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Preface

Topology, created by H. Poincaré in the late 19th and early 20th century
as a new branch of mathematics under the name “Analysis Situs” differed
in its style and character from other parts of mathematics: it was less
rigorous, more intuitive and visible than the other branches. It was not by
chance that topological ideas attracted physicists and chemists of the 19th
century, for instance, Maxwell, Kelvin and Betti, as well as other scientists
residing at the junction of mathematics and physics, such as Gauss, Euler
and Poincaré. Hilbert thought it necessary to make this beautiful part of
mathematics more rigorous; as it was, it seemed to Hilbert alien.

As a result of the rapid development of 1930s-1960s, it was possible
to make all achievements of previously known topology more rigorous and
to solve many new deep problems, which seemed to be inaccessible before.
This leads to the creation of new branches, which changed not only the face
of topology itself, but also of algebra, analysis, geometry — Riemannian
and algebraic, — dynamical systems, partial differential equations and even
number theory. Later on, topological methods influenced the development
of modern theoretical physics. A number of physicists have taken a great
interest in pure topology, as in 19-th century.

How to learn classical topology, created in 1930s-1960s? Unfortunately,
the final transformation of topology into a rigorous and exact section of
pure mathematics had also negative consequences: the language became
more abstract, its formalization — I would say, excessive, took topology
away from classical mathematics. In the 30s and 40s of the 20-th century,
some textbooks without artificial formalization were created: “Topology”
by Seifert and Threlfall, “Algebraic Topology” by Lefschetz, “The topol-
ogy of fibre bundles” by Steenrod. The monograph “Smooth manifolds and
their applications in homotopy theory” by Pontrjagin written in early 50s
and, “Morse Theory” by Milnor, written later, are also among the best ex-
amples. One should also recommend Atiyah’s “Lectures on K-Theory” and
Hirzebruch’s “New Topological Methods in Algebraic Geometry”, and also
“Modern geometric structures and fields” by Novikov and Taimanov and
Springer Encyclopedia Math Sciences, vol. 12, Topology-1 (Novikov) and
vol. 24, Topology-2 (Viro and Fuchs), and Algebraic Topology by A.Hatcher
(Cambridge Univ. Press).

However, no collection of existing textbooks covers the beautiful ensem-

xi



xii PREFACE

ble of methods created in topology starting from approximately 1950, that
is, from Serre’s celebrated “Singular homologies of fibre spaces”. The de-
scription of this and following ideas and results of classical topology (that
finished around 1970) in the textbook literature is reduced to impossible
abstractly and to formally stated slices, and in the rest simply is absent.
Luckily, the best achievements of this period are quite well described in the
original papers — quite clearly and with useful proofs (after the mentioned
period of time even that disappears — a number of fundamental “Theorems”
is not proved in the literature up to now).

We have decided to publish this collection of works of 1950s-1960s, that
allow one to learn the main achievements of the above mentioned period.
Something similar was done in late 1950s in the USSR, when the celebrated
collection “Fibre spaces” was published, which allowed one to teach topol-
ogy to the whole new generation of young mathematicians. The present
collection is its ideological continuation. We should remark that the En-
glish translations of the celebrated papers by Serre, Thom, and Borel which
are well-known for the excellent exposition and which were included in the
book of “Fibre spaces” were never published before as well as the English
translation of my paper “Homotopical properties of Thom complexes”.

Its partition into 3 volumes is quite relative: it was impossible to collect
all papers in one volume. The algebraic methods created in papers pub-
lished in the third volume are widely used even in many articles of the first
volume, however, we ensured that several of the initial articles of the first
volume employ more elementary methods. We supply this collection by the
graph which demonstrates the interrelation of the papers: if one of them
has to be studied after another this relation is shown by an arrow. We also
present the list of additional references to books which will be helpful for
studying topology and its applications.

We hope that this collection would be useful.

S. P. Novikov
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The interrelation between articles listed in the Russian edition of the

Topological Library looks as follows:

Serre Pontrjagin Smale | Milnor*
I 1-3 \ L1 [.4-5 1.6
Atiyah,Hirzebruch Adams Borel Tq(lm
II.8 1.7 III.4-5
Milnor

Milnor .
L6 II.1-2
Kervaire,Milnor
I3

; Novikov
Ncmkov L
Novikov /
i Novikov
I1.5-6
Quillen
17
Kirby
1.7

Buchstaher,Mishchenko,Novikov
1§
Buchstaber,Novikov
19

Milnor’s books “Lectures on the h-cobordism Theorem” and “Lectures

of Characteristic Classes” (Milnor 1.6 and Milnor I1.2) are not included into
the present edition of the series.!

IDue to the omission of the two articles, the numerical order of the present edition

has been shifted.
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Complementary References:

Springer “Encyclopedia of Math. Sciences” books.

Topology I General Survey, Novikov, S.P., Vol. 12, 1996.

Topology II, Homotopy and Homology: Fuchs, D.B., Viro, O.Y.Rokhlin,
V.A., Novikov, S.P. (Eds.), Vol. 24, 2004

Novikov, S.P., Taimanov, I.A., Modern Geometric Structures and
Fields, AMS, 2006.
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Smooth manifolds and their
applications in homotopy theory!

L. S. Pontrjagin

Introduction

The main goal of the present work is the homotopy classification of maps
from the (n + k)-dimensional sphere ¥¥*" to the n-dimensional sphere S™;
here we solve this problem only for £ = 1, 2. The method described below
was published earlier in notes [1,2]. It allowed V.A.Rokhlin [3] to solve
the problem also for & = 3. One has not yet obtained the results for
k > 3 in this way. The main obstruction comes from studying smooth
(differentiable) manifolds of dimensions k and &+ 1. After [1-3], a series of
works of French mathematicians [4] appeared, the authors succeeded much
more in the classification of a sphere to a sphere of smaller dimensions.
The methods of the French school principally differ from those applied
here.

Smooth manifolds are the main, and, perhaps, the only subject of this
research, thus we completely devote Chapter I to them; in that chapter we
investigate them more widely, which is necessary for future applications.
Besides main definitions, chapter I contains a simpler (resp. Whitney [5])
proof of embeddability of a smooth n-dimensional manifold into (2n + 1)-
dimensional Euclidean space; we also state and investigate the question
concerning singular points of smooth mappings from an n-dimensional man-
ifold to the Euclidean space of dimension less than 2n + 1.

In Chapter II we describe the way of applying smooth manifolds for
solutions of homotopy problems. First of all, we show that for the homotopy

LJ1.C. Tlomrparun, [namkme MHOrOO6pa3sus o HUX HIPUMEHEHHS B TEOPUH
romoronuii, Mocksa, Hayka, 1976. Translated by V.O.Manturov



2 L.S. PONTRJAGIN

classification of mappings from one manifold to another one may restrict
only to the case of smooth mappings and smooth deformations. Later on,
we describe our method of applying smooth manifolds to the homotopy
classification of mappings from the sphere ¥"t* to the sphere S™, which
goes as follows.

A smooth closed manifold k-dimensional manifold M* lying in (n + k)-
dimensional Euclidean space E™ ¥ is called framed if for any point x € MF*
a system U(z) = {ui(x), ..., un(x)} of n linearly independent vectors or-
thogonal to M* and smoothly depending on z is given; notation: (M*, U).
Compactifying the space E™T* by the infinite point ¢’, we get the sphere
Y+E Let eq, ..., e, be a system of linearly independent vectors tangent
to the sphere S™ C E™*! in its north-pole p. It turns out that there exists
a smooth mapping f from ¥"*+* to the sphere S™ such that f~!(p) = M*,
whence the mapping f, obtained by linearisation of f at 2 € MP" maps
the vectors ui(x), ..., uy(x), to ey, ..., e,, respectively. The homotopy
type of the mapping f enjoying these properties is uniquely defined by the
framed manifold (M*, U). For each homotopy type of the mapping of ¥"+*
to the sphere S™ there exists such a framed manifold that the corresponding
mapping belongs to the prescribed homotopy type. Two framed manifolds
(Mk,Uy) and (M}, Uy) define one and the same homotopy type of mapping
from the sphere ¥"** to the sphere S™, when they are homologous in the
following sense. Let E"** x E' be the direct product of the Euclidean
space E"F by the line E' of variable . We think of the framed manifold
(M}, Up) lying in the space E"* x 0, and the framed manifold (MF,U;)
lying in E"*t* x 1. The framed manifolds (M{,U) and (Mf,U) are
thought to be homologous if in the strip 0 < ¢ < 1 there exists a smooth
framed manifold (M**1 U) with boundary consisting of M} and MZF,
whose framing U coincides with the framings Uy and U; on the boundary
components.

The described construction allows one to reduce the homotopy classi-
fication question for mappings X" % — %" to the homology classification
of framed k-dimensional manifolds. The role of k-dimensional and (k + 1)-
dimensional manifolds is clear here. The homology classification of zero-
dimensional framed manifolds is trivial; thus one easily classifies mappings
from X" to the sphere S™. The homology classification of one- and two-
dimensional manifolds is also not very difficult, and it leads to the homotopy
classification of mappings from "% to S™ for k = 1,2. We describe this
question in chapter IV of the present work. The homology classification
of three-dimensional framed manifolds meets significant difficulties. It was
obtained by V. A. Rokhlin [3].

For realising the homology classification of smooth manifolds in the
present work, we use homology invariants of these manifolds. With a
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framed submanifold (M* U) of the Euclidean space E"** we associate
a homology invariant of it, being at the same type a homotopy invariant
of the corresponding mapping of the sphere ¥"** to the sphere S™. For
n = k + 1 there is the well-known Hopf invariant v for mappings 32¢+1
to S*T1. The invariant v can be easily interpreted as a homology invari-
ant of the framed manifold. In chapter III we give a definition of the
invariant v based on the smooth manifold theory, and also give its in-
terpretation as a homologous invariant of framed manifolds. For k& = 1,
the Hopf invariant is a classifying one; this fact is proved (in a known
way) in chapter IV. In chapter IV for £k = 1,2; n > 2 we construct an
invariant §. This invariant is a residue class modulo 2. From its ex-
istence, one deduces that the number of mapping classes L"F — g7
for Kk = 1,2; n > 2 is at least two. The uniqueness of this invari-
ant for all cases except K = 1, n = 2 is based on the uniqueness of -~y
for k = 1.

CHAPTER [

Smooth manifolds and their maps

§ 1. Smooth manifolds

Below, we first give the definition of smooth (differentiable) manifold
of finite class and simplest relevant notions; besides, we consider some
smooth manifolds playing an important role, more precisely: submanifolds
of smooth manifolds, manifold of linear elements of a smooth manifold, the
Cartesian product of two manifolds and the manifold of vector subspaces
of a given dimension for a given vector space. Together with finite dif-
ferentiable manifolds one can also define infinitely differentiable manifolds,
for which the functions in questions are infinitely differentiable and also
analytic manifolds where all functions in questions are analytic. In the
present paper, infinitely differentiable and analytic manifolds play no role;
thus they are out of question.

The notion of smooth manifold

A) Let E* be a Euclidean space of dimension k provided with Cartesian

coordinates z', ..., . By a half-space of the space E* we mean the set

Ek, defined by the condition



4 L.S. PONTRJAGIN

' <O0. (1)

By a boundary of the half-space Ef we mean the hyperplane E*~1 defined
as
' =0. (2)

A domain of the half-space E is an open subspace of it (which might not be
open for the whole space E¥). The points of the half-space E, belonging to
the boundary E*~! are called its boundary points. A Hausdorff topological
space M* with a finite base is a topological manifold if each point a of it
admits a neighbourhood U* homeomorphic to a domain W of the half-
space E{f or of a space E*. Obviously, each domain of the space EF is
homeomorphic to some domain of the half-space Ef, but for coordinate
systems, it is more convenient to consider both domain types. If a point
a corresponds to a boundary point of the domain W¥, then it is called a
boundary point for the manifold M* as well as for its neighbourhood U*. It
is known that the notion of boundary point is invariant. A manifold having
boundary point is said to be a manifold with boundary, otherwise it is called
a manifold without boundary. A compact manifold without boundary is said
to be closed. It is easy to check that the set of all boundary points of a
manifold M¥ is a (k — 1)-dimensional manifold.

Definition 1. Let M* be a topological manifold of dimension k& and
let U* be some neighbourhood (being a subset) of this manifold homeo-
morphic to a domain W* of the half-space E} or of a space EF. Defining
a homeomorphism between U* and W* is equivalent to providing a coor-
dinate system X = {z!, ..., 2*} for U¥ corresponding to the coordinate
system of the Euclidean space E*. Herewith, two different coordinate sys-
tems X and Y in UF are always connected by a one-to-one continuous
transformation

Y=y, . ah, =1k 3)

Fix a positive integer m and assume that functions (3) are not just
continuous, but also m times continuously differentiable in the domain U

and the Jacobian

J
8—‘1/1’ is non-zero. With that, we say that the coordinate
x

systems X and Y belong to the same smoothness class of order m. Ob-
viously, different classes do not intersect and each class is defined by any
coordinate system belonging to it. If there is a preassigned class, then the
neighbourhood U* is called m times continuously differentiable. Thus, two
m times continuously differentiable neighbourhoods U*, V¥ of the mani-
fold M* always induce two coordinate classes for its intersection; if these
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classes coincide, we say that the neighbourhoods U* and V* are compatibly
differentiable. If all neighbourhoods of some bases for a manifold M* are
m times continuously differentiable and the classes are mutually compati-
ble, then the manifold M¥* is called m times continuously differentiable or
smooth of class m; sometimes we refer just to smooth manifold without
indicating m which is always assumed to be sufficiently large for our pur-
poses. [Analogously, if the functions (3) are analytic, then the manifold is
called analytic.|

As seen from the definition given above, setting the differentiable struc-
ture for a manifold is obtained by setting some bases for any neighbourhood.
If two bases for a manifold define two smooth structures, they are thought
to be equivalent iff the union of these bases satisfies the condition 1. Indeed,
to define a smooth structure for a manifold, one should define it for any
neighbourhood of some covering of the manifold. Obviously, such a cov-
ering defines the topology of the manifold as well. If we restrict ourselves
to connected neighbourhoods, which is always possible, then in each neigh-
bourhoods all coordinate systems are split into two classes, such that the
transformation (3) inside one class has a positive Jacobian. Each of these
two classes is called an orientation of the given neighbourhood. Obviously,
a smooth manifold is orientable if and only if there exists a compatible
orientation for all neighbourhoods. With each such choice, one associates
an orientation of the manifold.

B) The boundary M*~! of a smooth manifold M¥ is itself a smooth
manifold of the same class; this results from the following construction. Let
U* be a neighbourhood in M* provided with a fixed coordinate system X
such that the intersection U~ = U* N M*~1 is non-empty. The equation
defining the subset U¥~1 in U*, obviously, looks like ' = 0; thus it is
natural to take 22, ..., z¥ as preassigned coordinates in U¥~1. Let V* be
another neighbourhood in M* (possibly, coinciding with U*) with a fixed
coordinate system Y for which the intersection V¥~1 = V¥ n M* 1 is non-
empty. For the common part of neighbourhood U* and V¥ we have

Y=yt a2h), i=1, 0k, (4)
from which at ' = 0 we obtain
yJ:yJ(O,xQ,’xk), j:2,,k (5)

From differentiability of relations (4) one obtains the differentiability of
relation (5). Furthermore, from the relation y*(0,22, ..., 2¥) = 0 we get
(for UF-1 nVE-1)

o', - y") 9y oW - ")
oz, ..., zF)  oxt a2, ..., 2F)’

(6)
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. . . . 8(y27 MR yk)
herewith, since the left-hand side is non-zero, we get —————= # 0.
a(x?, ..., z")
If the system X is orienting for the neighbourhood U*, then we may take
1
22, ..., z¥ to be the orienting system for U*~1. Because % > 0 then from
xr
Ay, ... yF . oy .y
positivity of M we obtain the positivity of M Thus,
oz, ..., z") o(z*, ..., z")

the boundary of a smooth orientable manifold gets a natural orientation.
C) Let a be a point of a smooth manifold M*. Each coordinate system
defined in a neighbourhood U* of the point a belonging to the preassigned
class is called a local coordinate system at the point a. Obviously, each
point a of the manifold M* can be treated as a base point of some local
coordinate system. By a vector (countervariant) on the manifold M* at a we
mean a function associating with each local corrdinate system at a a system
of k real numbers called vector components with respect to this coordinate
system, in such a way that the components u', ..., u¥ and v', ..., v* of the

same vector seen from two coordinate systems z', ..., z¥ and y', ..., y*
are connected by the relation
()
v = Z u’. (7)

Obviously, the vector is uniquely defined by its components given in one
local coordinate systems. Defining linear operations over vectors as linear
operations over their components, we define the k-dimensional vector space
structure R¥ on the set of all vectors on the manifold M* at the point
a; this space is called tangent to the manifold M* at the point a. With
each local coordinate system at the point a one associates a basis in the
tangent space, where all vectors have the same components as with respect
to the coordinate system. If a point a belongs to the boundary M*~! of the
manifold M*, then besides the tangent space R¥, one also defines the space
RF=1! tangent to the manifold M*~!. Take the parameters x2, ..., 2 to
be local coordinates for M*~1 (see sect. «B») and associate with the vector

from RF~1 having components u?, ..., u* the vector from RE~! having
components 0, u?, ..., u*; thus we obtain a natural embedding of the space
RF1 to RF.

Smooth mappings

D) Let M* and N! be two m-smooth manifolds and let ¢ be a continuous
mapping of the first manifold to the second manifold. At the point a € MF,
choose a local coordinate system X; at the point b = ¢(a) € N! choose a
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local coordinate system Y; then in the neighbourhood of the point a the
mapping ¢ will look as

Y= ), =10 8)

If the function ¢ is n times continuously differentiable, n < m, then it
will be n times continuously differentiable for any other choice of local
coordinates; thus, one may speak of the n-smoothness class of the mapping
. Later on, while speaking of smooth mapping, we shall always assume

o

that n is sufficiently large. If the rank of the matrix at the point a

equals k, then the mapping ¢ is called regular at a. It is easy to see that if
the point a belongs to the boundary M*~1 of the manifold M¥, then from
the regularity of the mapping ¢ at a follows its regularity at the point a
of the manifold M*~1. If the mapping ¢ is regular at each point a € M*,
then it is called regular. It is easy to check that if the mapping ¢ is regular
at a, then it is regular and homeomorphic in some neighbourhood of the
point a. A regular homeomorphic mapping is called a smooth embedding.
The mapping ¢ is called proper at the point a € MF¥, if the rank of the

¢’

matrix 20 |17 g =1,...,0; + = 1,..., k, equals [. It is easy to see
X

that the set of all nonproper points of the mapping ¢ is closed in M*. A
point b € N is called proper for the mapping ¢ if the mapping ¢ is proper
at any point of the set =1 (b) C M*. The point a is a singular point of the
mapping f if it is non-regular and nonproper at the same time, i.e. if the

J
rank of the matrix 8_g02 ,j=1,....0;i=1, ..., k,is less than any of k

and [.

E) Each smooth mapping ¢ of a smooth manifold M* to a smooth
manifold N! induces at each point a € M* a linear mapping ¢, of the vector
space R¥ tangent to the manifold M* at a, to the vector space Rf) tangent
to N at b = ¢(a). Namely, if the local coordinate systems at points a and
b, are X and Y, respectively, then to the vector u € R¥ with components

ul, ..., u¥ in the system X one associates the vector v = ¢, (u) € R} with
components
k .
; d¢’(a) ;
v = — ', i=1,...,1, 9
> o J (9)

i=1
in the coordinate system Y. It is not easy to see that this correspondence

is well defined, i.e. for any choice of local coordinate it results in one and
the same mapping ¢,. If the mapping ¢ is regular at a, then the mapping
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¢q is one-to-one and defines an embedding of the same R” into R}. If ¢ is
proper at a, then ¢,(R¥) = R

Definition 2. A smooth mapping ¢ of class n from an m-smooth
manifold M¥* onto the smooth m-manifold N*, m > n, is called smooth
homeomorphism if it is regular. Obviously, if the mapping ¢ is a smooth
homeomorphism of class n then the inverse mapping ¢! is also a smooth
homeomorphism of class n. Two manifolds are called smoothly isomorphic
if there exists a smooth homeomorphism from one manifold onto the other.

Certain ways of constructing smooth manifolds

F) Let P" be a subset of a smooth manifold M* of class m, defined
in the neighbourhood of any point belonging to it by a system of k—r
independent equation. This means that for each point a € P” there exists
a neighbourhood U* in the manifold M* with local system X that the
intersection P" N U* consists of all points with coordinates satisfying the
equations

Pt ... b)) =0, j=1,..., k—r (10)
Herewith we assume that the function 17 is m times smoothly differentiable
and the functional matrix 81’21(;1) ,i=1,....k—r;i=1,..., k, has
rank k—r; if a is a boundary poixnt of the manifold M* then we assume that
the reduced functional matrix aﬁlga) ,1=1 ..., k—r;1=2,...,k

has rank k& — [. With the conditions above, the set P” turns out to have a
natural smooth r-dimensional m-smooth manifold structure; this manifold
is smoothly embedded into M*. Such a manifold P” is called a submanifold
of the manifold M*. Furthermore, it turns out that the boundaries P"~!
and M*~! of the manifolds P" and M* enjoy the relation

Pl =pPraMEt (11)

andifa € P"~Yand R¥, RF~1, R" R’~! are tangent spaces to the manifolds
MF, MFE=1 P P! at the point a, then

R'=' =R N R (12)

Here the spaces R~ R" R’'~! are considered as subspaces of RE (see
«C» and «E»).

To prove that P" is an r-dimensional manifold and to define the differ-
entiable structure on it, we change, if necessary, the enumeration of coor-

9’ (a)

CCZ

dinate for the Jacobian

,j=1 ..., k—r;i=r+1,...,k to
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be non-zero; in the case of boundary point we may not change the number
of the coordinate x!. Then the system (10) will be uniquely resolvable in

variables z1, ..., z*:

ot = it .2, i=r+1,..., k. (13)

In the case of boundary point, the coordinate ' is not among the indepen-
dent variables. The functions f? are defined, m times continuously differen-
tiable in some domain W" of the half-space Ejj in variables 2, ..., 2" and
define a homeomorphic mapping of this domain onto some neighbourhood
U of the point a in P". Thus we have proved that P" is an r-dimensional
manifold. The differentiability for the neighbourhood U" is defined by co-
ordinates z', ..., z".

The natural inclusion of the manifold P” in the manifold M* is given
in U" by relations

zt =zt 1=1,...,71;
o | (14)
= fx, .., 2"), i=r+1,... k,
where the parameters x!, ..., 2" on the right-hand sides are thought to be
coordinates in U” and the parameters z!, ..., 2" on the left-hand side be

the coordinates in U*. The relation (11) is evident. Now, let a € P"1;
let us prove the relation (12). To local coordinates X, there correspond a
certain basis ey, ..., ey in R¥; the basis of the space R~ consists of vectors
ea, ..., ex; the basis of the space R¥ consists of vectors e; + Z?:er %ej,
xr

i = 1,...,r; finally, the basis of the space R.~! consists of the same
vectors except for the first one. Considering these bases, we easily get to
the relation (12).

To prove the compatibility of the coordinate systems we constructed for
PT" consider together with the point a, another point b € P" with local coor-
dinates Y and neighbourhoods V* and V" analogous to the neighbourhoods
U* and U". The relations analogous to (13), will look like

yi:gi(y17"'7yr)’ /Z::T+1""7k' (15)

Suppose that U” and V" have a non-empty intersection. Then U* and V*
also have a non-empty intersection; let

Y=yt . 2, i=1,..., k; (16)
=2yt b, i=1,..., k, (17)

be the coordinate changes from X and Y and back. Substituting
o™t .. 2 from (13) for (16), we get for the first r variables y
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Yy =yl .. 2", 1=1,...,r (18)
In the same way substituting 4", ..., y* from (15) for (17) we get
=2yt ), 1=1,...,r (19)

The coordinate changes (18) and (19) are m times continuously differen-
tiable; since they are inverse to each other, their Jacobians are both non-
Zero.

This completes the proof of Statement «F».

G) Let MPF be a smooth manifold of class m > 2 and let L2 be the set of
all tangent vectors to it (see «C»), i.e. pairs of type (a, ), where a € M*,
u € RE. The set L?* naturally turns out to be a 2k-dimensional manifold
of class m — 1 according to the following construction. Let U* be a certain
neighbourhood in the manifold M* with local coordinate system X. By
U?F denote the set of all pairs (z,u) € L?* satisfying the condition z € U*.
Take the set U?* to be the neighbourhood in L2*; the fixed coordinate
system in it is constructed as follows. Let !, ..., z* be the coordinates of
the point x in the system X and let u', ..., u*¥ be the components of the
vector u in the local coordinate system X; then the coordinates of the pair
(x,u) are defined to be the numbers

N L VNN VL (20)

If V¥ is a neighbourhood in M* (possibly coinciding with U*) with a
fixed system Y, for which # € V¥ and the coordinates of the pair (x,u) in
the neighbourhood V2* defined by Y are

yh oy ot o, (21)

then the coordinate change from (20) to (21) is, evidently, given by the
relation

= (at . ), i=1,..., Kk (22)
k .

. 8y~7 . 3

vjzz -u', ji=1,...,k (23)
o O

[see (9)]. These relations are m — 1 times differentiable and have the Ja-
12
oy’

cobian equal to |—=| ; this Jacobian is, evidently, positive. Since the

neighbourhoods of type U2 cover L2, the described construction turns
L?* into a smooth manifold of class m — 1.
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H) Let R* be a vector space of dimension k. By a ray u* in R¥ passing
through the vector u # 0 we mean the set of all vectors tu where ¢ is
some positive real number. Fix some basis for R* and denote by Rffl
the coordinate hyperplane u’ = 0. If the ray u* does not lie in Rffl, then
there exists a unique vector u on it satisfying the condition |u’| = 1; call this
vector the basic vector with respect to the plane Rf_l. The set of all rays
for which the basic vector with respect to Ri-“l satisfies u' = +1 or u’ =
—1, denote by Uikfl or, by Uik{l, respectively. For coordinates of the ray
u* € Uiljofl, p =1, 2, we take the components u!, ..., u'=t utl . uF
of the basic vector u of this ray with respect to Rffl. Since the system of
all sets Uz-lzfl covers the set S¥~1 of all rays, the set S*~! becomes a smooth
manifold evidently homeomorphic to the (r — 1)-sphere.

I) Let M* be a smooth manifold of class m. Linear element
manifold of it is the set L?*~! of all pairs (x,u*), where z € MF,
and u* is a ray in R”; the natural differential structure is defined ac-
cording to the following construction. Let U* be a neighbourhood
in M* with a fixed system X. In the vector space RF tangent to
MP* at 2 € U* we have a basis corresponding to the local system X;
thus, in the set S¥=! of rays of the space RF we have domains UZ-’;T;
(see «H») endowed with coordinate systems. By Ufpkf1 denote the

. * . . s k k—1
set of all pairs (z,u”) satisfying the condition x» € U", v* € U,
where the coordinates of the pair (z,u*) in Ufpk_l are taken to be the

numbers

1 ko1 i—1 ) it1 k
AN /LB AN ) L VL S T A (24)
where z', ..., 2% are the coordinates of x in the system X, and
wh, oo, Wt L uF oare the coordinates of the ray w* in Ul It

ip,x
can be easily checked that the system of neighbourhoods Ufpkf1 covers
L?*~1 and that the introduced coordinate systems are compatible with
each other; thus L2*~1 is a (2k — 1)-dimensional smooth manifold of class
m — 1.

J) Let M* and N'! be two smooth manifolds of class m; suppose M* has
empty boundary. The direct product (Cartesian product) P** = M* x N,
i.e. the set of all pairs (x,y), where z € M*, y € N' is naturally a
smooth manifold of class m according to the following construction. Let
Uk and V! be arbitrary coordinate neighbourhoods in the manifolds M*
and N! with coordinate systems X and Y. Consider the set U* x V! C
MP* x N' as the coordinate neighbourhood in the manifold P**!: here
the coordinates of the point (z,y) € U* x V! are set to be the numbers

2t o 2k gt ooy, where 2, ..., 2 are the coordinates of the point
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in the system X and y', ..., y' are the coordinates of 3 with respect to Y.
It follows from a straightforward check that the coordinate neighbourhood
system constructed above defines in P¥*! a smooth structure of class m.
If M* and N are orientable manifolds and the systems X and Y correspond
to the orientations of these manifolds, we define the orientation of PFt!
by the system X, Y. Herewith, the Cartesian product acquires a natural
orientation. If N'=! is the boundary of the manifold N, then the boundary
of the manifold M* x M' turns out to be M* x M!~1,

K) Let E**! be a vector space of dimension k + 1 and let G(k, 1) be the
set of all k-dimensional vector subspaces of it. The set G(k,!) is a smooth
(even analytic) manifold with respect to the following construction. Let
Ek € G(k,1) and let ey, ..., ek, f1, ..., fi be a basis of the space EF*!
such that the vectors e1, ..., ex lie in Ef. Denote the linear span of vectors
fi, ..., fi by E'. Denote by U*! the set of all vector subspaces E* € G(k,1)
the intersection of which with E' consists of only the origin of coordinates.
If E¥ € U then there exists a basis e}, ..., e} of the vector space E¥
defined by the relations

i
I J -
ei—ei—l—g x; fj, i=1,..., k,
i=1

)

|l is a real number matrix. Consider the elements z], i =

where ‘

1,...,k j =1,...,1, of this matrix as coordinates of the element E*
in the coordinate neighbourhood U*!. It can be checked straightforwardly
that the set of coordinate neighbourhoods of type U defines an analytic
structure in G(k,1); this G(k,1) is an analytic manifold of dimension k.

§ 2. Embedding of a manifold into Euclidean space

In the present subsection we show that any compact k-dimensional
smooth manifold of class m > 2 can be regularly homeomorphically mapped
into the Euclidean space R***1 of dimension 2k + 1 and can be regularly
mapped into R?*; here the smoothness class of these mappings equals m.
These statements in a stronger form, i.e. for m > 1 and without compact-
ness assumptions, were proved by Whitney [5]; the proof given below is
somewhat easier.

In the proof, we shall rely on the following quite elementary Theorem 1.
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Smooth mapping of a manifold to a manifold of larger dimension

Theorem 1. Let M* and N' be two smooth manifolds of dimensions
k and l, respectively, where k <1, and let p be a smooth mapping of class
1 of the manifold M* to the manifold N'. It turns out that the set o(M")
has the first category in N, i.e. it can be represented as a sum of countably
many nowhere dense sets in N*. In particular, if the manifold M* is com-
pact, then the set p(M¥) is compact as well; thus N'\ ¢o(MF¥) is a domain
everywhere dense in N'.

PROOF. Suppose a € M*, let b = ¢(a), Vi be some coordinate neigh-
bourhood of the point b in N! and let U¥ be such a coordinate neighbour-
hood of the point a in M* that p(U¥) C V. Choose neighbourhoods U,

—k —k

and U, of the point a in M* such that U,, C Uk, U,
—k —=k

that the set U, is compact. The domains U 5, a € M*, cover the manifold

MPF. From this cover, one can take a countable subcover; thus, in order to
prove the theorem it suffices to show that for any arbitrary choice of the

, C UK and such

point a from MF, the set cp(UIZQ) is nowhere dense in V;!. Since the domain
Uk is the homeomorphic image of a domain of the Euclidean subspace EJ,
we shall assume that UZF, itself is a domain of the subspace E§. In the
same way, we assume that Vbl is a domain of the Euclidean subspace E}.
Thus the mapping ¢ can be treated as a smooth mapping of class 1 from a
domain UF to the Euclidean space E'; thus it suffices to show that the set

—k
©(U,5) is nowhere dense in E'. Let us prove this.

. —k .
The smoothness of ¢ and compactness of the mapping U ,; result in the
existence of a positive constant ¢ such that for any two arbitrary points x

—k
and 2’ from U ., the inequality

p(p(x), p(z")) < ep(x,z") (1)

holds. Chose some e-cubature of the Euclidean subspace E}, i.e. tile the
subspace EJ into right-angled cubes with edge e. Denote the set of all cubes

. . —k —=k . .

intersecting U, by Q. As the set U,, is compact and hence is bounded
by a rather large cube, the number of cubes in € does not exceed c; /"
where ¢; is some positive constant independent of €. Let § be the distance

between the sets ES \ U, and U§2. Suppose that the diagonal length ev/k
of each cube from € is less than §. Then each cube K; from € lies in the
domain UK, and, by virtue of (1), the set p(K;) is contained in some cube
L; of the space E! with edge length ¢v/k - €; the volume of the latter cube
equals ¢'kY/? - ¢/~ Thus the whole set cp(UIZQ) is contained in the union
of cubes L;, whose number does not exceed ¢/ ¢*: thus the total volume
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—k
of the set ¢(U,,) does not exceed the number c;c'k!/? - !, Since ¢ is

—k
chosen arbitrarily small, from above it follows that the set (U ,5) does not
contain any domain and, being compact, it should be nowhere dense in E'.
Thus, Theorem 1 is proved.

The projection operation in the Euclidean space

Later on, the projection operation will play a key role. Let C" be a
vector space and let B? be its vector subspace. Regarding the space C" as
an additive group and the space B? as a subgroup of it, we obtain a tiling
of the space C" into conjugacy classes according to BY; these conjugacy
classes form a vector space AP of dimension p =r — q. Associating with
any element x € C” the corresponding conjugacy class 7(z) € AP, we get
a linear mapping 7 of the space C" onto the space AP called the projection
along the projecting subspace B?. More intuitively, the space AP can be
realized as a linear subspace of dimension p of the space C" intersecting the
space B? only in the origin; then the operation 7 is just the original pro-
jection. If the space C" is Euclidean, then defining B? to be the orthogonal
complement to the given space AP C C", we get an orthogonal projection
7 of the space C" to the subspace AP.

A) Let ¢ be a smooth mapping of a smooth manifold M* to some vector
space C" regular at a point a € M¥, and let 7 be the projection of the space
C" along the one-dimensional subspace B! to the space A"~!. It turns out
that the mapping mp from M* to A”~! is not regular at a (see § 1, «<D») if
and only if the line p(a)+ B! passing through ¢(a) parallel to B! is tangent
to p(M*) at the point p(a).

To prove this, choose some local coordinates x!, ..., 2¥ in the neigh-
bourhood of a; endow C" with rectilinear coordinates ', ..., y” such that
the last axis coincides with B'. In the chosen coordinate system, the map-
ping ¢ looks like: y7 = @(x!, ..., 2¥), j =1, ..., r, where the rank of the

J
matrix 8—"01 ,j=1,....r;1=1,..., k, at the point a, is, by regularity

assumption, equal to k. With each vector u on MF* at a one associates
the vector v = ¢,(u) € C", which is tangent to ¢(M¥) at the point ¢(a)
and has components v', ..., v" [i.e. defined by relations (9) §1, [ = r].
Now, if the mapping 7wy is not regular at the point a, then the rank of

J
the matrix 5_@1 ,7=1,...,r—=1,¢=1,..., k, is less than k; thus

there exists a vector u # 0 such that for the vector v = @,(u) we have
vl = ... =071 =0, v" # 0; the latter means that v € B'. If, on the
contrary, there exists a vector v = ¢, (u) # 0 belonging to B! then the rank
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g

i

of the matrix ,i=1,...,r—=1;i=1, ..., k is less than k, i.e. the

mapping 7 is not regular in a.

B) Let ¢ be a smooth regular mapping of class 2 from a smooth manifold
MP* to the vector space C" of dimension r > 2k, and let BY € € G(q,r—q) be
the subspace of dimension g < r — 2k of projection for C” onto the space
AP, Denote the projection by 7. By € we denote the set of all such
projecting spaces B? for which the mapping my is not regular. It turns out
that the set QZI has first category in the manifold G (g, —q) of all projecting
directions.

Let (x,u*) be an arbitrary linear element of the manifold M* (see §1,
«I») and let u be some non-zero vector of the ray u*. To the vector w,
according to (9) §1, there corresponds the vector v = @, (u) # 0. The
ray v* of the space C" defined by the vector v depends only on the linear
element (z,u*), and we set v* = ®(x,u*). It can be easily checked that the
mapping ® from the manifold L?*~! (see §1, «I») to the manifold S™~*
(see §1, «H») has smoothness class one, thus ®(L?*~1) is of first category
in S™7! (since » — 1 > 2k — 1, see Theorem 1). Thus, by virtue of «A», we
get «B» for ¢ = 1.

Applying this construction consequently, we get the proof of the state-
ment «B» for any arbitrary ¢ < r — 2k.

C) Let ¢ be a smooth of class one one-to-one mapping from the smooth
manifold M”* to the vector space C" and let BY € G(q,r — q) be the pro-
jecting subspace of the dimension ¢ < r — 2k — 1. Denote the projection
by 7. By QZI’ , denote the set of all projecting subspaces B? such that the
mapping mp is not one-to-one. It turns out that QZI’ has first category in
the manifold G(q,r — q).

Let  and y be two arbitrary different points of the manifolds M*. By
®'(x,y) denote the ray consisting of all vectors of the type t(p(y) — ¢(x)),
where ¢ is a positive number. Thus we get a mapping ®’ from the manifold
M?* of all ordered pairs (z,v),  # y, to the manifold S™~ of all rays of the
space C". In the manifold M?* one naturally introduces differentiability,
and it can be easily checked that the mapping ® is smooth of class 1. Thus,
®’(M?*) turns out to be of first category in S"~1 (see Theorem 1), from
which follows «C» for ¢ = 1. Applying this construction consequently we
get the proof of «C» for arbitrary g < r — 2k — 1.

From «B» and «C» one straightforwardly gets

D) Let ¢ be a smooth one-to-one regular mapping of class 2 of a smooth
manifold M”* to the vector space C" and let BY € G(q,r — q) be the pro-
jecting space of dimension ¢ < r — 2k — 1. Denote the projection mapping
by m, and denote by €, the set of all projecting spaces B? such that the
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mapping 7 is not one-to-one and regular. Since €, = Qf U Q, has first
category in the manifold G(q,r — q).

The embedding theorem

E) Let ¢1, ..., ¢, be smooth (of class m) mappings of the smooth
manifold M* to vector spaces C1, ..., Cp, respectively. Denote by C the
direct sum of the spaces C1, ..., C, consisting of all systems [u1, ..., U],
with u; € C;. Define the direct sum ¢ of mappings @1, ..., @, by ¢(x) =
[p1(x), ..., pu(x)], © € MF. Tt is easy to see that ¢ is an m-smooth
mapping of the manifold M* to C. It can be easily checked that if at least
one mapping @1, ..., @, is regular in a € M* then so is ¢. Furthermore,
it can be easily checked that if two points a and b from M* are mapped to
different points by one of the mappings ¢1, ..., ¢, then they have different
images under ¢.

Theorem 2. Let M* be a smooth compact manifold of class m > 2.
There exists a smooth embedding of class of the manifold M* into a finite-
dimensional Fuclidean space.

PROOF. Denote by »(t) some real function in the real variable ¢, which
is infinitely differentiable and satisfies the following properties:

»x(t) =1 for [t| < 1/2; #(t) =0 for |t| > 1;

for —1 < ¢t < —1/2 the function s(t) monotonously increases; for 1/2 <
t < 1, the function »(t) monotonously decreases. Such a function can be
easily constructed.
Set
(12, ) =t e (8 - ae(£7) L s (tF),

fori=1,..., kand

s 2t = (Y - () L s (tR).
Let R* be the Euclidean space with Cartesian coordinates ¢!, ..., t* and
let R*+1 be the Euclidean space with Cartesian coordinates y', ..., y**L.

Denote by @ the cube in the space R* defined by the inequalities [t'| < 2,
denote by Q' the cube of the same space defined by the inequalities [t/| < 1
and by Q" the cube defined as [t'| < 1/2. By Qo we denote the half-cube
cut out from the cube Q by the inequality ' < 0. Now, define the mapping
from R” to the space RF*! by the relations

Yl = (2 th), j=1,..., k+1. (2)
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It can be easily checked that this mapping is infinitely differentiable, maps
the set R\ Q' to the coordinate origin of the space RFT! its restriction to
the cube ' is a continuous and one-to-one mapping and its restriction to
the cube Q" is regular.

Now, let @ be an arbitrary point of M* and UF be some coordinate
neighbourhood of it endowed with a coordinate system X having origin at
a; finally, let € be a small positive number such that under the mapping

=% =1,k (3)
of the neighbourhood UF to the space R¥ the image of this neighbourhood
covers the whole cube @, whence a is an interior point of M* or the whole
half-cube Qq, whence a is a boundary point of M*. Denote the pre-images
of the cubes Q" and Q" under this mapping by @/, and Q! respectively.
Define the mapping ¢, of the manifold M* to the Euclidean space RF*!

by

. o1 2 k
i gt ox x
y =7 (s )
for the point € U* with coordinates x!, ..., z¥ and by 3/ = 0 for the

point z € € M¥\ UF. Tt can be easily checked that ¢, is an m-smooth
mapping of M* to R*+1, which is homeomorphic on @', and regular on Q.

Selecting among neighbourhoods @, a finite cover Q, , ..., Q. of the
manifold M* and taking the direct sum of mappings corresponding to these
cubes, ©a,; .-, Qa, (see «E»), we get the desired mapping ¢ of the mani-
fold M* to a finite-dimensional Euclidean space.

From the statements proved above the theorem formulated earlier, fol-
lows straightforwardly. Indeed, the manifold M* can be regularly and
homeomorphically embedded into a vector space C of rather high dimension
(see Theorem 2). Furthermore, in the space C” there exists such a project-
ing direction B"~2*~! such that the obtained projection of the manifold
MP* to the space A%**! is regular and homeomorphic (see «D»). In the
same way, in the space C" there exists a projecting direction B"~2* such
that the projection of the manifold M* to the space A%* is regular (see
«B»). Below we prove a stronger Theorem 3 showing that for any smooth
mapping of a manifold M* to a Euclidean space C?**! there exists an ar-
bitrarily close regular and homeomorphic mapping of the same manifold,
and for any smooth mapping of M* to the Euclidean space C?* there exists
an arbitrarily close regular mapping. For the precise formulation of Theo-
rem 3, one needs to introduce the notion of m-neighbourhood for mappings,
taking into account all derivatives up to order m, inclusively.

First note that if f is a smooth mapping of the domain WP of the
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Euclidean half-space E} to a vector space C" then the partial derivatives
of the vector function f(z) = f(z!, ..., z¥) are vectors of the space C".
F) Let M* be an m-smooth compact manifold and E' be a vector space,
P be the set of all m-smooth mappings of the manifold M* to the space
E'. Introduce the topology for P by setting a metric depending on an

arbitrary choice of some constructed elements. Let Uy, Vs, s =1, ..., n, be
a finite set of coordinate domains of the manifold M* such that the domains
Us, s =1,...,n, cover M* and the inclusions U; C Vs, s = 1,...,n

hold, wherever in each domain V; a preassigned coordinate system Xj is
chosen. Furthermore, let Y be a Cartesian coordinate system of the space
E'. Define the distance p(f,g) between two mappings f and g from P
(depending on the choice of Us, Vi, coordinate systems X, s =1, ..., n,
and the coordinate system Y'). To do this, let us write the mappings f and
g of the domain V in coordinate form by setting

v = fllx) = fla, ..., "), (4)

Y =gl(x) = gl(at, ..., 2b). (5)
Let 41, ..., ix be a set of non-negative integers with sum not exceeding m.
Set

) ot Tt (£i() — gi(x
A . i) = (o) ~ 5i(o)
(O ... (0xF)i

Denote the maximum of the function wi(xsiy, ..., ik) in the variable z at
x € Us by wi(iy, ..., i), and define the distance p(f,g) between f and
g to be the supremum of all numbers wi (i1, ..., ix), where i1, ..., iy, s,

j run over all admissible values. It can be easily checked that the topol-
ogy of the space P does not depend on the arbitrary choice of the system
of Us, Vs, s = 1, ..., n, and coordinate systems X, s = 1,...,n, Y.
The topological space P is called the class m mapping space of the man-
ifold M* to the space E'. The statement that for the map f there is an
arbitrary close map enjoying some property A means that in any neigh-
bourhood of the point f in the space P there exists a map enjoying the
property A.

Theorem 3. Let M* be a class m > 2 smooth k-dimensional compact
manifold, let AP be a vector space of dimension p and let P be the class
m mapping space from the manifold M* to the space AP. The set of all
reqular mappings from the set P denoted by I'; denote the set of all reqular
and homeomorphic maps belonging to P by II. It turns out that the sets
II' and II are domains in the space P. Furthermore, if p > 2k then the
domain 11’ is everywhere dense in P and if p > 2k + 1 then the domain 11
is everywhere dense in P.
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PrROOF. First, show that the sets II' and II are everywhere dense
in the space P for the values of p indicated in the theorem. Let f €
P and let e be a class m regular and homeomorphic mapping of the
manifold M* to a vector space BY of sufficiently large dimension (see
Theorem 2). Denote the direct sum of the vector spaces AP and B? by
C"; here we assume the spaces AP and B? to be linear subspaces of the
space C". The mapping h, being a direct sum of the mappings f and e
(see «E») is regular and homeomorphic, and its projection to AP along B?
coincides with the mapping f. By virtue of statements «B» and «D», in
any neighbourhood of the projecting direction B¢ there exists a project-
ing direction B{ such that the projection g of the mapping h is regular
if p > 2k; it is regular and homeomorphic if p > 2k + 1. Thus, for a
given map f there exists an arbitrarily close map g enjoying the desired
properties.

Let us show that II’ is a domain. Let f € II’. Since the map-

j
ping f is regular at € U, the rank of the matrix afsi at this
point equals k (see §1, «F»). Consequently, the rank of a matrix close
J
to the matrix gfsl also equals k. Thus, there exists such a small
xr

positive number ¢’ such that for p(f,g) < &’ the mapping ¢ is regu-
lar at the point x. Since the first derivatives of the functions f7(z)
are continuous and the sets U, are compact and one can choose a fi-
nite number of them to cover MF, there exists a small positive num-
ber & such that for p(f,g9) < e, the mapping g is regular at each
point & € M¥*.

To prove that II is a domain, first note the following;:

a) In the set Q of all linear mappings of the Euclidean vector space E*
to the Euclidean vector space AP, let us introduce the metrics according to
some coordinate systems X and Y in these spaces. Let ¢ and ¢ be elements
from @) written in coordinates as

k
Y= gl j=1...p
1=1

k
yjzzwzjxl, jzl""7p'
i=1
Define the distance p(p,) as the maximum of |} — ¢%[. Tt turns out

that for any compact set F' of non-degenerate mappings there exists a small
positive § such that for p(F, 1) < § we have
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[p(@)] > 6|,

where z is an arbitrary vector from E¥.

Taking into account the continuity, one easily proves this statement by
reductio ad absurdum.

Let f € II. It turns out that there exist small numbers ¢ and ¢ such
that for p(f,g) < € (see «F») the equality

p(g(a),g(z)) = op(f(a), f(x)) (6)

holds; here a and z are two arbitrary points from MP¥.

Indeed, when p(f(a), f(z)) < «, where « is a positive constant the
mappings f and g in the neighbourhood of a are very exactly approximated
by linear ones, herewith this can be done uniformly with respect to a € M*.
In this case the inequality (6) easily follows from statement «A». In the
case when p(f(a), f(x)) = a, the inequality (6) follows from the bijectivity
of f for & being reasonably small. From inequality (6) and the bijectivity
of f one gets the bijectivity for any map g reasonable close to f.

Thus, Theorem 3 is proved.

§ 3. Nonproper points of smooth maps

First, recall the definition of nonproper point for a map (see §1, «D»).
Let ¢ be a smooth mapping from a manifold M* to a manifold N!. A
point a of the manifold M”* is called nonproper for the mapping ¢ if the
functional matrix of the mapping ¢ at the point a has rank strictly less than
I. A point b of the manifold N' is called nonproper with respect to ¢ if the
whole pre-image ¢~ !(b) of this point contains at least one nonproper point
a € M* of ¢. Thus, one should distinguish between nonproper points of ¢
in M* and nonproper points of ¢ in N'. If F is the set of all nonproper
points of ¢ in the manifold M*  then ¢(F) is the set of all nonproper
points of the mapping ¢ in the manifold N'. Theorem 4 below due to
Dubovitsky [6] states that the set ¢(F') has first category in the manifold
N', i.e. it can be represented as a countable union of compact sets nowhere
dense in N'. Tt follows from this that the set N'\ ¢(F) of all proper
points of the mapping ¢ in the manifold N' has second category N', i.e.
«widely spread» and, in any case, everywhere dense. Informally speaking
this can be formulated by saying that the points of the manifold N’ are,
in general, proper. Theorem 4 has some important applications in smooth
manifold theory; there are many corollaries saying that in general position
some “good” property obtains. To prove any result of such type one should
properly define the manifolds M* and N! together with a mapping ¢. This
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choice can be described by Statement «A» given below: rather general and
thus, not very formal.

General position argument

A) Let @ be a smooth manifold and let P be a set of operations over @
that constitutes a smooth manifold as well. While performing an operation
p € P over () some point ¢ € @ can be singular in a certain sense, which
should be clearly described. The pair (p,q), p € P, ¢ € Q is marked if
the point ¢ is singular with respect to the operation p. It is assumed that
the set of all marked pairs (p,q) constitutes a smooth submanifolds M*
of the manifold P x @Q (see §1, «J», «E»). With each point (p,q) € M¥,
one associates the point ¢(p,q) = p. Thus one gets a mapping ¢ from the
manifold M* to the manifold N = P. If the point py € P is a proper point
of the mapping ¢ in the manifold P = N!, then any point ¢ € @ singular
with respect to pg, is in some sense typical, and the set () of all points ¢ of
the manifold ) which are singular with respect to the operation py consists
of typical singular points.

There are many applications of the construction «A»; some of them are
to be demonstrated in §4. A very simple application of the construction
«A» having illustrative character is given below as Statement «B».

B) Let A" and B® be two smooth submanifolds of the vector space
E™. One says that at a point a € A" N B® the manifolds A" and B*®
are in gemeral position if tangent planes to the manifolds A" and B® have
intersection of dimension r + s — n. One says that the manifolds A" and
B? are in general position if they are in general position at any common
point. It can be shown straightforwardly that if the manifolds A" and B*
are in general position then their intersection A" N B?® is a submanifold of
dimension 7+s—n in the space E". Let p € E™. Denote by A} the manifold
consisting of all points of type p+ z, where x € A". Thus the manifold A}
is obtained from the manifold A” by shifting along the vector p. It turns
out that the set of all vectors p € E™, for which the manifolds A} and B*
are in general position, is the set of second category in E™; thus there exist
an arbitrarily small shift p for which the manifolds A} and B* are in general
position.

To prove Statement «B», let us use construction «A» by setting Q) =
A" x B, P = E™ and assuming the point ¢ = (a,b) € A" x B*® to be
singular with respect to the operation p € E" if p+a = b. The set M* of
all marked pairs (p, q) where p € E™, ¢ = (a,b) € A" x B* is thus defined
by p = b — a, i.e. the pair (p, q) is uniquely defined by the point ¢ = (a,b);
thus there is a natural smooth homeomorphism of the manifolds M* and
A" x B? that allows us to identify these manifolds. The mapping ¢ of the
manifold M* = A" x B® to the manifold P = E” is defined according
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to the formula ¢(a,b) = b — a. Simple calculations show that a point
q = (a,b) € M* is a proper point of the map ¢ if and only if the manifolds
Aj_ . and B* are in general position at their intersection point b. Thus, the
point pg € E™ is a proper point of the mapping ¢ if and only if the manifolds
A}, and B® are in general position. From that and from Theorem 4 proved
below, one gets the claim of «B».

The Dubovitsky Theorem

In the formulation of the Dubovitsky theorem, the smoothness class m
of the map ¢ : M*¥ — N'! is defined as m = k — 1+ 1 and not as (1), as
given below. In this sense Theorem 4 is weaker than Dubovitsky’s theorem.
Since the exact estimate for the smoothness class m is not important, below
we give a weaker estimate (1), which allows us to simplify the proof.

Theorem 4. Let M* and N' be two smooth manifolds of positive di-
mensions k and I and let ¢ be an

m:m(k,l)=2+(k_l)(];_l+1) (1)

class smooth mapping from M* to N'. It turns out that the set of all
nonproper points of ¢ in the manifold N' is of first category in N'. In
particular, if the manifold MF* is compact then the complement to this set
is an everywhere dense domain in the manifold N'.

PRrROOF. First consider the case when the manifold AM* has no boundary.
Let a € M*, b = ¢(a), and let V}! be some coordinate neighbourhood of
the point b in the manifolds N'; let U* be a coordinate neighbourhood
of the point a in the manifold M” such that (UF) C Vi'. Let us choose
neighbourhoods UY, and U%, of the point a in M* that U’;l c UF, U’;Q -
Uk, and such that the set Ul;l is compact. The domains UF,, a € M*, cover
the manifold M*. Among them, one can select a finite cover, thus, to prove
the theorem, it suffices to prove it for mappings ¢ from UF, C M* to the
manifold Vi!. Since the domain UF is a homeomorphic image of a domain
in the Euclidean space E*, we may just assume that UF is a domain in the
space E*. Analogously, we assume that V}f is a domain in the Euclidean
space E'. From this point of view, ¢ is an m-smooth mapping of the
domain UF to the Euclidean space E', and it suffices to show that the set
of nonproper points has first category in E'. Let us do it.

Fix the point ¢ and remove the index a from the notation. The map-
ping ¢ of the domain U* of E* to E' has the following form in Cartesian
coordinates:

yjzgoj(x)zgoj(:vl,...,xk), ji=1,...,1 (2)
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Here the functions ¢’ are m times continuously differentiable. By Fy we

oy’

xr
i =1,...,k, 5 = 1,...,1 has rank less than [. For k < [, Theorem 4

becomes Theorem 1 which has already been proved. Thus we will assume
that k > 1. Set s = k — [+ 1. The function ¢’ will play a special role. From
(1) it follows that m > s; thus the function ¢! is s + 1 times continuously
differentiable. Let r be a positive integer less than or equal to s. Denote by
F. the set of all points from Fy, where all the partial derivatives of orders
1,2, ..., r of the function ¢' equal zero. Then we evidently have

denote the set of all points x € U§ where the functional matrix

)

Fo D F D...DFk.

We will show that the images of all sets Fy \ F1, ..., Fs—1 \ Fs under ¢
have first category in E'. This will prove that the set ¢(Fp) of nonproper
points of the mapping ¢ is of first category in E' as well.

First, let us consider the set F,. The Taylor decomposition for ¢! at
the point p € Fy does not contain terms of degrees 1,2, ..., s. From this
and from compactness of the set Uy, it follows that there exists a constant
¢ such that for p € Fy,z € U; we have

[ () — & (p)| < ¢ (p(p,z))"t. (3)
For the remaining functions ¢/, j =1, ..., [ — 1, the equalities
|’ (2) = ¢’ (p)] < cp(p, ) (4)

hold; they result from the continuity of the first derivatives and the com-

pactness of the set U;. The constant c in inequalities (3) and (4) is common

for all functions ¢/, j = 1,2, ..., 1. Choose a certain e-cubature for E*,

i.e. tile the space E¥ into proper cubes with edge length ¢, and denote by

the set of all closed cubes of this cubature intersecting the set Fs. Since the

set F', is compact, the number of cubes from Q does not exceed %, where
15

c1 is a positive constant independent of €. Let d be the distance between
the sets E¥ \ UF and Us. Assume that € < §/v/k; then each cube K, from
Q is contained in U{'. From that and from the fact that K, contains the
point p € F,, and from inequalities (3), (4) it follows that the set p(K,)
is contained in some orthogonal parallelepiped L, of the space E'! having
one edge length equal to 2¢vk - 57! and the remaining I — 1 edges equal
to 2¢vk -e. The volume of this parallelepiped L4 equals 2Ll l/2 . glts The
compact set ¢(F) is contained in the sum of closed parallelepipeds of type
Lg; the number of them does not exceed c1 /¢¥. It follows that the volume

of the set cp(FS) does not exceed ¢ -elts 7k = ¢y ¢ (co does not depend on
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g). Thus, since ¢ is chosen arbitrarily small, the compact set p(F) does
not contain any domain of the space E', thus is nowhere dense in E'.

If £ =1, then, since kK > 1 > 1 we have [ = 1, s = 1. In this case
F, = Fy, and we arrive at the statement of the theorem for £k = 1. This
gives us the induction hypothesis on k. We suppose that the theorem is
true for the case when the source manifold has dimension less than k. Let
us prove the theorem for dimension k.

Let us prove that for 0 < r < s, the set p(F,.\ F4+1) is of first category in
the space E'. This is precisely the part of the proof to be done by induction.
Let p € F,. \ F,41. Since p does not belong to the set F,.11, there exists a
partial derivative of order r + 1 of the function ¢ taking a non-zero value
at p. Denote the value of this derivative at # € U* by wi(z). Since wy(z)
is a derivative of order r + 1 then wq(z) = dw(x)/d2", where w(x) is the
derivative of order r for r > 0 or the function ¢!(x) itself for r = 0. For
definiteness, assume i = k. Set

s k=1 Zr=w() =w@t .. 2. (5)

It follows from Ow(p)/0x* # 0 that the functional determinant of (5) is
non-zero at p; thus, this transformation introduces in some neighbourhood
W]f of p new coordinates z', ..., z*. We shall assume that W]f does not

intersect F,,; and choose a neighbourhood szl of the point p such that

—k
its closure W, is compact and is contained in Wi. By varying the point
p, we can cover the set F. \ F,1 by a countable system of neighbourhoods
of type Wfl. Thus, to prove that the set ¢(F, \ F,11) has first category, it

=k
is sufficient to show that ¢(F,. MW ;) is nowhere dense in E'. Let us prove
this fact.
Let us fix the point p and omit the index p in the notation. Substi-

tuting in (2) the expressions zb, ..., % in terms of 2, ..., 2F, we get the
expression for ¢ in coordinates z', ..., z* for the domain W*. Suppose
this expression looks like
, 4 , )
y =@ (@) =9I L 2R, (6)
Here z', ..., z¥ are the new coordinates of the point z. Consider the
domain W¥* with coordinates z', ..., z¥ as a smooth manifold. It fol-

lows from (5) that the mapping ¢ from WF to the space E' given by
(6) has smoothness type m(k,l) —r. For r = 0 the smoothness class of
the map ¢ equals m(k,l) = m(k — 1,1 — 1) [see (1)]. Choosing for r > 0
the worst estimate for the smoothness class, that is, r = s — 1 = k — [,
we see that for » > 0 the smoothness class of the considered map ¢
equals m(k,1) — (k —1) = m(k — 1,1) [see (1)]. The set H c W*
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of all nonproper points of the mapping ¢ in the manifold W* is de-
fined by H = Wk N F,. This follows from the non-degeneracy of (5)
at W*. Denote by WF™! the submanifold of the manifold W* defined
by the equation z¥ = t. Note that the smoothness class of the map-
ping from WF™! to E' equals m(k — 1,1 — 1) for r = 0 and it equals
m(k — 1,1) for r > 0. Let us consider the cases » = 0 and r > 0 sepa-
rately.

Assume r = 0. Then w(z) = ¢!(x) = z*. Thus, the expression (6) for
the mapping ¢ turns into

yj:,ll)j(zlﬂ"'7zk)7 j:]'?"'?l_]'; yl:'zk' (7)

Denote by Ei_l the linear subspace of the space E' defined by the equation
y' = t. Tt follows from the relations (7) that (W/}F™') ¢ EI~'. Denote
by H, C Wtk_1 the set of all nonproper points of the mapping ¢ from the
manifold W/ ™! to the space E.~!. Tt follows from the relations (7) that

H; = HNW}=! If the set o(Fy N W]f) contained a domain, then there

. . . =5k —
would exist a value ¢ such that the intersection @(Fo N W) N Ei ! would
contain a domain in E!~'. However, this is impossible because

—k _ _ _
p(FoNW)NET Co(H)NE " = o(HNWE) = (Hy),

and the set o(H;) has first category in E!~! according to the induction

assumption. Thus, the set p(Fy N W]f) is nowhere dense in E'; the case
r = 0 is discussed completely.

Now assume 7 > 0. Then w(x) is a derivative of order r of the func-
tion ¢'; thus w(x) = 0 for x € F,. Since for the neighbourhood W* we
have w(z) = 2* then

F.nwhcwh (8)

Let H' C Wé“l be the set of all nonproper points of the mapping ¢ :
WE=! — Bl Tt is easy to see that HNWE ™' C H' [see (6)] and, since
F., N W{ C H then it follows from (8) that F.NW{§ C H'. By virtue
of the induction hypothesis, the set p(H’) has first category in E'. Since
F. NW¥ C H' the set o(F, N WF) is nowhere dense in E!. Thus we have
completed the proof for the case r > 0.

Thus, Theorem 4 is proved when M* has no boundary.

Finally, suppose the manifold M* has a non-empty boundary M+ 1.
Suppose F' C MP*~! is the set of all nonproper points of the mapping
@ : M*1 — N!' and F ¢ MF is the set of all nonproper points of the
mapping ¢ : M¥ — N'. It is easy to see that

FnMFTc F.
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Thus,
Fc(F\M-YUF.

The set F'\ M*~! consists of all nonproper points of the mapping ¢ in
the manifold M* \ M*~! with boundary deleted. Analogously, the set
F’ consists of all nonproper points of the mapping ¢ on M*~! without
boundary. Thus, both sets p(F \ M*~1) and ¢(F’) have first category in
N'. The set ¢(F) is contained in their union, thus it has the first category
in N*.

Therefore, Theorem 4 is proved.

§ 4. Non-degenerate singular points of smooth
mappings

Let f be a smooth mapping from a manifold M* to a manifold N'. Let
a € M* and b = f(a) € N' be interior (non-boundary) points of the mani-
folds M* and N'. In the neighbourhoods of a and b, let us introduce local
coordinates z', ..., z* and y', ..., y' taking these points to be coordinate
origins. Let

yj = fj(x) = fj(xlv SRR xk)

be the coordinate expression for f in the chosen coordinate systems.

Suppose a is a regular point of f, i.e. that the rank of the matrix
H df’(a)

oz’

, g =1,...,0, v =1,..., k, equals k; to be more precise, we

af’(a)

7

shall assume that the determinant

, 1,5 = 1, ..., k is non-zero.

With this assumption the relations

g=ft .2k, i=1,k,

may serve to define in the neighbourhood of a the new coordinates ¢!, ..., &*
of the point x. Let

yJ:§J7 j:17"')k;

yJ:<PJ(€17"',€k)’ j:k+]‘,"'7l7
be the expression of the mapping f in these new coordinates. Let us intro-
duce in the neighbourhood of the point b the new coordinates n', ..., 1!,
by setting

=y, i=1 .k

W=y -, .y, j=k+1,...,1L
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In coordinates €1, ..., &%, n', ..., n' the mapping f looks like
W=¢&,j=1,....k =0 j=k+1,..., 1L (1)
NOW, let us assume that the point a is proper, i.e. the rank of the matrix
H 82;(;1) ,ji=1,....0,i=1,..., k equals [, and assume for definiteness
df(a)

that the determinant ‘ , 1,7 =1, ..., 1 is non-zero. Then the rela-

xi

tions
E=fit, ), i=1,...,0 =2 i=1+1,..., k,

may serve for introducing in a neighbourhood of a the new coordi-

nates &%, ..., £F of the point z. Furthermore, assuming

W=y, i=1.,1
we see that in coordinates &', ..., €%, n', ..., n' the mapping f can be
written as ‘ ‘

W=g, j=1,..,1 (2)

Thus, if the manifold MF is closed and b € N! is a proper point of the
mapping f, then f~1(b) is a smooth (k — [)-dimensional submanifold of
the manifold M* with local coordinates /1, ... ¢* in the neighbourhood
of a. In the case when the manifolds M* and N' are oriented and their
orientations are given by the coordinate systems &1, ... ¢k ¢l . €l
and 7', ..., 7, then the manifold f~!(b) gets a natural orientation given
by the coordinate system &1, ..., &k,

We see that both in the case of a regular point a and in the case of
proper point a the mapping is written quite simply in the properly chosen
coordinate systems [see (1), (2)].

It was shown in § 2 that in any neighbourhood of any arbitrary smooth
mapping from MP* to the vector space A%* there exists a regular mapping,
and all mappings sufficiently close to a regular one, are regular as well
(see Theorem 3). In this sense, singular points (see §1, «D») of mappings
MF* — A?F are unbalanced, that is, they are removable by a small pertur-
bation. For mappings from MF to the vector space A%*~! we have another
situation: singular points that occur there are, generally, balanced: they
cannot be removed by a small perturbation. This problem was solved by
Whitney. Here we give a simpler proof of his theorem (see Theorem 6).
We will not use this theorem in the sequel. The question about typical
singular points is solved here also for mappings of a manifold M* to the
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one-dimensional space A, i.e. to the line (see Theorem 5; it will have appli-
cations in the homotopy theory of mappings, see § 3, Chapter 4). Thus, the
question about typical singular points of a mapping is solved for mappings
from manifolds of dimension & to space of dimension 2k — 1 or 1. For other
dimension, it remains a quite actual open problem.

Generally, a regular mapping from MP* to the vector space A%* is not
homeomorphic: it has self-intersections, which might be non-removable by
small perturbation of the initial mapping. The question whether a self-
intersection is typical is also solved here (see «A» and «B»); these state-
ments will be used in the sequel.

For proving Theorems 5 and 6, and also Statement «Bs» we significantly
use the construction «A» (see page 21) and Theorem 4.

Typical self-intersection points of mappings M* — EZ2¢

A) Let f be a regular smooth mapping of class m > 1 from a closed
manifold M* to the vector space A%* and let a and b be two different points
from M* having the same image f(a) = f(b) € A**. Furthermore, let U and
V be neighbourhoods of points @ and b in M* such that the mapping f is
homeomorphic for any of these neighbourhoods, and 7* and Tf are tangent
planes at points f(a) and f(b) to the manifolds f(U) and f(V'), respectively.
Say that for a self-intersection pair (a,b) the mapping f is typical if the
tangent planes T and Tlf are in general position, i.e. they intersect precisely
at one point f(a) = f(b). Obviously, in this case for sufficiently small
neighbourhoods U and V, the manifolds f(U) and f(V) have a unique
common point f(a) = f(b) as well (implicit function theorem), and small
perturbations of the mapping preserve typical self-intersections. If f is
typical for any self-intersection pair and, furthermore, no three pairwise
different points have the same image, we say that f is typical. It follows
from closeness of the manifold MF* that, for a mapping f typical for any
self-intersection pair, there exists only a finite number of self-intersection
pairs.

B) Let f be a closed homeomorphic mapping of a closed manifold
MP* to a vector space C?**1. The set P?* of all pairs (x,y), where
r € MF, y € M*, 2 # y, naturally forms a smooth manifold of di-
mension 2k. With each point (z,y) = P2?¥ associate a point o(z,y) =
(fly) — f(x))* € S%, ie. the ray of the vector f(y) — f(z) (see §1,
«H»). Let e be an arbitrary non-zero vector from the space C2**1 and
let m. be the projection along the one-dimensional space e** containing
e. It turns out that the regular mapping =w.f is typical for any self-
intersection pair (see «A») if and only if the mapping o from the man-
ifold P?* to the manifold S?* is proper in the point ¢* € S?*. From
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this, by virtue of Theorem 4, it follows that for any given one-dimensional
projection direction there exists an arbitrarily closed projection direction
e** that the mapping 7. f is typical for each self-intersection pair. Fur-
thermore, it turns out that for any one-dimensional projection direction
there is an arbitrarily close direction e§* that the mapping 7., f is typi-
cal.

Let us prove Statement «B». Let ey, ..., esx4+1 be a basis of a vector
space C%#*1. Denote by W the set of all vectors u = Zik:ll u"e, of the
space C?**1 for which ©?**! > 0, and denote by W* the set of all rays
u* for u € W. For coordinates of the ray u* € W*, we take the numbers

w* = y"/u?**t n =1, ..., 2k. Herewith we introduce local coordinates
for the domain W* of the manifold S?* (see § 1,«H»). Now, let a and b be
two different points of the manifold M*. Choose a basis ey, ..., eaq1 in
such a way that egr11 = e = f(b) — f(a). In neighbourhoods of points a
and b of the manifold M¥, let us choose local coordinates ', ..., ¥ and
1 k. let
y ? 0t y 3 e
u" = it ... 2F) = (2), n=1,...,2k+1; (3)
ut = fyt syt = ), n=1...,2k+1, (4

be a coordinate expression of the mapping f in the neighbourhoods of a and
b, respectively. While projecting along the vector e = f(b)— f(a), the points
b and a merge: 7. f(a) = m. f(b); thus the condition that 7. f is typical for
the self-intersection pair (a, b), evidently, means that the determinant

dfala) af*(a)
azt T Azt

0fala)  0f(a)

ok T 02k (5)
afs(b) A (b)
o7 o
afs(b) A (b)
o o
is non-zero. For a neighbourhood of the point (a,b) of the manifold
P2 we may use the coordinate system consisting of numbers 2, ..., z¥,
y', ..., y¥; thus the mapping ¢ has the following coordinate form:

o i) — fi (=)
O Y(y) — 2R ()

In these coordinates, the functional determinant of the mapping o at the
point (a,b), evidently, coincides with the determinant (5) up to sign. Thus

n=1,...,2k. (6)
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we have proved that regular mapping 7. f is typical for each self-intersection
pair if and only if the mapping o is proper at the point e*.

Now, choose the ray e* in such a way that the vector e is not parallel
to any vector tangent to the manifold f(M*) and that the mapping o is
proper at the point e* € S?*. By virtue of Theorems 1 and 4, the set of
rays enjoying the above properties, is everywhere dense in the manifold S2*.
Suppose there exist three pairwise distinct points a, b, ¢ of the manifold
MP* such that 7. f(a) = 7. f(b) = 7 f(c). In the neighbourhood of ¢ in M*,
let us introduce the local coordinates 2z, ..., 2z, and let

u = frzt L 2R = f(2), n=1,...,2k+1, (7)

be the coordinate expression of the mapping f in the neighbourhood of ¢,
analogous to the expressions (3) and (4). Now, if x, y, z are three points
of the manifold M* close to a, b, ¢, respectively, such that the points f(x),
f(), f(2) lie on the same line then we have

A O N L 4 .
@) = f2E) L ) - S R) Y
Here we have 2k equation. We may assume that these equations im-
plicitly define the functions ', ..., ¥ y', ..., y* in independent vari-
ables z', ..., 2¥.  For the initial value z = ¢ we have the solu-

tion z = a, y = b. For these initial values of the functions and independent
variables, the functional determinant of the system (8) is non-zero, since
so is the determinant (5). Thus, the system (8) satisfies the condition of
the implicit function theorem. It follows now that the set of triples z, vy,
z closed to the triple a, b, ¢ and satisfying the condition that f(z), f(y),
f(2) lie on the same line, forms a k-dimensional manifold. Thus, by virtue
of Theorem 1, we see that for the point e* of the manifold S2* there is an
arbitrarily close point ef satisfying the conditions of the Statement «B».

Typical critical points of a real-valued function on a manifold

C) Let f be a class m smooth mapping (m > 2) from a manifold M*
to the one-dimensional Euclidean space E', or, what is the same, to the
line. By choosing a coordinate system on the line E', we write down the
mapping f as y! = f'(z), * € M*, where f! is a real-valued function of
class m, defined on M*. In a neighbourhood of a certain point a € M*, let
us introduce local coordinates z, ..., ¥ with the origin at a, and let

ylzfl(x):fl(xla"'vxk)

be the expression for f in these coordinates. The point a is called a critical
point of the function f!, and the number f!(a) is called the critical value
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of the function f! at the point a if all derivatives of the first order of the
function f' are zeros at a or, which is the same, if a is a singular point
of the function f (see §1, «D»). Taking the Taylor decomposition for the
function f! at the critical point a, we get

fHa) = fHa)+ Y aga's) + . 9)

If the determinant |a; ;| # 0, then the critical point @ is called non-
degenerate. It can be checked straightforwardly that for a critical point
a of the function f, any arbitrary coordinate change the matrix |a; ||
is transformed as coefficients of quadratic form. From this it follows, in
particular, that the non-degeneration of the singular point is its invariant
property, i.e. it does not depend on the choice of the coordinate system.

D) Let h be an m-smooth mapping (m > 2) of a manifold M* to the
Euclidean vector space C9t!. Let u be a non-zero vector from C9t! and
let w** be the one-dimensional subspace containing the vector u. Denote
by m, the orthogonal projection of the space C9*! to the line u**. The
set N9 of all pairs (z,u*), where x € M*, and u* is a ray orthogonal to
the manifold k(M%) at the point h(x) can be naturally seen as an (m — 1)-
smooth manifold of dimension q. With each point (z,u*) € N9, associate
a point v(z,u*) = u* € S7 (see §1, «H»). The mapping v is a smooth
mapping of class m — 1 from N9 to S9. It turns out that the point a € MF
is a singular point of the mapping m,h from M* to «** if and only if the
ray u* is orthogonal to the manifold h(M*) at the point h(a). Furthermore,
if the ray u* is orthogonal to the manifold h(M*) at the point h(a) then
the singular point a of the mapping 7, h is non-degenerate if and only if
(a,u*) is a proper point of the mapping v.

Let us prove Statement «D». Denote the scalar product of vectors
u and v from C?1, as usual, by (u,v). Let u € C9" and (u,u) = 1.
Indeed, the real-valued function (u,h(x)) in variable x € M* defined on
MPF, corresponds to the mapping 7, h of the manifold M* to the axis u**.

In the local coordinates x!, ..., 2¥ defined in a neighbourhood of a, one
has
oh
O (@) = [w2D) o1k (10)
ox' oz’

The fact that the left-hand sides of all relations (10) are all zeros means
that a is a singular point of the mapping 7, h; the fact that all right-hand
sides are zeros means that the vector u is orthogonal to the manifold h(M*)
at the point h(a). Thus, we have proved that the point a is a singular point
for the mapping 7,k if and only if the ray u* is orthogonal to h(M¥) at
the point h(a).
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To establish a criterion whether a singular point a of the mapping m,,h
is degenerate, let us choose in the space C9t! such an orthonormal ba-
sis e1, ..., eq+1 that the vectors ey, ..., e, are tangent to the manifold
h(MF¥) at the point h(a), and the vector e, coincides with ug. In the
corresponding coordinates y!, ..., y9*! of the space C9*! the map h in the
neighbourhood of a looks like

v =hx)=h (', ..., 2"), j=1,...,q+1 (11)

Since the vectors ey, ..., ej, are tangent to the manifold h(M*) at the point
h(a), it follows directly that

Ok (a)
oxt

#0}, i=1,...,k

From that we see that the relations
€ =hi(zt, ..., b, i=1,...,k

may serve for introducing new coordinates ¢!, ..., &¥ of the point z in the
neighbourhood of the point a in MF¥. In these coordinates, the mapping h
looks like

k . q+1—k .
h(z) = Z{lei + Z o (x) - epqy. (12)
i=1 j=1
Because the vectors ey, ..., e are tangent to h(MF) at the point h(a), it
follows that
oI
‘f;;ia)zo, i=1,.. ki j=1,....q+1—F (13)

Let (x,u*) be a point of the manifold N? close to the point (a,u*) =
(a,e541). On the ray u*, let us choose a vector u satisfying the condition

(u, eq+1) =1
Denote the remaining ¢ components of the vector u in the basis ey, ..., eq4+1

by u', ..., u?: u' = (u,e;), i =1, ..., ¢. The orthogonality condition for
the vector u and h(M¥) at the point h(x) now looks like

Rl - Y a+1
0= (u 20 :ul—i-ZukﬂasD (@) 0™ @) (14)
=1 ¢!

& o¢'
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This relation shows that for coordinates of the element (z,u*) of the man-
ifold N9 we can choose the coordinates ¢!, ..., €* of the point  and the
components uFt1, ... u? of the vector u. For coordinates of the ray u* in
the manifold S?, let us take the first ¢ components of the vector u and de-
note these components by v!, ..., v* in order not to mix them up with the
coordinates u**1, ... u? of the element (x,u*) in the manifold N9. Since
vl =wuf i =1,...,q, then in the chosen coordinate system the mapping

v: N7 — S%looks like [see (14)]

PERITIRI

—k .
oS 2 0@
= 851 851 ’

R = i=1...,q9—k.

The direct calculation [see (13)] shows that the Jacobian of the mapping
9?¢" (a)
O OE™
Thus, the point (a, ug) is a proper point of the mapping v if and only if the

following equation holds:

k

v at the point (a,e; ;) is equal to (—1) , a=1,... k.

62(,0q+1 (a)

e | * (15)

Since the mapping m,,h from MP* to the axis u}* is associated with the
function @971 (z), the condition (14) coincides with the non-degeneracy
condition for the singular point a of the mapping m,,h. This completes the
proof of «D».

*k
0

Theorem 5. Let M* be a smooth compact manifold of class m > 3 with
boundary M*=1 consisting of two closed manifolds Mé“*l and Mffl, each
of which possibly empty. Let f be a real-valued function of class m defined
on M*. Suppose that the function f1 takes the same value c;, i = 0,1 in all
points of the manifold Mik*1 and ¢y < c¢1, and that for any non-boundary
point x € MF the inequality co < f(x) < c1 holds. Moreover, suppose that
no critical point of f* lies on the boundary M*=1. It turns out that for the
function f' there exists an arbitrarily m-class close (see § 2, «F») function
g' coinciding with f' in some neighbourhood of the boundary such that all
critical points of the function g' are not degenerate and critical values in
different critical points are pairwise distinct.

PRrOOF. With the function f!, let us associate the mapping f from the
manifold M* to the one-dimensional vector space A'. Let e be a home-
omorphic regular class m mapping from M* to the Euclidean space BY
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(see Theorem 2). Denote the direct sum of vector spaces Al and B? by
C9t1; let us consider the spaces A' and BY as orthogonal subspaces of the
space C9T!. Denote the direct sum of mappings f and e (see §2, «E»)
by h. The mapping h is a regular homeomorphic class m mapping from
the manifold M* to the Euclidean space C9t! such that the orthogonal
projection 7 of h to the line A! coincides with f: f = wh. First of all,
let us show that in any neighbourhood of the line A' there exists a line in
the orthogonal projection to which generates a function having only non-
degenerate critical values. The desired function in the formulation of the
theorem is to be obtained from this by some modifications.

Let N7 be a manifold of all normal elements (x,u*) of the manifold
h(MP*), as defined in «D», and let v be the mapping from the manifold N?
to the manifold S? also defined in «D». Let us show that if u* € S7is a
proper point of v then all singular points of 7, h are non-degenerate. Indeed,
if a is a singular point of the mapping 7, h, then the ray u* is orthogonal to
h(M¥) at the point h(a); thus (a,u*) € N9. Since the mapping v is proper
at (a,u*) of the manifold NY, then the singular point a is non-degenerate
(see «<D»). Let € be a given positive number and let u be such a unit vector
of the spaces C9T! that the function h' = (u, h(x)) is class m e-close to
f' and that u* € S9 is a proper point of the mapping v so that all critical
points of the function h! are non-degenerate. By Theorem 4, such a vector
u does exist.

Let § be such a small positive number that for f!(z) < ¢y + 3§ and
for f1(z) > c; — 38 the point z is not a critical point of the function f*.
The existence of such § follows from the conditions of the theorem, since
neither the boundary M*~! nor its small neighbourhood contains critical
points of f!. Furthermore, suppose x(t) is a real-valued class m function
in variable ¢ equal to zero at t < c¢g+ 9 and t > ¢y —§ and equal to one at
c1—20=>t>co+29. Set

() = f1(@) + x(f (@) (h! (z) = f'(2)). (16)

It is easy to see that if ¢ that we have taken for constructing the function
h(z), is chosen to be reasonably small then all critical points of the function
h?(x) defined by (16) coincide with the critical points of the function h!(x)
and thus they are non-degenerate. Since for t < ¢y + 9 and for ¢t > ¢; — 9
the function x(t) equals zero it follows that for some neighbourhood of the
boundary M*~! the functions h?(x) and f!(x) coincide.

Typical singularities of mappings M* — E?k-1

E) Let f be an m-class smooth (m > 2) mapping from the manifold M*
to the vector space A2*~1. Let a be a singular point of the mapping f and
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let ', ..., ¥ be a local coordinate system in its neighbourhood such that
9f(a)

=0. 17

It (17)

Such a coordinate system in a singular point neighbourhood always
exists. If the system

9°f(a) f(a)
Axloxt’ I

L odi=1,..., k=2 ...k, (18)

of 2k—1 vectors of the space A2~ is linearly independent, then the singular
point a is called non-degenerate. Later on, we shall show that the non-
degeneracy of a singular point is invariant, i.e. this notion is independent

of the coordinate system: if some coordinate system &', ..., €* defined in
a neighbourhood of a satisfies the condition
0
fl@) _, )
ot

then the vector systems (18) and

0*f(a) 0f(a)
ogrogt’  agl

are either both linearly dependent or both linearly independent. It turns
out that in a sufficiently small neighbourhood of a non-degenerate singular
point there are no other singular points.

Let us prove that the non-degeneracy is invariant. Assume that the
relations (17) and (19) hold and that the vector system (20) is linearly
independent. Let us show that the system (18) is also linearly independent.

sk i =2,k (20)

We h
e have Z 0) 9€%(a
550‘ ozt
from which, according to the assumptlon above, we deduce
9% (a)
ol =0, a=2,... k. (21)
Since the Jacobian 858 (ia) ‘, a,i=1,...,k, is non-zero, it follows from (21)
xr
that
¢t o0&
g();«féO, 5() #0, a,i=2,...,k. (22)
oz oz’
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From the relations (21) we get

(@) .
ax] Z aga ax] L i=2,... k. (23)

Furthermore, taking into account (21) and (19), we get

f(a) o~ % f(a) O (a) DEP(a)
Orlox’ L= og'oe? ox' Oa

8250‘ ) )
Z aga o i=1,...,k. (24)

From the relations (23), (24), (22) and linear independence of the sys-
tem (20) one gets the linear independence of the system (18).
Now, let us show that the singular point a is isolated. To do that, view

a as the origin for the coordinate system z', ..., z*¥ and consider the Taylor

0f(x)

decomposition for vectors pycal i=1,...,k, in the neighbourhood of a in

coordinates z!, ..., x":

{E + €1, (25)

oo

Of(x) _0f(a)

o’ ox’

ey, i=2,...k, (26)

where ¢ is second-order small with respect to o = \/(z1)2 + ...+ (z¥)2,
and €9, ...,¢y are first-order small with respect to ¢. Since the vectors of
the system (19) are linearly independent, it follows from (25) and (26) that
0f(z) 0f(x)
ozt T ok
sufficiently close to a.

F) Let h be a regular class m mapping (m > 2) from the manifold M*
to the vector space C2*. Denote the manifold of all rays u* of the manifold
C?F by S?#~1 (see §1, «<H») and denote by L?*~! the manifold of all linear
elements of the manifold h(M*), i.e. the manifold of all pairs (z,u*), where
x € M*, and u* is the ray tangent to h(M*) at h(z). Define the mapping
7 from the manifold L2*~1 to the manifold S?*~! by setting 7(x, u*) = u*.
Denote the projection of the space C2* along the line u** containing u by
Tu. As noticed before (see §2, «A»), the point a € M* is a singular point
of m,h if and only if the ray u* is tangent to h(MF¥) at the point h(z),

the vectors

are linearly independent for all points = # a
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i.e.if (a,u*) € L?*~1. It turns out that the singular point a of the mapping
mh is non-degenerate if and only if the mapping 7 is proper at the point
(a,u*) c L2k—1

Let us prove the last statement. Let a be a singular point of f =
Tuoh. Choose a basis e, . .., ea, of the vector space C?* in such a way that
the vectors e1,...,ey are tangent to h(M¥) at the point h(a) and so that
the vector e; coincides with ug. Let y/ = hi(x) = hi(x!,...,2¥) be the
expression of the mappings h in the coordinates y', ..., y?* with respect to
O (a)

the basis eq, ..., ea;. Note that the absolute value of the Jacobian s
X

)

i,7 =1,...,k, differs from zero, thus the relations
I3 :hi(xl,...,xk), m=1,...,k,

can be used to introduce new coordinates £, ..., &* of & in the neighbour-
hood of a. In the new coordinates, the vector h(x) will look like

k k
= Zglei + Z ¢’ (x)er+s, (27)
i=1 i=1
where the functions ¢ (z) satisfy the condition

A7 (1)
e’

=0, i,j=1,.... k. (28)

Let (x,u*) be an element of the manifold L2*~! close to the element (a,ug).

The vector u is tangent to h(M¥) at the point h(z); thus it can be written
as

k k 8Jx
u:Z Zuel—i-Zu itk (29)
i=1 4,j=1

On the ray u*, let us choose a vector u such that u' = 1; then the expression
(29) looks like

k
3 J(x)
u=e;+ Zu e + Z 8{1 ekﬂ g ———e€jtk- (30)
Jj=1 j=1i=2
For coordinates of the elements (z,u*) in L?~! we may take the num-

bers u? Juk &, ..., €%, Since the first component of the vector u in the
space C’2k equals one [see (30)], the coordinates of the row u* in the man-
ifold S%*~1 can be set to be the remaining components v2,...,v%* of the
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vector u in the space C?*. In the chosen coordinates, the mapping 7 is
written (according to (30)) as

_ j ko 9w (31)
ki = 92°(@) (1“:) w220k

o€ =1 0g
A simple calculation shows that the Jacobian of the mapping 7 at the point
(a,up) is equal to

0%l
AN ii=1,... .k (32)
0t oE
Consider now the mapping m,,h. Let us assume that it is a projection to
some vector space A?F=1 with basis eq, ..., o along some line e]*. Then
we have [see (27)]
koo k
f(z) = my,h(z) = Zfzei + Z ¢ (z)er+a- (33)
=2 a=1
Thus we deduce
82 k 32 fel
{(az = Zwli(xl) “Chtas i = 17"'7k7
06 08" = 980¢
0
f(a) =ej, j=2,...,k
o0&’

Thus, in this case the vectors of the system (19) are linearly independent
if and only if the Jacobian (32) is non-zero.
Statement «F» is proved.

Theorem 6. Let f be an m-class smooth (m > 3) mapping from a
compact manifold MF* of dimension k to the vector space A%*~' of dimen-
sion 2k — 1. It turns out that for the mapping f there is an arbitrarily
m-close mapping g with all singular points non-degenerate and not lying on
the boundary M*=1 of the manifold M*.

PROOF. Let us treat the vector space A%*~! as a subspace of the vector
space C?* of dimension 2k. Let B! be some one-dimensional subspace of
the space C?* not lying in A?*~1. Denote the projection of the space C?*
to the space A%*~1 along B' by 7. Fix a positive number ¢; let h be a
regular mapping of M* to the vector space C?* such that the mapping
7h is e-close to f (see Theorem 3). Let L?~! be the manifold of linear
elements of the manifold h(M*) (see «F»); let L?*~2 be the submanifold of
L?*=1 consisting of all elements of the type (z,u*) where z € M*~1 and let
7 be the mapping from L?*~1 to the sphere S?*~1 constructed in «F». It
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follows from «F» that if u* € S?*~1 is not a singular point of the mapping
7 and does not belong to the set 7(L?*~2) then all singular points of the
mapping m, h are non-degenerate and do not belong to the boundary of the
manifold MF*. By virtue of Theorems 4 and 1, there exists a vector u such
that u* satisfies the conditions described above and the mapping m,h is
e-close to wh. Thus, there is a 2e-close to f mapping g = m,h satisfying
the conditions of the theorem.
Theorem 6 is proved.

Canonical form of typical critical points and typical singular
points

In Statements «C» and «Es», several singular points of mappings from
manifolds M* to vector spaces A' and A%*~!  were found to be non-
degenerate. In Theorems 5 and 6, it was shown that all degenerate singular
points of the considered mappings are not balanced, i.e. removable by small
perturbations. However, we did not prove that those singular points called
non-degenerate are balanced, i.e. they are preserved by small perturbations.
The proof of this fact is not difficult, but we shall omit it. Also, we have
not described the structure of the mapping in the neighbourhood of a non-
degenerate singular point. It is not easy in the general situation; below we
present the results without proving them.

G) Let a be a non-degenerate critical point of a real-valued function
f1(x) defined on a manifold M*. As noticed in Statement «A», the Taylor
decomposition of the function f!(z) in the neighbourhood of the point a
looks like (9). It turns out that (see [7]) by a coordinate change in the
neighbourhood of a this Taylor decomposition can be transformed to that
of the type

fla)=fHa) + @)+ 4+ @) = (@) = = (@)% (34)

where the number s of positive squares is an invariant of the point a,
i.e. does not depend on the coordinate choice in the neighbourhood of this
point, and is not changed by a small perturbation. Thus, the function de-
fined on a k-dimensional manifold has k + 1 possible types of critical points
(s=0,...,k). Since the mapping f of the manifold M* does not define the
function f!(x) directly, then the points of different type for the function
may happen to be of different type for a mapping. Indeed, changing the
sign of the function f!(x) interchanges the roles of s and k — s; thus the
corresponding critical points belong to the same type of mapping critical
points. It is worth mentioning that, in the general situation, one cannot
get from the expression (9) to the expression (34) by a linear coordinate
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change, as it might seem. An evident linear transformation is just the first
step of the transformation of (9) to (34). Under linear transformation the
third-order and higher-order terms are preserved, whence they are absent
in (34).

H) Let a be a non-degenerate critical point of f : MF — A2F-1
(see «E»). It turns out (see [8]) that in the neighbourhoods of the points a
and f(a) one can change the coordinate systems (generally, the coordinate
change is not linear) such that the mapping f in the neighbourhood of a
has the following coordinate form:

(35)

Here the points a and f(a) are taken to be the coordinate origins.
Statement «H» is quite a difficult theorem.
By using the expression (35), one can visualize the geometry of the
mapping f in the neighbourhood of a, especially in the case when k = 2.

CHAPTER I

Framed manifolds

§ 1. Smooth approximations of continuous mappings
and deformations

In the present section, we shall show that while studying the homotopy
types of mappings from one manifold to another it is sufficient to consider
only smooth mappings and smooth homotopies. This results from the fol-
lowing facts. Let M* and N'! be two m-smooth closed manifolds. It turns
out that in any homotopy class of mappings from N' to M* there exists
an (m — 1)-smooth mapping, and if two (m — 1)-smooth mappings from
the manifold N' to the manifold M* are homotopic, then there exists an
(m — 3)-smooth homotopy between these mappings. Thus, while studying
mappings of smoothness class m, one has to consider the homotopies of
class m — 3. This loss of smoothness class can be avoided by using several
tricks, but since the results of this section are to be used only for study-
ing maps from sphere to sphere and the sphere is an analytic manifold, we
need not worry about the loss of smoothness class; thus there is no sense
in giving a more difficult proofs of a more precise statements.
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The structure of neighbourhood of a smooth manifold

The statement given below will be used only for the case of closed man-
ifolds; the proof in this case is much simpler than that in the general case,
as seen from the proof itself. In the next section, we shall use the general
case.

A) Let E"* be the Euclidean space with a fixed Cartesian coordinate
system y', ..., y" "% and let Ey, F1 be two hyperplanes of the space E"**
defined by y"*t* = ¢y and y*** = ¢;, where ¢y < ¢; and E"*F is the
strip of the space E™"T* bounded by these hyperplanes, i.e. the set of points
satisfying the conditions ¢y < y"** < ¢;. Furthermore, let M* be an
m-class smooth (m > 4) compact submanifold (in the case of a closed
manifold MP* it is sufficient to take m > 2) (see § 1, «F») of the strip E"+*,
with boundary M*~1. Denote the total normal subspace at the point z
to M* by N,. This subspace is an n-dimensional linear subspace of the
Euclidean space E"T*. We shall also assume that for any boundary point
z of the manifold M*, this manifold is orthogonal to the boundary of the
strip E"**_ i.e. that for x € M*~! we have

N, C EqU E. (1)

For the Euclidean space NN, denote the open ball centred at z with radius
d > 0, by H(z) = Hs(z) and denote the union of all balls Hjs(z) over all
z € P, where P C M* by Hs(P). It turns out that there exists such a
small positive number § that for z # 2z’ the balls Hs(z) and Hs(z") do not
intersect each other, whence the set W5 = Hs(Mj,) forms a neighbourhood
of the manifold MF* in E"*t*.  Associating with each point y € Wj the
unique point z € M* for which y € Hs(z) we obtain a smooth mapping
y — z = n(y) from the manifold W; to the manifold M¥; in the case when
MPF is smooth, this mapping is of class m — 1.

Let us prove Statement «A». Let a € M*;2' ... zF be some local
coordinates defined in a neighbourhood of the point a taken to be the
origin, and let

y = fa) = fat b, =1 n etk (2)

be the parametric equation defining the manifold AM* in the neighbourhood
of a. The functions f7 are defined for those values of z',. .., z* satisfying

|| <e, i=1,...,k, (3)
in the case when a is an interior point of M¥; they satisfy (3) and

' <0 (4)
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if a is a boundary point of M*. Thus the functions f7 define the mapping
fa from the open cube K., defined by inequalities (3), or, respectively, from
the half-cube K, defined by (3) and (4). In the case of boundary point a
we extend the function f7 to the positive values 2! by setting

f](x) :fj(xl,...,xk)

+

2
(6§1)2f](0,:102, xRy (@h? 2t >0,
The functions f7 defined in this way define a regular homeomorphic map-
ping f, from the open cube K. (where ¢ is a small positive number) for
any arbitrary point a € M*~1.

The equation of the normal space Ny, ;) = N, to the manifold f,(K:)
at the point f,(x) has the following vector form:

Ofal(x)
ox'

,y—fa(x)>—0,i—1,...,k. (5)

Here y is the vector describing the normal space N,. We shall consider
the system of relations (5) as a system of equations in unknown functions
x', ..., 2 of the independent variables y',...,4y""* which are the compo-
nents of the vector y. For the initial values y = f,(0) = a, the system (5)
has the evident solution 2 = 0, i = 1,...,k. The functional determinant
(8fa(a) 3fa(a)>

ozt 92! ’
i,7 =1,..., k. This determinant is non-zero, since the mapping f, is reg-
ular at 0. Thus the system (5) is solvable. Let z = o(y), or, in coordinate
form,

k

of the system (5) for these values is equal to (—1)

=yt R, =1,k (6)

be its solution defined for all points y belonging to some neighbourhood V,
of the point @ in the neighbourhood E™**. For y € V,, there exists thus
precisely one point x € K, satisfying the condition y € N,; this point x is
defined as © = o(y). In other words, for each point y € V, there passes
a unique normal space N, where x € K.. From the continuity of the
function o(y), it easily follows that there exist small positive numbers J,
and g, that for § < d,, € < g, the set Hs(f,(K.)) is completely contained
in V,, and it is a neighbourhood of the point @ in the space E"F.

Let us show that for a boundary point a there exist some small positive
numbers ¢, and &/, that for § < ¢, and € < &, the set Hs(fo(K.)) is a
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neighbourhood of the point a in the strip E"*t*. For definiteness let us
assume that a € E1; then we have

o'y ) =0, (7)
It is clear that
80’1(y1, o ’ynJrkfl’ Cl)
P > 0. (8)

From the above it follows that for any point y sufficiently close to a the
sign of the function o' (y*, ..., y"**) coincides with the sign of the number
y" % — c1; this shows that for sufficiently small numbers at § and e we have

Hé(fa(Ké)) = Hé(fa(KE)) N Ef+k- (9)

Since Hs(f.(K.)) is a neighbourhood of the point a in the space E"** then,
according to (9), the set Hs(f,(K.)) is a neighbourhood of the point a in
the strip Bk,

For an interior point a € M¥, set §! = 84, €, = €,. The set of all
domains U, = fo (K )N MP*, a € M*, covers the manifold M*. Suppose
Ua,,...,U,, is a finite cover of the manifold M k. There exists a small num-
ber 17 > 0 such that any two points M* at distance less than 7, are contained
in a domain from this cover. Now let ¢ be the minimum amongst 0, , n =
1,...,p, and n/2. Since Hs(M*) = Hs(Us,) U ... U H5(U,,) we see that
Hs(MP¥) is a neighbourhood of the manifold M* in the strip E***. Fur-
thermore, for two distinct points z € M* and 2/ € MP¥, the balls Hs(z)
and Hy(z') do not intersect. Indeed, if o(z,z") < 20 then the points z and
z' belong to the same domain U, , thus, as shown above, the balls Hy(z)
and Hs(z') cannot intersect. If g(z, z’) > ¢ then these balls cannot intersect
because the distance between their centres is greater than the sum of their
radii.

Thus, Statement «A» is completely proved.

Smooth approximations

B) Let f(z) be a continuous real-valued function defined on a class
m > 2 smooth compact manifold M* and let ¢ be a positive number.
Then there exists a smooth real-valued function g'(z) of class m defined
on M* and satisfying the condition |g*(z) — f*(z)| < &. In other words, a
continuous function defined on M* can be arbitrarily closely approximated
by a smooth function.

Let us prove Statement «B». By virtue of Theorem 2 we may assume
that the manifold M* is embedded into the Euclidean space E' of some
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high dimension. Let @ be a closed cube containing M*. According to the
well-known Urysohn theorem (see [9]) the function f!(x) given on M* can
be continuously extended to the whole cube ). This function, defined on )
can be e-approximated by a polynomial g'(x) in the Cartesian coordinates
of the point z € Q. The function g'(z) considered on M* is a function we
are interested in.

Theorem 7. Let M* be an m-smooth (m > 2) closed manifold, let N'
be an m-smooth compact manifold and let f be a continuous mapping from
the manifold N' to the manifold M*. We shall treat M* as a metric space.
It turns out that for any positive € there exists a mapping h of class m — 1
from the manifold N' to the manifold M*, such that o(f(z),h(z)) < &,
x € N'. In other words, a continuous mapping from the manifold N to
MPF can be arbitrarily closely approzimated by a smooth one.

PROOF. By virtue of Theorem 2, we may assume that the manifold

MPF is a submanifold of some Euclidean space E"*. Let § be a number
)

Vn+k

note the components of the vector f(z),z € N! by f(z),..., " *(z).
According to Statement «B», there exists a real-valued m-smooth func-
tion g*(x), i = 1,...,n + k, defined on N'! and satisfying the inequality
|fi(x) — g'(z)| <e,i=1,...,n+ k. Denote the vector with components
g (z),...,g""*(x) by g(z). The mapping g of the manifold N to E"**
is m-smooth and g(N') C Wy (see «A»). For sufficiently small &', the
mapping h = mg (see «A») satisfies the conditions of the theorem.

C) A family of continuous mappings f;, 0 < ¢t < 1 from a closed manifold
N' to a manifold M* is called a continuous family or a deformation of the
mapping fo to the mapping fi if fi(x) is a continuous function in two
variables x,t. Let N' x I be the Cartesian product of N! and the real
closed interval I = [0,1] (see §1, «I»). Set fi(x,t) = fi(x). It is clear that
the family f; is continuous if and only if the mapping f; of the manifold
N x I is continuous. We shall call the family f; smooth of class m (or f; is
an m-smooth deformation) if the mapping f. is m-smooth. If the mappings
fo and f; are connected by a smooth deformation, they are called smoothly
homotopic. It is quite evident that the relation of smooth homotopy is
reflexive and symmetric. The transitivity of this relation is not totally
obvious and requires a proof. Let us prove it.

Let f_1, fo, f1 be three m-smooth mappings from N' to MF; let f,,
—1 <t < 0, be an m-smooth deformation of the mapping f_; to the
mapping fo and let f;, 0 < ¢ < 1, be a smooth m-deformation of the map-
ping fo to the mapping f;. The deformation f;, —1 <t < 1, is, clearly,
continuous, but at t = 0 it might not be smooth, thus it is necessary to

defined for this submanifold in Statement «A», and &’ < De-
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reconstruct it to get an m-smooth deformation. Let n be an odd natural
number such that n > m. Set ¢g:(z) = fin(x). It is easy to see that g,
—1 <t £ 1, is an m-smooth deformation of the mapping g1 = f_1 to
the mapping ¢ = f1. Thus, the transitivity of the m-smooth homotopy
relation is proved.

D) Let M* and N' be two m-smooth closed manifolds, such that M*
is a metric space. Then there exists a small number ¢ such that if fy and
f1 are two m-smooth mappings from N! to M* with distance less than ¢,
i.e. satisfying the condition o(fo(z), f1(z)) < &,# € N', then there exists
an (m — 1)-smooth deformation of the mapping fy to the mapping f;.

Let us prove Statement «D». By virtue of Theorem 2, one may assume
that M¥ is a submanifold of the Euclidean space E"** of some high dimen-
sion. Let § be a number defined for M* ¢ E™t* in Statement «A». We shall
assume that the metrics in the manifold M* is induced by M* c E"tF,
choose £ to be so small that for g(z,2') < e the interval connecting the
points z and z’ lies in Wj. Set

fi(@) = w(fo(x)(1 = 1) + fr(2)t).

It is evident that f;, 0 < ¢t < 1, is an (m — 1)-smooth m — 1 deformation
from the mapping fy to the mapping f1 (see «A»).

Theorem 8. Let f;, 0 < t < 1 be a continuous deformation of the
closed manifold N' to the closed manifold M* such that the mappings fo
and f1 are m-smooth. Then there exists an (m — 2)-smooth deformation
from fo to f1. In other words, if two smooth mappings can be connected by
a continuous deformation then they can be connected by a smooth deforma-
tion.

ProOF. With the continuous deformation f;, associate (see «C») the
continuous mapping f. from the manifold N' x I to M*. By virtue
of Theorem 7, the continuous mapping f. can be e-approximated by an
(m — 1)-smooth mapping g. from N x I to the manifold M*. With the
mapping g, one associates a smooth deformation g;, 0 < ¢t < 1 of mappings
from N' to M*. For ¢ sufficiently small, the mappings f; and ¢;, i = 0,1,
are close to each other, thus there exists an m — 2-homotopy between them
(see «D»). From the transitivity of smooth homotopy relation, it follows
that there is an (m — 2)-smooth homotopy between fy and f.

This completes the proof of Theorem 8.

§ 2. The basic method

In this section with each mapping from the (n + k)-dimensional sphere
Y7tk to the n-dimensional sphere S™ we associate a smoothly framed sub-
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manifold M* of the Euclidean space E"**. The framing of the manifold M*
means that at each point z we define a system U(x) = {ui(z),. .., un(2)}
of linearly independent vectors orthogonal to M*, whence the vector u;(x)
depends smoothly on 2 € M*. The framing is called smooth if the vectors
u;(x) depend smoothly on z. The manifold M* together with its fram-
ing U is called a framed manifold and is denoted by (M*,U). It turns out
that each smoothly framed manifold (M*, U) corresponds to some mapping
from the sphere X" ** to the sphere S™ and that the mappings representing
the same smoothly framed manifolds are homotopic. The smooth mani-
folds corresponding to two homotopic smooth mappings might not coincide
and even not be homotopic. This leads to the definition of homological
equivalence of two framed manifolds (M}, Uy) and (MF,U;) located in the
Euclidean space E"**. The two manifolds (M¢,Uy) and (MF,U;) are ho-
mological if in the Cartesian product E™* x I of the space E™"* and the
interval I = [0, 1] there exists a compact framed submanifold (M**! )
whose boundary consists of M¥ x 0 and M} x 1 and the framing U of that
manifold restricted to the boundary coincides with the framings Uy x 0
and U; x 1 defined on M§ x 0 and M{ x 1. It turns out that two map-
pings from the sphere £"** to the sphere S™ are homotopic if and only if
the corresponding smoothly framed manifolds are homological (the fram-
ing generating this homological equivalence is not assumed to be smooth).
Thus, the homotopy classification problem of mapping from a sphere to
a sphere is reduced to the homological classification of smoothly framed
manifolds. One should admit that the question of homology classification
of framed manifolds is not simple.

Framed manifolds

Definition 3. Let E"** be the Euclidean spaces with Cartesian coordi-
nates y',..., y"* and let Ey and E; be two hyperplanes of the space E"*
defined by the equations "% = ¢y and y"** = ¢, ¢g < c1; let E7HF be the
strip consisting of all points of the space E™t* for which ¢y < y"** < ¢;.
Furthermore, let M* be an m-smooth compact submanifold (see § 1, «F»)
of the strip E7** with boundary M*~'. If the manifold M* is closed then
the hyperplanes Ey and E; play no role and we assume that E7+tF = gtk
Consider the total normal space N, at the point € M* as a vector space
having origin at x; suppose that

N, C EyUE,, ze M1

i.e. that the manifold M* is orthogonal at its boundary points to the bound-
ary of the strip E"** (cf. §1, Ch.2, «A»). Thus, lying inside the boundary
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Entk manifold MF is framed, if in any vector space N, a basis

up(a), ..., un(z),

is fixed, whence the vector u;(x), viewed as a vector of Entk s a continuous
function of # € M*. The system U(z) = {u1(z),...,u,(x)} is to be called
the framing of the manifold M*, and the manifold M* together with U(x)
will be denoted by (M*,U(z)) and called a framed manifold. A framing
U(z) is called orthonormal if for any point x € MP" the basis U(x) is
orthonormal. The framing U(x) is called class m smooth if each vector
u;(z) is a class m smooth function of the point x € MF.

One should point out that any framed manifold is oriented and it
inherits the natural orientation if the ambient Euclidean space E™T* is

oriented. Indeed, let ej,...,er be a linearly independent vector system
tangent to the manifold M* at some point z. We say that the sys-
tem eq,...,e; defines the natural orientation of the manifold MP* if the
system ey, ..., eg, ui(x),...,u,(x) corresponds to the positive orientation

of the space E"t*,

The definitions given below are devoted to the notion of homological
equivalence between two k-dimensional framed submanifolds of the Eu-
clidean space E"tF.

Definition 4. Let (MF,Uy) and (Mf,U;) be two smooth framed sub-
manifolds of the Euclidean space E"*. Let Entktl = Erth x Bl where
E' is the real line with variable ¢. Set E; = E"* x ¢, t = 0,1 and denote
by EPtF+1L the strip of the space E"T*+1 bounded by hyperplanes Ey and
E;. The framed manifolds (M}, Uy) and (MF,U;) are homological if there
exists a framed submanifold (M**! U) of the strip E7+t*+1 such that

M* 1N Ey = M} %0,
MMrAE = MF x1,

whence the framing U coincides on M} x t with the framing U; x ¢, t = 0, 1.
A framed manifold (M}, Uy) is called null-homologous if it is homological to
the framed manifold (MF,U;) where M¥ is empty. In this case the framed
manifold (M**+1, U) representing the homology has boundary M*. It turns
out that the homological equivalence is reflexive, symmetric and transitive;
thus the set of all k-dimensional framed submanifolds of the Euclidean space
E™tFE is split into classes of homological ones.

It is obvious that this relation is reflexive and symmetric. Let us show
that it is transitive. Let (MK, U_y),(M§,Uy) and (MF,U;) be three
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framed manifolds of the Euclidean space E"** for which the following re-
lations hold: . .
(M—17 U—l) ~ (MO ) UQ),
(Mécv UO) ~ (Mlkv Ul)

Now, let E"tF+1 = Entk » E1 be the Cartesian product of the Euclidean
space E™F and the real line E* with variable t, with two strips F,;, i —1 <
t < i, i = 0,1 selected. Set E, = F,o U FE,;. We shall assume that
the homology (MF ,,U;_1) ~ (MF,U;) is realized in the strip E,; by a
manifold (Mf“,U*i), 1 = 0,1. Now let m be a sufficiently large odd
natural number. Define the mapping ¢ from the strip E. onto itself by
setting (x,t) = (z, ¥/t), v € E"*. The mapping ¢ from the strip E, to
itself, is clearly, homeomorphic. It is regular in all points (z,t), where ¢ # 0.
It is easy to check that M*+1 = (MFT U M) is a smooth submanifold
of the frame E,. Denote the vector system U,;(x,t) by U.(x,t). Let N/, be
the normal subspace to the manifold Mé““ U M{”l at (z,t), -1 <t <1
and let N,; be the normal subspace to the manifold M**! at the point
Y(x,t). It can be easily checked that the orthogonal projection of the
space N., to the space N, is non-degenerate. Thus, defining U(x,t) to be
the orthogonal projection of the system U, (x,t) to Ny, we get a framed
manifold (M**+1 U) providing the homology (M*,,U_1) ~ (MF,U;) in the
strip F.. Thus the transitivity of the homological equivalence is proved.

From mappings to framed manifolds

A) Let E™*! be a Euclidean vector space. The sphere S” of dimension
r and radius 1/2 is defined in E"+! by

1

(x,2) = 1

Let p and ¢ be two antipodal points of the sphere S”. Call the first one the
north pole, and call the second one the south pole. Furthermore, let 7}, and
T, be the tangent spaces to the sphere S™ at p and g, respectively, and let
€1,...,e be an orthonormal basis of the space T}, generating the positive
orientation of S”. We obtain the corresponding basis for T; by parallel
transport of the vectors eq,...,e, from p to q. These bases define some
coordinate systems for 7, and 7,. Now, let us introduce coordinates in
S™\q, S"\p by using (p;e1,...,e,). To do that, define by 1 (x) the central
projection of the point € S™\¢ from the centre ¢ to the space T}, and take
coordinates x',..., 2" of the point 1 (x) in T}, to be the coordinates of the
point z in S7\¢. In the same way, by using central projection from p to Ty,
we define the coordinates y',...,y" of the point x € S™\p. It is easy to see



§2. THE BASIC METHOD 49

that for x € S™\(p U gq) we have

ot = Y . (2)

Thus S” is an analytic manifold.

To each smooth mapping from the (n + k)-dimensional sphere X"** to
the n-dimensional sphere S™ associate a certain closed framed manifold
(M*,U) of dimension k situated in the Euclidean space E"** of dimen-
sion n + k.

Definition 5. Let f be a smooth mapping from the smooth oriented
sphere X"* to the smooth oriented sphere S™. Fix the north pole p’ of the
sphere ¥"F: denote its south pole by ¢’; denote the tangent space at p’
by E™** and denote the central projection of the domain X" +*\¢' to E"+*
from the point ¢’ by . Define the north pole p of the sphere S™ to be an
arbitrary (but fixed) proper point of the mapping f distinct from f(¢’) (see
Theorem 4). Let ey, ..., e, be a certain orthonormal vector system tangent
to S™ at the point p and defining the orientation of the sphere S™. Denote
the tangent space to the sphere S™ at p by T},. Since p is a proper point
of the mapping f, the set f~1(p) is a smooth k-dimensional submanifold
of X% (see §1, «F»). Since, moreover, the set f~!(p) does not contain
q, M* = ¢f~1(p) is a smooth closed submanifold of the Euclidean space
E™*. The mapping fo~! from the manifold E"** to the manifold S is
proper at any point 2 € M*. Denote the tangent space at z to the manifold
E™F by E"tF (see §1, «C»). Since the manifold E"** is the Euclidean
space, the space E""* can be identified with the space E"**, taking point
x to be the coordinate origin. Denote the total normal subspace and the
total tangent subspace to the manifold M* at the point = by N, and T,
respectively. Denote the linear mapping from the vector space E"+* to the
vector space T}, corresponding to the mapping fo =1 by f. (see §1, «E»).
Since the mapping fo = is proper at the point z, f,(E"*¥) = T}, and, since
fo Y (M*) = p, we have f,(T,) = p. It thus follows that the mapping f,
from the vector space N, to the vector space T}, is a non-degenerate mapping
onto T),. Denote the pre-image of the vector e; in the space IV, under f, by
u;(z). The system U(x) = {u(x),...,u,(z)}, # € M*, generates a smooth
framing of the manifold M*. WE ASSOCIATE THE FRAMED MANIFOLD
(M*,U) WITH THE MAPPING f : f — (M* ,U). The correspondence f —
(M*,U) depends on the arbitrary choice of the system p,e1,...,e,; thus,
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more completely f — (M* U) should be written as
(f;paeh o '7671) - (MkﬂU)

The pole p’ of the sphere £ 1% is fixed, i.e. it will remain the same for
all mappings from the sphere ¥t to the sphere S™. The pole p of the
sphere S™ should be a proper point of the mapping f distinct from f(q’),
thus it cannot be fixed.

The theorem given below showing that for homotopic mappings we get
homological manifolds and particularly shows the independence of the ar-
bitrary choice of the system p,eq, ..., e,.

It will be shown later (see Theorem 10) that from the homological equiv-
alence of framed manifolds we get the homotopy of the corresponding map-
pings.

Theorem 9. Let fy and f1 be two smooth mappings from the oriented
sphere ¥"F to the oriented sphere S™ (n > 2,k > 0) and let

(.fO;pO; €10, - - - 76710) - (Moka U0)7

(fi;p1,€11,--yen1) — (MF,UY)

(see Definition 5). It turns out that if for n > 2 the mappings fo and
f1 are homotopic then the framed manifolds (ML, Uo) and (MF,Uy) are
homologous.

PROOF. Since the orientations of the sphere S™ defined by the tan-
gent systems e, ..., eno and e11, ..., e,1 coincide, there exists an isometric
mapping ¥ of the sphere S™ onto itself that can be realized by a continuous
twisting and thus is homotopic to the identity; moreover, such a mapping
maps pg, €105 - - - , €no tO the system p1,€11,...,€n1- Set go = f(), g1 = 1971f1.
Since the mapping ¥} is homotopic to the identity the mappings go and ¢;
are homotopic. Moreover, it is easy to see that

(gO;puela"'aen) - (M0]€7U0)7

(g1;p,€1,---,€p) — (MF,Uy),
where
(p,e1s-- - en) = (Pos €10, - - -, €n0)-

Since the smooth mappings go and g1 are homotopic then there exists a
smooth homotopy g; connecting them (see Theorem 8); for this deformation
there corresponds a smooth mapping g, from the manifold "% x I to S™
(see §1, Chapter 2, «C»). Define the mapping . from (6"**\¢') x I to
the Cartesian product E"T* x I by setting

(2, 1) = (p(2), 1), 3)



§2. THE BASIC METHOD 51

Let us consider the product E"* x I as the strip EPT¥+1 in the space
Enthtl — prtk o B where E' is the real line. Let us make the following
assumption about g.:

a) The point p is a proper point of the mapping g¢. from the mani-
fold X% x I and it does not belong to g.(¢’ x I).

It follows from «a» that the set M**! =, g% (p) is a smooth compact
submanifold of the strip E7**+!. Denote by N, the normal subspace in
the space E*tF+1 to the manifold M**! at the point z € M*+!. Since
the mapping g.p; ! is proper at x then it is regular at 2 on N,; thus, to
the system of vectors ey, ..., e, one naturally associates in N, the system
of vectors U(z) = {uy(z),...,un(x)} (Cf. Definition 5). Let us make one
more assumption about g..

b) The manifold M**+! is orthogonal on its boundary to the boundary
of the strip ETT#+1 (see Definition 3).

It follows from the assumption «b» that U(x) is a framing of the man-
ifold M*+1; it is easy to see that the framed manifold (M*+1,U) provides
homology between the framed manifolds (Mg, Up) and (MF,Uy) (Cf. Defi-
nition 4). Thus, to prove the theorem it suffices to construct such a smooth
homotopy g; connecting gy and g; for which the assumptions «a» and «b»
hold. Let us do that.

Let hy be an arbitrary smooth homotopy connecting gg and ¢g;. Let
us correct it to make the assumption «a» hold. It is assumed that p is
a proper point of the mappings go and ¢; and that it does not coincide
with the points go(¢’) and g1(¢’). From this, it follows that there exists a
positive e satisfying the following conditions. For p, € S™, o(p, p«) < € and
t <eort>1-— e the point p, is proper for both h; and o(hi(q'),p) > €.
Let us fix ¢ satisfying the conditions above. Let p, be a proper point for
h.«, not belonging to h.(q¢’" x I) and satisfying the condition o(p,p.) < e.
By virtue of Theorems 4 and 1 such a point p, does exist. We shall as-
sume that the sphere S™ is situated in the Euclidean vector space E"*!;
let E"~! be the linear subspace of the space E"*! orthogonal to the vec-
tors p and p,. Denote the a-twisting of the sphere S™ around the axis E"~!
by Ya; let ¥g(p) = ps, 0 < 8 < 7. Let x(¢) be a smooth real-valued curve
parametrized by ¢ defined on the interval 0 < ¢t < 1 and satisfying the
following conditions:

xX(t)=1fore<t<1l—e.

Set 1y = Ygy(r)- The twisting 7, of the sphere S™ around E"~1 depending
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on t defined as above moves p to p, as t changes from 0 to €, and further,
returns the point p to the initial position as t changes from 1 —¢ to 1. Now,
let us define the family of mappings [; by setting

lt = (nt)_lht.

This family is smooth and it connects gp and g;. It turns out that for g, = [,
the assumption «a» holds. For 0<t<e or 1 —e<t<1 we have l;(¢) # p.
For ¢ <t <1 — ¢ the set I; ' (p) coincides with the set h; *(p.); thus I;(q")
does not coincide with p in this case either. Let us prove that p is a proper
point of the mapping l.. Let (a,to) € I7!(p) and let z',...,2"** be the
local coordinates in the neighbourhood of the point a. For the point (a, o)
to be proper for the mapping [, it is necessary and sufficient that amongst
the vectors
Ol (a,ty) Opli(a,tg) Opli(a,ty)
oxt T antk ot

there are n linearly independent ones. For 0 < tp <ecorl—e <ty <1
there are n such vectors even amongst the first n + k ones because of the
choice of €. For e <t < 1— ¢, amongst the n + k + 1 vectors in question
there are n linearly independent ones because of the choice of the point p,.
Thus, for g, = I; the assumption «a» holds.

In order to realize the condition «b», let us construct an integer-valued
function s(t) of the parameter ¢, 0 < ¢t < 1, satisfying the conditions:

s(t)=0 for 0<¢t<1/3,

s(t)=1 for 2/3<t <1,
ds >0 for 1/3<t<2/3,

and set
gt = ls(e)-

First of all, show that for the homotopy g; the condition «a» holds as
well. Since ly4)(q") # p, 9:(¢') # p. Now let (a,t9) be an arbitrary point
of the set g;7'(p) € ¥"** x I and x!,...,2"* be the coordinates in the
neighbourhood of the point a in o"**. Tt follows from (a,to) € g;'(p)
that (a,s(tp)) € I;*(p). For the mapping g. to be proper at (a,tg), it is
necessary and sufficient to have among vectors

g« (a,to) Opg«(a,to) Opg«(a,to)
ozt T ggntk ot
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n linearly independent ones. For the point (a,s(tg)) to be proper with
respect to [, it is necessary and sufficient that among the vectors

8901*(0“7 S(tO)) Ol (a7 S(to)) 6901*(0“7 S(tO))

Ox? U Ptk 0Os
there are n linearly independent ones. For 1/3 < ¢y < 2/3 we have
(a,t L. (a, s(t ds(t ds(t .
O¢g-(a,to) = Dl (a, 5(to)) . s( O), for s(to) > 0; thus, because the point

ot Js dt dt
(a, s(to)) is proper with respect to the I, it follows that the point (a, o) is

a proper point of the mapping g.. For 0 < ¢t < 1/3 or 2/3 < ¢ < 1 the point
a belongs to Iy ' (p) or I7*(p), respectively; thus, even amongst the vectors

dpg«(a,to) dpg«(a,to)
Oxt T gtk

there are n linearly independent ones. Thus, for the mapping g; the as-
sumption «a» holds.

Since for 0 < ¢t < 1/3 or 2/3 < ¢t < 1 we have g; = go or, respectively,
g: = g1 then the orthogonality of the manifold M**! to the boundary of
the strip E* A1 is evident.

Thus, Theorem 9 is proved.

Theorem 9 is proved here only for the case n > 2; it is not difficult to
prove it for n = 1. However, in this case we have no interest of it since the
classification of mappings from the sphere L**! to the sphere S is quite
elementary (see Theorem 12 concerning the case & = 0 and Theorem 18
concerning the case k > 0).

From framed manifolds to mappings

B) Let N" be a vector space with a fixed basis u1,...,u,. Denote by
K! the domain of the space N” generated by vectors £ = tuy + ...+ £ u,
satisfying the inequality (£%)% + ...+ (£")? < o?. Define the mapping A,
from the space N” to the sphere S™ by taking any point £ € K/, to the
point S™ with coordinates

é—ia2m
(0% = (1) — ... = (€)™
see «A») and taking the whole set to the point ¢ € S". It follows
A d taki he whol N™\K/, h i ST, It foll

directly from (1) and (2) that the mapping A, is m-smooth. Furthermore,
it is checked straightforwardly that the functional matrix of the mapping

xr =
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Ao at & = (0,...,0) is the identity matrix. Now, let N” be the space T,
with basis eq,...,e, and set wo(z) = A\pp(x), € S"\q and wa(q) = ¢.
The m-smooth mapping w, of the sphere S” to itself obtained in this way
is homotopic to the identity mapping. This mapping is homeomorphic,
it maps the ball neighbourhood K, = ¢~ 1(K/) onto S™\¢ and maps the
whole set S™\ K, to the point g.

Theorem 10. Let X% and S™ be two oriented spheres and let p' be
a fized point of X"* and E"TF be the space tangent to X"TF at the
point p’. Furthermore, let po and p1 be two points of the sphere S™ and
let e10,...,€n05€11,--.,€n1 be the orthonormal vector systems tangent to
S™ at po and py, respectively. Let (ME,Uy) and (MF,Uy) be some two ho-
mologous smoothly framed manifolds in E™*. It turns out that there exists
a mapping go from the sphere X" tF to the sphere S™ such that

(905205 €105+ - - » €n0) — (ME, Up).

Moreover, it turns out that if fo and fi are two mappings from X"* to the
sphere S™ such that

(f0§p076107 e 7€n0) - (MokuUO)a
(fl;pluellu"'7enl) - (MlkuUl)a

then the mappings fo and f1 are homotopic.

PROOF. Since the tangent vector systems ejg,...,en0 and e11,...,€n1
define the same orientation of the sphere S™, there exists an isometric map-
ping ¥ from the sphere S™ onto itself obtained from the identity mapping by

a continuous twisting, such that the system pg,eiq, ..., eno is transformed
to the system pi,ei1,...,e,1. The mappings f; and ¥~ ' f; are homotopic
and

(ﬁilfl;p07 €105+ enO) - (M]{Cv Ul)

Thus, to prove the second part of the theorem, it is sufficient to consider
only the case when

(Po, €105 - - -, €n0) = (P1,€11,-- -, €n1),
i.e. we have to show that the relations
(.fo;pvela"'ven)_)(MkaU)v (4)

(fl;p7617"'7en)_>(Mk7U) (5)
imply the homotopy of the mappings fy and fi.
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First of all, let us show that if
(MécaUO):(Mf;Ul):(Mka)a (6)

then the mappings fy and f; are homotopic.

Let N, be the normal subspace at the point a to the manifold M* in the
Euclidean space E™"T* and let n',...,n" be the components of the vector
1 € N, in the basis ui(a),...,uy(a) if the space N,. For the neighbour-
hood S™\q of the point p in the sphere S™, let us introduce the coordi-
nates x',..., 2" induced by the north pole p and the orthonormal system
€1,...,6n given at p (see «A»). It follows from (4)—(6) that the coordinate
form of the mappings fy and f; from N, to S™ near the point a looks like

r=n4+..., 1=1,...,n,
r=n"4+..., 1=1,...,n,

where only the first-order terms are given, and the higher-order terms are
omitted. Thus, the mappings fy and f; from the space N, to S™ near the
point a coincide up to second-order terms. This implies that for n € W,
where § is small enough (see §1, Chapter 2, «A»), the geodesic interval
(fo™ (). fr9~'(n)) on the sphere S" connecting fop~1(n) to fie~ ()
does not pass through the point p. Set W} = ¢~ '(Ws). Since the do-
main W/ contains the set f; '(p) = f; '(p) = ¢~ (MF), the closed sets
fo(S™\W3) and f1(S™\Wj) do not contain the point p. For £ € Wy, set
(&) = o(p(&),me(€§)). Now, let us make the point fy(§),& € Wy, move
uniformly along the geodesic interval (fo(£), f1(§)) in such a way that it
passes this interval in the unit period of time. Denote the position of the
moving point at the moment ¢, 0 < ¢ < 1, by h(,t). Let x(o) be a real-
valued function of o, defined on the interval 0 < o < § and satisfying the
following conditions:

X(@)=1 for 0 <o < L5, x(5) =0,

0< x(o) <1 for 0< o<

Set
hi(§) = h(& ty(0(€))) for &€ Wy,
hi(§) = fo(§) for € S™\Wy.

The family of mappings h;, 0 < t < 1, provides a continuous deforma-
tion from the mapping fo = hg to the mapping h;. Here the mapping hq
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possesses the following properties. There exists a small ball neighbourhood
K, of the point p in the sphere S™ such that

hi ' (Ka) = f1 H(Ka) =V C Wj,

and for £ € V' we have
hi(§) = f1(6)- (7)

Now, it is easy to show that the mappings fy and f; are homotopic. Indeed,
it follows from (7) that the mappings wah1 and wa f1 (see «B») coincide.
Since the mapping w,, is homotopic to the identity the mappings hy and f;
are homotopic; thus so are fy and fi.

Thus, it is proved that if (6) holds, then (4) and (5) yield the homotopy
of the mappings fo and f;.

Now, let us show that if the framed manifolds (M}, Uy) and (MF,Us)
corresponding to the mappings fo and f1, are null-homologous then these
mappings are homotopic. Let (M*+1 U) be a framed submanifold of the
strip E"F x I ¢ E"tF x E' = E"T*+1 providing a homotopy between the
framed manifolds (M}, Uy) and (MF,U;) (see Definition 4). Denote the
normal subspace a € M**! to the manifold M*+! in the space E"tF+1 by
N, and let W5 be the neighbourhood of the manifold M**! in the strip
E"tk x I constructed as in § 1, Chapter 2, «A». In the vector space N, we
have a basis U(a). Let us choose a positive number « in such a way that
for any arbitrary point @ € M**! the inclusion K, C Ws holds (see «B»).
Now, define the mapping ¢, from the manifold "% x I to the sphere S™
by setting

9+(&) = Aa(p«(§)) for ¢.(€) € Hs(a) (see §1, Chapter 2, «A»),
9-(§) = q for ©.(§) € Ws(a) [see (3)].

For the mapping g, from the manifold X"t* x I to the sphere S™ there
corresponds a deformation g; of mappings from the sphere ¥"t* to the
sphere S™. Tt follows from the properties of the mapping A, (see «B») that
the framed manifolds corresponding to the mappings go and g; coincide with
the given framed manifolds (M[, Uy) and (M, U;). Since the mappings fo
and go have the same corresponding framed manifold (MEF,Uy) then the
mappings fy and g, are homotopic, as shown above. Reasoning as above,
the mappings f; and g; are homotopic as well. Since the mappings gy and
g1 are connected by a homotopy g; then they are homotopic as well. From
that and from the transitivity of homotopy it follows that fj is homotopic
to fl-

Thus, the second part of the theorem is proved. The proof of the first
part is contained in the last construction. Let us present this proof. We
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are given a framed manifold (M* U). Denote the normal subspace at the
point a € M* by N,. In the vector space N, we have a basis U(a). Define
a positive number « in such a way that for any point a € M* the inclusion
K, C Ws holds (see §1, Chapter 2, «A»). Define the mapping g from the
sphere "% to the sphere S™ by the following relations:

9(§) = Aalw(§)) for ¢(§) € Hs(a),
9(§) = ¢ for (&) ¢ Ws(a).

It follows straightforwardly from the properties of A\, that the framed man-
ifold corresponding to g is (M*,U). Thus, the first part of the theorem is
proved.

Theorem 10 is completely proved.

It is easy to show that each framed submanifold (M* U) of the Eu-
clidean space E*! is null-homologous. Thus, for n = 1, Theorems 9 and 10
are not interesting.

§ 3. Homology group of framed manifolds

In this section we first define the notion of deformation for framed man-
ifolds. If the manifold in question is smooth, has no intersections and
its framing varies continuously together with it, one says that one has a
smooth deformation of the framed manifold. It can be easily shown that
two framed manifolds obtained from each other by a deformation are ho-
mologous. Later on, we introduce the sum operation for the homology
classes of framed manifolds in the given Euclidean space, so that the set of
these classes is naturally endowed with a commutative group structure. If
71 and 7y are two homology classes and (M{,U;) € 71 and (M¥,Us) € 72,
then the sum m; + 79 is defined as the class containing the union of these
two framed manifolds. It is necessary here that the manifolds M and M¥
do not intersect and that they are unknotted; the knottedness is possible if
the dimension of the ambient Euclidean space is strictly less than 2k + 2.
The unknottedness means that the manifolds M} and M¥ can be moved
away from each other by a deformation of each of them. To satisfy these
conditions, it is assumed that the manifolds M} and M} lie on different
sides of some hyperplane.

Homotopy of framed manifolds

A) Let E” be a Euclidean space, let X be some compact metric space
and let N'; be a linear subspace of E” with the fixed origin O(z,t),
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that continuously depends on the pair (z,t), x € X, 0 < t < 1. Fur-
thermore, let U(z) = {u1(z),...,un(x)} be a basis of the vector space
N, continuously depending on z € X. Then there exists a basis
U(jc,t) of the space N;', continuously depending on the pair (z,t) and
coinciding with U(z) at t = 0. If, moreover, the vector space N[,
does not depend on t for z € ¥ C X, then we have U(z,t) = U(x)
forzeY.

Let us prove Statement «A». Let € be a small positive number such
that for [t —#'| < e, x € X, the orthogonal projection of the space N[,
to the space N7, is non-degenerate. Set U(x,0) = U(x). Suppose that
the basis U(x,t) is already constructed for 0 < ¢t < pe < 1,z € X (pis
a non-negative integer). For pe < ¢t < (p + 1)e, let us construct the basis
U(z,t) by transporting the basis U(x, pe) parallel to the point O(z,t) and
then projecting it orthogonally to N',.

B) Let E"** be the Euclidean space endowed with the Cartesian coordi-
nate system y', ..., y"*; let E"T* be the strip defined by ¢y < y" ™% < ¢y,
restricted by the hyperplanes Ey and E1, and let M* be a smooth submani-
fold of the strip ET** orthogonal on the boundary to the boundary FEyU E;
of the strip E7** (see § 1, Chapter 2, «A»). A smooth family of mappings
er, 0 <t <1, from the manifold M* to the strip EZ}"”“ is called a smooth
deformation of the sumbanifold M* of the strip EPHF if eq is the identity
mapping and e; is a regular homeomorphic mapping from the manifold M*
to the submanifold e;(M*) of the strip E?T* orthogonal at the boundary
to the boundary of the strip E***. If U is a framing of M* and there is a
framing e;(U) of e;(M*) depending continuously on ¢ such that eq(U) = U,
we say that e, is a deformation of the framed manifold (M* U). (In the
case of closed M* we assume that E"*% = E"+k)) If for arbitrary ¢, the
mapping e; of the manifold M* is the identity, then e; provides a deforma-
tion for framing U of the fixed manifold AM*. This deformation provides a
homotopy of the framings eq(U) and e;(U) of the manifold M*. Tt turns
out that if e; is a smooth deformation of the submanifold M* of the strip
E™* and some framing U of M* is given, then there exists a deformation e;
of the framed manifold (M*,U). Furthermore, if e; preserves the boundary
points of the manifold M* fixed then the framing e;(U), 0 < t < 1, of the
manifold e;(M¥) can be constructed in such a way that on the boundary
of the manifold e;(M*) this framing coincides with the initial framing U.

Let us prove Statement «B». Let (M* U) be a framed submanifold
of the strip E?** and let e; be a given smooth deformation of the sub-
manifold M” in the strip E"**. Let us construct a framing e;(U) for the
submanifold e;(M*) depending continuously on the parameter ¢ in such a
way that eg(U) = U. Denote the normal subspace at e;(z) to the manifold
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e.(M*) by N,. Taking the vector system U(z) to be the initial basis of the
space N1y we get, according to «A», a basis U(z,t) of the vector space N7,
with origin at the point e;(z). The vector systems U(xz,t), z € M* at a
fixed ¢ provide the desired framing e;(U). This completes the proof of «B».

C) Let (M*,U) be a smoothly framed submanifold of the Euclidean
space E"* and let e; be its deformation in E™**. It turns out that the
framed manifolds (eq(M*),eq(U)) and (e1(M*),e1(U)) are homologous.

Let us prove this fact. Set s(t) = 3t? — 2t3. It follows immediately that
the function s(t) satisfies the conditions

s'(t) >0 for 0<t<1.

Define the deformation f; of the framed manifold (M*, U) by setting f; =
es(t)- Obviously, we have

fO = €o, fl = €1.

To prove that the manifolds (fo(M*), fo(U)) and (f1(M*), f1(U)) are ho-
mologous in the strip EPTA+Tl = gtk x [ ¢ EntE+l ] define the manifold
M*+1 as the set of all points of the type (fi(z),t), = € M*, 0 <t < 1.
Let N!, be the normal subspace at f;(z) to f;(MF) in the space E"**. In
the space E"t#+1 denote the normal subspace to the manifold M**1 at
(fe(z),t) by Ny It is easy to see that Ny = (N, t) for t = 0,1, i.e. in
the boundary points, the manifold M*+! is orthogonal to the boundary of
the strip EPT*+1. At those points (f;(x),t), where ¢ is distinct from 1 and
0, the normal subspaces (N/,,t) and N, are distinct, and thus the system
f+(U(x)) does not lie in N,;. To transform the system f;(U(x)) to some sys-
tem U(xz,t) lying in N,¢, let us project the system fi(U(z)) orthogonally to
the space N,;. It is easy to see that this projection is non-degenerate. Thus,
the system U(z,t) is linearly independent, thus it constitutes a framing for
M*+1. Since on the boundary components ( fo(M*),0) and (f1(M*),1), the
framing U(x,t) coincides with the given framings (fo(U),0) and (f1(U), 1),
the framed manifold (M**+! U) provides the homology between the framed
manifolds

(fo(M"), fo(U)) and (fi(M"), f1(0)).

D) Each m-smooth framing is homotopic to an (m — 1)-smooth framing
of the same manifold.

Let M* be an m-smooth submanifold of the strip E7** and let U(z) =
{ui(x),...,up(x)} be some framing of it. Denote the components of the
vector u;(x) in the space E"* by ul(x),...,ul"*(z). Let  be a positive
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number and let v/ (z) be a real-valued m-smooth function on M* such that
|ul () — v](z)] < e (see §1, Chapter 2, «B»). Denote the vector of the
space E"tF with components v} (2),...,v! ™ (z) by v;(2); let w;(z) be the

orthogonal projection of the vector v;(z) to N,. Set
Wi(z) = {ui(x) - (1 —t) +w;(x) - t}, i=1,...,n.

The system W;(z) is non-degenerate for ¢ sufficiently small; thus it provides
a deformation of the source framing U(z) = Wy (z) to the (m — 1)-smooth
framing W1 (z).

In §2, Chapter 2, it was shown that the homotopy classification of
mappings from the sphere X"** to the sphere S” is equivalent to the ho-
mology classification of smoothly framed k-dimensional submanifolds of
E™F (see Theorems 9 and 10). By virtue of statements «C» and «D»
we may omit the smoothness assumption and consider arbitrary contin-
uous framings of smooth manifolds. Indeed, each smooth framing of
a smooth manifold is homotopic to a smooth one (see «D»), and (not
necessarily smoothly) homotopic smooth framings of the same manifold
are homologous (see «C»); thus they correspond to homotopic map-
pings of spheres.

The homology group Hfl of framed manifolds

E) Let (M*,U) be a framed submanifold of the Euclidean space E"**
and let f be a homothetic mapping of E"* onto itself. It is evident
that (f(M*), f(U)) is also a framed submanifold of the Euclidean space
E™tk_If the mapping f preserves the orientation of the space E™t¥, then
it is easy to see that there exists a family f; (smoothly depending on ¢,
0 <t < 1) of the homothety mappings from E"** onto itself such that the
mapping fy is identical and f; = f. The family f;, 0 < ¢ < 1, provides a
smooth deformation of the framed manifold (M*, U) to the framed manifold
(f(MF*), f(U)). Thus, these framed manifolds are homological (see «C»).
From the above, it follows that if we move a framed manifold in the space
as a rigid body and shrink it homothetically, we will preserve the homology
class of the framed manifold.

Definition 6. Split the totality of all framed k-dimensional manifolds
in the Euclidean space E™** into classes of pairwise homological ones. De-
note the set of all homology classes by II¥. Define the sum as follows.
Let m and 72 be two elements from II¥. Choose an arbitrary hyper-
plane E"tF=1 ¢ E"** and choose representatives (MF,U;) and (M¥§,Us)
for each of the two classes m; and 7y in such a way that the manifolds
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MF and MY lie on different sides of the hyperplane E™t*~1.  Accord-
ing to Statement «Es, this is always possible. Define the framed mani-
fold (M*,U) = (MF,Uy) U (M¥,Us,) as the union of the manifolds M}
and MY} taken together with their framings. It turns out that the homol-
ogy class 7 of the framed manifold (M*,U) does not depend on the arbi-
trary choice of the hyperplane E™t*~!: it does not depend on the choice
of representatives (MF,Uy), (M¥,Us) of homology classes w1, w2 either.
By definition, set m = m; + mo. It turns out that, according to this defi-
nition, the set TI¥ becomes a commutative group. The zero of the group
1% is the class of null-homologous framed manifolds. The element —m
opposite to the element 7 can be described as follows. Let E»T*~1 be an
arbitrary hyperplane from E™** and let (M k. U) be some framed man-
ifold representing the class 7 and let o be the reflection of E"** in the
hyperplane E"t#~1. The homology class —7 contains the framed mani-
fold (o(M*),a(U)).

First, prove that the operation defined in this way for the set IT¥, is
invariant. Choose, together with the hyperplane E"**~1 and framed man-
ifolds (MF,U;) and (MQ,UQ) in the space E"™*, a hyperplane k-l
and framed manifolds (MF,U;) and (M2 , Ug) representing the classes m
and 7. Let us show that the framed manifolds (MF,U;) U (M§,Us) and
(MF,Uy) U (M5, Us) belong to the same homology class. This will show
that the sum operation is well defined. Clearly, there exists an orientation-
preserving isometric mapping f of the space E"T* onto itself such that
f(Enth=1) = Ertk—1 and the manifolds f(MF¥) and MF lie on the same
side of the hyperplane E"%~1. By virtue of «E», we have

f(Mika Ul) ~ (Miku Ui)7 1= 17 27
f((va Ul) U (M2kv 02)) ~ (Mlku Ul) U (Mégv UQ)

Thus, we reduced the question to the case when Ertk=1 — pntk-1
and both representatives (MF¥,U;) and (MF,U;) of the class 71 lie on
the same side (with respect to E"t5~1) in the half-space E"™* whence
both representatives (M}, Us) and (M}, Us) of the class my lie on the
other side away from the hyperplane E"+*~! in the half-space Effk. Let
(MFF UY) be a framed submanifold of the strip E"** x I providing a
homology (M}, U,) ~ (M¥,Uy) and let (MF*!,Us) be a framed subman-
ifold of E"* x I, providing homology (M}, Us) ~ (M, Us). If MF! ¢
E™F x I and My™ C E7F x T then the framed manifolds (MF+!, UT)
and (MQkH, U;) do not intersect and their union, being a framed manifold,
would provide a homology (MF,U1) U (M},Us) ~ (MF,U) U (M}, Us).
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Let e be the vector of the space E"+* orthogonal to E"t*~! and directed
toward Efrk. Denote by g; the mapping of the space E"** onto itself and
taking = to x 4+ te. Choose the vector e to be so long that the following
inclusions are obtained:

MY c B x T, g (M) © BT I

Finally, note that the framed manifold g_ J(MF ) Ul) U ge(M5,Us) pro-
vides a deformation from the manifold (M¥, U1)U (M}, Us) to the manifold
g- 1(M1 , Ul) Ugi (M2 , Ug) thus, by virtue of «C», we have the homology
g1 (MF,Uy) U gy (ME,Ty) ~ (Ml,Ul) (M2,U2) In the same way we
get g1 (M{,Ur) U g1 (M5, Uz) ~ (MY, Ur) U (M§,Us). Thus,

(MF,U1) U (M3, Us) ~ (M, Ur) U (M5, Uz).

It follows from the independence of the sum operation on the choice of
representatives that the zero of the group II¥ is represented by the class
containing the empty manifold, i.e. the class of null-homologous framed
manifolds. Let us prove that the opposite element —x for the element 7 is
described as follows.

Assume that the Euclidean space E™t* lies in the Euclidean space
Entktl where it is defined as y"T**1 = 0. Let us also assume that all
points of the manifold MF* are at the distance less than one from the hy-
perplane E"tF=1 (see «C»). Let Ei"’k and E™* be the half-spaces of
the space E"* separated by E"+*~1, so that M* C E7*F. Let us rotate
the half-space E™" in the half-space y"T*+1 > 0 of the space E"Hh+!
until it coincides with the half-space E™*; then during the process, the
manifold (M*, U) circumscribes the framed submanifold (M*+1, U*) of the
half-space y"***1 > 0. The framed manifold (M**! U*) lies completely in
the strip 0 < y"t*+1 < 1 of the space E"***! and provides the homology
between the manifold (M*, U) U (o(M*),o(U)) and zero.

Split the set of all mappings from the sphere X"** to the sphere S™
into sets of pairwise homotopic classes; denote the set of such classes
by 7"#(S8™). Since between elements of the group I1¥ and elements of
7Tk (S™) there is a one-to-one correspondence (see §2, Chapter 2), the
sum operation defined in TI¥ induces the sum operation in 7"+#(S").
It is easy to show that the sum operation on the set 7"%(S™) defined
in this way coincides with the usual sum operation of the homotopy
group (see [10]). However, we shall neither prove nor use this fact. A
reader familiar with elements of homotopy theory can easily prove this
fact.
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Orthogonalization of framings

Statement «G» given below shows that in the homology theory of framed
manifolds, it is sufficient to restrict ourselves to orthonormal framings.
Statement «H» provides an approach to the orthonormal framing homo-
topy classification question.

F) Let U = {u1,...,u,} be a linearly independent vector system of the
space E'. Let us undertake the orthogonalization process, i.e. let us find
the orthonormal system U = {1, .., %, } obtained from the system U by
formulae

n
=y ajuy, j=L....n,
i=1
where the coefficients aé- satisfy the conditions
af=0 at i>j; a}>0 at i=j

These conditions uniquely define the coefficients aé; the latter can be ex-
pressed in terms of scalar products of vectors of the system U. If U is
orthonormal, then U = U. Set

U' = {ui,...,un},

where

uf = ul(l — t) + u;t.
The system U* is linearly independent since the matrix [|(1 — )8} — ta}|
is non-degenerate. Thus, the system U = U! is obtained from the system
U = U° by using a continuous deformation uniquely defined by the system
U.

G) Let U(x) be some framing of the manifold M*. The framing U*(z)
(see «F'») provides a continuous deformation from the initial framing U (z)
to the orthonormal framing U(x). If the initial framing is m-smooth, then
the whole deformation U? is so. Finally, if there exists a deformation Uy (z),
0 <t < 1 from some orthonormal framing Uy(x) to some other orthonormal
framing U;(x) then there exists an orthonormal deformation U;(z) from
Uo(z) to Up(x).

H) Let (M* V) be an orthonormally framed submanifold of the ori-
entable Euclidean space E"*. According to the remark for Definition 3,
the manifold M* has a fixed orientation, and we shall say that V is a fram-
ing of the oriented manifold M*. Let U be a certain orthonormal framing
of the oriented manifold M*. Let us compare the framings V and U. For
each normal subspace N, to the manifold M*, there are two orthonormal
vector systems:

V(z) ={vi(z),...,on(x)} Ulx) ={ui(x),...,un(z)};



64 L.S. PONTRJAGIN

thus we have

ui(x) = Zfij(:v)vj(x), i=1,...,n,
j=1

where f(x) = ||fi;(z)| is an orthogonal matrix with positive determinant.
Thus, with each orthonormal framing U for V being fixed, we associate
a mapping f from the manifold M* to the manifold H, of all orthogonal
matrices with positive determinant: U — f. Clearly, we have the converse
as well: for each mapping f from MF* to H, there corresponds a unique
framing U : f — U. Assume that together with a fixed framing V there
are two orthonormal framings Uy and U; of the oriented manifold M*, and
let Uy — fo, U1 — f1. It is easy to see that the framings Uy and U; are
homotopic if and only if the mappings fo and f; are homotopic. Thus, the
homotopy classification of all framings of the oriented manifold M* in the
oriented Euclidean space E™1* is equivalent to the homotopy classification
of mappings from the manifold M* to the manifold H, of all orthogonal
matrices of order n with positive determinant.

§ 4. The suspension operation

In this section, we shall define and investigate (to some extent) the sus-
pension operation for framed manifolds; this operation plays an important
role in the question of homotopy classification for mappings from sphere
to sphere. Let (M*, U) be a framed submanifold of the Euclidean space
E™tk situated in the Euclidean space E™T*+1. For any point « € MP*
construct in E"T*+1 the unit vector u,1(z) perpendicular to the hyper-
plane E"** in such a way that all vectors u,1(7), * € M* have the same
direction and set EU(x) = {u1(z), ..., un(x), uns1(x)}. The framed man-
ifold E(M*,U) = (M*, EU) of the Euclidean space E"*¥*1 is called the
suspension of the framed manifold (M*,U). It turns out that the suspen-
sions for homological framed manifolds are homological as well and that
the mapping F from the group II¥ to the group Hflﬂ (see Definition 6) is
a homomorphism. It is proved in Theorem 11 that for n > k 4+ 1 the ho-
momorphism E is an epimorphism and for n > k + 2 it is an isomorphism,
so that the groups II* iy * 13, ... are all naturally isomorphic.

In terms of sphere-mappings, the suspension operation can be described
as follows. Let p’ and ¢’ be the poles of the sphere X" t#*1 and let X% be
its equator, i.e. the section by the hyperplane perpendicular to the interval
p'q’ and passing through the centre of this interval. Analogously, let p
and ¢ be the poles of the sphere S"*! and let S™ be its equator. With any
mapping f from X"* to S™, let us associate the mapping F f from Xnt+k+1
to S™*! which maps the meridian p’zq’, x € "%, of the sphere X7 t++1 to
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the meridian pf(x)q of the sphere S™*1. The suspension E f of the mapping
f in the form described above was introduced by Freudenthal [11]. We will
not use it here, however. The fact that the suspension of a mapping and the
suspension over a framed manifold correspond to each other in the sense of
Definition 5 can be easily proved; however, we shall not prove it.

Definition 7. Let (M* U), U(z) = {ui(2),...,un(z)}, be a framed
submanifold of the oriented Euclidean space E"* and let E"T*+1 be an

orientable Euclidean space containing E™**. Let e1,... e, x be a basis
of E"t* generating its orientation and let e, %1 be a unit vector of the
space E"T**1 orthogonal to E™1* such that the basis eq, . .., €nik, Enthil

generates the orientation of the space E"tF+1. Denote by u,y1(z) the
vector emanating from the point z € M* obtained from e, ;41 by parallel
transport. Set

EU(z) = {ui(x),. .., un(x), uni1(x)}.

Then E(M* U) = (M* EU) is a framed submanifold of the Euclidean
space E"tFH1 The framed manifold E(MF*,U) is called the suspension
of the framed manifold (M* U). It turns out that from (M{,U) ~
(M}, Uy) it follows that E(M},Uy) ~ E(MF,Uy). Thus, the correspon-
dence (M*,U) — E(M* U) generates the mapping from the group II* to
the group IT¢ 11~ This mapping turns out to be a homomorphism. We shall
denote it also by F.

Let us show that if (MF, Up) ~ (MF,Uy) then E(MEF, Uy) ~ E(MF,Uy).
Let (M*+1 U*) be the framed submanifold of the strip E"** x I pro-
viding the homology (MEF,Uy) ~ (MF,Uy). In the strip E"PFHL x T
at the point y € MF*! let us choose the unit vector u}_ ,(y) or-
thogonal to the strip E™** x I and collinear with the vector e, pii.
Set EU*(y) = {ui(y),...,up(y),us 1 (y)}. Clearly, the framed subman-
ifold E(M*1 U*) = (M*+1 EU*) of the strip E"t*+1 x I provides the
homology E(M},Uy) ~ E(MF,Uy).

The fact that F is a homomorphism is even simpler. The homomor-
phism E from the group II¥ to the group I1* 41 is in several cases an epi-
morphism and even an isomorphism. Let us consider these cases. Before
that, let us prove the following statement.

A) Let E"T#+1 be the oriented Euclidean space and let E"** be its ori-
ented hyperplane. Furthermore, let (M**! V') be an orthonormally framed
submanifold of the strip E"T* 1 x I such that the manifold M**! itself lies
in the frame E"tF x I. M**+! might possibly be closed. Assume that the
boundary of the manifold M**! consists of manifolds M§ x 0 and Mf x 1,
so that M} c E"t* MF c E™F. Suppose that the framing V restricted
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to the boundary components M§ x 0 and M¥ x 1 is a suspension, i.e.
V(z,7) = EU.(x) x 7, T7=0,1,

where U, is a framing of the manifold M*, 7 = 0,1, in the space E"T*. At
each point x € M**+1 let us choose the unit vector u, 1 () to be orthogonal
to E™tF x I and directed in a proper way. In the normal subspace N, to the

manifold M*+1 at z in the space E"T*+1 x [, fix a basis v1(z), . .., vnr1(z).
Thus, for the vector u,11(x) also lying in N, we have
unt1(z) = ¥ (@)or(@) + ...+ " (@)vnga (2). (1)

Let N be the Euclidean space of dimension n+1 with preassigned coordinate
system and let &™ be the unit sphere of this space centred at the origin of
coordinates. Denote the point (0,...,0,1) of the sphere &™ by PB. Now,
with each point & € M**! associate the point 1(z) of the sphere &" with
coordinates ¥ (z),...,¥" " (x). Thus, 1 is a mapping from the manifold
MF**1 to the sphere &™ taking the whole boundary to the point 8. Suppose
there exists a continuous deformation 9, 0 < t < 1 from the mapping
1) = 1)y to the mapping v, so that v takes the whole manifold MF*+!
to the point B, and 1; takes the boundary of the manifold M**+1 to
for arbitrary ¢. It turns out that then there exists a deformation of the
framing V to the framing FU where U is a framing of the submanifold
MF+1in EntE x I, and during the whole deformation, the framing remains
the same on the boundary of the manifold M**+1. For the case of closed
MP*+1 this means that the framed manifold (M**1, V) is homologous to
the framed manifold E(M**1 U). For a non-closed manifold M**+! this
allows us to deduce from the homology E(MEF, Uy) ~ E(MF,U;) provided
by (M**+1 V) the homology (M}, Uy) ~ (MF,Uy).

Let us prove «A» now. Introduce in N, the Cartesian coordinates cor-
responding to the basis vi(x),...,vpt1(x). Let Ay be the coordinate-wise
mapping from N onto N,. Set (x,t) = Av1—¢(x). The vector ¥(x,t)
of the space E"T**1 x T lies in N, and depends continuously on the vari-
ables (x,t) so that ¢ (z,0) = v,y1(x), and ¥(x,1) = wu,i1(x). Denote
the subspace of N orthogonal to ¢(x,t), by Py. Since ¥(z,0) = v,41(2)
the vectors vi(x), ..., v,41(x) form a basis of the space P,o. Taking it to
be the initial basis and applying to the variable vector space P,; State-
ment «A» §3, Chapter 2, we get a basis U(z,t) of this space. Together
with the vector ¢ (z,t) this basis gives us the desired deformation for the
framing V. Thus, Statement «A» is proved.

Theorem 11. The homomorphism E from 11X to HfH_l s an epimor-
phism for n > k + 1 and an isomorphism for n > k + 2. Thus, the groups
Hﬁ_ﬂ, H§+3, ... are all naturally isomorphic.
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PROOF. Let n > k+ 1, # € II¥ | and let (M*,U) be a framed sub-
manifold of the Euclidean space E"*+1 representing the homology class
7. According to Statement «D» §2, there exists such a one-dimensional
projecting direction E' along which the manifold MF is projected regularly
without intersection to the manifold M*. We shall project along E' to the
hyperplane E"* of the space E"T**! orthogonal to E' in such a way that
MF% ¢ E"tk. We shall make each point z € M* move in a straightfor-
ward line towards E' until it coincides with its projection to M* in such
a way that it passes the whole way in unit time. This gives a deformation
of the manifold M* to the manifold M*. According to Statements «B»
and «G» §7, there exists a deformation of the framed manifold (M*, ) to
the orthonormally framed manifold (M*, U). Since n > k+ 1, the mapping
1 from MP* to the sphere G™, constructed in Statement «A», is homotopic
to the mapping of the manifold M* to the point ; thus the framing V of
the manifold M* is homotopic to the framing EU of the same manifold. By
virtue of Statement «C» §7 we have (M* U) ~ E(M* U). Let 7 € II* be
the homology class of the framed manifold (M*, U); then we have © = E.
Thus it is proved that I1% ,; = EII% for n >k + 1.

Suppose now that n > k + 2; let us show that F is an isomorphism,
i.e. that for my € Hﬁ,m S Hfl the relation Emy = Em implies that my =
7. Let (M}, Up) and (MF,Uy) be orthonormally framed manifolds in the
Euclidean space E"T* ¢ E"*+*+1 helonging to homology classes my and 7.
Furthermore, let (M™% ) be a framed submanifold of the strip E*F+1 x
I providing the homology E(ME, Uy) ~ E(MF,U;). Denote by E! the
one-dimensional direction in the space E™"T*+1 x I orthogonal to the strip
Entk x I. By virtue of Statement «D» §2 there exists an arbitrarily close
to E* projecting direction E! such that the projection of M**+1 along it
is regular without intersection. Choose E! to be so close to E' that the
projection M**! of the manifold M**! along E! lies in the strip E" % x I.
The deformation of the manifold M**+! to M**+! preserves the boundary
pointwise fixed, thus the deformation of the framed manifold (M**1 )
to the orthonormally framed manifold (M*+1, V) (which exists according
to Statements «B» and «G» §3, Chapter 2) preserves the framing on the
boundary. Now, the homology E(MEF,Uy) ~ E(M¥F,U;) is represented by
the framed manifold (M**1 V); here M*+! ¢ E"t¥ x I, i.e. the conditions
of Statement «B» hold; thus, the framed manifolds (M}, Uy) and (MF,Uy)
are homologous. Thus my = 7.

Thus, Theorem 11 is proved.
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CHAPTER 11

The Hopf invariant

§ 1. Homotopy classification of mappings of
n-manifolds to the n-sphere

Here we present a homotopy classification of mappings of smooth closed
orientable n-manifolds to the n-sphere. This result is well known even for
non-smooth manifolds, however, this plays an auxiliary role here. The
proof is performed by using specific methods for smooth manifolds. This
simplifies the ways of applying the result in the sequel. First, we define
the mapping degree and prove its simplest properties. Later, based on
the theory constructed, we present a classification of mappings from the
n-dimensional sphere to itself; this gives an illustration of general results
presented in previous sections. Finally, we reduce the classification of map-
pings from an n-manifold to the n-sphere to the classification of mappings
from the n-sphere to itself.

Mapping degree

Definition 8. Let f be a smooth mapping from an r-dimensional ori-
ented manifold P" to an r-dimensional oriented manifold Q" and let b be an
interior point of the manifold Q" which is a proper point of f, such that the
full pre-image of this point is compact and does not intersect the boundary
of the manifold P". With the assumptions above, the full pre-image f~*(b)
consists of a finite number of points ai,...,a, and the functional determi-
nant of f is non-zero; thus, it has a well-defined sign (the manifolds P"
and Q" are oriented). Denote the sign of the functional determinant of the
mapping f at the point a by &;(= £1),7=1,...,p. Call this determinant
the degree of f at a;. The sum €1 + ... 4 ¢, is called the mapping degree
of f at b. Now, if both manifolds P" and Q" are closed, then the set G
of all those points b for which the conditions above hold is an everywhere
dense domain in Q" (see Theorem 4). It will be shown later (see «B») that
if, furthermore, the manifold " is connected then for all points b € G the
degree of f is the same; it is called the mapping degree of 1f. It will also
be shown later (see «B») that the degrees of homotopic mappings coincide.
Thus, in the case of closed P" and connected closed ", the mapping degree
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is an invariant of the homotopy class of mappings; thus, it is well defined
for any mapping.

A) Let Q" be a connected closed manifold, let P"™! be a compact mani-
fold with boundary P"; let f be a smooth mapping from the manifold P"+!
to the manifold Q"; finally, let b € Q" be a proper point of the mapping f
from P" to Q". It turns out that the degree of f at b is zero.

Let us prove this fact. Let V' be a connected neighbourhood of the point
bin Q" consisting of proper points of the mapping f : P* — Q". It is easy to
see that for all points b’ € V', the mapping degree of [ : P"—Q" is the same.
Thus, without loss of generality, we may assume the point b to be a proper
point of the mapping f from P! to Q" (see Theorem 4). Thus, f~1(b)
is a one-dimensional submanifold M! of the manifold P"*!, consequently,
it consists of finitely many components, some of which are homeomorphic
to the circle, the remaining ones being homeomorphic to the interval. All
points of the full pre-image of the point b in P" are endpoints of components
of M*. Let L' be a component of M homeomorphic to the interval; denote
its endpoints by ag and a;. According to the results of §4 [see (2)], for a
given coordinate system y',...,3" with the origin at b defined in some
neighbourhood of b, one can choose such coordinates z',...,2"*! in the
neighbourhood of a € L' that the mapping f looks like

We shall assume that the coordinates y!,...,y" generate the orientation of
the manifold Q". In coordinates z',...,2" "', the curve L' is defined by
the equations ' = 0,...,2" = 0, i.e. 2"T! can be treated as a variable
parameter on L'. We shall assume that as the parameter z"+! increases,
the point on the curve L' moves from ag to a;. With that assumption,
the coordinates z',...,z"*! might not define the orientation of the mani-
fold P"*1; denote by e(= +1) the corresponding sign that distinguishes the
orientation fixed for P™+! from the orientation defined by the coordinates
x', ..., 2"t It can be easily checked that € does not depend on the arbi-
trary choice of coordinates z', ..., 2" ! and does not change while moving
the point @ along L'. It follows from the definition of the orientation for the
boundary (see § 1, «B») that the mapping degree of f defined on P" equals
—e - (—1)" at the point ag and equals ¢ - (—1)" at the point a;. Assuming
that all components of M! are homeomorphic to the interval, we see that
the mapping degree of f at b equals zero.

B) Let fo and f; be two homotopic mappings from a closed oriented
manifold P" to a closed oriented manifold Q"; let G be the set of all proper
points b € Q" of f;,t = 0,1. It turns out that for b € Gy N Gy, the degrees
of fy and f; at b, are equal. Furthermore, it turns out that if by and by are
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two points from G then the mapping degrees of the mapping fy for the
points by and by are equal, too.

Let us prove Statement «B». Since the mappings fy and f; are ho-
motopic, there exists a smooth family f; connecting these maps (see
Theorem 8). For the family f;, we have the corresponding mapping f.
from the product P" x I (see §1, Chapter 2, «C»). The boundary of the
manifold P" x I consists of manifolds P" x 0 and P" x 1. Choose the ori-
entation for the manifold P" x I in such a way that the manifold P" x 0 is
represented in the boundary of the product P x I with the positive sign;
then the manifold P” x 1 in the boundary of P" x I will have the minus
sign. From this and from Statement «A» it follows now that the degrees of
mappings fo and f; at b, coincide.

Let us show now that the degrees of fy coincide for all points b € Gy.
Let X be a coordinate system having origin at the point ¢ € Q"; let V be a
ball neighbourhood of the point ¢ in this coodinate system. Furthermore,
let by and b1 be two points from V N Gy. It is easy to construct a regular
homeomorphic mapping ¢ of the manifold Q" to itself that fixes all points
Q"\V and takes the point by to the point b;. Such a mapping ¢ is, clearly,
homotopic to the identity. Clearly, the degree of ¢ fy at the point by equals
the degree of fy at bg; and since the mappings ¢ fy and fy are homotopic,
their degrees at the point b; coincide. Thus, the degrees of the mapping fo
coincide for all points b € V N G. Now, since the manifold Q" is connected
and the set Gy is everywhere dense in Q", it follows that the degree of fj
is the same for all points b € Gj.

Mappings from S" to S™

C) Let (M°,U) be a zero-dimensional framed submanifold of the framed
Euclidean space E™. Since M is a compact submanifold; it consists of
finitely many points a1, . .., a,. Associate with a; the index +1 if the vectors
ui(a;),...,uy(a;) generate the positive orientation of the space E™, and
the index —1, otherwise. Call the sum I(M° U) of indices of all points
ai,...,a, the index of the framed manifold. It is clear that the index of the
framed manifold (M°,U) equals the degree of the corresponding mapping
(see Definition 5) from the oriented sphere ™ to the oriented sphere S™.

Theorem 12. If two mappings fo and f1 from the oriented sphere ™
to the oriented sphere S™ are of the same degree, then they are homotopic.
Moreover, there exists a mapping with any preassigned degree.

PRrROOF. From Statement «C» and Theorem 10 it follows that to prove
this theorem, it is sufficient to prove that any two framed zero-dimensional
manifolds having the same index are homologous and that there exist zero-
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dimensional manifolds with any preassigned index. It is easy to see that
the two framed manifolds (Mg, Uy) and (MY,U;) each consisting of one
point and having index equal to +1 can be obtained from each other by a
deformation (see § 3, Chapter 2, «B»); thus they belong to the same homol-
ogy class (see §3, Chapter 2, «C»), Thus, all one-point framed manifolds
having index +1 belong to one and the same homology class €. In the
same way, all one-point framed manifolds with index —1 belong to one and
the same homology class &’. Since after symmetry in each hyperplane, the
space E™ changes the orientation, we have &’ = —¢ (see Definition 6). Since,
moreover, each zero-dimensional framed manifold (M, U) is a union of fi-
nite number of one-point framed manifolds, some of them with index +1,
the other ones having index —1, then € is a generator of the group 112,
and (M U) belongs to the class I(M° U) - . Thus, two framed zero-
dimensional manifolds with the same index are homologous. Obviously,
there exist framed zero-dimensional manifolds with any preassigned index.

Thus, Theorem 12 is proved.

It follows from Theorem 12 and «C» that the group I19, or, what is the
same, the group 7" (S™), is free cyclic.

D) Let f be a smooth mapping from the oriented sphere X" ** to the
oriented sphere S™ and let ¢ be a smooth mapping of the sphere "% onto
itself having degree v. Denote the element of the group II¥ corresponding
to the mapping f by 7 and denote the element of IT¥ corresponding to fg
by 7’. Then it turns out that

7’ =vm. (1)

Let us prove Statement (1). Let p’ and ¢’ be the north pole and the
south pole of ¥"*k; let E"t* be the tangent space at p’ to the sphere
Y7tk and let ¢ be the central projection from the point ¢’ of the domain
YR\ ¢ to the space E"**. For v = 1, the mapping g is homotopic to the
identity (see Theorem 12), thus, in this case, the relation (1) holds. Let
us prove it for v = —1. Since all mappings of the sphere £"** onto itself
having degree —1 are homotopic to each other, it is sufficient to consider
one concrete mapping g of degree —1. Let E"Tk~1 be a hyperplane of the
space E™tF passing through the point p’ and let ¢ be a symmetry of the
space E™T* in this hyperplane. The mapping

g=¢ 'op
of the domain X"**\¢’ onto itself extended by g(¢') = ¢ is a degree —1
mapping of the sphere ¥"** onto itself. For the mapping g constructed in
this way, the relation (1) is evident.
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Now let g be a smooth mapping of the sphere X"* onto itself, for
which the set g~1(p’) consists of proper points of the mapping g and does
not contain the point ¢’; this can be reached by a small perturbation of the
given mapping g. Let

09t (p) = {ao,...,a};

denote the sign of the functional determinant of the mapping g in ¢~ *(a;)
by €;. Let V; be the ball of radius § in the space E"t* centred at a;.
We assume § to be so small that there exists a hyperplane Ef+k—1 of the
space E"t* disjoint from the balls V; such that any preassigned part of the
set {a,...,a,} lies on one side with the remaining part lying on the other
side. Choose a small positive « such that for the ball neighbourhood K, of
the point p’, the full pre-image g~ '(K,) consists only of proper points of
the mapping ¢ and is split into domains Ay, ..., A,; a; € A; each of which
maps diffeomorphically to K, by g. Furthermore, suppose « to be so small
that ¢(A;) C V;. Now, define the mapping h; of the sphere X" ** to coincide
with w,g (see «B») on A; and taking the set X%\ 4; to the point ¢. Since
the degree of h; is equal to ¢;, the framed manifold E{Hk*l corresponding
to fh; belongs to the homology class ;7. It is clear that MF C V; and that
the mapping fw.g generates the framed manifold (Mf,Uy)U...U(MF U,).
Since the mappings w,g and g are homotopic, the existence of a hyperplane
E?Jrk*l with the properties described above yields the relation (1).

Mappings from n-dimensional manifold to the n-sphere

Theorem 13 below resolves completely the classification question for
mappings from orientable closed n-manifolds to the n-sphere. Theorem 13
follows from Theorem 12 on the classification of mappings from the n-sphere
to the n-sphere.

Theorem 13. Two continuous mappings fo and fi of a smooth ori-
ented manifold M™ to the smooth oriented sphere S™ are homotopic if and
only if they have the same degree (see Definition 8). If the degree equals
zero, then the mapping is zero-homotopic, i.e. contractible to a point. Thus,
there exist mappings of any arbitrary degree.

PRrROOF. To prove the first part of the theorem, it suffices to show that
if two mappings fo and f1 are smooth and have the same degree then they
are homotopic. To reduce the proof of this fact to Theorem 12, show that
for any finite set ) of points of the manifold M™ there exists a smoothly
homeomorphic to the open ball domain B C @ of the manifold M™.

It is easy to construct a simple closed curve K embedded in M™ and
containing all points of ). Let us assume that M™ is a submanifold of
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the Euclidean space E?"*!; denote by N, the normal space to K in E?"+1
at the point z € K. As in Statement «A» §1, Chapter 2, denote by
Hs(x) the ball of the Euclidean space N, centred at 2 and having radius
d. Then there exists a small positive § such that the set W5 = Hs(K) is a
neighbourhood of the curve K in E?"*! and, if we take any point y € Ws to
the point = 7(y) for which y € Hs(z), we get a smooth mapping 7 from
the manifold Wy to the curve K (see §1, Chapter 2, «A»). Take a closed
interval L of the curve K containing all the points ). Let us introduce a
smooth parameter ¢ for this interval —1 < ¢ < 1. Thus, for each value of the
parameter ¢, —1 < ¢ < 1, there corresponds a point x(t) € K. Denote the
tangent space to the manifold M* in 2 € K, by T}; set N| = NotyN Tty In
the vector space N/, let us choose an orthonormal basis e (t),. .., e,—1(¢).
By using «A» §3, Chapter 2, and the orthogonalization process described
in §3, Chapter 2, «G», it is possible to choose the basis e1(t), ..., e,—1(t)
to depend smoothly on ¢. Let Wy = M™ N W;s and let 7’ be the mapping
7 restricted to Wy. Denote the full pre-image of the point z(t) € L in W}
under the mapping 7’ by Hj. Let € be a positive number. Denote by H; the
ball of radius ev/1 —¢2 in N/ centred at x(t). The orthogonal projection
x¢ of the manifold M™ to the space T, takes some neighbourhood of
the point x(t) in M™ smoothly regularly and homeomorphically to some
neighbourhood of the point x(t) in T,«). From this, it follows that for
0 small enough, the projection y; is smooth, regular and homeomorphic
mapping of the manifold H] to some neighbourhood of the point z(t) in
N/; thus, there exists a small £ such that

H} C x«(H;), -1<t<1.

Denote the coordinates of z € H; in the basis ey(t),...,e,—1(t) by

ezl ..., ez" 1 take the numbers z',..., 2" ! t to be the coordinates of
X; "(2). The set B of all points x; *(z), —1 <t < 1, z € H;, constitutes a
domain in M" endowed with smooth coordinates z!,..., 2" "1, t satisfying

the condition
e N Lo A L b
(

Thus, the domain B is smoothly homeomorphic to the open n-ball.
Choose a point p of the sphere S™ in such a way that the set f; *(p) = P,
t = 0,1, consists of proper points of the mapping f; (see Theorem 4). Set
Q@ = Py U Py; let B be a ball domain of the manifold M"™ containing the
finite set . Take p to be the north pole of S™ and denote the south pole
of this sphere by ¢. Let a be a small positive number such that the ball
neighbourhood K, (see §2, Chapter 2, «B») of the point p satisfies the
conditions
A; C B, where A; = f; (K,), t=0,1, (2)
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and let w, be a mapping of the sphere S™ onto itself corresponding to the
chosen « (see §2, Chapter 2, «A»). Since the mapping w, is homotopic to
the identity, the mappings w, f: and f;, ¢ = 0,1 are homotopic. Assume
that B is a unit ball of some Euclidean space R™. Then there exists such a
positive number 3 < 1 that the ball Bg of radius [ concentric to B contains
the sets Ay, t = 0,1. Let A\g be the mapping of the space R" to the sphere
S™ described in Statement «B» §2, Chapter 2. Define the mapping ¢ from
M™ to the sphere S™ to coincide with Ag on the ball B and to take the
set M™\ B to the point ¢. Since the set A;,¢ = 0,1 is contained in Bg the
mapping ¥ is homeomorphic on A;.

Now, let us define the mapping g, t = 0,1 of the sphere S™ onto itself
as follows. On the set 9(A;), we set g; = wa fr9™ !, and for x € S™\J(A;)
we put g¢(x) = ¢. From this definition of g; it follows that

gtﬁ = waft, t= O, 1. (3)

The mappings f; and w, ft, clearly, have the same degree at p, and from (3)
it follows that the mappings g; and f; have the same degree p as well. Since
the mappings fy and f; have the same degree, so do the mappings gy and
g1 of the sphere S™ onto itself. Thus, the mappings gg and g; of the sphere
S™ onto itself are homotopic (see Theorem 12). This yields the mappings
go and g1 from M™ to S™ are homotopic, thus, so are the mappings w, fo
and w, f1 from M™ to S™ [see (3)]. Since the mappings w, fo and w, f1 are
homotopic to fy and fi, respectively, the latter two are homotopic.

One can easily construct a mapping M"™ — S™ of any preassigned de-
gree.

Thus, Theorem 13 is proved.

§ 2. The Hopf invariant of mappings »2<+! — Sk+1

The Hopf invariant plays an important role in the homotopy classifica-
tion of mappings from sphere to sphere. This invariant was first introduced
for constructing infinitely many mapping classes of S — S? [12]. Later,
this invariant was defined by Hopf for mappings from the (2k + 1)-sphere
to the (k + 1)-sphere. However, for even k, this invariant always equals
zero. The Hopf invariant is defined to be the link coefficient of the pre-
images of two different points of the sphere S**! in the sphere L2**1. In
the present section, we first give the definition of the linking coefficient for
two manifolds according to Brouwer [13], i.e. by means of the mapping de-
gree, and not by means of the intersection index, as is usually done now.
The form presented here is more convenient for this work. Later, we de-
fine the Hopf invariant and, finally, this invariant is described in terms of
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framed manifolds corresponding to the mapping. Besides, we establish sev-
eral connection between properties of framed manifolds and properties of
the Hopf invariant. These connections play a key role for the classification
of mappings from S"*2 to S™.

The linking coefficient

Definition 9. Let M* and N! be two closed smooth oriented manifolds
of dimensions k and [, respectively, and let f and g be their continuous
mappings to the oriented Euclidean space E*+*1 of dimension k + 1+ 1 so
that the sets f(M*) and g(N') are disjoint. Furthermore, let S**! be the
unit sphere of the space E*T!*+1 centred at an arbitrary point O taken with
the orientation representing it as the boundary of the ball, and let M* x N'
be the oriented direct product (see § 1, Chapter 1, <K») of the manifolds M*
and N'. To each point (x,y) € M¥x N',x € M* 3y € N, there corresponds
a non-zero interval (f(z),g(y)) in the space E*¥**1 going from the point
f(z) to the point g(y). Construct a ray emanating from O and parallel
to (f(z),9(y)). Denote the intersection of this ray with S¥*1 by x(z,v).
The mapping degree of y : M*¥ x N! — Sk (see Definition 8) is called
the linking coefficient of the manifolds (f, M*) and (g, N'); it is denoted
by o((f, M*), (g, N')). It is evident that if we continuously deform the
mappings f and g: f = f;, g = g; in such a way that the sets f;(M*) and
g+(N") remain disjoint for arbitrary ¢, then the mapping x = x; is deformed
continuously as well, thus, the linking coefficient does not change. In the
partial case when M* and N! are submanifolds of the space EF++1 and
the mappings f and g are identical, the linking coefficient is defined as well;
it is then denoted by v(M*, N'). It turns out that

o((f, M), (9, N") = (=) *FDEHDo((£, M%), (9, NT)). (1)

Let us prove (1). Let x’ be the mapping from N x M* to S*+! analogous
to x constructed above. Denote by A the mapping from N!x MF* to M* x N'
taking (y, ) to (z,y); let u be the mapping of the sphere S**1 onto itself
taking each point to its antipode. It is clear that the mapping degree of A
is equal to (—1)*, and the degree of u equals (—1)*H*1. Tt is easy to see
that x' = ux\. From the above we get (1).

A) Suppose instead of one manifold (g, N') we have two mapped man-
ifolds (go, N!) and (g1, NY). Furthermore, assume there exists an oriented
bounded compact manifold N'*! with oriented boundary consisting of the
manifolds N} and —N!, and there exists a mapping g from N1 to Ek+I+1
coinciding with g on N(l) and coinciding with g; on N! such that the sets
f(M*) and g(N'*1') are disjoint. Then it turns out that

o((f, M*), (g0, Ng)) = 0((f, M"), (g1, N1)). (2)
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Let us prove this fact. The boundary of the manifold M* x N1
is M* x N} —MP* x Ni. To each point (x,y) € M* x N'*1  there corresponds
the interval (f(z),g(y)). Let us draw a ray from O parallel to the inter-
val (f(z),9(y)). Denote the intersection of this ray with the sphere S¥*1
by x(z,%). Thus, we get a continuous mapping x from M* x N*1 to the
sphere S¥*1; thus the degree of y on its boundary equals zero (see § 1, «A»).
Thus yields (2).

The Hopf invariant

Definition 10. Let f be a smooth mapping from the oriented sphere
$2k+1 of dimension 2k + 1 to the oriented sphere S**1 of dimension k +
1, K > 1. Let p’ and ¢’ be the north pole and the south pole of the
sphere X2¢+1: let E2**1 be the tangent space to the sphere X251 at the
point p’ and let ¢ be the central projection from Y2**1\¢’ to the space
E?+1° On the sphere S*+1, let us choose (see Theorem 4) two distinct
proper points ag and a; from f(q') of the mapping f; then M} = ¢ f~'(ao)
and MF = pf~1(a;) are closed oriented submanifolds of the Euclidean
space E?k*1 (see Introduction to §4, Chapter 1: orientation for the pre-
image of a point). Set

() =(f.0' a0, a1) = v(Mg, M{). 3)

It turns out that v(f) is a homotopy invariant of the mapping f, which
does not depend on the choice of points p’, ag and ay, and that for even k
this invariant is equal to zero.

Let us prove the invariance of y(f).

Let fo and f; be two smooth homotopic mappings from 32¢+1 to Sk+1
and let f; be a smooth deformation connecting them. For the deformation
f:, we have the corresponding mapping f, from the product %?**1 x I to
Sk+1 (see § 1, Chapter 2, «C»). Note that for a small enough movement of
ap and a1, the number v(f:), t = 0, 1, does not change since the manifolds
%) f{l(ai) are not drastically deformed. Thus, we may assume that the
curve f(¢'), 0 < t < 1 does not pass through ag or a;. Let r be such a
large positive integer that for |t' —¢| < %, the sets f; *(ag) and f;*(ap) are
disjoint. Now, let us move the points ap and a; in such a way that they
become proper points of the mapping f, and the mappings

. 1 r—1
ft,t_(),;,..., — L

Let us prove that
v(f1) =~ (fo)-
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s+1
7‘ b

by Is. Let Mskjl be the full pre-image of the point a; in the strip M* x I,
under f,. According to the conditions on ag and aq, the set Mskjl is

Denote the part of I, consisting of those points for which % <t <

an oriented submanifold of the manifold 2%t x I, having the mani-
fold —f;/i(ai) + f(;_lH)/r (a;) as its boundary. Denote the projection oper-
ator from X?**1 x I along I to the sphere £+ by w. The mapping o of
the manifold M}}" defines the mapped manifold (¢, MFT") with bound-
ary —cpfs_/i(ai) + cpf(_sil)/T(ai). Since the sets gDﬂ'(Msk)?)_l) and cpw(MSkjl)
are disjoint, it follows from «A» that

FY(f(s-i—l)/r) = V(fs/r);

thus, v(f1) = v(fo).

Let us prove now that v(f,p’, ag,a1) does not depend on the choice of
the points ag and a;. Suppose instead of ag and a;, we have chosen by
and b;. Then there exists a smooth homeomorphism X of the sphere S**1
onto itself homotopic to the identity, such that A(a;) = b,i = 0, 1. Clearly,
YAf,p' bo,b1) = (f,p',a0,a1), and since the mappings Af and f are
homotopic, according to what we have proved above, we get v(f,p’, by, b1) =
FY(fv p/v ao, al)'

Analogously, it can be proved that v(f,p’,ao,a1) does not depend on
the choice of p/, since there exists a twisting of the sphere 32**1 taking p’
to any preassigned point of the sphere %2F+1,

Finally, let us show that for even k the invariant v(f) is equal to zero.
Since v(f) does not depend on the choice py and p;, we may change their
roles; thus we have

t)(‘]\4(1)67 M{C) = U(va M(I)C)

Since, moreover, we have (1),
2
o(Mf, My) = (=1)* D (Mg, MY),
then for even k we get v(MF, MF) = 0.

The Hopf invariant of a framed manifold

Since homotopy classes of mappings from the (2k + 1)-sphere to the
(k + 1)-sphere are in one-to-one correspondence with homology classes of
k-dimensiobnal framed manifolds of the Euclidean (2k+1)-space, the invari-
ant v(f) can be interpreted as an invariant of homology classes of framed
k-dimensional manifolds in the (2k + 1)-space. Let us give this interpreta-
tion of y(f) explicitly.
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B) Let (M*,U), U(z) = {ui(z),...,ur+1(z)}, be a framed submanifold
of the oriented Euclidean space E?**1 and let N, be the normal subspace
to the manifold M* at x € M*. The normal subspace is a vector space
having origin at z; thus U(x) is a basis of the space N,. Let us choose
an arbitrary vector ¢ = {c!,...,c""1} of the Euclidean space N (with
Cartesian coordinates fixed) and associate with any point 2 € MF¥ the
point ¢(x) = cluy(x) + ...+ FFlug, 1 (x) of the space N,. For ¢ reasonably
small, the map ¢ is a homeomorphism from MP* to the space E?**1 (see §1,
Chapter 2, «A»). It is evident that for ¢ # 0 the manifolds M* and c(M*)
are disjoint and that for two distinct non-zero vectors ¢ and ¢/, the manifolds
c(M*) and ¢'(M*) are homotopic in the space E?**!\M*. Thus, for c
reasonably small (but non-zero) the linking coefficient v(M*, c(M*)) does
not depend on c; set

Y(MF,U) = o(MF, e(MF)).
It turns out that if f — (M*,U) (see Definition 5) then

Y(f) = (M, U). (4)

Since v(f) is a homotopy invariant of f, v(M*,U) is a homology invariant
of the framed manifold (M*, U).

Let us prove (4). Let f be a smooth mapping from the sphere %2++1
to the sphere S*! and let p € S**! be a proper point of f, distinct from
f(¢"). Then, in order to construct the manifold (M*,U) corresponding to
the map f, one should take p to be the north pole of the sphere S*+! (see
Definition 5). Let ey, ..., ex+1 be an orthonormal basis of the plane, tangent
at the point p to the sphere S*¥*1 and let x!,...,2"*! be the coordinates
corresponding to this basis in the domain S¥*1\q (see § 2, Chapter 2, «A»).
In order to construct the invariant v(f), we take the point ag to be p, and set
a1 to be the point with coordinates 2! = ¢!, ... 2¥*1 = ¢*+1. Such a choice
of the points ay and a; means that the manifold Mé“ coincides with the
manifold M*, whence the manifold M} is second-order close to the manifold
c(M*) with respect to the length of the vector c. Thus, v(MF¥, c(M*)) =
o(ME, MF), and (4) is proved.

C) Let Hz 41 be the homology group of framed k-dimensional manifolds
of the Euclidean space E2**!. With each element 7 € II} ; we associate the
integer y(7) = v(MP*,U), where (M*,U) is a framed manifold representing
the class . As shown above (see «B»), the number () depends only on
7 and does not depend on the arbitrary choice of the manifold (M*, U). It
turns out that v is a homeomorphism from the group II7 41 to the additive

group of integers. Thus, it follows that the set ﬁZ 41 of all elements m €
I}, for which v(m) = 0 is a subgroup of II}_ ;.
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Let us prove statement «C». Let m; and 7 be any two elements of the
group I}, and let (M{,Uy) and (MJ,Us) be the framed manifolds rep-
resenting the classes m; and w9, respectively, and lying on different sides of
some hyperplane E2* of the space E2¢*+1. Furthermore, let S?* be the unit
sphere of the space E?**! centred at O C E?*. Let us choose an arbitrarily
small vector ¢ defining the shift of the manifold MF U M} (see «B»). We
have

y(m1 4 ) = o(MF U MEF, c(MF U MY)).

The linking coefficient in the right-hand side is defined as the degree of the
mapping x from (MF U ME) x ¢(Mf U M}) to the sphere S?¥; herewith
the mapping x is constructed as in Definition 9. Let us define the degree
of x in some point p of the sphere S2*, lying close to the hyperplane E2*.
Such a choice of the point p guarantees that the interval (z,c(y)), where
r € MF, y € M¥, is not parallel to the interval (O,p). Analogously, the
interval (z,c(y)), where x € M}, y € M¥, is not parallel (O, p). This yields
that

o(MF U My, (M U M) = o(My, c(M{)) + o(My, c(My)),

that is,
y(my +m2) = y(m1) +y(m2).

Thus, «Cs» is proved.

D) Let f be a smooth mapping from the oriented sphere $2¢*1 to the
oriented sphere S*1, and let g be the mapping of X2**1 onto itself having
degree o, and let h be the mapping of the sphere S**! onto itself of degree
m. Set f' = hfg. It turns out that

() = or*y(f)- (5)

It is sufficient to prove statement «D» separately for the case when h
is the identity and for the case when the mapping ¢ is the identity. The
relation (5) in the case of h being the identity follows from Statement «C»
of the present section and from Statement «D» §1, Chapter 3. Let us
consider the case when g is the identity, i.e. when f’ = hf. Let ag and a
be two different points of S¥*! distinct from f/(¢’), which are proper points
of the mappings h and hf. Then h=(a;) = {as, ..., au, },t = 0,1, whence
the mapping f is proper at any of the points as;, t = 0,1; 7 =1,2,...,7%.
Denote the sign of the functional determinant of the mapping h at the point
ag; by €4, 1 =1,...,1; t = 0,1. Denote the tangent subspace at the north
pole p’ of the sphere ©2*1 by E2?**1 and denote the central projection
mapping from the set ©2**1\¢’ to the tangent space of the point ¢’ by ¢.
Set of ~!(as) = Mf, t =0,1; of '(an) = ML. 1t is easy to see that

MF =en Ml UepMEU ... Uey, ML, (6)
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where the signs €;; agree with the orientations of the pre-images. Since ag;
and aq; are two distinct points of the sphere Sk+1 which are proper points
of the mapping f then the invariant v(f) can be defined as v(M{,, ij)
From this and from (6) we have

’}/(f) = U(EolMécl U...u EOTOMOk’r‘()’ EllMﬁ U...u ElTlMlkrl)
To T1

=Y > coierr(F) = 1N Q0O ery) = TA(f)-
i=1 =1

i=1 j=1

Thus, Statement «D» is proved.

E) Let (M*, V), V(x) = {vi(x),...,vs+1(z)}, be an orthonormally and
smoothly framed submanifold of the oriented Euclidean space E?**! and
assume that the manifold M¥ lies in a hyperplane E?* of the ambient space.
Denote by u(z) the unit vector emanating from = € M* and perpendicular
to E?*. Then we have

u(z) = Y (x)vy (z) 4+ ... + i (2)vg41(2). (7)

Here ¢(z) = {s'(x),..., " ()} is a unit vector of the coordinate Eu-
clidean space N such that 1) maps the manifold MF* to the unit sphere
G of the space N (the mapping ¢ was considered in Statement «A» §4,
Chapter 2). It turns out that the degree of the mapping ¢ is equal
to ey(MF¥, V), where ¢ = £1 and the sign depends only on k.

Let us prove «E». Assume that = (0,...,0,1) € € &* is a proper
point of ¢. If this were not so, we could easily obtain it by an orthogonal
transformation of all systems V(z), € M*. To calculate y(M* V), let
us choose in the space E?**1 the unit sphere S?* centred at some point O
and take the vector ¢ to be the vector {0,...,0,0}. If we move the vector
u(x) parallel to the point O then its end will lie on the sphere S?* at some
point; denote the latter point by u. Draw a ray from O, parallel to the
interval (z,c(y)); ¥, y € M*; denote the intersection of this ray with S2*
by x(z,y). By definition, y(M¥*, V) is the degree of the mapping x from
Mk x M* to S?*. We shall calculate the degree of this mapping at the
point u. While calculating, we will show that u is a proper point of the
mapping x. Let x(a,b) = u, then the interval (a,c(b)) is orthogonal to
the hyperplane E?* and directed along the vector u in such a way that
c(b) € Hs(a) (see §1, Chapter 2, «A»). Since, furthermore, ¢(b) € Hs(b),
it follows that for § small enough, we have b = a (see §1, Chapter 2,
«A»). Thus, for x(a,b) = u we have b = a and ¥ (a) = P. Conversely, if
¥(a) =B, then x(a,a) = u. Take a to be the origin of coordinates O of
the space E2k+1: take its basis to consist of vectors u; = u; (@),...,upy1 =
Up41(@), Ugt2, ..., U2gt1, Where ugio, ..., Uspy1 1S an orthonormal vector
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system tangent to the manifold M”* at the point a. Denote the coordinates
of x € M* in this basis by z!(z),...,22**!(z). In a neighbourhood of a in
MPF, it is easy to introduce coordinates z', ..., 2" of the point z such that
the equation defining the manifold M”* looks like

2=zl (x),. .., M = 2F (), 2K 2 = 2R 2 (g) = !

gee e

(8)

L O g

where 2%(z), i = 1,...,k + 1, is second-order small with respect to p(a, ).
Transporting the system V (y) parallel to the point O = a, we express its
vectors in terms of uq, ..., usgy1:

k+1 2k+1
vi() =Y dja(Wua+ Y bis(y)us. (9)
a=1 B=k+2

Here b, are second order small with respect to p(a,y) and a4, o # j, are
first-order small with respect to p(a,y). Thus, since V(y) is orthonormal,
we see that, up to second-order small values (resp. to p(a,y)) the following
equalities hold:

a;i(y) =1, a;i(y) = —azi(y), i#J. (10)
Since a;i(y) = (wi,vi(y)), 4, j = 1,....k + 1 then, by (7), (9)
and (10), we have (up to second order) p(a,y) ¥’(y) = —aps1,;(y),
j = 1,....k; **(y) = 1. Thus, up to the second order in p(a,y)
the point ¢(y) has in the basis wui,...,usr+1 the following coordinates:
—6 (y), ..., =0k (y), 6,9, ..., y*. Analogously, the point = (up to sec-
ond order) has in the basis uq, ..., us,11 the coordinates [see (8)]

0,...,0, z*, ...z~
Thus, the components of the interval (z, ¢(y)) in the basis uq, ..., usgt1 are
_5¢1(y)7 RS} _5wk(y)7 57 yl - xlu cee 7yk - xk

up to second order with respect to p(a, z)+p(a,y). From this, it follows that
at the point (a,a) the sign of the functional determinant of the mapping y
differs from that of the functional determinant of v in a by a factor e = £1,
which depends only on k. Thus, «E» is proved.

§ 3. Framed manifolds with Hopf invariant equal to
Zero

The main goal of this section is to prove Theorem 16 that any framed
manifold having Hopf invariant equal to zero is homologous to a suspension.
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Thus the theorem is a sequel to Theorem 11. Since the Hopf invariant of an
even-dimensional manifold always equals zero, it follows from Theorem 16
that each even-dimensional framed sumbanifold (M*, U) of E#*1 is homol-
ogous to a suspension. This statement will be used in the present work only
for the case k = 2 while classifying mappings ¥"*2? — S™. From this and
Theorem 11 it follows that the number of mapping classes for ¥"+2 — S
n > 2, does not exceed the number of mapping classes 4 — S2.

While proving Theorem 16 as well as in some other cases it is desirable to
deal with connected framed manifolds. Theorem 14 says that each framed
manifold is homologous to a smooth one. To prove this theorem, it is
sometimes necessary to perform a surgery of a manifold in order to make it
connected. Such a surgery has a rather bergthy description in the following
Statement «A», but its geometrical sense is clear and means the following.

The equation

z? + y2 —22=—¢

represents a two-sheeted hyperboloid for ¢ > 0 and a one-sheeted hyper-
boloid for ¢ < 0. In the strip of the space of the variables x, vy, z, t, defined
by the inequality —1 < ¢t < 1, the above equation defines a submanifold with
boundary consisting of the two parts: the disconnected one lying in t = —1,
and the connected part lying in ¢t = 1.

In Statement «A», the surgery described above, is performed for a pair
of parallel planes. In these planes, we get “dents”, which move towards
each other like sheets of the two-sheeted hyperboloid, then form a tube
connecting the holes in the planes. To perform the operation described
above to an arbitrary manifold, we prove an almost obvious Statement «C»
that in a neighbourhood of any point, the manifold can be deformed to a
plane. Making the manifold planar in the neighbourhood of two points,
we may perform the surgery «A» connecting the two components into a
single one. Since we have to reconstruct framed manifolds, one should
also care about what happens to the framings. These constructions are
discussed in Statements «B» and «D». The surgery «A» can be applied
not only in order to get a connected manifold but also in order to embed a
k-dimensional manifold in 2k-space.

The surgery

A) Let E*+2 be the Euclidean space with coordinates &£1,..., &% n, 7;
let EX*2 be the strip defined by inequalities —1 < 7 < +1, with boundary
consisting of two hyperplanes Elerl and Eﬁ'{l defined by 7 = —1 and 7 =
+1. Let H**2 be the part of E**2 defined by the inequalities

€2+ 4+ <L, —1<n< L
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It turns out that in the strip E¥*2 there exists a smooth submanifold P*+1
orthogonal to the boundary of the strip E¥*? in its boundary points and
possessing the following properties (see Fig. 3.1):

Figure 3.1.

a) outside H¥*2 the manifold P**! consists of all points satisfying |n| = 1;

b) the manifold P*, = P*+! ﬂEﬁJ{l consists of all points of the hyperplane
E* satistying [n] = 1;

c) the intersection of P} = Pkl n Ef_‘{l with the hyperplane defined
by n = «, for |a| < 1 is a sphere of radius () < 1, defined in the
plane n = o, 7 = 1 by the equation ()% + ...+ (&%) = 0?(a), where
o(a) tends to 1 as |a| tends to 1. Thus, the set PF N H**2 intersects
the line ¢ = 0,...,&F = 0;7 = 1; moreover, this set is connected for
k > 1 and consists of two simple arcs for k = 1.

For constructing P¥*1, let us first consider the case k = 1. Rename the
coordinates £, n, 7 in E3 as x,y,t. Let

o(x,y,t) =y* — (1 +t)z? +t.

Consider the surface Q? given by the equation op(x,y,t) = 0. It can be
checked straightforwardly that this surface has no singular points, i.e. that
the equations

dp _

Do dp
0 5=

8_56 — Y 8_y - 07 Oa ¥ = 0
are not compatible. Consider the section C of the surface Q2 by the plane
t = 6 (|8] < 1). The curve C_; then becomes a pair of parallel lines

y = £1. For =1 < 8 < 0, the curve Cp is a hyperbola whose real axis
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is the line ¢t = B, x = 0. The curve Cj represents a pair of intersecting
lines y = £z. Finally, for 0 < 8 < +1 the curve Cg is a hyperbola with
real axes being t = (3, y = 0. For all values of (3, the curve Cg passes
through the points (1, £1, 3); furthermore, it is symmetric with respect
to z =0 and y = 0. In our case, the set H® is a cube defined by |z| < 1,
lyl < 1, |[t| < 1. Let us complete the part Q2 of the surface 2, lying in
the cube H?, by the points satisfying |y| = 1, |z| > 1, [t < 1. Denote
the obtained surface by P2. The surface P2 satlsﬁes the condltlons «(a)»—
«(c)», but it is not smooth; moreover, it is not orthogonal to the strip of
the boundary E? (|t| < 1).

Now, consider the case of arbitrary k. Define the function

o(zt, ..., 2% y,t) by setting

gp(ml,...,mk,y,t) =y?—(1 +t)((a?1)2 4+ (J:k)2) +t.

It follows straightforwardly that the hypersurface Q*! defined in the space

E**+2 with coordinates x!,... 2% y,t by ¢(2!,...,2% y,t) = 0 has no sin-
gular points, i.e. the equations

0 0 0 0

L0, ., 20,220, 22 =0,0p=0

Oxt oxk oy ot

are not compatible. The hypersurface Q**! can be intuitively represented
if we note that its section by any 3-space containing (y,t) is the surface Q?
described above. Set Q**! = Q¥ N H*+2, Now, complete the set Q¥+!
by the points satisfying |y| = 1, (#1)? + ...+ (2¥)? > 1, |t| < 1. The set
P*1 obtained, is a manifold satisfying the conditions «(a)»—«(c)», but
it is not smooth in the points where it intersects the boundary of H**2.
Moreover, it is not orthogonal to the boundary of the strip E¥*2. Let us
now correct the manifold P*+1,

Let x(s) be an m-smooth (m > 1), odd, monotonically increasing func-
tion of one variable s, defined on the interval —1 < s < 1, enjoying the
following properties:

=X'(1)=x"(1)=...=x"™(1) =0,
X'(s) >0 for |s| < 1.
Clearly, such a function exists. Now, let us define the mapping o

O-(x:l?"'?xk?y’t): (517.'.7516777’7')
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of H**2 onto itself by

=gl =R = xy),T=x"1),

where x ! is the function inverse to y. Obviously the mapping o of H*+2

onto itself is homeomorphic and the mappings ¢ and o' are smooth at
all points of the set H**2. The map o is not smooth only for t = +1, and
o~ ! is not smooth only for n = 1. It is easy to check that if we replace
the part Q¥ of the manifold P**! by the set o(Q*t1), we get a manifold
PF+1 satisfying all properties of Statement «As.

B) Let W**2 be the e-neighbourhood of the set H¥*2 in the Eu-
clidean space E**2 (see «A») and let ¥ be a smooth homeomorphism
to the Euclidean space E"***1. Then there exists a framing V({) =
{v1(Q),- -, va(¢)} of the manifold J(P¥*1 N W*+2) in the space EnHE+1
inducing the given orientation of the manifold.

Let us prove Statement «B». Let O be the centre of the figure Hy o and
let X be the boundary of the convex set W+ 2. Furthermore, let ¢ be an
arbitrary point from W¥**2 and let (O, ) be the interval passing through
¢ and connecting the point O with a boundary point € X. Denote the
ratio of the lengths (O, ) and (O, z) by ¢ and set ¢ = (z,¢). Thus, we have
introduced a polar coordinate system in the domain W#+2; here (x,0) = O.
Denote the normal subspace at the point 9(¢) to the manifold 9(W**2) in
the space E"F+1 by N,,. In the space N, let us choose an arbitrary
basis v1,...,v,—1. By virtue of Statement «A» §3, Chapter 2 the basis
v (x,t),...,vp—1(x,t) of the normal N,; can be chosen to depend smoothly
on the pair (z,t) and to coincide for ¢t = 0 with the basis v1,...,v,-1. Set
v1(¢) = vi(x,t), ¢ = 1,...,n — 1. The vector v,(¢) at the point ¥(¢),
where ¢ € P**1 N W**2 is then chosen to be the unit vector normal to the
manifold ¥(P¥1) at the point 9(¢) and tangent to the manifold (W *+2).
These conditions define the vector v, (¢) up to sign. Since the manifold
PF1 N WH+2 is connected, the whole field v, (¢) is uniquely defined up
to sign;, thus, choosing the direction of v,(¢) in a proper way, we may
guarantee that the constructed framing V(¢), ¢ € P*1 N W**+2 induces
the given orientation on J(P*t1 N Wk+2).

C) Let M* be a smooth submanifold of the Euclidean space E"**, a €
MPF; and let T* be the tangent subspace to M* at a and let § be a positive
number. It turns out that there exists a smooth deformation 7, 0 <¢ < 1,
of the manifold M*, enjoying the following properties. Let z € M*; then:

a) for o(a,z) > & we have 7 (z) = x;
b) for o(a,z) < § the value o(x, 7 (x)) is second-order small with respect

to o(z,a), i.e. o(x, 7(x)) < co*(z,a), where c is a constant independent
of d;
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c) for o(x,a) < §/2 we have 7y (x) € T*.

Let us prove Statement «C». Assume J to be so small that the orthogonal
projection 7 to the plane T* maps the §-neighbourhood of the point a in
MP¥ to T* smoothly, regularly and homeomorpichally. Then let u(s) be a
smooth even function of the parameter s, —o0o < s < +00, equal to zero at
0 < s < ¢/2, monotonically increasing for §/2 < s < § and equal to 1 for
s > 6. Then the desired deformation 7; is defined by

Tt(z) = Xt + 7(z)(1 = Nt + (1 —¢),

where A = u(o(z,a)).

D) Let (M*,U) be a framed submanifold of the strip E"** of the Eu-
clidean space E™**, and let K’ be such a neighbourhood of some interior
point a € MP that its closure K’ is homeomorphic to the k-ball. We assume
K’ to be a ball centered at a; and let K be a smaller ball concentric with
K'. If for a part K’ of the manifold M¥, there is some framing V', inducing
the same orientation of K’ as the framing U then there exists a framing
U’ of the whole manifold M*, homotopic to U and coinciding with it on
M*\ K’ and coinciding with the framing V on K.

Let us prove «D». Let

U(z) = {ur(x),...,un(x)}, Vir)={vi(x),...,v.(2)};

then we have .
wi(z) = Z Nij(z)vj(x), =€ K,
j=1

where A\(z) = || \i;(x)|| is a positive determinant matrix depending contin-
uously on the point x € K’ in such a way that A is a continuous mapping
from the ball K’ to the manifold L, of all nxn having positive determinant.
We shall consider K” as a ball of the Euclidean space E*, the latter being a
hyperplane of the space E*t1; let L be a linear interval of E¥*1 perpendic-
ular to the hyperplane E¥ with one end at the centre a of K’. Denote the
other end of the interval L by b. One can easily construct a deformation
1, of the mapping from K’ to the set K’ U L, under which all points of
the boundary of K’ remain fixed and as a result of this deformation the
ball K is taken to the point b, i.e. 11 (K) = b. Since L,, is connected, then
the mapping A defined on K’ can be extended to a continuous mapping
A from K’ U L to L, taking the point b to the identity matrix. Thus,
lesj (2)]] = p(x) = Mp1 () is a matrix with positive determinant depending
continuously on = € K’. Denote the framing U’ for the ball K’ by setting

uj(x) = pij(a)v;(@).
=1
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On the set M*¥\K’, we define the framing U’ to coincide with U. Clearly,
U’ is precisely what we need.

Manifolds with zero Hopf invariant

Theorem 14. Fach framed submanifold of a Fuclidean space is homol-
ogous to a connected framed submanifold of the same Fuclidean space.

PROOF. Let (M*,,U) be an oriented framed submanifold of the ori-
ented space E"* and let n > 2. The case n = 1 is not interesting since in
this case the framed manifold is always null-homologous (see the end of § 2,
Chapter 2). Suppose MF¥, is not connected. Let us show that there exists
a framed manifold (M}, U,) homologous to the initial one with one fewer
connected component than M* . This will prove the Theorem. Let a_;
and a; be two points of M*, belonging to different components of it. By
virtue of Statement «C», we may assume that in the neighbourhood of a_1
and a; the manifold M*, is planar. Since n > 2, the manifold M*; does
not divide the space E™t*. This yields that in E™T* there exists a simple
closed curve L given by the parametric equation

y=ymn), —2<n<2; y(—2)=y(2),

intersecting M* only in a_; and a; for n = —1 and 1, respectively. Fur-
thermore, suppose that L is orthogonal to M*, at a_; and a;. By using
Statement «A» §3, Chapter 2, and the orthogonalization process, we may
endow the interval —1.5 < 1 < 1.5 of L with an orthonormal framing,
i.e. for each point y(n) of this segment, construct a system of vectors
e1(n)y ..., entk—1(n), orthogonal to L at y(n) and depending smoothly on
7. We shall assume the vectors e;(—1),...,ex(—1) to be tangent to the
manifold M*, at a_; and define the orientation of this manifold, whence
the vectors e;(1),...,ex(1) are tangent to M*, at a; and define the orien-
tation opposite to the orientation of M*,. This can be reached by apply-
ing an orthogonal transformation smoothly depending on 7 to the vectors
e1(n), ... ensr_1(n). Let ENtrtl — Entk 5 [ where I is the interval
—1 < t < 1; consider the Cartesian product EPT**! as a strip in the Eu-
clidean space E"T**1 Now, let us construct the mapping ¥ of the subset
H**? (see «A») of EF*2 to E"tF+1 depending smoothly on positive pa-
rameter o, and mapping the point (¢1,...,&% n,7) € H¥*2 to the point
(2,t) € ErhtL;

k
z=y(n) + _;Qﬁiei(n),
t=r.

Here z,y(n) are vectors in E"**. The relations above define the mapping
¥ not only on the set H**2 but also on some e-neighbourhood W#+2 of

(1)
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this set in E*T2. Obviously, for ¢ small enough the mapping 1 is a smooth
regular homeomorphism of the manifold W**+2. For ¢ small enough the
intersection of ¥(W**2) with the manifold M*, x (—1) is contained in
neighbourhoods of points a_; x (—1) and a; x (—1). We assume p so small
that this intersection is contained in those neighbourhoods of a_; x (—1)
and a; x (—1) where the manifold M*, x (—1) is planar. In the strip
E"tk x T we have the submanifold M*, x I. In this submanifold, let us
replace its part lying in 9(H**2) by 9(P*! N H¥*2) (see «A»); namely,
we set
MY = (MF*, x I\9(H*2)) Ug(P* n |gF2).

Then M* 1 is a smooth submanifold of the strip E*t#+1 orthogonal at its
boundary points to the boundary of this strip; moreover, the part of the
boundary of M**+! lying in the hyperplane E"** x (—1) coincides with the
manifold M*, x (—1), and the part M} x 1 lying in E"** x 1 has one fewer
component than the manifold M* .

Now, let us construct the framing V of the manifold M*+! that we
need to prove the homology (MF¥,,U) ~ (MF,U,). The framing V of
I(P*1 N H5*+2) we chose in «B» is in such a way that in a_; x (—1) the

vectors v1,...,v, have positive determinant with respect to the vectors
up X (=1),...,u, X (—1). By virtue of Statement «D», we may assume that
the vectors uy X (—=1),...,u, X (=1) coincide with the vectors vy,..., v,

in M*, x (=1) N Y(H**2). Thus, we have constructed V for part of the
manifold M*+1 namely, for 9(P**1NH**+2). For the part, M*+1\9(P*+1n
H*2) at a point (z,t), z € M*1 t € I, we define vq,...,v, to be
parallel to the vectors uy x (—1),...,u, X (—1). Thus, the framed manifold
(M*+1V) is constructed.

Theorem 14 is proved.

Theorem 15. Let (M*,,U) be a framed manifold of E"**, n > k+1.
Then there exists a framed submanifold (M*, W) of E™** homologous
to (M*,,U) such that the manifold M* is connected and lies in a 2k-
dimensional linear subspace E** of the space E™*F.

PrOOF. By virtue of Theorems 11 and 14, it is sufficient to prove
Theorem 15 only for the case when n = k + 1 and the manifold M*,
is connected. According to Statement «B» §4, Chapter 1, there exists a
hyperplane E2F of the space E?#*1 such that the orthogonal projection 7
of the manifold M* to this plane is typical. Let a_; and a; be two distinct
points from M* | satisfying m(a_1) = m(a1). There exist only finitely many
such pairs in M*, (see §4, Chapter 1, «A»). Let us perform a surgery
of M*, in a neighbourhood of (a_1,a1). One should perform analogous
surgeries for any intersection pair of the mapping 7 of M*,.

By virtue of «C» we may assume that the manifold M*, is planar in
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the neighbourhoods of a_; and a;. Let ey, ..., e; be a system of linearly
independent vectors tangent to M*, in a_; that generate the orientation of
Mfl and let ep41,. .., 9 be a system of linearly independent vectors tan-
gent to M* | in a; and generating the orientation opposite to the orientation
of M*,. Denote by ea)1 the vector emanating from the middle point O of
the segment (a_1,a1) and with the endpoint at a;. Taking the point O to
be the origin of coordinates and transporting all the vectors to it, we get
the basis e1,...,ear1 of the vector space E?FT1. Let E2F+2 = E2k+1 »
where [ is the interval —1 < t < 1; we shall consider the product Ef’“"’g as
a strip of the Euclidean space E?#*2. Let us construct a mapping ¢ from
the subset H**2 (see «A») of the space E**2 to the space E?*2 such that
the mapping depends on the positive-valued parameter p, the latter being
small enough for further construction; let ¥ take (¢',... &% n,7) € HFF2
to the point (z,t) € E2k+2;

k
Z = mezky1 + QZﬁi <COS <%77 + %) €
i=1

+ sin (%n + %) ei+k> , t=r.

The relations above define the mapping ¥ not only on the set H**2 but
also for some e-neighbourhood W¥*+2 of this set in the Euclidean space
E*2. Here z is a mapping from the set HE™ of points (¢',..., &% n,7)
satisfying (1) to the vector space E?**1. Note that the mapping 7z is
regular and homeomorphic everywhere except for the points of the interval
€ =0, |n] < 1, so that the mapping 7z from the manifold Pf ¢ HF*!
to the space E?* is regular and homeomorphic. Now, in the submanifold
MP¥ | x I of the strip E?**1 x I, we replace the part lying in J(H**2) by
I(PFL N HF2) (see «A»); namely, we set

M = (MF x I\O(HT2)) ug(PF 0 HR2).

It can be easily seen that A/**! is a smooth submanifold of the strip F2++2
which is orthogonal to the boundary of the strip; herewith the part of
the boundary of M**+2 lying in E2**1 x (—1) coincides with M*, x (—1),
whence the part of M* x 1, lying in the hyperplane E?**! x 1 is such that
the projection 7 makes for M} is one intersection pair less than for M*,. If
k > 1, then the connectedness of the manifold M* | yields the connectedness
of the manifold M¥. For k = 1, Theorem 15 will follow immediately from
Statement «B» §2, Chapter 4; the proof given here is not valid for k£ = 1
since the constructed manifold M{ might not be connected.
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Now, let us construct the framing V of the manifold M**! needed for
the proof of the homology (M*,,U) ~ (M, U.).

We construct V' for the manifold 9(P**' N H*+2) as shown in «B»
(here n = k + 1), in such a way that at the point a_; x (—1) the vec-
tors vy,...,vk41 are obtained from the vectors u; x (—1),...,ugpp1 X (—1)
by a positive determinant transformation. By virtue of Statement «D»,
one may assume that in the intersection M*; x (—1) N YJ(H**+2), the vec-
tors up X (—1),...,ugps1 X (—1) coincide with the vectors vy, ..., vg41 pre-
viously constructed. The framing V of M*+! is already constructed for
I(PF+1 N H*+2). For the part M*T1\J(P*t1 0 H**2) in any point (=, 1),
x € M*1 t € I, define the vectors vy,...,vx1 to be parallel to the vec-
tors ug x (—1),...,urs1 x (—1). Thus, the framed manifold (M**1, V) is
constructed.

We shall assume that the surgery of M*, described above is performed
for all self-intersection pairs of the mapping . Then the obtained manifold
MF is projected by 7 regularly and homeomorphically to the submanifold
M* = 7(MF) of the space E?*. This projection might be performed as a
deformation of the smooth submanifold M¥ to the smooth manifold M*. By
virtue of Statement «B» §3, Chapter 2, this deformation can be extended
to get a deformation of the framed manifold. In this way we obtain the
desired submanifold (M*, W) of the space E2¢+1.

Thus, Theorem 15 is proved.

Theorem 16. Let (MEF,Upy) be a framed submanifold of the Buclidean
space E**1 for which W(Mé“, Up) = 0 (this is always true for even k, see
Definition 10) (see §2, Chapter 3, «B»). Then, in the hyperplane E**
of the space E***1 there exists a framed submanifold (MF, V1) such that
(M}, Uy) ~ E(MF,U;) (see Definition 7).

ProoOF. By virtue of Theorems 14 and 15, there exists a connected
framed submanifold (MF,U;) of the space E?*! homologous to the given
one (MF,Up), such that Mf C E?¢. By virtue of Statement «B» §2,
Chapter 3, we have v(MF,U;) = 0. Thus, Statement «E» §2, Chapter 3,
yields that the degree of ¢ : Mf — &* equals zero; thus the mapping
v is null-homotopic (see Theorem 13). By virtue of Statement «A» §4,
Chapter 2, the framed manifold (MF,U;) is homologous to the framed
manifold E(MF,V), where (MF,V) is a framed submanifold of the space
E?k,

Thus, Theorem 16 is proved.



CLASSIFICATION OF MAPPINGS S"12 — §” 91

CHAPTER [V

Classification of mappings of the
(n + 1)-sphere and (n + 2)-sphere to
the n-sphere

§ 1. The Euclidean space rotation group

The main goal of this section is to establish the basic topological prop-
erties of the group H,, of all rotations of the n-dimensional Euclidean space
E™, needed for the classification of mappings X" t* — 8™ for k = 1,2. It
will be proved (see Theorem 17) that manifold H,, is connected and that
for n > 3 there exist precisely two homotopy classes of mappings S' — H,.
In order to prove these properties of H,, we use a well-known covering
homotopy lemma; this lemma is of independent interest; besides, we use
the description of H3 by employing quaternions; this also has independent
interest and it is used in the future.

Quaternions

We recall the notion of quaternion, which we shall need in the rest of
this work.

A) Let K be the four-space with fixed Cartesian coordinate system.
Let us write arbitrary vector z = (x!,22% 2%, 2%) € K of the space as
x =2 +ix® + kx® + ka*, where i, 7,k are the unit quaternions. Define
the multiplication law for the set K according to the following axioms: it
is distributive; real numbers commute with unit quaternions and the mul-

tiplication of quaternion units looks like follows
ij=—ji=k, jk=-kj=1i, ki=—-ik=yj, ii=jj=kk=-1. (1)

It is easy to see that the multiplication defined in K in this way is as-

sociative. Define the adjoint quaternion T to the quaternion z by setting
T =a' —ix? — jz3 — kz*. It can be easily checked that

Ty = yT. (2)
Define the modulus of x as the non-negative real number

o] = Vaz = V@ + @)+ @+ @)
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We have |zy|? = 2y7y = 2yyz = - |y|* - = |y|* - 27 = |2|? - |y|>. Thus,

|lzy| = |2[ - [y- 3)

If z # 0, then |z| # 0, thus there exists a quaternion x—!, which is the
inverse of the quaternion z, namely, 27! = Z/|z|?. Thus, the set of all
quaternions K constitutes an algebraic skew field. The skew field K con-
tains the field D of real numbers that consists of all quaternions of the
typex =a2'+0-94+0-5+0-k The set G of all quaternions z satisfying
|| = 1 constitutes a group with respect to the multiplication operation,
according to (3). The set G is the 3-sphere of the Euclidean space K. The
quaternions of the type 2%i + 23j + 2*k are called purely imaginary. The
set J of all such quaternions forms a 3-space in K, which is orthogonal to
the line D.

B) Let K be the skew field of quaternions containing the field D of
real numbers, and let J be the set of all imaginary quaternions; let G be
the group of quaternions having absolute unit value (see «A»). With each
quaternion g € G we associate a mapping 1, of K onto itself by setting

Yg(x) = gzg™". (4)

Thus, by virtue of (3), we have |gzg~!| = |z|, so, the mapping 14, being
linear, is a rotation of the space K. Since 14(D) = D, the orthogonal
complement to D (the space J) is mapped by 1, to itself, i.e. we get a
rotation of J. It turns out that, by associating with each quaternion g € G
the corresponding rotation v(g) = v, of the space J, we get a homomorphic
mapping v of the group G to the group Hj of all rotations of the space J.
The kernel of v consists of the two elements, 1 and —1. Furthermore, it
turns out that the subgroup S* of all quaternions g € G satisfying 1,(i) =i
consists of all quaternions of the type cosa + isina.

Let us prove Statement «B». First of all, we have

1Z)gh(x) = ghxhilgil = ¢g(h$h71) = 1/191/%(517),

thus, v is a homomorphic map from G to Hs. Let us show that v(G) = Hs.
Let | = aj + bk, where a® + b> = 1. It is easy to see that

12=-1, li=—il. (5)
Now let g = cos 8 + Isin 5. From (5) it follows that

14(i) = (cos B + Isin B)i(cos f — Lsin )
= (cos B + Isin 8)%i = (cos 23 + Isin 23)i
=icos28 + (bj — ak)sin208, (6)
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thus, with an appropriate choice of a,b and 3, we can map the quaternion
i by 1, to any preassigned quaternion of the set S? = J N G. Furthermore,
by setting a = 0,b =1, we get from (6)

Wy(i) = icos 26 + jsin 26, (1)

and, since g commutes with k, then by using transformations like 1, we
can perform any rotation of .J around k. Since G is a group, this yields that
by using transformations 14, g € G, we may perform any rotation of the
space J. Note that from the multiplication law (1) it follows that the only
quaternions which commute with ¢ are just those of the type cos a4+ sinq;
thus the group S' consists of all quaternions of this type. Analogously, j
commutes with only those quaternions from G of the type cosa + jsina.
Thus, the kernel of v consists precisely of +1 and —1.
This completes the proof of «B».

Covering homotopy

Lemma 1. Let ¢ be a smooth mapping from a closed manifold PP to
a closed manifold Q%, p > q, which is proper in all points. Later let f be
a continuous mapping from a compact metric space R to PP and let g,
0 <t <1 be a deformation of mappings from R to Q9 such that go = ¢f .
Then there exists a continuous deformation f; of mappings from R to the
manifold PP such that fo = f and ¢ofi = g;. Then the deformation f; is
called a covering for the deformation g:. If for some point © € R we have
g:(x) = go(x) for all t, 0 < t < 1 then fi(x) = fo(x). Furthermore, if
R is a smooth manifold and f is a smooth mapping and g: is a smooth
deformation then the mapping f; is smooth as well.

PrOOF. Denote the full preimage of y € Q9 in PP under ¢ by
M, : My, = ¢~ (y). It follows from (2) §4, Chapter 1 that M, is a (p — ¢)-
dimensional submanifold of the manifold PP. By virtue of Theorem 2, we
may assume that PP is a smooth submanifold of some high-dimensional
Euclidean space A. Denote the normal subspace at ¢ € My, to the man-
ifold My, in A, by N.,. Now, let us show that if y is close enough to yo
then there exists precisely one point (zg,y) of the intersection between
the normal subspace IV, and the manifold M, which is close to zo. To
prove this fact, let us introduce in the neighbourhoods of points xg and yq
in PP and Q7 such local coordinates z!,...,zP and y',...,y? with origins
at x¢ and yg, where the mapping ¢ looks like

yl =zl .yt =2t (8)

[see §4, Chapter 1, formula (2)]. Let # = J(x!,...,2P) be the parametric
equation of the manifold P? in a neighbourhood of xp. Then N,, in A is
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defined by the system of equations

01¥(0,...,0 .
(x_IOa(aT)>_O7 Z:q+17"'7p7 (9)

where x is the radius vector with endpoint running over the space N.,. The
parametric equation of the manifold N, looks like

r=9(y", ...yt x? L aP), (10)

where y',...,y? are the coordinates of the point y and z9t', ... 2P are
the local coordinates in M,. Thus, in order to find the point ~(zo,y),
one should substitute the value of x from (10) into the equations (9), and
then solve the obtained system in the unknown variables z9t!, ..., 2P. The
above substitution leads to

<19(y1,...,yq,xq+1,...,x”)

29(0,....,0)
_ﬁ(y(l)a'"7ygvxg+1a"'7xg)57> :Ov

t=q+1,...,p. (11)
Here we have a system of p — ¢ equations in p — ¢ unknown variables
x4t . xP. With the initial conditions y! = 0, ..., y9 = 0, the system (11)
has the evident solution 9t = 0,...,2P = 0. The functional determinant
of the system (10) then equals the determinant

‘(&9(0,...,0) &9(0,...,0))

8Ij 8CCZ ’ %]:(J‘f'laai%

99(0,...,0)
oz’
early independent. Thus, for a point y sufficiently close to yq, there exists

precisely one point x close to xg and satisfying the condition

which is non-zero since the vectors ,i=q+1,...,p are lin-

r =(20,y) € Nzy N M.

From the compactness of PP we see that there exists a small positive § such
that for o(y, ¢(xo)) < ¢ the function y(xo,y) is defined and is continuous
with respect to its arguments xo € PP and y € Q7. This function enjoys
the following two properties:

¥(wo, p(w0)) = o, (12)

e(v(z0,9)) =y- (13)
These are just those properties we shall need in the sequel.
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Let us now construct the deformation f;; for this purpose, we shall
use the function y(xg,y). Define fy by setting fo = f. Let € be a small
positive number such that for [t — /| < e we have p(g;(u), gvr(u)) < 9,
u € R. Assume that the mapping f; is defined for all values of ¢ satisfying
0 <t < ne <1, where n is a non-negative integer. Define f; for ¢, satisfying
ne <t < (n+ 1)g, by setting

fi(w) = (fne(u), g (w)). (14)
It follows from (12) and (13) that the mapping f; defined in this way
gives a continuous deformation and satisfies the condition g; = @ f;.
Thus, Lemma 1 is proved.

Torsion group of Euclidean space

C) Let E™ be the Euclidean vector space and let S"~! be the sphere in
this space defined by (z,x) = 1; let H,, be the rotation group of E™ and let
a be a fixed point from S™~!. It turns out that H,, is a smooth manifold
n(n —1)

2
point x(h) = h(a), we get a smooth, everywhere proper mapping x from
the manifold H,, to the manifold S™ 1.

Let us prove Statement «C». Let eq, ..., e, be some orthonormal basis
of the space E™. If h € H,, then

h(ej) = Zh”ez (15)

of dimension ; moreover, if we associate with each element h the

Thus, to each rotation h of the space E™ there corresponds some orthogonal
matrix ||h;;|| with positive determinant: h — ||h;;||; conversely, to each or-
thogonal matrix ||h;;|| with positive determinant there corresponds, by (14),
a certain rotation of E”. The correspondence h — ||h;;]| identifies the group
H,, with the group of all orthogonal matrices of order n having positive de-
terminant. It is well known that the orthogonality conditions for a matrix
look like

Ej = 5ij7 where Ej = Zhiahja- (16)

(07

Let us show that in a neighbourhood of the identity matrix ||d;;] we can
take the numbers H;j,7 > j for local coordinates of the matrix h € H,.
To do it, it is sufficient to show that for the initial values h;; = d;; the
system (16) is solvable in h;;, where ¢ < j. Note that since F;; = F};, we
may consider only those Fj; for ¢ < j; thus the number of equation equals
the number of variables. We have

OF;;
Wkl = Z(5ik5alhja + hiaajk5al);
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for h;; = 0;; this gives g%:z = 0;0;; + 0;x0;. If at least one of the inequal-

ities ¢ < 7, k < [ is strict then the equalities j = k, ¢« = [ are impossible,
thus the second summand equals zero. Thus, the functional matrix of the
system Fj;, ¢ < j in the variables hy, £ < [, is a diagonal matrix with
all ones and twos on the diagonal. Thus, the system (2) is solvable. Let
U be a neighbourhood of the identity matrix where this resolvability takes
place, and where we can take h;;, 7 > j to be the coordinates. Let hg € Hy;
then Uhy is a neighbourhood of the matrix A, and we define the coordinates
of the element hhg € Uhg in the neighbourhood Uhg as the coordinates of
the element A in the neighbourhood U. Let Uhy and Uh;y be two disjoint
neighbourhoods. It is easy to see that the coordinate transformation from
those coordinates in Uhg to the coordinates in Uhy, is smooth. Thus, H,,
is a smooth manifold.

Since H,, is a group, which can map the point a to any arbitrary point
of the sphere, then y(h,) = S™1; thus, it is sufficient to prove that the
mapping x is proper in one point of the manifold H,, e.g., in ||d;||. For a =
e1, with the matrix ||h;;]|, we associate (according to x), the point of the
sphere S"~! with coordinates h;, i = 1,...,n. Because hoi,hsi,...,hn1
are the coordinates of the element h;; in U, and the coordinates of the
point x(h) € S"~! can be defined as hai,...,h,1, then the properness of
the mapping x in ||d;;| is evident.

Thus, Statement «C» is proved.

Theorem 17. Let H, be the rotation group of the Fuclidean vector
space E™, n > 3. It turns out that H,, is a closed manifold and there exist
precisely two homotopy classes of mappings from S to H,, one of which
consists of all null-homotopic mappings, the other one consisting of all map-
pings not homotopic to zero. The latter ones can be described as follows.
Let E? be an arbitrary two-dimensional subspace of the vector space E™ and
let E™"~2 be its orthogonal complement. It is natural to consider the group
Hy of rotations of the Euclidean plane E? (this group is homeomorphic to
the circle) as a subgroup of the group H, if we extend any rotation of the
plane to the whole space E™, assuming this rotation to be the identity on
En=2. It turns out that the mapping g from the circle S* to the circle Ha
is null-homotopic in Hy, if and only if the mapping degree of g is even.
It turns out that each mapping h from the circle S' to the manifold H,
can be continuously transformed to a mapping g from S' to Hy in such a
way that during the whole deformation the images of all points x, for which

h(z) € Hy remain fized.

PROOF. Let S™~! be the unit sphere of the space E, a € S™1, and let
X be a mapping from the manifold H,, to the sphere S"~! constructed in
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«C». Tt is clear that the set x~!(a) is a subgroup H,,_1 of H,, representing
all rotations of the space E"~! orthogonal to the vector a.

Let fo be a smooth mapping from a compact manifold M", r < n — 2,
to H,. Let us show that there is a deformation f;,0 <t < 1 of the map-
ping fo which fixes all points of the manifold M"™ mapped to H,_1, and
maps the whole manifold M" to H,—1: f1(M") C C H,_;. By virtue of
Theorem 1, the set xfo(M") is nowhere dense in S"~!; thus, there exists
a smooth deformation g; of the mapping gy = xfo for which each point
of M", mapped to a, remains fixed, and the mapping g; takes the whole
manifold M" to a. Then the deformation f; covering the deformation g; is
just what we wanted (see Lemma 1).

Applying the above consideration to the case M” = S!, we see that
any mapping S' — H, is homotopic to some mapping of the circle to
H,_1. If n — 1 > 3, then, repeating the same argument, we see that any
mapping of the circle S to H,, is homotopic to some mapping of the circle
to H,_o, where H,_» is the rotation group of some subspace E" 2 of the
space E"~!. Arguing as above, we conclude that each mapping from S* to
H,, is homotopic to some mapping of the circle to Hy C H,.

Let us show that if a mapping ¢ : S' — Hs is null-homotopic in H,,
then it is null-homotopic in Hs as well, where Hy C Hy C H,,. Let K? be
a certain disc bounded by the circle S'. Since the mapping g of the circle
S! is null-homotopic in Hy then it can be extended to a mapping g of the
whole disc K? to H,,. Applying this argument to the case M" = K?2, we see
that the mapping g : S — H, is null-homotopic in Hz. To conclude the
proof, it remains to show that the mapping g : S* — H> is null-homotopic
in Hj if and only if the degree o of the mapping ¢ is even.

To prove this fact, let us use a homomorphism v of the group G to the
group Hs (see «B»). The mapping v is smooth, it is everywhere proper
and maps precisely two points from G to any preassigned point from Hs.
Furthermore, note that ¥! = v=1(Hz) is a circle, which is taken by v to
the circle Hy with mapping degree two [see (7)].

Assume that o = 2p, and let v be a mapping of S* to X! of degree o.
Then the mapping vv of the circle S' to the circle Hy has degree 20 = o,
thus being homotopic to the mapping g. Since the mapping v is null-
homotopic in the sphere G, then vv is null-homotopic in H3. Thus, the
mapping g is null-homotopic in Hs as well.

Now assume that g : S' — Hy is null-homotopic in H3, so that there
exists such a continuous deformation g;, 0 < t < 1, of mappings S' — Hj
that g1 = g and the image go(S!) consists of precisely one point from
Hj. Let p be a point from G such that v(p) = go(S'), and let fo be the
mapping taking all of S* to the point p; then vfy = go, and, according to
Lemma 1, there exists a covering deformation f; for the deformation g;.
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Thus, vf; = g1, and, respectively, f; is a mapping from the circle S! to
the circle ¥ since vf; = g1, the degree of f; should be even (because the
degree of v equals two).

The connectedness of the manifold H,, is proved straightforwardly. It
follows from the fact that there exists precisely one class of null-homotopic
mappings from S* to H,.

Thus, Theorem 17 is proved.

D) With each mapping h from M! to the group H,, of rotations of the
n-space, n > 2, we associate the residue class $(h) modulo 2. For n > 3 for
one-component M!, the residue class 8(h) is assumed to be zero when h
is null-homotopic in H,,, and equal to one, otherwise. For multicomponent
M* we define 3(h) to be the sum of residue classes 3(h) over all connected
components. For n = 2, define the residue class 5(h) as the degree of the
mapping from M' to Hj taken modulo two. Having two mappings, f and
g of St to the group H,, define their group product h = fg by setting

h(z) = f(z)g(z), we S,

where on the right-hand side we have the group product of the elements
f(z) and g(«) from the group H,. It turns out that

B(h) = B(f) + B(g)- (17)

Let us prove (17). Let T? = S* x S be the direct product of two copies
of the circle S', i.e. the set of all pairs x,y, where z € S', y € S'. Define
the mapping ¢ of the torus T to H,, by setting

oz, y) = f(x)g(y).

Now, let a be a fixed point of S'. Without loss of generality, we may assume
that f(a) = g(a) = e € H,,. Let us define the three mappings f’, ¢’,h’ from
St to the torus T2 by setting

fl(x) = (xva)a gl(x) = (a,x), hl(x) = (xv'r)

It is evident that

of =f eg =g, oh/=h.
It is well known (and it can be easily checked) that the mapping A’ from
the circle S* to the torus T2 is homotopic to the mapping A from S* to the
lemniscate S' x aUa x S, that maps S' with degree one both for S' x a
and for a x St. T hus, the mappings ph’ and <ph are homotopic. Besides,

for the mapping goh it can be checked straightforwardly that ﬁ(goh) =
B(ph') 4+ B(pg’). Thus, formula (17) is proved.
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§ 2. Classification of mappings of the three-sphere to
the two-sphere

In this section, we give a homotopy classification of mappings from X3
to S?; namely, we prove that the Hopf invariant v (see §2, Chapter 3) is
the only homotopy invariant and it can take any integer value. We use the
Hopf mapping w from X2 to S? as an important tool for this classification.
This mapping can be well described in terms of quaternions. Let K be
the skew field of quaternions and let G be the set of all quaternions with
absolute value equal to one, and let J be the set of all purely imaginary
quaternions (see §1, «A»). We consider the group G as the sphere ¥3
and the intersection G' N J as the sphere S2. With each element g € G
we associate the element w(g) by setting w(g) = gig~', where i is the
quaternionic unit. It turns out that the mapping w defined in this way
is everywhere proper and has Hopf invariant equal to one. We shall use
these two properties of the mapping w for the classification of mappings
¥3 — S2. To perform this classification, we shall also use the fact that any
mapping from S™, n > 2, to the circle S', is null-homotopic. The proof of
this elementary theorem is also given here.

Sphere-to-circle mappings
Theorem 18. FEvery mapping S™ — S' for n > 2 is null-homotopic.

PrROOF. Let p and ¢ be the north pole and the south pole of the
sphere S™ and let S"~! be the equator of this sphere, i.e. its section by the
hyperplane perpendicular to the segment pg and passing through its middle
point. For any point x € S"~! there exists a unique meridian pzq of the
sphere S™ passing through the point x, i.e. a great half-circle of the sphere
S™ connecting the poles p and ¢ and passing through x. Let us introduce
the angle coordinate o on pzq; we count the angle from p. Define the point
of pxq with coordinate «, by (x,a). We have (z,0) = p, (z,7) = ¢, and
any point y € S™\(p U q), can be uniquely presented as y = (z,«), where
0<a<m.

Let f be an arbitrary mapping from S™ to S!. Let us introduce an an-
gular coordinate 3 for the circle St taking f(p) to be the base point. The
coordinate 3 of f(x,«) is a number defined up to a multiple of 27. Now,
let us define a continuous function g(z, ) which is equal to f(x,«) when
reduced modulo 27. To do this, set g(x,0) = 0 and for any fixed point
x € S~ we define the function g(x, ) to be continuous with respect to «,
0 < a < 7. It is evident that the function g(z, @) constructed in this way
is a continuous function of variables z, a. Let us show that g(z,7) is a con-
stant. Let zo and 21 be two arbitrary points from 5™~ ! and let 2; be a point
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S! depending continuously on the parameter t, 0 < t < 1. The numerical
function g(x¢,7) of the parameter ¢ is continuous and, being reduced mod-
ulo 27 it does not depend on t, because f(xt,7) = f(q); thus the function
g(x¢,m) does not depend on ¢ either. Thus, g(x¢, 7) is a constant. Reducing
the function (1 —t)g(z, &) modulo 27, we get the angular function f;(z, «)
in two variables, z and «, satisfying the conditions fyo(z,a) = f(z,a),
fi(xz,a) = 0. The function fi(z,«) defines a deformation of the mapping
f = fo to the mapping f1; the latter maps the whole sphere S™ to a point.
Thus, Theorem 18 is proved.

Hopf mapping of the 3-sphere to the 2-sphere

A) In the Euclidean space E® with coordinates y!, 3%,y and origin O,
for a given integer r, let us construct a framed manifold (S*, Viry), where
St is a circle parametrically defined by

y' =cosz, y?=sinz, y*=0, (1)

and v(S*, V(,y) =7 (see §2, Chapter 3, «B»). Define the normal subspace
N2 at the point x of the circle S! by the parametric equation

y' =1+t Ycosw, y?=(1+t)sine, y* =13 (2)

where t!,t? are the Cartesian coordinates in the plane N2 with origin z.
Denote the basis vectors in this coordinate system in N2 by u(x) and
us(x): uy(z) = {1,0}, uz(x) = {0,1}. Define the vectors vy (z) and vs(z)
of the framing V() by the relations

v1(x) = ui(x) cosre + uz(z)sinre,

3)

va(x) = —uy(x) sinre + ug(z) cosre.

To calculate v(S?, Vir)), let us use Statement «E» §2, Chapter 3. We
have

uz(x) = vi(x) sinra + ve(x) cos ra,

which yields that the degree of the mapping 1 from S! to &' is equal to 7.
Thus, for an appropriate orientation of the space E?, we get v(S?, Viry) =
+7.

Lemma 1. There exists a smooth mapping w from 3 to S2, which is
proper in all points, such that the preimage w=1(y) of each point y € S? is
homeomorphic to the circle, and v(w) = +1.

PROOF. Let K be the skew field of quaternions, and let G be the group
of all quaternions with unit absolute value; let J be the set of all purely



§2. CLASSIFICATION OF MAPPINGS Y% — §2 101

imaginary quaternions (see § 1, «A»). Let ¥? = G, S? = JNG; define w by
setting w(g) = 1,(i) = gig™! (see § 1, «B»). Since for each element y € S?
there is such an element g € G that ,(i) = y, then the preimages of all
points of the sphere S? under w are homeomorphic, and since the preimage
of the point ¢ is homeomorphic to the circle (see §1 «B»), then each of
them is homeomorphic to the circle.

The mapping w is proper because w = xv (see §1 «B» «C») and each
of the mappings x, v is proper at every point.

Now, let us construct the framed manifold (S, V) corresponding (see
Definition 5) to the mapping w. To do this, we take the north pole p’
of the sphere ¥ = G to be the quaternion k& and define the mapping ¢
as the projection of G\k from k to the space E3, the latter consisting of
quaternions of the type y' + iy? + jy3. Though this plane is not tangent
to the sphere G at k, it is parallel to the latter; thus, such a replacement
results in a homothetic transformation of the framed manifold, which does
not change its homology class. For the pole p of the sphere S? we take the
quaternion i; then w=!(p) = S, whence p(S1) = S! (see §1 «B»). Here
S consists of all quaternions of the type cosx + isinz.

Let I be the subspace of the vector space K with basis j, k. Denote
by P2 the tangent space to the sphere G at the point cosz + isinz €
5!, and denote by R? the tangent space to the sphere S? at the point i.
Associating with £ € I the point ¢,(§) = cosz + isinz + £, we get an
isometric mapping ¢, from the plane I to the plane @, the latter contained
in P2. Analogously, associating with ¢ € I the point 7(£) = i + &i, we get
an isometric mapping of the plane I to the plane R?. The mapping w from
G to S? then corresponds to the linear mapping w, of the tangent space P3
to the tangent space R? (see §1, Chapter 1, «E») and, in particular, the
mapping w, from @, to R2. In the sequel, we consider the mapping w, only
restricted to Q. and, for the study of this map, we set @, = r~'w,q,. Thus,
W, is a linear mapping from the vector space I to itself. Let us calculate
the mapping w,. Let

g=1+2% +a2'k+¢
be the element of the group G, close to the identity, where € is a quaternion,
which is second order small with respect to \/(z3)? + (2%)2. From the
formula (6) §1 we see that, up to second-order terms, we have

w(g) =i+ 2(zj + 2'k) - 4. (4)
Now, let
h = cosx +isinz + 23§ + 2%k

= [1+ () + 2k)(cos x — isinz)](cos x + isinz)
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be an element of the group G which is close to cosz + isinz; we omit
the second order terms. Since the element cosx + i sin x commutes with 4,
from (4), omitting second-order terms, we get

w(h) =i+ 2(z%j + 2*k)(cosx — isinx)i. (5)

From this we get
Wz (&) = 2&(cosx —isinx). (6)

Thus, if we write the quaternions £ in the polar coordinates g, 3, i.e. if we
set

§ = jo(cos f —isinf3),

we see that @, is an z-rotation of the plane I together with a homothety
of coefficient two.

The normal space N2 at cosz —isinx to the circle S! in the space E? is
described parametrically by (2). As in Statement «A», set uq(z) = {1,0},
us(x) = {0,1}. To the mapping ¢, there corresponds a mapping ¢, of
the tangent space P2 to the sphere G at z to the linear space E? (see § 1,
Chapter 1, «<E»). It can be readily seen that

Spwqw(]) = U‘?(‘T)v S%Qm(k) = ul(x) (7)

According to Definition 5, in order to construct the framing V =
{vi(z),v2(x)} corresponding to w, we have to choose in R? two vec-
tors e; and eg; for the linear mapping (wp~1), from N2 to R? we have
to find vectors vi(z) and wva(x) in N2 such that e; = (wp™1)v1(),
ea = (w1 va(x). In order to choose the vectors e; and ep and calculate
the vector vy (z) and va(x), note that

(W™t = powy ' = Qoteay 'wy T = (Qoge)y (8)

Thus, taking e; = r (g) es=r (%) we get, according to (6)-(8),

v (2) = (prgz); (%) = @2z (k(cosx + isinx))
= @z (kcosz + jsinz) = up(x) cosz + ua(z) sinz,
2 () = (Pule)0y " (%) = @24 (j(cosz + isinz))
= pupqe(—ksinz + jcosz) = —ui(x) sinz + usz(z) cos z.

Thus, by virtue of «A», we get v(S*, V) = 1, which yields v(w) = 1.
Thus, Lemma 1 is proved.
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Classification of mappings S3 — S?

Lemma 2. Let 7,(S") be the set of all homotopy classes of mappings
from S™ to S, n = 3, r = 2,3, and let w be the mapping from L3 to
S2, constructed in Lemma 1. Obuviously, if fo and f1 are two homotopic
mappings from S™ to X3 then the mappings wfy and wfi from S™ to S?
are also homotopic. Thus, for a € m,(X3), the set wa belongs to the same
class &(a) € m,(S?). It turns out that & is a mapping of the set 7, (33) to
the whole set 7,(S?) and that the pre-image of the zero element of 7,(S?)
under w consists only of the zero element of the set m,(3%).

It follows from the definition of the sum operation in ,(S™) (which is
not given in the present work) that @ is a homomorphism from the group
mn(X3) to the group m,(S?). Thus, from Lemma 2 it follows that w is an
isomorphism of the group ,(3?) to the group m,(S?). However, we shall
not use this result.

PRrROOF. First, let us show that the only element which is mapped to
the zero element of the set m,(S5?) is the zero element of the set m, (23).
Let f be a mapping from S™ to the sphere ¥3 such that wf is a null-
homotopic mapping from the sphere S™ to the sphere S2. Then there
exists a continuous family of mappings g;, 0 < ¢t < 1 from S™ to S? such
that go = wf, and g1 is a mapping of the sphere S™ to a fixed point ¢ of
the sphere S2. By virtue of Lemma 1, there exists a continuous family f; of
mappings from S™ to ¥ such that fo = f and wf; = g; (see Lemma 1 §1).
Since ¢1(S™) = ¢ then f1(S™) C w™!(c), and, by virtue of Lemma 1, the
set w™!(c) is homeomorphic to the circle. Thus, the mapping f; is null-
homotopic by Theorem 18; consequently, so is fo.

Let us show now that for any element 3 € ,(S?) there exists such
an element o € 7,(¥?) that @(a) = 3. We shall think of S™ as a sphere
of unit radius centred at the origin of coordinates of the Euclidean space
E™t! with some fixed coordinate system z!,...,2"T!. Denote the set of
all points of S™ satisfying the condition z"*' < 0, by E_, and denote
the set of all points of S™ satisfying z"*! > 0 by E,; finally, denote the
set of points of S™ satisfying 2"t! = 0 by S"~!. We take the point p =
(0,0,...,0,1) to be the north pole of the sphere S™, and the south pole to
be the point ¢ = (0,0,...,0,—1). It is evident that there exists a mapping
of S™ onto itself homotopic to the identity, which takes the half-sphere F_
to the point g. This yields that in the mapping class 3, one may choose
such a mapping g taking the half-sphere E_ to one point ¢ € S2. Let P2 be
the half-plane of the space E™*!, bounded by the line passing through
p,q, and containing the point z € S"~!. Denote the intersection of the
half-plane P? of the sphere S™ and the hyperplane 2”1 =1 —t by (z,1).
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Thus, to each pair (z,t), # € S"~1, there corresponds a point (x,t) € Ey,
and each point y € E; can be written in the form y = (z,t); this pair
is unique for y # p, at p = (z,0), where x is an arbitrary point of the
sphere S"71. Set g;(x) = g(z,t). Thus, we have defined the family g,
0 < t < 1 of mappings from S"~! to the sphere S2, here g;(S"™ 1) = ¢,
and go(S"~!) = g(p) = b. Let a be an arbitrary point of the circle w=*(b)
and let f be a mapping from S"~! to X3, taking the whole sphere to one
point a. By virtue of Lemma 1 § 1, there exists a deformation f;, 0 <t <1
of mappings S"! — ¥3 such that fo = f, and wf; = g;. Now, set
f(x,t) = fi(x). This defines the mapping f from the half-sphere E that
takes S™~! to the circle w™!(c). Since the mapping of the sphere S"~! is
zero-homotopic in the circle w=!(c) (see Theorem 18), the mapping f from
the half-sphere E can be deformed to a mapping f of the whole sphere
S™ such that f(E_) C w™!(c). Such a mapping f satisfies wf = g.
Thus, Lemma 2 is proved.

Theorem 19. The homomorphism v of the group I} to the group
of integers is epimorphic (see §2, Chapter 3, «C»). From this we have
that two mappings fo and f1 from 3 to S? are homotopic if and only if
v(fo) = v(f1), and, furthermore, for any integer ¢ there exists a mapping
f from X3 to the sphere S? such that v(f) = c.

PROOF. First of all show that the kernel of the homomorphism ~ con-
tains only the zero element of the group II3. It is sufficient to show that
the mapping g : ¥* — S?, satisfying v(g) = 0, is null-homotopic. By virtue
of Lemma, 2, there exists such a mapping f of the sphere 32 to itself such
that the mapping wf is homotopic to g, and, consequently, v(wf) = 0. By
virtue of Statement «D» §2, Chapter 3, the degree o of mapping f of the
sphere Y32 to itself is defined as y(wf) = 12 - o, so that ¢ = 0. Thus (see
Theorem 12), the mapping f of ¥? to itself is null-homotopic, thus, so are
wf and g.

Let us show that for any integer o there exists a mapping g from X3 to
S? such that v(g) = o, i.e. that v is an epimorphism. Indeed, let f be a
mapping of X3 to itself having degree o. Then for the mapping g = wf, we
have, according to «D» §2, Chapter 3, y(wf) =0 -1=o0.

Thus, Theorem 19 is proved.

B) Comparing Statement «A» and Theorem 19, we see that each one-
dimensional framed manifold of the three-dimensional Euclidean space is
homologous to the framed manifold (S*, V(r)) constructed in «A», for some
r.
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§ 3. Classification of mappings from (n 4+ 1)-sphere to
n-sphere

In this section we prove that for n > 3 there exist precisely two ho-
motopy classes of mappings from X"*! to S™. The proof is based on a
homological invariant §(M*, U) of framed manifolds in E"*%, n > 2, which
is a mod 2 residue class and can take both values, 0 and 1. Thus, even
from the existence of 4, it follows that there exist at least two mapping
classes of ¥"t! — S™ for n > 2. The invariant ¢ is described as fol-

lows. Let U(z) = {ui(x),...,un(x)} be an orthonormal framing of M?
and let u,1(z) be the unit vector tangent to M* at some point z € M*.
The system U’ (z) = {u1(x),...,unt1(x)} can be obtained from some fixed

orthonormal basis of the space E"™! by the rotation h(z). Thus we get a
continuous mapping h from the manifold M?! to the manifold H,,; of all
rotations of the space E™"T!. In the case of one-component curve M?', the
invariant ¢ is defined to be zero if the mapping h is not zero-homotopic,
and equal to one, otherwise. In the case of a multicomponent curve, the
invariant § is defined as the mod 2 sum of the values of § on the components.

To prove the invariance of §, we preliminarily prove the general
Lemma 1, where we improve the framed manifold (M**! U) realizing the
homology. The improved manifold (M**+! U) enjoys the property that its
section by the plane E"+¥ x t is a framed manifold (M}, U;) for all values of
the parameter ¢, except for a finite number of critical ones. Since for non-
critical values of the parameter ¢, the framed manifold (MF,U;) depends
continuously on ¢, the invariance of the residue class d should be proved only
when passing of ¢ passes through a critical value. When it passes through
a critical value, the manifold (Mt’“, U,) is reconstructed rather easily, thus,
it is possible to prove the invariance of §.

For a one-dimensional framed submanifold of the 3-space we define the
invariants v and J; it turns out that ¢ is the residue class obtained by
taking the integer v modulo 2. Since every framed one-manifold is ob-
tained by means of suspensions from a one-submanifold of the three-space
(see Theorem 11), then for the classification of mappings ¥"+! — S” for
n > 3 one may use the classification of mappings from the 3-sphere to the
two-sphere. Namely, in this vein we prove that if v(M?!, U) is even then
E(M*',U) ~ 0. Thus, we show that there exist no more than two mapping
classes for ¥t — S™ 0 > 3.

Improving the framed manifold that performs the homology

Lemma 1. Let (MF,Uy) and (M¥F,Uy) be two homologous framed sub-
manifolds of the Buclidean space E"Y*, in such a way that there exists a
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framed submanifold (M*+1 U) of the strip E"T* x I, realizing the homology
(ME,Uo) ~ (MF,Uy). A point (z9,t0) of the manifold M*** is called CRIT-
ICAL (then we call the corresponding value to of the parameter t critical) if
the tangent space TOkJrl to the manifold M**' at the point (xg,to) lies in the
hyperplane E"F xty. It turns out that the framed manifold (M*+1 U) real-
1zing homology between framed manifolds can be chosen in such a way that:

a) there exist only finitely many critical points of the manifold M** with
different critical values of the parameter t (for distinct points)

b) for each critical point (xo,tq) of M**1 one may choose an orthonor-
mal basis ey,...,entr Such that in the corresponding coordinates
x', . 2" with origin at xo the manifold M**' in a neighbourhood

of xg is given by the equations

k+1
t=ty+» o'(x'), o' =+1; 2= =2 =0, (1)
i=1

and the framing U = {uy(z,t),...,u,(x,t)} in a neighbourhood of the
point (xg,tg) s given by

k . .
u(x,t) =0 (e - 2201$16i> , o==+1;

1=1

(2)

U2(fl;,t) = €k+2, - .- ,un($7t) = €n+tk;

where e is the unit vector of the strip E"* x I directed along the t-azis.

PROOF. Let (N}, V) be some framed manifold realizing the homol-
ogy (M}, Up)~(M},Uy). To each point y=(z,t) of the manifold NF™' we
associate the number f(y)=f(z,t)=t. By virtue of Theorem 5 there exists
such a real-valued function ¢(y) defined on the manifold N**!  coinciding
with  f(y) near the boundary of N(]f“, and being first-order close (with
respect to €) to the function f, with all critical points non-degenerate and
all critical values distinct. Now, we associate with each point y = (z,t) of
the manifold N} the point ¢4(y) = (z,t + s(g(y) — f(y))), where s is a
fixed number, 0 < s < 1. For € small enough, the mapping ¢ is regular and
homeomorphic (see Theorem 3). Thus, ¢, is a deformation of the smooth
submanifold N¥™ to the submanifold N = o) (NFT).

It turns out that the critical points of the function g(y) coincide with
the critical points of the manifold [V f"’l. Thus, the condition «a» holds for
the manifold M*+1 = NFFL,

Now, let us make a further improvement of the manifold leH in order
to make the condition «b» hold.
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Let yo = (x0,t0) be an arbitrary critical point of the manifold leH
and let TOkJrl be the tangent space to the manifold Nf“ at the point yp.
The plane Tp+ lies in E™TF x to; thus To Tt = ThH1 x t; THHT ¢ Btk
In the space E™t* let us choose a basis e1,..., e,k in such a way that
the vectors eg,...,exr1 lie in T*+1. In a neighbourhood of (zo,ty), the
manifold NF is described in these coordinates as

t=to+ (... 2" F ot ... 2R, (3)
xk+j:z/1j(;v1,...7xk+l), i=2,...,n, (4)
where ¢ is a non-degenerate quadatic form in the variables z!, ..., zF*1;

here 4 is third-order small with respect to & = /(21)2 + ... + (2F+1)2, and
17 is second-order small with respect to £&. Choosing the axes in the plane
Tk+1 in a proper way, we can transform ¢ to the form

k+1

p= N (5)
i=1

where ' are non-zero real numbers. Let us improve the manifold N in
a neighbourhood of the point (zg,t). Let x(n) be a smooth real-valued
monotonic function in the variable n > 0, satisfying the conditions

x(n) =0 for ogngé; x(n)=1 for n>1.

Set

wes) = () + -9

where « is a small positive number. Define the manifold ijfsl by

k+1
t=to+ Z:)\Z(,TZ)Q+X(§,S)1/J(£L‘l,...,$k+l),

1=1
P = (&It ), =2 n,

for £ < a, |t —to] < a; we shall assume that lejfsl = NF™ in the remaining
points. It is evident that the submanifold lejr:l realizes a smooth deforma-

tion of the submanifold N to the submanifold N3, so that the latter
one for |t — to| < a is defined by

k+1

t_t0+ZAi(af')2+x<§> Yt ... 2k, (6)
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xk+j—x<§> Pt M), =2, n. (7)

It is evident that in a small neighbourhood of the point (xg,tq), more
precisely, for £ < %, the manifold Nf“ is given by the equations

k+1
t:to—l—Z/\i(:z:i)Q; =0, j=2,...,n. (8)
i=1

Let us show that the manifold N5 has no critical points distinct from
those of the manifold N{H’l. For that, it is sufficient to study those points
of Ny*™1 defined by (6), (7) and satisfying &€ < a, and to show that among
them the only critical point is £ = 0.
We have
dt_ N (@l + ),
dz’

where

, €>
X (_ i 1 k+1
. a 1/)(:1:1,.--,Ik+1)+x<§) 0Y(x 75.;790 ).
X

Thus,
4 C
[9°] < 5153 + c26?.
It is clear that for o small enough, we have

1

9 < —— <a.
vil< e e<a
Now,ifforﬁgawehave%zO,izl,...J;—i—l,then
X
zt = -9t (9)

Thus, by summing the squares of the equalities (9), we get £2 = Y97 <

k+1 .o 2 1 2 . . .

, so that £ < ——&°, which is possible only for £ = 0.
Er1e St p y for &

Let us now perform further corrections of NQkJrl in such a way that its
equations in the neighbourhood of the critical point (zg,%o) look like (1).

Let us write the numbers \* as A" = %, where a; is a positive number and
T

ot = 1. Let o be such a small positive number that for |z¢| < o/, [t—to| <
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o the manifold N5 is defined by (8). Let us now define the smooth
function s, (n) > 0 of n, |n| < o' depending on the positive parameter a

!
and satisfying »,(n) > 0; s,(n) = an for |n| < B; »4(n) = n for |n| > %.
Here ( is a small positive number such that the function s¢,(n), satisfying

the conditions above, exists. Now, define the manifold Nijfsl for |7'| < «

as
k+1

t=to+ > A [(1—s)a’ + 55, (27))%;
g (10)
ij"’_j:o7 j:27...,n,

elsewhere this manifold coincides with N¥*1. It can be easily checked that
Né“j:sl realizes a smooth deformation of Ny ™' to N5 and that the critical
points of NS coincide with those of NS Here the equations of the
manifold N near the point (z¢,t) look like (1).

Performing such a surgery near each critical point of V. f‘H, we construct
the manifold M**+1, and, since it is obtained from Né“'“ as a result of several
smooth deformations then there exists a framing V of M**! such that the
framed manifold (M**1, V) realizes the homology (M§,Us) ~ (MF,Uy).
Taking an appropriate value of ¢ = +1 in (2), we can make the framings
U and V define the same orientation of M**+1; thus near the critical point
(20, t0), one can deform the framing V' in order to get the framing U (see § 3,
Chapter 3, «D»). Performing such an improvement of the framing near each
critical point of M**1, we get the desired framing U.

Thus, Lemma 1 is proved.

Invariant § of mappings X**t! — S»

Theorem 20. Let (M*,U) be a one-dimensional framed submanifold of
the oriented Euclidean space E"™' n > 2, U(z) = {ui(z),...,un(z)}. At
each point x € M1, let us draw the unit vector u,1(x) tangent to the curve
M? and directed in such a way that the vectors ui(z),...,un(2), Uni1(x)
determine the positive orientation of E"*. Furthermore, let ey, ..., eny1 be

some orthonormal basis of the space E™t! defining its positive orientation.
Then

n+1
ui() =Y hij(x)e;, i=1,....n+1, (11)
j=1
where h(z) = ||hij(x)| is an orthogonal matriz with positive determinant

depending continuously on x € M. Thus, h is a continuous mapping of
the curve M* to the manifold H, 1 of all rotations of the Euclidean space
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Entl Set

S(M,U) = B(h) +r(M") (mod 2),
where r(M?) is the number of components of M*', and the residue class
B(h) is defined as in Statement «D» §1. It turns out that the residue class
S(M',U) is a homology class invariant of the framed manifold (M*,U),

so that if the mapping f from "1 to S™ is associated with the framed
manifold (M*,U), then, by setting

3(f) =6(M",U),

we get an invariant 5(f) of the homotopy class of f. The residue class
§(M*',U) does not depend on the orientation of E"*' and on the arbitrari-
ness in the choice of the basis ey, ..., epq1.

PROOF. First, let us prove the invariance of §(M?!,U) under the change
of e1,...,enq1. Let €],... e, be some orthonormal basis defining the
positive orientation of E™! obtained from the initial one; then

n+1
/ .
ejzg ajrey, J=1,...,n+1,
k=1

where a = ||| is an orthogonal matrix with positive determinant. In
the basis €], ..., €}, 1, the matrix corresponding to the manifold (M*,U) is
not h(z), but A'(x) = h(z) - a. Since the manifold H, 4 is connected then
there exists a matrix a; € H, 41 depending continuously on the parameter
t, 0 <t < 1 such that a; = a, and qg is the identity matrix. The mapping
h¢ = ha; performs a continuous deformation of h to the mapping '/, so
that these mappings are homotopic, thus §(M*!, U) does not depend on the
choice of e1,...,€ep41.

Let us now prove the independence of §(M*',U) on the orientation of
E™1. To change the orientation of E™ "1 let us replace the vector u,1(x)
with the vector —u,11(x); in the basis ey,...,e,41 we can perform the
orientation change by replacing the vector e,;; with the vector —e, 4.
Thus, instead of h(z) we get the matrix h’(x), which is obtained from h(x)
by multiplying both the last row and the last column by —1. Associate
with each matrix [ € H,, 11 the matrix I’ obtained from ! by multiplying the
last row and the last column of it by —1. If we take the plane E? to be the
plane with basis e1, €5, then we see that the mapping [ — [’ takes the curve,
Hy from Theorem 17, which is not zero-homotopic in H,, 41, identically to
itself. Thus, the orientation change of the space E"*! does not change the
residue class §(M*,U).

Finally, let us prove the main property of §(M*',U), i.e. its invariance
under the choice of the framed manifold (M, U) from the given homology
class.



§3. CLASSIFICATION OF MAPPINGS FROM (n + 1)-SPHERE TO n-SPHERE 111

Let (M3,Uy) and (M{,U;) be two framed submanifolds of the space
E™*! and let (M?2,U) be a framed submanifold of the strip E"*! x I real-
ising the homology (M{,Uy) ~ (Mi,Uy) and chosen in such a way that the
conditions «a» and «b» of Lemma 1 hold. The intersection M2?N(E™! x t)
lies in E™*! x t; thus, it looks like M} x t, where M} C E"T1. Tt is
easy to see that if the point (z,t) is not a critical point of the surface
M? (see Lemma 1) then the set M} represents a smooth curve in the
neighbourhood of the point x; thus when t is not a critical value of the
parameter, M} is a smooth submanifold of the space E"™!. Let us con-
struct the framing V; of the manifold M}. Let (x,t) be a non-critical point
of M?; let V(x,t) x t be the orthogonal projection of the vector system
U(z,t) to the hyperplane E"*! x t and let Vi(z) be the system obtained
from V(z,t) by using the orthogonalization process (see §3, Chapter 2,
«G»). Since all vectors of the system U(xz,t) are orthogonal to M? at
the point (x,t), all vectors of the system V(z,t) are orthogonal to M} at
2. Since the point (x,t) is not critical, we see that the vectors of the
system V(z,t) are linearly independent. Thus, the system V;(x) gives
a framing of the manifold M} for any non-critical value of t. To the
framed manifold (M}, V;), there corresponds a mapping h; of the curve
M} to H,.1. From the continuity argument it follows that when the pa-
rameter ¢ changes continuously without passing through critical values, the
residue class §( M}, V;) remain unchanged. Let us prove that it remains un-
changed while passing through a critical value ty of the parameter ¢t. From
that, by virtue of the relation V = Uy, V4 = U;, we shall get the invariance
of §(M*,U).

Let (x0,tp) be the unique critical point of the manifold M?, where the
parameter ¢ has critical value ¢t = tg. Near the point (x¢, o), the manifold
M? is defined by the equations

t=to+ot(z')? +02(2?)?, ol =41, 02 =+1,
= =z2"" =0

[see (1)]. From this we have that for ¢ close to tg, the equations of the
manifold M} near zq look like

@)+ 2@ =t —ty, 2*=...=2"" =0. (12)

Furthermore, it follows from (2) that the system V;(x) for |t — to| small
enough and for z close to z¢ is defined by the formulae

(vp)i(x) =0 (01%161 + 0’2%262>;

(v);(x) =ejq1, j=2,...,m,

(13)
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where £ = \/(21)2 + ... + (22)2. To find §(M},V;) we take the plane E?
(see Theorem 17) to be the plane with the basis ej, ea. Now, let us consider

the following cases: 1) ! = 02 and 2) 0! = —02.

In the first case, we may assume o' = o2 = —1. According
to this assumption, the manifold M} for ¢+ < tg contains a compo-
nent defined by (12) and representing the usual metric circle of small
radius. Denote this component by S'. It can be readily seen that
the mapping h; takes the circle S’ to the circle Hy with degree one.
For ¢t > ¢y the component defined by the equations (12) becomes
imaginary, i.e. it disappears, since all other components of the curve
M} together with their framings are changed continuously. Thus, in
the first case as the parameter t passes through the value ty, the
residue class ((ht) is changed by one as well as the number of com-
ponents of the manifold M}; thus, the residue class §(M},V;) does not
change.

In the second case the set M} near the point zg is given by (z')? —
(22)? =0, i.e. it is a cross Ky,, which is a union of two intervals intersecting
at a point. From this we see that the component L., of the set Mtlo,
containing the cross Ky, is homeomorphic to the lemniscate. Since the
surface M? is orientable, the neighbourhood of the lemniscate L;, in M? is
homeomorphic to a 2-connected plane domain; thus, the part L; of the set
M} located near the lemniscate Ly,, consists of two components S; and Sé
for those values of ¢, lying on one side from ¢y, and of one component of S
for those values of ¢ lying on the other side of t5. We shall assume that L
consists of two components for ¢t < ¢y and of one component for ¢ > tq. If
we denote the residue classes 3(h;) corresponding to the components S}, S3
and S B(ht) by (1, Ba, 3 then for the invariance of §(M*',U) it is sufficient
to show that 6y + (B2 = B + 1(mod 2). Let us prove this fact. Denote the
part of L; lying near the cross Ky, by K. This part is described by the
equation (x')? — (22)? = o1 (t — tg), i.e. it represents the hyperbola. From
the formulae (13) we see that h(K;) C Ha; here we see that for ¢ < ¢y the
set hy(Ky) covers two fourth parts of the circle Hs, and for ¢ > ¢y it covers
the remaining part of H,,. By virtue of Theorem 17, the mapping h; of the
curve L; can be replaced with a homotopic mapping h} in such a way that
h}(L¢) C Hy and the mappings hj and h; coincide for K;. From the above
it follows that the sum of the degrees of h} for S| and S} when ¢ < ¢, differs
from the degree of hj for S with ¢ > to, by one. Thus, 1 + (2 = B +1
(mod 2), and the invariance of §(M1,U) is proved completely.

Thus, Theorem 20 is proved.

Let us mention some properties of §(M*, U), which are easy to check.

A) Let IT} be the group of homology classes of framed one-dimensional
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submanifolds of the Euclidean space E"*1. Since §(M*!,U) is an invariant
of the homology class, we may set 6(7) = 6(M*,U), where (M!,U) is the
framed manifold of the class m € II.,. It can be easily checked that § is
a homomorphism from the group II} to the group of modulo 2 residue
classes. Furthermore, it is clear that if 7 is a suspension over the class 7,
ie. E(MY,U) € Er (see §4), then §(Em) = §(r).

The classification of mappings X"7*+! — §™

Theorem 21. For n > 3, the homomorphism § of the group II}
to the group of residue classes modulo 2 is an epimorphism, since the
group 1} is cyclic of the order two. Thus, there exist precisely two
homotopy classes of mappings from the sphere ¥"t! to the sphere S™
(n > 3). Furthermore, the homomorphism & from the group I} to
the group of residue classes modulo 2 is an epimorphism and, since
the group 113 is mapped isomorphically to the group of integers under
v (see Theorem 19), then the homomorphism 6y~! from the group of
integers to the group of residue classes is just the reduction modulo

2.

PROOF. Let (S',U) be some orthonormally framed submanifold
of the Euclidean space S™*! homeomorphic to the circle, U(x) =
{ui(z),...,un(z)}. To calculate the invariant §(S*, U), denote by w41 (x)
the corresponding unit vector tangent to S* in x (with appropriate direc-

tion), and let e1,...,e,11 be a basis of E"T1. We have
n+1
ui(r) = hij(x)e;, i=1,...,n+1, (14)
j=1
so that h(z) = ||h;;j(x)] is an orthogonal matrix with positive determinant

and h is a continuous mapping from S* to H,,.1. By definition of §(M*,U)
(see Theorem 20), we have

5(SY,U) = pB(h) +1 (mod 2). (15)

Furthermore, let g(x) = ||gi;(x)|| be the orthogonal matrix of order n with
positive determinant, so that g is a continuous mapping from S! to H,.
Set

vi(x) = Zgij(:v)uj(:v); 1=1,...,n,
j=1
and denote by g¢[U] the framing V(z) = {vi(x),...,vp41(z)}. In order

to calculate §(S1, g[U]), set v,41(2) = upi1(z) and denote by ¢'(z) the
matrix of order n+ 1 obtained from the matrix g(x) by adding the elements
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Gin+1(x) and gp41,:(x); here only one of these elements, gnt1,n+1(2), is
non-zero; it is equal to one. Clearly, for n > 2 we have

Bg') = B(g) (16)
(see §1 «D»). Later, we have
n+1
vi(z) = Z gij(x) - hjr(x) ex, i=1,...,n+1
k=1

Thus, by virtue of Statement «D» §1, we have
(S, glU]) = B(g'h) + 1= B(g') + B(h) + 1

=0(S1,U) + B(g)-

From Theorem 11 and Statement «B» §2, it follows straightforwardly
that for any framed manifold (M, W) of the Euclidean space E™*!, the
following homology occurs:

(17)

(M, W) ~ E"2(S", V(1»), (18)

where (5%, V() is the framed submanifold of the 3-space E? constructed
in Statement «A» §2, and E"? is the (n — 2)-fold suspension operation.

We have
Vi) = 90 Vo)) (19)
where .
COSTT sinrz
g(r)(x) = .
—sinrz COSTT
(see §2, «A»). Thus,

It can be easily checked that 5(51,‘/(0)) = 0. Thus, by virtue
of (17), (19) and (20), it follows that

§(S", Vi) =7 (mod 2). (21)

Since y(S', Vi) = 7 (see §2 «A»), it follows from (21) that the homo-
morphism §y~! from the group of integers to the group of residue classes
modulo 2 is the modulo 2 reduction. This completes the proof of the second
part of Theorem 21.

Furthermore, we have

E‘/(r) = gzr) [E‘/(O)]a
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where
COSTX sinrx 0
9(ry(x) = || —sinrz  cosrz 0],
0 0 1

thus B(g(,)) = r(mod 2). Since 7(S*, V(o)) = 0, then we have (S, Vip)) =0
(see Theorem 19); thus E(Sl,V(O)) ~ 0. Consequently, E(S?!, Viry) ~ 0, if
the mapping gZT) from S! to Hj is null-homotopic (see § 3, Chapter 2, «H»);
this is true for even r. So, E(Sy, V(;y) ~0if §(E(S, V(,)))=0. From this and
from (18) we see that for n > 3 the equality §(M*, W) = 0 yields (M, W) ~
0. Because 0(E"2(5',V(1))) = 1, the framed manifold E"~?(S*, V(y)) is
not null-homologous. Thus we have shown that the homomorphism § from
the group II! to the group of residue classes modulo 2 is an epimorphism.
Thus, Theorem 21 is completely proved.

§ 4. Classification of mappings from the (n 4 2)-sphere
to the n-sphere

In this section we show that for n > 2 there exist precisely two homotopy
classes of mappings from ¥ %2 to S™. This proof is based on a homological
invariant §(M?2,U) of framed manifolds (M2 ,U) of the Euclidean space
E™*2 which is a residue class modulo 2, and may take any of the two
values, 0 and 1. Thus, the existence of § yields the existence of at least two
mapping classes "2 — S™. The invariant ¢ is described as follows. Let
U(z) = {u1(x),...,un(x)} be the orthonormal framing of M2, and let C be
a smooth simple closed curve on M?2. Denote the unit normal to C' tangent
to M? at © € C by up41(x) and set V(z) = {u1(z),...,uns1(x)}. For the
one-dimensional framed manifold (C, V') the invariant §(C,V) (see §3) is
well defined. In this case, we denote this invariant by §(C). First assume
that M? is a connected surface; denote its genus by p. Then there exists on
M? asystem Ay, ..., Ap, Bi,..., By of closed simple closed curves such that
the curves A; and B;, i = 1,...,p, have a unique non-tangent intersection
point, and any two other curves do not intersect at all. It turns out that
the residue class

S(M?,U) = 8(Ai)8(B;)

does not depend on the arbitrariness; it is a homological invariant of the
framed manifold (M?,U). In the case of a multicomponent surface, the
invariant J is defined as the sum of its values over the components.
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From Theorems 11 and 16 it follows that the number of mapping classes
for ¥"*2 — S™ does not exceed the number of mappings from ¥4 to S2.
The number of mapping classes from the sphere % to the sphere S?, by
Lemma 2 §2, does not exceed the number of mapping classes of ¥4 — S3;
the latter is equal to two by virtue of Theorem 21. Thus, we see that the
number of mapping classes of "2 — S™ does not exceed two.

A) Let M? be an orientable surface, i.e. smooth orientable manifold
of dimension two, and let M! be a curve, i.e. a smooth one-dimensional
manifold. Furthermore, let f be a smooth regular mapping from the curve
M to the surface M? such that no three distinct points of M! are mapped
to the same point of the surface M?. We shall also assume that if two
distinct points a and b of the curve M! are taken by f to one point ¢ =
f(a) = £(b) of the surface M? then the neighbourhoods of points a and b on
the curve M' are mapped by f to curves having different tangent vectors
at the point c. Under the above conditions, the set C' = f(M?!) is called
a smooth curve on M?2. If the manifold M" is orientable, then the curve
C = f(M") is also said to be orientable. The points of type ¢ = f(a) = f(b)
where a # b, are called double points of the curve C. It is easy to see
that a curve on a surface can have only finitely many double points. If
C = f1i(M{) = fo(M3), i.e. if the curve C is obtained from two different
maps f; and fy of two different curves M{ and M}, and for fi and fo
the conditions above hold, then there exists a smooth homeomorphism ¢
of M{ to MJ} such that fop = fi. Thus, components of C' can be defined
as images of the components of M. We shall deal with empty curves as
well. It is easy to see that if C' = f(M?') is a curve on a surface, then if f’
is sufficiently close to f (with respect to class 1), then the set C" = f/(M?)
is also a curve on the surface. We shall say that C’ is obtained from C by
a small shift.

B) A curve C on M? is zero-homologous (more, precisely, mod 2 - zero
homologous, if there exists on M? an open set G that C' = G\G and such
that in any neighbourhood of any point « € C there are points belonging
to M2, and not belonging to G; notation, C = AG,C ~ 0. Obviously,
a small shift of a zero-homologous curve is a zero-homologous curve. Let
C; and C3 be two such curves on M? such that double points of each of
them do not belong to the other one and in any intersection point of the
two curves the tangent vectors to them are distinct. In this case we say
that C; U C5 is a curve and we shall also say that C; and Cy admit a
summation; denote their sum Cy; U Cy by C7 + Cs. It is easy to see that
if we have any two curves on M?, then, after a small shift of one of them,
we get two curves admitting summation. If two curves C; and Cy on M?
admit a summation and each of them is zero-homologous then their sum is
also zero-homologous. Indeed, let C7 = AGq, Cy = AG-.
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Put G = (G U G2)\(G1 N Gy). It is easy to see that C; + Cy =
AG. We shall also write C; + Cy ~ 0 as C7; ~ Cy. Thus, the relation
C1 ~ C5 makes sense only in the case when the curves C7 and Cs admit
a summation. If the curves C; and Cs do not admit summation, then,
applying a small translation to one of them, say, to C7, we get two curves
C{ and Cy admitting summation. If, furthermore, C] ~ C3, then one says
that Cy ~ Cs. This is well defined since the definition is invariant upon
passing from C; to the curve C]. The relation C; ~ Cs turns out to be
reflexive, symmetric and transitive; thus the set of all curves on the surface
M? is divided into classes of homologoical curves. Denote the set of these
classes by A'(M?) = Al. In the set A, we have the well-defined sum
operation. If 21, zo are two elements from A, and C; € z; and Cs € 25 so
that the curves C7 and Cy admit a summation then the class z containing
the curve Cy + Cs, is, by definition, set to be the sum of the classes z; and
22, 2 = z1 + z2. This rule does not depend on the arbitrariness of the choice
of C; and Cy representing the classes z; and z3. The group A' is called
connection group of the surface M?2. All elements of this group are of order
two. A finite system of curves C1, ..., C, on M? is called the homology base
if for any curve C on the surface M? the relation

q
C~ Z EiCi
i=1
holds, where ; = 0 or 1 (mod 2), and if the relation
C~0

yields that all residue classes ¢; are equal to zero.

C) Let C; and Cs be two curves on the surface M?, admitting summa-
tion. The number of intersection points of these curves taken modulo two
is denoted by J(C7,C5) and called the intersection index. It is easy to see
that

J(C1 + Cs, Cg) = J(Cl, C?,) + J(CQ, Cg)

and that from C; ~ 0 it follows that J(Cy,C3) = 0. From this we have
that if Cl ~ Dl, CQ ~ D2 then J(Cl,CQ) = J(Dl,DQ). Thus, by set-
ting J(z1,22) = J(C1,C2), where C1 € z1, Co € 29, we get a definition
of the intersection index J(z1, 22) for two homology classes. It turns out
that on any surface M? there exists a homology basis consisting of curves
A1, ..., Ap, Bq,... By, for which the equations

J(Ai, Aj) = J(Bi, B;) =0, J(A;,B) = 4y,
(1)

ij=1,..p
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hold. Any such basis is called canonical. From this, it follows immediately
that for any homology class z € A! the relation

J(z,2z) =0,

holds, and, furthermore, if 2z; is a non-zero homology class then there exists
a homology class z9 such that

J(Zl,ZQ) =1.

Since M? is connected, we can set the curves Ay, ..., A,, B,... B, to
be those curves giving the canonical cut of the surface M?2. In this case, p is
the genus of the surface. In the case of a disconnected surface the homology
basis is obtained as a union of the bases of connected components. In this
case, p is the sum of the genera of the connected components constituting
M?2,

Theorem 22. Let (M2 U) be an orthonormally framed surface of the
oriented Buclidean space E"? with basis e, . .., €y, defining its orienta-
tion, U(x) = {u1(x),...,u,(2)}, and let C = f(M") be an oriented curve
on M?2.

Let y € M*'. Denote by i,.2(y) the unit vector tangent at f(y) to
the curve f(M?') and corresponding to the orientation of it, and denote
by tini1(y) the unit vector tangent to M? at f(y), orthogonal to i,y 2(y)
and directed in such a way that the vectors ui(f(y)), ..., un(f(¥)), tni1(y),
lint2(y) give the positive orientation of the space E"*2. For notational

convenience we set U;(y) = u;(f(y)), i =1,...,n. We have
n+2
aiy) =Y hij(y) s, i=1,...,n+2,
j=1
where h(y) = ||hi;(y)|| is an orthogonal matriz with positive determinant,

s0 that h is a continuous mapping from M to the group H, 2. Set
§(M?,U,C) = §(C) = B(h) +1(C) + 5(0), (2)

where B(h) is defined in Statement «D» §1, and r(C) is the number of
components of the curve C, and s(C') is the number of double points of C'. It
turns out that §(C') is an invariant of the homology class z € /\1 containing
the curve C; thus we may set §(M?,U,z) = 6(z) = 6(C). Furthermore,
it turns out that for any two arbitrary homology classes z1 and zs of the
surface M? we have

6(2’1—1—22)26(21)+6(22)+J(2’1722). (3)
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PrOOF. First of all, let us prove that 3(h) does not depend on the

basis choice, e1, ..., e,12, nor on the orientation of C'= f(M?'). If instead
of e1,...,e,42 we take another basis e7,. .., e;, o then we shall get
n+2

ej:leke;w j=1,...,n+2,
k=1

where | = ||lx] is an orthogonal matrix with positive determinant. Such a
substitution will lead to the matrix h'(y) = h(y)l instead of h(y). Since the
manifold H, .o is connected, the mappings h and h’ are homotopic; this
yields the independence of 3(h) from the choice of eq,...,e,4+2. Now, if
we change the orientation of the one-component curve C' = f(S') to the
opposite one, then the vectors @,1(y) and 4,12(y) are to be replaced by
the vectors —ii,,11(y) and —i,12(y). This leads to the replacement of h(y)
by the matrix h'y = [ - h(y), where l;; = 0 for i # j,

lll — ... = lnn - 17 ln+1,n+1 - ln+2,n+2 = -1

Since the matrix I = ||I;;|| belongs to the manifold H,, 4o, then the mappings
h and k' are homotopic; thus 3(h) does not depend on the orientation of
the one-component curve C. Clearly, the same is true for any arbitrary
curve.

To prove that §(C') is an invariant of the homology class z containing the
curve C, let us introduce the following surgery operation for an orientable
curve C' near its double point a; as a result the curve C' will be transformed
to the oriented curve C, = f,(M}). We shall denote the mapping from M}
to H,t2, corresponding to the curve Cy, by h,. The surgery operation will
be defined in such a way that the curve C, has one double point less than
the curve C; moreover, the conditions

Cou~C, §(Cy) =05(C)

hold.

By virtue of Statements of «C» and «D» § 3, Chapter 3, one may assume
that near the point a the surface M? coincides with the plane Ey, the curve
C' coincides with two intersecting lines and the vectors w;(z) coincide with
ei, t = 1,...,n. We take these lines to be the coordinate axes of the
coordinate system ', 22 defined near the point a on M?2. We choose the
direction of axes in such a way that as any coordinate increases, we move
along the curve in the positive direction. We shall assume that the curves
C, and C coincide outside a neighbourhood of the point a and that near
the point a the curve C, is given by the equation z! - 22 = —¢, where € > 0
(see Fig. 4.1). Thus, the orientation of the curve C' naturally generates the
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Figure 4.1.

orientation of C,. It is easy to see that if both branches of the curve C
passing through a belong to the same component of it then, after performing
the surgery on this component, we get two different components of the
curve C,. Conversely, if two branches of C passing through a belong to
different components of C, then, as a result of the surgery, instead of these
two components of C'; we get one component of C,. Thus, in both cases
r(C) + s(C) = r(Cy) + s(Cy) (mod 2).

Let us show that 3(h) = B(h,). Indeed, the mapping hf~' takes the
neighbourhood of the point a on the curve C' to two points on the circle Ho
(see Theorem 12), and the mapping h, f, ' takes the parts of the curve C,
close to a to the circle Hy with mapping degree equal to zero. From this
it follows that §(C) = §(C,). Now, it is evident that the curves C and C,
are homologous.

As a result of finitely many surgeries as above, we transform C to a
curve O(C) without double points, for which the relations

0(C) ~ €, 4(0(C)) =4(C) (4)

hold.
Let us show now that if the curve C' without double points is null-

homologous on M? then
§(C)=o. (5)

Let C = AG; then G is a smooth surface bounded by the curve C.
It is easy to define on G a smooth function y, which is positive and less
than 1 in G and equal to zero on C, so that the full differential of this
function is non-zero on C. Inside the strip E™*2 x I, where I is the unit
interval 0 < t < 1, consider the surface P2, defined by the equation
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It is easy to see that the boundary of this surface is the curve C' x 0;
moreover, the surface is orthogonal to the boundary E™*2 x 0 of the strip
Ent2 x I. Since the surface P? is homeomorphic to the orientable surface
G, we assume the former to be orientable. Since vectors of the system U (z)
are orthogonal to the surface G at z, the vectors of the system U(z) x t
are orthogonal to P? at z x t. Let us complete the vectors of the system
U(z) x t by the unit vector up4+1(z,t) X t in such a way that the obtained
system U (z,t) x t contains an orthonormal framing of the oriented surface
P? in the oriented strip E"*2 x I. The vector u,1(x,0) obtained in this
way, is orthogonal to the curve C and tangent to M? at the point z. Thus,
by completing the system U(z) by un+1(x,0), we get a framing V(x) of
the curve C such that the framed curve (C, V) is zero-homologous. Fur-
thermore, by completing the system V (x) by the vector u,2(x) tangent to
C at x, we get precisely the system U(z) needed to calculate §(C). Com-
paring the construction of the residue class of §(C), given here, with the
construction of §(C, V') (see Theorem 20), we see that

5(C) = 8(C, V).

Since the framed manifold (C,V) is null-homologous, then 6(C) =
d(C,V) =0 (see Theorem 20). Thus, (5) is proved.

Let C; and Cy be two arbitrary curves on M? admitting summation.
We have

s(Ch + Co) = 5(Cy) + s(Co) + J(C1,Cs) (mod 2),
T(Ol + CQ) = T(Ol) + T(OQ),

B(C1 + C2) = B(Cr) + B(Cy).
From this we have that
§(C1 + C2) =6(C1) +6(C2) + J(C1, Ca). (6)

If, in particular, C; ~ Cs then J(Cy,C3) = 0 and from the relations (6), (5)
we get

5(01) + 5(02) = 5(01 + CQ) = 5(0(01 + CQ)) =0.

Thus, we have proved that 6(C') is a homology invariant. From this and
from the relation (6) applied to arbitrary curves Cy and Cy admitting sum-
mation, we obtain (3).

Thus, Theorem 22 is proved.

Theorem 23. Let (M?,U) be an orthonormally framed submanifold of
the Fuclidean space E"2 and let

Ay,... Ay, Bi,....B, (7)
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be any arbitrary canonical basis of the surface M?. It turns out that the
residue class

§=8(M?U) =" 6(A)5(By) )

does not depend on the arbitrary choice of the canonical basis (7) and it is
an invariant of the framed manifold (M?,U).

PROOF. Let us consider some canonical basis

A’l,...,A;,Bi,...,B; (9)
of the surface M? and show that
p p
> 6(A)S(Bi) = 5(A})S(B)). (10)
i=1 i=1

The direct proof of the equality (10) in the case of arbitrary canonical
bases (7) and (9) has several technical difficulties; thus we shall consider
three particular types of transformations of the canonical basis; for any of
these types the proof of formula (10) is quite easy. Finally, we shall show
that any canonical basis transformation from (7) to (9) can be obtained
as a sequence of the partial cases described above. This will complete the
invariance of the residue class §.

Transformation 1. Let j be a positive integer which does not exceed p.
Set

A =Bj, Bj=A;, Aj=A; Bj=B i#]. (11)

Clearly, the basis Af,..., A}, Bj,..., B, defined by these relations, is
canonical and the relation (10) holds in this case.
Transformation 2. Set

p
A;:ZaikAk; t=1,...,p, (12)
k=1
p
B} =) byBr, j=1...,p, (13)
k=1

where a;; and bji, are residue classes modulo two. In order for the ba-
sis (12)—(13) to be canonical, it is necessary that the matrix a = ||a;;|| be
non-degenerate, i.e. it should have determinant +1, and that the matrix
b = ||bi;|| be connected with a by

Zaikbjk = (51'3‘, (14)
k
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i.e. if we denote the unit matrix by e and the matrix obtained from b by
transposing, by o', then ab’ = e, or, equivalently ¢~ ! = b’; thus b'a = e.
The latter relation gives

P
Zaijbik = Ojk- (15)
1=1

Thus,

D S(ADS(B) =5 | D aiA; | 6 (Zbik3k>
i j=1 k=1

i

= > aibkd(A;)5(B) = Y dx0(4;)8(By)

ij, k=1 jk=1
P
=) 3(4;)5(By)
=1

[see (3)], and the relation (10) in the case of transformation 2 holds. Note
that transformation 2 is completely defined by the matrix a, giving the
transformation (12). The transformation (13), by virtue of formula (14),
is uniquely defined by (12). We shall say that the transformations (12)
and (13) are coordinated if the relation holds (14).

Transformation 3. Set

A§:Ai+ZcikBk, i=1,...,p (16)
k
B =B;, i=1,...,p. (17)

In order to get J(Aj, A}) =0, 4,5 = 1,...,p, it is necessary and sufficient
that
Cij = le'. (18)

Indeed

J(AL AL =T (Ai, chk3k> +J <Zcik3k, Aj>
k k

= E cjkdix + E CikOjk = Cji + Cij.
k k
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If the relation (18) holds then the basis (16)—(17) is canonical. Let us show
that under the transformation 3, the relation (10) holds. We have

25(142)5(31{) = 25 <Ai7 CikBk> 3(Bi)
i k

=> (5(/11-) + ) cind(Br) + Y e d (A, Bk)> 8(B;)
i k k
= "6(A)3(Bi) + Y _cad(Br)I(Bi) + Y _cindind(Bi)
i ik ik

Then,
> cird(Bi)3(Br) =Y ciid(Bi)d(Bi) = > _cud(Bi)

(since we deal with residue classes modulo 2) and
Zczk51k6 Zcu

Thus, relation (10) holds.
Now, let us consider an arbitrary canonical basis transformation from

(7) to the basis (9). We have

A; = ZTijAj + ZsikBk- (19)
J k

The rank of the rectangular matrix of p rows and 2p columns, defining this
transformation, is equal to p, i.e. one of its minors of order p is non-zero.
Applying to the basis (7) the transformation 1 several times, we may arrive
at such a new basis (which we shall denote again by A:,...,4,,B1,...,B,)
that in the formula (19) the minor |r;;| will be non-zero. Applying to
the obtained basis A1, ..., Ay, B1,..., By the transformation 2 with matrix
[lai;ll = lI7i;l, we shall make the transformation (19) look like (16). Now,
let us introduce a new canonical basis A7, ..., A}, BY,..., B, by applying
the transformation 2:

p
Ag/ =A; + Z Cik B, Bl{l = B;.
k=1

From (9), we get this basis by the following formulae
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A=Al

P P (20)
Bj=> ri; AT+ s, By
j=1 k=1

The relation J(A;,B;-) = J;; gives %s;kéik = §;;, or s;j = 0;5. Thus, the

transformation (20) will look like

I _ 1"
Ai - Aiv
D
! 11 / "
B =B + E rijAj,
Jj=1

i.e. it is a transformation of the third type where the roles of the curves
A; and B; are interchanged. Thus, we can get from the basis (7) to the
basis (9) by a sequence of transformations 1-3.

Thus, Theorem 23 is proved.

Theorem 24. If two framed submanifolds (MZ,Uy) and (M?,U1) of
the Fuclidean space E™2 are homologous, then we have

S(MZ,Up) = 6(M2E,Uy) (21)

[see (8)]. Thus, to each element m of the group 112 there corresponds a
unique residue class §(r) defined by the relation §(m) = §(M?,U), where
(M2,U) is a framed manifold of class 7. It turns out that forn > 2, § is an
isomorphism of the group 112 to the group of residue classes modulo two.
From the above it follows that there exist precisely two classes of mappings
ynt2 87 n > 2.

PROOF. First, let us prove the relation (21). Let (M3, U) be the framed
submanifold of the strip E"*2 x I, realising the homology (Mg, U) ~
(M#,U,), which is constructed in Lemma 1 §3. Set M2 xt = M3N(E?xt).
If the point (z,t) € M3 is not a critical point of the manifold M3 then the
neighbourhood of the point x in the set M? is a smooth surface, so that
for a non-critical value of the parameter ¢ the set M? is a surface. In this
case, if (z9,19) is a critical point of the manifold M? then the set M2 for a
small value of |t — o] is defined by

ol (2)? + 02(22)? + 02 (23)2 =t — to,
(22)

2= . =z"?2 =0

near zg [see §3, formula (3)]. If (z,¢) € M? is not a critical point of M3
then the orthogonal projection of U(x,t) to the plane E"*2 x t is a linearly
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independent system of vectors. Denote the system obtained from it by
the orthogonalization process, by V;(x) x t. For a non-critical value of the
parameter ¢, the system V; gives an orthonormal framing of the manifold
M?. As t continuously increases without passing through critical values,
the framed manifold (M?,V;) is continuously deformed; thus, it follows
from the continuity argument that §(M?,V;) does not change. Thus, to
prove Statement (21), it suffices to show that §(M?,V;) does not change
as t passes through the critical point t = tg. Let us do this. We have two
different cases.

CASE 1. Assume o' = 02 = ¢2. For definiteness, we shall assume
that 0! = 02 = ¢® = +1. Under this assumption, after passing through a
critical value, the surface M? acquires a new component, which is a small
sphere, and the remaining part of M? is transformed continuously together
with its framing. Since the attachment of a sphere as a separate component
does not increase the genus of the surface, then the canonical basis may be
thought to remain the same thus §(M?, V;) does not change.

CASE 2. Assume that among o', 0%, 02 there are distinct numbers. For
definiteness, we shall think that ¢! = 02 = +1,0° = —1. Under this
assumption, the surface M? for t < to near the point g looks like a two-
sheeted hyperboloid and for ¢ > t( it looks like a one-sheeted hyperboloid.
Thus surgery is identical to a tube attachment to the surface M?2, t < to.
If the tube connects two different components of the surface M2, t < to,
then the basis of the surface M? does not change while passing through
to; thus the residue §(M?,V;) remains invariant. If the tube is attached
to one component, then the basis of the surface should be completed by
two curves. Let us be more detailed. Let Ai,...,A,, B1,...,B, be the
canonical basis of the surface M?, t < to. We may assume that the curve
composing this basis avoids from the point xg; thus, as the parameter ¢
passes through the critical value t(, the basis changes continuously, so that
the residue classes 6(4;) and §(B;), ¢« = 1,...,p, remain unchanged. We
define the curve A, 1 on M? to be the circle cut from the part of M? close
to zg, by the hyperplane 23 = ¢, where ¢ is a small positive number. For
t < tg, it is evidently null-homologous on M2, and, since the framing of
it changes continuously as t passes through ¢¢; then §(A,+1) = 0. Now
let B, ,; be an arbitrary curve on ME, t > to having with A, intersection
index equal to one. Clearly, such a curve exists. Now, set

P p
Bpi1 =B+ J(Bi, By )Ai+ > J(Ai, By ,)Bi.
j=1 i=1

Obviously, the curves A1, ..., Apy1, B, ..., Bpy1 form a canonical basis of
the surface M7, t > tg, and since §(Api1) = 0 then 6(A,41)5(Bps1)=0.
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Thus, the residue class §(M?,V;) remains unchanged as t passes through
the critical value to; thus, §(MgZ, Vo) = 6(M32, V). Since Uy = Vo, Uy = V4,
the relation (21) holds.

From the above argument it follows that § is a mapping from the group
I12 to the group of residue classes modulo two. It follows from the definition
of the sum operation in I12 that ¢ is a homomorphic mapping.

Now let us prove that  is an epimorphic mapping to the whole group
of residue classes modulo two. For that, it suffices to show that there exists
a framed manifold (M?2,U) for which §(M? ,U) = 1. Since, evidently,

S(E(M?,U)) =6(M?,U), n=2,

where F is the suspension operation, it suffices to consider the case n = 2.

Let E* be the Euclidean space having orthonormal basis e, e, €3, €4
and coordinates z', z2, 23, 2*; let E? be the linear subspace of E* defined
by the equation z* = 0 and let M? be the usual metric torus, lying in E3
and having the rotation axis e3. Let us introduce on M? the usual cyclic
coordinates ¢, 1 and define the surface M? by the equations

2! = (2 4+ cos p) cos 1y,

22 = (2 + cos p) sin 1, (23)

3 = sin .
Denote by A; the curve on M? defined by ¥ = 0 and denote by B; the
curve defined by ¢ = 0. It is evident that the system A;, B; forms a
canonical basis of the surface M?2. Denote by v1(x) the unit vector in E?
which is normal to M? at = = (¢,) and directed outwards, and denote by
vo(z) the vector emanating from x and parallel to e4. Define the framing
U(z) = {ui(x),us(x)} by the relations

u(2) = v1 cos(p — ¥) — va(x) sinp — ),
(24)
uz(x) = visin(p — ) + va(x) cos(p — )

and let us show that
S(M?,U) = 1. (25)

Let C be any simple closed curve on M?2. Denote the unit tangent vector
to C' at the point z = (p,¢) € C, by va(x), and denote the unit vector
tangent to M? at  and orthogonal to vy (), by v3(z). Let us add to (24)
the relations

us(x) = vs(x), wa(x) = v4(x). (26)
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The relations (24) and (26), taken together, transform the system V'(x) to
the system U(x). Denote the corresponding matrix by f(z),z € C. It is
easy to see that for C = A; and for C = By we have

B(f) = 1. (27)
Furthermore, for C = A; we have
x=(p,0), vi(z) =ejcosp+essing, va(x) = ey,
v3(x) = e2, wva(xr) = —ersing + ez cosp,

thus, the transfer from eq,eq, e3,e4 to the system V() is defined by the
orthogonal matrix g(x), so that

Blg) = 1. (28)
For C' = By, we have analogously
x=(0,v), vi(z)=-e1cost)+easine, wva(x) = ey,
v3(x) = —ez, wva(x) = —e1sin + ez cosy,

so that the transfer from e, es, e3,e4 to V(z) is defined by g(z), herewith

Blg) = 1. (29)

In both cases for C' = Ay and for C' = By, the transfer from eq, es, €3, e4 to
U(z) is defined by the matrix h(z) = g(z)f(x), where

(h) = 6(g) +(f) =0
[see (27)—(29) and «D» §1]. Thus, by virtue of (2) and (8), we have
§(A) =1, §(B)) =1, §(M*U)=1.

Thus, (25) is proved.

Finally, let us show that ¢ is an isomorphism. To do this, it suffices
to show that the group 12 contains no more than two elements, since it is
mapped to the whole group of residue classes modulo 2. From Theorems 11
and 16 it follows that for any framed manifold (M?,U) of the Euclidean
space E"2 we have

(M?,U) ~ E"%(N%,V),
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where (N2,V) is a framed manifold of the four-space, and E"~? is the

(n — 2)-times suspension operation. Thus, it suffices to show that IT3 con-

tains no more than two elements, i.e. there exist no more than two mapping

classes ©* — S2. By virtue of Lemma 2 § 2, the number of mapping classes

from the sphere ¥* to the sphere S? does not exceed the number of mapping

classes from X* to S3; the latter equals two by virtue of Theorem 21.
Thus, Theorem 24 is proved.
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Some ‘“global” properties of
differentiable manifolds!

R. Thom

Introduction

The present work is devoted to the proof of results announced in the au-
thor’s note [28]. It is divided into four chapters. In Chapter I, we consider
some questions of approximation of differentiable manifolds. The theorems
proved there, which are analogous to the topological simplicial approxima-
tion theorem, allow one to avoid references to the triangulation theorem
for manifolds. Chapter II is devoted to the realisation problem of homol-
ogy classes of manifolds by means of cycles. The main results obtained in
this chapter are the following: a mod 2 homology class of any manifold is
realisable by means of a submanifold if the dimension of this class is less
than half the dimension of the manifold. For any integer homology class z
of an orientable manifold V' there exists a non-zero integer number N such
that the class Nz is realisable by a submanifold. In Chapter III, the results
obtained in Chapter II are applied for the solution of the following Steenrod
problem: can any homology class of a finite polyhedron be represented as
an image of the fundamental class of some manifold? It is shown that for
mod 2 homologies the answer is affirmative. On the contrary, in any dimen-
sion = T there exist integral homology classes which are not representable as
images of fundamental classes of compact differentiable manifolds. Finally
Chapter 1V is devoted to the conditions sufficient for a manifold to be a
boundary and to the conditions under which two manifolds are cobordant.

IThom R., Quelques proprietés globales des variétés differentiables, Comm. Math.
Helv., 28 (1954), 17-86. Reprinted with permission from Birkh&user. Translated by
V. 0. Manturov with M.M.Postnikov’s comments (1958).
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Here we obtain quite complete results only for mod 2 cobordism classes,
when we do not pay attention to the orientability of the manifolds. On the
contrary, for the groups QF, which appear in the classification of orientable
manifolds, we have obtained only partial results. The difficulties which ap-
pear in this direction are of an algebraic nature, and they are connected
with the behaviour of Steenrod’s degrees in spectral sequences of bundles.
The results of Chapter IV are closely connected with the question of the
topological value of Pontrjagin’s characteristic numbers.

The methods used in this work are based almost always on the consid-
eration of some auxiliary polyhedra M (SO(k)) and M (O(k)). The study
of geometric properties of these polyhedra uses methods of H.Cartan and
J.-P.Serre. In particular, the Eilenberg-MacLane polyhedra play a key role.
I wish to thank them for communicating these results to me before the
publication. In particular, I would like to mention J.-.P.Serre’s help both
in editing the manuscript and for improving many proofs.

CHAPTER |

Properties of differentiable mappings

In the sequel, by V" we mean any paracompact' differentiable n-
manifold of class C*°.

1. Definitions

Let f be a mapping of class C™, m > 1, from V" to some manifold MP.
By a critical point we mean a point = of V™ where the rank of f is strictly
less than the dimension p of the manifold MP. The set X of critical points
x or the critical set of the mapping f, is closed in V™. Any point y in the
image f(X) C MP of this set is called a critical value of f. Any point y of
MP not belonging to f(X) is a regular value?.

2. Pre-image of a regular value

The pre-image f~!(y) of a regular value y € MP might be empty. For
instance, if the dimension n of the manifold V™ is strictly less than the

1Recall that a connected paracompact manifold can be defined as a manifold which
is a union of countably many compacta.

2Note that this definition of critical values differs from the usual one: if the dimension
n of the manifold V is strictly less than the dimension p of the manifold M then any
point of the image f(V') is a critical value, even for mapping f having maximal rank in
any point of f~1(z). Conversely, any point not belonging to the image f(V') is a regular
value.
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dimension p of the manifold MP then the pre-image f~!(y) is empty for
any regular value y. Assuming that the pre-image f~!(y) is non-empty,
let us consider an arbitrary point = € f~'(y). Let y1,y2,...,y, be some
local coordinates of the manifold MP? in some neighbourhood of the point
y. Since the mapping f has rank p at the point x, then in some reasonably
small neighbourhood U, of the point z in the manifold V", there exists
a local coordinate system of the type (y1,...,Yp,Tp+1,s---,2pn). In these
coordinates, the pre-image f~!(y) is defined in the neighbourhood of U,
by the equations y1 = y2 = ... = y, = 0. Consequently, the point x has a
neighbourhood in f~!(y), which is homeomorphic to the Euclidean space
R"™P. Since this is true for any point = € f~!(y), the pre-image f~!(y) is
a differentiable class C™ manifold V™. Below, we denote this manifold by
wn—p,

Let V, be a tangent space at the point z of V", and let W, be the sub-
space of V, consisting of those vectors tangent to the submanifold W™~P.
Furthermore, let M, be the tangent space to M? at y. The condition that f
has rank p in 2 means that the tangent space mapping f defines an isomor-
phism mapping from the factor-space V,, /W, to the space M,. Admitting
some non-exact terminology, we call the factor-space V,,/W, transverse to
the manifold WP in x. If the ambient manifold V" is endowed with a
Riemannian metric then we have a well-defined space H,, normal to W"~P
at x. It is clear that the spaces V,,/W, and H, are isomorphic, and the iso-
morphism can be defined globally, i.e. for all points of the manifold W"™~P,
All normal (resp., transversal) vectors to the submanifold W™ ? form a
normal (resp., transversal) fibre. According to the arguments above, these
spaces are isomorphic.

Collecting the arguments above, we have: the pre-image f~'(y) =
Wn=P of any regular value y of the function f is a submanifold of the man-
ifold V™ and the corresponding mapping f induces a natural isomorphism
between the normal fibre for W"=P and the Cartesian product W" =P x M,,
where My ~ RP is the tangent space to MP at the point y.

REMARK. The statement above is true even in the case when y is a limit
point of the set of critical values. Note that if f is proper' (in particular, if the
manifold V" is compact) then the set f(X) of critical values is closed in M?. In the
latter case, any regular value y has a neighbourhood Uy, for which the mapping
f is locally fibre. This is the local form of Ehresmann’s theorem [10].

LA mapping f is called proper if the full pre-image f~!(K) of any compact subset
K C MP is a compact subset of the manifold V™. — Editor’s remark.
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3. Properties of the critical values set f(X)

The subset of interior points of the set f(X) might be non-empty. For
example, Whitney constructed in [30] a numerical C'-function defined on
the square for which any value is critical. However, this phenomenon can
take place for C"-mappings f only if m is strictly less than the dimension
n of the mapped manifold. Indeed, Morse [16] has proved the following
theorem.

Theorem I.1. The set of critical values of a numerical function of
class C™, defined in R™ where m > n, has measure zero.

(For functions of class C", r < n, this theorem is not true.)

Any paracompact manifold V" can be covered by countably many neigh-
bourhoods homeomorphic to the space R'™; and, since the union of count-
ably many sets of measure zero is a set of measure zero, we get the following

Theorem 1.2. If m > n then the set of critical points of any numerical
class C™ function defined on an n-dimensional manifold V" has measure
zero.

Now, let us prove the following Theorem'.

Theorem 1.3. If m > n then for each mapping [ of class C™ from a
manifold V" to a manifold MP, in any open set of the manifold MP there
exist reqular values of the mapping f.

In other words, the set f(X) of critical values of the mapping f has no
interior points.

Since this theorem deals with a local property of the manifold M?, we
may take the Euclidean space RP instead of this manifold. Note that for
p = 1 the theorem is a straightforward corollary of Theorem 1.2. Let us
prove it by induction on p. Thus, supposing that if the theorem is true for
manifolds of dimension less than or equal to p — 1, consider an arbitrary
mapping f of class C" from V" to the space RP. Let y1,¥2,...,yp be the
coordinates in the space RP and let U be an arbitrary open set in the space
RP and let (a,b) be some open interval of values that the function y, takes
on the set U. Since on V" the coordinate ¥, is a smooth function of class
C™, then, by Theorem 1.2, the interval (a,b) contains some regular value
c of the function y,. We may assume that the pre-image W"~1 = Yp He),
being an (n — 1)-dimensional submanifold of the manifold V™, is non-empty
(otherwise the Theorem is trivial). Let x be an arbitrary point of the

1 As de Rham communicated to me, this result is a partial case of a theorem by Sard
(A.Sard. The measure of the critical values of differentiable maps. Bull. Amer. Math.
Soc., 48 (1942), 883-890).
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submanifold W”~!. In a small neighbourhood V;, of = in the manifold V"
there exists a local coordinate system (z1,x2,...,Zn—1,Yyp) that contains
the coordinate y,. Let U. be a section of the domain U by the hyperplane
{yp = ¢}. The restriction f. of f to the manifold W"~! is a mapping
of class C™. Consequently, according to the induction hypothesis, for the
mapping f. : W™t — RP™1 where RP~! is the hyperplane {y, = c}, there
exists in U, some regular value a. Let x € V" be an arbitrary point of the
pre-image f. 1(a) = f~(a,c) (we may assume that this pre-image is non-
empty). Since a is a regular value of f. then in the neighbourhood V, of
this mapping has rank p—1. On the other hand, let f(z1,22,...,2y,_1,¢) =

(y1,Y2,---,Yp—1). Then for y, = c at least one of the minors % is non-
J
zero. Consequently, by continuity argument, this minor is non-zero for
all values of the coordinate ¥, close to c¢. From this it follows that in a
neighbourhood V| C V,, the functions x1,z2, ..., Tn—p, Y1, Y2, ..., Yp form
a local coordinate system. In other words, in x the mapping f has maximal
rank. Since this is true for any point x of the pre-image f~!(a, ¢), the point
(a,c) € U is a regular value of the mapping f. Thus, Theorem 1.3 is proved.
If f is a proper mapping (in particular if the manifold V" is compact)
then the set f(X) of critical values of the mapping f is a closed set with-
out interior points, i.e. a sparse, according to Bourbaki’s terminology, [6],
IX, set of the manifold MP. For an arbitrary mapping f, consider first
a covering V" = U, K of the manifold V" by some compacta K;. Each
intersection ¥; = K; N ¥ is a compact set, thus f(3;) is a sparse compact
set of the manifold MP?. Thus, the set f(X) = U, f(X;) is a continuous
union of sparse closed sets, i.e. according to [6], IX, it is a thin subset of the
manifold MP.

3a. Pre-image of a manifold!

Definition. Tubular neighbourhood of a manifold. Let NP~7 be some
compact class C°° submanifold of the manifold MP. Assume that MP
is endowed with a class C'°° Riemannian metric, and consider the set T
of all points of the manifold MP? located at distance < ¢ from NP~9. If
€ is small enough, then through any point = € T there passes a unique
geodesic normal to the submanifold N?~9. Denote the intersection point
of this normal with the submanifold N?~¢ by y = p(x). Thus, we get a
mapping p : T — NP~9 which is indeed a bundle whose fibres p~1(y) are
g-dimensional geodesic balls. The boundary F' of T is a (p — 1)-dimensional
manifold fibred by p into (¢ — 1)-sphere (with the base space N?~%). The
above neighbourhood T of the submanifold NP~ is called the normal tubu-

1In the original text, this subsection was numbered wrongly as 3. — Editor’s remark
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lar neighbourhood of the manifold N?~%. Note that the structure group of p
is some subgroup of the orthogonal group O(g). The fibre space T obtained
in this way is naturally isomorphic to the normal (and thus, transversal)
bundle of the manifold NP~7 in MP.

On differentiable homeomorphisms of balls. Let B? be the closed
g-ball centred at O, and A a homeomorphic class C°° mapping of this ball
onto itself. If the inverse homeomorphism A~! is differentiable then the
mapping A has the same rank ¢ at each point of BY. Denote the group
of all homeomorphisms satisfying this condition and coinciding with the
identity on the boundary S9! of the ball B¢ by G.

For any interior point ¢ of the ball B, one may construct a homeomor-
phism A € G for which A(c) = O. Furthermore, one can show that there
exists a homeomorphism with this property, which is homotopic in G to
the identity mapping, i.e. in G one can construct a homeomorphism A;
depending continuously on the parameter ¢ (0 < ¢ < 1), for which 4g = A,
and A; is the identity mapping. Here, we mean that in the group G there
is a topology in which some sequence of mappings is thought to converge if
and only if this sequence and all sequences obtained from it by (partial) dif-
ferentiation up to order n are uniformly convergent as well as all sequences
obtained from the above ones by passing to inverse maps.

The group H of the normal tubular neighbourhood homeo-
morphisms. Let T be a normal tubular neighbourhood of a submanifold
NP~1 of MP. Consider the group H of C"-homeomorphisms of T satisfying
the following conditions:

1) any homeomorphism A € H maps every fibre p~!(y) onto itself;

2) any element of the group H is the identical mapping on the boundary
FofT.

In the group H, one introduces a topology analogous to the one intro-
duced above in the group G. (In order to define partial derivatives of the
mapping A : T — T, one may embed T into the Euclidean space R*; the
resulting topology of the group H, as one may see, does not depend on this
embedding.) With respect to the topology defined in this way, the group
H is a Bir space ' and even a complete metric space. Indeed, let (A,) be
an arbitrary Cauchy filter in the group H. Then for each point € T the
points A,(z) form a Cauchy filter in T. Let J(z) € T be a limit point of
this filter. It is easy to see that the obtained limit mapping J belongs to
the class C™. Analogously, the Cauchy filter A;!(z) converges and defines
a mapping J ! of class C"; this mapping is the inverse for J. Thus, any

11.e. a second category space. — Editor’s remark
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Cauchy filter (A,) of the group H converges to the homeomorphism J, that
evidently belongs to the group H. Thus, the statement is proved.

Definition. Mapping, t-regular on a submanifold. Let f be a differ-
entiable mapping from a manifold V™ to a manifold MP? and let y be an
arbitrary point of the submanifold N?~¢ C MP. Denote by M, the tan-
gent space at y to the manifold MP and denote by N, the subspace of
this tangent space consisting of vectors tangent to the submanifold NP9,
Furthermore, let x be an arbitrary point of the full pre-image f~!(y) and
let V,; be the tangent space to V™ at x. One says that y is a t-regular value of
f if at any point x € f~*(y) the composition map f : V,, — M, — M, /N,

has rank ¢ and is an epimorphism?.

4. Pre-image of a manifold under a t-regular mapping

We say that the mapping f : V" — MP? is t-regular on a submanifold
NP~4 C MP if any point y € NP4 is a t-regular value of f. In a neighbour-
hood of y, choose a local coordinate system yi,y2,...,y, where the sub-
manifold N?~7 is defined (locally) by the equations y; =y2 = ... =y, = 0.
Let 2 be any arbitrary point from the pre-image f~!(y) (we assume that
this pre-image is not empty). If y is a t-regular value then on the man-
ifold V™ in some neighbourhood U, of z there exists a local coordinate
system of the type (z1,%2,...,%Zn—q,Y1,Y2,--.,Yq). In this case, the pre-
image f~1(NP79) is defined in the neighbourhood U, by the equations
Y1 =y2 = ... = y, = 0. Consequently, z has in the pre-image f~*(y)
a neighbourhood which is homeomorphic to R"~9. In other words, the
pre-image f~1(NP~9) is a differentiable (C™) submanifold W"~4.

Let V. be the tangent space at x to V'™, and let W, be the tangent
space at x to the manifold W"~49. Because y = f(x) is a t-regular value,
then, by definition, the linear part f of f generates an isomorphism of the
transversal space V,, /W, to the space M,/N, transverse to the subman-
ifold N™~ % in y. Consequently, the transverse (or normal) bundle of the
submanifold W"=4 in V™ is naturally isomorphic (by the map induced by
f) to the transverse bundle of NP~9 in MP.

Let y be an arbitrary point of the submanifold N?~4. In NP4, consider
the open ball X centred in y and having radius r and the ball concentric
to it X’ of radius 2r. In order for X’ to be really a ball, assume 7 to
be sufficiently small. Since any bundle over the ball is trivial then the
subsets D = p~}(X) and D’ = p~1(X’) of the tubular neighbourhood T'
are homeomorphic to the products X x B? and X’ x B4, respectively. Such
a homeomorphism generates a mapping k : D'(or D) — BY. Let us prove
the following lemma.

IThe pre-image f~1(y) of a t-regular value y € NP~7 might be empty; in this case
one says that y is a trivial t-regular value.
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Lemma 1.4. For any class C™ mapping f : V" — MP, the set A€ H
of homeomorphisms of the tubular neighbourhood T' for which the composite
mapping Ao [ is not t-reqular on X, is a thin subset of the Bdr subspace

H.

The fact that the mapping G : V" — MP? is not t-regular on X means
that the composite mapping k o G defined on g~!(D), has a critical value
at the centre O of the fibre B?. Indeed, the linear part k of k in y € MP?,
is, by definition, a mapping from the tangent space M, to the factor-space
by the space N, which is tangent to the submanifold N?~1.

Let K; be compact subsets whose union forms a manifold V¢. A home-
omorphism A € H is i-critical if the composite mapping k o A o f defined
on f~Y(D) has in K; at least one critical point z, for which! f(z) € X. Let
o; be the set of all i-critical homeomorphisms A € H. Let us show that o;
is closed in H and has no interior points.

1) o; is closed. Let A be an arbitrary element of the group H not belong-
ing to the set o0y, i.e. an element such that for the composite mapping
koAo f on K;Nf~!(D), the point O is a regular value. Let y1,y2,...,Yq
be some coordinates a g-ball B?. By assumption, in the intersection
K;N f~to A=Y(NP~9) the absolute values of the Jacobians |0y, /x|
of order ¢ have a positive lower bound; denote it by 3B, B > 0. Con-
sequently, in K; there exists a closed, thus compact, neighbourhood
J of the set K; N f~' o A=1(NP~4), where the absolute values of the
Jacobians |0y, /x| are greater than 2B.

Now, let us consider the set of all homeomorphisms A’ € H close to A
such that:

a) the intersection K; N f~! o A’~1(NP~9) is contained in J. This
condition will hold if we restrict the distance from A to A’ (in M?) in
a proper way. For instance, it is sufficient to assume that || A’(y)—A(y)||
is less than the distance from O to the boundary of the set ko Af(J);

b) In J, the absolute values of the Jacobians |0y, /0xy|, corresponding
to ko A’ o f, are greater than B > 0. We may obtain this condition if
we choose first order partial derivatives of the mapping A’ close enough
to the corresponding partial derivatives of the mapping A. Indeed, the
Jacobians |0y;/0xy| are continuous functions in the first order partial
derivatives of A.

For all homeomorphisms A’ so close to A that these two conditions
hold, the Jacobians |dy;/0zy| are non-zero on K; N f~1A’"1(NP~9),
and, consequently, the mapping A’ o f is regular on the ball X.

T.e. point O € BY is a critical value of ko A o f considered on K; N f~%(D). —
Editor’s remark.
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2) o; has no interior points. Let A € o;. Then for the composite map
koAo f the point O is a critical value. On the other hand, this mapping,
being a mapping of class C™, admits, by Theorem 1.3, a regular value
¢ which can be chosen arbitrarily close to the point O. Let G be a
homeomorphism of the g-ball B? taking ¢ to O and being identical on
the boundary S?! of the ball BY, and let G; be a homeomorphism
depending continuously on the parameter ¢t € J, for which Gy = G,
and G is the identity mapping. Furthermore, let d be a function of
class C™ that vanishes on X, equals one on the boundary of the ball
X’ and increases from zero to one as the geodesic distance from the
centre y of X increases from 7 to 2r. By using the homeomorphism
D' =~ X' x B4, where D' = p~1(X"), let us define the homeomorphism
E of D’ onto itself by setting:

E(ylvz) = (ylaGd(u)(z))v Yi € X/a z € B

The homeomorphism E preserves the fibres p~!(y) and it reduces to
the identity on the boundary of the set D’. Consequently, it can be
extended to a homeomorphism of the whole tubular neighbourhood
T onto itself; to do that, outside D’, it is sufficient to take the iden-
tity mapping. The homeomorphism FE defined in such a way, clearly
belongs to H.

Furthermore, the mapping F o Ao f is t-regular on X, thus, according
to the construction, the point O is a regular value of the composite
mapping ko F o Ao f. Thus, the mapping A’ o f’, where A’ = E o A,
is t-regular on X and can be chosen to be arbitrarily close to Ao f.
Indeed, we can choose E arbitrarily close to the identity; to do that,
it is sufficient to take a regular value c close enough to the point O.

(Note that in the present (second) part of the proof, the compact set
K; was not used. Thus, we have shown that the set A of homeomorphisms
with A o f not t-regular on X has no interior points in H.)

Since the manifold V™ is a countable union of compacta K;, then the set
o of homeomorphisms A such that Ao f is not ¢t-regular on X, is a countable
union of sparse sets oy, i.e. it is a thin subset of H. Thus, Lemma 1.4 is
proved.

The submanifold NP~?, that we assume to be paracompact, can be
covered by countably many open balls X (by the way, note that the normal
tubular neighbourhood can be defined for any paracompact submanifold if
we admit tubular neighbourhoods having variable radius). This yields that
the set of homeomorphisms A for which the mapping A o f is not ¢-regular
on NP7 is a countable union of thin subsets of H; thus, it is thin set
without interior points. Thus, we have proved the following
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Theorem 1.5. Let f be an arbitrary class C™ mapping from a manifold
V™ to a manifold MP, let NP~ be an arbitrary paracompact submanifold
of the manifold MP and let T be a normal tubular neighbourhood of NP~
in MP. Then, there is such a homeomorphism A of T onto itself arbitrarily
close to the identical such that

1) the pre-image f'~1(NP~9) of the submanifold NP~ under f' = Ao f
is a smoothly embedded (n — q)-dimensional submanifold W™= of V™
of class C™;

2) the normal bundle of the submanifold W™~9 in V™ is naturally iso-
morphic to the space induced by the normal bundle of the submanifold
NP~9 4n MP.

5. The isotopy theorem

The property proved in this subsection will be needed only in Chapter IV
and only for the case of compact V™. Thus we prove it only for the compact
case.

Let f be a class C™ mapping from a manifold V" to a manifold M?. As-
sume that ¢ is regular on a compact submanifold NP~9. Suppose in a neigh-
bourhood of each point y from NP~9 there is a chosen local coordinate sys-
tem y1,¥2,...,¥Yp such that in a neighbourhood of the point y the submani-
fold NP~ is defined by y; = y2 = ... = y4 = 0. Since, by assumption, NP4
is compact, it can be covered by finitely many coordinate neighbourhoods of
this type. By means of a Riemannian metric, introduced arbitrarily on V",
define the tubular neighbourhood Q of W"~% = f~!1(NP~4). We choose the
radius e of this neighbourhood so small that the following condition holds.

Let x be any point from W9 and let B, be the geodesic ¢-ball centred
in o, and normal to W"~9. We require that the coordinates y1, 2, ..., yq,
transported to V™ by means of y = f(x), represent a coordinate system
in the ¢-ball B,. Since f is, by assumption, t-regular, and the submani-
fold W™~ is compact, we can easily meet this condition.

Let A be any element of the group H which is close to the identity.
Consider the pre-image g~ 1(N?~9), where ¢ = Ao f. It is clear that if
A is close enough to the identity then the mapping ¢ is also ¢-regular on
NP4, Indeed, if the distance ||A(y) — y|| in M? is strictly less than the
distance from the manifold N?~7 to the boundary of f(Q) then the pre-
image g~ 1(NP~9) is contained in . Furthermore, assume that all partial
derivatives of A are close to the partial derivatives of the identity. Then
the mapping g, as well as f, has rank ¢ on the ¢-ball B?; thus, it is ¢-
regular. Now, let us show that if A is close enough to the identity then
the submanifolds W"~% = f~1(N?=9) and W’ = g~ }(INP~?) are isotopic in
V™. We shall prove this fact according to Seifert’s scheme [21].
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Let y = f(x) be a point of NP~49. With each point z € B, we associate
the point L(z) of R? with coordinates y;(g(z)), where y; are local coordi-
nates in some neighbourhood of y in the normal space to the submanifold
NP~49, For the mapping L defined in such a way, the preimage L=1(0) is
the intersection of the ball B, with the submanifold W’ = g=—1(NP~9).

Let, as above, € be the radius of the ball B,. If the mapping A is
sufficiently close to the identity, then for any coordinate system (y;) in y =
f(z), we have: ||L(z) — z|| < € uniformly with respect to x. This yields that
the pre-image L(S971) of the boundary S9! of the ball B, is homotopic
to the sphere S?7! in the space R?\O compactified by O. Thus the degree
of L with respect to the point O is equal to the degree of the identity,
i.e. it is equal to +1. Furthermore, L has maximal rank in any point of
the ball B,; thus in a neighbourhood of any point z of B, the mapping
L is a local homeomorphism; thus, the pre-image L~!(O) consists only
of isolated points. Since at any point of B, the degree of L is equal to
+1 (this is equal to the sign of the corresponding Jacobian) then the pre-
image L~1(O) consists of a unique point z’. Thus, the submanifold W’
intersects B, only at the point z’. Thus, the correspondence z — 2’ is a
homeomorphic mapping from the submanifold W"~? to the submanifold
W'm=4, Let us connect 2’ in the ball B, to the point x by a geodesic arc
s(z,2"). The motion along this arc defines an isotopy that deforms the
submanifold W™~ to the submanifold W'»~4, This proves the following

Theorem 1.6. Let f be an arbitrary class C™ mapping from a com-
pact manifold V" to a manifold MP and assume this mapping is t-reqular
on a certain compact submanifold NP~9. Then for any homeomorphism
A € H of the tubular neighbourhood of NP~9, which is close to the iden-
tity, the composite mapping g = Ao f is t-reqular on NP~ and the sub-
manifolds W"=9 = f~Y(NP=9), W'"=4 = ¢g=1(NP~9) are isotopic in the
manifold V™.

CHAPTER 11

Submanifolds and homology classes of a
manifold

1. Formulation of the problem

Let V™ be an orientable manifold. In order to orient V", one should
indicate in the group H,,(V"™; Z) of integral homology some generator. This
generator is called the fundamental class of the oriented manifold V. For
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an oriented manifold V", the homology group H,,_;(V";Z) is naturally
isomorphic to the cohomology group H*(V™; Z) (Poincaré duality). We
call those classes paired by Poincaré duality corresponding or Poincaré
dual classes. If we take the group Zy of residue classes modulo two to
be the group of coefficients then the fundamental class of H,(V"™; Z) is well
defined even when V™ is not orientable. Furthermore, there is a well de-
fined Poincaré-Veblen isomorphism between the groups H,,_,(V"; Z2) and
H*(V™, Z3). For the sake of simplicity, we assume the manifold V™ to be
compact; we shall just touch on the case of paracompact manifolds which
are not compact.

Let WP be a p-dimensional submanifold of a manifold V™ and let i, be
the homomorphism from H,(W?) to Hy(V"), defined by the embedding
map ¢ : WP — V™. Let z be the image of the fundamental class of WP
under i,. We say that the class z is realised by means of a submanifold
WP. In the present work we address the following question: is the given
homology class z of the manifold V" realisable by means of a submanifold?
The answers to this question are, as we shall see, quite different for the
cases of Z and Z, as the coefficient ring. In the first case we assume, not
necessarily saying this exactly that the manifold V™ in question is orientable
and endowed with an arbitrary but fized orientation.

2. The space adjoint to a subgroup of the orthogonal group

Let G be a closed subgroup of the orthogonal group O(k) of order k.
It is well known that that any fibre space with fiber sphere S*~1 and with
structure group G can be obtained from some universal fibre space Fg.
The base Bg of this universal bundle is a compact manifold (we restrict
ourselves to fibre spaces with bases of finite dimension < N). Denote by A
the cylinder of the fibre map Es — Bg. This cylinder is, on the one hand, a
space fibred by k-balls with base B and, on the other hand, a manifold with
boundary E¢. The corresponding open manifold Ay, = Ag\E¢ is a fibre
space with k-ball as a fibre, associated with the fibre space E¢ (see [27]).

Definition. The space M (G) obtained from the manifold Ag by con-
tracting its boundary Eg to one point A is called the space, adjoint to the
subgroup G of O(k). The space M (G) can also be considered as a one-point
compactification (in Alexandrov’s sense) of the fibre space Ay with open
ball as a fibre.

Cohomology of M(G). The cohomology group H"(M(G)) for any
r > 0 can be identified with the cohomology group Hj. with compact sup-
port, and also with the relative cohomology group H"(Ag, Eg). On the
other hand, as follows from fibre spaces theory (when the fibre is an open
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ball), there exists an isomorphism! (see [26])
0% - H™(Ba) — Hi (Aly) ~ H™(M(G)).

In this case, we should, in general, restrict ourselves to Zs as the coeflicient
group. However, if the fibre space F¢g is orientable (the group G is con-
nected), then we can deal with the group Z. Thus, in dimensions r > 0, the
cohomology ring H*(M (G)) is obtained from the cohomology ring H*(B¢)
of the classifying space B by increasing all dimensions by k. In particular,
in dimensions greater than zero, the first non-trivial cohomology group is
the group H*(M(G)). This group is cyclic. Its generator U € H*(M(G))
is defined as
U = ¢g(we),

where wg € H°(Bg) — the unit class. The class U is called the funda-
mental class of M(G). Note that U is an integral class if E¢ is orientable

(G is connected), and a modulo 2 class if F¢g is non-orientable (G is not
connected).

3. The main theorem

Definition. We say that a cohomology class u € H¥(A) of a topological
space A is realisable with respect to G C O(k) or admits a G-realisation
if there exists a mapping f:A— M(G) such that the homomorphism f*
generated by this mapping takes the fundamental class U of M(G) to the
class u.

Then the following Theorem holds:

Theorem II.1. In order for the class z € H,_(V"), k > 0, to
be realisable by means of a submanifold W™= with normal space having

1 Consider an arbitrary cellular decomposition of Bg. It is evident that the full
pre-images p~!(o) of cells o of this decomposition under the map p : Ag — Bg form
a cellular decomposition A’G = Ag\Fg. The isomorphism considered by the author
T3 H"—k(Bg) — H"(Ag, Eg) for modulo two homology groups is generated by the
correspondence o — p~ (o). (It is easy to see that this correspondence is one-to-one,
it preserves the incidence relation and increases the dimension by k.) If the group
G is connected then the cells o and p~1(o) can be considered coordinatewise, i.e. in
such a way that the correspondence o — pil(cr) preserves the incidence coefficients.
Consequently, in this case the correspondence o — p~!(o) generates an isomorphism of
integral homology groups.

The isomorphism g, can also be constructed by using spectral sequences theory.
Indeed, by Leray theorem, the second term (E;J '?) of the spectral sequence for homology
with finite support of the bundle A’G — B¢ with the restrictions on coefficients described
above is isomorphic to HP(Bg) ® H}I((Ek), consequently, it is zero if ¢ # k. Thus d, =0
for all 7 > 2, i.e. "E2 & "Eoo ~ ~ Hy(Al). On the other hand, "Ey = Ej "F ~
HT=Fkk(Bg)®@HE (E*) ~ HP~9(Bg). Thus, HP~9(Bg) ~ Hy (Al;). — Editor’s remark
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structure group G, it is necessary and sufficient that the cohomology class
u € HE(V™) corresponding to z be realisable with respect to G.

1) Necessity. Assume that there exists a submanifold W" =% with fun-
damental class representing z in V". Let N be the normal tubu-
lar neighbourhood of W% and let T be its boundary. The nor-
mal geodesic bundle p : N — W™ F admits, by the assumption of
the theorem, G as a structure group, thus, it is induced by a certain
mapping ¢ : W"™* — Bg from its base to the base of the universal
space Ag. With this mapping, one associates a mapping F' : N — Ag
(taking fibre to fibre) for which the diagram

N L>14G

1k
Wwn—k SN B¢

is commutative.

The mapping F takes the boundary T of N to the boundary E¢g of the
manifold Ag. Let ¢* and ¢f be the isomorphisms mentioned above
corresponding to k-ball fibre spaces NV and Ag, respectively. Obviously,

the diagram

H¥(N,T) —'— H*(Ag,Eq)

@*T T«p’& (1)
HOW" ) ——  H°(Bg)

is commutative as well.

On the other hand, let j, : H*(N,T) — H¥(V™) be the natural inclu-
sion homomorphism. It is known that in the open manifold N’ = N\T
the class ¢*(w) corresponds, by the Poincaré duality, to the funda-
mental homology class of the base W"~* (see [27], Theorem L.8).
Consequently, the class j.¢*(w) € H¥(V™) coincides with the class u,
the latter corresponding to z.

Denote by h : A9 — M(G) the natural identification mapping taking
the boundary E¢ of Ag to one point a. The composite mapping ho g
takes the boundary T of N to a. Consequently, the mapping h o g can

Tt is sufficient to check that the scalar product of the classes p*(w) and Wn—F is
non-zero; this follows from the arguments given in page 143, where the isomorphism ¢*
is constructed. — Editor’s remark
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be extended over the whole manifold V™; to do this, it is sufficient
to map the complement V*\N to the point a. Thus, we define the
mapping f from V™ to M (G), for which, according to the commutative
diagram (1),

FU) = fes(wa) = jup* (@) = u.

2) Sufficiency. Suppose there exists a mapping f from V" to M(G) such
that f*(U) = u. If we delete the point a from M(G), we get a dif-
ferentiable manifold. Consequently, the mapping f on the comple-
ment V™\ f~1(a) can be regularised, i.e. we can construct a differen-
tiable mapping fi close to f which is of class C™ on V"\ f~(a). Let
us apply Theorem 1.5 to fi. As a result we get a mapping F' arbitrarily
close to f such that the pre-image F~!(Bg) is a submanifold W™~ of
the manifold V™. Since the normal bundle of the submanifold W%
is induced by the space Ag, then the structure group of this space is
G. As we have seen 1), the class u = f*(U) = F*(U) coincides with
the class j.*(w), where ¢* is the isomorphism corresponding to some
normal tubular neighbourhood of the submanifold W"=* in V", and
w is the unit class of the submanifold W"~*. This means precisely
that the class u corresponds, by Poincaré duality, to the class of the
fundamental cycle of W™,

Generalisation of Theorem II.1 for paracompact manifolds
which are not compact. Recall that for paracompact but not compact
manifolds there are as many duality theorems as families (®) of closed sub-
sets used for the definition of homology and cohomology groups (see [28],
Theorem 0.3). Thus, we are interested in the following question: given
a class z € H;f_k(V") with support in ®, can it be realised by a certain
manifold W"=%? To study this question, the proof given above should be
slightly modified.

First, the normal tubular neighbourhood can be defined even for para-
compact submanifolds if we allow its radius to vary. Then, a mapping
f:V — M ®-is proper if the pre-image f~!(K) of any compact subset
K C M belongs to the family (®) (if (®) is the family K of all compacta
of the manifold V', then we get the classical definition of proper mappings).
Then we have

Theorem ILI.1'.  In order for the class z € H* | (V™) to be realised by
a submanifold with normal bundle having structure group G, it is necessary
and sufficient that there exists a (®)-proper mapping f : V" — M(G) to
M(G)\a such that the class f*(U) € HE(V™) is Poincaré-dual to the class
z.
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4. The case when G reduces to the unit element e € O(k)

In this case the classifying space B consists of one point and the space
Ag is the closed k-ball, and M (e) is the sphere S*. An integral cohomology
class u of the space A is spherical if there exists a mapping f : A — S* such
that u = f*(s¥), where s* is the fundamental class of the group H*(S*, 7).
From Theorem I1.1" we get

Theorem I1.2. In order for the homology class z € H,—x(V™, Z) of
an orientable manifold V™ to be realisable by means of a submanifold with
trivial normal bundle it is necessary and sufficient that the cohomology class
u € HE(V™, Z), which is Poincaré-dual to z, be spherical.

In algebraic topology, no sphericality criteria for a cohomology class are
found. The only general result was obtained by Serre [22]:

Theorem I1.3. If k is odd and n < 2k then for any k-dimensional
homology class x € H*(A, Z) of an n-dimensional polyhedron A there exists
a non-zero integer N depending only on k and n such that the class Nz is
sphericalal.

This yields

Theorem I1.4. Let k be odd or n < 2k. Then there exists a non-zero
integer N depending only on k and n such that for any integral homol-
ogy class z € Hy,_ (V™ Z) of any orientable manifold V™ the class Nz is
realisable by a submanifold with trivial normal bundle.

5. The structure of spaces M (O(k)) and M (SO(k))

From Theorem II.1, one gets immediately the following Theorems, which
underline the role of the spaces M (O(k)) and M (SO(k)).

Theorem I1.5. In order for a homology class z € H,_(V", Z) of
an orientable manifold V™ to be realisable by a certain submanifold, it is
necessary and sufficient that the Poincaré-dual class u be realisable with
respect to the rotation group.

Theorem II1.5'. In order for a modulo 2 homology class z €
Hy,_ (V™ Z3) of V™ to be realisable by means of a certain submanifold,
it is mecessary and sufficient that the Poincaré dual cohomology class u be
realisable with respect to the orthogonal group.

Denote by G} the Grassmann manifold of k-dimensional planes in the
Euclidean space R™. The dimension m of the Euclidean space is assumed
to be rather large. It is well known that Gy is the classifying space Boy)
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of the orthogonal group O(k). Let CAv'k be the Grassmann manifold of k-
dimensional oriented planes in the space R™. This is the classifying space
Bsok) of SO(k). The manifold G, is a 2-fold covering over Gy.

Associating with every k-dimensional plane from G its intersection
S5=1 with the unit sphere of the space R™, we get the universal fibre space
Esok)- Thus, the space Ego(x) can be considered as the space of pairs
each consisting of an oriented k-dimensional plane and unit vectors lying
in the corresponding planes. Associate with each such pair the
(k — 1)-dimensional plane lying in the k-dimensional plane of the pair and
orthogonal to the vector of this pair. This defines a fibration of the space
Eso(k) to spheres S™~Fk with base G_1. This yields that in dimensions
less than the classifying dimension m — k, the space Ego(x) has the same

homotopy type as the Grassmann manifold ék,l. Moreover, the inclu-
sion Esok) — Aso(k), from the homotopy theory point of view, coincides
with the natural mapping @k_l — ék, generated by the inclusion of the
subgroup SO(k — 1) to SO(k)?.

Cohomologies of M(SO(k)). Thus, in dimensions r > 0, the coho-
mology algebra H*(M (SO(k))) can be identified with the algebra of relative

cohomology H* (ék, Gr—1). The later algebra can be defined from the exact
sequence

— H"(Gr) S H(Gror) S H (Cr, Gror) — H™(Gr) =, (2)

since the homomorphism * is well studied.

Cohomologies modulo 2. It is known ([3]) that the cohomol-
ogy algebra H *(@k;Zg) is the polynomial algebra in (k — 1) genera-
tors Wo, W3, ..., Wg. The generator W; has degree ¢ and represents the
i-th Stiefel-Whitney class. The homomorphism 7* maps the classes W; to
themselves. Thus, the algebra H *(@k, ék_l) of relative homologies is iso-
morphic to the ideal of the polynomial algebra H*(@k, Z5) generated by the
class Wy,. This result can be obtained straightforwardly, if we consider (as
in 2) the isomorphism ¢*.

Cohomologies modulo p, for odd prime p We should note the

difference between the following two cases:

1) k is odd, k = 2m + 1. In this case, H*(ék, Zyp) is a polynomial alge-
bra in generators P4, P%, ... P*™ of dimensions divisible by 4 (these
generators are the Pontrjagin classes reduced modulo p).

11t is sufficient to note that the natural inclusion ék — Aso(kr) is a homotopy
equivalence. — Editor’s remark
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2) k is even, k = 2m/. In this case the algebra H*(Gj, Z,) is the poly-
nomial algebra generated by the Pontrjagin classes reduced modulo p,
P P8 ... PY" % and the fundamental class X 2™ .

The homomorphism i* of cohomology algebras generated by the natural
mapping ¢ : Gk — Gk+1, takes the Pontrjagln classes P* to the Pontrjagin
classes, except for P¥™ € H*"(G.1) of maximal dimension (this class
exists for even k). This class is taken by i* to the square (X?™)? of the
fundamental class X2™ € H*(G},) (see [5]). This yields that for even k the
algebra H*(Gy, Gj_1) is isomorphic to the ideal of H*(Gy) generated by
the class X2™; for k odd, the algebra H*(M(SO(k))) is isomorphic to the

exterior algebra with generator §(X 2m/).

Cohomologies of M(O(k)). Let us use the exact sequence (2),
where we replace Gy, with Gy.

Cohomologies modulo 2. The cohomology algebra H*(Gy; Za) is
the polynomial algebra in k variables Wy, Wy, W35, ..., Wi. As before, we
see that the algebra H*(Gy,Gr—1; Z2) is isomorphic to the ideal J of the
algebra H*(Gy; Z2) generated by the class Wi.

Cohomologies modulo p with p odd prime Denote by g the au-
tomorphism group of the two-fold covering Gk — Gj. It is easy to see
that the Pontrjagin classes P* are invariant under the action of g. Con-
versely (for even k), the group ¢ takes the fundamental class Xj to the
opposite class (—X). According to the classical theorems on cohomology
of the covering space (Eckmann [9]) this yields that for odd &, the algebra
H*(Gy; Zyp) is isomorphic to the algebra H*(Gy, Zy), and for even k = 2m
the algebra H*(Gy; Z,) is the polynomial algebra in the Pontrjagin classes
P4 P8 ... P*'~4 and the square (Xj)? of the fundamental class X}, (in-
deed, though the class X} is not invariant under g, its square (Xj)? is
invariant).

Using an exact sequence analogous to the above one (2), consider, as
above, the two cases:

1) k =2m+1 is odd. Since the algebras H*(Gy; Zp) and H*(Gam; Z,)
are isomorphic and the isomorphism is generated by i* (recall that
i*(P*™) = (X2,,)?), then

(Gk,Gk 15 )—O for all » > 0.
2) k = 2m even. In this case, the algebra H*(G), Gx—_1) is isomorphic to

the ideal of the polynomial algebra H*(Gy; Z,) generated by the class
(Xom)?2.
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The fundamental group. According to the general theory, the fun-
damental group of M(G) is a quotient group of the fundamental group of
Ag (or Bg) by the image of the group 71 (Eg) under E¢ — Ag. Conse-
quently:

a) because 71 (Gy) = 0, we have 71 (M (SO(k))) = 0;

b) since the homomorphism i* maps the group 71(Gg—1) ~ Zs onto
m1(Gr) ~ Za, m1(M(O(k))) =0 for k > 1.

Thus, the spaces M(O(k)) and M(SO(k)) are simply connected. This
yields that these spaces are aspherical up to dimension k£ — 1 inclusive,
since in positive dimensions, the first non-trivial homology group of these
spaces is H*. The first non-trivial homotopy groups are 7, (M (O(k))) = Z»
and m, (M (SO(k))) = Z.

Let us now prove a theorem from general topology which allows us to de-

fine homotopic properties of spaces by using their cohomological properties.
Basically, this theorem is due to J.H.C.Whitehead [29].

Theorem II.6. Let X and Y be simply connected cellular decom-
positions and let f be a mapping from the decomposition X to the de-
composition Y such that for any coefficient group Z,, the homomor-
phism f* : H*(Y) — H*(X) generated by f is an isomorphism when r < k,
and is a monomorphism when r = k. Then there exists a mapping g taking
the k-frame of the decomposition Y to the decomposition X such that the
mappings fog and go f (considered on the corresponding (k—1)-skeletons)
are homotopic to the identity.

In particular, this yields that the decompositions X and Y have the
same k-type: their homotopy groups are isomorphic in dimensions < k — 1.

Replace Y by the cylinder Y' of f. This is legal because Y is a defor-
mation retract of the cylinder Y’; thus, it has the same homotopy type.
Consider the exact sequence

f
H(Y) —— H"(X)— H ™Y X) - H(X) - H (Y.

The conditions imposed on f are equivalent to H"(Y',X;Z,) = 0
for all prime p and r < k. Thus, by duality argument, we get that
H,(Y',X;Z,) = 0 for r < k. Consequently, by the universal coefficient
formula, H.(Y',X;Z) = 0 for r < k. Since X and Y are simply con-
nected, one may apply the relative Hurewicz theorem [15]. By this theorem,
(Y, X) = 0 for r < k. Consequently, on the k-skeleton of ¥’ one may
define the mapping ¢ : Y/ — X inverse to f, such that go f and f o g are
homotopic to the identity mappings on the corresponding (k — 1)-skeletons
of X.
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The above description of the cohomology groups of M(O(k)) and
M(SO(k)) yields that the cohomology groups HYTi(M(O(k))) and
H**(M(SO(k))) do not depend on k if i < k. It turns out that the
analogous property takes place for homotopy groups as well.

Theorem IL.7. Ifi < k then the homotopy groups mi+;(M(O(k))) and
Titi (M (SO(K))) do not depend on k.

This theorem is quite analogous to the Freudenthal theorem on homo-
topy groups of spheres.

Let A/O(k—l) be the fibre space described above with base Gp_; and
fibres (k — 1)-dimensional open balls. Denote by A’ ® I the join (after
Whitney)! of the fibre space A/O(k—l) and the open interval I considered
as the fibre space with one point as the base. By definition, A’ ® I is a
k-ball fibre space with base Gi_1. Clearly, the mapping i : Gx—1 — Gy
that induces this space coincides with the mapping ¢, considered above,
corresponding to the inclusion O(k — 1) C O(k). Let f be the mapping from
A'®1I to A’O( K corresponding to i. Consider the compact space X obtained
from the space A’ ® I by one-point compactification by z, and extend f to
F: X — M(O(k)). Obviously, the homomorphism F* generated by F' is an
isomorphism from H**¢(M(O(k))) to the group H**¢(X) fori < k — 1. For
i = k — 1 the mapping F'* is a monomorphism. Besides that, the spaces
X and M(O(k)) are simply connected. Thus, one can apply Theorem
I1.6 which says that the homotopy groups mgy; of X and M(O(k)) are
isomorphic for i < k — 1.

Let T(k — 1) be the suspension? over M(O(k — 1)) with poles p and
p’, a is the “infinite” point of the space M(O(k)) and ¢ is the mapping
contracting the whole segment [pap’] to z. The resulting space is nothing
but X. Since g satisfies the conditions of Theorem II1.6 (one may even show

lLet (A%, B, F* G U?

[e3

1,93131), i = 1,2,... be two fibre spaces. Here B’ are
bases, F are fibres, G* are the structure groups, and Uéu are the coordinate neigh-
bourhoods, 9511 6" Uél N Uél — G" are the corresponding coordinate transformations.

Then the group G' x G? is naturally an effective group of transformations of the space
F!' x F? and the family of sets Uél X Ugl makes a covering of B! x B2, and the mapping

1 2 1 2 1 2 1 2
9a18y X Jaqpy (Ua1 X Uoél)ﬁ(Uﬁ1 XUBI)—>G X G

forms a system of coordinate transformations in the sense of [33], 3.1. The corresponding
fibre space

(A,B' x B, F' x F?,G' x G*,U}, x U2 .94 5, X 90, ,)

is called the join of the given fibre spaces. — Editor’s remark.

2Let X be an arbitrary space and let p be a point not belonging to X. The cylinder
of the trivial map X — p is called the cone over X with vertex (pole) p. The set-theoretic
union of two cones over X with vertices p and p’ (it is assumed that these cones meet
only at X) is called the suspension over X with poles p and p’. — Editor’s remark
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that ¢ is a homotopy equivalence), then the homotopy groups of the spaces
X and T'(k — 1) are isomorphic.

There is a well-known theorem: let K be a polyhedron which is aspheri-
cal up to dimension n— 1 inclusive, and let T'(K) be the suspension over K.
Then for j < 2n, the Freudenthal homomorphism E : 7;(K) — 741 (T(K))
is an isomorphism (see Blakers—Massey [2])*.

Considering the sequence of isomorphisms

T 145 (M(O(k —1))) —— mys(T(k — 1))
e (X) ~ e (MO(R))), i< k-1,

we get the desired result. For M (SO(k)) the proof is analogous.

6. The homotopy type of M(O(k))

To compute the homotopy groups of M(O(k)), it is necessary to use
some general properties of Eilenberg-MacLane spaces on the one hand, and
some properties of Grassmann spces on the other hand.

Eilenberg-MacLane space. Let 7w be an abelian group. An
Filenberg-MacLane space K(m,n) is a connected space with all homotopy
groups in positive dimensions trivial except the group =, (K(w,n)) ~ 7.
All such spaces have the same homotopy type, and at least one of them
is a simplicial decomposition. If 7w is of finite type then there exists a
space K (m,n) being a simplicial decomposition whose finite-dimensional
frames are finite decompositions. Since this fact is not assumed to be
well known, we give a short proof here. The proof is by induction
on ¢ (g is the dimension of the frame). The induction base is guar-
anteed by the fact that the n-skeleton of the complex K (m,n) consists
of finitely many spheres S™. Now, let the frame K? of some dimen-
sion ¢ > n be finite. According to Serre’s theorems [24], the homotopy
group 7y(K9) has finite type. Consequently, this group can be made
zero by attaching to K9 finitely many (¢ + 1)-balls, with boundary spheres
mapped to K?. Since these mappings can be assumed simplicial, we get,
as a result, a finite decomposition K9t! for which all groups m;(Kt!)

1Let K1 and K2 be two cones over K, whose union is the suspension T'(K) (see
the previous remark). Since the cones Kj and Ks are contractible to a point, it is
evident that the boundary homomorphism 0 : 7j1(K2,K) — m;(K) and the inclu-
sion homomorphism 7 : w11 (T(K)) — 7j4+1(T(K), K1) are indeed isomorphisms. The
Freudenthal homomorphism E : 7;(K) — m;11(T(K)) considered here can be defined
as a composition r o e o 71, where e : w1 (K2, K) — 7mj41(T(K), K1) is the natural
inclusion homomorphism. Thus, the Blakers-Massey theorem used here is equivalent to
the statement that for ¢ < 2n — 1 the homomorphism e : 7; (K2, K) — 7 (T(K), K1) is
an isomorphism. — Editor’s remark
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for n < i < g, are trivial. This decomposition is the desired (¢ + 1)-dimen-
sional frame.

The homology groups K (m,n) with G-coefficients are H" (7, n; G). Re-
call that the group H" (G, n; G) contains the so-called “fundamental class'”
t. For any homology class u € H™(A; G) of some polyhedron A there exists
a mapping f : A — K(G,n) that® u = f*(1).

The homology groups of the spaces K(Z,n) and K(Z,,n) with coeffi-
cients in Z, are computed by J.-P. Serre and H. Cartan. We recall some
remarks on their work.

Cohomology of K(Z3,n) (cf. Serre [23]). The cohomology alge-
bra H*(Z3, k; Z5) is generated by iterated Steenrod squares of the fundamen-
tal class « € H¥(Za,k; Z5), and their products. For h < k (the stationary
part of the algebra H*(Zs, k; Z)) the group H¥T"(Z,, k; Z5) is generated
by iterated squares Sqt Sq* ... Sq' (1), where > i, = h. As a basis of

this group, one may choose the set of iterated squares
Sq'*Sq"? ... Sq" (1), where iy > 2ia, iy > 2i3, iz > 2i4,... 001 = 2iy.

The sequence I = {iy, 12, ...,14,} satisfying these inequalities is an admissi-
ble sequence, according to [23]. The corresponding iterated square Sq*t Sq*
...Sq¢" is denoted by Sq’. The rank c(h) of the group H**"(Z,, k; Z5) is
equal to the number of decompositions of h into summands of type 2™ — 1
(here the order does not matter).

Analogous results hold for H(Z, k; Zs).

Homology of K(Z,k) over Z,, p > 2. We shall use only the
following result by H. Cartan: the algebra H*(Z,k;Z,) is generated by
iterated Steendor powers of the fundamental class ¢.

The Grassmann manifold Gg. As mentioned above, the alge-
bra H*(Gy; Z2) is the polynomial algebra generated by Stiefel - Whitney
classes W;, 1 < i < k. It is often useful to consider the classes W; as el-
ementary symmetric functions in variables t1,ts,...,t,. of the first degree.

IThe isomorphism H"(G,n;G) ~ Hom(G,G) takes this class to the identity map
G — G. — Editor’s remark

2Let z be an arbitrary cocycle of the class v in some cellular decomposition of the
polyhedron A. Consider the mapping of the n-skeleton of this decomposition to the
space K(G,n), taking the (n — 1)-skeleton to some point of K(G,n) and defining on
any n-cell o the element z(o) of G = 7,(K(G,n)). Since the cochain z is a cocycle
then this mapping is null-homologous on the boundary of any n + 1-cell of the cellular
decomposition; thus, it can be extended over the (n + 1)-skeleton, and, consequently,
to the whole polyhedron A (since for ¢ > n the groups m;(K(G,n)) are trivial by the
assumption). The constructed mapping f : A — K (G, n) evidently satisfies the condition
u= f*(u).

From this construction it follows that up to homotopy the mapping f is well defined

— Editor’s remark
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The variables, ¢, intoduced formally by W.T. Wu, found their topological
interpretation in the Borel—Serre theory [4,5]. By using the variables ¢,
one can easily prove the following Wu formulae [34] for Steenrod squares of
classes W;:

r—i+t—1

Sq"‘VVZ = Z < . ) ertW'H»t- (3)
t

The following lemma, whose proof due to Serre, shows that the Grassmann

manifold Gy can, to some extent, replace the Eilenberg—MacLane space
K(Zy, k).

Lemma II.8. Any linear combination of iterated Steenrod squares Sq”
of total degree h < k, which vanishes on the class Wi, € H*(Gy; Zs), is
identically equal to zero.

First, note that any class of the type Sq!(W}.), where the sequence I
is not necessarily admissible, looks like! W}, - Q;, where Q; € H"(G},) is a
polynomial of total weight h with respect to W;. Consequently, the class
Sq! (W},) belongs to the ideal J of the algebra H*(G}) generated by Wj.

Let us introduce on the set of monomials W; the lexicographic ordering
(R) by setting W,,, < W,, if m < n. For instance,

W4 < W4(W1)2 =< W4W2W1 =< W4W3.

Let Sq' = Sq''Sq™ ... Sq'", where the system I = iy,io,...,i, is ad-
missible, (ig_1 = 2im,), and let S¢!Wy, = Wy - Q7. It turns out that
Qr = Wy, W,, ... W, + monomials preceding W;, W, ... W, with respect
to (R). This fact is proved by induction on r. If » = 1 then, by formula
(3), S¢'Wy = Wi W;, thus Q; = W;. Assume the statement holds for r — 1
and consider the class

Sq' Wy, = Sq" (Sq™ ... Sq" W) = S¢" (Wy, - P),

where, by assumption, the polynomial P looks like W;, W;, ... W, + lower
order monomials in (R). This product is equal to

S¢'(Wi-P)= Y Sq™(P)-S¢""Wip= > Sq"(P) Wi Wi

0<m<11 0<m<11

Consequently, by setting Sq¢' Wy, = Wy, - Q, we get

Ql = Z Sqm(P) . Wh,m.

o<m<ig

1This is proved by iterating (3). — Editor’s remark
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In this sum the term with m = 0 looks like P - W;, = W; W;, ... W; +
monomials of lower order in (R). On the other hand, no term in the de-
composition of S¢™(P), m > 0, can contain the class W; greater than or
equal to W;, with respect to (R). Indeed, by formula (3), the square Sq¢™ W,
contains only those classes W; for which ¢ < 2s. This yields that the square
Sq™(P), m > 0, contains only those classes W; for which i < 2;, < 5.
Thus, all these terms are strictly less than W;, Wi, ... W; .

Thus, we see that all the classes Sq’(W}), where I is any admissible
sequence of total degree h, are linearly independent in the group H*T"(Gy,).
Indeed, if there were a non-trivial linear relation between these classes, then,
taking the highest term with respect to (R), we would see that this term
can be linearly expressed as a combination of strictly lower terms (in (R)),
which is impossible!.

Treating the classes W, as symmetric functions in k variables t,,, of first
degree, formulate the lemma we have proved, as follows.

Lemma I1.8'. The classes Sq(tita...t), where I runs over the
set of admissible sequences of total degree h < k, are linearly independent
symmetric functions in t;.

We have seen that the cohomology algebra H* (M (O(k)); Z2) is isomor-
phic to the ideal J of the algebra H*(Gy; Z2) generated by the class Wy.
On the other hand, the basis of the group H"(Gy;Zs) is generated by
symmetrised monomials

D ()™ (82)™ (), (4)

where the sum of exponents a; is equal to h, and the symmetrisation sign
>~ means the summation over all permuations essential for (4), i.e. over rep-
resentatives of conjugacy classes of the full symmetric group of k£ variables
by the subgroup of permutations fixing the monomial (4) 2. For instance,

D (t)(t2) .. (tk) = taty .. th.

For any decomposition (w) of h into summands h = > a; we denote by

3
S, the system of corresponding essential permutations. Furthermore, we
assume that the > sign before the monomial of type (4), means, unless

1See remark 2 at the end of the article, page 203. — Editor’s remark

2Every element of H"(G}; Z2) is a symmetric polynomial of degree h in t1,...,t.
Let ozt‘l11 ...t%" be the leading term of this polynomial. Subtracting the symmetrised
monomial Y (1)1 ... (¢r)%", we evidently get a symmetric polynomial with a smaller
leading term. Repeating this process, we can express each element of the group
H"(G}; Z2) as a linear combination of independent symmetrised monomials (4). —
Editor’s remark
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otherwise specified, that the sum is taken only over the system of essential
permutations.
In dimension k + h, the base of the ideal J consists of symmetrised

monomials
D ()™ ) T () et (5)

obtained from the elements of the base (4) by multiplication by the class
Wy = tita...tr. Indeed, any permutation which is essential for the mono-
mial (4), is essential for (5), and vice versa.

Definition. Let P be an arbitrary polynomial in variables ¢;. A vari-
able t; is a dyadic variable for the polynomial P, if the exponent of this
variable in terms of the polynomial P is either zero or! 2™.

Lemma I1.9. Any variable t,, which is dyadic for the polynomial P,
is dyadic for Sq'P as well.

Indeed, it is known that? Sq®(t,)™ = ZL (tn)™ . On the other

hand, if m is non-zero and it is a power of 2 then the binomial coefficient

3

m\ .
( a ) is congruent to zero”, except to those cases when a = 0 or a = m.

(Indeed, (72) = 1 mod 2 if and only if the binary decomposition of p

contains the binary decomposition of ¢ (see [26]).) In these cases, the new
exponent m + a is also a power of two.

Definition. By a non-dyadic  factor of the monomial
(t1)*(t2)*2 ... (t,)* we mean the monomial consisting of all non-dyadic
variables; denote the number of these variables by u, and denote the to-
tal degree of the non-dyadic factor by v. For the set of monomials in (¢;)
variables we define a quasi-order relation as follows* (Q): a monomial X
is greater than the monomial Y with respect to (Q) if u(X) > u(Y) or if
u(X) =u(Y) and v(X) < v(Y).

1The case m = 0 is also possible. — Editor’s remark

2If a +m = 1 then the relation is evident. Assuming that it holds for a + m < N,
we get for a +m = N:

Sqt™ = Sq(tm T 1) = SqUm T by 4+ Sq@ T 2
_ m—1 m—1 atm _ [ M) jat+m
() (020)) = (0) e
— Editor’s remark
3modulo 2. — Editor’s remark

4Here “quasi” means the following: if X is not greater than Y and Y is not greater
than X, it does not yield, in general, that X =Y. — Editor’s remark
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For any number h < k consider the classes
X:)L = Z(tl)al+1 (tg)a2+1 . (tr)ar-i_ltr_i_l 7 (6)

where w = {a1,a2,...,a,} is an arbitrary decomposition of h into sum-
mands, with no summand of type 2™ — 1 (non-dyadic decomposition of h).
Denote the number of such decompositions by d(h).

For any dimension m < k, consider the classes

X0 Sqt XD SPXD AL, S X)L, Sq' Wy, (7)

where Sq* is an admissible sequence of total degree (m — h), and wy, is a
non-dyadic decomposition of h.

It turns out that all classes (7) are linearly independent.

To prove it, take a term of the polynomial (6), apply the operation Sq’
and take the leading monomial. It turns out that the sum of all such leading
monomials looks like

Do) () () S (), ®)
S

where the sum is taken over all permutations S,, which are essential for the
monomial (6) corresponding to the decomposition w. Indeed, the index u
of any term of the polynomial

Sql (t) M (t) 2™ () Ty . ),

is less than or equal to r, since, by Lemma IL.9, the variables (¢,11,...,t%)
are dyadic. For v = r we have two cases: either the monomial in question
enters the polynomial

((t) ™ T ()2t () T - Sl (brgr - tr), (9)
or it enters the polynomial
Sql/ (tl)al-i-l (t2)a2+1 o (tT)aH-l . Sql” (tr-l-l - 'tk)'

In the first case we have v = u+h and in the second case v is strictly greater
than r+h. This yields that all terms of the polynomial (9) are greater (with
respect to (Q)) than any other term of the polynomial Sg’ X”. On the other
hand, no term of the polynomial (9) can vanish as a result of symmetrisation
from (8). Indeed, any permutation of variables t;, which is essential for (6),
is essential for its non-dyadic factor (t1)®+!(tg)®+1 . . (¢,.)% 1 which is
a non-dyadic factor for any term of the polynomial (9). Consequently,
transforming (9) by permutations of the system S,,, we obtain the relations
not containing non-dyadic factors. Thus their sum is non-zero.
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Since no term can be expressed as a linear combination of strictly lower
terms (in (Q)), the above arguments yield that any linear dependence be-
tween classes (7) is a consequence of those linear dependencies containing
those classes Sq’ X, leading with respect to (Q), whose members are of
the same index u = r and of the same index v = r + h, this, having the
same degree h. Furthermore, the decompositions w of h by means of which
we constructed X", for which this linear dependence holds, should be the
same. Otherwise, non-dyadic factors of higher terms (in (Q)) of the de-
compositions of the squares Sq’ X" should all be different, and their sum
should be non-zero. Thus, any linear dependence between classes (7) is a
corollary of linear relations of the type > cxSq™ X" = 0, containing only

A

one class X/
Let us write down the (Q)-leading terms of this relation:

> ea(t) ™ T (ta) L () T S (trgr ) = 0.
A

All members of this relation containing a fixed factor (t;)%1(tg)%2+t .
(t,)% 1 should sum to zero. Thus,

(b)) T ()™ ()Y “eaSg™ (b - te) = 0.
A

But, according to Lemma I1.8', all classes Sq!(t,11...t;) = 0 are linearly
independent if the degree m — h of the sequence I does not exceed k — r.
Since, evidently, h > 2r, this inequality holds for all m < k. Consequently,
the coeflicients ¢y are equal to zero. Thus, the classes (7) are not connected
by any non-trivial linear dependence.

The rank of H**™(M(O(k))), i.e. the rank of the ideal J, is equal to
the total number p(m) of decompositions of m into summands. On the
other hand, the number of classes (7) is equal to > ¢(m — h)d(h). It is

<m

easy to see that
Y pim) = 3 e(m - h)d(h).
h<m

Indeed, to each decomposition of m there correspond two decompositions:
the decomposition of (m — h) consisting of summands of the type 2™ — 1
and the decomposition of h, consisting of the remaining summands. Thus,
the classes (7) form a base of the group H**™ (M (O(k))).

Associate with each class X a mapping
F,: M(O(k)) — K(Za,k + h),
such that F*(1) = X", where [* is the homomorphism generated by the

w?

mapping F,,. The mappings F,, define the mapping F from M(O(k)) to
the product
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Y = K(Zy, k) X K(Za, k+2) x ...
X (K (Zo, k + R)A 5 x (K(Zy,2k))4®). (10)

Since the classes (7) from the base of H**"(M(O(k))), then the homo-
morphism F* generated by F', is an isomorphic mapping from the group
H¥™(Y; Z3) to the group H**™(M(O(k))) for all m < k. Considered
modulo p, p > 2, the cohomology algebra of Y is trivial!, and the coho-
mology algebra of the space (M(O(k))) is trivial in dimensions less than
2k. Consequently, the homomorphism F* is in this case an isomorphism in
dimensions less than 2k; it is a monomorphism in dimension 2k. Thus, for
M(O(k)) and Y, one can apply Theorem II.6. According to this theorem,
there exists a mapping g from the 2k-frame of the cellular decomposition
Y to the cellular decomposition M (O(k)), for which the mapping g o F' is
homotopic to the identity mapping on the (2k — 1)-frame of the decompo-
sition M (O(k)).

Consequently, we get

Theorem I1.10. The space M (O(k)) has the same homotopy 2k-type
as the product Y (10) of Eilenberg-MacLane polyhedra.

Corollary I1.11. The stable homotopy group mpn(M(O(K))), h < k,
is isomorphic to the direct sum of d(h) groups Zs.

Consider g restricted to the first factor, we get

Corollary I1.12. There exists a mapping g from the 2k-skeleton of the
decomposition K (Za, k) to the decomposition M (O(k)) such that g*(U) = ¢,
where ¢ is the fundamental class of the decomposition K(Zs, k).

Since every class u € HF(A; Zy) of any space A is an image of the
fundamental class ¢ under some mapping f : A — K(Z3, k), then we get

Corollary I1.13. Any k-dimensional modulo 2 cohomology class of any
space of dimension < 2k admits an orthogonal realisation.

7. The space M (O(k)) for small k

k = 1. The space of unoriented 1-vectors is the real projective space
PR(N) of some very high dimension N; the corresponding universal fibre
space Ap(1) coincides with the cylinder of the two-fold covering SN —
PR(N). Contracting in Ap(1) the boundary sphere SN to a point, we get as
M(O(1)) the real projective space PR(N +1). Thus, both spaces K(Z,1)
and M(O(1)) coincide with the real projective space PR(co) of infinite

1Because, according to statement 8 of Chapter II of [21], all integral cohomology
groups of the space Y are 2-groups. — Editor’s remark
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dimension. Consequently, every one-dimensional mod 2 cohomology class
admits an orthogonal realisation.
k = 2. The cohomology of the space M (O(2)) is described as follows!.

In dimension 2 there is one modulo 2 class — the fundamental class U.
In dimension 3 — the integral® class Sq'U = UW;.

In dimension 4 — the integral class X and the class U(W7)? mod 2. The
class X is the square of the fundamental class of the space M (SO(2)),
and the modulo 2 class is the square U? of the class U.

In dimension 5 there is an integer class of order two
Sq'(U(Wh)?) =UWh)?
and the class U2W; modulo 2.

For the natural mapping F' : M(O(2)) — K(Z2,2), we have for Z,
coeflicients:

F*(1) =U; F*(Sq't) =UWy; F*(S¢*) =U%
F*(Sq*Sq*t) = S*(UWy) = U*W, + U(WL)?; F*(v- Sq'v) = UW.

Consider, as in the proof of Theorem II.6, the cylinder K of F. This
cylinder K contains as a closed subset the space M (O(2)); for conciseness,

we denote it by M. From the exact sequence corresponding to the inclusion
F: M — K, it follows that

H'"(K,M;Z,) =0 for r <5,
H*(K,M; Z,) = Z, for all prime p.

1The algebra H*(M(O(2), Z2)) is an ideal of the polynomial algebra H*(Ga, Z2)
in W1 and Ws. This ideal is generated by the element W>. Consequently, by setting
U = Wa, we get: H2 = (U), H® = (UW1), H* = (U2, U(W1)?), H> = (U(W1)3,U?W})
and so on. On the other hand, by Serre’s theorem, H3(Z3,2;Z2) = Sq'(¢). Since
F*(v) = U, where F : M(O(2)) — K(Z2,2) x K(Z2,4) is the mapping constucted in the
proof of Theorem II.10, then

Sq'U = Sq ' F*(1) = F*Sq' (1) = UWy,

consequently,
Sq"(U(W1)?) =U - Sq¢" (W1)?) + Sq* (U) - (W1)? = U(W1)?,

because Sqt((W1)?) = Wy - Sq*(W1) + Sq (W) - Wi = 0. — Editor’s remark

2That is, obtained from an integral cohomology class by reduction modulo 2. Here
and in the sequel, one should note that the classes Sq‘z for odd i are integer in this
sense. — Editor’s remark
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From here, by a duality argument, we get

H.(K,M;Z,) =0 for r <5,
Hs(K,M; Z,) = Z, for all prime p.

Thus, by the universal coefficient formula,

H,(K,M;Z,) =0 for r <5,
H5(K5M7ZP) =27
Applying the relative version of the Hurewicz theorem, we get:
7T4(K,M):O, 7T5(K,M):Z.
Thus,
7T3(M):0, 7T4(M)=Z

The mapping g, which is homotopically inverse to F', can be defined on the
4-skeleton of the decomposition K. While extending g to the 5-skeleton of
K(Z3,7), we get an obstruction in the group m4(M) = Z. According to
the general second obstruction theory [14], this class belonging to the group
H?%(Z5,2; Z) is nothing but the Eilenberg-MacLane invariant corresponding
to the second non-trivial homotopy group m4(M). This class generates the
kernel of the homomorphism F* : H5(Z,2; Z) — H®(M; Z)!.

The group H®(Z3,2; Z) is the cyclic group of order four. It is generated
by the element iép(L), which is the image of the Pontrjagin square p(t)

of the fundamental class ¢ under the Bockstein homomorphism i&. The

group H?(M; Z) is the cyclic group of order two; it is generated by the class
Sq'(U(W1)?). Reducing this class modulo 2, we obtain the class U(W7)3.
It turns out that the homomorphism F* takes the generator of the first
group to the generator of the second group. It is clear that it is sufficient
to check this statement only modulo 2. To do this, let us calculate the

modulo 2 reduction of the class i(Sp(L). Let u be a cocycle of the class ¢

and let v = %5p(u) be a cocycle of the class Sq't. The Pontrjagin square is

defined by the formula? p(u) = u — u + u —1 du. Consequently, according
to the coboundary formula, we have

1Only this property of the obstruction will be used in the sequel. Thus, in the
case in question we may define the obstruction as the class generating the kernel of the
homomorphism F*. — Editor’s remark.
2The Pontrjagin product associates with a mod 7-cycle X for even 7 a mod 27 cycle
as follows. We take X and define the operation —; for u and du. We have du = 7a;
then u —1 du = u x a.
Here the operation * is defined as follows. Let K be a cellular complex and let v and
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dp(u) = du — u+u — du+ du —1 du+u — du — du — wu.
From here, dividing by 4 and reducing modulo 2, we get

iép(u) =u—v+v—iv=1 -S¢'v+S¢Sq¢'v.

The homomorphism F™* takes this class to the class
U?Wy + U*W, + U(W1)? = U(Wh)3,

i.e. to the generator of the group H®(M; Z), reduced modulo 2.
Since the generator of H®(M; Z) has order 2, the mapping F* takes the

class %5;}(0 to zero; this class is just the desired obstruction. (Note that

though this obstruction is a second order class, if we reduce it modulo 2,
we get zero. This yields that it cannot be expressed by means of operations
Sq".) Thus, we have proved the following

Theorem I1.14. In order for a class * € H*(A; Zs) of a certain 5-
dimensional space A to admit an orthogonal realisation, it is necessary and
sufficient that the class %5p(x) equals zero, where p(x) is the Pontrjagin
square of x.

Note that the conditions of this theorem hold if and only if there exists
a class X € H*(A; Zy) such that S¢?Sq'z + 2 - S¢'z = Sq¢* X.

k = 3. Compare the polyhedron M (O(3)) with the product Y of
Eilenberg-MacLane spaces, given in Theorem I1.10. It turns out that the
homomorphism F* is an isomorphism not only in dimension 6, but also

in dimension 7. On the contrary, in dimension 8, this homomorphism is
presumably not an isomorphism. Indeed, we have:

in dimension 3

F* (i) ="U,

in dimension 4
F*(Sq¢*) = UWy;

in dimension 5
F*(Sq*t) = UW, and
F*(X?) = U(W;)? (new generator);

v be two modulo 7 cohomology classes of dimensions r and s, respectively. Then for an
(r + s — 1)-simplex, we define
S
(uxv)(T) = Z WA, Qi 1y -y Qipr)V(A1, -y iy - Gigs)
i=1
— Translator’s remark.
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in dimension 6
F*(Sq¢*) = U?, F*(Sq*Sq*t) = UWoWy + (W1)?),
F*(Sq'X?) =U(Wh)*;

in dimension 7
F*(v- Sq*t) = UWy,
F*(5¢°X?) = U(W2(Wh)* + (Wh)h).

In dimension 7, we have two new generators, F*(X%) = U(W;)* and
F*(X?2) = U(W>)%2. The homomorphism F* is not an isomorphism in
dimension 8 because F*(S¢>X? + (Sq¢'t)? + S¢' X*) = 0. From the above
we get (see Theorem I1.6)

Theorem I1.15. FEvery three-dimensional class over Zs of any space
of dimension less than 8 admits an orthogonal realisation.

REMARK. I do not know what the obstruction in dimension 8 is equal to.
Possibly, it vanishes.

We conclude this subsection with the following general remark: for k > 1

there is no map
9 K(Zs, k) — M(O()),

homotopy inverse to the map F' : M(O(k)) — K(Z2,k). Indeed, as Serre
has pointed out to me, the cohomology algebra of the space K(Zs, k) is for
k > 1 the polynomial algebra in infinitely many variables. The cohomology
of M(O(k)), is, on the contrary, isomorphic (up to grading change) to the
cohomology of the Grassmann manifold Gy; thus, it is of finite type. For
sufficiently large dimensions, the rank of the algebra H*(Zs, k) is strictly
greater than the rank of H*(M(O(k))), so that the kernel of F* is distinct
from zero; thus, the mapping g cannot exist. Thus, for any k > 1 there
exist spaces of high dimension (greater than 2k), for which some modulo 2
k-dimensional cohomology classes admit no orthogonal realisation.

8. The complex M (SO(k)). Stationary case

In Section 6 we have described the “stationary” homotopy type of the
space M(O(k)). For the space M(SO(k)) we cannot do this because the
homotopy type of this space is much more complicated. Indeed, the poly-
hedron Y, equivalent to M (O(k)), is a topological product of the polyhe-
dra K(Zs,k); the polyhedron equivalent to the space M (SO(k)) is not a
product, but an iterated fibre space, where all the fibres are polyhedra of
types K (Za,r) and K(Z,m) (and, possibly, even K(Z,,n)!), and the re-
sulting bundles are, in general, non-trivial. Thus, we restrict ourselves with
the description of an equivalent polyhedron only in dimensions k + i, where
1< T
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The definition of “Silber’s polyhedron” K. It is known that the
polyhedron K(Z,k + 4) is a fibre of some asphericalal space A, whose
base is K(Z,k + 5) (see Serre, [24]'). Let u be the fundamental class
of the base K(Z,k + 5). There exists a mapping f taking K(Z,k) to
K(Z,k + 5) such that f*(u) = St3(v), where St3 is the “Steenrod cube’
of dimension 5, which is an integer class of order three?. Denote by
K the space induced by the mapping f and the fibre space A. The
space K is a fibre space with base K(Z,k) and fibre K(Z,k + 4). The
only non-trivial homotopy groups of K are the groups m; and mgq4,
each isomorphic to Z. The corresponding Filenberg-MacLane invari-
ant k € H*P(Z,k; Z) coincides with St3(v). The necessary and suffi-
cient condition for F : M — K (M is a cellular decomposition), de-
fined on the (k + 4)-skeleton of M, to be extended over M, is the
triviality of the cube Stj(x), where z is the image of the class ¢ un-
der F™*.

The cohomology of K

1. Cohomology modulo 2. Let F? be a mapping of K (Z, k) to itself
such that (F3)*(1) = 3i. The fibre space generated by the space K under
this mapping coincides with the product K(Z, k) x K(Z,k + 4), because
the Eilenberg-MacLane invariant of this space is equal to zero:

F3*(St3(1)) = SE3(F3(1)) = St3(31) = 0.

Consequently, there exists a mapping G coordinated with the bundles
over K(Z,k+4), that takes the product K(Z, k) x K(Z,k+4) to the space
K, for which the corresponding mapping of the bases K(Z, k) coincides
with F3.

The mapping G generates a homomorphism of the cohomology spectral
sequence of the bundle K to the trivial spectral sequence of cohomology of
the product K(Z,k) x K(Z,k + 4).

The homomorphism G* is an isomorphism for the E? terms of these
spectral sequences. Moreover, the homomorphism (F3)* is an automor-
phism of the algebra H*(Z, k; Z3). Consequently, the Leray differential
ds of the term FEs of the spectral sequence for the fibre K is trivial, be-
cause it is trivial in the spectral sequence of the product. The same is
true for all sequences of differentials d;. Thus we get: the cohomology al-
gebra H*(K; Z5) is isomorphic to the cohomology algebra of the product
K(Z, k) x K(Z,k+4).

IHere A is the space of paths with fixed initial point of the polyhedron K (Z,k + 5).
— Editor’s remark

2Here the author uses the fact that the classes Stik(p71)+1 (z) can be considered as

integral. — Editor’s remark
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2. Cohomology modulo p, where p is prime > 5. Arguing
as above, we arrive at an analogous conclusion: the cohomology alge-
bra H*(K;Z,) is isomorphic to the cohomology algebra of the prod-
uct K(Z, k) x K(Z, k+4).

3. Cohomology modulo 3. Here we shall need a more detailed in-
spection of the spectral sequence of K. Denote by v the fundmental class
of the fibre K(Z,k + 4). By construction of K, the transgression (which
coincides here with dj5) takes the fundamental class v to the class St3(1).
Since Steenrod’s powers commute with the transgression (up to a non-zero
coefficient), the class Stiv maps to al class St3 o St3(:) = St3(1)?, and
the class St3(v) maps to the class St3 o St3(1) = 0. Consequently, the
cohomology algebra H*(K; Z,) has the following generators:

in dimension k — generator corresponding to the class ¢ (by abuse of no-
tation, we denote it also by ¢);

in dimension k + 4 the class St4(1);
in dimension k + 8 the class St§(¢);

in dimension k + 9 the element generated by the class® St3(v).

The space equivalent to M (SO(k)). This space Y is the product of
the space K defined above and the Eilenberg-MacLane space K (Z2, k +5).
The corresponding mapping F : M(SO(k)) — Y is defined according to
the following arguments.

There exists a mapping f from the (k+4)-skeleton of the cellular decom-
position of M (SO(k)) to the space K such that f*(:) = U. Since St3U = 0
(because the cohomology groups of M(SO(k)), as well as those of G, have
no elements of order 3), then the mapping f can be extended to a mapping

f:M(SO(k)) — K
from M(SO(k)) to K. On the other hand, there exists a mapping g :
M(SO(k)) — K(Za2,k + 5) such that g*(v/) = UW,yWs3, where ¢/ is the
fundamental class of the space K(Za,k + 5). The pair f and g defines the
desired mapping F : M(SO(k)) — Y.
Let us calculate the homomorphism F* generated by F.

1Non-zero. — Editor’s remark
2Here and later the author uses Adem’s formulae (see remark on page 203) for Steen-
rod’s powers. (Recall that up to a factor the operation 2y, coincides with .5’1572,11(7’71)7 and

the operation SZ% coincides with Stga(p71)+1.) — Editor’s remark

3Indeed, since di45(v) = St3(:) and dit5(Sti(v)) = St3(.), when passing from E
to Eoo the elements v, St3(v), St3(v) and St3(¢) vanish. On the other hand, according
to H.Cartan (see page 152), in the dimensions < k + 9 the only generators of Ey =
H*(Z,k; Z3) @ H*(Z,k + 1, Z3), except the vanishing ones, are the elements indicated
by the author. — Editor’s remark
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Calculation modulo 2. Consider the dimensions k + i, where 0 <
1 < 8.

Denote by v the image of the generator of the cohomology algebra of
K(Z,k +4) under

H* (K 7o) ~ H'(Z,k: Z) @ H(Z,k + 4; Z2),

we have:

i=0; F*(1) = U.

i =1; F*(0) = 0.

i=2; F*(Sq?) =UWa.

i=3; F*(Sq¢3) =UWs.

i =4; F*(Sq*) = UWy,

F*(V) = U(W2)2

i =5; F*( P = UWs,
(L/) = UW2W3.

1 =6; F*(S’q L) = UWs,
F*(Sq¢*Sq*) = U(W2W4 + (W3)® + (W2)?),
(Sq v)  =U((W2)* + (W3)?),
F*(Sq)  =U(Ws)?.

1=T; F*(Sq L) =UWxr,
F*(S¢°Sq*1) = U(WsWa + W, W3 + W3(Wa)?),
(Sq V) = UW3(W2)2,
(Sq2L/) = UWQ(W5 + W3W2),

1=28; F*(Sq L) = UWs,
F*(Sq°SqPt) = U(WsWy + WsWs + Wi(Ws)?),
(Sq v) = UWi(Wa)?) + Wa(W3)* + (W2)?),
F*(S¢*/) = UWsWs,

F*(SqQSqlL’) = UWa(W3)3.

It is easy to see that for ¢ < 8 the elements of the algebra
H*(M(SO(k)); Z2) given in the table above, are linearly independent.
Moreover, for i < 7 these elements form a basis of the group
H**(M(SO(k)); Z2). Consequently, the mapping F* for i < 7 is an iso-
morphism from the group H***(Y') to the group H**{(M(SO(k)); Z2), and
for ¢ = 8 the mapping F* is a monomorphism.

REMARK. According to the canonical type (Serre, [23]) of the generators of

H*(Z, k; Z2), we may proceed with our calculations. In dimension 8, we get two
new generators corresponding to the Pontrjagin classes (W2)* and (W)

Calculation modulo 3. The factor K(Z2, k+5) gives nothing. Thus,
i1=0; F*(1) =U,
i=4; F*(St3) = UPy,
i=8; F*(St5) = U((Py)? + 2P%).
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modulo! 5:
i=0; F*(1) =U, F*(v) = UPy, F*(St3) = U((Py)? — 2P).

Calculation modulo p, p > 5:

i=0; F*(1) =U,
i=4; F*(v) = UPy,
i=8; F*(0) =0.

Thus, for any field of coefficients the homomorphism F* for ¢ < 7 is
an isomorphism from the group H*T*(Y) to the group H***(M(SO(k)))
and for ¢ = 8 it is an isomorphism. Since the spaces Y and M (SO(k))
are simply connected, one may apply Theorem from 6 to them. According
to this theorem, the spaces M (SO(k)) and Y have the same (k + 8)-type.
Thus, we get

Theorem II.16. For i < 7 the stationary homotopy groups
Trti (M (SO(K))) are defined by the following formulae:

Tk+1 — Tk+2 — Tk+3 — 0;

Tgtd = 45 Tgas = 425 Tgie = T = 0.

Theorem 11.17. For k > 8 an integral k-dimensional cohomology class
z of a (k+8)-dimensional space is realisable with respect to the torsion group
if and only if the integral class St3(x) vanishes.

9. The space M (SO(k)) for small k

In the present subsection, we define the first obstruction for the map-
ping g : K(Z,k) — M(SO(k)) for k < 5. This obstruction is, as in the
stationary case, the Steenrod cube St3(1) of the fundamental class.

k = 1. The space M(SO(1)) is a product S x S, where some sphere
of the type S x t is contracted to a point. This space has the homotopy
type of the circle S'. On the other hand, S' is a realisation of the space
K (Z,1). This yields that any one-dimensional integral cohomology class is
realisable with respect to the rotation group (this group, however, consists
of one element).

k = 2. The Grassmann manifold @2 of two-dimensional planes is the
classifying space of the group SO(2) = SU(1)=S'. Thus, this mani-
fold can be identified with the complex projective space PC(N) of high

IThe calculation of Steenrod’s operations St;, of the fundamental class U can be
found in Borel-Serre [5] and Wu [35].
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dimension. The universal fibre space Ago(2) over 62 can be identified with
the normal tubular neighbourhood of the space PC(N), the latter consid-
ered as a projective hyperplane in PC(N+1). This yields that the space
M(SO(2)) can be identified with the space PC(N +1). Thus, the space
M(SO(2)), as well as K(Z,2), can be realised by a projective space of “high
dimension'”. Thus, any two-dimensional cohomology class is realisable with
respect to the rotation group.

k = 3. As usual, denote by ¢ the fundamental class of K(Z,3). It
is known that the class St}(¢) is non-zero®. Let us construct the “Silber
space” K, whose Eilenberg-MacLane invariant k is equal to St3(:). This
space is a fibre space with base K (7, 3) and fibre K(Z, 7). As above, we see
that for any prime p # 3, the cohomology algebra H*(K; Z,) is isomorphic
to the cohomology algebra of the product K(Z,3) x K(Z,7). Let v be
the fundamental class of the space K(Z,7). It is easy to see that the
group H?(K,Z3) has a unique generator, which is the image of ¢ under
the fibration map K — K (Z,3); we shall denote this generator also by «.
Furthermore, H* = H® = HS = 0, the group H" is generated by the
element Sti(:), and the group H® is trivial.

Since St3(U)=0 there exists a mapping F : M (SO(3)) — K such that:

mod 2 F*(1) =T,

F*(Sq*) = UWa,

F*(S¢3) = UW3 = U?,

Fr(v) = U(Wa)?,

F*(1-Sq¢?) = UWs.
mod 3 F* (1) =T,

F*(Stir) = UPy,

and nothing more up to dimension 11.
mod p,p =25 F*(1) =T,

F*(v) = UPy,

and nothing more up to dimension 11.

Thus, for any coefficient field, the homomorphism F* is an isomorphism
from H*(K) onto H*(M(SO(3))) in dimensions < 7, and in dimension 8,
the homomorphism F* is a monomorphism. Thus, by Theorem II.6, the
spaces K and M (SO(3)) have the same 8-type. This yields

Theorem I1.18. An integral 3-dimensional cohomology class x of any
space of dimension < 8 is realisable with respect to the rotation group if
and only if the integral class St3(z) is equal to zero.

'More precisely, of infinite dimensional projective space PC(cc). — Editor’s remark
20therwise the operation Stg would be trivial in any space. — Editor’s remark
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kE =4. Let us construct the Silber space K for M(SO(4)). The ho-
momorphism F*, generated by F' : M(SO(4)) — K, is described by the
following formulae (the notation is as above):

mod 2 F*() =T,
F*(Sq%) = UWs,
F*(Sq*) = UWs3,
F*(Sq*) = U?,

F(v) = U(Wa)?,

mod 3 F (1) =T,

F*(St*) = UPy,

F*(?)=U?,

and nothing more up to dimension 12
mod p,p =5 F*(1) =T,

F*(1?) =U?,

F*(v) = UPy,

and nothing more up to dimension 12.

Thus, the homomorphism F* is an isomorphism in dimension < 8; it is
a monomorphlsm in dimension 9. Consequently, the spaces M (S O( )) and
K have the same 9-type. This yields

Theorem I1.19. An integral four-dimensional cohomology class x of
a space of dimension < 9 is realisable with respect to rotation group if and
only if the integer class St}(x) vanishes.

10. The multiplication theorem

In this subsection we describe several general theorems about classes, re-
alisable with respect to the rotation group. First, let us prove the following
necessary condition:

Theorem I1.20. A necessary condition for an integer cohomology class
x to be realz'sable with respect to the rotation group is that all Steenrod

powers St vanish for all prime p.

Indeed, for an odd prime p all Steenrod powers Stp E=DFLE7 of the
fundamental class U of M (SO(k)) vanish because the Grassmann manifold
Gy for p > 2 has no p-torsion (cf. [3]).

To prove the following theorem, we shall use some lemmas on the
Eilenberg-MacLane spaces K(Z,n).

NOTATION: Let Fy be the mapping of K(Z,n) to itself (up to homo-
topy), for which F% (1) = Nu.
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Lemma II.21. Let 0 — G' — G — G" — 0 be an ezxact se-
quence of abelian groups. Assume the endomorphisms (Fn:)* : H*(Z, k; G")
and (Fnv)* : H*(Z,k;G") are trivial. Then the endomorphism (Fn)* :
H*(Z,k;G), where N = N'N" is also trivial.

Indeed, consider the corresponding exact sequence of cohomology groups

f ¢
— H"(Z,k;G'") —— H"(Z,k; G) LN H"(Z,k;G") — .

For any integer m the homomorphisms f and g from this sequence commute
with the endomorphism (F,,,)*. Let x € H"(Z, k; G). Then, by assumption,
9(F5on (1)) = Fip (g(x)) = 0.

Consequently, F%, (z) = f(y), where y € H"(Z, k; G'), thus,

F () = Fo o Fn(x) = Fro(f(y) = f(Fe(y)) = f(0) = 0.

The lemma is proved.
From this lemma we get the following

Lemma I1.22. For any abelian group G of finite order the endomor-
phism (Fn)* : H*(Z, k; G) is trivial.

Since G is a direct sum of its p-primary components, it is sufficient, by
previous lemma, to prove that for any prime p the endomorphism (F,)* of
the algebra H*(Z, k; Z,) is trivial. But this follows from the fact that the
algebra H*(Z, k; Z,) is generated, as shown in point 6, by iterated p-powers
St;, of the fundamental class ¢.

Lemma 11.23. Let G be an abelian group of finite type and let all
elements of the group H"(Z,k;G) have finite order N. Then there exists
a non-zero integer m such that the endomorphism (Fy,)* : H"(Z, k; G) is
trivial.

Decompose the group G into a direct sum of a free group F' and a finite
group 7. Then
H"(Z,k;G) = H' (Z,k; F)+ H" (Z,k; T).

All elements of H"(Z,k; F) have order N. It is clear that it suffices
to prove the lemma only for H"(Z,k; F), because the group H"(Z,k;T)
satisfies the conditions of Lemma I1.22, because T is finite. Consider the
exact sequence

(N) ,
0—-F——F—F —0,

where the homomorphism (N) is multiplication by a non-zero integer N.
Since the group F is of finite type, the group F’ is a finite group of some
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order N'. Let « € H"(Z,k; F) and let g be a homomorphism of the exact
sequence of the homology groups

(V)
o H'(Zk F) —— H(Z,k; F) — H™(Z,k; F') — ...

Then, by Lemma I1.22, g o F, (z) = F. (g9(x)) = 0.
Thus, the element F%,(x) has type Ny, where y € H"(Z,k; F), and
thus it is equal to zero. The lemma is proved.

Lemma I1.24. Let Y be an arbitrary space for which the free com-
ponent of the k-dimensional homotopy group m(Y') is isomorphic to Z,
and let t be the generator of this free component. If for all ¢ > k
the homotopy groups m,(Y) are of finite type and the cohomology groups
HIYZ, k;7y(Y)) are finite then for any q > k there exists a mapping G,
from the q-skeleton K9 of the cellular decomposition K(Z, k) to the space
Y that takes the generator of the group m,(K(Z,k)) ~ Z to the element
N(q, k)t, where the non-zero integer N(q,k) depends only on k,q and Y.

Indeed, the k-skeleton of the cellular decomposition K(Z, k) can be
thought of as a sphere S¥. Then the corresponding mapping Gy : S* — Y
is defined as the mapping generating the element ¢ of 7 (Y). Assume for
some ¢ > k we have already defined the mapping G from the g-frame K¢
of the decomposition K(Z, k). When extending G, to the (¢ + 1)-frame
of the decomposition K(Z, k) we get an obstruction w’, which is a cocycle
whose class is an element of the group H9"(Z, k;m,(Y')), which is finite by
assumption. Consider the mapping F,, : K(Z,k) — K(Z, k), corresponding
(by Lemma I1.23) to the finite group H9"(Z, k;m,(Y)). The composite
map Gq 0 F,

F, Gq
K(Z.k) — K(Z,k) —— Y

is defined on the g-skeleton K(Z, k). When extending it over the
(¢ + 1)-frame, we get an obstruction w = (F,,)*(w’). By Lemma I1.23,
the cohomology class of the cocylce w is zero. Thus, after a possible defor-
mation the composite mapping G,0F,, is extended over the (¢ + 1)-frame of
the decomposition K (Z, k) thus defining a mapping G4+1. The correspond-
ing number N(q + 1, k) is, evidently, defined by the formula N(q+ 1,k) =
mN (g, k), thus, it is non-zero. Lemma I1.24 is completely proved.

Let us apply Lemma I1.24 to the Grassmann manifold ék of k-planes, or,
more exactly, to the universal space Agox), which is homotopy equivalent
to this manifold. The number k is assumed to be even. Recall that the
cohomology algebra H*(G},) over the real numbers is a polynomial algebra.
The generators of this algebra are the Pontrjagin classes P, i < [k/2],
and the fundamental k-dimensional class Xj. This together with Serre’s
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%-theory [22] yields that the integral cohomology group of the manifold

G, is €-isomorphic, where € is the class of finite groups, to the integral
cohomology algebra of the product

K(Z,4) x K(Z,8) x ... x K(Z,k)

of the Eilenberg-MacLane polyhedra'. Consequently?, the only homotopy
groups of G}, which are not finite are those of dimensions 4i and k (i.e. the
dimensions of the generators given above).

Let ¢ € m,(Gg) be a generator of the free component corresponding to
the class® X (the arbitrariness choice of this component plays no role). For
the corresponding mapping ¢ : S* — Gr. we have t* (Xr) = N%F, where
NY is some non-zero integer.

It is clear that the conditions of Lemma I1.24 hold. Indeed, if ¢ # 0
mod 4 then the homology group H?(Z, k;m,(Gy)) is finite because so is
the group HITH(Z, k; Z)*.

Thus, for any ¢ > k one can define a mapping G, from the g-frame
of the cellular decomposition K(Z, k) to the space Agor) and hence, to
M(SO(k)). Consider the composite mapping

Gy ~ h
K9 —— Gy, —— M(SO(k)).

Let U be the fundamental class of the space M (SO(k)). Then if k is even
then 7*(U) = X}, and, consequently, G} o h*(U) = N, where the non-zero
number N depends only on ¢ and k. Thus, we have proved

Theorem I1.25. For any integral k-dimensional homology class x of
some polyhedron of finite dimension q there exists a positive non-zero N,
depending only on q and k for which the class Nx is realisable in the rotation
group”.

REMARK. The arguments above are applicable not only to the real Grass-
mann manifold Gy, but also to the complex one, and even (for K =0 mod 4) to

1Iirom arguments on page 151 it follows that there exists a continuous mapping
f: Gy — — K(Z,4) x K(Z,8) x ... x K(Z,k), for which f*(ug;) = P*,i =
1,2,..., f*(ur) = X, where ug, is the fundamental class of the polyhedron K(Z,2p).
Since, by [24], the real cohomology algebra of the polyhedron K (Z,2p) is the polynomial
algebra in wugp, then f* is an isomorphic in the case of real coefficients. Thus, by [22],
f* is an isomorphism over integers. — Editor’s remark

2By generalised J. H. C. Whitehead theorem. — Editor’s remark

3That is of the component taken to (K (Z,k)) by the mapping f constructed in
the previous remark — Editor’s remark

4This follows from [24] that the group HP(Z, k; Z) is infinite if and only if p is divisible
by k. — Editor’s remark

5If A has dimension g, then for any = € Hk(A; Z) there exists such a mapping
f+A— K9 that z = f*(1); see page 151. — Editor’s remark
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the classifying space of the symplectic group. Consequently, the analogous theo-
rem holds not only for SO(k) but also for the unitary (resp., symplectic) group.
However, for these groups the coefficient N is much larger.

11. Summary of results

Below we formulate the results concerning our initial problem: to realise
a given homology class by means of a submanifold. According to Theorems
I1.5 and I1.5, this problem is reduced to the question whether the cor-
responding cohomology class admits an orthogonal realisation. A partial
answer to this question was given in §§ 7-10.

1. Modulo 2 classes. From Theorems II.13-11.15, we get

Theorem 11.26. For any differentiable manifold V', all elements of the
following homology groups are realisable by submanifolds:

H,_ (V") for all n;
H,_2(V") for all n < 6;
H,_3(V") for alln < §;

H;(V") for i <n/2 and all n.

Note that in the case of H,,_(V™), the obstruction (1/2)dp(u) (see
Theorem II.14) necessarily vanishes on the fundamental class of any
five-manifold V®. Indeed, for an orientable manifold V?® this is triv-
ial and for a non-orientable one it follows from the fact that the fun-
damental class of the group H®(V?°,Z) is a Steenrod square Sq', thus,
it is non-zero when considered modulo two. We cannot say any-
thing about realisability of elements of the group Hy(V®). This is
the simplest example of homology groups such that the realisation-
by-submanifold question cannot be solved by using results obtained
here.

2. Integral cohomology classes. From Theorems II.17-11.19
we get

Theorem I1.27. For any orientable manifold V™, all elements of the
following integral homology groups are realisable by orientable submanifolds:
Hy (V™) Hy—o(V™) for all n; H; (V™) fori <5 and all n.

In the limit case Hs(V®; Z) the corresponding obstruction, which is the
Steenrod cube St3(u), has order three thus, it vanishes on the fundamental
class. Thus, we get
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Corollary I1.28. For any orientable manifold of dimension < 8 all
integral homology classes are realisable by submanifolds.

Here the simplest case not covered by our theorems, is the group
Hg(V?; Z) (see, however, remark 1).

Furthermore, note that, by Theorem I1.17, in order for a 8-dimensional
homology class of any manifold of dimension > 17 to be realisable by a
submanifold, it is necessary and sufficient that the cube St3 of the dual
cohomology class vanishes.

Finally, from the “multiplication” Theorems II.4 and I1.25, we get

Theorem I1.29. For any integral homology class z of some orientable
manifold V" there exists a non-zero N such that the class Nz is realisable
by a submanifold.

This theorem has an interesting corollary, that deals with homology
group over the integers or rational numbers.

Corollary I1.30. The integral (rational) homology groups of any ori-
entable manifold V" have a basis consisting of elements realisable by sub-
manifolds.

REMARK. One should not think that any integral homology class of some
manifold can be realised by a submanifold. In Chapter III, we give an example
of a homology class of dimension 7 (in a manifold of dimension 14), which is
not realisable by means of a submanifold. Moreover, it turns out that for each
dimension > 7 there exist (in some manifold of arbitrarily large dimension) non-
realisable integral homology classes.

I don’t know whether there exist non-realisable homology classes of
dimension 6.

The realisability of classes z and 2z’ does not yield, in general, the real-
isability of z 4 2’. This is true, in general, when the dimensions of z and z’
are strictly less than half the dimension of the given manifold. Conversely,
the intersection of two realisable homology classes is realisable. It follows
almost immediately from Theorem 1.5.

Necessity of the differentiability assumption. All theory described here
relies on method, where the ambient manifold and all submanifolds are
endowed with a differentiable structure. However, for the realisation of
classes modulo 2 one can show that some conditions of Theorem II.1 have
an intrinsic topological meaning. For instance, let F': M (O(k)) — K(Z2, k)

1 One may show that any integral homology class of dimension 6 is realizable.
The corresponding obstruction defined by the homomorphism Stg s H SV, Z2) —
H"=1(V™; Z), is identically zero. Analogously, one can improve the results of Theorems
I1.18 and I1.19. In Corollary I1.28, one can replace 8 with 9. Thus the simplest homology
group for which the question is open is H7(V10; 2).
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be the canonical mapping for which F*(:) = U and let ¢ = T'(¢) be some
element from H*(Z2, k; Z3) belonging to the kernel of F* (here T is a cer-
tain sum of iterated Steenrod squares S¢'). Clearly, the cohomology class
x € H¥(V™) corresponds to the class of some smoothly embedded manifold
if and only if T(z) = 0. On the other hand, one may show that if T'(z) is
not equal to zero modulo two then the homology classes corresponding to z,
cannot be realised even by a topologically embedded manifold. Indeed, as I
showed in [27], with any topologically embedded manifold one can associate
generalised normal characteristic classes W, which have formal properties
of the Stiefel-Whitney class of normal bundles of some smoothly embedded
manifold. Moreover, for these classes the Wu formulas (3) (that can be
proved by using relation given on page 203 for the iterated squares Sq').
With any operation of type T increasing the dimension by ¢, we may asso-
ciate a certain polynomial in W; of total degree 7. If the class T'(¢) belongs
to the kernel of F* then this polynomial is identically zero. Consequently,
T(x) should be equal to zero, which contradicts the initial assumption. All
these calculations can be performed explicitly for the operation 7', defined
as
T(1) = (S¢*Sq"e?) - * + (Sq'1)® + Sq'e - 2,

where ¢ is the fundamental class of K(Z3,2). This example was communi-
cated to me by Serre.

CHAPTER 11

On Steenrod’s problem

1. Statement of the problem

Steenrod [12] has stated the following problem: define whether for a
given homology class z € H,.(K) of some finite polyhedron K there exists
a compact manifold M" and a mapping f : M" — K such that the class
z is the image of the fundamental class of M" under f.. For solving this
problem, we shall also require that M" is differentiable. As we shall see,
the answers to this question are quite different depending on the coefficient
group (Z or Zs). It turns out that Steenrod’s problem is closely connected
with the submanifold realisation problem considered in Chapter II.

2. Definition. Manifolds associated with a given finite
polyhedron K

Let K be a finite m-dimensional polyhedron. It is known that K can be
linearly embedded in a Euclidean space R™ of dimension n > 2m + 1. Let
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us now define, e.g., as a solution of Dirichlet’s problem, an integral function
f of class C°°, which is equal to zero on K and is strictly positive on the
complement R™\ K. Since K is an absolute neighbourhood retract, then
for some open neighbourhood U of K there exists a retraction mapping
r: U — K. Let ¢ be a small retraction value of f such that the pre-
image f~1(0,c) is contained in the neighbourhood U (such a ¢ exists by
Theorem I.1). This pre-image M™ = f~1(0,¢) will be a neighbourhood
of the polyhedron K, whose boundary (i.e. the pre-image f~1(0,c)) is a
differentiable manifold in R™. It is evident that the polyhedron K is a
retract of the neighbourhood M™. The corresponding retraction mapping
is a part of the mapping 7.

REMARK. If on the interval [0, ¢] there is no critical value of f then the poly-
hedron K is a deformation retract of the neighbourhood M™. The corresponding
deformation M™ — K can be defined as a flow along the integral curves of the
gradient function f. However, I don’t know whether there always exists a function
f, not having arbitrarily small critical values.

From the neighbourhood M™ with boundary T"~! = f~!(c) one can
get, by using the classical “doubling” construction some compact subman-
ifold V™. This manifold is obtained by gluing two isomorphic copies
of the neighbourhood M™ along their common boundary T"~!. Denote
by g : M™ — V™ the inclusion mapping and by A : V"* — M™ the mapping
obtained by identifying the two components M7 and MJ. The manifold
V™ is called the manifold associated with the finite polyhedron K. It is
clear that the polyhedron K is a retract of any associated manifold; thus,
for any coefficient group the homomorphism h* o r* : H"(K) — H"(V")
generated by roh : V" — K is a monomorphism. Indeed, the composi-
tion of the mappings r o h and g o ¢, where 7 is the inclusion mapping for
K — M™", is the identity.

Now, let us prove the following theorem that establishes the connection
between the problems of this chapter and the problems of the previous
chapter.

Theorem II1.1. In order for the homology class z € H,.(K) to be the
image of a compact differentiable manifold, it is necessary and sufficient
that for some large enough n, the image of the class z in the manifold V"
associated with the polyhedron K can be realised as a submanifold.

The sufficiency is evident. Indeed, if z is realized by a compact subman-
ifold W in V™ then this class is the image of the fundamental class of W"
under the homomorphism generated by the retraction V" — K.

The condition is necessary. Assume that z is the image of the funda-
mental class of some smooth manifold W" under f. Consider

a) a regular embedding g of W” to some R",
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b) a linear embedding i of K in some R™.

Denote by Y the cylinder of the mapping f. For every point x of W7,
denote by (z,t) the point of Y dividing the segment [f(x), x| with ratio ¢
(0<t<1).

Finally, let a be a real non-negative parameter. Define an embedding
F, of Y into the Euclidean space R"*™*1 ~ R" x R™ x R by setting

Fy(z,t) = (atg(x), (1 = t)io f(x),at),
Fo(y) = (0,i(y),at), y € K.

Let M be a certain neighbourhood of the polyhedron described above
embedded to R"*™*! by means of . By compactness argument, for some
small value of the parameter a, the image Fi,(Y) for a < ¢ is contained in
M. Then the image F,(W7",1) is a submanifold of the neighbourhood M
and, consequently, it is a submanifold of the associated manifold V. The
fundamental cycle of this submanifold belongs to the image k(z) of z under
the inclusion mapping k : K — V, corresponding to F,. Thus, Theorem
ITI.1 is completely proved.

3. Applications. The case of modulo 2 coefficients

Whenever the class k(z) is realisable by a submanifold of the associated
manifold V", the Steenrod problem has a positive solution. The dimension
n of the associated manifold can always be made greater than 2r. Conse-
quently, considering the case of modulo 2 coefficients and taking Theorem
11.26, we get:

Theorem II1.2. Any modulo 2 homology class of any finite polyhe-
dron is an image of the fundamental class of some compact differentiable
manifold.

For the case of integer coefficients, Theorem I1.27 yields

Theorem II1.3. Any integral homology class of dimension <5 of any
finite polyhedron is the image of the fundamental class of some compact
orientable manifold.

From Theorem II1.29 we get the following “multiplication theorem™

Theorem II1.4. For any integer p-dimensional homology class z of
some finite polyhedron K there exists a non-zero integer N depending only
on p such that the class Nz is the image of the fundamental class of some
differentiable manifold.

In order to get more exact results in the case of integer coeflicients, one
should introduce new operations on homology classes of K.
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4. Operations 97

Let K be a finite polyhedron, topologically embedded into R™. Consider
the projective limit H*(U) of the finite support cohomology algebra for open
neighbourhoods of K in R™. According to the Poincaré duality law (see [27],
Theorem II1.4), for any coefficient group there exists an isomorphism y from
the group H,(K) to the group H" " (U).

For any even i, define a homomorphism ¥ : H,(K; Z,) — H,_;,(K; Z)
by setting _

P = xSt x,
where St? is Steenrod’s power! of index i.

The operations 97 corresponding to Sﬁ; with odd index are defined by

the formula
ﬁgr-l—l = 1911) © ﬁgr’

where ) is the Bockstein homomorphism (%6) (This definition allows

us to avoid the signs 4, which appear because the operator Stzl) does not
commute with the suspension.)

The following properties of the operators ¥, proved in [27] for the case
p = 2, can be easily extended for the case p > 2.

1) The operations ¥ are topologically invariant, i.e. they do not depend
on the way of embedding of K into Euclidean space.

2) The operations ¥¥ commute with the homomorphisms f* generated by
continuous mappings f : K — K'.

3) Over the field Z,,, the operations ¢} can be expressed via St},. Let Q, :
H" YK, Z,) — H"(K, Z,) be the homomorphism which is dual to the
homomorphism ¥ considered over Z,. It turns out that the homomor-
phisms Q! with odd indices 4 are connected with the operations St/,
by the following formulae:

> QpTISt, =0 m,i=0 mod2(p—1), Q=1

The proof of these formulae is quite analogous to the proof of formula (60)
of Theorem I1.3 of [27]?. Homomorphisms Q; with odd indices are obtained

1Here we assume that Steenrod’s powers Stf,k(p Y are endowed with normalising

coefficients introduced by Serre [5]. (Serre denoted the operation Stf,k(pil) by @5)
Odd index powers are obtained from the powers @;; with even index by using Bockstein’s

homomorphism 1 d.

p
2See Editor’s remark on page 204 at the end of the article. — Editor’s remark
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from homomorphisms in, with even indices according to the following for-
mula (which is dual to the formula defining ¥7):

2r+1 2 1
QT =@y 0 Qy,

where Q; is the Bockstein homomorphism (1/p)d, with the image reduced
modulo p.

The relations 3) indeed allow us to express Q}, via the operations St/,.
For instance,

Q§ _ _St§, Qg = —Sté o Q% = StéSté.

Now, let us return to the polyhedron K, embedded into the associated
manifold V™. Let z be an element of H, (K; Z). We shall denote the image u
of the cohomology class x(z) under the natural mapping from H" " (U; Z)
to H™"(V™), also by x(z) (abusing notation). The class u is Poincaré-
dual to the homology class i.(z) € H,(V"™). Since the homomorphism
s+ H(K) — Hp(V™) is a monomorphism, so is x : H(K) — H" "(V").
Besides, by definition,

Styx(z) = £x(97(2)).

As we know, the homology class i.(z) is realisable in V" by a submanifold
if and only if all Steenrod powers S t; (i, p odd) of the corresponding coho-
mology class x(z) are equal to zero (Theorem I1.20). Thus, the following
theorem holds.

Theorem IIL.5. In order for an integral homology class z to be the
image of the fundamental class of some compact differentiable manifold, it
is necessary and sufficient that all homology classes V% (z) for odd p and i
vanish.

In dimensions < 8 this condition will be sufficient. Indeed, from Theo-
rem I1.17 we get

Theorem II1.6. In order for an integer homology class z of dimension
< 8 of a finite polyhedron to be the image of the fundamental class of some
compact differentiable orientabel manifold, it is necessary and sufficient that
the integral homology class ¥3(z) vanish.

For r < 5, this result is known from Theorem III.3. Consider the case
r = 6, when the class ¥2(z) is a third order element of H;(K;Z). If this
class is non-zero then for some integer m, divisible by three, there exists
a cohomology class v € H'(K; Z,,), whose scalar product with 93(z) is
non-zero. Let [ be the mapping from K to K(Z,,, 1), such that f*(:) = u,
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where ¢ is the fundamental class of K(Z,,,1). Consider the commutative
diagram
H¢(K;Z) —— He(Zm,1;2)

ﬁgl lﬂg
H\(K;Z) —L— H\(Zn,1;2).
According to well-known results [11] on homology groups of cyclic groups,
the group Hg(Zm,1;Z) is trivial. Thus, f.(92(z)) = 0 and the scalar
product of the elements ¥3(2) and w is equal to zero. Since this is true for
any integer m, then the integral homology class ¥3(z) is equal to zero. Thus
we have

Corollary IT1.7. Every siz-dimensional integral homology class of any
finite polyhedron is an image of the fundamental class of a certain compact
differentiable manifold.

Let us show now that this result cannot be improved. Preliminarily, let
us prove the following lemma on Eilenberg-MacLane polyhedra.

Lemma IIL.8. Forr > 2, the cohomology class St3Sti(.) of K(Zs,7)
18 MON-Z€70.

First of all note that if the class St3Sti(:) is non-zero in K (Z3,n) then
it is non-zero in all other polyhedra K(Zs,m) for m > n, because, up to
sign, Steenrod’s powers commute with the suspension. Thus, it suffices to
show that the class St3S5t1(¢) is non-zero in K(Z3,2). This is really true,
but the direct proof is rather complicated. Thus, it would be convenient to
replace the complex K(Z3,2) with the product of two complexes K (Z3,1).
Let 14 and v be the fundamental cycles of the two complexes K (Z3, 1), and
let up = S’téul and ug = S’téug be the generators of the two-dimensional
cohomology groups of these complexes over Z3. Then

Sth’tzl,)(ul ‘Ug) = St%S’té(ul Vg — V7 - Ug)
= Sti((u1)? - vo — (u2)® - v1) = (u1)® - ug — uy - (ug)® #0.
Thus, the lemma is proved!.
Since the integral class
St3S8t3(1) € H™(Z3,m; 2), 1> 2,

is non-zero, then, by the duality argument, there exists a cohomology class
2 € Hyy5(Z3,7; Z), whose scalar product with the class St35t1(1) is non-

'Indeed, consider a continuous mapping f : K(Z3,1) x K(Z3,1) — K(Z3,2), such
that f*(:) = vive. Then f*St3Sti(v) = St3Sti(v1va) # 0, and hence, St35t5(1) # 0. —
Editor’s remark
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zero modulo! 3, i.e. (2,Q3(1)) # 0. Thus, (93(2),:) # 0, so that ¥3(z) # 0.
Thus, we have proved the following

Theorem IIL.9. In any dimension r > 7 in some finite polyhedron
there exists an integral homology class that cannot be represented as the
image of the fundamental class of a compact smooth differentiable orientable
manifold.

EXAMPLE. Let us realise complexes K (Z3,1) by means of lens spaces.
Here it is sufficient to consider the spaces L7 of dimension 7, which are
the quotient spaces of the sphere S” by the group Z3 acting freely on this
sphere. Let L; and Ly be two copies of L. Denote by v1,v0,u1 = Stivg
and by ug = Stivy the generators of H'(Ly; Z3), H'(Lg; Z3), H*(L1; Z3)
and H?(Lg; Z3), respectively. Consider the product V14 of Ly and Ls. Let

X = uy - vy - (U2)2 — UV (UQ)B.
This is an integral class because X = Sti(vy - va - (u2)?).
Let 2 € H;(V'*; Z) be the homology class which is Poincaré-dual to the

class X. Tt turns out that the homology class 92(z) reduced modulo 3 is
non-zero. Indeed, consider the scalar product

(03(2),v1 - 1) = (2,Q5(v1 - 1)) = (2, StaStL(vy - 1)) mod 3.
This scalar product is equal to the Kolmogorov-Alexander product
X - St38t5 (v - ve) = X - ((u1)? - va — vy - (u2)?) = v1 - va(ug - uz)® # 0.

Consequently, 93 () is non-zero, hence the homology class z is not the image
of the fundamental class of any compact differentiable manifold. Thus, z
cannot be represented in V' by means of a submanifold. This fact can be
checked directly, as well:

St5X = Sty((u1)® - va - (u2)?) = (ug - u)® # 0.

One can show analogous examples of non-realisable (by submanifolds)
seven-dimensional homology classes in manifolds of arbitrarily high dimen-
sions.

5. Steenrod’s powers in cohomology algebras of differentiable
manifolds

Let V™ be a compact differentiable manifold and let (V™) be its funda-
mental class. By Theorem IIL5, all integral classes ¥¥ (V™) for odd prime p
and for ¢ =1 mod 2(p—1) are equal to zero. Consequently, by the duality
argument, we have:

!Here one should note that the class St3St(.) is the image of the class St St (:) un-
der Bockstein’s homomorphism. — Editor’s remark
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Theorem I11.10. For every compact differentiable orientable manifold
V™ the homomorphisms

Q,: H' (V™ Z,) — H"(V" Zy)
are trivial (p and i are odd).

For instance, the homomorphism
Q5 = St3Sty : H™ (V™) — H™(V"™; Zs)

is trivial.

These relations between Steenrod’s powers can be obtained by applying
Theorem I1.20 to the diagonal class of V™ x V™ which is realisable by a sub-
manifold. Note that the relations above take place not only in differentiable
manifolds but also in arbitrary manifolds which are images of differentiable
manifolds under mappings of degree 1. However, in this case they possi-
bly cannot be obtained from Poincaré duality. There is an open question,
whether these relations can be proved for any topological manifold without
any differentiability assumption?

CHAPTER [V

Cobordant differentiable manifolds

Let V™ be an orientable compact manifold. One says that M"t! is a
manifold with boundary V'™ if the following conditions hold:

a) the complement M™*1\ V" is an (n + 1)-dimensional open manifold;

b) for any point 2 of V™ there exist a neighbourhood U of this point in
M+ and differentiable functions zg, 21, . . ., ., defined in this neigh-
bourhood such that

1) the functions xg,1,...,7, are local coordinates in M"HL,
i.e. they realise a homeomorphic mapping from U to the half-
space of the space R"t!, defined as zg > 0;

2) the functions 1, ..., x, are local coordinates in V", i.e. they are
differentiable in V", and they provide a homeomorphism from the
intersection U’ N V"™ to the hyperplane xg = 0.

If M1\ V™ is orientable then the boundary V™ is orientable as well
and every orientation of M™*! naturally generates an orientation for the
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boundary V™. The correspondence for these orientations is defined by the
boundary operator 6 : Hy,1(M"1, V") — H, (V™).

One says that an orientable compact manifold V" is null-cobordant if
there exists a compact orientable manifold M™*! with boundar V", such
that in M™*! one can introduce an orientation inducing the given orien-
tation of V™. The present chapter is devoted to the solution of the fol-
lowing problem by Steenrod [12]: find necessary and sufficient conditions
for a given manifold V" to be null-cobordant. In [27], I indicated some
conditions necessary for a manifold to be null-cobordant or null-cobordant
modulo 2 (i.e. to be the boundary of some manifold without any orientabil-
ity assumption). Generalising this problem, we can address the question
about sufficient conditions.

Definition. Cobordant manifolds. Two oriented compact manifolds V'
and V'’ of the same dimension k are called cobordant (notation: V ~ V'), if
the manifold V' U (—=V') which is the disjoint union of V' and V, the latter
taken with the opposite orientation, is null-cobordant.

If V and V' are cobordant to the same manifold V" then they are cobor-
dant. For the proof, it is sufficient to identify along V" the boundaries of
the manifolds defining the inner homology V ~ V’ and V’/ ~ V”. This
yields that the set of all compact oriented manifolds of dimension k is di-
vided into equivalence classes. We shall denote the class of a manifold V'
by [V].

For these classes, let us define a commutative summation by setting
[V]+ [V'] = [V UV']. Denoting by —V the manifold V' with the opposite
orientation, we have [V]+[—V] = 0, where by 0 we denote the class of null-
cobordant manifolds. Indeed, the manifold V' U (=V) is the boundary of the
product V x I. Thus, the set of classes [V] of k-dimensional manifolds is an
abelian group, which we denote by QF (the cobordism group in dimension

If a manifold V' is cobordant to a manifold V' then it is easy to check that
for any orientable compact manifold W the product V' x W is cobordant
to the product V' x W. This yields that for the classes [V] one can define
a multiplication. This multiplication is anticommutative and distributive
with respect to the summation. Thus, the direct sum € of the groups QF
is defined as a ring.

If we omit all orientation arguments, then we get modulo 2 cobordant
manifolds; we shall denote modulo 2 cobordism classes by [V]a. Denote the
group of modulo 2 cobordisms in dimension k& by 9¥; denote by 91 the ring
of cobordism classes modulo 2. It is clear that in the ring 91, each element
has order 2.
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1. Invariants of cobordism classes

It is evident that any condition that some manifold is null-cobordant
can be reformulated as a condition that two manifolds are cobordant. Thus,
Theorem V.11 of [27], saying that for a null-cobordant oriented manifold
V4 the signature 7 of the quadratic form defined by means of the coho-
mology on the space H?¥(V4*) is equal to zero, gives the following theo-
rem:

Theorem IV.1. For two oriented cobordant manifolds V and V'
of dimension 4k the quandratic forms defined by using the cohomology
on H* (V) and H?*(V"), respectively, have the same signature 7.

(Recall that the signature of a quadratic form is the difference between
the number of positive squares and the number of negative squares in the
canonical representation of the quadratic form over the field of real or ra-
tional numbers.)

It is easy to see that the invariant 7 of cobordism classes, whose dimen-
sions are divisible by 4, is additive and multiplicative. Thus, it defines a
homomorphism from the ring € to the ring Z of integers.

Furthermore, Pontrjagin’s theorem [18], cited in [27], which says that
characteristic classes of null-cobordant manifolds are equal to zero, yields
the following Theorem:

Theorem IV.2. For cobordant oriented man‘ifolds V and V' of dimen-
sion 4k, Pontrjagin’s characteristic classes II(P*) coincide.

These invariants are additive, and the characteristic number correspond-
ing to the class P* of maximal dimension, is moreover, multiplicative.
(This follows from the fact that Pontrjagin’s classes are defined according
to the tensor law for sphere-fibre spaces, which are products of two given
fibre spaces.)

For Stiefel-Whitney classes, the following theorem holds

Theorem IV.3. Two modulo two cobordant manifolds V and V' of the
same dimension k have equal Stiefel-Whitney characteristic classes.

Here the invariants are also additive, and the only multiplicative number
is the number corresponding to the class of maximal dimension. The lat-
ter invariant coincides with the Euler-Poincaré characteristic taken modulo
two.

2. Differentiable mappings of manifolds with boundary

Let X"*! be a compact manifold with boundary V" and let f be an
arbitrary differentiable mapping from the manifold X™*! to some manifold
MP, containing a compact submanifold N?~9. The mapping [ is t-reqular
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on the submanifold N?~9, if so are (in sense of 1.3) the restriction of f to
the interior X1\ V" and to the boundary V™.

The pre-image of a t-regular mapping. According to general
properties of ¢-regular mappings given in 1.4, the intersection of V" with
the pre-image A"t~ = f~1(NP~9) is a submanifold C"~ of V™. Analo-
gously, the intersection of the pre-image A"+t~ with the interior X"\ V"
is a submanifold A"T1=9\ C"~4 of dimension n + 1 — ¢. Let us show that
AMH1=4 is a manifold with boundary C™~9. Let = be an arbitrary point of
the manifold C"9, let y = f(x) be its image in NP~9 and let y1,y2,...,Yq
be some local coordinates defined in the g-ball which is geodesically nor-
mal to NP79 at y. Furthermore, let (x1,x2,...,2,,t) be a local coordi-
nate system defined in a certain neighbourhood of z, for which the last
coordinate ¢ takes only positive values and ¢ = 0 is the equation of the
boundary V"; then the ¢-regularity of f means that on V™ the mapping
(x1,22,...,%n,0) = (Y1,¥Y2,...,Yq) has rank ¢ in z. In other words, there
exists a Jacobian |0y, /0x;| of order g, which is non-zero for z; = 0 and
t = 0. By continuity, this Jacobian is non-zero for z; and ¢ small enough.
Thus, the variables

(Y1,Y25 -+ Ygr Tgis - Ty )

are local coordinates in some neighbourhood of x. In this neighbour-
hood, the pre-image A"+t~ is defined by the linear equations y; = 3, =
...Yq = 0, and the submanifold C"~9 is defined by the same equations
and the equation t = 0. Thus, for the point x there is a neighbourhood
of A"*1=4 which is homeomorphic to the half-space of the space R"t!~¢
(with coordinates g1, ..., xn,t), restricted by the space R"~? (with co-
ordinates Zq41,...,%,), which is the image of the manifold C"~ 7. The
statement is proved.

Definition. Induced orientation of the submanifold. Let f be a map-
ping from an orientable manifold V™ to a manifold MP?, which is ¢-regular
on a submanifold NP~ and let C"~ ¢ be the pre-image of NP~%. Assume
that the normal fibred neighbourhood of N?~? in MP is orientable. Then
for the normal tubular neighbourhood of N one can define the “funda-
mental” class U = ¢*(w) € HY(T; Z). The tubular neighbourhood of the
submanifold C"~? is then oriented as well. The corresponding “fundamen-
tal” class U will be the image of the class U of the neighbourhood T" under
f*. We say that the manifold C"~? is endowed with an orientation induced
by the orientation of the manifold V™, if its fundamental cycle (C™9) is
defined in the normal tubular neighbourhood of the submanifold C™~¢ by
the formula®

IBy —~ we denote the Whitney product. — Editor’s remark
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() =(V") ~U,

where (V") is the fundamental n-dimensional closed-support homology
class of the tubular neighbourhood of C"~¢ that induces the given ori-
entation of the manifold V™.

Let f, as above, be some mapping from an oriented compact mani-
fold X"*! with boundary V" to a manifold MP, so that f is t-regular
on some submanifold NP~?. Furthermore, assume the normal bundle
of NP=9 is orientable. Then the pre-images A"T1-¢ = f=1(NP~9) and
C" = AnH1=9 N V™" are orientable as well; this can be shown, for instance,
by using the Whitney duality theorem [32]. Let us endow V" with the ori-
entation induced by the orientation of X" *1. Thus, (V") = 9(X"+1, V"),
where 0 is the boundary operation. Under these assumptions, the ori-
entation of the submanifold C"~9, induced by its embedding in V", co-
incides with the orientation C™~9 considered as the boundary A"*T'—9
the latter being endowed with the orientation induced by X™*!. Indeed,
Vo~ U = 9(X") ~ U = (X" ~ U). Now, let us prove the
following;:

Theorem IV.4. Let f and g be two mappings of class C™, m = n of
an oriented compact manifold V™ to a manifold MP, which are t-reqular
on NP9 C MP, the latter having orientable normal neighourhood. Let
Wn=a = f=1(NP=9), W=49) = g=1(NP=9) be the pre-images of the sub-
manifolds NP~9, which are, as is easy to see, orientable manifolds. Let us
endow them with the orientation induced by V™. If f is homotopic to g
then the manifolds W™= and W'™~ 1 are cobordant.

Omitting the orientability assumption in the condition of the theorem,
we get that the pre-images f~1(N?~%), g=1(NP~9) are cobordant modulo 2.

First, let us prove the following theorem. The idea of the proof was
communicated to me by Whitney.

Lemma IV.5. If two mappings f and g of class C™ from a mani-
fold V™ to a manfiold MP are homotopic, then they can be connected by a
C™-class deformation.

Let FF : V x I — MP be a homotopy of class C", connecting f to
g. Replace it with the homotopy G : V x I — MP, defined as follows:

GVit)=f=FV,0)if0<t< L Gy =Py, )il <t <

GV,t) =g if % < t < 1. Endow the product V x I with a Riemannian
metric, which is the product of some metric of V" and the Euclidean metric

of the interval I. Then we smooth the mapping G, by replacing G by its
average over the geodesic balls of radius . We let r be a constant less than

3.
47
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% for % <t< %; for the boundary fibres ¢t < % and % < t we let r be an

increasing function of class C'° of variable t (resp., (1 — t)), which is equal to
zero for t = 0 and for t = 1. Thus, in the fibre % <t < % the differentiability

class of GG is increased by one, and it is not decreased in the fibres 0 < ¢ < 1

8
and % < t < 1. Furthermore, on (V;0) and on (V, 1) the smoothed mapping

G coincides with f and g, respectively. Reiterating this construction several
times, we get a mapping of class C™ from V x I to MP, that coincides on
(V,0) and (V,1) with f and g, respectively. The lemma is proved.

The constructed mapping F' : V x I — MP of class C" might not
be t-regular on NP~ But the set Hy of such homeomorphisms h € H
of the tubular neighbourhood T of NP~7 for which the mapping h o F
restricted to the interior of V' x I, is not t-regular on NP~ is a thin subset
of H. An analogous statement holds for homomorphisms A for which the
mapping h o F, considered over (V,0) U (V,1), is not t-regular on NP~
Thus we see that Theorems 1.5 and 1.6 hold for mappings of manifolds with
boundary. For F, considered on (V,0) U (V, 1), choose a homomorphism h
close enough to the identity and satisfying Theorem I.6. Let I/ = ho I’ and
let f/, g’ be the parts of F’ restricted to (V,0) and (V, 1), respectively, By
Theorem 1.6, the manifolds C"~9 = f/~1(NP~9), C"("=9) = ¢/~ (NP~9) are
isotopic to the manifolds W"~¢ = f~Y(NP~9) and W'("~9) = g=1(NP~9),
respectively. This isotopy preserves the induced orientations, so that the
oriented manifolds C"~% and C"("~9 together form the boundary of the
manifold A = F'~'(N?~9). Thus, the manifolds C"~ 9 and C'("~9 are
cobordant, hence, so are W9 and W/("~9 . Theorem IV.4 is proved
completely.

3. L-equivalent manifold

In I1.2, we associate with each oriented submanifold W™~ of orientable
manifold V" some mapping f : V" — M(SO(k)). Here we make this
dependence between submanifolds and mappings more precise.

Assume a manifold V" is immersed to the space R*™™. For any point
x of the submanifold W"~* denote by H(x) the k-plane tangent to V"
at o and normal to the submanifold W"~* (in any Riemannian metric).
Associate with the plane H(z) the plane of R*™™ parallel to it and passing
through the origin O. Thus we get some mapping

g: wnrk Gk,

where by Gy, we denote, as above, the Grassmann manifolds of oriented
k-planes. Let N be an arbitrary tubular neighbourhood of the submanifold
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Wn=F in V™. Associate with any geodesic normal passing through z €
Wn—k_its tangent vector at , we get, after a parallel transport, a mapping

F:N— ASO(k)u
for which the diagram

F
N EE—— ASO(k)

b

— g ~
wnok S Gy

is commutative (here p and p’ are canonical k-ball bundles).
As in I1.2, we may extend F' to a mapping

£V = M(SO(k)).

If we replace the initial embedding of V" into R™™™ by another em-
bedding or replace the metric by another metric, then instead of f we get
some homotopic mapping. Indeed, since any two Riemannian metrics of
V™ can be continuously deformed to each other, then the corresponding
tubular neighbourhoods N and N’ are isotopic, hence, so are the mappings
F: N — Aso), and, finally, so are the mappings f : V" — M(SO(k)).
To prove the independence of homotopy type of f on the embedding of V"
into R*™™, we shall need one more lemma, that we shall use several times
in the sequel.

Let Q"*! be a manifold with boundary V" and let X**! be a subman-
ifold with boundary W*, the latter contained in V™. Assume that at any
point € WP the half-space R¥*! tangent to X**! is transverse to the
boundary V™ in the sense that the intersection of this half-space with the
space tangent to V" coincides with the space tangent to W*. Finally, as-
sume that Q"*! is endowed with a Riemannian metric. This metric allows
us to consider the normal neighbourhood of the boundary V" in Q"' as
the product V™ x I, where the rays (z,t),t € I, are geodesic normals of the
boundary V". Then the following lemma holds:

Lemma IV.5. There exists a homeomorphism ® of Q™1 onto itself
taking the submanifold X**1 to a submanifold which is orthogonal to the
boundary V™.

To prove this, let us consider the homeomorphism ® of the manifold
Q™+, which is the identity outside V™ x I and represents on V™ x I the
motion along the normals defined by the function ¢ = ¢(¢), for which
0=¢(0), 1 =p(1); d¢'/dt =400 for t =0 and dt'/dt =1 for t = 1.
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It is easy to check that any vector tangent at 2 to the manifold ®(X*+1)
is tangent to the cylinder W* x X and orthogonal to the boundary V". The
lemma is proved.

Now, let us return to the manifold V", immersed to the space R*™
by means of two different immersions iy and i;. If m > n + 2, then we
may assume the images io(V™) and i1 (V") don’t intersect. By a theorem
of Whitney, one may (possibly, after a small translation of 4;) find such
an embedding i of V" x I to R"*™, whose restriction to (V,0) and (V1)
coincides with ig and 4, respectively. The embedded manifold (V"™ x I)
contains a submanifold of the type W™~ x I, that intersects transversely
the boundary of the manifold V™ x I.

Given a Riemannian metric in V™ x I. According to the lemma above,
we may assume the manifold V"% x I orthogonal to the boundaries (V" 0)
and (V",1) of the product V™ x I. Let N be the normal tubular neigh-
bourhood of the submanifold W% x I in the product V™ x I. Then the
intersections Ny = N Nig(V™) and Ny = N N i1 (V™) are normal tubu-
lar neighbourhoods of the submanifolds ig (W™~ %) and i (W"~*) in ig(V™)
and i1 (V"), respectively. Let us construct, by using parallel transport, the
canonical mapping

F:N— ASO(k)-

Extending it to the whole product, we get a mapping
F:V"xI— M(SO(k)),

whose restriction to (V™,0) and (V™, 1) evidently coincides with the canon-
ical mappings fy and f1 corresponding to the embeddings g and i, of V,.
Thus, fy and f1 are indeed homotopic.

Definition. L-equivalent submanifolds. Let W2'™F and W™ be two
oriented submanifolds of the same dimension n — k, embedded into an ori-
entable manifold V™. The submanifolds W™ and W% are L-equivalent
if there exists an oriented manifold X" **1 with boundary VVO”Jc U Wlnfk,
which is embedded into V™ x I in such a way that

XAV 0) = We

XA (W) =W
provided that this manifold admits such an orientation that OX" F+1 =
WU (=W h).

From the above and from Lemma IV.5’ we immediately get that if
two submanifolds are L-equivalent to a third manifold, then they are L-
equivalent. The set of L-equivalent manifolds of dimension n — k of V™ is
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thus split into L-equivalence classes. Denote by L, _, (V™) the set of such
classes.

If in previous definitions we omit all orientability assumptions, we shall
define modulo 2 L-equivalent submanifolds and the set L, _x(V™; Zs) of
modulo 2 L-equivalence classes.

It is clear that two L-equivalent submanifolds are homologous and cobor-
dant to each other. If two submanifolds Wy and W form in V" the bound-
ary of some submanifold X, then these submanifolds are L-equivalent.

Consider the natural mapping from the set L,_; (V") to the homology
group H,_,(V™; Z). The image set L,_,(V™) under this mapping is the
set of homology classes realisable by submanifolds. The “kernel” of this
mapping is, in general, non-trivial, we shall see this later. It is natural to
address the question whether the set L,,_ (V™) can be represented as a
group by introducing an operation compatible with the mapping above. It
turns out that it is possible if n —k < n/2 — 1. In this case the summation
operation of L-equivalence classes is generated by the usual disjoint union
of representatives of these classes. Indeed, these representatives for n — k <
n/2 can be thought of as disjoint, and for n — k < n/2 — 1 the L-class
defined in this way does not depend on the way of embedding of these
manifolds. On the other hand, the sum [W]+ [-W] is the zero class since
it is always possible to embed (locally) the product V' x I into a normal
tubular neighbourhood of W.

According to the above argument, with each submanifold W"=% of V™,
one can associate a certain class of mappings from V" to M (SO(k)). It can
be easily checked that two L-equivalent submanifolds W and W' generate
two homotopic mappings f: V"™ — M(SO(k)).

Indeed, if submanifolds W, and W7 are L-equivalent then there exists a
manifold X embedded into V™ x I, with boundary being the union of W
embedded into (V",0) and Wi, embedded into (V™,1). By Lemma IV.5,
we may assume that X is orthogonal to (V",0) and to (V",1). Consider
the normal tubular neighbourhood @ of X in V" x I and the corresponding
mapping F' : Q@ — Agsor)- The mapping F' can be extended to Fy :
V" x I — M(SO(k)), the latter being the above homotopy between the
canonical mappings

Fleynoy = fo, Flwny = fi,

associated with the manifolds Wy and W7, respectively.

This defines a mapping J from the set L, (V™) of L-equivalence
classes to the set C*(V) of homotopy classes of mappings f : V" —
M(SO(k)). The mapping J is bijective. Indeed, if two manifolds Wy
and Wj generate homotopic mappings, then, by Theorem IV.4, the homo-



190 R. THOM

topy F: V" x I — M(SO(k)), connecting these mappings, can be thought
of as smooth. Furthermore, after a possible isotopy (which is also an
L-equivalence), we may assume that the pre-images fi YGr) = Wo
and ffl(ék) = W, form the boundary A = F~1(Gy,).

Note that J takes the class of manifolds L-equivalent to zero to the
zero class of inessential mappings f : V" — M(SO(k)). If k > (n/2) +1
then, according to the general cohomotopy group theory': 2, the set C* (V)
of homotopy classes of mappings of V' to the space M(SO(k)) (which is
aspherical up to dimension k) can be considered as an abelian group. It is
easy to check that J is then a homomorphism. It is sufficient to check that,
by definition of the sum f+ g of two mappings, the pre-image (f+g¢) ' (G%)
is, up to L-equivalence, the union of the preimages f_l(@k) and g_l(ék).

Now, let us show that J takes the set L,_x(V™) to the set C*(V™).

Let ¢ be some homotopy class belonging to C*(V') and let h be an
arbitrary mapping of class c¢. By Theorem 1.5, one may assume that the
mapping h is t-regular on the Grassmann manifold G, which is embedded
in M(SO(k)). Let Wn=F = h=2G%) be the pre-image of G, and let N be
the normal tubular neighbourhood of the manifold W"~* in the manifold
V™. One may assume that the mapping h is normalised in such a way that
it maps the interior of the neighbourhood N to M(SO(k)) \ a, takes open
k-balls to open k-balls, and takes the complement @ = V™ \ N to the point
a. Now, denote by 7 : V™ — RP an arbitrary embedding of the manifold V"
to the space RP, and denote by

g: Wk Gy, F:N— Asowy, f:V"— M(SO(k))

the mappings which are naturally defined by this embedding by parallel
transport. It is clear that the mappings

h:W" % — Gy (i.e. the mapping h/W" %)

and R
g: wnrk Gy

both generate the normal bundle of W"=% in V. Consequently, by the
fibre space classification theorem, these mappings are homotopic. Let us

1n the case of spheres cohomotopy groups were studied by Spanier (Ann. Math., 50
(1949), 203-245). Their generalisations to the case of arbitrary aspherical spaces form
the content of the unpublished paper by Steenrod, Spanier and J. H. C. Whitehead. The
proof sketched below can easily be completely restored for the typical case of spheres.
Its generalisation for the general case gives no new difficulties.

2See remark on page 205 at the end of the article. — Editor’s remark
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consider again the commutative diagram

h
N  —— Asow)

l !

_ h o~
wnok ——~ Gy

By the covering homotopy theorem, there exists a mapping h; homo-
topic to h such that

h
N —1 ASO(k)

l |

wn—k SN ék.

Thus, the new mapping h; differs from F' by an isomorphism « of the
tubular neighbourhod N. In other words, in the neighbourhood N we have
h,l = Foa.

It turns out that one can construct (increasing the dimension of the
ambient Euclidean space, if necessary) a new embedding i’ of V™, for which
in a neighbourhood N we have

i =aoi.
Indeed, let us prove the following lemma;:

Lemma. Let Q be a manifold with boundary T. Assume that there is
an embedding i of some neighbourhood of the boundary T (of type T x I)
to RP. Then this embedding can be extended to an embedding of the whole
manifold Q to the space RPTY with some large q.

Indeed, let y1,y2,...,y, be the coordinates in RP. In some neighbour-
hood U of T'x I, the coordinates y;, extended to the whole of @, are distinct
for distinct points. Now let (z1,x2,...,2,) be some functions which are
equal to zero on T x I and do not take the same values for distinct points
on the complement @ \ U. (Such functions always exist if ¢ is greater than
2n+1, where n is the dimension of the manifold @).) The system of functions
i, x; defines the desired embedding of Q to RP1Y.

Let us apply this lemma to the complement @ = V™\ N. The embedding
of the boundary T of N and the neighbourhood of type T x I is given
by i’ = aoi. It is evident that the mapping I : N — Ago() corresponding
to the embedding ¢/ can be identified with h;. Consequently, the mapping

fr: V" — M(SO(k))

corresponding to h; can be identified with the natural mapping corre-
sponding to the embedding . On the other hand, since the mapping
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hy : N — Ago) is homotopic to the restriction of h to N, then the
“complete” mapping fi is homotopic to h. (Recall that the mapping h is
“normalised”, hence it takes the manifold @) to the “special point” a from
M(SO(k)).) Thus, we have proved

Theorem IV.6. The set L,_; (V") of L-equivalence classes of some
manifold V™ can be identified with the set C*(V) of mapping classes from
V™ to M(SO(k)). If k > (n/2) + 1 then this identification preserves the
group operations defined for L,y and for C*(V).

In an analogous theorem for the set L,_r(V";Zs), the polyhedron
M(SO(k)) should be replaced with M (O(k)).

APPLICATIONS. The maximal number of L-classes contained in some
homology class z corresponding to the class u € HF(V";Z) is equal to
the number of mapping homotopy classes of f from V™ to M(SO(k)) for
which! f*(U) = u. Since the polyhedra M (SO(1)) and M(SO(2)) can be
identified with the polyhedra K (Z,1) and K(Z,2), then we see that homol-
ogous oriented submanifolds of dimension n — 1 in an orientable manifold
of dimension are always L-equivalent; the same is true about manifolds of
dimension n — 2.

Corollary. All null-homologous (n—2)-dimensional manifolds are null-
cobordant (for n — 1 this is trivial).

For modulo two homology the analogous statement holds for (n — 1)-
dimensional submanifolds.

Finally, from Chapter II, we know (Theorem II.16), the second non-
zero homotopy group of the space M (SO(k)) appears in dimension k + 4.
This yields that two mappings from a manifold V™ to M (SO(k)) which are
homotopic on the k-skeleton of the manifold V'™, are also homotopic on the
(k + 3)-skeleton. Thus, oriented homologous manifolds of dimension < 3
are always L-equivalent.

4. The basic theorem
Let us apply the previous theorem to the case when V" is the sphere S™.

Lemma IV.7. Ifn > 2k + 2 then the group Li(S™) of L-equivalence
classes of the sphere S™ can be identified with the cobordism group QF.

Consider the natural mapping of the group L;(S™) to the group QF,
taking each representative of some L-class to its cobordism class. Clearly,
this mapping is a homeomorphism, since the summation is well defined in
both groups as a union of representatives. Thus, homomorphism takes the

n the original work, this statement is wrongly formulated. — Editor’s remark
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group Lx(S™) onto the group QF. Indeed, let ¢ be some element of the
group 9 and let W* be some manifold of class c. Since n > 2k + 2, the
manifold W* can be immersed in R™, hence, in S™. Thus c is the image of
some L-class of S™. Thus, in order to prove the lemma, it remains to show
that the kernel of the homomorphism Lj(S™) — QF is trivial. In other
words, we have to show that two manifolds W* and W’*, immersed in S,
are L-equivalent if they are cobordant.

Let X**1 be a manifold with boundary W’* \ W*. Since n > 2k + 2
then the manifold X**! is embeddable into R™.

On Xk*1 define a function t (of class C), that takes values from 0
to 1, and such that the equations ¢ = 0 and ¢ = 1 define the submanifolds
Wk and W'k, respectively. Completing the spaces (R",t) and (S™,t) by
the “infinite point”, we get an embedding of the manifold X**! to the
product S™ x I. This embedding defines the desired L-equivalence. Finally,
note that for n > 2k + 2 two arbitrary embeddings of W* to S™ are always
L-equivalent. This completes the proof that the correspondence between
the groups L (V™) and QF is an isomorphism.

Now, we are ready to formulate the main theorem of the present chapter.

Theorem IV.8. The group QF of cobordisms and the group M* of
cobordisms are isomorphic to the stable homotopy groups mu4, (M (SO(n)))
and Tp4+1(M(O(n))), respectively.

To prove it suffices to apply Theorem IV.6 for the case when the mani-
fold V™ is S™, and use the isomorphism L;(S™) ~ QF, indicated in Lemma
IV.7. Furthermore, it is necessary to use a classical theorem of the co-
homotopy group theory, saying that the mapping class cohomotopy group
of

f: 8™k M(SO(n))

is isomorphic to the homotopy group m,4x(M(SO(n)))*.

5. Modulo 2 class groups Dt*

In Chapter II, stable homotopy groups 7, + (M (O(n))) were defined. As
we know (Theorem II.10), in dimensions < 2n, the space M(O(n)) has the
same homotopy type as the product Y of the following Eilienberg-MacLane
polyhedra:

Y = K(Zy,n) x K(Zo,n+2) % ... x (K(Za,n+h)™ x ..., h<n,

!ndeed, both groups consist of the same set of elements. To prove that the operations
agree it is sufficient to note that (both in homotopy group theory and in cohomotopy
group theory) the sum of f,g : S"** — M(SO(n)) can be defined as the composite
mapping S?tk — Sntk vy gtk . AM(SO(n)), where the first mapping has degree -+1
on each sphere of the wedge STk v §7*k and the second mapping coincides with f on
one sphere of the wedge, and with g on the other sphere. — Editor’s remark
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where d(h) is the number of non-dyadic decompositions h, i.e. of such de-
compositions not containing integers of type 2™ — 1. Consequently, we get

Theorem IV.9. For any dimension k, the group M* is the direct sum
of d(k) groups each isomorphic to Zs where d(k) is the number of non-
dyadic decompositions of k.

Thus, we have defined the additive structure of the group 91*.

From Theorem II.10, it follows that for n > k any homologcially trivial
(modulo 2) mapping from S™** to M(O(n)) is homotopic to the trivial
mapping. This result can be justified according to the argument below.

For any non-dyadic decomposition w of k, consider the mapping

F,: M(O(n)) — K(Za,k+n),

for which F*(1) = X,,, where X,, is the element of H**"(M(O(n))) corre-
sponding to the symmetric function

Z(tl)a1+1(t2)a2+1 Ce (tr)arJrltr_i_l Loty

((a;) is the given non-dyadic decomposition w of the number k). Let

Yo=Y (1) (t2)™ . (1)

be the corresponding element of the cohomology group H* (G}, Z5). Then,
in the notation of I1.2, we have: X, = ¢ (Y5,).
Let f,1 be mappings S"t* — M (O(n)) such that

o F5() = 05(s), (1)

where s is the fundamental class of the group H*+"(S¥+" Z,), and 6%, is
the Kronecker symbol in its classical interpretation, but with decomposi-
tions w taken instead of numerical indices. Homotopy classes of mappings
fur, clearly, form a basis of the group m,, (M (O(n))).

The mappings f,1 can be thought of as t-regular over the Grassmann
manifold G,, contained in the space M (O(n)). Let V1 be the pre-image of
the manifold G,, under f,:. Consider the normal tubular neighbourhood
N of V1 in S™**. Let o* : H"*(V_,1) — H"(N) be the corresponding
isomorphism of cohomology groups. Denote by Y! the image of Y, in
the cohomology group of V1 under the homomorphism f*, induced by the
mapping f,: considered on the manifold V1. The classes Y,,1 are expressed
via Stiefel-Whitney characteristic classes W; of the normal bundle of the
manifold V1 in S"**. By formula (1) and commutative diagram (1) from
I1.3 we have

7 (Yor) = ¢" 5 (Vo) = forpa(Yo) = [ (Xo) = 651 (s). (2)
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The normal characteristic numbers of V=V, are values of the polynomial
of total degree k in W;, on the fundamental class of the manifold V. From
(2), it follows that for any mapping f : S"** — M (O(n)) which is not null-
homotopic, there exists a non-trivial linear combination of classes X, whose
image under f* is non-zero in the algebra H*(S"** Z,) 1. Consequently,
at least one normal characteristic number of the corresponding manifold?®
V' is non-zero. This yields the following theorem, inverse to Pontrjagin’s
theorem

Theorem IV.10. If all Stiefel-Whitney numbers of some manifold V*
are equal to zero then this manifold is modulo 2 null-cobordant.

Indeed, if all characteristic numbers defined for the classes W; of the
tangent bundle are equal to zero then the normal characteristic numbers
are equal to zero. Indeed, by Whitney’s relation® Y W;W,_; = 0, the

i

classes W, are polynomials in the classes W;.

Corollary IV.11. If two manifolds V and V' have equal Stiefel-
Whitney characteristic classes then these manifolds are cobordant modulo

2.

REMARK. This result yields that in the group of (tangent) characteristic
numbers® of k-manifolds V* (this group is isomorphic to the group H*(G,)) there
are precisely d(k) linearly independent numbers. For low dimensions (k < 6), this
result can be checked by means of Wu relations [33] for classes W; of the tangent
bundle of the manifold. This leads to the question whether Wu relations give all
relations between the classes W; of the tangent bundle of an arbitrary manifold.

6. Multiplicative structure of the groups 9

Let Kk =r+ s, and let w; be a non-dyadic decomposition of s. Then the
union (w1,ws) is a non-dyadic decomposition of k.

Above, we have defined the manifold V*. Recall that all normal char-
acteristic classes® Y, of V¥ are equal to zero except for the number Y.
Let us show that the manifold V* is cobordant modulo 2 to the product
Vi, % sz. To do this, it is sufficient to prove, according to the Corollary

1One should note that any mapping f is homotopic to a linear combination of map-
pings f,1. — Editor’s remark

2I.e. of pre-image of G, under f. — Editor’s remark

3This relation follows immediately from Whitney’s duality theorem because the sum
of the normal bundle and the tangent bundle of any manifold, has trivial characteristic
classes. — Editor’s remark

4].e. in the additive group of polynomials of total weight k in variables W;. — Editor’s
remark.

5Here we deal with values of classes Y,,» on the fundamental class of V,,. — Editor’s
remark
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IV.11 that all Stiefel-Whitney characteristic classes of manifolds V¥ and
Vo, x V5, are equal.
The last statement follows immediately from the formula that we are
going to prove:
Y, = Z (le) ’ (sz)v (3)

(w1,w2)

where (w1,w2) are all possible decompositions w of k represented as a de-
composition wy of r and a decomposition ws of s. Indeed, from formula (3)
it follows that all numbers Y,, of the product V,,, x V,, are equal to zero
except for the number corresponding to the decomposition w = (w1, ws).

Recall that the normal bundle of the product V] x V; is the sum
(union) of the normal bundles of manifolds V,J and V3 . Denote by W; the
normal classes of the product V,,, x V,,, denote by U; the normal classes
of VJ and by V; the normal classes of V7 . Then, by Whitney’s “duality
theorem”, the following symbolic formula holds:

ZWﬂfi = ZUltl X Z‘/jt‘j.
B B j

Denote by u; the symbolic roots of the first factor and denote by v; the
symbolic roots of the second factor. Let us substitute in

Yo =Y ()" (1) (1)

the roots u; and v; instead of ¢;’s. Then it follows from the dimension
argument that all terms having total degree in (u;)’s not equal to r, and
the total degree in (v;)’s not equal to s, should be equal to zero. The
remaining terms can be grouped as follows:

Vo= 30> ()™ (u2)® . ()™ D (1) (02)"2 L (va), (4)

(w1,w2)
where wy is the decomposition (a1, as,...,am) of r generated by the de-
composition w, and wy is the decomposition (b1, be,...,b,) of s composed

of the remaining numbers of the decomposition w. The first sum is taken
over all possible decompositions w into a decomposition w; of r» and a de-
composition ws of s. The remaining two signs > mean the symmetrisation
in the sense described on page 154. Note that any decomposition (w1,ws)
of w occurs in (4) exactly once even in the case when this decomposition
can be obtained in different ways. Indeed, assume (w1, ws) can be obtained
in two different ways. Then there exists a permutation of variables (¢;)
transforming the typical monomial
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(t1)* (£2)%2 .. () ™ (b 1) - (E2) "

of (w1,ws) to itself. Consequently, this transposition is not essential and
it is not used in symmetrisation. Thus, formula (4) coincides with formula
(3), as we had to prove.

As it was shown, from formula (3) it follows that for any decomposition
of a non-dyadic decomposition w of k into wy of r and ws of s, the cobordism
classes of the corresponding manifolds V* satisfy the following

w

VT = V2T = V3, ) ()

Thus, the only irreducible classes [V*] are [V(’,z)], where (k) is the decom-

position of k consisting only of k itself. (It is assumed that & is not of type
2™ —1.) Any other class is uniquely represented as a sum of products of
such irreducible classes. This proves the following theorem:

Theorem IV.12. The ring N of modulo 2 cobordisms is isomorphic
to some polynomial algebra over Zy. This algebra has generators of type
[V(]fg)], where k runs over all numbers not equal to 2™ — 1.

Corollary. The topological product of two manifolds each not null-
cobordant modulo 2 is not null-cobordant modulo 2.

Generators in low dimensions. The first generator appears for
k = 2. The corresponding characteristic number is equal to

D) =07 = (W)’ = (W)*,

As a representative of this class [Vé)], we can take the real projective plane
PR(2).

For k = 3 the group M3 is trivial.

For k = 4, a new generator, corresponding to the normal characteristic
number (t)* = (W1)* = (Wy)*, appears. Here PR(4)+ (PR(2))? represents
this number. The group 91* is isomorphic to the direct sum Zy + Z5. Note
that the complex projective plane PC(2) is cobordant modulo 2 to the
square of the real projective plane PR(2).

For k = 5, the group M° is isomorphic to Z, with generator Vsl
The corresponding tangent characteristic number is equal to WoW3. For
representative [V ], we take the Wu space [33]" which is a circle-bundle
fibre space over the complex projective plane PC(2).

1The Wu space is obtained from the product PC(2)x I where I = [0, 1] by identifying
the points (ZTo, z1,x2) X 0 and (To,T1,T2) X 1, respectively. — Editor’s remark
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For k = 6, the group M’ is isomorphic to (Z). It has two reducible
representations, (PR(2))?, PR(4) x PR(2) and a primitive class [V{g] cor-
responding to the normal characteristic number

D) = Q1) = (Wa)* + (WoW1)* + (W1)°.

The projective space PR(6) represents the last class.

For k = 7, all classes are reducible, because k is equal to 23 — 1. The
group N7 is isomorphic to Z with generator [Vis)] x [V(2)].

For k = 8, reducible classes can be easily found. Besides the reducible
classes, there is an irreducible class [V(g)], with the corresponding char-
acteristic number (W7)3. Every manifold of this class is (up to reducible
manifolds) cobordant modulo 2 to the projective space PR(8).

The last statement is of a general nature. Namely:

for any even dimension n = 2r the primitive class [V(’;L)] is the sum of
the class [PR(n)] and some reducible classes.

It suffices to show that for the manifold PR(n), the normal characteristic
number » (Z;)™ is non-zero (here #; are symbolic variables corresponding to

the normal classes W;). Let

Do) (E) ™ ()

be an arbitrary non-zero normal characteristic number of the manifold
PR(n), which is distinct from > (#;)™. Here a1,aq,...,a, forms some
non-dyadic decomposition w; of n. Consider the sum PR(n) + U; V. All
normal characteristic numbers of this manifold corresponding to non-dyadic
decompositions of n, are equal to zero except for > (£)". Consequently, this
manifold belongs to the primitive class [V(Z)] On the other hand, by for-
mula (5), all classes [V]!] for w; # (n) are reducible.

Note that for any manifold V™ the normal characteristic number 3 (Z)"
is equal to the tangent characteristic number »(¢™). Indeed, by the Whit-
ney duality Theorem [32], the variables ¢ corresponding to the tangent
bundle are connected with the variables #; corresponding to the normal
bundle by the following relation:

ZWiti X ZWJ‘? =1.

This relation yields that any symmetric function in the variables ¢; and ¢;,
which is not a non-zero constant vanishes. In particular,

Z(tz)n + Z(fj)” =0.
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The Stiefel-Whitney polynomial of the manifold PR(n) looks like

n+1 n+1
1+ dt + d*t? + ...
1 2
n+1 n+1
+ dPtP + ...+ dmt",
P n

where d is the generator of the group H'(PR(n); Z3). Since d"*! = 0, this
manifold can be symbolically written as

(1 +dt)"**.

One may assume that this polynomial has n + 1 roots each equal to
t = —1/d. Since n is even, the sum > (¢;)" is equal to 1/d™. Consequently,
the corresponding characteristic number is equal to one.

As for generators in odd dimension, I do not know any analogous con-
struction.

7. The groups QF
In the general case, the groups
Ttk (M(SO(n)))
are unknown. For small values of k, these groups are indicated in Theorem

11.16. Consequently, by Theorem IV.8, we have:
Theorem IV.13. For k < 8 the groups QF are defined as:

=z =02 =03=0;
V=27 0°=27,; Q°=Q"=0.

This result is trivial for £ < 2. The groups Q* and Q* were found by
V. A.Rokhlin [19], [20]. The generator of Q* is the complex projective plane
PC(2). Particularly, this yields

Corollary IV.14. The fourth Pontrjagin number P* of an oriented
four-manifold is equal to 37, where T is the signature of the quadratic form
defined by homological multiplication on H?(V* R).

To prove this, it suffices to apply Theorems IV.1 and IV.2 and use the
equality Q* = Z. The coefficient 3 is equal to the characteristic number
P* of the complex projective plane PC(2), for which 7 = 1. This result
was proposed by Wu, who proved that P* is divisible by 3 [35]. It was first
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proved by V.A.Rokhlin [20] and by me, in a way quite different from the
described one'.

Note that the equality P* = 37 yields topological invariance of the
characteristic number P* for any manifold V4. It would be very interesting
to find a direct proof of this relation.

From the topological invariance of P* it follows that the cobordism class
of the manifold V4 does not depend on the differentiable structure of the
manifold.

As it was shown in II.5, the cohomology algebra H*(M(SO(n))) over
the field of rational numbers is isomorphic to the cohomology algebra of
the product Y of the following Eilenberg-MacLane polyhedra:

Y = K(Z,k) x K(Z,k+4) x (K(Z,k+8))%x ... x (K(Z,k+ 4m))*™ ..
m < k,

where ¢(m) is the rank of H*™(Gy;R), here the above isomorphism is
generated by some mapping F : M(SO(k)) — Y. Thus, by using Serre’s
@-theory results [22], for the case when € is the class of finite groups, we
get:

Theorem IV.15. Ifi # 0 mod 4 then the group 2 is finite. The
rank of the free component of Q'™ is equal to c(m), that is the 4m-th Betti

number of the Grassmann manifold Gy,.

Corollary IV.16. If all the Pontrjagin characteristic numbers of an
orientable manifold V¥ are equal to zero then for some non-zero integer N,
the manifold NV* is null-cobordant.

Note that as a generator of the group Q° ~ Z, we may take the Wu
manifold defined in [33].

Multiplicative structure of groups Q. Let Q7 be the set of all
finite-order elements of the ring Q. The set Q7 forms an ideal of the ring
€, so that there is a quotient ring 2/Q7. We know (by Theorem IV.15)
that the 4m-dimensional component of this quotient ring is a direct sum of
¢(m) free cyclic groups. On the other hand,

QA" @ Q ~ Mram(M(SO(K))) ® Q,

where @ is the field of rational numbers. Since the latter group is dual
(over Q) to the cohomology group

Hk+4m(M(SO(k))§ Q) ~ H4m(ék§ Q),

1See my note in Colloque de Topologie de Strasbourg (June, 1952). Rokhlin’s note
also contains results concerning groups 1. One of these results is false, namely, Rokhlin
states that 9% = Z» (instead of Z2 + Z2)2_

2The correct result is given by V. A. Rokhlin in the following note: Doklady Mathe-
matics, 89 (1953), 789-792. — Editor’s remark
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then any 4m-dimensional element of the ring 2/Q7 is completely charac-
terised by the values of the normal characteristic numbers

(L), vim),

defined by an arbitrary embedding of some manifold V4™ of the given
class to the Euclidean space. To make this statement more precise, it is
important to note that, in general, there is no manifold whose characteristic
numbers would have any prefixed values n;. However, one may say that
for some non-zero integer N, the products Nn; are normal (or tangent)
characteristic numbers of some manifold V4™,

Now, we can construct for the tensor product 2® @, a theory analogous
to the one constructed above for the ring 91. Recall that, by Borel and
Serre, Pontrjagin classes are in one-to-one correspondence with symmetric
functions in squares (z;)? of some two-dimensional variables ; (if there
exists a unitary fibre space adjoint to the given orthogonal fibre space then
its Chern classes are given by symmetric functions in ;). Thus, the base

of the group H 4m(ék) consists of symmetrised monomials of the type

Py=Y (a})"(23)™ ... (z])",

where a1, as,...,a, is an arbitrary decomposition (w) of m.
Normal characteristic classes of the product X? x Y?¢ of two oriented
manifolds X? and Y? are defined by

Po(XPx Y1) = 3 Pu(X7)- Puy(Y), (3)

(w1,w2)

where the sum is taken over all complementary decompositions w1, ws, for
which degw; = p, degws = q.

According to the remark above, in each dimension 4m there exist man-
ifolds V4™ for which all normal characteristic numbers are equal to zero
except for the number (37 (x;)*™, V*™). Let Y4, be the corresponding
class of the group Q%" ® Q. From formula (3') and Corollary IV.16, it
follows that the classes Y(4,,) are irreducible and that any other element of
the tensor product 2 ® @ can be uniquely represented as a sum of products
of Y(4m). Thus, we get

Theorem IV.17. The algebra Q) ® @Q is a polynomial algebra. In any
dimension divisible by 4, there is a unique generator Yjum) of this algebra.

Now, let us show that up to some non-zero factor, the class Yj,,) is a sum
of the complex projective space PC(2m) class and some reducible classes.
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In other words, the classes of spaces PC(2m) can be viewed as generators
of the algebra Q2 ® @. To prove this statement, it suffices to show that the
normal characteristic number of the space PC(2m) corresponding to the
class > (z;)?™ is non-zero. But, by the duality theorem between normal
and tangent classes, the normal characteristic number corresponding to the
sum Y (x;)?™ differs from the corresponding tangent characteristic number
only in sign. On the other hand, it is known that the Chern polynomial of
the complex projective space PC'(2m) looks like

Cz)=1

2m+1 2m+1 o 2m +1
+ de + ...+ dat +... + d¥mg?m.
1 ) 2m

where d is the cohomology class of the projective line. Symbolically, this
polynomial can be written as:

C(z) = (1 + da)>™ 1.

Consequently, all symbolic roots of this manifold are equal to —1.
Thus, the characteristic number (3~ (z;)*™, PC(2m)) is equal to

> ((=1/d)*™, d*™) = 2m + 1.

The normal characteristic number of the manifold PC(2m) correspond-
ing to the class > (z;)*™ is hence equal to —(2m + 1), thus, it is non-zero.
This proves the property formulated above. This yields

Corollary IV.18. For any oriented manifold V'™ there exists a non-
zero integer N such that the manifold NV™ is cobordant to some linear
integer combination of products of even-dimensional projective spaces. The
coefficients of this linear combination are linear homogeneous functions of
Pontrjagin’s characteristic numbers NV™.

REMARK. It is natural to address the question whether the products of the
spaces PC(2j) form a basis of the Z-module Q/Q7? This is true for dimension 4,
because the class of PC/(4) generates the group Q*. One can show that this is true
for dimension 8 as well. Indeed, in this dimension the characteristic numbers P®
and (P*)? enjoy the following relations’:

(P")? —2P® =0 mod 5,
7P% — (P*)? = 457.

'Indeed, for PC(4) we have p = (1 + u?)5, so that P* = 5u2; (P*%)? = 25u?;
P8 = 10u*, for PC(2) x PC(2) we have p = (1+u?)3(a+u3)3, so that P* = 3(u? +u3);
(Py)? = 18u%u%; P8 = Qu%u% This yields the desired formulas. — Translator’s remark.
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The first relation follows from the equality St3A = 0, that occurs in a topological
product of manifolds (cf. Wu [35]); the second one is obtained if we write the
index 7 as a linear homogeneous function of the classes P® and (P*)? and define
the coefficients for the typical manifolds PC(4) and (PC(2))?. Let V® be an
arbitrary manifold and let 7 be the signature of the quadratic form defined by
the cohomology product on H*(V®, R). It is easy to check that the manifold V*

and the manifold

q-PC(4) + (T —q) - (PC(2))?,
where ¢ is defined by (P*)? —2P® 4 5¢, have the same Pontrjagin numbers and are
cobordant (modulo QT). The study in higher dimensions requires a more exact
consideration of arithmetical and topological properties of Pontrjagin’s number?.

Editor’s remarks

(to page 154)

As Serre has mentioned, this lemma allows to prove the following Adem-
Wu formulae:

Sq*Sq" = (ba__c 2_61) Sq*TTCSq", a < 2b,

that allow us to express any iterated square as a linear combination of iter-
ated squares corresponding to admissible sequence.
To reduce the calculations, set

a b—c—1 a+b—c c
Cap = Sq qu—Z( @ — 9 >Sq thesye,

Tup = Sq""'Sq" + Sq"Sq"~*
b—c—1 at+b—c—1 c at+b—c c—1
_Z(a_2c>(5‘q Sq¢ + Sq Sqt).
From the evident formula
b—c—1 n b—c—1
a— 2c a—2c—1

b—c—2 b—c—2\ _
+(a—2c—2>+< a— 2c ):O(mod2)

Ta,b = Cafl,b + Oa,bfl-

it follows that

LAbout this, see the recent work of Hirzebruch (mimeographed notes of Princeton
University, July—August, 1953).
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On the other hand, it is easy to see (by applying Cartan’s formula
twice), that for any » € H*(X, Z2) and for any t € H'(X, Z3) (where X is
an arbitrary space) we have

Sq'Sq’ (wt) = Sq'Sq’ (x) -t + (Sq' 'S¢’ (x) + Sq'Sq’~*(x)) - £
+ 8¢ 28¢ (z) - £t

This yields that
Ca_,b(xt) = C’a)b(x) -t + Ta)b(ilf) . t2 + Oa,zb,l(x) . t4.

Substituting the expression for 7, 5, we get: if C,, = 0 for a + b < n then
Cop(at) = Cyp(x) - t for any a, b satistying a + b = n.

Now, let X = G, where k& > a + b. Since Wy, = t1,...,t; then from
the relation Cyp(2t) = Cyp(x) - t it follows that C,p(Wi) = Cople) - Wi,
where e is the unit class. Since dime = 0, Cyp(e) = 0 and
hence, C, 5(Wy) = 0, i.e. by the lemma we have proved, Cy, = 0. Thus, if
Cup =0for a+b < nthen C,; =0 for a + b =n. To complete the proof
of the Adem-Wu formula, it remains to note that for a +b = 1 this formula
is evident.

Analogously, one can prove Adem’s formulae for Steenrod’s powers:

a c—a (p—l)(b—c)—l at+b—c gpc
Peph =3 (-1) ( e gt ge.

a—pc

e@g-i_lﬁe@g _ Z(_l)c—a ((p - 1)(b - C) - 1) egzg-i—b—cgf@;

c

c—a -1 -c a+b—c gpc

(to page 177)
The operations ¥ and Q; are connected, by definition, by
w~Wy=Qx~y, veH K, Z), yeH(K,Z),

where —~ is the Whitney multiplication. Consequently,

> QS (z) ~y

3

=Y St~ _y, w€H (K, Z,), y€ H.(K,Z).
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Applying y and taking into account that
X(u —~v)=u— xv,

we get

X Z Q;"_iSt;(:C) ~y = Z St;x — St;"_ixy.
i i
But, by Cartan’s formula
S Stha — St iyy = Sti(a — xy).
i

Thus,
XZ Q;”_lSt;(x) ~y=8Sty'x(x ~ Y),

ie.

2

But composite z ~y € H,, (K, Z,). Furthermore, it is easy to see that for
any ue € H, (K, Z,),m > 0,

9P (u) = 0.

Indeed, consider an arbitrary embedding f of the polyhedron K to some
Euclidean space RY. According to property 2 of the operations, 97

L (u) = I, (f'u) =0,

because f™u = 0. On the other hand, the mapping f°, is, evidently,
isomorphic (the polyhedron K is assumed to be connected).
Thus,

> QpiSti(z) ~y=0

2

for all y € H,(K, Z,). Consequently,

> QuiSti(z) = 0.

K2

(to page 190)

Let Y be a piecewise-connected simply connected topological space,
which is aspherical up to dimension n — 1, inclusively (n > 2), let Y x Y
be the topological product of Y with itself and let Y VY be the subset of
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the space Y x Y of type Y X yo Uyg X Y, where yq is some fixed point of
Y. By the Kiinneth formula,

P(Y xY) & Y Hi( Hy(Y)+ > Hi(Y)=H;(Y).
i+j=p i+j=p—1
On the other hand, it is clear that
Hy(Y VYY)~ Hy(Y)® Ho(Y) + Ho(Y) ® Hy(Y),

and the natural inclusion H,(Y VY) — H,(Y x Y) is an isomorphism.
Thus, by using the homological exact sequence of the pair (Y x Y,Y VY),
we get that

Hy(Y XY, Y VY)

Q

Y HY)RH;(Y)+ > Hi(Y)xH(Y). (1)
iti=p e

i#0,j#0

Since m;(Y) =0, if 0 < i < n, then (by the Hurewicz theorem) H;(Y) =0
if 0 < ¢ < n. Thus, by using formula (1), we get that H,(Y xY,YVY) =0
if 1 <p < 2n—1, thus (by the relative Hurewicz theorem),

(Y x YV, Y VY) = 0. (2)

By using (2) and by using an obstruction theory argument, one easily ob-
tains the following lemma.

Any mapping from a finite polyhedron of dimension less than or equal
to 2n — 1 to the space Y X Y is homotopic to a mapping from the same
polyhedron to Y VY.

Now let V' be an arbitrary finite polyhedron of dimension less than
2n—1andlet f:Y — Qand g: V — Y be arbitrary continuous mappings
of V' to some space Y. Denote their multiplication f x g : V — Y xY
(ie. (f x g)(z) = (f(x)g(x))). According to the lemma proved above, the
mapping f X g is homotopic to some mapping h : V — Y VY. Let us define
p:Y VY —Y by setting

e(y X yo) =,
e(yo X y) =y.
The composition ¢poh : V — Y is called the sum of the mappings f and

g and is denoted by f + g. It can be easily checked that the homotopy
class of f + g depends only on the homotopy classes of f and g. Thus, one
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may speak about the sum of mapping homotopy classes V' — Y. It turns
out that, with respect to this summation operation, the set Y (V) of all
homotopy classes of mappings V' — Y is an abelian group. It is called the
Y -cohomotopy group of the polyhedron V. In the case when Y = §,,, the
group S, (V) is denoted by 7™ (V); it is then called the n-th cohomotopy
group of V.
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Homotopy properties of Thom
complexes

S. P. Novikov !

Introduction

In the present work, we give detailed proofs of results published in
the note [19]. Our goal is to investigate the rings of inner homology
(“cobordisms”) corresponding to classical Lie groups: SO(n), U(n), SU(n),
Sp(n), in the sequel to be denoted by Vso, Vir, Vs, Vsp, and also to investi-
gate the realisability of k-dimensional integral cycles in manifolds of dimen-
sion > 2k + 1 by smooth orientable submanifolds. As Thom proved [16],

IHomotopy properties of Thom complexes. Translated by V.O.Manturov
As it is well-known, calculation of the multiplicative structure of the orientable cobor-
dism ring modulo 2-torsion was announced in the works of J.Milnor (see [18]) and of the
present author (see [19]) in 1960. In the same works the ideas of cobordisms were ex-
tended. In particular, very important unitary (“complex”) cobordism ring was invented
and calculated; many results were obtained also by the present author studying special
unitary and symplectic cobordisms. Some western topologists (in particular, F.Adams)
claimed on the basis of private communication that J.Milnor in fact knew the above
mentioned results on the orientable and unitary cobordism rings earlier but nothing
was written. F.Hirzebruch announced some Milnors results in the volume of Edinburgh
Congress lectures published in 1960. Anyway, no written information about that was
available till 1960; nothing was known in the Soviet Union, so the results published in
1960 were obtained completely independently. Let us make some comments concerning
the proof. There exists a misunderstanding of that question in the topological literature.
Contrary to the Adams claims, the Milnor’s work [18] did not contain proof of the theo-
rem describing multiplicative structure of the cobordism ring and its complex analogue.
It used the so-called Adams Spectral Sequence only for calculation of the additive struc-
ture and proved “no torsion theorem”. For the orientable case it was done independently
by my friend B.Averbukh [2] using the standard Cartan-Serre technique; it was Aver-
bukh’s work that attracted me to this area: I decided to apply here the Adams Spectral
Sequence combined with the homological theory of Hopf algebras and coalgebras instead
of the standard Cartan-Serre method because my approach worked very well for the mul-
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for any cycle z, € H¥(M™) there exists a number « such that the cy-
cle azy, is realizable by a submanifold and for k& < 5 any cycle zy, is realizable
(ie. a=1).

In § 1 of Chapter III, we prove the following theorem.

Assume for n > 2k + 1 that the groups H;(M™) have no p-torsion for
i=k—2t(p—1)—1forallt =21, p > 3. Then any cycle zj, of dimension k
is realizable by a submanifold.

The proof of this theorem relies on the well-known Thom construction
and it is based on new results on the homotopy group of the complexes
constructed by him, which enjoy several remarkable properties. In fact,
these properties allow one to reduce many problems of manifold topology
to homotopy problems. One can construct examples showing that the above
theorem gives a final criterion in terms of homology groups.

In Chapter II, we explicitly find the algebraic structure of the
rings Vso /T, Vi and Vs, ® Z,n for p > 2; we also prove that the ring Vs, /T’
is not polynomial (here T is the ideal consisting of finite order elements;
one may assume that all orders of elements look like! 2*). The known in-
formation about Vs is given in Appendix 1; we did not include it into
formulations of the main theorems. It turns out that the algebraic struc-

tiplicative problems. The present article was presented in 1959/60 as my diploma work
at the Algebra Chair in the Moscow State University. In the Introduction (see below)
I made mistakable remark that Milnor also calculated the ring structure using Adams
Spectral Sequence (exactly as I did myself). However, it was not so: as it was clearly
written by Milnor in [18], his plan was completely different; he intended to prove this
theorem geometrically in the second part but never wrote it. I cannot understand why
F.Adams missed this fundamental fact in his review in the Math Reviews Journal on my
Doklady note ([19]). Does it mean that he never looked carefully in these works? As I
realized later after personal meeting in Leningrad with Milnor (and Hirzebruch) in 1961
during the last Soviet Math Congress, his plan was to use some specific concrete algebraic
varieties in order to construct the additive basis and apply Riemann-Roch Theorem. I
described his manifolds in the Appendix (they are very useful) but never realized his plan
of the proof: my own purely Hopf-algebraic homotopy-theoretical proof was so simple
and natural that I believe until now that Milnor lost interest in his geometric proof after
seeing my work. I added the Appendix in 1961 but forgot to change the Introduction
written in 1960, so the mistakable remark survived. It is interesting that in 1965 Stong
and Hattori published a work dedicated to this subject. They claimed that they found a
“first calculation of the complex cobordism ring avoiding the Adams Spectral Sequence”
not mentioning exactly where this theorem was proved first. Let me point out that their
work was exactly realization of the Milnor’s original plan but Stong and Hattori never
mentioned that. — S. P. Novikov’s remark (2004)

IThe algebra Vso ® Q was first found by Thom [16]. V. A. Rokhlin [13] and Wall [20],
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ture of Vi was found by Milnor slightly earlier [18]! (also, by using Adams’
method), who also found the geometric generators of the rings Vso and Vi
and finally solved the Pontrjagin (Chern) characteristic number problem for
smooth (complex-analyitic, almost complex) manifolds, i.e. gave a neces-
sary and sufficient condition for a set of numbers to be a set of Pontrjagin
(Chern) classes of a smooth (almost complex) manifold. The geometric
generators weren’t known before Milnor’s works and, because of their in-
terest, we indicated them in Appendix 2 (we knew only (see § 5 Ch II) that
for prime numbers p > 2 for generators in dimensions 2p — 2 we may take
PP=1(C)). The author’s results about the multiplicative structure of the
ring Vg, and about the ring Vg were not previously known.

Chapter I contains some geometric and algebraic information about
Thom complexes.

Chapter II is devoted to the calculation of integral homology rings. We
study several questions concerning these rings there (see also Appendix 1).

In Chapter III, we consider different types of realisations of cycles by
submanifolds.

CHAPTER [

Thom’s spaces

§ 1. G-framed submanifolds. L-equivalence
submanifold classes

Consider a smooth compact closed manifold M"™ of dimension n, en-
dowed with a Riemannian metric, and fix a subgroup G of O(n — i), where
i < n. Assume furthermore that the manifold M™ is orientable and that the
subgroup G of the group O(n — i) is connected. Orient the manifold M"
in a certain way. Consider a compact closed manifold W* smoothly em-
bedded into M™. We assume the submanifold W of the manifold M™
to be orientable. In this case, the normal SO(n — i)-bundle »"~¢ of W*
in M™ is defined. We consider only such submanifolds W* of M™ with nor-
mal bundle »"~% admitting the subgroup G of SO(n — i) as the structure
group.

by wusing the well-known Rokhlin theorem on the kernel of the homomorphism
Vso — Vo (see [12]), found the structure of 2-torsion of the ring Vg (independently).
B. G. Averbuch and J. Milnor (independently) proved that there is no p-torsion for p > 2
in the ring Vso (see [2], [10], [18]). In [10], the structure of the ring Vso /T was found.

1 Milnor [18] also considered the ring Vspin; however, he did not get complete results
about it.
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Definition 1.1. A submanifold W* of the manifold M™ is called G-
framed if in the normal bundle v~ % of the submanifold W* in the mani-
fold M™ a G-bundle structure is fixed.

Now let N"*! be a smooth compact manifold with boundary M™
and let V*! be a compact smoothly embedded submanifold with bound-
ary Wi =M"NVil so that the manifold V**! is orthogonal to the
boundary M" of the manifold N"*!. In this case, one may also speak about
the normal bundle 77 % of the submanifold V! in the manifold N™*!. All
manifolds mentioned here are assumed to be oriented unless otherwise spec-
ified. Thus the bundle 7"~ can be considered as an SO(n — i)-bundle of
planes R"~%, and, analogously to Definition 1.1, one may define G-framed
submanifolds with boundary (clearly, the boundary is a closed G-framed
submanifold of the boundary M™ of N™*1).

Following Thom, let us introduce the L-equivalence relation in the set
of G-framed closed submanifolds of a closed manifold M™. Counsider the
direct product M™ x I of the manifold M™ and the oriented closed interval
I =0, 1]. Then the manifold with boundary N"*! = M™ x I gets a natu-
ral orientation. Let W and W4 be two G-framed closed submanifolds of the
manifold M™. The submanifolds W} x 0 and W4 x 1 are naturally oriented
as well, in the manifolds M™ x 0 and M™ x 1, and the oriented submanifold
Wi x 0U WS x 1 of the manifold M™ x 0U M™ x 1 is G-framed.

Definition 1.2. Two G-framed submanifolds W} and Wi of a mani-
fold M™ are L-equivalent if there exists a G-framed submanifold V**+! of
the manifold M™ x I with boundary W} x 0 U Wi x 1.

It can be easily checked that the L-equivalence of G-framed submani-
folds is symmetric, transitive and reflexive thus the set of G-framed sub-
manifolds of a given manifold M™ is divided into classes of L-equivalent
submanifolds. Denote the set of such classes by V¢(M", G). Note that
every element of the set Vi(M™, G) defines an integer cycle z; € H;(M™),
i.e. there is a well-defined mapping

Ao VI(M™, G) — H;(M™).
Definition 1.3. A cycle z; € H;(M™) is G-realizable, if it belongs to
the image of the mapping A¢g.

Definition 1.3 is evidently equivalent to the G-realizability definition
after Thom (see [16]).
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§ 2. Thom spaces. Classifying properties of Thom
spaces

In §1, we have fixed a connected subgroup of the group O(n —i). As-
sume this subgroup is closed in O(n — 4). Let Bg be the classifying space of
the group G. Without loss of generality, we may assume that Bg is a man-
ifold of high enough dimension. Denote by 1n(G) the classifying G-bundle
of spheres S"~*~!. Denote the total space by Eg; denote the projection
function by pg. The projection cylinder pg is a manifold Tz with bound-
ary Fg. The cylinder T can be considered as the space of the classifying
G-bundle of closed balls E"~%. Let us contract the boundary Eg of the
manifold Tg to a point.

Denote the obtained manifold by Mg; let us call it the Thom space
of the subgroup G of O(n — ). It easily follows from the general theory
that for n —i > 1, the space Mg is simply connected (see, e.g., [16] for
G = SO(n —1)). As for the cohomology of the space M¢, as Thom has
shown, there exists a natural isomorphism ¢: H*(Bg) — H*"~(Mg).

Denote by ug € H"(Mg) the element equal to ¢(1). Then the fol-
lowing Theorem holds

Thom’s Theorem. An integral cycle z; € H (M™) is G-realizable if
and only if there exists a mapping f: M™ — Mg such that the cohomology
class f*(ug) is Poincaré-dual to the cycle z;.

(If G is not connected then Thom’s theorem holds for modulo 2 cycles.)

Thom found a connection between the sets V¢(M", SO(n — i)) and
the sets of homotopy classes m(M™, M) of mappings M™ — Mg ([16],
Theorem IV.6). From the proof of Theorem IV.6 it follows that, substitut-
ing SO to G, one can easily get the following lemma.

Lemma 2.1. Elements of the set V{(M"™, G) are in one-to-one corre-
spondence with elements of the set 1(M™, M¢).

For i < [n/2], both sets have natural abelian group structures. Their
natural one-to-one correspondence, established in Theorem IV.6 by Thom,
is in this case a group isomorphism. This takes place also when M™ = S
(for arbitrary i). However, we are not interested in this case in the sequel.

Let us define the pairing for the groups:

Vi (S™, Gy) @ V2(S™, Gy) — VETi(§mtn2 Gy x Gy).  (I)

The group G x G5 is assumed to be embedded into SO(ny + ng — iy — iz).
This inclusion is defined by the natural decomposition of the Euclidean
space R™MTm2=1=#2 into the direct product R™ ~% x R™ %2, In order to
define the pairing (I), let us choose representatives for the two given ele-
ments 21 € Vi (S™, G1), 22 € V2(S"2, G3). These representatives, are,
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clearly, G1- and Gs-framed submanifolds W C S™ and W C S"2, re-
spectively.

The direct product Wi x W is naturally embedded into S™i+72
and it is GG; x Ga-framed because the normal bundle of the direct prod-
uct is decomposed into the direct product of the normal bundles of the
manifolds W% and W. We assume the group G x Gy is embedded
into SO(ny1 4+ ng — i1 — i2) precisely as shown above. Then the following
lemma holds.

Lemma 2.2. There exists a homeomorphism
Mg, XMGZ/Mgl VMg, = Mg, xa, (II)
such that the diagram

Vi (Snl, Gl) X Vi (Sn2, GQ) — Yt (Snl+n2, G X GQ)
L Y (Rl (II1)
T,y (MGI) & Tpy (MG2) — Tni4ny (MGI ><G2)

is commutative. (Here the upper row corresponds to the pairing (I), and
the lower row represents the pairing of homotopy groups defined by (II).)

ProOOF. To prove the existence of the homeomorphism (II) note that
the classifying space Bg,xq, of the group G x G2 is decomposed into
the direct product Bg, X Bg,. The classifying G; x Ga-bundle of planes
Rm+m2—i—i2 ig 3]s0 decomposed into the direct product of classifying bun-
dles, namely, the Gi- and the Go-bundle. The classifying G-bundle of
spheres is obtained from the plane bundle by taking in each fibre the set of
all vectors of length 1. The set of all vectors of lengths not greater than 1
gives us the classifying bundle of closed balls. Now, taking Bg, and Bg,
to be some manifolds of some high dimension, and recalling the definition
of Thom spaces via projection cylinders of classifying sphere-bundles T,
and T¢,, we get a natural homeomorphism Tq, xa, = Tq, X Ta,-

The cylinders T are manifolds with boundary Eg. For constructing
Thom spaces, the boundary F¢ is identified to a point. Clearly, one gets a
homeomorphism Eg, xq, = Tq, xEq,UEqg, xTg,. This yields the existence
of the homeomorphism (II). As for the commutativity of the diagram (IIT),
it follows from the geometric meaning of the vertical isomorphisms (see
proof of Theorem IV.4 in [16]). The lemma is proved.

Thom showed that the space M, is homeomorphic to the sphere S~ if
the unit group e is considered as a subgroup of O(n — 7). On the other hand,
for each polyhedron K, the polyhedron K x S"~%/K Vv S"~¢ is homeomor-
phic to the iterated suspension E" 'K over K. Let the group G coincide
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with one of the classical Lie groups: SO(k), U(k), SU(k), Sp(k). The
natural embeddings:

SO(k) x e C SO(k+1), where e e SO(1),
Uk)xecU(k+1), where eecU(l),
SU(k) xeC SU(k+1), where ee€ SU(1),
Sp(k) x e C Sp(k+1), where e € Sp(1),

evidently define the mappings

EMgou) — Msog+1),  E*Mygy — My, )
E’Msyy — Msuginy,  E*Mspay — Mspi1)-

(To construct these mappings, one should apply Lemma 2.2. Recall that the
group inclusions G C G C SO(k) produce natural mappings Mg — Mg.)

It is easy to show that the mappings (IV) in the stable dimensions,
are homotopy equivalences. Indeed (IV) commutes with the Thom isomor-
phism ¢: H(Bg) — H*T(Mg), where G C SO(k). But it is well known
that for small ¢ the mapping of the group classifying spaces from formu-
lae (IV) (Grassmann manifolds), gives an isomorphism of cohomology and
cohomology groups. The Thom spaces are simply connected, thus the map-
pings (IV) are homotopy equivalences in stable range dimensions.

Denote the groups V¥(S™, SO(n — i)) by Vi, if i <[n/2]; denote

the groups Vi(S", U(nz_z)) by Vi if n—i is odd and i < [n/2]; de-

note the groups V* (S”, SU(n;Z)) by V&, under the same assump-

tions, denote the groups Vi(S”, Sp(nT_i)), for n—i=0 (mod 4)

and i < [n/2], by V&,. From the above, it follows that this is well defined
because of stabilisation of homotopy groups of Thom spaces.

By means of the pairing (I), the direct sums Vso = ;50 Vio, Vi =
Yiso Vi Vsu = X0 Vs Vep = 2iso Ve, naturally acquire a graded
ring structure. We shall denote these rings also by Vso, Vir, Vs and Vg,
respectively.

§ 3. Cohomology of Thom spaces modulo p,
where p > 2

Consider the classifying spaces Bso(ar), Buk), Bsvuk), Bspk)- Their
modulo p cohomology algebras are well known (see [4]). Namely, H*(Bso(2x))



218 S. P. Novikov

is the polynomial algebra in the Pontrjagin classes py; € H*(B S0(2k)s Zp);
where 0 <7 < k, and the class Wy € sz(BSO(Qk), Zp). The algebra
H*(Byk), Zp) is isomorphic to the polynomial algebra in the genera-
tors co; € H2i(BU(k), Zy), where 0 < i < k; the algebra H*(Bgy ), Zp)
is isomorphic to the polynomial algebra in co; € H2i(BSU(k), Z,), where
i # 1; the algebra H*(Bgyry, Zp) is isomorphic to the polynomial alge-
bra in ks € H¥(Bgpyk), Zp), where 0 <i < k. Here the generators cg;
are the Chern classes reduced modulo p and the generators ky; are the
symplectic Borel classes (see [5]), reduced modulo p. Thom has shown
that the algebra H*(Mgo(2k), Zp) is isomorphic to the ideal of the algebra
H*(Bso(2k), Zp) generated by the element Wy (in positive dimensions).
We wish to prove the analogous statements for other classical Lie groups.
The following lemma holds:

Lemma 3.3. The homomorphism
J*t H" (Mg, Zy,) — H*(Bg, Zp),

generated by the natural inclusion j: Bg C Mg, enjoys the following prop-
erties for the classical Lie groups:

G=5012k), G=U(k), G=SU(k), G=Spk):

a) the homomorphism j* is a monomorphism;

b) Im j* is equal to the ideal generated by the element wsoy for the
group SO(2k), by the element co,  for the groups U(k) and SU(k) and
by the element kq, for Sp(k).

ProoF. Consider the space Eg of the classifying G-bundle of
spheres S?*~1 if the group coincides with one of the groups SO(2k), U (k)
or SU(k), and the bundle of spheres S*~1 if G = Sp(k).

By construction of the Thom space Mg (see §2), its cohomology
algebra H*(M¢) can be identified in low dimensions with the algebra
H*(Tg, Eg), where T is the cylinder of the projection Pg of the clas-
sifying sphere bundle. We can write down the exact cohomology sequence
of the pair (T, Eq):

= HY(Te) 2% Hi(Eg) & HWY (Te, Eg) 2o HWY (Te) — ... (V)

The space T is homotopy equivalent to the space Bg, and the homo-
morphisms H*(Tg) — H*(Eg) and H*(Tg, Fg) — H*(Eq), generated by
inclusions, evidently coincide with the homomorphisms p§,: H*(Bg) —
H*(E¢g) and j*: H*(Mg) — H*(Bg).

One can study the homomorphism pf, by using the spectral sequence of
the classifying G-bundle of spheres. But this spectral sequence in our case
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is well studied (see [3]). In the spectral sequence of this spherical bundle,
the following relations hold:

Ey =~ H*(S**~', Z,) ® H*(Bg, Z,)
if G = SO(2k), G = U(k), G = SU(k), and
Ey =~ H*(S*~!, Z,) ® H*(Bg, Z,)

if G = Sp(k). Denote the generator of the group H*(S%¢~1, Z,) by V2k~1
and denote that of the group H*(S*~1 Z,) by V**~1 (we choose the
generator coinciding with the integral generator reduced modulo p). It is
well known (see [3]) that dox(v?*1 @ 1) = 1 ® wag, that dyp (v 1@ 1) =
1®kyy, for the group Sp(k) and dag (v 1 ®1) = 1®cox, for the groups U (k)
and SU(k) in the corresponding spectral sequences. Clearly, Fo, &~ Eyj11
for the group Sp(k) and E =~ FEary1 for other Lie groups. Addressing
the spectral sense of the homomorphism pg,, we see that in all the cases
above the homomorphism pf, is an epimorphism to the algebra H*(Eq, Z))
with the desired ideal being the kernel. The homomorphism § in the exact
sequence (V) is trivial. Lemma 3.1 is proved.

REMARK. It is easy to see that the proof of Lemma 3.1 works even for p = 2
for all groups except for SO(2k). Thus, we shall not describe these special cases
in the next subsection.

Our main goal is to study the action of Steenrod’s powers on the homol-
ogy of Thom spaces. Following [16], we shall use “Wu’s generators” defined
in [4].

Consider symbolic two-dimensional elements ¢, ..., tx. We shall
not make any assumptions about them. In the polynomial algebra
P(t1, ..., tg), we select the subalgebra of symmetric polynomials. Set
Coi = Y t10...0t;, pa; = ka; = > t3o...ot? fori < k, woy, = cop = t10...0t
and kq, = w3,. We can calculate completely the Steenrod operation for
any arbitrary polynomial by using Cartan’s formulae. Furthermore, set

Bt;)=0(i=1,..., k), where 3 is the Bockstein homomorphism. Now,
with each decomposition w of a positive integer ¢ into positive integer
summands qi, ..., ¢s (unordered) we associate the symmetrised monomial

S t{" o...ot%. We denote this monomial by v,,. Analogously, with each
decomposition @ of an even positive integer 2¢ into even positive sum-
mands 2qi, ..., 2¢s (unordered) we associate the symmetrised monomial
thql o...0t% = yg. It is known that the polynomial algebra in cg;
(considered as symmetric polynomials of “Wu’s generators”) is isomor-
phic, as a module over the Steenrod algebra, to the cohomology algebra
H*(Byk), Zp) (analogously for the cohomology algebras H*(Bgso(ak), Zp)
and H*(BSp(k)7 Zp))



220 S. P. Novikov

The algebra H*(Bgyk), Zp) is isomorphic, as a module over the
Steenrod algebra, to the quotient of the algebra H*(By), Z,) by the
ideal generated by cz. Applying Lemma 3.3 and the results of Borel-
Serre  [4], we shall represent the cohomology of Thom’s spaces via
symmetric polynomials of “Wu’s generators”. ~We call the decompo-
sitions w (or w) p-adic, if at least one of the summands is equal
to p° —1. Recall that in [6], Cartan associated with cohomology op-
eration a certain number, the {ype in Cartan’s sense (the number
of occurrences of the Bockstein homomorphism in the iterated opera-
tion).

Lemma 3.4. All zero-type Steenrod operations in modulo p cohomolo-
gies of the spaces Mso(ak), Muk), Msuy, Mspky are trivial. The Steen-
rod operations of zero type of the elements Way, and Vz o Way, for all non-
p-adic decompositions W are independent in dimensions less than 4k, and
form a Z,-basis in these dimensions of the algebra H*(Mgo k), Zp). The
zero-type Steenrod operations of elements cor, and V,, o cor for all non-p-
adic decompositions w are independent and form a Z,-basis of the algebra
H*(Myy, Zp) in dimensions less than 4k. The Steenrod operations of
zero-tpye of the elements kqi and Vg o kg for all non-p-adic decomposi-
tions W are independent and form a Z,-basis of the algebra H* (Mgpx), Zp)
in dimensions less than 8k.

(We recall again that in the above text we denoted by @w decompositions
of even numbers into even summands, and by w decompositions of arbitrary
positive integers into integer summands; and we defined the polynomials Vz
and V,.)

We do not give a proof of the above lemma. It repeats the arguments of
Thom (see [16]) and Cartan (see [6]). For the group SO(2k), it is given [2].

For convenience of further formulations, introduce graded modules
over the Steenord algebra (to be denoted by Hso(p), Huy(p), Hsu(p)
and Hgp(p)), whose homogeneous summands are stable cohomology groups
of the correponding Thom spaces modulo p (here p might be equal to two).
Lemma 3.4, is, actually, a statement about these modules.

§ 4. Cohomology of Thom spaces modulo 2

It follows from Remark in §3 that we can apply the same method for
studying the cohomology of the Thom spaces My ) and Mgy ;) mod-
ulo 2. However, the method of [16] does not work for the groups SO(2k)
and SU (k) because the cohomology of the classifying spaces for these groups
(viewed as modules over the Steenord algebra) are not described in terms
of polynomial subalgebras in “Wu’s generators” (see §3).
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Consider the iterated Steenrod squares Sq” corresponding to admissible
sequences J = (i1, ..., is) in the sense of Serre (see [14]). We shall write
J =0 (mod ¢) if all i; =0 (mod ¢), and J =m (mod ¢), if at least one
i; =m (mod ¢), where m and ¢ are positive integers. We shall say that the
Steenrod operation Sq”’ has type m modulo ¢ if J = m (mod q).

The description of the cohomology of the classifying spaces By
and Bg,r), given in §3, is applicable here even modulo 2 (it is applica-
ble for integers). Following § 3, let us introduce the symmetrised monomi-
als v, for every decomposition w = (aq, ..., a;) of a positive integer into
positive summands, and the symmetrised monomials vg for every decompo-
sition @ = (2a1, ..., 2a;) of an even positive integer into even summands.
The decompositions w and @ are assumed unordered.

Lemma 4.5. All non-zero type Steenrod operations modulo two act
trivially on modulo two cohomology 2 of the Thom spaces My ), Msu )
and Mgy The non-zero type Steenrod operations modulo 4 act trivially
on the cohomology of the Thom space Mg,y modulo 2. The Steenrod op-
erations Sq” of zero type modulo 2 of arbitrary elements V,, o cop, and cap,
where the decompositions w contain no summands of type 2t — 2, are inde-
pendent and form a Za-basis of the algebra H*(My i), Z2) in dimensions
less than 4k. The Steenrod operations Sq” of zero type modulo 4 of ar-
bitrary elements Vo kay, and kai, where W contain mo summands of type
2t — 4, are independent and form a Zy-basis of the algebra H*(Mgpy, Z2)
in dimensions less than 8k.

The proof of this lemma is quite analogous to the proof of Lemma 3.4,
one can just repeat Thom’s arguments (see [16], Lemma I1.8, Lemma II.9,
Theorem II.10).

Now, let us try to study the modulo 2 cohomology of the Thom
spaces Mgo) and Mgyy. As above, we shall consider only coho-
mology in stable dimensions. Analogously to the previous lemmas, in-

troduce unordered decompositions @ = (a1, ..., a;) of a positive integer
a=>3a;, a=0 (mod 4), into summands a; (i =1, ..., t), also positive,
a; =0 (mod 4).

Lemma 4.6. In the algebra H*(Mgok, Z2), one may choose a system
of elements ug, € H* *(Mgor, Z2) for all decompositionsw = (a1, ..., ar)
of the numbers a =0 (mod 4) into summands a; =0 (mod 4) and a system
of elements x; € H*™ (Mgok), Z2) such that:

a) all Steenrod operations Sq”’ of elements x; are independent in dimen-
stons less than 2k;

b) all Steenrod operations Sq” of ug and wy, € H*(Mgo), Z2) are in-
dependent with the operations of xy, if J = (i1, ..., is), where iy > 1, and
the dimensions of the elements Sq” (uz) and Sq” (wy,) are less than 2k;
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c) the elements Sq”(ugy) and Sq’(wy) are equal to zero if J =
(i1, ..., is), where iy = 1;

d) in the algebra H*(Msow), Z2), all elements of type Sq” (uz),
Sq”(wy), Sq”(x1) form a Za-basis in dimensions less than 2k.

Before proving Lemma 4.2, note that the results of this lemma allow
one to describe the action of Steenrod squares in the modulo 2 cohomol-
ogy of the space Mgy (). To perform this deed, recall the description
of the algebras H*(Bo), Z2) and H*(Bgo(k), Z2) via one-dimensional
“Wu generators” yi, ..., Y. Set w; =Y. y10...0y;, where i < k. It is
evident that wp =y 0...09k, and all Steenrod operations of w;’s are
then calculated by Cartan’s formulae. Wu has shown that the algebra
H*(Bom, Z5) is isomorphic, as a module over the Steenrod algebra, to
the algebra P(wr, ..., wx) and that the algebra H*(Bgo), Z2) is isomor-
phic, as a module over the Steenrod algebra, to the quotient of the algebra
P(wy, ..., wg) by the ideal generated by wy. Here is an evident analogy
with the description of algebras H*(By )y, Z2) and H*(Bgy ), Z2) via
two-dimensional Wu generators t1, ..., t; (see §3).

In [1], the author defines an endomorphism of the Steenrod algebra
A= AQ over ZQ

h:A— A (VI)
such that h(Sq¢?") = Sq* and h(S¢* 1) = 0.
Consider the isomorphism p: P(ty, ..., tg) — P(y1, ..., yx) of graded

algebras over Z, decreasing the dimension twice. Clearly, the isomor-
phism y enjoys the following property:

#(Sq’ (x)) = h(Sq”)(u()), (VII)
for x € P(t1, ..., tg). The isomorphism g induces isomorphisms
p1: H*(Byy, Z2) — H*(Bo(k), Z2)

and
po: H*(Bsy(ry, Z2) — H*(Bso(r), Z2)

that also satisfy (VII), and are isomorphic to

Mt H* My, Zs) — H (Mo, Zs),
1 ( U(k) 2) ( O(k) 2) } (VIII)

At H*(Msyy, Z2) — H*(Mso(k), Z2)

making the dimension two times smaller and possessing the property (VII).
Clearly, /\1(UU(k)) = UO(k) and /\Q(USU(k)) = USO(k)- Thus, we get
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Corollary 4.4. There exists an isomorphism \g: H*(Mgym, Z2) —
H*(Msow), Z2) making the dimension two times smaller and such that
X (Usum) = Usow and h(Sq’Xa(z)) = Aa(S¢(2)) for all o €
H' (Msy iy, Z2), j < 2k.

Now, let us prove Lemma 4.6. It follows from Rokhlin’s work [12]
that the kernel of the mapping i.: mm(Mgsow)) — Tm (Mo ), generated
by the inclusion i: SO(k) C O(k), consists of all elements divisible by 2, for
m < 2k — 1. Denote by m@ (Mso(r)) the quotient of the group 7, (Mgso(k))
by the subgroup consisting of all elements of odd order (in [2], it is shown
that the groups m,,(Mgo)) do not contain elements of odd order, but
we shall not rely on this result). It follows from [16] that one may choose

m (2
A

systems of generators 2™ of the groups Wm)(Mso(k)) and y§m) for the
groups T, (Mo(r) such that the mapping 4. takes the set {ZCl(-m)} to a sub-

set of {yj(-m)}. As Thom has shown, (see [16], I1.6-11.10), the space Moy
can be thought of as homotopy equivalent (in stable dimensions) to the
direct product of Eilenberg-MacLane complexes. This defines a mapping i1
from Mgox) to the direct product II of Eilenberg-MacLane complexes of

types K(Z2, n;), for which the generators of the homotopy groups are in
(m)

one-to-one correspondence with the elements x;", so that the mapping 1.

(M) ¢ the generator of this product corresponding to

i
it. The fundamental classes of factors of this direct product, ugm),

defined by the equalities (ugm), ilxim)) =1, (ul(-m), :EZ(-,ml)) =0,ifi#£4
or m #m'.

Denote by II,,, the subproduct of the product IT of Eilenberg-MacLane
complexes, defined by elements of homotopy groups of dimensions greater
than or equal to m. Denote by igm) the projection of the mapping iy
to IL,. The following Serre fibre spaces are well known (see [14]):

takes the element x
can be

Pm: ]T/[\So(k) M, M) where by ]\/Zso(k) we denote some space which
is homotopy equivalent to Mso), and by M (m) we denote the space ob-
tained from Mgox) by “killing” all homotopy groups starting with the m-

th. The fibres of these bundles are m-killing spaces for Mgo(x). Denote

them by M(,,). We shall denote the generators of the groups m@ (M)

also by gcgm) gm)’

defined by

. The group H™(M(,,)Z2) is generated by the elements v

(v(m) x(-m)) =1, (vgm) x(m)) =0, i # 1.

7 » !

We consider the space 11, as a fibre space with base consisting of one point.

The mapping igm) induces the mapping %gm) : My — .
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Obviously, ;gm)*(ugm)) = vgm). From the last statement, it follows im-

—~ M
mediately that in the Serre fibre space py,: Mso(k)gM(m) the trans-

gression is trivial for all elements vl(m) because the mapping igm) can be

thought of as a mapping from this fibre space to the trivial one described
above. This yields that all factors of the space Mgo() in the sense of
M.M. Postnikov (see [11]), reduced modulo 2, are trivial. The statement
of Lemma 4.6 now follows from Theorem IV.15 of Thom (see [16]) and the
fact that the cohomology groups H;(Mgo(r)) have no elements of order 4
for i < 2k — 1. Here we mean cohomology groups with integer coeflicients.

§ 5. Diagonal homomorphisms

Let K be an arbitrary polyhedron. Denote by H* (K, Z,) its module
over the Steenrod algebra A = A,, with homogeneous summands being
the cohomology groups of positive dimensions. Let K; and K> be two
polyhedra. There is a well-known isomorphism

H+(K1 X Kg/Kl V Ko, Zp) I~ H+(K1, Zp) ®H+(K2, Zp)

This is an A-module isomorphism (which makes sense because A is a
Hopf algebra). This yields that the homeomorphism (II) from Lemma 2.2
defines diagonal homomorphisms generated by the above inclusions
SO(m) x SO(n) € SO(m + n), U(m) x U(n) C U(m + n), SU(m) x
SU(n) € SU(m+n), Sp(m) x Sp(n) C Sp(m + n):

H* (Mso(m+n)) = H" (Msoam)) ® H" (Mso(m)),
H"(My(man)) = HY (My ) @ H (My(y)), (1X)

HY (Msy(m+n)) = H (Msy(m)) @ H (Msu()),

H* (Mspimtny) = H (Msp(my) @ H (Mgp(n))-

We shall define all these homomorphisms by A,,,. The homomor-
phisms A,,, denote for the modules Hso(p), Hu(p), Hsu(p), Hsp(p),
(see §3) the following homomorphisms A:

Hso(p) — Hso(p) ® Hso(p),
Hy (p) — Hu(p) ® Hu(p),
(X)
Hsy(p) — Hsu(p) @ Hsu(p),
(p)

HSp p)— HSp(p) & HSp(p)'
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The aim of this section is to calculate the homomorphisms (X). The follow-
ing lemma holds.

Lemma 5.7. For generators u, and ug of the modules Hgo (p), Hy (p),
Hgy(p) for all p > 2, the homomorphisms A look like:

Aluy,) = Z [Uey @ Uiy + Uiy @ Uy ] + Z Uy @ Uy,

(wiiu;zzjw (w1, w2)=w
(X1)
Aug) = Z [Ua, ® Ug, + Us, ® Ug, | + Z Uz, & Ug, -
(u’%i?g;@ (01,02)=w

Note that in formulas (XI) we admit decomposition wy (@;), consisting
of the empty set of summands. In this case, the generator u,, (ug,) for
the empty summand wq (W) corresponds to the elements way, cop or kag,
as in previous sections. (By wug we denote the generator of the module
corresponding to the product vg o weg or vg o kg, from Lemma 3.4. Here
by wu,, we denote the generator of the module corresponding to the product
Uy © Cok, and also generators from Lemma 4.6.)

PROOF. First consider the modules Hgo(p) for p > 2. Hy(p) for p > 2
and Hgp,(p) for p > 2. Let us return to the description of Thom spaces by
ideals in the cohomology of classifying spaces (see Lemma 3.3) and “Wu’s
generators”. We are going to calculate the homomorphism (IX), by using
Whitney’s fomulae for Pontrjagin’s, Chern’s, and Borel’s symplectic classes.

Let m and n be large enough and let x1, ..., Ty, y1, ..., yn be the
symbolic two-dimensional “Wu generators”. In the algebra P(xq, ..., 2y,
Y1, -5 Yn), choose elementary symmetric polynomials in 1, ..., Z,
Y1, -+, yn and 2%, ... 22 yf, ..., y2. The topological meaning of these
polynomials was described above. Analogously, we take the elementary
symmetric polynomials in the algebras P(z1, ..., @) and P(y1, ..., yn)
over the field Z,. Note that the homomorphisms A,, , should satisfy
Whitney’s formulae, and these formulae uniquely define the homomor-
phisms (IX). We set formally:

Apn(z:) =2, ® 1, Apnlyj) =1®y; (XII)

for all 2 < m, j < n. We treat the set of elements z; as the “Wu generators”
for the algebras

H*(BSO(Qm)v ZP)7 H*(BU(m)a ZZD) and H*(BSp(m)v ZZD)

and the elements y; as the “Wu generators” for the algebras
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H*(Bson), Zp), H*(Buwmy, Zp), H*(Bspmn), Zp)-

If we apply (XII) to elementary symmetric polynomials, we can eas-
ily see that from (XII) one gets the Whitney formula for all character-
istic classes mentioned above. Thus the homomorphisms A,,, calcu-
lated according to (XI) and introduced formally coincide on the symmet-
ric polynomials with the “geometric” homomorphisms A,, ,. Now, let
us apply formulae (XII) to the polynomials vg o wag, v, © Cak, Uz 0 Kak,
wak, cor, and kyi. It is easy to see that they lead to the desired re-
sult. In order to prove (XI) for the modulo Hgo(2), note that Pontrja-
gin’s classes satisfy Whitney’s formulae (without torsions). We take u,,
from Lemma 4.6, the modulo 2 reductions of polynomials in Pontrjagin
classes and the class wy(;,4n), corresponding to the symmetrised mono-
mial

E :v‘l“HO...onSJrlo,..oxmoylO...oyn,

where w = (a1, ..., as) is an arbitrary decomposition of an odd number into
odd summands, in elementary symmetric polynomials of squares 27, y7 and
the polynomial wy(y,40) = T10...0Tp0y10...0y,. Arguing as above, we
see that formula (XI) for these elements is valid up to some elements be-
longing to the image of Sq* (in integral homology with 2-torsion omitted).
The lemma is proved.

Now, let us give the conclusion of this Chapter. In §2 we associ-
ated with the group sequences {G; = SO(i)}, {G; = U>1)}, {G; = SU(4)},
{G; = Sp(i)}, graded rings Vso, Vi, Vsu, Vsp. We shall call them in-
ner homology rings. On the other hand, in §§3-5 we associated with the
same sequences the graded modules over the Steenrod algebra: Hgo(p),
Hy(p), Hsu(p), Hsp(p) for all prime p > 2. These modules were calcu-
lated in §§3-4. In §5 we associated with these modules the diagonal map-
pings (X).

The aim of the next chapter is to calculate the inner homology rings by
using Adams’ spectral method.

CHAPTER I

Inner homology rings

This chapter, as mentioned above, is devoted to the calculation of inner
homology rings. The main theorems of this chapter are formulated in §§ 4-5.
In the first three sections, we study modules extensions over the Steenrod
algebra.
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§ 1. Modules with one generator!

Let A be the graded associative algebra A = 21;0 A over Zp. As

usual, we assume that A(®) = Z, and A are finite-dimensional linear
spaces over the ground field. Consider the graded A-module M with
one generator u of dimension 0 endowed with some homogeneous Z,-ba-

sis {:vl(-m)}, xgm) € M(™. The free A-module with one generator is also to
be denoted by A if this generator has dimension 0, in this case, this module
is identified with the algebra A. We denote the generator by 1 and identify
it with the unit of A. Clearly, there is a well-defined canonical A-modules
mapping £: A — M such that £(1) = u. Denote by A, as usual, the ideal
of A generated by all elements of positive dimension.

Let B be a graded subalgebra of A, B = Z@o BW BO) — Z,
and B® = BN A®. Denote by Mp the one-generator module equal to
A/A o B. Denote its Z,-basis, as before, by a:z(-m), and denote its generator
by u = (1), where ¢ is the natural homomorphism A — A/A o B. Denote
by {y‘gk)} any homogeneous Z,-basis of B, and in each set £~ (z{"™) choose

i(m) € 5_1(:C§m)). The elements zi(m)
(m)

. . m
mogeneous of the same dimension as x; .

and fix one element z are assumed ho-

Definition 1.1. The subalgebra B of A is special if all possible products

zi(m) o yj(.k) form a homogeneous Z,-basis of the algebra A, and they are

independent.

As usual, we shall endow the field Z,, with the trivial A-module struc-
ture.

Lemma 1.1. Assume the subalgebra B of A is special. In this case we
have an isomorphism:

Ext (Mg, Z,) ~ Ext3 (Zy, Zp). (XIII)

PRrROOF. Let Cp(Z,) denote the B-free standard complex of the al-
gebra B (see [8]). To prove the isomorphism (XIII), we shall construct
an A-free acyclic complex C4(Mp), such that there exists a differential
isomorphism

Hom?%; (Cp(Z,), Z,) ~ Hom®%' (Ca(Mg), Z,) (XIV)

for all pairs s, ¢t. From the isomorphism (XIV) that for all s, ¢t com-
mutes with the differential, we easily get (XIII). For constructing the com-
plex Ca(Mp), we shall use Z,-bases of our algebras and of the module Mg,
given in Definition 1.1 of this section, with the same notation.

1We consider only left A-modules.
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For the module C%(Mp) =3, C%'(Mp), we take the free A-module,
and define the mapping e: A — Mp such as it is defined in the beginning
of this section. Obviously, for generators of the A-module Kere C C9(Mp)

we may take all possible elements y ) for k> 0. Each element y € Kere
looks like E z( ma) y( "), where all k; > 0. It follows immediately from

Definition 1.1 that all A-relations between the generators y( ) of the module
Ker e follow from the multiplicative relations in B. We shall construct the
complex Cq(Mp) =3, C%'(Mp) by induction on s. Assume that:

a) the complex C4(Mp) is constructed for all s < n;

b) generators of the A-module Kerd,,_i: C%(Mp) — Cy~'(Mp) are
in one-to-one correspondence with sequences of homogeneous elements

(yj(fl), cey yj(ljﬁl)) of positive dimension; denote these generators by
(yj(l ), cey yJ( ﬂl)), and denote for each element y; = qu( 1) by
(yj(fl), R T yj(ljﬁl)) the linear combination 3}, qlu(yj(ll), o

yh PP ,yj(k’:l)) of generators of the kernel Kerd,_; (for each

1<i<n+1);
¢) generators of the A-module Kerd,,_; satisfy the following relations:
k n k 2
you(y™, ..., yj(nf)) =u(yoyl™, ..., y§ngl’>
k £ n
+§: Vul, v o v ol ),
where y € B.

d) all relations are linear combinations of right-hand sides of relations

from c), multiplied from the left by 2{™ o ") (

e) the dimension of u(y](fl), ce yj(n:fl)

and trivial relations).
) is equal to the sum of the

dimensions of yj(k) (i=1,...,n+1).

Clearly, these assumptions are proved above m =0. Now, let us
construct a module C%T(Mg) =13, " (Mp) and a mapping d,:
Ot (Mp) — C%(Mp). We choose A-generators of the free mod-
ule CZH(M p) in such a way that they are in one-to-one correspondence

with the elements u(yj(kl), ce yJ( ﬁl))

by v(yj(-fl), ce yj(lj’:l)) We set the dimension of v(y (kl), ce yj(ljﬁl)) to

(k1) (Fn+1)
betequal to > ki, as well as that of the generator u(y; ", ..., y; "7""). We
set:

k}n k kn
dogr (WY, ) =l ),

. We denote these free generators

Let us prove that the kernel Kerd, 1 satisfies the assumptions b)—e).
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We set
k kn k k kn
(yj(ll)a LR yj(”+:2)) - yj(ll) ’U(y](’zz)7 R y](7L+:2))
n+1
k ki i n
T o ),

The properties c) and e) can be checked straightforwardly. To prove d),

let us use the properties of bases of the algebra A. Let us compose a relation,

(m) (l) o u(y](iﬂ)’ e y§5:;2))7

equal to zero. Then we see that d) easﬂy follows from the properties of
bases and the induction hypotheses.

The resolvent C4(Mp) that we have constructed, evidently, satis-
fies (XIV) by definition of the standard complex Cg(Z),) of the algebra B.
The lemma is proved.

Now let A be a Hopf algebra and let B be a special subalgebra which is
closed with respect to the diagonal mapping ¢: A — A® A. In this case,
the A-module Mp has also a diagonal mapping

a linear combination of elements of type z;

¢: Mg — Mp ® Mg,

induced by % and which is an A-module homomorphism. The homomor-
phism J can be considered, as well as the homomorphism from the A-mod-
ule Mg to the A ® A-module Mp ® Mg, such that: ¢(aox) = h(a)o(z),
for a € A, x € Mp. The homomorphism QZ endows the direct sum

Exta(Mp, Zp) =Y Ext} (Mg, Z,)

s,t

with a bigraded algebra structure over Z,.

Lemma 1.2. Let A be a Hopf algebra with a special subalgebra B such
that B is closed with respect to the diagonal mapping. Then (XIII) is a
graded algebra isomorphism.

The proof of Lemma 1.2 follows from the commutativity of the diagram
Extpen(Zp, Zp) = Extaga(Mpen, Zp)"
L " L
Extp(Z,, Z,) ~ Ext, (Mg, Z,)

It remains to note that the algebra B ® B is special in A ® A and the A ® A-modules
Mp ® Mp and Mpgp are canonically isomorphic.
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§ 2. Modules over the Steenrod algebra. The case of
prime p > 2

In [1], the families of elements e, r >0, and e, 7> 1, k>0, in
the Steenrod algebra A over Z,, are defined. These elements possess the
following properties:

a) el € AR 1) erk € Ak(2p"=2) ero=1;

b)(el) =L @1+ 1€, Y(enn) = Xpryop bri ® engs
where 1 is a Hopf homomorphism of Steenrod algebras;

¢) if we order the set of elements e/, and positive-integer valued functions
fr(k) = e, somehow, then the set of monomials which are products of e,.
and e, with arbitrary arguments k, substituted, forms a basis of A;

d) the elements e, , have Cartan zero type (see [6]), the elements e are
of Cartan type 1;

e) The elements e/ anti-commute.

Later on, we shall use these properties of Adams’ elements in the Steen-
rod algebra. Let us return to our modules Hso(p), Hu(p), Hsp(p). The
formulae (X) §5 Ch. I define diagonal homomorphisms for these modules.
Thus, the bigraded groups

Exta(Hso(p ZExt Y (Hsol(p), Zy),
Exta(Hy(p), Z —ZExtff Hy(p), Zy),
Ext 4 (Hsp(p) ZExtA (Hsp(p), Zp).

have a natural structure of bigraded algebras. Furthermore, recall that
in § 3 of Chapter I we introduced decompositions w and @ of some numbers
of the same type; we call twice the sum of this numbers the dimension of
the decomposition w (@) and denote it by R(w) (R(w)); also, we introduced
the notion of p-adic decomposition w ().

Theorem 2.1. The algebras Exta(Hso(p), Zp) and Exta(Hsy(p), Zp)
are isomorphic and they are polynomial algebras with the following genera-

tors: 1 € Exty’ (Hsp(p), Zp),
2an € Bxt " (Hs,(p), Z,), 2k #pi —1, (XV)
hl € Ext1 2" = (HSp(p)v Zp), 120,
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The algebra Exta(Hy (p), Zp) is a polynomial algebra of

1 € Exty’(Hu (p), Z,),
zor € BxtGF (Hy(p), Z,), k#p—1, (XVI)
h;_ c EXt}L{QpT_l(HU(p), Zp)a r = 0.

PrOOF. Denote by Mg the module over the Steenrod algebra with one
generator u of dimension 0, and the only non-trivial relation being 5(z) = 0
for all x € Mg.

Obviously, the module Mg has the diagonal mapping A: Mg — Mg ®@ Mg,
and the group Exta(Mpg, Z,) =3, Ext%" (Mg, Z,) is an algebra.

Lemma 2.3. The algebra Exta(Mp, Z,) is a polynomial algebra with
the following generators:

1€ Ext% (Mg, 2,),  hl.eExtG? ~'(Mg, Z,), r>0.

PrOOF. To prove this lemma, let us use properties a)—e) of the Adams
elements and Lemma 1.2 § 1, Chapter IT (see above). We define B to be the
subalgebra of A generated by the elements e/, r > 0, and e, o = 1. Now,
let us order the Adams elements in such a way that all elements e, pre-
cede from the left all elements e, , and define the basis of the Steenrod
algebra by property c), for this ordering. Clearly, for the algebra B all
assumptions of Lemma 1.2 §1, Chapter II, hold. The algebra B is the
exterior algebra with generators e/ € B®"=1): thus we see that its coho-
mology algebra H*(B) = Extg(Z,, Z,) is a polynomial algebra. On the
other hand, it follows from d) that in this case Mp = Mg, which yields the
conclusion of the lemma. The lemma is proved.

Now, let us use Lemmas 3.4 and 5.7 of Chapter I. We see that the mod-
ules Hso(p), Hu(p) and Hgp(p) are direct sums of modules of type Mg,
the only difference being that their generators u, and ug, except one,
have non-zero dimension which is equal to R(w) or R(w), respectively. De-
note by z, € Ext5™ ) (Hy (p), Z,), by 2z € ExtS ) (Hso(p), Z,) and by
2 € Ext%R(w)(Hsp(p), Z,) the elements of these algebras defined by the
following equalities:

(2w, uw) = 1, (2w, Uwy) =1, w1 # W,
(2w, ug) = 1, (2@, um,) = 1, W #D.

From Lemma 5.7, Chapter I it follows that in the algebras
Exta(Hso(p), Zp), Exta(Hu(p), Zp), Exta(Hsy(p), Z,) the following re-
lations hold:

(XVII)

Zw 0 Zwy = Z(w,wr)> 2w © 2wy = Z(w,wy)
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for all non p-adic decompositions w, w1 and w, wi. Now, it suffices to define
the generators z4; and zg; to be the elements zz and z,,, where w and w
consist of one summand each. The theorem is proved.

§ 3. Modules over the Steenrod algebra. The case
p=2

In [1], modulo 2 bases of the Steenrod algebra were studied. Namely,
Adams defined a family of elements e, j € AF2"=k) possessing properties
analogous to a)—e) §2. In this case, the elements e, ; commute with each
other for any r and eZ ; = 0 (also for any r).

Analogously to Theorem 2.1 § 2 Chapter II, one can prove the following

Theorem 3.2. The algebra Ext(Hy(2), Z2) is a polynomial algebra
with generators:

1€ ExtG(Hy(2), Z2),
zor € BxtG* (Hy(2), Zo), k#2' -2, (XVIII)
. e BExty* TN Hy(2), Zs), r>=0.

PROOF. The proof is analogous to the proof of Theorem 2.1 (in this
case 3 = Sq*). We indicate the only difference: in the Steenrod algebra
over Zy there are no Cartan types. As before, denote by Mg the module
over the Steenrod algebra with the only generator of dimension 0, and the
only relation 5(z) = 0 for all z € Mg. We define the subalgebra B of A
to be the commutative algebra generated by the elements e, 1, 7 > 1, and
er,0 = 1. Obviously, it is special. Let us prove that Mp = M. We shall
use the dividing Adams homomorphism h (see formulae (VI) §4 of Chapter
I). Clearly, the homomorphism A annihilates all iterations of type 1 modulo
2 (see §4 of Chapter I). Adams showed that the following relations hold:

h(er,2k) = €rk,
h(e,_)glﬁ_l) = 0.

From (XIX), it follows that h(e,1) = 0. Instead of elements e, j, we shall
consider now only e, 5 and construct bases of type c) §2 Chapter II only
by using such elements (see [1]). Consider the ordering where all elements
of the type e,1 precede all elements of the type e, o for i > 0 we see that
the homomorphism A annihilates only those monomials of the basis having
er,1 on the left side. This yields that Mz = Mp. The theorem is proved.

Denote by Hso(2) the quotient of the module Hgo(2) by its A-free
part generated by the generators x; from Lemma 4.6 §4, Chapter I. From
Lemmas 4.6 and 5.7 of Chapter I, analogously to Theorem 2.1 and Theorem
3.2 of this chapter, we get

(XIX)
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Lemma 3.4. The algebra Exta(Hso(2), Z2) is a polynomial algebra
with generators:

(XX)

1€ Exty’ zqr € ExtY™, k>1
ho € Ext};".

The proof of this lemma is analogous to the previous ones. For B, we
may take the subalgebra generated by e; 1 = Sq'.

Denote by M, 3 the module over the Steenrod algebra with one generator

u of dimension 0 and one non-trivial relation 5(z) = 0 for z € M, 5 and the
relation S¢?(u) = 0. From Lemma 4.6 and Corollary 4.4 of Chapter I it
follows that the module Hgo(2) is a direct sum of modules of types Mg

and M, 3. The following theorem holds

Theorem 3.3. The algebra Ext 4 (Mg, Z5) admits a system of genera-

tors
1eExty’ (Mg, Zs), ho € Ext™! (Mg, Zs), hy € Ext™?(Mg, Zs),
zeExt> (Mg, Zy),y€Ext™2(Mg, Zy), h. € Ext™? ~Y (Mg, Zy),r > 3,
(XXI)
satisfying the relations
hohy = 0,h3 = 0,2% = h3y, hhz = 0, (XXII)

and all the relations follow from (XXII).

ProOOF. To prove Theorem 3.3 is, we shall, as above, find a spe-
cial subalgebra B of the Steenrod algebra A, that should correspond to
the module Mg. For B we take the subalgebra generated by the ele-
ment e; o = S¢* and all elements of the type e, 1. It follows trivially from
the description of the elements e, ; in [1] that [e11; e1,2] = e2,1 and that
[er1; e12] =0 for r > 1. (By [a; b] here we denote the element ab— ba
(commutator).) Let us calculate the cohomology algebra H*(B). Clearly,
the subalgebra generated in B by e,; for r > 1, is a central subalgebra
in B. Denote it by C. It is easy to see that the algebra B//C' is commuta-
tive, with any element squared being equal to zero (because in B we have
6%72 =e1,1 0€ez1). The algebra H*(C) is isomorphic to the polynomial alge-
bra with generators h!. € H“2" ~1(C) for all r > 2. The algebra H*(B//C)
is isomorphic to the polynomial algebra with generators ho € H%(B//C)
and hy € HY*(B//C).

Consider the Serre-Hochschild spectral sequence for the central sub-
algebra C' of B (see [15]). We know the Es term of it, namely,
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EY?=HP(B//C)® HI(C). Simple calculations show that in the Serre-
Hochschild spectral sequence the following relations hold:

do(1®hb) =hohi®1, d;(1®h.)=0, r>3, i

2 27

5 4 ) } (XXIII)
ds(1@hy )y =hi®1, d(1®h,)=0, i>2.

Setting x = hg ® h’22, y=1® h’24 and preserving the previous notation, we
easily get the desired result. The theorem is proved.

It remains thus to study only the module Hg,(2). Denote by M; 5 the
module with one generator over the Steenrod algebra with two identical
relations Sq!(z) = 0 and S¢?(z) = 0 for all x € M; 5. The dimension of the
generator is assumed to be zero. Lemmas 4.5 and 5.7 of Chapter I reduce
the study of the algebra Exta(Hgp(2), Z2) to the study of Ext 4 (M 2, Z2).
Arguing as above, it is easy to show that the algebra Exta (M2, Z2) is
isomorphic to the algebra H*(B), where B is the subalgebra of the Steenrod
algebra A generated by all elements of the type e,; and e, 2. Recalling
the description in [1] of the elements e, j, it is easy to show by simple
calculations that the elements e, ; and e, satisfy the following relations:

[er 15 €rp1] =0, €71 =0, [er2;e11] =erq11,
ler,2; €ry1] =0, 12 >1, [er2; €12 =e€pqr110€11, (XXIV)
[er, 25 €y, 2] 0, r1>1, rp>1, efy=ep10e17,

> 1,

2 _
er, =0,

)

and all relations follow from (XXIV).

Let us choose in this algebra the central subalgebra C, generated by
the elements e, 1 for r > 2. The cohomology algebra H*(C) is isomorphic
to the polynomial algebra in h. € Hl’QT_l(C) for all » > 2, as is easy to
see from (XXIV). The cohomology algebra H*(B//C') is isomorphic to the
polynomial algebra in hg € H'(B//C) and h,1 € HY2""=2(B//C) for all
r > 1. From (XXIV), one can easily deduce that in the Serre-Hochschild
spectral sequence for the subalgebra C' of B, the following relations hold:

do(1®hl) =hohr—11®1, r>2,
ds(1®h?) = high? @1, r>2, (XXV)
dG(1ehy =0, i>2 r>2

Set # =ho®@h,> and y = 1 ® hy*. Obviously di(z) =0 and d;(y) =0

for all 4>2. Thus there exist elements x € Ext%’(Hspy(2), Z2) and

Y€ Extle(Hsp@), Z5) satisfying the following relation:

z? = hiy, (XXVI)
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where hg € ExtY'(Hs,(2), Z2) (such an element hg, clearly, exists). Be-
sides, from (XXV), it evidently follows that in the algebra Ext 4 (Hgp(2), Z2)
for every n we have hgz # 0 and hgy # 0.

§ 4. Inner homology rings

Theorem 4.4. The quotient ring of Vso by 2-torsion is isomorphic to
the ring of polynomials with generators uy; of dimension 4i for all i > 0.
The ring Vi is isomorphic to the ring of polynomials with generators Va;
of dimension 2i for alli > 0. The algebras Vs, @ Z,, are isomorphic to the
algebras of polynomials with generators ty; of dimension 4i for all i > 0 for
every p > 2. The ring Vs, has no p-torsion for p > 2. The quotient of the
ring Vs, by 2-torsion is not a polynomial ring. There are elements x € V54p,
Yy e Vgp such that x> — 4y = 0 (mod 2-torsion), so that the elments x and y
are generators of the groups Vép and Vgp of infinite order.

The proof of Theorem 4.4 uses the Adams spectral sequence method;
thus, it is necessary to give the precise formulation of the main theorem
from [1].

Let K be an arbitrary finite complex. Denote by 73 (K) the groups
Tntri(E'K), where E is the suspension and i is large enough. If
K = K1 x K3/K1 V Ks, where K7 and K are finite polyhedra, then there
is a well-defined pairing of groups: 7y, (K1) ® T, (K2) — Tp, 40, (K). From
the properties of the operation Ky x Ko/K; V Ks it follows that the above
pairing induces some pairing

w5 (K1) @ (Ka) — 75 o, (K). (XXVII)

On the other hand, it is well known that H" (K1, Z,) ® H' (K, Z,) ~
~ H' (K, Z,). The last isomorphism, by algebraic reasoning defines a pair-
ing

Ext$ (HT (K1, Zp), Zp) @ Bxt5 (H (K, Zy), Zp)

o (XXVIII)
— Ext" "N HT(K, Z,), Z,).

Theorem 4.5. (Adams) For every polyhedron K there exists a spec-
tral sequence {E,(K), d,.} such that:

a) E.(K) ~ Es)t ESt dy: ESt — Estritrol pst =0, s>t

b) By’ ~ Exty (HT (K, Z,), Zp);

¢) The group Y, ._, E%!is adjoint to the quotient of the group =% (K)
by a subgroup consisting of elements of order coprime with p;

d) if K = K1 x K3/K1V Ky then there are pairings

Qr: E'(Ky) @ EY (Ky) — ESFH(K) (XXVIIT)
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such that
d-Qr(z ®y) = Qr(dr(z) @ y) + (1) °Qr(z @ d,(y));  (XXVIII")

e) the pairing Q2 coincides (up to signs) with the pairing (XXVIII),
and Qo is adjoint to the pairing (XX VII).

Evidently, from Adams’ theorem and Lemmas 2.2 and 5.7 of Chapter I
we get the following

Lemma 4.5. There exist exact sequences of algebras {E,(SO), d,},
{ET(U)a dr}; {ET(SU)7 dr}, {ET(Sp), dr} such that:
a)

b) the graded algebras Es =), E&n) are adjoint to the quotient rings
of Vso, Vi, Vsu, Vsp by some ideals consisting of elements of order coprime
with p, for all sequences of groups: {SO(n)}, {U(n)}, {SU(n)}, {Sp(n)}.

It follows from Adams’ theorem, a) that d,(E{™) ¢ E{™ Y. From

Theorems 2.1, 3.2 and Lemma 3.4 it follows that in our case the
groups E3'(SO), Ey*(U) and E3"*(Sp) are zero for t — s = 1 (mod 2) (ex-
cept for the groups Ey*(Sp) and groups ES*(SO) for p = 2). This yields
that in the Adams spectral sequence, defined by Lemma 4.5, all differ-
entials are trivial. Together with Lemma 3.4, this leads to the following
isomorphisms

EOO(SO) ~ EXtA(HS()(p), Zp), p>2,
E(U) =~ Exta(Hy(p), Zp), P> 2, (XXIX)
E(Sp) = Exta(Hsy(p), Zp), p> 2.

These algebras, as we have shown above, are polynomial algebras
(see §§2,3). Consider the elements hgy € Extllq’1 for all our algebras. It
is well known that the multiplication by such an element is adjoint to
the multiplication by p in homotopy groups (see [1]). Comparing the
obtained results for all prime p, we get all statements of the theorem
except the last one. From (XXV) and (XXVI) it follows that the el-
ements z € Ext%"(Hs,(2), Z2) and y € Ext’y'?(Hs,(2), Z2) are cycles of
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all differentials in the Adams spectral sequence and that in the ring

Vsp: 22 —4y =0 (mod 2-torsion). The absence of p-torsion in Vso, Vi

and Vg, follows from the fact that in the corresponding algebras E(SO),

Es(U) and E(Sp) the relations hfz = 0 do not hold for any n and z.
The theorem is proved.

§ 5. Characteristic numbers and the image of the
Hurewicz homomorphism in Thom spaces

Consider the Thom space M¢ corresponding to some subgroup G of the
group SO(n). Let W' be a smooth compact oriented manifold smoothly
embedded into S"**. We have an SO(n)-bundle of planes R"™, normal
to the submanifold W in the sphere S™*?. Denote it by ™ and assume
that it is endowed with a G-bundle structure, as in § 1 of Chapter I. De-
note by p the classifying mapping of this bundle equal to the G-bundle
of planes over Bg. Let z € H'(Bg, Z) be an arbitrary cohomology class.
We call the scalar product (p*x, [W?]) a characteristic number of the man-
ifold W', corresponding to the element z (here [W¢] denotes the funda-
mental cycle of the manifold W* with the given orientation). We shall
denote this number by x[W?¢] or by x[v"]. Recall the Thom isomorphism
¢: H(Bg) — H""(Mg) and the Thom construction: for a manifold W?,
embedded into S"*? as above, one gets a map f(v", Wi): ST — Mg.
The following lemma holds.

Lemma 5.6. If [S""] is the fundamental cycle of the sphere, whose
orientation is compatible with the submanifold W*, G-framed in S™, then
the following equality holds

(f", WLS™, p(x)) = 2[W] (XX X)
for all x € H(Bg, Z).

PROOF. Consider the closed tubular e-neighbourhood T(W?)
of the G-framed submanifold W* of the sphere S™* for sufficiently small .
We assume the mapping f(v™, W?): S"*% — Mg to be t-regular in the
tubular neighbourhood T'(M?) (see [16]). Thus we get Thom isomorphism
©: H{(W) — H"Y(T(W?), 9T (W*)) for all I > 0.

Denote by mg € Mg the point of the Thom space obtained by contract-
ing the boundary Eg of the cylinder T to a point. Denote by Eg’” the
complement in the sphere of a small cell-neighbourhood of radius ¢ of some
point which is inside T(W?). Clearly, there is an embedding of pairs:

J: (TW"), 0T (W) C (S™*+, 5.
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The mapping of pairs f(v™, W¥): (S"* sq) — (Mg, mg) can be equiva-
lently replaced with the mapping of pairs

™, Wiy (8™ ERTY — (Mg, mo),  so € ERF
Denote the composition f(u", Wi)o j by g. On the other hand, by definition
of a t-regular mapping f(v™, W*), it induces the mapping of pairs

fl(an Wi): (T(Wz)v aT(WZ)) - (MGv mO)?

which commutes with . Denote by p the fundamental cycle of the man-
ifold T(W?) modulo boundary. It follows from regularity of our mappings
that

(Fr(@™, Wa(p), o(x)) = (97 (w), p*(2)) = 2[W],
where p: W?— Bg is the mapping induced by fi(¥™, W?) on the sub-
space W, Clearly,

(g7 (1), (@) = (F", W) 0 5ilp), o(@) = (f(", W*)L[S™T], o()).
It remains to note that f(v™, W),[S"T=g.(u), since j.(u)=[S""*] and
fm, WS = fvm, W, [S™F].

The lemma is proved.

Let us return to the case when G is one of the classical Lie groups. As
in Chapter I, we shall consider the cohomology of Thom’s spaces and of the
spaces Bso(2k), Bu(k), Bsp(k) in terms of two-dimensional “Wu generators”
t1, ..., tx. From Milnor’s lectures on characteristic classes (see [9]) it fol-
lows that j*(pai) = >_,, 1 1—9; C2m © ca1, where j: U(k) — SO(2k) is the nat-
ural group inclusion. Thus the quotient of the ring H*(Bgo(ak)) by 2-tor-
sion can be thought as the polynomial ring with generators ) ., . com©
co1 = Y. t3---12, being the elementary symmetric polynomials in squares
of Wu generators, and the polynomial war =t 0...0t (for H*(Byy))
and H*(Bgp(k)) this is evident because these rings have no torsion). Let w
and w be decompositions as in Chapters I and II, v,, and vz be the sym-
metrized monomials corresponding to w and @ (see §3 Chapter I). As
above, denote by R(w) and R(w) the dimension of elements v, and vz
in the rings of symmetric polynomials with generators ¢y, ..., tx. Clearly,
v, € HE@) (Byyy) and Vi, € HE®) (Bgo(ar)) or vy € HE®) (Bg,,)) (more
precisely, in the quotient of the group HF®) (Bso(zk)) by 2-torsion).
We shall call the characteristic numbers of the framed manifold corre-
sponding to the elements v, and vg, w (respectively @) — numbers of
manifolds!. We shall be especially interested in the case when w = (k)

'In Milnor’s lectures [9] w (@, respectively) numbers of manifolds are denoted
by Sw(S(w)). The properties of w(w)-numbers are also described in [9].
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and R(w) = 2k and when @ = (2k) and R(@) = 4k. From Lemma 5.7 of
Chapter I, it follows that the characteristic numbers are well defined for
elements of the rings Vso, Vir, Vsu, Vsp.

Theorem 5.6. The (2k)-number of the 4k-dimensional polynomial gen-
erator of the quotient of Vso by 2-torsion is equal to p if 2k =p' —1,
where p > 2, and it is equal to 1, if 2k # p* — 1, for all p > 2; the (k)-num-
ber of the 2k-dimensional polynomial generator of the ring Vi is equal to p
for k =p' — 1, where p > 2, and to one, if k #p' — 1, for all p > 2. The
minimal non-zero (2k)-number of a 4k-dimensional symplectic framed man-
ifold is equal to 2°p, if k = p' — 1, where p > 2, and it is equal to 2° if
k#p'—1, for all p > 2, where s > 0.

(By minimal number we mean the number with minimal absolute value.)

Proor. We shall prove this theorem by homotopy means, based on the
equality (XXX). Since the proofs are quite analogous for all rings Vso, Vs
and Vg, we shall carry it out only for the ring V.

Consider the module Hy (p). As shown above (see §§2-3, Chapter II),
the module Hy(p) for all p > 2 is a direct sum of modules Mg of type My
with generators U, for all non-p-adic decompositions w (and the gener-
ator U of dimension 0). While proving Theorem 3.2 of Chapter II we
have shown that the module Mg corresponds to the special subalgebra B
of the Steenrod algebra A, generated by all elements e/ and 1 (see §2
Chapter II) for p > 2, and by all elements e,; and 1 (see §3 Chapter II)
for p=2, ie. Mg = Mpg. Consider the reslovent C4(Mp), constructed
when proving the isomorphism (XIV). Denote by C'4 (Hy (p)) the direct sum
> Ca(Mg), where the resolvents C'4 (Mj') are constructed analogously to
the resolvent C'4(Mp), the only difference being that the dimension of all
elements is shifted by R(w); the resolvents C'4 (M) coincide with the min-
imal resolvents of the special subalgebra; the sum is taken over all non
p-adic decompositions of w.

Later on, we shall study only the mappings

e: Cy(Hy(p)) — Hy(p),
do: C4(Hu(p)) — CY(Hu(p)).

Take the Thom space My ) for k& large enough. It is aspheri-
cal in dimensions less than 2k. Following [1]|, consider the realisation
Y ={Y_1 DY, D... DY,} of the free acyclic resolvent C'4 (Hy (p)) (see [1,
Chapter II]). We assume the realisation of Y polyhedral. Here n is large
enough. By definition of a resolvent realisation, the space Y_; is homotopy
equivalent to the space My y) (k is large), the A-modules H*(Y;_1, Y3; Z,)
are isomorphic (up to some high dimension) to the A-modules C*,(Hy (p)),
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i >0, the mappings ¢': H*(Y;—1,Y:; Z,) — H*(Yi—2, Yi1; Z,) coin-
cide with d;_1: C(Hy(p)) — C% ' (Hy(p)) for all i > 1, and the map-
ping &4: H*(Y_1, Yo; Z,) — H*(Y_1; Z,) coincides with e: C(Hy (p)) —
Hy(p). (Here we assume that cohomology is taken over Z,.) In our case, ev-
idently, mor+1(Yi—1, Vi) &~ Hom% (CY (Hy (p)), Z,) for all t < 4k — 1,7 > 0.
Now, consider the cohomology exact sequence of the pair (Y_1, Yp):

S HI(Y., Yoy Z) S5 HUY_1: Z,) 2o HI(Yy: Z,) — ...
(XXXTI')
S HU Y Yo 2) SN HI(Y s 2) S Y Z) — ... (XXX

In the sequence (XXXI'), the homomorphism 4§ is indeed an epimor-
phism for ¢ < 4k — 1, and thus the homomorphism j* is trivial. But the
groups H%(Y_1; Z) have no torsion, thus in the sequence (XXXI”) the
homomorphism 38 is trivial because all groups H4(Y_1, Yp; Z) are finite
and direct sums of the groups Z,,. From the triviality of j* in (XXXI')
it follows that in the group H?(Yp; Z) the image Im j* is divisible by p.
Since the factor-group H?(Yo; Z)/Imj* C HY(Y_y, Yo; Z), it follows
that the image Im j* is not divisible by any ap, where |a| > 1, because the
groups H'(Y_1, Yy; Z) for t < 4k — 1 are direct sums of the groups i
(see [7]). This yields that the image Imj,: Hy(Yo, Z) — Hy(Y_1, Z)
consists of all elements of the type pz, x€H,(Y_1, Z). Now, consider
the elements Zy € Hom% (CY(Hy(p), Z,)), defining the elements (XVI)
or (XVII) in Ext%*(Hu(p), Z,) for I # p' —1. We may assume, by def-
inition of resolvent, that Zgl € morok(Y_1, Yo). Moreover, since the dif-
ferential in the Adams spectral sequence are trivial, we may assume that
the elements Za; € mo1 421 (Y_1, Yo) belong to the image of the homomor-
phism &g (o421 (Y-1)). Denote by H: m;(K) — H;(K, Z) the Hurewicz
homomorphism and denote by Zy; € 742, (Y_1) an element such that the
scalar product (HZ2;, v; o ¢o) has minimal absolute value. It is evident
that dg«zo; = Az, moreover \ is coprime to p, since the mapping do. is
an epimorphism for homotopy groups, and the cycle HZzo; is the image un-
der 6o, of a cycle xg; such that (wg, V() o cax) # 0 by construction of the
resolvent. This yields that the scalar product (HZzo;, Vi o o)) Is coprime
to pif [ # p* — 1. Comparing the obtained results for different p, we get
that the scalar product (HZa;, Vjj) o cox) = £1, if I # p* — 1 for any p > 2,
and that this scalar product is equal to £p* if I # p* — 1. We do not know
the value of s yet. It remains to find it. To do this, we have to consider the
cohomology exact sequences of the pair (Yp, Y7):

.— HY(Yy, Y15 Z,) =, HYYy; Z,) — HY(Y1; Z,) — ..., (XXXII')
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.— HY(Yy, Y1; Z) i HY(Yy; Z) - HI(Y1; Z) — ... (XXXII")

Note that the module H%(Yy; Z,) ~ Kere is calculated in detail for
a similar case in §1, Chapter II while proving Lemma 1.1 we are going
to apply it here. The homomorphism * from (XXXII') is an epimor-
phism as well as that from (XXXI”). Arguing as above, it is easy to show
that there exists an element Zo; € maky9;(Yo) such that the scalar prod-
uct (HZoy, y21) is coprime to p, where yo; € H?*+2/(Y)) is such an element
that pj*(car 0 v(y)) — Y2 = D Aij* (v, © car), where w; # (1) (j* is the
homomorphism H*(Y_1) — H*(Yp)).

Comparing this result with the previous one, we get the desired state-
ment. To do that, it suffices to apply Lemma 5.6 about characteristic
numbers and scalar products. To conclude the proof of the theorem, it re-
mains to show that the (I)-number of an element of the ring V;; is 0 if this
element is decomposable into a linear combination of elements of smaller
dimensions. Thus, the polynomial generator of dimension 2 the (I)-num-
ber is minimal, and every element = € V2 with minimal absolute value of
the (I)-number can be treated as a polynomial generator!. We have analo-
gous properties of (2])-numbers in the rings Vso and Vsp. The theorem is
proved.

It is well known that in Vo (see [9]) the set of complex projective
plane P?*(C) forms a polynomial sub-ring (more precisely, P2*(C) with
their natural normal framings can be considered as representatives of such
elements x4 that form a polynomial subring of the ring Vso, so that the
quotient group Vso/P(z4, s, ...) consists of finite-order elements). By
multiplicity of an element x € VS‘% we mean the coefficient of the 4k-di-
mensional generator in the decomposition of x. The absolute value of the
multiplicity does not depend on the choice of polynomial generators in Vso
(its quotient ring by 2-torsion). We call the multiplicity = the multiplicity
of its representatives, that is, multiplicity of manifolds. Theorem 5.5 yields

Corollary 5.2. The multiplicity of the complex projective plane P2(C)
in the ring Vso is equal to 2k + 1 if 2k + 1 # p* for any p > 2, and it is

kA1 ik 41 =pi forp>2.

equal to B

Complex analytic manifolds are embeddable into real affine even-
dimensional spaces of some dimension. Such an embedding induces a

I This easily follows from the Whitney formulae for the Pontrjagin, Chern, and sym-
plectic classes):

wéon =Y [wi@uwem)+w©uim]+ Y wi@wi(n). (XXXII)

(w1, wo)=w (w1,w1)=w
w]Fw2
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complex framing, which is inverse to the tangent bundle. Thus, one may
speak about the multiplicity of a complex analytic manifold in the ring V.

Corollary 5.3.1 In the ring Vis, the multiplicities of the projective
planes P*(C) is equal to k4 1, if k+ 1 # p* for any p > 2, otherwise it is

k;—l if k+1=p', where p > 2.

equal to

To prove Corollaries 5.3 and 5.4, it suffices to show that the (2k)-num-
bers P?*(C) in Vso and the (k)-numbers Py (C) in Vi are equal to 2k + 1
and k + 1, respectively, which leads to our statements. (Evidently, the (2k)-
and (k)-numbers, respectively, are some polynomials in Pontrjagin (Chern)
classes of the normal bundles, which are inverse to the tangent ones. These
polynomials in this case are trivially calculated via symmetric polynomials
in “Wu’s generators”. For tangent Pontrjagin (Chern) classes this is done
in [9]. The (2k)-number and the (k)-number of the normal bundle is equal
to the (2k)-number (respecitvely, (k)-number with minus sign). This easily
follows from the Whitney formula written in @ (w)-numbers.)

CHAPTER 11

Realization of cycles

§ 1. Possibility of G-realization of cycles

Let M™ be a compact closed oriented manifold.

Definition 1.1. A dimension i for M™ is called p-regular for p prime
if 2i < n and all groups H;_aq(p—1)—1(M™, Z) have no p-torsion for ¢ > 1.

Theorem 1.1. If a dimension i for M™ is ps-regular for some (fi-
nite or infinite) number of odd prime {ps} then for any integral cy-
cle z € Hi(M"™, Z) there exists an odd number o, which is coprime
all ps’s such that the cycle az; is realizable by a submanifold. If a cycle
z; € Hi(M™, Z) is realizable by a submanifold, the dimension i is 2-requ-
lar and n—i=0 (mod 2) then the cycle z; is U(%)-r@alizable. If a
cycle z; € H;(M™, Z) is realizable by a submanifold, 2i <n and n—1i =0

(mod 4), then the cycle 2tz; is Sp(%)—realizable for t large enough.

IMilnor has found manifolds H,;C P"(C)xP*C), r>1, t>1, of dimension
2k = 2(r+t—1) such that (k)[Hr ] = — (T'jt). These manifolds are algebraic (see [17]).
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ProOF. We shall use the Thom method and use the homotopy structure

of the spaces Mson—s, M ,_;, and M, , studied before.
U(——) Sp(—7~)

Let us prove the first statement of the theorem. Consider the cohomol-
ogy class 2"~ € H"~%(M™, Z), which is dual to the cycle z;. Consider map-
ping ¢: M™ — Msom—i), €“*Usom—i) = az" ', where « is some odd num-
ber coprime to all ps. From Lemma 4.6 of Chapter I it follows that the k-th
Postnikov factor M*) (see [11]) of the space Mgo(,—i) for k = 2(n — i) — 2
is homotopy equivalent to the direct product of some space M 50(n—i) and
Eilenberg-MacLane complexes of type K(Zs, ). Moreover, from Theorem

4.1 of Chapter IT it follows that the factor Mgo(,—4) of this product can
be chosen in such a way that all groups wt(ﬂ SO(n—i)) are free abelian and
they are all zero except when ¢ = n — i (mod 4). Denote the Postnikov com-
plexes of the space Mvso(nﬂ') by M@, Clearly, m; (M(‘Z)) =0fort<n—i
or for t > g. Denote the space of type K (m, (]T/[/SO(,I_Z-)), q) by K,. From [6],
it follows that the groups HI7(Z, q; Z) for t < ¢ — 1 are finite, and they
are direct sums of groups Z,, where p > 2.

From here and from natural bundles 7,: M@ — M@D with
fibres K, one easily gets that the groups H*(M(9 Z) are finite
for 0<t<2(n—1) and that the Postnikov factors ®, € HIT2(M@,

Tg+1(Mso(n—i))) are homology classes of finite order with coefficients in
an abelian group. Denote the order of the factor ®, by A,. From
Lemma 4.6 of Chapter I it follows that A, is even. Denote the fun-
damental cohomology class of the complex K, by U,. We shall now

construct a family of mappings gq: M" — M@ such that 1g(9q) = Gg—1
and ¢* ,(Un,—;) =az"*. Recall that, under our assumptions, the
sets of mapping homotopy classes of w(M™, M (@) form abelian groups,
and for cach pair of elements hy € m(M™, M@), hy € 7(M™, M@) we
have (h1 + ha2)* = hj + h} for the induced homomorphisms of cohomology
groups. Denote by H%t ¢ HIT (M@ Z) the subgroup of HI+ (M@, 7),
consisting of elements of finite order coprime to all p,’s, and of elements
of order coprime to \,. Given a mapping f,: M" — M@ gsuch that

[ (®4) = 0. We shall denote the homotopy class of the mapping f by {f}.

Lemma 1.1. There is a mapping fo41: M™ — M@+Y and an odd
number o, relatively prime to all numbers ps such that {ng+1 for1} = aq{fq}
and fr o (HTH) CIm fF fort+q+1<q+n—1i.

ProoF. Consider the spectral sequence of the bundle 7,1 with co-

efficients in 7Tq+1(M SO(n—i)); this sequence reduces to the exact sequence
in low dimensions. As usual, we denote the transgression in this bundle
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by 7. Clearly, 7(ugt1) = ®4 and 7(Agug+1) = 0. It is also evident that
T(x) =0 if z is an element of finite order coprime to A\, and of dimension
less than n — i+ ¢q. Every element T € H*(]Tj(q"’l)7 wq+1(ﬂgo(n,i))) ad-
joint to z is a stable primary cohomology operation up to some element
y € n;H(H*(M ))) for uq+1 adjoint to the element Ajugiq. It is well

known that for any mapping qu M™ — M(@+D guch that Ng+1 fq+1 = fq
and any element z € HI 1 (M™, 7rq+1(MSO(n i), there exists a map-
ping JZ+1 M™ — M(@+1) guch that f’ qu1(uqﬂ) Eﬁrl(ﬂqﬂ) = A\gz. This
ylelds that there exists a mapplng fq+1 M™ — M(‘”‘l) such that
f q+1( T) C fy (H*(M@)) and Ngt1fqt1 = fy, where T is the element ad-

joint tox € H(Ky1; wq+1(ﬂgo(n,i))) fort <mn —i+q. (The order of z is
assumed relatively prime to Aq.)
Now denote by a, the number of elements of the quotient group

i & ) s (S 7))

t=q+2 t=q+2

Since A, is odd, it follows from the construction of f 1 that ag is odd

and coprime to all py’s. Setting {fy+1} = aq{fq+1}, we get the desired
statement. The lemma is proved. .
Now, let us construct a family of mappings f,: M" — M (@) such that
*(up—i) = 2" and {ng11fer1} = ag{fy}, where o satisfies the assump-
tion of Lemma 1.1. We shall prove that such a construction exists by in-
duction on g.

Note that A,—;—1 = 1. This evidently yields that Ima,—;—1 f_, =0in
dimensions greater than n — ¢ because we have no ps-torsion in the groups
Hr—i#2a(e=DF1 (M) for ¢ > 1'. Now assume the mappings f; are con-
structed for all j < m and f; (Ht(M(j)7 Z))=0forj <t<2(n—i). With-
out loss of generality assume that m —n + 14 =3 (mod 4). We distinguish
between two classes of p,’s: those of the first class are those for which A,
and p, are coprime, the second class contains all other numbers.

It is easy to see that for the numbers ps of the first class, the
mapping fry1: M"— M+ satisfies the induction hypothesis as well,
ie.  fro @ =0if T€ HY(M™*) 7Z) for t >m+1 and the order
of ¥ is divisible by ps (this trivially follows from the lemma, the as-
sumptions of the theorem and the structure of H*(K,,+1, Z)). Consider
the case when p, belongs to the second class. In this case the num-

_ 1For generators of the Steenrod algebra of stable cohomology primary operations
09 € H"19(Z, n; Z) for j <n+ 1 we may take elements of dimension 2¢(p — 1) + 1 for
qz=1.
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ber \,, is divisible by p,. The factor ®,, € H™+?2 (M(m), Tmt1 (Mso(nﬂ')))
can be viewed as a partial operation ®(n;, o...on}_;  (un—;)) on the
element 7, 0...0n% ; (up—;). Let us decompose the element ®,,

as a sum <I>m:<1>£$)—|—<l>§,%), where the order of @52) is a number co-

prime to ps and the order of @5711) is a number of type p.. Both el-

ements @5711) and @5721) can be viewed as partial operations of one and
the same element 7 o...on% ;.\ (u,—;), which are defined on the same
kernels.

The following lemma holds

Lemma 1.2. Let ® be a partial stable cohomology operation of the ele-
ment ny, o...onn_; 1 (un—s) that increases the dimension by m —n + 1+ 2
which is defined on and takes wvalue in subgroups of the cohomology
groups with coefficients in abelian groups.  If for some p the co-
homology operation p'® s trivial, 0, 1P 0...0ont 4 (un—i)) =0,
m—n+i% —1(mod 2p — 2), where p is an odd prime then the operation ®
is also trivial.

The statement of the Lemma follows easily from the homotopy structure
of Thom spaces studied in Chapter II.

From Lemma 1.2 it follows that the partial cohomology operation @%) is
trivial. Now we can find a mapping fi,+1 such that {941 fmi1} = {fm}-
O, Where o, satisfies the conditions of Lemma 1.2 and the image f
is trivial in dimensions greater than m + 1. To do that, it suffices to apply

Lemmas 1.1 and 1.2 for all prime numbers p, of the second class. Thus, f,

is constructed. It defines a family of mappings fq: M™— M gg(n_i) such

that %ﬁlfqﬂ = Oéq{fq} and f,_;(un—;) = 2" %, where Mé'qO)(nfi) is the
Postnikov complex of the space Mgso(,—i) and %: MéqOJr(il)ii) — Mgg(nﬂ.) is

the natural projection.

Set {gq} = an-10...00a4{f,} Tt is evident that {7, 19411} = {94},
g _;(Up—i) = ap—10...0Qn_;41 0 Uy—;. The family of mappings g, is thus
constructed and satisfies the desired properties. Thus, the first statement of

the theorem is proved. The remaining statements are proved analogously.
From the proof of Theorem 1.1 and the structure of H*(By (), Z) it
follows that for any cocycle 2% € H 2i(BU(m), Z) there exists a mapping
of the (49 — 1)-skeleton g: Egl(;)l) — My iy such that g*(ugp(;)) = 2*. This
yields
Corollary 1.2. The homology class, Poincaré dual to the polyno-
mial P(cg, ca, ...) in the Chern classes of an arbitrary U(m)-bundle
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over M™, admits a U (i)-realization if the dimension of this polynomial is 21,
n+ 1}
5 |-

where 21 > [

Corollary 1.3. A cycle Z; C H;(M™) for i < [%} is realizable by a
submanifold if 28 Z; = 0.
Appendix 1. On the structure of Vgy

It is well known that the cohomology algebras H*(Bgy (1)) with any co-
efficients can be described via symmetric polynomials in “Wu’s generators”

t1, ..., tg, taking into account the relation t; 4+ ...+t = 0. The same is
true about the algebras H*(Mgy).
Let w= (a1, ..., Gs), Uy = Y t{* 0...0t%,

Uy = Vg, O Cop = g t‘1“+1o...ot‘;SJrloterlo...otk,

as in Chapter I. Assume also > a; < k.

Definition. A decomposition w = (ay, ..., as) is p-admissible if the
number of indices i such that a; = p’ is divisible by p for every I > 0. (Note
that for a characteristic zero field this means that a; 21 (i =1, ..., s).)

Lemma 1. The module Hsy(p) for p > 2 is isomorphic to the direct
sum’y. Mg of modules Mg of the type Mg with generators u., correspond-
ing to p-admissible and non-p-adic decompositions w = (a1, ..., as). The

dimension of the generator u,, is equal to 2(2 ai).

The module Hgy(p) has a diagonal mapping

A: Hsy(p) — Hsu(p) ® Hsy(p),

on u, and looks like the one constructed in §5, Chapter I, with respect
to the notion of p-admissibility. Moreover, the formulae (XI) will hold not
absolutely, but modulo some reducible elements. Thus, the following lemma
holds.

Lemma 2. The algebra Extsa(Hsu(p), Z,p) is isomorphic to the poly-
nomial algebra with the following generators:

le EXt?&O(HSU(p)ﬁ Zp), h;« € E:’(t,la{?pT_l(HSU(jo)7 Zp)v r 20,
Z(k) € EXt?AX’zk(HSU(p), Zp), kK#£p", p'—1, r=0,
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(r+1) r
2o €BXST (Hsu), Zp), 720, wp= ("

Arguing as in §4 Chapter II, from these lemmas we get

Theorem 1. The ring Vsy ® Zyn is isomorphic to the polynomial ring
with generators vo; (i =0, 2,3,4,...) for allp>2, h=0. The ring Vsu
has no p-torsion for p > 2.

From Lemma 5.6 of Chapter II, arguing as in Theorem 5.5 of Chapter II,
one may prove (taking into account the p-admissibility) the following:

Theorem 2. For a sequence of SU-framed manifold M*, M5, M8, ...
to form a system of polynomial generators of the ring Vsy @ Zyn, it is
necessary and sufficient that the following conditions concerning w-Chern
numbers of SU-framings hold:

(k)[M**] £0 (mod p), k#p', p' —1,
SB)IMP £0 (mod p), k=p' 1,
L st M2 ™ 20 (mod p), s3>0, I,>1.

ph

(Note that (p**1)[M?*""'] = 0 (mod p), since c5 = (1) = 0.)

Now, consider the case p = 2. _
From Corollary 4.4 of Chapter I it follows that Hgy(2) = ), Mél) +
Y w Mg, where M 5 are the quotient modules of type M 5 by the relations

Sq¢*(u,) = 0. The dimension of u,, is equal to 8a, where w is an arbitrary
decomposition of 8a into summands (8aq, ..., 8as), @; > 0. The dimensions

of the generators of Mgi) are even. Set Ng = ZM(D, NB =>, ME’
Clearly, one has:

Ext} (Hsu (2), Zo) ~ Ext'(Ng, Z2) + Ext%"(Ng, Zo).

In Chapter II, the algebras Ext 4 (Mg, Z2) and Ext 4 (Mﬁ, Z5) are calculated
(for the algebra Ext (Mg, Z2) see Theorem 3.3). As above, denote by

ho € Exty (Hsy(2), Z2),  hi € Ext*(Hsu(2), Za)

the known elements satisfying hohy = 0, h3 # 0, h$ = 0 (see Theorem 3.3).

1
1Since 3" t; = 0, then tf =plr Ari © U, ;, where I is maximum possible
moreover wy1 = (P, ..., p"), Ar1 # 0.
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From § 3, Chapter II one easily gets

Lemma 3. Let hfx = 0, where k > 0, © € Ext%'(Hsu(2), Z2).
Then x© = hyy. Let x € Exti{t(]vg, Z3). Then h3x =0 yields hyz =0 if
t—s=2k. Ift—s=2k+1 then we always have v = hiy;. Let x €
Ext%'(Ng, Z2). Then hix = hiy, wherey € Ext%'(Ng, Z2) andt — s = 2k,
if x # 0.

Now, consider the Adams spectral sequence ES' = E$!(SU), described
in §4 of Chapter II (see also [1]).

From 3 and multiplicative properties of the Adams spectral sequence
we get

Theorem 3. If x € Ext’'(Ng, Zs) then d;(x)=d;(y), y € Ext' (Ns, Zs)
foralli>2. The elements hg EExt}L{l(HSU(Q), Z3) and hy EEth’Q(HSU(Q),
Zy) are cycles for all differentials. If hox # 0, v € Ext>'(Hsy (2), Z2), then
x # d,(y) for any y € ExtS """ (Hgy (2), Zo), 7 > 2. Ift —s =2k + 1,
x € Bt then © = hyy and hix #0 for all r > 2. Ifx € Ey', t —s=2k
and x = h3y then d;(z) =0, i > 2.

Since the multiplication by ho in F« is adjoint to the multiplication by 2
in the ring Vsy, and the element hy € EL? defines in Vsy an element hy
such that 2h; = 0, h? # 0, h$ = 0; so from Theorem 3 we get

Corollary 1. The groups V;{j"’l have no elements of order 4 for all
k > 2. Moreover, if x € V;{jﬂ, then 2z =0 anflx = l:zly where the element
y € V2K can be thought of as finite order and h3y = hiz # 0, and x # 0.

From Theorem 3.3 of Chapter II we see that in the algebras F, =
E5(SU) = Exta(Hsy(2), Z2) and Eo = Ex(SU) the relation hiz =0
yields hgz = 0. This leads to the question: do any of Vg{} contain an
element of order 47

Appendix 2. Milnor’s generators of the rings Vsy
and Vs

Consider the algebraic submanifold H,.; C P"(C) x P*(C) realising the
cycle P"=1(C) x PY(C) + P"(C) x P'=1(C) without singularities. It is easy
to show that 4t

r

r+t=DH)=—("T").

It is known that (r +t — 1)[P""*~1(C)] = +(r + t). Note that the GCD of
{(k)} (i=1,...,k—1)isequal to 1if k # p! for any prime p > 2, and it

(3

is equal to p if k = p’. Thus, taking a linear combination of manifolds H, .,
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PrT=1(C) for 7 +t = const., one may get a manifold X" ¢~ such that

_ 1 7"—|-t7£pl
_ r+t—1 — ) )
(r+t— 1)+ {p,r+t—pl.

From Theorem 5.5 of Chapter II (see also [17]) we see that the sequence
of manifolds
ILND LRI o

PRI

gives a system of polynomial generators of the ring Vy. Now, consider the
natural ring homomorphism Vi — Vgo /T, where Vgo/T is the quotient
ring of Vso by 2-torsion. It is easy to show that the composition

Vu — Vso — Vso/T

is an epimorphism. Thus the manifolds ¥2* generate the ring Vso/T. The
characteristic numbers of manifolds ¥ can be easily calculated, thus the
question of which set of numbers can be the set of numbers of a certain man-
ifold was solved completely by Milnor (analogously one solves the question
about Chern numbers of algebraic, complex-analytic, almost complex, and
U-framed manifolds).
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Generalized Poincaré’s conjecture in
dimensions greater than four

S. Smale !

Poincaré has posed the problem as to whether every simply connected
closed 3-manifold (triangulated) is homeomorphic to the 3-sphere (see, [18]).
This problem, still open, is usually called Poincaré’s conjecture. The gen-
eralized Poincaré conjecture (see [11] or [28] for example) says that every
closed n-manifold which has the homotopy type of the n-sphere S™ is home-
omorphic to the n-sphere. One object of this paper is to prove that this
is indeed the case if n > 5 (for differentiable manifolds in the following
theorem and combinatorial manifolds in Theorem B).

Theorem A. Let M™ be a closed C* manifold which has the homo-
topy type of S™, (n = 5). Then M™ is homeomorphic to S™.

Theorem A and many of the other theorems of this paper were an-
nounced in [20]. This work is written from the point of view of differential
topology, but we are also able to obtain a combinatorial version of Theorem

A.

Theorem B. Let M™ be a combinatorial manifold which has the ho-
motopy of S™ (n = 5). Then M™ is homeomorphic to S™.

J. Stallings has obtained a proof of Theorem B (and hence Theorem
A) for n > 7 using different methods (Polyhedral Homotopy-spheres, Bull.
Amer. Math. Soc., 66 (1960), 485-488).

The basic theorems of this paper, Theorems C and I below, are much
stronger than Theorem A.

A nice function f on a closed C'*° manifold is a C* function with non-
degenerate critical points and, at each critical point 3, f(5) equals the
index of 3. These functions were studied in [21].

I Annals of Mathematics, 74 (1961), 391-406 (Received October 11, 1960, Revised
March 27, 1961). Reprinted with permission from Princeton University Press
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Theorem C. Let M™ be a closed C* manifold which is (m — 1)-
connected, and n > 2m, (n,m) # (4,2). Then there is a nice function f on
M with type numbers satisfying My = M,, =1 and M; =0 for 0 < i < m,
forO<i<nn—m<i<n.

Theorem C can be interpreted as stating that a cellular structure can
be imposed on M™ with one 0-cell, one n-cell and no cells in the range
0<i<mmn—m<i<n We will give some implications of Theorem
C. First, by letting m = 1 in Theorem C, we obtain a recent theorem of
M.Morse [13].

Theorem D. Let M™ be a closed connected C>° manifold. There
exists a (nice) non-degenerate function on M with just one local maximum
and one local minimum.

On p. 1, the handlebodies, elements of 5 (n, k, s), are defined. Roughly
speaking, if H € J(n,k,s) then H is defined by attaching s-disks, k in
number, to the n-disk and “thickening” them. By taking n = 2m + 1 in
Theorem C, we will prove the following theorem, which in the case of 3-
dimensional manifolds gives the well-known Heegaard decomposition.

Theorem F. Let M be a closed C*>® (2m + 1)-manifold which is
(m — 1)-connected. Then M = H\JH', HNH = 0H = 0H' where
H, H € s(2m + 1,k,m) are handlebodies (OV means the boundary of
the manifold V).

By taking n = 2m in Theorem C we will get the following

Theorem G. Let M*™ be a closed (m — 1)-connected C*° manifold,
m#2. Then there is a nice function on M whose type numbers equal the
corresponding Betti numbers of M. Furthermore M, with the interior of
a 2m-disk deleted, is a handlebody, an element of 5€(2m,k, m) where k is
the m-th Betti number of M.

Note that the first part of Theorem G is an immediate consequence of
the Morse relation that the Euler characteristic is the alternating sum of
the type numbers [12], and Theorem C.

The following is a special case of Theorem G.

Theorem H. Let M?™ be a closed C™ manifold m # 2 of the ho-
motopy type of S*™. Then there exists on M a non-degenerate function
with one maximum, one minimum, and no other critical point. Thus M
is the union of two 2m-disks whose intersection is a submanifold of M,
diffeomorphic to S*m1.

Theorem H implies the part of Theorem A for even dimensional homo-
topy spheres.
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Two closed C*° oriented n-dimensional manifolds M; and M, are J-
equivalent (according to Thom see [25] or [10]) if there exists an oriented
manifold V' with 9V diffeomorphic to the disjoint union and each M; is a
deformation retract of V.

Theorem I. Let My and My be (m — 1)-connected oriented closed C>
(2m+1)-dimensional manifolds which are J-equivalent, (m # 1). Then M
and My are diffeomorphic.

We obtain an orientation preserving diffeomorphisms. If one takes M;
and My J-equivalent disregarding the orientation one finds that M; and
My are diffeomorphic.

In studying manifolds under the relation of J-equivalence, one can use
the methods of cobordism and homotopy theory, both of which are fairly
developed. The importance of Theorem I is that it reduces diffeomorphis
problems to J-equivalence problems for a certain class of manifolds. It
is an open question as to whether arbitrary J-equivalent manifolds are
diffeomorphic (see [10], Problem 5) (since this was written, Milnor has
found a counter-example).

A short argument of Milnor ([10], p. 33) using Mazur’s theorem (see
[7]) applied to Theorem I yields the odd dimensional part of Theorem A. In
fact, it implies that, if M?™*! is a homotopy sphere (m # 1) then M?m+1
minus a point is diffeomorphic to the Euclidean (2m+ 1)-space (see also [9],
p. 440).

Milnor [10] has defined a group 5™ of C'°*°-homotopy n-spheres under
the relation of J-equivalence. From Theorems A and I, and the work of
Milnor [10] and Kervaire [5], the following is an immediate consequence

Theorem J. Ifn is odd, n # 3, ™ is the group of all differentiable
structures on S™ under the equivalence of diffeomorphism. For n odd there
are a finite number of differentiable structures on S™. For example:

n 315|719 11 |13] 15

Number of Differentiable
Structures on S™

010288992 | 3 | 16256

Previously it was known that there are a countable number of differ-
entiable structures on S™ for all n (Thom [22], see also [9], p. 442); and
unique structures on S™ for n < 3 (e.g. Munkres [14]). Milnor [8] has also
established lower bounds for the number of differentiable structures on S™
for several values of n.

A group I'" has defined by Thom [24] (see also Munkres [14] and Milnor
[9]). This is the group of all diffeomorphisms of S"~! modulo those which
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can be extended to the n-disk. A group A™ has been studied by Milnor as
those structures on the n-sphere which, minus a point, are diffeomorphic
to Euclidean space [9].

The group I' can be interpreted (by Thom Towm [22] and Munkres [14])
as the group of differentiable structures on S™, which admit a C'*° function
with the non-degenerate critical points and hence one has the inclusion map
i: ™ — A" defined.

Also, by taking J-equivalence classes, one gets a map p : A™ — .

Theorem K. With notations in the preceding paragraph, the following
sequences are eract:

(a) A" 2 om — 0, n #3,4;

(b) T 5 A™ — 0, n even, n # 4;

(¢) 0 — A" B " n odd, n # 3.

Hence, if n is even and n # 4, T'™ = A", if n is odd and n # 3,
A" =",

Here (a) follows from Theorem A, (b) from Theorem H, and (¢) from
Theorem I.

Kervaire [4] has also obtained the following result.

Theorem L. There exists a manifold with no differentiable structure
at all.

Take the manifold Wy of Theorem 4.1 of Milnor [10] for £ = 3. Milnor
shows Wy is a homotopy sphere. By Theorem A, 0Wj is homeomorphic
to S''. We attach a 12-disk to W, by a homeomorphism of the boundary
onto W, to obtain a closed 12-dimensional manifold m. Starting with
a triangulation of Wy, one can easily obtain a triangulation of M. If m
possessed a differentiable structure it would be almost parallelizable, since
the obstruction to almost parallelizability lies in H(M, 75(S0(12))) = 0.
But the index of M is 8 and hence by Lemma 3.7 of [10] M cannot possess
any differentiable structure. Using Bott’s results on the homotopy groups
of Lie groups [1], one can similarly obtain manifolds of arbitrarily high
dimension without a differentiable structure.

Theorem M. Let C?™ be a contractible manifold, m # 4, whose
boundary is simply connected. Then C*™ is diffeomorphic to the 2m-
disk. This implies that differentiable structures on disks of dimension 2m,
(m # 2), are unique. Also the closure of the bounded component C of
a C* imbedded (2m — 1)-sphere in the Fuclidean 2m-space, (m # 2), is
diffeomorphic to a disk.

For these dimensions, the last statement of Theorem M is a strong ver-
sion of the Schoenflies problem for the differentable case. Mazur’s theorem
[7] had already implied C' was homeomorphic to the 2m-disk.
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Theorem M is proved as follows from Theorems C' and I by Poincaré
duality and the homology sequence of the pair (C,9C), it follows that
0C' is a homotopy sphere and J-equivalend to zero since it bounds C. By
Theorem I, then, dC is diffeomorphic to S™. Now attach to C*™ a 2m-disk
by a diffeomorphism of the boundary to obtain a differentiable manifold V.
One shows easily that V' is a homotopy sphere and, hence by Theorem
H, V is the union of two 2m-disks. Since any two 2m sub-disks of V are
equivalent under a diffeomorphism of V' (for example see Palais [17]), the
original C?™ C V must already have been diffeomorphic to the standard
2m-disk.

To prove Theorem B, note that V = (M with the interior of a simplex
deleted) is a contractible manifold, and hence possesses a differentiable
structure (Munkres [15]). The double W of V is a differentiable manifold
which has the homotopy type of a sphere. Hence by Theorem A, W is a
topological sphere. Then according to Mazur [7], 9V, being a differentiable
submanifold and a topological sphere, divides W into two topological cells.
Thus V is topologically a cell and M a topological sphere.

Theorem N. Let C?™ # 2, be a contractible combinatorial man-
ifold whose boundary is simply connected. Then C*™ is combinatorially
equivalent to a simplex. Hence the Hauptvermutung (see [11]) holds for
combinatorial manifolds which are closed cells in these dimensions.

To prove Theorem N, one first applies a recent result of M.W.Hirsch
[3] to obtain a compatible differentiable structure on C*™. By Theorem
M, this differentiable structure is diffeomorphic to the 2m-disk D?™. Since
the standard 2m-simplex o?™ is a C! triangulation of D?*™, Whitehead’s
theorem [27] applies to yield that C?™ must be combinatorially equivalent
to o2m.

Milnor first pointed out that the following theorem was a consequence
of this theory.

Theorem O. Let M?™, (m # 2), be a combinatorial manifold which
has the same homotopy type as S*™. Then M?™ is combinatorially equiv-
alent to S*™. Hence, in these dimensions, the Hauptvermutung holds for
spheres.

For even dimensions greater than four, Theorems N and O improve
recent results of Gluck (cf. [2]).

Theorem O is proved by applying Theorem N to the complement of the
interior of a simplex of M?™.

Our program is the following. We introduce handlebodies, and then
prove the “handlebody theorem” and a variant. These are used together
with a theorem on the existence of “nice functions” from [21] to prove
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Theorems C and I, the basic theorems of the paper. After that, it remains
only to finish the proof of Theorems F and G of the Introduction.

The proofs of Theorems C and I are similar. Although they use a fair
amount of the technique of differential topology, they are, in a certain sense,
elementary. It is in their application that we use many recent results.

A slightly different version of this work was mimeographed in May 1960.
In this paper J. Stallings pointed out a gap in the proof of the handlebody
theorem (for the case s = 1). This gap happened not to affect our main
theorems.

Everything will be considered from the C'°°-point of view. All imbed-
dings will be C°. A differentiable isotopy is homotopy of imbeddings with
continuous differential.

n 1/2
E"={z=(21,...,20)}, ||x|—<2x> .

1=1

"={reE" |z <1}, D" =85"""={reE", |zl = 1};

D} etc. are copies of D".
A. Wallace’s recent article [26] is related to some of this paper.

1. Let M™ be a compact manifold, ) a component of M and
fi: 0D} x D}° — @, i=1,...,k

)

imbeddings with disjoint images, s > 0,n > s. We define a new compact
C-manifold V = x(M, Q; fi1,..., fx;s) as follows. The underlying topo-
logical space of V' is obtained from M, and the D; x D! ™*® by identifying
points which correspond under some f;. The manifold thus defined has a
natural differentiable structure except along corners 0D7 x D}~ * for each
i. The differentiable structure we put on V is obtained by the process of
“straightening the angle” along these corners. This is carried out by Mil-
nor [10] for the case of the product of manifolds W; and W5 with a corner
along OW7 x OW5. Since the local situation for the two cases is essentially
the same, his construction applies to give a differentiable structure on V.
He shows that this structure is well-defined up to diffeomorphism.

If Q = OM we omit it from the notation x(M, Q; f1,..., fr;s), and we
sometimes also omit the s. We can consider the “handle” D x D!™* C V
as differentiably embedded.

The next lemma is a consequence of the definition

Lemma 1.1. Let f;: 0D x D% — Q and f!: 0D x D}™* — Q, i =
1,...,k, be two sets of imbeddings each with disjoint images Q, M as above.
Then x(M,Q; f1,- .-, fx;s) and x(M,Q; f1,..., fi;s) are diffeomorphic if
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(a) there is a diffeomorphism h: M — M such that f! = hf;, i =
1,...,k; or

(b) there exist diffeomorphisms h;:D*x D"~ *—D?*x D"~% such that f! =
fihi; 1= 1,...,k,’ or

(c) the f! are permutations of the f;’s.

If V is the manifold x (M, Q; fi, ..., fr;s), wesay o = (M, Q; f1,..., fx; 9)

is a presentation of V.

A handlebody is a manifold which has a presentation of the form
(D™; f1,..., fr;s). Fixing n, k, s the set of all handlebodies is denoted
by #(n,k,s). For example, 7 (n,k,0) consists of one element, the dis-
joint union of (k+1) n-disks; and one can show J# (2,1, 1) consists of S* x I
and the Mobius strip, and (3, k, 1) consists of the classical handlebodies
[19; Henkelkorper], orientable and non-orientable, or at least differentiable
analogues of them.

Theorem 1.2 (Handlebody theorem). Letn > 2s+ 2, and, if s =
I,n =5 let He H(nk,s), V=x(H;fr,...,[r;s+ 1) and 75(V) = 0.
Also if s = 1, assume m (X(H; f1,..., fr—k;2)) = 1. Then V € 7 (n,r—
k,s+1). (We do not know if the special assumption for s = 1 is necessary.)

The next three sections 2—4 are devoted to a proof of this Theorem.

2. Let G,=G,(s) be the free group on r generators Di,...,D, if
s = 1 and the free abelian group on r generators Dq,...,D,, if s > 1.
Ifo=(M,Q;f1,...,fr;s+ 1) is a presentation of a manifold V', define a
homomorphism f,: G, — 74(Q), by fo(D;) = ¢;, where p; € 75(Q) is the
homotopy class of f;: 0D x 0 — @, the restriction of f;. To take care
of base points in case m(Q) # 1, we will fix zo € Df"’l x 0, yo € Q. Let
U be some cell neighborhood of ¥y in @, and assume f;(xg) € U. We say
that the homomorphism f, is induced by the presentation o.

Suppose now that F': G,(s) — m4(Q) is a homomorphism where Q is a
component of the boundary of a compact n-manifold M. Then we say that
a manifold V realizes F' if some presentation of V' induces F. Manifolds
realizing a given homomorphism are not necessarily unique.

The following theorem is the goal of this section

Theorem 2.1. Letn > 2s+ 2 and if s = 1, n > 5; let 0 =
(M,Q; f1,--., fr;s + 1) be a presentation of a manifold V', and assume
m(Q) = 1, if n = 2s + 2. Then for any automorphism «: G, — G,, V
realizes foov.

Our proof of Theorem 2.1 is valid for s = 1, but we have application for
the theorem only for s > 1. For the proof, we will need some lemmas.
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Lemma 2.2. Let QQ be a component of the boundary of a compact
manifold M™ and f1: OD*x D"~' — Q an imbedding. Let fo: 0D*x0 — Q
be an imbedding, differentiably isotopic in Q to the restriction f1 of fi to
0D® x 0. Then there exists an imbedding f1: 0D° x D" * — @Q, extending

fo and a diffeomorphism h: M — M such that hfs = f1.

PrOOF. Let f; : OD° x 0 — Q, 1 < t < 2, be a differen-
tiable isotopy between f; and fo. Then by the covering homotopy
property for spaces of differentiable embeddings (see Thom [23], and
R.Palais, Comment. Math. Helv., 34 (1960), 305-312), there is a dif-
ferentiable isotopy Fi: OD° x D"° — @, 1 < t < 2, with F} = f;
and Fy restricted to 9D° x 0 = fi. Now by applying this theorem
again, we obtain a differentiable isotopy G¢: M — M, 1 < t < 2, with
G1 equal the identity, and G, restricted to image of F; equal FtFl_l.
Then taking h = G;l, F, satisfies the requirements of fo of (2.2);
ie. hfg = G2_1F2 = F1F2_1F2 = fl-

Theorem 2.3 (H.Whitney, W.T.Wu). Let n > max(2k+ 1,4) and
f,g: M* — X™ be two imbeddings, M closed and connected and X sim-
ply connected if n = 2k + 1. Then, if f and g are homotopic, they are
differentiably isotopic.

Whitney [29] proved this theorem for n > 2k + 2. W.T.Wu [30] (using
methods of Whitney) proved it where X™ was Euclidean space, n = 2k + 1.
His proof also yields Theorem 2.3 as stated.

Lemma 2.4. Let QQ be a component of the boundary of a compact
manifold M™, n > 2s+ 2 and if s = 1, n > 5, and m(Q) = 1
if n = 25 + 2. Let fi: 0DT'xD"*~1 = Q be imbedding homotopic
and fo: 0D x0—Q be an imbedding homotopic in Q to fi, the restric-
tion of fi to OD*Tt x 0. Then there exists an imbedding fo: ODT1x
Dr=s=1 . Q, eatending fo such that x(M,Q;f2) is diffeomorphic
to X(M,Q; fi).

PRrROOF. By Theorem 2.3, there exists a differentiable isotopy between
f1and fo. Apply Lemma 2.2 to get fo: OD*T!x D" =5~ — @, extending fa,
and a diffeomorphism h: M — M with hfs = f;. Application of Lemma
1.1 yields the desired conclusion.

Lemma 2.5 (Nielsen [16]). Let G be a free group on r generators
Dy,...,D, and &7 be the group of automorphisms of G. Then </ is gener-
ated by the following automorphisms

R: Dy —D;', D;—D; i>]1,
Ti: D1_>Di7 Di_>D17 D7_>D77 j#lui#jui:27"'77da
S : D1—>D1D2, DZ—>D1, 7> 1.
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The same is true for the free abelian case (well-known).

It is sufficient to prove Theorem 2.1 with « replaced by the generators
of & of Lemma 2.5.

First take a=R. Let h: D5t1x D" 5~1 Dstlx D" 51 be defined
by h(z,y) = (rz,y), where r: DTt — D! is a reflection through an
equatorial s-plane. Then let f{ = f1h. If o' = (M, Q; f1, f2,. .-, fr;s+ 1),
x(¢") is diffeomorphic to V by Lemma 1.1. On the other hand, x(o’) realizes
Jor = focu.

The case a = T; follows immediately from Lemma 1.1. So now we
proceed with the proof of Theorem 2.1 with o = S.

Define V; to be the manifold x (M, Q; fo,..., fr;s+1) and let Q1 C 03
be Q1 = OV1\ (OM\ Q). Let ¢; € m5(Q), i = 1,...,r, denote the homotopy
class of f;: 8Df+1 x 0 — @, the restriction of f;. Let v : ms(Q N Q1) —
ms(Q) and [: m(QNQ1) — ms(Q1) be the homomorphisms induced by the
respective inclusions.

Lemma 2.6. With notations and conditions as above, po € vKer 3.

PROOF. Let ¢ € Dy * P and +: dD5T' xq — QNQ; be the restriction
of fy. Denote by 1 € 7,(Q N Q) the homotopy class of . Since ¢ and fo
are homotopic in @, 71 = . On the other hand 31y = 0, thus proving
Lemma 2.6.

By Lemma 2.6, let ¥€7s(Q N Q1) with v = ¢ and B = 0. Let
g=y+v (or g =yiin case s = 1, our terminology assumes s > 1),
where y € m,(QN Q1) is the homotopy class of f; : 8Df+1 x0— — QNEQ1.
Let g: 0D**! x 0 — @ N Q; be an imbedding realizing g (see [29]).

If n = 2s 4+ 2 then from the fact that m1(Q) — 1, it follows that also
71(Q1) = 1. Then since g and f; are homotopic in Qq, i.e. Bg = By,
Lemma, 2.4 applies to yield an imbedding e: 0Dt x D" %=1 — Qq, ex-
tending g such that x(V1,Q1; f1) and x(V1,@Q1;e) are diffeomorphic.

On one hand V=x(M,Q; f1,..., fr)=x(V1,Q1; f1) and, on the other

hand, x(M,Q;e, fa,..., fr) = x(V1,Q1;e), so by the preceding state-
ment, V and x(V,Q;e, fo,..., fr) are diffeomorphic. Since vg = ¢1 +
92, foa(D1) = fo(D1 + D2) = g1 + g2, for = gD1 = g1 + go,

to foaw = fy, where o/ = (V,Q;e, fa,..., fr). This proves Theorem
2.1.

3. The goal of this section is to prove the following theorem.

Theorem 3.1. Letn > 2s+2 and, if s =1, n > 5. Suppose H €
H(n,k,s). Then given r >k, there exists an epimorphism g: G, — ws(H)
such that every realization of g is in J€(n,r — k,s+ 1).

For the proof of Theorem 3.1, we need some lemmas.
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Lemma 3.2. If H € 5€(n,k,s), then ws(H) is
(a) a set of k+ 1 elements if s = 0;
(b) a free group on k generators if s =1;

(¢c) a free abelian group on k generators if s > 1. Furthermore if n >
2s + 2, then mi(OH) — m;(H) is an isomorphism for i < s.

PROOF. We can assume s > 0 since, if s = 0, H is a set of n-disks k+1
in number. Then H has a deformation retract in an obvious way the wedge
of k s-spheres. Thus (b) and (c) are true. For the last statement of Lemma
3.2, from the exact homotopy sequence of the pair (H,0H), it is sufficient
to show that m;(H,0H) = 0,7 < s + 1.

Thus let f: (D*,0D%) — (H,0H) be a given continuous map with i <
s+ 1. We want to construct a homotopy fi: (D?,0D%) — (H,0H) with
fo=f and fi(D?) C OH.

Let f1: (D%, 0D%) — (H,0H) be a differentiable approximation of f.
Then by a radial projection from a point in D™ not in the image of fi1, fi is
homotopic to a differentiable map fo: (D%, dD?) — (H,0H), with the image
of fo not intersecting the interior of D™ C H. Now for dimensional reasons
f2 can be approximated by a differentiable map f3: (D?,0D%) — (H,0H)
with the image of f3 not intersecting any D x 0 C H. Then by other
projections, one for each i, f3 is homotopic to a map f4: (D?,0D%) —
(H,OH) which sends all of D? into H. This shows m;(H,0H) =0, i < s+1,
and proves Lemma 3.2.

If € ms_1(O(n — s)), let Hg be the (n — s)-cell bundle over S* deter-
mined by [.

Lemma 3.3. Suppose V = x(Hg; f;s+ 1) where 8 € ms_1(0O(n — s)),
n>2s+2orifs=1,n>=5. Let also ms(V) =0. Then V is diffeomorphic
to D™.

PROOF. The zero-cross-section o: S*— Hpg is homotopic to zero, since
ms(V) = 0, and so regularly homotopic in V' to a standard s-sphere S§,
contained in a cell neighborhood by dimensional reasons [29]. Since a reg-
ular homotopy preserves the normal bundle structure, o(S®) has a trivial
normal bundle and thus # = 0. Hence Hg is diffeomorphic to the product
of §% and D"~*.

Let 01: S — OHg be a differentiable cross section and f: 9D**1 x
0 — OHg the restriction of f: 9D**! x D"=*=1 — 9Hg. Then oy and f
are homotopic in dHg (perhaps after changing f by a diffeomorphism of
D5t x D"=5=1 which reverses the orientation of 9D**! x 0). Thus we can
assume f and oy are the same.

Let f. be the restriction of f to DT x D?=571 where D?~*~1 denotes
the disk {z € D?=*~1, ||z| < €}, and € > 0. Then the imbedding g. :
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oDt x D"=s=1 — 9Hgi differentiably isotopic to f where g.(z,y) =
fere(w,y) and re(z,y) = (x,ey). Define k.: 0D**! x D"~ — F, by
prge(x,y) where p,: g-(z x D"~*~1) — F, is projection into the fibre F,
of OHg over o~ 1g.(z,0). If € is small enough, k. is well-defined and an
embedding. In fact if € is small enough one can even suppose that for each
x, ke maps  x D"~*~! linearly onto image k. N F, where image k. N F.
has a linear structure induced from F'.

It can be proved that k. and g. are differentiably isotopic. (The referee
has remarked that there is a theorem, Milnor’s “tubular neighborhood the-
orem”, which is useful in this connection and can indeed be used to make
this proof clearer in general.)

We finish the proof of Lemma 3.3 as follows.

Suppose V is as in Lemma 3.3 and V' = x(Hg; f';s + 1), ms(V’) = 0.
It is sufficient to prove V and V' are diffeomorphic since it is clear that
one can obtain D" by choosing f’ properly and using the fact that Hpg is
a product of ¢ and D™~°. From the previous paragraph, we can replace
fand f’ by k. and k. with those properties listed. We can also suppose
without loss of generality that the images of k. and k. coincide. It is now
sufficient to find a diffeomorphism h of Hg with hf = f’. For each z, define
h on image f N F, to be the linear map which has this property. One can
now easily extend h to all of Hg and thus we have finished the proof of
Lemma 3.3.

Suppose now M7* and M} are compact manifolds and f;: D"~ x i —
OM;, are imbeddings for ¢ = 1 and 2. Then x(M; U May; f1 U fo;1) is a well
defined manifold, where f; U fy: OD! x 9D" ' — OM; U OMy is defined
by f1 and fo, the set of which, as the f; vary, we denote by My + Ms. (If
we pay attention to orientation, we can restrict M; + M5 to have but one
element.)

The following lemma is easily proved.

Lemma 3.4. The set M™ + D™ consists of one element, namely M™.

Lemma 3.5. Suppose an imbedding f: 0D° x D"™% —dM™ is null-
homotopic where M is a compact manifold, n > 2s+2 and, ifs=1,n > 5.
Then x(M; f) = M + Hg for some 8 € ms_1(O(n — s)).

PRrROOF. Let f: OD* x ¢ — OM be the restriction of f, where ¢ is a
fixed point in D" ~*. Then by dimensional reasons [29], f can be extended
to an imbedding ¢: D® — OM where the image of ¢ intersects the image
of f only on f. Next let T be a tubular neighborhood of ¢(D?) in M. This
can be done so that T is a cell, T'U f(0D*® x D" ) is of the form Hg and
V € M + Hg. We leave the details to the reader.
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To prove Theorem 3.1, let H = x(D™; f1,..., f&;s). Then f; defines a
class 3; € ws(H, D™). Let ; € ws(0H) be the image of 4; under the inverse
of the composition of the isomorphisms n,(0H) — ws(H) — 7ws(H,D™);
(using Lemma 3.2). Define g of Theorem 3.1 by ¢gD; = ~;, i < k and
gD; = 0, i > k. That g satisfies Theorem 3.1, follows by induction from
the following lemma.

Lemma 3.6. x(H;gi;s+1) € #(n, k—1,s), if the restriction of g; to
0Dt x 0 has homotopy class Vi € 7"'s(aI{)~

Now Lemma 3.6 follows from Lemmas 3.3-3.5 and the fact that g; is
differentiably isotopic to g, whose image is in 0Hg C OH, where Hg is
defined by Lemma 3.5 and f;.

4. We prove here Theorem 1.2. First suppose s = 0. Then H €
A (n,k,0) is the disjoint union of n-disks, k 4+ 1 in number, and V =
X(H; f1,.-., fr;1). Since mo(V') = 1, there exists a permutation of 1,...,r,
i1y...,0r, such that Y = x(H; fi,..., fi,; 1) is connected. By Lemma 3.3,
Y is diffeomorphic to D". Hence V = x(Y; fi,,\»---, fi,; 1) isin H(n,r —
k,1).

Now consider the case s = 1. Choose, by Theorem 3.1, g: G, — m1(0H)
such that every manifold derived from g is diffeomorphic to D™. Let Y =
X(H; f1,..., fr—r). Then m1(Y) = 1 and by the argument of Lemma 3.2,
m(0Y) = 1. Let g;: 0D? x 0 — OH be disjoint imbeddings realizing the
classes g(D;) € 71 (OH ) which are disjoint from the images of all f;, 1,... k.
Then by Lemma 2.4, there exist imbeddings g1, ..., gx: 0D?>xD""? — 0H,
extending the g; such that V = x(Y; fr—kt1,..., fr) and x(Y;91,...,9%)
are diffeomorphic. But

X(Y5g1, -y 08) = X(H; g1,y -5 Ghs frseeos frok)
=x(D" f1,..., fr—k) € H(n,r — k., 2).

Hence, so does V.
For the case s > 1, we can use an algebraic lemma.

Lemma 4.1. If f,g: G — G’ are epimorphisms where G and G’ are
finitely generated free abelian groups, them there exists an automorphism
a: G — G such that fa=g.

PROOF. Let G” be a free abelian group of rank equal to rankG—rankG’
and let p: G’’+G’'—G@G’ be the projection. Then, identifying elements of G
and G’ + G"” under some isomorphism, it is sufficient to prove the existence
of o for g = p. Since the groups are free, the following exact sequence splits
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1 fo
0—-f0)—-GC>G -0

Let h: G — f~1(0) be the corresponding projection and let k: f~1(0) —
G" be some isomorphism. Then a: G — G’ +G” defined by f+ kh satisfies
the requirement of Lemma 4.1.

REMARK. Using Grushko’s Theorem [6], one can also prove Lemma 4.1 when
G and F’ are free groups.

Now take o = (H; f1,..., fr;s + 1) of Theorem 1.2 and g: G, — 7s(0H) of
Theorem 3.1. Since 75(V) =0 and s > 1, fo : G — 75(0H) is an epimorphism.
By Lemmas 3.2 and 4.1 there is an automorphism a: G, — G, such that f,a = g.
Then Theorem 2.1 implies that V' is in #(n,r —k, s+ 1) using the main property
of g.

5. The goal of this section is to prove the following analogue of Theorem
1.2.

Theorem 5.1. Letn >2s4+2 orifs=1,n>5, M"! be a simply
connected (s — 1)-connected closed manifold and s (n,k,s) the set of all
manifolds having presentations of the form (M x[0,1], M X 1; f1, ..., fr;$).
Now let H € 41(n, k,s), @ =0H\ (M x0),V =x(H,Q;q1,..,9r;$+1),
and suppose (M x 0) — 7w4(V) is an isomorphism. Also suppose if s =1,
that ms(X(H,Q; g1, - -+, gr—k;2) =1). Then V € Hy(n,r — k,s +1).

One can easily obtain Theorem 1.2 from Theorem 5.1 by taking for M,
the (n — 1)-sphere. The following Lemma is easy, following Lemma 3.2.

Lemma 5.2. With definitions and conditions as in Theorem 5.1,
7s(Q) =Gg, if s=1, and if s > 1, 74(Q) = 7s(M) + G.

Let p1: 75(Q) — ws(M), pa: ms(Q) — G be the respective projections.

Lemma 5.3. With definitions and conditions as in Theorem 5.1, there
exists a homomorphism g : G, — 7(Q) such that p1g is trivial, pag is
an epimorphism, and every realization of g is in I (n,r — k,s+ 1), each
r>k.

The proof follows Lemma 3.1.

We now prove Theorem 5.1. The cases s = 0 and s = 1 are proved
similarly to these cases in the proof of Theorem 1.2. Suppose s > 1. From
the fact that m5(M x 0) — 75(V) is an isomorphism, it follows that p; fo
is trivial and paf, is an epimorphism where o = (H,Q;g1,...,9r;8 + 1).
Then apply Lemma 4.1 to obtain an automorphism «: G, — G, such that
p2fsa = p2g where g is as in Lemma 5.3. Then f,a = g, hence using
Theorem 2.1, we obtain the conclusion of Theorem 5.1.
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6. The goal of this section is to prove the following two theorems.

Theorem 6.1. Suppose f is a C* function on a compact manifold
W with no critical points on f~1[—¢,e] = N except k non-degenerate ones
on f71(0), all of index N\, and N N OW = @. Then f~[—o0,e| has a
presentation of the form

(f oo, =l FH(=e)s fr, o fis A).

Theorem 6.2. Let (M,Q; f1,..., fr;$) be a presentation of a manifold
V and g be a C* function on M, regular, in a neighborhood of @, and
constant with its maximum value on Q. Then there exists a C* function
G on V which agrees with g outside a neighborhood of Q, is constant and
reqular on OV\(OM\Q), and has exactly k new critical points, all non-
degenerate, with the same value and with index s.

SKETCH OF PROOF OF THEOREM 6.1. Let §; denote the critical points
of f at level zero,i =1, ..., k, with disjoint neighborhoods V;. By a theorem

of Morse [13] we can assume V; has a coordinate system (z1,...,z,), such
A n

that for ||z|| < 6, some § > 0, f(z) = — Y 2? + . 2. Let E; be
i=1 i=A+1

the (x1,...,x)) plane of V; and Es be the (xxy1,...,%,) plane. Then
for e; > 0 sufficiently small £y N f~'[—e1,e;] is diffeomorphic to D*. A
sufficiently small tubular neighborhood 7" of F4 will have the property that
T' =T N f~Y[—e1,¢1] is diffeomorphic to D* x D"~ A with TN f~1(—¢)
corresponding to dD* x D"~ A,

As we pass from f~![—o0,—¢1] to f~1[—00,e1], it happens that one
such T is added for each 4, together with a tubular neighborhood of
f~Y(—&1) so that f~![—o0,e;] is diffeomorphic to a manifold of the
form x(f~[—o0,—¢1], f~H(—€1); f1,---, fr; A). Since there are no critical
points between —e and —e1, €1 and €, 1 can be replaced by ¢ in the pre-
ceding statement thus proving Theorem 6.1.

Theorem 6.2 is roughly a converse of Theorem 6.1 and the proof can be
constructed similarly.

7. In this section we prove Theorems C and I of the Introduction.
The following theorem was proved in [21].

Theorem 7.1. Let V™ be a C*° compact manifold with OV the disjoint
union of Vi and Vi, each V; closed in OV. Then there exists a C
function f on V with non-degenerate critical points, regular on OV, and
such that f(V1) = —=1/2, f(Va) = n+1/2, and at a critical point 3 of f,
f(B) = index(.
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Functions of such sort are called proper functions.
Suppose now M™ is a closed C°°-manifold and f is the function of
Theorem 7.1. Let X, = f~1[0,s+1/2],s=0,1,...,n.

Lemma 7.2. For each s, the manifold X, has a presentation of the
form (Xs—1; f1,. .., fr; 5).

This follows from Theorem 6.1.

Lemma 7.3. If H € 7 (n, k,s), then there exists a C* non-degenerate
function f on H, f(OH) = s+ 1/2; f has one critical point By of index 0
value 0, k critical points of index s, value s and no other critical points.

This follows immediately from Theorem 6.2.

The proof of Theorem C then goes as follows. Take a nice function
f on M by 7.1, with X, defined as above. Note that Xy € (n,q,0)
and 7mo(X1) = 0, hence by Lemma 7.2 and Theorem 1.2, X; € ' (n,k,1).
Suppose now that w1 (M) =1 and n > 6.

The following argument suggested by H.Samelson simplifies and replaces
a complicated one of the author. Let X} be the sum of X and k copies
Hy,...,Hy of D"72 x S2. Then since 7 (X3) = 0, Theorem 1.2 implies
that X,€5(n,r,2). Now let f;: 0D*x D" *—9JH;N0X}, fori=1,... .k be
differentiable imbeddings such that the composition

7T2((9Ds X Dn_s) — 7T2((9Hi X 6Xé) — Fg(aHi)

is an isomorphism. Then by Lemmas 3.3 and 3.4, x (X%, f1,..., fx;3) is
diffeomorphic to Xs. Since X3 = x(X%;01,...,41;3), we have

X3:X(Xéaflv"'7fkvglv"'7gl;3)

and another application of Theorem 1.2 yields that X5 € J(n, k+1—r;3).

Iteration of the argument yields that X/, € 5 (n,r,m). By applying
Lemma 7.3, we can replace g by a new nice function h with type numbers
satisfying My = 1 and M; = 0, 0 < ¢ < m. Now apply the preceding
arguments to —h, to yield that h=t[n —m — 1/2,n] = X}, € J(n, k1, m).
Now we modify i by Lemma 7.3 on X, to get a new nice function on M
agreeing with h on M — X, and satisfying the conditions of Theorem C.

The proof of Theorem I goes as follows. Let V™ be a manifold with 0V =
Vi —Vo,n = 2m + 2. Take a nice function f on V by Lemma 7.1 with
F(Vi) = —1/2 and f(Va) = n+1/2.

Following the proof of Theorem C, replacing the use of Theorem 1.2 with
Theorem 5.1, we obtain a new nice function g on V with ¢g(V;) = —1/2 and
g(Va) = n+1/2 and no critical points except possibly of index m + 1. The
following lemma can be proved by the standard methods of Morse theory
[12].
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Lemma 7.4. Let V be as in Theorem 7.1 and f be a C*° non-
degenerate function on V. with the same boundary conditions as in Theorem

7.1. Then
xv =Y _(=1)"M, + xv,,

where xv and xv, are the Euler characteristics, and M, denote the g-th
type number of f.

This lemma implies that our function g has no critical points, and hence
V1 and V5 are diffeomorphic.

8. We have to prove Theorems F and G. For Theorem F, observe by
theorem C, there is a nice function f on M with vanishing type numbers
except in dimensions My, M,,, My, 11, M,, = 1, and My = M,, = 1. Also, by
the Morse relation, observe that the Euler characteristic is the alternating
sum of the type numbers, M,, = M,,1. Then by Lemma 7.2, f~1[0,m +
1/2], f~Ym +1/2,2m + 1] € 5 (2m + 1, M,,, m) proving Theorem F.

All but the last statement of Theorem G has been proved. For this just
note that M \ D?™ is diffeomorphic to f~1[0,m + 1/2], which by Lemma
7.2 is in 2 (2m, k,m).
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On the structure of manifolds!

S. Smale

In this paper, we prove a number of theorems which give some insight
into the structure of differentiable manifolds.

The methods, results and some notation of [15], hereafter referred to as
GPC, and [14] will be used. These two papers and [16] can be considered
as a starting point for this. The main theorems in these papers are special
cases of the theorems here.

Among the most important theorems in this paper are 1.1 and 6.1.

Some conversations with A. Haefliger were helpful in the preparation of
parts of this paper.

Everything will be considered from the differentiable, equivalently, C'*°,
point of view; manifolds, imbeddings, and isotopies will be in C*°.

§1

We give a necessary and sufficient condition for two closed simply con-
nected manifolds of dimension greater than four to be diffeomorphic. The
condition is h-cobordant, first defined by Thom [18] for the combinato-
rial case, and developed by Milnor [9], and Kervaire and Milnor [7] for
the differentiable case (sometimes previously h-cobordant has been called
J-equivalent). It involves a combination of homotopy theory and cobor-
dism theory. More precisely, two closed connected oriented manifolds M7
and M3 are h-cobordant if there exists an oriented compact manifold W,
with OW (the boundary of W) diffeomorphic to the disjoint union of M;
and — M5, and each component of OW is a deformation retract of W.

LAmer. J. Math., 84 (1962), No. 3, 387-399 (received July 18, 1961). Reprinted with
permission of The Johns Hopkins University Press.
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Theorem 1.1. If n > 5, and two closed oriented simply connected
manifolds M and MY are h-cobordant, then My and Ma are diffeomorphic
by an orientation preserving diffeomorphism.

It has been asked by Milnor whether h-cobordant manifolds in general
are diffeomorphic, problem 5, [9]. Subsequently Milnor himself has given a
counter-example of 7-dimensional manifolds with fundamental group Z7,
h-cobordant but not diffeomorphic [10]. Thus the condition of simple-
connectedness is necessary in Theorem 1.1.

Theorem 1.1 was proved in special cases in [15] and [16]. These special
cases were applied to show that every sphere not of dimension four or six
has a finite number of differentiable structures. The six-dimensional case
is taken care of by the following.

Corollary 1.2. Every homotopy 6-sphere is diffeomorphic to S.

This follows from 1.1 and the result of Kervaire and Milnor [7] that
every homotopy 6-sphere is h-cobordant to S°.

Corollary 1.3. The semigroup of 2-connected closed 6-manifolds is
generated by S x S3.

This follows from 1.2 and [17].

Haefliger [2] has extended the notion of h-cobordant to the relative
case. Let Vi, Vo, My, Ms be closed oriented, connected manifolds with V; C
M;,i = 1,2. According to Haefliger (M7,V1), (Ms,Va) are h-cobordant if
there is a pair (M,V) (ie. V C M) with OM = My — M, 0V = Vi — Vs
and M; — M,V; — V homotopy equivalences. Then Theorem 1.1 can be
extended to the relative case.

Theorem 1.4. Suppose (M7, V) and (M5, VF) are h-cobordant, k >
5, m(V;) = m(M; — V;) = 1. Then there is an orientation preserving
diffeomorphism of My onto Ms sending Vi to Vs.

By taking V; empty (the proof of 1.4 is valid for this case also), one can
consider 1.1 as a special case of 1.4.

Actually we obtain much stronger theorems which will imply 1.4. The
proof of 1.4 is completed in § 3.

It would not be surprising if the hypothesis of simple connectedness in
these theorems could be weakened using torsion invariants (see [10], for
example).

Theorem 1.4 has application to the theory of knots except in codimen-
sion two.
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§ 2

The main theorem we prove in this section is the following. Here we use
the notation of GPC.

Theorem 2.1. Let M™ be a compact manifold with a simple con-
nected boundary component Q. Let V. = (x * M,Q; f,m) where [ :
ODJ* x Dy™™ — Q is an imbedding, m >2, n—m>3. Suppose
W = x(V;Q1;91,--.,9r;m + 1) where Q1 is the component of OV cor-
responding to @ and suppose that H,, (W, M) is zero. Then W is of the
form

X(M;Q; 9%, gr_1;m+1).

Note that an example of Mazur [8] shows that dimensional restrictions
are necessary here.
For the proof we use several lemmas.

Lemma 2.2. Let M™ be a compact manifold, Q a component of OM
n—m > 1. Let

V= x(M,Q; f;m),
W = X(Vqu;gl7"'7gn)7

where Q1 is the component of OV corresponding to Q, and
f:0Dy x D" — Q,
gi . 6D1’-”+1 X D;I_m_l — Ql

are imbeddings. Let F = g x Dy~ ™ C V with g € 0Dg". Suppose OF does
not intersect g;(0D"1 x0), i =1,...,r—1, and g,(dD" ' x 0) intersects
OF transversally in a single point. Then W is of the form

X(Mthg/la s 7g':“7bm+ 1)

PrROOF OF LEMMA 2.2. In the proof of Lemma 2.2, we use without
further mention, the fact that the diffeomorphism type of an n-manifold is
not changed when an n-disk is adjoined by identifying an (n—1) disk on the
boundary of each under a diffeomorphism. See GPC, 3.4, and also [11], [12].

We may assume, using the uniqueness of tubular neighborhoods that
OF does not intersect gi(aDl’-”+1 X Dl’-’_m_l)7 1=1,2,...,r—1.

Since g,(0D ! x 0) is transversal to F in OV, there exists a disk
neighborhood L of 0 = ¢,(dD" ™ x 0)F, L = A™ x D" ™! where
A™ x 0 is a disk neighborhood of o in g, (D! x 0), 0 x D*~™~! a disk
neighborhood of ¢ in OF with (0,0) corresponding to o.
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Now there exists a disk neighborhood D}* of the point F'(Dj§* x 0 in
Dg* x 0 so small that if N = D>* x Dy~ then

N()imgi =0, i=1,...,r—1 (1)
and
N(img, C L. (2)

Since both DF* x 0 and A™ x 0 (i.e. A™ x 0) are transversal to OF in OV, we
may assume using a diffeomorphism of V', and restricting L, that A™ x 0
and D{* x 0 coincide and that L coincides with image g, () NV.

The following statements are made under the assumptions that the cor-
ners are smoothed via “straightening the angle”, § 1 of GPC, or better [9].
Let K = N|JDmtlx pr=—m=1 c w.

We claim that K () Cl(W—K)! is diffeomorphic to an (n—1)-disk. First,
KNOCH(W —-K) is

oD x Dy~ U{(@D;”'H x D™~ 1)\ interiorL}

or DT x Dy~™|JOD x D"~™~1 where D}" is D™ ! minus the in-
terior of an m-disk. Furthermore K()Cl(W —K) can be described as
oD™ x Dy~™ with 9Dy*t1 x Dr=m=1 attached by an embedding h :
oD x DP=™=1 — 9D™ x Dy~™" ! with the property that h(9DJ" x 0)
coincides with dD}" x ¢ for some point ¢ € Dy~ ™. This is the situation in
the proof of 3.3 of GPC, where it was shown that the resulting manifold
was a disk. Thus K [ Cl(W — K) is indeed an (n — 1)-disk.

Since K is an n-disk, K (Cl1(W — K) an (n—1)-disk, we have that W is
diffeomorphic to C1 (W —K). On the other hand it is clear from the previous
considerations that Cl (W — K) is of the form x(M,Q; g7, .., g._1,m+1).
This proves Lemma 2.2.

The next lemma follows from the method of Whitney [20] of remov-
ing isolated intersection points. The paper of A. Shapiro [13] makes this
apparent (apply 6.7, 6.10, 7.1 of [13]).

Lemma 2.3. Suppose N"~™ is a closed submanifold of the closed man-
ifold X™ and f : M™ — X™ is an embedding of a closed manifold. Suppose
also that M, N are connected, X simply connected, n —m > 2,m > 2 and
b = f(M™)o N" ™ is the intersection number of f(M) and N. Then
there exists an imbedding ' : M™ — X™ isotopic to f such that f'(M™)
intersects N™~™ in b points, each with transversal intersection.

Lemma 2.4. Let Fgﬁm*l be a submanifold of @ where Q) is a com-
ponent of the boundary of a compact manifold V", n — m > 2. Let

1The Cl means the closure.
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W = x(M,Q;g;m + 1), where g : 0 DB”‘H x D=1 Q) is an imbed-
ding with b the intersection number g((’?DZ)"‘Irl x 0) o Fy. For an imbedding
h:S™ — QOW, there is an imbedding h' : S™ — Q[ OW, isotopic to
h in OW, with

W (S™) o Fy =™t = h(S™) o Fy " £ b,

sign prescribed.

PRrROOF. Let D be the closed upper hemisphere of S™, x¢ € 8Dg_m_1
and HT, H~ be the closed upper, lower hemisphere respectively of
g(ODF ! x x0). Then h is isotopic in W () Q to an imbedding R sm
QN oW, with h'(S™)N(ODy" ™ x xo0) equal Ht with the orientation de-
termined by the +b of 2.4. This follows from Palais [12], (Theorem 13,
Corollary 1).

Next let 7 be I followed by the reflection map H™ — H~, so that
h, 7 :D—0W are naturally topologically isotopic. However h is an angle
on O0D. By the familiar process of “straightening the angle” we modify
RS oW N @ to an embedding ' : S™ — IW (| Q. Our construction
makes it clear that A’ and h are isotopic in W, and that i’ has the desired
property of 2.4.

We now prove 2.1. Let F' be as in 2.2 and b; be the algebraic intersection
number gi(aD;”‘H x 0)odF, i =1,...,r. We first note that the b; are
relatively prime. This in fact follows from the homology hypothesis of the
theorem.

The proof proceeds by induction on Y _;_, |b;| and is started by 2.3 and
2.2. Suppose 2.1 is true in case >_._, |b;| is p—1 > 0. We can say from
the homotopy structure of W that H,, (W, M) is H,,(V, M) with the added
relations [0D"*1] =0, i = 1,...,r, where [0D""'] € H,,(V, M) = Z and
H,,(V, M) is generated by (D", 0D{").

Since H,,(W, M) = 0, [DI"*!] are relatively prime. On the other hand,
since (Dj* x 0) o F' = 1, we have that [0D"""] =b. So the b;, i =1,...,r,
are relatively prime.

Since the b; are relatively prime, there exist, ig, 41,49 # i1 with |b;,| >
|b;;| > 0. One now applies 2.4 to reduce |b;,| by |b;,| using the covering
homotopy property as in §2 of GPC. The induction hypothesis applies and
we have proved 2.1.

Lemma 2.5. Letn > 2m + 1, (n,m) # (4,1),(3,1),(5,2),(7,3),
M™ be a compact manifold with a simply connected boundary component
Q and V = x(M,Q; f;m) where f:0D™ x D"™™ — @Q 1is a contractible
imbedding. Let Q1 be the component of IV corresponding to Q and
W = x(V,Q1;9;m + 1) where g : 8D1”+1 X D{’_m_l — Q1. Then if
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the homomorphism mwp, (V, M) — m, (W, M) induced by inclusion is zero,
W is diffeomorphic to M.
We use the following for the proof of 2.5.

Lemma 2.6. LetY be a simply connected polyhedron and Z an (m — 1)-
connected polyhedron. Then (Y \/ Z) = 7 (V) 4+ 7 (Z).

This is a standard fact in homotopy theory. For example it follows from
[6], Ch.3.1 and the relative Hurewicz theorem.

Using 2.6 it follows easily that 7,,(Q1) = T (Q) + T (S™).

Then from the homotopy hypothesis it follows that the homotopy class
7 if g restricted to DT x 0 is of the form a + g1, where a € 7,,(Q) and
g1 generates m,,, (S™). Since @ is contractible, V = M + H, where H is an
(n — m)-bundle over S™, and also Q1 = Q + OH. Then let g} : 9D™ ! —
Q be an imbedding representing a and g5 : 9D™*! — GH an imbedding
intersecting OF transversally in a single point where F’ is the same as in 2.2.
Then by the sum construction we obtain ¢’ : 9D™1! x 0 — @, realizing
v with the property that ¢’(9D™*! x 0) intersects OF transversally in a
single point where F' is the same as in 2.2. Application of Lemma 2.4 of
GPC and 2.2 finishes the proof.

§3
Among other things, we apply the theory of §2 to obtain Theorem 1.4.

Theorem 3.1. Let W™ be a manifold (not necessarily compact), n >
5, with OW the disjoint union of simply-connected manifolds My and Mo
where the inclusion M; — W are homotopy equivalences. Suppose j : Vo —
My is the inclusion of a compact manifold Vi into My which is a homotopy
equivalence and there is an imbedding o : Cl(M; — Vp) x [1,2] = W such
that: a) the complement of the image of « has compact closure and; b)
a(Cl(My — Vp) x n) C My, n = 1,2, « restricted to Cl1(M; — Vp) is j.
Then « can be extended to a diffeomorphism My x [1,2] — W.

PrROOF OF THEOREM 3.1. Let Iy = [—%,TH- %} and replace [1,2] in

Theorem 3.1 by Iy, denoting the projection Cl (M — Vi) x Iy — Iy by fo.

We may assume that points under « have been identified so that
Cl(M; — Vo) x Iy € W. Then by the results of [14] one can find a
non-degenerate C'*° real function f on W such that a) f restricted to
Cl(M; —Vp) x Iy is fo; b) at a critical point the value of f is the index and

¢) f(My) = =3, f(M2) = n+ 5.
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Let X, = fo [—%, p+ %} We will show inductively that by suitable

modifications of f which also satisfy a), b), ¢), we can assume X, is a
product M; x I (or equivalently the modified f has no critical points of
index < p).

First by 5.1 of GPC, note that we may assume that the function f has
no critical points of index 0. Next by the method in §7 of GPC, using the
fact that m (M) = m (W) = 1, we can similarly assume that there are no
critical points of f of index 1.

We are not quite yet in the dimension range where Theorem 2.1 applies,
but we apply Lemma 2.5 to eliminate a critical point of 2 if it occurs, as
follows.

We have that Xo = x (X1, @Q1; f1,- -+, fx;2). X3 = x(X2,Q2;91,-..,9;3),
where Q; = f~1 (1%) Qo = f~! (2%) It follows from the homotopy hy-

pothesis that each f; is contractible in Q1 so that X5 is of the form X; + H,
H € 7 (n, k,2) (following notation of GPC?).

The g;’s induce a homomorphism G, — m2(Q2). Let ¢ be the composi-
tion

Gr — m2(Q2) — m2(X2) — m2(H),

where the last homomorphism is obtained by identifying X; to a point in
X.

Assertion. ¢ is an epimorphism.

Assume the assertion is false and o € mo(H) is not in the image of ¢.
Then since

ma(X2) = m2(X1) + ma(H)
(by Lemma 2.6), the image of o under ma(H) — m2(X2) — m2(X3) is not
in the image of
7T2(X1) — 7T2(X2) — 7T2(X3).

But the last composition is an isomorphism since X; = (M; x I), thus
contradicting the existence of such an a. Hence the assertion is true.

Let 741, ...,k be the generators of mo(H) corresponding to f1,..., fk.
Then by Lemma 4.1 of GPC, there is an automorphism ( of G, such that
©B(g:) = i, i < k and pB(g;) =0, ¢ > k. By Theorem 2.1 of GPC it can
be assumed that the g; are such that ¢(g;) = vi, i < kand p(g;) =0, i > k.

Now apply Lemma 2.5 with W,V, M corresponding to x(X2,Q;gk),
xX(X1,Q1; f1,- -+, fx) and x(X1,@Q1; f1,- .-, fr—1). This eliminates the crit-
ical point of f corresponding to fr and by induction all the critical points
of index 2.

IThe set 7 (n,k,s), consists of manifolds of the type x(M,Q; fi1,..., fr,s), where
feH(n,k,s—1)and H#(n,k,0) = D". — Editor’s remark.
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Applying some of the previous considerations to n — f we eliminate the
critical points of f of index n, n — 1.

Now more generally suppose f on X, _; has no critical points where
p < n—3. Then since H,(Xp4+1,X,) = 0, Theorem 2.1 applies to eliminate
the critical points of index p. Thus we obtain by induction a function f on
W with critical points only of index n —2 and which satisfies the conditions
a)-c) above. By Lemma 7.5 of GPC, f has no critical points at all. This
proves Theorem 3.1.

Corollary 3.2. Suppose W™ is compact, n > 5, OW the disjoint union
of closed manifolds My, My, with each M; — W a homotopy equivalence.
Suppose also V.C W with OV = ViUV, V; € My, V. = Vi x I and
m(M; —=V;)=1. Theni:V — W can be extended to a diffeomorphism of
Mi x I onto W.

ProOF. First i may be extended to T' x I where T is a tubular neigh-
borhood of V; in M;. Then apply Theorem 3.1 to W — V to get 3.2.

Now we can prove Theorem 1.4. First by Corollary 3.2 with V' empty
applied to V' of Theorem 1.4 yields that V is diffeomorphic to V3 x I. Now
Corollary 3.2 applies to yield Theorem 1.4.

§4

The following is quite a general theorem and in fact contains Theorem
1.1 as a special case with k =n — 1.

Theorem 4.1. Suppose W™ > M¥* where W is a compact connected
manifold and M is a closed manifold. Furthermore suppose

a) 7T1((9W) = 7T1(M) = 1,'

b) n>5;

¢) The inclusion of M into W is a homotopy equivalence.

Then W is diffeomorphic to a closed cell bundle over M, in particular
to a tubular neighborhood of M in W.

We need a lemma.

Lemma 4.2. Suppose B is a compact connected n-dimensional subman-
ifold of a compact connected manifold V" with 0B (0V = &, m(0B) =
m(0V) = 1 and H.(B) — H.(V), induced by the inclusion is bijective.
Then @Q = C1(V — B) has boundary consisting of OV OB, with the inclu-
sions of AV and OB into QQ homotopy equivalences.
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For the proof of Lemma 4.2 we use the following version of the Poincaré
Duality Theorem, which follows from the Lefschetz Duality Theorem.

Theorem 4.3. Suppose W™ is a compact manifold OW , the disjoint
union of manifolds My and My (possibly either or both empty). Then for
all i, H'(W, My) is isomorphic to H,_;(W, My).

To prove Lemma 4.2 note
H;(Q,0B) = H;(V,B) =0 and H'(Q,0B) = H'(V,B) =0

for all i. By Theorem 4.3, H;(Q,9V) = 0 for all 7 also. By the Whitehead
theorem we get 4.2.

The proof of Theorem 4.1 then goes as follows. We can first suppose
that M is disjoint from the boundary of W. Now let T be the tubular
neighborhood of M which is also disjoint from dW. Now apply Lemma 4.2
and Corollary 3.2 to C1(W —T') with V of Corollary 3.2 empty. This yields
that C1(W — T) is diffeomorphic to 9T x I and hence W is diffeomorphic
to T'. We have proved Theorem 4.1.

Theorem 4.4. Suppose 2n = 3m + 3 and a compact manifold W™ has
the homotopy type of a closed manifold M™ ,n > 5 with m (OW) = m (M) =
1. Then W is diffeomorphic to a cell-bundle over M.

PrROOF. Let f: M — W be a homotopy equivalence. By Haefliger [1],
f is homotopic to an embedding g : M — W. Now Theorem 4.1 applies to
yield Theorem 4.4.

§5

We continue with some consequences of Theorem 4.1. The next theorem
is a strong form of the Generalized Poincaré Conjecture for n > 5 and it was
first proved in [16] except for n = 7. This theorem follows from Theorem 4.1
by taking M to be a point.

Theorem 5.1. Suppose C™ is a compact contractible manifold with
m(0C) =1 and n > 5. Then C is diffeomorphic to the n-disk D™.

For n = 5, if one knows in addition that OC is diffeomorphic to S*, then
using the theorem of Milnor ©° = 0'.!
The following is a weak unknotting theorem in the differentiable case.

105 is the h-cobordis class group for 5-dimensional homotopy spheres with the con-
nected sum operation. — Editor’s remark.
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Haefliger [2] has given an imbedding (differentiable) of S® in S% which does
not bound an imbedded D*. On the other hand we have:

Theorem 5.2. Suppose S¥ C S™ with n — k > 2. Then the closure of
the complement of a tubular neighborhood T of S in S™ is diffeomorphic
to SPRT1 x DRI,

PrROOF. The proof of Theorem 5.2 is as follows (the case n < 5 is
essentially contained in Wu Wen Tsun [21]). It is well-known and easy to
prove that if X = C1(S™ —T), X has the homotopy type of S"~*~1. In
fact T is diffeomorphic to a cell bundle over S* and the inclusion of the
boundary of a fiber S{f*kfl into X induces the equivalence. Furthermore
the normal bundle of S{)’_k_l in S is trivial because Sg_k_l bounds a disk
in S™. Now Theorem 4.1 applies to yield Theorem 5.2.

One can also prove some recent theorems of M. Hirsch [5], replacing his
combinatorial arguments by application of the above theorems.

Theorem 5.3. (Hirsch) If f : M} — M} is a homotopy equivalence
of simply connected closed manifolds such that the tangent bundle of My is
equivalent to the bundle over My induced from the tangent bundle of My by
f, then My x D* and My x D* are diffeomorphic if k > n.

One obtains Theorem 5.3 by imbedding M; in My x DF approximat-
ing the homotopy equivalence and applying Theorem 4.1. The tangential
property of f is used to conclude that a tubular neighborhood of M; in
M, x D is a product neighborhood.

Theorem 5.4. (Hirsch) If the homotopy sphere M™ bounds a paral-
lelizable manifold then M™ x D3 is diffeomorphic to S™ x D3.

One first proves that M™ can be imbedded in S™*3 with trivial nor-
mal bundle by following Hirsch [4] or using “handlebody theory”. Then
apply the argument in Theorem 5.2 to obtain the complement of a tubular
neighborhood of M™ is diffeomorphic to S% x D"*!. The closure of the
complement S? x D"*!in S"*+3 is 8™ x D3, thus proving 5.4.

§6
The main goal of this section is the following theorem.

Theorem 6.1. Let M be a simply connected closed manifold of dimen-
sion greater than 5. Then on M there is a non-degenerate C'*° function
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with the minimal number of critical points consistent with the homology
structure.

One actually obtains such a function with the additional property that
at a critical point its value is the index.

Statement 6.2. We make more explicit the conclusion of Theorem 6.1.
Suppose for each i,0 < i < n, the set oi1,...,0ip), Tils - -5 Tip(i) 18 the
set of generators for a corresponding direct sum decomposition of H;(M),
oi, free, i, of finite order. Then one can obtain the function of Theorem
6.1 with type numbers satisfying M; = p(i) + q(i) + q(i — 1). By taking the
q(2) minimal, the M; becomes minimal.

In the case there is no torsion in the homology of M, Theorem 6.1
becomes

Theorem 6.3. Let M be a simply connected closed manifold of dimen-
sion greater than five with no torsion in the homology of M. Then there is
a non-degenerate function on M with type numbers equal the Betti numbers

of M.
We start the proof of Theorem 6.1 with the following Lemma.

Lemma 6.4. Let M"™ be a simply connected compact manifold, n > 5,
n = 2m. Then there is an n-dimensional simply connected manifold X,
such that:

a) Hj(Xmm) =0, j>m;

b) There is a “nice” function on X,,, minimal with respect to its ho-
mology structure. In other words there is a C™ non-degenerate function on

X, value at a critical point equal the index, equal to m—i—% on 0X,, reqular

on the neighborhood of 0X,, and the k-th type number My, is minimal in
the sense of 6.2;

c¢) There is an imbedding i : X, — M"™ such that i(0X,,)(OM = @
i Hj(Xp) — Hj(M™) is bijective for j < m and surjective for j =m.

The proof goes by induction on m starting by taking X; to be an n-disk.
Suppose Xk_1,%0 : Xx—1 — M have been constructed satisfying a)—c). For
convenience we identify points under igp, so that X1 C M. We now
construct Xy, i : X — M, satisfying a)—c).

By the relative Hurewicz theorem the Hurewicz homomorphism h :
7Tk(]\47 kal) — Hk(M, kal) is bijective.

For the structure of Hy (M, Xj_1) consider the exact sequence

0 — Hyp(M) — Hp(M,Xp_1) — Hp1(Xp_1) 5 Hp_1 (M) — 0.
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Let 1 ..., 7p be the set of generators of Hy (M, Xj—_1) corresponding to
a minimal set of generators of Hy (M) together with a minimal set for ker j.

Represent the elements h='(y1),...,h71(y,) by imbeddings g,
(D*, D) — (C1(M — Xj_1),0X,_1) with g,(D*") transversal to 9Xj_1
along g,(0DF), for example following Wall [19], proof of Theorem 1.

In the extreme case n = 2k, the images of g; generically intersect each
other in isolated points. These points can be removed by pushing them
along arcs past the boundaries. Still following [19], the g, can be extended
to tubular neighborhoods,

gi - (DF,0D*) x D"™F — (ClL(M — X},_1),0Xp_1).

Then we take Xj to be x(Xx-1591, ---, gp; k) where g; OD* x Dk —
0X}_1 is the restriction of g;. It is not difficult to check that X has the
desired properties a)—c). This proves Lemma 6.4.

To prove 6.1, let M™ be as in 6.1 with n = 2m or 2m + 1. Let X,,, C
M as in Lemma 6.4, f the nice function on X,, and K = Cl(M — X,,).
Then H;(M, X,,) =0, i < m, so by the duality H/(K) =0, j > n—m. By
the Universal Coeflicient Theorem this implies that H,,_,,—1(K) is torsion
free. Let Y,_,,—1 C K be again given by Lemma 6.4 with g the nice
function on Y,,_,,—1. By 4.2 and 3.2 we can in fact assume that K and
Y —m—1 are the same, so M = X, |JY,—m—1. Let fy be the function on M
which is f on X,, and n — g on Y,,_,,—1. By smoothing fy along 9.X,, we
obtain a C*° function f’. It is not difficult using the Universal Coefficient
Theorem and Poincaré Duality to show that f’ may be taken as the desired
function of the Theorem.

The previous results of this section may be extended to manifolds with
boundary.

By the previous methods one may prove the following generalization of
Theorem 6.1. We leave the details to the reader.

Theorem 6.5. Suppose W™ is a simply connected manifold with simply-
connected boundary, n > 5. Then there is a nice function f on W™ (non-

degenerate, value n + % on OW, regular in a neighborhood of OW , value at

a critical point is the index) with type numbers minimal with respect to the
homology structuire of (W, 0W).

§7

The goal of this section is to prove the following.
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Theorem 7.1. Let f : W' — W3 be a homotopy equivalence be-
tween two manifolds such that the tangent bundle T} of M; is equiva-
lent to f~'Ty. Suppose also that n > 5, n > 2m + 1, H{(Wy) = 0,
i>m, m(Wh) = m(OW1) = 71 (0W3) = 1. Then Wy and W are diffeo-
morphic by a diffeomorphism homotopic to f.

Let g be a nice function on W7 with no critical points of index greater
than m, whose existence is implied by Theorem 6.5. Then we let X =
g ! [O, k+ %}, k=0,...,m with X,, = Wj. By Corollary 3.2 and Lemma
4.2 it is sufficient to imbed X,, in W5 by a map homotopic to f.

Suppose inductively we have defined a map fi_1 : X — Ws homotopic
to f with the property that fi_i is an imbedding k£ > m. Let X} be written
in the form

X(Xk—1591,- -, gp3 k), gi: ODF x D" — 9X),_4.

Using the Whitney imbedding theory we can find f; ; : X — Ws ho-
motopic to fr_1, which is an imbedding on X 1 and on the images
gi(D* x 0) in Xj, as well. It remains to make f;_; an imbedding on a
tubular neighborhood of each of the g;(D* x 0), or equivalently one each of
the g;(D* x D"=F).

This can be done for a given 7 if and only if an element 7; in 71 (O(n—
k)) defined by f;_, in a neighborhood of g;(D* x 0), is zero. But the
original tangential assumptions on f insure v; = 0 in this dimension range.
The arguments in proving these statements are so close to the arguments
in Hirsch [3] Section 5, that we omit them. This finishes the proof of 7.1.

§8
We note here the following theorem.

Theorem 8.1. Let M?>™+! be a closed simply connected manifold, m >
2, with H,,(M) torsion free. Then there is a compact manifold W?*m+1
uniquely determined by M and a diffeomorphism h : OW — OW such that
M is a union of two copies of W with points identified under h.

PrROOF. Let W™ © M be the manifold given by Lemma 5.4. Let
W3m™H c C1(M —W,) be also given by Lemma 6.4. Then it is not difficult
using homotopy theory to show that Wi, W5 satisfy the hypothesis of 7.1.
Also by previous arguments Ws is diffeomorphic to Cl1(M — Wi). The
uniqueness of W1 = Wy is also given by 7.1. Putting these facts together,
we get Theorem 8.1.
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REMARK. I don’t believe the condition on Hy, (M) is really necessary here.
Also in a different spirit, Theorem 8.1 is true for the cases m =1, m = 2.
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On the formal group laws of
unoriented and complex cobordism
theory

D. Quillen '

In this note we outline a connection between the generalized conhomol-
ogy theories of unoriented cobordism and (weakly-) complex cobordism and
the theory of formal commutative groups of one variable [4], [5]. This con-
nection allows us to apply Cartier’s theory of typical group laws to obtain
an explicit decomposition of complex cobordism theory localized at a prime
p into a sum of Brown-Peterson cohomology theories [1] and to determine
the algebra of cohomology operations in the latter theory.

1. Formal group laws. If R is a commutative ring with unit, then by
a formal (commutative) group over R one means a power series F(X,Y)
with coefficients in R such that

(i) F(X,0)=F(0, X) = X;

(i) F(F(X,Y), Z) = F(X, F(Y, Z));

(iii) F(X,Y) = F(Y, X).

We let I(X) be the “inverse” series satisfying F(X, I(X)) = 0, and let

w(X) = dX/F»(X, 0)

be the normalized invariant differential form where the subscript 2 denotes
differentiation with respect to the second variable. Over R ® @, there is a
unique power series {(X) with leading term X such that

I(F(X,Y)) = 1(X) +1(Y). (1)

'Bull. Amer. Math. Soc., 75 (1969), 1293-1298 (Communicated by F. Peterson,
May, 16, 1969). Reprinted with permission from the American Mathematical Society.
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The series [(X) is called the logarithm of F and is determined by the equa-
tions
'(X)dX =w(X), 1(0)=0. (2)

2. The formal group law of complex cobordism theory. By
complex: cobordism theory Q*(X) we mean the generalized cohomology the-
ory associated with the spectrum MU. If E is a complex vector bundle
of dimension n over X, we let c}(E) € Q%(X), 1 < i < n, be the Chern
classes of E in the sense of Conner-Floyd [3]. Since Q*(CP> x CP*>) =
Q*(pt)[[z, y]], where z = c(0(1)) ® 1, y = 1 ® ¢(O(1)) and O(1)
is the canonical line bundle on CP*°, there is a unique power series
FYUX,Y) = anX*Y! with ay € Q272F72(pt) such that

(L1 ® Ly) = F(c (L), ¢i'(L2)) (3)

for any two complex line bundles with the same base. The power series F'**
is a formal group law over Q¢ (pt).

Theorem 1. Let E be a complex vector bundle of dimension n, let
f:PE" — X be the associated projective bundle of lines in the dual E' of
E, and let O(1) be the canonical quotient line bundle on PE’. Then the
Gysin homomorphism f. : Q1(PE") — Q42"%2(X) is given by the formula

u(Z)w(Z)

[T F2(2.1(7))

J=1

fe(u(§)) = res

(4)

Here u(Z) € Q(X)[Z], ¢ = $HO(1)), w and I are the invariant differential
form and inverse respectively for the group law F**, and A; are the dummy
variables of which cf}(E) is the q-th elementary symmetric function.

The hardest part of this theorem is to define the residue; we specialize
to dimension one an unpublished definition of Cartier, which has also been
used in a related form by Tate [7]. Applying the theorem to the map
f : CP™ — pt, we find that the coefficient of X"dX in w(X) is P,, the
cobordism class of CP™ in Q~2"(pt). From (2) we obtain the

Corollary (Mishchenko [6]). The logarithm of the formal group law
of complex cobordism theory is

I(X) = ZPH%. (5)
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3. The universal nature of cobordism group laws.

Theorem 2. The group law F over QV(pt) is a universal formal
(commutative) group law in the sense that given any such law F over a
commutative ring R there is a unique homomorphism Q¢ (pt) — R carrying
F9 to F.

PROOF. Let F,, over L be a universal formal group law [5] and let h :
L — Q¢(pt) be the unique ring homomorphism sending F, to F*. The law
F,, over L®Q is universal for laws over Q-algebras. Such a law is determined
by its logarithm series which can be any series with leading term X. Thus
if " pa X" /n+1 is the logarithm of F,, L ® Q is a polynomial ring over
Q with generators p;. By (5) hp, = Py, so as Q*(pt) @ Q 2 Q[P1, Pa, .. .]
it follows that h ® Q is an isomorphism.

By Lazard [5, Theorem II|, L is a polynomial ring over Z with infinitely
many generators; in particular L is torsion-free and hence h is injective. To
prove surjectivity we show h(L) contains generators for Q*(pt). First of all
hpn, = P, € h(L) because p, € L is the n-th coeflicient of the invariant
differential F,. Secondly we must consider elements of the form [M,,] where
M, is a nonsingular hypersurface of degree k1, ..., k., in CP™ x ... xCP".
Let m be the map of this multiprojective space to a point. Then [M,] =
(LM @ ... @ LFr), where L; is the pull-back of the canonical line
bundle on the j-th factor. The Chern classes of this tensor product may be
written using the formal group law F** in the form 3 7*a;, . ,irzil L
where 0 < i; < ny, 1 < j<r, 2z = AHL;) and where a;, ;. € h(L).
Since

T
i1 T
Te2y' .. 20 = I I P, i,
j=1

also belongs to h(L), it follows that [M,,] € h(L). Thus h is an isomorphism
and the theorem is proved.

We can also give a description of the unoriented cobordism ring using
formal group laws. Let n*(X) be the unoriented cobordism ring of a space
X, that is, its generalized cohomology with values in the spectrum MO.
There is a theory of Chern (usually called Whitney) classes for real vector
bundles with ¢;(E) € n*(X). The first Chern class of a tensor product
of line bundles gives rise to a formal group law F" over the commutative
ring n*(pt). Since the square of a real line bundle is trivial, we have the
identity

(X, X)=0. (6)

Theorem 3. The group law F" over n*(pt) is a universal formal (com-
mutative) group law over a ring of characteristic two satisfying (6).
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4. Typical group laws (after Cartier [2]). Let F be a formal group
law over R. Call a power series f(X) with coefficients in R and without
constant term a curve in the formal group defined by the law. The set of
curves forms an abelian group with addition (f+ ¢)(X) = F(f(X), g(X))
and with operators

([MNHX) = f(rX), reR,

)=f(X"), n=1,
Z Xl/" n =1,

where (; are the n-th roots of unity. The set of curves is filtered by the
order of a power series and is separated and complete for the filtration.

If R is an algebra over Z(,), the integers localized at the prime p, then
a curve is called typical if Fj;f = 0 for all prime g # p. If R is torsion-free
then it is the same to require that the series I[(f(X)) over R ® Q has only
terms of degree a power of p, where [ is the logarithm of F'. The group law
F' is said to be a typical law if the curve vo(X) = X is typical. There is a
canonical change of coordinates rendering a given law typical. Indeed let
cr be the curve

,u
Z M)y e, (7)

(n,p)=
where the division by n prime to p is taken in the filtered group of curves

and where p is the M6bius function. Then the group law (¢p F)(X,Y) =
cr(F(cp' X, ep'Y)) is typical.

5. Decomposition of Qz‘p). For the rest of this paper p is a fixed
prime. Let Q7 (X) = Q(X) ® Zpy and let £ = cpQ. Then {(Z) is a
power series Wlth leading term Z with coefficients in € )(pt) so there is

a unique natural transformation & : Q7 (X) — Qf, (X) which is stable, a
ring homomorphism, and such that

e (L) = &(cF (L))
for all line bundles L.

Theorem 4. The operation é is homogeneous, idempotent, and its
values on (pt) are:

0 otherwise.

A P,, ifn=p*—1 for somea >0
g(Pn):{



ON THE FORMAL GROUP LAWS ... 289

Let QT™*(X) be the image ofé. Then there are canonical ring isomorphisms

Q" (pt) @ Q) (X) = QT (X), (8)
Qp, (pt)

Qrpt) @ QT*(X)=Qr (X 9

(p)(P)QT*(pt) (X) (p)( ) 9)

and QT* 1is the generalized cohomology theory associated to the Brown-
Peterson spectrum [1] localized at p.

It is also possible to apply typical curves to unoriented cobordism theory
where the prime involved is p = 2. One defines similarly an idempotent
operator é whose image now is H*(X, Z/2Z); there is also a canonical ring
isomorphism

0" (pt) © H*(X, 2/22) = n"(X),

analogous to (9).

6. Operations in QT*. If 7 : Q’(*p) — QT is the surjection induced

by &, then 7 carries the Thom class in 07, (MU) into one for QT™. As
a consequence Q7™ has the usual machinery of characteristic classes with
SM(E) = n8(E) and F' = 7F%. Let t = (t1,t2, ...) be an infinite
sequence of indeterminates and set
FQT
Pu(X) =Dt X", to =1,

n=0

where the superscript on the summation indicates that the sum is taken
as curves in the formal group defined by F*T. There is a unique stable
multiplicative operation

(o7 1) Q% (X) — QT*(X)[t1, ta, - .. ]

such that

(pr )7 (L) = ¢ H(e?T(L))
for all line bundles L. This operation can be shown using (8) to kill the
kernel of 7 and hence it induces a stable multiplicative operation

ry: QTH(X) — QT (X)[t1,t2, .. .]

Writing

re(x) =) ra(a)t®, xeQT*(X),

[e3
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where the sum is taken over all sequences o« = (a1, aa, . . .) of natural num-
bers all but a finite number of which are zero, we obtain stable operations

T : QT (X) — QT (X).

Theorem 5. (i) 74 is a stable operation of degree 2y, a;(p'—1). Every
stable operation may be uniquely written as an infinite sum

ZuaTav Ua € QT*(pt),

and every such sum defines a stable operation.

(1) If x,y € QT*(X), then
razy) = Y ral@)ry(y).
Bt+vy=a

(i4i) The action of ro on QT™*(pt) is given by

n
_h h
rt(Ppn_l) = an Pphfltifh'
h=0
() If t' = (t},t5, ...) is another sequence of determinates, then the
compositions o o rg are found by comparing the coefficients of tot'B in

TioTy = Z D(t, t') 7y,
B!
where ® = (1 = (t1; t]), Po = (t1,t2;th,th), . ..) is the sequence of poly-

nomials with coefficients in QT*(pt) in the variables t; and t; obtained by
solving the equations

N

Z N—h Pt Z m+n %
P Pph_l(bN_h— P Ppk—lt'zr)ntf

h=0 k+m+n=N

k+m

This theorem gives a complete description of the algebra of operations
in QT*. The situation is similar to that for Q* except the set of Z,)-linear
combinations of the r,’s is not closed under composition.
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Formal groups and their role in
algebraic topology approach!

V. M. Buchstaber, A.S. Mishchenko, S. P. Novikov

Dedicated to
Ivan Georgievich PETROVSKY
on his 70-th birthday.

Introduction

This review is closely connected to the review by S.P. Novikov [13], we
recommend to read them simultaneously. Here we touch on in general, the
results of development of the cobordism theory based on the work of us, D.
Quillen and some others. In the appendix, we describe the beautiful idea
of Sullivan idea concerning the so-called Adams conjecture in K-theory.

§ 1. Formal groups

The theory of formal groups plays a large role in the modern approach
to topology based on cobordism theory. Below, we describe

Let A be a commutative associative unital ring, Afz1, ..., x,] the poly-
nomial ring in 21, ..., x, with coefficients in A and A[[z1, ..., z,]] the
corresponding power series ring.

LdopmabHble IPYIIBL B HX POJIb B allllapaTe ajrebpamdecKol TOIIOIOTHH. YCIIeXH
Maremarndyeckux Hayk, 1971, T. 26, sbm. 2, c. 130-154 (mocrymnmia B pelaxiiio
3 mekabps 1970 r.).— Translated by V.O.Manturov
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Definition 1.1. A one-dimensional commutative formal group over A
is a power series F'(u,v)€A[[u,v]] such that F(F(u,v),w) = F(u, F(v,w))
and F(u,v) = F(v,u), whence F(u,0) = u.

Note that the existence of an “inverse element” p(u) € A[[u]] such that
F(u,¢(u)) = 0 follows from Definition 1.1.

Definition 1.2. A homomorphism ¥ of formal groups G L F defined
over a ring A is such a power series ¢ (u) that F(¢(u),¥(v)) = ¥(G(u,v)).
If ¥(u) = u+ O(u?) then v is a strong isomorphism (invertible variable
change).

The basic rings A considered hitherto in basic examples are the ring Z of
integer, the ring Z,, of p-adic integers, modulo p residue classes: Z,, = Z/pZ,
integer elements in some field of algebraic numbers or p-adic completions. In
topology, those are rings ) of some cobordism type, especially, the unitary
cobordism ring, which is algebraically isomorphic to the graded ring of
polynomials over Z with polynomial generators in all even dimensions.

Various examples of finite groups over numeric rings can be found in an
excellent paper by Honda [17].

Simplest examples. a) The linear group over Z, where Fy(u,v) =
U+ .

b) The multiplicative group over Z, where F,,(u,v) = u + v & uv; the
variable change ¥(u) = £1In(1 £ w), transforming F,,(u,v) to the linear
form, lies in the ring @ D Z, thus, over Z, this group is not isomorphic to
the linear one.

¢) The Lazard group. Consider the ring B = Z[zq, ..., Zp,...] of
integer polynomials in infinitely many variables and the series g(u) =

n+1l_n
u T
U+ Zn}l

EL Then one defines a formal group

F(u,v) =g " (g(u) + g(v)),

where ¢7!(g(u)) = u. The coefficients a;; of the series F(u,v) belong
to the ring B@ @ and generate over Z a subring A C B Q, where
Fluv) =u+v+375, 55, agjutvt.

The following Lazard’s theorems take place.

Theorem 1.1. The ring A of coefficients of Lazard’s group is a poly-
nomial ring over Z in finitely many generators.

Theorem 1.2. For every one-dimensional commutative formal group
over every ring A’ there exists a unique homomorphism A — A’, taking the
Lazard group to the given group («the universality of Lazard’s groups).
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Theorem 1.3. For every commutative one-dimensional formal group
F(u,v) over every ring A’ there exists a series p(u) € A'[[u]] @ Q such that

p(u) =u+O0W?) and F(u,v) = ¢ (p(u) +p(v)) € A'llu,0]] Q) Q.

Thus, all groups can be linearized over the rational numbers. The series
p(u) is called the logarithm of the formal group F'(u,v). Note that the
coefficients of the formal differential dp(u)=(3_ wnu™)du belong to the

n=0
©n

ring A’, where oo = 1,p(u) =u+ 3,5 n—_Hu"H. The differential dy is

called the invariant differential of the group F'(u,v), and it is calculated as
follows: dy = du/(%F(u,v))vzo (see Honda [17]). Over the ring A’ Q Q

we also have ¢(u) = [%cp_l(kcp(u))]kzo.

A proof of Theorems 1.1-1.3 can be found in [4]; the expressions
of type %w‘l(kz(p(u)) = %F(u, F(u,..)...) = U*(u) are connected with
“Adams operations” in topology.

It is a remarkable fact that the “geometric cobordism formal group”
introduced by A.S. Mishchenko and S.P. Novikov in [14], which plays an
important role and has a simple geometric sense, turns out to coincide with
the universal group of Lazard. This was first mentioned by Quillen in [7];
he proposed further important applications of this group in topology. The
invariant differential of this group looks like dg(u) = (3, 5,[CP"u")du,
where [C' P™] are the unitary cobordism classes of complex projective spaces;
the coefficient ring A of Lazard’s group coincides with the ring 2 of unitary
cobordisms. Later, we shall use the notion of “power system”, which is
weaker transformal group.

Definition 1.3. A type s > 1 power system over a ring A is a sequence
of series fi(u) € Al[u]] such that fr(u) = ku + O(u?) and fi(fi(u)) =
fri(u), where k,l are any integers (over rings A with torsion it is useful to
require that the coefficients of fi(u) are algebraic in k).

One has the following fact (V.M. Buchstaber and S.P.Novikov [4]).
Over the ring A Q, there exists a series B(u) € A[[u]] ® @ such that
fr(u) = B~Y(k*B(u)), where B~*(B(u)) =u and B(u) = u+ O(u?).

Every group generates a power system over the same ring; the reverse
is, however, not true, since the coefficient ring of a power system is much
smaller. A series of examples of power systems and their properties can be
found in [4].
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Note that in [4], [21] and in further sections of this review, we shall also
see “double-valued” analogues of formal groups, which are defined by the
equations (having no solutions over A[[u,v]])

7Z? — 01 (u,v)Z + Os(u,v) = 0.

Here O1, ©5 are in some sense the “sum” and the “product” of the values of
the group F4(u,v) not belonging to the initial ring. The “inverse element”
for w is a series ¢(u) such that ©3(u, ¢(u)) = 0. An important special case
is p(u) = u (see § 4).

§ 2. Cobordism and bordism theories

I. Axiomatics of bordism theories. General properties. Given
a class of smooth manifolds [closed with boundary|, possibly, with extra
structures, such that

a) the boundary of a manifold from the class belongs to this class;

b) the Cartesian product of two manifolds from the class belongs to the
class (“multiplicativity”);

¢) any closed region with smooth boundary of a manifold belonging to
the class itself belongs to the class (the closed interval belongs to the
class as well) (the “cutting axiom” and homotopy invariance).

One says that such a class defines a cobordism (and bordism) theory.
Denote this class by P.

Cycles (singular bordism of class P) for every complex K are such pairs
(M, f) where M € P,f: M — K is a continuous map and M is a closed
manifolds. By singular strip we mean a pair (N, g), where N € P has a
boundary as above, and g : N — K. In an evident way, one defines the
group of n-dimensional cycles factorized by the boundary of films in the
class P, for any prefixed complex K; this group is denoted by QF(K);
it is called the bordism group of the complex K with respect to the
class P. Analogously, one defines the relative bordism group QF (K, L);
one has the exact sequence of the pair: ... — QI(L) — QF(K) —
0P (K, L)iQf;l(L) — ... For mappings KK, there exists a homo-
morphism ¢, : QF(K;) — QF(K3). The group QF together with the
homomorphisms ¢, are homotopy invariant (it is assumed that I' € P).
For the Euclidean space R? (equivalently, for the point), the groups Q2 (R?)
for n > 0, are, in general, not trivial. The direct sum QF =Y QF(R?)
forms the “scalar ring of the bordism theory”.
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For finite complexes K, we shall define the cobordism groups Q% (K)
according to the Alexander—Pontrjagin duality law: if K C S%, where
S¥ is the sphere, N is large enough, then, setting by definition Q% (K) =
QF_(SY,SM\K), and this definition does not depend on N nor on the
embedding K C SV¥. The groups Q% enjoy the properties of homology
groups; also, the relative groups Q% (K, L) are defined. The sum Q} =
>0 Up(K, L) forms the “cobordism ring” of the pair K O L. For the space
RY (for the point) the ring Q = > Q% (RY) is an analogue of the scalar
ring.

By definition, for a point z we have Q% = QF (z).

For some classes of manifolds the following Poincaré — Atiyah duality law
holds: D : Qi (M™) ZQP . (M™).

ExAMPLES. The most important examples of classes P are connected
with some structure on the stabilized tangent bundle 75; to the manifold
M:; for example, an orientation in the fibration 7 x R* for some k > 0,
a complex structure in 737 x R?, a symplectic structure in 75y X R? or a
trivialization of (—7as) X R? (framing or Pontrjagin’s structure) etc. Thus,
the classes P of this type are connected with some class @ of vector bundles
over arbitrary complexes, i.e. P = P(Q).

The Thom isomorphism. For classes P connected with a class @
of vector bundles, we require one more property, in addition to a), b), and
¢) described above:

d) the total fibre space of class @ with fibre disk and base M € P, is a
manifold belonging to the class P.

If the base of n is K then the fibre space with fibre disk D" is E,,
its boundary E} being a fibration with fibre S™=1; then it follows from
the definitions and d) that we have the so-called “Thom isomorphism” ¢ p:
QP (K)Z0P +i(Ey, Ey), which is defined by means of spaces of induced
bundles f*n. The Thom isomorphism generates the Poincaré-Atiyah dual-
ity for all manifolds from the class P : D : Qi (M™)ZQF (M™). One
can define the fundamental cycle [M"] € QF(M™), the Ceh operation
zNy € Qf_(K) for z € Q%,y € QF, and prove that the Poincaré duality
is defined by the Ceh operation. Moreover, for all continuous mappings f
one has f.(f*zNy) = z() f«y, where z € Q%,y € QF.

II. Unitary cobordisms. The main class P we are interested in is the
class of stable almost complex manifolds and the class ) of complex vector
bundles. In this case the groups QF(K) and Q%(K) are usually denoted
by U.(K) and U*(K) and called “unitary bordisms and cobordisms”. The
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ring U, (point) = QY is the polynomial ring over Z with even-dimensional
generators, one in each even dimension.

Other bordisms of classes P which are connected with other types of
manifolds: orientable, special unitary, unitary, stable symplectic or framed
ones, etc., are usually denoted by Q2,050 QU = U, ,QSU Q3P Ol =

(bordisms of framed manifolds). In S.P. Novikov’s review [13] one may find
information about these groups.

The operation ring.

Definition 2.1. A (stable) homology operation is an additive ho-
momorphism 6 : QF(K,L) — QF(K,L) defined simultaneously for all
dimensions and all complexes and commuting with continuous mappings
and also commuting with the boundary homomorphism 0 : QF (K, L) —
OP(L),K S L.

Such operations form a ring, the “Steenrod ring” A, which is denoted
by AY in the case of unitary bordisms U,. For cobordisms, the operation
ring is defined analogously and coincides with the operation ring AY.

If Uy is the unitary group and BUJ is the base of some fibration, ny the
total space (with fibre the disk), then denote by MU the spectrum (MUy)
of the Thom space MUy = E,,N/E;N, where E,y is the total space of
nn. Stable homotopy classes of mappings [K, MU] coincide with the ring
U*(K). In particular, AV = [MU, MU], and there is a well-defined Thom
isomorphism ¢ : U*(BUx)U*(MUy) (see review [13]).

EXAMPLE. Multiplication by a “scalar” A € U*(point) is, clearly,
a cohomology operation. Note that for U-cobordisms, we have QU =
Z[zq, ..., Ty, ...]. For cohomology operations in classical homology and coho-
mology theories scalars are just usual numbers and commute with all other
operations. In cobordisms, the situation is more difficult.

The ring AY was calculated by S.P.Novikov in [14]. It is described
as follows. For every symmetric splitting k& = dimw = > k;, k; > 0, one
defines operators S,, € AV such that S(0) = 1, and every element from AY
looks like a formal series ), A; S, that dimw; — oo fori — oo and \; € QU
The superposition formulae S, o S,, are given in [14]; ultimately, they
result from the Leibniz formula Sy, (zy) = >, 0.)=w Sw: (%) Sws (y)!. The
superposition of the type S, o A is equal to

AoSu+ > 0k (NS,

(w1, w2) = w;

dimw; >0

IThe description of the ring AV without the superposition formula S,, o A\ was also
obtained by P.Landweber in [22].



§2. COBORDISM AND BORDISM THEORIES 299

where additive homomorphisms ¢ (\) on QU are calculated by using the
geometry of manifolds representing A € QU. For instance, aqu)( [CP™]) =

—(n + 1)[CP"9]. In particular, a representation * such that S, = o
and A = (multiplication by M), of the operation ring AV on the bordism
ring of the point U*(point) = €, is exact.

Geometrical bordisms. One should indicate important subset of
“geometric cobordisms” V(K) C U?(K) in every complexes K, and the
dual sets V(M™) C Usp—2(M™) for almost complex manifolds (“geomet-
rical bordisms”), consisting of submanifolds of complex codimension 1. If
u € V(K) then S,(u) = 0 for w# (q) and Sipu = 9. This prop-
erty completes the set of axioms for the operations S, together with the
multiplication formula So,(zy) = 3_(,, w.)mw Swr () Sw, (1)-

Various multiplicative operations o € AY, i.e. such that a(zy) =
a(z)a(y) for all z, y € U*(K) and for all K, can be defined by one series
a(u) € U*(CP*>), where u € V(CP>) and C P is the infinite-dimensional
projective space. One should note that the ring U*(C'P) is just the ring
of formal series U*(C'P>) = Qf;[[u]], where Q}; = U*(point).

Characteristic classes. Formal group. Having operations S, and
the Thom isomorphism, one can construct in the usual way the analo-
gous of “Chern classes” C,(n) (where, by definition, C}, = C(y, .. 1)) for
every Uy bundle 7 (see [8])'. Herewith C,(n) € U* (base). For U;-
bundles ¢ and n product £ @n is a Ui-bundle. The class C1(EQn) =
F(C1(§),C1(n)) is calculated as a formal series with coefficients in €,
(see [14], Appendix 1). Thus one get a formal group of “geometric cobor-
disms” F(u,v) = F(C1(£),0C1(n)) = C1(EQRn) = u+v — [CPuv +....
A.S. Mishchenko showed that F(u,v) = g~ !(g(u) + g(v)), where g(u) =

2 n>0 S—ﬂumrl and dg(u) = (3,50 CP"u")du = CP(u)du.

Formal groups and operations. Analogues of Adams’ operations
ke AVR Z[%] are defined from multiplicativity W*(zy) = Uk (z)Tk(y)
and Uk (u) = %g_l(kg(u)) for ueV(CP>*)CU?(CP>), i.e. they are con-
nected with taking the k-th power in the formal group F'(u,v). They gen-
erate a power system. Furthermore, U0 € AY @ Q is defined as ¥°(u) =
g(u) = [%gil(kg(u))]kzo and it defines a projector of the cobordism theory
U* Q) Q to the usual homology H*(Q) (see [14]).

1Note that in the cobordism theory, characteristics classes were introduced first (Con-
ner and Floyd), and, based on them, cohomology operations were defined and the cal-
culation of the algebra AU (S.P. Novikov) was performed.
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Strictly speaking, in the rings AY ® Z,, for prime p there exist many
multiplicative projectors (see [7], [14]). A canonical projector m, is pro-
posed by Quillen ([7]), namely, m;[CP"] = 0 for n # p" — 1 and
7r;§ [CPph_l] = [CPph_l]. This projector has found by Quillen by using
the formal group approach. Projection operators are important because
they select smaller homology theories, more convenient for calculation, for
instance, the homotopy groups by using the Adams-type spectral sequence
introduced to cobordism theory [14]. Tt is, however, necessary, to calculate
the homology groups of these smaller theories; here one may use the known
structure of the operation ring AY in unitary cobordisms, if the projec-
tion is simple. This program has realized by Quillen in [7] by finding an
appropriate projector. The role of formal groups in constructing such an
operation became evident; moreover, it is confirmed also by the results of
the authors and G. G. Kasparov concerning fixed points of maps. Here one
should especially mention the results of A.S. Mishchenko [11] (see also [4]
and § 5) concerning a fixed manifold with trivial bundle with respect to
some group actions.

Chern characters. Note that formal groups are closely connected to
analogues of the so-called “Chern character”. The classical Chern character
ch is an additive-multiplicative function of the bundle valued in rational
cohomology. S.P.Novikov in [14] showed that such a cobordism-valued
function of bundles is defined by its value on Uj-bundles 7, where it is

equal to exp(g(u)), where u = Ci(n),g(u) = 3,50 S—fnlu”“. Another

notion of the Chern character, which is abstract (introduced by Dold) is
not connected with fibrations: it is just an isomorphism of the theories
chy : U"QQ — H*(Q5; @ Q), which is the identity on the homology
of the point. Here the series g(u) appears as well. As V.M. Buchstaber
showed [2], for the basic element t € H?(C'P>), we have ch;;'(t) = g(u).
In [2], he studied the general Chern-Dold character in unitary cobordisms,
and described several applications, further developed in [3], [4], [21].

Hirzebruch genera. As Novikov indicated in [15], the so-called “mut-
liplicative Hirzebruch genera’ Q( ) or homomorphisms Q : QY — Z such

n+1
that Q(CP") = [Q(2)" 1], = 2m fl = Qn dz, are calculated via g~ 1(2),

namely, Q(z) = —=—, where
9q (2)

Z Q CP n+1

-1 o
| and g (90(u)) = u.

n=0
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Thus, all basic notions and facts in the unitary cobordism theory, both mod-
ern and classical, can be expressed in terms of the Lazard formal group.

Facts from K-theory. Let us concentrate on the usual complex
K-theory K*(X), where K'(X) = K**2(X) for all i (Bott periodicity),
K°(X) are stable classes of complex bundles over X and K*(X) are homo-
topy classes of mappings X — Uy, for N > dim X. If A\ denote exterior
powers, Ay = Y50 A't" then A(z +y) = Ai(2)M\(y) is an exponential

1

operation. For symmetric powers S; we have S, = > .. Sttt = IV Fur-
= t

thermore, if Qf = vazl th"(N — oo) and Q = Qi(01,...,0k), where

ok(t1,...,tn) are elementary symmetric functions then the virtual repre-

sentation, called the Adams operation is just Qr(A',...,\F) = ¥k It
turns out that Uk(z 4+ y) = UF(x) + Uk(y), UF(zy) = F(2)P*(y) and
Uk o Wl = Wk Later, for Uj-bundles € K°(X) we have Ukp = n*.
The Adams operator ¥* does not commute with the Bott periodicity op-
erator 3 : K' — K2 The following formula holds: ¥* . 3 = k3 - UF.
Thus the operators W* are defined in the theory K* @) Z [ﬂ The co-

homology of a point in K-theory looks like K*(point) = Z[3,37!] and
Uk3 = EBWF. This completes the description of operations in K-the-
ory. The analogues of “geometric cobordisms” in K-theory are U;-bun-
dles, more precisely, these are elements u = B71(¢ — 1) € K?(X) for
Ui-bundles ¢ = Bu + 1. We have kU*(u) = B71((Bu + 1)k — 1) and
F(u,v) = u+v — fuv = B7H(Bu + 1)(Bv + 1) — 1) is a multiplicative
group. Thus, the well-known Riemann-Roch-Grothendieck homomorphism
r: U*(X) — K*(X) corresponds to the homomorphism of the universal
dim A

Lazard group to the multiplicative group, where r(A\) =T(A-8 2 )), T is
the Todd genus, A € QF;.

§ 3. The formal group of geometrical cobordisms

Multiplication law in the geometrical cobordism formal group.
Let n — CP™ n < oo, be the canonical complex one-dimensional bundle
over the projective space CP™. As mentioned in § 2, the formal series
ci(m @n2) = F(u,v) € U2(CP® x CP®) = Q[[u,v]], u = c1(m), v =
c1(n2), defines the multiplication law in the one-dimensional formal group
of geometrical cobordisms over the ring .



302 V.M. BUCHSTABER, A.S.MISHCHENKO, S.P.Novikov

Theorem 3.1. a) One has

u+ v+ Y [HyJu™vt

Fluv) = —Fpay b

where H,.y is the algebraic submanifold of complex codimension 1 in CP" x
CP!, representing the zero set of the bundle m @ns — CP" x CP';
this manifold realizes the cycle [CP"™~' x CP' + CP" x CP'"'] €
Hy(y41-1)(CP" x CPY).

b) The logarithm of the group F(u,v) looks like g(u) = CP"]

n+1

PrOOF. We have F(u,v) = u + v+ > e juv? and A : CP" x
CP' — CP> x CP* is the standard embedding. Then eD\*F(u,v) =
[H,;] = [CP™Y[CPY + [CP"][CP'™'] 4+ Y e, ;[CP™[CP! 7], where
D the Poincaré-Atiyah duality operator, ¢ : U*(CP" x CP?) — Qp is the
augmentation to the point, and [CP"~'] = eDu’ if u = ¢1(n) € U?(CP").
Thus, u + v + Y_[HyJu™v' = F(u,v)CP(u)CP(v). The statement a) is
proved. One has d

_ u
dg(u) PN
OF (u,v)
SUCLR
consequently,
CP(u)du

1+ 3 ([Hra] = [CPY[CPT u”

It is easy to show, e.g., by comparing the Chern numbers, that [H, 1] =
[CP] x [CP"~1]. Consequently, dg(u) = CP(u). The theorem is proved.

dg(u)

The universality of the geometric cobordism formal group. As
shown in [9], [12], the ring Qy is multiplicatively generated by the ele-
ments [H,;], and, by [16], the ring Qy @ @ is multiplicatively generated
by [CP"|,n > 0. Now, from Theorem 3.1 we get that the subring of Qy
generated by the coefficients of the geometrical cobordism formal group co-
efficients, coincides with {2y and the coefficients of the logarithm expansion
of this group are algebraically independent, and generate the ring Qy & Q.
Let us show now, that these facts trivially yield the universality of the group
F(u,v) over Q for the category of commutative rings without torsion. Let
G(u,v) be any arbitrary formal group over a ring R without torsion, and

let go(u) = Zna—_:lu"*l,an € R, denote its logarithm. Consider the

ring homomorphism r : Qy — RQQ,r[CP"] = a,. Since G(u,v) =
g (g(u) + g(v)), we have that r(F(u,v)) = > r(e;;)u'v? = G(u,v). Con-
sequently, r(e; ;) € R, i.e. Im(r: Qy — RQ Q) C R. Since the universal
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Lazard group is defined over a torsion-free ring, we have proved the follow-
ing Theorem.

Theorem 3.2. The formal group of geometrical cobordisms coincides
with the universal formal Lazard group, i.e. the homomorphism of the
Lazard ring A to QU, corresponding to the group F(u,v) (see § 1), is an
isomorphism.

Hirzebruch genera from the formal group point of view. By
virtue of Theorem 3.2, every integer-valued Hirzebruch genus, or, which
is the same, any homomorphism Qy — Z, defines a formal group over
Z; conversely, every formal group over Z generates a Hirzebruch genus.
Here, the Hirzebruch genus defining the homomorphism Q; — Z can have
rational coefficients. Equivalent (strongly isomorphic) formal groups are
defined by Hirzebruch series Q(z),Q’(z), which are connected by the for-

mula (%) = ! (Q’?z))’ where o~ (u) = u+ > Nutt N\, € Z. This

follows from the fact that the logarithms of the formal groups are equal to
go(z) = (Q?Z))*l; thus, we see by definition, that go(z) = go/(p(2)).
Given an integer-valued Hirzebruch genus, generated by a rational se-
ries gg(u), then @’ is a genus such that go(u) = go/(p(u)), p(u) =
u+> piutt p; € Z, this genus also takes integer values on Q. This is the
sense of equivalence of Hirzebruch genera as formal groups. Now, let us con-
sider the formal groups corresponding to previously known multiplicative
genera ¢, T,L, A. Consider the T} genus (see [18]). Since T, ([CP"]) =
>t o(=y)’, then the corresponding formal group over Z[[y]] looks like
oA u+v+ (y — Duv

W= T I rwy
sponding to the Euler characteristic ¢, the Todd genus T" and Hirzebruch’s
L-genus. For all y, the group Fr,(u,v) is equivalent either to the linear
group or to the multiplicative group. Now, note that the A-genus is equiv-
alent to the L-genus as a formal group; thus we see that all Hirzebruch
genera considered hitherto in topology are connected either with the linear
group or with the multiplicative group®.

For y = —1,0,1 we get formal group, corre-

IThe series g~ 1(t) =

Qit) is called the exponent of the formal group f(u,v) =
g~ Y(g(u) + g(v)). For the Hirzebruch genera T, L and A we have:

g%l(t) =1 — exp(—t); ggl(t) = tanh ; gzl(t) = 2sinh ¢/2.
Obviously, there exists series ¢(z) € Z {%} such that ggl(t) = <p*1(gzl(t)), ie. the

A-genus and the L-genus are equivalent over the ring Z {%} . In the end of 1980-s, the
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Multiplicative cohomology operations and Hirzebruch genera.
Every multiplicative cohomology operation in cobordisms is, on the one
hand, uniquely given by a ring homomorphism ¢* : Qy — Q, that it
induces cobordism substituting as in §1, and, on the other hand, by its
value on the geometrical cobordism u € U?(CP*>), i.e. the formal series
o(u) = u+0(u?) € U?(CP>) = Qu[[u]]. Note that the series ¢(u) generate
a strong isomorphism of the universal group F(u,v) = u+v + Y e; juv?
and the group

o(F(u,v)) =u+v+ Z ©* (e )u'r’.

In the characteristic class theory, the ring homomorphisms Qy — Qg
are given by Hirzebruch series, K (1 + u) = Q(u),

Qu) = Y, a(u) = u—I—Z)\iui, Ai € QU®Q.

From the point of view of Hirzebruch series, the action of the series
a(u) on the ring Qp is given by the formula a([CP"]) = [(#u))”“]n,
where [f(u)]y is the n-th coefficient of f(u). Thus, every formal series
a(u) = u + O(u?) generates a ring homomorphism a* : Qy — Qp as a
multiplicative operation in cobordisms, as well as a ring homomorphism « :
Qu — Qu defined by the Hirzebruch series Q(u) = ﬁ. The two actions

of a(u) = u + O(u?) on the ring Qr, indicated above, do not coincide. For
instance, for a(u) = u we have a*([CP"]) = [CP"],a([CP"]) = 0,n > 0.
As V.M. Buchstaber and S. P. Novikov showed (see [4]), the following result
holds?

Theorem 3.3. The mapping g : a(u) — a(g(u)) of the series ring
possesses the property a(u)x] = a(g(u))*[x] for each z, where g(u) =

ano S—fiu""‘l is the logarithm of the formal group of geometrical cobor-

disms.

elliptic genus F was introduced into topology (see S. Ochanine. Sur les genres multipli-
catifs difinis par der integrales elliptiques. Topology 26 (1987), 143-151), the exponent
ggl (t) = snt given by the elliptic sinus function. The formal group corresponding to the
genus F is

w1 — 2av2 + bv? + vvV1 — 2au? + bul
1 — bu2ov? ’

J(u,v) =

V. M. Buchstaber’s remark (2004).
IThis result in a similar formulation was obtained by J. Adams [23].
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The generalized characteristic Todd class.

Definition 3.1. A generalized Todd class of a complex bundle & over X
is a characteristic class T'(§)e H*(X,Qu @ Q) corresponding to the series

Qu) = ——,9 ' (9(u)) = u.
9 (u)
Consider now a continuous mapping f : M?" — M?™ of almost com-
plex mappings, and denote by 7(f) the element (7(M?") — f*7(M?*™)) €

(K)(M?"), where 7 is the tangent bundle.

Theorem 3.4. (see [2]) One has chy D[f] = AT(7(f)), where [f] is
the bordism class of the mapping f, chy is the Chern—Dold character (see
§ 2) and fy is the Gysin homomorphism in cohomology.

V.M. Buchstaber [2] has indicated several formulae expressing the gen-
eralized Todd class T'(€) in classical characteristic classes of the bundle &.
In some cases, these formulae allow one to calculate effectively the bordism
class of the mapping f. Let us give the simplest of them.

Theorem 3.5. Let  be a one-dimensional bundle over X and let

u = c1(n) € H*(X,Z); then T(n) = 7?( ) and g~'(u) = chy o1(n) =
g u
Wk SV where (] = 01(6i) € DS = 07, e
n !

So(=T(M?™)) = 0,w # (n), () (M?") = —(n 4+ 1), 01(§ns1) is the first
Chern class in cobordisms of the generator &,41 € K(S*"*2) and s, are
the Chern numbers corresponding to w.

§ 4. Two-valued formal groups and power systems

The notion of two-valued formal group. Let F(u,v) =
u + v + ... be a one-dimensional formal group over a commutative ring
R with unit 1, 2 = —u + o(u?) € R[[u]] be the formal series gener-
ating the inverse element in the group F(u,v), i.e. F(u,a) = 0, and
gr(u) be the logarithm of the group F(u,v). It is shown in [4] that the
formal series F'(u,v) - F(i,v) + F(u,v) - F(a,v) = |F(u,v)|*> + |F(u,v)|?
and |F(u,v)|? - |F(u,v)|? from the ring R[[u,v]] indeed belong to the ring
R[[z,y]] C R[[u,v]], where x = uu = |u|?,y = |v]?, i.e. they look like
O1(x,y) and Oz(x,y), respectively. Over R[[x,y]], consider the quadratic
equation % (z,y) = Z? — ©1(x,y)Z + O2(z,y) = 0 and denote by B(z) =
z + O(2?) € R[[z]] ® Q the series, which in R[[u]] ® Q D R[[z]] ® Q looks
like gr(u)gr (i) = —g%(u). As Novikov has shown in [4], over a torsion-free



306 V.M. BUCHSTABER, A.S.MISHCHENKO, S.P.Novikov

ring R the solutions of #'(z,y) = 0 look like

F*(z,y) = B~ ((v/B(z) £ VB(y))). (1)

These solutions are evidently not formal series in x and y, but, as (4.1)
shows, they satisfy a certain associativity. Such quadratic equations were
called two-valued formal groups in [4].

Two-valued formal groups and symplectic cobordisms. Con-
sider the two-valued formal group in cobordisms constructed from the
formal group of geometrical cobordisms. As shown in [4], the se-
ries B~!(z) from (4.1) coincides with the formal series chy(z) = z +

Zflo:Q[N‘l"_‘l](;—;)! € H*(CP>*,Qu @ Q), where z is the generator of the

group H*(CP>,Z) and s(2,_o)[N*""*] = (—1)"2- (2n)! # 0.

Theorem (see [4]).  For each n > 2, the bordism classes [N*"~4]
belong to the image of homomorphisms Q§§"+4 — Qa4n+4. Forn =1
mod 2 the group Im (Qs, — Qu) contains elements [N*"~4]/2 € Q.

The canonical mapping of spectra w : MSp — MU correspond-
ing to the group inclusion Sp(n) C U(2n), defines an epimorphism
AY — U*(MSp(n)), and, consequently, an embedding of the ring
Hom 4u (U*(M Sp), Qu) into Q. Later on, we identify Hom 4u (U*(M Sp),
Qu) with its image in Qp. There is an embedding ¢ : Im(Qs, — Qu) C
Hom 4u (U*(M Sp), Qu); moreover, the homomorphism ¢ ) Z [%} is an iso-
morphism. This easily follows from [12]. In addition to Theorem 4.1 note
that the elements [N®"~4]/2 belong to the group Hom 4u (U*(M Sp), Q)
but do not belong to Im(Q2s, — Q) (see [4]). It is shown in [4] that The-
orem 4.1 together with properties of the Chern character described in [2],
yield

Theorem 4.1. Let A C Qp be the ring generated by coefficients of the

two-valued formal group in cobordisms:

a) A C Hom v (U*(MSp), Qu);
b) A H ~ (1) ® Z H .

Since the ring A is smaller than the ring Q, then over Qpy @ Q there
are many one-dimensional formal groups, for which the squares of absolute
values define a two-valued formal group in cobordisms. V.M. Buchstaber
showed in [21] that the minimal one-dimensional group (with respect to
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coefficients) of such type over Qpy @ @ is uniquely defined by the multi-
plicative projector s* : QU[%] — QU[%], whose value on the geometrical
cobordism u € U?(CP*) is equal to »x(u) = —y/—ut = u + O(u?) €
UQ(CPOO)[%]. V.M. Buchstaber proved in [21] the following

Theorem 4.2. a) In order for an element o € Qp to belong to
the group Hom v (U*(MSp),Qu) C Qu, it is necessary and sufficient
that »*(c) = 0.

b) Hom 4u (U*(M Sp), Qu) = Im s\ Qu.

Corollary 4.1. The composition
Sp*(X) B] LUH(X) H ZIm <%U*(X) [%D

establishes an isomorphism between the cohomology theory Sp* [ ] and the

1
2
theory extracted from U* E] by the projection operator .

Algebraic properties of two-valued formal groups. V.M. Buch-
staber [21] gave an axiomatic definition of a two-valued formal group
W (x,y) = 2% — O1(2,y)Z + O2(z,y) = 0, with a partial case being the
quadratic equation defined by the square of the absolute value of a one-
dimensional formal group. We are not giving this definition because of
inconvenience; we just note that this definition requires the existence of
formal series ¢(z) such that Os(z, o(z)) = 0. The series p(z) has the mean-
ing of inverse element and it plays an important role in the classification of
two-valued formal groups. For instance, the following theorem takes place

Theorem 4.3. The two-valued formal group in cobordisms considered
over the ring A C Qu of coefficients of ©1(x,y) and Oz(x,y) is univer-
sal for two-valued groups over torsion-free rings R, for which ¢(x) = x,
i.e. Oz(z,z) =0.

Formal power systems not lying in formal groups. Let
WY (x,y) = Z2 4+ O1(z,y)Z + O2(z,y) = 0 be a two-valued formal group
over a ring R[[z,y]], which is defined by the module-square of a one-
dimensional group F(u,v) € R[[u,v]]. Consider the sequence of formal
series i (x) € R[[z]] : wo(z) = 0,¢1(x) =z, p2(x) = O1(x,x),...,pn(x) =
O1(2, 0n_1(2)) — @n_2(x),.... The series ¢ (r) = k*x + O(x?) considered
in the ring R[[u]] D R|[[x]] look like [u]y, [4]r where [u]y is the k-th power
of the element u in the group F'(u,v). Consequently, the sequence of se-
ries @i (x) forms a formal power system of type s = 2. In the case when
R = Qp and F(u,v) is a formal group of geometrical cobordisms, it is easy
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to show (see [14]) that the system ¢y (x) does not correspond to exponential
in any formal group over ;. Note that the system ¢y (x) has important
topological applications; it first appeared implicitly in Novikov’s work [15]
for describing fixed points of actions of generalized quaternions 2-groups on
almost complex manifolds.

Finally, let us show that the power system ¢y (z) has a natural general-
ization. Let F(u,v) be a formal group over the ring R without torsion, and
gr(u) be its logarithm. Consider the full set (o = 1,...,&m—1) of m-th
roots of unity. Set B! (—y) = [1/2, 95" (& v/8), « = [[1y 95 (&i9r(w)).
Then — By, (z) = gr(u)™, and we get the formal power system

m—1

F () = By (7 Bn(2)) = T o' (kigm(w))
3=0
of type s = m. Coeflicients of the series F,gm) (x) a fortiori lie in the

ring R for formal groups F(u,v) with complex multiplication on &; (&;-
exponential). This construction originates from the formal group of geo-
metrical cobordisms over the ring Qy Q) Z, and m = p— 1, where Z,, is the
ring of integer p-adic numbers. As in the case m = 2, one can consider the

m-valued formal group given by an algebraic equation of degree m whose
solution looks like F'(x,y) Y ®R/Bm(z) + %/Bm

§ 5. Fixed points of periodic transformations in terms
of formal groups

Conner and Floyd [6] first showed that the bordism theory language
is very convenient for studying the fixed points of smooth periodic trans-
formations. The use of formal groups allowed them to systematize and
generalize the results in this direction.

Basic constructions and notions. Let M™ be an almost complex
smooth manifold, let T" be a smooth transformation of M", T? = id, and
p be some prime number; assume T preserves the almost complex structure
of the manifold M™. It is easy to show that the set X C M™ of fixed points
of T',i.e. points such that x € M™, T'x = z forms a disjoint union of finitely
many closed submanifolds N; with a natural structure on them. Here, one
can exhibit tubular neighborhoods U; of manifolds /V; in such a way that
U, are total spaces of normal bundles corresponding to the embeddings of
N; into M, where the action of T is linear on U; and free outside the zero-
sections N; C U;. Thus, the boundaries of tubular neighborhoods dU; are
almost complex manifolds with free action of Z,; thus they define an ele-
ment of bordisms of the infinite lens space BZ,, a(T) € U,—_1(BZ,). The
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element «(7T) is defined only by the behavior of T near the fixed manifolds
N;. It is clear that a(T) = 0 because |J; 0U; = o(M™\|J, U") and the
action of T on the manifold M™\ |J, U; is free. Consequently, the classi-
fication problem for almost complex manifolds with Z,, action in terms of
bordisms is reduced to the following two problems: a) description of the
Z, action near the set of fixed points and b) finding sets of fixed manifolds
such that «(T') = 0.

Stating the problem. We first justify what we mean by classification
under Z, action in terms of bordisms. We say that an almost complex
manifold M" with Z, is bordant to zero if there exists such an almost
complex manifold with boundary W and an almost complex action T’ on
it such that (77)? = id,0W = M,T’'|sw = T. We shall study classes of
bordant manifolds in the sense indicated above. The behavior of T' near the
fixed submanifolds can be easily described. It is known that if on a complex
bundle ¢ the group Z, acts as the identity on the base then the bundle &
can be represented as a sum £ = @@?_; &, and the action of Z,, is defined on
& by one of the irreducible unitary representations of the group Z,. Thus,

if T is a generator of Z,,( = exp(%r) then T'(z) = ('x for € &. In the
class of bordant manifolds with Z, action a fixed component IN; determines
a bordisms of the sum of (p — 1) fibers, i.e.

p—1
B(N:) € Up (][ BU)), where  dimN; = k;, dim¢&; =12

Jj=1

Thus, if 77, is the group of n-dimensional bordisms with Z, action on it,
then there exists a mapping

k423 li=n

that associates with a manifold with Z, action the set of bordisms generated
by components of the fixed submanifold.
The second problem is to determine for every bordism

zre P u([BUW)
k+2> li=n

whether the element x is realizable as a set of fixed points of some almost
complex action of Z,. As mentioned above, there exists a mapping

a: @B U([BUW) — Un1(BZ,)
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here if a(z) = 0 then the element z is realizable as the set of fixed points
under Z, action. In other words, if A is the ring of all bordisms

A= P u(]BUW),

k)llxnwlpfl

then the sequence Q*U)piA&U*(BZp) is exact. It is easy to see that « is
epimorphic and Ker 3 ~ p{}j;. It is interesting to consider such an action
of Z,, where the fixed submanifold consists only of isolated points or man-
ifolds with trivial normal bundle. In the last case the fixed submanifold is
determined by the bordism x € Q’f] and the weight system zy,...,z,,_; of

2
the representation of Z, in the normal bundle.

Basic formulae. Interesting connections with the formal group in
cobordisms are connected to the description of the homomorphism « (for
detailed description, see [4]). It is known that the cobordism ring of the
space BZ, can be represented as

U*(BZp) = Qw[ul] /p¥*(u) = 0. (1)

Then, for an isolated fixed point with weights (x1,...,2,) one has the
following formula obtained by G.G.Kasparov [5], A.S.Mishchenko [10],
S.P. Novikov [15]:

n

a(xl,...,xn):Hﬁﬂau,...,m, (2)

=19 (x5

where g(u) is the logarithm of the formal group. From (1), it follows that
the right hand of the formula (2) makes sense. In the general case, the
multiplicative basis of the ring A over the ring ¢y form manifolds C P* with
1-dimensional Hopf bundle with weight z. This means that the elements
of the ring A are defined by the sequence of numbers ((k1,x1),. .., (ki,21)),

Consider the following meromorphic differential €2 with poles at z = u
dg(2)
fu,z)
g 1(—g(2)); it is invariant under the shift v — f(u,w),z — f(z,w),Q — Q.
This differential is the analogue of dz/(u— z) on the linear group. Let t =

defined on the formal group f(u,v), where Q = Q(u, 2)dz =

, 2

SN

and dt = %, where u is a parameter. We have Q = Q(u, 2)dz = G(u, t)dt,
whence G has a pole for t = 1 for all z,u. Then, as shown in [11] (see
also [4]), the following formula holds
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Oz((kl,xl),...,(kl,xl))
l
H Haqg(w)), tq)%]kl,...,kl ﬂ042n71(1, ool

where [ ]k, .. % denotes the coefficient of tlfl, A t;”.

The connection to the Atiyah-Bott formula. Besides the descrip-
tion of admissible sets of fixed points, it is also interesting to discuss the
question, on which manifold such an admissible set can be realized, i.e.
we have to describe the map Kera — Q&) Z/pZ. It turns out that the
admissible set

(T1,. . xp) — + (11,...,1,),
! Jl;lllelli(u)m !

where
kﬂlla"w (117"'7111—1@)7

is realizable on a manifold from the class

n

[H $] e O @ Z/pZ.

()],

From the work of Atiyah—Bott [1], one can extract the following for-
mula for the Todd genus of the manifold M™ in terms of weights of the
transformation at fixed points

ZTr (H (1- exp(2ng‘k))1> mod p, (3)
k=1

where Tr : Q(¢/1) — Q is the number theoretic trace, and the sum in
(5.3) is taken over all fixed points. It would be interesting to get an anal-
ogous Atiyah-Bott result in cobordisms. This problem is connected with
the construction of a homomorphism v : A — Qy ® @), coinciding with

11 j \I/+() on Ker «. Here by A we mean only fixed points of a subman-
Zj u

ifold with trivial bundle. As shown in [4], the formula for the homomor-
phism ~ looks like

R R P a1y = e Ed I

Jj=1
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Applying to (5.4) the Todd genus T : Qy — Z, we get a numerical function

n

@1y ) = L_ (11’”_ e I1 — (1“_ u)u]n. (5)

j=1

However, it does not coincide with the Atiyah-Bott function

AB(x1,...,2y) =T1“<H(1—exp(—27rpﬂ))—1>, (6)

j=1
The functions (5.5) and (5.6) coincide only on Kera. More precisely, let
KD(x1, ..., Zn)m,0 <m < n—1, be the composition of functions
u u
7
D 11 Www]m ™

with the Todd genus. Note that for an admissible set of fixed points, the
functions (5.7) become zero.

Theorem 5.1. (See [4].)
n—1

AB(z1,...,zn) =v(x1,. .., 2n) + Z KO(xy,...,25)m mod pZp.
m=0

Theorem 5.1 yields that the results of Atiyah and Bott on the Todd
genus of manifolds by using fixed point invariants are a reduction of an
analogous result in cobordisms by using the Todd genus. It is interesting
to note (as D.K.Faddeev showed) that the Atiyah-Bott formula has an
expression in terms of the formal group corresponding to the multiplicative
homomorphism 7" : Qy — Z, which is called the multiplicatve formal group.

Namely (see [4]),
AB(xz1,...,2p)

- _pu T __ [P T _u mo
Z [<u>plg<u>mk‘|m_ [ (u)p g@)mk]n d pZ,,

m=0

where (u), is the ¢g-th exponent of u in the formal group f(u,v) = u+v—uv.

Circle action on almost complex manifolds. In the last few years,
S.Gusein — Zade studied fixed points of the circle action S' on almost com-
plex manifolds. As in the case of Z,, one can construct the Conner —Floyd
exact sequence 0 — U, (S1) L @ U, ([] BU (ni))=U.(S',{Zs}s) — 0, where
the middle term describes the structure of the S' action near the fixed
points, and the last term means the bordism group with S! action with-
out fixed points (stationary points are admitted). A remarkable result of
S.Gusein—Zade describes the last term of this sequence. Namely,
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Uu(S',{Z:})s = oU.(][ BU(ni) x BU(1)). (8)

After proving (5.8), the description of the homomorphism « can be easily
reduced to the algebraic problem by using the formal group language. For
convenience, we do not give these formulae here (see the description of
S.Gusein - Zade’s results in [21]).

Appendix I!

Steenrod Powers in Cobordisms and a New Method of
Calculation of the Cobordism Ring of Quasicomplex
Manifolds?

The Thom isomorphism in cobordisms. For every complex bun-
dle ¢ over X, dim ¢ = n, we have a well-defined Thom class u(¢) € U2 (M (€))
corresponding to the classifying map M () — MU (n), where M(€) is the
Thom complex of the bundle {. The multiplication by u(&) defines the fac-
torial Thom isomorphism (&) : U9(X) — UIH2"(M(€)), o(€)(a) = u(f)a.
Consider the pair of complexes 7 : Y C X and denote by ¢’ the restriction
of £ to Y. We have a well-defined homomorphism

p(6,€)  UUX/Y) = U (M(§/M(E)), ¢(&.&)(a) = u()a.

Since i*u(§) = u(¢’) and (£), p(£’) are isomorphisms then (&,¢’) is an
isomorphism. Let ¢ and 7 be fibers over X. Consider the composition of
the mappings

A M(E+n)/ME + )2 M(E x n)/M(E x 1)
2 (M) A M)/ (M(E) A M (') — M(€) A (M(n)/M(n')),

where M (£xn) is the Thom complex of the bundle £ x7n over X x X; the map
j is defined by the diagonal X — X x X and (X xY)/X x*UxxY = XAY,
are the fixed points. We have a well-defined homomorphism

B(E) : UUM(n) /M) =TI (M(E+ ) /M(E + '),
(o = A% (u(§) - a).

Since w(€ x 1) = u(€) - u(n) € U(M(E x 1)) we see that B(€)¢(n) =
e(E+n,& +17), consequently, ®(£) is an isomorphism.

IThe appendix is written by V.M. Buchstaber after T. Dieck [19] and D. Quillen [20].

2The bordism ring of almost complex manifolds was computed a long ago (Milnor,
Novikov) by using Adams’ spectral sequence. The aim of the new method (due to
Quillen) for calculating this ring is to do without Adams’ spectral sequences.
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Exterior Steenrod’s powers. Let S = lim 52"*! be the infinite-
dimensional sphere and let S — BZ);, = L;° be the universal Z,-bundle.
For every X with fixed point * denote by E(X) the space (S°° U x) A
XA...ANX. Over E(X) we have a well-defined canonical action of Z,,,

p times
acting on X A ... A X by permutations. Set E,(X) = E(X)/Z,. The
correspondence X — E,(X) is, evidently, factorial with respect to the
mappings X — Y. Over the complex V=5 x X A... A X, consider the
bundle £ A ... A€ lifted from X A ... A X. Since the action of Z, on V is
free, the bundle {,y = (EA...AE)/Z, — V/Z, is well-defined. One has the
equation £, (M (§)) = M(E()).

Definition I.1.  Steenrod’s exterior powers in U-coboridsms is the set
P, = {P?" . n € Z} of natural maps P>" : U?"(X) — U?*"P(E,(X)) such
that: B

1) i*P>(a) = a? € UP(X A...AX), where i : X A ... A X —
Ey(X),i(z1,...,2p) = (e,21,...,2p),e € S is the inclusion;
2 Pg(ner)(gb) = T*(P2"(a)P?™(b)) € U2(ntm)p(Ep(XAY)) | where a €
U(X), b € U™(Y), ab € U "X AY) and T : E,(X AY) —
E,(X)NE,Y),T(e,x1,1,-. .N,xp,yp) =(e,z1,. .., €, Y1, -, Yp);

3) P2 (u(§)) = u(&p)) € U™ (M(&)), where £ is a bundle over X,
dim X = n.

It follows from the axioms that for the canonical element wu, €
U?"(MU(n)) we have P2"u, = wu(ny,, ), where 7 is the universal U(n)-
bundle over BU(n). Now, let the element a € U?"(X) be represented
by a map f : S?*X — MU(k + n). Since S?**X = M(k)/M(k'), where
k is the trivial k-dimensional bundle over X and k' is its restriction to
* € X then E,(S*X) = M (ky))/M(k{,)) where k{, is the restric-
tion of k() to the subcomplex Y C (S x X x ... x X)/Z, generated
by points (e,z1,...,xp) for which at least one coordinate z; = * € X.
Since E,(X) = M(0)/M(0') then we have a well-defined mapping A :
E,(S*X) = M (kpy) /M (K(,)) — Ep(X) A E,(S*X), inducing an isomor-
phism @ (k) : U*(Ey(X)) — U*(E,(52% X)), ®(k(y))(a) = A% (u(k(y)) - a).

Since f*upyn = wu(k) - a then we have E,(f)* (u(Misn,p))) =
®(k(p))(P?"a). From the properties of the isomorphism ® (k) it eas-
ily follows that the above formula defines uniquely the element P?"(a) €
U?"?(E,(X)). Thus, the exterior Steenrod powers in cobordisms exist and
they are unique.

Steenrod powers in cobordisms. The diagonal mapping X — X A
... A X defines an inclusion i : (Ly° Ux) A X = (S®°Ux*) A X/Z, — E,(X).
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Definition 1.2. By Steenrod power is meant the set of natural trans-
formations P = {P?" : U*"(X) — U**P((Ly* Ux)A X),n € Z} such that
P?"(a) = i* P*"a.

Let j: BU(n) — BU(n) x ... x BU(n) be the diagonal.
The inclusion i : (L°° u *) A MU( ) — E,(MU(n)) is decomposed as

(L2 Ux) AMU(n) 2 M((5* nn)(p)) = M (1)) = Ep(MU(n)). Let C? be
the p-dimensional complex linear space, where Z, acts by permutations.
Consider the complex bundle v = S x z, CP? — Lp°. It follows straightfor-
wardly that M ((j%1,)(p)) is the Thom space of the bundle v®n, — — L5°x
BU(n). Let us calculate the Chern class 0y, (0®1n,) € U™ (L° x BU(n)).
Decomposing the representation of Z,, over C* into one-dimensional fac-
tors, we see that v is isomorphic to the sum of bundles 1 + Zg;} n4, where
n is the canonical bundle over Lp°. Now, represent 7, as a sum of formal
one-dimensional bundles Y, -

n p—1

@@ ) =[[ [ r(n? @ )

=1 g=0

I
M :j:

H +Ul Ml +Zez,]01 ) Ul(ﬂl)j)u

where ¢, ; € 9_2(”] Y are the coefficients of geometric cobordism formal

group. Denote the ring generated by the elements e; ;, by A C Qy. Since
all elements o1 (1?) € U?(L;°) are formal rows of u = o1 (1) with coefficients
from a subring A C Qp, we see that

(I.1) Onp(V @ M) = Tpp(nn) (W™ + Un(nn)p_l + Z wn_‘w‘aw ()0 (7)),

where w = 0,1 <Z§_i 77‘1>, 0w (M) is the characteristic class correspond-

ing to the decomposition w = (i1, ..., in), |w| = > ir and ay,(v) € U*(Ly°) is
a polynomial in uw = o1(n) with coefficients in A. Note that the space
(Ly*U*) AN MU(n) is the Thom complex of the bundle 7, — L>*BU(n),
whereas the mapping of the Thom complexes \ : (Ly°U*) A MU(n) —
M((j*nn)(p)) is the identity on the base. Recall that the cohomology
operations S, (u,) can be defined as S, (u,) = un - 0,(n,). We have
PPy = PPy = XUl ) = Nu((P)) = 0 + b+
S w1l (u)S,, (u,). Here we used the fact that the restriction of the
Thom class u(£) to the zero section of the bundle £ gives, by definition, the
characteristic class 0, (§), where n = dim.
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Theorem I.1.  Assume the element a € U*"(X) is represented by
the mapping f : S**X — MU (k + n); then in the ring U*(Ly® x X) the
following formula holds:

whP*a = w"a + Z w"lag (u)S,(a),

where w = Up_l(zs;i n?) € U*(L;°) and ay(u) € U*(Ly°) are polyno-
mials in w with coefficients from the ring A, generated by formal group
multiplication laws of the geometric cobordism group.

PRrOOF. Let u(k) € U%(5%) = Z be a generator. We have f*ug;, =
u(k) - a. Consequently, f*P2F+tm)y, . = T*(P?u(k) x P?"(a)), where
T: (L Us) ASPX — (L Ux)ASPA(Ly® Ux)AX. The element u(k) is
represented by the inclusion S?* ¢ MU (k), thus, P?*u(k) = w*u(k). Now,
using the formula for P2*+7)y,; . we get the proof of the theorem.

Calculating the bordism ring for almost complex manifolds.
Standard arguments from homotopy theory not using any information
about the ring Q;y show that if a canonical mapping p: U*(X) — H*(X, Z)
is an epimorphism and the group H*(X, Z) is torsion-free then the group
U*(X) is a free Qy-module (see [8], Appendix). Since the construction of
characteristic classes o,,(£) in cobordisms is also independent of the results
concerning the ring Q and, moreover, uo, (&) = c, (&) € HA®I(X,Z),
where ¢, are Chern characteristic classes (see [6], Appendix), we see that
the groups U*(BU(n) x BU(k)) and U*(MU(n)), n > 1, k > 1 are free
Qp-modules. In particular, U*(C P> x CP*>) = Qu|[u,v]], where u, v are
the first Chern classes in cobordisms of canonical one-dimensional bundles
m and no. Let A =Z[y1, ..., ys] be the ring of coefficients of the universal
Lazard group and let ¢ : A — Qg be the ring homomorphism corresponding
to the formal group of the geometric cobordisms

F(u,v) = o1(m @ n2) € U*(CP>® x CP™).

In § 3, a direct calculation shows that the coefficients of the loga-
rithm g(u) of F'(u,v) algebraically independent. But since the coefficients
of the logarithm of the Lazard group generate the ring A ® @, we get that
¢ is a monomorphism.

Consider the formal series ©,(u) = % =p+aqu+ ... over Qullul],

where [u], is p-th power of the element u in the formal group.
Lemma 1.1. The following sequence is exact:

Qo 28 U Ly) S ULy,
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where uw = o1(n),n is the canonical fiber bundle over Ly,

morphisms in the sequence are multiplications by ©,(u) and u.

and the homo-

PROOF. Denote by 7 the canonical bundle over CP>. Besides,
consider the bundle n”? — CP> and denote by E — CP> the D
bundle associated with n#?. We have OF = L;°,E/OE = M(n?). A
detailed consideration of the homomorphism p : U*(Lp°) — H*(L;°, Z)
yields that the homomorphism U*(E) = U*(CP*) — U*(Ly°) is an
epimorphism, and since o1(n”) = [u],, we get that there is an exact se-
quence 0 « U*(Ly°) « U*(CP*) icld U*(M(n?)) < 0. The proof of the
lemma follows now from the fact that the multiplication by u homomor-
phism in U*(CP>) = Qu|[u]] is indeed a monomorphism.

Theorem 1.2.  The homomorphism ¢ : Z[y1, ..., Yn,...] — Qu from
the Lazard group to Qy corresponding to the geometrical cobordism group
s an isomorphism.

PrROOF. It remains to show that ¢ is an epimorphism. Set C' =
Ime C Qu; let us show that for any n > 1 there is an isomorphism
Us(sm) = C32,5oU%(S™). First note that because of the isomorphism
U?(S™) = UL (S"*1) and the fact that U9(S™) is finitely generated for ev-
ery g, it suffices to show that for every prime p there exists an isomorphism
Ur(S")@Zpy=C-3 .5 U?(S™)®@ Z,. Set R, = C'- > >0 U?1(S™) @ Z,.
Assume for all j < ¢ we have already proved the isomorphism R,/ =
U—2i (S™) ® Z,. For j = 0 this isomorphic is evident. Assume the element
a € 17*2‘1(‘9”) is represented by a mapping f : S2*S™ — MU (k — q); then,
by Theorem 1.1, the following formula takes place:

(1.2) wk P2 = wk_qa—i—z w1l (u)-S,,(a).

The element w € U?"?(Ly°) is a formal series of type (p—1)! x u?~' +O(uP)
with coefficients in C. By the induction hypothesis, S, (a) € R, |w| > 0,
and we get from (I.2) that for some m the following holds:

L3)  u™(wiP *a—a)=(u) € U(LYX x ") = U*(LX) ®aq, U*(S™),

where ¥(u) € Rp[lu]]. Assume that m > 1 is the least such number for
which the formula (I.3) holds. Since 9 (0) = 0 then ¢ (u) = w1 (u), ¥1(u) €
Rp[[u]], and we get u(u™ 1 (wiP~24a — a) — 11 (u)) = 0. Then by lemma
I.1 there exists an element y € U*(S57) such that

(1.4) U™ N (wIPa—a) = i1 (u)+yOp(u) € U (L xS™).
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Considering the restriction of this inequality to U*(L;°), we get 3’0, (u) =0,
where ¢ = e(y),e : U*(S™) — U*(x). Consequently, if m > 1 then, by the
induction hypothesis, y - ©,(u) € Rp[[u]], which contradicts the minimality
of m. But, if m = 1, then, considering the restriction of (I.4) to U*(S™),
we get —a = ¥1(0) +py, ie. a€ R,.

Appendix IT!

The Adams Conjecture

The Adams conjecture concerns the calculation of the image of the J-
homomorphism in the real K-theory (see [13]). The exact formulation says:
for every bundle ¢ there exists such an integer N that J(k™ (W*(¢)—¢€)) =0
for any £ > 1. The Adams conjecture allows one to construct an up-
per bound for the image of the J-homomorphism. It has been known
that the Adams conjecture is true for one-dimensional and orientable two-
dimensional bundles, and their connected sums. To prove the Adams con-
jecture, it suffices to check it only for classifying bundles on Grassmann
manifolds. We shall give a proof outline of the Adams conjecture, following
Sullivan?. The main idea is to map the K-functor to some other functor for
which the Adams operations W*, preserve the dimension of “the bundle”.
The exact sense is as follows.

Lemma II.1. Let B, be a sequence of complexes, v, : By, — B, be
spherical bundles with fiber S"~', f. : B, — B,_1 be mappings such
that f;(/yn-l-l) = Y% @1, fn ~ Ynt1 - o, where h,, : B, — E,11 is a
homotopy equivalence. Let a, : B, — B, be a stable operation of the
functor li_r)n[,Bn], i.e.  fnan ~ ap_1fn, which is invertible. Then if
Jy @ B, — BG,, is a natural J-map, G, ~ (Q"~18"=1)q, then J, ~ Jna,.

Note that the operations W* for B,, = BO(n) do not satisfy the assump-
tions of the lemma. Sullivan found an acceptable theory K (X)), where some
analogues of the operations W* satisfy the conditions of the lemma. Let
X be an arbitrary CW-complex. By the completion X of X we mean such

a (unique) complex for which the condition [Y, (X)] = limp, [V, F] holds.
Here {F f} is the category of all mappings f : X — F, where F runs over

1 Appendix II is written by A.S. Mishchenko.

2The proof of Adams’ conjecture started three years ago from Quillen’s idea (Quillen
D., Some remarks on etale homotopy, theory and a conjecture of Adams. Topology
(1968), 7, No.2, 111-116): apply the properties of etale-topology of Grassmann mani-
folds. In 1970, together with Sullivan’s proof given below, Quillen constructed a proof
based on the reduction of the Adams conjecture for the bundles with finite structure
group; this proof differs from his first original idea.
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complexes with all homotopy groups finite. Then we set K ()/f ) =[X,BO7].
It is easy to see that the space BO(n)™ satisfies the conditions of the lemma
if we take for v, the fibration with fiber (S™~1)™. On the other hand, since
all homotopy groups BG,, are finite then there exists a natural mapping

J”: BO(n)” — BG(n), and thus the diagram

BO — BO~
JL JJA
BG

is commutative. Finally, one can define the operations (¥*)™ in the
groups K7(X) in such a way that (U*z) = (U¥)"(27). If we prove
that the operations (¥*)™ preserve the geometrical dimension of fibres,
i.e. that there exist mappings (V%)™ : BO(n)” — BO(n)” such that
(UF)™ = 1lim(¥k)™, then the lemma yields the Adams conjecture. For the
proof of the last statement, Sullivan uses the fact that the Grassmann mani-
folds G, i are algebraic manifolds over the field of rational numbers. Thus,
on the manifold G, we get a Galois group Gal(C,Q) action. It turns
out that the induced action in the etale homology with coeflicients in the
finite group is defined only by representation of the group Gal(C, Q) in
the permutation group of all roots of unity, i.e. by the homomorphism
Gal(C,Q) — (Z)*. Together with the Artin theorem on the isomorphism
of etale cohomology with coefficients in finite group with the usual coho-
mology of the manifold, we get the actions of the group (2 )* on the space
(Gnx)”. Tt can be casily checked that the action of the element (k) € (Z)*
coincides with the operation (U*)™.
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Formal groups, power systems and
Adams operations

V. M. Buchstaber, S. P. Novikov !

The theory of one-dimensional commutative formal groups at present
consists of three parts:

1) The general theory based on Lazard’s theorem [8] on the existence
of a universal formal group; the coefficient ring of this formal group is the
polynomial ring over integers.

2) Formal groups over arithmetic rings and fields of finite characteristic
— for a survey of this theory see [4].

3) Commutative formal groups in cobordism theory and in the theory
of cohomology operations and characteristic classes [5], [9], [12], [13], [14].

Quillen has recently shown that the formal group f(u,v) of “geometrical
cobordisms” is universal [14]. His proof makes use of Lazard’s theorem on
the existence of a universal formal group whose ring of coefficients is a
torsion-free polynomial ring.

In the first section of this paper we prove the universality of the group
of “geometrical cobordisms” directly by starting from its structure, as in-
vestigated in Theorem 4.8 of [2], without recourse to Lazard’s theorem.
Moreover, in §1 we give formulas for calculating the cohomology opera-
tions in cobordism by means of the Hirzebruch index.

In connection with the theory of Adams operations in cobordism, the
operation of “raising to powers” in formal groups is of particular importance
(see [12], [13]). This operation can be axiomatized and studied for its own
sake; in addition there are topologically important power systems which

Math. USSR. Sbornik, vol 13 (1971), No.l., originally: B.M.Byxmrra6ep,
C.I1.HoBukoB, QPopmasibHBIE TPYIIbI, CTEIEHHbIE CUCTEMBI W OIEpaTopbl Amamca,

Maremaruueckuii cbopuuk, 1971, T.84 (126), No.1, c.81-118 (mocrynmia B peJakiuio
9.06.1970). Translated by M.L. Glasser with further edition by V.O.Manturov
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do not lie within formal groups, see §2a. In §2b we examine a distinctive
“two-valued formal group” which is closely connected with simplicial cobor-
dism theory. §3 and the Appendix are devoted to the systematization and
development of the application of formal groups to fixed point theory.

§ 1. Formal groups

First of all we introduce some definitions and general facts concerning
the theory of formal groups. All rings considered in this paper are presumed
to be commutative with unit.

Definition 1.1. A one-dimensional formal commutative group F over
a ring R is a formal power series F(z,y) € R[[x,y]] which satisfies the
following conditions:

a) F(z,0) = F(0,z) = x;

b) F(F(Iay)vz) - F(va(yvz));

¢) F(xz,y) = F(y, ).

In the following a formal series F'(z,y) which satisfies axioms a), b) and
¢), will simply be called a formal group.

Definition 1.2. A homomorphism ¢: F — G of formal groups over
R is a formal series p(x) € RJ[[z]] such that ¢(0) = 0 and ¢(F(z,y)) =

G(p(x), p(y))-

If a formal series ¢ (z) determines the homomorphism ¢;: F — G and
a formal series po(x) determine the homomorphism ¢o: G — H, it follows
immediately from Definition 1.2 that the formal series @2 (¢1(x)) determines
the composite homomorphism 5 - p1: F' — H.

For formal groups F and G over R we denote by Hompg(F, G) the set of
all homomorphisms from F' into G. With respect to the operation

(1 + @2)(x) = G(p1(z), p2()), 1,92 € Homg(F, G),

the set Homp(F,G) is an abelian group.

By T(R) we denote for any ring R the category of all formal groups
over R and their homomorphisms. It is not difficult to verify that the
category T(R) is semi-additive, i.e. for any Fy, Fs, F3 € T'(R) the mapping

HomR(Fl,FQ) X HOmR(FQ,Fg) — HomR(Fl,FQ),

defined by composition of homomorphisms, is bilinear.
Let F(z,y) = © +y + Y a;;z'y’ be a formal group over R; and
let 7: Ry — Ry be a ring homomorphism. Let 7[F] be the formal series

r[Fl(z,y) =z +y+ > r(a)z'y,
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which is clearly a formal group over Ra. If the series p(x) = Y a;x? gives
the homomorphism ¢: F' — G of formal groups over R; then the formal
series 7[p](x) = Y. r(a;)x? gives the homomorphism 7[¢]: 7[F] — r[G] of
formal groups over Ry. Thus any ring homomorphism r: R; — R provides
a functor from the category T(R;) to the category T'(Rz2). Summing up,
we may say that over the category of all commutative rings with unit we
have a functor defined which associates with each ring R the semi-additive
category T'(R) of all one-dimensional commutative formal groups over R.
Let R be a torsion-free ring and F(z,y) a formal group over it. As
was shown in [8] (see also [4]), there exists a unique power series f(x) =

x4y - 4’_1 i 2", a, € R, over the ring R ® @ such that

F(z,y) = f~'(f(z) + f(y)) (1)

Definition 1.4. The power series f(z) =

a 1x”+1, an € R
satisfying (1), is called the logarithm of the group F(x,y) and is denoted
by gr(z).

In [4] the notion of an invariant differential on a formal group F(z,y)
over a ring R was introduced, and it is shown there that the collection of
all invariant differentials is the free R-module of rank 1 generated by the

—1
form w = 1/](;[;)d1'7 where w((ﬂ) = <|:8F§Z7 y):| ) . By the invariant
y=0
differential on the group F'(z,y) we shall mean the form w.
If the ring R is torsion-free then w = dgr(z). We point out that it was

demonstrated in [12] that the logarithm of the formal group f(u,v) of “geo-
P7l]

n+1

metrical cobordisms” is the series g(u) = u+ Z . Consequently,

for the group f(u,v) we have

w=dg(u) = (Z[CP"]U") du = CP(u)du

n=0
Let f(u,v) =u+v+Y e uvi, e;; €Qy 209971 "be the formal group of
geometrical cobordism.

Lemma 1.5. The elements e; j, 1 <1i < oo, 1 < j < oo, generate the
whole cobordism ring Q.

PROOF. From the formula for the series f(u,v) given in [2] (Theo-
rem 4.8), we obtain
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e1n=[Hi1] —2[CPY, ei;=~[Hi,]—[CPY, i>1,
eij~ [Higl, i>1,j>1,

where the sign ~ denotes equality modulo factorizable elements in the
ring Q. Since s1([H11]) = 2, we have e; 1 = —[C P1]; since s;—1([H14]) = 0
for any i > 1, we have e;; ~ —[C P !]. According to the results in [10],
[11], the elements [H; ], i > 1, j > 1, and [CP’] generate the ring Q.
This proves the lemma.

Theorem 1.6. (Lazard—Quillen). The formal group of geometrical
cobordisms f(u,v) over the cobordism ring Qu is a universal group, i.e. for
any formal group F(x,y) over any ring R there is a unique ring homomor-

phism r: Qu — R such that F(x,y) = r[f(u,v)].

We show first that for a torsion-free ring R Theorem 1.6 is an easy
consequence of Lemma 1.5. Let R be a torsion-free ring and let F' be an
arbitrary formal group over it, and let

+Zn—|—1 2"t a, € R.

Consider the ring homomorphism r: Qy — R®Q such that r([CP"]) = ay.
We have r[gs] = gr, and, since F(z,y) = gp' (gr(z) + gr(y)) and f(z,y) =
gj_»l(gf(:v) +97(y)), also r[f(z,y)] = F(z,y). Consequently r(e; ;) € R. By
now applying Lemma 1.5, we find that Imr C R C R ® . This proves
Theorem 1.6 for torsion-free rings.

PROOF OF THEOREM 1.6. Recall that by s,(e), e € Q;*", we denote
the characteristic number corresponding to the characteristic class > t2.
It follows from the proof of Lemma 1.5 that for any i > 1, j > 1 we have
the formula s;1;_1(e; ;) = —C’fﬂ». It is known that the greatest common
divisor of the numbers {C?},_; (n—1) isequal to 1, if n # p! for any prime
p > 2, and is equal to p, if n = p!. Consequently, a number ); ,, exists such

that l
. 1, ifn ,

> AinCi = , s (2)
' p, if n = pl.

For each n, let us consider a fixed set of numbers ();,) which satisfy
(2). From [10] and [11] we have that the elements y, = > A n€in—i €
€ 9&2(7171), n =2,3,..., form a multiplicative basis for the ring Q.

Let R be an arbitrary ring and let F(z,y) = 2 +y + >, o j2'y’ be a
formal group over this ring. We define the ring homomorphism r: Qy — R
by the formula r(y,) = > A n@in—i; we shall show that r(e; n—i) = i n—i
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for any i,n. From the commutative property of the formal group F' it
follows that o p—i = u,—i4; from associativity we have

i J —
OiJrjOéiJrj.,k - Cj+kaj+k7i - P(O&mﬁl),

where P(ay,,;) is a polynomial in the elements v, ;, m+1 <i+j+k. It
is clear that the form of the polynomial P does not depend on the formal
group F'(x,y). Since e1,1 = y1, we have r(e1,1) = aq,1. We assume that for
any number n < ng the equation r(e; ,—;) = v n—; is already proved. We
have

C§+j6i+j7k — CJJ:Jrkej_,_k)i = P(em,l), m+l<ng=1 +7+ k,

r(Plems)) = P(r(emy)) = Plom,) = Ciy joigin — Clypki-

It follows from the number-theoretical properties of C} that for any io > 1
and ng = 79+ jo + ko the element oy, j,+k, can be represented as an integral
linear combination of the elements 7(yn,) = > Ai no @i j1r and r(P(em,1)) =
Clyivjr— CY ., x@jtk,i- Since the form of this linear combination depends
neither on the ring R nor on the formal group F', we find that r(e;, no—i,) =
Qig.no—ie- Lhis concludes the induction, and Theorem 1.6 is proved.

It will be useful to indicate several important simple consequences of
Theorem 1.6.

1. In the class of rings R over Z, the formal group f(u,v) @z Z, over
the ring Quy ®z Zy, is universal.

2. In the class of formal groups over graded rings the formal group of
geometrical cobordisms f(u,v), considered as having the natural grading of
cobordism theory, is universal.

In this case dimu = dimv = dim f(u,v) = 2. Therefore the above
refers to the class of formal groups F' over commutative even-graded rings

R, where R = Y R™% and all components of the series F(u,v) have
i>0

dimension 2. Of course, the general case of a graded ring reduces to the

latter through the multiplication of the grading by a number.

3. The semigroup of endomorphisms of the functor 7', which assigns
to a commutative ring R the set T(R) of all commutative one-dimensional
formal groups over R, is denoted by AT. This semigroup AT coincides with
the semigroup of all ring automorphisms Qy — Qu. In the graded case we
refer to the functor as Ty, and the semigroup as AgT, which coincides with
the semigroup of all dimension preserving homomorphisms Qy — Q. The
“Adams operators” UF € AZT form the center of the semigroup Agr. The

application of these operators W* to a formal group F(x,y) over any ring
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proceeds according to the formula
VAP (z,y) =2 +y+ Y kT oy jaty,

where F(z,y) =z +y+ > o jaiy’.

We note that the semigroup A® of all multiplicative operations in U*-
theory is naturally imbedded in the semigroup A7, (see [12], Appendix 2)
by means of the representation (*) of the ring AU over i7; the elements of
AT are given in the theory of characteristic classes by rational “Hirzebruch
series”

K(1+u)=Q(u), Qu)=—% a(u):u—l—Z)\iui, Ai € Qu ®Q.

a(u) =
What sort of Hirzebruch series give integer homomorphisms Qy — Qp,
i.e. belong to AT? How does one distinguish A° C A;FT?

From the point of view of Hirzebruch series the action of a series a =
a(u) = u+ Y hu N € Qu ® Q, on the ring Qy is determined by the

formula
n+1
a([CP"]) = <@> )

n

where [f(u)], denotes the nth coefficient of the series f(u). Note that
a t(u) = u+ Za([nci_fl])u"“, where a~!(a(u)) = u. This formula is

proved in [13] (see also [2]) for series a(u) giving homomorphisms Qy — Z,
and carries over with no difficulty to all series which give homomorphisms
One should point out that the indicated operation ( in the “Hirzebruch

genus” Q(u) = #u) sense ) of a series a(u) on Qy does not coincide with
the operation (*) of the series a(u) € Q ® Q[[u]] on the ring Qy = U*
(point), which defines a multiplicative cohomology operation in U*-theory
(see [12]). For example, for a(u) = u we have a([CP"]) = 0, n > 1, and
a*([CP"]) = [CP"]; as is proved in cobordism theory (see [12], [2]), for the
series a(u) = g(u) = [ff 1] "+l we have the formula a*([CP"]) = 0,
n > 1, and for the series a(u) = g~!(u) the formula a([CP"]) = [CP"].

There arises the transformation of series of the ring Q ® Q[[u]]

p:a(u) — pa(u),

defined by the requirement a[z] = (¢a)*[z] for all z € Qr, where we already
know that pu = g(u) and p(g~!(u)) = u. We have
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Theorem 1.7. The transformation of series of the ring Qu @ Q[u]]

g: a(u) — a(g(u))

has the same properties as

alz] = a(g)"[z]

for any element x € Qu, where g(u) = Z[S—_]:l]u"“, al[CP"] =

a(u)
ment x € U*(point)= Qu of the multiplicative operation b from AY @ Q,
given by its value b(u) = u + Y. \ul, \; € Qu @ Q, on the geometrical
cobordism u € U%(CP>).

n+1
l( u ) 1 and b*[x] s the result of application to the ele-

PRrROOF. Let b € AV ® Q be a multiplicative operation and let l~7(§) be
the exponential characteristic class of the fiber { with values in U*-theory,
which on the Hopf fiber 7 over C'P", n < oo, is given by the series b(n) =

-1
b
# ; let u € U%(C'P™) be a geometrical cobordism. As was shown in

[12], for any U-manifold X™ we have the formula
b*([X]) = eDb(~7(X")),

where [X"] € Q;,*" is the bordism class of the manifold X™, e: X —(point),
D is the Poincaré-Atiyah duality operator, and 7 is the tangent bundle.

By using the formulas Du* = (CP" %) € U, x(CP"), n < oo,
and 7(CP™) +1 = (n+ 1)n, we obtain

S ICPH (ﬁ)"”] )

Lo [ ) et

b*([CP"])
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([ n+1l _ * n n
Z n+1t /Zb ([CP™))t"dt
! CPk uFdu n
_/0 — / L |
n= On 0 [=e

= / S [C Pt (/0 g(ﬁ) %) du

e k=0
=L ~In{1- - 3 FluP du
st [ i) (Bere)
\f\‘E};Z)\
1
=3 / —ln<1—m>dg()
lu]=e

[t1<[b(w)]

where dg(u) is the invariant differential of the formal group f(u,v). By
setting g(u) = v, we obtain from the formula for the inversion of series

—In —4 v = _1’U -1 _ _1 '
/ 1<1 b(gl@»)d (blg™ @) (0) = g6 (1)
[t]<[b(g~ 1 (v)]

Thus -
5 LU D s — 1)

n+1
n=0

On the other hand, as was indicated above, we have the formula

a([CP"
Z (L - 1])tn+1 _ ail(t).
Consequently, if b(u) = a(g(u)), then b*([CP"]) = a([CP"]) for any n.
Since the elements {[C'P"]} generate the entire ring Qp ® @, the theorem
is proved.

Another proof of Theorem 1.7 can be obtained from the properties of
the Chern—Dold character chy (see [2]). Let ¢: Qu — Qp be a ring ho-
momorphism and let a(u) = u + >_ A\;u’ be the corresponding Hirzebruch
genus. We shall show that if the multiplicative operation b € AV ® Q acts
on the ring U*(point)=0¢y as a homomorphism ¢, then its value on the
geometrical cobordism u € U?(CP>) is equal to the series a(g(u)), where
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gu) =u+3 %u”“. We have

chy(u) =t 4+ a;t"™ € #7(CP>,Qu ©Q),

o € Q% @ Q,t € H*CP>;Z), chy(g(u)) = t. Since a~'(t) =

> SD(r[LO—&-Pl Df"“, we have a(t) = t+ 3 ()"t =t + 37 b* (a;)t*+!. Thus,

a(g(w)) = g(u) + Y b*(ei)g(u™™),

chy(a(g(u))) =t + Z b* (o)t = b*(chy (u)) = chy (b(u)).

Since the homomorphism chy: U*(CP™®) ® Q — A7 (CP>*,Qp ® Q) is a
monomorphism, we find that a(g(u)) = b(u). This proves the theorem.

By Theorem 1.6 any integer Hirzebruch genus, or, equivalently, any
homomorphism @Q: Qy — Z, defines a formal group over Z, and con-
versely (similarly for the ring Z,). In this connection the Hirzebruch
genus, which defines this homomorphism, can be rational. Equivalent (or
strongly isomorphic in the terminology of [4]) formal groups are defined
by the Hirzebruch series Q(z), Q'(z), which are connected by the formula
sz) = ! (Q’Z(z)>’ where ¢! (u) = u + 1; AuiTt N, € Z. This fol-

lows from the fact that the logarithms of the formal groups are equal to

go(z) = (%) . , and by definition we have gg(z) = gg'(¢(2)).

Let us consider the integer Q)-genus given by the rational series gg(u).

Then the @’-genus such that gg(u) = gor(p(w)), pu) = v+ > Nuttl,
i>1

\i € Z, also has integer values on . In this connection the meaning of the
equivalence for Hirzebruch genera is the same as for formal groups. What
sort of examples of formal groups are considered in topology in connection
with the well-known multiplicative genera ¢, T', L, A?

1. The Euler characteristic ¢: Qy — Z. We have

_u+v—2uv o
fe(u,v) = 1—w ge(u) =

As a formal group, this genus is equivalent to the trivial one.
2. The Todd genus T': Qy — Z. Here we have the law of multiplication

o —Z o —Z
l—e™ g7l (2)

fr(u,v) =u+v—uv, gru)=-In(1l—-u), T(2)



332 V.M. BUCHSTABER, S.P.Novikov

3. The L-genus 7: Qy — Z and the A-genus A: Quy — Z, where
g;'(z) = tanhz and g, (z) = %sinh(lz). It is easily seen that these are
strongly isomorphic to formal groups; both of them are strongly isomorphic
1

over Zo to a linear group, and over Z [2

} to a multiplicative one (the Todd
genus).

4. The T,-genus (see [3]) T,([CP"]) = > (—y'). Here the law of multi-

=0

plication is defined over the ring Z[[y]] and has the form

utv+ (y—1uw
1+ uvy

fr,(u,v) = , gTyz#ln<1+(l+y)1fu>.

(y+1)
We have for y = —1,0, 1 the genera ¢, T, and L, respectively. The simple
integral change of variables u = ¢(u') allows us to put fr, into the form

o=, (p(u), p(v) = u' + ' (y — 1)u'v".

For all values of y this group either reduces to a linear one or to a multi-
plicative one over p-adic integers Z,,.

Thus we see that in topology the multiplicative genera connected with
other non-trivial formal groups over Z, Z,, or Z/pZ have not been considered
previously.

§ 2. Formal power systems and Adams operators

Definition 2.1. A formal power system over a ring R is a collection of
power series { fr(u),k = £1,42, ..., fr(u) € R[[u]]} such that fi(fi(u)) =
i ().

Consider on the ring R[[u]]o the operation of inserting one formal power
series into another. With respect to this operation R[[u]]o is an associative
(noncommutative) semigroup with unit. The role of the unit is played
by the element u. Let Z* denote the multiplicative semigroup of nonzero
integers.

Definition 2.2. Any homomorphism f: Z* — R[[u]] will be called a
formal power system.

Definition 2.3. We shall say that a formal power system is of type s
if for any number & the series fi(u) has the form

fr(u) = k°u + Zui(k)ui“, pi(k) € R.

i>1
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We shall always assume the number s to be positive. Not every power
system has type s > 1. For example, fi(u) = u* . More generally, the case

i) = Do)t + O 1) = 3 A (ka1
=0

is possible.

Here it is especially important to distinguish two cases: 1) Ag(k) = 1,
2) Ao(k) # 1, but R does not have zero divisors. In the first case there
exists a substitution v = B(u) € R[[u]] ® Q, v = u + O(u?), in the ring
such that B(fx(B~'(v))) = v*" (the argument is similar to the proof of
Lemma 2.4 below). 2) is the more general case, where A\g(k) # 1. Here a
similar substitution exists and is correct over a field of characteristic zero
which contains the ring R. Examples of such power systems may be found
readily in the theory of cohomology operations in U*-theory, by composing
them out of series of operations s, € AU with coefficients in Q. We
are interested principally in Adams operations, and shall therefore consider
only systems of type s > 1.

As in the theory of formal groups, an important lemma concerning “ra-
tional linearization” also plays a role in the theory of power systems. We
note that the proof of this lemma presented below is similar to the consid-
erations of Atiyah and Adams in K-theory (see [1]).

Lemma 2.4. For any formal power system of type s there exists
a series, B(u) € R[[u]] ® Q, not depending on k, such that the equation
fr(w) = BY(k*B(u)), where B=*(B(u)) = u, is valid in the ring R[[u]]®Q.

The series B(u) is uniquely defined by the power system, and is called
its logarithm! .

PrROOF. We shall show that for a given power system [ = {fi(u)}
of type s we are able to reconstruct, by an inductive process, the se-
ries B(u) = u+ AMu? + .... Assume that we have already constructed
the series v, = B,(u) € R[[u]] ® @ such that for the formal power

system {fk")(vn)} {B,fx(B;*(v,))} we have the formula fk (vn) =
kv +p(k)or +O0(vn2), u(k) € R. By using the relation fl(" (f,gn) (vg))=
fk")(fl(n) (vn)), we obtain for all k and [

(k1) v+ (1) 4 @R D) 0m D = (kD)0 + (6 (D) + (k)DL

I'We point out that a formula for the logarithm of a formal group was given in [5] for
the cobordism theory of power systems of type s = 1 for these groups. However, there it
is necessary to make use of important additional information concerning the coefficients
of the power systems of u* as functions of k.
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Consequently,

pk) — pd)
ES(k™ —1) 151" —1)

=AeER®Q,

where A does not depend on k and I. Let us set B,.1(u) = v, — i T
Direct substitution now shows that

Brs1(fi(Bpty(vns1))) = k*vpp1 + O(0i1?).

This completes the inductive step. We set B(u) = limB,(u). Thus
B(fx(B~Y(B(u)))) = k*B(u), i.e. fx(u) = B~1(k*B(u)), which completes
the proof.

An important example of a formal power system is the operation of
raising to the power s in the universal formal group f(u,v) over the ring Q.
The operations of raising to a power in f(u,v) have the form k*W*" Wk ¢
A. Let us denote by A(s) the subring of Qy generated by all the coefficients
of the formal series

KO (u) = kou+ ZHES)(k)uiH € Qullul] = U (CP)

for all k. In Theorem 4.11 of [2] the coefficients of the series k*¥*" are de-
scribed in terms of the manifolds M} ¢ CP", k= £1, +2,..., which
are the zero cross-section of the k®-th tensor power of the Hopf fiber 7
over C'P". In particular, from this theorem it follows that modulo factor-
izable elements in the ring Q2 have the equation

™) (k) ~ [Mj.] — k[CPY),

Since 7(M;}.) = ¢*((i+1)n—n""), where ¢: M}, C CP""! is an imbedding
map, we have s;([ML.]) — s;(k*[CPY]) = k*(1 — k*"). The calculation of
the Chern numbers s; (t-characteristic in the terminology of [13]) of the
elements ugs)(k) is easily performed by the method of [13].

Lemma 2.5. Let A(s) = > A, be the ring generated by the ele-
ments ,ul(-s)(k) for all k and i. The smallest value of the t-characteristic
on the group A is equal to the greatest common divisor of the numbers
kS(k™ — 1), k = 2,3,.... In particular, the ring A(s) does not coincide
with the ring Qu for any s, but the rings A(s) @ Q and Quy @ Q are isomor-
phic.

Theorem 2.6. The formal power system of type s generated by the
Adams operations fy(u) = {k*U*"}, k = £1,+2,..., and considered over
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the ring A(s), is a universal formal system of type s on the category of
torsion-free rings, i.e. for any formal power system f = {fr(u)} of type
s over any torsion-free ring R there exists a unique Ting homomorphism
w: A(s) — R such that f = o[fu].

PROOF. Let B(u) = u+ Y. \u'™, \; € R® Q, be the logarithm
of the formal power system f = {fr}. Consider the ring homomorphism
P W Q- ReQ. w(ffﬂ
formal power system {k*W*"} generate the entire ring A(s), we see that the
homomorphism ¢, restricted to the ring A(s) C Qu ® @, is integral, i.e.
Im ¢(A(s)) C R C R® Q. This proves the theorem.

With each formal power system f = { f(u)} of type s over a torsion-free
ring R we may associate a formal one-parameter group B~'(B(u) + B(v))
over the ring R ® @, where B(u) is the logarithm of the power system.
From Theorem 2.6 we get

> = \,. Since the coefficients of the

Corollary 2.7. Let p: A(s) — R be the homomorphism corresponding
to the formal power system f = {fx(u)}. In order for the group B~1(B(u)+
B(v)) to be defined over the ring R, it is necessary and sufficient that the
homomorphism ¢ extend to a homomorphism ¢: Qu — R.

Thus the question of the relation of the concepts of a formal power
system and a formal one-parameter group over a torsion-free ring R is
closely related to the problem of describing the subrings A(s) in Q.

We shall demonstrate that the series B~1(k*B(u)) has the form
B7Y(k*B(u)) = k*u + k*(k* — 1)Mu? + ..., A € R® Q, where B(u) =
w4 u?+.... Since the expression k*(k* — 1)\ is integer valued for all k, it
follows that an element A € R® ) can have in its denominator the Milnor —
Kervaire— Adams constant M (s), equal to the greatest common divisor of
the numbers {k*(k° — 1)}. For example, M (1) = 2, M(2) = 12. For the se-
ries B(u) obtained from a formal group over R the second coefficient A\ can
only have 2 in the denominator. For all s > 1 a realization of the universal
system indicated in Theorem 2.6 does not, of course, occur naturally. A
natural realization would be one over a subring of the ring Qy, where the
second coefficient \ of the logarithm B(u) = u+Au?+ ... for the system of
type s = 21 would coincide with the well-known Milnor-Kervaire [6] mani-
fold V* € Q[}“, where A\ = :I:#Z), as follows from our considerations on
the integer of A - M (s). For s = 2 such a system will be given below.

It is simplest to describe the connection between the notion of a formal
power system of type s and of a formal one-parameter group for s = 1.
We consider the category of torsion-free rings which are modules over the
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p-adic integers. The system fy = {kS\Ifks (u)}, considered over the ring
A(s)®Z,, is a universal formal system of type s for systems over such rings.
Consider in the ring Qy some fixed multiplicative system of generators {y; },

dimy; = —2i; let us denote by A, C Qp the subring generated by the
elements y(,;_1), j = 0,1,..., and by m,: Qy — Qu the projection such
that

yi, ifi=p —1
mo(v:) = 0 otherwise.
According to Lemma 2.5, the minimum value of the ¢-characteristic on the
group A(1),, C A(1) is equal to the greatest common divisor of the numbers
k(k™—1), k= 2,3,.... In the canonical factorization of the number {k(k™—
1)} into prime factors only first powers can appear, and since t(y,i 1)) = p,

j > 0 (see [11]), it follows that the homomorphism m,: A(1) — A, is an
epimorphism. Let us define f[(Jp) = {m}[k U]}

Corollary 2.8.  For any projection of type m, the coefficients of the
(p)

series fy;’ generate the entire ring A,, which coincides with the ring of
coefficients of the formal group 7 (fu (u,v)) = f[(Jp) (u,v).

We consider now the spectral projection 7, : Qu ® Z,, — Qy ® Z,, such
that 7 ([CPY]) = 0 if i+1#p", and T;([CPY]) = [CP], if i +1 = p".
This projection was given in [14], starting from the Cartier operation over
formal groups. As was indicated § 1, the projection 7, can be considered as
a “cohomology” operation on the set of all formal one-parameter over any
commutative a Z,-ring R.

We shall say that the formal group F'(u,v) over the Z,-ring R belongs
to the class P if T, (F(u,v)) = F(u,v). Note that the group 7, fur(u,v) is a
universal formal group for groups of class P over the ring A, = Im f;(QU).

From the description of the operator 7, and the definition of the pro-
jection 7, on the collection of groups it follows easily that for a torsion-free
Z,-ring R the group F(u,v) belongs to the class P if and only if its loga-

o0 .
rithm has the form gp(u) = u + > azu?’.
i=1
We shall say that a formal power system f(u) over Z,-ring R belongs

to the class P if its logarithm has the form B(u) = u + > AjuP".

Lemma 2.9.  The power system ﬁ;[klllk(u)] is a universal formal
power system of type 1 for the class P over the ring A, = Im f;(QU).

PROOF easily follows from Lemma 2.4 and Corollary 2.8.
From Lemmas 2.4, 2.5 and 2.9 we have

Theorem 2.10. Let R be a torsion-free Z,-ring, f(u) a formal power
system of type 1 of the class P over R, and B(u) the logarithm of f(u).
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Then a formal one-parameter group F(u,v) = B~1(B(u)+ B(v)) in class P
is defined over the ring R, and, moreover, the mapping f(u) — F(u,v) =
B7Y(B(u) + B(v)) sets up a one-to-one correspondence between the col-
lection of all formal power systems of type 1 of class P over R and the
collection of all one-parameter formal groups of class P over R.

We shall now show that for a power system over a ring with torsion, as
distinct from the case of formal groups, the theorem that any system can
be lifted to a system over a torsion-free ring is not true. It will follow from
this, in particular, that the formal system {k*U*" (u)} over the ring A(s) is
not universal on the category of all rings.

ExAMPLE. Consider the ring R = Z, = Z/pZ; we shall display a power
system which cannot be lifted to a system over the ring Z, of p-adic integers.

Let f(u) = {fk () =ku+ > ,ul-(k)upi} be a formal power system.
i>1
- k=po (k)
Note that in R we have the identity ¥ = x. Since fi(fi(u)) = fr(u), we
have

pa (kL) = kpa (1) + L (k) pa(RL) = 3 () g (D).
e

Consequently the value of the function pu;(k) for all ¢ > 1 and prime
numbers k can be given arbitrarily. For example, the values of the func-
tion pq(k) for the primes k = 2,3,5, ... are arbitrary. Such functions
11 (k) form a continuum. For formal systems of type s = 1, obtained from
a system over Z, by means of the homomorphism of reduction modulo p,

p—1 _

by Lemma 2.4 the function p; (k) has the form (M) oy = (k),
where v is a p-adic unit. Reduction of p(mod p) gives a monomial over
Z,. From this we have

Theorem 2.11.  There exists a continuum of formal power systems
over the ring R = Z, which are not homomorphic images of any power
system over the p-adic integers (and in general over any torsion-free ring).

§ 2a

We shall indicate another geometrical realization of a universal power
system of type s = 2 which has an interesting topological meaning. In the
universal formal group f(u,v) the operation u — @ = =V ~1(u), f(u,u) =
0, is the lifting of the operation of complex conjugation into the cobordism
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of K-theory. Therefore the combination of the form uii = —u¥~(u) for
geometrical cobordism has the sense of “square of the absolute value” |u|? =
UuG.

Let F'(u,v) be a formal group over the ring R and let @ be the element
inverse to u, i.e. F(u,a) = 0. Consider the element x = ua € RJ[u]],
and let [u]y = F(u,...,u)(k places), where F(u,...,u) = F(u, F(u,...)).
Define ¢y (x) = [u]k - [u]r where the product is the ordinary product in the
ring R[[u]]. We have

Lemma 2.12. For a formal group F = F(u,v) the values of the series
or(x) = [u]g[a]k lie in the ring R[[z]] = R[[ud]] and define a power system
of type s = 2 over the ring R.

PrOOF. Let fiy = f(u,v) be the universal group over the ring R = Qy,
and let f(u,v) = g~ (g(u) + g(v)). Define B~ (~y) = g~ (—y¥)g ' (\/)-
Since [u]r, = g7 ' (kg(u)), we have pi(x) = g~ (kg(u)) x g~ (=kg(u)) =
B (—k?g(u)?). Furthermore = = g~ (g(u))g~"(—g(u) = B~ (—g(u)?).
Therefore B(z) = —g(u)? and ¢x(z) = B~ (—k?g(u)?) = B~ (k*B(x)).
Consequently ¢ (z) is a formal power system of type s = 2 over the ring
Oy, with logarithm B(z). In view of universality of the group fu over Qp
this completes the proof of the lemma in the general case.

We shall give a topological interpretation of Lemma 2.12. Consider
the Thom spectrum MSp = (M Sp(n)) of the symplectic group Sp. In
particular M Sp(1) = K P is infinite dimensional quaternionic projective
space. The canonical embedding S — Sp(1) — SU(2) defines a map-
ping ¢: CP>*® — KP and consequently a mapping ¢*: U*(KP>*) —
U*(CP*>), where U*(K P>*) = Qu[[z]], dimg(x) = 4, U*(CP>) = Qu|[u]],
dimpu = 2 and ¢*(z) = wa. This follows from the fact that the canon-
ical Sp(1)-bundle v over K P restricted to CP> goes to n + 7, and
x = o2(y) — o01(n)o1(7) = wu, where o; is the Chern class in cobordism
theory.

We set

or(z) = (U2 = P2+ pi(k)a™, 2 e UNEP™), (k) € Qp*.

i=1
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From the properties of the operations ¥ (see [12]) we obtain

vr(pi(z)) = k() + Z,U'z )i

+ Z‘u 127,+2\Il ’L+1)

= 12\1/ (B2Uk () = P20 (2) = o ().

Here we used the formula W!(p;(k)) = 12'u;(k). Consequently the set of
functions p(z) = {pr(x)} is a formal power system of type s = 2 over the
ring Q. Since k2W*(x) = k2WU*(un) = [u]x[u]x, by this means we obtain a
topological proof of Lemma 2.12.

REMARK. We note that in § VII of the paper of Novikov [13] in the proof
of Theorem 1b in Example 3 the case of groups of generalized quaternions was
analyzed and the “square modulus” system arose there; the properties of this
system are required for carrying out a rigorous proof for this example, without
which Theorem 1b cannot be proved. Indeed, we used the fact that k¥ (w) is a
series in the variable w with coefficients in Qu, where w = o2(A1). Moreover, for
carrying out the proof of Theorem 1b, in analogy with Theorem 1 we require the
fact that A; are all obtained from A; by means of Adams operations, where the
A; are the 2-dimensional irreducible representations of the group of generalized
quaternions.

Let us consider in more detail the logarithm B(x) = —g(u)? of the for-
mal type s = 2 power system introduced in Lemma 2.12. Let ¢ and z be
the generators of the cohomology groups H?(CP>;Z) and H*(K P>;Z),
respectively.  Since ¢*(ca(y)) = c1(n)ei(), ¢*(2) = —t2.  We have
chy(g(u)) =t, chy(B(x)) = —t? = 2. Consequently,

B~ (z) = chy(2)|.=. € H*(KP®;Qu ® Q) = Qu @ Q[[2]]-
Let ¥° be the multiplicative operation in U* ® @ theory, given by the
series WO(u) = limy_.o (k Ykg(u ))) =g(u) =u—+ Z [C ] u" . Re-

call that in [2], [12] the operation ¥° was denoted by <I>. We have
chy UO(z) = WOchy(z) = z; here we have used the fact that Wo(y) = 0,
where y € Qp*", n > 0. Since the homomorphism chy: U*(KP>)
— J*(KP>*;Qu ® Q) is a monomorphism, it follows from the equation
chy(B(x)) = z = chy (¥0(x)) that B(z) = ¥0(x).

According to Theorem 2.3 of 2], we have the formula

n+1
chy (u —t+ZM2” nt—l—l
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for an element u € U?(CP>), where s,(—7(M?")) = 0, w # (n) and
S(ny(M?") = —(n+1)!. Consequently,

2n t" n+l n+1 n tn+1
chy (u) = (t—i—ZM 1) )( t—i—z (n+1)!

0 21—2 2j—2
:—t2+z Z (—1 )w £2n
n=2

il
i+j=2n
21,521

and we obtain the formula

B Yz)=a+ Z[N4n—4]§v_:', [N4n—4] ¢ it
n=2 '

where [N 1] = 5 (=1)C3, MM 2] and [M2"] € 2" are
i+j=2n
i>1,j>1

bordism classes which are uniquely defined by the conditions
Su(—T(M?™) =0, w## (m) and s(,) (T(M*™)) = —(m+ 1)L

We have

Theorem 2.13. The type s = 2 power system constructed in
Lemma 2.12 for the group f(u,v) of geometrical cobordisms is universal
in the class of torsion-free rings if considered over the minimal ring of its
coefficient A C Q.

The proof follows easily from the fact that all the coefficients of the
series B~1(x) and B(x) are not zero and are algebraically independent in
Qu ® Q.

From the preceding lemma we have

Corollary 2.14. For any complex X the image of the map-
ping [X, KP>®] % U%(X), which associates with the mapping ¢: X —
KP>™ its fundamental class ¢*(o2(7)) in U*-theory, is the domain
of definition of the type 2 power system that looks like B~ (k?B(x)),
where B~1(x) = g~ (\/x)g ' (—/x). The Adams operations on this im-
age are given by k*U*(x) = B~ (k?B(z)), ¥(z) = B(z) € U*(X) ® Q.

Questions. Is a type 2 power system defined directly on quaternionic
Sp-cobordisms [ X, K P>] — Sp*(X)? Is the image Im «v closed with respect
to power operations?
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What are the inter-relations between the ring of coefficients of the power
system B~1(k*B(z)) with the image Qsp — Qu ?
Note that the restriction U*(M Sp(n)) — U*(MU(n)) — U*(CP® x

n

... X CP) consists of all elements of the form F(|ui|?, ..., |ua|?) IT |uil?,
i=1

where F' is any symmetric polynomial (in distinction from classical coho-

mology, where we have symmetric functions of squares of Wu’s generators).

As was pointed out above, for the series B~!(z) we have

B Yz)=x+ Z[N4n—4] (;n)l’ [N4n—4] ¢ Qa4n+47
n=2 ’
where [N1"=1] = S (=1)""C% [M?~2][M?~2]. In particular,
itj=2n

i1,5>1
[N = —8[M*] + 6[M?)* = (2K) € Im(Qs, — Qu),
where K = 8[CP?] — 9[C P12
Theorem 2.15.  For n > 2 the bordism classes [N*"~4] belong to
the image of the homomorphism Q§§"+4 — 954""’4. In addition, for n =
1 mod 2 the elements [N**~4]/2 € Q;*"** already belong to the group
Im(QSP — QU)

PROOF. Let v € Sp*(K P*) be the canonical element. As is well known,
p1(y) = v (see [13]) and w*(p1(7)) = o2(y) € UK P>), where p; is the
first Pontrjagin class in the symplectic cobordism of the canonical Sp(1)-
bundle v over K P> and w : Sp* — U™ is the natural transformation of
cobordism theory. We shall calculate the coefficients of the series

= Cn n 0o (O)* *
ChSP(pl(/Y)) :Z+Z)\_Z i € H4(KP 7QSp®Q) :QSp®Q[[Z]]7
n=1""

where chg, is the Chern-Dold character in Sp-theory (see [2]), C\, €
Qgﬁ" are indivisible elements in the group Qgﬁ", An € Z. Since ch vy =

2n
ch(n+17) = et +e7t = 2+2+.. 4254 andz— —t2t € H?(CP>,7),

(2n)!
we have
> o (2n+2)!
chsp(pi(y)) = —chay + ;(—1) +1%Cn chapg2(7).

By making use of the decomposition principle for quaternion fibrations
and the additivity of the first Pontrjagin class we now find that for
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any Sp(m)-fiber bundle ¢ over any complex X we have

ehsp(pr(Q) = = b Q) + S (1) EERC, e,

By Bott’s theorem we have the isomorphism
B: KSp(s*")= KO (S*™), Q) =1 —m)@u(

where v, is the Sp(1)-Hopf fiber bundle over S*.

We shall next identify the elements ¢ € K Sp(S*") with their images in
the group K (S5%"). The formula ch(¢B(¢)) = ch(() is easily verified, where
c: KO* — K* is the complexification homomorphism.

Let &, and z, denote the generators of the groups f(Sp(S‘l") =7
and H*"(S%"; Z) = Z, respectively. From Bott’s results concerning the
homomorphism of complexification it follows that ch§,, = a,z,, where

1, ifn=1 mod 2,
ap =
2, ifn=0 mod 2.

Thus

2n)! 2n)!
ChSp(pl(gn)) = (_1)11 2(/\7131 Cn—l Ch2n gn = (_1)112(/\—”210/71071—1 * Zn-

Since chgy(p1(&n)) € (S5 Q%) C (S 5, ®Q), we find that the
(2n)!
221
It follows from [7] under the composition of homomorphisms

number a, is an integer for any n.

K Sp(X) 2508, (X) 54 (X) B E(X)

the element ¢ € KSp(X) goes into the element —¢ € K(X), where y is the
“Riemann-Roch” homomorphism. We have

— ApZpn = Ch(_gn) = Ch(ﬂwpl (gn)) = MWChSp(pl (gn))

- o ((—1)”ﬂancn_lzn> = (1) o Td((Co 1))

where Td(w(Cy—_1)) is the Todd genus of the quasicomplex manifold
w(Cp—1). Since the Todd genus of any (8m + 4)-dimensional SU-manifold
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is even, we find that T'd(w(C) 1)) = a0, for any n, where §,, is an integer.
We have
(2n)!

man&n =1.

(1!

Thus the number (22)\’;71 is an integer. On the other hand, it was shown
n)lan,

(2n)lan
2An71

. . 2An—
is also an integer. Consequently L=

earlier that the number
(2n)!lan

2)\n71
(2n)!an

=1, and we find

+1. Without loss of generality, we may assume that = 1. Since

an—1 * )\nfl

(2n)!

Gp—1 -+ ap = 2 for any n > 0, it follows that

Cn1 = (=1)"p1(&n) € Qg = Sp*(5*™),
Td(w(Ch_1)) = (=1)" a,.
We have therefore proved the following lemma.

Lemma 2.16. For the canonical element v = p1(y) € Sp*(KP>) and
the Chern—Dold character in symmetric cobordism we have the formula

Zn

(2n)!

chsp(pr(7) =2+ Y an-1Cn s

n=2
From the formula wchgpp1(y) = chy o2(y) we obtain

B! (z) =chyoz(y) =z + Z[Nm%](;—?:)!

n=2

n

= WChSppl (7) =z+ Z anflw(cnfl)ﬁ-

n=2

4n+4

Consequently in the group €2, we have the identity

an—1-w(Cpr) = [N 7]
for any n. This theorem is proved.

Corollary 2.17. The rational envelope of the ring of coefficients
of the power system B~1(k2B(z)) of type s = 2 coincides with the group
Hom’yv (U* (M Sp), Qur), which is the rational envelope of the image Qg —
Qu, where AY is the ring of operations of the U*-cobordism theory.
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We note that the element (u + @) = o1(¢ + &) € U?(CP™) can

be expressed in terms of & = ut = 02(§ + §). We have (u+ @) =
97 gw) + g7 (—g(u)) = Flgw)?) = F(—li(f)z) = G(z), where
F(@®) =g '(a) + g (~a) = =[CP"a? + 3] 2%&"”.

Lemma 2.18. For any k the series Gi(z) = F(—k?B(x)) lie

1

in Qul[z]] and determine over the ring Qu G|

a formal type s = 2
power system by means of the formula

pr(w) = F(K*F~ (w)),
where w = u+u = G(x).

The first assertion of the lemma follows from the fact that Gy(z) =
[u]i + [a]k = o1 (€ + &) . The second assertion follows from the invertibil-

e
[CP']
which —B(z) = F7Y(G(z)) and Gi(x) = F(K*F~1(G(x))).

Corollary 2.19. Let F(u,v) = u+v+ayuv+... be a formal group
over the ring R. If the element «q,1 is invertible in R, then the formal
power system of type s = 2, defined by the series pr(w) = [u]k + [u]x €
R[[w]],w = u + @, is defined over the ring R.

ity of the series F'(a?) in the ring Qp , as a consequence of

Let p(z) = {pr(z)} be a type s = 2 power system over a torsion-free
ring A. It is natural to state the following problem

(*) Describe all rings R such that 1) A C R; 2) there exists over the ring
R a one-dimensional formal group F(u,v) from which the original formal
power system {pg(2)} is obtained as a system of the form {[u]g[a]x},z =
ud.

We note that the set of all such pairs (R, F(u,v)) forms a category in
which the morphisms (R, F1) — (Ra, F») are the ring homomorphisms
Ry; — Ry, which preserve the ring A and take the group F} into the group
F5. Next we shall present a universal formal group in this category, and
by this means we shall obtain a complete solution to the problem stated
above.

We consider first the case where A = Qp and ¢(z) = {pr(z) =
[u]glii] = B~Y(k?B(2))}, v = ui.

Lemma 2.20.  The power system o(x) = {B~1(k?B(x))} together
with the series G(x) = F(—B(x)) = u+u completely determines the original

formal group f(u,v) = g~ (g(u) + g(v)).
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PROOF. By knowing the series G(z) we can calculate the series @ = 0(u)
from the equation u + 6(u) = G(u - 8(u)). Then, knowing the series B(z),
we can calculate the series g(u) from the equation B(u - 0(u)) = —g(u)?.

REMARK. The proof of Lemma 2.20 actually uses the fact that the elements
u and u are the roots of the equation

v’ —(u+a)y+ui =y’ —Gx)y+z=0
over Qu[[z]].

From the formula introduced above it follows that the coefficients of the
series F'(x) and B(x) are algebraically independent and generate the entire
ring Qu ® Q. We have

F(r) = Zyiwi“, ¥ € Q2 ®Q; Bx) = Zzixwrl,zi et eQ

i>0 i>0

and
Qu Q= Qly] ®Qlz].

Now let p(z) = {@k(x)} be an arbitrary type s = 2 formal power system
over a torsion-free ring A and let B(x) = Y B;z**! be its logarithm. Con-
sider the ring homomorphism y : Quy ® @ — A ® Qly;], defined by the
equation x(z;) = Bi, x(vi) = yi, and let R denote the subring of A ® Q[y;]
which is generated by the ring A and the image of the ring Qy C Qp ® Q
under the homomorphism y. The one-dimensional formal group F(u,v),
which is the image of the group f(u,v) over Q, is defined over R. From
the universality of the group f(u,v) and from Lemma 2.20 it follows easily
that the group F'(u,v) over R is a universal solution of problem (*) for the
system {p(z)} over A C R.

We note that from the proof of Lemma 2.20 there follows a di-
rect construction for the formal group F(u,v) over R from the system
{pr(z)} = {B7Y(k*B(z))} over A. Indeed, it is necessary to carry out
the following procedure. Consider the ring A ® Q[y;] and over it the series
F(z) = Y gz and the corresponding series G(z) = F(—B(z)); then, as
in Lemma 2.20, with respect to the series B(z) and G(x), find the series
gr(u) € A ® Q[[u,y;]]. The ring R is then the minimal extension of the
ring A in A ® Q[y;], which contains the ring of coefficients of the group

F(u,v) = g5 (97 (u) + gr(v)).

§ 2b

We next turn our attention to the case where the power sys-
tem B~1(k?B(z)) = k*>V(uti) is related to a distinctive “two-valued formal
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group”
FE(x,y) ((v/B(z) /B

in which the operation of raising to a power is s1ngle Valued, and indeed

“k?B(z)) = F*(x,...,z). If © = wui, y = v0, then F¥(z,y) =

———
k times

{1f(u,v)|*;|f(u,9)|?}, and for the U(1)-bundles & 7 over CP> x CP*>,
where u = 01(€),0 = 01(n), we have F=(z,y) = {02(&n + €n); 02(€77 +
En)}x = 02(§ +6),y = oa(n +7).

Lemma 2.21. The sum F*(z,y)+F~(x,y) and the product F'* (x,y)-
F~(x,y) of values for the two-valued group do not contain roots and lie in
the ring Qu|[z, y]].

ProOOF. Counsider the mapping CP>* x CP*® — KP>x K P>, whose
image U*(K P> x KP>) — U*(CP> x CP*) is precisely Qu|[z,y]] C
Qullu,v]],x = utl,y = vo. Since x = 02(¢ + €),y = o2(n + 1), we have
that oo((€ 4+ €)(n + 7)) = a lies in Qu[[x,y]]; moreover a = o9(&n + €n) +
o2 (&7 +En) + o1(En+En)or (§i+En) = FH(x,y) + F~ (2,y) + 010”1 Next,

o1(&n+&n) = g~ (g(u)+9(v))+9~ (—g(u)—g(v)), o1 (&7+En) = g~ (g(u)—
g(v)) +9 1 (g(v) — g(u)). Let g(u) =, g(v) = 0. Therefore

o1 - 01 = o1(En+ Mo (€7 +&n)
=g+ +g (= =Nlg T (y =)+ g (6 — ),

ie. 01 - 0] is a function of v and §%. Also, since 7> = g(u)* = —B(z)
and 6° = g(v)> = —B(y), the product o1 (§n4£7)01(£77+£n) is a function of
zandy. Since F¥ (2, y)+F " (z,y) = 02(§+&) (n+0) —o1(En+En)or (§n+En),
it follows that F*(z,y) € Qu|[z, y]].
~ We conclude the proof by noting that F'*(z,y) - F~(z,y) = 02({n +
EMoa(&n -+ En) = o4((€ +E)n + 1) € Qwlla, 4]

Let us set I (z,y)+F~ (z,y) = O1(z,y), F (2, y)-F~ (z,y) = O2(z,y).
It now follows from Lemma 2.21 that the law of multlphcation in the two-

valued formal group F*(z,y) ((/B(z)++/B ) is given by solv-
ing the quadratic equation

Z2 - 61($,y)Z + @2($,y) =0

over the ring Qul[z,y]]. Let A C Qy denote the minimal subring in Qg
generated by the coefficients of the series ©1(z,y) and Oz(x,y). We have

A= Z A4n,A4n C Qa4n
n=0
Our next problem is to describe the ring A, which is natural to look

upon as the ring of coefficients of the two-valued formal group F*(x,7). In
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the ring A it is useful to distinguish the two subrings A’ and A” which are
generated by the coefficients of the series ©1(xz,y) and O3 (z, y) respectively.
As will be shown next, neither of the rings A’ and A” coincides with A.
It is interesting to note that the ring of coefficients of the formal power
system p(z) = {pr(z)} = {B71(k?*B(z))} lies in, but does not coincide
with, the ring A’. This follows from the facts that ¢1(z) = 2, @a(x) =
O1(x,x) and for any k > 3 the formula

() = O1(pr-1(2), 2) — pr-2(2)

is valid.

The canonical mapping of the spectra MSp — MU, which cor-
responds to the inclusion mapping Sp(n) C U(2n), defines an epi-
morphism AY — U*(MSp), and consequently the inclusion of the
ring Hom v (U*(MSp),Qu) in Qu. We shall next identify the ring
Hom 4u (U*(M Sp), Qu) with its image in Q.

Theorem 2.22. The quadratic equation
7% — ©1(x,y)Z + O2(z,y) =0,

which determines the law of multiplication in the two-valued formal group
F*(z,y), is defined over the ring Hom 4u (U*(MSp), Qu), and, moreover,
1 1

Hom v (U* (M Sp), Q) ® Z H ~A®Z M ,

where A is the ring of coefficients of the group F*(x,y).

REMARK 2.23.  Apparently the rings Hom v (U*(MSp),Qu) and A are
isomorphic, but at the present time the authors do not have a rigorous proof of
this fact®.

Let Qu(Z) be the subring of Qy ® @ which is generated by the ele-
ments all of whose Chern numbers are integers. As was shown in [2], the
ring Qp(Z) is isomorphic to the ring of coefficients of the logarithm of the
[cP') [cP"]

T
The Chern—Dold characteristic chy for any complex X defines a natural
transformation

universal formal group f(u,v), ie. Qu(Z) =2

chy + Hy(X) — Homu (U*(X), Qu(Z))

1These rings are not isomorphic. The manifold M?*", whose complex cobordism
class belongs to Hom 4 (U*(MSp),Qrr), but not to A, appears starting from n > 3.
For details see [B. M. Byxmrabep, Tononornueckne NpHUIOKEHHsI TEOPUHU JIBY3HATHBIX
rpynm, Uss. AH CCCP, cep. marem., 1978, T. 42, N. 1, 130-184]. — V. M. Buchstaber’s
remark (2004).
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(see [2], Theorem 1.9), which, as is easily shown, is an isomorphism for
torsion-free complexes in the homology. We have

chy : H,(MSp) == Hom 4uv (U*(MSp), Qu(2)).

The inclusion mapping Qpy C Qu(Z) and the canonical homomorphism
AY — U*(M Sp) lead to the commutative diagram

Hom v (U*(MSp),Qu) —— Qo

l l

H.(MSp) — . u(2),

in which all the homomorphisms are monomorphisms.

Since A(h) = (chy v, h) and chy x = B~Y(x), where h € H,(MSp), v is
the generator of the AY-module U*(M Sp), and = is the generator of the
group U*(K P*°), it follows that the ring Im A C €(Z) coincided with the
ring of coefficients of the logarithm of the power system {B~!(k?B(z))}.
Thus it follows from the diagram that the ring Hom qv (U*(M Sp), Q) co-
incides with the subring of 2y whose elements are polynomials in the ele-
ments y; € Qu(Z) with integral coefficients, where B(z) = z + > y;a 1.

As an immediate check it is easy to see that the coefﬁcients of the
series O1(z,y) = F(z,y) + F~ (z,y) and Os(z,y) = F*(z,y)

where F*(z,y)=B~((v/B(z)+/B(y))?>)=B"! < \/7 \/7>

are polynomials with integral coefficients from among the coefficients of the
series B(x). The proof of the first part of the theorem is therefore complete.

For the proof of the second part of the theorem we require a lemma,
which is itself of some interest.

Lemma 2.24. Let A = > Ay, be the ring of coefficients of a two-
valued formal group. The minimum positive value of the t-characteristic on
the group Aup is equal to 25p if 2n = p' — 1, where p is prime, and is
equal to 250 if 2n % p' — 1 for all p, where

o [B An=2-1,
TN, ifn£2 1.

Now, since Hom 4v (U*(M Sp),Qu) @ Z [%} C Qu [%} is a polynomial
ring, the proof of the second part of the theorem is easily obtained, via a

standard argument concerning the t-characteristic, from the results of [11]
and Lemma 2.24.
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Proor OrF LEMMA 2.24. Let x and y be the generators of the
group U(K P> x KP>). We have

O1(z,y) =2z + 2y + Zﬁi,jxiij Bij = Bri € Qg Y,

Os(z,y) = 2 — 2y +y* + Yo aly’,  aiy=az, € QT

Let 21 and 2z be the generators of the group H*(K P> x K P*). By using
Corollary 2.4 of [2] we obtain immediately from the definitions of the series
O1(x,y) and Oz (x,y) that

[MAm]

chy O1(x,y) =221 + 220+ 4 Z (- — Z O3l o2tz

m>=1 2m + 1 '
chy Oz (x,y) = 27 — 22120 + 23
M4m m+1
+4) (- " am T Z (Cah, — 20502 + Gty - 2f 25172,

m>=1

where s9,,[M*™] = —(2m + 1)!. On the other hand,

m—+1

z
chyz=B"! —z1+ZN4m St S
= 2m+2)

where so,, ([N™]) = (=1)"™"1-2(2m+2)!. By combining these formulas we
find

a) S2m(Bm+1,0) = 0, S2m (Brm—141) = (—1)™T14C3, ., 0 <l <m+1,

b) s2m(am+2,0) = 0, s2m(am+1,1) = (=1)"H14(C3,, — C3,,),

Som (U m_142) = (=1)"H14(C3L, —2C2 -2 L O3 M) 1 <l <m+ 1.

We set ¢, ; = C3. — C5~2. From equations a) and b) we obtain that
the smallest value of the ¢-characteristic on the group Ay, is equal to the
greatest common divisor of the numbers {4C§fl+2, 4pn1}i=1,..n- Since the
greatest common divisor of the numbers {C3! | 5 }120,n+1 is even for n4+1 =
27, and odd for the remaining n, by using the formula ¢, + C3,_ , =
2C3 |, we complete the proof of the lemma.

REMARK. It follows from a) that the coefficients of the series ©1(z,y) =
F*(x,4)4+F~ (z,y) do not generate the entire ring of coefficients of the two-valued
formal group. From b) there follows a similar assertion for the series O2(z,y) =
F+(:E,y) ! Fﬁ(xvy)'

Let F(u,v) be a formal group over the ring R, and let gp(u) be its
logarithm. Consider the complete set (o = 1,&1,...,&mn—1) of m-th roots
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of wnity. Let B.'(—y) = [[}% 05" (& v/0).# = I/ 95" (€9r(u)) €
R ® Q[[u]]. Then By, (z) = gr(u)™ and we obtain the formal power system
F]gm) (r) = B,,} (k™ B, (x ) Hj:_ol 97" (k&;gr(u)) of type m. The coeffi-

(m)( ) = B} (k™ By, (z)) automatically lie in the ring

R for a formal group F'(u,v) with complex multiplication by {; (raising to
the power ¢;). The particular case m = 2 of this construction was examined
in detail in Lemma 2.121.

Example. Consider the formal group f® (u,v) = 7o (f (u,v)),
where 7 is Quillens’ p-adic geometric cobordism projector and f (u,v) is
the universal formal group over y. As we have already noted,
the logarithm ¢ (u) of the group f® (u,v) has the form ¢® (u) =

h1
mpg(u) = > [C’Lh]uph. Let m = (p — 1), then {fhy = ¢
h=0 D
and 9 (ég u) = &9 (u), (9P) 1 (&9P) (u) = §u. We have & = —uP~! =
120 (9®) (&9 (w)), Bp-1(2)==(9') (u))?"' =B, 1 (—uP~*). Thus for-
mal raising to a power F,ipil)(x) = B (k""'B,_1(x)) for the group
f®)(u,v) is “integer valued”, and F,Ep_l)(x) = kP~1UF(—yP~1). Conse-
quently in Uj-theory the (p — 1)-th powers of geometrical cobordisms are
the range of definition of a power system of type s =p — 1.

We now note that the roots of unity of degree p — 1 lie in the ring p-adic
integers Z,. Therefore g=*(¢;9(u)) € Qu|[u]] ® Z, and ]_[Z 0 9 H&g(u) =
z € Qul[u]] ® Zy, [T} gg_l(kﬁjg(u)) € Qulu]] ® Z,, and the series B, (x)
defines a power system of type m = p— 1, whose p-adic projector was given
in the above example.

The Adams operators are evaluated for an element = by the formula
kP10 (2)= Bpill(kplep,l(x)) in U* ® Zp-theory.

In analogy with Theorem 2.13 we have

Theorem 2.25. The power system B, L (kP By () of type

s =p—1, considered over the minimal ring of zts coefficients, is universal
in the class of all power systems of type (p — 1) over torsion-free Z,-rings.

cients of the series F,

The proof, as did for Theorem 2.13, follows from the fact that the coef-
ficients of the series By,_1(z) are all non-zero and algebraically independent
in Qu ® Qp, where @, is the field of p-adic numbers.

Here it is also appropriate to speak of the “multi-valued formal group” (F(z,y) =
{Bo (/B (@) + €, %/ Bm(y))™],k =0, ...,m—1}. It would be interesting to know
the nature of the ring of coefficients in this case.
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§ 3. Fixed points of transformations of order p

We turn now to a different question which is also connected with the
formal group of geometrical cobordisms and a type s = 1 system associated
with it; namely, to the theory of fixed points of transformations T(T° = 1)
of quasicomplex manifolds (see [5], [9], [13]), which act so that the manifolds
of fixed points have trivial normal bundle (or, for example, only isolated
fixed points 2y, --- , 2, € M",T(Z;) = Z;. If the transformation dT'| »,

. 2 @)
has eigenvalues )\,(j) = exp{ m; Jk=1,...,n,7 =1,...,q, then the
“Conner-Floyd invariants” «g,_ 1(x§j), e ,:cslj)) € Uyp-1(BZp), and it is

known that

U*(BZp) = Qulul]/(p¥”(u)) (see [12]),

a2n—1($1;---7xn):H 1 ﬂOQn 1 1)
j= 19 xjg

where wFNazn—1(1,...,1) = aom_k)—1(1,...,1) (see [5], [9], [13])
and g~ !(xg(u)) = zU¥(u). Here it is already clear that only the coef-
ficients of the power system enter into the expression for U*(BZ,) and
aon—1(21,...,2y,). There is still one further question: on which classes
of Qu can the group Z, = Z/pZ act? As is shown in [5],[9], the basis

relations 0 = agp—1 (21, ..., %) — H? 1 \I/’“J ﬂagm( ...,1)and 0 =
.T

VP ()

M"™(p), and determine the elements [H;L1 W} € Q¥ (mod pQy)
¥ n

Naz2n-1(1,...,1), are realized on the manifolds M"(x1,...,z,) and

ya
and [p\l!u(u)} € Q¥(mod pQy), whence it follows that the cobordism

class of the manifold with Zy-action of this sort coincides (mod pQy) with
the Qu-module A(1) = Qp - AT(1), where AT(1) is the positive part of
the ring A(1) of coefficients of the power system g~!(kg(u)). On the other
hand, from Atiyah and Bott’s results [15] for the complex d” on forms of
type (0, ¢) and holomorphic transformations 7' : M™ — M™ we may intro-
duce the following formula for the Todd genus T'(M™) mod p, for example.

214 x(])

Lemma 3.1. Let )\,(j) = exp( ) be the eigenvalues of the
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transformation dI' on the fized points Z;,5=1,...,q,k =1,...,n. Then

q p—l

—T(M™) S -
il | KR

X Z (—p)l ﬁ — :v,(.cj)z - mod J.
l:{i] k=11 —exp {_l«g) (z + %)} S

p—1

This formula and its proof were communicated by D. K. Faddeev.

PRrROOF. For the Euler characteristic x(7") of the indicated elliptic com-
plex we have the Atiyah-Bott formula:

q n

J J j=1k=1 2mix
p

_ 1 T 1

Since 1—1) > x(T') = ¢ is the alternating sum of the dimensions of the
1€Z,

invariant spaces of the action T' on the homology of the complex x(1) =
T(M™), we have

Dl
p

x(1) =T = =337 ]] {12 }+p<p.

If Tr : Q(¥1) — Q is the number-theoretic trace, then by definition we
have

q n

-T(M") = Z Tr H 1 . mod p.

- (3)
= = 2mix
j=1 k=1 1— exp{ pk }

The field Q(¥/1) and the field @ are embedded in the p-adic completions of
k= Qp(e),e = ¥/1, and Q,. There exists in the field k an element A such
that AW~! = —pand k = Q,(\). Next, Tr(A*) =0 for s 0 mod (p — 1)
and Tr(\*®P=1D) = (=1)kpF(p — 1). Since £ = exp (z + %p)} , we have

zZ=A

o 2}
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(in k). Therefore

k=1 Tk s=1
Thus
T p—1
Tr =
<Y | e -
n k:ll—exp{—xk (z—l—%)}
l=*{ﬁ} n+l(p—1)

The proof of the lemma is concluded by summing over the fixed points.
For p > n + 1 this gives the formula

(49)

4 —x; 2
; (J) ..xj H :

1- exp{—:ck z}

proved in [13] as a consequence of Tamura’s results.

We see that by Atiyah and Bott’s procedure each fixed point is assigned
a rational invariant. How does the analogous procedure look in bordism
theory?

Let us define the functions v, (z1,...,2,) € Qu [%} such that under the
action of T"on M"™,T? = 1, with isolated fixed points ,..., ¥, having

weights xl(cj),j =1,...,q9,k=1,...,n, the relation

a - .
va(:vgj), 20y = [M"] mod pQy
j=1
is valid. Consider the Qyy ® Z,-free resolvent of the module U, (BZ,, point):

0 — F -5 Fy — (BZ,, point) — 0,
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where for the generators of U.(BZ,,point) we take the elements

a2p—1(x1,...,2y) € € Uszp_1(BZ,,*) and the minimal module of re-
lations is spanned by the relations a(xy,...,2,)=qon_1(x1,...,2Tn)—
n wr
(Hl - \I/“"” @ )ﬂagn 1(1,...,1)and a,, = pagp-1(1,..., 1)+(p u(u))ﬂ
azn-1(1,...,1). Let ® : Fy — Qu ® Z, denote the Qy ® Z,-module
such that ®(a(zq,..., z,)) = |:Hi_1 m} € Qu ® Z, and ®(a,) =
LA} BN inted out above, f £ weigh
— o . As we pointed out above, for any set of weights (z1,...,z,)
we have thencongruence D(a(xy,...,2,)) = [M™](mod p), where M™ is a
quasi-complex manifold on which the relation a(x, ..., x,) is realized. Rel-

ative to the multiplication operation, out of the relations in U,(BZ,) the
group Fi is a ring, and, as is clear, the homomorphism ® mod p: F} — Qp
(mod pQyy) coincides with the well-known ring homomorphism which asso-
ciates with each relation in I} the bordism class mod p of the manifold on
which this relation is realized. The homomorphism ® can be extended to
a homomorphism

Yo i Fo = QuRQp, p(dFy) = @.

Lemma 3.2. For any set of weights (x1,...,x,) we have the formula

n

_ 1 U u
Vp(xl"'xn) T lx...xpy H \IJEJ(’U,) \I]p(u)
J=1

In particular,
u
VP (u)

Yp(l,. .., 1) =

n

Proor. In the free Qy ® Zy-module Fy we have the identity

agn—1(z1, ..., xn) = alz1,..., 25 +Z H \IIIJ @ 02n—2k—1,
k
[@%ﬁ(u)]k € Q¥ ®Z,, a0n—2k-1 = a2p—2k-1(1,...,1). Also, since 7, :
Fo — Qu®Q,p is an Quy ® Z,-module homomorphism and ~,(a(z1, ...,
Tp)) = {H? 17 \I'”” } , it is sufficient to prove the lemma for the set of
weights (1,...,1). We "have

-
e+ Y
k=0

pUP(u
u( ) Qop—2p-1 =0, n=1,

k
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— | pYP(u)
Yplan) + Z m Yp(a2n—2k-1) = 0,
k=0 k
] e
U m Yp(@2n—2t-1) = 0,
n k=0 k
PP (u) -
< m 1+va(agj_1)u3 =D,
j=1

and the lemma is proved.

It follows immediately from the definition of the homomorphism & :
Fi — Qu ® Z, that Im®(Fy) = A1) ® Z, C Qu ® Z,, where A(1) =
AT(1) - Qu and A(1) is the ring of coefficients of the power system
{kU*(u) et 2o, -

Lemma 3.3.  The group Im~,(Fy) C Qu @ Q, coincides with the
Qu ® Zp-module spanned by the system of polynomial generators oy, of
the ring Qu(Z) ® Z,, of coefficients of the logarithm for the formal group

flu,v) ® Z,,, where 1+ 3~ 6, pt™ L

A O
The proof of the lemma follows easily by evaluating the ¢-characteristic
—1
of the coefficients of the series WP (u) = %, by means of the fact that

all the Chern numbers of the coefficients of the series p¥?(u) are divisible
by p, and from the form of the functions v,(x1,...,2,), given in Lemma
3.2.
From the exactness of the sequence
0— Fy — Fy — U.(BZ,p,point) — 0
we now find that a Qy ® Z,-module homomorphism
Yp : Us(BZp, point) — (Fo)/@(F1),

is defined, where ®(F}) = A(1)®Z, and 7(Fp)/®(F1) € Qu(Z)/A(1) @ Zp,
which is clearly an epimorphism. By collecting these results together, we
arrive at the following Theorem.

Theorem 3.4.  Functions vp(x1, ..., ©,), of the fized points are de-
fined which take on values in the ring Qu(Z) @ Zp of coefficients of the

logarithm g(u) =Y @u’“rl

I of the formal group f(u,v)® Zy, for which
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a) for the action of T on the quasicomplex manifold M™, TP = 1, with
the fized manifold of classes \; € Qu, having weights (xgcj)) € Z, 1in the
(trivial) normal bundles, we have the relations

[M"] = Zx\j’yp(xgj), e ,x%i) modp Qu, [M"] € A(1), m;+dim\; = n,
J

and

_ U U .
o) = [ T gt
b) the quotient module over Qu®Z,, equal to Qu(Z)/A(1)®Zy, contains
the non-trivial image of the module U*(BZ,, point) under yp, coinciding
with the quotient module A(1) if the submodule in Qu(Z) ® Zp, which is
spanned by the system of polynomial generators oy, .

Here A(1) is the Qp-module which is generated by the ring At (1)
of coefficients of the power system {g~'(kg(u))} of type s = 1, and
14+ 3 Gt = —L—.

ngl P \ij(t)

REMARK 1. If one deals with the action of a transformation T, 7% = 1, having
isolated fixed points, then we have the group Uiso1(Zp) C U.(BZp), spanned by
all the elements aon—1(21,...,zs) (Without the structure of an Qy-module), with
the resolvent Z,:

0— Gi i> Go — Uisol(Zp) g 07
where Go,G1 are free and the generator (G1 is a formal relation. As above,
homomorphisms

O:G1— QW®Z, and & :Go— Q@ Qyp,

are defined, where ®'d = ®. The quotient group ®'(Go)/®(G1) is a p-group and
there exists a homomorphism

v UiSOl(Zp) i q’l(GO)/(I’(Gl)

We now consider the mappings U, — K, and U* — K* generated by
the Todd genus. For the T-genus we have

pu - u
T seeendin)) = c .
(’717(5[;1 T )) 1— (1 _ ’Lb)p kl;[l 1— (1 _ u)zk Qp
For example, T'(y2(1,...,1)) = QLn

Under the action of the group Z, on the manifold M"™ with isolated
fixed points #,..., #, having weights a:,(j), k=1,....,n,j7=1,...,q, we
have the formula
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q

T(M") = ZT(Wp(xgj), ~,29)) mod pZy,

Jj=1

where pZ, C Q,. At first sight this formula differs from the Atiyah-Bott
formula given in Lemma 3.1. The question arises of how to reconcile these
two formulas'? Another question, similar to the subject of the Stong-—
Hattori theorem [7], is: does the set of relations given by Atiyah—Bott—
Singer for the action of Z,, on all possible elliptic complexes define an ex-
tension Q,(Z) ® Z,, of the cobordism ring (more precisely, the module A(1)
and the ring A(1) in Qy)?

We now show that the results of [17] permit us to generalize our con-
struction to the case of the action of a transformation 7', TP = 1, for which
the manifolds of fixed points have arbitrary normal bundle.

Let T be a transformation of order p on the manifold M"™. As was
shown in [16], the normal bundle v; at any pointwise-fixed manifold
N; C M"™ can be represented in the form v; = @Z: Vi, where the ac-
tion of the group Z, on the fiber vj; given by multiplication by the num-

2mi
ber e P . Thus the set of all fixed point submanifolds of the transforma-
tion T" together with their normal bundles defines an element of the group
A=, (HZ;; BU(lk)) , where the sum extends l1,...,l,—1,1 > 0. By
using the mapping BU(n) x BU(m) — BU(n+m) (Whitney sum), a mul-
tiplication can be introduced into A. It is not difficult to show that A
becomes a polynomial ring Qi [a; k], j € Z;,k > 0, where a; is the bor-
dism class of the embedding CP* C CP*> = BU(1), considered together
27 .
with the action of the transformation 7 = ¢ P ’ on the Hopf fiber bundle
over CP*. We introduce a grading into A by setting dima; = 2(k + 1).
We next describe the fixed point submanifolds NV, in terms of the gen-
erators a; . For example, a fixed point with weights (x1,...,2,) is de-
scribed by the monomial ag s, ...,00,4,. Consider the canonical homo-
morphism « : A — U,(BZ,,point), corresponding to the free action of the
group Z, on the sphere bundle associated with the normal fiber at a fixed
point manifold. Denote by a((x1,k1), ..., (z1, ki) the image under « of the
monomial Gz, g, ..., Az b, (X1, k1), ..., (21, k1)) € Usp—1(BZ,, point),

1
where n = Y (ks +1). From [17] we take the following description of

m=1
the elements a((x1,k1),. .., (x1, k).

LAn answer to this question is given in the Appendix.
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g(ut)
ot
G(u,t 1+ Ga
(w L )= I (u, ut) Z
where g(ut) = 3 [ff 1] (ut)™*1is the 1ogar1thm of the formal group f(u,v)

n=

0
and uf = g~ (—g(ut))*. Clearly G, (0) =1 for any n > 1. We set

U (u)
Prn =\
" G )
We have U0(y) = U(u), Wi (y) = & “(u). From [17] we find that for

!
any set ((z1,k1),...,(x, k1)), D, (km + 1) =n, we have

m=1

l

a((l‘l,kl),...,(l‘l,kl)) = H x \Ijzj ] ﬂagn 1 )

Since W10(u) = wu, from [16] we find that the relation a((x1,k1), ...,

(21, kp)) = <Hl ? Naz2n-1(1,...,1) is realized in the man-
ifold M™, determined by the element
l
U 2n
——— | € Q" modpQy.
jgl a; Uk (u)

n

By repeating the proof of Lemma 3.2, we obtain the following theorem.

Theorem 3.5. A homomorphism v, : A® Z, — Qu ® @ is defined
such that for any set ((x1,k1), ..., (x1, k) we have the formula

n

1 U U
r1, k1), .., (T, k) = || ,
(21, K1) (@, k) = | o L ks () | @

?(p)

l
n="> (kn+1),
m=1
and if the element a € A corresponds to the union of all the fixed point
submanifolds of the Z, action on M™, then ~v,(a) = [M"] mod p.

INote that under the substitution ¢ — % (u is a parameter) the differential G(u, t)dt
dg(2)
f(u,2)

with respect to the shift u — f(u,w),z — f(z,w).

goes into the meromorphic differential on the group f(u,v), which is invariant
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Appendix

The Atiyah-Bott formula, the functions v,(z1,...,z,) of fixed
points in bordism and the Conner—Floyd equation

Let £ be a primitive p-th root of unity, and let Tr: Q(e) — @ be the
number-theoretic trace.

Definition 1. The Atiyah—Bott function AB(z1, ..., z,) of fized points
is the function which associates with each set of weights (z1,...,2,),z; €
Z,, the rational number

n

1

AB(21,...,20) = — Tt S —
k=11 —exp{%xk}

As a corollary of the Atiyah—Bott formula for fixed points, we have

Theorem 2. Let f: M™ — M"™ be a holomorphic transverse mapping
of period p of a compact complex manifold M™ and let P1,..., Py be its
fized points. The mapping df | P; in the tangent space at the fized point P,

has the eigenvalue /\g) = exp {%x,(j)} yk=1,...,n, then the number

q
Z AB(xgj), ozl
Jj=1
is an integer and coincides modulo p with the Todd genus T(M™) of the
manifold M™.

PROOF. According to the Atiyah—Bott theorem for an elliptic complex
d", for forms of type (0,1) we have

x(H=>"1] !

j=1k=11—exp {%xéﬁ}

where 00
x(f) = Z(—l)m Tr f*|H0vm(M")-
m=0
As is known, x(1) = T(M™) and % > x(f™) = ¢ is the alternating

meZy
sum of the dimensions of the invariant subspaces under the action of the
transformation f* on the cohomology H%™(M™). Consequently,

q n
ny __ —1 1
T(M )——;Zlﬁzln {@ j)~m} + pe.

k=1 1 — exp D x;
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By now making use of the definition of the number-theoretic trace and the
Atiyah—Bott function, the theorem is proved.

27t

We shall calculate Tr (HZ_l 7 , where ( = e P . Let us set

N

_ C"ck
6 =1 — (. We shall perform all calculations in the field Q,(f). By ~ we
mean equality modulo the group pZ, C Q,(0). The following lemma, like

Lemma 3.1, has been provided at our request by D. K. Faddeev.

Lemma 3. For the Atiyah-Bott function AB(x1,...,x,) we have the
formulas

D < US>y T
AB(xq,. .., 2p) ~ l s, kl_ll <u>xk]
- n

n n
NZ pu U
AB(.Il,...,I’n)_ [<U> <u>xk] )
= m

m=0
where < u >¢=1—(1—u)? is the q-th power of the element u in the formal
group f(u,v) = u-+v —uv and [p(u)]k is the coefficient of u* in the power
series p(u).

PROOF. First of all note that Tr(6%) ~ 0 for all £ > 1. We have

H1—<“_,£[11—(1—9 - 1—9 6”2‘4’“9

k
where Ay, € Z,, and

1 = k) 1 - k) _ - k—n
ﬁ(e—n;Ak9>_ﬁ<9—n;Ake>_kz_0,4k-Tr(9 ).

Let us set Tr6#—° = B, and introduce the two formal series

u) = i Agu®  and B(u Z Bru®.
k=0

Thus we must calculate the coefficient of u* in the series A(u) x B(u). We
have

o= (1 S ) = (i) v (52)
m(iegtg) (i)
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First note that if p,(u) is the minimal polynomial of the element « with
respect to the extension Q,(6)|Q,, then

™ (wte) =~

Since
-1 (1-0P—-1 1-(1-0)P
(-1 -0 o 0 ’
it follows that
1—(1—u)?
po(u) = m
We have
(1 o)  pA—wPt g
0—u wo(u) 1—(1—u)p U
Thus

.3_.

Tr (H 1 —1@’“) ~ [A(u) - B(u)
k=1

and we obtain the first formula

. 1 | p<u>p : U
e

Next

p—(1—ut) (1—w)— (1 —-wp

1—(1—u)P Pa-wa—a—wp)

-_r Pt ~ — pu utu®+ ...
“Tou W) I wp e

and we obtain the second formula

T 1) v pu
_Tr<kl:[11—<zk> =D [1—(1—u)1)

m=0

U
bt 1—(1—u)* .
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The lemma is therefore proved.
In §3 the functions of the fixed points 7, (x1,...,x,) having values in
the ring Qpy ® Q

(@1, an) =

UP(u) kl;ll xp UTk (u)}

were considered. By considering the composition of the function 7, with
the Todd genus T : Quy — Z, we obtain a function (which we continue
to denote by v,(x1,...,2,)), which associates with a set of weights the
rational number modpZ,

n

’Y;D('rlv"'v'rn)
pu = U
1—(1—u)”kl:[11—(1—u)“] B l<u>pH <U>xk]

which is such that under the conditions of Theorem 2 the number

Z’yp argj),...,xnj))
j=1

is a p-adic integer and coincides modulo p with the Todd genus.
We now recall the Conner—Floyd equation introduced in [13]. If the

group Z, acts complexly on a manifold M" with fixed points &,..., 7,

where it has the set of weights (27, ... %)),

Floyd equation
q n

is satisfied, where u is the formal variable which generates the ring Qg [[u]]
under the relations p¥?(u) = 0 and u™ = 0. Consequently there is an
element o € Q[u] such that the equation Qp|[u]] ® @ is valid in the ring

j=1,...,q, then the Conner—

n

Y (It | =

=1 (J)\Ijz ( )

Thus, if (xgj), . ,xg)) are the sets of weights of the action of the group Z,
on the manifold M", then they are related by the Conner—Floyd equation

n

q
Z \IJp H ( " ~0, m=0,...,n—1.

=1 ) i 20w (u)

m
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By considering the Todd genus T : Qy — Z, we obtain the Conner—Floyd
equation

q

Z 1_1_u 1:[ & ~0, m=0,....,n—1,

=1 (1- U)

corresponding to the Todd genus.
Definition 4. The Conner—Floyd functions CF(z1,...,2p)m, m =

0,...,n—1, of fized points are the functions which associate with each set
of weights (x1, ..., x,) the rational numbers
CF(z1,...,Zn)m = <u>pH <U>zk , m=0,...,n—1.

Summing up, we obtain the following theorem.

Theorem 5. The Atiyah—Bott and Conner—Floyd functions of fired

points and the functions vp(z1,...,x,) are related by the equation
n—1
AB(z1,...,xn) — (T, ..., 2n) Z CF(x1, ...y Tn)m-
m=0

We can now answer the question about the relation of the formulas for
fixed points taken from the Atiyah-Bott theory and cobordism theory.

Let f: M™ — M™ be a holomorphic transverse mapping of period p of
the compact complex manifold M™ and let &1, ..., &, be its fixed points.
Let the mapping df|Z’; in the tangent space at the fixed point &?; have
eigenvalues )\,(cj) = exp {%x,(j)} ok =1,...,n. Then the formula which
expresses the Todd genus in terms of the weights (:vgj ), . xsl )) taken from
the Atiyah—Bott theorem, has the form

-2 3 = I

7:1 m=0

u : 1
_ (1 _ u)mg) ( )

m

(see Theorem 2 and Lemma 3). A similar formula, from cobordism theory,
has the form

HUSED (]iu— o1l | ?

n
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and the difference between the first and the second formulae is exactly the
sum in the Conner—Floyd equation, expressed for the Todd genus T : Qy —
Z,

n—1 q n
pu U . ~ 0,
7;:0 j;l 1—(1—u)pkl;[11_(1_u)z§j)

m
(see §IV of [13])1.

In conclusion the authors wish to point out that out of the fundamental
results of this paper the two different proofs of the theorem concerning
the relation of the cohomology operations to the Hirzebruch series were
obtained independently (and in the text of § 1 both proofs are presented).

The basic concepts, the general assertions about formal power systems
and of the principal examples given of them, particularly the “square mod-
ulus” systems of type 2, to a large measure are due to Novikov, while the
investigation of the logarithms of these systems by means of the Chern-Dold
characters, the precise definition and investigation of the ring of coefficients
of the “two-valued formal groups” and their connection with Sp-cobordisms
are for the most part due to Buchstaber.

The remaining results were obtained in collaboration, while the impor-
tant Lemma of §3, and also Lemma 3 of the Appendix, were proved at our
request by D. K. Faddeev, to whom the authors express their deep gratitude.
We also thank Yu.l. Manin and I.R. Shafarevich for discussions and valu-
able advice concerning the theory of formal groups and algebraic number
theory.
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— induced by a presentation, 257

367



368 INDEX

Homomorphism of formal groups, Pontrjagin classes, 147
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