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ORDINARY DIFFERENTIAL EQUATIONS
DEFINITIONS

Def A differential equation is an equation that involves derivatives of a dependent variable with
respect to one or more independent variables.

Ex. y"+y' = e

5 2
Ex. +(§] = 0
dt

Def  Any function that is free of derivatives and that satisfies identically a differential equation
isasolution of the differential equation.

d*s)’ d?s
_— " +2] ==
dr? dt?

Ex. y'= -2’y
has
y3-3x+3y=5
(an implicit function of y) as a solution.
Def A differential equation that involves derivatives with respect to a single independent
variableis an ordinary differential equation (ODE). One that involves derivatives with respect to

more than one independent variable is a partia differential equation (PDE).

Def  Theorder of adifferential equation is the order of the highest-order derivative present.

Ex. y//+y/ = e*
is of order 2.
4.)2 2.)3 2
Ex. sl ds) a2y
dr* di? dt
is of order 4.

Def  If adifferential equation can be rationalized and cleared of fractions with regard to all
derivatives present, the exponent of the highest-order derivative is called the degree of the
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eguation.
Note: Not every differential equation has a degree.

Ex. (ﬁ)2+2[d_2s)5+(§)2=0
dt* dt’ dt
isof degree 2.
Ex. "+ (p")? = Iny”
has no degree.

GENERAL REMARKSON SOLUTIONS
Three important questions arise in attempting to solve a differential equation:
(1) Does a solution exist?
(2) If asolution exists, isit unique?
(3) If solutions exist, how do we find them?

Although most effort concerns (3), questions (1) and (2) are logically prior and must be answered
first.

Thm (Existence) A differential equation y' = f(x,y) has at least one solution passing through any
given point (X, Yo) if f is continuous.

Thm (Uniqueness) A sufficient condition for the solution to the differential equation y' = f(x,y),
passing through a given point (x,,Y,) to be unique is that of/dy be continuous.

These theorems apply only to first-order equations. However, analagous theorems apply
to higher-order equations:

Thm (Existence and Uniqueness) The n-th order equation

y® = flx,y,y',.ye D)
has a unique solution passing through the point

(X5, My5--5M,)
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if f, f,, f5, ..., f,., @l are continuous.

When the last theorem applies, an n-th order differential equation has a solution with n
arbitrary constants, called the general solution, and this solution is unique.

EX. y"-3y"-4y'+12y = 0
has the general solution
y = Ae*+Be ¥ +(Ce™
where the three arbitrary constants are A, B, and C.

Special cases of the genera solution are called particular solutions; these are determined
by the arbitrary initial conditions (Xo, Ny, -, My)-

Ex.  Theequation
y=x'+@')
has the general solution
y = ex+c?
However, it aso has the solution
y = -x%/4
which cannot be derived from the
genera solution and so isnot a
particular solution. Itiscalled a
singular solution.
To understand this last example, note that
the origina differential equation is of degree 2,

that is, it isaquadratic equation in the variable y'
and therefore can be solved to give

y = —x+y/x2+4y

- 2

Consider thefirst of these:
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)~ ~x+yx?rdy

d 2

The partial derivative with respect to y is (x? + 4y)™?, which is discontinuous at y = -x%4. It
therefore does not satisfy the uniqueness conditions. Note that only the region above the parabola
y = -x?/4 defines area equation. For initial points within this region, solutions are unique. [For
example, the point (1,2) implies from the general solutiony = cx + #that ¢+ c-2=0, sothat ¢
=1lor-2,i.e,thaty=x+1lory=4-2x. Of these, only the first satisfies the equation

) ~x+yx?+4y

4 2

in agreement with the existence theorem. The second satisfies the other equation

) ~x-yx?+4y

Y 2

Notethaty =x + 1 andy = 4 - 2x, and in fact y = cx + X, are tantents to the parabolay =
-x%4, which is the singular solution. The parabolais thus the envbelope of all these tangents,
which in turn collect al the possible initia conditions.

Singular solutions, when they occur, often appear on the borders of existence regions.

FIRST-ORDER ODEs
|. Exactness

A first-order, first-degree ODE has the form
EQ = F(x
2 (x.»)
which may be rewritten as

M(x,y)dx +N(x,y)dy = 0

o & _Mkxy)
dx N(x,y)

If this equation satisfies the existence and uniqueness theorems, then the general solution will have
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one arbitrary constant ¢, and the solution can be written
Ukx,y) = ¢

Take the differentia of both sides

du = E;—gdx+2_§c]dy
=0
which implies
dy _ _dUlox
dx aU/dy
o that
oUlex _ M
oUldy N
or

dUIdx _ aUldy
M N

Calling each of these ratios ., which in general may be afunction of x and y, we obtain

U _

ks
and

U _

ay Wy

Substituting these back into the equation for dU gives
p(Mdx +Ndy) = dU = 0

an exact differential equation. Such an eguation can be written
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Ukx,y) = ¢

The function p enables usto go from the origina differential equation to an exact differential and
then, by integration, to a function that solves the differential equation. Thus . is called an
integrating factor.
If the differential equation
Mdx+Ndy = 0

already is exact, then by definition there is afunction U(x,y) such that

Mdx +Ndy = dU
But
dU = a_U-dx+a_(]d.y
ox ox

which implies that

W _
ox
U _n
oy

For a sufficiently smooth function U,

a_ Fu
dy dyodx
_ U
dxay

_ N

dy

Thus the relation

oM _ oN

oy ox
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is a necessary condition for exactness. It turns out also to be sufficient. Thuswe have

Thm A necessary and sufficient condition for exactness of the differential equation

Mdx +Ndy = 0
IS

M _ N

oy ox

Ex.  Thedifferential equation

(2xy+3x2)dx +x%dy = 0

IS exact because

82y +3x?) _
dy
_ o?
ox

Thus, by the sufficiency part of the theorem, there exists a function U such that

(2xy +3xY)dx +x%dy = dU

or equivalently such that
8_(] = 2x.y+3x2
ox
U _ 2
aY

We use these last two relationships to determine U. By reversing the
differentiation (i.e., by integrating), we can recover U. Therefore

U= f(2xy +3x2)ax +£(y)
where f(y) is the constant of integration. So
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U = x%y+x*+£()
To find f(y), use the second relationship above:

aUu

3 "0
= x2
- fo=0

= f) =4 constant
Thus

U=x%+x3+4

II. Solving First-Order Differential Equations
A. Separation of variables.

Ex. To solve

de _ dy
ey
Then integrate
dc _ rdy
f; - fyz
which gives
-2
—x_ = - _1+A
2 y
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or

l = —_— +A
y  2x?
which isan implicit function for y.

This method in fact is a shortcut way of finding an integrating factor. To seethis, re-write the
original differential equation in the form Mdx + Ndy = O:

yie-x3dy = 0
We see that
+ -3x2
_ oN
ox

so the equation is not exact. However, the function (xy?)* is an integrating factor; multiplying
the differential equation by it gives

& _d& _,

P
for which
M
ay

_ oN
ox

so that exactness holds.
B. Integrating factors involving one variable.

Ex.  Theequation
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(2y%x-y)de+xdy = 0

is not exact and not separable. However, the function y? is an integrating factor:

Y72y -y)dx+y *xdy = 0

or

(2x-y Ndx+xpdy = 0
or

(ey *dy -y “dx) +2xdx = 0
which is

—d(i] +d(x?) = 0
y

so that we have, upon integrating,

How do we know y? is an integrating factor? (Ignore the problem of how we found it in the first
place.) To seethis, consider the case where Mdx + Ndy = 0 is not exact or separable. Multiply
by the integrating factor p (as yet unknown) to obtain the exact equation puMdx + uNdy = O.
Then by definition

d d

—(pM) = —(uN)

ay ox
Consider two cases.

(i) pisafunction of x alone.

In this case,
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or

i _ i(az_u_aN]ﬂ

L Nl o

J(x)dx by hypothesis

S o [Feaas

where the arbitrary constant of integration has been set equal to zero. Thuswe
have the following:

l[aM_aN

N a_y a] = fx)

where f(x) isafunction of x alone, then eff(x)dx

is an integrating factor.
(i) pisafunctionof y aone.

Similar reasoning leads to the following:

L[GLV_GM

v & E] =80

where g(y) isafunction of y aone, then ef S is an integrating factor.
C. Important special case of the previous method - the linear first-order equation.

An eguation that can be written in the form
@ +Px)y = O(x
= )y = 0x)

iscalled alinear equation of first order. (Notethat it isonly required to be linear in'y, not X.)
This equation has €™ as an integrating factor, so that we may write
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edex % +Pyefpdx _ Qedex

which is equivalent to

dex

d dex
—_— e = e
e ) =0
which we may integrate to obtain
yefpdx = erdexdx+c

which is the general solution.
D. Other methods.

Often, equations are not immediately solvable by multiplying by an integrating factor.
Numerous specialized methods exist for such equations, usually involving some convenient

transformation of variables.

Ex.  Theequation
dc _ .y
dx f(x)

(unfortunately called a homogeneous differential equation) can be solved by the
transformation

yix = v

oy VX

Differentiate both sides of y = vx with respect to x:

dy _

dv
— = V+X—
S0 that

¥ Y
vax—- = f(2)
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or

d _ v

x  f()-v

which has variables separated and is easily solved.

[11. Line Integrals and Differential Equations

A. Basics.

A lineintegral generalizes the concept of the integra to include integrals of vector-valued
functionson R". For simplicity, we will restrict attention n=2.

Let
E=(x,y) e R5E=xi +yj wherei, j are basis vectors
R~ R?; d(E) = [f(x, ¥), 9(x, y)] wheref, gR* - R*
p:R' - R?, p(t) = £, with |p/(£)| >0 V te[a,b] and p(t) = [r(t), S(t)] wherer,s:R*
- R?
C =graphof p(t) for t € [a b], called adirected arc

Def Thelineintegral of ¢ along C, the graph of & = p(t), is the number

f $(E)-dE = f [fCe,p)dx +g(x,y)ay]
C C
b
= f {fIr@®,s@OIr () +glr@),s@)]s () }dt

Ex. Let ¢(&) = (x4 y?) and C be the graph of p(t) = (5cost, 5sint) for t € [-1/2 T,
1/27]. Then
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/2
f (25 cos’t, 25 sin’t): (-5sint, S cost)

-1/2

[ba
C

/2
= f (- 125 cos?tsint, 125 sin’tcost)- (-5 sint, S cost)
-1/2

1 1 /2
= 125| —cos3¢+—sin’t
3 3

-n/2

250

3
Many times we integrate around a closed path, which is one that begins and ends at the
same point. We must distinguish between the two directions around the path; integrating in one

direction yields the opposite sign as integrating in the other direction. By convention, we
integrate in the counterclockwise direction. The notation

FdErdE
P

indicates integrating around the closed path P in the counterclockwise direction. (If the direction
of integration ever is ambiguous, the notation is altered by putting an arrow on the circle to show
the direction of integration.)

Thm (Fundamental Theorem of Calculusfor Line Integrals.) Suppose ¢ isthe gradient of a
scalar-valued function h:R* -~ R*. Then

[bCydE = [VhEyd
C C

b

= f Vhlp(@)]p'(t)dt

a

b
= [Dlp(ar

= h[p(b)] - hlp(a)]

B. Green's theorem; functions defined by line integrals.

Page 15 of 87



Let P be the path shown in the graph, and let v
R be the region bounded by P. Then

d

OO = Lfy)de+gx y)b]
P P
= §f@.y)dc+ fg(v.y)dy
P P

To evaluate these last two integrals, we decompose
P into two directed arcs. For the first integral, we
consider P as the union of the arc ACB and BDA,;
for the second, we consider P as the union of CBD
and DAC. Thuswe have

4

ey = [ ey [ feey)s
P ACB BDA
fg(x,y)dy = f g0e,y)dy + f g(e,y)dy
P CBD DAC

Let ACB be the graph of y = r(x) and ADB be the graph of y = 5(x). Then

b
f fCe,y)de = ff [x, 7 (x)]dx
ACB a
b
[fGyde = - [ f@y) = - [flx, sl
BDA ADB a

so that
b
ff Ce.y)de = - f [f (e, s(e) - F G, r(x)]ax
P a

By the fundamental theorem of calculus, for each x € [a, b] we have
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Fle,s@1-fIx,r@] = £

5(%)

= [He.y)dy
r(x)
so that
b s{x)
X,y = - 2(x,y
7@ pyde = - [ [1c.p)dvae
P ar(x)
= [ [fe.)dA
R

Similarly, if thearcs CBD and CAD are the graphs of x = q(y) and x = p(y) for y € [c, d], then

d d
fete.v)dy = [2190).1dy - [2lp().y1dy

d
= f [2(a0).y) -g(P®).»)]dy

q0)
ay

pO)

d
= [8tx.»)

d q(»)
[ [&te.n)ay

c p®)

= [[&1(x.y)d4
R

Then by substituting into the original integral, we obtain Green's Theorem (also called the
fundamental theorem of calculus for double integrals):

Thm FOEraE = [ [lg,6c)-fix,)dd
P R

Green's theorem is important because it allows sensible definitions of functions in terms of
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lineintegrals. To define afunction F:R? - R* with aline integral, choose a point . = (a, b) and
define F(€), for any & = (X, y),

£
FE) = [éCy)ydy

In general, this definition is inadequate in that the
value of F will depend on the path chosen from « to
€. To have auseful definition, we onlyn use line
integrals to define functions when the integral is
independent of path. We use Green's theorem to
identify path-independent integrals.

Let P, and P, be two directed pathsin R that
connect the points (a, b) and (x, y). We want F to
be path-independent, so require:

[btryay = [b(erdy
P, P,

= §brydy = 0
A

where P= P, u P,. Suppose the region D bounded by P is ssmply connected (essentially, has no
holes). Then by Green's theorem

fdcrrdy = [ [lg@,v)-fw,v)ldd
D

where (u, v) = y. Thedoubleintegral is zero if, for each point of D, g, = f,. Thuswe have:

Thm If Rissimply connected and f, = g, V 8 € R, then the equation
3
FE) = [érydy

defines afunction F:R? -~ R™.

We can compute the partial derivatives for this function F as follows:
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Thm For F defined by
(x.»)
Fx,y) = f Lf (u,v)du+g(u,v)av]

(a,b)

where f and g are continuous and satisfy f, = g,, we have
D F(x,y) = f(x,y)

D F(x,y) = g(xy)

Proof: Write
(c.y) ()
F(x,y) = f d(y)dy + f d(y)dy
(a,b) (.)

Thefirst of these integralsis independent of x so that

(e.») (x.»)
Fix,y) = D, [ &(vydy+D, [ o(r)dy

(a,b) ©y)

(x.y)
=D, f d(y)dy

(c.y)

,y)
= D, f[(u,v)diwg(u,v)dv]

(c.y)

We may use any path to evaluate this integra; it is convenient to use the horizontal segment
joining (c, y) and (X, y), dong which v is constant at the valuey:

u=r(t) =t, te[c, x|
v=s(t) =y

Then we have
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¢e.) x y
f [ (u,v)du+g(u,v)av] = ff[r(t),S(t)]r’(t)dt+ fg[r(t),S(t)]S’(t)dt
c y

ey

= [f@.yyat
Consequently,
F, = D, [f@.y)dt

=f(x.y)
The proof that D F = g(x,y) issimilar. QED

The Fundamental Theorem of Calculus for Line Integrals tells us that the line integral of a
gradient isindependent of path. The converseis also true:

Thm If lineintegrals of a continuous function ¢ are independent of path in someregion R, then ¢
isthe gradient of a scalar-valued function.

Proof: We can take as this scalar-valued function the function F defined by

E
FE) = [ d(y)-dy

for which
VEE) = [Fi(e.),Fyx,»)]
= [f(x.3),8(x,y)]
= $®
QED

C. Application to Differential Equations

Let f(x,y) and g(x,y) satisfy f, = g,, and let
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(.
Fe.y) = [ [f@.v).g@.v)]du,v]
(a.b)
For any c in the range of F, the set of points S satisfying F(x,y) = ¢ constitutes alevel curve
(contour) of F. Supposer is adifferentiable function whose graph is a subset of this level curve,
i.e.,
F(s,r(x)) = ¢ VxelcS
Then

D_F(x,r(x)) = F,(x,r(x))+F,(c,r(x))r'(x)
= [ e, (x)) +g(x, 7 ())r'(x)
= D.c
=0
Therefore, in theinterval |, the function y = r(x) satisfies the exact differential equation
fCe,y)+gCe,yy'=0

which in our earlier notation can be written

M(x,y) +N(x,y)% =0

or
M(x,y)dc+N(x,y)dy = 0
So we conclude that

(2) level curves of functions defined by line integrals provide solutions to exact differential
eguations;

(2) the condition for exactness of the differential equation is the same as that for path
independence of the corresponding line integral.
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Ex.  Thedifferential equation
6x+y3+3xy%y’=0

IS exact because

&

Therefore, we can set

()
F(x,y) = f[(6u+v3)du+3uv2dv]

(0,0

v

and use the path shown to find that
(@y) 4

F(x,y) = xp*+3x?
Level curves of thisfunction are graphs of the form

x3+3x% = ¢

s0 the function

y:

173 0 (x0) u
c-3x2 )

X

satisfies the differential equation. The value of ¢ is determined by initial conditions. For example,
if theinitial conditionisthat y = 3whenx =1 [that is, (X,, Y,) = (1,3)], then c = 30.

LINEAR DIFFERENTIAL EQUATIONS
|. General

Def A linear differential equation of order n has the form
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n n-1

*ta,(x)

a,(x
of )dx” dx"!

+... +an1(x)% +a (x)y = F(x)

where a(x) and F(x) do not depend ony.

It is often convenient to express a linear differential equation in terms of differentia
operators:

a,()D"y+a,(x)D" 'y +...+a, ,(x)Dy+a,(x)y = F(x)
or

[a,(x)D " +a,(x)D" " + .. +a,_ ()D+a,(¥)]y = F(x)
or

éD)y = F

Clearly,
D"(u+v) = D"u+D"v
D"(au) = aD"u

Any operator satisfying these propertiesis called alinear operator. It iseasy to show that ¢p(D)
isalinear operator.

We want to discover how to find the general solution to alinear differential equation. To
do so, we will examine the homogeneous (or complementary) equation

éD)y = 0
Its solution provides a crucial step in finding the solution to the original equation.

Thm If y = u(x) is any solution of the given equation and y = v(X) is any solution of the
homogeneous equation, then y = u(x) + v(X) is asolution of the given equation.

Proof: We have

¢D)u = F(x)
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¢D)v = 0
Adding, we have

¢D)(u+v) = F(x)
Def The genera solution of the homogeneous equation is called the homogeneous (or
complementary) solution. A solution of the given equation in which all constants have specified

valuesis called a particular solution.

Thm The general solution of ¢(D)y = F(x) may be obtained by finding a particular solution y, and
adding it to the homogeneous solution y..

Ex.  The homogeneous equation for

(D*-5D+6)y = 3x

0

(D*-5D+6)y
It may be verified that the homogeneous solution is
y, = c,e*+ce”

It a'so may be verified that the particular solution is

Therefore, the general solutionis
Yy =Y.t

= ¢ e+ c2e2"+ix+i
2 12

Obvioudly, two important questions must be answered:
(1) How do we find the homogeneous solution?

(2) How do we find the particular solution?
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II. Existence and Uniqueness
Thm Let a(x) and F(x) be continuous on the interval [a,b] and suppose &,(x) # 0V X € [a,b].

Then there exists a unique solution y(x) satisfying the differential equation and also theinitial
conditions

y®@@) = p, i=0,1,..,n-1 and ce[ab],and p, constants

[11. Obtaining a Homogeneous Solution
Suppose we want to solve
(D-2)y = 0
which isthe same as
dyldc-2y = 0
Thisis easily solved by the methods discussed earlier:
y = ce*
This solution could aso be found by lucky guessing. Assume a solution of the formy = €™ with
m to be determined. For thisform to be a solution, it must satisfy (m-2) €™ =0, i.e.,, m=2
because €™ is never zero. This solution can be generalized to ce”.
Would the same guessing method work on the equation
(D%-3D+2)y = 0
Lettingy = €™, we obtain
(m?-3m+2)e™ = 0
= mi-3m+2 =0

= m=1or2

= € and € are solutions
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What is the general solution? We know a genera solution must have two arbitrary constants, so
let us propose

_ x 2x
y = cle +c2e

Thisfunction is easily shown to satisfy the original equation and therefore must be the general
solution.

Thm If y, y,, ..., ¥, are solutionsto ¢p(D)y = O, then c,y; + ¢y, + ... + Gy, alsoisasolution.

The equation used above for determination of m is called the characteristic (or auxiliary)
equation and has the form ¢(m) = 0. Note that this equation applies only to differential equations
with constant coefficients, that is, with g(x) = 8. For the most part, we will be concerned only
with equations that have constant coefficients.

Thm If the differential equation ¢(D) = 0 has constant coefficients and if the roots of the
characteristic equation are distinct, then the general solution is

n

m.x

y = Ecie '
i1

where m, are the roots of the characteristic equation.

Thm If the characteristic equation has repeated roots, then the general solution is

d 7y
y = 3| S eurt]ens
i=1 \ j=1

where d = number of distinct roots, n, = multiplicity of theith root withn, + ... + n, = n =the
order of the equation.

Ex.  Thedifferential equation
(D2-6D+9)y = 0
has one root equal to 3 with multiplicity 2. Therefore the genera solution is
(¢, +c,x)e™

The foregoing theorem is a consequence of the following:
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Thm If y =y, isone solution of the nth-order differential equation ¢p(D) = F(x) [with variable or
constant coefficients], then the substitution y = y,v will transform the given equation into one of
the (n-1)st order in dv/dx.

Ex.  One solution to
(D%*-6D+9)y = 0
ise®. According to thetheorem, let y = ve®. Then
Dy= v'e3*+3ve3*
d2y — v//eSx+6V/e3x+9ve3x
so that we obtain
v/e3% = ¢

whichimplies v = 0 or v = ¢, + c,x. Consequently,

y = (¢, +c,x)e™

V. Linear Independence and Wronskians

Suppose we have the differential equation
(D3-6D%+11D-6)y = 0
and somehow arrive at the three solutions
e 2x 4 2e*

5e%*+4e*

Is the general solution given by

y = A(e**+2e*)+B(5e?*+4e*) +C(e*-e?¥)
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The answer is no because we can rearrange terms to get

y = 2A+4B+C)e*+(4+5B-C)e?*

2x

ce*+cye
which has only two arbitrary constants.

A basic principle in determining general solutionsis the following

Thm Ify,, y,, ..., ¥, aren linearly independent solutions of the nth order linear differential
eguation

¢D)y = [a(x)D" +a,(x)D" ' +... +a,]y
=0
then all solutions have the form
Y = eNtG)h .t y,

which is the general solution.

The problem in the foregoing example is that the three solutions are not linearly independent. A
test for linear independence is given by the following:

Thm The set of functionsyy, Y,, ..., ¥, islinearly independent if and only if the Wronskian

yl y2 yn
woon v,
Loyl Ly
W(y,.Yy,-..»Y,) =
RO B R

isnot identically zero.

Ex.  Thefunctions x?> and x® have the Wronskian
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x? x
W =
2x 3x?
_x4

which is not identically zero. Notethat W =0 at x = 0, but that is different from
W being identically zero.

V. Behavior of Solutionsto Second-Order Equations

Suppose the differential equation

é(D)y = (a,D*+aD+a,)y
=0

has constant coefficients. Then the behavior of the solution depends on the values of the roots of
the characteristic equation.

A few examples will be mentioned here; detailed discussion is deferred until systems of
equations have been discussed.

(A) Distinct negative roots

The solution has the form
mlx m2x
y =ce " +ce

withm;, m, <0. Therefore,y -~ 0asx ~ «. Inthiscase, y isasymptoticaly stable.

(B) Distinct positive roots

y—> o adSX — o
SOy isunstable.

(C) Didtinct imaginary roots

For the equation
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(D%*+1)y = 0

we have the characteristic equation
m?+1 =0

which has the conjugate pair of imaginary roots +i. The general solution is
y =ceFrce™

What does this solution mean?

The functions € and €™ are defined to be

ix

e cosx +isinx

e '* = cosx-isinx
which are derived from the series expansion of €'

2 u3
e’ = l+u+—+—+_.

21 3l
with u replaced by ix or -ix.
Therefore

cleix+c2e-ix = cl(cosx +isinx)+c2(cosx—isinx)

(¢, +c,)cosx +(c; —c,)isinx
= Acosx +Bsinx
=Yy
Because y must be real, both A and B must bereal. Therefore
c,+c, = A real

(¢,-¢,)i =B real
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B
= €, = ——+—
2i 2

B A4
= clz_‘+_
2i 2

In this particular example, the solution
y = Acosx + Bsinx
produces endless non-damping and non-explosive cyclesas X — .

In general, imaginary roots yield cyclic solutions. The solutions may be damped, endless,
or explosive, depending on the values of the real parts of the roots.

Ex.  Theequation
(D?2+2D+5)y = 0

has roots m = -1 + 2i and the general solution

(-142i)x (-1-2D)x
Yy =ce +c,e

e —x(cle2ix+c2e —2ix)

e *(Acos2x + Bsin2x)
which leads to damped cyclesas x - .
V1. Obtaining a Particular Solution

Our next step isto discover how to find a particular solution to the equation ¢(D)y =
F(x). We briefly examine two methods.

A. Method of Undetermined Coefficients
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This method applies when F(x) consists of a polynomial in x, terms of the form sin(px),
cos(px), and € where p = constant, or combinations of sums and products of these. When
products of these terms are not present, the rules for using the method are:

(1) Write the homogeneous solution y,,.

(2) Assume a particular solution with the same kinds of terms constituting F(x):

(a) For apolynomial of degree n, assume a polynomial of degreen.

(b) For terms sin(px), cos(px), or sums and differences of such terms, assume
asin(px) + b cos(px).

(c) For terms €%, assume ae™.

(3) If any of the assumed terms already appear in the homogeneous solution, they must be

multiplied by a power of x sufficiently high (but no higher) that they do not occur in the

homogeneous solution.

(4) Evaluate the coefficients of the assumed particular solution, thus obtaining ye.

(5) Add y, and y, to obtain the genera solution.
When products of the basic terms are present, one first must differentiate the right side
indefinitely, keeping track of all essentialy different terms that arise. If these are finite in number,
then the method of undetermined coefficientsis applicable. The assumed particular solution is
formed by multiplying each of the terms that appeared in the differentiation by an undetermined
constant and adding the results.

Ex. (step 2.b) The homogeneous solution of
(D?2+4D+4)y = 6sin3x
Yy = (e +e,x)e ™

To find a particular solution, we ask what functions differentiated once or twice yield
sin3x or constant multiples of it. The answer issin3x or cos3x. Therefore, we try

Vp = asin3x +bcos3x
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Substituting in the given equation gives

(D*+4D +4)y

(-5a- 12b)sin3x + (12a - 5b)cos3x

6sin3x

The second equality will be satisfied if and only if

-5a-12b=6
12a-5b=0

l

a=-30/169, b=-72/169
Y =Vc*Vp

l

2 _ isin3x - LcosBx
169 169

= (c,tcyx)e”
Ex. (need to differentiate RHS) Suppose we have
(D?+1)y = x2%cos5x
The homogeneous solution is
Yo = €,COSX +C,8inx
To find a particular solution, begin differentiating the functions x 2cos5x:

1st round: yields terms of the form x2sinSx and xcosS5x

2nd round: yields x %2cos5x, xsinSx, and cos5x

Continuing in this manner, we find that no terms other than the following arise (where we
ignore numerical constants):

x 2cosSx
x 2sinSx
XcosSx
xsinSx
cos5x
sinSx
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Therefore, we assume as a particular solution
Yp = ax 2c0s5x + bx sinSx + ¢ xcosSx + fxsinSx +gcosSx + hsinSx

If the RHS of the given equation were Inx, successive differentiations would give 1/x, 1/%?,
... which areinfinite in number. In this case, the method of undetermined coefficientsis
inapplicable and some other method must be used.

B. Method of Variation of Constants

This method is generally applicable but can be difficult because it requires integration of
functions to determine the general solution. The method isillustrated by finding the solution to
the following equation:

y"+y = tanx

The homogeneous solution is
Yy = Acosx +Bsiny

The solution is the general solution to the equation
y'+y =0

A particular solution to the homogeneous equation therefore is
Ygp = COSX +sinx

We therefore can regard the homogeneous solution as the product of the vectors (cosx, sinx) and
(A, B).

To find agenera solution to the original equation, we try generalizing y,, by letting A and
B be functions of x rather than constants (hence the name of the method). If we are to determine
two functions A(x) and B(x), we need to have two conditions to indentify the two functions. One
of theseisthat
y = A(x)cosx + B(x)sinx

satisfies the original equation. The other we are free to choose as we need.

We proceed by differentiating the function
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y = A(x)cosx + B(x)sinx
to obtain
y' = —A(x)sinx + B(x)cosx + A '(x)cosx + B (x)sinx

Clearly, further differentiation will introduce more terms, so we seek a condition we may impose
that will simplify this last equation. The following iswhat we seek:

A'(x)cosx +B/(x)sinx = 0
which then gives
y! = —A(x)sinx + B(x)cosx
Therefore
v = -A(x)cosx - B(x)sinx - 4 '(x)sinx + B /(x)cosx
Substituting these expressions for y' and y" into the original equation gives
-A(x)sinx + B/(x)cosx = tanx
This, together with the earlier condition that
A'(x)cosx + B/(x)sinx = 0
gives the following expressions for A'(x) and B'(x):

-sin’x

A't) =
cosx

B/(x) = sinx

Therefore, by integration,
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22
A(x) = f—il::s;:dx

2. _
:fcosx ldx
cosx

f (cosx - secx)dx

sinx - In(secx +tanx) +¢,

B(x) f sinx dx

-CosX +¢,
which gives
Yy = c,co8x +c,sinx - cosxIn(secx + tanx)

as the general solution to the origina equation.

C. Operator Methods

Suppose we “solve” the differential equation
¢D)y = F(x)

by writing

1
Yy = MF(X:)

where ¢ (D) represents an operation to be performed on F(x). What is this operation?

To gain insght, consider the simpler equation Dy = x. Then we would have
= —x
Y D

However, we can solve Dy = x by the usual methods:
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y = [xdx
S0 it seems natural to define
lx = fxdx
D
It is then straightforward to show that, analogously,
D™7x = fff...fxdxdx(bcmcbc n-fold

Now consider

d-p)y = f(x) p constant

Formally, we have
- L1y
D-p
Solving the differential equation by usual methods gives
y = epre PEf(x)dx
so it is natural to define
(D-p)'fx) = e f e Pf(x)dx

Note that this reduces to our earlier definition for p = 0.

Now consider
D-p)D-pyy = f(x)

The operator (D-p,)(D-p,) has several important properties:

1  D-py-= %-py, so that
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D-p)D-py = (%—pl)(% ~p,)y

Y

=(i-p -DP,y)
d " Vde 2

%(% -D,)) _P1(ﬂ

Y -P, »)

d?
dx2

-, +p2)@ +p,p,y

D?- _(pl +p2)D +p1p2]y

The reasoning used here establishes that D operators may be multiplied or factored like algebraic
guantities, as long as the p. are constants.

2 One may show that the factorization
a,D"+a D"'+ . +a, = a,(D-p)D-p,)..(D-p,)
is aways possible and unique when the g are constants.
(€)) D operators obey the commutative, associative, and distributive laws.

Thislast fact allows us to solve our original differential equation by writing

_ 1
Y D-p)D-p,) 76

By applying our earlier results, we have

1
D-p)D-p,)

1) = € [e 7 e e Pf) de

In asimilar manner, we may write
[(D-pYD-p,)-.D-pI ' f() = ™ [e e [ . " [ P flx)dhe "

Expressions like the left side of the last equation are often easier tohandle if resoved into
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partiad fractions. We briefly review partial fractions.

Def Theratio of two polynomiasis called arational expression.

Thm Every rationa expression can be written as a sum of the forms
q,x"+q,_, x™ +q,

A

(c-ay

Bx+C

— = where b2-4x < 0
(x2+bx+cy

To apply the method of partial fractions, first examine the rational expression. If the

degree of the numerator isless than that of the denominator, we can proceed. Otherwise, we use
long division (synthetic division) to write

F@ = 00+ 73

where deg R(x) < deg D(x).
Ex. If wehave

(x*+1)
(x-2)

we perform long division

x2+2x+4
x—2h3+1
x3-2x2
2x2+1
2x2-4x

4x+1
dx+1
9
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to obtain

3
x+1 = x3+2x+4+ 9
x-2 x-2

Once we have arationa expression with only the degree of the numerator less than that of the
denominator, we apply the method, according to which

(a) each factor (x-@)" in the denominator leads to a sum of the form

4, 4, 4
+ + ...+
x-a (x-ay’ (x-ay

r

(b) each factor (x* + bx + ¢)" in the denominator |eads to a sum of the form

B x+C, B,x+C, B x+C,
+ b ——T
(x*+bx+c) (x*+bx+c) (x?+bx+c)

Ex.  Weuse partid fractions to write

6x3+5x2+21x+12 _A, B  Cx+D
x(x+1)(x2+4) x x+1 x2424

which can be rewritten as
6x3+5x2+21x+12 = A(x+1)(x2+4)+Bx(x2+4)+Cx+Dx(x+1)
= (A+B+C)x*+(A+C+D)x*+(44A+4B+D)x +44

Therefore, equating coefficients,

A+B+C =6

A+C+D

I
W

44+4B+D = 21
44 = 12

which we can solvefor A, B, C, and D to obtain
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B =2
C=1
D=1

With these results on partial fractions, we can re-write expressions such as
[(D-p)(D-p,)...(D-py)] ™ in the form

A1+A2++A

D p Dop “*Dop

n

Therefore, we have

! 6 = = fy -2 p) 4
X) = + + ...+
D-p)D-p,)..(D-p,) D-p, D-p, D-

— (%)
Py,

=A™ f e P fx)dx+... +A e f e " f(x)dx
which involves only single integrations.

Ex.  Tofind the general solution of (D?- 1)y = €*, we write

1 e "
(D-1)(D-2)

12 172 o
D-1 D+1

%exfe'“dx—%e'xfdx

y:

1}
iy
)
&
+
o
N
]
|

= Ae*+Be *- lxe ""
2

Note that if we set the constants of integration ¢, and ¢, equal to zero, we obtain a

Page 41 of 87



particular solution.

Ex.  Tofind aparticular solution of
(D*-D+1)y = x*-3x2+1
we write

y = 1 (x*-3x%+1)

1-D+D?
By long division in ascending powers of D:

1

— = 1+D-D3-D%*+ .
1-D+D

Therefore, formaly,

= (1+D-D3*-D*+ )(x3-3x2+1)
y

(x3-3x2+1)+D(x*-3x2+1)-D3(x3-3x2+1)-D*x*-3x2+ 1) +...

x3-6x-5

which can be verified as a particular solution.

SYSTEMS OF EQUATIONS
|. General

We wish to analyze systems of the following type:
yll = .fl(t)yl)y2)‘“)yn)

Vs = £,V 0,)

V)= £V 00,)
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where f. are functions defined in some region D of R™%. To proceed more compactly, we define
Y= (pYed)
ft.y) = LH0.40),-.1,0]
y'= 0y 0)
Thus we can write our original equation system in vector form:
y' = ft.y)
To solve this system meansto find aredl interval | and a vector ¢(t) defined on | such that
() ¢'(t) existsforeachtinl
(i) the point (t, ¢(t)) liesin D for each tin |
(iii) '(t) = f(t, d(t)) for every tin|
II. Existence and Uniqueness

Thm If f and of/dy, Vk are continuous in D, then given any point (t,, ) there exists a unique
solution ¢ of the system

y' = flt,y)

satisfying the initial condition ¢(t,) = . The solution exists on any interval | containing t, for
which the pints (t, ¢(t)) liein D. Furthermore, the solution is a continuous function of the triple

(t, t, m)-
[I1. Linear Systems
A. General
A linear system isonewhichislinear iny, so that
ft.y) = AQy+g@®

where
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a, () ay(H) ~ an)]
Ao - a,(f) ay(t) - an(d)
_an;(t) an;(t) - a,(0)
£,0)]
o) - 8,
£,(0)]

In what follows, we will need a definition of the norm (length) of a matrix.

Def The absolute value norm of A is

4] = 3 |a]

i,j=1

Other definitions of norm are possible. In general, anormisany function N:D - R satisfying the
following three conditions:

(i) N(@ =>0and=0ifandonlyifa=0
(if) N(ca) =|c| N(a) for constant c
(iii) N(atb) < N(A) =N(B)

Def The sequence of matrices{A,} converges to the matrix A if and only if the sequence of rea
numbers{|A-A,[} converges to zero.

Because of the way the matrix norm is defined, this definition of matrix convergence
means that A, - A if and only if g,(k) - a;ask - « Vi, ].

B. Existence and Unigueness

Thm If A(t) and g(t) are continuous on an interval 1, t, € 1, and |y| < <, then the equation
y' = ADy+g(®
has a unique solution ¢(t) satisfying theinitia condition ¢(t,) = n and existingon I.
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C. Linear Homogeneous Systems

The linear homogeneous system is of the form

y' =A@y

Note that, given the point (t,, 0), the homogeneous system has the unique solution ¢ = 0. [By
inspection, thisis a solution; by the existence and uniqueness theorem, it is unique.]

Note that, for any two solutions ¢, and ¢, and constants ¢, and c,;:

cl(bi + 024);
c AP, +c,Ad,
= A(c,$, +c,$,)

(€, +¢,$,)

so that (c,¢, + ¢,¢,) dsoisasolution. Consequently, the solutions to the homogeneous equation
form avector space, denoted V.

Thm If A(t) iscontinuous on |, then the solutions to the homogeneous system form a vector
space of dimension n.

Proof: We already know the solutions form a vector space. We need only discover its
dimension..

Let t, be any point of | and let §,, §,, ..., 6, be n linearly independent points in the space;

the elementary vectors 6, = (0, 0, ..., 0, 1, 0, ..., 0) are obviously such. By the existence and
unigueness theorem, the homogeneous system has n solutions ¢, satisfying

$,(t,) = 9,
To see that the ¢, are linearly independent, consider
ad,@)rad,()+..+rad () =0
Setting t = t,, this becomes
ad +a,0,+..+tad =0

which can only occur if the g al are zero because of the linear independence of the 6,. Therefore
the ¢, are linearly independent.
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To seethat the ¢, span V, consider any element of V, say i(t). Let §i(t,) =0 € R" TheJ,
form abasis of R" (because they are linearly independent), so:

O =¢0 +c,0,+...+c, D,
Now consider
d)(t) = Cl(l)l(t) +02¢2(t) .. +Cnd)n(t)

Thisis a solution because the solutions are a vector space. Also,

d(,)

¢,0,+c,0,+...+c O
=d
Therefore ¢(t) and Y (t) are both solutions satisfying the same initial condition. By uniqueness,

@)
=0, +...+c, b (1)

V(@)

So the ¢, span V, which therefore has dimension n. QED.

Def Ann-dimensional set of linearly independent solutionsis called a fundamental set of
solutions.

Def An nxn matrix whose coumns are solutions of the homogeneous system is called a solution
matrix.

Def An nxn solution matrix whose columns are linearly independent (i.e., whoserank isn) is
called a fundamental matrix.

We denote the fundamental matrix formed from solutions ¢, ¢,, ..., ¢, by ®. Then the
foregoing theorem's implication that every solution {r is the linear combination

v = Y c,d,
for some unigue choice of constants ¢, can be restated as
() = ()¢

where c is the column vector (¢, ..., C)".
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Thm (Abel'sformula) If M isasolution matrix of the homogeneous systemon | and if t, € |, then
Vitel

detM(7) = detM(z,)exp f Zn: a,(s)ds

Proof: Let the columns of M be ¢, each having the components (¢y;, ¢, ..., §,; ). Because ¢ is
asolution,

n
/ ..
d)ij = E aik(bkj fori,j = 1,..,n
k=1

It isafact from linear agebra that

L - b, ¢ - by, ¢y - b,
. 4)21 4)2;1 + ¢;1 ‘b;n + . ‘ ’ ‘
(detm P A ¢n—1,1 ¢n—1,n
4)nl 4)nn d)nl d)nn 4):11 4):171
so that here
a, b, - a, by, ¢y, $,,
b, b,, : k :
I = +
(detM) : : ¢n71,1 ¢n71,n
¢n1 (bnn E ank(bkl E ank ¢kn

Each determinant on the RHS can be evaluated by elementary row operations. For example, in
the first determinant we multiply the second row by a,,, the third by a,, and so on, add these n-1
rows and then subtract the result from the first row. The resulting first row will be (a,$,;, 8} 1.,
wouy 81, SO that the value of the first determinant is a,(detM). Proceeding similarly with the
other determinants, we obtain
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(detM) = a, detM +a, detM +... +a_detM
11 22 nn

n

E a, ()

k=1

detM

= [trAD)]detM

Thisisafirst-order scalar equation for detM, whose solution is

I n
detM(7) = detM(t,)exp f Y a(s)ds QED
5 J=1

Cor Either detM(t) # 0Vt e | or detM(t) =0 Vt e I.
Thm A solution matrix M is fundamental if and only if detM(t) # O vVt on I.

Proof: (A) If detM(t) = 0 Vt € I, then the ¢, are linearly independent and M is fundamental.

(B) If M isfundamental, then every solution has the form ¢(t) = M(t)c for some constant
vector ¢. Then Vt, e | and ¢(t,), the system ¢(t,) = M(t,)c has a unique solution for agiven ¢
because M isfundamental. Therefore detM(t,) # O, because any system Ax = b has a unique
solution if and only if detA # O (with the solution given by x = A*b). So by Abd's formula,
detM(t) = OVte|. QED

Note that in general a matrix may have linearly independent columns but have its
determinant identically zero. For example,

1 ¢t 2
Mt =10 2 ¢
000

According to the last theorem, this cannot happen for solutions to homogeneous systems.

Note that, by Abel's formula, it is sufficient to test whether a matrix is fundamental by
evaluating it at one point. This point often can be chosen to make the calculation easy.

Thm If @ isfundamental and C isanonsingular constant matrix, then ®C aso is fundamental.
Every fundamental matrix is of the form ®C for some nonsingular C.

Proof: Let @ and ¥ be fundamental. The jth column {5, of ¥ can be written {5, = ®¢, for somec.
Define C as the matrix whose columns are . Then ¥ = ®C. Because det® = 0 and det? = O,
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we aso have detC # 0. Reversing the argument gives the converse. QED

D. Linear Nonhomogeneous Systems

The nonhomogenous system is
y!' =A@y +g®
where g(t) is usually called the forcing function.
Suppose @ is fundamental for the homogeneous system. Also suppose that ¢, and ¢, are

solutions to the nonhomogeneous system. Then ¢,-¢, is a solution to the homogeneous system,
in which case 3 ¢ such that

¢1_¢2 = ®c = d)n

Thus, to find any solution to the nonhomogeneous system, we need only know one, because every
other solution differs from the known one by some solution to the homogeneous system:

¢, = b, b,
®c+ ¢,

We will now see how to construct solutions to the nonhomogeneous system by using the method
of variation of constants.

Let @ be afundamental matrix of the associated homogeneous system. Suppose we
attempt to construct a solution to the nonhomogeneous system of the form

P@) = ®@Ov(
where v isto be determined. Suppose such a solution exists. Then
V(@) = ®@wv@) + PV by differentiation
= AP V() +g(?) by supposition
Because @ isfundamental,
1) = ADO

s0 that we have
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') = &)
= v/()) = &g

= v(@® = } ®7(s)g(s)ds
Therefore

V(O = @0) } ®Y(s) gls)ds
Conversely, if we define y(t) by

V() = @) ] @ (s) g(s)ds
then

v = o0 f B (s)g(s)ds + 2(HP (D g®)

= AO) f P '(s)g(s)ds + g(?)

= AOY() +g0)
Obvioudly, y(t,) = 0.
We therefore have proven the variation of constants formula:

Thm If ® isafundamental matrix of y' = A(t)y on I, then the function
t
V(o) = @0) f ®Y(s) gls)ds
)

isthe unique solution of y' = A(t)y + g(t) satisfying the initial condition y(t,) = O.
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We see, then, that every solution of the nonhomogeneous equation has the form
¢ = O ¥
where
variation of constants function

solution of homogeneous system satisfying the same initial
condition at ¢, for example, ¢,(t,) = n.

v
by

Note that, in the variation of constants formula, ®* acts like the integrating factor in our
earlier single equation problems. Moreover, the entire theory of linear equations developed
earlier isa specia case of the present development, for any such equation

y®+a @y D+ +a, (Y +a ) = b)

or
T
yl 1
» 0
= +
y n/f1 0 0 00 1 0
, _an(t) _an—l(t) ......... _al(t) i b(t)_
L yn B ] -
or

y! =A@y +g®
Note that the eigenvalues of A equal the roots of the characteristic equation.

E. Linear Systems with Constant Coefficients

In general, it is not easy to find the fundamental matrix ®. However, when A(t) is
constant, @ is easy to determine.

Def A series E U, of matrices converges if and only if the sequence E U, of partial sums
k=0 k=0

converges, where convergence of a sequence of matricesis as defined earlier in terms of the
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absolute value norm.

Lem A sequence{A,} of matrices convergesif and only if, given a number €>0, there exists an
integer N(e)>0 such that |A,-A | < € whenever m, p > N(e).

Def The matrix € is defined as

This definition is sensible only if the series on the RHS converges. To seethat it does, define

2 k
S, = 1emM M
21 k!
Note that
k .
M’
|Sk| = ET‘
=0 J:
Then, for m > p,
m k
18,-8,] = Mf‘
k=p+1 ]'
~ M
< —L
k=p+1 ]I

™M
T

A
o
S
m
",

£ oo

Thus|S,-S,| is less than the tail of the infinite series defining €. Because €"!isfinite, the series
that defines it converges, which meansitstail vanishes as the lower index of summation is raised.
Therefore, given €>0, there exists N>0 such that |S,-S,| < € for m,p > N, so that {S;} and
therefore the series defining eM converges.

Thm If M and P commute (i.e., MP = PM), then

Page 52 of 87



Thm If T isanon-singular nxn matrix, then
T leMT = oT™'MT
Thm The matrix
®(f) = e

is fundamental for the system

with ®(0) =1 ont € (-0, ).
Proof: ®(0) =1 isobvious. We have by differentiation

) = g A A

= Ae?!
for t € (-, ). Therefore e"isa solution matrix. Furthermore,

det/

det ®(0)
=1

so by Abd'sformula

detle4!) = detle”®)exp)

o

# 0 QED

Ex.  Tofind the fundamental matrix of y' = Ax if
31
o3
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note that

30
03

01
00

+

These matrices commute, so

30 o1
e’ = exp I exp ¢
03 [oo

$ t?
= I+ t+ —+
21
0 e 00 00
But
o1/
=0 forj>2
00
e3 0| le3 oo 1
= eAt— + t

0 e3t 0 e3t 00

1 ¢
3t

01

We next develop a general method for determining the form of € when A is an arbitrary

matrix.

Thm Let A, ..., A, bethedistinct eigenvalues of the nxn matrix A with respective multiplicities

n, ..., N (note that Xn, = n). Then

(1) there exist k subspaces X of E" suchthat E"= X, @ X, ® ... ® X,, i.e,, such that x = X,

+ X, + ... + X, i.e, E'isthe direct sum of the X;
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(2) X;isinvariant under A, i.e., AX; € X, V X; € X;
(3) A - Al isnilpotent un X; of index at most n, i.e., 3 ¢ < n such that, v x, € X|,
U} —
(A—Ajl) x, =0

Our goal isto find that solution ¢(t) to the system y' = Ay that satisfies the initial
condition ¢(0) = . We know that ¢(t) = €', so we willknow ¢(t) once we find €*'. But we
know that

n=v+.+v,
where v, is some (as yet unknown) vector in the subspace X;. We also know that v, satisfies

q —
A-A Db, =0

Therefore,
eA’vj = ekfte(A_}"fI)tvj
At t2 n-1 tnj_l
= e | I+(A-A1t+(A-ATY—+. . +(A-L 1) v,
J Y 7 |
[Note that
272
el = JexI+X 1" o

X
= I(1 —t..
( +x+2!+ )

ATt Ag
]

So we can write
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$()

I
[

k
= Eeljt

n-1
n-1 17
I+(A-ADi+..+(A-)I)" l(n-l)'}vf
- 1)!

nj—l

> '—:(A -2 Iy

i=0

At
J
. e V]

k
Jj=1

Tofind €, let n) successively equal the basis vectors e, e,, ..., €, because

eAt — eAtI
1 0 0
0 1 0
= led| |,e? |,..,e*
0 0 1
Ex Let
a,, 4,
A =
Q) Ay

so that we have a genera 2-dimensional system. The eigenvaues of A are found
from

1A 11|

A?- (a; tah +(aya,, - ap,a))

=0
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_ (ay, +‘lzz)i\/(‘lu + a22)2 ~4ay,a,,-a,a,)
2

- A

In this example, we consider the case where the two roots A, and A, are distinct.
We have

U]

Il
()

1l
®
<

—

+

«Q
"
=

I
L)

Mt Mt
ey, te7v,,

which establishes the usual result that each part of the solution vector ¢(t) depends
on both roots and two arbitrary constants.

Asyet, the vectors v, and v, are unknown. They are determined by the initial
conditions ¢(0) = n. Once we determine v, and v,, we can determine €, which
we would need if we wanted the general form of ¢(t) = &*'n or if we wanted to
solve a non-homogeneous equation for which y'(t) = Ay(t) was the associated
homogeneous equation.

To determine v, and v,, we use the conditions

A-AI)x =0 VxeX,

(A-A,D)x

0 ‘v’xeX2
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(A-A I)x

X,

(a;,-A))x, +a,x,

dyy %, * ay,=A))x%,

0

Solving the first equation for x, gives

Substituting into the second equation gives

A -a
11
1 x,

0 = a,x, +(ay-A) P

12

2
[A1 - (ay; taph, +(a),ay,-ay,a,)x,

0 because this is the characteristic equation for A evaluated at

a root of that equation

, arbitrary

A -a

1 711
a

Xy

12

[Note that if we had solved the equations of (A-A,l)x = 0 in the other order, we
would have obtained
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Xx, arbitrary
_ Ajma

1 11
X

a12

which seems different but is not because

Ai-ay a4y,

a, A'1 —a,,

Thislast equality can be seen by cross-multiplying to obtain
A‘? - (all +a22))‘1 +(a1 1022—012021) = 0

which is the characteristic equation for A evaluated at the root A, and so
necessarily true.]

Similarly, the condition

A-2,I)x = 0

x, arbitrary

o
v, = |Ama, |, v, = |A,ma
1 1% Y2 2 %ug
a;, a;,
Therefore
[ B
m
= | Ajmay; |+ Aymay
n, o B
a;, a;,
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or

n, = a+p

1l
—_
-
_
2]
+
N
_
_
-

N,

o - (A’2_a11)n1 “a,n,
)‘2_)‘2

_ ()‘1_“11)“1 —apn,
A‘z_)“z

Substitute these results into the expressions for v, and v, to obtain

(Ay-a; N, -ap,m,
A=A
v, =
[ )“1_“11] [()”2_“11)711_“127]2
a,, 1 A=A
~(Aman, +a;,m,
A=A
v, =
[ )“2_“11] [_(A‘l_all)nl TapM,
a,, 1 A=A
We know that
@) = e'x‘tv1 +e}t2tv2
(Ay-a; N, -ap,m, - - ~(A-a;)n, +a,m,
A=A A=A
_ Mt R
[ )“1_“11) I(A‘z_an)nl -apln, ()“2_“11) I_(A‘l_all)nl+al21n2
P 1 Ay A a,, 1 A=A,
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0
We let ) successively equal the basisvectors| | and | |:
@ 1
‘n =
0
()‘2_“11) - - _()‘1_”11)
)'2_11 )‘2 A‘1
S ) - R Y
A-ay ) ((Ay-ayy) ~ Ay-ay) [ (A-ay)
a, A=Ay i a,, Ay= Ay
(b) 0
n =
1
~4a,, a,,
)“2_)“1 A'2_2'1
- $0) = ot v
_[ )“1_“11) [)“2_“11)
A=A \ %2 )]
So from the relation
o) o]
0 1
we get
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At
e‘—(

At _

2

Let

1

)‘2_“11
A,—A

1

Aa _all e}\?t
A, —A

2

|

At
el—(

2 1

1

2

1 4

1

)‘2_“11 Al_an
a, A, —A

At
]ez _

ThenA, =3, k=1,andn, =2 X,=FE-

-1 1
A-31 =
-1 1}
A-31)?% =0
Therefore
@) = e¥[I+(-3Ddn

isthe solution with ¢(0) = 1. To construct €, successively let ) =

3

®
-~
~

+

~

M,

uf +(‘T11 +’ﬂ2)t

3t

_nz +(‘T11 +"]2)t
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1 1-¢
eAt = et
0 ~t
0 7
At = ¥
1 | 1+2]
S0 that
10
et = pAt
01
1 0
= |4t et
0 1
1-¢ ¢
= o3t
-t 1+¢
Let
3 -11
A=12 0 1
1 -1 2

The characteristic polynomial of A is
det(AI-A4) = (A-1)(A-2)?

so that the eigenvalues are
A=1,n=1
A,=2,n,=2
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k=2, X,+X,=E
We use the equations (A-1)x = 0 and (A-21)*x = 0 to determine X, and X..

2 -1 1]

A4-DHx =12 -1 1lx=0

1 -1 1}

|
o

2%, X, +tX; =

- <2x1—x2+x3 =0

\xl—x2+x3 =0

so that X, is spanned by the vectors v, = (X,, X,, X3)' With X, = X, and X, arbitrary.

Now,
n=vty
or
m 0 c
n2 = b +|C
M, b d
which leads to
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0
vl = ’ﬂz—m
_n2_n1_
m
v2 = nl
_113‘112“11_
Therefore
G0 = e'v re¥[I+(A-21)¢t]v,

0] [1+r -z ¢ ™

=e' MMy +e¥| 2t 1-2¢ ¢ Ul

_ﬂz"'h_ L t -t 1- _"]3‘T]2+'f]1_

The fundamental matrix is

(1+)e™ -te” te”
eAt = [-e t+(1+t)e2t et—te” te2t
_ettreX el-e? o2

Finally, we may now use the variation of constants formula to solve the nonhomogeneous
eguation

y' = Ay + g

to get
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3
b = &0 + [ Og(e)ds

)
Two useful properties of solutions to linear systems with constant coefficients are:

Thm If all eigenvaues of A have real parts negative, then every solution ¢(t) of y' = Ay
approaches zero ast ~ «. More precisaly, 3 K > 0, o > 0 such that

|d@)] < Ke ™ Vte (0,)

Thm If 3 M >0, T >0, and a such that
lg(®)| <« Me™ Vit>T

then 3 K > 0 and b such that every solution ¢(t) of y' = Ay + g(t) satisfies
|b(®)| < Ke® Vi>T

and 3 H > 0 and ¢ such that
|d'(5)] <« He® Vit>T

Notice that our earlier treatment of nth-order linear equationsis a specia case of the

theory of linear systems. In particular, when the coefficients are constant, the fundamental matrix
has the form &, which is a generalization of the terms in the nth-order equation's solutions of the
form cx’e’", where A; was aroot of the characteristic equation. Also note that such roots are
the same as the eigenvalues in the system representation. Finally, the integrating factor in the 1st-
order linear equation was € for the case of constant coefficients, which is a specia case of the
system result that the fundamental matrix € is the integrating factor in the variation of constants
formula.

F. Linearization

Results for linear systems are far easier to obtain than for non-linear systems.
Consequently, it often is advantageous to linearize a non-linear system by application of Taylor's
formula. The expansion is performed about whatever point is of interest, usually a stable
equilibrium pint when one exists.

Taylor's formulafor the multivariate caseis
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169 = 6+ L6550+ L3 £ D )+

2' i’j:l

BOUNDARY VALUE PROBLEMS
These are problems that involve finding solutions of a differential equation that satisfy

prescribed conditions at two given points, called the boundary conditions. Methods of solving
such problems are not discussed here.
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DIFFERENCE EQUATIONS
Difference equations are the discrete-time analog of differential equations.
Ex. Ye=a+by,+e

Aside from details, the theory behind difference equations is the same as that for differential
eguations. Our goal isto learn how to solve equations of the form

Ve = @@yt ray, X,

Aswith differential equations, the parameters 4 may be functions of time, but here we will
concentrate on the constant coefficients case because most of the results in the literature pertain
to that case.

|. Basics
We begin with the simplest difference equation
Ve = AV,
or
Ve~V =0
which is afirst-order homogeneous equation. By successive substitution, we obtain

Ve = Ay

aay, ,)

ala(ay, ;)]

t
ayly,

wherey, isthe value of y at timeinitial time t=0. Thus a genera solution to this equation is

y, = ca'

Page 68 of 87



where c is an arbitrary constant to be determined byinitial conditions. In this example, theinitia
condition isy,, = yO given, so that c = y,,.

We now consider the nth-order equation
yeray , tetay,, =0

Recall that, with linear differential equations, we found that ce™ was a solution of the first-order
equation and then searched for the set of values for m that would make ce™ a solution to the nth-
order equation. We then used the principle of superposition to conclude that the general solution

was E c ie"'"t. We proceed analogously here. We know that ca solves the first-order equation.
Would functions of the form y, = r' solve the nth-order equation? If so, for what values of r?

Let ustry y, = r' in the equation
rivartl+ +ar™ =0

1

1l
o

= r'(l+ar'+.+ar™

= either r =0 or r isaroot of

Iy +ar™=0

1 +ar :

o r+ar*l'+. . +a =0

Thus, if this characteristic equation has n distinct roots, we have n solutions to the homogeneous
equation of the formy, =r'. To obtain a general solution, we use the following

Thm If the function y,(t) satisfy the homogeneous equation, then so does
y@O = ey@+..+c,y,0
where the ¢ are arbitrary constants.

Thus our general solution to the homogeneous equation is

t

t
Y, = e .. tcr,

to deal with the case of repeated roots, we appeal to the following
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Thm Ifr,i =1, ..., p, are the distinct roots of the characteristic equation, with respective
multiplicities n, (Xn, = n), then the general solution of the homogeneous equation is

p njfl
yt=2 Eciti rjt
Jj=1 i=0

When complex roots occur, they always occur in conjugate pairs (a+ bi). Thusthe
expression for y, will contain terms of the form

]
—

nj—l

c,t (a+bi) + k}; d,t “(a-bi)

bl
1]

0

These terms can be rewritten as

—

n,-1

l ~
&t plcosdt + Y, d,t *p'sindt
=0

S

bl
1]

0

where
¢, = ck+dk
d, = (c,-d)i
p — (a2+b2)1/2
$ = tan"(b/a)

The ability to re-write the complex root terms this way follows from three facts:

(1) axbi

pe®

p (cosd+isind)
(2) (a£bi) = pY(cosdpk+isindk)
(3) c(a+biy +d(a- bi* = p*[(c +d)cosPk +i(c - d)sindk]

Ex.  The second-order equation
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Vim2ay, ,tY,, =0
has the characteristic equation
r?2-2ar+1 =0

If |al < 1, this equation has roots

r-1,r, = atya®-1

so that the general solutionis

clarya1) vela-Ja®1)

y, =
= 5lcos¢t+52sin¢t
with
p = [a®+(1-a?]"
=1
$ = tan'l[l;‘ﬂ]
a

Ex.  The same equation has repeated roots at 1 if a= 1, in which case the solution is

Vi = ¢ +C2t

I1. Lag Operators

The lag operator is defined by

L'X =x,_, neZ

Formally, the opeator L" operates on one sequence {X },. ., to give a new sequence
Vo = X e

The polynomia A(L) in the lag operator L is defined by
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A(L)

2
a,+taL+a,L*+..

> a,L’
Jj=0

where the g are constant. Note that A(L) isitself an operator; applying it to X, gives

AD)X, = ay X, va, X, ra, X ,+ ...

Y aX,

J=0

We assume henceforth that A(L) isrational, in which case it can be expressed as
A(L) = B(L)IC(L)
The smplest example of arational polynomial inL is

1
AL) = ——
@) -y
By long division (synthetic division), we can rewrite this as

— = 1+AL+AL2%+

= zm: ML
j=0
If we apply this particular A(L) to X,, we obtain
AL)X, = 203 NX,_
=

which is sometimes called the backward expansion of A(L)X,. Notethat if [A| > 1, thenif X, = X
aconstant, we have
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ALYX, = Y VX,
Jj=0

I
S
I\g/
x

Thus sometimes it isimportant to restrict |A| < 1.

An dternative expansion is available:

1 -an?
1-AL  1-(AL)!
2
= —il+lL"1+ l L"2+
AL A A
g (1)l
A A

Thisis the forward expansion. Thus we can write

1 1)?
A(L)X(t) = _vaﬁl _( XJ X't+1 R

(%) 1 ]’
IEIES

]

If |A| < 1, this forward expansion equals +; if |A| > 1, then |I/A| < 1 and the forward expansion
converges. Thus the forward expansion sometimes is useful when |A| > 1; indeed, it often has a
natural interpretation in terms of current expectations of future values.

[11. Nonhomogeneous Equations

We will examine two ways of solving nonhomogeneous difference equations:

(1) undetermined coefficients
(2) inverse operators

A. Undetermined coefficients
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This method can be used whenever the forcing sequence is itself the solution to some
linear difference equation with constant coefficients. Given a difference equation

dLy, = x,

we seek an operator O(L), called an annihilator operator, such that
0)x, = 0

This operator is then applied to both sides of the origina equation, giving
L)L)y, = 0

which is a homogeneous equation that can be solved as previoudy discussed. The solution that
emerges then is substituted into the original equation to evaluate the undetermined coefficients
arising from O(L).

Ex. Consider
5 1
1-ZL+=L2 =3
( - )Y,

Theforcing function is
x, = 3f

Because this particular function is the solution to the homogeneous equation
(1-3L)y, = 0

we try

O(L) = 1-3L

asthe annihilator. In the case at hand,
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0L)x,

(1-3L)3

37-3-3+1

= 3_3t
=0

so indeed this (L) is an annihilator for 3. Therefore, we apply O(L) to the
original equation:

(1-30)(1- %L+%L2)yt = (1-3L)3*

=0

The auxiliary equation is

5 1
r-3)r2-Zr+=) =0

(r-3)( S 6)

which has roots

r1=1/2
r2=1/3
r, =3

the last of which arisesfrom 6(L). The general solution would be of the form
v, = ¢,(12) +¢,(1/3) +¢,(3Y

from which we can determine the particular solution
Vo = 63

by letting ¢, = ¢, = 0. Substituting this particular solution into the original solution
gives
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3' = ¢,3'- %c33’"1 + %033’"2

5 ,a.1 .-
= 3’(03—3033 1+gc33 %)

- ((:3—2033‘1+%c33'2) =1

- ¢, = 27120

Therefore the general solution is

y,=c lt+c lt+£3t
© N2 23] 20

Some general notes in applying this method:
() If the forcing functions a sum of other functions
Xp = Xty
then the annihilator is the product fo the annihilators 6,(L) and 0,(L) of x, and x,:

0@L) = BI(L)02(L)

(2) If the additiona roots of the augmented characteristic equation that arise from the
annihilator repeat any of the roots fo the origina characteristic equation, we must follow
the rules for repeated roots, as usual.

(3) All that has been said applies when the forcing function is of the form =(L)x,. The
annihilator is the same for x, alone; consequently the solution function is of the same form
aswell, with only the constants differing.

(4) Gabel and Roberts has a table fo some annihilators.

B. Inverse Operators

Aninverse operator is an operator that is the inverse of some other operator.

Ex.  Theinverse operator corresponding to
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AQL) = 1-aL

A7 = (1-al)?
In general, for alinear operator ¢p(L) =g, + aL + ... + g L", the corresponding inverse operator is
¢'@) = (ay+aL+..+a L")}
= (1-AL)Y(1-A,L)..(1-A,L) by application of partial fractions

The method of partial fractions was discussed earlier in the section on differential equations. We
can use inverse operators to solve difference equations. If the given equation is

Sy, = x,
Then the solution is
¥, = ¢'()x,

To get someinsight into how to express this solution in explicit terms, consider the simple
eguation

(1-al)y, = 0
We know the solution is
t

Y, = ca

But, by inverse operators,

1
=—(0
Y, 1_a!L( )
Therefore, we define
1
0) = ca’
l—aL( )

In essence, inverse operation in linear difference equationsis similar to inverse operation in linear
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differential equations. There, the solution method was
(a) multiply both sides by the integrating factor

(b) integrate
(c) divide out any function multiplying the dependent variable

Ex. dyldt+py = f(9)

To solve, we multiply by the integrating factor €”:

ef”%wf”py = e”f(H

We then integrate to obtain
yeP = feptf(t) +c
(Note the constant of integration.) Finally, weisolatey:

y=e? f eP'f()dt +ce ™

Just as a constant of integration multiplied by e” appears in the continuous case, so does a
“constant of summation” multiplied by & appear in the discrete case:

1

0) = ca’
l—aL()

So now consider a dlightly more complicated case:

(1-al)y, = x,

The solution is

Thefirst term on the RHS is the discrete analog of the integral of the forcing function that appears
in the continuous case; the second term is the constant of summation. As before,
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1 _
_x =
1-al *

(1+aL+a*L?+.)x,

= }Z:O: afxt_j

In general, thisis as far as we can go; but if x, has some special form, we may be able to write the
solution in amore informative way. In particular, if x, is aconstant x, then the solution is

v = xYalrea’
Jj=0

If |al < 1, theny, isfinite for all t:

Vi = x[ 11 )+cat
-a

X
1-a

-

as t -+ e

Note that, if |a| > 1, we may want to use the forward expansion of (1-aL)™

—a’lL!

1-a L1

L) 1 ]' t
-X —| +ca

x,+tea’

Vi

which isfiniteif ¢ =0 but -~ « otherwise.

V. Systems of Equations

A system of difference equations has the form
y, = A@y,, +B®x,

wherey and x are nx1 vectors and A and B are nxn matrices. We will be concerned with the case
where A and B are constant.

One method of finding y, is iteration:
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y, = Ay, +Bx,
Y, = Ay1 +Bx1

=4 2y0 +ABx, +Bx,

t-1
Y= Alyy+} A "Bx,
m=0
or, if initia timeist,,

-1
y, = At—toyto+EAt—1—mem

m=t,

t-ty-1

_ 4t t-ty-1-m
=A%y, + > AT "By,
m=0

The problem with this type of solution is that the matrices in each term change with each iteration
in away that is difficult to foresee in general. Little insight into the structure of the solution is
provided. To get around this problem, we need a closed-form solution for AX. The method for
obtaining one that is discussed here is based on the spectral decomposition of a matrix.

Thm Any nxn matrix A has arepresentation of the form
D
A=Y (AE+N)
i=1

where p is the number of distinct eigenvalues, A, are the eigenvaues, each having multiplicity r;, N,
isamatrix such that Nir‘ = 0, and the matrices E; and N, satisfy the following properties:
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EE =
E i=j
0 1=#j
EN, = NE, =
N, i=j
P
YE =1

i=1

Thm Any function f of the matrix A has the representation

2 f(""(k-)N,-“]
A) = AVE + L R
F4) gf( JE, E &0
Ex.  Suppose
o o1
C-1/8 3/4

The eigenvalues of A are A, = 1/2, A, = 1/4. Therefore
A* = ME +AEE,
= (112)*E, +(1/4)"E,
Now,
E+E, =1
and

A = ME +AE,
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A-M = M E, +ME,~ (A E, +ME,)

= (}“2_)“1)E2
A—All
= E2 =
)‘2_)‘1
and smilarly
A-A,1
E| =
)“1_)“2
Therefore,
-1 4
E =
-1/2 2
2 -4
E,=
-1/2 -1]
S0
k-1 4 Kl 2 -4
Ak = l =+ l
2 -12 2 4 12 -1
Suppose
_ 172 0
12 12

The eigenvaluesare A, = A, = 1/2. Therefore
A=1g+n
5 1 1

and
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AF = (1/2)°E, +k(1/2)* !N,
From thislast equation, we have

A°=1=E,

.

|

|
=
+
=

N
~
[

= (12 1+k(12) 1 [A- (1/2)]]

azy o

k(1/2)F (1/2)

Thm There exists anonsingular matrix T such that

TAT = J
J, 0
0J, ~ 0
00 - J,

where p is the number of distinct eigenvalues of A and
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A, 10 - 0

0 A 1 -0
Jiz

000 - A

isof dimension rxxr; with r; the multiplicity of A,.
The importance fo this theorem is that
A=TJr?!
o that

A* = (TITYTIT™Y..(TIT™Y)

YNAYE

The terms of X are powers of the A, multiplied by numbers determined by k, so that the elements
of A comprise linear combinations fo powers of the .. Asaresult, y, also comprises such linear
combinations so that the asymptotic behavior of y, depends entirely on the values of these A;. In
particular, if |A,| <1V i, theny, isasymptoticaly stable (if the forcing function x, is bounded).

Thm Suppose the eigenvalues of A are distinct. Then

A, 0 0 - 0
0 A, 0 « 0
J =
0 0 0 - A,
AY 0 0 - 0
k
S [0 A0 0
0 0 0 ~ Af
A* = TJFT
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Finaly, note that any nth order difference equation can be put into system form. The
usual kind of equation we will deal with has the form

ety teta = U,
which can be put into system form by defining
yl(t) = yz(t)

yz(t) = y3(t)

Voua® =y,

yn(t) = —alyn(tl) - a2yn_1(t— -..- anyl(t— 1)+ u,

or
Y= Ay, , +Bu,
where
0
0
A =
0 0 0 0 1
-a, —a,, ~4q,, -a, —q
B =
0

The more general form of the nth order equation

Verby  totby, = aurau . ra,u
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isonly dlightly more difficult to handle. For the moment, assumem < n. Then re-write the
difference equation as

o),

yt = B(L) t

HL) [0 L)n,]

Define

0 '@L)u, = z(t+1), next period’s state
Then

0L)z(t+1) = u,
or

z(t+1)+bz(f)+...+b z(t-n+1) = u,
If we now define
x,(0) = z()

x,(5) = z(t-1)

x, (&) = z(t-n+1)

we can write the state-space system
x,(t+1) = U-bx ()-b,x,_(O)-...-b x,(?)

xn_l(t+1) =X, ®

xl(t) = xz(t)

or
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X, = Ax, + Bu,

where
0
0 1
A =
0 0 0 0 1
b, -b,, -b,, ~b, _bl_
B =
0
Then
Y, = dD)z(e+1)
= ¢L)x(e+1)

ayx, (t+1)+ax, () +..+a,x (t-m+l)

a,[u,-bx (O)-..-b x @O]+ax,()+. +a,x, _, (@
which is called the output equation.
In the case where m > n, smply define enough extra“early” x; to bring n up to equality

with m. then the first m-n elements of the nth row of A will be zeroes, and the foregoing analysis
applies.
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