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Abstract

In this lecture the group of rigid body motions is introduced via its
representation on standard three dimensional Euclidian space. The rel-
evance for robotics is that the links of a robot are usually modelled as
rigid bodies. Moreover the payload of a robot is also usually a rigid
body and hence much of robotics is concerned with understanding rigid
transformations and sequences of these transformations. Chasles’s theo-
rem is presented, that is: a general rigid body motion is a screw motion,
a rotation about a line in space followed by a translation along the line.

The lower Reuleaux pairs are introduced. These are essentially sur-
faces which are invariant under some subgroup of rigid body motions.
Such a surface can be the matting surface for a mechanical joint. In
this way the basic mechanical joints used in robots can be classified.
These surfaces turn out to have other applications in robotics. In robot
gripping they are exactly the surfaces that cannot be immobilised using
frictionless fingers. In robot vision the symmetries of these surfaces are
motions which cannot be detected.

Next Lie algebras are introduced. The 1l-parameter rigid motions
about a joint are considered. The correspondence between elements of
the Lie algebra and 1-degree-of-freedom joints is given. The exponential
map from the Lie algebra to the group is defined and used to describe the
forward kinematics of a serial robot using the product of exponentials
formula. The Rodrigues formula for the exponential map is derived
using a set of mutually annihilating idempotents.

The derivative of the exponential map is explored. In particular the
Jacobian matrix for the forward kinematics is derived. More general
results are also derived and these are used to show how the inverse
kinematics problem can be cast as a set of ordinary differential equa-
tions.
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1. Introduction—Rigid Body Motions

A large amount of robotics is concerned with moving rigid bodies
around in space. A robot here is usually an industrial robot arm as in
figure 1, however most of the material presented here applies to par-
allel manipulators and closed loop mechanisms. There are also some
applications to mobile robots and robot vision.

It is usual to think of the components that make up the links of the
robot as rigid and also the payload or tool is often a rigid body. Hence,
an important problem in robotics is to keep track of these rigid bodies.

It is well known that any rigid transformation can be composed from
a rotation, a translation and a reflection. Physical machines cannot per-
form reflections and so we should really speak of proper rigid transfor-
mations, excluding the reflections. The proper rigid transformations can
be represented using 4 x 4 matrices. These can be written in partitioned

form as
R t
= (5 1)

where R is a 3 x 3 rotation matrix and t is a translation vector.
The action of these matrices on points in space is given by,

()= ) (1) = (")

where p and p’ are the original and transformed position vectors of a
point.

There are two ways we can use these matrices to describe the position
and orientation of a rigid body. If we use an active point of view we can
agree on a standard ‘home’ position for the body, any subsequent posi-
tion and orientation of the body is described by the rigid transformation
which moves the home position of the body to its current position and
orientation.

In the passive viewpoint a coordinate frame is fixed in the body, now
the position and orientation of the body is given by the coordinate trans-
form which expresses the coordinates of points in the current frame in
terms of those in the home frame. For historical reasons, this passive
viewpoint seems to be preferred in robotics even though the active view-
point is often simpler.

These two viewpoints are related quite simply. The transformation
given by the passive view is the inverse of the active transformation. To
see this assume that the new frame has its origin at a point with position
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Figure 1. A six-joint industrial robot arm.

Figure 2. A vector referred to two coordinate frames.
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vector t with respect to the original frame. Now an arbitrary point p
in the original frame has position vector p’ = p — t with respect to the
new frame, see figure 2. In general the orientation of the new frame will
be different to that of the original, assume it is given by a rotation R.
That is, the basis vectors of the new frame i’, j’ and k/, are given by,

i =Ri, j=Rj, k'=Rk
If we write the position vector of the point as
p=uzi+yj+zk

in the original frame, then in the new frame the point will have coordi-
nates,

p/ — x/i/ + y/j/ + Z/k/
where 2/ = p’-i’ = (p — t)T Ri and so forth. Hence the new coordinates
can be written in terms of the old as

X X
z z

Compare this with the inverse of a general rigid transformation which is

given by,
R t\' (RT —RTt
o 1) Lo 1

The space of all possible rigid body transformations is an example of
a Lie group. So we are led naturally to study Lie groups.
2. Lie Groups

In general, groups can be thought of as sets of symmetry operations.
Originally these were symmetries of algebraic equations. We will be
interested in symmetries of geometric figures here.

The definition of a group is the abstraction of the properties of sym-
metry operations. There are four axioms. So formally a group is a set
G with a binary operation, usually written as juxtaposition.

m The group must be closed under its binary operation.
m The operation must be associative.
m The group must have a unique identity element.

m Every element of the group must have a unique inverse.
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Notice that sets of square matrices can be groups quite easily, the
group product is modelled by matrix multiplication, which is associa-
tive of course. The identity element of the group is represented by the
identity matrix. The inverse of a group element is represented by the
inverse matrix, so it is important that the matrices in the set are all
non-singular.

Lie groups have to satisfy the following additional axioms.

m The set of group elements G must form a differentiable manifold.

m The group operation must be a differentiable map. As a map the
group operation sends G x G — G. On pairs of group elements
91,92 € G the map has the effect (g1, g2) — 9192

m The map from a group element to its inverse must be a differen-
tiable mapping. On an element g € G this map has the effect,

g—gh

A differentiable manifold is essentially a space on which we can do
calculus. Locally it looks like R™ but globally it could be quite different.
It is usual to think of such a manifold as patched together from pieces
of R™. The standard example is a sphere, which can be constructed
from two patches, one covering the northern hemisphere and the other
the southern hemisphere. The patches can also be thought of as local
coordinate systems for the manifold, in general manifolds do not have
global coordinate systems.

The set of non-singular n x n matrices is an example of such a Lie
group. The underlying manifold of the group is simply an open set in
]R"2, that is R"* with the closed set of determinant zero matrices deleted.
The other axioms are clearly satisfied, matrix multiplication is clearly
differentiable and so is the inversion map. This group is usually denoted
GL(n) for the general linear group of order n.

Subspaces of this group can also be groups. A good example for us is
the rotation matrices. These are 3 x 3 matrices which also satisfy,

RTR=1, and  det(R)=1.

These equations define a non-singular algebraic variety in GL(3). It
is possible to show that such a subspace is a differentiable manifold.
In this case the group manifold is 3-dimensional projective space PR3.
This space can be thought of as the space of lines through the origin in
R* or alternatively as the 3-dimensional sphere with anti-podal points
identified. The group is usually denoted SO(3), the special orthogonal
group of order three.



Next we look in detail at the Lie group that we are most concerned
with; the group of rigid body transformations.

3. Finite Screw Motions

In robotics the group of rigid transformations is called SE(3), it is
supposed to denote the special Euclidian group. It is the semi-direct
product of SO(3), the rotations about the origin, with R3, the transla-
tions.

SE(3) = SO(3)xR3

In a direct product the factors would not interact. The semi-direct
product indicates that the rotations act on the translations. This can
be easily seen from the 4 x 4 matrices, if we multiply two such matrices

we get,

( 0 1) (0 1) - ( 0 1 >
Notice how the first translation vector is rotated before it is added to
the second one.

The group manifold for a semi-direct product of groups is simply the
Cartesian product of the manifolds of the factors. So the group manifold
for SE(3) is simply the Cartesian product of PR3 with R?. Notice that
this is therefore also the configuration manifold for a rigid body, each
position and orientation of the body corresponds to a group element and
vice versa.

We end this section with a sketch of Chasles’s theorem. This, origi-
nally geometric, theorem dates back to the 1830s, well before Lie’s work
on ‘continuous groups’. The theorem states that every rigid transforma-
tion (with the exception of pure translations) is a finite screw motion.
That is, a rotation about a line together with a translation along the
line, see figure 3.

A finite screw motion about a line through the origin has the form

- (2 %)

where X is a unit vector along the axis of the rotation, 6 the angle of
rotation, and p the pitch of the motion. Since the axis of rotation is X
we also expect that RX = X, in other words X is an eigenvector of R
with unit eigenvalue.

In general, if the line doesn’t pass through the origin the transforma-
tion can be found by conjugation. Suppose u is a point on the line, then
we can translate u back to the origin, perform the screw motion above
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‘Ku'
Figure 3. A finite screw motion.

and finally translate the origin back to u. This gives

I u\ (R 2%\ (I u\_(R 2%+(—-R)u
0 1)\o 1 /)\0o 1) \o 1

Now Chasles’s theorem amounts to the following: Given an arbitrary
rigid transformation it can always be put in the above form. That is,

we have to solve,
R t\ _ (R 2%+ (I-Ru
0 1) \o 1

for p and u given t and R. Assuming we can find # and X from R then
it is not too difficult to see that

bp

=X-t.
2T x

This gives the pitch p. Now we have a system of linear equations for u,

(I —Ru= 5% t.

These equations are singular, but the kernel of (I — R) is clearly % and so
the equations are consistent and it will be possible to find a solution for
u up to addition of an arbitrary multiple of X. In practice, it would be
sensible to require that u be perpendicular to X. If the transformation
is a pure translation then R = I and the above fails, this is the only
case where u cannot be found. Pure rotations correspond to pitch zero,
p = 0. Screw motions and pure translations are often taken to be screw
motions with infinite pitch.



Notice that if we have two screw motions about the same line with the
same pitch then these transformations commute. It is only necessary to
check this for lines through the origin, the conjugation can be used to
extend this easily to the general case. So for example we have

(R(Hz) "2—px) (R(el) %x> _ (R(,gl +6y) (elgzz)pi)
0 1 0 1

Remember, the rotations here are about the same axis. From this it
can be seen that the set of all screw motions about the same line with
the same pitch constitutes a group. That is, the set is closed under the
group operation. These are the one-parameter subgroups of SE(3).

4. Mechanical Joints

At the end of the nineteenth century Franz Reuleaux described what
he called “lower pairs” [7]. These were pairs of surfaces which can move
relative to each other while remaining in surface contact. He took these
to be idealisations for the most basic of mechanical joints. He found six
possibilities, see figure 4.

It is possible to give a simple group theoretic proof that these are
the only possibilities. The key observation is that these surfaces must
be invariant under some subgroup of SE(3). The subgroup represents
the symmetries of the surface. For a joint, the subgroup will give the
possible relative motions between the sides of the joint.

To find these surfaces, consider the surfaces invariant under one-
parameter (1-dimensional) subgroups.

m  The pitch zero subgroups correspond to rotations about a line. A
surface invariant under such a subgroup is just a surface of rotation.

m Infinite pitch subgroups correspond to translations in a fixed di-
rection, so any surface of translation is invariant under such a
subgroup.

m  The subgroups with finite, non-zero pitch have helicoidal surfaces
as invariants. These give the first three lower Reuleaux pairs.

To find more Reuleaux pairs consider how the subgroups can be com-
bined to form larger subgroups. Surfaces invariant with respect to these
larger subgroups must have more than one of the above properties.

m  So the cylinder is a surface of rotation and a surface of translation
(and a helicoidal surface for any pitch).
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Plane Sphere
Cylinder
Surface of Surface of Helicoidal
Revolution Translation Surface

Figure 4.  The six lower Reuleaux pairs.

m A sphere is invariant with respect to the subgroup of rotations in
space SO(3). That is, the sphere is a surface of rotation about any
of its diameters.

= A plane with respect to SE(2) the group of rigid transformations
in the plane.

With a little care, it is possible to show that these are the only
possibilities—Reuleaux found them all!

In mechanical engineering, the joints corresponding to lower Reuleaux
pairs have special names. Simple hinge joints corresponding to the ro-
tational pair are known as revolute joints. Sliding joints corresponding
to the translational pair are called prismatic joints and the joints cor-
responding to the helicoidal pair are helical joints or sometimes screw
joints. A ball-and-socket joint is more properly called a spherical joint
and the last two pairs form cylindric and planar joints.

Practical robots may have any of these joints, but it is most common
to actuate revolute or prismatic joints. Revolute joints can be accu-
rately and easily controlled with electric motors. When larger forces
are required hydraulic rams can be used as actuated prismatic joints.
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However, for a hydraulic ram the length of travel is hard to control
accurately.

It is possible to find all the subgroups of SE(3). The zero-dimensional
subgroups are the point groups, which are subgroups of the rotations
only, and the 230 space groups familiar from crystallography. For the
higher dimensional subgroups see Hervé [4].

5. Invisible Motion and Gripping

The lower Reuleaux pairs turn up in other places in robotics.

Consider trying to constrain an object by placing frictionless fingers
on the object’s surface. The fingers can only exert forces normal to the
surface of the object. It is known that there are some surfaces which
cannot be completely constrained by any number of frictionless fingers.
These surfaces are precisely the lower Reuleaux pairs.

It is straightforward to see that a lower pair is “ungrippable,” the
symmetry will move the surface such that the velocity at any point on
the surface is perpendicular to the contact normal. Hence, these motions
cannot be constrained.

It is a little harder to show that any ‘ungrippable’ surface must have a
symmetry. Essentially, the space of normal lines to the surface are con-
sidered as six-dimensional force-torque vectors called wrenches. For an
‘ungrippable’ surface the normal do not span the six-dimension vector
space of wrenches. Hence, there will be a dual six-dimensional vector
which annihilates all normal lines, this vector will generate the symme-
tries. It is an element of the Lie algebra, see below.

In robot vision a common problem is to reconstruct the motion of
objects given two or more successive images of the scene. Flow fields
are constructed from differences in image intensity. However, it is well
known that certain motions of objects cannot be detected in this way,
Horn gives the example of a sphere rotating about any diameter, [5].

It is clear that motions of all Reuleaux pairs are undetectable in this
way. It is also clear that these will be the only undetectable rigid body
motions if we discount discrete symmetries of regular polyhedra exactly
synchronised with the succession of images. For example, we would not
expect to see the motion of a tetrahedron if it executes a symmetry
between the images we capture. On the other hand we are not really
limited to rigid motions here. There may be other motions which are
invisible to such a system, but this would probably depend very much
on the lighting conditions. For example, consider the motion of a sphere
again, this time the sphere is moving away from the observer and at the
same time is expanding at such a rate that the apparent contour in the
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image remains constant. This would be detectable under point lighting
but there might be lighting conditions under which a move like this is
undetectable.

6. Forward Kinematics

From the above it is clear that motion about a 1-degree-of-freedom
joint can be parameterised by a one-parameter subgroups.

The general case is a helical joint where the corresponding 1-parameter
subgroup can be written

A(9) = (fg 2%+ (f - R)u>

where X is the direction of the joint axis, p is the pitch of the joint and
u the position vector of a point on the joint axis. Revolute joints are
most common in practical machines, these correspond to subgroups of

pitch zero,
(R (I-R)u
A(0) = ( BT )

Sometimes prismatic joints are used, the corresponding 1-parameter sub-
group for such a joint has the form,

- (3 %)

where t is the direction of the joint. Notice in each of the cases above,
the identity element is given when the parameter is zero.

For a serial robot, such as the on illustrated in figure 1, it is important
to find the transformation undergone by the end-effector. This problem
is usually known as the forward kinematics of the robot. Let us fix a
standard or home position for the robot. In the home configuration all
the joint variables will be taken to be zero. Now, to move the robot to a
position specified by a set of joint variables 87 = (01, 02, O3, 04, 05, O5)
we can perform the motions about the joints in turn beginning with the
distal joint #g; the one furthest from the base of the robot. The motion
of the end-effector about this joint will be given by the matrix Ag(6s).
Next we move the fifth joint, the axis of this joint has not be affected
by the motion about the last joint and so the effect on the tool is just
As5(65). In this way we can work our way down the arm and deduce the
overall transformation on the end-effector or tool to be,

K (6) = A1 (61) Az (02) A3(63) Ag(64) A5 (65) Ag (6)
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This expression represents the active transformation undergone by the
robot’s end-effector relative to the home configuration. It is straightfor-
ward to compute the ‘A’ matrices if we know the position of the robot’s
joint axes in the home configuration.

In the robotics literature it is also common to use tool-frame coordi-
nates, and to give the forward kinematics in terms of this frame. Specif-
ically, the tool-frame is a coordinate system fixed to the robot’s end-
effector. We seek the passive, coordinate transformation which converts
coordinates in a frame fixed in the base link of the robot to coordinates
in the tool frame. Suppose that in the robot’s home position the active
transformation from the base link frame to the tool frame is given by the
matrix B. The overall transformation between the base link frame and
the tool frame in an arbitrary configuration of the robot will be given by
the transformation, B to the tool frame in the home position, followed
by the transformation of the end-effector itself. That is K(0)B. This is
still an active transformation, to convert it to a coordinate transforma-
tion, as we saw above in section 1, we simply invert the matrix. Hence,
the kinematics in terms of tool-frame coordinates is given by,

(K(0)B) ™" = B~ Ag" (05) A5 (0) A7 (01) A5 (63) A5 ' (62) A7 (1)

7. Lie Algebra

In 1900 Ball published his influential treatise on “the theory of screws”
[1]. With the benefit of hindsight it is clear that Ball’s screws were
simply elements of the Lie algebra of SFE(3). More precisely, the twists
correspond to the element of the Lie algebra, the screws are elements of
the projective space formed from the Lie algebra. This distinctions will
not be used in the following.

The theory of Lie groups and their Lie algebras was developed some
years later by, Lie, Klein, Killing and Cartan among others. So now we
are in a position to take advantage of the Lie theoretic viewpoint and
update Ball’s original screw theory.

The Lie algebra of a Lie group can be defined in several different ways.
Historically, Lie algebra elements were thought of as infinitesimal group
elements. Here we can think of the Lie algebra of a group as the tangent
space at the identity element. To find the Lie algebra elements we take
a curve in the group and find the derivative at the identity.

We can use use the 4 x4 representation of SFE(3) to find its Lie algebra.
As we saw above finite screw motion can be written,

A(0) = (fg LR + (f - R)u>
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where, R is a rotation through angle 6 about the axis X, and u is a point
on the axis. This defines a sequence of rigid transformations parame-
terised by 6. Moreover, when § = 0 we get the identity transformation.

So taking the derivative at § = 0 gives a typical element of the Lie

algebra,
(2 FEx-Qu
= )

Here Q2 = dR(0)/df is a 3 x 3 anti-symmetric matrix. This can be seen
by differentiating the relation that ensures R is orthogonal

d .p dR_p  _dRT dI
it =g+ Bep = =5 =0

when 6 = 0 we have that R = I and hence,

d T
R(O) , dRO)" _
df df

Now a 3x 3 anti-symmetric matrix corresponds to a 3-dimensional vector,

0 —w, wy
Q=1 w, 0 —wy
—Wy Wy 0

where w; are the components of the vector, w. With these definitions the
product of the matrix €2 with any 3-dimensional vector exactly models
the vector product with w, that is, Qp = w x p for any p.

Hence, we can see that w is the angular velocity vector of the body
and w is its magnitude.

A general element of the Lie algebra se(3), is a matrix with the par-

titioned form,
Q v
s=(0 1)

These matrices form a 6-dimensional vector space and it is often useful
to write the elements of the space as six-dimensional vectors,

-9

8. The Adjoint Representation

So far the group SE(3) has been defined by it 4 x 4 matrix repre-
sentation. Sometimes it is useful to think of the group as an abstract
object and consider different representations of it. A representation here
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is a linear representation, that is, we represent group elements by ma-
trices, or more genrerally linear transformations. The group product is
modeled by matrix multiplication and inverses in the group by matrix
inversion. For any group there are many such representations, here we
look at a representation which can be defined for any group. Any Lie
group acts linearly on its Lie algebra. This representation is known as
the adjoint representation of the group.
For SE(3) we can write this in terms of the 4 x 4 matrices as

S’ = ASA™!

where A = A(g) is the 4 x 4 matrix corresponding to some group element
g. In terms of the 6-dimensional vectors representing the Lie algebra,
we get,

s’ = Ad(g)s
Here Ad(g) is a 6 x 6 matrix representing the group element g. The
general form of the matrices in this adjoint representation is,

Ad(g) = <T}§% Ez)

again R is a 3 x 3 rotation matrix but 7T is a 3 x 3 anti-symmetric matrix
corresponding to a translation vector t.

This adjoint action of the group on its Lie algebra can be extended to
an action of the Lie algebra on itself. In terms of the 4 x 4 representation
of SE(3) this can be explained as follows. Take Sy to be an element
of the Lie algebra, as a 4 x 4 matrix. Now suppose A(f) is a one-
parameter subgroups corresponding to a Lie algebra element S, that is
dA(0)/df = S;. Now if we differentiate the adjoint action of the group,
AS3A! and set § = 0 we get the commutator,

5152 — 5251 = [S1, S2]

In terms of 6-dimensional vectors the commutator can be written as

ad(sy)s2 = ((1311 £1> (L“Z)

The notation ad, lower case, denotes the adjoint action of the Lie
algebra on itself. The commutators of elements are a key feature of
Lie algebras, in robotics these commutators turn up in the dynamics of
robots and in many other applications. Notice that in the 6-dimensional,
partitioned form of representation of the Lie algebra, commutators can
be written,

[s1, s2] = ad(s1)s2 = ( w1 X ws >

Vi X Wy +wi X Vo
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9. The Exponential Map

The exponential map sends Lie algebra elements to the Lie group. In
a region of the origin the map is guaranteed to be a homeomorphism,
and hence we can use the Lie algebra as a coordinate system for the
group but only in a patch containing the identity. For SFE(3), this patch
is quite big, we just have to keep rotation angles to between +m. The
exponential map provides the link between the Lie algebra and the group.
In general, the exponential of a matrix X is defined by the series,

X T X4 AxZy iy
2! 3!

where X? is the matrix product X? = XX etc. It is possible to show
that the series converges and, if X is a matrix representing an element
of a Lie algebra, then the exponential eX will be a matrix representing
an element of the corresponding Lie group. The mapping is essentially
independent of the representation.

The product of a pair of matrix exponentials is generally not simply
the exponential of the sum of the exponents. This is because the expo-
nents may not commute. However, if S is a fixed screw, then it is clear

that
69156925 — 6(91+92)S

So these are the 1-parameter subgroups again, and we can write,
A(9) = €%

This means that we can associate a screw S, to any 1-degree-of-freedom
mechanical joint. We will see how to do this in detail in a moment. For
now simply observe that the forward kinematics for a six-joint industrial
robot, as outlined in section 6 above, can be written as

K(8) = 9151 0252 0353 0454 0555 0656

The parameters 6;, are usually referred to as the joint parameters, or
joint angles if the joints are revolute. This form of forward kinematics
of serial robots was introduced by Brockett [2].

As promised, we next look at how to associate a screw to a mechanical
joint. To each joint we can associate a 1-parameter subgroup,

H8 — (R %%+ (I - R)u
0 1

where the screw S has the form,

=0 1)
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If we look at the rotation part first we expect that X to be along the axis
of rotation so that RX = %. Differentiating this with respect to 6 and
setting 0 = 0 we get,

X=wxx=0
From this we can conclude that w is proportional to X. In fact, it makes

sense to define w = X so that the parameter 6, becomes the rotation
angle. Next, we look at u, a point on the axis of the screw motion. Here

we expect,
Op &
u\ fu+g-x
o (5)= (1)

that is, a point on the axis of the screw is simply translated alog the
axis. The derivative at 8 = 0 gives

()-8

0
Qu+v:—p$<
2

That is,

Replacing X by w and rearranging we get the result

V=uXw-+ ﬂw
27
Notice that if the pitch of the joint vanishes p = 0, that is the joint is
revolute, then the screw we associate with it,

=)

is simply given by the Pliicker coordinates for the line forming the axis
of the joint. For helical joints we add the extra term g-w to the v part
of the screw, where p is the pitch of the joint. The above does not apply
to prismatic joints, but they are easy to deal with. Using the same sort
of argument as above, a prismatic joint which allows movement in the
direction ¥ will be represented by a screw,

-

In general it is quite difficult to compute matrix exponentials, but in
the case of rigid body motions we are lucky, the problem is relatively
straightforward.
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Consider a typical element from the 4 x 4 representation,

=0 0)
Any such matrix satisfies the polynomial equation,
St 4 |w28% =0
this can be checked by direct computation. The equation factorises as
St 4 |w|25? = S*(S + i|w|I) (S — i|w|I)

Now we can find three matrix functions of S, labelled Py, Py and P-_,
which satisfy P? = P; and P;P; = 0 if i # j, such a system is called a
system of mutually annihilating idempotents. These matrices are given
by,

1

Py = (S +wlD),
|wl

P o= 28— ilwll)

T R
—1

P = 2 ilw|I).
2i|w|3S (S + ilw| )

here i = y/—1 is the imaginary unit. We also require a nilpotent here,
No = =38(S? + |w|?I). This nilpotent satisfies N = 0, NoPy =

[wl?
N()P, =0 and N(]PO == No.
The point of all this is that we can write our original matrix .S as

S = Ny — t|w|Py + i|w|P-

and so when we take powers of S we only need to take powers of the
coefficients of Py and P_ since there are no cross-terms and the powers
of the matrices are simple. So exponentiating we get,

e =TI+ No+ (e7 —1)Pp + (& —1)P_

It is also straightforward to see that I = Py+ Py + P— so the exponential
can be simplified to,

¢5 = Py+ No+ e P, +ellp_

Finally, substituting back the Ss and replacing the complex exponentials
with trigonometric functions we have the result

1 1
e =T+8+ W(l — cos |[w|)S? + W(!w\ — sin |w|)S3
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The corresponding formula for the group SO(3) is known as the Ro-
drigues formula.

We can produce a similar result for the adjoint representation of
SE(3). A typical element of the Lie algebra in this representation is

given by,
Q 0
ad(s) = (V Q>

In general we would expect a 6 x 6 matrix to satisfy a degree 6 polynomial
equation, these matrices however, satisfy a degree 5 equation,

ad(s)® 4 2|w|? ad(s)® + |w|*ad(s) = 0

This relation can be verified easily using the following relation between
pairs of 3 x 3 anti-symmetric matrices,

QWO+ WV +VQ) = —|w['V

In turn this relation can be verified by using the connection between
these matrices and vector products, Vx = v x x for any vector x, and
then using the familiar formula for vector triple products.

The degree 5 equation above factorises as

ad(s)® + 2|w|* ad(s)® + |w|* ad(s) = ad(s)(ad(s) + i|w|I)?(ad(s) — i|w|I)?

So this time we have two repeated factors and hence we seek three idem-
potents as before and two nilpotents, one associated with each repeated
factor.

Py = r(ad(s) + il ad(s) el )

= (ad(s)! + 2lw[* ad(s)* + |w|*I) /|w]*,
P, = ﬁ ad(s)(ad(s) — ilw|T)2(2ad(s) + 3ilw|D)

= (2ad(s)" — ilu]ad(9)* + lu]? ad(s)? — Biluf* ad(s) /4],
Ny = ﬁ ad(s)(ad(s) + ilw|I)(ad(s) — i|w|T)?

= (ad(s)! — iJw|ad(s)® + |w[*ad(s)* — i|w|* ad(s)) /4|w[*,
P - ﬁ ad(s) (ad(s) + ilw|1)2(2 ad(s) — 3ilw|T)

= —(2ad(s)! + i|lw|ad(s)® + 4|w|? ad(s)? + 3i|w|? ad(s))/4|w|*,
N = ﬁ ad(s)(ad(s) + ilw|D)2(ad(s) — ilw|T)

= (ad(s)! +ilw|ad(s)? + |w|*ad(s)? + I|w|? ad(s))/4|w|*.
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By inspection we have that
ad(s) = —i|w|Py — i|w|Nt + i|lw|P- + i|w|N-
and as usual we also have,
I=PFP+ P+ P_

Notice that with matrices P and N such that P> = P, N> = 0 and
PN = N the kth power of their sum is simply, (P + N)* = P + kN.
Hence the exponential of a matrix ad(s) from the adjoint representation
of se(3) can be written as

e = 1 4 (e7 Wl — 1) Py —ijwle ™ WINL 4 (e —1)P_ + i|wle’“IN_
or
e — py el p, —ijwle”WIN, 4 eIP. 4 jw]el N

Expanding the idempotents and nilpotents in terms of powers of ad(s)
we finally obtain the result

1
eddls) — 1 4 ﬁ(?) sin |w| — |w] cos |w]) ad(s)
w

4 2‘—01,2@ — dcos || — [w]sin|w]) ad(s)’

+ 2|—i|3(sin |lw| — |w]| cos |w|) ad(s)?

+ 2|—i|4(2 — 2cos |w| — |w]| sin |w|) ad(s)4
10. Derivatives of Exponentials

Suppose we are given a path in a Lie group (SE(3) here) as an expo-
nential,

g(t) =X,

How can we find the derivative of this formula and what does it repre-
sent?

In the previous section we met the simple case where the path in
the Lie algebra X (t) is just tXy where X is a constant element in the
algebra. The derivative of such a path is simply,

d
_eth _ Xoeth

dt
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However, when X (t) is more complicated this is no longer valid. The
problem is that dX/dt = X does not necessarily commute with X so
differentiating the expansion of the exponential gives

d . 1 . . 1 . . .
an = X+§(XX—|—XX)+g(XX2+XXX+X2X)+~~
" !

(k+1)!

s (XXF 4+ XXX XEX) 4

In [3] Hausdorff showed that

() & = X X KT X, 1X, K+ i [ [ X4

The right-hand side of this equation will be abbreviated to X;. Notice
that this matrix is composed of sums of iterated commutators and hence
X is an element of the Lie algebra. The Hausdorff formula above implies
that

d
Eex = XdeX

In the rotation group SO(3) this means that X; corresponds to the
angular velocity of the motion. In SE(3), the group of rigid body mo-
tions the corresponding vector is the velocity screw of the motion. The
equation is important in several applications. In a typical dynamical
simulation, for example, equations of motion would be solved numeri-
cally to find the velocity screw or, angular and linear velocities. From
these quantities the transformation matrices usually have to be found.
It is essentially the above equation that has to be solved to find the
rigid transformation undergone by the rigid body under consideration.
In most commercial applications a rudimentary approach to this prob-
lem is often taken. This is because the speed of computation is far more
important than the accuracy.

Using vectors to represent the Lie algebra the Hausdorff formula can
be written neatly as

(o0} 1
ZE ——  adF(x)x
X4 2 (k+1)!a (x)x

with ad() the adjoint representation of the Lie algebra, as usual.
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For SE(3) we can evaluate this infinite sum using the idempotents
and nilpotents found in section 9 above. This gives

i;ad(s)k = P+iﬂp +ik(—i|w|)kN
— (k + 1)! 0 R IR A R )

k=0 ' k=0
o0 . o .
(ilwh* k(ilw])*
P_ N_
Gt e
k=0 k=
Evaluating the infinite sums gives
o0
Z 1 ad(s)" = Py + (7l —1)p
(k+1)! —i|w] *
k=0
1 , _
gy (il = e Ny
b el qyp
il B
1 4
+ —((i|lw| = el + 1)N_
il

Substituting for the idemponents and nilpotents gives

(e 9]

5 1 i 1 .
k=0 (k+ 1) ad(s)”" =1 + W(ZL — |w|sin |w| — 4 cos |w]|) ad(s)
1
+ W(4|W| — 5sin |w| + |w| cos |w|) ad(s)?
1
+ W@ — |w| sin |w| — 2 cos |w|) ad(s)?

_l’_

TR (2|w| — 3sin |w| + |w| cos |w]) ad(s)*

This format is not particularly useful for dynamic simulation, it would
be more useful to have § as the subject of the equation. This would allow
direct numerical methods to be used. Such an inversion is possible in
general, see [3]. The result is another infinite series, however it is not
necessary to follow this route since the above formula can be inverted
more directly using the idempotents. Recall that Py + Py + P_ = I so
that for any constants a;, b;,

(CLOPO + CL+P+ + b+N+ + lepf + b,N,)

1 1 by 1 b_
¥ (—Py+ —Py — 5N —P_ — —5N_
(ao 0+a+ T + T 2 )

=(Ph+Pr+P)=1



22

The computations are a little more than can be comfortably done by
hand, but are readily computed using a computer algebra package such
as Maple or Mathematica.
Let, sq be the Lie algebra element satisfying %ead(s) = ad(sd)ead(s),
then we have the result
2 |w|+ 3sin |w|

S = <I_%ad(s)+(\w[24]w\(cos\wl—1))ad(s)2+

+(1 N |w| + sin |w| )>ad(s)4>sd

lw*  4jw]?(cos |w] — 1

Notice the absence of a term in ad(s)? in the above.

Finally here, we look at the interpretation of these derivatives. Con-
sider a general sequence of rigid motions parameterised by time ¢, then
we can see from the above that

dA

o AT =5y

is an element of the Lie algebra and that it corresponds to the instan-
taneous velocity. The £ or w part is the angular velocity while the v
part is the linear velocity of a point on the screw axis. We can find the
velocity of a point on the body moving with this motion as follows. At
time ¢ = 0 the point will be assumed to have position vector pg, at any
subsequent time its position will be given by,

(1) =40 (%)

Differentiating with respect to time gives

P\ _ ia-1(P)_ p
(8) =44 (3) =5:(3)
Hence the velocity of the point is,

P=wXp+vV

The screw Sy or sq will be called the velocity screw of the motion.

11. Jacobians

The exponential form of robot kinematics is useful for deriving differ-
ential properties, for example Jacobians.

Consider a point attached to the end-effector of the robot, in the
robot’s home position the point has position vector p. Hence, at any
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subsequent configuration of the robot the position of the point will be

given by,
(1) -0 (?)

If the joints are moving with rates, 91, 92, ... 0 then the velocity of the
point will be,

B _ (4,25 L 4, 0K 42K (»
(B) = (6a5g + a5+ + o ) (5

The partial derivatives are easy to evaluate at the home position,

8_K — o151

o S0 ef65% — g
90, i i

So in the home position the velocity of the point is,

(g) = (6151 + 6255 + - - - + 6Sg) G’)

This is more general than it looks. If we choose the current configuration
of the robot to be the home configuration then the above argument will
apply. So, S; here will be taken to mean the current position of the
i-th joint. Alternatively, we could let s? denote the home position of
the robot’s joint screws. Subsequent configurations for the joints will be
given by,

Si — 691 ad(s?)eeg ad(sg) . 691'_1 ad(s?_l)sg]

Hence, we have that
oK
00;
So we can find the velocity screw of the robot’s end-effector by simply
substituting the adjoint representation of the Lie algebra. Hence,

K1 =5;

(L:) = Slél + 8292 + -+ 5696

If we compare this with the Jacobian relation for the velocity sq = J 0,
we can see that the columns of the 6 x 6 Jacobian matrix must be the
current joint screws of the robot,

7= (51 [sa s 150

A well known result.
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An immediate application of the above is to robot control. Suppose we
wanted the robots end-effector to follow a path given by a exponential,
¢5®) . In a traditional approach to this problem, the rigid motions along
the path would be computed and then a inverse kinematic routine would
be used to find the corresponding joint angles. It is probably more
efficient to find the joint angles by numerically integrating the equation,

Jézsd

For most current designs of industrial the Jacobian matrix J can be in-
verted symbolically, although this doesn’t seem to be widely appreciated.
Also sy can be computed using the formulas given above.

12. Concluding Remarks

In this brief lecture there has only been enough time to give an outline
of how group theory can be used in robotics. Several important appli-
cations have been omitted in the interests of brevity. Although we have
discussed the forward kinematics of serial manipulators the inverse kine-
matics is an key problem in the subject. Here we know where we want
to place the robot’s end-effector and we must compute the joint angles
needed to achieve this. Although, an approach using differential equa-
tions has been sketched above, this clearly runs into difficulties when
the robot’s Jacobian becomes singular. The investigation of these robot
singularities is another problem where group theory has been usefully
applied, see [6]. For parallel mechanism, such as the Gough-Stewart
platform, the inverse kinematics are straightforward, it is the forward
kinematics which are hard.

Robot dynamics requires another couple of representation of the group
SE(3). First, the forces and torques acting on a rigid body can be com-
bined into a single 6-dimensional vector called a wrench. The wrenches
transform according to a representation dual to the adjoint represen-
tation, the coadjoint representation. An accidental property of SE(3)
means that the adjoint and coadjoint representations are similar. In
Ball’s original screw theory velocities and wrenches were treated as the
same sort of object, however, to make progress it is simplest to separate
them. The second representation we need is the symmetric product of
the adjoint representation. Elements of this representation can then be
interpreted as 6 x 6 inertia matrices.

There are many applications of group theory to robot vision. Now
the group may be different. For example, there are formulations of the
camera calibration problem that use the group SL(4) to model the possi-
ble camera parameters. Certainly projective geometry will be important
when discussing cameras and there are projective groups associated with
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this geometry. The group relevant to geometric optics is the symplectic
group Sp(6,R), this is the symmetry groups of a complex of lines in
space.

Finally, the above presentation has used matrices and vectors exclu-
sively. There is some merit to using Clifford algebras to represent the
group of rigid body motions and the various spaces on which it acts.
Relations and formulas in Clifford algebra tend to be neater than their
matrix counterparts and this is useful for symbolic and hand computa-
tion. Another advantage of the Clifford algebra is that the group SE(3)
can be represented very compactly and this allows us to study the geom-
etry of the group itself. See Joan Lasenby’s lecture later in this meeting.
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