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Chapter 1

Iterations and fixed points

1.1 Square roots

Perhaps the oldest algorithm in recorded history is the Babylonian algorithm
(circa 2000BCE) for computing square roots: If we want to find the square root
of a positive number a we start with some approximation, x0 > 0 and then
recursively define

xn+1 =
1

2

(

xn +
a

xn

)

. (1.1)

This is a very effective algorithm which converges extremely rapidly. Here is an
illustration. Suppose we want to find the square root of 2 and start with the
really stupid approximation x0 = 99. We apply (1.1) recursively thirteen times
to obtain the values

99.00000000000000
49.51010101010101
24.77524840365297
12.42798706655775
6.29445708659966
3.30609848017316
1.95552056875300
1.48913306969968
1.41609819333465
1.41421481646475
1.41421356237365
1.41421356237309
1.41421356237309

to fourteen decimal places. For the first seven steps we are approximately di-
viding by two in passing from one step to the next, also (approximately) cutting
the error - the deviation from the true value - in half. After line eight the accu-
racy improves dramatically: the ninth value, 1.416 . . . is correct to two decimal
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6 CHAPTER 1. ITERATIONS AND FIXED POINTS

places. The tenth value is correct to five decimal places, and the eleventh value
is correct to eleven decimal places.

To see why this algorithm works so well (for general a), first observe that the
algorithm is well defined, in that we are steadily taking the average of positive
quantities, and hence, by induction, xn > 0 for all n. Introduce the relative
error in the n−th approximation:

en =
xn −

√
a√

a

so
xn = (1 + en)

√
a.

As xn > 0, it follows that
en > −1.

Then

xn+1 =
√
a

1

2
(1 + en +

1

1 + en
) =

√
a(1 +

1

2

e2n
1 + en

).

This gives us a recursion formula for the relative error:

en+1 =
e2n

2 + 2en
. (1.2)

This implies that e1 > 0 so after the first step we are always overshooting the
mark. Now 2en < 2 + 2en so (1.2) implies that

en+1 <
1

2
en

so the error is cut in half (at least) at each stage and hence, in particular,

x1 > x2 > · · · ,

the iterates are steadily decreasing. Eventually we will reach the stage that

en < 1.

From this point on, we use the inequality 2 + 2en > 2 in (1.2) and we get the
estimate

en+1 <
1

2
e2n. (1.3)

So if we renumber our approximation so that 0 ≤ e0 < 1 then (ignoring the 1/2
factor in (1.3)) we have

0 ≤ en < e2
n

0 , (1.4)

an exponential rate of convergence.
If we had started with an x0 < 0 then all the iterates would be < 0 and we

would get exponential convergence to −√a. Of course, had we been so foolish
as to pick x0 = 0 we could not get the iteration started.
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1.2 Newton’s method

This is a generalization of the above algorithm to find the zeros of a function
P = P (x) and which reduces to (1.1) when P (x) = x2 − a. It is

xn+1 = xn −
P (xn)

P ′(xn)
. (1.5)

If we take P (x) = x2 − a then P ′(x) = 2x the expression on the right in (1.5)
is

1

2

(

xn +
a

xn

)

so (1.5) reduces to (1.1).
Also notice that if x is a “fixed point” of this iteration scheme, i.e. if

x = x− P (x)

P ′(x)

then P (x) = 0 and we have a solution to our problem. To the extent that xn+1

is “close to” xn we will be close to a solution (the degree of closeness depending
on the size of P (xn)).

In the general case we can not expect that “most” points will converge to
a zero of P as was the case in the square root algorithm. After all, P might
not have any zeros. Nevertheless, we will show in this section that if we are
“close enough” to a zero - that P (x0) is “sufficiently small” in a sense to be
made precise - then (1.5) converges exponentially fast to a zero.

1.2.1 The guts of the method.

Before embarking on the formal proof, let us describe what is going on on the
assumption that we know the existence of a zero - say by graphically plotting
the function. So let z be a zero for the function f of a real variable, and let x
be a point in the interval (z − µ, z + µ) of radius µ about z. Then

−f(x) = f(z)− f(x) =

∫ z

x

f ′(s)ds

so

−f(x)− (z − x)f ′(x) =

∫ z

x

(f ′(s)− f ′(x))ds.

Assuming f ′(x) 6= 0 we may divide both sides by f ′(x) to obtain
(

x− f(x)

f ′(x)

)

− z =
1

f ′(x)

∫ z

x

(f ′(s)− f ′(x))ds. (1.6)

Assume that for all y ∈ (z − µ, z + µ) we have

|f ′(y)| ≥ ρ > 0 (1.7)

|f ′(y1)− f ′(y2)| ≤ δ|y1 − y2| (1.8)

µ ≤ ρ/δ. (1.9)
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Then setting x = xold in (1.6) and letting

xnew := x− f(x)

f ′(x)

in (1.6) we obtain

|xnew − z| ≤ δ

ρ

∫ z

xold

|s− xold|ds =
δ

2ρ
|xold − z|2.

Since |xold − z| < µ it follows that

|xnew − z| ≤ 1

2
µ

by 1.9). Thus the iteration

x 7→ x− f(x)

f ′(x)
(1.10)

is well defined. At each stage it more than halves the distance to the zero and
has the quadratic convergence property

|xnew − z| ≤ δ

2ρ
|xold − z|2.

As we have seen from the application of Newton’s method to a cubic, unless
the stringent hypotheses are satisfied, there is no guarantee that the process
will converge to the nearest root, or converge at all. Furthermore, encoding
a computation for f ′(x) may be difficult. In practice, one replaces f ′ by an
approximation, and only allows Newton’s method to proceed if in fact it does
not take us out of the interval. We will return to these points, but first rephrase
the above argument in terms of a vector variable.

1.2.2 A vector version.

Now let f a function of a vector variable, with a zero at z and x a point in the
ball of radius µ centered at z. Let vx := z − x and consider the function

t :7→ f(x+ tvx)

which takes the value f(z) when t = 1 and the value f(x) when t = 0. Differ-
entiating with respect to t using the chain rule gives f ′(x + tvx)vx (where f ′

denotes the derivative =(the Jacobian matrix) of f . Hence

−f(x) = f(z)− f(x) =

∫ 1

0

f ′(x+ tvx)vxdt.

This gives

−f(x)− f ′(x)vx = −f(x)− f ′(x)(z − x) =

∫ 1

0

[f ′(x+ tvx)− f ′(x)]vxdt.
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Applying [f ′(x)]−1 (which we assume to exist) gives the analogue of (1.6):

(

x− [f ′(x)]−1f(x)
)

− z = [f ′(x)]
−1

∫ 1

0

[f ′(x+ tvx)− f ′(x)]vxdt.

Assume now

‖[f ′(y)]−1‖ ≤ ρ−1 (1.11)

‖f ′(y1)− f(y2‖ ≤ δ‖y1 − y2‖ (1.12)

for all y, y1, y2 in the ball of radius µ about z, and assume also that (1.9) holds.
Setting xold = x and

xnew := xold − [f ′(xold)]−1f(xold)

gives

‖xnew − z‖ ≤ δ

ρ

∫ 1

0

t‖vx‖‖vx‖dt =
δ

2ρ
‖xold − z‖2.

From here on the argument is the same as in the one dimensional case.

1.2.3 Implementation.

We return to the one dimensional case.
In numerical practice we have to deal with two problems: it may not be easy

to encode the derivative, and we may not be able to tell in advance whether the
conditions for Newton’s method to work are indeed fulfilled.

In case f is a polynomial, MATLAB has an efficient command “polyder” for
computing the derivative of f . Otherwise we replace the derivative by the slope
of the secant, which requires the input of two initial values, call them x− and
xc and replaces the derivative in Newton’s method by

f ′app(xc) =
f(xc)− f(x−)

xc − x−
.

So at each stage of the Newton iteration we carry along two values of x, the
“current value” denoted say by “xc” and the “old value” denoted by “x−”. We
also carry along two values of f , the value of f at xc denoted by fc and the value
of f at x− denoted by f−. So the Newton iteration will look like

fpc=(fc-f−)/(xc-x−);
xnew=xc-fc/fpc;
x−-=xc; f−=fc;
xc=xnew; fc=feval(fname,xc);

In the last line, the command feval is the MATLAB evaluation of a function
command: if fname is a “script” (that is an expression enclosed in ‘ ‘) giving
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the name of a function, then feval(fname,x) evaluates the function at the point
x.

The second issue - that of deciding whether Newton’s method should be used
at all - is handled as follows: If the zero in question is a critical point, so that
f ′(z) = 0, there is no chance of Newton’s method working. So let us assume
that f ′(z) 6= 0, which means that f changes sign at z, a fact that we can verify
by looking at the graph of f . So assume that we have found an interval [a, b]
containing the zero we are looking for, and such that f takes on opposite signs
at the end-points:

f(a)f(b) < 0.

A sure but slow method on narrowing in on a zero of f contained in this interval
is the “bisection method”: evaluate f at the midpoint 1

2 (a + b). If this value
has a sign opposite to that of f(a) replace b by 1

2 (a + b). Otherwise replace a
by 1

2 (a + b). This produces an interval of half the length of [a, b] containing a
zero.

The idea now is to check at each stage whether Newton’s method leaves us
in the interval, in which case we apply it, or else we apply the bisection method.

We now turn to the more difficult existence problem.

1.2.4 The existence theorem.

For the purposes of the proof, in order to simplify the notation, let us assume
that we have “shifted our coordinates” so as to take x0 = 0. Also let

B = {x : |x| ≤ 1}.

We need to assume that P ′(x) is nowhere zero, and that P ′′(x) is bounded. In
fact, we assume that there is a constant K such that

|P ′(x)−1| ≤ K, |P ′′(x)| ≤ K, ∀x ∈ B. (1.13)

Proposition 1.2.1 Let τ = 3
2 and choose the K in (1.13) so that

K ≥ 23/4.

Let

c =
8

3
lnK.

Then if
P (0) ≤ K−5 (1.14)

the recursion (1.5) starting with x0 = 0 satisfies

xn ∈ B ∀n (1.15)

and
|xn − xn−1| ≤ e−cτn

. (1.16)

In particular, the sequence {xn} converges to a zero of P .
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Proof. In fact, we will prove a somewhat more general result. So we will let τ
be any real number satisfying

1 < τ < 2

and we will choose c in terms of K and τ to make the proof work. First of all
we notice that (1.15) is a consequence of (1.16) if c is sufficiently large. In fact,

xj = (xj − xj−1) + · · ·+ (x1 − x0)

so
|xj | ≤ |xj − xj−1|+ · · ·+ |x1 − x0|.

Using (1.16) for each term on the right gives

|xj | ≤
j
∑

1

e−cτn

<

∞
∑

1

e−cτn

<

∞
∑

1

e−cn(τ−1) =
e−c(τ−1)

1− e−c(τ−1)
.

Here the third inequality follows from writing

τ = 1 + (τ − 1)

so by the binomial formula

τn = 1 + n(τ − 1) + · · · > n(τ − 1)

since τ > 1. The equality is obtained by summing the geometric series. So if
we choose c sufficiently large that

e−c(τ−1)

1− e−c(τ−1)
≤ 1 (1.17)

(1.15) follows from (1.16). This choice of c is conditioned by our choice of τ .
But at least we now know that if we can arrange that (1.16) holds, then by
choosing a possibly smaller value of c (so that (1.16) continues to hold) we can
guarantee that the algorithm keeps going.

So let us try to prove (1.16) by induction. If we assume it is true for n, we
may write

|xn+1 − xn| = |SnP (xn)|
where we set

Sn = P ′(xn)−1. (1.18)

We use the first inequality in (1.13) and the definition (1.5) for the case n − 1
(which says that xn = xn−1 − Sn−1P (xn−1) to get

|SnP (xn)| ≤ K|P (xn−1 − Sn−1P (xn−1))|. (1.19)

Taylor’s formula with remainder says that for any twice continuously differen-
tiable function f ,

f(y + h) = f(y) + f ′(y)h+R(y, h) where |R(y, h)| ≤ 1

2
sup

z
|f ′′(z)|h2
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where the supremum is taken over the interval between y and y + h. If we use
Taylor’s formula with remainder with

f = P, y = P (xn−1), and h = Sn−1P (xn−1) = xn − xn−1

and the second inequality in (1.13) to estimate the second derivative, we obtain

|P (xn−1−Sn−1P (xn−1))| ≤ |P (xn−1)−P ′(xn−1)Sn−1P (xn−1)|+K|xn−xn−1|2.

Substituting this inequality into (1.19), we get

|xn+1 − xn| ≤ K|P (xn−1)− P ′(xn−1)Sn−1P (xn−1)|+K2|xn − xn−1|2. (1.20)

Now since Sn−1 = P ′(xn−1)−1 the first term on the right vanishes and we get

|xn+1 − xn| ≤ K2|xn − xn−1|2 ≤ K2e−2cτn

.

So in order to pass from n to n+ 1 in (1.16) we must have

K2e−2cτn ≤ e−cτn+1

or
K2 ≤ ec(2−τ)τ . (1.21)

Since τ < 2 we can arrange for this last inequality to hold if we choose c
sufficiently large. To get started, we must verify (1.16) for n = 1 This says

S0P (0) ≤ e−cτ

or

|P (0)| ≤ e−cτ

K
. (1.22)

So we have proved:

Theorem 1.2.1 Suppose that (1.13) holds and we have chosen K and c so that
(1.17) and (1.21) hold. Then if P (0) satisfies (1.22) the Newton iteration scheme
converges exponentially in the sense that (1.16) holds.

If we choose τ = 3
2 as in the proposition, let c be given by K2 = e3c/4 so

that (1.21) just holds. This is our choice in the proposition. The inequality
K ≥ 23/4 implies that e3c/4 ≥ 43/4 or

ec ≥ 4.

This implies that

e−c/2 ≤ 1

2

so (1.17) holds. Then
e−cτ = e−3c/2 = K−4
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so (1.22) becomes |P (0)| ≤ K−5 completing the proof of the proposition.
We have put in all the gory details, but it is worth reviewing the guts of

the argument, and seeing how things differ from the special case of finding the
square root. Our algorithm is

xn+1 = xn − Sn[P (xn)] (1.23)

where Sn is chosen as (1.18). Taylor’s formula gave (1.20) and with the choice
(1.18) we get

|xn+1 − xn| ≤ K2|xn − xn−1|2. (1.24)

In contrast to (1.4) we do not know that K ≤ 1 so, once we get going, we can’t
quite conclude that the error vanishes as

rτn

with τ = 2. But we can arrange that we eventually have such exponential
convergence with any τ < 2.

1.2.5 Basins of attraction.

The more decisive difference has to do with the “basins of attraction” of the
solutions. For the square root, starting with any positive number ends us up
with the positive square root. This was the effect of the en+1 <

1
2en argument

which eventually gets us to the region where the exponential convergence takes
over. Every negative number leads us to the negative square root. So the “basin
of attraction” of the positive square root is the entire positive half axis, and the
“basin of attraction” of the negative square root is the entire negative half axis.
The only “bad” point belonging to no basin of attraction is the point 0.

Even for cubic polynomials the global behavior of Newton’s method is ex-
traordinarily complicated. For example, consider the polynomial

P (x) = x3 − x,

with roots at 0 and ±1. We have

x− P (x)

P ′(x)
= x− x3 − x

3x2 − 1
=

2x3

3x2 − 1

so Newton’s method in this case says to set

xn+1 =
2x3

n

3x2
n − 1

. (1.25)

There are obvious “bad” points where we can’t get started, due to the vanishing
of the denominator, P ′(x). These are the points x = ±

√

1/3. These two points
are the analogues of the point 0 in the square root algorithm.

We know from the general theory, that any point sufficiently close to 1 will
converge to 1 under Newton’s method and similarly for the other two roots, 0
and -1.
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If x > 1, then
2x3 > 3x2 − 1

since both sides agree at x = 1 and the left side is increasing faster, as its
derivative is 6x2 while the derivative of the right hand side is only 6x. This
implies that if we start to the right of x = 1 we will stay to the right. The same
argument shows that

2x3 < 3x3 − x

for x > 1. This is the same as

2x3

3x2 − 1
< x,

which implies that if we start with x0 > 1 we have x0 > x1 > x2 > · · · and
eventually we will reach the region where the exponential convergence takes
over. So every point to the right of x = 1 is in the basin of attraction of the
root x = 1. By symmetry, every point to the left of x = −1 will converge to −1.

But let us examine what happens in the interval −1 < x0 < 1. For example,
suppose we start with x0 = − 1

2 . Then one application of Newton’s method
gives

x1 =
−.25

3× .25− 1
= 1.

In other words, one application of Newton’s method lands us on the root x = 1,
right on the nose. Notice that although −.5 is halfway between the roots −1
and 0, we land on the farther root x = 1. In fact, by continuity, if we start with
x0 close to −.5, then x1 must be close to 1. So all points, x0, sufficiently close
to −.5 will have x1 in the region where exponential convergence to x = 1 takes
over. In other words, the basin of attraction of x = 1 will include points to the
immediate left of −.5, even though −1 is the closest root.

Suppose we have a point x which satisfies

2x3

3x2 − 1
= −x.

So one application of Newton’s method lands us at −x, and a second lands us
back at x. The above equation is the same as

0 = 5x3 − x = x(5x2 − 1)

which has roots, x = 0,±
√

1/5. So the points ±
√

1/5 form a cycle of order two:
Newton’s method cycles between these two points and hence does not converge
to any root.

In fact, in the interval (−1, 1) there are infinitely many points that don’t
converge to any root. We will return to a description of this complicated type
of phenomenon later. If we apply Newton’s method to cubic or higher degree
polynomials and to complex numbers instead of real numbers, the results are
even more spectacular. This phenomenon was first discovered by Cayley, and
was published in an article which appeared in the second issue of the American
Journal of Mathematics in 1879. This paper of Cayley’s was the starting point
for many future investigations.
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1.3 The implicit function theorem

Let us return to the positive aspect of Newton’s method. You might ask, how
can we ever guarantee in advance that an inequality such as (1.14) holds? The
answer comes from considering not a single function, P , but rather a parame-
terized family of functions: Suppose that u ranges over some interval, or more
generally, over some region in a vector space. To fix the notation, suppose that
this region contains the origin, 0. Suppose that P is a function of u and x, and
depends continuously on (u, x). Suppose that as a function of x, the function
P is twice differentiable and satisfies (1.13) for all values of u (with the same
fixed K). Finally, suppose that

P (0, 0) = 0. (1.26)

Then the continuity of P guarantees that for |u| and |x0| sufficiently small, the
condition (1.14) holds, that is

|P (u, x0)| < r

where r is small enough to guarantee that x0 is in the basin of attraction of a
zero of the function P (u, ·). In particular, this means that for |u| sufficiently
small, we can find an ε > 0 such that all x0 satisfying |x0| < ε are in the basin
of attraction of the same zero of P (u, ·). By choosing a smaller neighborhood,
given say by |u| < δ, starting with x0 = 0 and applying Newton’s method to
P (u, ·), we obtain a sequence of x values which converges exponentially to a
solution of

P (u, x) = 0. (1.27)

satisfying

|x| < ε.

Furthermore, starting with any x0 satisfying |x0| < ε we also get exponential
convergence to the same zero. In particular, there can not be two distinct
solutions to (1.27) satisfying |x| < ε, since starting Newton’s method at a zero
gives (inductively) xn = x0 for all n. Thus we have constructed a unique
function

x = g(u)

satisfying

P (u, g(u)) ≡ 0. (1.28)

This is the guts of the implicit function theorem. We have proved it under
assumptions which involve the second derivative of P which are not necessary
for the truth of the theorem. (We will remedy this in Chapter??.) However these
stronger assumptions that we have made do guarantee exponential convergence
of our algorithm.

For the sake of completeness, we discuss the basic properties of the function
g: its continuity, differentiability, and the computation of its derivative.
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1.Uniqueness implies continuity. We wish to prove that g is continuous at
any point u in a neighborhood of 0. This means: given β > 0 we can find α > 0
such that

|h| < α⇒ |g(u+ h)− g(u)| < β. (1.29)

We know that this is true at u = 0, where we could choose any ε′ > 0 at
will, and then conclude that there is a δ′ > 0 with |g(u)| < ε′ if |u| < δ′. To
prove (1.29) at a general point, just choose (u, g(u)) instead of (0, 0) as the
origin of our coordinates. and apply the preceding results to this new data. We
obtain a solution f to the equation P (u + h, f(u + h)) = 0 with f(u) = g(u)
which is continuous at h = 0. In particular, for |h| sufficiently small, we will
have |u + h| ≤ δ, and |f(u + h)| < ε, our original ε and δ in the definition of
g. The uniqueness of the solution to our original equation then implies that
f(u+ h) = g(u+ h), proving (1.29).

2.Differentiability. Suppose that P is continuously differentiable with respect
to all variables. We have

0 ≡ P (u+ h, g(u+ h))− P (u, g(u)

so, by the definition of the derivative,

0 =
∂P

∂u
h+

∂P

∂x
[g(u+ h)− g(u)] + o(h) + o[g(u+ h)− g(u)].

If u is a vector variable, say ∈ Rn, then ∂P
∂u is a matrix. The terminology o(s)

means some expression which approaches zero so that o(s)/s→ 0. So

g(u+h)−g(u) = −
[

∂P

∂x

]−1 [
∂P

∂u

]

h−o(h)−
[

∂P

∂x

]−1

o[g(u+h)−g(u)]. (1.30)

As a first pass through this equation, observe that by the continuity that we
have already proved, we know that [g(u + h) − g(u)] → 0 as h → 0. The
expression o([g(u+ h)− g(u)]) is, by definition of o, smaller than any constant
times |g(u+h)− g(u)| provided that |g(u+h)− g(u)| itself is sufficiently small.
This means that for sufficiently small [g(u+ h)− g(u)] we have

|o[g(u+ h)− g(u)]| ≤ 1

2K
|g(u+ h)− g(u)|

where we may choose K so that |
[

∂P
∂x

]−1 | ≤ K. So bringing the last term over
to the other side gives

|g(u+ h)− g(u)| − 1

2
|g(u+ h)− g(u)| ≤ |

[

∂P

∂x

]−1 [
∂P

∂u

]

h|+ o(|h|),

and we get an estimate of the form

|g(u+ h)− g(u)| ≤M |h|
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for some suitable constant, M . But then the term o[g(u + h) − g(u)] becomes
o(h). Plugging this back into our equation (1.30) shows that g is differentiable
with

∂g

∂u
= −

[

∂P

∂x

]−1 [
∂P

∂u

]

. (1.31)

To summarize, the implicit function theorem says:

Theorem 1.3.1 The implicit function theorem. Let P = P (u, x) be a
differentiable function with P (0, 0) = 0 and

[

∂P
∂x

]

(0, 0) invertible. Then there
exist δ > 0 and ε > 0 such that P (u, x) = 0 has a unique solution with |x| < ε for
each |u| < δ. This defines the function x = g(u). The function g is differentiable
and its derivative is given by (1.31).

We have proved the theorem under more stringent hypotheses in order to
get an exponential rate of convergence to the solution. We will provide the
details of the more general version, as a consequence of the contraction fixed
point theorem, later on. We should point out now, however, that nothing in our
discussion of Newton’s method or the implicit function theorem depended on x
being a single real variable. The entire discussion goes through unchanged if x
is a vector variable. Then ∂P/∂x is a matrix, and (1.31) must be understood
as matrix multiplication. Similarly, the condition on the second derivative of p
must be understood in terms of matrix norms. We will return to these points
later.

1.4 Attractors and repellers

We introduce some notation which we will be using for the next few chapters.
Let F : X → X be a differentiable map where X is an interval on the real line.
A point p ∈ X is called a fixed point if

F (p) = p.

A fixed point a is called an attractor or an attractive fixed point or a stable fixed
point if

|F ′(a)| < 1. (1.32)

Points sufficiently close to an attractive fixed point, a, converge to a geometri-
cally upon iteration. Indeed,

F (x) − a = F (x) − F (a) = F ′(a)(x − a) + o(x − a)

by the definition of the derivative. Hence taking b < 1 to be any number
larger than |F ′(a)| then for |x − a| sufficiently small, |F (x) − a| ≤ b|x− a|. So
starting with x0 = x and iterating xn+1 = F (xn) gives a sequence of points
with |xn − a| ≤ bn|x− a|.

The basin of attraction of an attractive fixed point is the set of all x such
that the sequence {xn} converges to a where x0 = x and xn+1 = F (xn). thus
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the basin of attraction of an attractive fixed point a will always include a neigh-
borhood of a, but it may also include points far away, and may be a very
complicated set as we saw in the example of Newton’s method applied to a
cubic.

A fixed point, r, is called a repeller or a repelling or an unstable fixed point
if

|F ′(r)| > 1. (1.33)

Points near a repelling fixed point (as in the case of our renormalization group
example, in the next section) are pushed away upon iteration.

An attractive fixed point s with

F ′(s) = 0 (1.34)

is called superattractive or superstable. Near a superstable fixed point, s, (as in
the case of Newton’s method) the iterates converge exponentially to s.

The notation F ◦n will mean the n-fold composition,

F ◦n = F ◦ F ◦ · · · ◦ F (ntimes).

A fixed point of F ◦n is called a periodic point of period n . If p is a periodic
point of period n, then so are each of the points

p, F (p), F ◦2(p), . . . , F ◦(n−1)(p)

and the chain rule says that at each of these points the derivative of F ◦n is the
same and is given by

(F ◦n)′(p) = F ′(p)F ′(F (p)) · · ·F ′(F ◦(n−1)(p)).

If any one of these points is an attractive fixed point for F n then so are all the
others. We speak of an attractive periodic orbit. Similarly for repelling.

A periodic point will be superattractive for F ◦n if and only if at least one of
the points p, F (p), . . . F ◦(n−1)(p) satisfies F ′(q) = 0.

1.5 Renormalization group

We illustrate these notions in an example: consider a hexagonal lattice in the
plane. This means that each lattice point has six nearest neighbors. Let each
site be occupied or not independently of the others with a common probability
0 ≤ p ≤ 1 for occupation. In percolation theory the problem is to determine
whether or not there is a positive probability for an infinitely large cluster of
occupied sites. (By a cluster we mean a connected set of occupied sites.) We
plot some figures with p = .2, .5, and .8 respectively. For problems such as this
there is a critical probability pc: for p < pc the probability of of an infinite cluster
is zero, while it is positive for for p > pc. One of the problems in percolation
theory is to determine pc for a given lattice.
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Figure 1.1: p=.2
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Figure 1.2: p=.5
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Figure 1.3: p=.8
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For the case of the hexagonal lattice in the plane, it turns out that pc = 1
2 .

We won’t prove that here, but arrive at the value 1
2 as the solution to a problem

which seems to be related to the critical probability problem in many cases. The
idea of the renormalization group method is that many systems exhibit a similar
behavior at different scales, a property known as self similarity. Understanding
the transformation properties of this self similarity yields important information
about the system. This is the goal of the renormalization group method.
Rather than attempt a general definition, we use the hexagonal lattice as a
first and elementary illustration. Replace the original hexagonal lattice by a
coarser hexagonal lattice as follows: pick three adjacent vertices on the original
hexagonal lattice which form an equilateral triangle. This then organizes the
lattice into a union of disjoint equilateral triangles, all pointing in the same
direction, where, alternately, two adjacent lattice points on a row form a base of
a triangle and the third lattice point is a vertex of a triangle from an adjacent
row . The center of these triangles form a new (coarser) hexagonal lattice, in
fact one where the distance between sites has been increased by a factor of three.
See the figures.

Each point on our new hexagonal lattice is associated with exactly three
points on our original lattice. Now assign a probability, p′ to each point of our
new lattice by the principle of majority rule: a new lattice point will be declared
occupied if a majority of the associated points of the old lattice are occupied.
Since our triangles are disjoint, these probabilities are independent. We can
achieve a majority if all three sites are occupied (which occurs with probability
p3) or if two out of the three are occupied (which occurs with probability p2(1−p)
with three choices as to which two sites are occupied). Thus

p′ = p3 + 3p2(1− p). (1.35)

This has three fixed points: 0, 1, 1
2 . The derivative at 1

2 is 3
2 > 1, so it is repelling.

The points 0 and 1 are superattracting. So starting with any p > 1
2 , iteration

leads rapidly towards the state where all sites are occupied, while starting with
p < 1

2 leads rapidly under iteration towards the totally empty state. The point
1
2 is an unstable fixed point for the renormalization transformation.
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Figure 1.4: The original hexagonal lattice organized into groups of three adja-
cent vertices.
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Figure 1.5: The new hexagonal lattice with edges emanating from each vertex,
indicating the input for calculating p′ from p.



Chapter 2

Bifurcations

2.1 The logistic family.

In population biology one considers iteration of the “logistic function”

Lµ(x) = µx(1− x). (2.1)

Here 0 < µ is a real parameter. The fixed points of Lµ are 0 and 1− 1
µ . Since

L′µ(x) = µ− 2µx,

L′µ(0) = µ, L′µ(1− 1

µ
) = 2− µ.

As x represents a proportion of a population, we are mainly interested only in
0 ≤ x ≤ 1. The maximum of Lµ is always achieved at x = 1

2 , and the maximum
value is µ

4 . So for 0 < µ ≤ 4, Lµ maps [0, 1] into itself.
For µ > 4, portions of [0, 1] are mapped into the range x > 1. A second

operation of Lµ maps these points to the range x < 0 and then are swept off to
−∞ under successive applications of Lµ.

We now examine the behavior of Lµ more closely for varying ranges of µ.

2.1.1 0 < µ ≤ 1

For 0 < µ < 1, 0 is the only fixed point of Lµ on [0, 1] since the other fixed
point is negative. On this range of µ, the point 0 is an attracting fixed point
since 0 < L′µ(0) < 1. Under iteration, all points of [0, 1] tend to 0 under the
iteration. The population “dies out”.

For µ = 1 we have

L1(x) = x(1− x) < x, ∀x > 0.

Each successive application of L1 to an x ∈ (0, 1] decreases its value. The limit
of the successive iterates can not be positive since 0 is the only fixed point. So
all points in (0, 1] tend to 0 under iteration, but ever so slowly, since L′1(0) = 1.

25
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Figure 2.1: µ = .5
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In fact, for x < 0, the iterates drift off to more negative values and then tend
to −∞.

For all µ > 1, the fixed point, 0, is repelling, and the unique other fixed
point, 1− 1

µ , lies in [0, 1]. For 1 < µ < 3 we have

|L′µ(1− 1

µ
)| = |2− µ| < 1,

so the non-zero fixed point is attractive.
We will see that the basin of attraction of 1− 1

µ is the entire open interval

(0, 1), but the behavior is slightly different for the two domains, 1 < µ ≤ 2 and
2 < µ < 3:

In the first of these ranges there is a steady approach toward the fixed point
from one side or the other; in the second, the iterates bounce back and forth
from one side to the other as they converge in towards the fixed point. The
graphical iteration spirals in. Here are the details:

2.1.2 1 < µ ≤ 2.

For 1 < µ < 2 the non-zero fixed point lies between 0 and 1
2 and the derivative

at this fixed point is 2− µ and so lies between 1 and 0.
Suppose that x lies between 0 and 1− 1

µ . For this range of x we have

1

µ
< 1− x

so, multiplying by µx we get

x < µx(1− x) = Lµ(x).

Thus the iterates steadily increase toward 1− 1
µ , eventually converging geomet-

rically with a rate close to 2− µ. If

1− 1

µ
< x

then
Lµ(x) < x.

If, in addition,

x ≤ 1

µ

then

Lµ(x) ≥ 1− 1

µ
.

To see this observe that the function Lµ has only one critical point, and that is
a maximum. Since Lµ(1− 1

µ ) = Lµ( 1
µ ) = 1− 1

µ , we conclude that the minimum

value is achieved at the end points of the interval [1− 1
µ ,

1
µ ].
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Figure 2.2: µ = 1.5
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Finally, for
1

µ
< x ≤ 1, Lµ(x) < 1− 1

µ
.

So on the range 1 < µ < 2 the behavior of Lµ is as follows: All points
0 < x < 1 − 1

µ steadily increase toward the fixed point, 1 − 1
µ . All points

satisfying 1 − 1
µ < x < 1

µ steadily decrease toward the fixed point. The point
1
µ satisfies Lµ( 1

µ ) = 1 − 1
µ and so lands on the non-zero fixed point after one

application. The points satisfying 1
µ < x < 1 get mapped by Lµ into the

interval 0 < x < 1 − 1
µ , In other words, they overshoot the mark, but then

steadily increase towards the non-zero fixed point. Of course Lµ(1) = 0 which
is always true.

When µ = 2, the points 1
µ and 1− 1

µ coincide and equal 1
2 with L′2( 1

2 ) = 0.

There is no “steadily decreasing” region, and the fixed point, 1
2 is superattractive

- the iterates zoom into the fixed point faster than any geometrical rate.

2.1.3 2 < µ < 3.

Here the fixed point 1− 1
µ > 1

2 while 1
µ < 1

2 . The derivative at this fixed point
is negative:

L′µ(1− 1

µ
) = 2− µ < 0.

So the fixed point 1 − 1
µ is an attractor, but as the iterates converge to the

fixed points, they oscillate about it, alternating from one side to the other. The
entire interval (0, 1) is in the basin of attraction of the fixed point. To see this,
we may argue as follows:

The graph of Lµ lies entirely above the line y = x on the interval (0, 1− 1
µ ].

In particular, it lies above the line y = x on the subinterval [ 1
µ , 1− 1

µ ] and takes

its maximum at 1
2 . So µ

4 = Lµ( 1
2 ) > Lµ(1 − 1

µ ) = 1 − 1
µ . Hence Lµ maps the

interval [ 1
µ , 1− 1

µ ] onto the interval [1− 1
µ ,

µ
4 ]. The map Lµ is decreasing to the

right of 1
2 , so it is certainly decreasing to the right of 1 − 1

µ . Hence it maps

the interval [1− 1
µ ,

µ
4 ] into an interval whose right hand end point is 1− 1

µ and

whose left hand end point is Lµ(µ
4 ). We claim that

Lµ(
µ

4
) >

1

2
.

This amounts to showing that

µ2(4− µ)

16
>

1

2

or that
µ2(4− µ) > 8.
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µ = .6



2.1. THE LOGISTIC FAMILY. 31

Now the critical points of µ2(4 − µ) are 0 and 8
3 and the second derivative at

8
3 is negative, so it is a local maximum. So we need only check the values of
µ2(4−µ) at the end points, 2 and 3, of the range of µ we are considering, where
the values are 8 and 9.

The image of [ 1
µ , 1− 1

µ ] is the same as the image of [ 1
2 , 1− 1

µ ] and is [1− 1
µ ,

µ
4 ].

The image of this interval is the interval [Lµ(µ
4 ), 1− 1

µ ], with 1
2 < Lµ(µ

4 ). If we

apply Lµ to this interval, we get an interval to the right of 1− 1
µ with right end

point L2
µ(µ

4 ) < Lµ( 1
2 ) = µ

4 . The image of the interval [1 − 1
µ , L

2
µ(µ

4 )] must be

strictly contained in the image of the interval [1− 1
µ ,

µ
4 ], and hence we conclude

that
L3

µ(
µ

4
) > Lµ(

µ

4
).

Continuing in this way we see that under even powers, the image of [ 1
2 , 1− 1

µ ]

is a sequence of nested intervals whose right hand end point is 1− 1
µ and whose

left hand end points are

1

2
< Lµ(

µ

4
) < L3

µ(
µ

4
) < · · · .

We claim that this sequence of points converges to the fixed point, 1 − 1
µ . If

not, it would have to converge to a fixed point of L2
µ different from 0 and 1− 1

µ .

We shall show that there are no such points. Indeed, a fixed point of L2
µ is a

zero of

L2
µ(x) − x = µLµ(x)(1− Lµ(x)) = µ[µx(1− x)][1− µx(1− x)]− x.

We know in advance two roots of this quartic polynomial, namely the fixed
points of Lµ,which are 0 and 1 − 1

µ . So we know that the quartic polynomial

factors into a quadratic polynomial times µx(x − 1 + 1
µ ). A direct check shows

that this quadratic polynomial is

−µ2x2 + (µ2 + µ)x− µ− 1. (2.2)

The b2 − 4ac for this quadratic function is

µ2(µ2 − 2µ− 3) = µ2(µ+ 1)(µ− 3)

which is negative for −1 < µ < 3 and so (2.2) has no real roots.
We thus conclude that the iterates of any point in ( 1

µ ,
µ
4 ] oscillate about the

fixed point, 1− 1
µ and converge in towards it, eventually with the geometric rate

of convergence a bit less than µ− 2. The graph of Lµ is strictly above the line
y = x on the interval (0, 1

µ ] and hence the iterates of Lµ are strictly increasing
so long as they remain in this interval. Furthermore they can’t stay there, for
this would imply the existence of a fixed point in the interval and we know that
there is none. Thus they eventually get mapped into the interval [ 1

µ , 1 − 1
µ ]

and the oscillatory convergence takes over. Finally, since Lµ is decreasing on
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[1− 1
µ , 1], any point in [1− 1

µ , 1) is mapped into (0, 1− 1
µ ] and so converges to

the non-zero fixed point.
In short, every point in (0, 1) is in the basin of attraction of the non-zero

fixed point and (except for the points 1
µ and the fixed point itself) eventually

converge toward it in a “spiral” fashion.

2.1.4 µ = 3.

Much of the analysis of the preceding case applies here. The differences are: the
quadratic equation (2.2) now has a (double) root. But this root is 2

3 = 1− 1
µ .

So there is still no point of period two other than the fixed points. The iterates
continue to spiral in, but now ever so slowly since L′µ( 2

3 ) = −1.

For µ > 3 we have

L′µ(1− 1

µ
) = 2− µ < −1

so both fixed points, 0 and 1− 1
µ are repelling. But now (2.2) has two real roots

which are

p2± =
1

2
+

1

2µ
± 1

2µ

√

(µ+ 1)(µ− 3).

Both roots lie in (0, 1) and give a period two cycle for Lµ. The derivative of
L2

µ at these periodic points is given by

(L2
µ)′(p2±) = L′µ(p2+)L′µ(p2−)

= (µ− 2µp2+)(µ− 2µp2−)

= µ2 − 2µ2(p2+ + p2−) + 4µ2p2+p2−

= µ2 − 2µ2(1 +
1

µ
) + 4µ2 × 1

µ2
(µ+ 1)

= −µ2 + 2µ+ 4.

This last expression equals 1 when µ = 3 as we already know. It decreases as µ
increases reaching the value −1 when µ = 1 +

√
6.

2.1.5 3 < µ < 1 +
√

6.

In this range the fixed points are repelling and both period two points are
attracting. There will be points whose images end up, after a finite number of
iterations, on the non-zero fixed point. All other points in (0, 1) are attracted
to the period two cycle. We omit the proof.

Notice also that there is a unique value of µ in this range where

p2+(µ) =
1

2
.

Indeed, looking at the formula for p2+ we see that this amounts to the condition
that

√

(µ+ 1)(µ− 3) = 1 or

µ2 − 2µ− 4 = 0.
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Figure 2.4: µ = 3.3, graphs of y = x, y = Lµ(x), y = L2
µ(x).
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The positive solution to this equation is given by µ = s2 where

s2 = 1 +
√

5.

At s2, the period two points are superattracting, since one of them coincides
with 1

2 which is the maximum of Ls2 .

2.1.6 3.449499... < µ < 3.569946....

Once µ passes 1 +
√

6 = 3.449499... the points of period two become unstable
and (stable) points of period four appear. Initially these are stable, but as µ
increases they become unstable (at the value µ = 3.544090...) and bifurcate into
period eight points, initially stable.

2.1.7 Reprise.

The total scenario so far, as µ increases from 0 to about 3.55, is as follows:
For µ < b1 := 1, there is no non-zero fixed point. Past the first bifurcation
point, b1 = 1, the non-zero fixed point has appeared close to zero. When µ
reaches the first superattractive value , s1 := 2, the fixed point is at .5 and is
superattractive. As µ increases, the fixed point continues to move to the right.
Just after the second bifurcation point, b2 := 3, the fixed point has become
unstable and two stable points of period two appear, one to the right and one
to the left of .5. The leftmost period two point moves to the right as we increase
µ, and at µ = s2 := 1 +

√
5 = 3.23606797... the point .5 is a period two point,

and so the period two points are superattractive. When µ passes the second
bifurcation value b2 = 1 +

√
6 = 3.449.. the period two points have become

repelling and attracting period four points appear.
In fact, this scenario continues. The period 2n−1 points appear at bifurcation

values bn. They are initially attracting, and become superattracting at sn >
bn and become unstable past the next bifurcation value bn+1 > sn when the
period 2n points appear. The (numerically computed) bifurcation points and
superstable points are tabulated as

n bn sn

1 1.000000 2.000000
2 3.000000 3.236068
3 3.449499 3.498562
4 3.544090 3.554641
5 3.564407 3.566667
6 3.568759 3.569244
7 3.569692 3.569793
8 3.569891 3.569913
9 3.569934 3.569946
∞ 3.569946 3.569946

The values of the bn are obtained by numerical experiment. We shall describe
a method for computing the sn using Newton’s method. We should point out
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that this is still just the beginning of the story. For example, an attractive
period three cycle appears at about 3.83. We shall come back to all of these
points, but first discuss theoretical problems associated to bifurcations.

2.2 Local bifurcations.

We will be studying the iteration (in x) of a function, F , of two real variables x
and µ . We will need to make various hypothesis concerning the differentiability
of F . We will always assume usually it is at least C2 (has continuous partial
derivatives up to the second order). We may also need C3 in which case we
explicitly state this hypothesis. We write

Fµ(x) = F (x, µ)

and are interested in the change of behavior of Fµ as µ varies.
Before embarking on the study of bifurcations let us observe that if p is a

fixed point of Fµ and F ′µ(p) 6= 1, then for ν close to µ, the transformation Fν has
a unique fixed point close to p. Indeed, the implicit function theorem applies to
the function

P (x, ν) := F (x, ν) − x

since
∂P

∂x
(p, µ) 6= 0

by hypothesis. We conclude that there is a curve of fixed points x(ν) with
x(µ) = p.

2.2.1 The fold.

The first type of bifurcation we study is the fold bifurcation where there is no
(local) fixed point on one side of the bifurcation value, b, where a fixed point p
appears at µ = b with F ′µ(p) = 1, and at the other side of b the map Fµ has two
fixed points, one attracting and the other repelling.

As an example consider the quadratic family

Q(x, µ) = Qµ(x) := x2 + µ.

Fixed points must be solutions of the quadratic equation

x2 − x+ µ = 0,

whose roots are

p± =
1

2
± 1

2

√

1− 4µ.

For

µ > b =
1

4
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Figure 2.5: y = x2 + µ for µ = .5, .25 and 0.

these roots are not real. The parabola x2 + µ lies entirely above the line y = x
and there are no fixed points.

At µ = 1
4 the parabola just touches the line y = x at the point ( 1

2 ,
1
2 ) and so

p =
1

2

is a fixed point, with Q′µ(p) = 2p = 1.

For µ < 1
4 the points p± are fixed points, with Q′µ(p+) > 1 so it is repelling,

and Q′µ(p−) < 1. We will have Q′µ(p−) > −1 so long as µ > − 3
4 , so on the

range − 3
4 < µ < 1

4 we have two fixed points, one repelling and one attracting.

We will now discuss the general phenomenon. In order not to clutter up the
notation, we assume that coordinates have been chosen so that b = 0 and p = 0.
So we make the standing assumption that p = 0 is a fixed point at µ = 0, i.e.
that

F (0, 0) = 0.

Proposition 2.2.1 (Fold bifurcation). Suppose that at the point (0, 0) we
have

(a)
∂F

∂x
(0, 0) = 1, (b)

∂2F

∂x2
(0, 0) > 0, (c)

∂F

∂µ
(0, 0) > 0.

Then there are non-empty intervals (µ1, 0) and (0, µ2) and ε > 0 so that

(i) If µ ∈ (µ1, 0) then Fµ has two fixed points in (−ε, ε).
One is attracting and the other repelling.

(ii) If µ ∈ (0, µ2) then Fµ has no fixed points in (−ε, ε).
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Proof. All the proofs in this section will be applications of the implicit function
theorem. For our current proposition, set

P (x, µ) := F (x, µ)− x.

Then by our standing hypothesis we have

P (0, 0) = 0

and condition (c) gives
∂P

∂µ
(0, 0) > 0.

The implicit function theorem gives a unique function µ(x) with µ(0) = 0 and

P (x, µ(x)) ≡ 0.

The formula for the derivative in the implicit function theorem gives

µ′(x) = −∂P/∂x
∂P/∂µ

which vanishes at the origin by assumption (a). We then may compute the
second derivative, µ′′, via the chain rule; using the fact that µ′(0) = 0 we obtain

µ′′(0) = −∂
2P/∂x2

∂P/∂µ
(0, 0).

This is negative by assumptions (b) and (c). In other words,

µ′(0) = 0, and µ′′(0) < 0

so µ(x) has a maximum at x = 0, and this maximum value is 0. In the (x, µ)
plane, the graph of µ(x) looks locally like a parabola pointing in the lower half
plane with its apex at the origin. If we rotate this picture clockwise by ninety
degrees, this says that there are no points on this curve sitting over positive µ
values, i.e. no fixed points for positive µ, and two fixed points for µ < 0.

Now consider the function ∂F
∂x (x, µ(x)). The derivative of this function with

respect to x is
∂2F

∂x2
(x, µ(x)) +

∂2F

∂x∂µ
(x, µ(x))µ′(x).

By assumption (b) and µ′(0) = 0, this expression is positive at x = 0 and
so ∂F

∂x (x, µ(x)) is an increasing function in a neighborhood of the origin while
∂F
∂x (0, 0) = 1. But this says that

F ′µ(x) < 1

on the lower fixed point and
F ′µ(x) > 1

at the upper fixed point, completing the proof of the proposition. We should
point out that changing the sign in (b) or (c) interchanges the role of the two
intervals.
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2.2.2 Period doubling.

We now turn to the period doubling bifurcation. This is what happens when we
pass through a bifurcation value with

∂F

∂x
(0, 0) = −1. (2.3)

We saw examples in the preceding section.
To visualize the phenomenon we plot the function L◦2µ for the values µ = 2.9

and µ = 3.3 in Figure 2.6. For µ = 2.9 the curve crosses the diagonal at a
single point, which is in fact a fixed point of  Lµ and hence of L◦2µ . This fixed
point is stable. For µ = 3.3 there are three crossings. The fixed point of Lµ has
derivative smaller than −1, and hence the corresponding fixed point of L◦2µ has
derivative greater than one. The two other crossings correspond to the stable
period two orbit.

We now turn to the general theory: Notice that the partial derivative of
F (x, µ) − x with respect to x is −2 at the origin. In particular it does not
vanish, so we can now solve for x as a function of µ; there is a unique branch of
fixed points, x(µ), passing through the origin. Let λ(µ) denote the derivative
of Fµ with respect to x at the fixed point, x(µ), i.e. define

λ(µ) :=
∂F

∂x
(x(µ), µ).

As notation, let us set
F ◦2µ := Fµ ◦ Fµ

and define
F ◦2(x, µ) := F ◦2µ (x).

Notice that
(F ◦2µ )′(x) = F ′µ(Fµ(x))F ′µ(x)

by the chain rule so
(F ◦20 )′(0) = (F ′0(0))2 = 1.

Hence
(F ◦2µ )′′(x) = F ′′µ (Fµ(x))F ′µ(x)2 + F ′µ(Fµ(x))F ′′µ (x) (2.4)

which vanishes at x = 0, µ = 0. In other words,

∂2F ◦2

∂x2
(0, 0) = 0. (2.5)

Let us absorb the import of this equation. One might think that if we set
Gµ = F ◦2µ , then G′µ(0) = 1, so all we need to do is apply Proposition 1 to Gµ.
But (2.5) shows that the key condition (b) of Proposition 1 is violated, and
hence we must make some alternative hypotheses. The hypotheses that we will
make will involve the second and the third partial derivatives of F , and also
that λ(µ) really passes through −1, i.e. dλ

dµ (0) 6= 0.
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Figure 2.6: Plots of L◦2µ for µ = 2.9 (dotted curve) and µ = 3.3.
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To understand the hypothesis about involving the partial derivatives of F ,
let us differentiate (2.4) once more with respect to x to obtain

(F ◦2µ )′′′(x) =

F ′′′µ (Fµ(x))F ′µ(x)3+2F ′′µ (Fµ(x))F ′′µ (x)F ′µ(x)+F ′′µ (Fµ(x))F ′µ(x)F ′′µ (x)+F ′µ(Fµ(x))F ′′′µ (x).

At (x, µ) = (0, 0) this simplifies to

−
[

2
∂3F

∂x3
(0, 0) + 3

∂2F

∂x2
(0, 0)

]

. (2.6)

Proposition 2.2.2 (Period doubling bifurcation). Suppose that F is C3,
that

(d)F ′0(0) = −1 (e)
dλ

dµ
(0) > 0, and (f) 2

∂3F

∂x3
(0, 0) + 3

∂2F

∂x2
(0, 0) > 0.

Then there are non-empty intervals (µ1, 0) and (0, µ2) and ε > 0 so that
(i) If µ ∈ (µ1, 0) then Fµ has one repelling fixed point and one attracting

orbit of period two in (−ε, ε)
(ii) If µ ∈ (0, µ2) then F ◦2µ has a single fixed point in (−ε, ε) which is in

fact an attracting fixed point of Fµ.

The statement of the theorem is summarized in Figure 2.7:

Proof. Let

H(x, µ) := F ◦2(x, µ)− x.

Then by the remarks before the proposition, H vanishes at the origin together
with its first two partial derivatives with respect to x. The expression (2.6)
(which used condition (d)) together with conditions (f) gives

∂3H

∂x3
(0, 0) < 0.

One of the zeros of H corresponds to the fixed point, let us factor this out:
Define P (x, µ) by

H(x, µ) = (x− x(µ))P (x, µ). (2.7)

Then

∂H

∂x
= P + (x − µ)

∂P

∂x
∂2H

∂x2
= 2

∂P

∂x
+ (x− x(µ))

∂2P

∂x2

∂3H

∂x3
= 3

∂2P

∂x2
+ (x− x(µ))

∂3H

∂x3
.
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Figure 2.7: Period doubling bifurcation.
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So P vanishes at the origin together with its first partial derivative with respect
to x, while

∂3H

∂x3
(0, 0) = 3

∂2P

∂x2
(0, 0)

so
∂2P

∂x2
(0, 0) < 0. (2.8)

We claim that
∂P

∂µ
(0, 0) < 0, (2.9)

so that we can apply the implicit function theorem to P (x, µ) = 0 to solve for
µ as a function of x. This will allow us to determine the fixed points of F ◦2µ

which are not fixed points of Fµ, i.e. the points of period two. To prove (2.9)
we compute ∂H

∂x both from its definition H(x, µ) = F ◦2(x, µ)−x and from (2.7)
to obtain

∂H

∂x
=

∂F

∂x
(F (x, µ), µ)

∂F

∂x
(x, µ)− 1

= P (x, µ) + (x− x(µ))
∂P

∂x
(x, µ).

Recall that x(µ) is the fixed point of Fµ and that λ(µ) = ∂F
∂x (x(µ), µ). So

substituting x = x(µ) into the preceding equation gives

λ(µ)2 − 1 = P (x, µ).

Differentiating with respect to µ and setting µ = 0 gives

∂P

∂µ
(0, 0) = 2λ(0)λ′(0) = −2λ′(0)

which is < 0 by (e).
By the implicit function theorem, (2.9) implies that there is a C2 function

ν(x) defined near zero as the unique solution of P (x, ν(x)) ≡ 0. Recall that P
and its first derivative with respect to x vanish at (0, 0). We now repeat the
arguments of the last subsection: We have

ν′(x) = −∂P/∂x
∂P/∂µ

so
ν′(0) = 0

and

ν′′(0) = −∂
2P/∂x2

∂P/∂x
(0, 0) < 0

since this time both numerator and denominator are negative. So the curve ν
has the same form as in the proof of the preceding proposition. This establishes
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the existence of the (strictly) period two points for µ < 0 and their absence for
µ > 0.

We now turn to the question of the stability of the fixed points and the period
two points. Condition (e) implies that λ(µ) < −1 for µ < 0 and λ(µ) > −1 for
µ > 0 so the fixed point is repelling to the left and attracting to the right of the
origin. As for the period two points, we wish to show that

∂F ◦2

∂x
(x, ν(x)) < 1

for x < 0. But (2.5) and ν ′(0) = 0 imply that imply that 0 is a critical point
for this function, and the value at this critical point is λ(0)2 = 1. To complete
the proof we must show that this critical point is a local maximum. So we must
compute the second derivative at the origin. Calling this function φ we have

φ(x) :=
∂F ◦2

∂x
(x, ν(x))

φ′(x) =
∂2F ◦2

∂x2
(x, ν(x)) +

∂2F ◦2

∂x∂µ
(x, ν(x))ν′(x)

φ′′(x) =
∂3F ◦2

∂x3
(x, ν(x)) + 2

∂3F ◦2

∂x2∂µ
(x, ν(x)ν′(x)) +

∂3F ◦2

∂x∂µ2
(x, ν(x))(ν′(x))2 +

∂2F ◦2

∂x∂µ
(x, ν(x))ν′′(x).

The middle two terms vanish at 0 since ν ′(0) = 0. The last term becomes

dλ

dµ
(0)ν′′(0) < 0

by condition (e) and the fact that ν ′′(0) < 0. In computing the third partial
derivative with respect to x of F ◦2 by the chain rule and by Leibniz’s rule, all
terms involving the second partial derivative vanish at (0, 0) by (2.5) and we
are left with

2
∂3F

∂x3
(0, 0)

(

∂F

∂x
(0, 0)

)3

which is negative by assumptions (d) and (f). This completes the proof of the
proposition.

There are obvious variants on the theorem which involve changing signs in
hypotheses (e) and or (f). Thus we may have an attractive fixed point merging
with two repelling points of period two to produce a repelling fixed point, and/or
the direction of the bifurcation may be reversed.

2.3 Newton’s method and Feigenbaum’s constant

Although the values of bn for the logistic family are hard to compute except
by numerical experiment, the superattractive values can be found by applying
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Newton’s method to find the solution, sn, of the equation

L◦2
n−1

µ (
1

2
) =

1

2
, Lµ(x) = µx(1− x). (2.10)

This is the equation for µ which says that 1
2 is a point of period 2n−1 of Lµ. Of

course we want to look for solutions for which 1
2 does not have lower period.

So we set

P (µ) = L2n−1

µ (
1

2
)− 1

2

and apply the Newton algorithm

µk+1 = N (µk), N (µ) = µ− P (µ)

P ′(µ)
.

with ′ now denoting differentiation with respect to µ. As a first step, must
compute P and P ′. For this we define the functions xk(µ) recursively by

x0 =
1

2
, x1(µ) = µ

1

2
(1− 1

2
), xk+1 = Lµ(xk),

so, we have

x′k+1 = [µxk(1− xk))]′

= xk(1− xk) + µx′k(1− xk)− µxkx
′
k

= xk(1− xk) + µ(1− 2xk)x′k .

Let
N = 2n−1

so that

P (µ) = xN − 1

2
, P ′(µ) = x′N (µ).

Thus, at each stage of the iteration in Newton’s method we compute P (µ)
and P ′(µ) by running the iteration scheme

xk+1 = µxk(1− xk) x0 = 1
2

x′k+1 = xk(1− xk) + µ(1− 2xk)x′x x′0 = 0

for k = 0, . . . , N − 1. We substitute this into Newton’s method, get the next
value of µ, run the iteration to get the next value of P (µ) and P ′(µ) etc.

Suppose we have found s1, s2, ...., sn. What should we take as the initial
value of µ? Define the numbers δn, n ≥ 2 recursively by δ2 = 4 and

δn =
sn−1 − sn−2

sn − sn−1
, n ≥ 3. (2.11)

We have already computed

s1 = 2, s2 = 1 +
√

5 = 3.23606797 . . . .
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We take as our initial value in Newton’s method for finding sn+1 the value

µn+1 = sn +
sn − sn−1

δn
.

The following facts are observed:
For each n = 3, 4, . . . , 15, Newton’s method converges very rapidly, with no

changes in the first nineteen digits after six applications of Newton’s method for
finding s3, after only one application of Newton’s method for s4 and s5, and at
most four applications of Newton’s method for the computation of each of the
remaining values.

Suppose we stop our calculations for each sn when there is no further change
in the first 19 digits, and take the computed values as our sn. These values are
strictly increasing. In particular this implies that the sn we have computed do
not yield 1

2 as a point of lower period.
The sn approach a limiting value, 3.569945671205296863.
The δn approach a limiting value,

δ = 4.6692016148.

This value is known as Feigenbaum’s constant. While the limiting value of the
sn is particular to the logistic family, δ is “universal” in the sense that it applies
to a whole class of one dimensional iteration families. We shall go into this
point in the next section, where we will see that this is a renormalization group
phenomenon.

2.4 Feigenbaum renormalization.

We have already remarked that the rate of convergence to the limiting value
of the superstable points in the period doubling bifurcation, Feigenbaum’s con-
stant, is universal, i.e. not restricted to the logistic family. That is, if we let

δ = 4.6692....

denote Feigenbaum’s constant, then the superstable values sr in the period
doubling scenario satisfy

sr = s∞ −Bδ−r + o(δ−r)

where s∞ and B depend on the specifics of the family, but δ applies to a large
class of such families.

There is another “universal” parameter in the story. Suppose that our family
fµ consists of maps with a single maximum, Xm, so that Xm must be one of
the points on any superstable periodic orbit. (In the case of the logistic family
Xm = 1

2 .) Let dr denote the difference between Xm an the next nearest point
on the superstable 2r orbit; more precisely, define

dr = f2r−1

sr
(Xm)−Xm.
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Then
dr ∼ D(−α)r

where
α
.
= 2.5029...

is again universal. This would appear to be a scale parameter (in x) associated
with the period doubling scenario. To understand this scale parameter, examine
the central portion of Fig 2.4 and observe that the graph of L◦2µ looks like an
(inverted and) rescaled version of  Lµ, especially if we allow a change in the
parameter µ. The rescaling is centered at the maximum, so in order to avoid
notational complexity, let us shift this maximum (for the logistic family) to the
origin by replacing x by y = x− 1

2 . In the new coordinates the logistic map is
given by

y 7→ Lµ(y +
1

2
)− 1

2
= µ(

1

4
− y2)− 1

2
.

Let R denote the operator on functions given by

R(h)(y) := −αh(h(y/α)). (2.12)

In other words, R sends a map h into its iterate h ◦ h followed by a rescaling.
We are going to not only apply the operator R, but also shift the parameter µ
in the maps

hµ(y) = µ(
1

2
− y2)− 1

2

from one supercritical value to the next. So for each k = 0, 1, 2, . . . we set

gk0 := hsk

and then define

gk,1 = Rgk0

gk2 = Rgk1

gk3 = Rgk2

...
...

It is observed (numerically) that for each k the functions gkr appear to be
approaching a limit, gk i.e.

gkr → gk.

So
gk(y) = lim(−α)rg2r

sk+r
(y/(−α)r).

Hence
Rgk = lim(−α)r+12r+1gsk+r

(y/(−α)r+1) = gk−1.

It is also observed that these limit functions gk themselves are approaching a
limit:

gk → g.
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Since Rgk = gk−1 we conclude that

Rg = g,

i.e. g is a fixed point for the Feigenbaum renormalization operator R. Notice
that rescaling commutes with R: If S denotes the operator (Sf)(y) = cf(y/c)
then

R(Sf)(y) = −α(c(f(cf(y/(cα))/c) = S(R)f(y).

So if g is a fixed point, so is Sg. We may thus fix the scale in g by requiring
that

g(0) = 1.

The hope was then that there would be a unique function g (within an appro-
priate class of functions) satisfying

Rg = g, g(0) = 1,

or, spelling this out,

g(y) = −αg◦2(−y/α), g(0) = 1. (2.13)

Notice that if we knew the function g, then setting y = 0 in (2.13) gives

1 = −αg(1)

or
α = −1/g(1).

In other words, assuming that we were able to establish all these facts and also
knew the function g, then the universal rescaling factor α would be determined
by g itself. Feigenbaum assumed that g has a power series expansion in x2 took
the first seven terms in this expansion and substituted in (2.13). He obtained
a collection of algebraic equations which he solved and then derived α close to
the observed “experimental” value. Indeed, if we truncate (2.13) we will get
a collection of algebraic equations. But these equations are not recursive, so
that at each stage of truncation modification is made in all the coefficients,
and also the nature of the solutions of these equations is not transparent. So
theoretically, if we could establish the existence of a unique solution to (2.13)
within a given class of functions the value of α is determined. But the numerical
evaluation of α is achieved by the renormalization property itself, rather than
from g(1) which is not known explicitly.

The other universal constant associated with the period doubling scenario,
the constant δ was also conjectured by Feigenbaum to be associated to the fixed
point g of the renormalization operator; this time with the linearized map J , i.e.
the derivative of the renormalization operator at its fixed point. Later on we will
see that in finite dimensions, if the derivative J of a non-linear transformation
R at a fixed point has k eigenvalues > 1 in absolute value, and the rest < 1
in absolute value, then there exists a k-dimensional R invariant surface tangent
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at the fixed point to the subspace corresponding to the k eigenvalues whose
absolute value is > 1. On this invariant manifold, the map R is expanding.
Feigenbaum conjectured that for the operator R (acting on the appropriate
infinite dimensional space of functions) there is a one dimensional “expanding”
submanifold, and that δ is the single eigenvalue of J with absolute value greater
than 1.

In the course of the past twenty years, these conjectures of Feigenbaum
have been verified using high powered techniques from complex analysis, thanks
to the combined effort of such mathematicians as Douady, Hubbard, Sullivan,
McMullen, and. . . .

2.5 Period 3 implies all periods

Throughout the following f will denote a continuous function on the reals whose
domain of definition is assumed to include the given intervals in the various
statements.

Lemma 2.5.1 If I = [a, b] is a compact interval and I ⊂ f(I) then f has a
fixed point in I.

Proof. For some c, d ∈ I we have f(c) = a, f(d) = b. So f(c) ≤ c, f(d) ≥ d. So
f(x)− x changes sign from c to d hence has a zero in between. QED.

Lemma 2.5.2 If J and K = [a, b] are compact intervals with K ⊂ f(J) then
there is a compact subinterval L ⊂ J such that f(L) = K.

Proof. Let c be the greatest point in J with f(c) = a. If f(x) = b for some
x > c, x ∈ J let d be the least. Then we may take L = [c, d]. If not, f(x) = b for
some x < c, x ∈ J . Let c′ be the largest. Let d′ be the the smallest x satisfying
x > c′ with f(x) = a. Notice that d′ ≤ c. We then take L = [c′, d′]. QED

Notation. If I is a closed interval with end points a and b we write

I =< a, b >

when we do not want to specify which of the two end points is the larger.

Theorem 2.5.1 Sarkovsky Period three implies all periods.

Suppose that f has a 3-cycle

a 7→ b 7→ c 7→ a 7→ · · · .

Let a denote the leftmost of the three, and let us assume that

a < b < c.

(Reversing left and right (i.e. changing direction on the real line) and cycling
through the points makes this assumption harmless.) Let

I0 = [a, b], I1 = [b, c]
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so we have

f(I0) ⊃ I1, f(I1) ⊃ I0 ∪ I1.

By Lemma 2 the fact that f(I1) ⊃ I1 implies that there is a compact interval
A1 ⊂ I1 with f(A1) = I1. Since f(A1) = I1 ⊃ A1 there is a compact subinterval
A2 ⊂ A1 with f(A2) = A1. So

A2 ⊂ A1 ⊂ I, f◦2(A2) = I1.

By induction proceed to find compact intervals with

An−2 ⊂ An−3 ⊂ · · · ⊂ A2 ⊂ A1 ⊂ I1

with

f◦(n−2)(An−2) = I1.

Since f(I0) ⊃ I1 ⊃ An−2 there is an interval An−1 ⊂ I0 with f(An−1) = An−2.
Finally, since f(I1) ⊃ I0 there is a compact interval An ⊂ I1 with f(An) =
An−1. So we have

An → An−1 → · · · → A1 → I1

where each interval maps onto the next and An ⊂ I1. By Lemma 1, fn has a
fixed point, x, in An. But f(x) lies in I0 and all the higher iterates up to n lie
in I1 so the period can not be smaller than n. So there is a periodic point of
any period n ≥ 3.

Since f(I1) ⊃ I1 there is a fixed point in I1, and since f(I0) ⊃ I1, f(I1) ⊃ I0
there is a point of period two in I0 which is not a fixed point of f . QED

A more refined analysis which we will omit shows that period 5 implies the
existence of all periods greater than 5 and period 2 and 4 (but not period 3). In
general any odd period implies the existence of periods of all higher order (and
all smaller even order). It is easy to graph the third iterate of the logistic map
to see that it crosses the diagonal for µ > 1 +

√

(8). In fact, one can prove that

that at µ = 1 +
√

(8) the graph of L◦3µ just touches the diagonal and strictly

crosses it for µ > 1 +
√

(8) = 3.8284 . . .. Hence in this range there are periodic
points of all periods.
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Figure 2.8: Plots of Lµ for µ = 3.7, 3.81, 3.83, 3.84
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2.6 Intermittency.

In this section we describe what happens to the period three orbits as we de-
crease µ from slightly above the critical value 1 +

√
8 to slightly below it. For

µ = 1 +
√

8 + .002 the roots of P (x) − x where P := L◦3µ and the values of P ′

at these roots are given by

x = roots ofP (x)− x P ′(x)

0 56.20068544683054
0.95756178779471 0.24278522730018
0.95516891475013 1.73457935568109
0.73893250871724 −6.13277919589328
0.52522791460709 1.73457935766594
0.50342728916956 0.24278522531345
0.16402371217410 1.73457935778151
0.15565787278717 0.24278522521922

We see that there is a stable period three orbit consisting of the points

0.1556 . . . , .5034 . . . , .9575 . . . .

If we choose our initial value of x close to .5034 . . . and plot the successive 199
iterates of Lµ applied to x we obtain the upper graph in Fig. 2.9. The lower
graph gives x(j + 3)− x(j) for j = 1 to 197.

We will now decrease the parameter µ by .002 so that µ = 1 +
√

8 is the
parameter giving the onset of period three. For this value of the parameter, the
graph of P = L◦3µ just touches the line y = x at the three double roots of P (x)−x
which are at 0.1599288 . . . , 0.514355 . . . ., 0.9563180 . . .. (Of course, the eighth
degree polynomial P (x) − x has two additional roots which correspond to the
two (unstable) fixed points of Lµ; these are not of interest to us.) Since the
graph of P is tangent to the diagonal at the double roots, P ′(x) = 1 at these
points, so the period three orbit is not strictly speaking stable. But using the
same initial seed as above, we do get slow convergence to the period three orbit,
as is indicated by Fig. 2.10.

Most interesting is what happens just before the onset of the period three
cycle. Then P (x)−x has only two real roots corresponding to the fixed points of
Lµ. The remaining six roots are complex. Nevertheless, if µ is close to 1+

√
8 the

effects of these complex roots can be felt. In Fig. 2.11 we have taken µ = 1+
√

8−
.002 and used the same initial seed x = .5034 and again plotted the successive
199 iterates of Lµ applied to x in the upper graph. Notice that there are portions
of this graph where the behavior is almost as if we were at a point of period three,
followed by some random looking behavior, then almost period three again and
so on. This is seen more clearly in the bottom graph of x(j + 3)− x(j). Thus
the bottom graphs indicates that the deviation from period three is small on
the j intervals j = [1, 20], [41, 65], [96, 108], [119, 124], [148, 159], [190, ?].

This phenomenon is known as intermittency. We can understand how it
works by iterating P = L◦3µ . As we pass close to a minimum of P lying just
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above the diagonal, or to a maximum of P lying just below the diagonal it will
take many iterative steps to move away from this region - known as a bottleneck.
Each such step corresponds to an almost period three cycle. After moving away
from these bottlenecks, the steps will be large, eventually hitting a bottleneck
once again. See Figures 2.12 and 2.13.
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bottleneck steps. The dotted lines are the longer steps.
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Chapter 3

Conjugacy

3.1 Affine equivalence

An affine transformation of the real line is a transformation of the form

x 7→ h(x) = Ax+B

where A and B are real constants with A 6= 0. So an affine transformation
consists of a change of scale (and possibly direction if A < 0) given by the
factor A, followed by a shift of the origin given by B. In the study of linear
phenomena, we expect that the essentials of an object be invariant under a
change of scale and a shift of the origin of our coordinate system.

For example, consider the logistic transformation, Lµ(x) = µx(1 − x) and
the affine transformation

hµ(x) = −µx+
µ

2
.

We claim that
hµ ◦ Lµ ◦ h−1

µ = Qc (3.1)

where
Qc(x) = x2 + c (3.2)

and where c is related to µ by the equation

c = −µ
2

4
+
µ

2
. (3.3)

In other words, we are claiming that if c and µ are related by (3.3) then we have

hµ(Lµ(x)) = Qc(hµ(x)).

To check this, the left hand side expands out to be

−µ[µx(1− x)] +
µ

2
= µ2x2 − µ2x+

µ

2
,

59
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while the right hand side expands out as

(−µx+
µ

2
)2 − µ2

4
+
µ

2
= µ2x2 − µ2x+

µ

2

giving the same result as before, proving (3.1).

We say that the transformations Lµ and Qc, c = −µ2

4 + µ
2 are conjugate by

the affine transformation, hµ.
More generally, let f : X → X and g : Y → Y be maps of the sets X and Y

to themselves, and let h : X → Y be a one to one map of X onto Y . We say
that h conjugates f into g if

h ◦ f ◦ h−1 = g,

or, what amounts to the same thing, if

h ◦ f = g ◦ h.

We shall frequently write this equation in the form of a commutative diagram

X
f−−−−→ X

h





y





y
h

Y −−−−→
g

Y

The statement that the diagram is commutative means that going along the
upper right hand path (so applying h ◦ f) is equal to traversing the left lower
path (which is g ◦ f).

Notice that if h ◦ f ◦ h−1 = g, then

gcircn = h ◦ f◦n ◦ h−1.

So the problem of studying the iterates of g is the same (up to the transformation
h) as that of f , providing that the properties we are interested in studying are
not destroyed by h.

Certainly affine transformations will always be allowed. Let us generalize
the preceding computation by showing that any quadratic transformation (with
non-vanishing leading term) is conjugate (by an affine transformation) to a
transformation of the form Qc for suitable c. More precisely:

Proposition 3.1.1 Let f = ax2 +bx+d then f is conjugate to Qc by the affine
map h(x) = Ax+B where

A = a, B =
b

2
, and c = ad+

b

2
− b2

4
.

Proof. Direct verification.
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Let us understand the importance of this result. The general quadratic
transformation f depends on three parameters a, b and d. But if we are inter-
ested in the qualitative behavior of the iterates of f , it suffices to examine the
one parameter family Cc. Any quadratic transformation (with non-vanishing
leading term) has the same behavior (in terms of its iterates) as one of the Qc.
The family of possible behaviors under iteration is one dimensional, depending
on a single parameter c. We may say that the family Qc (or for that matter
the family Lµ) is universal with respect to quadratic maps as far as iteration is
concerned.

3.2 Conjugacy of T and L4

Let T : [0, 1] → [0, 1] be the map defined by

T (x) = 2x, 0 ≤ x ≤ 1

2
, T (x) = −2x+ 2,

1

2
≤ x ≤ 1.

So the graph of T looks like a tent, hence its name. It consists of the straight
line segment of slope 2 joining x = 0, y = 0 to x = 1

2 , y = 1 followed by the
segment of slope −2 joining x = 1

2 , y = 1 to x = 1, y = 0.
Of course, here L4 is our old friend, L4(x) = 4x(1 − x). We wish to show

that
L4 ◦ h = h ◦ T

where
h(x) = sin2

(πx

2

)

.

In other words, we claim that the diagram of section 1 commutes when f =
T, g = L4 and h is as above. The function sin θ increases monotonically from 0
to 1 as θ increases from 0 to π/2. So, setting

θ =
πx

2
,

we see that h(x) increases monotonically from 0 to 1 as x increases from 0 to 1.
It therefore is a one to one continuous map of [0, 1] onto itself, and thus has a
continuous inverse. It is differentiable everywhere with h(x) > 0 for 0 < x < 1.
But h′(0) = h′(1) = 0. So h−1 is not differentiable at the end points, but is
differentiable for 0 < x < 1.

To verify our claim, we substitute

L4(h(x)) = 4 sin2 θ(1− sin2 θ)

= 4 sin2 θ cos2 θ

= sin2 2θ

= sin2 πx.

So for 0 ≤ x ≤ 1
2 we have verified that

L4(h(x)) = h(2x) = h(T (x)).
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Figure 3.1: The tent map.
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For 1
2 < x ≤ 1 we have

h(T (x)) = h(2− 2x)

= sin2(π − πx)

= sin2 πx

= sin2 2θ

= 4 sin2 θ(1− sin2 θ)

= L4(h(x))

where we have used the fact that sin(π−α) = sinα to pass from the second line
to the third. So we have verified our claim in all cases.

Many interesting properties of a transformation are preserved under conju-
gation by a homeomorphism. (A homeomorphism is a bijective continuous map
with continuous inverse.) For example, if p is a periodic point of period n of f ,
so that f◦n(p) = p, then

g◦n(h(p)) = h ◦ f◦n(p) = h(p)

if h ◦ f = g ◦ h. So periodic points are carried into periodic points of the same
period under a conjugacy. We will consider several other important properties
of a transformation as we go along, and will prove that they are invariant under
conjugacy. So what our result means is that if we prove these properties for
T , we conclude that they are true for Lµ. Since we have verified that L4 is
conjugate to Q−2, we conclude that they hold for Q−2 as well.

Here is another example of a conjugacy, this time an affine conjugacy. Con-
sider

V (x) = 2|x| − 2.

V is a map of the interval [−2, 2] into itself. Consider

h2(x) = 2− 4x.

So h2(0) = 2, h2(1) = −2. In other words, h2 maps the interval [0, 1] in a one
to one fashion onto the interval [−2, 2]. We claim that

V ◦ h2 = h2 ◦ T.

Indeed,

V (h2(x)) = 2|2− 4x| − 2.

For 0 ≤ x ≤ 1
2 this equals 2(2 − 4x) − 2 = 2 − 8x = 2 − 4(2x) = h2(Tx). For

1
2 ≤ x ≤ 1 we have V (h2(x)) = 8x − 6 = 2 − 4(2 − 2x) = h2(Tx). So we have
verified the required equation in all cases. The effect of the affine transformation,
h2 is to enlarge the graph of T , shift it, and turn it upside down. But as far as
iterations are concerned, these changes do not effect the essential behavior.
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Figure 3.3: V (x) = 2|x| − 2.
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3.3 Chaos

A transformation F is called (topologically) transitive if for any two open (non
empty) intervals, I and J , one can find initial values in I which, when iterated,
will eventually take values in J . In other words, we can find an x ∈ I and an
integer n so that F n(x) ∈ J .

For example, consider the tent transformation, T . Notice that T maps the
interval [0, 1

2 ] onto the entire interval [0, 1], and also maps the interval [ 1
2 , 1] onto

the entire interval, [0, 1]. So T ◦2 maps each of the intervals [0, 1
4 ], [ 14 ,

1
2 ], [ 12 ,

3
4 ]

and [ 34 ] onto the entire interval [0, 1]. More generally, T ◦n maps each of the 2n

intervals [ k
2n ,

k+1
2n ], 0 ≤ k ≤ 2n − 1 onto the entire interval [0, 1]. But any open

interval I contains some interval of the form [ k
2n ,

k+1
2n ] if we choose n sufficiently

large. For example it is enough to choose n so large that 3
2n is less than the

length of I . So for this value on n, T ◦n maps I onto the entire interval [0, 1],
and so, in particular, there will be points, x, in I with F (x) ∈ J .

Proposition 3.3.1 Suppose that g ◦ h = h ◦ f where h is continuous and sur-
jective, and suppose that f is transitive. Then g is transitive.

Proof. We are given non-empty open I and J and wish to find an n and an
x ∈ I so that g◦n(x) ∈ J . To say h is continuous means that h−1(J) is a
union of open intervals. To say that h is surjective implies that h−1(J) is not
empty. Let L be one of the intervals constituting h−1(J). Similarly, h−1(I) is
a union of open intervals. Let K be one of them. By the transitivity of f we
can find an n and a y ∈ K with f◦n(y) ∈ L. Let x = h(y). Then x ∈ I and
g◦n(x) = g◦n(h(y)) = h(f◦n(y)) ∈ h(L) ⊂ J . QED.

As a corollary we conclude that if f is conjugate to g, then f is transitive
if and only if g is transitive. (Just apply the proposition twice, once with the
roles of f and g interchanged.) But in the proposition we did not make the
hypothesis that h was bijective or that it had a continuous inverse. We will
make use of this more general assertion.

A set S of points is called dense if every non-empty open interval, I , contains
a point of S. The behavior of density under continuous surjective maps is also
very simple:

Proposition 3.3.2 If h : X → Y is a continuous surjective map, and if D is
a dense subset of X then h(D) is a dense subset of Y .

Proof. Let I ⊂ Y be a non-empty open interval. Then h−1(I) is a union of
open intervals. Pick one of them, K and then a point y ∈ D ∩K which exists
since D is dense. But then f(y) ∈ f(D) ∩ I . QED

We define PER(f) to be the set of periodic points of the map f . If h◦f = g◦h,
then f◦n(p) = p implies that g◦n(h(p)) = h(f◦n(p)) = h(p) so

h[PER(f)] ⊂ PER(g).
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In particular, if h is continuous and surjective, and if PER(f) is dense, then so
is PER(g).

Following Devaney and recent work (1992) by J. Banks et.al. Amer. Math.
Monthly 99 (1992) 332-334, let us call f chaotic if f is transitive and PER(f)
is dense. It follows from the above discussion that

Proposition 3.3.3 If h : X → Y is surjective and continuous, if f : X → X
is chaotic, and if h ◦ f = g ◦ h, then g is chaotic.

We have already verified that the tent transformation, T , is transitive. We
claim that PER(T ) is dense on [0, 1] and hence that T is chaotic. To see this,
observe that T n maps the interval [ k

2n ,
k+1
2n ] onto [0, 1]. In particular, there is a

point x ∈ [ k
2n ,

k+1
2n ] which is mapped into itself. In other words, every interval

[ k
2n ,

k+1
2n ] contains a point of period n for T . But any non-empty open interval

I contains an interval of the type [ k
2n ,

k+1
2n ] for sufficiently large n. Hence T is

chaotic.
From the above propositions it follows that L4, Q−2, and V are all chaotic.

3.4 The saw-tooth transformation and the shift

Define the function S by

S(x) = 2x, 0 ≤ x <
1

2
, S(x) = 2x− 1,

1

2
≤ x ≤ 1. (3.4)

The map S is discontinuous at x = .5. However, we can find a continuous,
surjective map, h, such that h ◦S = T ◦h. In fact, we can take h to be T itself!
In other words we claim that

I
S−−−−→ I

T





y





y
T

I −−−−→
T

I

commutes where I = [0, 1]. To verify this, we successively compute both T ◦ T
and T ◦ S on each of the quarter intervals:

T (T (x)) = T (2x) = 4x for 0 ≤ x ≤ 0.25
T (S(x)) = T (2x) = 4x for 0 ≤ x ≤ 0.25
T (T (x)) = T (2x) = −4x+ 2 for 0.25 < x < 0.5
T (S(x)) = T (2x) = −4x+ 2 for 0.25 ≤ x < 0.5
T (T (x)) = T (−2x+ 2) = 4x− 2 for 0.5 ≤ x ≤ 0.75
T (S(x)) = T (2x− 1) = 4x− 2 for 0.5 ≤ x ≤ 0.75
T (T (x)) = T (−2x+ 2) = −4x+ 4 for 0.75 < x ≤ 1
T (S(x)) = T (2x− 1) = −4x+ 4 for 0.75 < x ≤ 1

The h that we are using (namely h = T ) is not one to one. That is why our
diagram can commute even though T is continuous and S is not.
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Figure 3.4: The discontinuous function S.
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We now give an alternative description of the saw-tooth function which
makes it clear that it is chaotic. Let X be the set of infinite (one sided) se-
quences of zeros and ones. So a point of X is a sequence {a1a2a3 . . . } where
each each ai is either 0 or 1. However we exclude all points with a tail con-
sisting of infinite repeating 1′s. So a sequence such as {00111111111 . . .} is
excluded. We will identify X with the half open interval [0, 1) by assigning to
each point x ∈ [0, 1) its binary expansion, and by assigning to each sequence
a = {a1a2a3 . . . } the number

h(a) =
∑ ai

2i
.

The map h : X → [0, 1) just defined is clear. The inverse map, assigning to
each real number between 0 and 1 its binary expansion deserves a little more
discussion: Take a point x ∈ [0, 1). If x < 1

2 the first entry in its binary
expansion is 0. If 1

2 ≤ x then the first entry in the binary expansion of x is 1.
Now apply S. If S(x) < 1

2 (which means that either 0 ≤ x < 1
4 or 1

2 ≤ x < 3
4 )

then the second entry of the binary expansion of x is 0, while if 1
2 ≤ S(x) < 1

then the second entry in the binary expansion of x is 1. Thus the operator S
provides the algorithm for the computation of the binary expansion of x. Let
us consider, for example, x = 7

16 . Then the sequence {Sk(x)}, k = 0, 1, 2, 3, . . .
is

7

16
,

7

8
,

3

4
,

1

2
, 0, 0, 0, . . . .

In general it is clear that for any number of the form k
2n , after n− 1 iterations

of the operator S the result will be either 0 or 1
2 . So all Sk(x) = 0, k ≥ n.

In particular, no infinite sequence with a tail of repeating 1’s can arise. We
see that the binary expansion of h(a) gives us a back, so we may (and shall)
identify X with [0, 1). Notice that we did not start with any independent notion
of topology or metric on X . But now that we have identified X with [0, 1), we
can use use standard notions of distance on the unit interval but expressed in
terms of properties of the sequences. For example, if the binary expansions of
x and y agree up to the kth position, then

|x− y| < 2−k.

So we define the distance between to sequences a and b to be 2−k where k is
the first place they do not agree. (Of course we define the distance from an a
to itself to be zero.)

The expression of S in terms of the binary representation is very simple:

S : .a1a2a3a4 . . . 7→ .a2a3a4a5 . . . .

It consists of throwing away the first digit and then shifting the entire sequence
one unit to the left.

From this description it is clear that PER(S) consists of points with even-
tually repeating binary expansions, these are the rational numbers. They are
dense. We can see that S is transitive as follows: We are given intervals I and J .
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Let y = .b1b2b3 . . . be a point of J , and let z = .a1a2a3 . . . be a point of I which
is at a distance greater than 2−n from the boundary of I . We can always find
such a point if n is sufficiently large. Indeed, if we choose n so that the length
of I is greater than 1

2(n−1)
, the midpoint of I has this property. In particular,

any point whose binary expansion agrees with z up to the n−th position lies in
I . Take x to be the point whose first n terms in the binary expansion are those
of z, followed by the binary expansion of y, so

x = 0.a1a2a3 . . . anb1b2b3b4 . . . .

The point x lies in I and Sn(x) = y. Not only is S transitive, we can hit any
point of J by applying Sn (with n fixed, depending only on I) to a suitable
point of I . This is much more than is demanded by transitivity. Thus S is
chaotic on [0, 1).

Of course, once we know that S is chaotic on the open interval [0, 1), we
know that it is chaotic on the closed interval [0, 1] since the addition on one
extra point (which gets mapped to 0 by S) does not change the definitions.

Now consider the map t 7→ e2πit of [0, 1] onto the unit circle, S1. Another
way of writing this map is to describe a point on the unit circle by eiθ where
θ is an angular variable, that is θ and θ + 2π are identified. Then the map is
t 7→ 2πt. This map, h, is surjective and continuous and is one to one except at
the end points: 0 and 1 are mapped into the same point on S1. Clearly

h ◦ S = D ◦ h

where

D(θ) = 2θ.

Or, if we write z = eiθ, then in terms of z, the map D sends

z 7→ z2.

So D is called the doubling map or the squaring map. We have proved that it
is chaotic. We can use the fact that D is chaotic to give an alternative proof of
the fact that Q−2 is chaotic. Indeed, consider the map h : S1 → [−2, 2]

h(θ) = 2 cos θ.

It is clearly surjective and continuous. We claim that

h ◦D = Q−2 ◦ h.

Indeed,

h(D(θ)) = 2 cos 2θ = 2(2 cos2 θ − 1) = (2 cos θ)2 − 2 = Q−2(h(θ)).

This gives an alternative proof that Q−2 (and hence L4 and T ) are chaotic.
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3.5 Sensitivity to initial conditions

In this section we prove that if f is chaotic, then f is sensitive to initial conditions
in the sense of the following

Proposition 3.5.1 (Sensitivity.) Let f : X → X be a chaotic transforma-
tion. Then there is a d > 0 such that for any x ∈ X and any open set J
containing x there is a point y ∈ J and an integer, n with

|f◦n(x) − f◦n(y)| > d. (3.5)

In other words, we can find points arbitrarily close to x which move a distance
at least d away. This for any x ∈ X . We begin with a lemma.

Lemma 3.5.1 There is a c > 0 with the property that for any x ∈ X there is a
periodic point p such that

|x− f◦k(p)| > c, ∀k.

Proof of lemma. Choose two periodic points, r and s with distinct orbits, so
that |f◦k(r) − f◦l(s)| > 0 for all k and l. Choose c so that 2c < min |f ◦k(r) −
f◦l(s)|. Then for all k and l we have

2c < |f◦k(r) − f◦l(s)|
= |f◦k(r) − x+ x− f◦l(s)|
≤ |f◦k(r) − x|+ |f◦l(s)− x|.

If x is within distance c to any of the points f ◦l(s) then it must be at a greater
distance than c from all of the points f ◦k(r) and vice versa. So one of the two,
r or s will work as the p for x.

Proof of proposition with d = c/4. Let x be any point of X and J any open
set containing x. Since the periodic points of f are dense, we can find a periodic
point q of f in

U = J ∩ Bd(x),

where Bd(x) denotes the open interval of length d centered at x,

Bd(x) = (x− d, x+ d).

Let n be the period of q. Let p be a periodic point whose orbit is of distance
greater than 4d from x, and set

Wi = Bd(f◦i(p)) ∩X.

Since f◦i(p) ∈ Wi, i.e. p ∈ f−i(Wi) = (f◦i)−1(Wi) for all i, we see that the
open set

V = f−1(W1) ∩ f−2(W2) ∩ · · · ∩ f−n(Wn)
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is not empty.

Now we use the transitivity property of f applied to the open sets U and
V . By assumption, we can find a z ∈ U and a positive integer k such that
fk(z) ∈ V . Let j be the smallest integer so that k < nj. In other words,

1 ≤ nj − k ≤ n.

So

fnj(z) = fnj−k(fk(z)) ∈ fnj−k(V ).

But

fnj−k(V ) = fnj−k
(

f−1(W1) ∩ f−2(W2) ∩ · · · ∩ f−n(Wn)
)

⊂ fnj−k(f−(nj−k)Wnj−k)

= Wnj−k .

In other words,

|fnj(z)− fnj−k(p)| < d.

On the other hand, fnj(q) = q, since n is the period of q. Thus

|fnj(q)− fnj(z)| = |q − fnj(z)|
= |x− fnj−k(p) + fnj−k(p)− fnj(z) + q − x|
≥ |x− fnj−k(p)| − |fnj−k(p)− fnj(z)| − |q − x|
≥ 4d− d− d = 2d.

But this last inequality implies that either

|fnj(x)− fnj(z)| > d

or

|fnj(x)− fnj(q)| > d

for if x were within distance d from both of these points, they would have to be
within distance 2d from each other, contradicting the preceding inequality. So
one of the two, z or q will serve as the y in the proposition with m = nj.

3.6 Conjugacy for monotone maps

We begin this section by showing that if f and g are continuous strictly mono-
tone maps of the unit interval I = [0, 1] onto itself, and if their graphs are both
strictly below (or both strictly above) the line y = x in the interior of I , then
they are conjugate by a homeomorphism. Here is the precise statement:
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Proposition 3.6.1 Let f and g be two continuous monotone strictly increasing
functions defined on [0, 1] and satisfying

f(0) = 0

g(0) = 0

f(1) = 1

g(1) = 1

f(x) < x ∀x 6= 0, 1

g(x) < x ∀x 6= 0, 1.

Then there exists a continuous, monotone increasing function h defined on [0, 1]
with

h(0) = 0, h(1) = 1,

and
h ◦ f = g ◦ h.

Proof. Choose any point (x0, y0) in the open square

0 < x < 1, 0 < y < 1.

If (x0, y0) is to be a point on the curve y = h(x), then the equation h◦f = g ◦h
implies that the point (x1, y1) also lies on this curve, where

x1 = f(x0), y1 = g(y0).

By induction so will the points (xn, yn) where

xn = fn(x0), yn = gn(y0).

By hypothesis
x0 > x1 > x2 > ...,

and since there is no solution to f(x) = x for 0 < x < 1 the limit of the
xn, n → ∞ must be zero. Also for the yn. So the sequence of points (xn, yn)
approaches (0, 0) as n → +∞. Similarly, as n → −∞ the points (xn, yn)
approach (1, 1). Now choose any continuous, strictly monotone function

y = h(x),

defined on
x1 ≤ x ≤ x0

with
h(x1) = y1, h(x0) = y0.

Extend its definition to the interval x2 ≤ x ≤ x1 by setting

h(x) = g(h(f−1(x))), x2 ≤ x ≤ x1.
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Notice that at x1 we have

g(h(f−1(x1))) = g(h(x0)) = g(y0) = y1,

so the definitions of h at the point x1 are consistent. Since f and g are monotone
and continuous, and since h was chosen to be monotone on x1 ≤ x ≤ x0,
we conclude that h is monotone on x2 ≤ x ≤ x1 and hence continuous and
monotone on all of x2 ≤ x ≤ x0. Continuing in this way, we define h on the
interval xn+1 ≤ x ≤ xn, n ≥ 0 by

h = gn ◦ h ◦ f−n.

Setting h(0) = 0, we get a continuous and monotone increasing function defined
on 0 ≤ x ≤ x0. Similarly, we extend the definition of h to the right of x0 up
to x = 1. By its very construction, the map h conjugates f into g, proving the
proposition.

Notice that as a corollary of the method of proof, we can conclude

Proposition 3.6.2 Let f and g be two monotone increasing functions defined
in some neighborhood of the origin and satisfying

f(0) = g(0) = 0, |f(x)| < |x|, |g(x)| < |x|, ∀x 6= 0.

Then there exists a homeomorphism, h defined in some neighborhood of the
origin with h(0) = 0 and

h ◦ f = g ◦ h.

Indeed, just apply the method (for n ≥ 0) to construct h to the right of the
origin, and do an analogous procedure to construct h to the left of the origin.
As a special case we obtain

Proposition 3.6.3 Let f and g be differentiable functions with f(0) = g(0) = 0
and

0 < f ′(0) < 1, 0 < g′(0) < 1. (3.6)

Then there exists a homeomorphism h defined in some neighborhood of the origin
with h(0) = 0 and which conjugates f into g.

The mean value theorem guarantees that the hypotheses of the preceding propo-
sition are satisfied.

Also, it is clear that we can replace (3.6) by any of the conditions

1 < f ′(0), 1 < g′(0)
0 > f ′(0) > −1, 0 > g′(0) > −1
−1 > f ′(0), −1 > g′(0),

and the conclusion of the proposition still holds.
It is important to observe that if f ′(0) 6= g′(0), then the homeomorphism,

h, can not be a diffeomorphism. That is, h can not be differentiable with
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a differentiable inverse. In fact, h can not have a non-zero derivative at the
origin. Indeed, differentiating the equation g ◦ h = h ◦ f at the origin gives

g′(0)h′(0) = h′(0)f ′(0),

and if h′(0) 6= 0 we can cancel it form both sides of the equation so as to obtain

f ′(0) = g′(0). (3.7)

What is true is that if (3.7) holds, and if

|f ′(0)| 6= 1, (3.8)

then we can find a differentiable h with a differentiable inverse which conjugates
f into g.

We postpone the proof of this result until we have developed enough ma-
chinery to deal with the n-dimensional result. These theorems are among my
earliest mathematical theorems. A complete characterization of transformations
of R near a fixed point together with the conjugacy by smooth maps if (3.7)
and (3.8) hold, were obtained and submitted for publication in 1955 and pub-
lished in the Duke Mathematical Journal. The discussion of equivalence under
homeomorphism or diffeomorphism in n-dimensions was treated for the case of
contractions in 1957 and in the general case in 1958, both papers appearing
in the American Journal of Mathematics. We will return to these matters in
Chapter ??.

3.7 Sequence space and symbolic dynamics.

In this section we will illustrate a powerful method for studying dynamical
systems by examining the quadratic transformation

Qc : x 7→ x2 + c

for values of c < −2.
For any value of c, the two possible fixed points of Qc are

p−(c) =
1

2
(1−

√
1− 4c), p+(c) =

1

2
(1 +

√
1− 4c)

by the quadratic formula. These roots are real with p−(c) < p+(c) for c < 1/4.
The graph of Qc lies above the diagonal for x > p+(c), hence the iterates of any
x > p+(c) tend to +∞. If x0 < −p+(c), then x1 = Qc(x0) > p+(c), and so the
further iterates also tend to +∞. Hence all the interesting action takes place in
the interval [−p+, p+]. The function Qc takes its minimum value, c, at x = 0,
and

c = −p+(c) = −1

2
(1 +

√
1− 4c)
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when c = −2. For −2 ≤ c ≤ 1/4, the iterate of any point in [−p+, p+] remains
in the interval [−p+, p+]. But for c < −2 some points will escape, and it is this
latter case that we want to study.

To visualize the what is going on, draw the square whose vertices are at
(±p+,±p+) and the graph of Qc over the interval [−p+, p+]. The bottom of
the graph will protrude below the bottom of the square. Let A1 denote the
open interval on the x-axis (centered about the origin) which corresponds to
this protrusion. So

A1 = {x|Qc(x) < −p+(c)}.
Every point of A1 escapes from the interval [−p+, p+] after one iteration.

Let
A2 = Q−1

c (A1).

Since every point of [−p+, p+] has exactly two pre-images under Qc, we see that
A2 is the union of two open intervals. To fix notation, let

I = [−p+, p+]

and write
I\A1 = I0 ∪ I1

where I0 is the closed interval to the left of A1 and I1 is the closed interval to
the right of A1.Thus A2 is the union of two open intervals, one contained in I0
and the other contained in I1. Notice that a point of A2 escapes from [−p+, p+]
in exactly two iterations: one application of Qc moves it into A1 and another
application moves it out of [−p+, p+].

Conversely, suppose that a point x escapes from [−p+, p+] in exactly two
iterations. After one iteration it must lie in A1, since these are exactly the
points that escape in one iteration. Hence it must lie in A2.

In general, let
An+1 = Q−◦nc (A1).

Then An+1 is the union of 2n open intervals and consists of those points which
escape from [−p+, p+] in exactly n + 1 iterations. If the iterates of a point x
eventually escape from [−p+, p+], there must be some n ≥ 1 so that x ∈ An. In
other words,

⋃

n≥1

An

is the set of points which eventually escape. The remaining points, lying in the
set

Λ := I\
⋃

n≥1

Anm,

are the points whose iterates remain in [−p+, p+] forever. The thrust of this
section is to study Λ and the action of Qc on it.

Since Λ is defined as the complement of an open set, we see that Λ is closed.
Let us show that Λ is not empty. Indeed, the fixed points, p± certainly belong
to Λ and hence so do all of their inverse images, Q−n

c (p±). Next we will prove
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Figure 3.5: Q3.
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Figure 3.6: Q3 and Q◦23 .
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Figure 3.7: Q3, Q◦23 , and Q◦33 .
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Proposition 3.7.1 If

c < −5 + 2
√

5

4

.
= −2.368 . . . (3.9)

then Λ is totally disconnected, that is, it contains no interval.

In fact, the proposition is true for all c < −2 but, following Devaney [?] we will
only present the simpler proof when we assume (3.9). For this we use

Lemma 3.7.1 If (3.9) holds then there is a constant λ > 1 such that

|Q′c(x)| > λ > 1, ∀x ∈ I\A1. (3.10)

Proof of Lemma. We have |Q′c(x)| = |2x| > λ > 1 if |x| > 1
2λ for all x ∈ I\A1.

So we need to arrange that A1 contains the interval [− 1
2 ,

1
2 ] in its interior. In

other words, we need to be sure that

Qc(
1

2
) < −p+.

The equality

Qc(
1

2
) = −p+

translates to
1

4
+ c = −1 +

√
1− 4c

2
.

Solving the quadratic equation gives

c = −5 + 2
√

5

4

as the lower root. Hence if (3.9) holds, Qc( 1
2 ) < −p+.

Proof of Prop. 3.7.1. Suppose that there is an interval, J , contained in Λ.
Then J is contained either in I0 or I1. In either event the map Qc is one to one
on J and maps it onto an interval. For any pair of points, x and y in J , the
mean value theorem implies that

|Qc(x)−Qc(y)| > λ|x− y|.

Hence if d denotes the length of J , then Qc(J) is an interval of length at least
λd contained in Λ. By induction we conclude that Λ contains an interval of
length λnd which is ridiculous, since eventually λnd > 2p+ which is the length
of I . QED.

Now consider a point x ∈ Λ. Either it lies in I0 or it lies in I1. Let us define

s0(x) = 0 ∀x ∈ I0
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and
s0(x) = 1 ∀x ∈ I1.

Since all points Q◦nc (x) are in Λ, we can define sn(x) to be 0 or 1 according to
whether Q◦nc (x) belongs to I0 or I1. In other words, we define

sn(x) :=







0 if Q◦nc (x) ∈ Io

1 if Q◦nc (x) ∈ I1
. (3.11)

higher iterates of Qc.
So let us introduce the sequence space, Σ, defined as

Σ = {(s0s1s2 . . . ) | sj = 0 or 1}.

Notice that in contrast to the space X we introduced in Section 3.4, we are
not excluding any sequences. Define the notion of distance or metric on Σ by
defining the distance between two points

s = (s0s1s2 . . . )

and
t = (t0t1t2 . . . )

to be

d(s, t)
def
=

∞
∑

i=0

|si − ti|
2i

.

It is immediate to check that d satisfies all the requirements for a metric: It
is clear that d(s, t) ≥ 0 and d(s, t) = 0 implies that |si − ti| = 0 for all i, and
hence that s = t. The definition is clearly symmetric in s and t. And the usual
triangle inequality

|si − ui| ≤ |si − ti|+ |ti − ui|
for each i implies the triangle inequality

d(s,u) ≤ d(s, t) + d(t,u).

Notice that if si = ti for i = 0, 1, . . . , n then

d(s, t) =
∞
∑

j=n+1

|sj − tj |
2j

≤
∞
∑

j=n+1

1

2j
=

1

2n
.

Conversely, if si 6= ti for some i ≤ n then

d(s, t) ≥ 1

2j
≥ 1

2n
.

So if

d(s, t) <
1

2n
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then si = ti for all i ≤ n.
Getting back to Λ, define the map

ι : Λ → Σ

by
ι(x) = (s0(x)s1(x)s2(x)s3(x) . . . ) (3.12)

where the si(x) are defined by (3.11).
The point ι(x) is called the itinerary of the point x. For example, the fixed

point, p+ lies in I1 and hence do all of its images under Qn
c since they all coincide

with p+. Hence its itinerary is

ι(p+) = (111111 . . . ).

The point −p+ is carried into p+ under one application of Qc and then stays
there forever. Hence its itinerary is

ι(−p+) = (01111111 . . . ).

It follows from the very definition that

ι(Qc(x)) = S(ι(x))

where S is our old friend, the shift map,

S : (s0s1s2s3 . . . ) 7→ (s1s2s3s4 . . . )

applied to the space Σ. In other words,

ι ◦Qc = S ◦ ι.

The map ι conjugates Qc, acting on Λ into the shift map, acting on Σ. To show
that this is a legitimate conjugacy, we must prove that ι is a homeomorphism.
That is, we must show that ι is one-to one, that it is onto, that it is continuous,
and that its inverse is continuous:
One-to one: Suppose that ι(x) = ι(y) for x, y ∈ Λ. This means that Qn

c (x)
and Qn(y) always lie in the same interval, I0 or I1. Thus the interval [x, y] lies
entirely in either I0 or I1 and hence Qc maps it in one to one fashion onto an
interval contained in either I0 or I1. Applying Qc once more, we conclude that
Q2

c is one-to-one on [x, y]. Continuing, we conclude that Qn
c is one-to-one on

the interval [x, y], and we also know that (3.9) implies that the length of [x, y]
is increased by a factor of λn. This is impossible unless the length of [x, y] is
zero, i.e. x = y.
Onto. We start with a point s = (s0s1s2 . . . ) ∈ Σ. We are looking for a point
x with ι() = s. Consider the set of y ∈ Λ such that

d(s, ι(y)) ≤ 1

2n
.
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This is the same as requiring that y belong to

Λ ∩ Is0s1...sn

where Is0s1...sn
is the interval

Is0s1...sn
= {y ∈ I | y ∈ Is0 , Qc(y) ∈ Is1 , . . . Q

◦n
c (y) ∈ Isn

}.

So

Is0s1...sn
= Is0 ∩Q−1

c (Is1) ∩ · · · ∩Q−n
c (Isn

)

= Is0 ∩Q−1
c (Is1 ∩ · · · ∩Q−(n−1)

c (Isn
))

= Is0 ∩Q−1
c (Is1...sn

) (3.13)

= Is0s1...sn−1 ∩Q−n
c (Isn

) ⊂ Is0...sn−1 . (3.14)

The inverse image of any interval, J under Qc consists of two intervals, one
lying in I0 and the other lying in I1. For n = 0, Is0 is either I0 or I1 and hence
is an interval. By induction, it follows from (3.13) that Is0s1...sn

is an interval.
By (3.14), these intervals are nested. By construction these nested intervals
are closed. Since every sequence of closed nested intervals on the real line has a
non-empty intersection, there is a point x which belongs to all of these intervals.
Hence all the iterates of x lie in I , so x ∈ Λ and ι(x) = s.

Continuity. The above argument shows that the interiors of the intervals
Is0s1...sn

(intersected with Λ) form neighborhoods of x that map into small
neighborhoods of ι(x).
Continuity of ι−1. Conversely, any small neighborhood of x in Λ will contain
one of the intervals Is0...sn

and hence all of the points t whose first n coordinates
agree with s = ι(x) will be mapped by ι−1 into the given neighborhood of x.

To summarize: we have proved

Theorem 3.7.1 Suppose that c satisfies (3.9). Let Λ ⊂ [−p+, p+] consist of
those points whose images under Qn

c lie in [−p,p+] for all n ≥ 0. Then Λ is a
closed, non-empty, disconnected set. The itinerary map ι is a homeomorphism
of Λ onto the sequence space, Σ, and conjugates Qc to the shift map, S.

Just as in the case of the space X in section 3.4, the periodic points for S
are precisely the periodic or “repeating” sequences. Thus we can conclude from
the theorem that there are exactly 2n points of period (at most) n for Qc. Also,
the same argument as in section 3.4 shows that the periodic points for S are
dense in Σ, and hence the periodic points for Qc are dense in Λ. Finally, the
same argument as in section 3.4 shows that S is transitive on Σ. Hence, the
restriction of Qc to Λ is chaotic.
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Chapter 4

Space and time averages

4.1 histograms and invariant densities

Let us consider a map, F : [0, 1] → [0, 1], pick an initial seed, x0, and compute
its iterates, x0, x1, x2, . . . , xm under F . We would like to see which parts of the
unit interval are visited by these iterates, and how often. For this purpose let
us divide the unit interval up into N subintervals of size 1/N given by

Ik =

[

k − 1

N
,
k

N

)

, k = 1, . . . , N − 1, IN =

[

N − 1

N
, 1

]

.

We count how many of the iterates x0, x1, . . . , xm lie in Ik. Call this number
nk. There are m+ 1 iterates (starting with, and counting, x0) so the numbers

pk =
nk

m+ 1

add up to one:
p1 + · · ·+ pN = 1.

We would like to think of these numbers as “probabilities” - the number pk

representing the “probability” that an iterate belongs to Ik. Strictly speaking,
we should write pk(m). In fact, we should write pk(m,x0) since the procedure
depends on the initial seed, x0. But the hope is that as m gets large the pk(m)
tend to a limiting value which we denote by pk, and that this limiting value
will be independent of x0 if x0 is chosen “generically”. We will continue in this
vague, intuitive vein a while longer before passing to a precise mathematical
formulation. If U is a union of some of the Ik , then we can write

p(U) =
∑

Ik⊂U

pk

and think of p(U) as representing the “probability” that an iterate of x0 be-
longs to U . If N is large, so the intervals Ik are small, every open set U can be

85
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closely approximated by a union of the Ik ’s, so we can imagine that the “prob-
abilities”, p(U), are defined for all open sets, U . If we buy all of this, then we
can write down an equation which has some chance of determining what these
“probabilities”, p(U), actually are: A point y = F (x) belongs to U if and only if
x ∈ F−1(U). Thus the number of points among the x1, dots, xm+1 which belong
to U is the same as the number of points among the x0, . . . , xm which belong
to F−1(U). Since our limiting probability is unaffected by this shift from 0 to
1 or from m to m+ 1 we get the equation

p(U) = p(F−1(U)). (4.1)

To understand this equation, let us put it in a more general context. Suppose
that we have a “measure”, µ, which assigns a size, µ(A), to every open set,
A. Let F be a continuous transformation. We then define the push forward
measure, F∗µ by

(F∗µ)(A) = µ(F−1(A)). (4.2)

Without developing the language of measure theory, which is really necessary
for a full understanding, we will try to describe some of the issues involved in
the study of equations (4.2) and (4.1) from a more naive viewpoint. Consider,
for example, F = Lµ, 1 < µ < 3. If we start with any initial seed other than
x0 = 0, it is clear that the limiting probability is

p(Ik) = 1,

if the fixed point,1− 1
µ ∈ Ik and

p(Ik) = 0

otherwise. Similarly, if 3 < µ < 1 +
√

6, and we start with any x0 other than 0
or the fixed point, 1− 1

µ then clearly the limiting probability will be p(I) = 1

if both points of period two belong to I , p(I) = 1
2 if I contains exactly one of

the two period two points, and p(I) = 0 otherwise. These are all examples of
discrete measures in the sense that there is a finite (or countable) set of points,
{zk}, each assigned a positive number, m(zk) and

µ(I) =
∑

zk∈I

m(zk).

We are making the implicit assumption that this series converges for every
bounded interval. The integral of a function, φ, with respect to the discrete
measure, µ, denoted by 〈φ, µ〉 or by

∫

φµ is defined as

∫

φµ =
∑

φ(xk)m(xk).

This definition makes sense under the assumption that the series on the right
hand side is absolutely convergent. The rule for computing the push forward,
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F∗µ (when defined) is very simple. Indeed, let {yl} be the set of points of the
form yl = F (xk) for some k, and set

n(yl) =
∑

F (xk)=yl

m(xk).

Notice that there is some problem with this definition if there are infinitely
many points xk which map to the same yl. Once again we must make some
convergence assumption. For example, if the map F is everywhere finite-to-one,
there will be no problem. Thus the push forward of a discrete measure is a
discrete measure given by the above formula.

At the other extreme, a measure is called absolutely continuous (with
respect to Lebesgue measure) if there is an integrable function, ρ, called the
density so that

µ(I) =

∫

I

ρ(x)dx.

For any continuous function, φ we define the integral of φ with respect to µ as

〈φ, µ〉 =

∫

φµ =

∫

φ(x)ρ(x)dx

if the integral is absolutely convergent. Suppose that the map F is piecewise
differentiable and in fact satisfies |F ′(x)| 6= 0 except at a finite number of points.
These points are called critical points for the map F and their images are called
critical values. Suppose that A is an interval containing no critical values, and
to fix the ideas, suppose that F−1(A) is the union of finitely many intervals, Jl

each of which is mapped monotonically (either strictly increasing or decreasing)
onto A. The change of variables formula from ordinary calculus says that for
any function g = g(y) we have

∫

A

g(y)dy =

∫

Jk

g(F (x))|F ′(x)|dx,

where y = F (x). So if we set g(y) = ρ(x)|1/F ′(x)| we get
∫

ρ(x)
1

|F ′(x)|dy =

∫

Jk

ρ(x)dx = µ(Jk).

Summing over k and using the definition (4.2) we see that F∗µ has the density

σ(y) =
∑

F (xk)=y

ρ(x)

|F ′(x)| . (4.3)

Equation (4.3) is sometimes known as the Perron Frobenius equation, and the
transformation ρ 7→ σ as the Perron Frobenius operator.

Getting back to our histogram, if we expect the limit measure to be of the
absolutely continuous type, so

p(Ik) ≈ ρ(x)× 1

N
, x ∈ Ik
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then we expect that

ρ(x) ≈ lim
m→∞

nkN

m+ 1
, x ∈ Ik

as the formula for the limiting density.

4.2 the histogram of L4

We wish to prove the following assertions:
(i) The measure, µ, with density

σ(x) =
1

π
√

x(1− x)
(4.4)

is invariant under L4. In other words it satisfies

L4∗µ = µ.

(ii) Up to a multiplicative constant, (4.4) is the only continuous density invariant
under L4

(iii) If we pick the initial seed generically, then the normalized histogram con-
verges to (4.4).

We give two proofs of (i). The first is a direct verification of the Perron
Frobenius formula (4.3) with y = F (x) = 4x(1 − x) so |F ′(x)| = |F ′(1− x)| =
4|1 − 2x|. Notice that the σ given by (4.4) satisfies σ(x) = σ(1 − x) so (4.3)
becomes

1

π
√

4x(1− x)(1− 4x(1− x))
=

2

π4|1− 2x|
√

x(1− x)
.

But this follows immediately from the identity

1− 4x(1− x) = (2x− 1)2.

For our second proof, consider the tent transformation, T . For any interval, I
contained in [0, 1], T−1(I) consists of the union of two intervals, each of half the
length of I . In other words the ordinary Lebesgue measure is preserved by the
tent transformation: T∗ν = ν where ν has density ρ(x) ≡ 1. Put another way,
the function ρ(x) ≡ 1 is the solution of the Perron Frobenius equation

ρ(Tx) =
ρ(x)

2
+
ρ(1− x)

2
. (4.5)

It follows immediately from the definitions, that

(F ◦G)∗µ = F∗(G∗µ),

where F and G are two transformations , and µ is a measure. In particular,
since h ◦ T = L4 ◦ h where

h(x) = sin2 πx

2
,
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Figure 4.1: The histogram of iterates of L4 compared with σ.
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it follows that if T∗ν = ν, then T∗(h∗ν) = h∗ν. So to solve L4∗µ = µ, we must
merely compute h∗ν. According to (4.3) this is the measure with density

σ(y) =
1

|h′(x)| =
1

π sin πx
2 cos πx

2

.

But since y = sin2 πx
2 this becomes

σ(y) =
1

π
√

y(1− y)

as desired.
To prove (ii), it is enough to prove the corresponding result for the tent

transformation: that ρ = const. is the only continuous function satisfying (4.5).
To see this, let us consider the binary representation of T : Let

x = 0.a1a2a3 . . .

be the binary expansion of x. If 0 ≤ x < 1
2 , so a1 = 0, then Tx = 2x or

T (0.0a2a3a4 . . . ) = 0.a2a3a4 . . . .

If x ≥ 1
2 , so a1 = 1, then

T (x) = −2x+ 2 = 1− (2x− 1) = 1− S(x) = 1− 0.a2a3a4 . . . .

Introducing the notation
0̄ = 1, 1̄ = 0,

we have
0.a2a3a4 · · ·+ 0.ā1ā2ā3 · · · = 0.1111 · · · = 1

so
T (0.1a2a3a4 . . . ) = 0.ā2ā3ā4 . . . .

In particular, T−1(0.a1a2a3 . . . ) consists of the two points

0.0a1a2a3 . . . and 0.1ā1ā2ā3 . . . .

Now let us iterate (4.5) with ρ replaced by f , and show that the only solution
is f = constant. Using the notation x = 0.a1a2 · · · = 0.a repeated application
of (4.5) gives:

f(x) =
1

2
[f(.0a) + f(.1ā)]

=
1

4
[f(.00a) + f(.01ā) + f(.10a) + f(.11ā)]

=
1

8
[f(.000a) + f(.001ā) + f(.010a) + f(.011ā) + f(.100a) + · · · ]

→
∫

f(t)dt.



4.2. THE HISTOGRAM OF L4 91

But this integral is a constant, independent of x. QED.
The third statement, (iii), about the limiting histogram for “generic” initial

seed, x0, demands a more careful formulation. What do we mean by the phrase
“generic”? The precise formulation requires a dose of measure theory, the word
“generic” should be taken to mean “outside of a set of measure zero with respect
to µ”. The usual phrase for this is “for almost all x0”. Then assertion (iii)
becomes a special case of the famous Birkhoff ergodic theorem. This theorem
asserts that for almost all points, p, the “time average”

lim
1

n

n−1
∑

k=0

φ(Lk
4p)

equals the “space average”
∫

φµ

for any integrable function, φ. Rather than proving this theorem, we will explain
a simpler theorem, von Neumann’s mean ergodic theorem, which motivated
Birkhoff to prove his theorem.

Let F be a transformation with an invariant measure, µ. By this we mean
that F∗µ = µ. We let H denote the Hilbert space of all square integrable
functions with respect to µ, so the scalar product of f, g ∈ H is given by

(f, g) =

∫

fḡµ.

The map F induces a transformation U : H → H by

Uf = f ◦ F

and

(Uf, Ug) =

∫

(f ◦ F )(g ◦ F )µ =

∫

fḡµ = (f, g).

In other words, U is an isometry of H . The mean ergodic theorem asserts that
the limit of

1

n

n−1
∑

0

Ukf

exists in the Hilbert space sense, “convergence in mean”, rather than the almost
everywhere pointwise convergence of the Birkhoff ergodic theorem. Practically
by its definition, this limiting element f̂ is invariant, i.e. satisfies Uf̂ = f̂ .
Indeed, applying U to the above sum gives an expression which differs from
that sum by only two terms, f and Unf and dividing by n sends these terms
to zero as n → ∞. If, as in our example, we know what the possible invariant
elements are, then we know the possible limiting values f̂

The mean ergodic theorem can be regarded as a smeared out version of the
Birkhoff theorem. Due to inevitable computer error, the mean ergodic theorem
may actually be the version that we want.
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4.3 The mean ergodic theorem

The purpose of this section is to prove

Theorem 4.3.1 von Neumann’s mean ergodic theorem. Let U : H → H be an
isometry of a Hilbert space, H. Then for any f ∈ H , the limit

lim
1

n

∑

Ukf = f̂ (4.6)

exists in the Hilbert space sense, and the limiting element f̂ is invariant, i.e.
Uf̂ = f̂ .

Proof. The limit, if it exists, is invariant as we have seen. If U were a unitary
operator on a finite dimensional Hilbert space, H , then we could diagonalize U ,
and hence reduce the theorem to the one dimensional case. A unitary operator
on a one dimensional space is just multiplication by a complex number of the
form eiα. If eiα 6= 1, then

1

n
(1 + eiα + · · ·+ e(n−1)iα) =

1

n

1− einα

1− eiα
→ 0.

On the other hand, if eiα = 1, the expression on the left is identically one.
This proves the theorem for finite dimensional unitary operators. For an infi-
nite dimensional Hilbert space, we could apply the spectral theorem of Stone
(discovered shortly before the proof of the ergodic theorem) and this was von
Neumann’s original method of proof.

Actually, we can proceed as follows:

Lemma 4.3.1 The orthogonal complement of the set, D, of all elements of the
form Ug − g, consists of invariant elements.

Proof. If f is orthogonal to all elements in D, then,in particular, f is orthogonal
to Uf − f , so

0 = (f, Uf − f)

and
(Uf, Uf − f) = (Uf, Uf)− (Uf, f) = (f, f)− (Uf, f)

since U is an isometry. So

(Uf, Uf − f) = (f − Uf, f) = 0.

So
(Uf − f, Uf − f) = (Uf, Uf − f)− (f, Uf − f) = 0,

or
Uf − f = 0

which says that f is invariant.
So what we have shown, in fact, is
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Lemma 4.3.2 The union of the set D with the set, I, of the invariant functions
is dense in H.

In fact, if f is orthogonal to D, then it must be invariant, and if it is orthogonal
to all invariant functions it must be orthogonal to itself, and so must be zero.
So (D ∪ I)⊥ = 0, so D ∪ I is dense in H .

Now if f is invariant, then clearly the limit(4.6) exists and equals f . If
f = Ug − g, then the expression on the left in (4.6) telescopes into

1

n
(Ung − g)

which clearly tends to zero. Hence, as a corollary we obtain

Lemma 4.3.3 The set of elements for which the limit in (4.6) exists is dense
in H.

Hence the mean ergodic theorem will be proved, once we prove

Lemma 4.3.4 The set of elements for which the limit in (4.6) exists is closed.

Proof. If
1

n

∑

Ukgi → ĝi,
1

n

∑

Ukgj → ĝj ,

and

‖ gi − gj ‖< ε,

then

‖ 1

n

∑

Ukgi −
1

n

∑

Ukgj ‖< ε,

so

‖ ĝi − ĝj ‖< ε.

So if {gi} is a sequence of elements converging to f , we conclude that {ĝi}
converges to some element, call it f̂ . If we choose i sufficiently large so that
‖ gi − f ‖< ε, then

‖ 1

n

∑

Ukf−f̂ ‖ ≤ ‖ 1

n

∑

Uk(f−gi) ‖ + ‖ 1

n

∑

Ukgi−ĝi ‖ + ‖ ĝi−f̂ ‖ ≤ 3ε,

proving the lemma and hence proving the mean ergodic theorem.

4.4 the arc sine law

The probability distribution with density

σ(x) =
1

π
√

x(1− x)
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is called the arc sine law in probability theory because, if I is the interval
I = [0, u] then

Prob x ∈ I = Prob 0 ≤ x ≤ u =

∫ u

0

1

π
√

x(1− x)
=

2

π
arcsin

√
u. (4.7)

We have already verified this integration because I = h(J) where

h(t) = sin2 πt

2
, J = [0, v], h(v) = u,

and the probability measure we are studying is the push forward of the uniform
distribution. So

Prob h(t) ∈ I = Prob t ∈ J = v.

The arc sine law plays a crucial role in the theory of fluctuations in random
walks. As a cultural diversion we explain some of the key ideas, following the
treatment in Feller [?] very closely.

Suppose that there is an ideal coin tossing game in which each player wins
or loses a unit amount with (independent) probability 1

2 at each throw. Let
S0 = 0, S1, S2, . . . denote the successive cumulative gains (or losses) of the first
player. We can think of the values of these cumulative gains as being marked
off on a vertical s-axis, and representing the position of a particle which moves
up or down with probability 1

2 at each (discrete) time unit . Let

α2k,2n

denote the probability that up to and including time 2n, the last visit to the
origin occurred at time 2k. Let

u2ν =

(

2ν
ν

)

2−2ν . (4.8)

So u2ν represents the probability that exactly ν out of the first 2ν steps were in
the positive direction, and the rest in the negative direction. In other words, u2ν

is the probability that the particle has returned to the origin at time 2ν. We can
find a simple approximation to u2ν using Stirling’s formula for an approximation
to the factorial:

n! ∼
√

2πnn+ 1
2 e−n

where the ∼ signifies that the ratio of the two sides tends to one as n tends to
infinity. For a proof of Stirling’s formula cf. [?]. Then

u2ν = 2−2ν (2ν)!

(ν!)2

∼ 2−2ν

√
2π(2ν)2ν+ 1

2 e−2ν

2πν2ν+1e−2ν

=
1√
πν
.

The results we wish to prove in this section are
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Proposition 4.4.1 We have

α2k,2n = u2ku2n−2k, (4.9)

so we have the asymptotic approximation

α2k,2n ∼
1

π
√

k(n− k)
. (4.10)

If we set

xk =
k

n

then we can write

α2k,2n ∼
1

n
σ(xk). (4.11)

Thus, for fixed 0 < x < 1 and n sufficiently large

∑

k<xn

α2k,2n
.
=

2

π
arcsin

√
x. (4.12)

Proposition 4.4.2 The probability that in the time interval from 0 to 2n the
particle spends 2k time units on the positive side and 2n − 2k time units on
the negative side equals α2k,2n. In particular, if 0 < x < 1 the probability
that the fraction k/n of time units spent on the positive be less than x tends to
2
π arcsin

√
x as n→∞.

Let us call the value of S2n for any given realization of the random walk, the
terminal point. Of course, the particle may well have visited this terminal point
earlier in the walk, and we can ask when it first reaches its terminal point.

Proposition 4.4.3 The probability that the first visit to the terminal point oc-
curs at time 2k is given by α2k,2n.

We can also ask for the first time that the particle reaches its maximum
value: We say that the first maximum occurs at time l if

S0 < Sl, S1 < Sl, . . . Sl−1 < Sl, Sl+1 ≤ Sl, Sl+2 ≤ Sl, . . . S2n ≤ Sl. (4.13)

Proposition 4.4.4 If 0 < l < 2n the probability that the first maximum occurs
at l = 2k or l = 2k + 1 is given by 1

2α2k,2n. For l = 0 this probability is given
by u2n and if l = 2n it is given by 1

2u2n.

Before proving these four propositions, let us discuss a few of their impli-
cations which some people find counterintuitive. For example, because of the
shape of the density, σ, the last proposition implies that the maximal accumu-
lated gain is much more likely to occur very near to the beginning or to the
end of a coin tossing game rather than somewhere in the middle. The third
proposition implies that the probability that the first visit to the terminal point
occurs at time 2k is that same as the probability that it occurs at time 2n− 2k
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and that very early first visits and very late first visits are much more probable
than first visits some time in the middle.

In order to get a better feeling for the assertion of the first two propositions
let us tabulate the values of 2

π arcsin
√
x for 0 ≤ x ≤ 1

2 .

x 2
π arcsin

√
x x 2

π arcsin
√
x

0.05 0.144 0.30 0.369
0.10 0.205 0.35 0.403
0.15 0.253 0.40 0.236
0.20 0.295 0.45 0.468
0.25 0.333 0.50 0.500

This table, in conjunction with Prop. 4.4.1 says that if a great many coin tossing
games are conducted every second, day and night for a hundred days, then in
about 14.4 percent of the cases,the lead will not change after day five.

The proof of all four propositions hinges on three lemmas. Let us graph (by
a polygonal path) the walk of a particle. So a “path” is a broken line segment
made up of segments of slope ±1 joining integral points to integral points in the
plane (with the time or t−axis horizontal and the s−axis vertical). If A = (a, α)
is a point, we let A′ = (a,−α) denote its image under reflection in the t−axis.

Lemma 4.4.1 The reflection principle. Let A = (a, α), B = (b, β) be points
in the first quadrant with b > a ≥ 0, α > 0, β > 0. The number of paths from A
to B which touch or cross the t− axis equals the number of all paths from A′ to
B.

Proof. For any path from A to B which touches the horizontal axis, let t be
the abscissa of the first point of contact. Reflect the portion of the path from
A to T = (t, 0) relative to the horizontal axis. This reflected portion is a path
from A′ to T , and continues to give a path from A′ to B. This procedure assigns
to each path from A to B which touches the axis, a path from A′ to B. This
assignment is bijective: Any path from A′ to B must cross the t−axis. Reflect
the portion up to the first crossing to get a touching path from A to B. This is
the inverse assignment. QED

A path with n steps will join (0, 0) to (n, x) if an only if it has p steps of
slope +1 and q steps of slope −1 where

p+ q = n, p− q = x.

The number of such paths is the number of ways of picking the positions of the
p steps of positive slope and so the number of paths joining (0, 0) to (n, x) is

Nn,x =

(

p+ q
p

)

=

(

n
n+x

2

)

.

It is understood that this formula means that Nn,x = 0 when there are no paths
joining the origin to (n, x).
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Lemma 4.4.2 The ballot theorem. Let n and x be positive integers. There
are exactly

x

n
Nn,x

paths which lie strictly above the t axis for t > 0 and join (0, 0) to (n, x).

Proof. There are as many such paths as there are paths joining (1, 1) to (n, x)
which do not touch or cross the t−axis. This is the same as the total number
of paths which join (1, 1) to (n, x) less the number of paths which do touch or
cross. By the preceding lemma, the number of paths which do cross is the same
as the number of paths joining 1.−1) to (n, x) which is Nn−1,x+1. Thus, with p
and q as above, the number of paths which lie strictly above the t axis for t > 0
and which joint (0, 0) to (n, x) is

Nn−1,x−1 −Nn−1,x+1 =

(

p+ q − 1
p− 1

)

−
(

p+ q − 1
p

)

=
(p+ q − 1)!

(p− 1)!(q − 1)!

[

1

q
− 1

p

]

=
p− q

p+ q
× (p+ q)!

p!q!

=
x

n
Nn,x QED

The reason that this lemma is called the Ballot Theorem is that it asserts that if
candidate P gets p votes, and candidate Q gets q votes in an election where the
probability of each vote is independently 1

2 , then the probability that throughout
the counting there are more votes for P than for Q is given by

p− q

p+ q
.

Here is our last lemma:

Lemma 4.4.3 The probability that from time 1 to time 2n the particle stays
strictly positive is given by 1

2u2n. In symbols,

Prob {S1 > 0, . . . , S2n > 0} =
1

2
u2n. (4.14)

So

Prob {S1 6= 0, . . . , S2n 6= 0} = u2n. (4.15)

Also

Prob {S1 ≥ 0, . . . , S2n ≥ 0} = u2n. (4.16)

Proof. By considering the possible positive values of S2n which can range from
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2 to 2n we have

Prob {S1 > 0, . . . , S2n > 0} =

n
∑

r=1

Prob {S1 > 0, . . . , S2n = 2r}

= 2−2n
n
∑

r=1

(N2n−1,2r−1 −N2n−1,2r+1)

= 2−2n (N2n−1,1 −N2n−1,3 +N2n−1,3 −N2n−1,5 + · · · )
= 2−2nN2n−1,1

=
1

2
p2n−1,1

=
1

2
u2n.

The passage from the first line to the second is the reflection principle,as in our
proof of the Ballot Theorem, from the third to the fourth is because the sum
telescopes. The p2n−1,1 on the next to the last line is the probability of ending
up at (2n − 1, 1) starting from (0, 0). The last equality is simply the assertion
that to reach zero at time 2n we must be at ±1 at time 2n−1 (each of these has
equal probability, p2n−1,1) and for each alternative there is a 50 percent chance
of getting to zero on the next step. This proves (4.14). Since a path which
never touches the t−axis must be always above or always below the t−axis,
(4.15) follows immediately from (4.14). As for (4.16), observe that a path which
is strictly above the axis from time 1 on, must pass through the point (1, 1) and
then stay above the horizontal line s = 1. The probability of going to the point
(1, 1) at the first step is 1

2 , and then the probability of remaining above the new
horizontal axis is Prob {S1 ≥ 0, . . . , S2n−1 ≥ 0}. But since 2n − 1 is odd, if
S2n−1 ≥ 0 then S2n ≥ 0. So, by (4.14) we have

1

2
u2n = Prob {S1 > 0, . . . , S2n > 0}

=
1

2
Prob {S1 ≥ 0, . . . , S2n−1 ≥ 0}

=
1

2
Prob {S1 ≥ 0, . . . , S2n−1 ≥ 0, S2n ≥ 0},

completing the proof of the lemma.
We can now turn to the proofs of the propositions.

Proof of Prop.4.4.1 To say that the last visit to the origin occurred at time
2k means that

S2k = 0

and
Sj 6= 0, j = 2k + 1, . . . , 2n.

By definition, the first 2k positions can be chosen in 22ku2k ways to satisfy the
first of these conditions. Taking the point (2k, 0) as our new origin, (4.15) says
that there are 22n−2ku2n−2k ways of choosing the last 2n − 2k steps so as to
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satisfy the second condition. Multiplying and then dividing the result by 22n

proves Prop.4.4.1.
Proof of Prop.4.4.2. We consider paths of 2n steps and let b2k,2n denote the
probability that exactly 2k sides lie above the t−axis. Prop. 4.4.2 asserts that

b2k,2n = α2k,2n.

For the case k = n we have α2n,2n = u0u2n = u2n and b2n,2n is the probability
that the path lies entirely above the axis. So our assertion reduces to (4.16)
which we have already proved. By symmetry, the probability of the path lying
entirely below the the axis is the same as the probability of the path lying
entirely above it, so b0,2n = α0,2n as well. So we need prove our assertion for
1 ≤ k ≤ n−1. In this situation, a return to the origin must occur. Suppose that
the first return to the origin occurs at time 2r. There are then two possibilities:
the entire path from the origin to (2r, 0) is either above the axis or below the
axis. If it is above the axis, then r ≤ k ≤ n− 1, and the section of path beyond
(2r, 0) has 2k − 2r edges above the t−axis. The number of such paths is

1

2
22rf2r22n−2rb2k−2r,2n−2r

where f2r denotes the probability of first return at time 2r:

f2r = Prob {S1 6= 0, . . . , S2r−1 6= 0, S2r = 0}.

If the first portion of the path up to 2r is spent below the axis, the the remaining
path has exactly 2k edges above the axis, so n− r ≥ k and the number of such
paths is

1

2
22rf2r22n−2rb2k,2n−2r.

So we get the recursion relation

b2k,2n =
1

2

k
∑

r=1

f2rb2k−2r,2n−2r +
1

2

n−k
∑

r=1

f2rb2k,2n−2r 1 ≤ k ≤ n− 1. (4.17)

Now we proceed by induction on n. We know that b2k,2n = u2ku2n−2k = 1
2

when n = 1. Assuming the result up through n−1, the recursion formula (4.17)
becomes

b2k,2n =
1

2
u2n−2k

k
∑

r=1

f2ru2k−2r +
1

2
u2k

n−k
∑

r=1

f2ru2n−2k−2r. (4.18)

But we claim that the probabilities of return and the probabilities of first return
are related by

u2n = f2u2n−2 + f4u2n−4 + · · ·+ f2nu0. (4.19)

Indeed, if a return occurs at time 2n, then there must be a first return at some
time 2r ≤ 2n and then a return in 2n−2r units of time, and the sum in (4.19) is
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over the possible times of first return. If we substitute (4.19) into the first sum
in (4.18) it becomes u2k while substituting (4.19) into the second term yields
u2n−2k. Thus (4.18) becomes

b2k,2n = u2ku2n−2k

which is our desired result.
Proof of Prop.4.4.3. This follows from Prop.4.4.1 because of the symmetry
of the whole picture under rotation through 180◦ and a shift: The probability in
the lemma is the probability that S2k = S2n but Sj 6= S2n for j < 2k. Reading
the path rotated through 180◦ about the end point, and with the endpoint
shifted to the origin, this is clearly the same as the probability that 2n− 2k is
the last visit to the origin. QED
Proof of Prop 4.4.4. The probability that the maximum is achieved at 0 is
the probability that S1 ≤ 0, . . . , S2n ≤ 0 which is u2n by (4.16). The probability
that the maximum is first obtained at the terminal point, is, after rotation and
translation, the same as the probability that S1 > 0, . . . , S2n > 0 which is 1

2u2n

by (4.14). If the maximum occurs first at some time l in the middle, we combine
these results for the two portions of the path - before and after time ` - together
with (4.9) to complete the proof. QED

4.5 The Beta distributions.

The arc sine law is the special case a = b = 1
2 of the Beta distribution with

parameters a, b which has probability density proportional to

ta−1(1− t)b−1.

So long as a > 0 and b > 0 the integral

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt

converges, and was evaluated by Euler to be

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

where Γ is Euler’s Gamma function. So the Beta distributions with A > 0, b > 0
are given by

1

B(a, b)
ta−1(1− t)b−1.

We characterized the arc sine law (a = b = 1
2 ) as being the unique probability

density invariant under L4. The case a = b = 0, where the integral does
not converge, also has an interesting characterization as an invariant density.
Consider transformations of the form

t 7→ at+ b

ct+ d
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Figure 4.2: A random walk with 100,000 steps. The last zero is at time 3783.
For the remaining 96,217 steps the path is positive. According to the arc sine
law, with probability 1/5, the particle will spend about 97.6 percent of its time
on one side of the origin.
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where the matrix
(

a b
c d

)

is invertible. Suppose we require that the transformation preserve the origin
and the point t = 1. Preserving the origin requires that b = 0, while preserving
the ’ point t = 1 requires that a = c + d. Since b = 0 we must have ad 6= 0 for
the matrix to be invertible. Since multi[lying all the entries of the matrix by
the same non-zero scalar does not change the transformation, we may as well
assume that d = 1, and hence the family transformations we are looking at are

φa : t 7→ at

(a− 1)t+ 1
, a 6= 0.

Notice that
φa ◦ φb = φab.

Our claim is that, up to scalar multiple, the density

ρ(t) =
1

t(1− t)

is the unique density such that the measure

ρ(t)dt

is invariant under all the transformations φa. Indeed,

φ′a(t) =
a

[1− t+ at]2

so the condition of invariance is

a

[1− t+ at]2
ρ(φa(t)) = ρ(t).

Let us normalize ρ by

ρ

(

1

2

)

= 4.

Then

s = φa

(

1

2

)

⇔ s =
a

1 + a
⇔ a =

s

1− s
.

So taking t = 1
2 in the condition for invariance and a as above, we get

ρ(s) = 4((1− s)/s)[
1

2
+

1

2

s

1− s
]2 =

1

s(1− s)
.

This elementary geometrical fact - that 1/t(1 − t) is the unique density
(up to scalar multiple) which is invariant under all the φa - was given a deep
philosophical interpretation by Jaynes, [?]:



4.5. THE BETA DISTRIBUTIONS. 103

Suppose we have a possible event which may or may not occur, and we
have a population of individuals each of whom has a clear opinion (based on
ingrained prejudice, say, from reading the newspapers or watching television)
of the probability of the event being true. So Mr. A assigns probability p(A)
to the event E being true and (1-p(A)) as the probability of its not being rue,
while Mr. B assigns probability P(B) to its being true and (1-p(B)) to its not
being true and so on.

Suppose an additional piece of information comes in, which would have a
(conditional) probability x of being generated if E were true and y of this infor-
mation being generated if E were not true. We assume that both x and y are
positive, and that every individual thinks rationally in the sense that on the ad-
vent of this new information he changes his probability estimate in accordance
with Bayes’ law, which says that the posterior probability p′ is given in terms
of the prior probability p by

p′ =
px

px+ (1− p)y
= φa(p) where a :=

x

y
.

We might say that the population as a whole has been invariantly prejudiced if
any such additional evidence does not change the proportion of people within
the population whose belief lies in a small interval. Then the density describing
this state of knowledge (or rather of ignorance) must be the density

ρ(p) =
1

p(1− p)
.

According to this reasoning of Jaynes, we take the above density to describe the
prior probability an individual (thought of as a population of subprocessors in his
brain) would assign to the probability of an outcome of a given experiment. If a
series of experiments then yieldedM successes andN failures,Bayes’ theorem (in
its continuous version) would then yield the posterior distribution of probability
assignments as being proportional to

pM−1(1− p)N−1

the Beta distribution with parameters M,N .
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Chapter 5

The contraction fixed point

theorem

5.1 Metric spaces

Until now we have used the notion of metric quite informally. It is time for a
formal definition. For any set X , we let X ×X (called the Cartesian product
of X with itself) denote the set of all ordered pairs of elements of X . (More
generally, if X and Y are sets, we let X × Y denote the set of all pairs (x, y)
with x ∈ and y ∈ Y , and is called the Cartesian product of X with Y .)

A metric for a set X is a function d from X to the real numbers R,

d : X ×X → R

such that for all x, y, z ∈ X

1. d(x, y) = d(y, x)

2. d(x, z) ≤ d(x, y) + d(y, z)

3. d(x, x) = 0

4. If d(x, y) = 0 then x = y.

The inequality in 2) is known as the triangle inequality since if X is the
plane and d the usual notion of distance, it says that the length of an edge of a
triangle is at most the sum of the lengths of the two other edges. (In the plane,
the inequality is strict unless the three points lie on a line.)

Condition 4) is in many ways inessential, and it is often convenient to drop
it, especially for the purposes of some proofs. For example, we might want to
consider the decimal expansions .49999 . . . and .50000 . . . as different, but as
having zero distance from one another. Or we might want to “identify” these
two decimal expansions as representing the same point.

105
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A function d which satisfies only conditions 1) - 3) is called a pseudo-
metric.

A metric space is a pair (X, d) where X is a set and d is a metric on X .
Almost always, when d is understood, we engage in the abuse of language and
speak of “the metric space X”.

Similarly for the notion of a pseudo-metric space.
In like fashion, we call d(x, y) the distance between x and y, the function

d being understood.
If r is a positive number and x ∈ X , the (open) ball of radius r about x is

defined to be the set of points at distance less than r from x and is denoted by
Br(x). In symbols,

Br(x) := {y| d(x, y) < r}.
If r and s are positive real numbers and if x and z are points of a pseudo-

metric space X , it is possible that Br(x) ∩ Bs(z) = ∅. This will certainly be
the case if d(x, z) > r+ s by virtue of the triangle inequality. Suppose that this
intersection is not empty and that

w ∈ Br(x) ∩Bs(z).

If y ∈ X is such that d(y, w) < min[r − d(x,w), s − d(z, w)] then the triangle
inequality implies that y ∈ Br(x) ∩ Bs(z). Put another way, if we set t :=
min[r − d(x,w), s − d(z, w)] then

Bt(w) ⊂ Br(x) ∩Bs(z).

Put still another way, this says that the intersection of two (open) balls is either
empty or is a union of open balls. So if we call a set in X open if either it
is empty, or is a union of open balls, we conclude that the intersection of any
finite number of open sets is open, as is the union of any number of open sets.
In technical language, we say that the open balls form a base for a topology on
X .

A map f : X → Y from one pseudo-metric space to another is called con-
tinuous if the inverse image under f of any open set in Y is an open set in
X . Since an open set is a union of balls, this amounts to the condition that
the inverse image of an open ball in Y is a union of open balls in X , or, to use
the familiar ε, δ language, that if f(x) = y then for every ε > 0 there exists a
δ = δ(x, ε) > 0 such that

f(Bδ(x)) ⊂ Bε(y).

Notice that in this definition δ is allowed to depend both on x and on ε. The
map is called uniformly continuous if we can choose the δ independently of x.

An even stronger condition on a map from one pseudo-metric space to an-
other is the Lipschitz condition. A map f : X → Y from a pseudo-metric
space (X, dX) to a pseudo-metric space (Y, dY ) is called a Lipschitz map with
Lipschitz constant C if

dY (f(x1), f(x2)) ≤ CdX(x1, x2) ∀x1, x2 ∈ X.
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Clearly a Lipschitz map is uniformly continuous.
For example, suppose that A is a fixed subset of a pseudo-metric space X .

Define the function d(A, ·) from X to R by

d(A, x) := inf{d(x,w), w ∈ A}.

The triangle inequality says that

d(x,w) ≤ d(x, y) + d(y, w)

for all w, in particular for w ∈ A, and hence taking lower bounds we conclude
that

d(A, x) ≤ d(x, y) + d(A, y).

or
d(A, x) − d(A, y) ≤ d(x, y).

Reversing the roles of x and y then gives

|d(A, x) − d(A, y)| ≤ d(x, y).

Using the standard metric on the real numbers where the distance between a
and b is |a − b| this last inequality says that d(A, ·) is a Lipschitz map from X
to R with C = 1.

A closed set is defined to be a set whose complement is open. Since the
inverse image of the complement of a set (under a map f) is the complement
of the inverse image, we conclude that the inverse image of a closed set under a
continuous map is again closed.

For example, the set consisting of a single point in R is closed. Since the
map d(A, ·) is continuous, we conclude that the set

{x|d(A, x) = 0}

consisting of all point at zero distance from A is a closed set. It clearly is a closed
set which contains A. Suppose that S is some closed set containingA, and y 6∈ S.
Then there is some r > 0 such that Br(y) is contained in the complement of
C, which implies that d(y, w) ≥ r for all w ∈ S. Thus {x|d(A, x) = 0} ⊂ S.
In short {x|d(A, x) = 0} is a closed set containing A which is contained in all
closed sets containing A. This is the definition of the closure of a set, which is
denoted by A. We have proved that

A = {x|d(A, x) = 0}.

In particular, the closure of the one point set {x} consists of all points u such
that d(u, x) = 0.

Now the relation d(x, y) = 0 is an equivalence relation, call it R. (Transitiv-
ity being a consequence of the triangle inequality.) This then divides the space
X into equivalence classes, where each equivalence class is of the form {x}, the
closure of a one point set. If u ∈ {x} and v ∈ {y} then

d(u, v) ≤ d(u, x) + d(x, y) + d(y, v) = d(x, y).
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since x ∈ {u} and y ∈ {v} we obtain the reverse inequality, and so

d(u, v) = d(x, y).

In other words, we may define the distance function on the quotient space X/R,
i.e. on the space of equivalence classes by

d({x}, {y}) := d(u, v), u ∈ {x}, v ∈ {y}

and this does not depend on the choice of u and v. Axioms 1)-3) for a metric
space continue to hold, but now

d({x}, {y}) = 0 ⇒ {x} = {y}.

In other words, X/R is a metric space. Clearly the projection map x 7→ {x} is
an isometry of X onto X/R. (An isometry is a map which preserves distances.)
In particular it is continuous. It is also open.

In short, we have provided a canonical way of passing (via an isometry) from
a pseudo-metric space to a metric space by identifying points which are at zero
distance from one another.

A subset A of a pseudo-metric space X is called dense if its closure is the
whole space. From the above construction, the image A/R of A in the quotient
space X/R is again dense. We will use this fact in the next section in the
following form:

If f : Y → X is an isometry of Y such that f(Y ) is a dense set of X, then
f descends to a map F of Y onto a dense set in the metric space X/R.

5.2 Completeness and completion.

The usual notion of convergence and Cauchy sequence go over unchanged to
metric spaces or pseudo-metric spaces Y . A sequence {yn} is said to converge
to the point y if for every ε > 0 there exists an N = N(ε) such that

d(yn, y) < ε ∀ n > N.

A sequence {yn} is said to be Cauchy if for any ε > 0 there exists an N = N(ε
such that

d(yn, ym) < ε ∀ m,n > N.

The triangle inequality implies that every convergent sequence is Cauchy. But
not every Cauchy sequence is convergent. For example, we can have a sequence
of rational numbers which converge to an irrational number, as in the approxi-
mation to the square root of 2. So if we look at the set of rational numbers as a
metric space R in its own right, not every Cauchy sequence of rational numbers
converges in R. We must “complete” the rational numbers to obtain R, the set
of real numbers. We want to discuss this phenomenon in general.
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So we say that a (pseudo-)metric space is complete if every Cauchy sequence
converges. The key result of this section is that we can always “complete” a
metric or pseudo-metric space. More precisely, we claim that

Any metric (or pseudo-metric) space can be mapped by a one to one isometry
onto a dense subset of a complete metric (or pseudo-metric) space.

By the italicized statement of the preceding section, it is enough to prove
this for a pseudo-metric spaces X . Let Xseq denote the set of Cauchy sequences
in X , and define the distance between the Cauchy sequences {xn} and {yn} to
be

d({xn}, {yn}) := lim
n→∞

d(xn, yn).

It is easy to check that d defines a pseudo-metric on Xseq . Let f : X → Xseq

be the map sending x to the sequence all of whose elements are x;

f(x) = (x, x, x, x, · · · ).

It is clear that f is one to one and is an isometry. The image is dense since by
definition

lim d(f(xn), {xn}) = 0.

Now since f(X) is dense in Xseq , it suffices to show that any Cauchy sequence
of points of the form f(xn) converges to a limit. But such a sequence converges
to the element {xn}. QED

Of special interest are vector spaces which have metric which is compatible
with the vector space properties and which is complete: Let V be a vector space
over the real numbers. A norm is a real valued function

v 7→ ‖v‖

on V which satisfies

1. ‖v‖ ≥ 0 and > 0 if v 6= 0,

2. ‖rv‖ = |r|‖v‖ for any real number r, and

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀ v, w ∈ V .

Then d(v, w) := ‖v−w‖ is a metric on V , which satisfies d(v+u,w+u) = d(v, w)
for all v, w, u ∈ V . The ball of radius r about the origin is then the set of all v
such that ‖v‖ < r. A vector space equipped with a norm is called a normed
vector space and if it is complete relative to the metric it is called a Banach
space.
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5.3 The contraction fixed point theorem.

Let X and Y be metric spaces. Recall that a map f : X → Y is called a
Lipschitz map or is said to be “Lipschitz continuous”, if there is a constant C
such that

dY (f(x1), f(x2)) ≤ CdX (x1, x2), ∀ x1, x2 ∈ X.
If f is a Lipschitz map, we may take the greatest lower bound of the set of all
C for which the previous inequality holds. The inequality will continue to hold
for this value of C which is known as the Lipschitz constant of f and denoted
by Lip(f).

A map K : X → Y is called a contraction if it is Lipschitz, and its Lipschitz
constant satisfies Lip(K) < 1. Suppose K : X → X is a contraction, and
suppose that Kx1 = x1 and Kx2 = x2. Then

d(x1, x2) = d(Kx1,Kx2) ≤ Lip(K)d(x1, x2)

which is only possible if d(x1, x2) = 0, i.e. x1 = x2. So a contraction can have
at most one fixed point. The contraction fixed point theorem asserts that if the
metric space X is complete (and non-empty) then such a fixed point exists.

Theorem 5.3.1 Let X be a non-empty complete metric space and K : X → X
a contraction. Then K has a unique fixed point.

Proof. Choose any point x0 ∈ X and define

xn := Knx0

so that

xn+1 = Kxn, xn = Kxn−1

and therefore

d(xn+1, xn) ≤ Cd(xn, xn−1), 0 ≤ C < 1

implying that

d(xn+1, xn) ≤ Cnd(x1, x0).

Thus for any m > n we have

d(xm, xn) ≤
m−1
∑

n

d(xi+1, xi) ≤
(

Cn + Cn+1 + · · ·+ Cm−1
)

d(x1, x0) ≤ Cn d(x1, x0)

1− C
.

This says that the sequence {xn} is Cauchy. Since X is complete, it must
converge to a limit x, and Kx = limKxn = limxn+1 = x so x is a fixed point.
We already know that this fixed point is unique. QED

We often encounter mappings which are contractions only near a particular
point p. If K does not move p too much we can still conclude the existence of
a fixed point, as in the following:
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Proposition 5.3.1 Let D be a closed ball of radius r centered at a point p in
a complete metric space X, and suppose K : D → X is a contraction with
Lipschitz constant C < 1. Suppose that

d(p,Kp) ≤ (1− C)r.

Then K has a unique fixed point in D.

Proof. We simply check that K : D → D and then apply the preceding theorem
with X replaced by D: For any x ∈ D, we have

d(Kx, p) ≤ d(Kx,Kp)+d(Kp, p) ≤ Cd(x, p)+(1−C)r ≤ Cr+(1−C)r = r QED.

Proposition 5.3.2 Let B be an open ball or radius r centered at p in a complete
metric space X and let K : B → X be a contraction with Lipschitz constant
C < 1. Suppose that

d(p,Kp) < (1− C)r.

Then K has a unique fixed point in B.

Proof. Restrict K to any slightly smaller closed ball centered at p and apply
Prop. 5.3.1. QED

Proposition 5.3.3 Let K : X → X be a contraction with Lipschitz constant
C of a complete metric space. Let x be its (unique) fixed point. Then for any
y ∈ X we have

d(y, x) ≤ d(y,Ky)

1− C
.

Proof. We may take x0 = y and follow the proof of Theorem 5.3.1. Alterna-
tively, we may apply Prop. 5.3.1 to the closed ball of radius d(y,Ky)/(1− C)
centered at y. Prop. 5.3.1 implies that the fixed point lies in the ball of radius
r centered at y. QED

Prop. 5.3.3 will be of use to us in proving continuous dependence on a
parameter in the next section. In the section on iterative function systems for
the construction of fractal images, Prop. 5.3.3 becomes the “collage theorem”.
We might call Prop. 5.3.3 the “abstract collage theorem”.

5.4 Dependence on a parameter.

Suppose that the contraction “depends on a parameter s”. More precisely,
suppose that S is some other metric space and that

K : S ×X → X

with

dX(K(s, x1),K(s, x2)) ≤ CdX(x1, x2), 0 ≤ C < 1, ∀s ∈ S, x1, x2 ∈ X. (5.1)
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(We are assuming that the C in this inequality does not depend on s.) If we
hold s ∈ S fixed, we get a contraction

Ks : X → X, Ks(x) := K(s, x).

This contraction has a unique fixed point, call it ps. We thus obtain a map

S → X, s 7→ ps

sending each s ∈ S into the fixed point of Ks.

Proposition 5.4.1 Suppose that for each fixed x ∈ X, the map

s 7→ K(s, x)

of S → X is continuous. Then the map

s 7→ ps

is continuous.

Proof. Fix a t ∈ S and an ε > 0. We must find a δ > 0 such that dX(ps, pt) < ε
if dS(s, t) < δ. Our continuity assumption says that we can find a δ > 0 such
that

dX(K(s, pt), pt) = dX(K(s, pt),K(t, pt) ≤ (1− C)ε

if dS(s, t) < δ. This says that Ks moves pt a distance at most (1 − C)ε. But
then the ‘abstract collage theorem”, Prop. 5.3.3, says that

dX(pt, ps) ≤ ε. QED

It is useful to combine Proposition 5.3.1 and 5.4.1 into a theorem:

Theorem 5.4.1 Let B be an open ball of radius r centered at a point q in a
complete metric space. Suppose that K : S × B → X (where S is some other
metric space) is continuous, satisfies (5.1) and

dX(K(s, q), q) < (1− C)r, ∀ s ∈ S.

Then for each s ∈ S there is a unique ps ∈ B such that K(s, ps) = ps, and the
map s 7→ ps is continuous.

.

5.5 The Lipschitz implicit function theorem

In this section we follow the treatment in [?]. We begin with the inverse function
theorem which contains the guts of the argument. We will consider a map
F : Br(0) → E where Br(0) is the open ball of radius r about the origin in a
Banach space, E, and where F (0) = 0. We wish to conclude the existence of
an inverse to F , defined on a possible smaller ball by means of the contraction
fixed point theorem.



5.5. THE LIPSCHITZ IMPLICIT FUNCTION THEOREM 113

Proposition 5.5.1 Let F : Br(0) → E satisfy F (0) = 0 and

Lip[F − id] = λ < 1. (5.2)

Then the ball Bs(0) is contained in the image of F where

s = (1− λ)r (5.3)

and F has an inverse, G defined on Bs(0) with

Lip[G− id] ≤ λ

1− λ
. (5.4)

Proof. Let us set F = id + v so

id + v : Br(0) → E, v(0) = 0, Lip[v] < λ < 1.

We want to find a w : Bs(0) → E with

w(0) = 0

and
(id + v) ◦ (id + w) = id.

This equation is the same as

w = −v ◦ (id + w).

Let X be the space of continuous maps of Bs(0) → E satisfying

u(0) = 0

and

Lip[u] ≤ λ

1− λ
.

Then X is a complete metric space relative to the sup norm, and, for x ∈ Bs(0)
and u ∈ X we have

‖u(x)‖ = ‖u(x)− u(0)‖ ≤ λ

1− λ
‖x‖ ≤ r.

Thus, if u ∈ X then
u : Bs → Br.

If w1, w2 ∈ X ,

‖ −v ◦ (id +w1) + v ◦ (id +w2) ‖≤ λ ‖ (id +w1)− (id +w2) ‖= λ ‖ w1 −w2 ‖ .

So the map K : X → X
K(u) = −v ◦ (id + u)
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is a contraction. Hence there is a unique fixed point. This proves the proposi-
tion.

Now let f be a homeomorphism from an open subset, U of a Banach space,
E1 to an open subset, V of a Banach space, E2 whose inverse is a Lipschitz
map. Suppose that h : U → E2 is a Lipschitz map satisfying

Lip[h]Lip[f−1] < 1. (5.5)

Let

g = f + h. (5.6)

We claim that g is open. That is, we claim that if y = g(x), then the image
of a neighborhood of x under g contains a neighborhood of g(x). Since f is a
homeomorphism, it suffices to establish this for g◦f−1 = id+h◦f−1. Composing
by translations if necessary, we may apply the proposition. QED

We now want to conclude that g is a homeomorphism = continuous with
continuous inverse, and, in fact, is Lipschitz:

Proposition 5.5.2 Let f and g be two continuous maps from a metric space
X to a Banach space E. Suppose that f is injective and f−1 is injective with
Lipschitz constant Lip[f−1]. Suppose that g satisfies

Lip[g − f ] <
1

Lip[f−1]
.

Then g is injective and

Lip[g−1] ≤ 1
1

Lip[f−1] − Lip[g − f ]
=

Lip[f−1]

1− Lip[g − f ]Lip[f−1]
. (5.7)

Proof. By definition,

d(x, y) ≤ Lip[f−1]‖f(x)− f(y)‖

where d denotes the distance in X and ‖ ‖ denotes the norm in E. We can write
this as

‖f(x)− f(y)‖ ≥ d(x, y)

Lip[f−1]
.

So

‖g(x)− g(y)‖ ≥ ‖f(x)− f(y)‖ − ‖(g − f)(x) − (g − f)(y)‖

≥
(

1

Lip[f−1]
− Lip[g − f ]

)

d(x, y).

Dividing by the expression in parenthesis gives the proposition. QED

We can now be a little more precise as to the range covered by g:
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Proposition 5.5.3 Let U be an open subset of a Banach space E1, and g be a
homeomorphism of U onto an open subset of a Banach space, E2. Let x ∈ U
and suppose that

Br(x) ⊂ U.

If g−1 is Lipschitz with
Lip[g−1] < c

then
B r

c
(g(x)) ⊂ g

(

Br(x)
)

.

Proof. By composing with translations, we may assume that x = 0, g(x) = 0.
Let

v ∈ B r
c
(0).

Let
T = T (v) = sup{t|[0, t]v ⊂ g

(

Br(0)
)

}.

We wish to show that T = 1. Since g(Br(0)) contains a neighborhood of 0, we
know that T (v) > 0, and, by definition,

(0, T )v ⊂ g
(

Br(0)
)

.

By the Lipschitz estimate for g−1 we have

‖g−1(tv)− g−1(sv)‖ ≤ c|t− s|‖v‖.

This implies that the limit limt→T g
−1(tv) exists and

lim
t→T

g−1(tv) ∈ Br(0).

So
Tv ∈ (g

(

Br(0)
)

.

If T = T (v) < 1 we would have

‖g−1(Tv)‖ ≤ ‖g−1(Tv)− g−1(0)‖
≤ c‖Tv‖
= cT‖v‖
< c‖v‖
≤ r.

This says that
Tv ∈ g (Br(0)) .

But since g is open, we could find an ε > 0 such that [T, T + ε]v ⊂ g (Br(0))
contradicting the definition of T . QED

The above three propositions, taken together, constitute what we might call
the inverse function theorem for Lipschitz maps. But the contraction fixed point
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theorem allows for continuous dependence on parameters, and gives the fixed
point as a continuous function of the parameters. So this then yields the implicit
function theorem.

The differentiability of the solution, in the case that the implicit function is
assumed to be continuously differentiable follows as in Chapter 1.



Chapter 6

Hutchinson’s theorem and

fractal images.

6.1 The Hausdorff metric and Hutchinson’s the-

orem.

Let X be a complete metric space. Let H(X) denote the space of non-empty
compact subsets of X . For any A ∈ H(X) and any positive number ε, let

Aε = {x ∈ X |d(x, y) ≤ ε, for some y ∈ A}.
We call Aε the ε-collar of A. Recall that we defined

d(x,A) = inf
y∈A

d(x, y)

to be the distance from any x ∈ X to A, then we can write the definition of the
ε-collar as

Aε = {x|d(x,A) ≤ ε}.
Notice that the infimum in the definition of d(x,A) is actually achieved, that
is, there is some point y ∈ A such that

d(x,A) = d(x, y).

This is because A is compact. For a pair of non-empty compact sets, A and B,
define

d(A,B) = max
x∈A

d(x,B).

So
d(A,B) ≤ ε iff A ⊂ Bε.

Notice that this condition is not symmetric in A and B. So Hausdorff introduced

h(A,B) = max{d(A,B), d(B,A)} (6.1)

= inf{ε | A ⊂ Bε and B ⊂ Aε}. (6.2)

117
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as a distance on H(X). He proved

Proposition 6.1.1 The function h on H(X) ×H(X) satsifies the axioms for
a metric and makes H(X) into a complete metric space. Furthermore, if

A,B,C,D ∈ H(X)

then
h(A ∪ B,C ∪D) ≤ max{h(A,C), h(B,D)}. (6.3)

Proof. We begin with (6.3). If ε is such that A ⊂ Cε and B ⊂ Dε then clearly
A ∪ B ⊂ Cε ∪Dε = (C ∪D)ε. Repeating this argument with the roles of A,C
and B,D interchanged proves (6.3).

We prove that h is a metric: h is symmetric, by definition. Also, h(A,A) = 0,
and if h(A,B) = 0, then every point of A is within zero distance of B,and hence
must belong to B since B is compact, so A ⊂ B and similarly B ⊂ A. So
h(A,B) = 0 implies that A = B.

We must prove the triangle inequality. For this it is enough to prove that

d(A,B) ≤ d(A,C) + d(C,B),

because interchanging the role of A and B gives the desired result. Now for any
a ∈ A we have

d(a,B) = min
b∈B

d(a, b)

≤ min
b∈B

(d(a, c) + d(c, b) ∀c ∈ C

= d(a, c) + min
b∈B

d(c, b) ∀c ∈ C

= d(a, c) + d(c, B) ∀c ∈ C
≤ d(a, c) + d(C,B) ∀c ∈ C.

The second term in the last expression does not depend on c, so minimizing
over c gives

d(a,B) ≤ d(a, C) + d(C,B).

Maximizing over a on the right gives

d(a,B) ≤ d(A < C) + d(C,B).

Maximizing on the left gives the desired

d(A,B) ≤ d(A,C) + d(C,A).

We sketch the proof of completeness. Let An be a sequence of compact non-
empty subsets of X which is Cauchy in the Hausdorff metric. Define the set
A to be the set of all x ∈ X with the property that there exists a sequence of
points xn ∈ An with xn → x. It is straighforward to prove that A is compact
and non-empty and is the limit of the An in the Hausdorff metric.
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Suppose that K : X → X is a contraction. Then K defines a transformation
on the space of subsets of X (which we continue to denote by K):

K(A) = {Kx|x ∈ A}.

Since K continuous, it carries H(X) into itself. Let c be the Lipschitz constant
of K. Then

d(K(A),K(B)) = max
a∈A

[min
b∈B

d(K(a),K(b))]

≤ max
a∈A

[min
b∈B

cd(a, b)]

= cd(A,B).

Similarly, d(K(B),K(A)) ≤ c d(B,A) and hence

h(K(A),K(B)) ≤ c h(A,B). (6.4)

In other words, a contraction on X induces a contraction on H(X).

The previous remark together with the following observation is the key to
Hutchinson’s remarkable construction of fractals:

Proposition 6.1.2 Let T1, . . . , Tn be a collection of contractions on H(X) with
Lipschitz constants c1, . . . , cn, and let c = max ci. Define the transformation T
on H(X) by

T (A) = T1(A) ∪ T2(A) ∪ · · · ∪ Tn(A).

Then T is a contraction with Lipschitz constant c.

Proof. By induction, it is enough to prove this for the case n = 2. By (6.3)

h(T (A), T (B)) = h(T1(A) ∪ T2(A), T1(B) ∪ T2(B))

≤ max{h(T1(A), h(T1(B)), h(T2(A), T2(B))}
≤ max{c1h(A,B), c2h(A,B)}
= h(A,B) max{c1, c2} = c · h(A,B)

.

Putting the previous facts together we get Hutchinson’s theorem;

Theorem 6.1.1 Let K1, . . . ,Kn be contractions on a complete metric space
and let c be the maximum of their Lifschitz contants. Define the Hutchinson
operator, K, on H(X) by

K(A) = K1(A) ∪ · · · ∪Kn(a).

Then K is a contraction with Lipschtz constant c.
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6.2 Affine examples

We describe several examples in which X is a subset of a vector space and each
of the Ti in Hutchinson’s theorem are affine transformations of the form

Ti : x 7→ Aix+ bi

where bi ∈ X and Ai is a linear transformation.

6.2.1 The classical Cantor set.

Take X = [0, 1], the unit interval. Take

T1 : x 7→ x

3
, T2 : x 7→ x

2
+

2

3
.

These are both contractions, so by Hutchinson’s theorem there exists a unique
closed fixed set C. This is the Cantor set.

To relate it to Cantor’s original construction, let us go back to the proof of
the contraction fixed point theorem applied to T acting on H(X). It says that
if we start with any non-empty compact subset A0 and keep applying T to it,
i.e. set An = TnA0 then Ab → C in the Hausdorff metric, h. Suppose we take
the interval I itself as our A0. Then

A1 = T (I) = [0,
1

3
] ∪ [

2

3
, 1].

in other words, applying the Hutchinson operator T to the interval [0, 1] has
the effect of deleting the “middle third” open interval ( 1

3 ,
2
3 ). Applying T once

more gives

A2 = T 2[0, 1] = [0,
1

9
] ∪ [

2

9
,

1

3
] ∪ [

2

3
,

7

9
] ∪ [

8

9
, 1].

In other words, A2 is obtained from A1 by deleting the middle thirds of each
of the two intervals of A1 and so on. This was Cantor’s original construction.
Since An+1 ⊂ An for this choice of initial set, the Hausdorff limit coincides with
the intersection.

But of course Hutchinson’s theorem (and the proof of the contractions fixed
point theorem) says that we can start with any non-empty closed set as our
initial “seed” and then keep applying T . For example, suppose we start with
the one point set B0 = {0}. Then B1 = TB0 is the two point set

B1 = {0, 2

3
},

B2 consists of the four point set

B2 = {0, 2

9
,

2

3
,

8

9
}
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and so on. We then must take the Hausdorff limit of this increasing colletion
of sets. To describe the limiting set c from this point of view, it is useful to use
triadic expansions of points in [0, 1]. Thus

0 = .0000000 · · ·
2/3 = .2000000 · · ·
2/9 = .0200000 · · ·
8/9 = .2200000 · · ·

and so on. Thus the set Bn will consist of points whose triadic exapnsion has
only zeros or twos in the first n positions followed by a string of all zeros. Thus
a point will lie in C (be the limit of such points) if and only if it has a triadic
expansion consisting entirely of zeros or twos. This includes the possibility of
an infinite string of all twos at the tail of the expansion. for example, the point
1 which belongs to the Cantor set has a triadic expansion 1 = .222222 · · · .
Simialrly the point 2

3 has the triadic expansion 2
3 = .0222222 · · · and so is in

the limit of the sets Bn. But a point such as .101 · · · is not in the limit of the
Bn and hence not in C. This description of C is also due to Cantor. Notice
that for any point a with triadic expansion a = .a1a2a2 · · ·

T1a = .0a1a2a3 · · · , while T2a = .2a1a2a3 · · · .

Thus if all the entries in the expansion of a are either zero or two, this will also
be true for T1 and T2a. This shows that the C (given by this second Cantor
description) satisfies TC ⊂ C. On the other hand,

T1(.a2a3 · · · ) = .0a2a3 · · · , T2(.a2a3 · · · ) = .2a2a3 · · ·

which shows that .a1a2a3 · · · is in the image of T1 if a1 = 0 or in the image of
T2 if a1 = 2. This shows that TC = C. Since C (according to Cantor’s second
description) is closed, the uniqueness part of the fixed point theorem guarantees
that the second description coincides iwth the first.

The statement that TC = C implies that C is “self-similar”.

6.2.2 The Sierpinski Gasket

Consider the three affine transformations of the plane:

T1 :

(

x
y

)

7→ 1

2

(

x
y

)

, T2 :

(

x
y

)

7→
(

x
y

)

+
1

2

(

1
0

)

,

T3 :

(

x
y

)

7→ 1

2

(

x
y

)

+
1

2

(

0
1

)

.

The fixed point of the Hutchinson operator for this choice of T1, T2, T3 is called
the Sierpinski gasket, S. If we take our initial set A0 to be the right triangle
with vertices at

(

0
0

)

,

(

1
0

)

, and

(

0
1

)
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then each of the TiA0 is a similar right triangle whose linear dimensions are one-
half as large, and which shares one common vertex with the original triangle.
In other words,

A1 = TA0

is obtained from our original triangle be deleting the interior of the (reversed)
right triangle whose vertices are the midpoints of our origninal triangle. Just
as in the case of the Cantor set, successive applications of T to this choice of
original set amounts to sussive deletions of the “middle” and the Hausdorff limit
is the intersection of all them: S =

⋂

Ai.
We can also start with the one element set

B0

{(

0
0

)}

Using a binary expansion for the x and y coordinates, application of T to B0

gives the three element set

{(

0
0

)

,

(

.1
0

)

,

(

0
.1

)}

.

The set B2 = TB1 will contain nine points, whose binary expansion is obtained
from the above three by shifting the x and y exapnsions one unit to the right
and either inserting a 0 before both expansions (the effect of T1), insert a 1
before the expansion of x and a zero before teh y or vice versa. Proceding
in this fashion, we see that Bn consists of 3n points which have all 0 in the
binary expansion of the x and y coordinates, past the n-th position, and which
are further constrained by the condition that at no earler point do we have
both xi = 1 and y1 = 1. Passing to the limit shows that S consists of all
points for which we can find (possible inifinite) binary expansions of the x and
y coordinates so that xi = 1 = yi never occurs. (For example x = 1

2 , y = 1
2

belongs to S because we can write x = .10000 · · · , y = .011111 . . . ). Again,
from this (second) description of S in terms of binary expansions it is clear that
TS = S.



Chapter 7

Hyperbolicity.

7.1 C0 linearization near a hyperbolic point

Let E be a Banach space. A linear map

A : E → E

is called hyperbolic if we can find closed subspaces S and U of E which are
invariant under A such that we have the direct sum decomposition

E = S ⊕ U (7.1)

and a positive constant a < 1 so that the estimates

‖As‖ ≤ a < 1, As = A|S (7.2)

and
‖A−1

u ‖ ≤ a < 1, Au = A|U (7.3)

hold. (Here, as part of hypothesis (7.3), it is assumed that the restriction of A
to U is an isomorphism so that A−1

u is defined.)
If p is a fixed point of a diffeomorphism f , then it is called a hyperbolic fixed

point if the linear transformation dfp is hyperbolic.
The main purpose of this section is prove that any diffeomorphism, f is

conjugate via a local homeomorphism to its derivative, dfp near a hyperbolic
fixed point. A more detailed statement will be given below. We discussed the
one dimensional version of this in Chapter 3.

Proposition 7.1.1 Let A be a hyperbolic isomorphism (so that A−1 is bounded)
and let

ε <
1− a

‖A−1‖ . (7.4)

If φ and ψ are bounded Lipschitz maps of E into itself with

Lip[φ] < ε, Lip[ψ] < ε

123
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then there is a unique solution to the equation

(id + u) ◦ (A+ φ) = (A+ ψ) ◦ (id + u) (7.5)

in the space, X of bounded continuous maps of E into itself. If φ(0) = ψ(0) = 0
then u(0) = 0.

Proof. If we expand out both sides of (7.5) we get the equation

Au− u(A+ φ) = φ− ψ(id + u).

Let us define the linear operator, L, on the space X by

L(u) = Au− u ◦ (id + φ).

So we wish to solve the equation

L(u) = φ− ψ(A+ u).

We shall show that L is invertible with

‖L−1‖ ≤ ‖A−1‖
(1− a)

. (7.6)

Assume, for the moment that we have proved (7.6). We are then looking for a
solution of

u = K(u)

where
K(u) = L−1[φ− ψ(id + u)].

But

‖K(u1)−K(u2)‖ = ‖L−1[φ− ψ(id + u1)− φ+ ψ(id + u2)]‖
= ‖L−1[ψ(id + u2)− ψ(id + u1)]‖
≤ ‖L−1‖Lip[ψ]‖u2 − u1‖
< c‖u2 − u1‖, c < 1

if we combine (7.6) with (7.4). Thus K is a contraction and we may apply the
contraction fixed point theorem to conclude the existence and uniqueness of the
solution to (7.5). So we turn our attention to the proof that L is invertible and
of the estimate (7.6). Let us write

Lu = A(Mu)

where
Mu = u−A−1u ◦ (A+ φ).

Composition with A is an invertible operator and the norm of its inverse is
‖A−1‖. So we are reduced to proving that M is invertible and that we have the
estimate

‖M−1‖ ≤ 1

1− a
. (7.7)
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Let us write
u = f ⊕ g, f : E → S, g : E → U

in accordance with the decomposition (7.1). So if we let Y denote the space of
bounded continuous maps from E to S, and let Z denote the space of bounded
continuous maps from E to U , we have

X = Y ⊕ Z

and the operator M sends each of the spaces Y and Z into themselves since A−1

preserves S and U . We let Ms denote the restriction of M to Y , and let Mu

denote the restriction of M to Z. It will be enough for us to prove that each of
the operators Ms and Mu is invertible with a bounds (7.7) with M replaced by
Ms and by Mu. For f ∈ Y let us write

Msf = f −Nf, Nf = A−1f ◦ (A+ φ).

We will prove

Lemma 7.1.1 The map N is invertible and we have

‖N−1‖ ≤ a.

Proof.We claim that he map A + φ a homeomorphism with Lipschitz inverse.
Indeed

‖Ax‖ ≥ 1

‖A−1‖‖x‖

so

‖Ax+ φ(x) −Ay − φ(y)‖ ≥
[

1

‖A−1‖ − Lip[φ]

]

‖x− y‖

≥ a

‖A−1‖‖x− y‖

by (7.4). This shows that A+ φ is one to one. Furthermore, to solve

Ax+ φ(x) = y

for x, we apply the contraction fixed point theorem to the map

x 7→ A−1(y − φ(x)).

The estimate (7.4) shows that this map is a contraction. Hence A + φ is also
surjective.

Thus the map N is invertible, with

N−1f = Asf ◦ (A+ φ)−1.

Since ‖As‖ ≤ a, we have
‖N−1f‖ ≤ a‖f‖.
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(This is in terms of the sup norm on Y .) In other words, in terms of operator
norms,

‖N−1‖ ≤ a.

We can now find M−1
s by the geometric series

M−1
s = (I −N)−1

= [(−N)(I −N−1)]−1

= (−N)−1[I +N−1 +N−2 +N−3 + · · · ]

and so on Y we have the estimate

‖M−1
s ‖ ≤ a

1− a
.

The restriction, Mu, of M to Z is

Mug = g −Qg

with
‖Qg‖ ≤ a‖g‖

so we have the simpler series

M−1
u = I +Q+Q2 + · · ·

giving the estimate

‖Mu‖ ≤
1

1− a
.

Since
a

1− a
<

1

1− a

the two pieces together give the desired estimate

‖M‖ ≤ 1

1− a
,

completing the proof of the first part of the proposition. Since evaluation at zero
is a continuous function on X , to prove the last statement of the proposition
it is enough to observe that if we start with an initial approximation satisfying
u(0) = 0 (for example u ≡ 0) Ku will also satisfy this condition and hence so
will Knu and therefor so will the unique fixed point.

Now let f be a differentiable, hyperbolic transformation defined in some
neighborhood of 0 with f(0) = 0 and df0 = A. We may write

f = A+ φ

where
φ(0) = 0, dφ0 = 0.

We wish to prove
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Theorem 7.1.1 There exists neighborhoods U and V of 0 and a homeomor-
phism h : U → V such that

h ◦A = f ◦ h. (7.8)

We prove this theorem by modifying φ outside a sufficiently small neighborhood
of 0 in such a way that the new φ is globally defined and has Lipschitz constant
less than ε where ε satisfies condition (7.4). We can then apply the proposition
to find a global h which conjugates the modified f to A, and h(0) = 0. But since
we will not have modified f near the origin, this will prove the local assertion
of the theorem. For this purpose, choose some function ρ : R → R with

ρ(t) = 0 ∀ t ≥ 1

ρ(t) = 1 ∀ t ≤ 1

2
|ρ′(t)| < K ∀t

where K is some number,
K > 2.

For a fixed ε let r be sufficiently small so that the on the ball, Br(0) we have
the estimate

‖dφx‖ <
ε

2K
,

which is possible since dφ0 = 0 and dφ is continuous. Now define

ψ(x) = ρ(
‖x‖
r

)φ(x),

and continuously extend to

ψ(x) = 0, ‖x‖ ≥ r.

Notice that
ψ(x) = φ(x), ‖x‖ ≤ r

2
.

Let us now check the Lipschitz constant of ψ. There are three alternatives: If
x1 and x2 both belong to Br(0) we have

‖ψ(x1)− ψ(x2)‖ = ‖ρ(
‖x1‖
r

)φ(x1)− ρ(
‖x2‖
r

)φ(x2)

≤ |ρ(
‖x1‖
r

)− ρ(
‖x2‖
r

)‖φ(x1)‖+ ρ(
‖x2‖
r

)‖φ(x1)− φ(x2)‖
≤ (K‖x1 − x2‖/r)× ‖x1‖ × (ε/2K) + (ε/2K)× ‖x1 − x2‖
≤ ε‖x1 − x2|.

If x1 ∈ Br(0), x2 6∈ Br(0), then the second term in the expression on the second
line above vanishes and the first term is at most (ε/2)‖x1 − x2‖. If neither x1

nor x2 belong to Br(0) then ψ(x1)− ψ(x2) = 0− 0 = 0. We have verified that
Lip[ψ] < ε and so have proved the theorem.
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7.2 invariant manifolds

Let p be a hyperbolic fixed point of a diffeomorphism, f . The stable manifold
of f at p is defined as the set

W s(p) = W s(p, f) = {x| lim
n→∞

fn(x) = p}. (7.9)

Similarly, the unstable manifold of f at p is defined as

W u(p) = W u(p, f) = {x| lim
n→∞

f−n(x) = p}. (7.10)

We have defined W s and W u as sets. We shall see later on in this section that
in fact they are submanifolds, of the same degree of smoothness as f . The
terminology, while standard, is unfortunate. A point which is not exactly on
W s(p) is swept away under iterates of f from any small neighborhood of p. This
is the content of our first proposition below. So it is a very unstable property
to lie on W s. Better terminology would be “contracting” and “expanding”
submanifolds. But the usage is standard, and we will abide by it. In any event,
the sets W s(p) and W u(p) are, by their very definition, invariant under f .

In the case that f = A is a hyperbolic linear transformation on a Banach
space E = S ⊕ U , then W s(0) = S and W u(0) = U as follows immediately
from the definitions. The main result of this section will be to prove that in the
general case, the stable manifold of f at p will be a submanifold whose tangent
at p is the stable subspace of the linear transformation dfp.

Notice that for a hyperbolic fixed point, replacing f by f−1 interchanges the
roles of W s and W u. So in much of what follows we will formulate and prove
theorems for either W s or for W u. The corresponding results for W u or for W s

then follow automatically.
Let A be a hyperbolic linear transformation on a Banach space E = S ⊕U ,

and consider any ball, Br = Br(0) of radius r about the origin. If x ∈ Br does
not lie on S ∩ Br, this means that if we write x = xs ⊕ xu with xs ∈ S and
xu ∈ U then xu 6= 0. Then

‖Anx‖ = ‖Anxs‖+ ‖Anxu‖
≥ ‖Anxu‖
≥ cn‖xu‖.

If we choose n large enough, we will have cn‖xu‖ > r. So eventually, Anx 6∈ Br.
Put contrapositively,

S ∩ Br = {x ∈ Br|Anx ∈ Br∀n ≥ 0}.

Now consider the case of a hyperbolic fixed point, p, of a diffeomorphism, f . We
may introduce coordinates so that p = 0, and let us take A = df0. By the C0

conjugacy theorem, we can find a neighborhood, V of 0 and homeomorphism

h : Br → V
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with
h ◦ f = A ◦ h.

Then
fn(x) = h−1 ◦An ◦ h (x)

will lie in U for all n ≥ 0 if and only if h(x) ∈ S(A) if and only if Anh(x) → 0.
This last condition implies that fn(x) → p. We have thus proved

Proposition 7.2.1 Let p be a hyperbolic fixed point of a diffeomorphism, f .
For any ball, Br(p) of radius r about p, let

Bs
r(p) = {x ∈ Br(p)|fn(x) ∈ Bs

r(p)∀n ≥ 0}. (7.11)

Then for sufficiently small r, we have

Bs
r(p) ⊂W s(p).

Furthermore, our proof shows that for sufficiently small r the set Bs
r(p) is a

topological submanifold in the sense that every point of Bs
r(p) has a neighbor-

hood (in Bs
r(p)) which is the image of a neighborhood, V in a Banach space

under a homeomorphism, H . Indeed, the restriction of h to S gives the desired
homeomorphism.
Remark. In the general case we can not say that Bs

r(p) = Br(p)∩W s(p) because
a point may escape from Br(p), wander around for a while, and then be drawn
towards p.

But the proposition does assert that Bs
r(p) ⊂W s(p) and hence, since W s is

invariant under f−1, we have

f−n[Bs
r(p)] ⊂W s(p)

for all n, and hence
⋃

n≥0

f−n[Bs
r(p)] ⊂W s(p).

On the other hand, if x ∈ W s(p), which means that fn(x) → p, eventually
fn(x) arrives and stays in any neighborhood of p. Hence p ∈ f−n[Bs

r(p)] for
some n. We have thus proved that for sufficiently small r we have

W s(p) =
⋃

n≥0

f−n[Bs
r(p)]. (7.12)

We will prove that Bs
r(p) is a submanifold. It will then follow from (7.12) that

W s(p) is a submanifold. The global disposition of W s(p), and in particular
its relation to the stable and unstable manifolds of other fixed points, is a key
ingredient in the study of the long term behavior of dynamical systems. In this
section our focus is purely local, to prove the smooth character of the set Bs

r(p).
We follow the treatment in [?].

We will begin with the hypothesis that f is merely Lipschitz, and give a proof
(independent of the C0 linearization theorem) of the existence and Lipschitz
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character of the W u. We will work in the following situation: A is a hyperbolic
linear isomorphism of a Banach space E = S ⊕ U with

‖Ax‖ ≤ a‖x‖, x ∈ S, ‖A−1x‖ ≤ a‖x‖, x ∈ U.

We let S(r) denote the ball of radius s about the origin in S, and U(r) the ball
of radius r in U . We will assume that

f : S(r)× U(r) → E

is a Lipschitz map with
‖f(0)‖ ≤ δ (7.13)

and
Lip[f −A] ≤ ε. (7.14)

We wish to prove the following

Theorem 7.2.1 Let c < 1. There exists an ε = ε(a) and a δ = δ(a, ε, r) so that
if f satisfies (7.13) and (7.14) then there is a map

g : Eu(r) → Es(r)

with the following properties:
(i) g is Lipschitz with Lip[g] ≤ 1.
(ii) The restriction of f−1 to graph(g) is contracting and hence has a fixed point,
p, on graph(g).
(iii) We have

graph(g) =
⋂

fn(S(r)⊕ U(r)) = W u(p) ∩ [S(r) ⊕ U(p)].

The idea of the proof is to apply the contraction fixed point theorem to the
space of maps of U(r) to S(r). We want to identify such a map, v, with its
graph:

graph(v) = {(v(x), x), x ∈ U(r)}.
Now

f [graph(v)] = {f(v(x), x)} = {(fs(v(x), x), fu(v(x), x))},
where we have introduced the notation

fs = ps ◦ f, fu = pu ◦ f,

where ps denotes projection onto S and pu denotes projection onto U .
Suppose that the projection of f [graph(v)] onto U is injective and its image

contains U(r). This means that for any y ∈ U(r) there is a unique x ∈ U(r)
with

fu(v(x), x) = y.

So we write
x = [fu ◦ (v, id)]−1(y)
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where we think of (v, id) as a map of U(r) → E and hence of

fu ◦ (v, id)

as a map of U(r) → U . Then we can write

f [graph(v)] = {(fs(v([fu ◦ (v, id)]−1(y), y)} = graphG[f(v)]

where
Gf (v) = fs ◦ (v, id) ◦ [fu ◦ (v, id)]−1. (7.15)

The map v 7→ Gf (v) is called the graph transform (when it is defined). We are
going to take

X = Lip1(U(r), S(r))

to consist of all Lipschitz maps from U(r) to S(r) with Lipschitz constant ≤ 1.
The purpose of the next few lemmas is to show that if ε and δ are sufficiently
small then the graph transform, Gf is defined and is a contraction on X . The
contraction fixed point theorem will then imply that there is a unique g ∈ X
which is fixed under Gf , and hence that graph(g) is invariant under f . We will
then find that g has all the properties stated in the theorem.

In dealing with the graph transform it is convenient to use the box metric,
| |, on S ⊕ U where

|xs ⊕ xu| = max{‖xs‖, ‖xu‖}
i.e.

|x| = max{‖ps(x)‖, ‖pu(x)‖}.
We begin with

Lemma 7.2.1 If v ∈ X then

Lip[fu ◦ (v, id)−Au] ≤ Lip[f −A].

Proof. Notice that

pu ◦A(v(x), x) = pu(As(v(x)), Aux) = Aux

so
fu ◦ (v, id)−Au = pu ◦ [f −A] ◦ (v, id).

We have Lip[pu] ≤ 1 since pu is a projection, and

Lip(v, id) ≤ max{Lip[v],Lip[id]} = 1

since we are using the box metric. Thus the lemma follows.

Lemma 7.2.2 Suppose that 0 < ε < c−1 and

Lip[f −A] < ε.

Then for any v ∈ X the map fu ◦ (v, id) : Eu(r) → Eu is a homeomorphism
whose inverse is a Lipschitz map with

Lip
[

[fu ◦ (v, id)]−1
]

≤ 1

c−1 − ε
. (7.16)
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Proof.Using the preceding lemma, we have

Lip[fu −Au] < ε < c−1 < ‖A−1
u ‖−1 = (Lip[Au])

−1
.

By the Lipschitz implicit function theorem we conclude that fu ◦ (v, id) is a
homeomorphism with

Lip
[

[fu ◦ (v, id)]−1
]

≤ 1

‖A−1
u ‖−1 − Lip[fu ◦ (v, id)−Au]

≤ 1

c−1 − ε

by another application of the preceding lemma. QED. We now wish to show
that the image of fu ◦ (v, id) contains U(r) if ε and δ are sufficiently small:
By the proposition in section 5.2 concerning the image of a Lipschitz map, we
know that the image of U(r) under fu ◦ (v, id) contains a ball of radius r/λ
about [fu ◦ (v, id)](0) where λ is the Lipschitz constant of [fu ◦ (v, id)]−1. By
the preceding lemma, r/λ = r(c−1 − ε). Hence fu ◦ (v, id)(U(r)) contains the
ball of radius

r(c−1 − ε)− ‖fu(v(0), 0)‖
about the origin. But

‖fu(v(0), 0)‖ ≤ ‖fu(0, 0)‖+ ‖fu(v(0), 0)− fu(0, 0)‖
≤ ‖fu(0, 0)‖+ ‖(fu − puA)(v(0), 0)− (fu − puA)(0, 0)‖
≤ |f(0)|+ |(f −A)(v(0), 0)− (f −A)(0, 0)|
≤ |f(0)|+ εr.

The passage from the second line to the third is because puA(x, y) = Auy = 0
if y = 0. The passage from the third line to the fourth is because we are using
the box norm. So

r(c−1 − ε)− ‖fu(v(0), 0)‖ ≥ r(c−1 − 2ε)− δ

if (7.13) holds. We would like this expression to be ≥ r, which will happen if

δ ≤ r(c−1 − 1− 2ε). (7.17)

We have thus proved

Proposition 7.2.2 Let f be a Lipschitz map satisfying (7.13) and (7.14) where
2ε < c−1−1 and (7.17) holds. Then for every v ∈ X, the graph transform, Gf (v)
is defined and

Lip[Gf (v)] ≤ c+ ε

c−1 − ε
.

The estimate on the Lipschitz constant comes from

Lip[Gf (v)] ≤ Lip[fs ◦ (v, id)]Lip[(fu ◦ (v, id)]

≤ Lip[fs]Lip[v]Lip · 1

c−1 − ε

≤ (Lip[As] + Lip[ps ◦ (f −A)]) · 1

c−1 − ε

≤ c+ ε

c−1 − ε
.
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In going from the first line to the second we have used the preceding lemma.
In particular, if

2ε < c−1 − c (7.18)

then
Lip[Gf (v)] ≤ 1.

Let us now obtain a condition on δ which will guarantee that

Gf (v)(U(r) ⊂ S(r).

Since
fu ◦ (v, id)U(r) ⊃ U(r),

we have
[fu ◦ (v, id)]−1U(r) ⊂ U(r).

Hence, from the definition of Gf (v), it is enough to arrange that

fs ◦ (v, id)[U(r)] ⊂ S(r).

For x ∈ U(r) we have

‖fs(v(x), x)‖ ≤ ‖ps ◦ (f −A)(v(x), x)‖ + ‖Asv(x)‖
≤ |(f −A)(v(x), x)| + c‖v(x)‖
≤ |(f −A)(v(x), x) − (f −A)(0, 0)|+ |f(0)|+ cr

≤ ε|(v(x), x)| + δ + cr

≤ εr + δ + cr.

So we would like to have
(ε+ c)r + δ < r

or
δ ≤ r(1− c− ε). (7.19)

If this holds, then Gf maps X into X .
We now want conditions that guarantee that Gf is a contraction on X ,

where we take the sup norm. Let (w, x) be a point in S(r) ⊕ U(r) such that
fu(w, x) ∈ U(r). Let v ∈ X , and consider

|(w, x) − (v(x), x)| = ‖w − v(x)‖,

which we think of as the distance along S from the point (w, x) to graph(v).
Suppose we apply f . So we replace (w, x) by f(w, x) = (fs(w, x), fu(w, x)) and
graph(v) by f(graph(v)) = graph(Gf (v)). The corresponding distance along S
is ‖fs(w, x) −Gf (v)(fu(w, x)‖. We claim that

‖fs(w, x) −Gf (v)(fu(w, x))‖ ≤ (c+ 2ε)‖w − v(x)‖. (7.20)

Indeed,
fs(v(x), x) = Gf (v)(fu(v(x), x)
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by the definition of Gf , so we have

‖fs(w, x) −Gf (v)(fu(w, x))‖ ≤ ‖fs(w, x) − fs(v(x), x)‖ +

+‖Gf (v)(fu((v(x), x) −Gf (v)(fu(w, x))‖
≤ Lip[fs]|(w, x) − (v(x), x)| +

+Lip[fu]|(v(x), x) − (w, x)|
≤ Lip[fs − psA+ psA]‖w − v(x)‖+

+Lip[fu − puA]‖w − v(x)‖
≤ (ε+ c+ ε)‖w − v(x)‖

which is what was to be proved.
Consider two elements, v1 and v2 of X . Let z be any point of U(r), and

apply (7.20) to the point

(w, x) = (v1([fu ◦ (v1, id)]−1](z)), [fu ◦ (v1, id)]−1](z))

which lies on graph(v1), and where we take v = v2 in (7.20). The image of
(w, x) is the point (Gf (v1)(z), z) which lies on graph(Gf (v1)), and, in particular,
fu(w, x) = z. So (7.20) gives

‖Gf (v1)(z)−Gf (v2)(z)‖ ≤ (c+2ε)‖v1([fu◦(v1, id)]−1](z))−v2([fu◦(v1, id)]−1](z)‖.

Taking the sup over z gives

‖Gf (v1)−Gf (v2)‖sup ≤ (c+ 2ε)‖v1 − v2‖sup. (7.21)

Intuitively, what (7.20) is saying is that Gf multiplies the S distance between
two graphs by a factor of at most (c + 2ε). So Gf will be a contraction in the
sup norm if

2ε < 1− c (7.22)

which implies (7.18). To summarize: we have proved that Gf is a contraction
in the sup norm on X if (7.17), (7.19) and (7.22) hold, i.e.

2ε < 1− c, δ < rmin(c−1 − 1− 2ε, 1− c− ε).

Notice that since c < 1, we have c−1 − 1 > 1− c so both expressions occurring
in the min for the estimate on δ are positive.

Now the uniform limit of continuous functions which all have Lip[v] ≤ 1 has
Lipschitz constant ≤ 1. In other words, X is closed in the sup norm as a subset
of the space of continuous maps of U(r) into S(r), and so we can apply the
contraction fixed point theorem to conclude that there is a unique fixed point,
g ∈ X of Gf . Since g ∈ X , condition (i) of the theorem is satisfied. As for (ii),
let (g(x), x) be a point on graph(g) which is the image of the point (g(y), y)
under f , so

(g(x), x) = f(g(y), y)



7.2. INVARIANT MANIFOLDS 135

which implies that
x = [fu ◦ (g, id)](y).

We can write this equation as

pu ◦ f|graph(g) = [fu ◦ (g, id)] ◦ (pu)|graph(g).

In other words, the projection pu conjugates the restriction of f to graph(g)
into [fu ◦ (g, id)]. Hence the restriction off−1 to graph(g) is conjugated by pu

into [fu ◦ (g, id)]−1. But, by (7.16), the map [fu ◦ (g, id)]−1 is a contraction since

c−1 − 1 > 1− c > 2ε

so
c−1 − ε > 1 + ε > 1.

The fact that Lip[g] ≤ 1 implies that

|(g(x), x) − (g(y), y)| = ‖x− y‖
since we are using the box norm. So the restriction of pu to graph(g) is an
isometry between the (restriction of) the box norm on graph(g)and the norm
on U . So we have proved statement (ii), that the restriction of f−1 to graph(g)
is a contraction.

We now turn to statement (iii) of the theorem. Suppose that (w, x) is a
point in S(r) ⊕ U(r) with f(w, x) ∈ S(r) ⊕ U(r). By (7.20) we have

‖fs(w, x) − g(fu(w, x)‖ ≤ (c+ 2ε)‖w − g(x)‖
since Gf (g) = g. So if the first n iterates of f applied to (w, x) all lie in
S(r)⊕ U(r), and if we write

fn(w, x) = (z, y),

we have
‖z − g(y)‖ ≤ (c+ 2ε)n‖w − g(x)‖ ≤ (c+ 2ε)r.

So if the point (z, y) is in
⋂

fn(S(r) ⊕ U(r)) we must have z = g(y), in other
words

⋂

fn(S(r)⊕ U(r)) ⊂ graph(g).

But
graph(g) = f [graph(g)] ∩ [S(r) ⊕ U(r)]

so
graph(g) ⊂

⋂

fn(S(r) ⊕ U(r)),

proving that

graph(g) =
⋂

fn(S(r) ⊕ U(r)).

We have already seen that the restriction of f−1 to graph(g) is a contraction,
so all points on graph(g) converge under the iteration of f−1 to the fixed point,
p. So they belong to W u(p). This completes the proof of the theorem.

Notice that if f(0) = 0, then p = 0 is the unique fixed point.
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Chapter 8

Symbolic dynamics.

8.1 Symbolic dynamics.

We have already seen several examples where a dynamical system is conjugate
to the dynamical system consisting of a “shift” on sequences of symbols. It is
time to pin this idea down with some formal definitions.

Definition. A discrete compact dynamical system (M,F ) consists of a
compact metric space M together with a continuous map F : M →M . If F is
a homeomorphism then (M,F ) is said to be an invertible dynamical system.

If (M,F ) and (N,G) are compact discrete dynamical systems then a map
φ : M → N is called a homomorphism if

• φ is continuous, and

•
G ◦ φ = φ ◦ F,

in other words if the diagram

M
F−−−−→ M

φ





y





y

φ

N −−−−→
G

N

commutes.

If the homomorphism φ is surjective it is called a factor. If φ a homeomorphism
then it is called a conjugacy.

For the purposes of this chapter, we will only be considering compact discrete
situations, so shall drop these two words.

137
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Let A be a finite set called an “alphabet”. The set AZ consists of all bi-
infinite sequences x = · · ·x−2, x−1, x0, x1, x2, x3, · · · . On this space let us put
the metric (a slight variant of the metric we introduce earlier) d(x, x) = 0 and,
if x 6= y then

d(x, y) = 2−k where k = max
i

[x−i, xi] = [y−i, yi].

Here we use the notation [xk, x`] to denote the “block”

[xk, x`] = xkxk+1 · · ·x`

from k to ` occurring in x. (This makes sense if k ≤ `. If ` < k we adopt the
convention that [xk , x`] is the empty word.) Thus the elements x and y are close
in this metric if they agree on a large central block. So a sequence of points {xn}
converges if and only if, given any fixed k and `, the [xn

k , x
n
` ] eventually agree

for large n. From this characterization of convergence, it is easy to see that
the space AZ is sequentially compact: Let xn be a sequence of points of AZ,
We must find a convergent subsequence. The method is Cantor diagonalization:
Since A is finite we may find an infinite subsequence ni of the n such that all the
xni

0 are equal. Infinitely many elements from this subsequence must also agree
at the positions −1 and 1 since there are only finitely many possible choices of
entries. In other words, we may choose a subsequence nij

of our subsequence

such that all the [x
nij

−1 , x
nij

1 ] are equal. We then choose an infinite subsequence
of this subsubsequence such that all the [x−3, x3] are equal. And so on. We
then pick an element N1 from our first subsequence, an element N2 > N1 from
our subsubsequence, an element N3 > N2 from our subsubsubsequence etc. By
construction we have produced an infinite subsequence which converges.

In the examples we studies, we did not allow all sequences, but rather ex-
cluded certain types. Let us formalize this. By a word from the alphabet A we
simply mean a finite string of letters of A. Let F be a set of words. Let

XF = {x ∈ AZ|[xk, x`] 6∈ F}

for any k and `. In other words, XF consists of those sequences x for which no
word of F ever occurs as a block in x. From our characterization of convergence
(as eventual agreement on any block) it is clear that XF is a closed subset of
AZ and hence compact. It is also clear that XF is mapped into itself by the
shift map

σ : AZ → AZ, (σx)k := xk+1.

It is also clear that σ is continuous. By abuse of language we may continue to
denote the restriction of σ to XF by σ although we may also use the notation
σX for this restriction. A dynamical system of the form (X, σX) where x = XF
is called a shift dynamical system.

Suppose that (X, σX) with X = XF ⊂ AZ and (Y, σY ) with Y = YG ⊂ BZ

are shift dynamical systems. What does a homomorphism φ : X → Y look like?
For each b ∈ B, let

C0(b) = {y ∈ Y |y0 = b}.
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(The letter C is used to denote the word “cylinder” and the subscript 0 denotes
that we are constructing the so called cylinder set obtained by specifying that
the value of y at the “base” 0.) The sets C0(b) are closed, hence compact, and
distinct. The finitely many sets φ−1(C0(b)) are therefore also disjoint. Since φ
is continuous by the definition of a homomorphism, each of the sets φ−1(C0)(b)
is compact, as the inverse i age of a compact set under a continuous map from
a compact space is compact. Hence there is a δ > 0 such that the distance
between any two different sets φ−1(C0(b)) is > δ. Choose n with 2−n < δ. Let
if x, x′ ∈ X . Then

[x−n, xn] = [x′−n, x
′
n] ⇒ φ(x) = φ(x′)

since they are at distance at most 2−n and hence must lie in the same φ−1(C0(b).
In other words, there is a map

Φ : A2n+1 → B

such that

φ(x)0 = Φ([x−n, xn]).

But now the condition that σY ◦ φ = φ ◦ σX implies that

φ(x)1 = Φ([x−n+1, xn + 1])

and more generally that

φ(x)j = Φ([xj−n, xj+n]). (8.1)

Such a map is called a sliding block code of block size 2n + 1 (or “with
memory n and anticipation n”) for obvious reasons. Conversely, suppose that
φ is a sliding block code. It clearly commutes with the shifts. If x and x′ agree
on a central block of size 2N + 1, then φ(x) and φ(y) agree on a central block
of size 2(N −n) + 1. This shows that φ is continuous. In short, we have proved

Proposition 8.1.1 A map φ between two shift dynamical systems is a homo-
morphism if and only if it is a sliding block code.

The advantage of this proposition is that it converts a topological property,
continuity, into a finite type property - the sliding block code. Conversely, we
can use some topology of compact sets to derive facts about sliding block codes.
For example, it is easy to check that a bijective continuous map φ : X → Y
between compact metric spaces is a homeomorphism, i.e. that φ−1 is continuous.
Indeed, if not, we could find a sequence of points yi ∈ Y with yn → y and
xn = φ−1(yk) 6→ x = φ−1(y). Since X is compact, we can find a subsequence
of the xn which converge to some point x′ 6= x. Continuity demands that
φ(x′) = y = φ(x) and this contradicts the bijectivity. Form this we conclude
that the inverse of a bijective sliding block code is continuous, hence itself a
sliding block code - a fact that is not obvious from the definitions.
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8.2 Shifts of finite type.

For example, let M be any positive integer and suppose that we map XF ⊂ AZ

into (AM )Z as follows: A “letter” in AM is an M -tuplet of letters of A. Define
the map φ : XF → (AM )Z by letting φ(x)i = [xi, xi+M ]. For example, if M = 5
and we write the 5-tuplets as column vectors, the element x is mapped to

. . . ,













x−1

x0

x1

x2

x3













,













x0

x1

x2

x3

x4













,













x1

x2

x3

x4

x5













,













x2

x3

x4

x5

x6













, dots.

This map is clearly a sliding code, hence continuous, and commutes with shift
hence is a homomorphism. On the other hand it is clearly bijective since we can
recover x from its image by reading the top row. Hence it is a conjugacy of X
onto its image. Call this image XM .

We say that X is of finite type if we can choose a finite set F of forbidden
words so that X = XF .

8.2.1 One step shifts.

If w is a forbidden word for X , then any word which contains w as a substring
is also forbidden. If M + 1 denotes the largest length of a word in F , we may
enlarge all the remaining words by adding all suffixes and prefixes to get words
of length M . Hence, with no loss of generality, we may assume that all the words
of F have length M . So F ⊂ AM . Such a shift is called an M -step shift. But if
we pass from X to XM+1, the elements of (A)M+∞ are now the alphabet. So
excluding the elements of F means that we have replaced the alphabet AM+1

by the smaller alphabet E , the complement of F in AM+∞. Thus XM+1 ⊂ EZ.
The condition that an element of BZ actually belong to X is easy to describe:
An M + 1-tuplet yi can be followed by an M + 1-tuplet yi+1 if and only if the
last M entries in yi coincide with the first M entries in yi+1. All words w = yy′

which do not satisfy this condition are excluded. but all these words have length
two. We have proved that the study of shifts of finite type is the same as the
study of one step shifts.

8.2.2 Graphs.

We can rephrase the above argument in the language of graphs. For any shift
and any positive integer K X we let WK(X) denote the set of all admissible
words of length K. Suppose that X is an M -step shift. Let us set

V := WM (X),

and define
E = WM+1(X)
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as before. Define maps

i : E → V , t : E → V
to be

i(a0a1 · · · aM ) = a0a1 · · ·aM−1 t(a0a1 · · · aM ) = a1 · · ·aM .

Then a sequence u = · · ·u1u0u1u2 · · · ∈ EZ, where ui ∈ E lies in XM+1 if and
only if

t(uj) = i(uj + 1) (8.2)

for all j.
So let us define a directed multigraph (DMG for short) G to consist of a

pair of sets (V , E) (called the set of vertices and the set of edges) together with
a pair of maps

i : E → V , t : E → V .
We may think the edges as joining one vertex to another, the edge e going from
i(e) (the initial vertex) to t(e) the terminal vertex. The edges are “oriented” in
the sense each has an initial and a terminal point. We use the phrase multigraph
since nothing prevents several edges from joining the same pair of vertices. Also
we allow for the possibility that i(e) = t(e), i.e. for “loops”.

Starting from any DMG G, we define YG ⊂ EZ to consist of those sequences
for which (8.2) holds. This is clearly a step one shift.

We have proved that any shift of finite type is conjugate to YG for some
DMG G.

8.2.3 The adjacency matrix

suppose we are given V . Up to renaming the edges which merely changes the
description of the alphabet, E , we know G once we know how many edges go
from i to j for every pair of elements i, j ∈ V . This is a non-negative integer,
and the matrix

A = A(G) = (aij)

is called the adjacency matrix of G. All possible information about G, and
hence about YG is encoded in the matrix A. Our immediate job will be to
extract some examples of very useful properties of YG from algebraic or analytic
properties of A. In any event, we have reduced the study of finite shifts to the
study of square matrices with non-negative integer entries.

8.2.4 The number of fixed points.

For any dynamical system, (M,F ) let pn(F ) denote the number (possibly infi-
nite) of fixed points of F n. These are also called periodic points of period n.
We shall show that if A is the adjacency matrix of the DMG G, and (YG, σY )
is the associated shift, then

pn(σY ) = trAn. (8.3)
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To see this, observe that for any vertices i and j, aij denotes the number of
edges joining i to j. Squaring the matrix A, the ij component of A2 is

∑

k

aikakj

which is precisely the number of words (or paths) of length two which start at
i and end at j. By induction, the number of paths of length n which join i to
j is the ij component of An. Hence the ii component of An is the number of
paths of length n which start and end at i. Summing over all vertices, we see
that trAn is the number of all cycles of length n. But if c is a cycle of length n,
then the infinite sequence y = · · · ccccc · · · is periodic with period n under the
shift. Conversely, if y is periodic of period n, then c = [y0, yn−1] is a cycle of
length n with y = · · · ccccc · · · . Thus pn(σY ) = the number of cycles of length
n = trAn. QED

8.2.5 The zeta function.

Let (M,F ) be a dynamical system for which pn(F ) <∞ for all n. A convenient
bookkeeping device for storing all the numbers pn(F ) is the zeta function

ζF (t) := exp

(

∑

n

pn(F )
tn

n

)

.

Let x be a periodic point (of some period) and let m = m(x) be the minimum
period of x. Let γ = γ(x) = {x, Fx, . . . , Fm−1x} be the orbit of x under F
and all its powers. So m = m(γ) = m(x) is the number of elements of γ. The
number of elements of period n which correspond to elements of γ is m if m|n
and zero otherwise. If we denote this number by pn(F, γ) then

exp

(

∑

n

pn(F, γ)
tn

n

)

= exp





∑

j

mj
tmj

mj



 =

exp





∑

j

tmj

j



 = exp (− log(1− tm)) =
1

1− tm
.

Now

pn(F ) =
∑

γ

pn(F, γ)

since a point of period n must belong to some periodic orbit. Since the expo-
nential of a sum is the product of the exponentials we conclude that

ζF (t) =
∏

γ

(

1

1− tm(γ)

)

.
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Now let us specialize to the case (YG, σY ) for some DMG, G. We claim that

ζσ(t) =
1

det(I − tA)
. (8.4)

Indeed,

pn(σ) = trAn =
∑

λn
i

where the sum is over all the eigenvalues (counted with multiplicity). Hence

ζσ(t) =
∏

exp
∑ (λit)

n

n
=
∏

(

1

1− λit

)

=
1

det(I − tA)
. QED

8.3 Topological entropy.

Let X be a shift space, and let Wn(X) denote the number of words of length n
which appear in X . Let wn = #(Wn(X) denote the number of words of length
n. Clearly wn ≥ 1 (as we assume that X is not empty), and

wm+n ≤ wm · wn

and hence
log2(wm+n) ≤ log2(wm) + log2(wn).

This implies that

lim
n→∞

1

n
log2wn

exists on account of the following:

Lemma 8.3.1 Let a1, a2 . . . be a sequence of non-negative real numbers satis-
fying

am+n ≤ am + an.

Then limn→∞
1
nan exists and in fact

lim
n→∞

1

n
an = inf

n→∞

1

n
an.

Proof. Set a := infn→∞
1
nan. For any ε > 0 we must show that there exists

an N = N(ε) such that

1

n
an ≤ a+ ε ∀ n ≥ N(ε).

Choose some integer r such that

ar < a+
1

2
ε.

Such an r ≥ 1 exists by the definition of a. Using the inequality in the lemma,
if 0 ≤ j < r

amr+j

mr + j
≤ amr

mr + j
+

aj

mr + j
.
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Decreasing the denominator the right hand side is ≤
amr

mr
+

aj

mr
.

There are only finitely many aj which occur in the second term, and hence by
choosing m large we can arrange that the second term is always < 1

2ε. Repeated
application of the inequality in the lemma gives

amr

mr
≤ mar

mr
=
ar

r
< a+

1

2
ε. QED.

Thus we define

h(X) = lim
n→∞

1

n
log2#(Wn(X)), (8.5)

and call h(X) the topological entropy of X . (This is a standard but unfortu-
nate terminology, as the topological entropy is only loosely related to the concept
of entropy in thermodynamics, statistical mechanics or information theory). To
show the it is an invariant of X we prove

Proposition 8.3.1 Let φ : X → Y be a factor (i.e. a surjective homomor-
phism). Then h(Y ) ≤ h(X). In particular, if h is a conjugacy, then h(X) =
h(Y ).

Proof. We know that φ is given by a sliding block code, say of size 2m+ 1.
Then every block in Y of size n is the image of a block in X of size n+ 2m+ 1,
i.e.

1nlog2#(Wn(Y )) ≤ 1nlog2#(Wn+2m+1(X)).

Hence

1

n
1nlog2#(Wn(Y )) ≤

(

n+ 2m+ 1

n

)

1

n+ 2m+ 1
1nlog2#(Wn+2m+1(X)).

The expression in parenthesis tends to ! as n → ∞ proving that h(Y ) ≤ h(X).
If φ is a conjugacy, the reverse inequality applies. Box

8.3.1 The entropy of YG from A(G).

The adjacency matrix of a DMG has non-negative integer entries, in particular
non-negative entries. If a row consisted entirely of zeros, then no edge would em-
anate from the corresponding vertex, so this vertex would make no contribution
to the corresponding shift. Similarly if column consisted entirely of zeros. So
without loss of generality, we may restrict ourselves to graphs whose adjacency
matrix contains at least one positive entry in each row and in each column. This
implies that if Ak has all its entries positive, then so does Ak+1 and hence all
higher powers. A matrix with non-negative entries which has this property is
called primitive. A matrix is called irreducible if In terms of the graph G, the
condition of being primitive means that for all sufficiently large n any vertices
i and j can be joined by a path of length n. A slightly weaker condition is that
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of irreducibility which asserts for any i and j there exist (arbitrarily large)
n = n(i, j)) and a path of length n joining i and j. In terms of the matrix,
this says that given i and j there is some power n such that (An)ij > 0. For
example, the matrix

(

0 1
1 0

)

is irreducible but not primitive.
The Perron-Frobenius Theorem whose proof we will give in the next

section asserts every irreducible matrix A has a positive eigenvalue λA such
that λA ≥ |µ| for any other eigenvalue µ and also that Av = λAv for some
vector v all of whose entries are positive, and that no other eigenvalue has an
eigenvector with all positive entries. We will use this theorem to prove:

Theorem 8.3.1 Let G be a DMG whose adjacency matrix A(G)is irreducible.
Let yG be the corresponding shift space. then

h(YG) = λA(G). (8.6)

Proof. The number of words of length n which join the vertex i to the vertex
j is the ij entry of An where A = A(G). Hence

#(Wn(YG)) =
∑

ij

(An)ij .

Let v be an eigenvector of A with all positive entries, and let m > 0 be the
minimum of these entries and M the maximum. Also let us write λ for λA. We
have Anv = λnv, or written out

∑

j

(An)ijvj = λnvi.

Hence
m
∑

j

(An)ij ≤ λnM.

Summing over i gives
m#(Wn(YG)) ≤ rMλn

where r is the size of the matrix A. Hence

log2m+ log2#(Wn(YG)) ≤ log2(Mr) + nlog2λ.

Dividing by n and passing to the limit shows that

h(YG) ≤ λA.

On the other hand, for any i we have

mλn ≤ λnvi ≤
∑

j

(An)ijvj ≤M
∑

j

(An)ij.
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Summing over j gives
rmλn ≤M#(Wn(YG)).

Again, taking logarithms and dividing by n proves the reverse inequality h(YG) ≥
λA. QED

For example, if

A =

(

1 1
1 0

)

then

A2 =

(

2 1
1 0

)

so A is primitive. Its eigenvalues are

1±
√

5

2

so that

h(YG) =
1 +

√
5

2
.

If A is not irreducible, this means that there will be proper subgraphs from
which there is “no escape”. One may still apply the Perron Frobenius theorem
to the collection of all irreducible subgraphs, and replace the λA that occurs
in the theorem by the maximum of the maximum eigenvalues of each of the
irreducible subgraphs. We will not go into the details.

8.4 The Perron-Frobenius Theorem.

We say that a real matrix T is non-negative (or positive) if all the entries of
T are non-negative (or positive). We write T ≥ 0 or T > 0. We will use these
definitions primarily for square (n× n) matrices and for column vectors (n× 1
matrices). We let

Q := {x ∈ Rn : x ≥ 0, x 6= 0}
so Q is the non-negative “orthant” excluding the origin. Also let

C := {x ≥ 0 : ‖x‖ = 1}.

So C is the intersection of the orthant with the unit sphere.
A non-negative matrix square T is called primitive if there is a k such that

all the entries of T k are positive. It is called irreducible if for any i, j there is
a k = k(i, j) such that (T k)ij > 0. If T is irreducible then I + T is primitive.
Until further notice in this section we will assume that T is non-negative and
irreducible.

Theorem 8.4.1 Perron-Frobenius,1. T has a positive (real) eigenvalue λmax

such that all other eigenvalues of T satisfy

|λ| ≤ λmax.
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Furthermore λmax has algebraic and geometric multiplicity one, and has an
eigenvector x with X > 0. Finally any non-negative eigenvector is a multiple of
x. More generally, if y ≥ 0, y 6= 0 is a vector and µ is a number such that

Ty ≤ µy

then
y > 0, and µ ≥ λmax

with µ = λmax if and only if y is a multiple of x.
If 0 ≤ S ≤ T, S 6= T then every eigenvalue σ of S satisfies |σ| < λmax. In

particular, all the diagonal minors Ti obtained from T by deleting the i-th row
and column have eigenvalues all of which have absolute value < λmax.

Proof. Let
P := (I + T )n−1

and for any z ∈ Q let

L(z) := max{s : sz ≤ Tz} = min
1≤i≤n,zi 6=0

(Tz)i

zi
.

By definition L(rz) = L(z) for any r > 0, so L(z) depends only on the ray
through z. If z ≤ y, z 6= y we have Pz < Py. Also PT = TP . So if sz ≤ Tz
then

sPz ≤ PTz = TPz

so
L(Pz) ≥ L(z).

Furthermore, if L(z)z 6= Tz then L(z)Pz < TPz. So L(Pz) > L(z) unless z is
an eigenvector of T . Consider the image of C under P . It is compact (being
the image of a compact set under a continuous map) and all of the elements of
P (C) have all their components strictly positive (since P is positive). Hence
the function L is continuous on P (C). Thus L achieves a maximum value, Lmax

on P (C). Since L(z) ≤ L(Pz) this is in fact the maximum value of L on all of
Q, and since L(Pz) > L(z) unless z is an eigenvector of T , we conclude that
Lmax is achieved at an eigenvector, call it x of of T and x > 0 with Lmax the
eigenvalue. Since Tx > 0 and Tx = Lmaxx we have Lmax > 0.

We will now show that this is in fact the maximum eigenvalue in the sense
of the theorem. So let y be any eigenvector with eigenvalue λ, and let |y| denote
the vector whose components are |yj |, the absolute values of the components of
y. We have |y| ∈ Q and from

Ty = λy

and the triangle inequality we conclude that

|λ||y| ≤ T |y|.

Hence |λ| ≤ L(|y|) ≤ Lmax. So we may use the notation

λmax := Lmax
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since we have proved that

|λ| ≤ λmax.

Suppose that 0 ≤ S ≤ T . Then sz ≤ Sz and Sz ≤ Tz implies that sz ≤ Tz
so LS(z) ≤ LT (z) for all z and hence

Lmax(S) ≤ Lmax(T ).

We may apply the same argument to T † to conclude that it also has a positive
maximum eigenvalue. Let us call it η. (We shall soon show that η = λmax.)
This means that there is a vector w > 0 such that

w†T = ηw.

We have

w†Tx = ηw†x = λmaxw
†x

implying that η = λmax since w†x > 0.
Now suppose that y ∈ Q and Ty ≤ µy. Then

λmaxw
†y = w†Ty ≤ µw†y

implying that λmax ≤ µ, again using the fact that all the components of w
are positive and some component of y is positive so w†y > 0. In particular, if
Ty = µy then then µ = λmax.

Furthermore, if y ∈ Q and Ty ≤ µy then

0 < Py = (I + T )n−1y ≤ (1 + µ)n−1y

so

y > 0.

If µ = λmax then w†(Ty − λmaxy) = 0 but Ty − λmax ≤ 0 and so w†(Ty −
λmaxy) = 0 implies that Ty = λmaxy.

Suppose that 0 ≤ S ≤ T and Sz = σz, z 6= 0. Then

T |z| ≥ S|z| ≥ |σ||z|

so

|σ| ≤ Lmax(T ) = λmax,

as we have already seen. But if |σ| = λmax then L(|z|) = Lmax(T ) so |z| > 0 and
|z is also an eigenvector of T . with the same eigenvalue. But then (T−S)|z| = 0
and this is impossible unless S = T since |z| > 0. Replacing the i-th row and
column of T by zeros give an S ≥ 0 with S < T since the irreducibility of T
precludes all the entries in a row being zero.

Now
d

dλ
det(λI − T ) =

∑

i

det(λI − T(i))
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and each of the matrices λmaxI −T(i) has strictly positive determinant by what
we have just proved. This shows that the derivative of the characteristic poly-
nomial of T is not zero at λmax, and therefore the algebraic multiplicity and
hence the geometric multiplicity of λmax is one. QED

Let us go back to one stage in the proof, where we started with an eigenvector
y, so Ty = λy and we applied the triangle inequality to get

|λ||y| ≤ T |y|
to conclude that |λ| ≤ λmax. When do we have equality? This can happen only
if all the entries of

∑

j tijyj have the same argument, meaning that all the yj

with tij > 0 have the same argument. If T is primitive, we may apply this same
argument to T k for which all the entries are positive, to conclude that all the
entries of y have the same argument. So multiplying by a complex number of
arrange value one we can arrange that y ∈ Q and from Ty = λy that λ > 0
and hence λ = λmax and hence that y is a multiple of x. In other words, if T is
primitive then we have

|λ| < λmax

for all other eigenvalues.
The matrix of a cyclic permutation has all its eigenvalues on the unit circle,

and all its entries zero or one. So without the primitivity condition this result
is not true. But this example suggests how to proceed.

For any matrix S let |S| denote the matrix all of whose entries are the
absolute values of the entries of S. Suppose that |S| ≤ T and let λmax =
λmax(A), and suppose that Sy = σy for some y 6= 0,i.e. that σ is an eigenvalue
of S. Then

|σ||y| = |σy| = |Sy| ≤ |S||y| ≤ |S||y|
so

|σ| ≤ λmax = Lmax(A).

Suppose we had equality. Then we conclude from the above proof that |y| = x,
the eigenvector of T corresponding to λmax, and then from the above string
of inequalities that |B|x = Ax and since all the entries of x are positive that
|B| = A. Define the complex numbers of absolute value one

eiθk := yk/|yk| = yk/xk

and let D denote the diagonal matrix with these numbers as diagonal entries,
so that y = Dx. Also write σ = eiφλmax. Then

σy = eiφλmaxDx = SDx

so
λmaxx = e−iφD−1SDx = Tx.

Since all the entries of eiφD−1SD have absolute values ≤ the correspond-
ing entries of T , and since all the entries of X are positive, we must have
|eiφD−1SD| = T and all the rows have a common phase and in fact

S = eiφDTD−1.
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In particular, we can apply this argument to S = T to conclude that if
eiφλmax for some φ then

T = eiφDTD−1.

Since DTD−1 has the same eigenvalues as T , this shows that rotation through
angle φ carries all the eigenvalues of A into eigenvalues.

The subgroup of rotations in the complex plane with this property is a
finite subgroup (hence a finite cyclic group) which acts transitively on the set
of eigenvalues satisfying |σ| = λmax. It also must act faithfully on all non-zero
eigenvalues, so the order of this cyclic group must be a divisor of the number of
non-zero eigenvalues. If n is a prime and T has no zero eigenvalues then either
all the eigenvalues have absolute value λmax or λmax has multiplicity one.

We first define the period p of a non-zero non-negative matrix as T follows:
For each i consider the set of all positive integers s such that T s

ii > 0 and let pi

denote the greatest common denominator of this set. We show that this does
not depend on i. Indeed, for some other j, there is, by irreducibility an integer
M such that TM

ij > 0 and an integer N such that TN
ji > 0. Since TM+N

ii >

TM
ij T

N
ji > 0 we conclude that pi|(M +N) and similarly that pj |(M +N). Also,

if T s
ii > 0 then T s+M+N

jj > TM
ij T

s
iiT

N
ji T

M
ij > 0 so pj |s and so pj |pi and the

reverse. Thus pi = pj , and we call this common value p.
Using the arguments above we can be more precise. We claim that T s

ii = 0
unless s is a multiple of the order of our cyclic group of rotations, so this order
is precisely the period of T . Indeed, let k be the order of this cyclic group and
φ = 2π/k. We have

T = eiφDTD−1

and hence
T s = eisφDT sD−1,

in particular
T s

ii = eisφT s
ii.

Since eisφ 6= 1 if s is not a multiple of k we conclude that k = p. So we can
supplement the Perron-Frobenius theorem as

Theorem 8.4.2 Perron-Frobenius 2. If T is primitive, all eigenvalues sat-
isfy |σ| < λmax. More generally, let p denote the period of T as defined above.
Then there are exactly p eigenvalues of T satisfy |σ| = λmax and the entire
spectrum of T is invariant under the cyclic group of rotations of order p.

8.5 Factors of finite shifts.

Suppose that X is a shift of finite type and φ : X → Z is a surjective homomor-
phism, i.e. a factor. Then Z need not be of finite type. Here is an illustrative
example. Let A = {0, 1} and let Z ⊂ AbfZ consist of all infinite sequences such
that there are always an even number of zeros between any two ones. So the
excluded words are

101, 10001, 1000001, 100000001, . . .
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(and all words containing them as substrings). It is clear that this can not be
replaced by any finite list, since none of the above words is a substring of any
other.

On the other hand, let G be the DMG associated with the matrix

A =

(

1 1
1 0

)

,

and let YG be the corresponding shift. We claim that there is a surjective
homomorphism φ : YG → Z. To see this, assume that we have labelled the
vertices of G as 1, 2, that we let a denote the edge joining 1 to itself, b the edge
joining 1 to 2, and cthe edge joining 2 to 1. So the alphabet of the graph YG

and the excluded words are
ac bb, ba, cc

and all words which contain these as substrings. So if ab occurs in an element
of YG it must be followed by a c and then by a sequence of bc’s until the next
a. Now consider the sliding block code of size 1 given by

Φ : a 7→ 1, b 7→ 0, c 7→ 0.

From the above description it is clear that the corresponding homomorphism is
surjective.

We can describe the above procedure as assigning “labels” to each of the
edges of the graph G; we assign the label 1 to the edge a and the label 0 to the
edges b and c.

It is clear that this procedure is pretty general: a labeling of a directed
multigraph is a map:Φ : E → A from the set of edges of G into an alphabet
A. It is clear that Φ induces a homomorphism φ of YG onto some subshift of
Z ⊂ AZ which is then, by construction a factor of a shift of finite type.

Conversely, suppose X is a shift of finite type and φ : X → Z is a surjective
homomorphism. Then φ comes from some block code. Replacing X by XN

where N is sufficiently large we may assume that XN is one step and that the
block size of Φ is one. Hence we may assume that X = YG for some G and that
Φ corresponds to a labeling of the edges of G. We will use the symbol (G,L)
to denote a DMG together with a labeling of its edges. We shall denote the
associated shift space by Y(G,L).

Unfortunately, the term sofic is used to describe a shift arising in this way,i.e.
a factor of a shift of finite type. (The term is a melange of the modern Hebrew
mathematical term sofi meaning finite with an English sounding suffix.


