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1 Introduction

Experimentation is a vital part of the learning process in mathematics. A traditional text-
book will provide many examples to allow the student to see the application of theory to
concrete problems, but a tutor is required to answer questions such as “What happens if I
change the 3 here to a 4?”.

While it is true that systems already exist which allow one to write interactive math-
ematics textbooks for school use (see, for example, [1, 2, 3, 4]), we claim that impor-
tant considerations have been overlooked in the past. In particular, most previous work
has concentrated on how to make use of pre-existing software in mathematics education,
rather than first asking the more fundamental question of which requirements mathemat-
ics education puts on software, and then designing software to fulfil these requirements.

We will focus on elementary textbooks, whereas previous work in this area has fo-
cused on the senior levels of high school or introductory university courses.

Properties we believe an interactive mathematics textbook should have are

• Correctness: The statements made in the document should always be correct.

• Interactivity:

(i) It should be possible for the reader to change parts of the document and see
the effects of these changes.

(ii) It should be possible to follow references within the document automatically.

• Consistency:

(i) It should not be possible to change parts of the document in a manner which
interferes with correctness.

(ii) The notation used in the document and in interaction with it should be homo-
geneous.

(iii) The most elementary simplifications of the viewer software should not be
more complex than those being explained in the text.

• Distinction between Author and Reader:

(i) The author is responsible for correctness and consistency.

(ii) The reader may change the document only within the framework set by the
author.

Standard typesetting tools such as LATEX [5] can be made to support interactive docu-
ments by using a viewer which can follow hyperlinks [6, 7], even to interactive visualiza-
tion (such as [8]) or computational tools (such as [9]), but the reader is not able to make
changes to the document itself.
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Figure 1: An excerpt of a sample interactive session with Maple VR5.1. Note the discrepancy
between input and output notations (abs(q) and |q|, respectively). Furthermore, 1/6∧2 is taken
to mean 1/62 whereas 1/6*6 is interpreted as (1/6) · 6, a subtle syntactic difference which may
lead to confusion in the mind of a reader who is not yet confident in arithmetic.

Standard computer algebra packages allow the reader to make changes to the doc-
ument, but without any guarantee of consistency or author control, and without a ho-
mogeneous notation. They essentially allow an author to provide the reader with text,
commands and the output of these commands. The system allows the reader (whom it
cannot distinguish from the author, and this is the source of the problem) to alter the text
or commands as they wish. Furthermore, the input and output notations are not homoge-
neous: one types in commands in a format modelled on typical programming languages
but sees results in a format modelled on typical mathematical notation. See Figure 1. A
final disadvantage of these packages is that they perform automatic simplifications which
are hidden from the reader and often more complex than an elementary mathematics text-
book would introduce. It could for example be difficult for a school student to realize that
they actually entered the expression

1

62
− 1

6
· 6

in Figure 1 because it is automatically simplified to −35/36 before it is displayed. This
makes it impossible to write a school text describing how to simplify such expressions
using the computer algebra package as it stands. None of the computer algebra packages
known to the author refrain from automatically simplifying x/x to 1 when the value of x
is unknown, and some of them simplify to 1 even if x is known to have the value zero.
Such automatic simplications are not only incorrect, they also make it, if not corrected,
impossible to write a textbook covering the fact that

x

x
=

{
1, (x �= 0)

undefined, (x = 0).
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It seems to be a widespread belief that the vertical bars used to denote absolute value
(as in | − 2| = 2) cannot be incorporated into an standard parser for an equation editor,
but we show that this is not necessarily true by defining a grammar which does include
them. This makes it possible to come closer to fulfilling our aim of providing software
which actually understands the notation students are being taught.

1.1 Scripts for Interactive Documents

The responsibility of the author for the correctness and consistency of an interactive doc-
ument differs of course from what is required in the case of a standard book. It is useful
to introduce the concept of a script (that which the author actually writes) as something
distinct from the document the reader sees. A script will not only have text and equations
which are intended for the reader to see, but also notes which are read by the software.
These notes will partly be for purely formatting purposes, but also to specify the form the
interactivity may take.

To give an idea of what a script may look like and what form the author’s responsibility
for correctness and consistency might take, consider the following poor example:

We can use the rules given above to differentiate any polynomial
such as P = x2 + 2001︸ ︷︷ ︸

Note: the reader may change this
but i t must be a polynomial

and differentiate it, getting

2x︸︷︷︸
Note: this must stay as it is

. So we are finally in a position to differentiate Bloom’s

polynomial 17x 17 + 7x7 + 7︸ ︷︷ ︸
Note: the reader may change this

...

A reader would first see

We can use the rules given above to differentiate any polynomial such as
P = x2 + 2001 and differentiate it, getting 2x . So we are finally in a position
to differentiate Bloom’s polynomial 17x 17 + 7x7 + 7...

and be able to change the document to read

We can use the rules given above to differentiate any polynomial such as
P = x + 0 and differentiate it, getting 2x . So we are finally in a position to
differentiate Bloom’s polynomial sin z...

but correctness is now lost. First, the derivative of x +0 is not 2x , so the document is now
incorrect. Second, “Bloom’s polynomial” (assuming that this fictitious name only applies
to the polynomial 17x 17 + 7x7 + 7) is no longer correctly displayed.

A better script is
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We can use the rules given above to differentiate any polynomial
such as P = x2 + 2001︸ ︷︷ ︸

Note: the reader may change this
but i t must be a polynomial

and differentiate it, getting

2x︸︷︷︸
Note: the reader may not change this, but

i t must always be the derivative o f P

. So we are finally in a position to differen-

tiate Bloom’s polynomial 17x 17 + 7x7 + 7︸ ︷︷ ︸
Note: the reader may not change this

...

The reader would see the same document at first. If he or she changes the definition of P ,
the software, following the author’s notes, should also update its derivative. For example

We can use the rules given above to differentiate any polynomial such as
P = x + 0 and differentiate it, getting 1. So we are finally in a position to
differentiate Bloom’s polynomial 17x 17 + 7x7 + 7...

Now it is clear that the software will not just have to typeset interactively, but also
be able to compute, and this is what makes interactive mathematics textbooks difficult to
implement. Of course, textbooks on chemistry, genetics or logic would also require some
form of computation, but not necessarily of the same type.

A second type of notation a script will require is one corresponding to the
if/then/else constructs of programming languages. One would like to be able to
write scripts like

Let there be n = 3︸︷︷︸
Note: the reader may change this, but
i t must always be a positive integer

rabbits︸ ︷︷ ︸
Note: if n>1

in a hat.

or

Let us consider f = sin x︸︷︷︸
Note: the reader may change this

, a function of x .︸ ︷︷ ︸
Note: if f is a f unction o f x

which is just a constant.︸ ︷︷ ︸
Note: else if f is a constant

a function of variables other than x .︸ ︷︷ ︸
Note: else

The latter could also be written (in a different scripting language, more like the one we
have actually implemented in our prototype)

Let us consider f = sin x︸︷︷︸
Note: the reader may change this

, if f i s a f unction of x

then a function of x . else if f i s a constant then which is just a con-
stant. else a function of variables other than x . endif endif

but perhaps be most clearly expressed by writing
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Let us consider f = sin x︸︷︷︸
Note: the reader may change this

,

⎧⎨
⎩

a function of x . if f i s a f unction of x
which is just a constant. else if f i s a constant
a function of variables other than x . else

⎫⎬
⎭

but this (the choice of an elegant scripting language) is outside the scope of this paper.
There is also clearly a need for graphical functionality:

The graph of the function f = sin x︸︷︷︸
Note: may change this

is

Note: plot the graph of f here

.

where the graph should be able to be manipulated interactively by the reader.
Finally, there will be a need for hidden computations. For example, the poor script

Let us consider f = sin x cos x︸ ︷︷ ︸
Note: the reader may change this

, or a︸ ︷︷ ︸
Note: compute a=simpli f y( f ) f irst

only show this i f f �=a

. Remember that f + a =

sin x cos x + a︸ ︷︷ ︸
Note: must be equal to f +a

.

shows a simplified form of f only if it actually differs from f . The reader might first see

Let us consider f = sin x cos x , or 1
2 sin 2x . Remember that f + a =

sin x cos x + a.

but could then alter the definition of f to sin cos x , which we will assume cannot be
simplified further. The document might then read

Let us consider f = sin cos x . Remember that f + a = sin cos x + a.

The example script is not entirely clear as it stands, because the variable name a appears in
two different contexts. The scripting language would have to contain rules which define
whether such a script contains two distinct variables with the same name, or just one.
In the latter case the simplified value of f would appear in the sentence beginning with
“Remember...” instead of the pronumeral a:

Let us consider f = sin cos x . Remember that f + sin cos x = sin cos x +
sin cos x .

Even if the script only made use of the variable name a in connection with simplifying f ,
there would still be the possibility that the reader might unwittingly use this name when
changing an expression (for example, they might change sin x cos x to sin ax cos x), and
conflicts could still arise. So in an actual software implementation there would be a need
for a clear distinction between hidden and public variables:
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Let us consider f = sin x cos x︸ ︷︷ ︸
Note: the reader may change this

, or ã︸ ︷︷ ︸
Note: compute ã=simpli f y( f ) f irst

only show this i f f �=ã

. Remember that f + a =

sin x cos x + a︸ ︷︷ ︸
Note: must be equal to f +a

.

Furthermore, it should not be possible for the reader to inadvertently use a “hidden” name.
We will discuss this question again in connection with the prototype.

1.2 Hyperlinks

Links to other parts of a document (or to other material entirely) are a standard part of
LATEX, and clearly desirable in an interactive textbook. They are more difficult to define
here, because the if/then/else constructs discussed in the previous section determine
which parts of the script will be displayed. The consistency of the document would be
compromised if a hyperlink were to point to a part of the document which does not exist
for the reader. A mechanism is therefore required which allows the author to query the
visibility of a hyperlink target. For example:

...and we conclude that Q = 2 (having used Lemma 12︸ ︷︷ ︸
Note: inser t a hyperlink to Lemma 12

)

︸ ︷︷ ︸
Note: if Lemma 12 is visible

.

Such a mechanism is however not without its dangers, since it does not guarantee the
decidability of the visibility of a target. Take, for example

Is Brutus︸ ︷︷ ︸
Note: a hyperlink target

visible?

︸ ︷︷ ︸
Note: if Brutus is not visible

The simplest solution would be to discard such functionality and only allow hyperlinks
to point to targets which are always visible. This is in fact not necessarily as drastic as it
sounds, if hyperlinks are mostly used to refer to definitions and the like.

A more elegant test, which requires no more than static analysis of the structure of
the text and therefore need only be performed once, is to demand that a hyperlink may
only point to a target which must be visible if the hyperlink itself is visible, assuming that
conditionals are uncorrelated. For example, all the underlined text in the following script
must be visible if the hyperlink is visible:

· · · if1 ?1 then1 · · · if2 ?2 then2 · · ·
else2 · · · hyperlink · · · endif2 · · ·

else1 · · · endif1

· · · if3 ?3 then3 · · · else3 · · · endif3 · · ·
(the fact that the hyperlink is visible means that ?1 must be true and ?2 must be false, but
we are not able to imply anything about ?3).
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2 Interactive Parsing of Mathematical Text
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Figure 2: A series of snapshots taken from the screen of an equation editor using the grammar
defined in the Appendix. Each box shows what is displayed after a new keystroke. The input string
is 1/2 sin∧2x/|x|y. Note that only standard mathematical notation appears on the screen.

An interactive textbook will need an equation editor which should respect “standard
mathematical notation”. There is unfortunately no standard formal definition for mathe-
matical notation, although a subset of the notations used in mathematics (in particular the
subset used in elementary textbooks or handbooks such as [10]) is understood and used
almost universally, and it is that “standard mathematical notation” we will aim to approxi-
mate here. Since our aim is to formalize something which is only subjectively defined, we
cannot avoid being subjective, and some decisions will of course exclude others, so that
we can be fairly sure that what we are presenting here is only one of many self-consistent
possibilities.

It is not entirely clear why mathematical software typically ignores standard math-
ematical notation, although [11] does provide some hints. For example, Maple [12]
interprets 3(1+z) as the constant 3, and sin^3(z) as sin3. If one wishes to enter
sin3(z) (i.e. with the meaning of equation 4.3.27 in [10]), then either (sin^3)(z) or
sin(z)^3 must be typed in. Mathematica [13] does interpret 3(1+z) as 3(1 + z), but
Sin^3[z] as sin3[z]. (Sin^3)[z] is displayed as Sin3[z] but does not have the
same meaning as sin3(z). Only Sin[z]^3 is interpreted as sin3(z). The environment
described in [1] does address most of these issues by providing a buffer between the user
and the computer algebra package Maple. Its syntax however has some unfortunate prop-
erties. Figure 3 of [1] illustrates the infix entry of the expression 2x 2 + 3(x − 5). What is
surprising about this illustration is that the actual input string is given to be

2*x^2 +3*x-5

This could easily mislead a school student into believing that the bracket around x − 5 is
unnecessary. It is also clear from the same figure in that paper that |x | must be entered as
abs(x) or abs x. The relevance of all of this to the subject of interactive textbooks is
our requirement that the notation used in the document should be homogeneous. That is,
input and display notations should not differ unnecessarily.

The EzMath notation ([14], but see [15] for a formal grammar definition) is the out-
come of work at MIT and HP labs aimed at providing an easy to learn notation using
plain text. It does allow the input of many expressions in a natural way (for example,
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ax^2+bx+c does represent ax2 + bx + c), but the formal definition of its grammar re-
veals a number of weaknesses. The grammar accepts clearly meaningless input, such
as

(,()) to the power of function 1+2((})

leaving much to semantic analysis. In practice, this would mean that an equation editor
using this grammar must also have some knowledge of semantics, or accept such input
(which could confuse a reader). Furthermore, it does not accept the standard notation |x |
for absolute value. This grammar certainly has the potential to be useful in connection
with interactive mathematics textbooks, but we feel that it is less than optimal. It does not
avoid the problem of having two notations, since it also has no provision for the notation
sin2 x (one must type in (sin x)^2).

Standard mathematical notation has a long history [16] and is in fact still changing.
What we wish to stress here is that it is the result of a long period of evolution, and should
therefore not be rejected out of hand. One of the advantages of standard mathematical no-
tation is that the relevant mathematics is not buried in a sea of brackets. This is however
also its primary disadvantage in the present context, because the lack of bracketing so
easily leads to ambiguities. See [17] for a discussion of this point. Standard mathematical
notation is inherently two-dimensional. It is now quite common to see a selection of tem-
plates associated with an equation editor (see for example [18]) because of the difficulties
of entering expressions like

1 + x

1 − x

using linear (one-dimensional) input. What we wish to do in this section is derive a linear
grammar which can cope with a useful subset of standard mathematical notation. Such
a grammar could of course be used in conjunction with templates for expressions which
cannot be written linearly.

The idea here is to mimic as much as possible the way one would read an expression
out loud, or, if there is no obvious way to read out loud (e.g. |x +||−z|+1||), the way one
would write it. For example, 2 sin x cos x could be entered by typing 2sinxcosx, and
|x + ||− z|+ 1|| by typing |x+||-z|+1||. At the same time, we wish to minimize the
number of keystrokes necessary to input an expression, so we will be looking for a gram-
mar which represents x2 by something like x^2 rather than something like the value
of the variable x squared. We wish to distract a student as little as possible
from the mathematics they are learning. We claim that it can be too much to expect a
school student to master more than one system of notation while they are learning the
concepts which define these notations. For example, it is not necessarily clear to a begin-
ner that Sin[x]^2 corresponds to what their teacher would write as sin2 x . It is even
less likely that a beginner would be “fluent” in more than one notation. If they mistakenly
type Sin(x)^2 into a system which only recognizes Sin[x]^2, they will become con-
fused or frustrated or both. We wish to avoid forcing a student to be more clear than the
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traditional textbooks they are otherwise learning from. This applies in particular to brack-
ets. It would appear to be too much to demand that they enter cos(sin(x))/sin(2)
for

cos sin x

sin 2
,

since the brackets are not part of the mathematical notation.
The remainder of this section is devoted to an attempt to find a “natural” mathematical

grammar which covers as large a subset of school mathematics as possible. This grammar
will be specifically tailored to interactive input only, and therefore the emphasis will be on
how it “sounds” rather than how it “looks”. Due to the interactive context it is designed
for, where a student will only see the input expression in standard mathematical notation
(see Figure 2), it is more important for the grammar to “guess” what is meant than for it
to be unambiguous. For example, if a student wants to enter

sin x

2
,

and types sinx/2, they could see immediately if a grammar “misunderstood” it as

sin
x

2

and could take some action to ensure that the system understands what they actually want.
Since it is practical for development if such a grammar is also relatively easy to im-

plement using common software tools, we have chosen to restrict ourselves to LALR(1)
grammars (we will actually define an ambiguous grammar, but one with only shift/reduce
conflicts which can be resolved: see Chapter 4 of [19]), such that the standard UNIX tools
Lex and Yacc can be used for implementation. The Appendix includes a formal definition
of the grammar in a form which is modelled on the Lex and Yacc input formats.

Despite recurring myths to the contrary, mathematical notation has never been entirely
universal. The notation used here is inspired by continental European usage, where, in
particular, multiplication is represented by a dot and the separator between integer and
fractional parts of a decimal constant is represented by a comma. In this context, it makes
sense to use the period key to enter the dot needed for multiplication. For example

2.4,5 ∼ 2 · 4, 5 = 2 ×
(

4 + 1

2

)
.

In line with LATEX notation, the underscore (_) and hat (^) keys can be used to introduce
sub- and superscripts respectively:

x_2^b ∼ xb
2 .

There is no reason why one could not also map the star key to represent multiplication, or
up and down arrows to introduce sub- and superscripts, for example
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4∗x↓a↑b ∼ 4.x_2^b ∼ 4xb
2 .

These are implementation issues, which will not be discussed here any further.
In the case of school-level textbooks we can assume that variable names will always

consist of only one letter, perhaps with an index. Incorporating this into the grammar
allows a student to type 2ax, just as they would write 2ax on paper (meaning 2 · a · x , as
in equation 3.3.18 of [10]).

Continuing in the same spirit, we have

sin3xy ∼ sin 3xy ≡ sin(3 · x · y) ,

and

(x^2+y)^2=x^4+2x^2y+y^2 ∼ (x 2 + y)2 = x4 + 2x2y + y2 .

Note that we choose to accept only one atom (a number, a pronumeral, an absolute value
in bars or a bracketed expression) as a power, otherwise x^2y would be interpreted as
x2y.

Not all mathematicians agree what the priorities in

213

actually are, and this is significant since 2(13) = 2 but (21)3 = 8. We will therefore not
incorporate strings like 2^1^3 into the grammar. Note that the notation x ∧ 2 for x 2 did
not first arise in connection with the appearance of electronic computers, but dates back
to 1845 (see Section 313 of [16]).

Difficulties can arise in connection with expressions like 1
2a or

∣∣a2|b|c∣∣. We will deal
with the former case first. The problem is how to express the distinction between terms
such as

2a

3b
and 2

a

3
b ,

without demanding brackets where they would not be used on paper. Both might be read
out as “two a divided by three b”, but if one also pays attention to pauses, there is a
possible distinction, since the second term might be read out as “two <pause> a divided
by three <pause> b”.

The central idea is to use both spaces and brackets for grouping subexpressions, the
spaces corresponding to pauses one would make when reading out an expression. For
example,

2a/3b ∼ 2a

3b
,

but

2 a/3 b ∼ 2
a

3
b .
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Also

sin2xy ∼ sin (2·x ·y) ,

but

sin2x y ∼ sin (2·x) ·y .

Spaces are also useful as delimiters:

sinhx ∼ sinh(x)

but

sin hx ∼ sin(h · x) .

We therefore propose building a grammar around “pure products” (abbreviated to
pprod in the Appendix), which are essentially products containing no spaces, such as

2a_3b^7(x-7)zq ∼ 2a_3b^7(x-7)z.q ∼ 2a3b7(x − 7)zq ,

quotients (quot) of these, such as

2a_3b^7/(x-7)zq ∼ 2a3b7

(x − 7)zq
,

and products (prod) of those, formed using spaces, such as

2a_3 b^7/(x-7)z q ∼ 2a3
b7

(x − 7)z
q ,

which then appear in sums and differences:

2a_3+b^7/(x-7) z-q ∼ 2a3 + b7

(x − 7)
z − q .

In some cases it is not possible to avoid brackets. One cannot enter

1 + x

1 − x
or z1−b

as linear strings without using brackets. It may appear that again using spaces, as in
1+x / 1-x, may solve the problem, but such a solution leads to confusing situations
such as 1+x / 1-1/2 x . Is that

1 + x

1 − 1
2

x ,

1 + x(
1 − 1

2

) · x
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or

1 + x

1 − 1
2x

?

A partial solution is to expect input like (1+x)/(1-x), but only display the brackets
during input of that ratio. Of course an interactive equation editor could (and most do)
offer templates for such situations. The user first selects a template (something like �

�
),

and then enters text into the boxes. This process cannot be described in the context of
a traditional grammar, so we will not discuss it further here even though it is clearly a
desirable feature to have in an interactive mathematics textbook. In any case, there is a
need for a linear grammar to interpret what is typed into a template.

Functions offer the next series of problems.
First, one usually understands

f (1 + x)

to represent the value of the function f given the argument 1 + x , but

x(1 + f )

to represent the product of the quantity x with 1 + f . That is, certain letters have certain
traditional connotations. Although one can indeed base a grammar around traditional
connotations (Fortran 77’s implicit typing is an example of this – see Section 7.2 of [20]),
it would be better in the context of educational material (where the reader may not be
aware of these traditions) to require that the distinction between variable and function
names be made in the script. For example, one could demand that function names be
declared at the beginning of a script.

Second, it is not immediately clear whether f(1,2) means f (1 + 2/10) or f (1, 2)

(i.e. whether there is one decimal or two integer arguments). In a mathematical text, one
would usually define a function to be of one or two arguments, and that would define the
notation.

This means that our “natural mathematical grammar” must be context specific. In this
paper, we will concentrate on the context-free subset of such a grammar, since that al-
ready suffices for much low-level mathematics. Furthermore, all the common elementary
functions can simply be encoded into a context-free grammar, and that is what we will do.

The common elementary functions exp and ln (or log – we are only interested in
grammatical aspects here, and will for that reason also ignore the notation ex in this
paragraph) are usually written as

exp 2y or exp

(
1 + 1

1 − q

)
.

Equation 4.2.10 in [10] includes both possibilities:

exp(z ln a) .
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That is, the brackets are optional. Furthermore, one also commonly finds expressions
such as exp n(1+ z), meaning exp[n(1+ z)]. These notations fit well into the framework
already presented, using “pure products” to specify the scope of a function’s argument.
So we have

expx ∼ exp(x) ∼ exp x

and

expn(1-z) q ∼ exp [n· (1 − z)] · q .

It is however not quite so simple. One could also write (see [17])

1

2

[
1 + sin(n + 1

2)x

sin 1
2x

]
meaning

1

2

[
1 + sin

{
(n + 1

2)x
}

sin 1
2 x

]

or

exp(1 + x)z meaning z exp(1 + x) .

We assume that the latter style is more common in mathematics (see, for example,
equation 15.1.15 in [10], where the author has felt the need to set square brackets in
sin[(2a − 1)z]), and restrict those “pure products” which can be arguments of elemen-
tary functions to be either a bracket or a “pure product” not beginning with a bracket.
In the Appendix, a “pure product” not beginning with a bracket (and there will be fur-
ther restrictions made below) is denoted fpprod (the f indicating its association with
functions).

The fact that the common elementary functions have names of more than one letter
can be a cause of minor irritation, if one for example enters x sin x , since x^si will be
understood as xs · i with the i not belonging to the exponent, but as soon as the n is
entered the i jumps up, because now it can be seen to belong to a function name. There
does not seem to be an elegant way of avoiding such jumps. Defining x^si to mean x s·i
will only conflict with the interpretation of x^2y^2 (which we want to mean x 2y2 and
not x2y2

).
sin z1 cos z2 is quite common mathematical notation for (sin z1) · (cos z2) (as in equa-

tion 4.3.33 in [10]; note also the brackets in equation 9.1.42 in [10]: cos(z sin θ)), and
yet sin 2z usually means sin(2z) (as in equation 4.3.24 in [10]). One also has expressions
such as the products on the right hand side of

[cos θ sin θ ]

[
x1

x2

]
= cos θ · x1 + sin θ · x2 .

This forces us to refine the definition of a “pure product” in the context of the argument of
a function yet again. We restrict an fpprod to be a product without spaces which does
not begin with a bracket, and does not include a factor which is itself a function. This
results in
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sin2xcos2x y ∼ (sin 2x) · (cos 2x) · y ,

but

sin(2xcos2x)y ∼ sin(2x · cos 2x) · y ,

sin2(1+q)y ∼ sin
[
2 · (1 + q) · y

]
and

sin2(cosq)y ∼ sin
[
2 · (cos q) · y

]
.

The fact that we are only interested in LALR(1) grammars introduces some restrictions
at this point. The question is how to handle input such as sinx.(1+5.cosx). An
LALR(1) parser will have shifted sinx.(1+5. to its stack before it can see the cosine,
but it is too late at this point to reduce the sinx because an LALR(1) parser can only
recognize handles at the top of the stack. For this reason, an fpprod may not involve
any products written using a period, or quotients built using a /. A disadvantage of this
rule is that we have

sin x/2 ∼ sin x

2

instead of sin(x/2), but on the other hand we do have (equation 4.1.18 in [10])

ln z/ln a ∼ ln z

ln a
.

A possible solution would be to change the grammar to allow sin xy/2 to mean
sin(xy/2) but leaving sinxy/2 to mean (sin xy)/2. While this does appear attractive, it
is difficult to apply the same reasoning to the pair of strings sinhx/2 and sin hx/2,
since the blank plays a quite different role in this context (that of clarifying whether sin
or sinh is meant).

The notation sin17 x ≡ (sin x)17 is no particular problem:

sin^17x ∼ sin^17 x ∼ sin17 x

(note that this is an improvement over LATEX, where \sin^17x appears as sin1 7x) and

sin^17 34x ∼ sin17 34x .

It would have been possible to support the notation sin(x)^2, but this notation actually
only rarely appears in mathematics textbooks. The fact that this notation is widespread
amongst computer languages and computer algebra packages is no valid reason to con-
sider it here. We have chosen not to support the notation sin−1 x for arcsin x .

Factorials can also be treated quite simply. We have chosen to let them bind more
strongly than any other operator (except for variable name indexing):

3!^4!+U_2! ∼ 3!4! + U2! .
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The symbol
√

presents us with a new difficulty, because no key on a standard key-
board resembles it. One could follow standard computer language syntax in this case, and
use the function name sqrt, so that sqrtx would mean

√
x . The name sqrt however

does not allow a simple extension to cope with cube roots like

3
√

8

because sq is actually an abbreviation for “square”, and sqrt^3 8 could just as eas-
ily mean (

√
8)3. In LATEX, one uses the notation \sqrt[3]{8}, but this could cause

conflicts with expressions such as
√

3{8}. Since we are already using ^ to indicate that
something should be raised, it might be better to write 3

√
8 as ^3sqrt8, but then there

will be ambiguities in connection with inputs such as 2^3sqrt8. An entirely different
possibility would be to use the notations

\/8 ∼ √
8

and

\3/8 ∼ 3
√

8 ,

where the weak visual similarity between \/ and
√

could be an advantage. In short,
there does not seem to be a simple way of encoding the various roots. Square roots of
sums or differences need to be treated with some additional mechanism like a template,
or by expecting the reader to enter brackets which are only shown during input of the
radical. For example, \/(1+x) would be displayed as

√
(1 + x) during input, but oth-

erwise
√

1 + x . It is interesting to note that, as late as 1915, the Council of the London
Mathematical Society recommended

√
(ax2 + 2bx + c) in place of

√
ax2 + 2bx + c (see

Section 334 of [16]).
The greatest difficulty of all is posed by the vertical bars commonly used to denote the

absolute value of an expression. When writing on paper, the height of these bars can be
used to clarify which pairing is meant if the expression would otherwise be ambiguous.
For example, we find ∣∣∣∣|z1| − |z2|

∣∣∣∣
in the inequality 3.7.29 in [10]. Furthermore, one could write∣∣∣∣x + 3|y| − z

∣∣∣∣ for |x + (3 · |y|) − z|

and

|x + 3|y
∣∣∣∣−z

∣∣∣∣ for (|x + 3|) · y · (|−z|) .

A standard keyboard will not allow a user to express these differences in height, so an
entry such as |x+3|y|-z| is simply ambiguous. From a grammatical point of view, the
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ambiguity lies in the combination 3|, since the bar could either be a left bar (as in 3|1−z|)
or a right bar (as in z|1 − 3|). Recall that the grammar being described here is intended
to be applied in an interactive context. Suppose that the input so far consisted of 3|4|.
Should this be interpreted as 3(|4|) or the beginning of 3 · (|4 · (|...? An naive grammar
must choose the latter, but this leads to the unsatisfactory situation that no vertical bar can
ever be parsed as a right bar. This becomes clear when one realizes that the second vertical
bar in combinations such as || (assuming no previous left bar, as in 1 + ||2 − z| − x |) or
|!|, or any bar after a binary infix or unary prefix operator (i.e. /| or +|) must be a left
bar. One solution would be to always interpret a vertical bar following an atom as a right
bar. In such a grammar, |1+|1-z|| would be correctly interpreted as |1+ (|1− z|)|, but
1+3|1-z| could not be parsed unless one explicitly put a dot in: 1+3.|1-z|. This is
indeed the solution taken in the “inner grammar” presented in the Appendix, but is much
too radical. Such a grammar will not accept inputs such as 3|x|

The solution we propose is to introduce an “outer grammar” in which juxtaposition
of an atom with a bar (e.g. 3|) does imply multiplication, but to switch to the “inner
grammar” inside a pair of bars. The parser will always begin in “outer” mode, and also
return to “outer” mode when analyzing the contents of brackets, but enter the “inner
mode” after each left bar. So, for example,

1+3|1-z| ∼ 1 + 3 · |1 − z|
because the 3| is interpreted by the “outer grammar” as 3 · |, whereas the z| cannot be
parsed by the “inner grammar”, so the “inner grammar” parses the atom z and returns to
the “outer grammar”, which is waiting for a right bar. The “inner grammar” essentially
rejects any bar which could be interpreted as a right bar, effectively ending the absolute
value expression as soon as possible. So, we have

||z_1|-|z_2|| ∼
∣∣∣∣|z1| − |z2|

∣∣∣∣ ,

|x+3|y|-z| ∼ (|x + 3|) · y · (|−z|)
and

|x+3.|y|-z| ∼ |x + (3 · |y|) − z| .

The “inner grammar” must be modified significantly with respect to the “outer grammar”
when it comes to input such as |sin|x... or |1/|2..., where the second bar in each
case must be a left bar. So we have

|sin|x-2|+1| ∼ |sin (|x − 2|) + 1|
and

|1/|2-1/|p||q| ∼
∣∣∣∣∣∣

1∣∣∣2 − 1
|p|

∣∣∣ · q

∣∣∣∣∣∣
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but also

|sin9|x-2|+1| ∼ { |sin 9| · x
} − 2 · |+1|

and

|1/|2-1/a^2|p||q| ∼
∣∣∣∣∣∣

1∣∣∣2 − 1
a2

∣∣∣ ·p
∣∣∣∣∣∣ · |q| .

The common notation

2
3

4
≡ 2 + 3

4

is extremely difficult to define in a generally meaningful way, since one can so easily
construct examples which are confusing. Take for example

2
3

4
2, 2

(3)

4
, 2

1 + 2

4
, or 2

a

4
.

It is however generally accepted. We will define it in a rather strict manner here (conform-
ing to standard mathematical practice), and demand that the three quantities appearing all
be positive integers. That is, 2−3

4 , a 3
4 and 21+2

4 will all be considered to be products. To
be consistent with what has already been discussed, we will use spaces to separate the
integer and fractional parts:

34 56/78 ∼ 3456
78 .

We cannot, however, include it in an LALR(1) grammar because of the amount of looka-
head required to handle both 2 3/4 and 2 3/a. Take the example of ln 2 3/a. An
LALR(1) parser will already have shifted ln 2 3/ onto the stack before it sees that the
string means ln(2) · [3/a] instead of ln(2 + 3/a), but then the handle corresponding to
ln(2) is no longer at the top of the stack. Similar problems arise with partial inputs such
as cos ln 2 3/ or 2.3 1/. Recognition of this notation must therefore either occur
during lexical or semantic analysis. Neither alternative fits in perfectly with the constructs
already discussed. Recognition during lexical analysis is simplest to define when using
a compiler generator, and the Lex and Yacc specifications in the Appendix implement it.
A new token is introduced (named JUX, because it corresponds to the juxtaposition of an
integer with a fraction). The disadvantage of this solution is that it conflicts with the use
of spaces introduced above. For example, we now have

34 56/7a 9b ∼ 3456
7 ·a·9·b

and

sin2 1/2+cos2 1/b ∼ sin
(
2 + 1

2

) + cos (2) · 1
b .

We also have
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34 56/7/9 ∼ 3456
7

9 .

We must however remember that the input strings are not meant to be seen by the docu-
ment’s reader, so the actual effect of these conflicts on user-friendliness may be less than
it would appear when one looks at the above examples. Also note that

3 1/2! ∼ (
3 + 1

2

)! .

The alternative (seen from an abstract point of view) is to wait until after the parse
tree has been constructed, and then look for branches of the forms

prod
�

��

�
��

NUM quot
�

��

�
��

NUM NUM

or

prod
�
��

�
��

prod
�

��

�
��

quot
�

��

�
��... NUM NUM NUM

(where we have used names consistent with the “inner grammar” of the Appendix, but
only shown nontrivial productions). This latter method is suited to hand-written recursive
descent parsers, since all that is required is a test for such forms inside the routine which
parses products (prod) and to change the parse tree as it is being constructed. This alter-
native solution does respect the spirit of the use of spaces introduced above: 3 1/2 a
is interpreted as (3 + 1/2) · a but 3 1/2a is interpreted as 3 · (1/[2a]). Functions cause
some minor problems of interpretation (sin 2 1/2 is interpreted as sin(2) · (1/2)). Al-
though this behaviour could be changed by also recognizing branches containing function
applications, one would actually need an infinite number of such checks corresponding
to expressions such as sin cos 2 1

2 , log sin sinh 21
2 etc., so it would seem better not to try.

Finally, note that 4 2/3! would be parsed as 4 · (2/[3!]).

2.1 Special Considerations during Input

Here we will be concerned with the insertion of a cursor, pairing of brackets and the use
of temporary brackets during interactive input.

A cursor is extremely useful as an aid in predicting where the next character will
appear. The use of blanks to define groupings introduced above provides a case in point.
The partial input 1/2 can be displayed as

1

2_
,

changing to

1

2
_ and then

1

2
a_
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if followed by a blank and an a, or

1

2a_

if just followed by an a.
Automatic prediction is however not always possible in the context of the grammar

introduced above. For example, the partial input x^2 could be followed by a 1 or a y,
which would be interpreted as x21 or x2y respectively. It is therefore not possible to
decide whether to display x2_ or x2_ on the basis of the partial input.

A solution which would appear to be acceptable in most situations is to assume that
a digit will most probably be followed by another digit (i.e. display x 2_ for the partial
input x^2). One could perhaps continue in this spirit by assuming that a combination of
characters which could be the beginning of a function name is in fact just that, so that
the partial input xl would be displayed as xl_, in the expectation that an n will follow.
This will however not work with names of more than two characters, since the LALR(1)
grammar introduced above must parse the partial input x^si as x si .

It is not obvious how to introduce the concept of a cursor into the grammar presented
in the Appendix, particularly since only one cursor should be displayed at a time. A partial
input such as 2(a^3 should be displayed as 2(a3_) and not as 2(a3__)_ (the last two
correspond to the contents of the bracket and the entire input expression, both of which
could be understood as being incomplete in the absence of an end of line character).

The automatic pairing of brackets during input is a similar aid to input, but which
introduces no implementation difficulties. For example, the partial input 2(x/[8|-u^z
can be displayed as

2

(
x

[8| − uz_|]
)

.

Subsequently entering | changes the display to

2

(
x

[8| − uz|_]

)
and so on (see also Figure 2).

Note that the automatic pairing of brackets can be handled by providing extra produc-
tions lacking right brackets to the grammar presented in the Appendix. The same applies
to the bars used to denote absolute value. For example, we can redefine the production
for abs to be

abs: ’|’ exp ’|’ |exp|
| ’|’ exp |exp|
;

The resulting shift/reduce conflicts are resolved in favour of shift by Yacc, and this is the
behaviour we are looking for.



20 Robert Sinclair

As was already discussed in connection with the use of templates to enter expressions
such as (1 + x)/(1 − x), one can make use of temporary brackets, which are input by
the reader but only shown while they are necessary. One must however be careful when
defining “necessary” in this context. While it is clear that the partial input (1+x)/(1-
x)+z^(1+ could be displayed as

1 + x

1 − x
+ z(1+_) ,

(1/x)/[y/z] should probably be left as( 1
x

)[ y
z

] rather than
1
x
y
z

.

A final consideration is the use of spaces or dots to improve the clarity of a displayed
expression. For example, our grammar allows us to enter 4! = 1 · 2 · 3 · 4 as 1 2 3 4,
but the display

1 2 3 4

could mislead the reader into believing that this is the single number 1234, particularly if
they are returning to a page they cannot remember altering. It would therefore seem wise
to introduce either larger spaces or dots automatically:

1 · 2 · 3 · 4 .

The same applies to certain products like

sin 2x y ln z .

Expressions such as

cos θ x1 + sin θ x2

may also require separating dots, or at least some extra spacing (otherwise they could look
like cos(θx1) etc.).

2.2 Automatic Completion of Expressions

It makes little sense to punish a reader of an interactive book who forgets to close a bracket
before pressing RETURN/ENTER, particularly if automatic pairing is implemented. For
example, the partial input sin(x would be displayed as

sin(x_) .

If the reader presses RETURN/ENTER at this point, one is only being reasonable in as-
suming that they most likely meant to input

sin(x) .
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More serious cases such as a missing argument for an elementary function are best
handled by assuming an appropriate value, rather than producing an error message. For
example, the input 2+sin can be completed to 2 + sin 0. Such naive rules based on
syntax alone cannot avoid completions which are not mathematically defined. If we com-
plete an empty bracket by assuming some constant such as 0 or 1, then we cannot avoid
unfortunate completions such as 0/( becoming

0

(0)

or 0/(sin^2x+cos^2x-[ becoming

0

(sin2 x + cos2 x − [1])
respectively (neither of which are defined).

Despite the possiblity of unfortunate cases, automatic completion would appear to be
a desirable feature in an interactive equation editor. For example, to implement this for
absolute values, we can yet again redefine the production for abs to be

abs: ’|’ exp ’|’ |exp|
| ’|’ exp |exp|
| ’|’ |0|
;

The same applies to brackets. The resulting shift/reduce conflicts are resolved correctly
in favour of shift by Yacc.

2.3 On Using Supersets of LALR(1) Grammars

Our decision to restrict ourselves to an LALR(1) grammar was purely due to technical
considerations. Given that we do not expect long input strings from a reader (even 100
characters could be said to be a lot to type in), it is not clear why we could not drop
this restriction and move to a larger class of bottom-up grammars which can for example
recognize inputs such as sinx.(1/[1+cosy]) as a product of two subexpressions
each containing an elementary function application, and parse it for this reason (instead
of just using the dot to end the argument of the sine) as

sin(x) · 1

1 + cos y

rather than

sin

{
x · 1

1 + cos y

}
.

The disadvantage of such a more flexible approach is that it is even more liable to produce
jumps in the display as characters are input as is the LALR(1) grammar already presented.
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In the example above, the partial input sinx.(1/[1+co would probably be displayed
as

sin x·
(

1

[1 + co_]
)

,

but entering s would cause a discontinuous jump in this display to

sin x ·
(

1

[1 + cos _]
)

.

In the case of the partial input x^si, defining a grammar which assumes that an n
will follow will in fact avoid the jump associated with parsing and displaying this input as
xsi_ but then x sin _, but will still result in a jump from x si_ to xsiq_ if the next character
is in fact a q.

It would in fact appear as if every single advantage of a more general parser would
come with the penalty of as many or yet more such jumps. Or, to put it another way,
an LALR grammar appears to minimize the possibility of jumps (in fact, an LALR(0)
grammar would probably be optimal in this respect).

3 Desirable Properties for the Computing Engine

It is obvious that the viewer software will have to be able to compute, and it is tempting to
consider the possibility of using a standard computer algebra package as the computing
engine (as indeed was done in [1], where Maple was used). Here we run into problems of
both technical and pedagogical nature.

The technical problems which are most serious are those which arise if one desires
portability. It is never a simple matter to link two software components in a portable way.
The fact that the system described in [1] only runs on Macintosh computers is a case in
point. The fact that the syntax of standard computer algebra packages changes with time
adds a further serious difficulty.

Standard computer algebra packages are designed to solve large problems for “ex-
perts”. An “expert” is someone who can recognize an incorrect result and alter the input
accordingly, whereas a typical school student will question their own knowledge if con-
fronted with a suprising result, and perhaps conclude that they had misunderstood the
mathematics. The fact that computer algebra packages are designed to solve large prob-
lems (i.e. they use algorithms which have low computational complexity rather than what
students are taught in school) means that they are often incapable of solving “simpler”
ones without extra help. For example, no standard computer algebra package will fac-
torize x2 − 13 unless the user provides further information (that

√
13 may appear in the

answer) or makes use of special knowledge about other commands (for example, that
solving x2 − 13 = 0 will provide a partial solution), and yet this is a typical example
of what every school student is expected to be able to do. Many of these problems are
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discussed and solutions given in [1]. In particular, it is possible to provide one’s own rou-
tines which circumvent most of the problems of the package’s built-in commands. There
are, however problems associated with elementary mathematics which cannot be solved
so simply. These are related to our demand that the most elementary simplifications of the
viewer software should not be more complex than those being explained in the text. For
example, if one wishes to discuss commutativity of addition and multiplication, one runs
into the problem of automatic rearrangement of expressions in Maple. Both a · b and b · a
are immediately displayed as ab. One could make use of “neutral operators”, and have
the front-end viewing software pass a&**b and b&**a on to Maple (for a · b and b · a
respectively). The same mechanism will also prevent automatic simplifications such as
x · 1 becoming x . The front-end could of course perform the reverse transformation when
displaying. This can also be done in connection with addition. One would therefore hope
that one could use the mechanism of neutral operators to perform explicit simplifications
such as

3 · a + a · 3 · 1 = 3 · a + a · 3

= 3 · a + 3 · a

= (3 + 3) · a,

but Maple defines the precedence of neutral operators to be equal (and this cannot be
changed), and 3&**a&+a&**3&**1 is understood as (((3&**a)&+a)&**3)&**1.
What should be clear by now is that one is faced with what amounts to rewriting the most
basic operations of Maple. Given the technical problems already hinted at above, there is
no longer any obvious advantage in using such a computing engine.

The alternative is to include the computational engine in the viewing software, which
of course implies that this engine must be written anew. This does sound like a case
of reinventing the wheel, but it should be apparent that the properties the computational
engine for an elementary mathematics textbook should have are in fact quite far removed
from those a commercial computer algebra package must have, and the set of problems to
solve much more restricted (i.e. restricted to elementary mathematics).

4 A Prototype Implementation

The prototype viewing software has been written in Java [21] (version 1.1.7) for portabil-
ity. We will not provide implementation details here since they are of secondary impor-
tance, and guided by performance issues which may be specific to the Java compiler
we are using (for example, passing the script to the Java viewing software via a pa-
rameter in the APPLET tag in HTML [22] would appear to be too time costly). Many
relevant implementation issues have already been discussed in [23]. The prototype’s ad-
dress is http://www.mat.dtu.dk/persons/Sinclair_Robert_Michael/
VIDIGEO/IntMatTex.html.
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4.1 The Prototype Scripting Language

What we will concentrate on is the scripting language used in the prototype. This is
prototypical in itself. While it would seem to be an adequate basis for further work from
the point of view that it allows one to write interactive documents, it lacks the readability
an author needs to be able to keep an overview of their own work. The question of the
elegance of the scripting language is outside the scope of this paper, but would be without
doubt of great importance to non-expert authors.

This Section should be read in conjunction with sample scripts A and B in the Ap-
pendix.

Tokens in the scripting language are separated by white space. A token beginning
with a backslash character is understood as a command, all other tokens as either words,
punctuation or portions of mathematical expressions. A word or punctuation is simply
printed at the current position on the screen in the current font. The commands \plain,
\italic, \bold, \normalsize, \largesize and \smallsize change the cur-
rent font. The commands \endofline, \skipline and \newparagraph change
the current cursor position. The similarities with LATEX should be obvious. The prototype
viewing software is indeed a quite primitive mathematical typesetter. Much of that func-
tionality could in principle be taken over by a browser capable of displaying MathML[24].

The command pair \literalmaths/\endmaths is used to display mathematical
expressions exactly as they stand. For example,

\literalmaths 1+x \endmaths

results in 1 + x being displayed, regardless of the value of x .
The command pair \showmaths/\endmaths performs substitutions before dis-

playing a mathematical expression. For example,

\showmaths 1-x \endmaths

results in 1 − t s being displayed if x has been given the value t s at a point in the text
preceding this, or 1− (17+ y) being displayed if x has been given the value 17+ y. Note
the necessity of automatically introducing brackets.

The command pair \hidemaths/\endmaths assigns values to variables without
displaying anything. For example,

\hidemaths Q=|1-z| \endmaths

results in Q being assigned the value |1 − z|.
The command pair \inputmaths/\endmaths assigns values to variables and dis-

plays the assignment. Furthermore, it allows the reader to alter the right hand side of
the assignment. The expression given in the script is merely the expression assigned and
displayed until the reader makes changes to it. For example,

\inputmaths Q=|1-z| \endmaths
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results in Q being assigned the value |1 − z| and

Q = |1 − z|
being displayed. If the reader changes |1 − z| to 13b then Q is also assigned the value
13b, and all subsequent uses of Q are updated.

The command pair \2dplot/\end2dplot creates and displays an interactive
graph of a function. The syntax is a sequence of three expressions, separated by com-
mas. The first expression must be the function (prefixed by a dollar sign) applied to the
independent variable. The final two expressions are the limits of the domain of the inde-
pendent variable. For example,

\2dplot $f(x), 0, 1 \end2dplot

results in the graph of f (x) being displayed for x ∈ [0, 1]. The graph is interactive in the
sense that the reader can use the mouse to define rectangular regions to zoom in on, or
reset to the original domain and range by just clicking.

The command pairs \literalmaths / \endmaths, \showmaths /
\endmaths, \hidemaths / \endmaths, \inputmaths / \endmaths and
\2dplot / \end2dplot each enclose one or more non-command tokens which are
appended (including their separating white space) and parsed according to a grammar
slightly extended with respect to the one given in the Appendix. The first extension to the
grammar is the introduction of the dollar sign as an escape character to prefix variable
names of more than one character and function names. The point of this extension is to
allow certain variables and “system functions” to be hidden from a reader. Any escaped
name may contain more than one character. If such a name is followed immediately by
a right bracket (“(”) it is understood to be a function name. The parser then reads a list
of arguments (each of them an expression) separated by commas and ended by a right
bracket (“)”). For example, $zz+$yy represents the sum of the variables with names
zz and yy. $P(x) represents the function P applied to x. P(x) without the dollar
represents the product P · (x). $now(a,b+17,x^2/$P(x)) represents a call to the
function named now with three arguments, the third being x 2/P(x). Note that certain
elementary mathematical functions are “hardwired" into the grammar presented in the
Appendix, so sin(x) represents sin(x) and not s · i · n · (x), without any need for
the dollar sign. The second extension to the grammar is the introduction of equations,
which are nothing more than two expressions separated by an equals sign. The syntax
for 2dplot is a final extension, but only in the sense that the parser prepends the
characters $plot2d( and appends a closing bracket, so that $f(x), 0, 1 becomes
$plot2d($f(x), 0, 1). The function plot2d generates the graph when part of a
\2dplot/\end2dplot construction.

There are several “system functions”, and those which have been implemented are
only a bare minimum, intended to allow one to write a few primitive scripts (i.e. the
sample scripts in the Appendix). Which functions should actually be implemented is an
area for further work. A serious problem which many of them have in common is the
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problem of zero recognition, which has been proven to be undecidable [25]. On the face
of it, this makes it impossible to write a host of simply mathematical query functions. For
example, is

x + cos2 y + sin2 y

a function of y in the sense that it varies when y is varied? This is an area which requires
further work. What should be stressed at this stage is that we are interested in software
which handles only a very restricted set of simple mathematical problems. In that context,
undecidability proofs are not necessarily relevant. The software need only be able to solve
problems a student can solve. The prototype’s functionality is even more restricted.

The system functions implemented are

• dangeroussimplifytimes0 applies the rules x · 0 
→ 0 and 0 · x 
→ 0
irrespective of what x is.

• simplifytimes0 applies the rules x · 0 
→ 0 and 0 · x 
→ 0 if and only if x
has a rational value (in a very strict sense – every subexpression must be a rational
number).

• simplifytimes1 applies the rules x · 1 
→ x and 1 · x 
→ x .

• simplifyplus0 applies the rules x + 0 
→ x and 0 + x 
→ x .

• expand applies the rules

x · (a + b) 
→ x · a + x · b,

(a + b) · x 
→ a · x + b · x,

x · (a − b) 
→ x · a − x · b

and (a − b) · x 
→ a · x − b · x .

• isinteger returns true if every subexpression has an integer value.
For example, $isinteger(1+sin^2x+cos^2x) returns false, but
$isinteger(6/2+7) returns true.

• isreal returns true if its single argument has a finite floating point evaluation.

• iszero returns true if its single argument is zero (if it has an integer value which
is zero, or, if a floating point expression, if its floating point evaluation is 0.0).

• isgreaterthanzero returns true if isinteger returns true and its integer
value is greater than zero, or if its floating point evaluation is greater than zero.

• islessthanzero returns true if isinteger returns true and its integer value
is less than zero, or if its floating point evaluation is less than zero.
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• isfunctionof checks to see if the first argument is a function of only
the others, using the naive assumption that the appearance of a vari-
able in an expression makes that expression dependent on the variable.
$isafunctionof(x^2,x,y) and $isafunctionof(x^2+y,x,y) re-
turn true. $isafunctionof(x^2+y,x) returns false. If there is only one ar-
gument, the function only returns true if no variable at all is present. For example,
$isafunctionof(2+x/7) returns false.

• identical returns true only if both of its arguments are identical in every respect.
$identical(x^2+1+1,x^2+2) returns false.

These are not only rather naive in the way they work, but (more importantly for this
discussion) it is unclear whether these are functions which lead to “natural” scripts. It
would seem that only experience in actually writing scripts can shed light on this question.

Note the fact that the function expand is careful not to change the order of multipli-
cations (i.e. x · (a + b) 
→ xa + xb but (a + b) · x 
→ ax + bx). We feel that this is
a necessary feature, in line with our requirement that the automatic simplications made
should not be more complex than those being discussed. Of course it would also be useful
to have some sort of ordering function that does map ba to ab, but we feel that these two
functionalities should be kept separate.

The most important commands are the selection commands if/then/else/endif.
They control which text is in fact visible at any given time. The script

The number of rabbits in the hat is
\inputmaths n=2 \endmaths
, or, putting this into words, we have
\if $iszero(n) \then

no rabbits at all
\else

\if $iszero(n-1) \then
one rabbit

\else
\if $iszero(n-2) \then

a pair of rabbits
\else

many rabbits
\endif

\endif
\endif in the hat.

defines an interactive document which reads

The number of rabbits in the hat is n = 2, or, putting this into words, we have
a pair of rabbits in the hat.

initially, and then, depending upon what value the reader gives to n:
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The number of rabbits in the hat is n = 0, or, putting this into words, we have
no rabbits at all in the hat.

The number of rabbits in the hat is n = 1, or, putting this into words, we have
one rabbit in the hat.

The number of rabbits in the hat is n = 1070032, or, putting this into words,
we have many rabbits in the hat.

4.2 The Prototype Equation Editor

The equation editor implements essentially all of the grammar presented in the Appendix
(the equation editor was actually written before a grammar was defined). It implements
automatic bracket pairing and automatic completion of expressions, and shows a cursor.
It automatically inserts separating dots or spaces where these would help clarify which
grouping is meant. Syntax errors result in the offending characters being displayed in red.
A syntactically incorrect input will be automatically corrected when the reader presses
RETURN/ENTER by deletion of the offending characters and automatic completion of
the remainder of the input string. The only editing feature provided (and this makes the
editor extremely primitive) is backspace, corresponding to deleting the last character of
the string representing the displayed expression.

What is important about the equation editor in connection with the scripting language
is that the equation editor accepts only characters which the grammar needs to define a
mathematical expression (typing any other character has no effect). The dollar, which
prefixes hidden function or variable names, is ignored. This is the mechanism by which
hidden variables and “system” functions stay hidden. A reader is physically incapable of
referring to them.

5 Conclusions

We have given a set of what we claim are necessary properties for an interactive math-
ematics textbook, defining in particular the distinct roles of the author and the reader.
These requirements make certain demands on both the language in which such a textbook
would be written (the scripting language), and the language in which the reader would
interact with it. We have presented a prototype scripting language.

A linear grammar has been formally defined in an attempt to allow input and display
notations to resemble each other as closely as possible. This grammar is based upon actual
mathematical usage. For example, the expression

sin2
{
2a

∣∣∣∣1 − 3

7q

∣∣∣∣
} [

1 + 1

2
sin x cos x

]

is represented by the input string sin^2{2a|1-3/7q|}[1+1/2 sinxcosx].
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What is quite new about the grammar is its ability to cope with absolute value bars, so∣∣∣∣ ||−a| − b + |c||
2

∣∣∣∣
is represented by |||-a|-b+|c||/2| rather than the more cumbersome
abs(abs(abs(-a)-b+abs(c))/2) which most computer algebra packages
would demand. Such a linear grammar could become the basis of a general-purpose
equation editor. An obvious extension of this work would be to implement such an
equation editor as a portable software component, perhaps as a Java Bean [21] using
OpenMath [26] to insure platform-independency.

The fact that most computer algebra packages are designed to solve large problems
for experts means that they automatically perform simplifications which are more com-
plex than those one might want to discuss in an elementary textbook, and are sometimes
incapable of solving simple problems without extra information. What we actually need
for interactive elementary mathematics textbooks is software designed to solve simple
problems for non-experts.

The prototype demonstrates the concepts introduced here, especially concerning the
relationship of a script written by the author to the actual document, and should also be
seen as a proof of concept. Further work will concentrate on studying what functionality
the computing engine actually needs to have for typical texts.
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7 Appendix: Sample Script A

The \bold graph \plain of the function
\inputmaths

P=sinx∧3/[2+cos2x]+x
\endmaths
\if $isfunctionof(P) \then

is not very interesting because it is in fact just a constant.
\else

\if $isfunctionof(P,x) \then
for \literalmaths x \endmaths values between
\inputmaths a=–3 \endmaths and
\inputmaths b=–a+7 \endmaths
\if $isreal(a) \then

\if $isreal(b) \then
\if $isgreaterthanzero(b–a) \then

looks like
\2dplot $P(x),a,b \end2dplot \skipline
You may zoom in on regions of the graph using the mouse,
and return to the original view by clicking once on it.
The function \literalmaths P \endmaths and the values
\literalmaths a \endmaths and \literalmaths b \endmaths
can be edited by clicking on them and then using
\italic backspace \plain and the other keys.

\else
makes little sense because \showmaths a \endmaths
is greater than \showmaths b \endmaths .

\endif
\else

is too complicated for me to draw because the
value of \literalmaths b \endmaths
that was just entered is not a number.

\endif
\else

is too complicated for me to draw because the
value of \literalmaths a \endmaths
that was just entered is not a number.

\endif
\else

is too complicated for me to draw because it is
not just a function of \literalmaths x \endmaths .

\endif
\endif
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Figure 3: Sample script A: This is the display the reader sees first.
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Figure 4: Sample script A: This is the display after the reader has changed the definition
of P .
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8 Appendix: Sample Script B

\newparagraph \largesize \bold Elementary Simplifications \normalsize
\skipline \newparagraph The purpose of this interactive text is to illustrate
some simplification rules applied to a given expression. The definition of
\literalmaths P \endmaths may be changed by clicking on it with the mouse,
and then simply typing (use \italic backspace \plain to delete). For example,
the initial definition of \literalmaths P \endmaths given below was entered by
typing \bold 3[1+4.2](1.0+1) \plain . \skipline
If we take the expression \inputmaths P=3[1+4.2](1.0+1) \endmaths
\hidemaths $zz=$expand(P) \endmaths
\if $identical($zz,P) \then \else

\skipline we can expand it out to get \newparagraph
\showmaths $zz \endmaths \endofline \hidemaths P=$zz \endmaths

\endif
\hidemaths $zz=$simplifytimes1(P) \endmaths
\if $identical($zz,P) \then \else

\skipline we can use \literalmaths x.1=x \endmaths and
\literalmaths 1.x=x \endmaths to get \newparagraph
\showmaths $zz \endmaths \endofline \hidemaths P=$zz \endmaths

\endif
\hidemaths $zz=$simplifytimes0(P) \endmaths
\if $identical($zz,P) \then \else

\skipline we can use \literalmaths x.0=0 \endmaths and
\literalmaths 0.x=0 \endmaths to get \newparagraph
\showmaths $zz \endmaths \endofline \hidemaths P=$zz \endmaths
\hidemaths $ww=$dangeroussimplifytimes0(P) \endmaths
\if $identical($zz,$ww) \then \else

(but notice that \showmaths $zz \endmaths is not the same as
\showmaths $ww \endmaths – we cannot use these identities if
we are not sure of the finiteness of \literalmaths x \endmaths )
\endofline

\endif
\endif
\hidemaths $zz=$simplifyplus0(P) \endmaths
\if $identical($zz,P) \then \else

\skipline we can use
\literalmaths x+0=x \endmaths , \literalmaths 0+x=x \endmaths ,
\literalmaths x–0=x \endmaths and \literalmaths 0–x=–x \endmaths
to get \newparagraph
\showmaths $zz \endmaths \endofline \hidemaths P=$zz \endmaths

\endif
\skipline Can you see any further possible simplifications?
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Figure 5: Sample script B: This is the display the reader sees first.
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Figure 6: Sample script B: After the reader has changed the definition of P . Note the
warning against simplifying using the rule x · 0 
→ 0 if it is not known if x is finite.
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9 Appendix: Lex Specification

[ \t]+ return WS;
\+[ \t]* return PLUS;
\-[ \t]* return MINUS;
[0-9]+[ \t]+[0-9]+\/[0-9]+ {

yylval.val.ipart=atoi(yytext);
yylval.val.p=strrchr(yytext,’ ’)>strrchr(yytext,’\t’)?

atoi(strrchr(yytext,’ ’)+1):
atoi(strrchr(yytext,’\t’)+1);

yylval.val.q=atoi(strchr(yytext,’/’)+1);
return JUX; }

[0-9]+\,[0-9]+ {
yylval.val.ipart=atoi(yytext);
yylval.val.fpart=atoi(strchr(yytext,’,’)+1);
return DEC; }

[0-9]+ { yylval.val.ipart=atoi(yytext); return NUM; }
[a-zA-Z] { yylval.var=yytext[0]; return VAR; }
\\\/ return SQRT;
exp return EXP;
sin return SIN;
cos return COS;
tan return TAN;
sinh return SINH;
cosh return COSH;
tanh return TANH;
ln return LOG;
arcsin return ASIN;
arccos return ACOS;
arctan return ATAN;
arcsinh return ASINH;
arccosh return ACOSH;
arctanh return ATANH;
\n return 0;
. return yytext[0];

given the following union declaration

%union { int lab;
struct rat { int ipart;

int fpart;
int p;
int q; } val;

char var; }
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10 Appendix: Yacc Specification

The grammar presented here is ambiguous. There are 176 shift/reduce conflicts. These
should all be resolved in favour of shift (Yacc does this automatically).

10.1 The “Outer” Grammar
exp_o: sum_o
| WS sum_o
;
sum_o: sum_o PLUS prod_o sum_o + prod_o
| sum_o MINUS prod_o sum_o − prod_o
| PLUS prod_o +prod_o
| MINUS prod_o −prod_o
| prod_o
;
prod_o: prod_o quot_o prod_o · quot_o
| prod_o ’.’ quot_o prod_o · quot_o
| prod_o ’.’ WS quot_o prod_o · quot_o
| prod_o WS
| quot_o
;

quot_o: pprod_o ’/’ pprod_o
pprod_o

pprod_o
| pprod_o
;
pprod_o: pprod_o ’.’ epow_o pprod_o · epow_o
| pprod_o epow_o pprod_o · epow_o
| epow_o
;
epow_o: fun_o
| pow_o
;
pow_o: atom_o ’^’ expon_o atom_oexpon_o

| atom_o
;
expon_o: fun_o
| atom_o
;
atom_o: patom_o ’!’ patom_o!
| patom_o
;
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patom_o: Patom
| bracabs
;
arg_o: WS fpprod_o
| fun_o
| fpprod_o
| bracabs
;
fpprod_o: fpprod_o fpow_o fpprod_o · fpow_o
| fpprod_o bracabs fpprod_o · bracabs
| fpow_o
;
fpow_o: Atom ’^’ expon_o Atomexpon_o

| Atom
;
fun_o: SQRT arg_o

√
arg_o

| ’\\’ NUM ’/’ arg_o NUM
√

arg_o
| EXP arg_o exp(arg_o)

| SIN arg_o sin(arg_o)

| SIN ’^’ NUM arg_o sinNUM(arg_o)

| COS arg_o cos(arg_o)

| COS ’^’ NUM arg_o cosNUM(arg_o)

| TAN arg_o tan(arg_o)

| TAN ’^’ NUM arg_o tanNUM(arg_o)

| SINH arg_o sinh(arg_o)

| SINH ’^’ NUM arg_o sinhNUM(arg_o)

| COSH arg_o cosh(arg_o)

| COSH ’^’ NUM arg_o coshNUM(arg_o)

| TANH arg_o tanh(arg_o)

| TANH ’^’ NUM arg_o tanhNUM(arg_o)

| LOG arg_o ln(arg_o)

| ASIN arg_o arcsin(arg_o)

| ASIN ’^’ NUM arg_o arcsinNUM(arg_o)

| ACOS arg_o arccos(arg_o)

| ACOS ’^’ NUM arg_o arccosNUM(arg_o)

| ATAN arg_o arctan(arg_o)

| ATAN ’^’ NUM arg_o arctanNUM(arg_o)

| ASINH arg_o arcsinh(arg_o)

| ASINH ’^’ NUM arg_o arcsinhNUM(arg_o)

| ACOSH arg_o arccosh(arg_o)

| ACOSH ’^’ NUM arg_o arccoshNUM(arg_o)

| ATANH arg_o arctanh(arg_o)

| ATANH ’^’ NUM arg_o arctanhNUM(arg_o)

;
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10.2 The “Inner” Grammar
exp: sum
| WS sum
;
sum: sum PLUS prod sum + prod
| sum MINUS prod sum − prod
| PLUS prod +prod
| MINUS prod −prod
| prod
;
prod: prod nquot prod · nquot
| prod ’.’ quot prod · quot
| prod ’.’ WS quot prod · quot
| prod WS
| quot
;

nquot: npprod ’/’ pprod
npprod

pprod
| npprod
;
npprod: npprod ’.’ fun npprod · fun
| npprod ’.’ powabs npprod · powabs
| npprod ’.’ pow npprod · pow
| npprod fun npprod · fun
| npprod pow npprod · pow
| fun
| pow
;

quot: pprod ’/’ pprod
pprod

pprod
| pprod
;
pprod: pprod ’.’ fun pprod · fun
| pprod ’.’ powabs pprod · powabs
| pprod ’.’ pow pprod · pow
| pprod fun pprod · fun
| pprod pow pprod · pow
| fun
| powabs
| pow
;
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powabs: atomabs ’^’ expon atomabsexpon

| atomabs
;
atomabs: abs ’!’ abs!
| abs
;
abs: ’|’ exp ’|’ |exp|
;
expon: fun
| atomabs
| atom
;
pow: atom ’^’ expon atomexpon

| atom
;
atom: patom ’!’ patom!
| patom
;
patom: Patom
| bracket
;
bracket: ’(’ exp_o ’)’ (exp_o)

| ’[’ exp_o ’]’ [exp_o]
| ’{’ exp_o ’}’ {exp_o}
;
arg: WS fpprod
| fun
| fpprod
| bracabs
;
bracabs: bracket
| abs
;
fpprod: fpprod fpow fpprod · fpow
| fpprod bracket fpprod · bracket
| fpow
;
fpow: Atom ’^’ expon Atomexpon

| Atom
;
Atom: Patom ’!’ Patom!
| Patom
;
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Patom: NUM
| DEC ipart,fpart

| JUX ipart
p

q
| VAR ’_’ NUM VARNUM

| VAR
;
fun: SQRT arg

√
arg

| ’\\’ NUM ’/’ arg NUM
√

arg
| EXP arg exp(arg)

| SIN arg sin(arg)

| SIN ’^’ NUM arg sinNUM(arg)

| COS arg cos(arg)

| COS ’^’ NUM arg cosNUM(arg)

| TAN arg tan(arg)

| TAN ’^’ NUM arg tanNUM(arg)

| SINH arg sinh(arg)

| SINH ’^’ NUM arg sinhNUM(arg)

| COSH arg cosh(arg)

| COSH ’^’ NUM arg coshNUM(arg)

| TANH arg tanh(arg)

| TANH ’^’ NUM arg tanhNUM(arg)

| LOG arg ln(arg)

| ASIN arg arcsin(arg)

| ASIN ’^’ NUM arg arcsinNUM(arg)

| ACOS arg arccos(arg)

| ACOS ’^’ NUM arg arccosNUM(arg)

| ATAN arg arctan(arg)

| ATAN ’^’ NUM arg arctanNUM(arg)

| ASINH arg arcsinh(arg)

| ASINH ’^’ NUM arg arcsinhNUM(arg)

| ACOSH arg arccosh(arg)

| ACOSH ’^’ NUM arg arccoshNUM(arg)

| ATANH arg arctanh(arg)

| ATANH ’^’ NUM arg arctanhNUM(arg)

;
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11 Appendix: Sample Expressions

These examples are intended to illustrate the meaning of the grammar introduced in this
paper by providing pairs of input strings and their mathematical content, as defined by the
grammar. Recall that the input strings are never intended to be seen.

2cosa|b|c/7

2· cos (a· |b| ·c)
7

2cosa.|b|c/7

2· cos (a) · |b| ·c
7

2cosa |b|c/7

2· cos (a) · |b| ·c
7

2cos a|b|c/7

2· cos (a· |b| ·c)
7

2cos a.|b|c/7

2· cos (a) · |b| ·c
7

2cos a |b|c/7

2· cos (a) · |b| ·c
7

2cos(a|b|c)/7

2· cos (a· |b| ·c)
7

2cos(a|b|c/7)

2· cos

(
a· |b| ·c

7

)
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|2cosa|b|c/7|

|2· cos (a)| ·b·
∣∣∣c
7

∣∣∣
|2cosa.|b|c/7|

∣∣∣∣2· cos (a) · |b| ·c
7

∣∣∣∣
|2cosa |b|c/7|

|2· cos (a)| ·b·
∣∣∣c
7

∣∣∣
|2cos a|b|c/7|

|2· cos (a)| ·b·
∣∣∣c
7

∣∣∣
|2cos a.|b|c/7|

∣∣∣∣2· cos (a) · |b| ·c
7

∣∣∣∣
|2cos a |b|c/7|

|2· cos (a)| ·b·
∣∣∣c
7

∣∣∣
|2cos(a|b|c)/7|

∣∣∣∣2· cos (a· |b| ·c)
7

∣∣∣∣
|2cos(a|b|c/7)|

∣∣∣∣2· cos

(
a· |b| ·c

7

)∣∣∣∣
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2xy_2z+15w-12/(q+z) [6^q-7] 4|W-3|

2·x ·y2·z + 15·w − 12

(q + z)
· [6q − 7

] ·4· |W − 3|

1/2a+x^3 3.b+1/2 a^33(1-z)[1+1/z]-2a 1/3 c

1

2·a + x3·3·b + 1

2
·a33· (1 − z) ·

[
1 + 1

z

]
− 2·a·1

3
·c

sin^2x+2sinxcosx+cos^2x/5+cos^2[x/5]

sin2 (x) + 2· sin (x) · cos (x) + cos2 (x)

5
+ cos2

[ x

5

]
3!/sinx|2 3+z|+coshx.cos hx+pcos(hx+p)

3!
sin (x · |2·3 + z|) + cosh (x) · cos (h·x) + p· cos (h·x + p)

sin(x+1)y+siny(x+1)+17 2/a+95 2/3a

sin (x + 1) ·y + sin
[
y· (x + 1)

] + 17·2
a

+
(

95
2

3

)
·a

-sin(1+n)x/3 + a|b|c|d^M/N| + a|b.|c|d^M/N|

−sin (1 + n) ·x
3

+ a· |b| ·c·
∣∣∣∣dM

N

∣∣∣∣ + a·
∣∣∣∣b· |c| ·dM

N

∣∣∣∣
sin(x)arcsin|-z|bc/2 + sin x arcsin|-z|b c/2

sin (x) · arcsin |−z| ·b·c
2

+ sin (x) · arcsin |−z| ·b·c
2

\/cos^7(5+3|2.|x|^[q/2]-1 3/4|)/{2-1/2!a b^3 z}

√
cos7

(
5 + 3·

∣∣∣2· |x |
[ q

2

]
− 13

4

∣∣∣){
2 − 1

2!·a ·b3·z}
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