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Foreword

The goal of these notes is to provide a fast introduction to symplectic geometry
— the geometry of manifolds equipped with a closed nondegenerate 2-form.

Two centuries ago, symplectic geometry! provided a language for classical
mechanics. Through its recent huge development, it conquered an independent
and rich territory. Symplectic geometry is significantly stimulated by impor-
tant interactions with global analysis, mathematical physics, low-dimensional
topology, dynamical systems, algebraic geometry, integrable systems, microlo-
cal analysis, partial differential equations, representation theory, quantization,
equivariant cohomology, geometric combinatorics, etc.

Parts I-11II explain classical topics, including cotangent bundles, symplecto-
morphisms, lagrangian submanifolds and local forms. Parts IV-VI concentrate
on important related areas, such as contact geometry and Ké&hler geometry.
Classical hamiltonian theory enters only in Parts VII-VIII, starting the second
half of this book, which is devoted to a selection from hamiltonian dynamical
systems and symmetry. Parts IX-XI discuss the moment map whose preponder-
ance has been growing steadily for the past twenty years. There are scattered
short exercises throughout the text. At the end of most lectures, some longer
guided problems, called homework, were designed to complement the exposition
or extend the reader’s understanding.

These notes approximately transcribe a 15-week course on symplectic geom-
etry I taught at UC Berkeley in the Fall of 1997, with 2 hour-and-a-half lectures
per week. The course targeted second-year graduate students in mathemat-
ics, though the audience was more diverse, including advanced undergraduates,
post-docs and graduate students from other departments. The present text
should hence still be appropriate for a second-year graduate course or for an in-
dependent study project. Geometry of manifolds was the basic prerequisite for
the guiding Fall 97 course, so the same holds now for the notes. In particular,
some familiarity with de Rham theory and classical Lie groups is expected.

There are by now excellent references on symplectic geometry, a subset of
which is in the bibliography. However, the most efficient introduction to a
subject is often a short elementary treatment, and these notes attempt to serve
that purpose. Hopefully these notes provide a taste of areas of current research,
and will prepare the reader to explore recent papers and extensive books in
symplectic geometry, where the pace is much faster.

1Two centuries ago, the name symplectic geometry did not exist. If you consult a major
English dictionary, you are likely to find that symplectic is the name for a bone in a fish’s
head. However, as clarified in [82], the word symplectic in mathematics was coined by Weyl [87,
p-165] who substituted the Greek root in complez by the corresponding Latin root, in order to
label the symplectic group. Weyl thus avoided that this group connoted the complex numbers,
and also spared us from much confusion had the name remained the former one in honor of
Abel: abelian linear group.



Conventions

Unless otherwise indicated, all vector spaces are real and finite-dimensional, all
maps are smooth (i.e., C*°) and all manifolds are smooth, Hausdorff and second
countable.
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Part 1
Introduction

A symplectic form is a 2-form satisfying an algebraic condition — nondegeneracy
— and an analytical condition — closedness. In Lectures 1 and 2 we define
symplectic forms, describe some of their basic properties, introduce the first
examples, namely even-dimensional euclidean spaces and cotangent bundles.

1 Symplectic Forms

1.1 Skew-Symmetric Bilinear Maps

Let V be an m-dimensional vector space over R, and let 2 : V x V — R be
a bilinear map. The map € is skew-symmetric if Q(u,v) = —Q(v,u), for all
u,v € V.

Theorem 1.1 (Standard Form for Skew-symmetric Bilinear Maps)
Let Q) be a skew-symmetric bilinear map on V. Then there is a basis
ULy oy Uy €150y 1, fn Of V such that

Qui,v) =0, for alli and allv €V,
Qe ej) =0=Q(fi, fj) , foralli,j, and
Qes, fj) = 6i5 for all i, 7.

Remarks.

1. The basis in Theorem 1.1 is not unique, though it is traditionally also
called a “canonical” basis.

2. In matrix notation with respect to such basis, we have

0 0 0 |
Qu,v)=[—u—] [ 0 0 Id v
0 —1d 0 |

¢

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt
process.

Let U :={u eV | Qu,v) =0 for all v € V}. Choose a basis uq,...,u; of
U, and choose a complementary space W to U in V,

V=UacoW.
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Take any nonzero e; € W. Then there is f; € W such that Q(ey, f1) # 0.
Assume that Q(eq, f1) = 1. Let

W1 = span of ey, f1
W = {weW|Qw,v)=0forallve W;}.
Claim. W; N W = {0}.
Suppose that v = ae; +bf; € Wy N Wik

0=Q(v,e1) =—b
0=Q(v, f1) a

} = ov=0.

Claim. W = W; @ Wi
Suppose that v € W has Q(v,e1) = ¢ and (v, f1) = d. Then
v=(—cft +der)+ (w+cfi —dey) .

ew, ew?

Go on: let ey € Wi, ey # 0. There is fo € Wi such that Q(eq, f2) # 0.
Assume that Q(eq, fo) = 1. Let Wy = span of eq, fo. Etc.
This process eventually stops because dim V' < co. We hence obtain

V:U@WI@W2@®W7L

where all summands are orthogonal with respect to €2, and where W; has basis
ei, fi with Q(ei, fz) =1. [l

The dimension of the subspace U = {u € V | Q(u,v) = 0, for all v € V}
does not depend on the choice of basis.
= k:=dimU is an invariant of (V,€2) .

Since k +2n=m =dimV,
= nis an invariant of (V,Q); 2n is called the rank of .

1.2 Symplectic Vector Spaces

Let V be an m-dimensional vector space over R, and let Q2 : V xV — R be a
bilinear map.

Definition 1.2 The map Q : V — V* is the linear map defined by Q(v)(u) =
Qv,u).

The kernel of Q is the subspace U above.

Definition 1.3 A skew-symmetric bilinear map § is symplectic (or nonde-
generate) if Q) is bijective, i.e., U = {0}. The map Q is then called a linear
symplectic structure on V', and (V, ) is called a symplectic vector space.
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The following are immediate properties of a symplectic map :
1. Duality: the map Q: V = V* is a bijection.
2. By the standard form theorem, k = dimU = 0, so dim V = 2n is even.

3. By Theorem 1.1, a symplectic vector space (V,€) has a basis
€1,---s€n, f1,--., fn satisfying

Q(@i, f]) = 5ij and Q(€i7 ej) = 0 = Q(f“ f]) .

Such a basis is called a symplectic basis of (V,). With respect to a
symplectic basis, we have

0 0 0 |
Qu,v)=[—u—] | 0 0 Id v
0 —1d 0 |

Not all subspaces W of a symplectic vector space (V, ) look the same:

e A subspace W is called symplectic if Q| is nondegenerate. For instance,
the span of ey, f1 is symplectic.

e A subspace W is called isotropic if Q| = 0. For instance, the span of
e1, e is isotropic.

Homework 1 describes subspaces W of (V) in terms of the relation between
W and W*.

The prototype of a symplectic vector space is (R?", Q) with Qg such
that the basis

—~
ey = (1,0,...,0), oy en=1(0,...,0,71,0,...,0),
f1=(0,...,0,‘1,70,...,0)7 SRR fn:(oa”-aoa]-)a
n+1

is a symplectic basis. The map 2y on other vectors is determined by its values
on a basis and bilinearity.

Definition 1.4 A symplectomorphism ¢ between symplectic vector spaces
(V,Q) and (V',) is a linear isomorphism ¢ : V = V! such that o*V = Q.
(By definition, (p*Q)(u,v) = Q' (p(u), p(v)).) If a symplectomorphism exists,
(V,Q) and (V', Q) are said to be symplectomorphic.

The relation of being symplectomorphic is clearly an equivalence relation in
the set of all even-dimensional vector spaces. Furthermore, by Theorem 1.1,
every 2n-dimensional symplectic vector space (V) is symplectomorphic to the
prototype (R?",Qg); a choice of a symplectic basis for (V, ) yields a symplecto-
morphism to (R?", Q). Hence, positive even integers classify equivalence classes
for the relation of being symplectomorphic.
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1.3 Symplectic Manifolds

Let w be a de Rham 2-form on a manifold M, that is, for each p € M, the map
wp : TyM x T,M — R is skew-symmetric bilinear on the tangent space to M
at p, and w, varies smoothly in p. We say that w is closed if it satisfies the
differential equation dw = 0, where d is the de Rham differential (i.e., exterior
derivative).

Definition 1.5 The 2-form w is symplectic if w is closed and w, is symplectic
for allpe M.

If w is symplectic, then dim 7, M = dim M must be even.

Definition 1.6 A symplectic manifold is a pair (M,w) where M is a man-
ifold and w is a symplectic form.

Example. Let M = R?" with linear coordinates x1,...,%n,¥1,...,Yn. The
form

wo = i:dl‘l A dyl

i=1

is symplectic as can be easily checked, and the set

(), (), o) () )

is a symplectic basis of T, M. &

Example. Let M = C" with linear coordinates 21, ..., z,. The form
i n
wo = §Zd2’k A dZy,
k=1
is symplectic. In fact, this form equals that of the previous example under the
identification C™ ~ R2", z;, = xp + iyp. &
Example. Let M = S? regarded as the set of unit vectors in R®. Tangent
vectors to S? at p may then be identified with vectors orthogonal to p. The
standard symplectic form on S? is induced by the inner and exterior products:
wp(u,v) 1= (p,u X v), for u,v € TpS? = {p}* .

This form is closed because it is of top degree; it is nondegenerate because
(p,u x v) # 0 when u # 0 and we take, for instance, v = u x p. O
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1.4 Symplectomorphisms

Definition 1.7 Let (M;,w1) and (Ma,ws) be 2n-dimensional symplectic man-
ifolds, and let g : My — My be a diffeomorphism. Then g is a symplectomor-
phism if ¢*ws = w2

We would like to classify symplectic manifolds up to symplectomorphism.
The Darboux theorem (proved in Lecture 8 and stated below) takes care of
this classification locally: the dimension is the only local invariant of symplec-
tic manifolds up to symplectomorphisms. Just as any n-dimensional manifold
looks locally like R™, any 2n-dimensional symplectic manifold looks locally like
(R2", wp). More precisely, any symplectic manifold (M?",w) is locally symplec-
tomorphic to (R?",wy).

Theorem 8.1 (Darboux) Let (M,w) be a 2m-dimensional symplectic man-
ifold, and let p be any point in M.

Then there is a coordinate chart (U, x1,...,Tn,Y1,---,Yn) centered at p such
that on U .
w= Z dx; N\ dy; .
i=1

A chart (U, z1,...,Zn,Y1,-..,Yn) as in Theorem 8.1 is called a Darboux
chart.

By Theorem 8.1, the prototype of a local piece of a 2n-dimensional
symplectic manifold is M = R?", with linear coordinates (z1,...,Tn, Y1, -, Yn);
and with symplectic form

WQZZn:dxi/\dyi .

i=1

2Recall that, by definition of pullback, at tangent vectors w,v € TpM;y, we have
(g7 w2)p(u,v) = (w2) g(p) (dgp(u), dgp(v)).



Homework 1: Symplectic Linear Algebra

Given a linear subspace Y of a symplectic vector space (V,(2), its symplectic
orthogonal Y is the linear subspace defined by

Y¥:={veV|Quu)=0forallucY}.

1. Show that dimY +dimY® =dimV.
Hint: What is the kernel and image of the map

V. — Y*=Hom(Y,R) 7
v —  Qv,)|y

2. Show that (Y)¥ =Y.
3. Show that, if Y and W are subspaces, then
VCW <= W2Cy?.

4. Show that:

Y is symplectic (i.e., Q|yxy is nondegenerate) <= Y NY® = {0}
— V=YaY"

5. We call Y isotropic when Y C Y% (i.e., Qyxy =0).
Show that, if Y is isotropic, then dimY < %dim V.

6. An isotropic subspace Y of (V,Q) is called lagrangian when dimY =
% dimV.
Check that:

Y is lagrangian <= Y is isotropic and coisotropic <= Y =Y.
7. Show that, if Y is a lagrangian subspace of (V, ), then any basis ey, ..., e,
of Y can be extended to a symplectic basis e, ..., ey, f1,.-., fn of (V,Q).
Hint: Choose f1 in W, where W is the linear span of {e2,...,en}.

8. Show that, if YV is a lagrangian subspace, (V,{2) is symplectomorphic to
the space (Y @ Y*,Qq), where Q is determined by the formula

Qo(u® a,vd ) = Pu) —alv) .

In fact, for any vector space E, the direct sum V' = E® E* has a canonical
symplectic structure determined by the formula above. If eq,...,e, is a
basis of E, and f1,..., f, is the dual basis, then e; ®0,...,e, ® 0,0 P
fi,-..,0® fn is a symplectic basis for V.

9. We call Y coisotropic when Y C Y.

Check that every codimension 1 subspace Y is coisotropic.



2 Symplectic Form on the Cotangent Bundle

2.1 Cotangent Bundle

Let X be any n-dimensional manifold and M = T*X its cotangent bundle. If
the manifold structure on X is described by coordinate charts (U, z1,...,z,)
with z; : Y — R, then at any = € U, the differentials (dz1),,... (dz,), form
a basis of T X. Namely, if £ € Ty X, then £ = Y | &(dx;), for some real
coefficients £1,...,&,. This induces a map

T U — RQ"L
(33,5) [ (xla---7xn7£17--~7£7L)-

The chart (T*U,x1,...,2n,&1,...,&) 18 a coordinate chart for T*X; the co-
ordinates x1,...,%y,,&1,...,&, are the cotangent coordinates associated to
the coordinates x1,...,2z, on U. The transition functions on the overlaps are
smooth: given two charts (U, z1,...,2,), U, 2},...,2)), and x € U NU’, if
£eTrX, then

n

8$¢
= i (dxi)z = i ;
> &i(dxy) Zé (8%

=1

) (dz)), = Zg; (dz))q

where & =3, &; (ngi) is smooth. Hence, T* X is a 2n-dimensional manifold.

We will now construct a major class of examples of symplectic forms. The
canonical forms on cotangent bundles are relevant for several branches, including
analysis of differential operators, dynamical systems and classical mechanics.

2.2 Tautological and Canonical Forms in Coordinates

Let (U,x1,...,x,) be a coordinate chart for X, with associated cotangent co-
ordinates (T"U,x1,...,Zn,&1,-..,&n). Define a 2-form w on T*U by

i=1

In order to check that this definition is coordinate-independent, consider the
1-form on T*U

n

i=1

Clearly, w = —da.

Claim. The form « is intrinsically defined (and hence the form w is also intrin-
sically defined) .
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Proof. Let (U,x1,...,2pn,&1,...,&) and (U, 2}, ... 2, &, ..., &) be two

cotangent coordinate charts. On U NU’, the two sets of coordinates are re-
. . ax’
lated by &5 =>_,; & (g%;) Since dz’; =3, (a—iz) dz;, we have

a= Zfz‘d%‘ = Z{;dx; =a .
i J

O

The 1-form « is the tautological form and 2-form w is the canonical
symplectic form. The following section provides an alternative proof of the
intrinsic character of these forms.

2.3 Coordinate-Free Definitions

Let
M=T*X p:(a:,f) EelrX
I !
X T

be the natural projection. The tautological 1-form o« may be defined point-
wise by
ap = (dmp)*§ €T, M,

*

where (dm,)* is the transpose of dmp, that is, (dm,)*¢ = £ o dmp:

p=(z,§) M oM
I | dm, T (dmp)*
x T.X T:X
Equivalently,
ap(v) = §((d7rp)v> , forvel,M,
Exercise. Let (U, z1,...,x,) be a chart on X with associated cotangent coor-
dinates x1,...,2p,&1,...,&,. Show that on T*U, o = > &; du;. O

i=1
The canonical symplectic 2-form w on T* X is defined as
w = —dao .

Locally, w = Y7 | dx; A d&;.

Exercise. Show that the tautological 1-form « is uniquely characterized by the
property that, for every 1-form p: X — T*X, p*a = p. (See Lecture 3.) &
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2.4 Naturality of the Tautological and Canonical Forms

Let X; and X5, be n-dimensional manifolds with cotangent bundles M; = T X,
and My = T* X5, and tautological 1-forms «; and ay. Suppose that f: X; —
X5 is a diffeomorphism. Then there is a natural diffeomorphism

fo: My — My

which lifts f; namely, if p; = (21,&1) € M; for 21 € Xy and & € T X1, then
we define
. To = f(l’l) € Xy and
= pa = (2, ,  with N
fipr) = p2 = (@2, &2) { &1 = (dfs,)"&2

where (df;,)" : T, X2 = Ty X1, so fﬂ|T;1 is the inverse map of (df;,)*.
Exercise. Check that fy is a diffeomorphism. Here are some hints:

VAL 72

1. m | | o commutes.

Xy 1, Xs

2. fy : My — My is bijective.
3. fy and f[l are smooth.
¢

Theorem 2.1 The lift f; of a diffeomorphism f: X1 — X5 pulls the tautolog-
ical form on T* Xy back to the tautological form on T* X1, i.e.,

(fﬁ)*OQ =aq .
Proof. At p; = (21,&1) € My, this identity says
(dfy)y, (a2)p, = (1), (%)

where pa = fi(p1).
Using the following facts,
o Definition of fy:
p2 = fi(p1) < p2 = (22,&) where 23 = f(z1) and (dfs,)"&2 = &1
e Definition of tautological 1-form:
(a1)p, = (dm)p, &1 and  (az)p, = (dm2);, &2
My M

o T | | mo commutes.

X1 Az, Xs
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the proof of (x) is:

(dfe)y, (a2)p, = (dfe);, (dm2);, & = (d(m2o fi)), &
= (d(foﬁl));fz = (dﬁl)zl(df);lfz
= (dm);, & = (a)p,

O

Corollary 2.2 The lift fy of a diffeomorphism f : X1 — X5 is a symplecto-
morphism, i.e.,
(f1) w2 = w1,

where wy, we are the canonical symplectic forms.

In summary, a diffeomorphism of manifolds induces a canonical symplecto-
morphism of cotangent bundles:

fﬁ : T*Xl — T*XQ
T
fr X5 — Xo

Example. Let X; = Xy = S'. Then T*S! is an infinite cylinder S' x R.
The canonical 2-form w is the area form w = df A d€. If f: ST — S! is any
diffeomorphism, then f; : St xR — S x R is a symplectomorphism, i.e., is an
area-preserving diffeomorphism of the cylinder. O

If f: X1 — Xy and g : Xo — X3 are diffeomorphisms, then (go f); =
gy © fy. In terms of the group Diff (X) of diffeomorphisms of X and the group
Sympl(M,w) of symplectomorphisms of (M, w), we say that the map

Diff(X) — Sympl(M,w)
fo— f

is a group homomorphism. This map is clearly injective. Is it surjective? Do all
symplectomorphisms 7*X — T*X come from diffeomorphisms X — X7 No:
for instance, translation along cotangent fibers is not induced by a diffeomor-
phism of the base manifold. A criterion for which symplectomorphisms arise as
lifts of diffeomorphisms is discussed in Homework 3.



Homework 2: Symplectic Volume

1. Given a vector space V, the exterior algebra of its dual space is

dim V
NV =P AV,
k=0
k
——

where A*(V*) is the set of maps a : V x --- x V — R which are linear
in each entry, and for any permutation m, o(vg,...,vr,) = (signm) -
a(v1,...,v). The elements of A¥(V*) are known as skew-symmetric

k-linear maps or k-forms on V.

(a) Show that any 2 € A%2(V*) is of the form Q = e} A ff +...+eX A fF,
where uj,...,uz,ej,....en, fi,..., fn is a basis of V* dual to the
standard basis (k 4 2n = dim V).

(b) In this language, a symplectic map Q2 : V x V — R is just a nonde-
generate 2-form 2 € A2(V*), called a symplectic form on V.

Show that, if 2 is any symplectic form on a vector space V of di-
mension 2n, then the nth exterior power Q" = Q A ... A Q does not
—_—

n
vanish.

(c) Deduce that the nth exterior power w™ of any symplectic form w on
a 2n-dimensional manifold M is a volume form.?
Hence, any symplectic manifold (M, w) is canonically oriented by the
symplectic structure. The form “;L—T,L is called the symplectic volume
or the Liouville form of (M,w).
Does the Mobius strip support a symplectic structure?

(d) Conversely, given a 2-form € A%(V*), show that, if Q" # 0, then
Q is symplectic.

Hint: Standard form.

2. Let (M,w) be a 2n-dimensional symplectic manifold, and let w™ be the
volume form obtained by wedging w with itself n times.

(a) Show that, if M is compact, the de Rham cohomology class [w"] €
H?"(M;R) is non-zero.
Hint: Stokes’ theorem.

(b) Conclude that [w] itself is non-zero (in other words, that w is not
exact).

(c) Show that if n > 1 there are no symplectic structures on the sphere
SQH.

3A volume form is a nonvanishing form of top degree.

11






Part 11
Symplectomorphisms

Equivalence between symplectic manifolds is expressed by a symplectomorphism.
By Weinstein’s lagrangian creed [82], everything is a lagrangian manifold! We
will study symplectomorphisms according to the creed.

3 Lagrangian Submanifolds

3.1 Submanifolds

Let M and X be manifolds with dim X < dim M.

Definition 3.1 A map i: X — M is an immersion if di, : T, X — T, M is
injective for any point p € X.

An embedding is an immersion which is a homeomorphism onto its image.
(The image has the topology induced by the target manifold.)

A closed embedding is a proper* injective immersion.

Exercise. Show that a map i : X — M is a closed embedding if and only if 4
is an embedding and its image i(X) is closed in M.
Hints:

e If 7 is injective and proper, then for any neighborhood U of p € X, there
is a neighborhood V of i(p) such that f~1(V) CU.

e On a Hausdorff space, any compact set is closed. On any topological
space, a closed subset of a compact set is compact.

e An embedding is proper if and only if its image is closed.

o

Definition 3.2 A submanifold of M is a manifold X with a closed embedding
i: X — M.

Notation. Given a submanifold, we regard the embedding i : X — M as an
inclusion, in order to identify points and tangent vectors:

p=i(p) and T,X =di,(T,X)CT,M.

4A map is proper if the preimage of any compact set is compact.

13
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3.2 Lagrangian Submanifolds of 7" X

Definition 3.3 Let (M,w) be a 2n-dimensional symplectic manifold. A sub-
manifold Y of M is a lagrangian submanifold if, at each p € Y, T,)Y is
a lagrangian subspace of T,M, i.e., wy|r,y = 0 and dim7T,Y = JdimT,M.
Equivalently, if i : Y — M is the inclusion map, then Y is lagrangian if and
only if i*w =0 and dimY = %dimM.

Let X be an n-dimensional manifold, with M = T*X its cotangent bundle.
If x1,...,2, are coordinates on U C X, with associated cotangent coordinates
L1y Tyy&1,...,&, on T*U, then the tautological 1-form on T* X is

a=) &dr

and the canonical 2-form on 7% X is
w=—da = dewdgi )
The zero section of 7% X
Xo={(2,§) eT"X |£=0inT; X}

is an n-dimensional submanifold of 7% X whose intersection with T*U is given
by the equations & = ... =&, = 0. Clearly a = Y &;dx; vanishes on XoNT*U.
In particular, if 49 : Xo — T™X is the inclusion map, we have ija = 0. Hence,
iow = i5da = 0, and Xj is lagrangian.

What are all the lagrangian submanifolds of 7*X which are “C'-close to
X077

Let X, be (the image of) another section, that is, an n-dimensional sub-
manifold of 7% X of the form

Xy =A@, pa) |2 € X, po € T; X} (%)

where the covector u, depends smoothly on x, and y: X — T*X is a de Rham
1-form. Relative to the inclusion ¢ : X, — 1™ X and the cotangent projection
m:T*X — X, X, is of the form (x) if and only if 70i : X, - X is a
diffeomorphism.

When is such a X, lagrangian?

Proposition 3.4 Let X, be of the form (x), and let p be the associated de
Rham 1-form. Denote by s, : X — T*X, x — (x, 1z), be the 1-form p regarded
exclusively as a map. Notice that the image of s, is X,,. Let a be the tautological
1-form on T*X. Then

* p—
S0 = [0 .
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Proof. By definition of « (previous lecture), o, = (dm,)*¢ at p = (z,€) € M.
For p = s,(x) = (2, tz), we have a,, = (dmp)* . Then

(Sza)w = (dsu);op

(dsu);(dﬂ-;ﬂ)*,uaz

(d(m o 8))stte = Ha -
——

idx

O

Suppose that X, is an n-dimensional submanifold of T*X of the form (%),
with associated de Rham 1-form p. Then s, : X — T X is an embedding with
image X,,, and there is a diffeomorphism 7 : X — X, 7(x) := (z, t2), such
that the following diagram commutes.

X Su . T*X

We want to express the condition of X, being lagrangian in terms of the form
%

*da=0

T**da =0

(io7)*da=0

spda =0

dspa=0

du=20

1 is closed .

X, is lagrangian

froeres

Therefore, there is a one-to-one correspondence between the set of lagrangian
submanifolds of T*X of the form (x) and the set of closed 1-forms on X.

When X is simply connected, H} gpam(X) = 0, so every closed 1-form
w is equal to df for some f € C°°(X). Any such primitive f is then called a
generating function for the lagrangian submanifold X, associated to . (Two
functions generate the same lagrangian submanifold if and only if they differ by
a locally constant function.) On arbitrary manifolds X, functions f € C*°(X)
originate lagrangian submanifolds as images of df.

Exercise. Check that, if X is compact (and not just one point) and f € C°(X),
then #{de n XQ} > 2. &

There are lots of lagrangian submanifolds of T*X mnot covered by the de-
scription in terms of closed 1-forms, starting with the cotangent fibers.
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3.3 Conormal Bundles

Let S be any k-dimensional submanifold of an n-dimensional manifold X.

Definition 3.5 The conormal space at x € S is
NS={eT;X|&w)=0, foralveT,S}.

The conormal bundle of S is

N*S={(z,§) eT"X |z €S, £€ N;S}.

Exercise. The conormal bundle N*S is an n-dimensional submanifold of T* X .
Hint: Use coordinates on X adapted® to S. &

Proposition 3.6 Leti: N*S <— T*X be the inclusion, and let o be the tauto-
logical 1-form on T*X. Then

ifa=0.
Proof. Let (U,x1,...,z,) be a coordinate system on X centered at x € S
and adapted to S, so that U N S is described by xp11 = ... = z, = 0. Let
(T*U, z1,...,Tn,&1,- ., &n) be the associated cotangent coordinate system. The

submanifold N*S N T*U is then described by
Thyl1 =...=2Tp =0 and L=...=&:=0.
Since a = Y &;dx; on T*U, we conclude that, at p € N*S,

(i*)p = aplr,(v-5) = D _ &d; =0.

i>k span{ 52 i<k}
k3

Corollary 3.7 For any submanifold S C X, the conormal bundle N*S is a
lagrangian submanifold of T* X .

Taking S = {z} to be one point, the conormal bundle L = N*S =T X is a
cotangent fiber. Taking S = X, the conormal bundle L = X, is the zero section
of T*X.

5A coordinate chart (U, z1,...,2,) on X is adapted to a k-dimensional submanifold S if
S NU is described by 41 =... =2 =0.
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3.4 Application to Symplectomorphisms

Let (M1, w1) and (Ma,ws) be two 2n-dimensional symplectic manifolds. Given
a diffeomorphism ¢ : M; — Mo, when is it a symplectomorphism? (I.e., when
is p*ws = w1 ?)

Consider the diagram of projection maps

(p1,p2) My x My (p1,p2)

AN
M1 M2

Then w = (pry)*w1 + (pry)*we is a 2-form on M; x My which is closed,

b1 b2

dw = (pry)*dwy + (pry)*dws =0,
(pry) 1+ (pry) 2

0 0
and symplectic,

W = < 2n > ((prl)*m)n A ((prz)*wz)n #0.

n

More generally, if A1, \a € R\{0}, then A;(pry)*w1 + Aa(pry)*ws is also a sym-
plectic form on My x My. Take Ay = 1, Ao = —1 to obtain the twisted product
form on M; x Ms:

w = (pry) w1 — (pray) wa .

The graph of a diffeomorphism ¢ : M; — M, is the 2n-dimensional sub-
manifold of M7 x Ms:

'y := Graphp = {(p, ¢(p)) | p € M1} .
The submanifold I',, is an embedded image of M; in My x M, the embedding
being the map
v M1 — Ml X M2
p o (p.e)) -
Theorem 3.8 A diffeomorphism ¢ is a symplectomorphism if and only if I',
is a lagrangian submanifold of (My x Ms,@).
Proof. The graph I', is lagrangian if and only if v*& = 0.
YW = T priwi =7 pry wy
= (pri07) w1 = (prz07) ws -
But pry o~y is the identity map on M; and pr, o v = . Therefore,

Yo=0 <= Qwr=w.



Homework 3:
Tautological Form and Symplectomorphisms

This set of problems is from [42].

1. Let (M,w) be a symplectic manifold, and let @ be a 1-form such that

w = —da .

Show that there exists a unique vector field v such that its interior product
with w is a, i.e., 1,w = —a.

Prove that, if g is a symplectomorphism which preserves « (that is, g*«a =
a), then g commutes with the one-parameter group of diffeomorphisms
generated by v, i.e.,

(exptv) og=go (exptv) .

Hint: Recall that, for p € M, (exptv)(p) is the unique curve in M solving
the ordinary differential equation
{ 4 (exp to(p)) = v(exp tv(p))
(exptv)(p)lt=0 = p

for ¢ in some neighborhood of 0. Show that g o (exptv) o g~! is the one-
parameter group of diffeomorphisms generated by g«v. (The push-forward of v
by g is defined by (g«v)4(p) = dgp(vp).) Finally check that g preserves v (that
is, g«v = v).

2. Let X be an arbitrary n-dimensional manifold, and let M = T*X. Let
(U, x1,...,2,) be a coordinate system on X, and let z1,...,2n,&1,...,&n
be the corresponding coordinates on T™U.

Show that, when « is the tautological 1-form on M (which, in these coor-
dinates, is Y &; dx;), the vector field v in the previous exercise is just the
vector field > ¢&; 6%1-'

Let exptv, —oco < t < 00, be the one-parameter group of diffeomorphisms
generated by v.

Show that, for every point p = (z,§) in M,

(exptv)(p) = p; where p; = (x,€'€) .

18
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3. Let M be as in exercise 2.

Show that, if g is a symplectomorphism of M which preserves «, then

9@, &) = (y,m) = gz, ) = (y,\n)
for all (z,£) € M and A € R.

Conclude that g has to preserve the cotangent fibration, i.e., show that
there exists a diffeomorphism f : X — X such that 7w o g = f om, where
m: M — X is the projection map 7(x,§) = x.

Finally prove that g = fx, the map f4 being the symplectomorphism of
M lifting f.

Hint: Suppose that g(p) = g where p = (x,¢) and ¢ = (y, 7).
Combine the identity
(dgp) g = cp
with the identity
dmg o dgp = dfz odmp .

(The first identity expresses the fact that g*a = «, and the second identity is
obtained by differentiating both sides of the equation mo g = fow at p.)

4. Let M be as in exercise 2, and let h be a smooth function on X. Define
T : M — M by setting

h(x, &) = (2,€ + dhy) .

Prove that
Tha=a+ 7*dh

where 7 is the projection map

Mo (28
b= !
X T
Deduce that
ThW=uw,

i.e., that 7, is a symplectomorphism.



4 Generating Functions

4.1 Constructing Symplectomorphisms

Let X7, X5 be n-dimensional manifolds, with cotangent bundles M; = T* X7,
My = T* X5, tautological 1-forms a1, as, and canonical 2-forms w1, ws.
Under the natural identification

My x My =T"X; xT* Xy =~ T"(X; x X3) ,
the tautological 1-form on T*(X; x Xs) is
a = (pry)*o1 + (pry)*az ,

where pr; : My x My — M;, ¢ = 1,2 are the two projections. The canonical
2-form on T*(X; x Xs) is

w = —da = —dprja; — dprias = priwi + pryjws .

In order to describe the twisted form w = priw; —prjws, we define an involution
of M2 = T*XQ by
g9 M2 — MQ
(22,&2) +— (22, —&2)
which yields 0509 = —ag. Let o =idy, X 09 1 My x My — My X My. Then

0" = prijwi + prows = w .

If Y is a lagrangian submanifold of (M; x Ms,w), then its “twist” Y7 := o(Y)
is a lagrangian submanifold of (M; x Ms,©).

Recipe for producing symplectomorphisms M; = T*X; — My = T*X5:
1. Start with a lagrangian submanifold Y of (M; x Ms,w).
2. Twist it to obtain a lagrangian submanifold Y7 of (M; x M, ).
3. Check whether Y7 is the graph of some diffeomorphism ¢ : M; — Ms.
4. If it is, then ¢ is a symplectomorphism.

Let i : Y7 < My x M be the inclusion map
YO'

pryoi pry ot

M1 L > M2

Step 3 amounts to checking whether pr; o ¢ and pr, o ¢ are diffeomorphisms. If
yes, then ¢ := (pry 04) o (pry 0i)~! is a diffeomorphism.

In order to obtain lagrangian submanifolds of My x My ~ T*(X; x X5), we
can use the method of generating functions.

20
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4.2 Method of Generating Functions

For any f € C*(X; x X3), df is a closed 1-form on X; x X5. The lagrangian
submanifold generated by f is

Vi o= {((z,9); ([df)@y) | (2,y) € X1 x Xo} .

We adopt the notation

def = (df)(s,y) Projected to Ty X; x {0},
dyf = (df)(ay) projected to {0} x Ty X5 ,

which enables us to write

}/f = {($7y7dwfa dyf) | (337?/) S Xl X X2}
and
Yfa = {<x7yad:vfa_dyf> | (x,y) € X1 x XQ} .

When Y7 isin fact the graph of a diffeomorphism ¢ : M7 — Ms, we call ¢ the
symplectomorphism generated by f, and call f the generating function,
of (V2R M1 — MQ.

So when is Y7 the graph of a diffeomorphism ¢ : My — M>5?

Let (Ur,x1,...,20), Uz, y1,---,yn) be coordinate charts for X, Xo, with
associated charts (T*Uy, x1, ..., Tn, &1y, &n), (T U, Y1, -« o s Yny M1y -+« s M) Tor
My, My. The set

Y7 = {(z,y,dof, —dyf) | (x,y) € X1 x Xa}

is the graph of ¢ : M7 — My if and only if, for any (z,£) € M, and (y,n) € M,
we have

o(x,8) = (y,1m) <= §{=d,f and n= —d,f .

Therefore, given a point (z,£) € My, to find its image (y,n) = ¢(z,£) we must
solve the “Hamilton” equations

fi = %wfz (‘T7 y) (*)
n = _3y¢ (.%', y) (**)

If there is a solution y = ¢1(x,&) of (), we may feed it to (%) thus obtaining
n = a(x,£), so that p(z, &) = (p1(x, &), p2(x,€)). Now by the implicit function
theorem, in order to solve (%) locally for y in terms of z and &, we need the

condition 5 9F\1"
o o ()],

4,j=1
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This is a necessary local condition for f to generate a symplectomorphism .
Locally this is also sufficient, but globally there is the usual bijectivity issue.

2
Example. Let X7 = U; ~ R", Xy = Us ~ R", and f(z,y) = —@7 the
square of euclidean distance up to a constant.
The “Hamilton” equations are

0

& = 83{» = Yi—x yi = zi+§
of =

N = o = Yi— X ni = &

The symplectomorphism generated by f is

Lp(xag) = (I+€7£) .

If we use the euclidean inner product to identify T*R™ with TR", and hence
regard p as @ : TR™ — TR"™ and interpret £ as the velocity vector, then the sym-
plectomorphism ¢ corresponds to free translational motion in euclidean space.

z+¢&

4.3 Application to Geodesic Flow

Let V be an n-dimensional vector space. A positive inner product G on V'
is a bilinear map G : V' x V — R which is

symmetric : G(v,w) = G(w,v), and
positive-definite : G(v,v) >0 when v#0.

Definition 4.1 A riemannian metric on a manifold X is a function g which
assigns to each point x € X a positive inner product g, on T, X.

A riemannian metric g is smooth if for every smooth vector field v : X —
TX the real-valued function x +— ¢, (vg,v,) is a smooth function on X.

Definition 4.2 A riemannian manifold (X, g) is a manifold X equipped with
a smooth riemannian metric g.
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The arc-length of a piecewise smooth curve « : [a,b] — X on a riemannian
manifold (X, g) is

dy dv
PO\ ar

z =(a)

Definition 4.3 The riemannian distance between two points x and y of a
connected riemannian manifold (X, g) is the infimum d(x,y) of the set of all
arc-lengths for piecewise smooth curves joining x to y.

A smooth curve joining x to y is a minimizing geodesic if its arc-length
is the riemannian distance d(x,y).

A riemannian manifold (X, g) is geodesically convex if every point x is
joined to every other point y by a unique minimizing geodesic.

Example. On X = R" with TX ~ R" x R", let g, (v, w) = (v,w), g (v,v) =

||, where (-,-) is the euclidean inner product, and | -| is the euclidean norm.
Then (R™,(-,-)) is a geodesically convex riemannian manifold, and the rieman-
nian distance is the usual euclidean distance d(z,y) = |z — y|. O

Suppose that (X, g) is a geodesically convex riemannian manifold. Consider
the function
d(z,y)?

2
What is the symplectomorphism ¢ : T*X — T*X generated by f?

f:XXX—)Ra f(may):_

The metric g, : T, X T, X — R induces an identification
Ge: ToX — TrX
v o ga(v,)

Use g to translate ¢ into a map ¢ : TX — T'X.
We need to solve

{ﬁx(v) = & =  dof(zy)
Ey(w) = n = *dyf( )
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for (y,n) in terms of (x, &) in order to find ¢, or, equivalently, for (y,w) in terms
(x,v) in order to find @.
Let ~ be the geodesic with initial conditions v(0) = x and ‘2—:(0) =.

Then the symplectomorphism ¢ corresponds to the map

p: TX — TX
(z,0) —  (4(1), F (D) -

This is called the geodesic flow on X (see Homework 4).



Homework 4: Geodesic Flow

This set of problems is adapted from [42].

Let (X,g) be a riemannian manifold. The arc-length of a smooth curve
v :la,b] — X is

dy dry
T dt ,  where ‘dt’ = /9y (

b

dy dv

arc-length of v := —,— .
reens 7 /a dt’ dt>

1. Show that the arc-length of v is independent of the parametrization of

7, i.e., show that, if we reparametrize v by 7 : [a/,b'] — [a,b], the new

curve v/ = yor7 : [@/,b'] — X has the same arc-length. A curve v is

%’ is independent of t. Show

called a curve of constant velocity when
that, given any curve v : [a,b] — X (with Z—Z never vanishing), there is
a reparametrization 7 : [a,b] — [a,b] such that vy o7 : [a,b] — X is of

constant velocity.

2

d
Tt

dt
Show that, among all curves joining x to y, v minimizes the action if and
only if ~ is of constant velocity and v minimizes arc-length.

b
2. Given a smooth curve 7 : [a,b] — X, the actionof vis A(y) := /

Hint: Suppose that v is of constant velocity, and let 7 : [a,b] — [a,b] be
a reparametrization. Show that A(y o 7) > A(«y), with equality only when
T = identity.

3. Assume that (X, g) is geodesically convex, that is, any two points z,y € X
are joined by a unique (up to reparametrization) minimizing geodesic; its
arc-length d(zx,y) is called the riemannian distance between z and y.
Assume also that (X, g) is geodesically complete, that is, every minimizing
geodesic can be extended indefinitely. Given (z,v) € TX, let exp(z,v) :
R — X be the unique minimizing geodesic of constant velocity with initial

conditions exp(z,v)(0) = z and de%ff’v)(O) = .

Consider the function ¢ : X x X — R given by ¢(z,y) = —%-d(z,y)?. Let
dy, and dp, be the components of dy(,,) with respect to T(";’y) (X xX)~
Ty X x T;X. Recall that, if

F; = {(xay’d@fﬁv—d@y) | (%y) € X x X}

is the graph of a diffeomorphism f : T*X — T* X, then f is the symplec-
tomorphism generated by . In this case, f(x,£) = (y,n) if and only if
& =dp; and n = —dyp,.

Show that, under the identification of T X with T*X by g, the sym-
plectomorphism generated by ¢ coincides with the map TX — TX,
(z,v) — exp(z,v)(1).

25
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HOMEWORK 4

Hint: The metric g provides the identifications T Xv ~ £(-) = gz(v,) €

TrX. We need to show that, given (z,v) € TX, the unique solution of
v,-) = dpz (- . xp(z,

() { gen ) 290 s o) = (e 1), 0222 )

Look up the Gauss lemma in a book on riemannian geometry. It asserts that

geodesics are orthogonal to the level sets of the distance function.

To solve the first line in (x) for y, evaluate both sides at v = de%;z’v)([)).

Conclude that y = exp(z,v)(1). Check that dys(v") = 0 for vectors v’ € Tp X

orthogonal to v (that is, g(v,v’) = 0); this is a consequence of p(z,y) being

the arc-length of a minimizing geodesic, and it suffices to check locally.

The vector w is obtained from the second line of (). Compute

d )
—dipy (LT (1)),
nal to de%gz’v)(l); this pairing is again 0 because p(z,y) is the arc-length

of a minimizing geodesic. Conclude, using the nondegeneracy of g, that
w— dexp(xz,v) (1)

Then evaluate —dy, at vectors w’ € TyX orthogo-

t
For both steps, it might be useful to recall that, given a function f: X — R
d
and a tangent vector v € T, X, we have df.(v) = o [f (exp(z,v)(w))],—o-
i



5 Recurrence

5.1 Periodic Points

Let X be an n-dimensional manifold. Let M = T*X be its cotangent bundle
with canonical symplectic form w.

Suppose that we are given a smooth function f : X x X — R which generates
a symplectomorphism ¢ : M — M, ¢(z,dfy) = (y, —df,), by the recipe of the
previous lecture.

What are the fixed points of ¢?
Define ¢ : X — R by ¥(z) = f(x, z).

Proposition 5.1 There is a one-to-one correspondence between the fized points
of @ and the critical points of 1.

Proof. At 2y € X, dyo ) = (dxf + dyf)|(z7y):(zo,wo)~ Let € = dxf‘(x’y):(ajo)m).
T is a critical point of ¢ <= dy, ¥ =0 <= dyfl(z,y)=(w0,20) = —&

Hence, the point in I'7 corresponding to (z,y) = (xo, o) is (w0, 0,§,§). But
I'¢ is the graph of ¢, so o(x0,&) = (x0,€) is a fixed point. This argument also
works backwards. O

Consider the iterates of ¢,

SO(N):@O()OO...OQOIMHM, N=12,...,
N——

N

each of which is a symplectomorphism of M. According to the previous propo-
sition, if o(N) : M — M is generated by f(¥), then there is a correspondence

1-1

{ﬁxed points of w(N)} — { critical points of }

v X SR, N (2) = [Nz, 2)
Knowing that ¢ is generated by f, does ¢(® have a generating function?
The answer is a partial yes:
Fix z,y € X. Define a map

X — R
z — f(x,2)+ f(zy)

Suppose that this map has a unique critical point 2y, and that zy is nondegen-
erate. Let

FO(z,y) = fz,20) + f(20,) -

Theorem 5.2 The function f : X x X — R is smooth and is a generating
function for o2,

27
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Proof. The point z is given implicitly by dfy(z, z0) + dfz(20,y) = 0. The
nondegeneracy condition is

o (0f of
det {821- (3%<x72) + a»@y(z,y))} #0.

By the implicit function theorem, zy = 2¢(x,y) is smooth.

As for the second assertion, f(?)(z,y) is a generating function for ¢ if and
only if

50(2)($7df£2)) = (y? _dfggZ)) N

Since ¢ is generated by f, and zg is critical, we obtain,

e (2, dfP (x,y) = ele@ dfP(zy) = oz, —dfy(z,20))
~———

=df.(x,z0)
QD(ZOa dfi(Z07 y))

(y, —dfy(20,9)) -
———

=—df{P (z,y)

Exercise. What is a generating function for ¢(®)?

Hint: Suppose that the function

XxX — R
(z,u) +— flz,2) + f(z,u) + f(u,y)

has a unique critical point (2o, ug), and that it is a nondegenerate critical point.
Let ?/J(d)(ﬂfay) :f(I',ZQ)+f(Zo,Uo)+f(uO,y). <>

5.2 Billiards

Let x : R — R? be a smooth plane curve which is 1-periodic, i.e., x(s+1) = x(s),

. . dx
and parametrized by arc-length, i.e., |

= 1. Assume that the region Y

enclosed by x is convez, i.e., for any s € R, the tangent line {x(s) —&—t‘fl—’s‘ |t € R}
intersects X := 9Y (= the image of x) at only the point x(s).
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Suppose that we throw a ball into Y rolling with constant velocity and
bouncing off the boundary with the usual law of reflection. This determines a
map

v: R/Zx(-1,1) — R/Zx(-1,1)
(z,0) — (y,w)

by the rule

when the ball bounces off x with angle 8 = arccosv, it will next collide with y
and bounce off with angle v = arccosw.

Let f: R/Z x R/Z — R be defined by f(z,y) = —|x — y|; f is smooth off
the diagonal. Use x to identify R/Z with the image curve X.

Suppose that ¢(x,v) = (y,w), i.e., (z,v) and (y,w) are successive points on
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the orbit described by the ball. Then

d —
g4 _ _=z-y projected onto T, X = v
dz |z =yl
d —
a - _y=r projected onto T, X = —w
dy |z -y (
or, equivalently,
d y—x dX
d — - = 0 =
2T (x(s).9) lz—y| ds “ ’
d r—y dx
dsf(x’X(S)) = |z — v ds S = e

We conclude that f is a generating function for . Similar approaches work
for higher dimensional billiards problems.

Periodic points are obtained by finding critical points of

Xx...xX — R, N>1
N—————’

N
(z1,...,zn) —  f(z1,22) + f(za,23) + ...+ f(en—1,2N) + f(zN,21)
:|£L‘1—1‘2|+...+|£L’N71—xN‘+|$N—$1|

that is, by finding the N-sided (generalized) polygons inscribed in X of critical
perimeter.
Notice that

R/Z x (—1,1) = {(a,v) |2 € X,v € T,X, || < 1} ~ A

is the open unit tangent ball bundle of a circle X, that is, an open annulus A.
The map ¢ : A — A is area-preserving.

5.3 Poincaré Recurrence

Theorem 5.3 (Poincaré Recurrence Theorem) Suppose that ¢ : A — A
is an area-preserving diffeomorphism of a finite-area manifold A. Let p € A,
and let U be a neighborhood of p. Then there is ¢ € U and a positive integer N
such that o™V (q) € U.

Proof. Let Uy = U, Uy = oU),Us = ¢ (U),.... Tf all of these sets were
disjoint, then, since Area (U;) = Area (U) > 0 for all i, we would have

Area A > Area (Uy UUL UU U .. .) :Z Area (U;) = o0 .
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To avoid this contradiction we must have p*) () N " (U) # B for some k > 1,
which implies =D (U) N U # 0. O

Hence, eternal return applies to billiards...

Remark. Theorem 5.3 clearly generalizes to volume-preserving diffeomor-
phisms in higher dimensions. O

Theorem 5.4 (Poincaré’s Last Geometric Theorem) Suppose ¢ : A —
A is an area-preserving diffeomorphism of the closed annulus A = R/Z x [—1,1]
which preserves the two components of the boundary, and twists them in opposite
directions. Then ¢ has at least two fized points.

This theorem was proved in 1925 by Birkhoff, and hence is also called the
Poincaré-Birkhoff theorem. It has important applications to dynamical sys-
tems and celestial mechanics. The Arnold conjecture (1966) on the existence of
fixed points for symplectomorphisms of compact manifolds (see Lecture 9) may
be regarded as a generalization of the Poincaré-Birkhoff theorem.






Part II1
Local Forms

Inspired by the elementary normal form in symplectic linear algebra (Theo-
rem 1.1), we will go on to describe normal neighborhoods of a point (the Dar-
boux theorem) and of a lagrangian submanifold (the Weinstein theorems), inside
a symplectic manifold. The main tool is the Moser trick, explained in Lecture 7,
which leads to the crucial Moser theorems and which is at the heart of many
arguments in symplectic geometry.

In order to prove the normal forms, we need the (non-symplectic) ingredients
discussed in Lecture 6; for more on these topics, see, for instance, [16, 43, 75].

6 Preparation for the Local Theory

6.1 Isotopies and Vector Fields

Let M be a manifold, and p : M x R — M a map, where we set p;(p) := p(p, t).

Definition 6.1 The map p is an isotopy if each p; : M — M is a diffeomor-
phism, and pg = id ;.

Given an isotopy p, we obtain a time-dependent vector field, that is, a
family of vector fields v;, t € R, which at p € M satisfy

d

vi(p) = —-ps(a) where ¢ =p;'(p),
s=t

d
dpe_ o

dt

Conversely, given a time-dependent vector field vy, if M is compact or if the
v¢’s are compactly supported, there exists an isotopy p satisfying the previous
ordinary differential equation.

Suppose that M is compact. Then we have a one-to-one correspondence

{isotopies of M} &L {time-dependent vector fields on M}
Pt teR +—— Vt, teR

Definition 6.2 When v, = v is independent of t, the associated isotopy is called
the exponential map or the flow of v and is denoted exptv; i.e., {exptv :
M — M | t € R} is the unique smooth family of diffeomorphisms satisfying

. d
exptvli—o =idpy  and a(exp tv)(p) = v(exptv(p)) .

33
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Definition 6.3 The Lie derivative is the operator

Ly, : Q¥ (M) — QF(M) defined by Low: exp tv)*wli=o -

:%(

When a vector field v, is time-dependent, its flow, that is, the corresponding
isotopy p, still locally exists by Picard’s theorem. More precisely, in the neigh-
borhood of any point p and for sufficiently small time ¢, there is a one-parameter
family of local diffeomorphisms p; satisfying

d
%:’Utopt and po =id .

Hence, we say that the Lie derivative by v; is

d
Ly, : Q¥ (M) — QF(M) defined by Loyw = %(pt)*wh:o :

Exercise. Prove the Cartan magic formula,
Low = 1pdw + diyw
and the formula

d * *
Pt = P Loy,w , (*)

where p is the (local) isotopy generated by v;. A good strategy for each formula
is to follow the steps:

1. Check the formula for 0-forms w € Q°(M) = C>®(M).
2. Check that both sides commute with d.

3. Check that both sides are derivations of the algebra (Q2*(M),A). For
instance, check that

Lo(wAha)=(Lw) Na+wA (Lya) .

4. Notice that, if U is the domain of a coordinate system, then Q® (1) is gen-
erated as an algebra by Q°(U) and dQ°(U), i.e., every element in Q®(U) is
a linear combination of wedge products of elements in Q°(/) and elements
in dQ°(U).

&

We will need the following improved version of formula ().

Theorem 6.4 For a smooth family w, t € R, of d-forms, we have

d . N dw
Pt = P (E'Utwt + dtt> .
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Proof. If f(x,y) is a real function of two variables, by the chain rule we have

d d d
—ft,t) = —f(x,t)]  + —f(t,y)
dt d"E x=t dy y=t
Therefore,
i NAT— d ) + i W
at’t da"! z=t dypt ’ y=t
— ——
P Loy, Wt by (%) p?%
=t y=t
dwt
= x ;CU T .
pt ( twt + dt )

6.2 Tubular Neighborhood Theorem

Let M be an n-dimensional manifold, and let X be a k-dimensional submanifold
where k < n and with inclusion map

1: X —> M.

At each z € X, the tangent space to X is viewed as a subspace of the tangent
space to M via the linear inclusion di, : T, X <— T,M, where we denote x =
i(x). The quotient N, X := T, M /T, X is an (n — k)-dimensional vector space,
known as the normal space to X at z. The normal bundle of X is

NX ={(z,v) |z € X, ve N, X} .

The set N X has the structure of a vector bundle over X of rank n — k under the
natural projection, hence as a manifold N X is n-dimensional. The zero section
of NX,

ig: X — NX , z +— (2,0),
embeds X as a closed submanifold of NX. A neighborhood U of the zero
section X in N X is called convex if the intersection Uy N N, X with each fiber
is convex.

Theorem 6.5 (Tubular Neighborhood Theorem) There exist a convex
neighborhood Uy of X in NX, a neighborhood U of X in M, and a diffeomor-
phism ¢ : Uy — U such that

P

~

NX DUy ~UCM

commutes.
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Outline of the proof.
o Case of M =R"™, and X is a compact submanifold of R™.

Theorem 6.6 (e-Neighborhood Theorem)

LetUs ={p e R™: |p—q| <e for some q € X} be the set of points at a
distance less than € from X. Then, for € sufficiently small, each p € U®
has a unique nearest point ¢ € X (i.e., a unique ¢ € X minimizing |q—x|).

Moreover, setting ¢ = n(p), the map U° = X is a (smooth) submersion
with the property that, for all p € U, the line segment (1 — t)p + tq,
0<t<1, s inU°.

The proof is part of Homework 5. Here are some hints.

At any z € X, the normal space N, X may be regarded as an (n — k)-
dimensional subspace of R™, namely the orthogonal complement in R™ of
the tangent space to X at x:

Ny X~{veR": vlw, forallweT,X}.
We define the following open neighborhood of X in NX:
NX®={(z,v) e NX : |v| <e}.
Let

exp: NX — R"
(z,v) — z+v.

Restricted to the zero section, exp is the identity map on X.

Prove that, for e sufficiently small, exp maps N X¢ diffeomorphically onto
U*, and show also that the diagram

NX® P . U
comimutes.
) s
X

o (Case where X is a compact submanifold of an arbitrary manifold M.

Put a riemannian metric g on M, and let d(p, ¢) be the riemannian distance
between p,q € M. The e-neighborhood of a compact submanifold X is

Us={pe M |d(p,q) <e for some g € X} .

Prove the e-neighborhood theorem in this setting: for e small enough, the
following assertions hold.
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— Any p € U* has a unique point ¢ € X with minimal d(p, q). Set ¢ = 7(p).
— The map U = X is a submersion and, for all p € U=, there is a unique
geodesic curve 7 joining p to ¢ = w(p).

— The normal space to X at z € X is naturally identified with a subspace
of T, M:

N, X ~{veT,M|g,(v,w)=0, forany w € T, X} .

Let NX¢ = {(z,v) € NX | \/gz(v,v) < e}.

— Define exp : NX® — M by exp(z,v) = v(1), where v : [0,1] — M
is the geodesic with v(0) = z and %Z(O) = v. Then exp maps NX¢
diffeomorphically to U/°.

o (Gleneral case.

When X is not compact, adapt the previous argument by replacing € by
an appropriate continuous function ¢ : X — R which tends to zero fast
enough as x tends to infinity.

O

Restricting to the subset 4/ C N X from the tubular neighborhood theorem,

we obtain a submersion Uy —% X with all fibers 7, ! () convex. We can carry
1

this fibration to U by setting m =m0 ™ ":
Uy C NX is afibration — u C M is a fibration

mo | |

X X
This is called the tubular neighborhood fibration.

6.3 Homotopy Formula

Let U be a tubular neighborhood of a submanifold X in M. The restriction i* :
HY o U) — HS gpam (X) by the inclusion map is surjective. As a corollary
of the tubular neighborhood fibration, * is also injective: this follows from the
homotopy-invariance of de Rham cohomology.

Corollary 6.7 For any degree £, HS gpam ) ~ HY Rpam (X)-

At the level of forms, this means that, if w is a closed ¢-form on U and i*w
is exact on X, then w is exact. We will need the following related result.

Theorem 6.8 If a closed ¢-form w on U has restriction i*w = 0, then w is
exact, i.e., w = du for some p € Q41 (U). Moreover, we can choose u such that
e =0at allx € X.
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Proof. Via ¢ : Uy — U, it is equivalent to work over Uy. Define for every
0<t<1amap
pt: Uy — U
(2.0) — (at).

This is well-defined since Uy is convex. The map p; is the identity, po = ig o
o, and each p; fixes X, that is, p; o ig = ig. We hence say that the family
{p+ | 0 <t < 1} is a homotopy from ig o my to the identity fixing X. The
map 7o : Uy — X is called a retraction because 7y o ig is the identity. The
submanifold X is then called a deformation retract of /.

A (de Rham) homotopy operator between py = ig o mp and p; = id is a
linear map

Q : Q4 Uy) — Q)

satisfying the homotopy formula
Id — (iooﬂo)* = dQ+Qd .

When dw = 0 and ijw = 0, the operator () gives w = dQw, so that we can take
1= Quw. A concrete operator @) is given by the formula:

1
Quw z/ pi (1p,w) dt |
0

where v;, at the point ¢ = p(p), is the vector tangent to the curve p,(p) at
s =t. The proof that @ satisfies the homotopy formula is below.

In our case, for € X, pi(x) = x (all t) is the constant curve, so v; vanishes
at all = for all ¢, hence p, = 0. O

To check that @@ above satisfies the homotopy formula, we compute

1 1
Qdw 4+ dQw = / 0F (1, dw)dt + d/ 05 (2, w)dt
0 0

1
/ P (ty, dw + diy,w)dt |
0 —

Loy, w

where £, denotes the Lie derivative along v (reviewed in the next section), and
we used the Cartan magic formula: L,w = 1,dw + di,w. The result now follows
from

d * *
Pty T P Ly,w

and from the fundamental theorem of calculus:

1
d
Qdw + dQuw :/ £p;‘w dt = piw — pyw .
0



Homework 5: Tubular Neighborhoods in R"

1. Let X be a k-dimensional submanifold of an n-dimensional manifold M.
Let « be a point in X. The normal space to X at x is the quotient space

N, X = T,M/T, X ,

and the normal bundle of X in M is the vector bundle NX over X
whose fiber at x is N, X.

(a) Prove that NX is indeed a vector bundle.

(b) If M is R™, show that N, X can be identified with the usual “normal
space” to X in R™, that is, the orthogonal complement in R™ of the
tangent space to X at x.

2. Let X be a k-dimensional compact submanifold of R™. Prove the tubular
neighborhood theorem in the following form.

(a) Givene > 0let U: be the set of all points in R™ which are at a distance
less than € from X. Show that, for e sufficiently small, every point
p € U. has a unique nearest point 7(p) € X.

(b) Let m : U — X be the map defined in (a) for ¢ sufficiently small.
Show that, if p € U., then the line segment (1 —¢) -p + ¢ - 7(p),
0 <t <1, joining p to 7(p) lies in Uk..

(c) Let NX. = {(z,v) € NX such that |v] < e}. Let exp: NX — R"
be the map (z,v) — x + v, and let v : NX. — X be the map
(z,v) — x. Show that, for e sufficiently small, exp maps NX. dif-
feomorphically onto U, and show also that the following diagram

commutes:
exp

NX. - U,

X

3. Suppose that the manifold X in the previous exercise is not compact.

Prove that the assertion about exp is still true provided we replace € by a
continuous function
e: X - RT

which tends to zero fast enough as x tends to infinity.
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7 Moser Theorems

7.1 Notions of Equivalence for Symplectic Structures

Let M be a 2n-dimensional manifold with two symplectic forms wy and w1, so
that (M, wp) and (M,w) are two symplectic manifolds.

Definition 7.1 We say that

o (M,wp) and (M,w) are symplectomorphic if there is a diffeomorphism
w: M — M with p*w; = wg;

e (M,wy) and (M,w;) are strongly isotopic if there is an isotopy p; :
M — M such that pjw; = wo;

o (M,wp) and (M,w;) are deformation-equivalent if there is a smooth
family w; of symplectic forms joining wg to wq;

o (M,wg) and (M,w) are isotopic if they are deformation-equivalent with
[wt] independent of t.
Clearly, we have
strongly isotopic = symplectomorphic , and

isotopic =  deformation-equivalent .
We also have
strongly isotopic = isotopic

because, if p; : M — M is an isotopy such that pjw; = wg, then the set w; :=
piwi is a smooth family of symplectic forms joining wy to wy and [wi] = [w],
Vt, by the homotopy invariance of de Rham cohomology. As we will see below,
the Moser theorem states that, on a compact manifold,

isotopic = strongly isotopic .
7.2 Moser Trick

Problem. Given a 2n-dimensional manifold M, a k-dimensional submanifold
X, neighborhoods Uy, U; of X, and symplectic forms wgy,w; on Uy, U7, does
there exist a symplectomorphism preserving X? More precisely, does there
exist a diffeomorphism ¢ : Uy — U; with p*w; = wp and p(X) = X7

At the two extremes, we have:
Case X = point: Darboux theorem — see Lecture 8.
Case X = M: Moser theorem — discussed here:

Let M be a compact manifold with symplectic forms wy and w;.

40
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— Are (M, wp) and (M, wq) symplectomorphic?
ILe., does there exist a diffeomorphism ¢ : M — M such that pjwy = w1 ?

Moser asked whether we can find such an ¢ which is homotopic to idy;. A
necessary condition is [wo] = [w1] € H?(M;R) because: if ¢ ~ idys, then, by
the homotopy formula, there exists a homotopy operator @@ such that

idyw1 — p*w1 = dQu1 + Q dwr
~—
0

- w1 = ¢*w1 + d(Qwq)
= wi] = [p*wn] = [wol -
— If [wo] = [w1], does there exist a diffeomorphism ¢ homotopic to idys such

that p*w; = wy?

Moser [68] proved that the answer is yes, with a further hypothesis as in
Theorem 7.2. McDuff showed that, in general, the answer is no; for a coun-
terexample, see Example 7.23 in [64].

Theorem 7.2 (Moser Theorem — Version I) Suppose that [wo] = [w1] and
that the 2-form wy = (1 —t)wy +twy is symplectic for each t € [0,1]. Then there
exists an isotopy p : M x R — M such that pfw; = wo for all t € [0, 1].

In particular, ¢ = p; : M — M, satisfies ¢*w; = wy.
The following argument, due to Moser, is extremely useful; it is known as
the Moser trick.

Proof. Suppose that there exists an isotopy p: M x R — M such that pjw; =
wp, 0 <t < 1. Let

dpt —
vt:Eoptl7 teR.
Then p i
* * Wi
0= %(ptwt) = Zt (EvtCL)t + ﬂ)
— Lo,w + % ~0. (%)

Suppose conversely that we can find a smooth time-dependent vector field
v, t € R, such that (%) holds for 0 < ¢ < 1. Since M is compact, we can
integrate v; to an isotopy p: M x R — M with

d * * *
%(tht) =0 = piw;=powo=wp .
So everything boils down to solving (%) for v;.
First, from w; = (1 — t)wy + tw1, we conclude that

dwt
— = W1 —Wwo -
dt 1 0
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Second, since [wp] = [w1], there exists a 1-form p such that
W1 — Wy = d/l, .
Third, by the Cartan magic formula, we have

Evtwt = dthwt + Ly, dwt .
~—

0
Putting everything together, we must find v; such that
diy,wr +dp =0 .
It is sufficient to solve 4,,w: + 1 = 0. By the nondegeneracy of w;, we can solve

this pointwise, to obtain a unique (smooth) v;. O

Theorem 7.3 (Moser Theorem — Version II) Let M be a compact man-
ifold with symplectic forms wg and wyi. Suppose that wy, 0 <t <1, is a smooth
family of closed 2-forms joining wg to w1 and satisfying:

(1) cohomology assumption: [w:] is independent of t, i.e., %[wt] = [%wt} =0,
(2) nondegeneracy assumption: w; is nondegenerate for 0 <t < 1.

Then there exists an isotopy p: M x R — M such that pfw: = wp, 0 <t < 1.

Proof. (Moser trick) We have the following implications from the hypotheses:
(1) = 3 family of 1-forms p; such that

dwt
Lt du,, 0<t<1.
ar M ==

We can indeed find a smooth family of 1-forms p; such that % = dpy. The
argument involves the Poincaré lemma for compactly-supported forms,
together with the Mayer-Vietoris sequence in order to use induction on
the number of charts in a good cover of M. For a sketch of the argument,

see page 95 in [64].
(2) = 3 unique family of vector fields v; such that

t,we + e =0 (Moser equation) .

Extend v; to all ¢ € R. Let p be the isotopy generated by v; (p exists by
compactness of M). Then we indeed have

d, . . dw .
%(tht) = Pt (L’Utwt + 7;) = Pt (dlvtwt +dp) =0 .
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The compactness of M was used to be able to integrate v, for all ¢t € R.
If M is not compact, we need to check the existence of a solution p; for the

differential equation % =wvopfor0 <t <1,

Picture. Fix c € H?(M). Define S. = {symplectic forms w in M with [w] = c}.
The Moser theorem implies that, on a compact manifold, all symplectic forms
on the same path-connected component of S, are symplectomorphic.

7.3 Moser Local Theorem

Theorem 7.4 (Moser Theorem — Local Version) Let M be a manifold,
X a submanifold of M, i : X — M the inclusion map, wg and wi symplectic
forms in M.

Hypothesis: wolp =w1l, , Ype X .
Conclusion:  There exist neighborhoods Uy, Uy of X in M |
and a diffeomorphism ¢ : Uy — Uy such that

Uy Ld . Uy

commutes

and ¢*wy = wy .

Proof.

1. Pick a tubular neighborhood Uy of X. The 2-form w; —wy is closed on Uy,
and (w1 —wp)p = 0 at all p € X. By the homotopy formula on the tubular
neighborhood, there exists a 1-form p on U, such that w; —wg = dp and
tp=0atallpe X.

2. Consider the family w; = (1 — t)wg + tw1 = wo + tdp of closed 2-forms
on Uy. Shrinking U if necessary, we can assume that w; is symplectic for
0<t<1.

3. Solve the Moser equation: 2,,w; = —u. Notice that v; =0 on X.

4. Integrate vy. Shrinking Uy again if necessary, there exists an isotopy p :
Uy x [0,1] = M with pfw: = wy, for all t € [0, 1]. Since v¢|x = 0, we have
Pt|X = idx.

Set@zpl,bﬁ :pl(UO). O

Exercise. Prove the Darboux theorem. (Hint: apply the local version of the
Moser theorem to X = {p}, as in the next lecture.) &



8 Darboux-Moser-Weinstein Theory

8.1 Classical Darboux Theorem

Theorem 8.1 (Darboux) Let (M,w) be a symplectic manifold, and let p be
any point in M. Then we can find a coordinate system (U, x1,...,Tn,Y1,...Yn)
centered at p such that on U

w:idxi/\dyi .

=1

As a consequence of Theorem 8.1, if we prove for (R?",Y" dx; A dy;) a lo-
cal assertion which is invariant under symplectomorphisms, then that assertion
holds for any symplectic manifold.

Proof. Apply the Moser local theorem (Theorem 7.4) to X = {p}:
Use any symplectic basis for T, M to construct coordinates (x}, ..., z,,y},...y})
centered at p and valid on some neighborhood U’, so that

wp = de; A dy;

p

There are two symplectic forms on U’: the given wy = w and wy = > da} A
dy;. By the Moser theorem, there are neighborhoods Uy and U; of p, and a
diffeomorphism ¢ : Uy — U; such that

p(p)=p and " (D dajrdy) =w .

Since ©*(Y_dzi A dy)) = > d(x} o ) A d(y} o ), we only need to set new
coordinates x; =z} o ¢ and y; = y} o p. O

If in the Moser local theorem (Theorem 7.4) we assume instead
Hypothesis: X is an n-dimensional submanifold with
1*wg = 1*w1 = 0 where ¢ : X — M is inclusion, i.e.,

X is a submanifold lagrangian for wg and wy ,

then Weinstein [81] proved that the conclusion still holds. We need some algebra
for the Weinstein theorem.

8.2 Lagrangian Subspaces

Suppose that U, W are n-dimensional vector spaces, and 2 : U x W — R
is a bilinear pairing; the map (2 gives rise to a linear map Q : U — W™,
Qu) = Q(u, ). Then Q is nondegenerate if and only if  is bijective.

44
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Proposition 8.2 Suppose that V is a 2n-dimensional vector space and ) :
V xV — R is a nondegenerate skew-symmetric bilinear pairing. Let U be a
lagrangian subspace of (V,Q) (i.e., Quxv =0 and U is n-dimensional). Let W
be any vector space complement to U, not necessarily lagrangian.

Then from W we can canonically build a lagrangian complement to U.

Proof. The pairing  gives a nondegenerate pairing U x W LR Therefore,
Q' : U — W* is bijective. We look for a lagrangian complement to U of the
form

W' ={w+ Aw|we W},
A : W — U being a linear map. For W’ to be lagrangian we need

le,’LU2€W , Q(’LU1+A’LU1,'LU2+A’LU2):O

- Q(wl,wg) + Q(wl, Awg) + Q(A’U}1, IUQ) + Q(Awl,Awg) =0
———

cU
—_——

— Q(wl,wg) = Q(sz,wl)—Q(Awl,wg)

= Q(Awsy)(wy1) — Q(Aw;)(ws) .
Let A’ =QoA: W — W*, and look for A’ such that
A w1, W € w s Q(wl,wg) = A'(wg)(wl) — A/(U}l)(wg) .

The canonical choice is A'(w) = —2Q(w,-). Then set A = Q- loA. O

Proposition 8.3 Let V' be a 2n-dimensional vector space, let Qo and 1 be
symplectic forms in V, let U be a subspace of V' lagrangian for Qg and 4, and
let W be any complement to U in' V. Then from W we can canonically construct
a linear isomorphism L :V =V such that Lly =1dy and L*Q; = Q.

Proof. From W we canonically obtain complements Wy and W; to U in V such
that Wy is lagrangian for g and Wj is lagrangian for €2;. The nondegenerate
bilinear pairings

W()XU&?R . . . ﬁo:”oi)U*
o give isomorphisms ~ ~
Wle—>R Q12W1—>U.

Consider the diagram

w, oy
B lid
W, U
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where the linear map B satisfies S~21 oB = (20, ie., Qo(wo,u) = Q1 (Bwo,u),
Ywo € Wy, Yu € U. Extend B to the rest of V' by setting it to be the identity
on U:

L=Idg®B:UdpWy— U W; .

Finally, we check that L*Q; = Q.

(L*Q)(u @ wo, v’ ®w)) = u @ Bwy,u’ @& Bw))

O (
E’U/ Bwo +Ql(Bw0, )
Q0o(

u, wp) + Qo(wo, u’)
u @ wo, v S w) .

8.3 Weinstein Lagrangian Neighborhood Theorem

Theorem 8.4 (Weinstein Lagrangian Neighborhood Theorem [81])
Let M be a 2n-dimensional manifold, X an n-dimensional submanifold, i : X —
M the inclusion map, and wg and wy symplectic forms on M such that i*wy =
i*w1 = 0, ie., X is a lagrangian submanifold of both (M,wy) and (M,w1).
Then there exist neighborhoods Uy and Uy of X in M and a diffeomorphism
Uy — Uy such that

¥

UQ > ul

commutes and W =wp -

X

The proof of the Weinstein theorem uses the Whitney extension theorem.

Theorem 8.5 (Whitney Extension Theorem) Let M be an n-dimensional
manifold and X a k-dimensional submanifold with k < n. Suppose that at
each p € X we are given a linear isomorphism L, : T,M = T,M such that
Ly|r,x = 1dr,x and L, depends smoothly on p. Then there exists an embedding
h : N — M of some neighborhood N of X in M such that hlx = idx and
dh, = L, for allp € X.

The linear maps L serve as “germs” for the embedding.

Proof of the Weinstein theorem. Put a riemannian metric g on M; at each
p € M, gp(-,) is a positive-definite inner product. Fix p € X, and let V = T, M,
U=T,X and W = Ut = orthocomplement of U in V relative to g, (-, ).

Since i*wy = i*w; = 0, U is a lagrangian subspace of both (V,wp|,) and
(V,w1lp). By symplectic linear algebra, we canonically get from UL a linear
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isomorphism L, : T,M — T,,M, such that Ly|r,x = Id7,x and Lywi|, = wolp-
L, varies smoothly with respect to p since our recipe is canonical!

By the Whitney theorem, there are a neighborhood N of X and an embed-
ding h : N' < M with h|xy = idx and dh, = L, for p € X. Hence, at any
pEX,

(h*wi)p = (dhp) wilp = Lywilp = wolp -

Applying the Moser local theorem (Theorem 7.4) to wy and h*wy, we find a
neighborhood Uy of X and an embedding f : Uy — N such that f|y =idyx and

f*(h*wy) = wo onU,. Set ¢ =ho f. O
Sketch of proof for the Whitney theorem.
Case M =R"™:

For a compact k-dimensional submanifold X, take a neighborhood of the
form

U ={pe M| distance (p,X) < e}

For ¢ sufficiently small so that any p € U¢ has a unique nearest point in X,
define a projection 7 : U¢ — X, p — point on X closest to p. If w(p) = ¢, then
p = q +v for some v € N, X where N,X = (T,X)" is the normal space at ¢;
see Homework 5. Let
h: Us — R”
p +— q+ Ly

where ¢ = w(p) and v = p — 7(p) € NyX. Then hy = idx and dh, = L, for
p € X. If X is not compact, replace € by a continuous function € : X — RT
which tends to zero fast enough as x tends to infinity.

General case:

Choose a riemannian metric on M. Replace distance by riemannian distance,
replace straight lines g 4 tv by geodesics exp(g, v)(t) and replace ¢ + Lqv by the
value at ¢ = 1 of the geodesic with initial value ¢ and initial velocity L,v. O

In Lecture 30 we will need the following generalization of Theorem 8.4. For
a proof see, for instance, either of [37, 47, 83].

Theorem 8.6 (Coisotropic Embedding Theorem) Let M be a manifold
of dimension 2n, X a submanifold of dimensionk > n, i : X — M the inclusion
map, and wy and wy symplectic forms on M, such that i*wy = i*w1 and X is
coisotropic for both (M,wo) and (M,wy). Then there exist neighborhoods Uy and
Uy of X in M and a diffeomorphism ¢ : Uy — Uy such that

¥

UQ > ul

commutes and YW =wp -



Homework 6: Oriented Surfaces

1. The standard symplectic form on the 2-sphere is the standard area form:

If we think of S? as the unit sphere in 3-space
S? = {u € R? such that |u| =1},
then the induced area form is given by
wy (v, w) = (u,v X w)

where u € S2%, v,w € T,S? are vectors in R3, x is the exterior product,
and (-, ) is the standard inner product. With this form, the total area of
S? is 4.

Consider cylindrical polar coordinates (6, z) on S? away from its poles,
where 0 < 0 < 27 and —1 <z < 1.

Show that, in these coordinates,

w=d0 Ndz .

2. Prove the Darboux theorem in the 2-dimensional case, using the fact that
every nonvanishing 1-form on a surface can be written locally as f dg for
suitable functions f, g.

Hint: w = df A dg is nondegenerate <= (f,g) is a local diffeomorphism.

3. Any oriented 2-dimensional manifold with an area form is a symplectic
manifold.

(a) Show that convex combinations of two area forms wp,w; that induce
the same orientation are symplectic.
This is wrong in dimension 4: find two symplectic forms on the vector
space R* that induce the same orientation, yet some convex combi-
nation of which is degenerate. Find a path of symplectic forms that
connect them.

(b) Suppose that we have two area forms wp, w; on a compact 2-dimensional
manifold M representing the same de Rham cohomology class, i.e.,
[wo] = [wl] € HieRham<M)'

Prove that there is a 1l-parameter family of diffeomorphisms ¢y :
M — M such that pjwy = w1, ¢o = id, and pjwy is symplectic for
all ¢ € [0, 1].

Hint: Exercise (a) and the Moser trick.

Such a 1-parameter family ¢, is called a strong isotopy between wy
and w;. In this language, this exercise shows that, up to strong
isotopy, there is a unique symplectic representative in each non-zero
2-cohomology class of M.

48



9 Weinstein Tubular Neighborhood Theorem

9.1 Observation from Linear Algebra

Let (V, ) be a symplectic linear space, and let U be a lagrangian subspace.

Claim. There is a canonical nondegenerate bilinear pairing Q' : V/U x U — R.

Proof. Define Q' ([v],u) = Q(v,u) where [v] is the equivalence class of v in V/U.

Exercise. Check that ' is well-defined and nondegenerate. & O

Consequently, we get _
= V' : V/U — U* defined by '([v]) = Q'([v], ) is an isomorphism.
= V/U ~ U* are canonically identified.

In particular, if (M,w) is a symplectic manifold, and X is a lagrangian
submanifold, then T, X is a lagrangian subspace of (T, M,w,,) for each z € X.
The space N, X :=T,M/T,X is called the normal space of X at x.

= tTere is a canonical identification N, X ~ T X.
=

Theorem 9.1 The vector bundles NX and T*X are canonically identified.

9.2 Tubular Neighborhoods

Theorem 9.2 (Standard Tubular Neighborhood Theorem) Let M be
an n-dimensional manifold, X a k-dimensional submanifold, NX the normal
bundle of X in M, ig : X — NX the zero section, and i : X — M inclusion.
Then there are neighborhoods Uy of X in NX, U of X in M and a diffeomor-
phism ¥ : Uy — U such that

Uy - U

commutes .

X

For the proof, see Lecture 6.

Theorem 9.3 (Weinstein Tubular Neighborhood Theorem) Let (M,w)
be a symplectic manifold, X a lagrangian submanifold, wy canonical symplectic
form onT*X, ig : X — T*X the lagrangian embedding as the zero section, and
1: X — M lagrangian embedding given by inclusion.

49
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Then there are neighborhoods Uy of X in T*X, U of X in M, and a diffeo-
morphism ¢ : Uy — U such that

Uy

commutes and Y w = wp .

X

Proof. This proof relies on (1) the standard tubular neighborhood theorem,
and (2) the Weinstein lagrangian neighborhood theorem.

(1) Since NX ~ T*X, we can find a neighborhood Ny of X in NX, a neigh-
borhood N of X in M, and a diffeomorphism v : Ny — A such that

No v - N
\ / commutes .
10 (3
X

wg = canonical form on T*X
wy =Yrw

X is lagrangian for both wy and wy.

Let symplectic forms on Np.

(2) There exist neighborhoods Uy and U; of X in My and a diffeomorphism
0 : Uy — U, such that

0
Z/[o > ul

commutes and 6*w; =wq .

Take ¢ =t o6 and U = p(Up). Check that p*w = 0*¢p*w = wy.
—~—

w1
g
Remark. Theorem 9.3 classifies lagrangian embeddings: up to symplectomor-

phism, the set of lagrangian embeddings is the set of embeddings of manifolds
into their cotangent bundles as zero sections.
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The classification of isotropic embeddings was also carried out by Weinstein
in [82, 83]. An isotropic embedding of a manifold X into a symplectic man-
ifold (M, w) is a closed embedding i : X < M such that i*w = 0. Weinstein
showed that neighbourhood equivalence of isotropic embeddings is in one-to-one
correspondence with isomorphism classes of symplectic vector bundles.

The classification of coisotropic embeddings is due to Gotay [37]. A coisotropic
embedding of a manifold X carrying a closed 2-form « of constant rank into
a symplectic manifold (M,w) is an embedding 7 : X — M such that i*w = «
and i(X) is coisotropic has a submanifold of M. Let E be the characteristic
distribution of a closed form o« of constant rank on X, i.e., E, is the kernel
of o, at p € X. Gotay showed that then E* carries a symplectic structure in a
neighbourhood of the zero section, such that X embeds coisotropically onto this
zero section, and, moreover every coisotropic embedding is equivalent to this in
some neighbourhood of the zero section. &

9.3 Application 1:
Tangent Space to the Group of Symplectomorphisms

The symplectomorphisms of a symplectic manifold (M,w) form the group

Sympl(M,w) ={f: M = M | ffw=uw}.

— What is Tiq(Sympl(M, w))?
(What is the “Lie algebra” of the group of symplectomorphisms?)
— What does a neighborhood of id in Sympl(M,w) look like?

We use notions from the C-topology:

C'-topology.
Let X and Y be manifolds.

Definition 9.4 A sequence of maps f; : X — Y converges in the C°-
topology to f : X — Y if and only if f; converges uniformly on compact
sets.

Definition 9.5 A sequence of C' maps f; : X — Y converges in the C*-
topology to f : X — Y if and only if it and the sequence of derivatives df; :
TX — TY converge uniformly on compact sets.

Let (M,w) be a compact symplectic manifold and f € Sympl(M,w). Then
Graph f
Graph id = A

(pr; : M x M — M, i =1,2, are the projections to each factor.)

} are lagrangian subspaces of (M x M, prjw — priw).

By the Weinstein tubular neighborhood theorem, there exists a neighborhood
Uof A (~ M) in (M x M,prjw — priw) which is symplectomorphic to a neigh-
borhood Uy of M in (T*M,wy). Let ¢ : U — Uy be the symplectomorphism.
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Suppose that f is sufficiently C-close to id, i.e., f is in some sufficiently
small neighborhood of id in the C-topology. Then:
1) We can assume that Graph f C U.
Let j:M —U Dbe the embedding as Graph f
i:M —U bethe embedding as Graph id = A .
2) The map j is sufficiently C*-close to i.

3) By the Weinstein theorem, U ~ Uy C T* M, so the above j and i induce

Jo: M — Uy embedding, where jo =poj,
ig: M — Uy embedding as 0-section .

Hence, we have

u 14 - Uy u v - U
) ] and ' i
1 20 J Jo
M M

where i(p) = (p,p), i0(p) = (p,0), j(p) = (p, f(p)) and jo(p) = »(p, f(p))
for p e M.

4) The map jo is sufficiently C'-close to ig.

3
The image set jo(M) intersects each TyM at one point p, depending

smoothly on p.

5) The image of jp is the image of a smooth section p : M — T*M, that is,
a 1-form p = jg o (w0 jo) L.

Therefore, Graph f =~ {(p,up) | p € M, p, € Ty M}.

Exercise. Vice-versa: if u is a 1-form sufficiently C'-close to the zero 1-form,
then

{(p,p) | pEM, pp € TyM} =~ Graph f,
for some diffeomorphism f: M — M. By Lecture 3, we have
Graph f is lagrangian <= p is closed. &

Conclusion. A small Ct-neighborhood of id in Sympl(M,w) is homeomorphic
to a Cl-neighborhood of zero in the vector space of closed 1-forms on M. So:

Tia(Sympl(M,w) ~ { € Q1 (M) | dpu = 0}
In particular, Tiq(Sympl(M,w)) contains the space of exact 1-forms

{p=dh | heC®(M)} ~ C*>(M)/ locally constant functions .
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9.4 Application 2:
Fixed Points of Symplectomorphisms

Theorem 9.6 Let (M, w) be a compact symplectic manifold with H} gy . (M) =
0. Then any symplectomorphism of M which is sufficiently C*-close to the iden-
tity has at least two fized points.

Proof. Suppose that f € Sympl(M,w) is sufficiently C'-close to id.
= Graph f ~ closed 1-form p on M.

du =0

= 1 = dh for some h € C>*°(M) .
Hétham(M) =0 } : ( )

M compact = h has at least 2 critical points.

Fixed points of f = critical points of h

| |
Graph fNA = {p:pp,=dh,=0}.

d

Lagrangian intersection problem:
A submanifold Y of M is C'-close to X when there is a diffeomorphism
X — Y which is, as a map into M, C'-close to the inclusion X «— M.

Theorem 9.7 Let (M,w) be a symplectic manifold. Suppose that X is a com-
pact lagrangian submanifold of M with H} gy (X) = 0. Then every lagrangian
submanifold of M which is C'-close to X intersects X in at least two points.

Proof. Exercise. O
Arnold conjecture:

Let (M,w) be a compact symplectic manifold, and f : M — M a symplecto-
morphism which is “exactly homotopic to the identity” (see below). Then

#{fixed points of f} > minimal # of critical points
a smooth function of M can have .

Together with Morse theory,® we obtain”

#{nondegenerate fixed points of f} > minimal # of critical points
a Morse function of M can have

2n
> ) dimH'(M) .
=0

6A Morse function on M is a function h : M — R whose critical points (i.e., points
p where dhp, = 0) are all nondegenerate (i.e., the hessian at those points is nonsingular:

92h
det (5230 )p #0).
7A fixed point p of f : M — M is nondegenerate if df, : T,M — T, M is nonsingular.
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The Arnold conjecture was proved by Conley-Zehnder, Floer, Hofer-Salamon,
Ono, Futaya-Ono, Lin-Tian using Floer homology (which is an oo-dimensional
analogue of Morse theory). There are open conjectures for sharper bounds on
the number of fixed points.

Meaning of “f is exactly homotopic to the identity:”

Suppose that h; : M — R is a smooth family of functions which is 1-
periodic, i.e., hy = hyy1. Let p: M x R — M be the isotopy generated by the
time-dependent vector field v; defined by w(ve,-) = dhy. Then “f being exactly
homotopic to the identity” means f = p; for some such hy.

In other words, f is exactly homotopic to the identity when f is the
time-1 map of an isotopy generated by some smooth time-dependent 1-periodic
hamiltonian function.

There is a one-to-one correspondence

fixed points of f L period-1 orbitsof p: M xR — M

because f(p) = p if and only if {p(¢,p) , t € [0,1]} is a closed orbit.

Proof of the Arnold conjecture in the case when h : M — R is independent of
t.

p is a critical point of h <= dh, =0 <= v, =0= p(t,p) =p, Vt €
R <= pis a fixed point of p;. O

Exercise. Compute these estimates for the number of fixed points on some
compact symplectic manifolds (for instance, S2?, S? x S? and T? = S! x S1). &



Part TV
Contact Manifolds

Contact geometry is also known as “the odd-dimensional analogue of symplectic
geometry.” We will browse through the basics of contact manifolds and their
relation to symplectic manifolds.

10 Contact Forms

10.1 Contact Structures

Definition 10.1 A contact element on a manifold M is a point p € M,
called the contact point, together with a tangent hyperplane at p, H, C T,M,
that is, a codimension-1 subspace of T, M.

A hyperplane H, C T, M determines a covector a, € T, M \ {0}, up to
multiplication by a nonzero scalar:

(p, Hp) is a contact element «— H,, = ker o), with o, : T,M — R linear ,# 0

/

ker o, = ker a,

< ap = Ao, for some A € R\ {0} .

Suppose that H is a smooth field of contact elements (i.e., of tangent hyper-
planes) on M:
H:pr— H, CT,M .

Locally, H = ker « for some 1-form «, called a locally defining 1-form for H.
(a is not unique: ker a = ker(fa), for any nowhere vanishing f : M — R.)

Definition 10.2 A contact structure on M is a smooth field of tangent hy-
perplanes H C T M, such that, for any locally defining 1-form «, we have da|g
nondegenerate (i.e., symplectic). The pair (M, H) is then called a contact
manifold and « is called a local contact form.

At each p € M,
Ty,M = kera, @© kerdoy,
—— ——
H, 1—dimensional

The ker dov,, summand in this splitting depends on the choice of a.

dim H, = 2n is even

day|p, nondegenerate = { (doy)™|m, # 0 is a volume form on H),

Oplker da, nONdegenerate

Therefore,

%)
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e any contact manifold (M, H) has dim M = 2n + 1 odd, and

e if a is a (global) contact form, then o A (da)™ is a volume form on M.

Remark. Let (M, H) be a contact manifold. A global contact form exists if and
only if the quotient line bundle TM/H is orientable. Since H is also orientable,
this implies that M is orientable. &

Proposition 10.3 Let H be a field of tangent hyperplanes on M. Then

H is a contact structure <= aA(da)" # 0 for every locally defining 1-form a .

Proof.
= Done above.
<= Suppose that H = ker « locally. We need to show:

do|g nondegenerate <= a A (da)" #0 .

Take a local trivialization {eq, f1,...,en, fn, 7} of TM = ker a @ rest , such that
ker « = span{ey, f1,...,¢en, fn} and rest = span{r}.

(Oé A (da)n>(€17f17 .- -aenafnvr) = O‘(T) '(da)n(eh f17 ce - 7en7f7l)
g

and hence a A (da)" #0 < (da)"|g #0 <= da|g is nondegenerate . [

10.2 Examples

1. On R? with coordinates (z,, z), consider a = xdy + dz. Since
aNda = (xdy+dz) A (de ANdy) =de Ndy ANdz #0 ,
a is a contact form on R3.
The corresponding field of hyperplanes H = ker a at (z,vy,2) € R is

0 9] 0
H(ryy,Z)—{U—a%-Fbafy—i—c@|a(v)-bx+c-0}.

Exercise. Picture these hyperplanes. &

2. (Martinet [62], 1971) Any compact orientable 3-manifold admits a con-
tact structure.

Open Problem, 2000. Classification of compact orientable contact 3-
manifolds.
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3. Let X be a manifold and T* X its cotangent bundle. There are two canon-
ical contact manifolds associated to X (see Homework 7):

P(T*X)
S(T*X)

the projectivization of T* X , and
the cotangent sphere bundle .

4. On R*"*! with coordinates (z1,y1,...,Zn, Un, 2), @ = >, x;dy; + dz is
contact.

10.3 First Properties

There is a local normal form theorem for contact manifolds analogous to the
Darboux theorem for symplectic manifolds.

Theorem 10.4 Let (M,H) be a contact manifold and p € M. Then there
exists a coordinate system (U, x1,Y1,...,Tn,Yn, 2) centered at p such that on U

o= Zmidyi + dz is a local contact form for H .

The idea behind the proof is sketched in the next lecture.
There is also a Moser-type theorem for contact forms.

Theorem 10.5 (Gray) Let M be a compact manifold. Suppose that ay,
t € [0,1], is a smooth family of (global) contact forms on M. Let H; = ker ay.
Then there exists an isotopy p : M X R — M such that Hy = pyHg, for all
0<t<1.

Exercise. Show that H; = p..Hy <<= pjas = us - ap for some family
ur : M — R, 0 <t <1, of nowhere vanishing functions. &

Proof. (A la Moser)

We need to find p; such that { Pdo = 1d

For any isotopy p,
G(Prar) = §(wag) .

d, . N da
@(Ptat) = Pt <£'Utat+dtt> )

where vy = % o p; 1 is the vector field generated by p;. By the Moser trick, it
suffices to find v; and then integrate it to p;. We will search for v; in H; = ker ay;
this unnecessary assumption simplifies the proof.
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‘We need to solve

dOLt dut
* Lv hataid _ =
Pt ( Ot + dt ) dt 7))
i, ap 1, dovg oy Pia
0 da + dOét dut 1 *
— - - = —.— . ofx
Pt t dt at Pt Ot
dOét 1 d’U/t 1
e ) d —_— = N —_— .
Ly, A0t + dt (pt) ( dt s a (*)

Restricting to the hyperplane H; = ker c, equation (x) reads

lv,,dOét|Ht = ——

which determines v; uniquely, since da;|p, is nondegenerate. After integrating
vt to pt, the factor u; is determined by the relation pfo: = u; - ap. Check that
this indeed gives a solution. 0



Homework 7: Manifolds of Contact Elements

Given any manifold X of dimension n, there is a canonical symplectic manifold
of dimension 2n attached to it, namely its cotangent bundle with the standard
symplectic structure. The exercises below show that there is also a canonical
contact manifold of dimension 2n — 1 attached to X.

The manifold of contact elements of an n-dimensional manifold X is
C ={(z,xz) |z € X and x, is a hyperplane in T, X} .
On the other hand, the projectivization of the cotangent bundle of X is
P*X = (T"X \ zero section)/ ~

where (x,&) ~ (x,&') whenever £ = A\’ for some A € R\ {0} (here z € X and
£, eTrX \ {0}). We will denote elements of P*X by (z,[£]), [£] being the ~
equivalence class of &.

1. Show that C is naturally isomorphic to P*X as a bundle over X, i.e.,
exhibit a diffeomorphism ¢ : C — P*X such that the following diagram

commutes:
c = PX
| l=
X = X

where the vertical maps are the natural projections (z,x,) — « and
(z,8) — .

Hint: The kernel of a non-zero { € T X is a hyperplane xo C T X.
What is the relation between & and ¢’ if ker ¢ = ker £'?

2. There is on C a canonical field of hyperplanes H (that is, a smooth map
attaching to each point in C a hyperplane in the tangent space to C at
that point): H at the point p = (x, x) € C is the hyperplane

H, = (dﬂ'p)_lxx CT,C,

where
C p= (,113, Xx) Tpc
I ! | dm,
X T T.X

are the natural projections, and (dm,) !y, is the preimage of x, C T, X
by dm,.

Under the isomorphism C ~ P*X from exercise 1, H induces a field of
hyperplanes H on P*X. Describe H.

Hint: If £ € T;X \ {0} has kernel x,, what is the kernel of the canonical
I-form a (g ¢) = (dm(z,6))*E7
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HOMEWORK 7

3. Check that (P*X,H) is a contact manifold, and therefore (C,H) is a con-
tact manifold.

Hint: Let (z,[¢]) € P*X. For any £ representing the class [£], we have
Ha,[g)) = ker (dm(a,[¢)))"E) -

Let x1,...,zy, be local coordinates on X, and let x1,...,2n,&1,...,&n be the
associated local coordinates on T*X. In these coordinates, (z,[£]) is given by
(z1,.--,Zn,[€1,---,&n]). Since at least one of the &;’s is nonzero, without loss
of generality we may assume that £; # 0 so that we may divide £ by §; to obtain
a representative with coordinates (1,&2,...,£,). Hence, by choosing always
the representative of [§] with & = 1, the set z1,...,2n,&2,...,&n defines
coordinates on some neighborhood U of (z,[£]) in P*X. On U, consider the
1-form
o =dzxr + Z &idx; .

i>2
Show that « is a contact form on U, i.e., show that ker a4 ¢y = Hz [¢]), and
that day, [¢)) is nondegenerate on H, [¢])-

4. What is the symplectization of C?
Can you describe the manifold C when X = R3? X = St x §'?

Remark. Similarly, we could have defined the manifold of oriented
contact elements of X to be

2 € X and Xe 18 @ hyperplane in To X }

equipped with an orientation

e ={wx)

C° is isomorphic to the cotangent sphere bundle of X
S*X = (T X \ zero section)/ ~

where (z,&) =~ (z,¢') whenever £ = \¢' for some A € RT.

A construction analogous to the above produces a canonical contact struc-
ture on C°. See [3, Appendix 4].

&



11 Contact Dynamics

11.1 Reeb Vector Fields

Let (M, H) be a contact manifold with a contact form «.

1,da = 0

oo = 1

Claim. There exists a unique vector field R on M such that {

1,da =0 = R € kerda , which is a line bundle, and
Proof. R .

t,a=1 == normalizes R .
The vector field R is called the Reeb vector field determined by «.

Claim. The flow of R preserves the contact form, i.e., if p; = exptR is the
isotopy generated by vy, then pja = a, Vi € R.

Proof. % (pia) = p; (L) = p{(d1,a +1,da) =0 .

1 0
Hence, pfa = pjo = o, Vt € R. O

Definition 11.1 A contactomorphism is a diffeomorphism f of a contact
manifold (M, H) which preserves the contact structure (i.e., foH = H ).

Examples.

1. Euclidean space R*" ! with @ = ", z;dy; + dz.

1, > dridy; = 0 _ 0.
v S wedys +dz = 1 — R = % is the Reeb vector field

The contactomorphisms generated by R are translations
Pe(T1, Y1y s Ty Yns 2) = (T1, Y1, -+« s Ty Yny 2 + 1)
2. Regard the odd sphere §?7~1 ', R?" as the set of unit vectors
{@1,91,- - T0,Yn) | Z(mf +yi) =1} .
Consider the 1-form on R?”, ¢ = % > (xidy; — yida;).

Claim. The form « = i*o is a contact form on S27—1,

Proof. We need to show that a A (da)"~! # 0. The 1-form on R?"
v =d> (22 +y?) = 25 (zidz; + yidy;) satisfies T,5?"1 = kerv,, at
p € S?2"~L1. Check that v Ao A (do)"~1 # 0. O

61
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The distribution H = ker « is called the standard contact structure
on S§?"~1. The Reeb vector field is R =2 (xia%- - yi%), and is also

known as the Hopf vector field on S2"!, as the orbits of its flow are
the circles of the Hopf fibration.

o

11.2 Symplectization

Example. Let M = §2n=1x R, with coordinate 7 in the R-factor, and projec-
tion 7 : M — S*"=1 (p,7) — p. Under the identification M ~ R*"\{0}, where
the R-factor represents the logarithm of the square of the radius, the projection
7 becomes

T RQn\{o} N SZn—l

(X17Y17~"7X7Lay;z) — (\j(eirv };17’"'7\)/(;*}7 Y:T)

where e7 = Y (X2 + Y;?). Let a = i*o be the standard contact form on S§?"~1

(see the previous example). Then w = d(e"7*a) is a closed 2-form on R*"\ {0}.

Since 7*i*x; = fﬁ, Ty = \}%7 we have

maswite = 45 (k) - FedE)
= 5 L (XudY; - VidX;) .

Therefore, w = Y dX; AdY; is the standard symplectic form on R**\{0} C R?".
(M,w) is called the symplectization of (S?"~1, ). &

Theorem 11.2 Let (M, H) be a contact manifold with a contact form «. Let
M = MXxR, and let 7 : M — M, (p,7) — p, be the projection. Then

w=d(e"m*a) is a symplectic form on M, where T is a coordinate on R.

Proof. Exercise. O

Hence, M has a symplectic form w canonically determined by a contact form
a on M and a coordinate function on R; (M, w) is called the symplectization
of (M, ).

Remarks.

1. The contact version of the Darboux theorem can now be derived by apply-
ing the symplectic theorem to the symplectization of the contact manifold
(with appropriate choice of coordinates); see [3, Appendix 4].
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2. There is a coordinate-free description of M as

M = {(p,§) |pe M, £ € Ty M, such that ker{ = H,} .

The group R\ {0} acts on M by multiplication on the cotangent vector:

The quotient M /(R \ {0}) is diffeomorphic to M. M has a canonical
1-form o defined at v € T, ¢yM by

Ape)(v) = E((dpr)(peyv)

where pr : M — M is the bundle projection.

11.3 Conjectures of Seifert and Weinstein

Question. (Seifert, 1948) Let v be a nowhere vanishing vector field on the
3-sphere. Does the flow of v have any periodic orbits?

Counterexamples.

e (Schweitzer, 1974) 3 C! vector field without periodic orbits.

e (Kristina Kuperberg, 1994) 3 C vector field without periodic orbits.
Question. How about volume-preserving vector fields?

e (Greg Kuperberg, 1997) 3 C'! counterexample.

e (™ counterexamples are not known.

Natural generalization of this problem:
Let M = S? be the 3-sphere, and let y be a volume form on M. Suppose that
v is a nowhere vanishing vector field, and suppose that v is volume-preserving,
ie.,
L,y=0 <<= di,y=0 <= 1,7 =du

for some 1-form «, since H?(S3) = 0.
Given a 1-form «, we would like to study vector fields v such that

1,7y = da
o >0 .
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A vector field v satisfying 1, > 0 is called positive. For instance, vector fields
in a neighborhood of the Hopf vector field are positive relative to the standard
contact form on S3.

Renormalizing as R := %La, we should study instead

1pda =0
1o =1
a A da is a volume form,

that is, study pairs («, R) where

a is a contact form, and
R is its Reeb vector field.

Conjecture. (Weinstein, 1978 [84]) Suppose that M is a 3-dimensional
manifold with a (global) contact form «. Let v be the Reeb vector field for a.
Then v has a periodic orbit.

Theorem 11.3 (Viterbo and Hofer, 1993) The Weinstein conjecture is
true when

1) M =583 or
2) mo(M) #£ 0, or

3) the contact structure is overtwisted.

Open questions.
e How many periodic orbits are there?
e What do they look like?
e Is there always an unknotted one?

e What about the linking behavior?

8A surface S inside a contact 3-manifold determines a singular foliation on S, called the
characteristic foliation of S, by the intersection of the contact planes with the tangent
spaces to S. A contact structure on a 3-manifold M is called overtwisted if there exists
an embedded 2-disk whose characteristic foliation contains one closed leaf C' and exactly
one singular point inside C; otherwise, the contact structure is called tight. Eliashberg [27]
showed that the isotopy classification of overtwisted contact structures on closed 3-manifolds
coincides with their homotopy classification as tangent plane fields. The classification of tight
contact structures is still open.



Part V
Compatible Almost Complex
Structures

The fact that any symplectic manifold possesses almost complex structures, and
even so in a compatible sense, establishes a link from symplectic geometry to
complex geometry, and is the point of departure for the modern technique of
counting pseudo-holomorphic curves, as first proposed by Gromov [40].

12 Almost Complex Structures

12.1 Three Geometries

1. Symplectic geometry:
geometry of a closed nondegenerate skew-symmetric bilinear form.

2. Riemannian geometry:
geometry of a positive-definite symmetric bilinear map.

3. Complex geometry:
geometry of a linear map with square -1.

Example. The euclidean space R?" with the standard linear coordinates

(1,-.+,Tn,Y1,--.,Yn) has standard structures:
wo = ».dxjAdy;, standard symplectic structure;
go = (), standard inner product; and

if we identify R*" with C™ with coordinates z; = x; + v/—1 y;, then multi-
plication by v/—1 induces a constant linear map Jy on the tangent spaces of
R2":

0 0 0 0
B = o) =
Z 0y; 0y, Ox;j
with J2 = —Id. Relative to the basis 6%1, ey 02 ’(')iyl’ cery %, the maps Jy,

wp and gg are represented by

Jo(u) = (1?1 _gd>“

0 -Id
woltv) = vt(ld 0 )“
u

go(u,v) = w
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where u,v € R?" and v’ is the transpose of v. The following compatibility
relation holds:

wo(u,v) = go(Jo(u),v) .

12.2 Complex Structures on Vector Spaces

Definition 12.1 Let V be a vector space. A complex structure on V is a
linear map:
J: V=V with JP=-1d.

The pair (V,J) is called a complex vector space.

A complex structure J is equivalent to a structure of vector space over C if
we identify the map J with multiplication by +/—1.

Definition 12.2 Let (V,Q) be a symplectic vector space. A complex structure
J on 'V is said to be compatible (with 2, or Q-compatible) if

G, (u,v) = Qu, Jv) , Vu,v €V | is a positive inner product on V .
That is,

Q(Ju, Jv) = Qu,v) [symplectomorphism]

J is Q-compatible < { Qu, Ju) >0, Yu#0 [taming condition]

Compatible complex structures always exist on symplectic vector spaces:
Proposition 12.3 Let (V,Q) be a symplectic vector space. Then there is a
compatible complex structure J on V.

Proof. Choose a positive inner product G on V. Since 2 and G are nondegen-
erate,

ueV — Qu,-)eV*

weV — Gw,)eV* } are isomorphisms between V and V*.

Hence, Q(u,v) = G(Au,v) for some linear map A : V' — V. This map A is
skew-symmetric because

G(A*u,v) = G(u,Av) = G(Av,u)

Also:
e AA* is symmetric: (AA*)* = AA*.
e AA* is positive: G(AA*u,u) = G(A*u, A*u) > 0, for u # 0.
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These properties imply that AA* diagonalizes with positive eigenvalues \;,
AA* = B diag{\1,..., \on} B71 .
We may hence define an arbitrary real power of AA* by rescaling the eigenspaces,
in particular,
VAA* .= Bdiag {\/M1,...,VAan} B .
Then vV AA* is symmetric and positive-definite. Let
J=(VAA*)T'A .

The factorization A = v/ AA* J is called the polar decomposition of A. Since
A commutes with v AA*, J commutes with v AA*. Check that J is orthogonal,

JJ* =1d, as well as skew-adjoint, J* = —J, and hence it is a complex structure
on V:
JP=—JJ =-1d.
Compatibility:
Q(Ju, Jv) = G(AJu,Jv) = G(JAu, Jv) = G(Au,v)
= Qu,v)
Qu, Ju) = G(Au,Ju) = G(—JAu,u)

= GWAA*u,u) >0, foru##0.

Therefore, J is a compatible complex structure on V. g

As indicated in the proof, in general, the positive inner product defined by

Qu, Jv) = G(VAA* u,v) is different from G(u,v) .

Remarks.

1. This construction is canonical after an initial choice of G. To see this,
notice that vV AA* does not depend on the choice of B nor of the ordering
of the eigenvalues in diag {v/A1,...,vA2,}. The linear transformation
v AA* is completely determined by its effect on each eigenspace of AA*:
on the eigenspace corresponding to the eigenvalue A, the map v AA* is
defined to be multiplication by /.

2. If (V4,8) is a family of symplectic vector spaces with a family G; of
positive inner products, all depending smoothly on a real parameter ¢,
then, adapting the proof of the previous proposition, we can show that
there is a smooth family J; of compatible complex structures on V;.

3. To check just the existence of compatible complex structures on a sym-
plectic vector space (V,), we could also proceed as follows. Given a
symplectic basis e1,...,en, f1,..., fn (i€, Qe e;) = Q(fi, f;) = 0 and
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Q(es, f;) = d;j), one can define Je; = f; and Jf; = —e;. This is a com-
patible complex structure on (V, ). Moreover, given ) and J compatible
on V, there exists a symplectic basis of V' of the form:

€1,.-sen, fr=dJder, ..., fn=Jey, .
The proof is part of Homework 8.

4. Conversely, given (V, J), there is always a symplectic structure  such that
J is Q-compatible: pick any positive inner product G such that J* = —J
and take Q(u,v) = G(Ju,v).

O

12.3 Compatible Structures

Definition 12.4 An almost complex structure on a manifold M is a smooth
field of complex structures on the tangent spaces:

r — Jp:T,M — T,M linear, and J?=-1d.
The pair (M, J) is then called an almost complex manifold.

Definition 12.5 Let (M,w) be a symplectic manifold. An almost complex
structure J on M is called compatible (with w or w-compatible) if the as-
signment

r — gy T, M xT,M— R
9o (U, v) = wy (u, Jpv)

is a riemannian metric on M.

For a manifold M,

w is a symplectic form = x+— wy:1T,M xT,M — R is bilinear,
nondegenerate, skew-symmetric;
g is a riemannian metric = x+— g T, MxT,M—R

is a positive inner product;
J almost complex structure — xzv+— J,: T, M —T,M
is linear and J2 = —Id .

The triple (w, g, J) is called a compatible triple when g(-, ) = w(-, J-).
Proposition 12.6 Let (M,w) be a symplectic manifold, and g a riemannian

metric on M. Then there exists a canonical almost complex structure J on M
which is compatible.
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Proof. The polar decomposition is canonical (after a choice of metric), hence
this construction of J on M is smooth; cf. Remark 2 of the previous section. [J

Remark. In general, g,(-,) := w(-,J-) # g(-, ). &

Since riemannian metrics always exist, we conclude:

Corollary 12.7 Any symplectic manifold has compatible almost complex struc-
tures.

— How different can compatible almost complex structures be?

Proposition 12.8 Let (M,w) be a symplectic manifold, and Jy, J; two almost
complex structures compatible with w. Then there is a smooth family J;,0 <t <
1, of compatible almost complex structures joining Jo to Ji.

Proof.

w7JO ~ gO(';') ('7‘]0')

=w
are two riemannian metrics on M .
wﬂ]l ~ gl(a):w( Jl) }

Their convex combinations

9¢(+) = (1 =t)go(-,) +tar(,),  0<t<T,

form a smooth family of riemannian metrics. Apply the polar decomposition to
(w, g¢) to obtain a smooth family of J;’s joining Jy to Jj. O

Corollary 12.9 The set of all compatible almost complex structures on a sym-
plectic manifold is path-connected.



Homework 8: Compatible Linear Structures

1. Let (V) and J(V') be the spaces of symplectic forms and complex struc-
tures on the vector space V, respectively. Take Q € Q(V) and J € J(V).
Let GL(V) be the group of all isomorphisms of V, let Sp(V,2) be the
group of symplectomorphisms of (V, ), and let GL(V, J) be the group of
complex isomorphisms of (V, J).

Show that
Q(V)~GL(V)/Sp(V,2) and J(V)~GL(V)/GL(V,J) .

Hint: The group GL(V) acts on Q(V') by pullback. What is the stabilizer of
a given Q7

2. Let (R?",€)) be the standard 2n-dimensional symplectic euclidean space.

The symplectic linear group is the group of all linear transformations
of R?™ which preserve the symplectic structure:

Sp(2n) := {A € GL(2n;R) | Qo(Au, Av) = Qo(u,v) for all u,v € R*"} .
Identifying the complex n x n matrix X +4Y with the real 2n x 2n matrix

< ;( _)3,/ ), consider the following subgroups of GL(2n;R):

Sp(2n) , O(2n) , GL(n;C) and U(n) .

Show that the intersection of any two of them is U(n). (From [64, p.41].)

GL(n; C) O(2n)
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3. Let (V,Q) be a symplectic vector space of dimension 2n, and let J : V —
V, J? = —Id, be a complex structure on V.

(a) Prove that, if J is Q-compatible and L is a lagrangian subspace of
(V,Q), then JL is also lagrangian and JL = L+, where L denotes
orthogonality with respect to the positive inner product G, (u,v) =
Q(u, Jv).

(b) Deduce that J is 2-compatible if and only if there exists a symplectic
basis for V' of the form

61,62,...,6n,f1 :Jel,fg =J€2,...,fn:JBn

where Q(e;, e;) = Q(fi, f;) = 0 and Q(e;, f;) = d;5.



13 Compatible Triples

13.1 Compatibility

Let (M, w) be a symplectic manifold. As shown in the previous lecture, compat-
ible almost complex structures always exist on (M,w). We also showed that the
set of all compatible almost complex structures on (M, w) is path-connected. In
fact, the set of all compatible almost complex structures is even contractible.
(This is important for defining invariants.) Let J(T.M,w,) be the set of all
compatible complex structures on (7, M, w,) for x € M.

Proposition 13.1 The set J(T,M,w,) is contractible, i.e., there exists a ho-
motopy
hi : T(TeM,wy) — J(TeM,w;), 0<t<1,

starting at the identity hg = 1d,
finishing at a trivial map hy : J(TeM,wy) — {Jo},
and fixing Jo (i.e., hi(Jo) = Jo, Vt) for some Jy € T(To M, w,).

Proof. Homework 9. d
Consider the fiber bundle J — M with fiber
Je =T (TuM,w,) overxze M.
A compatible almost complex structure J on (M,w) is a section of J. The
space of sections of J is contractible because the fibers are contractible.

Remarks.

e We never used the closedness of w to construct compatible almost complex
structures. The construction holds for an almost symplectic manifold
(M,w), that is, a pair of a manifold M and a nondegenerate 2-form w, not
necessarily closed.

e Similarly, we could define a symplectic vector bundle to be a vector
bundle £ — M over a manifold M equipped with a smooth field w of
fiberwise nondegenerate skew-symmetric bilinear maps

we By x E, — R.

The existence of such a field w is equivalent to being able to reduce the
structure group of the bundle from the general linear group to the linear
symplectic group. As a consequence of our discussion, a symplectic vector
bundle is always a complex vector bundles, and vice-versa.

O
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13.2 Triple of Structures

If (w, J, g) is a compatible triple, then any one of w, J or g can be written in
terms of the other two:

g(u,v) = w(u,Jv)
w(u,v) = g(JuLv)
J(u) = g (@)
where
w: TM — T*M u — w(u,-)
g: TM — T*M u — g(u,-)

are the linear isomorphisms induced by the bilinear forms w and g.

The relations among w, J and g can be summarized in the following table.
The last column lists differential equations these structures are usually asked to
satisfy.

Data Condition/Technique Consequence Question
w(Ju, Jv) = w(u,v) g(u,v) = w(u, Jv) o

w, J w(u, Ju) > 0,u#0 is positive inner product (g fat?)
g(Ju,Jv) = g(u,v)  w(uv) = g(Ju,v) ,

9,7 (i.e., J is orthogonal) is nondeg., skew-symm. w closed:

w, g polar decomposition ~»  J almost complex str. J integrable?

An almost complex structure J on a manifold M is called integrable if and
only if J is induced by a structure of complex manifold on M. In Lecture 15
we will discuss tests to check whether a given J is integrable.

13.3 First Consequences

Proposition 13.2 Let (M, J) be an almost complex manifold. Suppose that J
1s compatible with two symplectic structures wg, w1 Then wy, w1 are deformation-
equivalent, that is, there exists a smooth family wy, 0 < ¢t < 1, of symplectic
forms joining wg to wy.
Proof. Take w; = (1 — t)wp + twy, 0 <t < 1. Then:

e w; is closed.

e w; is nondegenerate, since

gt('a ) = (Ut(', J) = (1 - t)go(7 ) + tgl('7 )

is positive, hence nondegenerate.
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O

Remark. The converse of this proposition is not true. A counterexample is
provided by the following family in R*:

wt = cos Tt dr1dyy + sin7t dzidys + sin 7wt dy;dxs + cosmt dzadys ,0 <t <1.

There is no J in R* compatible with both wy and w;. O

Definition 13.3 A submanifold X of an almost complex manifold (M, J) is an
almost complex submanifold when J(TX) C TX, i.e., forallz € X,v €
T,.X, we have Jyv € T, X.

Proposition 13.4 Let (M,w) be a symplectic manifold equipped with a com-
patible almost complex structure J. Then any almost complex submanifold X of
(M, J) is a symplectic submanifold of (M,w).

Proof. Let i : X — M be the inclusion. Then *w is a closed 2-form on X.

Nondegeneracy:
W (u,v) = go(Jzu,v) | Vee X, Yu,veT, X .
Since g |7, x is nondegenerate, so is w, |7, x. Hence, i*w is symplectic. O

— When is an almost complex manifold a complex manifold? See Lecture 15.

Examples.
52 is an almost complex manifold and it is a complex manifold.
S% is not an almost complex manifold (proved by Ehresmann and Hopf).
56 is almost complex and it is not yet known whether it is complex.

5% and higher spheres are not almost complex manifolds.



Homework 9: Contractibility

The following proof illustrates in a geometric way the relation between la-
grangian subspaces, complex structures and inner products; from [11, p.45].

Let (V,Q) be a symplectic vector space, and let J(V,Q) be the space of
all complex structures on (V, ) which are Q-compatible; i.e., given a complex
structure J on V' we have

JeJV,Q) < G,(,-):=Q(,J) is a positive inner product on V.

Fix a lagrangian subspace Lo of (V,Q). Let L(V,, Lg) be the space of all
lagrangian subspaces of (V, ) which intersect Lo transversally. Let G(Lg) be
the space of all positive inner products on Lg.

Consider the map

v: J(V,Q)
J

L(V,Q, L) x G(Lo)
(JLOv GJ ‘Lo)

N
s
Show that:

1. W is well-defined.

2. U is a bijection.

Hint: Given (L,G) € L(V,, Lo) X G(Lo), define J in the following manner:
For v € Lo, vt = {u € Lo | G(u,v) = 0} is a (n — 1)-dimensional space of Lo;
its symplectic orthogonal (v1)® is (n+1)-dimensional. Check that (v-)?NL is
1-dimensional. Let Jv be the unique vector in this line such that Q(v, Jv) = 1.
Check that, if we take v’s in some G-orthonormal basis of Lo, this defines the
required element of J(V, ).

3. L(V,Q, Ly) is contractible.

Hint: Prove that £(V,Q, L) can be identified with the vector space of all
symmetric n X n matrices. Notice that any n-dimensional subspace L of V'
which is transversal to Lo is the graph of a linear map S : JLo — Lo, i.e.,

L = spanof {Jey + SJe1,...,Jen + SJen}
when Lo = spanof{ei,...,en}.

4. G(Lg) is contractible.

Hint: G(Lo) is even convex.

Conclude that J(V, ) is contractible.

(6]



14 Dolbeault Theory

14.1 Splittings

Let (M,J) be an almost complex manifold. The complexified tangent bundle

of M is the bundle
TM @ C

!
M

with fiber (TM ®C),=T,M@Catpe M. If

oM is a 2n-dimensional vector space over R , then
T,M ® C is a 2n-dimensional vector space over C .

We may extend J linearly to TM ® C:
Jov@e)=Jvee, veTM, ceC.

Since J? = —Id, on the complex vector space (T'M ® C),, the linear map .J,, has
eigenvalues +i. Let

Ty = {veTM®C]|Jv=+iv} = (+i)-eigenspace of J
{vel-Jvei|veTM}
= (J-)holomorphic tangent vectors ;

Top = {veTM®C|Jv=—iv} = (—i)-eigenspace of J
{v@l+Jv®ilveTM}
= (J-)anti-holomorphic tangent vectors .

Since
71,0 - TM X C — TI,O
vo— s(v®1l-—Juv®i)

is a (real) bundle isomorphism such that w9 o J = im0, and

mo1: TM®R®C — Ty,
vo— Lvel+Juv®i)

is also a (real) bundle isomorphism such that mp; o J = —img 1, we conclude
that we have isomorphisms of complex vector bundles

(TM,J) ZTI,O 2m7

where Tj 1 denotes the complex conjugate bundle of Tj ;. Extending m ¢ and
mo,1 to projections of T'M ® C, we obtain an isomorphism

(m1,0,m01) : TM ®C = Ti0®To,1 -
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Similarly, the complexified cotangent bundle splits as

(7_[_1,077_‘,0,1) . T*M ® C i Tl,O D TO,l

where
T = (To)*={neT*®C|n(Jw)=inw),Yw e TM @ C}
= {{@1-(foJ)®1i|EeT" M}
= complex-linear cotangent vectors ,
TV = (Tha)*={neT*®C|n(Jw) =—inw) ,Yw € TM & C}
= {{@1+ (o J)®i|EeT M}
= complex-antilinear cotangent vectors ,
and 719, 791 are the two natural projections

WI’OZT*M®C . Tl,O
no— =g —inoJ);

AL T*M@C — TO
n o %= gm+inoeJ).
14.2 Forms of Type (¢, m)

For an almost complex manifold (M, J), let

QF(M;C) := sections of A*(T*M @ C)
= complex-valued k-forms on M, where

AM(T*M ®C) = AT T
= ®rpmei (AT A (A™TOY)

A%:m (definition)
= Bpym=k A .

In particular, AM® = 710 and A%! = 701,

Definition 14.1 The differential forms of type (£, m) on (M,J) are the
sections of A&™:
Qb™ .= sections of A©™ .

Then
QF (M;C) = @H—m:kﬂe’m .
Let 7™ : A¥(T*M ® C) — A®™ be the projection map, where £ +m = k. The

usual exterior derivative d composed with these projections induces differential
operators 0 and 9 on forms of type (¢, m):

= gltlmg g, Qé’m(M) — Q”l’m(M)

0
0 = wtmtlod: Q4 (M) — Q4L (M) .
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If B € Q4™ (M), with k = £ +m, then dB € Q¥+(M;C):

dg = Z a"%df =048+ + B+ 08+ - + RS .
r+s=k+1

14.3 J-Holomorphic Functions

Let f : M — C be a smooth complex-valued function on M. The exterior
derivative d extends linearly to C-valued functions as df = d(Ref) + i d(Imf).

Definition 14.2 A function f is (J-)holomorphic at x € M if df, is com-
plex linear, i.e., df, o J = idf,. A function f is (J-)holomorphic if it is
holomorphic at all p € M.

Exercise.

dfpoJ =idfy, <= dfyeT,’ < 7w ldf,=

Definition 14.3 A function f is (J-)anti-holomorphic at p € M if df, is
complex antilinear, i.e., df, o J = —idf),.

Exercise.

dfpoJ = —idf, <= df,eT)' <= n,%f, =0
= df,eTy’ < nptdf,=0
<= f is holomorphic at p € M .

Definition 14.4 On functions, d = 0 + 0, where

d:=m"0d and 9:=a"'od.
Then

f is holomorphic <= Jf=0,
f is anti-holomorphic <« J9f=0.

— What about higher differential forms?



14.4  Dolbeault Cohomology

14.4 Dolbeault Cohomology

Suppose that d = 9 + 0, i.e.,

dsd= 088 + 08 , VBeQ"™.
~~ =~

6(‘!2+1.71L egzl,7n+1
Then, for any form 3 € Q™.
0=d’B= 0°8 +008+0d03+ O*B
~— ——— ~—
cQe+2,m cQt+1,m+1 cQtm+2

which implies

02=0
00 +00 =0
92 =0

Since 9 = 0, the chain

0 QE,O 9 Qf,l 0 QZ,Q 8,

is a differential complex; its cohomology groups

ker 9 : Q6m — Qftmtl
im 9 : Q&m—1 Ofm

l,m
HDolbeault (M) =

are called the Dolbeault cohomology groups.

7N

QO,I

/\/

— When is d = 0 + 0?7 See the next lecture.

Qi

QO,Z
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Homework 10: Integrability

This set of problems is from [11, p.46-47].
1. Let (M, J) be an almost complex manifold. Its Nijenhuis tensor N is:
N(v,w) := [Jv, Jw] — J[v, Jw] — J[Jv,w] — [v,w] ,
where v and w are vector fields on M, [-,-] is the usual bracket
[, - f = v (w- f)—w- (v f) , for f € C(M),
and v - f = df (v).

(a) Check that, if the map v +— [v, w] is complex linear (in the sense that
it commutes with J), then N = 0.

(b) Show that A is actually a tensor, that is: A (v, w) at x € M depends
only on the values v, w, € T, M and not really on the vector fields
v and w.

(c¢) Compute N (v, Jv). Deduce that, if M is a surface, then ' = 0.

A theorem of Newlander and Nirenberg [70] states that an almost complex
manifold (M, J) is a complex (analytic) manifold if and only if ' = 0.
Combining (c) with the fact that any orientable surface is symplectic,
we conclude that any orientable surface is a complex manifold, a result
already known to Gauss.

2. Let AV be as above. For any map f : R>® — C and any vector field v on
R we have v- f =v - (fi +ifs) =v-fi +iv- fo, 50 that f v - fisa
complex linear map.

(a) Let R?" be endowed with an almost complex structure .J, and suppose
that f is a J-holomorphic function, that is,

df o J =idf .

Show that df (N (v,w)) = 0 for all vector fields v, w.

(b) Suppose that there exist n J-holomorphic functions, fi,..., f,, on
R2", which are independent at some point z, i.e., the real and imagi-
nary parts of (df1)s, ..., (dfn). form a basis of TFR?". Show that N/
vanishes identically at x.

(¢) Assume that M is a complex manifold and J is its complex structure.
Show that N vanishes identically everywhere on M.

In general, an almost complex manifold has no J-holomorphic functions
at all. On the other hand, it has plenty of J-holomorphic curves: maps
f:C — M such that df oi = Jodf. J-holomorphic curves, also known as
pseudo-holomorphic curves, provide a main tool in symplectic topol-
ogy, as first realized by Gromov [40].
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Part VI
Kahler Manifolds

Kahler geometry lies at the intersection of complex, riemannian and symplec-
tic geometries, and plays a central role in all of these fields. We will start
by reviewing complex manifolds. After describing the local normal form for
Kéhler manifolds (Lecture 16), we conclude with a summary of Hodge theory
for compact Kéhler manifolds (Lecture 17).

15 Complex Manifolds

15.1 Complex Charts

Definition 15.1 A complex manifold of (complex) dimension n is a set M
with a complete complex atlas

A ={(Up,Va,¥0) ,a € index set I}

where M = UyU,, the V,’s are open subsets of C™, and the maps @o : Uy —
V. are such that the transition maps 1,3 are biholomorphic as maps on open

subsets of C™:
Uy, N Ug

Pa

~

= e} —1

Vs Vap = 8 ° Py - Vi

where Vo = @aUa NUg) C C" and Vo = pp(Us NUg) C C™. thag being

biholomorphic means that Yap is a bijection and that 1.3 and w;[_lj are both
holomorphic.

Proposition 15.2 Any complex manifold has a canonical almost complex struc-
ture.

Proof.

1) Local definition of J:
Let (U, V, ¢ : U — V) be a complex chart for a complex manifold M with
¢ = (z1,...,2,) written in components relative to complex coordinates
zj=x; +iy;. Atpeld
: j—l,...,n} .
P

0

T,M = R-span of i , —
p Ui

8:}@
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15 COMPLEX MANIFOLDS

Define J over U by

0 0

0 0

2) This J is well-defined globally:

If (U,V, ) and (U, V', ¢') are two charts, we need to show that J = J’
on their overlap.

OnUNU, Yop=¢' If z; =x; +iy; and w; = u; + iv; are coordinates
on U and U’, respectively, so that ¢ and ¢’ can be written in components
Y = (Zlv tee 7Zn)a 90/ = (wlv tee 7wn)7 then 1/1(217 e 7Zn) = (’LU17 e 7wn)-
Taking the derivative of a composition

9 ou; 0 0v; 0
oo = (52 5u; T B av)
(9 Ouj 8 6vj 8

B > (0yk ou, T oy auj)

J

Since v is biholomorphic, each component of v satisfies the Cauchy-
Riemann equations:

Ouj O
dry O
L k=1....n.
Ou 0y
Oy, Oy,

These equations imply

ou; O ov; 0O ou; O ov; 0O
4 - = 77 = — 777 73 =
d Z(E)xk Ou; +8xk 8vj> Z(@yk 8uj+8yk 8vj>

J X

which matches the equation



15.2 Forms on Complex Manifolds 83

15.2 Forms on Complex Manifolds

Suppose that M is a complex manifold and .J is its canonical almost complex
structure. What does the splitting QF(M;C) = @pppm=rQ5™ look like? ([19,
38, 52, 86] are good references for this material.)

Let U C M be a coordinate neighborhood with complex coordinates z1, . . ., z,,
zj = xj + 1y;, and real coordinates ©1,y1,...,Tn,Yn. At p €U,
_ _0_ 0
T,M = R-span 9a; |, By |,
T,M®@C = C-spanq =2>| , -2
p 8.’Ej p’ dyj p
1 0 0 1 0 0
= C-span{ - | —| —i — @ C-span = | —| +i—
2 8.13j p 6yj p 2 8xj p ayj p
T1,0 = (+1)-eigenspace of J To.1 = (—1i)-eigenspace of J
) -0\ _. (.0 ;) d 9 _ _.(_2 ;)
(% i) =i (% —ia5;) T (% +iay) = =i (5% +iss;)

This can be written more concisely using;:

Definition 15.3

o _1(o o0y g 2 ._1(9 .0
azj 2 8$j 6yj 65j T2 8$j 8yj '

Hence,

(Th,0)p = C-span { 9

3zj
Similarly,
T*"M®C = C-span{dz;,dy;:j=1,...,n}
= C-span{dz; +idy; :j=1,...,n} @& C-span{dz; —idy;:j=1,...,n}
Tl,O TO,l
(dz; +idy;) o J = i(dz; + idy;) (dxj —idy;) o J = —i(dx; —idy;)
Putting
de = dl‘j + Zdyj and de = dll?j — Zdyj s
we obtain

T'Y = C-span{dz; : j =1,...,n}, T%! = Cspan{dz; : j =1,...,n} .
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On the coordinate neighborhood U,

(1,0)-forms = 3°,b;dz; | b; € C(U;C)
(0,1)-forms = 33°,b;dz; | b; € C°(U;C)
(2,0)-forms = {375 _;, by dz Adzg, | by g, € CF(U;C)
(L D-forms = 1305, 5, bingedzi AdZ, | bjy g, € CF(U;C)
(0, 2)—fOI‘HlS = le1<j2 bjl,jzdgjd N dijz | bj17j2 e C™ (Z/{, (C)
If we use multi-index notation:
J = (]177]m) 1< <...<jim<n
J| = m
dz, = dzj Ndzj, N...Ndz;,,
then
Qb™ = (¢, m)-forms = Z b, dz; Ndz, | b, . € C(U;C)

|J|=¢,| K|=m

15.3 Differentials

On a coordinate neighborhood U, a form 3 € QF(M;C) may be written as

0= Z a, dr, Ndy, , with a, , € C*(U;C) .
[T+ K=k

We would like to know whether the following equality holds:

dp = Z(aa“( +0a, . )dx, Ndy, = (0+0) Z a, cdr, Ndy, .
If we use the identities

dz; +idy; = dz; dr; = l(de + dfj)
{ dej — ’Ldyj = de - dyj = % (de — dZJ)

2
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after substituting and reshuffling, we obtain

g

p

> by dz, AdE,
||+ K| =k

> > b dz, AdE,

t+m=k \|J|=4,|K|=m

cQtm

> > db, . Adz, Nz,

t+m=k \|J|=t,|K|=m

> > (0b,, +0b,,) Adz, NdE,
L+m=k |J|=L,|K|=m B
(because d = 9 + 0 on functions)

ob, . Ndz, Ndz + > 0b, . Adz, AdZ,
t+m=k | |J|=¢,|K|=m |J]=¢,|K|=m

cQi+1,m et m+1

0B+ 083 .

Therefore, d = 0 + 0 on forms of any degree for a complez manifold.

Conclusion. If M is a complex manifold, then d = 9 + 0. (For an almost
complex manifold this fails because there are no coordinate functions z; to give
a suitable basis of 1-forms.)

Remark. If b € C°°(U;C), in terms of z and Z, we obtain the following formu-

las:

db

ob ob
zj: (ax]dafj + f?y]dyj>
1/ 0b . 0b i 1/ 0b . 0b .
zj: [2 <8x] - Zayj> (dz; +idy,) + 5 (8% + ZE)yj) (dzj — zdy])]

b ob
Z (aZ]dZ] + (‘TEjdzj

o= wtldb = 3, grdz
o = a%ldb

!
¢
Q
Je

IS
kt\z\
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¢
In the case where 8 € Q4™ we have
d3 = 0B+ 098 = (£+1,m)-form + (¢,m + 1)-form
0=d?’8 = ({+2,m)-form+ (¢ + 1,m + 1)-form + (¢,m + 2)-form

= 9’84 (00+00)3+ 0B
~ — =~
0 0 0

Hence, 8% = 0.
The Dolbeault theorem states that for complex manifolds

L,m m ,
HDolbeault (M) =H (M, O(Q(é 0))) ,
where O(Q(&O)) is the sheaf of forms of type (¢,0) over M.

Theorem 15.4 (Newlander-Nirenberg, 1957 [70])
Let (M, J) be an almost complex manifold. Let N be the Nijenhuis tensor
(defined in Homework 10). Then:

M is a complex manifold <= J is integrable
— N=0
— d=0+0
—= 0*=0
<~

7T2’0d|Qo,1 =0

For the proof of this theorem, besides the original reference, see also [19, 24,
38, 52, 86]. Naturally most almost complex manifolds have d # 9 + 0.



Homework 11: Complex Projective Space

The complex projective space CP" is the space of complex lines in C"*1:

CP™ is obtained from C""1\ {0} by making the identifications (zo, ..., 2n) ~
(Azg, ..., Azy) for all X € C\ {0}. One denotes by [z, ..., 2] the equivalence
class of (zg,...,2n), and calls zo,..., 2, the homogeneous coordinates of the
point p = [20,...,2,]. (The homogeneous coordinates are, of course, only de-
termined up to multiplication by a non-zero complex number \.)

Let U; be the subset of CP™ consisting of all points p = [z, .. ., 2, for which
z; # 0. Let ¢; : U; — C™ be the map

0i([205 -+, 2n)) = (z—ﬂ,,zz—*l,%,,z—”) )
1. Show that the collection
(U, T 1),i =0,....,n}

is an atlas in the complex sense, i.e., the transition maps are biholomorphic.
Conclude that CP" is a complex manifold.

Hint: Work out the transition maps associated with (Up,C", o) and
(U1,C™, p1). Show that the transition diagram has the form

U NU;
$0,1
Voo > V1,0
where Vo,1 = V1,0 = {(21,--.,2n) € C* | 21 # 0} and
_ (1 =z -
Po,1(21,- -y zm) = (£, 2,22

2. Show that the 1-dimensional complex manifold CP! is diffeomorphic, as a
real 2-dimensional manifold, to S2.

Hint: Stereographic projection.
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16 Kahler Forms

16.1 Kahler Forms

Definition 16.1 A Kahler manifold is a symplectic manifold (M,w) equipped
with an integrable compatible almost complex structure. The symplectic form w
s then called o Kahler form.

It follows immediately from the previous definition that
(M,w) is Kéhler = M is a complex manifold

— { Qk(M; (Cz = EB@-%—m:kQZ’m

d=0+09
where
o = ,ﬂ.ZJrl,m od: Qé,m N QZ+1,m
5 — 7rf,erl od: Qé,m N Qf,m+1 .
On a complex chart (U, z1,...,2,), n = dimc M,
Qbm = > bydz, AdE | by, € COWUC) b
[J]=¢,|K|=m
where
J = (jl,...,jg), n<...<je, dz, = del/\.../\deZ,
K = (k1,..., m), ki <...<kp, dZK = dzkl/\.../\dfkm.

On the other hand,
(M,w) is Kédhler — w is a symplectic form .

— Where does w fit with respect to the above decomposition?
A Kahler form w is

1. a 2-form,

o

compatible with the complex structure,
3. closed,
4. real-valued, and

5. nondegenerate.

These properties translate into:
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16.1 Kéahler Forms 89

1. Q2(M;C) = Q%0 g Qb @ Q02
On a local complex chart (U, z1,...,2,),
w= Zajk de Ndzy + ijk de ANdzy, + ZCjk dij A dZzZy
for some aji, bji, c;r € C(U;C).

2. Jis a symplectomorphism, that is, J*w = w where (J*w)(u,v) := w(Ju, Jv).

J*dz; = dzjoJ = idz
J*de = dij oJ = —’L'dij
0 i i
J'w = Y (i-1) aji dzj Adzg+ i(—i) Y b dzj Adzp+ (—i)? Y cjrd Z; A dzy,
J'w = w <<= ap=0=cjy, aljk <+ weObl.
= Ow=20 w 1s O-closed
3. 0=dw= \a&)/ + \aﬁu/ :>{5w=0 w is O-closed

(2,1)—form  (1,2)—form

Hence, w defines a Dolbeault (1,1) cohomology class,
1,1
[W] € HDolbeault (M) .
Putting bjk = %h]‘k,
w= % S gk dzi Adz, by, € CFWUsC).
jrk=1
4. w real-valued <— w=w.
_ 7 —_— i — _ 7 — _
W=—5 ) ik dz; Ndz =5 Y ik de Adz; =5 Y iy dz; Adzy
wreal <= hj :Tkj,

i.e., at every point p € U, the n x n matrix (h;x(p)) is hermitian.

5. d tWr=wA LA 0.
nondegeneracy: w" = w W #

n

Exercise. Check that

W = n! <;) det(hji) dzy Adzy A ... Adzg A dZ, .

Now
w nondegenerate <= detc(hji) #0,

ie., at every p € M, (h;x(p)) is a nonsingular matrix.
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2. Again the positivity condition: w(v, Jv) >0, Vv # 0.
Exercise. Show that (h;x(p)) is positive-definite. O

w positive <= (hjr) >0,

i.e., at each p € U, (hjx(p)) is positive-definite.

Conclusion. Kihler forms are 0- and d-closed (1, 1)-forms, which are given on
a local chart (U, z1,...,2,) by

w :% Z hjk de/\dék
J,k=1

where, at every point p € U, (hjr(p)) is a positive-definite hermitian matrix.

16.2 An Application
Theorem 16.2 (Banyaga) Let M be a compact complex manifold. Let wy
and wy be Kdihler forms on M. If wo] = [w1] € Hsgpam (M), then (M,wo) and

(M,w1) are symplectomorphic.

Proof. Any combination w; = (1 — t)wp + twy is symplectic for 0 < t < 1,

because, on a complex chart (U, z1, ..., z,), where n = dim¢ M, we have
w = EXHdsAda
wi = §Y hldz Adz
wy = %Zh;kdzj Adzy ,  where bl = (1 —t)hS, +th], .

(h3) >0, (hj) >0 = (k%) >0.
Apply the Moser theorem (Theorem 7.2). O

16.3 Recipe to Obtain Kahler Forms

Definition 16.3 Let M be a complex manifold. A function p € C*°(M;R) is
strictly plurisubharmonic (s.p.s.h.) if, on each local complex chart (U, z1, ..., zy),

where n = dim¢e M, the matrix (832’;k (p)) 18 positive-definite at all p € U.
J

Proposition 16.4 Let M be a complex manifold and let p € C°(M;R) be
s.p.s.h.. Then

w = %aép is Kahler .
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A function p as in the previous proposition is called a (global) Kahler
potential.

Proof. Simply observe that:

0
Rt
ow = %328p20
ow = géaépz—ga 0% p=

dw=0w+0w=0 = wis closed .
w= —%gﬁp = %ng =w =—> wisreal.
wel = J'w=w = w(,J:) is symmetric .

Exercise. Show that, for f € C*°(U;C),

of = Z dz] and Of = Z dz].

Since the right-hand sides are in Q%Y and Q%!, respectively, it suffices to show

that the sum of the two expressions is df. &
' o [ Jp i 9?p
= 788 dz; Ndz = dz; NdzZ .
Z 0z; (8zk) KA Z <8zj8zk A
—_—
hjk

pisspsh = (hjr) >0 = w(-,J-) is positive .

In particular, w is nondegenerate. g
Example. Let M = C" ~ R?", with complex coordinates (z1,...,z2,) and
corresponding real coordinates (z1,y1,...,%n,Yn) Via z; = x; + iy;. Let

n
P($1>y17~-~7$nayn)zzx +yj Z|2]| ZZJZJ .
=1

Then
09 _90,  _s
8Zj 65j o 82]' k= Tk
SO

0? ]
(hjk) = (8282;6> = (0jx) =1d >0 = piss.psh. .
j
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The corresponding Kéhler form

w = %8(% = %Z(Sjk dzj N dzy,
Tk

13 dzj Ndzj =Y dz; Ady; is the standard form .
J J

16.4 Local Canonical Form for Kahler Forms

There is a local converse to the previous construction of Kéhler forms.

Theorem 16.5 Let w be a closed real-valued (1,1)-form on a complex manifold
M and let p € M. Then there exist a neighborhood U of p and p € C>(U;R)
such that, on U,

i
w—iaap.

The function p is then called a (local) Kéhler potential.

The proof requires holomorphic versions of Poincaré’s lemma, namely, the
local triviality of Dolbeault groups:

¥p € M 3 neighborhood U of p such that HE" - (U) =0, m >0,
and the local triviality of the holomorphic de Rham groups; see [38].

Theorem 16.6 Let M be a complex manifold, p € C*°(M;R) s.p.s.h., X a
complex submanifold, and i : X — M the inclusion map. Then i*p is s.p.s.h..

Proof. Let dimg M = n and dim¢ X = n — m. For p € X, choose a chart
(U, 21,...,2n) for M centered at p and adapted to X, i.e., X NU is given by

21 =...= zym = 0. In this chart, i*p = p(0,0,...,0, Zpmt1, - -, 2n).
Y %p . . .
i*piss.p.sh. <— [ ———(0,...,0,2m+1,-..,2,) | is positive-definite ,
8zm+j8zm+k
which holds since this is a minor of (afiggk(o, ey 0, 21, e e zn)> O
J

Corollary 16.7 Any complex submanifold of a Kdhler manifold is also Kdhler.

Definition 16.8 Let (M,w) be a Kahler manifold, X a complex submanifold,
and i : X — M the inclusion. Then (X,i*w) is called a Kéhler submanifold.
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Example. Complex vector space (C",w) where w = %Zdzj A dz; is Kahler.
Every complex submanifold of C™ is Kahler. &

Example. The complex projective space is
CP" = C""\{0}/ ~
where
(205« oy 2n) ~ (A20y. .-, Azn) , A€ C\{0} .

The Fubini-Study form (see Homework 12) is Kéhler. Therefore, every non-
singular projective variety is a Kahler submanifold. Here we mean

non-singular = smooth
projective variety =  zero locus of a collection
of homogeneous polynomials .



Homework 12: The Fubini-Study Structure

The purpose of the following exercises is to describe the natural Kahler structure
on complex projective space, CP™.

1. Show that the function on C"
2z log(|z]* + 1)
is strictly plurisubharmonic. Conclude that the 2-form

Wy = 5001og(|z]2 + 1)

FS — 2
is a Kéhler form. (It is usually called the Fubini-Study form on C™.)

Hint: A hermitian n X n matrix H is positive definite if and only if v* Hv > 0
for any v € C™ \ {0}, where v* is the transpose of the vector v. To prove
positive-definiteness, either apply the Cauchy-Schwarz inequality, or use the
following symmetry observation: U(n) acts transitively on S?"~! and wgg is
U(n)-invariant, thus it suffices to show positive-definiteness along one direction.

2. Let U be the open subset of C™ defined by the inequality z; # 0, and let
@ : U — U be the map

(21, .oy 2n) = %(1,22,...,,2”) .
Show that ¢ maps U biholomorphically onto ¢ and that

©*log(|z|* + 1) :log(|z\2+1)+logﬁ . (%)

3. Notice that, for every point p € U, we can write the second term in (x) as
the sum of a holomorphic and an anti-holomorphic function:

—log z1 — logZzy
on a neighborhood of p. Conclude that
20p* log(|z|? +1) = dd1og(|z|* + 1)

and hence that p*w.q = wyq.

Hint: You need to use the fact that the pullback by a holomorphic map ¢*
commutes with the & and d operators. This is a consequence of p* preserving
form type, ¢*(QP+9) C QP+9, which in turn is implied by p*dz; = dp; C Q1.0
and p*dzj = 5@ C Q%! where ; is the jth component of ¢ with respect to
local complex coordinates (21,...,2n).

4. Recall that CP" is obtained from C"*!\ {0} by making the identifica-

tions (zo,...,2n) ~ (Az0,...,Az,) for all A € C\ {0}; [20,...,2n] is the
equivalence class of (zq, ..., 2,).

94
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Fori=0,1,...,n, let
U; = {[z0, - .., 2n] € CP" |z # 0}
Piilh =€ il sza]) = (2, B 0 m) |

) Zi ) 2

Homework 11 showed that the collection {(U;,C", ¢;),i = 0,...,n} is a
complex atlas (i.e., the transition maps are biholomorphic). In particular,

it was shown that the transition diagram associated with (U, C™, ¢¢) and
(U, C™, 1) has the form

Uy NU;
/ \K
$0,1
Vo.1 V1o
where Vo1 = V1o = {(#21,..-,2n) € C" |21 # 0} and @ 1(21,...,2n) =
(%7 %7 el %) Now the set U in exercise 2 is equal to the sets V1 and

V1,0, and the map ¢ coincides with g ;.
Show that ¢iw.s and pjw,. are identical on the overlap Uy NU;.

More generally, show that the Kahler forms ¢fw., “glue together” to
define a Kéahler structure on CP™. This is called the Fubini-Study form
on complex projective space.

5. Prove that for CP! the Fubini-Study form on the chart Uy = {[z0, 21] €
CP! |z # 0} is given by the formula
. — dx N dy
FS T (.%'2 +y2 + 1)2
21

where L =z=x+uyis the usual coordinate on C.

6. Compute the total area of CP! = C U {00} with respect to wyy:

/ / dx N dy
w = 5 -
CP! Fs R2 (1’2 + y2 + 1)2

7. Recall that CP! ~ S? as real 2-dimensional manifolds (Homework 11).
On 52 there is the standard area form w_,, induced by regarding it as the
unit sphere in R? (Homework 6): in cylindrical polar coordinates (6, h) on
S? away from its poles (0 < 6 < 27 and —1 < h < 1), we have

w,, =doAdh .

Using stereographic projection, show that

1

Wpg = Zwsm :



17 Compact Kahler Manifolds

17.1 Hodge Theory

Let M be a complex manifold. A Kéahler form w on M is a symplectic form which
is compatible with the complex structure. Equivalently, a Ké&hler form w is a 0-
and O-closed form of type (1, 1) which, on a local chart (i, z1, ..., z,) is given by
w=1% szzl hjrdzj A dZy, where, at each x € U, (h;i(x)) is a positive-definite
hermitian matrix. The pair (M,w) is then called a Kahler manifold.

Theorem 17.1 (Hodge) On a compact Kihler manifold (M, w) the Dolbeault
cohomology groups satisfy

HYorpam (M; C) @ HE (M) (Hodge decomposition)
l+m=k

: Lm ~ m,l . l,m . . .
with H*™ ~ H™*% . In particular, the spaces Hy . . are finite-dimensional.

Hodge identified the spaces of cohomology classes of forms with spaces of
actual forms, by picking the representative from each class which solves a certain
differential equation, namely the harmonic representative.

(1) The Hodge x-operator.

Each tangent space V = T,,M has a positive inner product (-,-), part of
the riemannian metric in a compatible triple; we forget about the complex
and symplectic structures until part (4).

Let eq,...,e, be a positively oriented orthonormal basis of V.

The star operator is a linear operator * : A(V) — A(V) defined by

(1) = e1A...Ney
x(eg Ao Nep) = 1
k(eg A...Nep) = ep1 A Ney .

We see that * : AY(V) — A" ~¢(V) and satisfies #x = (—1)“=0),
(2) The codifferential and the laplacian are the operators defined by:

§ = (=)D ygx 0 QY (M) — QM)

A = dé+4dd : QUM — QN(M) .
A is also called the Laplace-Beltrami operator.
Exercise. Check that, on QO(R") = C®(R"), A= -y 2. &
Exercise. Check that Ax = *A. &

Suppose that M is compact. Define an inner product on forms by

(L) xR, (a,ﬁ)z/a/\*ﬂ.
M
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Exercise. Check that this is symmetric, positive-definite and satisfies

(da, B) = (@, ). &

Therefore, § is often denoted by d* and called the adjoint of d. (When
M is not compact, we still have a formal adjoint of d with respect to the
nondegenerate bilinear pairing (-,-) : Qf x QY — R defined by a similar
formula, where 2’ is the space of compactly supported /-forms.) Also, A
is self-adjoint:

Exercise. Check that (Aa,3) = (a, AB), and that (A, ) = |dal? +
|6a|? > 0, where | - | is the norm with respect to this inner product. ¢

(3) The harmonic /-forms are the elements of H’ := {a € Qf | Aa = 0}.

Note that Aa =0 <= da = da = 0. Since a harmonic form is d-closed,
it defines a de Rham cohomology class.

Theorem 17.2 (Hodge) Fvery de Rham cohomology class on a com-
pact oriented riemannian manifold M possesses a unique harmonic repre-
sentative, i.e.,
‘ ‘
H ~ HdeRham(M; R) .

In particular, the spaces H' are finite-dimensional. We also have the
following orthogonal decomposition with respect to (-,-):
Q* HE @ AQYM))

HE @ dOi-1 @ g0 (Hodge decomposition on forms) .

1R

The proof involves functional analysis, elliptic differential operators, pseu-
dodifferential operators and Fourier analysis; see [38, 86].

So far, this was ordinary Hodge theory, considering only the metric and
not the complex structure.

(4) Complex Hodge Theory.

When M is Kihler, the laplacian satisfies A = 2(09* + 9*9) (see, for
example, [38]) and preserves the decomposition according to type, A :
Q6™ — Q6™ Hence, harmonic forms are also bigraded

H = P H".

l+m=k

Theorem 17.3 (Hodge) FEvery Dolbeault cohomology class on a com-
pact Kéhler manifold (M,w) possesses a unique harmonic representative,
i.e.,
em . rrbs
RO o HDglLbeault (M)
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and the spaces HY™ are finite-dimensional. Hence, we have the following
isomorphism:

L L Lm L,
HdeRham(M) ~H ~ @ H @ HDgllbcault (M) :
+m=k {+m=k

For the proof, see for instance [38, 86].

17.2 Immediate Topological Consequences

Let b*(M) := dim HX , (M) be the usual Betti numbers of M, and let
RE™ (M) := dim Hé’g'fbeault(M) be the so-called Hodge numbers of M.

bk = ptm
Hodge Theorem — { pom hznfjm:k
Some immediate topological consequences are:

1. On compact Kéhler manifolds “the odd Betti numbers are even:”

k
PRt = N phm =2 ptERIE0 s even
l+m=2k+1 =0

2. On compact Kihler manifolds, h':* = %bl is a topological invariant.

3. On compact symplectic manifolds, “even Betti numbers are positive,” be-
cause w” is closed but not exact (k=0,1,...,n).

Proof. If w* = da, by Stokes’ theorem, / Wt = / dlaAw™ F)=0.
M M
This cannot happen since w™ is a volume form. O

4. On compact Kéhler manifolds, the h%¢ are positive.

Claim. 0 # [v] € HS' (M).

olbeault

Proof.
wehl — WeObt

do=0 = 0=dw'= duw’ + Ju*
<~ <~
B (C+1,0)  (£,041)
= Jdw'=0,
so [w'] defines an element of Hé’ﬁlbeault. Why is w’ not d-exact?
If w* = 9 for some § € Q"1 then
W= AW =B AW = 0= [w"] € HEM ot (M)

But [w"] # 0in H3%,  (M;C) o~ Hpy eauys (M) since it is a volume form.
0
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There are other constraints on the Hodge numbers of compact Kahler man-
ifolds, and ongoing research on how to compute Hé’gfbeault. A popular picture
to describe the relations is the Hodge diamond:

Rrn
hn,n—l hn—l,n
hn,n—Q hn—l,n—l hn—Q,n
h2,0 hl,l hO,Q
hl,O h0,1
h0,0

Complex conjugation gives symmetry with respect to the middle vertical, whereas
the Hodge * induces symmetry about the center of the diamond. The middle
vertical axis is all non-zero. There are further symmetries induced by isomor-
phisms given by wedging with w.

The Hodge conjecture relates Hé’ﬁlbeault (M) N H?*(M;Z) for projective
manifolds M (i.e., submanifolds of complex projective space) to codim¢ = ¢

complex submanifolds of M.

17.3 Compact Examples and Counterexamples

symplectic <= Kahler
4 I

almost complex <= complex

smooth even-dimensional orientable

almost complex

symplectic

complex
Kahler

Is each of these regions nonempty? Can we even find representatives of each
region which are simply connected or have any specified fundamental group?
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e Not all smooth even-dimensional manifolds are almost complex. For ex-

ample, 5%, S8, 810 etc., are not almost complex.
If M is both symplectic and complex, is it necessarily Kahler?

No. For some time, it had been suspected that every compact symplectic
manifold might have an underlying Kahler structure, or, at least, that a
compact symplectic manifold might have to satisfy the Hodge relations on
its Betti numbers. The following example first demonstrated otherwise.

The Kodaira-Thurston example (Thurston, 1976 [79]):

Take R* with dx; A dy; + dxo A dys, and T’ the discrete group generated
by the following symplectomorphisms:

7= (w1, %2, Y1, ¥2) = (T1, 22 + 1, Y1, 42)
Yo = (21,72,Y1,Y2) > (21, 72,Y1,92 + 1)
vz = (21, 22,y1,92) — (21 + 1, 22,51, 2)
Ya = (@1,22,Y1,92) — (1,22 + Y2, y1 + 1, 92)

Then M = R*/T is a flat 2-torus bundle over a 2-torus. Kodaira [56]
had shown that M has a complex structure. However, 71 (M) = T', hence
H'(R*/T;Z) =T/[I',T] has rank 3, b' = 3 is odd, so M is not Kihler [79].

Does any symplectic manifold admit some complex structure (not neces-
sarily compatible)?

No.

(Fernandez-Gotay-Gray, 1988 [30]): There are symplectic manifolds
which do not admit any complex structure [30]. Their examples are circle
bundles over circle bundles over a 2-torus

St — M
!

St — P tower of circle fibrations
!
T2

Given a complex structure on M, is there always a symplectic structure
(not necessarily compatible)?

No.

The Hopf surface S x S? is not symplectic because H?(S* x S3) = 0.
But it is complex since S* x §% ~ C2\{0} /T where I' = {2"Id | n € Z} is a
group of complex transformations, i.e., we factor C2\{0} by the equivalence
relation (21, 22) ~ (221, 223).
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Is any almost complex manifold either complex or symplectic?

No.

CP2#CP2#CP? is almost complex (proved by a computation with charac-
teristic classes), but is neither complex (since it does not fit Kodaira’s clas-
sification of complex surfaces), nor symplectic (as shown by Taubes [76]
in 1995 using Seiberg-Witten invariants).

In 1993 Gompf [36] provided a construction that yields a compact sym-
plectic 4-manifold with fundamental group equal to any given finitely-
presented group. In particular, we can find simply connected examples.
His construction can be adapted to produce nonKéhler examples.

17.4 Main Kahler Manifolds

Compact Riemann surfaces

As real manifolds, these are the 2-dimensional compact orientable mani-
folds classified by genus. An area form is a symplectic form. Any compat-
ible almost complex structure is always integrable for dimension reasons
(see Homework 10).

Stein manifolds

Definition 17.4 A Stein manifold is a Kdhler manifold (M,w) which
admits a global proper Kdhler potential, i.e., w = 500p for some proper
function p: M — R.

Proper means that the preimage by p of a compact set is compact, i.e.,
“p(p) — 00 as p — 00.”

Stein manifolds can be also characterized as the properly embedded ana-
lytic submanifolds of C™.

Complex tori

Complex tori look like M = C™/Z™ where Z" is a lattice in C™. The form
w = »_dz; Adz; induced by the euclidean structure is Kéhler.

Complex projective spaces

The standard Kéhler form on CP” is the Fubini-Study form (see Home-
work 12). (In 1995, Taubes showed that CP? has a unique symplectic
structure up to symplectomorphism.)

Products of Kahler manifolds

Complex submanifolds of Kihler manifolds






Part VII
Hamiltonian Mechanics

The equations of motion in classical mechanics arise as solutions of variational
problems. For a general mechanical system of n particles in R3, the physical path
satisfies Newton’s second law. On the other hand, the physical path minimizes
the mean value of kinetic minus potential energy. This quantity is called the
action. For a system with constraints, the physical path is the path which
minimizes the action among all paths satisfying the constraint.

The Legendre transform (Lecture 20) gives the relation between the varia-
tional (Euler-Lagrange) and the symplectic (Hamilton-Jacobi) formulations of
the equations of motion.

18 Hamiltonian Vector Fields

18.1 Hamiltonian and Symplectic Vector Fields

— What does a symplectic geometer do with a real function?...

Let (M,w) be a symplectic manifold and let H : M — R be a smooth
function. Its differential dH is a 1-form. By nondegeneracy, there is a unique
vector field X, on M such that 1x,w = dH. Integrate X, . Supposing that
M is compact, or at least that X, is complete, let p; : M — M, t € R, be the
one-parameter family of diffeomorphisms generated by X, :

po = idy
dpt —
EoptlzXH.

Claim. Each diffeomorphism p; preserves w, i.e., pjw = w, Vt.

Proof. We have & pfw = pilx w=pi(dix, wtix, dw)=0. O
N—— 0
dH

Therefore, every function on (M, w) gives a family of symplectomorphisms.
Notice how the proof involved both the nondegeneracy and the closedness of w.

Definition 18.1 A vector field X,, as above is called the hamiltonian vector
field with hamiltonian function H.

Example. The height function H (6, h) = h on the sphere (M,w) = (52, dOAdh)

has 9
ixy (A9 ANdh) =dh <~ XH:%.

103
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Thus, p:(6,h) = (0 +t, h), which is rotation about the vertical axis; the height
function H is preserved by this motion. &

Exercise. Let X be a vector field on an abstract manifold W. There is a unique
vector field Xy on the cotangent bundle T7*W, whose flow is the lift of the flow of
X; cf. Lecture 2. Let a be the tautological 1-form on T*W and let w = —da be
the canonical symplectic form on T*W. Show that X; is a hamiltonian vector
field with hamiltonian function H := 1y a. &

Remark. If X, is hamiltonian, then
EXHH == ZXHdH =1lXylXgWw = 0.

Therefore, hamiltonian vector fields preserve their hamiltonian functions, and
each integral curve {p:(x) | t € R} of X, must be contained in a level set of H:

H(z) = (psH)(x) = H(pi()) , Vit .
O

Definition 18.2 A vector field X on M preserving w (i.e., such that Lxw = 0)
1s called a symplectic vector field.

X is symplectic <= 1xw is closed .
X is hamiltonian <— 1xw is exact .

Locally, on every contractible open set, every symplectic vector field is hamil-
tonian. If H, jeRham(M ) = 0, then globally every symplectic vector field is hamil-
tonian. In general, H éeRham(M ) measures the obstruction for symplectic vector
fields to be hamiltonian.

Example. On the 2-torus (M,w) = (T?,df; A dfs), the vector fields X; = 8%1

and Xy = % are symplectic but not hamiltonian. &

To summarize, vector fields on a symplectic manifold (M, w) which preserve
w are called symplectic. The following are equivalent:

e X is a symplectic vector field;

the flow p; of X preserves w, i.e., pjw = w, for all ¢;
e Lxw=0;
e 1xw is closed.

A hamiltonian vector field is a vector field X for which
e 1xw is exact,

i.e., ixw = dH for some H € C*°(M). A primitive H of i1xw is then called a
hamiltonian function of X.
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18.2 Classical Mechanics

Consider euclidean space R?" with coordinates (q1, ..., Gn,P1,-.-,Pn) and wy =
Y- dgj N dp;. The curve p; = (q(t),p(t)) is an integral curve for X, exactly if

dg; i 4y 0H
dt N api
(Hamilton equations)
0=
dt Jq;
Indeed, let X Z (6;;1 B0 gg 6%1-)' Then,

n
IxXpw = xu (dg; Ndpy) = 3 [(1x,dgs) A dps — dgj A (1x,,dp;)]

J=
(s )

H

Remark. The gradient vector field of H relative to the euclidean metric is

OH 0 aH 0
VH = Z <an 8% api api) .

If J is the standard (almost) complex structure so that J (a8
J(32) = =5 , we have JX,, = VH. &

The case where n = 3 has a simple physical illustration. Newton’s second
law states that a particle of mass m moving in configuration space R3 with
coordinates ¢ = (q1, 2, g3) under a potential V' (g) moves along a curve ¢(t) such

that
d?q

Introduce the momenta p; = m 2 i ,2, (p,q) =
7=|p|* + V(q). Let R® = T*R? be the correbpondmg phase space, with co-
ordinates (q1,q2, g3, p1, P2, p3). Newton’s second law in R? is equivalent to the
Hamilton equations in R®:

da; _ 1, _ 98

at ~ mPi T Op;

dpi o mdg%’ - _aV o _8H
dt N dt? N aqi N 8q¢ .

The energy H is conserved by the physical motion.
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18.3 Brackets

Vector fields are differential operators on functions: if X is a vector field and
f € C**(X), df being the corresponding 1-form, then

X f=df(X)= L] .
Given two vector fields X, Y, there is a unique vector field W such that
Lwf=Lx(Lyf)—Ly(Lxf).

W is called the Lie bracket of vector fields X and Y and denoted W = [X, Y],
since Ly = [Lx, Ly] is the commutator.

Exercise. Check that, for any form «,
ix,y)o = Lxrya —iyLxa = [Lx, 1y .

Since each side is an anti-derivation with respect to the wedge product, it suffices
to check this formula on local generators of the exterior algebra of forms, namely
functions and exact 1-forms. &

Theorem 18.3 If X and Y are symplectic vector fields on a symplectic mani-
fold (M,w), then [X,Y] is hamiltonian with hamiltonian function w(Y, X).

Proof.
x,y|w = Lxiyw—1ylxw
= dixiyw +1x diyw —1y dixw —ixty dw
Xy X dry y aix Xy O
0 0
— dw(v, X)) |
]
A (real) Lie algebra is a (real) vector space g together with a Lie bracket
[,], i.e., a bilinear map [-,-] : g X g — g satisfying:
(a) [z,yl =—[y.2], Vz,yeg, (antisymmetry)

(b) [, [y, 2l + [y, [z, 2]] + [2, [, 9]l =0, Va,y,2€g. (Jacobi identity)

Let
x(M) = { vector fields on M }
XYmPY(M) = { symplectic vector fields on M }
'™ (M) = { hamiltonian vector fields on M } .

Corollary 18.4 The inclusions (x"*™(M), [-,-]) € (™ (M), [, ]) € (x(M), [-,-)
are inclusions of Lie algebras.

Definition 18.5 The Poisson bracket of two functions f,g € C°(M;R) is

{f,9} =w(X;, X,) .
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We have X ;43 = —[Xy, Xg] because X,,(x, x,) = [Xg, Xy].
Theorem 18.6 The bracket {-,-} satisfies the Jacobi identity, i.e.,

{f7{gvh}}+{gv{h7f}}+{h7{f>g}} =0.

Proof. Exercise (this reduces to the Jacobi identity for the Lie bracket). O

Definition 18.7 A Poisson algebra (P,{-,-}) is a commutative associative
algebra P with a Lie bracket {-,-} satisfying the Leibniz rule:

{f,gh} ={f,g}h +g{f,n} .

Exercise. Check that the Poisson bracket {-,-} defined above satisfies the
Leibniz rule. ¢

We conclude that, if (M,w) is a symplectic manifold, then (C*(M),{:,})
is a Poisson algebra. Furthermore, we have a Lie algebra anti-automorphism

C=(M) — x(M)
H — X,
{"'} ~ _['a'] :

18.4 Integrable Systems

Definition 18.8 A hamiltonian system is a triple (M,w, H), where (M, w)
is a symplectic manifold and H € C*®(M;R) is a function, called the hamilto-
nian function.

Theorem 18.9 We have {f, H} =0 if and only if f is constant along integral
curves of X, .

Proof. Let p; be the flow of X,,. Then

%(fopt) = pI‘CXHf:pIZXde:pIZXHZXfw
= p?w(Xf,XH) = P?{f,H} =0

0

A function f as in Theorem 18.9 is called an integral of motion (or a first
integral or a constant of motion). In general, hamiltonian systems do not
admit integrals of motion which are independent of the hamiltonian function.
Functions fi,...,f, on M are said to be independent if their differentials
(df1)p, - .., (dfn)p are linearly independent at all points p in some open dense
subset of M. Loosely speaking, a hamiltonian system is (completely) integrable
if it has as many commuting integrals of motion as possible. Commutativity is
with respect to the Poisson bracket. Notice that, if fi,..., f, are commuting
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integrals of motion for a hamiltonian system (M,w, H), then, at each p € M,
their hamiltonian vector fields generate an isotropic subspace of 1}, M:

w(Xfi7ij) = {flvf]} =0.

If f1,..., fn are independent at p, then, by symplectic linear algebra, n can be
at most half the dimension of M.

Definition 18.10 A hamiltonian system (M,w, H) is (completely) integrable
if it possesses n = % dim M independent integrals of motion, f1 = H, fo,..., fn,
which are pairwise in involution with respect to the Poisson bracket, i.e., { fi, f;} =
0, for alli,j.

Example. The simple pendulum (Homework 13) and the harmonic oscillator
are trivially integrable systems — any 2-dimensional hamiltonian system (where
the set of non-fixed points is dense) is integrable. &

Example. A hamiltonian system (M,w, H) where M is 4-dimensional is inte-
grable if there is an integral of motion independent of H (the commutativity
condition is automatically satisfied). Homework 18 shows that the spherical
pendulum is integrable. &

For sophisticated examples of integrable systems, see [9, 50].

Let (M,w,H) be an integrable system of dimension 2n with integrals of
motion f1 = H, fa,..., fn. Let ¢ € R™ be a regular value of f := (f1,..., fn).
The corresponding level set, f~!(c), is a lagrangian submanifold, because it is
n-dimensional and its tangent bundle is isotropic.

Lemma 18.11 If the hamiltonian vector fields Xy ,..., Xy, are complete on
the level f~1(c), then the connected components of f~1(c) are homogeneous
spaces for R™, i.e., are of the form R*F x T* for some k, 0 < k < n, where T*
is a k-dimensional torus.

Proof. Exercise (just follow the flows). O

Any compact component of f~!(c) must hence be a torus. These compo-
nents, when they exist, are called Liouville tori. (The easiest way to ensure
that compact components exist is to have one of the f;’s proper.)

Theorem 18.12 (Arnold-Liouville [3]) Let (M,w, H) be an integrable sys-
tem of dimension 2n with integrals of motion f1 = H, fo,..., fn. Let ¢ € R"
be a regular value of f := (fi,...,fn). The corresponding level f~1(c) is a
lagrangian submanifold of M.

(a) If the flows of Xy,,..., Xy, starting at a point p € f~1(c) are complete,
then the connected component of f~'(c) containing p is a homogeneous
space for R™. With respect to this affine structure, that component has
coordinates @1, .. .,¢n, known as angle coordinates, in which the flows
of the vector fields Xy,,..., Xy, are linear.
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(b) There are coordinates 1, ..., ¥, known as action coordinates, comple-
mentary to the angle coordinates such that the 1;’s are integrals of motion
and ©1,-. ., Pn, V1, ...,y form a Darboux chart.

Therefore, the dynamics of an integrable system is extremely simple and the
system has an explicit solution in action-angle coordinates. The proof of part
(a) — the easy part — of the Arnold-Liouville theorem is sketched above. For the
proof of part (b), see [3, 25].

Geometrically, part (a) of the Arnold-Liouville theorem says that, in a neigh-
borhood of the value ¢, the map f : M — R™ collecting the given integrals of
motion is a lagrangian fibration, i.e., it is locally trivial and its fibers are
lagrangian submanifolds. The coordinates along the fibers are the angle coordi-
nates.” Part (b) of the theorem guarantees the existence of coordinates on R™,
the action coordinates, which (Poisson) commute with the angle coordinates.
Notice that, in general, the action coordinates are not the given integrals of
motion because @1, ...,on, f1,--., fn do not form a Darboux chart.

9The name “angle coordinates” is used even if the fibers are not tori.



Homework 13: Simple Pendulum

This problem is adapted from [42].

The simple pendulum is a mechanical system consisting of a massless rigid
rod of length [, fixed at one end, whereas the other end has a plumb bob of mass
m, which may oscillate in the vertical plane. Assume that the force of gravity is
constant pointing vertically downwards, and that this is the only external force
acting on this one-particle system.

(a)

Let 6 be the oriented angle between the rod (regarded as a point mass)
and the vertical direction. Let & be the coordinate along the fibers of T*S!
induced by the standard angle coordinate on S*. Show that the function
H:T*S' — R given by

2
H(9,¢) = 2fnl2 +ml(1—cosh)
D %

is an appropriate hamiltonian function to describe the spherical pendu-
lum. More precisely, check that gravity corresponds to a potential energy
V(6) = ml(1 — cos @) (we omit universal constants), and that the kinetic
energy is given by K (0,§) = 51262

For simplicity assume that m =1 = 1.
Plot the level curves of H in the (6,€) plane.

Show that there exists a number ¢ such that for 0 < h < c the level curve
H = h is a disjoint union of closed curves. Show that the projection of
each of these curves onto the #-axis is an interval of length less than .

Show that neither of these assertions is true if A > c.

What types of motion are described by these two types of curves?
What about the case H = ¢?

Compute the critical points of the function H. Show that, modulo 27 in 6,
there are exactly two critical points: a critical point s where H vanishes,
and a critical point u where H equals c. These points are called the
stable and unstable points of H, respectively. Justify this terminology,
i.e., show that a trajectory of the hamiltonian vector field of H whose
initial point is close to s stays close to s forever, and show that this is not
the case for u. What is happening physically?

110



19 Variational Principles

19.1 Equations of Motion

The equations of motion in classical mechanics arise as solutions of variational
problems:

A general mechanical system possesses both kinetic and potential
energy. The quantity that is minimized is the mean value of kinetic
minus potential energy.

Example. Suppose that a point-particle of mass m moves in R? under a force
field F; let 2(t), a < t < b, be its path of motion in R3. Newton’s second law

states that 2
T
m s (6) = Fla(t)

Define the work of a path v : [a,b] — R?, with v(a) = p and v(b) = ¢, to be

b
W, = [ Fae)- .

Suppose that F' is conservative, i.e., W, depends only on p and ¢q. Then we
can define the potential energy V : R — R of the system as

Vig) =W,

where 7 is a path joining a fixed base point py € R? (the “origin”) to q. Newton’s
second law can now be written
d*x ov
m—;(t) = ——(x(¢)) .
(1) = =S (a()

In the previous lecture we saw that

Newton’s second law <= Hamilton equations
in R? = {(q1, 92, 43)} in T*R?® = {(q1, 42, 43,1, P2, p3) }

where p; = m‘fj‘i" and the hamiltonian is H (p, ) = 5% |p|*+V (¢). Hence, solving
Newton’s second law in configuration space R® is equivalent to solving in
phase space for the integral curve T*R? of the hamiltonian vector field with

hamiltonian function H. &

Example. The motion of earth about the sun, both regarded as point-masses
and assuming that the sun to be stationary at the origin, obeys the inverse
square law

Pz 9V
Az T 0w
where x(t) is the position of earth at time ¢, and V(z) = %I‘St‘ is the gravi-
tational potential. &
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19.2 Principle of Least Action

When we need to deal with systems with constraints, such as the simple pendu-
lum, or two point masses attached by a rigid rod, or a rigid body, the language
of variational principles becomes more appropriate than the explicit analogues
of Newton’s second laws. Variational principles are due mostly to D’Alembert,
Maupertius, Euler and Lagrange.

Example. (The n-particle system.) Suppose that we have n point-particles
of masses myq,...,m, moving in 3-space. At any time ¢, the configuration of
this system is described by a vector in configuration space R3"

= (z1,...,2,) € R

with z; € R? describing the position of the ith particle. If V € C*°(R3") is the
potential energy, then a path of motion z(t), a <t < b, satisfies

mi%@) _ _%(ml(t),...,mn(t)) .

Consider this path in configuration space as a map 7o : [a,b] — R3" with
Yo(a) = p and 7o(b) = g, and let

P={y:la,b] — R* |y(a) =p and y(b) = ¢}

be the set of all paths going from p to ¢ over time t € [a, b]. &

Definition 19.1 The action of a path v € P is

b
mg
A, ::/ (2

Principle of least action.
The physical path 7 is the path for which A, is minimal.

Dol —vina )
dt v :

Newton’s second law for a constrained system.

Suppose that the n point-masses are restricted to move on a submanifold M
of R3" called the constraint set. We can now single out the actual physical
path g : [a,b] — M, with v9(a) = p and o(b) = ¢, as being “the” path which
minimizes A, among all those hypothetical paths v : [a,b] — R3" with y(a) = p,
~(b) = ¢ and satisfying the rigid constraints y(¢) € M for all ¢.

19.3 Variational Problems

Let M be an n-dimensional manifold. Its tangent bundle 7'M is a 2n-dimensional
manifold. Let F': TM — R be a smooth function.
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If v : [a,b] — M is a smooth curve on M, define the lift of v to TM to be
the smooth curve on TM given by

3:la,b) — TM
to— (v, 50) .

The action of v is

A= | Rt = / ' (w» f;a)) dt .

For fixed p,q € M, let

P(a,b,p,q) :== {7 : [a,b] — M | ~(a) = p, 7(b) = q} .

Problem.
Find, among all v € P(a, b,p, q), the curve vy which “minimizes” A, .

First observe that minimizing curves are always locally minimizing:

Lemma 19.2 Suppose that vo : [a,b] — M is minimizing. Let [a1,b1] be a
subinterval of [a,b] and let p1 = yo(a1), g1 = ~o(b1). Then Yola, b, 15 minimiz-
ing among the curves in P(ai,b1,p1,q1)-

Proof. Exercise:
Argue by contradiction. Suppose that there were v; € P(aq,b1,p1,q1) for
which A,, < AWO‘[M e Consider a broken path obtained from vy by replacing

the segment ol[, »,] by 71. Construct a smooth curve 2 € P(a,b,p,q) for
which A, < A,, by rounding off the corners of the broken path. O

We will now assume that p,q and 7y lie in a coordinate neighborhood
U,x1,...,25). On TU we have coordinates (z1,...,%n,v1,...,0,) associated
with a trivialization of TU by 6%1’ RN %. Using this trivialization, the curve

vilabl — U, () = (), m(D)

lifts to

7 :la, bl — TU A(t) = (yl(t),...,'yn(t),(Z;l(t),...,%(t)) .

Necessary condition for ~y € P(a,b,p,q) to minimize the action.
Let ¢1,...,cn € C([a,b]) be such that ¢;(a) = ¢;(b) = 0. Let ¢ : [a,b] —
U be the curve

Ye(t) = (M (t) +ec1(t), ..., (t) +ecn(t)) .

For € small, 7. is well-defined and in P(a, b, p, q).
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Let A. = A, = f; F (% (1), thE (t)) dt. If 7o minimizes A, then

)=
dc“lis o / Z [ ( thO (t)> ci(t) + gi <7 (t), d;fo (t)> Cjic;(t)} dt

/Z[axl : igi(“-)}ci(ﬂdt:o

where the first equality follows from the Leibniz rule and the second equality
follows from integration by parts. Since this is true for all ¢;’s satisfying the
boundary conditions ¢;(a) = ¢;(b) = 0, we conclude that

OF d’yo d OF d’yO

o (00, 200) = 450 (uler 220 BL
These are the Euler-Lagrange equations.
19.4 Solving the Euler-Lagrange Equations

Case 1: F(z,v) does not depend on v.

The Euler-Lagrange equations become

oF d
B ( o(t), Jto (t)) =0 <= the curve 7 sits on the critical set of F .

For generic F, the critical points are isolated, hence ~y(t) must be a con-
stant curve.

Case 2: F(x,v) depends affinely on v:

F(x,v) = Fy(z) + ZFj(:E)vj .

j=1
LHS of E-L: g:j (v(t) + ; gif (V(t))%(t)
RES of BT GRGW) =Y gf; ) 20

The Euler-Lagrange equations become

g0 =3 (5~ g2 ) o G
I ——

nxXn matrix
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If the n X n matrix (gi - g?) has an inverse G;;(z), then

Diy ZGJZ )22 (1)

is a system of first order ordinary differential equations. Locally it has a
unique solution through each point p. If ¢ is not on this curve, there is no
solution at all to the Euler-Lagrange equations belonging to P(a,b,p, q).

Therefore, we need non-linear dependence of F' on the v variables in order to
have appropriate solutions. From now on, assume that the

s 0*F
Legendre condition: det # 0
0v;0v;

Letting Gy (z,v) = (83_25;,_ (z, v)) , the Euler-Lagrange equations become

d?v; oF dry 0’F dy\ dvg
dt? ’E;G”a < dt> ;Gﬂ@viaxk (’”dt) dt

This second order ordinary differential equation has a unique solution given
initial conditions

dy
v(a) =p and G=v.

19.5 Minimizing Properties

Is the above solution locally minimizing?

Assume that (av Do; (x 7v)) > 0, V(z,v), i.e., with the x variable frozen, the
function v — F(z,v) is strictly convex.

Suppose that v € P(a, b, p, ¢) satisfies E-L. Does -y minimize .47 Locally,
yes, according to the following theorem. (Globally it is only critical.)

Theorem 19.3 For every sufficiently small subinterval [ay,b1] of [a, b], Yola,,b,]
is locally minimizing in P(a1,b1,p1,q1) where p1 = vo(a1), g1 = Yo(b1).

Proof. As an exercise in Fourier series, show the Wirtinger inequality: for
f € C*([a,b]) with f(a) = f(b) =0, we have

[l

dt
Suppose that v : [a,b] — U satisfies E-L. Take ¢; € C*®([a,b]), ¢;(a) =
ci(b) = 0. Let ¢ = (c1,...,¢n). Let 72 = v +ec € Pla,b,p,q), and let
A=A,

2
dt .
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dA.
E-L — T

(0) = 0.
/ab
/ab
/

d? A,
de?

(0)

: 9*F
Since (aviavj

I1I

it

I

Z ’F @ c; c; dt

i &maxj 0, dt v
82F d'YO de

e (0. G2) o G o

Ay P
i avic')vj o dt

(xm)) > 0 at all x,v,
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@

(1)

de; de

dt dt dt

(I11) .

del|?

K. |=
dt

111

L2[a,b]
K, |e[F 2004

de
dt

IN

KII ‘C|L2[a,b] .
L2[a,b]

where K|, K,;, K, > 0. By the Wirtinger inequality, if b — a is very small, then

III > |I|, [II]. Hence, 7o is a local minimum.

O



Homework 14: Minimizing Geodesics
This set of problems is adapted from [42].

Let (M, g) be a riemannian manifold. From the riemannian metric, we get
a function F' : TM — R, whose restriction to each tangent space T, M is the
quadratic form defined by the metric.

Let p and ¢ be points on M, and let v : [a,b] — M be a smooth curve joining
pto q. Let 7 : [a,b] = TM, 3(t) = (y(t), i—;’(t)) be the lift of v to TM. The
action of ~ is ,

ST at

A= [ G di = / iE

1. Let v : [a,b] — M be a smooth curve joining p to ¢. Show that the arc-
length of « is independent of the parametrization of v, i.e., show that if we
reparametrize v by 7 : [a/,b'] — [a,b], the new curve v/ =vor71: [d/,V] —
M has the same arc-length.

2. Show that, given any curve v : [a,b] — M (with Z—Z never vanishing), there
is a reparametrization 7 : [a,b] — [a,b] such that vy o7 : [a,b] — M is of
constant velocity, that is, |‘3—Z| is independent of t.

3. Let 7 : [a,b] — [a,b] be a smooth monotone map taking the endpoints of
[a, b] to the endpoints of [a, b]. Prove that

b 2
dr
Y at>b—
/a <dt> SR

. . . . . dr _
with equality holding if and only if 7% = 1.

4. Let v : [a,b] — M be a smooth curve joining p to ¢. Suppose that, as s
goes from a to b, its image 7(s) moves at constant velocity, i.e., suppose
that |%| is constant as a function of s. Let v/ = yo 7 : [a,b] — M be a
reparametrization of . Show that A(v") > A(y), with equality holding if
and only if 7(t) = t.
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5. Let v : [a,b] — M be a curve joining p to q. Suppose that 7 is action-

minimizing, i.e., suppose that

A(v) < A7)

for any other curve 7 : [a,b] — M joining p to g. Prove that vy is also arc-
length-minimizing, i.e., show that 7y is the shortest geodesic joining p
to q.

. Show that, among all curves joining p to ¢, o minimizes the action if and

only if ~q is of constant velocity and -y minimizes arc-length.

On a coordinate chart (U, z!, ..., 2") on M, we have

L(z,v) = Zgij (z)vivd .

Show that the Euler-Lagrange equations associated to the action reduce
to the Christoffel equations for a geodesic

d2,yk & d’}/z dny
r* ar _
e +2 (T 07) at at

where the Ffj’s (called the Christoffel symbols) are defined in terms of
the coefficients of the riemannian metric by

1 Ogei ~ O0ge; 09i;
Fk — - Lk J J
9 ;g <8$j + Ox; Oxp )’

(¢") being the matrix inverse to (gi;).

Let p and ¢ be two non-antipodal points on S™. Show that the geodesic
joining p to ¢ is an arc of a great circle, the great circle in question being
the intersection of S™ with the two-dimensional subspace of R"*! spanned
by p and gq.

Hint: No calculations are needed: Show that an isometry of a riemannian
manifold has to carry geodesics into geodesics, and show that there is an isom-
etry of R"*t! whose fixed point set is the plane spanned by p and ¢, and show
that this isometry induces on S™ an isometry whose fixed point set is the great
circle containing p and gq.



20 Legendre Transform

20.1 Strict Convexity

Let V be an n-dimensional vector space, with ey,...,e, a basis of V and
v1,...,0, the associated coordinates. Let F' : V — R, F = F(vy,...,v,),
be a smooth function. Let p € V, u = """ | u;e; € V. The hessian of F is the
quadratic function on V' defined by

(d2F),(u) = Zﬂ( Juiu
PR ,,(%iavjp v
Exercise. Show that (d*F),(u) = %F(p + tu)|y=o- &

Definition 20.1 The function F is strictly convex if (d*F), >0, Vpe V.

Theorem 20.2 For a strictly convez function F' on V', the following are equiv-
alent:

(a) F has a critical point, i.e., a point where dF, = 0;
(b) F has a local minimum at some point;
(c) F has a unique critical point (global minimum); and

(d) F is proper, that is, F(p) — 400 as p — oo in V.
Proof. Homework 15. O

Definition 20.3 A strictly convex function F' is stable when it satisfies con-
ditions (a)-(d) in Theorem 20.2.

Example. The function e” + ax is strictly convex for any a € R, but it is stable
only for a < 0. The function x2 + ax is strictly convex and stable for any a € R.

¢

20.2 Legendre Transform

Let F' be any strictly convex function on V. Given £ € V*, let
F:V—R, Fy(v) = F(v) = £(v) .
Since (d*F), = (d*F)p,

F is strictly convex <= Fjy is strictly convex.
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Definition 20.4 The stability set of a strictly convex function F is
Sp={0e V" | F; is stable} .

Theorem 20.5 The set Sg is an open and convex subset of V*.

Proof. Homework 15. O

Homework 15 also describes a sufficient condition for Sgp = V*.

Definition 20.6 The Legendre transform associated to F € C®(V;R) is
the map
LF Vo— Vv
p r— dF, €TV V™.

Theorem 20.7 Suppose that F is strictly convex. Then
LF : V i> SF B
i.e., Ly is a diffeomorphism onto Sp.

The inverse map L;l : Sp — V is described as follows: for [ € Sg, the
value L;l(é) is the unique minimum point py € V of F, = F — /.

Exercise. Check that p is the minimum of F'(v) — dF,(v). &

Definition 20.8 The dual function F* to F 1is

F*: S8 — R, F*(¢)=—minFy(p) .
peEV

Theorem 20.9 We have that L}l = Lp« .

Proof. Homework 15. O

20.3 Application to Variational Problems

Let M be a manifold and F : TM — R a function on T'M.
Problem. Minimize A, = [3*F.

At pe M, let
Fy,:=F|rm :T,M — R .

Assume that F), is strictly convex for all p € M. To simplify notation, assume
also that Sp, = T,y M. The Legendre transform on each tangent space

Lp, : T,M — TrM
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is essentially given by the first derivatives of F' in the v directions. The dual
function to F}, is F,; : Ty M — R. Collect these fiberwise maps into

L: TM — T*M, L,y = Lg,, and
H: T"M — R, HT;M:F;~
Exercise. The maps H and £ are smooth, and £ is a diffeomorphism. &
Let
v:la,b) — M be a curve, and

7 :la,b] — TM its lift.

Theorem 20.10 The curve v satisfies the E-L equations on every coordinate
chart if and only if Lo7 : [a,b] — T*M is an integral curve of the hamiltonian
vector field X .

Proof. Let

U,z1,...,2,) coordinate neighborhood in M ,
(TU,x,...,zn,v1,...,v,) coordinates in TM |
(T*U,x1,. .., X0, &1, .., &)  coordinates in T*M .

On TU we have F = F(z,v).
On T*U we have H = H(u,§).

£L: TU — THU
(z,v) — (x,8) where §€=1Lp (v)= %—f(m,v) .
(This is the definition of momentum ¢.)
H(z,§)=F; (&) =& v—F(z,v) where L(z,v)=(z¢).

Integral curves (z(t),£(t)) of Xy satisfy the Hamilton equations:

dx OH
H
d€ OH
i —%(x,f) ;
whereas the physical path x(t) satisfies the Euler-Lagrange equations:
oF dx d OF dx

Let (z(t),£(t)) = £ ((t), %(t)). We want to prove:

t— (x(t),£(t)) satisiess H < t+— (ar:(t)7 Cj;(t)) satisfies E-L



122 20 LEGENDRE TRANSFORM

The first line of H is automatically satisfied:

dv  OH dx

E:a*u:c,é):LF;(f):L;aj(f) = f:LFf(dt)

Claim. If (z,&) = L(z,v), then %—i(z,v) = f%—g(x,ﬁ).
This follows from differentiating both sides of H(z,&) = ¢ v — F(x,v) with
respect to x, where £ = L, (v) = &(z,v).

OH oM 0 05 oF
Oz o¢ dx  Ox ox
~—

v

Now the second line of H becomes

d OF o dg 37H 737F
a%(x,v)—a——ax (z,8) = ax(x,v) — E-L .

since £ = Lp, (v) by the claim




Homework 15: Legendre Transform

This set of problems is adapted from [41].

1. Let f : R — R be a smooth function. f is called strictly convex if
f"(z) > 0 for all x € R. Assuming that f is strictly convex, prove that
the following four conditions are equivalent:

(a

) f
(b) f has a local minimum at some point xg,
)

(c

(d) f(z) = +o0 as x — £oo.

() = 0 for some point xg,

f has a unique (global) minimum at some point xg,

The function f is stable if it satisfies one (and hence all) of these condi-
tions.

For what values of a is the function e* + ax stable? For those values of a
for which it is not stable, what does the graph look like?

2. Let V be an n-dimensional vector space and F' : V' — R a smooth function.
The function F is said to be strictly convex if for every pair of elements
p,v € V, v # 0, the restriction of F to the line {p + zv |z € R} is strictly
convex.

The hessian of F' at p is the quadratic form

d2
d?F, :v— @F(p—i— ) |g=0 -

Show that F is strictly convex if and only if d*F), is positive definite for
allpe V.

Prove the n-dimensional analogue of the result you proved in (1). Namely,
assuming that f is strictly convex, show that the four following assertions
are equivalent:

(a
(b

(d

3. As in exercise 2, let V be an n-dimensional vector space and F' : V —
R a smooth function. Since V is a vector space, there is a canonical
identification T;V ~ V*, for every p € V. Therefore, we can define a map

dF, = 0 at some point py,
F' has a local minimum at some point po,

F has a unique (global) minimum at some point py,

)
)
()
)

F(p) — 400 as p — oo.

L,:V->V* (Legendre transform)

by setting
L.(p)=dF, e T,V ~V*.

Show that, if F' is strictly convex, then, for every point p € V, L, maps a
neighborhood of p diffeomorphically onto a neighborhood of L. (p).
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4. A strictly convex function F : V — R is stable if it satisfies the four

equivalent conditions of exercise 2. Given any strictly convex function F,
we will denote by S, the set of [ € V* for which the function F} : V — R,
p+— F(p) —l(p), is stable. Prove that:

(a) The set S, is open and convex.

(b) L, maps V diffeomorphically onto S,,.

(c) If 1 € S, and po = L (1), then py is the unique minimum point of
the function Fj.

Let F* : S, — R be the function whose value at [ is the quantity

—mi‘r/lFl(p). Show that F'* is a smooth function.
pe

The function F* is called the dual of the function F'.

Let F be a strictly convex function. F is said to have quadratic growth
at infinity if there exists a positive-definite quadratic form @ on V and
a constant K such that F(p) > Q(p) — K, for all p. Show that, if F
has quadratic growth at infinity, then S, = V* and hence L, maps V
diffeomorphically onto V*.

Let F' : V — R be strictly convex and let F* : S, — R be the dual
function. Prove that for allp € V and alll € S,

F(p)+ F*(1) > U(p) (Young inequality) .
On one hand we have V x V* ~ T*V, and on the other hand, since
V=V wehave V X V* > V* x V >~ T*V*.
Let o be the canonical 1-form on T*V and a9 be the canonical 1-form on
T*V*. Via the identifications above, we can think of both of these forms
as living on V' x V*. Show that oy = dfB — az, where §: V x V* — R is
the function G(p,1) = l(p).
Conclude that the forms w; = day and wy = dag satisfy w; = —ws.
Let F : V — R be strictly convex. Assume that F' has quadratic growth
at infinity so that S, = V*. Let A, be the graph of the Legendre trans-

form L,. A, is a lagrangian submanifold of V' x V* with respect to the
symplectic form wy; why? Hence, A, is also lagrangian for ws.

Let pry : A, — V and pry : A, — V* be the restrictions of the projection
maps VxV* - Vand V xV* - V* andlet ¢ : A, — V x V* be the
inclusion map. Show that

*ap =d(pry)*F .
Conclude that
Yoy =d(1* 0 — (pry)"F) = d(pry)* F*

and from this conclude that the inverse of the Legendre transform associ-
ated with F' is the Legendre transform associated with F™.



Part VIII
Moment Maps

The concept of a moment map'® is a generalization of that of a hamiltonian
function. The notion of a moment map associated to a group action on a
symplectic manifold formalizes the Noether principle, which states that to every
symmetry (such as a group action) in a mechanical system, there corresponds
a conserved quantity.

21 Actions

21.1 One-Parameter Groups of Diffeomorphisms

Let M be a manifold and X a complete vector field on M. Let p; : M — M,
t € R, be the family of diffeomorphisms generated by X. For each p € M, p,(p),
t € R, is by definition the unique integral curve of X passing through p at time
0, i.e., pt(p) satisfies

po(p) = p
D) ()

Claim. We have that p; o ps = pi4s.

Proof. Let ps(q) = p. We need to show that (p; o ps)(q) = prrs(q), for all
t € R. Reparametrize as p:(q) := prys(q). Then

po(q) = ps(q) =p
Pla) - doell) () = X ()

i.e., pt(q) is an integral curve of X through p. By uniqueness we must have
pt(q) = pi(p), that is, prys(q) = pe(ps(a))- O

Consequence. We have that p; ' = p_;.

In terms of the group (R,+) and the group (Diff(M),o) of all diffeomor-
phisms of M, these results can be summarized as:

Corollary 21.1 The map R — Diff (M), t — pq, is a group homomorphism.

10Souriau invented the french name “application moment.” In the US, East and West
coasts could be distinguished by the choice of translation: moment map and momentum map,
respectively. We will stick to the more economical version.
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The family {p; | t € R} is then called a one-parameter group of diffeo-
morphisms of M and denoted

pr =exptX .

21.2 Lie Groups

Definition 21.2 A Lie group is a manifold G equipped with a group structure
where the group operations

GxG@ — @ and G — G

(a,b) — a-b a — a

are smooth maps.

Examples.
e R (with addition!?!).

e S! regarded as unit complex numbers with multiplication, represents ro-
tations of the plane: S! = U(1) = SO(2).

e U(n), unitary linear transformations of C™.

e SU(n), unitary linear transformations of C™ with det = 1.
e O(n), orthogonal linear transformations of R™.

e SO(n), elements of O(n) with det = 1.

e GL(V), invertible linear transformations of a vector space V.

%

Definition 21.3 A representation of a Lie group G on a vector space V' is a
group homomorphism G — GL(V).

21.3 Smooth Actions

Let M be a manifold.

Definition 21.4 An action of a Lie group G on M is a group homomorphism

v: G — Diff(M)
g = ¢g~

HThe operation will be omitted when it is clear from the context.
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(We will only consider left actions where 1 is a homomorphism. A right ac-
tion is defined with v being an anti-homomorphism.) The evaluation map
associated with an action v : G — Diff (M) is

evy: MxG — M
(p,g) — g(p) -

The action 1) is smooth if evy, is a smooth map.

Example. If X is a complete vector field on M, then

p: R — Diff(M)
t — pr=exptX
is a smooth action of R on M. &

Every complete vector field gives rise to a smooth action of R on M. Con-
versely, every smooth action of R on M is defined by a complete vector field.

{complete vector fields on M} &L {smooth actions of R on M}
X +— exptX

X _ dip(p)
P dt |,_,

— Y

21.4 Symplectic and Hamiltonian Actions

Let (M, w) be a symplectic manifold, and G a Lie group. Let ¢ : G — Diff (M)
be a (smooth) action.

Definition 21.5 The action ¢ is a symplectic action if
¢ : G — Sympl(M,w) C Diff(M) ,

i.e., G “acts by symplectomorphisms.”

{complete symplectic vector fields on M} &L {symplectic actions of R on M}

Example. On R?" with w = Y dz; A dy;, let X = —a%. The orbits of the

action generated by X are lines parallel to the y;-axis,

{($1,y1 _t7$25y27"'7$n)yn) |t€R} .

Since X = X, is hamiltonian (with hamiltonian function H = ), this is
actually an example of a hamiltonian action of R. O
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Example. On S? with w = df Adh (cylindrical coordinates), let X = %. Each
orbit is a horizontal circle (called a “parallel”) {(6 + ¢, h) | t € R}. Notice that
all orbits of this R-action close up after time 27, so that this is an action of S!:

Y: S —  Sympl(S?, w)
t +—— rotation by angle ¢ around h-axis .

Since X = X}, is hamiltonian (with hamiltonian function H = h), this is an
example of a hamiltonian action of S*. &

Definition 21.6 A symplectic action ¥ of S* or R on (M,w) is hamiltonian
if the vector field generated by v is hamiltonian. Equivalently, an action i of
St or R on (M,w) is hamiltonian if there is H : M — R with dH = 1xw,
where X is the vector field generated by .

What is a “hamiltonian action” of an arbitrary Lie group?

For the case where G = T" = S! x ... x S! is an n-torus, an action ¢ : G —
Sympl(M, w) should be called hamiltonian when each restriction

W = '(/)|ith S1 factor - Sl — Sympl(Maw)

is hamiltonian in the previous sense with hamiltonian function preserved by the
action of the rest of G.

When G is not a product of S'’s or R’s, the solution is to use an upgraded
hamiltonian function, known as a moment map. Before its definition though (in
Lecture 22), we need a little Lie theory.

21.5 Adjoint and Coadjoint Representations

Let G be a Lie group. Given g € G let

Ly: G — G
a — g-a
be left multiplication by g. A vector field X on G is called left-invariant if
(Lg)+X = X for every g € G. (There are similar right notions.)
Let g be the vector space of all left-invariant vector fields on G. Together

with the Lie bracket [, -] of vector fields, g forms a Lie algebra, called the Lie
algebra of the Lie group G.

Exercise. Show that the map

g — T.G
X — X,

where e is the identity element in G, is an isomorphism of vector spaces.
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Any Lie group G acts on itself by conjugation:

G — Diff(G)
g — Uy, Ygla)=g-a-g".

The derivative at the identity of

vg: G — G

a +— g-oa-g_1

is an invertible linear map Ad, : g — g. Here we identify the Lie algebra g with
the tangent space T.G. Letting g vary, we obtain the adjoint representation
(or adjoint action) of G on g:

Ad: G — GL(g)
g — Ad,.

Exercise. Check for matrix groups that

d
ZAdeixY|  =[XY],  VXYeg.
t=0

Hint: For a matrix group G (i.e., a subgroup of GL(n;R) for some n), we have
Ad,(Y)=gYg ', YVge G, VY €g

and
[X,)Y]=XY -YX, vVX,Y eg.

Let (-,-) be the natural pairing between g* and g:
() g"xg — R
& X) — (§X)=¢X).
Given ¢ € g*, we define Ad}¢ by
(AdyE, X) = (§,Adg1 X) forany X €g.

The collection of maps Ad; forms the coadjoint representation (or coadjoint
action) of G on g*:
Ad*: G — GL(g")
g +—— Adj.

We take ¢! in the definition of Adg¢ in order to obtain a (left) represen-
tation, i.e., a group homomorphism, instead of a “right” representation, i.e., a
group anti-homomorphism.

Exercise. Show that Ad,;oAd, =Adg, and AdZ o Adj, = Ad;h RS



Homework 16: Hermitian Matrices

Let H be the vector space of n x n complex hermitian matrices.

The unitary group U(n) acts on ‘H by conjugation: ~ A-£ = AEA™L, for A €
U(n) ,& € H.

For each A = (A1,...,\,) € R™, let Hy be the set of all n x n complex
hermitian matrices whose spectrum is .

1. Show that the orbits of the U(n)-action are the manifolds H.
For a fixed A € R™, what is the stabilizer of a point in H,?

Hint: If \q,..., )\, are all distinct, the stabilizer of the diagonal matrix is
the torus T™ of all diagonal unitary matrices.

2. Show that the symmetric bilinear form on H, (X,Y) — trace (XY) , is
nondegenerate.
For £ € H, define a skew-symmetric bilinear form w, on u(n) = T1U(n) =
iH (space of skew-hermitian matrices) by

w, (X,Y) = trace ([X,Y]E), XY eiH.

Check that w, (X,Y) = trace (X(Y¢{ —¢Y)) and Y — Y € H.
Show that the kernel of w, is K, :={Y € u(n)|[Y,{] = 0}.

3. Show that K, is the Lie algebra of the stabilizer of .
Hint: Differentiate the relation AEA™1 = €.

Show that the w,’s induce nondegenerate 2-forms on the orbits H,.
Show that these 2-forms are closed.
Conclude that all the orbits H ) are compact symplectic manifolds.

4. Describe the manifolds H .
When all eigenvalues are equal, there is only one point in the orbit.
Suppose that A\; # A2 = ... = \,. Then the eigenspace associated with
A1 is a line, and the one associated with A5 is the orthogonal hyperplane.
Show that there is a diffeomorphism H, ~ CP"~!. We have thus exhib-
ited a lot of symplectic forms on CP"~!, on for each pair of distinct real
numbers.
What about the other cases?

Hint: When the eigenvalues A\1 < ... < A, are all distinct, any element in
H ) defines a family of pairwise orthogonal lines in C™: its eigenspaces.

5. Show that, for any skew-hermitian matrix X € u(n), the vector field on H
generated by X € u(n) for the U(n)-action by conjugation is Xs# =[X,¢].
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22 Hamiltonian Actions

22.1 Moment and Comoment Maps

Let

(M,w) be a symplectic manifold,
G a Lie group, and
¥ : G — Sympl(M,w) a (smooth) symplectic action, i.e., a group homomorphism
such that the evaluation map evy (g, p) := ¥4(p) is smooth.
Case G =R:

We have the following bijective correspondence:

{symplectic actions of R on M} = {complete symplectic vector fields on M}

Xp — d+(p)

P — o

Pp=exptX «— X
“flow of X” “vector field generated by "

The action 1 is hamiltonian if there exists a function H : M — R such that
dH = 1xw where X is the vector field on M generated by 1.

Case G = S':

An action of S! is an action of R which is 27-periodic: g, = 1g. The
Sl-action is called hamiltonian if the underlying R-action is hamiltonian.

General case:
Let

(M,w) be a symplectic manifold,
G a Lie group,

g the Lie algebra of G,

g* the dual vector space of g, and

¥ : G — Sympl(M,w) a symplectic action.
Definition 22.1 The action v is a hamiltonian action if there exists a map
peM— g*
satisfying:

1. For each X € g, let
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o XM — R, pX(p) = (u(p), X), be the component of i along X,

o X7 be the vector field on M generated by the one-parameter subgroup
{exptX |t e R} C G.

Then
dp™ =1xsw

i.e., uX is a hamiltonian function for the vector field X#.

2. u is equivariant with respect to the given action v of G on M and the
coadjoint action Ad* of G on g*:

pothy =Adjopu, forallge G .
The vector (M,w, G, 1) is then called a hamiltonian G-space and u is a mo-
ment map.

Hamiltonian actions can be equivalently defined in terms of a comoment

map
/’[’* ‘g — COO(M) )

with the two conditions rephrased as:
1. u*(X) := p~ is a hamiltonian function for the vector field X#,
2. u* is a Lie algebra homomorphism:
pr X, Y] = {p*(X), p* (Y)}

where {-,} is the Poisson bracket on C*°(M).

These definitions match the previous ones for the cases G = R, S*, torus,
where equivariance becomes invariance since the coadjoint action is trivial.

Case G = S! (or R):
Here g ~ R, g* ~ R. A moment map u: M — R satisfies:

1. For the generator X = 1 of g, we have X (p) = u(p) - 1, i.e., u* = p, and
X# is the standard vector field on M generated by S'. Then dy = 1 x#w.

2. w is invariant: Lx#p = 1x#dyp = 0.
Case G = T™ = n-torus:
Here g ~ R", g* ~ R™. A moment map p: M — R" satisfies:
1. For each basis vector X; of R™, u*¢ is a hamiltonian function for Xi# .

2. p is invariant.
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22.2 Orbit Spaces

Let ¢ : G — Diff (M) be any action.

Definition 22.2 The orbit of G through p € M is {14(p) | g € G}
The stabilizer (or isotropy) of p € M is the subgroup G, = {g € G |

Vy(p) = p}-

Exercise. If ¢ is in the orbit of p, then G4 and G, are conjugate subgroups. <

Definition 22.3 We say that the action of G on M s ...
e transitive if there is just one orbit,
o free if all stabilizers are trivial {e},
e locally free if all stabilizers are discrete.
Let ~ be the orbit equivalence relation; for p,q € M,
p~gq <= pand q are on the same orbit.
The space of orbits M/ ~ = M/G is called the orbit space. Let

T M — M/G
p +—— orbit through p
be the point-orbit projection.
Topology of the orbit space:

We equip M/G with the weakest topology for which 7 is continuous, i.e.,
U C M/G is open if and only if 771(Uf) is open in M. This is called the
quotient topology. This topology can be “bad.” For instance:

Example. Let G =R act on M =R by
t — 1p; = multiplication by e'.

There are three orbits RT, R~ and {0}. The point in the three-point orbit space
corresponding to the orbit {0} is not open, so the orbit space with the quotient
topology is not Hausdorff. &

Example. Let G = C\{0} act on M = C" by
A — ) = multiplication by A .

The orbits are the punctured complex lines (through non-zero vectors z € C"),
plus one “unstable” orbit through 0, which has a single point. The orbit space
is

M/G = CP"* L {point} .
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The quotient topology restricts to the usual topology on CP"~!. The only open
set containing {point} in the quotient topology is the full space. Again the
quotient topology in M/G is not Hausdorff.

However, it suffices to remove 0 from C" to obtain a Hausdorff orbit space:
CP"~!. Then there is also a compact (yet not complex) description of the orbit
space by taking only unit vectors:

CPl = ((C”\{O}) / (C\{O}) = §2n=1/g1

22.3 Preview of Reduction

Let w = % Sodzi Ndzp =D da; ANdy; =Y ridr; AdB; be the standard symplectic
form on C". Consider the following S!-action on (C",w):

t € S — 1, = multiplication by e’ .
1) is hamiltonian with moment map

uw: C — R

zZ —% -+ constant
since L 5
dp = —§d(Z 7)
0 0 0
X# = — 4 _— 4. . 44—
26, " o0, T " o0,
ixrw = —yoridri=—13>"dr? .

If we choose the constant to be %, then 1~(0) = S2"~! is the unit sphere. The
orbit space of the zero level of the moment map is

M_l(O)/Sl _ S2n—1/5«1 _ (C]P;n—l .

CP"~! is thus called a reduced space. Notice also that the image of the
moment map is half-space.

These particular observations are related to major theorems:

Under assumptions (explained in Lectures 23-29),

e [Marsden-Weinstein-Meyer| reduced spaces are symplectic manifolds;

e [Atiyah-Guillemin-Sternberg] the image of the moment map is a convex
polytope;

e [Delzant] hamiltonian T"-spaces are classified by the image of the moment
map.
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22.4 Classical Examples

Example.

Let G = SO(3) = {A € GL(3;R) | A'A = Id and detA = 1}. Then
g={A€gl(3;R) | A+ A" = 0} is the space of 3 x 3 skew-symmetric matrices
and can be identified with R3. The Lie bracket on g can be identified with the
exterior product via

0 —as as
A= as 0 —a — @ = (a1, a9,a3)
—a9 ay 0

)

[A,B]=AB—BA — @ x

Exercise. Under the identifications g, g* ~ R?, the adjoint and coadjoint ac-
tions are the usual SO(3)-action on R? by rotations. O

Therefore, the coadjoint orbits are the spheres in R? centered at the origin.
Homework 17 shows that coadjoint orbits are symplectic. O

The name “moment map” comes from being the generalization of linear and
angular momenta in classical mechanics.

Translation: Consider R® with coordinates 1, z2, 3,91, y2, y3 and symplectic
form w =" dx; A dy;. Let R? act on RS by translations:

@ eR? — 1 € Sympl(R®, w)
V(T Y)=(T+7a,7) .

# g O o 9 -
Then X =15, T 25, + a3, for X = @, and

p:RC—R W(T,Y)=7

is a moment map, with

—

p (T, 7)) =T 7). a)=7-a.

Classically, 7/ is called the momentum vector corresponding to the position
vector 7', and the map p is called the linear momentum.

Rotation: The SO(3)-action on R3 by rotations lifts to a symplectic action 1)
on the cotangent bundle R®. The infinitesimal version of this action is

T eER — dl/)(ﬂ)) S Xsympl(RG)

dp(@)(7, ) = (@ xT,ax7).
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Then
M:R6—>R37 M(?77):?X7

is a moment map, with

—

p(T, 7)) =T, 7),T) = (T x7) T

The map p is called the angular momentum.



Homework 17: Coadjoint Orbits

Let G be a Lie group, g its Lie algebra and g* the dual vector space of g.

1.

Let 9X7# be the vector field generated by X € g for the adjoint represen-
tation of G on g. Show that

8X# = [X,Y] VYeg.

. Let X# be the vector field generated by X € g for the coadjoint represen-

tation of G on g*. Show that
# —
<X5 7Y>_<£7[Y7X]> VYEQ

. For any £ € g*, define a skew-symmetric bilinear form on g by

w (X,Y) = (£ [X,Y]) .

Show that the kernel of w, is the Lie algebra g, of the stabilizer of £ for
the coadjoint representation.

Show that w, defines a nondegenerate 2-form on the tangent space at £ to
the coadjoint orbit through &.

. Show that w, defines a closed 2-form on the orbit of  in g*.

Hint: The tangent space to the orbit being generated by the vector fields
X# this is a consequence of the Jacobi identity in g.

This canonical symplectic form on the coadjoint orbits in g* is also
known as the Lie-Poisson or Kostant-Kirillov symplectic structure.

. The Lie algebra structure of g defines a canonical Poisson structure on g*:

{fvg}(g) = <§7 [dfgvdggb

for f,g € C*>°(g*) and § € g*. Notice that df, : T,g* ~ g* — R is identified
with an element of g ~ g**.
Check that {-, -} satisfies the Leibniz rule:

{f.gh} = g{f.h} +h{f. g} .
Show that the jacobiator
J(f.9.h) = {9} hy +{{g.h}, f} + {{h, f}, 9}

is a trivector field, i.e., J is a skew-symmetric trilinear map C°(g*) x
C>(g*) x C*(g*) — C*(g*), which is a derivation in each argument.

Hint: Being a derivation amounts to the Leibniz rule from exercise 6.

. Show that J =0, i.e., {-, -} satisfies the Jacobi identity.

Hint: Follows from the Jacobi identity for [-, ] in g. It is enough to check on
coordinate functions.
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Part IX
Symplectic Reduction

The phase space of a system of n particles is the space parametrizing the position
and momenta of the particles. The mathematical model for the phase space is
a symplectic manifold. Classical physicists realized that, whenever there is a
symmetry group of dimension k acting on a mechanical system, then the number
of degrees of freedom for the position and momenta of the particles may be
reduced by 2k. Symplectic reduction formulates this feature mathematically.

23 The Marsden-Weinstein-Meyer Theorem

23.1 Statement

Theorem 23.1 (Marsden-Weinstein-Meyer [59, 66]) Let (M,w,G, u) be
a hamiltonian G-space for a compact Lie group G. Let i : u=1(0) — M be the
inclusion map. Assume that G acts freely on p=1(0). Then

e the orbit space Myeq = = *(0)/G is a manifold,
o m:pu 1(0) = Myeq is a principal G-bundle, and
e there is a symplectic form wreq on Myieq satisfying i*w = T wWred.

Definition 23.2 The pair (Myed, wred) s called the reduction of (M,w) with
respect to G, u, or the reduced space, or the symplectic quotient, or the
Marsden-Weinstein-Meyer quotient, etc.

Low-brow proof for the case G = S' and dim M = 4.

In this case the moment map is g : M — R. Let p € u=(0). Choose local
coordinates:

e @ along the orbit through p,
e 1 given by the moment map, and
e 11,72 pullback of coordinates on p~1(0)/S?.
Then the symplectic form can be written
w=AdOANdp+ B; dd ANdn; + Cj dpu Adnj + D dni Adna .
Since du =1 (%) w, we must have A =1, B; = 0. Hence,
w=ddANdp+Cj dpNdn; +D dny Adno .

Since w is symplectic, we must have D # 0. Therefore, i*w = D dny Adns is the
pullback of a symplectic form on M,eq. O

The actual proof of the Marsden-Weinstein-Meyer theorem requires the follow-
ing ingredients.
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23.2 Ingredients

1. Let g, be the Lie algebra of the stabilizer of p € M. Then du,, : T,M — g*
has

ker dpp = (T,0,)%

im dp, = g
where O, is the G-orbit through p, and g9 = {¢ € g* | ({,X) =0, VX €
gp} is the annihilator of g,.

Proof. Stare at the expression w,(X#,v) = (duy(v), X), for all v € T,M

and all X € g, and count dimensions. 0
Consequences:

e The action is locally free at p
> gp ={0}
<= dpu, is surjective
<= pis a regular point of pu.
e G acts freely on u=1(0)
= 0 is a regular value of u
= 1 1(0) is a closed submanifold of M
of codimension equal to dim G.
e G acts freely on u~1(0)
= T,u ' (0) = kerdpu, (for p € p=1(0))
= T,u~'(0) and T,,0, are symplectic orthocomplements in T, M.

In particular, the tangent space to the orbit through p € p=1(0) is
an isotropic subspace of T, M. Hence, orbits in x~!(0) are isotropic.

Since any tangent vector to the orbit is the value of a vector field gen-
erated by the group, we can confirm that orbits are isotropic directly by
computing, for any X,Y € g and any p € u~1(0),

wy(X#,Y,#) = hamiltonian function for [Y#, X#] at p
= hamiltonian function for [V, X]* at p
= uXp)=0.

2. Lemma 23.3 Let (V,w) be a symplectic vector space. Suppose that I
is an isotropic subspace, that is, w|; = 0. Then w induces a canonical
symplectic form Q on I*/I.

Proof. Let u,v € I¥, and [u], [v] € I/I. Define Q([u], [v]) = w(u,v).
o () is well-defined:

wu+1i,v+7j) = wu,v) + w(u,j) +wi,v) +wli,j) , Vi,jel.
—— N—— ——
0 0 0
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e () is nondegenerate:
Suppose that u € I has w(u,v) =0, for all v € I¥.
Then u € (I¥)* =1, i.e., [u] = 0.

O

3. Theorem 23.4 If a compact Lie group G acts freely on a manifold M,
then M /G is a manifold and the map w : M — M/G is a principal G-
bundle.

Proof. For any p € M, the G-orbit through p is diffeomorphic to G since
G acts freely.

Claim. The G-orbit through p is a compact embedded submanifold of M
(even if the action is not free).

Proof of the Claim. Since the action is smooth, the evaluation map
ev: GxM — M, ev(g,p) = ¢-p, is smooth. Let ev, : G — M be
defined by ev,(g) = g - p. The image of ev,, is the G-orbit through p. Let
G, ={9 € G| g-p=p} be the isotropy group of p. (G, = {id} for a free
action.) The evaluation map ev, factors through G,:

€vp

G - M

evy
G/G,

where ev, is an injective immersion. Hence, the orbit through p is an
embedded submanifold of M diffeomorphic to G/G),. Since G is compact,

G/G, is also compact. O
Let S be a transverse section to O, at p; this is called a slice. Choose a
coordinate system x1,...,x, centered at p such that

G : = ... =z, = 0

S @ Ty = ... = z,, = 0.

Let S. = SN B:(0,R™) where B.(0,R") is the ball of radius ¢ centered
at 0in R™. Letn: G xS — M, n(g,s) = g-s. Apply the following
equivariant tubular neighborhood theorem..

Theorem 23.5 (Slice Theorem) Let G be a compact Lie group acting
on a manifold M such that G acts freely at p € M. For sufficiently small
e, n:GxS: — M maps G x S diffeomorphically onto a G-invariant
neighborhood U of the G-orbit through p.
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The proof of this slice theorem is sketched further below.

Corollary 23.6 If the action of G is free at p, then the action is free on
U.

Corollary 23.7 The set of points where G acts freely is open.

Corollary 23.8 The set G x S; ~ U is G-invariant. Hence, the quotient
U/G ~ S, is smooth.

Conclusion of the proof that M/G is a manifold and 7 : M — M/G is
a smooth fiber map.

Forp € M, let ¢ = (p) € M/G. Choose a G-invariant neighborhood U of
p as in the slice theorem: U ~ G x S (where S = S. for an appropriate €).
Then n(U) = U/G =: V is an open neighborhood of ¢ in M/G. By the slice
theorem, S = V is a homeomorphism. We will use such neighborhoods
V as charts on M/G. To show that the transition functions associated
with these charts are smooth, consider two G-invariant open sets U7, Us in
M and corresponding slices S, Sy of the G-action. Then S1o = S1 NUs,
So1 = SaNU; are both slices for the G-action on U; NUs. To compute the
transition map S12 — Sa1, consider the diagram

812 i id><512 — GXSlg

\2
/e

U NUs .

521 i id x Sgl — G x 521
Then the composition
512 ‘—>U1 ﬂZ/{Q i> G x Sgl L 521

is smooth.
Finally, we need to show that 7 : M — M/G is a smooth fiber map.
For p € M, ¢ = w(p), choose a G-invariant neighborhood U of the G-

orbit through p of the form n : G x S S Y. Then V = U/G ~ S is the
corresponding neighborhood of ¢ in M/G:

M> U <L GxS ~ GxV
lm !
M/GD> V = Vv

Since the projection on the right is smooth, 7 is smooth.

Exercise. Check that the transition functions for the bundle defined by
m are smooth. &
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O

Sketch for the proof of the slice theorem. We need to show that,
for € sufficiently small, n : G x S; — U is a diffeomorphism where Y C M
is a G-invariant neighborhood of the G-orbit through p. Show that:

(a) dnga,p) is bijective.
(b) Let G act on G x S by the product of its left action on G and trivial
action on S. Then n: G x § — M is G-equivariant.

(c) dn is bijective at all points. This follows from (a) and (b).

(d) The set G x {p} is compact, and  : G x S — M is injective on
G x {p} with dn bijective at all these points. By the implicit function
theorem, there is a neighborhood Uy of G x {p} in G x S such that
1 maps Uy diffeomorphically onto a neighborhood U of the G-orbit
through p.

(e) The sets G x Se, varying ¢, form a neighborhood base for G x {p} in
G x S. So in (d) we may take Uy = G x S..

O

23.3 Proof of the Marsden-Weinstein-Meyer Theorem

Since

G acts freely on p=1(0) = dp, is surjective for all p € u~1(0)
= 0 is a regular value
=~ 1(0) is a submanifold of codimension = dim G

for the first two parts of the Marsden-Weinstein-Meyer theorem it is enough to
apply the third ingredient from Section 23.2 to the free action of G on p~1(0).

At p € p71(0) the tangent space to the orbit 7,0, is an isotropic subspace
of the symplectic vector space (T, M,w,), i.e., T,0, C (T,0,)%.

(T,0,)* = kerdu, = T,p = (0) .

The lemma (second ingredient) gives a canonical symplectic structure on the
quotient T}, ~1(0)/T,0,. The point [p] € Myeq = p~*(0)/G has tangent space
TipiMrea ~ Tpp=*(0)/T,Op. Thus the lemma defines a nondegenerate 2-form
Wred ON Myeq. This is well-defined because w is G-invariant.

By construction ¢*w = 7*weq Where

PO S M
Il
Mrcd

Hence, m*dwieq = dn*wreq = di*w = 2*dw = 0. The closedness of w,.q follows
from the injectivity of 7*. O
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Remark. Suppose that another Lie group H acts on (M, w) in a hamiltonian
way with moment map ¢ : M — bh*. If the H-action commutes with the G-
action, and if ¢ is G-invariant, then M,.q inherits a hamiltonian action of H,
with moment map ¢req : Mreq — h* satisfying ¢eq 0o ™ = ¢ 0 i. &



24 Reduction

24.1 Noether Principle
Let (M,w, G, u) be a hamiltonian G-space.

Theorem 24.1 (Noether) If f: M — R is a G-invariant function, then u
s constant on the trajectories of the hamiltonian vector field of f.

Proof. Let vy be the hamiltonian vector field of f. Let X € g and p* =
(u, Xy : M — R. We have

ﬁuqu = zvfd,uX =y ix#W
= —ix#ly,w = —ix#df
= —EX#f =0
because f is G-invariant. g

Definition 24.2 A G-invariant function f : M — R is called an integral of
motion of (M,w,G,u). If u is constant on the trajectories of a hamiltonian
vector field vy, then the corresponding one-parameter group of diffeomorphisms
{exptvs | t € R} is called a symmetry of (M,w,G, p).

The Noether principle asserts that there is a one-to-one correspondence
between symmetries and integrals of motion.

24.2 Elementary Theory of Reduction

Finding a symmetry for a 2n-dimensional mechanical problem may reduce it
to a (2n — 2)-dimensional problem as follows: an integral of motion f for a
2n-dimensional hamiltonian system (M,w, H) may enable us understand the
trajectories of this system in terms of the trajectories of a (2n — 2)-dimensional
hamiltonian system (Myed, Wred, Hred). To make this precise, we will describe
this process locally. Suppose that U/ is an open set in M with Darboux coordi-
nates x1,...,Tn,&1,...,&, such that f = &, for this chart, and write H in these
coordinates: H = H(x1,...,2n,&1,...,&,). Then

the trajectories of vy lie on the
hyperplane &,, = constant
:>H:H(x17"'azn—17£17"'7£n) .

&, is an integral of motion =—

145
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If we set &, = ¢, the motion of the system on this hyperplane is described
by the following Hamilton equations:

dx OH

ditl = 8751 (xla"'7xn—1a€17'~'a€n—lac>
dz,_ OH

i 1 — afn_l (xl,...,xn,l,fl,...,én,hc)
d oOH

% = _87371 (xlu"~7xnfla€17"'1£n717c)
dén_ OH

% = _633”_1 (xl,...,xn,l,&,...,én,hc)
dzn  _ OH

dt &,

d&n  _ _OH _

dt a or,

The reduced phase space is

ured - {(xla cee 7xn—1a§15 sa agn—l) € RQTL—Q |
(X1, Tp-1,0,&1,...,&n—1,¢) €U for some a} .

The reduced hamiltonian is

Hred :ured — R )
Hred(xl7"'7mnfl7§13-'-a£n71> = H(.’L‘l,- "7xn717€17"'?§’ﬂ717c> .

In order to find the trajectories of the original system on the hypersurface
&, = ¢, we look for the trajectories

1’1(t), s 7377171(15), gl(t)7 s 7§n71(t)
of the reduced system on U,.q. We integrate the equation

dzn
dt

_0H

(ﬂ—g

(x1(t), -y Tn—1(t),&1(t)y ..., En1(t), )

to obtain the original trajectories

wa(t) = @n(0)+ fy ZL(..)dt
&) = c.
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24.3 Reduction for Product Groups
Let G1 and G5 be compact connected Lie groups and let G = G; X G5. Then
g=01Dg and g =019 .
Suppose that (M,w, G, ) is a hamiltonian G-space with moment map
Y:M-—gi®g; .

Write ¢ = (¢1,12) where ¢; : M — g for i = 1,2. The fact that ¢ is
equivariant implies that 1, is invariant under G and v is invariant under G;.
Now reduce (M,w) with respect to the Gi-action. Let

Zy =7 (0) .

Assume that G; acts freely on Z;. Let My = Z1/G; be the reduced space
and let w; be the corresponding reduced symplectic form. The action of Go
on Z; commutes with the Gi-action. Since G5 preserves w, it follows that
G4 acts symplectically on (M7, w;). Since G; preserves ¢, GG1 also preserves
Yo 0y 1 41 — g5, where ¢1 : Z; — M is inclusion. Thus 12 o ¢ is constant on
fibers of Z; 2 M;. We conclude that there exists a smooth map ps : M; — 95
such that po op =19 01.

Exercise. Show that:
(a) the map ps is a moment map for the action of G5 on (M, wy), and

(b) if G acts freely on 1»~1(0,0), then Gy acts freely on 5 *(0), and there is a
natural symplectomorphism

115 1(0)/Ga =~ 7(0,0)/G .

&

This technique of performing reduction with respect to one factor of a prod-
uct group at a time is called reduction in stages. It may be extended to
reduction by a normal subgroup H C G and by the corresponding quotient
group G/H.

24.4 Reduction at Other Levels

Suppose that a compact Lie group G acts on a symplectic manifold (M,w) in a
hamiltonian way with moment map p: M — g*. Let £ € g*.

To reduce at the level & of u, we need p~1(£) to be preserved by G, or else
take the G-orbit of ;=1(£), or else take the quotient by the maximal subgroup
of G which preserves p=1(&).
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Since p is equivariant,

G preserves u~1(§) <= G preserves ¢
= Ad=¢ Vgel.

Of course the level 0 is always preserved. Also, when G is a torus, any level
is preserved and reduction at £ for the moment map p, is equivalent to reduction
at 0 for a shifted moment map ¢ : M — g*, ¢(p) := u(p) — &.

Let O be a coadjoint orbit in g* equipped with the canonical symplec-
tic form (also know as the Kostant-Kirillov symplectic form or the Lie-
Poisson symplectic form) wp defined in Homework 17. Let O~ be the orbit
O equipped with —we. The natural product action of G on M x O~ is hamil-
tonian with moment map pe(p, &) = u(p) —£. If the Marsden-Weinstein-Meyer
hypothesis is satisfied for M x O, then one obtains a reduced space with
respect to the coadjoint orbit O.

24.5 Orbifolds

Example. Let G = T" be an n-torus. For any £ € (")*, u~1(€) is preserved by
the T"-action. Suppose that £ is a regular value of u. (By Sard’s theorem, the
singular values of p form a set of measure zero.) Then p~1(€) is a submanifold
of codimension n. Note that

¢ regular = dp, is surjective at all p € p=1(&)
= g,=0 forallpe pu1(g)
= the stabilizers on p~1(£) are finite
= p1(£)/G is an orbifold [72, 73] .

Let G, be the stabilizer of p. By the slice theorem (Lecture 23), u~1(¢)/G
is modeled by S/G,, where S is a G,-invariant disk in p=1(£) through p and
transverse to O,. Hence, locally u~!(£)/G looks indeed like R™ divided by a
finite group action. &

Example. Consider the S'-action on C? given by € - (21, 20) = (e™%921, % 2y)
for some fixed integer k > 2. This is hamiltonian with moment map

e c? — R
(21,22) +— —%(k\21|2+|22|2)~

Any £ < 0 is a regular value and p~1(€) is a 3-dimensional ellipsoid. The stabi-
lizer of (21,22) € =1 (&) is {1} if 29 # 0, and is Zy, = {ei% [6=0,1,....k— 1}
if 2o = 0. The reduced space u~1(£)/S* is called a teardrop orbifold or cone-

head; it has one cone (also known as a dunce cap) singularity of type k (with
cone angle 2T). o
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Example. Let S* act on C2 by €% - (21, 29) = (€92, €9 25) for some integers
k,¢ > 2. Suppose that k and /¢ are relatively prime. Then

(21,0) has stabilizer Z;,  (for z; #0) ,
(0,22) has stabilizer Z,  (for z2 #0) ,
(21,%2) has stabilizer {1} (for z1,22 #0) .

p=t(€)/St is called a football orbifold. It has two cone singularities, one of
type k and another of type /. &

Example. More generally, the reduced spaces of S' acting on C" by

eie'(zla"'vzn):(eiklezl,“'?eik f ) )

n
Zn

are called weighted (or twisted) projective spaces. &



Homework 18: Spherical Pendulum

This set of problems is from [42].

The spherical pendulum is a mechanical system consisting of a massless
rigid rod of length [, fixed at one end, whereas the other end has a plumb bob
of mass m, which may oscillate freely in all directions. Assume that the force
of gravity is constant pointing vertically downwards, and that this is the only
external force acting on this one-particle system.

Let 0,0 (0 < ¢ <m, 0 < @ < 2m) be spherical coordinates for the bob. For
simplicity assume that m =1 = 1.

1. Let n, £ be the coordinates along the fibers of T*S? induced by the spher-
ical coordinates ¢, on S?. Show that the function H : T*S? — R given
by

1 2
H(p,0,n,¢) = 5 <?72+ (Sifw)g) +cosep,

is an appropriate hamiltonian function to describe the spherical pendulum.

2. Compute the critical points of the function H. Show that, on S?, there
are exactly two critical points: s (where H has a minimum) and u. These
points are called the stable and unstable points of H, respectively. Jus-
tify this terminology, i.e., show that a trajectory whose initial point is
close to s stays close to s forever, and show that this is not the case for u.
What is happening physically?

3. Show that the group of rotations about the vertical axis is a group of
symmetries of the spherical pendulum.

Show that, in the coordinates above, the integral of motion associated
with these symmetries is the function

J(p,0,n,6) =¢.

Give a more coordinate-independent description of J, one that makes sense
also on the cotangent fibers above the North and South poles.

150
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4. Locate all points p € T*S? where dH,, and dJ, are linearly dependent:

(a) Clearly, the two critical points s and u belong to this set. Show that
these are the only two points where dH, = d.J, = 0.

(b) Show that, if z € S? is in the southern hemisphere (z3 < 0), then
there exist exactly two points, py = (x,7n,€) and p_ = (x, —n, —§),
in the cotangent fiber above x where dH, and dJ, are linearly de-
pendent.

(c) Show that dH,, and dJ, are linearly dependent along the trajectory
of the hamiltonian vector field of H through p..
Conclude that this trajectory is also a trajectory of the hamiltonian
vector field of J, and, hence, that its projection onto S? is a latitu-
dinal circle (of the form x3 = constant).

Show that the projection of the trajectory through p_ is the same
latitudinal circle traced in the opposite direction.

5. Show that any nonzero value j is a regular value of J, and that S' acts
freely on the level set J = j. What happens on the cotangent fibers above
the North and South poles?

6. For j # 0 describe the reduced system and sketch the level curves of the
reduced hamiltonian.

7. Show that the integral curves of the original system on the level set J = j
can be obtained from those of the reduced system by “quadrature”; in
other words, by a simple integration.

8. Show that the reduced system for j # 0 has exactly one equilibrium point.
Show that the corresponding relative equilibrium for the original system
is one of the horizontal curves in exercise 4.

9. The energy-momentum map is the map (H,J) : T*S? — R2. Show
that, if j # 0, the level set (H, J) = (h, j) of the energy-momentum map is
either a circle (in which case it is one of the horizontal curves in exercise 4),
or a two-torus. Show that the projection onto the configuration space of
the two-torus is an annular region on S2.






Part X
Moment Maps Revisited

Moment maps and symplectic reduction have been finding infinite-dimensional
incarnations with amazing consequences for differential geometry. Lecture 25
sketches the symplectic approach of Atiyah and Bott to Yang-Mills theory.

Lecture 27 describes the convexity of the image of a torus moment map, one
of the most striking geometric characteristics of moment maps.

25 Moment Map in Gauge Theory

25.1 Connections on a Principal Bundle

Let G be a Lie group and B a manifold.

Definition 25.1 A principal G-bundle over B is a manifold P with a smooth
map m: P — B satisfying the following conditions:

(a) G acts freely on P (on the left),
(b) B is the orbit space for this action and 7 is the point-orbit projection, and

(c) there is an open covering of B, such that, to each set U in that covering
corresponds a map @y : w1 (U) — U x G with

eup) = (v(p),su(p)) and sylg-p)=g-sulp), Vper '(U).

The G-valued maps sy are determined by the corresponding ¢y. Condition (c)
18 called the property of being locally trivial.

If P with map 7 : P — B is a principal G-bundle over B, then the manifold
B is called the base, the manifold P is called the total space, the Lie group G
is called the structure group, and the map 7 is called the projection. This
principal bundle is also represented by the following diagram:

G———P

B

Example. Let P be the 3-sphere regarded as unit vectors in C2:
P=2S8%={(21,22) €C%: |z1* + |2 = 1} .

153
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Let G be the circle group, where ¢ € S acts on S by complex multiplication,
(21, 22) — (21, €% 2y) .

Then the quotient space B is the first complex projective space, that is, the two-
sphere. This data forms a principal S!-bundle, known as the Hopf fibration:

Sl%‘sﬁ

S2

An action ¢ : G — Diff (P) induces an infinitesimal action

dp: g — x(P)
X +— X% = vector field generated by the
one-parameter group {exptX(e) |t € R} .

From now on, fix a basis Xi,..., X} of g.
Let P be a principal G-bundle over B. Since the G-action is free, the vector
fields X f& yoo oy X ,?é are linearly independent at each p € P. The vertical bundle

V' is the rank k subbundle of TP generated by Xf’é, e ,Xff.

Exercise. Check that the vertical bundle V is the set of vectors tangent to P
which lie in the kernel of the derivative of the bundle projection 7. (This shows
that V is independent of the choice of basis for g.) &

Definition 25.2 A (Ehresmann) connection on a principal bundle P is a
choice of a splitting
TP=Va®H,

where H is a G-invariant subbundle of T P complementary to the vertical bundle
V. The bundle H 1is called the horizontal bundle.

25.2 Connection and Curvature Forms

A connection on a principal bundle P may be equivalently described in terms
of 1-forms.

Definition 25.3 A connection form on a principal bundle P is a Lie-algebra-

valued 1-form
k

A:ZAZ»Q@XZ» e Q' (P)og

i=1
such that:
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(a) A is G-invariant, with respect to the product action of G on Q*(P) (in-
duced by the action on P) and on g (the adjoint representation), and

(b) A is vertical, in the sense that ix4# A= X for any X € g.

Exercise. Show that a connection TP =V @& H determines a connection form
A and vice-versa by the formula

H=%kerA={veTP|1,A=0}.

&

Given a connection on P, the splitting TP = V & H induces the following
splittings for bundles:

™P = V*oH*

NT*P = (A*V*) @ (V*ANH*) & (A2H*)

and for their sections:

Ql(P) = Q\lfert(P) S Qllqoriz(P)
vert (P) D Q?nlx(P) D Qﬁoriz (P)

02pP) = 02

The corresponding connection form A is in Q! ., ® g. Its exterior derivative dA
is in

92(P) ® g= (Q\%ert @ Qr2nix @ Q%loriz) ® g,
and thus decomposes into three components,

dA = (dA)VeTt + (dA)l‘ﬂlX + (dA)horiz .

Exercise. Check that:
(a) (dA)yvert(X,Y) = [X,Y], Le., (dA)vers = 3 X b, Ac A Ay, ® X, where

i,4,m
the c};m’s are the structure constants of the Lie algebra with respect to
the chosen basis, and defined by [X¢, X,n,] = > ¢, X

i,4,m
(b) (dA)mix = 0.
¢

According to the previous exercise, the relevance of dA may come only from
its horizontal component.

Definition 25.4 The curvature form of a connection is the horizontal com-
ponent of its connection form. Le., if A is the connection form, then

curv A = (dA)horiz € Q}2101"iz ® g

Definition 25.5 A connection is called flat if its curvature is zero.
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25.3 Symplectic Structure on the Space of Connections

Let P be a principal G-bundle over B. If A is a connection form on P, and if
a € Q. ®gis G-invariant for the product action, then it is easy to check that
A+a is also a connection form on P. Reciprocally, any two connection forms on
P differ by an a € (2}, ® 9)¢. We conclude that the set A of all connections
on the principal G-bundle P is an affine space modeled on the linear space

a= (leloriz ® g)G .

Now let P be a principal G-bundle over a compact oriented 2-dimensional
riemannian manifold B (in particular, B is a Riemann surface). Suppose that
the group G is compact or semisimple. Atiyah and Bott [7] noticed that the cor-
responding space A of all connections may be treated as an infinite-dimensional
symplectic manifold. This will require choosing a G-invariant inner product
(+,+) on g, which always exists, either by averaging any inner product when G
is compact, or by using the Killing form on semisimple groups.

Since A is an affine space, its tangent space at any point A is identified with
the model linear space a. With respect to a basis X, ..., X for the Lie algebra
g, elements a, b € a'? are written

If we wedge a and b, and then integrate over B using the riemannian volume,
we obtain a real number:

w: axa — (QQ(P))G — R
(@,b) — Painbi(Xi, X;) — [ ainbi(Xi, X;) .
i B i,
Exercise. Show that if w(a,b) = 0 for all b € a, then a must be zero. &

The map w is nondegenerate, skew-symmetric, bilinear and constant in the
sense that it does not depend on the base point A. Therefore, it has the right to
be called a symplectic form on A, so the pair (A,w) is an infinite-dimensional
symplectic manifold.

25.4 Action of the Gauge Group

Let P be a principal G-bundle over B. A diffeomorphism f : P — P commuting
with the G-action determines a diffeomorphism fy.5ic : B — B by projection.

Definition 25.6 A diffeomorphism f : P — P commuting with the G-action
is a gauge transformation if the induced fpasic @s the identity. The gauge
group of P is the group G of all gauge transformations of P.

12The choice of symbols is in honor of Atiyah and Bott!
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The derivative of an f € G takes a connection TP = V & H to another
connection TP = V @ Hy, and thus induces an action of G in the space A of
all connections. Recall that A has a symplectic form w. Atiyah and Bott [7]
noticed that the action of G on (A,w) is hamiltonian, where the moment map
(appropriately interpreted) is the map

pe A — (2(P)@g)°
A +— curv A,

i.e., the moment map “is” the curvature! We will describe this construction in
detail for the case of circle bundles in the next section.

Remark. The reduced space at level zero
M =pu"1(0)/G

is the space of flat connections modulo gauge equivalence, known as the mod-
uli space of flat connections. It turns out that M is a finite-dimensional
symplectic orbifold. O

25.5 Case of Circle Bundles

What does the Atiyah-Bott construction of the previous section look like for the
case when G = S*?
Ste—— P

B
Let v be the generator of the S'-action on P, corresponding to the basis 1 of
g~ R. A connection form on P is a usual 1-form A € Q!(P) such that
L,A=0 and 1,A=1.

If we fix one particular connection Ag, then any other connection is of the form
A = Ao+ a for some a € a = (Q}lloriZ(P))G = Q}(B). The symplectic form on
a = Q(B) is simply
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The gauge group is G = Maps(B, S'), because a gauge transformation is multi-
plication by some element of S' over each point in B:

(R G — Diff(P)
h:B—8' +— 4,: P—P
p— h(r(p))-p
The Lie algebra of G is
Lie G = Maps(B,R) = C*(B) .

Its dual space is
(Lie G)" = Q*(B) ,

where the duality is provided by integration over B

{,y: C®B)xQ*(B) — R

(h,8) — /Bh/s.

(it is topological or smooth duality, as opposed to algebraic duality) .
The gauge group acts on the space of all connections by

g — Diﬂ(A)

h(z) = e?®) — (A A—7"db)
——

ca

Exercise. Check the previous assertion about the action on connections.

Hint: First deal with the case where P = S x B is a trivial bundle, in which
case h € G acts on P by

Py (tvx) — (t+0(x)7x) ’

and where every connection can be written A = dt + 8, with 3 € Q1(B). A
gauge transformation h € G acts on A by

A gt (A).

The infinitesimal action of G on A is
dyp: LieG — x(A)

X +— X% = vector field described by the transformation

(A — A —dX )
~——
€eQl(B)=a

so that X# = —dX.
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Finally, we will check that

pw: A — (Lie G)" = Q*(B)

A — curv A

is indeed a moment map for the action of the gauge group on A.
Exercise. Check that in this case:

(a) curv A=dA € (9} (P))G

horiz

=0*(B),
(b) u is G-invariant.

%

The previous exercise takes care of the equivariance condition, since the
action of G on Q?(B) is trivial.

Take any X € Lie G = C°°(B). We need to check that
duX(a) = w(X*,a) , Ya € Q'(B) . (%)
As for the left-hand side of (x), the map pX,

A — (X dA}:/X-dA,
€O~ (B) €Q2(B) B

is linear in A. Consequently,

dp®*: a — R

a +— /X~da.
B

As for the right-hand side of (x), by definition of w, we have

w(X#,a):/X#-a:—/dX~a.
B B

But, by Stokes theorem,, the last integral is

—/dX~a:/X-da,
B B

so we are done in proving that p is the moment map.



Homework 19: Examples of Moment Maps

1. Suppose that a Lie group G acts in a hamiltonian way on two symplectic
manifolds (M;,w;), j = 1,2, with moment maps u : M; — g*. Prove that
the diagonal action of G on M; x Ms is hamiltonian with moment map
w: My x My — g* given by

p(p1,p2) = pa(p1) + pa(p2) , for pj € Mj .

2. Let T" = {(t1,...,tn) € C" : |t;| =1, for all j } be a torus acting on C”
by
(t1yeeostn) - (215 s20) = (5020, thn2)
where k1, ..., k, € Z are fixed. Show that this action is hamiltonian with
moment map u: C* — (£7)* ~ R” given by

Wz zn) = =3 (k1|22 .kl zal?) (+ constant )

3. The vector field X# generated by X € g for the coadjoint representation
of a Lie group G on g* satisfies (XE#,Y> = (£, [V, X]), for any YV € g.
Equip the coadjoint orbits with the canonical symplectic forms. Show
that, for each £ € g*, the coadjoint action on the orbit G- ¢ is hamiltonian
with moment map the inclusion map:

piG-E—g".

4. Consider the natural action of U(n) on (C",wp). Show that this action is
hamiltonian with moment map p : C* — u(n) given by

p(z) = Lzz%
where we identify the Lie algebra u(n) with its dual via the inner product
(A, B) = trace(A*B).

Hint: Denote the elements of U(n) in terms of real and imaginary parts

k h
The Lie algebra u(n) is the set of skew-hermitian matrices X = V +¢ W where
V =Vt e R"" and W = W € R**". Show that the infinitesimal action
is generated by the hamiltonian functions
pX(2) = =1 (2, Wa) + (v, Vo) — 5 (y, Wy)

where z = z+1iy, z,y € R"™ and (-, -) is the standard inner product. Show that

g = h+ik. Then g acts on R2” by the linear symplectomorphism < h =k ) .

wX(2) = %iz*Xz = %itrace(zz*X) .

Check that p is equivariant.
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5. Consider the natural action of U(k) on the space (C**™ wy) of complex
(k x m)-matrices. Identify the Lie algebra u(k) with its dual via the inner
product (A4, B) = trace(A*B). Prove that a moment map for this action
is given by

p(A) = 5 AA* — 12—‘3 , for A e Ckxn .
(The choice of the constant 712—‘3 is just for later convenience.)

Hint: Exercises 1 and 4.

6. Consider the U(n)-action by conjugation on the space (C”2 ,wp) of complex
(n X n)-matrices. Show that a moment map for this action is given by

w(A) = 5[4, 4] .

Hint: Previous exercise and its “transpose” version.



26 Existence and Uniqueness of Moment Maps

26.1 Lie Algebras of Vector Fields

Let (M, w) be a symplectic manifold and v € x(M) a vector field on M.

v is symplectic <= 1,w is closed ,
v is hamiltonian <= 1,w is exact .

The spaces

XYmPY (M) = symplectic vector fields on M |
X" (M) = hamiltonian vector fields on M .

are Lie algebras for the Lie bracket of vector fields. C*°(M) is a Lie algebra for
the Poisson bracket, {f,g} = w(vf,vy). H'(M;R) and R are regarded as Lie
algebras for the trivial bracket. We have two exact sequences of Lie algebras:

0 — xP(M) — y¥(M) — HYM;R) — 0

v [,w]

0 — R — C®(M) — x"*™(M) — 0
f — vy

In particular, if H'(M;R) = 0, then x"™ (M) = y»™PL(M).
Let G be a connected Lie group. A symplectic action ¢ : G — Sympl(M, w)
induces an infinitesimal action

dy: g — xVP(M)
X +— X# = vector field generated by the
one-parameter group {exptX(e) |t € R} .

The map di is a Lie algebra anti-homomorphism. The action 1 is hamiltonian
if and only if there is a Lie algebra homomorphism p* : g — C°°(M) lifting di),
i.e., making the following diagram commute.

e (1) ()
g

The map p* is then called a comoment map (defined in Lecture 22).

Existence of u* <= Existence of
comoment map moment map

Lie algebra homomorphism «—  equivariance
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26.2 Lie Algebra Cohomology

Let g be a Lie algebra, and

Ck = AFg* = k-cochains on g
= alternating k-linear maps g x ... xg— R .
—_——

k

Define a linear operator § : C* — Ck+1 by

(SC(AXVO7 e 7Xk:) = Z(—l)i"'jc([Xi, Xj],Xo, ey )/(\VZ‘, e ,)?j, e ,Xk) .
i<j
Exercise. Check that §2 = 0. &

The Lie algebra cohomology groups (or Chevalley cohomology groups)
of g are the cohomology groups of the complex 0 o0t s

ker§ : CkF —s CF+1
k(.. .
H (g R) = imé:Ck—1 — Ok~

Theorem 26.1 If g is the Lie algebra of a compact connected Lie group G,
then
Hk(gv]R) = H({lceRham(G) .

Proof. Exercise. Hint: by averaging show that the de Rham cohomology can
be computed from the subcomplex of G-invariant forms. g

Meaning of H'(g;R) and H?(g;R):

e An element of C' = g* is a linear functional on g. If ¢ € g*, then
de(Xo, X1) = —c([Xo, X1]). The commutator ideal of g is

(g, g] := {linear combinations of [X,Y] for any X,Y € g} .
Since dc = 0 if and only if ¢ vanishes on [g, g], we conclude that
H'(g;R) = [g,g)°
where [g,g]° C g* is the annihilator of [g, g].

e An element of C? is an alternating bilinear map c: g x g — R.
6c(Xo, X1, Xz) = —c([Xo, X1], X2) + ¢([Xo, X2, X1) — e([X1, X3], Xo)
If ¢ = 6b for some b € C!, then

¢(Xo, X1) = (6b)(Xo, X1) = —b([Xo, X1] ).
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26.3 Existence of Moment Maps

Theorem 26.2 If H'(g;R) = H?(g,R) = 0, then any symplectic G-action is
hamiltonian.

Proof. Let ¢ : G — Sympl(M,w) be a symplectic action of G on a symplectic
manifold (M, w). Since

H'(gR) =0 < [g,0] =9
and since commutators of symplectic vector fields are hamiltonian, we have
dy: g =[g,g] — X" (M).

The action ¥ is hamiltonian if and only if there is a Lie algebra homomorphism
p* i g — C°°(M) such that the following diagram commutes.

R C>(M) - X" (M)
? d

g

We first take an arbitrary vector space lift 7 : g — C'°° (M) making the diagram
commute, i.e., for each basis vector X € g, we choose

7(X) = -~ e C> (M) such that V(rx) = dy(X) .

The map X — 7% may not be a Lie algebra homomorphism. By construction,

XY is a hamiltonian function for [X,Y]#, and (as computed in Lecture 16)
{7, 7Y} is a hamiltonian function for —[X#,Y#]. Since [X,Y]# = —[X# Y #],
the corresponding hamiltonian functions must differ by a constant:

XY] (5,77} =¢(X,Y)ER.

By the Jacobi identity, dc = 0. Since H?(g;R) = 0, there is b € g* satisfying
c=16b, ¢(X,Y) = —b([X,Y]). We define

prrog — C*(M)
X — p(X)=1X+b(X)=p".

Now p* is a Lie algebra homomorphism:

P (X Y] = T (X Y]) = Y 7 = Y ey

So when is H!(g;R) = H%(g;R) = 0?



26.4 Uniqueness of Moment Maps 165

A compact Lie group G is semisimple if g = [g, g].

Examples. The unitary group U(n) is not semisimple because the multiples of
the identity, S* -Id, form a nontrivial center; at the level of the Lie algebra, this
corresponds to the 1-dimensional subspace R - Id of constant matrices which are
not commutators since they are not traceless.

Any direct product of the other compact classical groups SU(n), SO(n) and
Sp(n) is semisimple (n > 1). Any commutative Lie group is not semisimple. <

Theorem 26.3 (Whitehead Lemmas) Let G be a compact Lie group.
G is semisimple <= H'(g;R) = H*(g;R)=0.
A proof can be found in [53, pages 93-95].
Corollary 26.4 If G is semisimple, then any symplectic G-action is hamilto-

nian.

26.4 Uniqueness of Moment Maps

Let G be a compact Lie group.

Theorem 26.5 If H'(g;R) = 0, then moment maps for hamiltonian G-actions
are unique.

Proof. Suppose that u} and p} are two comoment maps for an action :

(M) - X"(M)

I dy
g

For each X € g, u¥ and pu¥ are both hamiltonian functions for X#, thus
p — pat = ¢(X) is locally constant. This defines ¢ € g*, X + c(X).

Since pf, ps are Lie algebra homomorphisms, we have ¢([X,Y]) =0, VX,Y €
g, i.e., c € [g,9]° = {0}. Hence, u} = u}. O

Corollary of this proof. In general, if p: M — g* is a moment map, then
given any c € [g,9)°, u1 = p + c is another moment map.

In other words, moment maps are unique up to elements of the dual of the
Lie algebra which annihilate the commutator ideal.

The two extreme cases are:

G semisimple: any symplectic action is hamiltonian ,
moment maps are unique .

G commutative: symplectic actions may not be hamiltonian ,
moment maps are unique up to any constant c € g* .
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Example. The circle action on (T?,w = df; A df;) by rotations in the 6,
direction has vector field X# = 8%1; this is a symplectic action but is not
hamiltonian. ¢



Homework 20: Examples of Reduction

1. For the action of U(k) on C**" we have p=1(0) = {A € C**" | AA* =1d}.
Show that the quotient

11 (0)/U(k) = G(k,n)
is the grassmannian of k-planes in C™.

2. Consider the S'-action on (R?"*2 wg) which, under the usual identifica-
tion of R?"*2 with C"*!, corresponds to multiplication by e®. This action
is hamiltonian with a moment map y : C"*! — R given by

pe) ==l +3

Prove that the reduction p=1(0)/S? is CP" with the Fubini-Study sym-

plectic form w,_

a4 = Wrs-

Hint: Let pr : C**!\ {0} — CP" denote the standard projection. Check
that o
priwps = $90log(|z|?) .

Prove that this form has the same restriction to S2"+1! as Wooq-

3. Show that the natural actions of T"*! and U(n + 1) on (CP", w,) are
hamiltonian, and find formulas for their moment maps.

Hint: Previous exercise and exercises 2 and 4 of Homework 19.
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27 Convexity

27.1 Convexity Theorem

From now on, we will concentrate on actions of a torus G = T™.

Theorem 27.1 (Atiyah [6], Guillemin-Sternberg [44])

Let (M,w) be a compact connected symplectic manifold, and let T™ be an
m-torus. Suppose that ¢ : T™ — Sympl(M,w) is a hamiltonian action with
moment map p: M — R™. Then:

1. the levels of u are connected;
2. the image of i is convex;

3. the image of p is the convex hull of the images of the fized points of the
action.

The image (M) of the moment map is hence called the moment polytope.

Proof. This proof (due to Atiyah) involves induction over m = dim T™. Con-
sider the statements:

A, “the levels of y are connected, for any T™-action;”
B,,: “the image of p is convex, for any T™-action.”
Then

(1) < A, holds for all m ,

(2) <= By, holds for all m .

e A; is a non-trivial result in Morse theory.

Apo1 = A, (induction step) is in Homework 21.

e [ is trivial because in R connectedness is convexity.

e A, _1 = B,, is proved below.

Choose an injective matrix A € Z™*(m=1) " Consider the action of an (m—1)-

subtorus
Ya: TY —  Sympl(M,w)

0 — ag .

Exercise. The action 14 is hamiltonian with moment map s = Aty : M —
Rm—l_ <>

Given any pg € ugl(é“),

pE UL (&) = A'ulp) =& = A'u(po)
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so that
pa'(€) = {p € M| u(p) — p(po) € ker A} .

By the first part (statement A,,_1), pu," (£) is connected. Therefore, if we
connect py to p; by a path p; in u;'(€), we obtain a path u(p;) — p(po) in
ker A*. But ker A? is 1-dimensional. Hence, u(p;) must go through any convex
combination of u(pg) and p(p;), which shows that any point on the line segment
from u(pg) to p(p1) must be in pu(M):

(L —=t)ulpo) +tp(pr) € p(M) , 0<t<1.

Any pg,p1 € M can be approximated arbitrarily closely by points pj, and p}
with pu(p)) — p(ph) € ker At for some injective matrix A € Z™*(m=1 Taking
limits p) — po, p} — p1, we obtain that u(M) is convex.'?

To prove part 3, consider the fixed point set C' of ». Homework 21 shows
that C is a finite union of connected symplectic submanifolds, C' = C1U...UCy.
The moment map is constant on each Cj, u(C;) =n; e R™, j=1,...,N. By
the second part, the convex hull of {n;,...,nx} is contained in p(M).

For the converse, suppose that £ € R™ and £ ¢ convex hull of {n,...,nx}.
Choose X € R™ with rationally independent components and satisfying

(€, X) > (n;,X), forall j .

By the irrationality of X, the set {exptX(e) | t € R} is dense in T™, hence the
zeros of the vector field X# on M are the fixed points of the T™-action. Since
pX = (u, X) attains its maximum on one of the sets C}, this implies

(€, X) > sup(u(p), X) ,
peEM

hence ¢ ¢ pu(M). Therefore,

w(M) = convex hull of {m1,...,nn} .

27.2 Effective Actions

An action of a group G on a manifold M is called effective if each group element
g # e moves at least one p € M, that is,

ﬂGP:{e}>

peEM
where G, = {g € G| g- p = p} is the stabilizer of p.

Corollary 27.2 Under the conditions of the convexity theorem, if the T™-
action is effective, then there must be at least m + 1 fixed points.

13Clearly u(M) is closed because it is compact.
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Proof. If the T™-action is effective, there must be a point p where the moment
map is a submersion, i.e., (du1)p,-- -, (dpm)p are linearly independent. Hence,
w(p) is an interior point of u(M), and pu(M) is a nondegenerate convex polytope.
Any nondegenerate convex polytope in R” must have at least m + 1 vertices.
The vertices of p(M) are images of fixed points. O

Theorem 27.3 Let (M,w,T™, 1) be a hamiltonian T™-space. If the T™-action
1s effective, then dim M > 2m.

Proof. Fact: If ¢ : T™ — Diff (M) is an effective action, then it has orbits of
dimension m; a proof may be found in [15].

On an m-dimensional orbit O, the moment map p(O) = £ is constant. For
p € O, the exterior derivative

dpp - T,M — g~

maps 1,0 to 0. Thus
T,0 C kerdp, = (T,0)% ,

which shows that orbits O of a hamiltonian torus action are always isotropic
submanifolds of M. In particular, dim O =m < %dim M. O

Definition 27.4 A (symplectic) toric manifold'* is a compact connected
symplectic manifold (M,w) equipped with an effective hamiltonian action of a
torus T of dimension equal to half the dimension of the manifold:

1
dimT = 5 dim M
and with a choice of a corresponding moment map L.

Exercise. Show that an effective hamiltonian action of a torus T™ on a 2n-
dimensional symplectic manifold gives rise to an integrable system.

Hint: The coordinates of the moment map are commuting integrals of motion.

27.3 Examples

1. The circle S! acts on the 2-sphere (5%, Wstandara = df A dh) by rota-
tions with moment map p = h equal to the height function and moment
polytope [—1,1].

141n these notes, a toric manifold is always a symplectic toric manifold.
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1. The circle S! acts on CP* = C? — 0/ ~ with the Fubini-Study form
Wps = %wswndard, by € - [20,21] = [20,€?2;]. This is hamiltonian with
‘2

moment map p[zo, z1] = f% . mﬂfﬁ, and moment polytope [f%, O].

2. The T?-action on CP? by
i01 i i0 i
(ez 1762 2) ' [20721522] = [Zanl 121,61 222

has moment map

1 EA 22|
,U/[ZOleaZQ] - 75 N

2012 + 217 + 12227 |20/ + [21]% + |22

The fixed points get mapped as

SR
o~ o
= oo

Notice that the stabilizer of a preimage of the edges is S*, while the action
is free at preimages of interior points of the moment polytope.
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Exercise. What is the moment polytope for the T3-action on CP? as
(%01, €192 €193) . (2, 21, 22, 23] = [20, €1 21, €02 25, €93 23] 7
¢
Exercise. What is the moment polytope for the T2-action on CP' x CP! as

(e, €M) - ([20, 21, [wo, w1]) = ([0, " 21], [wo, €M uwn]) ?



Homework 21: Connectedness

Consider a hamiltonian action ¢ : T™ — Sympl (M,w), 6 — 1, of an m-
dimensional torus on a 2n-dimensional compact connected symplectic manifold
(M, w). If we identify the Lie algebra of T™ with R™ by viewing T™ = R™/Z™,
and we identify the Lie algebra with its dual via the standard inner product,
then the moment map for ¢ is p: M — R™.

1. Show that there exists a compatible almost complex structure J on (M, w)
which is invariant under the T™-action, that is, y5J = Jyj, forall § € T™.

Hint: We cannot average almost complex structures, but we can average
riemannian metrics (why?). Given a riemannian metric go on M, its T™-
average g = fT'" Yy god is T -invariant.

2. Show that, for any subgroup G C T™, the fixed-point set for G ,

Fix (G) = () Fix (¢0) .
0eG
is a symplectic submanifold of M.
Hint: For each p € Fix (G) and each 6 € G, the differential of ¢y at p,
dipg(p) : TyM — Tp M,

preserves the complex structure J, on T, M. Consider the exponential map
exp, : TpM — M with respect to the invariant riemannian metric g(,) =
w(+, J-). Show that, by uniqueness of geodesics, exp,, is equivariant, i.e.,

exp,, (dyo (p)v) = Yo (exp, v)

forany 8 € G, v € T, M. Conclude that the fixed points of 1y near p correspond
to the fixed points of dig(p) on Tp M, that is

TpFix (G) = [ ker(Id — dyy(p)) -
0eG

Since dig(p) o Jp = Jp 0 dipg(p), the eigenspace with eigenvalue 1 is invariant
under Jp, and is therefore a symplectic subspace.

3. A smooth function f : M — R on a compact riemannian manifold M
is called a Morse-Bott function if its critical set Crit (f) = {p €
M | df (p) = 0} is a submanifold of M and for every p € Crit (f), T,Crit (f) =
ker V2 f(p) where V2f(p) : T,M — T,M denotes the linear operator ob-
tained from the hessian via the riemannian metric. This is the natural
generalization of the notion of Morse function to the case where the crit-
ical set is not just isolated points. If f is a Morse-Bott function, then
Crit (f) decomposes into finitely many connected critical manifolds C.
The tangent space T, M at p € C' decomposes as a direct sum

M =T,C®Ef ©E,;

where E;‘ and E; are spanned by the positive and negative eigenspaces of
V2f(p). The index of a connected critical submanifold C'is ng = dim E,
for any p € C, whereas the coindex of C' is ng = dim E; .
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5. Prove that the level set ~1(£) is connected for every regular value £ € R™.

The moment map pu = (ui,...
dut, ..

HOMEWORK 21

For each X € R™, let u* = (u, X) : M — R be the component of u along
X. Show that p¥ is a Morse-Bott function with even-dimensional critical
manifolds of even index. Moreover, show that the critical set

Crit (uX) = ﬂ Fix (19)

0eTX

is a symplectic manifold, where TX is the closure of the subgroup of T™
generated by X.

Hint: Assume first that X has components independent over Q, so that TX =
T™ and Crit (uX) = Fix (T™). Apply exercise 2. To prove that T,Crit (uX) =
ker V2uX (p), show that ker VZuX(p) = Ngerm ker(Id — dipg(p)). To see
this, notice that the 1-parameter group of matrices (dtpexp ¢ x )p coincides with
exp(tvp), where v, = —JpV2uX(p) : TyM — T, M is a vector field on T M.
The kernel of V24X (p) corresponds to the fixed points of di); x (p), and since X
has rationally independent components, these are the common fixed points of
all dipg(p), @ € T™. The eigenspaces of V2uX (p) are even-dimensional because
they are invariant under Jp.

— 1)-subtorus.

Hint: If u is not effective, then the function puX = (u, X) is constant for
some nonzero X € R™. Show that we can neglect the direction of X.

Hint: Prove by induction over m = dim T™. For the case m = 1, use the
lemma that all level sets f~!(c) of a Morse-Bott function f : M — R on a com-
pact manifold M are necessarily connected, if the critical manifolds all have
index and coindex # 1 (see [64, p.178-179]). For the induction step, you can as-
sume that 1 is effective. Then, for every 0 # X € R™, the function puX : M —
R is not constant. Show that C := UxCrit uX = Uozx ezm Crit uX where
each Crit uX is an even-dimensional proper submanifold, so the complement
M \ C must be dense in M. Show that M \ C is open. Hence, by continuity, to
show that u~1(€) is connected for every regular value & = (£1,...,&r,) € R™, it
suffices to show that p~1(¢) is connected whenever (£1,...,&,—1) is a regular
value for a reduced moment map (¢1,...,HUm—1). By the induction hypoth-
esis, the manifold Q = n;,';lp;l(gj) is connected whenever (§1,...,&m—1)
is a regular value for (p1,...,Hm—1). It suffices to show that the function
pm : @ — R has only critical manifolds of even index and coindex (see [64,
p.183)), because then, by the lemma, the level sets 4~ 1(£) = QN ,ufnl (&m) are
connected for every &, .

,lm) is called effective if the 1-forms
., dity, of its components are linearly independent. Show that, if p
is not effective, then the action reduces to that of an (m



Part XI
Symplectic Toric Manifolds

Native to algebraic geometry, toric manifolds have been studied by symplec-
tic geometers as examples of extremely symmetric hamiltonian spaces, and as
guinea pigs for new theorems. Delzant showed that symplectic toric manifolds
are classified (as hamiltonian spaces) by a set of special polytopes.

28 Classification of Symplectic Toric Manifolds

28.1 Delzant Polytopes

A 2n-dimensional (symplectic) toric manifold is a compact connected sym-
plectic manifold (M?",w) equipped with an effective hamiltonian action of an
n-torus T™ and with a corresponding moment map p: M — R™.

Definition 28.1 A Delzant polytope A in R™ is a convex polytope satisfying:
e it is simple, i.e., there are n edges meeting at each vertex;

e it is rational, i.e., the edges meeting at the vertexr p are rational in the
sense that each edge is of the form p + tu;, 0 <t < oo, where u; € Z"™;

e it is smooth, i.e., these uy,...,u, can be chosen to be a basis of Z™.

Remark. The Delzant polytopes are the simple rational smooth polytopes.
These are closely related to the Newton polytopes (which are the nonsingular
n-valent polytopes), except that the vertices of a Newton polytope are required
to lie on the integer lattice and for a Delzant polytope they are not. &

Examples of Delzant polytopes:
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The dotted vertical line in the trapezoildal example means nothing, except that
it’s a picture of a rectangle plus an isosceles triangle. For “taller” triangles,
smoothness would be violated. “Wider” triangles (with integral slope) may
still be Delzant. The family of the Delzant trapezoids of this type, starting
with the rectangle, correspond, under the Delzant construction, to Hirzebruch
surfaces; see Homework 22.

Examples of polytopes which are not Delzant:

The picture on the left fails the smoothness condition, whereas the picture
on the right fails the simplicity condition.

Algebraic description of Delzant polytopes:

A facet of a polytope is a (n — 1)-dimensional face.

Let A be a Delzant polytope with n = dim A and d = number of facets.

A lattice vector v € Z™ is primitive if it cannot be written as v = ku with
u € Z", k € Z and |k| > 1; for instance, (1,1), (4,3), (1,0) are primitive, but
(2,2), (4,6) are not.

Let v; € Z™, 1 =1,...,d, be the primitive outward-pointing normal vectors
to the facets.

Then we can describe A as an intersection of halfspaces

A={rec R | (r,v;) <X, i=1,...,d} forsome \; eR.
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Example. For the picture below, we have

A = {ze (R

| 0, X1 +$2 S 1}
= {x € (RQ)* | T, (_170)

0, {x,(0,-1)) <0, {(z,(1,1)) < 1}.

(0,0) (1,0)

28.2 Delzant Theorem

We do not have a classification of symplectic manifolds, but we do have a clas-
sification of toric manifolds in terms of combinatorial data. This is the content
of the Delzant theorem.

Theorem 28.2 (Delzant [20])  Toric manifolds are classified by Delzant
polytopes. More specifically, there is the following one-to-one correspondence

{toric manifolds} = {Delzant polytopes}
(M, w, T ) —  p(M).

We will prove the existence part (or surjectivity) in the Delzant theorem
following [41]. Given a Delzant polytope, what is the corresponding toric man-
ifold?

(MAvaaTnvﬂ) ; A"
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28.3 Sketch of Delzant Construction

Let A be a Delzant polytope with d facets. Let v; € Z", i = 1,...,d, be the
primitive outward-pointing normal vectors to the facets. For some \; € R,

A:{SCG(R”)*|<Z,’U1>§>\“'L:]_,,d}
Let e; = (1,0,...,0),...,eq = (0,...,0,1) be the standard basis of R%. Con-
7: RY — R™
€, == U; .

Claim. The map 7 is onto and maps Z¢ onto Z™.

Proof. The set {ej,...,eq} is a basis of Z%. The set {vy,...,vq} spans Z" for
the following reason. At a vertex p, the edge vectors uy, ..., u, € (R")*, form a
basis for (Z™)* which, without loss of generality, we may assume is the standard
basis. Then the corresponding primitive normal vectors to the facets meeting at
p are symmetric (in the sense of multiplication by —1) to the wu;’s, hence form
a basis of Z". O

Therefore, m induces a surjective map, still called m, between tori:
Rd/Zd T Rn/zn

| |
T — T — 0.

Let
N = kernel of 7 (N is a Lie subgroup of T¢)
n = Lie algebra of N
R? = Lie algebra of T¢
R™ = Lie algebra of T™.

The exact sequence of tori
0—N-5T! 5T —0
induces an exact sequence of Lie algebras
0—n—>R R — 0
with dual exact sequence
0 — (R")* 5 (RY" n — 0.

Now consider C? with symplectic form wy = %Zdzk A dzy, and standard
hamiltonian action of T¢

(e, ) (21, za) = (€2, e 2y)
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The moment map is ¢ : C* — (R%)*

1
d(21y. -, 24) = f§(|zl|2, ..+, |za|*) + constant ,
where we choose the constant to be (A1,...,As). What is the moment map for

the action restricted to the subgroup N7

Exercise. Let G be any compact Lie group and H a closed subgroup of G,
with g and b the respective Lie algebras. The inclusion 7 : h — g is dual to the
projection i* : g* — b*. Suppose that (M,w,G, ) is a hamiltonian G-space.
Show that the restriction of the G-action to H is hamiltonian with moment map

i"Yogp: M —b*.

The subtorus N acts on C% in a hamiltonian way with moment map
i*op:CH—n*.
Let Z = (i* o $)71(0) be the zero-level set.
Claim. The set Z is compact and N acts freely on Z.
This claim will be proved in the next lecture.
By the first claim, 0 € n* is a regular value of i* o ¢. Hence, Z is a compact

submanifold of C¢ of dimension

dimg Z=2d—(d—n)=d+n .
———

dim n*

The orbit space Ma = Z/N is a compact manifold of dimension

dimg MA =d+n—(d—n)=2n.
——
dim N

The point-orbit map p : Z — M is a principal N-bundle over MAa.
Consider the diagram
J

zZ < (¢

pl
Mn

where j : Z < C% is inclusion. The Marsden-Weinstein-Meyer theorem guaran-
tees the existence of a symplectic form wa on Ma satisfying

prwa = jwo .

Exercise. Work out all details in the following simple example.
Let A =[0,a] CR* (n=1,d =2). Letv(=1) be the standard basis vector
in R. Then
A (x,v1)

(x,v9)

INIA

0 v, = —0
a Vg =1 .



180 28 CLASSIFICATION OF SYMPLECTIC TORIC MANIFOLDS

The projection
RZ © R
€ = —v

ey +— W

has kernel equal to the span of (e; + e3), so that N is the diagonal subgroup of
T2 = S! x S1. The exact sequences become

0o — N % T2 . gt
0 — R ®) S w0

(x1,22) — 21+ 22
The action of the diagonal subgroup N = {(e¥, e¥) € S* x S} on C?,
(€, 6%) - (21, 20) = (21, € 29) |
has moment map
(i* 0 )21, 22) = —5 (11 + o) 0,
with zero-level set
(i*0p)~1(0) = {(21,22) € C?: |z ? + \Z2|2 =2a} .
Hence, the reduced space is

(i* 0 $)71(0)/N = CP! projective space! .



29 Delzant Construction

29.1 Algebraic Set-Up

Let A be a Delzant polytope with d facets. We can write A as
A={ze®) |{mo)<h,i=1,....d},
for some \; € R. Recall the exact sequences from the previous lecture

0 — N N ™ I, T™ — 0
0 — n -, R I, R* — 0
e

and the dual sequence

*

0— (R")* =5 (R “Sn* — 0.
The standard hamiltonian action of T¢ on C¢
(€01, .. €)Y (z1,...,2q) = (21, e2y)

has moment map ¢ : C¢ — (R9)* given by

d)(zl,...,zd) = (‘21|2,...,‘Zd|2) + ()\1,...,)\d) .

1
2
The restriction of this action to N has moment map
i*og¢:Ct—n*.
29.2 The Zero-Level
Let Z = (i* 0 ¢)71(0).
Theorem 29.1 The level Z is compact and N acts freely on Z.

Proof. Let A’ be the image of A by 7*. We will show that ¢(Z) = A’. Since
¢ is a proper map and A’ is compact, it will follow that Z is compact.

Lemma 29.2 Lety € (RY)*. Then:

y €A <= yisin the image of Z by ¢ .

Proof of the lemma. The value y is in the image of Z by ¢ if and only if
both of the following conditions hold:

1. y is in the image of ¢;

181
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2. i*y = 0.

Using the expression for ¢ and the third exact sequence, we see that these
conditions are equivalent to:

1. (y,e) < A fori=1,...,d.
2. y = m*(z) for some x € (R™)*.
Suppose that the second condition holds, so that y = 7*(z). Then
(y,e)) S\, Vi = (1"(2),e;) <\, Vi
<~ <$77T(6i)> < )\i,Vi
— zxeA.
Thus, y € ¢(z) <= y e (A) = A O

Hence, we have a surjective proper map ¢ : Z — A’. Since A’ is compact,
we conclude that Z is compact. It remains to show that IV acts freely on Z.

We define a stratification of Z with three equivalent descriptions:

o Define a stratification on A’ whose ith stratum is the closure of the union
of the i-dimensional faces of A’. Pull this stratification back to Z by ¢.

We can obtain a more explicit description of the stratification on Z:

e Let F be a face of A’ with dim F' = n — r. Then F is characterized (as a
subset of A’) by r equations

<y7€i>:)\i, T="T1,ccc,lp .

We write F' = F; where I = (i1,...,4,) has 1 <iy <ig... <4, <d.
Let z = (z1,...,24) € Z.

Z€¢_1(F]) ¢(z) € Fr

(9(2),e)) =N, Viel

1
_§|Zi|2+)\i:)\i7 Viel
zi=0, Viel.

[

e The T?action on C? preserves ¢, so the T?action takes Z = ¢~1(A)
onto itself, so T acts on Z.

Exercise. The stratification of Z is just the stratification of Z into T¢
orbit types. More specifically, if 2 € Z and ¢(z) € F; then the stabilizer
of z in T? is (T%); where

I:(ila"'ai?“)7
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Fr={ye A |(y,e;) =\,Viel},

and ‘ ‘ ‘
(Td)f = {(6191’ . '761901) | 6105 = LVS ¢ I}

Hint: Suppose that z = (21,...,24) € C. Then
(€121, ePd2y) = (21,...,24)

if and only if €9s = 1 whenever z4 # 0.

&

In order to show that IV acts freely on Z, consider the worst case scenario of
points z € Z whose stabilizer under the action of T? is a large as possible. Now
(T?); is largest when F; = {y} is a vertex of A’. Then y satisfies n equations

<y7€i>:>\i7 iEI:{ila"'ain}~

Lemma 29.3 Let z € Z be such that ¢(z) is a vertex of A’. Let (T be the
stabilizer of z. Then the map 7 : T4 — T™ maps (T9); bijectively onto T™.

Since N = ker 7, this lemma shows that in the worst case, the stabilizer of z
intersects IV in the trivial group. It will follow that N acts freely at this point
and hence on Z.

Proof of the lemma. Suppose that ¢(z) = y is a vertex of A’. Renumber
the indices so that

Then _ _
(T4 = {(e,..., e 1,...,1) ]| 6; € R} .

The hyperplanes meeting at y are
<yl7€i>:)\i, 221,7’[’1

By definition of Delzant polytope, the set w(ey), ..., m(e,) is a basis of Z™. Thus,
7 : (T%); — T™ is bijective. O

This proves the theorem in the worst case scenario, and hence in general. [

29.3 Conclusion of the Delzant Construction

We continue the construction of (Ma,wa) from A. We already have that
Ma =Z/N

is a compact 2n-dimensional manifold. Let wa be the reduced symplectic form.



184 29 DELZANT CONSTRUCTION

Claim. The manifold (Ma,wa) is a hamiltonian T"-space with a moment map
p having image u(Ma) = A.

Suppose that z € Z. The stabilizer of z with respect to the T?action is
(T);, and
(TH; NN = {e} .

In the worst case scenario, F7 is a vertex of A’ and (T¢); is an n-dimensional
subgroup of T?. In any case, there is a right inverse map 7~ ! : T — (T9);.
Thus, the exact sequence

0—N—5T¢—T"—0

splits, and T4 = N x T™.
Apply the results on reduction for product groups (Section 24.3) to our
situation of T = N x T" acting on (Ma,wa). The moment map is

¢:CH— RH* =n* @ R")*.
Let j : Z — C be the inclusion map, and let
pry : (RY)* — n* and pry : (RY)* — (R™)*
be the projection maps. The map
pryogoj:Z — (R")"
is constant on N-orbits. Thus there exists a map
i My — (R")*

such that
pop=prgopoj.

The image of u is equal to the image of pry o ¢ o j. We showed earlier that
¢(Z) = A’. Thus

Image of ;1 = pry(A’) = pryo*(A) = A .
———
id

Thus (Ma,wa) is the required toric manifold corresponding to A.

29.4 Idea Behind the Delzant Construction

We use the idea that R? is “universal” in the sense that any n-dimensional
polytope A with d facets can be obtained by intersecting the negative orthant
R? with an affine plane A. Given A, to construct A first write A as:

A={zeR"|(x,v) <N, i=1,...,d}.
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Define

7: RT — R with dual map ™: R* — R?.
€ = v

Then
7 — MR — R?

is an affine map, where A = (A1,...,Aq). Let A be the image of 7* — A. Then
A is an n-dimensional affine plane.

Claim. We have the equality (7* — \)(A) = R% N A.

Proof. Let x € R™. Then

(7" = \)(x) € R® (m*(x) — A\, e;) <0,Vi
(x,m(e;)) — A\ <0,Vi
x, Ui> < )\Z,VZ

reEAN.

1117

O

We conclude that A ~ R% N A. Now R? is the image of the moment map
for the standard hamiltonian action of T¢ on C¢

$:C4 — R?

1
(z1,--,2d) +— —§(|z1|2,...,|zd|2).

Facts.

e The set ¢~ 1(A) C C? is a compact submanifold. Let i : ¢ — C? denote
inclusion. Then *wy is a closed 2-form which is degenerate. Its kernel is
an integrable distribution. The corresponding foliation is called the null
foliation.

e The null foliation of i*wq is a principal fibration, so we take the quotient:

N — ¢7(A)
i
My = ¢ YA)/N

Let wa be the reduced symplectic form.

e The (non-effective) action of T = N xT™ on ¢~ !(A) has a “moment map”
with image ¢(¢~1(A)) = A. (By “moment map” we mean a map satisfying
the usual definition even though the closed 2-form is not symplectic.)
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Theorem 29.4 For any x € A, we have that u='(x) is a single T"-orbit.

Proof. Exercise.
First consider the standard T%action on C* with moment map ¢ : C* — R%.
Show that ¢~1(y) is a single T9-orbit for any y € #(C?). Now observe that

ye N =r(A) = ¢ (y)C Z.

Suppose that y = 7*(x). Show that u=1(x) = ¢~ 1(y)/N. But ¢~ 1(y) is a single
T9-orbit where T = N x T", hence u~'(z) is a single T"-orbit. O

Therefore, for toric manifolds, A is the orbit space.

Now A is a manifold with corners. At every point p in a face F', the tangent
space T, A is the subspace of R” tangent to F. We can visualize (Ma,wa, T", 1)
from A as follows. First take the product T™ x A. Let p lie in the interior of
T™ x A. The tangent space at p is R” x (R™)*. Define w, by:

w,,(v,{) = f(v) = _wp(gav) and WP(U7U/) = w(&?fl) =0.

for all v,v" € R™ and &,&" € (R™)*. Then w is a closed nondegenerate 2-form
on the interior of T" x A. At the corner there are directions missing in (R™)*,
S0 w is a degenerate pairing. Hence, we need to eliminate the corresponding
directions in R™. To do this, we collapse the orbits corresponding to subgroups
of T™ generated by directions orthogonal to the annihilator of that face.

Example. Consider

(S*,w=df Adh,S*,pu=h),

where S1 acts on S? by rotation. The image of y is the line segment I = [—1,1].
The product S' x I is an open-ended cylinder. By collapsing each end of the
cylinder to a point, we recover the 2-sphere. &

Exercise. Build CP? from T? x A where A is a right-angled isosceles triangle.

O

Finally, T™ acts on T™ x A by multiplication on the T™ factor. The moment
map for this action is projection onto the A factor.



Homework 22: Delzant Theorem

1. (a)

()

Consider the standard (S!)3-action on CP3:
01 if2 if i i i
(el 1761 2761 3) . [20721,22,23] = [20,67' 121761 2227el 3Z3] .

Exhibit explicitly the subsets of CP? for which the stabilizer under
this action is {1}, S1, (S1)? and (S!)3. Show that the images of these
subsets under the moment map are the interior, the facets, the edges
and the vertices, respectively.

Classify all 2-dimensional Delzant polytopes with 4 vertices, up to
translation and the action of SL(2;Z).

Hint: By a linear transformation in SL(2;Z), you can make one of the angles
in the polytope into a square angle. Check that automatically another angle
also becomes 90°.

What are all the 4-dimensional symplectic toric manifolds that have

four fixed points?

2. Take a Delzant polytope in R"™ with a vertex p and with primitive (inward-
pointing) edge vectors uq,...,u, at p. Chop off the corner to obtain a
new polytope with the same vertices except p, and with p replaced by n
new vertices:

pteu;, j=1,...,n,

where € is a small positive real number. Show that this new polytope
is also Delzant. The corresponding toric manifold is the e-symplectic
blowup of the original one.

187
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3. The toric 4-manifold H,, corresponding to the polygon with vertices (0, 0),
(n+1,0), (0,1) and (1,1), for » a nonnegative integer, is called a Hirze-
bruch surfaces.

(a) What is the manifold Hy? What is the manifold H;?

Hint:

(b) Construct the manifold H,, by symplectic reduction of C* with re-
spect to an action of (S1)2.

(c) Exhibit H,, as a CP!-bundle over CP!.

4. Which 2n-dimensional toric manifolds have exactly n + 1 fixed points?



30 Duistermaat-Heckman Theorems

30.1 Duistermaat-Heckman Polynomial

Let (M?",w) be a symplectic manifold. Then “’n—T is the symplectic volume form.

Definition 30.1 The Liouville measure (or symplectic measure) of a
Borel subset > U of M is

wn

Let G be a torus. Suppose that (M,w,G, 1) is a hamiltonian G-space, and
that the moment map p is proper.

Definition 30.2 The Duistermaat-Heckman measure, mpy, on g* is the
push-forward of my, by p: M — g*. That is,

mDH@0:<mmmew=/

ot @)

wTL

for any Borel subset U of g*.

For a compactly-supported function h € C*°(g*), we define its integral with
respect to the Duistermaat-Heckman measure to be

wn
/ hdeH:/ (hop,)—'.
g* M n.

On g* regarded as a vector space, say R™, there is also the Lebesgue (or
euclidean) measure, mg. The relation between mpy and my is governed by the
Radon-Nikodym derivative, denoted by dgzr’foH, which is a generalized function
satisfying

d
/hdeH:/ p SODH g
g* g* dmo

Theorem 30.3 (Duistermaat-Heckman, 1982 [26])  The Duistermaat-
Heckman measure is a piecewise polynomial multiple of Lebesque (or euclidean)
measure mg on g* ~ R", that is, the Radon-Nikodym derivative

deH

f=

dmo

is piecewise polynomial. More specifically, for any Borel subset U of g*,

7mmw:Lﬂ@M,

where dr = dmyg is the Lebesgue volume form on U and f : g* ~ R" — R is
polynomial on any region consisting of regular values of .

15The set B of Borel subsets is the o-ring generated by the set of compact subsets, i.e., if
A,B € B, then A\B€B,andif A; € B,i=1,2,..., then U, A; € B.

189
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The proof of Theorem 30.3 for the case G = S' is in Section 30.3. The
proof for the general case, which follows along similar lines, can be found in, for
instance, [41], besides the original articles.

The Radon-Nikodym derivative f is called the Duistermaat-Heckman
polynomial. In the case of a toric manifold, the Duistermaat-Heckman poly-
nomial is a universal constant equal to (27)" when A is n-dimensional. Thus
the symplectic volume of (Ma,wa) is (27)™ times the euclidean volume of A.

Example. Consider (S%,w = df Adh,S*, i = h). The image of p is the interval
[—1,1]. The Lebesgue measure of [a,b] C [-1,1] is

mo([a,b]) =b—a .

The Duistermaat-Heckman measure of [a, ] is

mo ([a, b)) :/ d0 dh = 27(b — a)
{(6,h)€52|a<h<b}

Consequently, the spherical area between two horizontal circles depends only on

the vertical distance between them, a result which was known to Archimedes

around 230 BC.

Corollary 30.4 For the standard hamiltonian action of S* on (S?,w), we have

mDH:27r mo .

30.2 Local Form for Reduced Spaces

Let (M,w,G, ) be a hamiltonian G-space, where G is an n-torus.!6 Assume
that p is proper. If G acts freely on u~*(0), it also acts freely on nearby levels
p~t(t), t € g* and t ~ 0. Consider the reduced spaces

Myeq = p~1(0)/G and M, =pu ()G

with reduced symplectic forms wyeq and w;. What is the relation between these
reduced spaces as symplectic manifolds?

For simplicity, we will assume G to be the circle S'. Let Z = u~1(0) and let
i1 Z — M be the inclusion map. We fix a connection form a € Q!(Z) for the
principal bundle

Ste—s 7

M, red

16The discussion in this section may be extended to hamiltonian actions of other compact
Lie groups, not necessarily tori; see [41, Exercises 2.1-2.10].
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that is, Ly#a = 0 and 1x#a = 1, where X# is the infinitesimal generator for
the S'-action. From a we construct a 2-form on the product manifold Z x (—e, )
by the recipe

0 = T wred — d(za) |

x being a linear coordinate on the interval (—e,e) C R ~ g*. (By abuse of
notation, we shorten the symbols for forms on Z x (—¢, £) which arise by pullback
via projection onto each factor.)

Lemma 30.5 The 2-form o is symplectic for € small enough.

Proof. The form o is clearly closed. At points where z = 0, we have

0‘1:0 = T Wreq + @ N dzT |

0
a|w:0 (X#aax) =1 )

so o is nondegenerate along Z x {0}. Since nondegeneracy is an open condition,
we conclude that ¢ is nondegenerate for x in a sufficiently small neighborhood
of 0. d

which satisfies

Notice that ¢ is invariant with respect to the S'-action on the first factor of
Z x (—¢,€). In fact, this S-action is hamiltonian with moment map given by
projection onto the second factor,

x:Z X (—e,e) — (—¢,¢),

as is easily verified:

1x#0 = —ixsd(za) = — Lx#(za) +dixs(za) = dx .
——— ——
0 T

Lemma 30.6 There exists an equivariant symplectomorphism between a neigh-
borhood of Z in M and a neighborhood of Z x {0} in Z x (—e,¢), intertwining
the two moment maps, for € small enough.

Proof. The inclusion i : Z — Z x (—e,¢e) as Z x {0} and the natural inclusion
i: Z — M are S'-equivariant coisotropic embeddings. Moreover, they satisfy
i50 = 1*w since both sides are equal to 7*wyeq, and the moment maps coincide on
Z because ijz = 0 = i*u. Replacing € by a smaller positive number if necessary,
the result follows from the equivariant version of the coisotropic embedding
theorem stated in Section 8.3.17 g

17The equivariant version of Theorem 8.6 needed for this purpose may be phrased as follows:
Let (Mo, wo), (M1,w1) be symplectic manifolds of dimension 2n, G a compact Lie group acting
on (M;,w;), i = 0,1, in a hamiltonian way with moment maps po and p1, respectively, Z
a manifold of dimension k > n with a G-action, and v; : Z — M;, 1 = 0,1, G-equivariant
coisotropic embeddings. Suppose that tfjwo = tjw1 and tfuo = tju1. Then there exist G-
invariant neighborhoods Uy and Uy of 1o(Z) and t1(Z) in Mo and My, respectively, and a
G-equivariant symplectomorphism ¢ : Uy — U1 such that pog =11 and po = ¢ p1.
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Therefore, in order to compare the reduced spaces
My =pt(t)/S*, t=0,
we can work in Z x (—e,e) and compare instead the reduced spaces
7 Ht)/St, t=0.
Proposition 30.7 The reduced space (My,w;) is symplectomorphic to

(Mreda Wred — tﬂ) )

where (B is the curvature form of the connection .

Proof. By Lemma 30.6, (M;,w;) is symplectomorphic to the reduced space at
level ¢ for the hamiltonian space (Z x (—¢,¢),0, S, x). Since z71(¢) = Z x {t},
where S* acts on the first factor, all the manifolds x=1(¢)/S! are diffeomorphic
to Z/S! = M,eq. As for the symplectic forms, let ¢; : Z x {t} — Z x (—¢,¢) be
the inclusion map. The restriction of o to Z x {t} is

10 = T wreq — tdar .

By definition of curvature, dae = 7*(3. Hence, the reduced symplectic form on
x71(t)/St is
Wred — tﬂ .
O

In loose terms, Proposition 30.7 says that the reduced forms w; vary linearly
in t, for ¢ close enough to 0. However, the identification of M; with Meq as
abstract manifolds is not natural. Nonetheless, any two such identifications are
isotopic. By the homotopy invariance of de Rham classes, we obtain:

Theorem 30.8 (Duistermaat-Heckman, 1982 [26]) The cohomology class
of the reduced symplectic form [w] varies linearly in t. More specifically,

[wt] = [wred] +te 3

where ¢ = [—f3] € Hippam(Mrea) is the first Chern class of the S*-bundle
Z — Mred-

Remark on conventions. Connections on principal bundles are Lie algebra-
valued 1-forms; cf. Section 25.2. Often the Lie algebra of S! is identified with
27iR under the exponential map exp : g ~ 2miR — S, €  e5. Given a prin-
cipal S'-bundle, by this identification the infinitesimal action maps the gener-
ator 2mi of 2miR to the generating vector field X#. A connection form A is
then an imaginary-valued 1-form on the total space satisfying Lx#A = 0 and
1x# A = 2mi. Its curvature form B is an imaginary-valued 2-form on the base
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satisfying 7*B = dA. By the Chern-Weil isomorphism, the first Chern class
of the principal S*-bundle is ¢ = [3= B].

In this lecture, we identify the Lie algebra of S! with R and implicitly use
the exponential map exp : g ~ R — S, t s €2, Hence, given a principal
S1-bundle, the infinitesimal action maps the generator 1 of R to X#, and here a
connection form « is an ordinary 1-form on the total space satisfying Lx#a =0
and 1x#a = 1. The curvature form 3 is an ordinary 2-form on the base satisfying
73 = da. Consequently, we have A = 2wia, B = 2mif3 and the first Chern

class is given by ¢ = [-0]. %

30.3 Variation of the Symplectic Volume

Let (M,w,S', 1) be a hamiltonian S*-space of dimension 2n and let (M,,w;)
be its reduced space at level x. Proposition 30.7 or Theorem 30.8 imply that,
for x in a sufficiently narrow neighborhood of 0, the symplectic volume of M,

_ witt (Wrea — x0)" !
vol(M) = /M (n—1)] ‘/ CED

x

is a polynomial in x of degree n — 1. This volume can be also expressed as

T (Wred — z3)" !

vol(M,) = /Z =1 ANa .

Recall that a is a chosen connection form for the S'-bundle Z — M,eq and S is
its curvature form.

Now we go back to the computation of the Duistermaat-Heckman measure.
For a Borel subset U of (—¢,¢), the Duistermaat-Heckman measure is, by defi-
nition,

w’ﬂ
mDH(U) :/ —_— .
RGN

Using the fact that (u=!(—¢,¢),w) is symplectomorphic to (Z x (—¢,¢), o) and,
moreover, they are isomorphic as hamiltonian S'-spaces, we obtain

O.TL

m U:/ — .
DH() Z><Un!

Since 0 = T wreq — d(za), its power is
0" = n(m*Wred — xda)"_l AaAdx .

By the Fubini theorem, we then have

mDH(U>:/U|:/Z ﬂ*(wf(e;_fﬁ)n_l/\a Adz .
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Therefore, the Radon-Nikodym derivative of mpyg with respect to the Lebesgue
measure, dz, is

flx) = /z W*(wr(e; : fﬁ)n A a =vol(M,) .

The previous discussion proves that, for z ~ 0, f(z) is a polynomial in z.
The same holds for a neighborhood of any other regular value of u, because we
may change the moment map p by an arbitrary additive constant.



Homework 23: S'-Equivariant Cohomology

1. Let M be a manifold with a circle action and X# the vector field on M
generated by S'. The algebra of S'-equivariant forms on M is the
algebra of S'-invariant forms on M tensored with complex polynomials in

€T,

% (M) == (Q°(M))"" ®p Clz] .

The product A on Q%, (M) combines the wedge product on Q°(M) with
the product of polynomials on C|z].

(a)

()

We grade Q%, (M) by adding the usual grading on Q° (M) to a grading
on C[z] where the monomial 2 has degree 2. Check that (2%, (M), A)
is then a supercommutative graded algebra, i.e.,

ahf=(-1)lexdelgna

for elements of pure degree o, 8 € Q% (M).
On Q%, (M) we define an operator

dsr:=d®1—1x4 Qx .
In other words, for an elementary form o = a ® p(z),
dsia =da@p(x) —ixsa @ xp(z) .

The operator dg: is called the Cartan differentiation. Show that
dg1 is a superderivation of degree 1, i.e., check that it increases degree
by 1 and that it satisfies the super Leibniz rule:

dsi(aAB) = (dsia) A B+ (—1)"8L a A dgi 3 .

Show that d%l =0.

Hint: Cartan magic formula.

2. The previous exercise shows that the sequence

0 — 0% (M) 25 0L, (M) 25 02, (M) 25

forms a graded complex whose cohomology is called the equivariant co-
homology'® of M for the given action of S'. The kth equivariant coho-
mology group of M is

B ker dg : Q’gl — ngl

HE (M) -
st(M) im dg : Qg?l — Q’gl

18The equivariant cohomology of a topological space M endowed with a continuous
action of a topological group G is, by definition, the cohomology of the diagonal quotient
(M x EG)/G, where EG is the universal bundle of G, i.e., EG is a contractible space where
G acts freely. H. Cartan [18, 46] showed that, for the action of a compact Lie group G on a
manifold M, the de Rham model (Q¢,(M),dg) computes the equivariant cohomology, where
Q% (M) are the G-equivariant forms on M. [8, 10, 23, 41] explain equivariant cohomology in
the symplectic context and [46] discusses equivariant de Rham theory and many applications.

195



196

HOMEWORK 23

(a) What is the equivariant cohomology of a point?

(b) What is the equivariant cohomology of S! with its multiplication
action on itself?

(¢) Show that the equivariant cohomology of a manifold M with a free
Sl-action is isomorphic to the ordinary cohomology of the quotient
space M/S*.

Hint: Let w: M — M/S! be projection. Show that
. H*(M/S') — Hgl(M)
[a} — [71'*0( ® 1]
is a well-defined isomorphism. It helps to choose a connection on the principal
Sl-bundle M — M/S*, that is, a 1-form 6 on M such that Lyx#0 =0 and

1x#0 = 1. Keep in mind that a form 3 on M is of type m*« for some « if and
only if it is basic, that is Ly 406 =0and 15x%0 = 0.

3. Suppose that (M,w) is a symplectic manifold with an S'-action. Let

€ C°°(M) be a real function. Consider the equivariant form
Wwi=wRl+u®ax.

Show that w is equivariantly closed, i.e., dsiw = 0 if and only if u
is a moment map. The equivariant form w is called the equivariant
symplectic form.

Let M?" be a compact oriented manifold, not necessarily symplectic, acted
upon by S'. Suppose that the set MS" of fixed points for this action is
finite. Let a(®™) be an S'-invariant top form which is the top degree part
of an equivariantly closed form of even degree, that is, «(?®) € Q2n(M)5’
is such that there exists a € Q%, (M) with

a=a® 42 4 4 a0
where a(?%) ¢ (Q%(M))S1 ® Clz] and dg1a = 0.

(a) Show that the restriction of a®™ to M \ M5 is exact.

Hint: The generator X# of the S'-action does not vanish on M \ MS
(v, x#)
(X#,X#)
some Sl-invariant metric on M. Use 6 € Q' (M \ Msl) to chase the primitive

of a(27) all the way up from a(?).

(b) Compute the integral of a(®®) over M.

Hence, we can define a connection on MS? by 0(Y) = , where (-, -) is

Hint: Stokes’ theorem allows to localize the answer near the fixed points.

This exercise is a very special case of the Atiyah-Bott-Berline-Vergne lo-
calization theorem for equivariant cohomology [8, 13].

What is the integral of the symplectic form w on a surface with a hamil-
tonian S'-action, knowing that the S'-action is free outside a finite set of
fixed points?

Hint: Exercises 3 and 4.
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action
adjoint, 129, 135
coadjoint, 129, 135
coordinates, 109
definition, 126
effective, 169
free, 133
gauge group, 156
hamiltonian, 127, 128, 131, 162
infinitesimal, 154, 162
locally free, 133
minimizing, 113, 118
of a path, 112, 113, 117
principle of least action, 112
smooth, 127
symplectic, 127
transitive, 133
action-angle coordinates, 109
adapted coordinates, 16
adjoint
action, 129, 135
representation, 128, 129
almost complex manifold, 68
almost complex structure
compatibility, 68
contractibility, 75
definition, 68
integrability, 73, 80
three geometries, 65
almost complex submanifold, 74
almost symplectic manifold, 72
angle coordinates, 108
angular momentum, 135, 136
(J-)anti-holomorphic tangent vectors,
76
antisymmetry, 106
arc-length, 23
Archimedes, 190
Arnold
Arnold-Liouville theorem, 108
conjecture, 31, 53, 54
Atiyah
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Atiyah-Guillemin-Sternberg the-
orem, 168

moduli space, 156

Yang-Mills theory, 153

Banyaga theorem, 90
base, 153
basis
for skew-symmetric bilinear maps,
1
Beltrami
Laplace-Beltrami operator, 96
Betti number, 98
biholomorphic map, 81
bilinear map, see skew-symmetric bi-
linear map
billiards, 28
Birkhoff
Poincaré-Birkhoff theorem, 31
blowup, 187
Borel subset, 189
Bott
moduli space, 156
Morse-Bott function, 173
Yang-Mills theory, 153
bracket
Lie, 106
Poisson, 106, 107, 132, 162

C*'-topology, 51, 52
canonical
symplectic form on a coadjoint
orbit, 137, 148, 160
symplectomorphism, 10
canonical form on T*X
coordinate definition, 7, 8
intrinsic definition, 8
naturality, 9
Cartan
differentiation, 195
magic formula, 34, 38, 42
Cauchy-Riemann equations, 82
characteristic distribution, 51
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chart
complex, 81
Darboux, 5
Chern
first Chern class, 192, 193
Chevalley cohomology, 163
Christoffel
equations, 118
symbols, 118
circle bundle, 157
classical mechanics, 105
coadjoint
action, 129, 135, 160
orbit, 137, 160
representation, 128, 129
codifferential, 96
cohomology
Sl_equivariant, 195
Chevalley, 163
de Rham, 11, 37
Dolbeault, 79
equivariant, 195
Lie algebra, 163
coindex, 173, 174
coisotropic
embedding, 47, 51
subspace, 6
commutator ideal, 163
comoment map, 131, 132, 162
compatible
almost complex structure, 68,
72
complex structure, 66
linear structures, 70
triple, 68, 73
complete vector field, 127
completely integrable system, 108
complex
atlas, 87
chart, 81
differentials, 84, 85
Hodge theory, 97
manifold, 81
projective space, 87, 93, 94, 101,
134, 167, 179
complex structure

INDEX

compatibility, 66, 75
on a vector space, 66
polar decomposition, 67
complex surface, 101
complex torus, 101
complex vector space, 66
complex-antilinear cotangent vectors,
7
complex-linear cotangent vectors, 77
complex-valued form, 77
conehead orbifold, 148
configuration space, 105, 111
conjecture
Arnold, 31, 53, 54
Hodge, 99
Seifert, 63
Weinstein, 63, 64
conjugation, 129
connectedness, 168, 173, 174
connection
flat, 157
form, 154
moduli space, 157
on a principal bundle, 153
space, 156
conormal
bundle, 16
space, 16
conservative system, 111
constrained system, 112
constraint set, 112
contact
contact structure on S2"~1 62
dynamics, 61
element, 55, 59, 60
example of contact structure, 56
local contact form, 55
local normal form, 57
locally defining 1-form, 55
manifold, 55
point, 55
structure, 55
contactomorphism, 61
contractibility, 75
convexity, 168
cotangent bundle
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canonical symplectomorphism,
9, 10

conormal bundle, 16
coordinates, 7
is a symplectic manifold, 7
lagrangian submanifold, 14-16
projectivization, 57
sphere bundle, 57
zero section, 14

critical set, 173

curvature form, 155

D’Alembert

variational principle, 112
Darboux

chart, 5

theorem, 5, 43, 44

theorem for contact manifolds,

57

theorem in dimension two, 48
de Rham cohomology, 11, 37
deformation equivalence, 40
deformation retract, 38
Delzant

construction, 181, 183, 184

example of Delzant polytope, 175

example of non-Delzant poly-
tope, 176
polytope, 175, 187
theorem, 177, 187
Dolbeault
cohomology, 79
theorem, 86
theory, 76
dual function, 120, 124
Duistermaat-Heckman
measure, 189
polynomial, 189, 190
theorem, 189, 192
dunce cap orbifold, 148
dynamical system, 31

effective
action, 169
moment map, 174
Ehresmann
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connection, 154
5% is not an almost complex man-
ifold, 74
embeddiing
closed, 13
definition, 13
embedding
coisotropic, 47, 51
isotropic, 51
lagrangian, 49
energy
classical mechanics, 105
energy-momentum map, 151
kinetic, 110, 111
potential, 110, 111
equations
Christoffel, 118
Euler-Lagrange, 103, 118, 121
Hamilton, 121, 146
Hamilton-Jacobi, 103
of motion, 111
equivariant
cohomology, 195
coisotropic embedding, 191
form, 195
moment map, 132
symplectic form, 196
tubular neighborhood theorem,
141
euclidean
distance, 22, 23
inner product, 22, 23
measure, 189
norm, 23
space, 22
Euler
FEuler-Lagrange equations, 103,
114, 118, 121
variational principle, 112
evaluation map, 127
exactly homotopic to the identity,
54
example
2-sphere, 95
coadjoint orbits, 135, 137
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complex projective space, 87, 101,
179

complex submanifold of a Kéhler
manifold, 101

complex torus, 101

Delzant construction, 179

Fernandez-Gotay-Gray, 100

Gompf, 101

hermitian matrices, 130

Hirzebruch surfaces, 176, 188

Hopf surface, 100

Kodaira-Thurston, 100

McDuff, 41

non-singular projective variety,
93

of almost complex manifold, 74

of compact complex manifold,
99

of compact Kéahler manifold, 94,
99

of compact symplectic manifold,
99

of complex manifold, 87

of contact manifold, 60

of contact structure, 56

of Delzant polytope, 175

of hamiltonian actions, 127, 128

of infinite-dimensional symplec-
tic manifold, 156

of Kéahler submanifold, 93

of lagrangian submanifold, 14

of mechanical system, 111

of non-almost-complex manifold,
74

of non-Delzant polytope, 176

of reduced system, 151

of symplectic manifold, 4, 7

of symplectomorphism, 20

oriented surfaces, 48

product of Kéhler manifolds, 101

quotient topology, 133

reduction, 167

Riemann surface, 101

simple pendulum, 110

spherical pendulum, 150

Stein manifold, 101

INDEX

Taubes, 101

toric manifold, 170

weighted projective space, 149
exponential map, 33

facet, 176
Fernédndez-Gotay-Gray example, 100
first Chern class, 192, 193
first integral, 107
fixed point, 27, 31, 53
flat connection, 157
flow, 33
form
area, 48
canonical, 7, 8
complex-valued, 77
connection, 154
curvature, 155
de Rham, 4
Fubini-Study, 94, 167
harmonic, 96, 97
Kahler, 88, 96
Killing, 156
Liouville, 11
on a complex manifold, 83
positive, 90
symplectic, 4
tautological, 7, 8, 18
type, 77
free action, 133
Fubini theorem, 193
Fubini-Study form, 94, 167
function
biholomorphic, 87
dual, 120, 124
generating, 27
hamiltonian, 104, 132
J-holomorphic, 80
Morse-Bott, 173
stable, 119, 123
strictly convex, 119, 123

G-space, 132
gauge
group, 156
theory, 153
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transformation, 156
Gauss lemma, 26
generating function, 15, 20, 21, 27
geodesic
flow, 24, 25
geodesically convex, 23
minimizing, 23, 117, 118
Gompf construction, 101
Gotay
coisotropic embedding, 51
Fernandez-Gotay-Gray, 100
gradient vector field, 105
gravitational potential, 111
gravity, 110, 150
Gray

Fernandez-Gotay-Gray (A. Gray),

100
theorem (J. Gray), 57
Gromov
pseudo-holomorphic curve, 65,
80
group
gauge, 156
Lie, 126
of symplectomorphisms, 10, 51
one-parameter group of diffeo-
morphisms, 125, 126
product, 147
semisimple, 156
structure, 153
Guillemin
Atiyah-Guillemin-Sternberg the-
orem, 168

Hamilton equations, 21, 22, 105, 111,
121, 146

Hamilton-Jacobi equations, 103
hamiltonian

action, 127, 128, 131, 162

function, 103, 104, 107, 132

G-space, 132

mechanics, 103

moment map, 132

reduced, 146

system, 107

vector field, 103, 104
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harmonic form, 96, 97
Hausdorff quotient, 134
Heckman, see Duistermaat-Heckman
hermitian matrix, 130
hessian, 119, 123, 173
Hirzebruch surface, 176, 188
Hodge
complex Hodge theory, 97
conjecture, 99
decomposition, 96, 97
diamond, 99
number, 98
x-operator, 96
theorem, 96-98
theory, 96
(J-)holomorphic tangent vectors, 76
homotopy
definition, 38
formula, 37, 38
invariance, 37
operator, 38
Hopf
fibration, 62, 154
5% is not almost complex, 74
surface, 100
vector field, 62

immersion, 13
index, 173, 174
infinitesimal action, 154, 162

integrable
almost complex structure, 73,
80
system, 107, 108, 170
integral
curve, 104, 111, 125
first, 107

of motion, 107, 145
intersection of lagrangian submani-
folds, 53
inverse square law, 111
isometry, 118
isotopy
definition, 33
symplectic, 40
vs. vector field, 33
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isotropic
embedding, 51
subspace, 6

isotropy, 133

J-anti-holomorphic function, 78
(J-)anti-holomorphic tangent vectors,
76
J-holomorphic curve, 80
J-holomorphic function, 78, 80
(J-)holomorphic tangent vectors, 76
Jacobi
Hamilton-Jacobi equations, 103
identity, 106, 137
jacobiator, 137

Kéhler
compact Kahler manifolds, 96
form, 88, 96
local form, 92
manifold, 88, 96
potential, 91, 92
recipe, 90
submanifold, 92
Killing form, 156
kinetic energy, 110, 111
Kirillov
Kostant-Kirillov symplectic form,
137, 148
Kodaira
complex surface, 101
complex surfaces, 100
Kodaira-Thurston example, 100
Kostant-Kirillov symplectic form, 137,
148

Lagrange

Euler-Lagrange equations, 118

variational principle, 112
lagrangian complement, 45
lagrangian fibration, 109
lagrangian submanifold

closed 1-form, 15

conormal bundle, 16

definition, 14

generating function, 15, 21

INDEX

intersection problem, 53
of T* X, 14
vs. symplectomorphism, 13, 17
zero section, 14
lagrangian subspace, 6, 44, 75
Laplace-Beltrami operator, 96
laplacian, 96
Lebesgue
measure, 189
volume, 189
left multiplication, 128
left-invariant, 128
Legendre
condition, 115
transform, 119, 120, 123, 124
Leibniz rule, 107, 137
Lie
algebra, 106, 128, 162
algebra cohomology, 163
bracket, 106
derivative, 34, 38
group, 126
Lie-Poisson symplectic form, 137, 148
lift
of a diffeomorphism, 9
of a path, 113, 117
of a vector field, 104
linear momentum, 135
Liouville
Arnold-Liouville theorem, 108
form, 11
measure, 189
torus, 108
local form, 33, 92, 190
locally free action, 133

manifold
almost symplectic, 72
complex, 81
infinite-dimensional, 156
Kahler, 88, 96
of contact elements, 59
of oriented contact elements, 60
riemannian, 117
symplectic, 4
toric, see toric manifold
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with corners, 186
Marsden-Weinstein-Meyer
quotient, 139
theorem, 134, 139
Maupertius
variational principle, 112
McDuff counterexample, 41
measure
Duistermaat-Heckman, 189
Lebesgue, 189
Liouville, 189
symplectic, 189
mechanical system, 111
mechanics
celestial, 31
classical, 105
metric, 22, 68, 117
Meyer, see Marsden-Weinstein-Meyer
minimizing
action, 113
locally, 113, 115
property, 115
moduli space, 157
moment map
actions, 125
definition, 131
effective, 174
equivariance, 132
example, 160
existence, 162, 164
hamiltonian G-space, 132
in gauge theory, 153
origin, 125
uniqueness, 162, 165
upgraded hamiltonian function,
128
moment polytope, 168
momentum, 105, 121, 135
momentum vector, 135
Morse
Morse-Bott function, 173
Morse function, 53
Morse theory, 53, 168
Moser
equation, 42
theorem — local version, 43
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theorem — version I, 41
theorem — version II, 42
trick, 40-42, 48

motion
constant of motion, 107
equations, 111
integral of motion, 107, 145

neighborhood
convex, 35
e-neighborhood theorem, 36
tubular neighborhood, 49
tubular neighborhood fibration,
37
tubular neighborhood in R™, 39
tubular neighborhood theorem,
35
Weinstein lagrangian neighbor-
hood, 44, 46
Weinstein tubular neighborhood,
49
Newlander-Nirenberg theorem, 80,
86
Newton
polytope, 175
second law, 103, 105, 111, 112
Nijenhuis tensor, 80, 86
Nikodym
Radon-Nikodym derivative, 189
Nirenberg
Newlander-Nirenberg theorem,
80
Noether
principle, 125, 145
theorem, 145
non-singular projective variety, 93
nondegenerate
bilinear map, 2
fixed point, 53
normal
bundle, 35, 39
space, 35, 39, 49
number
Betti, 98
Hodge, 98
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one-parameter group of diffeomor-
phisms, 125, 126
operator
Laplace-Beltrami, 96
orbifold
conehead, 148
dunce cap, 148
examples, 148
reduced space, 148
teardrop, 148
orbit
definition, 133
point-orbit projection, 133
space, 133
topology of the orbit space, 133
unstable, 133
oriented surfaces, 48
overtwisted contact structure, 64

pendulum
simple, 110, 112
spherical, 150
periodic point, 27
phase space, 105, 111, 146
Picard theorem, 34
Poincaré
last geometric theorem, 31
Poincaré-Birkhoff theorem, 31
recurrence theorem, 30
point-orbit projection, 133
Poisson
algebra, 107
bracket, 106, 107, 132, 162
Lie-Poisson symplectic form, 137,
148
structure on g*, 137
polar decomposition, 67, 69
polytope
Delzant, 175, 187
example of Delzant polytope, 175
example of non-Delzant poly-
tope, 176
facet, 176
moment, 168
Newton, 175
rational, 175

INDEX

simple, 175

smooth, 175
positive

form, 90

inner product, 22, 75

vector field, 64
potential

energy, 110, 111

gravitational, 111

Kahler, 91, 92

strictly plurisubharmonic, 90
primitive vector, 176
principal bundle

connection, 153

gauge group, 156
principle

Noether, 125, 145

of least action, 112

variational, 112
product group, 147
projectivization, 59
proper function, 13, 101, 119
pseudo-holomorphic curve, 65, 80
pullback, 5

quadratic growth at infinity, 124
quadrature, 151
quotient
Hausdorff, 134
Marsden-Weinstein-Meyer, 139
symplectic, 139
topology, 133

Radon-Nikodym derivative, 189
rank, 2
rational polytope, 175
recipe

for Kéhler forms, 90

for symplectomorphisms, 20
recurrence, 27, 30
reduced

hamiltonian, 146

phase space, 146

space, 134, 139, 148
reduction

example, 167
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for product groups, 147
in stages, 147
local form, 190
low-brow proof, 139
Noether principle, 145
other levels, 147
preview, 134
reduced space, 134
symmetry, 145
Reeb vector field, 61
representation
adjoint, 128, 129
coadjoint, 128, 129
of a Lie group, 126
retraction, 38
Riemann
Cauchy-Riemann equations, 82
surface, 101, 156
riemannian
distance, 23
manifold, 22, 117
metric, 22, 47, 68, 117
right multiplication, 128
right-invariant, 128

s.p.s.h.; 90
Seiberg-Witten invariants, 101
Seifert conjecture, 63
semisimple, 156, 165
simple pendulum, 110
simple polytope, 175
skew-symmetric bilinear map
nondegenerate, 2
rank, 2
standard form, 1
symplectic, 2
skew-symmetry
definition, 1
forms, 11
standard form for bilinear maps,
1
slice theorem, 141
smooth polytope, 175
space
affine, 156
configuration, 105, 111
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moduli, 157
normal, 39, 49
of connections, 156
phase, 105, 111
total, 153
spherical pendulum, 150
splittings, 76
stability
definition, 119
set, 120
stabilizer, 133
stable
function, 123
point, 110, 150
Stein manifold, 101
stereographic projection, 87, 95
Sternberg
Atiyah-Guillemin-Sternberg the-
orem, 168
Stokes theorem, 11, 159
strictly convex function, 115, 119,
123
strictly plurisubharmonic, 90
strong isotopy, 40, 48
submanifold, 13
submanifold
almost complex, 74
Kahler, 92
subspace
coisotropic, 6
isotropic, 3, 6
lagrangian, 6, 44, 75
symplectic, 3, 6
supercommutativity, 195
superderivation, 195
symplectic
action, 127
almost symplectic manifold, 72
basis, 3
bilinear map, 2
blowup, 187
canonical symplectic form on a
coadjoint orbit, 137, 148,
160
cotangent bundle, 7
deformation equivalence, 40
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duality, 3

equivalence, 40

equivariant form, 196

form, 4, 11

Fubini-Study form, 167

isotopy, 40

linear algebra, 6, 49

linear group, 70

linear symplectic structure, 2

manifold, 4

measure, 189

normal forms, 44

orthogonal, 6

properties of linear symplectic
structures, 3

quotient, 139

reduction, see reduction

strong isotopy, 40

structure on the space of con-
nections, 156

subspace, 6

toric manifold, see toric mani-
fold

vector bundle, 72

vector field, 103, 104, 127

vector space, 2

volume, 11, 189, 193

symplectization, 62
symplectomorphic, 3, 40
symplectomorphism

Arnold conjecture, 31, 53

canonical, 10

definition, 5

equivalence, 13

exactly homotopic to the iden-
tity, 54

fixed point, 31, 53

generating function, 21

group of symplectomorphisms,
10, 51

linear, 3

recipe, 20

tautological form, 18

vs. lagrangian submanifold, 13,
17

system

INDEX

conservative, 111
constrained, 112
mechanical, 111

Taubes
CP?#CP2#CIP? is not complex,
101
unique symplectic structure on
CP?, 101
tautological form on T*X
coordinate definition, 7, 8
intrinsic definition, 8
naturality, 9
property, 8
symplectomorphism, 18
teardrop orbifold, 148
theorem
Archimedes, 190
Arnold-Liouville, 108
Atiyah-Guillemin-Sternberg, 134,
168
Banyaga, 90
coisotropic embedding, 47
convexity, 168
Darboux, 5, 44, 48
Delzant, 134, 177, 187
Dolbeault, 86
Duistermaat-Heckman, 189, 192
e-neighborhood, 36
equivariant coisotropic embed-
ding, 191
FEuler-Lagrange equations, 121
Fubini, 193
Gray, 57
Hodge, 96-98
implicit function, 21
local normal form for contact
manifolds, 57
Marsden-Weinstein-Meyer, 134,
139
Moser — local version, 43
Moser — version I, 41
Moser — version II, 42
Newlander-Nirenberg, 80, 86
Noether, 145
Picard, 34
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Poincaré recurrence, 30

Poincaré’s last geometric theo-
rem, 31

Poincaré-Birkhoff, 31

slice, 141

standard form for skew-symmetric

bilinear maps, 1
Stokes, 11, 159

symplectomorphism vs. lagrangian

submanifold, 17
tubular neighborhood, 35, 49
tubular neighborhood in R™, 39
Weinstein lagrangian neighbor-
hood, 44, 46
Weinstein tubular neighborhood,
49
Whitehead lemmas, 165
Whitney extension, 46, 47
Thurston
Kodaira-Thurston example, 100
tight contact structure, 64
time-dependent vector field, 33
topological constraint, 98
topology of the orbit space, 133
toric manifold
classification, 175
definition, 170, 175
example, 170
4-dimensional, 187
total space, 153
transitive action, 133
tubular neighborhood
equivariant, 141
fibration, 37
homotopy-invariance, 37
in R™, 39
theorem, 35, 49
Weinstein theorem, 49
twisted product form, 17
twisted projective space, 149

unique symplectic structure on CP?2,
101
unstable
orbit, 133
point, 110, 150
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variational
principle, 111, 112
problem, 111, 120
vector field
complete, 127
gradient, 105
hamiltonian, 103, 104
Lie algebra, 162
symplectic, 103, 104, 127
vector space
complex, 66
symplectic, 2
velocity, 117
volume, 11, 189, 193

weighted projective space, 149
Weinstein
conjecture, 63, 64
isotropic embedding, 51
lagrangian embedding, 49
lagrangian neighborhood theo-
rem, 44, 46
Marsden-Weinstein-Meyer quo-
tient, 139
Marsden-Weinstein-Meyer the-
orem, 139
tubular neighborhood theorem,
49
Whitehead lemmas, 165
Whitney extension theorem, 46, 47
Wirtinger inequality, 115, 116
Witten
Seiberg-Witten invariants, 101
work, 111

Young inequality, 124



