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Foreword

The goal of these notes is to provide a fast introduction to symplectic geometry
– the geometry of manifolds equipped with a closed nondegenerate 2-form.

Two centuries ago, symplectic geometry1 provided a language for classical
mechanics. Through its recent huge development, it conquered an independent
and rich territory. Symplectic geometry is significantly stimulated by impor-
tant interactions with global analysis, mathematical physics, low-dimensional
topology, dynamical systems, algebraic geometry, integrable systems, microlo-
cal analysis, partial differential equations, representation theory, quantization,
equivariant cohomology, geometric combinatorics, etc.

Parts I-III explain classical topics, including cotangent bundles, symplecto-
morphisms, lagrangian submanifolds and local forms. Parts IV-VI concentrate
on important related areas, such as contact geometry and Kähler geometry.
Classical hamiltonian theory enters only in Parts VII-VIII, starting the second
half of this book, which is devoted to a selection from hamiltonian dynamical
systems and symmetry. Parts IX-XI discuss the moment map whose preponder-
ance has been growing steadily for the past twenty years. There are scattered
short exercises throughout the text. At the end of most lectures, some longer
guided problems, called homework, were designed to complement the exposition
or extend the reader’s understanding.

These notes approximately transcribe a 15-week course on symplectic geom-
etry I taught at UC Berkeley in the Fall of 1997, with 2 hour-and-a-half lectures
per week. The course targeted second-year graduate students in mathemat-
ics, though the audience was more diverse, including advanced undergraduates,
post-docs and graduate students from other departments. The present text
should hence still be appropriate for a second-year graduate course or for an in-
dependent study project. Geometry of manifolds was the basic prerequisite for
the guiding Fall 97 course, so the same holds now for the notes. In particular,
some familiarity with de Rham theory and classical Lie groups is expected.

There are by now excellent references on symplectic geometry, a subset of
which is in the bibliography. However, the most efficient introduction to a
subject is often a short elementary treatment, and these notes attempt to serve
that purpose. Hopefully these notes provide a taste of areas of current research,
and will prepare the reader to explore recent papers and extensive books in
symplectic geometry, where the pace is much faster.

1Two centuries ago, the name symplectic geometry did not exist. If you consult a major
English dictionary, you are likely to find that symplectic is the name for a bone in a fish’s
head. However, as clarified in [82], the word symplectic in mathematics was coined by Weyl [87,
p.165] who substituted the Greek root in complex by the corresponding Latin root, in order to
label the symplectic group. Weyl thus avoided that this group connoted the complex numbers,
and also spared us from much confusion had the name remained the former one in honor of
Abel: abelian linear group.
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Conventions

Unless otherwise indicated, all vector spaces are real and finite-dimensional, all
maps are smooth (i.e., C∞) and all manifolds are smooth, Hausdorff and second
countable.
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I am also indebted to Chris Tuffley, Megumi Harada and Saul Schleimer
who read the first draft of these notes and spotted many mistakes. Of course, I
remain fully responsible for the remaining ones.

The interest and suggestions of Alan Weinstein and Eugene Lerman were
extremely helpful at the last stages of the preparation of this manuscript. I am
grateful to the two of them, and to Michèle Audin for her inspiring texts and
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Part I

Introduction
A symplectic form is a 2-form satisfying an algebraic condition – nondegeneracy
– and an analytical condition – closedness. In Lectures 1 and 2 we define
symplectic forms, describe some of their basic properties, introduce the first
examples, namely even-dimensional euclidean spaces and cotangent bundles.

1 Symplectic Forms

1.1 Skew-Symmetric Bilinear Maps

Let V be an m-dimensional vector space over R, and let Ω : V × V → R be
a bilinear map. The map Ω is skew-symmetric if Ω(u, v) = −Ω(v, u), for all
u, v ∈ V .

Theorem 1.1 (Standard Form for Skew-symmetric Bilinear Maps)
Let Ω be a skew-symmetric bilinear map on V . Then there is a basis

u1, . . . , uk, e1, . . . , en, f1, . . . , fn of V such that

Ω(ui, v) = 0 , for all i and all v ∈ V ,
Ω(ei, ej) = 0 = Ω(fi, fj) , for all i, j, and
Ω(ei, fj) = δij , for all i, j.

Remarks.

1. The basis in Theorem 1.1 is not unique, though it is traditionally also
called a “canonical” basis.

2. In matrix notation with respect to such basis, we have

Ω(u, v) = [ u ]

 0 0 0
0 0 Id
0 −Id 0

 |v
|

 .
♦

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt
process.

Let U := {u ∈ V | Ω(u, v) = 0 for all v ∈ V }. Choose a basis u1, . . . , uk of
U , and choose a complementary space W to U in V ,

V = U ⊕W .

1



2 1 SYMPLECTIC FORMS

Take any nonzero e1 ∈ W . Then there is f1 ∈ W such that Ω(e1, f1) 6= 0.
Assume that Ω(e1, f1) = 1. Let

W1 = span of e1, f1
WΩ

1 = {w ∈W | Ω(w, v) = 0 for all v ∈W1} .

Claim. W1 ∩WΩ
1 = {0}.

Suppose that v = ae1 + bf1 ∈W1 ∩WΩ
1 .

0 = Ω(v, e1) = −b
0 = Ω(v, f1) = a

}
=⇒ v = 0 .

Claim. W = W1 ⊕WΩ
1 .

Suppose that v ∈W has Ω(v, e1) = c and Ω(v, f1) = d. Then

v = (−cf1 + de1)︸ ︷︷ ︸
∈W1

+(v + cf1 − de1)︸ ︷︷ ︸
∈WΩ

1

.

Go on: let e2 ∈ WΩ
1 , e2 6= 0. There is f2 ∈ WΩ

1 such that Ω(e2, f2) 6= 0.
Assume that Ω(e2, f2) = 1. Let W2 = span of e2, f2. Etc.

This process eventually stops because dimV <∞. We hence obtain

V = U ⊕W1 ⊕W2 ⊕ . . .⊕Wn

where all summands are orthogonal with respect to Ω, and where Wi has basis
ei, fi with Ω(ei, fi) = 1. �

The dimension of the subspace U = {u ∈ V | Ω(u, v) = 0, for all v ∈ V }
does not depend on the choice of basis.

=⇒ k := dimU is an invariant of (V,Ω) .

Since k + 2n = m = dimV ,
=⇒ n is an invariant of (V,Ω); 2n is called the rank of Ω.

1.2 Symplectic Vector Spaces

Let V be an m-dimensional vector space over R, and let Ω : V × V → R be a
bilinear map.

Definition 1.2 The map Ω̃ : V → V ∗ is the linear map defined by Ω̃(v)(u) =
Ω(v, u).

The kernel of Ω̃ is the subspace U above.

Definition 1.3 A skew-symmetric bilinear map Ω is symplectic (or nonde-
generate) if Ω̃ is bijective, i.e., U = {0}. The map Ω is then called a linear
symplectic structure on V , and (V,Ω) is called a symplectic vector space.
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The following are immediate properties of a symplectic map Ω:

1. Duality: the map Ω̃ : V '→ V ∗ is a bijection.

2. By the standard form theorem, k = dimU = 0, so dimV = 2n is even.

3. By Theorem 1.1, a symplectic vector space (V,Ω) has a basis
e1, . . . , en, f1, . . . , fn satisfying

Ω(ei, fj) = δij and Ω(ei, ej) = 0 = Ω(fi, fj) .

Such a basis is called a symplectic basis of (V,Ω). With respect to a
symplectic basis, we have

Ω(u, v) = [ u ]

 0 0 0
0 0 Id
0 −Id 0

 |v
|

 .
Not all subspaces W of a symplectic vector space (V,Ω) look the same:

• A subspaceW is called symplectic if Ω|W is nondegenerate. For instance,
the span of e1, f1 is symplectic.

• A subspace W is called isotropic if Ω|W ≡ 0. For instance, the span of
e1, e2 is isotropic.

Homework 1 describes subspaces W of (V,Ω) in terms of the relation between
W and WΩ.

The prototype of a symplectic vector space is (R2n,Ω0) with Ω0 such
that the basis

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0,

n︷︸︸︷
1 , 0, . . . , 0),

f1 = (0, . . . , 0, 1︸︷︷︸
n+1

, 0, . . . , 0), . . . , fn = (0, . . . , 0, 1) ,

is a symplectic basis. The map Ω0 on other vectors is determined by its values
on a basis and bilinearity.

Definition 1.4 A symplectomorphism ϕ between symplectic vector spaces
(V,Ω) and (V ′,Ω′) is a linear isomorphism ϕ : V '→ V ′ such that ϕ∗Ω′ = Ω.
(By definition, (ϕ∗Ω′)(u, v) = Ω′(ϕ(u), ϕ(v)).) If a symplectomorphism exists,
(V,Ω) and (V ′,Ω′) are said to be symplectomorphic.

The relation of being symplectomorphic is clearly an equivalence relation in
the set of all even-dimensional vector spaces. Furthermore, by Theorem 1.1,
every 2n-dimensional symplectic vector space (V,Ω) is symplectomorphic to the
prototype (R2n,Ω0); a choice of a symplectic basis for (V,Ω) yields a symplecto-
morphism to (R2n,Ω0). Hence, positive even integers classify equivalence classes
for the relation of being symplectomorphic.
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1.3 Symplectic Manifolds

Let ω be a de Rham 2-form on a manifold M , that is, for each p ∈M , the map
ωp : TpM × TpM → R is skew-symmetric bilinear on the tangent space to M
at p, and ωp varies smoothly in p. We say that ω is closed if it satisfies the
differential equation dω = 0, where d is the de Rham differential (i.e., exterior
derivative).

Definition 1.5 The 2-form ω is symplectic if ω is closed and ωp is symplectic
for all p ∈M .

If ω is symplectic, then dimTpM = dimM must be even.

Definition 1.6 A symplectic manifold is a pair (M,ω) where M is a man-
ifold and ω is a symplectic form.

Example. Let M = R2n with linear coordinates x1, . . . , xn, y1, . . . , yn. The
form

ω0 =
n∑
i=1

dxi ∧ dyi

is symplectic as can be easily checked, and the set{(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

,

(
∂

∂y1

)
p

, . . . ,

(
∂

∂yn

)
p

}

is a symplectic basis of TpM . ♦

Example. Let M = Cn with linear coordinates z1, . . . , zn. The form

ω0 =
i

2

n∑
k=1

dzk ∧ dz̄k

is symplectic. In fact, this form equals that of the previous example under the
identification Cn ' R2n, zk = xk + iyk. ♦

Example. Let M = S2 regarded as the set of unit vectors in R3. Tangent
vectors to S2 at p may then be identified with vectors orthogonal to p. The
standard symplectic form on S2 is induced by the inner and exterior products:

ωp(u, v) := 〈p, u× v〉 , for u, v ∈ TpS2 = {p}⊥ .

This form is closed because it is of top degree; it is nondegenerate because
〈p, u× v〉 6= 0 when u 6= 0 and we take, for instance, v = u× p. ♦
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1.4 Symplectomorphisms

Definition 1.7 Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic man-
ifolds, and let g : M1 →M2 be a diffeomorphism. Then g is a symplectomor-
phism if g∗ω2 = ω1.2

We would like to classify symplectic manifolds up to symplectomorphism.
The Darboux theorem (proved in Lecture 8 and stated below) takes care of
this classification locally: the dimension is the only local invariant of symplec-
tic manifolds up to symplectomorphisms. Just as any n-dimensional manifold
looks locally like Rn, any 2n-dimensional symplectic manifold looks locally like
(R2n, ω0). More precisely, any symplectic manifold (M2n, ω) is locally symplec-
tomorphic to (R2n, ω0).

Theorem 8.1 (Darboux) Let (M,ω) be a 2m-dimensional symplectic man-
ifold, and let p be any point in M .
Then there is a coordinate chart (U , x1, . . . , xn, y1, . . . , yn) centered at p such
that on U

ω =
n∑
i=1

dxi ∧ dyi .

A chart (U , x1, . . . , xn, y1, . . . , yn) as in Theorem 8.1 is called a Darboux
chart.

By Theorem 8.1, the prototype of a local piece of a 2n-dimensional
symplectic manifold isM = R2n, with linear coordinates (x1, . . . , xn, y1, . . . , yn),
and with symplectic form

ω0 =
n∑
i=1

dxi ∧ dyi .

2Recall that, by definition of pullback, at tangent vectors u, v ∈ TpM1, we have
(g∗ω2)p(u, v) = (ω2)g(p)(dgp(u), dgp(v)).



Homework 1: Symplectic Linear Algebra

Given a linear subspace Y of a symplectic vector space (V,Ω), its symplectic
orthogonal Y Ω is the linear subspace defined by

Y Ω := {v ∈ V |Ω(v, u) = 0 for all u ∈ Y } .

1. Show that dimY + dimY Ω = dimV .
Hint: What is the kernel and image of the map

V −→ Y ∗ = Hom(Y,R) ?
v 7−→ Ω(v, ·)|Y

2. Show that (Y Ω)Ω = Y .

3. Show that, if Y and W are subspaces, then

Y ⊆W ⇐⇒ WΩ ⊆ Y Ω .

4. Show that:

Y is symplectic (i.e., Ω|Y×Y is nondegenerate) ⇐⇒ Y ∩ Y Ω = {0}
⇐⇒ V = Y ⊕ Y Ω.

5. We call Y isotropic when Y ⊆ Y Ω (i.e., Ω|Y×Y ≡ 0).

Show that, if Y is isotropic, then dimY ≤ 1
2 dimV .

6. An isotropic subspace Y of (V,Ω) is called lagrangian when dimY =
1
2 dimV .

Check that:

Y is lagrangian ⇐⇒ Y is isotropic and coisotropic ⇐⇒ Y = Y Ω .

7. Show that, if Y is a lagrangian subspace of (V,Ω), then any basis e1, . . . , en
of Y can be extended to a symplectic basis e1, . . . , en, f1, . . . , fn of (V,Ω).

Hint: Choose f1 in WΩ, where W is the linear span of {e2, . . . , en}.

8. Show that, if Y is a lagrangian subspace, (V,Ω) is symplectomorphic to
the space (Y ⊕ Y ∗,Ω0), where Ω0 is determined by the formula

Ω0(u⊕ α, v ⊕ β) = β(u)− α(v) .

In fact, for any vector space E, the direct sum V = E⊕E∗ has a canonical
symplectic structure determined by the formula above. If e1, . . . , en is a
basis of E, and f1, . . . , fn is the dual basis, then e1 ⊕ 0, . . . , en ⊕ 0, 0 ⊕
f1, . . . , 0⊕ fn is a symplectic basis for V .

9. We call Y coisotropic when Y Ω ⊆ Y .

Check that every codimension 1 subspace Y is coisotropic.

6



2 Symplectic Form on the Cotangent Bundle

2.1 Cotangent Bundle

Let X be any n-dimensional manifold and M = T ∗X its cotangent bundle. If
the manifold structure on X is described by coordinate charts (U , x1, . . . , xn)
with xi : U → R, then at any x ∈ U , the differentials (dx1)x, . . . (dxn)x form
a basis of T ∗xX. Namely, if ξ ∈ T ∗xX, then ξ =

∑n
i=1 ξi(dxi)x for some real

coefficients ξ1, . . . , ξn. This induces a map

T ∗U −→ R2n

(x, ξ) 7−→ (x1, . . . , xn, ξ1, . . . , ξn) .

The chart (T ∗U , x1, . . . , xn, ξ1, . . . , ξn) is a coordinate chart for T ∗X; the co-
ordinates x1, . . . , xn, ξ1, . . . , ξn are the cotangent coordinates associated to
the coordinates x1, . . . , xn on U . The transition functions on the overlaps are
smooth: given two charts (U , x1, . . . , xn), (U ′, x′1, . . . , x′n), and x ∈ U ∩ U ′, if
ξ ∈ T ∗xX, then

ξ =
n∑
i=1

ξi (dxi)x =
∑
i,j

ξi

(
∂xi
∂x′j

)
(dx′j)x =

n∑
j=1

ξ′j (dx′j)x

where ξ′j =
∑
i ξi

(
∂xi

∂x′j

)
is smooth. Hence, T ∗X is a 2n-dimensional manifold.

We will now construct a major class of examples of symplectic forms. The
canonical forms on cotangent bundles are relevant for several branches, including
analysis of differential operators, dynamical systems and classical mechanics.

2.2 Tautological and Canonical Forms in Coordinates

Let (U , x1, . . . , xn) be a coordinate chart for X, with associated cotangent co-
ordinates (T ∗U , x1, . . . , xn, ξ1, . . . , ξn). Define a 2-form ω on T ∗U by

ω =
n∑
i=1

dxi ∧ dξi .

In order to check that this definition is coordinate-independent, consider the
1-form on T ∗U

α =
n∑
i=1

ξi dxi .

Clearly, ω = −dα.

Claim. The form α is intrinsically defined (and hence the form ω is also intrin-
sically defined) .

7
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Proof. Let (U , x1, . . . , xn, ξ1, . . . , ξn) and (U ′, x′1, . . . , x′n, ξ′1, . . . , ξ′n) be two
cotangent coordinate charts. On U ∩ U ′, the two sets of coordinates are re-
lated by ξ′j =

∑
i ξi

(
∂xi

∂x′j

)
. Since dx′j =

∑
i

(
∂x′j
∂xi

)
dxi, we have

α =
∑
i

ξidxi =
∑
j

ξ′jdx
′
j = α′ .

�

The 1-form α is the tautological form and 2-form ω is the canonical
symplectic form. The following section provides an alternative proof of the
intrinsic character of these forms.

2.3 Coordinate-Free Definitions

Let
M = T ∗X p = (x, ξ) ξ ∈ T ∗xX

↓ π ↓
X x

be the natural projection. The tautological 1-form α may be defined point-
wise by

αp = (dπp)∗ξ ∈ T ∗pM ,

where (dπp)∗ is the transpose of dπp, that is, (dπp)∗ξ = ξ ◦ dπp:

p = (x, ξ) TpM T ∗pM
↓ π ↓ dπp ↑ (dπp)∗

x TxX T ∗xX

Equivalently,

αp(v) = ξ
(
(dπp)v

)
, for v ∈ TpM ,

Exercise. Let (U , x1, . . . , xn) be a chart on X with associated cotangent coor-

dinates x1, . . . , xn, ξ1, . . . , ξn. Show that on T ∗U , α =
n∑
i=1

ξi dxi. ♦

The canonical symplectic 2-form ω on T ∗X is defined as

ω = −dα .

Locally, ω =
∑n
i=1 dxi ∧ dξi.

Exercise. Show that the tautological 1-form α is uniquely characterized by the
property that, for every 1-form µ : X → T ∗X, µ∗α = µ. (See Lecture 3.) ♦
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2.4 Naturality of the Tautological and Canonical Forms

Let X1 and X2 be n-dimensional manifolds with cotangent bundles M1 = T ∗X1

and M2 = T ∗X2, and tautological 1-forms α1 and α2. Suppose that f : X1 →
X2 is a diffeomorphism. Then there is a natural diffeomorphism

f] : M1 →M2

which lifts f ; namely, if p1 = (x1, ξ1) ∈ M1 for x1 ∈ X1 and ξ1 ∈ T ∗x1
X1, then

we define

f](p1) = p2 = (x2, ξ2) , with
{
x2 = f(x1) ∈ X2 and
ξ1 = (dfx1)

∗ξ2 ,

where (dfx1)
∗ : T ∗x2

X2
'→ T ∗x1

X1, so f]|T∗x1
is the inverse map of (dfx1)

∗.

Exercise. Check that f] is a diffeomorphism. Here are some hints:

1.
M1

f]−→ M2

π1 ↓ ↓ π2

X1
f−→ X2

commutes.

2. f] : M1 →M2 is bijective.

3. f] and f−1
] are smooth.

♦

Theorem 2.1 The lift f] of a diffeomorphism f : X1 → X2 pulls the tautolog-
ical form on T ∗X2 back to the tautological form on T ∗X1, i.e.,

(f])∗α2 = α1 .

Proof. At p1 = (x1, ξ1) ∈M1, this identity says

(df])
∗
p1

(α2)p2 = (α1)p1 (?)

where p2 = f](p1).

Using the following facts,

• Definition of f]:

p2 = f](p1) ⇐⇒ p2 = (x2, ξ2) where x2 = f(x1) and (dfx1)
∗ξ2 = ξ1.

• Definition of tautological 1-form:

(α1)p1 = (dπ1)∗p1ξ1 and (α2)p2 = (dπ2)∗p2ξ2.

•
M1

f]−→ M2

π1 ↓ ↓ π2

X1
f−→ X2

commutes.
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the proof of (?) is:

(df])∗p1(α2)p2 = (df])∗p1(dπ2)∗p2ξ2 = (d(π2 ◦ f]))∗p1 ξ2
= (d(f ◦ π1))

∗
p1
ξ2 = (dπ1)∗p1(df)∗x1

ξ2
= (dπ1)∗p1ξ1 = (α1)p1

�

Corollary 2.2 The lift f] of a diffeomorphism f : X1 → X2 is a symplecto-
morphism, i.e.,

(f])∗ω2 = ω1 ,

where ω1, ω2 are the canonical symplectic forms.

In summary, a diffeomorphism of manifolds induces a canonical symplecto-
morphism of cotangent bundles:

f] : T ∗X1 −→ T ∗X2

↑
f : X1 −→ X2

Example. Let X1 = X2 = S1. Then T ∗S1 is an infinite cylinder S1 × R.
The canonical 2-form ω is the area form ω = dθ ∧ dξ. If f : S1 → S1 is any
diffeomorphism, then f] : S1 × R→ S1 × R is a symplectomorphism, i.e., is an
area-preserving diffeomorphism of the cylinder. ♦

If f : X1 → X2 and g : X2 → X3 are diffeomorphisms, then (g ◦ f)] =
g] ◦ f]. In terms of the group Diff(X) of diffeomorphisms of X and the group
Sympl(M,ω) of symplectomorphisms of (M,ω), we say that the map

Diff(X) −→ Sympl(M,ω)
f 7−→ f]

is a group homomorphism. This map is clearly injective. Is it surjective? Do all
symplectomorphisms T ∗X → T ∗X come from diffeomorphisms X → X? No:
for instance, translation along cotangent fibers is not induced by a diffeomor-
phism of the base manifold. A criterion for which symplectomorphisms arise as
lifts of diffeomorphisms is discussed in Homework 3.



Homework 2: Symplectic Volume

1. Given a vector space V , the exterior algebra of its dual space is

∧∗(V ∗) =
dimV⊕
k=0

∧k(V ∗) ,

where ∧k(V ∗) is the set of maps α :

k︷ ︸︸ ︷
V × · · · × V → R which are linear

in each entry, and for any permutation π, α(vπ1 , . . . , vπk
) = (signπ) ·

α(v1, . . . , vk). The elements of ∧k(V ∗) are known as skew-symmetric
k-linear maps or k-forms on V .

(a) Show that any Ω ∈ ∧2(V ∗) is of the form Ω = e∗1 ∧ f∗1 + . . .+ e∗n ∧ f∗n,
where u∗1, . . . , u

∗
k, e

∗
1, . . . , e

∗
n, f

∗
1 , . . . , f

∗
n is a basis of V ∗ dual to the

standard basis (k + 2n = dimV ).

(b) In this language, a symplectic map Ω : V × V → R is just a nonde-
generate 2-form Ω ∈ ∧2(V ∗), called a symplectic form on V .
Show that, if Ω is any symplectic form on a vector space V of di-
mension 2n, then the nth exterior power Ωn = Ω ∧ . . . ∧ Ω︸ ︷︷ ︸

n

does not

vanish.

(c) Deduce that the nth exterior power ωn of any symplectic form ω on
a 2n-dimensional manifold M is a volume form.3

Hence, any symplectic manifold (M,ω) is canonically oriented by the
symplectic structure. The form ωn

n! is called the symplectic volume
or the Liouville form of (M,ω).
Does the Möbius strip support a symplectic structure?

(d) Conversely, given a 2-form Ω ∈ ∧2(V ∗), show that, if Ωn 6= 0, then
Ω is symplectic.

Hint: Standard form.

2. Let (M,ω) be a 2n-dimensional symplectic manifold, and let ωn be the
volume form obtained by wedging ω with itself n times.

(a) Show that, if M is compact, the de Rham cohomology class [ωn] ∈
H2n(M ; R) is non-zero.

Hint: Stokes’ theorem.

(b) Conclude that [ω] itself is non-zero (in other words, that ω is not
exact).

(c) Show that if n > 1 there are no symplectic structures on the sphere
S2n.

3A volume form is a nonvanishing form of top degree.
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Part II

Symplectomorphisms
Equivalence between symplectic manifolds is expressed by a symplectomorphism.
By Weinstein’s lagrangian creed [82], everything is a lagrangian manifold! We
will study symplectomorphisms according to the creed.

3 Lagrangian Submanifolds

3.1 Submanifolds

Let M and X be manifolds with dimX < dimM .

Definition 3.1 A map i : X →M is an immersion if dip : TpX → Ti(p)M is
injective for any point p ∈ X.

An embedding is an immersion which is a homeomorphism onto its image.
(The image has the topology induced by the target manifold.)

A closed embedding is a proper4 injective immersion.

Exercise. Show that a map i : X → M is a closed embedding if and only if i
is an embedding and its image i(X) is closed in M .

Hints:

• If i is injective and proper, then for any neighborhood U of p ∈ X, there
is a neighborhood V of i(p) such that f−1(V) ⊆ U .

• On a Hausdorff space, any compact set is closed. On any topological
space, a closed subset of a compact set is compact.

• An embedding is proper if and only if its image is closed.

♦

Definition 3.2 A submanifold of M is a manifold X with a closed embedding
i : X ↪→M .

Notation. Given a submanifold, we regard the embedding i : X ↪→ M as an
inclusion, in order to identify points and tangent vectors:

p = i(p) and TpX = dip(TpX) ⊂ TpM .

4A map is proper if the preimage of any compact set is compact.

13
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3.2 Lagrangian Submanifolds of T ∗X

Definition 3.3 Let (M,ω) be a 2n-dimensional symplectic manifold. A sub-
manifold Y of M is a lagrangian submanifold if, at each p ∈ Y , TpY is
a lagrangian subspace of TpM , i.e., ωp|TpY ≡ 0 and dimTpY = 1

2 dimTpM .
Equivalently, if i : Y ↪→ M is the inclusion map, then Y is lagrangian if and
only if i∗ω = 0 and dimY = 1

2 dimM .

Let X be an n-dimensional manifold, with M = T ∗X its cotangent bundle.
If x1, . . . , xn are coordinates on U ⊆ X, with associated cotangent coordinates
x1, . . . , xn, ξ1, . . . , ξn on T ∗U , then the tautological 1-form on T ∗X is

α =
∑

ξidxi

and the canonical 2-form on T ∗X is

ω = −dα =
∑

dxi ∧ dξi .

The zero section of T ∗X

X0 := {(x, ξ) ∈ T ∗X | ξ = 0 in T ∗xX}

is an n-dimensional submanifold of T ∗X whose intersection with T ∗U is given
by the equations ξ1 = . . . = ξn = 0. Clearly α =

∑
ξidxi vanishes on X0∩T ∗U .

In particular, if i0 : X0 ↪→ T ∗X is the inclusion map, we have i∗0α = 0. Hence,
i∗0ω = i∗0dα = 0, and X0 is lagrangian.

What are all the lagrangian submanifolds of T ∗X which are “C1-close to
X0”?

Let Xµ be (the image of) another section, that is, an n-dimensional sub-
manifold of T ∗X of the form

Xµ = {(x, µx) | x ∈ X, µx ∈ T ∗xX} (?)

where the covector µx depends smoothly on x, and µ : X → T ∗X is a de Rham
1-form. Relative to the inclusion i : Xµ ↪→ T ∗X and the cotangent projection
π : T ∗X → X, Xµ is of the form (?) if and only if π ◦ i : Xµ → X is a
diffeomorphism.

When is such a Xµ lagrangian?

Proposition 3.4 Let Xµ be of the form (?), and let µ be the associated de
Rham 1-form. Denote by sµ : X → T ∗X, x 7→ (x, µx), be the 1-form µ regarded
exclusively as a map. Notice that the image of sµ is Xµ. Let α be the tautological
1-form on T ∗X. Then

s∗µα = µ .
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Proof. By definition of α (previous lecture), αp = (dπp)∗ξ at p = (x, ξ) ∈ M .
For p = sµ(x) = (x, µx), we have αp = (dπp)∗µx. Then

(s∗µα)x = (dsµ)∗xαp
= (dsµ)∗x(dπp)

∗µx
= (d(π ◦ sµ︸ ︷︷ ︸

idX

))∗xµx = µx .

�

Suppose that Xµ is an n-dimensional submanifold of T ∗X of the form (?),
with associated de Rham 1-form µ. Then sµ : X → T ∗X is an embedding with
image Xµ, and there is a diffeomorphism τ : X → Xµ, τ(x) := (x, µx), such
that the following diagram commutes.

X
sµ - T ∗X

@
@

@
@

@

'
τ

R �
�

�
�

�

i

�

Xµ

We want to express the condition of Xµ being lagrangian in terms of the form
µ:

Xµ is lagrangian ⇐⇒ i∗dα = 0
⇐⇒ τ∗i∗dα = 0
⇐⇒ (i ◦ τ)∗dα = 0
⇐⇒ s∗µdα = 0
⇐⇒ ds∗µα = 0
⇐⇒ dµ = 0
⇐⇒ µ is closed .

Therefore, there is a one-to-one correspondence between the set of lagrangian
submanifolds of T ∗X of the form (?) and the set of closed 1-forms on X.

When X is simply connected, H1
deRham(X) = 0, so every closed 1-form

µ is equal to df for some f ∈ C∞(X). Any such primitive f is then called a
generating function for the lagrangian submanifold Xµ associated to µ. (Two
functions generate the same lagrangian submanifold if and only if they differ by
a locally constant function.) On arbitrary manifolds X, functions f ∈ C∞(X)
originate lagrangian submanifolds as images of df .

Exercise. Check that, ifX is compact (and not just one point) and f ∈ C∞(X),
then #{Xdf ∩X0} ≥ 2. ♦

There are lots of lagrangian submanifolds of T ∗X not covered by the de-
scription in terms of closed 1-forms, starting with the cotangent fibers.
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3.3 Conormal Bundles

Let S be any k-dimensional submanifold of an n-dimensional manifold X.

Definition 3.5 The conormal space at x ∈ S is

N∗
xS = {ξ ∈ T ∗xX | ξ(v) = 0 , for all v ∈ TxS} .

The conormal bundle of S is

N∗S = {(x, ξ) ∈ T ∗X | x ∈ S, ξ ∈ N∗
xS} .

Exercise. The conormal bundle N∗S is an n-dimensional submanifold of T ∗X.
Hint: Use coordinates on X adapted5 to S. ♦

Proposition 3.6 Let i : N∗S ↪→ T ∗X be the inclusion, and let α be the tauto-
logical 1-form on T ∗X. Then

i∗α = 0 .

Proof. Let (U , x1, . . . , xn) be a coordinate system on X centered at x ∈ S
and adapted to S, so that U ∩ S is described by xk+1 = . . . = xn = 0. Let
(T ∗U , x1, . . . , xn, ξ1, . . . , ξn) be the associated cotangent coordinate system. The
submanifold N∗S ∩ T ∗U is then described by

xk+1 = . . . = xn = 0 and ξ1 = . . . = ξk = 0 .

Since α =
∑
ξidxi on T ∗U , we conclude that, at p ∈ N∗S,

(i∗α)p = αp|Tp(N∗S) =
∑
i>k

ξidxi

∣∣∣∣∣
span{ ∂

∂xi
,i≤k}

= 0 .

�

Corollary 3.7 For any submanifold S ⊂ X, the conormal bundle N∗S is a
lagrangian submanifold of T ∗X.

Taking S = {x} to be one point, the conormal bundle L = N∗S = T ∗xX is a
cotangent fiber. Taking S = X, the conormal bundle L = X0 is the zero section
of T ∗X.

5A coordinate chart (U , x1, . . . , xn) on X is adapted to a k-dimensional submanifold S if
S ∩ U is described by xk+1 = . . . = xn = 0.
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3.4 Application to Symplectomorphisms

Let (M1, ω1) and (M2, ω2) be two 2n-dimensional symplectic manifolds. Given
a diffeomorphism ϕ : M1

'−→M2, when is it a symplectomorphism? (I.e., when
is ϕ∗ω2 = ω1?)

Consider the diagram of projection maps

(p1, p2)

p1

?

M1 ×M2

	�
�

�
�

�
pr1

@
@

@
@

@

pr2

R
M1 M2

(p1, p2)

p2

?

Then ω = (pr1)∗ω1 + (pr2)∗ω2 is a 2-form on M1 ×M2 which is closed,

dω = (pr1)
∗dω1︸︷︷︸

0

+ (pr2)
∗dω2︸︷︷︸

0

= 0 ,

and symplectic,

ω2n =
(

2n
n

)(
(pr1)∗ω1

)n
∧
(
(pr2)∗ω2

)n
6= 0 .

More generally, if λ1, λ2 ∈ R\{0}, then λ1(pr1)∗ω1 + λ2(pr2)∗ω2 is also a sym-
plectic form on M1×M2. Take λ1 = 1, λ2 = −1 to obtain the twisted product
form on M1 ×M2:

ω̃ = (pr1)
∗ω1 − (pr2)

∗ω2 .

The graph of a diffeomorphism ϕ : M1
'−→ M2 is the 2n-dimensional sub-

manifold of M1 ×M2:

Γϕ := Graphϕ = {(p, ϕ(p)) | p ∈M1} .

The submanifold Γϕ is an embedded image of M1 in M1 ×M2, the embedding
being the map

γ : M1 −→ M1 ×M2

p 7−→ (p, ϕ(p)) .

Theorem 3.8 A diffeomorphism ϕ is a symplectomorphism if and only if Γϕ
is a lagrangian submanifold of (M1 ×M2, ω̃).

Proof. The graph Γϕ is lagrangian if and only if γ∗ω̃ = 0.

γ∗ω̃ = γ∗ pr∗1 ω1 − γ∗ pr∗2 ω2

= (pr1 ◦ γ)∗ω1 − (pr2 ◦ γ)∗ω2 .

But pr1 ◦ γ is the identity map on M1 and pr2 ◦ γ = ϕ. Therefore,

γ∗ω̃ = 0 ⇐⇒ ϕ∗ω2 = ω1 .

�



Homework 3:
Tautological Form and Symplectomorphisms

This set of problems is from [42].

1. Let (M,ω) be a symplectic manifold, and let α be a 1-form such that

ω = −dα .

Show that there exists a unique vector field v such that its interior product
with ω is α, i.e., ıvω = −α.

Prove that, if g is a symplectomorphism which preserves α (that is, g∗α =
α), then g commutes with the one-parameter group of diffeomorphisms
generated by v, i.e.,

(exp tv) ◦ g = g ◦ (exp tv) .

Hint: Recall that, for p ∈ M , (exp tv)(p) is the unique curve in M solving
the ordinary differential equation{

d
dt

(exp tv(p)) = v(exp tv(p))
(exp tv)(p)|t=0 = p

for t in some neighborhood of 0. Show that g ◦ (exp tv) ◦ g−1 is the one-
parameter group of diffeomorphisms generated by g∗v. (The push-forward of v
by g is defined by (g∗v)g(p) = dgp(vp).) Finally check that g preserves v (that
is, g∗v = v).

2. Let X be an arbitrary n-dimensional manifold, and let M = T ∗X. Let
(U , x1, . . . , xn) be a coordinate system on X, and let x1, . . . , xn, ξ1, . . . , ξn
be the corresponding coordinates on T ∗U .

Show that, when α is the tautological 1-form on M (which, in these coor-
dinates, is

∑
ξi dxi), the vector field v in the previous exercise is just the

vector field
∑
ξi

∂
∂ξi

.

Let exp tv, −∞ < t <∞, be the one-parameter group of diffeomorphisms
generated by v.

Show that, for every point p = (x, ξ) in M ,

(exp tv)(p) = pt where pt = (x, etξ) .

18
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3. Let M be as in exercise 2.

Show that, if g is a symplectomorphism of M which preserves α, then

g(x, ξ) = (y, η) =⇒ g(x, λξ) = (y, λη)

for all (x, ξ) ∈M and λ ∈ R.

Conclude that g has to preserve the cotangent fibration, i.e., show that
there exists a diffeomorphism f : X → X such that π ◦ g = f ◦ π, where
π : M → X is the projection map π(x, ξ) = x.

Finally prove that g = f#, the map f# being the symplectomorphism of
M lifting f .

Hint: Suppose that g(p) = q where p = (x, ξ) and q = (y, η).
Combine the identity

(dgp)∗αq = αp

with the identity
dπq ◦ dgp = dfx ◦ dπp .

(The first identity expresses the fact that g∗α = α, and the second identity is
obtained by differentiating both sides of the equation π ◦ g = f ◦ π at p.)

4. Let M be as in exercise 2, and let h be a smooth function on X. Define
τh : M →M by setting

τh(x, ξ) = (x, ξ + dhx) .

Prove that
τ∗hα = α+ π∗dh

where π is the projection map

M (x, ξ)
↓ π ↓
X x

Deduce that
τ∗hω = ω ,

i.e., that τh is a symplectomorphism.



4 Generating Functions

4.1 Constructing Symplectomorphisms

Let X1, X2 be n-dimensional manifolds, with cotangent bundles M1 = T ∗X1,
M2 = T ∗X2, tautological 1-forms α1, α2, and canonical 2-forms ω1, ω2.

Under the natural identification

M1 ×M2 = T ∗X1 × T ∗X2 ' T ∗(X1 ×X2) ,

the tautological 1-form on T ∗(X1 ×X2) is

α = (pr1)
∗α1 + (pr2)

∗α2 ,

where pri : M1 ×M2 → Mi, i = 1, 2 are the two projections. The canonical
2-form on T ∗(X1 ×X2) is

ω = −dα = −dpr∗1α1 − dpr∗2α2 = pr∗1ω1 + pr∗2ω2 .

In order to describe the twisted form ω̃ = pr∗1ω1−pr∗2ω2, we define an involution
of M2 = T ∗X2 by

σ2 : M2 −→ M2

(x2, ξ2) 7−→ (x2,−ξ2)
which yields σ∗2α2 = −α2. Let σ = idM1 × σ2 : M1 ×M2 →M1 ×M2. Then

σ∗ω̃ = pr∗1ω1 + pr∗2ω2 = ω .

If Y is a lagrangian submanifold of (M1 ×M2, ω), then its “twist” Y σ := σ(Y )
is a lagrangian submanifold of (M1 ×M2, ω̃).

Recipe for producing symplectomorphisms M1 = T ∗X1 →M2 = T ∗X2:

1. Start with a lagrangian submanifold Y of (M1 ×M2, ω).

2. Twist it to obtain a lagrangian submanifold Y σ of (M1 ×M2, ω̃).

3. Check whether Y σ is the graph of some diffeomorphism ϕ : M1 →M2.

4. If it is, then ϕ is a symplectomorphism.

Let i : Y σ ↪→M1 ×M2 be the inclusion map

Y σ

	�
�

�
�

�
pr1 ◦ i

@
@

@
@

@

pr2 ◦ i

R
M1

ϕ? - M2

Step 3 amounts to checking whether pr1 ◦ i and pr2 ◦ i are diffeomorphisms. If
yes, then ϕ := (pr2 ◦ i) ◦ (pr1 ◦ i)−1 is a diffeomorphism.

In order to obtain lagrangian submanifolds of M1 ×M2 ' T ∗(X1 ×X2), we
can use the method of generating functions.

20
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4.2 Method of Generating Functions

For any f ∈ C∞(X1 ×X2), df is a closed 1-form on X1 ×X2. The lagrangian
submanifold generated by f is

Yf := {((x, y), (df)(x,y)) | (x, y) ∈ X1 ×X2} .

We adopt the notation

dxf := (df)(x,y) projected to T ∗xX1 × {0},
dyf := (df)(x,y) projected to {0} × T ∗yX2 ,

which enables us to write

Yf = {(x, y, dxf, dyf) | (x, y) ∈ X1 ×X2}

and
Y σf = {(x, y, dxf,−dyf) | (x, y) ∈ X1 ×X2} .

When Y σf is in fact the graph of a diffeomorphism ϕ : M1 →M2, we call ϕ the
symplectomorphism generated by f , and call f the generating function,
of ϕ : M1 →M2.

So when is Y σf the graph of a diffeomorphism ϕ : M1 →M2?

Let (U1, x1, . . . , xn), (U2, y1, . . . , yn) be coordinate charts for X1, X2, with
associated charts (T ∗U1, x1, . . . , xn, ξ1, . . . , ξn), (T ∗U2, y1, . . . , yn, η1, . . . , ηn) for
M1,M2. The set

Y σf = {(x, y, dxf,−dyf) | (x, y) ∈ X1 ×X2}

is the graph of ϕ : M1 →M2 if and only if, for any (x, ξ) ∈M1 and (y, η) ∈M2,
we have

ϕ(x, ξ) = (y, η) ⇐⇒ ξ = dxf and η = −dyf .

Therefore, given a point (x, ξ) ∈M1, to find its image (y, η) = ϕ(x, ξ) we must
solve the “Hamilton” equations

ξi =
∂f

∂xi
(x, y) (?)

ηi = − ∂f
∂yi

(x, y) (??)

If there is a solution y = ϕ1(x, ξ) of (?), we may feed it to (??) thus obtaining
η = ϕ2(x, ξ), so that ϕ(x, ξ) = (ϕ1(x, ξ), ϕ2(x, ξ)). Now by the implicit function
theorem, in order to solve (?) locally for y in terms of x and ξ, we need the
condition

det
[
∂

∂yj

(
∂f

∂xi

)]n
i,j=1

6= 0 .
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This is a necessary local condition for f to generate a symplectomorphism ϕ.
Locally this is also sufficient, but globally there is the usual bijectivity issue.

Example. Let X1 = U1 ' Rn, X2 = U2 ' Rn, and f(x, y) = − |x−y|2
2 , the

square of euclidean distance up to a constant.
The “Hamilton” equations are

ξi =
∂f

∂xi
= yi − xi

ηi = − ∂f
∂yi

= yi − xi
⇐⇒

 yi = xi + ξi

ηi = ξi

The symplectomorphism generated by f is

ϕ(x, ξ) = (x+ ξ, ξ) .

If we use the euclidean inner product to identify T ∗Rn with TRn, and hence
regard ϕ as ϕ̃ : TRn → TRn and interpret ξ as the velocity vector, then the sym-
plectomorphism ϕ corresponds to free translational motion in euclidean space.

x

x+ ξ
ξ

r
r

��
��
�*
��
�
��*

♦

4.3 Application to Geodesic Flow

Let V be an n-dimensional vector space. A positive inner product G on V
is a bilinear map G : V × V → R which is

symmetric : G(v, w) = G(w, v) , and
positive-definite : G(v, v) > 0 when v 6= 0 .

Definition 4.1 A riemannian metric on a manifold X is a function g which
assigns to each point x ∈ X a positive inner product gx on TxX.

A riemannian metric g is smooth if for every smooth vector field v : X →
TX the real-valued function x 7→ gx(vx, vx) is a smooth function on X.

Definition 4.2 A riemannian manifold (X, g) is a manifold X equipped with
a smooth riemannian metric g.
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The arc-length of a piecewise smooth curve γ : [a, b]→ X on a riemannian
manifold (X, g) is ∫ b

a

√
gγ(t)

(
dγ

dt
,
dγ

dt

)
dt .

x = γ(a)

y = γ(b)

γ

r

r
-

Definition 4.3 The riemannian distance between two points x and y of a
connected riemannian manifold (X, g) is the infimum d(x, y) of the set of all
arc-lengths for piecewise smooth curves joining x to y.

A smooth curve joining x to y is a minimizing geodesic if its arc-length
is the riemannian distance d(x, y).

A riemannian manifold (X, g) is geodesically convex if every point x is
joined to every other point y by a unique minimizing geodesic.

Example. On X = Rn with TX ' Rn × Rn, let gx(v, w) = 〈v, w〉, gx(v, v) =
|x|2, where 〈·, ·〉 is the euclidean inner product, and | · | is the euclidean norm.
Then (Rn, 〈·, ·〉) is a geodesically convex riemannian manifold, and the rieman-
nian distance is the usual euclidean distance d(x, y) = |x− y|. ♦

Suppose that (X, g) is a geodesically convex riemannian manifold. Consider
the function

f : X ×X −→ R , f(x, y) = −d(x, y)
2

2
.

What is the symplectomorphism ϕ : T ∗X → T ∗X generated by f?

The metric gx : Tx × TxX → R induces an identification

g̃x : TxX
'−→ T ∗xX

v 7−→ gx(v, ·)

Use g̃ to translate ϕ into a map ϕ̃ : TX → TX.
We need to solve {

g̃x(v) = ξi = dxf(x, y)
g̃y(w) = ηi = −dyf(x, y)
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for (y, η) in terms of (x, ξ) in order to find ϕ, or, equivalently, for (y, w) in terms
(x, v) in order to find ϕ̃.

Let γ be the geodesic with initial conditions γ(0) = x and dγ
dt (0) = v.

x

γ
v

r���
�
�
���

-

Then the symplectomorphism ϕ corresponds to the map

ϕ̃ : TX −→ TX

(x, v) 7−→ (γ(1), dγdt (1)) .

This is called the geodesic flow on X (see Homework 4).



Homework 4: Geodesic Flow

This set of problems is adapted from [42].

Let (X, g) be a riemannian manifold. The arc-length of a smooth curve
γ : [a, b]→ X is

arc-length of γ :=
∫ b

a

∣∣∣∣dγdt
∣∣∣∣ dt , where

∣∣∣∣dγdt
∣∣∣∣ :=

√
gγ(t)

(
dγ

dt
,
dγ

dt

)
.

1. Show that the arc-length of γ is independent of the parametrization of
γ, i.e., show that, if we reparametrize γ by τ : [a′, b′] → [a, b], the new
curve γ′ = γ ◦ τ : [a′, b′] → X has the same arc-length. A curve γ is
called a curve of constant velocity when

∣∣∣dγdt ∣∣∣ is independent of t. Show

that, given any curve γ : [a, b] → X (with dγ
dt never vanishing), there is

a reparametrization τ : [a, b] → [a, b] such that γ ◦ τ : [a, b] → X is of
constant velocity.

2. Given a smooth curve γ : [a, b]→ X, the action of γ is A(γ) :=
∫ b

a

∣∣∣∣dγdt
∣∣∣∣2 dt.

Show that, among all curves joining x to y, γ minimizes the action if and
only if γ is of constant velocity and γ minimizes arc-length.

Hint: Suppose that γ is of constant velocity, and let τ : [a, b] → [a, b] be
a reparametrization. Show that A(γ ◦ τ) ≥ A(γ), with equality only when
τ = identity.

3. Assume that (X, g) is geodesically convex, that is, any two points x, y ∈ X
are joined by a unique (up to reparametrization) minimizing geodesic; its
arc-length d(x, y) is called the riemannian distance between x and y.

Assume also that (X, g) is geodesically complete, that is, every minimizing
geodesic can be extended indefinitely. Given (x, v) ∈ TX, let exp(x, v) :
R→ X be the unique minimizing geodesic of constant velocity with initial
conditions exp(x, v)(0) = x and d exp(x,v)

dt (0) = v.

Consider the function ϕ : X×X → R given by ϕ(x, y) = − 1
2 ·d(x, y)

2. Let
dϕx and dϕy be the components of dϕ(x,y) with respect to T ∗(x,y)(X×X) '
T ∗xX × T ∗yX. Recall that, if

Γσϕ = {(x, y, dϕx,−dϕy) | (x, y) ∈ X ×X}

is the graph of a diffeomorphism f : T ∗X → T ∗X, then f is the symplec-
tomorphism generated by ϕ. In this case, f(x, ξ) = (y, η) if and only if
ξ = dϕx and η = −dϕy.
Show that, under the identification of TX with T ∗X by g, the sym-
plectomorphism generated by ϕ coincides with the map TX → TX,
(x, v) 7→ exp(x, v)(1).

25
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Hint: The metric g provides the identifications TxXv ' ξ(·) = gx(v, ·) ∈
T ∗xX. We need to show that, given (x, v) ∈ TX, the unique solution of

(?)

{
gx(v, ·) = dϕx(·)
gy(w, ·) = −dϕy(·) is (y, w) = (exp(x, v)(1), d

exp(x,v)
dt

(1)).

Look up the Gauss lemma in a book on riemannian geometry. It asserts that
geodesics are orthogonal to the level sets of the distance function.

To solve the first line in (?) for y, evaluate both sides at v =
d exp(x,v)

dt
(0).

Conclude that y = exp(x, v)(1). Check that dϕx(v′) = 0 for vectors v′ ∈ TxX
orthogonal to v (that is, gx(v, v′) = 0); this is a consequence of ϕ(x, y) being
the arc-length of a minimizing geodesic, and it suffices to check locally.
The vector w is obtained from the second line of (?). Compute

−dϕy(
d exp(x,v)

dt
(1)). Then evaluate −dϕy at vectors w′ ∈ TyX orthogo-

nal to
d exp(x,v)

dt
(1); this pairing is again 0 because ϕ(x, y) is the arc-length

of a minimizing geodesic. Conclude, using the nondegeneracy of g, that

w =
d exp(x,v)

dt
(1).

For both steps, it might be useful to recall that, given a function f : X → R
and a tangent vector v ∈ TxX, we have dfx(v) =

d

du
[f(exp(x, v)(u))]u=0.



5 Recurrence

5.1 Periodic Points

Let X be an n-dimensional manifold. Let M = T ∗X be its cotangent bundle
with canonical symplectic form ω.

Suppose that we are given a smooth function f : X×X → R which generates
a symplectomorphism ϕ : M → M , ϕ(x, dfx) = (y,−dfy), by the recipe of the
previous lecture.

What are the fixed points of ϕ?

Define ψ : X → R by ψ(x) = f(x, x).

Proposition 5.1 There is a one-to-one correspondence between the fixed points
of ϕ and the critical points of ψ.

Proof. At x0 ∈ X, dx0ψ = (dxf + dyf)|(x,y)=(x0,x0). Let ξ = dxf |(x,y)=(x0,x0).

x0 is a critical point of ψ ⇐⇒ dx0ψ = 0 ⇐⇒ dyf |(x,y)=(x0,x0) = −ξ

Hence, the point in Γσf corresponding to (x, y) = (x0, x0) is (x0, x0, ξ, ξ). But
Γσf is the graph of ϕ, so ϕ(x0, ξ) = (x0, ξ) is a fixed point. This argument also
works backwards. �

Consider the iterates of ϕ,

ϕ(N) = ϕ ◦ ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
N

: M →M , N = 1, 2, . . . ,

each of which is a symplectomorphism of M . According to the previous propo-
sition, if ϕ(N) : M →M is generated by f (N), then there is a correspondence{

fixed points of ϕ(N)
}

1−1←→
{

critical points of
ψ(N) : X → R , ψ(N)(x) = f (N)(x, x)

}
Knowing that ϕ is generated by f , does ϕ(2) have a generating function?

The answer is a partial yes:

Fix x, y ∈ X. Define a map

X −→ R
z 7−→ f(x, z) + f(z, y)

Suppose that this map has a unique critical point z0, and that z0 is nondegen-
erate. Let

f (2)(x, y) := f(x, z0) + f(z0, y) .

Theorem 5.2 The function f (2) : X × X → R is smooth and is a generating
function for ϕ(2).

27
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Proof. The point z0 is given implicitly by dfy(x, z0) + dfx(z0, y) = 0. The
nondegeneracy condition is

det
[
∂

∂zi

(
∂f

∂yj
(x, z) +

∂f

∂xj
(z, y)

)]
6= 0 .

By the implicit function theorem, z0 = z0(x, y) is smooth.

As for the second assertion, f (2)(x, y) is a generating function for ϕ(2) if and
only if

ϕ(2)(x, df (2)
x ) = (y,−df (2)

y ) .

Since ϕ is generated by f , and z0 is critical, we obtain,

ϕ(2)(x, df (2)
x (x, y)) = ϕ(ϕ(x, df (2)

x (x, y)︸ ︷︷ ︸
=dfx(x,z0)

) = ϕ(z0,−dfy(x, z0))

= ϕ(z0, dfx(z0, y)) = (y,−dfy(z0, y)︸ ︷︷ ︸
=−df(2)

y (x,y)

) .

�

Exercise. What is a generating function for ϕ(3)?

Hint: Suppose that the function

X ×X −→ R
(z, u) 7−→ f(x, z) + f(z, u) + f(u, y)

has a unique critical point (z0, u0), and that it is a nondegenerate critical point.
Let ψ(3)(x, y) = f(x, z0) + f(z0, u0) + f(u0, y). ♦

5.2 Billiards

Let χ : R→ R2 be a smooth plane curve which is 1-periodic, i.e., χ(s+1) = χ(s),
and parametrized by arc-length, i.e.,

∣∣∣dχds ∣∣∣ = 1. Assume that the region Y

enclosed by χ is convex, i.e., for any s ∈ R, the tangent line {χ(s)+ tdχds | t ∈ R}
intersects X := ∂Y (= the image of χ) at only the point χ(s).
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X = ∂Y

χ(s)r
�

Suppose that we throw a ball into Y rolling with constant velocity and
bouncing off the boundary with the usual law of reflection. This determines a
map

ϕ : R/Z× (−1, 1) −→ R/Z× (−1, 1)
(x, v) 7−→ (y, w)

by the rule

when the ball bounces off x with angle θ = arccos v, it will next collide with y
and bounce off with angle ν = arccosw.

x

y

r

r

"
"
"
"
"

b
b
b
b
b
b
b
b
b
b"
"
"
"

�

j

*

Let f : R/Z × R/Z → R be defined by f(x, y) = −|x − y|; f is smooth off
the diagonal. Use χ to identify R/Z with the image curve X.

Suppose that ϕ(x, v) = (y, w), i.e., (x, v) and (y, w) are successive points on
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the orbit described by the ball. Then
df

dx
= − x− y

|x− y|
projected onto TxX = v

df

dy
= − y − x

|x− y|
projected onto TyX = −w

or, equivalently,
d

ds
f(χ(s), y) =

y − x
|x− y|

· dχ
ds

= cos θ = v

d

ds
f(x, χ(s)) =

x− y
|x− y|

· dχ
ds

= − cos ν = −w

We conclude that f is a generating function for ϕ. Similar approaches work
for higher dimensional billiards problems.

Periodic points are obtained by finding critical points of

X × . . .×X︸ ︷︷ ︸
N

−→ R , N > 1

(x1, . . . , xN ) 7−→ f(x1, x2) + f(x2, x3) + . . .+ f(xN−1, xN ) + f(xN , x1)
= |x1 − x2|+ . . .+ |xN−1 − xN |+ |xN − x1|

that is, by finding the N -sided (generalized) polygons inscribed in X of critical
perimeter.

Notice that

R/Z× (−1, 1) ' {(x, v) | x ∈ X, v ∈ TxX, |v| < 1} ' A

is the open unit tangent ball bundle of a circle X, that is, an open annulus A.
The map ϕ : A→ A is area-preserving.

5.3 Poincaré Recurrence

Theorem 5.3 (Poincaré Recurrence Theorem) Suppose that ϕ : A→ A
is an area-preserving diffeomorphism of a finite-area manifold A. Let p ∈ A,
and let U be a neighborhood of p. Then there is q ∈ U and a positive integer N
such that ϕ(N)(q) ∈ U .

Proof. Let U0 = U ,U1 = ϕ(U),U2 = ϕ(2)(U), . . .. If all of these sets were
disjoint, then, since Area (Ui) = Area (U) > 0 for all i, we would have

Area A ≥ Area (U0 ∪ U1 ∪ U2 ∪ . . .) =
∑
i

Area (Ui) =∞ .
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To avoid this contradiction we must have ϕ(k)(U) ∩ ϕ(l)(U) 6= ∅ for some k > l,
which implies ϕ(k−l)(U) ∩ U 6= ∅. �

Hence, eternal return applies to billiards...

Remark. Theorem 5.3 clearly generalizes to volume-preserving diffeomor-
phisms in higher dimensions. ♦

Theorem 5.4 (Poincaré’s Last Geometric Theorem) Suppose ϕ : A →
A is an area-preserving diffeomorphism of the closed annulus A = R/Z× [−1, 1]
which preserves the two components of the boundary, and twists them in opposite
directions. Then ϕ has at least two fixed points.

This theorem was proved in 1925 by Birkhoff, and hence is also called the
Poincaré-Birkhoff theorem. It has important applications to dynamical sys-
tems and celestial mechanics. The Arnold conjecture (1966) on the existence of
fixed points for symplectomorphisms of compact manifolds (see Lecture 9) may
be regarded as a generalization of the Poincaré-Birkhoff theorem.





Part III

Local Forms
Inspired by the elementary normal form in symplectic linear algebra (Theo-
rem 1.1), we will go on to describe normal neighborhoods of a point (the Dar-
boux theorem) and of a lagrangian submanifold (the Weinstein theorems), inside
a symplectic manifold. The main tool is the Moser trick, explained in Lecture 7,
which leads to the crucial Moser theorems and which is at the heart of many
arguments in symplectic geometry.

In order to prove the normal forms, we need the (non-symplectic) ingredients
discussed in Lecture 6; for more on these topics, see, for instance, [16, 43, 75].

6 Preparation for the Local Theory

6.1 Isotopies and Vector Fields

Let M be a manifold, and ρ : M ×R→M a map, where we set ρt(p) := ρ(p, t).

Definition 6.1 The map ρ is an isotopy if each ρt : M → M is a diffeomor-
phism, and ρ0 = idM .

Given an isotopy ρ, we obtain a time-dependent vector field, that is, a
family of vector fields vt, t ∈ R, which at p ∈M satisfy

vt(p) =
d

ds
ρs(q)

∣∣∣∣
s=t

where q = ρ−1
t (p) ,

i.e.,
dρt
dt

= vt ◦ ρt .

Conversely, given a time-dependent vector field vt, if M is compact or if the
vt’s are compactly supported, there exists an isotopy ρ satisfying the previous
ordinary differential equation.

Suppose that M is compact. Then we have a one-to-one correspondence

{isotopies of M} 1−1←→ {time-dependent vector fields on M}
ρt, t ∈ R ←→ vt, t ∈ R

Definition 6.2 When vt = v is independent of t, the associated isotopy is called
the exponential map or the flow of v and is denoted exp tv; i.e., {exp tv :
M →M | t ∈ R} is the unique smooth family of diffeomorphisms satisfying

exp tv|t=0 = idM and
d

dt
(exp tv)(p) = v(exp tv(p)) .

33
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Definition 6.3 The Lie derivative is the operator

Lv : Ωk(M) −→ Ωk(M) defined by Lvω :=
d

dt
(exp tv)∗ω|t=0 .

When a vector field vt is time-dependent, its flow, that is, the corresponding
isotopy ρ, still locally exists by Picard’s theorem. More precisely, in the neigh-
borhood of any point p and for sufficiently small time t, there is a one-parameter
family of local diffeomorphisms ρt satisfying

dρt
dt

= vt ◦ ρt and ρ0 = id .

Hence, we say that the Lie derivative by vt is

Lvt : Ωk(M) −→ Ωk(M) defined by Lvtω :=
d

dt
(ρt)∗ω|t=0 .

Exercise. Prove the Cartan magic formula,

Lvω = ıvdω + dıvω ,

and the formula
d

dt
ρ∗tω = ρ∗tLvt

ω , (?)

where ρ is the (local) isotopy generated by vt. A good strategy for each formula
is to follow the steps:

1. Check the formula for 0-forms ω ∈ Ω0(M) = C∞(M).

2. Check that both sides commute with d.

3. Check that both sides are derivations of the algebra (Ω∗(M),∧). For
instance, check that

Lv(ω ∧ α) = (Lvω) ∧ α+ ω ∧ (Lvα) .

4. Notice that, if U is the domain of a coordinate system, then Ω•(U) is gen-
erated as an algebra by Ω0(U) and dΩ0(U), i.e., every element in Ω•(U) is
a linear combination of wedge products of elements in Ω0(U) and elements
in dΩ0(U).

♦

We will need the following improved version of formula (?).

Theorem 6.4 For a smooth family ωt, t ∈ R, of d-forms, we have

d

dt
ρ∗tωt = ρ∗t

(
Lvt

ωt +
dωt
dt

)
.
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Proof. If f(x, y) is a real function of two variables, by the chain rule we have

d

dt
f(t, t) =

d

dx
f(x, t)

∣∣∣∣
x=t

+
d

dy
f(t, y)

∣∣∣∣
y=t

.

Therefore,
d

dt
ρ∗tωt =

d

dx
ρ∗xωt

∣∣∣∣
x=t︸ ︷︷ ︸

ρ∗xLvxωt

∣∣∣
x=t

by (?)

+
d

dy
ρ∗tωy

∣∣∣∣
y=t︸ ︷︷ ︸

ρ∗t
dωy
dy

∣∣∣
y=t

= ρ∗t

(
Lvtωt +

dωt
dt

)
.

�

6.2 Tubular Neighborhood Theorem

Let M be an n-dimensional manifold, and let X be a k-dimensional submanifold
where k < n and with inclusion map

i : X ↪→M .

At each x ∈ X, the tangent space to X is viewed as a subspace of the tangent
space to M via the linear inclusion dix : TxX ↪→ TxM , where we denote x =
i(x). The quotient NxX := TxM/TxX is an (n − k)-dimensional vector space,
known as the normal space to X at x. The normal bundle of X is

NX = {(x, v) | x ∈ X , v ∈ NxX} .

The set NX has the structure of a vector bundle over X of rank n−k under the
natural projection, hence as a manifold NX is n-dimensional. The zero section
of NX,

i0 : X ↪→ NX , x 7→ (x, 0) ,

embeds X as a closed submanifold of NX. A neighborhood U0 of the zero
section X in NX is called convex if the intersection U0 ∩NxX with each fiber
is convex.

Theorem 6.5 (Tubular Neighborhood Theorem) There exist a convex
neighborhood U0 of X in NX, a neighborhood U of X in M , and a diffeomor-
phism ϕ : U0 → U such that

NX ⊇ U0
ϕ

'
- U ⊆M

I@
@

@
@

@
i0

�
�

�
�

�

i

�

X

commutes.
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Outline of the proof.

• Case of M = Rn, and X is a compact submanifold of Rn.

Theorem 6.6 (ε-Neighborhood Theorem)

Let Uε = {p ∈ Rn : |p− q| < ε for some q ∈ X} be the set of points at a
distance less than ε from X. Then, for ε sufficiently small, each p ∈ Uε
has a unique nearest point q ∈ X (i.e., a unique q ∈ X minimizing |q−x|).

Moreover, setting q = π(p), the map Uε π→ X is a (smooth) submersion
with the property that, for all p ∈ Uε, the line segment (1 − t)p + tq,
0 ≤ t ≤ 1, is in Uε.

The proof is part of Homework 5. Here are some hints.

At any x ∈ X, the normal space NxX may be regarded as an (n − k)-
dimensional subspace of Rn, namely the orthogonal complement in Rn of
the tangent space to X at x:

NxX ' {v ∈ Rn : v ⊥ w , for all w ∈ TxX} .

We define the following open neighborhood of X in NX:

NXε = {(x, v) ∈ NX : |v| < ε} .

Let
exp : NX −→ Rn

(x, v) 7−→ x+ v .

Restricted to the zero section, exp is the identity map on X.

Prove that, for ε sufficiently small, exp maps NXε diffeomorphically onto
Uε, and show also that the diagram

NXε exp - Uε

@
@

@
@

@
π0

R 	�
�

�
�

�

π

X

commutes.

• Case where X is a compact submanifold of an arbitrary manifold M .

Put a riemannian metric g onM , and let d(p, q) be the riemannian distance
between p, q ∈M . The ε-neighborhood of a compact submanifold X is

Uε = {p ∈M | d(p, q) < ε for some q ∈ X} .

Prove the ε-neighborhood theorem in this setting: for ε small enough, the
following assertions hold.
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– Any p ∈ Uε has a unique point q ∈ X with minimal d(p, q). Set q = π(p).

– The map Uε π→ X is a submersion and, for all p ∈ Uε, there is a unique
geodesic curve γ joining p to q = π(p).

– The normal space to X at x ∈ X is naturally identified with a subspace
of TxM :

NxX ' {v ∈ TxM | gx(v, w) = 0 , for any w ∈ TxX} .

Let NXε = {(x, v) ∈ NX |
√
gx(v, v) < ε}.

– Define exp : NXε → M by exp(x, v) = γ(1), where γ : [0, 1] → M
is the geodesic with γ(0) = x and dγ

dt (0) = v. Then exp maps NXε

diffeomorphically to Uε.

• General case.

When X is not compact, adapt the previous argument by replacing ε by
an appropriate continuous function ε : X → R+ which tends to zero fast
enough as x tends to infinity.

�

Restricting to the subset U0 ⊆ NX from the tubular neighborhood theorem,
we obtain a submersion U0

π0−→ X with all fibers π−1
0 (x) convex. We can carry

this fibration to U by setting π = π0 ◦ ϕ−1:

U0 ⊆ NX is a fibration =⇒ U ⊆M is a fibration
π0 ↓ π ↓
X X

This is called the tubular neighborhood fibration.

6.3 Homotopy Formula

Let U be a tubular neighborhood of a submanifold X in M . The restriction i∗ :
Hd

deRham(U) → Hd
deRham(X) by the inclusion map is surjective. As a corollary

of the tubular neighborhood fibration, i∗ is also injective: this follows from the
homotopy-invariance of de Rham cohomology.

Corollary 6.7 For any degree `, H`
deRham(U) ' H`

deRham(X).

At the level of forms, this means that, if ω is a closed `-form on U and i∗ω
is exact on X, then ω is exact. We will need the following related result.

Theorem 6.8 If a closed `-form ω on U has restriction i∗ω = 0, then ω is
exact, i.e., ω = dµ for some µ ∈ Ωd−1(U). Moreover, we can choose µ such that
µx = 0 at all x ∈ X.
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Proof. Via ϕ : U0
'−→ U , it is equivalent to work over U0. Define for every

0 ≤ t ≤ 1 a map
ρt : U0 −→ U0

(x, v) 7−→ (x, tv) .

This is well-defined since U0 is convex. The map ρ1 is the identity, ρ0 = i0 ◦
π0, and each ρt fixes X, that is, ρt ◦ i0 = i0. We hence say that the family
{ρt | 0 ≤ t ≤ 1} is a homotopy from i0 ◦ π0 to the identity fixing X. The
map π0 : U0 → X is called a retraction because π0 ◦ i0 is the identity. The
submanifold X is then called a deformation retract of U .

A (de Rham) homotopy operator between ρ0 = i0 ◦ π0 and ρ1 = id is a
linear map

Q : Ωd(U0) −→ Ωd−1(U0)

satisfying the homotopy formula

Id− (i0 ◦ π0)∗ = dQ+Qd .

When dω = 0 and i∗0ω = 0, the operator Q gives ω = dQω, so that we can take
µ = Qω. A concrete operator Q is given by the formula:

Qω =
∫ 1

0

ρ∗t (ıvt
ω) dt ,

where vt, at the point q = ρt(p), is the vector tangent to the curve ρs(p) at
s = t. The proof that Q satisfies the homotopy formula is below.

In our case, for x ∈ X, ρt(x) = x (all t) is the constant curve, so vt vanishes
at all x for all t, hence µx = 0. �

To check that Q above satisfies the homotopy formula, we compute

Qdω + dQω =
∫ 1

0

ρ∗t (ıvt
dω)dt+ d

∫ 1

0

ρ∗t (ıvt
ω)dt

=
∫ 1

0

ρ∗t (ıvt
dω + dıvt

ω︸ ︷︷ ︸
Lvtω

)dt ,

where Lv denotes the Lie derivative along v (reviewed in the next section), and
we used the Cartan magic formula: Lvω = ıvdω+ dıvω. The result now follows
from

d

dt
ρ∗tω = ρ∗tLvtω

and from the fundamental theorem of calculus:

Qdω + dQω =
∫ 1

0

d

dt
ρ∗tω dt = ρ∗1ω − ρ∗0ω .



Homework 5: Tubular Neighborhoods in Rn

1. Let X be a k-dimensional submanifold of an n-dimensional manifold M .
Let x be a point in X. The normal space to X at x is the quotient space

NxX = TxM/TxX ,

and the normal bundle of X in M is the vector bundle NX over X
whose fiber at x is NxX.

(a) Prove that NX is indeed a vector bundle.

(b) If M is Rn, show that NxX can be identified with the usual “normal
space” to X in Rn, that is, the orthogonal complement in Rn of the
tangent space to X at x.

2. Let X be a k-dimensional compact submanifold of Rn. Prove the tubular
neighborhood theorem in the following form.

(a) Given ε > 0 let Uε be the set of all points in Rn which are at a distance
less than ε from X. Show that, for ε sufficiently small, every point
p ∈ Uε has a unique nearest point π(p) ∈ X.

(b) Let π : Uε → X be the map defined in (a) for ε sufficiently small.
Show that, if p ∈ Uε, then the line segment (1 − t) · p + t · π(p),
0 ≤ t ≤ 1, joining p to π(p) lies in Uε.

(c) Let NXε = {(x, v) ∈ NX such that |v| < ε}. Let exp : NX → Rn
be the map (x, v) 7→ x + v, and let ν : NXε → X be the map
(x, v) 7→ x. Show that, for ε sufficiently small, exp maps NXε dif-
feomorphically onto Uε, and show also that the following diagram
commutes:

NXε
exp - Uε

@
@

@
@

@
ν

R 	�
�

�
�

�

π

X

3. Suppose that the manifold X in the previous exercise is not compact.

Prove that the assertion about exp is still true provided we replace ε by a
continuous function

ε : X → R+

which tends to zero fast enough as x tends to infinity.

39



7 Moser Theorems

7.1 Notions of Equivalence for Symplectic Structures

Let M be a 2n-dimensional manifold with two symplectic forms ω0 and ω1, so
that (M,ω0) and (M,ω1) are two symplectic manifolds.

Definition 7.1 We say that

• (M,ω0) and (M,ω1) are symplectomorphic if there is a diffeomorphism
ϕ : M →M with ϕ∗ω1 = ω0;

• (M,ω0) and (M,ω1) are strongly isotopic if there is an isotopy ρt :
M →M such that ρ∗1ω1 = ω0;

• (M,ω0) and (M,ω1) are deformation-equivalent if there is a smooth
family ωt of symplectic forms joining ω0 to ω1;

• (M,ω0) and (M,ω1) are isotopic if they are deformation-equivalent with
[ωt] independent of t.

Clearly, we have

strongly isotopic =⇒ symplectomorphic , and

isotopic =⇒ deformation-equivalent .

We also have
strongly isotopic =⇒ isotopic

because, if ρt : M → M is an isotopy such that ρ∗1ω1 = ω0, then the set ωt :=
ρ∗tω1 is a smooth family of symplectic forms joining ω1 to ω0 and [ωt] = [ω1],
∀t, by the homotopy invariance of de Rham cohomology. As we will see below,
the Moser theorem states that, on a compact manifold,

isotopic =⇒ strongly isotopic .

7.2 Moser Trick

Problem. Given a 2n-dimensional manifold M , a k-dimensional submanifold
X, neighborhoods U0,U1 of X, and symplectic forms ω0, ω1 on U0,U1, does
there exist a symplectomorphism preserving X? More precisely, does there
exist a diffeomorphism ϕ : U0 → U1 with ϕ∗ω1 = ω0 and ϕ(X) = X?

At the two extremes, we have:
Case X = point: Darboux theorem – see Lecture 8.
Case X = M : Moser theorem – discussed here:

Let M be a compact manifold with symplectic forms ω0 and ω1.

40
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– Are (M,ω0) and (M,ω1) symplectomorphic?
I.e., does there exist a diffeomorphism ϕ : M →M such that ϕ∗1ω0 = ω1?

Moser asked whether we can find such an ϕ which is homotopic to idM . A
necessary condition is [ω0] = [ω1] ∈ H2(M ; R) because: if ϕ ∼ idM , then, by
the homotopy formula, there exists a homotopy operator Q such that

id∗Mω1 − ϕ∗ω1 = dQω1 +Q dω1︸︷︷︸
0

=⇒ ω1 = ϕ∗ω1 + d(Qω1)
=⇒ [ω1] = [ϕ∗ω1] = [ω0] .

– If [ω0] = [ω1], does there exist a diffeomorphism ϕ homotopic to idM such
that ϕ∗ω1 = ω0?

Moser [68] proved that the answer is yes, with a further hypothesis as in
Theorem 7.2. McDuff showed that, in general, the answer is no; for a coun-
terexample, see Example 7.23 in [64].

Theorem 7.2 (Moser Theorem – Version I) Suppose that [ω0] = [ω1] and
that the 2-form ωt = (1− t)ω0 + tω1 is symplectic for each t ∈ [0, 1]. Then there
exists an isotopy ρ : M × R→M such that ρ∗tωt = ω0 for all t ∈ [0, 1].

In particular, ϕ = ρ1 : M '−→M , satisfies ϕ∗ω1 = ω0.
The following argument, due to Moser, is extremely useful; it is known as

the Moser trick.

Proof. Suppose that there exists an isotopy ρ : M ×R→M such that ρ∗tωt =
ω0, 0 ≤ t ≤ 1. Let

vt =
dρt
dt
◦ ρ−1

t , t ∈ R .

Then
0 =

d

dt
(ρ∗tωt) = ρ∗t

(
Lvtωt +

dωt
dt

)
⇐⇒ Lvtωt +

dωt
dt

= 0 . (?)

Suppose conversely that we can find a smooth time-dependent vector field
vt, t ∈ R, such that (?) holds for 0 ≤ t ≤ 1. Since M is compact, we can
integrate vt to an isotopy ρ : M × R→M with

d

dt
(ρ∗tωt) = 0 =⇒ ρ∗tωt = ρ∗0ω0 = ω0 .

So everything boils down to solving (?) for vt.
First, from ωt = (1− t)ω0 + tω1, we conclude that

dωt
dt

= ω1 − ω0 .
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Second, since [ω0] = [ω1], there exists a 1-form µ such that

ω1 − ω0 = dµ .

Third, by the Cartan magic formula, we have

Lvt
ωt = dıvt

ωt + ıvt
dωt︸︷︷︸

0

.

Putting everything together, we must find vt such that

dıvtωt + dµ = 0 .

It is sufficient to solve ıvt
ωt + µ = 0. By the nondegeneracy of ωt, we can solve

this pointwise, to obtain a unique (smooth) vt. �

Theorem 7.3 (Moser Theorem – Version II) Let M be a compact man-
ifold with symplectic forms ω0 and ω1. Suppose that ωt, 0 ≤ t ≤ 1, is a smooth
family of closed 2-forms joining ω0 to ω1 and satisfying:

(1) cohomology assumption: [ωt] is independent of t, i.e., d
dt [ωt] =

[
d
dtωt

]
= 0,

(2) nondegeneracy assumption: ωt is nondegenerate for 0 ≤ t ≤ 1.

Then there exists an isotopy ρ : M × R→M such that ρ∗tωt = ω0, 0 ≤ t ≤ 1.

Proof. (Moser trick) We have the following implications from the hypotheses:

(1) =⇒ ∃ family of 1-forms µt such that

dωt
dt

= dµt , 0 ≤ t ≤ 1 .

We can indeed find a smooth family of 1-forms µt such that dωt

dt = dµt. The
argument involves the Poincaré lemma for compactly-supported forms,
together with the Mayer-Vietoris sequence in order to use induction on
the number of charts in a good cover of M . For a sketch of the argument,
see page 95 in [64].

(2) =⇒ ∃ unique family of vector fields vt such that

ıvtωt + µt = 0 (Moser equation) .

Extend vt to all t ∈ R. Let ρ be the isotopy generated by vt (ρ exists by
compactness of M). Then we indeed have

d

dt
(ρ∗tωt) = ρ∗t (Lvtωt +

dωt
dt

) = ρ∗t (dıvtωt + dµt) = 0 .

�
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The compactness of M was used to be able to integrate vt for all t ∈ R.
If M is not compact, we need to check the existence of a solution ρt for the
differential equation dρt

dt = vt ◦ ρt for 0 ≤ t ≤ 1.

Picture. Fix c ∈ H2(M). Define Sc = {symplectic forms ω in M with [ω] = c}.
The Moser theorem implies that, on a compact manifold, all symplectic forms
on the same path-connected component of Sc are symplectomorphic.

7.3 Moser Local Theorem

Theorem 7.4 (Moser Theorem – Local Version) Let M be a manifold,
X a submanifold of M , i : X ↪→ M the inclusion map, ω0 and ω1 symplectic
forms in M .

Hypothesis: ω0|p = ω1|p , ∀p ∈ X .
Conclusion: There exist neighborhoods U0,U1 of X in M ,

and a diffeomorphism ϕ : U0 → U1 such that

U0
ϕ - U1

I@
@

@
@

@
i

�
�

�
�

�

i

�

X

commutes

and ϕ∗ω1 = ω0 .

Proof.

1. Pick a tubular neighborhood U0 of X. The 2-form ω1−ω0 is closed on U0,
and (ω1−ω0)p = 0 at all p ∈ X. By the homotopy formula on the tubular
neighborhood, there exists a 1-form µ on U0 such that ω1 − ω0 = dµ and
µp = 0 at all p ∈ X.

2. Consider the family ωt = (1 − t)ω0 + tω1 = ω0 + tdµ of closed 2-forms
on U0. Shrinking U0 if necessary, we can assume that ωt is symplectic for
0 ≤ t ≤ 1.

3. Solve the Moser equation: ıvt
ωt = −µ. Notice that vt = 0 on X.

4. Integrate vt. Shrinking U0 again if necessary, there exists an isotopy ρ :
U0 × [0, 1]→M with ρ∗tωt = ω0, for all t ∈ [0, 1]. Since vt|X = 0, we have
ρt|X = idX .

Set ϕ = ρ1, U1 = ρ1(U0). �

Exercise. Prove the Darboux theorem. (Hint: apply the local version of the
Moser theorem to X = {p}, as in the next lecture.) ♦
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8.1 Classical Darboux Theorem

Theorem 8.1 (Darboux) Let (M,ω) be a symplectic manifold, and let p be
any point in M . Then we can find a coordinate system (U , x1, . . . , xn, y1, . . . yn)
centered at p such that on U

ω =
n∑
i=1

dxi ∧ dyi .

As a consequence of Theorem 8.1, if we prove for (R2n,
∑
dxi ∧ dyi) a lo-

cal assertion which is invariant under symplectomorphisms, then that assertion
holds for any symplectic manifold.

Proof. Apply the Moser local theorem (Theorem 7.4) to X = {p}:
Use any symplectic basis for TpM to construct coordinates (x′1, . . . , x

′
n, y

′
1, . . . y

′
n)

centered at p and valid on some neighborhood U ′, so that

ωp =
∑

dx′i ∧ dy′i
∣∣∣
p
.

There are two symplectic forms on U ′: the given ω0 = ω and ω1 =
∑
dx′i ∧

dy′i. By the Moser theorem, there are neighborhoods U0 and U1 of p, and a
diffeomorphism ϕ : U0 → U1 such that

ϕ(p) = p and ϕ∗(
∑

dx′i ∧ dy′i) = ω .

Since ϕ∗(
∑
dx′i ∧ dy′i) =

∑
d(x′i ◦ ϕ) ∧ d(y′i ◦ ϕ), we only need to set new

coordinates xi = x′i ◦ ϕ and yi = y′i ◦ ϕ. �

If in the Moser local theorem (Theorem 7.4) we assume instead

Hypothesis: X is an n-dimensional submanifold with
i∗ω0 = i∗ω1 = 0 where i : X ↪→M is inclusion, i.e.,
X is a submanifold lagrangian for ω0 and ω1 ,

then Weinstein [81] proved that the conclusion still holds. We need some algebra
for the Weinstein theorem.

8.2 Lagrangian Subspaces

Suppose that U,W are n-dimensional vector spaces, and Ω : U × W → R
is a bilinear pairing; the map Ω gives rise to a linear map Ω̃ : U → W ∗,
Ω̃(u) = Ω(u, ·). Then Ω is nondegenerate if and only if Ω̃ is bijective.
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Proposition 8.2 Suppose that V is a 2n-dimensional vector space and Ω :
V × V → R is a nondegenerate skew-symmetric bilinear pairing. Let U be a
lagrangian subspace of (V,Ω) (i.e., Ω|U×U = 0 and U is n-dimensional). Let W
be any vector space complement to U , not necessarily lagrangian.

Then from W we can canonically build a lagrangian complement to U .

Proof. The pairing Ω gives a nondegenerate pairing U ×W Ω′→ R. Therefore,
Ω̃′ : U → W ∗ is bijective. We look for a lagrangian complement to U of the
form

W ′ = {w +Aw | w ∈W} ,

A : W → U being a linear map. For W ′ to be lagrangian we need

∀ w1, w2 ∈W , Ω(w1 +Aw1, w2 +Aw2) = 0

=⇒ Ω(w1, w2) + Ω(w1, Aw2) + Ω(Aw1, w2) + Ω(Aw1, Aw2︸ ︷︷ ︸
∈U

)

︸ ︷︷ ︸
0

= 0

=⇒ Ω(w1, w2) = Ω(Aw2, w1)− Ω(Aw1, w2)
= Ω̃(Aw2)(w1)− Ω̃(Aw1)(w2) .

Let A′ = Ω̃ ◦A : W →W ∗, and look for A′ such that

∀ w1, w2 ∈W , Ω(w1, w2) = A′(w2)(w1)−A′(w1)(w2) .

The canonical choice is A′(w) = − 1
2Ω(w, ·). Then set A = Ω̃−1 ◦A′. �

Proposition 8.3 Let V be a 2n-dimensional vector space, let Ω0 and Ω1 be
symplectic forms in V , let U be a subspace of V lagrangian for Ω0 and Ω1, and
let W be any complement to U in V . Then from W we can canonically construct
a linear isomorphism L : V '→ V such that L|U = IdU and L∗Ω1 = Ω0.

Proof. From W we canonically obtain complements W0 and W1 to U in V such
that W0 is lagrangian for Ω0 and W1 is lagrangian for Ω1. The nondegenerate
bilinear pairings

W0 × U
Ω0−→ R

W1 × U
Ω1−→ R

give isomorphisms
Ω̃0 : W0

'−→ U∗

Ω̃1 : W1
'−→ U∗ .

Consider the diagram

W0
Ω̃0−→ U∗

B ↓ ↓ id

W1
Ω̃1−→ U∗
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where the linear map B satisfies Ω̃1 ◦ B = Ω̃0, i.e., Ω0(ω0, u) = Ω1(Bω0, u),
∀ω0 ∈ W0, ∀u ∈ U . Extend B to the rest of V by setting it to be the identity
on U :

L := IdU ⊕B : U ⊕W0 −→ U ⊕W1 .

Finally, we check that L∗Ω1 = Ω0.

(L∗Ω1)(u⊕ w0, u
′ ⊕ w′0) = Ω1(u⊕Bω0, u

′ ⊕Bω′0)
= Ω1(u,Bω′0) + Ω1(Bω0, u

′)
= Ω0(u, ω′0) + Ω0(ω0, u

′)
= Ω0(u⊕ w0, u

′ ⊕ w′0) .

�

8.3 Weinstein Lagrangian Neighborhood Theorem

Theorem 8.4 (Weinstein Lagrangian Neighborhood Theorem [81])
Let M be a 2n-dimensional manifold, X an n-dimensional submanifold, i : X ↪→
M the inclusion map, and ω0 and ω1 symplectic forms on M such that i∗ω0 =
i∗ω1 = 0, i.e., X is a lagrangian submanifold of both (M,ω0) and (M,ω1).
Then there exist neighborhoods U0 and U1 of X in M and a diffeomorphism
ϕ : U0 → U1 such that

U0
ϕ - U1

I@
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@
@

@
i

�
�

�
�

�

i

�

X

commutes and ϕ∗ω1 = ω0 .

The proof of the Weinstein theorem uses the Whitney extension theorem.

Theorem 8.5 (Whitney Extension Theorem) Let M be an n-dimensional
manifold and X a k-dimensional submanifold with k < n. Suppose that at
each p ∈ X we are given a linear isomorphism Lp : TpM

'→ TpM such that
Lp|TpX = IdTpX and Lp depends smoothly on p. Then there exists an embedding
h : N → M of some neighborhood N of X in M such that h|X = idX and
dhp = Lp for all p ∈ X.

The linear maps L serve as “germs” for the embedding.

Proof of the Weinstein theorem. Put a riemannian metric g on M ; at each
p ∈M , gp(·, ·) is a positive-definite inner product. Fix p ∈ X, and let V = TpM ,
U = TpX and W = U⊥ = orthocomplement of U in V relative to gp(·, ·).

Since i∗ω0 = i∗ω1 = 0, U is a lagrangian subspace of both (V, ω0|p) and
(V, ω1|p). By symplectic linear algebra, we canonically get from U⊥ a linear
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isomorphism Lp : TpM → TpM , such that Lp|TpX = IdTpX and L∗pω1|p = ω0|p.
Lp varies smoothly with respect to p since our recipe is canonical!

By the Whitney theorem, there are a neighborhood N of X and an embed-
ding h : N ↪→ M with h|X = idX and dhp = Lp for p ∈ X. Hence, at any
p ∈ X,

(h∗ω1)p = (dhp)∗ω1|p = L∗pω1|p = ω0|p .

Applying the Moser local theorem (Theorem 7.4) to ω0 and h∗ω1, we find a
neighborhood U0 of X and an embedding f : U0 → N such that f |X = idX and
f∗(h∗ω1) = ω0 on Uo. Set ϕ = h ◦ f . �

Sketch of proof for the Whitney theorem.
Case M = Rn:
For a compact k-dimensional submanifold X, take a neighborhood of the

form
Uε = {p ∈M | distance (p,X) ≤ ε}

For ε sufficiently small so that any p ∈ Uε has a unique nearest point in X,
define a projection π : Uε → X, p 7→ point on X closest to p. If π(p) = q, then
p = q + v for some v ∈ NqX where NqX = (TqX)⊥ is the normal space at q;
see Homework 5. Let

h : Uε −→ Rn
p 7−→ q + Lqv

where q = π(p) and v = p − π(p) ∈ NqX. Then hX = idX and dhp = Lp for
p ∈ X. If X is not compact, replace ε by a continuous function ε : X → R+

which tends to zero fast enough as x tends to infinity.
General case:
Choose a riemannian metric onM . Replace distance by riemannian distance,

replace straight lines q+ tv by geodesics exp(q, v)(t) and replace q+Lqv by the
value at t = 1 of the geodesic with initial value q and initial velocity Lqv. �

In Lecture 30 we will need the following generalization of Theorem 8.4. For
a proof see, for instance, either of [37, 47, 83].

Theorem 8.6 (Coisotropic Embedding Theorem) Let M be a manifold
of dimension 2n, X a submanifold of dimension k ≥ n, i : X ↪→M the inclusion
map, and ω0 and ω1 symplectic forms on M , such that i∗ω0 = i∗ω1 and X is
coisotropic for both (M,ω0) and (M,ω1). Then there exist neighborhoods U0 and
U1 of X in M and a diffeomorphism ϕ : U0 → U1 such that

U0
ϕ - U1

I@
@

@
@

@
i

�
�

�
�

�

i

�

X

commutes and ϕ∗ω1 = ω0 .



Homework 6: Oriented Surfaces

1. The standard symplectic form on the 2-sphere is the standard area form:

If we think of S2 as the unit sphere in 3-space

S2 = {u ∈ R3 such that |u| = 1} ,

then the induced area form is given by

ωu(v, w) = 〈u, v × w〉

where u ∈ S2, v, w ∈ TuS2 are vectors in R3, × is the exterior product,
and 〈·, ·〉 is the standard inner product. With this form, the total area of
S2 is 4π.

Consider cylindrical polar coordinates (θ, z) on S2 away from its poles,
where 0 ≤ θ < 2π and −1 ≤ z ≤ 1.

Show that, in these coordinates,

ω = dθ ∧ dz .

2. Prove the Darboux theorem in the 2-dimensional case, using the fact that
every nonvanishing 1-form on a surface can be written locally as f dg for
suitable functions f, g.

Hint: ω = df ∧ dg is nondegenerate ⇐⇒ (f, g) is a local diffeomorphism.

3. Any oriented 2-dimensional manifold with an area form is a symplectic
manifold.

(a) Show that convex combinations of two area forms ω0, ω1 that induce
the same orientation are symplectic.
This is wrong in dimension 4: find two symplectic forms on the vector
space R4 that induce the same orientation, yet some convex combi-
nation of which is degenerate. Find a path of symplectic forms that
connect them.

(b) Suppose that we have two area forms ω0, ω1 on a compact 2-dimensional
manifold M representing the same de Rham cohomology class, i.e.,
[ω0] = [ω1] ∈ H2

deRham(M).
Prove that there is a 1-parameter family of diffeomorphisms ϕt :
M → M such that ϕ∗1ω0 = ω1, ϕ0 = id, and ϕ∗tω0 is symplectic for
all t ∈ [0, 1].

Hint: Exercise (a) and the Moser trick.

Such a 1-parameter family ϕt is called a strong isotopy between ω0

and ω1. In this language, this exercise shows that, up to strong
isotopy, there is a unique symplectic representative in each non-zero
2-cohomology class of M .

48



9 Weinstein Tubular Neighborhood Theorem

9.1 Observation from Linear Algebra

Let (V,Ω) be a symplectic linear space, and let U be a lagrangian subspace.

Claim. There is a canonical nondegenerate bilinear pairing Ω′ : V/U ×U → R.

Proof. Define Ω′([v], u) = Ω(v, u) where [v] is the equivalence class of v in V/U .

Exercise. Check that Ω′ is well-defined and nondegenerate. ♦ �

Consequently, we get
=⇒ Ω̃′ : V/U → U∗ defined by Ω̃′([v]) = Ω′([v], ·) is an isomorphism.
=⇒ V/U ' U∗ are canonically identified.

In particular, if (M,ω) is a symplectic manifold, and X is a lagrangian
submanifold, then TxX is a lagrangian subspace of (TxM,ωx) for each x ∈ X.

The space NxX := TxM/TxX is called the normal space of X at x.

=⇒ tTere is a canonical identification NxX ' T ∗xX.
=⇒

Theorem 9.1 The vector bundles NX and T ∗X are canonically identified.

9.2 Tubular Neighborhoods

Theorem 9.2 (Standard Tubular Neighborhood Theorem) Let M be
an n-dimensional manifold, X a k-dimensional submanifold, NX the normal
bundle of X in M , i0 : X ↪→ NX the zero section, and i : X ↪→ M inclusion.
Then there are neighborhoods U0 of X in NX, U of X in M and a diffeomor-
phism ψ : U0 → U such that

U0
ψ - U

I@
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@
@

@
i0

�
�

�
�

�

i

�

X

commutes .

For the proof, see Lecture 6.

Theorem 9.3 (Weinstein Tubular Neighborhood Theorem) Let (M,ω)
be a symplectic manifold, X a lagrangian submanifold, ω0 canonical symplectic
form on T ∗X, i0 : X ↪→ T ∗X the lagrangian embedding as the zero section, and
i : X ↪→M lagrangian embedding given by inclusion.

49
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Then there are neighborhoods U0 of X in T ∗X, U of X in M , and a diffeo-
morphism ϕ : U0 → U such that

U0
ϕ - U

I@
@

@
@

@
i0

�
�

�
�

�

i

�

X

commutes and ϕ∗ω = ω0 .

Proof. This proof relies on (1) the standard tubular neighborhood theorem,
and (2) the Weinstein lagrangian neighborhood theorem.

(1) Since NX ' T ∗X, we can find a neighborhood N0 of X in NX, a neigh-
borhood N of X in M , and a diffeomorphism ψ : N0 → N such that

N0
ψ - N

I@
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@
i0
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�
�

�

i

�

X

commutes .

Let
ω0 = canonical form on T ∗X
ω1 = ψ∗ω

}
symplectic forms on N0.

X is lagrangian for both ω0 and ω1.

(2) There exist neighborhoods U0 and U1 of X in N0 and a diffeomorphism
θ : U0 → U1 such that

U0
θ - U1

I@
@
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@

@
i0

�
�

�
�

�

i0

�

X

commutes and θ∗ω1 = ω0 .

Take ϕ = ψ ◦ θ and U = ϕ(U0). Check that ϕ∗ω = θ∗ψ∗ω︸︷︷︸
ω1

= ω0.

�

Remark. Theorem 9.3 classifies lagrangian embeddings: up to symplectomor-
phism, the set of lagrangian embeddings is the set of embeddings of manifolds
into their cotangent bundles as zero sections.
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The classification of isotropic embeddings was also carried out by Weinstein
in [82, 83]. An isotropic embedding of a manifold X into a symplectic man-
ifold (M,ω) is a closed embedding i : X ↪→ M such that i∗ω = 0. Weinstein
showed that neighbourhood equivalence of isotropic embeddings is in one-to-one
correspondence with isomorphism classes of symplectic vector bundles.

The classification of coisotropic embeddings is due to Gotay [37]. A coisotropic
embedding of a manifold X carrying a closed 2-form α of constant rank into
a symplectic manifold (M,ω) is an embedding i : X ↪→ M such that i∗ω = α
and i(X) is coisotropic has a submanifold of M . Let E be the characteristic
distribution of a closed form α of constant rank on X, i.e., Ep is the kernel
of αp at p ∈ X. Gotay showed that then E∗ carries a symplectic structure in a
neighbourhood of the zero section, such that X embeds coisotropically onto this
zero section, and, moreover every coisotropic embedding is equivalent to this in
some neighbourhood of the zero section. ♦

9.3 Application 1:
Tangent Space to the Group of Symplectomorphisms

The symplectomorphisms of a symplectic manifold (M,ω) form the group

Sympl(M,ω) = {f : M '−→M | f∗ω = ω} .

– What is Tid(Sympl(M,ω))?
(What is the “Lie algebra” of the group of symplectomorphisms?)
– What does a neighborhood of id in Sympl(M,ω) look like?

We use notions from the C1-topology:

C1-topology.
Let X and Y be manifolds.

Definition 9.4 A sequence of maps fi : X → Y converges in the C0-
topology to f : X → Y if and only if fi converges uniformly on compact
sets.

Definition 9.5 A sequence of C1 maps fi : X → Y converges in the C1-
topology to f : X → Y if and only if it and the sequence of derivatives dfi :
TX → TY converge uniformly on compact sets.

Let (M,ω) be a compact symplectic manifold and f ∈ Sympl(M,ω). Then
Graph f
Graph id = ∆

}
are lagrangian subspaces of (M ×M,pr∗1ω − pr∗2ω).

(pri : M ×M →M , i = 1, 2, are the projections to each factor.)

By the Weinstein tubular neighborhood theorem, there exists a neighborhood
U of ∆ ('M) in (M ×M,pr∗1ω− pr∗2ω) which is symplectomorphic to a neigh-
borhood U0 of M in (T ∗M,ω0). Let ϕ : U → U0 be the symplectomorphism.
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Suppose that f is sufficiently C1-close to id, i.e., f is in some sufficiently
small neighborhood of id in the C1-topology. Then:

1) We can assume that Graph f ⊆ U .

Let j : M ↪→ U be the embedding as Graph f ,
i : M ↪→ U be the embedding as Graph id = ∆ .

2) The map j is sufficiently C1-close to i.

3) By the Weinstein theorem, U ' U0 ⊆ T ∗M , so the above j and i induce

j0 : M ↪→ U0 embedding, where j0 = ϕ ◦ j ,
i0 : M ↪→ U0 embedding as 0-section .

Hence, we have

U
ϕ - U0

I@
@

@
@

@
i

�
�

�
�

�

i0

�

M

and

U
ϕ - U0

I@
@

@
@

@
j

�
�

�
�

�

j0

�

M

where i(p) = (p, p), i0(p) = (p, 0), j(p) = (p, f(p)) and j0(p) = ϕ(p, f(p))
for p ∈M .

4) The map j0 is sufficiently C1-close to i0.
⇓

The image set j0(M) intersects each T ∗pM at one point µp depending
smoothly on p.

5) The image of j0 is the image of a smooth section µ : M → T ∗M , that is,
a 1-form µ = j0 ◦ (π ◦ j0)−1.

Therefore, Graph f ' {(p, µp) | p ∈M, µp ∈ T ∗pM}.

Exercise. Vice-versa: if µ is a 1-form sufficiently C1-close to the zero 1-form,
then

{(p, µp) | p ∈M, µp ∈ T ∗pM} ' Graph f ,

for some diffeomorphism f : M →M . By Lecture 3, we have

Graph f is lagrangian ⇐⇒ µ is closed. ♦

Conclusion. A small C1-neighborhood of id in Sympl(M,ω) is homeomorphic
to a C1-neighborhood of zero in the vector space of closed 1-forms on M . So:

Tid(Sympl(M,ω)) ' {µ ∈ Ω1(M) | dµ = 0} .

In particular, Tid(Sympl(M,ω)) contains the space of exact 1-forms

{µ = dh | h ∈ C∞(M)} ' C∞(M)/ locally constant functions .
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9.4 Application 2:
Fixed Points of Symplectomorphisms

Theorem 9.6 Let (M,ω) be a compact symplectic manifold with H1
deRham(M) =

0. Then any symplectomorphism of M which is sufficiently C1-close to the iden-
tity has at least two fixed points.

Proof. Suppose that f ∈ Sympl(M,ω) is sufficiently C1-close to id.
=⇒ Graph f ' closed 1-form µ on M .

dµ = 0
H1

deRham(M) = 0

}
=⇒ µ = dh for some h ∈ C∞(M) .

M compact =⇒ h has at least 2 critical points.

Fixed points of f = critical points of h
‖ ‖

Graph f ∩∆ = {p : µp = dhp = 0} .

�

Lagrangian intersection problem:
A submanifold Y of M is C1-close to X when there is a diffeomorphism

X → Y which is, as a map into M , C1-close to the inclusion X ↪→M .

Theorem 9.7 Let (M,ω) be a symplectic manifold. Suppose that X is a com-
pact lagrangian submanifold of M with H1

deRham(X) = 0. Then every lagrangian
submanifold of M which is C1-close to X intersects X in at least two points.

Proof. Exercise. �

Arnold conjecture:

Let (M,ω) be a compact symplectic manifold, and f : M → M a symplecto-
morphism which is “exactly homotopic to the identity” (see below). Then

#{fixed points of f} ≥ minimal # of critical points
a smooth function of M can have .

Together with Morse theory,6 we obtain7

#{nondegenerate fixed points of f} ≥ minimal # of critical points
a Morse function of M can have

≥
2n∑
i=0

dimHi(M) .

6A Morse function on M is a function h : M → R whose critical points (i.e., points
p where dhp = 0) are all nondegenerate (i.e., the hessian at those points is nonsingular:

det
(

∂2h
∂xi∂xj

)
p
6= 0).

7A fixed point p of f : M →M is nondegenerate if dfp : TpM → TpM is nonsingular.
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The Arnold conjecture was proved by Conley-Zehnder, Floer, Hofer-Salamon,
Ono, Futaya-Ono, Lin-Tian using Floer homology (which is an ∞-dimensional
analogue of Morse theory). There are open conjectures for sharper bounds on
the number of fixed points.

Meaning of “f is exactly homotopic to the identity:”

Suppose that ht : M → R is a smooth family of functions which is 1-
periodic, i.e., ht = ht+1. Let ρ : M × R → M be the isotopy generated by the
time-dependent vector field vt defined by ω(vt, ·) = dht. Then “f being exactly
homotopic to the identity” means f = ρ1 for some such ht.

In other words, f is exactly homotopic to the identity when f is the
time-1 map of an isotopy generated by some smooth time-dependent 1-periodic
hamiltonian function.

There is a one-to-one correspondence

fixed points of f 1−1←→ period-1 orbits of ρ : M × R→M

because f(p) = p if and only if {ρ(t, p) , t ∈ [0, 1]} is a closed orbit.

Proof of the Arnold conjecture in the case when h : M → R is independent of
t.

p is a critical point of h ⇐⇒ dhp = 0 ⇐⇒ vp = 0 =⇒ ρ(t, p) = p , ∀t ∈
R ⇐⇒ p is a fixed point of ρ1. �

Exercise. Compute these estimates for the number of fixed points on some
compact symplectic manifolds (for instance, S2, S2×S2 and T 2 = S1×S1). ♦



Part IV

Contact Manifolds
Contact geometry is also known as “the odd-dimensional analogue of symplectic
geometry.” We will browse through the basics of contact manifolds and their
relation to symplectic manifolds.

10 Contact Forms

10.1 Contact Structures

Definition 10.1 A contact element on a manifold M is a point p ∈ M ,
called the contact point, together with a tangent hyperplane at p, Hp ⊂ TpM ,
that is, a codimension-1 subspace of TpM .

A hyperplane Hp ⊂ TpM determines a covector αp ∈ T ∗pM \ {0}, up to
multiplication by a nonzero scalar:

(p,Hp) is a contact element←→ Hp = kerαp with αp : TpM −→ R linear , 6= 0

kerαp = kerα′p ⇐⇒ αp = λα′p for some λ ∈ R \ {0} .

Suppose that H is a smooth field of contact elements (i.e., of tangent hyper-
planes) on M :

H : p 7−→ Hp ⊂ TpM .

Locally, H = kerα for some 1-form α, called a locally defining 1-form for H.
(α is not unique: kerα = ker(fα), for any nowhere vanishing f : M → R.)

Definition 10.2 A contact structure on M is a smooth field of tangent hy-
perplanes H ⊂ TM , such that, for any locally defining 1-form α, we have dα|H
nondegenerate (i.e., symplectic). The pair (M,H) is then called a contact
manifold and α is called a local contact form.

At each p ∈M ,

TpM = kerαp︸ ︷︷ ︸
Hp

⊕ ker dαp︸ ︷︷ ︸
1−dimensional

.

The ker dαp summand in this splitting depends on the choice of α.

dαp|Hp
nondegenerate =⇒

{
dimHp = 2n is even
(dαp)n|Hp 6= 0 is a volume form on Hp

αp|ker dαp
nondegenerate

Therefore,

55
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• any contact manifold (M,H) has dimM = 2n+ 1 odd, and

• if α is a (global) contact form, then α ∧ (dα)n is a volume form on M .

Remark. Let (M,H) be a contact manifold. A global contact form exists if and
only if the quotient line bundle TM/H is orientable. Since H is also orientable,
this implies that M is orientable. ♦

Proposition 10.3 Let H be a field of tangent hyperplanes on M . Then

H is a contact structure ⇐⇒ α∧(dα)n 6= 0 for every locally defining 1-form α .

Proof.
=⇒ Done above.
⇐= Suppose that H = kerα locally. We need to show:

dα|H nondegenerate ⇐⇒ α ∧ (dα)n 6= 0 .

Take a local trivialization {e1, f1, . . . , en, fn, r} of TM = kerα⊕ rest , such that
kerα = span{e1, f1, . . . , en, fn} and rest = span{r}.

(α ∧ (dα)n)(e1, f1, . . . , en, fn, r) = α(r)︸︷︷︸
6=0

·(dα)n(e1, f1, . . . , en, fn)

and hence α ∧ (dα)n 6= 0 ⇐⇒ (dα)n|H 6= 0 ⇐⇒ dα|H is nondegenerate . �

10.2 Examples

1. On R3 with coordinates (x, y, z), consider α = xdy + dz. Since

α ∧ dα = (xdy + dz) ∧ (dx ∧ dy) = dx ∧ dy ∧ dz 6= 0 ,

α is a contact form on R3.

The corresponding field of hyperplanes H = kerα at (x, y, z) ∈ R3 is

H(x,y,z) = {v = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
| α(v) = bx+ c = 0} .

Exercise. Picture these hyperplanes. ♦

2. (Martinet [62], 1971) Any compact orientable 3-manifold admits a con-
tact structure.

Open Problem, 2000. Classification of compact orientable contact 3-
manifolds.
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3. Let X be a manifold and T ∗X its cotangent bundle. There are two canon-
ical contact manifolds associated to X (see Homework 7):

P(T ∗X) = the projectivization of T ∗X , and
S(T ∗X) = the cotangent sphere bundle .

4. On R2n+1 with coordinates (x1, y1, . . . , xn, yn, z), α =
∑
i xidyi + dz is

contact.

10.3 First Properties

There is a local normal form theorem for contact manifolds analogous to the
Darboux theorem for symplectic manifolds.

Theorem 10.4 Let (M,H) be a contact manifold and p ∈ M . Then there
exists a coordinate system (U , x1, y1, . . . , xn, yn, z) centered at p such that on U

α =
∑

xidyi + dz is a local contact form for H .

The idea behind the proof is sketched in the next lecture.
There is also a Moser-type theorem for contact forms.

Theorem 10.5 (Gray) Let M be a compact manifold. Suppose that αt,
t ∈ [0, 1], is a smooth family of (global) contact forms on M . Let Ht = kerαt.
Then there exists an isotopy ρ : M × R −→ M such that Ht = ρt∗H0, for all
0 ≤ t ≤ 1.

Exercise. Show that Ht = ρt∗H0 ⇐⇒ ρ∗tαt = ut · α0 for some family
ut : M −→ R, 0 ≤ t ≤ 1, of nowhere vanishing functions. ♦

Proof. (À la Moser)

We need to find ρt such that
{
ρ0 = id
d
dt (ρ

∗
tαt) = d

dt (utα0) .
For any isotopy ρ,

d

dt
(ρ∗tαt) = ρ∗t

(
Lvtαt +

dαt
dt

)
,

where vt = dρt

dt ◦ ρ
−1
t is the vector field generated by ρt. By the Moser trick, it

suffices to find vt and then integrate it to ρt. We will search for vt inHt = kerαt;
this unnecessary assumption simplifies the proof.
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We need to solve

ρ∗t ( Lvt
αt︸ ︷︷ ︸

dıvtαt+ıvtdαt

+
dαt
dt

) =
dut
dt

α0︸︷︷︸
1

ut
ρ∗tαt

=⇒ ρ∗t

(
ıvtdαt +

dαt
dt

)
=

dut
dt
· 1
ut
· ρ∗tαt

⇐⇒ ıvt
dαt +

dαt
dt

= (ρ∗t )
−1

(
dut
dt
· 1
ut

)
αt . (?)

Restricting to the hyperplane Ht = kerαt, equation (?) reads

ıvt
dαt|Ht

= −dαt
dt

∣∣∣∣
Ht

which determines vt uniquely, since dαt|Ht is nondegenerate. After integrating
vt to ρt, the factor ut is determined by the relation ρ∗tαt = ut · α0. Check that
this indeed gives a solution. �



Homework 7: Manifolds of Contact Elements

Given any manifold X of dimension n, there is a canonical symplectic manifold
of dimension 2n attached to it, namely its cotangent bundle with the standard
symplectic structure. The exercises below show that there is also a canonical
contact manifold of dimension 2n− 1 attached to X.

The manifold of contact elements of an n-dimensional manifold X is

C = {(x, χx) |x ∈ X and χx is a hyperplane in TxX} .

On the other hand, the projectivization of the cotangent bundle of X is

P∗X = (T ∗X \ zero section)/ ∼

where (x, ξ) ∼ (x, ξ′) whenever ξ = λξ′ for some λ ∈ R \ {0} (here x ∈ X and
ξ, ξ′ ∈ T ∗xX \ {0}). We will denote elements of P∗X by (x, [ξ]), [ξ] being the ∼
equivalence class of ξ.

1. Show that C is naturally isomorphic to P∗X as a bundle over X, i.e.,
exhibit a diffeomorphism ϕ : C → P∗X such that the following diagram
commutes:

C ϕ−→ P∗X
π ↓ ↓ π
X = X

where the vertical maps are the natural projections (x, χx) 7→ x and
(x, ξ) 7→ x.

Hint: The kernel of a non-zero ξ ∈ T ∗xX is a hyperplane χx ⊂ TxX.
What is the relation between ξ and ξ′ if ker ξ = ker ξ′?

2. There is on C a canonical field of hyperplanes H (that is, a smooth map
attaching to each point in C a hyperplane in the tangent space to C at
that point): H at the point p = (x, χx) ∈ C is the hyperplane

Hp = (dπp)−1χx ⊂ TpC ,

where
C p = (x, χx) TpC
↓ π ↓ ↓ dπp

X x TxX

are the natural projections, and (dπp)−1χx is the preimage of χx ⊂ TxX
by dπp.

Under the isomorphism C ' P∗X from exercise 1, H induces a field of
hyperplanes H on P∗X. Describe H.

Hint: If ξ ∈ T ∗xX \ {0} has kernel χx, what is the kernel of the canonical
1-form α(x,ξ) = (dπ(x,ξ))

∗ξ?
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3. Check that (P∗X,H) is a contact manifold, and therefore (C,H) is a con-
tact manifold.

Hint: Let (x, [ξ]) ∈ P∗X. For any ξ representing the class [ξ], we have

H(x,[ξ]) = ker ((dπ(x,[ξ]))
∗ξ) .

Let x1, . . . , xn be local coordinates on X, and let x1, . . . , xn, ξ1, . . . , ξn be the
associated local coordinates on T ∗X. In these coordinates, (x, [ξ]) is given by
(x1, . . . , xn, [ξ1, . . . , ξn]). Since at least one of the ξi’s is nonzero, without loss
of generality we may assume that ξ1 6= 0 so that we may divide ξ by ξ1 to obtain
a representative with coordinates (1, ξ2, . . . , ξn). Hence, by choosing always
the representative of [ξ] with ξ1 = 1, the set x1, . . . , xn, ξ2, . . . , ξn defines
coordinates on some neighborhood U of (x, [ξ]) in P∗X. On U , consider the
1-form

α = dx1 +
∑
i≥2

ξidxi .

Show that α is a contact form on U , i.e., show that kerα(x,[ξ]) = H(x,[ξ]), and
that dα(x,[ξ]) is nondegenerate on H(x,[ξ]).

4. What is the symplectization of C?
Can you describe the manifold C when X = R3? X = S1 × S1?

Remark. Similarly, we could have defined the manifold of oriented
contact elements of X to be

Co =
{

(x, χox)
∣∣∣∣x ∈ X and

χox is a hyperplane in TxX
equipped with an orientation

}
.

Co is isomorphic to the cotangent sphere bundle of X

S∗X := (T ∗X \ zero section)/ ≈

where (x, ξ) ≈ (x, ξ′) whenever ξ = λξ′ for some λ ∈ R+.

A construction analogous to the above produces a canonical contact struc-
ture on Co. See [3, Appendix 4].

♦



11 Contact Dynamics

11.1 Reeb Vector Fields

Let (M,H) be a contact manifold with a contact form α.

Claim. There exists a unique vector field R on M such that
{
ı
R
dα = 0
ı
R
α = 1

Proof.
{
ı
R
dα = 0 =⇒ R ∈ ker dα , which is a line bundle, and

ı
R
α = 1 =⇒ normalizes R .

�

The vector field R is called the Reeb vector field determined by α.

Claim. The flow of R preserves the contact form, i.e., if ρt = exp tR is the
isotopy generated by vt, then ρ∗tα = α, ∀t ∈ R.

Proof. d
dt (ρ

∗
tα) = ρ∗t (LR

α) = ρ∗t (d ıRα︸︷︷︸
1

+ ı
R
dα︸ ︷︷ ︸
0

) = 0 .

Hence, ρ∗tα = ρ∗0α = α, ∀t ∈ R. �

Definition 11.1 A contactomorphism is a diffeomorphism f of a contact
manifold (M,H) which preserves the contact structure (i.e., f∗H = H).

Examples.

1. Euclidean space R2n+1 with α =
∑
i xidyi + dz.

ı
R

∑
dxidyi = 0

ı
R

∑
xidyi + dz = 1

}
=⇒ R =

∂

∂z
is the Reeb vector field

The contactomorphisms generated by R are translations

ρt(x1, y1, . . . , xn, yn, z) = (x1, y1, . . . , xn, yn, z + t) .

2. Regard the odd sphere S2n−1 i
↪→ R2n as the set of unit vectors

{(x1, y1, . . . , xn, yn) |
∑

(x2
i + y2

i ) = 1} .

Consider the 1-form on R2n, σ = 1
2

∑
(xidyi − yidxi).

Claim. The form α = i∗σ is a contact form on S2n−1.

Proof. We need to show that α ∧ (dα)n−1 6= 0. The 1-form on R2n

ν = d
∑

(x2
i + y2

1) = 2
∑

(xidxi + yidyi) satisfies TpS2n−1 = ker νp, at
p ∈ S2n−1. Check that ν ∧ σ ∧ (dσ)n−1 6= 0. �
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The distribution H = kerα is called the standard contact structure
on S2n−1. The Reeb vector field is R = 2

∑(
xi

∂
∂yi
− yi ∂

∂xi

)
, and is also

known as the Hopf vector field on S2n−1, as the orbits of its flow are
the circles of the Hopf fibration.

♦

11.2 Symplectization

Example. Let M̃ = S2n−1 ×R, with coordinate τ in the R-factor, and projec-
tion π : M̃ → S2n−1, (p, τ) 7→ p. Under the identification M̃ ' R2n\{0}, where
the R-factor represents the logarithm of the square of the radius, the projection
π becomes

π : R2n\{0} −→ S2n−1

(X1, Y1, . . . , Xn, Yn) 7−→ ( X1√
eτ ,

Y1√
eτ , . . . ,

Xn√
eτ ,

Yn√
eτ )

where eτ =
∑

(X2
i + Y 2

i ). Let α = i∗σ be the standard contact form on S2n−1

(see the previous example). Then ω = d(eτπ∗α) is a closed 2-form on R2n\{0}.
Since π∗i∗xi = Xi√

eτ , π∗i∗yi = Yi√
eτ , we have

π∗α = π∗i∗σ = 1
2

∑(
Xi√
eτ d(

Yi√
eτ )− Yi√

eτ d(
Xi√
eτ )
)

= 1
2eτ

∑
(XidYi − YidXi) .

Therefore, ω =
∑
dXi∧dYi is the standard symplectic form on R2n\{0} ⊂ R2n.

(M̃, ω) is called the symplectization of (S2n−1, α). ♦

Theorem 11.2 Let (M,H) be a contact manifold with a contact form α. Let
M̃ = M × R, and let π : M̃ → M , (p, τ) 7→ p, be the projection. Then
ω = d(eτπ∗α) is a symplectic form on M̃ , where τ is a coordinate on R.

Proof. Exercise. �

Hence, M̃ has a symplectic form ω canonically determined by a contact form
α on M and a coordinate function on R; (M̃, ω) is called the symplectization
of (M,α).

Remarks.

1. The contact version of the Darboux theorem can now be derived by apply-
ing the symplectic theorem to the symplectization of the contact manifold
(with appropriate choice of coordinates); see [3, Appendix 4].
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2. There is a coordinate-free description of M̃ as

M̃ = {(p, ξ) | p ∈M, ξ ∈ T ∗pM, such that ker ξ = Hp} .

The group R \ {0} acts on M̃ by multiplication on the cotangent vector:

λ · (p, ξ) = (p, λξ) , λ ∈ R \ {0} .

The quotient M̃/(R \ {0}) is diffeomorphic to M . M̃ has a canonical
1-form α̃ defined at v ∈ T(p,ξ)M̃ by

α̃(p,ξ)(v) = ξ((d pr)(p,ξ)v) ,

where pr : M̃ →M is the bundle projection.

♦

11.3 Conjectures of Seifert and Weinstein

Question. (Seifert, 1948) Let v be a nowhere vanishing vector field on the
3-sphere. Does the flow of v have any periodic orbits?

Counterexamples.

• (Schweitzer, 1974) ∃ C1 vector field without periodic orbits.

• (Kristina Kuperberg, 1994) ∃ C∞ vector field without periodic orbits.

Question. How about volume-preserving vector fields?

• (Greg Kuperberg, 1997) ∃ C1 counterexample.

• C∞ counterexamples are not known.

Natural generalization of this problem:
Let M = S3 be the 3-sphere, and let γ be a volume form on M . Suppose that

v is a nowhere vanishing vector field, and suppose that v is volume-preserving,
i.e.,

Lvγ = 0 ⇐⇒ dıvγ = 0 ⇐⇒ ıvγ = dα

for some 1-form α, since H2(S3) = 0.
Given a 1-form α, we would like to study vector fields v such that{

ıvγ = dα
ıvα > 0 .
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A vector field v satisfying ıvα > 0 is called positive. For instance, vector fields
in a neighborhood of the Hopf vector field are positive relative to the standard
contact form on S3.

Renormalizing as R := v
ıvα

, we should study instead ıRdα = 0
ıα = 1
α ∧ dα is a volume form,

that is, study pairs (α,R) where{
α is a contact form, and
R is its Reeb vector field.

Conjecture. (Weinstein, 1978 [84]) Suppose that M is a 3-dimensional
manifold with a (global) contact form α. Let v be the Reeb vector field for α.
Then v has a periodic orbit.

Theorem 11.3 (Viterbo and Hofer, 1993) The Weinstein conjecture is
true when

1) M = S3, or

2) π2(M) 6= 0, or

3) the contact structure is overtwisted.8

Open questions.

• How many periodic orbits are there?

• What do they look like?

• Is there always an unknotted one?

• What about the linking behavior?

8A surface S inside a contact 3-manifold determines a singular foliation on S, called the
characteristic foliation of S, by the intersection of the contact planes with the tangent
spaces to S. A contact structure on a 3-manifold M is called overtwisted if there exists
an embedded 2-disk whose characteristic foliation contains one closed leaf C and exactly
one singular point inside C; otherwise, the contact structure is called tight. Eliashberg [27]
showed that the isotopy classification of overtwisted contact structures on closed 3-manifolds
coincides with their homotopy classification as tangent plane fields. The classification of tight
contact structures is still open.



Part V

Compatible Almost Complex
Structures
The fact that any symplectic manifold possesses almost complex structures, and
even so in a compatible sense, establishes a link from symplectic geometry to
complex geometry, and is the point of departure for the modern technique of
counting pseudo-holomorphic curves, as first proposed by Gromov [40].

12 Almost Complex Structures

12.1 Three Geometries

1. Symplectic geometry:
geometry of a closed nondegenerate skew-symmetric bilinear form.

2. Riemannian geometry:
geometry of a positive-definite symmetric bilinear map.

3. Complex geometry:
geometry of a linear map with square -1.

Example. The euclidean space R2n with the standard linear coordinates
(x1, . . . , xn, y1, . . . , yn) has standard structures:

ω0 =
∑
dxj ∧ dyj , standard symplectic structure;

g0 = 〈·, ·〉 , standard inner product; and

if we identify R2n with Cn with coordinates zj = xj +
√
−1 yj , then multi-

plication by
√
−1 induces a constant linear map J0 on the tangent spaces of

R2n:

J0(
∂

∂xj
) =

∂

∂yj
, J0(

∂

∂yj
) = − ∂

∂xj
,

with J2
0 = −Id. Relative to the basis ∂

∂x1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn

, the maps J0,
ω0 and g0 are represented by

J0(u) =
(

0 −Id
Id 0

)
u

ω0(u, v) = vt
(

0 −Id
Id 0

)
u

g0(u, v) = vtu

65
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where u, v ∈ R2n and vt is the transpose of v. The following compatibility
relation holds:

ω0(u, v) = g0(J0(u), v) .

♦

12.2 Complex Structures on Vector Spaces

Definition 12.1 Let V be a vector space. A complex structure on V is a
linear map:

J : V → V with J2 = −Id .

The pair (V, J) is called a complex vector space.

A complex structure J is equivalent to a structure of vector space over C if
we identify the map J with multiplication by

√
−1.

Definition 12.2 Let (V,Ω) be a symplectic vector space. A complex structure
J on V is said to be compatible (with Ω, or Ω-compatible) if

G
J
(u, v) := Ω(u, Jv) , ∀u, v ∈ V , is a positive inner product on V .

That is,

J is Ω-compatible ⇐⇒
{

Ω(Ju, Jv) = Ω(u, v) [symplectomorphism]
Ω(u, Ju) > 0, ∀u 6= 0 [taming condition]

Compatible complex structures always exist on symplectic vector spaces:

Proposition 12.3 Let (V,Ω) be a symplectic vector space. Then there is a
compatible complex structure J on V .

Proof. Choose a positive inner product G on V . Since Ω and G are nondegen-
erate,

u ∈ V 7−→ Ω(u, ·) ∈ V ∗

w ∈ V 7−→ G(w, ·) ∈ V ∗

}
are isomorphisms between V and V ∗.

Hence, Ω(u, v) = G(Au, v) for some linear map A : V → V . This map A is
skew-symmetric because

G(A∗u, v) = G(u,Av) = G(Av, u)
= Ω(v, u) = −Ω(u, v) = G(−Au, v) .

Also:

• AA∗ is symmetric: (AA∗)∗ = AA∗.

• AA∗ is positive: G(AA∗u, u) = G(A∗u,A∗u) > 0, for u 6= 0.
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These properties imply that AA∗ diagonalizes with positive eigenvalues λi,

AA∗ = B diag {λ1, . . . , λ2n} B−1 .

We may hence define an arbitrary real power ofAA∗ by rescaling the eigenspaces,
in particular, √

AA∗ := B diag {
√
λ1, . . . ,

√
λ2n} B−1 .

Then
√
AA∗ is symmetric and positive-definite. Let

J = (
√
AA∗)−1A .

The factorization A =
√
AA∗ J is called the polar decomposition of A. Since

A commutes with
√
AA∗, J commutes with

√
AA∗. Check that J is orthogonal,

JJ∗ = Id, as well as skew-adjoint, J∗ = −J , and hence it is a complex structure
on V :

J2 = −JJ∗ = −Id .

Compatibility:

Ω(Ju, Jv) = G(AJu, Jv) = G(JAu, Jv) = G(Au, v)
= Ω(u, v)

Ω(u, Ju) = G(Au, Ju) = G(−JAu, u)
= G(

√
AA∗ u, u) > 0 , for u 6= 0 .

Therefore, J is a compatible complex structure on V . �

As indicated in the proof, in general, the positive inner product defined by

Ω(u, Jv) = G(
√
AA∗ u, v) is different from G(u, v) .

Remarks.

1. This construction is canonical after an initial choice of G. To see this,
notice that

√
AA∗ does not depend on the choice of B nor of the ordering

of the eigenvalues in diag {
√
λ1, . . . ,

√
λ2n}. The linear transformation√

AA∗ is completely determined by its effect on each eigenspace of AA∗:
on the eigenspace corresponding to the eigenvalue λk, the map

√
AA∗ is

defined to be multiplication by
√
λk.

2. If (Vt,Ωt) is a family of symplectic vector spaces with a family Gt of
positive inner products, all depending smoothly on a real parameter t,
then, adapting the proof of the previous proposition, we can show that
there is a smooth family Jt of compatible complex structures on Vt.

3. To check just the existence of compatible complex structures on a sym-
plectic vector space (V,Ω), we could also proceed as follows. Given a
symplectic basis e1, . . . , en, f1, . . . , fn (i.e., Ω(ei, ej) = Ω(fi, fj) = 0 and
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Ω(ei, fj) = δij), one can define Jej = fj and Jfj = −ej . This is a com-
patible complex structure on (V,Ω). Moreover, given Ω and J compatible
on V , there exists a symplectic basis of V of the form:

e1, . . . , en, f1 = Je1, . . . , fn = Jen .

The proof is part of Homework 8.

4. Conversely, given (V, J), there is always a symplectic structure Ω such that
J is Ω-compatible: pick any positive inner product G such that J∗ = −J
and take Ω(u, v) = G(Ju, v).

♦

12.3 Compatible Structures

Definition 12.4 An almost complex structure on a manifold M is a smooth
field of complex structures on the tangent spaces:

x 7−→ Jx : TxM → TxM linear, and J2
x = −Id .

The pair (M,J) is then called an almost complex manifold.

Definition 12.5 Let (M,ω) be a symplectic manifold. An almost complex
structure J on M is called compatible (with ω or ω-compatible) if the as-
signment

x 7−→ gx : TxM × TxM → R
gx(u, v) := ωx(u, Jxv)

is a riemannian metric on M .

For a manifold M ,

ω is a symplectic form =⇒ x 7−→ ωx : TxM × TxM → R is bilinear,
nondegenerate, skew-symmetric;

g is a riemannian metric =⇒ x 7−→ gx : TxM × TxM → R
is a positive inner product;

J almost complex structure =⇒ x 7−→ Jx : TxM → TxM
is linear and J2 = −Id .

The triple (ω, g, J) is called a compatible triple when g(·, ·) = ω(·, J ·).

Proposition 12.6 Let (M,ω) be a symplectic manifold, and g a riemannian
metric on M . Then there exists a canonical almost complex structure J on M
which is compatible.
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Proof. The polar decomposition is canonical (after a choice of metric), hence
this construction of J on M is smooth; cf. Remark 2 of the previous section. �

Remark. In general, g
J
(·, ·) := ω(·, J ·) 6= g(·, ·). ♦

Since riemannian metrics always exist, we conclude:

Corollary 12.7 Any symplectic manifold has compatible almost complex struc-
tures.

– How different can compatible almost complex structures be?

Proposition 12.8 Let (M,ω) be a symplectic manifold, and J0, J1 two almost
complex structures compatible with ω. Then there is a smooth family Jt, 0 ≤ t ≤
1, of compatible almost complex structures joining J0 to J1.

Proof.

ω, J0  g0(·, ·) = ω(·, J0·)
ω, J1  g1(·, ·) = ω(·, J1·)

}
are two riemannian metrics on M .

Their convex combinations

gt(·, ·) = (1− t)g0(·, ·) + tg1(·, ·) , 0 ≤ t ≤ 1 ,

form a smooth family of riemannian metrics. Apply the polar decomposition to
(ω, gt) to obtain a smooth family of Jt’s joining J0 to J1. �

Corollary 12.9 The set of all compatible almost complex structures on a sym-
plectic manifold is path-connected.



Homework 8: Compatible Linear Structures

1. Let Ω(V ) and J(V ) be the spaces of symplectic forms and complex struc-
tures on the vector space V , respectively. Take Ω ∈ Ω(V ) and J ∈ J(V ).
Let GL(V ) be the group of all isomorphisms of V , let Sp(V,Ω) be the
group of symplectomorphisms of (V,Ω), and let GL(V, J) be the group of
complex isomorphisms of (V, J).

Show that

Ω(V ) ' GL(V )/Sp(V,Ω) and J(V ) ' GL(V )/GL(V, J) .

Hint: The group GL(V ) acts on Ω(V ) by pullback. What is the stabilizer of
a given Ω?

2. Let (R2n,Ω0) be the standard 2n-dimensional symplectic euclidean space.

The symplectic linear group is the group of all linear transformations
of R2n which preserve the symplectic structure:

Sp(2n) := {A ∈ GL(2n; R) |Ω0(Au,Av) = Ω0(u, v) for all u, v ∈ R2n} .

Identifying the complex n×n matrix X+ iY with the real 2n×2n matrix(
X −Y
Y X

)
, consider the following subgroups of GL(2n; R):

Sp(2n) , O(2n) , GL(n; C) and U(n) .

Show that the intersection of any two of them is U(n). (From [64, p.41].)
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3. Let (V,Ω) be a symplectic vector space of dimension 2n, and let J : V →
V , J2 = −Id, be a complex structure on V .

(a) Prove that, if J is Ω-compatible and L is a lagrangian subspace of
(V,Ω), then JL is also lagrangian and JL = L⊥, where ⊥ denotes
orthogonality with respect to the positive inner product G

J
(u, v) =

Ω(u, Jv).

(b) Deduce that J is Ω-compatible if and only if there exists a symplectic
basis for V of the form

e1, e2, . . . , en, f1 = Je1, f2 = Je2, . . . , fn = Jen

where Ω(ei, ej) = Ω(fi, fj) = 0 and Ω(ei, fj) = δij .



13 Compatible Triples

13.1 Compatibility

Let (M,ω) be a symplectic manifold. As shown in the previous lecture, compat-
ible almost complex structures always exist on (M,ω). We also showed that the
set of all compatible almost complex structures on (M,ω) is path-connected. In
fact, the set of all compatible almost complex structures is even contractible.
(This is important for defining invariants.) Let J (TxM,ωx) be the set of all
compatible complex structures on (TxM,ωx) for x ∈M .

Proposition 13.1 The set J (TxM,ωx) is contractible, i.e., there exists a ho-
motopy

ht : J (TxM,ωx) −→ J (TxM,ωx) , 0 ≤ t ≤ 1 ,

starting at the identity h0 = Id,
finishing at a trivial map h1 : J (TxM,ωx)→ {J0},
and fixing J0 (i.e., ht(J0) = J0, ∀t) for some J0 ∈ J (TxM,ωx).

Proof. Homework 9. �

Consider the fiber bundle J →M with fiber

Jx := J (TxM,ωx) over x ∈M .

A compatible almost complex structure J on (M,ω) is a section of J . The
space of sections of J is contractible because the fibers are contractible.

Remarks.

• We never used the closedness of ω to construct compatible almost complex
structures. The construction holds for an almost symplectic manifold
(M,ω), that is, a pair of a manifold M and a nondegenerate 2-form ω, not
necessarily closed.

• Similarly, we could define a symplectic vector bundle to be a vector
bundle E → M over a manifold M equipped with a smooth field ω of
fiberwise nondegenerate skew-symmetric bilinear maps

ωx : Ex × Ex −→ R .

The existence of such a field ω is equivalent to being able to reduce the
structure group of the bundle from the general linear group to the linear
symplectic group. As a consequence of our discussion, a symplectic vector
bundle is always a complex vector bundles, and vice-versa.

♦
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13.2 Triple of Structures

If (ω, J, g) is a compatible triple, then any one of ω, J or g can be written in
terms of the other two:

g(u, v) = ω(u, Jv)
ω(u, v) = g(Ju, v)
J(u) = g̃−1(ω̃(u))

where
ω̃ : TM −→ T ∗M u 7−→ ω(u, ·)
g̃ : TM −→ T ∗M u 7−→ g(u, ·)

are the linear isomorphisms induced by the bilinear forms ω and g.
The relations among ω, J and g can be summarized in the following table.

The last column lists differential equations these structures are usually asked to
satisfy.

Data Condition/Technique Consequence Question

ω, J
ω(Ju, Jv) = ω(u, v)
ω(u, Ju) > 0, u 6= 0

g(u, v) := ω(u, Jv)
is positive inner product (g flat?)

g, J
g(Ju, Jv) = g(u, v)
(i.e., J is orthogonal)

ω(u, v) := g(Ju, v)
is nondeg., skew-symm. ω closed?

ω, g polar decomposition  J almost complex str. J integrable?

An almost complex structure J on a manifold M is called integrable if and
only if J is induced by a structure of complex manifold on M . In Lecture 15
we will discuss tests to check whether a given J is integrable.

13.3 First Consequences

Proposition 13.2 Let (M,J) be an almost complex manifold. Suppose that J
is compatible with two symplectic structures ω0, ω1 Then ω0, ω1 are deformation-
equivalent, that is, there exists a smooth family ωt, 0 ≤ t ≤ 1, of symplectic
forms joining ω0 to ω1.

Proof. Take ωt = (1− t)ω0 + tω1, 0 ≤ t ≤ 1. Then:

• ωt is closed.

• ωt is nondegenerate, since

gt(·, ·) := ωt(·, J ·) = (1− t)g0(·, ·) + tg1(·, ·)

is positive, hence nondegenerate.
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�

Remark. The converse of this proposition is not true. A counterexample is
provided by the following family in R4:

ωt = cosπt dx1dy1 + sinπt dx1dy2 + sinπt dy1dx2 + cosπt dx2dy2 , 0 ≤ t ≤ 1 .

There is no J in R4 compatible with both ω0 and ω1. ♦

Definition 13.3 A submanifold X of an almost complex manifold (M,J) is an
almost complex submanifold when J(TX) ⊆ TX, i.e., for all x ∈ X, v ∈
TxX, we have Jxv ∈ TxX.

Proposition 13.4 Let (M,ω) be a symplectic manifold equipped with a com-
patible almost complex structure J . Then any almost complex submanifold X of
(M,J) is a symplectic submanifold of (M,ω).

Proof. Let i : X ↪→M be the inclusion. Then i∗ω is a closed 2-form on X.
Nondegeneracy:

ωx(u, v) = gx(Jxu, v) , ∀x ∈ X , ∀u, v ∈ TxX .

Since gx|TxX is nondegenerate, so is ωx|TxX . Hence, i∗ω is symplectic. �

– When is an almost complex manifold a complex manifold? See Lecture 15.

Examples.

S2 is an almost complex manifold and it is a complex manifold.

S4 is not an almost complex manifold (proved by Ehresmann and Hopf).

S6 is almost complex and it is not yet known whether it is complex.

S8 and higher spheres are not almost complex manifolds.

♦



Homework 9: Contractibility

The following proof illustrates in a geometric way the relation between la-
grangian subspaces, complex structures and inner products; from [11, p.45].

Let (V,Ω) be a symplectic vector space, and let J (V,Ω) be the space of
all complex structures on (V,Ω) which are Ω-compatible; i.e., given a complex
structure J on V we have

J ∈ J (V,Ω) ⇐⇒ G
J
(·, ·) := Ω(·, J ·) is a positive inner product on V .

Fix a lagrangian subspace L0 of (V,Ω). Let L(V,Ω, L0) be the space of all
lagrangian subspaces of (V,Ω) which intersect L0 transversally. Let G(L0) be
the space of all positive inner products on L0.

Consider the map

Ψ : J (V,Ω) → L(V,Ω, L0)× G(L0)
J 7→ (JL0, GJ

|L0)

Show that:

1. Ψ is well-defined.

2. Ψ is a bijection.

Hint: Given (L,G) ∈ L(V,Ω, L0)×G(L0), define J in the following manner:
For v ∈ L0, v⊥ = {u ∈ L0 |G(u, v) = 0} is a (n− 1)-dimensional space of L0;
its symplectic orthogonal (v⊥)Ω is (n+1)-dimensional. Check that (v⊥)Ω∩L is
1-dimensional. Let Jv be the unique vector in this line such that Ω(v, Jv) = 1.
Check that, if we take v’s in some G-orthonormal basis of L0, this defines the
required element of J (V,Ω).

3. L(V,Ω, L0) is contractible.

Hint: Prove that L(V,Ω, L0) can be identified with the vector space of all
symmetric n × n matrices. Notice that any n-dimensional subspace L of V
which is transversal to L0 is the graph of a linear map S : JL0 → L0, i.e.,

L = span of {Je1 + SJe1, . . . , Jen + SJen}
when L0 = span of {e1, . . . , en} .

4. G(L0) is contractible.

Hint: G(L0) is even convex.

Conclude that J (V,Ω) is contractible.
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14 Dolbeault Theory

14.1 Splittings

Let (M,J) be an almost complex manifold. The complexified tangent bundle
of M is the bundle

TM ⊗ C
↓
M

with fiber (TM ⊗ C)p = TpM ⊗ C at p ∈M . If

TpM is a 2n-dimensional vector space over R , then
TpM ⊗ C is a 2n-dimensional vector space over C .

We may extend J linearly to TM ⊗ C:

J(v ⊗ c) = Jv ⊗ c , v ∈ TM , c ∈ C .

Since J2 = −Id, on the complex vector space (TM ⊗C)p, the linear map Jp has
eigenvalues ±i. Let

T1,0 = {v ∈ TM ⊗ C | Jv = +iv} = (+i)-eigenspace of J
= {v ⊗ 1− Jv ⊗ i | v ∈ TM}
= (J-)holomorphic tangent vectors ;

T0,1 = {v ∈ TM ⊗ C | Jv = −iv} = (−i)-eigenspace of J
= {v ⊗ 1 + Jv ⊗ i | v ∈ TM}
= (J-)anti-holomorphic tangent vectors .

Since
π1,0 : TM ⊗ C −→ T1,0

v 7−→ 1
2 (v ⊗ 1− Jv ⊗ i)

is a (real) bundle isomorphism such that π1,0 ◦ J = iπ1,0, and

π0,1 : TM ⊗ C −→ T0,1

v 7−→ 1
2 (v ⊗ 1 + Jv ⊗ i)

is also a (real) bundle isomorphism such that π0,1 ◦ J = −iπ0,1, we conclude
that we have isomorphisms of complex vector bundles

(TM, J) ' T1,0 ' T0,1 ,

where T0,1 denotes the complex conjugate bundle of T0,1. Extending π1,0 and
π0,1 to projections of TM ⊗ C, we obtain an isomorphism

(π1,0, π0,1) : TM ⊗ C '−→ T1,0 ⊕ T0,1 .
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14.2 Forms of Type (`,m) 77

Similarly, the complexified cotangent bundle splits as

(π1,0, π0,1) : T ∗M ⊗ C '−→ T 1,0 ⊕ T 0,1

where

T 1,0 = (T1,0)∗ = {η ∈ T ∗ ⊗ C | η(Jω) = iη(ω) ,∀ω ∈ TM ⊗ C}
= {ξ ⊗ 1− (ξ ◦ J)⊗ i | ξ ∈ T ∗M}
= complex-linear cotangent vectors ,

T 0,1 = (T0,1)∗ = {η ∈ T ∗ ⊗ C | η(Jω) = −iη(ω) ,∀ω ∈ TM ⊗ C}
= {ξ ⊗ 1 + (ξ ◦ J)⊗ i | ξ ∈ T ∗M}
= complex-antilinear cotangent vectors ,

and π1,0, π0,1 are the two natural projections

π1,0 : T ∗M ⊗ C −→ T 1,0

η 7−→ η1,0 := 1
2 (η − iη ◦ J) ;

π0,1 : T ∗M ⊗ C −→ T 0,1

η 7−→ η0,1 := 1
2 (η + iη ◦ J) .

14.2 Forms of Type (`, m)

For an almost complex manifold (M,J), let

Ωk(M ; C) := sections of Λk(T ∗M ⊗ C)
= complex-valued k-forms on M,where

Λk(T ∗M ⊗ C) := Λk(T 1,0 ⊕ T 0,1)
= ⊕`+m=k (Λ`T 1,0) ∧ (ΛmT 0,1)︸ ︷︷ ︸

Λ`,m(definition)

= ⊕`+m=kΛ`,m .

In particular, Λ1,0 = T 1,0 and Λ0,1 = T 0,1.

Definition 14.1 The differential forms of type (`, m) on (M,J) are the
sections of Λ`,m:

Ω`,m := sections of Λ`,m .

Then
Ωk(M ; C) = ⊕`+m=kΩ`,m .

Let π`,m : Λk(T ∗M ⊗C)→ Λ`,m be the projection map, where `+m = k. The
usual exterior derivative d composed with these projections induces differential
operators ∂ and ∂̄ on forms of type (`,m):

∂ := π`+1,m ◦ d : Ω`,m(M) −→ Ω`+1,m(M)
∂̄ := π`,m+1 ◦ d : Ω`,m(M) −→ Ω`,m+1(M) .
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If β ∈ Ω`,m(M), with k = `+m, then dβ ∈ Ωk+1(M ; C):

dβ =
∑

r+s=k+1

πr,sdβ = πk+1,0dβ + · · ·+ ∂β + ∂̄β + · · ·+ π0,k+1dβ .

14.3 J-Holomorphic Functions

Let f : M → C be a smooth complex-valued function on M . The exterior
derivative d extends linearly to C-valued functions as df = d(Ref) + i d(Imf).

Definition 14.2 A function f is (J-)holomorphic at x ∈ M if dfp is com-
plex linear, i.e., dfp ◦ J = i dfp. A function f is (J-)holomorphic if it is
holomorphic at all p ∈M .

Exercise.

dfp ◦ J = i dfp ⇐⇒ dfp ∈ T 1,0
p ⇐⇒ π0,1

p dfp = 0 .

♦

Definition 14.3 A function f is (J-)anti-holomorphic at p ∈ M if dfp is
complex antilinear, i.e., dfp ◦ J = −i dfp.

Exercise.

dfp ◦ J = −i dfp ⇐⇒ dfp ∈ T 0,1
p ⇐⇒ π1,0

p dfp = 0
⇐⇒ df̄p ∈ T 1,0

p ⇐⇒ π0,1
p df̄p = 0

⇐⇒ f̄ is holomorphic at p ∈M .

♦

Definition 14.4 On functions, d = ∂ + ∂̄, where

∂ := π1,0 ◦ d and ∂̄ := π0,1 ◦ d .

Then
f is holomorphic ⇐⇒ ∂̄f = 0 ,

f is anti-holomorphic ⇐⇒ ∂f = 0 .

– What about higher differential forms?
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14.4 Dolbeault Cohomology

Suppose that d = ∂ + ∂̄, i.e.,

dβ = ∂β︸︷︷︸
∈Ω`+1,m

+ ∂̄β︸︷︷︸
∈Ω`,m+1

, ∀β ∈ Ω`,m .

Then, for any form β ∈ Ω`,m,

0 = d2β = ∂2β︸︷︷︸
∈Ω`+2,m

+ ∂∂̄β + ∂̄∂β︸ ︷︷ ︸
∈Ω`+1,m+1

+ ∂̄2β︸︷︷︸
∈Ω`,m+2

,

which implies  ∂̄2 = 0
∂∂̄ + ∂̄∂ = 0
∂2 = 0

Since ∂̄2 = 0, the chain

0 −→ Ω`,0 ∂̄−→ Ω`,1 ∂̄−→ Ω`,2 ∂̄−→ · · ·

is a differential complex; its cohomology groups

H`,m
Dolbeault(M) :=

ker ∂̄ : Ω`,m −→ Ω`,m+1

im ∂̄ : Ω`,m−1 −→ Ω`,m

are called the Dolbeault cohomology groups.
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∂̄

R 	�
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∂

@
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@
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@

∂̄

R
Ω2,0 Ω1,1 Ω0,2

...
...

...

– When is d = ∂ + ∂̄? See the next lecture.



Homework 10: Integrability

This set of problems is from [11, p.46-47].

1. Let (M,J) be an almost complex manifold. Its Nijenhuis tensor N is:

N (v, w) := [Jv, Jw]− J [v, Jw]− J [Jv,w]− [v, w] ,

where v and w are vector fields on M , [·, ·] is the usual bracket

[v, w] · f := v · (w · f)− w · (v · f) , for f ∈ C∞(M) ,

and v · f = df(v).

(a) Check that, if the map v 7→ [v, w] is complex linear (in the sense that
it commutes with J), then N ≡ 0.

(b) Show that N is actually a tensor, that is: N (v, w) at x ∈M depends
only on the values vx, wx ∈ TxM and not really on the vector fields
v and w.

(c) Compute N (v, Jv). Deduce that, if M is a surface, then N ≡ 0.

A theorem of Newlander and Nirenberg [70] states that an almost complex
manifold (M,J) is a complex (analytic) manifold if and only if N ≡ 0.
Combining (c) with the fact that any orientable surface is symplectic,
we conclude that any orientable surface is a complex manifold, a result
already known to Gauss.

2. Let N be as above. For any map f : R2n → C and any vector field v on
R2n, we have v · f = v · (f1 + if2) = v · f1 + i v · f2, so that f 7→ v · f is a
complex linear map.

(a) Let R2n be endowed with an almost complex structure J , and suppose
that f is a J-holomorphic function, that is,

df ◦ J = i df .

Show that df(N (v, w)) = 0 for all vector fields v, w.
(b) Suppose that there exist n J-holomorphic functions, f1, . . . , fn, on

R2n, which are independent at some point x, i.e., the real and imagi-
nary parts of (df1)x, . . . , (dfn)x form a basis of T ∗xR2n. Show that N
vanishes identically at x.

(c) Assume that M is a complex manifold and J is its complex structure.
Show that N vanishes identically everywhere on M .

In general, an almost complex manifold has no J-holomorphic functions
at all. On the other hand, it has plenty of J-holomorphic curves: maps
f : C→M such that df ◦ i = J ◦df . J-holomorphic curves, also known as
pseudo-holomorphic curves, provide a main tool in symplectic topol-
ogy, as first realized by Gromov [40].
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Part VI

Kähler Manifolds
Kähler geometry lies at the intersection of complex, riemannian and symplec-
tic geometries, and plays a central role in all of these fields. We will start
by reviewing complex manifolds. After describing the local normal form for
Kähler manifolds (Lecture 16), we conclude with a summary of Hodge theory
for compact Kähler manifolds (Lecture 17).

15 Complex Manifolds

15.1 Complex Charts

Definition 15.1 A complex manifold of (complex) dimension n is a set M
with a complete complex atlas

A = {(Uα,Vα, ϕα) , α ∈ index set I}

where M = ∪αUα, the Vα’s are open subsets of Cn, and the maps ϕα : Uα →
Vα are such that the transition maps ψαβ are biholomorphic as maps on open
subsets of Cn:

Uα ∩ Uβ

	�
�

�
�

�
ϕα
'

@
@

@
@

@

ϕβ
'

R
Vαβ

ψαβ = ϕβ ◦ ϕ−1
α - Vβα

where Vαβ = ϕα(Uα ∩ Uβ) ⊆ Cn and Vβα = ϕβ(Uα ∩ Uβ) ⊆ Cn. ψαβ being
biholomorphic means that ψαβ is a bijection and that ψαβ and ψ−1

αβ are both
holomorphic.

Proposition 15.2 Any complex manifold has a canonical almost complex struc-
ture.

Proof.

1) Local definition of J :

Let (U ,V, ϕ : U → V) be a complex chart for a complex manifold M with
ϕ = (z1, . . . , zn) written in components relative to complex coordinates
zj = xj + iyj . At p ∈ U

TpM = R-span of

{
∂

∂xj

∣∣∣∣
p

,
∂

∂yj

∣∣∣∣
p

: j = 1, . . . , n

}
.
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Define J over U by

Jp

(
∂

∂xj

∣∣∣∣
p

)
=

∂

∂yj

∣∣∣∣
p

j = 1, . . . , n .

Jp

(
∂

∂yj

∣∣∣∣
p

)
= − ∂

∂xj

∣∣∣∣
p

2) This J is well-defined globally:

If (U ,V, ϕ) and (U ′,V ′, ϕ′) are two charts, we need to show that J = J ′

on their overlap.

On U ∩ U ′, ψ ◦ ϕ = ϕ′. If zj = xj + iyj and wj = uj + ivj are coordinates
on U and U ′, respectively, so that ϕ and ϕ′ can be written in components
ϕ = (z1, . . . , zn), ϕ′ = (w1, . . . , wn), then ψ(z1, . . . , zn) = (w1, . . . , wn).
Taking the derivative of a composition

∂

∂xk
=

∑
j

(
∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj

)
∂

∂yk
=

∑
j

(
∂uj
∂yk

∂

∂uj
+
∂vj
∂yk

∂

∂vj

)
Since ψ is biholomorphic, each component of ψ satisfies the Cauchy-
Riemann equations:

∂uj
∂xk

=
∂vj
∂yk

j, k = 1, . . . , n .
∂uj
∂yk

= − ∂vj
∂xk

These equations imply

J ′
∑
j

(
∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj

)
︸ ︷︷ ︸ =

∑
j

(
∂uj
∂yk

∂

∂uj
+
∂vj
∂yk

∂

∂vj

)

∑
j


∂uj
∂xk︸︷︷︸
∂vj
∂yk

∂

∂vj
− ∂vj
∂xj︸︷︷︸
−

∂uj
∂yk

∂

∂uj


which matches the equation

J
∂

∂xk
=

∂

∂yk
.

�
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15.2 Forms on Complex Manifolds

Suppose that M is a complex manifold and J is its canonical almost complex
structure. What does the splitting Ωk(M ; C) = ⊕`+m=kΩ`,m look like? ([19,
38, 52, 86] are good references for this material.)

Let U ⊆M be a coordinate neighborhood with complex coordinates z1, . . . , zn,
zj = xj + iyj , and real coordinates x1, y1, . . . , xn, yn. At p ∈ U ,

TpM = R-span
{

∂
∂xj

∣∣∣
p
, ∂
∂yj

∣∣∣
p

}
TpM ⊗ C = C-span

{
∂
∂xj

∣∣∣
p
, ∂
∂yj

∣∣∣
p

}

= C-span

{
1
2

(
∂

∂xj

∣∣∣∣
p

− i ∂

∂yj

∣∣∣∣
p

)}
︸ ︷︷ ︸ ⊕ C-span

{
1
2

(
∂

∂xj

∣∣∣∣
p

+ i
∂

∂yj

∣∣∣∣
p

)}
︸ ︷︷ ︸

T1,0 = (+i)-eigenspace of J T0,1 = (−i)-eigenspace of J
J
(

∂
∂xj
− i ∂

∂yj

)
= i
(

∂
∂xj
− i ∂

∂yj

)
J
(

∂
∂xj

+ i ∂
∂yj

)
= −i

(
∂
∂xj

+ i ∂
∂yj

)
This can be written more concisely using:

Definition 15.3

∂

∂zj
:=

1
2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂z̄j
:=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
.

Hence,

(T1,0)p = C-span

{
∂

∂zj

∣∣∣∣
p

: j = 1, . . . , n

}
, (T0,1)p = C-span

{
∂

∂z̄j

∣∣∣∣
p

: j = 1, . . . , n

}
.

Similarly,

T ∗M ⊗ C = C-span{dxj , dyj : j = 1, . . . , n}

= C-span{dxj + idyj : j = 1, . . . , n}︸ ︷︷ ︸ ⊕ C-span{dxj − idyj : j = 1, . . . , n}︸ ︷︷ ︸
T 1,0 T 0,1

(dxj + idyj) ◦ J = i(dxj + idyj) (dxj − idyj) ◦ J = −i(dxj − idyj)

Putting
dzj = dxj + idyj and dz̄j = dxj − idyj ,

we obtain

T 1,0 = C-span{dzj : j = 1, . . . , n} , T 0,1 = C-span{dz̄j : j = 1, . . . , n} .
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On the coordinate neighborhood U ,

(1, 0)-forms =
{∑

j bjdzj | bj ∈ C∞(U ; C)
}

(0, 1)-forms =
{∑

j bjdz̄j | bj ∈ C∞(U ; C)
}

(2, 0)-forms =
{∑

j1<j2
bj1,j2dzj1 ∧ dzj2 | bj1,j2 ∈ C∞(U ; C)

}
(1, 1)-forms =

{∑
j1,j2

bj1,j2dzj1 ∧ dz̄j2 | bj1,j2 ∈ C∞(U ; C)
}

(0, 2)-forms =
{∑

j1<j2
bj1,j2dz̄j1 ∧ dz̄j2 | bj1,j2 ∈ C∞(U ; C)

}

If we use multi-index notation:

J = (j1, . . . , jm) 1 ≤ j1 < . . . < jm ≤ n
|J | = m
dz

L
= dzj1 ∧ dzj2 ∧ . . . ∧ dzjm

then

Ω`,m = (`,m)-forms =

 ∑
|J|=`,|K|=m

b
J,K
dz

J
∧ dz̄

K
| b

J,K
∈ C∞(U ; C)

 .

15.3 Differentials

On a coordinate neighborhood U , a form β ∈ Ωk(M ; C) may be written as

β =
∑

|J|+|K|=k

a
J,K
dx

J
∧ dy

K
, with a

J,K
∈ C∞(U ; C) .

We would like to know whether the following equality holds:

dβ =
∑

(∂a
J,K

+ ∂̄a
J,K

)dx
J
∧ dy

K

?= (∂ + ∂̄)
∑

a
J,K
dx

J
∧ dy

K
.

If we use the identities

{
dxj + idyj = dzj
dxj − idyj = dz̄j

⇐⇒
{
dxj = 1

2 (dzj + dz̄j)
dyj = 1

2i (dzj − dz̄j)
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after substituting and reshuffling, we obtain

β =
∑

|J|+|K|=k

b
J,K
dz

J
∧ dz̄

K

=
∑

`+m=k

 ∑
|J|=`,|K|=m

b
J,K
dz

J
∧ dz̄

K


︸ ︷︷ ︸

∈Ω`,m

dβ =
∑

`+m=k

 ∑
|J|=`,|K|=m

db
J,K
∧ dz

J
∧ dz̄

K


=

∑
`+m=k

∑
|J|=`,|K|=m

(
∂b

J,K
+ ∂̄b

J,K

)
∧ dz

J
∧ dz̄

K

(because d = ∂ + ∂̄ on functions)

=
∑

`+m=k


∑

|J|=`,|K|=m

∂b
J,K
∧ dz

J
∧ dz̄

K︸ ︷︷ ︸
∈Ω`+1,m

+
∑

|J|=`,|K|=m

∂̄b
J,K
∧ dz

J
∧ dz̄

K︸ ︷︷ ︸
∈Ω`,m+1


= ∂β + ∂̄β .

Therefore, d = ∂ + ∂̄ on forms of any degree for a complex manifold.

Conclusion. If M is a complex manifold, then d = ∂ + ∂̄. (For an almost
complex manifold this fails because there are no coordinate functions zj to give
a suitable basis of 1-forms.)

Remark. If b ∈ C∞(U ; C), in terms of z and z̄, we obtain the following formu-
las:

db =
∑
j

(
∂b

∂xj
dxj +

∂b

∂yj
dyj

)
=

∑
j

[
1
2

(
∂b

∂xj
− i ∂b

∂yj

)
(dxj + idyj) +

1
2

(
∂b

∂xj
+ i

∂b

∂yj

)
(dxj − idyj)

]
=

∑
j

(
∂b

∂zj
dzj +

∂b

∂z̄j
dz̄j

)

=⇒

{
∂b = π1,0db =

∑
j
∂b
∂zj

dzj

∂̄b = π0,1db =
∑
j
∂b
∂z̄j

dz̄j
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♦

In the case where β ∈ Ω`,m, we have

dβ = ∂β + ∂̄β = (`+ 1,m)-form + (`,m+ 1)-form
0 = d2β = (`+ 2,m)-form + (`+ 1,m+ 1)-form + (`,m+ 2)-form

= ∂2β︸︷︷︸
0

+(∂∂̄ + ∂̄∂)β︸ ︷︷ ︸
0

+ ∂̄2β︸︷︷︸
0

Hence, ∂̄2 = 0.
The Dolbeault theorem states that for complex manifolds

H`,m
Dolbeault(M) = Hm(M ;O(Ω(`,0))) ,

where O(Ω(`,0)) is the sheaf of forms of type (`, 0) over M .

Theorem 15.4 (Newlander-Nirenberg, 1957 [70])
Let (M,J) be an almost complex manifold. Let N be the Nijenhuis tensor

(defined in Homework 10). Then:

M is a complex manifold ⇐⇒ J is integrable
⇐⇒ N ≡ 0
⇐⇒ d = ∂ + ∂̄
⇐⇒ ∂̄2 = 0
⇐⇒ π2,0d|Ω0,1 = 0

For the proof of this theorem, besides the original reference, see also [19, 24,
38, 52, 86]. Naturally most almost complex manifolds have d 6= ∂ + ∂̄.



Homework 11: Complex Projective Space

The complex projective space CPn is the space of complex lines in Cn+1:
CPn is obtained from Cn+1 \{0} by making the identifications (z0, . . . , zn) ∼

(λz0, . . . , λzn) for all λ ∈ C \ {0}. One denotes by [z0, . . . , zn] the equivalence
class of (z0, . . . , zn), and calls z0, . . . , zn the homogeneous coordinates of the
point p = [z0, . . . , zn]. (The homogeneous coordinates are, of course, only de-
termined up to multiplication by a non-zero complex number λ.)

Let Ui be the subset of CPn consisting of all points p = [z0, . . . , zn] for which
zi 6= 0. Let ϕi : Ui → Cn be the map

ϕi([z0, . . . , zn]) =
(
z0
zi
, . . . , zi−1

zi
, zi+1
zi
, . . . , zn

zi

)
.

1. Show that the collection

{(Ui,Cn, ϕi), i = 0, . . . , n}

is an atlas in the complex sense, i.e., the transition maps are biholomorphic.
Conclude that CPn is a complex manifold.

Hint: Work out the transition maps associated with (U0,Cn, ϕ0) and
(U1,Cn, ϕ1). Show that the transition diagram has the form

U0 ∩ U1

	�
�

�
�

ϕ0
@

@
@

@

ϕ1

R
V0,1

ϕ0,1 - V1,0

where V0,1 = V1,0 = {(z1, . . . , zn) ∈ Cn | z1 6= 0} and

ϕ0,1(z1, . . . , zn) = ( 1
z1
, z2

z1
, . . . , zn

z1
) .

2. Show that the 1-dimensional complex manifold CP1 is diffeomorphic, as a
real 2-dimensional manifold, to S2.

Hint: Stereographic projection.
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16 Kähler Forms

16.1 Kähler Forms

Definition 16.1 A Kähler manifold is a symplectic manifold (M,ω) equipped
with an integrable compatible almost complex structure. The symplectic form ω
is then called a Kähler form.

It follows immediately from the previous definition that

(M,ω) is Kähler =⇒ M is a complex manifold

=⇒
{

Ωk(M ; C) = ⊕`+m=kΩ`,m

d = ∂ + ∂̄

where
∂ = π`+1,m ◦ d : Ω`,m → Ω`+1,m

∂̄ = π`,m+1 ◦ d : Ω`,m → Ω`,m+1 .

On a complex chart (U , z1, . . . , zn), n = dimC M ,

Ω`,m =

 ∑
|J|=`,|K|=m

b
JK
dz

J
∧ dz̄

K
| b

JK
∈ C∞(U ; C)

 ,

where

J = (j1, . . . , j`) , j1 < . . . < j` , dz
J

= dzj1 ∧ . . . ∧ dzj` ,
K = (k1, . . . , km) , k1 < . . . < km , dz̄

K
= dz̄k1 ∧ . . . ∧ dz̄km .

On the other hand,

(M,ω) is Kähler =⇒ ω is a symplectic form .

– Where does ω fit with respect to the above decomposition?
A Kähler form ω is

1. a 2-form,

2. compatible with the complex structure,

3. closed,

4. real-valued, and

5. nondegenerate.

These properties translate into:
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1. Ω2(M ; C) = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2.

On a local complex chart (U , z1, . . . , zn),

ω =
∑

ajk dzj ∧ dzk +
∑

bjk dzj ∧ dz̄k +
∑

cjk dz̄j ∧ dz̄k

for some ajk, bjk, cjk ∈ C∞(U ; C).

2. J is a symplectomorphism, that is, J∗ω = ω where (J∗ω)(u, v) := ω(Ju, Jv).

J∗dzj = dzj ◦ J = idzj
J∗dz̄j = dz̄j ◦ J = −idz̄j

J∗ω =
∑ −1

‖
(i · i) ajk dzj ∧ dzk+

1
‖

i(−i)
∑
bjk dzj ∧ dz̄k+

−1
‖

(−i)2
∑
cjkd z̄j ∧ dz̄k

J∗ω = ω ⇐⇒ ajk = 0 = cjk , all j, k ⇐⇒ ω ∈ Ω1,1 .

3. 0 = dω = ∂ω︸︷︷︸
(2,1)−form

+ ∂̄ω︸︷︷︸
(1,2)−form

=⇒
{
∂ω = 0 ω is ∂-closed
∂̄ω = 0 ω is ∂̄-closed

Hence, ω defines a Dolbeault (1, 1) cohomology class,

[ω] ∈ H1,1
Dolbeault(M) .

Putting bjk = i
2hjk,

ω =
i

2

n∑
j,k=1

hjk dzj ∧ dz̄k , hjk ∈ C∞(U ; C).

4. ω real-valued ⇐⇒ ω = ω.

ω = − i
2

∑
hjk dz̄j ∧ dzk =

i

2

∑
hjk dzk ∧ dz̄j =

i

2

∑
hkj dzj ∧ dz̄k

ω real ⇐⇒ hjk = hkj ,

i.e., at every point p ∈ U , the n× n matrix (hjk(p)) is hermitian.

5. nondegeneracy: ωn = ω ∧ . . . ∧ ω︸ ︷︷ ︸
n

6= 0.

Exercise. Check that

ωn = n!
(
i

2

)n
det(hjk) dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n .

♦

Now
ω nondegenerate ⇐⇒ detC(hjk) 6= 0 ,

i.e., at every p ∈M , (hjk(p)) is a nonsingular matrix.
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2. Again the positivity condition: ω(v, Jv) > 0, ∀v 6= 0.

Exercise. Show that (hjk(p)) is positive-definite. ♦

ω positive ⇐⇒ (hjk)� 0 ,

i.e., at each p ∈ U , (hjk(p)) is positive-definite.

Conclusion. Kähler forms are ∂- and ∂̄-closed (1, 1)-forms, which are given on
a local chart (U , z1, . . . , zn) by

ω =
i

2

n∑
j,k=1

hjk dzj ∧ dz̄k

where, at every point p ∈ U , (hjk(p)) is a positive-definite hermitian matrix.

16.2 An Application

Theorem 16.2 (Banyaga) Let M be a compact complex manifold. Let ω0

and ω1 be Kähler forms on M . If [ω0] = [ω1] ∈ H2
deRham(M), then (M,ω0) and

(M,ω1) are symplectomorphic.

Proof. Any combination ωt = (1 − t)ω0 + tω1 is symplectic for 0 ≤ t ≤ 1,
because, on a complex chart (U , z1, . . . , zn), where n = dimC M , we have

ω0 = i
2

∑
h0
jkdzj ∧ dz̄k

ω1 = i
2

∑
h1
jkdzj ∧ dz̄k

ωt = i
2

∑
htjkdzj ∧ dz̄k , where htjk = (1− t)h0

jk + th1
jk .

(h0
jk)� 0 , (h1

jk)� 0 =⇒ (htjk)� 0 .

Apply the Moser theorem (Theorem 7.2). �

16.3 Recipe to Obtain Kähler Forms

Definition 16.3 Let M be a complex manifold. A function ρ ∈ C∞(M ; R) is
strictly plurisubharmonic (s.p.s.h.) if, on each local complex chart (U , z1, . . . , zn),
where n = dimC M , the matrix

(
∂2ρ

∂zj∂z̄k
(p)
)

is positive-definite at all p ∈ U .

Proposition 16.4 Let M be a complex manifold and let ρ ∈ C∞(M ; R) be
s.p.s.h.. Then

ω =
i

2
∂∂̄ρ is Kähler .
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A function ρ as in the previous proposition is called a (global) Kähler
potential.

Proof. Simply observe that:
∂ω = i

2

0︷︸︸︷
∂2 ∂̄ρ = 0

∂̄ω = i
2 ∂̄∂︸︷︷︸
−∂∂̄

∂̄ρ = − i
2∂ ∂̄2︸︷︷︸

0

ρ = 0

dω = ∂ω + ∂̄ω = 0 =⇒ ω is closed .

ω = − i
2 ∂̄∂ρ = i

2∂∂̄ρ = ω =⇒ ω is real .

ω ∈ Ω1,1 =⇒ J∗ω = ω =⇒ ω(·, J ·) is symmetric .

Exercise. Show that, for f ∈ C∞(U ; C),

∂f =
∑ ∂f

∂zj
dzj and ∂̄f =

∑ ∂f

∂z̄j
dz̄j .

Since the right-hand sides are in Ω1,0 and Ω0,1, respectively, it suffices to show
that the sum of the two expressions is df . ♦

ω =
i

2
∂∂̄ρ =

i

2

∑ ∂

∂zj

(
∂ρ

∂z̄k

)
dzj ∧ dz̄k =

i

2

∑(
∂2ρ

∂zj∂z̄k

)
︸ ︷︷ ︸

hjk

dzj ∧ dz̄k .

ρ is s.p.s.h =⇒ (hjk)� 0 =⇒ ω(·, J ·) is positive .

In particular, ω is nondegenerate. �

Example. Let M = Cn ' R2n, with complex coordinates (z1, . . . , zn) and
corresponding real coordinates (x1, y1, . . . , xn, yn) via zj = xj + iyj . Let

ρ(x1, y1, . . . , xn, yn) =
n∑
j=1

(x2
j + y2

j ) =
∑
|zj |2 =

∑
zj z̄j .

Then
∂

∂zj

∂ρ

∂z̄j
=

∂

∂zj
zk = δjk ,

so

(hjk) =
(

∂2ρ

∂zj∂z̄k

)
= (δjk) = Id� 0 =⇒ ρ is s.p.s.h. .
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The corresponding Kähler form

ω = i
2∂∂̄ρ = i

2

∑
j,k

δjk dzj ∧ dz̄k

= i
2

∑
j

dzj ∧ dz̄j =
∑
j

dxj ∧ dyj is the standard form .

♦

16.4 Local Canonical Form for Kähler Forms

There is a local converse to the previous construction of Kähler forms.

Theorem 16.5 Let ω be a closed real-valued (1, 1)-form on a complex manifold
M and let p ∈ M . Then there exist a neighborhood U of p and ρ ∈ C∞(U ; R)
such that, on U ,

ω =
i

2
∂∂̄ρ .

The function ρ is then called a (local) Kähler potential.

The proof requires holomorphic versions of Poincaré’s lemma, namely, the
local triviality of Dolbeault groups:

∀p ∈M ∃ neighborhood U of p such that H`,m
Dolbeault(U) = 0 , m > 0 ,

and the local triviality of the holomorphic de Rham groups; see [38].

Theorem 16.6 Let M be a complex manifold, ρ ∈ C∞(M ; R) s.p.s.h., X a
complex submanifold, and i : X ↪→M the inclusion map. Then i∗ρ is s.p.s.h..

Proof. Let dimC M = n and dimC X = n − m. For p ∈ X, choose a chart
(U , z1, . . . , zn) for M centered at p and adapted to X, i.e., X ∩ U is given by
z1 = . . . = zm = 0. In this chart, i∗ρ = ρ(0, 0, . . . , 0, zm+1, . . . , zn).

i∗p is s.p.s.h. ⇐⇒
(

∂2ρ

∂zm+j∂z̄m+k
(0, . . . , 0, zm+1, . . . , zn)

)
is positive-definite ,

which holds since this is a minor of
(

∂2

∂zj∂z̄k
(0, . . . , 0, zm+1, . . . , zn)

)
. �

Corollary 16.7 Any complex submanifold of a Kähler manifold is also Kähler.

Definition 16.8 Let (M,ω) be a Kähler manifold, X a complex submanifold,
and i : X ↪→M the inclusion. Then (X, i∗ω) is called a Kähler submanifold.
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Example. Complex vector space (Cn, ω) where ω = i
2

∑
dzj ∧ dz̄j is Kähler.

Every complex submanifold of Cn is Kähler. ♦

Example. The complex projective space is

CPn = Cn+1\{0}/ ∼

where
(z0, . . . , zn) ∼ (λz0, . . . , λzn) , λ ∈ C\{0} .

The Fubini-Study form (see Homework 12) is Kähler. Therefore, every non-
singular projective variety is a Kähler submanifold. Here we mean

non-singular = smooth
projective variety = zero locus of a collection

of homogeneous polynomials .

♦



Homework 12: The Fubini-Study Structure

The purpose of the following exercises is to describe the natural Kähler structure
on complex projective space, CPn.

1. Show that the function on Cn

z 7−→ log(|z|2 + 1)

is strictly plurisubharmonic. Conclude that the 2-form

ωFS = i
2∂∂̄ log(|z|2 + 1)

is a Kähler form. (It is usually called the Fubini-Study form on Cn.)

Hint: A hermitian n×n matrix H is positive definite if and only if v∗Hv > 0
for any v ∈ Cn \ {0}, where v∗ is the transpose of the vector v̄. To prove
positive-definiteness, either apply the Cauchy-Schwarz inequality, or use the
following symmetry observation: U(n) acts transitively on S2n−1 and ωFS is
U(n)-invariant, thus it suffices to show positive-definiteness along one direction.

2. Let U be the open subset of Cn defined by the inequality z1 6= 0, and let
ϕ : U → U be the map

ϕ(z1, . . . , zn) = 1
z1

(1, z2, . . . , zn) .

Show that ϕ maps U biholomorphically onto U and that

ϕ∗ log(|z|2 + 1) = log(|z|2 + 1) + log 1
|z1|2 . (?)

3. Notice that, for every point p ∈ U , we can write the second term in (?) as
the sum of a holomorphic and an anti-holomorphic function:

− log z1 − log z1

on a neighborhood of p. Conclude that

∂∂̄ϕ∗ log(|z|2 + 1) = ∂∂̄ log(|z|2 + 1)

and hence that ϕ∗ωFS = ωFS .

Hint: You need to use the fact that the pullback by a holomorphic map ϕ∗

commutes with the ∂ and ∂̄ operators. This is a consequence of ϕ∗ preserving
form type, ϕ∗(Ωp,q) ⊆ Ωp,q , which in turn is implied by ϕ∗dzj = ∂ϕj ⊆ Ω1,0

and ϕ∗dzj = ∂̄ϕj ⊆ Ω0,1, where ϕj is the jth component of ϕ with respect to
local complex coordinates (z1, . . . , zn).

4. Recall that CPn is obtained from Cn+1 \ {0} by making the identifica-
tions (z0, . . . , zn) ∼ (λz0, . . . , λzn) for all λ ∈ C \ {0}; [z0, . . . , zn] is the
equivalence class of (z0, . . . , zn).
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For i = 0, 1, . . . , n, let

Ui = {[z0, . . . , zn] ∈ CPn |zi 6= 0}
ϕi : Ui → Cn ϕi([z0, . . . , zn]) =

(
z0
zi
, . . . , zi−1

zi
, zi+1
zi
, . . . , zn

zi

)
.

Homework 11 showed that the collection {(Ui,Cn, ϕi), i = 0, . . . , n} is a
complex atlas (i.e., the transition maps are biholomorphic). In particular,
it was shown that the transition diagram associated with (U0,Cn, ϕ0) and
(U1,Cn, ϕ1) has the form

U0 ∩ U1

	�
�

�
�

�
ϕ0

@
@

@
@

@

ϕ1

R
V0,1

ϕ0,1 - V1,0

where V0,1 = V1,0 = {(z1, . . . , zn) ∈ Cn | z1 6= 0} and ϕ0,1(z1, . . . , zn) =
( 1
z1
, z2z1 , . . . ,

zn

z1
). Now the set U in exercise 2 is equal to the sets V0,1 and

V1,0, and the map ϕ coincides with ϕ0,1.

Show that ϕ∗0ωFS and ϕ∗1ωFS are identical on the overlap U0 ∩ U1.

More generally, show that the Kähler forms ϕ∗iωFS “glue together” to
define a Kähler structure on CPn. This is called the Fubini-Study form
on complex projective space.

5. Prove that for CP1 the Fubini-Study form on the chart U0 = {[z0, z1] ∈
CP1 |z0 6= 0} is given by the formula

ωFS =
dx ∧ dy

(x2 + y2 + 1)2

where z1
z0

= z = x+ iy is the usual coordinate on C.

6. Compute the total area of CP1 = C ∪ {∞} with respect to ωFS :∫
CP1

ωFS =
∫

R2

dx ∧ dy
(x2 + y2 + 1)2

.

7. Recall that CP1 ' S2 as real 2-dimensional manifolds (Homework 11).
On S2 there is the standard area form ωstd induced by regarding it as the
unit sphere in R3 (Homework 6): in cylindrical polar coordinates (θ, h) on
S2 away from its poles (0 ≤ θ < 2π and −1 ≤ h ≤ 1), we have

ωstd = dθ ∧ dh .

Using stereographic projection, show that

ωFS =
1
4
ωstd .



17 Compact Kähler Manifolds

17.1 Hodge Theory

LetM be a complex manifold. A Kähler form ω onM is a symplectic form which
is compatible with the complex structure. Equivalently, a Kähler form ω is a ∂-
and ∂̄-closed form of type (1, 1) which, on a local chart (U , z1, . . . , zn) is given by
ω = i

2

∑n
j,k=1 hjkdzj ∧ dz̄k, where, at each x ∈ U , (hjk(x)) is a positive-definite

hermitian matrix. The pair (M,ω) is then called a Kähler manifold.

Theorem 17.1 (Hodge) On a compact Kähler manifold (M,ω) the Dolbeault
cohomology groups satisfy

Hk
deRham(M ; C) '

⊕
`+m=k

H`,m
Dolbeault(M) (Hodge decomposition)

with H`,m ' Hm,`. In particular, the spaces H`,m
Dolbeault are finite-dimensional.

Hodge identified the spaces of cohomology classes of forms with spaces of
actual forms, by picking the representative from each class which solves a certain
differential equation, namely the harmonic representative.

(1) The Hodge ∗-operator.

Each tangent space V = TxM has a positive inner product 〈·, ·〉, part of
the riemannian metric in a compatible triple; we forget about the complex
and symplectic structures until part (4).

Let e1, . . . , en be a positively oriented orthonormal basis of V .

The star operator is a linear operator ∗ : Λ(V )→ Λ(V ) defined by

∗(1) = e1 ∧ . . . ∧ en
∗(e1 ∧ . . . ∧ en) = 1
∗(e1 ∧ . . . ∧ e`) = e`+1 ∧ . . . ∧ en .

We see that ∗ : Λ`(V )→ Λn−`(V ) and satisfies ∗∗ = (−1)`(n−`).

(2) The codifferential and the laplacian are the operators defined by:

δ = (−1)n(`+1)+1 ∗ d∗ : Ω`(M)→ Ω`−1(M)
∆ = dδ + δd : Ω`(M)→ Ω`(M) .

∆ is also called the Laplace-Beltrami operator.

Exercise. Check that, on Ω0(Rn) = C∞(Rn), ∆ = −
∑n
i=1

∂2

∂x2
i
. ♦

Exercise. Check that ∆∗ = ∗∆. ♦

Suppose that M is compact. Define an inner product on forms by

〈·, ·〉 : Ω` × Ω` → R , 〈α, β〉 =
∫
M

α ∧ ∗β .
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Exercise. Check that this is symmetric, positive-definite and satisfies
〈dα, β〉 = 〈α, δβ〉. ♦

Therefore, δ is often denoted by d∗ and called the adjoint of d. (When
M is not compact, we still have a formal adjoint of d with respect to the
nondegenerate bilinear pairing 〈·, ·〉 : Ω` × Ω`c → R defined by a similar
formula, where Ω`c is the space of compactly supported `-forms.) Also, ∆
is self-adjoint:

Exercise. Check that 〈∆α, β〉 = 〈α,∆β〉, and that 〈∆α, α〉 = |dα|2 +
|δα|2 ≥ 0, where | · | is the norm with respect to this inner product. ♦

(3) The harmonic `-forms are the elements of H` := {α ∈ Ω` | ∆α = 0}.

Note that ∆α = 0 ⇐⇒ dα = δα = 0. Since a harmonic form is d-closed,
it defines a de Rham cohomology class.

Theorem 17.2 (Hodge) Every de Rham cohomology class on a com-
pact oriented riemannian manifold M possesses a unique harmonic repre-
sentative, i.e.,

H` ' H`
deRham(M ; R) .

In particular, the spaces H` are finite-dimensional. We also have the
following orthogonal decomposition with respect to 〈·, ·〉:

Ω` ' H` ⊕∆(Ω`(M))
' H` ⊕ dΩ`−1 ⊕ δΩ`+1 (Hodge decomposition on forms) .

The proof involves functional analysis, elliptic differential operators, pseu-
dodifferential operators and Fourier analysis; see [38, 86].

So far, this was ordinary Hodge theory, considering only the metric and
not the complex structure.

(4) Complex Hodge Theory.

When M is Kähler, the laplacian satisfies ∆ = 2(∂̄∂̄∗ + ∂̄∗∂̄) (see, for
example, [38]) and preserves the decomposition according to type, ∆ :
Ω`,m → Ω`,m. Hence, harmonic forms are also bigraded

Hk =
⊕

`+m=k

H`,m .

Theorem 17.3 (Hodge) Every Dolbeault cohomology class on a com-
pact Kähler manifold (M,ω) possesses a unique harmonic representative,
i.e.,

H`,m ' H`,m
Dolbeault(M)
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and the spaces H`,m are finite-dimensional. Hence, we have the following
isomorphism:

H`
deRham(M) ' H` '

⊕
`+m=k

H`,m '
⊕

`+m=k

H`,m
Dolbeault(M) .

For the proof, see for instance [38, 86].

17.2 Immediate Topological Consequences

Let bk(M) := dimHk
deRham(M) be the usual Betti numbers of M , and let

h`,m(M) := dimH`,m
Dolbeault(M) be the so-called Hodge numbers of M .

Hodge Theorem =⇒
{

bk =
∑
`+m=k h

`,m

h`,m = hm,`

Some immediate topological consequences are:

1. On compact Kähler manifolds “the odd Betti numbers are even:”

b2k+1 =
∑

`+m=2k+1

h`,m = 2
k∑
`=0

h`,(2k+1−`) is even .

2. On compact Kähler manifolds, h1,0 = 1
2b

1 is a topological invariant.

3. On compact symplectic manifolds, “even Betti numbers are positive,” be-
cause ωk is closed but not exact (k = 0, 1, . . . , n).

Proof. If ωk = dα, by Stokes’ theorem,
∫
M

ωn =
∫
M

d(α ∧ ωn−k) = 0 .

This cannot happen since ωn is a volume form. �

4. On compact Kähler manifolds, the h`,` are positive.

Claim. 0 6= [ω`] ∈ H`,`
Dolbeault(M).

Proof.
ω ∈ Ω1,1 =⇒ ω` ∈ Ω`,`

dω = 0 =⇒ 0 = dω` = ∂ω`︸︷︷︸
(`+1,`)

+ ∂̄ω`︸︷︷︸
(`,`+1)

=⇒ ∂̄ω` = 0 ,

so [ω`] defines an element of H`,`
Dolbeault. Why is ω` not ∂̄-exact?

If ω` = ∂̄β for some β ∈ Ω`−1,`, then

ωn = ω` ∧ ωn−` = ∂̄(β ∧ ωn−`) =⇒ 0 = [ωn] ∈ Hn,n
Dolbeault(M) .

But [ωn] 6= 0 in H2n
deRham(M ; C) ' Hn,n

Dolbeault(M) since it is a volume form.

�
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There are other constraints on the Hodge numbers of compact Kähler man-
ifolds, and ongoing research on how to compute H`,m

Dolbeault. A popular picture
to describe the relations is the Hodge diamond:

hn,n

hn,n−1 hn−1,n

hn,n−2 hn−1,n−1 hn−2,n

...

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Complex conjugation gives symmetry with respect to the middle vertical, whereas
the Hodge ∗ induces symmetry about the center of the diamond. The middle
vertical axis is all non-zero. There are further symmetries induced by isomor-
phisms given by wedging with ω.

The Hodge conjecture relates H`,`
Dolbeault(M) ∩ H2`(M ; Z) for projective

manifolds M (i.e., submanifolds of complex projective space) to codimC = `
complex submanifolds of M .

17.3 Compact Examples and Counterexamples

symplectic ⇐= Kähler
⇓ ⇓

almost complex ⇐= complex

symplectic

smooth even-dimensional orientable

Kähler

almost complex

complex

Is each of these regions nonempty? Can we even find representatives of each
region which are simply connected or have any specified fundamental group?
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• Not all smooth even-dimensional manifolds are almost complex. For ex-
ample, S4, S8, S10, etc., are not almost complex.

• If M is both symplectic and complex, is it necessarily Kähler?

No. For some time, it had been suspected that every compact symplectic
manifold might have an underlying Kähler structure, or, at least, that a
compact symplectic manifold might have to satisfy the Hodge relations on
its Betti numbers. The following example first demonstrated otherwise.

The Kodaira-Thurston example (Thurston, 1976 [79]):

Take R4 with dx1 ∧ dy1 + dx2 ∧ dy2, and Γ the discrete group generated
by the following symplectomorphisms:

γ1 := (x1, x2, y1, y2) 7−→ (x1, x2 + 1, y1, y2)
γ2 := (x1, x2, y1, y2) 7−→ (x1, x2, y1, y2 + 1)
γ3 := (x1, x2, y1, y2) 7−→ (x1 + 1, x2, y1, y2)
γ4 := (x1, x2, y1, y2) 7−→ (x1, x2 + y2, y1 + 1, y2)

Then M = R4/Γ is a flat 2-torus bundle over a 2-torus. Kodaira [56]
had shown that M has a complex structure. However, π1(M) = Γ, hence
H1(R4/Γ; Z) = Γ/[Γ,Γ] has rank 3, b1 = 3 is odd, so M is not Kähler [79].

• Does any symplectic manifold admit some complex structure (not neces-
sarily compatible)?

No.

(Fernández-Gotay-Gray, 1988 [30]): There are symplectic manifolds
which do not admit any complex structure [30]. Their examples are circle
bundles over circle bundles over a 2-torus

S1 ↪→ M
↓

S1 ↪→ P
↓

T2

tower of circle fibrations

• Given a complex structure on M , is there always a symplectic structure
(not necessarily compatible)?

No.

The Hopf surface S1 × S3 is not symplectic because H2(S1 × S3) = 0.
But it is complex since S1×S3 ' C2\{0}/Γ where Γ = {2nId | n ∈ Z} is a
group of complex transformations, i.e., we factor C2\{0} by the equivalence
relation (z1, z2) ∼ (2z1, 2z2).
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• Is any almost complex manifold either complex or symplectic?

No.

CP2#CP2#CP2 is almost complex (proved by a computation with charac-
teristic classes), but is neither complex (since it does not fit Kodaira’s clas-
sification of complex surfaces), nor symplectic (as shown by Taubes [76]
in 1995 using Seiberg-Witten invariants).

• In 1993 Gompf [36] provided a construction that yields a compact sym-
plectic 4-manifold with fundamental group equal to any given finitely-
presented group. In particular, we can find simply connected examples.
His construction can be adapted to produce nonKähler examples.

17.4 Main Kähler Manifolds

• Compact Riemann surfaces

As real manifolds, these are the 2-dimensional compact orientable mani-
folds classified by genus. An area form is a symplectic form. Any compat-
ible almost complex structure is always integrable for dimension reasons
(see Homework 10).

• Stein manifolds

Definition 17.4 A Stein manifold is a Kähler manifold (M,ω) which
admits a global proper Kähler potential, i.e., ω = i

2∂∂̄ρ for some proper
function ρ : M → R.

Proper means that the preimage by ρ of a compact set is compact, i.e.,
“ρ(p)→∞ as p→∞.”

Stein manifolds can be also characterized as the properly embedded ana-
lytic submanifolds of Cn.

• Complex tori

Complex tori look like M = Cn/Zn where Zn is a lattice in Cn. The form
ω =

∑
dzj ∧ dz̄j induced by the euclidean structure is Kähler.

• Complex projective spaces

The standard Kähler form on CPn is the Fubini-Study form (see Home-
work 12). (In 1995, Taubes showed that CP2 has a unique symplectic
structure up to symplectomorphism.)

• Products of Kähler manifolds

• Complex submanifolds of Kähler manifolds





Part VII

Hamiltonian Mechanics
The equations of motion in classical mechanics arise as solutions of variational
problems. For a general mechanical system of n particles in R3, the physical path
satisfies Newton’s second law. On the other hand, the physical path minimizes
the mean value of kinetic minus potential energy. This quantity is called the
action. For a system with constraints, the physical path is the path which
minimizes the action among all paths satisfying the constraint.

The Legendre transform (Lecture 20) gives the relation between the varia-
tional (Euler-Lagrange) and the symplectic (Hamilton-Jacobi) formulations of
the equations of motion.

18 Hamiltonian Vector Fields

18.1 Hamiltonian and Symplectic Vector Fields

– What does a symplectic geometer do with a real function?...

Let (M,ω) be a symplectic manifold and let H : M → R be a smooth
function. Its differential dH is a 1-form. By nondegeneracy, there is a unique
vector field X

H
on M such that ıXH

ω = dH. Integrate X
H

. Supposing that
M is compact, or at least that X

H
is complete, let ρt : M → M , t ∈ R, be the

one-parameter family of diffeomorphisms generated by X
H

:
ρ0 = idM

dρt
dt
◦ ρ−1

t = X
H
.

Claim. Each diffeomorphism ρt preserves ω, i.e., ρ∗tω = ω, ∀t.

Proof. We have d
dtρ

∗
tω = ρ∗tLXH

ω = ρ∗t (d ıXH
ω︸ ︷︷ ︸

dH

+ıX
H
dω︸︷︷︸
0

) = 0. �

Therefore, every function on (M,ω) gives a family of symplectomorphisms.
Notice how the proof involved both the nondegeneracy and the closedness of ω.

Definition 18.1 A vector field X
H

as above is called the hamiltonian vector
field with hamiltonian function H.

Example. The height functionH(θ, h) = h on the sphere (M,ω) = (S2, dθ∧dh)
has

ıXH
(dθ ∧ dh) = dh ⇐⇒ X

H
=

∂

∂θ
.

103
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Thus, ρt(θ, h) = (θ + t, h), which is rotation about the vertical axis; the height
function H is preserved by this motion. ♦

Exercise. Let X be a vector field on an abstract manifold W . There is a unique
vector field X] on the cotangent bundle T ∗W , whose flow is the lift of the flow of
X; cf. Lecture 2. Let α be the tautological 1-form on T ∗W and let ω = −dα be
the canonical symplectic form on T ∗W . Show that X] is a hamiltonian vector
field with hamiltonian function H := ıXα. ♦

Remark. If X
H

is hamiltonian, then

LXH
H = ıXH

dH = ıXH
ıXH

ω = 0 .

Therefore, hamiltonian vector fields preserve their hamiltonian functions, and
each integral curve {ρt(x) | t ∈ R} of X

H
must be contained in a level set of H:

H(x) = (ρ∗tH)(x) = H(ρt(x)) , ∀t .

♦

Definition 18.2 A vector field X on M preserving ω (i.e., such that LXω = 0)
is called a symplectic vector field.{

X is symplectic ⇐⇒ ıXω is closed .
X is hamiltonian ⇐⇒ ıXω is exact .

Locally, on every contractible open set, every symplectic vector field is hamil-
tonian. If H1

deRham(M) = 0, then globally every symplectic vector field is hamil-
tonian. In general, H1

deRham(M) measures the obstruction for symplectic vector
fields to be hamiltonian.

Example. On the 2-torus (M,ω) = (T2, dθ1 ∧ dθ2), the vector fields X1 = ∂
∂θ1

and X2 = ∂
∂θ2

are symplectic but not hamiltonian. ♦

To summarize, vector fields on a symplectic manifold (M,ω) which preserve
ω are called symplectic. The following are equivalent:

• X is a symplectic vector field;

• the flow ρt of X preserves ω, i.e., ρ∗tω = ω, for all t;

• LXω = 0;

• ıXω is closed.

A hamiltonian vector field is a vector field X for which

• ıXω is exact,

i.e., ıXω = dH for some H ∈ C∞(M). A primitive H of ıXω is then called a
hamiltonian function of X.
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18.2 Classical Mechanics

Consider euclidean space R2n with coordinates (q1, . . . , qn, p1, . . . , pn) and ω0 =∑
dqj ∧ dpj . The curve ρt = (q(t), p(t)) is an integral curve for X

H
exactly if

dqi
dt

(t) =
∂H

∂pi

dpi
dt

(t) = −∂H
∂qi

(Hamilton equations)

Indeed, let X
H

=
n∑
i=1

(
∂H
∂pi

∂
∂qi
− ∂H

∂qi

∂
∂pi

)
. Then,

ıXH
ω =

n∑
j=1

ıXH
(dqj ∧ dpj) =

n∑
j=1

[(ıXH
dqj) ∧ dpj − dqj ∧ (ıXH

dpj)]

=
n∑
j=1

(
∂H
∂pj

dpj + ∂H
∂qj

dqj

)
= dH

Remark. The gradient vector field of H relative to the euclidean metric is

∇H :=
n∑
i=1

(
∂H

∂qi

∂

∂qi
+
∂H

∂pi

∂

∂pi

)
.

If J is the standard (almost) complex structure so that J( ∂
∂qi

) = ∂
∂pi

and
J( ∂

∂pi
) = − ∂

∂qi
, we have JX

H
= ∇H. ♦

The case where n = 3 has a simple physical illustration. Newton’s second
law states that a particle of mass m moving in configuration space R3 with
coordinates q = (q1, q2, q3) under a potential V (q) moves along a curve q(t) such
that

m
d2q

dt2
= −∇V (q) .

Introduce the momenta pi = mdqi

dt for i = 1, 2, 3, and energy functionH(p, q) =
1

2m |p|
2 + V (q). Let R6 = T ∗R3 be the corresponding phase space, with co-

ordinates (q1, q2, q3, p1, p2, p3). Newton’s second law in R3 is equivalent to the
Hamilton equations in R6:

dqi
dt

=
1
m
pi =

∂H

∂pi
dpi
dt

= m
d2qi
dt2

= −∂V
∂qi

= −∂H
∂qi

.

The energy H is conserved by the physical motion.
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18.3 Brackets

Vector fields are differential operators on functions: if X is a vector field and
f ∈ C∞(X), df being the corresponding 1-form, then

X · f := df(X) = L
X
f .

Given two vector fields X, Y , there is a unique vector field W such that

LW f = LX(LY f)− LY (LXf) .

W is called the Lie bracket of vector fields X and Y and denoted W = [X,Y ],
since LW = [LX ,LY ] is the commutator.

Exercise. Check that, for any form α,

ı[X,Y ]α = LX ıY α− ıY LXα = [LX , ıY ]α .

Since each side is an anti-derivation with respect to the wedge product, it suffices
to check this formula on local generators of the exterior algebra of forms, namely
functions and exact 1-forms. ♦

Theorem 18.3 If X and Y are symplectic vector fields on a symplectic mani-
fold (M,ω), then [X,Y ] is hamiltonian with hamiltonian function ω(Y,X).

Proof.
ı[X,Y ]ω = LX ıY ω − ıY LXω

= dıX ıY ω + ıX dıY ω︸ ︷︷ ︸
0

−ıY dıXω︸ ︷︷ ︸
0

−ıX ıY dω︸︷︷︸
0

= d(ω(Y,X)) .

�

A (real) Lie algebra is a (real) vector space g together with a Lie bracket
[·, ·], i.e., a bilinear map [·, ·] : g× g→ g satisfying:

(a) [x, y] = −[y, x] , ∀x, y ∈ g , (antisymmetry)

(b) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 , ∀x, y, z ∈ g . (Jacobi identity)

Let
χ(M) = { vector fields on M }

χsympl(M) = { symplectic vector fields on M }
χham(M) = { hamiltonian vector fields on M } .

Corollary 18.4 The inclusions (χham(M), [·, ·]) ⊆ (χsympl(M), [·, ·]) ⊆ (χ(M), [·, ·])
are inclusions of Lie algebras.

Definition 18.5 The Poisson bracket of two functions f, g ∈ C∞(M ; R) is

{f, g} := ω(Xf , Xg) .
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We have X{f,g} = −[Xf , Xg] because Xω(Xf ,Xg) = [Xg, Xf ].

Theorem 18.6 The bracket {·, ·} satisfies the Jacobi identity, i.e.,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .

Proof. Exercise (this reduces to the Jacobi identity for the Lie bracket). �

Definition 18.7 A Poisson algebra (P, {·, ·}) is a commutative associative
algebra P with a Lie bracket {·, ·} satisfying the Leibniz rule:

{f, gh} = {f, g}h+ g{f, h} .

Exercise. Check that the Poisson bracket {·, ·} defined above satisfies the
Leibniz rule. ♦

We conclude that, if (M,ω) is a symplectic manifold, then (C∞(M), {·, ·})
is a Poisson algebra. Furthermore, we have a Lie algebra anti-automorphism

C∞(M) −→ χ(M)
H 7−→ X

H

{·, ·}  −[·, ·] .

18.4 Integrable Systems

Definition 18.8 A hamiltonian system is a triple (M,ω,H), where (M,ω)
is a symplectic manifold and H ∈ C∞(M ; R) is a function, called the hamilto-
nian function.

Theorem 18.9 We have {f,H} = 0 if and only if f is constant along integral
curves of X

H
.

Proof. Let ρt be the flow of X
H

. Then

d
dt (f ◦ ρt) = ρ∗tLXH

f = ρ∗t ıXH
df = ρ∗t ıXH

ıXf
ω

= ρ∗tω(Xf , XH
) = ρ∗t {f,H} = 0

�

A function f as in Theorem 18.9 is called an integral of motion (or a first
integral or a constant of motion). In general, hamiltonian systems do not
admit integrals of motion which are independent of the hamiltonian function.
Functions f1, . . . , fn on M are said to be independent if their differentials
(df1)p, . . . , (dfn)p are linearly independent at all points p in some open dense
subset of M . Loosely speaking, a hamiltonian system is (completely) integrable
if it has as many commuting integrals of motion as possible. Commutativity is
with respect to the Poisson bracket. Notice that, if f1, . . . , fn are commuting
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integrals of motion for a hamiltonian system (M,ω,H), then, at each p ∈ M ,
their hamiltonian vector fields generate an isotropic subspace of TpM :

ω(Xfi
, Xfj

) = {fi, fj} = 0 .

If f1, . . . , fn are independent at p, then, by symplectic linear algebra, n can be
at most half the dimension of M .

Definition 18.10 A hamiltonian system (M,ω,H) is (completely) integrable
if it possesses n = 1

2 dimM independent integrals of motion, f1 = H, f2, . . . , fn,
which are pairwise in involution with respect to the Poisson bracket, i.e., {fi, fj} =
0, for all i, j.

Example. The simple pendulum (Homework 13) and the harmonic oscillator
are trivially integrable systems – any 2-dimensional hamiltonian system (where
the set of non-fixed points is dense) is integrable. ♦

Example. A hamiltonian system (M,ω,H) where M is 4-dimensional is inte-
grable if there is an integral of motion independent of H (the commutativity
condition is automatically satisfied). Homework 18 shows that the spherical
pendulum is integrable. ♦

For sophisticated examples of integrable systems, see [9, 50].

Let (M,ω,H) be an integrable system of dimension 2n with integrals of
motion f1 = H, f2, . . . , fn. Let c ∈ Rn be a regular value of f := (f1, . . . , fn).
The corresponding level set, f−1(c), is a lagrangian submanifold, because it is
n-dimensional and its tangent bundle is isotropic.

Lemma 18.11 If the hamiltonian vector fields Xf1 , . . . , Xfn
are complete on

the level f−1(c), then the connected components of f−1(c) are homogeneous
spaces for Rn, i.e., are of the form Rn−k ×Tk for some k, 0 ≤ k ≤ n, where Tk
is a k-dimensional torus.

Proof. Exercise (just follow the flows). �

Any compact component of f−1(c) must hence be a torus. These compo-
nents, when they exist, are called Liouville tori. (The easiest way to ensure
that compact components exist is to have one of the fi’s proper.)

Theorem 18.12 (Arnold-Liouville [3]) Let (M,ω,H) be an integrable sys-
tem of dimension 2n with integrals of motion f1 = H, f2, . . . , fn. Let c ∈ Rn
be a regular value of f := (f1, . . . , fn). The corresponding level f−1(c) is a
lagrangian submanifold of M .

(a) If the flows of Xf1 , . . . , Xfn
starting at a point p ∈ f−1(c) are complete,

then the connected component of f−1(c) containing p is a homogeneous
space for Rn. With respect to this affine structure, that component has
coordinates ϕ1, . . . , ϕn, known as angle coordinates, in which the flows
of the vector fields Xf1 , . . . , Xfn

are linear.
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(b) There are coordinates ψ1, . . . , ψn, known as action coordinates, comple-
mentary to the angle coordinates such that the ψi’s are integrals of motion
and ϕ1, . . . , ϕn, ψ1, . . . , ψn form a Darboux chart.

Therefore, the dynamics of an integrable system is extremely simple and the
system has an explicit solution in action-angle coordinates. The proof of part
(a) – the easy part – of the Arnold-Liouville theorem is sketched above. For the
proof of part (b), see [3, 25].

Geometrically, part (a) of the Arnold-Liouville theorem says that, in a neigh-
borhood of the value c, the map f : M → Rn collecting the given integrals of
motion is a lagrangian fibration, i.e., it is locally trivial and its fibers are
lagrangian submanifolds. The coordinates along the fibers are the angle coordi-
nates.9 Part (b) of the theorem guarantees the existence of coordinates on Rn,
the action coordinates, which (Poisson) commute with the angle coordinates.
Notice that, in general, the action coordinates are not the given integrals of
motion because ϕ1, . . . , ϕn, f1, . . . , fn do not form a Darboux chart.

9The name “angle coordinates” is used even if the fibers are not tori.



Homework 13: Simple Pendulum

This problem is adapted from [42].

The simple pendulum is a mechanical system consisting of a massless rigid
rod of length l, fixed at one end, whereas the other end has a plumb bob of mass
m, which may oscillate in the vertical plane. Assume that the force of gravity is
constant pointing vertically downwards, and that this is the only external force
acting on this one-particle system.

(a) Let θ be the oriented angle between the rod (regarded as a point mass)
and the vertical direction. Let ξ be the coordinate along the fibers of T ∗S1

induced by the standard angle coordinate on S1. Show that the function
H : T ∗S1 → R given by

H(θ, ξ) =
ξ2

2ml2︸ ︷︷ ︸
K

+ml(1− cos θ)︸ ︷︷ ︸
V

,

is an appropriate hamiltonian function to describe the spherical pendu-
lum. More precisely, check that gravity corresponds to a potential energy
V (θ) = ml(1 − cos θ) (we omit universal constants), and that the kinetic
energy is given by K(θ, ξ) = 1

2ml2 ξ
2.

(b) For simplicity assume that m = l = 1.
Plot the level curves of H in the (θ, ξ) plane.

Show that there exists a number c such that for 0 < h < c the level curve
H = h is a disjoint union of closed curves. Show that the projection of
each of these curves onto the θ-axis is an interval of length less than π.

Show that neither of these assertions is true if h > c.

What types of motion are described by these two types of curves?
What about the case H = c?

(c) Compute the critical points of the function H. Show that, modulo 2π in θ,
there are exactly two critical points: a critical point s where H vanishes,
and a critical point u where H equals c. These points are called the
stable and unstable points of H, respectively. Justify this terminology,
i.e., show that a trajectory of the hamiltonian vector field of H whose
initial point is close to s stays close to s forever, and show that this is not
the case for u. What is happening physically?
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19.1 Equations of Motion

The equations of motion in classical mechanics arise as solutions of variational
problems:

A general mechanical system possesses both kinetic and potential
energy. The quantity that is minimized is the mean value of kinetic
minus potential energy.

Example. Suppose that a point-particle of mass m moves in R3 under a force
field F ; let x(t), a ≤ t ≤ b, be its path of motion in R3. Newton’s second law
states that

m
d2x

dt2
(t) = F (x(t)) .

Define the work of a path γ : [a, b] −→ R3, with γ(a) = p and γ(b) = q, to be

Wγ =
∫ b

a

F (γ(t)) · dγ
dt

(t)dt .

Suppose that F is conservative, i.e., Wγ depends only on p and q. Then we
can define the potential energy V : R3 −→ R of the system as

V (q) := Wγ

where γ is a path joining a fixed base point p0 ∈ R3 (the “origin”) to q. Newton’s
second law can now be written

m
d2x

dt2
(t) = −∂V

∂x
(x(t)) .

In the previous lecture we saw that

Newton’s second law ⇐⇒ Hamilton equations
in R3 = {(q1, q2, q3)} in T ∗R3 = {(q1, q2, q3, p1, p2, p3)}

where pi = mdqi

dt and the hamiltonian is H(p, q) = 1
2m |p|

2+V (q). Hence, solving
Newton’s second law in configuration space R3 is equivalent to solving in
phase space for the integral curve T ∗R3 of the hamiltonian vector field with
hamiltonian function H. ♦

Example. The motion of earth about the sun, both regarded as point-masses
and assuming that the sun to be stationary at the origin, obeys the inverse
square law

m
d2x

dt2
= −∂V

∂x
,

where x(t) is the position of earth at time t, and V (x) = const.
|x| is the gravi-

tational potential. ♦
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19.2 Principle of Least Action

When we need to deal with systems with constraints, such as the simple pendu-
lum, or two point masses attached by a rigid rod, or a rigid body, the language
of variational principles becomes more appropriate than the explicit analogues
of Newton’s second laws. Variational principles are due mostly to D’Alembert,
Maupertius, Euler and Lagrange.

Example. (The n-particle system.) Suppose that we have n point-particles
of masses m1, . . . ,mn moving in 3-space. At any time t, the configuration of
this system is described by a vector in configuration space R3n

x = (x1, . . . , xn) ∈ R3n

with xi ∈ R3 describing the position of the ith particle. If V ∈ C∞(R3n) is the
potential energy, then a path of motion x(t), a ≤ t ≤ b, satisfies

mi
d2xi
dt2

(t) = − ∂V
∂xi

(x1(t), . . . , xn(t)) .

Consider this path in configuration space as a map γ0 : [a, b] → R3n with
γ0(a) = p and γ0(b) = q, and let

P = {γ : [a, b] −→ R3n | γ(a) = p and γ(b) = q}

be the set of all paths going from p to q over time t ∈ [a, b]. ♦

Definition 19.1 The action of a path γ ∈ P is

Aγ :=
∫ b

a

(
mi

2

∣∣∣∣dγidt (t)
∣∣∣∣2 − V (γ(t))

)
dt .

Principle of least action.
The physical path γ0 is the path for which Aγ is minimal.

Newton’s second law for a constrained system.
Suppose that the n point-masses are restricted to move on a submanifold M

of R3n called the constraint set. We can now single out the actual physical
path γ0 : [a, b] → M , with γ0(a) = p and γ0(b) = q, as being “the” path which
minimizes Aγ among all those hypothetical paths γ : [a, b]→ R3n with γ(a) = p,
γ(b) = q and satisfying the rigid constraints γ(t) ∈M for all t.

19.3 Variational Problems

LetM be an n-dimensional manifold. Its tangent bundle TM is a 2n-dimensional
manifold. Let F : TM → R be a smooth function.
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If γ : [a, b]→M is a smooth curve on M , define the lift of γ to TM to be
the smooth curve on TM given by

γ̃ : [a, b] −→ TM

t 7−→
(
γ(t), dγdt (t)

)
.

The action of γ is

Aγ :=
∫ b

a

(γ̃∗F )(t)dt =
∫ b

a

F

(
γ(t),

dγ

dt
(t)
)
dt .

For fixed p, q ∈M , let

P(a, b, p, q) := {γ : [a, b] −→M | γ(a) = p, γ(b) = q} .

Problem.
Find, among all γ ∈ P(a, b, p, q), the curve γ0 which “minimizes” Aγ .

First observe that minimizing curves are always locally minimizing:

Lemma 19.2 Suppose that γ0 : [a, b] → M is minimizing. Let [a1, b1] be a
subinterval of [a, b] and let p1 = γ0(a1), q1 = γ0(b1). Then γ0|[a1,b1] is minimiz-
ing among the curves in P(a1, b1, p1, q1).

Proof. Exercise:
Argue by contradiction. Suppose that there were γ1 ∈ P(a1, b1, p1, q1) for

which Aγ1 < Aγ0|[a1,b1]
. Consider a broken path obtained from γ0 by replacing

the segment γ0|[a1,b1] by γ1. Construct a smooth curve γ2 ∈ P(a, b, p, q) for
which Aγ2 < Aγ0 by rounding off the corners of the broken path. �

We will now assume that p, q and γ0 lie in a coordinate neighborhood
(U , x1, . . . , xn). On TU we have coordinates (x1, . . . , xn, v1, . . . , vn) associated
with a trivialization of TU by ∂

∂x1
, . . . , ∂

∂xn
. Using this trivialization, the curve

γ : [a, b] −→ U , γ(t) = (γ1(t), . . . , γn(t))

lifts to

γ̃ : [a, b] −→ TU , γ̃(t) =
(
γ1(t), . . . , γn(t),

dγ1

dt
(t), . . . ,

dγn
dt

(t)
)
.

Necessary condition for γ0 ∈ P(a, b, p, q) to minimize the action.
Let c1, . . . , cn ∈ C∞([a, b]) be such that ci(a) = ci(b) = 0. Let γε : [a, b] −→

U be the curve

γε(t) = (γ1(t) + εc1(t), . . . , γn(t) + εcn(t)) .

For ε small, γε is well-defined and in P(a, b, p, q).
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Let Aε = Aγε =
∫ b
a
F
(
γε(t), dγε

dt (t)
)
dt. If γ0 minimizes A, then

dAε
dε

(0) = 0 .

dAε
dε

(0) =
∫ b

a

∑
i

[
∂F

∂xi

(
γ0(t),

dγ0

dt
(t)
)
ci(t) +

∂F

∂vi

(
γ0(t),

dγ0

dt
(t)
)
dci
dt

(t)
]
dt

=
∫ b

a

∑
i

[
∂F

∂xi
(. . .)− d

dt

∂F

∂vi
(. . .)

]
ci(t)dt = 0

where the first equality follows from the Leibniz rule and the second equality
follows from integration by parts. Since this is true for all ci’s satisfying the
boundary conditions ci(a) = ci(b) = 0, we conclude that

∂F

∂xi

(
γ0(t),

dγ0

dt
(t)
)

=
d

dt

∂F

∂vi

(
γ0(t),

dγ0

dt
(t)
)

E-L

These are the Euler-Lagrange equations.

19.4 Solving the Euler-Lagrange Equations

Case 1: F (x, v) does not depend on v.

The Euler-Lagrange equations become

∂F

∂xi

(
γ0(t),

dγ0

dt
(t)
)

= 0 ⇐⇒ the curve γ0 sits on the critical set of F .

For generic F , the critical points are isolated, hence γ0(t) must be a con-
stant curve.

Case 2: F (x, v) depends affinely on v:

F (x, v) = F0(x) +
n∑
j=1

Fj(x)vj .

LHS of E-L :
∂F0

∂xi
(γ(t)) +

n∑
j=1

∂Fj
∂xi

(γ(t))
dγj
dt

(t)

RHS of E-L :
d

dt
Fi(γ(t)) =

n∑
j=1

∂Fi
∂xj

(γ(t))
dγj
dt

(t)

The Euler-Lagrange equations become

∂F0

∂xi
(γ(t)) =

n∑
j=1

(
∂Fi
∂xj
− ∂Fj
∂xi

)
︸ ︷︷ ︸

n×n matrix

(γ(t))
dγj
dt

(t) .
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If the n× n matrix
(
∂Fi

∂xj
− ∂Fj

∂xi

)
has an inverse Gij(x), then

dγj
dt

(t) =
n∑
i=1

Gji(γ(t))
∂F0

∂xi
(γ(t))

is a system of first order ordinary differential equations. Locally it has a
unique solution through each point p. If q is not on this curve, there is no
solution at all to the Euler-Lagrange equations belonging to P(a, b, p, q).

Therefore, we need non-linear dependence of F on the v variables in order to
have appropriate solutions. From now on, assume that the

Legendre condition: det
(

∂2F

∂vi∂vj

)
6= 0 .

Letting Gij(x, v) =
(

∂2F
∂vi∂vj

(x, v)
)−1

, the Euler-Lagrange equations become

d2γj
dt2

=
∑
i

Gji
∂F

∂xi

(
γ,
dγ

dt

)
−
∑
i,k

Gji
∂2F

∂vi∂xk

(
γ,
dγ

dt

)
dγk
dt

.

This second order ordinary differential equation has a unique solution given
initial conditions

γ(a) = p and
dγ

dt
(a) = v .

19.5 Minimizing Properties

Is the above solution locally minimizing?
Assume that

(
∂2F
∂vi∂vj

(x, v)
)
� 0, ∀(x, v), i.e., with the x variable frozen, the

function v 7→ F (x, v) is strictly convex.
Suppose that γ0 ∈ P(a, b, p, q) satisfies E-L. Does γ0 minimize Aγ? Locally,

yes, according to the following theorem. (Globally it is only critical.)

Theorem 19.3 For every sufficiently small subinterval [a1, b1] of [a, b], γ0|[a1,b1]

is locally minimizing in P(a1, b1, p1, q1) where p1 = γ0(a1), q1 = γ0(b1).

Proof. As an exercise in Fourier series, show the Wirtinger inequality: for
f ∈ C1([a, b]) with f(a) = f(b) = 0, we have∫ b

a

∣∣∣∣dfdt
∣∣∣∣2 dt ≥ π2

(b− a)2

∫ b

a

|f |2dt .

Suppose that γ0 : [a, b] → U satisfies E-L. Take ci ∈ C∞([a, b]), ci(a) =
ci(b) = 0. Let c = (c1, . . . , cn). Let γε = γ0 + εc ∈ P(a, b, p, q), and let
Aε = Aγε .
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E-L ⇐⇒ dAε

dε (0) = 0.

d2Aε
dε2

(0) =
∫ b

a

∑
i,j

∂2F

∂xi∂xj

(
γ0,

dγ0

dt

)
ci cj dt (I)

+
∫ b

a

∑
i,j

∂2F

∂xi∂vj

(
γ0,

dγ0

dt

)
ci
dcj
dt

dt (II)

+
∫ b

a

∑
i,j

∂2F

∂vi∂vj

(
γ0,

dγ0

dt

)
dci
dt

dcj
dt

dt (III) .

Since
(

∂2F
∂vi∂vj

(x, v)
)
� 0 at all x, v,

III ≥ KIII

∣∣∣∣dcdt
∣∣∣∣2
L2[a,b]

|I| ≤ KI |c|2L2[a,b]

|II| ≤ KII |c|L2[a,b]

∣∣∣∣dcdt
∣∣∣∣
L2[a,b]

where KI ,KII ,KIII > 0. By the Wirtinger inequality, if b−a is very small, then
III > |I|, |II|. Hence, γ0 is a local minimum. �



Homework 14: Minimizing Geodesics

This set of problems is adapted from [42].

Let (M, g) be a riemannian manifold. From the riemannian metric, we get
a function F : TM → R, whose restriction to each tangent space TpM is the
quadratic form defined by the metric.

Let p and q be points on M , and let γ : [a, b]→M be a smooth curve joining
p to q. Let γ̃ : [a, b] → TM , γ̃(t) = (γ(t), dγdt (t)) be the lift of γ to TM . The
action of γ is

A(γ) =
∫ b

a

(γ̃∗F ) dt =
∫ b

a

∣∣∣∣dγdt
∣∣∣∣2 dt .

1. Let γ : [a, b] → M be a smooth curve joining p to q. Show that the arc-
length of γ is independent of the parametrization of γ, i.e., show that if we
reparametrize γ by τ : [a′, b′]→ [a, b], the new curve γ′ = γ ◦ τ : [a′, b′]→
M has the same arc-length.

2. Show that, given any curve γ : [a, b]→M (with dγ
dt never vanishing), there

is a reparametrization τ : [a, b] → [a, b] such that γ ◦ τ : [a, b] → M is of
constant velocity, that is, |dγdt | is independent of t.

3. Let τ : [a, b] → [a, b] be a smooth monotone map taking the endpoints of
[a, b] to the endpoints of [a, b]. Prove that∫ b

a

(
dτ

dt

)2

dt ≥ b− a ,

with equality holding if and only if dτ
dt = 1.

4. Let γ : [a, b] → M be a smooth curve joining p to q. Suppose that, as s
goes from a to b, its image γ(s) moves at constant velocity, i.e., suppose
that |dγds | is constant as a function of s. Let γ′ = γ ◦ τ : [a, b] → M be a
reparametrization of γ. Show that A(γ′) ≥ A(γ), with equality holding if
and only if τ(t) ≡ t.
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5. Let γ0 : [a, b]→ M be a curve joining p to q. Suppose that γ0 is action-
minimizing, i.e., suppose that

A(γ0) ≤ A(γ)

for any other curve γ : [a, b]→M joining p to q. Prove that γ0 is also arc-
length-minimizing, i.e., show that γ0 is the shortest geodesic joining p
to q.

6. Show that, among all curves joining p to q, γ0 minimizes the action if and
only if γ0 is of constant velocity and γ0 minimizes arc-length.

7. On a coordinate chart (U , x1, . . . , xn) on M , we have

L(x, v) =
∑

gij(x)vivj .

Show that the Euler-Lagrange equations associated to the action reduce
to the Christoffel equations for a geodesic

d2γk

dt2
+
∑

(Γkij ◦ γ)
dγi

dt

dγj

dt
= 0 ,

where the Γkij ’s (called the Christoffel symbols) are defined in terms of
the coefficients of the riemannian metric by

Γkij =
1
2

∑
`

g`k
(
∂g`i
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
,

(gij) being the matrix inverse to (gij).

8. Let p and q be two non-antipodal points on Sn. Show that the geodesic
joining p to q is an arc of a great circle, the great circle in question being
the intersection of Sn with the two-dimensional subspace of Rn+1 spanned
by p and q.

Hint: No calculations are needed: Show that an isometry of a riemannian
manifold has to carry geodesics into geodesics, and show that there is an isom-
etry of Rn+1 whose fixed point set is the plane spanned by p and q, and show
that this isometry induces on Sn an isometry whose fixed point set is the great
circle containing p and q.



20 Legendre Transform

20.1 Strict Convexity

Let V be an n-dimensional vector space, with e1, . . . , en a basis of V and
v1, . . . , vn the associated coordinates. Let F : V → R, F = F (v1, . . . , vn),
be a smooth function. Let p ∈ V , u =

∑n
i=1 uiei ∈ V . The hessian of F is the

quadratic function on V defined by

(d2F )p(u) :=
∑
i,j

∂2F

∂vi∂vj
(p)uiuj .

Exercise. Show that (d2F )p(u) = d2

dt2F (p+ tu)|u=0. ♦

Definition 20.1 The function F is strictly convex if (d2F )p � 0, ∀p ∈ V .

Theorem 20.2 For a strictly convex function F on V , the following are equiv-
alent:

(a) F has a critical point, i.e., a point where dFp = 0;

(b) F has a local minimum at some point;

(c) F has a unique critical point (global minimum); and

(d) F is proper, that is, F (p)→ +∞ as p→∞ in V .

Proof. Homework 15. �

Definition 20.3 A strictly convex function F is stable when it satisfies con-
ditions (a)-(d) in Theorem 20.2.

Example. The function ex+ax is strictly convex for any a ∈ R, but it is stable
only for a < 0. The function x2 +ax is strictly convex and stable for any a ∈ R.
♦

20.2 Legendre Transform

Let F be any strictly convex function on V . Given ` ∈ V ∗, let

F` : V −→ R , F`(v) = F (v)− `(v) .

Since (d2F )p = (d2F`)p,

F is strictly convex ⇐⇒ F` is strictly convex.
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Definition 20.4 The stability set of a strictly convex function F is

SF = {` ∈ V ∗ | F` is stable} .

Theorem 20.5 The set SF is an open and convex subset of V ∗.

Proof. Homework 15. �

Homework 15 also describes a sufficient condition for SF = V ∗.

Definition 20.6 The Legendre transform associated to F ∈ C∞(V ; R) is
the map

LF : V −→ V ∗

p 7−→ dFp ∈ T ∗p V ' V ∗ .

Theorem 20.7 Suppose that F is strictly convex. Then

LF : V '−→ SF ,

i.e., LF is a diffeomorphism onto SF .

The inverse map L−1
F : SF −→ V is described as follows: for l ∈ SF , the

value L−1
F (`) is the unique minimum point p` ∈ V of F` = F − `.

Exercise. Check that p is the minimum of F (v)− dFp(v). ♦

Definition 20.8 The dual function F ∗ to F is

F ∗ : SF −→ R , F ∗(`) = −min
p∈V

F`(p) .

Theorem 20.9 We have that L−1
F = LF∗ .

Proof. Homework 15. �

20.3 Application to Variational Problems

Let M be a manifold and F : TM → R a function on TM .

Problem. Minimize Aγ =
∫
γ̃∗F .

At p ∈M , let
Fp := F |TpM : TpM −→ R .

Assume that Fp is strictly convex for all p ∈ M . To simplify notation, assume
also that SFp = T ∗pM . The Legendre transform on each tangent space

LFp : TpM
'−→ T ∗pM
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is essentially given by the first derivatives of F in the v directions. The dual
function to Fp is F ∗p : T ∗pM −→ R. Collect these fiberwise maps into

L : TM −→ T ∗M , L|TpM = LFp , and

H : T ∗M −→ R , H|T∗pM = F ∗p .

Exercise. The maps H and L are smooth, and L is a diffeomorphism. ♦

Let
γ : [a, b] −→M be a curve, and
γ̃ : [a, b] −→ TM its lift.

Theorem 20.10 The curve γ satisfies the E-L equations on every coordinate
chart if and only if L ◦ γ̃ : [a, b]→ T ∗M is an integral curve of the hamiltonian
vector field XH .

Proof. Let

(U , x1, . . . , xn) coordinate neighborhood in M ,
(TU , x1, . . . , xn, v1, . . . , vn) coordinates in TM ,
(T ∗U , x1, . . . , xn, ξ1, . . . , ξn) coordinates in T ∗M .

On TU we have F = F (x, v).
On T ∗U we have H = H(u, ξ).

L : TU −→ T ∗U
(x, v) 7−→ (x, ξ) where ξ = LFx

(v) = ∂F
∂v (x, v) .

(This is the definition of momentum ξ.)

H(x, ξ) = F ∗x (ξ) = ξ · v − F (x, v) where L(x, v) = (x, ξ) .

Integral curves (x(t), ξ(t)) of XH satisfy the Hamilton equations:

H


dx

dt
=

∂H

∂ξ
(x, ξ)

dξ

dt
= −∂H

∂x
(x, ξ) ,

whereas the physical path x(t) satisfies the Euler-Lagrange equations:

E-L
∂F

∂x

(
x,
dx

dt

)
=

d

dt

∂F

∂v

(
x,
dx

dt

)
.

Let (x(t), ξ(t)) = L
(
x(t), dxdt (t)

)
. We want to prove:

t 7→ (x(t), ξ(t)) satisfies H ⇐⇒ t 7→
(
x(t),

dx

dt
(t)
)

satisfies E-L
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The first line of H is automatically satisfied:

dx

dt
=
∂H

∂ξ
(x, ξ) = LF∗x (ξ) = L−1

Fx
(ξ) ⇐⇒ ξ = LFx

(
dx

dt

)

Claim. If (x, ξ) = L(x, v), then ∂F
∂x (x, v) = −∂H∂x (x, ξ).

This follows from differentiating both sides of H(x, ξ) = ξ · v − F (x, v) with
respect to x, where ξ = LFx

(v) = ξ(x, v).

∂H

∂x
+
∂H

∂ξ︸︷︷︸
v

∂ξ

∂x
=
∂ξ

∂x
· v − ∂F

∂x
.

Now the second line of H becomes

d

dt

∂F

∂v
(x, v) =

dξ

dt︸ ︷︷ ︸
since ξ = LFx(v)

= −∂H
∂x

(x, ξ) =
∂F

∂x
(x, v)︸ ︷︷ ︸

by the claim

⇐⇒ E-L .

�



Homework 15: Legendre Transform

This set of problems is adapted from [41].

1. Let f : R → R be a smooth function. f is called strictly convex if
f ′′(x) > 0 for all x ∈ R. Assuming that f is strictly convex, prove that
the following four conditions are equivalent:

(a) f ′(x) = 0 for some point x0,
(b) f has a local minimum at some point x0,
(c) f has a unique (global) minimum at some point x0,
(d) f(x)→ +∞ as x→ ±∞.

The function f is stable if it satisfies one (and hence all) of these condi-
tions.
For what values of a is the function ex + ax stable? For those values of a
for which it is not stable, what does the graph look like?

2. Let V be an n-dimensional vector space and F : V → R a smooth function.
The function F is said to be strictly convex if for every pair of elements
p, v ∈ V , v 6= 0, the restriction of F to the line {p+ xv |x ∈ R} is strictly
convex.
The hessian of F at p is the quadratic form

d2Fp : v 7→ d2

dx2
F (p+ xv)|x=0 .

Show that F is strictly convex if and only if d2Fp is positive definite for
all p ∈ V .
Prove the n-dimensional analogue of the result you proved in (1). Namely,
assuming that f is strictly convex, show that the four following assertions
are equivalent:

(a) dFp = 0 at some point p0,
(b) F has a local minimum at some point p0,
(c) F has a unique (global) minimum at some point p0,
(d) F (p)→ +∞ as p→∞.

3. As in exercise 2, let V be an n-dimensional vector space and F : V →
R a smooth function. Since V is a vector space, there is a canonical
identification T ∗p V ' V ∗, for every p ∈ V . Therefore, we can define a map

L
F

: V → V ∗ (Legendre transform)

by setting
L

F
(p) = dFp ∈ T ∗p V ' V ∗ .

Show that, if F is strictly convex, then, for every point p ∈ V , L
F

maps a
neighborhood of p diffeomorphically onto a neighborhood of L

F
(p).
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4. A strictly convex function F : V → R is stable if it satisfies the four
equivalent conditions of exercise 2. Given any strictly convex function F ,
we will denote by S

F
the set of l ∈ V ∗ for which the function Fl : V → R,

p 7→ F (p)− l(p), is stable. Prove that:

(a) The set S
F

is open and convex.
(b) L

F
maps V diffeomorphically onto S

F
.

(c) If l ∈ S
F

and p0 = L−1
F

(l), then p0 is the unique minimum point of
the function Fl.

Let F ∗ : S
F
→ R be the function whose value at l is the quantity

−min
p∈V

Fl(p). Show that F ∗ is a smooth function.

The function F ∗ is called the dual of the function F .

5. Let F be a strictly convex function. F is said to have quadratic growth
at infinity if there exists a positive-definite quadratic form Q on V and
a constant K such that F (p) ≥ Q(p) − K, for all p. Show that, if F
has quadratic growth at infinity, then S

F
= V ∗ and hence L

F
maps V

diffeomorphically onto V ∗.

6. Let F : V → R be strictly convex and let F ∗ : S
F
→ R be the dual

function. Prove that for all p ∈ V and all l ∈ S
F
,

F (p) + F ∗(l) ≥ l(p) (Young inequality) .

7. On one hand we have V × V ∗ ' T ∗V , and on the other hand, since
V = V ∗∗, we have V × V ∗ ' V ∗ × V ' T ∗V ∗.
Let α1 be the canonical 1-form on T ∗V and α2 be the canonical 1-form on
T ∗V ∗. Via the identifications above, we can think of both of these forms
as living on V × V ∗. Show that α1 = dβ − α2, where β : V × V ∗ → R is
the function β(p, l) = l(p).
Conclude that the forms ω1 = dα1 and ω2 = dα2 satisfy ω1 = −ω2.

8. Let F : V → R be strictly convex. Assume that F has quadratic growth
at infinity so that S

F
= V ∗. Let Λ

F
be the graph of the Legendre trans-

form L
F
. Λ

F
is a lagrangian submanifold of V × V ∗ with respect to the

symplectic form ω1; why? Hence, Λ
F

is also lagrangian for ω2.
Let pr1 : Λ

F
→ V and pr2 : Λ

F
→ V ∗ be the restrictions of the projection

maps V × V ∗ → V and V × V ∗ → V ∗, and let i : Λ
F
↪→ V × V ∗ be the

inclusion map. Show that

i∗α1 = d(pr1)
∗F .

Conclude that

i∗α2 = d(i∗β − (pr1)
∗F ) = d(pr2)

∗F ∗ ,

and from this conclude that the inverse of the Legendre transform associ-
ated with F is the Legendre transform associated with F ∗.



Part VIII

Moment Maps

The concept of a moment map10 is a generalization of that of a hamiltonian
function. The notion of a moment map associated to a group action on a
symplectic manifold formalizes the Noether principle, which states that to every
symmetry (such as a group action) in a mechanical system, there corresponds
a conserved quantity.

21 Actions

21.1 One-Parameter Groups of Diffeomorphisms

Let M be a manifold and X a complete vector field on M . Let ρt : M → M ,
t ∈ R, be the family of diffeomorphisms generated by X. For each p ∈M , ρt(p),
t ∈ R, is by definition the unique integral curve of X passing through p at time
0, i.e., ρt(p) satisfies 

ρ0(p) = p

dρt(p)
dt

= X(ρt(p)) .

Claim. We have that ρt ◦ ρs = ρt+s.

Proof. Let ρs(q) = p. We need to show that (ρt ◦ ρs)(q) = ρt+s(q), for all
t ∈ R. Reparametrize as ρ̃t(q) := ρt+s(q). Then

ρ̃0(q) = ρs(q) = p

dρ̃t(q)
dt

=
dρt+s(q)

dt
= X(ρt+s(q)) = X(ρ̃t(q)) ,

i.e., ρ̃t(q) is an integral curve of X through p. By uniqueness we must have
ρ̃t(q) = ρt(p), that is, ρt+s(q) = ρt(ρs(q)). �

Consequence. We have that ρ−1
t = ρ−t.

In terms of the group (R,+) and the group (Diff(M), ◦) of all diffeomor-
phisms of M , these results can be summarized as:

Corollary 21.1 The map R→ Diff(M), t 7→ ρt, is a group homomorphism.
10Souriau invented the french name “application moment.” In the US, East and West

coasts could be distinguished by the choice of translation: moment map and momentum map,
respectively. We will stick to the more economical version.
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The family {ρt | t ∈ R} is then called a one-parameter group of diffeo-
morphisms of M and denoted

ρt = exp tX .

21.2 Lie Groups

Definition 21.2 A Lie group is a manifold G equipped with a group structure
where the group operations

G×G −→ G and G −→ G
(a, b) 7−→ a · b a 7−→ a−1

are smooth maps.

Examples.

• R (with addition11).

• S1 regarded as unit complex numbers with multiplication, represents ro-
tations of the plane: S1 = U(1) = SO(2).

• U(n), unitary linear transformations of Cn.

• SU(n), unitary linear transformations of Cn with det = 1.

• O(n), orthogonal linear transformations of Rn.

• SO(n), elements of O(n) with det = 1.

• GL(V ), invertible linear transformations of a vector space V .

♦

Definition 21.3 A representation of a Lie group G on a vector space V is a
group homomorphism G→ GL(V ).

21.3 Smooth Actions

Let M be a manifold.

Definition 21.4 An action of a Lie group G on M is a group homomorphism

ψ : G −→ Diff(M)
g 7−→ ψg .

11The operation will be omitted when it is clear from the context.
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(We will only consider left actions where ψ is a homomorphism. A right ac-
tion is defined with ψ being an anti-homomorphism.) The evaluation map
associated with an action ψ : G→ Diff(M) is

evψ : M ×G −→ M
(p, g) 7−→ ψg(p) .

The action ψ is smooth if evψ is a smooth map.

Example. If X is a complete vector field on M , then

ρ : R −→ Diff(M)
t 7−→ ρt = exp tX

is a smooth action of R on M . ♦

Every complete vector field gives rise to a smooth action of R on M . Con-
versely, every smooth action of R on M is defined by a complete vector field.

{complete vector fields on M} 1−1←→ {smooth actions of R on M}

X 7−→ exp tX

Xp =
dψt(p)
dt

∣∣∣∣
t=0

←− ψ

21.4 Symplectic and Hamiltonian Actions

Let (M,ω) be a symplectic manifold, and G a Lie group. Let ψ : G −→ Diff(M)
be a (smooth) action.

Definition 21.5 The action ψ is a symplectic action if

ψ : G −→ Sympl(M,ω) ⊂ Diff(M) ,

i.e., G “acts by symplectomorphisms.”

{complete symplectic vector fields on M} 1−1←→ {symplectic actions of R on M}

Example. On R2n with ω =
∑
dxi ∧ dyi, let X = − ∂

∂y1
. The orbits of the

action generated by X are lines parallel to the y1-axis,

{(x1, y1 − t, x2, y2, . . . , xn, yn) | t ∈ R} .

Since X = Xx1 is hamiltonian (with hamiltonian function H = x1), this is
actually an example of a hamiltonian action of R. ♦
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Example. On S2 with ω = dθ∧dh (cylindrical coordinates), let X = ∂
∂θ . Each

orbit is a horizontal circle (called a “parallel”) {(θ + t, h) | t ∈ R}. Notice that
all orbits of this R-action close up after time 2π, so that this is an action of S1:

ψ : S1 −→ Sympl(S2, ω)
t 7−→ rotation by angle t around h-axis .

Since X = Xh is hamiltonian (with hamiltonian function H = h), this is an
example of a hamiltonian action of S1. ♦

Definition 21.6 A symplectic action ψ of S1 or R on (M,ω) is hamiltonian
if the vector field generated by ψ is hamiltonian. Equivalently, an action ψ of
S1 or R on (M,ω) is hamiltonian if there is H : M → R with dH = ıXω,
where X is the vector field generated by ψ.

What is a “hamiltonian action” of an arbitrary Lie group?

For the case where G = Tn = S1× . . .×S1 is an n-torus, an action ψ : G→
Sympl(M,ω) should be called hamiltonian when each restriction

ψi := ψ|ith S1 factor : S1 −→ Sympl(M,ω)

is hamiltonian in the previous sense with hamiltonian function preserved by the
action of the rest of G.

When G is not a product of S1’s or R’s, the solution is to use an upgraded
hamiltonian function, known as a moment map. Before its definition though (in
Lecture 22), we need a little Lie theory.

21.5 Adjoint and Coadjoint Representations

Let G be a Lie group. Given g ∈ G let

Lg : G −→ G
a 7−→ g · a

be left multiplication by g. A vector field X on G is called left-invariant if
(Lg)∗X = X for every g ∈ G. (There are similar right notions.)

Let g be the vector space of all left-invariant vector fields on G. Together
with the Lie bracket [·, ·] of vector fields, g forms a Lie algebra, called the Lie
algebra of the Lie group G.

Exercise. Show that the map

g −→ TeG
X 7−→ Xe

where e is the identity element in G, is an isomorphism of vector spaces. ♦
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Any Lie group G acts on itself by conjugation:

G −→ Diff(G)
g 7−→ ψg , ψg(a) = g · a · g−1 .

The derivative at the identity of

ψg : G −→ G
a 7−→ g · a · g−1

is an invertible linear map Adg : g −→ g. Here we identify the Lie algebra g with
the tangent space TeG. Letting g vary, we obtain the adjoint representation
(or adjoint action) of G on g:

Ad : G −→ GL(g)
g 7−→ Adg .

Exercise. Check for matrix groups that

d

dt
Adexp tXY

∣∣∣∣
t=0

= [X,Y ] , ∀X,Y ∈ g .

Hint: For a matrix group G (i.e., a subgroup of GL(n; R) for some n), we have

Adg(Y ) = gY g−1 , ∀g ∈ G , ∀Y ∈ g

and
[X,Y ] = XY − Y X , ∀X,Y ∈ g .

♦

Let 〈·, ·〉 be the natural pairing between g∗ and g:

〈·, ·〉 : g∗ × g −→ R
(ξ,X) 7−→ 〈ξ,X〉 = ξ(X) .

Given ξ ∈ g∗, we define Ad∗gξ by

〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉 , for any X ∈ g .

The collection of maps Ad∗g forms the coadjoint representation (or coadjoint
action) of G on g∗:

Ad∗ : G −→ GL(g∗)
g 7−→ Ad∗g .

We take g−1 in the definition of Ad∗gξ in order to obtain a (left) represen-
tation, i.e., a group homomorphism, instead of a “right” representation, i.e., a
group anti-homomorphism.

Exercise. Show that Adg ◦Adh = Adgh and Ad∗g ◦Ad∗h = Ad∗gh . ♦



Homework 16: Hermitian Matrices

Let H be the vector space of n× n complex hermitian matrices.
The unitary group U(n) acts onH by conjugation: A·ξ = AξA−1 , for A ∈

U(n) , ξ ∈ H.
For each λ = (λ1, . . . , λn) ∈ Rn, let Hλ be the set of all n × n complex

hermitian matrices whose spectrum is λ.

1. Show that the orbits of the U(n)-action are the manifolds Hλ.
For a fixed λ ∈ Rn, what is the stabilizer of a point in Hλ?

Hint: If λ1, . . . , λn are all distinct, the stabilizer of the diagonal matrix is
the torus Tn of all diagonal unitary matrices.

2. Show that the symmetric bilinear form on H, (X,Y ) 7→ trace (XY ) , is
nondegenerate.
For ξ ∈ H, define a skew-symmetric bilinear form ω

ξ
on u(n) = T1U(n) =

iH (space of skew-hermitian matrices) by

ω
ξ
(X,Y ) = trace ([X,Y ]ξ) , X, Y ∈ iH .

Check that ω
ξ
(X,Y ) = trace (X(Y ξ − ξY )) and Y ξ − ξY ∈ H.

Show that the kernel of ω
ξ

is K
ξ

:= {Y ∈ u(n) | [Y, ξ] = 0}.

3. Show that K
ξ

is the Lie algebra of the stabilizer of ξ.

Hint: Differentiate the relation AξA−1 = ξ.

Show that the ω
ξ
’s induce nondegenerate 2-forms on the orbits Hλ.

Show that these 2-forms are closed.
Conclude that all the orbits Hλ are compact symplectic manifolds.

4. Describe the manifolds Hλ.
When all eigenvalues are equal, there is only one point in the orbit.
Suppose that λ1 6= λ2 = . . . = λn. Then the eigenspace associated with
λ1 is a line, and the one associated with λ2 is the orthogonal hyperplane.
Show that there is a diffeomorphism Hλ ' CPn−1. We have thus exhib-
ited a lot of symplectic forms on CPn−1, on for each pair of distinct real
numbers.
What about the other cases?

Hint: When the eigenvalues λ1 < . . . < λn are all distinct, any element in
Hλ defines a family of pairwise orthogonal lines in Cn: its eigenspaces.

5. Show that, for any skew-hermitian matrix X ∈ u(n), the vector field on H
generated by X ∈ u(n) for the U(n)-action by conjugation is X#

ξ
= [X, ξ].
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22 Hamiltonian Actions

22.1 Moment and Comoment Maps

Let

(M,ω) be a symplectic manifold,
G a Lie group, and

ψ : G→ Sympl(M,ω) a (smooth) symplectic action, i.e., a group homomorphism
such that the evaluation map evψ(g, p) := ψg(p) is smooth.

Case G = R:

We have the following bijective correspondence:

{symplectic actions of R on M} 1−1←→ {complete symplectic vector fields on M}

ψ 7−→ Xp = dψt(p)
dt

ψ = exp tX ←− X

“flow of X” “vector field generated by ψ”

The action ψ is hamiltonian if there exists a function H : M → R such that
dH = ıXω where X is the vector field on M generated by ψ.

Case G = S1:

An action of S1 is an action of R which is 2π-periodic: ψ2π = ψ0. The
S1-action is called hamiltonian if the underlying R-action is hamiltonian.

General case:

Let

(M,ω) be a symplectic manifold,
G a Lie group,
g the Lie algebra of G,
g∗ the dual vector space of g, and

ψ : G −→ Sympl(M,ω) a symplectic action.

Definition 22.1 The action ψ is a hamiltonian action if there exists a map

µ : M −→ g∗

satisfying:

1. For each X ∈ g, let
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132 22 HAMILTONIAN ACTIONS

• µX : M → R, µX(p) := 〈µ(p), X〉, be the component of µ along X,

• X# be the vector field on M generated by the one-parameter subgroup
{exp tX | t ∈ R} ⊆ G.

Then
dµX = ıX#ω

i.e., µX is a hamiltonian function for the vector field X#.

2. µ is equivariant with respect to the given action ψ of G on M and the
coadjoint action Ad∗ of G on g∗:

µ ◦ ψg = Ad∗g ◦ µ , for all g ∈ G .

The vector (M,ω,G, µ) is then called a hamiltonian G-space and µ is a mo-
ment map.

Hamiltonian actions can be equivalently defined in terms of a comoment
map

µ∗ : g −→ C∞(M) ,

with the two conditions rephrased as:

1. µ∗(X) := µX is a hamiltonian function for the vector field X#,

2. µ∗ is a Lie algebra homomorphism:

µ∗[X,Y ] = {µ∗(X), µ∗(Y )}

where {·, ·} is the Poisson bracket on C∞(M).

These definitions match the previous ones for the cases G = R, S1, torus,
where equivariance becomes invariance since the coadjoint action is trivial.

Case G = S1 (or R):

Here g ' R, g∗ ' R. A moment map µ : M −→ R satisfies:

1. For the generator X = 1 of g, we have µX(p) = µ(p) · 1, i.e., µX = µ, and
X# is the standard vector field on M generated by S1. Then dµ = ıX#ω.

2. µ is invariant: LX#µ = ıX#dµ = 0.

Case G = Tn = n-torus:

Here g ' Rn, g∗ ' Rn. A moment map µ : M −→ Rn satisfies:

1. For each basis vector Xi of Rn, µXi is a hamiltonian function for X#
i .

2. µ is invariant.
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22.2 Orbit Spaces

Let ψ : G→ Diff(M) be any action.

Definition 22.2 The orbit of G through p ∈M is {ψg(p) | g ∈ G}
The stabilizer (or isotropy) of p ∈ M is the subgroup Gp := {g ∈ G |

ψg(p) = p}.

Exercise. If q is in the orbit of p, then Gq and Gp are conjugate subgroups. ♦

Definition 22.3 We say that the action of G on M is . . .

• transitive if there is just one orbit,

• free if all stabilizers are trivial {e},

• locally free if all stabilizers are discrete.

Let ∼ be the orbit equivalence relation; for p, q ∈M ,

p ∼ q ⇐⇒ p and q are on the same orbit.

The space of orbits M/ ∼ = M/G is called the orbit space. Let

π : M −→ M/G
p 7−→ orbit through p

be the point-orbit projection.

Topology of the orbit space:

We equip M/G with the weakest topology for which π is continuous, i.e.,
U ⊆ M/G is open if and only if π−1(U) is open in M . This is called the
quotient topology. This topology can be “bad.” For instance:

Example. Let G = R act on M = R by

t 7−→ ψt = multiplication by et.

There are three orbits R+, R− and {0}. The point in the three-point orbit space
corresponding to the orbit {0} is not open, so the orbit space with the quotient
topology is not Hausdorff. ♦

Example. Let G = C\{0} act on M = Cn by

λ 7−→ ψλ = multiplication by λ .

The orbits are the punctured complex lines (through non-zero vectors z ∈ Cn),
plus one “unstable” orbit through 0, which has a single point. The orbit space
is

M/G = CPn−1 t {point} .
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The quotient topology restricts to the usual topology on CPn−1. The only open
set containing {point} in the quotient topology is the full space. Again the
quotient topology in M/G is not Hausdorff.

However, it suffices to remove 0 from Cn to obtain a Hausdorff orbit space:
CPn−1. Then there is also a compact (yet not complex) description of the orbit
space by taking only unit vectors:

CPn−1 =
(
Cn\{0}

)/(
C\{0}

)
= S2n−1/S1 .

♦

22.3 Preview of Reduction

Let ω = i
2

∑
dzi∧dz̄i =

∑
dxi∧dyi =

∑
ridri∧dθi be the standard symplectic

form on Cn. Consider the following S1-action on (Cn, ω):

t ∈ S1 7−→ ψt = multiplication by eit .

ψ is hamiltonian with moment map

µ : Cn −→ R
z 7−→ − |z|2

2 + constant

since
dµ = − 1

2d(
∑
r2i )

X# =
∂

∂θ1
+

∂

∂θ2
+ . . .+

∂

∂θn

ıX#ω = −
∑
ridri = − 1

2

∑
dr2i .

If we choose the constant to be 1
2 , then µ−1(0) = S2n−1 is the unit sphere. The

orbit space of the zero level of the moment map is

µ−1(0)/S1 = S2n−1/S1 = CPn−1 .

CPn−1 is thus called a reduced space. Notice also that the image of the
moment map is half-space.

These particular observations are related to major theorems:
Under assumptions (explained in Lectures 23-29),

• [Marsden-Weinstein-Meyer] reduced spaces are symplectic manifolds;

• [Atiyah-Guillemin-Sternberg] the image of the moment map is a convex
polytope;

• [Delzant] hamiltonian Tn-spaces are classified by the image of the moment
map.
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22.4 Classical Examples

Example.
Let G = SO(3) = {A ∈ GL(3; R) | A tA = Id and detA = 1}. Then

g = {A ∈ gl(3; R) | A+ At = 0} is the space of 3× 3 skew-symmetric matrices
and can be identified with R3. The Lie bracket on g can be identified with the
exterior product via

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 7−→ −→a = (a1, a2, a3)

[A,B] = AB −BA 7−→ −→a ×−→b .

Exercise. Under the identifications g, g∗ ' R3, the adjoint and coadjoint ac-
tions are the usual SO(3)-action on R3 by rotations. ♦

Therefore, the coadjoint orbits are the spheres in R3 centered at the origin.
Homework 17 shows that coadjoint orbits are symplectic. ♦

The name “moment map” comes from being the generalization of linear and
angular momenta in classical mechanics.

Translation: Consider R6 with coordinates x1, x2, x3, y1, y2, y3 and symplectic
form ω =

∑
dxi ∧ dyi. Let R3 act on R6 by translations:

−→a ∈ R3 7−→ ψ−→a ∈ Sympl(R6, ω)

ψ−→a (−→x ,−→y ) = (−→x +−→a ,−→y ) .

Then X# = a1
∂
∂x1

+ a2
∂
∂x2

+ a3
∂
∂x3

for X = −→a , and

µ : R6 −→ R3 , µ(−→x ,−→y ) = −→y

is a moment map, with

µ
−→a (−→x ,−→y ) = 〈µ(−→x ,−→y ),−→a 〉 = −→y · −→a .

Classically, −→y is called the momentum vector corresponding to the position
vector −→x , and the map µ is called the linear momentum.

Rotation: The SO(3)-action on R3 by rotations lifts to a symplectic action ψ
on the cotangent bundle R6. The infinitesimal version of this action is

−→a ∈ R3 7−→ dψ(−→a ) ∈ χsympl(R6)

dψ(−→a )(−→x ,−→y ) = (−→a ×−→x ,−→a ×−→y ) .
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Then
µ : R6 −→ R3 , µ(−→x ,−→y ) = −→x ×−→y

is a moment map, with

µ
−→a (−→x ,−→y ) = 〈µ(−→x ,−→y ),−→a 〉 = (−→x ×−→y ) · −→a .

The map µ is called the angular momentum.



Homework 17: Coadjoint Orbits

Let G be a Lie group, g its Lie algebra and g∗ the dual vector space of g.

1. Let gX# be the vector field generated by X ∈ g for the adjoint represen-
tation of G on g. Show that

gX#
Y

= [X,Y ] ∀ Y ∈ g .

2. Let X# be the vector field generated by X ∈ g for the coadjoint represen-
tation of G on g∗. Show that

〈X#
ξ
, Y 〉 = 〈ξ, [Y,X]〉 ∀ Y ∈ g .

3. For any ξ ∈ g∗, define a skew-symmetric bilinear form on g by

ω
ξ
(X,Y ) := 〈ξ, [X,Y ]〉 .

Show that the kernel of ω
ξ

is the Lie algebra g
ξ

of the stabilizer of ξ for
the coadjoint representation.

4. Show that ω
ξ

defines a nondegenerate 2-form on the tangent space at ξ to
the coadjoint orbit through ξ.

5. Show that ω
ξ

defines a closed 2-form on the orbit of ξ in g∗.
Hint: The tangent space to the orbit being generated by the vector fields
X#, this is a consequence of the Jacobi identity in g.

This canonical symplectic form on the coadjoint orbits in g∗ is also
known as the Lie-Poisson or Kostant-Kirillov symplectic structure.

6. The Lie algebra structure of g defines a canonical Poisson structure on g∗:

{f, g}(ξ) := 〈ξ, [df
ξ
, dg

ξ
]〉

for f, g ∈ C∞(g∗) and ξ ∈ g∗. Notice that df
ξ

: T
ξ
g∗ ' g∗ → R is identified

with an element of g ' g∗∗.
Check that {·, ·} satisfies the Leibniz rule:

{f, gh} = g{f, h}+ h{f, g} .

7. Show that the jacobiator

J(f, g, h) := {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}

is a trivector field, i.e., J is a skew-symmetric trilinear map C∞(g∗) ×
C∞(g∗)× C∞(g∗)→ C∞(g∗), which is a derivation in each argument.

Hint: Being a derivation amounts to the Leibniz rule from exercise 6.

8. Show that J ≡ 0, i.e., {·, ·} satisfies the Jacobi identity.
Hint: Follows from the Jacobi identity for [·, ·] in g. It is enough to check on
coordinate functions.
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Part IX

Symplectic Reduction
The phase space of a system of n particles is the space parametrizing the position
and momenta of the particles. The mathematical model for the phase space is
a symplectic manifold. Classical physicists realized that, whenever there is a
symmetry group of dimension k acting on a mechanical system, then the number
of degrees of freedom for the position and momenta of the particles may be
reduced by 2k. Symplectic reduction formulates this feature mathematically.

23 The Marsden-Weinstein-Meyer Theorem

23.1 Statement

Theorem 23.1 (Marsden-Weinstein-Meyer [59, 66]) Let (M,ω,G, µ) be
a hamiltonian G-space for a compact Lie group G. Let i : µ−1(0) ↪→ M be the
inclusion map. Assume that G acts freely on µ−1(0). Then

• the orbit space Mred = µ−1(0)/G is a manifold,

• π : µ−1(0)→Mred is a principal G-bundle, and

• there is a symplectic form ωred on Mred satisfying i∗ω = π∗ωred.

Definition 23.2 The pair (Mred, ωred) is called the reduction of (M,ω) with
respect to G,µ, or the reduced space, or the symplectic quotient, or the
Marsden-Weinstein-Meyer quotient, etc.

Low-brow proof for the case G = S1 and dimM = 4.

In this case the moment map is µ : M → R. Let p ∈ µ−1(0). Choose local
coordinates:

• θ along the orbit through p,

• µ given by the moment map, and

• η1, η2 pullback of coordinates on µ−1(0)/S1.

Then the symplectic form can be written

ω = A dθ ∧ dµ+Bj dθ ∧ dηj + Cj dµ ∧ dηj +D dη1 ∧ dη2 .

Since dµ = ı
(
∂
∂θ

)
ω, we must have A = 1, Bj = 0. Hence,

ω = dθ ∧ dµ+ Cj dµ ∧ dηj +D dη1 ∧ dη2 .

Since ω is symplectic, we must have D 6= 0. Therefore, i∗ω = D dη1∧dη2 is the
pullback of a symplectic form on Mred. �

The actual proof of the Marsden-Weinstein-Meyer theorem requires the follow-
ing ingredients.
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23.2 Ingredients

1. Let gp be the Lie algebra of the stabilizer of p ∈M . Then dµp : TpM → g∗

has
ker dµp = (TpOp)ωp

im dµp = g0
p

where Op is the G-orbit through p, and g0
p = {ξ ∈ g∗ | 〈ξ,X〉 = 0, ∀X ∈

gp} is the annihilator of gp.

Proof. Stare at the expression ωp(X#
p , v) = 〈dµp(v), X〉, for all v ∈ TpM

and all X ∈ g, and count dimensions. �

Consequences:

• The action is locally free at p
⇐⇒ gp = {0}
⇐⇒ dµp is surjective
⇐⇒ p is a regular point of µ.

• G acts freely on µ−1(0)
=⇒ 0 is a regular value of µ
=⇒ µ−1(0) is a closed submanifold of M

of codimension equal to dimG.
• G acts freely on µ−1(0)

=⇒ Tpµ
−1(0) = ker dµp (for p ∈ µ−1(0))

=⇒ Tpµ
−1(0) and TpOp are symplectic orthocomplements in TpM .

In particular, the tangent space to the orbit through p ∈ µ−1(0) is
an isotropic subspace of TpM . Hence, orbits in µ−1(0) are isotropic.

Since any tangent vector to the orbit is the value of a vector field gen-
erated by the group, we can confirm that orbits are isotropic directly by
computing, for any X,Y ∈ g and any p ∈ µ−1(0),

ωp(X#
p , Y

#
p ) = hamiltonian function for [Y #, X#] at p

= hamiltonian function for [Y,X]# at p
= µ[Y,X](p) = 0 .

2. Lemma 23.3 Let (V, ω) be a symplectic vector space. Suppose that I
is an isotropic subspace, that is, ω|I ≡ 0. Then ω induces a canonical
symplectic form Ω on Iω/I.

Proof. Let u, v ∈ Iω, and [u], [v] ∈ Iω/I. Define Ω([u], [v]) = ω(u, v).

• Ω is well-defined:

ω(u+ i, v + j) = ω(u, v) + ω(u, j)︸ ︷︷ ︸
0

+ω(i, v)︸ ︷︷ ︸
0

+ω(i, j)︸ ︷︷ ︸
0

, ∀i, j ∈ I .
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• Ω is nondegenerate:
Suppose that u ∈ Iω has ω(u, v) = 0, for all v ∈ Iω.
Then u ∈ (Iω)ω = I, i.e., [u] = 0.

�

3. Theorem 23.4 If a compact Lie group G acts freely on a manifold M ,
then M/G is a manifold and the map π : M → M/G is a principal G-
bundle.
Proof. For any p ∈M , the G-orbit through p is diffeomorphic to G since
G acts freely.

Claim. The G-orbit through p is a compact embedded submanifold of M
(even if the action is not free).

Proof of the Claim. Since the action is smooth, the evaluation map
ev : G × M → M , ev(g, p) = g · p, is smooth. Let evp : G → M be
defined by evp(g) = g · p. The image of evp is the G-orbit through p. Let
Gp = {g ∈ G | g · p = p} be the isotropy group of p. (Gp = {id} for a free
action.) The evaluation map evp factors through Gp:

G
evp - M

I@
@

@
@

@ �
�

�
�

�

ẽvp

�

G/Gp

where ẽvp is an injective immersion. Hence, the orbit through p is an
embedded submanifold of M diffeomorphic to G/Gp. Since G is compact,
G/Gp is also compact. �

Let S be a transverse section to Op at p; this is called a slice. Choose a
coordinate system x1, . . . , xn centered at p such that

G : x1 = . . . = xk = 0
S : xk+1 = . . . = xn = 0 .

Let Sε = S ∩ Bε(0,Rn) where Bε(0,Rn) is the ball of radius ε centered
at 0 in Rn. Let η : G × S → M , η(g, s) = g · s. Apply the following
equivariant tubular neighborhood theorem..

Theorem 23.5 (Slice Theorem) Let G be a compact Lie group acting
on a manifold M such that G acts freely at p ∈M . For sufficiently small
ε, η : G × Sε → M maps G × Sε diffeomorphically onto a G-invariant
neighborhood U of the G-orbit through p.
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The proof of this slice theorem is sketched further below.

Corollary 23.6 If the action of G is free at p, then the action is free on
U .

Corollary 23.7 The set of points where G acts freely is open.

Corollary 23.8 The set G× Sε ' U is G-invariant. Hence, the quotient
U/G ' Sε is smooth.

Conclusion of the proof that M/G is a manifold and π : M →M/G is
a smooth fiber map.

For p ∈M , let q = π(p) ∈M/G. Choose a G-invariant neighborhood U of
p as in the slice theorem: U ' G×S (where S = Sε for an appropriate ε).
Then π(U) = U/G =: V is an open neighborhood of q inM/G. By the slice
theorem, S '→ V is a homeomorphism. We will use such neighborhoods
V as charts on M/G. To show that the transition functions associated
with these charts are smooth, consider two G-invariant open sets U1,U2 in
M and corresponding slices S1, S2 of the G-action. Then S12 = S1 ∩ U2,
S21 = S2 ∩U1 are both slices for the G-action on U1 ∩U2. To compute the
transition map S12 → S21, consider the diagram

S12
'−→ id× S12 ↪→ G× S12

↘'

U1 ∩ U2 .
↗'

S21
'−→ id× S21 ↪→ G× S21

Then the composition

S12 ↪→ U1 ∩ U2
'−→ G× S21

pr−→ S21

is smooth.

Finally, we need to show that π : M → M/G is a smooth fiber map.
For p ∈ M , q = π(p), choose a G-invariant neighborhood U of the G-
orbit through p of the form η : G × S '→ U . Then V = U/G ' S is the
corresponding neighborhood of q in M/G:

M ⊇ U
η
' G× S ' G× V

↓ π ↓
M/G ⊇ V = V

Since the projection on the right is smooth, π is smooth.

Exercise. Check that the transition functions for the bundle defined by
π are smooth. ♦
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�

Sketch for the proof of the slice theorem. We need to show that,
for ε sufficiently small, η : G× Sε → U is a diffeomorphism where U ⊆M
is a G-invariant neighborhood of the G-orbit through p. Show that:

(a) dη(id,p) is bijective.

(b) Let G act on G×S by the product of its left action on G and trivial
action on S. Then η : G× S →M is G-equivariant.

(c) dη is bijective at all points. This follows from (a) and (b).

(d) The set G × {p} is compact, and η : G × S → M is injective on
G×{p} with dη bijective at all these points. By the implicit function
theorem, there is a neighborhood U0 of G × {p} in G × S such that
η maps U0 diffeomorphically onto a neighborhood U of the G-orbit
through p.

(e) The sets G×Sε, varying ε, form a neighborhood base for G×{p} in
G× S. So in (d) we may take U0 = G× Sε.

�

23.3 Proof of the Marsden-Weinstein-Meyer Theorem

Since

G acts freely on µ−1(0) =⇒ dµp is surjective for all p ∈ µ−1(0)
=⇒ 0 is a regular value
=⇒ µ−1(0) is a submanifold of codimension = dimG

for the first two parts of the Marsden-Weinstein-Meyer theorem it is enough to
apply the third ingredient from Section 23.2 to the free action of G on µ−1(0).

At p ∈ µ−1(0) the tangent space to the orbit TpOp is an isotropic subspace
of the symplectic vector space (TpM,ωp), i.e., TpOp ⊆ (TpOp)ω.

(TpOp)ω = ker dµp = Tpµ
−1(0) .

The lemma (second ingredient) gives a canonical symplectic structure on the
quotient Tpµ−1(0)/TpOp. The point [p] ∈ Mred = µ−1(0)/G has tangent space
T[p]Mred ' Tpµ

−1(0)/TpOp. Thus the lemma defines a nondegenerate 2-form
ωred on Mred. This is well-defined because ω is G-invariant.

By construction i∗ω = π∗ωred where

µ−1(0)
i
↪→ M

↓ π
Mred

Hence, π∗dωred = dπ∗ωred = dı∗ω = ı∗dω = 0. The closedness of ωred follows
from the injectivity of π∗. �
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Remark. Suppose that another Lie group H acts on (M,ω) in a hamiltonian
way with moment map φ : M → h∗. If the H-action commutes with the G-
action, and if φ is G-invariant, then Mred inherits a hamiltonian action of H,
with moment map φred : Mred → h∗ satisfying φred ◦ π = φ ◦ i. ♦



24 Reduction

24.1 Noether Principle

Let (M,ω,G, µ) be a hamiltonian G-space.

Theorem 24.1 (Noether) If f : M → R is a G-invariant function, then µ
is constant on the trajectories of the hamiltonian vector field of f .

Proof. Let vf be the hamiltonian vector field of f . Let X ∈ g and µX =
〈µ,X〉 : M → R. We have

Lvf
µX = ıvf

dµX = ıvf
ıX#ω

= −ıX# ıvf
ω = −ıX#df

= −LX#f = 0

because f is G-invariant. �

Definition 24.2 A G-invariant function f : M → R is called an integral of
motion of (M,ω,G, µ). If µ is constant on the trajectories of a hamiltonian
vector field vf , then the corresponding one-parameter group of diffeomorphisms
{exp tvf | t ∈ R} is called a symmetry of (M,ω,G, µ).

The Noether principle asserts that there is a one-to-one correspondence
between symmetries and integrals of motion.

24.2 Elementary Theory of Reduction

Finding a symmetry for a 2n-dimensional mechanical problem may reduce it
to a (2n − 2)-dimensional problem as follows: an integral of motion f for a
2n-dimensional hamiltonian system (M,ω,H) may enable us understand the
trajectories of this system in terms of the trajectories of a (2n− 2)-dimensional
hamiltonian system (Mred, ωred,Hred). To make this precise, we will describe
this process locally. Suppose that U is an open set in M with Darboux coordi-
nates x1, . . . , xn, ξ1, . . . , ξn such that f = ξn for this chart, and write H in these
coordinates: H = H(x1, . . . , xn, ξ1, . . . , ξn). Then

ξn is an integral of motion =⇒


the trajectories of vH lie on the

hyperplane ξn = constant
{ξn,H} = 0 = − ∂H

∂xn

=⇒ H = H(x1, . . . , xn−1, ξ1, . . . , ξn) .
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If we set ξn = c, the motion of the system on this hyperplane is described
by the following Hamilton equations:

dx1

dt
=

∂H

∂ξ1
(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

...
dxn−1

dt
=

∂H

∂ξn−1
(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

dξ1
dt

= − ∂H
∂x1

(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

...
dξn−1

dt
= − ∂H

∂xn−1
(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

dxn
dt

=
∂H

∂ξn

dξn
dt

= − ∂H
∂xn

= 0 .

The reduced phase space is

Ured = {(x1, . . . , xn−1, ξ1, . . . , ξn−1) ∈ R2n−2 |
(x1, . . . , xn−1, a, ξ1, . . . , ξn−1, c) ∈ U for some a} .

The reduced hamiltonian is

Hred : Ured −→ R ,
Hred(x1, . . . , xn−1, ξ1, . . . , ξn−1) = H(x1, . . . , xn−1, ξ1, . . . , ξn−1, c) .

In order to find the trajectories of the original system on the hypersurface
ξn = c, we look for the trajectories

x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t)

of the reduced system on Ured. We integrate the equation

dxn
dt

(t) =
∂H

∂ξn
(x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t), c)

to obtain the original trajectories{
xn(t) = xn(0) +

∫ t
0
∂H
∂ξn

(. . .)dt
ξn(t) = c .
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24.3 Reduction for Product Groups

Let G1 and G2 be compact connected Lie groups and let G = G1 ×G2. Then

g = g1 ⊕ g2 and g∗ = g∗1 ⊕ g∗2 .

Suppose that (M,ω,G, ψ) is a hamiltonian G-space with moment map

ψ : M −→ g∗1 ⊕ g∗2 .

Write ψ = (ψ1, ψ2) where ψi : M → g∗i for i = 1, 2. The fact that ψ is
equivariant implies that ψ1 is invariant under G2 and ψ2 is invariant under G1.
Now reduce (M,ω) with respect to the G1-action. Let

Z1 = ψ−1
1 (0) .

Assume that G1 acts freely on Z1. Let M1 = Z1/G1 be the reduced space
and let ω1 be the corresponding reduced symplectic form. The action of G2

on Z1 commutes with the G1-action. Since G2 preserves ω, it follows that
G2 acts symplectically on (M1, ω1). Since G1 preserves ψ2, G1 also preserves
ψ2 ◦ ι1 : Z1 → g∗2, where ι1 : Z1 ↪→ M is inclusion. Thus ψ2 ◦ ι is constant on
fibers of Z1

p1→M1. We conclude that there exists a smooth map µ2 : M1 → g∗2
such that µ2 ◦ p = ψ2 ◦ i.

Exercise. Show that:

(a) the map µ2 is a moment map for the action of G2 on (M1, ω1), and

(b) if G acts freely on ψ−1(0, 0), then G2 acts freely on µ−1
2 (0), and there is a

natural symplectomorphism

µ−1
2 (0)/G2 ' ψ−1(0, 0)/G .

♦

This technique of performing reduction with respect to one factor of a prod-
uct group at a time is called reduction in stages. It may be extended to
reduction by a normal subgroup H ⊂ G and by the corresponding quotient
group G/H.

24.4 Reduction at Other Levels

Suppose that a compact Lie group G acts on a symplectic manifold (M,ω) in a
hamiltonian way with moment map µ : M → g∗. Let ξ ∈ g∗.

To reduce at the level ξ of µ, we need µ−1(ξ) to be preserved by G, or else
take the G-orbit of µ−1(ξ), or else take the quotient by the maximal subgroup
of G which preserves µ−1(ξ).
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Since µ is equivariant,

G preserves µ−1(ξ) ⇐⇒ G preserves ξ
⇐⇒ Ad∗gξ = ξ, ∀g ∈ G .

Of course the level 0 is always preserved. Also, when G is a torus, any level
is preserved and reduction at ξ for the moment map µ, is equivalent to reduction
at 0 for a shifted moment map φ : M → g∗, φ(p) := µ(p)− ξ.

Let O be a coadjoint orbit in g∗ equipped with the canonical symplec-
tic form (also know as the Kostant-Kirillov symplectic form or the Lie-
Poisson symplectic form) ωO defined in Homework 17. Let O− be the orbit
O equipped with −ωO. The natural product action of G on M ×O− is hamil-
tonian with moment map µO(p, ξ) = µ(p)− ξ. If the Marsden-Weinstein-Meyer
hypothesis is satisfied for M × O−, then one obtains a reduced space with
respect to the coadjoint orbit O.

24.5 Orbifolds

Example. Let G = Tn be an n-torus. For any ξ ∈ (tn)∗, µ−1(ξ) is preserved by
the Tn-action. Suppose that ξ is a regular value of µ. (By Sard’s theorem, the
singular values of µ form a set of measure zero.) Then µ−1(ξ) is a submanifold
of codimension n. Note that

ξ regular =⇒ dµp is surjective at all p ∈ µ−1(ξ)
=⇒ gp = 0 for all p ∈ µ−1(ξ)
=⇒ the stabilizers on µ−1(ξ) are finite
=⇒ µ−1(ξ)/G is an orbifold [72, 73] .

Let Gp be the stabilizer of p. By the slice theorem (Lecture 23), µ−1(ξ)/G
is modeled by S/Gp, where S is a Gp-invariant disk in µ−1(ξ) through p and
transverse to Op. Hence, locally µ−1(ξ)/G looks indeed like Rn divided by a
finite group action. ♦

Example. Consider the S1-action on C2 given by eiθ · (z1, z2) = (eikθz1, eiθz2)
for some fixed integer k ≥ 2. This is hamiltonian with moment map

µ : C2 −→ R
(z1, z2) 7−→ − 1

2 (k|z1|2 + |z2|2) .

Any ξ < 0 is a regular value and µ−1(ξ) is a 3-dimensional ellipsoid. The stabi-
lizer of (z1, z2) ∈ µ−1(ξ) is {1} if z2 6= 0, and is Zk =

{
ei

2π`
k | ` = 0, 1, . . . , k − 1

}
if z2 = 0. The reduced space µ−1(ξ)/S1 is called a teardrop orbifold or cone-
head; it has one cone (also known as a dunce cap) singularity of type k (with
cone angle 2π

k ). ♦
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Example. Let S1 act on C2 by eiθ · (z1, z2) = (eikθz1, ei`θz2) for some integers
k, ` ≥ 2. Suppose that k and ` are relatively prime. Then

(z1, 0) has stabilizer Zk (for z1 6= 0) ,
(0, z2) has stabilizer Z` (for z2 6= 0) ,

(z1, z2) has stabilizer {1} (for z1, z2 6= 0) .

µ−1(ξ)/S1 is called a football orbifold. It has two cone singularities, one of
type k and another of type `. ♦

Example. More generally, the reduced spaces of S1 acting on Cn by

eiθ · (z1, . . . , zn) = (eik1θz1, . . . , eiknθzn) ,

are called weighted (or twisted) projective spaces. ♦



Homework 18: Spherical Pendulum

This set of problems is from [42].

The spherical pendulum is a mechanical system consisting of a massless
rigid rod of length l, fixed at one end, whereas the other end has a plumb bob
of mass m, which may oscillate freely in all directions. Assume that the force
of gravity is constant pointing vertically downwards, and that this is the only
external force acting on this one-particle system.

Let ϕ, θ (0 < ϕ < π, 0 < θ < 2π) be spherical coordinates for the bob. For
simplicity assume that m = l = 1.

1. Let η, ξ be the coordinates along the fibers of T ∗S2 induced by the spher-
ical coordinates ϕ, θ on S2. Show that the function H : T ∗S2 → R given
by

H(ϕ, θ, η, ξ) =
1
2

(
η2 +

ξ2

(sinϕ)2

)
+ cosϕ ,

is an appropriate hamiltonian function to describe the spherical pendulum.

2. Compute the critical points of the function H. Show that, on S2, there
are exactly two critical points: s (where H has a minimum) and u. These
points are called the stable and unstable points of H, respectively. Jus-
tify this terminology, i.e., show that a trajectory whose initial point is
close to s stays close to s forever, and show that this is not the case for u.
What is happening physically?

3. Show that the group of rotations about the vertical axis is a group of
symmetries of the spherical pendulum.

Show that, in the coordinates above, the integral of motion associated
with these symmetries is the function

J(ϕ, θ, η, ξ) = ξ .

Give a more coordinate-independent description of J , one that makes sense
also on the cotangent fibers above the North and South poles.
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4. Locate all points p ∈ T ∗S2 where dHp and dJp are linearly dependent:

(a) Clearly, the two critical points s and u belong to this set. Show that
these are the only two points where dHp = dJp = 0.

(b) Show that, if x ∈ S2 is in the southern hemisphere (x3 < 0), then
there exist exactly two points, p+ = (x, η, ξ) and p− = (x,−η,−ξ),
in the cotangent fiber above x where dHp and dJp are linearly de-
pendent.

(c) Show that dHp and dJp are linearly dependent along the trajectory
of the hamiltonian vector field of H through p+.
Conclude that this trajectory is also a trajectory of the hamiltonian
vector field of J , and, hence, that its projection onto S2 is a latitu-
dinal circle (of the form x3 = constant).
Show that the projection of the trajectory through p− is the same
latitudinal circle traced in the opposite direction.

5. Show that any nonzero value j is a regular value of J , and that S1 acts
freely on the level set J = j. What happens on the cotangent fibers above
the North and South poles?

6. For j 6= 0 describe the reduced system and sketch the level curves of the
reduced hamiltonian.

7. Show that the integral curves of the original system on the level set J = j
can be obtained from those of the reduced system by “quadrature”, in
other words, by a simple integration.

8. Show that the reduced system for j 6= 0 has exactly one equilibrium point.
Show that the corresponding relative equilibrium for the original system
is one of the horizontal curves in exercise 4.

9. The energy-momentum map is the map (H,J) : T ∗S2 → R2. Show
that, if j 6= 0, the level set (H,J) = (h, j) of the energy-momentum map is
either a circle (in which case it is one of the horizontal curves in exercise 4),
or a two-torus. Show that the projection onto the configuration space of
the two-torus is an annular region on S2.





Part X

Moment Maps Revisited
Moment maps and symplectic reduction have been finding infinite-dimensional
incarnations with amazing consequences for differential geometry. Lecture 25
sketches the symplectic approach of Atiyah and Bott to Yang-Mills theory.

Lecture 27 describes the convexity of the image of a torus moment map, one
of the most striking geometric characteristics of moment maps.

25 Moment Map in Gauge Theory

25.1 Connections on a Principal Bundle

Let G be a Lie group and B a manifold.

Definition 25.1 A principal G-bundle over B is a manifold P with a smooth
map π : P → B satisfying the following conditions:

(a) G acts freely on P (on the left),

(b) B is the orbit space for this action and π is the point-orbit projection, and

(c) there is an open covering of B, such that, to each set U in that covering
corresponds a map ϕU : π−1(U)→ U ×G with

ϕU (p) = (π(p), sU (p)) and sU (g · p) = g · sU (p) , ∀p ∈ π−1(U) .

The G-valued maps sU are determined by the corresponding ϕU . Condition (c)
is called the property of being locally trivial.

If P with map π : P → B is a principal G-bundle over B, then the manifold
B is called the base, the manifold P is called the total space, the Lie group G
is called the structure group, and the map π is called the projection. This
principal bundle is also represented by the following diagram:

G ⊂ - P

B

π

?

Example. Let P be the 3-sphere regarded as unit vectors in C2:

P = S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} .
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Let G be the circle group, where eiθ ∈ S1 acts on S3 by complex multiplication,

(z1, z2) 7−→ (eiθz1, eiθz2) .

Then the quotient space B is the first complex projective space, that is, the two-
sphere. This data forms a principal S1-bundle, known as the Hopf fibration:

S1 ⊂ - S3

S2

π

?

♦

An action ψ : G→ Diff(P ) induces an infinitesimal action

dψ : g −→ χ(P )
X 7−→ X# = vector field generated by the

one-parameter group {exp tX(e) | t ∈ R} .

From now on, fix a basis X1, . . . , Xk of g.
Let P be a principal G-bundle over B. Since the G-action is free, the vector

fieldsX#
1 , . . . , X

#
k are linearly independent at each p ∈ P . The vertical bundle

V is the rank k subbundle of TP generated by X#
1 , . . . , X

#
k .

Exercise. Check that the vertical bundle V is the set of vectors tangent to P
which lie in the kernel of the derivative of the bundle projection π. (This shows
that V is independent of the choice of basis for g.) ♦

Definition 25.2 A (Ehresmann) connection on a principal bundle P is a
choice of a splitting

TP = V ⊕H ,

where H is a G-invariant subbundle of TP complementary to the vertical bundle
V . The bundle H is called the horizontal bundle.

25.2 Connection and Curvature Forms

A connection on a principal bundle P may be equivalently described in terms
of 1-forms.

Definition 25.3 A connection form on a principal bundle P is a Lie-algebra-
valued 1-form

A =
k∑
i=1

Ai ⊗Xi ∈ Ω1(P )⊗ g

such that:
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(a) A is G-invariant, with respect to the product action of G on Ω1(P ) (in-
duced by the action on P ) and on g (the adjoint representation), and

(b) A is vertical, in the sense that ıX#A = X for any X ∈ g.

Exercise. Show that a connection TP = V ⊕H determines a connection form
A and vice-versa by the formula

H = kerA = {v ∈ TP | ıvA = 0} .

♦
Given a connection on P , the splitting TP = V ⊕H induces the following

splittings for bundles:

T ∗P = V ∗ ⊕H∗

∧2T ∗P = (∧2V ∗) ⊕ (V ∗ ∧H∗) ⊕ (∧2H∗)
...

and for their sections:
Ω1(P ) = Ω1

vert(P )⊕ Ω1
horiz(P )

Ω2(P ) = Ω2
vert(P )⊕ Ω2

mix(P )⊕ Ω2
horiz(P )

...

The corresponding connection form A is in Ω1
vert ⊗ g. Its exterior derivative dA

is in
Ω2(P )⊗ g =

(
Ω2

vert ⊕ Ω2
mix ⊕ Ω2

horiz

)
⊗ g ,

and thus decomposes into three components,

dA = (dA)vert + (dA)mix + (dA)horiz .

Exercise. Check that:

(a) (dA)vert(X,Y ) = [X,Y ], i.e., (dA)vert = 1
2

∑
i,`,m

ci`mA` ∧ Am ⊗ Xi, where

the ci`m’s are the structure constants of the Lie algebra with respect to
the chosen basis, and defined by [X`, Xm] =

∑
i,`,m

ci`mXi;

(b) (dA)mix = 0.

♦
According to the previous exercise, the relevance of dA may come only from

its horizontal component.

Definition 25.4 The curvature form of a connection is the horizontal com-
ponent of its connection form. I.e., if A is the connection form, then

curv A = (dA)horiz ∈ Ω2
horiz ⊗ g .

Definition 25.5 A connection is called flat if its curvature is zero.
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25.3 Symplectic Structure on the Space of Connections

Let P be a principal G-bundle over B. If A is a connection form on P , and if
a ∈ Ω1

horiz⊗g is G-invariant for the product action, then it is easy to check that
A+a is also a connection form on P . Reciprocally, any two connection forms on
P differ by an a ∈ (Ω1

horiz ⊗ g)G. We conclude that the set A of all connections
on the principal G-bundle P is an affine space modeled on the linear space

a = (Ω1
horiz ⊗ g)G .

Now let P be a principal G-bundle over a compact oriented 2-dimensional
riemannian manifold B (in particular, B is a Riemann surface). Suppose that
the group G is compact or semisimple. Atiyah and Bott [7] noticed that the cor-
responding space A of all connections may be treated as an infinite-dimensional
symplectic manifold. This will require choosing a G-invariant inner product
(·, ·) on g, which always exists, either by averaging any inner product when G
is compact, or by using the Killing form on semisimple groups.

Since A is an affine space, its tangent space at any point A is identified with
the model linear space a. With respect to a basis X1, . . . , Xk for the Lie algebra
g, elements a, b ∈ a12 are written

a =
∑

ai ⊗Xi and b =
∑

bi ⊗Xi .

If we wedge a and b, and then integrate over B using the riemannian volume,
we obtain a real number:

ω : a× a −→
(
Ω2(P )

)G −→ R

(a, b) 7−→
∑
i,j

ai ∧ bj(Xi, Xj) 7−→
∫
B

∑
i,j

ai ∧ bj(Xi, Xj) .

Exercise. Show that if w(a, b) = 0 for all b ∈ a, then a must be zero. ♦

The map ω is nondegenerate, skew-symmetric, bilinear and constant in the
sense that it does not depend on the base point A. Therefore, it has the right to
be called a symplectic form on A, so the pair (A, ω) is an infinite-dimensional
symplectic manifold.

25.4 Action of the Gauge Group

Let P be a principal G-bundle over B. A diffeomorphism f : P → P commuting
with the G-action determines a diffeomorphism fbasic : B → B by projection.

Definition 25.6 A diffeomorphism f : P → P commuting with the G-action
is a gauge transformation if the induced fbasic is the identity. The gauge
group of P is the group G of all gauge transformations of P .

12The choice of symbols is in honor of Atiyah and Bott!
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The derivative of an f ∈ G takes a connection TP = V ⊕ H to another
connection TP = V ⊕ Hf , and thus induces an action of G in the space A of
all connections. Recall that A has a symplectic form ω. Atiyah and Bott [7]
noticed that the action of G on (A, ω) is hamiltonian, where the moment map
(appropriately interpreted) is the map

µ : A −→
(
Ω2(P )⊗ g

)G
A 7−→ curv A ,

i.e., the moment map “is” the curvature! We will describe this construction in
detail for the case of circle bundles in the next section.

Remark. The reduced space at level zero

M = µ−1(0)/G

is the space of flat connections modulo gauge equivalence, known as the mod-
uli space of flat connections. It turns out that M is a finite-dimensional
symplectic orbifold. ♦

25.5 Case of Circle Bundles

What does the Atiyah-Bott construction of the previous section look like for the
case when G = S1?

S1 ⊂ - P

B

π

?

Let v be the generator of the S1-action on P , corresponding to the basis 1 of
g ' R. A connection form on P is a usual 1-form A ∈ Ω1(P ) such that

LvA = 0 and ıvA = 1 .

If we fix one particular connection A0, then any other connection is of the form
A = A0 + a for some a ∈ a =

(
Ω1

horiz(P )
)G = Ω1(B). The symplectic form on

a = Ω1(B) is simply

ω : a× a −→ R

(a, b) 7−→
∫
B

a ∧ b︸︷︷︸
∈Ω2(B)

.
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The gauge group is G = Maps(B,S1), because a gauge transformation is multi-
plication by some element of S1 over each point in B:

ψ : G −→ Diff(P )

h : B → S1 7−→ ψh : P → P
p→ h(π(p)) · p

The Lie algebra of G is

Lie G = Maps(B,R) = C∞(B) .

Its dual space is
(Lie G)∗ = Ω2(B) ,

where the duality is provided by integration over B

〈·, ·〉 : C∞(B)× Ω2(B) −→ R

(h, β) 7−→
∫
B

hβ .

(it is topological or smooth duality, as opposed to algebraic duality) .
The gauge group acts on the space of all connections by

G −→ Diff(A)

h(x) = eiθ(x) 7−→ (A 7→ A−π∗dθ︸ ︷︷ ︸
∈a

)

Exercise. Check the previous assertion about the action on connections.
Hint: First deal with the case where P = S1×B is a trivial bundle, in which
case h ∈ G acts on P by

ψh : (t, x) 7−→ (t+ θ(x), x) ,

and where every connection can be written A = dt + β, with β ∈ Ω1(B). A
gauge transformation h ∈ G acts on A by

A 7−→ ψ∗
h−1 (A) .

♦

The infinitesimal action of G on A is

dψ : Lie G −→ χ(A)

X 7−→ X# = vector field described by the transformation
(A 7→ A −dX︸ ︷︷ ︸

∈Ω1(B)=a

)

so that X# = −dX.
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Finally, we will check that

µ : A −→ (Lie G)∗ = Ω2(B)

A 7−→ curv A

is indeed a moment map for the action of the gauge group on A.

Exercise. Check that in this case:

(a) curv A = dA ∈
(
Ω2

horiz(P )
)G

= Ω2(B) ,

(b) µ is G-invariant.

♦

The previous exercise takes care of the equivariance condition, since the
action of G on Ω2(B) is trivial.

Take any X ∈ Lie G = C∞(B). We need to check that

dµX(a) = ω(X#, a) , ∀a ∈ Ω1(B) . (?)

As for the left-hand side of (?), the map µX ,

µX : A −→ R

A 7−→ 〈 X︸︷︷︸
∈C∞(B)

, dA︸︷︷︸
∈Ω2(B)

〉 =
∫
B

X · dA ,

is linear in A. Consequently,

dµX : a −→ R

a 7−→
∫
B

X · da .

As for the right-hand side of (?), by definition of ω, we have

ω(X#, a) =
∫
B

X# · a = −
∫
B

dX · a .

But, by Stokes theorem,, the last integral is

−
∫
B

dX · a =
∫
B

X · da ,

so we are done in proving that µ is the moment map.



Homework 19: Examples of Moment Maps

1. Suppose that a Lie group G acts in a hamiltonian way on two symplectic
manifolds (Mj , ωj), j = 1, 2, with moment maps µ : Mj → g∗. Prove that
the diagonal action of G on M1 ×M2 is hamiltonian with moment map
µ : M1 ×M2 → g∗ given by

µ(p1, p2) = µ1(p1) + µ2(p2) , for pj ∈Mj .

2. Let Tn = {(t1, . . . , tn) ∈ Cn : |tj | = 1, for all j } be a torus acting on Cn
by

(t1, . . . , tn) · (z1, . . . , zn) = (tk11 z1, . . . , t
kn
n zn) ,

where k1, . . . , kn ∈ Z are fixed. Show that this action is hamiltonian with
moment map µ : Cn → (tn)∗ ' Rn given by

µ(z1, . . . , zn) = − 1
2 (k1|z1|2, . . . , kn|zn|2) ( + constant ) .

3. The vector field X# generated by X ∈ g for the coadjoint representation
of a Lie group G on g∗ satisfies 〈X#

ξ
, Y 〉 = 〈ξ, [Y,X]〉, for any Y ∈ g.

Equip the coadjoint orbits with the canonical symplectic forms. Show
that, for each ξ ∈ g∗, the coadjoint action on the orbit G · ξ is hamiltonian
with moment map the inclusion map:

µ : G · ξ ↪→ g∗ .

4. Consider the natural action of U(n) on (Cn, ω0). Show that this action is
hamiltonian with moment map µ : Cn → u(n) given by

µ(z) = i
2zz

∗ ,

where we identify the Lie algebra u(n) with its dual via the inner product
(A,B) = trace(A∗B).

Hint: Denote the elements of U(n) in terms of real and imaginary parts

g = h+i k. Then g acts on R2n by the linear symplectomorphism

(
h −k
k h

)
.

The Lie algebra u(n) is the set of skew-hermitian matrices X = V + iW where
V = −V t ∈ Rn×n and W = W t ∈ Rn×n. Show that the infinitesimal action
is generated by the hamiltonian functions

µX(z) = − 1
2
(x,Wx) + (y, V x)− 1

2
(y,Wy)

where z = x+ i y, x, y ∈ Rn and (·, ·) is the standard inner product. Show that

µX(z) = 1
2
i z∗Xz = 1

2
i trace(zz∗X) .

Check that µ is equivariant.
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5. Consider the natural action of U(k) on the space (Ck×n, ω0) of complex
(k× n)-matrices. Identify the Lie algebra u(k) with its dual via the inner
product (A,B) = trace(A∗B). Prove that a moment map for this action
is given by

µ(A) = 1
2iAA

∗ − Id
2i , for A ∈ Ck×n .

(The choice of the constant − Id
2i is just for later convenience.)

Hint: Exercises 1 and 4.

6. Consider the U(n)-action by conjugation on the space (Cn2
, ω0) of complex

(n× n)-matrices. Show that a moment map for this action is given by

µ(A) = 1
2i [A,A

∗] .

Hint: Previous exercise and its “transpose” version.



26 Existence and Uniqueness of Moment Maps

26.1 Lie Algebras of Vector Fields

Let (M,ω) be a symplectic manifold and v ∈ χ(M) a vector field on M .

v is symplectic ⇐⇒ ıvω is closed ,
v is hamiltonian ⇐⇒ ıvω is exact .

The spaces

χsympl(M) = symplectic vector fields on M ,
χham(M) = hamiltonian vector fields on M .

are Lie algebras for the Lie bracket of vector fields. C∞(M) is a Lie algebra for
the Poisson bracket, {f, g} = ω(vf , vg). H1(M ; R) and R are regarded as Lie
algebras for the trivial bracket. We have two exact sequences of Lie algebras:

0 −→ χham(M) ↪→ χsympl(M) −→ H1(M ; R) −→ 0
v 7−→ [ıvω]

0 −→ R ↪→ C∞(M) −→ χham(M) −→ 0
f 7−→ vf .

In particular, if H1(M ; R) = 0, then χham(M) = χsympl(M).
Let G be a connected Lie group. A symplectic action ψ : G→ Sympl(M,ω)

induces an infinitesimal action

dψ : g −→ χsympl(M)
X 7−→ X# = vector field generated by the

one-parameter group {exp tX(e) | t ∈ R} .

The map dψ is a Lie algebra anti-homomorphism. The action ψ is hamiltonian
if and only if there is a Lie algebra homomorphism µ∗ : g→ C∞(M) lifting dψ,
i.e., making the following diagram commute.

C∞(M) - χsympl(M)

I@
@

@
@

@
µ∗

�
�

�
�

�

dψ

�

g

The map µ∗ is then called a comoment map (defined in Lecture 22).

Existence of µ∗ ⇐⇒ Existence of µ
comoment map moment map

Lie algebra homomorphism ←→ equivariance
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26.2 Lie Algebra Cohomology

Let g be a Lie algebra, and

Ck := Λkg∗ = k-cochains on g
= alternating k-linear maps g× . . .× g︸ ︷︷ ︸

k

−→ R .

Define a linear operator δ : Ck → Ck+1 by

δc(X0, . . . , Xk) =
∑
i<j

(−1)i+jc([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) .

Exercise. Check that δ2 = 0. ♦

The Lie algebra cohomology groups (or Chevalley cohomology groups)
of g are the cohomology groups of the complex 0 δ→ C0 δ→ C1 δ→ . . .:

Hk(g; R) :=
ker δ : Ck −→ Ck+1

im δ : Ck−1 −→ Ck
.

Theorem 26.1 If g is the Lie algebra of a compact connected Lie group G,
then

Hk(g; R) = Hk
deRham(G) .

Proof. Exercise. Hint: by averaging show that the de Rham cohomology can
be computed from the subcomplex of G-invariant forms. �

Meaning of H1(g; R) and H2(g; R):

• An element of C1 = g∗ is a linear functional on g. If c ∈ g∗, then
δc(X0, X1) = −c([X0, X1]). The commutator ideal of g is

[g, g] := {linear combinations of [X,Y ] for any X,Y ∈ g} .

Since δc = 0 if and only if c vanishes on [g, g], we conclude that

H1(g; R) = [g, g]0

where [g, g]0 ⊆ g∗ is the annihilator of [g, g].

• An element of C2 is an alternating bilinear map c : g× g→ R.

δc(X0, X1, X2) = −c([X0, X1], X2) + c([X0, X2], X1)− c([X1, X2], X0) .

If c = δb for some b ∈ C1, then

c(X0, X1) = (δb)(X0, X1) = −b([X0, X1] ).



164 26 EXISTENCE AND UNIQUENESS OF MOMENT MAPS

26.3 Existence of Moment Maps

Theorem 26.2 If H1(g; R) = H2(g,R) = 0, then any symplectic G-action is
hamiltonian.

Proof. Let ψ : G→ Sympl(M,ω) be a symplectic action of G on a symplectic
manifold (M,ω). Since

H1(g; R) = 0 ⇐⇒ [g, g] = g

and since commutators of symplectic vector fields are hamiltonian, we have

dψ : g = [g, g] −→ χham(M).

The action ψ is hamiltonian if and only if there is a Lie algebra homomorphism
µ∗ : g→ C∞(M) such that the following diagram commutes.

R - C∞(M) - χham(M)

I@
@

@
@

@
?

�
�

�
�

�

dψ

�

g

We first take an arbitrary vector space lift τ : g→ C∞(M) making the diagram
commute, i.e., for each basis vector X ∈ g, we choose

τ(X) = τX ∈ C∞(M) such that v(τX) = dψ(X) .

The map X 7→ τX may not be a Lie algebra homomorphism. By construction,
τ [X,Y ] is a hamiltonian function for [X,Y ]#, and (as computed in Lecture 16)
{τX , τY } is a hamiltonian function for−[X#, Y #]. Since [X,Y ]# = −[X#, Y #],
the corresponding hamiltonian functions must differ by a constant:

τ [X,Y ] − {τX , τY } = c(X,Y ) ∈ R .

By the Jacobi identity, δc = 0. Since H2(g; R) = 0, there is b ∈ g∗ satisfying
c = δb, c(X,Y ) = −b([X,Y ]). We define

µ∗ : g −→ C∞(M)
X 7−→ µ∗(X) = τX + b(X) = µX .

Now µ∗ is a Lie algebra homomorphism:

µ∗([X,Y ]) = τ [X,Y ] + b([X,Y ]) = −{τX , τY } = −{µX , µY } .

�

So when is H1(g; R) = H2(g; R) = 0?
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A compact Lie group G is semisimple if g = [g, g].

Examples. The unitary group U(n) is not semisimple because the multiples of
the identity, S1 · Id, form a nontrivial center; at the level of the Lie algebra, this
corresponds to the 1-dimensional subspace R · Id of constant matrices which are
not commutators since they are not traceless.

Any direct product of the other compact classical groups SU(n), SO(n) and
Sp(n) is semisimple (n > 1). Any commutative Lie group is not semisimple. ♦

Theorem 26.3 (Whitehead Lemmas) Let G be a compact Lie group.

G is semisimple ⇐⇒ H1(g; R) = H2(g; R) = 0 .

A proof can be found in [53, pages 93-95].

Corollary 26.4 If G is semisimple, then any symplectic G-action is hamilto-
nian.

26.4 Uniqueness of Moment Maps

Let G be a compact Lie group.

Theorem 26.5 If H1(g; R) = 0, then moment maps for hamiltonian G-actions
are unique.

Proof. Suppose that µ∗1 and µ∗2 are two comoment maps for an action ψ:

C∞(M) - χham(M)

I@
@

@
@

@

µ∗2
µ∗1

�
�

�
�

�

dψ

�

g

For each X ∈ g, µX1 and µX2 are both hamiltonian functions for X#, thus
µX1 − µX2 = c(X) is locally constant. This defines c ∈ g∗, X 7→ c(X).

Since µ∗1, µ
∗
2 are Lie algebra homomorphisms, we have c([X,Y ]) = 0, ∀X,Y ∈

g, i.e., c ∈ [g, g]0 = {0}. Hence, µ∗1 = µ∗2. �

Corollary of this proof. In general, if µ : M → g∗ is a moment map, then
given any c ∈ [g, g]0, µ1 = µ+ c is another moment map.

In other words, moment maps are unique up to elements of the dual of the
Lie algebra which annihilate the commutator ideal.

The two extreme cases are:

G semisimple: any symplectic action is hamiltonian ,
moment maps are unique .

G commutative: symplectic actions may not be hamiltonian ,
moment maps are unique up to any constant c ∈ g∗ .
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Example. The circle action on (T2, ω = dθ1 ∧ dθ2) by rotations in the θ1
direction has vector field X# = ∂

∂θ1
; this is a symplectic action but is not

hamiltonian. ♦



Homework 20: Examples of Reduction

1. For the action of U(k) on Ck×n, we have µ−1(0) = {A ∈ Ck×n |AA∗ = Id}.
Show that the quotient

µ−1(0)/U(k) = G(k, n)

is the grassmannian of k-planes in Cn.

2. Consider the S1-action on (R2n+2, ω0) which, under the usual identifica-
tion of R2n+2 with Cn+1, corresponds to multiplication by eit. This action
is hamiltonian with a moment map µ : Cn+1 → R given by

µ(z) = − 1
2 |z|

2 + 1
2 .

Prove that the reduction µ−1(0)/S1 is CPn with the Fubini-Study sym-
plectic form ωred = ωFS .

Hint: Let pr : Cn+1 \ {0} → CPn denote the standard projection. Check
that

pr∗ωFS = i
2
∂∂̄ log(|z|2) .

Prove that this form has the same restriction to S2n+1 as ωred .

3. Show that the natural actions of Tn+1 and U(n + 1) on (CPn, ωFS) are
hamiltonian, and find formulas for their moment maps.

Hint: Previous exercise and exercises 2 and 4 of Homework 19.
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27 Convexity

27.1 Convexity Theorem

From now on, we will concentrate on actions of a torus G = Tm.

Theorem 27.1 (Atiyah [6], Guillemin-Sternberg [44])
Let (M,ω) be a compact connected symplectic manifold, and let Tm be an

m-torus. Suppose that ψ : Tm → Sympl(M,ω) is a hamiltonian action with
moment map µ : M → Rm. Then:

1. the levels of µ are connected;

2. the image of µ is convex;

3. the image of µ is the convex hull of the images of the fixed points of the
action.

The image µ(M) of the moment map is hence called the moment polytope.

Proof. This proof (due to Atiyah) involves induction over m = dim Tm. Con-
sider the statements:

Am: “the levels of µ are connected, for any Tm-action;”

Bm: “the image of µ is convex, for any Tm-action.”

Then
(1) ⇐⇒ Am holds for all m ,
(2) ⇐⇒ Bm holds for all m .

• A1 is a non-trivial result in Morse theory.

• Am−1 =⇒ Am (induction step) is in Homework 21.

• B1 is trivial because in R connectedness is convexity.

• Am−1 =⇒ Bm is proved below.

Choose an injective matrix A ∈ Zm×(m−1). Consider the action of an (m−1)-
subtorus

ψA : Tm−1 −→ Sympl(M,ω)
θ 7−→ ψAθ .

Exercise. The action ψA is hamiltonian with moment map µA = Atµ : M →
Rm−1. ♦

Given any p0 ∈ µ−1
A (ξ),

p ∈ µ−1
A (ξ) ⇐⇒ Atµ(p) = ξ = Atµ(p0)
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so that
µ−1
A (ξ) = {p ∈M | µ(p)− µ(p0) ∈ kerAt} .

By the first part (statement Am−1), µ−1
A (ξ) is connected. Therefore, if we

connect p0 to p1 by a path pt in µ−1
A (ξ), we obtain a path µ(pt) − µ(p0) in

kerAt. But kerAt is 1-dimensional. Hence, µ(pt) must go through any convex
combination of µ(p0) and µ(p1), which shows that any point on the line segment
from µ(p0) to µ(p1) must be in µ(M):

(1− t)µ(p0) + tµ(p1) ∈ µ(M) , 0 ≤ t ≤ 1 .

Any p0, p1 ∈M can be approximated arbitrarily closely by points p′0 and p′1
with µ(p′1) − µ(p′0) ∈ kerAt for some injective matrix A ∈ Zm×(m−1). Taking
limits p′0 → p0, p′1 → p1, we obtain that µ(M) is convex.13

To prove part 3, consider the fixed point set C of ψ. Homework 21 shows
that C is a finite union of connected symplectic submanifolds, C = C1∪. . .∪CN .
The moment map is constant on each Cj , µ(Cj) = ηj ∈ Rm, j = 1, . . . , N . By
the second part, the convex hull of {η1, . . . , ηN} is contained in µ(M).

For the converse, suppose that ξ ∈ Rm and ξ /∈ convex hull of {η1, . . . , ηN}.
Choose X ∈ Rm with rationally independent components and satisfying

〈ξ,X〉 > 〈ηj , X〉, for all j .

By the irrationality of X, the set {exp tX(e) | t ∈ R} is dense in Tm, hence the
zeros of the vector field X# on M are the fixed points of the Tm-action. Since
µX = 〈µ,X〉 attains its maximum on one of the sets Cj , this implies

〈ξ,X〉 > sup
p∈M
〈µ(p), X〉 ,

hence ξ /∈ µ(M). Therefore,

µ(M) = convex hull of {η1, . . . , ηN} .

�

27.2 Effective Actions

An action of a group G on a manifoldM is called effective if each group element
g 6= e moves at least one p ∈M , that is,⋂

p∈M
Gp = {e} ,

where Gp = {g ∈ G | g · p = p} is the stabilizer of p.

Corollary 27.2 Under the conditions of the convexity theorem, if the Tm-
action is effective, then there must be at least m+ 1 fixed points.

13Clearly µ(M) is closed because it is compact.
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Proof. If the Tm-action is effective, there must be a point p where the moment
map is a submersion, i.e., (dµ1)p, . . . , (dµm)p are linearly independent. Hence,
µ(p) is an interior point of µ(M), and µ(M) is a nondegenerate convex polytope.
Any nondegenerate convex polytope in Rm must have at least m + 1 vertices.
The vertices of µ(M) are images of fixed points. �

Theorem 27.3 Let (M,ω,Tm, µ) be a hamiltonian Tm-space. If the Tm-action
is effective, then dimM ≥ 2m.

Proof. Fact: If ψ : Tm → Diff(M) is an effective action, then it has orbits of
dimension m; a proof may be found in [15].

On an m-dimensional orbit O, the moment map µ(O) = ξ is constant. For
p ∈ O, the exterior derivative

dµp : TpM −→ g∗

maps TpO to 0. Thus
TpO ⊆ ker dµp = (TpO)ω ,

which shows that orbits O of a hamiltonian torus action are always isotropic
submanifolds of M . In particular, dimO = m ≤ 1

2 dimM . �

Definition 27.4 A (symplectic) toric manifold14 is a compact connected
symplectic manifold (M,ω) equipped with an effective hamiltonian action of a
torus T of dimension equal to half the dimension of the manifold:

dim T =
1
2

dimM

and with a choice of a corresponding moment map µ.

Exercise. Show that an effective hamiltonian action of a torus Tn on a 2n-
dimensional symplectic manifold gives rise to an integrable system.

Hint: The coordinates of the moment map are commuting integrals of motion.

♦

27.3 Examples

1. The circle S1 acts on the 2-sphere (S2, ωstandard = dθ ∧ dh) by rota-
tions with moment map µ = h equal to the height function and moment
polytope [−1, 1].

14In these notes, a toric manifold is always a symplectic toric manifold.
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-
µ = h

−1

1

&%
'$

t
t

t
t

1.’ The circle S1 acts on CP1 = C2 − 0/ ∼ with the Fubini-Study form
ωFS = 1

4ωstandard, by eiθ · [z0, z1] = [z0, eiθz1]. This is hamiltonian with

moment map µ[z0, z1] = − 1
2 ·

|z1|2
|z0|2+|z1|2 , and moment polytope

[
− 1

2 , 0
]
.

2. The T2-action on CP2 by

(eiθ1 , eiθ2) · [z0, z1, z2] = [z0, eiθ1z1, eiθ2z2]

has moment map

µ[z0, z1, z2] = −1
2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
.

The fixed points get mapped as

[1, 0, 0] 7−→ (0, 0)
[0, 1, 0] 7−→

(
− 1

2 , 0
)

[0, 0, 1] 7−→
(
0,− 1

2

)

Notice that the stabilizer of a preimage of the edges is S1, while the action
is free at preimages of interior points of the moment polytope.
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Exercise. What is the moment polytope for the T3-action on CP3 as

(eiθ1 , eiθ2 , eiθ3) · [z0, z1, z2, z3] = [z0, eiθ1z1, eiθ2z2, eiθ3z3] ?

♦

Exercise. What is the moment polytope for the T2-action on CP1 × CP1 as

(eiθ, eiη) · ([z0, z1], [w0, w1]) = ([z0, eiθz1], [w0, e
iηw1]) ?

♦



Homework 21: Connectedness

Consider a hamiltonian action ψ : Tm → Sympl (M,ω), θ 7→ ψθ, of an m-
dimensional torus on a 2n-dimensional compact connected symplectic manifold
(M,ω). If we identify the Lie algebra of Tm with Rm by viewing Tm = Rm/Zm,
and we identify the Lie algebra with its dual via the standard inner product,
then the moment map for ψ is µ : M → Rm.

1. Show that there exists a compatible almost complex structure J on (M,ω)
which is invariant under the Tm-action, that is, ψ∗θJ = Jψ∗θ , for all θ ∈ Tm.

Hint: We cannot average almost complex structures, but we can average
riemannian metrics (why?). Given a riemannian metric g0 on M , its Tm-
average g =

∫
Tm ψ∗θg0dθ is Tm-invariant.

2. Show that, for any subgroup G ⊆ Tm, the fixed-point set for G ,

Fix (G) =
⋂
θ∈G

Fix (ψθ) ,

is a symplectic submanifold of M .
Hint: For each p ∈ Fix (G) and each θ ∈ G, the differential of ψθ at p,

dψθ(p) : TpM −→ TpM ,

preserves the complex structure Jp on TpM . Consider the exponential map
expp : TpM → M with respect to the invariant riemannian metric g(·, ·) =
ω(·, J ·). Show that, by uniqueness of geodesics, expp is equivariant, i.e.,

expp(dψθ(p)v) = ψθ(expp v)

for any θ ∈ G, v ∈ TpM . Conclude that the fixed points of ψθ near p correspond
to the fixed points of dψθ(p) on TpM , that is

TpFix (G) =
⋂

θ∈G

ker(Id− dψθ(p)) .

Since dψθ(p) ◦ Jp = Jp ◦ dψθ(p), the eigenspace with eigenvalue 1 is invariant
under Jp, and is therefore a symplectic subspace.

3. A smooth function f : M → R on a compact riemannian manifold M
is called a Morse-Bott function if its critical set Crit (f) = {p ∈
M | df(p) = 0} is a submanifold ofM and for every p ∈ Crit (f), TpCrit (f) =
ker∇2f(p) where ∇2f(p) : TpM → TpM denotes the linear operator ob-
tained from the hessian via the riemannian metric. This is the natural
generalization of the notion of Morse function to the case where the crit-
ical set is not just isolated points. If f is a Morse-Bott function, then
Crit (f) decomposes into finitely many connected critical manifolds C.
The tangent space TpM at p ∈ C decomposes as a direct sum

TpM = TpC ⊕ E+
p ⊕ E−p

where E+
p and E−p are spanned by the positive and negative eigenspaces of

∇2f(p). The index of a connected critical submanifold C is n−C = dimE−p ,
for any p ∈ C, whereas the coindex of C is n+

C = dimE+
p .
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For each X ∈ Rm, let µX = 〈µ,X〉 : M → R be the component of µ along
X. Show that µX is a Morse-Bott function with even-dimensional critical
manifolds of even index. Moreover, show that the critical set

Crit (µX) =
⋂
θ∈TX

Fix (ψθ)

is a symplectic manifold, where TX is the closure of the subgroup of Tm
generated by X.

Hint: Assume first thatX has components independent over Q, so that TX =
Tm and Crit (µX) = Fix (Tm). Apply exercise 2. To prove that TpCrit (µX) =
ker∇2µX(p), show that ker∇2µX(p) = ∩θ∈Tm ker(Id − dψθ(p)). To see
this, notice that the 1-parameter group of matrices (dψexp tX)p coincides with
exp(tvp), where vp = −Jp∇2µX(p) : TpM → TpM is a vector field on TpM .
The kernel of ∇2µX(p) corresponds to the fixed points of dψtX(p), and since X
has rationally independent components, these are the common fixed points of
all dψθ(p), θ ∈ Tm. The eigenspaces of ∇2µX(p) are even-dimensional because
they are invariant under Jp.

4. The moment map µ = (µ1, . . . , µm) is called effective if the 1-forms
dµ1, . . . , dµm of its components are linearly independent. Show that, if µ
is not effective, then the action reduces to that of an (m− 1)-subtorus.

Hint: If µ is not effective, then the function µX = 〈µ,X〉 is constant for
some nonzero X ∈ Rm. Show that we can neglect the direction of X.

5. Prove that the level set µ−1(ξ) is connected for every regular value ξ ∈ Rm.

Hint: Prove by induction over m = dim Tm. For the case m = 1, use the
lemma that all level sets f−1(c) of a Morse-Bott function f : M → R on a com-
pact manifold M are necessarily connected, if the critical manifolds all have
index and coindex 6= 1 (see [64, p.178-179]). For the induction step, you can as-
sume that ψ is effective. Then, for every 0 6= X ∈ Rm, the function µX : M →
R is not constant. Show that C := ∪X 6=0Crit µX = ∪0 6=X∈ZmCrit µX where

each Crit µX is an even-dimensional proper submanifold, so the complement
M \ C must be dense in M . Show that M \ C is open. Hence, by continuity, to
show that µ−1(ξ) is connected for every regular value ξ = (ξ1, . . . , ξm) ∈ Rm, it
suffices to show that µ−1(ξ) is connected whenever (ξ1, . . . , ξm−1) is a regular
value for a reduced moment map (µ1, . . . , µm−1). By the induction hypoth-
esis, the manifold Q = ∩m−1

j=1 µ
−1
j (ξj) is connected whenever (ξ1, . . . , ξm−1)

is a regular value for (µ1, . . . , µm−1). It suffices to show that the function
µm : Q → R has only critical manifolds of even index and coindex (see [64,
p.183]), because then, by the lemma, the level sets µ−1(ξ) = Q∩ µ−1

m (ξm) are
connected for every ξm.



Part XI

Symplectic Toric Manifolds
Native to algebraic geometry, toric manifolds have been studied by symplec-
tic geometers as examples of extremely symmetric hamiltonian spaces, and as
guinea pigs for new theorems. Delzant showed that symplectic toric manifolds
are classified (as hamiltonian spaces) by a set of special polytopes.

28 Classification of Symplectic Toric Manifolds

28.1 Delzant Polytopes

A 2n-dimensional (symplectic) toric manifold is a compact connected sym-
plectic manifold (M2n, ω) equipped with an effective hamiltonian action of an
n-torus Tn and with a corresponding moment map µ : M → Rn.

Definition 28.1 A Delzant polytope ∆ in Rn is a convex polytope satisfying:

• it is simple, i.e., there are n edges meeting at each vertex;

• it is rational, i.e., the edges meeting at the vertex p are rational in the
sense that each edge is of the form p+ tui, 0 ≤ t <∞, where ui ∈ Zn;

• it is smooth, i.e., these u1, . . . , un can be chosen to be a basis of Zn.

Remark. The Delzant polytopes are the simple rational smooth polytopes.
These are closely related to the Newton polytopes (which are the nonsingular
n-valent polytopes), except that the vertices of a Newton polytope are required
to lie on the integer lattice and for a Delzant polytope they are not. ♦

Examples of Delzant polytopes:

@
@

@
@

@
@

@
@

������

�
�
�
�
�
��@

@
@

@

175



176 28 CLASSIFICATION OF SYMPLECTIC TORIC MANIFOLDS

The dotted vertical line in the trapezoildal example means nothing, except that
it’s a picture of a rectangle plus an isosceles triangle. For “taller” triangles,
smoothness would be violated. “Wider” triangles (with integral slope) may
still be Delzant. The family of the Delzant trapezoids of this type, starting
with the rectangle, correspond, under the Delzant construction, to Hirzebruch
surfaces; see Homework 22.

Examples of polytopes which are not Delzant:

HHH
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HH �
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�
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The picture on the left fails the smoothness condition, whereas the picture
on the right fails the simplicity condition.

Algebraic description of Delzant polytopes:

A facet of a polytope is a (n− 1)-dimensional face.
Let ∆ be a Delzant polytope with n = dim ∆ and d = number of facets.
A lattice vector v ∈ Zn is primitive if it cannot be written as v = ku with

u ∈ Zn, k ∈ Z and |k| > 1; for instance, (1, 1), (4, 3), (1, 0) are primitive, but
(2, 2), (4, 6) are not.

Let vi ∈ Zn, i = 1, . . . , d, be the primitive outward-pointing normal vectors
to the facets.
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?

n = 2

d = 3

Then we can describe ∆ as an intersection of halfspaces

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi, i = 1, . . . , d} for some λi ∈ R .
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Example. For the picture below, we have

∆ = {x ∈ (R2)∗ | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}
= {x ∈ (R2)∗ | 〈x, (−1, 0)〉 ≤ 0 , 〈x, (0,−1)〉 ≤ 0 , 〈x, (1, 1)〉 ≤ 1} .
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(0, 0) (1, 0)

(0, 1)
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♦

28.2 Delzant Theorem

We do not have a classification of symplectic manifolds, but we do have a clas-
sification of toric manifolds in terms of combinatorial data. This is the content
of the Delzant theorem.

Theorem 28.2 (Delzant [20]) Toric manifolds are classified by Delzant
polytopes. More specifically, there is the following one-to-one correspondence

{toric manifolds} 1−1−→ {Delzant polytopes}
(M2n, ω,Tn, µ) 7−→ µ(M).

We will prove the existence part (or surjectivity) in the Delzant theorem
following [41]. Given a Delzant polytope, what is the corresponding toric man-
ifold?

(M∆, ω∆,Tn, µ) ?←− ∆n
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28.3 Sketch of Delzant Construction

Let ∆ be a Delzant polytope with d facets. Let vi ∈ Zn, i = 1, . . . , d, be the
primitive outward-pointing normal vectors to the facets. For some λi ∈ R,

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi, i = 1, . . . , d} .

Let e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) be the standard basis of Rd. Con-
sider

π : Rd −→ Rn
ei 7−→ vi .

Claim. The map π is onto and maps Zd onto Zn.

Proof. The set {e1, . . . , ed} is a basis of Zd. The set {v1, . . . , vd} spans Zn for
the following reason. At a vertex p, the edge vectors u1, . . . , un ∈ (Rn)∗, form a
basis for (Zn)∗ which, without loss of generality, we may assume is the standard
basis. Then the corresponding primitive normal vectors to the facets meeting at
p are symmetric (in the sense of multiplication by −1) to the ui’s, hence form
a basis of Zn. �

Therefore, π induces a surjective map, still called π, between tori:

Rd/Zd π−→ Rn/Zn
‖ ‖

Td −→ Tn −→ 0 .

Let
N = kernel of π (N is a Lie subgroup of Td)
n = Lie algebra of N

Rd = Lie algebra of Td
Rn = Lie algebra of Tn.

The exact sequence of tori

0 −→ N
i−→ Td π−→ Tn −→ 0

induces an exact sequence of Lie algebras

0 −→ n
i−→ Rd π−→ Rn −→ 0

with dual exact sequence

0 −→ (Rn)∗ π∗−→ (Rd)∗ i∗−→ n∗ −→ 0 .

Now consider Cd with symplectic form ω0 = i
2

∑
dzk ∧ dz̄k, and standard

hamiltonian action of Td

(eiθ1 , . . . , eiθd) · (z1, . . . , zd) = (eiθ1z1, . . . , eiθdzd) .
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The moment map is φ : Cd −→ (Rd)∗

φ(z1, . . . , zd) = −1
2
(|z1|2, . . . , |zd|2) + constant ,

where we choose the constant to be (λ1, . . . , λd). What is the moment map for
the action restricted to the subgroup N?

Exercise. Let G be any compact Lie group and H a closed subgroup of G,
with g and h the respective Lie algebras. The inclusion i : h ↪→ g is dual to the
projection i∗ : g∗ → h∗. Suppose that (M,ω,G, φ) is a hamiltonian G-space.
Show that the restriction of the G-action to H is hamiltonian with moment map

i∗ ◦ φ : M −→ h∗ .

♦
The subtorus N acts on Cd in a hamiltonian way with moment map

i∗ ◦ φ : Cd −→ n∗ .

Let Z = (i∗ ◦ φ)−1(0) be the zero-level set.

Claim. The set Z is compact and N acts freely on Z.

This claim will be proved in the next lecture.

By the first claim, 0 ∈ n∗ is a regular value of i∗ ◦ φ. Hence, Z is a compact
submanifold of Cd of dimension

dimR Z = 2d− (d− n)︸ ︷︷ ︸
dim n∗

= d+ n .

The orbit space M∆ = Z/N is a compact manifold of dimension

dimR M∆ = d+ n− (d− n)︸ ︷︷ ︸
dimN

= 2n .

The point-orbit map p : Z →M∆ is a principal N -bundle over M∆.
Consider the diagram

Z
j
↪→ Cd

p ↓
M∆

where j : Z ↪→ Cd is inclusion. The Marsden-Weinstein-Meyer theorem guaran-
tees the existence of a symplectic form ω∆ on M∆ satisfying

p∗ω∆ = j∗ω0 .

Exercise. Work out all details in the following simple example.
Let ∆ = [0, a] ⊂ R∗ (n = 1, d = 2). Let v(= 1) be the standard basis vector

in R. Then
∆ : 〈x, v1〉 ≤ 0 v1 = −v

〈x, v2〉 ≤ a v2 = v .
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The projection
R2 π−→ R
e1 7−→ −v
e2 7−→ v

has kernel equal to the span of (e1 + e2), so that N is the diagonal subgroup of
T2 = S1 × S1. The exact sequences become

0 −→ N
i−→ T2 π−→ S1 −→ 0

0 −→ R∗ π∗−→ (R2)∗ i∗−→ n∗ −→ 0
(x1, x2) 7−→ x1 + x2 .

The action of the diagonal subgroup N = {(eiθ, eiθ) ∈ S1 × S1} on C2,

(eiθ, eiθ) · (z1, z2) = (eiθz1, eiθz2) ,

has moment map

(i∗ ◦ φ)(z1, z2) = −1
2
(|z1|2 + |z2|2) + a ,

with zero-level set

(i∗ ◦ φ)−1(0) = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 2a} .

Hence, the reduced space is

(i∗ ◦ φ)−1(0)/N = CP1 projective space! .

♦



29 Delzant Construction

29.1 Algebraic Set-Up

Let ∆ be a Delzant polytope with d facets. We can write ∆ as

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi , i = 1, . . . , d} ,

for some λi ∈ R. Recall the exact sequences from the previous lecture

0 −→ N
i−→ Td π−→ Tn −→ 0

0 −→ n
i−→ Rd π−→ Rn −→ 0

ei 7−→ vi

and the dual sequence

0 −→ (Rn)∗ π∗−→ (Rd)∗ i∗−→ n∗ −→ 0 .

The standard hamiltonian action of Td on Cd

(eiθ1 , . . . , eiθd) · (z1, . . . , zd) = (eiθ1z1, . . . , eiθdzd)

has moment map φ : Cd → (Rd)∗ given by

φ(z1, . . . , zd) = −1
2
(|z1|2, . . . , |zd|2) + (λ1, . . . , λd) .

The restriction of this action to N has moment map

i∗ ◦ φ : Cd −→ n∗ .

29.2 The Zero-Level

Let Z = (i∗ ◦ φ)−1(0).

Theorem 29.1 The level Z is compact and N acts freely on Z.

Proof. Let ∆′ be the image of ∆ by π∗. We will show that φ(Z) = ∆′. Since
φ is a proper map and ∆′ is compact, it will follow that Z is compact.

Lemma 29.2 Let y ∈ (Rd)∗. Then:

y ∈ ∆′ ⇐⇒ y is in the image of Z by φ .

Proof of the lemma. The value y is in the image of Z by φ if and only if
both of the following conditions hold:

1. y is in the image of φ;
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182 29 DELZANT CONSTRUCTION

2. i∗y = 0.

Using the expression for φ and the third exact sequence, we see that these
conditions are equivalent to:

1. 〈y, ei〉 ≤ λi for i = 1, . . . , d.

2. y = π∗(x) for some x ∈ (Rn)∗.

Suppose that the second condition holds, so that y = π∗(x). Then

〈y, ei〉 ≤ λi,∀i ⇐⇒ 〈π∗(x), ei〉 ≤ λi,∀i
⇐⇒ 〈x, π(ei)〉 ≤ λi,∀i
⇐⇒ x ∈ ∆.

Thus, y ∈ φ(z) ⇐⇒ y ∈ π∗(∆) = ∆′. �

Hence, we have a surjective proper map φ : Z → ∆′. Since ∆′ is compact,
we conclude that Z is compact. It remains to show that N acts freely on Z.

We define a stratification of Z with three equivalent descriptions:

• Define a stratification on ∆′ whose ith stratum is the closure of the union
of the i-dimensional faces of ∆′. Pull this stratification back to Z by φ.

We can obtain a more explicit description of the stratification on Z:

• Let F be a face of ∆′ with dimF = n− r. Then F is characterized (as a
subset of ∆′) by r equations

〈y, ei〉 = λi , i = i1, . . . , ir .

We write F = FI where I = (i1, . . . , ir) has 1 ≤ i1 < i2 . . . < ir ≤ d.
Let z = (z1, . . . , zd) ∈ Z.

z ∈ φ−1(FI) ⇐⇒ φ(z) ∈ FI
⇐⇒ 〈φ(z), ei〉 = λi , ∀i ∈ I

⇐⇒ −1
2
|zi|2 + λi = λi , ∀i ∈ I

⇐⇒ zi = 0 , ∀i ∈ I .

• The Td-action on Cd preserves φ, so the Td-action takes Z = φ−1(∆′)
onto itself, so Td acts on Z.

Exercise. The stratification of Z is just the stratification of Z into Td
orbit types. More specifically, if z ∈ Z and φ(z) ∈ FI then the stabilizer
of z in Td is (Td)I where

I = (i1, . . . , ir) ,
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FI = {y ∈ ∆′ | 〈y, ei〉 = λi,∀i ∈ I} ,

and
(Td)I = {(eiθ1 , . . . , eiθd) | eiθs = 1,∀s /∈ I}

Hint: Suppose that z = (z1, . . . , zd) ∈ Cd. Then

(eiθ1z1, . . . , e
iθdzd) = (z1, . . . , zd)

if and only if eiθs = 1 whenever zs 6= 0.

♦

In order to show that N acts freely on Z, consider the worst case scenario of
points z ∈ Z whose stabilizer under the action of Td is a large as possible. Now
(Td)I is largest when FI = {y} is a vertex of ∆′. Then y satisfies n equations

〈y, ei〉 = λi , i ∈ I = {i1, . . . , in} .

Lemma 29.3 Let z ∈ Z be such that φ(z) is a vertex of ∆′. Let (Td)I be the
stabilizer of z. Then the map π : Td → Tn maps (Td)I bijectively onto Tn.

Since N = kerπ, this lemma shows that in the worst case, the stabilizer of z
intersects N in the trivial group. It will follow that N acts freely at this point
and hence on Z.

Proof of the lemma. Suppose that φ(z) = y is a vertex of ∆′. Renumber
the indices so that

I = (1, 2, . . . , n) .

Then
(Td)I = {(eiθ1 , . . . , eiθn , 1, . . . , 1) | θi ∈ R} .

The hyperplanes meeting at y are

〈y′, ei〉 = λi , i = 1, . . . , n .

By definition of Delzant polytope, the set π(e1), . . . , π(en) is a basis of Zn. Thus,
π : (Td)I → Tn is bijective. �

This proves the theorem in the worst case scenario, and hence in general. �

29.3 Conclusion of the Delzant Construction

We continue the construction of (M∆, ω∆) from ∆. We already have that

M∆ = Z/N

is a compact 2n-dimensional manifold. Let ω∆ be the reduced symplectic form.
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Claim. The manifold (M∆, ω∆) is a hamiltonian Tn-space with a moment map
µ having image µ(M∆) = ∆.

Suppose that z ∈ Z. The stabilizer of z with respect to the Td-action is
(Td)I , and

(Td)I ∩N = {e} .

In the worst case scenario, FI is a vertex of ∆′ and (Td)I is an n-dimensional
subgroup of Td. In any case, there is a right inverse map π−1 : Tn → (Td)I .
Thus, the exact sequence

0 −→ N −→ Td −→ Tn −→ 0

splits, and Td = N × Tn.
Apply the results on reduction for product groups (Section 24.3) to our

situation of Td = N × Tn acting on (M∆, ω∆). The moment map is

φ : Cd −→ (Rd)∗ = n∗ ⊕ (Rn)∗ .

Let j : Z ↪→ Cd be the inclusion map, and let

pr1 : (Rd)∗ −→ n∗ and pr2 : (Rd)∗ −→ (Rn)∗

be the projection maps. The map

pr2 ◦ φ ◦ j : Z −→ (Rn)∗

is constant on N -orbits. Thus there exists a map

µ : M∆ −→ (Rn)∗

such that
µ ◦ p = pr2 ◦ φ ◦ j .

The image of µ is equal to the image of pr2 ◦ φ ◦ j. We showed earlier that
φ(Z) = ∆′. Thus

Image of µ = pr2(∆
′) = pr2 ◦ π∗︸ ︷︷ ︸

id

(∆) = ∆ .

Thus (M∆, ω∆) is the required toric manifold corresponding to ∆.

29.4 Idea Behind the Delzant Construction

We use the idea that Rd is “universal” in the sense that any n-dimensional
polytope ∆ with d facets can be obtained by intersecting the negative orthant
Rd− with an affine plane A. Given ∆, to construct A first write ∆ as:

∆ = {x ∈ Rn | 〈x, vi〉 ≤ λi, i = 1, . . . , d} .
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Define

π : Rd −→ Rn with dual map π∗ : Rn −→ Rd .
ei 7−→ vi

Then
π∗ − λ : Rn −→ Rd

is an affine map, where λ = (λ1, . . . , λd). Let A be the image of π∗ − λ. Then
A is an n-dimensional affine plane.

Claim. We have the equality (π∗ − λ)(∆) = Rd− ∩A.

Proof. Let x ∈ Rn. Then

(π∗ − λ)(x) ∈ Rd− ⇐⇒ 〈π∗(x)− λ, ei〉 ≤ 0,∀i
⇐⇒ 〈x, π(ei)〉 − λi ≤ 0,∀i
⇐⇒ 〈x, vi〉 ≤ λi,∀i
⇐⇒ x ∈ ∆ .

�

We conclude that ∆ ' Rd− ∩ A. Now Rd− is the image of the moment map
for the standard hamiltonian action of Td on Cd

φ : Cd −→ Rd

(z1, . . . , zd) 7−→ −1
2
(|z1|2, . . . , |zd|2) .

Facts.

• The set φ−1(A) ⊂ Cd is a compact submanifold. Let i : φ ↪→ Cd denote
inclusion. Then i∗ω0 is a closed 2-form which is degenerate. Its kernel is
an integrable distribution. The corresponding foliation is called the null
foliation.

• The null foliation of i∗ω0 is a principal fibration, so we take the quotient:

N ↪→ φ−1(A)
↓
M∆ = φ−1(A)/N

Let ω∆ be the reduced symplectic form.

• The (non-effective) action of Td = N×Tn on φ−1(A) has a “moment map”
with image φ(φ−1(A)) = ∆. (By “moment map” we mean a map satisfying
the usual definition even though the closed 2-form is not symplectic.)
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Theorem 29.4 For any x ∈ ∆, we have that µ−1(x) is a single Tn-orbit.

Proof. Exercise.
First consider the standard Td-action on Cd with moment map φ : Cd → Rd.

Show that φ−1(y) is a single Td-orbit for any y ∈ φ(Cd). Now observe that

y ∈ ∆′ = π∗(∆) ⇐⇒ φ−1(y) ⊆ Z .

Suppose that y = π∗(x). Show that µ−1(x) = φ−1(y)/N . But φ−1(y) is a single
Td-orbit where Td = N × Tn, hence µ−1(x) is a single Tn-orbit. �

Therefore, for toric manifolds, ∆ is the orbit space.
Now ∆ is a manifold with corners. At every point p in a face F , the tangent

space Tp∆ is the subspace of Rn tangent to F . We can visualize (M∆, ω∆,Tn, µ)
from ∆ as follows. First take the product Tn ×∆. Let p lie in the interior of
Tn ×∆. The tangent space at p is Rn × (Rn)∗. Define ωp by:

ωp(v, ξ) = ξ(v) = −ωp(ξ, v) and ωp(v, v′) = ω(ξ, ξ′) = 0 .

for all v, v′ ∈ Rn and ξ, ξ′ ∈ (Rn)∗. Then ω is a closed nondegenerate 2-form
on the interior of Tn ×∆. At the corner there are directions missing in (Rn)∗,
so ω is a degenerate pairing. Hence, we need to eliminate the corresponding
directions in Rn. To do this, we collapse the orbits corresponding to subgroups
of Tn generated by directions orthogonal to the annihilator of that face.

Example. Consider

(S2, ω = dθ ∧ dh, S1, µ = h) ,

where S1 acts on S2 by rotation. The image of µ is the line segment I = [−1, 1].
The product S1 × I is an open-ended cylinder. By collapsing each end of the
cylinder to a point, we recover the 2-sphere. ♦

Exercise. Build CP2 from T2 ×∆ where ∆ is a right-angled isosceles triangle.
♦

Finally, Tn acts on Tn×∆ by multiplication on the Tn factor. The moment
map for this action is projection onto the ∆ factor.



Homework 22: Delzant Theorem

1. (a) Consider the standard (S1)3-action on CP3:

(eiθ1 , eiθ2 , eiθ3) · [z0, z1, z2, z3] = [z0, eiθ1z1, eiθ2z2, eiθ3z3] .

Exhibit explicitly the subsets of CP3 for which the stabilizer under
this action is {1}, S1, (S1)2 and (S1)3. Show that the images of these
subsets under the moment map are the interior, the facets, the edges
and the vertices, respectively.

(b) Classify all 2-dimensional Delzant polytopes with 4 vertices, up to
translation and the action of SL(2; Z).
Hint: By a linear transformation in SL(2; Z), you can make one of the angles
in the polytope into a square angle. Check that automatically another angle
also becomes 90o.

(c) What are all the 4-dimensional symplectic toric manifolds that have
four fixed points?

2. Take a Delzant polytope in Rn with a vertex p and with primitive (inward-
pointing) edge vectors u1, . . . , un at p. Chop off the corner to obtain a
new polytope with the same vertices except p, and with p replaced by n
new vertices:

p+ εuj , j = 1, . . . , n ,

where ε is a small positive real number. Show that this new polytope
is also Delzant. The corresponding toric manifold is the ε-symplectic
blowup of the original one.

p

   
  
�

@
@
@
@

b
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3. The toric 4-manifold Hn corresponding to the polygon with vertices (0, 0),
(n+ 1, 0), (0, 1) and (1, 1), for n a nonnegative integer, is called a Hirze-
bruch surfaces.

@
@
@

@

HH
HH

H
HH

H

(a) What is the manifold H0? What is the manifold H1?

Hint:

@
@
@

@

(b) Construct the manifold Hn by symplectic reduction of C4 with re-
spect to an action of (S1)2.

(c) Exhibit Hn as a CP1-bundle over CP1.

4. Which 2n-dimensional toric manifolds have exactly n+ 1 fixed points?



30 Duistermaat-Heckman Theorems

30.1 Duistermaat-Heckman Polynomial

Let (M2n, ω) be a symplectic manifold. Then ωn

n! is the symplectic volume form.

Definition 30.1 The Liouville measure (or symplectic measure) of a
Borel subset 15 U of M is

mω(U) =
∫
U

ωn

n!
.

Let G be a torus. Suppose that (M,ω,G, µ) is a hamiltonian G-space, and
that the moment map µ is proper.

Definition 30.2 The Duistermaat-Heckman measure, mDH , on g∗ is the
push-forward of mω by µ : M → g∗. That is,

mDH(U) = (µ∗mω)(U) =
∫
µ−1(U)

ωn

n!

for any Borel subset U of g∗.

For a compactly-supported function h ∈ C∞(g∗), we define its integral with
respect to the Duistermaat-Heckman measure to be∫

g∗
h dmDH =

∫
M

(h ◦ µ)
ωn

n!
.

On g∗ regarded as a vector space, say Rn, there is also the Lebesgue (or
euclidean) measure, m0. The relation between mDH and m0 is governed by the
Radon-Nikodym derivative, denoted by dmDH

dm0
, which is a generalized function

satisfying ∫
g∗
h dmDH =

∫
g∗
h
dmDH

dm0
dm0 .

Theorem 30.3 (Duistermaat-Heckman, 1982 [26]) The Duistermaat-
Heckman measure is a piecewise polynomial multiple of Lebesgue (or euclidean)
measure m0 on g∗ ' Rn, that is, the Radon-Nikodym derivative

f =
dmDH

dm0

is piecewise polynomial. More specifically, for any Borel subset U of g∗,

mDH(U) =
∫
U

f(x) dx ,

where dx = dm0 is the Lebesgue volume form on U and f : g∗ ' Rn → R is
polynomial on any region consisting of regular values of µ.

15The set B of Borel subsets is the σ-ring generated by the set of compact subsets, i.e., if
A,B ∈ B, then A \B ∈ B, and if Ai ∈ B, i = 1, 2, . . ., then ∪∞i=1Ai ∈ B.
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The proof of Theorem 30.3 for the case G = S1 is in Section 30.3. The
proof for the general case, which follows along similar lines, can be found in, for
instance, [41], besides the original articles.

The Radon-Nikodym derivative f is called the Duistermaat-Heckman
polynomial. In the case of a toric manifold, the Duistermaat-Heckman poly-
nomial is a universal constant equal to (2π)n when ∆ is n-dimensional. Thus
the symplectic volume of (M∆, ω∆) is (2π)n times the euclidean volume of ∆.

Example. Consider (S2, ω = dθ∧dh, S1, µ = h). The image of µ is the interval
[−1, 1]. The Lebesgue measure of [a, b] ⊆ [−1, 1] is

m0([a, b]) = b− a .

The Duistermaat-Heckman measure of [a, b] is

mDH([a, b]) =
∫
{(θ,h)∈S2|a≤h≤b}

dθ dh = 2π(b− a) .

Consequently, the spherical area between two horizontal circles depends only on
the vertical distance between them, a result which was known to Archimedes
around 230 BC.

Corollary 30.4 For the standard hamiltonian action of S1 on (S2, ω), we have

mDH = 2π m0 .

♦

30.2 Local Form for Reduced Spaces

Let (M,ω,G, µ) be a hamiltonian G-space, where G is an n-torus.16 Assume
that µ is proper. If G acts freely on µ−1(0), it also acts freely on nearby levels
µ−1(t), t ∈ g∗ and t ≈ 0. Consider the reduced spaces

Mred = µ−1(0)/G and Mt = µ−1(t)/G

with reduced symplectic forms ωred and ωt. What is the relation between these
reduced spaces as symplectic manifolds?

For simplicity, we will assume G to be the circle S1. Let Z = µ−1(0) and let
i : Z ↪→ M be the inclusion map. We fix a connection form α ∈ Ω1(Z) for the
principal bundle

S1 ⊂ - Z

Mred

π

?

16The discussion in this section may be extended to hamiltonian actions of other compact
Lie groups, not necessarily tori; see [41, Exercises 2.1-2.10].
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that is, LX#α = 0 and ıX#α = 1, where X# is the infinitesimal generator for
the S1-action. From α we construct a 2-form on the product manifold Z×(−ε, ε)
by the recipe

σ = π∗ωred − d(xα) ,

x being a linear coordinate on the interval (−ε, ε) ⊂ R ' g∗. (By abuse of
notation, we shorten the symbols for forms on Z×(−ε, ε) which arise by pullback
via projection onto each factor.)

Lemma 30.5 The 2-form σ is symplectic for ε small enough.

Proof. The form σ is clearly closed. At points where x = 0, we have

σ|x=0 = π∗ωred + α ∧ dx ,

which satisfies

σ|x=0

(
X#,

∂

∂x

)
= 1 ,

so σ is nondegenerate along Z×{0}. Since nondegeneracy is an open condition,
we conclude that σ is nondegenerate for x in a sufficiently small neighborhood
of 0. �

Notice that σ is invariant with respect to the S1-action on the first factor of
Z × (−ε, ε). In fact, this S1-action is hamiltonian with moment map given by
projection onto the second factor,

x : Z × (−ε, ε) −→ (−ε, ε) ,

as is easily verified:

ıX#σ = −ıX#d(xα) = −LX#(xα)︸ ︷︷ ︸
0

+d ıX#(xα)︸ ︷︷ ︸
x

= dx .

Lemma 30.6 There exists an equivariant symplectomorphism between a neigh-
borhood of Z in M and a neighborhood of Z × {0} in Z × (−ε, ε), intertwining
the two moment maps, for ε small enough.

Proof. The inclusion i0 : Z ↪→ Z× (−ε, ε) as Z×{0} and the natural inclusion
i : Z ↪→ M are S1-equivariant coisotropic embeddings. Moreover, they satisfy
i∗0σ = i∗ω since both sides are equal to π∗ωred, and the moment maps coincide on
Z because i∗0x = 0 = i∗µ. Replacing ε by a smaller positive number if necessary,
the result follows from the equivariant version of the coisotropic embedding
theorem stated in Section 8.3.17 �

17The equivariant version of Theorem 8.6 needed for this purpose may be phrased as follows:
Let (M0, ω0), (M1, ω1) be symplectic manifolds of dimension 2n, G a compact Lie group acting
on (Mi, ωi), i = 0, 1, in a hamiltonian way with moment maps µ0 and µ1, respectively, Z
a manifold of dimension k ≥ n with a G-action, and ιi : Z ↪→ Mi, i = 0, 1, G-equivariant
coisotropic embeddings. Suppose that ι∗0ω0 = ι∗1ω1 and ι∗0µ0 = ι∗1µ1. Then there exist G-
invariant neighborhoods U0 and U1 of ι0(Z) and ι1(Z) in M0 and M1, respectively, and a
G-equivariant symplectomorphism ϕ : U0 → U1 such that ϕ ◦ ι0 = ι1 and µ0 = ϕ∗µ1.
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Therefore, in order to compare the reduced spaces

Mt = µ−1(t)/S1 , t ≈ 0 ,

we can work in Z × (−ε, ε) and compare instead the reduced spaces

x−1(t)/S1 , t ≈ 0 .

Proposition 30.7 The reduced space (Mt, ωt) is symplectomorphic to

(Mred, ωred − tβ) ,

where β is the curvature form of the connection α.

Proof. By Lemma 30.6, (Mt, ωt) is symplectomorphic to the reduced space at
level t for the hamiltonian space (Z × (−ε, ε), σ, S1, x). Since x−1(t) = Z ×{t},
where S1 acts on the first factor, all the manifolds x−1(t)/S1 are diffeomorphic
to Z/S1 = Mred. As for the symplectic forms, let ιt : Z × {t} ↪→ Z × (−ε, ε) be
the inclusion map. The restriction of σ to Z × {t} is

ι∗tσ = π∗ωred − tdα .

By definition of curvature, dα = π∗β. Hence, the reduced symplectic form on
x−1(t)/S1 is

ωred − tβ .

�

In loose terms, Proposition 30.7 says that the reduced forms ωt vary linearly
in t, for t close enough to 0. However, the identification of Mt with Mred as
abstract manifolds is not natural. Nonetheless, any two such identifications are
isotopic. By the homotopy invariance of de Rham classes, we obtain:

Theorem 30.8 (Duistermaat-Heckman, 1982 [26]) The cohomology class
of the reduced symplectic form [ωt] varies linearly in t. More specifically,

[ωt] = [ωred] + tc ,

where c = [−β] ∈ H2
deRham(Mred) is the first Chern class of the S1-bundle

Z →Mred.

Remark on conventions. Connections on principal bundles are Lie algebra-
valued 1-forms; cf. Section 25.2. Often the Lie algebra of S1 is identified with
2πiR under the exponential map exp : g ' 2πiR → S1, ξ 7→ eξ. Given a prin-
cipal S1-bundle, by this identification the infinitesimal action maps the gener-
ator 2πi of 2πiR to the generating vector field X#. A connection form A is
then an imaginary-valued 1-form on the total space satisfying LX#A = 0 and
ıX#A = 2πi. Its curvature form B is an imaginary-valued 2-form on the base
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satisfying π∗B = dA. By the Chern-Weil isomorphism, the first Chern class
of the principal S1-bundle is c = [ i2πB].

In this lecture, we identify the Lie algebra of S1 with R and implicitly use
the exponential map exp : g ' R → S1, t 7→ e2πit. Hence, given a principal
S1-bundle, the infinitesimal action maps the generator 1 of R to X#, and here a
connection form α is an ordinary 1-form on the total space satisfying LX#α = 0
and ıX#α = 1. The curvature form β is an ordinary 2-form on the base satisfying
π∗β = dα. Consequently, we have A = 2πiα, B = 2πiβ and the first Chern
class is given by c = [−β]. ♦

30.3 Variation of the Symplectic Volume

Let (M,ω, S1, µ) be a hamiltonian S1-space of dimension 2n and let (Mx, ωx)
be its reduced space at level x. Proposition 30.7 or Theorem 30.8 imply that,
for x in a sufficiently narrow neighborhood of 0, the symplectic volume of Mx,

vol(Mx) =
∫
Mx

ωn−1
x

(n− 1)!
=
∫
Mred

(ωred − xβ)n−1

(n− 1)!
,

is a polynomial in x of degree n− 1. This volume can be also expressed as

vol(Mx) =
∫
Z

π∗(ωred − xβ)n−1

(n− 1)!
∧ α .

Recall that α is a chosen connection form for the S1-bundle Z →Mred and β is
its curvature form.

Now we go back to the computation of the Duistermaat-Heckman measure.
For a Borel subset U of (−ε, ε), the Duistermaat-Heckman measure is, by defi-
nition,

mDH(U) =
∫
µ−1(U)

ωn

n!
.

Using the fact that (µ−1(−ε, ε), ω) is symplectomorphic to (Z× (−ε, ε), σ) and,
moreover, they are isomorphic as hamiltonian S1-spaces, we obtain

mDH(U) =
∫
Z×U

σn

n!
.

Since σ = π∗ωred − d(xα), its power is

σn = n(π∗ωred − xdα)n−1 ∧ α ∧ dx .

By the Fubini theorem, we then have

mDH(U) =
∫
U

[∫
Z

π∗(ωred − xβ)n−1

(n− 1)!
∧ α
]
∧ dx .
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Therefore, the Radon-Nikodym derivative of mDH with respect to the Lebesgue
measure, dx, is

f(x) =
∫
Z

π∗(ωred − xβ)n−1

(n− 1)!
∧ α = vol(Mx) .

The previous discussion proves that, for x ≈ 0, f(x) is a polynomial in x.
The same holds for a neighborhood of any other regular value of µ, because we
may change the moment map µ by an arbitrary additive constant.



Homework 23: S1-Equivariant Cohomology

1. Let M be a manifold with a circle action and X# the vector field on M
generated by S1. The algebra of S1-equivariant forms on M is the
algebra of S1-invariant forms on M tensored with complex polynomials in
x,

Ω•
S1(M) := (Ω•(M))S

1
⊗R C[x] .

The product ∧ on Ω•
S1(M) combines the wedge product on Ω•(M) with

the product of polynomials on C[x].

(a) We grade Ω•
S1(M) by adding the usual grading on Ω•(M) to a grading

on C[x] where the monomial x has degree 2. Check that (Ω•
S1(M),∧)

is then a supercommutative graded algebra, i.e.,

α ∧ β = (−1)degα·deg ββ ∧ α

for elements of pure degree α, β ∈ Ω•
S1(M).

(b) On Ω•
S1(M) we define an operator

dS1 := d⊗ 1− ıX# ⊗ x .

In other words, for an elementary form α = α⊗ p(x),

dS1α = dα⊗ p(x)− ıX#α⊗ xp(x) .

The operator dS1 is called the Cartan differentiation. Show that
dS1 is a superderivation of degree 1, i.e., check that it increases degree
by 1 and that it satisfies the super Leibniz rule:

dS1(α ∧ β) = (dS1α) ∧ β + (−1)degα α ∧ dS1β .

(c) Show that d2
S1 = 0.

Hint: Cartan magic formula.

2. The previous exercise shows that the sequence

0 −→ Ω0
S1(M)

dS1−→ Ω1
S1(M)

dS1−→ Ω2
S1(M)

dS1−→ . . .

forms a graded complex whose cohomology is called the equivariant co-
homology18 of M for the given action of S1. The kth equivariant coho-
mology group of M is

Hk
S1(M) :=

ker dS1 : ΩkS1 −→ Ωk+1
S1

im dS1 : Ωk−1
S1 −→ ΩkS1

.

18The equivariant cohomology of a topological space M endowed with a continuous
action of a topological group G is, by definition, the cohomology of the diagonal quotient
(M × EG)/G, where EG is the universal bundle of G, i.e., EG is a contractible space where
G acts freely. H. Cartan [18, 46] showed that, for the action of a compact Lie group G on a
manifold M , the de Rham model (Ω•G(M), dG) computes the equivariant cohomology, where
Ω•G(M) are the G-equivariant forms on M . [8, 10, 23, 41] explain equivariant cohomology in
the symplectic context and [46] discusses equivariant de Rham theory and many applications.
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(a) What is the equivariant cohomology of a point?
(b) What is the equivariant cohomology of S1 with its multiplication

action on itself?
(c) Show that the equivariant cohomology of a manifold M with a free

S1-action is isomorphic to the ordinary cohomology of the quotient
space M/S1.
Hint: Let π : M →M/S1 be projection. Show that

π∗ : H•(M/S1) −→ H•
S1 (M)

[α] 7−→ [π∗α⊗ 1]

is a well-defined isomorphism. It helps to choose a connection on the principal
S1-bundle M → M/S1, that is, a 1-form θ on M such that LX#θ = 0 and
ıX#θ = 1. Keep in mind that a form β on M is of type π∗α for some α if and
only if it is basic, that is LX#β = 0 and ıX#β = 0.

3. Suppose that (M,ω) is a symplectic manifold with an S1-action. Let
µ ∈ C∞(M) be a real function. Consider the equivariant form

ω := ω ⊗ 1 + µ⊗ x .

Show that ω is equivariantly closed, i.e., dS1ω = 0 if and only if µ
is a moment map. The equivariant form ω is called the equivariant
symplectic form.

4. LetM2n be a compact oriented manifold, not necessarily symplectic, acted
upon by S1. Suppose that the set MS1

of fixed points for this action is
finite. Let α(2n) be an S1-invariant top form which is the top degree part
of an equivariantly closed form of even degree, that is, α(2n) ∈ Ω2n(M)S

1

is such that there exists α ∈ Ω•
S1(M) with

α = α(2n) + α(2n−2) + . . .+ α(0)

where α(2k) ∈ (Ω2k(M))S
1 ⊗ C[x] and dS1α = 0.

(a) Show that the restriction of α(2n) to M \MS1
is exact.

Hint: The generator X# of the S1-action does not vanish on M \ MS1
.

Hence, we can define a connection on MS1
by θ(Y ) =

〈Y,X#〉
〈X#,X#〉 , where 〈·, ·〉 is

some S1-invariant metric on M . Use θ ∈ Ω1(M \MS1
) to chase the primitive

of α(2n) all the way up from α(0).

(b) Compute the integral of α(2n) over M .
Hint: Stokes’ theorem allows to localize the answer near the fixed points.

This exercise is a very special case of the Atiyah-Bott-Berline-Vergne lo-
calization theorem for equivariant cohomology [8, 13].

5. What is the integral of the symplectic form ω on a surface with a hamil-
tonian S1-action, knowing that the S1-action is free outside a finite set of
fixed points?

Hint: Exercises 3 and 4.
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principal, Colloque de Topologie (Espaces Fibrés), Bruxelles, 1950, 57-71,
Masson et Cie., Paris, 1951.

[19] Chern, S.S., Complex Manifolds Without Potential Theory, with an ap-
pendix on the geometry of characteristic classes, second edition, Universi-
text, Springer-Verlag, New York-Heidelberg, 1979.

[20] Delzant, T., Hamiltoniens périodiques et images convexes de l’application
moment, Bull. Soc. Math. France 116 (1988), 315-339.

[21] Donaldson, S., Symplectic submanifolds and almost-complex geometry, J.
Differential Geom. 44 (1996), 666-705.

[22] Donaldson, S., Kronheimer, P., The Geometry of Four-Manifolds, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press,
New York, 1990.

[23] Duistermaat, J.J., Equivariant cohomology and stationary phase, Symplec-
tic Geometry and Quantization (Sanda and Yokohama, 1993), edited by
Maeda, Y., Omori, H. and Weinstein, A., 45-62, Contemp. Math. 179,
Amer. Math. Soc., Providence, 1994.

[24] Duistermaat, J.J., The Heat Kernel Lefschetz Fixed Point Formula for the
Spin-c Dirac Operator, Progress in Nonlinear Differential Equations and
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action
adjoint, 129, 135
coadjoint, 129, 135
coordinates, 109
definition, 126
effective, 169
free, 133
gauge group, 156
hamiltonian, 127, 128, 131, 162
infinitesimal, 154, 162
locally free, 133
minimizing, 113, 118
of a path, 112, 113, 117
principle of least action, 112
smooth, 127
symplectic, 127
transitive, 133

action-angle coordinates, 109
adapted coordinates, 16
adjoint

action, 129, 135
representation, 128, 129

almost complex manifold, 68
almost complex structure

compatibility, 68
contractibility, 75
definition, 68
integrability, 73, 80
three geometries, 65

almost complex submanifold, 74
almost symplectic manifold, 72
angle coordinates, 108
angular momentum, 135, 136
(J-)anti-holomorphic tangent vectors,

76
antisymmetry, 106
arc-length, 23
Archimedes, 190
Arnold

Arnold-Liouville theorem, 108
conjecture, 31, 53, 54

Atiyah

Atiyah-Guillemin-Sternberg the-
orem, 168

moduli space, 156
Yang-Mills theory, 153

Banyaga theorem, 90
base, 153
basis

for skew-symmetric bilinear maps,
1

Beltrami
Laplace-Beltrami operator, 96

Betti number, 98
biholomorphic map, 81
bilinear map, see skew-symmetric bi-

linear map
billiards, 28
Birkhoff

Poincaré-Birkhoff theorem, 31
blowup, 187
Borel subset, 189
Bott

moduli space, 156
Morse-Bott function, 173
Yang-Mills theory, 153

bracket
Lie, 106
Poisson, 106, 107, 132, 162

C1-topology, 51, 52
canonical

symplectic form on a coadjoint
orbit, 137, 148, 160

symplectomorphism, 10
canonical form on T ∗X

coordinate definition, 7, 8
intrinsic definition, 8
naturality, 9

Cartan
differentiation, 195
magic formula, 34, 38, 42

Cauchy-Riemann equations, 82
characteristic distribution, 51
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chart
complex, 81
Darboux, 5

Chern
first Chern class, 192, 193

Chevalley cohomology, 163
Christoffel

equations, 118
symbols, 118

circle bundle, 157
classical mechanics, 105
coadjoint

action, 129, 135, 160
orbit, 137, 160
representation, 128, 129

codifferential, 96
cohomology

S1-equivariant, 195
Chevalley, 163
de Rham, 11, 37
Dolbeault, 79
equivariant, 195
Lie algebra, 163

coindex, 173, 174
coisotropic

embedding, 47, 51
subspace, 6

commutator ideal, 163
comoment map, 131, 132, 162
compatible

almost complex structure, 68,
72

complex structure, 66
linear structures, 70
triple, 68, 73

complete vector field, 127
completely integrable system, 108
complex

atlas, 87
chart, 81
differentials, 84, 85
Hodge theory, 97
manifold, 81
projective space, 87, 93, 94, 101,

134, 167, 179
complex structure

compatibility, 66, 75
on a vector space, 66
polar decomposition, 67

complex surface, 101
complex torus, 101
complex vector space, 66
complex-antilinear cotangent vectors,

77
complex-linear cotangent vectors, 77
complex-valued form, 77
conehead orbifold, 148
configuration space, 105, 111
conjecture

Arnold, 31, 53, 54
Hodge, 99
Seifert, 63
Weinstein, 63, 64

conjugation, 129
connectedness, 168, 173, 174
connection

flat, 157
form, 154
moduli space, 157
on a principal bundle, 153
space, 156

conormal
bundle, 16
space, 16

conservative system, 111
constrained system, 112
constraint set, 112
contact

contact structure on S2n−1, 62
dynamics, 61
element, 55, 59, 60
example of contact structure, 56
local contact form, 55
local normal form, 57
locally defining 1-form, 55
manifold, 55
point, 55
structure, 55

contactomorphism, 61
contractibility, 75
convexity, 168
cotangent bundle
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canonical symplectomorphism,
9, 10

conormal bundle, 16
coordinates, 7
is a symplectic manifold, 7
lagrangian submanifold, 14–16
projectivization, 57
sphere bundle, 57
zero section, 14

critical set, 173
curvature form, 155

D’Alembert
variational principle, 112

Darboux
chart, 5
theorem, 5, 43, 44
theorem for contact manifolds,

57
theorem in dimension two, 48

de Rham cohomology, 11, 37
deformation equivalence, 40
deformation retract, 38
Delzant

construction, 181, 183, 184
example of Delzant polytope, 175
example of non-Delzant poly-

tope, 176
polytope, 175, 187
theorem, 177, 187

Dolbeault
cohomology, 79
theorem, 86
theory, 76

dual function, 120, 124
Duistermaat-Heckman

measure, 189
polynomial, 189, 190
theorem, 189, 192

dunce cap orbifold, 148
dynamical system, 31

effective
action, 169
moment map, 174

Ehresmann

connection, 154
S4 is not an almost complex man-

ifold, 74
embeddiing

closed, 13
definition, 13

embedding
coisotropic, 47, 51
isotropic, 51
lagrangian, 49

energy
classical mechanics, 105
energy-momentum map, 151
kinetic, 110, 111
potential, 110, 111

equations
Christoffel, 118
Euler-Lagrange, 103, 118, 121
Hamilton, 121, 146
Hamilton-Jacobi, 103
of motion, 111

equivariant
cohomology, 195
coisotropic embedding, 191
form, 195
moment map, 132
symplectic form, 196
tubular neighborhood theorem,

141
euclidean

distance, 22, 23
inner product, 22, 23
measure, 189
norm, 23
space, 22

Euler
Euler-Lagrange equations, 103,

114, 118, 121
variational principle, 112

evaluation map, 127
exactly homotopic to the identity,

54
example

2-sphere, 95
coadjoint orbits, 135, 137
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complex projective space, 87, 101,
179

complex submanifold of a Kähler
manifold, 101

complex torus, 101
Delzant construction, 179
Fernández-Gotay-Gray, 100
Gompf, 101
hermitian matrices, 130
Hirzebruch surfaces, 176, 188
Hopf surface, 100
Kodaira-Thurston, 100
McDuff, 41
non-singular projective variety,

93
of almost complex manifold, 74
of compact complex manifold,

99
of compact Kähler manifold, 94,

99
of compact symplectic manifold,

99
of complex manifold, 87
of contact manifold, 60
of contact structure, 56
of Delzant polytope, 175
of hamiltonian actions, 127, 128
of infinite-dimensional symplec-

tic manifold, 156
of Kähler submanifold, 93
of lagrangian submanifold, 14
of mechanical system, 111
of non-almost-complex manifold,

74
of non-Delzant polytope, 176
of reduced system, 151
of symplectic manifold, 4, 7
of symplectomorphism, 20
oriented surfaces, 48
product of Kähler manifolds, 101
quotient topology, 133
reduction, 167
Riemann surface, 101
simple pendulum, 110
spherical pendulum, 150
Stein manifold, 101

Taubes, 101
toric manifold, 170
weighted projective space, 149

exponential map, 33

facet, 176
Fernández-Gotay-Gray example, 100
first Chern class, 192, 193
first integral, 107
fixed point, 27, 31, 53
flat connection, 157
flow, 33
form

area, 48
canonical, 7, 8
complex-valued, 77
connection, 154
curvature, 155
de Rham, 4
Fubini-Study, 94, 167
harmonic, 96, 97
Kähler, 88, 96
Killing, 156
Liouville, 11
on a complex manifold, 83
positive, 90
symplectic, 4
tautological, 7, 8, 18
type, 77

free action, 133
Fubini theorem, 193
Fubini-Study form, 94, 167
function

biholomorphic, 87
dual, 120, 124
generating, 27
hamiltonian, 104, 132
J-holomorphic, 80
Morse-Bott, 173
stable, 119, 123
strictly convex, 119, 123

G-space, 132
gauge

group, 156
theory, 153
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transformation, 156
Gauss lemma, 26
generating function, 15, 20, 21, 27
geodesic

flow, 24, 25
geodesically convex, 23
minimizing, 23, 117, 118

Gompf construction, 101
Gotay

coisotropic embedding, 51
Fernández-Gotay-Gray, 100

gradient vector field, 105
gravitational potential, 111
gravity, 110, 150
Gray

Fernández-Gotay-Gray (A. Gray),
100

theorem (J. Gray), 57
Gromov

pseudo-holomorphic curve, 65,
80

group
gauge, 156
Lie, 126
of symplectomorphisms, 10, 51
one-parameter group of diffeo-

morphisms, 125, 126
product, 147
semisimple, 156
structure, 153

Guillemin
Atiyah-Guillemin-Sternberg the-

orem, 168

Hamilton equations, 21, 22, 105, 111,
121, 146

Hamilton-Jacobi equations, 103
hamiltonian

action, 127, 128, 131, 162
function, 103, 104, 107, 132
G-space, 132
mechanics, 103
moment map, 132
reduced, 146
system, 107
vector field, 103, 104

harmonic form, 96, 97
Hausdorff quotient, 134
Heckman, see Duistermaat-Heckman
hermitian matrix, 130
hessian, 119, 123, 173
Hirzebruch surface, 176, 188
Hodge

complex Hodge theory, 97
conjecture, 99
decomposition, 96, 97
diamond, 99
number, 98
∗-operator, 96
theorem, 96–98
theory, 96

(J-)holomorphic tangent vectors, 76
homotopy

definition, 38
formula, 37, 38
invariance, 37
operator, 38

Hopf
fibration, 62, 154
S4 is not almost complex, 74
surface, 100
vector field, 62

immersion, 13
index, 173, 174
infinitesimal action, 154, 162
integrable

almost complex structure, 73,
80

system, 107, 108, 170
integral

curve, 104, 111, 125
first, 107
of motion, 107, 145

intersection of lagrangian submani-
folds, 53

inverse square law, 111
isometry, 118
isotopy

definition, 33
symplectic, 40
vs. vector field, 33
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isotropic
embedding, 51
subspace, 6

isotropy, 133

J-anti-holomorphic function, 78
(J-)anti-holomorphic tangent vectors,

76
J-holomorphic curve, 80
J-holomorphic function, 78, 80
(J-)holomorphic tangent vectors, 76
Jacobi

Hamilton-Jacobi equations, 103
identity, 106, 137

jacobiator, 137

Kähler
compact Kähler manifolds, 96
form, 88, 96
local form, 92
manifold, 88, 96
potential, 91, 92
recipe, 90
submanifold, 92

Killing form, 156
kinetic energy, 110, 111
Kirillov

Kostant-Kirillov symplectic form,
137, 148

Kodaira
complex surface, 101
complex surfaces, 100
Kodaira-Thurston example, 100

Kostant-Kirillov symplectic form, 137,
148

Lagrange
Euler-Lagrange equations, 118
variational principle, 112

lagrangian complement, 45
lagrangian fibration, 109
lagrangian submanifold

closed 1-form, 15
conormal bundle, 16
definition, 14
generating function, 15, 21

intersection problem, 53
of T ∗X, 14
vs. symplectomorphism, 13, 17
zero section, 14

lagrangian subspace, 6, 44, 75
Laplace-Beltrami operator, 96
laplacian, 96
Lebesgue

measure, 189
volume, 189

left multiplication, 128
left-invariant, 128
Legendre

condition, 115
transform, 119, 120, 123, 124

Leibniz rule, 107, 137
Lie

algebra, 106, 128, 162
algebra cohomology, 163
bracket, 106
derivative, 34, 38
group, 126

Lie-Poisson symplectic form, 137, 148
lift

of a diffeomorphism, 9
of a path, 113, 117
of a vector field, 104

linear momentum, 135
Liouville

Arnold-Liouville theorem, 108
form, 11
measure, 189
torus, 108

local form, 33, 92, 190
locally free action, 133

manifold
almost symplectic, 72
complex, 81
infinite-dimensional, 156
Kähler, 88, 96
of contact elements, 59
of oriented contact elements, 60
riemannian, 117
symplectic, 4
toric, see toric manifold
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with corners, 186
Marsden-Weinstein-Meyer

quotient, 139
theorem, 134, 139

Maupertius
variational principle, 112

McDuff counterexample, 41
measure

Duistermaat-Heckman, 189
Lebesgue, 189
Liouville, 189
symplectic, 189

mechanical system, 111
mechanics

celestial, 31
classical, 105

metric, 22, 68, 117
Meyer, see Marsden-Weinstein-Meyer
minimizing

action, 113
locally, 113, 115
property, 115

moduli space, 157
moment map

actions, 125
definition, 131
effective, 174
equivariance, 132
example, 160
existence, 162, 164
hamiltonian G-space, 132
in gauge theory, 153
origin, 125
uniqueness, 162, 165
upgraded hamiltonian function,

128
moment polytope, 168
momentum, 105, 121, 135
momentum vector, 135
Morse

Morse-Bott function, 173
Morse function, 53
Morse theory, 53, 168
Moser

equation, 42
theorem – local version, 43

theorem – version I, 41
theorem – version II, 42
trick, 40–42, 48

motion
constant of motion, 107
equations, 111
integral of motion, 107, 145

neighborhood
convex, 35
ε-neighborhood theorem, 36
tubular neighborhood, 49
tubular neighborhood fibration,

37
tubular neighborhood in Rn, 39
tubular neighborhood theorem,

35
Weinstein lagrangian neighbor-

hood, 44, 46
Weinstein tubular neighborhood,

49
Newlander-Nirenberg theorem, 80,

86
Newton

polytope, 175
second law, 103, 105, 111, 112

Nijenhuis tensor, 80, 86
Nikodym

Radon-Nikodym derivative, 189
Nirenberg

Newlander-Nirenberg theorem,
80

Noether
principle, 125, 145
theorem, 145

non-singular projective variety, 93
nondegenerate

bilinear map, 2
fixed point, 53

normal
bundle, 35, 39
space, 35, 39, 49

number
Betti, 98
Hodge, 98
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one-parameter group of diffeomor-
phisms, 125, 126

operator
Laplace-Beltrami, 96

orbifold
conehead, 148
dunce cap, 148
examples, 148
reduced space, 148
teardrop, 148

orbit
definition, 133
point-orbit projection, 133
space, 133
topology of the orbit space, 133
unstable, 133

oriented surfaces, 48
overtwisted contact structure, 64

pendulum
simple, 110, 112
spherical, 150

periodic point, 27
phase space, 105, 111, 146
Picard theorem, 34
Poincaré

last geometric theorem, 31
Poincaré-Birkhoff theorem, 31
recurrence theorem, 30

point-orbit projection, 133
Poisson

algebra, 107
bracket, 106, 107, 132, 162
Lie-Poisson symplectic form, 137,

148
structure on g∗, 137

polar decomposition, 67, 69
polytope

Delzant, 175, 187
example of Delzant polytope, 175
example of non-Delzant poly-

tope, 176
facet, 176
moment, 168
Newton, 175
rational, 175

simple, 175
smooth, 175

positive
form, 90
inner product, 22, 75
vector field, 64

potential
energy, 110, 111
gravitational, 111
Kähler, 91, 92
strictly plurisubharmonic, 90

primitive vector, 176
principal bundle

connection, 153
gauge group, 156

principle
Noether, 125, 145
of least action, 112
variational, 112

product group, 147
projectivization, 59
proper function, 13, 101, 119
pseudo-holomorphic curve, 65, 80
pullback, 5

quadratic growth at infinity, 124
quadrature, 151
quotient

Hausdorff, 134
Marsden-Weinstein-Meyer, 139
symplectic, 139
topology, 133

Radon-Nikodym derivative, 189
rank, 2
rational polytope, 175
recipe

for Kähler forms, 90
for symplectomorphisms, 20

recurrence, 27, 30
reduced

hamiltonian, 146
phase space, 146
space, 134, 139, 148

reduction
example, 167
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for product groups, 147
in stages, 147
local form, 190
low-brow proof, 139
Noether principle, 145
other levels, 147
preview, 134
reduced space, 134
symmetry, 145

Reeb vector field, 61
representation

adjoint, 128, 129
coadjoint, 128, 129
of a Lie group, 126

retraction, 38
Riemann

Cauchy-Riemann equations, 82
surface, 101, 156

riemannian
distance, 23
manifold, 22, 117
metric, 22, 47, 68, 117

right multiplication, 128
right-invariant, 128

s.p.s.h., 90
Seiberg-Witten invariants, 101
Seifert conjecture, 63
semisimple, 156, 165
simple pendulum, 110
simple polytope, 175
skew-symmetric bilinear map

nondegenerate, 2
rank, 2
standard form, 1
symplectic, 2

skew-symmetry
definition, 1
forms, 11
standard form for bilinear maps,

1
slice theorem, 141
smooth polytope, 175
space

affine, 156
configuration, 105, 111

moduli, 157
normal, 39, 49
of connections, 156
phase, 105, 111
total, 153

spherical pendulum, 150
splittings, 76
stability

definition, 119
set, 120

stabilizer, 133
stable

function, 123
point, 110, 150

Stein manifold, 101
stereographic projection, 87, 95
Sternberg

Atiyah-Guillemin-Sternberg the-
orem, 168

Stokes theorem, 11, 159
strictly convex function, 115, 119,

123
strictly plurisubharmonic, 90
strong isotopy, 40, 48
submanifold, 13
submanifold

almost complex, 74
Kähler, 92

subspace
coisotropic, 6
isotropic, 3, 6
lagrangian, 6, 44, 75
symplectic, 3, 6

supercommutativity, 195
superderivation, 195
symplectic

action, 127
almost symplectic manifold, 72
basis, 3
bilinear map, 2
blowup, 187
canonical symplectic form on a

coadjoint orbit, 137, 148,
160

cotangent bundle, 7
deformation equivalence, 40
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duality, 3
equivalence, 40
equivariant form, 196
form, 4, 11
Fubini-Study form, 167
isotopy, 40
linear algebra, 6, 49
linear group, 70
linear symplectic structure, 2
manifold, 4
measure, 189
normal forms, 44
orthogonal, 6
properties of linear symplectic

structures, 3
quotient, 139
reduction, see reduction
strong isotopy, 40
structure on the space of con-

nections, 156
subspace, 6
toric manifold, see toric mani-

fold
vector bundle, 72
vector field, 103, 104, 127
vector space, 2
volume, 11, 189, 193

symplectization, 62
symplectomorphic, 3, 40
symplectomorphism

Arnold conjecture, 31, 53
canonical, 10
definition, 5
equivalence, 13
exactly homotopic to the iden-

tity, 54
fixed point, 31, 53
generating function, 21
group of symplectomorphisms,

10, 51
linear, 3
recipe, 20
tautological form, 18
vs. lagrangian submanifold, 13,

17
system

conservative, 111
constrained, 112
mechanical, 111

Taubes
CP2#CP2#CP2 is not complex,

101
unique symplectic structure on

CP2, 101
tautological form on T ∗X

coordinate definition, 7, 8
intrinsic definition, 8
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