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Preface

Topology, created by H. Poincaré in the late 19th and early 20th century
as a new branch of mathematics under the name “Analysis Situs” differed
in its style and character from other parts of mathematics: it was less
rigorous, more intuitive and visible than the other branches. It was not by
chance that topological ideas attracted physicists and chemists of the 19th
century, for instance, Maxwell, Kelvin and Betti, as well as other scientists
residing at the junction of mathematics and physics, such as Gauss, Euler
and Poincaré. Hilbert thought it necessary to make this beautiful part of
mathematics more rigorous; as it was, it seemed to Hilbert alien.

As a result of the rapid development of 1930s–1960s, it was possible to
make all achievements of previously known topology more rigorous and to
solve many new deep problems, which seemed to be inaccessible before. This
leads to the creation of new branches, which changed not only the face of
topology itself, but also of algebra, analysis, geometry — Riemannian and
algebraic, — dynamical systems, partial differential equations and even
number theory. Later on, topological methods influenced the development
of modern theoretical physics. A number of physicists have taken a great
interest in pure topology, as in 19th century.

How to learn classical topology, created in 1930s–1960s? Unfortunately,
the final transformation of topology into a rigorous and exact section of
pure mathematics had also negative consequences: the language became
more abstract, its formalization — I would say, excessive, took topology
away from classical mathematics. In the 30s and 40s of the 20th century,
some textbooks without artificial formalization were created: “Topology”
by Seifert and Threlfall, “Algebraic Topology” by Lefschetz, “The topology
of fiber bundles” by Steenrod. The monograph “Smooth manifolds and
their applications in homotopy theory” by Pontrjagin written in early 50s
and, “Morse Theory” by Milnor, written later, are also among the best
examples. One should also recommend Atiyah’s “Lectures on K-Theory”
and Hirzebruch’s “New Topological Methods in Algebraic Geometry”, and
also “Modern geometric structures and fields” by Novikov and Taimanov
and Springer Encyclopedia Math Sciences, Vol. 12, Topology-1 (Novikov)

xi
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xii Preface

and Vol. 24, Topology-2 (Viro and Fuchs), and Algebraic Topology by A.
Hatcher (Cambridge Univ. Press).

However, no collection of existing textbooks covers the beautiful
ensemble of methods created in topology starting from approximately 1950,
that is, from Serre’s celebrated “Singular homologies of fiber spaces”. The
description of this and following ideas and results of classical topology (that
finished around 1970) in the textbook literature is reduced to impossible
abstractly and to formally stated slices, and in the rest simply is absent.
Luckily, the best achievements of this period are quite well described
in the original papers — quite clearly and with useful proofs (after the
mentioned period of time even that disappears — a number of fundamental
“Theorems” is not proved in the literature up to now).

We have decided to publish this collection of works of 1950s–1960s,
that allow one to learn the main achievements of the above-mentioned
period. Something similar was done in late 1950s in the USSR, when the
celebrated collection “Fiber spaces” was published, which allowed one to
teach topology to the whole new generation of young mathematicians. The
present collection is its ideological continuation. We should remark that
the English translations of the celebrated papers by Serre, Thom, and
Borel which are well-known for the excellent exposition and which were
included in the book of “Fiber spaces” were never published before as well
as the English translation of my paper “Homotopical properties of Thom
complexes”.

Its partition into three volumes is quite relative: it was impossible to
collect all papers in one volume. The algebraic methods created in papers
published in the third volume are widely used even in many articles of the
first volume, however, we ensured that several of the initial articles of the
first volume employ more elementary methods. We supply this collection
by the graph which demonstrates the interrelation of the papers: if one of
them has to be studied after another this relation is shown by an arrow. We
also present the list of additional references to books which will be helpful
for studying topology and its applications.

We hope that this collection would be useful.

S. P. Novikov
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Preface xiii

The interrelation between articles listed in the Russian edition of the
Topological Library looks as follows:

Milnor’s books “Lectures on the h-cobordism Theorem” and “Lectures
of Characteristic Classes” (Milnor I.6 and Milnor II.2) are not included into
the present edition of the series.1

1Due to the omission of the two articles, the numerical order of the present edition
has been shifted.
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1

On manifolds homeomorphic to the
7-sphere1

J. Milnor

The objective of this note will be to show that the 7-sphere possesses
several distinct differentiable structures.

In § 1 an invariant λ is constructed for oriented, differentiable 7-manifold
M7 satisfying the hypothesis

H3(M7) = H4(M7) = 0, (*)

(integer coefficients are to be understood). In § 2 a general criterion is
given for proving that an n-manifold is homeomorphic to the sphere
Sn. Some examples of 7-manifolds are studied in § 3 (namely, 3-sphere
bundles over the 4-sphere). The results of the preceding two sections
are used to show that some of these manifolds are topological 7-spheres,
but not differentiable 7-spheres. Several related problems are studied
in § 4.

All manifolds considered, with or without boundary, are to be
differentiable, orientable and compact. The word differentiable will mean
differentiable of class C∞. A closed manifoldMn is oriented if one generator
µ ∈ Hn(Mn) is distinguished.

1J. Milnor, On Manifolds Homeomorphic to The 7-Sphere, Annals of Mathematics,
64 (1956), 399–405 (Received June 14, 1956).

1
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2 J. Milnor

§ 1. The invariant λ(M7)

For every closed, oriented 7-manifold satisfying (*), we will define a
residue class λ(M7) modulo 7. According to Thom [5] every closed 7-
manifold M7 is a boundary of an 8-manifold M8. The invariant λ(M7)
will be defined as a function of the index τ and the Pontrjagin class p1

of B8.
An orientation ν ∈ H8(B8,M7) is determined by the relation ∂ν = µ.

Define a quadratic form over the group

H4(B8,M7)/(torsion)

by the formula α → 〈ν, α2〉. Let τ(B8) be the index of this form (the
number of positive terms minus the number of negative terms, when the
form is diagonalized over the real numbers).

Let p1 ∈ H4(B8) be the first Pontrjagin class of the tangent bundle of
B8 (for the definition of Pontrjagin classes see [2] or [6]). The hypothesis
(*) implies that the inclusion homomorphism

i : H4(B8,M7)→ H4(B8)

is an isomorphism. Therefore we can define a “Pontrjagin number”

q(B8) = 〈ν, (i−1p1)2〉.

Theorem 1.1. The residue class of 2q(B8)− τ(B8) modulo 7 does not
depend on the choice of the manifold B8.

Define λ(M7) as this residue class.1 As an immediate consequence we
have:

Corollary 1.2. If λ(M7) �= 0, then M7 is not the boundary of any
8-manifold having fourth Betti number zero.

Proof of Theorem 1.1. Let B8
1 , B

8
2 be two manifolds with boundary

M7. (We may assume they are disjoint: B8
1

⋂
B8

2 = M7.) Then C8 =
B8

1

⋃
B8

2 is a closed 8-manifold which possesses a differentiable structure
compatible with that of B8

1 and B8
2 . Choose that orientation ν for C8

which is consistent with the orientation ν1 of B8
1 (and therefore consistent

1Similarly for n = 4k−1 a residue class λ(Mn)mod skµ(Lk) could be defined (see [2],
p. 14). For k = 1, 2, 3, 4 we have skµ(Lk) = 1, 7, 62, 381 respectively.
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On Manifolds Homeomorphic to the 7-Sphere 3

with −ν2). Let q(C8) denote the Pontrjagin number 〈ν, p2
1(C8)〉. According

to Thom [5] or Hirzebruch [2] we have

τ(C8) =
〈
ν,

1
45

(7p2(C8)− p2
1(C

8))
〉

and therefore

45τ(C8) + q(C8) = 7〈ν, p2(C8)〉 ≡ 0 (mod 7).

This implies

λ = 2q(C8)− τ(C8) ≡ 0 (mod 7). (1)

Lemma 1.3. Under the above conditions we have

τ(C8) = τ(B8
1)− τ(B8

2), (2)

and

q(C8) = q(B8
1)− q(B8

2). (3)

Formulas (1)–(3) clearly imply that

2q(B8
1)− τ(B8

1 ) ≡ 2q(B8
2)− τ(B8

2) (mod 7),

which is just the assertion of Theorem 1.1.

Proof of Lemma 1.3. Consider the diagram

Hn(B8
1 ,M

7)⊕Hn(B8
2 ,M

7)
↓ i1⊕i2

h←≈ Hn(C8,M7)
↓ j

Hn(B8
1)⊕Hn(B8

2) k← Hn(C8).

Note that for n = 4 these homomorphisms are all isomorphisms. If
α = jh−1(α1 ⊕ α2) ∈ H4(C8), then

〈ν, α2〉 = 〈ν, jh−1(α2
1 ⊕ α2

2)〉 = 〈ν1 ⊕ (−ν2), α2
1 ⊕ α2

2〉
= 〈ν1α2

1〉 − 〈ν2α2
2〉. (4)

Thus the quadratic form of C8 is the “direct sum” of the quadratic form
of B8

1 and the negative of the quadratic form of B8
2 . This clearly implies

formula (2).
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4 J. Milnor

Define α1 = i−1
1 p1(B8

1) and α2 = i−1
2 p1(B8

2). Then the relation

k(p1(C8)) = p1(B8
1)⊕ p1(B8

2)

implies that

jh−1(α1 ⊕ α2) = p1(C8).

The computation (4) now shows that

〈ν, p2
1(C

8)〉 = 〈ν1α2
1〉 − 〈ν2α2

2〉,
which is just formula (3). This completes the proof of Theorem 1.1.

The following property of the invariant λ is clear.

Lemma 1.4. If the orientation of M7 is reversed, then λ(M7) is
multiplied by −1.

As a consequence we have

Corollary 1.5. If λ(M7) �= 0, then M7 possesses on orientation
reversing diffeomorphism onto itself.1

§ 2. A partial characterization of the n-sphere

Consider the following hypothesis concerning a closed manifold Mn

(where R denotes real numbers).

Hypothesis (H). There exists a differentiable function f : Mn → R,
having only two critical points x0, x1. Furthermore these critical points are
non-degenerate.

(That is if u1, . . . , un are local coordinates in a neighborhood of x0 (or
x1) then the matrix ‖∂2f/∂ui∂uj‖ is non-singular at x0 (or x1).)

Theorem 2.1. If Mn satisfies the hypothesis (H) then there exists a
homeomorphism of Mn onto Sn which is a diffeomorphism except possibly
at a single point.

Added in proof. This result is essentially due to Reeb [7].

The proof will be based on the orthogonal trajectories of the manifolds
f = const.

1A diffeomorphism f is a homeomorphism onto such that both f and f−1 are
differentiable.
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Normalize the function f so that f(x0) = 0, f(x1) = 1. According
to Morse [3] (Lemma 4) there exists local coordinates v1, . . . , vn in a
neighborhood V of x0 so that f(x) = v2

1+· · ·+v2
n for x ∈ V . (Morse assumes

that f is of class C3, and constructs coordinates of class C1; but the same
proof works in the C∞ case.) The expression ds2 = dv2

1 + · · ·+dv2
n defines a

Riemannian metric for Mn which coincides with this in some neighborhood
V of x0. Choose a differentiable Riemannian metric for Mn which coincides
with this in some neighborhood V ′ of x0.1 Now the gradient of f can be
considered as a contravariant vector field.

Following Morse, we consider the differential equation

dx

dt
=

grad f
‖gradf‖2 .

In the neighborhood V ′ this equation has solutions

(v1(t), . . . , vn(t)) = (a1t
2, . . . , ant

2)

for 0 ≤ t ≤ ε (where a = (a1, . . . , an) is any n-tuple with a2
1 + · · ·+a2

n = 1).
These can be extended uniquely to solutions xa(t) for 0 ≤ t ≤ 1. Note that
these solutions satisfy the identity

f(xa(t)) = t.

Map the interior of the unit sphere of Rn into Mn by the map

(a1t
1
2 , . . . , ant

1
2 )→ xa(t).

It is easily verified that this defines a diffeomorphism of the open n-cell
onto Mn\{x1}. The assertion of Theorem 2.1 now follows.

Given any diffeomorphism g : Sn−1 → Sn−1, an n-manifold can be
obtained as follows.

Construction (C). Let Mn(g) be the manifold obtained from two copies
of Rn by matching the subsets Rn\{0} under the diffeomorphism

u→ v =
1
‖u‖g

(
u

‖u‖
)
.

(Such a manifold Mn is clearly homeomorphic to Sn. If g is the identity
map then Mn(g) is diffeomorphic to Sn.)

Corollary 2.2. A manifold Mn can be obtained by the construction
(C) if and only if it satisfies the hypothesis (H).

1This is possible by [4] (Secs. 6.7 and 12.2).
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If Mn(g) is obtained by using the construction (C) then the function

f(x) =
‖u‖2

1 + ‖u‖2 =
1

1 + ‖v‖2 ,

will satisfy the hypothesis (H). The converse can be established by a slight
modification of the proof of Theorem 2.1.

§ 3. Examples of 7-manifolds

Consider 3-sphere bundles over the 4-sphere with the rotation group
SO(4) as structural group. The equivalence classes of such bundles are in
one-to-one correspondence with elements of the group π3(SO(4)) ≈ Z +Z.
A specific isomorphism between these groups is obtained as follows. For
each (h, j) ∈ Z + Z let fhj : S3 → SO(4) be defined by fhj(u) · v = uhvuj ,
for u ∈ S3, v ∈ R4 quaternion multiplication is understood on the right.

Let ı be the standard generator for H4(S4). Let ξhj denote the sphere
bundle corresponding to (fhj) ∈ π3(SO(4)).

Lemma 3.1. The Pontrjagin class p1(ξhj) equals ±2(h− j)ı.
(The proof will be given later. One can show that the characteristic class

c̄(ξhj) (see [4]) is equal to (h+ j)ı.)
For each odd integer k let M7

k be the total space of the bundle ξhj

where h and j are determined by the equations h+ j = 1, h− j = k. This
manifold M7

k has a natural differentiable structure and orientation, which
will be described later.

Lemma 3.2. The invariant λ(M7
k ) is the residue class modulo 7 of

k2 − 1.

Lemma 3.3. The manifold M7
k satisfies the hypothesis (H).

Combining these, we have:

Theorem 3.4. For k2 ≡ 1 mod 7 the manifold M7
k is homeomorphic

to S7 but not diffeomorphic to S7.1

1From Theorem 2.2 it easily follows that every manifold satisfying the hypothesis (H)
is combinatorially equivalent to the sphere. Thus, Theorem 3.4 can be reformulated as
follows: for k2 ≡ 1 mod 7 the manifold M7

k is combinatorially equivalent to the sphere,
but not diffeomorphic to it. — Editor’s remark.
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(For k = ±1 the manifold M7
k is diffeomorphic to S7; but it is not known

whether this is true for any other k.)
Clearly any differentiable structure on S7 can be extended through

R8\{0}. However:

Corollary 3.5. There exists a differentiable structure S7 which cannot
be extended throughout R8.

This follows immediately from the preceding assertions, together with
Corollary 1.2.

Proof of Lemma 3.1. It is clear that the Pontrjagin class p1(ξhj) is a
linear function of h and j. Furthermore it is known that it is independent
of the orientation of the fiber. But if the orientation of S3 is reversed, then
ξhj is replaced by ξ−j,−h. This shows that p1(ξhj) is given by an expression
of the form c(h− j)ı. Here c is a constant which will be evaluated later.

Proof of Lemma 3.2. Associated with each 3-sphere bundle M7 → S4

there is a 4-cell bundle ρk: B8
k → S4. The total space B8

k of this bundle is a
differentiable manifold with boundary M7

k . The cohomology groupH4(M8
k )

is generated by the element α = ρ∗k(ı). Choose orientations µ and ν for M7
k

and B8
k so that

〈ν, (i−1α)2〉 = +1.

Then the index τ(B8
k) will be +1.

The tangent bundle of B8
k is the “Whitney sum” of (1) the bundle of

vectors tangent to the fiber, and (2) the bundle of vectors normal to the
fiber. The first bundle (1) is induced (under ρk) from the bundle ξhj , and
therefore has Pontrjagin class p1 = ρ∗k(c(h − j)ı) = ckα. The second is
induced from the tangent bundle of S4, and therefore has first Pontrjagin
class zero. Now by the Whitney product theorem ([2] or [6])

p1(B8
k) = ckα+ 0.

For the special case k = 1 it is easily verified that B8
1 is the quaternion

projective plane P2(K) with an 8-cell removed. But the Pontrjagin class
p1(P2(K)) is known to be twice the generator ofH4(P2(K)) (see Hirzebruch
[1]). Therefore the constant c must be ±2, which completes the proof of
Lemma 3.1.

Now q(B8
k) = 〈ν, (i−1(±2kα))2〉 = 4k2 and 2q − τ = 8k2 − 1 ≡ k2 − 1

(mod 7). This completes the proof of Lemma 3.2.

Proof of Lemma 3.3. As coordinate neighborhoods in the base space
S4 take the complement of the north pole, and the complement to the south
pole. These can be identified with Euclidean space R4 under stereographic
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projection. Then a point which corresponds to u ∈ R4 under one projection
will correspond to u′ = u

‖u‖2 under the other.
The total space M7

k can be obtained as follows.1 Take two copies of
R4 × S3 and identify the subsets (R4\{0} × S3) under the diffeomorphism

(u, v)→ (u′, v′) =
(

u

‖u‖2 ,
uhvuj

‖u‖
)

(using quaternion multiplication). This makes the differentiable structure
of M7

k precise.
Replace the coordinates (u′, v′) by (u′′, v′), where u′′ = u′(v′)−1.

Consider the function f : M7
k → R defined by

f(x) =
Re v

(1 + ‖u‖)1/2
=

Reu′′

(1 + ‖u′′‖)1/2
,

where Re v denotes the real part of the quaternion v. It is easily verified
that f has only two critical points (namely, (u, v) = (0,±1)) and that these
are non-degenerate. This completes the proof.

§ 4. Miscellaneous results

Theorem 4.1. Either (a) there exists a closed topological 8-manifold
which does not possess any differentiable structure; or (b) the Pontrjagin
class p1 of an open 8-manifold is not a topological invariant.

(The author has no idea which alternative holds.)

Proof. Let X8
k be the topological 8-manifold obtained from B8

k by
collapsing its boundary (a topological 7-sphere) to a point x0. Let ᾱ ∈
H4(X8

k) correspond to the generator α ∈ H4(B8
k). Suppose that X8

k ,
possesses a differentiable structure, and that p1(X8

k\{x0}) is a topological
invariant. Then p1(X8

k) must equal ±2kᾱ, hence

2q(X8
k)− τ(X8

k) = 8k2 − 1 ≡ k2 − 1 (mod 7).

But for k2 ≡ 1(mod 7) this is impossible.2

1See [4], § 18.
2The manifold X8

k admits a natural triangulation. One can show that a combinatorial
manifold X8

k is not combinatorially equivalent to a C1-triangulation of a smooth manifold
(see V.A. Rokhlin and A.S. Shvarč. The combinatorial invariance of Pontrjagin classes.
Dokl. Akad. Nauk SSSR, 114 (1957), 490–493). — Editor’s remark.
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Two diffeomorphisms f, g : Mn
1 → Mn

2 will be called differentiably
isotopic if there exists a diffeomorphism Mn

1 × R → Mn
2 × R of the form

(x, t)→ (h(x, t), t) such that

h(x, t) =

{
f(x), t ≤ 0,
g(x), t ≥ 1.

Lemma 4.2. If the diffeomorphisms f, g : Sn−1 → Sn−1 are
differentiably isotopic, then the manifolds Mn(f) and Mn(g) obtained by
the construction (C) are diffeomorphic.

The proof is straightforward.

Theorem 4.3. There exists a diffeomorphism f : S6 → S6 of degree +1
which is not differentiably isotopic to the identity.1

Proof. By Lemma 3.3 and Corollary 2.2 the manifold M7
3 is

diffeomorphic to M7(f) for some f . If f were differentiably isotopic to
the identity then Lemma 4.2 would impy that M7

3 was diffeomorphic to S7.
But this is false by Lemma 3.2.
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Groups of homotopy spheres. I1

M. Kervaire and J. Milnor

§ 1. Introduction

All manifolds, with or without boundary, are to be compact, oriented,
and differentiable of class C∞. The boundary of M will be denoted by bM .
The manifold M with orientation reversed is denoted by −M .

Definition. The manifold M is a homotopy n-sphere if M is closed
(that is, bM = ∅) and has the homotopy type of the sphere Sn.

Definition. Two closed n-manifolds M1 and M2 are h-cobordant2 if
the disjoint sum M1 + (−M2) is the boundary of some manifold W, where
both M1 and (−M2) are deformation retracts of W. It is clear that this is
an equivalence relation.

The connected sum of two connected n-manifolds is obtained by
removing a small n-cell from each, and then pasting together the resulting
boundaries. Details will be given in § 2.

1Groups of homotopy spheres. I, Annals of Math., 77 (1963), 504–537 (Received
April 19, 1962).

2The term“J-equivalence” has previously been used for this relation. Compare [15],
[16] and [17].

11



August 26, 2009 16:21 9in x 6in b789-ch02

12 M. Kervaire and J. Milnor

Theorem 1.1. The h-cobordism classes of homotopy n-sphere form an
abelian group under the connected sum operation.

This group will be denoted by Θn and called the n-th homotopy sphere
cobordism group. It is the object of this paper (which is divided into 2 parts)
to investigate the structure of Θn.

It is clear that Θ1 = Θ2 = 0. On the other hand, these groups are not
all zero. For example, it follows easily from Milnor [14] that Θ7 �= 0.

The main result of the present Part I will be

Theorem 1.2. For n �= 3 the group Θn is finite.

(Our methods break down for the case n = 3). However, if one assumes
the Poincaré hypothesis, then it can be shown that Θ3 = 0.

More detailed information about these groups will be given in Part II.
For example, for n = 1, 2, 3, . . . , 18, it will be shown that the order of the
group Θn is respectively:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[Θn] 1 1 ? 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16.

Partial summaries of results are given in § 4 and § 7.

Remark. S. Smale [25] and J. Stallings [27], C. Zeeman [33] have proved
that every homotopy n-sphere, n �= 3, 4, is actually homeomorphic to the
standard sphere Sn. Furthermore, Smale has proved [26] that two homotopy
n-spheres (n �= 3, 4), are h-cobordant if and only if they are diffeomorphic.
Thus for n �= 3, 4 (and possibly for all n) the group Θn can be described
as the set of all diffeomorphic classes of differentiable structures on the
topological n-sphere. These facts will not be used in the present paper.

§ 2. Construction of the group Θn

First we give a precise definition of the connected sum M1#M2 of two
connected n-manifolds M1 and M2 (compare Seifert [22] and Milnor [15],
[16]). The notation Dn will be used for the unit disk in Euclidean space.
Choose imbeddings

i1 : Dn →M1, i2 : Dn →M2

so that i1 preserves orientation and i2 reverses it. Now obtain M1#M2 from
the disjoint sum

(M1 − i1(0)) + (M2 − i2(0))
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by identifying i1(tu) with i2((1−t)u) for each unit vector u ∈ Sn−1 and each
0 < t < 1. Choose the orientation for M1#M2 which is compatible with
that of M1 and M2. (This makes sense since the correspondence i1(tu) →
i2((1− t)u) preserves orientation.)

It is clear that the sum of two homotopy n-spheres is a homotopy n-
sphere.

Lemma 2.1. The connected sum operation is well defined, associative,
and commutative up to orientation preserving diffeomorphism. The sphere
Sn serve as identity element.

Proof. The first assertions follow easily from the lemma of Palais [20]
and Cerf [5] which asserts that any two orientation preserving imbeddings i,
i′ : Dn →M are related by the equation i′ = f · i, for some diffeomorphism
f : M → M . The proof that M#Sn is diffeomorphic to M , will be left to
the reader.

Lemma 2.2. Let M1, M ′
1 and M2 be closed and simply connected.1 If

M1 is h-cobordant to M ′
1 then M1#M2 is h-cobordant to M ′

1#M2.

Proof. We may assume that the dimension n is ≥3. LetM1+(−M ′
1) =

bW1, where M1 and −M ′
1 are deformation retracts of W1. Choose a

differentiable arc A from a point p ∈ M1 to a point p′ ∈ −M ′
1 within W1

so that a tubular neighborhood of this arc is diffeomorphic to Rn × [0, 1].
Thus we obtain an imbedding

i : Rn × [0, 1]→W1

with i(Rn × 0) ⊂ M1, i(Rn × 1) ⊂ M ′
1 and i(0 × [0, 1]) = A. Now form a

manifold W from the disjoint sum

(W1 −A) + (M2 − i2(0))× [0, 1]

by identifying i(tu, s) with i2((1 − t)u) × s for each 0 < t < 1, 0≤s≤1,
u ∈ Sn−1. Clearly W is a compact manifold bounded by the disjoint sum

M1#M2 + (−(M ′
1#M2)).

We must show that both boundaries are deformation retracts of W.
First it is necessary to show that the inclusion map

M1 − p j→W1 −A
is a homotopy equivalence. Since n ≥ 3, it is clear that both of these
manifolds are simply connected. Mapping the homology exact sequence of

1This hypothesis is imposed in order to simplify the proof. It could easily be
eliminated.
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the pair (M1,M1 − p) into that of the pair (W1,W1 − A), we see that
j induces isomorphisms of homology groups, and hence is a homotopy
equivalence. Now it follows easily, using a Mayer-Vietoris sequence, that
the inclusion

M1#M2 →W

is a homotopy equivalence; hence that M1#M2 is a deformation retract
of W. Similarly M ′

1#M2 is a deformation retract of W, which completes the
proof of Lemma 2.2.

Lemma 2.3. A simply connected manifold M is h-cobordant to the
sphere Sn if and only if M bounds a contractible manifold.

(Here the hypothesis of simple connectivity cannot be eliminated.)

Proof. If M + (−Sn) = bW then filling in a disk Dn+1 we obtain a
manifold W ′ with bW ′ = M . If Sn is a deformation retract of W, then it
clearly follows that W ′ is contractible.

Conversely if M = bW ′, then removing the interior of an imbedded
disk we obtain a simply connected manifold W with bW = M + (−Sn).
Mapping the homology exact sequence of the pair (Dn+1, Sn) into that of
the pair (W ′,W ), we see that the inclusion Sn → W induces a homology
isomorphism; hence Sn is a deformation retract of W. Now applying the
Poincaré duality isomorphism

Hk(W,M) � Hn+1−k(W,Sn),

we see that the inclusion M → W also induces isomorphisms of homology
groups. Since M is simply connected, this completes the proof.

Lemma 2.4. If M is a homotopy sphere, then M#(−M) bounds a
contractible manifold.

Proof. Let H2 ⊂ D2 denote the half-disk consisting of all (t sin θ,
t cos θ) 0 ≤ t ≤ 1, 0 ≤ θ ≤ π, and let 1

2D
n ⊂ Dn denote the disk of

radius 1
2 . Given an imbedding i : Dn →M , form W from the disjoint union(

M − i
(

1
2
Dn

))
× [0, π] + Sn−1 ×H2

by identifying i(tu)× θ with u× ((2t− 1) sin θ, (2t− 1) cos θ) for each 1
2 <

t ≤ 1, 0 ≤ θ ≤ π. (Intuitively we are removing the interior of i(1
2D

n) from
M and then “rotating” the result through 180◦ around the resulting bW =
M#−M .) Furthermore W contains (M − interior i(1

2D
n)) as deformation

retract, and therefore is contractible. This proves Lemma 2.4.
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Proof of Theorem 1.1. Let Θn denote the collection of all h-
cobordism classes of homotopy n-spheres. By Lemmas 2.1 and 2.2 there
is a well-defined, associative, commutative addition operation in Θn. The
sphere Sn serves as zero element. By Lemmas 2.3 and 2.4, each element of
Θn has an inverse. Therefore Θn is an additive group.

Clearly Θ1 is zero. For n ≤ 3, Munkres [19] and Whitehead [31] had
proved that a topological n-manifold has a differentiable structure which
is unique up to diffeomorphism. It follows that Θ2 = 0. If the Poincaré
hypothesis were proved, it would follow that Θ3 = 0, but at present the
structure of Θ3 remains unknown. For n > 3 the structure of Θn will be
studied in the following sections.

Addendum. There is a slight modification of the connected sum
construction which is frequently useful. Let W1 and W2 be (n+1)-manifolds
with connected boundary. Then the sum bW1#bW2 is the boundary of a
manifoldW constructed as follows. LetHn+1 denote the half-disk consisting
of all x = (x0, x1, . . . , xn) with |x| ≤ 1, x0 ≥ 0 and let Dn denote the subset
x0 = 0. Choose imbeddings

iq : (Hn+1, Dn)→ (Wq, bWq), q = 1, 2,

so that i2 · i−1
1 reverses orientation. Now form W from

(W1 − i1(0)) + (W2 − i2(0))

by identifying i1(tu) with i2((1 − t)u) for each 0 < t < 1, u ∈ Sn ∩Hn+1.
It is clear that W is a differentiable manifold with bW = bW1#bW2.

Note that W has homotopy type of W1 ∨W2: the union with a single point
in common.

W will be called the connected sum along the boundary of W1

and W2. The notation (W, bW ) = (W1, bW1)#(W2, bW2) will be used for
this sum.

§ 3. Homotopy spheres are s-parallelizable

Let M be a manifold with tangent bundle τ = τ(M), and let ε1 denote
a trivial line bundle over M .

Definition. M will be called s-parallelizable if the Whitney sum τ ⊕ ε1
is a trivial bundle.1 The bundle τ ⊕ ε1 will be called the stable tangent

1The authors have previously used the term “π-manifold” for an s-parallelizable
manifold.
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bundle of M . It is a stable bundle in the sense of [10]. (The expression
s-parallelizable stands for stably parallelizable.)

Theorem 3.1. Every homotopy sphere is s-parallelizable.

In the proof, we will use recent results of J. F. Adams [1], [2].

Proof. Let Σ be a homotopy n-sphere. Then the only obstruction to
the triviality of τ ⊕ ε1 is a well-defined cohomology class

on(Σ) ∈ Hn(Σ;πn−1(SOn+1)) = πn−1(SOn+1).

The coefficient group may be identified with the stable group πn−1(SO).
But these stable groups have been computed by Bott [4], as follows, for
n ≥ 2:

The mod 8 residue class: 0 1 2 3 4 5 6 7

πn−1(SO) Z Z2 Z2 0 Z 0 0 0.

(Here Z, Z2, 0 denote the cyclic groups of orders ∞, 2, 1 respectively.)
Case 1. n ≡ 3, 5, 6 or 7 (mod 8). Then πn−1(SO) = 0, so that on(Σ) is

trivially zero.
Case 2. n ≡ 0 or 4 (mod 8). Say that n = 4k. According to [18], [10],

some non-zero multiple of the obstruction class on(Σ) can be identified
with the Pontrjagin class pk(τ⊕ε1) = pk(τ). But the Hirzebruch signature1

theorem implies that pk[Σ] is a multiple of the signature σ(Σ), which is zero
since H2k(Σ) = 0. Therefore every homotopy 4k-sphere is s-parallelizable.

Case 3. n ≡ 1 or 2 (mod 8), so that πn−1(SO) is cyclic of order 2. For
each homotopy sphere Σ the residue class modulo 2

on(Σ) ∈ πn−1(SO) � Z2

is well defined. It follows from an argument of Rokhlin that

Jn−1(on) = 0,

where Jn−1 denotes the Hopf–Whitehead homomorphism

Jn−1 : πn−1(SOk)→ πn+k−1(Sk)

in the stable range k > n (compare [18, Lemma 1]). But Jn−1 is a
monomorphism for n ≡ 1 or 2 (mod 8). For the case n = 2 this fact is well
known, and for n = 9, 10 it has been proved by Kervaire [11]. For n = 17, 18

1We will substitute the word “signature” for index as used in [7, 14, 17, 18, 28], since
this is more in accord with the usage in other parts of mathematics. The signature of
the form x2

1 + · · · + x2
k − x2

k+1 − · · · − x2
k+l is defined as σ = k − l.
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it has been verified by Kervaire and Toda in unpublished computations. A
proof that Jn−1 is injective for all n ≡ 1 or 2 (mod 8), has recently been
given by J. F. Adams [1], [2]. Now the relation Jn−1(on) = 0, together with
the information that Jn−1 is a monomorphism implies that on = 0. This
completes the proof of Theorem 3.1.

In conclusion, here are two lemmas which clarify the concept of s-
parallelizability. The first is essentially due to J. H. C. Whitehead [32].

Lemma 3.2. Let M be an n-dimensional submanifold of Sn+k, n < k.
Then M is s-parallelizable if and only if its normal bundle is trivial.

Lemma 3.3. A connected manifold with non-vacuous boundary is S-
parallelizable if and only if it is parallelizable.

The proofs will be based on the following lemma (compare Milnor [17,
Lemma 4]).

Let ξ be a k-dimensional vector space bundle over an n-dimensional
complex k > n.

Lemma 3.4. If the Whitney sum of ξ with a trivial bundle εr is trivial
then ξ itself is trivial.

Proof. We may assume that r = 1, and that ξ is oriented. An
isomorphism ξ ⊕ ε1 ≈ εk+1 gives rise to a bundle map f from ξ to the
bundle γk of oriented k-planes in (k + 1)-space. Since the base space of ξ
has dimension n, and since the base space of γk is the sphere Sk, k > n, it
follows that f is null-homotopic; and hence ξ is trivial.

Proof of Lemma 3.2. Let τ , ν denote the tangent and normal bundles
of M . Then τ⊕ν is trivial hence (τ⊕ε1)⊕ν is trivial. Applying Lemma 3.5,
the conclusion follows.

Proof of Lemma 3.3. This follows by a similar argument. The
hypothesis on the manifold guarantees that every map into a sphere of
the same dimension is null-homotopic.

§ 4. Which homotopy spheres bound parallelizable

manifolds?

Define a subgroup bPn+1 ⊂ Θn as follows. A homotopy n-sphere M
represents an element of bPn+1 if and only if M is a boundary of a
parallelizable manifold. We will see that this condition depends only on the
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h-cobordism class of M , and that bPn+1 does form a subgroup. The object
of this section will be to prove the following:

Theorem 4.1. The quotient group Θn/bPn+1 is finite.

Proof. Given an s-parallelizable closed manifold M of dimension n,
choose an imbedding

i : M → Sn+k

with k > n+1. Such an imbedding exists and is unique up to differentiable
isotopy. By Lemma 3.3 the normal bundle of M is trivial. Now choose a
specific field ϕ of normal k-frames. Then the Pontrjagin–Thom construction
yields a map

p(M,ϕ) : Sn+k → Sk

(see Pontrjagin [21, pp. 41–57] and Thom [28]). The homotopy class of
p(M,ϕ) is a well-defined element of the stable homotopy group

Πn = πn+k(Sk).

Allowing the normal frame field ϕ to vary, we obtain a set of elements

p(M) = {p(M,ϕ)} ⊂ Πn.

Lemma 4.2. The subset p(M) ⊂ Πn contains the zero element of Πn

if and only if M bounds a parallelizable manifold.

Proof. If M = bW with W parallelizable then the imbedding i: M →
Sn+k can be extended to an imbedding W → Dn+k+1, and W has a field
ψ of normal k-frames. We set ϕ = ψ|M . Now the Pontrjagin–Thom map
p(M,ϕ) : Sn+k → Sk extends over Dn+k+1, hence is null-homotopic.

Conversely if p(M,ϕ) � 0, then M bounds a manifold W ⊂ Dn+k+1,
where ϕ extends to a field ψ of normal frames over W. It follows from
Lemmas 3.3 and 3.4 that W is parallelizable. This completes the proof of
Lemma 4.2.

Lemma 4.3. If M0 is h-cobordant to M1, then p(M0) = p(M1).

Proof. If M0 +(−M1) = bW, we choose an imbedding of W in Sn+k×
[0, 1] so that Mq → Sn+k × {q} for q = 0, 1. Then a normal frame field ϕq
on Mq extends to a normal frame field ψ on W which restricts to some
normal frame field ϕ1−q on M1−q. Clearly (W,ψ) gives rise to a homotopy
between p(M0, ϕ0) and p(M1, ϕ1).

Lemma 4.4. If M and M ′ are s-parallelizable, then

p(M) + p(M ′) ⊂ p(M#M ′) ⊂ Πn.
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Proof. Start with the disjoint sum

M × [0, 1] +M ′ × [0, 1]

and join the boundary components M×1 and M ′×1 together, as described
in the addendum at the end of § 2. Thus we obtain a manifold W bounded
by the disjoint sum

(M#M ′) + (−M) + (−M ′).

Note that W has the homotopy type M ∨M ′, the union with a single point
in common.

Choose an imbedding of W in Sn+k × [0, 1] so that (−M) and (−M ′)
go into well separated submanifolds of Sn+k × 0, and so that M#M ′ goes
into Sn+k×1. Given fields ϕ and ϕ′ of normal k-frames on (−M) and (−M ′),
it is not hard to see that there exists an extension defined throughout W.
Let ψ denote the restriction of this field to M#M ′. Then clearly p(M,ϕ)+
p(M ′, ϕ′) is homotopic to p(M#M ′, ψ). This completes the proof.

Lemma 4.5. The set p(Sn) ⊂ Πn is a subgroup of the stable homotopy
group Πn. For any homotopy sphere Σ the set p(Σ) is a coset of this subgroup
p(Sn). Thus the correspondence Σ→ p(Σ) defines a homomorphism p′ from
Θn to the quotient group Πn/p(Sn).

Proof. Combining Lemma 4.4 with the identities

(1) Sn#Sn = Sn,
(2) Sn#Σ = Σ,
(3) Σ#(−Σ) ∼ Sn,
we obtain

p(Sn) + p(Sn) ⊂ p(Sn), (1)

which shows that p(Sn) is a subgroup of Πn;

p(Sn) + p(Σ) ⊂ p(Σ), (2)

which shows that p(Σ) is a union of cosets of this subgroup; and

p(Σ) + p(−Σ) ⊂ p(Sn), (3)

which shows that p(Σ) must be a single coset. This completes the proof of
Lemma 4.5.

By Lemma 4.2 the kernel of p : Θn → Πn/p(Sn) consists exactly of
all h-cobordism classes of homotopy n-spheres which bound parallelizable
manifolds. Thus these elements form a group which we will denote by
bPn+1 ⊂ Θn. It follows that Θn/bPn+1 is isomorphic to a subgroup of
Πn/p(Sn). Since Πn is finite (Serre [24]), this completes the proof of
Theorem 4.1.



August 26, 2009 16:21 9in x 6in b789-ch02

20 M. Kervaire and J. Milnor

Remark. The subgroup p(Sn) ⊂ Πn can be described in more familiar
terms as the image of the Hopf–Whitehead homomorphism

Jn : πn(SOk)→ πn+k(Sk)

(see Kervaire [9, p. 349]). Hence Πn/p(Sn) is the cokernel of Jn. The actual
structure of these groups for n ≤ 8 is given in the following table. For
details, and for higher values of n the reader is referred to Part II of this
paper.

n 1 2 3 4 5 6 7 8

Πn Z2 Z2 Z24 0 0 Z2 Z240 Z2 + Z2

Πn/p(Sn) 0 Z2 0 0 0 Z2 0 Z2

Θn/bPn+1 0 0 0 0 0 0 0 Z2

The prime q ≥ 3 first divides the order of Θn/bPn+1 for n = 2q(q − 1)− 2.
Using Theorem 4.1, the proof of the main theorem (Theorem 1.2), taking

that Θn is finite for n �= 3, reduces now to proving that bPn+1 is finite for
n �= 3.

We will prove that the group bPn+1 is zero for n even (§ 5, 6) and is
finite cyclic for n odd, n �= 3 (see § 7, 8). The first few groups can be given
as follows:

n 1 3 5 7 9 11 13 15 17 19

Order of bPn+1 1 ? 1 28 2 992 1 8128 2 130816

(Again see Part II for details). The cyclic group bPn+1 has order 1 or 2
for n ≡ 1 (mod 4), but the order grows more than exponentially for n ≡ 3
(mod 4).

§ 5. Spherical modifications

This section and § 6 which follows, will prove that the groups bP2k+1

are zero.1 That is:

Theorem 5.1. If a homotopy sphere of dimension 2k bounds an s-
parallelizable manifold M, then it bounds a contractible manifold M1.

1An independent proof of this theorem has been given by C. T. C. Wall [29].
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For the case k = 1, this assertion is clear since every homotopy 2-
sphere is actually diffeomorphic to S2. The proof for k > 1 will be based
on the technique of “spherical modifications” (see Wallace [30] and Milnor
[15, 17]).1

Definition. Let M be a differentiable manifold of dimension n = p +
q + 1 and let

ϕ : Sp ×Dq+1 →M

be a differentiable imbedding. Then a new differentiable manifold M ′ =
χ(M,ϕ) is formed from the disjoint sum

(M − ϕ(Sp × 0)) +Dp+1 × Sq

by identifying ϕ(u, tv) with (tu, v) for each u ∈ Sp, v ∈ Sq, 0 < t ≤ 1. We
will say that M ′ is obtained from M by the spherical modification χ(ϕ).
Note that the boundary of M ′ is equal to the boundary of M .

In order to prove Theorem 5.1 we will show that the homotopy groups of
M can be completely killed by a sequence of such spherical modifications.
The effect of a single modification χ(ϕ) on the homotopy groups of M can
be described as follows.

Let λ ∈ πpM denote the homotopy class of the map ϕ|Sp×0 from Sp×0
to M .

Lemma 5.2. The homotopy groups of M ′ are given by

πiM
′ � πiM for i < min(p, q)

and

πpM
′ � πpM

Λ
,

provided that p < q; where Λ denotes a certain subgroup of πpM
containing λ.

The proof is straightforward (compare [17, Lemma 2]).
Thus, if p < q (that is, if p ≤ n/2 − 1), the effect of the modification

χ(ϕ) is to kill the homotopy class λ.
Now suppose that some homotopy class λ ∈ πpM is given.

Lemma 5.3. In Mn is s-parallelizable and if p < n/2, then the class λ
is represented by some imbedding ϕ : Sp ×Dn−p →M .

1The term “surgery” is used for this concept in [15, 17].
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Proof. (Compare [17, Lemma 3]) Since n ≥ 2p + 1 it follows from a
well-known theorem of Whitney that λ can be represented by an imbedding

ϕ0 : Sp →M.

It follows from Lemma 3.5 that the normal bundle of ϕ0S
p in M is trivial.

Hence ϕ0 can be extended to the required imbedding Sp ×Dn−p →M .
Thus Lemmas 5.2 and 5.3 assert that spherical modifications can be used

to kill any required element λ ∈ πpMn provided that p ≤ n/2− 1. There is
one danger however. If the imbedding ϕ is chosen badly then the modified
manifold M ′ = χ(M,ϕ) may no longer be s-parallelizable. However the
following was proven in [17]. Again let n ≥ 2p+ 1.

Lemma 5.4. The imbedding ϕ : Sp×Dn−p →M can be chosen within
its homotopy class so that the modified manifold χ(M,ϕ) will also be s-
parallelizable.

For the proof, the reader may either refer to [17, Theorem 2], or make
use of the sharper Lemma 6.2 which will be proved below.

Now combining Lemmas 5.2, 5.3 and 5.4, one obtains the following
(compare [17, p. 46]).

Theorem 5.5. Let M be a compact, connected s-parallelizable manifold
of dimension n ≥ 2k. By a sequence of spherical modifications on M one
can obtain an s-parallelizable manifold M1, which is (k − 1)-connected.

Recall that bM1 = bM .

Proof. Choosing a suitable imbedding ϕ : S1 × Dn−1 → M , one
can obtain an s-parallelizable manifold M ′ = χ(M,ϕ) such that π1M

′ is
generated by fewer elements than π1M . Thus after a finite number of steps,
one can obtain a manifold M ′′ which is 1-connected. Now, after a finite
number of steps, one can obtain an s-parallelizable manifold M ′′′ which is
2-connected, and so on until we obtain a (k − 1)-connected manifold. This
proves Theorem 5.5.

In order to prove Theorem 5.1, where dimM = 2k+1, we must carry this
argument one step further obtaining a manifold M1 which is k-connected. It
will then follow from the Poincaré duality theorem that M1 is contractible.

The difficulty in carrying out this program is that Lemma 5.2 is no
longer available. Thus if M ′ = χ(M,ϕ) where ϕ embeds Sk ×Dk+1 in M ,
the group πkM

′ may actually be larger than πkM . It is first necessary to
describe in detail what happens to πkM under such a modification. Since
we may assume that M is (k − 1)-connected with k > 1, the homotopy
group πkM may be replaced by the homology group HkM = Hk(M ;Z).
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Lemma 5.6. Let M ′ = χ(M,ϕ) where ϕ embeds Sk×Dk+1 in M, and
let

M0 = M − interior ϕ(Sk ×Dk+1).

Then there is a commutative diagram

Hk+1M
′

↓ ·λ′
Z
↓ ε ↘ λ

Hk+1M
·λ−→ Z

ε′−→ HkM0
i−→ HkM → 0

λ′ ↘ ↓ i′
HkM

′

↓
0

such that the horizontal and vertical sequences are exact. It follows that the
quotient group HkM/λ(Z) is isomorphic to HkM

′/λ′(Z).

Here the following notations are to be understood. The symbol λ denotes
the element ofHkM which corresponds to the homotopy class ϕ|Sk×0, and λ
also denotes the homomorphism Z → HkM which carries 1 into λ. On the
other hand, ·λ : Hk+1M → Z denotes the homomorphism which carries
each µ ∈ Hk+1M into the intersection number µ ·λ. The symbols λ′ and ·λ′
are to be interpreted similarly. The element λ′ ∈ HkM

′ corresponds to the
homotopy class ϕ′|0×Sk where

ϕ′ : Dk+1 × Sk →M ′

denotes the canonical imbedding.

Proof of Lemma 5.6. As horizontal sequences take the exact sequence

Hk+1M → Hk+1(M,M0)
ε′→ HkM0

i→ HkM → Hk(M,M0)

of the pair (M,M0). By excision, the group Hj(M,M0) is isomorphic to

Hj(Sk ×Dk+1, Sk × Sk) �
{
Z for j = k + 1
0 for j < k + 1.

Thus we obtain

Hk+1M → Z
ε′→ HkM0

i→ HkM → 0,

as asserted. Since a generator of Hk+1(M,M0) clearly has intersection
number ±1 with the cycle ϕ(Sk × 0) which represents λ, it follows that
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the homomorphism Hk+1M → Z can be described as the homomorphism
µ → µ · λ. The element ε′ = e′(1) ∈ HkM0 can clearly be described as
the homology class corresponding to the “meridian” ϕ(x0 × Sk) of the
torus ϕ(Sk × Sk) where x0 denotes a base point in Sk.

The vertical exact sequence is obtained in a similar way. Thus ε =
ε(1) ∈ HkM0 is the homology class of the “parallel” ϕ(Sk × x0) of the
torus. Clearly i(ε) ∈ HkM is equal to the homology class λ of ϕ(Sk × 0).
Similarly i′(ε′) = λ′.

From this diagram the isomorphisms

HkM

λ(Z)
� HkM0

ε(Z)
+ ε′(Z) � HkM

′

λ′(Z)
,

are apparent. This completes the proof of Lemma 5.6.
As an application, suppose that one chooses an element λ ∈ HkM which

is primitive in the sense that µ ·λ = 1 for some µ ∈ Hk+1M . It follows that

i : HkM0 → HkM

is an isomorphism, and hence that

HkM
′ � HkM

λ(Z)
.

Thus:

Assertion. Any primitive element of HkM can be killed by a spherical
modification.

In order to apply this assertion we assume the following:

Hypothesis. M is compact, s-parallelizable manifold of dimension
2k + 1, k > 1 and is (k−1)-connected. The boundary bM is either vacuous
or a homology sphere.

This hypothesis will be assumed for the rest of § 5 and for § 6.

Lemma 5.7. Subject to this hypothesis, the homology group HkM can
be reduced to its torsion subgroup by a sequence of spherical modifications.
The modified manifold M1 will still satisfy the hypothesis.

Proof. Suppose that HkM � Z ⊕ · · · ⊕ Z ⊕ T , where T is the torsion
subgroup. Let λ generate one of the infinite cyclic summands. Using the
Poincaré duality theorem one sees that µ1 · λ = 1 for some element µ1 ∈
Hk+1(M, bM). But the exact sequence

Hk+1M → Hk+1(M, bM)→ Hk(bM) = 0

shows that µ1 can be lifted back to Hk+1M . Therefore λ is primitive, and
can be killed by a modification. After finitely many such modifications one
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obtains a manifold M1 with HkM1 � T ⊂ HkM . This completes the proof
of Lemma 5.7.

Let us specialize to the case k even. Let M be as above, and let ϕ :
Sk ×Dk+1 →M be any imbedding.

Lemma 5.8. If k is even then the modification χ(ϕ) necessarily changes
k-th Betti number of M .

The proof will be based on the following lemma (see Kervaire
[8, Formula (8.8)]).

Let F be a fixed field and let W be an orientable homology manifold of
dimension 2r. Define the semi-characteristic e∗(bW ;F ) to be the following
residue class modulo 2:

e∗(bW ;F ) ≡
r−1∑
i=0

rankHi(bW ;F ) (mod 2).

Lemma 5.9. The rank of the bilinear pairing

Hr(W ;F )⊗Hr(W ;F )→ F,

given by the intersection number, is congruent modulo 2 to e∗(bW ;F ) plus
the Euler characteristic e(W ).

[For the convenience of the reader, here is a proof. Consider the exact
sequence

HrW
h→ Hr(W, bW )→ Hr−1(bW )→ · · · → H0(W, bW )→ 0,

where the coefficient group F is to be understood. A counting argument
shows that the rank of the indicated homomorphism h is equal to the
alternating sum of the ranks of the vector spaces to the right of h in this
sequence. Reducing modulo 2 and using the identity

rankHi(W, bW ) = rankH2r−iW,

this gives

rankh ≡
r−1∑
i=0

rankHi(bW ) +
2r∑
i=0

rankHi(W )

≡ e∗(bW ;F ) + e(W ) (mod 2).

But the rank of

h : HrW → Hr(W, bW ) � HomF (HrW,F )

is just the rank of the intersection pairing. This completes the proof.]
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Proof of Lemma 5.8. First suppose that M has no boundary. As
shown in [15] or [17], the manifoldsM andM ′ = χ(M,ϕ), suitably oriented,
together bound a manifold W = W (M,ϕ) of dimension 2k + 2. For the
moment, since no differentiable structure on W is needed, we can simply
define W to be the union

(M × [0, 1]) ∪ (Dk+1 ×Dk+1),

where it is understood that Sk ×Dk+1 is to be pasted onto M × 1 by the
imbedding ϕ. Clearly W is a topological manifold with

bW = M × 0 +M ′ × 1.

Note that W has the homotopy type of M with a (k+1)-cell attached. Since
the dimension 2k+ 1 of M is odd, this means that the Euler characteristic

e(W ) = e(M) + (−1)k+1 = (−1)k+1.

Since k is even, the intersection pairing

Hk+1(W ;Q)⊗Hk+1(W ;Q)→ Q

is skew symmetric, hence has even rank. Therefore Lemma 5.9 (with
rational coefficients) asserts that

e∗(M +M ′;Q) + (−1)k+1 ≡ 0 (mod 2)

and hence that

e∗(M ;Q) �≡ e∗(M ′;Q).

But HiM � HiM
′ � 0 for 0 < i < k, so this implies that

rankHk(M ;Q) �≡ rankHk(M ′;Q).

This proves Lemma 5.8 provided that M has no boundary.
If M is bounded by a homology sphere, then attaching a cone over

bM , one obtains a homology manifold M∗ without boundary. The above
argument now shows that

rankHk(M∗;Q) �≡ rankHk(M ′
∗;Q).

Therefore the modification χ(ϕ) changes the rank of Hk(M ;Q) in this case
also. This completes the proof of Lemma 5.8.

It is convenient at this point to insert an analogue of Lemma 5.8 which
will only be used later (see the end of § 6). Let M be as above, with k even
or odd, and let W = W (M,ϕ).
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Lemma 5.10. Suppose that every mod 2 homology class

ξ ∈ Hk+1(W ;Z2)

has self-intersection number ξ · ξ = 0. Then the modification χ(ϕ)
necessarily changes the rank of the mod 2 homology group Hk(M ;Z2).

The proof is completely analogous to that of Lemma 5.8. The hypothesis,
ξ · ξ = 0 for all ξ, guarantees that the intersection pairing

Hk+1(W ;Z2)⊗Hk+1(W ;Z2)→ Z2

will have even rank.
We now return to the case k even.

Proof of Theorem 5.1. (for k even) According to Lemma 5.6, we can
assume that HkM is a torsion group. Choose

ϕ : Sk ×Dk+1 →M,

as in Lemma 5.4, so as to represent a non-trivial λ ∈ HkM . According to
Lemma 5.6 we have

HkM

λ(Z)
� HkM

′

λ′(Z)
.

Since the group λ(Z) is finite, it follows from Lemma 5.8 that λ′(Z) must
be infinite. Thus the sequence

0→ Z
λ′→ HkM

′ → HkM
′

λ′(Z)
→ 0

is exact. It follows that the torsion subgroup of HkM
′ maps

monomorphically into HkM
′/λ′(Z); and hence is definitely smaller than

HkM . Now according to Lemma 5.7, we can perform a modification on M ′

so as to obtain a new manifold M ′′ with

HkM
′′ � Torsion HkM

′ < HkM.

Thus in two steps one can replace HkM by a smaller group. Iterating
this construction a finite number of times, the group HkM can be killed
completely. This completes the proof of Theorem 5.1 for k even.

§ 6. Framed spherical modifications

This section will complete the proof of Theorem 5.1. by taking care of
the case k odd. This case is somewhat more difficult than the case k even
(which was handled in § 5), since it is necessary to choose the imbeddings
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ϕ more carefully, taking particular care not to lose s-parallelizability in the
process. Before starting the proof, it is convenient to sharpen the concepts
of s-parallelizable manifold, and of spherical modification.

Definition. A framed manifold (M, f) will mean a differentiable
manifold M together with a fixed trivialization f of the stable tangent
bundle τM ⊕ εM .

Now consider a spherical modification χ(ϕ) of M . Recall that M and
M ′ = χ(M,ϕ) together bound a manifold

W = (M × [0, 1]) ∪ (Dp+1 ×Dq+1),

where the subset Sp ×Dq+1 of Dp+1 ×Dq+1 is pasted onto M × 1 by the
imbedding ϕ (compare Milnor [17]). It is easy to give W a differentiable
structure, except along the “corner” Sp×Sq. A neighborhood of this corner
will be “diffeomorphic” with Sp × Sq ×Q where

Q ⊂ R2

denotes the three-quarter disk consisting of all (r cos θ, r sin θ) with 0≤r<1,
0 ≤ θ ≤ 3π/2. In order to “straighten” this corner, map Q onto the half-
disk H , consisting of all (r cos θ′, r sin θ′) with 0 ≤ r < 1, 0 ≤ θ′ ≤ π;
by setting θ′ = 2θ/3. Now carrying the differentiable structure of H back
to Q, this makes Q into a differentiable manifold. Carrying out the same
transformation on the neighborhood of Sp× Sq, this makes W = W (M,ϕ)
into the required differentiable manifold. Note that both boundaries of W
get the correct differentiable structures.

Now identify M with M×0 ⊂W and identify the stable tangent bundle
τM ⊕ εM with the restriction τW |M . Thus a framing f of M determines a
trivialization τW |M .

Definition. A framed spherical modification χ(ϕ, F ) of the framed
manifold (M, f) will mean a spherical modification χ(ϕ) of M together
with a trivialization F of the tangent bundle of W, satisfying the
condition

F |M = f.

Note that the modified manifold M ′ = χ(M,ϕ) automatically acquires
a framing

f ′ = F |M ′ .

It is only necessary to identify τW |M ′ with the stable tangent bundle
τM ′ ⊕ εM ′ . To do this, we identify the positive direction in εM ′ with the
outward normal direction in τW |M ′ .
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The following question evidently arises. Given a modification χ(ϕ) of
M and a framing f of M , does f extend to a trivialization F of τW ? The
obstructions to such an extension lie in the cohomology groups

Hr+1(W,M ;πr(SOn+1)) �
{
πp(SOn+1) for r = p,
0 for r �= p.

Thus the only obstruction to extending f is a well-defined class

γ(ϕ) ∈ πp(SOn+1).

The modification χ(ϕ) can be framed if and only if this obstruction γ(ϕ)
is zero.

Now consider the following alteration of the imbedding ϕ. Let

α : Sp → SOq+1

be a differentiable map, and define

ϕα : Sp ×Dq+1 →M

by

ϕα(u, v) = ϕ(u, v · α(u)),

where the dot denotes the usual action of SOq+1 on Dq+1. Clearly ϕα is an
imbedding which represents the same homotopy class λ ∈ πpM , as ϕ.

Lemma 6.1. The obstruction γ(ϕα) depends only on γ(ϕ) and on the
homotopy class (α) of α. In fact

γ(ϕα) = γ(ϕ) + s∗(α),

where s∗ : πp(SOq+1) → πp(SOn+1) is induced by the inclusion s :
SOq+1 → SOn+1.

Proof. (compare [17], proof of Theorem 2) Let Wα be the manifold
constructed as W above, now using ϕα. There is a natural differentiable
imbedding

iα : Dp+1 × intDq+1 →Wα,

and iα|Sp×Dq+1 coincides with ϕα : Sp × Dq+1 → M followed by the
inclusion M →M × 1 ⊂Wα.

γ(ϕα) is the obstruction to extending f |ϕα(Sp×0) to a trivialization of
τ(Wα) restricted to iα(Dp+1 × 0). Let tn+1 = ep+1 × eq+1 be the standard
framing on Dp+1 × Dq+1. Then i′α(tn+1) is a trivialization of the tangent
bundle of Wα restricted to iα(Dp+1 ×Dq+1), and γ(ϕα) is the homotopy
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class of the map g : Sp → SOn+1, where g(u) is the matrix 〈fn+1, i′α(tn+1)〉
at ϕα(u, 0).

Since iα|Dp+1×0 is independent of α, and iα|Sp×Dq+1 = ϕα, we have

ϕ′
α(tn+1) = ϕ′(ep+1)× ϕ′

α(eq+1)

at every point (u, 0) ∈ Sp ×Dq+1.
Since

ϕ′
α(eq+1) = ϕ′

α(eq+1) · α(u)

at (u, 0), it follows that

i′α(tn+1) = i′(tn+1) · s(α).

Hence

〈fn+1, i′α(tn+1)〉 = 〈fn+1, i′(tn+1)〉 · s(α)

and the lemma follows.
Now suppose (as usual) p ≤ q. Then the homomorphism

s∗ : πp(SOq+1)→ πp(SOn+1)

is onto. Hence α can be chosen so that

γ(ϕα) = γ(ϕ) + s∗(α)

is zero. Thus we obtain:

Lemma 6.2. Given ϕ : Sp ×Dq+1 → M with p ≤ q, a map α can be
chosen so that the modification χ(ϕ) can be framed.

In particular, it follows that the manifold χ(M,ϕ) will be
s-parallelizable. Thus we have proved Lemma 5.4 in a sharpened form.

We note however that α is not always uniquely determined. In the case
p = q = k odd, the homomorphism

s∗ : πk(SOk+1)→ πk(SOn+1)

has an infinite cyclic kernel. This freedom in the choice of α will be the
basis of the proof of Theorem 5.1 for k odd.
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Let us study the homology of the manifold

M ′
α = χ(M,ϕα),

where ϕ is now chosen, by Lemma 6.1, so that the spherical modification
χ(ϕ) can be framed. Clearly the deleted manifold

M0 = M − (interiorϕα(Sk ×Dk+1))

does not depend on the choice of α. Furthermore the meridian ϕα(x0×Sk)
of the torus ϕα(Sk × Sk) ⊂M0 does not depend on the choice of α; hence
the homology class

ε′ ∈ HkM0

does not depend on α. On the other hand, the parallel ϕα(Sk × x0) does
depend on α. In fact it is clear that the homology class εα ∈ HkM0 of this
parallel is given by

εα = ε+ j(α)ε′,

where the homomorphism

j∗ : πk(SOk+1)→ Z � πk(Sk)
is induced by the canonical map

ρ
j→ x0 · ρ

from SOk+1 to Sk.
The spherical modification χ(ϕα) can still be framed provided α is an

element of the kernel of

s∗ : πk(SOk+1)→ πk(SOn+1).

Identifying the stable group πk(SOn+1) with the stable group πk(SOk+2),
there is an exact sequence

πk+1(Sk+1) ∂→ πk(SOk+1)
s∗→ πk(SOk+2),

associated with the fibration SOk+2/SOk+1 = Sk+1. It is well known that
the composition

πk+1(Sk+1) ∂→ πk(SOk+1)
j∗→ πk(Sk)

carries a generator of πk+1(Sk+1) onto twice a generator of πk(Sk), provided
that k is odd. Therefore the integer j∗(α) can be any multiple of 2.
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Let us study the effect of replacing ε by εα = ε+j(α)ε′ on the homology
of the modified manifold. Consider the exact sequence

0→ Z
ε′→ HkM0

i→ HkM → 0

of Lemma 5.6, where i carries ε into an element λ of order l > 1. Evidently lε
must be a multiple of ε′, say:

lε+ l′ε′ = 0.

Since ε′ is not a torsion element, these two elements can satisfy no other
relation. Since εα = ε+ j∗(α)ε′ it follows that

lεα + (l′ − lj(α))ε′ = 0.

Now using the sequence

Z
εα→ HkM0

i′α→ HkM
′
α → 0,

we see that the inclusion homomorphism i′α carries ε′ into an element

λ′α ∈ HkM
′
α

of order |l′ − lj(α)|. Since HkM
′
α/λ

′
α(Z) is isomorphic to HkM/λ(Z), we

see that the group HkM
′
α is smaller than HkMα if and only if

0 < |l′ − lj(α)| < l.

But j(α) can be any even integer. Thus j(α) can be chosen so that

−l < l′ − lj(α) ≤ l.
This choice of j(α) will guarantee an improvement except in the special
case where l′ happens to be divisible by l.

Our progress so far can be summarized as follows.

Lemma 6.3. Let M be a framed (k − 1)-connected manifold of
dimension 2k+1 with odd k, k > 1, such that HkM is finite. Let χ(ϕ, F ) be
a framed modification of M which replaces the element λ ∈ HkM of order
l > 1 by an element λ′ ∈ HkM

′ of order ±l′. If l′ �≡ 0 mod l, then it is
possible to choose (α) ∈ πk(SOk+1) so that the modification χ(ϕ) can still
be framed, and so that the group HkM

′
α is definitely smaller than HkM .

Thus one must study the residue class of l′ modulo l. Recall
the definition of linking numbers (compare Seifert–Threlfall [23, § 7]).
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Let λ ∈ HpM , µ ∈ HqM be homology classes of finite order, with dimM =
p+ q + 1. Consider the homology sequence

· · · → Hp+1

(
M ;

Q

Z

)
β→ HpM

i∗→ Hp(M ;Q)→ · · · ,

associated with the coefficient sequence

0→ Z
i→ Q→ Q

Z
→ 0.

Since λ is of finite order i∗λ = 0 and λ = β(ν) for some ν ∈ Hp+1(M ;Q/Z).
The pairing

Q

Z
⊗ Z → Q

Z
,

defined by multiplication induces a pairing

Hp+1

(
M ;

Q

Z

)
⊗HqM → Q

Z
,

defined by the intersection of homology classes. We denote this pairing by
a dot.

Definition. The linking number L(λ, µ) is the rational number
modulo 1 defined by

L(λ, µ) = ν · µ.
This linking number is well defined, and satisfies the symmetry relation

L(µ, λ) + (−1)pqL(λ, µ) = 0

(compare Seifert and Threlfall [23]).

Lemma 6.4. The ration l′/l modulo 1 is, up to sign, equal to the self-
linking number L(λ, λ).

Proof. Since

lε+ l′ε′ = 0

in HkM0, we see that the cycle lε+ l′ε′ on bM0 bounds a chain c on M0. Let
c1 = ϕ(x0×Dk+1) denote the cycle in ϕ(Sk×Dk+1) ⊂M with boundary ε′.
Then the chain c− l′c1, has boundary lε; hence (c− l′c1)/l has boundary ε,
representing the homology class λ in HkM . Taking the intersection of this
chain with ϕ(Sk × 0), representing λ, we obtain ±l′/l, since c is disjoint
and c1 has intersection number ∓1. Thus L(λ, λ) = ±l′/lmod 1.

Now if L(λ, λ) �= 0, then l′ �≡ 0 (mod l), hence the class λ can be replaced
by an element of smaller order under a spherical modification. Hence, unless
L(λ, λ) = 0 for all λ ∈ HkM , this group can be simplified.
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Lemma 6.5. If HkM is a torsion group with L(λ, λ) = 0 for every
λ ∈ HkM, and if k is odd, then this group HkM must be a direct sum of
cyclic groups of order 2.

Proof. The relation

L(η, ξ) + (−1)pqL(ξ, η) = 0

with p = q ≡ 1 (mod 2) implies that

L(η, ξ) = L(ξ, η).

Now if self-linking numbers are all zero, the identity

L(ξ + η, ξ + η) = L(ξ, ξ) + L(η, η) + L(ξ, η) + L(η, ξ)

implies that

2L(ξ, η) = 0

for all ξ and η. But, according to the Poincaré duality theorem for torsion
groups (see [23, p. 245]), L defines a completely orthogonal pairing

TpM ⊗ TqM → Q

Z
.

Hence the identity L(2ξ, η) = 0 for all η implies 2ξ = 0. This proves
Lemma 6.5.

It follows that, by a sequence of modifications, one can reduce HkM to
a group of the form Z2 ⊕ · · · ⊕ Z2 = sZ2.

Now let us apply Lemma 5.10. Since the modification χ(ϕα) is framed,
the corresponding manifold W = W (M,ϕα) is parallelizable. It follows
from the formulas of Wu that the Steenrod operation

Sqk+1 : Hk+1(W, bW ;Z2)→ H2k+2(W, bW ;Z2)

is zero (see Kervaire [8, Lemma 7.9]). Hence every ξ ∈ Hk+1(W ;Z2) has
self-intersection number ξ · ξ = 0. Thus, according to Lemma 5.10, the
modification χ(ϕα) changes the rank Hk(M ;Z2).

But the effect of χ(ϕα) onHk(M ;Z), provided that α is chosen properly,
will be to replace the element λ of order l = 2 by an element λ′α of order
l′α where

−2 < l′α ≤ 2, l′α ≡ 0 (mod 2).
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Thus l′α must be 0 or 2. Now using the sequence

0→ Zl′α → HkM
′
α →

HkMα

λα(Z)
→ 0,

where the group on the right is isomorphic to (s− 1)Z2, we see that HkM
′
α

is given by one of the following:

HkM
′
α �



Z + (s− 1)Z2,

Z2 + (s− 1)Z2,

Z + (s− 2)Z2 or
Z4 + (s− 2)Z2.

But the first two possibilities cannot occur, since they do not change the
rank of Hk(M ;Z2). In the remaining two cases, a further modification will
replace HkM

′
α by a group which is definitely smaller than HkM . Thus in

all cases HkM can be replaced by a smaller group by a sequence of framed
modifications.

This completes the proof of Theorem 5.1. Actually we have proved the
following result which is slightly sharper.

Theorem 6.6. Let M be a compact, framed manifold of dimension
2k + 1, k > 1, such that bM is either vacuous or a homology sphere.
By a sequence of framed modifications, M can be reduced to a k-connected
manifold M1.

If bM is vacuous then the Poincaré duality theorem implies that M1 is
a homotopy sphere. If bM is a homology sphere, then M1 is contractible.

The proof of Theorem 6.6 is contained in the above discussion, provided
that M is connected. But using [17, Lemma 2′] it is easily seen that a
disconnected manifold can be connected by framed modifications. This
completes the proof.

§ 7. The groups bP2k

The next two sections will prove that the groups bP2k are finite cyclic
for k �= 2. In fact for k odd, the group bP2k has at most two elements. For
k = 2m �= 2 we will see in Part II that bP4m is a cyclic group of order1

εm22m−2(22m−1 − 1) · numerator
4Bm
m

,

1This expression for the order of bP4m relies on recent results of J. F. Adams [1].
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where Bm denotes the m-th Bernoulli number, and εm equals 1 or 2.
The proofs will be based on the following.

Lemma 7.1. Let M be a (k − 1)-connected manifold of dimension 2k,
k ≥ 3, and suppose that HkM is free abelian group with basis {λ1, . . . , λr,
µ1, . . . , µr}, where

λi · λj = 0, λi · µj = δij

for all i, j (where δij denotes a Kronecker delta). Suppose further that every
imbedded sphere in M which represents a homology class in the subgroup
generated by λ1, . . . , λr has trivial normal bundle. Then HkM can be killed
by a sequence of spherical modifications.

Proof. According to [17, Lemma 6] or Haefliger [6] any homology class
in HkM can be represented by a differentiably imbedded sphere.

Remark. It is at this point that the hypothesis k ≥ 3 is necessary. Our
methods break down completely for the case k = 2 since a homology class
in H2(M4) need not be representable by a differentiably imbedded sphere
(compare Kervaire-Milnor [13]).

Choose an imbedding ϕ0 : Sk → M so as to represent the homology
class λr . Since the normal bundle is trivial, ϕ0 can be extended to an
imbedding ϕ : Sk × Dk → M . Let M ′ = χ(M,ϕ) denote the modified
manifold, and let

M0 = M − Interiorϕ(Sk ×Dk) = M ′ − Interiorϕ′(Dk+1 × Sk−1).

The argument now proceeds just as in [17, p. 54]. There is a diagram

Z
↓ ↘ λr

0→ HkM0 → HkM
·λr−→ Z → Hk−1M0 → 0,

↓
HkM

′

↓
0

where the notation and the proof is similar to that of Lemma 5.6. Since µr ·
λr = 1 it follows that Hk−1M0 = 0. From this fact one easily proves that
M0 and M ′ are (k − 1)-connected. The group HkM0 is isomorphic
to the subgroup of HkM generated by {λ1, . . . , λr , µ1, . . . , µr−1}. The
group HkM

′ is isomorphic to a quotient group of HkM0. It has basis
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{λ′1, . . . , λ′r−1, µ
′
1, . . . , µ

′
r−1} where each element λ′i corresponds to a coset

λi + λrZ ⊂ HkM

and each µ′
j corresponds to a coset µj + λrZ.

The manifold M ′ also satisfies the hypothesis of Lemma 7.1. In order
to verify that

λ′i · · ·λ′j = 0, λ′i · µ′
j = δij ,

note that each λ′i or µ′
j can be represented by a sphere imbedded in M0

and representing the homology class λi or µj in M . Thus the intersection
numbers in M ′ are the same as those in M . In order to verify that any
imbedded sphere with homology class n1λ

′
1 + · · · + nr−1λ

′
r−1 has trivial

normal bundle note that any such sphere can be pushed off ϕ′(0 × Sk−1)
and hence can be deformed into M0. It will represent a homology class

(n1λ1 + · · ·+ nr−1λr−1) + nrλr ∈ HkM

and thus will have trivial normal bundle.
Iterating this construction r times, the result will be a k-connected

manifold. This completes the proof of Lemma 7.1.
Now consider an s-parallelizable manifold M of dimension 2k, bounded

by a homology sphere. By Theorem 5.5, we can assume that M is (k − 1)-
connected. Using the Poincaré duality theorem it follows that HkM is free
abelian, and the intersection number pairing

HkM ⊗HkM → Z

has determinant ±1. The argument now splits up into three cases.
Case 1. Let k = 3 or 7 (compare [17, Theorem 4′]). Since k is odd the

intersection pairing is skew symmetric. Hence there exists a “symplectic”
basis for HkM ; that is, a basis {λ1, . . . , λr, µ1, . . . , µr} with

λi · λj = µi · µj = 0, λi · µj = δij .

Since πk−1(SOk) = 0 for k = 3, 7, any imbedded k-sphere will have trivial
normal bundle. Thus Lemma 7.1 implies that HkM can be killed. Since an
analogous result for k = 1 is easily obtained, this proves:

Lemma 7.2. The groups bP2, bP6, and bP14 are zero.

Case 2. k is odd, but k �= 1, 3, 7. Again one has a symplectic basis; but
the normal bundle of an imbedded sphere is not necessarily trivial. This
case will be studied in § 8.

Case 3. k is even, say, k = 2m. Then the following is true (compare [17,
Theorem 4]).
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Lemma 7.3. Let M be a framed manifold of dimension 4m>4 bounded
by a homology sphere.1 The homotopy groups of M can be killed by a
sequence of framed spherical modifications if and only if the signature σ(M)
is zero.

Since a proof of Lemma 7.3 is essentially given in [17], we will only give
an outline here.

In one direction the lemma follows from the assertion that σ(M) is
invariant under spherical modifications. (See [17, p. 41]. The fact that M
has a boundary does not matter here, since we can adjoin a cone over
the boundary, thus obtaining a closed homology manifold with the same
signature.)

Conversely suppose that σ(M) = 0. We may assume that M is (k− 1)-
connected. Since the quadratic form λ → λ · λ has determinant ±1 and
signature zero, it is possible to choose a basis {λ1, . . . , λr, µ1, . . . , µr} for
HkM such that λi · λj = 0, λi · µj = δij . The proof is analogous to that of
[17, Lemma 9], but somewhat simpler since we do not put any restriction
on µi · µj . For any imbedded sphere with homology class λ = n1λ1 + · · ·+
nrλr the self-intersection number λ · λ is zero. Therefore, according to [17,
Lemma 7], the normal bundle is trivial.

Thus M satisfies the hypothesis of Lemma 7.1. It follows that HkM can
be killed by spherical modifications. Since the homomorphism

πk(SOk)→ πk(SO2k+1)

is onto for k even, it follows from Lemma 6.2 that we only need to use
framed spherical modifications. This completes the proof of Lemma 7.3.

Lemma 7.4. For each k = 2m there exists a parallelizable manifold
M0 whose boundary bM0 is the ordinary (4m − 1)-sphere, such that the
signature σ(M0) is non-zero.

Proof. According to Milnor and Kervaire [18, p. 457] there exists a
closed “almost parallelizable” 4m-manifold whose signature is non-zero.
Removing the interior of an imbedded 4m-disk from this manifold, we
obtain the required parallelizable manifold M0.

Now consider the collection of all 4m-manifolds M0 which are
s-parallelizable, and are bounded by the (4m − 1)-sphere. Clearly the
corresponding signatures σ(M0) ∈ Z form a group under addition. Let
σm > 0 denote the generator of this group.

1This lemma is of course true if bM is vacuous. In this case the signature σ(M) is
necessarily zero, by Hirzebruch’s signature theorem.
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Theorem 7.5. Let Σ1 and Σ2 be homotopy spheres of dimension
4m − 1, m > 1, which bound s-parallelizable manifolds M1 and M2

respectively. Then Σ1 is h-cobordant to Σ2 if and only if

σ(M1) ≡ σ(M2) (mod σm).

Proof. First suppose that

σ(M1) = σ(M2) + σ(M0).

Form the connected sum along the boundary

(M, bM) = (−M1,−bM1)#(M2, bM2)#(M0, bM0)

as in § 2; with boundary

bM = −Σ1#Σ2#S4m−1 ≈ −Σ1#Σ2.

Since

σ(M) = −σ(M1) + σ(M2) + σ(M0) = 0,

it follows from Lemma 7.3 that bM = −Σ1#Σ2 belongs to the trivial
h-cobordism class. Therefore Σ1 is h-cobordant to Σ2.

Conversely let W be an h-cobordism between −Σ1#Σ2 and the sphere
S4m−1. Pasting W onto (−M1,−bM1)#(M2, bM2) along the common
boundary −Σ1#Σ2, we obtain a differentiable manifold M bounded by
the sphere S4m−1. Since M is clearly s-parallelizable, we have

σ(M) = 0 (mod σm).

But

σ(M) = −σ(M1) + σ(M2).

Therefore

σ(M1) ≡ σ(M2) (mod σm),

which completes the proof.

Corollary 7.6. The group bP4m, m > 1, is isomorphic to a subgroup
of the cyclic group of order σm. Hence bP4m is finite cyclic.

The proof is evident.

Discussion and computation. In part II we will see that bP4m is
cyclic of order precisely σm/8. In fact a given integer σ is a signature σ(M)
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for some s-parallelizable manifold M bounded by a homotopy sphere if and
only if

σ ≡ 0 (mod 8).

The following equality is proved in [18, p. 457];

σm =
22m−1(22m−1 − 1)Bmjmam

m
,

where Bm denotes the m-th Bernoulli number, jm denotes the order of the
cyclic group

J(π4m−1(SO)) ⊂ Π4m−1

and am equals 1 or 2 according as m is even or odd. Thus bP4m is cyclic
group of order

σm
8

=
22m−4(22m−1 − 1)Bmjmam

m
. (1)

According to recent work of J. F. Adams [1], the integer jm is precisely
equal to the denominator of Bm/4m, at least when m is odd. (Compare
[18, Theorem 4].) Therefore

Bmjmam
4m

= am numerator
(
Bm
4m

)
= numerator

(
4Bm
m

)
,

where the last equality holds since the denominator of Bm is divisible by 2,
but not 4. Thus bP4m is cyclic of order

σm
8

= 22m−2(22m−1 − 1) · numerator
(

4Bm
m

)
, (2)

when m is odd.
One can also give a formula for the order of the full group

Θ4m−1. In Part II we will see that Θ4m−1/bP4m is isomorphic to
Π4m−1/J(π4m−1(SO)) (compare § 4). Together with formula (1) above this
implies that:

order Θ4m−1 =
(order Π4m−1)22m−4(22m−1 − 1)Bmam

m
.

§ 8. A cohomology operation

Let 2 ≤ k ≤ n − 2 be integers and let (K,L) be a CW -pair satisfying
the following
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Hypothesis. The cohomology groups Hi(K,L;G) vanish for k < i < n
for all coefficient groups G.

Then a cohomology operation

ψ : Hk(K,L;Z)→ Hn(K,L;πn−1(Sk))

is defined as follows.1 Let e0 ∈ Sk denote a base point and let

s ∈ Hk(Sk, e0;Z)

denote a generator. Then ψ(c) will denote the first obstruction to the
existence of a map

f : (K,L)→ (Sk, e0),

satisfying the condition f∗(s) = c.
To be more precise let Kr denote the r-skeleton K. Then given any class

x ∈ Hk(K,L;Z) � Hk(Kn−1 ∪ L,L;Z)

it follows from standard obstruction theory that there exists a map

fz : (Kn−1 ∪ L,L)→ (Sk, e0)

with f∗
z s = x; and that the restriction

fx|(Kn−2∪L,L)

is well defined up to homotopy. The obstruction to extending fx overKn ∪L
is the required class

ψ(x) ∈ Hn(K,L;πn−1(Sk)).

Lemma 8.1. The function

ψ : Hk(K,L;Z)→ Hn(K,L;πn−1(Sk))

is well defined, and is natural in the following sense. If the CW-pair (K ′, L′)
also satisfies the hypothesis above, then for any map

g : (K ′, L′)→ (K,L)

and any x ∈ Hk(K,L;Z) the identity

g∗ψ(x) = ψg∗(x)

is satisfied.

1A closely related operation ϕ0 has been studied by Kervaire [12]. The operation ϕ0

would serve equally well for our purposes.
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The proof is straightforward. It follows that ψ does not depend on the
particular cell structure of the pair (K,L).

Now let us specialize the case n = 2k.

Lemma 8.2. The operator ψ satisfies the identity

ψ(x+ y) = ψ(x) + ψ(y) + [i, i](x � y),

where the last term stands for the image of the class x � y ∈ H2k(K,L;Z)
under the coefficient homomorphism

Z → π2k−1(Sk),

which carries 1 into the Whitehead product class [i, i].

Proof. Let U = e0 ∪ ek ∪ {e2ki } ∪ {e2k+1
j } ∪ · · · denote a complex

formed from the sphere Sk by adjoining cells of dimensions ≥2k so as to
kill the homotopy groups in dimensions ≥2k − 1. Let

u ∈ Hk(U, e0;Z)

be a standard generator. Evidently the functions

ψ : HkU → H2k(U ;π2k−1(Sk))

and

ψ : Hk(U × U)→ H2k(U × U ;π2k−1(Sk))

are defined. We will first evaluate ψ(u× 1 + 1× u).
The (2k + 1)-skeleton U × U consists of the union

U2k+1 × e0 ∪ e0 × U2k+1 ∪ ek × ek.
Therefore the cohomology class ψ(u× 1 + 1× u) ∈ H2k(U ×U ;π2k−1(Sk))
can be expressed uniquely in the form

a× 1 + 1× b+ γ(u× u),

with a, b ∈ H2k(U ;π2k−1(Sk)) and γ ∈ π2k−1(Sk). Applying Lemma 8.1 to
the inclusion map

U × e0 → U × U,
we see that a must be equal to ψ(u). Similarly b is equal to ψ(u). Applying
Lemma 8.1 to the inclusion

Sk × Sk → U × U,
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we see that ψ(s × 1 + 1 × s) = γ(s × s). But ψ(s × 1 + 1 × s) is just the
obstruction to the existence of a mapping

f : Sk × Sk → Sk,

satisfying f(e0, x) = f(x, e0) = x. Therefore γ must be equal to the
Whitehead product class [i, i] ∈ π2k−1(Sk). Thus we obtain the identity

ψ(u× 1 + 1× u) = ψ(u)× 1 + 1× ψ(u) + [i, i](u× u)
= ψ(u× 1) + ψ(1× u) + [i, i]((u× 1) � (1× u)).

Now consider an arbitrary CW-pair (K,L) and two classes x, y ∈
Hk(K,L). Choose a map

g : (K,L)→ (U × U, e0 × e0)

so that g∗(u × 1) = x, g∗(1 × u) = y. (Such a map can be constructed
inductively over the skeletons of K since the obstruction groups
Hi(H,L;πi−1(U × U)) are all zero.) Then by Lemma 8.1:

ψ(x+ y) = g∗ψ(u× 1 + 1× u)
= g∗ψ(u× 1) + g∗(1× u) + [i, i]g∗((u × 1) + (1× u))
= ψ(x) + ψ(y) + [i, i](x � y).

This completes the proof of Lemma 8.2.

Now let M be a 2k-manifold which is (k − 1)-connected. Then

ψ : Hk(M, bM)→ H2k(M, bM ;π2k−1(Sk)) � π2k−1(Sk)

is defined.

Lemma 8.3. Let k be odd1 and let M be s-parallelizable. Then an
imbedded k-sphere in M has trivial normal bundle if and only if its dual
cohomology class v ∈ Hk(M, bM) satisfies the condition ψ(v) = 0.

1This lemma is actually true for even k also.
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Proof. Let N be a closed tubular neighborhood of the imbedded
sphere, and let

M0 = M − Interior N.

Then there is a commutative diagram

w ∈ Hk(N, bN)
ψ−−−−→ H2k(N, bN ;π2k−1(Sk))	�

	�

Hk(M,M0)
ψ−−−−→ H2k(M,M0;π2k−1(Sk))� ��

v ∈ Hk(M, bM)
ψ−−−−→ H2k(M, bM ;π2k−1(Sk)),

where the generator w of the infinite cyclic group Hk(N, bN) corresponds
to the cohomology class v under the left-hand vertical arrows. Thus,1

ψ(v)[M ] = ψ(w)[N ] ∈ π2k−1(Sk).

It is clear that the homotopy class ψ(w)[N ] depends only on the normal
bundle of the imbedded sphere.

The normal bundle is determined by an element ν of the group
πk−1(SOk). Since M is s-parallelizable, ν must belong to the kernel of
the homomorphism

πk−1(SOk)→ πk−1(SO).

But this kernel is zero for k = 1, 3, 7, and is cyclic of order 2 for other odd
values of k. The unique nontrivial element corresponds to the tangent
bundle of Sk, or equivalently to the normal bundle of the diagonal in
Sk × Sk.

Thus if ν �= 0 then N can be identified with a neighborhood of the
diagonal Sk × Sk. Then

ψ(w)[N ] = ψ(s× 1 + 1× s)[Sk × Sk] = [i, i] �= 0

(assuming that k �= 1, 3, 7). On the other hand if ν = 0 then ψ(w) is clearly
zero. This completes the proof of Lemma 8.3.

1The symbol [M ] denotes the homomorphism Hn(M, bM ; G) → G determined by
the orientation homology class in Hn(M, bM ; Z).
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Henceforth we will assume that k is odd and �=1, 3, 7. The subgroup
of π2k−1(Sk) generated by [i, i] will be identified with the standard cyclic
group Z2. Thus a function

ψ0(λ) = ψ(x)[M ],

is defined by the formula

ψ0 : HkM → Z2,

where x ∈ Hk(M, bM) denotes the Poincaré dual of the homology class λ.
Evidently:

(1) ψ0(λ+ µ) ≡ ψ0(λ) + ψ0(µ) + λ · µ (mod 2), and
(2) ψ0(λ) = 0 if and only if an imbedded sphere representing the homology

class λ has trivial normal bundle.

Now assume that bM has no homology in dimensions k, k−1, so that the
intersection pairing has determinant ±1. Then one can choose a symplectic
basis for HkM : that is a basis {λ1, . . . , λr, µ1, . . . , µr} such that

λi · λj = 0, µi · µj = 0, λi · µj = δij .

Definition. The Arf-invariant c(M) is defined to be the residue class1

ψ0(λ1)ψ0(µ1) + · · ·+ ψ0(λr)ψ0(µr) ∈ Z2

(compare [3]). This residue class modulo 2 does not depend on the choice
of symplectic basis.

Lemma 8.4. If c(M) = 0 then HkM can be killed by a sequence of
framed spherical modifications.

The proof will depend on Lemma 7.1. Let {λ1, . . . , λr, µ1, . . . , µr} be
a symplectic basis for HkM . By permuting the λi and µi we may assume
that

ψ0(λi) = ψ0(µi) = 1 for i ≤ s,
ψ0(λi) = 0 for i > s,

where s is an integer between 0 and r. The hypothesis

c(M) =
∑

ψ0(λi)ψ0(µi) = 0

implies that s ≡ 0 (mod 2).

1This coincides with the invariant Φ(M) as defined by Kervaire [12].
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Construct a new basis {λ′1, . . . , µ′
r} for HkM by the substitutions

λ′2i−1 = λ2i−1 + λ2i, λ′2i = µ2i−1 − µ2i,

µ′
2i−1 = µ2i−1, µ′

2i = λ2i,

for 2i ≤ s,
λ′i = λi, µ′

i = µi

for i > s. This basis is again symplectic, and satisfies the condition:

ψ0(λ′1) = · · · = ψ0(λ′r) = 0.

For any sphere imbedded in M with homology class λ = n1λ
′
1 + · · ·+ nrλ

′
r

the invariant ψ0(λ) is zero, and hence the normal bundle is trivial. Thus
the basis {λ′1, . . . , µ′

r} satisfies the hypothesis of Lemma 7.1. Thus HkM
can be killed by spherical modifications.

If M is a framed manifold then it is only necessary to use framed
modifications for this construction. This follows from Lemma 6.2, since
the homomorphism πk(SOk) → πk(SO2k+1) is onto for k �= 1, 3, 7. This
completes the proof of Lemma 8.4.

Theorem 8.5. For k odd, the group bP2k is either zero or cyclic of
order 2.

According to Lemma 7.2 the groups bP2, bP6 and bP14 are zero. Thus
we may assume that k �= 1, 3, 7.

Let M1 and M2 be s-parallelizable and (k − 1)-connected manifolds of
dimension 2k, bounded by homotopy spheres. If

c(M1) = c(M2),

we will prove that bM1 is h-cobordant to bM2. This will clearly prove
Theorem 8.5.

Form the connected sum (M, bM) = (M1, bM1)#(M2, bM2) along the
boundary. Clearly

c(M) = c(M1) + c(M2) = 0.

Therefore, according to Lemma 8.4, it follows that the boundary

bM = bM1#bM2

bounds a contractible manifold. Hence, according to Theorem 1.1 the
manifold bM1 is h-cobordant to −bM2. Since a similar argument shows
that bM2 is h-cobordant to −bM1, this completes the proof.
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Remark. It seems plausible that bP2k � Z2 for all odd k other than 1,
3, 7; but this is known to be true only for k = 5 (compare Kervaire [12])
and k = 9.
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Homotopically equivalent smooth
manifolds1,2

S. P. Novikov

Here we introduce a method for the investigation of smooth simply
connected manifolds of dimension n ≥ 5 that permits an exact classification
of them up to orientation-preserving diffeomorphisms. This method involves
a detailed investigation of the properties of the so-called Thom complexes
of normal bundles and is based on a theorem of Smale concerning the
equivalence of the concepts of “h-cobordism” and “orientation-preserving
diffeomorphism”. In the last chapter we work out some simple examples.
Appendices are given in which the results of this article are applied to
certain other problems.

Introduction

This article is devoted to the study of the following question: What are
the invariants that define the property of two smooth oriented manifolds

1Translated by V. Poenaru, Izvestiya Akad. Nauk SSSR, ser. matem. 28 (1964),
365–474 (Received March 22, 1963).

2The main ideas were first sketched in [14]. This paper contains detailed proofs
of all results from [14] plus a number of new results. The paper [14] was named the
best mathematical paper of the U.S.S.R. of 1961 by the Academy of Sciences of the
U.S.S.R. — S. P. Novikov’s remark (2004).

49



September 7, 2009 12:27 9in x 6in b789-ch03

50 S. P. Novikov

of being diffeomorphic to each other? It is clear that for manifolds to
be diffeomorphic it is necessary for them to be homotopically equivalent.
A more refined necessary condition is given by the tangent bundle of a
manifold. Speaking in modern terms, to a manifold Mn there corresponds
an Atiyah–Hirzebruch–Grothendieck functor

KR(Mn) = Z + K̃R(Mn),

and by the tangent bundle we mean a certain distinguished element
τ(Mn) ∈ K̃R(Mn), the “stable tangent bundle” with its degree extracted.
Though the ring K̃R(Mn) itself is homotopically invariant, it is well known
that the element τ(Mn) is not homotopically invariant, and what is more,
it can have infinitely many values. For two manifolds, Mn

1 and Mn
2 , to

be diffeomorphic it is necessary that there exists a homotopy equivalence
f : Mn

1 →Mn
2 , such that

f∗τ(Mn
2 ) = τ(Mn

1 ),

where f : K̃R(Mn
2 ) → K̃R(Mn

1 ). If this latter necessary condition holds,
then the direct productsMn

1 ×RN andMn
2 ×RN are diffeomorphic (Mazur).

But this result of Mazur is of little help in determining whether or not
Mn

1 and Mn
2 themselves are diffeomorphic. Even for n = 3 there exist

nondiffeomorphic manifolds satisfying the necessary conditions indicated
above for manifolds to be diffeomorphic (lens spaces). To be sure, these
manifolds are not simply connected. For simply connected manifolds the
papers of Whitehead on simple homotopy type or the papers by Smale
[17, 19] yield a stronger result, namely, that the direct products by a ball
Mn

1 ×DN andMn
2 ×DN are diffeomorphic. Nevertheless examples by Milnor

[10] of differentiable structures on spheres show that for simply connected
manifolds combinatorially equivalent to a sphere, multiplication by a closed
mall actually eliminates the existence of a finer distinction between smooth
structures.

In the papers by Milnor [9] and Milnor and Kervaire [6] a more or less
complete classification was finally given of homotopy spheres with exactness
up to h-homology (J-equivalence) in terms of the standard homotopy
groups of spheres.

The foundation for this classification was laid by papers of Smale
[17, 19], who demonstrated that, for simply connected manifolds of
dimension n ≥ 5, the concepts “h-homology” and “orientation-preserving
diffeomorphism” coincide. In addition, Smale proposed a method that
permits this classification and Wall gave a good classification of manifolds
in certain simple examples (cf. [18, 27]).

Here we investigate the class of smooth manifolds {Mn
j } that are

homotopically equivalent among themselves and such that for any pair i, j
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there exists a homotopy equivalence f : Mn
i →Mn

j of degree +1, such that

f∗τ(Mn
j ) = τ(Mn

i ),

where f∗ : K̃R(Mn
j ) → K̃R(Mn

i ) and τ(Mn) is the stable tangent bundle.
Thus we consider the class of smooth manifolds having the same homotopy
type and tangent bundle. The basic problem is to give a classification of
manifolds of the class {Mn

i } for n ≥ 5, assuming that π1(Mn
i ) = 0. The

approach used in this paper is connected with a consideration of the Thom
complex TN of the stable normal bundle for the manifold Mn

0 belonging to
the class {Mn

i }. The complex TN = TN(Mn
0 ) is obtained by a contraction

of the boundary of the ε-neighborhood UN+n
ε of the manifold Mn

0 in the
space RN+n into a point, i.e.

TN =
UN+n

∂UN+n
,

and it is easily shown that the complex TN of dimension n + N is a
pseudomanifold with fundamental cycle [TN ], belonging to a form of the
Hurewicz homomorphism:

H : πn+N (TN )→ Hn+N (TN ).

Consider the finite set A = H−1([TN ]). The group π(Mn
0 , SON) acts on

this set, and on the set of orbits A/π(Mn
0 , SON ) there is an action of the

mapping class group π+(Mn
0 ,M

n
0 ) for mappings f : Mn

0 →Mn
0 of degree +1

such that

f∗τ(Mn
0 ) = τ(Mn

0 ).

The main goal of Chapter I is to prove the following assertion.

(Classification). There exists a natural mapping of sets {Mn
i } →

(A/π(Mn
0 , SON ))/π+(Mn

0 ,M
n
0 ), possessing the following properties:

(a) if this mapping takes two manifolds Mn
1 and Mn

2 to the same element,
then there exists such a Milnor sphere S̃n ∈ θn(∂π) that Mn

1 =
Mn

2 #S̃n;
(b) conversely, if Mn

1 = Mn
2 #S̃n, then these manifolds are mapped to the

same element of (A/π(Mn
0 , SON ))/π+(Mn

0 ,M
n
0 ), where S̃n ∈ θn(∂π);

(c) if n �= 4k + 2, then this mapping is epimorphic.

From this theorem one can immediately draw certain conclusions. For
example, one can easily prove the following.

The homotopy type and the rational Pontrjagin classes determine
a smooth simply connected manifold Mn to within a finite number of
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possibilities for n ≥ 5. If the groups H4i(Mn) are finite for 0 < 4i < n,
then there exists a finite number of smooth structures on the topological
manifold Mn (a result of the finiteness of the set A).

In fact the solution of the problem obtained by the author is much more
significant in homotopy terms than in the way it is formulated in the cited
ClassificationTheorem.A number of geometric properties ofmanifolds admit
a natural interpretation in terms of the homotopy properties of the space
TN . These properties studied at the end of Chapter I (Theorems 6.9 and
6.10) and throughout Chapter II, which is also concerned with a development
of the methods of numerical calculation. We mention here a number of
problems that are studied at the end of Chapter I and in Chapter II.

1. The conditions under which a mapping f : Mn → Mn of degree +1 is
homotopic to a diffeomorphism (Theorems 6.9 and 6.10).

2. A study of the action of π+(Mn
0 ,M

n
0 ) on the set A/π(Mn

0 , SON ) (§ 7).
3. A determination of the obstructions di(Mn

1 ,M
n
0 ) ∈ Hn−i(Mn

1 ,
πN+i(SN )) to the manifold Mn

1 ∈ {Mn
i } being diffeomorphic to the

manifold Mn
0 (§ 8).

4. The connected sum of a manifold with a Milnor sphere and its homotopic
meaning (§ 9).

5. The variation of the smooth structure of a π-manifold along a cycle of
minimal dimension (§ 9).

6. Variation in smooth structure and Morse’s surgery (§ 10).

In Chapter III the results of Chapters I and II are applied to the
working out of examples. The result of § 14 was independently obtained by
W. Browder [29].

In addition to the main text of the paper there are four appendices,
written quite concisely and not very rigorously. The reader can regard these
appendices (together with the results of §§ 10 and 12) as annotations of new
results, the complete proofs of which will be published in later parts of this
article. However, in these appendices and in §§ 10, 12 we have sketched out
the proofs with sufficient detail that a specialist might completely analyze
them without waiting for the publication of later parts.

In Appendix 1 the results of § 14 are expressed in the language,
suitable for calculations, of the Atiyah–Grothendieck–Hirzebruch K- and
J-functors, and there is indicated an application of these results to
Pontrjagin’s theory of classes.

Appendix 2 is devoted to (i) an extension of the results of the paper to
combinatorial manifolds; and (ii) an investigation of the relation between
smooth and combinatorial manifolds.

Appendix 3 is devoted to a study of the action of the Milnor groups
θ4k−1(∂π) on manifolds and to the problem of singling out the group
θ4k−1(∂π) as a direct summand in the group θ4k−1.
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In Appendix 4 we study the problem of determining the Euclidean
spaces in which a nontrivial Milnor sphere can be embedded in such a
way that its normal bundle there is trivial.

Chapter I

The fundamental construction1

§ 1. Morse’s surgery

The material of this section is largely borrowed from other papers (for
example, from [5, 9]) and is essentially a somewhat generalized account of
them in a terminology adapted to our purposes.

Let Mn ⊂ Rn+N be a smooth manifold with or without boundary,
smoothly located in a Euclidean space Rn+N of sufficiently large dimension.
Let Si×Dn−i

ε ⊂Mn be a smooth embedding of the direct product Si×Dn−i
ε

in Mn, where Dn−i
ε is a ball in the space Rn−i (of radius ε) in the natural

coordinate system

h : ∂Di+1 ×Dn−i
ε → Si ×Dn−i

ε ⊂M

such that h(x, y) = (x, hx(y)), where hx ∈ SOn−i. The set of maps
hx, x∈Si, defines a smooth map d(h) : Si → SOn−i, which completely
defines the diffeomorphism h.

Set

Bn+1(h) = Mn × I
(

0,
1
2

)
∪hDi+1 ×Dn−i

ε ,

(1)
Mn(h) = (Mn�Si ×Dn−i

ε )∪hDi+1 × ∂Dn−i
ε .

The transformation operation from Mn to Mn(h) is called a Morse surgery.
It is well known that:

(1) ∂Bn+1(h) = Mn ∪ (−Mn(h)), if Mn is closed;
(2) The manifolds Bn+1(h) and Mn(h) can be defined as smooth orientable

manifolds.

1Chapter I is a detailed account of author’s note [14].
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(3) The subspace (Mn× 1
2 )∪hDi+1×0 ⊂ Bn+1(h) is a deformation retract

of Bn+1(h).
(4) The manifoldBn+1(h) is defined up to diffeomorphism by the homotopy

class d̃(h) of the smooth mapping d(h): Si → SOn−i; d̃(h) ∈ πi(SOn−i).
(5) The manifold Bn+1(h) can be located in the direct product Rn+N ×

I(0, 1) in such a way that

Bn+1(h) ∩Rn+N × 1 = Mn(h)
Bn+1(h) ∩Rn+N × 0 = Mn

and Bn+1(h) approaches the boundary components Rn+N × 1 and
Rn+N × 0 orthogonally.

Assume in the tubular neighborhood T2ε (of radius 2ε) of the sphere Si ⊂
Mn, where T2ε = Si×Dn−i

2ε , there is a vector field τN , which is continuous
on T2ε and normal to the manifold in Rn+N . We have

Lemma 1.1. Suppose the inclusion homomorphism πi(SOn−i) →
πi(SON+n−i) is an epimorphism. Then the diffeomorphism

h : ∂Di+1 ×Dn−i
ε → Si ×Dn−i

ε ⊂Mn

may be chosen in such a way that the frame field τN , which is normal to T2ε

in RN+n, can be extended to a frame field τ̃N on (T2ε × I(0, 1
2 ))∪hDi+1 ×

Dn−i
ε , that is normal Bn+1(h) in the Cartesian product Rn+N × I(0, 1).

Let us choose on Di+1 × 0 ⊂ Rn+N × I(0, 1) some continuous frame
field τN+n−i

0 , normal to Di+1× 0 in Rn+N × I(0, 1), and let us consider its
restriction to the boundary

Si × 0 ⊂Mn ⊂ Rn+N × 0,

which we will also denote by τN+n−i
0 . Since the homomorphism

πi(SOn−i)→ πi(SON+n−i) is onto, we can choose on the sphere Si × 0 ⊂
Mn an (n− i)-frame field τn−i, normal to the sphere Si×0 in the manifold
Mn and such that the combined frame field (τN , τn−i), normal to the sphere
Si × 0 ∈ RN+n × 0, is homotopic to the field τN+n−i

0 , which is induced by
the (N + n− i)-framed field τN+n−i

0 on the ball

Di+i × 0 ⊂ RN+n × I(0, 1).
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Hence the field (τN , τn−i) may be extended to the ball

Di+1 × 0 ⊂ RN+n × I(0, 1).

We shall denote this extension by (τ̃N , τ̃n−i), where τ̃N is the extension of
the first N -frame and τ̃n−i is the extension of the last (n− i)-frame. Let us
now “blow-up” the ball

Di+1 × 0 ⊂ RN+n × (0, 1)

by the last n− i vectors τ̃n−i of the frame, more exactly, by the linear space
of dimension n− i, defined by these n− i vectors at each point of the ball.
We shall denote this blow-up by Q. The vectors of the frame τ̃N will be
normal to Q and define an extension of the frame τN to this blow-up. The
frame field τn−i, which is normal to the sphere Si × 0 ⊂ Mn, is different
from the original frame field on the sphere Si × 0 that was defined by the
original coordinate system on the Cartesian product Si×Dn−i

ε ⊂Mn. This
difference is measured by the “discriminating” map Si → SOn−i, which also
defines the element d̃(h) ∈ πi(SOn−i) needed by us and the diffeomorphism

h : ∂Di+1 ×Dn−i
ε →Mn.

It is easy to see from (1) that

Bn+1(h) =
[
(M�T2ε)× I

(
0,

1
2

)]
∪
[(
T2ε × I

(
0,

1
2

))
∪h Q

]

and that the N -frame field is extended onto Q. But

Q ≈ Di+1 ×Dn−i
ε ,

where ≈ means a diffeomorphism.
The lemma is proved.
For convenience in applications of Lemma 1.1 we formulate the following

statement.

Lemma 1.2.

(a) Suppose i < n− i. Then the map

πi(SOn−i)→ πi(SON+n−i)

is an epimorphism;
(b) Suppose i = 2k and i = n− i. Then the map

π2k(SO2k)→ π2k(SON+2k)

is also an epimorphism;
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(c) Suppose i = 2k + 1, i = n − i. In this case the map is epimorphic
if and only if i �= 1, 3, 7. If i = 1, 3, 7, then the quotient group
πi(SON+n−i)/πi(SOi), i = n− i contains two elements.

The proof of (a) and (b) is contained in [20], and that of (c) can be
found in [1].

§ 2. Relative π-manifolds

Let Mn be a smooth manifold, either closed or with boundary and let
W i ⊂Mn be a submanifold of it. Denote by νN (Mn) the normal bundle of
the manifold Mn ⊂ RN+n and denote by νn−i(W i,Mn) the normal bundle
of the manifold W i in Mn.

Definition 2.1. Let f : Mk
1 → Mn

2 be a smooth map. We shall call
Mk

1 an (f, π)-manifold modMn
2 , if

f∗νN (Mn
2 ) = νN (Mk

1 ).

Definition 2.2. Suppose a sphere Si ⊂ Mk
1 , is smoothly situated in

Mk
1 , is such that the map f |Si→Mn

2
is null-homotopic. Then the bundle

νk−i(Si,Mk
1 ) has the following properties:

(1) for i < k − i the bundle νk−i(Si,Mk
1 ) is trivial;

(2) for i = k − i, i = 2s, the bundle νk−i(Si,Mk
1 ) is trivial if and only if

the self-intersection number Si · Si is zero;
(3) for i = k − i, i = 1, 3, 7, the bundle νk−i(Si,Mk

1 ) is trivial;
(4) for i = k− i, i = 2s+ 1, i �= 1, 3, 7, the bundle is completely defined by

the value of the invariant ϕ(Si) ∈ Z2.

If x ∈ Ker f∗ ⊂ πi(Mk
1 ), where x is the homotopy class of the embedding

Si ⊂Mk
1 and the group π1(Mk

1 ) is zero, then ϕ defines a map

ϕ : Ker f∗ → Z2

and

ϕ(x+ y) = ϕ(x) + ϕ(y) + [H(x) ·H(y)]mod 2, (2)

where H : πi(Mk
1 )→ Hi(Mk

1 ) is the Hurewicz homomorphism.
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Let us consider the tubular neighborhood T of the sphere Si in Mk
1 ;

this neighborhood is the total space of an SOk−i-bundle with base Si. The
map f◦f : T →Mn

2 is null-homotopic and, by assumption,

j∗f∗νN (Mn
2 ) = νN (T ),

where j is an embedding of Si ⊂ Mk
1 . Hence νN (T ) is trivial. Since the

manifold T is not closed, the triviality of the bundle νN (T ) implies that T
is parallelizable. Hence the normal bundle of a sphere Si in a manifold is
completely determined by an element α ∈ Ker p, where

p : SOk−i ⊂ SO∞

and

p∗ : πi−1(SOk−i)→ πi−1(SO∞)

is a homomorphism of the natural embedding p. For i < k− i the map p is
an isomorphism, and this implies property 1.

If i = k − i, i = 2s, then

Ker p∗ = Z ⊂ π2s−1(SO2s),

and, as is well known, the bundles over the sphere S2s defined by the
elements α ∈ Ker p∗ ⊂ π2s−1(SO2s), are completely defined by the Euler
class χ(α), where χ(α) ≡ 0 (mod 2). But the Euler class of a bundle is equal
to the self-intersection number Si · Si, and this implies property 2.

For i = 1, 3, 7, i = k − i, the kernel Ker p∗ = 0, and this implies
property 3.

For i �= 1, 3, 7, i = 2s+1, we have Kerp∗ = Z2 (see [1]). Thus the normal
bundle νk−i(Si, T ) is determined by the value of the invariant ϕ(Si) ⊂ Z2.

Now let π1(Mk
1 ) = 0. Hence by Whitney’s results two spheres Si1, S

i
2 ⊂

Mk
1 , which define one and the same element x ∈ πi(Mk

1 ), i = k − i, are
regularly homotopic (see [25]). Hence

ϕ(Si1) = ϕ(Si2).

Thus the map

ϕ : Ker f∗ → Z2,

is defined since each element x ∈ Ker f∗ can be realized by an embedded
smooth sphere Si ⊂Mk

i (see [9]). Let us now prove (2). Let x, y ∈ Ker f∗ be
two cycles. Realize them by spheres Si1, Si2 ⊂Mn, the number of intersection
points of which is equal to the intersection number |H(x) ·H(y)| (see [25]).
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We form tubular neighborhoods T1 and T2 of the spheres Si1 and Si2 in Mk
1 ,

respectively. Denote by

T (x, y) = T1 ∪ T2

a smooth neighborhood of the union Si1 ∪ Si2. The manifold T (x, y) is
obviously parallelizable, and

Hi(T (x, y)) = Z + Z.

If the spheres do not intersect, then our statement is obvious. Let us
assume |H(x) ·H(y)| = 1. Then

π1(T (x, y)) = 0, Hj(T (x, y)) = 0, j �= i,

and the boundary ∂T (x, y) is a homotopy sphere (see [8]).
Kervaire proved [4] that in the manifold T (x, y) we have

ϕ(x+ y) = ϕ(x) + ϕ(y) + [H(x) ·H(y)] mod 2,

thus, the same holds in Mk
1 ⊃ T (x, y), since the sphere Si, realizing the

element x + y, lies in T (x, y), and ϕ is an invariant of the normal bundle.
If |H(x) ·H(y)| > 1, then the group

π1(T (x, y)) = π1(∂T (x, y))

is free and the number of its generators is equal to |H(x) ·H(y)| − 1; hence
our argument does not go through. But by the Morse surgery described
in § 1, it is possible to “paste” the group π1(T (x, y)) = π1(∂T (x, y)) and
pass to a simply connected manifold T̃ (x, y) ⊂Mk

1 such that

(a) T̃ (x, y) = T (x, y)∪h1 D
2 ×Dk−2 ∪h2 · · · ∪ht D

2 ×Dk−2, where

t = |H(x) ·H(y)| − 1

and

hq : ∂D2 ×Dk−2 → ∂T (x, y);

(b) T̃ (x, y) is parallelizable;
(c) Hi(T̃ (x, y)) = Z + Z, Hj(T̃ (x, y)) = 0, i �= j;
(d) the spheres Si1, S

i
2 ⊂ T (x, y) generate the group Hi(T̃ (x, y)).
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To do this, we must perform the Morse surgery in the interior of the
manifold Mk

1 , which is possible for k ≥ 6. Then we apply Kervaire’s results
[4] to the manifold T̃ (x, y) to obtain (2):

ϕ(x + y) = ϕ(x) + ϕ(y) + [H(x) ·H(y)] mod 2.

(Concerning Morse’s surgery operations cf. papers [2, 9].) Thus the lemma
is proved. We note that our description of the behavior of the normal bundle
to the sphere in a parallelizable manifold is not original and is contained in
papers [4, 9] and others.

Definition 2.3. If the map f : Mn
1 →Mn

2 has degree +1, we say that

the manifold Mn
1 is greater than or equal to Mn

2 , and write Mn
1

f

≥Mn
2 .1

Lemma 2.4. If Mn
1

f

≥ Mn
2 , then the map f : H∗(Mn

2 ,K) →
H∗(Mn

1 ,K) is a monomorphism for any field K.

Proof. Let x ∈ Hi(Mn
2 ,K), x �= 0; then there exists y ∈Hn−i(Mn

2 ,K)
such that (xy, [Mn

2 ]) = 1. Since

(f∗(xy), [Mn
1 ]) = (f∗xf∗y, [Mn

1 ]) = (xy, f∗[Mn
1 ]) = (xy, [Mn

2 ]) = 1,

it follows that f∗xf∗y �= 0 and therefore f∗x �= 0.
The lemma is proved.

Lemma 2.5. If π1(Mn
1 ) = π1(Mn

2 ) = 0 and Mn
1

f

≥ Mn
2 , Mn

2

g

≥ Mn
1 ,

then the maps f and g are homotopy equivalences.

Proof. The maps f◦g : Mn
2 → Mn

2 and g◦f : Mn
1 → Mn

1 are onto
of degree +1. Hence by Lemma 2.4 they induce an isomorphism of the
cohomology groups over an arbitrary field K and hence an isomorphism
of the integral cohomology and homology groups. Whitehead’s theorem
enables us to completes the proof.

Remark 2.6. Lemma 2.5 can also be stated as follows: if π1(Mn
1 ) =

π1(Mn
2 ) = 0, then the homology groups of the manifolds Mn

1 and Mn
2 are

isomorphic and Mn
1

f

≥Mn
2 , then they are homotopically equivalent.

1It is also assumed that Mn
2 is an (f, π)-manifold modulo Mn

1 .
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§ 3. The general construction

Let Mn be a smooth simply connected oriented manifold and let
νN (Mn) be its stable normal bundle with fiber closed ball DN , and suppose
that this bundle is oriented, i.e. the structural group is reduced to SON .
We contract the boundary ∂νN (Mn) to the point and denote by TN (Mn)
the obtained space, which is the Thom space of the bundle (see [7, 22]). We
have:

TN (Mn) =
νN (Mn)
∂νN (Mn)

. (3)

The Thom isomorphism

ϕ : Hi(Mn)→ HN+i(TN (Mn)) (4)

is well known.
As usual, we denote by [Mn] the fundamental cycle of the manifold Mn

for the selected orientation.

Lemma 3.1. The homology class ϕ[Mn] belongs to the image of the
Hurewicz homomorphism H : πN+n(TN(Mn))→ HN+n(TN (Mn)).

Proof. Let us construct an element x ∈ πN+n(TN(Mn)) such that
H(x) = ϕ[Mn]. Let the manifold Mn be smoothly situated in the sphere
SN+n. Its closed tubular neighborhood T ⊂ SN+n is diffeomorphic to the
total space of the bundle νN (Mn) in a natural way, since T is canonically
fibered by normal balls DN . We effect the natural diffeomorphism T →
νN (Mn) and consider the composition

T → νN (Mn)→ TN(Mn);

the map T → TN(Mn) takes the boundary ∂T to a point and is therefore
extended to the map SN+n → TN (Mn) that takes all of the exterior
SN+n�T to the same point. This map obviously represents the desired
element x ∈ πN+n(Tn(Mn)). The lemma is proved.

In the sequel an important role will be played by the set

H−1ϕ[Mn] ⊂ πN+n(TN (Mn)),

which we shall always denote by A(Mn). We consider an arbitrary element
α ∈ A(Mn) and the map

f̃α : SN+n → TN (Mn)

representing it.
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From the paper of Thom [22] there easily follows

Lemma 3.2. There exists a homotopic smooth map

fα : SN+n → TN(Mn)

such that

(a) the inverse image f−1
α (Mn) is a smooth manifold Mn

α , smoothly situated
in the sphere SN+n;

(b) for every point x ∈Mn
α the map fα takes the ε-ball DN

x , normal to Mn
α

in SN+n, to the ε-ball DN
fα(x), normal to Mn in TN(Mn), and the map

fα : DN
x → DN

fα(x) is a linear nondegenerate map for all x ∈Mn
α ;

(c) the maps fα/Mn
α → Mn and fα/DN

x → DN
fα(x) have degree +1 for all

x ∈Mn
α .

Proof. Points (a) and (b) are taken from Thom’s paper [22]. For
the proof of point (c) we observe that the map f̃α : SN+n → TN(Mn)
and hence fα have degree +1 (this makes sense because TN(Mn) is a
pseudomanifold with fundamental cycle [TN ] = ϕ[Mn]). Hence the map
fα must have degree +1 in the tubular neighborhood of Mn

α = f−1
α (Mn).

We reduce the structural group of the bundle νN (Mn
α ) to SON so that all

maps fα : DN
x → DN

fα(x) have determinants >0. Then on the manifold Mn
α

there is a unique orientation which is induced by the orientations of the
sphere SN+n and the fiber DN

x . In this orientation the map fα : Mn
α →Mn

has degree +1 since the degree of the bundle map

νN (Mn
α )→ νN (Mn)→ TN (Mn)

is +1 and is equal to the product of the degrees of the map for the base
Mn
α and for the fiber DN

x , x ∈ Mn
α ; on the fiber DN

x , as a result of the
choice of its orientation, this degree is equal to +1, which yields the desired
statement. The lemma is proved.

Lemma 3.3. The manifold Mn
α

fα≥ Mn.

Proof. The map fα has degree +1 and is clearly such that

f∗
αν

N (Mn) = νN (Mn
α ).

Lemma 3.4. If π1(Mn
α ) = 0 and Hi(Mn

α ) = Hi(Mn), i = 0, 1, 2, . . . , n,
then the map fα : Mn

α →Mn is a homotopy equivalence.

The proof follows from Corollary 3.3, Lemma 2.5 and Remark 2.6 on
page 59.



September 7, 2009 12:27 9in x 6in b789-ch03

62 S. P. Novikov

We denote by A(Mn) ⊂ A(Mn) the subset consisting of those elements
α ∈ A(Mn) for which there exist representatives fα : SN+n → TN (Mn)
satisfying Lemma 3.2 and such that the inverse image f−1

α (Mn) = Mn
α

is a manifold homotopically equivalent to Mn. We are interested in the
set A(Mn). To study this set, the three following important questions are
appropriate:

1. What is the location of the subset A(Mn) in A(Mn), i.e. in which classes
α ∈ A(Mn) ⊂ πN+n(TN(Mn)) are there representatives fα : SN+n →
TN (Mn), for which the manifold

Mn
α = f−1

α (Mn)

is homotopically equivalent to Mn (in which classes α ∈ A(Mn) are
there manifolds of the same homotopy type as Mn)?

2. Suppose two manifolds Mn
α,1 and Mn

α,2 belong to the same class α ∈
A(Mn) and both are homotopically equivalent to Mn. This means that
there are two homotopic maps of the sphere

fα,i : SN+n → TN(Mn)

such that

f−1
α,i (M

n) = Mn
α,i, i = 1, 2.

What is the connection between Mn
α,1 and Mα

α,2?
3. In which classes αi ∈ A(Mn) can one find one and the same manifold
Mn

1 that is homotopy equivalent to Mn?

The following three sections will be devoted to the solution of these
questions.

§ 4. Realization of classes

The aim of this section is to study in which classes α ∈ A(Mn) one can
find manifolds homotopically equivalent to Mn. First we prove a number
of easy algebraic lemmas. Consider two finite complexes X,Y and a map
f : X → Y. Assume that K is an arbitrary field

π1(X) = π1(Y ) = 0.

Lemma 4.1. Suppose for any K the map f∗ : Hi(X ;K) → Hi(Y ;K)
is epimorphic for i ≤ j+1 and isomorphic for i ≤ j. Then f∗ : Hi(X ;Z)→
Hi(Y ;Z) is epimorphic for i ≤ j + 1 and isomorphic for i ≤ j.
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Proof. We consider the cylinder Cj = X × I(0, 1)∪f Y, which is
homotopy equivalent to Y, and the exact sequence of the pair (Cf , X):

Hi(X)
f∗→ Hi(Y )→ Hi(Cf , X) ∂→ Hi−1(X)

f∗→ Hi−1(Y ) (5)

for i ≤ j + 1. From (5) it follows that Hi(Cf , X ;K) = 0 for i ≤ j + 1.
Therefore

Hi(Cf , X ;Z) = 0, i ≤ j + 1.

Returning to the exact sequence (5) (for integral homology) we obtain all
the statements of the lemma. The lemma is proved.

Lemma 4.2. Suppose the map f : X → Y is such that the map f∗ :
Hi(X ;Z)→ Hi(Y ;Z) is an epimorphism for i ≤ j+1 and an isomorphism
for i ≤ j. Then f∗ : πi(X) → πi(Y ) is an isomorphism for i ≤ j and an
epimorphism for i ≤ j + 1, and vice versa.

Proof. Consider the two exact sequences which form the commutative
diagram together with the Hurewicz homomorphism

Hi(X ;Z)
f∗

−−−−→ Hi(Y ;Z) −−−−→ Hi(Cf , X ;Z) ∂−−−−→ Hi−1(X ;Z)

H

� H

� H

� H

�
πi(X)

f∗
−−−−→ πi(Y ) −−−−→ πi(Cf , X) ∂−−−−→ πi−1(X)

(6)

for i ≤ j + 1. It is easy to see that

Hi(Cf , X ;Z) = 0, i ≤ j + 1.

Since π1(X) = π1(Y ) = 0, we have

π1(Cf , X) = 0, i ≤ j + 1,

which yields Lemma 4.2 (the direct statement). The converse statement is
proved analogously. The lemma is proved.

For definiteness, in the sequel we shall always denote the
homomorphisms π1(X) → πi(Y ) and Hi(X) → Hi(Y ) corresponding to
f : X → Y, by f (πi)∗ and f (Hi)∗ .

Lemma 4.3. Under the same conditions as in Lemma 4.2, the
homomorphism

H : Ker f (πj+1)∗ → Ker f (Hj+1)
∗

is an epimorphism.
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Proof. The following diagram is commutative and the rows are exact:

πj+2(Cf , X) −−−−→ Ker f (πj+1)∗ −−−−→ 0

��
�H �H

Hj+2(Cf , X ;Z) −−−−→ Ker f (Hj+1)
∗ −−−−→ 0.

(7)

From the proof of Lemma 4.2 we know that

Hi(Cf , X) = πi(Cf , X) = 0, i ≤ j + 1.

Therefore

πj+2(Cf , X) ≈ Hj+2(Cf , X).

The standard argument completes the proof.

Now, let us consider a map f : Mn
1 → Mn

2 of degree +1. We will be
interested in the case when the kernels Ker f (πi)∗ are trivial for i < [n2 ]. We
consider separately the cases of even and odd π. The following two lemmas
hold.

Lemma 4.4. Suppose n = 2s and the groups Ker f (πi)∗ are trivial for
i < s. Then the group Ker f (Hs)∗ is free abelian, is a direct summand in the
group Hs(Mn

1 , Z), and the intersection matrix of basic cycles of the group
Ker f (Hs)

∗ is unimodular.

Lemma 4.4′. Suppose n = 2s + 1 and the groups Ker f (πi)∗ are
trivial for i < s. Then the group Ker f (Hs+1)∗ is free abelian, and both
Ker f (Hs)

∗ and Ker f (Hs+1)∗ are direct summands of the groups Hs(Mn
1 , Z)

and Hs+1(Mn
1 , Z), respectively. The finite part TorKer f (Hs)

∗ of the group
Ker f (Hs)

∗ is closed under the Alexander duality, i.e. the linking matrix of
the generating elements of order pi is unimodular mod pi for some primary
decomposition, for fixed values of p, i. The intersection matrix of Ker f (Hs+1)∗
and Ker f (Hs)

∗ /TorKer f (Hs)
∗ is unimodular, too.

We shall prove both lemmas simultaneously, starting from the identity

f∗(f∗x ∩ y) = x ∩ f∗y, (8)
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which holds for any continuous map f . In our case f∗[Mn
1 ] = [Mn

2 ] and the
operation ∩ [Mn

1 ] coincides with the Poincaré duality isomorphism D. Thus
we get:

f∗Df∗ = D,

which yields

Hi(Mn
1 ) = Ker f (Hi)∗ +Df∗Hn−i(Mn

2 ) (9)

over any coefficient domain and for any values of i. Consequently, we have
proved the statement about direct summands in all cases. The absence of
torsion in Ker f (Hs)

∗ for n = 2s and Ker f (Hs+1)∗ for n = 2s+ 1 follows from
the fact that the groups Ker f (Hs−1)∗ are trivial in both cases, and from
the Alexander duality for torsions of Hs−1(Mn

1 ) and Hn−s(Mn
1 ) for both

values of n. It remains to prove the unimodularity of the correspondent
intersection/linking matrices. We show that the groups Ker f (Hi)∗ and
Df∗Hn−i(Mn

2 ) are orthogonal to each other with respect to the cycle
intersection, for any value of i and over each coefficient domain. Indeed,
let x ∈ Hn−i(Mn

2 ) and y ∈ Ker f (Hi)∗ . Then

(f∗ ∩ [Mn
1 ]) · y = (f∗x, y) = (x, f∗y) = 0 (10)

and any element of the group Df∗Hn−i(Mn
2 ) is of the form

f∗x ∩ [Mn
1 ].

Thus the groups Ker f (Hi)∗ andDf∗D−1(Mn
2 ) are orthogonal. Applying this

orthogonality, we obtain the unimodularity of the intersection matrices in
all cases. The statement concerning linking matrices follows from the fact
that the linking can be defined in terms of intersection of cycles modulo pi.
Lemmas 4.4 and 4.4′ are proved.

We note a useful supplement to Lemma 4.4.

Lemma 4.5. The map H : Ker f (πs)∗ → Ker f (Hs)
∗ is an isomorphism

for n = 2s if the groups Ker f (πi)∗ = 0 for i < s.
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Proof. As in the proof of Lemma 4.3, consider the commutative
diagram:

Hs+1(Mn
1 ) ≈→Hs+1(Mn

2 )→Hs+1(Cf ,Mn
1 ) ∂→Ker f (Hs)∗ → 0�

� ��
�H

�
πs+1(Mn

1 )→ πs+1(Mn
2 )→ πs+1(Cf ,Mn

1 ) ∂→Ker f (πs)∗ → 0.

(11)

Since the maps f (Hi)∗ for i < s are isomorphisms, the map f (Hs+1)∗ is an
isomorphism as well. The exactness of the sequence yields the isomorphism

∂ : Hs+1(Cf ,Mn
1 )→ Ker f (Hs)

∗ .

Thus

∂H = H∂ : πs+1(Cf ,Mn
1 )→ Ker f (Hs)

∗

is an isomorphism, and the map

H : Ker f (πs)∗ → Ker f (Hs)
∗

is also an isomorphism. The lemma is proved.

Let us now investigate an arbitrary element α ∈ A(Mn). We have the
following:

Lemma 4.6. For every element α ∈ A(Mn), there exists a map fα :
SN+n → TN(Mn) satisfying Lemma 3.2, such that the inverse image Mn

α =
f−1
α (Mn) ⊂ SN+n possesses the following properties:

(a) π1(Mn
α ) = 0;

(b) the maps f (Hs)
∗ : Hs(Mn

α )→ Hs(Mn) are isomorphisms for s < [n2 ].

Proof. We will inductively construct the maps

sfα : SN+n → TN (Mn),

satisfying Lemma 3.2, for which the groups

Hi(Mn
α,s), Mn

α,s =α f
−1
s (Mn)

are isomorphic to the groups Hi(Mn), i < s. Since the maps sfα: Mn
α,s →

Mn have degree +1, this isomorphism is established by the map sf
(Hi)
α∗ .

From Lemmas 4.1–4.3 it follows that the map sf
(Hs)
α is an epimorphism,

and all of the basic cycles x1, . . . , xl ∈ Ker sf
(Hs)
α can be realized by

a system of smoothly embedded disjoint spheres Ss1 , . . . , S
s
l ⊂ Mn

α,s, on
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which the map sfα/S
s
j is null-homotopic. We assume that the maps ifα

are already constructed for i ≤ s; let us construct the map s+1fα by
reconstructing sfα.

Step 1. We deform the map sfα to a map sf̃α, such that

sf̃α(T (Ss1)) = g0 ∈Mn,

where g0 is a point in Mn. The deformation is assumed to be smooth,
and T (Ss1) ⊂ Mn

α,s denotes a smooth tubular neighborhood of the sphere
Ss1 ⊂ Mn

α,s. In the fiber DN
g0 ⊂ νN (Mn), we take the frame τN0 , defining

the orientation of the fiber DN
g0 . The inverse image sf̃

∗
ατ

N
0 is a continuous

N -frame field τN on T (Ss1) that is normal to T (Ss1) ⊂ SN+n, since the map
sf̃α satisfies Lemma 3.2. The arbitrariness in the choice of the frame τN0 is
immaterial for our purposes.

Step 2. According to Lemma 2.1 the tube T (Ss1) is diffeomorphic to
Ss1 ×Dn−s

ε , where ε > 0 is a small number.
We assign in T (Ss1) the coordinates (x, y), x ∈ Ss1 , y ∈ Dn−s

ε . As a result
of Step 1, on the tube T (Ss1) we have a field τN . Consider the Cartesian
product SN+1 × I(0, 1). We shall assume that

sf̃α : SN+n × 0→ TN(Mn), Mn
α,s ⊂ SN+n × 0.

Let us construct a membrane Bn+1(h) ∈ SN+n × I(0, 1) orthogonally
approaching to the boundaries, such that the field τN can be extended to
a certain field τ̃N , that is normal to

BN+1(h)
∖[

(Mn
α,s�T (Ss1))× I

(
0,

1
2

)]

in the Cartesian product SN+n × I(0, 1), where

h : ∂Ds+1 ×Dn−s
ε → T (Ss1), h(x, y) = (x, d(h)x(y)),
d(h) : Ss1 → SOn−s.

Such a membrane Bn+1(h) can be chosen according to Lemmas 1.1 and 1.2.

Step 3. We extend the map sf̃α : Mn
α,s → Mn to a smooth map sFα :

Bn+1(h)→Mn by setting

sFα = sfα�Bn+1(h) ∩ SN+n × 0,

sFα(Ds+1 ×Dn−s
ε ) = g0 = sfα(T (Ss1)).

(12)
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Extend

sFα : Bn+1(h)→Mn

to

aFα : T (Bn+1(h))→ TN(Mn),

where T (Bn+1(h)) is the tubular neighborhood of Bn+1(h) in SN+1 ×
I(0, 1), according to the frame field τ̃N that is normal to the partBn+1(h) in
SN+n× I(0, 1), the latter being diffeomorphic to Ds+1×Dn−s

ε ⊂ Bn+1(h).
On the remaining part

Bn+1(h)�Ds+1 ×Dn−s
ε = Mn

α,s × I
(

0,
1
2

)

the extension of the map is trivial. In their intersection

Mn
α,s × I

(
0,

1
2

)
∩Ds+1 ×Dn−s

ε = T (Ss1)

these extensions are compatible with the frame field τN . Furthermore, by
using Thom’s method, we extend the map sFα to the whole SN+n×I(0, 1).

Now we put

sf
(1)
α = sFα

SN+n × 1
.

Clearly, the map sf
(1)
α satisfies Lemma 3.2 and

sf
(1)−1
α (Mn) = Mn

α,s(h).

Since 2s+ 1 < n, we conclude that

Ker sf
(1)
α∗ =

Ker sfα∗
(x1)

.

Iterating the construction, we put

s+1fα = sf
(l)
α ,

which yields the statement of the lemma.
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The analysis of the case s = [n2 ] is more difficult. We shall subdivide it
into the following cases:

(1) n = 4k, s = 2k, k ≥ 2;
(2) n = 4k + 2, s = 2k + 1, k ≥ 1, k �= 1, 3;
(3) n = 4k + 2, s = 2k + 1, k = 1, 3;
(4) n = 4k + 1, s = 2k, k ≥ 1;
(5) n = 4k + 3, s = 2k + 1, k ≥ 1.

Lemma 4.7. Let n = 4k. For every element α ∈ A(Mn) there exists
a map fα : SN+n → TN(Mn) satisfying Lemma 3.2 such that the inverse
image Mn

α = f−1
α (Mn) is homotopically equivalent to Mn.

Proof. Applying Lemma 4.6, we can construct a map 2kfα : SN+n →
TN(Mn), such that

Ker 2kf
(Hi)
α∗ = 0, i < 2k,

where

akfα : Mn
α,k = 2kf

−1
α (Mn)→Mn.

According to Lemma 4.4, the group

Ker 2kf
(H2k)
α∗ = L2k ⊂ H2k(Mn

α,2k)

is free Abelian; it is a direct summand of the group H2k(Mn
α,2k), and the

intersection matrix for basic cycles l1, . . . , lm ⊂ L2k is unimodular. In the
group H2k(Mn

α,2k)/Tor, choose a basis l1, . . . , lm, q1, . . . , qp such that

qi ◦ lj = 0, i = 1, . . . , p, j = 1, . . . ,m;

this can be done because of the unimodularity of

(lj ◦ lt), j, t = 1, . . . ,m.

The matrix (qi ◦ qj) is equivalent to the intersection matrix for basic
cycles of the group H2k(Mn)/Tor; moreover,

(2kfα∗qi) ◦ (2kfα∗qj) = qi ◦ qj .
Since

2kf
∗
αν

N (Mn) = νN (Mn
α,2k)

and the degree of 2kfα is +1, the Hirzebruch formula [3] yields that the
indices (signatures) of the manifolds Mn

α,2k and Mn are equal to each other.
Thus the signature of the matrix (li ◦ lj), i, j = 1, . . . ,m, is equal to zero
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(the intersection matrix of Mn
α,2k thus splits into two matrices, one of which

is identical to the intersection matrix for the manifold Mn, and the other
one is (li ◦ lj), i, j = 1, . . . ,m). On the other hand, the self-intersection
indices li ◦ li are even. To prove that li ◦ li are even, let us realize the cycle li
by a smooth sphere S2k

i ⊂Mn
α,2k according to Whitney [25] and Lemma 4.3.

Then we consider the tubular neighborhood of the sphere, T (S2k
i ) ⊂Mn

α,2k,
which is a parallelizable manifold (cf. Proof of Lemma 2.2, point 1). The
self-intersection index of a sphere in a parallelizable manifold is always even,
which yields the desired statement. Thus the signature of the matrix (li◦ lj)
is zero and

li ◦ li ≡ 0 (mod 2).

According to [9], one can find a basis l′1, . . . , l
′
m,m = 2m′ such that

(a) l′i ◦ l′i = 0, 1 ≤ i ≤ m;
(b) l′2i+1 ◦ l′2i+2 = 1, i = 0, 1, . . . ,m′ − 1,
(c) l′k ◦ l′j = 0 otherwise,

i.e. the matrix can be reduced to the form


0 1
1 0 0
. . .
. . .

. . .

. . .

0 0 1
1 0



. (13)

We realize the cycles li, i = 1, . . . ,m, by smoothly embedded spheres
S2k
i ⊂Mn

α,2k in such a way that their geometric intersections correspond to
the algebraic intersection indices (the number of intersection points S2k

i ∩
S2k
j is equal to the index |S2k

i ◦S2k
j |; this can be done for k > 1; cf. [9, 26]).

According to Lemma 2.2, the normal bundles ν2k(S2k
i ,Mn

α,2k) are trivial.
Then, we exactly repeat Steps 1, 2, 3 of the proof of Lemma 4.6, using
Lemma 1.2. As a result of Morse surgery, the manifold Mn

α,2k is simplified
(one Morse surgery over the sphere S2k

i kills the square
(

0 1
1 0

)
; cf. [9]).

Iterating the operation, we obtain the map

fα;SN+n → TN (Mn)

such that Ker f (Hi)
α∗ = 0, i ≤ 2k, and π(Mn

α ) = 0. By Poincaré duality,

Ker f (Hj)
2∗ = 0, j > 2k,
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and the groups Hi(Mn
α ) and Hi(Mn) are isomorphic. By Lemma 2.4 and

Remark 2.6 on page 59, the manifold Mn
α is homotopically equivalent to

the manifold Mn. The lemma is proved.

Now let n = 4k + 2, k �= 1, 3, k > 1.

Lemma 4.8. For every element α ∈ A(Mn) there exists a map fα :
SN+n → TN(Mn) satisfying Lemma 3.2, such that the inverse image Mn

α =
f−1
α (Mn) possesses the following properties:

(a) π1(Mn
α ) = 0;

(b) Hi(Mn
α ) = Hi(Mn), i �= 2k + 1;

(c) Ker f (H2k+1)
α∗ = Z + Z or 0;

(d) denote the base cycles of the group Ker f (H2k+1)
α∗ by x, y, x ◦ y = 1 if

Ker f (H2k+1)
α∗ = Z + Z. Then ϕ(x) = ϕ(y) = 1.

Proof. By using the results of Lemma 4.6, we consider the map

2k+1fα : SN+n → TN (Mn),

satisfying Lemma 3.2 and such that

Hi(Mn
α,2k+1) = Hi(Mn), i < 2k + 1,

Ker 2k+1f
(H2k+1)
α∗ = Z + · · ·+ Z;

the intersection matrix for the base cycles of the group Ker 2k+1f
(H2k+1)
α∗

is skew-symmetric and unimodular. It can therefore be reduced to the
basis x1, . . . , x2l ∈ Ker 2k+1f

(H2k+1)
α∗ , for which the intersection matrix is

of the form 


0 1
−1 0
. . . . . . . . . . . .

0 1
−1 0


 . (14)

Thus we determine the invariant ϕ(x) ∈ Z2, x ∈ Ker 2k+1f
(H2k+1)
α∗ , such

that

ϕ(x+ y) = ϕ(x) + ϕ(y) + (x ◦ y) mod 2

by Lemmas 2.2 and 4.4. Set

ϕ(2k+1fα) =
l∑
i=1

ϕ(x2i−1)ϕ(x2i).
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If ϕ(2k+1fα) = 0, then it is possible to choose a basis x′1, . . . , x
′
2l, such that

ϕ(x′i) = 0, i = 1, . . . , 2l.

If ϕ(2k+1fα) = 1, then one can find a basis x′1, . . . , x′2l, such that

ϕ(x′1) = ϕ(x′2) = 1

and

ϕ(x′i) = 0, i > 2

(cf. [4]). Let us realize the cycles by smoothly embedded spheres S2k+1
i ⊂

Mn
α,2k+1, that intersect each other if and only if the corresponding

intersection index is nonzero, and there is at most one intersection between
any two spheres (cf. [9, 25]). If ϕ(2k+1fα) = 0 then the normal bundles
ν2k+1(S2k+1

i ,Mn
α,2k+1) are trivial. If ϕ(2k+1fα) = 1 then the bundles

ν2k+1(S2k+1
i ,Mn

α,2k+1) are trivial only for i > 2. Repeating Steps 1, 2, 3 of
Lemma 4.6 and using Lemmas 1.2 and 4.7, we employ the Morse surgery
to paste the spheres S2k+1

2i−1 , i ≥ 2, every time killing the square
(

0 1
−1 0

)
.

If ϕ(2k+1fα) = 0, then we paste the sphere S2k+1
1 as well, because its normal

bundle in the manifold Mn
α,2k+1 is trivial. As a result we get the map

fα : SN+n → TN(Mn),

which possesses properties (a)–(d).
Thus the lemma is proved.

We now investigate the case n = 6, 14 = 4k + 2, k = 1, 3.

Lemma 4.8′. For every element α ∈ A(Mn) there exists a map fα :
SN+n → TN(Mn) such that

(1) π1(Mn
α ) = 0;

(2) Hi(Mn
α ) = Hi(Mn), i �= 2k + 1;

(3) Ker f (H2k+1)
α∗ = Z + Z or 0.

Though the formulations of Lemmas 4.8 and 4.8′ are analogous, we shall
see from the proof that these cases are essentially distinct. As above, we
construct the map

2k+1fα : SN+n → TN(Mn).
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We have:

Ker 2k+1f
(Hi)
α∗ = 0, i < 2k + 1,

and the group Ker 2k+1f
(H2k+1)
α∗ is free abelian; in the latter group we choose

basic cycles x1, . . . , x2l, for which the intersection matrix is of the form (14).
Let us realize these cycles by the spheres S2k+1

i ⊂Mn
α,2k+1. The map 2k+1fα

can be thought of such that

2k+1fα(S2k+1
2i−1 ) = 2k+1fα(S2k+1

2i ) = g0 ∈Mn, i = 1, . . . , l,

where g0 is a point in Mn. On the spheres S2k+1
2i−1 and S2k+1

2i , there are the
frame fields τN2i−1 and τN2i , which are normal to Mn

α,2k+1. The maps

f∗ : π3(SO3)→ π3(SON+3)

and

j∗ : π7(SO7)→ π7(SON+7)

are not epimorphic. In fact,

Cokerf∗ = Z2.

We select arbitrary frame fields τ2k+1
2i−1 , τ2k+1

2i that are normal to S2k+1
2i−1

and S2k+1
2i in Mn

α,2k+1 (we recall that in this case the normal bundles
ν2k+1(S2k+1

2i−1 ,M
n
α,2k+1) and ν2k+1(S2k+1

2i ,Mn
α,2k+1) are trivial).

If we vary the fields τ2k+1
2i−1 and τ2k+1

2i arbitrarily, the total frame fields
(τN2i−1, τ

2k+1
2i−1 ) and (τN2i , τ

2k+1
2i ), which are normal to the spheres S2k+1

2i−1 and
S2k+1

2i in SN+n, τ2k+1
2i−1 and τ2k+1

2i form the elements ψ2i−1, ψ2i ∈ Cokerj∗.
If ψ2i−1 �= 0 and ψ2i �= 0, then the framing cannot be extended to the balls
D2k+2

2i−1 , D
2k+2
2i ⊂ SN+n× I(0, 1). This yields an obstruction to transmission

of framings τN2i−1 and τN2i under the Morse surgery (depending on the field
τ2k+1
2i−1 or τ2k+1

2i ) valued in the group Cokerj∗, and equal to

ψ2i−1 = ψ2i−1(S2k+1
2i−1 )

and

ψ2i = ψ2i(S2k+1
2i ).

It is easy to see that the invariants ψ depend only on the cycle
xs∈Ker 2k+1f

(H2k+1)
α∗ and do not depend on the sphere S2k+1

s realizing the
cycle xs because

Ker 2k+1f
(H2k+1)
α∗ = Ker 2k+1f

(π2k+1)
α∗
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according to Lemma 4.5, and the homotopic spheres of dimension 2k + 1
in Mn

2k+1,α are regularly homotopic (see [25]). Thus, we determine the
invariant

ψ(x) ∈ Z2, x ∈ Ker 2k+1f
(H2k+1)
α∗ .

We note further that analogously to the construction of ϕ, one may find
a basis x′1, . . . , x′2l such that ψ(x′s) = 0, s > 2 (see [15]). It is therefore
possible, following the previous proofs, to paste the cycles x′s, s ≥ 3 by
a Morse surgery. If ψ(x′1) �= 0 and ψ(x′2) �= 0, the further pastings are
impossible (the framing transmission obstruction is nonzero). If ψ(x′s) = 0,
s = 1 or s = 2, then the cycle x′s can be repasted and therefore delete the
whole square

(
0 1

−1 0

)
. As a result, we obtain the claim of the lemma. The

lemma is proved.

Remark 4.9. For a detailed analysis of the invariant ψ and Morse
surgery (for k = 0) see L. S. Pontrjagin [15].

It remains for us to investigate the case of odd values of n. First of all
we note that in this case there is no obstruction for the Morse surgery
to transmit the framing; however, it is not clear whether the manifold
can be simplified as a result of Morse surgery (just this question had a
trivial solution in the remaining cases). If n = 2i + 1, then the Morse
surgery over a cycle (sphere) of dimension i yields a new cycle of the same
dimension i, which would be null-homotopic in any other case. Consider an
arbitrary closed simply connected manifold Qn. Assume the group Hi(Qn)
has a torsion TorHi(Qn) �= 0. Choose in TorHi(Qn) a minimal system of
generators x1, . . . , xl of orders q1, . . . , ql. As it is well known, for any two
cycles x, y ∈ TorHi(Qn) there is a “linking coefficient” Lk(x, y) ∈ Zd(q,q′),
where q and q′ are orders of the elements x and y and d(q, q′) is their
greatest common divisor. Namely,

Lk(x, y) = ∂−1(qx) ◦ y ≡ x ◦ ∂−1(q′y)mod d(q, q′). (15)

We formulate the Poincaré–Alexander duality1:
Suppose x1, . . . , xl ∈ TorHi(Qn) is a minimal system of p-primary

generators of orders q1, . . . , ql, respectively. Then there exists a minimal
generator system y1, . . . , yl ∈ TorHi(Qn) of orders q1, . . . , ql, such that

Lk(xm, yl) = δml mod d(qm, ql). (16)

1Linking coefficients and duality are well defined not only for a system of
p-generators.
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Assume that the cycle x1 is realized by a sphere Si1 ⊂ Qn in such a way
that the bundle νi+1(Si1, Q

n) is trivial.
The tubular neighborhood T (Si1) of the sphere Si1 in Qn is diffeomorphic

to Si1 ×Di+1
ε , ε > 0 being a small number.

We decompose the Morse surgery into two steps:

Step 1: Qn → Qn�Si1 ×Di+1
ε = Q

n
,

Step 2: Q
n → Q

n ∪h Di+1 × Siε = Qn(h), where h : ∂Di+1 ×Di+1
ε → Qn

(see § 1).

Consider the cycle

b(x1) = g0 × ∂Di+1
ε ⊂ Qn, g0 ∈ Si1.

Lemma 4.10. Hs(Q
n
) = Hs(Qn) for s < i. There is an epimorphism

x1∗ : Hi(Q
n
) → Hi(Qn), the kernel of which is generated by the cycle

b(x1). In the group Hi(Q
n
) it is possible to choose generators ỹj = x−1

1∗ yj ,
j = 1, . . . , l such that

b(x1) = q1ỹ1. (17)

Proof. Hs(Q
n
) = Hs(Qn), s < i, as long as n = 2i + 1 > 2s + 1,

and therefore all s-dimensional cycles and (s+ 1)-dimensional membranes
can be assumed to be nonintersecting with Si1. For s = i we can assume
that the s-dimensional cycles do not intersect Si1. Therefore an embedding
induces the epimorphism

x1∗ : Hi(Q
n
)→ Hi(Qn).

But the membranes have dimension i+1 and intersect S
i

1 at isolated points.
Consequently, two cycles which are homologous in Qn, are homologous in
Q
n

modulo b(x1). Consequently,

Kerx1∗ = (b(x1)).

In the homology class y1 ∈ Hi(Qn, Z) one can find a cycle y1 and a
membrane ∂−1(gy1) such that the intersection index

∂−1(qy1) ◦ x1 = 1,

which yields the cycle b(x1) is homologous to qỹ1. Thus, the lemma is
proved.

It is well known that the linking coefficients Lk(x, y) are bilinear,
symmetric for odd i and antisymmetric for even i. In the group
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TorHi(Qn, Z), choose some p-primary subgroup system

H(p, sp) ⊃ H(p, sp − 1) ⊃ · · · ⊃ H(p, 1),

where

TorHi(Qn, Z) =
∑
p,k

H(p, k)/H(p, k − 1).1

Thus, the group H(p, sp) contains all elements of the group of
orders pj , and the group H(p, k)/H(p, k − 1) contains all p-primary
generators of orders pk, and H(p, k)/H(p, k − 1) is a subgroup spanned
by these elements: H̃(p, k) ⊂ Hi(Qn, Z).

Lemma 4.11.

(a) The direct sum decomposition of TorHi(Q
n
, Z) as H(p, k)/H(p, k− 1)

can be made (for an appropriate choice of p-primary generators) such
that Lk(x, y) = 0, if x ∈ H̃(p, k1), y ∈ H̃(p, k2), k1 �= k2;

(b) In each group H̃(p, k) one can choose a system of p-primary generators
x1, . . . , xl, y1, . . . , y2m ∈ H̃(p, k) such that:

Lk(xs, yl) = 0, 1 ≤ s ≤ t, 1 ≤ l ≤ 2m,
Lk(xs1 , xs2) = 0, s1 �= s2,

Lk(yl1 , yl2) = 0, |l1 − l2| > 1,
Lk(yl1 , yl2) = 0, l1 + l2 ≡ 1(mod 4),




(18)

Lk(xs, xs) �≡ 0 (mod p), 1 ≤ s ≤ t, (19)

Lk(yl, yl) ≡ 0 (mod p), 1 ≤ l ≤ 2m,
Lk(y2l−1, y2l) ≡ 1 (mod pk), 1 ≤ l ≤ m.

}
(20)

Proof. It can be easily seen that for any choice of a system of
p-primary generators in the groupH(p, sp), the linking coefficient matrix for
generating elements of order psp (considered mod psp) has a determinant
which is relatively prime to p. We put k = sp and consider the subgroup
H(p, sp − 1) such that

Lk(x, y) = 0,

where x ∈ H(p, sp−1) and y is a generator of order psp . Now one can choose
a new system of p-primary generators in which all generators of orders

1The choice is such that H(p, k) = H(p, k)/H(p, k − 1) + H(p, k − 1), eH(p, k) =
H(p, k)/H(p, k − 1).
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less than psp , belong to the subgroup H(p, sp − 1). Assume by induction
hypothesis that in the group H(p, sp) there are fixed subgroups H(p, k)
together with a system of p-primary generators such that:

(a) all generators of order greater than pk belong to H(p, k);
(b) Lk(x, y) = 0, x ∈ H(p, k), y is a generator of order >pk.

Let us construct the group H(p, k − 1). Consider the subgroup H(p, k)
and suppose that H(p, k − 1) consists of all elements x ∈ H(p, k − 1) such
that

Lk(x, y) = 0,

where x ∈ H(p, k − 1), y is a generator of order pk. Since the linking
coefficient matrix for basic cycles of orders pk for H(p, k) (here coefficients
are considered mod pk) has a determinant coprime to p, then the group
H(p, k − 1), we have constructed, possesses all necessary properties. Thus,
we have decomposed the group H(p, sp) as a direct sum

H̃(p, k) =
H(p, k)

H(p, k − 1)
,

so that

Lk(H̃(p, k1), H̃(p, k2)) = 0, k1 �= k2.

Point (a) of the lemma is completely proved. For the proof of point (b) we
note that each group H̃(p, k) represents a linear space over the ring Zpk with
scalar product Lk(x, y), having determinant coprime with p. Consequently,
either

(1) in the original basis there is a generator x̃1 such that Lk(x̃1, x̃1) �≡ 0
(mod p), or

(2) there is a pair of generators ỹ1, ỹ2 such that

Lk(ỹ1, ỹ1) ≡ 0 (mod p), Lk(ỹ2, ỹ2) ≡ 0 (mod p),
Lk(ỹ1, ỹ2) �≡ 0 (mod p).

If case (1) holds, then one must select a basis (x̃1, x2, . . . , xl, y1, . . . , ys)
such that

Lk(xj , x̃1) = Lk(yj , x̃1) = 0, j ≥ 2.

If case (2) holds, then∣∣∣∣∣ Lk(ỹ1, ỹ2), Lk(ỹ1, ỹ2)
±Lk(ỹ1, ỹ2), Lk(ỹ2, ỹ2)

∣∣∣∣∣ =

∣∣∣∣∣pa11, a12

±a12, pa22

∣∣∣∣∣ �≡ 0 (mod p);
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we select a new basis {xj , ỹε, yl}, l ≥ 2, such that

Lk(xj , ỹε) = Lk(yl, ỹε) = 0, ε = 1, 2.

In the second case we put

y1 = ỹ1, y2 =
1

Lk(ỹ1, ỹ2)
ỹ2.

Then in both cases we select the other required generators in subgroups
orthogonal to x̃1 (in the first case) or subgroups orthogonal to ỹ1, ỹ2 (in the
second case) in such a way that the relations (18)–(20) hold. The lemma is
proved.

In the sequel we will always compose a minimal system of generators
of the group TorHi(Qn, z) by taking p-primary generators constructed in
Lemma 4.11. We shall select a minimal system (with respect to the number
of generators), and the generating element x of order

q =
∏
p∈I

pkp

will be canonically represented as a sum of primary generators x =
∑
p x(p)

of orders pkp . We split the set of indices J into two parts: for the first part
J1 we take all p for which the elements x(p) satisfy (19), and for the second
part J2 we take all p, for which x(p) satisfies (20). Setting

x =
∑
p∈J1

x(p), x =
∑
p∈J2

x(p),

we see that for x there is a basic element y, independent with x, such that
the linking number Lk(x, y) is relatively prime to the order of x (the latter
being equal to y).

Lemma 4.12. If n = 2i+1 and i is even, then the order of the element
x is equal to 2 (if x �= 0).

It is evident that the proof of the lemma immediately follows from the
antisymmetry Lk(x, x) = −Lk(x, x) that must be relatively prime to the
order of x. The lemma is proved.

Suppose the cycle x1 is realized by the sphere Si1 ⊂ Qn, and i is even.
According to Lemma 4.10, with the element x1 ∈ Hi(Qn) we associate the
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element x̃1 ∈ Hi(Qn) such that b(x1) = 2x̃1. One can assume that x̃1 lies
on the boundary of the tubular neighborhood

T (Si) ⊂ Qn, T (Si) = Si ×Di+1.

Lemma 4.13. The kernel of the homomorphism

Hi(Q
n
)→ Hi(Qn(h))

for any h : ∂Di+1 ×Dn−i
ε → T (Si1) such that

h(x, y) = (x, hx(y)), hx ∈ SOi+1,

is generated by the element (1 + 2λ(h))x̃1, where λ(h) is an integer.

Proof. Consider the map d(h) : Si1 → SOi+1, defining the Morse
surgery, and denote by y(h) the homology class of the cycle ỹ(h) ⊂ ∂T (Si1),
the latter defined by the first vector of the frame field d(h), normal to Si1
in Qn, y(h) ∈ Hi(Q

n
). There is a number λ(h) such that

y(h) = x̃1 + λ(h)b(x1)

or

y(h) = (1 + 2λ(h))x̃1.

Evidently, with respect to the inclusion homomorphism Hi(Q
n
) →

Hi(Qn(h)), the kernel is generated by the element

y(h) = (1 + 2λ(h))x̃1

The lemma is proved.

Thus, we have eliminated the element x1 of order 2. Therefore the
group Hi(Qn(h)) of generators not satisfying (20), will be one element
less (for even i) since all such generators are of order 2 according to
Lemma 4.12.

Let i be arbitrary (odd or even) and let x1 be a generating cycle
x1 ∈ Hi(Qn), satisfying (20) and realized by a sphere Si1 ⊂ Qn with
trivial normal bundle νi+1(Si1, Q

n). Suppose also that the cycle x2 ∈
Hi(Qn) is such that Lk(x1, x2) = 1. We denote, as in Lemma 4.10, the
generators corresponding to them by x̃1, x̃2 ∈ Hi(Q

n
), where bx1 = q1x̃2,

q1 is the order of generators x1, x2 ∈ Hi(Qn) and x̃1 is the homology class
in Hi(Q

n
) of the cycle x1(h) defined by the first vector of the framed
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i+ 1-field h : Si → SOi+1 on the boundary ∂T (Si1) for some fixed h. Then
we have

Lemma 4.14. The kernel of the inclusion homomorphism Hi(Q
n
) →

Hi(Qn(h)) is generated by the element x̃1, and the group Hi(Qn(h)) has
one generator less than the group Hi(Qn).

The proof of the lemma follows from the definition of the Morse surgery
and the relation b(x1) = q1x̃2.

Proof. The element x̃2 ∈ Hi(Qn(h)) has order λq1, where

λ ≡ Lk(x1, x1)mod q1,

and the number Lk(x̃2, x̃2) is relatively prime to λq1, if λ �= 0 (i.e. the
element x̃2 satisfies (19) in the manifold (Qn(h))).

Assume i is odd. Consider the element x1 ∈ Hi(Qn) realized by the
sphere Si1 ⊂ Qn with trivial normal bundle νi+1(Si1, Qn). The linking
coefficient

Lk(x1, x1) = λ (mod q),

where q is the order of x1 and λ is relatively prime to q. From Lemma 4.10
it follows that on the boundary ∂T (Si1) one can find a cycle x̃1 such that
in the homology group Hi(Q

n
) the relation

λb(x1) = qx̃1

holds.
Consider the map h : Si1 → SOi+1 and the kernel of the inclusion

j∗ : πi(SOi+1)→ πi(SO∞),

which is isomorphic to Z for odd i, Ker j∗ = Z.
Denote by y(h) the homology class in Q

n
of the cycle defined on

∂T (Si1) = Si1 × Siε(b(x1)) = g0 × Siε, g0 ∈ Si1, by the first vector of the
framed field h. Let µ ∈ Ker j∗ = Z (µ is a number).

Lemma 4.15. The kernel of the inclusion homomorphism

Hi(Q
n
)→ Hi(Qn(h))
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is generated by the element y(h) = x̃1 + γb(x1). The kernel of the inclusion
homomorphism

Hi(Q
n
)→ Hi(Qn(h+ µ)), µ ∈ Ker j∗ = Z,

is generated by the element y(h+ µ) = y(h) + 2µb(x1).

The proof of Lemma 4.15 immediately follows from the definition of
Morse surgery and the structure of the homomorphism Ker j∗ → Hi(Si)
generated by the mapping SOi+1 → Si (projection), where the generator
of the group Ker j∗ is taken to the cycle 2[Si]. Therefore

y(h+ µ) = y(h) + 2µb(x1).

Let us prove that

y(h) = x̃1 + γb(x1).

To do this, we consider the intersection index

[∂−1q1y(h)] · x1 = λ mod q1 = λ+ γq1.

On the other hand,

[∂−1b(x1)] · x1 = 1.

Therefore

[∂−1(q1y(h)− q1γb(x1))] · x1 = λ,

from which it follows that one can put x̃1 = y(h) − γb(x̌). The lemma is
proved.

Lemma 4.16. There exists a number µ such that in the group
Hi(Qn(h+ µ)) we have:

(a) x̃1 = 0, λb(x1) = 0 (γ is even),
(b) x̃1 = b(x1), (λ1− q1)x̃1 = 0 (γ is odd), where in both cases the order of

the “new” element b(x1) is less than q1; the number Lk(b(x1), b(x1)) is
relatively prime to the order of b(x1).
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Proof. Since λb(x1) = q1x̃1 in Q
n

and x̃1 = y(h)− γb(x1), then

y(h+ µ) = y(h) + 2µb(x1) = x̃+ γb(x1) + 2µb(x1).

Passing to Qn(h+ µ), we will get the relation y(h+ µ) = 0. Thus

x̃1 = −(γ + 2µ)b(x1) (in Qn(h+ µ)),
λb(x1) = q1x̃1 (in Q

n
),

which yields a possibility to choose µ (µ = −γ2 for γ and 2µ− 1 = γ for
odd γ).

Evidently, by Lemma 4.11, the element b(x1) is not linked with other
basis elements. The assertion is proved.

Now we apply the proved lemmas to study the maps

fα : SN+n → TN(Mn),

where n = 2i+ 1.

Lemma 4.17. Let α ∈ A(Mn). There exists a map

fα : SN+n → TN(Mn),

such that the inverse image f−1
α (Mn) = Mn

α is homotopically equivalent
to Mn.

Proof. As above, consider the map

ifα : SN+n → T n(Mn),

constructed according to Lemma 4.6, and the inverse image

Mn
α,i= if

−1
α (Mn),

for which the groups Hs(Mn
α,i) are isomorphic to Hs(Mn) for s < i and

π1(Mn
α,i) = 0. The group Ker if

(Hi)
α∗ is a direct summand in Hi(Mn

α,i), n =

2i + 1, according to Lemma 4.4′. The group Ker if
(Hi+1)
α∗ is free abelian

by Lemma 4.5. First, let us use the Morse surgery, and try to kill the
group TorKer if

(Hi)
α∗ , by using the Poincaré–Alexander duality. If i is odd,

then Lemmas 4.12 and 4.13 allow us to kill all elements not satisfying (20)
without increasing the number of generators. Then by Lemma 4.14, we
kill all elements satisfying (20), where each Morse surgery decreases the
number of generators by 1. If i is odd, then consequent Morse surgeries will
let us kill all generators satisfying (20), each time decreasing the number
of generators by 1 (according to Lemma 4.14), and then, according to
Lemmas 4.15 and 4.16, we shall start decreasing the order of some generator
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satisfying (19) without increasing the number of generators and decreasing
the order each time (we vary the surgery mod Ker j∗ ⊂ πi(SOi+1)),
which preserves the possibility to transmit the frame fields (cf. proofs of
Lemmas 1.1 and 1.2). Thus, as a result, we kill the group TorKer if

(Hi)
α∗ .

Then, according to [4], we easily kill the elements of infinite order and get
the desired manifold Mn

α and mapping

fα : SN+n → TN(Mn)

analogously to Theorems 4.7–4.9. The lemma is proved.

We collect the results of the lemmas in the following:

Lemma 4.18. If n = 4k, k ≥ 2 or n = 2k + 1, then each element

α ∈ A(Mn) ⊂ πN+n(TN (Mn)), A(Mn) = H−1ϕ[Mn],

is represented by a map fα : SN+n → TN(Mn), which is t-regular and such
that

π1(Mn
α ) = 0, Hi(Mn

α ) = Hi(Mn)

for i = 2, . . . , n − 2, where Mn
α = f−1

α (Mn). Thus the manifold Mn
α is

homotopically equivalent to Mn with degree +1, and νN (Mn
α ) = f∗

α(Mn).
If n = 4k + 2, k ≥ 1, then for any element α ∈ A(Mn) one can choose a
map fα : SN+n → TN (Mn) of homotopy class α such that

π1(Mn
α ) = 0, Hi(Mn

α ) = Hi(Mn)

for i ≤ 2k, where Mn
α = f−1

α (Mn); moreover,

Ker f (H2k+1)
α∗ = Z + Z,

and there are well-defined invariants ϕ(α) ∈ Z2 for n = 4k+2, k �= 1, 3, and
ψ(α) ∈ Z2 for n = 6, 14; if these invariants are zero, then it is possible to
repaste the groups Ker f (H2k+1)

α∗ = Z + Z by a sequence of Morse surgeries.

This theorem is a formal unification of the following lemmas.
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§ 5. The manifolds in one class

Definition 5.1. For any element α ∈ A(Mn) ⊂ A(Mn) the map
representing it

fα : SN+n → TN (Mn)

is called admissible if it satisfies Lemma 3.2 and the inverse image

f−1
α (Mn) = Mn

α

is homotopically equivalent to Mn.

Theorem 5.2. Let fα,i : SN+n → TN (Mn), i = 1, 2, be two admissible
homotopic maps and let Mn

α,i = f−1
α,i (M

n). If n is even, then manifolds Mn
α,i

are diffeomorphic of degree +1. If n is even, then there exists a Milnor
sphere S̃n ∈ θn(∂π), which is a boundary of a π-manifold such that the
manifolds Mn

α,1 and Mn
α,2#S̃

n are diffeomorphic of degree +1.

Proof. Consider the homotopy

F : SN+n × I → TN(MN ),

where F/SN+n× 0 = fα,1 and F/SN+n × 1 = fα,2. We split the proof into
several steps.

Step 1. Let us make the homotopy F t-regular. After this, consider the
inverse image

F−1(Mn) ⊂ SN+n × I(0, 1),

which is a manifold Nn+1 with boundary

∂Nn+1 = Mn
α,1 ∪ (−Mn

α,2),

such that

νN (NN+1) = F ∗ νN (Mn).

Thus, we have a well-defined map F/Nn+1 → Mn, which is homotopy
equivalence of degree +1 for each boundary component. The manifoldNn+1

is an (F, π)-manifold modMn.
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Step 2. Consider the following direct sum decompositions

Hj(Nn+1) = Hj(Mn
α,i) + KerF (Hj)

∗ , i = 1, 2,

πj(Nn+1) = πj(Mn
α,i) + KerF (πj)∗ , i = 1, 2,

Hj(Nn+1) = Hj(Mn
α,i) + CokerF ∗, i = 1, 2,


 (21)

that arise from natural retractions of the membrane to the boundary
components:

(fα,i)−1 · F : Nn+1 →Mn
α,i, (22)

where the maps f(α,i)−1fα,i : Mn
α,i →Mn

α,i are homotopic to the identity.
It is evident that

Hj(Nn+1,Mn
α,i) = KerF (Hj)∗ , i = 1, 2,

πj(Nn+1,Mn
α,i) = KerF (πj)∗ , i = 1, 2,

Hj(Nn+1,Mn
α,i) = CokerF ∗, i = 1, 2.


 (23)

We have the following:

Lemma 5.3. Between the groups KerF (Hj)∗ /Tor and KerF (Hn+1−j)∗ /
Tor there is a non-degenerate unimodular scalar product determined by the
intersection index. Between the groups TorKerF (Hj)∗ and TorKerF (Hn−j)∗ ,
there is the Alexander duality: for every minimal generator system
x1, . . . , xl ∈ TorKerF (Hj)

∗ there exists a minimal generator system
y1, . . . , yl ∈ TorKerF (Hn−j)∗ such that the order of yi is equal to the order
of xi, i = 1, . . . , l and Lk(xi, yj) = δij .

Proof. Lemma 5.3 is an immediate consequence from the decompo-
sitions (21), isomorphisms (23) between relative groups modMn

α,i and

groups KerF (Hj)∗ , and the Poincaré–Alexander duality D:

D : Hj(Nn+1,Mn
α,1)

≈→ Hn+1−j(Nn+1,Mn
α,2),

TorHj(Nn+1,Mn
α,1) ≈ TorHn−j(Nn+1,Mn

α,2).
(24)

The lemma is proved.

Step 3. By means of the Morse decomposition, we consequently kill
the groups π1(Nn+1),KerF (H2)∗ , . . . and so on, by modifying F to the
reconstructed membrane and using all of the techniques proved in § 4.

Case 1. If n is even, then n+1 is odd and the successive reconstructions
of the groups KerF (Hj)∗ up to j = n

2 have no obstructions. If KerF (Hj)
∗ = 0
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for j ≤ n
2 , then, by Lemma 5.3, KerF (Hn+1−j)∗ = 0 (and π1 = 0). Thus

the membrane Nn+1 is contractible to any of its boundary components,
which yields the J-equivalence (h-cobordism) of the boundary components.
According to the Smale Theorem [19] the manifolds Mn

α,1 and Mn
α,2 are

diffeomorphic.
Case 2. If n = 4k − 1, then n + 1 = 4k. Analogously to the preceding

case, one can obtain the result that KerF (Hj)∗ = 0 for j < 2k and
KerF (Hj)∗ = 0 for j > 2k. The intersection matrix of the free abelian group
KerF (H2k)

∗ will be unimodular and will have even numbers on its diagonal
(exactly analogously to Lemma 4.7), however, the signature of this matrix,
should not be zero, unlike the situation in Lemma 4.7, since the Hirzebruch
formula [3] is acceptable only for closed manifold. Denote the intersection
matrix by B = (bij), where bij = xi · xj , x1, . . . , xs is the basis of the group
KerF (H2k)

∗ . Denote the signature of B by τ(B). It is known (see [8]) that
τ(B) ≡ 0 (mod 8), because detB = ±1 and bii ≡ 0 (mod 2).

Let us construct, following Milnor [8], a π-manifold Mn+1(B) such that:

(a) π1(Mn+1(B)) = 0;
(b) Hj(Mn+1(B)) = 0, j �= 0, 2k;
(c) ∂Mn+1(B) is a homotopy sphere

S̃n = ∂Mn+1(B) ∈ θn(∂π);

(d) the intersection matrix of the basic cycles of H2k(Mn+1(B)) is such
that its signature

τ(Mn+1(B)) = −τ(B).

Now, let us consider the manifold

Nn+1 ∪f0 Dn
ε × I(0, 1) ∪f1 Mn+1(B) = Nn+1(B), (25)

where

f0 : Dn
ε × 0→Mn

α,2,

f1 : Dn
ε × 1→ ∂Mn+1(B)

(f0, f1 are diffeomorphisms of the desired degree ∓1). Clearly,

∂Nn+1(B) = Mn
α,1 ∪ (−Mn

α,2#S̃
n).

In addition, there are the following retractions

F1 : Nn+1(B)→Mn
α,1,

F2 : Nn+1(B)→Mn
α,2#S̃

n,
(26)
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induced by the retractions (fα,1)−1 · F and (fα,2)−1 · F . Since Mn+1(B) is
a π-manifold, it is easy to see that

F ∗
i ν

N (Mn
α,i) = νN (Nn+1(B)), i = 1, 2.

By construction, the signature of the intersection matrix of basic cycles of
KerF (H2k)

i∗ , i = 1, 2, is equal to the sum of signatures

τ(B) + τ(Mn+1(B)) = 0.

Further, we repeat completely the arguments of Lemma 4.7, we
reconstruct the group KerF (H2k)

i∗ , i = 1, 2 by using the same method, and
kill this group, and apply the Smale theorem (cf. Case 1). Thus, Case 2 is
investigated.

Case 3. n = 4k + 1, n = 1 = 4k + 2. Analogously to Cases 1 and 2 and
proofs of Lemmas 4.8 and 4.9 we assume that the membrane Nn+1 is such
that:

(a) Ker f (Hj)∗ = 0, j < 2k + 1,
(b) π1(Nn+1) = 0,
(c) KerF (H2k+1)

∗ = Z + Z or 0 depending on the values of the invariants
ϕ (for k �= 1, 3) or ψ (for k = 1, 3), being obstructions for the Morse
surgery.

First, the invariant ψ (for the cases k = 1, 3) defines an obstruction not
to Morse surgery, but for a transmission of frame fields (cf. Lemma 4.9),
which plays no role for us. Thus, we perform the Morse surgery (without
being concerned about the fields) and get

KerF (H2k+1)∗ = 0, k = 1, 3.

Thus the membrane contracts onto each of its boundaries and therefore
(cf. [19]) it is diffeomorphic to Mn

α,1 × I.
If k �= 1, 3 then on the basic cycles x, y ∈ KerF (H2k+1)

∗ there exists a
well-defined invariant ϕ(x), ϕ(y).

If ϕ(x) = 0 or ϕ(y) = 0, we perform the Morse surgery recalling the
sense of ϕ (the invariant of normal bundle for an embedded sphere S2k+1 ⊂
N4k+2). Let ϕ(x) �= 0 and ϕ(y) �= 0. We construct, according to Kervaire [4],
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a π-manifold M4k+2(ϕ) such that:

(a) the boundary ∂M4k+2(ϕ) is a homotopy sphere;
(b) π1(M4k+1(ϕ)) = Hj(M4k+2(ϕ)) = 0, j �= 0, 2k + 1;
(c) H2k+1(M4k+2(ϕ)) = Z + Z; and denoting the basic cycles by x, y.
(d) ϕ(x) = ϕ(y) = 1.

KAs in Case 2, we set:

N4k+2(ϕ) = N4k+2 ∪f0 D4k+1
ε × I(0, 1) ∪ f1M4k+2(ϕ), (27)

where

f0 : D4k+1
ε × 0→M4k+1

α,1 ,

f1 : D4k+1
ε × 1→M4k+2

α,2

are diffeomorphisms of the desired degree +1. Then

∂N4k+2(ϕ) = M4k+1
α,1 ∪ (−M4k+1

α,2 #∂M4k+2(ϕ)).

Using next the relation

ϕ(z + t) = ϕ(z) + ϕ(t) + z · t|mod 2,

we find a new basis x1, x2, x3, x4 ∈ KerF (H2k+1)
1∗ , where

F1 : N4k+2(ϕ)→M4k+1
α,1 ,

is a natural retraction (here ϕ(xi) = 0, i = 1, 2, 3, 4), and we paste the
cycles by using Morse surgery. Then we apply Smale’s Theorem again (cf.
Case 1). The theorem is proved.

§ 6. One manifold in different classes

We shall consider only maps

fα : SN+n → TN(Mn)

which are admissible in the sense of § 5.

Lemma 6.1. The homotopy class of an admissible map

fα : SN+n → TN(Mn)

is completely defined by:

(a) a manifold Mn
α that is homotopically equivalent to the manifold Mn

with degree +1 and such that Mn
α ≥Mn;
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(b) some (arbitrary) embedding Mn
α ⊂ SN+n;

(c) some (arbitrary up to homotopy) smooth map f̃α : Mn
α →Mn of degree

+1, for which f̃∗
αν

N (Mn) = νn(Mn
α );

(d) some (arbitrary up to homotopy) smooth map of SON -bundles

˜̃
fα : νN (Mn

α )→ νN (Mn)

that covers the smooth map f̃α : Mn
α →Mn.

Proof. If we are given a manifold Mn
α , an embedding Mn

α ⊂
SN+n, a map f̃α : Mn

α → Mn and a covering map of bundles ˜̃
fα :

νN (Mn
α ) → νN (Mn), then the map fα is completely defined for the

tubular neighborhood T (Mn
α ) ⊂ SN+n because the tube T (Mn

α ) is the
total space of the normal bundle νN (Mn

α ). By construction of the Thom
complex TN (Mn), the extension of the map fα to the remaining part of
the sphere SN+n is trivial (in the neighborhood of the singular point of the
Thom complex) and in a unique way up to homotopy. Now assume that
we perform an isotopy to the embedding Mn ⊂ SN+n, and we perform a

homotopy f̃α for ˜̃
fα such that all isotopies and homotopies are smooth, and

the homotopy of the map ˜̃
fα is a homotopy of SON -bundles which covers the

homotopy f̃α. These isotopies and homotopies together define an embedding
of

Mn
α × I(0, 1) ⊂ SN+n × I(0, 1),

and a map F of the tubular neighborhood

T (Mn
α × I(0, 1)) ⊂ SN+n × I

T (Mn
α × I(0, 1)) is diffeomorphic νN (Mn

α )× I(0, 1) into the space TN(Mn),
where F (Mn

α × I) ⊂Mn. Furthermore, the map

F : T (Mn
α × I)→ TN(Mn)

is extended in a well-known manner to the map

F : SN+n × I → TN (Mn),

where F/SN+n × 0 = fα. Consequently, the homotopy class α of the map
fα does not depend on the arbitrariness in the choice of embedding (all
embeddings are isotopic for N > n), neither does it depend on the maps

f̃α, ˜̃f chosen in their homotopy classes.
The lemma is proved.
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Thus, for a fixed manifold Mn
α the homotopy class of an admissible

map fα,

fα : SN+n → TN(Mn),

is completely defined by the homotopy class of a map f̃α : Mn
α → Mn of

degree +1 such that

νN (Mn
α ) = f̃∗

αν
N (Mn),

and by the homotopy class of a map of SON -bundles:

˜̃
fα : νN (Mn

α )→ ν(Mn)

that covers f̃α (in the sequel, it will be assumed without further comment
that the embedding Mn

α ⊂ SN+n is fixed).

Lemma 6.2. If both manifolds Mn
α,i ≥ Mn, i = 1, 2, which are

homotopy equivalent to Mn, belong to one class α ∈ A(Mn) ⊂ A(Mn),
then for every class α1, for which there exists an admissible map

fα1,1 : SN+n → TN(Mn)

such that f−1
α1,1

(Mn) = Mn
α,1, there also exists another admissible map

fα1,2 : SN+n → TN (Mn),

for which f−1
α1,2

(Mn) = Mn
α,2.

Proof. Consider the t-regular homotopy

F : SN+n × I(0, 1)− TN(Mn),

where F/SN+n × 0 = fα,1 and f/SN+n × 1 = fα,2. We put

Nn+1 = F−1(Mn) ⊂ SN+n × I,
where

νN (Nn+1) = F ∗νN (Mn).

Since the map F restricted to the boundary components, represents
homotopy equivalences f̃α,1 and f̃α,2, the membrane Nn+1 naturally
retracts to each of the boundary components. Denote these retractions by

Fi = (fα,i)−1 · F, i = 1, 2.

By Lemma 6.1, the element α1 can be obtained as follows: on the boundary
of Mn

α,1 ⊂ ∂Nn+1 we change the map f̃α,1 to f̃α1,1 and, analogously, we

change the map of bundles ˜̃
fα,1 to the map ˜̃

fα1,1. Since the membrane
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Nn+1 retracts to the boundary and

νN (Nn+1) = F ∗
1 ν

N (Mn
α,1),

we may extend the maps f̃α,1,
˜̃
fα1,1 to the maps

F̃ : Nn+1 →Mn

and ˜̃
F : νN (Nn+1)→ TN (Mn).

Then we extend this map ˜̃
F from the tubular neighborhood T (Nn+1) ⊂

SN+n×I to the whole Cartesian product SN+n×I by using Thom’s method,
and denote this extension by

F : SN+n × I → TN (Mn).

Clearly,

F

SN+n
× 0 = fα1,1.

Putting

fα1,2 =
F

SN+n
× 1,

if the extension F is smooth on T (Nn+1), which can always be attained.
This completes the proof of the lemma.

In addition we are now able to consider only one fixed manifold Mn
α ≥

Mn, Mn ≥ Mn
α and study the problem of determining the set of classes

αi ∈ A(Mn) ⊂ A(Mn) this manifold may belong to B(Mn
α ) the set of

classes αi ∈ A(Mn) for which there exist admissible maps

fαi : SN+n → TN (Mn)

such that

f−1
αi

(Mn) = Mn
α .

We denote by π+(Mn
α ,M

n) the set of homotopy classes of maps f : Mn
α →

Mn of degree +1 such that

f∗νN (Mn) = νN (Mn
α ).

We denote by π(X,Y ) the set of homotopy classes of maps X → Y for
any complexes X,Y . In particular, the sets π+(Mn,Mn) and π(Mn, SON )
are groups, moreover, the group π(Mn, SON ) is abelian, and the group
π+(Mn,Mn) acts transitively without fixed points on π+(Mn

α ,M
n).
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Lemma 6.3. The set B(Mn
α ) ⊂ A(Mn) splits into a union of disjoint

sets

B(Mn
α ) = ∪fBf (Mn

α ),

where f ∈ π+(Mn
α ,M

n) and Bf (Mn
α ) is the subset of the set B(Mn

α ) that
consists of classes α ∈ A(Mn) for which there exists an admissible map

fα : SN+n → TN(Mn),

such that f−1
α (Mn) = Mn

α and such that the restriction of fα to Mn
α , is of

homotopy class f ∈ π+(Mn
α ,M

n).

Proof. It has already been established that the set Bf (Mn
α ) is well

defined, i.e. to homotopic maps Mn
α → Mn we associate identical sets of

homotopy classes. Let us prove that if two sets Bf1(Mn
α ) and Bf2(Mn

α ) are
intersecting, then they coincide. Analogously to the proof of Lemma 6.2,
let us consider the element

α0 ∈ Bf1(Mn
α ) ∩Bf2(Mn

α )

and the two corresponding admissible maps

fα0,i : SN+n → TN(Mn), i = 1, 2,

such that fα0,1/M
n
α → Mn and fα0,2/M

n
α → Mn have homotopy classes

f1, f2.
Consider their t-regular homotopy

F : SN+n × I(0, 1)→ TN (Mn)

and the membrane

Nn+1 = F−1(Mn) ⊂ SN+n × I(0, 1),

which retracts onto each of its boundaries. By analogy with Lemma 6.2, on
the lower boundary we change the bundle map

νN (Mn
α )→ νN (Mn),

keeping the map fα0,1/M
n
α →Mn fixed. We can extend this variation of a

bundle map to a variation of the bundle map

νN (Nn+1)→ νN (Mn),

keeping it fixed on Nn+1, which can be achieved, starting from a retraction
of the membrane to the boundary Mn

α ⊂ SN+n × 0. Then, by means of a
well-known method, we extend the map varied in a tubular neighborhood
onto the whole Cartesian product SN+n×I(0, 1). According to Lemma 6.1,



September 7, 2009 12:27 9in x 6in b789-ch03

Homotopically Equivalent Smooth Manifolds 93

in this way we can get from α0 any other element α1 ∈ Bf1(Mn
α ). Therefore

Bf1(M
n
α ) ⊃ Bf2(Mn

α ).

By symmetry,

Bf1(M
n
α ) = Bf2(M

n
α ).

The lemma is proved.

Lemma 6.4. The group π(Mnα, SON ) acts transitively on each set
Bf (Mn

α ).

Proof. Suppose there exist two classes αi ∈ Bf (Mn
α ), i = 1, 2, and

representing them, admissible maps

fαi : SN+n → TN (Mn)

such that

f−1
αi

(Mn) = Mn
α , i = 1, 2,

and the maps fαi/M
n
α → Mn are homotopic. By means of the homotopy

constructed in Lemma 6.1, we change the map fα2 to an admissible map
f

(1)
α2 that is homotopic to it and such that

f (1)
α2

=
fα1

Mn
α

.

Then the bundle maps f
(1)
α2 and fα1 : νN (Mn

α ) → νN (Mn) differ in
each fiber DN

x over a point x ∈ Mn
α by a discriminating orthogonal

transformation hx ∈ SON , which depends smoothly on the point x ∈ Mn
α .

This yields a smooth map

h : Mn
α → SON ,

discriminating the maps f (1)
α2 and fα1 in a neighborhood T (Mn

α ) ⊂ SN+n

of the manifold Mn
α . According to Lemma 6.1, if h : Mn

α → SON is null-
homotopic, then the elements α1 and α2 are equal to each other. Thus, the
discriminator h is defined up to homotopy, and the map fα1 , “twisted” in
each fiber DN

x over x ∈ Mn
α by hx ∈ SON , coincides with f

(1)
α2 . On the set

of classes, Bf (Mn
α ), there is a transitive action of the group π(Mn

α , SON).
The lemma is proved.

These lemmas combine into the following:

Theorem 6.5. On the set

A(Mn) ⊂ A(Mn) = H−1ϕ[Mn] ⊂ πN+n(TN (Mn))



September 7, 2009 12:27 9in x 6in b789-ch03

94 S. P. Novikov

there is an action of the group π(Mn
α , SON ). On the set of orbits,

A(Mn)
π(Mn, SON )

there is an action of π+(Mn,Mn). The elements of the orbit set

B =

[
A(Mn)

π(Mn,SON )

]
π+(Mn,Mn)

are in one-to-one correspondence with classes of manifolds Mn
α ≥ Mn,

Mn ≥Mn
α with respect to diffeomorphism of degree +1 modulo θn(∂π) for

odd n, and with respect to diffeomorphism of degree +1 for even n.

Proof. According to Lemmas 6.3 and 6.4, to the manifold Mn there
corresponds a set

B(Mn
α ) = ∪f∈π+(Mn

α ,M
n)Bf (Mn

α ),

and for each set Bf (Mn
α ) there is a transitive action of the group

π(Mn
α , SOn). However the groups π(Mn

α , SOn) and π(Mn, SOn) are
isomorphic, and if the homotopy class f ∈ π+(Mn

α ,M
n) is given, then

we have the corresponding isomorphism

f∗ : π(Mn, SON )→ π(Mn
α , SON ).

Thus, for each set Bf (Mn
α ) we have a natural action of the group

π(Mn, SOn); here

h(α) = f∗h(α), α ∈ Bf (Mn
α ), h ∈ π(Mn, SON).

On the other hand, on the set of classes f ∈ π+(Mn
α ,M

n) we have a fixed-
point free action of π+(Mn,Mn) (this action is transitive). Thus, on the
quotient set B(Mn

α )/π(Mn, SON ) we have a transitive action π+(Mn,Mn),
i.e. the quotient set [

B(Mn
α )

π(Mn,SON )

]
π+(Mn,Mn)

consists of one element. By using the actions of groups π(Mn, SON ) and
π+(Mn,Mn) on each of the sets B(Mn

α ) for all manifolds Mn
α where

Mn
α ≥Mn, Mn ≥Mn

α ,

we get an action of these groups on the set A(Mn), such that the quotient
set with respect to the action of both groups is in the natural one-to-one
corresponence with the set of manifolds, which are identified if and only if



September 7, 2009 12:27 9in x 6in b789-ch03

Homotopically Equivalent Smooth Manifolds 95

they belong at least once (thus, always, by Lemma 6.2) to the same class
α ∈ A(Mn). Applying Theorem 5.2, we obtain the desired statement. The
theorem is proved.

For subsequent applications it will be convenient to note the following:

Lemma 6.6. To an automorphism of the SON -bundle

h : νN (Mn)→ νN (Mn),

fixed on the base Mn (or equivalently, to

h : Mn → SON ),

there corresponds a map

Th : TN (Mn)→ TN (Mn);

for homotopic maps hi : Mn → SON , i = 0, 1, the corresponding maps
Thi are homotopic; moreover, while performing the homotopy process
Tht, 0 ≤ t ≤ 1, the manifold Mn ⊂ TN(Mn) remains fixed, and the normal
ball DN

x , x ∈Mn ⊂ TN(Mn) is deformed by means of maps ht(x) ∈ SON ,
0 ≤ t ≤ 1. If h ∈ π(Mn, SON ) and α ∈ πN+n(TN (Mn)), where α ∈ A(Mn)
then

h(α) = Th∗(α),

where π(Mn, SON ) acts on A(Mn) according to Theorem 6.5.

Proof. The definition of the map

T : π(Mn, SON )→ π(TN (Mn), TN(Mn))

follows easily from the definition of the Thom space for the bundle νN (Mn).
Let us prove the formula

h(α) = Th∗(α).

We recall how we defined the action of the group π(Mn, SON ) on the set
A(Mn): suppose fα is an admissible map SN+n → TN(Mn), f−1

α (Mn) =
Mn
α and fα/Mn

α has homotopy class f ∈ π+(Mn
α ,M

n). There is a naturally
defined action of the group π(Mn

α , SON ) and an isomorphism

f̃ : π(Mn
α , SON )→ π(Mn, SON ).

Let h ∈ π(Mn, SON ) and f̃−1h ∈ π(Mn
α , SON ). Then for an element h

there is a corresponding “twisting” of the bundle νN (Mn) in each fiber DN
x

by the element hx ∈ SON , x ∈Mn. To this twisting, in turn, we associate
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a twisting f∗
x in the fiber DN

f−1
α (x)

by the same element hx ∈ SON at each

point of f−1
α (x). This defines the map

f∗
α = f̃−1 : π(Mn, SON )→ π(Mn

α , SON ).

One can define the action of the group π(Mn
α , SON ) on the set Bf (Mn

α )
only in such a way that it looks like f∗

α(h), since when passing to homotopy
classes, there is no more distinction in definitions, because fα/M

n
α is a

homotopy equivalence, and f̃α = f∗−1
α is an isomorphism.

The lemma is proved.

Lemma 6.7. With each map f : Mn → Mn of degree +1 such that
f∗νN (Mn) = νN (Mn), there corresponds a non-empty set of maps

(Tf) : TN(Mn)→ TN(Mn).

Two maps T 1, T 2 ∈ (Tf) differ by an automorphism Th for some h :
Mn → SON .

For homotopic maps f1, f2 : Mn →Mn, we have mod T (π(Mn, SON ))-
homotopic maps Tf1 and Tf2 : TN (Mn)→ TN (Mn).

With the product f1 ◦ f2 we associate the product

Tf1 ◦ Tf2 = Tf1 ◦ f2 mod ImT.

Suppose f ∈ π+(Mn,Mn) and α ∈ A(Mn)/π(Mn, SON ). Then

f(α) = Tf∗(α),

where

Tf∗ : πN+n(TN(Mn))→ πN+n(TN(Mn)).

The proof of this lemma is analogous to the Proof of Lemma 6.6, and it
readily follows from the well-known definition of the action of π+(Mn,Mn)
on π+(Mn

α ,M
n) and the dependence of α ∈ A(Mn)/π(Mn, SON ) from the

mapMn
α →Mn of degree +1 (an element of π+(Mn,Mn)) (cf. Lemmas 6.1,

6.3, Theorem 6.5 and their proofs).
Now, let us consider the particular case when Mn is a π-manifold. In

this case the bundle νN (Mn) is trivial. We define a frame field τNx that is
smoothly dependent on a point x ∈ Mn and normal to Mn in TN (Mn).
Following [15], we call the pair (τN ,Mn), a “framed manifold”. Then it is
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easy to see that for any element α ∈ A(Mn) and any admissible map

fα : SN+n → TN(Mn)

the manifold

Mn
α = f−1

α (Mn)

obtains a natural framing f∗
ατ

N and becomes a framed manifold.
In this case we have the following:

Lemma 6.8. There is a one-to-one homomorphism

T0 : π+(Mn,Mn)→ π(TN (Mn), TN(Mn))

such that for any h ∈ π(Mn, SON), f ∈ π+(Mn,Mn) the following
relations hold:

(a) Th · T 0f = T 0f · Tf∗h, where f∗π(Mn, SON )→ π(Mn, SON );
(b) T0 = T mod ImT .

Proof. Let us construct the homomorphism T 0; to do this, consider
the automorphism

f : Mn →Mn,

f ∈ π+(Mn,Mn), and cover it to get a map

νN (Mn)→ νN (Mn),

assuming that the vector with coordinates

(λ1, . . . , λN ) ∈ DN
x , x ∈Mn,

defined by a frame τNx in the fiber normal to a point x, is mapped to the
vector with coordinates (λ1, . . . , λN ) at the point f(x). Since the field τN

is smooth, we obtain a (smooth, if f is smooth) map

νN (Mn)→ νN (Mn),

which gives the desired map

T 0f : TN(Mn)→ TN(Mn).

We have proved point (a) of the lemma.
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We consider a map h : Mn → SON and the composition

h · T 0f : νN → νN (Mn),

covering the map f : (Mn) → Mn. The maps h · T 0f and T 0f differ at
each point x ∈Mn by hx ∈ SON and at each point f−1(x) ∈Mn by

f∗hf−1(x) ∈ SON , hx = f∗hf−1(x).

Thus

h · T 0f = T 0f · f∗h

(f∗ is the automorphism f∗ : π(Mn, SON )→ π(Mn, SON ) induced by f).
Further, we have:

Th · T 0f = T 0f · Tf∗h.

Point (b) readily follows from the construction of T 0.
The lemma is proved.

We consider the set π+(Mn
α ,M

n) defined above. It admits a left action
of the group π+(Mn,Mn) and a right action of the group π+(Mn

α ,M
n
α ),

where

Mn
α ≥Mn, Mn ≥Mn

α .

In other words, for every

f ∈ π+(Mn,Mn), g ∈ π+(Mn
α ,M

n), f1 ∈ π+(Mn
α ,M

n
α )

there is a well-defined composition

f · g · f1 ∈ π+(Mn
α ,M

n).

Moreover, for every f ∈ π+(Mn,Mn), g ∈ π+(Mn
α ,M

n) the following
formula holds:

f · g = g · (g∗f),

where g∗ : π+(Mn,Mn)→ π+(Mn
α ,M

n
α ) is an isomorphism defined by the

element g ∈ π+(Mn
α ,M

n).
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We introduce the following notation: by

D+(Mn
α ) ⊂ π+(Mn

α ,M
n
α )

we denote the subgroup consisting of all those homotopy classes of maps
for which there is a representative

h : Mn
α →Mn

α ,

being a diffeomorphism by

D̃+ ⊂ π+(Mn
α ,M

n
α )

we denote the analogous subgroup, where a certain representative

h̃ : Mn
α →Mn

α

is a diffeomorphism everywhere except a spherical neighborhood of one
point, and the obstruction to an extension of the diffeomorphism to
that point belongs to the group θn(∂π). In view of the canonical Smale
isomorphism θn = Γn, one may assume that θn(∂π) ⊂ Γn for n ≥ 5.
Denote by

Λn(Mn
α ) ⊂ θn(∂π)

the subgroup such that for every element γ ∈ Λn(Mn
α ) of it there exists a

map

h̃γ : Mn
α →Mn

α ,

homotopic to the identity, and being a diffeomorphism everywhere except
a spherical neighborhood of one point, and the obstruction to an extension
of the diffeomorphism at this point is equal to γ.

Theorem 6.9. The group D+(Mn
α ) is a normal subgroup of D̃+(Mn

α ).
The quotient group D̃+(Mn

α )/D+(Mn
α ) is isomorphically embedded into

θn(∂π)/Λn(Mn
α ). If n is even, then D+(Mn

α ) = D̃+(Mn
α ); if n is odd then

the quotient group D̃+(Mn
α )/D+(Mn

α ) is a finite cyclic group.

Proof. With a representative h̃ : Mn
α → Mn

α of an element from D̃+

we associate the obstruction for extension of the diffeomorphism to the
point. It is easy to see that the non-uniqueness of the obstruction belongs
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to the group Λn(Mn
α ), and the group D+(Mn

α ) is mapped to zero. Thus the
embedding

D̃+(Mn
α )

D+(Mn
α )
⊂ θn(∂π)

Λn(Mn
α )

is constructed. The remaining statements follow from the results of [6], [8]
concerning the groups θn(∂π). The theorem is proved.

Theorem 6.10. The element g∗f ∈ π+(Mn
α ,M

n
α ) belongs to the

subgroup D̃+(Mn
α ), if and only if Tf∗(α) = α, where α ∈ A(Mn)/

π(Mn, SON).

We note certain consequences of Theorems 6.9 and 6.10. If Mn
α = Mn

then g∗f = gfg−1, thus, Theorem 6.10 yields

Lemma 6.11. The subgroup D̃+(Mn
α ) is normal in π+(Mn,Mn); the

quotient group π+(Mn,Mn)/D̃+(Mn) is finite (it is not known whether it
is abelian or not).

Lemma 6.12. The group D+(Mn) is of finite index in π+(Mn, Mn).

Proof of Theorem 6.10. By definition, the manifold Mn
α is

constructed as follows: a map

fα : SN+n → TN(Mn),

representing an element α̃ from the class α; this map is admissible if
f−1
α (Mn) ≥Mn and Mn ≥ f−1

α (Mn), where f−1
α (Mn) is the inverse image

of Mn under the map satisfying Lemma 3.2. Then we set

Mn
α = f−1

α (Mn).

Suppose fα/Mn
α →Mn is of the homotopy class g ∈ π+(Mn

α ,M
n), and

let f be an element of the group π+(Mn,Mn) such that

Tf∗(α̃) ≡ α̃ mod ImT.

Since all our objects are defined up to a degree +1 diffeomorphism, the
fact that g∗f is homotopic to a diffeomorphism of degree +1 implies that
the sets

Bg(Mn
α ) ⊂ A(Mn)
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and

Bg·g∗f (Mn
α ) = Bf ·g(Mn

α )

are identical, which yields one of the statements of the theorem. Now, let
us show that if

Tf∗(α) = α, α ∈ A(Mn)
π(Mn, SON )

,

then the map g∗f is homotopic to a diffeomorphism (of degree +1). We
split the proof into several steps.

Step 1. We consider homotopic admissible maps f (′)
α and f (′′)

α : SN+n →
TN(Mn) such that

(a) f (′)−1
α (Mn) = f

(′′)−1
α (Mn) = Mn

α ,
(b) f (′)

α /Mn
α = g, f (′′)

α /Mn
α = g · g∗f = f · g.

We construct a homotopy F : SN+n×I(0, 1)→ TN (Mn), which is t-regular
and such that F/SN+n × 0 = f

(′)
α .

Step 2. We define the membrane Nn+1 = F−1(Mn) ⊂ SN+n × I; it is
evident that

F ∗νN (Mn) = νN (Nn+1)

and

∂Nn+1 = Mn
α ∪ (−Mn

α ).

By using Morse surgery, we kill the groups

π1(Nn+1), KerF (H2)∗ , . . . ,KerF (Hi)∗ , i <
[n
2

]
,

and simultaneously take to the “new membrane” Nn+1 the map F and the
“framing” (analogously to §§ 4 and 5). Thus, we may assume that

π1(Nn+1) = 0

and

KerF (Hi)∗ = 0, i <
[n
2

]
.

Step 3. Case 1. If n + 1 is odd, then, following § 4, we reconstruct the
group KerF (H[n/2])

∗ . Then (see § 5, Case 1) we shall have a membrane which
is diffeomorphic to Mn

α × I(0, 1), according to Smale [19]. The theorem is
proved.
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Case 2. If n+1 is even (n+1 = 4k+2 or n+1 = 4k), then it is necessary
to use the fact that the boundary components of the manifold Nn+1 are
already diffeomorphic. Then, analogously to Cases 2 and 3 from § 5, we
have to construct the membranes M

n+1
(B) and M

n+1
(ϕ), in order to kill

the obstructs to Morse surgery, and then consider the unions

N
n+1

(B) = Nn+1 ∪f0 Dn × I(0, 1) ∪f1 M
n+1

(B),

Nn+1(ϕ) = Nn+1 ∪f0 Dn × I(0, 1) ∪f1 M
n+1

(ϕ),

as in § 5, Cases 2 and 3 (here B is the intersection matrix for the membrane
Nn+1 and ϕ is the Kervaire invariant). The maps

F : Nn+1 →Mn

define, in a natural way, the maps

F (B) : N
n+1

(B)→Mn

and

F (ϕ) : N
n+1

(ϕ)→Mn

in such a way that

F (B)∗νN (Mn) = νN (Nn+1(B))

and

F (ϕ)∗νN (Mn) = νN (N
n+1

(ϕ)).

It is easy to see that

∂N
n+1

(B) = [Mn
α#S̃n(B)] ∪ (−Mn

α )

and

∂N
n+1

(ϕ) = [Mn
α#S̃n(ϕ)] ∪ (−Mn

α ).

We reconstruct by a Morse surgery the manifolds N
n+1

(B) and N
n+1

(ϕ);

the resulting manifolds N
n+1

(B) and N
n+1

(ϕ) will define a J-equivalence
(diffeomorphism) of degree +1 between manifoldsMn

α andMn
α#S̃n(B),Mn

α

and Mn
α#S̃n(ϕ), where S̃n(B), S̃n(ϕ) ∈ θn(∂π). Denote the maps F (B),

F (ϕ), reconstructed to the membranes N
n+1

(B) and N
n+1

(ϕ), by F (B),
F (ϕ). Moreover, N(B) is diffeomorphic to Mn

α × I (n = 4k − 1), N(ϕ) is
diffeomorphic to Mn

α × I (n = 4k+1) and F (B) = F/Mn
α × 1 (n = 4k− 1),

F (ϕ) = F/Mn
α × 1 (n = 4k + 1).
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The map

F (B) : Mn
α × 0→Mn

is homotopic to the composition

F1(B)g(B) : Mn
α

g(B)−→ Mn
α#S̃n(B)

F1(B)−→ Mn, n = 4k − 1,

and the map

F (ϕ) : Mn
α × 0→Mn

is homotopic to the composition

Mn
α

g(ϕ)−→Mn
α#S̃n(ϕ)

F1(ϕ)−→ Mn, n = 4k + 1,

where g(B) and g(ϕ) are diffeomorphisms of degree +1, induced by some
direct product decomposition

N(B) = Mn
α × I, N(ϕ) = Mn

α × I.
The maps F1(B) and F1(ϕ) are homotopic to the maps F/Mn

α×1 (n = 4k−1
and n = k + 1), respectively, which yields the desired statement.1 The
theorem is proved.

Chapter II

Processing the results

§ 7. The Thom space of a normal bundle. Its

homotopy structure

In order to understand and apply the results of §§ 1–6, we shall study
the homotopy structure of the Thom complex TN (Mn), where Mn is a
simply connected manifold, n ≥ 4.

In the manifold Mn, we select the n−2-frame Kn−2 in such a way that

Hi(Kn−2) = Hi(Mn), i < n.

1It remains to add that the diffeomorphism g(B) : Mn
α → Mn

α# eSn(B) must be
thought of as a diffeomorphism modulo point: Mn

α → Mn
α . An analogous statement

holds for g(ϕ).
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Then the manifold Mn�x0, x0 ∈ Mn is contractible to Kn−2. The
embedding Kn−2 ⊂Mn induces the bundle j∗νN (Mn) on Kn−2; we denote
the Thom space of this bundle by T n−2

N . There is a natural embedding
T n−2
N ⊂ TN(Mn). Analogously, one can select frames of lower dimension:

K0 = K1 ⊂ K2 ⊂ · · · ⊂ Kn−2

and construct the Thom complexes

T 0
N = SN ⊂ T 2

N ⊂ · · · ⊂ T n−2
N .

We may think that the complex T iN is the N + i-dimensional skeleton of
the complex TN (Mn), i = 0, 2, . . . , n− 2.

Lemma 7.1. The Thom complex TN(Mn) is homotopically equivalent
to the wedge SN+n ∨ T n−2

N .

Proof. Lemma 7.1 is an immediate consequence of Lemma 3.1 on the
sphericity of the cycle

ϕ[Mn] ∈ HN+n(TN (Mn)).

We consider the group πn(Mn) and select the subgroup π̃n(Mn) ⊂
πn(Mn) consisting of those elements γ ∈ π̃n(Mn) such that H(γ) = 0. In
the group π̃n(Mn) we select the even smaller subgroup πνn(M

n), consisting
of elements γ ∈ πνn(Mn) such that, for any map gγ : Sn →Mn, representing
the element γ, the bundle g∗γνN (Mn) over the sphere Sn, is trivial.

Now let Li be an arbitrary i-dimensional complex, over which a vector
SON -bundle νN is given. Denote the Thom complex of this bundle by
TN (νN ). Suppose γ ∈ πn(Li), and the bundle γ∗νN over the sphere Sn

is trivial. We shall say that γ ∈ πn(Li, νN ). For Li = Mn and νN =
νN (Mn) we have already defined such a group. Clearly, there is a well-
defined epimorphism

πn(Kn−2, νN (Mn))→ πνn(M
n).

There is a well-defined embedding κ : SN ⊂ TN(νN ), corresponding to the
embedding of the point x0 = L0 ⊂ Li. We have:

Lemma 7.2. There is a well-defined natural homomorphism

TN : πn(Li, νN )→ πn+N (TN (νN ))
Imκ

. (29)
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If there exist two bundles νN1 , ν
N
2 over complexes Li1, L

i
2, respectively, and

a map F : νN1 → νN2 is given, then there is a well-defined map

T (F ) : TN (νN1 )→ TN(νN2 )

such that the diagram

πn(Li11 , ν
N
1 )

eF∗−−−−→ πn(Li22 , ν
N
2 )�TN

�TN

πn+N (TN (νN1 ))
Imκ

T (F )∗−−−−→ πn+N (TN (νN2 ))
Imκ

(30)

is commutative.

Proof. It is easy to see that the bundle map F corresponds to a map

F̃∗ : πn(Li11 , ν
N
1 )→ πn(Li22 , ν

N
2 ).

Namely, let the map F defined on the bases spaces Li11 → Li22 be denoted
by F̃ . Then, clearly,

F̃∗(πn(Li11 , ν
N
1 )) ⊂ πn(Li22 , ν

N
2 )

by the definition of the induced bundle. In this way the upper row of the
diagram is constructed. We shall denote the constructed natural map

πn(Li11 , ν
N
1 )→ πn(Li22 , ν

N
2 )

by F̃∗. The construction of the lower row is evident. Now, let us construct
the homomorphisms TN . For this sake, consider the element γs ∈
πn(Liss , νNs ), s = 1, 2, and consider the map

γ̃s : Sn → Liss ,

representing γs. The bundle γ̃∗sν
N
s over Sn is trivial. Thus the maps

µ : SN+n → TN (Sn, γ̃sνNs ),

T γ̃s : TN(Sn, γ̃sνNs )→ TN (Liss , ν
N
s ),

are well-defined, where T γ̃s is a natural map between Thom complexes
corresponding to the bundle map γ̃sνNs → νNs , and the map µ is such that

µ∗[SN+n] = ϕ[Sn],

where ϕ : Hn(Sn) → Hn+N (TN (Sn, γ̃∗s , νNs )) is the Thom isomorphism.
The cycle ϕ[Sn] is spherical by Lemma 3.1 since the sphere is a π-manifold.
By Lemma 7.1, the space TN(Sn, γ̃∗s , ν

N
s ) is homotopically equivalent to



September 7, 2009 12:27 9in x 6in b789-ch03

106 S. P. Novikov

SN+n ∨ SN , thus the homotopy class of µ is well-defined mod πn+N (SN ) =
Imκ∗. Then the composition

T γ̃sµ : SN+n → TN(Liss , ν
N
s )

determines the element to be denoted T : T (γs); this element is well
defined modulo mod Imκ∗. After we have given the definition, its naturality
(commutativity of the diagram in Lemma 7.2) is evident.

The lemma is proved.

Proof. We call the groups πn(Li, νN ) the homotopy groups of the
bundle νN , and we call TN the suspension homomorphism. This notation
agrees with the following lemma.

Lemma 7.3. If the bundle νN over the complex Li is trivial then:

(a) πn(Li, νN ) = πn(Li) for all n;
(b) the space TN (Li, νN ) is homotopically equivalent to the wedge SN ∨

ENLi, where EN is the N -multiple suspension;
(c) the homomorphism TN coincides with the N -th iteration of the

suspension homomorphism

EN : πn(Li)→ πn+N (ENLi) =
πn+N (TN(Li, νN ))

Imκ∗

for N > n+ 1.

Proof. The Thom space of the trivial bundle for closed ballsDN , νN =
Li×DN is, obviously, homotopically equivalent to the suspension forN > 1:

TN (Li, νN ) =
Li ×DN

Li × ∂DN

= ETN−1(Li, νN−1) = E

(
Li ×DN−1

Li × ∂DN−1

)
.

Furthermore, for N = 1 we have:

T1(Li, ν1) =
Li × I(0, 1)
Li × ∂I(0, 1)

= E(Li ∪ x0),

where Li ∪ x0 denotes the union of Li with x0. Since the space E(Li ∪ x0)
is homotopically equivalent to S1 ∨ELi, we see that the space TN(Li, νN )
is homotopically equivalent to the suspension

EN−1(S1 ∨ ELi) = SN ∨ ENLi.
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The second part of the lemma follows trivially from the definition of a
suspension homomorphism and is actually a definition of it. The lemma is
proved.

Suppose Mn is a smooth simply connected oriented manifold, let
νN (Mn) be its normal bundle

TN (Mn) = TN(Mn, νN (Mn)),

j : Kn−2 ⊂Mn be its n− 2-skeleton

πνn(M
n) =

πn(Kn−2, j∗νN (Mn))
Ker j∗

.

According to Lemma 7.1,

πn+N (TN (Mn)) = Z + πn+N (T n−2
N ). (31)

The generator of the group Z = πn+N (SN+n) depends on the wedge
decomposition

TN(Mn) = SN+n ∨ T n−2
N .

We shall choose this decomposition in such a way that the generator of the
direct summand Z = πn+N (SN+n) is a generator constructed in the proof
of Lemma 3.1. Denote this generator by

1N+n ∈ πn+N (SN+n) ⊂ TN(Mn).

We have the following:

Lemma 7.4. For any element γ ∈ πνn(Mn) there exists a degree +1
map gγ : Mn →Mn such that:

(a) g∗γνN (Mn) = νN (Mn),
(b) gγ fixes the frame Kn−2,
(c) the discriminator between gγ and the identical map is nonzero only on

one simplex σn ⊂Mn, and it is equal to γ ∈ πνn(Mn) on this simplex.

Proof. We consider the identical map and change it on a simplex
σn ⊂ Mn by the element γ ∈ πνn(Mn). We denote the resulting map by
gγ since the degree of γ̃ : Sn → Mn representing γ is zero by definition
of the group, πνn(M

n), the degree of gγ : Mn → Mn is +1. Consider
the bundles g∗ννN (Mn) and νN (Mn), which we identify, as usual, with
homotopy classes of ν : Mn → BSON (for the bundle νN (Mn)) and the map
ν · gγ : Mn →Mn → BSON (for the bundle g∗γνN (Mn)). The discriminator
between ν and ν · gγ is supported on the same simplex σn ⊂ Mn, as the
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supporter of gγ and the identical map, and it is easy to see that it is equal
to the element

ν∗(γ) ∈ πn(BSON ), ν∗ : πn(Mn)→ πn(BSON ).

The bundle γ∗νN (Mn) over Sn is trivial by definition of the group πνn(Mn);
it is defined by the composition

ν · γ̃ : Sn →Mn → BSON ;

its triviality is equivalent to the condition

ν∗(γ) = 0.

Therefore the discriminator between ν : Mn → BSON and ν · gγ : Mn →
BSON is zero, and these maps are homotopic. The lemma is proved.

Lemma 7.4 yields:

Lemma 7.5. There is a well-defined homomorphism g∗ : πνn(M
n) →

π+(Mn,Mn) which is a map onto the set of all elements of π+(Mn,Mn)
whose representatives fix the frame Kn−2 ⊂Mn.

Proof. The map g∗ has already been constructed in Lemma 7.4;
namely, with an element γ ∈ πνn(Mn) we associate the homotopy class of
the map gγ : Mn → Mn. The fact that it is a homeomorphism is evident.
Let us calculate the image

Im g∗ ⊂ π+(Mn,Mn).

We consider any map f : Mn → Mn of degree +1 representing some
element of the group π+(Mn,Mn) and fixed on the skeleton Kn−2.

The discriminator between it and the identity map is the cocycle

λ(f) ∈ Hn(Mn, πn(Mn)),

where one can assume that the cochain λ(f) is nonzero only on one simplex
σn ∈Mn. Then

λ(f)[σn] ∈ πn(Mn).

Since the map f is of degree +1, the degree of the map of Sn → Mn,
representing the element

λ(f)[σn] ∈ πn(Mn),
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is zero. Since

f∗νN (Mn) = νN (Mn),

the discriminator between the maps

ν : Mn → BSON

and

ν · f : Mn → BSON ,

defining the bundles νn(Mn) and f∗νN (Mn) is equal to

ν∗λ(f)[σn] ∈ πn(BSON )

and

ν∗λ(f)[σn] = 0,

since f∗νN (Mn) = νN (Mn). Therefore

λ(f)[σn] ∈ πνn(Mn).

The lemma is proved.

We recall that in § 6 we defined a map

T : π+(Mn,Mn)→ π(TN (Mn), TN (Mn)),

homeomorphic and single-valued modulo the action of the group
π(Mn, SON ), i.e. modulo the image of the homomorphism

T : π(Mn, SON )→ π(TN (Mn), TN (Mn)).

Lemma 7.6. The formula

Tg∗γ(1N+n + α) ≡ 1N+n + α+ TNγ (mod ImT ∪ Imκ∗) (32)

is valid for all γ ∈ πνn(Mn), where 1N+n is the generator chosen above and
α is an element of the group πN+n(T n−2

N ) ⊂ πN+n(TN (Mn)).
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Proof. The map g∗γ fixes Kn−2, thus Tg∗γ can be chosen to be fixed
on T n−2

N ⊂ TN (Mn). Therefore, the map

Tg∗γ : TN (Mn)→ TN (Mn)

is completely defined by the map

Tg∗γ
SN+n

→ TN(Mn)

and

[Tg∗γ] · (α) = α

for all

α ∈ πN+n(T n−2
N ) ⊂ πN+n(TN (Mn)).

Let us investigate the image [Tg∗γ]∗(1N+n). The discriminator between gγ
and 1 : Mn → Mn is supported on the simplex σn ⊂ Mn and it is
equal to γ; the complex Mn�σn contracts onto Kn−2. Therefore, the
discriminator between

Tgγ : TN (Mn)→ TN (Mn)

and the identical map

1 : TN (Mn)→ TN (Mn)

can initially be regarded as maps from the Thom complex TN (SN , νN )
(νN is the trivial bundle) to the Thom complex TN(MN ), where on SN ⊂
TN (Sn, νN ) the maps are homotopic (equal). Therefore the discriminator
of the maps Tg∗γ and 1 is TNγ by definition of the homomorphism TN .
The non-uniqueness in the formula from Lemma 7.6 arises because of non-
uniqueness in the definition of the homomorphisms TN and T . The lemma
is proved.

Remark 7.7. For π-manifolds the definition of the homomorphism T
N

coincides with EN and is therefore unique; the homomorphism T in this
case is also well defined according to Lemma 6.8, and the formula from
Lemma 7.6 has the meaning of an exact equality, not a congruence.

We shall not prove the assertion made in the remark since we shall not
make use of it.
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§ 8. Obstructions to a diffeomorphism of manifolds

having the same homotopy type and a stable

normal bundle

Let us consider the filtration

TN(Mn) ⊃ T n−2
N ⊃ · · · ⊃ T 2

N ⊃ SN ,

where T iN is the Thom space of the i-dimensional frame Ki of the
manifold Mn in minimal cell decomposition (the number of i-cells is
equal to max rkHi(Mn,K) over all fields K). We denote the numbers
max rkHi(Mn,K) by bimax. By T (i,j)

N we denote

T
(i,j)
N =

T iN
T jN

j < i.

In particular,

T
(i,i−j)
N =

bi
max∨
k=1

SN+i
k .

Clearly,

HN+i(T iN , T
i−1
N ) = HN+i


bi

max∨
k=1

SN+i
k


 = Z + · · ·+ Z︸ ︷︷ ︸

bi
max factors

.

The homomorphism

∂ : HN+i(T iN , T
i−1
N )→ HN+i−1(T i−1

N )→ HN+i−1(T i−1
N , T i−2

N )

defines a boundary operator in the complex TN (Mn) together with its
homology and cohomology groups. We shall have in mind precisely this
interpretation of boundary homomorphism.

Proof of the Obstruction to a Diffeomorphism. We shall
identify the manifolds Mn

α ≥ Mn, MN ≥ Mn
α modulo θn(∂π) with orbits

of the groups π(MN , SON ) and π+(Mn,Mn) in the set A(Mn) according
to the results of §§ 1–6. With Mn

α we associate the orbit B(Mn
α ) ⊂ A(Mn).

Suppose we are given two manifoldsMn
α andMn

β , α ∈ B(Mn
α ), β ∈ B(Mn

β ).
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According to Lemma 7.1 the elements α, β are of the form:

α = 1N+n + α, α ∈ πN+n(T n−2
N ),

β = 1N+n + β, β ∈ πN+n(T n−2
N ).

The exact sequences (for the pairs T iN , T
j
N , j < i)

· · ·→πN+n(T
j
N )→πN+n(T iN )→ πN+n(T i,jN ) ∂→ πN+n−1(T

j
N )→ · · · (33)

are defined.
In particular, we have:

· · · → πN+n(SN )
j0,2−→ πN+n(T 2

N ) Λ2→ πN+n


b2max∨
k2=1

SN+2
k2


→ · · ·

· · · → πN+n(T iN)
ji,i+1−→ πN+n(T i+1

N )
λi+1−→ πN+n


 bi+1

max∨
ki+1=1

SN+i+1
ki+1


→ · · ·

· · · → πN+n(T n−3
N )

jn−3,n−2−→ πN+n(T n−2
N )

Λn−2−→πN+n


 bn−2

max∨
kn−2=1

SN+n−2
kn−2


 . . . .

(34)

Consider the difference α− β ∈ πN+n(T n−2
N ). Then we have:

Λn−2(α− β) ∈
bn−2
max∑

kn−2=1

πN+n

(
SN+n−2
kn−2

)
.

Thus with each sphere SN+n−2
kn−2

we associate an element dn−2(α, β
kn−2) ∈ πN+n(SN+n−2

kn−2
) (the direct summand of the element Λn−2(α − β)

corresponding to the number kn−2). The spheres SN+n−2
kn−2

are in a natural
one-to-one correspondence with cells of dimension N+n−2 of the complex
TN (Mn), and, consequently, with cells of dimension n − 2 of the complex
Mn. Therefore dn−2(α, β, kn−2) (under variation of kn−2) runs over the
chain dn−2(α, β) of the complex TN(Mn) valued in πN+n(SN+n−2). If the
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chain dn−2(α, β) = 0, we put:

dn−3(α, β, kn−3) = Λn−3 · j−1
n−3,n−2(α− β) (on the sphere SN+n−3

kn−3
);

if dn−(i−1)(α, β) = 0, then we set:

dn−i(α, β) = Λn−i · j−1
n−i,n−(i−1) · . . . · j−1

n−3,n−2(α− β)

(on the sphere SN+n−i
kn−i

the value of the chain dn−i(α, β) is equal to the
corresponding direct summand of the element Λn−i · j−1

n−i,n−(i−1) · . . . ·
j−1
n−3,n−2(α− β)).

Clearly, the chain dn−1(α, β) is ambiguously defined up to

Λn−i ·Ker(jn−3,n−2 · . . . · jn−i,n−(i−1)) = Qn−i.

Lemma 8.1. The chain dn−i(α, β) is well defined if dn−j(α, β) = 0,
j < i, and this chain is a cycle with coefficients in πN+n(SN+n−i).

Proof. Let us prove that dn−i(α, β) is a cycle. According to the
definition of a boundary operator in our complex TN(Mn) for the selected
decomposition (cf. above) it suffices to consider some element

j−1
n−i,n−(i−1) · . . . · j−1

n−3,n−2(α− β) ∈ πN+n(T n−iN )

and the boundary homomorphism

∂ : HN+n−i(T
n−i,n−i−1
N )→ HN+n−i−1(T

n−i−1,n−i−2
N ).

Consider the homomorphisms

∂ : πN+n(T n−i,n−i−1
N ) ∂→ πN+n−1(T n−i−1

N )→ πN+n−1(T
n−i−1,n−i−2
N )

�� ��∑
kn−i

πn+N (SN+n−i
kn−i

) ∂→
∑

kn−i−1

πn+N−1(SN+n−i−1
kn−i−1

).

Then we consider the chain dn−i(α, β). Since

dn−i(α, β) = Λn−i · j−1
n−i,n−(i−1) · . . . · j−1

n−3,n−2(α− β)

it follows from the exact sequences on page 112 that Im Λn−i ⊂ Ker ∂, and
hence

∂dn−i(α, β) = 0.

The lemma is proved.
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In this way,

dn−i(α, β) ∈ HN+n−i(TN (Mn), πN+n(SN+n−i)),

or, by the Thom isomorphism ϕ, we obtain the element

d̃n−i(α, β) = ϕ−1dn−i(α, β) ∈ Hn−i(Mn, πN+n(SN+n−i)),

defined with a large degree of ambiguity.
Proof of the Minimal Discriminator. We commence to vary

arbitrarily the elements α ∈ B(Mn
α ) and β ∈ B(Mn

β ) within the sets B(Mn
α )

and B(Mn
β ), corresponding to the manifoldsMn

α andMn
β in such a way that

the difference

α− β ∈ πN+n(T n−2
N )

belongs to

Im jn−3,n−2 · . . . · jn−i,n−(i−1)(πN+n(T n−iN ))

for

i = max
α,β

i[α ∈ B(Mn
α ), β ∈ B(Mn

β )]

and only then we define the (“minimal”) discriminator

dn−i(Mn
α ,M

n
β ) = dn−i(α0, β0),

where α0 ∈ B(Mn
α ) and β0 ∈ B(Mn

β ) are such elements that the difference
α0 − β0 belongs to

Im jn−3,n−2 · . . . · jn−i,n−i+1

for i maximal possible. It is evident that:

(1) the homology class dn−i(Mn
α ,M

n
β ) is defined with ambiguity:

(2) its ambiguity has two reasons:

(a) generally speaking, the non-triviality of the group

Ker(jn−3,n−2 · . . . · jn−i,n−i+1)

and
(b) the ambiguity in the choice of elements α0, β0 in orbits B(Mn

α ) and
B(Mn

β ).

We shall explain the situation more precisely in the Appendices at the
end of the paper by analyzing examples.
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§ 9. Variation of a smooth structure keeping

triangulation preserved

We start by recalling the results of Milnor, Smale, Kervaire
(see [4, 6, 8, 9, 10, 17, 18]). Milnor [8] defined a group of smooth structures on
a sphere of dimension n, denoted by θn, and introduced in it the filtration

θn ⊃ θn(π) ⊃ θn(∂π).

Any element of the group θn is a smooth oriented manifold having the
homotopy type of sphere. It was shown that:

(1) θn/θn(π) = 0, n �= 8k + 1, 8k + 2, k ≥ 2,1 θn/θn(π) = Z2 or 0 for
π = 8k + 1, 8k + 2, k ≥ 2;

(2) there is an inclusion homomorphism

θn(π)
θn(∂π)

⊂ πN+n(SN )
Jπn(SON )

,

is an epimorphism for n �= 4k + 2 and for n = 10;
(3) for n = 4k+2 the subgroup θn(π)/θn(∂π) has index 2 or 1 in the group

πN+n(SN )/Jπn(SON ), moreover, for n = 2, 6, 14 it has index 2;
(4) the group θn(∂π) is trivial for even n and for n ≤ 6 (n �= 3), n = 13;

the group θ2k+1(∂π) is always cyclic; for even k it contains at most
two elements and θ9(∂π) = Z2, and for odd k the order of this group
grows rapidly, and it is nontrivial for k = 2s− 1, s ≥ 2(θ7(∂π) = Z28,
θ11(∂π) = Z992,...).

As already stated before, an element of the group θn, n ≥ 5 is a
smooth oriented manifold of homotopy type Sn, the inverse element is
the same manifold with the opposite orientation, and the group operation
is the “connected sum” of oriented manifolds (see [10]), which makes
sense, generally speaking, for arbitrary manifolds (however the connected
sum of topological spheres is a topological sphere). We shall denote the
elements of θn by S̃ni , thus determining their topological structure. Our
first goal is the study of the connected sum Mn#S̃n, where Mn is an
arbitrary simply connected manifold n ≥ 5. Evidently, the manifolds
Mn and Mn#S̃n are homeomorphic for n ≥ 5, moreover, they are
then combinatorially-equivalent (cf. (17)), though possibly, they are not
diffeomorphic if the smooth structure on the sphere S̃n is not standard (if
S̃n �= 0 in the group θn).

1Adams [36] showed that θn/θn(π) = 0 for all n.
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In the sequel, we shall denote the stable group πN+n(Sn) by G(n) for
N > n+ 1. According to Milnor,

θn(π)
θn(∂π)

⊂ πN+n(Sn)
Im J

,

to each element S̃n ∈ θn(π) there corresponds a set B̃(S̃n) ⊂ G(n) such
that

B̃(S̃n1 #S̃n2 ) = B̃(S̃n1 ) + B̃(S̃n2 )

and

B̃(S̃n) = Im J,

if S̃n ∈ θn(∂π). We recall that in the preceding sections, with every manifold
Mn

1 ≥Mn, Mn ≥Mn
1 we canonically associated the sets

B(Mn
1 ) ⊂ A(Mn) ⊂ A(Mn) ⊂ πN+n(TN (Mn)).

In addition, there is a natural embedding

κ : SN ⊂ TN (Mn),

where SN = T 0
N (cf. § 6).

This leads to a homomorphism

κ∗ : G(n)→ πN+n(TN (Mn)).

We have the following:

Lemma 9.1. B(Mn
1 #S̃n) = B(Mn

1 ) + κ∗B̃(S̃n).

Proof. Let us show that

B(Mn
1 #S̃n) ⊃ B(Mn

1 ) + κ∗B̃(S̃n).

Suppose α ∈ B(Mn
1 ), γ ∈ B̃(S̃n) and

fα : SN+n → TN(Mn), fγ : SN+n → SN

are some maps representing the elements α and γ, respectively, which are
t-regular in the sense of Pontrjagin–Thom, where

f−1
α (Mn) = Mn

1

and

f−1
γ (x0) = S̃n, x0 ∈ SN .
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We assume that the sphere SN lies in the Thom complex TN (Mn) in the
standard manner and that

fγ : SN+n → TN (Mn), fγ(SN+n) ∈ κSN , f−1
γ (Mn) = f−1

γ (x0).

Then there is a well-defined “mapping connected sum” (cf. [8, 10, 15])

fα+γ : SN+n → TN(Mn)

such that

f−1
α+γ(M

n) = Mn
1 #S̃n

and the map fα+γ , represents, by definition, the element α + κ∗γ. Let us
show that

B(Mn
1 #S̃n) ⊂ B(Mn

1 ) + κ∗B̃(S̃n).

Suppose β ∈ B(Mn
1 #S̃n) and the map

fβ : SN+n → TN(Mn)

represents the element β, satisfies Lemma 3.2 and is such that

f−1
β (Mn) = Mn

1 #S̃n ⊂ SN+n.

By definition of the connected sum #, in Mn
1 there exists a sphere Sn−1

0 ⊂
Mn

1 #S̃n such that

(Mn
1 #S̃n)�Sn−1

0 = (Mn
1 �Dn

ε ) ∪ (S̃n�Dn
ε ),

where Dn
ε ⊂ Mn

1 and Dn
ε ⊂ S̃n are balls of radius ε, given in some local

coordinate system by a canonical equation, and ε > 0 is a small number.
Since S̃n is a π-manifold (S̃n ⊂ θn(π)), it follows that every frame field
τN , that is normal to S̃n ⊂ SN+n and is defined everywhere except Dn

ε ⊂
SN+n, can be extended onto the ball Dn

ε . We deform smoothly the map fβ
to a map

f̃β : SN+n → TN (Mn),

such that

f̃−1
β (x0) ⊃ S̃n�Dn

ε ⊂Mn
1 #S̃n, x0 ∈Mn ⊂ TN(Mn)
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(the map f̃β is assumed to be t-regular). We consider a frame τNx∗ that is
normal to the manifold Mn ⊂ TN(Mn) at x0. The inverse image of the
frame under a t-regular map f̃β (cf. [15, 22]) generates a frame field

τN = f̃−1
β (τNx∗),

that is normal to S̃N�Dn
ε in SN+n. We now “cut” the manifold Mn

1 #S̃n

along the sphere Sn−1
0 into two parts and extend the frame field τN from

the sphere

Sn−1
0 = (S̃n�Dn

ε ) ∩ (Mn
1 �Dn

ε )

to the ball Dn
ε . More rigorously, we consider the membrane

Bn+1(h) = (Mn
1 #S̃n)× I

(
0,

1
2

)
∪h Dn

ε ×D1,

where

h : ∂Dn
ε ×D1 → Sn−1

0 ×D1 ⊂Mn
1 #S̃n,

h(x, y) = (x, y).

Clearly,

∂Bn+1(h) = (Mn
1 #S̃n) ∪ (−Mn

1 ∪ −S̃n).

Further, as in § 1, we embed in the usual way the membrane Bn+1(h)
to the direct product SN+n × I(0, 1), where

Bn+1(h) ∩ SN+n × 0 = Mn
1 #S̃n,

and extend the map fβ/SN+n × 0 to the map

F : SN+n × I → TN (Mn),

where

F−1(Mn) = Bn+1(h),

making use of the possibility to extend the field τN from the sphere Sn−1
0 ⊂

SN+n × 0 to the ball Dn
ε ⊂ SN+n × I(0, 1). This extension can be chosen
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in such a way that

F−1(Mn) ∩ SN+n × 1 = S̃n ∪Mn
1 , S̃n ⊂ F−1(x0).

Since

F−1(Mn) ∩ SN+n × 1 = S̃n ∪Mn
1 ,

it follows that the map F/SN+n× 1 is decomposed into a sum of maps f (′)
β

and f
(′′)
β , representing elements of type β1 ∈ B(Mn

1 ) and β2 ∈ κ∗B̃(S̃n),
respectively.

Thus, it is established that

B(Mn
1 #S̃n) ⊃ B(Mn

1 ) + κ∗B̃(S̃n),

B(Mn
1 #S̃n) ⊂ B(Mn

1 ) + κ∗B̃(S̃n).

The lemma is proved.

We now investigate a more complicated operation for the variation of
a smooth structure. Suppose the manifold Mn is k − 1-connected, where
k ≤ [n2 ]. Clearly,

Hk(Mn) = πk(Mn).

We consider an element z ∈ Hk(Mn) and a smooth sphere Sk ⊂ Mn

realizing it. The tubular neighborhood T (Sk) ⊂Mn of the sphere represents
the SOn−k-bundle of balls Dn−k over the sphere Sk. Assume this bundle
is trivial. Consider a map

g : Sk → diff Sn−k−1,

taking the whole sphere Sk into one point g(Sk) ∈ diffSn−k−1 (we
note that according to [23], [17], [8], there exists a natural isomorphism
diffSn−k−1/j diffDn−k ≈ θn−k, n− k �= 3, 4). Therefore to the map g there
corresponds a smooth sphere S̃n−k(g) ∈ θn−k. We shall consider only those
maps

g : Sk → diffSn−k−1,

for which S̃n−k(g) ∈ θn−k(π).
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Consider the automorphism1

g̃ : ∂T (Sk)→ ∂T (Sk),

induced by the map

g(Sk) : Sn−k−1 → Sn−k−1.

Namely, in each fiber of the bundle of (n − k − 1)-dimensional spheres
∂T (Sk) over Sk we define an automorphism g(Sk). We set

Mn(Sk, g) = (Mn�T (Sk)) ∪eg T (Sk).

From the paper [17] and the fact that S̃n−k(g) ∈ θn−k(π) we get the
following:

Lemma 9.2. The manifolds Mn and Mn(Sk, g) are combinatorially-
equivalent. The combinatorial equivalence

f(g) : Mn(Sk, g)→Mn

can be chosen in such a way that:

(a) f(g)∗νN (Mn) = νN (Mn(Sk, g),
(b) f(g)�Mn(Sk, g)�T (Sk) is the identity,
(c) f(g)�Sk is the identity,
(d) f(g)/T (Sk) ⊂Mn(Sk, g) fiberwise.

Proof. The diffeomorphism g(Sk) : ∂Dn−k → ∂Dn−k extends to a
combinatorial equivalence G : Dn−k → Dn−k, which is a diffeomorphism
everywhere except the origin O ∈ Dn−k. Let us define a map

f(g) : Mn(Sk, g)→Mn

as follows:

f(g) = 1 on Mn(Sk, g)�T (Sk) = Mn�T (Sk),

f(g) = 1 on Sk ⊂Mn(Sk, g),

f(g) = G on the fiber Dn−k
x at each point x ∈ Sk, where by 1 we denote

the identity map.
For such a map f(g), the properties (b)–(d) are evident. To prove (a),

it is necessary to make use of the fact that S̃n−k(g) ∈ θn−k(π). Namely, it

1Here we assume that the tube T (Sk) is endowed with a coordinate system, i.e. a
normal field of n − k frames on Sk.
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turns out that the discriminator between the “classifying” maps ν1 · f(g)
and ν2 in

Mn(Sk, g)
f(g)−→Mn ν1→ BSON ,

Mn(Sk, g) ν2→ BSON

of the bundles f(g)∗νN (Mn) and νN (Mn(Sk, g)), respectively, is valued in
the group

Hn−k
(
Mn(Sk, g),

θn−k

θn−k(π)

)
,

where

θn−k

θn−k(π)
⊂ πn−k−1(SON ) = πn−k(BSON)

(cf. [8]), and if this discriminator is equal to zero then the maps ν1 ·f(g) and
ν2 are homotopic. Moreover, if S̃n−k(g) ∈ θn−k(π), then the discriminator
is zero. From the definition of f(g) it immediately follows that the
discriminator is

z(g) ∈ Hn−k(Mn(Sk, g), πn−k(BSON))

and the fact that it vanishes is sufficient for ν1 ·f(g) and ν2 to be homotopic.
The element z(g) is represented by a cocycle z(g), having the same value on
each fiber Dn−k

x , x ∈ Sk ⊂ Mn(Sk, g). This value (on a given fiber Dn−k
x )

is by definition (cf. [8]) an element of the group πn−k(BSON) defining the
normal bundle of the smooth sphere Sn−k(g), i.e. an element of the group
θn/θn(π) that is equal to zero if S̃n−k(g) ∈ θn−k(π).

Thus all assertions of the lemma are proved.

Now let Mn = Sk × Sn−k. In this case we get the following:

Lemma 9.3. The manifold Mn(Sk, g) is of degree +1 diffeomorphic to
the manifold Sk × S̃n−k(g).

Proof. Clearly,

Mn(Sk, g) = (Sk ×Dn−k) ∪eg (Sk ×Dn−k).

The diffeomorphism

g̃ : Sk × Sn−k−1 → Sk × Sn−k−1,

constructed above is such that

g̃(x, y) = (x, g(Sk)y).
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At the same time the diffeomorphism of

Sn−k(g) = Dn−k ∪g(Sk) D
n−k, g(Sk) : Sn−k−1 → Sn−k−1,

holds by definition. Thus the diffeomorphism g̃ is a fiberwise diffeomorphism
that introduces a new direct product structure on Sk×Sn−k−1. As a result
of pasting

Mn(Sk, g) = Sk ×Dn−k ∪eg S
k ×Dn−k

we obtain the direct product

Sk × (
Dn−k ∪g(Sk) D

n−k) = Sk × S̃n−k(g).

The lemma is proved.

We now define the “sum of manifolds along a cycle” operation. Suppose
Mn

1 and Mn
2 are manifolds and Ski ⊂ Mn

i , i = 1, 2, are smoothly located
in k-dimensional spheres, having trivial normal bundles νn−k(Ski ,M

n
i ),

i = 1, 2, In the tubular neighborhoods,

T (Ski ) ⊂Mn
i , i = 1, 2,

we introduce the direct product coordinates

T (Ski ) = Ski ×Dn−k
ε ,

by using geodesic ε-balls Dn−k
ε , which are normal to the spheres Ski ⊂Mn

i

in a certain Riemannian metric. Then we put

[Mn
1 �T (Sk1 )] ∪h [Mn

2 �T (Sk2 )] = Mn(Sk1 , S
k
2 , h),

where

h : Sk1 ×Dn−k
ε → Sk2 ×Dn−k

ε ,

h(x, y) = (x, hx(y)), hx ∈ SOn−k,
d(h) : Sk1 → SOn−k.

Lemma 9.4. If k < [n2 ] and π1(Mn
1 ) = π1(Mn

2 ) = 0, then the manifold
Mn(Sk1 , S

k
2 , h) depends only on the homotopy classes αi of embeddings

of Ski ⊂ Mn
i , i = 1, 2, and the homotopy class d̃ of mapping d(h) :

Sk1 → SOn−k.
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Proof. If two spheres Ski,1, S
k
i,2, i = 1, 2, are smoothly situated in a

manifold Mn
i and are homotopic for k < [n2 ] then they are diffeotopic.

From this fact and results of [16] it follows that two embeddings

fi,j : Ski,j ×Dn−k
ε →Mn

i , i, j = 1, 2,

are defined up to diffeotopy by the pair (αi, d̃i), where αi ∈ πk(Mn
i ) and

di ∈ πk(SOn−k). From the fact that Mn(Sk1 , S
k
2 , h) is defined by diffeotopy

classes of embeddings

fi,j : Ski,j ×Dn−k
ε →Mn

i , i, j = 1, 2,

it immediately follows that it depends only on the quadruple

(α,d̃1, α2, d̃2) αi ∈ πk(Mn
i ), d̃i ∈ πk(SOn−k).

Clearly, the quadruples (α,d̃1, α2, d̃2) and (α1, 0, α2, d̃2 − d̃1) define the
same manifold. The lemma is proved.

Below we will denote the manifold Mn(Sk1 , S
k
2 , h) by Mn(α1, α2, d̃),

where αi ∈ πk(Mn
i ), i = 1, 2, and d̃i ∈ πk(SOn−k).

Remark. According to our definitions the bundles νn−k(Ski ,M
n
i ) must

be trivial; as a result, for 2k < n we have αi ∈ πk(Mn, νN (Mn)) (cf. § 7).

The following lemma is a consequence of the definition of a connected
sum along a cycle and Lemma 9.3.

Lemma 9.5. Let Mn
1 = Sk× S̃n−k(g) and let Mn

2 be a k−1-connected
manifold, α ∈ πk(Mn

2 , ν
N (Mn

2 )), β ∈ πk(Mn
1 ), d̃ ∈ πk(SOn−k), where β is

the generator. Then the manifold Mn(α, β, d) is diffeomorphic with degree
+1 to the manifold Mn

2 (α, g) (mod θn) for any element d̃ ∈ πk(SOn−k).

Proof. The element d̃ ∈ πk(SOn−k) defines a diffeomorphism

h(d̃) : Sk ×Dn−k → Sk ×Dn−k

such that

h(d̃)(x, y) = (x, h(d̃)xy), h(d̃)x ∈ SOn−k,

where h(d̃) : Sk → SOn−k is a representative of d̃. The diffeomorphism
h(d̃) is extended to a diffeomorphism

h(d̃) : Sk × S̃n−k(g)→ Sk × S̃n−k(g)
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(everywhere except a point), since

Sk × S̃n−k(g) = (Sk ×Dn−k) ∪eg (Sk ×Dn−k),

where S̃n−k(g) ∈ θn−k. Therefore the result of the gluing

Mn(α, β, d̃) = (Mn
1 �Sk ×Dn−k) ∪h(ed) (Mn

2 �Sk ×Dn−k)

does not depend (up to an element from θn) on the diffeomorphism h(d̃).
But if we put d̃ = 0, then the equality

Mn(α, β, 0) = Mn
2 (α, g)

is a tautology. The lemma is proved.

We now examine the Thom complex TN (Sk × Sn−k) and the subset

A(Sk × Sn−k) ⊂ πN+n(TN (Sk × Sn−k)).
The manifold Sk × S̃n−k(g) is a π-manifold, if S̃n−k(g) ∈ θn−k(π), and is
combinatorially equivalent to the manifold Sk × Sn−k. There is therefore
(cf. §§ 1–6) defined by the subset

B(Sk × S̃n−k(g)) ⊂ A(Sk × Sn−k).
In addition, with the smooth sphere S̃n−k(g) one associates the subset

B̃(S̃n−k(g)) ⊂ G(n− k), k < n− k.
Lemma 9.6. The Thom complex TN (Sk × Sn−k) is homotopically

equivalent to

SN+n ∨ SN+n−k ∨ SN+k ∨ SN .
The group

πN+n(TN (Sk × Sn−k))
is isomorphic to the direct sum

Z +G(k) +G(n− k) +G(n).

The set A(Sk × Sn−k) consists of all elements of the form

1N+n + γ, 1N+n ∈ Z, γ ∈ G(k) +G(n− k) +G(n),

where the element 1N+n + 0 ∈ B(Sk × Sn−k).
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The direct decomposition

πN+n(TN (Sk × Sn−k)) = Z +G(k) +G(n− k) +G(n)

can be chosen in such a way that:

(a) G(n) = Imκ∗;
(b) the subgroup G(n − k) belongs to the image of the inclusion

homomorphism f∗ :πN+n(T kN )→ πN+n(TN (Sk × Sn−k)),
f : T kN ⊂ TN(Sk × Sn−k)

is the embedding constructed in § 7, and T kN = SN+k∨SN ; the subgroup
G(n− k) is defined uniquely modG(n);

(c) B(Sk × S̃n−k(g)#θn(π)) ⊃ 1N+n + j∗B̃(S̃n−k(g))mod Imκ∗, where
j : T kN ⊂ TN (Sk × Sn−k) is the embedding.

Proof. The decomposition of the Thom space into a wedge union of
spheres follows from

E(Si × Si) = Si+1 ∨ Sj+1 ∨ Si+j+1,

and Lemma 7.3. All assertions of the lemma, except the last one, are
trivial and follow immediately from the natural decomposition of the Thom
complex into a wedge union of spheres. Furthermore, from Lemma 9.1 it
follows that

B(Sk × S̃n−k(g)#S̃n) = B(Sk × S̃n−k(g)) + κ∗B̃(S̃n),

where S̃n ∈ θn(π). Therefore, for the proof of the lemma, it is sufficient to
show that

B(Sk × S̃n−k(g)) ⊃ 1N+n + j∗B̃(S̃n−k(g))mod Imκ∗.

We consider the “auxiliary Thom complex”

TN(Sk) = SN+k ∨ SN ⊂ TN(Sk × Sn−k), T kN = TN(Sk), k < n− k.
We also consider a map

f : Sk × S̃n−k(g)→ Sk,

where

f(x, y) = x, x ∈ Sk, y ∈ S̃n−k(g).
We extend the map f to a map

F̃ : Sk × S̃n−k(g)×Dn → Sk ×DN ,
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by putting F̃ = f×1. We extend the map F̃ to a map F : SN+n → TN(Sk)
in the usual way, so that

F

T (Sk × S̃n−k(g)) = F̃ ,

since the usual tubular neighborhood T (Sk × S̃n−k(g)) ⊂ SN+n is
diffeomorphic to Sk× S̃n−k(g)×DN by virtue of the fact that Sk× S̃n−k(g)
is a π-manifold. The map F̃ factors into a composition of maps

F̃ = 1 ◦ F̃ : Sk × S̃n−k(g)×DN → Sk ×DN → Sk ×DN ,

where F̃−1(x0) = S̃n−k(g), x0 ∈ Sk, and the maps are t-regular. Therefore
the induced map

F : SN+n → TN(Sk)

factors into a composition of maps

F = F2 ◦ F1 : SN+n → SN+k → TN (Sk),

where F−1
2 (Sk) = Sk, F2/S

k = 1 and F−1
1 (x0) = S̃n−k(g), x0 ∈ Sk.

By definition (cf. Lemma 3.1), the map F2 represents a generating
element of the group

πN+k(SN+k) ⊂ πN+k(T kN ) = πN+k(TN (Sk)) = πN+k(SN+k ∨ SN).

The map F1 represents an arbitrary element of the set

B̃(S̃n−k(g)) ⊂ πN+n(SN+n−k) = G(n− k).
We now consider the sum

1N+n + j∗B̃(S̃n−k(g)) ⊂ πN+n(TN (Sk × Sn−k)).
Let the map

g : SN+n → TN (Sk × Sn−k)
represent the element

1N+n ∈ πN+n(SN+n) ⊂ πN+n(TN (Sk × Sn−k))
and let the map

F : SN+n → T kN ⊂ TN (Sk × Sn−k)
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represent an element of the set j∗B̃(S̃n−k(g)) (the map F is constructed
above). We consider the “sum” of maps

(g + F ) : SN+n → TN(Sk × Sn−k),
where

(g + F )−1(Sk × Sn−k) = g−1(Sk × Sn−k) ∪ F−1(Sk × Sn−k)
= Sk × Sn−k ∪ Sk × S̃n−k(g).

We consider the product Sk ×Dn−k
ε × I(0, 1) and form the membrane

Bn+1 ⊂ Sn+N × I(0, 1). We have:

Bn+1 = [Sk ×Sn−k ∪Sk × S̃n−k(g)]× I
(

0,
1
2

)
∪h1,h2 S

k×Dn−k
ε × I(0, 1),

where

h1 : Sk ×Dn−k
ε × 0→ Sk ×Dn−k

ε ⊂ Sk × Sn−k,
h2 : Sk ×Dn−k

ε × 1→ Sk ×Dn−k
ε ⊂ Sk × S̃n−k(g),

and

hi(x, y) = (x, hix(y)), hix ∈ SOn−k, i = 1, 2.

Clearly,

∂Bn+1 = [Sk × Sn−k ∪ Sk × S̃n−k(g)] ∪ Sk × S̃n−k(g).
In addition, on the manifold

[Sk × Sn−k ∪ Sk × S̃n−k(g)] = ∂Bn+1 ∩ SN+n × 0

a framed N -field is given, which is normal to this manifold at the sphere
SN+n, and it is induced by the map (g + F ) from some a priori given
and fixed frame N -field, which is normal to the submanifold Sk × Sn−k
in TN(Sk × Sn−k) (cf. §§ 1–6). We shall place the membrane Bn+1 in
the Cartesian product SN+n × I(0, 1) smoothly and we shall assume, as
in §§ 1–6, that SN+n × 0 admits a map (g + F ) and

Bn+1 ∩ SN+n × 0 = ∂Bn+1 ∩ SN+n × 0 = (g + F )−1(Sk × Sn−k)
Bn+1 ∩ SN+n × 1 = Sk × S̃n−k(g),

where the membrane Bn+1 orthogonally approaches the boundary
components of the Cartesian product SN+n × I(0, 1). Since the difference
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between the cycles Sk×x0, x0 ∈ Sn−k and Sk×x1, x1 ∈ S̃n−k(g), belongs
to the kernel

Ker(g + F )(Hk)
∗ ⊂ Hk(Sk × (Sn−k ∪ S̃n−k(g)),

it is possible to extend the map of a submanifold

Bn+1 ∩ SN+n × 0

to the map
������

(g + F ) : Bn+1 → Sk × SN−k ⊂ TN(Sk × Sn−k).
In addition, it is always possible to choose maps h1, h2 in such a way that
the map

������

(g + F ) is extendable to a map
������
������

(g + F ) : T (Bn+1)→ TN (Sk × Sn−k),
where T (Bn+1) is a tubular neighborhood of the manifold Bn+1 ⊂
SN+n× I, as in §§ 1–6 (or, what is the same thing, an N -frame field
normal to the manifold Bn+1 ∩SN+n× 0, can be extended to an N -framed
field normal to the whole of membrane Bn+1 in SN+n × I(0, 1)). Then

we extend the map
������
������

(g + F ) from the tube T (Bn+1) to the direct product
SN+n × I(0, 1) in the usual way. As a result, we arrive at a certain map

������
������

(g + F )
SN+n

× 1→ TN(Sk × Sn−k),

that is homotopic to (g + F ) and such that
������
������

(g + F )−1(Sk × Sn−k) ∩ SN+n × 1 = Sk × S̃n−k(g).
We have thus proved that in any homotopy class of the manifold 1N+n +
j∗B̃(S̃n−k(g)) there exists a representative

������
������

(g + F ) : SN+n × 1→ TN(Sk × Sn−k),
such that

������
������

(g + F )−1(Sk × Sn−k) = Sk × S̃n−k(g).
Consequently,

1N+n + j∗B̃(S̃n−k(g)) ⊂ B(Sk × S̃n−k(g)) mod Imκ∗.
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Comparing our results with Lemma 7.3, we obtain the desired
statement. The lemma is proved.

From Lemma 9.6 we get an immediate result:

Lemma 9.7.

B(Sk × S̃n−k(g)#θn(π)) ⊃ B(Sk × Sn−k) + j∗B̃(S̃n−k(g)) mod Imκ∗.

Proof. The proof formally follows from Lemma 9.6. It is only
necessary to note that, accroding to Lemma 9.6,

B(Sk × S̃n−k(g)#θn(π)) ⊃ 1N+n + B̃(S̃n−k(g)) mod Imκ∗,

where 1N+n ∈ πN+n(SN+n) ⊂ πN+n(TN(Sk × Sn−k)); although the
decomposition

TN(Sk × Sn−k) = SN+n ∨ SN+n−k ∨ SN+k ∨ SN

is chosen ambiguously. Namely, if we take another element of the set B(Sk×
Sn−k) as a new generator

1′N+n ∈ πN+n(SN+n)

and choose, according to the choice of this new generator, a new
decomposition of the Thom complex into a union, then, by replacing 1N+n

with 1′N+n, all the arguments of Lemma 9.6 remain true and we get

B(Sk × S̃n−k(g)#θn(π)) ⊃ 1′N+n + j∗B̃(S̃n−k(g)) mod Imκ∗

for any element 1′N+n ∈ B(Sk × Sn−k).
The lemma is proved.

Combining the results of the preceding lemmas, we can state that
there have been introduced two elementary operations for changing the
smoothness which preserve the triangulation: the connected sum with a
Milnor sphere from θn(π) and the “connected sum along a cycle” Sk ⊂Mn,
k < [n2 ] (if the normal bundle νn−k(Sk,Mn) is trivial), of the manifolds Mn

and Sk × S̃n−k, where S̃n−k ∈ θn−k(π). The homotopy meaning of these
operations for the case Mn = Sk × Sn−k was found in Lemmas 9.1–9.7.

Denote by Bγ,δ(Mn
1 ) ⊂ B(Mn

1 ) the subset consisting of those elements

αi ∈ Bγ,δ(Mn
1 ) ⊂ B(Mn

1 ) ⊂ A(Mn) ⊂ πN+n(TN (Mn)),
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for which there are representatives fαi : SN+n → TN(Mn) satisfying
Lemma 3.2 and possessing the following properties:

(a) the manifolds f−1
αi

(Mn) are diffeomorphic to Mn
1 , though the map

fαi/M
n
1 need not be a diffeomorphism;

(b) fαi∗ · (δ) = γ, where γ ∈ πk(Mn), δ ∈ πk(Mn
1 ).

Lemma 9.8. If there exists a diffeomorphism h : Mn
1 →Mn

1 of degree
+1 such that h∗(δ1) = δ2, δ1, δ2 ∈ πk(Mn

1 ), then the sets Bγ,δ1(Mn
1 ) and

Bγ,δ2(Mn
1 ) coincide.

The proof of the lemma follows immediately from the fact that
we distinguish all our objects only up to an equivalence induced by
diffeomorphisms of the manifold Mn

1 onto itself of degree +1. The lemma
is proved.

Below we shall always denote a “connected sum along a cycle” of two
manifolds Mn

1 and Mn
2 in the following standard notation:

Mn(γ1, γ2, d) = Mn
1 #d

γ1,γ2M
n
2 ,

where γi ∈ πk(Mn
i , ν

N (Mn
i )), d ∈ πk(SOn−k). In the case when Mn

2 =
Sk × S̃n−k, γ ∈ πk(Mn

1 , ν
N (Mn

1 )) and β ∈ πk(Sk × S̃n−k) is a generating
element, we then, taking into account Lemma 9.5, use the notation:

Mn
1 #d

γ,βS
k × S̃n−k = Mn

1 #γS
k × S̃n−k mod θn.

Lemma 9.9. Suppose Mn is a (k − 1)-connected manifold and γ, δ ∈
πk(Mn, νN (Mn)), k < n − k. Then in the Thom complex TN(Mn) the
relation

Bγ,δ(Mn)+B̃(S̃n−k(g)) · TNγ ⊂ B(Mn#δS
k×S̃n−k(g)) mod Imκ∗, (33)

is valid, where B̃(S̃n−k(g)) ⊂ G(n− k) and

TN : πk(Mn, νN (Mn))→ πN+k(TN(Mn))
Imκ∗

is the homomorphism constructed in § 7.

Proof. We realize the element γ ∈ πk(Mn, νN (Mn)) by a smoothly
embedded sphere γ̃ : Sk ⊂ Mn, which has a trivial normal bundle
νn−k(Sk,Mn) in the manifold Mn, since the bundle γ̃∗νN (Mn) (by
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condition) and the bundle

νn−k(Sk,Mn)⊕ γ̃∗νN (Mn) = νN+n−k(Sk)

are trivial and k < n − k. The embedding γ̃ : Sk ⊂ Mn determines in a
natural way the embedding

TN γ̃ : TN (Sk, γ̃∗νN (Mn)) ⊂ TN (Mn).

By analogy with the proof of Lemmas 9.6 and 9.7 we consider the two maps:

f : SN+n → TN (Mn), f̃ ∈ Bγ,δ(Mn),
F : SN+n → TN (Sk, γ̃∗νN (Mn)) ⊂ TN(Mn),

having the following properties:

F̃ ∈ B̃(S̃n−k(g)) ◦B(Sk), B(Sk) ⊂ πN+k(TN (Sk, γ̃∗νN (Mn))

TN (Sk, γ̃∗νN (Mn)) = TN(Sk)

(f̃ and F̃ respectively denote the homotopy classes of the maps f and F ).
It is easy to see that f−1(Mn) = Mn and F−1(Sk) = Sk × S̃n−k(g).
Further, we consider the map

(f + F ) : SN+n → TN(Mn),

representing the element f̃ + TN γ̃F̃ ∈ πN+n(TN (Mn)). Clearly,

(f + F )−1(Mn) = Mn ∪ Sk × S̃n−k(g) ⊂ SN+n,

the element f−1
∗ (γ) − F−1

∗ (γ) belongs to the kernel Ker(f + F )∗, δ =
f−1∗ (γ). By analogy with the proof of Lemma 6.9 we construct a membrane
Bn+1 ⊂ SN+1 × I(0, 1) such that:

(a) Bn+1 ∩ SN+n × 0 = (f + F )−1(Mn),
(b) Bn+1 ∩ SN+n × 1 = Mn#δS

k × S̃n−k,
(c) Bn+1 = (f + F )−1(Mn)× I (0, 1

2

) ∪h1,h2 S
k ×Dn−k

ε × I(0, 1),
(d) h1 : Sk ×Dn−k

ε × 0→Mn × 1
2 ,

(e) h2 : Sk ×Dn−k
ε × 1→ Sk × S̃n−k × 1

2 ,
(f) hi(x, y, i − 1) = (x, hix(y)), where i = 1, 2, hix ∈ SO(n − k), x ∈

Sk, y ∈ DN−k
ε .
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The membrane is chosen in such a way that the map

(f + F )
SN+n

× 0

could be extended to a map

F1 : SN+n × I(0, 1)→ TN (Mn)

such that

F−1
1 (Mn) = Bn+1.

The choice of the membrane is made according to the choice of hix, i = 1, 2,
as in Lemma 9.6, and it is always possible for k < n − k. On the upper
boundary, the map F1/S

N+n × 1 will define a map
������

(q + F ), such that

(f + F )−1(Mn) = Mn#δS
k × S̃n−k(g).

Thus we have shown that the sum f̃ + TN γ̃F̃ belongs to the set

B(Mn#δS
k × S̃n−k(g)),

whence f̃ ∈ Bγ,δ(Mn) and

F̃ ∈ B̃(S̃n−k(g)) ◦B(Sk), TN γ̃F̃ ∈ B̃(S̃n−k(g)) · TNγ.
By definition of homomorphism,

TN : πk(Mn, νN (Mn))→ πN+n(TN (Mn))
Imκ∗

.

The theorem is proved.

§ 10. Varying smooth structure and keeping

the triangulation preserved. Morse surgery1

Assume the manifold Mn is k − 2-connected and it is a π-manifold for
k < n− k − 1, k − 2 ≥ 1. In the group

Hk−1(Mn) = πk−1(Mn) = πk−1(Mn, νN (Mn)),

let us choose some element γ and let us realize it by a sphere Sk−1 ⊂Mn,
which, by k − 1-parallelizability of the manifold Mn, has trivial normal

1The main theorem of this section, Theorem 10.2, is not completely proved. The
reader may omit this section, since the results given here are not used in the sequel.
A detailed proof of Theorem 10.2 will be given in the second part of the work.
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bundle νn−k+1(Sk−1,Mn), and let us form the manifold

Bn+1(h) = Mn × I
(

0,
1
2

)
∪h Dk ×Dn−k+1

ε ,

where

h : ∂Dk ×Dn−k+1
ε → T (Sk−1) = Sk−1 ×Dn−k+1

ε ,

h(x, y) = (x, hx(y)), hx ∈ SOn−k+1.

We choose the diffeomorphism h in such a way that the manifold Bn+1(h)
is a π-manifold, which is possible (see §§ 1–2 or § 9). Obviously,

∂Bn+1(h) = Mn ∪ (−Mn(h))

and

Hk(Bn+1(h),Mn) = Hn+1−k(Bn+1(h),Mn(h)) = Z,

Hi(Bn+1(h),Mn) = Hn+1−i(Bn+1(h),Mn(h)) = 0, i �= k.

Let us change the smooth structure on the manifold Mn(h), and preserve
the normal bundle νN (Mn(h)) and triangulation. Denote the obtained
manifold by Mn

1 (h). This change of smooth structure is associated, by
§ 8, with the set of elements (αi) ∈ πN+n(T n−2

N ), which is the set of all
differences

B(Mn(h))−B(Mn
1 (h)), T n−2

N ⊂ TN(Mn(h)).

Denote by q : Mn
1 (h)→Mn(h) the standard combinatorial equivalence. In

the setB(Mn
1 (h)) we choose a subset B(q)(Mn

1 (h)) consisting of all elements
α ∈ B(q)(Mn

1 (h)) having t-regular representatives

f2 : SN+n → TN(Mn(h))

such that

f−1
2 (Mn(h)) = Mn

1 (h)

and

f2
Mn

1 (h)
= q.

Let us fix a standard element 1N+n ∈ B(Mn(h)) constructed in the
proof of Lemma 3.1, and consider the set of differences of the type

{1N+n −B(q)(Mn(h))} ∈ πN+n(T n−2
N ), T n−2

N ⊂ TN(Mn(h)).
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We extend the smooth structure from the manifold Mn
1 (h) to the whole

membrane Bn+1(h). This leads to the obstruction

ϕs ∈ Hs(Bn+1(h),Mn(h), θn−s), Γn−s ⊂ θn−s

with coefficients in Milnor’s groups (see [12, 23]). But since

Hs(Bn+1(h),Mn(h)) = 0, s �= n+ 1− k,

we get exactly one obstruction

ϕn+1−k ∈ Hn+1−k(Bn+1(h),Mn(h), θn−k) = θn−k.

Thus, with each manifold Mn
1 (h), which is combinatorially equivalent

to Mn(h) there corresponds an element ϕn+1−k ∈ θn−k. According to
Munkres [12], if ϕn+1−k = 0 then the change of smooth structure can
be extended to Bn+1(h) from the boundary Mn(h) without changing the
triangulation.

In the group

Hk−1(Mn) = πk−1(Mn)

let us choose a minimal system of generators γ1, . . . , γl, and let us realize
them by smoothly embedded pairwise disjoint spheres Sk−1

1 , . . . , Sk−1
l ⊂

Mn. For each of these spheres the bundles νn−k+1(Sk−1
i ,Mn), i = 1, . . . , l

are trivial. Let us construct the manifold

Bn+1
l (h) = Mn× I

(
0,

1
2

)
∪h1,...,hl

[(Dk
1 ×Dn−k+1

ε )∪· · ·∪ (Dk
l ×Dn−k+1

ε )],

where

hi : ∂Dk
i ×Dn−k+1

ε → Sk−1
i ×Dn−k+1

ε ⊂Mn, i = 1, . . . , l,

such that

hi(x, y) = (x, hix(y)), x ∈ Sk−1
i , y ∈ Dn−k+1

ε , hix ∈ SOn−k+1.

According to §§ 1–2, we choose the diffeomorphism hi in such a way that
the manifolds

Mn
l (h) =

(
Mn

∖ ∪i T (Sk−1
i )

) ∪h1,...,hl

[∪iDk
i × Sn−kε

]
and Bn+1

l (h) are π-manifolds, which is possible for k < n− k. Evidently,

∂Bn+1
l (h) = Mn ∪ (−Mn

l (h))
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and

Hs(Bn+1
l (h),Mn) = Hn+l−s(Bn+1

l (h),Mn
l (h)) = 0, s �= k.

Since k < n − k − 1, the manifold Mn
l (h) is k − 1-connected. By analogy

with the above argument, each change of smooth structure on Mn
l (h)

without change of the triangulation generates an element

ϕn+1−k ∈ Hn+1−k(Bn+1
l (h),Mn

l (h), θn−k) = θn−k(1) + · · ·+ θn−k(l)︸ ︷︷ ︸
l factor

.

Let

Hi(Mn
l (h)) = 0, i < k + p (p ≥ 0)

and

Hk+p(Mn
l (h)) = πk+p(Mn

l (h)) �= 0,

where k+ p < n− k− p− 1. We change the smooth structure on Mn
l (h) by

using the results from § 9, namely, in the group πk+p(Mn
l (h)) we choose a

basis δ1, . . . , δm and consider the sum

Mn
l (h)#δ1S

k+p × S̃n−k−p1 #δ2 · · ·#δmS
k+p × S̃n−k−pm ,

where S̃n−k−pi ∈ θn−k−p(π). Let us try to “pull” the new smooth structure
along the membrane Bn+1

l (h) to Mn. This leads to an obstruction

ϕn+1−k ∈ θn−k + · · ·+ θn−k (l copies);

this obstruction defines a map

ϕn+1−k :
m∑
i=1

θn−k−pi →
l∑

j=1

θn−kj (35)

(with a change of smooth structure of Mn
l (h) by an element θ ∈∑m

i=1 θ
n−k−p
i one associates the obstruction ϕn+1−k(θ) ∈ ∑l

j=1 θ
n−k
j ). If

θ ∈ Kerϕn+1−k then the change of smooth structure by θ can be “pulled”.
Now let us study the homotopy nature of the constructed map ϕn+1−k in
terms of Thom’s complex. To do that, recall the filtration of the Thom
complex

TN(Mn) ⊃ T n−2
N ⊃ · · · ⊃ T 2

N ⊃ SN = T 0
N .
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If the manifold Mn is k − 2-connected, then

T 2
N = T sN = · · · = T k−2

N = T 0
N = Sn

and

T n−2
N = · · · = T n−k+1

N .

Generally, we shall always choose the filtration

T iN = TN (Ki, j∗νN (Mn)),

where Ki is the i-frame in the minimal cell decomposition and j : Ki ⊂Mn

(the number of cells σi ⊂ Mn is equal to max rk Hi(Mn, k) over all fields
k). With each cell σi ⊂Mn one associates a cell

TNγ
i ⊂ T iN ⊂ TN (Mn),

in such a way that the boundary operators in complexes Mn and TN (Mn)
are identical:

∂TN(γi) = TN(∂σi).

In § 7 it was proved that if Mn is a π-manifold then the space TN (Mn)
is homotopically equivalent to a wedge of spheres

EN (Mn) ∨ SN = EN (Mn ∪ x0),

where x0 is point. In this case we may assume that

EN (Ki ∪ x0) = ENKi ∨ SN = T iN ,

in such a way that

TN (Mn) = SN+n ∨ ENKn−2 ∨ SN .
Now, consider the Thom complex TN (Bn+1

l (h)), which is a
pseudomanifold with boundary

∂TN (Bn+1
l (h)) = TN(Mn) ∨ TN(Mn

l (h)).

As it is well known (see § 1), the space Bn+1
l (h) is contracted to its part

Mn × 1
2
∪h1,...,hl

(Dk
1 × 0 ∪ · · · ∪Dk

l × 0).

The homotopy type of the Thom complex depends only on the homotopy
type of the base. Thus the Thom complex TN(Bn+1

l (h)) is homotopically
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equivalent to the Thom complex

TN (Mn) ∪TNh1,...,TNhl
(DN+k

1 ∪ · · · ∪DN+k
l ),

where

TNhi : ∂DN+k
i → ENKk−1 ⊂ T k−1

N , i = 1, . . . , l.

It is evident now that

Kk−1 = Sk−1
1 ∨ · · · ∨ Sk−1

l

and

TNhi : ∂DN+k
i → ENSki = SN+k−1

i ,

if the spheres Sk−1
i ⊂ Kk−1 are chosen according to the (previously chosen)

system of generators γ1, . . . , γl of the group

Hk−1(Mn) = πk−1(Mn)

when defining the manifold

Bn+1
l (h), h = (h1, . . . , hl).

Now let us investigate the Thom complex TN (Mn
l (h)). If the element

γs is of infinite order then when passing from Mn to Mn
l (h), from the cycle

γ̃s ∈ Hn−k+1(Mn) such that γ̃s · γs = 1, we remove a neighborhood of a
point (this neighborhood being orthogonal to the sphere Sk−1

s ⊂ Mn). If
for all generating cycles of infinite order

γi1 , . . . , γis ∈ πk−1(Mn)

one finds the dual system of generators

γ̃i1 , . . . , γ̃is ∈ Hn−k+1(Mn)

such that

γ̃ij · γit = δjt,

and every element γ̃ij is defined by exactly one cell σn−k+1
j ⊂ Mn then

when passing from Mn to MN
l (h) from the interior of each cell σn−k+1

j we
remove a small ball neighborhood of a point, and the complement can be
contracted to Kn−k. If the element γt is of finite order qt then there is an
element

γ̃t ∈ Hn−k+1(Mn, Zqt)
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such that

γt · γ̃t = 1 (mod qt);

if γt is also defined by one cell

σn−k+1
t ∈ Kn−k+1 ⊂Mn

(which can always be assumed if n − k + 1 �= k − 1), then when passing
from Mn to Mn

l (h), we remove from this cell a ball neighborhood of
the intersection point of σn−k+1

t and Sk−1
1 , and after this operation the

complement can be contracted to the boundary ∂σn−k+1
t ⊂ Kn−k. Besides

that, the whole group πk−1(Mn) is mapped to zero when passing from Mn

to Mn
l (h) (each sphere Sk−1

i , i = 1, . . . , l moved to the boundary of the
tubular neighborhood ∂T (Sk−1

i ) ⊂ Mn, is spanned by a ball Dk
i ). This

leads to the following statement.

Lemma 10.1. The complex TN (Bn+1
l (h)) is homotopy equivalent to

the Thom complex

TN(Mn) = SN+n ∨ ENKn−k+1 ∨ SN

with a cone spanning the N + k − 1-dimensional subcomplex

ENKk−1 = SN+k−1
1 ∨ · · · ∨ SN+k−1

l ⊂ ENKn+k−1 ⊂ TN(Mn).

If k − 1 < n − (k − 1) − 1, then the Thom complex TN (Mn
l (h)) is a

subcomplex of the complex TN(Bn+1
l (h)), and it is contracted along itself

to the subcomplex

(SN+n ∨ ENKn−k ∨ SN )
ENKk−1

of the complex

TN (Bn+1
l (h)) =

(SN+n ∨ ENKn−k+1 ∨ SN )
ENKk−1

.

A proof of Lemma 10.1 follows from the arguments given before the
formulations, and passing to the Thom complexes.

The lemma is proved.
In § 8, we have already considered the exact sequences (33) and (34) of

the form

· · · → πN+i(T k−1
N ) → πN+i(T

k+p
N )

→ πN+i

(
T k+pN

T k−1
N

)
∂→ πN+i−1(T k−1

N )→ · · ·
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for i = n, p ≥ 0. In our case

T iN = ENKi ∨ SN ,
T k−1
N = SN+k−1

1 ∨ · · · ∨ SN+k−1
l ∨ SN = ENKk−1 ∨ SN .

Assume now i = n. Consider the exact sequence

πN+n(ENKk−1)→ πN+n(ENKk+p)

→ πN+n

(
ENKk+p

ENKk−1

)
∂→ πN+n−1(ENKk−1)
→ πN+n−1(ENKk+p), p ≥ 0, (36)

corresponding to the exact sequences (33) and (34), since

TmN = ENKm ∨ SN .

To emphasize the dependence of the manifold, we shall write:

Tmn = TmN (Mn) ⊂ TN(Mn), TmN (Mn
l (h)) ⊂ TN (Mn

l (h)),

TmN (Bn+1
l (h)) ⊂ TN (Bn+1

l (h)).

From Lemma 10.1, it follows that

TmN (Mn
l (h)) = TmN (Bn+1

l (h)) =
(
ENKm

ENKk−1

)
∨ SN

for m ≤ n− k and

T n−k+1
N (Bn+1

l (h)) =
(
ENKn−k+1

ENKk−1

)
∨ SN .

We shall also write:

Km = Km(Mn) ⊂Mn,

Km(Mn
l (h)) ⊂Mn

l (h), Km(Bn+1
l (h)) ⊂ Bn+1

l (h),

denoting the frames of dimension m of the corresponding manifolds Mn,
Mn
l (h) or Bn+1

l (h) by symbols depending on the manifold. Note that

πN+n−1(ENKk−1) = G(n− k) + · · ·+G(n− k) (l summands).
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Let us rewrite the exact sequence (36) as

l∑
i=1

Gi(n− k + 1)→ πN+n(ENKk+p(Mn)) Λ→ πn+N (ENKk+p(Bn+1
l (h)))

∂→
l∑
i=1

Gi(n− k)→ πN+n−1(ENKk+p(Mn)), (37)

moreover if k + p ≤ n− k then

ENKk+p(Bn+1
l (h)) = ENKk+p(Mn

l (h)).

According to the notation of § 8 from Lemma 10.1, we get:

T k+p,k−1
N (Mn) = T k+pN (Mn

l (h)) = T k+pN (Bn+1
l (h)),

k − 1 < n− k − 2, p ≥ 0, k + p ≤ n− k.
Now, let us consider the “framed” smooth spheres S̃i ⊂ SN+1 in

Pontrjagin’s sense [15]. In this case the sphere S̃i with a normal frame
field τN (“framing”) in SN+i defines an element of the group G(i). The
“connected sum along a cycle” operation defined in § 9, will always be
performed for “framed” π-manifolds Mn

1 , M
N
2 ⊂ SN+n, in such a way

that the manifolds

Mn
1 #d

γ1,γ2M
n
2

gets a natural framing for a suitable choice of d. Since the “framed” smooth
sphere S̃i defines exactly one element α ∈ (S̃i, τN ) ⊂ G(i), Theorem 9.9 can
be reformulated as follows:

Each element β ∈ Bγ,δ(Mn
1 ) ⊂ A(Mn) is: (a) a “framed” manifold Mn

1

plus (b) fixed (up to a homotopy) map f : Mn
1 →Mn of degree +1 such that

f∗δ = γ, γ ∈ πk(Mn, νN (Mn)), δ ∈ πk(Mn
1 , ν

N );

on Mn
1 #δS

k × S̃n−k there is a natural framing and a natural mapping

f̃ : Mn
1 #δS

k × S̃n−k →Mn;

these framing and mapping f̃ jointly define an element

β + α(S̃n−k, τN ) ◦ TNγ ∈ Bγ,δ(Mn
1 #δS

k × S̃n−k),
where

α(S̃n−k, τN ) ∈ B̃(S̃n−k), β ∈ Bγ,δ(Mn
1 ).

This new formulation is somewhat stronger than the former one, but this
was, in fact, proved when proving Theorem 9.9. We shall call this (stronger)
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statement Theorem 9.9′. Moreover, when “pulling” the smooth structure
along the membrane Bn+1

l (h), we shall always try to pull the new framing
obtained by changing the boundary of Mn

l (h) by a framed smooth sphere
S̃n−k−p, p ≥ 0 (the manifold Mn is k − 2-connected, and the manifold
Mn
l (h) is k + p − 1-connected). Recall that the manifold Mn is “framed”

and, according to § 2, we defined the membrane Bn+1
l (h) in such a way that

the framing on Mn can be extended to the framing of the membrane

Bn+1
l (h) ⊂ SN+n × I(0, 1), Mn ⊂ Sn+N × 0,

Mn
l (h) ⊂ SN+n × 1.

In this case the obstruction to “pulling” of the new framing (together with
the smooth structure) from the boundaryMn

l (h) to the membrane Bn+1
l (h)

is a homology class

ϕ̃n+1−k ∈ Hn+1−k(Bn+1
l (h),Mn

l (h);G(n− k))
= G(n− k) + · · ·+G(n− k) (l copies).

This obstruction to extending the smooth structure and framing from the
boundary to the membrane is split into two parts:

(1) on the boundary ∂σn+1−k = Sn−k of each simplex

σn+1−k ∈ Bn+1
l (h)

one defines a new smooth structure

S̃n−k(σn+1−k) ∈ θn−k
(see [12, 23]);

(2) on the boundary ∂σn+1−k there is a frame field τN , which is normal
to the whole membrane Bn+1

l (h) ⊂ SN+n × I(0, 1); the latter makes
sense since the new smooth structure is defined on the neighborhood
of the n− k-dimensional frame together with the new “framing” of the
membrane Bn+1

l (h).
(3) On ∂σn+1−k, we have a frame field normal to ∂σn+1−k in Bn+1

l (h) (in
the new smooth structure). We denote the latter frame field by τk; it
will make sense in the new smooth structure.

(4) The smooth structure S̃n−k on ∂σn+1−k and the fields (τN , τk) together
define an element

α(σn+1−k) ∈ G(n− k);
if the smoothness and the framing (τN , τk) extend fromthe neighborhood
of a boundary of the simplex σn+1−k and define a “smoothness with a
framing” on a neighborhood of the n − k-dimensional framing plus the
neighborhood of simplex (see [12, 23]), then

α(σn+1−k) = 0.
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According to the previous results, we can change the smooth structure
and the framing on a k + p-frame of the manifold Mn

l (h) by an element

α ∈
m∑
i=1

Gi(n− k − p), 1

where m is the number of generators of the group

Hk+p(Mn
l (h)) = πk+p(Mn

l (h)).

With the element α ∈∑m
i=1Gi(n− k − p) one associates the element

ϕ̃n+1−k(α) ∈
l∑

j=1

Gj(n− k) = Hn+1−k(Bn+1
l (h),Mn

l (h);G(n− k)).

On the other hand, we have constructed an exact sequence (37)

· · · → πN+n(ENKk+p(Mn)) Λ→ πN+n(ENKk+p(Mn
l (h))

∂→
l∑
i=1

Gi(n− k)→ · · ·,

such that

πN+n(ENKk+p(Mn
l (h)) =

m∑
j=1

Gj(n− k − p),

thus

∂ :
∑

Gi(n− k − p)→
∑

Gi(n− k).
The following theorem holds:

Theorem 10.2. The homomorphism ∂ :
∑m

j=1Gi(n − k − p) →∑l
i=1Gi(n− k) of the exact sequence (37) coincides with the map ϕ̃n+1−k

for those values where both are defined.

Sketch of the Proof. The definition of ∂ is algebraic, and the
map ϕ̃n+1−k was defined geometrically. Consequently, to establish the
connection between them, it is necessary to translate the definition of
ϕ̃n+1−k into algebraic language.

1It is important to note that framed smooth spheres do not generate the whole group
G(i) for i = 4q + 2, thus eϕn+1−k is not always well defined.
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Consider the manifold(
Mn

∖ l⋃
i=1

T (Sk−1
i )

)
= Bn,

where

∂Bn =
l⋃
i=1

Sn−ki × Sk−1
i .

Evidently,

Mn
l (h) = Bn ∪h1,...,hl

[
l⋃

i=1

Sn−ki ×Dk
i

]

and

Mn = Bn ∪
[

l⋃
i=1

Dn−k+1
i × Sk−1

i

]
.

Let us change the smooth structure of the manifold Mn
l (h) as descibed

above (together with the framing, if the latter is defined) by the element

α ∈
m∑
j=1

Gj(n− k − p), α =
∑
j

αj , αj ∈ Gj(n− k − p).

Thus, the smooth structure and the framing are changed only in the
neighborhood of the cycles Sk+pj ⊂Mn

l (h). The intersection

Sk+pj · Sn−ki = Mp
ij

is a smooth submanifold Mp
ij ⊂ Sn−ki which is framed in the sphere Sn−ki

by a framed field induced by a coordinate system in a neighborhood of the
sphere Sk+pj ; we assume that the spheres Sk+pj and Sn−ki are orthogonal to
each other in their common points. The obtained framed manifold defines
an element βij ∈ πn−k(Sn−k−p); when changing the smooth structure
of the manifold Mn

l (h) in the neighborhood of the cycle Sk+pj by the
sphere S̃n−k−pj (αj) ∈ θn−k−p(π) the smooth structure on the sphere
Sn−ki ⊂ Mn

l (h) is changed in the tubular neighborhood of the manifold
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Mp
ij ⊂ Sn−ki : namely,

T (Mp
ij) ⊂ Sn−ki ,

T (Mp
ij) = Mp

ij ×Dn−k−p
ε ,

∂T (Mp
ij) = Mp

ij × Sn−k−p−1
ε .

Consider the map

g̃ : Mp
ij → diff Sn−k−p−1

ε ,

induced by the map

g : Sk+pj → diff Sn−k−p−1
ε ,

which takes the sphere Sk+pj to the point g(Sk+pj ), where

S̃n−k−p(g(Sk+pj )) = S̃n−k−p(αj).

Furthermore, we set

S̃n−ki (αj) = [Sn−kj �T (Mp
ij)] ∪eg T (Mp

ij), (38)

where

g̃ : ∂T (Mp
ij)→ ∂T (Mp

ij),

g̃(x, y) = (x, g̃(Mp
ij) ◦ y), x ∈Mp

ij , y ∈ Sn−k−p−1
ε .

The following lemma clarifies the sense of the elements βij ∈ G(p).

Lemma 10.3. The complex T k+pN (Mn) is homotopically equivalent to
the wedge

SN
∨



 m⋃
j=1

Dk+p+N
i


 ∪βij

l∨
i=1

SN+k−1
i


 ,

where βij ∈ πN+k+p−1

(
SN+k−1
i

)
= G(p).
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Proof. Evidently,

Mn = Bn ∪ [∪iDn−k+1
i × Sk+1

i

]
,

where

Bn = Mn
l (h)�

(∪iSn−ki ×Dk
i

)
;

the manifold Mp
ij ⊂ Sn−ki is the intersection

Sn−ki · Sk+pj ⊂Mn
l (h), i = 1, . . . , l, j = 1, . . . ,m.

We shall assume, unreservedly, that the spheres Sn−ki and Sk+pj intersect
orthogonally at each point of Mp

ij . Consider the tubular neighborhood
T (Mp

ij) ⊂ Sk+pj of the manifold Mp
ij in Sk+pi . Evidently,

T (Mp
ij) = Mp

ij ×Dk
εi

and

∂T (Mp
ij) = Mp

ij × Sk−1
ε ⊂ Sk+pj .

Note that on Mp
ij there exists a framing, which is normal to Mp

ij inside
Sn−ki , on the whole manifold Mp

ij × Sk−1
εi there is a framing normal to

Mp
ij × Sk−1

εi in the manifold

∂T (Sn−ki ) = Sn−ki × Sk−1
εi ,

and on Mp
ij×Sk−1

εi there is an N -frame field, normal to the manifold Mn
l (h)

in the sphere SN+n. Consider the Thom complex TN (Sk−1
εi ) and note that

the sphere Sk−iεi ⊂ Bn defines a (generally, nontrivial) cycle in homology
Hk(Mn), so that the group Hk(Mn) is generated by cycles Sk−1

εi ⊂ Bn,
which appear when passing from Mn

l (h) to Bn ⊂Mn by removing tubular
neighborhoods T (Sn−ki ) ⊂Mn

l (h). The pair of framings on the manifold

Mp
ij × Sk−1

i ⊂Mn
l (h) ⊂ SN+n,

given above, together with the natural projection

p : Mp
ij × Sk−1

i → Sk−1
i
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defines a map of the sphere

F (βij) : SN+k+p−1 → TN (Sk−1
i ) = SN ∨ SN+k−1,

satisfying Lemma 3.2 such that

F (βij)−1(Sk−1
i ) = Mp

ij × Sk−1
i , F (βij) =

p

Mp
ij

× Sk−1
i ,

and the map F (βij) on a tubular neighborhood of the manifold Mp
ij×Sk−1

i

is defined by the pair of framings constructed above, these framings should
be normal to Mp

ij ×Sk−1
i ⊂ Sn−ki ×Sk−1

i and to Mn
l (h) ⊂ SN+n. It is easy

to see that the map

F (βij) : SN+n → TN (Sk−1)

has homotopy class βij ◦ TNγi, where γi is the generating element of the
group πk−1(Sk−1

i ). Recall that the framing normal to Mn
l (h), was given on

the membrane

Bn+1
l (h) ⊂ SN+n × I(0, 1)

and, consequently, on the manifold Mn ⊂ SN+n × 0, where

Mn
l (h) ⊂ SN+n × 1.

Thus the constructed mapping∑
i

F (βij) : SN+n → TN
(∨iSk−1

i

)

is null-homotopic in the complex TN (Mn), since the framing to

∪iMp
ij × Sk−1

i ⊂ Bn ⊂Mn

has already been extended to the membrane(
Sk+pj

∖ ∪i (Mp
ij ×Dk

εi)
)
⊂ Bn

by definition of this framing, and the framing normal to the whole manifold
Mn
l (h), has been extended to the membrane Bn+1

l (h). Thus the element

∑
i

βij ◦ TNγi ∈ πN+k+p−1(T
k+p
N (Mn))
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is equal to zero. It is easy to see that every element

β ∈ πN+k+p−1(T k−1
N (Mn)),

belonging to the kernel of the inclusion homomorphism

T k−1
N (Mn) ⊂ T k+pN (Mn),

is a linear combination of elements
∑

i βij ◦ TNγi , which yields the desired
statement. The lemma is proved.

Remark. If p = 0 then the manifold Mp
ij is a collection of points, and

there is a well-defined intersection index

βij = Sk+pj · Sn−ki , i = 1, . . . , l, j = 1, . . . ,m.

The proof of Lemma 10.3 is trivial in this case, and in terms of
intersection indices Sk+pj · Sn−ki one can express the boundary operator in
the complex T k+pN (Mn) (the elements βij ∈ G(0) = Z are integer numbers).

We study the behavior of smooth structure on the spheres Sn−ki ⊃Mp
ij

when varying the smooth structure in the tubular neighborhood

T (Mp
ij) = Mp

ij ×Dn−k−p,

described above. Namely,

S̃n−k = (Sn−k�T (Mp
ij)) ∪g T (Mp

ij),
1

g : Mp
ij → diffSn−k−p−1,

g(Mp
ij) consists of one point (one diffeomorphism), corresponding to the

sphere S̃n−k−p(g) ∈ θn−k−p(π). Let us separately consider the manifold

Mp
ij × S̃n−k−p(g)

and define a framing τN on it inside the sphere SN+n−k in such a way that
the framed manifold

Mp
ij × S̃n−k−p(g) ⊂ SN+n−k

defines an element from the set

βij ◦ B̃(S̃n−k−p(g)) ∈ G(n− k).

1The operation of changing the smooth structure seriously depends on the choice of
the map Mp

ij → SOn−k−p, defining normal coordinates.



September 7, 2009 12:27 9in x 6in b789-ch03

148 S. P. Novikov

On the sphere Sn−k ⊂ SN+n we first define the zero framing τN0 . Consider
the framed manifold

Mn−k = (Sn−k ∪Mp
ij × S̃n−k−p(g))

in the sphere SN+n−k × 0 and the membrane

Nn−k+1
q = Mn−k ∪q Dn−k−p × I(0, 1)×Mp

ij ,

where

q = (q0, q1),

q0 : Dn−k−p ×Mp
ij × 0→ Sn−k

q1 : Dn−k−p ×Mp
ij × 1→Mp

ij × S̃n−k−p(g),

so that

qi(x, y, i) = (qiy(x), y, i), i = 0, 1, qiy ∈ SOn−k−p.

We shall assume that

Nn−k+1
q ⊂ SN+n−k × I(0, 1),

and it is evident that

Nn−k+1
q ∩ SN+n−k × 0 = Mn−k

Nn−k+1
q ∩ SN+n−k × 1 = S̃n−k,

and the membrane Nn−k+1
q touches the boundary orthogonally.

Lemma 10.4. The mappings qi : Mp
ij → SOn−k−p, i = 0, 1, can be

chosen in such a way that the framing τN ∪ τN0 , given on the manifold
Mn−k ⊂ SN+n−k × 0, can be extended to the membrane Nn−k+1

q ⊂
SN+n−k × I(0, 1).

Proof. Since, by assumption, p is smaller than n− k − p, the natural
inclusion homomorphism

π(Mp
ij , SOn−k−p)→ π(Mp

ij , SON )
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is an epimorphism. Thus for the fixed map

q0 : Mp
ij → SOn−k−p

we may find a map q1

q1 : Mp
ij → SOn−k−p,

such that the framing τN ∪ τN0 extends from Mn−k to the membrane
Nn−k+1
q , q = (q0, q1) because the membrane Nn−k+1

q is always contractible
to the subcomplex

Mn−k ∪q 0×Mp
ij × I(0, 1),

and it suffices to extend the framing to this subcomplex, which is done
completely analogously to the proof of Lemma 2.1.

The lemma is proved.
Thus, Lemma 10.4 gives information about new smooth structures and

framings on spheres Sn−ki , i = 1, . . . , l when we deform the smooth structure
and the framing on the initial manifold Mn

l (h). Namely, when changing the
smooth structure (and framing) on j-th basic cycle of the group

Hk+p(Mn
l (h)) = πk+p(Mn

i (h))

by a Milnor sphere S̃n−k−p(αj) ∈ θn−k−p(π) together with the framing (an
element of αj-group G(n−k−p) on the sphere Sn−ki ) the smooth structure
and the framing define an element∑

j

βij ◦ αj ∈ G(n− k).

Since the homomorphism

∂ : πN+n(T
k+p
N (Mn

l (h)))→ πN+n−1(T k−1
N (Mn)),

constructed above, is defined (as known in homotopy topology) in such a
way that

α→
∑
i,j

αj ◦ βij ,

where α =
∑
αj for all

α ∈
m∑
j=1

Gj(n− k − p) = πN+n(T k+pN (Mn
l (h))),
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and the elements

βij ∈
l∑
i=1

Gi(p) ⊂ πN+k+p−1(T k−1
N (Mn))

possess the properties from Lemma 10.3, our theorem is proved.

Summarizing the results of Chapter II, we may say that we have
partially studied the homotopy structure of Thom’s complexes, the action
of the group π+(Mn,Mn), the connected sum operation of a manifold
with Milnor’s sphere and the variation of smooth structure along a cycle
of minimal nonzero dimension (for the case of π-manifolds). Besides, we
have kept track of how the homotopy structure of Thom’s complex varies
when performing Morse’s surgery, and, finally, we studied the connection
between changing the smooth structure in the manifold operated on by a
surgery and a homomorphism in some exact sequence closely connected
to the homotopy structure of Thom’s complex. The study of the latter
connection was performed only for elementary operations changing smooth
structure, however, in a sequel of this work, the author will give a more
systematic treatment of changing the smooth structure and their connection
to homomorphisms of type ∂.

In the next chapter, we shall extract corollaries from the general theorem
established above and analyze examples.

Chapter III

Corollaries and applications

§ 11. Smooth structures on Cartesian

product of spheres

We shall apply the results of the previous sections to the following
example:

Mn = Sk × Sn−k, n− k > k.

From § 7 it follows that

TN(Mn) = SN+n ∨ SN+n−k ∨ SN+k ∨ SN
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and

πN+n(TN ) = Z +G(k) +G(n− k) +G(n).

The set A(Mn) consists of all elements of type

1N+n + α, 1N+n ∈ Z, α ∈ G(k) +G(n− k) +G(n),

so that 1N+n + 0 ∈ B(Sk × Sn−k).
Let us investigate the action of the group π(Mn, SON ) on the set

A(Mn). It is easy to see that the sequence

πn(SON )→ π(Mn, SON )
p→ πn−k(SON ) + πk(SON )→ 0 (39)

is exact.

Lemma 11.1. If b ∈ πn(SON ) ⊂ π(Mn, SON ), then for each element
1N+n + α ∈ A(Mn) we have:

b(1N+n + α) = 1N+n + α+ J(b). (40)

Proof. Consider the following two maps

fi : SN+n → TN(Mn), i = 1, 2,

representing elements 1N+n + α and b(1N+n + α), respectively, so that

f−1
1 (Mn) = f−1

2 (Mn) = Mn
α

and

f1
Mn
α

=
f2
Mn
α

.

But in the tubular neighborhood T (Mn
α ), the maps f1 and f2 differ by

b ∈ πn(SON ) ⊂ π(Mn, SON ),

and this difference is supported near one point x0 ∈Mn
α . We may say it as

follows: the manifold Mn
α is framed in two different ways τNi , i = 1, 2, and

these framings differ only in a neighborhood of x0 by element b ∈ πn(SON )
In this case on the sphere Sn there exists a framing τN corresponding to the
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element b such that for the framed manifold (τN1 ,M
n
α ), (τN2 ,M

n
α ), (τN , Sn)

we have:

(τN1 ,M
n
α )#(τN , Sn) = (τN2 ,M

n
α ).

Thus the framings τNi , i = 1, 2 on the manifold Mn
α differ by a framed

sphere Sn, and in the homotopy groups we have πn+N (TN)

b(1N+n + α) = 1N+n + α+ J(b).

The lemma is proved.

Lemma 11.2. If a ∈ π(Mn, SON) and p(a) ∈ πn−k(SON ) then for
every element 1N+n + α ∈ B(Sk × S̃n−k)

a(1N+n + α) = 1N+n + α+ J(p(a)) (mod Imκ∗ ∈ G(n)). (41)

Proof. Let, as above,

fi : SN+n → TN (Mn), i = 1, 2,

represent the elements a(1N+n + α) and 1N+n + α, in such a way that the
manifold

Mn
α = f−1

i (Mn), i = 1, 2,

is diffeomorphic to the manifold Sk × S̃n−k and framed in two different
ways. These framings τNi , i = 1, 2 differ on the basic cycle S̃n−k ⊂ Mn

α ,
and, besides,

f1
Mn
α

=
f2
Mn
α

.

Let us choose a standard framing τk0 , tangent to Sk at x0 ∈ Sk, and choose
the frame fields (τNi , τ

k
0 ) on the sphere

x0 × S̃n−k ⊂Mn
α ,

which differ by j∗p(a), where

j∗ : πn−k(SON ) ≈→ πn−k(SON+k).

Separately, let us consider the manifold

Sk × Sn−k ⊂ SN+n

and for the cycle x0 × Sn−k let us define a framing τN+k defined by the
element j∗p(a), where the last k vectors are tangent to the factor Sk, and
the first N vectors are normal to Sk × Sn−k (and defined for x0 × Sn−k).
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We extend the vector field τN , defined by the first N vectors of τN+k, to
the whole manifold

Sk × Sn−k ⊂ SN+n,

which is possible; let us now define a map

F : Sk × Sn−k → Sk × y0 ⊂ Sk × Sn−k,
by setting F (x, y) = x. Consider the element β of the group
πN+n(T kN (Mn)), defined by this extended framing and by F , which is
evidently represented by the map

fβ : SN+n → T kN

such that

f−1
β (Sk) = Sk × Sn−k, fβ

Sk × Sn−k = F.

It is easy to see that the sum 1N+n + α+ β is represented by

(fα + fβ) : SN+n → TN ,

where

(fα + fβ)−1(Sk × Sn−k) = (Sk × S̃n−k) ∪ (Sk × Sn−k)
= f−1

α (Sk × Sn−k) ∪ f−1
β (Sk × Sn−k).

Analogously to § 10, using the “connected sum

Sk × Sn−k#γS
k × Sn−k

along the cycle” γ = Sk for framed manifolds Sk × S̃n−k and Sk × Sn−k,
construct a map

��������

(fα + fβ) : SN+n → TN

of homotopy class 1N+n + α+ β such that
��������

(fα + fβ)
−1(Sk × Sn−k) = (Sk × Sn−k#γS

k × S̃n−k)
= Sk × S̃n−k mod θn.

The map
��������

(fα + fβ), considered on Sk × S̃n−k, coincides with both f1 and
f2 on Sk × S̃n−k, and in the tubular neighborhood differs from f1 only
in a neighborhood of a point (the difference is nontrivial only for the
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dimension n since we have killed the difference p(a) on the n− k-frame).
Thus we conclude that

1N+n + α+ β = a(1 + α)mod Imκ∗ ⊂ G(n)

by Lemma 1. By virtue of Theorem 9.9 (or its modification Theorem 9.9′

given in § 10)

β = Jp(a) ◦ ENγ mod Imκ∗,

where γ is the fundamental class of the sphere Sk.
The lemma is proved.

Now let us study the action of the group π+(Mn,Mn) on the set A(Mn),
according to the results of § 7.

It is easy to see that

πνn(Sk × Sn−k) = πn(Sk × Sn−k) = πn(Sk) + πn(Sn−k)

and that the sequence

0→ πn(Sk) + πn(Sn−k)→ π+(Sk × Sn−k)
is exact. Since n− k > k, the homomorphism

TN = EN : πn(Sn−k)→ G(k) ⊂ πn+N (TN (Mn))
G(n)

,

constructed in § 7, is an epimorphism. Applying Lemma 7.6, we get the
following statement.

Lemma 11.3. The set B(Mn
α ) contains all elements of type

1N+n + α+ β (mod G)(n),

where β ∈ G(k), α ∈ G(k) +G(n− k) +G(n).

Proof. Let γ ∈ πn(Sn−k) ⊂ π+(Mn,Mn). According to § 6, the group
π+ + (Mn,Mn) acts on the set

B(1N+n + α) ⊂ A(Mn),

and, according to § 7 (Lemma 7.6), we have:

γ(1N+n + α) = ENγ + 1N+n + α[modG(n)];

but the homomorphism EN is an epimorphism, which yields the desired
statement. The lemma is proved.

Comparing Lemmas 11.2 and 11.3 with the results of § 10, we get the
following.
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Lemma 11.4. For each smooth sphere S̃n−k ⊂ θn−k(π) the set

B(Sk × S̃n−k) ⊂ A(Mn)

contains all elements of the type

1N+n + B̃(S̃n−k) +G(k) [mod G(n)],

where with the element 1N+n + 0 one associates the manifold

Mn = Sk × Sn−k,
so that the set B̃(S̃n−k) represents the residue class mod Im J in the group
G(n− k).

The proof of the lemma follows from a formal combination of previous
lemmas.

Lemma 11.5. (1) If n − k �≡ 2 mod 4, then each element of the set
A(Mn)mod G(n) belongs to one of the sets B(Sk×S̃n−k), S̃n−k ∈ θn−k(π),
so that the following inclusion holds:

B(Sk × S̃n−k) ⊃ 1N+n + B̃(S̃n−k) +G(k)modG(n). (42)

For every pair S̃k ∈ θk(π), S̃n−k ∈ θn−k(π) there exists a smooth sphere
S̃n−k1 ∈ θn−k(π) such that

B(S̃k × S̃n−k) = B(Sk × S̃n−k1 )modG(n). (43)

(2) If Mn
1 is such that

B(Mn
1 ) �= B(S̃k × S̃n−k)modG(n)

for any S̃k ∈ θk, S̃n−k ∈ θn−k, then the manifold Mn
1 is combinatorially

equivalent to the manifold Mn = Sk × Sn−k.
(3) If B(Mn

1 ) = B(Mn
2 )modG(n) then the manifolds Mn

1 and Mn
2 are

diffeomorphic mod point.1

Proof. If n − k �≡ 2 mod4, then θ̃(n − k) = G(n − k) and, by
Lemma 11.4, every element of the set A(Mn) belongs to one of the sets

B(Sk × S̃n−k1 )modG(n),

which yields Statement (1).

1eθ(n − k) ⊂ G(n − k) consists of framed Milnor’s spheres.
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If n − k ≡ 2 mod4 and G(n − k)/θ̃(n − k) = Z2 (see [6]), then it is
possible that

B(Mn
1 ) �= B(S̃k × S̃n−k)modG(n)

for any S̃k, S̃n−k such that S̃k × S̃n−k is a π-manifold. In the latter case
assume the contrary: Mn

1 is combinatorially equivalent to Sk × Sn−k and
some map

f : Mn
1 → Sk × Sn−k

realizes this combinatorial equivalence. By [11], there is a first obstruction

pk(f) ∈ Hn−k(Mn
1 , θ

k) = θk,

i.e. pk(f) ∈ θk and with the element pk(f) one associates the sphere
S̃k ∈ θk.

Consider the standard combinatorial equivalence

f0 : Sk × Sn−k → S̃k1 × Sn−k, S̃k1 = −pk(f),

such that

pk(f0) = −pk(f) = S̃k1 ∈ θk.
Evidently,

pk(f0 ◦ f) = pk(f) + pk(f0) = 0.

Consider the second obstruction

pn−k(f0 · f) ∈ Hk(Mn
1 , θ

n−k) = θn−k,

the sphere

S̃n−k1 = −pn−k(f0 · f)

and the map

f1 : S̃k1 × Sn−k → S̃k1 × S̃n−k1 .

Obviously,

pn−k(f1 ◦ f0 · f) = pn−k(f1) + pn−k(f0 · f) = 0.

According to the results of [9, 11, 17], the manifolds Mn
1 and S̃k1 × S̃n−k1 are

diffeomorphic mod point, and from § 9, we get:

B(Mn
1 ) ≡ B(S̃k1 × S̃n−k1 )modG(n).
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Thus we obtain a contradiction with our assumption, thus Statement (2)
is proved. As for Statement (3), it was essentially proved in § 9 (see
Lemma 9.1). The theorem is proved.1

Remark. Since the sphere S̃n−k ⊂ θn−k(∂π) can always be smoothly
realized in Rn for k ≥ 2, it follows from Smale [19] that S̃n−k × Dk+1 is
diffeomorphic to Sn−k ×Dk+1, k ≥ 2. Thus S̃n−k ×SK is diffeomorphic to
Sn−k × Sk.

Lemma 11.6. If n− k �≡ 2 mod4 then any direct product S̃k× S̃n−k1 is
diffeomorphic mod point to the direct product S̃k × S̃n−k2 for some sphere
S̃n−k2 , where

S̃k ∈ θk(π), S̃n−ki ∈ θn−k(π), i = 1, 2, k ≥ 2, n− k > k.

This fact immediately follows from Theorem 11.5 and Lemma 9.1.

Example 1. Let Mn = S2 × S6. Then π(Mn, SON ) = Z2, and the
sequence

0→ π8(S2) + π8(S6)→ π+(S2 × S6, S2 × S6)
q→ π6(S2) + Z2 → 0

is exact. Furthermore,

TN (S2 × S6) = SN+8 ∨ SN+6 ∨ SN+2 ∨ SN ,
the set A(Mn) = Ã(Mn) consists of all elements of type

1N+n +G(2) +G(6) +G(8)

and

B(S2 × S6) ⊃ 1N+n + 0.

How does the group π+(Mn,Mn) act? If a ∈ π8(S2) and b ∈ π8(S6), then,
according to § 7, we have:

(b + a)(1N+n + α) ≡ 1N+n + α+ ENa+ ENb modG(8). (44)

Consider the subgroup Z2 ∈ π+(Mn,Mn), generated by the
diffeomorphism

f : S2 × S6 → S2 × S6

such that f(x, y) = (−x,−y).

1In part II we shall prove that if the quotient group G(n)/eθ(n) = Z2, then for all
Mn the set eA(Mn) contains half (exactly half) of the set A(Mn), n = 4k + 2.
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According to § 6 we have:

TNf(1N+n + α) = 1N+n − α modG(8). (45)

We know that π6(S2) = Z12; let η be the generator of the group
π6(S2) = Z12 and η̃ ∈ q−1(η). Assume also α ∈ G(2) + G(6). Let us
show that

η̃(1N+n + α) = 1N+n + α modG(2) +G(8).

By virtue of § 6, the map

feη : S2 × S6 → S2 × S6,

representing the element η̃ ∈ π+(S2 × S6, S2 × S6), induces the map

ENfeη : EN (S2 × S6)→ EN (S2 × S6)

and, since TN (S2 × S6) = SN ∨ EN (S2 × S6), it follows from § 6 that

ENfeη∗(1N+n + α) = η̃(1N+n + α)modG(8).

Consider the following map

feη : EN (S2 × S6)→ EN (S2 × S6).

Note that the space E(S2×S6) is homotopically equivalent to the complex
S3 ∨ S7 ∨ S9 and that

π9(E(S2 × S6)) = π9(S3) + π9(S7) + π9(S9) + KerEN−1,

where

π9(S3) = Z3, π9(S7) = Z2, π9(S9) = Z.

It is evident that

Efeη(λ9) = λ9 + µ
(1)
9 + µ

(2)
9 (mod KerEN−1),

where

µ
(1)
9 ∈ π9(S3), µ

(2)
9 ∈ π9(S7), λ9 ∈ π9(E(S2 × S6)).

Since

ENfeη(1N+n + α) = 1N+n + α+ EN−1(µ(1)
9 + µ

(2)
9 )

and

EN−1(µ(1)
9 ) = 0, EN−1(µ(2)

9 ) ∈ G(2),
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we get

η̃(1N+n + α) ≡ 1N+n + α (modG(2) +G(8)).

Thus we have proved that the set A(S2×S6) is split into the following sets:

(a) ∪eS8∈θ8B(S2 × S6#S̃8) = 1N+n +G(2) +G(8).
(b) Since G(6) = Z2 and G(6) �= ImEN−1π8(S2), the set

A(S2 × S6)
∖ ⋃

eS8∈θ8
B(S2 × S6#S̃8)

is non-empty. There is a π-manifold Mn
1 of homotopy type S2 × S6,

which is not diffeomorphic to S2 × S6 mod θ8.
(c) Since θ2 = θ6 = 0, we see that the manifold Mn

1 is not combinatorially-
equivalent to S2 × S6.

Lemma 11.7. There exist simply connected and combinatorially non-
equivalent π-manifolds of homotopy type S2 × S6.

§ 12. Low-dimensional manifolds. Cases n = 4, 5, 6, 71

Let Mn be a simply connected manifold of dimension n. Consider the
Thom complex TN (Mn) and the Thom isomorphism

ϕ : Hi(Mn)→ HN+i(TN(Mn)), i ≥ 0.

By uN ∈ HN (TN ) we denote, as usual, the fundamental class of the Thom
complex. Let wi ∈ Hi(Mn, Z2) be the normal Stiefel–Whitney classes. The
following lemma is well known.

Lemma 12.1. The formula

ϕ(wi) = SqiuN (46)

holds.

The proof of this lemma (in the case of the tangent bundle and its Thom
complex) belongs to Thom [21] and Wu [26], and analogously for Thom’s
complexes of any bundle (in our case, the normal bundle).

1A detailed proof of theorems from this section will be given in the next part of this
work.
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If we denote by p1 ∈ H(Mn, Z3) the modulo 3 reduction of the
Pontrjagin class of normal bundle, then (for n ≥ 6) we have an analogous
formula

ϕ(p1) = P 1uN , (46′)

where

P 1 : Hk(x, Z3)→ H4+k(x, Z3)

is the Steenrod cube. For n = 4 the Pontrjagin class is equal to 1
3τ , where

τ is the signature of Mn (see [3, 16]), and for n = 5 the class p1 is zero
because the manifold M5 is simply connected.

Assume n = 4. Then the following lemma holds.

Lemma 12.2. The group π(M4, SON ) is trivial for any simply
connected manifold M4.

The proof follows from the fact that

π2(SON ) = π4(SON ) = 0.

One can also easily prove the following:

Lemma 12.3. The map

TN : π4(M4, νN (M4))→ πN+4(T 2
N (M4))

is an epimorphism for any simply connected manifold M4; the group
Imκ∗(πN+4(SN )) is zero.

Proof. Since the group G(4) is zero, the image Imκ∗ is trivial. Since
the suspension homomorphism

EN : π4(S2)→ G(2)

is an epimorphism, the map

TN : π4(K2(M4), νN )→ T 2
N (M4),

(which can be easily reduced to the suspension homomorphism) is also
an epimorphism (note that π4(K2(M4), νN ) = π4(K2(M4))). Since the
natural map

π4(K2(M4), νN )→ π4(M4, νN (Mn))

is an epimorphism, the lemma is proved.
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Taking into account that

TN(M4) = T 2
N (Mn) ∨ SN+4,

we obtain the desired statement.

Lemma 12.4. The set B(M4) ⊂ A(M4) ⊂ πN+4(TN) coincides with
the whole set A(M4). Thus

Ã(M4) = A(M4) = B(M4),

and any two simply connected homotopy equivalent 4-manifolds are
J-equivalent.

The proof immediately follows from Lemma 12.3 and the results
from § 7.

Lemma 12.5. (1) If n = 5, 6, then there is a well-defined canonical
epimorphism

H3(Mn, Z)→ π(Mn, SON ).

(2) If n = 7 then the sequence

Z = π7(SON )→ (M7, SON )→ H3(M7, Z)→ 0

is exact.

Proof. Because

π7(SON ) = π3(SON ) = Z

and

π2(SON ) = π4(SON ) = π5(SON ) = π8(SON ) = 0, π1(Mn) = 0,

the lemma follows trivially from the obstruction theory for homotopy of
mapping.

Let us study the action of π(Mn, SON ) on the set

Ã(Mn) ⊂ πN+n(TN (Mn)).
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Note that the filtration

TN ⊃ T n−2
N ⊃ · · · ⊃ T 2

N ⊃ SN

for n ≤ 7 contains no more than 6 levels. Taking into account that G(4) =
G(5) = 0, we get the following well-defined exact sequences

πN+n(T n−3
N ) ∆(2)−→ πN+n(T n−2

N ) Λ→
l∑
i=1

Gi(2),

πN+n(T n−4
N ) ∆(3)

−→ πN+n(T n−3
N )→

m∑
j=1

Gj(3),

l = rkH2(Mn, Z2), m = rkH3(Mn, Z24),

G(n)→ πN+n(T n−4
N )→ 0,

G(n)→ πN+n(T n−3
N )→

∑
Gj(3)

for n = 7. These exact sequences are induced by exact sequences (33)–(34).
Note that

G(2) = Z2, G(3) = Z24 = Im J,

G(6) = Z2, G(7) = Z240 = Im J.

One can easily prove the following:

Lemma 12.6. For n = 6 the cardinality of the set Ã(Mn) is half the
cardinality of A(Mn).

If α ∈ Ã(Mn) and β ∈ G(6), β �= 0, then α + β ∈ A(Mn), but
α+ β /∈ Ã(Mn).

Proof. Consider an admissible map

fα : SN+6 → TN (M6)

such that the manifold M6
α = f−1

α (M6) is homotopically equivalent to M6.
Besides, let us consider a map

Fβ : SN+6 → SN

such that

F−1
β (x0) = S3 × S3,

where x0 ∈ SN . The inverse image

F−1
β (x0) = S3 × S3 ⊂ SN+6
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is a framed manifold, and for the cycles

S3 × x ⊂ S3 × S3

and

y × S3 ⊂ S3 × S3

there is a well-defined invariant ψ ∈ Z2, which is an obstruction for pulling
the framing for a Morse surgery (see §§ 2,4). The sum of maps

(Fβ + fα) : SN+6 → TN(M6)

represents an element α+ β and

(Fβ + fα)−1(M6) = S3 × S3 ∪M6
α.

By a Morse surgery, one may transform (Fβ + fα) in a way such that the
manifolds M6 for our new map (fα + Fβ) homotopic to (Fβ + fα), is a
framed connected sum

M6
1 = M6

α#S3 × S3

analogously to § 4 and § 9. For the cycles y× S3 and S3× x ⊂M6
1 , there is

a well-defined invariant ψ ∈ Z2 which is an obstruction to a Morse surgery.
We have a well-defined invariant ψ(α + β) �= 0 giving an obstruction for
simplification of the inverse image of M6

1 by Morse surgery (because of the
obstruction ψ to pulling frame fields). It is easy to see that the invariant ψ
is well-defined and the class α+ β /∈ Ã(M6).

The lemma is proved.

Since G(3) = ImJ and G(7) = ImJ , then from Lemma 12.5 and the
definition of J we easily obtain the following:

Lemma 12.7. For every element α ∈ Ã(Mn) the orbit π(Mn, SON ) ◦α
for n ≤ 7 contains all elements of the form α+ β, where

β ∈ ∆(2)
∗ πN+n(T n−3

N ) ⊂ πN+n(T n−2
N ) ⊂ πN+n(TN(Mn))

(here ∆∗ is the inclusion homomorphism ∆ : T n−3
N ⊂ T n−2

N in the exact
sequence (33)).

The proof follows from the fact that the sequence

G(n)→ πN+n(T n−3
N )→

∑
j

Gj(3)

is exact for n ≤ 7, and from Lemma 12.6 (for the case n = 6).
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Lemma 12.8. The image of the homomorphism composition

Λ · TN : πνn(Mn)→
l∑

i=1

Gi(2)

coincides with the image of Λ.

The proof of the lemma easily follows from the form of non-stable
homotopy groups of spheres in low dimensions (≤7), the structure of the
suspension homomorphism EN and the definition of the homomorphism
TN , having all properties analogous to the properties of the suspension
homomorphism (see § 7).

Comparing lemmas and results of §§ 1–7, we get the following:

Theorem 12.9. For n ≤ 7, the sets Ã(Mn) and B(Mn) ⊂ Ã(Mn)
coincide.

Proof. In a sequel of this work we shall study the properties of
TN and the connection of J with the action of π(Mn, SON ) in more
details.

§ 13. Connected sum of a manifold

with Milnor’s sphere

Using § 9, let us study the question when manifolds Mn and Mn#S̃n

are diffeomorphic of degree +1 (mod θn(∂π)).
By Lemma 9.1, to perform this deed we should understand the structure

of the homomorphism κ∗ : G(n) → πN+n(TN (Mn)), where κ : SN ⊂
TN (Mn) is the natural embedding of the fiber

DN
x ⊂ νN (Mn), x ∈Mn,

where the boundary ∂DN
x is contracted to a point when passing to TN (Mn).

By Lemma 9.1 we have:

B(Mn#S̃n) = B(Mn) + κ∗B̃(S̃n),

moreover, B̃(S̃n) ⊂ G(n) is a residue class mod Im J . The following lemma
holds:

Lemma 13.1. If in the set B̃(S̃n) there is an element β ∈ B̃(S̃n) ⊂
G(n) such that κ∗β = 0 then the manifolds Mn and Mn#S̃n are
diffeomorphic mod θn(∂π); in this case there is a sphere S̃n1 ∈ θn(∂π) such
that the manifolds Mn and Mn#(S̃n#S̃n1 ) are diffeomorphic of degree 1.
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Proof. Let κ∗β= 0, where β ∈ B̃(S̃n). Then the intersection B(Mn)∩
B(Mn#S̃n) is non-empty, hence

B(Mn) = B(Mn#S̃n).

Applying § 6, we get the first claim of the lemma. The second claim follows
from the associativity of the operation #. The lemma is proved.

Now let us try to find examples of manifolds Mn for which the kernel
of κ∗ is nontrivial.

Consider an SO-bundle ν with fiber Sm and base Sl, where m ≥ l + 1.
The bundle ν is defined by a certain element h ∈ πl−1(SOm+1). Denote by
Mn the total space of the bundle ν, n = m+ l. We have the following:

Lemma 13.2. The complex T lN (Mn) is homotopy equivalent to the
complex DN+l ∪Jh SN , where Jh ∈ G(l − 1).

Proof. Consider the bundle j∗νN (Mn), which is a restriction of the
normal bundle to the frame

K l(Mn) = Sl
j⊂Mn

of dimension l. It is easy to see that the normal bundle j∗νN (Mn) is defined
by the invariant

±h ∈ πl−1(SON ) ≈ πl−1(SOm+1),

since m ≥ l + 1. Clearly, the complexes T lN(Mn) and TN(Sl, j∗νN (Mn))
coincide, and, by Milnor’s definition [7] of the J-homomorphism, we get the
desired statement. The lemma is proved.

Lemma 13.3. Let, as above, h ∈ πl−1(SOm+1), m ≥ l + 1, and α ∈
G(m+ 1), so that α · Jh /∈ Im J . Then there is a Milnor sphere S̃m+l, such
that α · Jh ∈ B̃(S̃m+l) and the manifolds Mn and Mn#S̃m+l, n = m+ l,
are diffeomorphic of degree +1 modulo θn(∂π).1

Proof. Evidently, the element α · Jh belongs to the kernel Kerκ∗. If
n �≡ 2 mod 4, then the lemma follows from the previous arguments and the
results of Milnor [see [6, 8]]. If m �≡ 1 mod4 then the element α ∈ G(m+ 1)
can be thought of as a framed smooth sphere S̃m+1

α , and the element α·Jh is
a framed direct product S̃m+1×Sl−1; by a single Morse surgery we may kill
the cycles of dimensions l−1 and m+1, and after that the element α ·Jh is
realizable by a homotopy sphere. The lemma is proved. If m+ 1 ≡ 2 mod4

1Cf. also [32].
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and m + l ≡ 2 mod 4, then the element α can be realized by a framed
manifold Qm+1 such that

π1(Qm+1) = 1, Hi(Qm+1) = 0, i �= 0,
m+ 1

2
,m+ 1,

and the group

Hm+1
2

(Qm+1) = Z + Z,

moreover, for the basic cycles Z1, Z2 ∈ Hm+1
2

the Kervaire invariant

ϕ(Qm+1) = ϕ(α) ∈ Z2

(or ψ(α) ∈ Z2, if m + 1 = 6, 14) is defined. The element α · Jh can be
realized by a direct product Qm+1 × Sl−1. By using Morse surgery, let us
paste the cycle

Zi ⊗ 1 ∈ Hm+1
2

(Qm+1 × Sl−1),

and then the cycle of dimension l−1 < m+1. Since homology groups have
no torsion, this would not lead to new cycles; Morse surgery and pulling the
framings are possible because m+1

2 <
[
n
2

]
and l−1 < [n2 ]. The element α·Jh

will hence be realized by a smooth framed sphere. The lemma is proved.

In [13] there is a multiplication table for homotopy groups of spheres.
In particular,

G(1) = ImJ = Z2, G(8) = Z2 + Z2 ⊃ Im J = Z2,

G(9) = Z2 + Z2 + Z2 ⊃ Im J = Z2, G(10) = Z2 + Z3 ⊃ Im J = 0.

The products G(1) ·G(8) ⊂ G(9) and G(1) ·G(9) ⊂ G(10), moreover

G(1) ·G(8) = Z2 + Z2, G(1) ·G(9) = Z2.

Analogously, G(13) = Z3 and G(3) = Z24 + Im J , so that

G(13) = G(3) ·G(10), G(13) ⊃ Im J = 0.

Comparing the information above in the groups G(i) and ImJ ⊂ G(i)
with the previous statements, we get the following:

Theorem 13.4. (a) There exist manifolds Mn of dimension n = 9 and
n = 10 such that (1) w2(Mn) �= 0; (2) There is a Milnor sphere S̃n ⊂ θn(π)
such that Mn = Mn#S̃n;
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(b) There is a manifold M13 such that (1) p1(M13) �≡ 0 (mod 3), (2) For
every Milnor’s sphere S̃13 ⊂ θ13(π) = Z3 the manifolds M13 and M13#S̃13

are diffeomorphic of degree +1.

Remark. Theorem 13.4 holds for every manifold M9 (or M10) such
that w2 �= 0, π1 = 0; analogously for dimension 13.

Proof. For M9(M10) we should take the total space of the bundle ν of
spheres of dimensions 7 (or 8) over the sphere S2 with w2(ν)�= 0. Comparing
Lemma 13.3 with the information about the groups G(i), Im J given above,
we obtain the desired statement.

For dimension 13 the proof is analogous. The theorem is proved.

To conclude, the author states the conjecture that for π-manifolds (and
all manifolds homotopically equivalent to them) the connected sum with a
Milnor sphere always change the smooth structure modulo θ(∂π).

§ 14. Normal bundles of smooth manifolds1

Completely analogously to the proofs of Theorems from § 4 on
realizability of cycles from A(Mn) ⊂ πN+n(TN (Mn)) we may prove the
following three statements.

Theorem 14.1. Let M2k+1 be a smooth simply connected manifold. In
order for an SON -bundle ν over M2k+1 to be a normal bundle of some
smooth manifold M̃2k+1 which is homotopy equivalent to M2k+1, it is
necessary and sufficient that the Thom complex TN(M2k+1, ν) possesses
the following property: the cycle ϕ[M2k+1] is spherical.

Theorem 14.2. Let M4k, k > 1 be a smooth simply connected
manifold. For the SON -bundle ν to be normal bundle of some manifold
M̃4k homotopically equivalent to M4k, it is necessary and sufficient that
the Thom complex TN(M4k, ν) possesses the following properties:

(1) the cycle ϕ[Mn] is spherical;
(2) if p(νN ) = 1 + p1(νN ) + · · ·+ pk(νN ) and

p(νN ) = p(νN )−1 = 1 + p1 + · · ·+ pk,

then the Hirzebruch polynomial Lk(p1, . . . , pk) is equal to the signature
τ(Mn).

1The result of this section is independently obtained by Browder [29].
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Theorem 14.3. Let n = 4k+2, letMn be a smoothmanifold, π1(Mn) =
0, νN be a vector SON -bundle, and let TN(Mn, νN ) be its Thom’s complex. If
the cycle ϕ[Mn] is spherical, then there exists a manifold Mn

1 with boundary
∂Mn

1 = S̃n−1 ∈ θn−1(∂π) such that there is a mapping of pairs

f : (Mn
1 , ∂M

n
1 )→ (Mn, x0), x0 ∈Mn,

for which

f∗ : πi(Mn
1 , ∂M

n
1 )→ πi(Mn, x0)

is an isomorphism for i ≤ n and f∗νN = νN (Mn
1 ).

The proofs of the above three theorems are analogous to the proofs of
theorems from § 4, and they use properties of degree 1 maps and properties
of Thom’s complexes.

Remark. Theorems 14.1–14.3 can be given combinatorial meaning
(in their formulation we need not require smoothness of the manifold
Mn): namely, if Mn is a combinatorial manifold in the sense of
Brower–Whitehead, then Thom’s t-regularity notion generalizes for the
combinatorial case and the inverse images f−1(Mn) ⊂ SN+n of the map

f : SN+n → TN(Mn, νN )

will be combinatorial sumanifolds of the sphere SN+n located in this sphere
with a transverse field in Whitehead’s sense [25]. Thus on the manifold
f−1(Mn) ⊂ SN+n there appears a smooth structure such that

νN (f−1(Mn)) = f∗νN .

Then we may apply the argument of §§ 1–4. Thus, Theorems 14.1–14.3
can be considered as theorems of finding a smooth homotopy equivalent
analog for a combinatorial manifold.

Appendix 1. Homotopy type and Pontrjagin classes

a. There are plenty of relations for homotopy invariance of classes
considered modulo something (Thom, Wu), i.e. congruence-type relations.
Moreover, for manifolds of dimension 4k the Thom–Rokhlin–Hirzebruch
formula expresses the index in terms of Pontrjagin numbers and thus
gives one invariance relation for rational classes. A sequence of negative
examples due to Dold, Milnor, Thom shows that Pontrjagin numbers and
Pontrjagin classes are, “generally”, not invariant. Moreover, in a private
conversation, J. Milnor communicated to the author several examples of
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manifold, which show that among the Pontrjagin numbers, the linear
subspace of homotopically invariant numbers has dimension presumably
less than or equal to half of the total dimension for k ≥ 2, n = 4k.

b. One should especially consider the class p1(M5), or, more generally,
the class Lk(p1, . . . , pk)(M4k+1) as rational classes. Rokhlin [35] proved the
topological invariance of these classes. However, the homotopy invariance
is neither proved nor disproved. The author can show that these classes are
not determined by any cohomology invariants. Nothing else is known.

c. In § 14 we gave a condition for an SO-bundle, which is necessary
and sufficient for this bundle to be normal for some homotopy equivalent
manifold for n > 4, n �= 4k+2 (n = 6 and n = 14 are admitted). Translating
this result into the language of Atiyah–Hirzebruch papers (see [37]), we
obtain a manifold Mn

0 , for which the Atiyah–Hirzebruch–Grothendieck
functors

KR(Mn
0 ) = Z + K̃R(Mn

0 )

and

JR(Mn
0 ) = Z + J̃R(Mn

0 )

and the natural epimorphism JR : K̃R → J̃R.
Denote by α ∈ K̃R(Mn

0 ) the normal bundle to Mn
0 itself minus its

dimension. Our theorem says: an element β ∈ K̃R(Mn
0 ) corresponds to

a normal bundle of some MN
1 of homotopy type Mn

0 for n �= 4k, 4k + 2
or n = 6, n = 14 if J(β) = J(α) (Atiyah proved that Thom’s complex
TN(β) of the bundle β + N is reducible if and only if J(β) = J(α), where
α+N is the normal bundle); for n = 4k one should also add the Rokhlin–
Thom–Hirzebruch condition for the Pontrjagin classes of the element β.
For concrete calculations it is recommended here to use Adams’ methods,
his operations ΦkR and “generalized characteristic classes”, which in certain
cases lead to exact computation of JR (see [28, 36]).

d. Let X be a finite complex and let

H̃∗
(4)(X) =

∑
i≥0

H̃4i(X,Z),

where

H̃4i(X,Z) =
H4i(X,Z)
2-torsion

.

In the ring H̃∗
(4)(X), let us consider elements of the form

1 + x1 + · · ·+ xi + · · · ,
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where xi ∈ H̃4i(X,Z). The set of such elements forms a group Λ(X) with
respect to multiplication. There is a well-defined group homomorphism

P : K̃R(X)→ Λ(X),

which takes a stable SO-bundle (we consider the homomorphism P only
on elements with w1 = 0) to its Pontrjagin polynomial.

It is easy to show that the group ImP is of finite index in the group
Λ(X). Bott’s paper allow us to calculate the image ImP in the group Λ(X).

e. LetX = Mn
0 and let α be, as above, the element in K̃R, corresponding

to the normal SO-bundle to Mn
0 . The kernel KerJ consists of SO-bundles.

It is easy to see that the group ImP (KerJ) has finite index in Λ(X). Let
us denote this group by Λ′(X) = P (KerJ). From the above we get the
following:

Theorem. If n is odd or equal to n = 6, 14, then the Pontrjagin
polynomials of normal bundles to manifolds of homotopy type Mn

0 altogether
constitute the residue of the element P (α) ∈ Λ(X) by the subgroup Λ′(X) of
finite index in Λ(X). For n = 4k they form not the whole residue class of the
element of P (α), but only its part satisfying the Thom–Rokhlin–Hirzebruch
condition.

From this theorem by considering many examples one may conclude
that for simply connected manifolds of dimension n ≥ 6, n �= 4k + 2
be polynomial in Pontrjagin classes except Lk(M4k), is not a homotopy
invariant.

f. The case n = 4k + 2, n �= 6, 14 is more complicated. However, with
some homological restriction on the manifold Mn

0 , e.g., if the group

H2k+1(M4k+2
0 , Z)⊗ Z2

is trivial, this case can be considered. If n = 4k + 2, with each element
β ∈ K̃R(Mn

0 ) such that J(β) = J(α), one associates the invariant ϕ(β) ∈
Z2, so that ϕ(β) = 0 if there exists a manifold M4k+2

1 of homotopy type
M4k+2

0 with normal bundle β +N , and ϕ(β) = 1 in the opposite case. We
set β = α+ γ, where γ ∈ KerJ . Analogously to the author’s work [33] one
shows that

ϕ(α+ γ1 + γ2) = ϕ(α) + ϕ(α+ γ1) + ϕ(α + γ2),

where γ1, γ2 ∈ KerJ . Since ϕ(α) = 0, we define a homomorphism
ϕ : KerJ → Z2, where ϕ(γ) = ϕ(α + γ), γ ∈ KerJ (we assume that
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H2k+1(M4k+2
0 , Z)⊗ Z2 = 0). Thus we have either

Ker ϕ = KerJ

or

Ker ϕ =
1
2

KerJ.

In the formulation of part e one should replace the group Λ′(X) with the
group P (Ker ϕ) coinciding with Λ′(X) or having index 2 in the latter.

Appendix 2. Combinatorial equivalence and Milnor’s

microbundle theory

Is it possible to present, for the class of combinatorial manifolds, any
analogue of the construction given by the author in the present work for
detecting diffeomorphism of smooth manifolds (with the same dimension
restrictions and provided that the manifold is simply connected)?

a. First of all, we need the notion of stable bundle. For the
sake of smoothing combinatorial manifold, Milnor suggested to consider
“combinatorial microbundles” over complexes (see [31, 34]). Roughly
speaking, a microbundle is a bundle over a complex, whose fiber is the
Euclidean space Rn and whose structure group is the group of “micro-
automorphisms”, i.e. piecewise-linear automorphisms with a common fixed
point, which are identified if they coincide in a neighborhood of this point.
Besides, the definition includes the combinatorial structure of the bundle
space (the description of a microbundle given here is not quite exact).
Milnor proved that there is a uniquely defined stable normal microbundle,
though the normal bundle itself does not always exist.

b. Thus, it is worth considering the class of simply connected
combinatorial manifolds {Mn

i } for n ≥ 5 of the same homotopy type
and with the same stable normal microbundle (as in the smooth case).
As before, we may consider the Thom complex TN of the normal bundle
for one manifold Mn

0 ∈ {Mn
i }. Further analogy requires the notion of

t-regularity in the combinatorial case. This notion is rather local, and since
the transversality notion makes sense for combinatorial manifolds, then the
notion of t-regularity naturally generalizes. The cycle

ϕ[Mn
0 ] ∈ HN+n(TN )

is spherical as in the case of smooth Mn
0 , thus the preimages

f−1(Mn
0 ) ⊂ SN+n
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for a t-regular f : SN+n → TN will possess good properties. An analogous
result holds for preimages under homotopy

F : SN+n × I → TN .

c. We have to consider Morse surgery in the new situation, when we
want to kill the kernels of the maps

Mn
f →Mn

0 ,

where Mn
f = f−1(Mn

0 ), or

Wn+1
f →Mn

0 ,

where F : SN+n × I →Mn
0 . Here we meet the following difficulties:

(1) the sphere Si ⊂ Mn
f or Si ⊂ Wn+1

F , generally, has no normal
microbundle in a manifold;

(2) if the sphere Si ⊂ Mn
f , S

i ⊂ Wn+1
F and it has normal microbundle,

it need not be trivial;
(3) is it possible to “pull” the framings, even if the Morse surgery is

possible? Note that for solving (2) and (3) we were seriously used the fast
stabilization of the embeddings SOk ⊂ SOk+1 ⊂ · · · and the results of
Bott, having no combinatorial analog. To avoid these difficulties we should
introduce “local smooth structures” and framings in the neighborhood
of the cycle in question. Recall that a neighborhood of this cycle can
be considered as the preimage of one point x0 ∈ Mn

0 . Thus in this
neighborhood we may set up the smooth structure and the framing. The
cycle we are investigating will be a smooth sphere in this smooth structure.
The last remark annihilates all difficulties caused by Morse surgery.

d. Thus all the results work. In all formulations one should replace SON
with PL and remove the group θn(∂π) from our formulation: this group
consists of spheres which are combinatorially standard. Accordingly, one
should change the group π+(Mn,Mn).

e. If Mn
0 is smooth, we may apply either combinatorial or smooth

construction to it. As a result, we will be able to study the relation between
smooth and combinatorial method of Thom’s complexes.

f. To apply the combinatorial theory it is important to know the
homotopy group πi(SO), πi(PL) and the inclusion

πi(SO)→ πi(PL).

Recently, Mazur (see [31]) showed that

πi(PL, SO) = Γi
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(the Milnor–Thom group)1 As it is well known (see [17]), Γi = θi for
i �= 3, 4, Γ3 = 0 and the group Γ4 is unknown. Since the inclusion
πi(SO) → πi(PL) is monomorphic in all dimensions (Bott [1], Thom,
Rokhlin–Schwarz, Adams), we have:

Γi =
πi(PL)
πi(SO)

.

Let us give a table of groups πi(PL) and inclusions πi ⊂ πi(PL) for i ≤ 142:

i = 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

πi(PL) Z Z2 Z2 Z
0 Z2 0 Z Γ4 0 0 +Z4 +Z2 +Z2 Z6 +Z8 0 Z3 Z2

+Q4

The inclusion homomorphism πi ⊂ πi(PL) for i ≤ 14 is trivially
obtained by using the theorem on monomorphism of the inclusion and the
structure of the groups Γi (see [6]), except i = 7, 11. Here we have:

π7(SO) = Z, π7(PL) = Z + Z4,

so that uSO = 7uPL + vPL, where uPL is an infinite order generator and
vPL is a generator of order 4;

π11(SO) = Z, π11(PL) = Z + Z8,

moreover, uSO = 124uPL + vPL, where vPL is a generator of order 8.
g. The Whitehead homomorphism JPL : πi(PL) → πN+i(Sn)3 is

an epimorphism for i �= 4k + 2 or i = 10, and the quotient group
πN+i(SN )/ ImJPL contains two elements for i = 2, 6, 14 and no more than
two elements, otherwise. Note that for i = 9

KerJPL = Z2θ
9(∂π).

Conjecture. For i = 4k − 1 the group πi(PL) looks like

πi(PL) = Z + Zλk
+
πN+i(SN )
Im JSO

,

where λk is, possibly, a power of two.

1This result was independently obtained by Hirsch [38].
2Q4 = Z4 or Z2 + Z2.
3The definition of JPL was not given above, but it can be given analogously to the

usual J-homomorphism.
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It might be possible that this conjecture can be proved by an
arithmetic argument and comparison of coefficients of the L-genus for
almost parallelizable Milnor’s manifolds M4k

0 with index 8, Bott’s results
on divisibility of Pontrjagin’s classes of SO-bundles over the sphere and
Adams’ result on stable J-homomorphism, in particular, in representing the
image of Im JSO as a direct summand in πN+4k−1(SN ). We assume that

JPL(Z + Zλk
) = Im JSO

and also

πN+4k−1(SN ) = JPL(Z + Zλk
) +

πN+4k−1(SN )
Im JSO

.

This would yield that the group θ4k−1(∂π) ⊂ θ4k−1 is a direct summand.
Besides, the group

π4k−1(SO) = Z ⊂ π4k−1(PL)

should be included as follows:

uSO = δkuPL + vPL,

where uPL is an infinite order generator and vPL is a generator of order λk.
Then the order of θ4k−1(∂π) is equal to δkλk. If the conjecture is true, we
may assume Bott’s theorem for the combinatorial case.

Let ak = 1 for k even, and let ak = 2 for k odd; let

Lk(p1, . . . , pk) =
tk
skpk

+ · · · ,

where tk, sk are relatively prime. Since Lk(M4k
0 ) = 8, we have:

pk(M4k
0 ) = 8

sk
tk
.

For SO-bundles over the sphere the class pk is divisible by ak(2k − 1)! Let
us find the common denominator t̃k for 8sk

tk
and ak(2k − 1)!, where t̃k is a

divisor of tk (and it is equal to tk, tk/2, tk/4 or tk/8, if tk is divisible by the
corresponding powers of two). After that, let us find the greatest common
divisor dk of the numerators of the corresponding irreducible fractions.

Conjecture. The Pontrjagin class of the stable microbundle over the
sphere S4k is a multiple of dk/t̃k, and there is a microbundle with such class.

In particular, for k = 2, 3 this conjecture is proved by the author:

d2

t̃2
=

6
7
,

d3

t̃3
=

2 · 5!
124

.
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Thus we have proved the following:

Corollary. The Pontrjagin classes of microbundles over the spheres
S8 and S12 are multiples of 6

7 and 2 · 5!/124, respectively, and there exist
microbundles with such classes.

Remark. The results of § 11 are naturally attached to part (e) of
the present appendix, which deals with the relation between smooth and
combinatorial manifolds (provided that normal bundles coincide). It is
especially important to understand the example S2×S6, showing the non-
triviality of the combinatorial theory. This follows from G(6)/ Im JPL = Z2.

Conjecture. If simply connected manifolds Mn
1 and Mn

2 , n > 7 having
the same homotopy type and normal bundle are such that H4k+2(Mn

i , Z2) =
0, 2 ≤ 4k + 2 < n then they are combinatorially equivalent (possibly, it is
sufficient to require this condition only for k = 1, 3).

Appendix 3. On groups θ4k−1(∂π)

a. Starting from the Hirzebruch formula and Milnor–Kervaire results [6]
we see that the order of the group θ4k−1(∂π) can be expressed in terms of
the image of Whiteheads homomorphism

JSO : π4k−1(SON )→ πN+4k−1(SN ).

In recent Adams’ works the image Im JSO is completely calculated for even
k, and up to a factor 1 or 2 for even k + 1, and in all known cases this
factor is equal to 1. Moreover, it follows from Adams’ works that the order
of the image Im JSO is completely defined by the integrality property of the
Borel–Hirzebruch A-genus [30] (up to a constant factor). From comparison
of papers by Milnor–Kervaire [5] and Adams [28] one can see that an odd
order factor of ImJSO is completely defined by the Hirzebruch L-genus.
Combining these results, we get the following statement:

Theorem 1. The odd part of the group θ4k−1(∂π) ⊂ θ4k−1 is a direct
summand in θ4k−1.

To prove the statement, one should construct a homomorphism

h : θ4k−1 → θ
4k−1

(∂π),

where θ
4k−1

(∂π) is the odd part of the group θ4k−1(∂π). The
homomorphism h can be constructed quite easily. To do that, we should
span the sphere S̃4k−1 ⊂ θ4k−1 by a membrane W 4k, fill in the boundary
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∂W 4k = S̃4k−1 by a ball, and for the obtained manifold W 4k
0 take the value

of the combinatorial class pk(W 4k
0 )mod 1. If

S̃4k−1 ⊂ θ4k−1(∂π),

then the constructed homomorphism can identify only those elements which
differ by an order element of type 2s: these follow from Adams’ results.

b. The study of the even part of θ4k−1
2 (∂π) ⊂ θ4k−1(∂π) is more

complicated. To do it, let us consider the homomorphism

p ◦ q : θ4k−1 q→ πN+4k−1(SN )
Im JSO

p→ V 4k−1
spin ,

where q is the Milnor homomorphism and p is the “forgetting of framing”
homomorphism of sphere homotopy groups to “spinor cobordisms”, made
out of simply connected manifolds satisfying W2 = 0. It is evident that

θ4k−1(∂π) ⊂ Ker(p ◦ q).
Applying Adams’ results, we obtain the following Statement:

Theorem 2. If k is even then the subgroup θ4k−1
(2) (∂π) ⊂ Ker(p ◦ q) is

represented as a direct summand. If k is odd then either

θ4k−1
2 (∂π) ⊂ Ker(p ◦ q)

is a direct summand or

θ4k−1
2 (∂π)
Z2

⊂ Ker(p ◦ q)
Z2

is a direct summand.

The proof is similar to that of Theorem 1, but the membrane should be
spanned for W2 = 0 and instead of the class pk one should take the A-genus
for k even and the 1

2A for k odd (modulo 1). Note that for dimensions 9
and 10 (and also 17, 18) the image of the homomorphism p ◦ q is nontrivial
[see [33]].

Conjecture. For dimensions 4k− 1, the homomorphism p ◦ q is trivial.

c. The study of action of θ4k−1(∂π) on manifolds is a difficult problem
which cannot be solved by using only our methods. Let us show some
relatively simple cases, where we are able to shed light on this question.
Let the manifold M4k−1 (not necessarily simply connected) be such that
the groups H4l(M4k−1, Q) are trivial (l = 1, 2, . . . , Q is the field of rational
numbers).
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Theorem 3.1 If the order of the sphere S̃4k−1 ∈ θ4k−1(∂π) in the
group θ4k−1(∂π) is odd, then the manifolds M4k−1 and M4k−1#S̃4k−1 are
not diffeomorphic of degree +1.

To prove this theorem, we shall use the following scheme.
1. We construct a membrane W 4k, ∂W 4k=(−M4k−1)∪(M4k−1#S̃4k−1)

such that

Hi(W 4k,M4k−1) = 0, i �= 2k,

for which a retraction F : W 4k →M4k−1 is given such that

F ∗νN (M4k−1) = νN (W 4k),

where νN (M) is the normal bundle of the manifold M .
2. Given a diffeomorphism

h : M4k−1 →M4k−1#S̃4k−1

of degree +1. Let us identify the boundaries of the membrane W 4k−1 by
using h. Denote the obtained orientable closed manifold by V 4k.

3. One can show that the groups H4l(V 4k, Q)= 0, l= 1, . . . , k− 1, l �= k
2 ,

but for l = k
2 the group

H2k(V 4k, Q) = H2k(W 4k,M4k−1, Q) +B, I(B) = 0.

4. If the sphere S̃4k−1⊂ θ4k−1(∂π) is of odd order, then the class
pk(V 4k) is fractional analogously to Theorem 1. The contradiction proves
the theorem.

If, in addition, H1(M4k−1) = 0 and W2(M4k−1) = 0, then for
S̃4k−1 ⊂ θ4k−1(∂π) we may, analogously to Theorems 2 and 3, prove, by
using the Hirzebruch A-genus and Adams’ theorems that the spehre S̃4k−1

changes the smooth structure after addition of M4k−1 (one should note that
W2(W 4k) = 0 and W2(V 4k) = 0, and instead of the class pk one should
take Ak[V 4k] if k is even, and 1

2Ak[V
4k] if k is odd).

d. For n = 4k + 1, as shown above, the image of

p ◦ q : θ4k−1 → V 4k−1
spin

1If H4(M7, Q) �= 0 and p1 �= 0, then Theorem 3 is inapplicable, as one example due
to the author shows.
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may be nontrivial. For example, for k = 2 the image Im p ◦ q = Z2. Moreover
(see Appendix 2), the group π9(PL) = Z2 + Z2 + Q4, where Q4 = Z4 or
Z2 + Z2.

By analogous arguments we may show that the group

Ker p ◦ q = Z2 + Z2 ⊂ θ9,
and the group θ9(∂π) ⊂ Ker(p ◦ q) is a direct summand. Moreover, we may
show that

Im JPL = G(9),

where G(i) = πN+i(SN ), so that

JPL(Z2 + Z2) = G(1)G(8) = Z2 + Z2

and

JPL(Q4) =
G(9)

G(1)G(8)
= Z2,

Im JPL = Z2 = θ9(∂π) ⊂ π9(PL)

(namely, J−1
PLJSO = Z2 + Z2 and θ9(∂π) = J−1

PLJSO/π9(SO)). Since

θ9

Ker(p ◦ q) = Z2,

we cannot prove that the group θ9(∂π) is a direct summand.

Conjecture. θ9 = Z2 + Z4 and π9(PL) = Z2 + Z2 + Z4.

Appendix 4. Embedding of homotopy spheres

into Euclidean space and the suspension

stable homomorphism

It is well known that the usual sphere Sn can be in the standard
way embedded in Rn+1. Moreover, it follows from Smale’s works that a
homotopy sphere S̃n for n �= 3, 4 is diffeomorphic to the standard sphere
Sn if and only if it can be smoothly embedded into Rn+1. It follows from
Milnor, Kervaire and Hirsch [6, 19] that a homotopy sphere S̃n is a boundary
of a π-manifold if and only if it can be embedded into the Euclidean space
Rn+2. On the other hand, Haefliger showed that any homotopy sphere S̃n is
embeddable into Rn+j approximately for j > n

2 +1.1 We shall consider only

1The order of the normal bundle α ∈ πn−1(SOj) is 2h for j > n
2

+ 1.
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embeddings of homotopy spheres S̃n ⊂ Rn+k for 2 ≤ k ≤ n− 1 with trivial
normal bundle, the “π-embeddings”. It is easy to extract some necessary
conditions for the existence of a π-embeddings S̃n ⊂ Rn+k from homotopy
groups of spheres.

Consider the set B̃(S̃n) ⊂ πN+n(SN ) which is a residue class
modulo Jπn(SON ).

Lemma 1. If there is a π-embedding S̃n ⊂ Rn+k then there exists
an element α ∈ B̃(S̃n) such that α ∈ EN−k(πn+k(Sk)) where E is the
suspension.

The proof of the lemma trivially follows from the interpretation of the
suspension homomorphism in terms of framed manifolds. As for sufficiency
of the condition of Lemma 1, we have the following:

Theorem 1. If there is an element α ∈ B̃(S̃n) such that α ∈ ImEN−k,
then there exists a π-embedding Sn ⊂ Rn+k+1.

The proof of the theorem uses the results of § 11 on differentiable
structures on the Cartesian product of spheres and follows from Lemmas 1,
2 and 3.

Lemma 2. With the assumptions of Theorem 1, the sets B(Sn × Sk)
and

B(S̃n × Sk) ⊂ Ã ⊂ πN+n(Tn(SN × Sk))
coincide up to Imκ∗, where κ : Sn ⊂ TN .

Lemma 3. If the sets B(Mm
1 ) and B(Mm) ⊂ Ã coincide modulo Imκ∗,

then the manifolds Mm
1 and Mm are diffeomorphic modulo θm(π).

The proof of Lemma 3 is given in § 9 for all cases except m ≡ 2 (mod 4).
For a proof of Lemma 3 for m ≡ 2 (mod 4), see [33].

Lemma 4. If a manifold Mn+k is diffeomorphic to Sn×Sk mod θn+k,
where Mn+k = S̃n×Sk, then the homotopy sphere S̃n admits a π-embedding
into Rn+k+1.

The proof of Lemma 4 is obvious.
Consider the special case k = 3. The following lemma holds:

Lemma 5.1 If the sphere Sn is π-embedded into Sn+3, then it bounds
a manifold Wn+1 ⊂ Sn+3, whose normal bundle is an SO2-bundle with
Chern class c1 ∈ H2(Wn+1) such that c21 = 0.

1The idea of the proof of Lemma 5 is borrowed from V. A. Rokhlin’s works.
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Proof. For the sphere S̃n, construct a frame field τ3, normal to the
sphere in Sn+3, and let us take the small sphere to the boundary S2× S̃n of
the tubular neighborhood by using the first vector of the frame field. The
obtained manifold S̃n ⊂ S2 × S̃n is null-homologous in the complement

Sn+3�IntD3 × S̃n,
in such a way that the membrane spanning can be thought of as a manifold
Wn+1 with boundary S̃n ⊂ S2 × S̃n = ∂(Sn+3�IntD3 × S̃n). By the way,
it trivially follows from Smale [19] that

Sn+3�IntD3 × S̃n
is diffeomorphic to S2×Dn+1. The membraneWn+1 realizes the basic cycle
of the group

Hn+1(S2 ×Dn+1, ∂(S2 ×Dn+1)) = Z.

The normal bundle to the membrane Wn+1 in Sn+3 is an SO2-bundle, and
it is defined by the Chern class c1 ∈ H2(Wn+1). Let us show that c21 = 0.
We shall assume n > 3. Then

Hn−1(S2 ×Dn+1) = 0.

The self-intersection

Wn+1 ·Wn+1 ⊂ Sn+3�IntD3 × S̃n
defines an (n − 1)-dimensional cycle modulo boundary, and it is a
submanifold V n−1 ⊂Wn+1. Since

∂Wn+1 = S̃n ⊂ S2 × S̃n,
we may assume that V n−1 lies strictly inside Wn+1 and it is closed
(it is easy to see that in dimension n − 1 we have: Hn−1(S2 × Dn+1) =
Hn−1(S2 ×Dn+1, ∂(S2 ×Dn+1)) = 0).

Denote by

DM : Hj(M,∂M)→ H l−j(M)

the Poincaré duality isomorphism, and denote by i the embedding

Wn+1 ⊂ Sn+3�IntD3 × S̃n.
Then

c21 = i∗{DM i∗[Wn+1]}2 = i∗DM{i∗[Wn+1] · i∗[Wn+1]}
= i∗DM i∗[V n−1] = 0,

where M = Sn+3�IntD3 × S̃n.
The lemma is proved.
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From lemma it immediately follows that the connected submanifold

V n−1 = Wn+1 ·Wn+1,

with V n−1 ⊂ Wn+1, has a trivial normal bundle in Wn+1. Moreover, if
for the boundary S̃n ⊂ S2 × S̃n we define a 2-frame field τ2, which is
normal to S̃n in S2× S̃n, and extend it to the interior of Wn+1, then for an
appropriate choice of the field and its extension (which will also be denoted
by τ2) the singularity manifold of the field τ2 inside Wn+1 coincides with
the manifold V n−1 ⊂Wn+1. The tubular neighborhood D×V n−1 of V n−1

in Wn+1 has boundary S1 × V n−1 on which the field τ2 is defined and
degenerate. Let us add to τ2/S1 × V n−1 the radius-vector directed inside
the ball D2 normally to the boundary S1 = ∂D2 at each point. Thus we
get a 3-field τ̃3 on S1 × V n−1.

The following lemma is evident.

Lemma 6. Framed manifolds (S̃n, τ3) and (S1 × V n+1, τ̃3) define the
same element of the group πn+3(S3) (we should take Wn+1�IntD2×V n−1

to be the membrane connecting these framed manifolds).

Conjecture. If the sphere S̃n is π-embedded into Sn+3, then there is a
normal framed field τ3 on this sphere such that the framed manifold (S̃n, τ3)
defines an element of πn+3(S3) which factors as β ◦α, where α ∈ πn+3(S4)
and β ∈ π4(S3) = Z2.

Proof. In the group Gn the set B̃(S̃n) ⊂ Gn contains αβ, where α ∈
Gn−1, β ∈ G1 (thus the element αβ has order not greater than two), if S̃n

is π-embeddable into Sn+3.

Since the image of the higher suspension of the groups πn+3(S3)
contains elements of odd order p not belonging to the group Jπn(SON ),
then for k = 2 and k = 3 in Theorem 1 we cannot get rid of the difference
by one in the necessary condition (Lemma 1) and the sufficient condition
(Theorem 1).
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Rational Pontrjagin classes.
Homeomorphism and homotopy

type of closed manifolds1

S. P. Novikov

In a number of special cases it is proved that the rational Pontrjagin–
Hirzebruch classes may be computed in terms of cohomology invariants of
various infinitely-sheeted coverings. This proves their homotopy invariance
for the cases in question (Theorems 1 and 2). The methods are applied to
the problem of topological invariance of the indicated classes (Theorem 3).
From the results there follow various homeomorphism and homotopy types
of closed simply connected manifolds, which yields a solution to the problem
of Hurewicz for the first time in dimension larger than three (Theorem
4). We note that in the paper [3] the author completed the proof of the
topological invariance of all the rational Pontrjagin classes by using quite
a different method.2

1Translated by J. M. Danskin (edited by V. O. Manturov), Izvestiya Akademii Nauk
SSSR, ser. matem., 1965, T. 29, ss. 1373–1388 (Received April 3, 1965).

2Many years ago, M. Gromov completely realized this plan of purely homological
proof of topological invariance for rational Pontrjagin classes in all dimensions. — S. P.
Novikov’s remark (2004).

185



August 26, 2009 16:21 9in x 6in b789-ch04

186 S. P. Novikov

Introduction

As it is well known, already for three-dimensional manifolds
homeomorphism is distinct from the homotopy type in the sense that
there exist closed manifolds which are homotopically equivalent but not
homeomorphic. They are distinguished by the Reidemeister invariant called
“torsion”. It is natural to expect that in dimension n > 3 homeomorphism
will not coincide with homotopy type, either. For example, they are
distinguished by the torsion invariant in higher dimensions as well, if
one proves that torsion is topological invariant. Another widely known
invariant, not a homotopy invariant, but, conjecturally, a topological
invariant, is the Pontrjagin class, considered as rational. However, in
dimension n > 3 no invariant has been established as topological unless
it is also obviously homotopic. It is interesting that for n = 3 the torsion
invariant, as a means of distinguishing combinatorial lens spaces, has been
known since the 1930s, and its topological invariance was obtained only in
1950s in the form of a consequence of the “Hauptvermutung” (Moise). The
situation is that in three dimensions a continuous homeomorphism may be
approximated by a piecewise linear one. This can hardly be true in higher
dimensions, and even if it is true, at the present time there are no means
in sight for the proof of this fact.

In the present paper we study the rational Pontrjagin classes as
topological and homotopy invariants. It is known that for simply connected
manifolds there are no “rational relations” of homotopy invariance of classes
other than the signature theorem:

(Lk(p1, . . . , pk), [M4k]) = τ(M4k),

where τ(M4k) denotes the signature of the quadratic form (x2, [M4k]), x ∈
H2k(M4k, R) and Lk are the Hirzebruch polynomials for the Pontrjagin
classes. In what follows we shall speak about the classes Lk = Lk(p1, . . . , pk)
along with the classes pk for manifolds, since the former are convenient in
the investigation of invariance. This is shown by the signature theorem
presented above and the combinatorial results of Thom, Rokhlin, and
Schwarz (see [4–6]). The only “gap” in the theory of Pontrjagin classes, from
the point of view of the problems posed, was the theorem of Rokhlin, proved
in 1957, establishing that the class Lk(M4k+1) is a topological invariant,
but here it was not known whether the indicated class was a homotopy
invariant (see [4]). Though Rokhlin’s proof does not formally involve the
fundamental group, one should note that this theorem is empty for simply
connected manifolds since H4k(M4k+1) = 0.

In the present paper we establish for certain cases the algebraic
connection of the classes with the fundamental group. From the resulting
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relation, it follows that the class Lk(M4k+1) is in essence a homotopy
invariant. The formulas (see § 3) found by the author may be (up
to some extent) considered as generalizations of Hirzebruch’s formulas.
Their connection to coverings was rather unexpected, since in the
characteristic class theory the fundamental group had hitherto played no
role at all.

It was possible to apply these formulas to the question of topological
invariance of Pontrjagin’s classes. Under certain conditions we were able to
prove that the scalar products (Lk, x), where x ∈ H4k(Mn), n = 4k+2, are
topological invariants. Already for Mn = S2 × S4k this fact allows one to
solve affirmatively the distinction question between homeomorphism and
homotopy type for all dimensions of the form 4k + 2, k ≥ 1, and in the
class of simply connected manifolds, for which the “simple” homotopy type
coincides with the ordinary one.

The basic results of this paper were sketched in [1].
We take this opportunity to express my gratitude to V. A. Rokhlin for

useful discussions on this work.

§ 1. Signature of a cycle and its properties

In this section we collect a number of simple algebraic facts on quadratic
forms to be used in the sequel.

We assume that we are given a real linear space P , possibly of infinite
dimension, and that on P there is a symmetric bilinear form 〈x, y〉-valued
in R. We shall be interested only in the case when P can be represented
as P = P1 + P2, where P1 is finite-dimensional and 〈x, y〉 = 0, y ∈ P2,
x ∈ P , i.e. the entire form is concentrated on a finite-dimensional subspace
P1 ⊂ P ; certainly the choice of the latter is non-unique. In this case we shall
say that the form is of finite type. The quadratic form 〈x, x〉 is concentrated,
essentially, on P1, and one can consider its signature, which we shall use
as the signature of 〈x, x〉 on P . The signature does not depend on the
choice of P1. Evidently, every subspace P ′ ⊂ P is such that the form 〈x, x〉
for x ∈ P is of finite type, too, and has a signature in the same sense: one
can easily find a decomposition P ′ = P ′

1 +P ′
2, where 〈x, y〉 = 0, y ∈ P ′

2 and
P ′

2 is finite-dimensional.
The following facts on the signature easily follow from the analogous

facts for forms on finite-dimensional spaces.
a) Given two subspaces P ′ ⊂ P and P ′′ ⊂ P such that every element of

P is a sum x1 +x2, x1 ∈ P ′, x2 ∈ P ′′. If the form 〈x, y〉 vanishes identically
on P ′ and on P ′′, then the signature of 〈x, x〉 is zero on P . If now the forms
on P ′ and P ′′ are nontrivial but P ′ and P ′′ are as P ′ = (P ′⋂P ′′) + P ′

1
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and P ′′ = (P ′⋂P ′′) + P ′′
1 so that 〈x, y〉 = 0, for y ∈ P ′

1, x ∈ P ′, y ∈ P ′′
1 ,

x ∈ P ′′, then the signature of 〈x, x〉 on P coincides with the signature of
〈x, x〉 on P ′⋂P ′′.

b) Given a subspace P ′ ⊂ P such that 〈x, y〉 = 0 implies that for all
x ∈ P ′ we have 〈y, y〉 = 0, then the signature of 〈x, x〉 on P ′ coincides with
the signature of 〈x, x〉 on P .

Suppose that K
is any locally finite complex and z ∈ H4k(K,Z)/Torsion. Consider the
group H2k(K,R) = P and the bilinear form 〈x, y〉 = (xy, z), x, y ∈ P . It is
easy to prove:

Lemma 1.1. The bilinear form 〈x, y〉 has finite type on the group P =
H2k(K,R).

Proof. One can find a finite subcomplex K1

i⊂ K such that in K1

there is an element z1 ∈ H4k(K1) and z = i∗z1. The group H2k(K1, R)
is finite-dimensional. The homomorphism i∗ : P → H2k(K1, R) is defined.
Since

((i∗x)(i∗y), z1) = (xy, z) = 〈x, y〉,
the kernel Ker i∗ ⊂ P consists only of those elements y ∈ Ker i∗ for which
〈x, y〉 = 0. The image Im i∗ is finite-dimensional, and therefore the form
〈x, y〉 has finite type on P . Thus lemma is proved.

Therefore the signature of the form P = H2k(K,R) is determined.
By nondegenerate part of a form of finite type on a linear space P we

shall mean a subspace P1 ⊂ P such that the form is nondegenerate on P1

and is trivial on the orthogonal complement to P1. It is natural to consider
P1 as a factor of P . Evidently the signature is defined by the nondegenerate
part of the quadratic form, the latter being uniquely defined.

Lemma 1.2. Suppose that K1 ⊂ K2 ⊂ · · · ⊂ K is an increasing
sequence of locally finite complexes and K =

⋃
j Kj. Denote the inclusion

K1 ⊂ Kj by ij and denote the inclusion K1 ⊂ K by i. Given an element
K1 ∈ H4k(K1, Z)/ Torsion such that ij∗z1 �= 0, i∗z1 �= 0. Consider the
elements ij∗z1 = zj and forms on the spaces Pj = H2k(Kj , R). Then the
nondegenerate part of a quadratic form on Pj is one and the same for all
sufficiently large indices and it coincides with the nondegenerate part of the
quadratic form on P = H2k(K,R).

Proof. Consider the homomorphisms i∗j : Pj→P1 and i∗: P→P1. In
P1, select a finite-dimensional nondegenerate part P ′

1 ⊂ P1; then we may
suppose that the images of all nondegenerate parts P ′

j ⊂ P under i∗j belong
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to P ′
1 ⊂ P1.1 But the image

Im i∗ =
⋂
j

Im i∗j+1;

because of finite-dimensionality of P ′
1 and the inclusion

Im i∗ ⊃ Im i∗j+1

for all j, we obtain a stabilization of the images i∗jP
′
j ⊂ P ′

1. Now, since the
kernel Ker i∗j consists only of the purely degenerate part, it follows that the
forms coincide on P ′

j and on i∗jP
′
j . The lemma is proved.

In the sequel the signature of the natural form on P = H2k(K,R) for
a given element z ∈ H4k(K,Z)/Tor will be called the signature of z; it is
denoted by τ(z). If K = M4k and z = [M4k], then τ(z) = τ(M4k).

Evidently τ(−z) = −τ(z) and τ(λz) = τ(z), if λ > 0.

§ 2. The basic lemma

Assume Wn is an open manifold and assume V n−1 is a submanifold
separating Wn into W1 and W2 in such a way that W1

⋃
W2 = Wn

and W1

⋂
W2 = V n−1. We assume that V and W are smooth (or PL)

manifolds and the embedding i : V n−1 ⊂Wn is smooth or PL. Now, given
a continuous (not necessarily smooth or PL) mapping T : Wn →Wn such
that the intersection TV n−1

⋂
V n−1 is empty, while V n−1 and TV n−1

cobound a connected piece of the manifold Wn. Moreover, require that
the mapping Wn → Wn/T is a covering, so that the intersection TN

⋂
N

coincides with TV n−1 and so that Wn is as

Wn =
⋃
l

T lN.

Under the conditions above, the following lemma holds.

Basic lemma. For any element z ∈ H4k(V n−1, Z)/Tor such that i∗z �=
0 mod Tor, T∗i∗z = i∗z and the membrane between z and Tz lies in N ,
then

τ(z) = τ(i∗z)

provided that either of the following holds :
a) n = 4k + 1, V n−1 is compact, z = [V n−1];

1To prove the stabilization, it is convenient here to select in Kj finite subcomplexes
Kj ⊂ Kj such that Kj ⊂ Kj+1 and

S

j K = K, and carry out the argument for Kj .
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b) n is arbitrary, but the group H2k+1(Wn, R) has no T-free elements.
(This means that for any α ∈ H2k+1(Wn, R) there is an index q = q(α)
such that

α =
q∑
l=1

λlT
l
∗α.

For example, this is satisfied if the group H2k+1(Wn, R) is finite-
dimensional.)

Proof. Denote by i1 and i2, the embeddings V n−1 ⊂W1 and V n−1 ⊂
W2, respectively, and denote by Jl ⊂ H2k(V n−1, R) the image H2k(Wl, R).
On Jl, the form (x2, z) = 〈x, x〉 is defined. The signature of this form
coincides with the signature of the cycle il∗z ∈ H4k(Wl), as shown in § 1.
We have:

Lemma 2.1. τ(il∗z) = τ(i∗z), l = 1, 2.

The proof of Lemma 2.1 follows from Lemma 1.2. Indeed, for the proof
of the equation τ(il∗z) = τ(i∗z) one should set

K1 = N ∪ T−1N, . . . ,Ki = Ki−1 ∪ T i−1N ∪ T−iN, . . . ,K = Wn,

and analogously decompose

W2 =
⋃
j

K ′
j , K ′

i = T−iKi, W2 = K ′,

take into account that T q homeomorphically maps K ′
q onto Kq, and apply

Lemma 1.2 from § 1.1

From the proof of Lemma 2.1 we have:

Lemma 2.1′. Let J be the image i∗H2k(Wn, R). Then the nondegene-
rate part of the form on Jl, l = 1, 2, can be chosen with support on J =
J1 ∩ J2.

In order to finish the proof of the basic lemma, we need to establish
that the signature of the quadratic form on J coincides with the signature
of the quadratic form on the entire group P = H2k(V n−1, R).

1. Assume first n = 4k + 1 and z = [V n−1]. Suppose that α ∈ P and
〈α, x〉 = 0, x ∈ J1. Then the element α ∩ [V n−1] = β ∈ H2k(V n−1, R),

1Certainly, the main role is played by the T -invariance of i∗z, and the condition on
the film cobounding z and Tz, where z ∈ H4k(V ), T z ∈ H4k(TV ).
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obviously satisfies (β, x) = 0, x ∈ J1. This means that i1∗β = 0. Since
i1∗β = 0, the self-intersection index β ◦ β = 0. Thus

(α2, [V n−1]) = β ◦ β = 0.

From the algebraic properties of the signature (see § 1, b)) we conclude
that the signature of the form on J1 coincides with the signature of the
form on P , the latter signature being equal τ(z) = τ(V n−1).

The theorem is proved for n = 4k + 1.
2. Now assume n > 4k + 1. It follows from Lemmas 2.1 and 2.1′ and

properties of the signature (see § 1, a)) that the signature τ(i∗z), which
coincides with the signature of the form on J ⊂ P , is equal to the signature
of the form on the space P ′, the latter defining the linear envelope of J1

and J2.
Now suppose that α ∈ P and 〈α, x〉 = 0, x ∈ P ′. Consider the

element β = α ∩ z ∈ H2k(V n−1, R). Since (β, x) = 0, x ∈ P ′, we
have i1∗β = i2∗β = 0. The two membranes ∂1 and ∂2, spanning the cycle
representing the element in W1 and W2, respectively, define a cycle δ =
∂1 − ∂2, to be considered as an element δ ∈ H2k+1(Wn, R). Since by
assumption

δ =
q(δ)∑
l=1

λlT
l
∗δ,

there exists a 2k+ 2-chain c0 in Wn, whose boundary defines this relation.
Set

c = c0 +
q(δ)∑
l=1

λlT
lc0 + · · ·+

∑
l1,...,lm

λl1 · λl2 · · ·λ1mT
l1+···+lnc0 + · · · .

Though c is a noncompact chain, its compact boundary in δ, and the
intersection c ∩ V n−1 is compact. However, the boundary of the intersec-
tion ∂(c ∩ V n−1) is exactly β. Therefore

β = α ∩ z = 0 and (α2, z) = 0.

The basic lemma is proved.

Remark. As V. A. Rokhlin pointed to me, in the part of the basic
lemma related to n = 4k + 1, it is essentially proved that if M4k is one of
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the boundary components of any (say, open) manifold W 4k+1
1 , then

τ(M4k) = τ(i1∗[M4k]);

the conclusion concerning the signature τ(i∗z) in the union W = W1 ∪W2

therefore proved by using the transformation T : W → W . One can avoid
this to prove an analogue of the lemma for the case when W is an open
manifold and M4k is a separating compact cycle, thus the transformation T
essentially does not play a great role here. However, for n = 4k + 2 this
argument not using T , has not been successfully applied in the homotopy
theorem.

§ 3. Theorems on homotopy invariance. Generalized

signature theorem

Consider a closed manifold Mn where n = 4k+m. Given an element z ∈
H4k(Mn, Z)/Tor whose dual Dz ∈ Hm(Mn, Z) is a product of indivisible
elements Dz = y1 · · · ym mod Tor, yi ∈ H1(Mn, Z). We define the covering
p : M̂ →Mn, under which a path γ ⊂ Mn is closed if and only if
(γyj) = 0, j = 1, . . . ,m. Evidently, we have an action of the monodromy
group on M̂ , this monodromy group is generated by mutually commuting
transformations T1, . . . , Tm : M̂ → M̂ .

Lemma 3.1. There exists an element ẑ ∈ H4k(M̂, Z) such that Tj ẑ =
ẑ, j = 1, . . . ,m, and p∗ẑ = z.

Proof. Let us realize the cycles Dyj ∈ Hn−1(Mn, Z) by submanifolds
Mn−1
i ⊂Mn, and realize z by the intersection

M4k = Mn−1
1 ∩ · · · ∩Mn−1

m .

It is easy to see that all paths lying in M4k are covered by closed loops.
Thus there is a well-defined covering embedding M4k ⊂ M̂ , which delivers
the required element ẑ. The lemma is proved.

Now consider the Serre fibration

q : Mn cM−→ Tm,

where the base space has the homotopy type of Tm, the total space is of
type Mn and the fiber is of type M̂ . This fibration is dual to the covering. It
is defined in a homotopically invariant manner. Evidently the term Em,4k2

of the homology spectral sequence is isomorphic to the subgroup H inv
4k ⊂

H4k(M̂, Z), consisting of elements which are invariant under the action of
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the monodromy group. We have a group Em,4k∞ ⊂ Em,4k2 , consisting of
cycles of all differentials of the spectral sequence of the covering.

Lemma 3.2. The subgroup Em,4k∞ is infinite cyclic. It is precisely the
group Hn(Mn) = Z, and

Em−1,4k+1
∞ = · · · = E1,4k+m−1

∞ = 0.

Proof. The fact that Em,4k∞ is a quotient of Hn(Mn), is a consequence
of the definition of filtration in the homological spectral sequence. Therefore
it is a cyclic group. We note that Em,4k∞ is infinite and the corresponding
element was constructed in Lemma 3.1. Therefore Em−s,4k+s

∞ is trivial
for s > 0. The lemma is proved.

As a corollary of Lemmas 3.1 and 3.2 we get:

Lemma 3.3. There exists a unique element ẑ ∈ H4k(M̂, Z) such that
T∗ẑ = ẑ, and in terms Em,4k∞ of the covering spectral sequence the element
ẑ
⊗

[Tm] belongs to the group Em,4k∞ = Z, i.e. ẑ
⊗

[Tm] is a cycle of all
the differentials; [Tm] is the fundamental cycle of the torus.

Lemma 3.3 is a unification of Lemmas 3.1 and 3.2 with the additional
observation that in Lemma 3.1 an element of Em,4k∞ was explicitly
constructed. The element ẑ indicated in Lemma 3.3, will be called canonical.

Theorem 3.4. For m = 1 and m = 2 with the additional condition
that the group H2k+1(M̂,R) is finite-dimensional, we have the formula for
indivisible z ∈ H4k(M̂n, Z), Dz = y1, . . . , ym:

(Lk(Mn), z) = τ(ẑ),

where z is a canonical element. In particular, this scalar product is a
homotopy invariant.

Corollary 3.5. The rational class Lk(M4k+1) is a homotopy invariant.

We note for example that if π1(M5) = Z and p1(M5) �= 0, then the
group π2(M5) is infinite, although this may not be seen in homology. The
resulting formula makes it possible to define Lk(M4k+1) for all homology
manifolds.

Corollary 3.6. The class Lk(M4k+2) of a manifold of T 4k+2

homotopy type is trivial. The scalar product of Lk(M4k × T 2) with the
cycle z = [M4k]× 0 is homotopically invariant and is equal to τ(M4k).
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It would be interesting to deal with the question as to whether there
exist invariant relations on the stable tangent bundle other than those
which are given by the J-functor and Theorem 1 for n = 4k + 1 under the
assumption that the group π1 is commutative and H4k(Mn) = 0, i < k.

Proof of Theorem 1. First we consider the case m = 1, n = 1 + 4k.
In this case the elements z and ẑ are indivisible. From the fundamental
lemma proved in § 2, we have

τ(ẑ) = τ(M4k),

where M4k
i⊂ M̂ and ẑ = i∗[M4k]. On the other hand, z = p∗ẑ and

Lk(M̂) = p∗Lk(M4k+1).

Therefore

(Lk(M̂), ẑ) = τ(M4k) = τ(ẑ) = (Lk(M4k+1), z).

For m = 1 the theorem is proved.
Now we turn to the case m = 2. We recall first that the element z

is indivisible, where Dz = y1y2. The indivisible elements Dy1, Dy2 are
realized by submanifolds Mn−1

1 and Mn−1
2 , and the element z is realized

by their intersection

M4k = Mn−1
1 ∩Mn−1

2 .

Consider the covering p : M̂ → Mn defined above. The manifold M4k ⊂
Mn−1

1 defines an indivisible element z1 ∈ H4k(Mn−1
1 ). By the previous

lemma for m = 1 we conclude that on i : M̂n−1
1 ⊂ M̂ , covering Mn−1

1 , there
is one cycle ẑ1 such that

τ(ẑ1) = (Lk(Mn−1
1 ), z).

The mapping T2 : M̂ → M̂ is such that the basic lemma can
be applied to the ball M̂ ⊃ M̂n−1

1 and to the elements ẑ1, i∗ẑ1. Thus,

τ(ẑ1) = τ(i∗ẑ1).

Accordingly

τ(i∗ẑ1) = (Lk(Mn−1
1 ), z1) = τ(M4k).

But i∗ẑ1 = ẑ and τ(M4k) = (Lk(Mn), z), which implies Theorem 3.4 for
the indivisible cycle z. The theorem is proved.

Now suppose that z = λz′ and Dz = y1y2, where y1, y2 are
indivisible elements of the group H1(Mn, z). As before, suppose that
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M4k = Mn−1
1 ∩Mn−1

2 and that on Mn−1
1 and Mn−1

2 the manifold M4k

realizes z1 and z2, respectively. If at least one of z1 or z2 is indivisible, then
the former argument works. Moreover, if z1 = λ1z

′
1 and z2 = λ2z

′
2, then for

M̂n−1
1 and M̂n−1

2 we have:

(Lk(Mn−1
l ), zl) = λl(Lk(Mn−1

l ), z′l) = λlτ(ẑ′l) = λlτ(il∗ẑ′l) = λlτ(ẑ),

since τ(µẑ) = τ(ẑ) for µ > 0, l = 1, 2, λl > 0. Thus λ1 = λ2, if τ(ẑ) �= 0.
Thus, the cycles z1 and z2 are divisible by one and the same number µ =
λ1 = λ2.

Remark. M4k separates each ofMn−1
1 andMn−1

2 into exactly µ pieces,
a1, . . . , aµ and b1, . . . , bµ, respectively, where

Mn−1
1 =

⋃
j

aj ,

Mn−1
2 =

⋃
j

bj .

The pieces aj and bj are cyclically ordered. Therefore the boundary of
each of those pieces is split into two parts ∂′j and ∂′′j for aj and δ′j and δ′′j
and bj , passing one after another in the cyclic order.

The preceding argument yields:

Theorem 3.7. If the element z ∈ H4k(Mn, Z) is divisible by λ, where
Dz = y1y2 and y1, y2 are indivisible elements of the group H1(Mn, Z), then
the scalar product (Lk(Mn), z) is equal to µτ(ẑ), where ẑ is a canonical
element and µ is a divisor of λ.

Corollary 3.8. If τ(ẑ) = 0, then the scalar product (Lk(Mn), z) is
homotopically invariant and is equal to zero. Since z/λ is an integral
indivisible class, then (

Lk(Mn),
z

λ

)
= µ(λ)τ(ẑ).

If τ(ẑ) and λ are coprime, then µ = λ. The scalar product (Lk(Mn), z) may
have only finitely many values µiτ(ẑ), where µi are divisors of λ.

Remark. It was shown here that if we have two indivisible cycles
Mn−1

1 ,Mn−1
2 ⊂ Mn, n = 4k + 2, and their intersection is divisible by

λ, and is not equal to zero, then in each of them the intersection with z is
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divisible by one and the same number µ provided that τ(ẑ) �= 0. Moreover,

µ =
(Lk(Mn), z)

τ(ẑ)
,

and therefore µ is topologically invariant (see the next section). Is it possible
to prove that µ is always equal to λ?

Example 3.9. Theorem 1 states a fair question: why is the formula
(Lk(Mn), z) = τ(z) not true, rather than the formula (Lk(Mn), z) = τ(ẑ)?
A priori it would be natural to expect just such a formula.

Concerning that, I wish to show on the simplest examples that
such a formula is “generally” false. We say that a manifold Mn−1

1 has
homology type of Mn

0 if there exists a mapping f : Mn
1 →Mn

0 , inducing an
isomorphism of all the homology groups.

We consider Mn
0 = S1 × S4k and show that there exist infinitely many

manifoldsMn
i of “homology type” of S1×S4k with different Pontrjagin class

pk(Mn
i ) such that π1(Mn

i ) = Z and all πl(Mn
i ) = 0, 1 < l < 2k. Moreover,

for k ≥ 2, among the manifolds Mn
i there are those for which the class

pk(Mn
i ) is fractional and therefore they are homotopically nonequivalent to

smooth manifolds.
Consider the functor JPL(Mn

0 ) and take a stable microbundle ηPL which
is J-equivalent to the trivial one. We form the Thom complex TN . Since the
fundamental cycle for it is spherical, we may apply a customary method to
reconstruct the preimages of SN+n → TN , by pasting together the kernel
of the mapping π1, all groups πl of this preimage up to l = 2k − 1 and
the kernel of the map in dimension l = 2k, but only in homology. We
get a preimage of M4k+1

i with the given “normal” microbundle. Since the
functor J0

PL is finite, we get the desired result: the class pk can be varied.
By Poincaré duality, the homology type of M4k+1

i is as desired.

Example 3.10. In an analogous way we now show that in the part
of Theorem 1, devoted to codimension 2, it is impossible to remove the
restriction on finite-dimensionality of the group H2k+1(M̂,R).

Consider the direct product of T 2 × S4k and its J-functor. We again
select a J-trivial bundle over T 2 × S4k and denote its Thom complex by
TN . Take an element α∈H−1[TN ] and a representative fα : SN+n → TN of
α. By Morse surgery over

Mn
α = f−1

α (T 2 × S4k)

we may get that

π1(Mn
α ) = Z + Z
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and

πi(Mn
α ) = 0, i ≤ 2k.

However if we choose a J-trivial bundle such that pk �= 0, we would
have:

pk(Mn
α ) �= 0;

and at the same time τ(ẑ) = 0, since

H2k(M̂) = π2k(M̂) = 0,

where M̂ is the universal cover of Mn
α . Therefore we can deduce that

π2k+1(M̂) = H2k+1(M̂) is of infinite type if pk(Mn
α ) �=0.

§ 4. The topological invariance theorem

We consider a cycle x ∈ H4k(Mn, Z) for n = 4k+2 such that (Dx)2 = 0
mod Tor. Under these conditions we have:

Theorem 4.1. The scalar product (Lk(Mn), x) is a topological
invariant. Here we may assume that Mn is complex which is a homology
manifold over Q.

Proof. We find an integer λ such that (D(λx))2 = 0. Realize λx by
a submanifold M4k ⊂ Mn. It is known that the normal bundle to M4k in
Mn is trivial. There is a well-defined embedding M4k × R2 ⊂ Mn, which
represents an open neighborhood U = M4k ×R2 of M4k. Evidently,

(Lk(Mn), x) =
1
λ
τ(M4k).

Now we choose on Mn another smooth (or PL) structure. We denote
the class in this smooth (or PL) structure by L′

k(M
n). Let us prove that

(L′
k(M

n), λx) = τ(M4k).

The new smooth (PL) structure induces a structure on the neighborhood
U = M4k × R2 and the neighborhood W = U\(M4k × 0), since U and W
are both open. W is homeomorphic to M4k×S1×R. Denote the coordinate
along S1 by ϕ, and the coordinate along R by t. The coordinate system
(m,ϕ, t) is not smooth in the new smooth structure, m ∈ M4k. Evidently,
H4k+1(W ) = Z is generated by the cycle M4k × S1 × 0. Let us realize this
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cycle by a smooth submanifold V 4k+1 ⊂ W in the new smooth structure.
There is a well-defined projection of degree +1:

f : V 4k+1 →M4k × S1, f̂ : V̂ →M4k ×R.

Thus on V 4k+1 there is a 4k-dimensional cycle z ∈ H4k(V 4k+1) such
that z = [M4k

∗ × 0], however, it might not be unique. But the scalar
product (Lk(V 4k+1), z) does not depend on the choice of such cycle z.

Consider the covering p : Ŵ → W , which lifts all closed loops M4k × 0
to closed loops. Evidently Ŵ is homeomorphic to M4k × R × R. The full
preimage V̂ = p−1(V 4k+1) covers V 4k+1 with the same monodromy group.
There is an invariant cycle ẑ ∈ H4k(V̂ ) such that1

f∗p∗ẑ = [M4k × 0], ẑ = Df̂∗D[M4k].

From Theorem 3.4 in § 3 we conclude that

τ(ẑ) = (Lk(V 4k+1), p∗ẑ) = (L′
k(M

n), λx).

Since V = V 4k is compact, we may assume that V̂ lies between the levels
t = 0 and t = 1 in Ŵ .

Consider the (nonsmooth) transformation T ′ : Ŵ → Ŵ such that

T ′(m,ϕ, t) = (m,ϕ, t+ 1).

Denote the inclusion V̂ ⊂ Ŵ by i. Obviously, T ′∗i∗ẑ = i∗ẑ and the group
H2k+1(Ŵ ) = H2k+1(M̂4k) is finite-dimensional. By the basic lemma in § 2
we conclude that

τ(ẑ) = τ(i∗ẑ).

However, i∗ẑ realizes the cycle M4k × 0× 0 on Ŵ = M4k ×R. Thus

τ(i∗ẑ) = τ(M4k).

Since τ(ẑ) = (L′
k(M

n), λx), we get that

(L′
k(M

n), λx) = τ(M4k).

The theorem is proved.

1The cycle z = p∗bz ∈ H4k(V ) is obtained by intersection (M4k × 0 × R) ∩ V and V
from the homological point of view. The same is true for bz on bV .



August 26, 2009 16:21 9in x 6in b789-ch04

Rational Pontrjagin Classes 199

Remark. Rokhlin drew my attention to the fact that for the manifold

V = V 4k+1
i⊂W , constructed in the proof of Theorem 4.1, there is a cycle

z ∈ H4k(V, Z) such that

τ(i∗z) = τ(z) = τ(M4k).

This shows that τ(z) = τ(ẑ) for the case at hand, which, generally speaking,
is not true for arbitrary 4k + 1-dimensional manifolds, as shown in § 3 for
simple examples. It is interesting, however, that anyway we have to use
coverings, since the formula from § 3 for Lk(V ), refers to the cycle ẑ, and
we use it in the proof.

§ 5. Consequences of the topological invariance

theorem

We collect in this section some consequences of Theorem 4.1. Obviously
one has the following:

Corollary 5.1. The class Lk(M4k+2) is topologically invariant on the
subgroup H ⊂ H4k(M4k+2)/Tor, which admits a basis x1, . . . , xs ∈ H such
that Dx2

j = 0 mod Tor. Here M4k+2 is a smooth (or PL)-manifold. For
example, for an M4k+2, which is a direct product of any collection of
spheres, this is always so.

Now suppose that M4k+2 is any simply connected manifold for
which the subgroup H ⊂ H4k(M4k+2

i )/Tor is nontrivial. Since the
functor J0

PL(M4k+2) is always finite, we may apply the “realization
theorem” for tangent bundles and obtain an infinite collection of PL-
manifolds Mi with distinct values of the class Lk(M4k+2

i ) on the subgroup
H , so that there does not exist any mapping M4k+2

i →M4k+2
j which takes

the class into the class. If we wish to obtain smooth manifolds, then we must
use the functor J0 = J0

S0
. Here, however, for k �= 1, 3, we are obstructed by

the Arf-invariant of Kervaire (for these results see [2], § 14, Appendices I
and II). This may be avoided if instead ofM4k+2 one chooses the homotopy
type M4k+2#M4k+2 (in the class of PL-manifolds the Arf-invariant does
not obstruct the construction of such manifolds). Thus one obtains the
following:

Theorem 5.2. If the subgroup H ⊂ H4k(M4k+2, Z)/Tor for a simply
connected manifold M4k+2 is nontrivial, then there exists an infinite family
of PL-manifolds of homotopy type M4k+2 which are not homeomorphic to
each other. If n = 6, 14, this is also true in the class of smooth manifolds.
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In the class of smooth manifolds there exists an infinite collection of pairwise
nonhomeomorphic manifolds of homotopy type M4k+2#M4k+2.

If, for instance, M4k+2 = S2 × S4k, then for k ≥ 2 one may indicate
among these manifolds those which will have a fractional Pontrjagin
class Pk(S2 × S4k) and, accordingly, will be nonhomeomorphic to smooth
manifolds, although their homotopy type is S2 × S4k.

Remark. For S2×S4k such manifolds may be obtained by using Morse
surgery over diffferent Haefliger knots S3 ⊂ S6. If we choose these manifolds
for the type S2×S4k and perform the Morse surgery over S2, then for equal
values of the class pk we will get distinct nodes S4k−1 ⊂ S4k+2.

We define the notion of “topological knot with trivial microbundle”.
This is an embedding

Sn ×Rk ⊂ Sn+k,

where the equivalence is a homeomorphism preserving the fiberwise
structure around Sn × 0. From our results it follows that the knots

S4k−1 ×R3 ⊂ S4k+2, k ≥ 1,

distinguished by the class pk of the reconstructed manifold of
topological type S2 × S4k, are not equivalent as topological knots with
microbundle.

We note finally that for certain manifolds, for example, for the
homotopy type S2 × S4k and their sums connected with one another,
the “Hauptvermutung” follows. Here the point is that from the results of
Appendix II of [2] one may extract the fact that the rational Pontrjagin class
in this case is a complete combinatorial invariant. Since it is topologically
invariant, we also find by using a simple comparison of invariants that from
the existence of a continuous homeomorphism there follows the existence
of a piecewise linear homeomorphism. However, no such approximation
theorems are proved here. From the homeomorphism, we have used for the
proof of the theorem only the fact that sets which are open with respect
to both smooth structures, are smooth open manifolds with the same set
of cycles. Moreover, our method makes it possible to define the classes Lk
of the topological manifold M4k+2. In essence the proof is only that for
an arbitrarily introduced smooth structure in the scalar product of the
class Lk with a cycle is the same. But it is necessary to use a smooth
structure, because it makes it possible to discover a large collection of
submanifolds realizing cycles. This is hardly the case for purely topological
manifolds.
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Appendix (V. A. Rokhlin1). Diffeomorphisms

of the manifold S2 × S3

I want to indicate our further application of the theorem on the
topological invariance of the class Lk in codimension two2: there exist
diffeomorphisms of smooth manifolds, for example, diffeomorphisms of the
manifold

V = S2 × S3,

which are homotopic but not topologically isotopic.
The following elementary arguments are necessary for the proof. To each

mapping f : V → V there corresponds a composite mapping

S3 → V
f→ V → S2,

where the first arrow denotes the natural mapping of the sphere S3 onto
some fiber a×S3 of the product S2×S3, and the third arrow is the projection
of this product onto the first component. The absolute value of the Hopf
invariant of this composite mapping is defined by the homotopy class of the
mapping f and will be denoted by γ(f). The number of homotopy classes
of mappings f : V → V with a given value of γ(f) is infinite, but it becomes
finite if we restruct ourselves to classes consisting of homotopy equivalences.
In particular, there exists only a finite number of pairwise nonhomotopic
diffeomorphisms f : V → V with a given value of γ(f).

Now consider the manifold S2×D4 with boundary V and denote by Mf

the smooth manifold obtained from two copies of W by pasting them by a
diffeomorphism f : V → V . The homology groups of Mf do not depend on
f , i.e. they are the same as those of the product S2×S4 (which corresponds
to the identity diffeomorphism V → V ), and the multiplicative structure of
the integer-valued homology ring is defined by the formula

u2
2 = ±γ(f)u4,

where u2 and u4 are the generators of the groups H2(Mf ;Z) and
H4(Mf ;Z). In particular, γ(f) is a homotopy invariant of the manifold Mf .

Denote by K the class of all manifolds diffeomorphic to the manifolds
Mf , and denote by K0 the class of smooth six-dimensional manifolds
topologically equivalent to the product S2 × S4.

1From a letter of January 20, 1965, from V. A. Rokhlin to the author. The letter
was a reply to my note [1] sent to V. A. Rokhlin, and was published with permission
(this and the footnotes which follow are due to S. P. Novikov).

2I.e. Theorem 1 of the present paper.
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Lemma. K0 ⊂ K.

Proof. Suppose M ⊂ K0. Then the generator of the group H2(M)
is realized by a smooth embedding of a sphere, and the normal bundle
of this sphere, having the invariant homotopy type of the manifold M , is
trivial. Accordingly, a tubular neighborhood of this sphere is diffeomorphic
to W . If one diffeotopically carries this sphere beyond the limits of
this tubular neighborhood, the normal bundle of the sphere will remain
trivial, and, as shown by standard calculations, its embedding into the
closed complement of the tubular neighborhood will be homotopic to an
equivalence. From Smale’s theorem it therefore follows that this closed
complement is diffeomorphic to W , hence M ∈ K.

Proof of the Theorem. Let M1,M2, . . . be pairwise nonhomeomor-
phic manifolds lying in K0.1 From the lemma there exist diffeomorphisms
fn : V → V , such that Mn and Mfn are diffeomorphic. Since γ(f) is a
homotopy invariant of the manifold Mf , we have γ(fn) = 0, and since there
are only a finite number of pairwise nonhomotopic diffeomorphisms

f : V → V with γ(f) = 0,

it follows that there exist indices k, l such that the diffeomorphisms fk and
fl are homotopic. They are not isotopic, and moreover the diffeomorphism
fkf

−1
l : V → V does not extend to a homeomorphism of the manifold W ,

since otherwise the manifolds Mfk
and Mfl

would be homeomorphic.
This proof can be made more effective, replacing the rough finiteness

arguments by a precise homotopy classification of diffeomorphisms of the
manifold V .

One can also give a complete homotopy and differential classification of
manifolds of the class K. As for the topological classification, it coincides
with the differential one (as holds for manifolds of the class K0) if the
class p1(Mf ) is topologically invariant. The obvious generalization of the
preceding lemma shows that the class K contains all the smooth six-
dimensional manifolds homotopically equivalent to the total manifolds of
orthogonal bundles with basis S4 and fiber S2.
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On manifolds with free abelian
fundamental group and their applications
(Pontrjagin classes, smooth structures,

high-dimensional knots)1

S. P. Novikov

In this paper we establish topological invariance of rational Pontrjagin
classes on smooth and piecewise-linear manifolds and give several
corollaries. These methods can be applied to other problems.

Introduction

As shown in previous papers by the author [10–13], the question of
topological invariance of rational Pontrjagin classes is closely connected
to some problems of homotopy and differential topology of non-simply
connected manifolds and their covering spaces, such that the fundamental
group of the non-simply connected manifold is free abelian. The reduction
of the invariance problem to homotopical problems in these series of papers
has one common idea. The idea is based on the fact that one can make
reasonable conclusion from the notion “continuous homeomorphism” by

1Izvestiya AN SSSR, ser. matem., 1966, vol. 30, c. 207–246 (received August 25,
1965). — Translated by V.O. Manturov.
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using special non-simply connected open subsets to be studied later by
means of purely smooth topology, using non-simply connectedness, though
the fundamental group has no relation to the initial problems. Thus, in the
initial work [10, 13], this problem was solved by analogues of the Hirzebruch
formula for covering spaces, which yielded the difference of homeomorphism
and homotopy type. The direct development of this “signature” method
led the author to the proof of the topological invariance of the Pontrjagin–
Hirzebruch class Lk(Mn) for n ≤ 4k + 3. This intermediate argument is
given in the appendix; it was found before the general result [11] appeared,
and it generally lost its initial importance because the author could find
a general proof of the invariance of classes (short publication see in [11]),
with no “signature” arguments and analogues of the Hirzebruch formula.

Here, a solution to the problem of classes is given by using a generali-
zation of the technique of [3, 14] to the non-simply connected case for
studying smooth structures on manifolds of type Mn × R, π1(Mn) = Z +
· · ·+Z, though the reduction of the problem to such problem of differential
topology is similar to that from author’s work [10] on topological invariance
of classes. At this moment, it was useful for us to perform this work, to
receive the manuscript of W. Browder (soon published in [4]), where the
problem of smooth structures on manifolds of the type M ×R was solved
for the simply connected case π1(M) = 0. Some ideas from [4] helped the
author to perform this work, and the author expresses his gratitude to W.
Browder.

The results are formulated in § 1. The central result is Theorem 1, which
establishes topological invariance of rational Pontrjagin classes for smooth
and piecewise-linear manifolds.
§ 2 is very important in our work: it contains the reduction of Theorem 1

to Theorem 3, and the connection to the other results. It is the place
where we use the fact that the manifolds M1 and M2 from Theorem 1
are homeomorphc.

In §§ 3–8 we prove Theorem 3. § 5 is of a special interest: these results
can be easily generalized for a larger class of groups.

In § 9 we prove Theorem 6 concerning knot theory.
In § 10 we formulate (without proof) one generalization of Theorem 5.
From Theorem 1 of the present work jointly with some previously known

results we deduce several corollaries.

Some corollaries from the invariance of classes:

1. The number of smooth structures on a simply connected topological
manifold Mn, n �= 4 is finite, and does not exceed the constant c(Mn),
where

c(Mn) < eqn+
Pn

i=2 bn−i ln ci+
P

4k d4k ,
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whence

qn = ln |θn(∂π)|, di = ln |TorHi(Mn)|,
bj = maxp≥2 rkHj(Mn, Zp), cj = aj |πN+j(SN )|,

aj = 1 for j �≡ 1, 2 (mod 8) and aj = 2 for j ≡ 1, 2 (mod 8). This corollary
follow from comparing Theorem 1 with Boot periodicity and author’s results
concerning the diffeomorphism problem (see [14]).

An analogous finiteness result and estimate (with other universal
constants ci) hold for the number of combinatorial structures on Mn

with the same restrictions. Here one should use the result of Surf that
π0(diff S3) = 0. This yields the Hauptvermuting up to a finite number of
possible PL-structures for given restrictions. These results follow from [14,
see Appendix 2].

2. As already shown in [10], for dimensions 4k + 2 the invariance of
Pontrjagin classes and Browder’s results [see [3], [14], Appendix 1] yield the
difference between homeomorphism and homotopy type of closed simply
connected manifolds. From Theorem 1 it follows that for any simply
connected manifold Mn, n ≥ 6, for which at least for one k �= 0, n

4 the
homology group H4k(Mn) is infinite, there is an infinite number of smooth
(possibly, outside a point) pairwise non-homeomorphic manifolds Mn

having the same homotopy type of Mn. If the homology condition given
above fails, the number of such manifolds is presumably finite, as it follows
from [14].

3. On odd-dimensional spheres S2n+1, n ≥ 3, there exists a finite number
of smooth (or smooth outside a point) actions of the circle S1 without fixed
points, which are pairwise distinct (not homotopically equivalent). This
fact follows from the result of previous paragraph, applied to the quotient
space S2n+1/S1 of homotopy type CPn because topologically equivalent
actions generate homeomorphic quotient spaces.

4. Since Pontrjagin numbers are topologically invariant, two smooth
manifolds belonging to different classes of orientable cobordisms ΩSO, are
never homeomorphic.

5. All piecewise-linear manifolds with fractional Pontrjagin classes are
not homeomorphic to smooth ones. In each dimension n ≥ 8 many examples
of such manifolds are known and many of them (though, not all) are
homotopy equivalent to smooth ones.

6. The spaces of SOn-fibrations with base S4k and fiber Rn, disk Dn

or Sn−1 for n > 4k + 1 are completely classified from the topological point
of view, by the Pontrjagin class of the bundle. This is true for many other
examples. It is known for a long time (Dold) that there are only finitely
many pairwise distinct homotopy types.



August 26, 2009 16:21 9in x 6in b789-ch05

208 S. P. Novikov

7. If for a smooth manifold Mn we have an elliptic integrodifferential
operator A which takes the section of F1 over Mn to the section of F2

over Mn, then it defines the “symbol” σ(A). This symbol defines an
isomorphism of bundles F1 and F2, extended to τ(Mn) and then restricted
to the subspace

τ(Mn) \Mn ⊂ τ(Mn),

where τ(Mn) is the tangent bundle space for Mn with fiber Rn

and Mn ⊂ τ(Mn) is the zero section. Since neither the space τ(Mn)
nor Mn ⊂ τ(Mn) depend on the smoothness of Mn, the “symbol” σ is
a topologically invariant notion; however, for different smooth structures
on Mn the same symbol σ defines operators A1, A2 acting in different
spaces, but such that σ(A1) = σ(A2) (these operators are defined with
ambiguity, but up to some quite continuous addition for each smooth
structures). The well-known Atiyah–Singer operator expresses the index
of the operator in terms of invariants of the triple (F1, F2, σ) independent
of the smooth structure and Pontrjagin classes of the manifold Mn. From
Theorem 1 we see that the index of the operator is defined only by the
symbol independently from the smoothness on the manifold Mn; this index
is the same for operators with the same (homotopic) symbols defined for
different smooth structures.

8. The natural mapping πi(BSO) → πi(BTop) is monomorphic, and
H∗(BTop, Q)→ H∗(BSO, Q) is epimorphic.

9. The mapping class group of diffeomorphisms for a simply connected
manifold of dimension at least five is of finite index in the analogous
subgroup for homeomorphisms [see [14], Theorems 6.9 and 6.10].

Finally, I express my gratitude to V. A. Rokhlin for various fruitful
discussions and advices. Note that the invariance proof for rational
Pontrjagin classes found by the author is in its major part a natural sequel
of the papers by Rokhlin and Thom [15, 19] devoted to this problem. I also
express my gratitude to S. P. Demushkin, I. R. Shafarevich, Yu. I. Manin
for their help in algebraic questions which arose while performing this work,
and to A. V. Chernavsky for questions related to Theorem 6.

§ 1. Formulation of results

From the application point of view, the main theorem of this chapter is
the following:

Theorem 1. Let M1 and M2 be two smooth (or PL)- manifolds and
let h : M1 →M2 be a continuous homeomorphism. Then

h∗pi(M2) = pi(M1),
where pi(Mq), q = 1, 2, are rational Pontrjagin classes of M1 and M2.
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Theorem 2. Let M4k be a closed manifold, and let Wm+4k be a
smooth closed manifold of homotopy type M4k × Tm, where Tm is the
m-dimensional torus, π1(M4k) = Z + · · ·+ Z, h : Wm+4k →M4k × Tm is
some homotopy equivalence. Then the following formula holds:

(Lk(Wm+4k), h∗[M4k]⊗ 1) = τ(M4k),

where Lk are the Hirzebruch polynomials, and τ is the signature of a
manifold.

The condition π1 = Z+ · · ·+Z in Theorem 2 can, certainly, be removed,
but we are not going to do it here.

Now let W be an open smooth manifold of dimension n+ 1 having
homotopy type of a closed n-dimensional manifold, for which a discrete
action (possibly, non-smooth) T : W→W is given such that the quotient
W/T is compact. Under these assumptions, the following theorem holds:

Theorem 3. If n ≥ 5 and π1(W ) is isomorphic to a free abelian group
then there exists a closed manifold V such that W is diffeomorphic to
V ×R.

This theorem is proved in §§ 3–8, and it yields Theorems 1 and 2 for the
smooth case (see § 2). The case of PL-manifolds is completely analogous,
and it requires only a combinatorial analog of Theorem 3, the latter is
proved with no changes by using remarks from the author’s paper [14]
[see [14], Appendix 2, on combinatorial Morse surgery].

Among the remaining results, we indicate the following.

Theorem 4. Let Mn be a smooth manifold, such that π1(Mn) is
the free abelian group of rank k. Then the smoothness for a direct
product Mn ×Rq for q > n is defined by the tangent bundle, and it may
have only finite number of values.

Theorem 5. Let Mn be a smooth closed manifold, let π1(Mn) = π be
the free abelian group of rank k and Mn has homotopy type of skew product
with T l as base and Mn−l as fiber, where Mn−l is a closed topological
manifold. If l ≤ n− 5, then the covering space M̂ over Mn having homotopy
type Mn−l is diffeomorphc to the direct product Mn−l

1 ×Rl where Mn−l
1 is

a closed smooth manifold.

Theorem 5 follows directly from Theorem 3.
An indirect argument shows that Theorem 3 (or its analog) yields:

Theorem 6. Let Sn ⊂ Sn+2, n ≥ 5, be a topological locally-flat
embedding. Then this embedding is topologically equivalent to a smooth
embedding Sn ⊂ Sn+2 for some smooth structure on Sn. In particular, this
embedding is globally flat.
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The reduction of Theorem 6 from previous results will be given at the
end of the paper. Unlike Theorems 1, 2, 4, 5, this needs one supplementary
argument (see § 9).

In § 10, we indicate (without proof) one generalization of Theorem 5.

§ 2. The proof scheme of main theorems

1. The main theorems will be proved according to the following plan.

a) First, we prove Theorem 3 (see §§ 3–8).
b) From Theorem 3 we will deduce: Theorem 1 for the simply connected

case, Theorems 2, 4, 5 (see § 2). It is known that the general statement of
Theorem 1 follows from the simply connected case. Moreover, it suffices
to prove Lemma 2.1, (see ahead) only for spheres S4k.

c) At the end, we shall give a separate proof of Theorem 6 based on
Theorem 3 and its generalizations (see §§ 9,10).

2. The main part of the work is devoted to the proof of Theorem 3.
Here we shall indicate the scheme of obtaining the statement of Theorem 1
for the simply connected case as well as the statement of Theorem 2, from
Theorem 3.

The following lemma is, in principle, contained in papers [15], [16], [19].
It was communicated to the author by V. A. Rokhlin quite long ago.

Lemma 2.1. Let W be an arbitrary smooth manifold homeomorphic to
M4k ×Rm, where M4k is a simply connected closed manifold. If the formula

(Lk(W ), [M4k]) = τ(M4k),

always holds, then the rational Pontrjagin classes of simply connected
smooth manifolds are topologically invariant.

Here Lk are the Hirzebruch polynomials, and τ is the signature of a
manifold. We shall not give a proof of this lemma, assuming this is well
known after the papers by Thom, Rokhlin, Schwarz, (see [15–17]), where it
is essentially used, however, only for piecewise-linear homeomorphisms.

Our aim is to prove the following statement.

Lemma 2.2. With the assumptions of Lemma 2.1 the following formula
holds:

(Lk(W ), [M4k]) = τ(M4k).
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Moreover, this formula holds for piecewise-linear manifolds and
“combinatorial” Pontrjagin classes.

The argument to deduce Lemma 2.2 from Theorem 3, is, from the ideal
point of view, the crux of the paper, since here we use the fact that two
manifolds are homeomorphic. Indeed, Theorem 3 itself is unrelated to the
invariance problem of Pontrjagin classes.

Let us give this deduction below.
We use the topological structure of the manifold W in the following

way: the usual torus Tm−1 can be smoothly realized in the Euclidean space
Rm ⊃ Tm−1 ×R; consider the open submanifold i : W1 ⊂W , where W1 ≈
M4k × Tm−1 × R, so that the embedding i : W1 ⊂ W is defined according
to the homeomorphism W ≈ M4k × Rm and the embedding Tm−1 × R ⊂
Rm. Obviously, i∗Lk(W ) = Lk(W1) and i∗ : H4k(W1) → H4k(W ) is an
epimorphism. Thus, instead of Lk(W ) we may study the class Lk(W1).
Since W1 is homeomorphic to (M4k × Tm−1) × R and π1(M4k) = 0, we
may apply Theorem 3 to W1 if k > 1 or k = 1, but m > 1.

The following arguments are “periodic”. Let us give the explicit
construction of the first period.

a) Based on Theorem 3, we can find a closed submanifold V1 ⊂W1 such
that W1 is diffeomorphic to V1 ×R; thus Lk(W1) = Lk(V1).

b) Consider the covering space over the torus Tm−2 × R→ Tm−1 and,
according to this covering, let us construct a covering over V1, where V1

has homotopy type M4k × Tm−1,

V̂1 →
p1
V1,

where V̂1 has homotopy type M4k × Tm−2 ×R, and the mapping class
group is Z. Evidently, Lk(V̂1) = p∗1Lk(V1), and the mapping

p1∗ : H4k(V̂1)→ H4k(V1)

is such that H4k(V1) = Im p1∗ +A, where Lk/A = 0 for an appropriate
choice of A.

c) Now denote V̂1 by W2 and note that to the manifold W2 we may again
apply Theorem 3 if k > 1 or m− 1 > 1. Thus we obtain the following
“period”:

W1 ⊃ V1 ←
p1
V̂1 = W2 ⊃ V2 ←

p2
V̂2 = W3.

It is important that dimW2 = dimW1 − 1 and the class Lk actually
remains unchanged.
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Furthermore, starting from the manifold W2 we again search (as in
the first period) the manifolds V2 ⊂W2 and W3 = V̂2, and so on, until we
reach a simply connected manifold Wm of dimension 4k + 1 and homotopy
type M4k.

If 4k > 4 we again apply Theorem 3 to Wm = Vm ×R and note the
following:

(Lk(Vm), [Vm]) = (Lk(W ), [M4k])

by construction;

(Lk(Vm), [Vm]) = τ(M4k)

by Hirzebruch formula, because Vm is of homotopy type M4k (by
construction) and is closed. This yields Lemma 2.2 for the case 4k > 4.

If 4k = 4, we may note that the manifold Vm−1 is of homotopy type
M4k × S1. Thus from Theorem 1 of the author’s paper [13] it follows
that (Lk(Vm−1), [M4k]) = τ(M4k), and we again obtain Lemma 2.2
for k = 1.

Analogously, from Theorem 3 we may deduce Theorem 2.
3. Now let us show that Theorem 3 yields Theorem 4. Consider a smooth

manifold W which is homeomorphic to Mn ×Rm for a large m. Let us
embed Mn ⊂W smoothly (see [5]). The neighborhood of Mn in W is the
SO-bundle total space for the bundle β such that

β ⊕ α(M) = α(W ),

where α(X) is the tangent bundle of the smooth manifold X .
Denote by V = V n+m−1 the total space of the SO-bundle β with

fiber Sm−1 over Mn. Remove from W a closed neighborhood of the
manifold Mn in W , which is homeomorphic to Mn ×Dm. The remainder
is homeomorphic to

Mn × Sm−1 ×R = W1.

By Theorem 3, W1 is diffeomorphic to V1 ×R, where V1 is a smooth closed
manifold of homotopy type Mn × Sm−1. However, V1 is h-homological
to the manifold V — the total space of the spherical bundle β. Since
π1 = Z + · · ·+ Z, we see that V1 is diffeomorphic to V , and the whole
manifold W is diffeomorphic to the space β with fiber Rm over Mn. The
theorem is proved.

Note that for Mn = S1 the tangent bundles α(S1) and α(W ) are always
trivial. Thus W = S1 ×Rm.

4. Note that Theorem 5 formally follows from Theorem 3 for the case
when the dimension of the torus is equal to 1: to see this, one should
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consider the manifold W , being the covering space over Mn with mapping
class group Z. The general case follows by a subsequent use of Theorem 3
to this situation.

§ 3. A geometrical lemma

The aim of this section is to prove a standard-type lemma from a
smooth embedding theory. Its only difference from the usual case is that
it is necessary in the non-simply connected situation, though it causes no
serious changes in the proof.

Lemma 3.1.1 Let Wn+1, V n be a smooth manifold Wn+1 = W, with
one boundary component V n = V ; Wn+1 is, possibly, open. If the inclusion
π1(V )→ π1(W ) is an isomorphism, the group π1(V ) has no 2-torsion,
and all the groups πi(W, V ) are zeros for i ≤ s, then any map of pairs
f : (Dl+1, Sl)→ (W, V ) is homotopic to a smooth embedding if 3l+ 3 < 2n
and 2l− n+ 1 < s.

Moreover, under the same dimension restrictions, any finite collection
of maps fi : (Dl+1, Sl)→ (W, V ), i = 1, . . . , q, is homotopic to a system of
pairwise non-intersecting smooth embeddings.

Proof. Let us first consider the first part of the lemma about mappings
of one object.

Let f : (Dl+1, Sl)→ (W, V ) be an arbitrary mapping of pairs. Consider
the universal covering spaces (Ŵ , V̂ ) and the covering mapping of pairs
f̂ : (Dl+1, Sl)→ (Ŵ , V̂ ). Since the pair (Ŵ , V̂ ) is simply connected, then
we may assume that the mapping f̂ is a smooth embedding (see [23]).
Moreover, the mapping f has only double intersection points (by
genericity assumptions). These intersection points form a submanifold
M t ⊂ Dl+1, which, in general, has a boundary, here t = 2l− n+ 1. The
map f/M t → W is a two-fold covering. Let us show that this covering is
trivial, i.e.

M t = M t
1 ∪M t

2

and

f(M t
1) = f(M t

2).

1The author is not sure that this lemma cannot be deduced directly from the works
of Haefliger [5] or J. Levine. This lemma will be applied only for the case n = 2l + 1
and n = 2l (§ 8), thus the reader should not pay much attention to it.
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Indeed, if there were one connected component M t
0 ⊂M t, where the map f

is two-fold, then the image f̂(M t
0) ⊂ Ŵ would be such that there exists an

element α ∈ π1(V ) = π1(W ) such that

α(M t
0) = M t

0,

where α : Ŵ → Ŵ and α2/M t
0 = 1; which would yield α2 = 1, that

contradicts the assumption of the lemma.
Thus, M t = M t

1 ∪M t
2 and f(M t

1) = f(M t
2).

On the manifoldM t
1 let us construct a Morse function g which is equal to

zero on the boundary ∂M t
1 ⊂ Sl. After passing the first critical point g = x0,

the topology of the “large value region” changes. Let us show, analogously
to Haefliger [5], that one can accordingly change the map

f : (Dl+1, Sl)→ (W, V )

in such a way that instead of

M t
1 = {g ≥ 0} = {g ≥ x0 − ε}

we shall have the intersection manifold

M
t

1 = {g ≥ x0 + ε}, ε > 0,

for the new map

f : (Dl+1, Sl)→ (W, V ),

homotopic to f .
Consider the region G = {g ≤ x0 + ε}. Denote the index of (g = x0,

grad g = 0) by k. Then

G = ∂M t
1 × I(0, 1)

⋃
h

Dk ×Dt−k,

h : ∂Dk ×Dt−k → ∂M t
1 × 1.

Let

Sk−1 = h(∂Dk × 0) ⊂ ∂M t
1,

Dk
0 = h(Dk × 0) ⊂ Dl+1.

Consider the disk Dk+1 ⊂ Dl+1, where ∂Dk+1 = Dk
0 ∪Dk, such that

Dk+1 ∩M t
2 = ∅,

Dk+1 ∩M t
1 = Dk

0
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(in general position) and

Dk+1 ∩ ∂Dl+1 = Dk
1

(in general position). Let T be the neighborhood of the disk f(Dk+1) in W
and let IntT be the interior of T . Set

W ′ = W\Int T.

Obviously, W ′ is diffeomorphic to W : we “pushed” the interior of T
away from the boundary ∂W = V . Preserving the initial notation, denote
W ′ by W , and denote ∂W ′ by V .

Consider the abstract disk Dl+1 and submanifolds M t
1, M

t
2 in it. Delete

from Dl+1 the set Dk+1 ⊂ Dl+1 together with its “hull” f−1f(Dk+1), in
such a way that we also delete the neighborhood of the disk

f−1f(Dk
0 ) ∩M t

2 = D
k

0

from Dl+1. The topological effect of this operation is as follows: from Dl+1

we delete the neighborhood of the disk D
k

0 such that

∂D
k

0 = D
k

0 ∩ ∂Dl+1.

Thus the boundary of this new body is Sk × Sl−k, and the body itself
is Dk+1 × Sl−k. We have:

D′ = Dl+1\f−1f(Dk+1) = Dk+1 × Sl−k,
D′ ∩ ∂W ′ = Sk × Sl−k.

The disk Dk+1 × 0 ⊂ D′ defines an element of the group

πk+1(W ′, ∂W ′) = πk+1(W, ∂W ) = 0, k + 1 ≤ s.
Consider a disk Dk+2 ⊂W ′ = W such that:

∂Dk+2 = Dk+1
0 ∪Dk+1

1 ,

Dk+2 ∩ ∂W ′ = Dk+2
0 ,

Dk+2 ∩ f(D′) = Dk+1
1 = f(Dk+1 × 0)

(all intersections are transverse). Let us perform surgery of the manifold D′

along Dk+2, under which the boundary is operated on by a Morse surgery
over the basic cycle Sk × 0. After the surgery, we again obtain a map of the
disk f̄ : Dl+1 →W = W ′, and the singular manifold will “lose” one critical
point of the function g : M t

1 → R.
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More precisely, we have a mapping f ′ : D′ →W ′ induced by f : Dl+1 →
W , such that

f ′ : ∂D′ → ∂W ′, ∂D′ = Sk × Sl−k, D′ = Dk+1 × Sl−k,
and the singular manifold for f ′ is diffeomorphic to the region {g ≥ x0 + ε}
on M t

1. On the disk Dk+1 × 0, the mapping f ′ is a homeomorphism, and
there exists a disk Dk+2 ⊂W ′ such that

∂Dk+2 = f ′(Dk+1 × 0) ∪Dk+1
0

and

Dk+1
0 ⊂ ∂W ′, Dk+2 ∩ f ′(D′) = f ′(Dk+1 × 0).

Consider an abstract disk Dk+2×Dl−k
0 , where ∂Dk+2 = Dk+1

0 ∪Dk+1
1 ,

and paste it to D′ as follows:

A = D′ ⋃
h

Dk+2 ×Dl−k, h : Dk+1
1 ×Dl−k → D′ = Dk+1 × Sl−k,

where h(Dk+1
1 × 0) = Dk+1 × 0 ⊂ D′; let

B = A\[Dk+2 × IntDl−k].

The result of pasting is homeomorphic to the disk B = Dl+1. This naturally
leads to a mapping f : Dl+1 →W ′,

Dl+1 = B = A\[Dk+2 × IntDl−k], A = D′⋃
h

Dk+2 ×Dl−k,

constructed from f ′ : D′ →W ′ and the embedded disk Dk+2 ⊂W ′.
It is easy to see that the mapping of pairs

f̄ : (Dl+1, Sl)→ (W ′, ∂W ′) = (W, ∂W )

is homotopic to

f : (Dl+1, Sl)→ (W, ∂W )

and has a “one point less” intersection set (we lose one critical point of g).
Reiterating the process, we will get a map without self-intersections, which
proves the first part of the lemma.

Analogously one can remove intersections of pairs of mappings

f1, f2 : (Dl+1, Sl)→ (W, ∂W ).

This proves the second part of the lemma.
The lemma is proved.
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§ 4. An analog of the Hurewicz theorem

Let f : X → Y be a map of complexes such that

f∗ : π1(X)→ π1(Y )

is an isomorphism, let the mapping f itself as well as the corresponding
covering maps f̂ : X̂ → Ŷ on universal covering spaces X̂, Ŷ induce
epimorphisms in all dimensions:

Hi(X̂)
f̂∗−→ Hi(Ŷ )→ 0,

H∗
i (X)

f∗−→ Hi(Y )→ 0.

Under these conditions we get the following:

Lemma 4.1. If f∗ : πj(X)→ πj(Y ) is a monomorphism in all
dimensions j < k then it is an isomorphism in dimensions j < k, it is an
epimorphism in dimension k, and for the kernels we have the following
“Hurewicz theorem”:

(a) Ker f (πk)
∗ = Ker f̂ (Hk)

∗ = Mk,

(b) Mk/Z0(π)Mk = Ker f (Hk)
∗ ,

where π = π1(X) = π1(Y ), Z0(π) is the kernel of the augmentation
ε : Z(π)→ Z of the integral group ring, and the kernel in homology for Mk

is considered as a Z(π)-module.

Before proving this lemma, let us list those situations where it can be
applied.

1. Let f : Mn
1 →Mn

2 be a map of closed manifolds of degree +1 such
that π1(Mn

1 ) = π1(Mn
2 ). Then the map f̂ : M̂1 → M̂2 of universal (and any

other) covering spaces has degee +1 as a proper map. Thus f̂ induces a
map f̂∗ of open homology groups, and that of f̂∗-compact homology groups,
for which the formula

f̂∗Df̂∗D(x) = x, x ∈ Hq(M̂n
2 )

holds. Consequently,

Hq(M̂1) = Ker f̂ (Hq)
∗ +Df̂∗DHq(M̂2).

In this case, one can evidently apply Lemma 4.1.
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2. Let W be a smooth manifold as in Theorem 3 (see § 1) and
let i : V1 ⊂W be a smooth submanifold splitting W into two parts and
realizing the basic cycle of the group Hn(W ) = Z in such a way that
π1(V1) = π1(W ). Denote by A and B, respectively, the “right” and “left”
sides of W with respect to V1, where

A ∪B = W, A ∩B = V1.

Then the following statements (a) and (b) hold.

a) The embeddings i1 : V1 ⊂ A, i2 : V1 ⊂ B and i : V1 ⊂W satisfy the
conditions of Lemma 4.1.

b) For all covering spaces we have a direct sum decomposition:

Ker ı̂(Hk)
∗ = Ker ı̂(Hk)

1∗ + Ker ı̂(Hk)
2∗ ,

and the maps

ı̂2∗ : Ker ı̂(Hk)
1∗ → Hk(B̂),

ı̂1∗ : Ker ı̂(Hk)
2∗ → Hk(Â),

are monomorphic, and the images ı̂2∗ Ker ı̂(Hk)
1∗ and ı̂1∗ Ker ı̂(Hk)

2∗ coincide
with the kernels of the embeddings Hk(Â) → Hk(Ŵ ) and Hk(B̂) →
Hk(Ŵ ).

Let us prove a). Since

π1(W ) = π1(A) ∗π1(V1) π1(B)

and π1(W ) = π1(V1), we see that π1(A) = π1(V1) and π1(B) = π1(V1).
Consider the basis x1, . . . , xs ∈ Hk(W ); let us realize it by cycles

z1, . . . , zs ⊂W . Then there is a large N such that all TNz1, . . . , TNzs lie
in B ⊂W . Since T is an epimorphism, these cycles form a basis of the
group Hk(W ). Let x ∈ Hk(A), and let z ⊂ A be the cycle representing it.
Then z is homologous in W to the linear combination

∑
aiT

Nzi by means
of a membrane c ⊂W . The intersection c ∩ V1 is a cycle z ⊂ V1, realizing
the homology class x ∈ Hk(V1) such that x = i1∗x. The arguments for B
and for the whole W are identical.

Now, let us consider the covering spaces Â, B̂, V̂1, Ŵ and the covering
embeddings ı̂, ı̂1, ı̂2. Note that the homology groups Hk(V̂1), Hk(Â),
Hk(B̂), Hk(Ŵ ) are finitely generated Z(π1)-modules, because π1 is a
Noetherian group (π1 = Z + · · ·+ Z). The following argument is analogous,
but instead of the basis of the group one should take a π1-basis of the
module.
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The same is true for all intermediate covering spaces. Thus, we may
apply Lemma 4.1 here.

Let us prove statement b). If the intersection

Ker ı̂(Hk)
1∗ ∩Ker ı̂(Hk)

2∗

is non-empty, then there exists a cycle z ⊂ V̂1 which is null-homologous in
both Â and B̂. The membranes define a cycle c in Ŵ of dimension k + 1.
This cycle c, according to the arguments above, is homologous in Ŵ to a
cycle c ⊂ Ŵ such that c ∩ V̂1 = ∅, by means of a membrane d ⊂ Ŵ . The
intersection d ∩ V̂1 is such that

∂(d ∩ V̂1) = c ∩ V̂1 = z,

and z is null-homologous. Thus,

Ker ı̂(H)
1∗ ∩Ker ı̂(H)

2∗ = 0

for all covering spaces.
Now let us consider the kernel of the embedding Hk(Â)→ Hk(Ŵ ).

Let z be a cycle in Â, which is null-homologous in Ŵ , by means of a
membrane c. Then z1 = c ∩ V̂1 is such that z = ı̂1∗z1 and z1 ∈ Ker ı̂(H)

2∗ .
The statement is proved.

Proof of Lemma 4.1. Let us first consider the “simply connected”
case of the map f̂ : X̂ → Ŷ . Denote by C the mapping cylinder for f̂ , which
is contractible to Ŷ . Let us write the exact sequences:

Hi(X̂) −−−−→ Hi(Ŷ ) −−−−→ Hi(C, X̂) ∂−−−−→ Hi−1(X̂)�H �H �H �H
πi(X̂) −−−−→ πi(Ŷ ) −−−−→ πi(C, X̂) ∂−−−−→ πi−1(X̂).

Since f̂∗ : πi−1(X̂)→ πi−1(Ŷ ) are all monomorphisms for i ≤ k, the
mapping

∂ : πi(C, X̂)→ πi−1(X̂)

is trivial. Since f̂∗ : Hi(X̂)→ Hj(Ŷ ) are epimorphisms, then ∂:Hi(C, X̂)→
Hi−1(X̂) are monomorphisms onto the kernel Ker f̂ (Hi−1)∗ . Because
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H∂ = ∂H , we have for the first i for which πi(C, X̂) �= 0:

πi(C, X̂) = Hi(C, X̂),

and ∂H is an isomorphism:

πi(C, X̂) ≈ Ker f̂ (Hi−1)
∗ .

But this is possible only for i ≥ k + 1; otherwise H∂ = 0. For i = k + 1 we
have

Ker f̂ (πk)
∗ = Ker f̂ (Hk)

∗ ,

and for i ≤ k + 1 the mapping f̂∗ : πi−1(X̂)→ πi−1(Ŷ ) is an epimorphism.
Following Serre, let us transform the map f̂ : X̂ → Ŷ into a fibration

f̃ : X1
F−→ Y1, whereX1, Y1 are of homotopy type X̂, Ŷ , and f̂ has homotopy

type f̂ . According to the exact sequence of this fibration, we see that

πk(F ) = Hk(F ) = Ker f̂ (πk)
∗

according to the previous results.
Let us consider the mapping f : X → Y , and transform it into a

fibration; the fiber F ′ has the homotopy type of F , and

πk(F ) = Ker f̂ (πk)
∗ = Ker f̂ (Hk)

∗ = Mk,

moreover, πi(F ) = 0, i < k.
Consider the spectral sequence of this fibration. Evidently, E0,k

2 =
Mk/Z0(π)Mk and Eq,i2 = 0 for 0 < i < k.

Since f∗ : Hk+1(X)→ Hk+1(Y ) is an epimorphism, the differential

dk+1 : Ek+1,0
2 → E0,k

2 , Ek+1,0
2 = Hk+1(Y ),

is trivial. Thus,

E0,k
∞ =

Mk

Z0(π)Mk
.

Obviously,

E0,k
∞ = Ker f (Hk)

∗ =
Mk

Z0(π)Mk
.

All statements of the lemma have been proved.
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§ 5. The functor P = Homc and its application to the

study of homology properties of degree

one maps

Let π be a Noetherian group, K a ring or a field, K(π) be a group ring
with coefficients in K, ε : K(π)→ K be the augmentation, K0(π) = Ker ε.
We shall assume that K is either Z or a field.

Let M be a finitely generated K(π)-module.

Definition 5.1. We define the module PM = Homc(M, K) as the
submodule PM ⊂ Hom(M, K), consisting of linear forms h : M → K such
that for any element x ∈M the function on the group fh,x(a) = (h, ax) is
finite, a ∈ π.

Here we note several simple properties of the functor P = Homc:

1. For a free module F the module PF is free;
2. For a projective module there is a natural isomorphism P 2 : M → P 2M ;
3. There is always a natural map P 2 : M → P 2M , which is possibly non-

monomorphic and non-epimorphic. Denote the kernel of this map by
M∞ ⊂M . Then we have

0→M∞ →M → P 2M → CokerP 2 → 0.

Example 1. Let p : M̂ →Mn be a regular covering with mapping class
group π : M̂ → M̂ . The homology groups Hi(M̂, K) = Ni are K(π)-
modules, which are finitely generated if π is Noetherian and Mn is a
compact manifold. There is a homomorphism:

Ni
Ni∞

→ PNn−i,

defined by the intersection index.

Example 2. Let f : Mn
1 →Mn

2 be a degree +1 map, and let

π1(Mn
1 ) = π1(Mn

2 ).

Denote by f̂ : M̂n
1 → M̂n

2 the map of covering spaces M̂1 →Mn
1

and M̂2 →Mn
2 with mapping class group π. Set

Mi = Ker f̂ (Hi)∗ ⊂ Hi(M̂1).

Analogously to Example 1, we have:

Mi

Mi∞
h−→ PMn−i,

(hx, y) = x ◦ y.
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Now, let us consider the derived functors of the functor P = Homc. We
shall denote them by Extic, i ≥ 0. Note that unlike the usual Hom, the
functor P = Homc is not exact even for the field K. Thus, it is possible
that

Extic(M, K) �= 0, i > 0.

Example 3. Let M0 be a module on one generator u and au = u for
all a ∈ π. If π = Z + · · ·+ Z is a free abelian group on n generators, then

Extnc (M0, K) = M0

and

Extic(M0, K) = 0, i < n.

Let us prove this fact. Consider the triangulated torus T n and a covering
Rn → T n with group π = Z + · · ·+ Z. Denote by Fi the free Z(π)-module
of i-dimensional chains on Rn. We have:

0→ Fn
∂−→ Fn−1

∂−→ · · · → F1
∂−→ F0

ε−→M0 → 0,

and the sequence is exact because

Hi(Rn) = 0, i > 0, H0(Rn) = M0.

Let us apply the function P to the resolvent:

PFn ← PFn−1 ← · · · ← PF1 ← PF0,

but PM0 = 0 and the resulting complex is the complex of compact cochains
for Rn. Thus

Hn
c (Rn, K) = M0

and

Hi
c(R

n, K) = 0, i < n,

so that

Hk
c (Rn, K) = Extkc (M0, K).

The following simple lemma holds.

Lemma 5.1. If M is such that Extic(M, K) = 0, i > 0, and π =
Z + · · ·+ Z, then the module PM is stably free, i.e. there is a free module
F such that PM + F is a free module.
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Proof. Since π = Z + · · ·+ Z, there is such an acyclic resolvent of
finite length

0→ Fl → Fl−1 → · · · → F0 →M → 0.

By the assumption of the lemma, the sequence

0← PFl ← PFl−1 ← · · · ← PF0 ← PM

is exact. The functor P possesses the property that the modules PFi
are free. Besides, the functor P is “half-exact from the right”: it maps
an epimorphism to a monomorphism. Thus, the kernel of PF0 → PF1 is
exactly PM . According to the properties of a free module we can prove the
following equality in the usual way:

· · ·PF4 + PF2 + PF0 = · · ·+ PF3 + PF1 + PM,

so that all PFi are free. The lemma is proved.
Let C be a complex of free or projective modules:

C = {· · · → Fl
∂−→ Fl−1

∂−→ · · · → F1
∂−→ F0}.

Then the groups Hi(C) = Ni are π-modules. Consider the complex PC:

{← PFl
δ← PFl−1

δ← · · · δ← PF0}, δ = P∂,

and denote its homology groups by Hi
c(C), since they are the “compact

support homology groups”.
There is a well-known fact: there exists a spectral sequence {Er, dr},

Er =
∑

p≥0, q≥0

Ep,qr , Ep,q2 = Extpc(Nq, K)

and the module ∑
p+q=l

Ep,q∞

is adjoint to H l
c(C).

This fact is a “universal coefficient formula”.
As seen from the examples, the functor P is such that the modules

Hi(C) = Ni do not affect Hi+k
l (C) for k large enough (see Example 3). We

shall be interested in those complexes which are, in some sense, manifolds
and admit a certain geometric realization.
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A necessary and sufficient condition for realizability of the complex

C = {Fn ∂−→ Fn−1
∂−→ · · · ∂−→ F0}

as a covering space over a finite complex with π as mapping class group,
are the following:

a) it is free: all Fi’s are free modules;
b) H0(C) = M0 (see Example 3).

A necessary “geometric” requirement for morphisms of complexes
f : C1 → C2 is that

f∗ : H0(C1)→ H0(C2)

is an isomorphism.
Later we shall need manifolds with maps of degree 1. For realizabi-

lity as a homological manifold we certainly need that the complexes of
modules

C = {Fn ∂−→ Fn−1
∂−→ · · · ∂−→ F0}

and

PC = {PFn δ← PFn−1
δ← · · · δ← PF0},

(with δ = P∂), are in the algebraic sense “homotopy equivalent” (the
meaning of this phrase is well known). This will lead us to the Poincaré
duality laws:

D : Hi(C) ≈ Hn−i
c (C), i ≥ 0.

Furthermore, if we want to have the duality in the form connected
with cohomological multiplication and the section operation, we should
require that the complex C be a coalgebra, etc. We shall not dwell
on an exact formalization of all necessary notions. Note that for all
algebraic complexes obtained from triangulations of manifolds, we get the
following: for mappings of degree λf : C1

n → C2
n we may define an operator

Df∗D : Cn2 → Cn1 such that

f∗Df∗D : Cn2 → Cn2

is the multiplication by λ; if, λ = 1, then

Cn1 = Ker f +Df∗DCn2 .

Here we get the complex Ker f made of projective modules and such that
the complex P (Ker f) is algebraically homotopic to it. Consequently, the
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following duality law holds:

D : Hi(Ker f) = Hn−i
c (Ker f),

where

Hi(Ker f) = Ker f (Hi)∗

and

Hn−i
c (Ker f) = Coker f∗(Hn−i

c ),

and the kernels and cokernels are taken for maps of the complexes
f : Cn1 → Cn2 . Thus to the kernels Ker f (Hi)∗ and cokernels Coker f∗(Hi

c) we
may apply the Poincaré duality law and the “universal coefficient formula”,
which, could be certainly foreseen before.

We have the following:

Theorem 5.1. If f : Mn
1 → Mn

2 is a mapping of degree +1 of
closed manifolds, n = 2k, and f̂ : M̂1 → M̂2 is a covering mapping such
that M̂j are regular covering over Mn

j with group π = Z + · · ·+ Z, and

the kernels Ms = Ker f̂ (Hs)
∗ = 0, s < k, then the kernel Mk = Ker f̂ (Hk)

∗ is
a stably free Z(π)-module.

Proof. Since all Ms = 0 for s < k, we have

Extic(Ms, Z) = 0, s < k,

thus, according to the “universal coefficient formula” given above as a
spectral sequence, we get

Coker f̂∗(Hs
c ) = 0, s < k.

Since

Coker f̂∗(Hs
c ) = Ker f̂ (Hn−s)

∗ = 0, s < k,

we see that all Mn−s = 0 for s < k, n = 2k, and all Mq = 0, except q = k.
Consequently, according to the “universal coefficient formula”,

Coker f̂∗(Hk+q
c ) = Extqc(Mk, K).

But

Coker f̂∗(Hk+q
c ) = Mk−q = 0, q > 0.

Thus Extqc(Mk, Z) = 0 for all q > 0. According to Lemma 1, the
module PMk is stably free, PMk = Mk. The theorem is proved.
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In the case of odd n = 2k + 1 we again have f : Mn
1 →Mn

2 of degree +1,
f : M̂1 → M̂2 is a map of regular coverings with a Noetherian mapping class
group π.

Theorem 5.2. If Ms = Ker f̂ (Hs)
∗ = 0, s < k, then the following

relations hold:

a) PMk = Mk+1;
b) Extic(PMk, Z) = Exti+2

c (Mk, Z), i ≥ 1;
c) The sequence

0→ Ext1c(Mk, Z)→Mk
P 2−−→ P 2Mk → Ext2c(Mk, Z)→ 0

(Mk∞ = Ext1c(Mk, Z), CokerP 2 = Ext2c(Mk, Z))

is exact.

If Extic(Mk, Z) = 0, i ≥ 3, then the module PMk+1 = P 2Mk is stably
free (π = Z + · · ·+ Z).

The proof of this theorem can be easily obtained from the Poincaré
duality law:

D : Mk = Coker f̂∗(Hk+1
c ),

D : Mk+1 = Coker f̂∗(Hk
c ),

and the universal coefficient formulas as a spectral sequence.
Indeed, since Mj = 0, j < k, we have

Coker f̂∗(Hk
c ) = PMk = Mk+1,

which yields a).
The isomorphism from b) is established by the differential d2, where

d2 : Ei,k+1
2 → Ei+2,k

2

|| ||
Extic(Mk+1, Z)→ Exti+2

c (Mk, Z), i ≥ 1,

since Mk+j = 0, j ≥ 2, and Coker f̂∗(Hk+j
c ) = 0, j ≥ 2. The statement

of c) is also obtained from the spectral sequence of the universal coefficient
formula because

P 2Mk = PMk+1 = Ek+1,0
2 ,

the map

P 2Mk → Ext2c(Mk, Z)
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is d2, and the module

Ker d2 + Ext1c(Mk, Z)

is adjoint to

Mk = Coker f̂∗(Hk+1
c ).

The stable freeness of the module P 2Mk = PMk+1 follows from a) to c),
and Lemma 5.1 if

Extic(PMk, Z) = Exti+2
c (Mk, Z) = 0, i ≥ 1.

Theorem 5.2 is proved.

Remark. For degree +1 maps f : Mn
1 →Mn

2 of the covering spaces
f̂ : M̂1 → M̂2 the following formula always takes place:

Coker f̂∗(Hk
c ) = Homc(Mk, Z),

if Mj = 0, j < k, for any n and k.

Corollary 5.1. If, under the assumptions of Theorem 5.2 we have
π = Z + · · ·+ Z, then the module PMk+1 = P 2Mk is stably free. (For the
case π = Z this fact is true, but it is trivial.)

Proof. If π = Z + Z then Extic(Mk, Z) = 0 for i ≥ 3 for any
module Mk. By virtue of Theorem 5.2 we get the desired statement.

§ 6. Stably freeness of kernel modules under the

assumptions of Theorem 3

Let V1

i⊂ W be a connected submanifold separating W into two
parts A, B, where

A ∩B = V1, A ∪B = W.

Denote the embeddings V1 ⊂ A and V1 ⊂ B, as in § 4, by i1, i2, and denote
the embedding of universal covering spaces over V1, W , A, B by ı̂ : V̂1 ⊂ Ŵ ,
ı̂1 : V̂1 ⊂ Â, ı̂2 : V̂1 ⊂ B̂. Here W is an n+ 1-dimensional manifold having
homotopy type of closed manifold Mn, the group π = π1(W ) is Noetherian,
and on W a discrete transformation T is given such that

π1(V1) = π1(A) = π1(B) = π1(W )
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and the quotient space W/T is compact. Then we get the following:

Lemma 6.1. If π = Z + · · ·+ Z and the kernels Mj = Ker i(πi)∗ are
trivial for j < k then for n = 2k the modules

M ′
k = Ker i(πk)

1∗ , M ′′
k = Ker i(πk)

2∗
are stably free. If n = 2k + 1 and

M ′
j = Ker i(πj)

1∗ = 0, j < k,

M ′′
j = Ker i(πj)

2∗ = 0, j < k + 1,

then the kernels M ′
k = Ker i(πk)

1∗ , M ′′
k+1 = Ker i(πk+1)

2∗ are stably free. In both
cases under the assumptions of the lemma there is a natural isomorphism,
established by the intersection index of the cycles M ′

k = PM ′′
n−k.

Proof. Let n = 2k. According to Theorem 5.1 under the asumptions
of Lemma 6.1, the module Mk = M ′

k +M ′′
k (see § 4) is stably free. Thus

both modules M ′
k and M ′′

k are projective ones, and since π = Z + · · ·+ Z,
we see that M ′

k and M ′′
k are stably free. As we know, Mk is the kernel

Ker ı̂(Hk)
∗ = Ker i(πk)

∗ .

Since

Ker ı̂(Hk)
∗ = Coker ı̂(H

k
c )

∗ = PMk

(see § 5) and both modules M ′
k and M ′′

k have nonzero intersection index
each, then M ′

k = PM ′′
k and M ′′

k = PM ′
k, which yields the lemma for even

n = 2k.
Now let n = 2k + 1. Let us first prove that under the assumptions of

the lemma the kernel

M ′
k+1 = Ker ı̂(Hk+1)

1∗
is trivial. Since

Ker ı̂(Hk+1)
∗ = Mk+1 = M ′

k+1 +M ′′
k+1 = Coker ı̂∗(H

k
c ) = PMk = PM ′

k,

we have

PM ′
k

h≈M ′
k+1 +M ′′

k+1,

because (hx, y) = x ◦ y, where x ∈M ′
k+1 +M ′′

k+1, y ∈M ′
k = Mk and

x ◦ y is the intersection index. But the intersection index M ′
k ◦M ′

k+1 is
identically zero. Thus M ′

k+1 = 0.
Consider a sufficiently large integer s. Then the intersection T sV1 ∩ V1

is empty. Denote the region between V1 and T sV1 by Q and denote T sV1

by V ′, ∂Q = V1 ∪ V ′
1 . Here we assume that T sV1 ⊂ A.
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Consider the embeddings j : V̂1 ⊂ Q̂, j′ : V̂ ′ ⊂ Q̂ for the universal
covering space Ŵ . We have (for s large enough):

Ker j(Hq)
∗ =

{
0, q �= k,
M ′
k, q = k,

Ker j′(Hq)
∗ =

{
0, q �= k + 1,
M ′′
k+1, q = k + 1,

Coker j(Hq)
∗ ≈

{
0, q �= k,
i2∗, M ′

k ≈M ′′
k , q = k,

Coker j′(Hq)
∗ ≈

{
0, q �= k + 1,
i1∗, M ′

k+1 ≈M ′′
k+1, q = k + 1.

From the equalities listed above we get:

Hq(Q̂, V̂1) = 0, q �= k, k + 1,

Hk(Q̂, V̂1) ≈ Hk+1(Q̂, V̂1) ≈M ′
k,

Hq(Q̂, V̂ ′) = 0, q �= k + 1, k + 2,

Hk+1(Q̂, V̂ ′) ≈ Hk+2(Q̂, V̂ ′
1) ≈M ′′

k+1.

Thus

Hq
c (Q̂, V̂1) ≈

{
0, q �= k, k + 1,
M ′′
k+1, q = k, k + 1,

Hq
c (Q̂, V̂

′) ≈
{

0, q �= k + 1, k + 2,
M ′
k, q = k + 1, k + 2.

By virtue of the universal coefficient formulas for Hq
c (Q̂, V̂1),

M ′′
k+1 = PM ′

k = Hk
c (Q̂, V̂1),

d2 : Extic(M
′
k, Z)→ Exti+2

c (M ′
k, Z)

is an epimorphism for i = 0 and an isomorphism for i > 0. Recall that

M ′
k ≈ Hk(Q̂, V̂1) ≈ Hk+1(Q̂, V̂1)

and

Ep,q2 = Extpc(Hq, Z), d2 : Ep,q2 → Ep+2,q−1
2 .

Since π = Z + · · ·+ Z, for p > rkπ we have Extpc = 0. Thus

Extic(M
′
k, Z) = 0, i > 0.
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By Lemma 5.1, the module PM ′
k is stably free. Since M ′

k = PM ′′
k+1, the

same is true for M ′
k. The lemma is proved.

Remark. When proving the acyclicity of the module M ′
k we used the

fact that Extic = Exti+2
c and Extpc = 0 for p > rkπ. Actually, the triviality

of modules Extic(M
′
k, Z) for i > 0 can be proved in an alternative way for

any Noetherian group π under the assumptions of Lemma 6.1.

§ 7. The homology effect of a Morse surgery

Let W be the same as in Theorem 3 (§ 1), V1

i⊂W , W = A ∪B,
A ∩B = V1, and the embeddings

i1 : V1 ⊂ A, i2 : V1 ⊂ B
are such that

π1(V1) = π1(A) = π1(B) = π1(W )

and

Ker i(πk)
1∗ = 0, k < p, Ker i(πk)

2∗ = 0, k < n− p.
Set

Ker i(πp)
1∗ = M ′

p, Ker i(πn−p)
2∗ = M ′′

n−p.

Both modules M ′′
n−p and M ′

p are Z(π)-modules. According to Lemma 4.1
we have

M ′
p = Ker ı̂(Hp)

1∗ , M ′′
n−p = Ker ı̂(Hn−p)

2∗ .

On the universal covering space V̂1 between M ′
p and M ′′

n−p there is a scalar
product, which is integer-valued and π-invarant; it is generated by the
intersection index of cycles.

By virtue of Lemma 4.1 we have

Ker i(Hp)
1∗ =

M ′
p

Z0(π)M ′
p

and

Ker i(Hn−p)
2∗ =

M ′′
n−p

Z0(π)M ′′
n−p

.

Choose a π-basis α1, . . . , αq in M ′
p. Let p satisfy the conditions

of Lemma 3.1. Let us find disks Dp+1
1 , . . . , Dp+1

q ⊂ A such that their
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boundaries ∂Djp+1 ⊂ ∂A = V1 realize the elements α1, . . . , αq ∈M ′
p, and

let us paste the handles

B′ = B ∪ T1 ∪ · · · ∪ Tq,
A′ = A\(Int T1 ∪ · · · ∪ IntTq),

where Ti are neighborhoods of disks Dp+1
j in A. Then it is easy to see that

for V ′
1 = ∂B′ = ∂A′ the kernels

Ker ı̂′(Hj)
1 = M̃ ′

j

and

Ker ı̂′(Hj)
2∗ = M̃ ′′

j

will look like:

M̃ ′
j = 0, j ≤ p, M̃ ′

j = M ′
j, j > p+ 1,

M̃ ′′
j = 0, j < n− p− 1, M̃ ′′

j = M ′′
j , j ≥ n− p.

Denote the scalar product between the modules M ′
p and M ′′

n−p by ( , ).
Let β1, . . . , βt be the π-generators of the module M ′′

n−p. Then the following
lemma holds.

Lemma 7.1. The module M̃ ′′
n−p−1 can be described as follows: its

generators α̃1, . . . , α̃q are in one-to-one correspondence with generators
of M ′

p, and the relators are given by the generators of the module M ′′
n−p

as follows: ∑
α∈π

m=1, ..., q

(a−1βj , αm)a α̃m = 0.

Proof. The geometrical sense of the generators α̃m is the following:
these are spheres Sn−p−1

m ⊂ V ′
1 , which are linked to the spheres ∂Dp+1

m ⊂ V1

deleted from V1. Obviously, the elements α̃m are π-generators in M̃ ′′
n−p−1

because M ′′
n−p−1 = 0.

Let us now consider the geometrical picture for the universal
covering Ŵ . The geometrical sense of the above relations is evident because
on Ŵ ⊃ V̂1 the cycle βj has intersection indices with the cycles aαm, a ∈ π,
and after removing neighborhoods of the cycles αm from V1, the cycle βj
yields the desired relation.
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The fact that this gives a complete relation system in our case follows
from the fact that we have a complete relation system in the module

ı̂′1∗M̃
′′
n−p−1 ⊂ Hn−p−1(Â′).

Indeed, homotopically A′ is obtained from A by a simple removal of
disks Dp+1

m . It is easy to see that

πp+1(A, V1) = Hp+1(Â, V̂1).

Since the relation in ı̂′M̃ ′′
n−p−1 appears because of the intersection of cycles

from Hn−p(Â) with covering disks D̂p+1
m ⊂ Â and since Hn−p(V̂1) →

Hn−p(Â) is epimorphic, the system or relations in the lemma is complete.
The lemma is proved.

§ 8. Proof of Theorem 3

Let n ≥ 5. We preserve the notation for V1 ⊂W , A, B, i1, i2, i, ı̂1, ı̂2,
ı̂, M ′

t, M
′′
t , etc.

The proof will consist of three steps.
Step 1. We make V1 ⊂W connected such that

π1(V ) = π1(W ).

Here we do not use any restrictions for π1(W ) except that it is finitely-
generated.

Step 2. By Morse surgery we paste the homotopy kernels of the
embedding V1 ⊂W in dimensions k < [n/2], and for odd n = 2t+ 1 we
also paste the kernels

Ker i(πt)
2∗ = M ′′

t

by using Lemma 3.1. Here we use the fact that the fundamental group is
Noetherian.

Step 3. Pasting handles on one side V1 → V1#St × Sn−t to the manifold
V1 ⊂W we “stabilize” the module M ′

t →M ′
t + F for n = 2t or n = 2t+ 1

in such a way that the kernel of M ′
t becomes a free module over Z(π).

Here we use the results of Theorem 5.2. Then, applying Lemma 3.1,
and using surgery over the π-free basis from M ′

t, we kill M ′
t and M ′′

t+1

for n = 2t+ 1 and M ′
t and M ′′

t for n = 2t. By using Lemma 7.1, the
kernels in other dimensions (in particular, M ′′

n−t−1) remain trivial. As
a result of surgery, we get a closed submanifold V ⊂ W which is a
deformation retract. At this point, Theorem 3 follows trivially: there is a
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number k such that T kV ∩ V = ∅. The neighborhood of the manifold T kV
in W is homeomorphic to V ×R. According to the above, in this
neighborhood there is a smooth V ′ ⊂W near T kV , having homotopy
type W . Between V and V ′ there is a smooth h-cobordism. Thus, this
domain is V × I(0, 1) and V ′ = V because Wh(π) = 0, π = Z + · · ·+ Z
(see [1, 2, 9]). Considering such domains for all k we see that W = V ×R.

The theorem is proved.

Remark. If in Step 3 we perform a surgery not over a free π-basis in
M ′
t, but over any other one according to the projection F →M ′

t, then after
the surgery we would get a module of relations R, 0→ R→ F →M ′

t → 0,
where R = M̃ ′

t+1 (see § 7) for the manifold after the surgery. By virtue of
Lemma 7.1 for this manifold, we would have

M ′′
n−t−1 = PM ′

t+1 = PR.

§ 9. Proof of Theorem 6

Let Sn ⊂ Sn+2 be a topological locally flat embedding and let n ≥ 5.
Note that the difference G = Sn+2\Sn is a smooth open manifold with
“homotopy type at the infinity” Sn × S1. We shall construct a smooth
closed manifold V ⊂ G of homotopy type Sn × S1, which bounds in Sn+2 a
manifold D of homotopy type Sn, and contains the “knot” Sn ⊂ D ⊂ Sn+2.

In the case when we know that the knot Sn ⊂ Sn+2 is globally flat,
i.e. it has a neighborhood U ⊃ Sn homeomorphic to Sn ×R2, this problem
can be easily solved by Theorem 3: namely, we set W = U\Sn. Then W
is homeomorphic to Sn × S1 ×R and it is smooth. By Theorem 3 there
is a smooth V ⊂W such that W is diffeomorphic to V ×R. Evidently, V
bounds in U ⊃W ⊃ V a manifold D of homotopy type Sn ⊂ D, n ≥ 5.

If the global plane is not known, let us consider the decreasing sequence
of smooth manifolds with boundary

U1 ⊃ U2 ⊃ · · · ⊃ Ui ⊃ · · ·
such that Uj ⊃ Sn and ∩jUj = Sn.

Set Wj = Uj\Sn. Obviously, the group Hn+1(Wj) �= 0, and for j1 large
enough in comparison with j0 � 1, the image

Hn+1(Wj1 )→ Hn+1(Wj0)

is isomorphic to Z.
If j0, j1 are large enough, one can realize the basic cycle of the image

inside Wj1 by a submanifold V1 ⊂Wj1 ; it is easy to see that for large
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j1 � j0 � 1 the map V1 ⊂Wj0 is “similar” to the map V1 → Sn × S1.
More exactly, this means the following: for j large enough one may find
a natural map Wj

qj−→ Sn × S1 (which, in the case when a global plane
exists may be thought of as a projection to Sn × S1), which induces the
map gj1 : Wj1 → Sn × S1 for j1 ≥ j. The composition of the embedding
V1 ⊂Wj and gj : Wj → Sn × S1 is a degree +1 map fj : V1 → Sn × S1.

One can easily make V1 connected and such that π1(V1) = Z, as before.
Then V1 separates Wj1 into two parts A and B, and homotopy kernels of
embeddings i1 : V1 ⊂ A and i2 : V1 ⊂ B possess the same properties as the
kernels discussed in Theorem 3 (see §§ 4–8), though here we cannot assume
that the embeddings V1 ⊂ A and V1 ⊂ B are homologously epimorphic,
unlike Theorem 3. However, note that this epimorphism takes place related
to the “interior” part A ⊂Wj1 such that its closure in Sn+2 contains Sn.
As before, denote the embeddings V1 ⊂ A and V1 ⊂ B, by i1 and i2,
respectively.

By locally flatness of the knot Sn ⊂ Sn+2, the manifold G possesses
the following property: there exists ε > 0 such that any map h : P → G of
any complex P is homotopic in G to a map h : P → G, whose image is at a
distance >ε from Sn in Sn+2. We assume all Wj lie in the ε-neighborhood
of the knot Sn ⊂ Sn+2, i.e. j is large enough. But this means that we may
apply Lemma 4.1 to the interior part of A (with respect to V1). Obviously,
Lemma 4.1 is applicable to the map fj : V1 → Sn × S1 as well.

We start by gluing handles (as in Theorem 3) to V1 inside G to eliminate
the kernels Ker i(πq)

1∗ and Ker i(πq)
2∗ for q ≤ [n/2], and for odd n+ 1 we also

kill Ker i(πq)
1∗ , 2q + 1 = n+ 1 (here the dimension of V1 is n+ 1).

Furthermore, note that

Ker i(πq)
1∗ = Ker ı̂(Hq)

1∗

and

Ker f (πq)
j∗ = Ker f̂ (Hq)

j∗ ,

and also

Ker f̂ (Hq)
j∗ = Ker ı̂(Hq)

1∗ + Ker ı̂(Hq)
2∗ ,

which yields that one may apply the “Hurewicz” theorem from § 4 to
Ker ı̂(Hq)

2∗ .
Now, as in the proof of Theorem 3, we reconstruct Ker i(πq)

2∗ , by applying
Lemma 7.1 for n = 2q + 1. The case n = 2q is analogous to Theorem 3 also
by virtue of the Remark that the “Hurewicz theorem” (Lemma 4.1) can be
applied to the kernel Ker i(πq)

2∗ .



August 26, 2009 16:21 9in x 6in b789-ch05

On Manifolds with Free Abelian Fundamental Group 235

Thus, we have proved the following:

Theorem 9.1. Under assumptions of Theorem 6 there exists a
submanifold V ⊂ Sn+2\Sn of homotopy type Sn × S1 such that the
domain A ⊂ Sn+2 restricted by V has homotopy type Sn.

This is the analog of Theorem 3 for the case we consider.
Note that by virtue of the Browder–Levine theorem [see [20], § 5], the

manifold V is a skew product with fiber S̃n ∈ θn(∂π) and has S1. For
even n we have θn(∂π) = 0. However, in any case S̃n is PL-homeomorphic
to Sn, and V is PL-homeomorphic to Sn × S1, since the group of
PL-automorphisms of the sphere Sn is connected. From now on, we shall
work in terms of PL-manifolds.

For a domain A, ∂A = V we take its “dual domain” which is
PL-homeomorphic to Dn+1 × S1, and paste A ∪h Dn+1 × S1, where
h : ∂Dn+1 × S1 → V is a PL-homeomorphism. As it is well known, in
these conditions A ∪h Dn+1 × S1 is PL-homeomorphic to Sn+2. The initial
sphere Sn lies in A, and the complement A\Sn is contractible to V = ∂A.
Thus the pair (A ∪h Dn+1 × S′, Sn) satisfies the Stallings theorem [18].
Without loss of generality, we might assume that the embedding Sn ⊂ Sn+2

is linear on a small simplex. From the methods of [18], the result below easily
follows.

There exists a homeomorphism (PL-homeomorphism everywhere
except a small neighborhood of Sn), which takes Sn to the standard sphere.
Consequently, on A there is a new PL-structure such that:

a) it coincides with the old structure on ∂A;
b) ∂A = Sn × S1 is h-cobordant to the boundary of the tubular

neighborhood T (Sn) ⊂ A.

Thus in the new PL-structure we see that A is PL-homeomorphic
to Sn ×D2 (see [17]).

This evidently yields that the knot Sn ⊂ Sn+2 is globally flat.
Let us prove the remaining part of Theorem 6.
There is a PL-homeomorphism everywhere except in a neighborhood of

Sn ⊂ A:

d : A→ Sn ×D2,

d(Sn) = Sn × 0.

We glue to Sn × D2 a closed complement Q = (Sn+2\A) with respect to
the identification d/∂A = ∂Q. Then

M = Sn ×D2
⋃
d

Q,
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where d : ∂Q → Sn × S1, and d/∂Q is a PL-homeomorphism. It is easy
to see that M is a homotopy sphere of dimension n+ 2. Thus we have a
simultaneous transformation d′ : M → Sn+2, where d′ = d/A and d′ = 1/Q
which takes “knot” to a PL-knot, with a direct product Sn ×D2 ⊂M .
The PL-knot can be smoothed in such situation, and on Sn ⊂M there is
a smooth structure from θn(∂π) (= bPn+1 see [7]).

Theorem 6 is proved.

§ 10. One generalization of Theorem 5

Let K be a finite “Browder complex”. For the simply connected case
this means that there is a “fundamental cycle” of dimension n: µ ∈ Hn(K)
such that the map D : Z → Z ∩ µ is an isomorphism Hj(K)→ Hn−j(K).
If the complex K is not simply connected and p : K ′ → K is a finite-fold
covering with m sheets, we have to require that Hn(K ′) = Z and that there
is an element

µ′ ∈ Hn(K ′), pµ′ = mµ,

such that the map D : Z → Z ∩ µ′ is an isomorphism. If the group π1(K)
is finite then this gives a definition of the Browder complex. When π1(K)
is infinite, this is not sufficient. Let K ′ → K be the covering with subgroup
π′ ⊂ π = π1(K) and fiber F = π/π′ on which π acts by left shifts. Assume
α · f , α ∈ π, f ∈ F , and the groups H0(F ), H0(F ), H0

c (F ), H(0)
0 (F ), are

defined, where the group π acts (hereH0
c (F ) are finitely supported functions

on F valued in Z, H0
0 (F ) are infinite linear combinations

∑
aifi, ai ∈ Z,

fi ∈ F ). Then we have:

H∗(K ′) = H∗(K, H0(F )), H∗
c (K

′) = H∗(K, H0
c (F )),

H∗(K ′) = H∗(K, H0(F )), H
(0)
∗ (K ′) = H∗(K, H

(0)
0 (F )),

and all homology groups are assumed to have local coefficients.
Consider the generating element

g =
∑
i

fi ∈ H(0)
0 (F ).

Then the correspondence Z → Z ⊗ g takes Hi(K) to

Hi(K, H
(0)
0 (F )) = H

(0)
i (K ′).

If F consists of m elements, then the composition p∗(Z ⊗ g) is the
multiplication by m : Z → mZ.
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We require that the maps D : Z → Z ∩ (µ⊗ g), µ ∈ Hn(K) are
isomorphisms:

D : Hi
c(K

′)→ Hn−i(K ′), Z ∈ Hi
c(K

′),

D : Hi(K ′)→ H
(0)
n−i(K

′), Z ∈ Hi(K ′).

The element µ ∈ Hn(K), is, as before, the fundamental cycle in K,
and µ⊗ g is the fundamental cycle in K ′.

In this case we call K the Browder complex.
The following lemma holds.

Lemma 10.1. If W is an open smooth (n+ 1)-dimensional manifold
having homotopy type of a finite complex and there is a (possibly, non-
smooth) action on W of the discrete transformation T : W →W such that
the quotient space is compact and Hn(W ) = Z then W is a Browder complex
with respect to the fundamental cycle of dimension n.

We leave this lemma without proof.1 We note that the condition on T
(on its existence) can be replaced by a simple condition on “homotopy type
at the infinity” for W .

From Lemma 10.1, and by virtue of Theorem 3, where the condition
about the homotopy type of a closed manifold is replaced by Lemma 10.1,
we easily get:

Theorem 10.1. Let Mn be a smooth closed manifold, π1(Mn) = π =
Z + · · · + Z, and there is a decomposition π = π′ + π′′. Then the covering
space M with fundamental group π′ ⊂ π is diffeomorphic to Mn−l ×Rl,
where l = rkπ′′, and Mn−l is a closed smooth manifold n− l ≥ 5.

For the case π′ = Z, π′′ = 0 this theorem was proved by Browder and
Levine (see [21]).

Appendix 1. On the signature formula

As in [10], [13], consider a manifold Mn, n = m+ 4k, and an indivisible
element z ∈ H4k(Mn, Z) such that Dz = y1 · · · ym, yi ∈ H1(Mn, Z),
j = 1, . . . ,m. As it is shown in [10, 13], there is one canonical element
ẑ ∈ H4k(M̂n, Z), where M̂ is a covering over Mn with group Z + · · ·+ Z
(m summands), such that exactly those paths γ ⊂Mn are closed for which

(γ, y1) = · · · = (γ, ym) = 0.

1Note that the proof uses homology with special properties on the support,
introduced by Rokhlin in yet unpublished paper.
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We shall not recall the algebraic definition of ẑ ∈ H4k(M̂n, Z) by z.
Geometrically, it is defined as follows: we realize the cycles Dyj by
submanifolds Mn−1

j ⊂Mn and realize z by their intersection

M4k = Mn−1
1 ∩ · · · ∩Mn−1

m .

In this case the manifold M4k is covered by a closed manifold in M̂ and
defines a cycle ẑ.

For m = 2 the following theorem holds.

Theorem. If the intersection index for the group H2k+1(M̂) is
identically zero then the following formula holds:

(Lk(Mn), Z) = τ(ẑ).

Note that if H2k+1(M̂, R) is finite-dimensional, then the conditions
of our lemma hold. Thus, this theorem is a generalization of Theorem 2
from [10].

Proof of the Theorem. Consider the covering space M̂ constructed
above, where we have the inverse images of the manifolds Mn−1

1

and Mn−1
2 with respect to the projection p : M̂ →M4k+2, n = 4k + 2.

Denote the basic transformation of the mapping class group Z + Z of M̂ ,
by T1, T2 : M̂ → M̂ . Then the inverse image of the manifold Mn−1

1 splits
into a connected sum ∪jM (1)

j , and the inverse image p−1(Mn−1
2 ) splits into

∪qM (2)
q in such a way that M (ε)

s , where ε = 1, 2, −∞ < s < +∞, separates
M̂ into two parts: A(ε)

s and B(ε)
s , where

A(ε)
s ∪B(ε)

s = M̂, A(ε)
s ∩B(ε)

s = M (ε)
s .

Besides, the notation is chosen in such a way that

T1M
(1)
s = M (1)

s , T2M
(1)
s = M

(1)
s+1,

T2M
(2)
s = M (2)

s , T1M
(2)
s = M

(2)
s+1,

and M (ε)
s for any s are Z-covering spaces over Mn−1

ε . The inverse image of
the manifold M4k = Mn−1

1 ∩Mn−1
2 can be represented as follows:

p−1(M4k) =
⋃
j,q

(M (1)
j ∩M (2)

q ) =
⋃
j,q

M4k
j,q,

so that all M4k
j,q are diffeomorphic to the initial M4k = Mn−1

1 ∩Mn−1
2 .

Denote the cycle defined by M4k
j,q in M

(1)
j , by tj ∈ H4k(M

(1)
j ), T1∗tj = tj ,
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and denote the embedding M (1)
j ⊂ M̂ by λj . Evidently,

λj∗tj = ẑ.

By virtue of Theorem 1 from [10] (or Theorem 2 from [13]) we get the
formula:

τ(tj) = τ(M4k).

Let us prove the following equality

τ(tj) = τ(ẑ).

Let j = 0, t0 ∈ H4k(M
(1)
0 ). Denote M (1)

0 just by M , t0 by t, A(1)
0 by A

and B(1)
0 by B. Then

B ∩A = M, B ∪A = M̂.

Denote the manifold M (2)
0 by N , then

M ∩N = M4k
0,0 = M4k.

Now recall a result from [13]. If for each α ∈ H2k(M, R) such that the
cycle β = α ∩ t ∈ H2k(M) is null-homologous in A and in B, the equality
(α2, t) = 0 holds, then the following formula is true:

τ(t) = τ(ẑ).

Note that the cycle β = α ∩ t geometrically lies in M4k = M ∩N , and
the self-intersection index β ◦ β (on M4k) is equal to (α2, t) in M . Besides,
the cycle β is cut out from M4k by an open cycle Dα ∈ H(0)

2k+1(M).
The cycle β is spanned by membranes δ1 ⊂ A and δ2 ⊂ B such that

∂δ1 = ∂δ2 = β. Furthermore, the pair M, N separates M̂ into four parts:
W1, W2, W3, W4, where ⋂

i

Wi = M4k,

⋂
i

Wi = M̂, (W1 ∪W2) ∩ (W3 ∪W4) = M,

(W1 ∪W4) ∩ (W2 ∪W3) = N.

Denote by Ji ⊂ H2k+1(M, R) ∩ t⊂H2k(M, R) the subgroups consisting
of elements with zero-homologous representatives in Wi, i = 1, 2, 3, 4.
Analogously, let us define the subgroups J(ε) ⊂ H2k+1(M, R) ∩ t, for
ε = 1, 2 consisting of elements zero-homologous in A for ε = 1 or in B
for ε = 2.
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Clearly,

J1 ∪ J2 = J(1), J3 ∪ J4 = J(2).

Denote the group H2k+1(M, R) ∩ t by H . Let us define the operator P :
H → H by setting

P (α ∩ t) = (T1 · α) ∩ t.
Since T1∗t = t, then P is an isomorphism. Note that H is a finite
dimensional space over R.

The following relations hold:

P kJ(1) ⊂ J2, P−kJ(1) ⊂ J1,

P kJ(2) ⊂ J3, P−kJ(2) ⊂ J4,

for k sufficiently large because of finite dimensionality of H, Ji, J(ε). Thus
(again, by virtue of finite dimensionality) we have:

J(1) = J1 = J2, J(2) = J3 = J4.

Now, let us return to the element β = α ∩ t which is null-homologous in A
and in B, belongs to M4k and is represented by a cycle β ⊂M4k. Since
β ∈ J(1) ∩ J(2), the cycle β on T−2kM4k (for large k), representing P−2kβ,
becomes null-homologous in the manifolds T−2kW1 and T−2kW4, if we add
to this cycle the cycle h ⊂ T−2kM4k null-homologous in M . From finite
dimensionality of the group H2k(M4k) it follows that k can be chosen so
large that the membrane ∂−1(h) can be chosen not to intersect T−kM4k.
Then the cycle β ⊂ T−2kM4k is null-homologous in T−kW1 and T−kW4.

Denote the corresponding membranes by δ3 and δ4:

δ3 ⊂ T−kW1, δ4 ⊂ T−kW4, ∂δ3 = ∂δ4 = β.

Since α ∈ H2k(M, R), we have Dα ∈ H(0)
2k+1(M, R), and Dα is represented

by an open cycle in M , whose intersection with M4k is β, and whose
intersection with T−2kM4k is β. Denote the segment of this open cycle
from β to β by d, ∂α = β − β.

Set

g1 = δ3 − d+ δ1,

g2 = δ4 − d+ δ2,

where g1 and g2 are (2k + 1)-dimensional cycles in M̂ . The cycle

β = d ∩ T−kM4k
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is such that it is null-homologous in T−kW1, T−kW2, T−kW3, T−kW4 and
its self-intersection index in T−kM4k is equal to

β ◦ β = (α2, t) = β ◦ β.
But, it is easy to see that

g1 ◦ g2 = β ◦ β
and

g1 ◦ g2 = 0

by the assumption of the theorem. Thus, we conclude that the condition

(αJ(1), t) = (αJ(2), t) = 0

yields

(α2, t) = 0.

By using analogously to [10, 13], we conclude the proof of the theorem.
Now let us make some conclusions from the theorem.
1. It is easy to show that if the condition N/Z0(π)N = 0 holds then

N2k+1 = N∞ ⊃ N⊥
2k+1.

As a matter of fact, every element σ ∈ N satisfies some polynomial relation

Q(T1, T2)σ = 0,

where T1, T2 are generators of π and εQ = 1, ε : Z(π)→ Z. Indeed,
if σ1, . . . , σs are generators of N over Z(π) and N/Z0(π)N = 0, then there
exists a matrix P = (Pij) with coefficients in Z(π) such that εP = E
and

∑
i Pijσi = 0. But then

(detP )σj = 0

and

Q = detP, εQ = 1.

We may assume that

Q = [1 + P0(T2)] + T1P1(T2) + · · ·+ T n1 Pn(T2),

where P0 depends only on positive powers of T2 and P0(0) = 0. Thus the
polynomial Q has an inverse in formal series on T j1 and T s2 , where j ≥ 0,
s ≥ f(j) > −∞. Consequently, the element σ is zero-homologous in open
homology and orthogonal to N in the sense of intersection index.
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The condition sufficient to apply the theorem (N/Z0(π)N = 0) holds,
for example, if the image

p∗ : H2k+1(M̂, R)→ H2k+1(Mn, R)

is trivial and the differential

d2 : E2,2k
2 → E0,2k+1

2 =
N

Z0(π)N
,

E2,2k
2 = H invariant

2k ⊂ H2k(M̂),

is trivial in the Cartan spectral sequence for the covering p: M̂ →Mn.
2. Let us give another proof of the invariance of Lk(Mn) for

n ≤ 4k + 3 and π1(Mn) = 0. Indeed, if Mn is homeomorphic to M4k ×R3,
where M4k is simply connected and closed, we can, as in § 2, select the
submanifold W = M4k × T 2 × R and realize the cycle [M4k × T 2] by a

smooth V
i⊂W such that the inclusion homomorphism i∗ : πq(V )→ πq(W )

is an isomorphism q ≤ 2k, which is trivial. Then V splitsW into two parts A
and B, A ∩B = V , and i1 : V ⊂ A, i2 : V ⊂ B. Set

M ′
2k+1 = Ker i(H2k+1)

1∗ .

Since the intersection index on M ′
2k+1 = Ker ı̂(H2k+1)

1∗ is trivial, where ı̂1:
V̂ ⊂ Â (universal coverings), we can, following Whitney, realize the
Z(π)-basis in M ′

2k+1 by embedded spheres and apply Morse surgery along
these spheres (the possibility of such realization is proved identically to
the proof of Whitney, for more details see [6]). The surgery can be
performed without changing the Pontrjagin classes; after a surgery we get a
manifold V1, to which the theorem from this appendix can be applied. These
surgeries, evidently, do not change the “cycle signature” for the covering
space over V and V1. Comparing the above arguments with the basic lemma
of [13], applied to the embedding V̂ ⊂ Ŵ , with the theorem above, and the
equality of “cycle signatures” for V̂ and V̂1, we obtain the statement in the
same vein as in [10, 13].

Appendix 2. Unsolved questions concerning

characteristic class theory

Below we give several problems which are directly connected to the
results of the author [10–12] and Rokhlin; these problems are mainly
concerned with Pontrjagin classes.
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I. Topological problems
11. Does there exist a number n = n(k) depending only on k such that

for all prime p > n(k) the Pontrjagin classes pk modulo ph are topologically
invariant. This would follow from the fact that the groups πi(BTop) are
finitely-generated for all i ≤ 4k. However, for the solution it seems to be
more convenient to use some generalization of the method of the present
work or the author’s work [13]. Such a result would have nice applications,
say, for classical lens spaces of dimensions ≥5. For example, p �= 7 for k = 2
(see [8]).

2. Are the rational Pontrjagin classes of complexes and rational
homological manifolds topological invariants? Positive results in this
direction are obtained only for Lk(Mn), n ≤ 4k + 2 (see [10, 12]).

3. Is it possible to define rational Pontrjagin classes pi ∈ H4i(BTop , Q)
for Milnor’s topological microbundles to satisfy the following axioms:

a) for O and PL-microbundles they coincide with the usual Pontrjagin
classes;

b) the Whitney formula for the sum;
c) the Hirzebruch formula for Lk(M4k) and the formulas due to the author

for Lk(M4k+1) and sometimes for Lk(M4k+m), m > 1 [see [10, 13] and
Theorem 2 of the present paper].

II. Homotopy problems
1. Let x ∈ H4k(Mn) be such an element that Dz = y1 · · · ym,

m = n− 4k, yi ∈ H1(Mn). Is the scalar product (Lk(Mn), Z) a homotopy
invariant? The problem is solved by the author for m = 1, and partially
for m = 2 [see [10, 12] and Appendix 1 of the present work] and sometimes
for m > 2 [see Theorem 2 of the present work]. For m = 2 the final solution
is obtained by Rokhlin.

2. In those cases when the previous problem has a positive solution,
the problem of calculation of Lk classes in terms of homotopy invariants
arises. This problem is not solved even in the situation of Rokhlin’s
theorem for codimension m = 2. Important partial cases of this problem
will be discussed in the next section devoted to differential-topological
questions.

III. Stably-algebraic problems
Before discussing problems, let us first give an algebraic introduction.

Let π be a Noetherian group and letM be a finitely-generatedZ(π)-module.

1Added when reading the proofs. Problem 1 was recently published in a yet
unpublished collection of works by the author and V. A. Rokhlin.
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By a scalar product we mean a homomorphism of modules h : M →
PM , where PM = Homc(M, Z), (x, y) = hx(y). Certainly, a symmetrical
and a skew-symmetrical case arise.

We call a scalar product unimodular if h is an isomorphism.
If π′ ⊂ π, then on N = M(Z0(π′)M) there naturally arises a bilinear

form (px, py) =
∑

a∈π′(x, ay), which is a scalar product in the same sense,
if π′ is a normal subgroup. Here p : M → N is the natural projection. We
call this bilinear form the induced scalar product.

We call a symmetric scalar product even if (x, x) and (x, ax) are
divisible by 2 for all a ∈ π, a2 = 1.

For subgroups π′ of finite index in π and a symmetrical case it makes
sense to speak about the signature of the scalar product (induced) on
N = M(Z0(π′)M), and the signature of a form on N is defined as a
function of a subgroup π′ ⊂ π, τ = τ(π′), if the index of π′ in π is
finite. Set τ(M) = τ(π), where I(π′) is the index of π′. Then we require
that τ(π′) = τ(M)I(π′).

Assume the scalar product is skew-symmetrical. By Arf-invariant we
mean the map ϕ : M → Z2 such that ϕ(ax) = ϕ(x), a ∈ π, and

ϕ(x + y) = ϕ(x) + ϕ(y) + (x, y)mod 2.

Let π′ ⊂ π and N = M/Z0(π′)M , p : M → N . By induced Arf-invariant
we mean the map ϕπ′ : N → Z2 such that

ϕπ′(px) = ϕ(x) +
∑
a∈π′

2

(x, ax)mod 2,

where π′
2 ⊂ π′ denotes the subset in π′, which for every pair of elements

a, a−1 ∈ π, contains exactly one. The case a = a−1 is inessential because in
this case (x, ax) = (a−1x, x) = −(x, ax) = 0. For ϕπ′ , it is easy to check the
correctedness and the identity for Arf. If π′ is of finite index I(π′) in π, then
for M/Z0(π′)M there is a well-defined “total” Arf-invariant Φ(π′) ∈ Z2. Set
ϕ(M) = Φ(π). Then let Φ(π′) = Φ(M)I(π′).

Now let π be a finite or abelian group. We say that a module M with
symmetric or skew-symmetric scalar product has a Poincaré duality if for
all subgroups π′ ⊂ π the induced scalar products are unimodular.

Let F1 be a free module on two generators x, y ∈ F1, such that (x, ax) =
(y, ay) = 0 for all a ∈ π, (x, ay) = 0 for a �= 1 and (x, y) = 1. We
assume the scalar product to be symmetric or skew-symmetric. In the
latter case we also require ϕ(x) = ϕ(y) = 0, i.e. in the module there is
an Arf-invariant of special type. We call such a module one-dimensional
free module.
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By a free module we mean a sum F = F1 + · · ·+F1 with respect to the
scalar product and Arf-invariant (for the skew-symmetrical case).

We consider the isomorphisms of modules, the direct sum, etc., with
respect to all structures preserved.

Admissible classes of modules:

C1: projective modules with symmetric even scalar product
and Poincaré duality.

C0
1 ⊂ C1: modules with zero signature τ(M) = 0;

C2: projective modules with skew-symmetric scalar product,
Poincaré duality and Arf-invariant;

C0
2 ⊂ C2: modules with zero Arf-invariant Φ(M) = 0;

C′
2: as in C2, but without Arf-invariant taken into account;

Ci ⊂ Ci, i = 1, 2: invertible modules M ⊂ Ci, for which there exists a
module M ′ such that M +M ′ = F with respect to all
structures, where F is as above.

Analogously, one defines the class C
′
2 ⊂ C2 without Arf-invariant.

Denote the subclasses C0
i ∩ Ci by Di.

With each class C1, C2, C
′
2, C

0
1 , C

0
2 we naturally associate the

“Grothendieck group”:

A(π) = K̃0(C1), B(π) = K̃0(C2),

C(π) = K̃0(C′
2), D(π) = K̃0(C0

1 ),

E(π) = K̃0(C2).

There is a well-defined homomorphism B(π) → C(π). The subclasses
G1, G2, G

′
2, D1, D2 define the subgroups of “really invertible” elements.

Algebraic problem: calculate the groups A(π), B(π), C(π), D(π), E(π).
It would be interesting to find these groups for π = Z + · · ·+ Z and π = Zp.
For π = Zp this is related with the arithmetics of the number p, because
here for “bad” p even the usual functor K̃0(Z(Zp)) without scalar products
can be nontrivial.

For π = Z + Z, the usual K̃0(π) is trivial, but B(π) and C(π) are
nontrivial, as Example 2 from § 3 of [13] shows. As we shall see from the
further topological problems, for π = Z + · · ·+ Z all A, B, C, D, E can be
nontrivial.

In the case π = Z + · · ·+ Z we may assume that we always deal with
scalar products on algebraically free modules, since projective modules are
stably free.
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IV. Differential-topological problems
Our question will be related to the following situations:

a) There is a commutative diagram of degree +1 maps and (regular)
coverings

M2n
1

f−−−−→ M2n
2

p1

� p1

�
M̂1

f̂−−−−→ M̂2,

where the monodromy group of the coverings is π and we have an element
α ∈ K0

R(M2n
2 ) such that f∗α ∈ K0

R(M2n
1 ) is the “stable tangent bundle”.

We assume that the homology kernels of f̂ are trivial in dimensions <n.
Then the kernelM = Ker f̂ (Hm)

∗ is a π-module, and it defines an element
from A(π) for n = 2k or B(π) for n = 2k + 1. For n = 3, 7 we need only
the image of B(π)→ C(π).

b) There is a membrane W 2n with two boundary components M2n−1
1 ,

M2n−1
2 and retractions ri : W 2n →M2n−1

i which are tangential maps.
We impose to ri restrictions analogous to those imposed on f in
example a) for coverings Ŵ →W 2n, M̂i →M2n−1

i . Then the kernel
M = Ker r̂(Hn)

i defines an element from A(π), n = 2k, or from B(π),
n = 2k + 1, moreover, here it is easy to reduce these elements to D(π)
for n = 2k or to E(π) for n = 2k + 1.

Problems

1. Realizability of elements x ∈ A(π), B(π), C(π), D(π), E(π) in the
situations of Examples a) and b).

2. It is interesting to study the case of the previous problem when in a)
the element α ∈ K0

R(M2n
2 ) is the “stable tangent bundle” to M2n

2 .
3. Rational Pontrjagin classes: if in a), the manifold M2n

2 is the torus T 2n,
then α ∈ KerJ , and the Pontrjagin classes

f∗pi(α) = pi(M2),

are defined, so that π = Z + · · ·+ Z. As the author has shown, the
stable tangent bundle to manifolds of homotopy type T q is always
trivial (it easily follows from Theorem 2 of the present work, Bott
periodicity for BO, Adams’ result about the J ⊗ Z2-homomorphism
and the fact that the suspension over the torus T q is of homotopy
type wedge of spheres). Thus for α �= 0 the classes pi(α) ∈ H∗(M2n

2 )
are nontrivial, and there is a (possibly, not uniquely defined)
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invariant x(α) ∈ A(π) for n = 2k and x(α) ∈ C(π) for n = 2k + 1. The
equality x(α) = 0 yields α = 0 by the author’s theorem. The classes pi
are linear forms in exterior powers:

pi(α) : Λ4iπ → Z,

π = Z + · · ·+ Z, Hom(Λ4iπ, Z) = Λ2n−4iπ.

Generally speaking, one should assume that pi(α) ∈ Λ2n−4iπ for π =
Z + · · ·+ Z (2n copies).

The problem is to calculate pi(α) ∈ Λ2n−4iπ as functions of
x(α) ∈ A(π) or C(π). The above argument shows that there does exist
a connection between pi(α) and x(α).

Certainly, in this problem one can take instead of torus T 2n = M2n
2

the direct product S4k × T 2n−4k, then we shall get a number. This
question is closely connected to Problem 2 (“homotopy problems”).

4. The situation with non-Noetherian fundamental groups is not clear to
the author; there are many geometrical examples of “finite-dimensional
groups” here, and the corresponding theory would have a series of
applications. Certainly, the functor P = Homc can be defined by
using “locally-finite” classes of bases, which always exist geometrically.
However, in the applications we need that the modules of kernels are
finite-dimensional over Z(π). These questions, are however, unrelated
to characteristic classes, and they have not been studied by the
author.

5. Consider the odd-dimensional case q = 2k + 1. The restrictions on
the module given by Theorem 5.2 of the present paper, are quite
insufficient.

Later on, we shall denote K̃0(Z(π)) by K̃0(π).
In addition, we note that the usual K0(π), consisting of stable classes

of projective modules, is embeddable in D(π) and E(π) as follows:
If α ∈ K0(π), then Pα ∈ K0(π), and for the module α+ Pα there is a

natural scalar product. We get the following inclusions:

K0(π) ⊂ D(π) ⊂ A(π),

K0(π) ⊂ E(π) ⊂ B(π),

assuming in the E(π) case that the Arf-invariant on α ⊂ α + Pα
and Pα ⊂ α+ Pα is trivial.

By using other functors except P = Homc( , Z), the universal
coefficient formula, and the Poincaré duality, it is easy to prove the
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following:

Theorem.1 If in Theorem 3 § 2 we replace the group π⊥ = Z + · · ·+ Z
by any (Noetherian) group π = π1, then the obstruction to existence of the
manifold V n ⊂Wn+1, being a deformation retract in Wn+1, lies in the
Grothendieck group K0(π), and the condition that this obstruction is zero
is sufficient for the deformation retract to exist V n ⊂Wn+1.

Remark. The uniqueness question for such V n ⊂Wn+1 is reduced to
the h-cobordism problem, and hence to K1(π), more exactly, the quotient
group Wh(π) (see [8]). Thus we get the following picture.

A. Problems like Theorem 3 and § 2 are related only with K0(π) (or to
its image in A(π) and B(π)) and to K1(π)→ Wh(π). As one can see from
the proof of Theorem 6 (see § 9) and the paper of Browder–Levine–Livesay
(see [21]), these questions are analogous to the question of finding the
boundary of an open manifold.

B. The diffeomorphism problem is subdivided into the following:

1. the J-functor, KR-functor and normal bundles of compact manifolds:
here for n = 2k A(π) and B(π) play their roles (see [3, 22, 14],
Appendix 1).

2. Realization of classes in the Thom complex for n = 2k (see
Problem 2). Here the torsions tor A(π) and tor B(π) are important
(see Theorem 1 of [22] for π1 = 0).

3. The relations between the h-cobordism and homotopy class in the Thom
complex (see Theorem 2 of [22]). Here one should consider invertible
elements from D(π), E(π) for n = 2k − 1.

4. For n = 2k − 1 in 1. and 2. and n = 2k in 3. Extic come into play; their
role is not known. They generalize the torsion for π1 = 0.

5. The relation between h-cobordism and diffeomorphism for n ≥ 5 is well
known and it is connected only to Wh(π) = K1(π)/(π ∪−π).

Appendix 3. Algebraic remarks about the functor

P = Homc

Here we discuss the following questions:

1. the connection between Extic(M, Z) and Extic(PM, Z);
2. the notion of “reflexive” module: P 2M = M ;
3. the functor Q for open homology groups.

1Added when reading proofs. This theorem was independently discovered by
Siebenmann.
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Let us first address the following question. Let M be an admissible
π-module. Consider an acyclic (projective) free resolvent

C = {· · · → Fn → · · · → F0
ε−→M → 0}

and apply the functor P :

PC = {0→ PM
Pε−→ PF0 → · · · → PFn → · · · }.

We obtain a sequence which is exact for the term PF0.
Now consider a resolvent of PM

C′ = {· · · → F ′
n → · · · → F ′

0
ε′−→ PM → 0}.

Let us paste the complexes C and C′:

C′′ = {· · · → F ′
n → · · · → F ′

0
δ−→ PF0 → · · · → PFn → · · · }

���
ε′

���Pε

��� ���

PM

0 0

in such a way that δ = (Pε) ◦ ε′.
Set F ′′

n = F ′
n, F ′′

−n−1 = PFn, n ≥ 0. Evidently, we have:

Hi(C′′) = 0, i ≥ −1, Hi(C′′) = Ext−i−1
c (M, Z), i ≤ −2.

Moreover, for the complex PC′′

Hi
c(C

′′) = Hi(PC′′) = Extic(PM, Z), i > 0,

H0
c (C

′′) = H0(PC′′) = CokerP 2 =
P 2M

ImP 2
,

H−1
c (C′′) = H−1(PC′′) = KerP 2 ⊂M,

H−i
c (C′′) = H−i(PC′′) = 0, i ≥ +2.

All these equality follow from the fact that for projective modules P 2

there exist a natural isomorphism. Thus, KerP 2 and CokerP 2 obtain a
geometrical meaning.

Since Hi(C′′) and Hi
c(C′′) are connected by the Cartan–Eilenberg–

Grothendieck spectral sequences, the following conclusions are in order:

A. Let the homological dimension of the group π be equal to n (for
example, π = Z + · · ·+ Z). Then we see that

Extnc (PM, Z) = Extn−1
c (PM, Z) = 0.
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B. If Extic(Extic(M, Z), Z) = 0, i > 0, then KerP 2 = 0.
C. If Exti+1

c (Extic(M, Z), Z) = 0, i > 0, then CokerP 2 = 0.

We call modules M for which P 2M = M , reflexive and those M ′ for
which PM ′ ≈M ′, will be called self-adjoint. Every reflexive module is a
direct summand in a self-adjoint module, and vice versa, because in this
case P (M + PM) = M + PM and P is an additive functor.

Corollaries:

1. if Extic(M, Z) = 0, i > 0, and π = Z + · · ·+ Z, then M is stably free
because PM is stably free according to Lemma 5.1 and P 2M = M ;

2. if π = Z + Z, then for every module M the module PM is stably free
because Ext1c(PM, Z) = Ext2c(PM, Z) = 0.

Note that for π = Z +Z +Z this is no longer true because there exists
a module M �= 0 which is reflexive and such that

Ext2c(M, Z) = Ext3c(M, Z) = 0,
Ext1c(Ext1c(M, Z), Z) = Ext2c(Ext1c(M, Z), Z) = 0,

Ext1c(M, Z) = Ext3c(Ext1c(M, Z), Z) �= 0.

Let us construct such a module. Let M0 be a one-dimensional module
with generator u ∈M0 such that Z0(π) ◦ u = 0. The resolvent ofM0 (see § 5,
Example 1) is three-dimensional,

0→ F3
d−→ F2

d−→ F1
d−→ F0

ε−→M0 → 0,

moreover,

Extic(M0, Z) = 0, 0 ≤ i ≤ 2, Ext3c(M0, Z) = M0.

Let M = F2/ Imd. We have:

0→ F3
d−→ F2

ε−→M → 0.

Thus Extic(M, Z) = 0, i > 1, and Ext1c(M, Z) = Ext3c(M0, Z) = M0. This
module M is the desired example of reflexive but not projective module for
π = Z + Z + Z.

Let us introduce topology for Z(π): namely, for the base system of
neighborhoods of zero we take all linear spaces over Z generated by the
elements α ∈ π\Ai, where Ai is any finite set in π.

For a finitely generated module we define the topology as follows: if
x1, . . . , xk ∈M are π-generators and A1, . . . , Ak are any finite sets in π,
we take for neighborhoods of zero in M all x ∈M such that λx =∑

i,j λijαijxj , λ �= 0, where αij ∈ π\Aj , λ, λij ∈ Z. Such neighborhoods
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generate a system of neighborhoods of zero in M . In this topology, points,
are in general, non-separable.

We have: PM are continuous characters of the continuous groupM in Z
(in discrete topology), so that PM is a topological Z(π)-module. KerP 2 are
points of M , which are infinitely close to zero.

Let us define the completion Q : M → M̂ , where M̂ is the compacti-
fication of M , and we equate KerP 2 to zero in M̂ . The derived functors of
the functor Q correspond to open homology, thus for the field K we have:

Q = Hom(Homc(M, K), K),
Tor iQ(M, K) = Hom(Extic(M, K), K), i ≥ 0.
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Stable homeomorphisms and the
annulus conjecture1

R. Kirby

A homeomorphism h of Rn to Rn is stable if it can be written as a finite
composition of homeomorphisms, each of which coincides with the identity
in some domain, that is h = h1, h2, . . . , hr, and hi|Ui = identity for each i
where Ui is open subset in Rn.

Stable Homeomorphism Conjecture, SHCn: All orientation preserving
homeomorphisms of Rn are stable.

Stable homeomorphisms are particularly interesting because (see [3])
SHCn ⇒ ACn, and ACk for all k ≤ n⇒ SHCn where ACn is the Annulus
Conjecture: Let f, g : Sn−1 → Rn be disjoint, locally flat imbeddings with
f(Sn−1) inside the bounded component of Rn − g(Sn−1) (complement to
g(Sn−1)). Then the closed region A bounded by f(Sn−1) and g(Sn−1) is
homeomorphic to Sn−1 × [0, 1].

Numerous attempts on these conjectures have been made; for example,
it is known that an orientation preserving homeomorphism is stable if it
is differentiable at one point [10, 12], if it can be approximated by a PL
homeomorphism [6], or if it is (n−2)-stable [4]. “Stable” versions of ACn are
known: A×[0, 1) is homeomorphic to Sn−1×I×[0, 1), A×R is Sn−1×I×R,
and A× Sk = Sn−1× I ×Sk if k is odd (see [7, 13]). A counter-example to
ACn would provide a non-triangulable n-manifold [3].

1Annals of Math., 89 (1969), 575–582 (received October 29, 1968).

253
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Here we reduce these conjectures to the following problem in PL theory.
Let T n be the Cartesian product of n circles.

Hauptvermutung for tori, HTn: Let T n and τn be homeomorphic PL
n-manifolds. Then T n and τn are PL homeomorphic.

Theorem 1. If n ≥ 6, then HTn ⇒ SHCn.

(Added December 1, 1968). It can now be shown that SHCn is true for
n �= 4. If n = 3, this is a classical result. Theorem 1 also holds for n = 5,
since Wall [19, p. 67] has shown that an end which is homeomorphic to
S4 ×R is also PL homeomorphic to S4 ×R.

In the proof of Theorem 1, a homeomorphism f : T n → τn is
constructed. If f̃ : T̃ n → τ̃n is any covering of f , then clearly f is stable
if and only if f̃ is stable. Using only the fact that f is a simple homotopy
equivalence, Wall’s non-simply connected surgery techniques [15] provide an
“obstruction” in H3(T n;Z2) to finding a PL homeomorphism between T n

and τn. It is Siebenmann’s idea to investigate the behavior of this obstruction
under lifting f : T n → τn to a 2n-fold cover; he suggested that the obstruction
would become zero. Wall [16] and Hsiang and Shaneson [17] have proved this
is the case; that is, if τ̃n is the 2n-fold cover of a homotopy torus τn, n ≥ 5,
then τ̃n is PL homeomorphic to T n (=T̃ n). Therefore, following the proof of
Theorem 1, f̃ : T̃ n → τ̃n is stable, so f is stable, and thus SHCn holds for
n �= 4. Hence the annulus conjecture ACn holds for n �= 4.)

(Added April 15, 1969 Siebenmann has found a beautiful and surprising
counter-example which leads to non-existence and non-uniqueness of
triangulation of manifolds. In particular HTn is false for n ≥ 5, so it is
necessary to take the 2n-fold covers, as above. One may then use the
fact that f̃ : T̃ n → τ̃n is homotopic to a PL homeomorphism to show
that f : T n → τn was actually isotopic to a PL homeomorphism. Thus,
although there are homeomorphisms between T n and another PL manifold
which are not even homotopic to PL homeomorphisms, they cannot be
constructed as in Theorem 1. Details will appear in a forthcoming paper by
Siebenmann and the author. See also R. C. Kirby and L. C. Siebenmann,
On the triangulation of manifolds and the Hauptvermutung, Bull. Amer.
Math. Soc., to appear in Bull. Amer. Math. Soc.)

Let H(Mn) denote the space (with the compact-open topology) of
orientation preserving homeomorphisms of an oriented stable n-manifold
M , and let SH(Mn) denote the subspace of stable homeomorphisms.

Theorem 2. SH(Rn) is both open and closed in H(Rn).

Since a stable homeomorphism of Rn is isotopic to the identity, we
have the:

Corollary. SH(Rn) is exactly the component of the identity in H(Rn).
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Corollary. A homeomorphism of Rn is stable if and only if it is isotopic
to the identity.

Theorem 3. If Mn is a stable manifold, then SH(Mn) contains the
identity component of H(Mn).

In general this does not imply that the identity component is arcwise
connected (as it does for Mn = Rn or Sn), but arcwise connectivity does
follow from the remarkable result of Chernavskii [5] that H(Mn) is locally
contractible if Mn is compact and closed or Mn = Rn. From the techniques
in this paper, we have an easy proof of the last case.

Theorem 4. H(Rn) is locally contractible.

We now give some definitions, then a few elementary propositions, the
crucial lemma, and finally the proofs of Theorems 1–4 in succession.

The following definitions may be found in Brown and Gluck [3], a
good source for material on stable homeomorphisms. A homeomorphism
h between open subsets U and V of Rn is called stable if each point
x ∈ U has a neighborhood Wx ⊂ U such that h|Wx extends to a stable
homeomorphism of Rn. Then we may define stable manifolds and stable
homeomorphisms between stable manifolds in the same way as is usually
done in the PL and differential categories. Whenever it makes sense, we
assume that a stable structure on a manifold is inherited from the PL
or differentiable structure. Homeomorphisms will always be assumed to
preserve orientation.

Proposition 1. A homeomorphism of Rn is stable if it agrees with a
stable homeomorphism on some open set.

Proposition 2. Let h ∈ H(Rn) and suppose there exists a constant
M > 0 so that |h(x) − x| < M for all x ∈ Rn. Then h is stable.

Proof. This is Lemma 5 of [6].
Letting rBn be the n-ball of radius r, we may consider rDn = i(rBn) as

a subset of T n, via some fixed differentiable imbedding i : rBn → T n.

Proposition 3. There exists an immersion α : T n −Dn → Rn.

Proof. Since T n −Dn is open and has a trivial tangent bundle, this
follows from [8, Theorem 4.7].

Proposition 4. If A is an n × n matrix of integers with determinant
one, then there exists a diffeomorphism f : T n → T n such that f∗ = A
where f∗ : π1(T n, t0)→ π1(T n, t0).
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Proof. A can be written as a product of elementary matrices with
integer entries, and these can be represented by diffeomorphisms.

Proposition 5. A homeomorphism of a connected stable manifold is
stable if its restriction to some open set is stable.

Proposition 6. Let f : Sn−1 × [−1, 1] → Rn be an imbedding which
contains Sn−1 in its interior. Then f |Sn−1×0 extends canonically to an
imbedding of Bn in Rn.

Proof. This is shown in [9]. However, there is a simple proof; one just
re-proves the necessary part of [2] in a canonical way. This sort of canonical
construction is done carefully in the proof of Theorem 1 of [11].

The key to the paper is the following observation.

Lemma. Every homeomorphism of T n is stable.

Proof. Let e : Rn → T n be the usual covering map defined by

e(x1, . . . , xn) = (e2πix1 , . . . , e2πixn),

and let t0 = (1, . . . , 1) = e(0, . . . , 0). e fixes a differential and hence stable
structure on T n.

Let h be a homeomorphism of T n, and assume at first that h(t0) =
t0 and h∗ : π1(T n, t0) → π1(T n, t0) is the identity matrix. h lifts to a
homeomorphism ĥ : Rn → Rn so that the following diagram commutes.

Rn
bh−−−−→ Rn�e �e

T n
h−−−−→ T n.

Since In = [0, 1]× · · · × [0, 1] is compact,

M = sup{|ĥ(x)− x| |x ∈ In|}
exists. The condition h∗ = identity implies that ĥ fixes all lattice points
with integer coordinates Zn ⊂ Rn. Thus ĥ moves any other unit n-cube
with vertices in this lattice in the “same” way it moves In; in particular
|ĥ(x) − x| ≤ M for all x ∈ Rn. By Proposition 2, ĥ is stable. e provides
the coordinate patches on T n, so h is stable because e−1he|e−1(U)(patch)
extends to the stable homeomorphism (ĥ) for all patches.

Given any homeomorphism h of T n, we may compose with a
diffeomorphism g so that gh(t0) = t0. If A = (gh)−1

∗ , then Proposition 4
provides a diffeomorphism f with f∗ = A = (gh)−1∗ , so (fgh)∗ is the product
of stable homeomorphisms and therefore stable.
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Proof of Theorem 1. Let g be a homeomorphism of Rn. gα (see
Proposition 3) induces a new differentiable structure on T n −Dn, and we
call this differential manifold ˜T n −Dn. We have the following commutative
diagram,

T n −Dn id−−−−→ ˜T n −Dn�α �gα
Rn

g−−−−→ Rn.

α and gα are differentiable and therefore stable, so g is stable if and only
if the identity is stable (use Proposition 1).

Since ˜T n −Dn has one end, which is homeomorphic to Sn−1 × R,
and n ≥ 6, there is no difficulty in adding a differentiable boundary [1].
Since the boundary is clearly a homotopy (n − 1)-sphere, we can take a
C1-triangulation and use the PL h-cobordism theorem to see that the
boundary is a PL (n− 1)-sphere. To be precise, there is a proper PL
imbedding β : Sn−1 × [0, 1) → ˜T n −Dn, and we add the boundary by
taking the union ˜T n −Dn ∪β Sn−1 × [0, 1] over the map β.

Finally we add Bn to this union, via the identity map on the boundaries,
to obtain a closed PL manifold τn.

We can assume that ∂2Dn lies in β(Sn−1 × [0, 1)). Thus ∂2Dn lies
in an n-ball in τn and, since it is locally flat, bounds an n-ball by the
topological Schoenflies theorem [2]. Now, we may extend id|Tn−2Dn , by
coning on ∂2Dn, to a homeomorphism f : T n → τn.

Using HTn we have a PL (hence stable) homeomorphism h : T n → τn.
By the lemma, h−1f : T n → T n is stable, so f = h(h−1f) is stable,
f |Tn−2Dn = identity is stable, and finally g is stable.

Note that it is only necessary that HTn gives a stable homeomorphism h.

Proof of Theorem 2. We shall show that a neighborhood of the
identity consists of stable homeomorphisms. But then by translation in the
topological group H(Rn), any stable homeomorphism has a neighborhood
of stable homeomorphisms, so SH(Rn) is open. Now it is well known that
an open subgroup is also closed (for a coset of SH(Rn) in H(Rn) is open,
so the union of all cosets of SH(Rn) is open and is also the complement of
SH(Rn), which is therefore closed.

If C is a compact subset of Rn and ε > 0, then it is easily verified that
N(C, ε) = {|h ∈ H(Rn)| |h(x) − x| < ε for all x ∈ C} is an open set in the
CO-topology. Let C be a compact set containing α(T n −Dn). If ε > 0 is
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chosen small enough, then

hα(T n − 5Dn) ⊂ α(T n − 4Dn) ⊂ hα(T n − 3Dn)

⊂ hα(T n − 2Dn) ⊂ α(T n −Dn)

for any h ∈ N(C, ε). There exists an imbedding ĥ, which “lifts” h so that
the following diagram commutes.

T n − 2Dn
bh−−−−→ T n −Dn�α �α

Rn
h−−−−→ Rn.

To define ĥ, first we cover C with finitely many open sets {Ui},
i = 1, . . . , k, so that α is an imbedding on each component of α−1(Ui),
i = 1, . . . , k. Let {Vi}, i = 1, . . . , k, be a refinement of {Ui}. If ε was
chosen small enough, then h(Vi) ⊂ Ui. Let Wi = Ui ∩ α(T n − Dn) and
Xi = Vi ∩ α(T n − 2Dn). Since hα(T n − 2Dn) ⊂ α(T n −Dn), we have
h(Xi) ⊂ Wi, i = 1, . . . , k. Let Wi,j , j = 1, . . . , wi be the components
of α−1(Wi), let Xi,j = Wi,j ∩ (T n− 2Dn), αi,j = α|Wi,j for all i, j. Now we
can define ĥ by

ĥ|Xi,j = (αi,j)−1hα|Xi,j

for all i, j. Clearly ĥ is an imbedding.
α(T n− 4Dn) ⊂ hα(T n− 3Dn) implies that α(4Dn−Dn) ⊃ hα(∂3Dn),

so ĥ(∂3Dn) ⊂ 4Dn, and hence ĥ(∂3Dn) bounds an n-ball in 4Dn. By
coning, we extend ĥ|(Tn−3Dn) to a homeomorphism H : T n → T n. H
is stable by the lemma, so ĥ is stable and h is stable. Hence N(C, ε) is a
neighborhood of the identity consisting of stable homeomorphisms, finishing
the proof of Theorem 2.

Proof of Theorem 3. As in the proof of Theorem 2, it suffices to show
that a neighborhood of the identity consists of stable homeomorphisms;
then SH(Mn) is both open and closed and therefore contains the identity
component.

Let j : Rn → M be a coordinate patch. Let ε > 0 and r > 0 be
chosen so that N(rBn, ε) ⊂ H(Rn) consists of stable homeomorphisms.
Then there exists a δ > 0 such that if h ∈ N(j(rBn), δ) ⊂ H(Mn), then
hj(2rBn) ⊂ j(Rn), j−1hj|2rBn ∈ N(rBn, ε). We may isotope j−1hj|2rBn

to a homeomorphism H of Rn with H = j−1hj on rBn and therefore
H ∈ N(rBn, ε) ⊂ H(Rn). Thus H is stable and so j−1hj|2rBn is stable.
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By Proposition 5, h is stable, and hence N(j(rBn), δ) is our required
neighborhood of the identity.

Proof of Theorem 4. We will observe that Theorem 2 can be proved
in a “canonical” fashion; that is, if h varies continuously in H(Rn), then
H varies continuously in H(T n). First note that H(Rn) may be contracted
onto H0(Rn), the homeomorphisms fixing the origin. The immersion α :
T n−Dn → Rn can be chosen so that αe = id on (1/4)Bn. Pick a compact
set C and ε > 0 as in the proof of Theorem 2 and let h ∈ N(C, ε). h lifts
canonically to ĥ : T n − 2Dn → T n −Dn. Since ĥ(int5Dn − 2Dn) contains
∂4Dn, it follows from Proposition 6 that ĥ(∂3Dn) bounds a canonical n-ball
in 4Dn. Then ĥ|(Tn−3Dn) extends by coning to H : T n → T n.

Clearly H(t0) = t0 and H∗ = identity so H lifts uniquely to a
homeomorphism g : Rn → Rn, with |g(x) − x| < constant for all x ∈
(see lemma). We have the commutative diagram

Rn
g−−−−→ Rn

e

� �e
T n

H−−−−→ T n

∪ ∪
T n − 3Dn

bh−−−−→ T n − 2Dn

α

� �α
Rn

h−−−−→ Rn.

Since e((1/4)Bn) ∩ 4Dn is empty and αe = id on (1/4)Bn, it follows
that g = h on (1/4)Bn. The construction of g being canonical means that
the map ψ : H0(Rn)→ H0(Rn), defined by ψ(h) = g, is continuous.

Let Pt : Rn → Rn, t ∈ [0, 1], be the isotopy with P0 = h and P1 = g
defined by

Pt(x) = g

{
1

1− t ·
[
g−1h((1 − t)x)]}

if t < 1 and P1 = g. Let Qt : Rn → Rn be the isotopy with Q0 = g and
Q1 = id defined by

Qt(x) = (1 − t) · g
(

1
1− t · x

)
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if t < 1 and Q1 = id. Now let ht : Rn → Rn, t ∈ [0, 1] be defined by

ht(x) =



P2t(x) if 0 ≤ t ≤ 1

2

Q2t−1(x) if
1
2
≤ t ≤ 1.

It can be verified that ht is an isotopy of h to the identity which varies
continuously with respect to h. Then Ht : N(C, ε) → H0(Rn), t ∈ [0, 1]
defined by Ht(h) = ht is a contraction of N(C, ε) to the identity where
Ht(id) = id for all t ∈ [0, 1].

The proof can be easily modified to show that if a neighborhood V of
the identity in H0(Rn) is given, then C and ε can be chosen so that N(C, ε)
contracts to the identity and the contraction takes place in V . To see this,
pick r > 0 and δ so that N(rBn, δ) ⊂ V . Then we may re-define α and e
so that αe = identity on rBn. If h ∈ N(rBn, δ), then Pt ∈ N(rBn, δ), and
if ε is chosen small enough (with respect to δ), then h ∈ N(rBn, ε) implies
that Qt ∈ N(rBn, δ). Therefore N(rBn, ε) contracts in V .
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