Differential Geometry
of
Curves and Surfaces

Zhongmin Shen

Department of Mathematical Sciences
Indiana University Purdue University Indianapolis
Indiana 46202, USA
zshen@math.iupui.edu

Spring, 2001



Contents

1 Curves
1.1 Vector Spaces and Normed Spaces . . ... ... ... ......
1.2 Curves in Vector Spaces . . . . . .. . ...
1.3 Curvesin R™ . .. ... ..

1.4 Exercises . . . . . . . . ..

Minkowski Spaces

2.1 Minkowski Spaces . . . . ... ..o oo
2.2 EXercises . . . .. ..o

Metrics on Surfaces

3.1 Surfaces . . ... . . . ... e
3.2 Riemann, Randers and Finsler Metrics . . . . . .. ... ...
3.3 Exercises . . . . . ..

Areas on Metric Surfaces

4.1 Area Forms of Metrics . . . . . . . .. . . ... .. ... ...
4.2 EXercises . . . . . . . .. e

Geodesics on Metric Surfaces

5.1 Shortest Paths and Geodesics . . . . . ... ... ... ....
5.2 Exercises . . . . . . ...

Geometry of Surfaces in R”

6.1 Normal Curvature, Mean Curvature and Gauss Curvature . . . .
6.2 Exercises . . . . . ...

Gauss Curvature

7.1 Gauss Curvature of Metrics . . . . . . .. . ... ... ....
7.2 Exercises . . . . . . . e e

Non-Riemannian Curvatures

8.1 Non-Riemannian Curvatures of Metrics . . . . . . ... ...
82 Exercises . . ... ... ...

13
13
20

22
22
24
32

33
33
39

40
40
48

50
a0
a7

58
98
66



Chapter 1

Curves

1.1 Vector Spaces and Normed Spaces

An n-dimensional vector space V" is a set of elements (called “vectors”) with
addition e; + es and scalar multiplication te;. The addition and scalar multi-
plication satisfy certain laws such as

t(el + 62) = te; + teo,

e; + (—1)61 =0.

There is a set of n linearly independent vectors {eq,---,ep} in V™ such that
every vector u in V" can be uniquely expressed in the following form

u=uzx'e; +--+a",.

In this case, we call the set {e1, --,e,} a basis for V", and denote V™ by
vr = span{el, e ,en}.
Note that {e1 +es,e0,- - ,en} is also a basis for V™.

Let ey, - - -, e be k linearly independent vectors in V™. Define

W .= {x1e1 + -+ aPey, | 2 real numbers}. (L.1)

W is a k-dimensional vector space with the induced addition and scalar multi-
plication from that in V. We denote W by

W = span{el,---,ek}.



Example 1.1.1 Let

R" := {(ul, .-, u™), u' real numbers },
with the following addition and scalar multiplication

(uh, - u™) + (0, 0" = (w0t u™ 4 o™).
t(ut,-- - u) = (tut, - tu).

R™ is called the canonical n-dimensional vector space. The canonical basis for
R™ is

{el = (1707"'70)7"'7en = (077071)}
Example 1.1.2 Let

(= {(u,v), v=m u}

where m is a constant. £ is a line in R? passing through the origin with slope
of m. Note

(= span{el},
where e; = (1,m). Thus £ is a subspace of R2.

Example 1.1.3 Let
V= {(u,v,w), u+2v = w}

V is a plane in R? passing through the origin. There are two linearly independent
vectors {ej,ex} in V such that

V = span{el,ez}.

For example, we can take e; = (—1,1,1) and e2 = (0,1, 2).

An inner product in V" is a positive definite bilinear symmetric form on V",
that is a map (,) : V" x V* = R with the following properties

(a) (u,v) = (v,u);
(b) (vt v, w) = A, w) + (v, w):
(c¢) (u,u) > 0 and equality holds if and only if u = 0.
Let {ey, -, e,} be a basis for V*. Then foru= )"  u'e; and v =31 | v'e;,

n
(u,v) = Z ajju'v’,

,j=1



where

Q5 = (ei,ej>.
The matrix (a;;) is a positive definite symmetric matrix. There is always an
orthonormal basis {ey,- -, e,} such that

aij = (e, €;) = by

Every inner product (,) in V" defines a function on V"

[[ul] == /(u, u).

This function || - || has the following properties
(a) |lul| > 0 and equality holds if and only if u = 0;
(b) ull = Alfull, VA > 0;

(©) [Ja+ vl < [Jul] + [Iv]];
(d) [| =l = [ful].

We call || || an Euclid norm on V"™ and (V™, || -]|) (or (V",(,))) an Euclid space.

Let R™ be the canonical n-dimensional vector space. The canonical inner
product (dot product) e and Euclid norm | - | on R™ are defined by

uev =ulvl + - +uv",

ful = VD + W)

We denote (R™,]-|) by R" and call R" the canonical Euclid space.
Every Euclid space (V?, || - ) is linearly isomorphic to R".

There are many interesting functions on V™ with properties similar to that
of an Euclid norm. Let |- || : V" — [0,00) be a function with the following
properties

(a) [|u|]| > 0 and equality holds if and if u = 0;
(b) [IA[| = Allv]l, A > 0;
(©) Jla+ v < flull + [Iv]].

|| - ]| is called a norm on V™ and (V™, | - ||) is called a normed space.

When n = dim V" =1, a norm is an Euclid norm if || — u|| = ||u]|.



1.2 Curves in Vector Spaces

Let V* = span{ej,---,e,} be a vector space and I = (a,b). Let ¢: I — V™ be
a map. Express ¢(t) in the following form

c(t) =c'(t)ey + -+ c"(t)e,.

¢ is said to be regular if each component ci(t) is C*° and for any t € I, the

derivative el p
() = 2C g g
ét) == o (tyer +---+ o (t)en, # 0.

A set C'in V" is called a curve if it is the image of a regular map ¢ : [ =
(a,b) — V™. In this case, ¢ is called a coordinate map (or parametrization) of

C.
Example 1.2.1 The ellipse

can be parametrized by

c(t) == (a cos(t), bsin(t)).

Any coordinate map of a curve C' determines an orientation of C'. There are
exactly two orientations for C. If ¢: I = (a,b) — C is another coordinate map,
then there is a function £ = #(¢) with £ >0 or % <0, such that

&(f) = c(t).

If % > 0, c and ¢ determine the same orientation. Otherwise, they determine
the opposite orientations.

Given a curve C in V". Let ¢ : I = (a,b) — V™ be a coordinate map of a
curve C. For p = ¢(t,) € C, set

T,C == span{c'(to)}.

T,C is a line in V2. The line T,,C is independent of the choice of a particular
coordinate map of C' . We call T},C' the tangent line of C at p.

A length structure is a family of functions
- llp: T,C = 0,00),  peC,
satisfying
(i) [|Aullp, = Aljullp, for all A > 0 and u € T,,C;
(ii) for any coordinate map c: I = (a,b) = C, the function
a(t) := lle) e
is C*°.



Given a length structure || - || on a curve C' in V*. Let ¢ : I — C be a
coordinate map. The form
ds := o(t)dt

depends only on the orientation of a coordinate map. We call ds the length
form. With the length form, we can measure the length of C' by

L(C) :/Cds = /aba(t)dt.

The length L(C) of C depends on the orientation of C.
We can also find a coordinate map ¢(s) of C' such that

le(s)ll = 1.

Such a coordinate map is called a unit speed coordinate map.

Usually, the length structure is induced by a norm in the ambient space. Let
C be a curve in a normed space (V|| -||)- For a coordinate map ¢ : I — C,
define
ds = ||¢(¢)||dt.

ds is a length form along C.

Example 1.2.2 R? is the canonical vector plane R? equipped with the canon-

ical Euclid norm
[(u,v)] = Vu? +v2.

Let y = f(x) be a C*° function on an interval I = (a,b).
C= {(x,y) eR? y= f(z), a<z< b}.

C is a curve in R?. Take a coordinate map c : (a,b) = C given by

(t) = (t, £ (1)).
Define

ds = /T+ [ (O dt.

dl is a length form on C. Then the length of C' is given by

b
L(C) = / NSO

Given a curve C in V2. Let ¢ : I = (a,b) — V? be a coordinate map of C.
Fix a basis {e1, ez} for V2. Express c(t) in the following form

c(t) = u(t)e; +v(t)es = u(t)e; + v(t)es.



We have
w(t)o" (t) —u(t)o'(t) _ u'(8)v"(t) —u" (t)v'(2)
u(tv'(t) —u'(to(t) — a®)v'(t) —a@(t)o(t)
Namely, ¢(t) is independent of the choice of a particular basis. We call ¢(t) the
associated function of ¢(t).
Let ¢ = t(f) be a C* function with % # 0. Then ¢(f) := c(t(t)) is a
coordinate map of C'. Let ¢ (%) denote the corresponding function of &. We have

¢(t) =

(1.2)

— _ rdt\?
ot) =60 () - (13)
Thus the positivity of ¢(t) is independent of a particular coordinate map c(t)
of C.
A curve C in V? is said to be strongly convex if ¢(t) > 0 for a coordinate
map c(t) of C.
Given a strongly convex curve C in V2. Define || - || : T,C — [0, 00) by

loll :==v/¢(0),  veT,C,

where ¢(t) is the associated function of a coordinate map c(t) with ¢(0) = v.
By (1.3), we see that || - || is independent of the choice of a particular coordinate

map. Set
dt :=||c(t)||dt = v/ o(t)dt

dl is independent of the choice of a particular coordinate map. We call d¢ the
Landsberg length form.
There is always a coordinate map ¢(f) such that

16O = Vé(l) = 1.

Such a parameter £ is called a Landsberg parameter.

Example 1.2.3 Let f = f(t) be a positive function satisfying f(¢) > 0. Con-
sider the following curve C in R2:

uf(%):l, u > 0.

Parametrize C' by

wo Lot
- f@y - f@)
A simple computation gives
_ @)
o(t) = 0 > 0.

The Landsberg length form is given by

_ [
d = | gy dt




Example 1.2.4 Let a > 0. Consider the curve C in R?:

Parametrize C by

A simple computation gives

ol

The Landsberg length form is given by

a
dl = | t~1 dt.
(1+a)
a
= /—1 .
14 ) nt+¢

¢ is a Landsberg parameter. With this parameter, we parametrize C by

(t) = ((exp [,/ﬁ“(f-éo)], exp [,/%a(z—zo)]).

1.3 Curves in R"

o(t) =

Integrating d¢, we obtain

In this section, we will discuss the geometry of curves in an n-dimensional Euclid
space R".

Let C be a curve in R" and ¢ : I = (a,b) = C a coordinate map with unit
speed, i.e.,

é(s)] = 1.
Observe that

d . 2 d . . . .

- [|c(s)| ] == [c(s) .c(s)] = 26(s) » &(s) = 0. (1.4)
Let {é(s),e1(s), --,en—1(s)} be a family of positively oriented orthonormal

basis along c. We can express
é(s) = ki(s)er(s) + -+ kn—1(s)e,—_1(s).

We call {k1(s), -+, kn—1(s)} the curvatures of ¢ with respect to {e1(s), -+, en_1(s)}.

I. Curves in R”: Let ¢: I — C be a unit speed coordinate map of a curve C'

in R”.
() = ((s),y(s))-



Let t(s) := é(s).

By (1.4), we have .
t(s) - t(s) = 0.

There is a unique unit vector n(s) such that {t(s),n(s)} is a positively oriented
orthonormal basis for R?.

k(s) is called the (signed) curvature.

For a regular plane curve c(t) = (z(t),y(t)) in R?, the signed curvature (t)
at ¢(t) is given by
' (t)y" (t) — <" (t)y'(t)

k(t) = -
w2 +y 2]

Theorem 1.3.1 For any unit speed coordinate map of a curve in R”, {t(s),n(s)}

o t(s) = K(s)n(s)
t(s) = k(s)n(s
{n<s> = “wls)tls) (15)
Let,
t6(s) = (u(s),v(s))
Then

System (1.5) is equivalent to

u(s) = —k(s)v(s)
5t Z s 0
We obtain
u(s) = cos ( k(s)ds + <p) (1.7)



Since

we obtain

cos (/Fa(s)ds + <p) ds (1.9)
)

/
/sin (/ﬁ(s ds +<p)ds. (1.10)

o) = [uls)ds
o) = [l

Theorem 1.3.2 For a closed oriented curve C' C R2, the total curvature

/ k(s) ds =2m 1,
c

where I is an integer.

The integer I is called the index of C' in R”.

Example 1.3.1 The unit speed plane curve c¢(s) in R? with k(s) = 2s and
¢(0) = (0,0) is called Euler’s spiral or the spiral of Cornu.

II. Curves in R”: Let ¢: I — C be a unit speed coordinate map of a curve C
in R®. Let t(s) := ¢(s). Assume that §(s) # 0. By (1.4),

t(s) - t(s) = 0.

That is, t(s) is perpendicular to t(s). Let

Let
b(s) := t(s) x n(s).

We obtain a positively oriented basis {t(s),n(s),b(s)}. We can express
t(s) = K(s)n(s),

where )
k(s) = |t(s)| > 0.

Define
7(s) :=n(s) e b(s).

k and 7 is called the curvature and torsion of C respectively.

10



Theorem 1.3.3 (The Frenet formulas) For any unit speed coordinate map of
curve C in R?, {t(s),n(s),b(s)} satisfy

t(s) = k(s)n(s)
n(s) = —r(s)t(s) +7(s)b(s) . (1.11)
b(s) = —71(s)n(s)

For any coordinate map ¢(t) of C, the following formulas hold.

_dt)
0= ar
() x (1)
b0 = a0 = o)
n(t) = b(#) x t(¢)

(@) x "(®)) - (1)
|c(8) x " (t)]?

7(t) =

Example 1.3.2 Consider the following curve

5)3/2 _ 5)3/2
ey = (LD (1=

. 7§) 1<s<l.
(a) le] = 1;
(b) £=1/1/8(1 = s?);
(c)

— 5 _VT=5 V=5 2
o (D VI ) (IS

(d) T =k.

The geometric meaning of the torsion lies in the following result:

Theorem 1.3.4 A curve in R is a plane curve if and only if T = 0.

Proof: Suppose that 7 = 0. By the Frenet formula, we know that b(s) = b, is
a constant vector. Note that

b, - ¢(s) = b, - t(s) = b(s) - t(s) =0,

we obtain

b, - (c(s) — ¢(s,)) = 0.
Thus ¢(s) is contained in the plane passing through ¢(s,) and perpendicular to
b,. QED.

11



1.4 Exercises

Exercise 1.4.1 Parametrize the circle which is centered at the point (a,b).

Exercise 1.4.2 Let k with |k| < 1. Parametrize the curve C in R*:
\/m + rku =1.

Find the Landsberg length form and set up the integral for the total Landsberg
length of C.

Exercise 1.4.3 Find a unit speed plane curve ¢(s) in R? with ¢(0) = (0,0) and

Exercise 1.4.4 Let C be a curve in R* and ¢: I = (a,b) — C an orientation-
preserving coordinate map. Assume that the tangent vector ¢'(¢) is not parallel
to the position vector ¢(t). Show that if the signed curvature x > 0, then

o(t) > 0.
Exercise 1.4.5 (The Helix) Consider the helix

with ¢ = Va2 + b2. Show that

()_E_L ()_E_L
=T erre TV T T e

Exercise 1.4.6 Find the curvature k and the torsion 7 of the following curve

o(s) = (% cos(s), sin(s), % cos(s)).

12



Chapter 2

Minkowski Spaces

2.1 Minkowski Spaces
I. Minkowski Norms: Let F': V" — [0,00) be a function. Assume that
(a) F is positively homogeneous of degree one, i.e.,
F(\y) = AF(y), A>0, ye V™
(b) F'is C* on V" — {0}.
For a vector y € V"* — {0}, define a symmetric bilinear form
g, : V' x V" =2 R
by
2

gy(u7v) = 5888t
Fix a basis {e,---,e,} for V. Let

|:F2(y + su + tV)] |s=t=0; u, ve V", (21)

1 .
L(y17,..7yn) = §FZ (yle1 4+ - _|_ynen) (22)

L is a C*™ function on R™ \ {0}. For a vector y := Y "' | y‘e; € V" — {0}, let

gl](Y) = Lyiyj (yla"'ayn)a 7/7.]: 17"'7“' (23)
Then
n . -
gy(u,v) = Z 95 (y)u'v’ (2.4)
ij—=1

13



Definition 2.1.1 F is called a Minkowski norm on V" if
(i) F is positively homogeneous of degree one,
(ii) Fis C* on V" — {0};
(ili) gy is positive definite for all y € V* — {0}, i.e., the matrix (gij(y)) is

positive definite.

For a Minkowski norm F on V7,

gy(y,y) = F*(y). (2.5)
1dy_.
gy (v, w) = 52 [Py + 1w li=o. (2.6)
Example 2.1.1 Any Euclid norm ||ul| = y/(u, u) in a vector space is a Minkowski

norm.

Lemma 2.1.1 Let F' be a Minkowski norm on V™.
(i) For any y,u e V" — {0},
gy(y,u) < F(y)F(u). (2.7)
(i) For any vectors u,v € V"
Flu+v) < F(u) + F(v).
Example 2.1.2 (Randers norm) Let V" = span{e;,---,e,}. Let a and 3 be

an Euclid norm and a linear functional on V™ respectively. a can be expressed
in the following form

n n
> agyyi,  y=)Y yeeVh
i=1

ij=1

where (a;;) is a positive definite symmetric n x n matrix, and § can be expressed
by

Bly)=> by, y=) yecV"
i=1 =1

Define
F(y) :==a(y) + B(y)-

14



F' is a Minkowski norm if and only if the norm of # with respect to « is less
than 1,

18la == sup Bly) < 1.

ay)=1

Let (a) denote the inverse of (a;;). We have

[18lla =

i aij bzb]

ij=1

A direct computation yields
F
9ij = E (aij — ayi ayj) + (ayi + bz) (ayj + bj)

F
det(gij) = (E) det(aij).
Definition 2.1.2 Let b = (by,---,b,) be a vector in R" with |b| < 1. Define

|- Ib : R™ = [0, 00) by
[Vl :=|v]+ b v, (2.8)

| - |b is a Randers norm on R™. We denote by Ry, = (R, |- |p) and call Ry, the
canonical Randers space associated with b.

II. Minkowski Planes
Let F: V2 = [0,00) be a nonnegative function. Assume that

(a) F is positively homogeneous of degree one, i.e.,
F(\y) = AF(y), A>0.
(b) Fis C* on V2 )\ {0}.
Fix a basis {e;, ez} for V2. Let
L(u,v) := %Fz (ue1 + veg).
Lis C*™ on R? — {0}. Let

g1 = Ly, gi2 = Lyy = g21, g22 = Lyy.

F is a Minkowski norm on V? if and only if for any y = ue; + ves € V2 — {0},
ie., gy : V> x V2 = R is positive definite, i.e.,

g11 >0, g22 >0,  g11922 — g12921 > 0. (2.9)

15



Let c(t) = u(t)e; + v(t)es be a coordinate map for C = F~1(1)
y =c(t) € C,

u'(t)o"(t) — u"($)v'(1)
u(t)v'(t) — ' (Bo(t)

Thus the Landsberg length form of C = F~1(1) is given by

gy(v,v) = a® +

dt = /g (c‘(t), (':(t)) dt.

Example 2.1.3 For a number « with |k| < 1, let

[(u,v)|x = Vu? + 0%+ Ku
and
1 2 1 9
Lu,v) = 5(|(u,v)|,ﬁ) = (Va2 + 0% 4 ku)’.
We have
—3/2
g1 = 1+ K2+ mu(2u2 + 3v2) (u2 + v2)
. 5\ —3/2
gi2 = kv3 (uz + vz) = go1
. 5\ —3/2
gos = 14 rku? (u2 + vz)
This gives

_ (\/u2 + 02 + /W)3
911922 — gi12921 T T .

Thus | - |, is a Minkowski norm on R?.

Example 2.1.4 Let

Bl-

F(u,v) := {u4 + 3cu®v? + v4} .
A direct computation yields
2u® + 9cu'v? + 6uv? + 3cv®
o 3/2
2(u4 + 3cu?v? + 'U4)
(9¢% — 4)ude?
g2 = 32 921
2 (u4 + 3c u?v? + v4)

3cub + 6utv? + 9cu?vt + 205

gin =

922 = 3/2
2(u4 + 3c u?v? + v4)

16

v =ac(t) + b &(t).

. Then for

(2.10)

(2.11)



This gives

3 2cut + (4 — 2¢®)u?v? + 2cvt
911922 = 912921 = 4 ut + 3¢ uZv? + vt

Thus F is a Minkowski norm on R? if and only if 0 < ¢ < 2.

Assume that F is a Minkowski norm on V2. Since gy : V2 x V2 =5 R is a
positive definite symmetric bilinear form, there exactly two directions perpen-
dicular to y with respect to gy. Thus if an orientation is given for V2, there is
a unique vector y=* satisfying

(1) {y,y*} is positively oriented.
(2) y* is perpendicular to y,
gy(y,y") =0, (2.12)
(3) y* and y satisfy
gy (v yh) =gy (v,y) = F2(y). (2.13)
We call y* the conjugate vector to y.

Fix an oriented basis {e1,e>} for V2. Let
1 .
L(u,v) := iFZ (ue1 + ’Ueg).

For a vector y = ue; + vey € V2,
1 — —Lvel + Lu62
\/Luuva - (Luv)2

y' is tangent to the indicatrix C = F~1(1). Let c(t) = u(t)e; + v(t)es be a
coordinate map for C. For y = ¢(t), we have

y (2.14)

= (2.15)

where

o(t) = 8e(r) (é(t), c'(t)) - - Z:’((tt))vv(’t()t) _

Cartan Torsion. Fix an arbitrary basis {e;, e2} for a vector plane V2. Let F'
be a Minkowski norm on V? and

1
L(u,v) := §F2 (ue1 + veg).

L is C* on R? — {0}.

17



Definition 2.1.3 For a vector y = ue; + vey € V2 — {0}, define

Luuu(_Lv)3 + 3Luuv(_Lv)2Lu + 3Luvv(_Lv)(Lu)2 + vav (Lu)3
C(Y) = 3 :

4L (Luuva - LuvLuv) ’

We call C(y) the Cartan torsion of F in the direction y.

Using the homogeneity of L, we have
2
L.=-L->L,
u u

1 2 2
Luv = _Lv - Evaa Luu = _2L - 2%-[/1) + (E) va;
u U U u U
v v\ 2 v\3
Luuv = __vav7 Luvv = (_) vav; Luuu = _(_) vav-
U U U
By these identities, one can easily simplify the above formula for C(y) to the
following simpler one for y = ue; + vey with u > 0.
2L2L
Cly) = =L (2.16)
(2LLuw — LoLy)

oo

Clearly, if F' is Euclidean, then C(y) = 0 for any y. The converse is also
true.

Proposition 2.1.1 (Cartan) A Minkowski norm F on V? is Euclidean if and
only if C(y) =0 for any y € V? — {0}.

Proof: Suppose that C(y) =0 for all y € V2 — {0}. Then
Lyyy = 0.
By the homogeneity of L, we know that
Lyuu = Luww = Luvw = Lyyy = 0.
Thus L is quadratic in (u,v) and F' is Euclidean. Q.E.D.

Let C = F~1(1). Parametrize it by c(t) = (u(t),v(t)). By (2.10), the
Landsberg length form is given by

dl := \/p(t)dt = \/ Wt (t) —u"(W)v'(E) g,

u(t)v' (t) — u'(t)o(t)
A direct computation also yields the following formula for C(y),

1 /[ w' —uv (w0 —u"" wv'" —u''v

Cy) =3 { ~3 } (2.17)

ulvll _ 'U/"'U’ ulvll _ U"U’ UU’ _ UI'U

18



Theorem 2.1.1 For any Minkowski norm F on V?, the total Cartan torsion
on C = F~Y(1) must vanish,

/ Cdl = 0. (2.18)
C

Proof: Let ¢(t),a <t < b be a coordinate map of C' with
cla) =c(b), ¢(a) = ¢(b).

Note that

where

Integrating C along C gives (2.18). Q.E.D.

Theorem 2.1.2 (Varga Equation) Let C be a strongly convex curve in V2
which is parametrized by c(s) with a Landsberg parameter £ . Then

él) + C(l)e(l) + c(f) = 0. (2.19)
Example 2.1.5 Let

[y 0)] = Va2 + 02 +
where & is a constant with |k| < 1. |- |, is a Randers norm on R?. The Cartan

torsion of | - | is given by

RU

Cly)=-2
2+ o Ve T T

We have

[|IC|| := max|C(y)| = % 1-vV1-kr2< %
y

The absolute maximum is attained at

1—+v1-—k2 ;
u:—iﬁ, v==2v1-—u?
K
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2.2 Exercises

Exercise 2.2.1 Let x be a constant |x| < 1. Consider the following Randers
norm on R?,
|(u,v)]x = Vu? + v + Ku.

Show that for a vector y = (u,v), its conjugate vector y= is given by

VuZ +v2 \3 SR
v = () (F0 v/

Exercise 2.2.2 Is the following norm Minkowskian on R2? Why ?
F(u,v) = {u* + v4}%.
Exercise 2.2.3 Show that for any € > 0, the following norm is a Minkowski
norm on R2.
F(u,v) = \/u2 + 02 +evut + vt (2.20)
Exercise 2.2.4 Let A, pu > 0 and
1
F(u,v) := { (/\u2 + ;w2) (,uu2 + /\vz) } t

Show that F'is a Minkowski norm if and only if

A
3—2\/§<ﬁ<3+2\/§.

Exercise 2.2.5 Let F': R? — [0,00) be a Minkowski norm. In Rf = {u > 0},
express F' in the form

Flu,v) = uf (=),

u

_ . eps . _ 2
where f = f(t) is a positive function. Show that at y = (u,v) € R3,

Cly) = 3P f@) + fFO) () |
2V/FOF (0 1"(1)

where t = v/u.

Exercise 2.2.6 Let
g 1/4
F(u,v) = {u4—|—3cu2v2+v4} ,

where 0 < ¢ < 2. F is a Minkowski norm on R%. Show that for any y = (u,v)
with v > 0,
2v/3(9¢% — 4)(v* — uH)uw

Cly) = 3/2°
3(20 u* + (4 — 3¢?) u?v? + 2c v4)
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Show that for (u,v) with u/v = /2/(3¢),

(9¢% — 4)*
Cly) =——+—.
(¥) 6o
Thus ) N
sup |C(y)| > u—)oo, asc— 0.
y 64c
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Chapter 3

Metrics on Surfaces

3.1 Swurfaces

Surfaces can be defined as in an abstract way. From differential topology, we
know that every surface can be embedded into R™. Thus we will consider
surfaces in a finite-dimensional vector space.

Let V* = span{ey,---,e,} be an n-dimensional vector space (n > 2). Let
D C R? be an open subset and ¢ : D — V™ a map. ¢ can be expressed in the
following form

p(z,y) = ' (z,y)er + - + " (x,y)en.

At a point x = (z,y) € D, define

doy : R? = V™
by
dpuw = e, we R
dt
We have
dpx(u) = ppy (x) + vy (x),  uw=(u,v) €R?,
where

Op Oy
palx) = 5 (x), py(x) = a_y(x)'
Thus the following subset
{dgox(u) eV*| ue RZ} = span{gom(x),cpy(x)}

is a subspace of V™. ¢ is called a regular map if for any x = (z,y) € D, p,(x)
and ¢, (x) are linearly independent.

A subset S in V" is called a surface if at every point p € S, there is an open
subset U, of p in V" such that SN, is the image of a regular map ¢ : D — R",
ie.,

w(D) = S NUp.
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p is called a coordinate map of S at p and (D, p) is called a coordinate system
at p.

For p € S, the subspace,
TpS = Span{(pz(x)a @y(x)}a

is independent the choice of a particular coordinate map ¢ : D — V™ with
p = o(x).

Definition 3.1.1 7),S is called the tangent plane of S at p. Vectors in T},S are
called the tangent vectors of S at p.

Example 3.1.1 Let z = f(z,y) be a smooth function on an open subset D C
R2. Define ¢ : D — R3 by

p(z,y) = (w,y,f(w,y))- (3.1)

 is a regular map. The surface S = ¢(D) is called the graph of f.

Example 3.1.2 Let
o(z,y) = (sinx, xy, ycosa:), (z,y) € D=(0,7/2) x R.

¢ is a regular map. Thus the image S = (D) is a surface in R>.

Example 3.1.3 Let

v, 0) = (singzﬁcosﬁ, sin ¢ sin 8, cos gzﬁ), (0,¢) € D =(0,2m) x (0,m).

¢ is a coordinate map of the unit sphere S” in R®.

Let U be an open subset in R? and ® : i/ — R be a smooth function. Define
Vo(x) = (@u(x), @y(x), 2u(x)),
where x = (u,v,w) € U. V®(x) is called the gradient of ® at x. Consider the

level set
& c) := {X €R? ‘ o(x) = c}.
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Theorem 3.1.1 (Implicit Function Theorem) Assume that at some point x €
(o),
V&(x) # 0.

Then there is an open subset Uy of x in R® such that ®1(c) NUx is a surface.

Example 3.1.4 Consider the set S in R® defined by

u?  v? W
S = {(u,v,w) €R? ¥+b—2+c—2 :1}.

where a,b,c > 0. S is a closed surface called an ellipsoid.

3.2 Riemann, Randers and Finsler Metrics

Let X be a set. A function d : X x X — R is called a distance function if it has
the following properties

(i) For any p,q € X,
d(p,q) >0 (3.2)

and equality holds if and only if p = g.

(ii) For any p,q,r € X,
d(p,r) < d(p,q) +d(g,r). (3.3)

The number d(p, q) is called the distance from p to ¢. In general, the distance
from p to ¢ is not equal to that from ¢ to p. The distance d is said to be reversible
if for any p,q € X,

d(p,q) = d(q,p). (3.4)

Example 3.2.1 (Funk) Let ¢/ be a strictly convex domain in R" = (R, |- |).
For a pair of points p,q € U, let z,, € OU be the intersection point of the line
with 0U which passes through p and ¢ in the order p, g, 2p,. Define

|2pg — P

. 3.5
|2pg — (3:5)

d(p,q) :=In

d is a non-reversible distance on U, i.e.,

d(p,q) < d(p,r) +d(r,q)-

d is called the Funk distance.
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Example 3.2.2 (Klein) Let d denote the Funk distance on a strictly convex
domain & C R™. Define d : U x U — [0, 00) by

d(p,q) = %{d(p, q) + d(q,p)}, (3.6)

Observe that for p,q,r € Q,

d(p,q) = %{d(p,qu(q,p)}

< awn +dro) +

= %{d(p, ) + d(r,p)} +

= J(p, r) + d~(r, q).

Thus d is a distance too. We call d the Klein distance.
Now we take a look at the special case when ¢/ = B" is the standard unit
ball in the Euclid space R". For a pair of points p,q € B", let

{d(a,r)+dr,p)}
{dla,r) +dr.q)}

N = DN =

2y =p+Ag—p) €0B”, A>1.

From the equation |z|? = 1, we obtain

\— Va—pP+Ip— PO~ [pP) — (p.a—p)
|l —pl? '

By (3.5), we obtain a formula for the Funk distance on B"

A AV —J2(1 =1l — _
d(p.q) = In oy Va0 I — PO pP) — o —p)
A-L Vg =) +Ip—qPA = 1pP) — (¢,q - p)
Note that
qilg%n d(0,q) = oo, pgé%n d(p,0) =1n2.
Example 3.2.3 Let (V", || -||) be an n-dimensional normed space. The norm

[|-]] on V™ induces a distance d : V"* x V* — R by
d(x,y) := |ly —x|-

Let S be a surface in V. The norm || - || also induces a family of norms F}, on
1,5, p€ S, by
Fy@y)=llyll, yeT,ScVv™

With this family of norms F' = {F}, }pecs, we can measure the length of a curve
on S.

25



Let C be a curve on S and let ¢: I = [a,b] = C C S be a coordinate map
for the whole curve C. The length form along C' is

ds = F(c’(t))dt = ||é(t)]|dt.

The length of C' is defined by

L(C’):/Cds:/abF(é(t))dt.

Let C denote the set of all curves on S. Then L is a function on C. L is called the
length structure defined by F'. The length structure induces a distance function
d on S by

d := inf L(C
(prq) = inf L(C),
where the infimum is taken over all curves from p to q. Note that

d(p,q) < d(p,q).

Example 3.2.4 (Induced Riemannian metrics) Consider a surface in the Eu-
clidean space R". Let ¢ : D — S be a coordinate map of S. The induced
Riemannian metric F' is given by

F,(y) = Vau? + 2buv + cv?, (3.7
where y = up, +vp, € T,,S and

= Qg Pz, b:QDm'(Py; C= Py Py

Example 3.2.5 (Induced Randers metrics) Let b = (by,---,b,) be a vector
with |b| < 1. Consider a Randers space Ry, = (R", | - |), where | - | is defined
by

[vlp :=|v|]+b-v, veR" (3.8)

Let ¢ : D — S be a coordinate map of S. The induced Randers metric on S is
given by

Fy(y) = \/au2 + 2buv + cv? + \u + pv, (3.9)
where y = up, +vp, € T,,S and

a=Qr Pz, b=z -0y, =@y @y,

A=b-y;, p=b-g,

The above discussion leads to the following

Definition 3.2.1 Let S be a surface in V. A family of functions F' = {F} },es,
where F}, : T),S — R, is called a Finsler metric if it has the following properties:
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(i) for any coordinate map ¢ : D — S, the function

F = F(up.(2,y) + vpy(2,)),
is a C° function on D x (R? — {0}).
(ii) F)p is a Minkowski norm on 7},S.

F is said to be reversible if each F), is reversible, i.e., F,(—y) = F,(y), y € T,,S.

Given a Finsler metric F' on a surface S. For a curve C on S, we obtain a
length form along C,

ds = F({:(t)) dt,

where ¢ : [a,b] — C is a coordinate map. The length of C is defined by

L(C) = /abds:/abF(c'(t))dt.

With the length structure, we obtain a distance d on S defined by
A(p,q) = f L(C), (3.10)

where the infimum is taken over all curves on S from p to ¢q. d and F' are related
by

F(c'(t)) = lim M. (3.11)

e—0+ €
Thus any distance on a surface is either induced by a unique Finsler metric or
not induced by any Finsler metric (d is said to be singular in this case). Given a
distance on a surface, we can use (3.11) to find the Finsler metric that induces
it.

Let S := D be an open domain in R2. S is a special surface in R?. The
canonical coordinate map is given by

p(z,y) = (z,y).

For a point p = (z,y) € S, the tangent space T,S can be identified with R?.
Namely, any vector y = (u,v) € R? is a tangent vector to S at p. A Finsler
metric F' on S is a function F(y) of tangent vectors y = (u,v) € T(,,)S. Thus
F = F(y) is a function of (z,y,u,v) € D x R2.

Let S be a surface in V* and ¢ : D — S a coordinate map for S. For a
Finsler metric F on S, we obtain a function of (z,y,u,v) € D x R?,

F = F(ugox(x,y) + Unpy(a:,y)).

F is a function of (x,y,u,v) € D?> x R2. Thus it can be viewed a Finsler metric
on D.
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Example 3.2.6 Let f = f(z,y) and h = h(z,y) be positive C* functions on
an open subset I/ C R?. Suppose that f satisfies

3-2V2 < f(z,y) < 3+2V2.

Let

=

F .= h(:c,y){(f(:v,y) u2+v2) (u2+f(:n,y) v2)} )

F' is a Finsler metric on /.

Example 3.2.7 (Funk and Klein metrics) Let 4 C R? be a strongly convex
domain, that is, there is a Minkowski norm ¢ on R? and a point x, € I/ such
that

u= {y €R?, o(y —x,) < 1}.

For a point x = (x,y) € U and a vector y = (u,v) € R? — {0}, define Fy(y) >0
by
Yy
Fe(y)

Set Fyx(0) = 0. Fyx is a Minkowski norm on Ty = R?. Thus F is a Finsler
metric on U. F is a function of (z,y,u,v) € U x R?, which satisfies

X+

€ au. (3.12)

F,=FF,, Fy, =FF,. (3.13)
Define another function F' by
A) = 3 {B) + By}, (3.14)
F is also a Finsler metric on U.

Let d and d denote the Funk distance and Klein distance on /. See (3.5)
and (3.6). One can easily verify that

_ d(x, X +e€y)
Fx (Y) - 61~1>%1+ 5 ’
B J(x, X +ey)
I (Y) - Eligl"' £ ’

Thus if d and d are defined by some Finsler metrics on I, they must be F and
F. By additional work, one can show that the distance functions defined by F
and F are indeed d and d. Thus we call F' and F' the Funk metric and Klein

metric, respectively.
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Let 4 = D? be the unit disk in R2. The Funk metric and Klein metric are
given by

V(zu+yv)? + (u? +02)(1 — 22 — y2) + 2u + yv

F = T (3.15)
- (zu + yv)? + (u? + v2)(1 — 2% — y?)
Poo Y R . (3.16)

Example 3.2.8 Let (S, a) be a Riemannian surface and x be a vector field on
S with a(x) < 1. Let g denote the family of inner products on tangent planes,
which are determined by «,

a(y) =Valy,y), y€eT,S

Suppose that a machine with full power can move around on the surface S at
constant speed 1 if there are no other force (such as wind) pushing it. Now
consider x as wind on S. Its speed a(x) in the direction x is not a constant in
general. Let the machine move along a curve C' on S. Due to the wind, at a
point p € C, the machine moves at the speed a,(v) in the direction

v:i=x+u€T,C,

where u € T,,S is a unit vector which is the force of the machine (the resulting
force is v). Fix a unit tangent vector y € T,,C and express v = A(p)y for some
A(p) > 0. Then u = A(p)y — x. Observe that

1=a(u)’ = Ap)* - 2A(p)g(x,y) + a(x)*.

We obtain

Ap) = Vg(x,y)? + 1 — ax)? + g(x,y). (3.17)

A = A(p) is a function along C. There is a coordinate map ¢ : [0,7] — C which
coveres the whole C such that

a(é(l)) = Ae(f), 0<E<T. (3.18)

T is the time that it takes for the machine to complete trip along C. The
time-length of C' is defined as the time

L(C):=T.

L is a length structure which is different from the original Riemannian length
structure defined by a.

The length structure £ is induced by a Finsler metric. To determine it, we
take an arbitrary curve C' on S. Let p = ¢({,) € C, where ¢ is the coodinate
map of C defined as above. There is an increasing function on [0,¢), £ = £(t),
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with £(0) = ¢, such that v(t) := ¢(£(t)) is a unit speed coordinate map with

respect to a. We have ,
0ot) = / F(y(T))dT.
0
Let y = 4(0) € T,C. Then
F(y) = '(0).
Note that by (3.18),

1=a(4(0)) = a(&(€)¢(0)) = A@) ().

We obtain )
7(0) = —.
0=

By (3.17) we obtain
1
\/g(X,y)Z +1- a(X)Z - g(X7Y)

VIxy)?2+1-a(x)? —g(x,y)
1— a(x)? '

Fly) =

Note that the above vector y satisfies a(y) = 1. If y is an arbitrary vector, then
F is given by

V(% y)? +a(y)?*(1 - a(x)?) —g(x,y)
1 - a(x)?

F(y) = . (3.19)
F' is a Randers metric of Funk type. See the following example.

Let x denote the radial vector field on the unit disk D2, which is given by

XP:_(way)a p:(xay) E]D)Z'

The Finsler metric defined as above is given by

V(w4 yv)2 + (u? +02)(1 — 22 — y?) + (zu + yo)
1—a%—y?

F =

This is just the Funk metric on D’. See (3.15). If a machines travels along a
ray issuing from the center, it takes infinite time to reach the boundary of the
disk, and finite time to reach the center, because the flow points toward to the
center and its speed near the boundary is almost equal to that of the machine.
This can be verified directly. For any unit vector y, let v(t) =ty, 0 < ¢ < 1.
For any ¢ with 0 < e < 1,

/08 F(v(t))dt < 0, /: F(ﬁ(t))dt = .
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Below is another specific model. A boat travels across the river of equal
width. Take a zy-coordinate system such that the x-axis is the shore of the
river. The water flow is parallel to the shore. Then the flow vector takes the
following form

x=(h).0),  0<y<h,

where h, denotes the width of the river. The resulting Randers metric is given
by

Vh)2u? + (u? +0?)(1 = h(y)?) - h(y)u
1= h(y)? '
Assume that the speed of the boat in still water is a constant = 1. The time

for which the boat travels along a curve is the length of the curve with respect
to F.

F =
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3.3 Exercises

Exercise 3.3.1 Show that the set S in R? defined by the following equation is

a surface, where
2 2 2
- 3| U v w?
S.—{(U,U,w)ER ﬁ+b7_67_1}’

where a,b,c > 0.

Exercise 3.3.2 Let
S:= {(u,v,w) # (0,0,0) ‘ w® = u? +v2}.
Show that S is a surface in R3.

Exercise 3.3.3 Let

(,0(33,:1/) = (az,y,xZ +y27$2 - y2)7 (xay) € RZ‘

Show that ¢ is a regular map, hence S = p(R?) is a surface in R*.

Exercise 3.3.4 Let
U:= {(x,y) € R? ‘ y> $2}.
For x = (z,y) € U and y = (u,v) with u # 0, define F' = Fy(y) > 0 by

x—f—LGaI/I.

Fx(y)

Find a formula for F. F is a function of (z,y,u,v) € U x (R*\ {(0,v), v > 0}).
Verify that F = Fx(y) satisfies

F,=FF,, F,=FF,.
Exercise 3.3.5 Let

V(2 +v2) — (zv — yu)? + (zu + yo)
1—a?—y?

F =

Verify directly that F' satisfies
F,=FF,, F,=FF,

Exercise 3.3.6 Let a spherical metric on R2,

\/u2 +v2 + (zv — yu)?
o=
1+ 22+ y?

7

and a radial vector field on R?,

XP::_V1+w2+y2'($7y)7 p:(xay)ERZ'

Using (3.19), find the Randers metric of Funk type for the pair {a, x}.
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Chapter 4

Areas on Metric Surfaces

4.1 Area Forms of Metrics

Area is a concept in geometry that represents the amount of space a geometrical
shape will occupy. Area is always expressed by a number value that is measured
in square units (like square feet or square inches).

Long before the Romans, both the Babylonians and the Egyptians had very
practical reasons for learning how to calculate how much space was contained
in a plot of land that had certain, fixed-shape boundaries. They first measured
the area of a rectangular lot by counting how many same-sized squares could
fit inside the rectangle. After doing this many times, someone made the gen-
eralization that multiplying the number of squares on each adjoining side was
exactly the same operation as counting all the squares inside. For a rectangle,
the rule then became length times width. The ancients eventually developed
rules for finding the area of triangles and circles and for less symmetrical shapes
such as parallelograms and trapezoids. The standard technique for dealing with
odd-shaped figures was to subdivide the shape into sections or shapes for which
the area could easily be calculated. Thus if they are broken up into rectangles,
triangles, or even circles and their individual areas added together, the area of
an irregular figure can be determined.

The ancient ideas can be generalized as follows.

Example 4.1.1 The standard Euclidean area form on R? is given by
dA = dxdy.
For a bounded region D in R?, define the Euclidean area A(D) of D by

A(D) = /D dudy.

For the unit disk D7,
AD?) = r.
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If
(2,9) = (2(7,9),9(3,9) : D D,

o(z
dedy = / 2
/D S ‘3(%

o(z,y) Ox 0y Oy ox
‘8(:%,]])‘ = %6_17_%8_@"

Consider the following more general region

then

y) | dzdp,
)

where

D := {(m,y) € R? ‘ Vax? + 2bxy + cy® + Ax + py < 1}

where
a>, ¢>0, ac—b >0 (4.1)
eA2 — 2bAp + ap?
= 1. 4.2
" \/ ac — b? < (42)

From linear algebra, there is a linear transformation

T = p11T + p12y, Y = p21T + p22y,
such that )

‘8(:6,34) ‘ = P11pP22 — P12P21 = —FF/—/—
o(z,7) Vac —b?

and D is the image of the following domain

D= {(:E,gj) € R? ‘ VI 4+ 5%+ KE < 1}.

Thus

Observe that the equation

is equivalent to the equation,

(1—n2)2(:5+ 1_%2)2+(1—f<{")g2 =1

Thus D is enclosed by an elliptic curve. Take another transformation

i K g
1—-k%2 1—g% Y= A=

Then D is the image of the unit disk

T =

D* = {(#,5) € R* ‘ # 450 <1},
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Note that

‘6(:7:, y) ‘ _ 1
o(z,9) ( J\3/2°
’ 1-— Iiz)
We obtain
A(D) = / v - — T
- 2 3/2 - 3/2°
D (1 — nz) (1- I€2)
Finally, we obtain the Euclidean area of D
™ ac — b
A(D) = = = ( ) - (43)

m(l - /<c2)3/2 (ac — b2 —cA? + 2bAu — auz) :

Let S be a surface and F' be a Finsler metric on S. Let ¢ : D — S be a
coordinate map. For a point (z,y) € D, let

Dy = {(u,v) € R? ‘ F(ugom(:n,y) + Unpy(a:,y)) < 1}.

D(, ) is a bounded convex region in R?. Let

™

olz,y) = ———.
’ A(D(w,y))

Define
dA = o(x,y)dzdy.

Let ¢ : D — S be another coordinate map and
Dz g) = {(a,@) €R? ‘ F(z,y,u,0) < 1}.

Assume that U = o(D) N@(D) # (B, Then for any point p = ¢(z,y) = @(Z,7) €
S,

7(z,9) dzdg = o(x,y) dxdy. (4.5)
Since o(z.y)
LY) | gm0
dxdy = ‘ —= ‘dazdy,
o(z,y)
(4.5) is equivalent to the following

Qi

i 0, y) ‘ (4.6)

(z,9) = U(w,y)‘a@g) :
Thus dA = o(x, y)dzdy is well-defined.

Let f : S — R be a continuous function on a Finsler surface (S, F'). Let

supp(f) = {p € 5 | 70) #0.}.
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Suppose that supp(f) is contained in a coordinate neighborhood ¢(D). Define

/ fdA = / f(@y) o(x, y)dedy,
©(D) D

where f(z,y) = f o p(x,y) is a function on D. By (4.6), we see that f@(D) fdA
is well-defined.
The number

A(S) = /5 A

is called the area of S. In particular, the area of S, = ¢(D) is given by

A(S,) :/ dA :/ o(z,y) dzdy.
©(D) D

I. Area Forms on Riemann Surfaces: Let S be a surface and p : D — S
be a coordinate map . Let F' be a Riemannian metric on S in the following form

Fy(y) = Vau? + 2buv + cv?, Y = ups +vpy € TS

where a = a(z,y),b = b(z,y),c = c(z,y) are functions of (z,y) € D. For the
domain

D = {(u,v) € R? ‘ Vau? + 2buv + cv? < 1},
according to Example 4.1.1,

™
Vac =02

Thus the area form dA = o(x,y)dzdy is given by

o(z,y) = Vac— b2 (4.7

A(D) =

Area Forms on surfaces in R": Let S be a surface in R” and ¢ : D — R"
be a coordinate map for S. The induced Riemannian metric F' on S is given by

Fy(y) = Vau? + 2buv + cv?, y = upe +vpy € TpS,

where
a =@z Pz, b=z oy, C= @y Py-
By (4.7), we obtain the area form dA = o(x,y)dzdy of F, where o(x,y) is given

by
o(z,y) = Vac— b2
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Example 4.1.2 Let S be a graph in R? defined by
2= flz,y), (,y) €D.
The natural coordinate map for S is given by
p@,y) = (0.9, f(@,y),  (5.y)€D.

We have

(1,0,f,,.)
(0, 1, fy).

(Po - @)y - py) — (o "Py)2 =1+ [fw]2 + [fy]2
The area form dA = o(x,y)dxdy under p is given by

o(z,y) =1+ [fu]? + [fy]>.

The area of S is given by the following integral
A(S) = / U+ ]2 + )2 dady.
D

II. Area Forms on Randers Surfaces: Let S be a surfaceand p : D — S
be a coordinate map . Let F' be a Randers metric on S in the following form

Pz

Py

Thus

F,(y) = Vau2 + 2buv + cv? + Au+ pv,  y = up, + vy € T},S,

where a = a(z,y),b = b(z,y),c = c(z,y), A = Mz,y), n = p(z,y) are functions
of (z,y) € D satisfying (4.1) and (4.2). Then the area form dA = o(z,y)dzdy
is given by
%
(ac —b% — A% + 2bAp — a,u2)
ac — b?

2 _ 2, 2
_ m(l_c/\ 2b)\u+au)z.

ac — b2

o(z,y) =

The surface area of S, = p(D) is given by

3

_ —0 _c)\2—26)\u+a,u2 2
A(S,) = /D\/ac b (1 > ) dxdy
/\/ac—b2 dzdy.
D

IN
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Area Forms on surfaces in a Randers space Ry: Let R;. = (R",|-|p) be
a Randers space, where

[vlb = |v|+b-v v € R".

Let S be a surface in Rﬁ. For a coordinate map ¢ : D — S, the induced
Randers metric on S is given by

Fo(y) = Vau? + 2buv + cv? + Au + Lo, Yy = up, +vpy € 1,5,
where
a= Pz Pz, bz@z"ﬁy: C= Py Py,
A=b-yps, p=b-g,.
The area form dA = o(x,y)dzdy is given by

2 _ 2,8
a(m,y)zﬂ(l—d\ 2b)\,u+au) :

ac — b?

38



4.2 Exercises

Exercise 4.2.1 Find the area of the graph S in R? defined by
2=\ +y?, P HyP<L
Exercise 4.2.2 Let
pla,y) = (fv y, @ +y?, o - yz)-

Find an area form dA = o(z, y)dady for the surface S = p(R?) in R*. Find the
integral formula for the area of S, = ¢(D) for the square D = (0,1) x (0,1).

Exercise 4.2.3 Let (R?,]-|,) be a canonical Randers space, where |-| is given
by
|(u,v,w)|x = Vuz 4+ v2 +w? + kw.

Consider a graph S in R? given by
z = f(z,y).
Verify that the area form dA = o(z,y)dzdy of F on S is given by
3
[1+ (1= &)L + [£])]
L+ [fel? + [fy?

Exercise 4.2.4 Let S denote the graph of f in (R3,|-|,), where

o(z,y) =

—k+/1- (1 -r>)(@* +9?)
1— k2 ’

flz,y) =

where

1
. 2| 2., 2
(:c,y)ED.—{(x,y)ER ‘x +y <1—/<;2}'

Using Exercise 4.2.3, find the area form dA = o(x,y)dxzdy of S. Verify that for

Kk #0,
Area(S) = T ! +H.

kK 1—k

Exercise 4.2.5 Let
D =(0,1) x (0,1).

Let S be a surface and ¢ : D — S be a coordinate map . Let F' be a Randers
metric on S given by

F,(y) = \/u? + sinh*(z)v? + tanh(z) u, y = up, +vp, € T,S.

Find the area of S’ = ¢(D).
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Chapter 5

(Geodesics on Metric
Surfaces

5.1 Shortest Paths and Geodesics

Let (S, F) be a Finsler surface. For a curve C' on S issuing from p to ¢, the
length of C' is given by

L(C) = /abF(e(t))dt,

where ¢ : [a,b] — S is a coordinate map of C' with c¢(a) = p and ¢(b) = q.
Assume that C' is a shortest curve among those nearby C and issuing from p to
g. Take an arbitrary smooth family of curves Cj, |s| < €, on S issuing from p
to ¢ such that Cy = C. Let

L(s) := L(C).
L(s) is the length of the curve Cs. By assumption,
L(s) > L(0).
This implies that
L£'(0) = 0.

Let ¢ : [a,b] = C be a constant speed coordinate map of C. Assume that C
is covered by a coordinate map ¢ : D — S. We can express c¢(t) by

e(t) = ¢ (2, y(0))

Put )
L(CU,y,U,'U) = EFZ(Y)v Yy = upy +U90y

40



By the method in the calculus of variations, we know that the functions z(t)
and y(t) satisfy the following second order ordinary equations:

2"'(8) +2G (w(),y(8), 2' (1), y' (1)) =0 (5.1)
y"(t) + 2H (2(t), y(8), 2/ (1),5/ (1)) = 0 (5:2)
where G = G(x,y,u,v) and H = H(x,y,u,v) are given by
Lvav - L Luv - va - L u Lv
2(Luuva - LuvLuv)
(_LxLuv + LyLuu) + (va - Lyu)Lu

o= 2(LuuLow = LuvLan ) o4

We call G and H the geodesic coefficients of F'.

Definition 5.1.1 A geodesic on a Finsler surface (S, F) is a regular map c :
I — S such that its coordinates (x(¢),y(t)) in a coordinate system (D, ) satisfy
(5.1) and (5.2). The image of a geodesic on S is called a path.

For any geodesic ¢(t) of a Finsler metric F,

F(é(t)) = constant.

The geodesic functions G and H have the following properties
(i) G and H are C* on D x (R? — {0});

(i) G and H are positively homogeneous of degree two in (u,v), that is, for
any A > 0,

G(z,y, \u, \v) /\QG(:U,y,’LL,'U),
H(z,y,  u, W) = NH(z,y,u,v).

(iii) If ¢ : D — S is another coordinate map with @(D) N @(D) # (), then
(G,H) and (G, H) are related by

- oz ox oz , | 0F 0’z

5 9y 9y 0§ , 0% 7
2H = 2G o +2H By 8:c2u 26:681/ uv ay2’l) .

Let c(t) = Lp(x(t),y(t)) be a geodesic with #'(t) > 0. Then z(t) is an
increasing function so that the inverse function ¢ = t(z) exists and y = y(t) =
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y(t(x)) becomes a function of z. By the chain rule, we have

dy _ y'(t)
ey _ #(0) _ywrn oy 5.
dx? x'(t) z'(t)3 ) '

Let v
¢ :=2-G(z,y,u,v) — 2H(z,y, u,v).
u

® satisfies
®(z,y, \u, W) = N2 ®(z,y, u,v), A> 0.

Now two ODEs (5.1) and (5.2) are combined into the following ODE after we
eliminate the parameter ¢,

d*y dy
— =0 1,—=). .
dx? (:c,y, ’ da:) (5.7)

If 2'(¢t) < 0, we can still view y(t) as a function of z. In this case, two ODEs
(5.1) and (5.2) are combined into the following ODE:

d*y dy
Y _ 9 —1,-%), :
dx? (:C,y, ’ da:) (5.8)

Proposition 5.1.1 Let (S, F) be a Finsler surface and ¢ : D — S a coordinate
map such that the geodesic coefficients G and H are in the following forms

G = P(;U?y?u?U) u7 H = P(;U?y?u?U) v.
Then any path on the surface must be the image of a straight line under ¢.

Proof: Let ¢(t) = Lp(x(t),y(t)) be a geodesic. Since
v

$ =2-Pu—2Pv =0,
u

y = y(x) satisfies
dy

dr?
The general solution of the above ODE is that y = mz + b. Q.E.D.
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Example 5.1.1 Let F be the Funk metric on a strongly convex domain & C R2.
Hence it satisfies
F, = FF,, F,=FF,. (5.9)

A direct computation yields
1 1

Thus paths are straight lines in i/.

A Finsler surface (S, F) is said to be positively complete if every geodesic
¢: (a,b) = S can be extended to a geodesic defined on (a, 00).

Let (S, F') be a positively complete Finsler surface. For a point p € S, define
exp, : 1,8 = S
by
exp,(y) = ¢y (1),
where ¢y : [0,00) = S denotes the geodesic with ¢,(0) =y. We have
exp,(ty) = cy(t), t>0.

We call exp,, the ezponential map at p.

Theorem 5.1.1 Let F be a positively complete Finsler metric on a surface.
For any point p € S,
exp, : 1S = S

15 an onto map.

I. Geodesics on Riemann Surfaces:
Consider a Riemannian metric F' on a surface S,

F(y) = Vau? + 2buv + cv?, Y = up, + vy € 1,5,
where a = a(z,y),b = b(z,y) and ¢ = ¢(z,y) are C* functions on D satisfying
a>0, ¢>0, ac—0b*>0.
The geodesic coefficients G and H are given by

(cax + ba, — 2bbgc)u2 + 2(cay — bc,;)uv + (2cby —cey — bcy)v2

1(ac—12)

(Zabw — ba, — aay)u2 + Q(acw - bay)uv + (bcx +acy — 2bby)v2

4(ac - 12)

Thus G and H are quadratic functions of (u,v) € R?.

G =

H =
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Example 5.1.2 Consider the following Riemannian metric on a domain ¥/ in

R?,
F =e"\/u2 + 2, (5.11)

where n = n(z,y) is a C* function on U. The geodesic coefficients G and H
are given by

G = (u*—v®)n, +2uvn,
H = 2uvn, — u? —v*)n,.

Example 5.1.3 Let

Fo u? + 02 + (xv — yu)?
B 1+ 2% +y? '

F is a Riemannian metric on R?. The geodesic coefficients G and H are given
by

H = ——F?y.

Thus any geodesic c(t) = (x(t), y(t)) with A = F(é(¢)) > 0 must be given by

z(t) = acosh(At) + bsinh(At)
y(t) = ccosh(At) 4+ dsinh(\t).

Example 5.1.4 Consider the following Riemannian metric on R2,

B \/u2 + 02 + (xv — yu)?

F
1+ 22 +y?

The geodesic coefficients G and H are given by
G =P u, H =P,
where

Tu + yv

P=——".
1+ 2?2 +y?

Thus paths are straight lines.
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Example 5.1.5 Let S be the graph in R” which is defined by
z=f(z,y), (z,y)€D.

The standard coordinate map of S is given by
p(z,y) = (:v,y,f(w,y))-

The induced Riemannian metric is given by

F(y) = \/(L+ [fe]2)u? + 2fs fyuv + (14 [f,]2)02,

where y = up, +vp, € T,,S. The geodesic coefficients G and H are given by

¢ = 2(1 + [f;]c”; YD (f.ﬂ,c,ﬁ,cu2 + 2 foyuv + fyyvz) (5.12)
= 2(1 + [ij]”g YD (famu2 + 2 fayuv + fyyvz). (5.13)

If
z = fe,y) = aly) + bly)z,
where a(y) and b(y) are functions of y, then

H(z,y,u,0) =0.
Thus the straight lines C}, on the surface S,
Cp = {(az, m, a(m) + b(m)az) },
are paths.

II. Geodesics on Randers Surfaces: Consider a Randers metric F' = a +
on a surface S, where

aly): = Valz,y)u? + 2b(xz, y)uv + c(z, y)v?
Bly): = Mz,y)u+ p(z,y)v
where y = up, + vp, € T),S.
Let
ca, + ba, — 2bb 2ab, — ba, — ac
A = )\m _ T Y 1:)\ _ T T Y
2(ac — b?) 2(ac — b?) a
1 ca, — be ac, — ba
B = —(\ p ) — —2 Ll W — Y
2( y e ) 2(ac — b?) 2(ac—b2)u
2¢b, — cep — be be, + ac, — 2bb
C = _ y x yy_ e y y
Ky 2(ac — b?) 2(ac — b?)
1
D = 3 (A = o)
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Let G, H denote the geodesic functions of the Riemannian metric o and G, H
denote the geodesic functions of the Randers metric F' = a + . Then

CRCT N Y 2] Do
G = G+2F{Au +QBuv+CU}+(ac_b2)F(bu+cv+a,u)
"N P 2y __ Do
H = H+2F{Au —|—2Buv—|—0v} (ac_b2)F(au+bv+a/\).
Let R v - ~
P = QEG(:c,y,u,v) —2H(x,y,u,v).
b= 2EG(x,y,u,v) —2H(z,y,u,v).
u
Observe that oD
~ «
b=+ —. 5.14
+ (ac — b?)u (5.14)
Then the paths y = y(x) of F satisfies
d’y dy
— = ¢ +1,+—
dx? (:c,y, ’ da:)

A (29) = el ) dy dyn 21 3/2
a(z,y)c(x,y) — b(x,y)? {G(SU;ZJ) + 2b($,y)% +c(z,y) (%) } _

The sign in the above equation is equal to that of z'(t). We conclude that if
)\y = ll’-t:
then the paths of F = a + 8 coincide with that of a.

Example 5.1.6 Let |- |, be the Randers norm on R? given by

[(w,v,w)|x = Vu? +v2+w? + kw.

Let S be a graph in (R3,| - |,) given by

p(z,y) = (fc Ys f(fv,y))-

The induced Finsler metric F' is given by

F.=Vau?+2buww+cv?+Au+pv,
where
a:1+[fx]2: b= fufy, C:1+[fy]2
A=Kfe, p=EKfy.
Note that
Ay = lig-
Thus the paths of F}; remains unchanged when k changes.
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Example 5.1.7 Consider the following special Randers metric on S

Fly) = v + ¢*(@)v* + (@),  y =ups +vpy € T)S.
We have
N Y(@)u? + §(2)d(x)¢' ()0
2( u? + ¢ (z)v? + d)(:c)u)
¢'(z) V(@) + Y (@)g(a)df (z)v>
¢(x) 2 (W + ’I/J(:U)u)
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5.2 Exercises

Exercise 5.2.1 Let F be a Finsler metric on a domain D C R2?. Express a
Finsler metric F' in the form

F:uf(a:,y,%), u >0, (5.15)

where f = f(z,y,€) is a function of (z,y,£) € D x R. Express the geodesic
coefficients G and H of F in the form

_ 1 U\ 2
G = 5@(33,]/, E) U
1 v 1 (AN
H = 5@(:13,]/,5) uv—?ﬁ(w,y,a)u,
where © = O(z,y,£) and ® = ®(x,y, ) are functions of (z,y,&). Show that

® fy_fzé_gfyé

= == 25 (5.16)
fee
fy_fmg_ffyﬁ fE fw +§fy
0 = ys . ds  JT T 5 5.17
[ 47
Exercise 5.2.2 Consider the following Riemannian metric on the right half
plane of R2.
F = l\/u2+v2. (5.18)
x
(a) Let ¢(t) = (z(t),y(t)) be a geodesic of F. Show that z(t) and y(t) satisfy
" 1 _ 2\ _
() = o5 (¢ 07 —y'@?) =0
1
yu ¢ / "(#) = 0.
(1) =2 (')
(b) View a geodesic c(t) = ( ) as a graph of y = f(x). Show that it

satisfies
()
da:z z Udz '
(c) Verify that semi-circles
P+ @y-b*=d’, x>0
are paths.
Exercise 5.2.3 Let S be a graph in R* given by
(,0(33,:1/) = (ZL“, Y, $2 + y27 wZ - yz)

Find G and H of the induced Riemannian metric F'.
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Exercise 5.2.4 Consider the following Randers metric /' = a+ 8 on a domain
Q= {(z,y), 2> +y*> <1} in R?,

_ Vu2+ 02— (av —yu)? + au+yo

F
1—a2 —y2

Find the geodesic coefficients G and H of F'. Describe the paths of F in 2 ?

Exercise 5.2.5 Let || < 1. Consider the following Randers metric on a do-
main U in R2.

F:\/ 1+ k222 w4+ 20?4 KTU

1—(1-k2)a? m

Show that
H(:’B7 y7 u? 0) = 0'

Explain why any horizontal line (after an appropriate parametrization) is a
paths of F'.

Exercise 5.2.6 Let

P \/u2—|—v2—(azv—yu)2‘

1—22—y92
F' is a Riemannian metric on the unit disk D2 C R2.

(a) Verify that the geodesics of F' are given by
1
= §F2 T
1
H = -F%y.
D) Y
(b) Show that any geodesic ¢(t) = (z(t),y(t)) with A = F(é(t)) > 0 is given
by

z(t) = acos(At) + bsin(At),
y(t) = ccos(At) + dsin(At),
where a,b,c and d are constants. Explain why the paths of F' are either

elliptic curves with center at the origin or straight lines passing through
the origin.
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Chapter 6

Geometry of Surfaces in R"

6.1 Normal Curvature, Mean Curvature and Gauss
Curvature

In this section, we shall discuss the extrinsic geometry of surfaces in an Euclid
space R". Let S be a surface in the n-dimensional Euclid space R". Let
@ : D — S be a coordinate map of S. The induced Riemannian metric is given
by

Fo(y) = \/au2 + 2b uv + ¢ v?,
where y = up, +vp, € TS and
A= Pr Prs  D=Qr-py, =9y
This gives rise to an inner product in T,,S given by
gp(y,u) :=a us+ b (ut + vs) + c vt,
where y = up, + vy, u = sp, +to, € T},S.
Definition 6.1.1 For a tangent vector y = ug, + vy € 1},S, define
AL (y) i= prpt® + 20pyuv + 07 — 2Go, — 2Hpy, (6.1)

where G = G(z,y,u,v) and H = H(z,y,u,v) are the geodesic coeflicients of F'.
We call A,(y) the normal curvature of S in the direction y € T,,S.

To compute the normal curvature, we need the formulas for the geodesic
coefficients G and H of F,

(caw + ba, — 2bbw)u2 + 2(cay — bcm)uv + (2cby —cey — bcy)v2
4 (ac - b2)
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(Zabx —ba, — aay)u2 + 2(acm — bay)uv + (bcz + ac, — 2bby)v2

4(ac—v?)

H =

Plugging them into (6.1), we obtain

Ayly) = au? + 2b uv + ¢ v?, (6.2)
where
_ ca, + bay — 2bb, 2ab, — bay — aay
a = Pz — Px — 90?,1
2(ac— b2) 2(ac— b2)
ca, — be, ac, — ba
b = ¢ — 5 N Pz — ‘yQOy
2(ac — bz) 2(ac — bz)
2¢b, — ce, — be be, + acy, — 2bb
C = QPyy— z w‘ y‘Pz_ o Y ) y‘Py-
2(ac— bz) 2(ac— bz)

By the above formula, we see that the normal curvature A,(y) is quadratic
inyeT,S.

Remark 6.1.1 If S is a surface in a Minkowski space (R", ||-||), then the normal
curvature A, (y) is defined by the same formula as (6.1). In general, the normal
curvature A, (y) is not quadratic in y € T,S, unless the geodesic coefficients
G = G(z,y,u,v) and H = H(z,y,u,v) are quadratic in (u,v) € R? for each
(2,9).

Lemma 6.1.1 Assume that S is a surface in an Euclid space R". Let ¢ :
D — S be a coordinate map of S. For any 'y = up, +vp, € TS, Ay(y) is
perpendicular to TS,

A,(y)-v=0, Vv € T,S. (6.3)

Thus the vectors a,b and c are perpendicular to T,S.

Take an arbitrary basis {e1, es} for T},S (e.g., €1 = ¢u, €2 = ¢,). Express

Fpy(ly) = Vau? +2buw + ¢ v?,
Ayly) = au®+2buv+co?

where y = ue; +ve, € T,,S. Define

ca — 2bb + ac
H = —— — 4
4 G,C—b2 (6 )
a-c—b-b
K, = —. .
b ac — b? (6:5)
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H, and K, are independent of the choice of {e1,e}. But they might depend
on the shape of S in R". We call H, and K, the mean curvature and the Gauss
curvature, respectively.

According to Lemma 6.1.1, the mean curvature H = H,, is always perpen-
dicular to T}, S, while the Gauss curvature K = K,, is a function on S.

Theorem 6.1.1 (Gauss Theorem) For any surface S in an Buclid space R",
K depends only on the induced Riemannian metric F'.

Proof. Let ¢ : D — S be an arbitrary coordinate map. Observe that

1 1
Prz " Pz = 5(‘Pw"Pw)w:§ax
= (pe-one =5 (0e0), =03
Paa " Py = Pz - Py)a B Pz - Pz , 2(1y
1 1
ooee = geeee), = 5o
1 1
oon = g(0n), = 5o
1 1
Pyy P = (soy-%) —5(%-%) =by— 5
Yy T
1 1
Pyy Py = 5(‘Py“Py)y:§Cy
and
Pz ' Pyy — Pay " Pay — (‘Pw'@yy)w_(QOz'@zy)y

= (b - %c) - (%by)y

1
—5 (ayy + Cpw — 2bwy).

By (6.5) and the above identities, we obtain

_ Gyy + Caz — 2byy

2((ac—v?)

QyCy + CyCp — 2bgcy

4(ac - 62)2

AzCy — QyCp + 20,0y — 2ayby — 2b,c,

4(ac - 62)2

azCy + ayay — 2a,b,
2
4(ac - 62)

92

K(y)

+ b




Thus the Gauss curvature K defined in (6.5) can be expressed in terms of
a4 = Q- Pz, b= s -y, ¢ =@y, -y, and their (first and second order) partial
derivatives with respect to x and y. This proves the Gauss Theorem. Q.E.D.

By (6.6), the Gauss curvature can be defined for all Riemannian metrics. J.
Nash has proved that every Riemannian metric F' on a surface S is induced by
an Euclid norm. More precisely, (S, F') is isometric to a surface S’ in an Euclid
space R" with the induced Riemannian metric F".

Theorem 6.1.2 (Gauss-Bonnet) Let (S, F') be a closed oriented Riemann sur-
face. Then the total Gauss curvature

/KdA:27rx,
s

where x is an integer.

The integer x is called the Euler number of S. It is a topological invariant
of S, independent of metrics on S. For example,

x(§) =2, x(T% =0,

Consider a surface S in R®. Take a normal vector n at p, i.e., n is a unit
vector such that
n-v=_0, v eT,S.

Let

Then
A,(y) = An(y) n.

From the definition, we see that A, is a quadratic form on 7,S. By linear
algebra, there is a basis {e1, e2} for T},S such that

Fply) = \/m

An(y) = Ku? + Koo,

where y = ue; +vey € T),S. k) and Ky are called the principle curvatures at p
with respect to n. We have

Ap(y) = (/‘61U2 + Iizv2) n = (k1n) u® + (kzn) v°.
By (6.4) and (6.5), we obtain

H, = (k1 + k2)n, K, = k1k2.
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Example 6.1.1 Consider a graph S in R? given by
z=f(z,y).
Take the standard coordinate map

o(z,y) = (z,y, f(,y))-

Let
y = upe +0py = (u, v, wfo(,y) +vfy(z,p)) € T,S.

The induced Riemannian metric is given by

F(y) = /(1 + [£]2)u2 + 2fc fyuv + (1+ [£,]2)02. (6.7)
We have
fa 2 2
G - fzz + Qfx + f
2(1 + [fa:]z + [fy]z) ( w yuv yyU )
fy 2 2
H = fzz + Qfx + f .
2(1 N [fw]2 N [fy]2) ( u yuv yyU )

Finally, we get
_ fzzuz + 2fzyuv + fyy'Uz

L+ [fe]? + [fy]?

A,(y) n, (6.8)

where

1
SRV Ea T AER AL (=4 =t 1)

is a unit vector field perpendicular to 7),S. The mean curvature is given by
(U o) e = 2 fufoy + U+ [V oy
3/2 :

(14 1712 + 1)

The Gauss curvature is given by

H=

(6.9)

fzzfyy - az;y

K = .
(1410 + A1)

(6.10)

Consider the sphere 82(r) of radius 7 in R®. The upper semisphere is the
graph of the following function

fa,y) = V7 —a? — .
By the above formulas, we obtain the mean curvature H, and the Gauss cur-
2
vature K, at p = (z,y,2) € S (r),

2 1
Hp: ;Il7 Kp: 7"_2
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To understand the geometric meaning of the principle curvatures, we con-
sider the following graph S in R3,

1
fla,y) = 5(01 &’ + e y2),

where ¢1, ¢y are constants. At the point p = (0,0,0) € S, n = (0,0,1) is a
normal vector to S. The tangent plane T,S = span{e;, e2}, where e; = (1,0, 0)
and e; = (0,1,0). For a vector vector y = ue; + ves € T),S,

Fy) = Ve to?
Ayly) = (cl u? + ¢y v2)n.
Thus the principle curvatures k1 = ¢; and ko = cz. We obtain

H, = (c1 +¢2) n, K, =cc.

Example 6.1.2 Consider a surface S in R* given by

o(@,) = (2,9, f(@),9(0))-
Let
Y = upg +vpy = (u,v,uf’(x),vg’(y)).
The induced Riemannian metric is
F(y) = VL + f(2)?)u? + (1 + ¢'(y)*)v*.
The geodesic coefficients G and H are given by
F@f @
2(1+ f'(x)?)

99" (Y) -
2(1+g¢'(y)?)

G
H =

The normal curvature is given by
n "
Ayly) = (@) nu’® + 9°) m v?,
V1t fl(@)? 1+g'(y)?

where
n = m[—f’(:ﬂ), 0, 1, 0]
m = m[oa —9'(y), 0, 1}
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are unit vectors that are perpendicular to 7,,S. By the above formulas, we
obtain the mean curvature and the Gauss curvature

~ 1 ) 1
H,= (1—|—f’(x)2)3/2 + (1+g'(y)2)3/2

K, =0.

m.
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6.2 Exercises

Exercise 6.2.1 Let S be a graph in R? defined by
2=z — 2y2.

Find the normal curvature A,(y) for the vector y = (u,v,2zu — 4yv) € 1,5,
where p = (z,y,2? — 2y?).

Exercise 6.2.2 Let S be a graph in R? defined by
z=a+ y2.

Find the Gauss curvature K. Show that the Gauss curvature is positive and
approaches zero as (x,y) approaches infinity

lim K=0.

z2+y2—00
Exercise 6.2.3 Let S be a graph in R? defined by
= VTP
Describe the surface. Find the mean curvature H.

Exercise 6.2.4 Let 0 < r < R. Consider a surface S in R” which is obtained
by rotating the following circle around the third coordinate line.

C= {(:C,O,z) ‘ z? + 2° :7“2}.
We can parametrize S by
o(x,y) = ((R +rcosx)cosy, (R+rcosz)siny, rsinx),

where (z,y) € (0,27) x (0,27). Find the Gauss curvature K. The surface is
almost covered by . Verify that

i/KdA:O.
2w S

Exercise 6.2.5 Let S be the surface in R4, which is parametrized by
pla,y) = (fv y, @* —y?, @’ +y2)-

(a) Find the induced Riemannian metric F' on S;

(b) Find the normal curvature Ap;

)
)

(c) Find the mean curvature Hp;
)

(d) Find the Gauss curvature K,.
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Chapter 7

Gauss Curvature

7.1 Gauss Curvature of Metrics

Now we are going to define the Gauss curvature for Finsler metrics.
Let (S, F) be a Finsler surface. Let ¢ : D — S be a coordinate map and

1.
L(z,y,u,v) := EFz(y), Y = up, + vy € T),S.

The geodesic coefficients G = G(z,y,u,v) and H = H(z,y,u,v) are given by

Lszv_L Luv - sz_L uLv
o o | yLuo) = ( ) 1)

2(Luuva - LuvLuv)
_LzLuv L Luu sz - L u Lu
2(Luuva - LuvLuv)

Now we are ready to introduce the Gauss curvature.

1
K(y): = F2—(y){2Gz +2H, + 2G H, — 2H,G,
—Q = Quu— Quu +2GQu + 2HQ, |, (7.3)

where Q .= G, + H,.

Consider a Riemannian metric F' on a surface S,

F(y) = \/a(x,y)u2 + 2b(z, y)uv + c(x, y)v2, Y = up, +vpy € T)S.

The geodesic coeflicients G and H of F' are given by
(caz + ba, — 2bbm)u2 + 2(cay — bcm)uv + (2cby —cey — bcy)v2

4(ac—v?)
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(Zabx —ba, — aay)u2 + 2(acm — bay)uv + (bcz + ac, — 2bby)v2

4(ac—v?)

Plugging them into (7.3), we obtain a formula for the Gauss curvature K,

H =

ve = 2by
K(Y) = _any—Eacc _ 62) .

QyCy + CyCp — 2bgcy

4(ac - 62)2

AzCy — QyCp + 20,0y — 2ayby — 2b,c,

4(ac - 62)2

azCy + ayay — 2a,b,

4(ac - 62)2

Proposition 7.1.1 For a Riemannian metric F' on a surface S in an Euclid
space R", the Gauss curvature K(y) defined in (6.6) coincides with that defined
in (7.8). Moreover, K(y) can be expressed in terms of a,b,c and their partial
derivatives. Thus at any point p € S, the Gauss curvature K(y) = K, is
independent of y € T,S — {0}.

+ b

(7.4)

Example 7.1.1 Let z = f(x,y) be a C* function on an open subset  C R?.
Let S denote the graph of f in the Eiclid space R®. The induced Riemannian
metric on S is given by

F(y) = \/(L+ [fe]2)u? + 2f fyuw + (14 [f,]2)02, (7.5)

where y = (u,v,ufy +vfy) € T,S. By (7.4), we obtain a formula for the Gauss
curvature of F,
K= fxxfyy - fxyfxy (7.6)

(1+1rp+102)

This is exactly same as the formula in (6.10).

Take
f=v1—a2—9y2

Plugging it into (7.5) yields

P (1—2a2—y?)(u?+v2) + (zu + yv)?
N 1—22—y? ’

By (7.6), we obtain
K=1.
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Example 7.1.2 Consider the following Riemannian metric F' on a surface S.
Let ¢ : D — S be a coordinate map and express

F(y) = Vaw@ +ci?,  y=up,+vpy €T,S (7.7
where a = a(z,y) and b = b(z,y) are functions of (z,y) € D. An easy compu-
tation yields

ay u? + 2ay uv — ¢y v?

G = 7.8
" (7.8)
_ 2 2 2
g = Cy u” + quv+cyv (7.9)
c

Using either formula in (7.3), we obtain

<=l (). (5) ) o
If

F=e"?/u? + 02, (7.11)

where n = n(z,y) is a C* function on D. Then

K= —%e*" (77” + nyy). (7.12)

Example 7.1.3 Counsider the following Riemannian metric ' on a domain & C
R?,
F = \Ju? + ¢*(x)v?.
By (7.3), we obtain
@)
¢(x)

Let ¢ be a solution of the following equation

¢"(z) + Ag(x) =0, (7.13)

where ) is a constant. Then
K=\

Equation (7.13) can be solved. The general solution is given by

P(x) = asx(x) + bs) (z),
where '
Sn(VAz) e A S

VA
v it A =0 (7.14)
sinh(v—Az) .

sa(z) =
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Example 7.1.4 (Poincare Disk) Let

/12 2
1— 22 —y2

F' is a Riemannian metric on the unit disk D2 C R2. This Riemannian metric
has the following properties:

(i) all rays from the origin have infinite length,
(i) K = —1.
Example 7.1.5 Let

1 ) 5
F:\/1_$2u2+$2v2.

The Gauss curvature of F' satisfies

K=1.

The following proposition is very useful in computing the Gauss curvature.

Proposition 7.1.2 If the geodesic coefficients G and H of a Finsler metric
are in the following form

then
1

K0 =gy

Proof. Plugging G = Pu and H = Pv into (7.3) and using P,u+ P,v = P yield
(7.16). We give more details below. First, observe that

Gy = Pyu+ P, G, =P,u

{P2 — Pou~— Pyv}. (7.16)

H, = Py, H, =P,vw+ P.

This gives
Q=Gy,+H,=P,u+P,v+2P =3P.

Pluging them into (7.3), we obtain

1
K(y) = FZ—(Y){QPW +2P,v + 2(Pyu + P)(Pyv + P) — 2P, P,uv

—9P? — 3P,u — 3P,u + 6PP,u + 6PPUU}

1 . ‘
= — P,u— Py —9P? +2P? + 8P(P,u+ P,
F2(y){ u—Pov—-9P° + + 8P(P,u + 'U)}
1 2
= FZ(y){P ~ Pou— Py},

Q.ED.
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Example 7.1.6 (Spherical Plane) Let

B \/u2 +v2 + (zv — yu)?

F
1+ 22 +y?

F is a Riemannian metic on R2. The geodesic coefficients G' and H are given
by
G=Pu, H=Pu,
where
Tu + yv
L+a2 4y
Thus all paths of F' are straight lines in R%. By (7.16), we obtain

P =
K=1.

Example 7.1.7 (Funk Metric) Let F = F(z,y,u,v) be the Funk metric on a
strongly convex domain ¢/ C R2. It satisfies

F, = FF,, F,=FF,.

Thus the geodesic coefficients G and H are given by
1 1

G = EF u, H = iF V.

By Proposition 7.1.2, we obtain

11, 1 1
K = {3F°-ghu- gk
11, 1 1
_ ﬁ{—F ~ 5FFu FF,,U}
o1l 1 z}
- F2{ =3k
_ 1
= -7

Thus the Gauss curvature K = —1/4.
The Funk metric F on the unit disk D° ¢ R” is given by

V(2 + 0?) — (v — yu)? + (zu + yo)
1—a?—y?

F =

By the above argument, we know that the geodesics are straight lines and the
Gauss curvature of F' is equal to —1/4.
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Example 7.1.8 (Klein Metric) Let ¢ = ¢(z,y,u, v) be the Funk metric on the
strongly convex domain &/ C R? and ¢ := ¢(z,y, —u, —v). ¢ and @ satisfy

Pz = PPu, Py = PPv

P = —PPu, Py = —PPy.
The Klein metric F' on U is given by
1 _ 1
F .= 5 (90 + 90) = 5 (90(377 Y, u, U) + 90(337 Y, —u, —’U)) .
The geodesic coefficients G and H of F' are in the following form

G =P u, H=Pu,

where 1
P=—(p—).
2(s0 ?)
By Proposition 7.1.2, we obtain
1 ,2 o -
K = m{(w —9)” = 2(ppu + PPu)u — 2(ppy + wv)v}
1 (. L L
= m{wz — 20+ @* — 2¢° — 2<p2}

1 _
= —m(ﬂpﬂﬂﬁ)z = -1

The Klein metric on the unit disk D” ¢ R? is given by

V(2 + v?) — (v — yu)?
1—xz2—y? '

F .=

(7.17)

By the above argument, the geodesics of F' are straight lines and the Gauss
curvature of F' satisfies
K=-1.

Example 7.1.9 Let ¢ = p(z,y,u,v) be the Funk metric on a strongly convex
domain & C R2. If a Finsler metric F = F(z,y,u,v) on U satisfies

Fp = (oF)u, Fy = (¢F)o.
The geodesic coeflicients G and H are given by

G =ypu, H=ypuwv.
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By Proposition 7.1.2, we obtain

1
K = ﬁ{‘ﬁ2_¢zu_‘ﬁyv}
]‘ 2
= ﬁ{w —wuu—wvv}

1
= pl-d)=o
Thus the geodesics of F' are straight lines and the Gauss curvature of F satisfies
K=0.

Example 7.1.10 (R. Bryant, 1995) Let

(aaz4 + 222 + a) u? + 22 (332 + a) (:U4 + 2a2% + 1) v2

2
(:c4 + 2az? + 1)

ut + 222 (1 + ax2) wiv? + zt (:U4 + 2az? + 1) vt

2
(:U4 + 2ax2 + 1)

Define
a++B Vi—-a?z
F, = + 5 U.
2 x4 + 2022 + 1
F, is a Finsler metric for 0 < a < 1. Note that when a = 1,
WV ur +2?(2? + 1)e?
N 241

Fy

is a Riemannian metric , while F'_; is not a Finsler metric. For any 0 < a <1,
the Gauss curvature of F, is always equal to 1, i.e.,

K=1.

The Gauss curvature of R” satisfies
K=0.

The meanings of the signs of K lies in the following comparison theorem with
Rz

Theorem 7.1.1 (Cartan-Hadamard) Let F' be a positively complete Finsler
metric on a surface S. Suppose that the Gauss curvature satisfies the bound:

K < 0.

Then exp, : TS — S is a non-singular map.
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The Gauss curvature of the unit sphere S” in R? satisfies
K=1.
The diameter of S” satisfies
Diam(S2) =.
Below is a comparison theorem with S® for Finsler surfaces satisfying K > 1.

Theorem 7.1.2 (Bonnet-Myers) Let F' be a Finsler metric on a closed surface
S. Suppose bthat the Gauss curvature satisfies the bound:

K>1.
Then the diameter of S satisfies

Diam(S) := sup d(p,q) < .
P,gES
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7.2 Exercises
Exercise 7.2.1 Let S be a surface in R’ parametrized by
p(z,y) = (cos x, 2sinz, y).
Verify that the Gauss curvature of the induced Riemann metric vanishes, K = 0.
Exercise 7.2.2 Let S denote the graph of f in R3, where

f(z,y) = k(z* —y?), (x,y) € R

Find the Gauss curvature K of S and evaluate the following integral

X::L/KdA.
2T S

Exercise 7.2.3 (Beltrami Half-Plane) Let

X

F =

Show that the Gauss curvature is a constant K = —1.

Exercise 7.2.4 Let

P u? +v2 + (zv — yu)?
B 1+ 2% +y? '

Show that the Gauss curvature of F' is a constant K = —1.
Exercise 7.2.5 Let

F = \/u? + sinh®(z)v? + tanh(z)u.
Show that the Gauss curvature of F' is a constant, K = —1/4.

Exercise 7.2.6 Let

Vu? +22(1— 2?)v? + zu
F = - .
1—2a2

Show that the Gauss curvature of F' is a constant, K = —1/4.
Exercise 7.2.7 Let

V(2 = (@2 + y2)) (u? + v2) + r2(zu + yv)2 — Vr? — 1(zu + yo)

F =

7

r2 — 2 — y?

where r is a constant with » > 1. Verify that the Gauss curvature K of F' at
the center of the disk, (z,y) = (0,0) is given by

3(rt—1)

K(y)=1+ 12

> 1.
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Chapter 8

Non-Riemannian
Curvatures

8.1 Non-Riemannian Curvatures of Metrics

In this section, we will introduce and discuss several geometric quantities of
Finsler metrics. These quantities vanish when the metric is Riemannian. Thus
they are called non-Riemannian curvature.

Let (S, F') be a Finsler surface. The Finsler metric F' is a family of Minkowski
norms Fj, on tangent planes T,,S. Thus the Cartan torsion C(y) is defined for
each Fj, on T},S. This is our first non-Euclidean quantity. From the definition,
one can see that the Cartan torsion at a point p € S depends only on the
Minkowski norm Fj, on T,S.

Let ¢ : D — S be a coordinate map and

1.
L(z,y,u,v) := EFz(y), Y = up, + vy € T),S.

The Cartan torsion is given by

Cly) = Luuu(=Lv)? + 3Lyuv (= Ly)* Ly + 3Luwo(—Ly) (Lu)? 4 Lyvy (Lu)?
= 3 ,
4L (Luuva - LuvLuv) ’

where y = up, + vy, € T),S. By the homogeneity of L, we can simplify the
above formula to the following one.

Cly) = 2L Lovs 7 (8.1)
(2LLU,, _ (L,,)2)

where y = uyp, + vy, with u > 0. We see that F' is a Riemannian metric if and
only if C(y) =0 for all y # 0.
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In general, given two points p, ¢ on S, the Minkowski planes (T},S, F},) and
(TS, F,) are not linearly isometric to each other. Namely, the geometric prop-
erties of (T},S, F},) change over the surface. To study the rate of change of F,
we define several new quantities.

First, recall that the geodesic coefficients G and H of F' are given by

G . — (Lvav - LyLuv) - (va - Lyu)Lv (8 2)
2(Luuva - LuvLuv)
(_LzLuv + LyLuu) + (Lazv - Lyu)Lu

2 (Luuva - LuvLuv)

(8.3)

The Cartan torsion C(y) is a function on non-zero tangent vectorsy € T,S.
For a coordinate map ¢ : D — S,

Clx,y,u,v) := C(utpw + U(py).
C = C(z,y,u,v) is a C* function on D x (R?\ {0}).

Definition 8.1.1 For a vector y = uy, + vy, € 13,5, define

L(y) := ﬁ{cu +Cyo — 20,6~ 20,H ). (8.4)

We call L(y) the Landsberg curvature (the L-curvature for short) in the direction
y.

Let ¢(t) be a geodesic on S. Express it by
e(t) = o (a(),y(1))-

Then
1) = o (w0, 5(8) ) 7' (1) + 2 (2(8),y()) ' ()-

Observe that

d
= [C(e)] = Coo' +Cyy + Cuz” +Cpy”
C,z' +Cyy' —2C,G — 2C,H
= F()L(e).

This proves the following
Proposition 8.1.1 Let ¢(t) be an arbitrary geodesic on a Finsler surface.

d

= [C(e)] = F(&L().
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From Proposition 8.1.1, we see that if a Finsler metric satisfies L = 0,
then the Cartan torsion C(¢é(t)) = constant along any geodesic ¢(t). Thus the
geometry of (T,,S, Fp) does not change too much over the surface.

Below is a useful formula to compute the L-curvature.

Lemma 8.1.1 The L-curvature can be expressed by the formula

F3 G’UU'ULU + HU'UUL'U
Ly) = - L&) , (8.5)

3
(2LLW - L,,L,,) :

where y = up, + vy, with u > 0.

There is another simple non-Riemannian quantity which is closely related to
the area form. Let F' be a Finsler metric on a surface S. Let ¢ : D — S be a
coordinate map. Express the area form by

dA = o(z,y)dxdy.

Definition 8.1.2 For a vector y = uy, + vy, € 13,5, define

1 U v
S = — wt Hy — —0p — — . .
(v) FbO{G +H,—~0, — 0, } (8.6)
We call S(y) the S-curvature in the direction y € T,,S.

Let

u v
S(z,y,u,v) =Gy + Hy, — —0, — —0y.
o o

S = S(z,y,u,v) is a C* function on D x (R?\ {0}). Define

L ]- Suu(_Lv)2 + QSuv(_Lv)(Lu) + va (Lu)2

We call E(y) the E-curvature in the direction y.

Proposition 8.1.2 By the S-curvature, we define another quantity.

1 d?

B(y) := 3{S®) + 27 SO + )] o - (8.8)
Proof. Be definition,
2
E(y) = %(y)% {F(y +ty)S(y + tyL)] li=o-

Note that

%p@+wﬂ“ﬂ:u

2

[Py )] lmo = F).
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Thus

L [Pt w18y + 5" o = FOI{80) + 5[50+ )]l )
This gives (8.8). Q.E.D.

Below is a useful formula to compute the E-curvature.

Lemma 8.1.2
Fs(Y) vavv/u — Hyyy

e VA A (89)

where y = up, + vy, with u > 0.

Proof. For a vector y = uyp, + vy, the conjugate vector is given by

1_ —Lypz + Lypy
\/Luuva - LuvLuv

Let Q = G + H,. By the homogeneity of G and H, we obtain

Yy

4
Quu(_Lv)2 + Qqu(_Lv)(Lu) + Quo (Lu)2 = - FU(ZY) (vavv/u - vav) .
Thus
1 2
By) = srgyae [F(y +ty)S(y + tyL)] =0
— C)uu(_Lv)2 + 2qu(_Lv)(Lu) + vi (Lu)2
2F(Y) (Luuva - LuvLuv)

_ F3 (Y) vav/u - vav

T T2 2LLyy— LyLy
This gives (8.9). Q.E.D.

We know that for any Riemannian metric on a surface, the geodesic coeffi-
cients G and H are quadratic in (u,v) € R? in any coordinate system. From
(8.5) and (8.9), one can see that L(y) = 0 and E(y) = 0 for any vector y if
and only if G and H are quadratic in (u,v) € R?. A Finsler metric F satisfying
L =0and E = 0 is called a Berwald metric. As matter of fact, Berwald metrics
are either Riemannian or locally Minkowskian, i.e., there is a coordinate map
@ : D — S such that

F = F(unpz + 'Utpy)

is independent of (z,y) € D. This fact is due to Z. I. Szab6 (1981). However,
this fact is not true if the Finsler metric is singular. For example, the following
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singular) Finsler metrics on an open subset ¢/ C R? are Berwald metrics:
g p

F = e%exp [Q arctan (%)] (u2 + v2)
F = e? v

uﬂ
F = e"?yexp (Q%),

where a > 0 is a constant and n = 5(z,y) is an arbitrary C*° on Y. F'is a C*®
function on U x R2, where R% := {(u,v) € R? | u > 0}. All of these examples
are constructed by L. Berwald in 1941.

Example 8.1.1 Let (S, ) be a Riemannian surface and x be a vector field on
S with a(x) < 1. Let g denote the family of inner products on tangent planes,
which are determined by «,

aly) =Vly,y), veT,S.

Define F by

Vo y)? +ay)’(1 - a(x)?) —g(x,y)
1 —a(x)? '

F(y) := (8.10)

F' is a Randers metric of Funk type.
Let denote2 the standard Euclidean metric on R”. Take a vector field x on
the unit disk D given by

Xp = (—y,2), p=(z,y) €D

The Randers metric of Funk type on D is given by

V(=yu +2v)2 + (u? +v2)(1 — 22 — y2) — (—yu + 2v)
1—22 —y?

F =

At the origin (0,0), the L-curvature and the E-curvature are given by

where y is an arbitrary tangent vector at origin (0,0). Thus L-curvature and the
E-curvature are independent of the directions at the center. The above result
suggests that for any tangent vector at any point inside ]D)Z,

E(y) =0.

By a direct computation, we see that this is actually true.
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Let o denote the standard spherical metric on R?, which is given by

V) + a7 47 = (out g0l

a =
1+ 22+ y?

Take a vector field x on R? given by

xp=V1+a2+y2-(x,y), p=(z,y) R
The Randers metric of Funk type on R? is given by
Tu + yv
V1taZ+y?

At the origin (0,0), the L-curvature and the E-curvature are given by

F=+u?+v?-

where y is an arbitrary tangent vector at the origin (0,0). One could expect
that L(y) = 0 for any tangent vector at any point. However, this is not the

case.

Open Problem: Is there a Finsler metric on an open subset & C R? satisfying

L=0, E#0.

When the geodesic coefficients take a simple form, we can simplify the for-

mulas for L(y) and E(y).

Proposition 8.1.3 Assume that the geodesic coefficients G and H are in the

following form
G = Pu, H = Pv.

Then L(y) and E(y) are given by
2v2L (L3P,
L(y) = - 3U/2
(2LL00 — (L.)?)

3v2L3/2 P,
2LL,, — (L,)?’

where y = up, + vy with u > 0. Thus E = 0 implies that L = 0.
Proof: Observe that

Govw = Pyyot, Hyyy = Py + 3Pyy.
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Thus
2 v
GoooLly + Hypo Ly = PUUUU(EL - EL’U) + (vavv + 3va)Lv

= Pou (2L - L,,v) n (mev + 3Pm,)Lv
= 2Py L +3PyL,
— 9f-1/? (L3/2Pw)

v

Gooo¥ — Hyppt = Pyypuv — (vavv + 3va)u = —3Pu.

Plugging them into (8.5) and (8.9) give (8.11) and (8.12). Q.E.D.

Example 8.1.2 Consider the Funk metric F' on a strongly convex domain U C
R2. The geodesic coefficients G and H of F are given by

1 1
G = §F u, H = §F V.
We have 1 1
P=_-F=_—LY
V2
A direct computation yields
p, = L.
v 2\/§ v
1
Py = ——=L73%(L,)?+ —L"'?L
vv 4\/§ ( U) 2\/§ vU
3 3 1
Ppo = —=L7*(L,)? — 2L 732L,Lyy + —= Loy
vUv 8\/§ ( ’U) 4\/§ vH~vv 2\/5 vUv
Rewrite the formula for P,, as follows
[—3/2 )
P,, = W(QLLW — (Ly) ) (8.13)
Plugging (8.13) into (8.12), we obtain
3
E(y) =-.
¥) =7
By the above identities, we obtain
L1/2
2LPyyy + 3Ly Py, = WLUW' (8.14)
Plugging (8.14) into (8.11) gives
Liv) = __ V2LPL Ly L?Lyyy
(Y) - 5 — 3/2 -

V3(2LLy, - (Lv)2)3/ ’ (2LLe — (L.)2)
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Comparing it with the formula for C(y) in (8.1), we obtain the relation between
the Landsberg curvature and the Cartan torsion of the Funk metric.

L(y) = —5C).

Problem: Is there a strongly convex domain I/ C R? such that the Funk metric
on U satisfies
supC(y) =00 ?
y

Example 8.1.3 Let F' = %((p + @) be the Klein metric on a strongly convex
domain U C R?, where ¢ is the Funk metric on ¢/ and @ is the reverse of ¢, i.e.,

95(377 Yy, u, U) = 90(337 Y, —u, —’U).
The geodesic coefficients G and H are in the following form
G =P u, H =P,

where 1
P=3(r-9)

First, by (8.1), we have

C(y) — (90 + (IZ) (QOUUU + @UUU) + 3(801) + @v)((pvv + @vv) )

200 + @)% (pvo + Puu)®/? (515
Plugging P into (8.12) we obtain
B(y) = 5. £ =P (8.16)
2 oy + Pov
Plugging P into (8.11) we obtain
Lwﬁz@+¢X%w—¢wn+3Ww+¢ﬁww—¢wX (8.17)

2(¢ + @)1/ (oo + Pov)?/?

Open Problem: Is there a Finsler metric on an open domain 2/ C R? satisfying

L=0, EG#0.
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Example 8.1.4 Let F be the Funk metric on a strongly convex domain & C R2.
The geodesic coeflicients G and H are given by

1 1
G = iF u, H = iF V.
For any point (x,y) € U, the convex domain in R?,
{(u,v) € R? ‘ F(z,y,u,v) < 1} =U\ {(:c,y)} (shifted U).

Thus

7ty = A{(u,v) € R2 ‘ F(z,y,u,v) < 1} B AU

We obtain a simple area form dA = %~ dxdy. Thus

AU
1 U v
S¥) = FlGutHe= oo
1 (0 10
= 37 i5a(F) + 35, (F)}
_ 3
= 3
That is,
3
S(y) = 7 (8.18)
By (8.8) and (8.18), we obtain
3
E(y) = T (8.19)

Let

AV ur 402 — (wv —yu)? + zu+ yu

F
1—a2 —y2

F is the Funk metric on the unit disk D ¢ R”. By (8.18) and (8.18), we obtain
that S(y) = 2 and E(y) = 2.

Theorem 8.1.1 (Area Comparison Theorem) Let (S, F) be a positively com-
plete Finsler surface. Let A(B(p,r)) denote the area of the metric ball B(p,r)
of radius r around p. We have

A(Bw.m)
r—0+ 27 [ edtsy (H)dt

Assume that the Gauss curvature K and the S-curvature S satisfy the following
bounds
K> )\ S > -4.
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The ratio
A(Bp.n)
2m [ e%tsx(t)dt

18 non-increasing. In particular,
A(Bon) 2m [ S (.20)
0

Here sy (t) denotes the solution of the following ODE

y"(t) + My(t) =0,  y(0)=0, y'(0) = 1.

At the end, let us discuss two more non-Riemannian curvatures from pro-
jective geometry. Let G and H be the geodesic coeflicients of a Finsler metric
in a coordinate system. Define

q)(xayauav) = QEG(ZU,y,U,U) - 2H(x,y,u,v).
u

We call ® the projection function of F'. This function ® is not an invariant. It
depends on the choice of a coordinate map. Nevertheless, the paths of F' are
determined by

d’y dy
@ - q)(x,y, :t]., :t%) .
For y = up, +vp, € T,S — {0}, define
1 v.\3
Dy(v) = E'I)m,m, (u — E)\) , v = Apg + ey € T),S. (8.21)

Dy : T, — R is a homogeneous polynomial of degree three on 7,5 for any
y € T,S — {0}. We call it the Douglas curvature.
Define

v
Wy(v) =W - (“_E’\)’ v = \pg + ppy € TS

by

1. 1 1 1
W = guz(bwwvv + gu'uq)wyvv + guq>$(1>vvv + guq)q%vvvv

1. 1 1 1_.
+—’Uzq>yym; + g qu>q>yvvv + E(I)Z‘I)vvvv
2

1 1
(I>(I>yvv - EU(I)vq)wvv - E'U@vq)yvv + 3(I>vq>yv
2 1
gUmev — E(Py(bvv + ny (822)

6 vq)yq)vvv +
!
2
2
~ 50y -
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W, : T,S — R is a linear function on T},S for any y € T,,S — {0}. We call it
the Berwald-Weyl curvature.

If two Finsler metrics F and F on a surface S have common paths, or
equivalently, their geodesic coefficients are related by

G=G+Pu, H=H+Pu,

then

d=22G_20=2%0—2H =o.
u

Thus

D,=D,, W,=W,.

That is, the Douglas curvatures of F and F are equal and the Berwald-Weyl
curvatures of F' and F are equal.
Suppose that the geodesic coefficients G and H are in the following form

G = P u, H=Pu,

then v v
& =2-G—-2H =2—Pu—2Pv=0.
w U
Thus
D, =0, W, =0.
The converse is also true. This is due to L. Berwald, J. Douglas and H. Weyl.

Proposition 8.1.4 (Berwald-Douglas-Weyl) If a Finsler metric F on a surface
S satisfies
D, =0, W, =0, y € T,S — {0},

then every point p € S has a neighborhood covered by a coordinate map for which
the geodesic coefficients G and H are in the following form

G = P u, H=Puwo.

Proposition 8.1.5 Let F' = « + [ be a Randers metric on an open domain
U C R2, where

a = +a(z,y)u?+ 2b(x, y)uv + c(z, y)v2,
Bo= Maz,yu+ p(z,y)v.

Then Dy = 0 if and only if
Ay = po- (8.23)

If X\ and p satisfy (8.23), then the Berwald-Weyl curvatures of F' and « are
equal.

7



Proof: Let ® and & denote the projective functions of F and a respectively.
According to (5.14),

(Ay — Nz)ag

>=0 :
* (ac — b)u

Since « is a Riemannian metric, ®,,,, = 0. This implies that ®ppe = 0 if and
only if (8.23) is satisfied.
Assume that A and p satisfy (8.23). Then

Thus

Q.E.D.

Example 8.1.5 Let

Vu2 +22(1— 2202 — zu
F = - .
1—2a?

We have

By a direct computation, we obtain
Py =0, W =0.

Thus both the Douglas curvature and the Weyl curvature vanish,
Dy =0, W, =0.

Example 8.1.6 Let
vu? + 2202 — zu

F =
1— 22

We have 1

1—2a2

By a direct computation, we obtain

2
® = (—u2+az(1—|—az2)v2)g.
x w
D yypw = 07 W =0.
Thus both the Douglas curvature and the Weyl curvature vanish,
D, =0, W, =0.

The Gauss curvature is not a constant.
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then
K~ —2.69347348
(b) If
xz=0.9, u = 0.5, v =-1.0,
then

K ~ —3.925811359
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8.2 Exercises

Exercise 8.2.1 Let

1

F = {u4—|—3cu2v2 -}-’U4}Z,

where ¢ = ¢(z,y) is a C* function on a domain I/ C R? satisfying 0 < ¢ < 2.
Thus F' is a Finsler metric on ¢{. Find the Landsberg curvature of F' and show
that L = 0 if and only if ¢ = constant.

Exercise 8.2.2 Consider the following Funk metric on the unit disk D’ c Rz,

o Vu? + 02 — (20 — yu)? — zu — yv
B 1—xz2—y? '

Compute C(y), E(y) and L(y). What is the relationbship between C(y) and
L(y)?

Exercise 8.2.3 Consider the following Randers metric on (0,00) x R,

F = \/u? + sinh®(z)v? + tanh® (z)u.

(a) Find the geodesic coefficients G and H;
(b) Compute C(y), E(y) and L(y);
(c) Verify that

Exercise 8.2.4 Let

Vu2 +22(1— 2202 + zu
F= .
1—a?

F is a Randers metric on the strip &/ C R?,
U:= {(:c,y) € R? ‘ |z| < 1}.
(a) Find the geodesic coefficients G and H;

(b) Show that for each (x,y) with |z| < 1, the region Dy, ,) enclosed by the
indicatrix, F' = 1, is the region enclosed by the following ellipse

C= {(u,v) € R? ‘ (u—l—az)2 +z%0? = 1}.

Fins the Euclidean area A(D(,,)) of D(,,) and the area form dA =
o(x,y) dedy of F on U;
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(c) Verify that
3
S(y) = 9

Exercise 8.2.5 Let
F = \/u? + sinh® (z)v? — tanh(z)u.
Show that Dy = 0 and Wy = 0.

Exercise 8.2.6 Let

V(2 = (@2 + y2)) (u? + v2) + r2(zu + yv)2 — V2 — 1(zu + yo)

F =

)

r2 — 2 — y?

where r is a constant with » > 1. F is a Randers metric on the disk of radius r
around the origin. Verify that at the origin (0, 0),

E(y) = —$, L(y) =0,

where y is an arbitrary tangent vector at (0, 0).

Exercise 8.2.7 Let

Feyu?po?— Y4 tm
V1?2 + 12 + 92

where r > 0. F is a Randers metric on R2. Verify that at the origin (0,0),

_3
2r’

where y is an arbitrary tangent vector at (0, 0).
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