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Abstract

We provide five examples of conformal geometries which are naturally associated with or-
dinary differential equations (ODEs). The first example describes a one-to-one correspondence
between the Wuenschmann class of 3rd order ODEs considered modulo contact transformations
of variables and (local) 3-dimensional conformal Lorentzian geometries. The second example
shows that every point equivalent class of 3rd order ODEs satisfying the Wuenschmann and
the Cartan conditions define a 3-dimensional Lorentzian Einstein-Weyl geometry. The third
example associates to each point equivalence class of 3rd order ODEs a 6-dimensional conformal
geometry of neutral signature. The fourth example exhibits the one-to-one correspondence be-
tween point equivalent classes of 2nd order ODEs and 4-dimensional conformal Fefferman-like
metrics of neutral signature. The fifth example shows the correspondence between undetermined
ODEs of the Monge type and conformal geometries of signature (3, 2). The Cartan normal con-
formal connection for these geometries is reducible to the Cartan connection with values in the
Lie algebra of the noncompact form of the exceptional group G2. All the examples are deeply
rooted in Elie Cartan’s works on exterior differential systems.

MSC 2000: 34A26, 53B15, 53B30, 53B50.
Key words: differential geometry of ODEs, Cartan connections, noncompact form of the excep-
tional group G2.
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1 Introduction

One aspect of the Null Surface Formulation of General Relativity (NSF) of Fritelli, Kozameh and
Newman [8] is to encode the conformal geometry of space-time in the geometry of a certain pair
of partial differential equations (PDEs) on the plane. Although this pair of differential equations
appears in NSF quite naturally, the question arises as to whether it is an accident or it is a feature of
a deeper link between differential equations and conformal structures. A closer look at this question
shows that the phenomenon observed in NSF is only a tip of an iceberg, and that there is an abun-
dance of examples in which the geometry of differential equations can be related to the conformal
geometry in various dimensions. The main aim of this paper is to describe these examples and to
point out that all of them have their roots in Elie Cartan’s works on differential systems.

The oldest and the simplest of these examples is due to Karl Wuenschmann. It is contained in
his PhD dissertation [24] defended at the University of Greifswald in 1905. His result is quoted by
Elie Cartan in a footnote of Ref. [3]. According to Cartan Wuenschmann observed that certain
classes of 3rd order ordinary differential equations (ODEs) define, in a natural way, a conformal
Lorentzian metric on the 3-dimensional spaces of their solutions. Chern in [5] interpreted the result
of Wuenschmann in terms of a Cartan normal conformal connection [14] with values in the Lie al-
gebra so(3, 2). Recently, Newman and collaborators [9] proved that every 3-dimensional Lorentzian
conformal geometry originates from a 3rd order ODE from the Wuenschmann class.

Although, due to Cartan, we have the precise coordinates of Wuenschmann thesis we were unable
to get it from the University of Greifswald. Thus, we do not know how Wuenschmann obtained
his result. In a joint paper [10] with Fritelli and Newman, we derived it by searching for 3rd
ODEs for which it was possible to define a null separation between the solutions. We believe,
that this derivation is very close to the Wuenschmann one. In the present paper, in Section 2, we
give yet another derivation of Wuenschmann’s result. This presentation is closely related to the
description given in Cartan’s footnote. In particular, we specify under which differential condition
on F = F (x, y, y′, y′′) the 3rd order ODE

y′′′ = F (x, y, y′, y′′) (1)

is in the Wuenschmann class (condition (8)) and, using F and its derivatives, we give the explicit
formula for the conformal Lorentzian 3-metric. We also calculate the conformal invariants of these
metrics, such as Cotton tensor, and relate them to the contact invariants of the corresponding ODEs
from the Wuenschmann class. We end this section by providing nontrivial examples of ODEs from
the Wuenschmann class.

Our next examples of conformal structures associated with differential equations are motivated by
Cartan’s paper [3]. In this paper Cartan studies the geometry of an ODE (1) given modulo the point
transformation of variables. He shows that if, in addition to the Wuenschmann condition (8), the
ODE satisfies another point invariant condition (17), then it defines a 3-dimensional Lorentzian Weyl
geometry, i.e. the geometry defined by a conformal class of Lorentzian 3-metrics [g] and a 1-form
[ν] given up to a gradient. This Weyl geometry turns out to satisfy the Einstein-Weyl equations,
which makes Cartan’s observation important in the integrable systems theory (see e.g. [23]).

In Section 3 we formulate the equivalence problem for 3rd order ODEs considered modulo point
transformations and present its solution (Theorem 3) due to Cartan [3]. We interpret the result in
terms of Cartan’s connection ω with values in the Lie algebra of a group CO(1, 2)⋊R3 - the semidi-
rect product of the SO(1, 2) group extended by the dilatations, and the translation group in R3. In
case of a generic 3rd order ODE (1) this Cartan connection is defined on a principal SO(1, 2) fiber
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bundle P over a certain four dimensional manifold but, if the equation satisfies the Wuenschmann
condition (8) and the Cartan condition (17), it may be interpreted as a Cartan connection on a
principal CO(1, 2) fiber bundle over a three dimensional space identified with the solution space of
(1). It is this special case which was studied by Cartan. In Section 3.1.1 we describe his result in the
modern terminology. In particular, we explicitly write down the formualae for the metric gew and
the Weyl 1-form νew in terms of function F = F (x, y, y′, y′′) defining the equation. We also prove
that the conditions (8) and (17) are equivalent to the Einstein-Weyl condition for the Weyl geometry
[gew, νew]. The result is summarized in Theorem 4. In two examples (Example 2 and Example 3)
we provide two nontrivial point equivalent classes of 3-rd order ODEs which satisfy conditions (8)
and (17). The class of equations of Example 2 is a generalization of example (20) which was known
to Tod [23]. Example 3 shows how to generate nontrivial F = F (x, y, y′, y′′) satisfying (8) and (17)
from particular solutions of reductions of the Einstein-Weyl geometries in 3-dimensions. Even very
simple solutions, such as a solution u =

√
2x of the dKP equation (23), give rise to very nontrivial

F s (see formula (24)).

In Section 3.1.2 we return to the generic case of an ODE (1) given modulo point transformation
and its Cartan connection ω on the SO(1, 2) fiber bundle P . We show that in this general case P
is equipped with a special vector field whose integral curves foliate P . The 6-dimensional space of
leaves of this foliation is naturally equipped with a conformal metric [˜̃g] of signature (3, 3). This
6-dimensional conformal structure encodes all the point invariant information about the point equiv-
alent class of ODEs (1). In particular, the Cartan (point) invariants of Theorem 3 and the curvature
of Cartan’s connection ω can be equivalently described in terms of a Cartan normal conformal con-
nection associated with the conformal class of metrics [˜̃g]. This result, which was not mentioned by
Cartan, is summarized in Theorem 5; an explicit formula for this normal conformal connection is
given by (25).

Section 4 deals with a geometry of a 2nd order ODE

y′′ = Q(x, y, y′) (2)

considered modulo point transformations of variables. It provides a next example of appearances
of conformal geometry in the theory of differential equations. This case was studied by us in a
joint paper with Sparling [17]. In this paper, exploiting an analogy between 2nd order ODEs and
3-dimensional CR-structures, we were able to associate a conformal 4-metric of signature (2,2) with
each point equivalence class of ODEs (2). The construction of this metric, described in [17], was
motivated by Fefferman’s construction [7] of Lorentzian metrics on a circle bundle over nondegen-
erate 3-dimensional CR-structures. Cartan, who formulated and solved the equivalence problem for
ODEs (2) given modulo point transformations in his famous paper [2], overlooked existence of this
metric. In Ref. [17], we showed that the conformal class of Fefferman-like (2,2) signature metrics
associated with a point equivalence class of ODEs (2) encodes all the point invariant information of
such class. We summarize these results in Theorem 6.

In Section 5 which, in our opinion, is the highlight of the paper, we consider the geometry of an
undetermined equation

z′ = F (x, y, y′, y′′, z) (3)

for two real functions y = y(x) and z = z(x) of one variable. The studies of equations of this type
can be traced back to Gaspard Monge, who knew that every solution to the equation of the form

z′ = F (x, y, y′, z) (4)
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was expressible without integrals by means of an arbitrary function of one variable and its derivatives.
Hilbert [12], on an example of equation

z′ = (y′′)2, (5)

showed that, in general, equations (3) do not have this property. This result impressed Cartan, who
previously (Ref. [4]) considered equations (3) as equations for Cauchy characteristics of pairs of
PDEs in the involution defined on the plane. Cartan solved the equivalence problem for these PDEs
which, implicitly, solves an associated equivalence problem for ODEs (3). From Cartan’s solution of
this equivalence problem it follows that among equations (3) only those for which Fy′′y′′ = 0 have
general solutions which can be expressed without integrals.

From the geometric point of view equations (3) for which Fy′′y′′ 6= 0 are much more interesting then
those with Fy′′y′′ = 0. It follows from Cartan’s work [4] that nonequivalent classes of equations (3)
with Fy′′y′′ 6= 0 are distinguished by means of a curvature of a certain Cartan connection. Surpris-

ingly, this connection has values in the Lie algebra of the noncompact form G̃2 of the exceptional
group G2. The curvature of this connection is vanishing precisely in the case of equations equivalent
to the Hilbert example (5). This, in particular means that the symmetry group of a very simple
equation (5) is isomorphic to G̃2. This fact, noticed with pride by Cartan in [4], was perhaps the
first geometric realization of this group predicted to exist by Cartan and Engel in 1894.

The main original part of Section 5 consists in an observation that this Cartan connection can be
understood as a reduction of a certain Cartan normal conformal connection. This is associated
with a conformal metric G(3,2) of signature (3, 2) naturally defined by (3) on a 5-dimensional space
J parametrized by the five independent variables (x, y, y′, y′′, z). It follows that all the invariant
information about the ODE (3) satisfying Fy′′y′′ 6= 0 is encoded in the conformal properties of the
metric G(3,2). We introduced this metric motivated by the Fefferman construction described in [17].
Surprisingly, its existence, like the existence of Fefferman-like metrics described in Section 4, was
overlooked by Cartan.

Section 5 has three subsections. The first one makes precise the notion of an equation having a
general solution without integrals. It also contains the proof of Monge’s result on equation (4)
quoted above. The proof uses Cartan’s method of equivalence [18] and aims to motivate the defi-
nition of equivalence problem for equations (3). This definition is given in Section 5.2 in terms of
an equivalence of a system of three 1-forms (42) on J . The beginning of Section 5.3 reformulates
Cartan’s solution for the equivalence problem for pairs of PDEs in involution on the plane adapting
it to the equivalence problem for ODEs (3) with Fy′′y′′ 6= 0. This is summarized in Theorem 8.
The interpretation of this result in terms of Cartan’s g̃2-valued connection ωG̃2

is given by formula
(52). The rest of this section is devoted to the introduction and the discussion of a 5-dimensional
conformal (3, 2)-signature metric whose Cartan normal conformal connection is reducible to ωG̃2

.
This metric is defined by formula (53) and is finally expressible entirely in terms of the function
F = F (x, y, y′, y′′, z) and its derivatives in formula (54). The main properties of this metric are
summarized in Theorem 9.

As an application of this section, in Example 6, we consider equations of the form

z′ = F (y′′).

This generalizes (5). We show that in this case there is only one basic invariant of such equations.
The metrics G(3,2) of Example 6 turn out to be always conformal to Einstein metrics. We characterize
the Einstein scale for them by means of a simple ODE. Finally, in case of a generic F , we show that
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the square of the Weyl tensor for metrics G(3,2) can be interpreted in terms of a classical invariant
of a certain polynomial of the fourth order. This polynomial resembles very much the Weyl tensor
polynomial known in the Newman-Penrose formalism [16].

2 Third order ODEs considered modulo contact transforma-

tions

In 1905 Wuenschmann [24] observed that the spaces of solutions of a certain class of 3rd order ODEs
are naturally equipped with conformal Lorentzian geometries. His observation can be summarized
as follows.

Consider a 3rd order ordinary differential equation

y′′′ = F (x, y, y′, y′′), (6)

for a real function y = y(x) of one variable. To simplify notation let p = y′ and q = y′′. Now,
consider the four-dimensional space J2 parametrized by (x, y, p, q). This space, the second jet space,
is a natural arena to study the geometry of equation (6). In particular, the total differential vector
field

D = ∂x + p∂y + q∂p + F∂q

on J2 yields the basic information about the solutions of (6). The integral curves of D foliate J2

with 1-dimensional leaves. The leaf space S of this foliation is 3-dimensional and can be identified
with the 3-dimensional space of solutions of (6). Following Chern [5] we equip J2 with the following
bilinear form1

g̃ = 2 [ dy − pdx ] [ dq − 1

3
Fqdp + Kdy + (

1

3
qFq − F − pK)dx ] − [ dp − qdx ]2. (7)

where

K ≡ 1

6
DFq −

1

9
F 2

q − 1

2
Fp.

Clearly, this form is degenerate. It has signature (+,−,−, 0) and its degenerate direction is tangent
to the vector field D. It is natural to ask about the transformation properties of g̃ under the Lie
transport along the degenerate direction D. It follows that g̃ transforms conformally under the
Lie transport along D if and only if the function F = F (x, y, p, q) defining the ODE satisfies the
following nonlinear differential condition

A ≡ Fy + (D − 2

3
Fq) K = 0. (8)

This condition, the Wuenschmann condition defines the Wuenschmann class of 3rd order ODEs.
Each equation from this class has a naturally defined conformal Lorentzian structure on the space
of its solutions. In our description, if F satisfies (8), this structure is obtained by projecting g̃ from
J2 to the leaf space S of integral lines of D. Since in such case g̃ transforms conformally along D,
it projects to the conformal (+,−,−) signature structure [g] on S. An interesting feature of the
above Wuenschmann construction is its invariance under the contact transformations of the ODE
(6). More precisely, if equation (6) undergoes a transformation of variables of the form

x → x̄ = x̄(x, y, p), y → ȳ = ȳ(x, y, p), p → p̄ = p̄(x, y, p),

1Here and in the following we adapt the convention from General Relativity in which a symmetrized tensor product
of two 1-forms α and β is denoted by αβ = 1

2
(α ⊗ β + β ⊗ α), e.g. α2 = α ⊗ α.
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with
ȳx − p̄x̄x + p(ȳy − p̄x̄y) = ȳp − p̄x̄p = 0

then, if it is in the Wuenschmann class for the function F = F (x, y, p, q), it is also in the Wuen-
schmann class for the transformed function F̄ = F̄ (x̄, ȳ, p̄, q̄). It follows from the work of Chern [5]
that the Wuenschmann condition is the lowest order contact invariant condition one can build out
of F and its partial derivatives. Moreover, every other contact invariant of an equation from the
Wuenschmann class corresponds to a conformal invariant of the Lorentzian conformal structure [g].
These conformal invariants are constructed by means of the derivatives of the Cotton tensor C of
[g]. Assuming A = 0 and using the explicit form of the projection [g] of g̃ we calculate that the five
independent components of C are

C1 = Fqqqq , C2 = Kqqq , C3 = Lqq, C4 = Nq

C5 = −3KqqL + 3KqLq − 3KLqq + 3Lqy + 3Np + FqNq,

where

L ≡ − 1
3Fqy + 1

3FqqK − Kp − 1
3FqKq

N ≡ 1
3FqqL − 2

3FqLq − 2Lp + KKqq − Kqy − 1
2K2

q .

It is worth noting that the vanishing of C1 implies the vanishing of all the Cis, so that the conformal
structure [g] has vanishing Cotton tensor iff Fqqqq = 0. In such a case the corresponding Wuen-
schmann class of equations (6) is contact equivalent to the equation y′′′ = 0.

Summing up we have the following theorem.

Theorem 1 (Wuenschmann)
Third order ODEs of the form

y′′′ = F (x, y, y′, y′′)

split onto two main contact nonequivalent classes, the Wuenschmann class and its complement.
There are contact nonequivalent equations within the Wuenschmann class. Each representative
of a contact equivalence class of equations satisfying Wuenschmann condition defines a conformal
Lorentzian structure on the space of its solutions. The conformally equipped solution spaces of contact
equivalent equations are conformally related, so that each equivalence class of equations for which
A = 0 has a natural 3-dimensional conformal Lorentzian structure associated with it.

There is a converse to this theorem.

Theorem 2 (Frittelli, Kozameh, Newman)
Every 3-dimensional Lorentzian conformal structure [g] defines a contact equivalence class of third
order ODEs satisfying the Wuenschmann condition.

Below, without the proof which can be found in [9], we sketch how to pass from [g] to the associated
class of ODEs.
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Given a conformal family of Lorentzian metrics [g] on a 3-dimensional manifold M we start with
a particular representative g of [g]. This, in local coordinates {xi}, i = 1, 2, 3, can be written as
g = gijdxidxj . Since the metric g is Lorentzian it is meaningful to consider the eikonal equation

gij ∂S

∂xi

∂S

∂xj
= 0,

for the real-valued function S = S(xi) on M. This equation, being homogeneous in S, has the
complete solution S = S(xi; s) depending on a single parameter s. Now, treating xis, i = 1, 2, 3
as constant parameters and s as an independent variable we eliminate x1, x2 and x3 by triple
differentiation of equation S = S(xi; s) with respect to s. As a result we get a relation of the form

S′′′ = F (s, S, S′, S′′), (9)

which shows that S = S(s) satisfies an ODE of the 3rd order. It follows that this equation satisfies
the Wuenschmann condition (8). It also follows that if we start with another representative ḡ of [g]
and find the corresponding complete solution S̄ = S̄(x̄i; s̄) of the corresponding eikonal equation we
get a 3rd order ODE for S̄ = S̄(s̄) which is related to (9) by a contact transformation of variables
s, S and S′.

Example 1

It can be easily checked that

F (x, y, p, q) = α
[q2 + (1 − p2)2]

3

2

[1 − p2]
3

2

− 3
pq2

1 − p2
− p(1 − p2)

satisfies the Wuenschmann condition (8) for all values of the real parameter α. Moreover, the 3rd
order ODEs y′′′ = F (x, y, y′, y′′) corresponding to different values of α > 0 are contact nonequivalent.
It follows that the conformal Lorentzian structures [g] associated with such F s have 4-dimensional
group of conformal symmetries, which correspond to four contact symmetries of the associated 3rd
order ODE [13].

3 Third order ODEs considered modulo point transforma-
tions

Cartan [3] considered 3rd order ODEs modulo point transformations of variables. These transfor-
mations are more restrictive then the contact transformations. They merely mix the independent
and dependent variables

x → x̄ = x̄(x, y), y → ȳ = ȳ(x, y) (10)

of the equation (6). Cartan in [3] found a full set of invariants which determine whether two 3rd
order ODEs are transformable to each other by a point transformation of variables. He used his
equivalence method. This method starts with a system of four 1-forms

ω1 = dy − pdx

ω2 = dp − qdx (11)

ω3 = dq − F (x, y, p, q)dx

ω4 = dx

7



which an ODE of the form (6) defines on the second jet space J2. Under transformations (10) of
the ODE (6) the forms (11) transform by

ω1 → ω̄1 = αω1

ω2 → ω̄2 = β(ω2 + γω1) (12)

ω3 → ω̄3 = ǫ(ω3 + λω2 + µω1)

ω4 → ω̄4 = ν(ω4 + σω1),

where α, β, γ, ǫ, λ, µ, ν, σ are functions on J2 such that αβǫν 6= 0. These functions are determined by
each particular choice of point transformation (10). Instead of working with forms (ωi), i = 1, 2, 3, 4,
which are defined on J2 only up to transformations (12), Cartan considers a manifold parametrized
by (x, y, p, q, α, β, γ, ǫ, λ, µ, ν, σ) and forms

θ1 = αω1

θ2 = β(ω2 + γω1)

θ3 = ǫ(ω3 + λω2 + µω1)

θ4 = ν(ω4 + σω1),

which are well defined there. Using his equivalence method he constructs a 7-dimensional manifold
P on which the four forms θ1, θ2, θ3, θ4 supplemented by three other forms Ω1, Ω2 and Ω3 constitute
a rigid coframe. This coframe encodes all the point invariant information about the ODE (6). More
precisely, Cartan proves the following theorem.

Theorem 3

A 3rd order ODE (6) considered modulo point transformations of variables (10) uniquely defines

• a 7-dimensional manifold P,

• seven 1-forms θ1, θ2, θ3, θ4, Ω1, Ω2, Ω3 on P such that θ1 ∧ θ2 ∧ θ3 ∧ θ4 ∧Ω1 ∧Ω2 ∧Ω3 6= 0 and

• functions A, B, C, D, G, H, K, L, M, N on P,

which satisfy the following differential conditions

dθ1 = Ω1 ∧ θ1 + θ4 ∧ θ2

dθ2 = Ω2 ∧ θ2 + Ω3 ∧ θ1 + θ4 ∧ θ3

dθ3 = (2Ω2 − Ω1) ∧ θ3 + Ω3 ∧ θ2 + Aθ4θ1

dθ4 = (Ω1 − Ω2) ∧ θ4 + Bθ2 ∧ θ1 + Cθ3 ∧ θ1 (13)

dΩ1 = −Ω3 ∧ θ4 + (H + D)θ1 ∧ θ2 + (3K − 2B)θ1 ∧ θ3 + (G + L)θ1 ∧ θ4 − Cθ2 ∧ θ3

dΩ2 = Dθ1 ∧ θ2 + 2(K − B)θ1 ∧ θ3 + Gθ1 ∧ θ4 − 2Cθ2 ∧ θ3

dΩ3 = (Ω2 − Ω1) ∧ Ω3 + Mθ1 ∧ θ2 + (D − H)θ1 ∧ θ3 + Nθ1 ∧ θ4 + (2K − B)θ2 ∧ θ3 + Gθ2 ∧ θ4.
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Two third order ODEs y′′′ = F (x, y, y′, y′′) and ȳ′′′ = F̄ (x̄, ȳ, ȳ′, ȳ′′) are transformable to each other
by means of a point transformation (10) if and only if there exists a diffeomorphism φ : P → P̄
of the corresponding manifolds P and P̄ such that φ∗(θ̄i) = θi, i = 1, 2, 3, 4, and φ∗(Ω̄µ) = Ωµ,
µ = 1, 2, 3.

3.1 Cartan connections associated with 3rd order ODEs considered mod-
ulo point transformations

Among the equivalence classes of 3rd order ODEs described by Theorem 3 there is a particularly
simple class corresponding to the vanishing of all the functions A, B, C, D, G, H, K, L, M, N . In case
of such ODEs the corresponding forms (θ1, θ2, θ3, θ4, Ω1, Ω2, Ω3) can be considered a basis of left
invariant forms on a Lie group which naturally identifies with the space P . The structure constants
of this group are determined by equations (13) with all the functions A, B, C, D, G, H, K, L, M, N
vanishing. This group turns out to be locally isomorphic to CO(1, 2) ⋊ R3, the semidirect product
of the SO(1, 2) group extended by the dilatations, and the translation group in R3. In this sense,
Theorem 3 can be interpreted in terms of a CO(1, 2)⋊R3 Cartan connection defined over the space
J2. Explicitly, the 1-form

ω =













Ω2 0 0 0 0
θ1 Ω2 − Ω1 −θ4 0 0
θ2 −Ω3 0 −θ4 0
θ3 0 −Ω3 Ω1 − Ω2 0
0 θ3 −θ2 θ1 −Ω2













, (14)

which has values in the Lie algebra of CO(1, 2)⋊R3, defines a Cartan connection on P . To see this
it is enough to observe that the system (13) guarantees that the annihilator of forms (θ1, θ2, θ3, θ4)
is integrable, so that P is fibered over the 4-dimensional space of leaves tangent to this annihilator.
This space of leaves naturally identifies with J2. Using equations (13) and calculating

R = dω + ω ∧ ω

to be

R =













F 0 0 0 0
0 R1

1 R1
2 0 0

0 R2
1 0 R1

2 0
Θ3 0 R2

1 −R1
1 0

0 Θ3 0 0 −F













,

with

F = Dθ1 ∧ θ2 + 2(K − B)θ1 ∧ θ3 − 2Cθ2 ∧ θ3 + Gθ1 ∧ θ4

Θ3 = −Aθ1 ∧ θ4

R1
1 = −Hθ1 ∧ θ2 − Kθ1 ∧ θ3 − Cθ2 ∧ θ3 − Lθ1 ∧ θ4

R2
1 = −Mθ1 ∧ θ2 + (H − D)θ1 ∧ θ3 + (B − 2K)θ2 ∧ θ3 − Nθ1 ∧ θ4 − Gθ2 ∧ θ4

R1
2 = Bθ1 ∧ θ2 + Cθ1 ∧ θ3,
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we find that SO(1, 2) → P → J2 equipped with ω is a Cartan bundle with a CO(1, 2) ⋊ R3 con-
nection over J2.

In the next subsection we discuss under which conditions Theorem 3 can be interpreted in terms of
a Cartan connection over a certain 3-dimensional space, the space with which all the solution spaces
of point equivalent equations (6) may be identified.

3.1.1 A subclass defining Lorentzian Einstein-Weyl geometries on the solution space

First, the system (13) guarantees that, not only P is foliated by the 3-dimensional leaves discussed
so far, but it is also foliated by 4-dimensional leaves. These are tangent to the integrable distribution
on which the forms (θ1, θ2, θ3) vanish. Thus π : P → M can be considered a fibre bundle over the 3-
dimensional space M of leaves of this foliation. A 4-dimensional group CO(1, 2) acts naturally on the
fibres π−1(M) of P equipping it with a structure of a CO(1, 2) fibre bundle over M. Now, the form
ω defined by (14) can be interpreted as a CO(1, 2)⋊R3 Cartan connection on CO(1, 2) → P → M
iff in the curvature R there are only horizontal θ1 ∧ θ2, θ1 ∧ θ3 and θ2 ∧ θ3 terms. This is only
possible if

a) A ≡ 0 (15)

and
b) G ≡ 0.

These are also sufficient conditions since, if they are satisfied, the functions N and L also vanish.
Vanishing of each of A and G is a point invariant property of the ODE (6). One can also consider
these conditions independently of each other. The vanishing of A is precisely the Wuenschmann
condition (8) which, being contact invariant, is also a point invariant. If the equation (6) satisfies
this condition it defines the conformal metric g on M. This conformal Lorentzian structure on M
is the projection of the bilinear form

g̃ = 2θ1θ3 − (θ2)2 (16)

from P to M. Thus, similarly to the contact case, point equivalent classes of equations (6) satisfying
the Wuenschmann condition A = 0 define a conformal structure on the space M. If, in addition
condition b) is satisfied then the pair (g̃, ν̃ = −2Ω2) projects to a well defined Weyl geometry
[(gew, νew)] on the space M. We recall that a Weyl geometry on a 3-dimensional manifold M is
the geometry associated with an equivalence class [(g, ν)] of pairs (g, ν), in which g is a Lorentzian
metric, ν is a 1-form, and two pairs (g, ν) and (g′, ν′) are in the equivalence relation iff there exists
a function φ on M such that g′ = e−2φg and ν′ = ν + 2dφ.
To see how the Weyl geometry [(gew, νew)] appears in the above context we first remark that the
condition G ≡ 0, when written in terms of the function F = F (x, y, p, q) defining the equation (6),
is

G ≡ 0 ⇐⇒ D2Fqq −DFqp + Fqy = 0. (17)

Then, identifying M with the quotient J2/D and using the (x, y, p, q) coordinates on J2, we have

g̃ = β2[2ω1(ω3 − 1

3
Fqω

2 + (
1

6
DFq −

1

2
Fp − 1

9
F 2

q )ω1) − (ω2)2]

−ν̃ = 2Ω2 = 2d logβ +
2

3
(Fqp −DFqq)ω

1 +
2

3
Fqqω

2 +
2

3
Fqω

4.
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The bilinear form g̃ is identical with (7), thus due to the Wuenschmann condition A = 0, it projects
to a conformal structure [gew] on M. Calculating the Lie derivative of ν̃ with respect to D we find
that

LD ν̃ =
2

3
(D2Fqq −DFqp + Fqy)ω1 + d(...).

Thus, due to condition (17), LD ν̃ is a total differential. This means that ν̃ projects to a class of
1-forms [νew ] on M which are given up to an addition of a gradient.
It follows that the so defined Weyl geometry [(gew , νew)] on M satisfies the Einstein-Weyl equations.
To see this we first recall that a 3-dimensional Weyl geometry [(g = gijθ

iθj , ν)] defines a Weyl
connection, which is totally determined by the connection 1-forms Γi

j satisfying

dθi + Γi
j ∧ θj = 0, dgij − Γij − Γji = −νgij , Γij = gikΓk

j .

The Weyl geometry is said to be Einstein-Weyl iff the curvature

Ωi
j =

1

2
Ri

jklθ
k ∧ θl = dΓi

j + Γi
k ∧ Γk

j

of this connection satisfies

R(ij) −
1

3
Rgij = 0, (18)

where

Rjk = Ri
jik R(ij) =

1

2
(Rij + Rji)

and R = gijRij , gikgkj = δi
j .

It follows that in the case of Weyl geometry [(gew, νew)] the Einstein-Weyl condition (18) reduces to
the requirement that the point invariant M of the system (13) vanishes. To show that conditions
A = G = 0, which were needed to define [(gew, νew)], imply M = 0 we apply the exterior derivative
d to the both sides of equations (13). Then from the equation d2θ3 = 0 we deduce that N = L = 0.
Having this and insisting on d2Ω2 = 0 we get that D = 2H , which is only possible if M = 0.

Summarizing we have the following theorem.

Theorem 4 (Cartan)
A point equivalence class of 3rd order ODEs represented by an ODE

y′′′ = F (x, y, y′, y′′)

which satisfies Wuenschmann condition (8) and Cartan condition (17) defines a Lorentzian Einstein-
Weyl geometry [(gew , νew)] on the 3-dimensional space M. This space can be identified with the
solution space of any of the ODEs from the equivalence class.

It is a nontrivial task to find F = F (x, y, p, q) which satisfies the Einstein-Weyl conditions (8), (17).
Cartan gave several examples of such F s (see [23] for a discussion of that issue). Here we present
two other ways of constructing them.

Example 2

It is relatively easy to find all point equivalence classes of 3rd order ODEs which admit at least four
infinitesimal point symmetries [13]. Among them there is a 1-parameter family of nonequivalent
ODEs represented by

F =
(
√

a(2qy − p2) )3

y2
, (19)
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which corresponds to nonequivalent Einstein-Weyl geometries for each value of the real constant a.
This constant enumerates nonequivalent ODEs; its sign is correlated with the sign of (2qy − p2), so
that the expression under the square root is positive. If a → ∞ the equivalence class of ODEs may
be represented by

F = q3/2, (20)

which also satisfies conditions (8), (17).

Example 3

Since 3-dimensional Lorentzian Einstein-Weyl geometries are known to be generated by solutions of
various integrable systems, one can try to use such solutions to associate with them point equivalence
classes of ODEs (6). We illustrate this procedure on an example of solutions to the dKP equation.

The dKP equation for a real function u = u(x, y, t) can be considered to be the Froebenius condition

dω̄1 ∧ ω̄1 ∧ ω̄4 = 0

dω̄4 ∧ ω̄1 ∧ ω̄4 = 0 (21)

for the two Pfaffian forms

ω̄1 = dx + (u + v2)dt + vdy

ω̄4 = dv − (uy + uxv)dt − uxdy (22)

in a 4-dimensional space parametrized by (x, y, t, v). Indeed, by substitution of (22) to (21) we find
that (21) is equivalent to

uyy = −(ux)2 + uxt − uuxx, (23)

which is the dKP equation. Since every solution to (23) generates a 3-dimensional Lorentzian
Einstein-Weyl geometry [6] it is reasonable to ask if there is a point equivalence class of 3rd order
ODEs associated with each such solution. It turns out that the answer to this question is positive.
Given a solution u = u(x, y, t) of the dKP equation there is a point equivalence class of 3rd order
ODEs, with a representative in the form (6), such that the four 1-forms (ω̄1, ω̄2, ω̄3, ω̄4) of (12)
encoding it have, in a convenient coordinate system (x, y, t, v) on J2, representatives ω̄1 and ω̄4 of
(22) and ω̄2 and ω̄3 given by

ω̄2 = (−uuxx − 2uxyv + uxxv2)dt − uxxdx − uxydy

ω̄3 = (−uu2
xx − 4u2

xy + 4uxxuxyv − u2
xxv2)dt − u2

xxdx + uxx(−2uxy + uxxv)dy.

In particular, equations (21) guarantee that there exists a coordinate X on J2 such that in the class
(12) of forms ω̄4 there is an exact form dX . This defines a function X , which in turn is interpreted
as the independent variable of the associated ODE. For example, for a very simple solution

u =
√

2x

of the dKP equation we find that

X = t +
1

2
v2 +

√
2x,

which enables us to find the associated class of 3rd order ODEs. This class may be represented by
quite a nontrivial

F (x, y, p, q) =
pq (−12 + 3pq − 8

√
1 − pq) + 8(1 +

√
1 − pq)

p3
. (24)
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It can be checked by a direct substitution that such F satisfies the Einstein-Weyl conditions (8), (17).

We close this section with a remark, that it is not clear whether all 3-dimensional Lorentzian Einstein-
Weyl geometries have their associated point equivalence classes of 3rd order ODEs. Our experience,
based on the Cartan’s equivalence method, suggests that it is very likely.

3.1.2 Conformal metric of signature (3, 3) associated with a point equivalence class of

3rd order ODEs

If an ODE (6) does not satisfy the Wuenschmann condition (15), it is impossible to define a con-
formal structure in 3 dimensions out of the Cartan invariants (13). However, irrespectively of the
Wuenschmann condition (15) being satisfied or not, with each point equivalence class of ODEs (6),
we can associate a conformal metric of signature (+, +, +,−,−,−), whose conformal invariants en-
code all the point invariant information about the corresponding class of ODEs. We achieve this by
using Sparling’s procedure [22] which, with ‘the Levi-Civita part’

Γ = (Γi
j) =





Ω2 − Ω1 −θ4 0
−Ω3 0 −θ4

0 −Ω3 Ω1 − Ω2



 ,

of the Cartan connection (14) and with the bilinear form g̃ = gijθ
iθj of (16), associates a new

bilinear form
˜̃g = ǫijkθiΓj

lg
lk

on P . Here

(gij) =





0 0 1
0 −1 0
1 0 0





and ǫijk is the standard Levi-Civita symbol in R3 so that

˜̃g = 2[ (Ω1 − Ω2)θ
2 − Ω3θ

1 + θ4θ3 ].

This bilinear form is degenerate on P and has (+, +, +,−,−,−, 0) signature. Denoting the basis of
vector fields on P dual to the 1-forms (θ1, θ2, θ3, θ4, Ω1, Ω2, Ω3) by (X1, X2, X3, X4, Y1, Y2, Y3), we
find that the degenerate direction of ˜̃g is tangent to the vector field Z = Y1 + Y2.

It is remarkable that, due to equations (13), the bilinear form ˜̃g transforms conformally when Lie
transported along Z. Explicitly, without any assumptions on the Cartan invariants A, B, C, D,
G, H, K, L, M, N , we have

LZ
˜̃g = ˜̃g.

Thus, the bilinear form ˜̃g naturally descends to a conformal metric gN of neutral signature on
the 6-dimensional space N of integral curves of the vector field Z. This conformal metric yields
all the point invariant information about the corresponding point equivalent class of ODEs (6).
In particular, the Cartan invariants A, B, C, D, G, H, K, L, M, N can be understood as curvature
coefficients of the Cartan normal conformal connection associated with gN . This Cartan connection
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can be represented by the following so(4, 4)-valued 1-form

ωN =





















































1
2Ω2

1
4 (Ω1 − Ω2) − 1

4θ4 1
4Ω3 τ4 τ5

1
2Γ3

4 0

Ω1 − Ω2
1
2Ω2

1
2θ4 Γ1

3 0 −Γ2
4 −Γ3

4 τ4

−Ω3
1
2Ω3

1
2Ω1 Γ2

3 Γ2
4 0 Γ2

6 τ5

θ4 1
2θ4 0 − 1

2Ω1 + Ω2 Γ3
4 −Γ2

6 0 1
2Γ3

4

θ2 0 − 1
2θ1 1

2θ3 − 1
2Ω2 − 1

2Ω3 − 1
2θ4 1

4 (Ω1 − Ω2)

θ1 1
2θ1 0 1

2θ2 − 1
2θ4 − 1

2Ω1 0 − 1
4θ4

θ3 − 1
2θ3 − 1

2θ2 0 −Γ1
3 −Γ2

3
1
2Ω1 − Ω2

1
4Ω3

0 θ2 θ1 θ3 Ω1 − Ω2 −Ω3 θ4 − 1
2Ω2





















































,

(25)
where

τ4 = 1
12 [X3(G) − 6H ] θ1 − 1

4K θ2 − 1
2C θ3

τ5 = 1
2 [−AC − 2X2(L) − 2M + X4(D)] θ1 + 1

12 [X3(G) − 6H + 6D] θ2 + 1
4 (−2B + 3K) θ3 + 1

2G θ4

Γ1
3 = 1

2Ω3 + 1
2 (G − L) θ1

Γ2
3 = N θ1 + 1

2 (G − L) θ2 + A θ4

Γ2
4 = M θ1 − H θ2 + 1

2 (2B − 3K) θ3 − 1
2 (G + L) θ4

Γ2
6 = (−H + D) θ1 + 1

2K θ2 + C θ3

Γ3
4 = 1

2 (2B − K) θ1 + C θ2

on P .
We remark that not all 6-dimensional split-signature conformal metrics originate from a point equiv-
alence 3rd order ODEs. To see this, we calculate the curvature

RN = dωN + ωN ∧ ωN

of ωN and observe2 that it has quite special form when compared to the curvature of Cartan’s
normal conformal connection associated with a generic (+, +, +,−,−,−) signature metric.

Summarizing, we have the following theorem.

Theorem 5

Each point equivalence class of 3rd order ODEs

y′′′ = F (x, y, y′, y′′)

defines a conformal split-signature metric gN on a 6-dimensional manifold N , which is canoni-
cally associated with this class of ODEs. The conformal metric gN yields all the point invariant
information about the corresponding class of 3rd order ODEs.

2We omit writing down the explicit formulae for this curvature here.
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4 Second order ODEs considered modulo point transforma-

tions

This case has been recently carefully studied in Ref. [17]. The ODE part of this paper includes, in
particular, description of the geometry associated with an equation

y′′ = Q(x, y, y′) (26)

considered modulo point transformations (10). This geometry, in the convenient parametrization
(x, y, p = y′) of the first jet space J1, turns out to be very closely related to the geometry associated
with the following split signature metric, the Fefferman metric,

g = 2 [ (dp − Qdx) dx − (dy − pdx) (dφ +
2

3
Qpdx +

1

6
Qpp(dy − pdx)) ] (27)

on J1 × R. More precisely, we have the following theorem.

Theorem 6

1) Every second order ODE (26) endows its corresponding space J1 × R with an orientation and
with the Fefferman metric (27).

2) If the ODE undergoes a point transformation (10) then its Fefferman metric transforms confor-
mally.

3) All the point invariants of a point equivalence class of ODEs (26) are expressible in terms of the
conformal invariants of the associated conformal class of Fefferman metrics.

4) The Fefferman metrics (27) are very special among all the split signature metrics on 4-manifolds.
Their Weyl tensor has algebraic type (N, N) in the Cartan-Petrov-Penrose classification [1, 19, 20,
21]. Both, the selfdual C+ and the antiselfdual C−, parts of it are expressible in terms of only one
component. In fact, C+ is proportional to

w1 = D2Qpp − 4DQpy − DQppQp + 4QpQpy − 3QppQy + 6Qyy

and C− is proportional to
w2 = Qpppp,

where
D = ∂x + p∂y + Q∂p.

Each of the conditions w1 = 0 and w2 = 0 is invariant under point transformations (10).

5) Cartan normal conformal connection associated with any conformal class [g] of Fefferman metrics
is reducible to a certain SL(2 + 1,R) connection naturally defined on an 8-dimensional bundle over
J1 which, via Cartan’s equivalence method, is uniquely associated with the point equivalence class of
corresponding ODEs (26). The curvature of this connection has very simple form

Ω ∼













0 w2 ∗

0 0 w1

0 0 0













.
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If w1 = 0 or w2 = 0 this connection can be further understood as a Cartan normal projective
connection over a certain two dimensional space S equipped with a projective structure [15]. S can
be identified either with the solution space of the ODE (26) in the w1 = 0 case, or with the solution
space of its dual3 ODE in the w2 = 0 case.

5 Equations z′ = F (x, y, y′, y′′, z), noncompact form of the ex-
ceptional group G2 and conformal metrics of signature (3, 2)

5.1 Equations with integral-free solutions

Consider a differential equation of the form

G(x, y, y′, ..., y(m), z, z′, ..., z(k)) = 0 (28)

for real functions y = y(x) and z = z(x) of one real variable. In this equation G : Rm+k+3 → R and
y(r), z(q) denote the rth and the qth derivative of y and z with respect to x. In 1912 Hilbert [12]
considered a subclass of equations (28) which he called equations with integral-free solutions (Germ.
integrallose Aufloesungen). These equations are defined as follows.

Definition 1 Equation (28) has integral-free solutions iff its general solution can be written as

x = x(t, w(t), w′(t), ..., w(p)(t))

y = y(t, w(t), w′(t), ..., w(p)(t))

z = z(t, w(t), w′(t), ..., w(p)(t)),

where w = w(t) is an arbitrary sufficiently smooth real function of one real variable.

As an example consider equation
z′ = y. (29)

Clearly x = t, z = w(t), y = w′(t) is its general solution, which shows that (29) is in the Hilbert
class of equations with integral-free solutions. Very simple equation (29) belongs to the class of first
order Monge equations

z′ = F (x, y, y′, z), (30)

which are equations (28) with unknowns of at most of the first order.

Associated with each first order Monge equation (30) there is a 4-dimensional space J parametrized
by (x, y, p, z) and two 1-forms

ω1 = dz − F (x, y, p, z)dx

ω2 = dy − pdx.

Every solution of the Monge equation (30) is a curve c(t) = (x(t), y(t), p(t), z(t)) in J on which the
forms ω1 and ω2 vanish.

Suppose now, that given a Monge equation (30), there exists a transformation of the associated
variables (x, y, p, z)









x
y
p
z









φ→









x̄
ȳ
p̄
z̄









=









x̄(x, y, p, z)
ȳ(x, y, p, z)
p̄(x, y, p, z)
z̄(x, y, p, z)









(31)

3See e.g. [17] for the concept of dual second order ODEs.
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such that

dȳ − p̄dx̄ = αω1 + βω2 (32)

dp̄ − z̄dx̄ = γω1 + δω2,

with α,β, γ, δ functions on J satisfying ∆ = αδ − βγ 6= 0. In such case

ω1 = ∆−1 [ δ(dȳ − p̄dx̄) − β(dp̄ − z̄dx̄) ]

ω2 = ∆−1 [−γ(dȳ − p̄dx̄) + α(dp̄ − z̄dx̄) ].

Thus, taking
x̄ = t, ȳ = w(t), p̄ = w′(t), z̄ = w′′(t) (33)

we construct a curve in J on which the forms ω1 and ω2 identically vanish. Now, the inverse of φ
which gives x = x(x̄, ȳ, p̄, z̄), etc., provides

x = x(t, w(t), w′(t), w′′(t))

y = y(t, w(t), w′(t), w′′(t))

z = z(t, w(t), w′(t), w′′(t)),

which is an integral-free solution of the Monge equation (30).

We summarize our discussion in the following Lemma.

Lemma 1

Every first order Monge equation (30) admitting coordinate transformation (31) which realizes (32)
has integral-free solutions.

Example 4

Consider equation
z′ = (y′)2. (34)

Its corresponding forms are ω1 = dz − p2dx, ω2 = dy − pdx. The change of variables x = 1
2 z̄,

y = 1
2 (z̄x̄ − p̄), z = 1

2 z̄x̄2 − p̄x̄ + ȳ, p = x̄ brings them to the form ω1 = dȳ − p̄dx̄ − x̄(dp̄ − z̄dx̄),
ω2 = − 1

2 (dp̄ − z̄dx̄). This proves that substitution (33) leads to the following integral-free solution
of equation (34):

x = 1
2w′′(t)

y = 1
2 tw′′(t) − 1

2w′(t)

z = 1
2 t2w′′(t) − tw′(t) + w(t).

A natural question as to whether all the first order Monge equations have integral-free solutions was
answered in affirmative by Monge. Thus, we have the following theorem.

Theorem 7 (Monge)
Every first order Monge equation has integral-free solutions.

It is instructive to sketch the proof of this theorem.

Given a Monge equation (30) we consider its associated two 1-forms

ω1 = dz − F (x, y, p, z)dx and ω2 = dy − pdx (35)
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on J . We say that another pair of linearly independent 1-forms (ω̄1, ω̄2) on J is equivalent to the
pair (35) if there exists a transformation of variables (31) and functions α, β, γ, δ, αδ − βγ 6= 0, on
J such that

φ∗(ω̄1) = αω1 + βω2 (36)

φ∗(ω̄2) = γω1 + δω2.

According to Lemma 1, if we were able to show that there is only one equivalence class of forms
(ω1, ω2) equivalent to (dȳ − p̄dx̄, dp̄ − z̄dx̄), the theorem would be proven. Thus, in the process
of proving the Monge theorem, we are led to study the equivalence problem for two 1-forms given
modulo transformations (36) on an open set of R4. Introducing the total differential vector field
D = ∂x +p∂y +F∂z it is not difficult to prove that a pair of 1-forms (35) originating from the Monge
equations for which

Fpp = 0 and DFp − Fy − FpFz = 0 (37)

and a pair of forms originating from the equations for which at least one of the above conditions is
not satisfied are not equivalent. Then, the Cartan equivalence method applied to the forms related
to the first order Monge equations not satisfying (37) shows that they are all locally equivalent to
(dȳ− p̄dx̄, dp̄− z̄dx̄). Thus, the first order Monge equations for which at least one of conditions (37)
is not satisfied have general solutions of the form

x = x(t, w(t), w′(t), w′′(t))

y = y(t, w(t), w′(t), w′′(t)) (38)

z = z(t, w(t), w′(t), w′′(t)).

On the other hand, if we apply the Cartan equivalence method to the forms originating from the
Monge equations satisfying (37), we show that they are all locally equivalent to (dz̄, dȳ− p̄dx̄). Thus,
taking z̄ =const, x̄ = t, ȳ = w(t) and p̄ = w′(t) we show that in such case the Monge equations have
general solutions of the form

x = x(t, w(t), w′(t))

y = y(t, w(t), w′(t)) (39)

z = z(t, w(t), w′(t)).

Therefore in the both nonequivalent cases (38) and (39) the Monge equations have integral-free
solutions. This finishes the proof of the Monge theorem.

Hilbert in [12] considered an equation
z′ = (y′′)2 (40)

and proved that it has not the property of having integral-free solutions. It turns out, that among
all the equations which have not this property, the Hilbert equation (40) is, in a certain sense, the
simplest one.

5.2 Equivalence of forms associated with ODEs z′ = F (x, y, y′, y′′, z)

The Hilbert equation (40) is a special case of an equation

z′ = F (x, y, y′, y′′, z). (41)

Equations of this type were considered by Cartan [4] who, in particular, observed that they describe
Cauchy characteristics of pairs of involutive second order PDEs for a real function of two variables.
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In the context of the present paper we are interested under what conditions equations (41) have
integral-free solutions. The treatment of the problem is a simple generalization of the method
described in the sketch of the proof of Monge’s theorem. Thus, with each equation (41) we associate
three 1-forms

ω1 = dz − F (x, y, p, q, z)dx

ω2 = dy − pdx (42)

ω3 = dp − qdx,

which live on a 5-dimensional manifold J parametrized by (x, y, p = y′, q = y′′, z). Following the case
of Monge equations, we need to study the equivalence problem for the triples of linearly independent
1-forms (ω1, ω2, ω3) on an open set of R5. More precisely, let (ω1, ω2, ω3) be defined on a open set
J ⊂ R5 parametrized by (x, y, p, q, z) and (ω̄1, ω̄2, ω̄3) be defined on a set J̄ ⊂ R5 parametrized
by (x̄, ȳ, p̄, q̄, z̄). We say that the two triples (ω1, ω2, ω3) and (ω̄1, ω̄2, ω̄3) are (locally) equivalent iff
there exists a (local) diffeomorphism φ : J → J̄













x
y
p
q
z













φ→













x̄
ȳ
p̄
q̄
z̄













=













x̄(x, y, p, q, z)
ȳ(x, y, p, q, z)
p̄(x, y, p, q, z)
q̄(x, y, p, q, z)
z̄(x, y, p, q, z)













(43)

and a GL(3,R)-valued function

f =





α β γ
δ ǫ λ
κ µ ν





on J such that

φ∗(ω̄1) = αω1 + βω2 + γω3

φ∗(ω̄2) = δω1 + ǫω2 + λω3 (44)

φ∗(ω̄3) = κω1 + µω2 + νω3.

The equivalence problem for such triples was solved by Cartan. His solution, in particular, can be
applied to the triples of 1-forms (42) originating from the Cartan equations (41). Cartan’s analysis,
restricted to such triples, shows that they split onto two main nonequivalent classes. The first class
originates from equations (41) satisfying

Fqq = 0,

the second class is defined by the equations for which

Fqq 6= 0.

Both the above classes include nonequivalent triples of 1-forms, but only the first class originates
from equations (41) with integral-free solution. All the Cartan equations with Fqq 6= 0 have not the
property of having integral-free solutions. The Hilbert equation (40) is one of the equations from
this class.

Example 5

According to the above discussion, if k 6= 0 and k 6= 1 equation

z′ =
1

k
(y′′)k (45)
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has not the property of having integral-free solutions. Thus, since one is forced to use integrals to
write down the general solution of (45), we solve it by putting

x = t, y = w(t), z =
1

k

∫

w′′(t)kdt. (46)

Cartan found better solution

x = (k − 1)t
k−2

k−1 w′′(t)

y = 1
2 (k − 1)2t

2k−3

k−1 w′′(t)2 − (k − 1)t
k−2

k−1 w′(t)w′′(t) + 1
2 (k − 1)

∫

t
k−2

k−1 w′′(t)2dt

z = k−1
k t2w′′(t) − tw′(t) + w(t).

We prefer this solution rather then (46) since it involves only second power of w′′ under the integral,
whereas the solution (46) involves the kth power. This example shows that, for a given Cartan
equation, among many different expressions for its general solution which involve integrals there
could be some preferred ones. The precise meaning of this observation is worth further investigation.

5.3 G̃2 Cartan connection for equation z′ = F (x, y, y′, y′′, z) and conformal
(3,2)-signature geometry

We will not comment any further on Cartan equations for which Fqq = 0. Instead, we concentrate
on much more interesting Fqq 6= 0 case.

First, we briefly sketch Cartan’s results on equivalence problem for forms

ω1 = dz − F (x, y, p, q, z)dx

ω2 = dy − pdx (47)

ω3 = dp − qdx

satisfying Fqq 6= 0. On doing that we supplement these forms to a coframe (ω1, ω2, ω3, ω4, ω5) on
the (x, y, p, q, z) space such that

ω1 = dz − F (x, y, p, q, z)dx

ω2 = dy − pdx

ω3 = dp − qdx (48)

ω4 = dy

ω5 = dq.

Since we are interested in all forms (ω1, ω2, ω3) which are equivalent to the forms (47) via transfor-
mations (43)-(44) this coframe is not unique. It is given up to the following freedom:













ω1

ω2

ω3

ω4

ω5













→













ω̄1

ω̄2

ω̄3

ω̄4

ω̄5













=













α β γ 0 0
δ ǫ λ 0 0
κ µ ν 0 0
π ρ σ τ χ
π′ ρ′ σ′ τ ′ χ′

























ω1

ω2

ω3

ω4

ω5













,
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which suggests that instead of working with a not uniquely defined coframe (48) on the (x, y, p, q, z)
space it is better to use five well defined linearly independent 1-forms













θ1

θ2

θ3

θ4

θ5













=













α β γ 0 0
δ ǫ λ 0 0
κ µ ν 0 0
π ρ σ τ χ
π′ ρ′ σ′ τ ′ χ′

























ω1

ω2

ω3

ω4

ω5













,

on a bigger space parametrized by (x, y, p, q, z, α, β, γ, δ, ǫ, λ, κ, µ, ν, π, ρ, σ, τ, χ, π′, ρ′, σ′, τ ′, χ′). Now,
assuming that Fqq 6= 0 and using his equivalence method (which involved several reductions and
prolongations4) Cartan was able to prove that on a certain 14-dimensional manifold P the forms
(θ1, θ2, θ3, θ4, θ5) can be supplemented in a unique way to a unique coframe. More precisely, he
proved the following theorem.

Theorem 8 (Cartan)
An equivalence class of forms

ω1 = dz − F (x, y, p, q, z)dx

ω2 = dy − pdx (49)

ω3 = dp − qdx,

for which Fqq 6= 0, uniquely defines a 14-dimensional manifold P and a preferred coframe (θ1, θ2, θ3,
θ4, θ5, Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9) on it such that

dθ1 = θ1 ∧ (2Ω1 + Ω4) + θ2 ∧ Ω2 + θ3 ∧ θ4

dθ2 = θ1 ∧ Ω3 + θ2 ∧ (Ω1 + 2Ω4) + θ3 ∧ θ5

dθ3 = θ1 ∧ Ω5 + θ2 ∧ Ω6 + θ3 ∧ (Ω1 + Ω4) + θ4 ∧ θ5 (50)

dθ4 = θ1 ∧ Ω7 + 4
3θ3 ∧ Ω6 + θ4 ∧ Ω1 + θ5 ∧ Ω2

dθ5 = θ2 ∧ Ω7 − 4
3θ3 ∧ Ω5 + θ4 ∧ Ω3 + θ5 ∧ Ω4.

Note that the above theorem implies formulae for the differentials of the forms Ωµ, µ = 1, 2, ..., 9.

4See e.g. in Ref. [18] for the definitions of these procedures
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Explicitly, these differentials are:

dΩ1 = Ω3 ∧ Ω2 + 1
3θ3 ∧ Ω7 − 2

3θ4 ∧ Ω5 + 1
3θ5 ∧ Ω6 + θ1 ∧ Ω8 +

3
8c2θ

1 ∧ θ2 + b2θ
1 ∧ θ3 + b3θ

2 ∧ θ3 + a2θ
1 ∧ θ4 + a3θ

1 ∧ θ5 + a3θ
2 ∧ θ4 + a4θ

2 ∧ θ5

dΩ2 = Ω2 ∧ (Ω1 − Ω4) − θ4 ∧ Ω6 + θ1 ∧ Ω9 +
3
8c3θ

1 ∧ θ2 + b3θ
1 ∧ θ3 + a3θ

1 ∧ θ4 + a4θ
1 ∧ θ5 + b4θ

2 ∧ θ3 + a4θ
2 ∧ θ4 + a5θ

2 ∧ θ5

dΩ3 = Ω3 ∧ (Ω4 − Ω1) − θ5 ∧ Ω5 + θ2 ∧ Ω8 −
3
8c1θ

1 ∧ θ2 − b1θ
1 ∧ θ3 − a1θ

1 ∧ θ4 − a2θ
1 ∧ θ5 − b2θ

2 ∧ θ3 − a2θ
2 ∧ θ4 − a3θ

2 ∧ θ5

dΩ4 = Ω2 ∧ Ω3 + 1
3θ3 ∧ Ω7 + 1

3θ4 ∧ Ω5 − 2
3θ5 ∧ Ω6 + θ2 ∧ Ω9 −

3
8c2θ

1 ∧ θ2 − b2θ
1 ∧ θ3 − a2θ

1 ∧ θ4 − a3θ
1 ∧ θ5 − b3θ

2 ∧ θ3 − a3θ
2 ∧ θ4 − a4θ

2 ∧ θ5

dΩ5 = Ω1 ∧ Ω5 + Ω3 ∧ Ω6 − θ5 ∧ Ω7 + θ3 ∧ Ω8 + (51)
9
32δ1θ

1 ∧ θ2 + 3
4c1θ

1 ∧ θ3 + 3
4b1θ

1 ∧ θ4 + 3
4b2θ

1 ∧ θ5 + 3
4c2θ

2 ∧ θ3 + 3
4b2θ

2 ∧ θ4 + 3
4b3θ

2 ∧ θ5

dΩ6 = Ω2 ∧ Ω5 + Ω4 ∧ Ω6 + θ4 ∧ Ω7 + θ3 ∧ Ω9 +
9
32δ2θ

1 ∧ θ2 + 3
4c2θ

1 ∧ θ3 + 3
4b2θ

1 ∧ θ4 + 3
4b3θ

1 ∧ θ5 + 3
4c3θ

2 ∧ θ3 + 3
4b3θ

2 ∧ θ4 + 3
4b4θ

2 ∧ θ5

dΩ7 = 4
3Ω5 ∧ Ω6 + (Ω1 + Ω4) ∧ Ω7 + θ4 ∧ Ω8 + θ5 ∧ Ω9 +

9
64eθ1 ∧ θ2 − 3

8δ1θ
1 ∧ θ3 − 3

8c1θ
1 ∧ θ4 − 3

8c2θ
1 ∧ θ5 − 3

8δ2θ
2 ∧ θ3 − 3

8c2θ
2 ∧ θ4 − 3

8c3θ
2 ∧ θ5

dΩ8 = Ω5 ∧ Ω7 + (2Ω1 + Ω4) ∧ Ω8 + Ω3 ∧ Ω9 +

h1θ
1 ∧ θ2 + h2θ

1 ∧ θ3 + h3θ
1 ∧ θ4 + h4θ

1 ∧ θ5 + h5θ
2 ∧ θ3 + h4θ

2 ∧ θ4 + h6θ
2 ∧ θ5

dΩ9 = Ω6 ∧ Ω7 + (Ω1 + 2Ω4) ∧ Ω9 + Ω2 ∧ Ω8 +

k1θ
1 ∧ θ2 + 1

32 (3e + 32h5)θ
1 ∧ θ3 + 1

32 (−3δ1 + 32h4)θ
1 ∧ θ4 +

1
32 (−3δ2 + 32h6)θ

1 ∧ θ5 + k2θ
2 ∧ θ3 + 1

32 (−3δ2 + 32h6)θ
2 ∧ θ4 + k3θ

2 ∧ θ5

where a1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, c3, δ1, δ2, e, h1, h2, h3, h4, h5, h6, k1, k2, k3 are
functions on P uniquely defined by the equivalence class of forms (49).

The system (50)-(51) provides all the local invariants for the equivalence class of forms (49) satisfying
Fqq 6= 0. If one is given two triples of 1-forms

ω1 = dz − F (x, y, p, q, z)dx, Fqq 6= 0,

ω2 = dy − pdx

ω3 = dp − qdx

and
ω̄1 = dz̄ − F̄ (x̄, ȳ, p̄, q̄, z̄)dx̄, F̄q̄q̄ 6= 0,

ω̄2 = dȳ − p̄dx̄
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ω̄3 = dp̄ − q̄dx̄

on respective manifolds J and J̄ parametrized by (x, y, p, q, z) and (x̄, ȳ, p̄, q̄, z̄), then there exists a
local diffeomorphism













x
y
p
q
z













φ→













x̄
ȳ
p̄
q̄
z̄













=













x̄(x, y, p, q, z)
ȳ(x, y, p, q, z)
p̄(x, y, p, q, z)
q̄(x, y, p, q, z)
z̄(x, y, p, q, z)













realizing
φ∗(ω̄1) = αω1 + βω2 + γω3

φ∗(ω̄2) = δω1 + ǫω2 + λω3

φ∗(ω̄3) = κω1 + µω2 + νω3

iff there exists a diffeomorphism Φ : P → P̄ between the associated 14-dimensional manifolds P and
P̄ of Theorem 8 such that

Φ∗(θ̄i) = θi, Φ∗(Ω̄µ) = Ωµ

for all i = 1, 2, 3, 4, 5 and µ = 1, 2, 3, ..., 9. This, in particular means that to realize the equivalence
between the (ωi)s and (ω̄i)s, the diffeomorphism Φ must also satisfy

Φ∗(ā1) = a1, Φ∗(b̄1) = b1, Φ∗(c̄1) = c1, etc.

This gives severe algebraic (i.e. non-differential) constraints on Φ and, in generic cases, quickly leads
to the answer if the two systems of forms (ωi) and (ω̄i) are equivalent.

In view of the above we ask for those equivalence classes of forms (49) which correspond to systems
(50)-(51) with all the scalar invariants (a1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, c3, δ1, δ2, e, h1, h2, h3, h4,
h5, h6, k1, k2, k3) being constants. It follows that it is possible if and only if all of them are identi-
cally equal to zero. In this well defined case the system (50)-(51) can be understood as a system
consisting of right invariants forms (θi, Ωµ) on a 14-dimensional Lie group. This group is simple and
has indefinite Killing form, as can be seen from the structure constant coefficients defined by the
system (50)-(51) with all the scalar invariants vanishing. This identifies this group as a noncompact
real form G̃2 of the exceptional group G2.

It follows that there is only one equivalence class of forms (49) corresponding to the system (50)-(51)
with all the scalar invariants vanishing. It can be defined by the function

F = q2

associated with the Hilbert equation
z′ = (y′′)2.

In case of general scalar invariants, the system (50)-(51) defines a curvature of a certain Cartan
g̃2-valued connection which ‘measures’ how much the equivalence class of forms (49) is distorted

from the flat Hilbert case corresponding to F = q2. To define this connection we first observe that
the system (50)-(51) guarantees that P is foliated by 9-dimensional leaves. These are the integral
manifolds of the distribution spanned by vector fields Yµ, µ = 1, 2, ...9 which, together with Xi,
i = 1, 2, ...5, form a frame (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9) dual to the invariant
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coframe (θ1, θ2, θ3, θ4, θ5, Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9) on P . (The fact that this distribution is
integrable, is a simple corollary, from equations (50), which show that the basis θi, i = 1, 2, ..5, of its
annihilator is a differential ideal). This proves that the manifold P is fibered over a 5-dimensional
space of leaves of this distribution. This space may be identified with the (x, y, p, q, z) space J
on which the original forms ωi, i = 1, 2, ...5, defining the equivalence class (49) reside. Thus we
have a fibration P → J , which is actually a principal fibre bundle with the 9-dimensional parabolic
subgroup H of G̃2 as its structure group. On this fibre bundle the following matrix of 1-forms:

ωG̃2
=

















































−Ω1 − Ω4 −Ω8 −Ω9 − 1√
3
Ω7

1
3Ω5

1
3Ω6 0

θ1 Ω1 Ω2
1√
3
θ4 − 1

3θ3 0 1
3Ω6

θ2 Ω3 Ω4
1√
3
θ5 0 − 1

3θ3 − 1
3Ω5

2√
3
θ3 2√

3
Ω5

2√
3
Ω6 0 1√

3
θ5 − 1√

3
θ4 − 1√

3
Ω7

θ4 Ω7 0 2√
3
Ω6 −Ω4 Ω2 Ω9

θ5 0 Ω7 − 2√
3
Ω5 Ω3 −Ω1 −Ω8

0 θ5 −θ4 2√
3
θ3 −θ2 θ1 Ω1 + Ω4

















































, (52)

becomes a Cartan connection with values in the Lie algebra of G̃2. (The fact that ωG̃2
is g̃2-

valued can be checked e.g. by successive replacement of one of the 14 forms (θ1, θ2, θ3, θ4, θ5, Ω1,
Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9) in ωG̃2

by 1 with simultaneous replacement of all the others forms by
0. The so obtained 14 matrices satisfy the commutation relations of g̃2.) The curvature of this
connection

R = dωG̃2
+ ωG̃2

∧ ωG̃2
,

being horizontal, involves only θi ∧ θj terms. This when compared with equations (51), enables the
scalar invariants to be interpreted as the curvature coefficients of ωG̃2

.

Another interpretation of ωG̃2
can be obtained by recalling that G̃2 is naturally embedded in SO(4, 3)

as its subgroup stabilizing a generic 3-form in R(4,3). We have chosen a 7-dimensional representation
of the Lie algebra g̃2 in such a way that the connection ωG̃2

can be interpreted as a reduction of
a Cartan normal conformal connection associated with a certain (3, 2)-signature conformal metric
defined on J . In the following we describe this view point.

Given an equivalence class of forms (49) satisfying Fqq 6= 0 and using the forms (θ1, θ2, θ3, θ4, θ5)
associated with them via Theorem 8 we define a following bilinear form

g̃ = 2θ1θ5 − 2θ2θ4 +
4

3
θ3θ3 (53)

on P . This form is clearly degenerate and has signature (+, +, +,−,−, 0, 0, 0, 0, 0, 0, 0, 0, 0). Using
the frame (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9) on P defined above, we see that the
degenerate directions of g̃ are tangent to the vectors Yµ. Now, the system (50) guarantees that the
form g̃ scales when Lie dragged along any of the directions Yµ. In other words we have

LYµ
g̃ = λµg̃
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with some functions λµ. This, when compared with the fact that the distribution spanned by Yµ,
µ = 1, 2, ...9, defines a foliation on P , means that the degenerate bilinear form g̃ projects from P
to J , the space of leaves of this foliation, defining there a conformal metric [G(3,2)] of signature
(+, +, +,−,−). It is this conformal structure that yields all the information about the local invari-
ants of an equivalence class of forms (49). Calculating the Cartan normal conformal connection of
this conformal structure, leads to the conclusion that it is reducible to the g̃2-valued Cartan con-
nection ωG̃2

on P .

Remarkably the conformal metric [G(3,2)] is defined on the same space J on which the original forms
ωi, i = 1, 2, ...5, defining the equivalence class (49) were defined. Thus, it is possible to write down
a local representative G(3,2) of [G(3,2)] in coordinates (x, y, p, q, z) in which the forms ωi read

ω1 = dz − F (x, y, p, q, z)dx

ω2 = dy − pdx

ω3 = dp − qdx

ω4 = dy

ω5 = dq.

Introducing the total differential operator D on J by

D = ∂x + p∂y + q∂p + F∂z

we find that a representative of [G(3,2)] is given by

G(3,2) = (54)

[ DF 2
qqF

2
qq + 6DFqDFqqqF

2
qq − 6DFqqqFpF

2
qq − 3DDFqqF

3
qq + 9DFqpF

3
qq − 9FppF

3
qq +

9DFqzFqF
3
qq − 18FpzFqF

3
qq + 3DFzF

4
qq − 6DFqF

2
qqFqqp + 6FpF

2
qqFqqp −

8DFqDFqqFqqFqqq + 8DFqqFpFqqFqqq + 3DDFqF
2
qqFqqq − 3DFpF

2
qqFqqq − 3DFzFqF

2
qqFqqq +

4(DFq)
2F 2

qqq − 8DFqFpF
2
qqq − 3(DFq)

2FqqFqqqq + 4F 2
p F 2

qqq + 6DFqFpFqqFqqqq −
3F 2

p FqqFqqqq − 6DFqFqF
2
qqFqqz + 6FpFqF

2
qqFqqz − 3DFqF

3
qqFqz + 12FpF

3
qqFqz +

3F 2
qqFqqqFy − 6DFqqqFqF

2
qqFz + 4DFqqF

3
qqFz + 6FqF

2
qqFqqpFz + 8DFqqFqFqqFqqqFz −

4DFqF
2
qqFqqqFz − 9FqpF

3
qqFz + FpF

2
qqFqqqFz − 8DFqFqF

2
qqqFz + 8FpFqF

2
qqqFz +

6DFqFqFqqFqqqqFz − 6FpFqFqqFqqqqFz + 18F 3
qqFqy + 6F 2

q F 2
qqFqqzFz + 3FqF

3
qqFqzFz −

2F 4
qqF

2
z + FqF

2
qqFqqqF

2
z + 4F 2

q F 2
qqqF

2
z − 3F 2

q FqqFqqqqF
2
z − 9F 2

q F 3
qqFzz ] (ω1)2 +

[ 6DFqqqF
2
qq − 6F 2

qqFqqp − 8DFqqFqqFqqq + 8DFqF
2
qqq − 8FpF

2
qqq − 6DFqFqqFqqqq +

6FpFqqFqqqq − 6FqF
2
qqFqqz + 6F 3

qqFqz + 2F 2
qqFqqqFz − 8FqF

2
qqqFz + 6FqFqqFqqqqFz ] ω1ω2 +

[ 10DFqqF
3
qq − 10DFqF

2
qqFqqq + 10FpF

2
qqFqqq − 10F 4

qqFz + 10FqF
2
qqFqqqFz ] ω1ω3 +

30F 4
qq ω1ω4 + [ 30DFqF

3
qq − 30FpF

3
qq − 30FqF

3
qqFz ] ω1ω5 +

[ 4F 2
qqq − 3FqqFqqqq ] (ω2)2 − 10F 2

qqFqqq ω2ω3 + 30F 3
qq ω2ω5 − 20F 4

qq (ω3)2

Despite of its ugliness this formula may be useful if one wants to write down the Cartan in-
variant forms (θi, Ωµ) and the scalar invariants a1, a2, .... directly in terms of the function F =
F (x, y, y′, y′′, z) and its derivatives.

We can summarize the above considerations in the following theorem.

25



Theorem 9

All the invariant information about a class of forms

ω1 = dz − F (x, y, p, q, z)dx

ω2 = dy − pdx

ω3 = dp − qdx

ω4 = dy

ω5 = dq.

associated with a second order Monge equation

z′ = F (x, y, y′, y′′, z)

satisfying Fqq 6= 0 are encoded in the conformal class of (3, 2)-signature metrics G(3,2) which are
naturally defined on the J space parametrized by (x, y, p, q, z).
Among all 5-dimensional (3, 2)-signature metrics the metrics G(3,2) are distinguished by the require-
ment that their so(4, 3)-valued Cartan normal conformal connection is reducible to a g̃2-valued
Cartan connection ωG̃2

.

Interestingly the conformal metrics G(3,2) are very rarely conformal to Einstein metrics. Even
weaker curvature conditions, which are necessary for a metric to be conformal to Einstein, such as
e.g. conformal C-space conditions (see Ref. [11] for the definition), are not always satisfied by the
metrics G(2,3). However there are examples of the second order Monge equations which correspond
to the conformally Einstein metrics G(3,2). Below, we present one of such examples.

Example 6

Consider a second order Monge equation

z′ = F (y′′), with Fy′′y′′ 6== 0.

Since F depends on only one variable q we will denote its derivatives by Fq = F ′, etc. Its corre-
sponding forms on J are

ω1 = dz − F (q)dx

ω2 = dy − pdx

ω3 = dp − qdx (55)

ω4 = dy

ω5 = dq.

The invariant forms (θ1, θ2, θ3, θ4, θ5, Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9) of theorem 8 are totally de-
termined by forms (θ1, θ2, θ3, θ4, θ5, Ω1, Ω2, Ω3, Ω4, Ω5, Ω6, Ω7, Ω8, Ω9) on J which satisfy system (50)-
(51). Staring with (55) we find that on J these forms can be represented by

θ1 = ω1

θ2 = ω2

θ3 = −(F ′′)
1

3 ω3 (56)

θ4 = (F ′′)−
1

3 [ ω5 − 1
3F (3)(F ′′)−1ω3 + 1

30 (−3F ′′F (4) + 4F (3)2)(F ′′)−3ω2 ]

θ5 = −(F ′′)
2

3 ω4,

26



Ω1 = 0

Ω2 = 1
90 [−45F ′′F (3)F (4) + 40F (3)3 + 9(F ′′)2F (5)](F ′′)−5θ2 + 1

30 [−3F ′′F (4) + 4F (3)2](F ′′)−
10

3 θ3

Ω3 = 0, Ω4 = 0, Ω5 = 0,

Ω6 = − 1
30 [−3F ′′F (4) + 4F (3)2](F ′′)−

10

3 θ5

Ω7 = 0, Ω8 = 0, Ω9 = 0.

In this setting the only nonvanishing function among (a1, a2, a3, a4, a5, b1, b2, b3, b4, c1, c2, c3, δ1, δ2, e,
h1, h2, h3, h4, h5, h6, k1, k2, k3) is

a5 = {−224F (3)4 +336F ′′F (3)2F (4) −80(F ′′)2F (3)F (5) +(F ′′)2[−51F (4)2 +10F ′′F (6)]}/[100(F ′′)
20

3 ].
(57)

Now applying formula (53) to the forms (56), or using formula (54) for F = F (q), we get the
following representative for the metrics [G(3,2)]:

G(3,2) = 30(F ′′)4 [ dqdy − pdqdx ] + [ 4F (3)2 − 3F ′′F (4) ] dz2 +

2 [−5(F ′′)2F (3) − 4F ′F (3)2 + 3F ′F ′′F (4) ] dpdz +

2 [15(F ′′)3 + 5q(F ′′)2F (3) − 4FF (3)2 + 4qF ′F (3)2 + 3FF ′′F (4) − 3qF ′F ′′F (4) ] dxdz +

[−20(F ′′)4 + 10F ′(F ′′)2F (3) + 4(F ′)2F (3)2 − 3(F ′)2F ′′F (4) ] dp2 + (58)

2 [−15F ′(F ′′)3 + 20q(F ′′)4 + 5F (F ′′)2F (3) − 10qF ′(F ′′)2F (3) +

4FF ′F (3)2 − 4q(F ′)2F (3)2 − 3FF ′F ′′F (4) + 3q(F ′)2F ′′F (4) ] dpdx +

[−30F (F ′′)3 + 30qF ′(F ′′)3 − 20q2(F ′′)4 − 10qF (F ′′)2F (3) + 10q2F ′(F ′′)2F (3) + 4F 2F (3)2 −
8qFF ′F (3)2 + 4q2(F ′)2F (3)2 − 3F 2F ′′F (4) + 6qFF ′F ′′F (4) − 3q2(F ′)2F ′′F (4) ] dx2.

It is a matter of checking that this metric is conformal to an Einstein metric g = e2ΥG(3,2) with the
conformal factor Υ = Υ(q) satisfying equation

10(F ′′)2 [ Υ′′ − (Υ′)2 ] − 40F ′′F (3)Υ′ + 17F ′′F (4) − 56F (3)2 = 0.

Cartan [4] classified various types of nonequivalent forms (49) according to the roots of the polyno-
mial

Ψ(z) = a1z
4 + 4a2z

3 + 6a3z
2 + 4a4z + a5,

where (a1, a2, a3, a4, a5) are the scalar invariants given by (51). This polynomial encodes partial5

information of the Weyl tensor of the associated metrics G(3,2). In particular, its invariant IΨ =
6a2

3 − 8a2a4 + 2a1a5 is, modulo a numerical factor, proportional to the square of the Weyl tensor
C2 = CµνρσCµνρσ of the metric G(3,2). Vanishing of IΨ means that Ψ = Ψ(z) has a root with
multiplicity no smaller than 3. Our example above corresponds to the situation when this multiplicity
is equal to 4. According to Cartan [4] all nonequivalent forms for which Ψ has quartic root are
covered by this example. The nonequivalent classes are distinguished by the only nonvanishing
scalar invariant a5 of (57), to which the Weyl tensor of metric (58) is proportional.
We were unable to construct an example of forms (49) for which Ψ has precisely triple root. For this
it is enough to assume that among the scalar invariants (a1, a2, a3, a4, a5) only a4 is nonvanishing.
In such situation Cartan shows that the system (50)-(51) reduces to an invariant coframe on J .
Despite the fact that in this case the system is reducible to 5-dimensions it is difficult, to find
nonhomogeneous examples of forms which satisfy it.

5For completeness we give the exact formula for The Weyl tensor of metrics G(3, 2) in the Appendix
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7 Appendix

In the null coframe (α1, α2, α3, α4α5) = (θ1, θ2, 2
√

3
3 θ3, θ4, θ5) in which the metric (54) is

G(3,2) = 2α1α5 − 2α2α4 + (α3)2

the Weyl tensor 2-forms are:

Cµν =
1

2
Cµνρσαρ ∧ ασ =













0 0 0 −w14 w15

0 0 0 w15 −w25

0 0 0 −w34 w35

w14 −w15 w34 0 −w45

−w15 w25 −w35 w45 0













,

where

w14 =
3

8
c3α

1 ∧ α2 +

√
3

2
b3α

1 ∧ α3 + a3α
1 ∧ α4 + a4α

1 ∧ α5 +

√
3

2
b4α

2 ∧α3 + a4α
2 ∧α4 + a5α

2 ∧α5,

w15 =
3

8
c2α

1 ∧ α2 +

√
3

2
b2α

1 ∧ α3 + a2α
1 ∧ α4 + a3α

1 ∧ α5 +

√
3

2
b3α

2 ∧α3 + a3α
2 ∧α4 + a4α

2 ∧α5,

w25 =
3

8
c1α

1 ∧ α2 +

√
3

2
b1α

1 ∧ α3 + a1α
1 ∧ α4 + a2α

1 ∧ α5 +

√
3

2
b2α

2 ∧α3 + a2α
2 ∧α4 + a3α

2 ∧α5,

w34 =
3
√

3

16
δ2α

1∧α2+
3

4
c2α

1∧α3+

√
3

2
b2α

1∧α4+

√
3

2
b3α

1∧α5+
3

4
c3α

2∧α3+

√
3

2
b3α

2∧α4+

√
3

2
b4α

2∧α5,

w35 =
3
√

3

16
δ1α

1∧α2+
3

4
c1α

1∧α3+

√
3

2
b1α

1∧α4+

√
3

2
b2α

1∧α5+
3

4
c2α

2∧α3+

√
3

2
b2α

2∧α4+

√
3

2
b3α

2∧α5,

w45 = − 9

64
eα1∧α2+

3
√

3

16
δ1α

1∧α3+
3

8
c1α

1∧α4+
3

8
c2α

1∧α5+
3
√

3

16
δ2α

2∧α3+
3

8
c2α

2∧α4+
3

8
c3α

2∧α5.
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