈ X ′, z ∈ Bq.

The homeomorphism E preserves the fibres p−1(y) and it reduces to
the identity on the boundary of the set D′. Consequently, it can be
extended to a homeomorphism of the whole tubular neighbourhood
T onto itself; to do that, outside D′, it is sufficient to take the iden-
tity mapping. The homeomorphism E defined in such a way, clearly
belongs to H .

Furthermore, the mapping E ◦A ◦ f is t-regular on X , thus, according
to the construction, the point O is a regular value of the composite
mapping k ◦ E ◦A ◦ f . Thus, the mapping A′ ◦ f ′, where A′ = E ◦A,
is t-regular on X and can be chosen to be arbitrarily close to A ◦ f .
Indeed, we can choose E arbitrarily close to the identity; to do that,
it is sufficient to take a regular value c close enough to the point O.

(Note that in the present (second) part of the proof, the compact set
Ki was not used. Thus, we have shown that the set A of homeomorphisms
with A ◦ f not t-regular on X has no interior points in H .)

Since the manifold V n is a countable union of compacta Ki, then the set
σ of homeomorphisms A such that A◦f is not t-regular onX , is a countable
union of sparse sets σi, i.e. it is a thin subset of H . Thus, Lemma I.4 is
proved.

The submanifold Np−q, that we assume to be paracompact, can be
covered by countably many open balls X (by the way, note that the normal
tubular neighbourhood can be defined for any paracompact submanifold if
we admit tubular neighbourhoods having variable radius). This yields that
the set of homeomorphisms A for which the mapping A ◦ f is not t-regular
on Np−q is a countable union of thin subsets of H ; thus, it is thin set
without interior points. Thus, we have proved the following
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Theorem I.5. Let f be an arbitrary class Cn mapping from a manifold
V n to a manifold Mp, let Np−q be an arbitrary paracompact submanifold
of the manifold Mp and let T be a normal tubular neighbourhood of Np−q

in Mp. Then, there is such a homeomorphism A of T onto itself arbitrarily
close to the identical such that

1) the pre-image f ′−1(Np−q) of the submanifold Np−q under f ′ = A ◦ f
is a smoothly embedded (n− q)-dimensional submanifold Wn−q of V n

of class Cn;

2) the normal bundle of the submanifold Wn−q in V n is naturally iso-
morphic to the space induced by the normal bundle of the submanifold
Np−q in Mp.

5. The isotopy theorem

The property proved in this subsection will be needed only in Chapter IV
and only for the case of compact V n. Thus we prove it only for the compact
case.

Let f be a class Cn mapping from a manifold V n to a manifold Mp. As-
sume that t is regular on a compact submanifold Np−q. Suppose in a neigh-
bourhood of each point y from Np−q there is a chosen local coordinate sys-
tem y1, y2, . . . , yp such that in a neighbourhood of the point y the submani-
foldNp−q is defined by y1 = y2 = . . . = yq = 0. Since, by assumption, Np−q

is compact, it can be covered by finitely many coordinate neighbourhoods of
this type. By means of a Riemannian metric, introduced arbitrarily on V n,
define the tubular neighbourhood Q of Wn−q = f−1(Np−q). We choose the
radius ǫ of this neighbourhood so small that the following condition holds.

Let x be any point fromWn−q, and let Bx be the geodesic q-ball centred
in x, and normal to Wn−q. We require that the coordinates y1, y2, . . . , yq,
transported to V n by means of y = f(x), represent a coordinate system
in the q-ball Bx. Since f is, by assumption, t-regular, and the submani-
fold Wn−q is compact, we can easily meet this condition.

Let A be any element of the group H which is close to the identity.
Consider the pre-image g−1(Np−q), where g = A ◦ f . It is clear that if
A is close enough to the identity then the mapping g is also t-regular on
Np−q. Indeed, if the distance ‖A(y) − y‖ in M q is strictly less than the
distance from the manifold Np−q to the boundary of f(Q) then the pre-
image g−1(Np−q) is contained in Q. Furthermore, assume that all partial
derivatives of A are close to the partial derivatives of the identity. Then
the mapping g, as well as f , has rank q on the q-ball Bq; thus, it is t-
regular. Now, let us show that if A is close enough to the identity then
the submanifolds Wn−q = f−1(Np−q) and W ′ = g−1(Np−q) are isotopic in
V n. We shall prove this fact according to Seifert’s scheme [21].



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

Submanifolds and homology classes of a manifold 141

Let y = f(x) be a point of Np−q. With each point z ∈ Bx we associate
the point L(z) of Rq with coordinates yi(g(z)), where yi are local coordi-
nates in some neighbourhood of y in the normal space to the submanifold
Np−q. For the mapping L defined in such a way, the preimage L−1(O) is
the intersection of the ball Bx with the submanifold W ′ = g−1(Np−q).

Let, as above, ǫ be the radius of the ball Bx. If the mapping A is
sufficiently close to the identity, then for any coordinate system (yj) in y =
f(x), we have: ‖L(z)−z‖ < ǫ uniformly with respect to x. This yields that
the pre-image L(Sq−1) of the boundary Sq−1 of the ball Bx is homotopic
to the sphere Sq−1 in the space Rq\O compactified by O. Thus the degree
of L with respect to the point O is equal to the degree of the identity,
i.e. it is equal to +1. Furthermore, L has maximal rank in any point of
the ball Bx; thus in a neighbourhood of any point z of Bx the mapping
L is a local homeomorphism; thus, the pre-image L−1(O) consists only
of isolated points. Since at any point of Bx the degree of L is equal to
+1 (this is equal to the sign of the corresponding Jacobian) then the pre-
image L−1(O) consists of a unique point x′. Thus, the submanifold W ′

intersects Bx only at the point x′. Thus, the correspondence x → x′ is a
homeomorphic mapping from the submanifold Wn−q to the submanifold
W ′n−q. Let us connect x′ in the ball Bx to the point x by a geodesic arc
s(x, x′). The motion along this arc defines an isotopy that deforms the
submanifold Wn−q to the submanifold W ′n−q. This proves the following

Theorem I.6. Let f be an arbitrary class Cn mapping from a com-
pact manifold V n to a manifold Mp and assume this mapping is t-regular
on a certain compact submanifold Np−q. Then for any homeomorphism
A ∈ H of the tubular neighbourhood of Np−q, which is close to the iden-
tity, the composite mapping g = A ◦ f is t-regular on Np−q and the sub-
manifolds Wn−q = f−1(Np−q), W ′n−q = g−1(Np−q) are isotopic in the
manifold V n.

Chapter II

Submanifolds and homology classes of a

manifold

1. Formulation of the problem

Let V n be an orientable manifold. In order to orient V n, one should
indicate in the group Hn(V n;Z) of integral homology some generator. This
generator is called the fundamental class of the oriented manifold V n. For
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an oriented manifold V n, the homology group Hn−k(V n;Z) is naturally
isomorphic to the cohomology group Hk(V n;Z) (Poincaré duality). We
call those classes paired by Poincaré duality corresponding or Poincaré
dual classes. If we take the group Z2 of residue classes modulo two to
be the group of coefficients then the fundamental class of Hn(V n;Z) is well
defined even when V n is not orientable. Furthermore, there is a well de-
fined Poincaré-Veblen isomorphism between the groups Hn−k(V n;Z2) and
Hk(V n;Z2). For the sake of simplicity, we assume the manifold V n to be
compact; we shall just touch on the case of paracompact manifolds which
are not compact.

Let W p be a p-dimensional submanifold of a manifold V n and let i∗ be
the homomorphism from Hp(W

p) to Hp(V
n), defined by the embedding

map i : W p → V n. Let z be the image of the fundamental class of W p

under i∗. We say that the class z is realised by means of a submanifold
W p. In the present work we address the following question: is the given
homology class z of the manifold V n realisable by means of a submanifold?
The answers to this question are, as we shall see, quite different for the
cases of Z and Z2 as the coefficient ring. In the first case we assume, not
necessarily saying this exactly that the manifold V n in question is orientable
and endowed with an arbitrary but fixed orientation.

2. The space adjoint to a subgroup of the orthogonal group

Let G be a closed subgroup of the orthogonal group O(k) of order k.
It is well known that that any fibre space with fiber sphere Sk−1 and with
structure group G can be obtained from some universal fibre space EG.
The base BG of this universal bundle is a compact manifold (we restrict
ourselves to fibre spaces with bases of finite dimension 6 N). Denote by AG

the cylinder of the fibre map EG → BG. This cylinder is, on the one hand, a
space fibred by k-balls with baseBG and, on the other hand, a manifold with
boundary EG. The corresponding open manifold A′

G = AG\EG is a fibre
space with k-ball as a fibre, associated with the fibre space EG (see [27]).

Definition. The space M(G) obtained from the manifold AG by con-
tracting its boundary EG to one point A is called the space, adjoint to the
subgroup G of O(k). The space M(G) can also be considered as a one-point
compactification (in Alexandrov’s sense) of the fibre space A′

G with open
ball as a fibre.

Cohomology of M(G). The cohomology group Hr(M(G)) for any
r > 0 can be identified with the cohomology group Hr

K with compact sup-
port, and also with the relative cohomology group Hr(AG, EG). On the
other hand, as follows from fibre spaces theory (when the fibre is an open
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ball), there exists an isomorphism1 (see [26])

ϕ∗
G : Hr−k(BG)→ Hr

K(A′
G) ≈ Hr(M(G)).

In this case, we should, in general, restrict ourselves to Z2 as the coefficient
group. However, if the fibre space EG is orientable (the group G is con-
nected), then we can deal with the group Z. Thus, in dimensions r > 0, the
cohomology ring H∗(M(G)) is obtained from the cohomology ring H∗(BG)
of the classifying space BG by increasing all dimensions by k. In particular,
in dimensions greater than zero, the first non-trivial cohomology group is
the group Hk(M(G)). This group is cyclic. Its generator U ∈ Hk(M(G))
is defined as

U = ϕ∗
G(ωG),

where ωG ∈ H0(BG) — the unit class. The class U is called the funda-
mental class of M(G). Note that U is an integral class if EG is orientable
(G is connected), and a modulo 2 class if EG is non-orientable (G is not
connected).

3. The main theorem

Definition. We say that a cohomology class u ∈ Hk(A) of a topological
space A is realisable with respect to G ⊂ O(k) or admits a G-realisation
if there exists a mapping f :A→M(G) such that the homomorphism f∗

generated by this mapping takes the fundamental class U of M(G) to the
class u.

Then the following Theorem holds:

Theorem II.1. In order for the class z ∈ Hn−k(V n), k > 0, to
be realisable by means of a submanifold Wn−k with normal space having

1 Consider an arbitrary cellular decomposition of BG. It is evident that the full
pre-images p−1(σ) of cells σ of this decomposition under the map p : AG → BG form
a cellular decomposition A′

G
= AG\EG. The isomorphism considered by the author

ϕ∗
G

: Hr−k(BG) → Hr(AG, EG) for modulo two homology groups is generated by the
correspondence σ → p−1(σ). (It is easy to see that this correspondence is one-to-one,
it preserves the incidence relation and increases the dimension by k.) If the group
G is connected then the cells σ and p−1(σ) can be considered coordinatewise, i.e. in
such a way that the correspondence σ → p−1(σ) preserves the incidence coefficients.
Consequently, in this case the correspondence σ → p−1(σ) generates an isomorphism of
integral homology groups.

The isomorphism ϕ∗
G

can also be constructed by using spectral sequences theory.
Indeed, by Leray theorem, the second term (Ep,q

2 ) of the spectral sequence for homology
with finite support of the bundle A′

G
→ BG with the restrictions on coefficients described

above is isomorphic to Hp(BG)⊗Hq
K

(Ek), consequently, it is zero if q 6= k. Thus dr = 0

for all r > 2, i.e. rE2 ≈ rE∞ ≈ ≈ Hr
K(A′

G). On the other hand, rE2 = Er−k,k
2 ≈

Hr−k,k(BG)⊗Hk
K

(Ek) ≈ Hp−q(BG). Thus, Hp−q(BG) ≈ Hr
K

(A′
G

). — Editor’s remark
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structure group G, it is necessary and sufficient that the cohomology class
u ∈ Hk(V n) corresponding to z be realisable with respect to G.

1) Necessity. Assume that there exists a submanifold Wn−k with fun-
damental class representing z in V n. Let N be the normal tubu-
lar neighbourhood of Wn−k and let T be its boundary. The nor-
mal geodesic bundle p : N → Wn−k admits, by the assumption of
the theorem, G as a structure group, thus, it is induced by a certain
mapping g : Wn−k → BG from its base to the base of the universal
space AG. With this mapping, one associates a mapping F : N → AG

(taking fibre to fibre) for which the diagram

N
F−−−−→ AG

p

y
ypG

Wn−k g−−−−→ BG

is commutative.

The mapping F takes the boundary T of N to the boundary EG of the
manifold AG. Let ϕ∗ and ϕ∗

G be the isomorphisms mentioned above
corresponding to k-ball fibre spacesN andAG, respectively. Obviously,
the diagram

Hk(N,T )
F−−−−→ Hk(AG, EG)

ϕ∗

x
xϕ∗

G

H0(Wn−k)
g−−−−→ H0(BG)

(1)

is commutative as well.

On the other hand, let j∗ : Hk(N,T )→ Hk(V n) be the natural inclu-
sion homomorphism. It is known that in the open manifold N ′ = N\T
the class ϕ∗(ω) corresponds, by the Poincaré duality, to the funda-
mental homology class of the base Wn−k (see [27], Theorem I.8)1.
Consequently, the class j∗ϕ

∗(ω) ∈ Hk(V n) coincides with the class u,
the latter corresponding to z.

Denote by h : AG → M(G) the natural identification mapping taking
the boundary EG of AG to one point a. The composite mapping h ◦ g
takes the boundary T of N to a. Consequently, the mapping h ◦ g can

1It is sufficient to check that the scalar product of the classes ϕ∗(ω) and W n−k is
non-zero; this follows from the arguments given in page 143, where the isomorphism ϕ∗

is constructed. — Editor’s remark
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be extended over the whole manifold V n; to do this, it is sufficient
to map the complement V n\N to the point a. Thus, we define the
mapping f from V n to M(G), for which, according to the commutative
diagram (1),

f∗(U) = fϕ∗
G(ωG) = j∗ϕ

∗(ω) = u.

2) Sufficiency. Suppose there exists a mapping f from V n to M(G) such
that f∗(U) = u. If we delete the point a from M(G), we get a dif-
ferentiable manifold. Consequently, the mapping f on the comple-
ment V n\f−1(a) can be regularised, i.e. we can construct a differen-
tiable mapping f1 close to f which is of class Cn on V n\f−1(a). Let
us apply Theorem I.5 to f1. As a result we get a mapping F arbitrarily
close to f such that the pre-image F−1(BG) is a submanifold Wn−k of
the manifold V n. Since the normal bundle of the submanifold Wn−k

is induced by the space AG, then the structure group of this space is
G. As we have seen 1), the class u = f∗(U) = F ∗(U) coincides with
the class j∗ϕ

∗(ω), where ϕ∗ is the isomorphism corresponding to some
normal tubular neighbourhood of the submanifold Wn−k in V n, and
ω is the unit class of the submanifold Wn−k. This means precisely
that the class u corresponds, by Poincaré duality, to the class of the
fundamental cycle of Wn−k.

Generalisation of Theorem II.1 for paracompact manifolds
which are not compact. Recall that for paracompact but not compact
manifolds there are as many duality theorems as families (Φ) of closed sub-
sets used for the definition of homology and cohomology groups (see [28],
Theorem 0.3). Thus, we are interested in the following question: given
a class z ∈ HΦ

n−k(V n) with support in Φ, can it be realised by a certain

manifold Wn−k? To study this question, the proof given above should be
slightly modified.

First, the normal tubular neighbourhood can be defined even for para-
compact submanifolds if we allow its radius to vary. Then, a mapping
f : V → M Φ-is proper if the pre-image f−1(K) of any compact subset
K ⊂ M belongs to the family (Φ) (if (Φ) is the family K of all compacta
of the manifold V , then we get the classical definition of proper mappings).
Then we have

Theorem II.1′. In order for the class z ∈ HΦ
n−k(V n) to be realised by

a submanifold with normal bundle having structure group G, it is necessary
and sufficient that there exists a (Φ)-proper mapping f : V n → M(G) to
M(G)\a such that the class f∗(U) ∈ Hk

Φ(V n) is Poincaré-dual to the class
z.
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4. The case when G reduces to the unit element e ∈ O(k)

In this case the classifying space BG consists of one point and the space
AG is the closed k-ball, and M(e) is the sphere Sk. An integral cohomology
class u of the space A is spherical if there exists a mapping f : A→ Sk such
that u = f∗(sk), where sk is the fundamental class of the group Hk(Sk, Z).
From Theorem II.1′ we get

Theorem II.2. In order for the homology class z ∈ Hn−k(V n, Z) of
an orientable manifold V n to be realisable by means of a submanifold with
trivial normal bundle it is necessary and sufficient that the cohomology class
u ∈ Hk(V n, Z), which is Poincaré-dual to z, be spherical.

In algebraic topology, no sphericality criteria for a cohomology class are
found. The only general result was obtained by Serre [22]:

Theorem II.3. If k is odd and n < 2k then for any k-dimensional
homology class x ∈ Hk(A,Z) of an n-dimensional polyhedron A there exists
a non-zero integer N depending only on k and n such that the class Nx is
sphericalal.

This yields

Theorem II.4. Let k be odd or n < 2k. Then there exists a non-zero
integer N depending only on k and n such that for any integral homol-
ogy class z ∈ Hn−k(V n, Z) of any orientable manifold V n the class Nz is
realisable by a submanifold with trivial normal bundle.

5. The structure of spaces M(O(k)) and M(SO(k))

From Theorem II.1, one gets immediately the following Theorems, which
underline the role of the spaces M(O(k)) and M(SO(k)).

Theorem II.5. In order for a homology class z ∈ Hn−k(V n, Z) of
an orientable manifold V n to be realisable by a certain submanifold, it is
necessary and sufficient that the Poincaré-dual class u be realisable with
respect to the rotation group.

Theorem II.5′. In order for a modulo 2 homology class z ∈
Hn−k(V n, Z2) of V n to be realisable by means of a certain submanifold,
it is necessary and sufficient that the Poincaré dual cohomology class u be
realisable with respect to the orthogonal group.

Denote by Gk the Grassmann manifold of k-dimensional planes in the
Euclidean space Rm. The dimension m of the Euclidean space is assumed
to be rather large. It is well known that Gk is the classifying space BO(k)
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of the orthogonal group O(k). Let Ĝk be the Grassmann manifold of k-
dimensional oriented planes in the space Rm. This is the classifying space
BSO(k) of SO(k). The manifold Ĝk is a 2-fold covering over Gk.

Associating with every k-dimensional plane from Ĝk its intersection
Sk−1 with the unit sphere of the space Rm, we get the universal fibre space
ESO(k). Thus, the space ESO(k) can be considered as the space of pairs
each consisting of an oriented k-dimensional plane and unit vectors lying
in the corresponding planes. Associate with each such pair the
(k − 1)-dimensional plane lying in the k-dimensional plane of the pair and
orthogonal to the vector of this pair. This defines a fibration of the space
ESO(k) to spheres Sm−k with base Ĝk−1. This yields that in dimensions
less than the classifying dimension m − k, the space ESO(k) has the same

homotopy type as the Grassmann manifold Ĝk−1. Moreover, the inclu-
sion ESO(k) → ASO(k), from the homotopy theory point of view, coincides

with the natural mapping Ĝk−1 → Ĝk, generated by the inclusion of the
subgroup SO(k − 1) to SO(k)1.

Cohomologies of M(SO(k)). Thus, in dimensions r > 0, the coho-
mology algebraH∗(M(SO(k))) can be identified with the algebra of relative

cohomologyH∗(Ĝk, Ĝk−1). The later algebra can be defined from the exact
sequence

→ Hr(Ĝk)
i∗→ Hr(Ĝk−1)

δ∗

→ Hr+1(Ĝk, Ĝk−1)→ Hr+1(Ĝk)→, (2)

since the homomorphism i∗ is well studied.

Cohomologies modulo 2. It is known ([3]) that the cohomol-

ogy algebra H∗(Ĝk;Z2) is the polynomial algebra in (k − 1) genera-
tors W2,W3, . . . ,Wk. The generator Wi has degree i and represents the
i-th Stiefel-Whitney class. The homomorphism i∗ maps the classes Wj to

themselves. Thus, the algebra H∗(Ĝk, Ĝk−1) of relative homologies is iso-

morphic to the ideal of the polynomial algebra H∗(Ĝk, Z2) generated by the
class Wk. This result can be obtained straightforwardly, if we consider (as
in 2) the isomorphism ϕ∗.

Cohomologies modulo p, for odd prime p We should note the
difference between the following two cases:

1) k is odd, k = 2m + 1. In this case, H∗(Ĝk, Zp) is a polynomial alge-
bra in generators P 4, P 8, . . . , P 4m of dimensions divisible by 4 (these
generators are the Pontrjagin classes reduced modulo p).

1It is sufficient to note that the natural inclusion Ĝk → ASO(k) is a homotopy
equivalence. — Editor’s remark
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2) k is even, k = 2m′. In this case the algebra H∗(Ĝk, Zp) is the poly-
nomial algebra generated by the Pontrjagin classes reduced modulo p,
P 4, P 8, . . . , P 4m′−4 and the fundamental class X2m′

.

The homomorphism i∗ of cohomology algebras generated by the natural
mapping i : Ĝk → Ĝk+1, takes the Pontrjagin classes P 4i to the Pontrjagin

classes, except for P 4m ∈ H4m(Ĝk+1) of maximal dimension (this class
exists for even k). This class is taken by i∗ to the square (X2m)2 of the

fundamental class X2m ∈ Hk(Ĝk) (see [5]). This yields that for even k the

algebra H∗(Ĝk, Ĝk−1) is isomorphic to the ideal of H∗(Ĝk) generated by
the class X2m; for k odd, the algebra H∗(M(SO(k))) is isomorphic to the

exterior algebra with generator δ(X2m′

).

Cohomologies of M(O(k)). Let us use the exact sequence (2),

where we replace Ĝk with Gk.

Cohomologies modulo 2. The cohomology algebra H∗(Gk;Z2) is
the polynomial algebra in k variables W1,W2,W3, . . . ,Wk. As before, we
see that the algebra H∗(Gk, Gk−1;Z2) is isomorphic to the ideal J of the
algebra H∗(Gk;Z2) generated by the class Wk.

Cohomologies modulo p with p odd prime Denote by g the au-
tomorphism group of the two-fold covering Ĝk → Gk. It is easy to see
that the Pontrjagin classes P 4i are invariant under the action of g. Con-
versely (for even k), the group g takes the fundamental class Xk to the
opposite class (−Xk). According to the classical theorems on cohomology
of the covering space (Eckmann [9]) this yields that for odd k, the algebra

H∗(Gk;Zp) is isomorphic to the algebra H∗(Ĝk, Zp), and for even k = 2m
the algebra H∗(Gk;Zp) is the polynomial algebra in the Pontrjagin classes

P 4, P 8, . . . , P 4m′−4 and the square (Xk)2 of the fundamental class Xk (in-
deed, though the class Xk is not invariant under g, its square (Xk)2 is
invariant).

Using an exact sequence analogous to the above one (2), consider, as
above, the two cases:

1) k = 2m + 1 is odd. Since the algebras H∗(Gk;Zp) and H∗(G2m;Zp)
are isomorphic and the isomorphism is generated by i∗ (recall that
i∗(P 4m) = (X2m)2), then

Hr(Gk, Gk−1;Zp) = 0 for all r > 0.

2) k = 2m even. In this case, the algebra H∗(Gk, Gk−1) is isomorphic to
the ideal of the polynomial algebra H∗(Gk;Zp) generated by the class
(X2m)2.
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The fundamental group. According to the general theory, the fun-
damental group of M(G) is a quotient group of the fundamental group of
AG (or BG) by the image of the group π1(EG) under EG → AG. Conse-
quently:

a) because π1(Ĝk) = 0, we have π1(M(SO(k))) = 0;

b) since the homomorphism i∗ maps the group π1(Gk−1) ≃ Z2 onto
π1(Gk) ≃ Z2, π1(M(O(k))) = 0 for k > 1.

Thus, the spaces M(O(k)) and M(SO(k)) are simply connected. This
yields that these spaces are aspherical up to dimension k − 1 inclusive,
since in positive dimensions, the first non-trivial homology group of these
spaces is Hk. The first non-trivial homotopy groups are πk(M(O(k))) = Z2

and πk(M(SO(k))) = Z.
Let us now prove a theorem from general topology which allows us to de-

fine homotopic properties of spaces by using their cohomological properties.
Basically, this theorem is due to J.H.C.Whitehead [29].

Theorem II.6. Let X and Y be simply connected cellular decom-
positions and let f be a mapping from the decomposition X to the de-
composition Y such that for any coefficient group Zp, the homomor-
phism f∗ : Hk(Y )→ Hk(X) generated by f is an isomorphism when r < k,
and is a monomorphism when r = k. Then there exists a mapping g taking
the k-frame of the decomposition Y to the decomposition X such that the
mappings f ◦g and g ◦f (considered on the corresponding (k−1)-skeletons)
are homotopic to the identity.

In particular, this yields that the decompositions X and Y have the
same k-type: their homotopy groups are isomorphic in dimensions 6 k− 1.

Replace Y by the cylinder Y ′ of f . This is legal because Y is a defor-
mation retract of the cylinder Y ′; thus, it has the same homotopy type.
Consider the exact sequence

Hr(Y ′)
f

−−−−→Hr(X)→ Hr+1(Y ′, X)→ Hr+1(X)→ Hr+1(Y ′).

The conditions imposed on f are equivalent to Hr(Y ′, X ;Zp) = 0
for all prime p and r 6 k. Thus, by duality argument, we get that
Hr(Y

′, X ;Zp) = 0 for r 6 k. Consequently, by the universal coefficient
formula, Hr(Y

′, X ;Z) = 0 for r 6 k. Since X and Y are simply con-
nected, one may apply the relative Hurewicz theorem [15]. By this theorem,
πr(Y

′, X) = 0 for r 6 k. Consequently, on the k-skeleton of Y ′ one may
define the mapping g : Y ′ → X inverse to f , such that g ◦ f and f ◦ g are
homotopic to the identity mappings on the corresponding (k− 1)-skeletons
of X .



2nd May 2007 16:22 WSPC/Book Trim Size for 9in x 6in main

150 R.Thom

The above description of the cohomology groups of M(O(k)) and
M(SO(k)) yields that the cohomology groups Hk+i(M(O(k))) and
Hk+i(M(SO(k))) do not depend on k if i < k. It turns out that the
analogous property takes place for homotopy groups as well.

Theorem II.7. If i < k then the homotopy groups πk+i(M(O(k))) and
πk+i(M(SO(k))) do not depend on k.

This theorem is quite analogous to the Freudenthal theorem on homo-
topy groups of spheres.

Let A′
O(k−1) be the fibre space described above with base Gk−1 and

fibres (k − 1)-dimensional open balls. Denote by A′ ⊗ I the join (after
Whitney)1 of the fibre space A′

O(k−1) and the open interval I considered
as the fibre space with one point as the base. By definition, A′ ⊗ I is a
k-ball fibre space with base Gk−1. Clearly, the mapping i : Gk−1 → Gk

that induces this space coincides with the mapping i, considered above,
corresponding to the inclusionO(k − 1) ⊂ O(k). Let f be the mapping from
A′⊗I to A′

O(k) corresponding to i. Consider the compact space X obtained
from the space A′ ⊗ I by one-point compactification by x, and extend f to
F : X → M(O(k)). Obviously, the homomorphism F ∗ generated by F is an
isomorphism fromHk+i(M(O(k))) to the groupHk+i(X) for i < k − 1. For
i = k − 1 the mapping F ∗ is a monomorphism. Besides that, the spaces
X and M(O(k)) are simply connected. Thus, one can apply Theorem
II.6 which says that the homotopy groups πk+i of X and M(O(k)) are
isomorphic for i < k − 1.

Let T (k − 1) be the suspension2 over M(O(k − 1)) with poles p and
p′, a is the “infinite” point of the space M(O(k)) and g is the mapping
contracting the whole segment [pap′] to x. The resulting space is nothing
but X . Since g satisfies the conditions of Theorem II.6 (one may even show

1Let (Ai, Bi, F i, Gi, U iα1
, giα1β1

), i = 1, 2, . . . be two fibre spaces. Here Bi are
bases, F i are fibres, Gi are the structure groups, and U iα1

are the coordinate neigh-
bourhoods, giα1β1

: U iα1
∩ U iβ1

→ Gi are the corresponding coordinate transformations.
Then the group G1 ×G2 is naturally an effective group of transformations of the space
F 1×F 2, and the family of sets U1

α1
×U2

α1
makes a covering of B1×B2, and the mapping

g1α1β1
× g2α1β1

: (U1
α1

× U2
α1
) ∩ (U1

β1
× U2

β1
)→ G1 ×G2

forms a system of coordinate transformations in the sense of [33], 3.1. The corresponding
fibre space

(A,B1 × B2, F 1 × F 2, G1 ×G2, U1
α1

× U2
α1
, g1α1β1

× g2α1β1
)

is called the join of the given fibre spaces. — Editor’s remark.
2Let X be an arbitrary space and let p be a point not belonging to X. The cylinder

of the trivial map X → p is called the cone over X with vertex (pole) p. The set-theoretic
union of two cones over X with vertices p and p′ (it is assumed that these cones meet
only at X) is called the suspension over X with poles p and p′. — Editor’s remark
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that g is a homotopy equivalence), then the homotopy groups of the spaces
X and T (k − 1) are isomorphic.

There is a well-known theorem: let K be a polyhedron which is aspheri-
cal up to dimension n−1 inclusive, and let T (K) be the suspension over K.
Then for j < 2n, the Freudenthal homomorphismE : πj(K)→ πj+1(T (K))
is an isomorphism (see Blakers –Massey [2])1.

Considering the sequence of isomorphisms

πk−1+i(M(O(k − 1)))
E

−−−−→ πk+i(T (k − 1))

−−−−→ πk+i(X) ≃ πk+i(M(O(k))), i < k − 1,

we get the desired result. For M(SO(k)) the proof is analogous.

6. The homotopy type of M(O(k))

To compute the homotopy groups of M(O(k)), it is necessary to use
some general properties of Eilenberg-MacLane spaces on the one hand, and
some properties of Grassmann spces on the other hand.

Eilenberg-MacLane space. Let π be an abelian group. An
Eilenberg-MacLane space K(π, n) is a connected space with all homotopy
groups in positive dimensions trivial except the group πn(K(π, n)) ≈ π.
All such spaces have the same homotopy type, and at least one of them
is a simplicial decomposition. If π is of finite type then there exists a
space K(π, n) being a simplicial decomposition whose finite-dimensional
frames are finite decompositions. Since this fact is not assumed to be
well known, we give a short proof here. The proof is by induction
on q (q is the dimension of the frame). The induction base is guar-
anteed by the fact that the n-skeleton of the complex K(π, n) consists
of finitely many spheres Sn. Now, let the frame Kq of some dimen-
sion q > n be finite. According to Serre’s theorems [24], the homotopy
group πq(K

q) has finite type. Consequently, this group can be made
zero by attaching to Kq finitely many (q + 1)-balls, with boundary spheres
mapped to Kq. Since these mappings can be assumed simplicial, we get,
as a result, a finite decomposition Kq+1 for which all groups πi(K

q+1)
1Let K1 and K2 be two cones over K, whose union is the suspension T (K) (see

the previous remark). Since the cones K1 and K2 are contractible to a point, it is
evident that the boundary homomorphism ∂ : πj+1(K2, K) → πj(K) and the inclu-
sion homomorphism r : πj+1(T (K)) → πj+1(T (K), K1) are indeed isomorphisms. The
Freudenthal homomorphism E : πj(K) → πj+1(T (K)) considered here can be defined
as a composition r ◦ e ◦ ∂−1, where e : πj+1(K2, K) → πj+1(T (K), K1) is the natural
inclusion homomorphism. Thus, the Blakers-Massey theorem used here is equivalent to
the statement that for i < 2n − 1 the homomorphism e : πi(K2, K) → πi(T (K), K1) is
an isomorphism. — Editor’s remark
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for n < i 6 q, are trivial. This decomposition is the desired (q + 1)-dimen-
sional frame.

The homology groups K(π, n) with G-coefficients are Hr(π, n;G). Re-
call that the group Hn(G,n;G) contains the so-called “fundamental class1”
ι. For any homology class u ∈ Hn(A;G) of some polyhedron A there exists
a mapping f : A→ K(G,n) that2 u = f∗(ι).

The homology groups of the spaces K(Z, n) and K(Zp, n) with coeffi-
cients in Zp are computed by J.-P. Serre and H. Cartan. We recall some
remarks on their work.

Cohomology of K(Z2, n) (cf. Serre [23]). The cohomology alge-
braH∗(Z2, k;Z2) is generated by iterated Steenrod squares of the fundamen-
tal class ι ∈ Hk(Z2, k;Z2), and their products. For h < k (the stationary
part of the algebra H∗(Z2, k;Z2)) the group Hk+h(Z2, k;Z2) is generated
by iterated squares Sqi1 Sqi2 . . . Sqir (ι), where

∑
m
im = h. As a basis of

this group, one may choose the set of iterated squares

Sqi1Sqi2 . . . Sqir (ι), where i1 > 2i2, i2 > 2i3, i3 > 2i4, . . . , ir−1 > 2ir.

The sequence I = {i1, i2, . . . , ir} satisfying these inequalities is an admissi-
ble sequence, according to [23]. The corresponding iterated square Sqi1 Sqi2

. . . Sqir is denoted by SqI . The rank c(h) of the group Hk+h(Z2, k;Z2) is
equal to the number of decompositions of h into summands of type 2m − 1
(here the order does not matter).

Analogous results hold for H(Z, k;Z2).

Homology of K(Z, k) over Zp, p > 2. We shall use only the
following result by H. Cartan: the algebra H∗(Z, k;Zp) is generated by
iterated Steendor powers of the fundamental class ι.

The Grassmann manifold Gk. As mentioned above, the alge-
bra H∗(Gk;Z2) is the polynomial algebra generated by Stiefel –Whitney
classes Wi, 1 6 i 6 k. It is often useful to consider the classes Wi as el-
ementary symmetric functions in variables t1, t2, . . . , tr of the first degree.

1The isomorphism Hn(G, n;G) ≈ Hom(G, G) takes this class to the identity map
G → G. — Editor’s remark

2Let z be an arbitrary cocycle of the class u in some cellular decomposition of the
polyhedron A. Consider the mapping of the n-skeleton of this decomposition to the
space K(G, n), taking the (n − 1)-skeleton to some point of K(G, n) and defining on
any n-cell σ the element z(σ) of G = πn(K(G, n)). Since the cochain z is a cocycle
then this mapping is null-homologous on the boundary of any n + 1-cell of the cellular
decomposition; thus, it can be extended over the (n + 1)-skeleton, and, consequently,
to the whole polyhedron A (since for i > n the groups πi(K(G, n)) are trivial by the
assumption). The constructed mapping f : A → K(G, n) evidently satisfies the condition
u = f∗(ι).

From this construction it follows that up to homotopy the mapping f is well defined
— Editor’s remark
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The variables, tr intoduced formally by W.T. Wu, found their topological
interpretation in the Borel – Serre theory [4, 5]. By using the variables tr,
one can easily prove the following Wu formulae [34] for Steenrod squares of
classes Wi:

SqrWi =
∑

t

(
r − i+ t− 1

t

)
Wr−tWi+t. (3)

The following lemma, whose proof due to Serre, shows that the Grassmann
manifold Gk can, to some extent, replace the Eilenberg –MacLane space
K(Z2, k).

Lemma II.8. Any linear combination of iterated Steenrod squares SqI

of total degree h 6 k, which vanishes on the class Wk ∈ Hk(Gk;Z2), is
identically equal to zero.

First, note that any class of the type SqI(Wk), where the sequence I
is not necessarily admissible, looks like1 Wk · Qi, where Qi ∈ Hh(Gk) is a
polynomial of total weight h with respect to Wi. Consequently, the class
SqI(Wk) belongs to the ideal J of the algebra H∗(Gk) generated by Wk.

Let us introduce on the set of monomials Wi the lexicographic ordering
(R) by setting Wm ≺Wn if m < n. For instance,

W4 ≺W4(W1)
2 ≺W4W2W1 ≺W4W3.

Let SqI = Sqi1Sqi2 . . . Sqir , where the system I = i1, i2, . . . , ir is ad-
missible, (im−1 > 2im), and let SqIWk = Wk · QI . It turns out that
QI = Wi1Wi2 . . .Wir

+ monomials preceding Wi1Wi2 . . .Wir
with respect

to (R). This fact is proved by induction on r. If r = 1 then, by formula
(3), SqiWk = WkWi, thus Qi = Wi. Assume the statement holds for r − 1
and consider the class

SqIWk = Sqi1(Sqi2 . . . SqirWk) = Sqi1(Wk · P ),

where, by assumption, the polynomial P looks like Wi2Wi3 . . .Wir
+ lower

order monomials in (R). This product is equal to

Sqi(Wk · P ) =
∑

06m6i1

Sqm(P ) · Sqi−mWk =
∑

06m6i1

Sqm(P ) ·Wi−mWk.

Consequently, by setting SqIWk = Wk ·QI , we get

QI =
∑

06m6i1

Sqm(P ) ·Wi1−m.

1This is proved by iterating (3). — Editor’s remark
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In this sum the term with m = 0 looks like P · Wi1 = Wi1Wi2 . . .Wir
+

monomials of lower order in (R). On the other hand, no term in the de-
composition of Sqm(P ), m > 0, can contain the class Wi greater than or
equal toWi1 with respect to (R). Indeed, by formula (3), the square SqmWs

contains only those classes Wi for which i < 2s. This yields that the square
Sqm(P ), m > 0, contains only those classes Wi for which i < 2i2 6 i1.
Thus, all these terms are strictly less than Wi1Wi2 . . .Wir

.
Thus, we see that all the classes SqI(Wk), where I is any admissible

sequence of total degree h, are linearly independent in the groupHk+h(Gk).
Indeed, if there were a non-trivial linear relation between these classes, then,
taking the highest term with respect to (R), we would see that this term
can be linearly expressed as a combination of strictly lower terms (in (R)),
which is impossible1.

Treating the classes Wi as symmetric functions in k variables tm of first
degree, formulate the lemma we have proved, as follows.

Lemma II.8′. The classes SqI(t1t2 . . . tk), where I runs over the
set of admissible sequences of total degree h 6 k, are linearly independent
symmetric functions in ti.

We have seen that the cohomology algebra H∗(M(O(k));Z2) is isomor-
phic to the ideal J of the algebra H∗(Gk;Z2) generated by the class Wk.
On the other hand, the basis of the group Hh(Gk;Z2) is generated by
symmetrised monomials

∑
(t1)

a1(t2)
a3 . . . (tr)

ar , (4)

where the sum of exponents ai is equal to h, and the symmetrisation sign∑
means the summation over all permuations essential for (4), i.e. over rep-

resentatives of conjugacy classes of the full symmetric group of k variables
by the subgroup of permutations fixing the monomial (4) 2. For instance,

∑
(t1)(t2) . . . (tk) = t1t2 . . . tk.

For any decomposition (ω) of h into summands h =
∑
i

ai we denote by

Sω the system of corresponding essential permutations. Furthermore, we
assume that the

∑
sign before the monomial of type (4), means, unless

1See remark 2 at the end of the article, page 203. — Editor’s remark
2Every element of Hh(Gk ;Z2) is a symmetric polynomial of degree h in t1, . . . , tk.

Let αtα1
1 . . . tαr

r be the leading term of this polynomial. Subtracting the symmetrised
monomial

∑
(t1)α1 . . . (tr)αr , we evidently get a symmetric polynomial with a smaller

leading term. Repeating this process, we can express each element of the group
Hh(Gk ;Z2) as a linear combination of independent symmetrised monomials (4). —
Editor’s remark
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otherwise specified, that the sum is taken only over the system of essential
permutations.

In dimension k + h, the base of the ideal J consists of symmetrised
monomials ∑

(t1)
α1+1(t2)

α1+1 . . . (tr)
αr+1tr+1 . . . tk, (5)

obtained from the elements of the base (4) by multiplication by the class
Wk = t1t2 . . . tk. Indeed, any permutation which is essential for the mono-
mial (4), is essential for (5), and vice versa.

Definition. Let P be an arbitrary polynomial in variables ti. A vari-
able ti is a dyadic variable for the polynomial P , if the exponent of this
variable in terms of the polynomial P is either zero or1 2m.

Lemma II.9. Any variable tn, which is dyadic for the polynomial P ,
is dyadic for SqiP as well.

Indeed, it is known that2 Sqa(tn)m =

(
m
a

)
(tn)m+a. On the other

hand, if m is non-zero and it is a power of 2 then the binomial coefficient(
m
a

)
is congruent to zero3, except to those cases when a = 0 or a = m.

(Indeed,

(
m
a

)
= 1 mod 2 if and only if the binary decomposition of p

contains the binary decomposition of q (see [26]).) In these cases, the new
exponent m+ a is also a power of two.

Definition. By a non-dyadic factor of the monomial
(t1)

a1(t2)
a2 . . . (tr)

ar we mean the monоmial consisting of all non-dyadic
variables; denote the number of these variables by u, and denote the to-
tal degree of the non-dyadic factor by ν. For the set of monomials in (ti)
variables we define a quasi-order relation as follows4 (Q): a monomial X
is greater than the monomial Y with respect to (Q) if u(X) > u(Y ) or if
u(X) = u(Y ) and ν(X) < ν(Y ).

1The case m = 0 is also possible. — Editor’s remark
2If a + m = 1 then the relation is evident. Assuming that it holds for a + m < N ,

we get for a + m = N :

Sqatmn = Sqa(tm−1
n · t) = Sqatm−1

n · tn + Sqa−1tm−1
n · t2n

=

((
m − 1

a

)
+

(
m − 1
a − 1

))
ta+m
n =

(
m
a

)
ta+m
n .

— Editor’s remark
3modulo 2. — Editor’s remark
4Here “quasi” means the following: if X is not greater than Y and Y is not greater

than X, it does not yield, in general, that X = Y . — Editor’s remark
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For any number h 6 k consider the classes

Xh
ω =

∑
(t1)

a1+1(t2)
a2+1 . . . (tr)

ar+1tr+1 . . . tk, (6)

where ω = {a1, a2, . . . , ar} is an arbitrary decomposition of h into sum-
mands, with no summand of type 2m − 1 (non-dyadic decomposition of h).
Denote the number of such decompositions by d(h).

For any dimension m 6 k, consider the classes

Xm
ωm
, Sq1Xm−1

ωm−1
, Sq2Xm−2

ωm−2
, . . . , SqIhXh

ωh
, . . . , SqIWk, (7)

where SqIh is an admissible sequence of total degree (m − h), and ωh is a
non-dyadic decomposition of h.

It turns out that all classes (7) are linearly independent.
To prove it, take a term of the polynomial (6), apply the operation SqI

and take the leading monomial. It turns out that the sum of all such leading
monomials looks like

∑

Sω

(t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1 · SqI(tr+1 . . . tk), (8)

where the sum is taken over all permutations Sω which are essential for the
monomial (6) corresponding to the decomposition ω. Indeed, the index u
of any term of the polynomial

SqI((t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1tr+1 . . . tk),

is less than or equal to r, since, by Lemma II.9, the variables (tr+1, . . . , tk)
are dyadic. For u = r we have two cases: either the monomial in question
enters the polynomial

((t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1) · SqI(tr+1 . . . tk), (9)

or it enters the polynomial

SqI′

(t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1 · SqI′′

(tr+1 . . . tk).

In the first case we have ν = u+h and in the second case ν is strictly greater
than r+h. This yields that all terms of the polynomial (9) are greater (with
respect to (Q)) than any other term of the polynomial SqIXh

ω . On the other
hand, no term of the polynomial (9) can vanish as a result of symmetrisation
from (8). Indeed, any permutation of variables ti, which is essential for (6),
is essential for its non-dyadic factor (t1)

a1+1(t2)
a2+1 . . . (tr)

ar+1, which is
a non-dyadic factor for any term of the polynomial (9). Consequently,
transforming (9) by permutations of the system Sω, we obtain the relations
not containing non-dyadic factors. Thus their sum is non-zero.
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Since no term can be expressed as a linear combination of strictly lower
terms (in (Q)), the above arguments yield that any linear dependence be-
tween classes (7) is a consequence of those linear dependencies containing
those classes SqIXh

ω , leading with respect to (Q), whose members are of
the same index u = r and of the same index ν = r + h, this, having the
same degree h. Furthermore, the decompositions ω of h by means of which
we constructed Xh

ω , for which this linear dependence holds, should be the
same. Otherwise, non-dyadic factors of higher terms (in (Q)) of the de-
compositions of the squares SqIXh

ω should all be different, and their sum
should be non-zero. Thus, any linear dependence between classes (7) is a
corollary of linear relations of the type

∑
λ

cλSq
IλXh

ω = 0, containing only

one class Xh
ω .

Let us write down the (Q)-leading terms of this relation:
∑

λ

cλ(t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1SqIλ(tr+1 . . . tk) = 0.

All members of this relation containing a fixed factor (t1)
a1+1(t2)

a2+1 . . .
(tr)

ar+1, should sum to zero. Thus,

(t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1

∑

λ

cλSq
Iλ(tr+1 . . . tk) = 0.

But, according to Lemma II.8′, all classes SqI(tr+1 . . . tk) = 0 are linearly
independent if the degree m − h of the sequence I does not exceed k − r.
Since, evidently, h > 2r, this inequality holds for all m 6 k. Consequently,
the coefficients cλ are equal to zero. Thus, the classes (7) are not connected
by any non-trivial linear dependence.

The rank of Hk+m(M(O(k))), i.e. the rank of the ideal J , is equal to
the total number p(m) of decompositions of m into summands. On the
other hand, the number of classes (7) is equal to

∑
h6m

c(m − h)d(h). It is

easy to see that
p(m) =

∑

h6m

c(m− h)d(h).

Indeed, to each decomposition of m there correspond two decompositions:
the decomposition of (m − h) consisting of summands of the type 2n − 1
and the decomposition of h, consisting of the remaining summands. Thus,
the classes (7) form a base of the group Hk+m(M(O(k))).

Associate with each class Xh
ω a mapping

Fω : M(O(k))→ K(Z2, k + h),

such that F ∗
ω(ι) = Xh

ω , where F ∗
ω is the homomorphism generated by the

mapping Fω . The mappings Fω define the mapping F from M(O(k)) to
the product
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Y = K(Z2, k)×K(Z2, k + 2)× . . .
× (K(Z2, k + h))d(h) × . . .× (K(Z2, 2k))

d(k). (10)

Since the classes (7) from the base of Hk+h(M(O(k))), then the homo-
morphism F ∗ generated by F , is an isomorphic mapping from the group
Hk+m(Y ;Z2) to the group Hk+m(M(O(k))) for all m 6 k. Considered
modulo p, p > 2, the cohomology algebra of Y is trivial1, and the coho-
mology algebra of the space (M(O(k))) is trivial in dimensions less than
2k. Consequently, the homomorphism F ∗ is in this case an isomorphism in
dimensions less than 2k; it is a monomorphism in dimension 2k. Thus, for
M(O(k)) and Y , one can apply Theorem II.6. According to this theorem,
there exists a mapping g from the 2k-frame of the cellular decomposition
Y to the cellular decomposition M(O(k)), for which the mapping g ◦ F is
homotopic to the identity mapping on the (2k − 1)-frame of the decompo-
sition M(O(k)).

Consequently, we get

Theorem II.10. The space M(O(k)) has the same homotopy 2k-type
as the product Y (10) of Eilenberg-MacLane polyhedra.

Corollary II.11. The stable homotopy group πk+h(M(O(k))), h < k,
is isomorphic to the direct sum of d(h) groups Z2.

Consider g restricted to the first factor, we get

Corollary II.12. There exists a mapping g from the 2k-skeleton of the
decomposition K(Z2, k) to the decomposition M(O(k)) such that g∗(U) = ι,
where ι is the fundamental class of the decomposition K(Z2, k).

Since every class u ∈ Hk(A;Z2) of any space A is an image of the
fundamental class ι under some mapping f : A→ K(Z2, k), then we get

Corollary II.13. Any k-dimensional modulo 2 cohomology class of any
space of dimension 6 2k admits an orthogonal realisation.

7. The space M(O(k)) for small k

k = 1. The space of unoriented 1-vectors is the real projective space
PR(N) of some very high dimension N ; the corresponding universal fibre
space AO(1) coincides with the cylinder of the two-fold covering SN →
PR(N). Contracting in AO(1) the boundary sphere SN to a point, we get as
M(O(1)) the real projective space PR(N +1). Thus, both spaces K(Z2, 1)
and M(O(1)) coincide with the real projective space PR(∞) of infinite

1Because, according to statement 8 of Chapter II of [21], all integral cohomology
groups of the space Y are 2-groups. — Editor’s remark
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dimension. Consequently, every one-dimensional mod 2 cohomology class
admits an orthogonal realisation.

k = 2. The cohomology of the space M(O(2)) is described as follows1.

In dimension 2 there is one modulo 2 class — the fundamental class U .

In dimension 3 — the integral2 class Sq1U = UW1.

In dimension 4 — the integral class X and the class U(W1)
2 mod 2. The

class X is the square of the fundamental class of the space M(SO(2)),
and the modulo 2 class is the square U2 of the class U .

In dimension 5 there is an integer class of order two

Sq1(U(W1)
2) = U(W1)

3

and the class U2W1 modulo 2.

For the natural mapping F : M(O(2)) → K(Z2, 2), we have for Z2

coefficients:

F ∗(ι) = U ; F ∗(Sq1ι) = UW1; F ∗(Sq2ι) = U2;

F ∗(Sq2Sq1ι) = Sq2(UW1) = U2W1 + U(W1)
3; F ∗(ι · Sq1ι) = U2W1.

Consider, as in the proof of Theorem II.6, the cylinder K of F . This
cylinder K contains as a closed subset the space M(O(2)); for conciseness,
we denote it by M . From the exact sequence corresponding to the inclusion
F : M → K, it follows that

Hr(K,M ;Zp) = 0 for r < 5,

H5(K,M ;Zp) = Zp for all prime p.

1The algebra H∗(M(O(2), Z2)) is an ideal of the polynomial algebra H∗(G2, Z2)
in W1 and W2. This ideal is generated by the element W2. Consequently, by setting
U = W2, we get: H2 = (U), H3 = (UW1), H4 = (U2, U(W1)2), H5 = (U(W1)3, U2W1)
and so on. On the other hand, by Serre’s theorem, H3(Z2, 2; Z2) = Sq1(ι). Since
F ∗(ι) = U , where F : M(O(2)) → K(Z2, 2)×K(Z2, 4) is the mapping constucted in the
proof of Theorem II.10, then

Sq1U = Sq1F ∗(ι) = F ∗Sq1(ι) = UW1,

consequently,

Sq1(U(W1)2) = U · Sq1((W1)2) + Sq1(U) · (W1)2 = U(W1)
3,

because Sq1((W1)2) = W1 · Sq1(W1) + Sq1(W1) · W1 = 0. — Editor’s remark
2That is, obtained from an integral cohomology class by reduction modulo 2. Here

and in the sequel, one should note that the classes Sqix for odd i are integer in this
sense. — Editor’s remark
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From here, by a duality argument, we get

Hr(K,M ;Zp) = 0 for r < 5,

H5(K,M ;Zp) = Zp for all prime p.

Thus, by the universal coefficient formula,

Hr(K,M ;Zp) = 0 for r < 5,

H5(K,M ;Zp) = Z.

Applying the relative version of the Hurewicz theorem, we get:

π4(K,M) = 0, π5(K,M) = Z.

Thus,
π3(M) = 0, π4(M) = Z.

The mapping g, which is homotopically inverse to F , can be defined on the
4-skeleton of the decomposition K. While extending g to the 5-skeleton of
K(Z2, Z), we get an obstruction in the group π4(M) = Z. According to
the general second obstruction theory [14], this class belonging to the group
H5(Z2, 2;Z) is nothing but the Eilenberg-MacLane invariant corresponding
to the second non-trivial homotopy group π4(M). This class generates the
kernel of the homomorphism F ∗ : H5(Z2, 2;Z)→ H5(M ;Z)1.

The group H5(Z2, 2;Z) is the cyclic group of order four. It is generated

by the element 1
4
δp(ι), which is the image of the Pontrjagin square p(ι)

of the fundamental class ι under the Bockstein homomorphism 1
4
δ. The

group H5(M ;Z) is the cyclic group of order two; it is generated by the class
Sq1(U(W1)

2). Reducing this class modulo 2, we obtain the class U(W1)
3.

It turns out that the homomorphism F ∗ takes the generator of the first
group to the generator of the second group. It is clear that it is sufficient
to check this statement only modulo 2. To do this, let us calculate the

modulo 2 reduction of the class 1
4
δp(ι). Let u be a cocycle of the class ι

and let ν = 1
2
δp(u) be a cocycle of the class Sq1ι. The Pontrjagin square is

defined by the formula2 p(u) = u ⌣ u+ u ⌣1 δu. Consequently, according
to the coboundary formula, we have

1Only this property of the obstruction will be used in the sequel. Thus, in the
case in question we may define the obstruction as the class generating the kernel of the
homomorphism F ∗. — Editor’s remark.

2The Pontrjagin product associates with a mod τ -cycle X for even τ a mod 2τ cycle
as follows. We take X and define the operation ⌣1 for u and δu. We have δu = τa;
then u ⌣1 δu = u ∗ a.

Here the operation ∗ is defined as follows. Let K be a cellular complex and let u and
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δp(u) = δu ⌣ u+ u ⌣ δu+ δu ⌣1 δu+ u ⌣ δu− δu ⌣ u.

From here, dividing by 4 and reducing modulo 2, we get

1
4
δp(u) = u ⌣ ν + ν ⌣1 ν = ι · Sq1ι+ Sq2Sq1ν.

The homomorphism F ∗ takes this class to the class

U2W1 + U2W1 + U(W1)
3 = U(W1)

3,

i.e. to the generator of the group H5(M ;Z), reduced modulo 2.
Since the generator of H5(M ;Z) has order 2, the mapping F ∗ takes the

class 1
2
δp(ι) to zero; this class is just the desired obstruction. (Note that

though this obstruction is a second order class, if we reduce it modulo 2,
we get zero. This yields that it cannot be expressed by means of operations
Sqi.) Thus, we have proved the following

Theorem II.14. In order for a class x ∈ H2(A;Z2) of a certain 5-
dimensional space A to admit an orthogonal realisation, it is necessary and

sufficient that the class 1
2
δp(x) equals zero, where p(x) is the Pontrjagin

square of x.

Note that the conditions of this theorem hold if and only if there exists
a class X ∈ H4(A;Z2) such that Sq2Sq1x+ x · Sq1x = Sq1X .

k = 3. Compare the polyhedron M(O(3)) with the product Y of
Eilenberg-MacLane spaces, given in Theorem II.10. It turns out that the
homomorphism F ∗ is an isomorphism not only in dimension 6, but also
in dimension 7. On the contrary, in dimension 8, this homomorphism is
presumably not an isomorphism. Indeed, we have:

in dimension 3
F ∗(i) = U ;

in dimension 4
F ∗(Sq1ι) = UW1;

in dimension 5

F ∗(Sq2ι) = UW2 and

F ∗(X2) = U(W1)
2 (new generator);

v be two modulo τ cohomology classes of dimensions r and s, respectively. Then for an
(r + s − 1)-simplex, we define

(u ∗ v)(T ) =
s∑

i=1

u(ai, ai+1, . . . , ai+r)v(a1, . . . , ai+r, . . . , ai+s)

— Translator’s remark.
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in dimension 6

F ∗(Sq3ι) = U2, F ∗(Sq2Sq1ι) = U(W2W1 + (W1)
3),

F ∗(Sq1X2) = U(W1)
3;

in dimension 7

F ∗(ι · Sq1ι) = U2W1,

F ∗(Sq2X2) = U(W2(W1)
2 + (W1)

4).

In dimension 7, we have two new generators, F ∗(X4) = U(W1)
4 and

F ∗(X22) = U(W2)
2. The homomorphism F ∗ is not an isomorphism in

dimension 8 because F ∗(Sq3X2 + (Sq1ι)2 + Sq1X4) = 0. From the above
we get (see Theorem II.6)

Theorem II.15. Every three-dimensional class over Z2 of any space
of dimension less than 8 admits an orthogonal realisation.

Remark. I do not know what the obstruction in dimension 8 is equal to.
Possibly, it vanishes.

We conclude this subsection with the following general remark: for k > 1
there is no map

g : K(Z2, k)→M(O(k)),
homotopy inverse to the map F : M(O(k)) → K(Z2, k). Indeed, as Serre
has pointed out to me, the cohomology algebra of the space K(Z2, k) is for
k > 1 the polynomial algebra in infinitely many variables. The cohomology
of M(O(k)), is, on the contrary, isomorphic (up to grading change) to the
cohomology of the Grassmann manifold Gk; thus, it is of finite type. For
sufficiently large dimensions, the rank of the algebra H∗(Z2, k) is strictly
greater than the rank of H∗(M(O(k))), so that the kernel of F ∗ is distinct
from zero; thus, the mapping g cannot exist. Thus, for any k > 1 there
exist spaces of high dimension (greater than 2k), for which some modulo 2
k-dimensional cohomology classes admit no orthogonal realisation.

8. The complex M(SO(k)). Stationary case

In Section 6 we have described the “stationary” homotopy type of the
space M(O(k)). For the space M(SO(k)) we cannot do this because the
homotopy type of this space is much more complicated. Indeed, the poly-
hedron Y , equivalent to M(O(k)), is a topological product of the polyhe-
dra K(Z2, k); the polyhedron equivalent to the space M(SO(k)) is not a
product, but an iterated fibre space, where all the fibres are polyhedra of
types K(Z2, r) and K(Z,m) (and, possibly, even K(Zp, n)!), and the re-
sulting bundles are, in general, non-trivial. Thus, we restrict ourselves with
the description of an equivalent polyhedron only in dimensions k+ i, where
i 6 7.
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The definition of “Silber’s polyhedron” K. It is known that the
polyhedron K(Z, k + 4) is a fibre of some asphericalal space A, whose
base is K(Z, k + 5) (see Serre, [24]1). Let u be the fundamental class
of the base K(Z, k + 5). There exists a mapping f taking K(Z, k) to
K(Z, k + 5) such that f∗(u) = St53(ν), where St53 is the “Steenrod cube”
of dimension 5, which is an integer class of order three2. Denote by
K the space induced by the mapping f and the fibre space A. The
space K is a fibre space with base K(Z, k) and fibre K(Z, k + 4). The
only non-trivial homotopy groups of K are the groups πk and πk+4,
each isomorphic to Z. The corresponding Eilenberg-MacLane invari-
ant k ∈ Hk+5(Z, k;Z) coincides with St53(ν). The necessary and suffi-
cient condition for F : M → K (M is a cellular decomposition), de-
fined on the (k + 4)-skeleton of M , to be extended over M , is the
triviality of the cube St53(x), where x is the image of the class ι un-
der F ∗.

The cohomology of K

1. Cohomology modulo 2. Let F 3 be a mapping ofK(Z, k) to itself
such that (F 3)∗(ι) = 3ι. The fibre space generated by the space K under
this mapping coincides with the product K(Z, k) × K(Z, k + 4), because
the Eilenberg-MacLane invariant of this space is equal to zero:

F 3∗(St53(ι)) = St53(F
3(ι)) = St53(3ι) = 0.

Consequently, there exists a mapping G coordinated with the bundles
over K(Z, k+4), that takes the product K(Z, k)×K(Z, k+4) to the space
K, for which the corresponding mapping of the bases K(Z, k) coincides
with F 3.

The mapping G generates a homomorphism of the cohomology spectral
sequence of the bundle K to the trivial spectral sequence of cohomology of
the product K(Z, k)×K(Z, k + 4).

The homomorphism G∗ is an isomorphism for the E2 terms of these
spectral sequences. Moreover, the homomorphism (F 3)∗ is an automor-
phism of the algebra H∗(Z, k;Z2). Consequently, the Leray differential
d2 of the term E2 of the spectral sequence for the fibre K is trivial, be-
cause it is trivial in the spectral sequence of the product. The same is
true for all sequences of differentials di. Thus we get: the cohomology al-
gebra H∗(K;Z2) is isomorphic to the cohomology algebra of the product
K(Z, k)×K(Z, k + 4).

1Here A is the space of paths with fixed initial point of the polyhedron K(Z,k + 5).
— Editor’s remark

2Here the author uses the fact that the classes St
2k(p−1)+1
p (x) can be considered as

integral. — Editor’s remark
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2. Cohomology modulo p, where p is prime > 5. Arguing
as above, we arrive at an analogous conclusion: the cohomology alge-
bra H∗(K;Zp) is isomorphic to the cohomology algebra of the prod-
uct K(Z, k)×K(Z, k + 4).

3. Cohomology modulo 3. Here we shall need a more detailed in-
spection of the spectral sequence of K. Denote by ν the fundmental class
of the fibre K(Z, k + 4). By construction of K, the transgression (which
coincides here with dk+5) takes the fundamental class ν to the class St53(ι).
Since Steenrod’s powers commute with the transgression (up to a non-zero
coefficient), the class St43ν maps to a1 class St43 ◦ St53(ι) = St93(ι)

2, and
the class St53(ν) maps to the class St53 ◦ St53(ι) = 0. Consequently, the
cohomology algebra H∗(K;Zp) has the following generators:

in dimension k — generator corresponding to the class ι (by abuse of no-
tation, we denote it also by ι);

in dimension k + 4 the class St43(ι);

in dimension k + 8 the class St83(ι);

in dimension k + 9 the element generated by the class3 St53(ν).

The space equivalent to M(SO(k)). This space Y is the product of
the space K defined above and the Eilenberg-MacLane space K(Z2, k+5).
The corresponding mapping F : M(SO(k)) → Y is defined according to
the following arguments.

There exists a mapping f from the (k+4)-skeleton of the cellular decom-
position of M(SO(k)) to the space K such that f∗(ι) = U . Since St53U = 0

(because the cohomology groups of M(SO(k)), as well as those of Ĝk, have
no elements of order 3), then the mapping f can be extended to a mapping

f : M(SO(k))→ K

from M(SO(k)) to K. On the other hand, there exists a mapping g :
M(SO(k)) → K(Z2, k + 5) such that g∗(ι′) = UW2W3, where ι′ is the
fundamental class of the space K(Z2, k + 5). The pair f and g defines the
desired mapping F : M(SO(k))→ Y .

Let us calculate the homomorphism F ∗ generated by F .
1Non-zero. — Editor’s remark
2Here and later the author uses Adem’s formulae (see remark on page 203) for Steen-

rod’s powers. (Recall that up to a factor the operation Da
p coincides with St

2a(p−1)
p , and

the operation βDa
p coincides with St

2a(p−1)+1
p .) — Editor’s remark

3Indeed, since dk+5(ν) = St53(ι) and dk+5(St43(ν)) = St93(ι), when passing from E2

to E∞ the elements ν, St53(ι), St43(ν) and St93(ι) vanish. On the other hand, according
to H.Cartan (see page 152), in the dimensions 6 k + 9 the only generators of E2 =
H∗(Z, k;Z3) ⊗ H∗(Z, k + 1, Z3), except the vanishing ones, are the elements indicated
by the author. — Editor’s remark
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Calculation modulo 2. Consider the dimensions k + i, where 0 6

i 6 8.
Denote by ν the image of the generator of the cohomology algebra of

K(Z, k + 4) under

H∗(K;Z2) ≈ H∗(Z, k;Z)⊗H∗(Z, k + 4;Z2),

we have:

i = 0; F ∗(ι) = U.
i = 1; F ∗(0) = 0.
i = 2; F ∗(Sq2ι) = UW2.
i = 3; F ∗(Sq3ι) = UW3.
i = 4; F ∗(Sq4ι) = UW4,

F ∗(ν) = U(W2)
2.

i = 5; F ∗(Sq5ι) = UW5,
F ∗(ι′) = UW2W3.

i = 6; F ∗(Sq6ι) = UW6,
F ∗(Sq4Sq2ι) = U(W2W4 + (W3)

2 + (W2)
3),

F ∗(Sq2ν) = U((W2)
3 + (W3)

2),
F ∗(Sq1ι′) = U(W3)

2.
i = 7; F ∗(Sq7ι) = UW7,

F ∗(Sq5Sq2ι) = U(W5W2 +W4W3 +W3(W2)
2),

F ∗(Sq3ν) = UW3(W2)
2,

F ∗(Sq2ι′) = UW2(W5 +W3W2),
i = 8; F ∗(Sq8ι) = UW8,

F ∗(Sq6Sq2ι) = U(W6W2 +W5W3 +W4(W2)
2),

F ∗(Sq4ν) = U(W4(W2)
2) +W2(W3)

2 + (W2)
4),

F ∗(Sq3ι′) = UW5W3,
F ∗(Sq2Sq1ι′) = UW2(W3)

3.

It is easy to see that for i 6 8 the elements of the algebra
H∗(M(SO(k));Z2) given in the table above, are linearly independent.
Moreover, for i 6 7 these elements form a basis of the group
Hk+i(M(SO(k));Z2). Consequently, the mapping F ∗ for i 6 7 is an iso-
morphism from the group Hk+i(Y ) to the group Hk+i(M(SO(k));Z2), and
for i = 8 the mapping F ∗ is a monomorphism.

Remark. According to the canonical type (Serre, [23]) of the generators of
H∗(Z, k;Z2), we may proceed with our calculations. In dimension 8, we get two
new generators corresponding to the Pontrjagin classes (W2)

4 and (W4)
2.

Calculation modulo 3. The factor K(Z2, k+5) gives nothing. Thus,

i = 0; F ∗(ι) = U,
i = 4; F ∗(St43ι) = UP4,
i = 8; F ∗(St83ι) = U((P4)

2 + 2P8).
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modulo1 5:

i = 0; F ∗(ι) = U, F ∗(ν) = UP4, F
∗(St85ι) = U((P4)

2 − 2P8).

Calculation modulo p, p > 5:

i = 0; F ∗(ι) = U,
i = 4; F ∗(ν) = UP4,
i = 8; F ∗(0) = 0.

Thus, for any field of coefficients the homomorphism F ∗ for i 6 7 is
an isomorphism from the group Hk+i(Y ) to the group Hk+i(M(SO(k)))
and for i = 8 it is an isomorphism. Since the spaces Y and M(SO(k))
are simply connected, one may apply Theorem from 6 to them. According
to this theorem, the spaces M(SO(k)) and Y have the same (k + 8)-type.
Thus, we get

Theorem II.16. For i 6 7 the stationary homotopy groups
πk+i(M(SO(k))) are defined by the following formulae:

πk+1 = πk+2 = πk+3 = 0;

πk+4 = Z; πk+5 = Z2; πk+6 = πk+7 = 0.

Theorem II.17. For k > 8 an integral k-dimensional cohomology class
x of a (k+8)-dimensional space is realisable with respect to the torsion group
if and only if the integral class St53(x) vanishes.

9. The space M(SO(k)) for small k

In the present subsection, we define the first obstruction for the map-
ping g : K(Z, k) → M(SO(k)) for k < 5. This obstruction is, as in the
stationary case, the Steenrod cube St53(ι) of the fundamental class.

k = 1. The space M(SO(1)) is a product S∞ × S1, where some sphere
of the type S × t is contracted to a point. This space has the homotopy
type of the circle S1. On the other hand, S1 is a realisation of the space
K(Z, 1). This yields that any one-dimensional integral cohomology class is
realisable with respect to the rotation group (this group, however, consists
of one element).

k = 2. The Grassmann manifold Ĝ2 of two-dimensional planes is the
classifying space of the group SO(2) = SU(1)=S1. Thus, this mani-
fold can be identified with the complex projective space PC(N) of high

1The calculation of Steenrod’s operations Sti
p of the fundamental class U can be

found in Borel-Serre [5] and Wu [35].
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dimension. The universal fibre space ASO(2) over Ĝ2 can be identified with
the normal tubular neighbourhood of the space PC(N), the latter consid-
ered as a projective hyperplane in PC(N+1). This yields that the space
M(SO(2)) can be identified with the space PC(N+1). Thus, the space
M(SO(2)), as well as K(Z, 2), can be realised by a projective space of “high
dimension1”. Thus, any two-dimensional cohomology class is realisable with
respect to the rotation group.

k = 3. As usual, denote by ι the fundamental class of K(Z, 3). It
is known that the class St53(ι) is non-zero2. Let us construct the “Silber
space” K, whose Eilenberg-MacLane invariant k is equal to St53(ι). This
space is a fibre space with base K(Z, 3) and fibre K(Z, 7). As above, we see
that for any prime p 6= 3, the cohomology algebra H∗(K;Zp) is isomorphic
to the cohomology algebra of the product K(Z, 3) × K(Z, 7). Let ν be
the fundamental class of the space K(Z, 7). It is easy to see that the
group H3(K,Z3) has a unique generator, which is the image of ι under
the fibration map K → K(Z, 3); we shall denote this generator also by ι.
Furthermore, H4 = H5 = H6 = 0, the group H7 is generated by the
element St43(ι), and the group H8 is trivial.

Since St53(U)=0 there exists a mapping F : M(SO(3))→K such that:

mod 2 F ∗(ι) = U,
F ∗(Sq2ι) = UW2,
F ∗(Sq3ι) = UW3 = U2,
F ∗(ν) = U(W2)

2,
F ∗(ι · Sq2ι) = U2W2.

mod 3 F ∗(ι) = U,
F ∗(St43ι) = UP4,
and nothing more up to dimension 11.

mod p, p > 5 F ∗(ι) = U,
F ∗(ν) = UP4,
and nothing more up to dimension 11.

Thus, for any coefficient field, the homomorphism F ∗ is an isomorphism
from H∗(K) onto H∗(M(SO(3))) in dimensions 6 7, and in dimension 8,
the homomorphism F ∗ is a monomorphism. Thus, by Theorem II.6, the
spaces K and M(SO(3)) have the same 8-type. This yields

Theorem II.18. An integral 3-dimensional cohomology class x of any
space of dimension 6 8 is realisable with respect to the rotation group if
and only if the integral class St53(x) is equal to zero.

1More precisely, of infinite dimensional projective space PC(∞). — Editor’s remark
2Otherwise the operation St53 would be trivial in any space. — Editor’s remark
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k = 4. Let us construct the Silber space K for M(SO(4)). The ho-
momorphism F ∗, generated by F : M(SO(4)) → K, is described by the
following formulae (the notation is as above):

mod 2 F ∗(ι) = U,
F ∗(Sq2ι) = UW2,
F ∗(Sq3ι) = UW3,
F ∗(Sq4ι) = U2,
F ∗(ν) = U(W2)

2,
and nothing more up to dimension 9.

mod 3 F ∗(ι) = U,
F ∗(St4ι) = UP4,
F ∗(ι2) = U2,
and nothing more up to dimension 12.

mod p, p > 5 F ∗(ι) = U,
F ∗(ι2) = U2,
F ∗(ν) = UP4,
and nothing more up to dimension 12.

Thus, the homomorphism F ∗ is an isomorphism in dimension 6 8; it is
a monomorphism in dimension 9. Consequently, the spaces M(SO(4)) and
K have the same 9-type. This yields

Theorem II.19. An integral four-dimensional cohomology class x of
a space of dimension 6 9 is realisable with respect to rotation group if and
only if the integer class St53(x) vanishes.

10. The multiplication theorem

In this subsection we describe several general theorems about classes, re-
alisable with respect to the rotation group. First, let us prove the following
necessary condition:

Theorem II.20. A necessary condition for an integer cohomology class
x to be realisable with respect to the rotation group is that all Steenrod

powers St
2m(p−1)+1
p (x) vanish for all prime p.

Indeed, for an odd prime p all Steenrod powers St
2m(p−1)+1
p U of the

fundamental class U of M(SO(k)) vanish because the Grassmann manifold

Ĝk for p > 2 has no p-torsion (cf. [3]).
To prove the following theorem, we shall use some lemmas on the

Eilenberg-MacLane spaces K(Z, n).
NOTATION: Let FN be the mapping of K(Z, n) to itself (up to homo-

topy), for which F ∗
N (ι) = Nι.
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Lemma II.21. Let 0 → G′ → G → G′′ → 0 be an exact se-
quence of abelian groups. Assume the endomorphisms (FN ′)∗ : H∗(Z, k;G′)
and (FN ′′)∗ : H∗(Z, k;G′′) are trivial. Then the endomorphism (FN )∗ :
H∗(Z, k;G), where N = N ′N ′′ is also trivial.

Indeed, consider the corresponding exact sequence of cohomology groups

→ Hr(Z, k;G′)
f

−−−→ Hr(Z, k;G)
g

−−−→ Hr(Z, k;G′′)→ .

For any integerm the homomorphisms f and g from this sequence commute
with the endomorphism (Fm)∗. Let x ∈ Hr(Z, k;G). Then, by assumption,
g(F ∗

N ′′(x)) = F ∗
N ′′(g(x)) = 0.

Consequently, F ∗
N ′′(x) = f(y), where y ∈ Hr(Z, k;G′), thus,

F ∗
N (x) = F ∗

N ′ ◦ F ∗
N ′′(x) = F ∗

N ′(f(y)) = f(F ∗
N ′(y)) = f(0) = 0.

The lemma is proved.
From this lemma we get the following

Lemma II.22. For any abelian group G of finite order the endomor-
phism (FN )∗ : H∗(Z, k;G) is trivial.

Since G is a direct sum of its p-primary components, it is sufficient, by
previous lemma, to prove that for any prime p the endomorphism (Fp)

∗ of
the algebra H∗(Z, k;Zp) is trivial. But this follows from the fact that the
algebra H∗(Z, k;Zp) is generated, as shown in point 6, by iterated p-powers
Stip of the fundamental class ι.

Lemma II.23. Let G be an abelian group of finite type and let all
elements of the group Hr(Z, k;G) have finite order N . Then there exists
a non-zero integer m such that the endomorphism (Fm)∗ : Hr(Z, k;G) is
trivial.

Decompose the group G into a direct sum of a free group F and a finite
group T . Then

Hr(Z, k;G) ≈ Hr(Z, k;F ) +Hr(Z, k;T ).

All elements of Hr(Z, k;F ) have order N . It is clear that it suffices
to prove the lemma only for Hr(Z, k;F ), because the group Hr(Z, k;T )
satisfies the conditions of Lemma II.22, because T is finite. Consider the
exact sequence

0→ F
(N)
−−−→ F → F ′ → 0,

where the homomorphism (N) is multiplication by a non-zero integer N .
Since the group F is of finite type, the group F ′ is a finite group of some
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order N ′. Let x ∈ Hr(Z, k;F ) and let g be a homomorphism of the exact
sequence of the homology groups

. . .→ Hr(Z, k;F )
(N)
−−−→ Hr(Z, k;F )

g
−−−→ Hr(Z, k;F ′)→ . . . .

Then, by Lemma II.22, g ◦ F ∗
N ′(x) = F ∗

N ′(g(x)) = 0.
Thus, the element F ∗

N ′(x) has type Ny, where y ∈ Hr(Z, k;F ), and
thus it is equal to zero. The lemma is proved.

Lemma II.24. Let Y be an arbitrary space for which the free com-
ponent of the k-dimensional homotopy group πk(Y ) is isomorphic to Z,
and let t be the generator of this free component. If for all q > k
the homotopy groups πq(Y ) are of finite type and the cohomology groups
Hq+1(Z, k;πq(Y )) are finite then for any q > k there exists a mapping Gq

from the q-skeleton Kq of the cellular decomposition K(Z, k) to the space
Y that takes the generator of the group πk(K(Z, k)) ≈ Z to the element
N(q, k)t, where the non-zero integer N(q, k) depends only on k, q and Y .

Indeed, the k-skeleton of the cellular decomposition K(Z, k) can be
thought of as a sphere Sk. Then the corresponding mapping Gk : Sk → Y
is defined as the mapping generating the element t of πk(Y ). Assume for
some q > k we have already defined the mapping Gq from the q-frame Kq

of the decomposition K(Z, k). When extending Gq to the (q + 1)-frame
of the decomposition K(Z, k) we get an obstruction w′, which is a cocycle
whose class is an element of the group Hq+1(Z, k;πq(Y )), which is finite by
assumption. Consider the mapping Fm : K(Z, k)→ K(Z, k), corresponding
(by Lemma II.23) to the finite group Hq+1(Z, k;πq(Y )). The composite
map Gq ◦ Fm

K(Z, k)
Fm−−−→ K(Z, k)

Gq

−−−→ Y

is defined on the q-skeleton K(Z, k). When extending it over the
(q + 1)-frame, we get an obstruction w = (Fm)∗(w′). By Lemma II.23,
the cohomology class of the cocylce w is zero. Thus, after a possible defor-
mation the composite mapping Gq◦Fm is extended over the (q + 1)-frame of
the decomposition K(Z, k) thus defining a mapping Gq+1. The correspond-
ing number N(q + 1, k) is, evidently, defined by the formula N(q + 1, k) =
mN(q, k), thus, it is non-zero. Lemma II.24 is completely proved.

Let us apply Lemma II.24 to the Grassmann manifold Ĝk of k-planes, or,
more exactly, to the universal space ASO(k), which is homotopy equivalent
to this manifold. The number k is assumed to be even. Recall that the
cohomology algebra H∗(Ĝk) over the real numbers is a polynomial algebra.
The generators of this algebra are the Pontrjagin classes P 4i, i < [k/2],
and the fundamental k-dimensional class Xk. This together with Serre’s
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C -theory [22] yields that the integral cohomology group of the manifold

Ĝk is C -isomorphic, where C is the class of finite groups, to the integral
cohomology algebra of the product

K(Z, 4)×K(Z, 8)× . . .×K(Z, k)

of the Eilenberg-MacLane polyhedra1. Consequently2, the only homotopy
groups of Ĝk which are not finite are those of dimensions 4i and k (i.e. the
dimensions of the generators given above).

Let t ∈ πk(Ĝk) be a generator of the free component corresponding to
the class3 Xk (the arbitrariness choice of this component plays no role). For

the corresponding mapping t : Sk → Ĝk we have t∗(Xk) = N0sk, where
N0 is some non-zero integer.

It is clear that the conditions of Lemma II.24 hold. Indeed, if q 6≡ 0
mod 4 then the homology group Hq+1(Z, k;πq(Ĝk)) is finite because so is
the group Hq+1(Z, k;Z)4.

Thus, for any q > k one can define a mapping Gq from the q-frame
of the cellular decomposition K(Z, k) to the space ASO(k) and hence, to
M(SO(k)). Consider the composite mapping

Kq
Gq

−−−→ Ĝk

h
−−−→M(SO(k)).

Let U be the fundamental class of the space M(SO(k)). Then if k is even
then h∗(U) = Xk and, consequently, G∗

q ◦ h∗(U) = Nι, where the non-zero
number N depends only on q and k. Thus, we have proved

Theorem II.25. For any integral k-dimensional homology class x of
some polyhedron of finite dimension q there exists a positive non-zero N ,
depending only on q and k for which the class Nx is realisable in the rotation
group5.

Remark. The arguments above are applicable not only to the real Grass-
mann manifold Ĝk but also to the complex one, and even (for k ≡ 0 mod 4) to

1From arguments on page 151 it follows that there exists a continuous mapping
f : Ĝk → → K(Z, 4) × K(Z, 8) × . . . × K(Z,k), for which f∗(u4i) = P 4i, i =
1, 2, . . . , f∗(uk) = X, where u2p is the fundamental class of the polyhedron K(Z,2p).
Since, by [24], the real cohomology algebra of the polyhedron K(Z,2p) is the polynomial
algebra in u2p, then f∗ is an isomorphic in the case of real coefficients. Thus, by [22],
f∗ is an isomorphism over integers. — Editor’s remark

2By generalised J. H.C.Whitehead theorem. — Editor’s remark
3That is of the component taken to πk(K(Z, k)) by the mapping f constructed in

the previous remark — Editor’s remark
4This follows from [24] that the group Hp(Z, k; Z) is infinite if and only if p is divisible

by k. — Editor’s remark
5If A has dimension q, then for any x ∈ Hk(A; Z) there exists such a mapping

f : A → Kq that x = f∗(ι); see page 151. — Editor’s remark
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the classifying space of the symplectic group. Consequently, the analogous theo-
rem holds not only for SO(k) but also for the unitary (resp., symplectic) group.
However, for these groups the coefficient N is much larger.

11. Summary of results

Below we formulate the results concerning our initial problem: to realise
a given homology class by means of a submanifold. According to Theorems
II.5 and II.5′, this problem is reduced to the question whether the cor-
responding cohomology class admits an orthogonal realisation. A partial
answer to this question was given in §§ 7–10.

1. Modulo 2 classes. From Theorems II.13–II.15, we get

Theorem II.26. For any differentiable manifold V , all elements of the
following homology groups are realisable by submanifolds:

Hn−1(V
n) for all n;

Hn−2(V
n) for all n < 6;

Hn−3(V
n) for all n < 8;

Hi(V
n) for i 6 n/2 and all n.

Note that in the case of Hn−2(V
n), the obstruction (1/2)δp(u) (see

Theorem II.14) necessarily vanishes on the fundamental class of any
five-manifold V 5. Indeed, for an orientable manifold V 5 this is triv-
ial and for a non-orientable one it follows from the fact that the fun-
damental class of the group H5(V 5, Z) is a Steenrod square Sq1, thus,
it is non-zero when considered modulo two. We cannot say any-
thing about realisability of elements of the group H4(V

6). This is
the simplest example of homology groups such that the realisation-
by-submanifold question cannot be solved by using results obtained
here.

2. Integral cohomology classes. From Theorems II.17–II.19
we get

Theorem II.27. For any orientable manifold V n, all elements of the
following integral homology groups are realisable by orientable submanifolds:
Hn−1(V

n);Hn−2(V
n) for all n; Hi(V

n) for i 6 5 and all n.

In the limit case H5(V
8;Z) the corresponding obstruction, which is the

Steenrod cube St53(u), has order three thus, it vanishes on the fundamental
class. Thus, we get
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Corollary II.28. For any orientable manifold of dimension 6 8 all
integral homology classes are realisable by submanifolds.

Here the simplest case not covered by our theorems, is the group
H6(V

9;Z) (see, however, remark 1).
Furthermore, note that, by Theorem II.17, in order for a 8-dimensional

homology class of any manifold of dimension > 17 to be realisable by a
submanifold, it is necessary and sufficient that the cube St53 of the dual
cohomology class vanishes.

Finally, from the “multiplication” Theorems II.4 and II.25, we get

Theorem II.29. For any integral homology class z of some orientable
manifold V n there exists a non-zero N such that the class Nz is realisable
by a submanifold.

This theorem has an interesting corollary, that deals with homology
group over the integers or rational numbers.

Corollary II.30. The integral (rational) homology groups of any ori-
entable manifold V n have a basis consisting of elements realisable by sub-
manifolds.

Remark. One should not think that any integral homology class of some
manifold can be realised by a submanifold. In Chapter III, we give an example
of a homology class of dimension 7 (in a manifold of dimension 14), which is
not realisable by means of a submanifold. Moreover, it turns out that for each
dimension > 7 there exist (in some manifold of arbitrarily large dimension) non-

realisable integral homology classes.

I don’t know whether there exist non-realisable homology classes of
dimension 61.

The realisability of classes z and z′ does not yield, in general, the real-
isability of z+ z′. This is true, in general, when the dimensions of z and z′

are strictly less than half the dimension of the given manifold. Conversely,
the intersection of two realisable homology classes is realisable. It follows
almost immediately from Theorem I.5.

Necessity of the differentiability assumption. All theory described here
relies on method, where the ambient manifold and all submanifolds are
endowed with a differentiable structure. However, for the realisation of
classes modulo 2 one can show that some conditions of Theorem II.1 have
an intrinsic topological meaning. For instance, let F : M(O(k))→ K(Z2, k)

1 One may show that any integral homology class of dimension 6 is realizable.
The corresponding obstruction defined by the homomorphism St53 : Hn−6(V n; Z) →
Hn−1(V n;Z), is identically zero. Analogously, one can improve the results of Theorems
II.18 and II.19. In Corollary II.28, one can replace 8 with 9. Thus the simplest homology
group for which the question is open is H7(V 10; Z).



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

174 R.Thom

be the canonical mapping for which F ∗(ι) = U and let c = T (ι) be some
element from H∗(Z2, k;Z2) belonging to the kernel of F ∗ (here T is a cer-
tain sum of iterated Steenrod squares Sqi). Clearly, the cohomology class
x ∈ Hk(V n) corresponds to the class of some smoothly embedded manifold
if and only if T (x) = 0. On the other hand, one may show that if T (x) is
not equal to zero modulo two then the homology classes corresponding to x,
cannot be realised even by a topologically embedded manifold. Indeed, as I
showed in [27], with any topologically embedded manifold one can associate
generalised normal characteristic classes W i, which have formal properties
of the Stiefel-Whitney class of normal bundles of some smoothly embedded
manifold. Moreover, for these classes the Wu formulas (3) (that can be
proved by using relation given on page 203 for the iterated squares Sqi).
With any operation of type T increasing the dimension by i, we may asso-
ciate a certain polynomial in Wj of total degree i. If the class T (ι) belongs
to the kernel of F ∗ then this polynomial is identically zero. Consequently,
T (x) should be equal to zero, which contradicts the initial assumption. All
these calculations can be performed explicitly for the operation T , defined
as

T (ι) = (Sq2Sq1ι2) · ι2 + (Sq1ι)3 + Sq1ι · ι3,
where ι is the fundamental class of K(Z2, 2). This example was communi-
cated to me by Serre.

Chapter III

On Steenrod’s problem

1. Statement of the problem

Steenrod [12] has stated the following problem: define whether for a
given homology class z ∈ Hr(K) of some finite polyhedron K there exists
a compact manifold M r and a mapping f : M r → K such that the class
z is the image of the fundamental class of M r under f∗. For solving this
problem, we shall also require that M r is differentiable. As we shall see,
the answers to this question are quite different depending on the coefficient
group (Z or Z2). It turns out that Steenrod’s problem is closely connected
with the submanifold realisation problem considered in Chapter II.

2. Definition. Manifolds associated with a given finite
polyhedron K

Let K be a finite m-dimensional polyhedron. It is known that K can be
linearly embedded in a Euclidean space Rn of dimension n > 2m+ 1. Let
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us now define, e.g., as a solution of Dirichlet’s problem, an integral function
f of class C∞, which is equal to zero on K and is strictly positive on the
complement Rn \K. Since K is an absolute neighbourhood retract, then
for some open neighbourhood U of K there exists a retraction mapping
r : U → K. Let c be a small retraction value of f such that the pre-
image f−1(0, c) is contained in the neighbourhood U (such a c exists by
Theorem I.1). This pre-image Mn = f−1(0, c) will be a neighbourhood
of the polyhedron K, whose boundary (i.e. the pre-image f−1(0, c)) is a
differentiable manifold in Rn. It is evident that the polyhedron K is a
retract of the neighbourhood Mn. The corresponding retraction mapping
is a part of the mapping r.

Remark. If on the interval [0, c] there is no critical value of f then the poly-
hedron K is a deformation retract of the neighbourhood Mn. The corresponding
deformation Mn → K can be defined as a flow along the integral curves of the
gradient function f . However, I don’t know whether there always exists a function
f , not having arbitrarily small critical values.

From the neighbourhood Mn with boundary T n−1 = f−1(c) one can
get, by using the classical “doubling” construction some compact subman-
ifold V n. This manifold is obtained by gluing two isomorphic copies
of the neighbourhood Mn along their common boundary T n−1. Denote
by g : Mn → V n the inclusion mapping and by h : V n →Mn the mapping
obtained by identifying the two components Mn

1 and Mn
2 . The manifold

V n is called the manifold associated with the finite polyhedron K. It is
clear that the polyhedron K is a retract of any associated manifold; thus,
for any coefficient group the homomorphism h∗ ◦ r∗ : Hr(K) → Hr(V n)
generated by r ◦ h : V n → K is a monomorphism. Indeed, the composi-
tion of the mappings r ◦ h and g ◦ i, where i is the inclusion mapping for
K →Mn, is the identity.

Now, let us prove the following theorem that establishes the connection
between the problems of this chapter and the problems of the previous
chapter.

Theorem III.1. In order for the homology class z ∈ Hr(K) to be the
image of a compact differentiable manifold, it is necessary and sufficient
that for some large enough n, the image of the class z in the manifold V n

associated with the polyhedron K can be realised as a submanifold.

The sufficiency is evident. Indeed, if z is realized by a compact subman-
ifold W r in V n then this class is the image of the fundamental class of W r

under the homomorphism generated by the retraction V n → K.
The condition is necessary. Assume that z is the image of the funda-

mental class of some smooth manifold W r under f . Consider

a) a regular embedding g of W r to some Rn,
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b) a linear embedding i of K in some Rm.

Denote by Y the cylinder of the mapping f . For every point x of W r,
denote by (x, t) the point of Y dividing the segment [f(x), x] with ratio t
(0 6 t 6 1).

Finally, let a be a real non-negative parameter. Define an embedding
Fa of Y into the Euclidean space Rn+m+1 ≈ Rn ×Rm ×R by setting

Fa(x, t) = (atg(x), (1 − t)i ◦ f(x), at),

Fa(y) = (0, i(y), at), y ∈ K.

Let M be a certain neighbourhood of the polyhedron described above
embedded to Rn+m+1 by means of F0. By compactness argument, for some
small value of the parameter a, the image Fa(Y ) for a < c is contained in
M . Then the image Fa(W r, 1) is a submanifold of the neighbourhood M
and, consequently, it is a submanifold of the associated manifold V . The
fundamental cycle of this submanifold belongs to the image k(z) of z under
the inclusion mapping k : K → V , corresponding to Fa. Thus, Theorem
III.1 is completely proved.

3. Applications. The case of modulo 2 coefficients

Whenever the class k(z) is realisable by a submanifold of the associated
manifold V n, the Steenrod problem has a positive solution. The dimension
n of the associated manifold can always be made greater than 2r. Conse-
quently, considering the case of modulo 2 coefficients and taking Theorem
II.26, we get:

Theorem III.2. Any modulo 2 homology class of any finite polyhe-
dron is an image of the fundamental class of some compact differentiable
manifold.

For the case of integer coefficients, Theorem II.27 yields

Theorem III.3. Any integral homology class of dimension 6 5 of any
finite polyhedron is the image of the fundamental class of some compact
orientable manifold.

From Theorem II.29 we get the following “multiplication theorem”:

Theorem III.4. For any integer p-dimensional homology class z of
some finite polyhedron K there exists a non-zero integer N depending only
on p such that the class Nz is the image of the fundamental class of some
differentiable manifold.

In order to get more exact results in the case of integer coefficients, one
should introduce new operations on homology classes of K.



3rd April 2007 9:38 WSPC/Book Trim Size for 9in x 6in main

On Steenrod’s problem 177

4. Operations ϑ
p
i

LetK be a finite polyhedron, topologically embedded into Rn. Consider
the projective limitH∗(U) of the finite support cohomology algebra for open
neighbourhoods ofK in Rn. According to the Poincaré duality law (see [27],
Theorem III.4), for any coefficient group there exists an isomorphism χ from
the group Hr(K) to the group Hn−r(U).

For any even i, define a homomorphism ϑp
i : Hr(K;Zp)→ Hr−i(K;Z)

by setting
ϑp

i = χ−1Stipχ,

where Stpi is Steenrod’s power1 of index i.
The operations ϑp

i corresponding to Stip with odd index are defined by
the formula

ϑp
2r+1 = ϑp

1 ◦ ϑp
2r,

where ϑp
1 is the Bockstein homomorphism (1

pδ). (This definition allows

us to avoid the signs ±, which appear because the operator St1p does not
commute with the suspension.)

The following properties of the operators ϑp
i , proved in [27] for the case

p = 2, can be easily extended for the case p > 2.

1) The operations ϑp
i are topologically invariant, i.e. they do not depend

on the way of embedding of K into Euclidean space.

2) The operations ϑp
i commute with the homomorphisms f∗ generated by

continuous mappings f : K → K ′.

3) Over the field Zp, the operations ϑp
i can be expressed via Stip. Let Qi

p :

Hr−i(K,Zp)→ Hr(K,Zp) be the homomorphism which is dual to the
homomorphism ϑp

i considered over Zp. It turns out that the homomor-
phisms Qi

p with odd indices i are connected with the operations Stip
by the following formulae:

∑

i

Qm−i
p Stip = 0 m, i ≡ 0 mod 2(p− 1), Q0

p = 1.

The proof of these formulae is quite analogous to the proof of formula (60)
of Theorem II.3 of [27]2. Homomorphisms Qi

p with odd indices are obtained

1Here we assume that Steenrod’s powers St
2k(p−1)
p are endowed with normalising

coefficients introduced by Serre [5]. (Serre denoted the operation St
2k(p−1)
p by Pk

p .)

Odd index powers are obtained from the powers Pk
p with even index by using Bockstein’s

homomorphism
1
p δ.

2See Editor’s remark on page 204 at the end of the article. — Editor’s remark
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from homomorphisms Qi
p with even indices according to the following for-

mula (which is dual to the formula defining ϑp
i ):

Q2r+1
p = Q2r

p ◦Q1
p,

where Q1
p is the Bockstein homomorphism (1/p)δ, with the image reduced

modulo p.
The relations 3) indeed allow us to express Qi

p via the operations Stip.
For instance,

Q4
3 = −St43, Q5

3 = −St43 ◦Q1
3 = St43St

1
3.

Now, let us return to the polyhedron K, embedded into the associated
manifold V n. Let z be an element ofHr(K;Z). We shall denote the image u
of the cohomology class χ(z) under the natural mapping from Hn−r(U ;Z)
to Hn−r(V n), also by χ(z) (abusing notation). The class u is Poincaré-
dual to the homology class i∗(z) ∈ Hr(V

n). Since the homomorphism
i∗ : Hr(K)→ Hr(V

n) is a monomorphism, so is χ : Hr(K)→ Hn−r(V n).
Besides, by definition,

Stipχ(z) = ±χ(ϑp
i (z)).

As we know, the homology class i∗(z) is realisable in V n by a submanifold
if and only if all Steenrod powers Stip (i, p odd) of the corresponding coho-
mology class χ(z) are equal to zero (Theorem II.20). Thus, the following
theorem holds.

Theorem III.5. In order for an integral homology class z to be the
image of the fundamental class of some compact differentiable manifold, it
is necessary and sufficient that all homology classes ϑp

i (z) for odd p and i
vanish.

In dimensions 6 8 this condition will be sufficient. Indeed, from Theo-
rem II.17 we get

Theorem III.6. In order for an integer homology class z of dimension
6 8 of a finite polyhedron to be the image of the fundamental class of some
compact differentiable orientabel manifold, it is necessary and sufficient that
the integral homology class ϑ3

5(z) vanish.

For r 6 5, this result is known from Theorem III.3. Consider the case
r = 6, when the class ϑ3

5(z) is a third order element of H1(K;Z). If this
class is non-zero then for some integer m, divisible by three, there exists
a cohomology class u ∈ H1(K;Zm), whose scalar product with ϑ3

5(z) is
non-zero. Let f be the mapping from K to K(Zm, 1), such that f∗(ι) = u,
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where ι is the fundamental class of K(Zm, 1). Consider the commutative
diagram

H6(K;Z) −−−−→ H6(Zm, 1;Z)

ϑ3
5

y
yϑ3

5

H1(K;Z)
f∗−−−−→ H1(Zm, 1;Z).

According to well-known results [11] on homology groups of cyclic groups,
the group H6(Zm, 1;Z) is trivial. Thus, f∗(ϑ

3
5(z)) = 0 and the scalar

product of the elements ϑ3
5(z) and u is equal to zero. Since this is true for

any integer m, then the integral homology class ϑ3
5(z) is equal to zero. Thus

we have

Corollary III.7. Every six-dimensional integral homology class of any
finite polyhedron is an image of the fundamental class of a certain compact
differentiable manifold.

Let us show now that this result cannot be improved. Preliminarily, let
us prove the following lemma on Eilenberg-MacLane polyhedra.

Lemma III.8. For r > 2, the cohomology class St53St
1
3(ι) of K(Z3, r)

is non-zero.

First of all note that if the class St53St
1
3(ι) is non-zero in K(Z3, n) then

it is non-zero in all other polyhedra K(Z3,m) for m > n, because, up to
sign, Steenrod’s powers commute with the suspension. Thus, it suffices to
show that the class St53St

1
3(ι) is non-zero in K(Z3, 2). This is really true,

but the direct proof is rather complicated. Thus, it would be convenient to
replace the complex K(Z3, 2) with the product of two complexes K(Z3, 1).
Let ν1 and ν2 be the fundamental cycles of the two complexes K(Z3, 1), and
let u1 = St13ν1 and u2 = St13ν2 be the generators of the two-dimensional
cohomology groups of these complexes over Z3. Then

St53St
1
3(ν1 · ν2) = St13St

4
3(u1 · ν2 − ν1 · u2)

= St13((u1)
3 · ν2 − (u2)

3 · ν1) = (u1)
3 · u2 − u1 · (u2)

3 6= 0.

Thus, the lemma is proved1.
Since the integral class

St53St
1
3(ι) ∈ Hr+6(Z3, r;Z), r > 2,

is non-zero, then, by the duality argument, there exists a cohomology class
z ∈ Hr+5(Z3, r;Z), whose scalar product with the class St43St

1
3(ι) is non-

1Indeed, consider a continuous mapping f : K(Z3, 1) × K(Z3, 1) → K(Z3, 2), such
that f∗(ι) = ν1ν2. Then f∗St53St13(ι) = St53St13(ν1ν2) 6= 0, and hence, St53St13(ι) 6= 0. —
Editor’s remark
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zero modulo1 3, i.e. 〈z,Q5
3(ι)〉 6= 0. Thus, 〈ϑ3

5(z), ι〉 6= 0, so that ϑ3
5(z) 6= 0.

Thus, we have proved the following

Theorem III.9. In any dimension r > 7 in some finite polyhedron
there exists an integral homology class that cannot be represented as the
image of the fundamental class of a compact smooth differentiable orientable
manifold.

Example. Let us realise complexes K(Z3, 1) by means of lens spaces.
Here it is sufficient to consider the spaces L7 of dimension 7, which are
the quotient spaces of the sphere S7 by the group Z3 acting freely on this
sphere. Let L1 and L2 be two copies of L. Denote by ν1, ν2, u1 = St13ν1
and by u2 = St13ν2 the generators of H1(L1;Z3), H

1(L2;Z3), H
2(L1;Z3)

and H2(L2;Z3), respectively. Consider the product V 14 of L1 and L2. Let

X = u1 · ν2 · (u2)
2 − ν1 · (u2)

3.

This is an integral class because X = St13(ν1 · ν2 · (u2)
2).

Let z ∈ H7(V
14;Z) be the homology class which is Poincaré-dual to the

class X . It turns out that the homology class ϑ3
5(z) reduced modulo 3 is

non-zero. Indeed, consider the scalar product

〈ϑ3
5(z), ν1 · ν2〉 = 〈z,Q5

3(ν1 · ν2)〉 = 〈z, St43St13(ν1 · ν2)〉 mod 3.

This scalar product is equal to the Kolmogorov-Alexander product

X · St43St13(ν1 · ν2) = X · ((u1)
3 · ν2 − ν1 · (u2)

3) = ν1 · ν2(u1 · u2)
3 6= 0.

Consequently, ϑ3
5(z) is non-zero, hence the homology class z is not the image

of the fundamental class of any compact differentiable manifold. Thus, z
cannot be represented in V 14 by means of a submanifold. This fact can be
checked directly, as well:

St53X = St13((u1)
3 · ν2 · (u2)

2) = (u1 · u2)
3 6= 0.

One can show analogous examples of non-realisable (by submanifolds)
seven-dimensional homology classes in manifolds of arbitrarily high dimen-
sions.

5. Steenrod’s powers in cohomology algebras of differentiable
manifolds

Let V n be a compact differentiable manifold and let (V n) be its funda-
mental class. By Theorem III.5, all integral classes ϑp

i (V
n) for odd prime p

and for i ≡ 1 mod 2(p−1) are equal to zero. Consequently, by the duality
argument, we have:

1Here one should note that the class St53St13(ι) is the image of the class St43St13(ι) un-
der Bockstein’s homomorphism. — Editor’s remark
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Theorem III.10. For every compact differentiable orientable manifold
V n the homomorphisms

Qi
p : Hn−i(V n;Zp)→ Hn(V n;Zp)

are trivial (p and i are odd).

For instance, the homomorphism

Q5
3 = St43St

1
3 : Hn−5(V n)→ Hn(V n;Z3)

is trivial.
These relations between Steenrod’s powers can be obtained by applying

Theorem II.20 to the diagonal class of V n×V n which is realisable by a sub-
manifold. Note that the relations above take place not only in differentiable
manifolds but also in arbitrary manifolds which are images of differentiable
manifolds under mappings of degree 1. However, in this case they possi-
bly cannot be obtained from Poincaré duality. There is an open question,
whether these relations can be proved for any topological manifold without
any differentiability assumption?

Chapter IV

Cobordant differentiable manifolds

Let V n be an orientable compact manifold. One says that Mn+1 is a
manifold with boundary V n if the following conditions hold:

a) the complement Mn+1 \ V n is an (n+ 1)-dimensional open manifold;

b) for any point x of V n there exist a neighbourhood U of this point in
Mn+1 and differentiable functions x0, x1, . . . , xn, defined in this neigh-
bourhood such that

1) the functions x0, x1, . . . , xn are local coordinates in Mn+1,
i.e. they realise a homeomorphic mapping from U to the half-
space of the space Rn+1, defined as x0 > 0;

2) the functions x1, . . . , xn are local coordinates in V n, i.e. they are
differentiable in V n, and they provide a homeomorphism from the
intersection U ′ ∩ V n to the hyperplane x0 = 0.

If Mn+1 \ V n is orientable then the boundary V n is orientable as well
and every orientation of Mn+1 naturally generates an orientation for the
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boundary V n. The correspondence for these orientations is defined by the
boundary operator δ : Hn+1(M

n+1, V n)→ Hn(V n).
One says that an orientable compact manifold V n is null-cobordant if

there exists a compact orientable manifold Mn+1 with boundar V n, such
that in Mn+1 one can introduce an orientation inducing the given orien-
tation of V n. The present chapter is devoted to the solution of the fol-
lowing problem by Steenrod [12]: find necessary and sufficient conditions
for a given manifold V n to be null-cobordant. In [27], I indicated some
conditions necessary for a manifold to be null-cobordant or null-cobordant
modulo 2 (i.e. to be the boundary of some manifold without any orientabil-
ity assumption). Generalising this problem, we can address the question
about sufficient conditions.

Definition. Cobordant manifolds. Two oriented compact manifolds V
and V ′ of the same dimension k are called cobordant (notation: V ≃ V ′), if
the manifold V ′ ∪ (−V ) which is the disjoint union of V ′ and V , the latter
taken with the opposite orientation, is null-cobordant.

If V and V ′ are cobordant to the same manifold V ′′ then they are cobor-
dant. For the proof, it is sufficient to identify along V ′′ the boundaries of
the manifolds defining the inner homology V ≃ V ′′ and V ′ ≃ V ′′. This
yields that the set of all compact oriented manifolds of dimension k is di-
vided into equivalence classes. We shall denote the class of a manifold V
by [V ].

For these classes, let us define a commutative summation by setting
[V ] + [V ′] = [V ∪ V ′]. Denoting by −V the manifold V with the opposite
orientation, we have [V ]+ [−V ] = 0, where by 0 we denote the class of null-
cobordant manifolds. Indeed, the manifold V ∪ (−V ) is the boundary of the
product V ×I. Thus, the set of classes [V ] of k-dimensional manifolds is an
abelian group, which we denote by Ωk (the cobordism group in dimension
k).

If a manifold V is cobordant to a manifold V ′ then it is easy to check that
for any orientable compact manifold W the product V ×W is cobordant
to the product V ′ ×W . This yields that for the classes [V ] one can define
a multiplication. This multiplication is anticommutative and distributive
with respect to the summation. Thus, the direct sum Ω of the groups Ωk

is defined as a ring.
If we omit all orientation arguments, then we get modulo 2 cobordant

manifolds; we shall denote modulo 2 cobordism classes by [V ]2. Denote the
group of modulo 2 cobordisms in dimension k by Nk; denote by N the ring
of cobordism classes modulo 2. It is clear that in the ring N, each element
has order 2.
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1. Invariants of cobordism classes

It is evident that any condition that some manifold is null-cobordant
can be reformulated as a condition that two manifolds are cobordant. Thus,
Theorem V.11 of [27], saying that for a null-cobordant oriented manifold
V 4k the signature τ of the quadratic form defined by means of the coho-
mology on the space H2k(V 4k) is equal to zero, gives the following theo-
rem:

Theorem IV.1. For two oriented cobordant manifolds V and V ′

of dimension 4k the quandratic forms defined by using the cohomology
on H2k(V ) and H2k(V ′), respectively, have the same signature τ .

(Recall that the signature of a quadratic form is the difference between
the number of positive squares and the number of negative squares in the
canonical representation of the quadratic form over the field of real or ra-
tional numbers.)

It is easy to see that the invariant τ of cobordism classes, whose dimen-
sions are divisible by 4, is additive and multiplicative. Thus, it defines a
homomorphism from the ring Ω to the ring Z of integers.

Furthermore, Pontrjagin’s theorem [18], cited in [27], which says that
characteristic classes of null-cobordant manifolds are equal to zero, yields
the following Theorem:

Theorem IV.2. For cobordant oriented manifolds V and V ′ of dimen-
sion 4k, Pontrjagin’s characteristic classes Π(P 4i) coincide.

These invariants are additive, and the characteristic number correspond-
ing to the class P 4k of maximal dimension, is moreover, multiplicative.
(This follows from the fact that Pontrjagin’s classes are defined according
to the tensor law for sphere-fibre spaces, which are products of two given
fibre spaces.)

For Stiefel-Whitney classes, the following theorem holds

Theorem IV.3. Two modulo two cobordant manifolds V and V ′ of the
same dimension k have equal Stiefel-Whitney characteristic classes.

Here the invariants are also additive, and the only multiplicative number
is the number corresponding to the class of maximal dimension. The lat-
ter invariant coincides with the Euler-Poincaré characteristic taken modulo
two.

2. Differentiable mappings of manifolds with boundary

Let Xn+1 be a compact manifold with boundary V n and let f be an
arbitrary differentiable mapping from the manifold Xn+1 to some manifold
Mp, containing a compact submanifold Np−q. The mapping f is t-regular
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on the submanifold Np−q, if so are (in sense of I.3) the restriction of f to
the interior Xn+1 \ V n and to the boundary V n.

The pre-image of a t-regular mapping. According to general
properties of t-regular mappings given in I.4, the intersection of V n with
the pre-image An+1−q = f−1(Np−q) is a submanifold Cn−q of V n. Analo-
gously, the intersection of the pre-imageAn+1−q with the interiorXn+1\V n

is a submanifold An+1−q \ Cn−q of dimension n+ 1 − q. Let us show that
An+1−q is a manifold with boundary Cn−q. Let x be an arbitrary point of
the manifold Cn−q, let y = f(x) be its image in Np−q and let y1, y2, . . . , yq

be some local coordinates defined in the q-ball which is geodesically nor-
mal to Np−q at y. Furthermore, let (x1, x2, . . . , xn, t) be a local coordi-
nate system defined in a certain neighbourhood of x, for which the last
coordinate t takes only positive values and t = 0 is the equation of the
boundary V n; then the t-regularity of f means that on V n the mapping
(x1, x2, . . . , xn, 0)→ (y1, y2, . . . , yq) has rank q in x. In other words, there
exists a Jacobian |∂yr/∂xi| of order q, which is non-zero for xi = 0 and
t = 0. By continuity, this Jacobian is non-zero for xi and t small enough.
Thus, the variables

(y1, y2, . . . , yq, xq+1, . . . , xn, t)

are local coordinates in some neighbourhood of x. In this neighbour-
hood, the pre-image An+1−q is defined by the linear equations y1 = y2 =
. . . yq = 0, and the submanifold Cn−q is defined by the same equations
and the equation t = 0. Thus, for the point x there is a neighbourhood
of An+1−q which is homeomorphic to the half-space of the space Rn+1−q

(with coordinates xq+1, . . . , xn, t), restricted by the space Rn−q (with co-
ordinates xq+1, . . . , xn), which is the image of the manifold Cn−q. The
statement is proved.

Definition. Induced orientation of the submanifold. Let f be a map-
ping from an orientable manifold V n to a manifold Mp, which is t-regular
on a submanifold Np−q, and let Cn−q be the pre-image of Np−q. Assume
that the normal fibred neighbourhood of Np−q in Mp is orientable. Then
for the normal tubular neighbourhood of N one can define the “funda-
mental” class U = ϕ∗(ω) ∈ Hq(T ;Z). The tubular neighbourhood of the
submanifold Cn−q is then oriented as well. The corresponding “fundamen-
tal” class U will be the image of the class U of the neighbourhood T under
f∗. We say that the manifold Cn−q is endowed with an orientation induced
by the orientation of the manifold V n, if its fundamental cycle (Cn−q) is
defined in the normal tubular neighbourhood of the submanifold Cn−q by
the formula1

1By ⌢ we denote the Whitney product. — Editor’s remark
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(Cn−q) = (V n) ⌢ U,

where (V n) is the fundamental n-dimensional closed-support homology
class of the tubular neighbourhood of Cn−q that induces the given ori-
entation of the manifold V n.

Let f , as above, be some mapping from an oriented compact mani-
fold Xn+1 with boundary V n to a manifold Mp, so that f is t-regular
on some submanifold Np−q. Furthermore, assume the normal bundle
of Np−q is orientable. Then the pre-images An+1−q = f−1(Np−q) and
Cn = An+1−q ∩ V n are orientable as well; this can be shown, for instance,
by using the Whitney duality theorem [32]. Let us endow V n with the ori-
entation induced by the orientation of Xn+1. Thus, (V n) = ∂(Xn+1, V n),
where ∂ is the boundary operation. Under these assumptions, the ori-
entation of the submanifold Cn−q, induced by its embedding in V n, co-
incides with the orientation Cn−q considered as the boundary An+1−q,
the latter being endowed with the orientation induced by Xn+1. Indeed,
V n ⌢ U = ∂(Xn+1) ⌢ U = ∂(Xn+1 ⌢ U). Now, let us prove the
following:

Theorem IV.4. Let f and g be two mappings of class Cm, m > n of
an oriented compact manifold V n to a manifold Mp, which are t-regular
on Np−q ⊂ Mp, the latter having orientable normal neighourhood. Let
Wn−q = f−1(Np−q), W ′(n−q) = g−1(Np−q) be the pre-images of the sub-
manifolds Np−q, which are, as is easy to see, orientable manifolds. Let us
endow them with the orientation induced by V n. If f is homotopic to g
then the manifolds Wn−q and W ′n−q are cobordant.

Omitting the orientability assumption in the condition of the theorem,
we get that the pre-images f−1(Np−q), g−1(Np−q) are cobordant modulo 2.

First, let us prove the following theorem. The idea of the proof was
communicated to me by Whitney.

Lemma IV.5. If two mappings f and g of class Cm from a mani-
fold V n to a manfiold Mp are homotopic, then they can be connected by a
Cm-class deformation.

Let F : V × I → Mp be a homotopy of class Cm, connecting f to
g. Replace it with the homotopy G : V × I → Mp, defined as follows:

G(V, t) = f = F (V, 0) if 0 6 t 6
1
4
; G(V, t) = F (V,

4t− 1
2

) if 1
4

6 t 6
3
4
;

G(V, t) = g if 3
4

6 t 6 1. Endow the product V × I with a Riemannian

metric, which is the product of some metric of V n and the Euclidean metric
of the interval I. Then we smooth the mapping G, by replacing G by its
average over the geodesic balls of radius r. We let r be a constant less than
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1
8

for 1
8

6 t 6
7
8
; for the boundary fibres t < 1

8
and 7

8
< t we let r be an

increasing function of classC∞ of variable t (resp., (1− t)), which is equal to

zero for t = 0 and for t = 1. Thus, in the fibre 1
8

6 t 6
7
8

the differentiability

class of G is increased by one, and it is not decreased in the fibres 0 6 t 6
1
8

and 7
8

6 t 6 1. Furthermore, on (V, 0) and on (V, 1) the smoothed mapping

G coincides with f and g, respectively. Reiterating this construction several
times, we get a mapping of class Cm from V × I to Mp, that coincides on
(V, 0) and (V, 1) with f and g, respectively. The lemma is proved.

The constructed mapping F : V × I → Mp of class Cm might not
be t-regular on Np−q. But the set H0 of such homeomorphisms h ∈ H

of the tubular neighbourhood T of Np−q for which the mapping h ◦ F
restricted to the interior of V × I, is not t-regular on Np−q, is a thin subset
of H . An analogous statement holds for homomorphisms h for which the
mapping h ◦ F , considered over (V, 0) ∪ (V, 1), is not t-regular on Np−q.
Thus we see that Theorems I.5 and I.6 hold for mappings of manifolds with
boundary. For F , considered on (V, 0) ∪ (V, 1), choose a homomorphism h
close enough to the identity and satisfying Theorem I.6. Let F ′ = h◦F and
let f ′, g′ be the parts of F ′ restricted to (V, 0) and (V, 1), respectively, By
Theorem I.6, the manifolds Cn−q = f ′−1(Np−q), C′(n−q) = g′−1(Np−q) are
isotopic to the manifolds Wn−q = f−1(Np−q) and W ′(n−q) = g−1(Np−q),
respectively. This isotopy preserves the induced orientations, so that the
oriented manifolds Cn−q and C′(n−q) together form the boundary of the
manifold A = F ′−1(Np−q). Thus, the manifolds Cn−q and C′(n−q) are
cobordant, hence, so are Wn−q and W ′(n−q). Theorem IV.4 is proved
completely.

3. L-equivalent manifold

In II.2, we associate with each oriented submanifold Wn−k of orientable
manifold V n some mapping f : V n → M(SO(k)). Here we make this
dependence between submanifolds and mappings more precise.

Assume a manifold V n is immersed to the space Rn+m. For any point
x of the submanifold Wn−k, denote by H(x) the k-plane tangent to V n

at x and normal to the submanifold Wn−k (in any Riemannian metric).
Associate with the plane H(x) the plane of Rn+m parallel to it and passing
through the origin O. Thus we get some mapping

g : Wn−k → Ĝk,

where by Ĝk, we denote, as above, the Grassmann manifolds of oriented
k-planes. Let N be an arbitrary tubular neighbourhood of the submanifold
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Wn−k in V n. Associate with any geodesic normal passing through x ∈
Wn−k, its tangent vector at x, we get, after a parallel transport, a mapping

F : N → ASO(k),

for which the diagram

N
F−−−−→ ASO(k)

p

y
yp′

Wn−k g−−−−→ Ĝk

is commutative (here p and p′ are canonical k-ball bundles).
As in II.2, we may extend F to a mapping

f : V n →M(SO(k)).

If we replace the initial embedding of V n into Rn+m by another em-
bedding or replace the metric by another metric, then instead of f we get
some homotopic mapping. Indeed, since any two Riemannian metrics of
V n can be continuously deformed to each other, then the corresponding
tubular neighbourhoods N and N ′ are isotopic, hence, so are the mappings
F : N → ASO(k), and, finally, so are the mappings f : V n → M(SO(k)).
To prove the independence of homotopy type of f on the embedding of V n

into Rn+m, we shall need one more lemma, that we shall use several times
in the sequel.

Let Qn+1 be a manifold with boundary V n and let Xk+1 be a subman-
ifold with boundary W k, the latter contained in V n. Assume that at any
point x ∈ W k the half-space Rk+1 tangent to Xk+1 is transverse to the
boundary V n in the sense that the intersection of this half-space with the
space tangent to V n coincides with the space tangent to W k. Finally, as-
sume that Qn+1 is endowed with a Riemannian metric. This metric allows
us to consider the normal neighbourhood of the boundary V n in Qn+1 as
the product V n× I, where the rays (x, t), t ∈ I, are geodesic normals of the
boundary V n. Then the following lemma holds:

Lemma IV.5′. There exists a homeomorphism Φ of Qn+1 onto itself
taking the submanifold Xk+1 to a submanifold which is orthogonal to the
boundary V n.

To prove this, let us consider the homeomorphism Φ of the manifold
Qn+1, which is the identity outside V n × I and represents on V n × I the
motion along the normals defined by the function t′ = ϕ(t), for which
0 = ϕ(0), 1 = ϕ(1); dφ′/dt = +∞ for t = 0 and dt′/dt = 1 for t = 1.
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It is easy to check that any vector tangent at x to the manifold Φ(Xk+1)
is tangent to the cylinder W k×X and orthogonal to the boundary V n. The
lemma is proved.

Now, let us return to the manifold V n, immersed to the space Rn+m

by means of two different immersions i0 and i1. If m > n+ 2, then we
may assume the images i0(V

n) and i1(V
n) don’t intersect. By a theorem

of Whitney, one may (possibly, after a small translation of i1) find such
an embedding i of V n × I to Rn+m, whose restriction to (V, 0) and (V, 1)
coincides with i0 and i1, respectively. The embedded manifold i(V n × I)
contains a submanifold of the type Wn−k × I, that intersects transversely
the boundary of the manifold V n × I.

Given a Riemannian metric in V n × I. According to the lemma above,
we may assume the manifold V n−k×I orthogonal to the boundaries (V n, 0)
and (V n, 1) of the product V n × I. Let N be the normal tubular neigh-
bourhood of the submanifold Wn−k × I in the product V n × I. Then the
intersections N0 = N ∩ i0(V n) and N1 = N ∩ i1(V n) are normal tubu-
lar neighbourhoods of the submanifolds i0(W

n−k) and i1(W
n−k) in i0(V

n)
and i1(V

n), respectively. Let us construct, by using parallel transport, the
canonical mapping

F : N → ASO(k).

Extending it to the whole product, we get a mapping

F : V n × I →M(SO(k)),

whose restriction to (V n, 0) and (V n, 1) evidently coincides with the canon-
ical mappings f0 and f1 corresponding to the embeddings i0 and i1 of Vn.
Thus, f0 and f1 are indeed homotopic.

Definition. L-equivalent submanifolds. Let Wn−k
0 and Wn−k

1 be two
oriented submanifolds of the same dimension n− k, embedded into an ori-
entable manifold V n. The submanifolds Wn−k

0 and Wn−k
1 are L-equivalent

if there exists an oriented manifold Xn−k+1 with boundary Wn−k
0 ∪Wn−k

1 ,
which is embedded into V n × I in such a way that

Xn−k+1 ∩ (V n, 0) = Wn−k
0 ,

Xn−k+1 ∩ (V n, 1) = Wn−k
1 ,

provided that this manifold admits such an orientation that ∂Xn−k+1 =
Wn−k

1 ∪ (−Wn−k
0 ).

From the above and from Lemma IV.5′ we immediately get that if
two submanifolds are L-equivalent to a third manifold, then they are L-
equivalent. The set of L-equivalent manifolds of dimension n − k of V n is
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thus split into L-equivalence classes. Denote by Ln−k(V n) the set of such
classes.

If in previous definitions we omit all orientability assumptions, we shall
define modulo 2 L-equivalent submanifolds and the set Ln−k(V n;Z2) of
modulo 2 L-equivalence classes.

It is clear that two L-equivalent submanifolds are homologous and cobor-
dant to each other. If two submanifolds W0 and W1 form in V n the bound-
ary of some submanifold X , then these submanifolds are L-equivalent.

Consider the natural mapping from the set Ln−k(V n) to the homology
group Hn−k(V n;Z). The image set Ln−k(V n) under this mapping is the
set of homology classes realisable by submanifolds. The “kernel” of this
mapping is, in general, non-trivial, we shall see this later. It is natural to
address the question whether the set Ln−k(V n) can be represented as a
group by introducing an operation compatible with the mapping above. It
turns out that it is possible if n− k < n/2− 1. In this case the summation
operation of L-equivalence classes is generated by the usual disjoint union
of representatives of these classes. Indeed, these representatives for n−k <
n/2 can be thought of as disjoint, and for n − k < n/2 − 1 the L-class
defined in this way does not depend on the way of embedding of these
manifolds. On the other hand, the sum [W ] + [−W ] is the zero class since
it is always possible to embed (locally) the product V × I into a normal
tubular neighbourhood of W .

According to the above argument, with each submanifold Wn−k of V n,
one can associate a certain class of mappings from V n to M(SO(k)). It can
be easily checked that two L-equivalent submanifolds W and W ′ generate
two homotopic mappings f : V n →M(SO(k)).

Indeed, if submanifolds W0 and W1 are L-equivalent then there exists a
manifold X embedded into V n × I, with boundary being the union of W0

embedded into (V n, 0) and W1, embedded into (V n, 1). By Lemma IV.5′,
we may assume that X is orthogonal to (V n, 0) and to (V n, 1). Consider
the normal tubular neighbourhood Q of X in V n×I and the corresponding
mapping F : Q → ASO(k). The mapping F can be extended to F1 :
V n × I → M(SO(k)), the latter being the above homotopy between the
canonical mappings

F |(V n,0) = f0, F |(V n,1) = f1,

associated with the manifolds W0 and W1, respectively.
This defines a mapping J from the set Ln−k(V n) of L-equivalence

classes to the set Ck(V ) of homotopy classes of mappings f : V n →
M(SO(k)). The mapping J is bijective. Indeed, if two manifolds W0

and W1 generate homotopic mappings, then, by Theorem IV.4, the homo-
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topy F : V n × I →M(SO(k)), connecting these mappings, can be thought
of as smooth. Furthermore, after a possible isotopy (which is also an

L-equivalence), we may assume that the pre-images f−1
0 (Ĝk) = W0

and f−1
1 (Ĝk) = W1 form the boundary A = F−1(Ĝk).

Note that J takes the class of manifolds L-equivalent to zero to the
zero class of inessential mappings f : V n → M(SO(k)). If k > (n/2) + 1
then, according to the general cohomotopy group theory1, 2, the set Ck(V )
of homotopy classes of mappings of V to the space M(SO(k)) (which is
aspherical up to dimension k) can be considered as an abelian group. It is
easy to check that J is then a homomorphism. It is sufficient to check that,
by definition of the sum f+g of two mappings, the pre-image (f+g)−1(Ĝk)

is, up to L-equivalence, the union of the preimages f−1(Ĝk) and g−1(Ĝk).
Now, let us show that J takes the set Ln−k(V n) to the set Ck(V n).
Let c be some homotopy class belonging to Ck(V ) and let h be an

arbitrary mapping of class c. By Theorem I.5, one may assume that the
mapping h is t-regular on the Grassmann manifold Ĝk, which is embedded

in M(SO(k)). Let Wn−k = h−1(Ĝk) be the pre-image of Ĝk and let N be
the normal tubular neighbourhood of the manifold Wn−k in the manifold
V n. One may assume that the mapping h is normalised in such a way that
it maps the interior of the neighbourhood N to M(SO(k)) \ a, takes open
k-balls to open k-balls, and takes the complement Q = V n \N to the point
a. Now, denote by i : V n → Rp an arbitrary embedding of the manifold V n

to the space Rp, and denote by

g : Wn−k → Ĝk, F : N → ASO(k), f : V n →M(SO(k))

the mappings which are naturally defined by this embedding by parallel
transport. It is clear that the mappings

h : Wn−k → Ĝk (i.e. the mapping h/Wn−k)

and
g : Wn−k → Ĝk

both generate the normal bundle of Wn−k in V n. Consequently, by the
fibre space classification theorem, these mappings are homotopic. Let us

1In the case of spheres cohomotopy groups were studied by Spanier (Ann. Math., 50

(1949), 203–245). Their generalisations to the case of arbitrary aspherical spaces form
the content of the unpublished paper by Steenrod, Spanier and J.H. C.Whitehead. The
proof sketched below can easily be completely restored for the typical case of spheres.
Its generalisation for the general case gives no new difficulties.

2See remark on page 205 at the end of the article. — Editor’s remark
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consider again the commutative diagram

N
h−−−−→ ASO(k)y

y

Wn−k h−−−−→ Ĝk.

By the covering homotopy theorem, there exists a mapping h1 homo-
topic to h such that

N
h1−−−−→ ASO(k)y

y

Wn−k g−−−−→ Ĝk.

Thus, the new mapping h1 differs from F by an isomorphism α of the
tubular neighbourhod N . In other words, in the neighbourhood N we have
h1 = F ◦ α.

It turns out that one can construct (increasing the dimension of the
ambient Euclidean space, if necessary) a new embedding i′ of V n, for which
in a neighbourhood N we have

i′ = α ◦ i.
Indeed, let us prove the following lemma:

Lemma. Let Q be a manifold with boundary T . Assume that there is
an embedding i of some neighbourhood of the boundary T (of type T × I)
to Rp. Then this embedding can be extended to an embedding of the whole
manifold Q to the space Rp+q with some large q.

Indeed, let y1, y2, . . . , yp be the coordinates in Rp. In some neighbour-
hood U of T×I, the coordinates yi, extended to the whole of Q, are distinct
for distinct points. Now let (x1, x2, . . . , xq) be some functions which are
equal to zero on T × I and do not take the same values for distinct points
on the complement Q \U . (Such functions always exist if q is greater than
2n+1, where n is the dimension of the manifold Q.) The system of functions
yi, xj defines the desired embedding of Q to Rp+q.

Let us apply this lemma to the complementQ = V n\N . The embedding
of the boundary T of N and the neighbourhood of type T × I is given
by i′ = α◦i. It is evident that the mapping F ′ : N → ASO(k) corresponding
to the embedding i′ can be identified with h1. Consequently, the mapping

f1 : V n →M(SO(k))

corresponding to h1 can be identified with the natural mapping corre-
sponding to the embedding i′. On the other hand, since the mapping
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h1 : N → ASO(k) is homotopic to the restriction of h to N , then the
“complete” mapping f1 is homotopic to h. (Recall that the mapping h is
“normalised”, hence it takes the manifold Q to the “special point” a from
M(SO(k)).) Thus, we have proved

Theorem IV.6. The set Ln−k(V n) of L-equivalence classes of some
manifold V n can be identified with the set Ck(V ) of mapping classes from
V n to M(SO(k)). If k > (n/2) + 1 then this identification preserves the
group operations defined for Ln−k and for Ck(V ).

In an analogous theorem for the set Ln−k(V n;Z2), the polyhedron
M(SO(k)) should be replaced with M(O(k)).

Applications. The maximal number of L-classes contained in some
homology class z corresponding to the class u ∈ Hk(V n;Z) is equal to
the number of mapping homotopy classes of f from V n to M(SO(k)) for
which1 f∗(U) = u. Since the polyhedra M(SO(1)) and M(SO(2)) can be
identified with the polyhedra K(Z, 1) and K(Z, 2), then we see that homol-
ogous oriented submanifolds of dimension n − 1 in an orientable manifold
of dimension are always L-equivalent; the same is true about manifolds of
dimension n− 2.

Corollary. All null-homologous (n−2)-dimensional manifolds are null-
cobordant (for n− 1 this is trivial).

For modulo two homology the analogous statement holds for (n − 1)-
dimensional submanifolds.

Finally, from Chapter II, we know (Theorem II.16), the second non-
zero homotopy group of the space M(SO(k)) appears in dimension k + 4.
This yields that two mappings from a manifold V n to M(SO(k)) which are
homotopic on the k-skeleton of the manifold V n, are also homotopic on the
(k + 3)-skeleton. Thus, oriented homologous manifolds of dimension 6 3
are always L-equivalent.

4. The basic theorem

Let us apply the previous theorem to the case when V n is the sphere Sn.

Lemma IV.7. If n > 2k + 2 then the group Lk(Sn) of L-equivalence
classes of the sphere Sn can be identified with the cobordism group Ωk.

Consider the natural mapping of the group Lk(Sn) to the group Ωk,
taking each representative of some L-class to its cobordism class. Clearly,
this mapping is a homeomorphism, since the summation is well defined in
both groups as a union of representatives. Thus, homomorphism takes the

1In the original work, this statement is wrongly formulated. — Editor’s remark
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group Lk(Sn) onto the group Ωk. Indeed, let c be some element of the
group Ωk and let W k be some manifold of class c. Since n > 2k + 2, the
manifold W k can be immersed in Rn, hence, in Sn. Thus c is the image of
some L-class of Sn. Thus, in order to prove the lemma, it remains to show
that the kernel of the homomorphism Lk(Sn) → Ωk is trivial. In other
words, we have to show that two manifolds W k and W ′k, immersed in Sn,
are L-equivalent if they are cobordant.

Let Xk+1 be a manifold with boundary W ′k \W k. Since n > 2k + 2
then the manifold Xk+1 is embeddable into Rn.

On Xk+1, define a function t (of class C∞), that takes values from 0
to 1, and such that the equations t = 0 and t = 1 define the submanifolds
W k and W ′k, respectively. Completing the spaces (Rn, t) and (Sn, t) by
the “infinite point”, we get an embedding of the manifold Xk+1 to the
product Sn×I. This embedding defines the desired L-equivalence. Finally,
note that for n > 2k+ 2 two arbitrary embeddings of W k to Sn are always
L-equivalent. This completes the proof that the correspondence between
the groups Lk(V n) and Ωk is an isomorphism.

Now, we are ready to formulate the main theorem of the present chapter.

Theorem IV.8. The group Ωk of cobordisms and the group Nk of
cobordisms are isomorphic to the stable homotopy groups πn+k(M(SO(n)))
and πn+k(M(O(n))), respectively.

To prove it suffices to apply Theorem IV.6 for the case when the mani-
fold V n is Sn, and use the isomorphism Lk(Sn) ≃ Ωk, indicated in Lemma
IV.7. Furthermore, it is necessary to use a classical theorem of the co-
homotopy group theory, saying that the mapping class cohomotopy group
of

f : Sn+k →M(SO(n))

is isomorphic to the homotopy group πn+k(M(SO(n)))1.

5. Modulo 2 class groups N
k

In Chapter II, stable homotopy groups πn+k(M(O(n))) were defined. As
we know (Theorem II.10), in dimensions < 2n, the space M(O(n)) has the
same homotopy type as the product Y of the following Eilienberg-MacLane
polyhedra:

Y = K(Z2, n)×K(Z2, n+ 2)× . . .× (K(Z2, n+ h))d(h) × . . . , h 6 n,

1Indeed, both groups consist of the same set of elements. To prove that the operations
agree it is sufficient to note that (both in homotopy group theory and in cohomotopy
group theory) the sum of f, g : Sn+k → M(SO(n)) can be defined as the composite
mapping Sn+k → Sn+k ∨ Sn+k → M(SO(n)), where the first mapping has degree +1
on each sphere of the wedge Sn+k ∨ Sn+k, and the second mapping coincides with f on
one sphere of the wedge, and with g on the other sphere. — Editor’s remark
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where d(h) is the number of non-dyadic decompositions h, i.e. of such de-
compositions not containing integers of type 2m − 1. Consequently, we get

Theorem IV.9. For any dimension k, the group Nk is the direct sum
of d(k) groups each isomorphic to Z2 where d(k) is the number of non-
dyadic decompositions of k.

Thus, we have defined the additive structure of the group Nk.
From Theorem II.10, it follows that for n > k any homologcially trivial

(modulo 2) mapping from Sn+k to M(O(n)) is homotopic to the trivial
mapping. This result can be justified according to the argument below.

For any non-dyadic decomposition ω of k, consider the mapping

Fω : M(O(n))→ K(Z2, k + n),

for which F ∗
ω(ι) = Xω, where Xω is the element of Hk+n(M(O(n))) corre-

sponding to the symmetric function
∑

(t1)
a1+1(t2)

a2+1 . . . (tr)
ar+1tr+1 . . . tn

((ai) is the given non-dyadic decomposition ω of the number k). Let

Yω =
∑

(t1)
a1(t2)

a2 . . . (tr)
ar

be the corresponding element of the cohomology group Hk(Gk, Z2). Then,
in the notation of II.2, we have: Xω = ϕ∗

G(Yω).
Let fω1 be mappings Sn+k →M(O(n)) such that

f∗
ω1F ∗

ω(ι) = δω
ω1(s), (1)

where s is the fundamental class of the group Hk+n(Sk+n, Z2), and δω
ω1 is

the Kronecker symbol in its classical interpretation, but with decomposi-
tions ω taken instead of numerical indices. Homotopy classes of mappings
fω1 , clearly, form a basis of the group πn+k(M(O(n))).

The mappings fω1 can be thought of as t-regular over the Grassmann
manifold Gn contained in the space M(O(n)). Let Vω1 be the pre-image of
the manifold Gn under fω1 . Consider the normal tubular neighbourhood
N of Vω1 in Sn+k. Let ϕ∗ : Hr−k(Vω1)→ Hr(N) be the corresponding
isomorphism of cohomology groups. Denote by Y 1

ω the image of Yω in
the cohomology group of Vω1 under the homomorphism f∗

ω1 induced by the
mapping fω1 considered on the manifold Vω1 . The classes Yω1 are expressed
via Stiefel-Whitney characteristic classes W i of the normal bundle of the
manifold Vω1 in Sn+k. By formula (1) and commutative diagram (1) from
II.3 we have

ϕ∗(Yω1) = ϕ∗f∗
ω1(Yω) = f∗

ω1ϕ∗
G(Yω) = f∗

ω1(Xω) = δω
ω1(s). (2)
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The normal characteristic numbers of V =Vω are values of the polynomial
of total degree k in W i, on the fundamental class of the manifold V . From
(2), it follows that for any mapping f : Sn+k →M(O(n)) which is not null-
homotopic, there exists a non-trivial linear combination of classesXω whose
image under f∗ is non-zero in the algebra H∗(Sn+k, Z2)

1. Consequently,
at least one normal characteristic number of the corresponding manifold2

V is non-zero. This yields the following theorem, inverse to Pontrjagin’s
theorem

Theorem IV.10. If all Stiefel-Whitney numbers of some manifold V k

are equal to zero then this manifold is modulo 2 null-cobordant.

Indeed, if all characteristic numbers defined for the classes Wi of the
tangent bundle are equal to zero then the normal characteristic numbers
are equal to zero. Indeed, by Whitney’s relation3

∑
i

WiW r−i = 0, the

classes W r are polynomials in the classes Wi.

Corollary IV.11. If two manifolds V and V ′ have equal Stiefel-
Whitney characteristic classes then these manifolds are cobordant modulo
2.

Remark. This result yields that in the group of (tangent) characteristic
numbers4 of k-manifolds V k (this group is isomorphic to the groupHk(Gn)) there
are precisely d(k) linearly independent numbers. For low dimensions (k 6 6), this
result can be checked by means of Wu relations [33] for classes Wi of the tangent
bundle of the manifold. This leads to the question whether Wu relations give all

relations between the classes Wi of the tangent bundle of an arbitrary manifold.

6. Multiplicative structure of the groups Nk

Let k = r+ s, and let ω1 be a non-dyadic decomposition of s. Then the
union (ω1, ω2) is a non-dyadic decomposition of k.

Above, we have defined the manifold V k
ω . Recall that all normal char-

acteristic classes5 Yω′ of V k
ω are equal to zero except for the number Yω.

Let us show that the manifold V k
ω is cobordant modulo 2 to the product

V r
ω1
× V 8

ω2
. To do this, it is sufficient to prove, according to the Corollary

1One should note that any mapping f is homotopic to a linear combination of map-
pings fω1 . — Editor’s remark

2I.e. of pre-image of Gn under f . — Editor’s remark
3This relation follows immediately from Whitney’s duality theorem because the sum

of the normal bundle and the tangent bundle of any manifold, has trivial characteristic
classes. — Editor’s remark

4I.e. in the additive group of polynomials of total weight k in variables Wi. — Editor’s
remark.

5Here we deal with values of classes Yω′ on the fundamental class of Vω . — Editor’s
remark
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IV.11 that all Stiefel-Whitney characteristic classes of manifolds V k
ω and

V r
ω1
× V s

ω2
are equal.

The last statement follows immediately from the formula that we are
going to prove:

Yω =
∑

(ω1,ω2)

(Yω1) · (Yω2), (3)

where (ω1, ω2) are all possible decompositions ω of k represented as a de-
composition ω1 of r and a decomposition ω2 of s. Indeed, from formula (3)
it follows that all numbers Yω of the product Vω1 × Vω2 are equal to zero
except for the number corresponding to the decomposition ω = (ω1, ω2).

Recall that the normal bundle of the product V r
ω1
× V s

ω2
is the sum

(union) of the normal bundles of manifolds V r
ω1

and V s
ω2

. Denote by W i the
normal classes of the product Vω1 × Vω2 , denote by Ui the normal classes
of V r

ω1
and by Vi the normal classes of V s

ω2
. Then, by Whitney’s “duality

theorem”, the following symbolic formula holds:

∑

i

W it
i =

∑

i

Uit
i ×
∑

j

Vjt
j .

Denote by ui the symbolic roots of the first factor and denote by vj the
symbolic roots of the second factor. Let us substitute in

Yω =
∑

(t1)
a1(t2)

a2 . . . (tq)
aq

the roots ui and vj instead of ti’s. Then it follows from the dimension
argument that all terms having total degree in (ui)’s not equal to r, and
the total degree in (vj)’s not equal to s, should be equal to zero. The
remaining terms can be grouped as follows:

Yω =
∑

(ω1,ω2)

∑
(u1)

a1(u2)
a2 . . . (um)am ·

∑
(v1)

b1(v2)
b2 . . . (vn)bn , (4)

where ω1 is the decomposition (a1, a2, . . . , am) of r generated by the de-
composition ω, and ω2 is the decomposition (b1, b2, . . . , bn) of s composed
of the remaining numbers of the decomposition ω. The first sum is taken
over all possible decompositions ω into a decomposition ω1 of r and a de-
composition ω2 of s. The remaining two signs

∑
mean the symmetrisation

in the sense described on page 154. Note that any decomposition (ω1, ω2)
of ω occurs in (4) exactly once even in the case when this decomposition
can be obtained in different ways. Indeed, assume (ω1, ω2) can be obtained
in two different ways. Then there exists a permutation of variables (ti)
transforming the typical monomial
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(t1)
a1(t2)

a2 . . . (tm)am(tm+1)
b1 . . . (tk)bn

of (ω1, ω2) to itself. Consequently, this transposition is not essential and
it is not used in symmetrisation. Thus, formula (4) coincides with formula
(3), as we had to prove.

As it was shown, from formula (3) it follows that for any decomposition
of a non-dyadic decomposition ω of k into ω1 of r and ω2 of s, the cobordism
classes of the corresponding manifolds V k

ω satisfy the following

[V k
ω ] = [V k

ω1
]× [V s

ω2
]. (5)

Thus, the only irreducible classes [V k
ω ] are [V k

(k)], where (k) is the decom-

position of k consisting only of k itself. (It is assumed that k is not of type
2m − 1.) Any other class is uniquely represented as a sum of products of
such irreducible classes. This proves the following theorem:

Theorem IV.12. The ring N of modulo 2 cobordisms is isomorphic
to some polynomial algebra over Z2. This algebra has generators of type
[V k

(k)], where k runs over all numbers not equal to 2m − 1.

Corollary. The topological product of two manifolds each not null-
cobordant modulo 2 is not null-cobordant modulo 2.

Generators in low dimensions. The first generator appears for
k = 2. The corresponding characteristic number is equal to

∑
(t2) = (

∑
t)2 = (W 1)

2 = (W1)
2.

As a representative of this class [V 2
(2)], we can take the real projective plane

PR(2).
For k = 3 the group N3 is trivial.
For k = 4, a new generator, corresponding to the normal characteristic

number (t)4 = (W 1)
4 = (W1)

4, appears. Here PR(4)+(PR(2))2 represents
this number. The group N4 is isomorphic to the direct sum Z2 +Z2. Note
that the complex projective plane PC(2) is cobordant modulo 2 to the
square of the real projective plane PR(2).

For k = 5, the group N5 is isomorphic to Z2 with generator [V(5)].
The corresponding tangent characteristic number is equal to W2W3. For
representative [V(5)], we take the Wu space [33]1 which is a circle-bundle
fibre space over the complex projective plane PC(2).

1The Wu space is obtained from the product PC(2)×I where I = [0, 1] by identifying
the points (x0, x1, x2) × 0 and (x0, x1, x2) × 1, respectively. — Editor’s remark
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For k = 6, the group N6 is isomorphic to (Z2)
3. It has two reducible

representations, (PR(2))3, PR(4)×PR(2) and a primitive class [V(6)] cor-
responding to the normal characteristic number

∑
(t6) = (

∑
(t)3)2 = (W 3)

2 + (W 2W 1)
2 + (W 1)

6.

The projective space PR(6) represents the last class.
For k = 7, all classes are reducible, because k is equal to 23 − 1. The

group N7 is isomorphic to Z2 with generator [V(5)]× [V(2)].
For k = 8, reducible classes can be easily found. Besides the reducible

classes, there is an irreducible class [V(8)], with the corresponding char-
acteristic number (W1)

8. Every manifold of this class is (up to reducible
manifolds) cobordant modulo 2 to the projective space PR(8).

The last statement is of a general nature. Namely:
for any even dimension n = 2r the primitive class [V n

(n)] is the sum of

the class [PR(n)] and some reducible classes.
It suffices to show that for the manifold PR(n), the normal characteristic

number
∑

(ti)
n is non-zero (here ti are symbolic variables corresponding to

the normal classes W i). Let

∑
(t1)

a1(t2)
a2 . . . (tm)am

be an arbitrary non-zero normal characteristic number of the manifold
PR(n), which is distinct from

∑
(ti)

n. Here a1, a2, . . . , am forms some
non-dyadic decomposition ωi of n. Consider the sum PR(n) + UiV

n
ωi

. All
normal characteristic numbers of this manifold corresponding to non-dyadic
decompositions of n, are equal to zero except for

∑
(t)n. Consequently, this

manifold belongs to the primitive class [V n
(n)]. On the other hand, by for-

mula (5), all classes [V n
ωi

] for ωi 6= (n) are reducible.
Note that for any manifold V n the normal characteristic number

∑
(t)n

is equal to the tangent characteristic number
∑

(tn). Indeed, by the Whit-
ney duality Theorem [32], the variables t corresponding to the tangent
bundle are connected with the variables ti corresponding to the normal
bundle by the following relation:

∑
Wit

i ×
∑

W jt
j

= 1.

This relation yields that any symmetric function in the variables ti and tj ,
which is not a non-zero constant vanishes. In particular,

∑
(ti)

n +
∑

(tj)
n = 0.
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The Stiefel-Whitney polynomial of the manifold PR(n) looks like

1 +

(
n+ 1

1

)
dt+

(
n+ 1

2

)
d2t2 + . . .

+

(
n+ 1

p

)
dptp + . . .+

(
n+ 1

n

)
dntn,

where d is the generator of the group H1(PR(n);Z2). Since dn+1 = 0, this
manifold can be symbolically written as

(1 + dt)n+1.

One may assume that this polynomial has n + 1 roots each equal to
t = −1/d. Since n is even, the sum

∑
(ti)

n is equal to 1/dn. Consequently,
the corresponding characteristic number is equal to one.

As for generators in odd dimension, I do not know any analogous con-
struction.

7. The groups Ωk

In the general case, the groups

πn+k(M(SO(n)))

are unknown. For small values of k, these groups are indicated in Theorem
II.16. Consequently, by Theorem IV.8, we have:

Theorem IV.13. For k < 8 the groups Ωk are defined as:

Ω0 = Z; Ω1 = Ω2 = Ω3 = 0;

Ω4 = Z; Ω5 = Z2; Ω6 = Ω7 = 0.

This result is trivial for k 6 2. The groups Ω3 and Ω4 were found by
V. A. Rokhlin [19], [20]. The generator of Ω4 is the complex projective plane
PC(2). Particularly, this yields

Corollary IV.14. The fourth Pontrjagin number P 4 of an oriented
four-manifold is equal to 3τ , where τ is the signature of the quadratic form
defined by homological multiplication on H2(V 4, R).

To prove this, it suffices to apply Theorems IV.1 and IV.2 and use the
equality Ω4 = Z. The coefficient 3 is equal to the characteristic number
P 4 of the complex projective plane PC(2), for which τ = 1. This result
was proposed by Wu, who proved that P 4 is divisible by 3 [35]. It was first
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proved by V. A. Rokhlin [20] and by me, in a way quite different from the
described one1.

Note that the equality P 4 = 3τ yields topological invariance of the
characteristic number P 4 for any manifold V 4. It would be very interesting
to find a direct proof of this relation.

From the topological invariance of P 4 it follows that the cobordism class
of the manifold V 4 does not depend on the differentiable structure of the
manifold.

As it was shown in II.5, the cohomology algebra H∗(M(SO(n))) over
the field of rational numbers is isomorphic to the cohomology algebra of
the product Y of the following Eilenberg-MacLane polyhedra:

Y = K(Z, k)×K(Z, k + 4)× (K(Z, k + 8))2 × . . .× (K(Z, k + 4m))c(m) . . . ,

m 6 k,

where c(m) is the rank of H4m(Ĝk;R), here the above isomorphism is
generated by some mapping F : M(SO(k)) → Y . Thus, by using Serre’s
C -theory results [22], for the case when C is the class of finite groups, we
get:

Theorem IV.15. If i 6≡ 0 mod 4 then the group Ωi is finite. The
rank of the free component of Ω4m is equal to c(m), that is the 4m-th Betti

number of the Grassmann manifold Ĝk.

Corollary IV.16. If all the Pontrjagin characteristic numbers of an
orientable manifold V k are equal to zero then for some non-zero integer N ,
the manifold NV k is null-cobordant.

Note that as a generator of the group Ω5 ≃ Z2 we may take the Wu
manifold defined in [33].

Multiplicative structure of groups Ωk. Let ΩT be the set of all
finite-order elements of the ring Ω. The set ΩT forms an ideal of the ring
Ω, so that there is a quotient ring Ω/ΩT . We know (by Theorem IV.15)
that the 4m-dimensional component of this quotient ring is a direct sum of
c(m) free cyclic groups. On the other hand,

Ω4m ⊗Q ≃ πk+4m(M(SO(k))) ⊗Q,
where Q is the field of rational numbers. Since the latter group is dual
(over Q) to the cohomology group

Hk+4m(M(SO(k));Q) ≃ H4m(Ĝk;Q),
1See my note in Colloque de Topologie de Strasbourg (June, 1952). Rokhlin’s note

also contains results concerning groups N. One of these results is false, namely, Rokhlin
states that N4 = Z2 (instead of Z2 + Z2)2.

2The correct result is given by V. A.Rokhlin in the following note: Doklady Mathe-
matics, 89 (1953), 789–792. — Editor’s remark
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then any 4m-dimensional element of the ring Ω/ΩT is completely charac-
terised by the values of the normal characteristic numbers

〈Π(P 4r), V 4m〉,

defined by an arbitrary embedding of some manifold V 4m of the given
class to the Euclidean space. To make this statement more precise, it is
important to note that, in general, there is no manifold whose characteristic
numbers would have any prefixed values ni. However, one may say that
for some non-zero integer N , the products Nni are normal (or tangent)
characteristic numbers of some manifold V 4m.

Now, we can construct for the tensor product Ω⊗Q, a theory analogous
to the one constructed above for the ring N. Recall that, by Borel and
Serre, Pontrjagin classes are in one-to-one correspondence with symmetric
functions in squares (xi)

2 of some two-dimensional variables xi (if there
exists a unitary fibre space adjoint to the given orthogonal fibre space then
its Chern classes are given by symmetric functions in xi). Thus, the base

of the group H4m(Ĝk) consists of symmetrised monomials of the type

Pω =
∑

(x2
1)

a1(x2
2)

a2 . . . (x2
r)

ar ,

where a1, a2, . . . , ar is an arbitrary decomposition (ω) of m.
Normal characteristic classes of the product Xp × Y q of two oriented

manifolds Xp and Y q are defined by

Pω(Xp × Y q) =
∑

(ω1,ω2)

Pω1(X
p) · Pω2(Y

q), (3′)

where the sum is taken over all complementary decompositions ω1, ω2, for
which degω1 = p, degω2 = q.

According to the remark above, in each dimension 4m there exist man-
ifolds V 4m for which all normal characteristic numbers are equal to zero
except for the number 〈∑(xi)

2m, V 4m〉. Let Y(4m) be the corresponding
class of the group Ω4m ⊗ Q. From formula (3′) and Corollary IV.16, it
follows that the classes Y(4m) are irreducible and that any other element of
the tensor product Ω⊗Q can be uniquely represented as a sum of products
of Y(4m). Thus, we get

Theorem IV.17. The algebra Ω ⊗Q is a polynomial algebra. In any
dimension divisible by 4, there is a unique generator Y[4m] of this algebra.

Now, let us show that up to some non-zero factor, the class Y[4m] is a sum
of the complex projective space PC(2m) class and some reducible classes.
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In other words, the classes of spaces PC(2m) can be viewed as generators
of the algebra Ω⊗Q. To prove this statement, it suffices to show that the
normal characteristic number of the space PC(2m) corresponding to the
class

∑
(xi)

2m is non-zero. But, by the duality theorem between normal
and tangent classes, the normal characteristic number corresponding to the
sum

∑
(xi)

2m differs from the corresponding tangent characteristic number
only in sign. On the other hand, it is known that the Chern polynomial of
the complex projective space PC(2m) looks like

C(x) = 1

+

(
2m+ 1

1

)
dx+ . . .+

(
2m+ 1

i

)
dixi + . . .+

(
2m+ 1

2m

)
d2mx2m,

where d is the cohomology class of the projective line. Symbolically, this
polynomial can be written as:

C(x) = (1 + dx)2m+1.

Consequently, all symbolic roots of this manifold are equal to −1.
Thus, the characteristic number 〈∑(xi)

2m, PC(2m)〉 is equal to

∑
〈(−1/d)2m, d2m〉 = 2m+ 1.

The normal characteristic number of the manifold PC(2m) correspond-
ing to the class

∑
(xi)

2m is hence equal to −(2m+ 1), thus, it is non-zero.
This proves the property formulated above. This yields

Corollary IV.18. For any oriented manifold V n there exists a non-
zero integer N such that the manifold NV n is cobordant to some linear
integer combination of products of even-dimensional projective spaces. The
coefficients of this linear combination are linear homogeneous functions of
Pontrjagin’s characteristic numbers NV n.

Remark. It is natural to address the question whether the products of the
spaces PC(2j) form a basis of the Z-module Ω/ΩT ? This is true for dimension 4,
because the class of PC(4) generates the group Ω4. One can show that this is true
for dimension 8 as well. Indeed, in this dimension the characteristic numbers P 8

and (P 4)2 enjoy the following relations1:

(P 4)2 − 2P 8 ≡ 0 mod 5,

7P 8 − (P 4)2 = 45τ.

1Indeed, for PC(4) we have p = (1 + u2)5, so that P 4 = 5u2; (P 4)2 = 25u4;
P 8 = 10u4, for PC(2)×PC(2) we have p = (1+u2

1)3(a+u2
2)3, so that P 4 = 3(u2

1 +u2
2);

(P4)2 = 18u2
1u2

2; P
8 = 9u2

1u2
2. This yields the desired formulas. — Translator’s remark.
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The first relation follows from the equality St85∆ = 0, that occurs in a topological
product of manifolds (cf. Wu [35]); the second one is obtained if we write the
index τ as a linear homogeneous function of the classes P 8 and (P 4)2 and define
the coefficients for the typical manifolds PC(4) and (PC(2))2. Let V 8 be an
arbitrary manifold and let τ be the signature of the quadratic form defined by
the cohomology product on H4(V 8, R). It is easy to check that the manifold V 8

and the manifold
q · PC(4) + (τ − q) · (PC(2))2,

where q is defined by (P 4)2−2P 8+5q, have the same Pontrjagin numbers and are
cobordant (modulo ΩT ). The study in higher dimensions requires a more exact
consideration of arithmetical and topological properties of Pontrjagin’s number1.

Editor’s remarks

(to page 154)

As Serre has mentioned, this lemma allows to prove the following Adem-
Wu formulae:

SqaSqb =
∑

c

(
b− c− 1
a− 2c

)
Sqa+b−cSqc, a < 2b,

that allow us to express any iterated square as a linear combination of iter-
ated squares corresponding to admissible sequence.

To reduce the calculations, set

Ca,b = SqaSqb −
∑

c

(
b− c− 1
a− 2c

)
Sqa+b−cSqc,

Ta,b = Sqa−1Sqb + SqaSqb−1

−
∑

c

(
b− c− 1
a− 2c

)(
Sqa+b−c−1Sqc + Sqa+b−cSqc−1

)
.

From the evident formula

(
b − c− 1
a− 2c

)
+

(
b− c− 1
a− 2c− 1

)

+

(
b− c− 2
a− 2c− 2

)
+

(
b− c− 2
a− 2c

)
≡ 0 (mod 2)

it follows that
Ta,b = Ca−1,b + Ca,b−1.

1About this, see the recent work of Hirzebruch (mimeographed notes of Princeton
University, July–August, 1953).
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On the other hand, it is easy to see (by applying Cartan’s formula
twice), that for any x ∈ H∗(X,Z2) and for any t ∈ H1(X,Z2) (where X is
an arbitrary space) we have

SqiSqj(xt) = SqiSqj(x) · t+
(
Sqi−1Sqj(x) + SqiSqj−1(x)

)
· t2

+ Sqi−2Sqj−1(x) · t4.

This yields that

Ca,b(xt) = Ca,b(x) · t+ Ta,b(x) · t2 + Ca−2,b−1(x) · t4.

Substituting the expression for Ta,b, we get: if Ca,b = 0 for a+ b < n then
Ca,b(xt) = Ca,b(x) · t for any a, b satisfying a+ b = n.

Now, let X = Gk, where k > a + b. Since Wk = t1, . . . , tk then from
the relation Ca,b(xt) = Ca,b(x) · t it follows that Ca,b(Wk) = Ca,b(e) ·Wk,
where e is the unit class. Since dim e = 0, Ca,b(e) = 0 and
hence, Ca,b(Wk) = 0, i.e. by the lemma we have proved, Ca,b = 0. Thus, if
Ca,b = 0 for a+ b < n then Ca,b = 0 for a+ b = n. To complete the proof
of the Adem-Wu formula, it remains to note that for a+ b = 1 this formula
is evident.

Analogously, one can prove Adem’s formulae for Steenrod’s powers:

P
a
p P

b
p =

∑

c

(−1)c−a

(
(p− 1)(b − c)− 1

a− pc

)
P

a+b−c
p P

c
p.

P
a+1
p βP

b
p =

∑

c

(−1)c−a

(
(p− 1)(b− c)− 1

a− pc

)
P

a+b−c
p βP

c
p

+
∑

c

(−1)c−a+1

(
(p− 1)(b − c)
a− pc+ 1

)
βP

a+b−c
p P

c
p, a < pb.

(to page 177)

The operations ϑp
i and Qi

p are connected, by definition, by

x ⌢ ϑp
i y = Qi

px ⌢ y, x ∈ Hr−i(K,Zp), y ∈ Hr(K,Zp),

where ⌢ is the Whitney multiplication. Consequently,

∑

i

Qm−i
p Stip(x) ⌢ y

=
∑

i

Stipx ⌢ ϑp
m−iy, x ∈ Hr−m(K,Zp), y ∈ Hr(K,Zp).
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Applying χ and taking into account that

χ(u ⌢ v) = u ⌣ χv,

we get

χ
∑

i

Qm−i
p Stip(x) ⌢ y =

∑

i

Stipx ⌣ Stm−i
p χy.

But, by Cartan’s formula

∑

i

Stipx ⌣ Stm−i
p χy = Stmp (x ⌣ χy).

Thus,

χ
∑

i

Qm−i
p Stip(x) ⌢ y = Stmp χ(x ⌢ y),

i.е. ∑

i

Qm−i
p Stip(x) ⌢ y = ϑm

p (x ⌢ y).

But composite x ⌢ y ∈ Hm(K,Zp). Furthermore, it is easy to see that for
any u∈ ∈ Hm(K,Zp),m > 0,

ϑp
m(u) = 0.

Indeed, consider an arbitrary embedding f of the polyhedron K to some
Euclidean space RN . According to property 2 of the operations, ϑp

i

f0
∗ϑ

p
m(u) = ϑp

m(fm
∗ u) = 0,

because fm
∗ u = 0. On the other hand, the mapping f0

∗ , is, evidently,
isomorphic (the polyhedron K is assumed to be connected).

Thus, ∑

i

Qm−i
p Stip(x) ⌢ y = 0

for all y ∈ Hr(K,Zp). Consequently,

∑

i

Qm−i
p Stip(x) = 0.

(to page 190)

Let Y be a piecewise-connected simply connected topological space,
which is aspherical up to dimension n − 1, inclusively (n > 2), let Y × Y
be the topological product of Y with itself and let Y ∨ Y be the subset of
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the space Y × Y of type Y × y0 ∪ y0 × Y , where y0 is some fixed point of
Y . By the Künneth formula,

Hp(Y × Y ) ≈
∑

i+j=p

Hi(Y ) ⊗ Hj(Y ) +
∑

i+j=p−1

Hi(Y ) ∗ Hj(Y ).

On the other hand, it is clear that

Hp(Y ∨ Y ) ≈ Hp(Y ) ⊗ H0(Y ) +H0(Y ) ⊗ Hp(Y ),

and the natural inclusion Hp(Y ∨ Y ) → Hp(Y × Y ) is an isomorphism.
Thus, by using the homological exact sequence of the pair (Y × Y, Y ∨ Y ),
we get that

Hp(Y × Y, Y ∨ Y )

≈
∑

i + j = p

i �= 0, j �= 0

Hi(Y ) ⊗ Hj(Y ) +
∑

i+j=p−1

Hi(Y ) ∗ Hj(Y ). (1)

Since πi(Y ) = 0, if 0 < i < n, then (by the Hurewicz theorem) Hi(Y ) = 0
if 0 < i < n. Thus, by using formula (1), we get that Hp(Y ×Y, Y ∨Y ) = 0
if 1 � p � 2n − 1, thus (by the relative Hurewicz theorem),

πp(Y × Y, Y ∨ Y ) = 0. (2)

By using (2) and by using an obstruction theory argument, one easily ob-
tains the following lemma.

Any mapping from a finite polyhedron of dimension less than or equal
to 2n − 1 to the space Y × Y is homotopic to a mapping from the same
polyhedron to Y ∨ Y .

Now let V be an arbitrary finite polyhedron of dimension less than
2n− 1 and let f : Y → Ω and g : V → Y be arbitrary continuous mappings
of V to some space Y . Denote their multiplication f × g : V → Y × Y
(i.e. (f × g)(x) = (f(x)g(x))). According to the lemma proved above, the
mapping f ×g is homotopic to some mapping h : V → Y ∨Y . Let us define
ϕ : Y ∨ Y → Y by setting

ϕ(y × y0) = y,

ϕ(y0 × y) = y.

The composition φ ◦ h : V → Y is called the sum of the mappings f and
g and is denoted by f + g. It can be easily checked that the homotopy
class of f + g depends only on the homotopy classes of f and g. Thus, one
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may speak about the sum of mapping homotopy classes V → Y . It turns
out that, with respect to this summation operation, the set Y (V ) of all
homotopy classes of mappings V → Y is an abelian group. It is called the
Y -cohomotopy group of the polyhedron V . In the case when Y = Sn, the
group Sn(V ) is denoted by πn(V ); it is then called the n-th cohomotopy
group of V .
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Homotopy properties of Thom

complexes

S. P.Novikov 1

Introduction

In the present work, we give detailed proofs of results published in
the note [19]. Our goal is to investigate the rings of inner homology
(“cobordisms”) corresponding to classical Lie groups: SO(n), U(n), SU(n),
Sp(n), in the sequel to be denoted by VSO, VU , VSU , VSp, and also to investi-
gate the realisability of k-dimensional integral cycles in manifolds of dimen-
sion > 2k + 1 by smooth orientable submanifolds. As Thom proved [16],

1Homotopy properties of Thom complexes. Translated by V.O.Manturov
As it is well-known, calculation of the multiplicative structure of the orientable cobor-
dism ring modulo 2-torsion was announced in the works of J.Milnor (see [18]) and of the
present author (see [19]) in 1960. In the same works the ideas of cobordisms were ex-
tended. In particular, very important unitary (“complex”) cobordism ring was invented
and calculated; many results were obtained also by the present author studying special
unitary and symplectic cobordisms. Some western topologists (in particular, F.Adams)
claimed on the basis of private communication that J.Milnor in fact knew the above
mentioned results on the orientable and unitary cobordism rings earlier but nothing
was written. F.Hirzebruch announced some Milnors results in the volume of Edinburgh
Congress lectures published in 1960. Anyway, no written information about that was
available till 1960; nothing was known in the Soviet Union, so the results published in
1960 were obtained completely independently. Let us make some comments concerning
the proof. There exists a misunderstanding of that question in the topological literature.
Contrary to the Adams claims, the Milnor’s work [18] did not contain proof of the theo-
rem describing multiplicative structure of the cobordism ring and its complex analogue.
It used the so-called Adams Spectral Sequence only for calculation of the additive struc-
ture and proved “no torsion theorem”. For the orientable case it was done independently
by my friend B.Averbukh [2] using the standard Cartan-Serre technique; it was Aver-
bukh’s work that attracted me to this area: I decided to apply here the Adams Spectral
Sequence combined with the homological theory of Hopf algebras and coalgebras instead
of the standard Cartan-Serre method because my approach worked very well for the mul-

211
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for any cycle zk ∈ Hk(Mn) there exists a number α such that the cy-
cle αzk is realizable by a submanifold and for k � 5 any cycle zk is realizable
(i.e. α = 1).

In § 1 of Chapter III, we prove the following theorem.
Assume for n � 2k + 1 that the groups Hi(Mn) have no p-torsion for

i = k− 2t(p− 1)− 1 for all t � 1, p � 3. Then any cycle zk of dimension k
is realizable by a submanifold.

The proof of this theorem relies on the well-known Thom construction
and it is based on new results on the homotopy group of the complexes
constructed by him, which enjoy several remarkable properties. In fact,
these properties allow one to reduce many problems of manifold topology
to homotopy problems. One can construct examples showing that the above
theorem gives a final criterion in terms of homology groups.

In Chapter II, we explicitly find the algebraic structure of the
rings VSO/T , VU and VSp ⊗ Zph for p > 2; we also prove that the ring VSp/T
is not polynomial (here T is the ideal consisting of finite order elements;
one may assume that all orders of elements look like1 zs). The known in-
formation about VSU is given in Appendix 1; we did not include it into
formulations of the main theorems. It turns out that the algebraic struc-
tiplicative problems. The present article was presented in 1959/60 as my diploma work
at the Algebra Chair in the Moscow State University. In the Introduction (see below)
I made mistakable remark that Milnor also calculated the ring structure using Adams
Spectral Sequence (exactly as I did myself). However, it was not so: as it was clearly
written by Milnor in [18], his plan was completely different; he intended to prove this
theorem geometrically in the second part but never wrote it. I cannot understand why
F.Adams missed this fundamental fact in his review in the Math Reviews Journal on my
Doklady note ([19]). Does it mean that he never looked carefully in these works? As I
realized later after personal meeting in Leningrad with Milnor (and Hirzebruch) in 1961
during the last Soviet Math Congress, his plan was to use some specific concrete algebraic
varieties in order to construct the additive basis and apply Riemann-Roch Theorem. I
described his manifolds in the Appendix (they are very useful) but never realized his plan
of the proof: my own purely Hopf-algebraic homotopy-theoretical proof was so simple
and natural that I believe until now that Milnor lost interest in his geometric proof after
seeing my work. I added the Appendix in 1961 but forgot to change the Introduction
written in 1960, so the mistakable remark survived. It is interesting that in 1965 Stong
and Hattori published a work dedicated to this subject. They claimed that they found a
“first calculation of the complex cobordism ring avoiding the Adams Spectral Sequence”
not mentioning exactly where this theorem was proved first. Let me point out that their
work was exactly realization of the Milnor’s original plan but Stong and Hattori never
mentioned that. — S. P.Novikov’s remark (2004)

1The algebra VSO⊗Q was first found by Thom [16]. V. A.Rokhlin [13] and Wall [20],
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ture of VU was found by Milnor slightly earlier [18]1 (also, by using Adams’
method), who also found the geometric generators of the rings VSO and VU

and finally solved the Pontrjagin (Chern) characteristic number problem for
smooth (complex-analyitic, almost complex) manifolds, i.e. gave a neces-
sary and sufficient condition for a set of numbers to be a set of Pontrjagin
(Chern) classes of a smooth (almost complex) manifold. The geometric
generators weren’t known before Milnor’s works and, because of their in-
terest, we indicated them in Appendix 2 (we knew only (see § 5 Ch II) that
for prime numbers p > 2 for generators in dimensions 2p− 2 we may take
P p−1(C)). The author’s results about the multiplicative structure of the
ring VSp and about the ring VSU were not previously known.

Chapter I contains some geometric and algebraic information about
Thom complexes.

Chapter II is devoted to the calculation of integral homology rings. We
study several questions concerning these rings there (see also Appendix 1).

In Chapter III, we consider different types of realisations of cycles by
submanifolds.

Chapter I

Thom’s spaces

§ 1. G-framed submanifolds. L-equivalence

submanifold classes

Consider a smooth compact closed manifold Mn of dimension n, en-
dowed with a Riemannian metric, and fix a subgroup G of O(n− i), where
i < n. Assume furthermore that the manifoldMn is orientable and that the
subgroup G of the group O(n− i) is connected. Orient the manifold Mn

in a certain way. Consider a compact closed manifold W i smoothly em-
bedded into Mn. We assume the submanifold W i of the manifold Mn

to be orientable. In this case, the normal SO(n− i)-bundle νn−i of W i

in Mn is defined. We consider only such submanifolds W i of Mn with nor-
mal bundle νn−i admitting the subgroup G of SO(n− i) as the structure
group.

by using the well-known Rokhlin theorem on the kernel of the homomorphism
VSO → VO (see [12]), found the structure of 2-torsion of the ring VSO (independently).
B.G. Averbuch and J.Milnor (independently) proved that there is no p-torsion for p > 2
in the ring VSO (see [2], [10], [18]). In [10], the structure of the ring VSO/T was found.

1Milnor [18] also considered the ring VSpin; however, he did not get complete results
about it.
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Definition 1.1. A submanifold W i of the manifold Mn is called G-
framed if in the normal bundle νn−i of the submanifold W i in the mani-
fold Mn a G-bundle structure is fixed.

Now let Nn+1 be a smooth compact manifold with boundary Mn

and let V i+1 be a compact smoothly embedded submanifold with bound-
ary W i = Mn ∩ V i+1, so that the manifold V i+1 is orthogonal to the
boundaryMn of the manifold Nn+1. In this case, one may also speak about
the normal bundle τn−i of the submanifold V i+1 in the manifold Nn+1. All
manifolds mentioned here are assumed to be oriented unless otherwise spec-
ified. Thus the bundle τn−i can be considered as an SO(n− i)-bundle of
planes Rn−i, and, analogously to Definition 1.1, one may define G-framed
submanifolds with boundary (clearly, the boundary is a closed G-framed
submanifold of the boundary Mn of Nn+1).

Following Thom, let us introduce the L-equivalence relation in the set
of G-framed closed submanifolds of a closed manifold Mn. Consider the
direct product Mn × I of the manifold Mn and the oriented closed interval
I = [0, 1]. Then the manifold with boundary Nn+1 = Mn × I gets a natu-
ral orientation. Let W i

1 and W i
2 be two G-framed closed submanifolds of the

manifold Mn. The submanifolds W i
1 × 0 and W i

2 × 1 are naturally oriented
as well, in the manifoldsMn × 0 and Mn × 1, and the oriented submanifold
W i

1 × 0 ∪W i
2 × 1 of the manifold Mn × 0 ∪Mn × 1 is G-framed.

Definition 1.2. Two G-framed submanifolds W i
1 and W i

2 of a mani-
fold Mn are L-equivalent if there exists a G-framed submanifold V i+1 of
the manifold Mn × I with boundary W i

1 × 0 ∪W i
2 × 1.

It can be easily checked that the L-equivalence of G-framed submani-
folds is symmetric, transitive and reflexive thus the set of G-framed sub-
manifolds of a given manifold Mn is divided into classes of L-equivalent
submanifolds. Denote the set of such classes by V i(Mn, G). Note that
every element of the set V i(Mn, G) defines an integer cycle zi ∈ Hi(M

n),
i.e. there is a well-defined mapping

λG : V i(Mn, G)→ Hi(M
n).

Definition 1.3. A cycle zi ∈ Hi(M
n) is G-realizable, if it belongs to

the image of the mapping λG.

Definition 1.3 is evidently equivalent to the G-realizability definition
after Thom (see [16]).
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§ 2. Thom spaces. Classifying properties of Thom

spaces

In § 1, we have fixed a connected subgroup of the group O(n− i). As-
sume this subgroup is closed in O(n− i). Let BG be the classifying space of
the group G. Without loss of generality, we may assume that BG is a man-
ifold of high enough dimension. Denote by η(G) the classifying G-bundle
of spheres Sn−i−1. Denote the total space by EG; denote the projection
function by pG. The projection cylinder pG is a manifold TG with bound-
ary EG. The cylinder TG can be considered as the space of the classifying
G-bundle of closed balls En−i. Let us contract the boundary EG of the
manifold TG to a point.

Denote the obtained manifold by MG; let us call it the Thom space
of the subgroup G of O(n− i). It easily follows from the general theory
that for n− i > 1, the space MG is simply connected (see, e.g., [16] for
G = SO(n− i)). As for the cohomology of the space MG, as Thom has
shown, there exists a natural isomorphism ϕ : Hk(BG)→ Hk+n−i(MG).

Denote by uG ∈ Hn−i(MG) the element equal to ϕ(1). Then the fol-
lowing Theorem holds

Thom’s Theorem. An integral cycle zi ∈ Hi(Mn) is G-realizable if
and only if there exists a mapping f : Mn →MG such that the cohomology
class f∗(uG) is Poincaré-dual to the cycle zi.

(If G is not connected then Thom’s theorem holds for modulo 2 cycles.)
Thom found a connection between the sets V i(Mn, SO(n − i)) and

the sets of homotopy classes π(Mn, MG) of mappings Mn →MG ([16],
Theorem IV.6). From the proof of Theorem IV.6 it follows that, substitut-
ing SO to G, one can easily get the following lemma.

Lemma 2.1. Elements of the set V i(Mn, G) are in one-to-one corre-
spondence with elements of the set π(Mn, MG).

For i < [n/2], both sets have natural abelian group structures. Their
natural one-to-one correspondence, established in Theorem IV.6 by Thom,
is in this case a group isomorphism. This takes place also when Mn = Sn

(for arbitrary i). However, we are not interested in this case in the sequel.
Let us define the pairing for the groups:

V i1(Sn1 , G1)⊗ V i2(Sn2 , G2)→ V i1+i2(Sn1+n2 , G1 ×G2). (I)

The group G1×G2 is assumed to be embedded into SO(n1 + n2 − i1 − i2).
This inclusion is defined by the natural decomposition of the Euclidean
space Rn1+n2−i1−i2 into the direct product Rn1−i1 ×Rn2−i2 . In order to
define the pairing (I), let us choose representatives for the two given ele-
ments x1 ∈ V i1(Sn1 , G1), x2 ∈ V i2(Sn2 , G2). These representatives, are,
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clearly, G1- and G2-framed submanifolds W i1 ⊂ Sn1 and W i2 ⊂ Sn2 , re-
spectively.

The direct product W i1 × W i2 is naturally embedded into Sn1+n2

and it is G1 ×G2-framed because the normal bundle of the direct prod-
uct is decomposed into the direct product of the normal bundles of the
manifolds W i1 and W i2 . We assume the group G1 ×G2 is embedded
into SO(n1 + n2 − i1 − i2) precisely as shown above. Then the following
lemma holds.

Lemma 2.2. There exists a homeomorphism

MG1 ×MG2/MG1 ∨MG2 →MG1×G2 (II)

such that the diagram

V i1(Sn1 , G1)⊗ V i2(Sn2 , G2)→ V i1+i2(Sn1+n2 , G1 ×G2)

↓ ≀≀ ↓ ≀≀ ↓ ≀≀
πn1(MG1)⊗ πn2(MG2)→ πn1+n2(MG1×G2)

(III)

is commutative. (Here the upper row corresponds to the pairing (I), and
the lower row represents the pairing of homotopy groups defined by (II).)

Proof. To prove the existence of the homeomorphism (II) note that
the classifying space BG1×G2 of the group G1 ×G2 is decomposed into
the direct product BG1 ×BG2 . The classifying G1 ×G2-bundle of planes
Rn1+n2−i1−i2 is also decomposed into the direct product of classifying bun-
dles, namely, the G1- and the G2-bundle. The classifying G-bundle of
spheres is obtained from the plane bundle by taking in each fibre the set of
all vectors of length 1. The set of all vectors of lengths not greater than 1
gives us the classifying bundle of closed balls. Now, taking BG1 and BG2

to be some manifolds of some high dimension, and recalling the definition
of Thom spaces via projection cylinders of classifying sphere-bundles TG1

and TG2 , we get a natural homeomorphism TG1×G2 = TG1 × TG2 .
The cylinders TG are manifolds with boundary EG. For constructing

Thom spaces, the boundary EG is identified to a point. Clearly, one gets a
homeomorphismEG1×G2 ≈ TG1×EG2∪EG1×TG2 . This yields the existence
of the homeomorphism (II). As for the commutativity of the diagram (III),
it follows from the geometric meaning of the vertical isomorphisms (see
proof of Theorem IV.4 in [16]). The lemma is proved.

Thom showed that the space Me is homeomorphic to the sphere Sn−i if
the unit group e is considered as a subgroup of O(n− i). On the other hand,
for each polyhedron K, the polyhedron K × Sn−i/K ∨ Sn−i is homeomor-
phic to the iterated suspension En−iK over K. Let the group G coincide
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with one of the classical Lie groups: SO(k), U(k), SU(k), Sp(k). The
natural embeddings:

SO(k)× e ⊂ SO(k + 1), where e ∈ SO(1),

U(k)× e ⊂ U(k + 1), where e ∈ U(1),

SU(k)× e ⊂ SU(k + 1), where e ∈ SU(1),

Sp(k)× e ⊂ Sp(k + 1), where e ∈ Sp(1),

evidently define the mappings

EMSO(k) →MSO(k+1), E2MU(k) →MU(k+1),

E2MSU(k) →MSU(k+1), E4MSp(k) →MSp(k+1).
(IV )

(To construct these mappings, one should apply Lemma 2.2. Recall that the
group inclusions G ⊂ G ⊂ SO(k) produce natural mappings MG →MḠ.)

It is easy to show that the mappings (IV) in the stable dimensions,
are homotopy equivalences. Indeed (IV) commutes with the Thom isomor-
phism ϕ : Hi(BG)→ Hk+i(MG), where G ⊂ SO(k). But it is well known
that for small i the mapping of the group classifying spaces from formu-
lae (IV) (Grassmann manifolds), gives an isomorphism of cohomology and
cohomology groups. The Thom spaces are simply connected, thus the map-
pings (IV) are homotopy equivalences in stable range dimensions.

Denote the groups V i(Sn, SO(n − i)) by V i
SO if i < [n/2]; denote

the groups V i
(
Sn, U

(
n− i

2

))
by V i

U if n− i is odd and i < [n/2]; de-

note the groups V i
(
Sn, SU

(
n− i

2

))
by V i

SU under the same assump-

tions, denote the groups V i
(
Sn, Sp

(
n− i

4

))
, for n− i ≡ 0 (mod 4)

and i < [n/2], by V i
Sp. From the above, it follows that this is well defined

because of stabilisation of homotopy groups of Thom spaces.
By means of the pairing (I), the direct sums VSO =

∑
i>0 V

i
SO, VU =∑

i>0 V
i
U , VSU =

∑
i>0 V

i
SU , VSp =

∑
i>0 V

i
Sp naturally acquire a graded

ring structure. We shall denote these rings also by VSO, VU , VSU and VSp,
respectively.

§ 3. Cohomology of Thom spaces modulo p,

where p > 2

Consider the classifying spaces BSO(2k), BU(k), BSU(k), BSp(k). Their
modulo p cohomology algebras are well known (see [4]). Namely,H∗(BSO(2k))
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is the polynomial algebra in the Pontrjagin classes p4i ∈ H4i(BSO(2k), Zp),

where 0 6 i < k, and the class W2k ∈ H2k(BSO(2k), Zp). The algebra
H∗(BU(k), Zp) is isomorphic to the polynomial algebra in the genera-

tors c2i ∈ H2i(BU(k), Zp), where 0 6 i 6 k; the algebra H∗(BSU(k), Zp)

is isomorphic to the polynomial algebra in c2i ∈ H2i(BSU(k), Zp), where
i 6= 1; the algebra H∗(BSp(k), Zp) is isomorphic to the polynomial alge-

bra in k4i ∈ H4i(BSp(k), Zp), where 0 6 i 6 k. Here the generators c2i

are the Chern classes reduced modulo p and the generators k4i are the
symplectic Borel classes (see [5]), reduced modulo p. Thom has shown
that the algebra H∗(MSO(2k), Zp) is isomorphic to the ideal of the algebra
H∗(BSO(2k), Zp) generated by the element W2k (in positive dimensions).
We wish to prove the analogous statements for other classical Lie groups.
The following lemma holds:

Lemma 3.3. The homomorphism

j∗ : H∗(MG, Zp)→ H∗(BG, Zp),

generated by the natural inclusion j : BG ⊂MG, enjoys the following prop-
erties for the classical Lie groups:

G = SO(2k), G = U(k), G = SU(k), G = Sp(k) :

a) the homomorphism j∗ is a monomorphism;
b) Im j∗ is equal to the ideal generated by the element w2k for the

group SO(2k), by the element c2k for the groups U(k) and SU(k) and
by the element k4k for Sp(k).

Proof. Consider the space EG of the classifying G-bundle of
spheres S2k−1 if the group coincides with one of the groups SO(2k), U(k)
or SU(k), and the bundle of spheres S4k−1 if G = Sp(k).

By construction of the Thom space MG (see § 2), its cohomology
algebra H∗(MG) can be identified in low dimensions with the algebra
H∗(TG, EG), where TG is the cylinder of the projection PG of the clas-
sifying sphere bundle. We can write down the exact cohomology sequence
of the pair (TG, EG):

. . .→ Hi(TG)
p∗

G−−→ Hi(EG)
δ−→ Hi+1(TG, EG)

j∗−→ Hi+1(TG)→ . . . . (V )

The space TG is homotopy equivalent to the space BG, and the homo-
morphisms H∗(TG)→ H∗(EG) and H∗(TG, EG)→ H∗(EG), generated by
inclusions, evidently coincide with the homomorphisms p∗G : H∗(BG) →
H∗(EG) and j∗ : H∗(MG)→ H∗(BG).

One can study the homomorphism p∗G by using the spectral sequence of
the classifying G-bundle of spheres. But this spectral sequence in our case
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is well studied (see [3]). In the spectral sequence of this spherical bundle,
the following relations hold:

E2 ≈ H∗(S2k−1, Zp)⊗H∗(BG, Zp)

if G = SO(2k), G = U(k), G = SU(k), and

E2 ≈ H∗(S4k−1, Zp)⊗H∗(BG, Zp)

if G = Sp(k). Denote the generator of the group H∗(S2k−1, Zp) by V 2k−1

and denote that of the group H∗(S4k−1, Zp) by V 4k−1 (we choose the
generator coinciding with the integral generator reduced modulo p). It is
well known (see [3]) that d2k(v2k−1 ⊗ 1) = 1 ⊗ w2k, that d4k(v4k−1 ⊗ 1) =
1⊗k4k for the group Sp(k) and d2k(v2k−1⊗1) = 1⊗c2k for the groups U(k)
and SU(k) in the corresponding spectral sequences. Clearly, E∞ ≈ E4k+1

for the group Sp(k) and E∞ ≈ E2k+1 for other Lie groups. Addressing
the spectral sense of the homomorphism p∗G, we see that in all the cases
above the homomorphism p∗G is an epimorphism to the algebra H∗(EG, Zp)
with the desired ideal being the kernel. The homomorphism δ in the exact
sequence (V) is trivial. Lemma 3.1 is proved.

Remark. It is easy to see that the proof of Lemma 3.1 works even for p = 2
for all groups except for SO(2k). Thus, we shall not describe these special cases
in the next subsection.

Our main goal is to study the action of Steenrod’s powers on the homol-
ogy of Thom spaces. Following [16], we shall use “Wu’s generators” defined
in [4].

Consider symbolic two-dimensional elements t1, . . . , tk. We shall
not make any assumptions about them. In the polynomial algebra
P (t1, . . . , tk), we select the subalgebra of symmetric polynomials. Set
c2i =

∑
t1◦. . .◦ti, p4i = k4i =

∑
t21◦. . .◦t2i for i < k, w2k = c2k = t1◦. . .◦tk

and k4k = w2
2k. We can calculate completely the Steenrod operation for

any arbitrary polynomial by using Cartan’s formulae. Furthermore, set
β(ti) = 0 (i = 1, . . . , k), where β is the Bockstein homomorphism. Now,
with each decomposition ω of a positive integer q into positive integer
summands q1, . . . , qs (unordered) we associate the symmetrised monomial∑
tq1

1 ◦ . . . ◦ tqs
s . We denote this monomial by vω. Analogously, with each

decomposition ω of an even positive integer 2q into even positive sum-
mands 2q1, . . . , 2qs (unordered) we associate the symmetrised monomial∑
t2q1

1 ◦ . . . ◦ t2qs
s = vω̄. It is known that the polynomial algebra in c2i

(considered as symmetric polynomials of “Wu’s generators”) is isomor-
phic, as a module over the Steenrod algebra, to the cohomology algebra
H∗(BU(k), Zp) (analogously for the cohomology algebras H∗(BSO(2k), Zp)
and H∗(BSp(k), Zp)).
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The algebra H∗(BSU(k), Zp) is isomorphic, as a module over the
Steenrod algebra, to the quotient of the algebra H∗(BU(k), Zp) by the
ideal generated by c2. Applying Lemma 3.3 and the results of Borel-
Serre [4], we shall represent the cohomology of Thom’s spaces via
symmetric polynomials of “Wu’s generators”. We call the decompo-
sitions ω (or ω) p-adic, if at least one of the summands is equal
to pi − 1. Recall that in [6], Cartan associated with cohomology op-
eration a certain number, the type in Cartan’s sense (the number
of occurrences of the Bockstein homomorphism in the iterated opera-
tion).

Lemma 3.4. All zero-type Steenrod operations in modulo p cohomolo-
gies of the spaces MSO(2k), MU(k), MSU(k), MSp(k) are trivial. The Steen-
rod operations of zero type of the elements W2k and Vω ◦W2k for all non-
p-adic decompositions ω are independent in dimensions less than 4k, and
form a Zp-basis in these dimensions of the algebra H∗(MSO(2k), Zp). The
zero-type Steenrod operations of elements c2k and Vω ◦ c2k for all non-p-
adic decompositions ω are independent and form a Zp-basis of the algebra
H∗(MU(k), Zp) in dimensions less than 4k. The Steenrod operations of
zero-tpye of the elements k4k and Vω ◦ k4k for all non-p-adic decomposi-
tions ω are independent and form a Zp-basis of the algebra H∗(MSp(k), Zp)
in dimensions less than 8k.

(We recall again that in the above text we denoted by ω decompositions
of even numbers into even summands, and by ω decompositions of arbitrary
positive integers into integer summands; and we defined the polynomials Vω

and Vω .)
We do not give a proof of the above lemma. It repeats the arguments of

Thom (see [16]) and Cartan (see [6]). For the group SO(2k), it is given [2].
For convenience of further formulations, introduce graded modules

over the Steenord algebra (to be denoted by HSO(p), HU (p), HSU (p)
and HSp(p)), whose homogeneous summands are stable cohomology groups
of the correponding Thom spaces modulo p (here p might be equal to two).
Lemma 3.4, is, actually, a statement about these modules.

§ 4. Cohomology of Thom spaces modulo 2

It follows from Remark in § 3 that we can apply the same method for
studying the cohomology of the Thom spaces MU(k) and MSp(k) mod-
ulo 2. However, the method of [16] does not work for the groups SO(2k)
and SU(k) because the cohomology of the classifying spaces for these groups
(viewed as modules over the Steenord algebra) are not described in terms
of polynomial subalgebras in “Wu’s generators” (see § 3).
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Consider the iterated Steenrod squares SqJ corresponding to admissible
sequences J = (i1, . . . , is) in the sense of Serre (see [14]). We shall write
J ≡ 0 (mod q) if all ij ≡ 0 (mod q), and J ≡ m (mod q), if at least one
ij ≡ m (mod q), where m and q are positive integers. We shall say that the
Steenrod operation SqJ has type m modulo q if J ≡ m (mod q).

The description of the cohomology of the classifying spaces BU(k)

and BSp(k), given in § 3, is applicable here even modulo 2 (it is applica-
ble for integers). Following § 3, let us introduce the symmetrised monomi-
als vω for every decomposition ω = (a1, . . . , at) of a positive integer into
positive summands, and the symmetrised monomials vω for every decompo-
sition ω = (2a1, . . . , 2at) of an even positive integer into even summands.
The decompositions ω and ω are assumed unordered.

Lemma 4.5. All non-zero type Steenrod operations modulo two act
trivially on modulo two cohomology 2 of the Thom spaces MU(k), MSU(k)

and MSp(k). The non-zero type Steenrod operations modulo 4 act trivially
on the cohomology of the Thom space MSp(k) modulo 2. The Steenrod op-

erations SqJ of zero type modulo 2 of arbitrary elements Vω ◦ c2k and c2k,
where the decompositions ω contain no summands of type 2t − 2, are inde-
pendent and form a Z2-basis of the algebra H∗(MU(k), Z2) in dimensions

less than 4k. The Steenrod operations SqJ of zero type modulo 4 of ar-
bitrary elements Vω ◦ k4k and k4k, where ω contain no summands of type
2t − 4, are independent and form a Z2-basis of the algebra H∗(MSp(k), Z2)
in dimensions less than 8k.

The proof of this lemma is quite analogous to the proof of Lemma 3.4,
one can just repeat Thom’s arguments (see [16], Lemma II.8, Lemma II.9,
Theorem II.10).

Now, let us try to study the modulo 2 cohomology of the Thom
spaces MSO(k) and MSU(k). As above, we shall consider only coho-
mology in stable dimensions. Analogously to the previous lemmas, in-
troduce unordered decompositions ω = (a1, . . . , at) of a positive integer
a =

∑
ai, a ≡ 0 (mod 4), into summands ai (i = 1, . . . , t), also positive,

ai ≡ 0 (mod 4).

Lemma 4.6. In the algebra H∗(MSO(k), Z2), one may choose a system

of elements uω̄ ∈ Hk+a(MSO(k), Z2) for all decompositions ω = (a1, . . . , at)
of the numbers a ≡ 0 (mod 4) into summands ai ≡ 0 (mod 4) and a system
of elements xl ∈ Hk+il (MSO(k), Z2) such that:

a) all Steenrod operations SqJ of elements xl are independent in dimen-
sions less than 2k;

b) all Steenrod operations SqJ of uω̄ and wk∈Hk(MSO(k), Z2) are in-
dependent with the operations of xl, if J = (i1, . . . , is), where is > 1, and
the dimensions of the elements SqJ(uω̄) and SqJ(wk) are less than 2k;
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c) the elements SqJ(uω̄) and SqJ(wk) are equal to zero if J =
(i1, . . . , is), where is = 1;

d) in the algebra H∗(MSO(k), Z2), all elements of type SqJ(uω̄),

SqJ(wk), SqJ(xl) form a Z2-basis in dimensions less than 2k.

Before proving Lemma 4.2, note that the results of this lemma allow
one to describe the action of Steenrod squares in the modulo 2 cohomol-
ogy of the space MSU(k). To perform this deed, recall the description
of the algebras H∗(BO(k), Z2) and H∗(BSO(k), Z2) via one-dimensional
“Wu generators” y1, . . . , yk. Set wi =

∑
y1 ◦ . . . ◦ yi, where i 6 k. It is

evident that wk = y1 ◦ . . . ◦ yk, and all Steenrod operations of wi’s are
then calculated by Cartan’s formulae. Wu has shown that the algebra
H∗(BO(k), Z2) is isomorphic, as a module over the Steenrod algebra, to
the algebra P (w1, . . . , wk) and that the algebra H∗(BSO(k), Z2) is isomor-
phic, as a module over the Steenrod algebra, to the quotient of the algebra
P (w1, . . . , wk) by the ideal generated by w1. Here is an evident analogy
with the description of algebras H∗(BU(k), Z2) and H∗(BSU(k), Z2) via
two-dimensional Wu generators t1, . . . , tk (see § 3).

In [1], the author defines an endomorphism of the Steenrod algebra
A = A2 over Z2

h : A→ A (V I)

such that h(Sq2i) = Sqi and h(Sq2i+1) = 0.
Consider the isomorphism µ : P (t1, . . . , tk) → P (y1, . . . , yk) of graded

algebras over Z2 decreasing the dimension twice. Clearly, the isomor-
phism µ enjoys the following property:

µ(SqJ (x)) = h(SqJ)(µ(x)), (V II)

for x ∈ P (t1, . . . , tk). The isomorphism µ induces isomorphisms

µ1 : H∗(BU(k), Z2)→ H∗(BO(k), Z2)

and
µ2 : H∗(BSU(k), Z2)→ H∗(BSO(k), Z2)

that also satisfy (VII), and are isomorphic to

λ1 : H∗(MU(k), Z2)→ H∗(MO(k), Z2),

λ2 : H∗(MSU(k), Z2)→ H∗(MSO(k), Z2)

}
(V III)

making the dimension two times smaller and possessing the property (VII).
Clearly, λ1(UU(k)) = UO(k) and λ2(USU(k)) = USO(k). Thus, we get
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Corollary 4.4. There exists an isomorphism λ2 : H∗(MSU(k), Z2) →
H∗(MSO(k), Z2) making the dimension two times smaller and such that

λ2(USU(k)) = USO(k) and h(SqJλ2(x)) = λ2(Sq
J(x)) for all x ∈

Hi(MSU(k), Z2), j < 2k.

Now, let us prove Lemma 4.6. It follows from Rokhlin’s work [12]
that the kernel of the mapping i∗ : πm(MSO(k))→ πm(MO(k)), generated
by the inclusion i : SO(k) ⊂ O(k), consists of all elements divisible by 2, for

m < 2k − 1. Denote by π
(2)
m (MSO(k)) the quotient of the group πm(MSO(k))

by the subgroup consisting of all elements of odd order (in [2], it is shown
that the groups πm(MSO(k)) do not contain elements of odd order, but
we shall not rely on this result). It follows from [16] that one may choose

systems of generators x
(m)
i of the groups π

(2)
m (MSO(k)) and y

(m)
j for the

groups πm(MO(k)) such that the mapping i∗ takes the set {x(m)
i } to a sub-

set of {y(m)
j }. As Thom has shown, (see [16], II.6–II.10), the space MO(k)

can be thought of as homotopy equivalent (in stable dimensions) to the
direct product of Eilenberg-MacLane complexes. This defines a mapping i1
from MSO(k) to the direct product Π of Eilenberg-MacLane complexes of
types K(Z2, nj), for which the generators of the homotopy groups are in

one-to-one correspondence with the elements x
(m)
i , so that the mapping i1∗

takes the element x
(m)
i to the generator of this product corresponding to

it. The fundamental classes of factors of this direct product, u
(m)
i , can be

defined by the equalities (u
(m)
i , i1x

(m)
i ) = 1, (u

(m)
i , x

(m′)
i′ ) = 0, if i 6= i′

or m 6= m′.
Denote by Πm the subproduct of the product Π of Eilenberg-MacLane

complexes, defined by elements of homotopy groups of dimensions greater

than or equal to m. Denote by i
(m)
1 the projection of the mapping i1

to Πm. The following Serre fibre spaces are well known (see [14]):

pm : M̂SO(k)
Mm−−→M (m), where by M̂SO(k) we denote some space which

is homotopy equivalent to MSO(k), and by M (m) we denote the space ob-
tained from MSO(k) by “killing” all homotopy groups starting with the m-
th. The fibres of these bundles are m-killing spaces for MSO(k). Denote

them by M(m). We shall denote the generators of the groups π
(2)
m (Mm)

also by x
(m)
i . The group Hm(M(m)Z2) is generated by the elements v

(m)
i ,

defined by

(v
(m)
i , x

(m)
i ) = 1, (v

(m)
i , x

(m)
i′ ) = 0, i′ 6= i.

We consider the space Πm as a fibre space with base consisting of one point.

The mapping i
(m)
1 induces the mapping î

(m)
1 : M(m) → Πm.
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Obviously, î
(m)∗

1 (u
(m)
i ) = v

(m)
i . From the last statement, it follows im-

mediately that in the Serre fibre space pm : M̂SO(k)

M(m)−−→M (m) the trans-

gression is trivial for all elements v
(m)
i because the mapping i

(m)
1 can be

thought of as a mapping from this fibre space to the trivial one described
above. This yields that all factors of the space MSO(k) in the sense of
M.M. Postnikov (see [11]), reduced modulo 2, are trivial. The statement
of Lemma 4.6 now follows from Theorem IV.15 of Thom (see [16]) and the
fact that the cohomology groups Hi(MSO(k)) have no elements of order 4
for i < 2k − 1. Here we mean cohomology groups with integer coefficients.

§ 5. Diagonal homomorphisms

Let K be an arbitrary polyhedron. Denote by H+(K, Zp) its module
over the Steenrod algebra A = Ap, with homogeneous summands being
the cohomology groups of positive dimensions. Let K1 and K2 be two
polyhedra. There is a well-known isomorphism

H+(K1 ×K2/K1 ∨K2, Zp) ≈ H+(K1, Zp)⊗H+(K2, Zp).

This is an A-module isomorphism (which makes sense because A is a
Hopf algebra). This yields that the homeomorphism (II) from Lemma 2.2
defines diagonal homomorphisms generated by the above inclusions
SO(m) × SO(n) ⊂ SO(m + n), U(m) × U(n) ⊂ U(m + n), SU(m) ×
SU(n) ⊂ SU(m+ n), Sp(m)× Sp(n) ⊂ Sp(m+ n):

H+(MSO(m+n))→ H+(MSO(m))⊗H+(MSO(n)),

H+(MU(m+n))→ H+(MU(m))⊗H+(MU(n)),

H+(MSU(m+n))→ H+(MSU(m))⊗H+(MSU(n)),

H+(MSp(m+n))→ H+(MSp(m))⊗H+(MSp(n)).





(IX)

We shall define all these homomorphisms by ∆m,n. The homomor-
phisms ∆m,n denote for the modules HSO(p), HU (p), HSU (p), HSp(p),
(see § 3) the following homomorphisms ∆:

HSO(p)→ HSO(p)⊗HSO(p),

HU (p)→ HU (p)⊗HU (p),

HSU (p)→ HSU (p)⊗HSU (p),

HSp(p)→ HSp(p)⊗HSp(p).





(X)
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The aim of this section is to calculate the homomorphisms (X). The follow-
ing lemma holds.

Lemma 5.7. For generators uω and uω̄ of the modules HSO(p), HU (p),
HSp(p) for all p > 2, the homomorphisms ∆ look like:

∆(uω) =
∑

(ω1,ω2)=ω

ω1 6=ω2

[uω1 ⊗ uω2 + uω2 ⊗ uω1 ] +
∑

(ω1,ω2)=ω

uω1 ⊗ uω1 ,

∆(uω̄) =
∑

(ω̄1,ω̄2)=ω̄

ω̄1 6=ω̄2

[uω̄1 ⊗ uω̄2 + uω̄2 ⊗ uω̄1 ] +
∑

(ω̄1,ω̄2)=ω̄

uω̄1 ⊗ uω̄1 .





(XI)

Note that in formulas (XI) we admit decomposition ω1 (ω1), consisting
of the empty set of summands. In this case, the generator uω1 (uω̄1) for
the empty summand ω1 (ω1) corresponds to the elements w2k, c2k or k4k,
as in previous sections. (By uω̄ we denote the generator of the module
corresponding to the product vω̄ ◦ w2k or vω̄ ◦ k4k from Lemma 3.4. Here
by uω we denote the generator of the module corresponding to the product
vω ◦ c2k, and also generators from Lemma 4.6.)

Proof. First consider the modules HSO(p) for p > 2. HU (p) for p > 2
and HSp(p) for p > 2. Let us return to the description of Thom spaces by
ideals in the cohomology of classifying spaces (see Lemma 3.3) and “Wu’s
generators”. We are going to calculate the homomorphism (IX), by using
Whitney’s fomulae for Pontrjagin’s, Chern’s, and Borel’s symplectic classes.

Let m and n be large enough and let x1, . . . , xm, y1, . . . , yn be the
symbolic two-dimensional “Wu generators”. In the algebra P (x1, . . . , xm,
y1, . . . , yn), choose elementary symmetric polynomials in x1, . . . , xm,
y1, . . . , yn and x2

1, . . . , x
2
m, y2

1 , . . . , y
2
n. The topological meaning of these

polynomials was described above. Analogously, we take the elementary
symmetric polynomials in the algebras P (x1, . . . , xm) and P (y1, . . . , yn)
over the field Zp. Note that the homomorphisms ∆m,n should satisfy
Whitney’s formulae, and these formulae uniquely define the homomor-
phisms (IX). We set formally:

∆m,n(xi) = xi ⊗ 1, ∆m,n(yj) = 1⊗ yj (XII)

for all i 6 m, j 6 n. We treat the set of elements xi as the “Wu generators”
for the algebras

H∗(BSO(2m), Zp), H∗(BU(m), Zp) and H∗(BSp(m), Zp)

and the elements yj as the “Wu generators” for the algebras
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H∗(BSO(2n), Zp), H∗(BU(n), Zp), H∗(BSp(n), Zp).

If we apply (XII) to elementary symmetric polynomials, we can eas-
ily see that from (XII) one gets the Whitney formula for all character-
istic classes mentioned above. Thus the homomorphisms ∆m,n calcu-
lated according to (XI) and introduced formally coincide on the symmet-
ric polynomials with the “geometric” homomorphisms ∆m,n. Now, let
us apply formulae (XII) to the polynomials vω̄ ◦ w2k, vω ◦ c2k, vω̄ ◦ k4k,
w2k, c2k and k4k. It is easy to see that they lead to the desired re-
sult. In order to prove (XI) for the modulo HSO(2), note that Pontrja-
gin’s classes satisfy Whitney’s formulae (without torsions). We take uω

from Lemma 4.6, the modulo 2 reductions of polynomials in Pontrjagin
classes and the class w2(m+n), corresponding to the symmetrised mono-
mial ∑

xa1+1
1 ◦ . . . ◦ xas+1

k ◦ . . . ◦ xm ◦ y1 ◦ . . . ◦ yn,

where ω = (a1, . . . , as) is an arbitrary decomposition of an odd number into
odd summands, in elementary symmetric polynomials of squares x2

1, y
2
j and

the polynomial w2(m+n) = x1 ◦ . . . ◦ xm ◦ y1 ◦ . . . ◦ yn. Arguing as above, we
see that formula (XI) for these elements is valid up to some elements be-
longing to the image of Sq1 (in integral homology with 2-torsion omitted).
The lemma is proved.

Now, let us give the conclusion of this Chapter. In § 2 we associ-
ated with the group sequences {Gi = SO(i)}, {Gi = U(i)}, {Gi = SU(i)},
{Gi = Sp(i)}, graded rings VSO, VU , VSU , VSp. We shall call them in-
ner homology rings. On the other hand, in §§ 3–5 we associated with the
same sequences the graded modules over the Steenrod algebra: HSO(p),
HU (p), HSU (p), HSp(p) for all prime p > 2. These modules were calcu-
lated in §§ 3–4. In § 5 we associated with these modules the diagonal map-
pings (X).

The aim of the next chapter is to calculate the inner homology rings by
using Adams’ spectral method.

Chapter II

Inner homology rings

This chapter, as mentioned above, is devoted to the calculation of inner
homology rings. The main theorems of this chapter are formulated in §§ 4–5.
In the first three sections, we study modules extensions over the Steenrod
algebra.
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§ 1. Modules with one generator 227

§ 1. Modules with one generator1

Let A be the graded associative algebra A =
∑

i>0 A
(i) over Zp. As

usual, we assume that A(0) = Zp and A(i) are finite-dimensional linear
spaces over the ground field. Consider the graded A-module M with
one generator u of dimension 0 endowed with some homogeneous Zp-ba-

sis {x(m)
i }, x(m)

i ∈M (m). The free A-module with one generator is also to
be denoted by A if this generator has dimension 0, in this case, this module
is identified with the algebra A. We denote the generator by 1 and identify
it with the unit of A. Clearly, there is a well-defined canonical A-modules
mapping ε : A→M such that ε(1) = u. Denote by A, as usual, the ideal
of A generated by all elements of positive dimension.

Let B be a graded subalgebra of A, B =
∑

i>0B
(i), B(0) = Zp

and B(i) = B ∩A(i). Denote by MB the one-generator module equal to

A/A ◦B. Denote its Zp-basis, as before, by x
(m)
i , and denote its generator

by u = ε(1), where ε is the natural homomorphism A→ A/A ◦B. Denote

by {y(k)
j } any homogeneous Zp-basis of B, and in each set ε−1(x

(m)
i ) choose

and fix one element z
(m)
i ∈ ε−1(x

(m)
i ). The elements z

(m)
i are assumed ho-

mogeneous of the same dimension as x
(m)
i .

Definition 1.1. The subalgebraB ofA is special if all possible products

z
(m)
i ◦ y(k)

j form a homogeneous Zp-basis of the algebra A, and they are
independent.

As usual, we shall endow the field Zp with the trivial A-module struc-
ture.

Lemma 1.1. Assume the subalgebra B of A is special. In this case we
have an isomorphism:

Exts,t
A (MB, Zp) ≈ Exts,t

B (Zp, Zp). (XIII)

Proof. Let CB(Zp) denote the B-free standard complex of the al-
gebra B (see [8]). To prove the isomorphism (XIII), we shall construct
an A-free acyclic complex CA(MB), such that there exists a differential
isomorphism

Homs,t
B (CB(Zp), Zp) ≈ Homs,t

A (CA(MB), Zp) (XIV )

for all pairs s, t. From the isomorphism (XIV) that for all s, t com-
mutes with the differential, we easily get (XIII). For constructing the com-
plex CA(MB), we shall use Zp-bases of our algebras and of the module MB,
given in Definition 1.1 of this section, with the same notation.

1We consider only left A-modules.
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For the module C0
A(MB) =

∑
t C

0,t
A (MB), we take the free A-module,

and define the mapping ε : A→MB such as it is defined in the beginning
of this section. Obviously, for generators of the A-module Ker ε ⊂ C0

A(MB)

we may take all possible elements y
(k)
j for k > 0. Each element y ∈ Ker ε

looks like
∑

q z
(mq)
iq

◦ y(kq)
jq

, where all kq > 0. It follows immediately from

Definition 1.1 that all A-relations between the generators y
(k)
j of the module

Ker ε follow from the multiplicative relations in B. We shall construct the
complex CA(MB) =

∑
s,t C

s,t
A (MB) by induction on s. Assume that:

a) the complex CA(MB) is constructed for all s 6 n;
b) generators of the A-module Kerdn−1 : Cn

A(MB)→ Cn−1
A (MB) are

in one-to-one correspondence with sequences of homogeneous elements

(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

) of positive dimension; denote these generators by

u(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

), and denote for each element yi =
∑
qly

(ki,l)
ji,l

by

u(y
(k1)
j1

, . . . , yi, . . . , y
(kn+1)
jn+1

) the linear combination
∑

l qlu(y
(k1)
j1

, . . . ,

y
ki,l

ji,l
, . . . , , y

(kn+1)
jn+1

) of generators of the kernel Ker dn−1 (for each

1 6 i 6 n+ 1);
c) generators of the A-module Ker dn−1 satisfy the following relations:

y ◦ u(y(k1)
j1

, . . . , y
(kn+1)
jn+1

) = u(y ◦ y(k1)
j1

, . . . , y
(kn+1)
jn+1

)

+

n∑

i=1

(−1)iu(y, y
(k1)
j1

, . . . , y
(ki)
ji
◦ y(ki+1)

ji+1
, . . . , y

(kn+1)
jn+1

),

where y ∈ B.
d) all relations are linear combinations of right-hand sides of relations

from c), multiplied from the left by z
(m)
i ◦ y(k)

j (and trivial relations).

e) the dimension of u(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

) is equal to the sum of the

dimensions of y
(ki)
ji

(i = 1, . . . , n+ 1).
Clearly, these assumptions are proved above n = 0. Now, let us

construct a module Cn+1
A (MB) =

∑
t C

n+1,t
A (MB) and a mapping dn :

Cn+1
A (MB) → Cn

A(MB). We choose A-generators of the free mod-
ule Cn+1

A (MB) in such a way that they are in one-to-one correspondence

with the elements u(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

). We denote these free generators

by v(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

). We set the dimension of v(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

) to

be equal to
∑
ki, as well as that of the generator u(y

(k1)
j1

, . . . , y
(kn+1)
jn+1

). We
set:

dn+1(v(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

)) = u(y
(k1)
j1

, . . . , y
(kn+1)
jn+1

).

Let us prove that the kernel Ker dn+1 satisfies the assumptions b)–e).
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We set

u(y(k1)
j1

, . . . , y
(kn+2)
jn+2

) = y
(k1)
j1

◦ v(y(k2)
j2

, . . . , y
(kn+2)
jn+2

)

−
n+1∑
i=1

(−1)iv(y(k1)
j1

, . . . , y
(ki)
ji

◦ y(ki+1)
ji+1

, . . . , y
(kn+2)
jn+2

).

The properties c) and e) can be checked straightforwardly. To prove d),
let us use the properties of bases of the algebraA. Let us compose a relation,
a linear combination of elements of type z

(m)
j ◦ y(l)

q ◦ u(y(k1)
j1

, . . . , y
(kn+2)
jn+2

),
equal to zero. Then we see that d) easily follows from the properties of
bases and the induction hypotheses.

The resolvent CA(MB) that we have constructed, evidently, satis-
fies (XIV) by definition of the standard complex CB(Zp) of the algebra B.
The lemma is proved.

Now let A be a Hopf algebra and let B be a special subalgebra which is
closed with respect to the diagonal mapping ψ : A → A ⊗ A. In this case,
the A-module MB has also a diagonal mapping

ψ̃ : MB → MB ⊗ MB,

induced by ψ and which is an A-module homomorphism. The homomor-
phism ψ̃ can be considered, as well as the homomorphism from the A-mod-
ule MB to the A ⊗ A-module MB ⊗ MB, such that: ψ̃(a◦x) = ψ(a)◦ ψ̃(x),
for a ∈ A, x ∈ MB. The homomorphism ψ̃ endows the direct sum

ExtA(MB, Zp) =
∑
s,t

Exts,tA (MB, Zp)

with a bigraded algebra structure over Zp.

Lemma 1.2. Let A be a Hopf algebra with a special subalgebra B such
that B is closed with respect to the diagonal mapping. Then (XIII) is a
graded algebra isomorphism.

The proof of Lemma 1.2 follows from the commutativity of the diagram

ExtB⊗B(Zp, Zp) ≈ ExtA⊗A(MB⊗B, Zp)1

↓ ψ∗ ↓ ψ̃∗

ExtB(Zp, Zp) ≈ ExtA(MB, Zp)

1It remains to note that the algebra B ⊗ B is special in A⊗ A and the A⊗A-modules
MB ⊗MB and MB⊗B are canonically isomorphic.
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§ 2. Modules over the Steenrod algebra. The case of

prime p > 2

In [1], the families of elements e′r, r > 0, and er,k, r > 1, k > 0, in
the Steenrod algebra A over Zp are defined. These elements possess the
following properties:

a) e′r ∈ A(2pr−1), er,k ∈ Ak(2pr−2), er,0 = 1;
b) ψ(e′r) = e′r ⊗ 1 + 1⊗ e′r, ψ(er,k) =

∑
i+j=k er,i ⊗ er,j ,

where ψ is a Hopf homomorphism of Steenrod algebras;
c) if we order the set of elements e′r and positive-integer valued functions

fr(k) = er,k somehow, then the set of monomials which are products of e′r
and er,k with arbitrary arguments kr substituted, forms a basis of A;

d) the elements er,k have Cartan zero type (see [6]), the elements e′r are
of Cartan type 1;

e) The elements e′r anti-commute.
Later on, we shall use these properties of Adams’ elements in the Steen-

rod algebra. Let us return to our modules HSO(p), HU (p), HSp(p). The
formulae (X) § 5 Ch. I define diagonal homomorphisms for these modules.
Thus, the bigraded groups

ExtA(HSO(p), Zp) =
∑

s,t

Exts,t
A (HSO(p), Zp),

ExtA(HU (p), Zp) =
∑

s,t

Exts,t
A (HU (p), Zp),

ExtA(HSp(p), Zp) =
∑

s,t

Exts,t
A (HSp(p), Zp).

have a natural structure of bigraded algebras. Furthermore, recall that
in § 3 of Chapter I we introduced decompositions ω and ω of some numbers
of the same type; we call twice the sum of this numbers the dimension of
the decomposition ω (ω) and denote it by R(ω) (R(ω)); also, we introduced
the notion of p-adic decomposition ω (ω).

Theorem 2.1. The algebras ExtA(HSO(p), Zp) and ExtA(HSp(p), Zp)
are isomorphic and they are polynomial algebras with the following genera-
tors:

1 ∈ Ext0,0
A (HSp(p), Zp),

z4k ∈ Ext0,4k
A (HSp(p), Zp), 2k 6= pi − 1,

h′r ∈ Ext1,2pr−1
A (HSp(p), Zp), r > 0.





(XV )
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The algebra ExtA(HU (p), Zp) is a polynomial algebra of

1 ∈ Ext0,0
A (HU (p), Zp),

z2k ∈ Ext0,2k
A (HU (p), Zp), k 6= pi − 1,

h′r ∈ Ext1,2pr−1
A (HU (p), Zp), r > 0.





(XV I)

Proof. Denote by Mβ the module over the Steenrod algebra with one
generator u of dimension 0, and the only non-trivial relation being β(x) = 0
for all x ∈Mβ .

Obviously, the moduleMβ has the diagonal mapping ∆: Mβ →Mβ ⊗Mβ ,

and the group ExtA(Mβ , Zp) =
∑

s,t Exts,t
A (Mβ , Zp) is an algebra.

Lemma 2.3. The algebra ExtA(Mβ , Zp) is a polynomial algebra with
the following generators:

1 ∈ Ext0,0
A (Mβ , Zp), h′r ∈ Ext0,2pr−1

A (Mβ , Zp), r > 0.

Proof. To prove this lemma, let us use properties a)–e) of the Adams
elements and Lemma 1.2 § 1, Chapter II (see above). We define B to be the
subalgebra of A generated by the elements e′r, r > 0, and er,0 = 1. Now,
let us order the Adams elements in such a way that all elements e′r pre-
cede from the left all elements er,k, and define the basis of the Steenrod
algebra by property c), for this ordering. Clearly, for the algebra B all
assumptions of Lemma 1.2 § 1, Chapter II, hold. The algebra B is the
exterior algebra with generators e′r ∈ B(2pr−1); thus we see that its coho-
mology algebra H∗(B) = ExtB(Zp, Zp) is a polynomial algebra. On the
other hand, it follows from d) that in this case MB = Mβ, which yields the
conclusion of the lemma. The lemma is proved.

Now, let us use Lemmas 3.4 and 5.7 of Chapter I. We see that the mod-
ules HSO(p), HU (p) and HSp(p) are direct sums of modules of type Mβ,
the only difference being that their generators uω and uω̄, except one,
have non-zero dimension which is equal to R(ω) or R(ω), respectively. De-

note by zω ∈ Ext
0,R(ω)
A (HU (p), Zp), by zω ∈ Ext

0,R(ω)
A (HSO(p), Zp) and by

zω ∈ Ext
0,R(ω)
A (HSp(p), Zp) the elements of these algebras defined by the

following equalities:

(zω, uω) = 1, (zω, uω1) = 1, ω1 6= ω,

(zω, uω) = 1, (zω, uω1
) = 1, ω1 6= ω.

}
(XV II)

From Lemma 5.7, Chapter I it follows that in the algebras
ExtA(HSO(p), Zp), ExtA(HU (p), Zp), ExtA(HSp(p), Zp) the following re-
lations hold:

zω ◦ zω1 = z(ω,ω1), zω ◦ zω1
= z(ω,ω1)
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for all non p-adic decompositions ω, ω1 and ω, ω1. Now, it suffices to define
the generators z4k and z2k to be the elements zω and zω, where ω and ω
consist of one summand each. The theorem is proved.

§ 3. Modules over the Steenrod algebra. The case

p = 2

In [1], modulo 2 bases of the Steenrod algebra were studied. Namely,
Adams defined a family of elements er,k ∈ A(k·2r−k) possessing properties
analogous to а)–е) § 2. In this case, the elements er,1 commute with each
other for any r and e2r,1 = 0 (also for any r).

Analogously to Theorem 2.1 § 2 Chapter II, one can prove the following

Theorem 3.2. The algebra ExtA(HU (2), Z2) is a polynomial algebra
with generators:

1 ∈ Ext0,0
A (HU (2), Z2),

z2k ∈ Ext0,2k
A (HU (2), Z2), k 6= 2t − 2,

h′r ∈ Ext1,2pr−1
A (HU (2), Z2), r > 0.



 (XV III)

Proof. The proof is analogous to the proof of Theorem 2.1 (in this
case β = Sq1). We indicate the only difference: in the Steenrod algebra
over Z2 there are no Cartan types. As before, denote by Mβ the module
over the Steenrod algebra with the only generator of dimension 0, and the
only relation β(x) = 0 for all x ∈ Mβ. We define the subalgebra B of A
to be the commutative algebra generated by the elements er,1, r > 1, and
er,0 = 1. Obviously, it is special. Let us prove that MB = Mβ. We shall
use the dividing Adams homomorphism h (see formulae (VI) § 4 of Chapter
I). Clearly, the homomorphism h annihilates all iterations of type 1 modulo
2 (see § 4 of Chapter I). Adams showed that the following relations hold:

h(er,2k) = er,k,

h(er,2k+1) = 0.

}
(XIX)

From (XIX), it follows that h(er,1) = 0. Instead of elements er,k, we shall
consider now only er,2i and construct bases of type c) § 2 Chapter II only
by using such elements (see [1]). Consider the ordering where all elements
of the type er,1 precede all elements of the type er,2i for i > 0 we see that
the homomorphism h annihilates only those monomials of the basis having
er,1 on the left side. This yields that Mβ = MB. The theorem is proved.

Denote by H̃SO(2) the quotient of the module HSO(2) by its A-free
part generated by the generators xl from Lemma 4.6 § 4, Chapter I. From
Lemmas 4.6 and 5.7 of Chapter I, analogously to Theorem 2.1 and Theorem
3.2 of this chapter, we get
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Lemma 3.4. The algebra ExtA(H̃SO(2), Z2) is a polynomial algebra
with generators:

1 ∈ Ext0,0
A ,z4k ∈ Ext0,4k

A , k > 1

h0 ∈ Ext1,1
A .

}
(XX)

The proof of this lemma is analogous to the previous ones. For B, we
may take the subalgebra generated by e1,1 = Sq1.

Denote by M̃β the module over the Steenrod algebra with one generator

u of dimension 0 and one non-trivial relation β(x) = 0 for x ∈ M̃β and the
relation Sq2(u) = 0. From Lemma 4.6 and Corollary 4.4 of Chapter I it
follows that the module HSO(2) is a direct sum of modules of types Mβ

and M̃β . The following theorem holds

Theorem 3.3. The algebra ExtA(M̃β , Z2) admits a system of genera-
tors

1∈Ext0,0
A (M̃β , Z2), h0∈Ext1,1(M̃β , Z2), h1∈Ext1,2(M̃β , Z2),

x∈Ext3,7(M̃β , Z2), y∈Ext4,12(M̃β , Z2), h
′
r∈Ext1,2r−1(M̃β , Z2), r > 3,

}

(XXI)
satisfying the relations

h0h1 = 0, h2
1 = 0, x2 = h2

0y, h1x = 0, (XXII)

and all the relations follow from (XXII).

Proof. To prove Theorem 3.3 is, we shall, as above, find a spe-
cial subalgebra B of the Steenrod algebra A, that should correspond to

the module M̃β . For B we take the subalgebra generated by the ele-
ment e1,2 = Sq2 and all elements of the type er,1. It follows trivially from
the description of the elements er,k in [1] that [e1,1; e1,2] = e2,1 and that
[er,1; e1,2] = 0 for r > 1. (By [a; b] here we denote the element ab− ba
(commutator).) Let us calculate the cohomology algebra H∗(B). Clearly,
the subalgebra generated in B by er,1 for r > 1, is a central subalgebra
in B. Denote it by C. It is easy to see that the algebra B//C is commuta-
tive, with any element squared being equal to zero (because in B we have
e21,2 = e1,1 ◦ e2,1). The algebra H∗(C) is isomorphic to the polynomial alge-

bra with generators h′r ∈ H1,2r−1(C) for all r > 2. The algebra H∗(B//C)
is isomorphic to the polynomial algebra with generators h0 ∈ H1,1(B//C)
and h1 ∈ H1,2(B//C).

Consider the Serre-Hochschild spectral sequence for the central sub-
algebra C of B (see [15]). We know the E2 term of it, namely,
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Ep,q
2 = Hp(B//C)⊗Hq(C). Simple calculations show that in the Serre-

Hochschild spectral sequence the following relations hold:

d2(1⊗ h′2) = h0h1 ⊗ 1, di(1⊗ h′r) = 0, r > 3, i > 2,

d3(1 ⊗ h′2
2
) = h3

1 ⊗ 1, di(1⊗ h′2
4
) = 0, i > 2.

}
(XXIII)

Setting x = h0 ⊗ h′22
, y = 1⊗h′24

and preserving the previous notation, we
easily get the desired result. The theorem is proved.

It remains thus to study only the module HSp(2). Denote by M1,2 the
module with one generator over the Steenrod algebra with two identical
relations Sq1(x) = 0 and Sq2(x) = 0 for all x ∈M1,2. The dimension of the
generator is assumed to be zero. Lemmas 4.5 and 5.7 of Chapter I reduce
the study of the algebra ExtA(HSp(2), Z2) to the study of ExtA(M1,2, Z2).
Arguing as above, it is easy to show that the algebra ExtA(M1,2, Z2) is
isomorphic to the algebraH∗(B), where B is the subalgebra of the Steenrod
algebra A generated by all elements of the type er,1 and er,2. Recalling
the description in [1] of the elements er,k, it is easy to show by simple
calculations that the elements er,1 and er,2 satisfy the following relations:

[er1,1; er2,1] = 0, e2r,1 = 0, [er,2; e1,1] = er+1,1,

[er1,2; er2,1] = 0, r2 > 1, [er,2; e1,2] = er+1,1 ◦ e1,1,

[er1,2; er2,2] = 0, r1 > 1, r2 > 1, e21,2 = e2,1 ◦ e1,1,

e2r,2 = 0, r > 1,





(XXIV )

and all relations follow from (XXIV).
Let us choose in this algebra the central subalgebra C, generated by

the elements er,1 for r > 2. The cohomology algebra H∗(C) is isomorphic
to the polynomial algebra in h′r ∈ H1,2r−1(C) for all r > 2, as is easy to
see from (XXIV). The cohomology algebra H∗(B//C) is isomorphic to the

polynomial algebra in h0 ∈ H1,1(B//C) and hr,1 ∈ H1,2r+1−2(B//C) for all
r > 1. From (XXIV), one can easily deduce that in the Serre-Hochschild
spectral sequence for the subalgebra C of B, the following relations hold:

d2(1 ⊗ h′r) = h0hr−1,1 ⊗ 1, r > 2,

d3(1⊗ h′r
2
) = h1,1h

2
r−1,1 ⊗ 1, r > 2,

di(1⊗ h′r
4
) = 0, i > 2, r > 2.





(XXV )

Set x = h0 ⊗ h′22
and y = 1 ⊗ h′2

4
. Obviously di(x) = 0 and di(y) = 0

for all i > 2. Thus there exist elements x ∈ Ext3,7
A (HSp(2), Z2) and

y ∈ Ext4,12
A (HSp(2), Z2) satisfying the following relation:

x2 = h2
0y, (XXV I)
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where h0 ∈ Ext1,1
A (HSp(2), Z2) (such an element h0, clearly, exists). Be-

sides, from (XXV), it evidently follows that in the algebra ExtA(HSp(2), Z2)
for every n we have hn

0x 6= 0 and hn
0y 6= 0.

§ 4. Inner homology rings

Theorem 4.4. The quotient ring of VSO by 2-torsion is isomorphic to
the ring of polynomials with generators u4i of dimension 4i for all i > 0.
The ring VU is isomorphic to the ring of polynomials with generators V2i

of dimension 2i for all i > 0. The algebras VSp ⊗ Zp are isomorphic to the
algebras of polynomials with generators t4i of dimension 4i for all i > 0 for
every p > 2. The ring VSp has no p-torsion for p > 2. The quotient of the
ring VSp by 2-torsion is not a polynomial ring. There are elements x ∈ V 4

Sp,

y ∈ V 8
Sp such that x2 − 4y ≡ 0 (mod 2-torsion), so that the elments x and y

are generators of the groups V 4
Sp and V 8

Sp of infinite order.

The proof of Theorem 4.4 uses the Adams spectral sequence method;
thus, it is necessary to give the precise formulation of the main theorem
from [1].

Let K be an arbitrary finite complex. Denote by πs
n(K) the groups

πn+i(E
iK), where E is the suspension and i is large enough. If

K = K1 ×K2/K1 ∨K2, where K1 and K2 are finite polyhedra, then there
is a well-defined pairing of groups: πn1(K1)⊗πn2(K2)→ πn1+n2(K). From
the properties of the operation K1 ×K2/K1 ∨K2 it follows that the above
pairing induces some pairing

πs
n1

(K1)⊗ πs
n2

(K2)→ πs
n1+n2

(K). (XXV II)

On the other hand, it is well known that H+(K1, Zp) ⊗ H+(K2, Zp) ≈
≈ H+(K, Zp). The last isomorphism, by algebraic reasoning defines a pair-
ing

Exts,t
A (H+(K1, Zp), Zp)⊗ Exts̄,t̄

A (H+(K2, Zp), Zp)

→ Exts+s̄,t+t̄
A (H+(K, Zp), Zp).

(XXV III)

Theorem 4.5. (Adams) For every polyhedron K there exists a spec-
tral sequence {Er(K), dr} such that:

a) Er(K) ≈∑s,tE
s,t
r , dr : Es,t

r → Es+r,t+r−1
r , Es,t

r = 0, s > t;

b) Es,t
2 ≈ Exts,t

A (H+(K, Zp), Zp);
c) The group

∑
t−s=m Es,t

∞ is adjoint to the quotient of the group πs
m(K)

by a subgroup consisting of elements of order coprime with p;
d) if K = K1 ×K2/K1 ∨K2 then there are pairings

Qr : Es,t
r (K1)⊗ E s̄,t̄

A (K2)→ Es+s̄,t+t̄
A (K) (XXV III ′)
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such that

drQr(x⊗ y) = Qr(dr(x) ⊗ y) + (−1)t−sQr(x⊗ dr(y)); (XXV III ′′)

e) the pairing Q2 coincides (up to signs) with the pairing (XXVIII),
and Q∞ is adjoint to the pairing (XXVII).

Evidently, from Adams’ theorem and Lemmas 2.2 and 5.7 of Chapter I
we get the following

Lemma 4.5. There exist exact sequences of algebras {Er(SO), dr},
{Er(U), dr}, {Er(SU), dr}, {Er(Sp), dr} such that:

a)
E2(SO) ≈ ExtA(HSO(p), Zp),

E2(U) ≈ ExtA(HU (p), Zp),

E2(SU) ≈ ExtA(HSU (p), Zp),

E2(Sp) ≈ ExtA(HSp(p), Zp),

and, for E
(m)
r =

∑
t−s=mEs,t

r ,

b) the graded algebras E∞ =
∑

mE
(m)
∞ are adjoint to the quotient rings

of VSO, VU , VSU , VSp by some ideals consisting of elements of order coprime
with p, for all sequences of groups: {SO(n)}, {U(n)}, {SU(n)}, {Sp(n)}.

It follows from Adams’ theorem, а) that dr(E
(m)
r ) ⊂ E

(m−1)
r . From

Theorems 2.1, 3.2 and Lemma 3.4 it follows that in our case the
groups Es,t

2 (SO), Es,t
2 (U) and Es,t

2 (Sp) are zero for t− s ≡ 1 (mod 2) (ex-
cept for the groups Es,t

2 (Sp) and groups Es,t
2 (SO) for p = 2). This yields

that in the Adams spectral sequence, defined by Lemma 4.5, all differ-
entials are trivial. Together with Lemma 3.4, this leads to the following
isomorphisms

E∞(SO) ≈ ExtA(HSO(p), Zp), p > 2,

E∞(U) ≈ ExtA(HU (p), Zp), p > 2,

E∞(Sp) ≈ ExtA(HSp(p), Zp), p > 2.





(XXIX)

These algebras, as we have shown above, are polynomial algebras
(see §§ 2,3). Consider the elements h0 ∈ Ext1,1

A for all our algebras. It
is well known that the multiplication by such an element is adjoint to
the multiplication by p in homotopy groups (see [1]). Comparing the
obtained results for all prime p, we get all statements of the theorem
except the last one. From (XXV) and (XXVI) it follows that the el-

ements x ∈ Ext3,7
A (HSp(2), Z2) and y ∈ Ext4,12

A (HSp(2), Z2) are cycles of
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all differentials in the Adams spectral sequence and that in the ring
VSp : x2 − 4y ≡ 0 (mod 2-torsion). The absence of p-torsion in VSO, VU

and VSp follows from the fact that in the corresponding algebras E∞(SO),
E∞(U) and E∞(Sp) the relations hn

0 z = 0 do not hold for any n and z.
The theorem is proved.

§ 5. Characteristic numbers and the image of the

Hurewicz homomorphism in Thom spaces

Consider the Thom space MG corresponding to some subgroup G of the
group SO(n). Let W i be a smooth compact oriented manifold smoothly
embedded into Sn+i. We have an SO(n)-bundle of planes Rn, normal
to the submanifold W i in the sphere Sn+i. Denote it by νn and assume
that it is endowed with a G-bundle structure, as in § 1 of Chapter I. De-
note by p the classifying mapping of this bundle equal to the G-bundle
of planes over BG. Let x ∈ Hi(BG, Z) be an arbitrary cohomology class.
We call the scalar product (p∗x, [W i]) a characteristic number of the man-
ifold W i, corresponding to the element x (here [W i] denotes the funda-
mental cycle of the manifold W i with the given orientation). We shall
denote this number by x[W i] or by x[νn]. Recall the Thom isomorphism
ϕ : Hi(BG)→ Hn+i(MG) and the Thom construction: for a manifold W i,
embedded into Sn+i as above, one gets a map f(νn, W i) : Sn+i →MG.
The following lemma holds.

Lemma 5.6. If [Sn+i] is the fundamental cycle of the sphere, whose
orientation is compatible with the submanifold W i, G-framed in Sn+i, then
the following equality holds

(f(νn, W i)∗[S
n+i], ϕ(x)) = x[W i] (XXX)

for all x ∈ Hi(BG, Z).

Proof. Consider the closed tubular ε-neighbourhood T̃ (W i)
of the G-framed submanifold W i of the sphere Sn+i for sufficiently small ε.
We assume the mapping f(νn, W i) : Sn+i →MG to be t-regular in the

tubular neighbourhood T̃ (M i) (see [16]). Thus we get Thom isomorphism

ϕ : H l(W i)→ Hn+l(T̃ (W i), ∂T̃ (W i)) for all l > 0.
Denote by m0 ∈MG the point of the Thom space obtained by contract-

ing the boundary EG of the cylinder TG to a point. Denote by En+i
δ the

complement in the sphere of a small cell-neighbourhood of radius δ of some
point which is inside T̃ (W i). Clearly, there is an embedding of pairs:

j : (T̃ (W i), ∂T̃ (W i)) ⊂ (Sn+i, En+i
δ ).
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The mapping of pairs f(νn, W i) : (Sn+i, s0) → (MG, m0) can be equiva-
lently replaced with the mapping of pairs

f̃(νn, W i) : (Sn+i, En+i
δ )→ (MG, m0), s0 ∈ En+i

δ .

Denote the composition f̃(νn, W i)◦j by g. On the other hand, by definition
of a t-regular mapping f(νn, W i), it induces the mapping of pairs

f1(ν
n, W i) : (T̃ (W i), ∂T̃ (W i))→ (MG, m0),

which commutes with ϕ. Denote by µ the fundamental cycle of the man-
ifold T̃ (W i) modulo boundary. It follows from regularity of our mappings
that

(f1(ν
n, W i)∗(µ), ϕ(x)) = (ϕ−1(µ), p∗(x)) = x[W i],

where p : W i→BG is the mapping induced by f1(ν
n, W i) on the sub-

space W i. Clearly,

(g∗(µ), ϕ(x)) = (f̃(νn, W i)∗ ◦ j∗(µ), ϕ(x)) = (f̃(νn, W i)∗[S
n+i], ϕ(x)).

It remains to note that f(νn, W i)∗[S
n+i]=g∗(µ), since j∗(µ)=[Sn+i] and

f̃(νn, W i)∗[S
n+i] = f(νn, W i)∗[S

n+i].
The lemma is proved.
Let us return to the case when G is one of the classical Lie groups. As

in Chapter I, we shall consider the cohomology of Thom’s spaces and of the
spaces BSO(2k), BU(k), BSp(k) in terms of two-dimensional “Wu generators”
t1, . . . , tk. From Milnor’s lectures on characteristic classes (see [9]) it fol-
lows that j∗(p4i) =

∑
m+l=2i c2m ◦ c2l, where j : U(k)→ SO(2k) is the nat-

ural group inclusion. Thus the quotient of the ring H∗(BSO(2k)) by 2-tor-
sion can be thought as the polynomial ring with generators

∑
m+l=2i c2m ◦

c2l =
∑
t21 · · · t2i , being the elementary symmetric polynomials in squares

of Wu generators, and the polynomial w2k = t1 ◦ . . . ◦ tk (for H∗(BU(k))
and H∗(BSp(k)) this is evident because these rings have no torsion). Let ω
and ω be decompositions as in Chapters I and II, vω and vω̄ be the sym-
metrized monomials corresponding to ω and ω (see § 3 Chapter I). As
above, denote by R(ω) and R(ω) the dimension of elements vω and vω̄

in the rings of symmetric polynomials with generators t1, . . . , tk. Clearly,
vω ∈ HR(ω)(BU(k)) and Vω̄ ∈ HR(ω̄)(BSO(2k)) or vω̄ ∈ HR(ω̄)(BSp(k)) (more

precisely, in the quotient of the group HR(ω̄)(BSO(2k)) by 2-torsion).
We shall call the characteristic numbers of the framed manifold corre-
sponding to the elements vω and vω̄, ω (respectively ω) — numbers of
manifolds1. We shall be especially interested in the case when ω = (k)

1In Milnor’s lectures [9] ω (ω, respectively) numbers of manifolds are denoted
by Sω(S(ω)). The properties of ω(ω)-numbers are also described in [9].
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and R(ω) = 2k and when ω = (2k) and R(ω) = 4k. From Lemma 5.7 of
Chapter I, it follows that the characteristic numbers are well defined for
elements of the rings VSO, VU , VSU , VSp.

Theorem 5.6. The (2k)-number of the 4k-dimensional polynomial gen-
erator of the quotient of VSO by 2-torsion is equal to p if 2k = pi − 1,
where p > 2, and it is equal to 1, if 2k 6= pi − 1, for all p > 2; the (k)-num-
ber of the 2k-dimensional polynomial generator of the ring VU is equal to p
for k = pi − 1, where p > 2, and to one, if k 6= pi − 1, for all p > 2. The
minimal non-zero (2k)-number of a 4k-dimensional symplectic framed man-
ifold is equal to 2sp, if k = pi − 1, where p > 2, and it is equal to 2s if
k 6= pi − 1, for all p > 2, where s > 0.

(By minimal number we mean the number with minimal absolute value.)

Proof. We shall prove this theorem by homotopy means, based on the
equality (XXX). Since the proofs are quite analogous for all rings VSO, VU

and VSp, we shall carry it out only for the ring VU .
Consider the module HU (p). As shown above (see §§ 2–3, Chapter II),

the module HU (p) for all p > 2 is a direct sum of modules Mω
β of type Mβ

with generators Uω for all non-p-adic decompositions ω (and the gener-
ator U of dimension 0). While proving Theorem 3.2 of Chapter II we
have shown that the module Mβ corresponds to the special subalgebra B
of the Steenrod algebra A, generated by all elements e′r and 1 (see § 2
Chapter II) for p > 2, and by all elements er,1 and 1 (see § 3 Chapter II)
for p = 2, i.e. Mβ = MB. Consider the reslovent CA(MB), constructed
when proving the isomorphism (XIV). Denote by CA(HU (p)) the direct sum∑

ω CA(Mω
β ), where the resolvents CA(Mω

β ) are constructed analogously to
the resolvent CA(Mβ), the only difference being that the dimension of all
elements is shifted by R(ω); the resolvents CA(Mω

β ) coincide with the min-
imal resolvents of the special subalgebra; the sum is taken over all non
p-adic decompositions of ω.

Later on, we shall study only the mappings

ε : C0
A(HU (p))→ HU (p),

d0 : C1
A(HU (p))→ C0

A(HU (p)).

Take the Thom space MU(k) for k large enough. It is aspheri-
cal in dimensions less than 2k. Following [1], consider the realisation
Y = {Y−1 ⊃ Y0 ⊃ . . . ⊃ Yn} of the free acyclic resolvent CA(HU (p)) (see [1,
Chapter II]). We assume the realisation of Y polyhedral. Here n is large
enough. By definition of a resolvent realisation, the space Y−1 is homotopy
equivalent to the space MU(k) (k is large), the A-modules H∗(Yi−1, Yi; Zp)

are isomorphic (up to some high dimension) to the A-modules Ci
A(HU (p)),
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i > 0, the mappings δ∗i : H∗(Yi−1, Yi; Zp) → H∗(Yi−2, Yi−1; Zp) coin-
cide with di−1 : Ci

A(HU (p)) → Ci−1
A (HU (p)) for all i > 1, and the map-

ping δ∗0 : H∗(Y−1, Y0; Zp)→ H∗(Y−1; Zp) coincides with ε : C0
A(HU (p))→

HU (p). (Here we assume that cohomology is taken over Zp.) In our case, ev-
idently, π2k+1(Yi−1, Yi) ≈ Homt

A(Ci
A(HU (p)), Zp) for all t < 4k − 1, i > 0.

Now, consider the cohomology exact sequence of the pair (Y−1, Y0):

. . .→ Hq(Y−1, Y0; Zp)
δ∗
0−→ Hq(Y−1; Zp)

j∗−→ Hq(Y0; Zp)→ . . . ,
(XXXI ′)

. . .→Hq(Y−1, Y0; Z)
δ̄∗
0−→Hq(Y−1; Z)

j̄∗−→Hq(Y0; Z)→ . . . . (XXXI ′′)

In the sequence (XXXI′), the homomorphism δ∗0 is indeed an epimor-
phism for q < 4k − 1, and thus the homomorphism j∗ is trivial. But the
groups Hq(Y−1; Z) have no torsion, thus in the sequence (XXXI′′) the

homomorphism δ
∗

0 is trivial because all groups Hq(Y−1, Y0; Z) are finite
and direct sums of the groups Zpi

. From the triviality of j∗ in (XXXI′)
it follows that in the group Hq(Y0; Z) the image Im j̄∗ is divisible by p.
Since the factor-group Hq(Y0; Z)/ Im j̄∗ ⊂ Hq+1(Y−1, Y0; Z), it follows
that the image Im j̄∗ is not divisible by any ap, where |a| > 1, because the
groups Ht(Y−1, Y0; Z) for t < 4k − 1 are direct sums of the groups Zpi

(see [7]). This yields that the image Im j̄∗ : Hq(Y0, Z)→ Hq(Y−1, Z)
consists of all elements of the type px, x∈Hq(Y−1, Z). Now, consider

the elements Z̃2l ∈ Hom2l
A(C0

A(Hu(p), Zp)), defining the elements (XVI)

or (XVIII) in Ext0,2l
A (Hu(p), Zp) for l 6= pi − 1. We may assume, by def-

inition of resolvent, that Z̃2l ∈ π2l+2k(Y−1, Y0). Moreover, since the dif-
ferential in the Adams spectral sequence are trivial, we may assume that
the elements Z̃2l ∈ π2l+2k(Y−1, Y0) belong to the image of the homomor-
phism δ0∗(π2l+2k(Y−1)). Denote by H : πi(K)→ Hi(K, Z) the Hurewicz

homomorphism and denote by ˜̃z2l ∈ π2l+2k(Y−1) an element such that the

scalar product (H˜̃z2l, vl ◦ c2k) has minimal absolute value. It is evident

that δ0∗˜̃z2l = λz̃2l, moreover λ is coprime to p, since the mapping δ0∗ is
an epimorphism for homotopy groups, and the cycle Hz̃2l is the image un-
der δ0∗ of a cycle x2l such that (x2l, V(l) ◦ c2k) 6= 0 by construction of the

resolvent. This yields that the scalar product (H˜̃z2l, V(l) ◦ c2k) is coprime

to p if l 6= pi − 1. Comparing the obtained results for different p, we get

that the scalar product (H˜̃z2l, V(l) ◦ c2k) = ±1, if l 6= pi − 1 for any p > 2,

and that this scalar product is equal to ±ps if l 6= pi − 1. We do not know
the value of s yet. It remains to find it. To do this, we have to consider the
cohomology exact sequences of the pair (Y0, Y1):

. . .→ Hq(Y0, Y1; Zp)
i∗−→ Hq(Y0; Zp)→ Hq(Y1; Zp)→ . . . , (XXXII ′)
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. . .→ Hq(Y0, Y1; Z)
ī∗−→ Hq(Y0; Z)→ Hq(Y1; Z)→ . . . . (XXXII ′′)

Note that the module Hq(Y0; Zp) ≈ Ker ε is calculated in detail for
a similar case in § 1, Chapter II while proving Lemma 1.1 we are going
to apply it here. The homomorphism i∗ from (XXXII′) is an epimor-
phism as well as that from (XXXI′′). Arguing as above, it is easy to show

that there exists an element ˜̃z2l ∈ π2k+2l(Y0) such that the scalar prod-

uct (H˜̃z2l, y2l) is coprime to p, where y2l ∈ H2k+2l(Y0) is such an element
that pj∗(c2k ◦ v(l)) − y2l =

∑
λij

∗(vωi
◦ c2k), where ωi 6= (l) (j∗ is the

homomorphism H∗(Y−1)→ H∗(Y0)).
Comparing this result with the previous one, we get the desired state-

ment. To do that, it suffices to apply Lemma 5.6 about characteristic
numbers and scalar products. To conclude the proof of the theorem, it re-
mains to show that the (l)-number of an element of the ring VU is 0 if this
element is decomposable into a linear combination of elements of smaller
dimensions. Thus, the polynomial generator of dimension 2l the (l)-num-
ber is minimal, and every element x ∈ V 2l

u with minimal absolute value of
the (l)-number can be treated as a polynomial generator1. We have analo-
gous properties of (2l)-numbers in the rings VSO and VSp. The theorem is
proved.

It is well known that in VSO (see [9]) the set of complex projective
plane P 2k(C) forms a polynomial sub-ring (more precisely, P 2k(C) with
their natural normal framings can be considered as representatives of such
elements x4k that form a polynomial subring of the ring VSO, so that the
quotient group VSO/P (x4, x8, . . .) consists of finite-order elements). By
multiplicity of an element x ∈ V 4k

SO we mean the coefficient of the 4k-di-
mensional generator in the decomposition of x. The absolute value of the
multiplicity does not depend on the choice of polynomial generators in VSO

(its quotient ring by 2-torsion). We call the multiplicity x the multiplicity
of its representatives, that is, multiplicity of manifolds. Theorem 5.5 yields

Corollary 5.2. The multiplicity of the complex projective plane P 2k(C)
in the ring VSO is equal to 2k + 1 if 2k + 1 6= pi for any p > 2, and it is

equal to
2k + 1
p if 2k + 1 = pi for p > 2.

Complex analytic manifolds are embeddable into real affine even-
dimensional spaces of some dimension. Such an embedding induces a

1This easily follows from the Whitney formulae for the Pontrjagin, Chern, and sym-
plectic classes):

ω(ξ ⊗ η) =
∑

(ω1,ω2)=ω

ω1 6=ω2

[ω1(ξ)ω2(η) + ω2(ξ)ω1(η)] +
∑

(ω1,ω1)=ω

ω1(ξ)ω1(η). (XXXII)
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complex framing, which is inverse to the tangent bundle. Thus, one may
speak about the multiplicity of a complex analytic manifold in the ring VU .

Corollary 5.3.1 In the ring VU , the multiplicities of the projective
planes P k(C) is equal to k + 1, if k + 1 6= pi for any p > 2, otherwise it is

equal to k + 1
p if k + 1 = pi, where p > 2.

To prove Corollaries 5.3 and 5.4, it suffices to show that the (2k)-num-
bers P 2k(C) in VSO and the (k)-numbers Pk(C) in VU are equal to 2k + 1
and k + 1, respectively, which leads to our statements. (Evidently, the (2k)-
and (k)-numbers, respectively, are some polynomials in Pontrjagin (Chern)
classes of the normal bundles, which are inverse to the tangent ones. These
polynomials in this case are trivially calculated via symmetric polynomials
in “Wu’s generators”. For tangent Pontrjagin (Chern) classes this is done
in [9]. The (2k)-number and the (k)-number of the normal bundle is equal
to the (2k)-number (respecitvely, (k)-number with minus sign). This easily
follows from the Whitney formula written in ω (ω)-numbers.)

Chapter III

Realization of cycles

§ 1. Possibility of G-realization of cycles

Let Mn be a compact closed oriented manifold.

Definition 1.1. A dimension i for Mn is called p-regular for p prime
if 2i < n and all groups Hi−2q(p−1)−1(M

n, Z) have no p-torsion for q > 1.

Theorem 1.1. If a dimension i for Mn is ps-regular for some (fi-
nite or infinite) number of odd prime {ps} then for any integral cy-
cle zi ∈ Hi(M

n, Z) there exists an odd number α, which is coprime
all ps’s such that the cycle αzi is realizable by a submanifold. If a cycle
zi ∈ Hi(M

n, Z) is realizable by a submanifold, the dimension i is 2-regu-

lar and n− i ≡ 0 (mod 2) then the cycle zi is U
(
n− i

2

)
-realizable. If a

cycle zi ∈ Hi(M
n, Z) is realizable by a submanifold, 2i < n and n− i ≡ 0

(mod 4), then the cycle 2tzi is Sp
(
n− i

4

)
-realizable for t large enough.

1Milnor has found manifolds Hr,t⊂P r(C)×P t(C), r>1, t>1, of dimension

2k = 2(r+t−1) such that (k)[Hr,t] = −
(

r+t
r

)
. These manifolds are algebraic (see [17]).
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Proof. We shall use the Thom method and use the homotopy structure
of the spaces MSO(n−i), M

U(
n−i

2
)

and M
Sp(

n−i

4
)
, studied before.

Let us prove the first statement of the theorem. Consider the cohomol-
ogy class zn−i ∈ Hn−i(Mn, Z), which is dual to the cycle zi. Consider map-
ping q : Mn →MSO(n−i), q

∗USO(n−i) = αzn−i, where α is some odd num-
ber coprime to all ps. From Lemma 4.6 of Chapter I it follows that the k-th
Postnikov factor M (k) (see [11]) of the space MSO(n−i) for k = 2(n− i)− 2

is homotopy equivalent to the direct product of some space M̃SO(n−i) and
Eilenberg-MacLane complexes of type K(Z2, l). Moreover, from Theorem

4.1 of Chapter II it follows that the factor M̃SO(n−i) of this product can

be chosen in such a way that all groups πt(M̃SO(n−i)) are free abelian and
they are all zero except when t ≡ n− i(mod 4). Denote the Postnikov com-

plexes of the space M̃SO(n−i) by M̃ (q). Clearly, πt(M̃
(q)) = 0 for t < n− i

or for t > q. Denote the space of type K(πq(M̃SO(n−i)), q) by Kq. From [6],
it follows that the groups Hq+t(Z, q; Z) for t 6 q − 1 are finite, and they
are direct sums of groups Zp, where p > 2.

From here and from natural bundles ηq : M̃ (q) → M̃ (q−1) with

fibres Kq one easily gets that the groups Hq+t(M̃ (q), Z) are finite

for 0<t<2(n− i) and that the Postnikov factors Φq ∈ Hq+2(M̃ (q),

πq+1(M̃SO(n−i))) are homology classes of finite order with coefficients in
an abelian group. Denote the order of the factor Φq by λq. From
Lemma 4.6 of Chapter I it follows that λq is even. Denote the fun-
damental cohomology class of the complex Kq by Uq. We shall now

construct a family of mappings gq : Mn → M̃ (q) such that ηq(gq) = gq−1

and g∗n−i(Un−i) = αzn−i. Recall that, under our assumptions, the

sets of mapping homotopy classes of π(Mn, M̃ (q)) form abelian groups,

and for each pair of elements h1 ∈ π(Mn, M̃ (q)), h2 ∈ π(Mn, M̃ (q)) we
have (h1 + h2)

∗ = h∗1 + h∗2 for the induced homomorphisms of cohomology

groups. Denote by H̃q,t ⊂ Hq+t(M̃ (q), Z) the subgroup of Hq+t(M̃ (q), Z),
consisting of elements of finite order coprime to all ps’s, and of elements

of order coprime to λq. Given a mapping fq : Mn → M̃ (q) such that
f∗

q (Φq) = 0. We shall denote the homotopy class of the mapping f by {f}.

Lemma 1.1. There is a mapping fq+1 : Mn → M̃ (q+1) and an odd
number αq, relatively prime to all numbers ps such that {ηq+1fq+1} = αq{fq}
and f∗

q+1(H̃
q+1,t) ⊂ Im f∗

q for t+ q + 16q + n− i.
Proof. Consider the spectral sequence of the bundle ηq+1 with co-

efficients in πq+1(M̃SO(n−i)); this sequence reduces to the exact sequence
in low dimensions. As usual, we denote the transgression in this bundle
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by τ . Clearly, τ(uq+1) = Φq and τ(λquq+1) = 0. It is also evident that
τ(x) = 0 if x is an element of finite order coprime to λq and of dimension

less than n− i+ q. Every element x̃ ∈ H∗(M̃ (q+1), πq+1(M̃SO(n−i))) ad-
joint to x is a stable primary cohomology operation up to some element

y ∈ η∗q+1(H
∗(M̃ (q))) for ũq+1 adjoint to the element λquq+1. It is well

known that for any mapping f̃q+1 : Mn → M̃ (q+1) such that ηq+1f̃q+1 = fq

and any element z ∈ Hq+1(Mn, πq+1(M̃SO(n−i))), there exists a map-

ping f̃ ′
q+1 : Mn → M̃ (q+1) such that f̃ ′

∗

q+1(ũq+1)− f̃∗
q+1(ũq+1) = λqz. This

yields that there exists a mapping f̃q+1 : Mn → M̃ (q+1), such that

f̃ ′
∗

q+1(x̃) ⊂ f∗
q (H∗(M̃ (q))) and ηq+1f̃q+1 = fq, where x̃ is the element ad-

joint to x ∈ Ht(Kq+1; πq+1(M̃SO(n−i))) for t < n− i+ q. (The order of x is
assumed relatively prime to λq.)

Now denote by αq the number of elements of the quotient group

[
f̃∗

q+1

( n−1∑

t=q+2

H̃q+1,t
)]
/
[
Im f∗

q ∩ f̃∗
q+1

( n−1∑

t=q+2

H̃q+1,t
)]
.

Since λq is odd, it follows from the construction of f̃∗
q+1 that αq is odd

and coprime to all ps’s. Setting {fq+1} = αq{f̃q+1}, we get the desired
statement. The lemma is proved.

Now, let us construct a family of mappings fq : Mn → M̃ (q), such that
f∗

n−i(un−i) = zn−i and {ηq+1fq+1} = αq{fq}, where α satisfies the assump-
tion of Lemma 1.1. We shall prove that such a construction exists by in-
duction on q.

Note that λn−i−1 = 1. This evidently yields that Imαn−i−1f
∗
n−i = 0 in

dimensions greater than n− i because we have no ps-torsion in the groups
Hn−i+2q(p−1)+1(Mn) for q > 11. Now assume the mappings fj are con-

structed for all j 6 m and f∗
j (Ht(M̃ (j), Z)) = 0 for j < t < 2(n− i). With-

out loss of generality assume that m− n+ i ≡ 3 (mod 4). We distinguish
between two classes of ps’s: those of the first class are those for which λq

and ps are coprime, the second class contains all other numbers.
It is easy to see that for the numbers ps of the first class, the

mapping fm+1:M
n→ M̃ (m+1) satisfies the induction hypothesis as well,

i.e. f∗
m+1(x̃) = 0 if x̃ ∈ Ht(M̃ (m+1), Z) for t > m+ 1 and the order

of x̃ is divisible by ps (this trivially follows from the lemma, the as-
sumptions of the theorem and the structure of Ht(Km+1, Z)). Consider
the case when ps belongs to the second class. In this case the num-

1For generators of the Steenrod algebra of stable cohomology primary operations
θj ∈ Hn+j(Z, n; Z) for j 6 n + 1 we may take elements of dimension 2q(p − 1) + 1 for
q > 1.
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ber λm is divisible by ps. The factor Φm ∈ Hm+2(M̃ (m), πm+1(M̃SO(n−i)))
can be viewed as a partial operation Φ(η∗m ◦ . . . ◦ η∗n−i+1(un−i)) on the
element η∗m ◦ . . . ◦ η∗n−i+1(un−i). Let us decompose the element Φm

as a sum Φm =Φ
(1)
m +Φ

(2)
m , where the order of Φ

(2)
m is a number co-

prime to ps and the order of Φ
(1)
m is a number of type pl

s. Both el-

ements Φ
(1)
m and Φ

(2)
m can be viewed as partial operations of one and

the same element η∗m ◦ . . . ◦ η∗n−i+1(un−i), which are defined on the same
kernels.

The following lemma holds

Lemma 1.2. Let Φ be a partial stable cohomology operation of the ele-
ment η∗m ◦ . . . ◦ η∗n−i+1(un−i) that increases the dimension by m− n+ i+ 2
which is defined on and takes value in subgroups of the cohomology
groups with coefficients in abelian groups. If for some p the co-
homology operation plΦ is trivial, η∗m+1Φ(η∗m ◦ . . . ◦ η∗n−i+1(un−i)) = 0,
m− n+ i 6≡ −1(mod 2p− 2), where p is an odd prime then the operation Φ
is also trivial.

The statement of the Lemma follows easily from the homotopy structure
of Thom spaces studied in Chapter II.

From Lemma 1.2 it follows that the partial cohomology operation Φ
(1)
m is

trivial. Now we can find a mapping fm+1 such that {ηm+1fm+1} = {fm}·
αm, where αm satisfies the conditions of Lemma 1.2 and the image f∗

m+1

is trivial in dimensions greater than m+ 1. To do that, it suffices to apply
Lemmas 1.1 and 1.2 for all prime numbers ps of the second class. Thus, fq

is constructed. It defines a family of mappings
˜̃
f q : Mn →M

(q)
SO(n−i) such

that ˜̃ηq+1
˜̃
f q+1 = αq{˜̃fq} and

˜̃
fn−i(un−i) = zn−i, where M

(q)
SO(n−i) is the

Postnikov complex of the space MSO(n−i) and ˜̃η : M
(q+1)
SO(n−i) →M

(q)
SO(n−i) is

the natural projection.

Set {gq} = αn−1 ◦ . . . ◦ αq{˜̃fq}. It is evident that {˜̃ηq+1gq+1} = {gq},
g∗n−i(un−i) = αn−1 ◦ . . . ◦αn−i+1 ◦ un−i. The family of mappings gq is thus
constructed and satisfies the desired properties. Thus, the first statement of
the theorem is proved. The remaining statements are proved analogously.

From the proof of Theorem 1.1 and the structure of Ht(BU(m), Z) it

follows that for any cocycle z2i ∈ H2i(BU(m), Z) there exists a mapping

of the (4i− 1)-skeleton g : B̃
(4i−1)
U(m) →MU(i) such that g∗(uU(i)) = z2i. This

yields

Corollary 1.2. The homology class, Poincaré dual to the polyno-
mial P (c2, c4, . . .) in the Chern classes of an arbitrary U(m)-bundle
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over Mn, admits a U(i)-realization if the dimension of this polynomial is 2i,

where 2i >
[
n+ 1

2

]
.

Corollary 1.3. A cycle Zi ⊂ Hi(M
n) for i <

[
n
2

]
is realizable by a

submanifold if 2kZi = 0.

Appendix 1. On the structure of VSU

It is well known that the cohomology algebras H∗(BSU(k)) with any co-
efficients can be described via symmetric polynomials in “Wu’s generators”
t1, . . . , tk, taking into account the relation t1 + . . .+ tk = 0. The same is
true about the algebras H∗(MSU ).

Let ω = (a1, . . . , as), vω =
∑
ta1
1 ◦ . . . ◦ tas

s ,

uω = vω ◦ c2k =
∑

ta1+1
1 ◦ . . . ◦ tas+1

s ◦ ts+1 ◦ . . . ◦ tk,

as in Chapter I. Assume also
∑
ai < k.

Definition. A decomposition ω = (a1, . . . , as) is p-admissible if the
number of indices i such that ai = pl is divisible by p for every l > 0. (Note
that for a characteristic zero field this means that ai 6= 1 (i = 1, . . . , s).)

Lemma 1. The module HSU (p) for p > 2 is isomorphic to the direct
sum

∑
ω M

ω
β of modules Mω

β of the type Mβ with generators uω correspond-
ing to p-admissible and non-p-adic decompositions ω = (a1, . . . , as). The

dimension of the generator uω is equal to 2
(∑

ai

)
.

The module HSU (p) has a diagonal mapping

∆: HSU (p)→ HSU (p)⊗HSU (p),

on uω and looks like the one constructed in § 5, Chapter I, with respect
to the notion of p-admissibility. Moreover, the formulae (XI) will hold not
absolutely, but modulo some reducible elements. Thus, the following lemma
holds.

Lemma 2. The algebra ExtA(HSU (p), Zp) is isomorphic to the poly-
nomial algebra with the following generators:

1 ∈ Ext0,0
A (HSU(p), Zp), h′r ∈ Ext1,2pr−1

A (HSU(p), Zp), r > 0,

z(k) ∈ Ext0,2k
A (HSU(p), Zp), k 6= pr, pr − 1, r > 0,
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z(ωr) ∈ Ext0,2p(r+1)

A (HSU(p), Zp), r > 0, ωr = 1

plr
(pr+1)1.

Arguing as in § 4 Chapter II, from these lemmas we get

Theorem 1. The ring VSU ⊗Zph is isomorphic to the polynomial ring
with generators v2i (i = 0, 2, 3, 4, . . .) for all p > 2, h = 0. The ring VSU

has no p-torsion for p > 2.

From Lemma 5.6 of Chapter II, arguing as in Theorem 5.5 of Chapter II,
one may prove (taking into account the p-admissibility) the following:

Theorem 2. For a sequence of SU -framed manifold M4, M6, M8, . . .
to form a system of polynomial generators of the ring VSU ⊗ Zph , it is
necessary and sufficient that the following conditions concerning ω-Chern
numbers of SU -framings hold:

(k)[M2k] 6≡ 0 (mod p), k 6= pi, pi − 1,

1
p (k)[M2k] 6≡ 0 (mod p), k = pi − 1,

1

pls
(ps+1)[M2ps+1

] 6≡ 0 (mod p), s > 0, ls > 1.

(Note that (ps+1)[M2ps+1

] ≡ 0 (mod p), since c2 = (1) = 0.)
Now, consider the case p = 2.

From Corollary 4.4 of Chapter I it follows that HSU (2) =
∑

i M
(i)
β +

∑
ω M̃

ω
β , where M̃ω

β are the quotient modules of type Mω
β by the relations

Sq2(uω) = 0. The dimension of uω is equal to 8a, where ω is an arbitrary
decomposition of 8a into summands (8a1, . . . , 8as), ai > 0. The dimensions

of the generators of M
(i)
β are even. Set Nβ =

∑
M

(i)
β , Ñβ =

∑
ω M̃

ω
β .

Clearly, one has:

Exts,t
A (HSU (2), Z2) ≈ Exts,t

A (Nβ , Z2) + Exts,t
A (Ñβ , Z2).

In Chapter II, the algebras ExtA(Mβ , Z2) and ExtA(M̃β , Z2) are calculated

(for the algebra ExtA(M̃β, Z2) see Theorem 3.3). As above, denote by

h0 ∈ Ext1,1
A (HSU (2), Z2), h1 ∈ Ext1,2

A (HSU (2), Z2)

the known elements satisfying h0h1 = 0, h2
1 6= 0, h3

1 = 0 (see Theorem 3.3).

1Since
∑

ti = 0, then
∑

tp
r+1

i = plr
∑

λr,i ◦ uωr,i
, where lr is maximum possible

moreover ωr,1 = (pr, . . . , pr), λr,1 6= 0.
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From § 3, Chapter II one easily gets

Lemma 3. Let hk
0x = 0, where k > 0, x ∈ Exts,tA (HSU (2), Z2).

Then x = h1y. Let x ∈ Exts,tA (Ñβ , Z2). Then h2
1x = 0 yields h1x = 0 if

t − s = 2k. If t − s = 2k + 1 then we always have x = h1y1. Let x ∈
Exts,tA (Nβ , Z2). Then h1x = h1y, where y ∈ Exts,tA (Ñβ, Z2) and t − s = 2k,
if x 
= 0.

Now, consider the Adams spectral sequence Es,t
r = Es,t

r (SU), described
in § 4 of Chapter II (see also [1]).

From 3 and multiplicative properties of the Adams spectral sequence
we get

Theorem 3. If x∈Exts,tA (Nβ, Z2) then di(x)=di(y), y∈Exts,tA (Ñβ , Z2)
for all i�2. The elements h0 ∈Ext1,1A (HSU (2), Z2) and h1 ∈Ext1,2A (HSU (2),
Z2) are cycles for all differentials. If h0x 
= 0, x ∈ Exts,tr (HSU (2), Z2), then
x 
= dr(y) for any y ∈ Exts−r,t−r+1

r (HSU (2), Z2), r � 2. If t − s = 2k + 1,
x ∈ Es,t

r then x = h1y and h1x 
= 0 for all r � 2. If x ∈ Es,t
2 , t − s = 2k

and x = h2
1y then di(x) = 0, i � 2.

Since the multiplication by h0 in E∞ is adjoint to the multiplication by 2
in the ring VSU , and the element h1 ∈ E1,2

∞ defines in VSU an element h̄1

such that 2h̄1 = 0, h̄2
1 
= 0, h̄3

1 = 0; so from Theorem 3 we get

Corollary 1. The groups V 2k+1
SU have no elements of order 4 for all

k � 2. Moreover, if x ∈ V 2k+1
SU , then 2x = 0 and x = h̄1y where the element

y ∈ V 2k
SU can be thought of as finite order and h̄2

1y = h̄1x 
= 0, and x 
= 0.

From Theorem 3.3 of Chapter II we see that in the algebras E2 =
E2(SU) = ExtA(HSU (2), Z2) and E∞ = E∞(SU) the relation h2

0x = 0
yields h0x = 0. This leads to the question: do any of V 2k

SU contain an
element of order 4?

Appendix 2. Milnor’s generators of the rings VSU

and VU

Consider the algebraic submanifold Hr,t ⊂ P r(C) × P t(C) realising the
cycle P r−1(C)×P t(C)+P r(C)×P t−1(C) without singularities. It is easy
to show that

(r + t − 1)[Hr,t] = −
(r + t

r

)
.

It is known that (r + t − 1)[P r+t−1(C)] = +(r + t). Note that the GCD of{(
k
i

)}
(i = 1, . . . , k − 1) is equal to 1 if k 
= pl for any prime p � 2, and it

is equal to p if k = pl. Thus, taking a linear combination of manifolds Hr,t,
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P r+t−1(C) for r + t = const., one may get a manifold Σr+t−1 such that

(r + t− 1)[Σr+t−1] =

{
1, r + t 6= pl,
p, r + t = pl.

From Theorem 5.5 of Chapter II (see also [17]) we see that the sequence
of manifolds

Σ1, Σ2, . . . , Σk, . . .

gives a system of polynomial generators of the ring VU . Now, consider the
natural ring homomorphism VU → VSO/T , where VSO/T is the quotient
ring of VSO by 2-torsion. It is easy to show that the composition

VU → VSO → VSO/T

is an epimorphism. Thus the manifolds Σ2k generate the ring VSO/T . The
characteristic numbers of manifolds Σk can be easily calculated, thus the
question of which set of numbers can be the set of numbers of a certain man-
ifold was solved completely by Milnor (analogously one solves the question
about Chern numbers of algebraic, complex-analytic, almost complex, and
U -framed manifolds).
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Generalized Poincaré’s conjecture in

dimensions greater than four

S. Smale 1

Poincaré has posed the problem as to whether every simply connected
closed 3-manifold (triangulated) is homeomorphic to the 3-sphere (see, [18]).
This problem, still open, is usually called Poincaré’s conjecture. The gen-
eralized Poincaré conjecture (see [11] or [28] for example) says that every
closed n-manifold which has the homotopy type of the n-sphere Sn is home-
omorphic to the n-sphere. One object of this paper is to prove that this
is indeed the case if n > 5 (for differentiable manifolds in the following
theorem and combinatorial manifolds in Theorem B).

Theorem А. Let Mn be a closed C∞ manifold which has the homo-
topy type of Sn, (n > 5). Then Mn is homeomorphic to Sn.

Theorem A and many of the other theorems of this paper were an-
nounced in [20]. This work is written from the point of view of differential
topology, but we are also able to obtain a combinatorial version of Theorem
A.

Theorem В. Let Mn be a combinatorial manifold which has the ho-
motopy of Sn (n > 5). Then Mn is homeomorphic to Sn.

J. Stallings has obtained a proof of Theorem B (and hence Theorem
A) for n > 7 using different methods (Polyhedral Homotopy-spheres, Bull.
Amer. Math. Soc., 66 (1960), 485–488).

The basic theorems of this paper, Theorems C and I below, are much
stronger than Theorem A.

A nice function f on a closed C∞ manifold is a C∞ function with non-
degenerate critical points and, at each critical point β, f(β) equals the
index of β. These functions were studied in [21].

1Annals of Mathematics, 74 (1961), 391–406 (Received October 11, 1960, Revised
March 27, 1961). Reprinted with permission from Princeton University Press
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Theorem С. Let Mn be a closed C∞ manifold which is (m − 1)-
connected, and n > 2m, (n,m) 6= (4, 2). Then there is a nice function f on
M with type numbers satisfying M0 = Mn = 1 and Mi = 0 for 0 < i < m,
for 0 < i < n, n−m < i < n.

Theorem C can be interpreted as stating that a cellular structure can
be imposed on Mn with one 0-cell, one n-cell and no cells in the range
0 < i < m,n − m < i < n. We will give some implications of Theorem
C. First, by letting m = 1 in Theorem C, we obtain a recent theorem of
M.Morse [13].

Theorem D. Let Mn be a closed connected C∞ manifold. There
exists a (nice) non-degenerate function on M with just one local maximum
and one local minimum.

On p. 1, the handlebodies, elements of H (n, k, s), are defined. Roughly
speaking, if H ∈ H (n, k, s) then H is defined by attaching s-disks, k in
number, to the n-disk and “thickening” them. By taking n = 2m + 1 in
Theorem C, we will prove the following theorem, which in the case of 3-
dimensional manifolds gives the well-known Heegaard decomposition.

Theorem F. Let M be a closed C∞ (2m + 1)-manifold which is
(m − 1)-connected. Then M = H

⋃
H ′, H

⋂
H ′ = ∂H = ∂H ′ where

H,H ′ ∈ H (2m + 1, k,m) are handlebodies (∂V means the boundary of
the manifold V ).

By taking n = 2m in Theorem C we will get the following

Theorem G. Let M2m be a closed (m − 1)-connected C∞ manifold,
m6=2. Then there is a nice function on M whose type numbers equal the
corresponding Betti numbers of M . Furthermore M , with the interior of
a 2m-disk deleted, is a handlebody, an element of H (2m, k,m) where k is
the m-th Betti number of M .

Note that the first part of Theorem G is an immediate consequence of
the Morse relation that the Euler characteristic is the alternating sum of
the type numbers [12], and Theorem C.

The following is a special case of Theorem G.

Theorem Н. Let M2m be a closed C∞ manifold m 6= 2 of the ho-
motopy type of S2m. Then there exists on M a non-degenerate function
with one maximum, one minimum, and no other critical point. Thus M
is the union of two 2m-disks whose intersection is a submanifold of M ,
diffeomorphic to S2m−1.

Theorem H implies the part of Theorem A for even dimensional homo-
topy spheres.
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Two closed C∞ oriented n-dimensional manifolds M1 and M2 are J-
equivalent (according to Thom see [25] or [10]) if there exists an oriented
manifold V with ∂V diffeomorphic to the disjoint union and each Mi is a
deformation retract of V .

Theorem I. Let M1 and M2 be (m−1)-connected oriented closed C∞

(2m+1)-dimensional manifolds which are J-equivalent, (m 6= 1). Then M1

and M2 are diffeomorphic.

We obtain an orientation preserving diffeomorphisms. If one takes M1

and M2 J-equivalent disregarding the orientation one finds that M1 and
M2 are diffeomorphic.

In studying manifolds under the relation of J-equivalence, one can use
the methods of cobordism and homotopy theory, both of which are fairly
developed. The importance of Theorem I is that it reduces diffeomorphis
problems to J-equivalence problems for a certain class of manifolds. It
is an open question as to whether arbitrary J-equivalent manifolds are
diffeomorphic (see [10], Problem 5) (since this was written, Milnor has
found a counter-example).

A short argument of Milnor ([10], p. 33) using Mazur’s theorem (see
[7]) applied to Theorem I yields the odd dimensional part of Theorem А. In
fact, it implies that, if M2m+1 is a homotopy sphere (m 6= 1) then M2m+1

minus a point is diffeomorphic to the Euclidean (2m+1)-space (see also [9],
p. 440).

Milnor [10] has defined a group H n of C∞-homotopy n-spheres under
the relation of J-equivalence. From Theorems А and I, and the work of
Milnor [10] and Kervaire [5], the following is an immediate consequence

Theorem J. If n is odd, n 6= 3, H n is the group of all differentiable
structures on Sn under the equivalence of diffeomorphism. For n odd there
are a finite number of differentiable structures on Sn. For example:

n 3 5 7 9 11 13 15

Number of Differentiable
Structures on Sn 0 0 28 8 992 3 16256

Previously it was known that there are a countable number of differ-
entiable structures on Sn for all n (Thom [22], see also [9], p. 442); and
unique structures on Sn for n 6 3 (e.g. Munkres [14]). Milnor [8] has also
established lower bounds for the number of differentiable structures on Sn

for several values of n.
A group Γn has defined by Thom [24] (see also Munkres [14] and Milnor

[9]). This is the group of all diffeomorphisms of Sn−1 modulo those which
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can be extended to the n-disk. A group An has been studied by Milnor as
those structures on the n-sphere which, minus a point, are diffeomorphic
to Euclidean space [9].

The group Γn can be interpreted (by Thom Том [22] and Munkres [14])
as the group of differentiable structures on Sn, which admit a C∞ function
with the non-degenerate critical points and hence one has the inclusion map
i : Γn → An defined.

Also, by taking J-equivalence classes, one gets a map p : An →H n.

Theorem K. With notations in the preceding paragraph, the following
sequences are exact :

(a) An p→H n → 0, n 6= 3, 4;

(b) Γn i→ An → 0, n even, n 6= 4;

(c) 0→ An p→H n, n odd, n 6= 3.
Hence, if n is even and n 6= 4, Γn = An, if n is odd and n 6= 3,

An = H n.

Here (a) follows from Theorem A, (b) from Theorem H, and (c) from
Theorem I.

Kervaire [4] has also obtained the following result.

Theorem L. There exists a manifold with no differentiable structure
at all.

Take the manifold W0 of Theorem 4.1 of Milnor [10] for k = 3. Milnor
shows ∂W0 is a homotopy sphere. By Theorem A, ∂W0 is homeomorphic
to S11. We attach a 12-disk to Ws by a homeomorphism of the boundary
onto ∂W0 to obtain a closed 12-dimensional manifold m. Starting with
a triangulation of W0, one can easily obtain a triangulation of M . If m
possessed a differentiable structure it would be almost parallelizable, since
the obstruction to almost parallelizability lies in H6(M,π5(SO(12))) = 0.
But the index of M is 8 and hence by Lemma 3.7 of [10] M cannot possess
any differentiable structure. Using Bott’s results on the homotopy groups
of Lie groups [1], one can similarly obtain manifolds of arbitrarily high
dimension without a differentiable structure.

Theorem M. Let C2m be a contractible manifold, m 6= 4, whose
boundary is simply connected. Then C2m is diffeomorphic to the 2m-
disk. This implies that differentiable structures on disks of dimension 2m,
(m 6= 2), are unique. Also the closure of the bounded component C of
a C∞ imbedded (2m − 1)-sphere in the Euclidean 2m-space, (m 6= 2), is
diffeomorphic to a disk.

For these dimensions, the last statement of Theorem M is a strong ver-
sion of the Schoenflies problem for the differentable case. Mazur’s theorem
[7] had already implied C was homeomorphic to the 2m-disk.
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Theorem M is proved as follows from Theorems C and I by Poincaré
duality and the homology sequence of the pair (C, ∂C), it follows that
∂C is a homotopy sphere and J-equivalend to zero since it bounds C. By
Theorem I, then, ∂C is diffeomorphic to Sn. Now attach to C2m a 2m-disk
by a diffeomorphism of the boundary to obtain a differentiable manifold V .
One shows easily that V is a homotopy sphere and, hence by Theorem
H , V is the union of two 2m-disks. Since any two 2m sub-disks of V are
equivalent under a diffeomorphism of V (for example see Palais [17]), the
original C2m ⊂ V must already have been diffeomorphic to the standard
2m-disk.

To prove Theorem B, note that V = (M with the interior of a simplex
deleted) is a contractible manifold, and hence possesses a differentiable
structure (Munkres [15]). The double W of V is a differentiable manifold
which has the homotopy type of a sphere. Hence by Theorem A, W is a
topological sphere. Then according to Mazur [7], ∂V , being a differentiable
submanifold and a topological sphere, divides W into two topological cells.
Thus V is topologically a cell and M a topological sphere.

Theorem N. Let C2m 6= 2, be a contractible combinatorial man-
ifold whose boundary is simply connected. Then C2m is combinatorially
equivalent to a simplex. Hence the Hauptvermutung (see [11]) holds for
combinatorial manifolds which are closed cells in these dimensions.

To prove Theorem N, one first applies a recent result of M.W.Hirsch
[3] to obtain a compatible differentiable structure on C2m. By Theorem
M, this differentiable structure is diffeomorphic to the 2m-disk D2m. Since
the standard 2m-simplex σ2m is a C1 triangulation of D2m, Whitehead’s
theorem [27] applies to yield that C2m must be combinatorially equivalent
to σ2m.

Milnor first pointed out that the following theorem was a consequence
of this theory.

Theorem O. Let M2m, (m 6= 2), be a combinatorial manifold which
has the same homotopy type as S2m. Then M2m is combinatorially equiv-
alent to S2m. Hence, in these dimensions, the Hauptvermutung holds for
spheres.

For even dimensions greater than four, Theorems N and O improve
recent results of Gluck (cf. [2]).

Theorem O is proved by applying Theorem N to the complement of the
interior of a simplex of M2m.

Our program is the following. We introduce handlebodies, and then
prove the “handlebody theorem” and a variant. These are used together
with a theorem on the existence of “nice functions” from [21] to prove
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Theorems C and I, the basic theorems of the paper. After that, it remains
only to finish the proof of Theorems F and G of the Introduction.

The proofs of Theorems C and I are similar. Although they use a fair
amount of the technique of differential topology, they are, in a certain sense,
elementary. It is in their application that we use many recent results.

A slightly different version of this work was mimeographed in May 1960.
In this paper J. Stallings pointed out a gap in the proof of the handlebody
theorem (for the case s = 1). This gap happened not to affect our main
theorems.

Everything will be considered from the C∞-point of view. All imbed-
dings will be C∞. A differentiable isotopy is homotopy of imbeddings with
continuous differential.

En = {x = (x1, . . . , xn)}, ‖x‖ =

(
n∑

i=1

x2
i

)1/2

.

Dn = {x ∈ En, ‖x‖ 6 1}, ∂Dn = Sn−1 = {x ∈ En, ‖x‖ = 1};

Dn
i etc. are copies of Dn.

A. Wallace’s recent article [26] is related to some of this paper.

1. Let Mn be a compact manifold, Q a component of ∂M and

fi : ∂D
s
i ×Dn−s

i −→ Q, i = 1, . . . , k,

imbeddings with disjoint images, s > 0, n > s. We define a new compact
C∞-manifold V = χ(M,Q; f1, . . . , fk; s) as follows. The underlying topo-
logical space of V is obtained from M , and the Ds

i ×Dn−s
i by identifying

points which correspond under some fi. The manifold thus defined has a
natural differentiable structure except along corners ∂Ds

i ×Dn−s
i for each

i. The differentiable structure we put on V is obtained by the process of
“straightening the angle” along these corners. This is carried out by Mil-
nor [10] for the case of the product of manifolds W1 and W2 with a corner
along ∂W1 × ∂W2. Since the local situation for the two cases is essentially
the same, his construction applies to give a differentiable structure on V .
He shows that this structure is well-defined up to diffeomorphism.

If Q = ∂M we omit it from the notation χ(M,Q; f1, . . . , fk; s), and we
sometimes also omit the s. We can consider the “handle” Ds

i ×Dn−s
i ⊂ V

as differentiably embedded.
The next lemma is a consequence of the definition

Lemma 1.1. Let fi : ∂D
s
i ×Dn−s

i → Q and f ′
i : ∂Ds

i ×Dn−s
i → Q, i =

1, . . . , k, be two sets of imbeddings each with disjoint images Q,M as above.
Then χ(M,Q; f1, . . . , fk; s) and χ(M,Q; f ′

1, . . . , f
′
k; s) are diffeomorphic if
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(a) there is a diffeomorphism h : M → M such that f ′
i = hfi, i =

1, . . . , k; or

(b) there exist diffeomorphisms hi:D
s×Dn−s→Ds×Dn−s such that f ′

i =
fihi, i = 1, . . . , k; or

(c) the f ′
i are permutations of the fi’s.

If V is the manifold χ(M,Q; fi, . . . , fk; s), we say σ = (M,Q; f1, . . . , fk; s)
is a presentation of V .

A handlebody is a manifold which has a presentation of the form
(Dn; f1, . . . , fk; s). Fixing n, k, s the set of all handlebodies is denoted
by H (n, k, s). For example, H (n, k, 0) consists of one element, the dis-
joint union of (k+1) n-disks; and one can show H (2, 1, 1) consists of S1×I
and the Möbius strip, and H (3, k, 1) consists of the classical handlebodies
[19; Henkelkörper], orientable and non-orientable, or at least differentiable
analogues of them.

Theorem 1.2 (Handlebody theorem). Let n > 2s+ 2, and, if s =
1, n > 5 let H ∈ H (n, k, s), V = χ(H ; f1, . . . , fr; s + 1) and πs(V ) = 0.
Also if s = 1, assume π1(χ(H ; f1, . . . , fr−k; 2)) = 1. Then V ∈H (n, r−
k, s+1). (We do not know if the special assumption for s = 1 is necessary.)

The next three sections 2–4 are devoted to a proof of this Theorem.

2. Let Gr=Gr(s) be the free group on r generators D1, . . . , Dr if
s = 1 and the free abelian group on r generators D1, . . . , Dr, if s > 1.
If σ = (M,Q; f1, . . . , fr; s + 1) is a presentation of a manifold V , define a
homomorphism fσ : Gr → πs(Q), by fσ(Di) = ϕi, where ϕi ∈ πs(Q) is the
homotopy class of f̄i : ∂D

s+1 × 0 → Q, the restriction of fi. To take care
of base points in case π1(Q) 6= 1, we will fix x0 ∈ Ds+1

i × 0, y0 ∈ Q. Let
U be some cell neighborhood of y0 in Q, and assume f̄i(x0) ∈ U . We say
that the homomorphism fσ is induced by the presentation σ.

Suppose now that F : Gr(s)→ πs(Q) is a homomorphism where Q is a
component of the boundary of a compact n-manifold M . Then we say that
a manifold V realizes F if some presentation of V induces F . Manifolds
realizing a given homomorphism are not necessarily unique.

The following theorem is the goal of this section

Theorem 2.1. Let n > 2s + 2 and if s = 1, n > 5; let σ =
(M,Q; f1, . . . , fr; s + 1) be a presentation of a manifold V , and assume
π1(Q) = 1, if n = 2s + 2. Then for any automorphism α : Gr → Gr, V
realizes fσα.

Our proof of Theorem 2.1 is valid for s = 1, but we have application for
the theorem only for s > 1. For the proof, we will need some lemmas.
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Lemma 2.2. Let Q be a component of the boundary of a compact
manifold Mn and f1 : ∂Ds×Dn−1 → Q an imbedding. Let f̄2 : ∂Ds×0→ Q
be an imbedding, differentiably isotopic in Q to the restriction f̄1 of f1 to
∂Ds × 0. Then there exists an imbedding f1 : ∂Ds ×Dn−s → Q, extending
f̄2 and a diffeomorphism h : M →M such that hf2 = f1.

Proof. Let f̄t : ∂Ds × 0 → Q, 1 6 t 6 2, be a differen-
tiable isotopy between f̄1 and f̄2. Then by the covering homotopy
property for spaces of differentiable embeddings (see Thom [23], and
R.Palais, Comment. Math. Helv., 34 (1960), 305–312), there is a dif-
ferentiable isotopy Ft : ∂D

s × Dn−s → Q, 1 6 t 6 2, with F1 = f1
and Ff restricted to ∂Ds × 0 = f̄t. Now by applying this theorem
again, we obtain a differentiable isotopy Gt : M →M , 1 6 t 6 2, with
G1 equal the identity, and Gt, restricted to image of F1 equal FtF

−1
1 .

Then taking h = G−1
2 , F2 satisfies the requirements of f2 of (2.2);

i.e. hf2 = G−1
2 F2 = F1F

−1
2 F2 = f1.

Theorem 2.3 (H.Whitney, W.T.Wu). Let n > max(2k+ 1, 4) and
f, g : Mk → Xn be two imbeddings, M closed and connected and X sim-
ply connected if n = 2k + 1. Then, if f and g are homotopic, they are
differentiably isotopic.

Whitney [29] proved this theorem for n > 2k + 2. W.T.Wu [30] (using
methods of Whitney) proved it where Xn was Euclidean space, n = 2k+1.
His proof also yields Theorem 2.3 as stated.

Lemma 2.4. Let Q be a component of the boundary of a compact
manifold Mn, n > 2s + 2 and if s = 1, n > 5, and π1(Q) = 1
if n = 2s + 2. Let f1 : ∂Ds+1×Dn−s−1→Q be imbedding homotopic
and f̄2 : ∂Ds+1×0→Q be an imbedding homotopic in Q to f̄1, the restric-
tion of f1 to ∂Ds+1 × 0. Then there exists an imbedding f2 : ∂Ds+1×
Dn−s−1 → Q, extending f̄2 such that χ(M,Q; f2) is diffeomorphic
to χ(M,Q; f1).

Proof. By Theorem 2.3, there exists a differentiable isotopy between
f̄1 and f̄2. Apply Lemma 2.2 to get f2 : ∂Ds+1×Dn−s−1 → Q, extending f̄2,
and a diffeomorphism h : M → M with hf2 = f1. Application of Lemma
1.1 yields the desired conclusion.

Lemma 2.5 (Nielsen [16]). Let G be a free group on r generators
D1, . . . , Dr and A be the group of automorphisms of G. Then A is gener-
ated by the following automorphisms

R : D1 → D−1
1 , Di → Di, i > 1,

Ti : D1 → Di, Di → D1, Dj → Dj , j 6= 1, i 6= j, i = 2, . . . , r,

S : D1 → D1D2, Di → Di, i > 1.
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The same is true for the free abelian case (well-known).
It is sufficient to prove Theorem 2.1 with α replaced by the generators

of A of Lemma 2.5.
First take α=R. Let h : Ds+1×Dn−s−1 →Ds+1×Dn−s−1 be defined

by h(x, y) = (rx, y), where r : Ds+1 → Ds+1 is a reflection through an
equatorial s-plane. Then let f ′

1 = f1h. If σ′ = (M,Q; f ′
1, f2, . . . , fr; s+ 1),

χ(σ′) is diffeomorphic to V by Lemma 1.1. On the other hand, χ(σ′) realizes
fσ′ = fσα.

The case α = Ti follows immediately from Lemma 1.1. So now we
proceed with the proof of Theorem 2.1 with α = S.

Define V1 to be the manifold χ(M,Q; f2, . . . , fr; s+1) and let Q1 ⊂ ∂V1

be Q1 = ∂V1 \(∂M \Q). Let ϕi ∈ πs(Q), i = 1, . . . , r, denote the homotopy
class of f̄i : ∂Ds+1

i × 0 → Q, the restriction of fi. Let γ : πs(Q ∩ Q1) →
πs(Q) and β : πs(Q∩Q1) → πs(Q1) be the homomorphisms induced by the
respective inclusions.

Lemma 2.6. With notations and conditions as above, ϕ2 ∈ γKerβ.

Proof. Let q ∈ ∂Dn−s−1
2 and ψ : ∂Ds+1

2 ×q → Q∩Q1 be the restriction
of f2. Denote by ψ̄ ∈ πs(Q ∩ Q1) the homotopy class of ψ. Since ψ and f̄2

are homotopic in Q, γψ = ϕ2. On the other hand βψ = 0, thus proving
Lemma 2.6.

By Lemma 2.6, let ψ̄∈πs(Q ∩ Q1) with γψ̄ = ϕ2 and βψ̄ = 0. Let
g = y + ψ̄ (or g = yψ̄ in case s = 1, our terminology assumes s > 1),
where y ∈ πs(Q∩Q1) is the homotopy class of f̄1 : ∂Ds+1

1 ×0 → → Q∩Q1.
Let ḡ : ∂Ds+1 × 0 → Q ∩ Q1 be an imbedding realizing g (see [29]).

If n = 2s + 2 then from the fact that π1(Q) − 1, it follows that also
π1(Q1) = 1. Then since ḡ and f̄1 are homotopic in Q1, i.e. βg = βy,
Lemma 2.4 applies to yield an imbedding e : ∂Ds+1 × Dn−s−1 → Q1, ex-
tending ḡ such that χ(V1, Q1; f1) and χ(V1, Q1; e) are diffeomorphic.

On one hand V=χ(M,Q; f1, . . . , fr)=χ(V1, Q1; f1) and, on the other
hand, χ(M,Q; e, f2, . . . , fr) = χ(V1, Q1; e), so by the preceding state-
ment, V and χ(V,Q; e, f2, . . . , fr) are diffeomorphic. Since γg = g1 +
g2, fσα(D1) = fσ(D1 + D2) = g1 + g2, fσ′ = gD1 = g1 + g2,
to fσα = fσ′ , where σ′ = (V,Q; e, f2, . . . , fr). This proves Theorem
2.1.

3. The goal of this section is to prove the following theorem.

Theorem 3.1. Let n � 2s + 2 and, if s = 1, n � 5. Suppose H ∈
H (n, k, s). Then given r � k, there exists an epimorphism g : Gr → πs(H)
such that every realization of g is in H (n, r − k, s+ 1).

For the proof of Theorem 3.1, we need some lemmas.
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Lemma 3.2. If H ∈H (n, k, s), then πs(H) is

(a) a set of k + 1 elements if s = 0;

(b) a free group on k generators if s = 1;

(с) a free abelian group on k generators if s > 1. Furthermore if n >

2s+ 2, then πi(∂H)→ πi(H) is an isomorphism for i 6 s.

Proof. We can assume s > 0 since, if s = 0, H is a set of n-disks k+1
in number. Then H has a deformation retract in an obvious way the wedge
of k s-spheres. Thus (b) and (c) are true. For the last statement of Lemma
3.2, from the exact homotopy sequence of the pair (H, ∂H), it is sufficient
to show that πi(H, ∂H) = 0, i 6 s+ 1.

Thus let f : (Di, ∂Di) → (H, ∂H) be a given continuous map with i 6

s + 1. We want to construct a homotopy ft : (Di, ∂Di) → (H, ∂H) with
f0 = f and f1(D

i) ⊂ ∂H .
Let f1 : (Di, ∂Di) → (H, ∂H) be a differentiable approximation of f .

Then by a radial projection from a point in Dn not in the image of f1, f1 is
homotopic to a differentiable map f2 : (Di, ∂Di)→ (H, ∂H), with the image
of f2 not intersecting the interior of Dn ⊂ H . Now for dimensional reasons
f2 can be approximated by a differentiable map f3 : (Di, ∂Di) → (H, ∂H)
with the image of f3 not intersecting any Ds

i × 0 ⊂ H . Then by other
projections, one for each i, f3 is homotopic to a map f4 : (Di, ∂Di) →
(H, ∂H) which sends all ofDi into ∂H . This shows πi(H, ∂H) = 0, i 6 s+1,
and proves Lemma 3.2.

If β ∈ πs−1(O(n − s)), let Hβ be the (n− s)-cell bundle over Ss deter-
mined by β.

Lemma 3.3. Suppose V = χ(Hβ ; f ; s+ 1) where β ∈ πs−1(O(n − s)),
n > 2s+2 or if s = 1, n > 5. Let also πs(V ) = 0. Then V is diffeomorphic
to Dn.

Proof. The zero-cross-section σ : Ss→Hβ is homotopic to zero, since
πs(V ) = 0, and so regularly homotopic in V to a standard s-sphere Ss

0 ,
contained in a cell neighborhood by dimensional reasons [29]. Since a reg-
ular homotopy preserves the normal bundle structure, σ(Ss) has a trivial
normal bundle and thus β = 0. Hence Hβ is diffeomorphic to the product
of Ss and Dn−s.

Let σ1 : Ss → ∂Hβ be a differentiable cross section and f̄ : ∂Ds+1 ×
0 → ∂Hβ the restriction of f : ∂Ds+1 × Dn−s−1 → ∂Hβ . Then σ1 and f̄
are homotopic in ∂Hβ (perhaps after changing f by a diffeomorphism of
Ds+1×Dn−s−1 which reverses the orientation of ∂Ds+1× 0). Thus we can
assume f̄ and σ1 are the same.

Let fε be the restriction of f to ∂Ds+1×Dn−s−1
ε , whereDn−s−1

ε denotes
the disk {x ∈ Dn−s−1

ε , ‖x‖ 6 ε}, and ε > 0. Then the imbedding gε :
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∂Ds+1 × Dn−s−1 → ∂Hβi differentiably isotopic to f where gε(x, y) =
fεrε(x, y) and rε(x, y) = (x, εy). Define kε : ∂Ds+1 × Dn−s−1 → Fx by
pxgε(x, y) where px : gε(x ×Dn−s−1) → Fx is projection into the fibre Fx

of ∂Hβ over σ−1gε(x, 0). If ε is small enough, kε is well-defined and an
embedding. In fact if ε is small enough one can even suppose that for each
x, kε maps x × Dn−s−1 linearly onto image kε ∩ Fx where image kε ∩ Fε

has a linear structure induced from F .
It can be proved that kε and gε are differentiably isotopic. (The referee

has remarked that there is a theorem, Milnor’s “tubular neighborhood the-
orem”, which is useful in this connection and can indeed be used to make
this proof clearer in general.)

We finish the proof of Lemma 3.3 as follows.
Suppose V is as in Lemma 3.3 and V ′ = χ(Hβ ; f ′; s + 1), πs(V

′) = 0.
It is sufficient to prove V and V ′ are diffeomorphic since it is clear that
one can obtain Dn by choosing f ′ properly and using the fact that Hβ is
a product of Ss and Dn−s. From the previous paragraph, we can replace
f and f ′ by kε and k′ε with those properties listed. We can also suppose
without loss of generality that the images of kε and k′ε coincide. It is now
sufficient to find a diffeomorphism h of Hβ with hf = f ′. For each x, define
h on image f ∩ Fx to be the linear map which has this property. One can
now easily extend h to all of Hβ and thus we have finished the proof of
Lemma 3.3.

Suppose now Mn
1 and Mn

2 are compact manifolds and fi : D
n−1 × i →

∂Mi, are imbeddings for i = 1 and 2. Then χ(M1 ∪M2; f1 ∪ f2; 1) is a well
defined manifold, where f1 ∪ f2 : ∂D1 × ∂Dn−1 → ∂M1 ∪ ∂M2 is defined
by f1 and f2, the set of which, as the fi vary, we denote by M1 +M2. (If
we pay attention to orientation, we can restrict M1 +M2 to have but one
element.)

The following lemma is easily proved.

Lemma 3.4. The set Mn +Dn consists of one element, namely Mn.

Lemma 3.5. Suppose an imbedding f : ∂Ds ×Dn−s →dMn is null-
homotopic where M is a compact manifold, n > 2s+2 and, if s = 1, n > 5.
Then χ(M ; f) = M +Hβ for some β ∈ πs−1(O(n − s)).

Proof. Let f̄ : ∂Ds × q → ∂M be the restriction of f , where q is a
fixed point in ∂Dn−s. Then by dimensional reasons [29], f̄ can be extended
to an imbedding ϕ : Ds → ∂M where the image of φ intersects the image
of f only on f̄ . Next let T be a tubular neighborhood of φ(Ds) in M . This
can be done so that T is a cell, T ∪ f(∂Ds ×Dn−s) is of the form Hβ and
V ∈M +Hβ . We leave the details to the reader.
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To prove Theorem 3.1, let H = χ(Dn; f1, . . . , fk; s). Then fi defines a
class γ̄i ∈ πs(H,Dn). Let γi ∈ πs(∂H) be the image of γ̄i under the inverse
of the composition of the isomorphisms πs(∂H) → πs(H) → πs(H,Dn);
(using Lemma 3.2). Define g of Theorem 3.1 by gDi = γi, i � k and
gDi = 0, i > k. That g satisfies Theorem 3.1, follows by induction from
the following lemma.

Lemma 3.6. χ(H ; gi; s+1) ∈ H (n, k− 1, s), if the restriction of gi to
∂Ds+1 × 0 has homotopy class γi ∈ πs(∂H).

Now Lemma 3.6 follows from Lemmas 3.3–3.5 and the fact that gi is
differentiably isotopic to g′i whose image is in ∂Hβ ⊂ ∂H , where Hβ is
defined by Lemma 3.5 and f1.

4. We prove here Theorem 1.2. First suppose s = 0. Then H ∈
H (n, k, 0) is the disjoint union of n-disks, k + 1 in number, and V =
χ(H ; f1, . . . , fr; 1). Since π0(V ) = 1, there exists a permutation of 1, . . . , r,
i1, . . . , ir, such that Y = χ(H ; fis , . . . , fik ; 1) is connected. By Lemma 3.3,
Y is diffeomorphic to Dn. Hence V = χ(Y ; fik+1

, . . . , fir ; 1) is in H (n, r −
k, 1).

Now consider the case s = 1. Choose, by Theorem 3.1, g : Gk → π1(∂H)
such that every manifold derived from g is diffeomorphic to Dn. Let Y =
χ(H ; f1, . . . , fr−k). Then π1(Y ) = 1 and by the argument of Lemma 3.2,
π1(∂Y ) = 1. Let ḡi : ∂D2 × 0 → ∂H be disjoint imbeddings realizing the
classes g(Di) ∈ π1(∂H) which are disjoint from the images of all fi, 1, . . . , k.
Then by Lemma 2.4, there exist imbeddings g1, . . . , gk : ∂D2×Dn−2 → ∂H ,
extending the ḡi such that V = χ(Y ; fr−k+1, . . . , fr) and χ(Y ; g1, . . . , gk)
are diffeomorphic. But

χ(Y ; g1, . . . , gk) = χ(H ; g1, . . . , gk, f1, . . . , fr−k)

= χ(Dn; f1, . . . , fr−k) ∈ H(n, r − k, 2).

Hence, so does V .
For the case s > 1, we can use an algebraic lemma.

Lemma 4.1. If f, g : G → G′ are epimorphisms where G and G′ are
finitely generated free abelian groups, then there exists an automorphism
α : G → G such that fα = g.

Proof. Let G′′ be a free abelian group of rank equal to rankG−rankG′

and let p : G′′+G′→G′ be the projection. Then, identifying elements of G
and G′+G′′ under some isomorphism, it is sufficient to prove the existence
of α for g = p. Since the groups are free, the following exact sequence splits
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0 → f−1(0) → G
f→ G′ → 0

Let h : G → f−1(0) be the corresponding projection and let k : f−1(0) →
G′′ be some isomorphism. Then α : G → G′+G′′ defined by f+kh satisfies
the requirement of Lemma 4.1.

Remark. Using Grushko’s Theorem [6], one can also prove Lemma 4.1 when
G and F′ are free groups.

Now take σ = (H ; f1, . . . , fr; s + 1) of Theorem 1.2 and g : Gr → πs(∂H) of
Theorem 3.1. Since πs(V ) = 0 and s > 1, fσ : Gr → πs(∂H) is an epimorphism.
By Lemmas 3.2 and 4.1 there is an automorphism α : Gr → Gr such that fσα = g.
Then Theorem 2.1 implies that V is in H (n, r−k, s+1) using the main property
of g.

5. The goal of this section is to prove the following analogue of Theorem
1.2.

Theorem 5.1. Let n � 2s+ 2 or if s = 1, n � 5, Mn−1 be a simply
connected (s − 1)-connected closed manifold and HM (n, k, s) the set of all
manifolds having presentations of the form (M × [0, 1],M×1; f1, . . . , fk; s).
Now let H ∈ HM (n, k, s), Q = ∂H \(M×0), V = χ(H,Q; g1, . . . , gr; s+1),
and suppose πs(M × 0) → πs(V ) is an isomorphism. Also suppose if s = 1,
that πs(χ(H,Q; g1, . . . , gr−k; 2) = 1). Then V ∈ HM (n, r − k, s+ 1).

One can easily obtain Theorem 1.2 from Theorem 5.1 by taking for M ,
the (n − 1)-sphere. The following Lemma is easy, following Lemma 3.2.

Lemma 5.2. With definitions and conditions as in Theorem 5.1,
πs(Q) = Gk, if s = 1, and if s > 1, πs(Q) = πs(M) +Gk.

Let p1 : πs(Q) → πs(M), p2 : πs(Q) → Gk be the respective projections.

Lemma 5.3. With definitions and conditions as in Theorem 5.1, there
exists a homomorphism g : Gr → πs(Q) such that p1g is trivial, p2g is
an epimorphism, and every realization of g is in HM (n, r − k, s+ 1), each
r � k.

The proof follows Lemma 3.1.
We now prove Theorem 5.1. The cases s = 0 and s = 1 are proved

similarly to these cases in the proof of Theorem 1.2. Suppose s > 1. From
the fact that πs(M × 0) → πs(V ) is an isomorphism, it follows that p1fσ
is trivial and p2fσ is an epimorphism where σ = (H,Q; g1, . . . , gr; s + 1).
Then apply Lemma 4.1 to obtain an automorphism α : Gr → Gr such that
p2fσα = p2g where g is as in Lemma 5.3. Then fσα = g, hence using
Theorem 2.1, we obtain the conclusion of Theorem 5.1.
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6. The goal of this section is to prove the following two theorems.

Theorem 6.1. Suppose f is a C∞ function on a compact manifold
W with no critical points on f−1[−ε, ε] = N except k non-degenerate ones
on f−1(0), all of index λ, and N ∩ ∂W = ∅. Then f−1[−∞, ε] has a
presentation of the form

(f−1[−∞,−ε]; f−1(−ε); f1, . . . , fk;λ).

Theorem 6.2. Let (M,Q; f1, . . . , fk; s) be a presentation of a manifold
V and g be a C∞ function on M , regular, in a neighborhood of Q, and
constant with its maximum value on Q. Then there exists a C∞ function
G on V which agrees with g outside a neighborhood of Q, is constant and
regular on ∂V \(∂M\Q), and has exactly k new critical points, all non-
degenerate, with the same value and with index s.

Sketch of proof of Theorem 6.1. Let βi denote the critical points
of f at level zero, i = 1, . . . , k, with disjoint neighborhoods Vi. By a theorem
of Morse [13] we can assume Vi has a coordinate system (x1, . . . , xn), such

that for ‖x‖ 6 δ, some δ > 0, f(x) = −
λ∑

i=1

x2
i +

n∑
i=λ+1

x2
i . Let E1 be

the (x1, . . . , xλ) plane of Vi and E2 be the (xλ+1, . . . , xn) plane. Then
for ε1 > 0 sufficiently small E1 ∩ f−1[−ε1, ε1] is diffeomorphic to Dλ. A
sufficiently small tubular neighborhood T of E1 will have the property that
T ′ = T ∩ f−1[−ε1, ε1] is diffeomorphic to Dλ ×Dn−λ with T ∩ f−1(−ε1)
corresponding to ∂Dλ ×Dn−λ.

As we pass from f−1[−∞,−ε1] to f−1[−∞, ε1], it happens that one
such T ′ is added for each i, together with a tubular neighborhood of
f−1(−ε1) so that f−1[−∞, ε1] is diffeomorphic to a manifold of the
form χ(f−1[−∞,−ε1], f−1(−ε1); f1, . . . , fk;λ). Since there are no critical
points between −ε and −ε1, ε1 and ε, ε1 can be replaced by ε in the pre-
ceding statement thus proving Theorem 6.1.

Theorem 6.2 is roughly a converse of Theorem 6.1 and the proof can be
constructed similarly.

7. In this section we prove Theorems C and I of the Introduction.
The following theorem was proved in [21].

Theorem 7.1. Let V n be a C∞ compact manifold with ∂V the disjoint
union of V1 and V2, each Vi closed in ∂V . Then there exists a C∞

function f on V with non-degenerate critical points, regular on ∂V , and
such that f(V1) = −1/2, f(V2) = n + 1/2, and at a critical point β of f ,
f(β) = indexβ.
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Functions of such sort are called proper functions.
Suppose now Mn is a closed C∞-manifold and f is the function of

Theorem 7.1. Let Xs = f−1[0, s+ 1/2], s = 0, 1, . . . , n.

Lemma 7.2. For each s, the manifold Xs has a presentation of the
form (Xs−1; f1, . . . , fk; s).

This follows from Theorem 6.1.

Lemma 7.3. If H ∈H (n, k, s), then there exists a C∞ non-degenerate
function f on H, f(∂H) = s+ 1/2; f has one critical point β0 of index 0
value 0, k critical points of index s, value s and no other critical points.

This follows immediately from Theorem 6.2.
The proof of Theorem C then goes as follows. Take a nice function

f on M by 7.1, with Xs defined as above. Note that X0 ∈ H (n, q, 0)
and π0(X1) = 0, hence by Lemma 7.2 and Theorem 1.2, X1 ∈ H (n, k, 1).
Suppose now that π1(M) = 1 and n > 6.

The following argument suggested by H.Samelson simplifies and replaces
a complicated one of the author. Let X ′

2 be the sum of X2 and k copies
H1, . . . , Hk of Dn−2 × S2. Then since π1(X2) = 0, Theorem 1.2 implies
that X ′

2∈H (n, r, 2). Now let fi : ∂D
s×Dn−s→∂Hi∩∂X ′

2 for i = 1, . . . , k be
differentiable imbeddings such that the composition

π2(∂D
s ×Dn−s)→ π2(∂Hi × ∂X ′

2)→ π2(∂Hi)

is an isomorphism. Then by Lemmas 3.3 and 3.4, χ(X ′
2, f1, . . . , fk; 3) is

diffeomorphic to X2. Since X3 = χ(X ′
2; g1, . . . , gl; 3), we have

X3 = χ(X ′
2, f1, . . . , fk, g1, . . . , gl; 3)

and another application of Theorem 1.2 yields that X3 ∈H (n, k+ l−r; 3).
Iteration of the argument yields that X ′

m ∈ H (n, r,m). By applying
Lemma 7.3, we can replace g by a new nice function h with type numbers
satisfying M0 = 1 and Mi = 0, 0 < i < m. Now apply the preceding
arguments to −h, to yield that h−1[n−m− 1/2, n] = X∗

m ∈ H (n, k1,m).
Now we modify h by Lemma 7.3 on X∗

m to get a new nice function on M
agreeing with h on M −X∗

m and satisfying the conditions of Theorem С.
The proof of Theorem I goes as follows. Let V n be a manifold with ∂V =

V1 − V2, n = 2m + 2. Take a nice function f on V by Lemma 7.1 with
f(V1) = −1/2 and f(V2) = n+ 1/2.

Following the proof of Theorem C, replacing the use of Theorem 1.2 with
Theorem 5.1, we obtain a new nice function g on V with g(V1) = −1/2 and
g(V2) = n+ 1/2 and no critical points except possibly of index m+ 1. The
following lemma can be proved by the standard methods of Morse theory
[12].
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Lemma 7.4. Let V be as in Theorem 7.1 and f be a C∞ non-
degenerate function on V with the same boundary conditions as in Theorem
7.1. Then

χV =
∑

(−1)qMq + χV1 ,

where χV and χV1 are the Euler characteristics, and Mq denote the q-th
type number of f .

This lemma implies that our function g has no critical points, and hence
V1 and V2 are diffeomorphic.

8. We have to prove Theorems F and G. For Theorem F, observe by
theorem C, there is a nice function f on M with vanishing type numbers
except in dimensions M0,Mm,Mm+1,Mn = 1, and M0 = Mn = 1. Also, by
the Morse relation, observe that the Euler characteristic is the alternating
sum of the type numbers, Mm = Mm+1. Then by Lemma 7.2, f−1[0,m+
1/2], f−1[m+ 1/2, 2m+ 1] ∈H (2m+ 1,Mm,m) proving Theorem F.

All but the last statement of Theorem G has been proved. For this just
note that M \D2m is diffeomorphic to f−1[0,m + 1/2], which by Lemma
7.2 is in H (2m, k,m).
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On the structure of manifolds1

S. Smale

In this paper, we prove a number of theorems which give some insight
into the structure of differentiable manifolds.

The methods, results and some notation of [15], hereafter referred to as
GPC, and [14] will be used. These two papers and [16] can be considered
as a starting point for this. The main theorems in these papers are special
cases of the theorems here.

Among the most important theorems in this paper are 1.1 and 6.1.
Some conversations with A. Haefliger were helpful in the preparation of

parts of this paper.
Everything will be considered from the differentiable, equivalently, C∞,

point of view; manifolds, imbeddings, and isotopies will be in C∞.

§ 1

We give a necessary and sufficient condition for two closed simply con-
nected manifolds of dimension greater than four to be diffeomorphic. The
condition is h-cobordant, first defined by Thom [18] for the combinato-
rial case, and developed by Milnor [9], and Kervaire and Milnor [7] for
the differentiable case (sometimes previously h-cobordant has been called
J-equivalent). It involves a combination of homotopy theory and cobor-
dism theory. More precisely, two closed connected oriented manifolds Mn

1

and Mn
2 are h-cobordant if there exists an oriented compact manifold W ,

with ∂W (the boundary of W ) diffeomorphic to the disjoint union of M1

and −M2, and each component of ∂W is a deformation retract of W .
1Amer. J. Math., 84 (1962), No. 3, 387–399 (received July 18, 1961). Reprinted with

permission of The Johns Hopkins University Press.
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Theorem 1.1. If n > 5, and two closed oriented simply connected
manifolds Mn

1 and Mn
2 are h-cobordant, then M1 and M2 are diffeomorphic

by an orientation preserving diffeomorphism.

It has been asked by Milnor whether h-cobordant manifolds in general
are diffeomorphic, problem 5, [9]. Subsequently Milnor himself has given a
counter-example of 7-dimensional manifolds with fundamental group Z7,
h-cobordant but not diffeomorphic [10]. Thus the condition of simple-
connectedness is necessary in Theorem 1.1.

Theorem 1.1 was proved in special cases in [15] and [16]. These special
cases were applied to show that every sphere not of dimension four or six
has a finite number of differentiable structures. The six-dimensional case
is taken care of by the following.

Corollary 1.2. Every homotopy 6-sphere is diffeomorphic to S6.

This follows from 1.1 and the result of Kervaire and Milnor [7] that
every homotopy 6-sphere is h-cobordant to S6.

Corollary 1.3. The semigroup of 2-connected closed 6-manifolds is
generated by S3 × S3.

This follows from 1.2 and [17].
Haefliger [2] has extended the notion of h-cobordant to the relative

case. Let V1, V2,M1,M2 be closed oriented, connected manifolds with Vi ⊂
Mi, i = 1, 2. According to Haefliger (M1, V1), (M2, V2) are h-cobordant if
there is a pair (M,V ) (i.e. V ⊂ M) with ∂M = M1 −M2, ∂V = V1 − V2

and M1 → M,Vi → V homotopy equivalences. Then Theorem 1.1 can be
extended to the relative case.

Theorem 1.4. Suppose (Mn
1 , V

k
1 ) and (Mn

2 , V
k
2 ) are h-cobordant, k >

5, π1(Vi) = π1(Mi − Vi) = 1. Then there is an orientation preserving
diffeomorphism of M1 onto M2 sending V1 to V2.

By taking Vi empty (the proof of 1.4 is valid for this case also), one can
consider 1.1 as a special case of 1.4.

Actually we obtain much stronger theorems which will imply 1.4. The
proof of 1.4 is completed in § 3.

It would not be surprising if the hypothesis of simple connectedness in
these theorems could be weakened using torsion invariants (see [10], for
example).

Theorem 1.4 has application to the theory of knots except in codimen-
sion two.
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§ 2

The main theorem we prove in this section is the following. Here we use
the notation of GPC.

Theorem 2.1. Let Mn be a compact manifold with a simple con-
nected boundary component Q. Let V = (χ ∗ M,Q; f,m) where f :
∂Dm

0 × Dn−m
0 → Q is an imbedding, m > 2, n−m > 3. Suppose

W = χ(V ;Q1; g1, . . . , gr;m + 1) where Q1 is the component of ∂V cor-
responding to Q and suppose that Hm(W,M) is zero. Then W is of the
form

χ(M ;Q; g′1, . . . , g
′
r−1;m+ 1).

Note that an example of Mazur [8] shows that dimensional restrictions
are necessary here.

For the proof we use several lemmas.

Lemma 2.2. Let Mn be a compact manifold, Q a component of ∂M
n−m > 1. Let

V = χ(M,Q; f ;m),

W = χ(V,Q1; g1, . . . , gn),

where Q1 is the component of ∂V corresponding to Q, and

f : ∂Dm
0 ×Dn−m

0 → Q,

gi : ∂Dm+1
i ×Dn−m−1

i → Q1

are imbeddings. Let F = q ×Dn−m
0 ⊂ V with q ∈ ∂Dm

0 . Suppose ∂F does
not intersect gi(∂D

m+1
i ×0), i = 1, . . . , r−1, and gr(∂D

m+1
r ×0) intersects

∂F transversally in a single point. Then W is of the form

χ(M,Q1; g
′
1, . . . , g

′
r−1,m+ 1).

Proof of Lemma 2.2. In the proof of Lemma 2.2, we use without
further mention, the fact that the diffeomorphism type of an n-manifold is
not changed when an n-disk is adjoined by identifying an (n−1) disk on the
boundary of each under a diffeomorphism. See GPC, 3.4, and also [11], [12].

We may assume, using the uniqueness of tubular neighborhoods that
∂F does not intersect gi(∂D

m+1
i ×Dn−m−1

i ), i = 1, 2, . . . , r − 1.
Since gr(∂D

m+1
i × 0) is transversal to ∂F in ∂V , there exists a disk

neighborhood L of σ = gr(∂D
m+1
i × 0)

⋂
F, L = Am × Dn−m−1, where

Am × 0 is a disk neighborhood of σ in gr(∂D
m+1
i × 0), 0×Dn−m−1 a disk

neighborhood of σ in ∂F with (0, 0) corresponding to σ.
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Now there exists a disk neighborhood Dm
a of the point F

⋂
Dm

0 × 0 in
Dm

0 × 0 so small that if N = Dm
a ×Dn−m

0 , then

N
⋂

im gi = ∅, i = 1, . . . , r − 1 (1)

and
N
⋂

im gr ⊂ L. (2)

Since both Dm
0 ×0 and Am×0 (i.e. Am×0) are transversal to ∂F in ∂V , we

may assume using a diffeomorphism of V , and restricting L, that Am × 0
and Dm

0 × 0 coincide and that L coincides with image gr

⋂
N .

The following statements are made under the assumptions that the cor-
ners are smoothed via “straightening the angle”, § 1 of GPC, or better [9].
Let K = N

⋃
Dm+1

r × Dn−m−1 ⊂W .
We claim that K

⋂
Cl (W−K)1 is diffeomorphic to an (n−1)-disk. First,

K
⋂

Cl (W −K) is

∂Dm
a ×Dn−m

0

⋃
{(∂Dm+1

r ×Dn−m−1
r )\ interiorL}

or ∂Dm
a × Dn−m

0

⋃
∂Dm

b × Dn−m−1, where Dm
b is ∂Dm+1

r minus the in-
terior of an m-disk. Furthermore K

⋂
Cl (W−K) can be described as

∂Dm
a × Dn−m

0 with ∂Dm+1
b × Dn−m−1

r attached by an embedding h :
∂Dm

b × Dn−m−1
r → ∂Dm

a × Dn−m−1
0 with the property that h(∂Dm

b × 0)
coincides with ∂Dm

b × c for some point c ∈ Dn−m
0 . This is the situation in

the proof of 3.3 of GPC, where it was shown that the resulting manifold
was a disk. Thus K

⋂
Cl (W −K) is indeed an (n− 1)-disk.

Since K is an n-disk, K
⋂

Cl (W−K) an (n−1)-disk, we have that W is
diffeomorphic to Cl (W−K). On the other hand it is clear from the previous
considerations that Cl (W −K) is of the form χ(M,Q; g′1, . . . , g

′
r−1,m+1).

This proves Lemma 2.2.
The next lemma follows from the method of Whitney [20] of remov-

ing isolated intersection points. The paper of A. Shapiro [13] makes this
apparent (apply 6.7, 6.10, 7.1 of [13]).

Lemma 2.3. Suppose Nn−m is a closed submanifold of the closed man-
ifold Xn and f : Mm → Xn is an embedding of a closed manifold. Suppose
also that M,N are connected, X simply connected, n−m > 2,m > 2 and
b = f(Mm) ◦ Nn−m is the intersection number of f(M) and N . Then
there exists an imbedding f ′ : Mm → Xn isotopic to f such that f ′(Mm)
intersects Nn−m in b points, each with transversal intersection.

Lemma 2.4. Let Fn−m−1
0 be a submanifold of Q where Q is a com-

ponent of the boundary of a compact manifold V n, n − m > 2. Let
1The Cl means the closure.
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W = χ(M,Q; g;m + 1), where g : ∂ Dm+1
0 × Dn−m−1 → Q is an imbed-

ding with b the intersection number g(∂Dm+1
0 × 0) ◦ F0. For an imbedding

h : Sm → Q
⋂
∂W , there is an imbedding h′ : Sm → Q

⋂
∂W , isotopic to

h in ∂W , with

h′(Sm) ◦ Fn−m−1
0 = h(Sm) ◦ Fn−m−1

0 ± b,

sign prescribed.

Proof. Let D be the closed upper hemisphere of Sm, χ0 ∈ ∂Dn−m−1
0

and H+, H− be the closed upper, lower hemisphere respectively of

g(∂Dm+1
0 × χ0). Then h is isotopic in ∂W

⋂
Q to an imbedding h

′
: Sm →

Q
⋂
∂W , with h′(Sm)

⋂
(∂Dm+1

0 × χ0) equal H+ with the orientation de-
termined by the ±b of 2.4. This follows from Palais [12], (Theorem 13,
Corollary 1).

Next let h be h
′

followed by the reflection map H+ → H−, so that

h, h
′
: D→∂W are naturally topologically isotopic. However h is an angle

on ∂D. By the familiar process of “straightening the angle” we modify

h
′
: Sm → ∂W

⋂
Q to an embedding h′ : Sm → ∂W

⋂
Q. Our construction

makes it clear that h′ and h are isotopic in ∂W , and that h′ has the desired
property of 2.4.

We now prove 2.1. Let F be as in 2.2 and bi be the algebraic intersection
number gi(∂D

m+1
i × 0) ◦ ∂F, i = 1, . . . , r. We first note that the bi are

relatively prime. This in fact follows from the homology hypothesis of the
theorem.

The proof proceeds by induction on
∑r

i=1 |bi| and is started by 2.3 and
2.2. Suppose 2.1 is true in case

∑r
i=1 |bi| is p − 1 > 0. We can say from

the homotopy structure of W that Hm(W,M) is Hm(V,M) with the added
relations [∂Dm+1

i ] = 0, i = 1, . . . , r, where [∂Dm+1
i ] ⊂ Hm(V,M) = Z and

Hm(V,M) is generated by (Dm
0 , ∂D

m
0 ).

Since Hm(W,M) = 0, [Dm+1
i ] are relatively prime. On the other hand,

since (Dm
0 × 0) ◦F = 1, we have that [∂Dm+1

i ] = b. So the bi, i = 1, . . . , r,
are relatively prime.

Since the bi are relatively prime, there exist, i0, i1, i0 6= i1 with |bi0 | >
|bi1 | > 0. One now applies 2.4 to reduce |bi0 | by |bi1 | using the covering
homotopy property as in §2 of GPC. The induction hypothesis applies and
we have proved 2.1.

Lemma 2.5. Let n > 2m + 1, (n,m) 6= (4, 1), (3, 1), (5, 2), (7, 3),
Mn be a compact manifold with a simply connected boundary component
Q and V = χ(M,Q; f ;m) where f : ∂Dm ×Dn−m → Q is a contractible
imbedding. Let Q1 be the component of ∂V corresponding to Q and
W = χ(V,Q1; g;m + 1) where g : ∂Dm+1

1 × Dn−m−1
1 → Q1. Then if
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the homomorphism πm(V,M) → πm(W,M) induced by inclusion is zero,
W is diffeomorphic to M .

We use the following for the proof of 2.5.

Lemma 2.6. Let Y be a simply connected polyhedron and Z an (m− 1)-
connected polyhedron. Then πm(Y

∨
Z) = πm(Y ) + πm(Z).

This is a standard fact in homotopy theory. For example it follows from
[6], Ch.3.1 and the relative Hurewicz theorem.

Using 2.6 it follows easily that πm(Q1) = πm(Q) + πm(Sm).
Then from the homotopy hypothesis it follows that the homotopy class

γ if g restricted to ∂Dm+1
1 × 0 is of the form a+ g1, where a ∈ πm(Q) and

g1 generates πm(Sm). Since Q is contractible, V = M +H , where H is an
(n−m)-bundle over Sm, and also Q1 = Q+ ∂H . Then let g′1 : ∂Dm+1 →
Q be an imbedding representing a and g′2 : ∂Dm+1 → ∂H an imbedding
intersecting ∂F transversally in a single point where F is the same as in 2.2.
Then by the sum construction we obtain g′ : ∂Dm+1 × 0 → Q1 realizing
γ with the property that g′(∂Dm+1 × 0) intersects ∂F transversally in a
single point where F is the same as in 2.2. Application of Lemma 2.4 of
GPC and 2.2 finishes the proof.

§ 3

Among other things, we apply the theory of §2 to obtain Theorem 1.4.

Theorem 3.1. Let Wn be a manifold (not necessarily compact), n >
5, with ∂W the disjoint union of simply-connected manifolds M1 and M2

where the inclusion Mi →W are homotopy equivalences. Suppose j : V0 →
M1 is the inclusion of a compact manifold V0 into M1 which is a homotopy
equivalence and there is an imbedding α : Cl (M1 − V0)× [1, 2]→W such
that: a) the complement of the image of α has compact closure and; b)
α(Cl (M1 − V0) × n) ⊂ Mn, n = 1, 2, α restricted to Cl (M1 − V0) is j.
Then α can be extended to a diffeomorphism M1 × [1, 2]→W .

Proof of Theorem 3.1. Let I0 =
[
−1

2
, n+ 1

2

]
and replace [1, 2] in

Theorem 3.1 by I0, denoting the projection Cl (M1 − V0)× I0 → I0 by f0.
We may assume that points under α have been identified so that

Cl (M1 − V0) × I0 ⊂ W . Then by the results of [14] one can find a
non-degenerate C∞ real function f on W such that a) f restricted to
Cl (M1−V0)× I0 is f0; b) at a critical point the value of f is the index and

c) f(M1) = −1
2
, f(M2) = n+ 1

2
.
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Let Xp = f0

[
−1

2
, p+ 1

2

]
. We will show inductively that by suitable

modifications of f which also satisfy a), b), c), we can assume Xp is a
product M1 × I (or equivalently the modified f has no critical points of
index 6 p).

First by 5.1 of GPC, note that we may assume that the function f has
no critical points of index 0. Next by the method in §7 of GPC, using the
fact that π1(M1) = π1(W ) = 1, we can similarly assume that there are no
critical points of f of index 1.

We are not quite yet in the dimension range where Theorem 2.1 applies,
but we apply Lemma 2.5 to eliminate a critical point of 2 if it occurs, as
follows.

We have thatX2 = χ(X1, Q1; f1, . . . , fk; 2). X3 = χ(X2, Q2; g1, . . . , gr; 3),

where Q1 = f−1
(
11

2

)
, Q2 = f−1

(
21

2

)
. It follows from the homotopy hy-

pothesis that each fi is contractible in Q1 so that X2 is of the form X1 +H ,
H ∈H (n, k, 2) (following notation of GPC1).

The gi’s induce a homomorphism Gr → π2(Q2). Let ϕ be the composi-
tion

Gr → π2(Q2)→ π2(X2)→ π2(H),

where the last homomorphism is obtained by identifying X1 to a point in
X2.

Assertion. ϕ is an epimorphism.
Assume the assertion is false and α ∈ π2(H) is not in the image of ϕ.

Then since
π2(X2) = π2(X1) + π2(H)

(by Lemma 2.6), the image of α under π2(H) → π2(X2) → π2(X3) is not
in the image of

π2(X1)→ π2(X2)→ π2(X3).

But the last composition is an isomorphism since X1 = (M1 × I), thus
contradicting the existence of such an α. Hence the assertion is true.

Let γ1, . . . , γk be the generators of π2(H) corresponding to f1, . . . , fk.
Then by Lemma 4.1 of GPC, there is an automorphism β of Gr such that
ϕβ(gi) = γi, i 6 k and ϕβ(gi) = 0, i > k. By Theorem 2.1 of GPC it can
be assumed that the gi are such that ϕ(gi) = γi, i 6 k and ϕ(gi) = 0, i > k.

Now apply Lemma 2.5 with W,V,M corresponding to χ(X2, Q; gk),
χ(X1, Q1; f1, . . . , fk) and χ(X1, Q1; f1, . . . , fk−1). This eliminates the crit-
ical point of f corresponding to fk and by induction all the critical points
of index 2.

1The set H (n, k, s), consists of manifolds of the type χ(M, Q; f1, . . . , fr , s), where
f ∈ H (n, k, s − 1) and H (n, k, 0) = Dn. — Editor’s remark.
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Applying some of the previous considerations to n− f we eliminate the
critical points of f of index n, n− 1.

Now more generally suppose f on Xp−1 has no critical points where
p 6 n− 3. Then since Hp(Xp+1, Xp) = 0, Theorem 2.1 applies to eliminate
the critical points of index p. Thus we obtain by induction a function f on
W with critical points only of index n−2 and which satisfies the conditions
a)-c) above. By Lemma 7.5 of GPC, f has no critical points at all. This
proves Theorem 3.1.

Corollary 3.2. Suppose Wn is compact, n > 5, ∂W the disjoint union
of closed manifolds M1,M2, with each Mi → W a homotopy equivalence.
Suppose also V ⊂ W with ∂V = V1

⋃
V2, Vi ⊂ Mi, V = V1 × I and

π1(Mi − Vi) = 1. Then i : V → W can be extended to a diffeomorphism of
M1 × I onto W .

Proof. First i may be extended to T × I where T is a tubular neigh-
borhood of V1 in M1. Then apply Theorem 3.1 to W − V to get 3.2.

Now we can prove Theorem 1.4. First by Corollary 3.2 with V empty
applied to V of Theorem 1.4 yields that V is diffeomorphic to V1 × I. Now
Corollary 3.2 applies to yield Theorem 1.4.

§ 4

The following is quite a general theorem and in fact contains Theorem
1.1 as a special case with k = n− 1.

Theorem 4.1. Suppose Wn ⊃ Mk where W is a compact connected
manifold and M is a closed manifold. Furthermore suppose

a) π1(∂W ) = π1(M) = 1;
b) n > 5;
c) The inclusion of M into W is a homotopy equivalence.
Then W is diffeomorphic to a closed cell bundle over M , in particular

to a tubular neighborhood of M in W .

We need a lemma.

Lemma 4.2. Suppose B is a compact connected n-dimensional subman-
ifold of a compact connected manifold V n with ∂B

⋂
∂V = ∅, π1(∂B) =

π1(∂V ) = 1 and H∗(B) → H∗(V ), induced by the inclusion is bijective.
Then Q = Cl (V − B) has boundary consisting of ∂V ∂B, with the inclu-
sions of ∂V and ∂B into Q homotopy equivalences.



3rd April 2007 14:10 WSPC/Book Trim Size for 9in x 6in main

On the structure of manifolds 277

For the proof of Lemma 4.2 we use the following version of the Poincaré
Duality Theorem, which follows from the Lefschetz Duality Theorem.

Theorem 4.3. Suppose Wn is a compact manifold ∂W , the disjoint
union of manifolds M1 and M2 (possibly either or both empty). Then for
all i, Hi(W,M1) is isomorphic to Hn−i(W,M2).

To prove Lemma 4.2 note

Hi(Q, ∂B) = Hi(V,B) = 0 and Hi(Q, ∂B) = Hi(V,B) = 0

for all i. By Theorem 4.3, Hi(Q, ∂V ) = 0 for all i also. By the Whitehead
theorem we get 4.2.

The proof of Theorem 4.1 then goes as follows. We can first suppose
that M is disjoint from the boundary of W . Now let T be the tubular
neighborhood of M which is also disjoint from ∂W . Now apply Lemma 4.2
and Corollary 3.2 to Cl (W −T ) with V of Corollary 3.2 empty. This yields
that Cl (W − T ) is diffeomorphic to ∂T × I and hence W is diffeomorphic
to T . We have proved Theorem 4.1.

Theorem 4.4. Suppose 2n > 3m+ 3 and a compact manifold Wn has
the homotopy type of a closed manifold Mm, n > 5 with π1(∂W ) = π1(M) =
1. Then W is diffeomorphic to a cell-bundle over M .

Proof. Let f : M →W be a homotopy equivalence. By Haefliger [1],
f is homotopic to an embedding g : M →W . Now Theorem 4.1 applies to
yield Theorem 4.4.

§ 5

We continue with some consequences of Theorem 4.1. The next theorem
is a strong form of the Generalized Poincaré Conjecture for n > 5 and it was
first proved in [16] except for n = 7. This theorem follows from Theorem 4.1
by taking M to be a point.

Theorem 5.1. Suppose Cn is a compact contractible manifold with
π1(∂C) = 1 and n > 5. Then C is diffeomorphic to the n-disk Dn.

For n = 5, if one knows in addition that ∂C is diffeomorphic to S4, then
using the theorem of Milnor Θ5 = 01.1

The following is a weak unknotting theorem in the differentiable case.
1Θ5 is the h-cobordis class group for 5-dimensional homotopy spheres with the con-

nected sum operation. — Editor’s remark.
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Haefliger [2] has given an imbedding (differentiable) of S3 in S6 which does
not bound an imbedded D4. On the other hand we have:

Theorem 5.2. Suppose Sk ⊂ Sn with n− k > 2. Then the closure of
the complement of a tubular neighborhood T of Sk in Sn is diffeomorphic
to Sn−k−1 ×Dk+1.

Proof. The proof of Theorem 5.2 is as follows (the case n 6 5 is
essentially contained in Wu Wen Tsun [21]). It is well-known and easy to
prove that if X = Cl (Sn − T ), X has the homotopy type of Sn−k−1. In
fact T is diffeomorphic to a cell bundle over Sk and the inclusion of the
boundary of a fiber Sn−k−1

0 into X induces the equivalence. Furthermore
the normal bundle of Sn−k−1

0 in Sn is trivial because Sn−k−1
0 bounds a disk

in Sn. Now Theorem 4.1 applies to yield Theorem 5.2.
One can also prove some recent theorems of M. Hirsch [5], replacing his

combinatorial arguments by application of the above theorems.

Theorem 5.3. (Hirsch) If f : Mn
1 → Mn

2 is a homotopy equivalence
of simply connected closed manifolds such that the tangent bundle of M1 is
equivalent to the bundle over M1 induced from the tangent bundle of M2 by
f , then M1 ×Dk and M2 ×Dk are diffeomorphic if k > n.

One obtains Theorem 5.3 by imbedding M1 in M2 × Dk approximat-
ing the homotopy equivalence and applying Theorem 4.1. The tangential
property of f is used to conclude that a tubular neighborhood of M1 in
M2 ×Dk is a product neighborhood.

Theorem 5.4. (Hirsch) If the homotopy sphere Mn bounds a paral-
lelizable manifold then Mn ×D3 is diffeomorphic to Sn ×D3.

One first proves that Mn can be imbedded in Sn+3 with trivial nor-
mal bundle by following Hirsch [4] or using “handlebody theory”. Then
apply the argument in Theorem 5.2 to obtain the complement of a tubular
neighborhood of Mn is diffeomorphic to S2 × Dn+1. The closure of the
complement S2 ×Dn+1 in Sn+3 is Sn ×D3, thus proving 5.4.

§ 6

The main goal of this section is the following theorem.

Theorem 6.1. Let M be a simply connected closed manifold of dimen-
sion greater than 5. Then on M there is a non-degenerate C∞ function
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with the minimal number of critical points consistent with the homology
structure.

One actually obtains such a function with the additional property that
at a critical point its value is the index.

Statement 6.2. We make more explicit the conclusion of Theorem 6.1.
Suppose for each i, 0 6 i 6 n, the set σi1, . . . , σip(i), τi1, . . ., τip(i) is the
set of generators for a corresponding direct sum decomposition of Hi(M),
σij

free, τij
of finite order. Then one can obtain the function of Theorem

6.1 with type numbers satisfying Mi = p(i) + q(i) + q(i− 1). By taking the
q(i) minimal, the Mi becomes minimal.

In the case there is no torsion in the homology of M , Theorem 6.1
becomes

Theorem 6.3. Let M be a simply connected closed manifold of dimen-
sion greater than five with no torsion in the homology of M . Then there is
a non-degenerate function on M with type numbers equal the Betti numbers
of M .

We start the proof of Theorem 6.1 with the following Lemma.

Lemma 6.4. Let Mn be a simply connected compact manifold, n > 5,
n > 2m. Then there is an n-dimensional simply connected manifold Xm

such that:
a) Hj(Xm) = 0, j > m;
b) There is a “nice” function on Xm, minimal with respect to its ho-

mology structure. In other words there is a C∞ non-degenerate function on

Xm, value at a critical point equal the index, equal to m+ 1
2

on ∂Xm regular

on the neighborhood of ∂Xm and the k-th type number Mk is minimal in
the sense of 6.2;

c) There is an imbedding i : Xm → Mn such that i(∂Xm)
⋂
∂M = ∅

i : Hj(Xm)→ Hj(M
n) is bijective for j < m and surjective for j = m.

The proof goes by induction on m starting by taking X1 to be an n-disk.
Suppose Xk−1, i0 : Xk−1 →M have been constructed satisfying a)–c). For
convenience we identify points under i0, so that Xk−1 ⊂ M . We now
construct Xk, i : Xk →M , satisfying a)–c).

By the relative Hurewicz theorem the Hurewicz homomorphism h :
πk(M,Xk−1)→ Hk(M,Xk−1) is bijective.

For the structure of Hk(M,Xk−1) consider the exact sequence

0→ Hk(M)→ Hk(M,Xk−1)→ Hk−1(Xk−1)
j→ Hk−1(M)→ 0.
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Let γ1 . . . , γp be the set of generators of Hk(M,Xk−1) corresponding to
a minimal set of generators of Hk(M) together with a minimal set for ker j.

Represent the elements h−1(γ1), . . . , h
−1(γp) by imbeddings gi :

(Dk, ∂Dk) → (Cl (M −Xk−1), ∂Xk−1) with gi(D
k′) transversal to ∂Xk−1

along gi(∂D
k), for example following Wall [19], proof of Theorem 1.

In the extreme case n = 2k, the images of gi generically intersect each
other in isolated points. These points can be removed by pushing them
along arcs past the boundaries. Still following [19], the gi can be extended
to tubular neighborhoods,

gi : (Dk, ∂Dk)×Dn−k → (Cl (M −Xk−1), ∂Xk−1).

Then we take Xk to be χ(Xk−1; g
′
1, . . . , g

′
p; k) where g′i : ∂Dk × Dn−k →

∂Xk−1 is the restriction of gi. It is not difficult to check that Xk has the
desired properties a)–c). This proves Lemma 6.4.

To prove 6.1, let Mn be as in 6.1 with n = 2m or 2m+ 1. Let Xm ⊂
M as in Lemma 6.4, f the nice function on Xm and K = Cl (M − Xm).
Then Hi(M,Xm) = 0, i 6 m, so by the duality Hj(K) = 0, j > n−m. By
the Universal Coefficient Theorem this implies that Hn−m−1(K) is torsion
free. Let Yn−m−1 ⊂ K be again given by Lemma 6.4 with g the nice
function on Yn−m−1. By 4.2 and 3.2 we can in fact assume that K and
Yn−m−1 are the same, so M = Xm

⋃
Yn−m−1. Let f0 be the function on M

which is f on Xm and n− g on Yn−m−1. By smoothing f0 along ∂Xm we
obtain a C∞ function f ′. It is not difficult using the Universal Coefficient
Theorem and Poincaré Duality to show that f ′ may be taken as the desired
function of the Theorem.

The previous results of this section may be extended to manifolds with
boundary.

By the previous methods one may prove the following generalization of
Theorem 6.1. We leave the details to the reader.

Theorem 6.5. Suppose Wn is a simply connected manifold with simply-
connected boundary, n > 5. Then there is a nice function f on Wn (non-

degenerate, value n+ 1
2

on ∂W , regular in a neighborhood of ∂W , value at

a critical point is the index) with type numbers minimal with respect to the
homology structuire of (W,∂W ).

§ 7

The goal of this section is to prove the following.
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Theorem 7.1. Let f : Wn
1 → Wn

2 be a homotopy equivalence be-
tween two manifolds such that the tangent bundle T1 of M1 is equiva-
lent to f−1T2. Suppose also that n > 5, n > 2m + 1, Hi(W1) = 0,
i > m, π1(W1) = π1(∂W1) = π1(∂W2) = 1. Then W1 and W2 are diffeo-
morphic by a diffeomorphism homotopic to f .

Let g be a nice function on W1 with no critical points of index greater
than m, whose existence is implied by Theorem 6.5. Then we let Xk =

g−1
[
0, k + 1

2

]
, k = 0, . . . ,m with Xm = W1. By Corollary 3.2 and Lemma

4.2 it is sufficient to imbed Xm in W2 by a map homotopic to f .
Suppose inductively we have defined a map fk−1 : Xk →W2 homotopic

to f with the property that fk−1 is an imbedding k > m. Let Xk be written
in the form

χ(Xk−1; g1, . . . , gp; k), gi : ∂Dk ×Dn−k → ∂Xk−1.

Using the Whitney imbedding theory we can find f ′
k−1 : Xk → W2 ho-

motopic to fk−1, which is an imbedding on Xk−1 and on the images
gi(D

∗ × 0) in Xk as well. It remains to make fk−1 an imbedding on a
tubular neighborhood of each of the gi(D

k× 0), or equivalently one each of
the gi(D

k ×Dn−k).
This can be done for a given i if and only if an element γi in πk−1(O(n−

k)) defined by f ′
k−1 in a neighborhood of gi(∂D

k × 0), is zero. But the
original tangential assumptions on f insure γi = 0 in this dimension range.
The arguments in proving these statements are so close to the arguments
in Hirsch [3] Section 5, that we omit them. This finishes the proof of 7.1.

§ 8

We note here the following theorem.

Theorem 8.1. Let M2m+1 be a closed simply connected manifold, m >
2, with Hm(M) torsion free. Then there is a compact manifold W 2m+1,
uniquely determined by M and a diffeomorphism h : ∂W → ∂W such that
M is a union of two copies of W with points identified under h.

Proof. Let W 2m+1
1 ⊂ M be the manifold given by Lemma 5.4. Let

W 2m+1
2 ⊂Cl (M−W1) be also given by Lemma 6.4. Then it is not difficult

using homotopy theory to show that W1, W2 satisfy the hypothesis of 7.1.
Also by previous arguments W2 is diffeomorphic to Cl (M − W1). The
uniqueness of W1 = W2 is also given by 7.1. Putting these facts together,
we get Theorem 8.1.
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Remark. I don’t believe the condition on Hm(M) is really necessary here.
Also in a different spirit, Theorem 8.1 is true for the cases m = 1, m = 2.
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On the formal group laws of

unoriented and complex cobordism

theory

D.Quillen 1

In this note we outline a connection between the generalized conhomol-
ogy theories of unoriented cobordism and (weakly-) complex cobordism and
the theory of formal commutative groups of one variable [4], [5]. This con-
nection allows us to apply Cartier’s theory of typical group laws to obtain
an explicit decomposition of complex cobordism theory localized at a prime
p into a sum of Brown-Peterson cohomology theories [1] and to determine
the algebra of cohomology operations in the latter theory.

1. Formal group laws. If R is a commutative ring with unit, then by
a formal (commutative) group over R one means a power series F (X, Y )
with coefficients in R such that

(i) F (X, 0) = F (0, X) = X ;
(ii) F (F (X, Y ), Z) = F (X, F (Y, Z));
(iii) F (X, Y ) = F (Y, X).
We let I(X) be the “inverse” series satisfying F (X, I(X)) = 0, and let

ω(X) = dX/F2(X, 0)

be the normalized invariant differential form where the subscript 2 denotes
differentiation with respect to the second variable. Over R ⊗Q, there is a
unique power series l(X) with leading term X such that

l(F (X, Y )) = l(X) + l(Y ). (1)
1Bull. Amer. Math. Soc., 75 (1969), 1293–1298 (Communicated by F. Peterson,

May, 16, 1969). Reprinted with permission from the American Mathematical Society.
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The series l(X) is called the logarithm of F and is determined by the equa-
tions

l′(X)dX = ω(X), l(0) = 0. (2)

2. The formal group law of complex cobordism theory. By
complex cobordism theory Ω∗(X) we mean the generalized cohomology the-
ory associated with the spectrum MU . If E is a complex vector bundle
of dimension n over X , we let cΩi (E) ∈ Ω2i(X), 1 6 i 6 n, be the Chern
classes of E in the sense of Conner-Floyd [3]. Since Ω∗(CP∞ × CP∞) =
Ω∗(pt)[[x, y]], where x = cΩ1 (O(1)) ⊗ 1, y = 1 ⊗ cΩ1 (O(1)) and O(1)
is the canonical line bundle on CP∞, there is a unique power series
FΩ(X, Y ) =

∑
aklX

kY l with akl ∈ Ω2−2k−2l(pt) such that

cΩ1 (L1 ⊗ L2) = FΩ(cΩ1 (L1), c
Ω
1 (L2)) (3)

for any two complex line bundles with the same base. The power series FΩ

is a formal group law over Ωev(pt).

Theorem 1. Let E be a complex vector bundle of dimension n, let
f : PE′ → X be the associated projective bundle of lines in the dual E′ of
E, and let O(1) be the canonical quotient line bundle on PE′. Then the
Gysin homomorphism f∗ : Ωq(PE′)→ Ωq−2n+2(X) is given by the formula

f∗(u(ξ)) = res
u(Z)ω(Z)

n∏
j=1

FΩ(Z, I(λj))

. (4)

Here u(Z) ∈ Ω(X)[Z], ξ = cΩ1 (O(1)), ω and I are the invariant differential
form and inverse respectively for the group law FΩ, and λj are the dummy
variables of which cΩq (E) is the q-th elementary symmetric function.

The hardest part of this theorem is to define the residue; we specialize
to dimension one an unpublished definition of Cartier, which has also been
used in a related form by Tate [7]. Applying the theorem to the map
f : CPn → pt, we find that the coefficient of XndX in ω(X) is Pn, the
cobordism class of CPn in Ω−2n(pt). From (2) we obtain the

Corollary (Mishchenko [6]). The logarithm of the formal group law
of complex cobordism theory is

l(X) =
∑

n>0

Pn
Xn+1

n+ 1
. (5)
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3. The universal nature of cobordism group laws.

Theorem 2. The group law FΩ over Ωev(pt) is a universal formal
(commutative) group law in the sense that given any such law F over a
commutative ring R there is a unique homomorphism Ωev(pt)→ R carrying
FΩ to F .

Proof. Let Fu over L be a universal formal group law [5] and let h :
L→ Ωev(pt) be the unique ring homomorphism sending Fu to FΩ. The law
Fu over L⊗Q is universal for laws over Q-algebras. Such a law is determined
by its logarithm series which can be any series with leading term X . Thus
if
∑
pnX

n+1/n+ 1 is the logarithm of Fu, L⊗Q is a polynomial ring over
Q with generators pi. By (5) hpn = Pn, so as Ω∗(pt)⊗ Q ∼= Q[P1, P2, . . . ]
it follows that h⊗Q is an isomorphism.

By Lazard [5, Theorem II], L is a polynomial ring over Z with infinitely
many generators; in particular L is torsion-free and hence h is injective. To
prove surjectivity we show h(L) contains generators for Ω∗(pt). First of all
hpn = Pn ∈ h(L) because pn ∈ L is the n-th coefficient of the invariant
differential Fu. Secondly we must consider elements of the form [Mn] where
Mn is a nonsingular hypersurface of degree k1, . . . , kr in CPn1× . . .×CPnr .
Let π be the map of this multiprojective space to a point. Then [Mn] =
π∗c

Ω
1 (Lk1

1 ⊗ . . . ⊗ Lkr
r ), where Lj is the pull-back of the canonical line

bundle on the j-th factor. The Chern classes of this tensor product may be
written using the formal group law FΩ in the form

∑
π∗ai1 . . . ir

zi1
1 . . . zir

r ,
where 0 6 ij 6 nj, 1 6 j 6 r, zi = cΩ1 (Li) and where ai1 . . . ir

∈ h(L).
Since

π∗z
i1
1 . . . zir

r =
r∏

j=1

Pnj−ij

also belongs to h(L), it follows that [Mn] ∈ h(L). Thus h is an isomorphism
and the theorem is proved.

We can also give a description of the unoriented cobordism ring using
formal group laws. Let η∗(X) be the unoriented cobordism ring of a space
X , that is, its generalized cohomology with values in the spectrum MO.
There is a theory of Chern (usually called Whitney) classes for real vector
bundles with ci(E) ∈ ηi(X). The first Chern class of a tensor product
of line bundles gives rise to a formal group law F η over the commutative
ring η∗(pt). Since the square of a real line bundle is trivial, we have the
identity

F η(X, X) = 0. (6)

Theorem 3. The group law F η over η∗(pt) is a universal formal (com-
mutative) group law over a ring of characteristic two satisfying (6).
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4. Typical group laws (after Cartier [2]). Let F be a formal group
law over R. Call a power series f(X) with coefficients in R and without
constant term a curve in the formal group defined by the law. The set of
curves forms an abelian group with addition (f+F g)(X) = F (f(X), g(X))
and with operators

([r]f)(X) = f(rX), r ∈ R,

(Vnf)(X) = f(Xn), n > 1,

(Fnf)(X) =

n∑

i=1

F f(ζiX
1/n), n > 1,

where ζi are the n-th roots of unity. The set of curves is filtered by the
order of a power series and is separated and complete for the filtration.

If R is an algebra over Z(p), the integers localized at the prime p, then
a curve is called typical if Fqf = 0 for all prime q 6= p. If R is torsion-free
then it is the same to require that the series l(f(X)) over R ⊗ Q has only
terms of degree a power of p, where l is the logarithm of F . The group law
F is said to be a typical law if the curve γ0(X) = X is typical. There is a
canonical change of coordinates rendering a given law typical. Indeed let
cF be the curve

c−1
F =

∑

(n,p)=1

µ(n)
n VnFnγ0, (7)

where the division by n prime to p is taken in the filtered group of curves
and where µ is the Möbius function. Then the group law (cF ∗F )(X, Y ) =
cF (F (c−1

F X, c−1
F Y )) is typical.

5. Decomposition of Ω∗
(p). For the rest of this paper p is a fixed

prime. Let Ω∗
(p)(X) = Ω∗(X) ⊗ Z(p) and let ξ = cF Ω. Then ξ(Z) is a

power series with leading term Z with coefficients in Ω∗
(p)(pt), so there is

a unique natural transformation ξ̂ : Ω∗
(p)(X) → Ω∗

(p)(X) which is stable, a
ring homomorphism, and such that

ξ̂cΩ1 (L) = ξ(cΩ1 (L))

for all line bundles L.

Theorem 4. The operation ξ̂ is homogeneous, idempotent, and its
values on Ω∗

(p)(pt) are:

ξ̂(Pn) =

{
Pn, if n = pa − 1 for some a > 0

0 otherwise.
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Let ΩT ∗(X) be the image of ξ̂. Then there are canonical ring isomorphisms

ΩT ∗(pt) ⊗
Ω∗

(p)
(pt)

Ω∗
(p)(X) ∼= ΩT ∗(X), (8)

Ω∗
(p)(pt) ⊗

ΩT∗(pt)
ΩT ∗(X) ∼= Ω∗

(p)(X) (9)

and ΩT ∗ is the generalized cohomology theory associated to the Brown-
Peterson spectrum [1] localized at p.

It is also possible to apply typical curves to unoriented cobordism theory
where the prime involved is p = 2. One defines similarly an idempotent
operator ξ̂ whose image now is H∗(X, Z/2Z); there is also a canonical ring
isomorphism

η∗(pt)⊗H∗(X, Z/2Z) ≃ η∗(X),

analogous to (9).

6. Operations in ΩT ∗. If π : Ω∗
(p) → ΩT ∗ is the surjection induced

by ξ̂, then π carries the Thom class in Ω∗
(p)(MU) into one for ΩT ∗. As

a consequence ΩT ∗ has the usual machinery of characteristic classes with
cΩT
i (E) = πcΩi (E) and FΩT = πFΩ. Let t = (t1, t2, . . . ) be an infinite

sequence of indeterminates and set

ϕt(X) =

FΩT∑

n>0

tnX
pn

, t0 = 1,

where the superscript on the summation indicates that the sum is taken
as curves in the formal group defined by FΩT . There is a unique stable
multiplicative operation

(ϕ−1
t )̂ : Ω∗(X)→ ΩT ∗(X)[t1, t2, . . . ]

such that
(ϕ−1

t ) ĉΩ1 (L) = ϕ−1
t (cΩT

1 (L))

for all line bundles L. This operation can be shown using (8) to kill the
kernel of π and hence it induces a stable multiplicative operation

rt : ΩT ∗(X)→ ΩT ∗(X)[t1, t2, . . . ].

Writing

rt(x) =
∑

α

rα(x)tα, x ∈ ΩT ∗(X),
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where the sum is taken over all sequences α = (α1, α2, . . . ) of natural num-
bers all but a finite number of which are zero, we obtain stable operations

rα : ΩT ∗(X)→ ΩT ∗(X).

Theorem 5. (i) rα is a stable operation of degree 2
∑

i αi(p
i−1). Every

stable operation may be uniquely written as an infinite sum
∑

α

uαrα, uα ∈ ΩT ∗(pt),

and every such sum defines a stable operation.
(ii) If x, y ∈ ΩT ∗(X), then

rα(xy) =
∑

β+γ=α

rβ(x)rγ(y).

(iii) The action of rα on ΩT ∗(pt) is given by

rt(Ppn−1) =

n∑

h=0

pn−hPph−1t
ph

n−h.

(iv) If t′ = (t′1, t
′
2, . . . ) is another sequence of determinates, then the

compositions rα ◦ rβ are found by comparing the coefficients of tαt′β in

rt ◦ rt′ =
∑

γ

Φ(t, t′)γrγ ,

where Φ = (Φ1 = (t1; t
′
1),Φ2 = (t1, t2; t

′
1, t

′
2), . . . ) is the sequence of poly-

nomials with coefficients in ΩT ∗(pt) in the variables ti and t′i obtained by
solving the equations

N∑

h=0

pN−hPph−1Φ
ph

N−h =
∑

k+m+n=N

pm+nPpk−1t
pk

m t′p
k+m

n .

This theorem gives a complete description of the algebra of operations
in ΩT ∗. The situation is similar to that for Ω∗ except the set of Z(p)-linear
combinations of the rα’s is not closed under composition.
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Formal groups and their role in

algebraic topology approach1

V.M.Buchstaber, A. S.Mishchenko, S. P.Novikov

Dedicated to

Ivan Georgievich PETROVSKY

on his 70-th birthday.

Introduction

This review is closely connected to the review by S. P. Novikov [13], we
recommend to read them simultaneously. Here we touch on in general, the
results of development of the cobordism theory based on the work of us, D.
Quillen and some others. In the appendix, we describe the beautiful idea
of Sullivan idea concerning the so-called Adams conjecture in K-theory.

§ 1. Formal groups

The theory of formal groups plays a large role in the modern approach
to topology based on cobordism theory. Below, we describe

Let A be a commutative associative unital ring, A[x1, . . . , xn] the poly-
nomial ring in x1, . . . , xn with coefficients in A and A[[x1, . . . , xn]] the
corresponding power series ring.

1Формальные группы и их роль в аппарате алгебраической топологии. Успехи
математических наук, 1971, Т. 26, вып. 2, с. 130–154 (поступила в редакцию
3 декабря 1970 г.).— Translated by V.O.Manturov
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Definition 1.1. A one-dimensional commutative formal group over A
is a power series F (u, v)∈A[[u, v]] such that F (F (u, v), w) = F (u, F (v, w))
and F (u, v) = F (v, u), whence F (u, 0) = u.

Note that the existence of an “inverse element” ϕ(u) ∈ A[[u]] such that
F (u, ϕ(u)) = 0 follows from Definition 1.1.

Definition 1.2. A homomorphism Ψ of formal groups G
Ψ→ F defined

over a ring A is such a power series ψ(u) that F (ψ(u), ψ(v)) = ψ(G(u, v)).
If ψ(u) = u + O(u2) then ψ is a strong isomorphism (invertible variable
change).

The basic rings A considered hitherto in basic examples are the ring Z of
integer, the ring Zp of p-adic integers, modulo p residue classes: Zp = Z/pZ,
integer elements in some field of algebraic numbers or p-adic completions. In
topology, those are rings Ω of some cobordism type, especially, the unitary
cobordism ring, which is algebraically isomorphic to the graded ring of
polynomials over Z with polynomial generators in all even dimensions.

Various examples of finite groups over numeric rings can be found in an
excellent paper by Honda [17].

Simplest examples. a) The linear group over Z, where F0(u, v) =
u+ v.

b) The multiplicative group over Z, where Fm(u, v) = u + v ± uv; the
variable change ψ(u) = ± ln(1 ± u), transforming Fm(u, v) to the linear
form, lies in the ring Q ⊃ Z, thus, over Z, this group is not isomorphic to
the linear one.

c) The Lazard group. Consider the ring B = Z[x1, . . . , xn, . . .] of
integer polynomials in infinitely many variables and the series g(u) =

u+
∑

n>1
un+1xn

n+ 1
. Then one defines a formal group

F (u, v) = g−1(g(u) + g(v)),

where g−1(g(u)) = u. The coefficients αij of the series F (u, v) belong
to the ring B

⊗
Q and generate over Z a subring A ⊂ B

⊗
Q, where

F (u, v) = u+ v +
∑

i>1,j>1 αiju
ivi.

The following Lazard’s theorems take place.

Theorem 1.1. The ring A of coefficients of Lazard’s group is a poly-
nomial ring over Z in finitely many generators.

Theorem 1.2. For every one-dimensional commutative formal group
over every ring A′ there exists a unique homomorphism A→ A′, taking the
Lazard group to the given group («the universality of Lazard’s group»).
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Theorem 1.3. For every commutative one-dimensional formal group
F (u, v) over every ring A′ there exists a series ϕ(u) ∈ A′[[u]]

⊗
Q such that

ϕ(u) = u+O(u2) and F (u, v) = ϕ−1(ϕ(u) + ϕ(v)) ∈ A′[[u, v]]
⊗

Q.

Thus, all groups can be linearized over the rational numbers. The series
ϕ(u) is called the logarithm of the formal group F (u, v). Note that the
coefficients of the formal differential dϕ(u)=(

∑
n>0

ϕnu
n)du belong to the

ring A′, where ϕ0 = 1, ϕ(u) = u+
∑

n>0

ϕn

n+ 1
un+1. The differential dϕ is

called the invariant differential of the group F (u, v), and it is calculated as

follows: dϕ = du/( ∂
∂v
F (u, v))v=0 (see Honda [17]). Over the ring A′

⊗
Q

we also have ϕ(u) = [ 1
k
ϕ−1(kϕ(u))]k=0.

A proof of Theorems 1.1–1.3 can be found in [4]; the expressions

of type 1
k
ϕ−1(kϕ(u)) = 1

k
F (u, F (u, ...)...) = Ψk(u) are connected with

“Adams operations” in topology.
It is a remarkable fact that the “geometric cobordism formal group”

introduced by A. S. Mishchenko and S. P. Novikov in [14], which plays an
important role and has a simple geometric sense, turns out to coincide with
the universal group of Lazard. This was first mentioned by Quillen in [7];
he proposed further important applications of this group in topology. The
invariant differential of this group looks like dg(u) = (

∑
n>0[CP

n]un)du,
where [CPn] are the unitary cobordism classes of complex projective spaces;
the coefficient ring A of Lazard’s group coincides with the ring Ω of unitary
cobordisms. Later, we shall use the notion of “power system”, which is
weaker transformal group.

Definition 1.3. A type s > 1 power system over a ring A is a sequence
of series fk(u) ∈ A[[u]] such that fk(u) = ksu + O(u2) and fk(fl(u)) =
fkl(u), where k, l are any integers (over rings A with torsion it is useful to
require that the coefficients of fk(u) are algebraic in k).

One has the following fact (V. M. Buchstaber and S. P. Novikov [4]).
Over the ring A

⊗
Q, there exists a series B(u) ∈ A[[u]]

⊗
Q such that

fk(u) = B−1(ksB(u)), where B−1(B(u)) = u and B(u) = u+O(u2).
Every group generates a power system over the same ring; the reverse

is, however, not true, since the coefficient ring of a power system is much
smaller. A series of examples of power systems and their properties can be
found in [4].
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Note that in [4], [21] and in further sections of this review, we shall also
see “double-valued” analogues of formal groups, which are defined by the
equations (having no solutions over A[[u, v]])

Z2 −Θ1(u, v)Z + Θ2(u, v) = 0.

Here Θ1,Θ2 are in some sense the “sum” and the “product” of the values of
the group F±(u, v) not belonging to the initial ring. The “inverse element”
for u is a series ϕ(u) such that Θ2(u, ϕ(u)) = 0. An important special case
is ϕ(u) = u (see § 4).

§ 2. Cobordism and bordism theories

I. Axiomatics of bordism theories. General properties. Given
a class of smooth manifolds [closed with boundary], possibly, with extra
structures, such that

a) the boundary of a manifold from the class belongs to this class;

b) the Cartesian product of two manifolds from the class belongs to the
class (“multiplicativity”);

c) any closed region with smooth boundary of a manifold belonging to
the class itself belongs to the class (the closed interval belongs to the
class as well) (the “cutting axiom” and homotopy invariance).

One says that such a class defines a cobordism (and bordism) theory.
Denote this class by P .

Cycles (singular bordism of class P ) for every complex K are such pairs

(M, f) where M ∈ P, f : M → K is a continuous map and M is a closed

manifolds. By singular strip we mean a pair (N, g), where N ∈ P has a

boundary as above, and g : N → K. In an evident way, one defines the

group of n-dimensional cycles factorized by the boundary of films in the

class P , for any prefixed complex K; this group is denoted by ΩP
n (K);

it is called the bordism group of the complex K with respect to the

class P . Analogously, one defines the relative bordism group ΩP
n (K,L);

one has the exact sequence of the pair: . . . → ΩP
n (L) → ΩP

n (K) →
ΩP

n (K,L)
∂−→ΩP

n−1(L) → . . . . For mappings K1
ϕ−→K2 there exists a homo-

morphism ϕ∗ : ΩP
n (K1) → ΩP

n (K2). The group ΩP
n together with the

homomorphisms ϕ∗ are homotopy invariant (it is assumed that I1 ∈ P ).

For the Euclidean space Rq (equivalently, for the point), the groups ΩP
n (Rq)

for n > 0, are, in general, not trivial. The direct sum ΩP
∗ =

∑
n ΩP

n (Rq)

forms the “scalar ring of the bordism theory”.
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For finite complexes K, we shall define the cobordism groups Ωn
P (K)

according to the Alexander –Pontrjagin duality law: if K ⊂ SN , where

SN is the sphere, N is large enough, then, setting by definition Ωn
P (K) =

ΩP
N−n(SN , SN\K), and this definition does not depend on N nor on the

embedding K ⊂ SN . The groups Ωi
P enjoy the properties of homology

groups; also, the relative groups Ωi
P (K,L) are defined. The sum Ω∗

P =∑
n Ωn

P (K,L) forms the “cobordism ring” of the pair K ⊃ L. For the space

Rq (for the point) the ring Ω∗
P =

∑
n Ωn

P (Rq) is an analogue of the scalar

ring.

By definition, for a point x we have Ωn
P = ΩP

−n(x).

For some classes of manifolds the following Poincaré –Atiyah duality law

holds: D : Ωi
P (Mn)

≈−→ΩP
n−i(M

n).

Examples. The most important examples of classes P are connected

with some structure on the stabilized tangent bundle τM to the manifold

M ; for example, an orientation in the fibration τ × Rk for some k > 0,

a complex structure in τM × Rq, a symplectic structure in τM × Rq or a

trivialization of (−τM )×Rq (framing or Pontrjagin’s structure) etc. Thus,

the classes P of this type are connected with some class Q of vector bundles

over arbitrary complexes, i.e. P = P (Q).

The Thom isomorphism. For classes P connected with a class Q

of vector bundles, we require one more property, in addition to a), b), and

c) described above:
d) the total fibre space of class Q with fibre disk and base M ∈ P , is a

manifold belonging to the class P .
If the base of η is K then the fibre space with fibre disk Dn is Eη,

its boundary E◦
η being a fibration with fibre Sn−1; then it follows from

the definitions and d) that we have the so-called “Thom isomorphism” ϕP :

ΩP
i (K)

≈−→ΩP
n+i(Eη, E

◦
η), which is defined by means of spaces of induced

bundles f∗η. The Thom isomorphism generates the Poincaré-Atiyah dual-
ity for all manifolds from the class P : D : Ωi

P (Mn)
≈−→ΩP

n−i(M
n). One

can define the fundamental cycle [Mn] ∈ ΩP
n (Mn), the Čeh operation

x
⋂
y ∈ ΩP

n−q(K) for x ∈ Ωq
P , y ∈ ΩP

n , and prove that the Poincaré duality

is defined by the Čeh operation. Moreover, for all continuous mappings f
one has f∗(f

∗x
⋂
y) = x

⋂
f∗y, where x ∈ Ωq

P , y ∈ ΩP
n .

II. Unitary cobordisms. The main class P we are interested in is the
class of stable almost complex manifolds and the class Q of complex vector
bundles. In this case the groups ΩP

∗ (K) and Ω∗
P (K) are usually denoted

by U∗(K) and U∗(K) and called “unitary bordisms and cobordisms”. The
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ring U∗(point) = ΩU
∗ is the polynomial ring over Z with even-dimensional

generators, one in each even dimension.
Other bordisms of classes P which are connected with other types of

manifolds: orientable, special unitary, unitary, stable symplectic or framed
ones, etc., are usually denoted by ΩO

∗ ,Ω
SO
∗ ,ΩU

∗ = U∗,Ω
SU
∗ ,ΩSp

∗ ,Ω1
∗ =

(bordisms of framed manifolds). In S. P. Novikov’s review [13] one may find
information about these groups.

The operation ring.

Definition 2.1. A (stable) homology operation is an additive ho-
momorphism θ : ΩP

∗ (K,L) → ΩP
∗ (K,L) defined simultaneously for all

dimensions and all complexes and commuting with continuous mappings
and also commuting with the boundary homomorphism ∂ : ΩP

∗ (K,L) →
ΩP

∗ (L),K ⊃ L.

Such operations form a ring, the “Steenrod ring” AP , which is denoted
by AU in the case of unitary bordisms U∗. For cobordisms, the operation
ring is defined analogously and coincides with the operation ring AU .

If UN is the unitary group and BUN is the base of some fibration, ηN the
total space (with fibre the disk), then denote by MU the spectrum (MUN )
of the Thom space MUN = EηN/E

◦
ηN , where EηN is the total space of

ηN . Stable homotopy classes of mappings [K,MU ] coincide with the ring
U∗(K). In particular, AU = [MU,MU ], and there is a well-defined Thom

isomorphism ϕ : U∗(BUN )
≈−→U∗(MUN) (see review [13]).

Example. Multiplication by a “scalar” λ ∈ U∗(point) is, clearly,
a cohomology operation. Note that for U -cobordisms, we have ΩU

∗ =
Z[x1, ..., xn, ...]. For cohomology operations in classical homology and coho-
mology theories scalars are just usual numbers and commute with all other
operations. In cobordisms, the situation is more difficult.

The ring AU was calculated by S. P. Novikov in [14]. It is described
as follows. For every symmetric splitting k = dimω =

∑
ki, ki > 0, one

defines operators Sω ∈ AU such that S(0) = 1, and every element from AU

looks like a formal series
∑

i λiSωi
that dimωi →∞ for i→∞ and λi ∈ ΩU

∗ .
The superposition formulae Sω1 ◦ Sω2 are given in [14]; ultimately, they
result from the Leibniz formula Sω(xy) =

∑
(ω1,ω2)=ω Sω1(x)Sω2(y)

1. The
superposition of the type Sω ◦ λ is equal to

λ ◦ Sω +
∑

(ω1, ω2) = ω;

dim ω1 > 0

σ∗
ω1

(λ)Sω2 ,

1The description of the ring AU without the superposition formula Sω ◦ λ was also
obtained by P. Landweber in [22].
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where additive homomorphisms σ∗
ω(λ) on ΩU

∗ are calculated by using the
geometry of manifolds representing λ ∈ ΩU

∗ . For instance, σ∗
(q)([CP

n]) =

−(n + 1)[CPn−q]. In particular, a representation ∗ such that Sω
∗→ σ∗

ω

and λ
∗→ (multiplication by λ), of the operation ring AU on the bordism

ring of the point U∗(point) = Ω∗
U , is exact.

Geometrical bordisms. One should indicate important subset of
“geometric cobordisms” V (K) ⊂ U2(K) in every complexes K, and the
dual sets V (Mn) ⊂ U2n−2(M

n) for almost complex manifolds (“geomet-
rical bordisms”), consisting of submanifolds of complex codimension 1. If
u ∈ V (K) then Sω(u) = 0 for ω 6= (q) and S(q)u = uq+1. This prop-
erty completes the set of axioms for the operations Sω together with the
multiplication formula Sω(xy) =

∑
(ω1,ω2)=ω Sω1(x)Sω2 (y).

Various multiplicative operations α ∈ AU , i.e. such that α(xy) =
α(x)α(y) for all x, y ∈ U∗(K) and for all K, can be defined by one series
α(u) ∈ U∗(CP∞), where u ∈ V (CP∞) and CP∞ is the infinite-dimensional
projective space. One should note that the ring U∗(CP∞) is just the ring
of formal series U∗(CP∞) = Ω∗

U [[u]], where Ω∗
U = U∗(point).

Characteristic classes. Formal group. Having operations Sω and
the Thom isomorphism, one can construct in the usual way the analo-
gous of “Chern classes” Cω(η) (where, by definition, Ck = C(1, ..., 1)) for
every UN bundle η (see [8])1. Herewith Cω(η) ∈ U∗ (base). For U1-
bundles ξ and η product ξ

⊗
η is a U1-bundle. The class C1(ξ

⊗
η) =

F (C1(ξ), C1(η)) is calculated as a formal series with coefficients in Ω∗
U

(see [14], Appendix 1). Thus one get a formal group of “geometric cobor-
disms” F (u, v) = F (C1(ξ), C1(η)) = C1(ξ

⊗
η) = u + v − [CP 1]uv + . . . .

A. S. Mishchenko showed that F (u, v) = g−1(g(u) + g(v)), where g(u) =
∑

n>0
CPn

n+ 1
un+1 and dg(u) = (

∑
n>0 CP

nun)du = CP (u)du.

Formal groups and operations. Analogues of Adams’ operations

Ψk ∈ AU
⊗

Z [ 1
k
] are defined from multiplicativity Ψk(xy) = Ψk(x)Ψk(y)

and Ψk(u) = 1
k
g−1(kg(u)) for u∈V (CP∞)⊂U2(CP∞), i.e. they are con-

nected with taking the k-th power in the formal group F (u, v). They gen-
erate a power system. Furthermore, Ψ0 ∈ AU

⊗
Q is defined as Ψ0(u) =

g(u) = [ 1
k
g−1(kg(u))]k=0 and it defines a projector of the cobordism theory

U∗
⊗
Q to the usual homology H∗(Q) (see [14]).

1Note that in the cobordism theory, characteristics classes were introduced first (Con-
ner and Floyd), and, based on them, cohomology operations were defined and the cal-
culation of the algebra AU (S. P.Novikov) was performed.
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Strictly speaking, in the rings AU
⊗

Zp for prime p there exist many
multiplicative projectors (see [7], [14]). A canonical projector πp is pro-
posed by Quillen ([7]), namely, π∗

p [CPn] = 0 for n 6= ph − 1 and

π∗
p[CP ph−1] = [CP ph−1]. This projector has found by Quillen by using

the formal group approach. Projection operators are important because
they select smaller homology theories, more convenient for calculation, for
instance, the homotopy groups by using the Adams-type spectral sequence
introduced to cobordism theory [14]. It is, however, necessary, to calculate
the homology groups of these smaller theories; here one may use the known
structure of the operation ring AU in unitary cobordisms, if the projec-
tion is simple. This program has realized by Quillen in [7] by finding an
appropriate projector. The role of formal groups in constructing such an
operation became evident; moreover, it is confirmed also by the results of
the authors and G. G. Kasparov concerning fixed points of maps. Here one
should especially mention the results of A. S. Mishchenko [11] (see also [4]
and § 5) concerning a fixed manifold with trivial bundle with respect to
some group actions.

Chern characters. Note that formal groups are closely connected to
analogues of the so-called “Chern character”. The classical Chern character
ch is an additive-multiplicative function of the bundle valued in rational
cohomology. S. P. Novikov in [14] showed that such a cobordism-valued
function of bundles is defined by its value on U1-bundles η, where it is

equal to exp(g(u)), where u = C1(η), g(u) =
∑

n>0
CPn

n+ 1
un+1. Another

notion of the Chern character, which is abstract (introduced by Dold) is
not connected with fibrations: it is just an isomorphism of the theories
chU : U∗

⊗
Q → H∗(Ω∗

U

⊗
Q), which is the identity on the homology

of the point. Here the series g(u) appears as well. As V. M. Buchstaber
showed [2], for the basic element t ∈ H2(CP∞), we have ch−1

U (t) = g(u).
In [2], he studied the general Chern-Dold character in unitary cobordisms,
and described several applications, further developed in [3], [4], [21].

Hirzebruch genera. As Novikov indicated in [15], the so-called “mut-
liplicative Hirzebruch genera” Q(z) or homomorphisms Q : ΩU

∗ → Z such

that Q(CPn) = [Q(z)n+1]n = 1
2πi

∫
|z|=ε

Qn+1

zn+1
dz, are calculated via g−1(z),

namely, Q(z) = z

g−1
Q (z)

, where

gQ(u) =
∑

n>0

Q(CPn)

n+ 1
un+1 and g−1

Q (gQ(u)) = u.
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Thus, all basic notions and facts in the unitary cobordism theory, both mod-
ern and classical, can be expressed in terms of the Lazard formal group.

Facts from K-theory. Let us concentrate on the usual complex
K-theory K∗(X), where Ki(X) = Ki+2(X) for all i (Bott periodicity),
K0(X) are stable classes of complex bundles over X and K1(X) are homo-
topy classes of mappings X → UN , for N > dimX . If λi denote exterior
powers, λt =

∑
i>0 λ

iti then λt(x + y) = λt(x)λt(y) is an exponential

operation. For symmetric powers Si we have St =
∑

i>0 Sit
i = 1

λt
. Fur-

thermore, if Qk =
∑N

i=1 t
k
i (N → ∞) and Qk = Qk(σ1, . . . , σk), where

σk(t1, . . . , tn) are elementary symmetric functions then the virtual repre-
sentation, called the Adams operation is just Qk(λ1, . . . , λk) = Ψk. It
turns out that Ψk(x + y) = Ψk(x) + Ψk(y), Ψk(xy) = Ψk(x)Ψk(y) and
Ψk ◦ Ψl = Ψkl. Later, for U1-bundles η ∈ K0(X) we have Ψkη = ηk.
The Adams operator Ψk does not commute with the Bott periodicity op-
erator β : Ki → Ki−2. The following formula holds: Ψk · β = kβ · Ψk.

Thus the operators Ψk are defined in the theory K∗
⊗

Z
[

1
k

]
. The co-

homology of a point in K-theory looks like K∗(point) = Z[β, β−1] and
Ψkβ = kβΨk. This completes the description of operations in K-the-
ory. The analogues of “geometric cobordisms” in K-theory are U1-bun-
dles, more precisely, these are elements u = β−1(ξ − 1) ∈ K2(X) for
U1-bundles ξ = βu + 1. We have kΨk(u) = β−1((βu + 1)k − 1) and
F (u, v) = u + v − βuv = β−1((βu + 1)(βv + 1) − 1) is a multiplicative
group. Thus, the well-known Riemann-Roch-Grothendieck homomorphism
r : U∗(X) → K∗(X) corresponds to the homomorphism of the universal

Lazard group to the multiplicative group, where r(λ) = T (λ ·β
dim λ

2 )), T is
the Todd genus, λ ∈ Ω∗

U .

§ 3. The formal group of geometrical cobordisms

Multiplication law in the geometrical cobordism formal group.
Let η → CPn, n 6 ∞, be the canonical complex one-dimensional bundle
over the projective space CPn. As mentioned in § 2, the formal series
c1(η1

⊗
η2) = F (u, v) ∈ U2(CP∞ × CP∞) = Ω[[u, v]], u = c1(η1), v =

c1(η2), defines the multiplication law in the one-dimensional formal group
of geometrical cobordisms over the ring ΩU .
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Theorem 3.1. a) One has

F (u, v) =
u+ v +

∑
[Hr,t]u

rvt

CP (u) · CP (v)
,

where Hr,t is the algebraic submanifold of complex codimension 1 in CP r×
CP t, representing the zero set of the bundle η1

⊗
η2 → CP r × CP t;

this manifold realizes the cycle [CP r−1 × CP t + CP r × CP t−1] ∈
H2(r+t−1)(CP

r × CP t).

b) The logarithm of the group F (u, v) looks like g(u) =
∑ [CPn]

n+ 1
un+1.

Proof. We have F (u, v) = u + v +
∑
eiju

ivj and λ : CP r ×
CP t → CP∞ × CP∞ is the standard embedding. Then εDλ∗F (u, v) =
[Hr,t] = [CP r−1][CP t] + [CP r][CP t−1] +

∑
ei,j [CP

r−i][CP t−j ], where
D the Poincaré-Atiyah duality operator, ε : U∗(CP r × CP t) → ΩU is the
augmentation to the point, and [CP r−i] = εDui if u = c1(η) ∈ U2(CP r).
Thus, u + v +

∑
[Hr,t]u

rvt = F (u, v)CP (u)CP (v). The statement a) is
proved. One has

dg(u) = du
∂F (u, v)

∂v
|v=0

,

consequently,

dg(u) =
CP (u)du

1 +
∑

([Hr,1]− [CP 1][CP r−1])ur
.

It is easy to show, e.g., by comparing the Chern numbers, that [Hr,1] =
[CP 1]× [CP r−1]. Consequently, dg(u) = CP (u). The theorem is proved.

The universality of the geometric cobordism formal group. As
shown in [9], [12], the ring ΩU is multiplicatively generated by the ele-
ments [Hr,t], and, by [16], the ring ΩU

⊗
Q is multiplicatively generated

by [CPn], n > 0. Now, from Theorem 3.1 we get that the subring of ΩU

generated by the coefficients of the geometrical cobordism formal group co-
efficients, coincides with ΩU and the coefficients of the logarithm expansion
of this group are algebraically independent, and generate the ring ΩU

⊗
Q.

Let us show now, that these facts trivially yield the universality of the group
F (u, v) over ΩU for the category of commutative rings without torsion. Let
G(u, v) be any arbitrary formal group over a ring R without torsion, and

let gG(u) =
∑ an

n+ 1
un+1, an ∈ R, denote its logarithm. Consider the

ring homomorphism r : ΩU → R
⊗
Q, r[CPn] = an. Since G(u, v) =

g−1(g(u) + g(v)), we have that r(F (u, v)) =
∑
r(ei,j)u

ivj = G(u, v). Con-
sequently, r(ei,j) ∈ R, i.e. Im(r : ΩU → R

⊗
Q) ⊂ R. Since the universal
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Lazard group is defined over a torsion-free ring, we have proved the follow-
ing Theorem.

Theorem 3.2. The formal group of geometrical cobordisms coincides
with the universal formal Lazard group, i.e. the homomorphism of the
Lazard ring A to ΩU , corresponding to the group F (u, v) (see § 1), is an
isomorphism.

Hirzebruch genera from the formal group point of view. By
virtue of Theorem 3.2, every integer-valued Hirzebruch genus, or, which
is the same, any homomorphism ΩU → Z, defines a formal group over
Z; conversely, every formal group over Z generates a Hirzebruch genus.
Here, the Hirzebruch genus defining the homomorphism ΩU → Z can have
rational coefficients. Equivalent (strongly isomorphic) formal groups are
defined by Hirzebruch series Q(z), Q′(z), which are connected by the for-

mula

(
z

Q(z)

)
= ϕ−1

(
z

Q′(z)

)
, where ϕ−1(u) = u+

∑
λiu

i+1, λi ∈ Z. This

follows from the fact that the logarithms of the formal groups are equal to
gQ(z) = ( z

Q(z)
)−1; thus, we see by definition, that gQ(z) = gQ′(ϕ(z)).

Given an integer-valued Hirzebruch genus, generated by a rational se-
ries gQ(u), then Q′ is a genus such that qQ(u) = gQ′(ϕ(u)), ϕ(u) =
u+
∑
µiu

i+1, µi ∈ Z, this genus also takes integer values on ΩU . This is the
sense of equivalence of Hirzebruch genera as formal groups. Now, let us con-
sider the formal groups corresponding to previously known multiplicative
genera c, T, L,A. Consider the Ty genus (see [18]). Since Ty([CPn]) =∑n

i=0(−y)i, then the corresponding formal group over Z[[y]] looks like

FTy
=

u+ v + (y − 1)uv

1 + uvy
. For y = −1, 0, 1 we get formal group, corre-

sponding to the Euler characteristic c, the Todd genus T and Hirzebruch’s
L-genus. For all y, the group FTy

(u, v) is equivalent either to the linear
group or to the multiplicative group. Now, note that the A-genus is equiv-
alent to the L-genus as a formal group; thus we see that all Hirzebruch
genera considered hitherto in topology are connected either with the linear
group or with the multiplicative group1.

1The series g−1(t) =
t

Q(t)
is called the exponent of the formal group f(u, v) =

g−1(g(u) + g(v)). For the Hirzebruch genera T, L and A we have:

g−1
T

(t) = 1 − exp(−t); g−1
L

(t) = tanh t; g−1
A

(t) = 2sinh t/2.

Obviously, there exists series ϕ(z) ∈ Z

[
1
2

]
such that g−1

A
(t) = ϕ−1(g−1

L
(t)), i.e. the

A-genus and the L-genus are equivalent over the ring Z

[
1
2

]
. In the end of 1980-s, the
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Multiplicative cohomology operations and Hirzebruch genera.
Every multiplicative cohomology operation in cobordisms is, on the one
hand, uniquely given by a ring homomorphism ϕ∗ : ΩU → ΩU , that it
induces cobordism substituting as in § 1, and, on the other hand, by its
value on the geometrical cobordism u ∈ U2(CP∞), i.e. the formal series
ϕ(u) = u+O(u2) ∈ U2(CP∞) = ΩU [[u]]. Note that the series ϕ(u) generate
a strong isomorphism of the universal group F (u, v) = u + v +

∑
ei,ju

ivj

and the group

ϕ(F (u, v)) = u+ v +
∑

ϕ∗(ei,j)u
ivj .

In the characteristic class theory, the ring homomorphisms ΩU → ΩU

are given by Hirzebruch series, K(1 + u) = Q(u),

Q(u) = u
a(u)

, a(u) = u+
∑

λiu
i, λi ∈ ΩU

⊗
Q.

From the point of view of Hirzebruch series, the action of the series
a(u) on the ring ΩU is given by the formula a([CPn]) = [( u

a(u)
)n+1]n,

where [f(u)]n is the n-th coefficient of f(u). Thus, every formal series
a(u) = u + O(u2) generates a ring homomorphism a∗ : ΩU → ΩU as a
multiplicative operation in cobordisms, as well as a ring homomorphism a :
ΩU → ΩU defined by the Hirzebruch series Q(u) = u

a(u)
. The two actions

of a(u) = u+O(u2) on the ring ΩU , indicated above, do not coincide. For
instance, for a(u) = u we have a∗([CPn]) = [CPn], a([CPn]) = 0, n > 0.
As V. M. Buchstaber and S. P. Novikov showed (see [4]), the following result
holds1

Theorem 3.3. The mapping g : a(u) → a(g(u)) of the series ring
possesses the property a(u)[x] = a(g(u))∗[x] for each x, where g(u) =
∑

n>0
CPn

n+ 1
un+1 is the logarithm of the formal group of geometrical cobor-

disms.

elliptic genus E was introduced into topology (see S. Ochanine. Sur les genres multipli-
catifs difinis par der integrales elliptiques. Topology 26 (1987), 143–151), the exponent
g−1

E
(t) = sn t given by the elliptic sinus function. The formal group corresponding to the

genus E is

f(u, v) =
u
√

1 − 2av2 + bv4 + v
√

1 − 2au2 + bu4

1 − bu2v2
.

V.M.Buchstaber’s remark (2004).
1This result in a similar formulation was obtained by J.Adams [23].
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The generalized characteristic Todd class.

Definition 3.1. A generalized Todd class of a complex bundle ξ overX
is a characteristic class T (ξ)∈ H∗(X,ΩU

⊗
Q) corresponding to the series

Q(u) = u

g−1(u)
, g−1(g(u)) = u.

Consider now a continuous mapping f : M2n → M2m of almost com-
plex mappings, and denote by τ(f) the element (τ(M2n) − f∗τ(M2m)) ∈
(̃K)(M2n), where τ is the tangent bundle.

Theorem 3.4. (see [2]) One has chU D[f ] = f!T (τ(f)), where [f ] is
the bordism class of the mapping f , chU is the Chern–Dold character (see
§ 2) and f! is the Gysin homomorphism in cohomology.

V. M. Buchstaber [2] has indicated several formulae expressing the gen-
eralized Todd class T (ξ) in classical characteristic classes of the bundle ξ.
In some cases, these formulae allow one to calculate effectively the bordism
class of the mapping f . Let us give the simplest of them.

Theorem 3.5. Let η be a one-dimensional bundle over X and let
u = c1(η) ∈ H2(X,Z); then T (η) = u

g−1(u)
and g−1(u) = chU σ1(η) =

u+
∑

[M2n] un+1

(n+ 1)!
, where [M2n] = σ1(ξn+1) ∈ U2(S2n+2) ≈ Ω−2n

U , here

sω(−τ(M2n)) = 0, ω 6= (n), s(n)(M
2n) = −(n + 1)!, σ1(ξn+1) is the first

Chern class in cobordisms of the generator ξn+1 ∈ K(S2n+2) and sω are
the Chern numbers corresponding to ω.

§ 4. Two-valued formal groups and power systems

The notion of two-valued formal group. Let F (u, v) =
u + v + . . . be a one-dimensional formal group over a commutative ring
R with unit 1, ū = −u + o(u2) ∈ R[[u]] be the formal series gener-
ating the inverse element in the group F (u, v), i.e. F (u, ū) = 0, and
gF (u) be the logarithm of the group F (u, v). It is shown in [4] that the
formal series F (u, v) · F (ū, v̄) + F (u, v̄) · F (ū, v) = |F (u, v)|2 + |F (u, v̄)|2
and |F (u, v)|2 · |F (u, v̄)|2 from the ring R[[u, v]] indeed belong to the ring
R[[x, y]] ⊂ R[[u, v]], where x = uū = |u|2, y = |v|2, i.e. they look like
Θ1(x, y) and Θ2(x, y), respectively. Over R[[x, y]], consider the quadratic
equation Y (x, y) = Z2 − Θ1(x, y)Z + Θ2(x, y) = 0 and denote by B(x) =
x+O(x2) ∈ R[[x]]

⊗
Q the series, which in R[[u]]

⊗
Q ⊃ R[[x]]

⊗
Q looks

like gF (u)gF (ū) = −g2
F (u). As Novikov has shown in [4], over a torsion-free
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ring R the solutions of Y (x, y) = 0 look like

F±(x, y) = B−1((
√
B(x) ±

√
B(y))2). (1)

These solutions are evidently not formal series in x and y, but, as (4.1)
shows, they satisfy a certain associativity. Such quadratic equations were
called two-valued formal groups in [4].

Two-valued formal groups and symplectic cobordisms. Con-
sider the two-valued formal group in cobordisms constructed from the
formal group of geometrical cobordisms. As shown in [4], the se-
ries B−1(z) from (4.1) coincides with the formal series chU (x) = z +
∑∞

n=2[N
4n−4] zn

(2n)!
∈ H∗(CP∞,ΩU

⊗
Q), where z is the generator of the

group H4(CP∞,Z) and s(2n−2)[N
4n−4] = (−1)n2 · (2n)! 6= 0.

Theorem (see [4]). For each n > 2, the bordism classes [N4n−4]
belong to the image of homomorphisms Ω−4n+4

Sp → Ω−4n+4
U . For n ≡ 1

mod 2 the group Im (ΩSp → ΩU ) contains elements [N4n−4]/2 ∈ ΩU .

The canonical mapping of spectra ω : MSp → MU correspond-
ing to the group inclusion Sp(n) ⊂ U(2n), defines an epimorphism
AU → U∗(MSp(n)), and, consequently, an embedding of the ring
HomAU (U∗(MSp),ΩU ) into ΩU . Later on, we identify HomAU (U∗(MSp),
ΩU ) with its image in ΩU . There is an embedding i : Im(ΩSp → ΩU ) ⊂
HomAU (U∗(MSp),ΩU ); moreover, the homomorphism i

⊗
Z
[
1
2

]
is an iso-

morphism. This easily follows from [12]. In addition to Theorem 4.1 note
that the elements [N8n−4]/2 belong to the group HomAU (U∗(MSp),ΩU )
but do not belong to Im(ΩSp → ΩU ) (see [4]). It is shown in [4] that The-
orem 4.1 together with properties of the Chern character described in [2],
yield

Theorem 4.1. Let Λ ⊂ ΩU be the ring generated by coefficients of the
two-valued formal group in cobordisms:

a) Λ ⊂ HomAU (U∗(MSp),ΩU );

b) Λ

[
1
2

]
≈ Ω∗

Sp(∗)⊗ Z
[
1
2

]
.

Since the ring Λ is smaller than the ring ΩU , then over ΩU

⊗
Q there

are many one-dimensional formal groups, for which the squares of absolute
values define a two-valued formal group in cobordisms. V. M. Buchstaber
showed in [21] that the minimal one-dimensional group (with respect to
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coefficients) of such type over ΩU

⊗
Q is uniquely defined by the multi-

plicative projector κ∗ : ΩU [1
2
] → ΩU [1

2
], whose value on the geometrical

cobordism u ∈ U2(CP∞) is equal to κ(u) = −√−uū = u + O(u2) ∈
U2(CP∞)[1

2
]. V. M. Buchstaber proved in [21] the following

Theorem 4.2. a) In order for an element σ ∈ ΩU to belong to
the group HomAU (U∗(MSp),ΩU ) ⊂ ΩU , it is necessary and sufficient
that κ∗(σ) = σ.

b) HomAU (U∗(MSp),ΩU ) ∼= Im κ
⋂

ΩU .

Corollary 4.1. The composition

Sp∗(X)

[
1
2

]
ω−→U∗(X)

[
1
2

]
κ−→ Im

(
κU∗(X)

[
1
2

])

establishes an isomorphism between the cohomology theory Sp∗
[
1
2

]
and the

theory extracted from U∗
[
1
2

]
by the projection operator κ.

Algebraic properties of two-valued formal groups. V. M. Buch-
staber [21] gave an axiomatic definition of a two-valued formal group
Y (x, y) = Z2 − Θ1(x, y)Z + Θ2(x, y) = 0, with a partial case being the
quadratic equation defined by the square of the absolute value of a one-
dimensional formal group. We are not giving this definition because of
inconvenience; we just note that this definition requires the existence of
formal series ϕ(x) such that Θ2(x, ϕ(x)) = 0. The series ϕ(x) has the mean-
ing of inverse element and it plays an important role in the classification of
two-valued formal groups. For instance, the following theorem takes place

Theorem 4.3. The two-valued formal group in cobordisms considered
over the ring Λ ⊂ ΩU of coefficients of Θ1(x, y) and Θ2(x, y) is univer-
sal for two-valued groups over torsion-free rings R, for which ϕ(x) = x,
i.e. Θ2(x, x) = 0.

Formal power systems not lying in formal groups. Let
Y (x, y) = Z2 + Θ1(x, y)Z + Θ2(x, y) = 0 be a two-valued formal group
over a ring R[[x, y]], which is defined by the module-square of a one-
dimensional group F (u, v) ∈ R[[u, v]]. Consider the sequence of formal
series ϕk(x) ∈ R[[x]] : ϕ0(x) = 0, ϕ1(x) = x, ϕ2(x) = Θ1(x, x), . . . , ϕn(x) =
Θ1(x, ϕn−1(x))−ϕn−2(x), . . . . The series ϕk(x) = k2x+O(x2) considered
in the ring R[[u]] ⊃ R[[x]] look like [u]k, [ū]k where [u]k is the k-th power
of the element u in the group F (u, v). Consequently, the sequence of se-
ries ϕk(x) forms a formal power system of type s = 2. In the case when
R = ΩU and F (u, v) is a formal group of geometrical cobordisms, it is easy
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to show (see [14]) that the system ϕk(x) does not correspond to exponential
in any formal group over ΩU . Note that the system ϕk(x) has important
topological applications; it first appeared implicitly in Novikov’s work [15]
for describing fixed points of actions of generalized quaternions 2-groups on
almost complex manifolds.

Finally, let us show that the power system ϕk(x) has a natural general-
ization. Let F (u, v) be a formal group over the ring R without torsion, and
gF (u) be its logarithm. Consider the full set (ξ0 = 1, . . . , ξm−1) of m-th
roots of unity. Set B−1

m (−y) =
∏m−1

j=0 g−1
F (ξj m

√
y), x =

∏m−1
j=0 g−1

F (ξjgF (u)).
Then −Bm(x) = gF (u)m, and we get the formal power system

F
(m)
k (x) = B−1

m (kmBm(x)) =

m−1∏

j=0

g−1
F (kξjgF (u))

of type s = m. Coefficients of the series F
(m)
k (x) a fortiori lie in the

ring R for formal groups F (u, v) with complex multiplication on ξj (ξj-
exponential). This construction originates from the formal group of geo-
metrical cobordisms over the ring ΩU

⊗
Zp and m = p−1, where Zp is the

ring of integer p-adic numbers. As in the case m = 2, one can consider the
m-valued formal group given by an algebraic equation of degree m whose
solution looks like F (x, y) = B−1

m ( m
√
Bm(x) + m

√
Bm(y))m.

§ 5. Fixed points of periodic transformations in terms

of formal groups

Conner and Floyd [6] first showed that the bordism theory language
is very convenient for studying the fixed points of smooth periodic trans-
formations. The use of formal groups allowed them to systematize and
generalize the results in this direction.

Basic constructions and notions. Let Mn be an almost complex
smooth manifold, let T be a smooth transformation of Mn, T p = id, and
p be some prime number; assume T preserves the almost complex structure
of the manifold Mn. It is easy to show that the set X ⊂Mn of fixed points
of T , i.e. points such that x ∈Mn, Tx = x forms a disjoint union of finitely
many closed submanifolds Ni with a natural structure on them. Here, one
can exhibit tubular neighborhoods Ui of manifolds Ni in such a way that
Ui are total spaces of normal bundles corresponding to the embeddings of
Ni into M , where the action of T is linear on Ui and free outside the zero-
sections Ni ⊂ Ui. Thus, the boundaries of tubular neighborhoods ∂Ui are
almost complex manifolds with free action of Zp; thus they define an ele-
ment of bordisms of the infinite lens space BZp, α(T ) ∈ Un−1(BZp). The
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element α(T ) is defined only by the behavior of T near the fixed manifolds
Ni. It is clear that α(T ) = 0 because

⋃
i ∂Ui = ∂(Mn\⋃i U

i) and the
action of T on the manifold Mn\⋃i Ui is free. Consequently, the classi-
fication problem for almost complex manifolds with Zp action in terms of
bordisms is reduced to the following two problems: a) description of the
Zp action near the set of fixed points and b) finding sets of fixed manifolds
such that α(T ) = 0.

Stating the problem. We first justify what we mean by classification
under Zp action in terms of bordisms. We say that an almost complex
manifold Mn with Zp is bordant to zero if there exists such an almost
complex manifold with boundary W and an almost complex action T ′ on
it such that (T ′)p = id, ∂W = M,T ′|∂W = T . We shall study classes of
bordant manifolds in the sense indicated above. The behavior of T near the
fixed submanifolds can be easily described. It is known that if on a complex
bundle ξ the group Zp acts as the identity on the base then the bundle ξ
can be represented as a sum ξ =

⊕p
i=1 ξi, and the action of Zp is defined on

ξi by one of the irreducible unitary representations of the group Zp. Thus,

if T is a generator of Zp, ζ = exp(2π
p ) then T (x) = ζix for x ∈ ξi. In the

class of bordant manifolds with Zp action a fixed component Ni determines
a bordisms of the sum of (p− 1) fibers, i.e.

β(Ni) ∈ Uki
(

p−1∏

j=1

BU(lij)), where dimNi = ki, dim ξi = lij .

Thus, if Ωm
U,p is the group of n-dimensional bordisms with Zp action on it,

then there exists a mapping

β : Ωn
U,p →

⊕

k+2
∑

li=n

Uk(
∏

BU(li)),

that associates with a manifold with Zp action the set of bordisms generated
by components of the fixed submanifold.

The second problem is to determine for every bordism

x ∈
⊕

k+2
∑

li=n

Uk(
∏

BU(li))

whether the element x is realizable as a set of fixed points of some almost
complex action of Zp. As mentioned above, there exists a mapping

α :
⊕

k+2
∑

li=n

Uk(
∏

BU(li))→ Un−1(BZp)
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here if α(x) = 0 then the element x is realizable as the set of fixed points
under Zp action. In other words, if A is the ring of all bordisms

A =
⊕

k,l1,...,lp−1

Uk(
∏

BU(li)),

then the sequence Ω∗
U,p

β−→A α−→U∗(BZp) is exact. It is easy to see that α is
epimorphic and Kerβ ≈ pΩ∗

U . It is interesting to consider such an action
of Zp where the fixed submanifold consists only of isolated points or man-
ifolds with trivial normal bundle. In the last case the fixed submanifold is
determined by the bordism x ∈ Ωk

U and the weight system x1, . . . , xn−k

2

of

the representation of Zp in the normal bundle.

Basic formulae. Interesting connections with the formal group in
cobordisms are connected to the description of the homomorphism α (for
detailed description, see [4]). It is known that the cobordism ring of the
space BZp can be represented as

U∗(BZp) = ΩU [[u]]/pΨp(u) = 0. (1)

Then, for an isolated fixed point with weights (x1, . . . , xn) one has the
following formula obtained by G. G. Kasparov [5], A. S. Mishchenko [10],
S. P. Novikov [15]:

α(x1, . . . , xn) =
n∏

j=1

u
g−1(xjg(u))

⋂
α(1, . . . , 1), (2)

where g(u) is the logarithm of the formal group. From (1), it follows that
the right hand of the formula (2) makes sense. In the general case, the
multiplicative basis of the ring A over the ring ΩU form manifolds CP k with
1-dimensional Hopf bundle with weight x. This means that the elements
of the ring A are defined by the sequence of numbers ((k1, x1), . . . , (kl, xl)),∑

(ki + 1) = x.
Consider the following meromorphic differential Ω with poles at z = u

defined on the formal group f(u, v), where Ω = Ω(u, z)dz =
dg(z)

f(u, z̄)
, z̄ =

g−1(−g(z)); it is invariant under the shift u→ f(u, ω), z → f(z, ω),Ω→ Ω.
This differential is the analogue of dz/(u−z) on the linear group. Let t = z

u

and dt = dz
u , where u is a parameter. We have Ω = Ω(u, z)dz = G(u, t)dt,

whence G has a pole for t = 1 for all z, u. Then, as shown in [11] (see
also [4]), the following formula holds
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α((k1, x1), . . . , (kl, xl))

= [

l∏

q=1

G(g−1(xqg(u)), tq)
u

g−1xqg(u)
]k1,...,kl

⋂
α2n−1(1, . . . , l),

where [ ]k1,...,kl
denotes the coefficient of tk1

1 , . . . , t
kl

l .

The connection to the Atiyah-Bott formula. Besides the descrip-
tion of admissible sets of fixed points, it is also interesting to discuss the
question, on which manifold such an admissible set can be realized, i.e.
we have to describe the map Kerα → Ω

⊗
Z/pZ. It turns out that the

admissible set

(x1, . . . , xn)−
n∏

j=1

u
xjΨ

xj(u)

⋂
(11, . . . , 1n),

where

uk
⋂

(11, . . . , 1n) = (11, . . . , 1n−k),

is realizable on a manifold from the class

[ n∏

j=1

u
xjΨ

xj (u)

]

n

∈ Ω2n
U ⊗ Z/pZ.

From the work of Atiyah–Bott [1], one can extract the following for-
mula for the Todd genus of the manifold Mn in terms of weights of the
transformation at fixed points

−T (Mn) ≡
∑

j

Tr

(
n∏

k=1

(1 − exp(
2πixj

k
p ))−1

)
mod p, (3)

where Tr : Q( p
√

1) → Q is the number theoretic trace, and the sum in
(5.3) is taken over all fixed points. It would be interesting to get an anal-
ogous Atiyah-Bott result in cobordisms. This problem is connected with
the construction of a homomorphism γ : A → ΩU ⊗ Qp, coinciding with∏

j
u

xjΨ
xj (u)

on Kerα. Here by A we mean only fixed points of a subman-

ifold with trivial bundle. As shown in [4], the formula for the homomor-
phism γ looks like

γ(x1, . . . , xn) =

[
1

x1, . . . , xn
(

n∏

j=1

u
Ψxj (u)

) u
Ψp(u)

]

n

. (4)
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Applying to (5.4) the Todd genus T : ΩU → Z, we get a numerical function

γ(x1, . . . , xn) =

[
pu

1− (1− u)p

n∏

j=1

u
1− (1− u)xk

]

n

. (5)

However, it does not coincide with the Atiyah-Bott function

АБ(x1, . . . , xn) = Tr

( n∏

j=1

(1− exp(−2πixk
p ))−1

)
. (6)

The functions (5.5) and (5.6) coincide only on Kerα. More precisely, let
КФ(x1, . . . , xn)m, 0 6 m 6 n− 1, be the composition of functions

[
u

Ψp(u)

n∏

k=1

u
xkΨxk(u)

]

m

(7)

with the Todd genus. Note that for an admissible set of fixed points, the
functions (5.7) become zero.

Theorem 5.1. (See [4].)

АБ(x1, . . . , xn) = γ(x1, . . . , xn) +

n−1∑

m=0

КФ(x1, . . . , xn)m mod pZp.

Theorem 5.1 yields that the results of Atiyah and Bott on the Todd
genus of manifolds by using fixed point invariants are a reduction of an
analogous result in cobordisms by using the Todd genus. It is interesting
to note (as D. K. Faddeev showed) that the Atiyah-Bott formula has an
expression in terms of the formal group corresponding to the multiplicative
homomorphism T : ΩU → Z, which is called the multiplicatve formal group.
Namely (see [4]),

АБ(x1, . . . , xn)

=

n∑

m=0

[
pu

〈u〉p

n∏

k=1

u
〈u〉xk

]

m

= −
[
p〈u〉p−1

〈u〉p

n∏

k=1

u
〈u〉xk

]

n

mod pZp,

where 〈u〉q is the q-th exponent of u in the formal group f(u, v) = u+v−uv.
Circle action on almost complex manifolds. In the last few years,

S.Gusein–Zade studied fixed points of the circle action S1 on almost com-
plex manifolds. As in the case of Zp, one can construct the Conner –Floyd

exact sequence 0→ U∗(S
1)

γ−→⊕U∗(
∏
BU(ni))

α−→U∗(S
1, {Zs}s)→ 0, where

the middle term describes the structure of the S1 action near the fixed
points, and the last term means the bordism group with S1 action with-
out fixed points (stationary points are admitted). A remarkable result of
S.Gusein–Zade describes the last term of this sequence. Namely,
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U∗(S
1, {Zs})s ≈ ⊕U∗(

∏

i

BU(ni)×BU(1)). (8)

After proving (5.8), the description of the homomorphism α can be easily
reduced to the algebraic problem by using the formal group language. For
convenience, we do not give these formulae here (see the description of
S.Gusein–Zade’s results in [21]).

Appendix I1

Steenrod Powers in Cobordisms and a New Method of

Calculation of the Cobordism Ring of Quasicomplex

Manifolds2

The Thom isomorphism in cobordisms. For every complex bun-
dle ξ overX , dim ξ = n, we have a well-defined Thom class u(ξ) ∈ U2n(M(ξ))
corresponding to the classifying map M(ξ) → MU(n), where M(ξ) is the
Thom complex of the bundle ξ. The multiplication by u(ξ) defines the fac-
torial Thom isomorphism ϕ(ξ) : U q(X)→ Ũ q+2n(M(ξ)), ϕ(ξ)(α) = u(ξ)α.
Consider the pair of complexes i : Y ⊂ X and denote by ξ′ the restriction
of ξ to Y . We have a well-defined homomorphism

ϕ(ξ, ξ′) : Ũ q(X/Y )→ Ũ q+2n(M(ξ)/M(ξ′)), ϕ(ξ, ξ′)(α) = u(ξ)α.

Since i∗u(ξ) = u(ξ′) and ϕ(ξ), ϕ(ξ′) are isomorphisms then ϕ(ξ, ξ′) is an
isomorphism. Let ξ and η be fibers over X . Consider the composition of
the mappings

∆ : M(ξ + η)/M(ξ′ + η′)
j
−→M(ξ × η)/M(ξ′ × η′)

≈
−→(M(ξ) ∧M(η))/(M(ξ′) ∧M(η′))→M(ξ) ∧ (M(η)/M(η′)),

whereM(ξ×η) is the Thom complex of the bundle ξ×η overX×X ; the map
j is defined by the diagonalX → X×X and (X×Y )/X×∗∪∗×Y = X∧Y ,
are the fixed points. We have a well-defined homomorphism

Φ(ξ) : Ũ q(M(η)/M(η′))→ Ũ q+2n(M(ξ + η)/M(ξ′ + η′)),

Φ(ξ)α = ∆∗(u(ξ) · α).

Since u(ξ × η) = u(ξ) · u(η) ∈ U∗(M(ξ × η)) we see that Φ(ξ)ϕ(η) =
ϕ(ξ + η, ξ′ + η′), consequently, Φ(ξ) is an isomorphism.

1The appendix is written by V.M.Buchstaber after T.Dieck [19] and D. Quillen [20].
2The bordism ring of almost complex manifolds was computed a long ago (Milnor,

Novikov) by using Adams’ spectral sequence. The aim of the new method (due to
Quillen) for calculating this ring is to do without Adams’ spectral sequences.
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Exterior Steenrod’s powers. Let S∞ = limS2n+1 be the infinite-
dimensional sphere and let S∞ → BZp = L∞

p be the universal Zp-bundle.
For every X with fixed point * denote by E(X) the space (S∞ ∪ ∗) ∧
X ∧ . . . ∧X︸ ︷︷ ︸

p times

. Over E(X) we have a well-defined canonical action of Zp,

acting on X ∧ . . . ∧ X by permutations. Set Ep(X) = E(X)/Zp. The
correspondence X 7→ Ep(X) is, evidently, factorial with respect to the
mappings X → Y . Over the complex V = S∞ ×X ∧ . . . ∧X , consider the
bundle ξ ∧ . . . ∧ ξ lifted from X ∧ . . . ∧X . Since the action of Zp on V is
free, the bundle ξ(p) = (ξ∧ . . .∧ ξ)/Zp → V/Zp is well-defined. One has the
equation Ep(M(ξ)) = M(E(p)).

Definition I.1. Steenrod’s exterior powers in U -coboridsms is the set
Pe = {P 2n

e , n ∈ Z} of natural maps P 2n
e : Ũ2n(X) → Ũ2np(Ep(X)) such

that:
1) i∗P 2n

e (a) = ap ∈ Ũ2np(X ∧ . . . ∧ X), where i : X ∧ . . . ∧ X →
Ep(X), i(x1, . . . , xp) = (e, x1, . . . , xp), e ∈ S∞ is the inclusion;

2) P
2(n+m)
e (ab) = T ∗(P 2n

e (a)P 2m
e (b)) ∈ Ũ2(n+m)p(Ep(X∧Y )), where a ∈

Ũ2n(X), b ∈ Ũ2m(Y ), ab ∈ Ũ2(n+m)(X ∧ Y ) and T : Ep(X ∧ Y ) →
Ep(X) ∧ Ep(Y ), T (e, x1, y1, . . . , xp, yp) = (e, x1, . . . , e, y1, . . . , yp);

3) P 2n
e (u(ξ)) = u(ξ(p)) ∈ Ũ2np(M(ξ(p))), where ξ is a bundle over X ,

dimX = n.

It follows from the axioms that for the canonical element un ∈
U2n(MU(n)) we have P 2n

e un = u(ηn,(p)), where η is the universal U(n)-

bundle over BU(n). Now, let the element a ∈ Ũ2n(X) be represented
by a map f : S2kX → MU(k + n). Since S2kX = M(k)/M(k′), where
k is the trivial k-dimensional bundle over X and k′ is its restriction to
∗ ∈ X then Ep(S

2kX) = M(k(p))/M(k′(p)) where k′(p) is the restric-

tion of k(p) to the subcomplex Y ⊂ (S∞ × X × . . . × X)/Zp generated
by points (e, x1, . . . , xp) for which at least one coordinate xi = ∗ ∈ X .
Since Ep(X) = M(0)/M(0′) then we have a well-defined mapping ∆ :
Ep(S

2kX) = M(k(p))/M(k′(p))→ Ep(X) ∧ Ep(S
2kX), inducing an isomor-

phism Φ(k(p)) : U∗(Ep(X))→ U∗(Ep(S
2kX)), Φ(k(p))(a) = ∆∗(u(k(p)) ·a).

Since f∗uk+n = u(k) · a then we have Ep(f)∗(u(ηk+n,(p))) =
Φ(k(p))(P

2n
e a). From the properties of the isomorphism Φ(k(p)) it eas-

ily follows that the above formula defines uniquely the element P 2n
e (a) ∈

Ũ2np(Ep(X)). Thus, the exterior Steenrod powers in cobordisms exist and
they are unique.

Steenrod powers in cobordisms. The diagonal mapping X → X ∧
. . .∧X defines an inclusion i : (L∞

p ∪ ∗)∧X = (S∞ ∪ ∗)∧X/Zp → Ep(X).
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Definition I.2. By Steenrod power is meant the set of natural trans-
formations P = {P 2n : Ũ2n(X) → Ũ2np((L∞

p ∪ ∗)∧ X), n ∈ Z} such that
P 2n(a) = i∗P 2n

e a.

Let j : BU(n)→ BU(n)× . . .×BU(n) be the diagonal.
The inclusion i : (L∞

p ∪ ∗) ∧MU(n) → Ep(MU(n)) is decomposed as

(L∞
p ∪ ∗) ∧MU(n)

λ→M((j∗ηn)(p))
j̄→M(ηn,(p)) = Ep(MU(n)). Let Cp be

the p-dimensional complex linear space, where Zp acts by permutations.
Consider the complex bundle ṽ = S∞×Zp

Cp → L∞
p . It follows straightfor-

wardly thatM((j∗ηn)(p)) is the Thom space of the bundle ṽ⊗ηn →→ L∞
p ×

BU(n). Let us calculate the Chern class σnp(ṽ⊗ηn) ∈ U2np(L∞
p ×BU(n)).

Decomposing the representation of Zp over Cp into one-dimensional fac-

tors, we see that ṽ is isomorphic to the sum of bundles 1 +
∑p−1

q=1 η
q, where

η is the canonical bundle over L∞
p . Now, represent ηn as a sum of formal

one-dimensional bundles
∑n

l=1 µl:

σnp(ṽ ⊗ ηn) =
n∏

l=1

p−1∏

q=0

σ1(η
q ⊗ µl)

=

n∏

l=1

p−1∏

q=0

(σ1(η
q) + σ1(µl) +

∑
ei,jσ1(η

q)iσ1(µl)
j),

where ei,j ∈ Ω
−2(i+j−1)
U are the coefficients of geometric cobordism formal

group. Denote the ring generated by the elements ei,j , by A ⊂ ΩU . Since
all elements σ1(η

q) ∈ U2(L∞
p ) are formal rows of u = σ1(η) with coefficients

from a subring A ⊂ ΩU , we see that

(I.1) σnp(ṽ ⊗ ηn) = σnp(ηn)(wn + σn(ηn)p−1 +
∑

wn−|ω|αω(u)σω(ηn)),

where w = σp−1

(∑p−1
q=1 η

q

)
, σω(ηn) is the characteristic class correspond-

ing to the decomposition ω = (i1, . . . , in), |ω| =∑ ik and αω(u) ∈ U∗(L∞
p ) is

a polynomial in u = σ1(η) with coefficients in A. Note that the space
(L∞

p U
∗) ∧MU(n) is the Thom complex of the bundle ηn → L∞

p BU(n),
whereas the mapping of the Thom complexes λ : (L∞

p U
∗) ∧ MU(n) →

M((j∗ηn)(p)) is the identity on the base. Recall that the cohomology
operations Sω(un) can be defined as Sω(un) = un · σω(ηn). We have
P 2nun = i∗P 2n

e un = λ∗j∗u(ηn,(p)) = λ∗u((j∗ηn)(p)) = wnun + up
n +∑

wn−|ω|αω(u)Sω(un). Here we used the fact that the restriction of the
Thom class u(ξ) to the zero section of the bundle ξ gives, by definition, the
characteristic class σn(ξ), where n = dim.
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Theorem I.1. Assume the element a ∈ U2n(X) is represented by
the mapping f : S2kX → MU(k + n); then in the ring U∗(L∞

p × X) the
following formula holds:

wkP 2na = wn+ka+
∑

wn−|ω|αω(u)Sω(a),

where w = σp−1(
∑p−1

q=1 η
q) ∈ U∗(L∞

p ) and αω(u) ∈ U∗(L∞
p ) are polyno-

mials in u with coefficients from the ring A, generated by formal group
multiplication laws of the geometric cobordism group.

Proof. Let u(k) ∈ Ũ2k(S2k) = Z be a generator. We have f∗uk+n =
u(k) · a. Consequently, f∗P 2(k+n)uk+n = T ∗(P 2ku(k) × P 2n(a)), where
T : (L∞

p ∪ ∗) ∧ S2kX → (L∞
p ∪ ∗)∧S2k∧(L∞

p ∪ ∗)∧X. The element u(k) is
represented by the inclusion S2k ⊂MU(k), thus, P 2ku(k) = wku(k). Now,
using the formula for P 2(k+n)uk+n, we get the proof of the theorem.

Calculating the bordism ring for almost complex manifolds.
Standard arguments from homotopy theory not using any information
about the ring ΩU show that if a canonical mapping µ : U∗(X)→ H∗(X,Z)
is an epimorphism and the group H∗(X,Z) is torsion-free then the group
U∗(X) is a free ΩU -module (see [8], Appendix). Since the construction of
characteristic classes σω(ξ) in cobordisms is also independent of the results
concerning the ring ΩU and, moreover, µσω(ξ) = cω(ξ) ∈ H2|ω|(X,Z),
where cω are Chern characteristic classes (see [6], Appendix), we see that
the groups U∗(BU(n) × BU(k)) and U∗(MU(n)), n > 1, k > 1 are free
ΩU -modules. In particular, U∗(CP∞ × CP∞) = ΩU [[u, v]], where u, v are
the first Chern classes in cobordisms of canonical one-dimensional bundles
η1 and η2. Let A = Z[y1, . . . , yn] be the ring of coefficients of the universal
Lazard group and let ϕ : A→ ΩU be the ring homomorphism corresponding
to the formal group of the geometric cobordisms

F (u, v) = σ1(η1 ⊗ η2) ∈ U2(CP∞ × CP∞).

In § 3, a direct calculation shows that the coefficients of the loga-
rithm g(u) of F (u, v) algebraically independent. But since the coefficients
of the logarithm of the Lazard group generate the ring A⊗Q, we get that
ϕ is a monomorphism.

Consider the formal series Θp(u) =
[u]p
u = p + α1u + . . . over ΩU [[u]],

where [u]p is p-th power of the element u in the formal group.

Lemma I.1. The following sequence is exact:

ΩU
Θp(u)−→ U q(L∞

p )
u→ U q+2(L∞

p ),
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where u = σ1(η), η is the canonical fiber bundle over L∞
p , and the homo-

morphisms in the sequence are multiplications by Θp(u) and u.

Proof. Denote by η the canonical bundle over CP∞. Besides,
consider the bundle ηp → CP∞ and denote by E → CP∞ the D2-
bundle associated with ηp. We have ∂E = L∞

p , E/∂E = M(ηp). A
detailed consideration of the homomorphism µ : U∗(L∞

p ) → H∗(L∞
p , Z)

yields that the homomorphism U∗(E) = U∗(CP∞) → U∗(L∞
p ) is an

epimorphism, and since σ1(η
p) = [u]p, we get that there is an exact se-

quence 0← U∗(L∞
p )← U∗(CP∞)

[u]p←− Ũ∗(M(ηp))← 0. The proof of the
lemma follows now from the fact that the multiplication by u homomor-
phism in U∗(CP∞) = ΩU [[u]] is indeed a monomorphism.

Theorem I.2. The homomorphism ϕ : Z[y1, . . . , yn, . . .] → ΩU from
the Lazard group to ΩU corresponding to the geometrical cobordism group
is an isomorphism.

Proof. It remains to show that ϕ is an epimorphism. Set C =
Imϕ ⊂ ΩU ; let us show that for any n > 1 there is an isomorphism
U∗(Sn) = C

∑
q>0 U

q(Sn). First note that because of the isomorphism

U q(Sn) ⋍ U q+1(Sn+1) and the fact that U q(Sn) is finitely generated for ev-
ery q, it suffices to show that for every prime p there exists an isomorphism
Ũev(Sn)⊗Zp = C ·∑q>0 U

2q(Sn)⊗Zp. Set Rp = C ·∑q>0 U
2q(Sn)⊗Zp.

Assume for all j < q we have already proved the isomorphism R−2j
p =

Ũ−2j(Sn)⊗ Zp. For j = 0 this isomorphic is evident. Assume the element

a ∈ Ũ−2q(Sn) is represented by a mapping f : S2kSn →MU(k − q); then,
by Theorem I.1, the following formula takes place:

(I.2) wkP−2qa = wk−qa+
∑

wn−|ω|αω(u)·Sω(a).

The element w∈U2np(L∞
p ) is a formal series of type (p−1)!×up−1+O(up)

with coefficients in C. By the induction hypothesis, Sω(a) ∈ Rp, |ω| > 0,
and we get from (I.2) that for some m the following holds:

(I.3) um(wqP−2qa− a) = ψ(u) ∈ U∗(L∞
p ×Sn) ≈ U∗(L∞

p )⊗ΩU
U∗(Sn),

where ψ(u) ∈ Rp[[u]]. Assume that m > 1 is the least such number for
which the formula (I.3) holds. Since ψ(0) = 0 then ψ(u) = uψ1(u), ψ1(u) ∈
Rp[[u]], and we get u(um−1(wqP−2qa − a) − ψ1(u)) = 0. Then by lemma
I.1 there exists an element y ∈ U∗(Sq) such that

(I.4) um−1(wqP−2qa−a) = ψ1(u)+yΘp(u) ∈ U∗(L∞
p ×Sn).
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Considering the restriction of this inequality to U∗(L∞
p ), we get y′Θp(u)=0,

where y′ = ε(y), ε : U∗(Sn)→ U∗(∗). Consequently, if m > 1 then, by the
induction hypothesis, y ·Θp(u) ∈ Rp[[u]], which contradicts the minimality
of m. But, if m = 1, then, considering the restriction of (I.4) to U∗(Sn),
we get −a = ψ1(0) + py, i.e. a ∈ Rp.

Appendix II1

The Adams Conjecture

The Adams conjecture concerns the calculation of the image of the J-
homomorphism in the real K-theory (see [13]). The exact formulation says:
for every bundle ξ there exists such an integer N that J(kN (Ψk(ξ)−ξ)) = 0
for any k > 1. The Adams conjecture allows one to construct an up-
per bound for the image of the J-homomorphism. It has been known
that the Adams conjecture is true for one-dimensional and orientable two-
dimensional bundles, and their connected sums. To prove the Adams con-
jecture, it suffices to check it only for classifying bundles on Grassmann
manifolds. We shall give a proof outline of the Adams conjecture, following
Sullivan2. The main idea is to map the K-functor to some other functor for
which the Adams operations Ψk, preserve the dimension of “the bundle”.
The exact sense is as follows.

Lemma II.1. Let Bn be a sequence of complexes, γn : En → Bn be
spherical bundles with fiber Sn−1, fn : Bn → Bn−1 be mappings such
that f∗

n(γn+1) = γn ⊕ 1, fn ∼ γn+1 · hn, where hn : Bn → En+1 is a
homotopy equivalence. Let an : Bn → Bn be a stable operation of the
functor lim−→[ , Bn], i.e. fnan ∼ an−1fn, which is invertible. Then if
Jn : Bn → BGn is a natural J-map, Gn ≈ (Ωn−1Sn−1)0, then Jn ∼ Jnan.

Note that the operations Ψk for Bn = BO(n) do not satisfy the assump-
tions of the lemma. Sullivan found an acceptable theory K(X̂), where some
analogues of the operations Ψk satisfy the conditions of the lemma. Let
X be an arbitrary CW -complex. By the completion X̂ of X we mean such
a (unique) complex for which the condition [Y, (X̂)] = lim{F,f}[Y, F ] holds.
Here {F, f} is the category of all mappings f : X → F , where F runs over

1Appendix II is written by A. S. Mishchenko.
2The proof of Adams’ conjecture started three years ago from Quillen’s idea (Quillen

D., Some remarks on etale homotopy, theory and a conjecture of Adams. Topology
(1968), 7, No. 2, 111–116): apply the properties of etale-topology of Grassmann mani-
folds. In 1970, together with Sullivan’s proof given below, Quillen constructed a proof
based on the reduction of the Adams conjecture for the bundles with finite structure
group; this proof differs from his first original idea.
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complexes with all homotopy groups finite. Then we set K(X̂) = [X,BÔ].
It is easy to see that the space BO(n)̂ satisfies the conditions of the lemma
if we take for γn the fibration with fiber (Sn−1)̂. On the other hand, since
all homotopy groups BGn are finite then there exists a natural mapping
Ĵ : BO(n)̂→ BG(n), and thus the diagram

BO
̂−→ BÔ

J J ̂
- �

BG

is commutative. Finally, one can define the operations (Ψk)̂ in the
groups K̂(X) in such a way that (Ψkx)̂ = (Ψk)̂(x̂). If we prove
that the operations (Ψk)̂ preserve the geometrical dimension of fibres,
i.e. that there exist mappings (Ψk

n)̂ : BO(n)̂ → BO(n)̂ such that
(Ψk)̂ = lim(Ψk

n)̂, then the lemma yields the Adams conjecture. For the
proof of the last statement, Sullivan uses the fact that the Grassmann mani-
folds Gn,k are algebraic manifolds over the field of rational numbers. Thus,
on the manifold Gn,k we get a Galois group Gal(C,Q) action. It turns
out that the induced action in the etale homology with coefficients in the
finite group is defined only by representation of the group Gal(C,Q) in
the permutation group of all roots of unity, i.e. by the homomorphism
Gal(C,Q) → (Ẑ)∗. Together with the Artin theorem on the isomorphism
of etale cohomology with coefficients in finite group with the usual coho-
mology of the manifold, we get the actions of the group (Ẑ)∗ on the space
(Gn,k)̂. It can be easily checked that the action of the element (k) ∈ (Ẑ)∗

coincides with the operation (Ψk)̂.
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Formal groups, power systems and

Adams operations

V.M.Buchstaber, S. P.Novikov 1

The theory of one-dimensional commutative formal groups at present
consists of three parts:

1) The general theory based on Lazard’s theorem [8] on the existence
of a universal formal group; the coefficient ring of this formal group is the
polynomial ring over integers.

2) Formal groups over arithmetic rings and fields of finite characteristic
— for a survey of this theory see [4].

3) Commutative formal groups in cobordism theory and in the theory
of cohomology operations and characteristic classes [5], [9], [12], [13], [14].

Quillen has recently shown that the formal group f(u, v) of “geometrical
cobordisms” is universal [14]. His proof makes use of Lazard’s theorem on
the existence of a universal formal group whose ring of coefficients is a
torsion-free polynomial ring.

In the first section of this paper we prove the universality of the group
of “geometrical cobordisms” directly by starting from its structure, as in-
vestigated in Theorem 4.8 of [2], without recourse to Lazard’s theorem.
Moreover, in § 1 we give formulas for calculating the cohomology opera-
tions in cobordism by means of the Hirzebruch index.

In connection with the theory of Adams operations in cobordism, the
operation of “raising to powers” in formal groups is of particular importance
(see [12], [13]). This operation can be axiomatized and studied for its own
sake; in addition there are topologically important power systems which

1Math. USSR. Sbornik, vol 13 (1971), No.1., originally: В.М.Бухштабер,
С.П.Новиков, Формальные группы, степенные системы и операторы Адамса,
Математический сборник, 1971, Т. 84 (126), No. 1, с. 81–118 (поступила в редакцию
9.06.1970). Translated by M.L. Glasser with further edition by V.O.Manturov
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do not lie within formal groups, see § 2а. In § 2b we examine a distinctive
“two-valued formal group” which is closely connected with simplicial cobor-
dism theory. § 3 and the Appendix are devoted to the systematization and
development of the application of formal groups to fixed point theory.

§ 1. Formal groups

First of all we introduce some definitions and general facts concerning
the theory of formal groups. All rings considered in this paper are presumed
to be commutative with unit.

Definition 1.1. A one-dimensional formal commutative group F over
a ring R is a formal power series F (x, y) ∈ R[[x, y]] which satisfies the
following conditions:

а) F (x, 0) = F (0, x) = x;
b) F (F (x, y), z) = F (x, F (y, z));
c) F (x, y) = F (y, x).
In the following a formal series F (x, y) which satisfies axioms a), b) and

c), will simply be called a formal group.

Definition 1.2. A homomorphism ϕ : F → G of formal groups over
R is a formal series ϕ(x) ∈ R[[x]] such that ϕ(0) = 0 and ϕ(F (x, y)) =
G(ϕ(x), ϕ(y)).

If a formal series ϕ1(x) determines the homomorphism ϕ1 : F → G and
a formal series ϕ2(x) determine the homomorphism ϕ2 : G→ H , it follows
immediately from Definition 1.2 that the formal series ϕ2(ϕ1(x)) determines
the composite homomorphism ϕ2 · ϕ1 : F → H .

For formal groups F and G over R we denote by HomR(F,G) the set of
all homomorphisms from F into G. With respect to the operation

(ϕ1 + ϕ2)(x) = G(ϕ1(x), ϕ2(x)), ϕ1, ϕ2 ∈ HomR(F,G),

the set HomR(F,G) is an abelian group.
By T (R) we denote for any ring R the category of all formal groups

over R and their homomorphisms. It is not difficult to verify that the
category T (R) is semi-additive, i.e. for any F1, F2, F3 ∈ T (R) the mapping

HomR(F1, F2)×HomR(F2, F3)→ HomR(F1, F2),

defined by composition of homomorphisms, is bilinear.
Let F (x, y) = x + y +

∑
αi,jx

iyj be a formal group over R1 and
let r : R1 → R2 be a ring homomorphism. Let r[F ] be the formal series

r[F ](x, y) = x+ y +
∑

r(αi,j)x
iyj ,
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which is clearly a formal group over R2. If the series ϕ(x) =
∑
αix

i gives
the homomorphism ϕ : F → G of formal groups over R1 then the formal
series r[ϕ](x) =

∑
r(αi)x

i gives the homomorphism r[ϕ] : r[F ] → r[G] of
formal groups over R2. Thus any ring homomorphism r : R1 → R2 provides
a functor from the category T (R1) to the category T (R2). Summing up,
we may say that over the category of all commutative rings with unit we
have a functor defined which associates with each ring R the semi-additive
category T (R) of all one-dimensional commutative formal groups over R.

Let R be a torsion-free ring and F (x, y) a formal group over it. As
was shown in [8] (see also [4]), there exists a unique power series f(x) =

x+
∑ an

n+ 1
xn+1, an ∈ R, over the ring R⊗Q such that

F (x, y) = f−1(f(x) + f(y)). (1)

Definition 1.4. The power series f(x) = x +
∑ an

n+ 1
xn+1, an ∈ R

satisfying (1), is called the logarithm of the group F (x, y) and is denoted
by gF (x).

In [4] the notion of an invariant differential on a formal group F (x, y)
over a ring R was introduced, and it is shown there that the collection of
all invariant differentials is the free R-module of rank 1 generated by the

form ω = ψ(x)dx, where ψ(x) =

([
∂F (x, y)

∂y

]

y=0

)−1

. By the invariant

differential on the group F (x, y) we shall mean the form ω.
If the ring R is torsion-free then ω = dgF (x). We point out that it was

demonstrated in [12] that the logarithm of the formal group f(u, v) of “geo-

metrical cobordisms” is the series g(u) = u+
∑ [CPn]

n+ 1
un+1. Consequently,

for the group f(u, v) we have

ω = dg(u) =

(
∞∑

n=0

[CPn]un

)
du = CP (u)du.

Let f(u, v) = u+ v +
∑
ei,ju

ivj , ei,j ∈ Ω
−2(i+j−1)
U , be the formal group of

geometrical cobordism.

Lemma 1.5. The elements ei,j, 1 6 i <∞, 1 6 j <∞, generate the
whole cobordism ring ΩU .

Proof. From the formula for the series f(u, v) given in [2] (Theo-
rem 4.8), we obtain
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e1,1 = [H1,1]− 2[CP 1], e1,i ≈ [H1,i]− [CP i−1], i > 1,

ei,j ≈ [Hi,j ], i > 1, j > 1,

where the sign ≈ denotes equality modulo factorizable elements in the
ring ΩU . Since s1([H1,1]) = 2, we have e1,1 = −[CP 1]; since si−1([H1,i]) = 0
for any i > 1, we have e1,i ≈ −[CP i−1]. According to the results in [10],
[11], the elements [Hi,j ], i > 1, j > 1, and [CP i] generate the ring ΩU .
This proves the lemma.

Theorem 1.6. (Lazard–Quillen). The formal group of geometrical
cobordisms f(u, v) over the cobordism ring ΩU is a universal group, i.e. for
any formal group F (x, y) over any ring R there is a unique ring homomor-
phism r : ΩU → R such that F (x, y) = r[f(u, v)].

We show first that for a torsion-free ring R Theorem 1.6 is an easy
consequence of Lemma 1.5. Let R be a torsion-free ring and let F be an
arbitrary formal group over it, and let

gF (x) = x+
∑ an

n+ 1
xn+1, an ∈ R.

Consider the ring homomorphism r : ΩU → R⊗Q such that r([CPn]) = an.
We have r[gf ] = gF , and, since F (x, y) = g−1

F (gF (x)+gF (y)) and f(x, y) =
g−1

f (gf (x) + gf(y)), also r[f(x, y)] = F (x, y). Consequently r(ei,j) ∈ R. By
now applying Lemma 1.5, we find that Im r ⊂ R ⊂ R ⊗ Q. This proves
Theorem 1.6 for torsion-free rings.

Proof of Theorem 1.6. Recall that by sn(e), e ∈ Ω−2n
U , we denote

the characteristic number corresponding to the characteristic class
∑
tni .

It follows from the proof of Lemma 1.5 that for any i > 1, j > 1 we have
the formula si+j−1(ei,j) = −Ci

i+j . It is known that the greatest common

divisor of the numbers {Ci
n}i=1,...,(n−1) is equal to 1, if n 6= pl for any prime

p > 2, and is equal to p, if n = pl. Consequently, a number λi,n exists such
that

∑
λi,nC

i
n =

{
1, if n 6= pl,

p, if n = pl.
(2)

For each n, let us consider a fixed set of numbers (λi,n) which satisfy
(2). From [10] and [11] we have that the elements yn =

∑
λi,nei,n−i ∈

∈ Ω
−2(n−1)
U , n = 2, 3, . . . , form a multiplicative basis for the ring ΩU .
Let R be an arbitrary ring and let F (x, y) = x + y +

∑
αi,jx

iyj be a
formal group over this ring. We define the ring homomorphism r : ΩU → R
by the formula r(yn) =

∑
λi,nαi,n−i; we shall show that r(ei,n−i) = αi,n−i
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for any i, n. From the commutative property of the formal group F it
follows that αi,n−i = αn−i,i; from associativity we have

Ci
i+jαi+j,k − Cj

j+kαj+k,i = P (αm,l),

where P (αm,l) is a polynomial in the elements αm,l, m + l < i + j + k. It
is clear that the form of the polynomial P does not depend on the formal
group F (x, y). Since e1,1 = y1, we have r(e1,1) = α1,1. We assume that for
any number n < n0 the equation r(ei,n−i) = αi,n−i is already proved. We
have

Ci
i+jei+j,k − Cj

j+kej+k,i = P (em,l), m+ l < n0 = i+ j + k,

r(P (em,l)) = P (r(em,l)) = P (αm,l) = Ci
i+jαi+j,k − Cj

j+kαj+k,i.

It follows from the number-theoretical properties of Cq
p that for any i0 > 1

and n0 = i0+j0+k0 the element αi0,j0+k0 can be represented as an integral
linear combination of the elements r(yn0) =

∑
λi,n0αi,j+k and r(P (em,l)) =

Ci
i+jαi+j,k−Cj

j+kαj+k,i. Since the form of this linear combination depends
neither on the ring R nor on the formal group F , we find that r(ei0,n0−i0) =
αi0,n0−i0 . This concludes the induction, and Theorem 1.6 is proved.

It will be useful to indicate several important simple consequences of
Theorem 1.6.

1. In the class of rings R over Zp the formal group f(u, v)⊗Z Zp over
the ring ΩU ⊗Z Zp is universal.

2. In the class of formal groups over graded rings the formal group of
geometrical cobordisms f(u, v), considered as having the natural grading of
cobordism theory, is universal.

In this case dimu = dim v = dim f(u, v) = 2. Therefore the above
refers to the class of formal groups F over commutative even-graded rings
R, where R =

∑
i>0

R−2i, and all components of the series F (u, v) have

dimension 2. Of course, the general case of a graded ring reduces to the
latter through the multiplication of the grading by a number.

3. The semigroup of endomorphisms of the functor T , which assigns
to a commutative ring R the set T (R) of all commutative one-dimensional
formal groups over R, is denoted by AT . This semigroup AT coincides with
the semigroup of all ring automorphisms ΩU → ΩU . In the graded case we
refer to the functor as Tgr, and the semigroup as AT

gr, which coincides with
the semigroup of all dimension preserving homomorphisms ΩU → ΩU . The
“Adams operators” Ψk ∈ AT

gr form the center of the semigroup AT
gr. The

application of these operators Ψk to a formal group F (x, y) over any ring
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proceeds according to the formula

ΨkF (x, y) = x+ y +
∑

ki+j−1αi,jx
iyj ,

where F (x, y) = x+ y +
∑
αi,jx

iyj .
We note that the semigroup A0 of all multiplicative operations in U∗-

theory is naturally imbedded in the semigroup AT
gr (see [12], Appendix 2)

by means of the representation (*) of the ring AU over ΩU ; the elements of
AT are given in the theory of characteristic classes by rational “Hirzebruch
series”

K(1 + u) = Q(u), Q(u) = u
a(u)

, a(u) = u+
∑

i>1

λiu
i, λi ∈ ΩU ⊗Q.

What sort of Hirzebruch series give integer homomorphisms ΩU → ΩU ,
i.e. belong to AT ? How does one distinguish A0 ⊂ AT

gr?
From the point of view of Hirzebruch series the action of a series a =

a(u) = u +
∑
λiu

i+1, λi ∈ ΩU ⊗ Q, on the ring ΩU is determined by the
formula

a([CPn]) =



(

u
a(u)

)n+1



n

,

where [f(u)]n denotes the nth coefficient of the series f(u). Note that

a−1(u) = u +
∑ a([CPn])

n+ 1
un+1, where a−1(a(u)) = u. This formula is

proved in [13] (see also [2]) for series a(u) giving homomorphisms ΩU → Z,
and carries over with no difficulty to all series which give homomorphisms
ΩU → ΩU .

One should point out that the indicated operation
(

in the “Hirzebruch

genus” Q(u) = u
a(u)

sense
)

of a series a(u) on ΩU does not coincide with

the operation (*) of the series a(u) ∈ Ω ⊗ Q[[u]] on the ring ΩU = U∗

(point), which defines a multiplicative cohomology operation in U∗-theory
(see [12]). For example, for a(u) = u we have a([CPn]) = 0, n > 1, and
a∗([CPn]) = [CPn]; as is proved in cobordism theory (see [12], [2]), for the

series a(u) = g(u) =
∑ [CPn]

n+ 1
un+1 we have the formula a∗([CPn]) = 0,

n > 1, and for the series a(u) = g−1(u) the formula a([CPn]) = [CPn].
There arises the transformation of series of the ring Ω⊗Q[[u]]

ϕ : a(u)→ ϕa(u),

defined by the requirement a[x] = (ϕa)∗[x] for all x ∈ ΩU , where we already
know that ϕu = g(u) and ϕ(g−1(u)) = u. We have
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Theorem 1.7. The transformation of series of the ring ΩU ⊗Q[[u]]

g : a(u)→ a(g(u))

has the same properties as

a[x] = a(g)∗[x]

for any element x ∈ ΩU , where g(u) =
∑ [CPn]

n+ 1
un+1, a[CPn] =

[(
u
a(u)

)n+1
]

n

and b∗[x] is the result of application to the ele-

ment x ∈ U∗(point)= ΩU of the multiplicative operation b from AU ⊗ Q,
given by its value b(u) = u +

∑
λiu

i, λi ∈ ΩU ⊗ Q, on the geometrical
cobordism u ∈ U2(CP∞).

Proof. Let b ∈ AU ⊗Q be a multiplicative operation and let b̃(ξ) be
the exponential characteristic class of the fiber ξ with values in U∗-theory,
which on the Hopf fiber η over CPn, n 6 ∞, is given by the series b̃(η) =(
b(u)
u

)−1

; let u ∈ U2(CPn) be a geometrical cobordism. As was shown in

[12], for any U -manifold Xn we have the formula

b∗([X ]) = εDb̃(−τ(Xn)),

where [Xn] ∈ Ω−2n
U is the bordism class of the manifoldXn, ε : X →(point),

D is the Poincaré-Atiyah duality operator, and τ is the tangent bundle.
By using the formulas Duk = (CPn−k) ∈ U2n−k(CPn), n < ∞,

and τ(CPn) + 1 = (n+ 1)η, we obtain

b∗([CPn]) =

n∑

k=0

[CP k]

[(
u
b(u)

)n+1
]

n−k

=

∞∑

k=0

[CP k]

2πi

∫

|u|=ε

(
u
b(u)

)n+1 du

un+1−k
;
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∞∑

n=0

b∗([CPn])

n+ 1
tn+1 =

∫ t

0

∞∑

n=0

b∗([CPn])tndt

=

∫ t

0




∞∑

n=0

∞∑

n=0

[CP k]

2πi

∫

|u|=ε

ukdu
b(u)n+1


 tndt

= 1
2πi

∫

|u|=ε

∞∑

k=0

[CP k]uk

(∫ t

0

∞∑

n=0

(
t

b(u)

)n

dt
b(u)

)
du

= 1
2πi

∫

|u|=ε

|t|<|b(u)|

− ln

(
1− t

b(u)

)(
∞∑

k=0

[CP k]ukdu

)

= 1
2πi

∫

|u|=ε

|t|<|b(u)|

− ln

(
1− t

b(u)

)
dg(u),

where dg(u) is the invariant differential of the formal group f(u, v). By
setting g(u) = v, we obtain from the formula for the inversion of series

∫

|u|=ε

|t|<|b(g−1(v))|

− ln

(
1− t

b(g−1(v))

)
dv = (b(g−1(v)))−1(t) = g(b−1(t)).

Thus
∞∑

n=0

b∗([CPn])

n+ 1
tn+1 = g(b−1(t)).

On the other hand, as was indicated above, we have the formula

∑ a([CPn])

n+ 1
tn+1 = a−1(t).

Consequently, if b(u) = a(g(u)), then b∗([CPn]) = a([CPn]) for any n.
Since the elements {[CPn]} generate the entire ring ΩU ⊗Q, the theorem
is proved.

Another proof of Theorem 1.7 can be obtained from the properties of
the Chern–Dold character chU (see [2]). Let ϕ : ΩU → ΩU be a ring ho-
momorphism and let a(u) = u +

∑
λiu

i be the corresponding Hirzebruch
genus. We shall show that if the multiplicative operation b ∈ AU ⊗Q acts
on the ring U∗(point)=ΩU as a homomorphism ϕ, then its value on the
geometrical cobordism u ∈ U2(CP∞) is equal to the series a(g(u)), where
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g(u) = u+
∑ [CPn]

n+ 1
un+1. We have

chU (u) = t+
∑

αit
i+1 ∈H

∗(CP∞,ΩU ⊗Q),

αi ∈ Ω−2i
U ⊗ Q, t ∈ H2(CP∞;Z), chU (g(u)) = t. Since a−1(t) =

∑ ϕ([CPn])

n+ 1
tn+1, we have a(t) = t+

∑
ϕ(αi)t

i+1 = t+
∑
b∗(αi)t

i+1. Thus,

a(g(u)) = g(u) +
∑

b∗(αi)g(u
i+1),

chU (a(g(u))) = t+
∑

b∗(αi)t
i+1 = b∗(chU (u)) = chU (b(u)).

Since the homomorphism chU : U∗(CP∞) ⊗Q→ H ∗(CP∞,ΩU ⊗Q) is a
monomorphism, we find that a(g(u)) = b(u). This proves the theorem.

By Theorem 1.6 any integer Hirzebruch genus, or, equivalently, any
homomorphism Q : ΩU → Z, defines a formal group over Z, and con-
versely (similarly for the ring Zp). In this connection the Hirzebruch
genus, which defines this homomorphism, can be rational. Equivalent (or
strongly isomorphic in the terminology of [4]) formal groups are defined
by the Hirzebruch series Q(z), Q′(z), which are connected by the formula

z
Q(z)

= ϕ−1

(
z

Q′(z)

)
, where ϕ−1(u) = u +

∑
i>1

λiu
i+1, λi ∈ Z. This fol-

lows from the fact that the logarithms of the formal groups are equal to

gQ(z) =

(
z

Q(z)

)−1

, and by definition we have gQ(z) = gQ′(ϕ(z)).

Let us consider the integer Q-genus given by the rational series gQ(u).
Then the Q′-genus such that gQ(u) = gQ′(ϕ(u)), ϕ(u) = u +

∑
i>1

λiu
i+1,

λi ∈ Z, also has integer values on ΩU . In this connection the meaning of the
equivalence for Hirzebruch genera is the same as for formal groups. What
sort of examples of formal groups are considered in topology in connection
with the well-known multiplicative genera c, T , L, A?

1. The Euler characteristic c : ΩU → Z. We have

fc(u, v) =
u+ v − 2uv

1− uv , gc(u) = u
1− u.

As a formal group, this genus is equivalent to the trivial one.
2. The Todd genus T : ΩU → Z. Here we have the law of multiplication

fT (u, v) = u+ v − uv, gT (u) = − ln(1− u), T (z) =
− z

1− e−z
=
− z

g−1
T (z)

.
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3. The L-genus τ : ΩU → Z and the A-genus A : ΩU → Z, where

g−1
L (z) = tanh z and g−1

A (z) = 1
2

sinh(2z). It is easily seen that these are

strongly isomorphic to formal groups; both of them are strongly isomorphic

over Z2 to a linear group, and over Z
[
1
2

]
to a multiplicative one (the Todd

genus).

4. The Ty-genus (see [3]) Ty([CP
n]) =

n∑
i=0

(−yi). Here the law of multi-

plication is defined over the ring Z[[y]] and has the form

fTy
(u, v) =

u+ v + (y − 1)uv

1 + uvy
, gTy

= 1
(y + 1)

ln

(
1 + (1 + y) u

1− u

)
.

We have for y = −1, 0, 1 the genera c, T , and L, respectively. The simple
integral change of variables u = ϕ(u′) allows us to put fTy

into the form

ϕ−1fTy
(ϕ(u′), ϕ(v′)) = u′ + v′(y − 1)u′v′.

For all values of y this group either reduces to a linear one or to a multi-
plicative one over p-adic integers Zp.

Thus we see that in topology the multiplicative genera connected with
other non-trivial formal groups over Z, Zp or Z/pZ have not been considered
previously.

§ 2. Formal power systems and Adams operators

Definition 2.1. A formal power system over a ring R is a collection of
power series {fk(u), k = ±1,±2, . . . , fk(u) ∈ R[[u]]} such that fk(fl(u)) =
fkl(u).

Consider on the ring R[[u]]0 the operation of inserting one formal power
series into another. With respect to this operation R[[u]]0 is an associative
(noncommutative) semigroup with unit. The role of the unit is played
by the element u. Let Z∗ denote the multiplicative semigroup of nonzero
integers.

Definition 2.2. Any homomorphism f : Z∗ → R[[u]] will be called a
formal power system.

Definition 2.3. We shall say that a formal power system is of type s
if for any number k the series fk(u) has the form

fk(u) = ksu+
∑

i>1

µi(k)u
i+1, µi(k) ∈ R.
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We shall always assume the number s to be positive. Not every power
system has type s > 1. For example, fk(u) = uks

. More generally, the case

fk(u) = λ0(k)u
ks

+O(uks+1) =
∑

i>0

λi(k)u
ks+i

is possible.
Here it is especially important to distinguish two cases: 1) λ0(k) ≡ 1,

2) λ0(k) 6≡ 1, but R does not have zero divisors. In the first case there
exists a substitution v = B(u) ∈ R[[u]] ⊗ Q, v = u + O(u2), in the ring
such that B(fk(B−1(v))) = vks

(the argument is similar to the proof of
Lemma 2.4 below). 2) is the more general case, where λ0(k) 6≡ 1. Here a
similar substitution exists and is correct over a field of characteristic zero
which contains the ring R. Examples of such power systems may be found
readily in the theory of cohomology operations in U∗-theory, by composing
them out of series of operations sω ∈ AU with coefficients in ΩU . We
are interested principally in Adams operations, and shall therefore consider
only systems of type s > 1.

As in the theory of formal groups, an important lemma concerning “ra-
tional linearization” also plays a role in the theory of power systems. We
note that the proof of this lemma presented below is similar to the consid-
erations of Atiyah and Adams in K-theory (see [1]).

Lemma 2.4. For any formal power system of type s there exists
a series, B(u) ∈ R[[u]] ⊗ Q, not depending on k, such that the equation
fk(u) = B−1(ksB(u)), where B−1(B(u)) = u, is valid in the ring R[[u]]⊗Q.

The series B(u) is uniquely defined by the power system, and is called
its logarithm1.

Proof. We shall show that for a given power system f = {fk(u)}
of type s we are able to reconstruct, by an inductive process, the se-
ries B(u) = u + λ1u

2 + . . . . Assume that we have already constructed
the series vn = Bn(u) ∈ R[[u]] ⊗ Q such that for the formal power

system {f (n)
k (vn)} = {Bnfk(B−1

n (vn))} we have the formula f
(n)
k (vn) =

ksvn+µ(k)vn+1
n +O(vn+2

n ), µ(k)∈R. By using the relation f
(n)
l (f

(n)
k (vn))=

f
(n)
k (f

(n)
l (vn)), we obtain for all k and l

(kl)svn +(lsµ(k)+µ(l)k(n+1)s)vn+1
n = (kl)svn +(ksµ(l)+µ(k)l(n+1)s)vn+1

n .

1We point out that a formula for the logarithm of a formal group was given in [5] for
the cobordism theory of power systems of type s = 1 for these groups. However, there it
is necessary to make use of important additional information concerning the coefficients
of the power systems of uk as functions of k.
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Consequently,

µ(k)

ks(kns − 1)
=

µ(l)

ls(lns − 1)
= λ ∈ R ⊗Q,

where λ does not depend on k and l. Let us set Bn+1(u) = vn − λvn+1
n .

Direct substitution now shows that

Bn+1(fk(B−1
n+1(vn+1))) = ksvn+1 +O(vn+2

n+1).

This completes the inductive step. We set B(u) = lim−→Bn(u). Thus
B(fk(B−1(B(u)))) = ksB(u), i.e. fk(u) = B−1(ksB(u)), which completes
the proof.

An important example of a formal power system is the operation of
raising to the power s in the universal formal group f(u, v) over the ring ΩU .
The operations of raising to a power in f(u, v) have the form ksΨks

,Ψks ∈
A. Let us denote by Λ(s) the subring of ΩU generated by all the coefficients
of the formal series

ksΨks

(u) = ksu+
∑

µ
(s)
i (k)ui+1 ∈ ΩU [[u]] = U∗(CP∞)

for all k. In Theorem 4.11 of [2] the coefficients of the series ksΨks

are de-
scribed in terms of the manifolds Mn−1

ks ⊂ CPn, k = ±1, ±2, . . . , which
are the zero cross-section of the ks-th tensor power of the Hopf fiber η
over CPn. In particular, from this theorem it follows that modulo factor-
izable elements in the ring ΩU have the equation

µ
(s)
i (k) ≈ [M i

ks ]− ks[CP i].

Since τ(M i
ks ) = ϕ∗((i+1)η−ηks

), where ϕ : M i
ks ⊂ CP i+1 is an imbedding

map, we have si([M
i
ks ]) − si(k

s[CP i]) = ks(1 − ksi). The calculation of
the Chern numbers si (t-characteristic in the terminology of [13]) of the

elements µ
(s)
i (k) is easily performed by the method of [13].

Lemma 2.5. Let Λ(s) =
∑

Λn be the ring generated by the ele-

ments µ
(s)
i (k) for all k and i. The smallest value of the t-characteristic

on the group Λ is equal to the greatest common divisor of the numbers
ks(kns − 1), k = 2, 3, . . . . In particular, the ring Λ(s) does not coincide
with the ring ΩU for any s, but the rings Λ(s)⊗Q and ΩU ⊗Q are isomor-
phic.

Theorem 2.6. The formal power system of type s generated by the
Adams operations fU (u) = {ksΨks}, k = ±1,±2, . . . , and considered over
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the ring Λ(s), is a universal formal system of type s on the category of
torsion-free rings, i.e. for any formal power system f = {fk(u)} of type
s over any torsion-free ring R there exists a unique ring homomorphism
ϕ : Λ(s)→ R such that f = ϕ[fU ].

Proof. Let B(u) = u +
∑
λiu

i+1, λi ∈ R ⊗ Q, be the logarithm
of the formal power system f = {fk}. Consider the ring homomorphism

ϕ : ΩU ⊗ Q → R ⊗ Q, ϕ

(
[CPn]

n+ 1

)
= λn. Since the coefficients of the

formal power system {ksΨks} generate the entire ring Λ(s), we see that the
homomorphism ϕ, restricted to the ring Λ(s) ⊂ ΩU ⊗ Q, is integral, i.e.
Imϕ(Λ(s)) ⊂ R ⊂ R⊗Q. This proves the theorem.

With each formal power system f = {fk(u)} of type s over a torsion-free
ring R we may associate a formal one-parameter group B−1(B(u) +B(v))
over the ring R ⊗ Q, where B(u) is the logarithm of the power system.
From Theorem 2.6 we get

Corollary 2.7. Let ϕ : Λ(s)→ R be the homomorphism corresponding
to the formal power system f = {fk(u)}. In order for the group B−1(B(u)+
B(v)) to be defined over the ring R, it is necessary and sufficient that the
homomorphism ϕ extend to a homomorphism ϕ̂ : ΩU → R.

Thus the question of the relation of the concepts of a formal power
system and a formal one-parameter group over a torsion-free ring R is
closely related to the problem of describing the subrings Λ(s) in ΩU .

We shall demonstrate that the series B−1(ksB(u)) has the form
B−1(ksB(u)) = ksu + ks(ks − 1)λu2 + . . ., λ ∈ R ⊗ Q, where B(u) =
u±λu2 + . . . . Since the expression ks(ks−1)λ is integer valued for all k, it
follows that an element λ ∈ R⊗Q can have in its denominator the Milnor –
Kervaire –Adams constant M(s), equal to the greatest common divisor of
the numbers {ks(ks − 1)}. For example, M(1) = 2, M(2) = 12. For the se-
ries B(u) obtained from a formal group over R the second coefficient λ can
only have 2 in the denominator. For all s > 1 a realization of the universal
system indicated in Theorem 2.6 does not, of course, occur naturally. A
natural realization would be one over a subring of the ring ΩU , where the
second coefficient λ of the logarithm B(u) = u+λu2+ . . . for the system of
type s = 2l would coincide with the well-known Milnor-Kervaire [6] mani-

fold V s ∈ Ω−4s
U , where λ = ± V s

M(s)
, as follows from our considerations on

the integer of λ ·M(s). For s = 2 such a system will be given below.
It is simplest to describe the connection between the notion of a formal

power system of type s and of a formal one-parameter group for s = 1.
We consider the category of torsion-free rings which are modules over the
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p-adic integers. The system fU = {ksΨks

(u)}, considered over the ring
Λ(s)⊗Zp, is a universal formal system of type s for systems over such rings.
Consider in the ring ΩU some fixed multiplicative system of generators {yi},
dim yi = −2i; let us denote by Λp ⊂ ΩU the subring generated by the
elements y(pj−1), j = 0, 1, . . . , and by πp : ΩU → ΩU the projection such
that

πp(yi) =

{
yi, if i = pj − 1

0 otherwise.
According to Lemma 2.5, the minimum value of the t-characteristic on the
group Λ(1)n ⊂ Λ(1) is equal to the greatest common divisor of the numbers
k(kn−1), k = 2, 3, . . . . In the canonical factorization of the number {k(kn−
1)} into prime factors only first powers can appear, and since t(y(pj−1)) = p,
j > 0 (see [11]), it follows that the homomorphism πp : Λ(1) → Λp is an

epimorphism. Let us define f
(p)
U = {π∗

p[kΨk]}.
Corollary 2.8. For any projection of type πp the coefficients of the

series f
(p)
U generate the entire ring Λp, which coincides with the ring of

coefficients of the formal group π∗
p(fU (u, v)) = f

(p)
U (u, v).

We consider now the spectral projection πp : ΩU ⊗Zp −→ ΩU ⊗Zp such
that π∗

p([CP
i]) = 0 if i+ 1 6= ph, and π∗

p([CP
i]) = [CP i], if i+ 1 = ph.

This projection was given in [14], starting from the Cartier operation over
formal groups. As was indicated § 1, the projection πp can be considered as
a “cohomology” operation on the set of all formal one-parameter over any
commutative a Zp-ring R.

We shall say that the formal group F (u, v) over the Zp-ring R belongs
to the class P if π∗

p(F (u, v)) = F (u, v). Note that the group π∗
pfU (u, v) is a

universal formal group for groups of class P over the ring Λp = Imπ∗
p(ΩU ).

From the description of the operator π∗
p and the definition of the pro-

jection π∗
p on the collection of groups it follows easily that for a torsion-free

Zp-ring R the group F (u, v) belongs to the class P if and only if its loga-

rithm has the form gF (u) = u+
∞∑

i=1

αiu
pi

.

We shall say that a formal power system f(u) over Zp-ring R belongs

to the class P if its logarithm has the form B(u) = u+
∑
λiu

pi

.

Lemma 2.9. The power system π∗
p[kΨ

k(u)] is a universal formal
power system of type 1 for the class P over the ring Λp = Imπ∗

p(ΩU ).

Proof easily follows from Lemma 2.4 and Corollary 2.8.
From Lemmas 2.4, 2.5 and 2.9 we have

Theorem 2.10. Let R be a torsion-free Zp-ring, f(u) a formal power
system of type 1 of the class P over R, and B(u) the logarithm of f(u).
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Then a formal one-parameter group F (u, v) = B−1(B(u)+B(v)) in class P
is defined over the ring R, and, moreover, the mapping f(u) → F (u, v) =
B−1(B(u) + B(v)) sets up a one-to-one correspondence between the col-
lection of all formal power systems of type 1 of class P over R and the
collection of all one-parameter formal groups of class P over R.

We shall now show that for a power system over a ring with torsion, as
distinct from the case of formal groups, the theorem that any system can
be lifted to a system over a torsion-free ring is not true. It will follow from
this, in particular, that the formal system {ksΨks

(u)} over the ring Λ(s) is
not universal on the category of all rings.

Example. Consider the ring R = Zp = Z/pZ; we shall display a power
system which cannot be lifted to a system over the ring Zp of p-adic integers.

Let f(u) =

{
fk(u) = ku+

∑
i>1

µi(k)u
pi

}

k=µ0(k)

be a formal power system.

Note that in R we have the identity xp = x. Since fk(fi(u)) = fkl(u), we
have

µ1(kl) = kµ1(l) + lµ1(k), . . . , µi(kl) =
∑

j+q=i
j>0,q>0

µj(k)µq(l).

Consequently the value of the function µi(k) for all i > 1 and prime
numbers k can be given arbitrarily. For example, the values of the func-
tion µ1(k) for the primes k = 2, 3, 5, . . . are arbitrary. Such functions
µ1(k) form a continuum. For formal systems of type s = 1, obtained from
a system over Zp by means of the homomorphism of reduction modulo p,

by Lemma 2.4 the function µ1(k) has the form

(
k(kp−1 − 1)

p

)
· γ = µ1(k),

where γ is a p-adic unit. Reduction of µ1(mod p) gives a monomial over
Zp. From this we have

Theorem 2.11. There exists a continuum of formal power systems
over the ring R = Zp which are not homomorphic images of any power
system over the p-adic integers (and in general over any torsion-free ring).

§ 2a

We shall indicate another geometrical realization of a universal power
system of type s = 2 which has an interesting topological meaning. In the
universal formal group f(u, v) the operation u→ ū = −Ψ−1(u), f(u, ū) =
0, is the lifting of the operation of complex conjugation into the cobordism
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of K-theory. Therefore the combination of the form uū = −uΨ−1(u) for
geometrical cobordism has the sense of “square of the absolute value” |u|2 =
uū.

Let F (u, v) be a formal group over the ring R and let ū be the element
inverse to u, i.e. F (u, ū) = 0. Consider the element x = uū ∈ R[[u]],
and let [u]k = F (u, . . . , u)(k places), where F (u, . . . , u) = F (u, F (u, . . .)).
Define ϕk(x) = [u]k · [ū]k where the product is the ordinary product in the
ring R[[u]]. We have

Lemma 2.12. For a formal group F = F (u, v) the values of the series
ϕk(x) = [u]k[ū]k lie in the ring R[[x]] = R[[uū]] and define a power system
of type s = 2 over the ring R.

Proof. Let fU = f(u, v) be the universal group over the ring R = ΩU ,
and let f(u, v) = g−1(g(u) + g(v)). Define B−1(−y) = g−1(−√

y)g−1(
√
y).

Since [u]k = g−1(kg(u)), we have ϕk(x) = g−1(kg(u)) × g−1(−kg(u)) =
B−1(−k2g(u)2). Furthermore x = g−1(g(u))g−1(−g(u)) = B−1(−g(u)2).
Therefore B(x) = −g(u)2 and ϕk(x) = B−1(−k2g(u)2) = B−1(k2B(x)).
Consequently ϕk(x) is a formal power system of type s = 2 over the ring
ΩU , with logarithm B(x). In view of universality of the group fU over ΩU

this completes the proof of the lemma in the general case.
We shall give a topological interpretation of Lemma 2.12. Consider

the Thom spectrum MSp = (MSp(n)) of the symplectic group Sp. In
particular MSp(1) = KP∞ is infinite dimensional quaternionic projective
space. The canonical embedding S1 → Sp(1) → SU(2) defines a map-
ping ϕ : CP∞ → KP∞, and consequently a mapping ϕ∗ : U∗(KP∞) →
U∗(CP∞), where U∗(KP∞) = ΩU [[x]], dimR(x) = 4, U∗(CP∞) = ΩU [[u]],
dimR u = 2 and ϕ∗(x) = uū. This follows from the fact that the canon-
ical Sp(1)-bundle γ over KP∞ restricted to CP∞ goes to η + η̄, and
x = σ2(γ) → σ1(η)σ1(η̄) = uū, where σi is the Chern class in cobordism
theory.

We set

ϕk(x) = (k2Ψk)x = k2x+
∞∑
i=1

µi(k)xi+1, x ∈ U4(KP∞), µi(k) ∈ Ω−4i
U .



2nd May 2007 16:22 WSPC/Book Trim Size for 9in x 6in main

§ 2. Formal power systems and Adams operators 339

From the properties of the operations Ψk (see [12]) we obtain

ϕk(ϕl(x)) = k2ϕl(x) +
∞∑
i=1

µi(k)(ϕl(x))i+1

= k2(l2Ψl(x)) +
∞∑
i=1

µi(k)l2i+2Ψl(xi+1)

= l2Ψl(k2Ψk(x)) = l2k2Ψlk(x) = ϕkl(x).

Here we used the formula Ψl(µi(k)) = l2iµi(k). Consequently the set of
functions ϕ(x) = {ϕk(x)} is a formal power system of type s = 2 over the
ring ΩU . Since k2Ψk(x) = k2Ψk(uū) = [u]k[ū]k, by this means we obtain a
topological proof of Lemma 2.12.

Remark. We note that in § VII of the paper of Novikov [13] in the proof
of Theorem 1b in Example 3 the case of groups of generalized quaternions was
analyzed and the “square modulus” system arose there; the properties of this
system are required for carrying out a rigorous proof for this example, without
which Theorem 1b cannot be proved. Indeed, we used the fact that k2Ψk(ω) is a
series in the variable ω with coefficients in ΩU , where ω = σ2(∆1). Moreover, for
carrying out the proof of Theorem 1b, in analogy with Theorem 1 we require the
fact that ∆i are all obtained from ∆1 by means of Adams operations, where the
∆i are the 2-dimensional irreducible representations of the group of generalized
quaternions.

Let us consider in more detail the logarithm B(x) = −g(u)2 of the for-
mal type s = 2 power system introduced in Lemma 2.12. Let t and z be
the generators of the cohomology groups H2(CP∞;Z) and H4(KP∞;Z),
respectively. Since ϕ∗(c2(γ)) = c1(η)c1(η̄), ϕ∗(z) = −t2. We have
chU (g(u)) = t, chU (B(x)) = −t2 = z. Consequently,

B−1(x) = chU (x)|z=x ∈ H ∗(KP∞; ΩU ⊗ Q) = ΩU ⊗ Q[[z]].

Let Ψ0 be the multiplicative operation in U∗ ⊗ Q theory, given by the

series Ψ0(u) = limk→0

(
1
k
g−1(kg(u))

)
= g(u) = u +

∑ [CPn]

n+ 1
un+1. Re-

call that in [2], [12] the operation Ψ0 was denoted by Φ. We have
chU Ψ0(x) = Ψ0 chU (x) = z; here we have used the fact that Ψ0(y) = 0,
where y ∈ Ω−2n

U , n > 0. Since the homomorphism chU : U∗(KP∞)
→ H ∗(KP∞; ΩU ⊗ Q) is a monomorphism, it follows from the equation
chU (B(x)) = z = chU (Ψ0(x)) that B(x) = Ψ0(x).

According to Theorem 2.3 of [2], we have the formula

chU (u) = t+
∞∑

n=1

[M2n] tn+1

(n+ 1)!
,
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for an element u ∈ U2(CP∞), where sω(−τ(M2n)) = 0, ω 6= (n) and
s(n)(M

2n) = −(n+ 1)!. Consequently,

chU (uū) =

(
t+

∞∑

n=1

[M2n] tn+1

(n+ 1)!

)(
−t+

∞∑

n=1

(−1)n+1[M2n] tn+1

(n+ 1)!

)

= −t2 +

∞∑

n=2



∑

i+j=2n

i>1,j>1

(−1)i [M
2i−2][M2j−2]

i!j!


 t2n,

and we obtain the formula

B−1(x) = x+

∞∑

n=2

[N4n−4] x
n

2n!
, [N4n−4] ∈ Ω−4n+4

U ,

where [N4n−4] =
∑

i+j=2n

i>1,j>1

(−1)n+iCi
2n[M2i−2][M2j−2] and [M2m] ∈ Ω−2m

U are

bordism classes which are uniquely defined by the conditions

sω(−τ(M2m)) = 0, ω 6= (m) and s(m)(τ(M
2m)) = −(m+ 1)!.

We have

Theorem 2.13. The type s = 2 power system constructed in

Lemma 2.12 for the group f(u, v) of geometrical cobordisms is universal

in the class of torsion-free rings if considered over the minimal ring of its

coefficient Λ ⊂ ΩU .

The proof follows easily from the fact that all the coefficients of the

series B−1(x) and B(x) are not zero and are algebraically independent in

ΩU ⊗Q.
From the preceding lemma we have

Corollary 2.14. For any complex X the image of the map-

ping [X,KP∞]
α−→ U4(X), which associates with the mapping ϕ : X →

KP∞ its fundamental class ϕ∗(σ2(γ)) in U∗-theory, is the domain

of definition of the type 2 power system that looks like B−1(k2B(x)),

where B−1(x) = g−1(
√
x)g−1(−√x). The Adams operations on this im-

age are given by k2Ψk(x) = B−1(k2B(x)), Ψ0(x) = B(x) ∈ U∗(X)⊗Q.
Questions. Is a type 2 power system defined directly on quaternionic

Sp-cobordisms [X,KP∞]→ Sp4(X)? Is the image Imα closed with respect

to power operations?
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What are the inter-relations between the ring of coefficients of the power

system B−1(k2B(x)) with the image ΩSp → ΩU?
Note that the restriction U∗(MSp(n)) → U∗(MU(n)) → U∗(CP∞

1 ×
. . .× CP∞

n ) consists of all elements of the form F (|u1|2, . . . , |un|2)
n∏

i=1

|ui|2,
where F is any symmetric polynomial (in distinction from classical coho-
mology, where we have symmetric functions of squares of Wu’s generators).

As was pointed out above, for the series B−1(x) we have

B−1(x) = x+

∞∑

n=2

[N4n−4] xn

(2n)!
, [N4n−4] ∈ Ω−4n+4

U ,

where [N4n−4] =
∑

i+j=2n
i>1,j>1

(−1)n+iCi
2n[M2i−2][M2j−2]. In particular,

[N4] = −8[M4] + 6[M2]2 = (2K) ∈ Im(ΩSp → ΩU ),

where K = 8[CP 2]− 9[CP 1]2.

Theorem 2.15. For n > 2 the bordism classes [N4n−4] belong to
the image of the homomorphism Ω−4n+4

Sp → Ω−4n+4
U . In addition, for n ≡

1 mod 2 the elements [N4n−4]/2 ∈ Ω−4n+4
U already belong to the group

Im(ΩSp → ΩU ).

Proof. Let v ∈ Sp4(KP∞) be the canonical element. As is well known,
p1(γ) = v (see [13]) and ω∗(p1(γ)) = σ2(γ) ∈ U4(KP∞), where p1 is the
first Pontrjagin class in the symplectic cobordism of the canonical Sp(1)-
bundle γ over KP∞ and ω : Sp∗ → U∗ is the natural transformation of
cobordism theory. We shall calculate the coefficients of the series

chSp(p1(γ)) = z +

∞∑

n=1

Cn

λn
zn+1 ∈ H4(KP∞,Ω∗

Sp ⊗Q) = Ω∗
Sp ⊗Q[[z]],

where chSp is the Chern–Dold character in Sp-theory (see [2]), Cn ∈
Ω−4n

Sp are indivisible elements in the group Ω−4n
Sp , λn ∈ Z. Since ch γ =

ch(η+η̄) = et+e−t = 2+t2+. . .+ 2t2n

(2n)!
+. . . and z → −t2, t ∈ H2(CP∞,Z),

we have

chSp(p1(γ)) = − ch2 γ +

∞∑

n=1

(−1)n+1 (2n+ 2)!

2λn
Cn ch2n+2(γ).

By making use of the decomposition principle for quaternion fibrations
and the additivity of the first Pontrjagin class we now find that for
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any Sp(m)-fiber bundle ζ over any complex X we have

chSp(p1(ζ)) = − ch2(ζ) +

∞∑

n=1

(−1)n+1 (2n+ 2)!

2λn
Cn ch2n+2(λ).

By Bott’s theorem we have the isomorphism

β : K̃Sp(S4n)
≃−→KO4(S4n), β(ζ) = (1 − γ1)⊗H ζ,

where γ1 is the Sp(1)-Hopf fiber bundle over S4.
We shall next identify the elements ζ ∈ K̃Sp(S4n) with their images in

the group K(S4n). The formula ch(cβ(ζ)) = ch(ζ) is easily verified, where
c : KO4 → K4 is the complexification homomorphism.

Let ξn and zn denote the generators of the groups K̃Sp(S4n) = Z
and H4n(S4n;Z) = Z, respectively. From Bott’s results concerning the
homomorphism of complexification it follows that ch ξn = anzn, where

an =

{
1, if n ≡ 1 mod 2,

2, if n ≡ 0 mod 2.

Thus

chSp(p1(ξn)) = (−1)n (2n)!

2λn−1
Cn−1 ch2n ξn = (−1)n (2n)!

2λn−1
anCn−1 · zn.

Since chSp(p1(ξn)) ∈H 4(S4n; Ω∗
Sp) ⊂H 4(S4n; Ω∗

Sp⊗Q), we find that the

number
(2n)!

2λn−1
an is an integer for any n.

It follows from [7] under the composition of homomorphisms

K̃Sp(X)
p1−→Ω4

Sp(X)
ω−→Ω4

U (X)
µ−→K̃(X)

the element ζ ∈ K̃Sp(X) goes into the element −ζ ∈ K̃(X), where µ is the
“Riemann-Roch” homomorphism. We have

− anzn = ch(−ξn) = ch(µωp1(ξn)) = µωchSp(p1(ξn))

= µω

(
(−1)n (2n)!

2λn−1
anCn−1zn

)
= (−1)n (2n)!

2λn−1
anTd(ω(Cn−1))zn,

where Td(ω(Cn−1)) is the Todd genus of the quasicomplex manifold
ω(Cn−1). Since the Todd genus of any (8m+ 4)-dimensional SU -manifold
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is even, we find that Td(ω(Cn−1)) = anδn for any n, where δn is an integer.
We have

(−1)n−1 (2n)!

2λn−1
anδn = 1.

Thus the number
2λn−1

(2n)!an

is an integer. On the other hand, it was shown

earlier that the number
(2n)!an

2λn−1
is also an integer. Consequently

2λn−1

(2n)!an

=

±1. Without loss of generality, we may assume that
2λn−1

(2n)!an

= 1. Since

an−1 · an = 2 for any n > 0, it follows that
an−1 · λn−1

(2n)!
= 1, and we find

λn−1 =
(2n)!
an−1

, Cn−1 = (−1)np1(ξn) ∈ Ω−4n+4
Sp

∼= Sp4(S4n),

T d(ω(Cn−1)) = (−1)n−1an.

We have therefore proved the following lemma.

Lemma 2.16. For the canonical element v = p1(γ) ∈ Sp4(KP∞) and
the Chern–Dold character in symmetric cobordism we have the formula

chSp(p1(γ)) = z +

∞∑

n=2

an−1Cn−1
zn

(2n)!
.

From the formula ωchSpp1(γ) = chU σ2(γ) we obtain

B−1(z) = chU σ2(γ) = z +

∞∑

n=2

[N4n−4] zn

(2n)!

= ωchSpp1(γ) = z +

∞∑

n=2

an−1ω(Cn−1)
zn

(2n)!
.

Consequently in the group Ω−4n+4
U we have the identity

an−1 · ω(Cn−1) = [N4n−4]

for any n. This theorem is proved.

Corollary 2.17. The rational envelope of the ring of coefficients
of the power system B−1(k2B(x)) of type s = 2 coincides with the group
Hom∗

AU (U∗(MSp),ΩU ), which is the rational envelope of the image ΩSp →
ΩU , where AU is the ring of operations of the U∗-cobordism theory.
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We note that the element (u + ū) = σ1(ξ + ξ̄) ∈ U2(CP∞) can
be expressed in terms of x = uū = σ2(ξ + ξ̄). We have (u + ū) =
g−1(g(u)) + g−1(−g(u)) = F (g(u)2) = F (−B(x)) = G(x), where

F (α2) = g−1(α) + g−1(−α) = −[CP 1]α2 +
∑

2
[M4n+2]

(2n+ 2)!
α2n+2.

Lemma 2.18. For any k the series Gk(x) = F (−k2B(x)) lie

in ΩU [[x]] and determine over the ring ΩU

[
1

[CP 1]

]
a formal type s = 2

power system by means of the formula

ϕk(ω) = F (k2F−1(ω)),

where ω = u+ ū = G(x).

The first assertion of the lemma follows from the fact that Gk(x) =
[u]k +[ū]k = σ1

(
ξk + ξ̄k

)
. The second assertion follows from the invertibil-

ity of the series F (α2) in the ring ΩU

[[
1

[CP 1]
, α2

]]
, as a consequence of

which —B(x) = F−1(G(x)) and Gk(x) = F (k2F−1(G(x))).

Corollary 2.19. Let F (u, v) = u+ v+α1,1uv+ . . . be a formal group
over the ring R. If the element α1,1 is invertible in R, then the formal
power system of type s = 2, defined by the series ϕk(ω) = [u]k + [ū]k ∈
R[[ω]], ω = u+ ū, is defined over the ring R.

Let ϕ(x) = {ϕk(x)} be a type s = 2 power system over a torsion-free
ring Λ. It is natural to state the following problem

(*) Describe all rings R such that 1) Λ ⊂ R; 2) there exists over the ring
R a one-dimensional formal group F (u, v) from which the original formal
power system {ϕk(x)} is obtained as a system of the form {[u]k[ū]k}, x =
uū.

We note that the set of all such pairs (R,F (u, v)) forms a category in
which the morphisms (R1, F1) → (R2, F2) are the ring homomorphisms
R1 → R2, which preserve the ring Λ and take the group F1 into the group
F2. Next we shall present a universal formal group in this category, and
by this means we shall obtain a complete solution to the problem stated
above.

We consider first the case where Λ = ΩU and ϕ(x) = {ϕk(x) =
[u]k[ū]k = B−1(k2B(x))}, x = uū.

Lemma 2.20. The power system ϕ(x) = {B−1(k2B(x))} together
with the series G(x) = F (−B(x)) = u+ū completely determines the original
formal group f(u, v) = g−1(g(u) + g(v)).
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Proof. By knowing the seriesG(x) we can calculate the series ū = θ(u)
from the equation u + θ(u) = G(u · θ(u)). Then, knowing the series B(x),
we can calculate the series g(u) from the equation B(u · θ(u)) = −g(u)2.

Remark. The proof of Lemma 2.20 actually uses the fact that the elements
u and ū are the roots of the equation

y2 − (u+ ū)y + uū = y2 −G(x)y + x = 0

over ΩU [[x]].

From the formula introduced above it follows that the coefficients of the
series F (x) and B(x) are algebraically independent and generate the entire
ring ΩU ⊗Q. We have

F (x) =
∑

i>0

yix
i+1, yi ∈ Ω−4i−2

U ⊗Q; B(x) =
∑

i>0

zix
i+1, zi ∈ Ω−4i

U ⊗Q

and
ΩU ⊗Q = Q[yi]⊗Q[zi].

Now let ϕ(x) = {ϕk(x)} be an arbitrary type s = 2 formal power system
over a torsion-free ring Λ and let B(x) =

∑
βix

i+1 be its logarithm. Con-
sider the ring homomorphism χ : ΩU ⊗ Q → Λ ⊗ Q[yi], defined by the
equation χ(zi) = βi, χ(yi) = yi, and let R denote the subring of Λ ⊗Q[yi]
which is generated by the ring Λ and the image of the ring ΩU ⊂ ΩU ⊗Q
under the homomorphism χ. The one-dimensional formal group F (u, v),
which is the image of the group f(u, v) over ΩU , is defined over R. From
the universality of the group f(u, v) and from Lemma 2.20 it follows easily
that the group F (u, v) over R is a universal solution of problem (*) for the
system {ϕk(x)} over Λ ⊂ R.

We note that from the proof of Lemma 2.20 there follows a di-
rect construction for the formal group F (u, v) over R from the system
{ϕk(x)} = {B−1(k2B(x))} over Λ. Indeed, it is necessary to carry out
the following procedure. Consider the ring Λ ⊗Q[yi] and over it the series
F (x) =

∑
yix

i+1 and the corresponding series G(x) = F (−B(x)); then, as
in Lemma 2.20, with respect to the series B(x) and G(x), find the series
gF (u) ∈ Λ ⊗ Q[[u, yi]]. The ring R is then the minimal extension of the
ring Λ in Λ ⊗ Q[yi], which contains the ring of coefficients of the group
F (u, v) = g−1

F (gF (u) + gF (v)).

§ 2b

We next turn our attention to the case where the power sys-
tem B−1(k2B(x)) = k2Ψ(uū) is related to a distinctive “two-valued formal
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group”
F±(x, y) = B−1((

√
B(x) ±

√
B(y))2),

in which the operation of raising to a power is single valued, and indeed
B−1(k2B(x)) = F± (x, . . . , x)︸ ︷︷ ︸

k times

. If x = uū, y = vv̄, then F±(x, y) =

{|f(u, v)|2; |f(u, v̄)|2}, and for the U(1)-bundles ξ, η over CP∞ × CP∞,
where u = σ1(ξ), σ = σ1(η), we have F±(x, y) = {σ2(ξη + ξη);σ2(ξη +
ξη)}, x = σ2(ξ + ξ), y = σ2(η + η).

Lemma 2.21. The sum F+(x, y)+F−(x, y) and the product F+(x, y)·
F−(x, y) of values for the two-valued group do not contain roots and lie in
the ring ΩU [[x, y]].

Proof. Consider the mapping CP∞ ×CP∞ → KP∞× KP∞, whose
image U∗(KP∞ × KP∞) → U∗(CP∞ × CP∞) is precisely ΩU [[x, y]] ⊂
ΩU [[u, v]], x = uū, y = vv̄. Since x = σ2(ξ + ξ̄), y = σ2(η + η̄), we have
that σ2((ξ + ξ̄)(η + η̄)) = a lies in ΩU [[x, y]]; moreover a = σ2(ξη + ξη) +
σ2(ξη̄+ ξ̄η) + σ1(ξη+ ξη)σ1(ξη̄+ ξ̄η) = F+(x, y) +F−(x, y) + σ1σ

′
1. Next,

σ1(ξη̄+ξη) = g−1(g(u)+g(v))+g−1(−g(u)−g(v)), σ1(ξη̄+ξ̄η) = g−1(g(u)−
g(v)) + g−1(g(v)− g(u)). Let g(u) = γ, g(v) = δ. Therefore

σ1 · σ′
1 = σ1(ξη + ξ̄η̄)σ1(ξη̄ + ξ̄η)

= [g−1(γ + δ) + g−1(−γ − δ)][g−1(γ − δ) + g−1(δ − γ)],

i.e. σ1 · σ′
1 is a function of γ2 and δ2. Also, since γ2 = g(u)2 = −B(x)

and δ2 = g(v)2 = −B(y), the product σ1(ξη+ξ̄η̄)σ1(ξη̄+ξ̄η) is a function of
x and y. Since F+(x, y)+F−(x, y) = σ2(ξ+ξ̄)(η+η̄)−σ1(ξη+ξ̄η̄)σ1(ξη̄+ξ̄η),
it follows that F+(x, y) ∈ ΩU [[x, y]].

We conclude the proof by noting that F+(x, y) · F−(x, y) = σ2(ξη +
ξ̄η̄)σ2(ξη̄ + ξ̄η) = σ4((ξ + ξ̄)(η + η̄)) ∈ ΩU [[x, y]].

Let us set F+(x, y)+F−(x, y) = Θ1(x, y), F
+(x, y)·F−(x, y) = Θ2(x, y).

It now follows from Lemma 2.21 that the law of multiplication in the two-
valued formal group F±(x, y) = B−1((

√
B(x)±

√
B(y))2) is given by solv-

ing the quadratic equation

Z2 −Θ1(x, y)Z + Θ2(x, y) = 0

over the ring ΩU [[x, y]]. Let Λ ⊂ ΩU denote the minimal subring in ΩU

generated by the coefficients of the series Θ1(x, y) and Θ2(x, y). We have
Λ =

∑
n>0

Λ4n,Λ4n ⊂ Ω−4n
U .

Our next problem is to describe the ring Λ, which is natural to look
upon as the ring of coefficients of the two-valued formal group F±(x, y). In
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the ring Λ it is useful to distinguish the two subrings Λ′ and Λ′′ which are
generated by the coefficients of the series Θ1(x, y) and Θ2(x, y) respectively.
As will be shown next, neither of the rings Λ′ and Λ′′ coincides with Λ.
It is interesting to note that the ring of coefficients of the formal power
system ϕ(x) = {ϕk(x)} = {B−1(k2B(x))} lies in, but does not coincide
with, the ring Λ′. This follows from the facts that ϕ1(x) = x, ϕ2(x) =
Θ1(x, x) and for any k > 3 the formula

ϕk(x) = Θ1(ϕk−1(x), x) − ϕk−2(x)

is valid.
The canonical mapping of the spectra MSp → MU , which cor-

responds to the inclusion mapping Sp(n) ⊂ U(2n), defines an epi-
morphism AU → U∗(MSp), and consequently the inclusion of the
ring HomAU (U∗(MSp),ΩU ) in ΩU . We shall next identify the ring
HomAU (U∗(MSp),ΩU ) with its image in ΩU .

Theorem 2.22. The quadratic equation

Z2 −Θ1(x, y)Z + Θ2(x, y) = 0,

which determines the law of multiplication in the two-valued formal group
F±(x, y), is defined over the ring HomAU (U∗(MSp),ΩU ), and, moreover,

HomAU (U∗(MSp),ΩU )⊗ Z
[
1
2

]
∼= Λ⊗ Z

[
1
2

]
,

where Λ is the ring of coefficients of the group F±(x, y).

Remark 2.23. Apparently the rings HomAU (U∗(MSp),ΩU ) and Λ are
isomorphic, but at the present time the authors do not have a rigorous proof of
this fact1.

Let ΩU (Z) be the subring of ΩU ⊗ Q which is generated by the ele-
ments all of whose Chern numbers are integers. As was shown in [2], the
ring ΩU (Z) is isomorphic to the ring of coefficients of the logarithm of the

universal formal group f(u, v), i.e. ΩU (Z) = Z

[
[CP 1]

2
, . . . ,

[CPn]

n+ 1
, . . .

]
.

The Chern–Dold characteristic chU for any complex X defines a natural
transformation

chU : H∗(X)→ HomAU (U∗(X),ΩU (Z))
1These rings are not isomorphic. The manifold M4n, whose complex cobordism

class belongs to HomAU (U∗(MSp), ΩU ), but not to Λ, appears starting from n > 3.
For details see [В.М.Бухштабер, Топологические приложения теории двузначных
групп, Изв. АН СССР, сер. матем., 1978, Т. 42, N. 1, 130–184]. — V. M. Buchstaber’s
remark (2004).
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(see [2], Theorem 1.9), which, as is easily shown, is an isomorphism for
torsion-free complexes in the homology. We have

chU : H∗(MSp)
≈−→ HomAU (U∗(MSp),ΩU (Z)).

The inclusion mapping ΩU ⊂ ΩU (Z) and the canonical homomorphism
AU → U∗(MSp) lead to the commutative diagram

HomAU (U∗(MSp),ΩU ) −−−−→ ΩUy
y

H∗(MSp)
λ−−−−→ ΩU (Z),

in which all the homomorphisms are monomorphisms.
Since λ(h) = (chU v, h) and chU x = B−1(x), where h ∈ H∗(MSp), v is

the generator of the AU -module U∗(MSp), and x is the generator of the
group U4(KP∞), it follows that the ring Imλ ⊂ Ω(Z) coincided with the
ring of coefficients of the logarithm of the power system {B−1(k2B(x))}.
Thus it follows from the diagram that the ring HomAU (U∗(MSp),ΩU ) co-
incides with the subring of ΩU whose elements are polynomials in the ele-
ments yi ∈ ΩU (Z) with integral coefficients, where B(x) = x+

∑
yix

i+1.
As an immediate check it is easy to see that the coefficients of the

series Θ1(x, y) = F+(x, y) + F−(x, y) and Θ2(x, y) = F+(x, y) · F−(x, y),

where F±(x, y)=B−1((
√
B(x)±

√
B(y))2)=B−1



(
x

√
B(x)
x ±y

√
B(y)
y

)2

.

are polynomials with integral coefficients from among the coefficients of the
series B(x). The proof of the first part of the theorem is therefore complete.

For the proof of the second part of the theorem we require a lemma,
which is itself of some interest.

Lemma 2.24. Let Λ =
∑

Λ4n be the ring of coefficients of a two-
valued formal group. The minimum positive value of the t-characteristic on
the group Λ4n is equal to 2s(n)p if 2n = pi − 1, where p is prime, and is
equal to 2s(n) if 2n 6= pi − 1 for all p, where

s(n) =

{
3, if n = 2j − 1,

2, if n 6= 2j − 1.

Now, since HomAU (U∗(MSp),ΩU ) ⊗ Z
[
1
2

]
⊂ ΩU

[
1
2

]
is a polynomial

ring, the proof of the second part of the theorem is easily obtained, via a
standard argument concerning the t-characteristic, from the results of [11]
and Lemma 2.24.
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Proof of Lemma 2.24. Let x and y be the generators of the
group U4(KP∞ ×KP∞). We have

Θ1(x, y) = 2x+ 2y +
∑

βi,jx
iyj , βi,j = βj,i ∈ Ω

−4(i+j−1)
U ,

Θ2(x, y) = x2 − 2xy + y2 +
∑

αi,jx
iyj , αi,j = αj,i ∈ Ω

−4(i+j−2)
U .

Let z1 and z2 be the generators of the group H4(KP∞×KP∞). By using
Corollary 2.4 of [2] we obtain immediately from the definitions of the series
Θ1(x, y) and Θ2(x, y) that

chU Θ1(x, y) = 2z1 + 2z2 + 4
∑

m>1

(−1)m [M4m]

(2m+ 1)!

m+1∑

l=0

C2l
2m+2z

l
1z

m−l+1
2 ,

chU Θ2(x, y) = z2
1 − 2z1z2 + z2

2

+ 4
∑

m>1

(−1)m [M4m]

(2m+ 1)!

m+1∑

l=0

(C2l
2m − 2C2l−2

2m + C2l−4
2m ) · zl

1z
m−l+2
2 ,

where s2m[M4m] = −(2m+ 1)!. On the other hand,

chU x = B−1(x) = z1 +
∑

m>1

[N4m]
zm+1
1

(2m+ 2)!
,

where s2m([N4m]) = (−1)m+1 ·2(2m+2)!. By combining these formulas we
find

a) s2m(βm+1,0) = 0, s2m(βl,m−l+1) = (−1)m+14C2l
2m+2, 0 < l < m+ 1,

b) s2m(αm+2,0) = 0, s2m(αm+1,1) = (−1)m+14(C2
2m − C0

2m),
s2m(αl,m−l+2) = (−1)m+14(C2l

2m − 2C2l−2
2m + C2l−4

2m ), 1 < l < m+ 1.
We set ϕn,i = C2i

2n − C2i−2
2n . From equations a) and b) we obtain that

the smallest value of the t-characteristic on the group Λ4n is equal to the
greatest common divisor of the numbers {4C2l

2n+2, 4ϕn,l}i=1,...,n. Since the
greatest common divisor of the numbers {C2l

2n+2}l6=0,n+1 is even for n+1 =
2j, and odd for the remaining n, by using the formula ϕn,l + C2l

2n+2 =
2C2l

2n+1, we complete the proof of the lemma.

Remark. It follows from а) that the coefficients of the series Θ1(x, y) =
F+(x, y)+F−(x, y) do not generate the entire ring of coefficients of the two-valued
formal group. From b) there follows a similar assertion for the series Θ2(x, y) =
F+(x, y) · F−(x, y).

Let F (u, v) be a formal group over the ring R, and let gF (u) be its

logarithm. Consider the complete set (ξ0 = 1, ξ1, . . . , ξm−1) of m-th roots
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of unity. Let B−1
m (−y) =

∏m−1
j=0 g−1

F (ξj m
√
y), x =

∏m−1
j=0 g−1

F (ξjgF (u)) ∈
R⊗Q[[u]]. Then Bm(x) = gF (u)m and we obtain the formal power system

F
(m)
k (x) = B−1

m (kmBm(x)) =
∏m−1

j=0 g−1
F (kξjgF (u)) of type m. The coeffi-

cients of the series F
(m)
k (x) = B−1

m (kmBm(x)) automatically lie in the ring

R for a formal group F (u, v) with complex multiplication by ξj (raising to

the power ξj). The particular casem = 2 of this construction was examined

in detail in Lemma 2.121.

Example. Consider the formal group f (p)(u, v) = π̄∗
p(f(u, v)),

where π̄∗
p is Quillens’ p-adic geometric cobordism projector and f(u, v) is

the universal formal group over ΩU . As we have already noted,

the logarithm g(p)(u) of the group f (p)(u, v) has the form g(p)(u) =

π̄∗
pg(u) =

∑
h>0

[CP ph
−1]

ph
uph

. Let m = (p − 1), then ξph

j = ξj

and g(p)(ξju) = ξjg
(p)(u), (g(p))−1(ξjg

(p)(u)) = ξju. We have x = −up−1 =∏p−2
j=0 (g(p))−1(ξjg

(p)(u)), Bp−1(x)=−(g(p)(u))p−1=Bp−1(−up−1). Thus for-

mal raising to a power F
(p−1)
k (x) = B−1

p−1(k
p−1Bp−1(x)) for the group

f (p)(u, v) is “integer valued”, and F
(p−1)
k (x) = kp−1Ψk(−up−1). Conse-

quently in U∗
p -theory the (p − 1)-th powers of geometrical cobordisms are

the range of definition of a power system of type s = p− 1.

We now note that the roots of unity of degree p−1 lie in the ring p-adic

integers Zp. Therefore g−1(ξjg(u)) ∈ ΩU [[u]]⊗Zp and
∏p−2

i=0 g
−1(ξjg(u)) =

x ∈ ΩU [[u]]⊗ Zp,
∏p−2

j=0 g
−1(kξjg(u)) ∈ ΩU [[u]]⊗ Zp, and the series Bm(x)

defines a power system of type m = p−1, whose p-adic projector was given

in the above example.
The Adams operators are evaluated for an element x by the formula

kp−1Ψk(x)= B−1
p−1(k

p−1Bp−1(x)) in U∗ ⊗ Zp-theory.
In analogy with Theorem 2.13 we have

Theorem 2.25. The power system B−1
p−1(k

p−1Bp−1(x)) of type
s = p− 1, considered over the minimal ring of its coefficients, is universal
in the class of all power systems of type (p− 1) over torsion-free Zp-rings.

The proof, as did for Theorem 2.13, follows from the fact that the coef-
ficients of the series Bp−1(x) are all non-zero and algebraically independent
in ΩU ⊗Qp, where Qp is the field of p-adic numbers.

1Here it is also appropriate to speak of the “multi-valued formal group” (F (x, y) =

{B−1
m [( m

√
Bm(x) + ξk

m
√

Bm(y))m], k = 0, . . . , m− 1}. It would be interesting to know
the nature of the ring of coefficients in this case.
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We turn now to a different question which is also connected with the
formal group of geometrical cobordisms and a type s = 1 system associated
with it; namely, to the theory of fixed points of transformations T (T 0 = 1)
of quasicomplex manifolds (see [5], [9], [13]), which act so that the manifolds
of fixed points have trivial normal bundle (or, for example, only isolated
fixed points P1, · · · ,Pq ∈ Mn, T (Pj) = Pj . If the transformation dT |Pj

has eigenvalues λ(j)
k = exp

{
2πix

(j)
k

p

}
, k = 1, . . . , n, j = 1, . . . , q, then the

“Conner-Floyd invariants” α2n−1(x
(j)
1 , . . . , x

(j)
n ) ∈ U2n−1(BZp), and it is

known that
U∗(BZp) = ΩU [[u]]/(pΨp(u)) (see [12]),

α2n−1(x1, . . . , xn) =
n∏

j=1

u
g−1(xjg(u))

⋂
α2n−1(1, . . . , 1),

where uk
⋂
α2n−1(1, . . . , 1) = α2(n−k)−1(1, . . . , 1) (see [5], [9], [13])

and g−1(xg(u)) = xΨx(u). Here it is already clear that only the coef-
ficients of the power system enter into the expression for U∗(BZp) and
α2n−1(x1, . . . , xn). There is still one further question: on which classes
of ΩU can the group Zp = Z/pZ act? As is shown in [5], [9], the basis
relations 0 = α2n−1(x1, . . . , xn) − ∏n

j=1
u

xjΨ
xj (u)

⋂
α2n1(1, . . . , 1) and 0 =

p
Ψp(u)
u

⋂
α2n−1(1, . . . , 1), are realized on the manifoldsMn(x1, . . . , xn) and

Mn(p), and determine the elements
[∏n

j=1
u

xjΨ
xj (u)

]
n

∈ Ω2n
U (mod pΩU )

and
[
p

Ψp(u)
u

]
n

∈ Ω2n
U (mod pΩU ), whence it follows that the cobordism

class of the manifold with Zp-action of this sort coincides (mod pΩU ) with
the ΩU -module Λ̄(1) = ΩU · Λ+(1), where Λ+(1) is the positive part of
the ring Λ(1) of coefficients of the power system g−1(kg(u)). On the other
hand, from Atiyah and Bott’s results [15] for the complex d′′ on forms of
type (0, q) and holomorphic transformations T : Mn → Mn we may intro-
duce the following formula for the Todd genus T (Mn) mod p, for example.

Lemma 3.1. Let λ
(j)
k = exp

(
2πix

(j)
k

p

)
be the eigenvalues of the
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transformation dT on the fixed points Pj , j = 1, . . . , q, k = 1, . . . , n. Then

− T (Mn) ≡
q∑

j=1

p− 1
∏n

k=1−x
(j)
k

×
∞∑

l=−

[
n

p−1

]
(−p)l




n∏

k=1

− x(j)
k z

1− exp
{
−x(j)

k

(
z + zp

p

)}




n+l(p−1)

mod β.

This formula and its proof were communicated by D. K. Faddeev.

Proof. For the Euler characteristic χ(T ) of the indicated elliptic com-
plex we have the Atiyah-Bott formula:

χ(T ) =

q∑

j=1

1

det(1− dT )Pj

=

n∑

j=1

q∏

k=1

1

1− exp

{
−2πix

(j)
k

p

} .

Since 1
p
∑

l∈Zp

χ(T l) = ϕ is the alternating sum of the dimensions of the

invariant spaces of the action T on the homology of the complex χ(1) =
T (Mn), we have

χ(1) = T (Mn) = −
q∑

j=1

p−1∑

l=1

n∏

k=1

1

1− exp

{
−2πx

(j)
k l
p

} + pϕ.

If Tr : Q( p
√

1) → Q is the number-theoretic trace, then by definition we
have

−T (Mn) ≡
q∑

j=1

Tr




n∏

k=1

1

1− exp

{
2πix

(j)
k

p

}




mod p.

The field Q( p
√

1) and the field Q are embedded in the p-adic completions of
k = Qp(ε), ε = p

√
1, and Qp. There exists in the field k an element λ such

that λp−1 = −p and k = Qp(λ). Next, Tr(λs) = 0 for s 6≡ 0 mod (p − 1)

and Tr(λk(p−1)) = (−1)kpk(p− 1). Since ε = exp
(
z + zp

p

)∣∣∣
z=λ

, we have

exp

{
−2πixk

p

}
= ε−xk = exp

{
−
(
xkz + xk

zp

p

)}
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(in k). Therefore

n∏

k=1

1
1− ε−xk

=

n∏

k=1

1

1− exp
{
−
(
xkz + xk

zp

p

)}

∣∣∣∣∣∣∣
z=λ

= 1
zn
∏n

k=1−xk

n∏

k=1

xkz

1− exp
{
−xk

(
z + zp

p

)}

=
(−1)n

zn
∏n

k=1 xk

(
1 +

∞∑

s=1

Ps(x1, . . . , xn)λs

)
.

Thus,

Tr

(
n∏

k=1

1
1− ε−xk

)
=

p− 1∏n
k=1−xk

×
∞∑

l=−

[
n

p−1

]
(−p)k




n∏

k=1

xkzk

1− exp
{
−xk

(
z + zp

p

)}




n+l(p−1)

.

The proof of the lemma is concluded by summing over the fixed points.
For p > n+ 1 this gives the formula

T (Mn) =

q∑

j=1

(−1)n

x
(j)
1 . . . x

(j)
n


∏ − x(j)

k z

1− exp{−x(j)
k z}




n

,

proved in [13] as a consequence of Tamura’s results.
We see that by Atiyah and Bott’s procedure each fixed point is assigned

a rational invariant. How does the analogous procedure look in bordism
theory?

Let us define the functions γp(x1, . . . , xn) ∈ ΩU

[
1
p

]
such that under the

action of T on Mn, T p = 1, with isolated fixed points P1, . . . ,Pq having

weights x
(j)
k , j = 1, . . . , q, k = 1, . . . , n, the relation

q∑

j=1

γp(x
(j)
1 , . . . , x(j)

n ) ≡ [Mn] mod pΩU

is valid. Consider the ΩU⊗Zp-free resolvent of the module U∗(BZp, point):

0 −→ F1
d−→ F0 −→ (BZp, point) −→ 0,
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where for the generators of U∗(BZp, point) we take the elements
α2n−1(x1, . . . , xn) ∈ ∈ U2n−1(BZp, ∗) and the minimal module of re-
lations is spanned by the relations a(x1, . . . , xn)=α2n−1(x1, . . . , xn)−(∏n

i=1
u

xiΨ
xi(u)

)⋂
α2n−1(1, . . . , 1) and an = pα2n−1(1, . . . , 1)+

(
pΨp(u)
u

)⋂

α2n−1(1, . . . , 1). Let Φ : F1 → ΩU ⊗ Zp denote the ΩU ⊗ Zp-module

such that Φ(a(x1, . . . , xn)) =

[∏n
i=1

u
xiΨ

xi(u)

]
∈ ΩU ⊗ Zp and Φ(an) =

−
[
pΨp(u)
u

]

n

. As we pointed out above, for any set of weights (x1, . . . , xn)

we have the congruence Φ(a(x1, . . . , xn)) ≡ [Mn](mod p), where Mn is a
quasi-complex manifold on which the relation a(x1, . . . , xn) is realized. Rel-
ative to the multiplication operation, out of the relations in U∗(BZp) the
group F1 is a ring, and, as is clear, the homomorphism Φ mod p : F1 → ΩU

(mod pΩU ) coincides with the well-known ring homomorphism which asso-
ciates with each relation in F1 the bordism class mod p of the manifold on
which this relation is realized. The homomorphism Φ can be extended to
a homomorphism

γp : F0 → ΩU ⊗Qp, γp(dF1) = Φ.

Lemma 3.2. For any set of weights (x1, . . . , xn) we have the formula

γp(x1 . . . xn) =


 1
x1 . . . xn




n∏

j=1

u
Ψxj (u)


 u

Ψp(u)




n

.

In particular,

γp(1, . . . , 1) =

[
u

Ψp(u)

]

n

.

Proof. In the free ΩU ⊗ Zp-module F0 we have the identity

α2n−1(x1, . . . , xn) = a(x1, . . . , xn) +

n−1∑

k=0




n∏

j=1

u
xjΨ

xj (u)




k

α2n−2k−1,

[
u

xiΨ
xi(u)

]

k

∈ Ω2k
U ⊗ Zp, α2n−2k−1 = α2n−2k−1(1, . . . , 1). Also, since γp :

F0 → ΩU ⊗Qp is an ΩU ⊗ Zp-module homomorphism and γp(a(x1, . . . ,

xn)) =

[∏n
i=1

u
xiΨ

xi

]

n

, it is sufficient to prove the lemma for the set of

weights (1, . . . , 1). We have

−an +

n−1∑

k=0

[
pΨp(u)
u

]

k

α2n−2k−1 = 0, n > 1,
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γp(an) +

n−1∑

k=0

[
pΨp(u)
u

]

k

γp(α2n−2k−1) = 0,

[
pΨp(u)
u

]

n

+

n−1∑

k=0

[
pΨp(u)
u

]

k

γp(α2n−2k−1) = 0,

(
pΨp(u)
u

)
1 +

∞∑

j=1

γp(α2j−1)u
j


 = p,

1 +

∞∑

j=1

γp(α2j−1)u
j = u

Ψp(u)

and the lemma is proved.
It follows immediately from the definition of the homomorphism Φ :

F1 → ΩU ⊗ Zp that ImΦ(F1) = Λ̃(1) ⊗ Zp ⊂ ΩU ⊗ Zp, where Λ̃(1) =
Λ+(1) · ΩU and Λ(1) is the ring of coefficients of the power system
{kΨk(u)}k=±1,±2,... .

Lemma 3.3. The group Im γp(F0) ⊂ ΩU ⊗ Qp coincides with the
ΩU ⊗ Zp-module spanned by the system of polynomial generators δn,p of
the ring ΩU (Z) ⊗ Zp of coefficients of the logarithm for the formal group

f(u, v)⊗ Zp, where 1 +
∞∑

n=1
δn,pt

n = t
Ψp(t)

.

The proof of the lemma follows easily by evaluating the t-characteristic

of the coefficients of the series Ψp(u) =
g−1(pg(u))

p , by means of the fact that

all the Chern numbers of the coefficients of the series pΨp(u) are divisible
by p, and from the form of the functions γp(x1, . . . , xn), given in Lemma
3.2.

From the exactness of the sequence

0→ F1 → F0 → U∗(BZp, point)→ 0

we now find that a ΩU ⊗ Zp-module homomorphism

γp : U∗(BZp, point)→ γ(F0)/Φ(F1),

is defined, where Φ(F1) = Λ̃(1)⊗Zp and γ(F0)/Φ(F1) ⊂ ΩU (Z)/Λ̃(1)⊗Zp,
which is clearly an epimorphism. By collecting these results together, we
arrive at the following Theorem.

Theorem 3.4. Functions γp(x1, . . . , xn), of the fixed points are de-
fined which take on values in the ring ΩU (Z) ⊗ Zp of coefficients of the

logarithm g(u) =
∑ [CPn]

n+ 1
un+1 of the formal group f(u, v)⊗ Zp for which
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a) for the action of T on the quasicomplex manifold Mn, T p = 1, with

the fixed manifold of classes λj ∈ ΩU , having weights (x
(j)
k ) ∈ Z∗

p in the
(trivial) normal bundles, we have the relations

[Mn] ≡
∑

j

λjγp(x
(j)
1 , . . . , x(j)

mj
) mod p ΩU , [Mn] ∈ Λ̃(1),mi +dimλi = n,

and

γp(x1, . . . , xm) =

[
u

Ψp(u)

m∏

j=1

u
xjΨ

xj (u)

]

m

;

b) the quotient module over ΩU⊗Zp, equal to ΩU (Z)/Λ̃(1)⊗Zp, contains
the non-trivial image of the module U∗(BZp, point) under γp, coinciding
with the quotient module Λ̃(1) if the submodule in ΩU (Z) ⊗ Zp, which is
spanned by the system of polynomial generators δn,p.

Here Λ̃(1) is the ΩU -module which is generated by the ring Λ+(1)
of coefficients of the power system {g−1(kg(u))} of type s = 1, and

1 +
∑
n>1

δn,pt
n = t

Ψp(t)
.

Remark 1. If one deals with the action of a transformation T, T p = 1, having
isolated fixed points, then we have the group Uisol(Zp) ⊂ U∗(BZp), spanned by
all the elements α2n−1(x1, . . . , xn) (without the structure of an ΩU -module), with
the resolvent Zp:

0 → G1
d−→ G0 → Uisol(Zp) → 0,

where G0, G1 are free and the generator G1 is a formal relation. As above,
homomorphisms

Φ : G1 → ΩU ⊗ Zp and Φ′ : G0 → ΩU ⊗Qp,

are defined, where Φ′d = Φ. The quotient group Φ′(G0)/Φ(G1) is a p-group and
there exists a homomorphism

γ : Uisol(Zp) → Φ′(G0)/Φ(G1).

We now consider the mappings U∗ → K∗ and U∗ → K∗ generated by
the Todd genus. For the T -genus we have

T (γp(x1, . . . , xn)) =

[
pu

1− (1− u)p

n∏

k=1

u
1− (1− u)xk

]

n

∈ Qp.

For example, T (γ2(1, . . . , 1)) = 1
2n .

Under the action of the group Zp on the manifold Mn with isolated

fixed points P1, . . . ,Pq having weights x
(j)
k , k = 1, . . . , n, j = 1, . . . , q, we

have the formula
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T (Mn) ≡
q∑

j=1

T (γp(x
(j)
1 , . . . , x(j)

n )) mod pZp,

where pZp ⊂ Qp. At first sight this formula differs from the Atiyah-Bott
formula given in Lemma 3.1. The question arises of how to reconcile these
two formulas1? Another question, similar to the subject of the Stong–
Hattori theorem [7], is: does the set of relations given by Atiyah–Bott –
Singer for the action of Zp on all possible elliptic complexes define an ex-
tension Ωv(Z)⊗Zp of the cobordism ring (more precisely, the module Λ̃(1)
and the ring Λ(1) in ΩU )?

We now show that the results of [17] permit us to generalize our con-
struction to the case of the action of a transformation T, T p = 1, for which
the manifolds of fixed points have arbitrary normal bundle.

Let T be a transformation of order p on the manifold Mn. As was
shown in [16], the normal bundle νj at any pointwise-fixed manifold

Nj ⊂ Mn can be represented in the form νj =
⊕p−1

k=1 νjk, where the ac-
tion of the group Zp on the fiber νjk given by multiplication by the num-

ber e
2πi
p k

. Thus the set of all fixed point submanifolds of the transforma-
tion T together with their normal bundles defines an element of the group

A =
∑
U∗

(∏p−1
k=1 BU(lk)

)
, where the sum extends l1, . . . , lp−1, l > 0. By

using the mapping BU(n)×BU(m)→ BU(n+m) (Whitney sum), a mul-
tiplication can be introduced into A. It is not difficult to show that A
becomes a polynomial ring ΩU [aj,k], j ∈ Z∗

p , k > 0, where aj,k is the bor-

dism class of the embedding CP k ⊂ CP∞ = BU(1), considered together

with the action of the transformation T = e
2πi
p j

on the Hopf fiber bundle
over CP k. We introduce a grading into A by setting dim aj,k = 2(k + 1).
We next describe the fixed point submanifolds Nm in terms of the gen-
erators aj,k. For example, a fixed point with weights (x1, . . . , xn) is de-
scribed by the monomial a0,x1 . . . , a0,xn

. Consider the canonical homo-
morphism α : A→ U∗(BZp,point), corresponding to the free action of the
group Zp on the sphere bundle associated with the normal fiber at a fixed
point manifold. Denote by α((x1, k1), . . . , (xl, kl)) the image under α of the
monomial ax1,k1 . . . , axl,kl

, α((x1, k1), . . . , (xl, kl)) ∈ U2n−1(BZp, point),

where n =
l∑

m=1
(km + 1). From [17] we take the following description of

the elements α((x1, k1), . . . , (xl, kl)).
1An answer to this question is given in the Appendix.



27th April 2007 10:47 WSPC/Book Trim Size for 9in x 6in main

358 V.M. Buchstaber, S. P. Novikov

G(u, t) =

∂
∂t
g(ut)

f(u, ut)
= 1 +

∞∑

n=1

Gn(u)tn,

where g(ut) =
∞∑

n=0

[CPn]

n+ 1
(ut)n+1 is the logarithm of the formal group f(u, v)

and ut = g−1(−g(ut))1. Clearly Gn(0) = 1 for any n > 1. We set

Ψx,n(u) =
Ψx(u)

Gn(xΨx(u))
.

We have Ψx,0(u) = Ψx(u), Ψ1,n(u) = u
Gn(u)

. From [17] we find that for

any set ((x1, k1), . . . , (xl, kl)),
l∑

m=1
(km + 1) = n, we have

α((x1, k1), . . . , (xl, kl)) =




l∏

j=1

u

xjΨ
xj,kj (u)


⋂α2n−1(1, . . . , 1).

Since Ψ1,0(u) = u, from [16] we find that the relation α((x1, k1), . . .,

(xl, kl)) =

(
∏l

j=1
u

xjΨ
xj·kj (u)

)
⋂
α2n−1(1, . . . , 1) is realized in the man-

ifold Mn, determined by the element



l∏

j=1

u

xjΨ
xj,kj (u)




n

∈ Ω2n
v mod pΩU .

By repeating the proof of Lemma 3.2, we obtain the following theorem.

Theorem 3.5. A homomorphism γp : A⊗ Zp → ΩU ⊗Qp is defined
such that for any set ((x1, k1), . . . , (xl, kl)) we have the formula

γp((x1, k1), . . . , (xl, kl)) =


 1
x1 . . . xl




n∏

j=1

u

Ψxj ,kj (u)


 u

Ψp(p)




n

,

n =
l∑

m=1

(km + 1),

and if the element a ∈ A corresponds to the union of all the fixed point
submanifolds of the Zp action on Mn, then γp(a) ≡ [Mn] mod p.

1Note that under the substitution t → z
u (u is a parameter) the differential G(u, t)dt

goes into the meromorphic differential
dg(z)

f(u, z̄)
on the group f(u, v), which is invariant

with respect to the shift u → f(u, w), z → f(z, w).
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Appendix

The Atiyah–Bott formula, the functions γp(x1, . . . , xn) of fixed
points in bordism and the Conner–Floyd equation

Let ε be a primitive p-th root of unity, and let Tr: Q(ε) → Q be the
number-theoretic trace.

Definition 1. The Atiyah–Bott function AB(x1, . . . , xn) of fixed points
is the function which associates with each set of weights (x1, . . . , xn), xj ∈
Zp, the rational number

AB(x1, . . . , xn) = −Tr




n∏

k=1

1

1− exp
{

2π
p xk

}


 .

As a corollary of the Atiyah–Bott formula for fixed points, we have

Theorem 2. Let f : Mn →Mn be a holomorphic transverse mapping
of period p of a compact complex manifold Mn and let P1, . . . ,Pq be its
fixed points. The mapping df |Pj in the tangent space at the fixed point Pj

has the eigenvalue λ
(j)
k = exp

{
2πi
p x

(j)
k

}
, k = 1, . . . , n, then the number

q∑

j=1

AB(x
(j)
1 , . . . , x(j)

n )

is an integer and coincides modulo p with the Todd genus T (Mn) of the
manifold Mn.

Proof. According to the Atiyah–Bott theorem for an elliptic complex
d′′, for forms of type (0, l) we have

χ(f) =

q∑

j=1

n∏

k=1

1

1− exp
{

2πi
p x

(j)
k

} ,

where

χ(f) =
∞∑

m=0

(−1)m Tr f∗|H0,m(Mn).

As is known, χ(1) = T (Mn) and 1
p
∑

m∈Zp

χ(fm) = ϕ is the alternating

sum of the dimensions of the invariant subspaces under the action of the
transformation f∗ on the cohomology H0,m(Mn). Consequently,

T (Mn) = −
q∑

j=1

∑
lp−1
m=1

n∏

k=1

1

1− exp
{

2πi
p x

(j)
k ·m

} + pϕ.
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By now making use of the definition of the number-theoretic trace and the
Atiyah–Bott function, the theorem is proved.

We shall calculate Tr

(∏n
k=1

1
1 − ζxk

)
, where ζ = e

2πi
p . Let us set

θ = 1 − ζ. We shall perform all calculations in the field Qp(θ). By ≃ we
mean equality modulo the group pZ p ⊂ Qp(θ). The following lemma, like
Lemma 3.1, has been provided at our request by D. K. Faddeev.

Lemma 3. For the Atiyah-Bott function AB(x1, . . . , xn) we have the
formulas

AB(x1, . . . , xn) ≃
[
p < u >p−1

< u >p

n∏

k=1

u
< u >xk

]

n

,

AB(x1, . . . , xn) ≃
n∑

m=0

[
pu

< u >

n∏

k=1

u
< u >xk

]

m

,

where < u >q= 1− (1−u)q is the q-th power of the element u in the formal
group f(u, v) = u+ v − uv and [ϕ(u)]k is the coefficient of uk in the power
series ϕ(u).

Proof. First of all note that Tr(θk) ≃ 0 for all k > 1. We have

n∏

k=1

1
1− ζxk

=

n∏

k=1

1
1− (1− θ)xk

= 1
θn

n∏

k=1

θ
1− (1 − θ)xk

= 1
θn

∞∑

k=0

Akθ
k,

where Ak ∈ Zp, and

Tr

(
1
θn

∞∑

k=0

Akθ
k

)
≃ Tr

(
1
θn

n∑

k=0

Akθ
k

)
=

n∑

k=0

Ak · Tr(θk−n).

Let us set Tr θ−s = Bs and introduce the two formal series

A(u) =

∞∑

k=0

Aku
k and B(u) =

∞∑

k=0

Bku
k.

Thus we must calculate the coefficient of uk in the series A(u)×B(u). We
have

B(u) = Tr

(
1 +

∞∑

s=1

θ−1us

)
= Tr

(
1

1− θ−1u

)
= Tr

(
θ

θ − u

)

= Tr

(
1 + u

θ − u

)
= (p− 1) + uTr

(
1

θ − u

)
.
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First note that if ϕa(u) is the minimal polynomial of the element α with
respect to the extension Qp(θ)|Qp, then

Tr

(
1

α− u

)
= −ϕ

′
α(u)

ϕα(u)
.

Since
ζp − 1

ζ − 1
=

(1− θ)p − 1

− θ =
1− (1− θ)p

θ
,

it follows that

ϕθ(u) =
1− (1− u)p

u .

We have

−Tr

(
1

θ − u

)
=
ϕ′

θ(u)

ϕθ(u)
=
p(1− u)p−1

1− (1− u)p −
1
u.

Thus

B(u) = (p− 1)− u
(
p(1− u)p−1

1− (1− u)p −
1
u

)
=
p(1− (1 − u)p−1)

1− (1− u)p ,

Tr

(
n∏

k=1

1
1− ζxk

)
≃ [A(u) ·B(u)]n

≃
[
p(1− (1 − u)p−1)

1− (1− u)p

n∏

k=1

u
1− (1− u)xk

]

n

,

and we obtain the first formula

−Tr

(
n∏

k=1

1
1− ζxk

)
=

[
p < u >p−1

< u >p

n∏

k=1

u
< u >xk

]

n

.

Next

p(1− (1− u)p−1)

1− (1− u)p = p
(1− u)− (1− u)p

(1− u)(1− (1 − u)p)

=
p

1− u −
pu

(1− u)(1− (1− u)p)
≃ − pu

1− (1− u)p (1 + u+ u2 + . . .),

and we obtain the second formula

−Tr

(
n∏

k=1

1
1− ζxk

)
≃

n∑

m=0

[
pu

1− (1− u)p

n∏

k=1

u
1− (1− u)xk

]

m

.
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The lemma is therefore proved.
In § 3 the functions of the fixed points γp(x1, . . . , xn) having values in

the ring ΩU ⊗Q

γp(x1, . . . , xn) =

[
u

Ψp(u)

n∏

k=1

u
xkΨxk(u)

]

n

were considered. By considering the composition of the function γp with
the Todd genus T : ΩU → Z, we obtain a function (which we continue
to denote by γp(x1, . . . , xn)), which associates with a set of weights the
rational number mod pZp

γp(x1, . . . , xn)

=

[
pu

1− (1− u)p

n∏

k=1

u
1− (1− u)xk

]

n

=

[
pu

< u >p

n∏

k=1

u
< u >xk

]

n

which is such that under the conditions of Theorem 2 the number

n∑

j=1

γp(x
(j)
1 , . . . , x(j)

n )

is a p-adic integer and coincides modulo p with the Todd genus.
We now recall the Conner–Floyd equation introduced in [13]. If the

group Zp acts complexly on a manifold Mn with fixed points P1, . . . ,Pq,

where it has the set of weights (x
(j)
i , . . . , x

(j)
n ), j = 1, . . . , q, then the Conner–

Floyd equation
q∑

j=1

u

n∏

k=1

u

x
(j)
k Ψx

(j)
k (u)

= 0,

is satisfied, where u is the formal variable which generates the ring ΩU [[u]]
under the relations pΨp(u) = 0 and un = 0. Consequently there is an
element ϕ ∈ ΩU [u] such that the equation ΩU [[u]]⊗Q is valid in the ring

q∑

j=1

u
Ψp(u)




n∏

k=1

u

x
(j)
k Ψx

(j)
k (u)


 = pϕ.

Thus, if (x
(j)
1 , . . . , x

(j)
n ) are the sets of weights of the action of the group Zp

on the manifold Mn, then they are related by the Conner–Floyd equation

q∑

j=1


 u

Ψp(u)

n∏

k=1

u

x
(j)
k Ψx

(j)
k (u)




m

≃ 0, m = 0, . . . , n− 1.
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By considering the Todd genus T : ΩU → Z, we obtain the Conner–Floyd
equation

q∑

j=1




 pu

1− (1− u)p

n∏

k=1

u

1− (1− u)x
(j)
k






m

≃ 0, m = 0, . . . , n− 1,

corresponding to the Todd genus.

Definition 4. The Conner–Floyd functions CF(x1, . . . , xn)m, m =
0, . . . , n− 1, of fixed points are the functions which associate with each set
of weights (x1, . . . , xn) the rational numbers

CF(x1, . . . , xn)m =

[
pu

< u >p

n∏

k=1

u
< u >xk

]

m

, m = 0, . . . , n− 1.

Summing up, we obtain the following theorem.

Theorem 5. The Atiyah–Bott and Conner–Floyd functions of fixed
points and the functions γp(x1, . . . , xn) are related by the equation

AB(x1, . . . , xn)− γp(x, . . . , xn) ≃
n−1∑

m=0

CF(x1, . . . , xn)m.

We can now answer the question about the relation of the formulas for
fixed points taken from the Atiyah-Bott theory and cobordism theory.

Let f : Mn →Mn be a holomorphic transverse mapping of period p of
the compact complex manifold Mn and let P1, . . . ,Pq be its fixed points.
Let the mapping df |Pj in the tangent space at the fixed point Pj have

eigenvalues λ
(j)
k = exp

{
2πi
p x

(j)
k

}
, k = 1, . . . , n. Then the formula which

expresses the Todd genus in terms of the weights (x
(j)
1 , . . . , x

(j)
n ), taken from

the Atiyah–Bott theorem, has the form

T (Mn) ≃
q∑

j=1

n∑

m=0


 pu

1− (1 − u)p

n∏

k=1

u

1− (1 − u)x
(j)
k




m

(1)

(see Theorem 2 and Lemma 3). A similar formula, from cobordism theory,
has the form

T (Mn) ≃
q∑

j=1


 pu

1− (1− u)p

n∏

k=1

u

1− (1 − u)x
(j)
k




n

, (2)
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and the difference between the first and the second formulae is exactly the
sum in the Conner–Floyd equation, expressed for the Todd genus T : ΩU →
Z,

n−1∑

m=0




q∑

j=1


 pu

1− (1− u)p

n∏

k=1

u

1− (1− u)x
(j)
k




m


 ≃ 0,

(see § IV of [13])1.
In conclusion the authors wish to point out that out of the fundamental

results of this paper the two different proofs of the theorem concerning
the relation of the cohomology operations to the Hirzebruch series were
obtained independently (and in the text of § 1 both proofs are presented).

The basic concepts, the general assertions about formal power systems
and of the principal examples given of them, particularly the “square mod-
ulus” systems of type 2, to a large measure are due to Novikov, while the
investigation of the logarithms of these systems by means of the Chern–Dold
characters, the precise definition and investigation of the ring of coefficients
of the “two-valued formal groups” and their connection with Sp-cobordisms
are for the most part due to Buchstaber.

The remaining results were obtained in collaboration, while the impor-
tant Lemma of §3, and also Lemma 3 of the Appendix, were proved at our
request by D. K. Faddeev, to whom the authors express their deep gratitude.
We also thank Yu.I. Manin and I.R. Shafarevich for discussions and valu-
able advice concerning the theory of formal groups and algebraic number
theory.
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