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June 17, 2010 Preface

This collection of exercises contains over 150 explicitly solved problems for linear partial
differential equations (PDEs) and boundary value problems based on more than 10 years of
experience in teaching beginner PDE courses at several North American universities.

A multitude of excellent introductory textbooks are available on PDEs, such as the mono-
graphs by Haberman [1], Churchill and Brown [2], Debanth, Mint-U [3], and Asmar [4],
among others. Although these books give a concise, detailed, and easily accessible introduc-
tion to the theory of linear PDEs, they provide only a limited number of solved examples.
When teaching from these textbooks, we are always asked by students for additional prob-
lems. Many students in these courses are studying engineering or another science and can
be easily confused by abstract constructions. These students tend to benefit from a more
drill-like repetition of problems and solutions. Here we address exactly this need. The prob-
lems in our textbook are all completely solved and explained in great detail. Any student in
a corresponding course should have no trouble understanding the problems.

The final two chapters of this textbook contain four sample midterm exams and four sample
final exams. These sample exams are all real exams that were given between 2004 and 2009
at the University of Alberta. They provide students with a useful guideline of what to expect
as well as an opportunity to test their abilities.

To help students use this book, we incorporated two special features. First, we rank the
problems according to their difficulty. Of course, this is a subjective task. Still, it gives a
good indication of the anticipated level of difficulty. We use

rank 0

��� for very simple problems

rank 1 % for simple problems

rank 2 %% for more involved problems

rank 3 %%% for difficult problems.

To be successful in a classical PDE course, you should be able to solve some of the rank 2

problems. Candidates for an A grade should be able to solve some of the rank 3 problems.
The other feature of this textbook is a detailed table of contents that lists all of the problems.
With this, an instructor or student can keep track of which problems were discussed in class,
included in an assignment, or given in an exam. Students can also make notes such as
mastered or not yet mastered or revisit later and so forth.
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We hope this textbook will provide useful assistance to all interested in learning to solve linear
PDEs. We have chosen not to include yet another description of the underlying theory, since
several excellent theoretical textbooks are already on the market. Some titles are mentioned
above. Nevertheless, we expect these problems will help you understand linear PDEs and
enable you to get a glimpse of the beautiful theory behind them.

Ed and Thomas,

Edmonton, November 2009
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Theory
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Chapter 1

Introduction

June 17, 2010

Many physical, biological and engineering problems can be expressed mathematically
by means of partial differential equations (abbreviated PDEs) together with initial and/or
boundary conditions. PDEs are used in basically all scientific areas, for example, the
Schrödinger equation in quantum mechanics, Maxwells equations in electrodynamics, the
reaction-diffusion equations chemistry and in mathematical biology, models for spatial spread
of populations, heat conduction problems, and also the Black-Scholes formula for financial
markets. A mathematical definition of PDEs is quite simple, since a PDE is an equation
which involves partial derivatives. The fascinating aspect of partial differential equations is
that they can be classified into three PDE kingdoms which are called elliptic, parabolic

and hyperbolic. Each of these kingdoms has a king, that is, a simple equation which shows
all of the properties which are typical for this group. Elliptic equations are represented by
the Laplace equation, parabolic equations are represented by the heat equation and
hyperbolic equations are represented by the wave equation. The classification is defined
for linear second order equation in Section ??, the properties of these types, however, carry
much further and also higher order equations behave ”wave-like” or ”diffusion-like”. The
study of the three basic equations which represent the three subgroups is the content of this
course. If you learn the methods for the wave equation, you will be able to study fluid flow
in a pipeline, and the Schrödinger equation to gain an understand of quantum mechanics.
Laplaces equation is a prototype for Maxwells equations in electrostatics, two dimensional
fluid flow, and the statics of buildings and bridges. The theory of the heat equation prepares
you for the study of reaction-diffusion equations in population biology and for heat flow
problems in conducting materials.

In this course we will deal almost exclusively with linear partial differential equations
(the simplest type) and we will primarily use one technique for solving them. This technique
is called separation of variables. This technique involves reducing (i.e. simplifying) the
PDEs to ordinary differential equations (abbreviated ODEs ), which then can be solved using
ODE methods.

Generally, a PDE will have infinitely many solutions. To isolate a unique solution, we will
introduce side conditions (auxiliary conditions) which typically appear as initial conditions
and boundary conditions. Before we dick into the theory, we recall some basic facts about

2
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functions and their partial derivatives. Then we can define the concepts of elliptic, parabolic
and hyperbolic PDEs in a proper manner.

1.1 Partial Differential Equations
Let f : Ω → R be a function defined on an open set Ω ⊂ R2 . The partial derivatives of
f(x, y) are defined as

∂

∂x
f(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h

provided the limits exist. Thus, we differentiate with respect to one of the variables while
holding the other variable fixed. Alternative notations, which we use in this text include

∂f

∂x
(x, y) =

∂f(x, y)

∂x
= fx(x, y),

∂f

∂y
(x, y) =

∂f(x, y)

∂y
= fy(x, y)

or even simpler

∂f

∂x
= fx

∂f

∂y
= fy

Further notations, which we will not use here but which can be found in other textbooks
include

fx = f1 = ∂xf = D1f, fx = f2 = ∂yf = D2f.

As a rule of thumb in mathematics you will observe that the more important a concept is,
the more notations it has. Hence partial derivatives are quite important!

In general, a partial differential equation for an unknown function u(x, y), u(x, y, z)
or u(x, y, z, t), . . . etc . . . can be written as a general function

F (x, y, u, ux, uy, uxx, uxy, uyy, uxxx, · · · ) = 0,

We now define some terminology. In the above equations u (the unknown function) is
referred to as the dependent variable with all remaining variables x, y, z, t being called
the independent variables. A PDE in some unknown function u, is called linear if the
equation is of first degree in u and the derivatives of u. A PDE is called homogeneous if
for a solution u each scalar multiple αu is also a solution. The order of a PDE refers to
the order of the highest derivative that appears in the equation. Finally, the dimension of
a PDE refers to the number of independent variables present. If there is a clear distinction
between time and space variables, then dimension is also used for the spatial part alone.
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Exercise 1.1.

���
Find dimension and order of the following partial differential equations. Which
if these are linear and which are homogeneous?

heat equation ut = Duxx + f(x) (1.1)

wave equation utt − c2uxx = 0 (1.2)

Laplace equation uxx + uyy = 0 (1.3)

advection equation
∂u

∂x
+
∂u

∂y
= 0, (1.4)

(no name)
∂2u

∂x2
+ ey sin z

∂2u

∂x∂z
= u, (1.5)

(no name)
∂2u

∂x∂y
= sin u, (1.6)

KdV equation ut + uuxx + uxxx = 1. (1.7)

Solution:

• Equation (1.1) is a 2–dimensional, 2nd order, linear, (non-homogeneous for f 6= 0)
PDE. It is sometimes called one-dimensional heat equation, since the space variable x
is one-dimensional.

• Equation (1.2) is a 2–dimensional, 2nd order, linear, homogeneous PDE, which is
sometimes called one dimensional wave equation, since the space variable x is one-
dimensional.

• Equation (1.3) is a 2–dimensional, 1st order, linear, homogeneous PDE.

• Equation (1.4) is a 2–dimensional, 1st order, linear, homogeneous PDE.

• Equation (1.5) is a 3–dimensional, 2nd order, linear, homogeneous PDE.

• Equation (1.6) is a 2–dimensional, 2nd order, nonlinear, homogeneous PDE.

• Equation (1.7) is a 2–dimensional, 3rd order, nonlinear, non-homogeneous PDE.

1.2 Classification of linear, second order PDEs
The classification into the kingdoms of elliptic, parabolic and hyperbolic can be obtained
from the study of linear, second order PDEs. A general homogeneous linear second order
PDE can be written as

auxx + 2buxy + cuyy + dux + euy + fu = 0, (1.8)
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with real coefficients a, b, c, d, e, f (The factor 2 in front of the b-term is just a convention, so
that in the end it looks nicer). The type of this equation is defined by its principal part,
which are the highest order terms

auxx + 2buxy + cuyy.

This expression can be written in an abstract matrix notation as

(
∂

∂x

∂

∂y

)(
a b
b c

)(
∂
∂x
∂
∂y

)
u.

Here we just pretend that ∂
∂x

and ∂
∂y

are symbols which can be entered as components of a

vector. The interpretation is that this vector is applied as derivatives on the function u(x, y):

(
∂

∂x

∂

∂y

)(
a b
b c

)(
∂
∂x
∂
∂y

)
u =

(
∂

∂x

∂

∂y

)(
a b
b c

)(
∂u
∂x
∂u
∂y

)

=

(
∂

∂x

∂

∂y

)(
aux + buy
bux + cuy

)

= auxx + buyx + buxy + cuyy

= auxx + 2buxy + cuyy

For the last equality we use the assumption that u(x, y) is twice continuously differentiable

such that the mixed derivative are identical, uxy = uyx. The matrix

(
a b
b c

)
is called

coefficient matrix of the PDE, or the symbol of the PDE. The classification of PDE’s
is based on the relative sign of the eigenvalues of the symbol. Notice that the symbol is
symmetric, hence thei eigenvalues are real (not complex). As in good old linear algebra, the
determinant of this matrix gives the product of the eigenvalues:

λ1λ2 = detA = ac− b2

tells us a lot about the type of equation.

Definition 1. The PDE (1.8) is said to be

• elliptic if and only if ac − b2 > 0, i.e. the eigenvalues of A have the same sign and
are not zero (both positive or both negative).

• parabolic if and only if ac− b2 = 0, i.e. at least one eigenvalue is 0.

• hyperbolic if and only if ac− b2 < 0., i.e. the eigenvalues have opposite sign and are
non zero.

Now we have defined our PDE kingdoms. Next we introduce the corresponding rulers of
these kingdoms.
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• The Laplace equation in two dimensions reads uxx + uyy = 0. It’s symbol is A =(
1 0
0 1

)
with determinant detA = 1 > 0, hence the Laplace equation is elliptic.

• The heat equation in one (spatial) dimension reads ut = kuxx. It’s symbol is A =(
k 0
0 0

)
with determinant detA = 0, hence the heat equation is parabolic.

• The wave equation in one (spatial) dimension reads utt − c2uxx = 0. It’s symbol

is A =

(
−c2 0
0 1

)
with determinant detA = −c2 < 0, hence the wave equation is

hyperbolic.

Exercise 1.2.

���
Classify the following linear 2nd order PDEs.

1. ut + 2utt + 3uxx = 0

2. 17uyy + 3ux + u = 0

3. 4uxy + 2uxx + uyy = 0

4. uyy − uxx − 2uxy = 0

Solution:

1. Symbol A =

(
2 0
0 3

)
, detA = 6 > 0, elliptic.

2. Symbol A =

(
0 0
0 17

)
, detA = 0, parabolic.

3. Symbol A =

(
2 2
2 1

)
, detA = −2 < 0, hyperbolic.

4. Symbol A =

(
−1 −1
−1 1

)
, detA = −2 < 0, hyperbolic.

One would expect that a classification scheme should not depend on the coordinate
system in which the PDE is expressed. To see that this is the case, consider a change of
independent variable:

ξ = ξ(x, y), η = η(x, y).
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The transformation is nonsingular if the Jacobian of the transformation is nonzero, i.e. if

J =
∂(ξ, η)

∂(x, y)
6= 0.

Let us denote the transformed dependent variable as w(ξ, η) = u(x, y). Then the PDE (1.8)
becomes

αwξξ + 2βwξη + γuηη + δuξ + ǫuη + fu = 0,

where

α = aξ2x + 2bξxξy + cξ2y ,

β = aξxηx + b(ξxηy + ξyηx) + cξyηy,

γ = aη2x + 2bηxηy + cη2y

δ = dξx + eξy

ǫ = dηx + eηy

Computing the symbol for A for the transformed equation and computing its determinant
gives

detA = αγ − β2 = (ac− b2) (det J)2.

The sign of αγ − β2 is the same as the sign of ac − b2, hence the classification of PDEs is
invariant under a change of coordinates.

1.3 Side Conditions
Remember from the methods for ODEs, that solving linear ordinary differential equations
one usually finds a “general” solution which involves a number of undetermined constants.
To find these constants, some side conditions are needed. Quite often initial conditions are
used to identify a unique solution. This idea is similar for PDEs. Also here, the PDE alone
does not give rise to uniqueness as can be seen for the 2-dimensional Laplace equation:

EXAMPLE 1.1. Take the 2–dimensional Laplace equation:

uxx + uyy = 0.

This equation is a 2nd order, linear partial differential equation. Solutions of this equation
include:

u(x, y) = cxy, u(x, y) = c sin(nx) cosh(ny),

u(x, y) = c(x2 − y2), u(x, y) = c e−y cos(x),

u(x, y) = c(x3 − 3xy2), u(x, y) = c ln(x2 + y2),

u(x, y) = c(x4 − 6x2y2 + y4), u(x, y) = c tan−1(y/x),

u(x, y) = c(x5 − 10x3y2 + 5xy4) u(x, y), = c esin(x) cosh(y) sin(cosx sinh y),
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where in each case the constant c is arbitrary. The list goes on. Polynomial solutions of any
order exist, as do solutions involving various combinations of exponential and trigonometric
functions and others. Linear combinations of solutions are again solutions. In fact, we can not
write down “the” general solution of Laplace’s equation without specifying side consitions.

We have just seen that partial differential equations alone often have infinitely many
solutions. In order to get a unique solution for a particular problem, additional conditions
must be applied. These auxiliary conditions are typically of two types: initial conditions

and boundary conditions.

Initial conditions are typically given at a chosen start time, usually at t = 0. Boundary
conditions are used to describe what the system does on the domain boundaries. As example,
we introduce classical boundary conditions for the heat equation. Let Ω ⊂ Rn be a given
piecewise smooth domain. Piecewise smooth means that at all but a finite number of points
there exist a unique normal vector to the boundary ∂Ω. The heat equation on Ω reads

ut = k∆u.

1. Initial condition: We prescribe the initial temperature distribution in Ω at some
specific time (usually at time t = 0). In 3 dimensions this takes the form u(x, y, z, 0) =
u0(x, y, z).

2. Boundary condition: give conditions on the boundary ∂Ω for all time. Boundary
conditions are divided into three categories:

(a) Dirichlet Condition: We prescribe u on ∂Ω. This takes the form u(x, y, z, t) =
g(x, y, z, t) for (x, y, z) ∈ ∂Ω. A common example are homogeneous Dirichlet

boundary conditions u(x, y, z, t) = 0 on ∂Ω.

(b) Neumann Condition: We prescribe the heat flow through the boundary ∂Ω.

This takes the form ∂u
∂n

= g for (x, y, z) ∈ ∂Ω, where ∂u
∂n

=
→
∇u · →n is a directional

derivative (
→
n being the outward pointing unit normal to ∂Ω). A common example

is no heat flow through the boundary (representing perfect insulation). These are
called homogeneous Neumann boundary conditions: ∂u

∂n
= 0.

(c) Robin’s Conditions are a mixture of Dirichlet and Neumann boundary condi-
tions. This takes the form αu+β ∂u

∂n
= g for (x, y, z) ∈ ∂Ω and t > 0. This type of

boundary condition occurs when, for example, Newton’s law of cooling is applied.
Newton’s law of cooling states that the rate at which heat is transferred across a
boundary is proportional to the temperature difference across the boundary. If we
denote the temperature outside the region Ω by T , then Newton’s law of cooling
can be written as

κu+ ν
∂u

∂n
= κT.
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A complete problem for a PDE consists of the PDE plus an appropriate number of side
conditions. For example a complete problem for a general heat equation is given by

∂u

∂t
=

→
∇ · (K(x)

→
∇u) +Q(x) 12 (x, y, z) ∈ Ω, t > 0, (1.9)

u(x, y, z, 0) = f(x, y, z) (x, y, z) ∈ Ω, (1.10)

αu(x, y, z, t) + β
∂u

∂n
(x, y, z, t) = g(x, y, z, t) (x, y, z) ∈ ∂Ω, t > 0. (1.11)

We see that
α 6= 0, β = 0 corresponds to a Dirichlet condition;
α = 0, β 6= 0 corresponds to a Neumann condition;
α 6= 0, β 6= 0 corresponds to a Robin’s condition.

If a PDE is studied on an infinite domain, then typically appropriate decay conditions
are used. For example

lim
x→∞

u(x, t) < c1e
−c2x2

with appropriate constants c1, c2.

1.3.1 Boundary Conditions on an Interval

Most of this text deals with PDE’s on n-dimensional intervals

I = [a1, b1]× · · · × [an, bn]

In that case the following rule of thumb can be applied:

Hillen’s rule of thumb: To formulate a complete problem for a PDE on an
interval the number of side conditions for each of the variables t, x, y, . . . corre-
sponds to the maximum order of this variable.

For example, the heat equation ut = k(uxx + uyy) on I = [0, 1] × [0, 1] needs one initial
condition (order of time derivatives is one), two boundary conditions for x and two boundary
conditions for y. These could be of Dirichlet form, for example

u(x, y, 0) = g(x, y), u(0, y, t) = f1(y, t), u(1, y, t) = f2(y, t), u(x, 0, t) = f3(x, t), u(x, 1, t) = f4(x, t).

The one-dimensional wave equation utt − c2uxx = 0 on [0, 1] needs two initial conditions,
usually for location u(x, 0) = g0(x) and for initial velocity ut(x, 0) = g1(x) and two boundary
conditions, typically at u(0, t) and u(1, t). Hillen’s rule of thumb is a nice tool to check if the
right number of side conditions is given. This rule can be extended to more general domains
(for example circular domains), but one has to be careful to gain the right intuition. We will
give many examples later.
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1.4 Linear PDEs
In this section we will explore a bit more about linear PDEs. We will find a very important
tool called the superposition principle. This principle is the very foundation of our solu-
tion theory. Without it, we could finish this textbook right here.

Every linear PDE can be written in one of two forms:

Lu = 0, (homogeneous)

Lu = f, (nonhomogeneous)

for some linear differential operator L. What exactly do we mean by a linear differential
operator? The definition is analogous to the definition with which you are familiar from your
course in linear algebra.

Definition 1 (Linear Operator). An operator L with domain of definition D(L) is called
linear if it satisfies:

1. L(cu) = cLu, for any constant c ∈ R and u ∈ D(L)

2. L(u1 + u2) = Lu1 + Lu2, for two functions u1, u2 ∈ D(L).

For differential operators we usually take the domain as the set of those functions which are
continuously differentiable on the underlying set Ω. A couple of examples.

EXAMPLE 1.2. If L = ∂
∂x
+ ∂

∂y
, then the equation Lu = 0 is equivalent to ux+uy = 0. The

domain of L is D(L) = {set of continuously differentiable functions}. We checked already
earlier that the advection equation is linear.

EXAMPLE 1.3. If L = ∂2

∂x2 + ey sin(x) ∂
∂y

− 1, then the equation Lu = 0 is equivalent to

uxx + ey sin(x)uy = u. The domain of L is D(L) = {set of twice continuously differentiable
functions}. And it is straightforward to check that L is linear.

The main reason that linear PDEs are so much easier to deal with than nonlinear ones
is the principle of superposition.

Theorem 2. (Principle of Superposition)
If u1 and u2 are solutions of a linear, homogeneous PDE Lu = 0, then c1u1 + c2u2 is also a
solution for arbitrary constants c1 and c2.

Proof.
We have Lu1 = 0 and Lu2 = 0 since u1 and u2 are solutions. Therefore

L(c1u1 + c2u2) = L(c1u1) + L(c2u2) = c1Lu1 + c2Lu2 = c1(0) + c2(0) = 0.
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EXAMPLE 1.4. Consider the 2–dimensional Laplace’s equation Lu = 0, where L = ∇2 =
∂2

∂x2 +
∂2

∂y2
. Let un(x, y) = cos(nx) sinh(ny) for n = 1, 2, 3, . . . . For each n, un is a solution to

Laplace’s equation since

Lun =
∂2

∂x2
(cos(nx) sinh(ny)) +

∂2

∂y2
(cos(nx) sinh(ny))

= −n2 cos(nx) sinh(ny) + n2 cos(nx) sinh(ny) = 0.

Hence, by the principle of superposition

u(x, y) =
N∑

n=1

anun(x, y) =
N∑

n=1

an cos(nx) sinh(ny)

is also a solution for any integer N and any constants an.

What the principle of superposition gives us is a means of constructing new solutions if
a few solutions are already known. This does not generally hold for nonlinear equations as
the following example illustrates.

EXAMPLE 1.5. Consider the 2–dimensional, first order, nonlinear PDE:

ux + uuy = 0.

The functions
u1(x, y) = 1, u2(x, y) =

y

1 + x
,

are solutions of the PDE since

∂u1
∂x

+ u1
∂u1
∂y

= 0+ (1)(0) = 0, and
∂u2
∂x

+ u2
∂u2
∂y

= − y

(1 + x)2
+

(
y

1 + x

)(
1

1 + x

)
= 0.

But, the sum of the two u(x, y) = u1(x, y) + u2(x, y) = 1 + y
1+x

is not a solution since

∂u

∂x
+ u

∂u

∂y
= − y

(1 + x)2
+

(
1 +

y

1 + x

)(
1

1 + x

)
=

1

1 + x
6= 0.

The principle of superposition holds for linear, homogeneous equations. For nonhomoge-
neous equations we have the following result.

Theorem 3. If

• up is a solution to the nonhomogeneous PDE Lu = f (i.e. Lup = f) and

• uh is a solution to the homogeneous PDE Lu = 0 (i.e. Luh = 0)

then u = cuh + up is a solution to Lu = f for any constant c.
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Proof.
Lu = L(cuh + up) = cLuh + Lup = c(0) + f = f .

What this result says is that if a particular solution to a nonhomogeneous linear PDE is
known and a solution to the homogeneous counterpart is also known, then a new solution to
the nonhomogeneous PDE may be constructed. In fact, any solution to a nonhomogeneous
linear PDE will be of this form, for suppose ũ is any solution to the nonhomogeneous PDE
Lu = f (i.e. Lũ = f). Define uh = ũ− up. Then

Luh = L(ũ− up) = Lũ− Lup = f − f = 0,

thus uh is a solution to the homogeneous equation Lu = 0. Hence, any solution ũ of
the nonhomogeneous equation Lu = f can be written as the sum of a solution to the
homogeneous equation plus any particular solution:

ũ = uh + up.

1.5 Steady States and Equilibrium Solutions
Definition 4. A steady state or equilibrium solution of an initial-boundary value
problem of a PDE is a solution that does not depend on time, i.e. u(x, t) = ū(x).

EXAMPLE 1.6. (Diffusion through a cell membrane)
We are interested to compute the concentration of a nutrient u(x, t), for example oxygen,
through a cell membrane of thickness l. We assume that the oxygen concentration inside and
outside of the cell are constant with values c1 (inside) and c2 (outside). The corresponding
initial-boundary value problem employs the diffusion equation:

ut = Duxx

u(0, x) = f(x)

u(t, 0) = c1, u(t, l) = c2.

This is a nonhomogeneous Dirichlet problem for the diffusion equation, where D denotes the
diffusion coefficient of oxygen in the cell membrane and f(x) denotes the initial distribution
of oxygen. We will learn later how to completely solve this model. Here we are only interested
in a steady state distribution. A steady state does not depend on time, hence

ut(t, x) = 0, i.e. u(x, t) = ū(x).

Then we obtain
ūxx = 0

which leads to ū′ = a1 and ū(x) = a1x + a2 with two unknown constants a1, a2. We find
these constants from the boundary conditions. At x = 0 we have

ū(0) = c1 = a2
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Hence a2 = c1. At x = l we have

ū(l) = c2 = a1l + c1.

Hence a1 =
c2−c1

l
and we find the steady state solution

ū(x) =
c2 − c1
l

x+ c1.

To make sure that we found the right solution we test this solution. It is linear, hence indeed
ū′′ = 0. At x = 0 we have ū(0) = c1 and at x = l we find ū(l) = c2.

The concentration profile through a membrane is a linear function which interpolates
between the two concentration levels c1 and c2.

EXAMPLE 1.7. Now we are interested in the steady states of a homogeneous Neumann
problems for the heat equation on [0, l].

ut(x, t) = Duxx(x, t)

u(0, x) = f(x)

ux(0, t) = 0 ux(l, t) = 0

As before, we find that at steady state we have u(x, t) = ū(x) and ū′′(x) = 0. Hence ū(x) is
linear ū(x) = a1x+a2 with two unknown constants a1 and a2. Using the boundary conditions
we find

ūx(0) = a1 = 0 and ūx(l) = a1 = 0.

Both boundary conditions require that a1 = 0, hence

ū(x) = a2

is a constant function. But now we have already used both boundary conditions. How
can we find the missing constant a2? To answer this question we need to dig a bit deeper
and understand the conservation of mass property of the heat equation with homogeneous
Neumann boundary conditions.

The integral

M(t) :=

∫ l

0

u(x, t)dx

can be understood as the total mass (in case of the diffusion equation) or as total heat (in
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case of heat equation) in the system. Using the fundamental theorem of calculus we find

d

dt
M(t) =

d

dt

∫ l

0

u(x, t)dx

=

∫ l

0

ut(x, t)dx

=

∫ l

0

Duxx(x, t)dx

= D [ux(t, l)− ux(t, 0)]

= 0.

Hence M(t)=const. and the total mass is conserved. Then we expect that the steady state
ū(x) has the same total mass as the initial condition f(x). The initial mass is

M0 =M(0) =

∫ l

0

f(x)dx

Then we require

M0 =

∫ l

0

ū(x)dx =

∫ l

0

a2dx = a2l.

Hence a2 =
M0

l
and the steady state solution for the above problem is

ū(x) =
M0

l
.

EXAMPLE 1.8. Here we add a source term to the heat equation: Find the steady state
of the following PDE on [0, 2π]:

ut = 3uxx + 9 sin x

u(x, 0) = 9 sin x

u(0, t) = 9

ux(2π, t) = 0

The steady state ū(x) satisfies
3ū′′ + 9 sin x = 0

Hence ū′′ = −3 sin x which is solved by

ū(x) = 3 sinx+ c1x+ c2.

The boundary condition at x = 0 gives ū(0) = 9 = c2. For the right boundary, we need the
derivative: ūx(x) = 3 cosx+ c1. The corresponding boundary condition gives

ux(2π) = 0 = 3 + c1,

hence c1 = −3. The steady state solution is

ū(x) = 3 sin x− 3x+ 9.
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1.6 First Example for Separation of Variables
Separation of variables is a method that tries to seperate the dependence of the corresponding
variables. For example suppose we have a linear PDE for some unknown function u(x, y).
Then we look for a solution of the form

u(x, y) = X(x)Y (y).

So far we do not know if this idea works. Nevertheless, we plug this assumed form of
solution into the PDE, perform some manipulations and, hopefully, end up with ODEs for
the unknown functions X and Y which we can solve. Let us study our first example for
separation:

EXAMPLE 1.9. One dimensional heat equation with Dirichlet boundary conditions on
the interval [0, ℓ]:

∂u

∂t
= k

∂2u

∂x2
, x ∈ Ω = [0, ℓ], t > 0, (1.12)

u(x, 0) = 3 sin(
2πx

ℓ
) =: f(x), (1.13)

u(0, t) = 0, (1.14)

u(ℓ, t) = 0. (1.15)

Here u represents the temperature in a bar at time t at position x. We try the method of
separation of variables. Assume a solution of the form

u(x, t) = X(x)T (t). (1.16)

Then
∂u

∂t
(x, t) = X(x)T ′(t),

∂2u

∂x2
(x, t) = X ′′(x)T (t).

Plug this into Eq. (1.12) to get
XT ′ = kX ′′T,

This can be rewritten
T ′

kT
=
X ′′

X

The left side is a function only of time t, whereas the right hand side of the equation is a
function of the position x only. Since x and t are independent of each other, both sides must
equal a constant, which we call −λ. Hence we get two equations:

T ′

kT
= −λ, X ′′

X
= −λ.

The value of this constant is, at this point, unknown. Thus, we get two ODEs , one for T
and one for X :

T ′ + λkT = 0, X ′′ + λX = 0.
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Now insert Eq. (1.16) into the boundary conditions (1.14) and (1.15):

u(0, t) = X(0)T (t) = 0,

u(ℓ, t) = X(ℓ)T (t) = 0.

But T (t) = 0 for all t implies that u ≡ 0 which would mean that the initial condition would
not be satisfied. Therefore the only conclusion is that

X(0) = 0, X(ℓ) = 0.

The problems for T and X become:

T ′ + λkT = 0, t > 0, X ′′ + λX = 0, x ∈ [0, ℓ], (1.17)

X(0) = X(ℓ) = 0. (1.18)

The equation for T is easy to solve:

T (t) = ce−λkt, (c an arbitrary constant)

with no restriction as yet on λ.

Let us turn to the problem (1.17) and (1.18) forX . Notice that X(x) ≡ 0 is a solution (called
the trivial solution) of the problem. However, the trivial solution leads to u(x, t) ≡ 0
which does not satisfy the initial condition. Therefore we seek nontrivial solutions to (1.17)
and (1.18) for X . As we shall see, nontrivial solutions exist only for certain values of λ,
called eigenvalues. The corresponding nontrivial solutions X are called eigenfunctions.
More complicated problems will result in more complicated eigenvalue problems known as
“Sturm–Liouville” problems. More on this will appear later.

The solution of (1.17) and (1.18) for X will depend on the sign of λ. There are three cases
to consider: λ negative, positive or zero.

• case (i): (λ < 0)
Let λ = −µ2 6= 0. Then

X ′′ − µ2X = 0 =⇒ X(x) = a cosh(µx) + b sinh(µx).

The left boundary condition gives us

X(0) = 0 =⇒ a = 0 =⇒ X(x) = b sinh(µx).

The right boundary condition now gives us

X(ℓ) = 0 =⇒ b sinh(µℓ) = 0 =⇒ b = 0 0.5or 0.5 sinh(µℓ) = 0.

But µℓ 6= 0, therefore b = 0 which means that X(x) ≡ 0. There are no nontrivial
solutions for λ < 0.
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• case (ii): (λ = 0)
Then X ′′ = 0 which yields X(x) = ax + b. However, the boundary conditions imply
that a = b = 0 which again leads to the trivial solution. So there are no nontrivial
solutions for the case λ = 0.

• case (iii): (λ > 0)
Let λ = µ2 6= 0. Then

X ′′ + µ2X = 0 =⇒ X(x) = a cos(µx) + b sin(µx).

The left boundary condition gives us

X(0) = 0 =⇒ a = 0 =⇒ X(x) = b sin(µx).

The right boundary condition now gives us

X(ℓ) = 0 =⇒ b sin(µℓ) = 0 =⇒ b = 0 0.5or 0.5 sin(µℓ) = 0.

A nontrivial solution results only when sin(µℓ) = 0. This occurs for µℓ = nπ, n =
±1,±2, . . . . Thus, we get nontrivial solutions only for

λ = λn = µ2
n =

n2π2

ℓ2
, n = 1, 2, 3, . . . (eigenvalues)

with corresponding nontrivial solutions

X = Xn(x) = sin(µnx) = sin(
nπx

ℓ
). (eigenfunctions)

If we now put these eigenvalues into the solution to the T equation, we get

T = Tn(t) = e−λnkt, n = 1, 2, 3, . . . .

For every n = 1, 2, 3, . . . we have a solution un(x, t) = Xn(x)Tn(t) which satisfies the
PDE and the boundary conditions. And, since the PDE is linear, a multiple of a solution is
also a solution, so

un(x, t) = ane
−λnkt sin(

nπx

ℓ
), n = 1, 2, 3, . . .

are solutions. It remains only to satisfy the initial condition (1.13).

u(x, 0) = f(x) =⇒ n = 2, 0.5a2 = 3.

The solution to the problem is

u(x, t) = 3e−4π2kt/ℓ2 sin(
2πx

ℓ
).



18

In the previous example the initial condition was of a very specific form. In fact, the
initial condition f(x) is one of the eigenfunctions sin(nπx

ℓ
) for n = 2. Now suppose that the

initial condition had been f(x) = x(ℓ−x). Then the initial condition is not an eigenfunction
and hence can not be satisfied for any n. Does this mean that our method doesn’t work for
this case? But, the PDE is linear and homogeneous (as are the boundary conditions) so the
principle of superposition can be applied. Doing so yields

u(x, t) =

N∑

n=1

cnun(x, t),

or, more generally

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cnXn(x)Tn(t) =
∞∑

n=1

cne
−λnkt sin(

nπx

ℓ
).

Now applying the initial condition yields

f(x) =
∞∑

n=1

cnXn(x), i.e. x(ℓ− x) =
∞∑

n=1

cn sin(
nπx

ℓ
).

At this point a few questions come to mind:

1. Does the infinite series above converge?

2. What class of functions can be represented by an infinite series of the type given above?

3. If a functions f can be represented by such a series, how does one find the constant
cn’s?

1.7 Physical basis of the Heat Equation
Consider a region Ω ⊂ R3 (see Figure 1.1), consisting of some substance with boundary given
by ∂Ω = S. Let us introduce the following notation:

u ≡ temperature at the point (x, y, z) ∈ Ω at time t;

K ≡ thermal conductivity of substance at (x, y, z);

ρ ≡ density of substance at (x, y, z);

c ≡ heat capacity per unit mass at (x, y, z);
→
J ≡ heat flux vector (gives magnitude and direction of heat flow);

h ≡ rate of internal heat generation per unit volume at (x, y, z).
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The above quantities have the following physical dimensions:

[u] ≡ T ; 8 T ≡ temperature;

[K] ≡ H

LTt
; H ≡ heat;

[ρ] ≡ m

L3
; t ≡ time;

[c] ≡ H

mT
; L ≡ length;

[h] ≡ H

L3t
; m ≡ mass.

Suppose we let

dV ≡ an element of volume;

dS ≡ an element of surface area;
→
n ≡ outward pointing unit vector of dS.

The vector
→
∇u points in the direction of the most rapid increase of u, that is

→
∇u is orthogonal

to the surface u ≡ constant. We use Fourier’s law, which states that heat flows from regions

of high temperature to regions of low temperature, where the flux
→
J satisfies

→
J = −K

→
∇u. (1.19)

We have

Amt. of heat
in vol. element

}
= mass × heat capacity× temp. = ρcu dV;

Total amt. of
heat in Ω

}
=

∫∫∫

Ω

ρcu dV;

Rate at which heat
enters through dS

}
= −

→
J · →n dS;

Total rate at which heat enters
through the boundary S

}
= −

∫∫

S

→
J · →n dS;

Total rate at which heat
is generated internally

}
= −

∫∫∫

Ω

h dV.



20

Conservation of energy implies that

{
Rate of change
of heat in Ω

}
=

{
Rate at which heat

enters through boundary S

}
+

{
Rate at which heat

is generated internally

}
,

in other words
∂

∂t

∫∫∫

Ω

ρcu dV = −
∫∫

S

→
J · →n dS +

∫∫∫

Ω

h dV.

Using the divergence theorem from advanced calculus, we can rewrite this as

∫∫∫

Ω

ρc
∂u

∂t
dV = −

∫∫∫

Ω

→
∇ ·

→
J dV +

∫∫∫

Ω

h dV,

or ∫∫∫

Ω

{
ρc
∂u

∂t
+

→
∇ ·

→
J − h

}
dV = 0.

This must hold for an arbitrary region Ω so the integrand must be identically zero. Using
the definition for the flux vector in Eq. (1.19), we get

∂u

∂t
=

1

ρc

→
∇ · (K

→
∇u) + h

ρc
. 6(heat equation)

It is often the case that ρ, c and K are constant. In that case we define

k :=
K

ρc
, 6F :=

h

ρc

The constant k is called the thermal diffusivity and F , which is not necessarily constant,
is called the forcing. The heat equation then becomes:

∂u

∂t
= k∇2u+ F . 6(heat equation in standard form) (1.20)

Written explicitly in terms of Cartesian coordinates:

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ F, 6(3-d heat equation) (1.21)

∂u

∂t
= k

∂2u

∂x2
+ F. (1-d heat equation) (1.22)
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1.8 Physical basis of the Wave Equation
Here we will only give a derivation for the one–dimensional wave equation. Consider a string
stretched over an interval [a, b]. Let us introduce the following notation:

u ≡ displacement above the x-axis,

σ ≡ surface tension;

ρ ≡ density per unit length;

t ≡ time;

h ≡ vertical force per unit length;

α, β ≡ angles indicated in the figure.

The above quantities have the following physical dimensions:

[u] ≡ L; 8L ≡ length

[σ] ≡ F ; F ≡ force;

[ρ] ≡ m

L
; m ≡ mass;

[h] ≡ F

L
.

We shall make two simplifying assumptions: ρ and σ are constant; and |u|, α, β are small.
The angles α, β being small implies that cosα ≈ 1 which in turn implies that tanα ≈ sinα,
and similarly for tanβ. We have

mass = ρ∆x,

∂u

∂x
(x, t) = tanα ≈ sinα,

∂u

∂x
(x+∆x, t) = tanβ ≈ sin β.

The forces acting on the segment of rope are:

Horizontal force: 4Fh = σ(cos β − cosα) ≈ 0;

Vertical force: Fv = σ(sin β − sinα) + h(x∗)∆x

≈ σ

[
∂u

∂x
(x+∆x, t)− ∂u

∂x
(x, t)

]
+ h(x∗)∆x.

Applying Newton’s law of motion:
→
F = m

→
a , we have

Fh = 0, 1(no horizontal motion) 4Fv = m
∂2u

∂t2
(x∗, t).
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Therefore we have

ρ
∂2u

∂t2
(x∗, t) = σ

∂u
∂x
(x+∆x, t)− ∂u

∂x
(x, t)

∆x
+ h(x∗).

If we take the limit as ∆x → 0, then x∗ → x and

ρ
∂2u

∂t2
(x, t) = σ

∂2u

∂x2
(x, t) + h(x).

If we let c2 := σ
ρ
, and F := h(x)

ρ
, then we get

∂2u

∂t2
= c2

∂2u

∂x2
+ F , 4(1–d wave equation). (1.23)

The higher dimensional wave equations are given by

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ F, 6 (2–d wave equation) (1.24)

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ F.(3–d wave equation) (1.25)

In general we have
∂2u

∂t2
= c2∇2u+ F.

The boundary conditions for the wave equation are the same as they are for the heat equation.
However, since the wave equation has two time derivatives, two initial conditions are required.
Thus, a complete problem for the wave equation consists of the partial differential equation
itself plus two initial conditions plus boundary conditions:

∂2u

∂t2
= c2∇2u+ F 12 (x, y, z) ∈ Ω, 1t > 0, (1.26)

u(x, y, z, 0) = f(x, y, z) (x, y, z) ∈ Ω, (1.27)

∂u

∂t
(x, y, z, 0) = g(x, y, z) (x, y, z) ∈ Ω, (1.28)

αu(x, y, z, t) + β
∂u

∂n
(x, y, z, t) = h(x, y, z, t)(x, y, z) ∈ ∂Ω, 1t > 0. (1.29)

1.9 Physical basis of the Laplace Equation
From the previous two sections we have

ut = k∇2u+ F, 6(heat equation)

utt = c2∇2u+ F. 6(wave equation)
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If we look for a steady state (i.e. time independent) solution to either the heat equation or
the wave equation, then we get an equation of the form

∇2u = h. 6(Poisson’s equation)

If h ≡ 0, then we have
∇2u = 0. 6(Laplace’s equation)

Laplace’s equation, also called the potential equation, occurs in many areas of physics such
as hydrodynamics, elasticity, electric field theory, . . . etc. A complete problem for Laplace’s
equation consists of the partial differential equation itself plus boundary conditions:

∇2u = 0, 18 (x, y, z) ∈ Ω, (1.30)

αu(x, y, z) + β
∂u

∂n
(x, y, z) = f(x, y, z),(x, y, z) ∈ ∂Ω. (1.31)
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Figure 1.1: Region Ω

Figure 1.2: Flux J through a surface element dS

Figure 1.3: Forces acting on a segment of string



Chapter 2

Fourier Series

June 17, 2010

2.1 Piecewise Continuous Functions
In most physical problems we may expect to use “nice” smooth functions. However, it will
be convenient to allow for certain types of discontinuous functions. Consider the behaviour
of a function f near a point x0. In particular consider the following limits:

f(x0+) := lim
x→x+

0

f(x), f(x0−) := lim
x→x−

0

f(x).

We make the following definition:

Definition 5. If
(i) f(x0+) = f(x0−) = f(x0), then f is continuous at x = x0;
(ii) f(x0+) = f(x0−) 6= f(x0), then f has a removable discontinuity at x = x0;
(iii) f(x0+) 6= f(x0−), then f has a jump discontinuity at x = x0;
(iv) f(x0+) or f(x0−) does not exist, then f has a “bad” discontinuity at x = x0.

Definition 6. A function f is piecewise continuous (abbreviated p-cts), sometimes called
sectionally continuous, on an interval (a, b) if

(i) f is continuous for x ∈ (a, b) except possibly at a finite number of points;
(ii) f(x+) exists for all x ∈ [a, b);
(iii) f(x−) exists for all x ∈ (a, b].

A function f is piecewise continuous on an interval (a, b) if f has at most a finite number of
discontinuities, none of which is worse than a jump discontinuity.

EXAMPLE 2.1. The function

f(x) =





x 0 6 x < 1

−1 1 < x 6 2

1 2 < x < 3

is piecewise continuous on the interval (0, 3).

25
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EXAMPLE 2.2. The function f(x) = 1
x
is not piecewise continuous on (0, 1), since

f(0+) = lim
x→0+

f(x) = lim
x→0+

1

x
does not exist.

It is convenient to introduce the following notation:

Definition 7. PC(a, b) := {set of all p-cts functions on (a, b)}.
Properties of PC(a, b):

(i) if f, g ∈ PC(a, b), then αf + βg ∈ PC(a, b) for all α, β ∈ R;
(ii) if f, g ∈ PC(a, b), then fg ∈ PC(a, b);

(iii) if f ∈ PC(a, b), then
∫ b

a
|f(x)| dx exists.

¿From property (i) above it follows that PC(a, b) is a vector space.

Definition 8. A function f is piecewise smooth (abbreviated p-smooth) on (a, b) if
(i) f ∈ PC(a, b); and
(ii) f ′ ∈ PC(a, b).

Definition 9. PC1(a, b) := {set of all p-smooth functions on (a, b)}.
It is clear that PC1(a, b) ⊂ PC(a, b).

2.2 Even, Odd and Periodic Functions
We begin with a definition.

Definition 10. A function f is
(i) even if f(−x) = f(x) for all x ∈ Df ;
(ii) odd if f(−x) = −f(x) for all x ∈ Df ;
(iii) periodic with period p if f(x+ p) = f(x) for all x ∈ Df .

EXAMPLE 2.3.

(i) f(x) = xn is even if n is an even integer.
(ii) f(x) = xn is odd if n is an odd integer.
(iii) f(x) = cos(x) is even and 2π-periodic.
(iv) f(x) = sin(x) is odd and 2π-periodic.
(v) f(x) = ex is not even, odd or periodic.
(vi) f(x) = cosh(x) is even.
(vii) f(x) = sinh(x) is odd.

If f is p-periodic, then ∫ a+p

a

f(x) dx =

∫ p

0

f(x) dx (2.1)

.

If a function f is defined on an interval (a, b), it is sometimes useful to extend the definition
of f to the entire real line.
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EXAMPLE 2.4. The periodic extension of f , denoted f̄ , is defined as

f̄(x) = f(x+ np) for a− np < x < b− np, 1n ∈ Z,

where p = b− a.

Frequently in applications we will encounter a function f defined on an interval (0, ℓ).
We want to construct periodic extensions of f . Let f be defined on (0, ℓ).

Definition 11. The odd extension of f on (−ℓ, ℓ), denoted fo, is defined as

fo(x) =

{
f(x) 0 < x < ℓ

−f(−x) −ℓ < x < 0
.

Definition 12. The even extension of f on (−ℓ, ℓ), denoted fe, is defined as

fe(x) =

{
f(x) 0 < x < ℓ

f(−x) −ℓ < x < 0
.

We then extend fe and fo to get periodic extensions f̄e and f̄o.

2.3 Orthogonal Functions

Consider vectors in 3–dimensional vector space R3. A basis for R3 is given by {
→
i ,

→
j ,

→
k}. For

convenience we rewrite the basis as

{→e 1,
→
e 2,

→
e 3} = {

→
i ,

→
j ,

→
k}.

Consider the vectors:

→
v = (a1, a2, a3) = a1

→
e 1 + a2

→
e 2 + a3

→
e 3 =

3∑

i=1

ai
→
e i,

→
w = (b1, b2, b3) = b1

→
e 1 + b2

→
e 2 + b3

→
e 3 =

3∑

i=1

bi
→
e i.

The dot product of two vectors is given by

→
v · →w = a1b1 + a2b2 + a3b3 =

3∑

i=1

aibi.

Putting in all of the steps we have:

→
v · →w =

(
3∑

i=1

ai
→
e i

)
·
(

3∑

j=1

bj
→
e j

)
=

3∑

i=1

3∑

j=1

aibj
→
e i ·

→
e j =

3∑

i=1

3∑

j=1

aibjδij

3∑

i=1

aibi,
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where

δij =

{
1 if i = j

0 if i 6= j
is the Kronecker delta.

Consider two sets of basis vectors in R2:
→
E1 = (1, 0),

→
E2 = (1, 1), and

→
e 1 = (1, 1),

→
e 2 = (1,−1).

Now we want to write the vector
→
v = (1, 2) in terms of {

→
E1,

→
E2} and {→e 1,

→
e 2}.

If
→
v = A1

→
E1 + A2

→
E2 then

→
v ·

→
E1 = A1

→
E1 ·

→
E1 + A2

→
E2 ·

→
E1

→
v ·

→
E2 = A1

→
E1 ·

→
E2 + A2

→
E2 ·

→
E2

which becomes

1 = A1 + A2

3 = A1 + 2A2

and therefore A1 = −1 and A2 = 2 and

→
v = −

→
E1 + 2

→
E2.

If
→
v = a1

→
e 1 + a2

→
e 2 then

→
v · →e 1 = a1

→
e 1 ·

→
e 1 + a2

→
e 2 ·

→
e 1

→
v · →e 2 = a1

→
e 1 ·

→
e 2 + a2

→
e 2 ·

→
e 2

which becomes

3 = 2a1

−1 = 2a2

and therefore a1 = 3/2 and a2 = −1/2.

→
v =

3

2

→
e 1 −

1

2

→
e 2.

While this is a simple 2–dimensional example, it is clear that the calculation on the right is
much simpler. The reason for this is the fact that the basis vectors on the right {→e 1,

→
e 2}

form an orthogonal set. The significance of this becomes more evident in higher dimensional
spaces. For example, in R

3 we have

→
v = A1

→
E1 + A2

→
E2 + A3

→
E3,

→
v = a1

→
e 1 + a2

→
e 2 + a3

→
e 3.
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A little manipulation yields:

A1

→
E1 ·

→
Ei + A1

→
E1 ·

→
Ei + A1

→
E1 ·

→
Ei =

→
v ·

→
Ei, i = 1, 2, 3.

In matrix form this is



→
E1 ·

→
E1

→
E2 ·

→
E1

→
E3 ·

→
E1

→
E1 ·

→
E2

→
E2 ·

→
E2

→
E3 ·

→
E2

→
E1 ·

→
E3

→
E2 ·

→
E3

→
E3 ·

→
E3






A1

A2

A3


 =




→
v ·

→
E1

→
v ·

→
E2

→
v ·

→
E3




To solve this equation requires the inversion of a 3× 3 matrix.

However, if the second set of basis vectors is orthogonal, i.e.
→
e i ·

→
e j = 0 for i 6= j, then

the matrix equation becomes



→
e 1 ·

→
e 1 0 0

0
→
e 2 ·

→
e 2 0

0 0
→
e 3 ·

→
e 3






a1
a2
a3


 =




→
v · →e 1
→
v · →e 2
→
v · →e 3




which is easily solved to get

a1 =

→
v · →e 1
→
e 1 ·

→
e 1

, a2 =

→
v · →e 2
→
e 2 ·

→
e 2

, a3 =

→
v · →e 3
→
e 3 ·

→
e 3

.

Using summation notation, we have

→
v =

3∑

i=1

ai
→
e i.

→
v · →e j =

(
3∑

i=1

ai
→
e i

)
· →e j =

3∑

i=1

ai
→
e i ·

→
e j = aj

→
e j ·

→
e j (since orthogonal)

Therefore

aj =

→
v · →e j
→
e j ·

→
e j
, j = 1, 2, 3.

Recall that the norm of a vector (or length of a vector) is given by

‖→v‖ =
√

→
v · →v .

If
→
v =

∑3
i=1 ai

→
e i, then

‖→v‖2 =
√

→
v · →v =

(
3∑

i=1

ai
→
e i

)
·
(

3∑

j=1

aj
→
e j

)

=

3∑

i=1

3∑

j=1

aiaj
→
e i ·

→
e j =

3∑

i=1

a2i
→
e i ·

→
e i =

3∑

i=1

a2i ‖
→
e i‖2.
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If the
→
e i are unit vectors (i.e. ‖→e i‖ = 1), then

‖→v‖ =
√
a21 + a22 + a23.

Definition 13. An inner product is any function 〈·, ·〉 that acts on pairs of vectors
→
v

and
→
w in a vector space X that satisfies the following properties:

(i)
〈→
v ,

→
w
〉
=
〈→
w,

→
v
〉
;

(ii)
〈→
v ,

→
w1 +

→
w2

〉
=
〈→
v ,

→
w1

〉
+
〈→
v ,

→
w2

〉
;

(iii)
〈
c
→
v ,

→
w
〉
= c

〈→
v ,

→
w
〉
;

(iv)
〈→
v ,

→
v
〉
> 0.

The dot product is but one example of an innerproduct. What we want to do is generalize
these concepts of inner product and norms to p-cts functions.

Here we will give an heuristic motivation for how to define an inner product for p-cts
functions. Let

f, g, w ∈ PC(a, b) with w > 0.

Recall from elementary calculus the definition of the integral as the limit of a Riemann sum:

∫ b

a

f(x)g(x)w(x) dx = lim
N→∞

N∑

i=1

f(xi)g(xi)w(xi)∆xi,

where a = x0 < x1 < · · · < xN = b is a paartition of the interval (a, b) and ∆xi = xi − xi−1.
If we define

ai = f(xi)
√
w(xi)∆xi, bi = g(xi)

√
w(xi)∆xi,

then ∫ b

a

f(x)g(x)w(x) dx = lim
N→∞

N∑

i=1

aibi.

The sum on the right looks like an inner product in N–dimensions. This leads us to make
the following definition.

Definition 14. Let f, g, w ∈ PC(a, b) with w(x) > 0. The inner product of f and g with
weight w is defined as

〈f, g〉 :=
∫ b

a

f(x)g(x)w(x) dx.

The function w(x) is called the weight function. Quite often we use w(x) = 1.

It is easily verified that this definition satisfies all the properties given in the definition of
inner product. Recall that we saw earlier that PC(a, b) is a vector space. One can think of
this definition as an inner product defined on an “infinite dimensional” vector space PC(a, b).

We give a couple more definitions.
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Definition 15. The norm of f ∈ PC(a, b) with weight w is given by ‖f‖ :=
√

〈f, f〉.

Definition 16. Let f, g, w ∈ PC(a, b) with w(x) > 0. Then f and g are said to be orthog-

onal on (a, b) relative to the weight w if 〈f, g〉 = 0.

We will illustrate these concepts with the following important example.

EXAMPLE 2.5. Consider the functions cn, sn ∈ PC(a, b) for n = 0, 1, 2, 3, . . . defined by

cn(x) := cos(
nπx

ℓ
), sn(x) := sin(

nπx

ℓ
), ℓ :=

b− a

2
, (2.2)

with inner product

〈f, g〉 :=
∫ b

a

f(x)g(x) dx. (weight w(x) ≡ 1)

We see that cn is 2ℓ-periodic, since

cn(x+ 2ℓ) = cos(
nπ(x+ 2ℓ)

ℓ
) = cos(

nπx

ℓ
+ 2nπ) = cos(

nπx

ℓ
) = cn(x).

Similarly, sn is 2ℓ-periodic. Thus, for n = 0, we have

〈c0, c0〉 =
∫ b

a

c20(x) dx =

∫ b

a

dx = b− a = 2ℓ.

For n 6= 0 we have

〈cn, cm〉 =
∫ b

a

cn(x)cm(x) dx =

∫ 2ℓ

0

cn(x)cm(x) dx (using property (2.1) with p = 2ℓ)

=

∫ 2ℓ

0

cos(
nπx

ℓ
) cos(

mπx

ℓ
) dx =

ℓ

π

∫ 2π

0

cos(nξ) cos(mξ) dξ (using ξ =
πx

ℓ
)

=
ℓ

π
(δnmπ) = δnmℓ.

A similar calculation yields

〈sn, sm〉 = δnmℓ, 〈sn, cm〉 = 0.

Therefore the set {c0, c1, s1, c2, s2, . . . } = {1, cos(πx
ℓ
), sin(πx

ℓ
), cos(2πx

ℓ
), sin(2πx

ℓ
), . . . } is an

orthogonal set of functions on [a, b] relative to the above inner product.
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2.4 Fourier Series
If f is periodic with period p, then one might attempt to represent f with an infinite series
of p-periodic functions. Notice that the set

{1, cos(πx
ℓ
), sin(

πx

ℓ
), cos(

2πx

ℓ
), sin(

2πx

ℓ
), . . . } (2.3)

consists of functions having common period p = 2ℓ. Suppose f is 2ℓ-periodic. We could try
to represent f as follows:

f(x) =
a0
2

+
∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
).

Each term in the series has period 2ℓ, so the sum, if it exists, we would expect would also
be 2ℓ-periodic. Two questions come to mind:

1. How does one find the constants a0, an, bn?
2. Once the constants are found, does the series converge to f?

In example 2.5 we saw that the elements of the set (2.3) are orthogonal. This makes
calculation of the constants in the series easy. Writing f in the more compact notation

f(x) =
a0
2
c0 +

∞∑

n=1

ancn(x) + bnsn(x)

and using the inner product of example 2.5 we get

〈f, c0〉 =
〈
a0
2
c0 +

∞∑

n=1

(ancn + bnsn), c0

〉

=
a0
2
〈c0, c0〉+

∞∑

n=1

(an 〈cn, c0〉+ bn 〈sn, c0〉)

=
a0
2
(2ℓ) +

∞∑

n=1

(anδn0 + 0) = a0ℓ.

Therefore

a0 =
1

ℓ
〈f, c0〉 .

For m 6= 0 we have

〈f, cm〉 =
〈
a0
2
cm +

∞∑

n=1

(ancn + bnsn), cm

〉

=
a0
2
〈c0, cm〉+

∞∑

n=1

(an 〈cn, cm〉+ bn 〈sn, cm〉)

= 0 +
∞∑

n=1

(anℓδnm + 0) = amℓ.
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Therefore

am =
1

ℓ
〈f, cm〉 ,

and similarly

bm =
1

ℓ
〈f, sm〉 .

This prompts the following definition:

Definition 17. The series

a0
2

+

∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
),

where

an =
1

ℓ
〈f, cm〉 =

1

ℓ

∫ b

a

f(x) cos(
nπx

ℓ
) dx, n = 0, 1, 2, . . . ,

bn =
1

ℓ
〈f, sm〉 =

1

ℓ

∫ b

a

f(x) sin(
nπx

ℓ
) dx, n = 1, 2, . . . ,

is called the Fourier series for f , and an and bn are called the Fourier coefficients.

Note that if f ∈ PC(a, b), then all of the above integrals exist. We have answered question
1 above: we have simple formulas for the Fourier coefficients. Again, we reiterate that the
reason for the simplicity of these formulas is due to the orthogonality of the sine and cosine
functions on the given interval relative to the given inner product. It remains to determine
whether this infinite series converges, and if so, to what function does it converge? Until
convergence can be determined we write

f(x) ∼ a0
2

+

∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
).

EXAMPLE 2.6. Find the Fourier series for the 2π-periodic function f defined

f(x) =

{
0 −π < x < 0

x 0 < x < π
, f(x+ 2π) = f(x).

Solution

We take the interval to be (a, b) = (−π, π). Then ℓ = π, cn(x) = cos(nx) and sn(x) =
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sin(nx). We get

a0 =
1

ℓ
〈f, c0〉 =

1

π

∫ π

−π

f(x) dx =
1

π

∫ π

0

x dx =
π

2
,

an =
1

ℓ
〈f, cn〉 =

1

π

∫ π

0

x cos(nx) dx =
(−1)n − 1

πn2
,

bn =
1

ℓ
〈f, sn〉 =

1

π

∫ π

0

x sin(nx) dx =
(−1)n+1

n
.

Therefore, the Fourier series is given by

f(x) ∼ a0
2

+
∞∑

n=1

[an cos(nx) + bn sin(nx)] ∼
π

4
+

∞∑

n=1

[
(−1)n − 1

πn2
cos(nx) +

(−1)n + 1

n
sin(nx)]

∼ π

4
− 2

π
cos(x) + sin(x)− 1

2
sin(2x)− 2

9π
cos(3x) +

1

3
sin(3x)− . . . .

Another example.

EXAMPLE 2.7. Find the Fourier series for the 2ℓ-periodic function f defined

f(x) = x, −ℓ < x < ℓ, f(x+ 2ℓ) = f(x).

Solution

In this case we have cn(x) = cos(nπx
ℓ
) and sn(x) = sin(nπx

ℓ
). We get

an =
1

ℓ
〈f, cn〉 =

1

ℓ

∫ ℓ

−ℓ

x cos(
nπx

ℓ
) dx = 0,

bn =
1

ℓ
〈f, sn〉 =

1

ℓ

∫ ℓ

−ℓ

x sin(
nπx

ℓ
) dx =

2ℓ

nπ
(−1)n+1.

Therefore, the Fourier series is given by

x ∼ 2ℓ

π

∞∑

n=1

(−1)n+1

n
sin(

nπx

ℓ
) for − ℓ < x < ℓ. (2.4)

Note that in this last example at x = ℓ the L.H.S. of (2.4) equals ℓ whereas the R.H.S.
equals 0. This indicates that at least at one point, the Fourier series does not converge to
the function. Another observation concerning this last example: the function f is an odd
function and the Fourier series is a sum of odd terms. This should not be surprising. In
general,

if f is odd, then f(x) ∼
∞∑
n=1

bn sin(
nπx
ℓ
), called a Fourier sine series;

if f is even, then f(x) ∼ a0
2
+

∞∑
n=1

bn cos(
nπx
ℓ
), called a Fourier cosine series.
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2.5 Convergence of Fourier Series
Definition 18. A function f is piecewise smooth on (a, b) if

(i) f is piecewise continuous (i.e. f ∈ PC(a, b));
(ii) f ′ is piecewise continuous (i.e. f ′ ∈ PC(a, b)).

Let PC1(a, b) := {all piecewise smooth functions on (a, b)}. Then PC1(a, b) ⊂ PC(a, b).

EXAMPLE 2.8. If

f(x) =

{
x −1 < x < 0

x2 0 < x < 1
then f ′(x) =

{
1 −1 < x < 0

2x 0 < x < 1
.

Therefore f ∈ PC1(a, b).

EXAMPLE 2.9. If f(x) = x2/3 1on (−1, 1), then f ′(x) = 2
3x1/3 . We have f ∈ PC(−1, 1)

but f ′ 6∈ PC(−1, 1). Therefore f 6∈ PC1(−1, 1).

Theorem 19. If
(i) f ∈ PC1(a, b);
(ii) f̄ is the (b− a)-periodic extension of f ,

then the Fourier Series

a0
2

+
∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
), where ℓ =

b− a

2
,

converges to
f̄(x+) + f̄(x−)

2
.

This says that if f̄ is continuous at x (i.e. f̄(x+) = f̄(x−) = f̄(x)), then the Fourier
Series converges to f̄(x) and if f̄ has a jump discontinuity at x (i.e. f̄(x+) 6= f̄(x−)), then
the Fourier Series converges to the point midway between the limiting values.

EXAMPLE 2.10. If we go back to Example 2.7, we found the Fourier Series for the function

f(x) = x, −ℓ < x < ℓ, f(x+ 2π) = f(x),

to be

f(x) ∼ 2ℓ

π

∞∑

n=1

(−1)n+1

n
sin(

nπx

ℓ
).

But f̄(ℓ+) = −ℓ and f̄(ℓ−) = +ℓ, therefore

f̄(ℓ+) + f̄(ℓ−)

2
=

−ℓ+ ℓ

2
= 0.

The Fourier Series evaluated at x = ℓ:

2ℓ

π

∞∑

n=1

(−1)n+1

n
sin(nπ) = 0.
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EXAMPLE 2.11. Again we go back to Example 2.7 but this time we evaluate the Fourier
Series at x = ℓ/2. Since f is continuous at x = ℓ/2 we get

ℓ

2
=

2ℓ

π

∞∑

n=1

(−1)n+1

n
sin(

nπ

2
) =

2ℓ

π

∞∑

n=1

{
(−1)2n

2n− 1
sin(

(2n− 1)π

2
) +

(−1)2n+1

2n
sin(nπ)

}
.

Rearranging this expression gives:

π

4
=

∞∑

n=1

1

2n− 1
sin(

(2n− 1)π

2
) +

∞∑

n=1

(−1)n+1

2n− 1
= 1− 1

3
+

1

5
− 1

7
+ · · · .

2.6 Operations on Fourier Series
Here we will examine what kind of manipulation may be legitimately be carried out on
Fourier Series. The next few results will be stated without proof.

Theorem 20. If f is periodic and p-cts, then its Fourier Series is unique.

Next we show that the operation of finding the Fourier series is a linear operation.

Theorem 21. If

(i) f̂(x) ∼ â0
2
+

∞∑
n=1

ân cos(
nπx
ℓ
) + b̂n sin(

nπx
ℓ
); and

(ii) f̃(x) ∼ ã0
2
+

∞∑
n=1

ãn cos(
nπx
ℓ
) + b̃n sin(

nπx
ℓ
),

then

c1f̂ + c2f̃ ∼ c1
â0
2

+ c2
ã0
2

+

∞∑

n=1

[(c1ân + c2ãn) cos(
nπx

ℓ
) + (c1b̂n + c2b̃n) sin(

nπx

ℓ
)].

Theorem 22. If

(i) f ∈ PC(R), 2ℓ-periodic with f(x) ∼ a0
2
+

∞∑
n=1

an cos(
nπx
ℓ
) + bn sin(

nπx
ℓ
); and

(ii) g ∈ PC(α, β),
then

∫ β

α

f(x)g(x) dx =

∫ β

α

a0
2
g(x) dx+

∞∑

n=1

∫ β

α

[an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
)]g(x) dx.

EXAMPLE 2.12. Going back to Eq. (2.4) of Example 2.7, using g(x) = 1, we get

ℓ2

2
=

∫ ℓ

0

x dx =
2ℓ

π

∞∑

n=1

(−1)n+1

n

∫ ℓ

0

sin(
nπx

ℓ
) dx =

2ℓ2

π2

∞∑

n=1

(−1)n

n2
[(−1)n − 1].

After a little manipulation we get

π2

8
=

∞∑

n=1

1

(2n− 1)2
= 1 +

1

32
+

1

52
+

1

72
+ · · · .
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The following theorem gives us the conditions under which term-by-term differentiation
is justified.

Theorem 23. If f is 2ℓ-periodic, continuous and p-smooth for all x, then the Fourier Series

f(x) =
a0
2

+
∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
)

is differentiable for all x at which f ′′ exists and

f ′(x) =
∞∑

n=1

αn cos(
nπx

ℓ
) + βn sin(

nπx

ℓ
)

where αn = nπbn
ℓ

and βn = −nπan
ℓ

.

EXAMPLE 2.13. Again consider Eq. (2.4) of Example 2.7

f(x) = x ∼ 2ℓ

π

∞∑

n=1

(−1)n+1

n
sin(

nπx

ℓ
) for − ℓ < x < ℓ.

We have f ′(x) = 1, f ′(0) = 1 and the differentiated Fourier Series looks like

2ℓ

π

∞∑

n=1

(−1)n+1

n

nπ

ℓ
cos(

nπx

ℓ
) = 2

∞∑

n=1

(−1)n+1 cos(
nπx

ℓ
).

At x = 0: 2
∞∑
n=1

(−1)n+1 = 2{1 − 1 + 1 − 1 + 1 − 1 + · · · } does not converge. However, this

does not contradict the theorem since f is not continuous.

One last result.

Theorem 24. If
(i) f is periodic with Fourier coefficients an, bn; and

(ii)
∞∑
n=1

(|nkan|+ |nkbn|) converges for some integer k > 1,

then f has continuous derivatives f ′, f ′′, . . . , f (k) whose Fourier Series are the differentiated
series of f .

2.7 Mean Error
While some functions can be represented by an infinite Fourier Series, in practice we can
only evaluate a finite series. The question that arises is: how good an approximation is a
truncated Fourier Series? Before we can answer this we need a way to measure the “distance”
between two functions.
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Suppose we have a function f together with two approximations to f given by g1 and
g2. The question is: which is a better approximation t f? We use norms to measure the
“distance” between functions. We say that g1 is a better approximation to f than g2 if

‖f − g1‖ < ‖f − g2‖.

For f ∈ PC(a, b) there is more than one way to define a norm. Two possible norms are:

‖f‖∞ := sup
a6x6b

|f(x)|, and ‖f‖L2 := (〈f, f〉)1/2 =
[∫ b

a

f 2(x) dx

]1/2
.

Which is the “better” norm? The answer is not at all obvious, as the following illustrates.

Consider f, g1, g2 ∈ PC(0, 1
ε2
) defined as follows:

f(x) = 1, g1(x) = 1 + ε, g2(x) =

{
2 0 < x 6 ε2

1 ε2 < x < 1
ε2

.

Then

|f(x)− g1(x)| = ε, and |f(x)− g2(x)| =
{
1 0 < x 6 ε2

0 ε2 < x < 1
ε2

so that

‖f − g1‖∞ = sup
06x6 1

ε2

|f(x)− g1(x)| = ε,

‖f − g2‖∞ = sup
06x6 1

ε2

|f(x)− g2(x)| = 1,

‖f − g1‖L2 =

{∫ 1/ε2

0

|f(x)− g1(x)|2 dx
}1/2

=

{∫ 1/ε2

0

ε2 dx

}1/2

= 1,

‖f − g2‖L2 =

{∫ 1/ε2

0

|f(x)− g2(x)|2 dx
}1/2

=

{∫ 1/ε2

0

12 dx

}1/2

= ε.

Hence, relative to the sup–norm, g1 is a better approximation to f than is g2, whereas, relative
to the L2–norm, g2 is the better approximation to f . Because the L2–norm is related to an
inner product (see definition 15), we will find it convenient to adopt the L2–norm.

Now that we have a way to measure the distance between functions, we return to the
original question, namely how good an approximation is a truncated Fourier Series?

Suppose f ∈ PC(a, b) has Fourier Series

f(x) ∼ a0
2

+
∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
), where ℓ =

b− a

2
.
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Define

fN(x) :=
a0
2

+

N∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
), (fN is the truncated Fourier Series of f)

gN(x) :=
A0

2
+

N∑

n=1

An cos(
nπx

ℓ
) +Bn sin(

nπx

ℓ
).

We now try to find constants An, and Bn so that gN is a better approximation to f than is
fN relative to the L2–norm.

Define:
EN := ‖f − gN‖.

Now find An, and Bn which minimize EN . We have

E2
N = ‖f − gN‖2 = 〈f − gN , f − gN〉 = 〈f, f〉 − 2 〈f, gN〉+ 〈gN , gM〉 (2.5)

Examine each term in (2.5) individually. The first term is easy: 〈f, f〉 = ‖f‖2. Using the
notation introduced in (2.2), the second term becomes

〈f, gN〉 =
〈
f,
A0

2
c0(x) +

N∑

n=1

Ancn(x) +Bnsn(x)

〉

=
A0

2
〈f, c0〉+

N∑

n=1

(AN 〈f, cn〉+Bn 〈f, sn〉)

=
A0

2
ℓa0 +

N∑

n=1

(ANℓan +Bnℓbn)

= ℓ

{
1

2
a0A0

N∑

n=1

(aNAn + bnBn)

}
.

The third term becomes

〈gN , gN〉 =
〈
A0

2
c0(x) +

N∑

n=1

Ancn(x) + Bnsn(x),
A0

2
c0(x) +

N∑

m=1

Amcm(x) +Bmsm(x)

〉

=
A2

0

4
〈c0, c0〉+ 2

N∑

n=1

(
A0

2
AN 〈c0, cn〉+

A0

2
Bn 〈c0, sn〉

)

+
N∑

n=1

N∑

m=1

(AnAm 〈cn, cm〉+ AnBm 〈cn, sm〉+ AmBn 〈cm, sn〉+BnBm 〈sn, sm〉)

=
A2

0

4
(2ℓ) +

N∑

n=1

N∑

m=1

(AnAmℓδnm +BnBmℓδnm)

= ℓ

{
A2

0

2
+

N∑

n=1

(A2
n + b2n)

}
.
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Plug these expressions into (2.5) to get

E2
n = ‖f‖2 − 2 〈f, gN〉+ 〈gN , gM〉

= ‖f‖2 − 2ℓ

{
1

2
a0A0

N∑

n=1

(aNAn + bnBn)

}
+ ℓ

{
A2

0

2
+

N∑

n=1

(A2
n + b2n)

}

= ‖f‖2 + ℓ

{
A2

0

2
− a0A0 +

N∑

n=1

(A2
n − 2anAn +B2

n − 2bnBn)

}

= ‖f‖2 + ℓ

{
1

2
(A0 − a0)

2 − a20
2

+

N∑

n=1

[(An − an)
2 − a2n + (Bn − bn)

2 − b2n]

}

= ‖f‖2 + ℓ

{
1

2
(A0 − a0)

2 +

N∑

n=1

[(An − an)
2 + (Bn − bn)

2]

}
− ℓ

{
a20
2

+

N∑

n=1

(a2n + b2n)

}
.

The first and last term are fixed; only the middle term contains An’s and Bn’s. The middle
term, being the sum of squares, is non-negative and so is minimized by setting An = an and
Bn = bn for all n. Thus, the best gN to approximate f is gN = fN . In this case the minimum
error is

E2
N = ‖f‖2 − ℓ

{
a20
2

+
N∑

n=1

(a2n + b2n)

}
.

Using E2
N > 0 gives Bessel’s inequality:

a20
2

+
N∑

n=1

(a2n + b2n) 6
1

ℓ
‖f‖2 = 1

ℓ

∫ b

a

f 2(x) dx.

Taking the limit N → ∞ yields

a20
2

+

∞∑

n=1

(a2n + b2n) 6
1

ℓ
‖f‖2 = 1

ℓ

∫ b

a

f 2(x) dx.

Using the fact that the Fourier Series converges and the previous theorem on term-by-term
integration, this condition can be strenghtened to what is called Parseval’s equation

a20
2

+

∞∑

n=1

(a2n + b2n) =
1

ℓ
‖f‖2.

See Figure 2.1 for several approximations to the function defined in Example 2.7 with
ℓ = π.
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Figure 2.1: Truncated Fourier Series fN for N = 1, 3, 5, 10, 20.

2.8 Complex Fourier Series
A well known formula in complex variables is

eiθ = cos θ + i sin θ. 8(Euler’s formula)

¿From this we can deduce

cos θ =
eiθ + e−iθ

2
= cosh iθ, sin θ =

eiθ − e−iθ

2i
= −i sinh iθ.

We can make use of these formulas to write a Fourier Series in complex form. Suppose
f ∈ PC(a, b) has Fourier Series

f(x) ∼ a0
2

+

∞∑

n=1

an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
), where ℓ =

b− a

2
.

Then

f(x) ∼ a0
2

+
1

2

∞∑

n=1

{
an(e

inπx
ℓ + e−inπx

ℓ )− ibn(e
inπx

ℓ − e−inπx
ℓ )
}

∼ a0
2

+
1

2

∞∑

n=1

{
(an − ibn)e

inπx
ℓ + (an + ibn)e

−inπx
ℓ

}

∼ c0 +
∞∑

n=1

(cne
inπx

ℓ + c−ne
−inπx

ℓ ),

where

c0 =
a0
2
, cn =

1

2
(an − ibn), c−n =

1

2
(an + ibn), i = 1, 2, 3, . . . .

The Fourier Series may be conveniently rewritten

f(x) ∼
∞∑

n=−∞
cne

inπx
ℓ .
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Recall the formulas for the Fourier coefficients:

an =
1

ℓ

∫ b

a

f(x) cos(
nπx

ℓ
) dx, bn =

1

ℓ

∫ b

a

f(x) sin(
nπx

ℓ
) dx.

These lead to

c0 =
a0
2

=
1

2ℓ

∫ b

a

f(x) dx,

cn =
1

2
(an − ibn) =

1

2ℓ

∫ b

a

f(x)[cos(
nπx

ℓ
)− i sin(

nπx

ℓ
)] dx =

1

2ℓ

∫ b

a

f(x)e−inπx
ℓ dx,

c−n =
1

2
(an + ibn) =

1

2ℓ

∫ b

a

f(x)[cos(
nπx

ℓ
) + i sin(

nπx

ℓ
)] dx =

1

2ℓ

∫ b

a

f(x)ei
nπx
ℓ dx.

To summarize, we have the following:

Theorem 25. The complex Fourier Series for f ∈ PC(a, b) is

f(x) ∼
∞∑

n=−∞
cne

inπx
ℓ ,

where

cn =
1

2ℓ

∫ b

a

f(x)e−inπx
ℓ dx, ℓ =

b− a

2
.

We finish this section with an example.

EXAMPLE 2.14. Calculate the complex Fourier Series for

f(x) = x, −π < x < π, f(x+ 2π) = f(x).

Solution

The complex Fourier coefficients are

cn =
1

2π

∫ π

−π

f(x)e−inx dx.

We get

c0 =
1

2π

∫ π

−π

f(x) dx =
1

2π

∫ π

−π

x dx = 0,

cn =
1

2π

∫ π

−π

xe−inx dx =
1

2π

{
2πi

n
cos nπ +

2

n2
sin nπ

}
=
i

n
(−1)n, n 6= 0.

Therefore

f(x) ∼ i

∞∑

n = −∞
n 6= 0

(−1)n

n
einx.



Chapter 3

Separation of Variables

June 17, 2010

3.1 Homogeneous Equations
In Example 1.9 we successfully applied separation of variables to a linear homogeneous
PDE The PDE was the 1-d heat equation ut = kuxx, where k was assumed constant. Looking
for a solution of the form u(x, t) = X(x)T (t) we got:

T ′

kT
=
X ′′

X
.

The left side of the equation is a function of time t only whereas the right side is a function
of x only. This means that both sides must equal some constant (−λ say):

T ′

kT
=
X ′′

X
= −λ.

This lead to ODEs for T and X :

T ′ + λkT = 0, X ′′ + λX = 0.

Let us try this method for a Neuman problems of the heat equation

43
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Exercise 3.1. %%
Consider the Neumann problem for the heat equation:

∂u

∂t
= k

∂2u

∂x2
0 < x < L, t > 0

∂u

∂x
(0, t) = 0, t > 0

∂u

∂x
(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L.

(a) Give a short physical interpretation of this problem.

(b) Use the method of separation of variables to solve this problem. First
show that there are no separated solutions which grow exponentially in
time.

Hint : The solution can be written as

u(x, t) = A0 +

∞∑

n=1

Ane
−λnkt cos

nπx

L
.

Find the λn .

(c) Show that the initial condition, u(x, 0) = f(x), leads to the Fourier cosine
series:

f(x) = A0 +

∞∑

n=1

An cos
nπx

L
.

(d) Solve for An by using

∫ L

0

cos
nπx

L
cos

mπx

L
dx =





L

2
if n = m

0 if n 6= m

for n, m > 0,.

(e) Consider the limit lim
t→∞

u(x, t). Find the steady state solution and show

that u(x, t) approaches this steady-state solution as t→ ∞.

Solution:
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(a) The partial differential equation describes heat flow in a one-dimensional rod where

• all thermal properties are constant in any cross-section,

• there is no heat flow through the lateral sides, that is, the lateral sides are perfectly
insulated,

• there are no internal heat sources in the rod,

• the boundary conditions imply that there is no heat flow through the ends of the
rod, and

• the initial temperature distribution in the rod is u(x, 0) = f(x) for 0 < x < L.

(b) In order to show that there are no separated solutions which grow exponentially in
time, we have to show that there are no negative eigenvalues.

Assuming a solution of the form

u(x, t) = φ(x) ·G(t)

and separating variables, we get

φ′′(x)

φ(x)
=

G′(t)

k G(t)
= −λ

where λ is a constant. The partial differential equation is reduced to two ordinary
differential equations:

Spatial Equation:

φ′′(x) + λφ(x) = 0, 0 6 x 6 L

φ′(0) = 0

φ′(L) = 0.

Time Equation:
G′(t) + kλG(t) = 0, t > 0.

Case 1: We consider the spatial equation first, suppose that λ = −µ2 < 0, where
µ 6= 0, the general solution in this case is

φ(x) = A coshµx+B sinhµx.

Applying the boundary conditions, since

φ′(x) = µA sinhµx+ µB cosh µx,

we get φ′(0) = µB = 0, and B = 0. Also, φ′(L) = µA sinhµL = 0, so that A = 0.
Thus, the only solution in this case is the trivial solution φ(x) ≡ 0, and there are no
separated solutions which grow exponentially in time.
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Case 2: λ = µ2 > 0, where µ 6= 0.

The general solution in this case is

φ(x) = A cosµx+B sinµx.

Since
φ′(x) = −µA sinµx+ µB cosµx,

applying the first boundary condition, we have

φ′(0) = µB · 1 = 0,

so that B = 0. Applying the second boundary condition, we have

φ′(L) = −Aµ sinµL = 0,

and if A = 0 we get only the trivial solution again. Therefore, we get nontrivial
solutions if and only if sinµL = 0, that is, when

µ =
nπ

L

where n > 1. The eigenvalues for this problem are

λn = µ2
n =

n2π2

L2
,

with corresponding eigenfunctions

φn(x) = cos nπx
L

for n = 1, 2, 3, . . . .

Case 3: λ = 0.

The general solution in this case is

φ(x) = Ax+B,

Applying the boundary conditions, we get φ′(0) = A = 0, and φ′(L) = A = 0, and the
only solution in this case is the constant solution φ0(x) = B. The eigenvalue for this
problem is λ0 = 0, with corresponding eigenfunction φ0(x) = 1.

The solutions to the time equation corresponding to these nontrivial solutions are

Gn(t) = e−
kn2π2t

L2

for n = 0, 1, 2, 3, . . . .
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For n > 0, the functions

un(x, t) = φn(x) ·Gn(t) = cos nπx
L
e−

kn2π2t
L2

are also solutions to the partial differential equation satisfying the boundary conditions,
and since the partial differential equation and the boundary conditions are homoge-
neous, by the superposition principle, the solution is

u(x, t) = A0 +
∞∑

n=1

An cos
nπx
L

· e−
kn2π2t

L2 .

Note that the constant A0 corresponds to the n = 0 term.

(c) The initial condition is
u(x, 0) = f(x)

for 0 < x < L, so that if

f(x) = A0 +

∞∑

n=1

An cos
nπx
L

for 0 < x < L, then the initial condition will be satisfied.

(d) In order to determine the coefficients An we use the fact that cos nπx
L

and cos mπx
L

are
orthogonal on the interval [0, L] in the sense that

∫ L

0

cos nπx
L

cos mπx
L
dx =





0 for n,m > 0, n 6= m

L

2
for n = m 6= 0

L for n = m = 0.

Starting from the initial condition

f(x) = A0 +

∞∑

n=1

An cos
nπx
L

=

∞∑

n=0

An cos
nπx
L

for 0 < x < L, we multiply both sides of this equation by cos mπx
L
, and integrate over

the interval [0, L] to get

∫ L

0

f(x) cos mπx
L
dx =

∞∑

n=0

∫ L

0

An cos
nπx
L

cos mπx
L
dx,

and from the orthogonality of the eigenfunctions on the interval [0, L], we have

∫ L

0

f(x) cos mπx
L
dx =





∫ L

0

A0 dx = LA0 for m = 0

LAm

2
otherwise.
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Therefore

A0 =
1

L

∫ L

0

f(x) dx and An =
2

L

∫ L

0

f(x) cos nπx
L
dx, n > 1.

(e) The solution is

u(x, t) = A0 +

∞∑

n=1

An cos
nπx
L

· e−
kn2π2t

L2 ,

where

A0 =
1

L

∫ L

0

f(x) dx and An =
2

L

∫ L

0

f(x) cos nπx
L
dx, n > 1.

Taking the limit as t→ ∞, we have

lim
t→∞

u(x, t) = lim
t→∞

(
A0 +

∞∑

n=1

An cos
nπx
L

· e−
kn2π2t

L2

)

= A0 + lim
t→∞

( ∞∑

n=1

An cos
nπx
L

· e−
kn2π2t

L2

)

= A0,

and

lim
t→∞

u(x, t) =
1

L

∫ L

0

f(x) dx.

Let v denote the steady-state solution, then v satisfies the boundary value problem

d2v

dx2
= 0, 0 < x < L

dv

dx
(0) = 0

dv

dx
(L) = 0

The general solution is
v(x) = Ax+B,

and
dv

dx
(x) = A.

Applying the boundary conditions, we have

A =
dv

dx
(0) =

dv

dx
(L) = 0,
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and the steady-state solution is

v(x) = B, 0 < x < L.

To evaluate the constant B, we note that since the total heat energy in the bar is
constant, then

∫ L

0

B dx =

∫ L

0

v(x) dx =

∫ L

0

u(x, 0) dx =

∫ L

0

f(x) dx,

so that

B · L =

∫ L

0

f(x) dx,

that is,

v(x) = B =
1

L

∫ L

0

f(x) dx

for 0 < x < L.

3.1.1 General Linear Homogeneous Equation

Now suppose we consider a slightly more general linear homogeneous PDE:

a1utt + a2ut = k1uxx + k2ux + k3u.

If we try separation of variables u(x, t) = X(x)T (t) we get

a1
T ′′

T
+ a2

T ′

T
= k1

X ′′

X
+ k2

X ′

X
+ k3.

If the coefficients are constant, then the left side of the equation is a function of time t only
and the right side of the equation is a function of the spatial variable x only. This means
that both sides must equal some constant (−λ say):

a1
T ′′

T
+ a2

T ′

T
= k1

X ′′

X
+ k2

X ′

X
+ k3 = −λ,

and so we get ODEs for T and X :

a1T
′′ + a2T

′ + λT = 0, k1X
′′ + k2X

′ + (k3 + λ)X = 0.

So, once again, separation of variables seems to work.

But what happens if the coefficients are not constant? For example consider the PDE ut =
xtuxx. In this case, separation of variables leads to

T ′

tT
=
xX ′′

X
,
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which leads to ODEs in T and X . But for ut = (x+ t)uxx, separation of variables leads to

T ′

T
= (x+ t)

X ′′

X
.

In this case it doesn’t work.

The success of the method of separation of variables in Example 1.9 depended not only on
the fact that the PDE was linear and homogeneous, but also on the fact that the boundary
conditions were linear and homogeneous. Inserting u(x, t) = X(x)T (t) into the homogeneous
boundary conditions lead to

X(0) = X(ℓ) = 0.

More generally, the homogeneous Robin’s conditions

αu(0, t) + β
∂u

∂x
(0, t) = 0

leads to

αX(0) + βX ′(0) = 0.

What happens when either the PDE or the boundary conditions are no longer homoge-
neous? For a nonhomogeneous PDE like

ut = kuxx + γ,

using u(x, t) = X(x)T (t) leads to

T ′

kT
=
X ′′

X
+

γ

kXT
.

so the method doesn’t work. For the nonhomogeneous boundary conditions

u(0, t) = c1, u(ℓ, t) = c2

we get the inconsistency

T (t) =
c1

X(0)
=

c2
X(ℓ)

.

Again, the method doesn’t work.

In summary, what we conclude is that if we have a linear homogeneous PDE with linear
homogeneous boundary conditions, then separation of variables may work. But the method
may not work. It depends on the particular problem. For nonhomogeneous problems, the
method does not work; at least not directly. In the latter case, however, all is not lost, as
we shall see in the next section.
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Exercise 3.2. %%%
The one-dimensional wave equation in presence of a damping term, where in
the simplest case the resistance can be assumed to be proportional to the
velocity, is called the damped one-dimensional wave equation:

∂2u

∂t2
+ 2k

∂u

∂t
= c2

∂2u

∂x2
0 < x < L, t > 0.

Solve this equation subject to the boundary conditions

u(0, t) = 0 and u(L, t) = 0 for all t > 0,

and the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x) for 0 < x < L.

Solution:

(a) Assuming a product solution of the form u(x, t) = X(x)T (t), and substituting this into
the equation we have

XT ′′ + 2kXT ′ = c2X ′′T.

Dividing by c2XT and separating variables, we obtain

T ′′

c2T
+

2kT ′

c2T
=
X ′′

X
.

Since x and t are independent variables and the left-hand-side depends only on t, while
the right hand side depends only on x, then both sides must be constant, and so

T ′′

c2T
+

2kT ′

c2T
= −λ and

X ′′

X
= −λ,

where λ is the separation constant, and the functions X and T satisfy the following
indexOrdinary differential equationordinary differential equations

X ′′ + λX = 0

T ′′ + 2kT ′ + λc2T = 0.

Now, we can satisfy the boundary conditions by requiring that X(0) = X(L) = 0, and
so X satisfies the boundary value problem

X ′′ + λX = 0

X(0) = 0

X(L) = 0.
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As in the previous problems, we only get a nontrivial solution if the separation constant
λ is positive, say λ = µ2 where µ 6= 0, and in this case, the equations for X and T
become

X ′′ + µ2X = 0, X(0) = 0, X(L) = 0,

T ′′ + 2kT ′ + (µc)2T = 0,

where µ 6= 0.

(b) The general solution to the equation

X ′′ + µ2X = 0

is given by

X(x) = A cosµx+B sin µx,

where the constants are determined from the boundary conditions. Since X(0) = 0,
then we must have A = 0; and since X(L) = 0, the only nontrivial solutions arise when
sinµL = 0, and this happens if and only if µL = nπ, where n is an integer.

Therefore, the only nontrivial solutions to the boundary value problem for X occur for

µ = µn = nπ
L

and the solutions are

X = Xn = sin nπx
L

for n = 1, 2, . . . .

(c) For each integer n > 1, the corresponding equation for T is

T ′′ + 2kT ′ +
(
nπc
L

)2
T = 0,

a second order, linear, homogeneous, constant coefficient equation which we know how
to solve. Assuming a solution of the form T (t) = eαt, and plugging this into the
differential equation we get the characteristic equation

α2 + 2kα+ n2π2c2

L2 = 0,

and the roots of this quadratic equation are

αn,1 = −k +
√
k2 − n2π2c2

L2 and αn,2 = −k −
√
k2 − n2π2c2

L2 .

In order to find the corresponding solutions Tn(t), we need to consider three cases,
according to whether k2 − n2π2c2

L2 is zero, positive or negative.
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Case 1: k2 − n2π2c2

L2 = 0. In this case, we have equal real roots, and the solution is

Tn(t) = e−kt (an + bnt)

where k = nπc
L
> 0.

Case 2: k2 − n2π2c2

L2 > 0. In this case, we have two distinct real roots, and the solution
is

Tn(t) = e−kt (an coshαnt+ bn sinhαnt)

where αn =
√
k2 − n2π2c2

L2 .

Case 3: k2 − n2π2c2

L2 < 0. In this case, we have two distinct imaginary roots, and the
solution is

Tn(t) = e−kt (an cosαnt+ bn sinαnt)

where αn =
√

n2π2c2

L2 − k2.

(d) Since the partial differential equation and the boundary conditions are linear and homo-
geneous, we use the superposition principle to write the solution as a linear combination
of the solutions that we found in part (c)

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

Xn(x) · Tn(t).

If kL
πc

is not a positive integer, then

k2 − n2π2c2

L2 6= 0,

and either 1 6 n < kL
πc
, or n > kL

πc
, so we are in Case 2 or Case 3, and the solution is

u(x, t) = e−kt
∑

16n<kL/πc

sin nπx
L
(an coshαnt+ bn sinhαnt)

+ e−kt
∑

kL/πc<n<∞
sin nπx

L
(an cosαnt + bn sinαnt)

where these sums run over nonnegative integers only, and αn =

√∣∣∣k2 −
(
nπc
L

)2∣∣∣.

Also, to satisfy the initial conditions, the an are the Fourier sine coefficients for the
odd periodic extension of f(x), that is,

an =
2

L

∫ L

0

f(x) sin nπx
L
dx

for n = 1, 2, . . . .
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If we differentiate this expression for u(x, t) with respect to t, and set t = 0, then we
see that −kan+αnbn are just the Fourier sine coefficients of the odd periodic extension
of g(x), that is,

−kan + αnbn =
2

L

∫ L

0

g(x) sin nπx
L
dx

for n = 1, 2, . . . .

(e) If kL
πc

is a positive integer, then we have to add the corresponding term in the sum
when the n = kL

πc
.

In this case, if n0 =
kL
πc
, the solution is as in (d) with the one additional term

sin kx
c
(akL/πce

−kt + bkL/πcte
−kt)

with an and bn as in (d), except that bkL/πc is determined from the equation

−kakL/πc + bkL/πc =
2

L

∫ L

0

g(x) sin kx
c
dx.

3.2 Nonhomogeneous Equations
We saw in the previous section that the method of separation of variables can not be directly
applied to problems where either the PDE or the boundary conditions are nonhomogeneous.
To handle problems of this type, where either the PDE or the boundary conditions are
nonhomogeneous, we split the problem into two parts: one part is an ODE to which the
nonhomogeneities are attached, and another part consisting of the homogeneous counterpart
of the original PDE This is best illustrated by means of an example.

EXAMPLE 3.1. Consider the following nonhomogeneous, 1–dimensional heat equation:

∂u

∂t
=
∂2u

∂x2
+ γ, 0 6 x 6 1, t > 0,

u(0, t) = cL (γ, cL, cR are positive constants)

u(1, t) = cR

u(x, 0) = 0.

This problem governs the temperature inside a one–dimensional rod of unit length in which
heat is generated internally. Notice that neither the PDE nor the boundary conditions are
homogeneous.

If we try the usual separation of variables form of solution u(x, t) = X(x)T (t) in the
PDE we get

T ′

kT
=
X ′′

X
+

γ

kXT
,

which is not separable, and if we try this in the boundary conditions we get the inconsistency

T (t) =
c1

X(0)
=

c2
X(ℓ)

.
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What we will do is split the solution into two pieces

u(x, t) = v(x) + w(x, t). (3.1)

Inserting this into the original PDE yields

wt = wxx + v′′ + γ.

We have a single PDE in two unknown functions: v and w. Since we have two unknowns,
we need two equations. We impose the following condition:

v′′ + γ = 0.

If we now insert (3.1) into the boundary conditions we get

v(0) + w(0, t) = cL,

v(1) + w(1, t) = cR.

Impose the conditions v(0) = cL and v(1) = cR. The initial condition becomes

v(x) + w(x, 0) = 0 or w(x.0) = −v(x).

Putting everything together we get that v satisfies

v′′ = −γ, 0 6 x 6 1,

v(0) = cL, 1v(1) = cR,

and w satisfies

∂w

∂t
=
∂2w

∂x2
0 6 x 6 1, 1t > 0,

w(0, t) = 0,

w(1, t) = 0,

w(x, 0) = −v(x).

The nonhomogeneities of the original problem have been shifted over to the ODE for v.
The problem for w is a linear, homogeneous PDE with homogeneous boundary conditions.

Solving the problem for v we get

v(x) = −1

2
γx2 + (

1

2
γ − cL + cR)x+ cL.

To solve the problem for w we apply separation of variables:

w(x, t) = X(x)T (t).



56

This leads to

Problem for T : Problem for X :

T ′ + λT = 0, X ′′ + λX = 0,

X(0) = X(1) = 0.

Solving the problem for X , we get a nontrivial solution only for λ > 0:

λ = λn = n2π2, X = Xn(x) = sin(nπx), n = 1, 2, . . . .

This means that T = Tn(t) = e−n2π2t and the family of solutions we get for w is

wn(x, t) = Xn(x)Tn(t) = e−n2π2t sin(nπx), n = 1, 2, . . . .

For each n = 1, 2, . . . wn is a solution to the PDE for w which also satisfies the homogeneous
boundary conditions. We construct more general solutions by applying the principle of
superposition:

w(x, t) =
∞∑

n=1

bnXn(x)Tn(t) =
∞∑

n=1

bne
−n2π2t sin(nπx).

We now apply the initial condition w(x, 0) = −v(x) to get

−v(x) =
∞∑

n=1

bn sin(nπx). (Fourier sine series)

Since we have a Fourier sine series, we let vo be the odd, 2ℓ-periodic extension of v (with
ℓ = 1) so we get

bn =
1

ℓ

∫ ℓ

−ℓ

−vo(x) sin(
nπx

ℓ
) dx = −2

∫ 1

0

v(x) sin(nπx) dx

= −2

∫ 1

0

[−1

2
γx2 + (

1

2
γ − cL + cR)x+ cL] sin(nπx) dx

=
2γ

n3π3
[(−1)n − 1] +

2

nπ
[cL − (−1)ncR]. (3.2)

The final solution is

u(x, t) = v(x) + w(x, t) = v(x) +

∞∑

n=1

bne
−n2π2t sin(nπx)

= −1

2
γx2 + (

1

2
γ − cL + cR)x+ cL + 2

∞∑

n=1

{
2γ

n3π3
[(−1)n − 1] +

2

nπ
[cL − (−1)ncR]

}
e−n2π2t sin(nπx
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Notice that lim
t→∞

u(x, t) = lim
t→∞

{v(x)+w(x, t)} = v(x). For this reason, w is sometimes called

the transient solution, while v(x) is called the equilibrium solution, or the steady

state solution. For the special case γ = 0, the solution reduces to

u(x, t) = (cR − cL)x+ cL +
2

π

∞∑

n=1

1

n
[cL − (−1)ncR]e

−n2π2t sin(nπx).

Here we plot some results with the following parameter values: γ = 15, cL = 1, cR = 2.
Figure 3.1 contains a plot of the steady state solution v(x). Figure 3.2 shows approximations
to u(x, t) by using a truncated series with N = 5, 50, at early times. In Figure 3.3 we show
the evolution of u(x, t) as time t → 0.6. Notice that convergence to the limiting solution
takes place very quickly.

Figure 3.1: Steady state solution v(x)

Figure 3.2: Different approximations for u(x, t) with N = 5, 50

The previous example dealt with a nonhomogeneous problem in which the nonhomo-
geneities, both in the PDE and in the boundary conditions, were constant. In the next
example we consider a problem with non–constant nonhomogeneities.
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EXAMPLE 3.2. Consider the following nonhomogeneous, 1–dimensional heat equation:

∂u

∂t
=
∂2u

∂x2
+ γ(x, t), 0 6 x 6 1, t > 0,

u(0, t) = cL(t) (γ, cL, cR are positive constants)

u(1, t) = cR(t)

u(x, 0) = g(x).

The technique we employed in the previous example, namely writing u(x, t) = v(x)+w(x, t),
won’t work in this case since nonhomogeneous terms depend on the time t. In order to solve
this problem we proceed in two steps. First we remove the nonhomogeneous terms from the
boundary conditions (actually move them up into the PDE itself) and then we solve the
nonhomogeneous PDE with homogeneous boundary conditions.

In the previous example we saw, that for γ = 0, that v was a linear function, i.e. v was
of the form v(x) = a+ bx. This suggests that we try writing u as follows:

u(x, t) = A(t) + xB(t) + w(x, t), (3.3)

where A and B are chosen to eliminate the nonhomogeneous terms in the boundary condi-
tions. Plugging this expression into the boundary conditions yields

u(0, t) = cL(t)
u(1, t) = cR(t)

}
=⇒

{
A(t) + w(0, t) = cL(t)

A(t) +B(t) + w(1, t) = cR(t)
.

We want homogeneous boundary conditions for w, so we choose

A(t) := cL(t), B(t) := cR(t)− cL(t).

This leads to w(0, t) = w(1, t) = 0. Now plugging (3.3) into the PDE gives:

A′(t) + xB′(t) +
∂w

∂t
=
∂2w

∂x2
+ γ(x, t),

and the initial condition becomes A(0) + xB(0) + w(x, 0) = g(x). The problem for w is:

∂w

∂t
=
∂2w

∂x2
+ F (x, t), (3.4)

w(0, t) = 0, 1w(1, t) = 0,

w(x, 0) = f(x),

where

F (x, t) := γ(x, t)− A′(t)− xB′(t),

f(x) := −A(0)− xB(0) + g(x),

A(t) := cL(t),

B(t) := cR(t)− cL(t).
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Equation (3.4) is still nonhomogeneous but the boundary conditions associated with it are
homogeneous. Before solving (3.4), we consider the homogeneous problem associated with
it, namely

∂v

∂t
=
∂2v

∂x2
, (3.5)

v(0, t) = 0, 1v(1, t) = 0,

v(x, 0) = f(x).

This problem is now in the form of the problem in Example 1.9. Applying separation of
variables v(x, t) = X(x)T (t) leads to

X = Xn(x) = sin(nπx), T = Tn(t) = e−n2π2t, n = 1, 2, 3, . . . .

We know that any piecewise continuous function can be expanded in a Fourier series, in this
case a Fourier sine series. In particular

f(x) =

∞∑

n=1

fn sin(nπx),

F (x, t) =
∞∑

n=1

Fn(t) sin(nπx),

where

fn = 2

∫ 1

0

f(x) sin(nπx) dx,

Fn(t) = 2

∫ 1

0

F (x, t) sin(nπx) dx.

The homogeneous problem sets the stage for this problem. We use the eigenfucntions of the
homogeneous problem to exoand the solution as

w(x, t) =

∞∑

n=1

wn(t)Xn(x) =

∞∑

n=1

wn(t) sin(nπx), (3.6)

which is called method of eigenfunction expansion. Plugging this into (3.4) gives

∞∑

n=1

w′
n(t) sin(nπx) = −

∞∑

n=1

n2π2wn(t) sin(nπx) +

∞∑

n=1

Fn(t) sin(nπx)

which, upon rearrangement gives

∞∑

n=1

[
w′

n(t) + n2π2wn(t)− Fn(t)
]
sin(nπx) = 0.
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If we plug (3.6) into the initial condition associated with (3.4), we get

∞∑

n=1

wn(0) sin(nπx) =

∞∑

n=1

fn sin(nπx).

This leads to the following ODEs for the wn’s:

w′
n(t) + n2π2wn(t) = Fn(t), n = 1, 2, 3, . . . ,

wn(0) = fn.

This is a first order, homogeneous linear ODE , which can always be solved by means of an
integrating factor. The solution is

wn(t) = e−n2π2t

[
fn +

∫ t

0

en
2π2sFn(s) ds

]
.

Thus, the solution to the original problem is:

u(x, t) = A(t) + xB(t) +
∞∑

n=1

wn(t) sin(nπx),

where

wn(t) = e−n2π2t

[
fn +

∫ t

0

en
2π2sFn(s) ds

]
,

Fn(t) = 2

∫ 1

0

F (x, t) sin(nπx) dx,

fn = 2

∫ 1

0

f(x) sin(nπx) dx,

F (x, t) := γ(x, t)− A′(t)− xB′(t),

f(x) := −A(0)− xB(0) + g(x),

A(t) := cL(t),

B(t) := cR(t)− cL(t).

Speial cases:

1. (γ ≡ cL ≡ cR ≡ 0). (i.e. homogeneous case)
Then A(t) ≡ B(t) ≡ F (x, t) ≡ 0, f(x) = g(x), wn(t) = gne

−n2π2t and

u(x, t) =
∞∑

n=1

gne
−n2π2t sin(nπx).
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2. (γ, cL, cR constant, g(x) ≡ 0). (i.e. Example 3.1)
Then A = cL, B = cR − cL, A

′ ≡ B′ ≡ 0, F (x, t) = γ, f(x) = −cl − (cR − cL)x,

fn = 2

∫ 1

0

f(x) sin(nπx) dx =
2

nπ
[cl − (−1)ncR],

Fn(t) = 2

∫ 1

0

γ sin(nπx) dx =
2γ

nπ
[1− (−1)n].

This gives

wn(t) = e−n2π2t

[
fn + Fn

∫ t

0

en
2π2s ds

]

= e−n2π2t

[
fn +

Fn

n2π2
(en

2π2t − 1)

]
=

(
fn −

Fn

n2π2

)
en

2π2t +
Fn

n2π2
.

Therefore

u(x, t) = A(t) + xB(t) +

∞∑

n=1

wn(t) sin(nπx) = −f(x) +
∞∑

n=1

wn(t) sin(nπx)

=

∞∑

n=1

[wn(t)− fn] sin(nπx) =

∞∑

n=1

[(
fn −

Fn

n2π2

)
en

2π2t +
Fn

n2π2
− fn

]
sin(nπx)

=
∞∑

n=1

(
fn −

Fn

n2π2

)(
en

2π2t − 1
)
sin(nπx).

Does this agree with the result of Example 3.1? To see that it does, recall that

−v(x) =
∞∑

n=1

bn sin(nπx),

where the bn’s are given by (3.2). Thus, we have

fn −
Fn

n2π2
=

2

nπ
[cl − (−1)ncR]−

2γ

n3π3
[1− (−1)n] = bn.

Therefore

u(x, t) =

∞∑

n=1

bn

(
en

2π2t − 1
)
sin(nπx)

= −
∞∑

n=1

bn sin(nπx) +
∞∑

n=1

bne
n2π2t sin(nπx) = v(x) +

∞∑

n=1

bne
n2π2t sin(nπx).
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We now have a relatively systematic way to handle nonhomogeneities that may arise in
our PDEs and/or boundary conditions. The crucial part is being able to solve the corre-
sponding homogeneous problem. In the examples we have considered thus far, the homoge-
neous PDEs have been relatively easy to solve. Suppose we now consider some slightly more
complicated homogeneous PDEs. Recall the general heat equation:

∂u

∂t
=

1

ρc

→
∇ · (K

→
∇u) + h

ρc
,

where ρ is density, c is heat capacity, K is thermal conductivity, and h is the rate of internal
heat generation. Let us consider the one–dimensional case with h = h1u:

ρ(x)c(x)
∂u

∂t
=

∂

∂x

[
K(x)

∂u

∂x

]
+ h1(x)u

1 + auxiliary conditions

If we try separation of variables u(x, t) = X(x)T (t) on this equation we get

ρcXT ′ =
d

dx
(KX ′)T + h1XT

which separates to

T ′

T
=

(KX ′)′

ρcX
+
h1
ρc

= −λ.

The equation for X is (KX ′)′+(h1+λρc)X = 0. This second order ODE with nonconstant
coefficients is, of course, much more difficult to solve than the X ′′ + λX = 0 equation we
had before. In general, we need to consider ODEs of the following type:

(r(x)φ′)′ + [q(x) + λp(x)]φ = 0, x ∈ (a, b),

1 + boundary conditions.

Notice that for the case r(x) ≡ p(x) ≡ 1 and q(x) ≡ 0 this ODE reduces to φ′′ + λφ = 0,
which is the simple ODE that what we had before. The question is: for what values of λ will
nontrivial solutions exist? These eigenvalue problems are called Sturm–Liouville problems
and will be the subject of study in the next chapter.
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Exercise 3.3. %%
Solve the nonhomogeneous heat equation with time-dependent source

∂u

∂t
= k

∂2u

∂x2
+Q(x, t)

u(x, 0) = f(x)

and nonhomogeneous boundary conditions

u(0, t) = A(t) and
∂u

∂x
(L, t) = B(t).

Hint: Reduce the problem to one with homogeneous boundary conditions
by writing u(x, t) = w(x, t) + v(x, t) and assuming that v satisfies just the
boundary conditions (and nothing else), then use the method of eigenfunction
expansions to solve for w(x, t).

Solution: If u(x, t) is a solution to the problem (∗), we reduce the problem to one with
homogeneous boundary conditions by writing

u(x, t) = v(x, t) + w(x, t)

where v(x, t) satisfies only the boundary conditions

v(0, t) = A(t) (∗∗)

∂v

∂x
(L, t) = B(t)

for t > 0. We take the simplest possible such function, namely,

v(x, t) = B(t) x+ A(t),

then

u(x, t) = w(x, t) +B(t) x+ A(t),

and
∂u

∂t
=
∂w

∂t
+
dB(t)

dt
x+

dA(t)

dt
,

and
∂2u

∂x2
=
∂2w

∂x2
.

Therefore
∂w

∂t
= k

∂2w

∂x2
− dB(t)

dt
x− dA(t)

dt
+Q(x, t).
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Also,
A(t) = u(0, t) = w(0, t) + A(t) so that w(0, t) = 0,

while

B(t) =
∂u

∂x
(L, t) =

∂w

∂x
(L, t) +B(t) so that

∂w

∂x
(L, t) = 0.

Therefore, w(x, t) satisfies the problem with homogeneous boundary conditions given by

∂w

∂t
= k

∂2w

∂x2
− dB(t)

dt
x− dA(t)

dt
+Q(x, t), 0 6 x 6 L, t > 0 (∗ ∗ ∗)

w(0, t) = 0, t > 0

∂w

∂x
(L, t) = 0, t > 0

w(x, 0) = f(x)− B(0) x−A(0), 0 6 x 6 L.

The initial value–boundary value problem for w(x, t) now consists of a nonhomogeneous
partial differential equation, but with homogeneous boundary conditions. As is usual with
nonhomogeneous equations, we first find the solution to the homogeneous problem

∂w

∂t
= k

∂2w

∂x2

w(0, t) = 0

∂w

∂x
(L, t) = 0

using separation of variables. Assuming a solution of the form w(x, t) = φ(x) · T (t), we get
two ordinary differential equations:

φ′′(x) + λφ(x) = 0, 0 6 x 6 L, T ′(t) + λk T (t) = 0, t > 0,

φ(0) = 0

φ′(L) = 0

The eigenvalues are

λn =

(
(2n− 1)π

2L

)2

with corresponding eigenfunctions

φn(x) = sin (2n−1)πx
2L

for n > 1.

Now, we are not solving the T equation and finding the general solution to the ho-
mogeneous problem, instead we use the method of eigenfunction expansions to write the
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solution w(x, t) to (∗ ∗ ∗), the nonhomogeneous problem, in terms of the eigenfunctions of
the homogeneous problem:

w(x, t) =

∞∑

n=1

an(t) sin
(2n−1)πx

2L
, (†)

where indexVariation of parameters(similar to the method of variation of parameters) the
coefficients an(t) depend on t.

Next, we force this to be a solution to the equation (∗ ∗ ∗) by requiring that each an(t)
satisfies a first-order ordinary differential equation together with an initial condition. We
look at the initial conditions first, when t = 0 we want

w(x, 0) = f(x)− B(0) x−A(0) =
∞∑

n=1

an(0) sin
(2n−1)πx

2L
,

and from the orthogonality of the eigenfunctions on the interval [0, L], we find the coefficients

an(0) =
2

L

∫ L

0

[f(x)−B(0) x− A(0)] sin (2n−1)πx
2L

dx

for n > 1.

Now from (†) we have

∂w

∂t
=

∞∑

n=1

dan(t)

dt
sin (2n−1)π

2L
x and

∂2w

∂x2
= −

∞∑

n=1

an(t)
(

(2n−1)π
2L

)2
sin (2n−1)πx

2L
,

and substituting these expressions into the equation (∗ ∗ ∗), after some simplification, we
obtain ∞∑

n=1

[
dan
dt

+ kλn an

]
sin (2n−1)πx

2L
= −dB(t)

dt
x− dA(t)

dt
+Q(x, t).

The left-hand side of this equation is just the generalized Fourier series of the function

g(x, t) = −dB(t)

dt
x− dA(t)

dt
+Q(x, t),

so that

dan
dt

+ kλn an =
2

L

∫ L

0

g(x, t) sin (2n−1)πx
2L

dx = Gn(t), (††)

and an(t) satisfies the initial-value problem

dan(t)

dt
+ kλn an(t) = Gn(t), t > 0

an(0) =
2

L

∫ L

0

[f(x)− B(0) x−A(0)] sin (2n−1)πx
2L

dx.
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Multiplying by the integrating factor eλn kt, we can solve this first-order linear equation
to get

an(t) = an(0)e
−λn kt + e−λn kt

∫ t

0

Gn(s)e
λn ks ds, t > 0 († † †)

for n > 1.

The solution to the original equation is

u(x, t) = B(t) x+ A(t) +

∞∑

n=1

an(t) sin
√
λn x

for 0 6 x 6 L, t > 0, where

λn =

(
(2n− 1)π

2L

)2

and an(t) is given by († † †) for n > 1.
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Figure 3.3: Time evolution of u(x, t) with N = 5



Chapter 4

Sturm-Liouville Problems

June 17, 2010

4.1 Formulaton
Consider the following ODE for an unknown function φ(x) together with boundary condi-
tions:

(p(x)φ′)′ + [q(x) + λσ(x)]φ = 0, a 6 x 6 b, (4.1)

α1φ(a)− β1φ
′(a) = 0,

α2φ(b) + β2φ
′(b) = 0.

The function φ(x) ≡ 0 is always a solution, called the trivial solution. What we wish to
determine is for what values of the constant λ, if any, do nontrivial solutions exist. Such
problems are generally called eigenvalue problems.

Definition 26. A regular Sturm–Liouville eigenvalue problem denotes the prob-
lem to find a pair (φ, λ) of eigenfucntion and eigenvalue which solve (4.1), where

(i) p, p′, q, σ are continuous for a 6 x 6 b;
(ii) p(x) > 0 and σ(x) > 0 for a 6 x 6 b;
(iii) α2

1 + β2
1 6= 0 and α2

2 + β2
2 6= 0.

Definition 27. A Sturm–Liouville problem is called singular if at least one of the condi-
tions in the above definition fails.

The most common singular Sturm–Liouville problem one encounters is one where p(x) > 0
for a < x < b, but either p(a) = 0 or p(b) = 0.

EXAMPLE 4.1. Consider the following boundary value problem that we have solved sev-
eral times before:

φ′′ + λφ = 0, 0 6 x 6 ℓ,

φ(0) = φ(ℓ) = 0.

68
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This is a regular Sturm–Liouville problem with p(x) ≡ σ(x) ≡ 1, q(x) ≡ 0, and α1 = α2 = 1,
β1 = β2 = 0. Nontrivial solutions exist only for

λ = λn =
n2π2

ℓ2
, n = 1, 2, 3, . . . , (eigenvalues)

φn(x) = sin(
nπx

ℓ
). (eigenfunctions)

Clearly λn > 0 for all n and lim
n→∞

λn = lim
n→∞

n2π2

ℓ2
= ∞.

Figure 4.1: Eigenfunctions φ1(x), φ2(x) φ3(x)

Definition 28. The values of λ for which nontrivial solutions to (4.1) exist are called eigen-

values. The set of all eigenvalues is the called spectrum. The nontrivial solution corre-
sponding to an eigenvalue is called an eigenfunction.

4.2 Properties of Sturm–Liouville Problems
Theorem 29. A regular Sturm–Liouville problem has an infinite spectrum.

Theorem 30. If λm and λn are distinct eigenvalues to a regular Sturm–Liouville problem
(i.e. λm 6= λn), then the corresponding eigenfunctions φm and φn are orthogonal relative to
the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)σ(x) dx.

Proof.
Since φm and φn are solutions to the Sturm–Liouville problem, they satisfy the boundary
conditions:

α1φm(a)− β1φ
′
m(a) = 0, α2φm(b) + β2φ

′
m(b) = 0,

α1φn(a)− β1φ
′
n(a) = 0, α2φn(b) + β2φ

′
n(b) = 0.

The boundary condition at x = a can be written in matrix form

[
φm(a) φ′

m(a)
φn(a) φ′

n(a)

] [
α1

−β1

]
=

[
0
0

]
.
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Since α2
1 + β2

1 6= 0, the determinant of the coefficient matrix must be singular
∣∣∣∣
φm(a) φ′

m(a)
φn(a) φ′

n(a)

∣∣∣∣ = 0.

Therefore
φm(a)φ

′
n(a)− φ′

m(a)φn(a) = 0. (4.2)

A similar argument at the right boundary x = b yields

φm(b)φ
′
n(b)− φ′

m(b)φn(b) = 0. (4.3)

Since φm and φn also satisfy the ODE we have

(p(x)φ′
m)

′ + [q(x) + λmσ(x)]φm = 0,

(p(x)φ′
n)

′ + [q(x) + λnσ(x)]φn = 0.

Multiplying the first by φn and the second by φm and subtracting yields

φn(pφ
′
m)

′ − φm(pφ
′
n)

′ + (λm − λn)σ φmφn = 0.

Integrating over the interval gives

∫ b

a

[φn(pφ
′
m)

′ − φm(pφ
′
n)

′] dx = (λn − λm)

∫ b

a

φmφn σ dx = 0.

Further manipulation results in

(λn − λm) 〈φm, φn〉 =
∫ b

a

[φn(pφ
′
m)

′ − φm(pφ
′
n)

′] dx

= pφnφ
′
m

∣∣∣∣
b

a

−
∫ b

a

pφ′
mφ

′
n dx− pφmφ

′
n

∣∣∣∣
b

a

+

∫ b

a

pφ′
mφ

′
n dx

= p(φnφ
′
m − φmφ

′
n)

∣∣∣∣
b

a

−
∫ b

a

p(φ′
mφ

′
n − φ′

mφ
′
n) dx

= p(b)[φn(b)φ
′
m(b)− φm(b)φ

′
n(b)]− p(a)[φn(a)φ

′
m(a)− φm(a)φ

′
n(a)]

= 0.

But, since the eigenvalues are distinct, we have 〈φm, φn〉 = 0. Thus, the eigenfunctions
corresponding to distinct eigenvalues are orthogonal.

EXAMPLE 4.2. (Cauchy – Euler equation)

(xφ′)′ +
λ

x
φ = 0, 1 6 x 6 ℓ,

φ(1) = 0, φ(ℓ) = 0.
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This is a regular Sturm–Liouville problem with p(x) = x, σ(x) = 1/x, q(x) = 0, and
α1 = α2 = 1, β1 = β2 = 0.

Making the transformation

x = es, u(s) = φ(x),

leads to
u′′ + λu = 0.

This is easily solved (with λ = µ2) to give

u(s) = c1 cosµs+ c2 sin µs.

Therefore
φ(x) = c1 cos(µ ln x) + c2 sin(µ lnx).

Applying the boundary conditions yields

λn =
n2π2

(ln ℓ)2
, n = 1, 2, . . . , (eigenvalues)

φn(x) = sin(nπ
ln x

ln ℓ
). (eigenfunctions)

For m 6= n we have

〈φm, φn〉 =
∫ ℓ

1

sin(mπ lnx
ln ℓ

) sin(nπ lnx
ln ℓ

)

x
dx =

ln ℓ

π

∫ π

0

sin(mt) sin(nt) dt 6(using t =
π ln x

ln ℓ
)

=
ln ℓ

2π

∫ π

0

[cos(n−m)t− cos(n+m)t] dt =
ln ℓ

2π

[
sin(n−m)t

n−m
− sin(n+m)t

n+m

]π

0

= 0.

Therefore eigenfunctions are orthogonal.

Theorem 31.

1. The regular Sturm–Liouville problem has an infinite spectrum with λn → ∞ as n→ ∞.

2. If the eigenvalues are ordered λ1 < λ2 < · · · , then the eigenfunction corresponding to
λn has exactly (n− 1) zeros in the interval a < x < b.

3. If q(x) 6 0, α1β1 > 0 and α2β2 > 0, then λn > 0 for all n.

Proof.
(part (3) only)
The inner product we use is one with weight function σ(x):

〈�,△〉 :=
∫ b

a

�△σ(x) dx.



72

Let λn be an eigenvalue with corresponding eigenfunction φn. Then

(p(x)φ′
n)

′ + [q(x) + λnσ(x)]φn = 0.

Manipulating, we get

λn‖φn‖2 = λn 〈φn, φn〉 = λn

∫ b

a

φ2
n(x)σ(x) dx

= −
∫ b

a

q(x)φ2
n(x) dx−

∫ b

a

[p(x)φ′
n(x)]

′φn(x), dx

=: An +Bn.

We have

An = −
∫ b

a

q(x)φ2
n(x) dx > 0, (since, by assumption q(x) 6 0)

Bn = −
∫ b

a

[p(x)φ′
n(x)]

′φn(x), dx = −p(x)φ′
n(x)φn(x)

∣∣∣∣
b

a

+

∫ b

a

p(x)φ′
n(x) dx =: Cn +Dn.

Clearly

Dn =

∫ b

a

p(x)φ′
n(x) dx > 0, (since, by assumption p(x) > 0)

and
Cn = Fn(a)− Fn(b), where Fn(x) := p(x)φn(x)φ

′
n(x).

We first examine Fn(a). There are two possibilities: either β1 = 0 or β1 6= 0. We have

β1 = 0 =⇒ φn(a) = 0 =⇒ Fn(a) = 0

β1 6= 0 =⇒ φ′
n(a) =

α1

β1
φn(a) =⇒ Fn(a) =

α1

β1
p(a)φ2

n(a) > 0.

Either way, Fn(a) > 0. Similarly for Fn(b). There are two possibilities: either β2 = 0 or
β2 6= 0. We have

β2 = 0 =⇒ φn(b) = 0 =⇒ Fn(b) = 0

β2 6= 0 =⇒ φ′
n(b) = −α2

β2
φn(b) =⇒ Fn(b) = −α2

β2
p(b)φ2

n(b) 6 0.

Either way, Fn(b) 6 0. Therefore Cn = Fn(a)− Fn(b) > 0. Finally

λn‖φn‖2 = An + Cn +Dn > 0.

But ‖φn‖2 6= 0, therefore λn > 0.
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4.3 Eigenfunction Expansions
Consider the regular Sturm–Liouville problem

(p(x)φ′)′ + [q(x) + λσ(x)]φ = 0, a 6 x 6 b, (4.4)

α1φ(a)− β1φ
′(a) = 0,

α2φ(a) + β2φ
′(a) = 0.

Denote the eigenvalues by λn and the corresponding eigenfunctions by φn. Define the inner
product

〈f, g〉 :=
∫ b

a

f(x)g(x)σ(x) dx.

We know that 〈φm, φn〉 = 0 for m 6= n.

Question: Can we represent a function f defined on (a, b) by a series of eigenfunctions?

i.e. f(x) =

∞∑

n=1

cnφn(x).

Assume for the moment that this is the case. Then the coefficients of the series are calculated
as follows:

〈f, φm〉 =
〈 ∞∑

n=1

cnφn, φm

〉
=

∞∑

n=1

cn 〈φn, φm〉

= c1 〈φ1, φm〉+ c2 〈φ2, φm〉+ · · ·+ cm 〈φm, φm〉+ · · ·
= 0 + 0 + · · ·+ 0 + cm‖φm‖2 + 0 + · · ·

Therefore

cm =
〈f, φm〉
‖φm‖2

.

Definition 32. Let f be a piecewise continuous function on [a, b]. The eigenfucntion expan-
sion

f(x) ∼
∞∑

n=1

cnφn(x)

with coefficients

cn =
〈f, φn〉
‖φn‖2

where the inner product is based on the weight function σ(x), is called a generalized

Fourier series of f .

Theorem 33. If f is piecewise smooth on (a, b), then the generalized Fourier series

∞∑

n=1

cnφn(x), where cn =
〈f, φn〉
‖φn‖2

,
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converges to
f(x+) + f(x−)

2
.

This says that if f is continuous at x (i.e. f(x+) = f(x−) = f(x)), then the eigenfunction
expansion converges to f(x) and if f has a jump discontinuity at x (i.e. f(x+) 6= f(x−)),
then the eigenfunction expansion converges to the point midway between the limiting values.

EXAMPLE 4.3. Consider the regular Sturm–Liouville problem

φ′′ + λφ = 0, 0 < x < 1,

φ(0) = 0,

2φ(1)− φ′(1) = 0.

Note that in this case α2β2 = −2 < 0, hence Theorem 31 does not guarantee non-negative
eigenvalues.

• case (i): (λ 6 0)
Let λ = −µ2. Then

φ′′ − µ2φ = 0 =⇒ φ(x) = a cosh(µx) + b sinh(µx).

The left boundary condition gives us

φ(0) = 0 =⇒ a = 0 =⇒ φ(x) = b sinh(µx).

The right boundary condition now gives us

2φ(1)− φ′(1) = 0 =⇒ 2b sinh(µ)− bµ cosh(µ) = 0 =⇒ tanh(µ) =
µ

2
.

This equation has a solution at µ = 0,±µ0. Only µ0 yields a nontrivial solution

φ0(x) = sinh(µ0x).

• case (ii): (λ > 0)
Let λ = µ2 6= 0. Then

φ′′ + µ2φ = 0 =⇒ φ(x) = a cos(µx) + b sin(µx).

The left boundary condition gives us

φ(0) = 0 =⇒ a = 0 =⇒ φ(x) = b sin(µx).

The right boundary condition now gives us

2φ(1)− φ′(1) = 0 =⇒ 2b sin(µ)− bµ cos(µ) = 0 =⇒ tan(µ) =
µ

2
.

This equation has infinitely many solutions µ1, µ2, . . . with φn(x) = sin(µmx).
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To summarize, we have an infinite set of eigenvalues:

−µ2
0, µ

2
1, µ

2
2, . . . , where tanhµ0 =

µ0

2
, tanµn =

µn

2
, n = 1, 2, 3, · · · ,

with corresponding eigenfunctions

φ0(x) = sinh(µ0x), φn(x) = sin(µnx), n = 1, 2, 3, · · · .

The norms of the eigenfunctions are given by

n = 0 : ‖φ0‖2 = 〈φ0, φ0〉 =
∫ 1

0

sinh2(µ0x)dx =
1

2

(
1− sinh(2µ0)

2µ0

)
,

n 6= 0 : ‖φn‖2 = 〈φn, φn〉 =
∫ 1

0

sin2(µnx)dx =
1

2

(
1− sin(2µn)

2µn

)
,

An eigenfunction expansion for a function f ∈ PC(0, 1) is given by

f(x) ∼
∞∑

n=0

cnφn(x), where cn =
〈f, φn〉
‖φn‖2

.

Exercise 4.1. %
Given the boundary value problem

y′′ +

(
1 + λx

x

)
y = 0

y(1) = 0

y(2) = 0,

on the interval [1, 2]. Put the equation in Sturm-Liouville form and decide
whether the problem is regular or singular.

Solution: An equation is in Sturm-Liouville form if it has the form

(p(x) y′)
′
+ q(x) y + λσ(x) y = 0.

We can rewrite the boundary value problem above in the form

(1 · y′)′ + 1

x
y + λ y = 0

y(1) = 0

y(2) = 0
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and here p(x) = 1, p′(x) = 0, q(x) =
1

x
, σ(x) = 1 are all continuous on the interval [1, 2],

with p(x) > 0 and r(x) > 0 for all x ∈ [1, 2].

The boundary conditions are of the form

c1y(1) + c2y
′(1) = 0

d1y(2) + d2y
′(2) = 0

where c1 = d1 = 1 and c2 = d2 = 0, and so are Sturm-Liouville type boundary conditions.

Therefore, this is a regular Sturm-Liouville problem on the interval [1, 2].

Exercise 4.2. %%
Consider the regular Sturm-Liouville problem

φ′′ + λ2 φ = 0 0 6 x 6 π

φ′(0) = 0

φ(π) = 0

(a) Find the eigenvalues λ2n and the corresponding eigenfunctions φn for this
problem.

(b) Show directly, by integration, that eigenfunctions corresponding to dis-
tinct eigenvalues are orthogonal.

(c) Given the function f(x) =
π2 − x2

2
, 0 < x < π, find the eigenfunction

expansion for f.

(d) Show that
π3

32
= 1− 1

33
+

1

53
− 1

73
+

1

93
−+ · · ·

Solution:

(a) case(i): λ = 0

The general solution to the equation φ′′ + λ2φ = 0 in this case is

φ(x) = c1 x+ c2,

and differentiating, φ′(x) = c1, and the condition φ′(0) = 0 implies that c1 = 0. The
condition φ(π) = 0 implies that c2 = 0, so there are no nontrivial solutions in this case.

case(ii): λ 6= 0 The general solution to the equation φ′′ + λ2φ = 0 in this case is

φ(x) = c1 cos λx+ c2 sinλx,
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and differentiating, we get

φ′(x) = −c1λ sinλx+ c2λ cosλx.

The condition φ′(0) = 0 implies that c2 λ = 0, and so c2 = 0. The solution is then

φ(x) = c1 cosλx,

and the condition φ(π) = 0 implies that cosλπ = 0, and therefore the eigenvalues are

λ2 = λ2n =
(
2n−1
2

)2
,

for n > 1. The corresponding eigenfunctions are

φn(x) = cos (2n−1)
2

x,

for n > 1.

(b) Let λn = 2n−1
2

for n=1,2,3,. . . , then for m 6= n, we have
∫ π

0

φm(x)φn(x) dx =

∫ π

0

cos λmx cosλnx dx

=
1

2

∫ π

0

{cos(λm + λn)x+ cos(λm − λn)x} dx

=
1

2(λm + λn)
sin(λm + λn)x

∣∣∣∣
π

0

+
1

2(λm − λn)
sin(λm − λn)x

∣∣∣∣
π

0

=
1

2(λm + λn)
sin(λm + λn)π +

1

2(λm − λn)
sin(λm − λn)π

= 0

since (λm + λn)π = (m+ n− 1)π and (λm − λn)π = (m− n)π.

(c) Writing

f(x) =
π2 − x2

2
∼

∞∑

n=1

cnφn(x),

the coefficients cn in the eigenfunction expansion are found using the orthogonality of
the eigenfunctions on [0, π].

cn =
2

π

∫ π

0

(
π2 − x2

2

)
cosλnx dx

=
2

π

sinλnπ

λ3n
=

16

π(2n− 1)3
sin (2n−1)

2
π

=
16(−1)n+1

π(2n− 1)3
,
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where the integral was evaluated by repeated integration by parts.

Therefore, the eigenfunction expansion of f is given by

π2 − x2

2
∼ 16

π

∞∑

n=1

(−1)n+1

(2n− 1)3
cos (2n−1)

2
x.

(d) In this particular problem, the eigenfunction expansion is actually the Fourier cosine
series for f. Since the function f is piecewise smooth on the interval [0, π] and since
the even extension of f to [−π, π] is continuous at x = 0, then by Dirichlet’s theorem

the series converges to f(0) =
π2

2
when x = 0, and therefore

π3

32
= 1− 1

33
+

1

53
− 1

73
+

1

93
−+ · · ·

EXAMPLE 4.4. Here we summarize the four most frequent Sturm Liouville problems. The
underlying computations can be found in Part II within the problems on Sturm Liouville
problems. These SL-problems should be memorized:

Model type SL-problem Spectrum eigenfunctions

homogeneous φ′′(x) = −λφ(x) λn =
(
nπ
L

)2
, n = 1, 2, . . . φn = sin nπx

L

Dirichlet b.c. φ(0) = φ(L) = 0

homogeneous φ′′(x) = −λφ(x) λn =
(
nπ
L

)2
, n = 0, 1, . . . φn = cos nπx

L

Neumann b.c. φ′(0) = φ′(L) = 0

mixed b.c. I φ′′(x) = −λφ(x) λn =
(

(2n−1)π
2L

)2
, n = 1, 2, . . . φn = sin (2n−1)πx

2L

φ(0) = 0, φ′(L) = 0

mixed b.c. II φ′′(x) = −λφ(x) λn =
(

(2n−1)π
2L

)2
, n = 1, 2, . . . φn = cos (2n−1)πx

2L

φ′(0) = 0, φ(L) = 0

4.3.1 Rayleigh Quotient

It is often important to estimate the first (leading) eigenvalue. If the leading eigenvalue
is positive, then the system is stable, in the sense that small perturbations are damped and
the system converges to the equilibrium steady state. If the leading eigenvalue is negative,
then the system is unstable and small perturbations are amplified. This can have adverse
consequences to the system at hand (crashing bridges or towers, for example).

The Rayleigh quotient is a simple and elegant methods to estimate the leading eigenvalue.

Theorem 34. If (λn, φn) is a solution of a regular SL problem, then λn can be calculated by
the Rayleigh quotient

λn =
−p(x)φn(x)φ

′
n(x)|L0 +

∫ L

0
(p(x)φ′

n(x)
2 − q(x)φn(x)

2)dx
∫ L

0
φn(x)2σ(x)dx

(4.5)
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Proof.
Multiplication of the SL problem by φn gives

φn
d

dx
(pφ′

n) + qφ2
n + λnσφ

2
n = 0.

Integration and integrating py parts gives

0 =

∫ L

0

φn
d

dx
(pφ′

n)dx+

∫ L

0

qφ2
ndx+

∫ L

0

λnσφ
2
ndx

= φn(pφ
′
n)|L0 −

∫ L

0

φ′
npφ

′
ndx+

∫ L

0

qφ2
ndx+

∫ L

0

λnσφ
2
ndx

Hence (4.5) follows after rearrangement.

Lemma 35. If −pφnφ
′
n|L0 ≥ 0 and q ≤ 0 and 0 ≤ x ≤ L, then λn > 0!

We can write down the Rayleigh quotient for any function (it does not have to be an
eigenfunction). We define

R(u) =
−puu′|L0 +

∫ L

0
(pu′2 − qu2)dx

∫ L

0
u2σdx

We find that the leading eigenvalue is the smallest of all those Rayleigh quotients, for func-
tions that satisfy the correct boundary conditions:

Theorem 36. Let D(L) denote the set of all continuous functions that satisfy the boundary
conditions

α1u(0)− β1u
′(0) = 0, α2u(L) + β2u

′(L) = 0,

then
λ1 = min

u∈D(L)
R(u)

is the leading eigenvalue.

EXAMPLE 4.5. Find a good upper and lower estimate for the leading order eigenvalue of
the SL problem

2φ′′(x) + λφ(x) = 0, φ′(0) = φ′(L) = 0.

Here we have p = 2, q = 0, σ = 1 and the boundary term in R is

−pφφ′|L0 = −2φ(L)φ′(L)− 2φ(0)φ′(0) = 0.

Hence the Rayleigh quotient reads

R(φ) =

∫ L

0
2φ′(x)dx

∫ L

0
φ2(x)dx

≥ 0
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and a lower estimate is

λ1 ≥ 0.

To find an upper estimate, we choose a test function which satisfies the boundary conditions
(but possibly not the equation). For example w(x) = 5 satisfies the boundary conditions.
For this function we find

R(w) =

∫ L

0
2 · 0 dx

∫ L

0
25dx

= 0

hence

λ1 ≤ 0.

Together with the previous estimate we find

λ1 = 0.

We can compare the exact solution of this SL problem. With the transformation of λ/2 = µ
the above SL problem becomes

φ′′ + µφ = 0, φ′(0) = φ′(L) = 0,

which is one of our standard problems. The eigenvalues are λn = (nπ/L)2 for n = 0, 1, 2, . . . .
Hence the leading eigenvalue is λ0 = 0. Notice that here the leading eigenvalue is called λ0
just for convenience, since the index n starts at 0.

EXAMPLE 4.6. Find good upper and lower bounds for the leading eigenvalue of

φ′′ − xφ+ λφ = 0, φ′(0) = 0, φ′(1) + 2φ(i) = 0.

We have p = 1, q = −x, σ = 1 and the boundary term reads

−pφφ′|L0 = −φ(1)φ′(1) + φ(0)φ′(0) = 2φ(1)2 ≥ 0

Since q = −x ≤ 0 we have R(φ) ≥ 0, hence

λ1 ≥ 0.

For a lower estimate we choose a test function which satisfies the boundary conditions. Here
it is not so easy to guess a function, so we make the Ansatz:

w(x) = Ax2 +Bx+ C.

Substituting this function into the boundary conditions we get

0 = B, 2A+ 2A+ 2C = 0
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Hence B = 0 and C = −2A. We choose A = 1, then f(x) = x2 − 2 is a test function which
satisfies the boundary conditions. We compute

R(f) =
−ff ′|10 +

∫ 1

0
(f ′2 + xf 2)dx

∫ 1

0
f 2dx

The first term is
−ff ′|10 = 2.

The integrals are

∫ 1

0

f ′2 + xf 2dx =

∫ 1

0

4x2 + x(x4 − 4x2 + 4)dx =
5

2

and ∫ 1

0

f 2dx =

∫ 1

0

(x4 − 4x2 + 4)dx =
43

15
.

Together we get

R(f) =
135

86
≈ 1.57.

Hence we find
0 ≤ λ1 ≤ 1.57

Exercise 4.3. Find the general Fourier series solution for the following homo-
geneous Neumann problem for the wave equation. Use the Rayleigh quotient
to show that λ1 > 0.

α(x)utt = (τ(x)ux)x − β(x)u 0 ≤ x ≤ L

ux(0, t) = 0, ux(L, t) = 0

u(x, 0) = f(x), ut(x, 0) = g(x)

where α(x), τ(x), β(x) > 0.

Solution Separation of variables with u(x, t) = T (t)X(x) leads to the time problem

T ′′(t) = −λT (t)

and the spatial problem

(τ(x)X ′(x))′ − β(x)X(x) + λα(x)X(x) = 0

X ′(0) = 0, X ′(L) = 0

which is a regular SL problem with

p(x) = τ(x), q(x) = −β(x) < 0, and σ(x) = α(x).
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From the general theory it follows that we have a complete set of eigenvalues λ1, λ2, . . . and
corresponding eigenfunctions φ1, φ2, . . . .

We study the Rayleigh quotient. The boundary term reads

−p(x)φ(x)φ′(x)|L0 = τ(L)φ(L)φ′(L)− τ(0)φ(0)φ′(0) = 0

Since q(x) < 0 we find λ1 > 0. This is the information which we needed for the time problem.
T ′′ = −λnT for λn > 0 is solved by

Tn(t) = an cos(
√
λnt) + bn sin(

√
λnt).

Hence, after using superposition, we find the solution in the form of a generalized Fourier
series

u(x, t) =

∞∑

n=1

(an cos(
√
λnt) + bn sin(

√
λnt)) φn(x).

Finally, we adapt the initial conditions. At t = 0 we get for the initial displacement

f(x) = u(x, 0) =
∞∑

n=1

anφn(x)

which is the generalized Fourier series of f(x) with coefficients

an =
〈f(x), φn(x)〉

‖φn‖

Similarly, we get for the initial velocity

g(x) = ut(x, 0) =
∞∑

n=1

√
λnbnφn(x).

Hence the coefficients of the generalized Fourier series of g(x) are

√
λnbn =

〈g(x), φn(x)〉
‖φn‖

which gives

bn =
1√
λn

〈g(x), φn(x)〉
‖φn‖

.



83

Figure 4.2: Intersection of y = tanh(µ) and y = µ/2.

Figure 4.3: Intersection of y = tan(µ) and y = µ/2.



Chapter 5

Problems in Cartesian Coordinates

June 17, 2010

5.1 Heat Equation
EXAMPLE 5.1. Consider the following 1-dimensional heat equation:

ut = k(uxx + γu), 0 < x < ℓ, t > 0,

ux(0, t) = 0,

κu(ℓ, t) + ux(ℓ, t) = 0,

u(x, 0) = f(x).

This is a homogeneous PDE with homogeneous boundary conditions. Try a separation of
variables solution u(x, t) = X(x)T (t). Plug into the PDE to get:

T ′

kT
− γ =

X ′′

X
= −λ.

This gives the following problems for X and T :

T ′ + (λ− γ)kT = 0, X ′′ + λX = 0,

X ′(0) = 0,

κX(ℓ) +X ′(ℓ) = 0.

The problem for X is a regular Sturm–Liouville problem with q(x) = 0, α1β1 = 0 and
α2β2 > 0. According to Theorem 31 (part 3) all the eigenvalues are non-negative. So,
letting λ = µ2 we get

X(x) = a cos(µx) + b sin(µx),

X ′(x) = −aµ sin(µx) + bµ cos(µx).

At the left boundary x = 0 we have

X ′(0) = 0 =⇒ b = 0 =⇒ X(x) = a cos(µx), X ′(x) = −aµ sin(µx).

84
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At the right boundary x = ℓ we have

κX(ℓ) +X ′(ℓ) = 0 =⇒ aκ cos(µℓ)− aµ sin(µℓ) = 0 =⇒ tan(µℓ) =
κ

µ
.

Thus we get

λn = µ2
n, n = 1, 2, · · · , where tan(µnℓ) =

κ

µn
,

Xn(x) = cos(µnx),

Tn(t) = e−(µ2
n−γ)kt.

The norm of the eigenfunctions, relative to the appropriate inner product, is

‖Xn‖2 = 〈Xn, Xn〉 =
∫ ℓ

0

X2
n(x) dx =

∫ ℓ

0

cos2(µnx) dx =
1

2

(
ℓ +

sin(2µnℓ)

2µn

)
.

Apply the principle of superposition to get

u(x, t) =

∞∑

n=1

cnXn(x)Tn(t) =

∞∑

n=1

cne
−(µ2

n−γ)kt cos(µnx).

Now apply the initial condition: u(x, 0) = f(x) to get

f(x) =
∞∑

n=1

cn cos(µnx).

Thus, the problem is solved provided we can expand f in an eigenfunction expansion. We
know that we can, if f ∈ PC(0, ℓ), with the coefficients given by

cn =
〈f,Xn〉
‖Xn‖2

=
2

ℓ+ sin(2µnℓ)
2µn

∫ ℓ

0

f(x) cos(µnx) dx.

Let us interpret the long time behaviour of the results. We have

0 6 µ1 6
π

2ℓ
,

π

ℓ
6 µ2 6

3π

2ℓ
, · · · (n− 1)

π

ℓ
6 µn 6 (2n− 1)

π

2ℓ
.

Clearly µn depends on κ so we can write

(n− 1)
π

ℓ
6 µn(κ) 6 (2n− 1)

π

2ℓ
.

We consider two cases.
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• case (i): (perfect insulation κ→ 0)

We have lim
κ→0

µn(κ) = (n − 1)
π

ℓ
and, in particular, lim

κ→0
µ1(κ) = 0. Other quantities

simplify as follows:

‖Xn‖2 =
1

2

(
ℓ+

sin(2µnℓ)

2µn

)
=

1

2

(
ℓ+

sin 2(n− 1)π

2(n− 1)π/ℓ

)
=

{
ℓ
2

n 6= 1

ℓ n = 1
,

cn =
2

ℓ

∫ ℓ

0

f(x) cos(
(n− 1)πx

ℓ
) dx,

u(x, t) = eγkt

{
c1 +

∞∑

n=2

cne
−µ2

nkt cos(µnx)

}
.

Taking the limit as t→ ∞ we get

lim
t→∞

u(x, t) = +∞. (assuming c1, γ > 0)

Does this result make sense? Yes it does. Remember that γ > 0 represents internal
heat generation. With perfect insulation, no heat can escape so the temperature must
continue to rise indefinitely.

• case (ii): (imperfect insulation κ > 0)
The solution is

u(x, t) = c1e
(γ−µ2

1)kt cos(µ1x) +

∞∑

n=2

cne
(γ−µ2

n)kt cos(µnx).

Taking the limit as t→ ∞ we get

lim
t→∞

u(x, t) =





+∞ γ > µ2
1,

c1 cos(µ1x) γ = µ2
1,

0 γ < µ2
1.

With imperfect insulation there is heat loss. What this result is saying is that if the
internal heat generation is sufficiently large (i.e. γ > µ2

1), then heat is generated at
a rate faster than it can escape through the boundary. Therefore the temperature
rises indefinitely. On the other hand, if internal heat generation is very low, then heat
escapes faster than it is generated internally, and the temperature eventually goes to
zero. But, if the rate of internal heat generation is just right, (i.e. γ = µ2

1), then there
is a balance between internal heat generation and heat loss through the boundary and
an equilibrium temperature distribution is reached. The critical value of internal heat
generation is precisely the value of the smallest eigenvalue λ1.
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5.2 Wave Equation
Recall the general wave equation derived earlier

∂2u

∂t2
= c2∇2u+ F.

The one–dimensional, homogeneous version is

∂2u

∂t2
= c2

∂2u

∂x2
.

The one–dimensional wave equation is one of the rare PDEs for which the “general” solution
can actually be found. How this is done is not immediately obvious, so we will apply
separation of variables.

EXAMPLE 5.2. Consider the following one-dimensional wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < ℓ, t > 0, (c ≡ constant)

u(0, t) = 0, u(ℓ, t) = 0,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x).

This problem governs the vertical displacement of a string with its end points fixed at x = 0
and x = ℓ. At time t = 0 we give the string an initial displacement f(x), and an initial
velocity g(x), and then the solution to this problem governs the subsequent motion of the
string.

The boundary conditions are homogeneous so we try separation of variables u(x, t) =
X(x)T (t). Plug this into the equation to get

XT ′′ = c2X ′′T =⇒ T ′′

c2T
=
X ′′

X
= −λ. (constant)

The boundary conditions imply that X(0) = X(ℓ) = 0, so we get the following problems for
X and T :

T ′′ + λc2T = 0 X ′′ + λX = 0.

X(0) = X(ℓ) = 0.

For the problem in X , Theorem 31 implies that all the eigenvalues are non-negative. Letting
λ = µ2 we get

λn = µ2
n =

n2π2

ℓ2
, n = 1, 2, . . . ,

Xn(x) = sin(µnx).
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The equation for T becomes
T ′′ + c2µ2

nT = 0,

which is easily solved:
Tn(t) = αn cos(cµnt) + βn sin(cµnt).

Since the equation and the boundary conditions are homogeneous we may apply the principle
of superposition to get

u(x, t) =
∞∑

n=1

Xn(x)Tn(t) =
∞∑

n=1

sin(µnx)[αn cos(cµnt) + βn sin(cµnt)],

∂u

∂t
(x, t) =

∞∑

n=1

cµn sin(cµnx)[−αn sin(cµnt) + βn cos(cµnt)]

Apply the initial conditions:

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)





=⇒





f(x) =
∞∑
n=1

αn sin(µnx), (Fourier sine series)

g(x) =
∞∑
n=1

cβnµn sin(µnx). (Fourier sine series)

Let f̄o and ḡo be the odd, 2ℓ-periodic extensions of f and g respectively. Then

f̄o(x) =
∞∑

n=1

αn sin(µnx) where αn =
2

ℓ

∫ ℓ

0

f(x) sin(µnx) dx,

ḡo(x) =

∞∑

n=1

αn sin(µnx) where βn =
2

cµnℓ

∫ ℓ

0

g(x) sin(µnx) dx.

For convenience we define

G(x) :=

∫
ḡo(x) dx = −

∞∑

n=1

cβn cos(µnx).

Note that G is even and 2ℓ-periodic. Looking more closely at the solution u(x, t) yields

u(x, t) =
∞∑

n=1

sin(µnx)[αn cos(cµnt) + βn sin(cµnt)]

=
1

2

∞∑

n=1

{αn[sin µn(x− ct) + sinµn(x+ ct)] + βn[cosµn(x− ct) + cosµn(x+ ct)]}

=
1

2
{f̄o(x− ct) + f̄o(x+ ct)− 1

c
[G(x− ct)−G(x+ ct)]}

=
1

2
[f̄o(x− ct) + f̄o(x+ ct)] +

1

2c

∫ x+ct

x−ct

ḡo(ξ) dξ.
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We have the solution in closed form! In other words, the series has been summed.

We now attempt to give a physical interpretation to the solution. For simplicity we
consider the case g(x) ≡ 0 (zero initial velocity):

u(x, t) =
1

2
[f̄o(x− ct) + f̄o(x+ ct)].

Define ξ := x − ct, called a phase. If ξ is constant, then dξ/dt = 0, that is dx/dt = c.
Therefore the function f̄o(ξ) = f̄o(x − ct) represents a wave travelling to the right with
speed c. Similarly, if we define another phase η := x + ct, then η = constant implies that
dx/dt = −c. That is, f̄o(x+ ct) represents a wave travelling to the left with speed c.

Suppose f is defined as the “hat” function as given in Figure 5.2.

Figure 5.3 shows how a string, with y = f(x) as its initial displacement, evolves with
time. Specifically, the figure exhibits snapshots of the string’s displacement at various times.
The left side of Figure 5.3 shows the evolution of f̄o, the odd, 2ℓ-periodic extension of f .
The right side of Figure 5.3 shows the evolution of the actual physical string itself.

Since the solution to the wave equation in the previous example represents two waves: one
travelling to the left and one travelling to the right, we consider going back to the beginning
and making a change of coordinates:

ξ = x+ ct, η = x− ct, and u(x, t) = w(ξ, η).

By the chain rule we get

∂u

∂x
=
∂w

∂ξ
+
∂w

∂η
,

∂2u

∂x2
=
∂2w

∂ξ2
+ 2

∂2w

∂ξ∂η
+
∂2w

∂η2
,

∂u

∂t
= c

(
∂w

∂ξ
− ∂w

∂η

)
,

∂2u

∂t2
= c2

(
∂2w

∂ξ2
− 2

∂2w

∂ξ∂η
+
∂2w

∂η2

)
.

Plug into the wave equation to get

0 =
∂2u

∂t2
− c2

∂2u

∂x2
= c2

(
∂2w

∂ξ2
− 2

∂2w

∂ξ∂η
+
∂2w

∂η2

)
− c2

(
∂2w

∂ξ2
+ 2

∂2w

∂ξ∂η
+
∂2w

∂η2

)
= −4c2

∂2w

∂ξ∂η
.

Therefore
∂2w

∂ξ∂η
= 0.

This is easily solved:

∂

∂η

(
∂w

∂ξ

)
= 0 =⇒ ∂w

∂ξ
= φ′(ξ) =⇒ w(ξ, η) = φ(ξ) + ψ(η).
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Therefore

u(x, t) = φ(x+ ct) + ψ(x− ct).

This is the general solution to the 1-dimensional wave equation. It is known as d’Alembert’s
solution.

We now apply the auxiliary conditions. Taking ∂/∂t we get

∂u

∂t
(x, t) = c[φ′(x+ ct)− ψ′(x− ct)].

At t = 0 we have

u(x, 0) = f(x)
∂u
∂t
(x, 0) = g(x)

}
=⇒

{
φ(x) + ψ(x) = f(x)

c[φ′(x)− ψ′(x)] = g(x)

}
=⇒

{
φ(x) + ψ(x) = f(x)
φ′(x)− ψ′(x) = 1

2
G(x)

.

Therefore

φ(x) =
1

2
[f(x) +

1

c
G(x)], ψ(x) =

1

2
[f(x)− 1

c
G(x)].

The functions φ and ψ are only defined for 0 < x < ℓ. But x− ct and x+ ct go beyond the
interval (0, ℓ). Let f̃ and G̃ be extensions of f and G to the entire real line. Then we have

φ(x) =
1

2
[f̃(x) +

1

c
G̃(x)], ψ(x) =

1

2
[f̃(x)− 1

c
G̃(x)], ∀x.

We now apply the boundary conditions. At x = 0 we have

u(0, t) = 0 =⇒ φ(ct) + ψ(−ct) = 0 =⇒ f̃(ct) + f̃(−ct) + 1

c
[G̃(ct)− G̃(−ct)] = 0.

But f and g are independent functions, so we must have

f̃(ct) + f̃(−ct) = 0 and G̃(ct)− G̃(−ct) = 0.

This means that

f̃(ct) = −f̃(−ct) for all t, therefore f̃ is odd,

G̃(ct) = G̃(−ct) for all t, therefore G̃ is even.

At the right boundary x = ℓ we have u(ℓ, t) = 0 which implies

φ(ℓ+ ct) + ψ(ℓ− ct) = 0 =⇒ f̃(ℓ+ ct) + f̃(ℓ− ct) +
1

c
[G̃(ℓ+ ct)− G̃(ℓ− ct)] = 0.

Again, since f and g are independent functions, we must have

f̃(ℓ+ ct) = −f̃(ℓ− ct) and G̃(ℓ+ ct) = G̃(ℓ− ct).
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Manipulating further

f̃ odd =⇒ f̃(ℓ+ ct) = f̃(−ℓ+ ct) = f̃(ℓ+ ct− 2ℓ)

G̃ even =⇒ G̃(ℓ+ ct) = G̃(−ℓ + ct) = G̃(ℓ+ ct− 2ℓ)

Therefore f̃ and G̃ are 2ℓ-periodic. Hence

f̃ = f̄o, and G̃ =

∫
ḡo(x) dx = G.

Therefore

u(x, t) = φ(x+ ct) + ψ(x− ct) =
1

2
[f̄o(x− ct) + f̄o(x+ ct)] +

1

2c
[G(x+ ct)−G(x− ct)].

In the next example we consider a 1–dimensional wave equation on an infinite domain
with time dependent boundary conditions.

EXAMPLE 5.3. Consider the following:

∂2u

∂t2
= c2

∂2u

∂x2
, x > 0, t > 0, (c ≡ constant)

u(0, t) = h(t),

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0.

This problem governs the vertical displacement of a “semi–infinite” string with the motion
at its (one and only) boundary x = 0 precribed. The general solution to the equation is

u(x, t) = φ(x+ ct) + ψ(x− ct).

Differentiating with respect to t gives

∂u

∂t
(x, t) = c[φ′(x+ ct)− ψ′(x− ct)].

Applying the initial conditions at t = 0 gives

φ(x) + φ(x) = 0, φ′(x)− ψ′(x) = 0, for x > 0.

We have

ψ(x) = −φ(x) =⇒ φ′(x) = 0 =⇒ φ(x) = A, ψ(x) = −A, for x > 0,

where A is some constant. At the boundary x = 0 we have

φ(ct) + ψ(−ct) = h(t) =⇒ A+ ψ(−ct) = h(t) =⇒ ψ(−ct) = h(t)− A, for t > 0.
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Thus we have

ψ(ξ) =

{
−A for ξ > 0,

h(−ξ/c)− A for ξ < 0.

The solution becomes

u(x, t) = φ(x+ ct) + ψ(x− ct) = A + ψ(x− ct) =: ψ̃(x− ct),

where

ψ̃(ξ) = A+ ψ(ξ) =

{
0 for ξ > 0,

h(−ξ/c) for ξ < 0.

Therefore

u(x, t) = ψ̃(x− ct) =

{
0 for x > ct,

h(t− x/c) for x < ct.

This represents a rightward travelling wave moving at speed “c”. A physical interpretation
is given in Figure 5.4. Here we have the displacement given as a function of time at various
positions:

u(0, t) =

{
0 for t < 0

h(t) for t > 0
, u(c, t) =

{
0 for t < 1

h(t− 1) for t > 1
, u(2c, t) =

{
0 for t < 2

h(t− 2) for t > 2
,

and here we give snapshots of the string at various time intervals:

u(x, 0) = 0, u(x, 1) =

{
0 for x > c

h(1− x/c) for x < c
, u(x, 2) =

{
0 for x > 2c

h(2− x/c) for x < 2c
.

5.3 Laplace’s Equation
Laplace’s equation, also called the potential equation, may be compactly written as

∇2u = 0.

Written out explicitly, we have

∂2u

∂x2
+
∂2u

∂y2
= 0, (2-d Laplace equation)

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0. (3-d Laplace equation)

Time independent solutions of either the heat equation or the wave equation satisfy Laplace’s
equation. Solutions of Laplace’s equation are called harmonic functions. A complete well–
posed problem consists of Laplace’s equation together with boundary conditions:

∇2u = 0, in Ω,

αu+ β
∂u

∂n
= f, on ∂Ω,
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where
∂u

∂n
=

→
∇u · →n, with

→
n beint the unit outward pointing normal of Ω.

EXAMPLE 5.4. (Potential in a rectangle)
Consider Laplace’s equation defined on a rectangle:

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b,

u(x, 0) = f1(x), u(0, y) = 0,

u(x, b) = f2(x), u(a, y) = 0.

Notice that according to Hillen’s rule of thumb, we have four boundary conditions. Two
are homogeneous boundary conditions on one pair of opposite sides. Try separation of
variables: u(x, y) = X(x)Y (y). Plug into the equation to get:

X ′′

X
= −Y

′′

Y
= −λ. (constant)

Using the homogeneous boundary conditions, we get

u(0, y) = 0
u(a, y) = 0

}
=⇒

{
X(0)Y (y) = 0
X(a)Y (y) = 0

}
=⇒

{
X(0) = 0
X(a) = 0

.

We get the following ODEs for X and Y :

X ′′ + λX = 0, Y ′′ − λY = 0,

X(0) = X(a) = 0.

Clearly, the qualitative nature of the solutions of the X equation will be different than
those of the Y equation. The problem fo X is a regular Sturm–Liouville problem. From
Theorem 31, the eigenvalues for the X problem are all non-negative. Therefore set λ = µ2.
We get

X ′′ + µ2X = 0
X(0) = X(a) = 0

}
=⇒

{
λn = µ2

n = n2π2

a2
n = 1, 2, . . .

Xn(x) = sin(nπx
a
)

.

The equation for Y becomes

Y ′′ − µ2
nY = 0,

which is easily solved to give

Yn(y) = αn cosh(µny) + βn sinh(µny), n = 1, 2, . . . .

For each n = 1, 2, . . . we have un(x, y) = Xn(x)Yn(y) which is a solution to Laplace’s equation
which also satisfies the homogeneous boundary conditions. However, none of these can
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individually be made to satisfy the nonhomogeneous boundary conditions. Since Laplace’s
equation is linear and homogeneous we can apply the principle of superposition:

u(x, y) =

∞∑

n=1

Xn(x)Yn(y) =

∞∑

n=1

[αn cosh(µny) + βn sinh(µny)] sin(µnx).

We now apply the remaining boundary conditions. At y = 0 we have

u(x, 0) = f1(x) =⇒ f1(x) =
∞∑

n=1

αn sin(µnx).

Therefore the αn’s must be the Fourier sine coefficients

αn =
2

a

∫ a

0

f1(x) sin(
nπx

a
) dx.

At y = b we get

u(x, b) = f2(x) =⇒ f2(x) =

∞∑

n=1

[αn cosh(µnb) + βn sinh(µnb)] sin(µnx),

from which we conclude

αn cosh(µnb) + βn sinh(µnb) =
2

a

∫ a

0

f2(x) sin(
nπx

a
) dx =: γn,

or

βn =
γn − αn cosh(µnb)

sinh(µnb)
.

Hence we get

Yn(y) = αn cosh(µny) + βn sinh(µny) = αn cosh(µny) +
γn − αn cosh(µnb)

sinh(µnb)
sinh(µny)

=
αn

sinh(µnb)
[sinh(µnb) cosh(µny)− cosh(µnb) sinh(µny)] +

γn
sinh(µnb)

sinh(µny)

=
1

sinh(µnb)
[αn sinh(µn(b− y)) + γn sinh(µny)].

The final solution is:

u(x, y) =

∞∑

n=1

1

sinh(µnb)
[αn sinh(µn(b− y)) + γn sinh(µny)] sin(µnx),

where

αn =
2

a

∫ a

0

f1(x) sin(
nπx

a
) dx, µn =

nπ

a
,

γn =
2

a

∫ a

0

f2(x) sin(
nπx

a
) dx.
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Consider the following more general problem:

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b,

u(x, 0) = f1(x), u(0, y) = g1(y),

u(x, b) = f2(x), u(a, y) = g2(y).

None of the boundary conditions is homogeneous. To solve this problem we split it into
two, each of which is in a form similar to the one in the preceding example. Consider the
following problems for v and w:

∂2v

∂x2
+
∂2v

∂y2
= 0,

∂2w

∂x2
+
∂2w

∂y2
= 0,

v(x, 0) = f1(x), v(0, y) = 0, w(x, 0) = 0, w(0, y) = g1(y),

v(x, b) = f2(x), v(a, y) = 0, w(x, b) = 0, w(a, y) = g2(y).

Then u(x, y) = v(x, y) + w(x, y) is the solution to the original problem.

5.4 Maximum Principle
Consider a closed, bounded region R ∈ R2 with boundary ∂R.

Theorem 37. Let u(x, y) be any continuous solution of

∇2u = F (x, y). (Poisson’s equation)

Then
1. The maximum of u in R occurs on the boundary ∂R if F > 0 in R.
2. The minimum of u in R occurs on the boundary ∂R if F < 0 in R.

Proof.
(by contradiction)
We do only part 1 with F (x, y) > 0 for all (x, y) ∈ R. Proof of the second part is similar.
Since u is a continuous solution in R (a closed, bounded set) it has a maximum at some
point (x0, y0) ∈ R. Suppose that (x0, y0) ∈ Ro (the interior of R), (i.e. (x0, y0) 6∈ ∂R). It
follows that

∂u

∂x
(x0, y0) =

∂u

∂y
(x0, y0) = 0.

Since u has a maximum at (x0, y0) we have

∂2u

∂x2
(x0, y0) 6 0,

∂2u

∂y2
(x0, y0) 6 0. (i.e. concave down)
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Summing these yields
∂2u

∂x2
+
∂2u

∂y2
6 0,

which contradicts uxx + uyy = F > 0. Hence, it cannot be that the point (x0, y0) at which u
attains its maximum in the interior of R. Therefore this point lies on the boundary.

Theorem 38. If u is a continuous solution of ∇2u = 0 in the closed, bounded region R,
then the maximum and minimum of u occur on the boundary of R.

Proof.
Let M be the maximum of u on ∂R, which exists since ∂R is a closed, bounded set. In other
words

|u(x, y)| 6M, ∀(x, y) ∈ ∂R.

What we want to show is that this inequality holds, not only for (x, y) ∈ ∂R, but for all
(x, y) ∈ R. To this end, consider a square of length 2ℓ, where ℓ is large enough so that the
square contains all of R. Then

(x, y) ∈ R =⇒ |x| 6 ℓ.

Let ε > 0 be arbitrary. Define

v(x, y) := u(x, y) + εx2.

For (x, y) ∈ ∂R we have

v(x, y) = u(x, y) + εx2 6 M + εℓ2.

Differentating yields

∇2v = ∇2u+ ε∇2(x2) = 2ε.

Since ∇2v = 2ε > 0, the previous theorem implies that v attains its maximum on ∂R.
Therefore

v(x, y) 6M + εℓ2, ∀(x, y) ∈ R.

For u we have

u(x, y) = v(x, y)− εx2 6 v(x, y) 6M + εℓ2, ∀(x, y) ∈ R.

But ε was arbitrary, so letting ε→ 0 we get

u(x, y) 6M, ∀(x, y) ∈ R.

Thus M , the global maximum for u, occurs on the boundary ∂R. The proof for the case of
the minimum value is similar.
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5.5 Wave Equation (2–d)
Recall te general wave equation derived earlier:

∂2u

∂t2
= ∇2u+ f.

We now consider the 2–d wave equation on a rectangle.

EXAMPLE 5.5. Consider the following 2–dimensional, homogeneous wave equation de-
fined on a rectangle;

utt = c2∇2u, 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = 0, u(x, 0, t) = 0,

u(a, y, t) = 0, u(x, b, t) = 0,

u(x, y, 0) = f(x, y),

ut(x, y, 0) = 0.

Notice that we need six side conditions, according to our rule of thumb. This problem
governs the vertical displacement u of a membrane (think of a rectangular drum) stretched
over a rectangle and fastened at the edges. Since the PDE itself and the boundary conditions
are homogeneous, we try separation of variables: u(x, y, t) = φ(x, y)T (t). Here we look for
a solution whereby the spatial variables can be separated from the time variable. Plug into
the equation to get:

φT ′′ = c2(∇2φ)T =⇒ T ′′

c2T
=

∇2φ

φ
= −λ. (const.)

Plug u(x, y, t) = φ(x, y)T (t) into the homogeneous boundary conditions to get boundary
conditions for φ. We end up with the following problems for φ and T :

∇2φ = −λφ, 0 < x < a, 0 < y < b, T ′′ + λc2T = 0, t > 0

φ(0, y) = 0, φ(x, 0) = 0, T ′(0) = 0.

φ(a, y) = 0, φ(x, b) = 0.

The equation for φ is a linear, homogeneous PDE with homogeneous boundary conditions.
We try separation of variables: φ(x, y) = X(x)Y (y). The φ equation becomes:

X ′′Y +XY ′′ = −λXY =⇒ X ′′

X
= −Y

′′

Y
− λ = −γ. (const.)

Plug φ(x, y) = X(x)Y (y) into the boundary conditions and we get the following problems
for X and Y :

X ′′ + γX = 0, 0 < x < a, Y ′′ + (λ− γ)Y = 0, 0 < y < b,

X(0) = X(a) = 0. Y (0) = Y (b) = 0.
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The problem for X is a regular Sturm–Liouville problem. By Theorem 31, the eigenvalues
are all non-negative. So setting γ = µ2 we get:

γn = µ2
n =

n2π2

a2
, n = 1, 2, . . . (eigenvalues)

Xn(x) = sin(µnx). (eigenfunctions)

The problem for Y is a regular Sturm–Liouville problem. By Theorem 31, the eigenvalues
are all non-negative. So setting λ− γ = ω2 we get:

ωm =
mπ

b
, m = 1, 2, . . .

Ym(y) = sin(ωmy).

For φ we can write

φmn(x, y) = Xn(x)Ym(y) = sin(µnx) sin(ωmy).

But λ = γ + ω2 = µ2 + ω2, therefore

λmn = µ2
n + ω2

m = π2

(
n2

a2
+
m2

b2

)
=: α2

mn.

The equation for T becomes
T ′′ + c2α2

mnT = 0,

which is easily solved to give

Tmn(t) = Amn cos(cαmnt) +Bmn sin(cαmnt).

Applying the initial condition T ′
mn(0) = 0 implies that Bmn = 0, so we end up with

Tmn(t) = Amn cos(cαmnt).

We now apply the principle of superposition:

u(x, y, t) =
∞∑

m=1

∞∑

n=1

φmn(x, y)Tmn(t) =
∞∑

m=1

∞∑

n=1

Amn sin(µnx) sin(ωmy) cos(cαmnt).

It now remains to satisfy the last initial condition: u(x, y, 0) = f(x, y).

f(x, y) =
∞∑

m=1

∞∑

n=1

Amn sin(µnx) sin(ωmy) =
∞∑

m=1

Fm(x) sin(ωmy), (5.1)

where we have defined

Fm(x) :=
∞∑

n=1

Amn sin(µnx). (5.2)
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¿From (5.1) it is clear that the Fm’s are just the Fourier sine coefficients of f , and from (5.2)
it is clear that the Amn’s are just the Fourier sine coefficients of the Fm’s. Hence we have

Fm(x) =
2

b

∫ b

0

f(x, y) sin(ωmy) dy,

Amn =
2

a

∫ a

0

Fm(x) sin(µnx) dx.

Combining results the final solution to the problem is

u(x, y, t) =

∞∑

m=1

∞∑

n=1

Amn sin(µnx) sin(ωmy) cos(cαmnt),

where

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y) sin(µnx) sin(ωmy) dy dx.

For the one dimensional problems, the coefficients in the series solution were obtained by
means of inner products. Can the same be done in this case? Can the formula for the Amn’s
be expressed in terms of inner products? If we examine the formula for Amn’s more closely
we see that

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y)φmn(x, y) dy dx which resembles (const.) · 〈f, φmn〉 ,

for some “appropriate” inner product. In the next section we shall see how this can be done
in a systematic way.

5.6 Eigenfunctions in Two Dimensions
Consider the homogeneous version of either the two-dimensional heat equation or the two-
dimensional wave equation:

∂u

∂t
= k∇2u,

∂2u

∂t2
= c2∇2u,

+ b.c.’s, + b.c.’s,

+ i.c.’s. + i.c.’s.

If we apply separation of variables u(x, y, t) = φ(x, y)T (t), we get

T ′

kT
=

∇2φ

φ
= −λ, or

T ′′

c2T
=

∇2φ

φ
= −λ.

Either way, we end up with a two-dimensional eigenvalue problem for φ

∇2φ = −λφ,
+ b.c.’s.
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Typically, problems of this type will have an infinite, discrete (i.e. countable) spectrum. In
other words, nontrivial solutions exist for an infinite, but discrete, set of values of λ. The
main result of this section will be to show that, with the appropriate inner product, distinct
eigenfunctions are orthogonal.

To accomplish these results, we will need Green’s Theorem, along with what are known
as Green’s identities.

Theorem 39 (Green’s Theorem). If
(i) Ω is a domain in the xy-plane with boundary ∂Ω;
(ii) P and Q are continuous with continuous partial derivatives in Ω;

then ∮

∂Ω

P (x, y) dx+Q(x, y) dy =

∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dA.

We will demonstrate the following:

Green’s
theorem

}
=⇒

{
Green’s 1st

identity

}
=⇒

{
Green’s 2nd

identity

}
=⇒

{
eigenfunctions
are orthogonal

Theorem 40 (Green’s 1st identity).
If u and v are twice continuously differentialble in the region Ω ⊂ R2, then

∫∫

Ω

(u∇2v +
→
∇u ·

→
∇v) dA =

∮

∂Ω

u
∂v

∂n
ds.

In the above equation, ∂v
∂n

refers to the directional derivative of v in the direction of
→
n,

the unit outward pointing normal of Ω, and s refers to arc-length.

Proof.
Parameterize the boundary ∂Ω in terms of arc-length as follows:

∂Ω :

{
x = x(s),

y = y(s).

Let
→
r be the position vector to a point (x, y) ∈ ∂Ω,

→
T be the unit tangent vector at (x, y),

and
→
n be the unit, outward pointing normal vector. Then

→
r = (x, y),

→
T =

d
→
r

ds
= (

dx

ds
,
dy

ds
),

→
n = (

dy

ds
,−dx

ds
).

Let

P = u
∂v

∂y
, Q = −u∂v

∂x
.
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Then
∂P

∂y
= u

∂2v

∂y2
+
∂u

∂y

∂v

∂y
,

∂Q

∂x
= −u∂

2v

∂x2
− ∂u

∂x

∂v

∂x
.

Now we get

∫∫

Ω

(u∇2v +
→
∇u ·

→
∇v) dA =

∫∫

Ω

[
u

(
∂2v

∂x2
+
∂2v

∂y2

)
+ (

∂u

∂x
,
∂u

∂y
) · (∂v

∂x
,
∂v

∂y
)

]
dA

=

∫∫

Ω

[(
u
∂2v

∂x2
+
∂u

∂x

∂v

∂x

)
+

(
u
∂2v

∂y2
+
∂u

∂y

∂v

∂y

)]
dA

=

∫∫

Ω

(
−∂Q
∂x

+
∂P

∂y

)
dA = −

∮

∂Ω

P (x, y) dx+Q(x, y) dy

= −
∮

∂Ω

(
u
∂v

∂y
dx− u

∂v

∂x
dy

)
=

∮

∂Ω

u

(
−∂v
∂y

dx

ds
+
∂v

∂x

dy

ds

)
ds

=

∮

∂Ω

u(
∂v

∂x
,
∂v

∂y
) · (dy

ds
,−dx

ds
) ds =

∮

∂Ω

u(
→
∇v · →n) ds =

∮

∂Ω

u
∂v

∂n
ds.

The next result is much easier to prove.

Theorem 41 (Green’s 2nd identity).
If u and v are twice continuously differentialble in the region Ω ⊂ R2, then

∫∫

Ω

(u∇2v − v∇2u) dA =

∮

∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
ds.

Proof.
¿From Green’s 1st identity we have

∫∫

Ω

(u∇2v +
→
∇u ·

→
∇v) dA =

∮

∂Ω

u
∂v

∂n
ds.

Re writing this with u and v reversed yields

∫∫

Ω

(v∇2u+
→
∇v ·

→
∇u) dA =

∮

∂Ω

v
∂u

∂n
ds.

Subtraction gives the result.

We now come to one of the two main results of this section.
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Theorem 42 (main result 1).
Eigenfunctions corresponding to distinct eigenvalues of either problem

I :

{
∇2φ = −λφ in Ω

φ = 0 on ∂Ω
3or 3II :

{
∇2φ = −λφ in Ω
∂φ
∂n

= 0 on ∂Ω

are orthogonal relative to the following inner product:

〈f, g〉 =
∫∫

Ω

f(x, y)g(x, y) dA.

Proof.
Let λ̃ and λ̂ be distinct eigenvalues to one of the above problems (i.e. λ̃ 6= λ̂), with corre-

sponding eigenfunctions φ̃ and φ̂ respectively. Then we have

∇2φ̃ = −λ̃φ̃, and ∇2φ̂ = −λ̂φ̂.

Therefore
∫∫

Ω

(φ̃∇2φ̂− φ̂∇2φ̃) dA =

∫∫

Ω

[φ̃(−λ̂φ̂)− φ̂(−λ̂φ̃)] dA = (λ̃− λ̂)

∫∫

Ω

φ̃φ̂ dA = (λ̃− λ̂)
〈
φ̃, φ̂

〉
.

Using Green’s 2nd identity we get

(λ̃− λ̂)
〈
φ̃, φ̂

〉
=

∫∫

Ω

(φ̃∇2φ̂− φ̂∇2φ̃) dA =

∮

∂Ω

(
φ̃
∂φ̂

∂n
− φ̂

∂φ̃

∂n

)
ds = 0.

Since λ̃ 6= λ̂, it follows that
〈
φ̃, φ̂

〉
= 0.

The final result.

Theorem 43 (main result 2).
The eigenvalues of either of the problems

I :

{
∇2φ = −λφ in Ω

φ = 0 on ∂Ω
3or 3II :

{
∇2φ = −λφ in Ω
∂φ
∂n

= 0 on ∂Ω

are non-negative.

Proof.
Let λ be an eigenvalue to either problem I or II above with corresponding eigenfunction φ.
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Then we have

λ‖φ‖2 = λ 〈φ, φ〉 = 〈λφ, φ〉 =
〈
−∇2φ, φ

〉
= −

∫∫

Ω

φ∇2φ dA

= −





∮

∂Ω

φ
∂φ

∂n
ds−

∫∫

Ω

→
∇φ ·

→
∇φ dA



 (using Green’s 1st identity with u = v = φ)

= 0 +

∫∫

Ω

|
→
∇φ|2 dA > 0.

It follows that λ > 0.
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Figure 5.1: Eigenvalues

Figure 5.2: The hat function
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Figure 5.3: Snapshots of the string at various times.
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Figure 5.4: Snapshots of the wave front at various times.



Chapter 6

Problems in Cylindrical Coordinates

June 17, 2010

6.1 Polar Coordinates
There are certain geometries, such as those shown in Figure 6.1, for which polar coordinates
are more useful than Cartesian coordinates.

Polar coordinates are defines as follows

x = ρ cosφ, ρ2 = x2 + y2,

y = ρ sinφ, φ = tan−1 y

x
.

The Jacobian determinant for the transformation is

∂(x, y)

∂(ρ, φ)
=

∣∣∣∣
cosφ −ρ sin φ
sin φ ρ sinφ

∣∣∣∣ = ρ

which indicates that the transformation is singular at ρ = 0 (i.e. at the origin). The Laplacian
in polar coordinates is:

∇2u =
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1

ρ2
∂2u

∂φ2
.

We shall begin by considering Laplace’e equation defined in a circular region.

EXAMPLE 6.1. (potential in a disk)
Consider Laplace’s equation in a circular disk:

∇2u = 0, 0 < ρ < a, −π < φ < π,

u(a, φ) = f(φ).

When we consider the domain in the ρφ-plane (see Figure 6.2), it appears as a rectangle.
Three of the boundaries of this rectangle are not “real physical” boundaries. Nevertheless, if
we treat the region as a rectangle in the ρφ-plane, we need to impose boundary conditions on
these “unphysical boundaries”. To this end, we make the following additional assumptions:

A1: u(ρ, π) = u(ρ,−π) and ∂u
∂φ
(ρ, π) = ∂u

∂φ
(ρ,−π);

107
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A2: |u(ρ, φ)| bounded as ρ→ 0.

The first assumption is justified since the line φ = π and φ = −π in the ρφ-plane actually
represent the same line in the physical plane. The second assumption is to preclude the
occurrence of singular solutions that may arise due to the singular nature of the transfor-
mation to polar coordinates. While these boundary conditions are quite different than those
we have experienced before, and are not homogeneous, they do allow us to use separation of
variables.

Look for a solution of the form u(ρ, φ) = R(ρ)S(φ). Then

∇2u = 0 =⇒ 1

ρ

∂

∂ρ
(ρR′)S +

1

ρ2
RS ′′ = 0 =⇒ ρ

R
(ρR′)′ = −S

′′

S
= λ 1(constant).

Assumption (A1) implies that S(π) = S(−π), and likwise for S ′, and assumption (A2)
implies that |R(ρ)| is bounded as ρ→ 0. We get the following problems for R and S:

ρ(ρR′)′ − λR = 0 S ′′ + λS = 0,

|R(ρ)| is bdd as ρ→ 0 S(π) = S(−π),
S ′(π) = S ′(−π).

The problem for S is not a standard Sturm–Liouville problem as we described such problems
earlier. Each boundary condition for the S equation involves both boundary points, which
differs from the standard Sturm Liouville problem. Nevertheless, it is easily verified that one
gets nontrivial solutions for S equation only for λ > 0. If we set λ = µ2, then

S(φ) = a cos(µφ) + b sin(µφ) and S ′(φ) = µ[−a sin(µφ) + b cos(µφ)].

¿From the boundary conditions for S we get

a cosµπ + b sinµπ = a cosµπ − b sin µπ
µ[−a sinµπ + b cosµπ] = µ[a sinµπ + b cosµπ]

}
=⇒

{
b sin µπ = 0
µa sinµπ = 0

}
=⇒ µ = µn = n.

Therefore we get

λn = µ2
n = n2, (eigenvalues)

Sn(φ) = an cos(nφ) + bn sin(nφ). (eigenfunctions)

The equation for R becomes

ρ(ρR′)′ − µ2
nR = 0, or ρ2R′′ + ρR′ − n2R = 0. (Cauchy–Euler equation)

Looking for a solution of the form R(ρ) = ρm, we get

[m(m− 1) +m− n2]ρm = 0 =⇒ m = ±n =⇒ Rn(ρ) = αnρ
n + βnρ

−n.
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But (A2) implies that βn = 0 for all n. Therefore

Rn(ρ) = αnρ
n =⇒ un(ρ, φ) = Rn(ρ)Sn(φ) = ρn[An cos(nφ) +Bn sin(nφ)].

Applying the principle of superposition we get

u(ρ, φ) =
∞∑

n=0

Rn(ρ)Sn(φ) =
∞∑

n=0

ρn[An cos(nφ) +Bn sin(nφ)].

It remains to satisfy the last boundary condition in the ρφ-plane, which corresponds to the
boundary condition at the actual physical boundary: u(a, φ) = f(φ), we get

f(φ) =

∞∑

n=0

an[An cos(nφ) +Bn sin(nφ)] = A0 +

∞∑

n=1

an[An cos(nφ) +Bn sin(nφ)].

Hence the An’s and Bn’s are the Fourier coefficients of f . The final solution is

u(ρ, φ) = A0 +

∞∑

n=1

ρn[An cos(nφ) +Bn sin(nφ)], (6.1)

where

A0 =
1

2π

∫ π

−π

f(φ) dφ,

An =
1

anπ

∫ π

−π

f(φ) cos(nφ) dφ, n = 1, 2, . . . ,

Bn =
1

anπ

∫ π

−π

f(φ) sin(nφ) dφ, n = 1, 2, . . . .

A couple of observations:

• At ρ = 0 we have

u(0, φ) = A0 =
1

2π

∫ π

−π

f(φ) dφ =
1

2π

∫ π

−π

u(a, φ) dφ

so u at the centre of the disk is just the average of u over the boundary.

• If f(φ) = f0 is a constant, then A0 = f0, and An = Bn = 0, so that u(ρ, φ) ≡ f0
(i.e. u const. on the boundary means that u is const. everywhere). This should not be
surprising, since the maximum principle implies that the maximum and minimum of u
occur on the boundary. So if u is constant on the boundary, then u must be constant
everywhere.
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We have the solution u in the form of an infinite series. It turns out that we can express
u as an integral over the boundary. To see how to do this, we examine the terms in (6.1):

ρnAn cos(nφ) =
ρn

anπ

∫ π

−π

f(ξ) cos(nξ) cos(nφ) dξ, ρnBn sin(nφ) =
ρn

anπ

∫ π

−π

f(ξ) sin(nξ) sin(nφ) dξ.

Adding these yields

ρn[An cos(nφ) +Bn sin(nφ)] =
ρn

anπ

∫ π

−π

f(ξ)[cos(nξ) cos(nφ) + sin(nξ) sin(nφ)] dξ

=
ρn

anπ

∫ π

−π

f(ξ) cos[n(φ− ξ)] dξ.

The solution (6.1) becomes

u(ρ, φ) = A0 +
1

π

∞∑

n=1

ρn

an

∫ π

−π

f(ξ) cos[n(φ− ξ)] dξ

= A0 +
1

π

∫ π

−π

f(ξ)

( ∞∑

n=1

ρn

an
cos[n(φ − ξ)]

)
dξ

= A0 +
1

π

∫ π

−π

f(ξ)

∞∑

n=1

ℜ
{
ρn

an
ein(φ−ξ)

}
dξ

= A0 +
1

π

∫ π

−π

f(ξ)ℜ
{ ∞∑

n=1

(ρ
a
ei(φ−ξ)

)n
}
dξ

= A0 +
1

π

∫ π

−π

f(ξ)ℜ
{

ρ
a
ei(φ−ξ)

1− ρ
a
ei(φ−ξ)

}
dξ 5(since

∞∑

n=1

µn =
µ

1− µ
for |µ| < 1)

= A0 +
1

π

∫ π

−π

f(ξ)ℜ
{

ρ[cos(φ− ξ) + i sin(φ− ξ)]

a− ρ[cos(φ− ξ) + i sin(φ− ξ)]

}
dξ

=
1

2π

∫ π

−π

f(φ) dφ+
1

π

∫ π

−π

f(ξ)
aρ cos(φ− ξ)− ρ2

a2 − 2aρ cos(φ− ξ) + ρ2
dξ

=
1

π

∫ π

−π

f(ξ)

{
1

2
+

aρ cos(φ− ξ)− ρ2

a2 − 2aρ cos(φ− ξ) + ρ2

}
dξ.

Thus we get

u(ρ, φ) =
1

2π

∫ π

−π

f(ξ)
a2 − ρ2

a2 − 2aρ cos(φ− ξ) + ρ2
dξ. (Poisson’s integral formula)

6.2 Bessel Functions
6.2.1 Series Solution of Bessel’s Equation

The general second order linear homogeneous ODE can be written in the form

u′′ + P (x)u′ +Q(x)u = 0. (6.2)
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Definition 44. A point x0 is called an ordinary point of (6.2) if P and Q are analytic at
x = x0 (i.e. P and Q can be expanded in a Taylor series at x = x0). Otherwise the point
x = x0 is called a singular point.

If x0 is an ordinary point of Eq. (6.2), then two linearly independent solutions of the form

u(x) =

∞∑

n=0

an(x− x0)
n

can be found. What happens if x0 is a singular point? We can get an idea as to what
happens if we re–examine the Cauchy–Euler equation:

x2u′′ + pxu′ + qu = 0, (p, q ≡ const.). (6.3)

If we look for a solution of the form u = xr, this leads to

r2 + (p− 1)r + q = 0. (6.4)

Thus, u = xr is a solution to Eq. (6.3) only if r is a root of the quadratic equation.

EXAMPLE 6.2. For the equation 3x2u′′ + 11xu′ − 3u = 0 the quadratic (6.4) becomes
r2 + (8/3)r − 1 = 0 which leads to two linearly independent solutions u1(x) = x1/3 and
u2(x) = 1/x3.

In general, the solution to the Cauchy–Euler equation (6.3) is

u(x) =





c1x
r1 + c2x

r2 , if r1 6= r2,

c1x
r + c2x

r ln x, if r1 = r2 = r,

xα[c1 cos(β ln x) + c2 sin(β ln x)], if r1, r2 = α± iβ.

(6.5)

So how does this help? When written in standard form

u′′ +
p

x
u′ +

q

x2
u = 0, (6.6)

it is clear that x = 0 is a singular point of the equation. The solutions will also usually be
singular at x = 0 as was the case in Example 6.2. This prompts us to make the following
definition.

Definition 45. Suppose x0 is a singular point of Eq. (6.2). If (x−x0)P (x) and (x−x0)2Q(x)
are analytic at x = x0, then x0 is called a regular singular point of (6.2), otherwise it is called
an irregular singular point.

If x0 is a regular singular point of Eq. (6.2), then P and Q can be written as

P (x) =
A(x)

x− x0
, Q(x) =

B(x)

(x− x0)2
,
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where A and B are analytic at x0. Equation (6.2) now becomes

u′′ +
A(x)

x− x0
u′ +

B(x)

(x− x0)2
u = 0,

or alternatively
(x− x0)

2u′′ + A(x)(x− x0)u
′ +B(x)u = 0. (6.7)

Equation (6.7) resembles the Cauchy–Euler equation so we look for a solution of the form

u(x) = (x− x0)
rU(x),

where U is analytic at x0. Since U is assumed to be analytic, it can be expanded in a Taylor
series so the form of solution we seek is

u(x) = (x− x0)
r

∞∑

n=0

an(x− x0)
n =

∞∑

n=0

an(x− x0)
n+r, 3a0 6= 0. (6.8)

The series in (6.8) is called a Frobenius series and the exponent r is called the indicial
exponent. In fact, if x0 is a regular singular point of (6.2), then a solution in the form of a
Frobenius series always exists and a second linearly independent solution will be of the form

u(x) = (x− x0)
sV (x) or u(x) = (x− x0)

rU(x) ln(x− x0) + (x− x0)
sV (x),

where V is analytic at x = x0.

Now consider Bessel’s equation:

x2u′′ + xu′ + (x2 − λ2)u = 0. (λ ≡ const.) (6.9)

Written in standard form:

u′′ +
1

x
u′ +

x2 − λ2

x2
u = 0, with P (x) =

1

x
, Q(x) =

x2 − λ2

x2
.

Clearly x = x0 = 0 is a singular point of Bessel’s equation. It is, in fact, a regular singular
point since

xP (x) = 1, which is analytic at x = 0,

xQ(x) = x2 − λ2, which is analytic at x = 0.

So we look for a solution to Bessel’s equation in the form of a Frobenius series:

u(x) = xr
∞∑

n=0

anx
n =

∞∑

n=0

anx
n+r, a0 6= 0.

Plug this into Eq. (6.9) to get

∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑

n=0

(n+ r)anx
n+r +

∞∑

n=0

an(x
n+r+2 − λ2xn+2) = 0.
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After simplification this becomes

(r2 − λ2)a0x
r + [(1 + r)2 − λ2]a1x

r+1 +
∞∑

n=2

{[(n + r)2 − λ2]an + an−2}xn+r = 0.

Since this must be identically zero, we set the coefficients of xn+r to zero, yielding

n = 0 : (r2 − λ2)a0 = 0, (6.10)

n = 1 : [(1 + r)2 − λ2]a1 = 0, (6.11)

n > 2 : [(n+ r)2 − λ2]an + an−2 = 0. (6.12)

We have

(6.10) =⇒ r = ±λ 1(since a0 6= 0). For now we consider r = +λ.

(6.11) =⇒ (2λ+ 1)a1 = 0 =⇒ a1 = 0. (unless λ = −1

2
)

(6.12) =⇒ an =
−an−2

(n+ λ)2 − λ2
=

−an−2

n(n+ 2λ)
, n = 2, 3, 4, . . . .

It is clear that

a1 = 0 =⇒ a3 = 0 =⇒ a5 = 0 =⇒ · · · =⇒ a2n+1 = 0,

and

a2 =
−a0

2(2 + 2λ)
= − a0

22(1 + λ)
,

a4 =
−a2

4(4 + 2λ)
=

−a2
22 · 2(2 + λ)

=
a0

24 · 2(1 + λ)(2 + λ)
,

a6 =
−a4

6(6 + 2λ)
=

−a4
22 · 3(3 + λ)

=
−a0

26 · 2 · 3(1 + λ)(2 + λ)(3 + λ)
,

a8 =
−a6

8(8 + 2λ)
=

−a6
22 · 4(3 + λ)

=
a0

28 · 2 · 3 · 4(1 + λ)(2 + λ)(3 + λ)(4 + λ)
,

...

a2n =
−a2(n−1)

22 · n(n + λ)
=

(−1)na0
22n n!(1 + λ)(2 + λ)(3 + λ)(4 + λ) · · · (n+ λ)

.

For convenience we set a0 =
1

2λΓ(1+λ)
. Then we get

a2n =
(−1)n

2λ+2n n! Γ(1 + λ)(1 + λ)(2 + λ)(3 + λ)(4 + λ) · · · (n+ λ)
=

(−1)n

2λ+2n n! Γ(n+ λ+ 1)
.

One solution of Bessel’s equation is

Jλ(x) :=
∞∑

n=0

anx
n+λ =

∞∑

n=0

(−1)nxλ+2n

2λ+2nn! Γ(n+ λ+ 1)
.
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This is known as Bessel’s function of the first kind of order λ. If λ is not an integer, then a
second linearly independent solution (recall that the indicial exponents are r = ±λ) is given
by J−λ. In this case the general solution is

u(x) = c1Jλ(x) + c2J−λ(x).

If λ = n ∈ Z, then Jn and J−n are linearly independent (since indicial exponents differ by
an integer r1− r2 = 2n). In this case a second linearly independent solution can be obtained
as follows:

Yλ(x) :=
Jλ(x) cos(λπ)− J−λ(x)

sin(λπ)
, 8λ 6∈ Z,

Yn(x) := lim
λ→n

Yλ(x) =
1

π

[
∂Jλ(x)

∂λ
− (−1)n

∂J−λ(x)

∂λ

]

λ=n

.

It can be shown that Jn and Yn are linearly independent. The function Yλ is called a Bessel
function of the second kind of order λ. The general solution in this case is

u(x) = c1Jn(x) + c2Yn(x).

6.2.2 Properties of Bessel Functions

We look at Bessel functions of integer order. For λ = n ∈ Z we have

Jn(x) =

∞∑

k=0

(−1)kxn+2k

2n+2k k! (n + k)!
=
xn

2n

∞∑

k=0

(−1)kx2k

22k k! (n+ k)!
=
xn

2n

[
1

n!
− x2

22 (n+ 1)!
+

x4

24 2! (n+ 2)!
− · · ·

]
.

In particular we have

J0(x) = 1− x2

4
+
x4

64
− · · · ,

J1(x) =
x

2

[
1− x2

8
+

x4

194
− · · ·

]
.

It is clear that J0(0) = 1 and Jn(0) = 0 for n > 1. A plot of the first few Bessel functions of
the first kind of integer order is given in Figure 6.3.

For Bessel functions of the second kind we merely state a few of the properties. The most
relevent property is that they are singular at the origin. In fact

Y0(x) ∼ C ln x, 3Y1(x) ∼
C

x
1(as x→ 0+).

A plot of the first few Bessel functions of the second kind of integer order is given in Figure 6.4.

Lemma 46. Bessel functions of the first kind satisfy the following recurrence relations:

d

dx

[
x−λJλ(x)

]
= −x−λJλ+1(x),

d

dx

[
xλJλ(x)

]
= xλJλ−1(x).

Proof.
Exercise.
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Zeros of Bessel Functions.

Consider Bessel’s equation written in standard form:

u′′ +
1

x
u′ + (1− λ2

x2
)u = 0.

For large x this equation resembles u′′+u = 0, and so one might expect that Bessel functions
behave like sin x and cosx for large x. This is indeed the case. We will show that Bessel
functions are oscillatory and that the spacing between the zeros approaches π. To this end
we make a transformation

w(x) :=
√
xu(x).

Then we have

x2u′′ + xu′ + (x2 − λ2)u = x−1/2{x2w′′ + (x2 +
1

4
− λ2)w}.

Thus

x2u′′ + xu′ + (x2 − λ2)u = 0 =⇒ {x2w′′ + (x2 +
1

4
− λ2)w} = 0.

We now consider a phase plane analysis: {w,w′} → {R, θ}

w(x) = R(x) cos θ(x), w′(x) = −R(x) sin θ(x). (6.13)

Then we have

w′ = R′ cos θ − Rθ′ sin θ = −R sin θ,

w′′ = −R′ sin θ − Rθ′ cos θ = −(1 +
1

4x2
− λ2

x2
)R cos θ,

which can be rewritten as
[
cos θ −R sin θ
− sin θ −R cos θ

] [
R′

θ′

]
=

[ −R sin θ

−(1 + 1
4x2 − λ2

x2 )R cos θ

]
,

and easily solved for R′ and θ′

R′(x) =
Cλ

x2
sin θ(x) cos θ(x), (6.14)

θ′(x) = 1 +
Cλ

x2
cos2 θ(x), (6.15)

where Cλ := 1
4
− λ2. We consider the above equations subject to the following initial

conditions:
R(x0) = R0 6= 0, θ(x0) = θ0, x0 > 0.

A couple of remarks are in order. The transformation to “polar like” coordinates in the
phase plane has resulted in nonlinear ODEs in R and θ. It is usually not a wise move to
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transform a linear equation to a nonlinear one. In this case however it is not so much an
explicit solution that we are after, which we can’t get anyway, so much as the qualitative
behaviour of the solutions. Further examination of Equations (6.14) and (6.15) reveals that
they are partially decoupled so that in principle one would solve Eq. (6.15) for θ, then plug
θ into Eq. (6.14) to get a linear ODE for R. The resulting ODE for R is easily solved

R(x) = R0e
Cλ

∫ x
x0

sin θ(ξ) cos θ(ξ)

ξ2
dξ
.

We now make some observations.

R0 6= 0 =⇒ R(x) 6= 0 ∀x.
Therefore it follows from (6.13) that

w(x) = 0 1only if 1 cos θ(x) = 0, i.e. only if 1θ(x) = (2n−1)
π

2
1(an odd multiple of

π

2
)

Integrating Eq. (6.15) yields

θ(x)− θ(x0) = x− x0 +

∫ x

x0

cos2(θ(ξ))

ξ2
dξ.

Further manipulation yields.

|θ(x)− θ(x0)− (x− x0)| = |Cλ|
∣∣∣∣
∫ x

x0

cos2(θ(ξ))

ξ2
dξ

∣∣∣∣ 6 |Cλ|
∫ x

x0

dξ

ξ2
= |Cλ|

(
1

x0
− 1

x

)
6

|Cλ|
x0

.

Letting x→ ∞ we get

lim
x→∞

|θ(x)− θ(x0)− (x− x0)| 6
|Cλ|
x0

<∞

from which it follows that
lim
x→∞

θ(x) = +∞.

Thus
∀n ∃xn such that θ(xn) = (2n− 1)

π

2
.

In other words, w has infinitely many zeros xn, with xn → ∞.

To determine the spacing between zeros consider

π = θ(xn+1)− θ(xn) = xn+1 − xn + Cλ

∫ xn+1

xn

cos2 θ(ξ))

ξ2
dξ.

Taking the limit of the above integral as n→ ∞ we get

0 6 lim
n→∞

∫ xn+1

xn

cos2 θ(ξ))

ξ2
dξ 6 lim

n→∞

∫ xn+1

xn

dξ

ξ2
= lim

n→∞

(
1

xn
− 1

xn+1

)
= 0. (since xn → ∞)

Therefore
lim
n→∞

(xn+1 − xn) = π.
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6.3 Heat Equation (2-d)
Recall the general heat equation;

∂u

∂t
=

1

ρc

→
∇ · (K

→
∇u) + h

ρc
. 6(heat equation)

If the material properties are constant and there is no internal heat generation, then the
heat equation simplifies to

∂u

∂t
= k∇2u.

We now consider an example of a 2–dimensional heat equation for a circular disk.

EXAMPLE 6.3. Consider the following problem governing the temperature of a circular
plate:

∂u

∂t
= k∇2u, 0 < ρ < a, −π < φ < π, t > 0,

u(a, φ, t) = f(φ),

u(ρ, φ, 0) = g(ρ, φ).

As before, we consider the domain Ω in the ρφ-plane. The following extra conditions for the
artificial boundaries are required:

A1: u(ρ, π, t) = u(ρ,−π, t) and ∂u
∂φ
(ρ, π, t) = ∂u

∂φ
(ρ,−π, t);

A2: |u(ρ, φ, t)| bounded as ρ→ 0+.

Since the boundary conditions are not homogeneous, we look for a solution of the form

u(ρ, φ, t) = v(ρ, φ) + w(ρ, φ, t).

This is analogous to the method we employed earlier for nonhomogeneous problems. Plug
this into the problem to get

∂w

∂t
= k(∇2v +∇2w),

v(a, φ) + w(a, φ, t) = f(φ),

v(ρ, φ) + w(ρ, φ, 0) = g(ρ, φ).

We split this into two problems in the obvious way

∇2v = 0,
∂w

∂t
= k∇2w,

v(a, φ) = f(φ), w(a, φ, t) = 0,

v(ρ, π) = v(ρ,−π), w(ρ, π, t) = w(ρ,−π, t),
∂v

∂φ
(ρ, π) =

∂v

∂φ
(ρ,−π), ∂w

∂φ
(ρ, π, t) =

∂w

∂φ
(ρ,−π, t),

|v(ρ, φ)| bounded as ρ→ 0+, w|(ρ, φ, t)| bounded as ρ→ 0+,

w(ρ, φ, 0) = g(ρ, φ)− v(ρ, φ) =: h(ρ, φ).
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The problem for v is Laplace’s equation in a disk. The solution to this problem was obtained
earlier. It is

v(ρ, φ) =
1

2π

∫ π

−π

f(ξ)
a2 − ρ2

a2 − 2aρ cos(φ− ξ) + ρ2
dξ. (Poisson’s integral formula)

For the equation in w we try separation of variables: w(ρ, φ, t) = Ψ(ρ, φ)T (t). This leads to

T ′

kT
=

∇2Ψ

Ψ
= −λ. (const.)

We get one equation for T and one for Ψ:

T ′ + λkT = 0, ∇2Ψ = −λΨ,
Ψ(a, φ) = 0,

Ψ(ρ, π) = Ψ(ρ,−π),
∂Ψ

∂φ
(ρ, π) =

∂Ψ

∂φ
(ρ,−π),

|Ψ(ρ, φ)| bounded as ρ→ 0.

The solution to the equation for T is

T (t) = e−λkt.

¿From the last theorem of the last chapter, we know that the eigenvalues of the problem for
Ψ are non-negative. So, letting λ = µ2, the equation becomes:

1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2
∂2Ψ

∂φ2
= −µ2Ψ.

We again try separation of variables: Ψ(ρ, φ) = R(ρ)S(φ). Plug into the equation to get

ρ(ρR′)′

R
+ µ2ρ2 = −S

′′

S
= ν. (const.)

We get an ODE for R and one for S:

ρ2R′′ + ρR′ + (µ2ρ2 − ν)R = 0, S ′′ + νS = 0,

R(a) = 0, S(π) = S(−π),
|R(ρ)| <∞, S ′(π) = S ′(−π).

We have solved this equation for S before. Nontrivial solutions exist only for non-negative
ν. Let ν = ω2. The solutions are:

ω = ωn = n, 6n = 0, 1, 2, . . . ,

Sn(φ) = an cos(nφ) + bn sin(nφ).
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The equation for R resembles, but is not quite, Bessel’s equation. If we make the change of

independent variable x = µρ, then x
d

dx
= ρ

d

dρ
and the equation becomes

x2
d2R

dx2
+ x

dR

dx
+ (x2 − n2)R = 0, (Bessel’s equation of order n)

the solution of which is

Rn = CnJn(x) +DnYn(x), hence Rn(ρ) = CnJn(µρ) +DnYn(µρ).

The boundary condition |Rn(ρ)| <∞ implies that Dn = 0 resulting in

Rn(ρ) = Jn(µρ).

The other boundary condition yields

Rn(a) = 0 =⇒ Jn(µa) = 0 =⇒ µ = µnk =
αnk

a
, k = 1, 2, . . . (where αnk is the kth zero of Jn)

Thus we have

Rnk(ρ) = Jn(µnkρ), Tnk(t) = e−kαnkt, and Sn(φ) = an cos(nφ) + bn sin(nφ).

Combining these gives

Ψnk(ρ, φ) = Jn(µnkρ)[Ank cos(nφ) +Bnk sin(nφ)].

If we define

Ψ̃nk(ρ, φ) := Jn(µnkρ) cos(nφ), Ψ̂nk(ρ, φ) := Jn(µnkρ) sin(nφ), n = 0, 1, 2, . . . , k = 1, 2, . . . ,

then Ψ̃nk and Ψ̂nk are 2–dimensional eigenfunctions and

Ψnk(ρ, φ) = AnkΨ̃nk(ρ, φ) +BnkΨ̂nk(ρ, φ).

A solution to the w equation (applying superposition) can we written as

w(ρ, φ, t) =

∞∑

n=0

∞∑

k=1

Ψnk(ρ, φ)Tnk(t) =

∞∑

n=0

∞∑

k=1

[AnkΨ̃nk(ρ, φ) +BnkΨ̂nk(ρ, φ)]e
−kµ2

nkt.

Applying the remaining initial condition: w(ρ, φ, 0) = h(ρ, φ) we get

h(ρ, φ) =
∞∑

n=0

∞∑

k=1

[AnkΨ̃nk(ρ, φ) +BnkΨ̂nk(ρ, φ)], where 〈�,△〉 =
∫∫

Ω

�△ dA.
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Therefore the coefficients are given by

Ank =

〈
h, Ψ̃nk

〉

‖Ψ̃nk‖2
=

1

‖Ψ̃nk‖2

∫ π

−π

∫ a

0

h(ρ, φ)Jn(µnkρ) cos(nφ) ρ dρ dφ,

Bnk =

〈
h, Ψ̂nk

〉

‖Ψ̂nk‖2
=

1

‖Ψ̂nk‖2

∫ π

−π

∫ a

0

h(ρ, φ)Jn(µnkρ) sin(nφ) ρ dρ dφ.

The norms in the above expressions can be evaluated explicitly as follows:

‖Ψ̃nk‖2 =
∫ π

−π

∫ a

0

J2
n(µnkρ) cos

2(nφ) ρ dρ dφ =

(∫ π

π

cos2(nφ) dφ

)(∫ a

0

ρJ2
n(µnkρ) dρ

)
=: anbnk,

where

an =

∫ π

−π

cos2(nφ) dφ =

{
π, if n 6= 0,

2π, if n = 0,

bnk =

∫ a

0

ρJ2
n(µnkρ) dρ =

∫ a

0

ρJ2
n(
αnk

a
ρ) dρ =

a2

2
J2
n+1(αnk). (exercise)

Therefore

‖Ψ̃0k‖2 = πa2J2
1 (α0k), ‖Ψ̃nk‖2 =

πa2

2
J2
n+1(αnk), n 6= 0

with similar expressions for Ψ̂nk. The coefficients may now be written as

Ank =
2− δ0n

πa2Jn+1(αnk)

∫ π

−π

∫ a

0

h(ρ, φ)Jn(µnkρ) cos(nφ) ρ dρ dφ,

Bnk =
2− δ0n

πa2Jn+1(αnk)

∫ π

−π

∫ a

0

h(ρ, φ)Jn(µnkρ) sin(nφ) ρ dρ dφ.

Suppose we consider the special case with no angular dependence, in other words the
case with f(φ) = 0 and g(ρ, φ) = g(ρ). Then v(ρ, φ) = 0, h(ρ, φ) = g(ρ) and

Ank =
1

‖Ψ̃nk‖2

∫ π

−π

∫ a

0

g(ρ)Jn(µnkρ) cos(nφ) ρ dρ dφ

=
1

‖Ψ̃nk‖2

(∫ π

−π

cos(nφ) dφ

)(∫ a

0

ρ g(ρ)Jn(µnkρ) dρ

)

=
2πδ0n

‖Ψ̃nk‖2

∫ a

0

ρ g(ρ)Jn(µnkρ) dρ.

Therefore

A0k =
2

a2J2
1 (α0k)

∫ a

0

ρ g(ρ)Jn(µnkρ) dρ, Ank = 0 1for n 6= 0, and Bnk = 0.
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In this case the final solution to the problem reduces to

u(ρ, φ, t) =

∞∑

k=1

A0kΨ̃0k(ρ, φ)e
−kµ2

0kt =

∞∑

k=1

A0kJ0(µ0kρ)e
−kµ2

0kt.
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Figure 6.1: Geometries more suited to polar coordinates.
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Figure 6.2: Representations of Ω in the xy-plane and the ρφ-plane.
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Figure 6.3: Bessel functions of the first kind of integer order.
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Figure 6.4: Bessel functions of the second kind of integer order.
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Figure 6.5: Representations of Ω in the xy-plane and the ρφ-plane.



Chapter 7

Problems in Spherical Coordinates

June 17, 2010

7.1 Spherical Coordinates
Spherical coordinates {r, θ, φ} are related to Cartesian coordinates {x, y, z} as follows

x = r sin θ cosφ, r > 0,

y = r sin θ sinφ, −π < φ 6 π,

z = r cos θ, 0 6 θ 6 π.

The Jacobian determinant for the transformation is

∂(x, y, z)

∂(r, θ, φ)
=

∣∣∣∣∣∣

sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sin φ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣
= r2 sin θ

which indicates that the transformation is singular at r = 0 and θ = 0, π (i.e. along the
entire z-axis). The Laplacian in spherical coordinates is

∇2u =
1

r2

{
∂

∂r

(
r2
∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

}

=
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

(
∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)
.

Consider the homogeneous version of either the three-dimensional heat equation or the
three-dimensional wave equation:

∂u

∂t
= k∇2u,

∂2u

∂t2
= c2∇2u,

+ b.c.’s, + b.c.’s,

+ i.c.’s. + i.c.’s.

If we apply separation of variables u(r, θ, φ, t) = Ψ(r, θ, φ)T (t), we get

T ′

kT
=

∇2Ψ

Ψ
= −λ̃, or

T ′′

c2T
=

∇2Ψ

Ψ
= −λ̃.
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Either way, we end up with a three-dimensional eigenvalue problem for Ψ

∇2Ψ = −λ̃Ψ,
+ b.c.’s.

As was the case for two-dimensional eigenvalue problems, this three-dimensional eigenvalue
problem, for either Dirichlet or Neumann boundary conditions, will only have non-negative
eigenvalues. So we set λ̃ = µ2 and consider the problem

∇2Ψ = −µ2Ψ.

We look for separated solutions of the form Ψ(r, θ, φ) = R(r)Y (θ, φ). Plug this into the
equation to get

1

r2

{
∂

∂r

(
r2R′) Y +

R

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

R

sin2 θ

∂2Y

∂φ2

}
= −µ2RY

(r2R′)′

R
+ µ2r2 = − 1

Y sin θ

[
∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin θ

∂2Y

∂φ2

]
= λ

We get an ODE for R and a PDE for Y :

(r2R′)′ + (µ2r2 − λ)R = 0,
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
+ λY = 0.

Solutions to the equation for Y are called spherical harmonics. We apply separation of
variables again: Y (θ, φ) = S(θ)Q(φ). Plug into the equation for Y to get

1

sin θ

∂

∂θ
(sin θS ′)Q+

1

sin2 θ
SQ′′ + λSQ = 0

sin θ(sin θS ′)′

S
+ λ sin2 θ = −Q

′′

Q
= ν.

Thus we get an ODE in S and an ODE in Q. Collecting all of the equations we have

(r2R′)′ + (µ2r2 − λ)R = 0, r > 0,

sin θ(sin θ S ′)′ + (λ sin2 θ − ν)S = 0, 0 < θ < π,

Q′′ + νQ = 0, −π < φ < π.

The first of these equations is

r2R′′ + 2rR′ + (µ2r2 − λ)R = 0 . (spherical Bessel’s equation)

In the second of these equations, if we let x = cos θ and v(x) = S(θ), then 0 < θ < π implies
that −1 < x < 1 and we get

(1− x2)v′′ − 2xv′ +

(
λ− ν

1− x2

)
v = 0 . (associated Legendre equation)
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For the special case ν = 0 this reduces to

(1− x2)v′′ − 2xv′ + λv = 0 . (Legendre’s equation)

Before we can go any further in trying to solve the heat equation or wave equation in
spherical coordinates, we need to get some understanding of the behaviour of the solutions
to the spherical Bessel and Legendre’s equations.

7.2 Legendre Functions
7.2.1 Legendre Polynomials

Consider Legendre’s equation:

(1− x2)v′′ − 2xv′ + λv = 0, −1 < x < 1.

Clearly x = 0 is an ordinary point of Legendre’s equation and x = ±1 are regular singular
points. In applications, we require bounded solutions at x = ±1 (which correspond to
θ = 0, π, which correspond to the positive and negative z-axis in physical space).

Since x = 0 is an ordinary point, all solutions will be analytic at x = 0 so we may expand
them in a Taylor series:

v(x) =
∞∑

n=0

anx
n.

Plug into the equation to get

∞∑

n=0

{(n+ 2)(n+ 1)an+2 + [λ− n(n + 1)]an}xn = 0.

Therefore the an’s satisfy the following recurrence relation:

an+2 = − λ− n(n + 1)

(n + 2)(n+ 1)
an, n = 0, 1, 2, . . . .

Writing out the first few explicitly we get

a2 = −λ
2
a0, a3 = −λ− 2

3 · 2 a1,

a4 = −λ− 2 · 3
4 · 3 a2 =

λ(λ− 2 · 3)
4 · 3 · 2 a0, a5 = −λ− 3 · 4

5 · 4 a3 =
(λ− 2)(λ− 3 · 4)

5!
a1,

a6 = −λ− 4 · 5
6 · 5 a4 = −λ(λ− 2 · 3)(λ− 4 · 5)

6!
a0, a7 = −(λ− 2)(λ− 3 · 4)(λ− 5 · 6)

7!
a1.
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Therefore

v(x) = a0

[
1− λ

2!
x2 +

λ(λ− 2 · 3)
4!

x4 − λ(λ− 2 · 3)(λ− 4 · 5)
6!

x6 + · · ·
]

+ a1

[
x− λ− 2

3!
x3 +

(λ− 2)(λ− 3 · 4)
5!

x5 − (λ− 2)(λ− 3 · 4)(λ− 5 · 6)
7!

x7 + · · ·
]
.

The even and odd parts are linearly independent. The quantities in square brackets are
multiples of what are called Legendre functions.

Special Case: (λ = N(N + 1), N ∈ Z+) For this case the recurrence relation becomes

an+2 = −N(N + 1)− n(n+ 1)

(n + 2)(n+ 1)
an, with aN+2 = 0.

In this case the series terminates giving a polynomial. When suitably scaled, these are called
Legendre polynomials, denoted PN . The scaling is chosen so that PN(1) = 1. The first few
Legendre polynomials are listed below:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x), P4(x) =

1

8
(35x4 − 30x2 + 3).

Lemma 47. Legendre polynomials satisfy the following properties:

1. Pn(1) = 1, 1 Pn(−1) = (−1)n.

2. 〈Pn, Pm〉 = 0 if n 6= m, where 〈�,△〉 =
∫ 1

−1

�△ dx.

3. ‖Pn‖2 =
2

2n+ 1
.

4. Pn(x) =
1

2n n!

dn

dxn
(x2 − 1)n. (Rodrigues’ formula)

5.
1√

1− 2xt + t2
=

∞∑
n=0

Pn(x)t
n, for |x| 6 1 |t| < 1. (generating function)

6. (n+ 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x), 1n = 1, 2, . . . .

7. (2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x).

For the case λ = N(N +1) one of the series terminates, but the other one does not. The
functions represented by the other series, when suitably scaled, are denoted QN , and are
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called Legendre functions of the second kind. The general solution of Legendre’s equation is
then given by

v(x) = c1PN (x) + c2QN (x).

The first few Legendre functions of the second kind are listed below:

Q0(x) =
1

2
ln

1 + x

1− x
, Q1(x) =

x

2
ln

1 + x

1− x
− 1, Q2(x) =

1

4
(3x2 − 1) ln

1 + x

1− x
− 3

2
x.

In fact the general formula is

Qn(x) =
1

2
Pn(x) ln

1 + x

1− x
−Wn−1(x), where Wn−1(x) =

n∑

k=1

1

k
Pk−1(x)Pn−k(x).

Notice that Legendre functions of the second kind are singular at ±1: lim
x→±1

|Qn(x)| = ∞.

In fact, the only bounded solutions are Legendre polynomials. We have the following result
which we state without proof.

Theorem 48. Legendre’s equation has bounded solutions on the interval [−1, 1] if and only
if

λ = n(n + 1), n = 0, 1, 2, . . . .

7.2.2 Associated Legendre Functions

Consider Legendre’s equation:

(1− x2)v′′ − 2xv′ + λv = 0. (7.1)

We can derive the associated Legendre equation from Legendre’s equation by the following
rather convoluted argument. Recall the Leibniz rule for derivatives of a product

dm

dxm
(fg) =

m∑

j=0

(
m
j

)
f (j)g(m−j) = fg(m)+mf ′g(m−1)+

m(m− 1)

2
f ′′g(m−2)+· · ·+mf (m−1)g′+f (m)g.

We differentiate each of the terms in (7.1) m times.

dm

dxm
[(1− x2)v′′] = (1− x2)v(m+2) − 2mxv(m+1) −m(m− 1)v(m),

dm

dxm
(2xv′) = 2xv(m+1) + 2mv(m),

dm

dxm
[λv] = λv(m).

We now differentiate Legendre’s equation m times to get

(1− x2)v(m+2) − (2m+ 2)xv(m+1) + [λ−m(m+ 1)]v(m) = 0.
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Let w(x) = (1− x2)m/2v(m). Then

w′ = (1− x2)
m
2 v(m+1) −mx(1− x2)

m
2
−1v(m),

(1− x2)w′ = (1− x2)
m
2
+1v(m+1) −mx(1− x2)

m
2 v(m),

[(1− x2)w′]′ = (1− x2)
m
2
+1v(m+2) − (2m+ 2)x(1− x2)

m
2 v(m+1) + [m2x2(1− x2)

m
2
−1 −m(1− x2)

m
2 ]v(m)

= (1− x2)
m
2 {(1− x2)v(m+2) − (2m+ 2)xv(m+1) + [

m2x2

1− x2
−m]v(m)}

= (1− x2)
m
2 {−λ+m(m+ 1) +

m2x2

1− x2
−m}v(m)

= [−λ+
m2

1− x2
]w.

Therefore w satisfies the equation

[(1− x2)w′]′ + [λ− m2

1− x2
]w = 0

(1− x2)w′′ − 2xw′ + [λ− m2

1− x2
]w = 0. (7.2)

Eq. (7.2) is the associated Legendre equation with ν = m2.

v a solution of (7.1) =⇒ w is a solution of (7.2).

As with Legendre’s equation, we have the following result for the associated Legendre’s
equation:

Theorem 49. The associated Legendre’s equation has bounded solutions on the interval
[−1, 1] if and only if

λ = n(n + 1), n = 0, 1, 2, . . . .

Associated Legendre functions of the first kind are defined as follows:

Pm
n (x) := (1− x2)

m
2
dm

dxm
(Pn(x)), 0 6 m 6 n.

Note that P 0
n(x) = Pn(x) for all n and Pm

n (x) ≡ 0 if m > n. The first few associated
Legendre functions are

P 1
1 (x) = (1− x2)

1
2 , P 2

2 (x) = 3(1− x2),

P 1
2 (x) = 3x(1 − x2)

1
2 , P 2

3 (x) = 15x(1− x2),

P 1
3 (x) =

3

2
(1− x2)

1
2 (5x2 − 1), P 3

3 (x) = 15(1− x2)
3
2 .
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We may extend the definition of associated Legendre functions to negative values of m by
using Rodrigues’ formula in the definition above. Thus, we redefine associated Legendre
functions of the first kind

Pm
n (x) :=

1

2n n!
(1− x2)

m
2
dm+n

dxm+n
(x2 − 1)n, −n 6 m 6 n.

Associated Legendre functions of the second kind are defined as follows:

Qm
n (x) := (1− x2)

m
2
dm

dxm
(Qn(x)), 0 6 m 6 n.

Lemma 50. Associated Legendre functions of the first kind satisfy the following properties:

1. ‖Pm
n ‖2 =

∫ 1

−1

(Pm
n (x))2 dx =

2

2n+ 1
· (n+m)!

(n−m)!
.

2. 〈Pm
k , P

m
l 〉 =

∫ 1

−1

Pm
k (x)Pm

l (x) dx = 0 1 if k 6= l.

7.3 Spherical Bessel Functions
Consider the radial equation obtained earlier with λ = n(n + 1):

r2R′′ + 2rR′ + (µ2r2 − n(n + 1))R = 0.

Let x = µr and u(x) = R(r). Then we get

x2u′′ + 2xu′ + (x2 − n(n+ 1))u = 0. (spherical Bessel’s equation)

This resembles Bessel’s equation, but differs because of the 2 in the second term. We can
transform it into Bessel’s equation as follows: let u(x) = xγw(x). Plug into the equation to
get

x2w′′ + 2(γ + 1)xw′ + [x2 − n(n+ 1) + γ(γ + 1)]w = 0.

Now set 2(γ + 1) = 1. Thus γ = −1/2 and the equation becomes

x2w′′ + xw′ + [x2 − (n+
1

2
)2]w = 0.

This is Bessel’s equation of order n+ 1
2
. One solution is

w(x) = Jn+ 1
2
(x), therefore u(x) =

w(x)√
x

=
1√
x
Jn+ 1

2
(x).

The spherical Bessel functions of order n are defined as

jn(x) :=

√
π

2x
Jn+ 1

2
(x), (first kind)

yn(x) :=

√
π

2x
Yn+ 1

2
(x). (second kind)
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The first few spherical Bessel functions are listed below:

j0(x) =
sin x

x
, y0(x) = −cosx

x
,

j1(x) =
sin x

x2
− cosx

x
, y1(x) = −cosx

x2
− sin x

x
,

j2(x) =

(
3

x2
− 1

x

)
sin x− 3

x2
cosx, y2(x) =

(
− 3

x2
+

1

x

)
cosx− 3

x2
sin x.

Lemma 51. Spherical Bessel functions satisfy the following properties:

1. j0(0) = 1, jn(0) = 0, n > 1.

2. yn(x) → −∞ as x→ 0+.

3. jn(x) = xn
(
−1

x

d

dx

)n(
sin x

x

)
, yn(x) = xn

(
−1

x

d

dx

)n (cosx
x

)
.

4.

∫ αnm

0

j2n(µr) r
2 dr =

π

4
α2
nmJ

′2
n+ 1

2
(αnmµ), where jn(αnm) = 0.

5.
1

x
sin

√
x2 + 2xt =

∞∑

n=0

(−1)nyn−1(x)

n!
tn, 2|t| < |x|.

6.
1

x
cos

√
x2 − 2xt =

∞∑

n=0

jn−1(x)

n!
tn, 2|t| < |x|.

7.4 Laplace’s Equation (3-d)
We now conside an example of Laplace’s equation in a sphere.

EXAMPLE 7.1. (Laplace’s equation in a sphere)

∇2u = 0, 0 < r < a,

u(a, θ, φ) = f(θ, φ) −π < φ < π,

0 < θ < π.

Analogous to what was done before, we consider the domain in the rθφ-space. Several of
the boundaries of this rectanglar region are not “real physical” boundaries. So, similar to
the approach we adopted earlier, we make the following additional assumptions:

A1: u(r, θ, π) = u(r, θ,−π) and ∂u

∂φ
(r, θ, π) =

∂u

∂φ
(r, θ,−π);

A2: |u(r, θ, φ)| bounded everywhere.
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We apply separation of variables: u(r, θ, φ) = R(r)S(θ)Q(φ). The equation becomes

1

r2

{
∂

∂r

(
r2
∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

}
= 0

(r2R′)′SQ +
RQ

sin θ
(sin θ S ′)′ +

RS

sin2 θ
Q′′ = 0

(r2R′)R′

R
+

(sin θ S ′)′

sin θ S
+

Q′′

Q sin2 θ
= 0

(r2R′)R′

R
= −(sin θ S ′)′

sin θ S
− Q′′

Q sin2 θ
= λ

This leads to

(r2R′)′ − λR = 0 ,
sin θ(sin θ S ′)′

S
+ λ sin2 θ = −Q

′′

Q
= ν.

The second of these leads to

sin θ(sin θ S ′)′ + (λ sin2 θ − ν)S = 0 , Q′′ + νQ = 0 .

We first solve the equation for Q with the appropriate boundary conditions:

Q′′ + νQ = 0
Q(π) = Q(−π)
Q′(π) = Q′(−π)



 =⇒

{
ν = m2, 1m = 0, 1, 2, . . . ,

Qm(φ) = αm cos(mφ) + βm sin(mφ).

If we let x = cos θ and v(x) = S(θ), then the equation for S becomes

(1− x2)v′′ − 2xv′ + [λ− m2

1− x2
]v = 0.

¿From (A2) we get

|u(r, θ, φ)| bdd. =⇒ |S(θ)| bdd. =⇒ |v(x)| bdd. =⇒ λ = n(n + 1).

Therefore v satisfies

(1− x2)v′′ − 2xv′ + [n(n + 1)− m2

1− x2
]v = 0.

Hence
v(x) = cmn P

m
n (x) + dmn Q

m
n (x).

But again |v(x)| bounded implies that dmn = 0 so that

v(x) = cmn P
m
n (x), Sm

n (θ) = cmn P
m
n (cos θ).
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The equation for R becomes

r2R′′ + 2rR′ − n(n+ 1)R = 0. (Cauchy–Euler equation)

Looking for a solution of the form R(r) = rα implies that

α2 + α− n(n+ 1) = 0 =⇒ α = n,−1 − n =⇒ R(r) = c1r
n + c2r

−1−n.

But |R(r)| bounded implies c2 = 0, hence R(r) = rn. Therefore

umn (r, θ, φ) = rnPm
n (cos θ)(αm

n cos(mφ) + βm
n sin(mφ)).

Applying superposition yields

u(r, θ, φ) =
∞∑

n=0

n∑

m=0

rnPm
n (cos θ)(αm

n cos(mφ) + βm
n sin(mφ)).

Apply the one remaining genuine boundary condition u(a, θ, φ) = f(θ, φ) to get

f(θ, φ) =

∞∑

n=0

n∑

m=0

anPm
n (cos θ)(αm

n cos(mφ) + βm
n sin(mφ)).

If we let

Ŷ m
n (θ, φ) := Pm

n (cos θ) cos(mφ), Ỹ m
n (θ, φ) := Pm

n (cos θ) sin(mφ), (spherical harmonics)

then

f(θ, φ) =

∞∑

n=0

n∑

m=0

an(αm
n Ŷ

m
n (θ, φ) + βm

n Ỹ
m
n (θ, φ)).

The coefficients are given by

anαm
n =

〈
f, Ŷ m

n

〉

‖Ŷ m
n ‖2

, anβm
n =

〈
f, Ỹ m

n

〉

‖Ỹ m
n ‖2

,

where the inner product is given by

〈f, g〉 :=
∫ π

−π

∫ π

0

f(θ, φ)g(θ, φ) sin θ dθ dφ.

We have

‖Ŷ m
n ‖2 =

∫ π

−π

∫ π

0

(Pm
n (cos θ))2 cos2(mφ) sin θ dθ dφ =

(∫ π

−π

cos2(mφ) dφ

)(∫ π

0

(Pm
n (cos θ))2 sin θ dθ

)

=

{
π if m 6= 0
2π if m = 0

}
·
∫ 1

−1

(Pm
n (x))2 dx =





2π

2n+ 1
· (n +m)!

(n−m)!
if m 6= 0

4π

2n+ 1
if m = 0

.
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Similarly

‖Ỹ m
n ‖2 =





2π

2n+ 1
· (n +m)!

(n−m)!
if m 6= 0

4π

2n+ 1
if m = 0

.

The final solution is

u(r, θ, φ) =
∞∑

n=0

n∑

m=0

rnPm
n (cos θ)(αm

n cos(mφ) + βm
n sin(mφ)),

where

αm
n = (2− δm0)

2n + 1

4π
· (n−m)!

(n+m)!

∫ π

−π

∫ π

0

f(θ, φ)Pm
n (cos θ) cos(mφ) sin θ dθ dφ,

βm
n = (2− δm0)

2n + 1

4π
· (n−m)!

(n+m)!

∫ π

−π

∫ π

0

f(θ, φ)Pm
n (cos θ) sin(mφ) sin θ dθ dφ.

Special Case: (f(θ, φ) = f(θ))
In this case we get

αm
n =

〈
f, Ŷ m

n

〉

an‖Ŷ m
n ‖2

=

∫ π

−π

∫ π

0

f(θ)Pm
n (cos θ) cos(mφ) sin θ dθ dφ

=

〈
f, Ŷ m

n

〉

an‖Ŷ m
n ‖2

(∫ π

−π

cos(mφ) dφ

)(∫ π

0

f(θ)Pm
n (cos θ) sin θ dθ

)
= 0 if m 6= 0,

βm
n =

〈
f, Ỹ m

n

〉

an‖Ỹ m
n ‖2

=

∫ π

−π

∫ π

0

f(θ)Pm
n (cos θ) sin(mφ) sin θ dθ dφ

=

〈
f, Ỹ m

n

〉

an‖Ỹ m
n ‖2

(∫ π

−π

sin(mφ) dφ

)(∫ π

0

f(θ)Pm
n (cos θ) sin θ dθ

)
= 0 for all m.

Thus we have

u(r, θ) =
∞∑

n=0

cn

(r
a

)n
Pn(cos θ),

where

cn =
2n + 1

2

∫ π

0

f(θ)Pn(cos θ) sin θ dθ.
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Figure 7.1: Legendre polynomials



Chapter 8

Problems in Infinite Domains

June 17, 2010

8.1 Fourier Integrals
Consider f ∈ PC(−ℓ, ℓ) with Fourier series

f(x) ∼ a0
2

+

∞∑

n=1

(an cos(
nπx

ℓ
) + bn sin(

nπx

ℓ
)),

where

an =
1

ℓ

∫ ℓ

−ℓ

f(x) cos(
nπx

ℓ
) dx, bn =

1

ℓ

∫ ℓ

−ℓ

f(x) sin(
nπx

ℓ
) dx.

We want to generalize this to the case where f ∈ PC(R). That is, we wish to consider the
limiting case where ℓ→ ∞.

Heuristic motivation
We begin by introducing some notation. Let

ωn :=
nπ

ℓ
, Aℓ(ω) :=

1

π

∫ ℓ

−ℓ

f(x) cosωx dx, A(ω) := lim
ℓ→∞

Aℓ(ω),

∆ω := ωn+1 − ωn =
π

ℓ
, Bℓ(ω) :=

1

π

∫ ℓ

−ℓ

f(x) sinωx dx, B(ω) := lim
ℓ→∞

Bℓ(ω).

Then

an =
1

ℓ

∫ ℓ

−ℓ

f(x) cos(ωnx) dx =
π

ℓ
Aℓ(ωn) = Aℓ(ωn)∆ω;

bn =
1

ℓ

∫ ℓ

−ℓ

f(x) sin(ωnx) dx =
π

ℓ
Bℓ(ωn) = Bℓ(ωn)∆ω.

136
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Now, taking the limit ℓ→ ∞, we get

lim
ℓ→∞

{ ∞∑

n=1

an cos(
nπx

ℓ
)

}
= lim

ℓ→∞

{ ∞∑

n=1

Aℓ(ωn) cos(ωnx)∆ω

}
?
=

∫ ∞

0

A(ω) cos(ωx) dω,

lim
ℓ→∞

{ ∞∑

n=1

bn cos(
nπx

ℓ
)

}
= lim

ℓ→∞

{ ∞∑

n=1

Bℓ(ωn) cos(ωnx)∆ω

}
?
=

∫ ∞

0

B(ω) cos(ωx) dω.

The last dubious equalities are suggested by the fact that the sums resemble Riemann sums
and the limits resemble the original definitions of a Riemann integral. So is it legitimate to
write

f(x)
?∼
∫ ∞

0

[A(ω) cos(ωx) +B(ω) sin(ωx)] dω.

The answer is yes. The derivation is given below. We will need a few lemmas.

Lemma 52.

∫ ∞

0

sinω

ω
dω =

π

2
.

Proof.

Let F be the Laplace transform of
sinω

ω
. That is, let

F (x) :=

∫ ∞

0

e−ωx sinω

ω
dω.

Then

F (0) =

∫ ∞

0

sinω

ω
dω, and F (∞) = lim

x→∞
F (x) = 0.

Differentiating F we get

F ′(x) =

∫ ∞

0

∂

∂x

{
e−ωx sinω

ω

}
dω = −

∫ ∞

0

e−ωx sinω dω =
e−ωx

1 + x2
[x sinω+cosω]

∣∣∣∣
ω=∞

ω=0

=
−1

1 + x2
.

Integrating F ′ we get

F (x) = F (x)−0 = F (x)−F (∞) =

∫ x

∞
F ′(ξ) dξ = −

∫ x

∞

dξ

1 + ξ2
− tan−1 ξ

∣∣∣∣
x

∞
= − tan−1 x+

π

2

Thus ∫ ∞

0

sinω

ω
dω = F (0) =

π

2
.

Lemma 53.

∫ ∞

0

sinωξ

ω
dω =





π
2
, if ξ > 0,

0, if ξ = 0,

−π
2
, if ξ < 0.
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Proof.
If ξ = 0, the result is obvious. If ξ > 0 then

∫ ∞

0

sinωξ

ω
dω =

∫ ∞

0

sin x

x
dx =

π

2
. (using x = ωξ)

On the other hand, if ξ < 0 then
∫ ∞

0

sinωξ

ω
dω = −

∫ ∞

0

sin x

x
dx = −π

2
. (using x = −ωξ)

Lemma 54. If f is piecewise continuous, then

lim
h→0

1

2h

∫ x+h

x−h

f(ξ) dξ =
f(x+) + f(x−)

2
.

Proof.

lim
h→0

∫ x+h

x−h
f(ξ) dξ

2h
= lim

h→0

f(x+ h)− f(x− h)(−1)

2
=
f(x+) + f(x−)

2
.

We now define the following function

K(x, h) :=
2

π

∫ ∞

0

sinωh

ω
cosωx dω.

Then we have

K(x, h) =
1

π

∫ ∞

0

1

ω
[sinω(x+ h)− sinω(x− h)] dω

=
1

π

{∫ ∞

0

sinω(x+ h)

ω
dω −

∫ ∞

0

sinω(x− h)

ω
dω

}

=
1

π





−π
2
− (−π

2
) x < −h

π
2
− (−π

2
) −h < x < h

π
2
− (π

2
) x > h

(using Lemma 53)

=
1

π





0 x < −h
π −h < x < h

0 x > h

=

{
1 |x| < h

0 |x| > h
.

Note that K is an even function in x.

We are now ready to give the main result
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Theorem 55. If
(i) f ∈ PC1(a, b) on any interval (a, b); and

(ii)

∫ ∞

−∞
|f(x)| dx <∞,

then
f(x+) + f(x−)

2
=

∫ ∞

0

[A(ω) cosωx+B(ω) sinωx] dω,

where

A(ω) =
1

π

∫ ∞

−∞
f(x) cosωx dx, B(ω) =

1

π

∫ ∞

−∞
f(x) sinωx dx.

Proof.
We have

f(x+) + f(x−)

2
= lim

h→0

1

2h

∫ x+h

x−h

f(ξ) dξ (using Lemma 54)

= lim
h→0

1

2h

∫ ∞

−∞
f(ξ)K(x− ξ, h) dξ

= lim
h→0

1

2h

∫ ∞

−∞
f(ξ)

{
2

π

∫ ∞

0

sinωh

ω
cosω(x− ξ) dω

}
dξ (using the definition of K)

=
1

π

∫ ∞

−∞

∫ ∞

0

f(ξ)

[
lim
h→0

sinωh

ωh

]
cosω(x− ξ) dω dξ

=
1

π

∫ ∞

−∞

∫ ∞

0

f(ξ) cosω(x− ξ) dω dξ

=
1

π

∫ ∞

0

∫ ∞

−∞
f(ξ)[cosωx cosωξ + sinωx sinωξ] dξ dω

=
1

π

∫ ∞

0

{(∫ ∞

−∞
f(ξ) cosωξ dξ

)
cosωx+

(∫ ∞

−∞
f(ξ) sinωξ dξ

)
sinωx

}
dω

=

∫ ∞

0

[A(ω) cosωx+B(ω) sinωx]dω.

The expression ∫ ∞

0

[A(ω) cosωx+B(ω) sinωx]dω

is called the Fourier integral representaion of f , and A(ω) and B(ω) are called the Fourier
integral coefficients of f .

EXAMPLE 8.1. Calculate the Fourier integral of f(x) = e−|x|.

Solution:
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We have

A(ω) =
1

π

∫ ∞

−∞
e−|x| cosωx dx =

2

π

∫ ∞

0

e−|x| cosωx dx =
2

π

e−x

1 + ω2
(ω sinωx− sinωx)

∣∣∣∣
∞

x=0

=
2

π(1 + ω2)
,

B(ω) =
1

π

∫ ∞

−∞
e−|x| sinωx dx = 0. (since f is even)

Hence

e−|x| =
2

π

∫ ∞

0

cosωx

1 + ω2
dω.

Suppose f is defined on (0,∞). We define

fe(x) :=

{
f(x) x > 0

f(−x) x < 0
(even extension of f),

fo(x) :=

{
f(x) x > 0

−f(−x) x < 0
(odd extension of f).

Then

fe(x) ∼
∫ ∞

0

A(ω) cosωx dω, (Fourier cosine integral)

fo(x) ∼
∫ ∞

0

A(ω) sinωx dω. (Fourier sine integral)

where

A(ω) =
2

π

∫ ∞

0

f(x) cosωx dx, B(ω) =
2

π

∫ ∞

0

f(x) sinωx dx.

8.2 Fourier Transform
There is also a complex form of the Fourier integral. Notice the symmetries of the Fourier
integral coefficients:

A(ω) =
1

π

∫ ∞

−∞
f(x) cosωx dx, A(−ω) = A(ω),

B(ω) =
1

π

∫ ∞

−∞
f(x) sinωx dx, B(−ω) = −B(ω).
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Manipulating the Fourier integral we get

f(x) =

∫ ∞

0

[A(ω) cosωx+B(ω) sinωx] dω

=
1

2

∫ ∞

0

[A(ω)(eiωx + e−iωx)− iB(ω)(eiωx − e−iωx)] dω

=
1

2

∫ ∞

0

[A(ω)− iB(ω)]eiωx dω +
1

2

∫ ∞

0

[A(ω) + iB(ω)]e−iωx dω

=
1

2

∫ −∞

0

[A(−µ)− iB(−µ)]ei(−µ)x d(−µ) + 1

2

∫ ∞

0

[A(ω) + iB(ω)]e−iωx dω

=
1

2

∫ 0

−∞
[A(µ) + iB(µ)]e−iµx dµ+

1

2

∫ ∞

0

[A(µ) + iB(µ)]e−iµx dµ

=
1

2

∫ ∞

−∞
[A(µ) + iB(µ)]e−iµx dµ =

∫ ∞

−∞
F (µ)e−iµx dµ,

where

F (µ) :=
1

2
[A(µ) + iB(µ)] =

1

2π

∫ ∞

−∞
f(x)[cosµx+ i sinµx] dx =

1

2π

∫ ∞

−∞
f(x)eiµx dx.

The expression F (ω) is called the Fourier Transform of f and is sometimes denoted by f̂(ω).
Thus we have

F (ω) =
1

2π

∫ ∞

−∞
f(x)eiωx dx, (Fourier Transform)

f(x) =

∫ ∞

−∞
F (ω)e−iωx dω. (inverse Fourier Transform)

Remark: Unfortunately, there is no unique way to define the Fourier transform. What makes
the Fourier transform so powerful is the relation between transfrom and inverse transform,
the detailed definition of the transform, however, allows various choices. Hence in some text-
books you will find Fourier Transform and inverse Fourier Transform with different factors
in front:

F (ω) =
1√
2π

∫ ∞

−∞
f(x)eiωx dx, f(x) =

1√
2π

∫ ∞

−∞
F (ω)e−iωx dω.

In other textbooks the sign of the exponential might be flipped:

F (ω) =
1

2π

∫ ∞

−∞
f(x)e−iωx dx, f(x) =

∫ ∞

−∞
F (ω)eiωx dω.
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EXAMPLE 8.2. If f(x) = e−|x|, then its Fourier Transform is

F (ω) =
1

2π

∫ ∞

−∞
e−|x|eiωx dx =

1

2π

{∫ 0

−∞
ex(1+iω) dx+

∫ ∞

0

e−x(1−iω) dx

}

=
1

2π

{
ex(1+iω)

1 + iω

∣∣∣∣
0

x=−∞
− e−x(1−iω)

1− iω

∣∣∣∣
∞

x=0

}
=

1

2π

(
1

1 + iω
+

1

1− iω

)
=

1

π(1 + ω2)
.

Therefore

e−|x| =

∫ ∞

−∞
F (ω)e−iωx dω =

1

π

∫ ∞

−∞

e−iωx

1 + ω2
dω.

For f defined on (0,∞), we can calculate the Fourier Transform for the even and odd
extensions fe and fo.

F (ω) =
1

2π

∫ ∞

−∞
fe(x)e

iωx dx =
1

2π

{∫ 0

−∞
fe(x)e

iωx dx+

∫ ∞

0

fe(x)e
iωx dx

}

=
1

2π

{∫ ∞

0

f(x)e−iωx dx+

∫ ∞

0

f(x)eiωx dx

}

=
1

2π

∫ ∞

0

f(x)(eiωx + e−iωx) dx =
1

π

∫ ∞

0

f(x) cosωx dx.

Note that F is an even function. To invert this we have

f(x) =

∫ ∞

−∞
F (ω)e−iωx dω =

∫ 0

−∞
F (ω)e−iωx dω +

∫ ∞

0

F (ω)e−iωx dω

=

∫ ∞

0

F (ω)eiωx dω +

∫ ∞

0

F (ω)e−iωx dω

=

∫ ∞

0

F (ω)(eiωx + e−iωx) dω =

∫ ∞

0

2F (ω) cosωx dω.

A similar calculation holds for the odd extension. So, for a function defined on (0,∞), we
define

Fc(ω) :=
2

π

∫ ∞

0

f(x) cosωx dx, (Fourier cosine transform)

f(x) =

∫ ∞

0

Fc(ω) cosωx dω, (inverse Fourier cosine transform)

Fs(ω) :=
2

π

∫ ∞

0

f(x) sinωx dx, (Fourier sine transform)

f(x) =

∫ ∞

0

Fs(ω) sinωx dω. (inverse Fourier sine transform)
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8.3 Applications
Here we will give examples of solving the heat equation and the wave equation on infinite
domains. First the heat equation.

EXAMPLE 8.3. Consider the heat equation:

ut = huxx, −∞ < x <∞, t > 0,

u(x, 0) = e−|x|.

We require the additional assumption that the solution be bounded for all x ∈ R.

Solution 1.
Apply separation of variables. Look for a solution of the form u(x, t) = X(x)T (t). Plug this
into the equation to get:

T ′

kT
=
X ′′

X
= −µ.

This leads to ODEs is X and T :

X ′′ + µX = 0, T ′ + µT = 0,

|X(x)| < bdd.

The equation for X will have bounded solutions only for µ > 0. So, set µ = ω2 to get

X ′′ + ω2X = 0, =⇒ X(x;ω) = e±iωx.

Note that, without finite boundary conditions, there is no restriction on ω. Thus ω ∈ R is
arbitrary. We now have

T (t;ω) = e−kω2t and u(x, t;ω) = F (ω)e−iωxe−kω2t.

The function u(x, t;ω) is a bounded solution to the heat equation for any F and for any
ω ∈ R. We now apply a generalized principle of superposition. In earlier problems we took a
liear combination of solutions over all eigenvalues. In those problems the spectrum (the set
of all eigenvalues) was discrete and so the linear combination consisted of a discrete sum. In
this case the spectrum is continuous (all ω ∈ R) and so the appropriate linear combination
will consist of a continuous sum (i.e. an integral). We get

u(x, t) =

∫ ∞

−∞
F (ω)e−iωxe−kω2t dω.

We now apply the initial condition u(x, 0) = e−|x| to get

e−|x| =

∫ ∞

−∞
F (ω)e−iωx dω.
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Thus F must be the Fourier transform of e−|x|, hence

F (ω) =
1

2π

∫ ∞

−∞
e−|x|eiωx dx =

1

π(1 + ω2)
. (from Example 8.2)

Therefore, the final solution to the problem, in integral form, is

u(x, t) =
1

π

∫ ∞

−∞

e−iωx−kω2t

1 + ω2
dω.

Solution 2.
We now solve the problem in a slightly different manner. Let U(ω, t) br the Fourier transform
of u(x, t):

U(ω, t) =
1

2π

∫ ∞

−∞
u(x, t)eiωx dx.

Then

u(x, t) =

∫ ∞

−∞
U(ω, t)e−iωx dω,

ut(x, t) =

∫ ∞

−∞
Ut(ω, t)e

−iωx dω,

uxx(x, t) =

∫ ∞

−∞
(−ω2)U(ω, t)e−iωx dω.

Plug into the equation:

ut − kuxx = 0 =⇒
∫ ∞

−∞
[Ut(ω, t) + kω2U(ω, t)]e−iωx dω = 0.

Set the integrand to zero:

∂U

∂t
= −kω2 U =⇒ U(ω, t) = F (ω)e−kω2t =⇒ u(x, t) =

∫ ∞

−∞
F (ω)e−iωxe−kω2t dω.

Apply the initial condition u(x, 0) = e−|x| to get

e−|x| =

∫ ∞

−∞
F (ω)e−iωx dω.

Thus F must be the Fourier transform of e−|x|, hence

F (ω) =
1

2π

∫ ∞

−∞
e−|x|eiωx dx =

1

π(1 + ω2)
. (from Example 8.2)

Therefore, the final solution to the problem, in integral form, is

u(x, t) =
1

π

∫ ∞

−∞

e−iωx−kω2t

1 + ω2
dω.
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We now consider a problem involving the wave equation.

EXAMPLE 8.4.

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

We use an approach analogous to the second solution given in the previous example. Let
U(ω, t) be the Fourier transform of u(x, t), and let F and G be the Fourier transforms of f
and g respectively. Then

U(ω, t) =
1

2π

∫ ∞

−∞
u(x, t)eiωx dx u(x, t) =

∫ ∞

−∞
U(ω, t)e−iωx dω,

F (ω) =
1

2π

∫ ∞

−∞
f(x)eiωx dx, f(x) =

∫ ∞

−∞
F (ω)e−iωx dω, (8.1)

G(ω) =
1

2π

∫ ∞

−∞
g(x)eiωx dx. g(x) =

∫ ∞

−∞
G(ω)e−iωx dω. (8.2)

Differentiating u we get

utt(x, t) =

∫ ∞

−∞
Utt(ω, t)e

−iωx dω, uxx(x, t) = −
∫ ∞

−∞
ω2U(ω, t)e−iωx dω.

It is clear that F (ω) = U(ω, 0) and G(ω) = Ut(ω, 0). Plug into the equation:

utt − c2uxx = 0 =⇒
∫ ∞

−∞
[Utt(ω, t) + c2ω2U(ω, t)]e−iωx dω = 0.

We get the following initial value problem for U :

∂2U

∂t2
+ c2ω2 U = 0,

U(ω, 0) = F (ω), 1Ut(ω, 0) = G(ω).

The solution to the ODE is

U(ω, t) = A(ω) cos(cωt) +B(ω) sin(cωt).

The initial conditions imply

A(ω) = F (ω) and B(ω) =
G(ω)

cω
.

Therefore

u(x, t) =

∫ ∞

−∞
[F (ω) cos(cωt) +G(ω)

sin(cωt)

cω
]e−iωx dx
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However, further manipulation yields
∫ ∞

−∞
F (ω) cos(cωt)e−iωx dω =

1

2

∫ ∞

−∞
F (ω)[eicωt + e−icωt]e−iωx dω

=
1

2

∫ ∞

−∞
F (ω)[e−iω(x−ct) + e−iω(x+ct)] dω

=
1

2
[f(x− ct) + f(x+ ct)]. (using (8.1))

and
∫ ∞

−∞
G(ω)

sin(cωt)

cω
e−iωx dω =

1

2

∫ ∞

−∞
G(ω)

eicωt − e−icωt

icω
e−iωx dω

=
1

2

∫ ∞

−∞
G(ω)

e−iω(x−ct) − e−iω(x+ct)

icω
dω

=
1

2c

∫ ∞

−∞
G(ω)

(∫ x+ct

x−ct

e−iωξ dξ

)
dω

=
1

2c

∫ x+ct

x−ct

∫ ∞

−∞

(
G(ω)e−iωξ dω

)
dξ

=
1

2c

∫ x+ct

x−ct

g(ξ) dξ. (using (8.2))

Therefore we recover D’Alembert’s solution obtained earlier

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(ξ) dξ.

We now redo the previous example involving the heat equation and show how to obtain
an explicit representation of the solution, for an arbitrary initial condition, involving only
one integration and not involving the Fourier transform. To do this we need the following
result:

Lemma 56. Let a > 0 be constant. Then
∫ ∞

−∞
e−aω2−iωx dω =

√
π

a
e−

x2

4a .

Proof.
Exercise.

EXAMPLE 8.5. Consider the following one–dimensional heat equation:

ut = kuxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x).
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Let U(ω, t) and F (ω) be the Fourier transforms of u(x, t) and f(x) respectively. Then

U(ω, t) =
1

2π

∫ ∞

−∞
u(x, t)eiωx dx, u(x, t) =

∫ ∞

−∞
U(ω, t)e−iωx dω

F (ω) =
1

2π

∫ ∞

−∞
f(x)eiωx dx, f(x) =

∫ ∞

−∞
F (ω)e−iωx dω

It is clear that F (ω) = U(ω, 0). Differentiating u we get

ut(x, t) =

∫ ∞

−∞
Ut(ω, t)e

−iωx dω, uxx(x, t) =

∫ ∞

−∞
−ω2U(ω, t)e−iωx dω.

Plug into the equation:

ut − kuxx = 0 =⇒
∫ ∞

−∞
[Ut(ω, t) + kω2U(ω, t)]e−iωx dω = 0.

We get the following ODE for U :

∂U

∂t
+ kω2U = 0,

U(ω, 0) = F (ω).

This is easily solved to get
U(ω, t) = F (ω)e−kω2t.

The solution to the problem is

u(x, t) =

∫ ∞

−∞
F (ω)e−kω2te−iωx dω. (8.3)

This of course is the solution we obtained in the example before last. However, further
manipulation yields

u(x, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(ξ)eiωξe−kω2te−iωx dξ dω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(ξ)eiωξ−iωx−kω2t dω dξ

=
1

2π

∫ ∞

−∞
f(ξ)

{∫ ∞

−∞
e−iω(x−ξ)−kω2t dω

}
dξ

=
1

2π

∫ ∞

−∞
f(ξ)

{√
π

kt
e−

(x−ξ)2

4kt

}
dξ (using Lemma 56)

=
1

2
√
πkt

∫ ∞

−∞
f(ξ)e−

(x−ξ)2

4kt dξ

=
1

2
√
πkt

∫ ∞

−∞
f(x−s)e− s2

4kt ds.
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Thus we obtain the explicit representation

u(x, t) =
1

2
√
πkt

∫ ∞

−∞
f(ξ)e−

(x−ξ)2

4kt dξ . (8.4)

The function

e−
(x−ξ)2

4kt

2
√
πkt

is called the Gauss–Weirstrass kernel or the fundamental solution of the heat equation.
The explicit representation (8.4) is preferable to the Fourier representation (8.3) for several
reasons: (a) it is computationally more direct, requiring only one integration; (b) it makes
sense for many functions f for which the Fourier transform is undefined, for example, any
bounded continuous function; and (c) it does not require any smoothness in order to satisfy
the initial value problem.

Special case: f(ξ) = u0, a constant.

u(x, t) =
1

2
√
πkt

∫ ∞

−∞
u0e

− s2

4kt ds = u0.

Special case: f(ξ) = δ(ξ) Dirac δ-function.

u(x, t) =
1

2
√
πkt

e−
x2

4kt .

8.3.1 Error Function

Another helpful tool to solve the heat equation on the real line R is the error function

erf(w) =
2√
π

∫ w

0

e−z2 dz,

We illustrate it’s use in an example:

Exercise 8.1. %
Use convolutions, the error function, and operational properties of the Fourier
transform to solve the initial boundary value problem

∂u

∂t
=

1

100

∂2u

∂x2
, −∞ < x <∞, t > 0,

u(x, 0) =





100 if − 2 < x < 0,

50 if 0 < x < 1,

0 otherwise.
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Solution: Transforming the heat equation and the initial conditions, we get the solution
to the transformed problem

û(ω, t) = f̂(ω) e−ω2t/100.

Since this is the product of two Fourier transforms, we know that it is 1/2π times the Fourier
transform of a convolution, and using the convolution theorem, the solution can be written
as

u(x, t) =
1

2π
F−1

(
e−ω2t/100

)
∗ f(x).

Computing the inverse Fourier transform of e−ω2t/100

F−1
(
e−ω2t/100

)
=

∫ ∞

−∞
e−ω2t/100e−iωx dω,

we let
σ2

4
=
ω2t

100
,

so that

ω =
σ
√
25√
t

and dω =

√
25√
t
dσ,

and

F−1
(
e−ω2t/100

)
=

√
25√
t

√
4π

∫ ∞

−∞

1√
4π

e−σ2/4 e
−iσ 25x√

t dσ

=

√
25√
t

√
4π e−

25x2

t

= 10

√
π

t
e−

25x2

t .

Therefore, the solution is

u(x, t) =
10

2π

√
π

t
e−

25x2

t ∗ f(x) = 5√
πt

∫ ∞

−∞
f(s) e−

25(x−s)2

t ds,

that is,

u(x, t) =
5√
πt

[∫ 0

−2

100 e−
25(x−s)2

t ds+

∫ 1

0

50 e−
25(x−s)2

t ds

]
.

We can write the solution

u(x, t) =
5√
πt

[∫ 0

−2

100 e−
25(x−s)2

t ds+

∫ 1

0

50 e−
25(x−s)2

t ds

]
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in terms of the error function

erf(w) =
2√
π

∫ w

0

e−z2 dz,

by letting z =
5(x− s)√

t
, so that dz = − 5√

t
ds, then

u(x, t) =
100√
π

∫ 5(x+2)√
t

5x√
t

e−z2 dz +
50√
π

∫ 5x√
t

5(x−1)√
t

e−z2 dz,

that is,

u(x, t) = 50
[
erf
(

5(x+2)√
t

)
− erf

(
5x√
t

)]
+ 25

[
erf
(

5x√
t

)
− erf

(
5(x−1)√

t

)]
.



Chapter 9

Method of Characteristics

June 17, 2010

9.1 Introduction to the Method of Characteristics
The Method of Characteristics is an interesting new concept, which we will develop
now. It is mathematically quite simple, but it involves an interesting logical twist. To explain
this twist, we introduce the idea of an anchor point, a concept which is not used in other
textbooks.

We begin with a sinple first order partial differential equation on −∞ < x < +∞

∂z(x, t)

∂t
+ c

∂z(x, t)

∂x
= 0, z(x, 0) = f(x).

Notice that no boundary condition is needed, since we work on the whole real line.

As seen earlier, a solution of a PDE for a function of two variables z(x, t) can be under-
stood as a surface over the (x, t) plane. To parametrize this surface, we use a phantastic
idea:

Find curves x(t) in the (x, t)-plane, such that the PDE can be reduced to an
ODE along these curves. These ODEs can be solved and pieced back together
to find the solution of the PDE.

Assume there is a curve x(t) and we study z along this curve z(x(t), t)). Then by the
chain rule we obtain

d

dt
z(x(t), t) =

∂z(x(t), t)

∂x

∂x(t)

∂t
+
∂z(x(t), t)

∂t
.

Notice, here you can clearly see the difference between a total derivative d
dt

and a partial
derivative ∂

∂t
. Now if we compare the last expression with the original PDE, we see that it

would be cool if ∂x(t)
∂t

= c. If this would be true, then we have

d

dt
z(x(t), t) = c

∂z

∂x
+
∂z

∂t
= 0

151
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t

( x , t )z
( x( t ) t )z ,

( tx )

x

Figure 9.1: Schematic of a typical characteristic curve x(t) and the part z(x(t), t) of the
solution surface z which lies directly above

hence the solution is constant along this curve x(t). To make all this happen, we have to
solve two ODEs, which are called the characteristic ODEs:

dx(t)

dt
= c,

dz(x(t), t)

dt
= 0.

We solve the first one first:

x(t) = ct+ a, with an unknown constant a.

We observe that at t = 0 we have x(0) = a, hence this constant a is the point where the
characteristic curve starts. We call it the anchor point. If a point (x, t) is given, then we
can always find the corresponding anchor point as

a = x− ct.

Now we solve the second characteristic equation:

z(x(t), t) = const.

If z is constant along the characteristic, it must have the same value as at the point where
the characteristic starts, i.e. the anchor point. Hence

z(x((t), t) = z(x(0), 0) = f(x(0)) = f(a) = f(x− ct)

where we used the initial condition f(x). Which means for each given (x, t) we find the
solution

z(x, t) = f(x− ct).

This is a transition to the left with velocity c:
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a

x( , t )

anchor point

t

x

Figure 9.2: Schematic of a typical characteristic curve x(t) and the anchor point. Notice
that in general characteristic curves are not necessarily straight lines.

  )( x  )

t = 0

x1 x x1
t > 0

x −c t

x

c

f (f

Figure 9.3: Schematic of a travelling wave that moves to the right with constant speed c.
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Exercise 9.1.

� ��
Solve the following PDE for z(x, t) on −∞ < x <∞

zt + 5zx = 0, z(x, 0) = e−x2

.

Solution: The first characteristic equation is

dx(t)

dt
= 5

which is solved by
x(t) = 5t+ a, or a = x− 5t

The second characteristic equation is solved by

z(x(t), t) = f(a) = e−a2 = e−(x−5t)2

Hence the solution is
z(x, t) = e−(x−5t)2 .

Now we extend the method to allow for linear source or sink terms.

EXAMPLE 9.1. Solve the following PDE for u(x, t) on −∞ < x <∞:

ut + αux + βu = 0.

Again we look for solutions of the form u(x(t), t). From the chain rule we get

d

dt
u(x(t), t) = uxxt + ut

Hence the characteristic equations become

dx(t)

dt
= α, and

d

dt
u(x(t), t) = −βu(x(t), t).

These are solved as
x(t) = αt+ a, or a = x− αt

and
u(x(t), t) = u(x(0), 0)e−βt

Hence for each given (x, t) we find the corresponding anchor point a = x− αt and then the
solution is given by

u(x, t) = u(a, 0)e−βt = f(x− αt)e−βt.
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Exercise 9.2.

� ��
Solve the following PDE for u(x, t) on −∞ < x <∞:

ut +
√
3ux + βu = 0, u(x, 0) = sin2(x).

Solution: The characteristic equations, their solutions and the anchor point are given
by

dx(t)

dt
=

√
3 x(t) =

√
3t+ a, a = x−

√
3t

du(t)

dt
= 16u(t) u(t) = u(0)e16t

Then the solution is
u(x, t) = (sin(x−

√
3t))2e16t.

9.2 D’Alembert’s solution from Method of Characteristics
The method of characteristics can also be used to derive the D’Alembert solution for the
one-dimensional wave equation on the whole axis −∞ < x <∞

utt = c2uxx

u(x, 0) = f(x)

ut(x, 0) = g(x)

We assume that the solution is twice continuously differentiable, such that uxt = utx.

We will again take a more abstract view and do some algebra with differential operators,
whereby we employ the binomial a2 − b2 = (a+ b)(a− b) = (a− b)(a+ b). We can write the
wave equation as

0 =
∂2u

∂t2
− c2

∂2u

∂x2
=

(
∂2

∂t2
− c2

∂2

∂x2

)
u

=

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u (9.1)

=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u (9.2)

Now we introduce a new variable

z(x, t) =

(
∂

∂t
+ c

∂

∂x

)
u(x, t).
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Then equation (9.1) can be written as

0 =

(
∂

∂t
− c

∂

∂x

)
z(x, t) =

∂

∂t
z(x, t)− c

∂

∂x
z(x, t).

This is, in fact, the simplest first order equation which we used at the beginning of this
chapter. Its solution has the form

z(x, t) = Q(x+ ct)

for an appropriate function Q(x).

Now we do the same with (9.2). We introduce

v(x, t) =

(
∂

∂t
− c

∂

∂x

)
u(x, t).

and obtain

0 =

(
∂

∂t
+ c

∂

∂x

)
v(x, t) =

∂

∂t
v(x, t)− c

∂

∂x
v(x, t).

Its solution has the form
v(x, t) = P (x− ct)

for an appropriate function P (x). Notice that P and Q only depend on one variable:

Q(A), A = x+ ct, P (B), B = x− ct.

We need anti derivatives of these functions in the following form. Let G(A) and F (B) satisfy

cG′(A) =
1

2
Q(A), −cF ′(B) =

1

2
P (B).

Then
∂G(x + ct)

∂t
= cG′(A) =

1

2
Q(A) =

1

2
Q(x+ ct)

and
∂F (x− ct)

∂t
= −cF ′(B) =

1

2
P (B) =

1

2
P (x− ct).

So far we have
z(x, t) = ut + cux = Q(x+ ct)

and
v(x, t) = ut − cux = P (x− ct).

Hence

ut =
1

2
(Q(x+ ct) + P (x− ct)) =

∂G

∂t
+
∂F

∂t

which we integrate to
u(x, t) = G(x+ ct) + F (x− ct) + c1,
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where c1 is a constant of integration. Notice that F and G were defined as antiderivatives
of Q and P . Hence they are only unique up to constants and we can absorb the constant c1
into these functions. For example just define G̃ = G+ c1

2
and F̃ = F + c1

2
and then remove

the tilde .̃ Hence the general solution reads:

u(x, t) = G(x+ ct) + F (x− ct) (9.3)

which is the sum of two traveling waves with speeds ±c, moving in opposite directions.

To find F and G we need the initial conditions. At t = 0 we have for the initial displace-
ment

f(x) = u(x, 0) = G(x) + F (x) (9.4)

For the initial velocity we find

g(x) = ut(x, 0) = cG′(x)− cF ′(x)

We differentiate (9.4) once more to get a system for F ′ and G′

G′(x) + F ′(x) = f ′(x) (9.5)

cG′(x)− cF ′(x) = g(x) (9.6)

Adding the equations (9.5) and (9.6) we obtain

G′(x) =
1

2

(
f ′(x) +

g(x)

c

)

which gives

G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(s)ds+ k1.

Subtracting the equations (9.5) and (9.6) we obtain

F ′(x) =
1

2

(
f ′(x)− g(x)

c

)

which gives

F (x) =
1

2
f(x)− 1

2c

∫ x

0

g(s)ds+ k2.

From (9.4) we observe that k1+k2 = 0. Then from (9.3) we get the D’Alembert solution

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct

g(s)ds.
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Chapter 10

Fourier Series Problems

Exercise 10.1.

���
Suppose that f is T -periodic and let F be an antiderivative of f, for example,

F (x) =

∫ x

0
f(t) dt, −∞ < x <∞.

Show that F is T -periodic if and only if the integral of f over any interval of length
T is 0.

Solution: Note that

F (x+ T ) =

∫ x+T

0
f(t) dt =

∫ x

0
f(t) dt+

∫ x+T

x
f(t) dt = F (x) +

∫ x+T

x
f(t) dt

for all x ∈ R. Therefore F (x+ T ) = F (x) for all x ∈ R if and only if

∫ x+T

x
f(t) dt = 0

for all x ∈ R. This holds if and only if the integral of f over any interval of length T is 0. Since f
is T -periodic, then F is T -periodic if and only if

∫ T

0
f(t) dt = 0.

160
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Exercise 10.2. %%
Let f(x) = x − 2

[
x+1
2

]
, (where [ ] denotes the floor function, i.e. the greatest

integer less or equal to the argument), and consider the function

h(x) = |f(x)| =
∣∣x− 2

[
x+1
2

]∣∣ .

(a) Show that h is 2-periodic.

(b) Plot the graph of h.

(c) Generalize (a) by finding a closed formula that describes the 2a-periodic tri-
angular wave

g(x) = |x| if − a < x < a,

and
g(x + 2a) = g(x) otherwise.

Solution: Note that if we can show that

f(x) = x− 2
[
x+1
2

]

is 2-periodic, then for any x ∈ R, we have

h(x+ 2) = |f(x+ 2)| = |f(x)| = h(x)

for all x ∈ R, so that h is also 2-periodic.

(a) Now,

f(x+ 2) = x+ 2− 2

[
(x+ 2) + 1

2

]

= x+ 2− 2

[
x+ 1

2
+ 1

]

= x+ 2− 2

([
x+ 1

2

]
+ 1

)

= x− 2

[
x+ 1

2

]

= f(x)

and f is 2-periodic, and from the remark above h = |f | is also 2-periodic.

(b) Since f(x) = x for −1 < x < 1, then h(x) = |x| for −1 < x < 1, and the graph of h is shown
below.
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h

−3 −2 −1 0 1 2 3 x

(c) In order to find a 2a-periodic triangular wave, we use the 2a-periodic function

f(x) = x− 2a

[
x+ a

2a

]
,

and note that f(x) = x on the interval −a < x < a. We leave it to you to check, exactly as
in part (a), that this is 2a-periodic and that f(x) = x for −a < x < a. Therefore,

g(x) =

∣∣∣∣x− 2a

[
x+ a

2a

]∣∣∣∣

is a 2a-periodic triangular wave which is equal to |x| on the interval −a < x < a.

Exercise 10.3. %
Evaluate ∫ L

0
cos nπx

L cos mπx
L dx

for n > 0, m > 0.
Use the trigonometric identity:

cos a cos b =
1

2
[cos(a+ b) + cos(a− b)]

(consider a− b = 0 and a+ b = 0 separately).

Solution: If n > m > 0, then from the addition formula for the cosine, we have

∫ L

0
cos nπx

L cos mπx
L dx =

1

2

∫ L

0

[
cos (n−m)πx

L + cos (n+m)πx
L

]
dx

=
L

2π(n −m)
sin (n−m)πx

L

∣∣∣∣
L

0

+
L

2π(n +m)
sin (n+m)πx

L

∣∣∣∣
L

0

=
L

2π(n −m)
sin(n−m)π +

L

2π(n +m)
sin(n+m)π

= 0.
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If n = m > 0, then

∫ L

0
cos nπx

L cos mπx
L dx =

∫ L

0
cos2 mπx

L dx =
1

2

∫ L

0

(
1 + cos 2mπx

L

)
dx

=
L

2
+

L

2mπ
sin 2mπx

L

∣∣∣∣
L

0

=
L

2
.

If n = m = 0, then ∫ L

0
1 · 1 dx = L.

Exercise 10.4. %
Evaluate ∫ L

0
sin nπx

L sin mπx
L dx

for n > 0, m > 0 and consider n = m separately.

Use the trignometric identity: sin a sin b =
1

2
[cos(a− b)− cos(a+ b)] .

Solution: If m and n are positive integers with m 6= n, then

∫ L

0
sin nπx

L sin mπx
L dx =

∫ L

0

1

2

[
cos (n−m)πx

L − cos (n+m)πx
L

]
dx

=
L

2(n −m)
· sin (n−m)πx

L

∣∣∣∣
L

0

− L

2(n +m)
· sin (n+m)πx

L

∣∣∣∣
L

0

=
L

2(n −m)
[sin(n−m)π − sin 0]− L

2(n+m)
[sin(n+m)π − sin 0]

= 0,

while if n = m > 0, then

∫ L

0
sin nπx

L sin nπx
L dx =

∫ L

0
sin2 nπx

L dx

=

∫ L

0

1

2

[
1− cos 2nπx

L

]
dx

=
1

2
· x
∣∣∣∣
L

0

− L

4nπ
· sin 2nπx

L

∣∣∣∣
L

0

=
L

2
− L

4nπ
[sin 2nπ − sin 0]

=
L

2
.
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Therefore
∫ L

0
sin nπx

L sin mπx
L dx =





L

2
for m = n > 0

0 for m > 0, n > 0, m 6= n.

Exercise 10.5. %
Compute the Fourier series of the 2π-periodic function f given by

f(x) =





1 if 0 < x < π/2,

0 if π/2 < |x| < π,

−1 if − π/2 < x < 0.

For which values of x does the Fourier series for f converge? Sketch the graph of
the Fourier series.

Solution: Note that f is an odd function on the interval −π < x < π, so that

a0 =
1

2π

∫ π

−π
f(x) dx = 0,

and

an =
1

π

∫ π

−π
f(x) cosnx dx = 0,

for n = 1, 2, . . . .

We calculate the bn,

bn =
1

π

∫ π

−π
f(x) sinnx dx

=
1

π

∫ 0

−π/2
(−1) sin nx dx+

1

π

∫ π/2

0
sinnx dx

=
2

π

∫ π/2

0
sinnx dx

=
2

π

[
− 1

n
cosnx

] ∣∣∣∣
π/2

0

=
2

nπ

[
1− cos nπ

2

]

and the Fourier series is
2

π

∞∑

n=1

1− cos nπ
2

n
sinnx.

The graph of the Fourier series of f on the interval −π < x < π is shown below.

x

f

−π ππ/2

−π/2

0
−1

1
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Note that the original function f is piecewise smooth and has only a finite jump discontinuity at
x = 0 and x = ±π/2, thus, from the Fourier series representation theorem, the Fourier series of
f will converge to 0 at all points x = 2nπ, n = 0,±1,±2,±3, . . . , and for all points (2n + 1)π/2,
the Fourier series of f will converge to (−1)nπ/2, n = 0,±1,±2,±3, . . . . The rest of the graph of
the Fourier series can be obtained by translating this graph by an integer multiple of 2π in the
x-direction.

Exercise 10.6. %%
Compute the Fourier series of the 2π-periodic function given on −π 6 x 6 π by
f(x) = | cos x|. For which values of x does the Fourier series for f converge? Sketch
the graph of the Fourier series.

Solution: Note that f is even, since

f(−x) = | cos(−x)| = | cos x| = f(x)

for all x ∈ R, therefore bn = 0 for all n > 1, and we only need to compute an for n > 0.

Now,

a0 =
1

2π

∫ π

−π
| cos x| dx =

1

π

∫ π

0
| cos x| dx =

1

π

∫ π/2

0
cos x dx−

∫ π

π/2
cos x dx

=
1

π
sinx

∣∣∣∣
π/2

0

− 1

π
sinx

∣∣∣∣
π

π/2

=
1

π
− (−1)

1

π
=

2

π
,

and for n > 1, since cosnx is also an even function, we have

an =
1

π

∫ π

−π
| cos x| cosnx dx =

2

π

∫ π

0
| cos x| cosnx dx

=
2

π

∫ π/2

0
cos x cosnx dx− 2

π

∫ π

π/2
cos x cosnx dx.

If n = 1, then

a1 =
2

π

∫ π/2

0
cos2 x dx− 2

π

∫ π

π/2
cos2 x dx

=
2

π

∫ π/2

0

(
1

2
+

1

2
cos 2x

)
dx− 2

π

∫ π

π/2

(
1

2
+

1

2
cos 2x

)
dx

=
2

π

[π
2
−
(
π − π

2

)]
=

2

π

[π
2
− π

2

]
= 0.

Now,
2 cos x cosnx = cos(n+ 1)x+ cos(n− 1)x

so that for n 6= 1, we have

2

π

∫ π/2

0
cos x cosnx dx =

1

π

∫ π/2

0
(cos(n+ 1)x+ cos(n− 1)x) dx

=
1

π

[
sin(n+ 1)π/2

n+ 1
+

sin(n − 1)π/2

n− 1

]
,
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and

2

π

∫ π

π/2
cos x cosnx dx =

1

π

∫ π

π/2
(cos(n+ 1)x+ cos(n − 1)x) dx

= − 1

π

[
sin(n+ 1)π/2

n+ 1
+

sin(n− 1)π/2

n− 1

]
.

For n 6= 1, we have

an =
2

π

[
sin(n+ 1)π/2

n+ 1
+

sin(n− 1)π/2

n− 1

]
,

and if n is odd, then an = 0.

However, if n is even, say n = 2k, then

a2k =
2

π

[
sin(2k + 1)π/2

2k + 1
+

sin(2k − 1)π/2

2k − 1

]

=
2

π

[
(−1)k

2k + 1
− (−1)k

2k − 1

]

=
4

π

(−1)k

4k2 − 1
.

and the Fourier series is

a0 +

∞∑

k=1

a2k cos 2kx =
2

π
+

4

π

∞∑

k=1

(−1)k

4k2 − 1
cos 2kx.

Since f(−π) = f(π), then the piecewise smooth 2π-periodic function with f(x) = | cos x|, −π 6

x 6 π is continuous at each x ∈ R, and therefore the Fourier series converges to f(x) for each
x ∈ R.

Exercise 10.7. %
Consider the parabola f(x) = x2 on −a 6 x 6 a and show that the Fourier series
of f is given by

a2

3
− 4a2

π2

[
cos (πx/a) − 1

22
cos (2πx/a) +

1

32
cos (3πx/a) −+ · · ·

]
.

Find its values at the points of discontinuity of f.

Solution: Note that since f(a) = a2 = (−a)2 = f(−a), then the piecewise smooth 2a-periodic
function is continuous everywhere, and so has no points of discontinuity.

Also, since f is an even function, then bn = 0 for all n > 1, and the Fourier series for f has only
cosine terms:

a0 +

∞∑

n=1

an cos (nπx/a)

where

a0 =
1

a

∫ a

0
f(x) dx
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and

an =
2

a

∫ a

0
f(x) cos (nπx/a) dx

for n > 1.

In order to calculate the coefficients an, we have

a0 =
1

a

∫ a

0
x2 dx =

1

a

x3

3

∣∣∣∣
a

0

=
a2

3
.

For n > 1, we integrate by parts twice to get

an =
2

a

∫ a

0
x2 cos (nπx/a) dx =

2

a

[
a

nπ
x2 sin (nπx/a)

∣∣∣∣
a

0

− 2a

nπ

∫ a

0
x sin (nπx/a) dx

]

=
4

nπ

∫ a

0
x sin (nπx/a) dx =

4

nπ

[
− a

nπ
x cos (nπx/a)

∣∣∣∣
a

0

+
a

nπ

∫ a

0
cos (nπx/a) dx

]

=
4a2

n2π2
(−1)n

for n = 1, 2, 3, . . . . The Fourier series of f is

a2

3
− 4a2

π2

[
cos (πx/a) − 1

22
cos (2πx/a) +

1

32
cos (3πx/a) −+ · · ·

]
,

and since f is piecewise smooth and continuous everywhere, the Fourier series given above converges
to f(x) for each x ∈ R.

Exercise 10.8. %
Consider the 2a-periodic function f that is given on the interval −a < x < a by
f(x) = x. Show that the Fourier series of f is given by

2a

π

∞∑

n=1

(−1)n+1

n
sin (nπx/a)

by differentiating the Fourier series in the previous problem (Exercise 10.7) term by
term. Justify your work.

Solution: Since the 2a-periodic function F (x) in the previous problem is piecewise smooth and
continuous everywhere, the Fourier series converges to the function everywhere, and

F (x) =
a2

3
− 4a2

π2

∞∑

n=1

(−1)n+1

n2
cos (nπx/a)

where F (x) = x2 for −a < x < a. Since this function also has a piecewise smooth derivative, and

F ′(x) = 2x = 2 · f(x)
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for −a < x < a, then the coefficients in the Fourier series of F ′(x) can be obtained by differentiating
the above series term-by-term. Therefore, the Fourier series of F ′(x) is given by

4a2

π2

∞∑

n=1

(−1)n+1nπ

n2a
sin (nπx/a) =

4a

π

∞∑

n=1

(−1)n+1

n
sin (nπx/a) ,

and the Fourier series of f(x) is

2a

π

∞∑

n=1

(−1)n+1

n
sin (nπx/a) ,

which converges to f(x) for all x 6= ±na, and to 0 for x = ±na.

Exercise 10.9. %%
Obtain the expansion

eax =
sinhπa

π

∞∑

n=−∞

(−1)n

a2 + n2
(a cosnx− n sinnx)

valid for all real numbers a 6= 0, and all −π < x < π.

Solution: Note, the solution can be obtained using the standard Fourier series of eax. However, it
turns out that it is easier to use the (equivalent) complex form of the Fourier series, which we do
here. If f(x) is a 2π-periodic piecewise smooth function, the complex form of the Fourier series of
f(x) is

∞∑

n=−∞
cne

inx

where the Fourier coefficients are given by

cn =
1

2π

∫ π

−π
f(t)e−int dt.

Here the N th partial sum

SN (x) =

N∑

n=−N

cne
inx

is the same as the usual partial sum (check this).

Now, if f(x) = eax for −π < x < π, then

cn =
1

2π

∫ π

−π
eaxe−inx dx =

1

2π

e(a−in)x

a− in

∣∣∣∣
π

−π

=
1

2π

e(a−in)π − e−(a−in)π

a− in
=

1

2π

ea(−1)n − e−a(−1)n

a− in

=
(−1)n sinh πa

π(a− in)
=

(−1)n(a+ in) sinh πa

π(a2 + n2)
,
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and the Fourier series of f is

sinhπa

π

∞∑

n=−∞

(−1)n(a+ in)

(a2 + n2)
einx =

sinhπa

π

∞∑

n=−∞

(−1)n

a2 + n2
(a cos nx− n sinnx),

where we used the fact that

(a+ in)einx = (a+ in)(cos nx+ i sin nx) = (a cosnx− n sinnx) + i(a sin nx+ n cosnx),

and the fact that the Fourier series of a real valued function is real valued, so that

∞∑

n=−∞

(−1)n

a2 + n2
(a sinnx+ n cosnx) = 0.

Since the function f is piecewise smooth and is continuous for −π < x < π, then we have

eax =
sinhπa

π

∞∑

n=−∞

(−1)n

a2 + n2
(a cosnx− n sinnx)

for −π < x < π.

Exercise 10.10. %%
For any complex number z ∈ C with z 6= 1 show the identity

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z

and then use it to derive Lagrange’s trigonometric identity :

1 + cos θ + cos 2θ + · · · + cosnθ =
1

2
+

sin [(2n + 1)θ/2]

2 sin (θ/2)
(0 < θ < 2π).

Use the fact that cosnθ = Re
(
einθ

)
.

Solution: If z 6= 1, then

(1− z)(1 + z + z2 + · · · zn) = 1 + z + z2 + · · ·+ zn − (z + z2 + · · · + zn+1)

= 1− zn+1,

so that

1 + z + z2 + · · · zn =





1− zn+1

1− z
if z 6= 1

n+ 1 if z = 1.
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Taking z = eiθ, where 0 < θ < 2π, then z 6= 1, so that

1 + eiθ + e2iθ + · · · + eniθ =
1− e(n+1)iθ

1− eiθ

=
1− e(n+1)iθ

−eiθ/2
(
eiθ/2 − e−iθ/2

)

=
−e−iθ/2

(
1− e(n+1)iθ

)

2i sin (θ/2)

=

i

(
e−iθ/2 − e(n+

1
2 )iθ

)

2 sin (θ/2)

=
1

2
+

sin
(
n+ 1

2

)
θ

2 sin (θ/2)
+

i

2 sin (θ/2)

(
cos (θ/2)− cos

(
n+ 1

2

)
θ
)

Equating real and imaginary parts, we have

1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin
(
n+ 1

2

)
θ

2 sin (θ/2)

for 0 < θ < 2π, and as an added bonus,

sin θ + sin 2θ + ·+ sinnθ =
1

2
cot (θ/2)− cos

(
n+ 1

2

)
θ

2 sin (θ/2)

for 0 < θ < 2π.

Exercise 10.11. %
Let f(x) = coshx, −π 6 x 6 π, f(x+ 2π) = f(x).

(a) Find the Fourier series of f.

Note: cosh x = 1
2(e

x + e−x).

(b) For which values of x ∈ [−π, π] does the Fourier series of f converge to f(x)?

(c) Evaluate the infinite series
∞∑
n=1

1
n2+1

using part (b).

Solution:

(a) Writing f(x) = a0+
∞∑
n=1

(an cosnx+bn sinnx), the coefficients in the Fourier series are computed

as follows: since f(x) = coshx is an even function on the interval [−π, π], then bn = 0 for all
n > 1, and

a0 =
1

2π

∫ π

−π
coshx dx =

1

2π
sinhx

∣∣∣∣
π

−π

=
sinhπ

π
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while for n > 1,

an =
1

π

∫ π

−π
coshx cosnx dx =

1

2π

∫ π

−π

(
ex + e−x

)
cosnx dx

=
1

2π

∫ π

−π
ex cosnx dx+

1

2π

∫ π

−π
e−x cosnx dx

=
1

2π

{
ex(cosnx+ n sinnx)

n2 + 1

}∣∣∣∣
π

−π

+
1

2π

{
e−x(− cosnx+ n sinnx)

n2 + 1

}∣∣∣∣
π

−π

=
2(−1)n

n2 + 1

sinhπ

π
,

where we integrated by parts twice to get

∫
ex cosnx dx =

ex(cos nx+ n sinnx)

n2 + 1
and

∫
e−x cosnx dx =

e−x(− cosnx+ n sinnx)

n2 + 1
.

The Fourier series for f is therefore

coshx ∼ 2
sinh π

π

{
1

2
+

∞∑

n=1

(−1)n

n2 + 1
cosnx

}

for −∞ < x <∞.

(b) From Dirichlet’s theorem, the Fourier series converges to f(x) for all x ∈ [−π, π], since f is
piecewise smooth on [−π, π], continuous at each x ∈ [−π, π], and f(−π+) = f(π−).

(c) Again, from Dirichlet’s theorem, the Fourier series converges to cosh π at x = π, and so

coshπ = 2
sinhπ

π

{
1

2
+

∞∑

n=1

(−1)n

n2 + 1
cosnπ

}
,

therefore ∞∑

n=1

1

n2 + 1
=
π coth π − 1

2
.

Exercise 10.12. %
Sketch the Fourier series of f(x) and determine the Fourier coefficients for the fol-
lowing functions defined on the interval −L 6 x 6 L,

(a) f(x) =

{
1 for |x| < L/2

0 for |x| > L/2

(b) f(x) =

{
1 if 0 < x < L

0 if − L < x < 0

Solution:
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(a) From Dirichlet’s theorem the Fourier series of f(x) converges to

1

2

[
f(x+) + f(x−)

]
.

The graph of the Fourier series of f(x) on the interval −L 6 x 6 L is shown below.

0

1

y

xL/2−L L−L/2

Since f(x) is an even piecewise smooth function on the interval [−L,L], it has a Fourier series
representation of the form

f(x) ∼ a0 +

∞∑

n=1

an cos
nπx
L

where

a0 =
1

L

∫ L

0
f(x) dx =

1

L

∫ L
2

0
1 dx =

1

2
,

and

an =
2

L

∫ L

0
f(x) cos nπx

L dx =
2

L

∫ L
2

0
cos nπx

L dx =
2

nπ
sin nπx

L

∣∣∣∣
L
2

0

=
2

nπ
sin nπ

2

for n > 1, that is,

an =





2(−1)k

π(2k + 1)
, if n = 2k + 1 is odd

0, if n = 2k is even.

Hence, the Fourier series of f(x) is

1

2
+

2

π

∞∑

k=0

(−1)k

(2k + 1)
cos (2k+1)πx

L .

(b) Again, from Dirichlet’s theorem the Fourier series of f(x) converges to

1

2

[
f(x+) + f(x−)

]
.

The graph of the Fourier series of f(x) on the interval −L 6 x 6 L is shown below.

0

y

x−L L

1
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We could compute the Fourier series directly, but instead we observe that f(x)− 1

2
is an odd

piecewise smooth function on the interval [−L,L]. Hence it has a Fourier series representation
of the form

f(x)− 1

2
∼

∞∑

n=1

bn sin
nπx
L ,

where

bn =
2

L

∫ L

0

(
f(x)− 1

2

)
sin nπx

L dx =
1

L

∫ L

0
sin nπx

L dx

= − 1

nπ
cos nπx

L

∣∣∣∣
L

0

= − 1

nπ
(cosnπ − 1)

=
1

nπ
[1− (−1)n]

for n > 1, that is,

bn =





2

π(2k + 1)
, if n = 2k + 1 is odd

0, if n = 2k is even.

Hence the Fourier series of f(x) is

f(x) ∼ 1

2
+

2

π

∞∑

k=0

1

2k + 1
sin (2k+1)πx

L

Exercise 10.13. %
Show that finding the Fourier series operation is a linear operation, that is, the
Fourier series of

c1f(x) + c2g(x)

is the sum of c1 times the Fourier series of f(x) plus c2 times the Fourier series of
g(x).

Solution: Suppose that the Fourier series of f and g are given by

f(x) ∼ A0 +

∞∑

n=1

(
An cos

nπx
L +Bn sin

nπx
L

)
and g(x) ∼ C0 +

∞∑

n=1

(
Cn cos

nπx
L +Dn sin

nπx
L

)

where

A0 =
1

2L

∫ L

−L
f(x) dx, An =

1

L

∫ L

−L
f(x) cos nπx

L dx, Bn =
1

L

∫ L

−L
f(x) sin nπx

L dx

for n > 1, and

C0 =
1

2L

∫ L

−L
g(x) dx, Cn =

1

L

∫ L

−L
g(x) cos nπx

L dx, Dn =
1

L

∫ L

−L
g(x) sin nπx

L dx
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for n > 1.

If c1 and c2 are scalars, and the Fourier series of c1f + c2g is

c1f(x) + c2g(x) ∼ E0 +

∞∑

n=1

(
En cos

nπx
L + Fn sin

nπx
L

)
,

then

E0 =
1

2L

∫ L

−L
[c1f(x) + c2g(x)] dx =

c1
2L

∫ L

−L
f(x) dx+

c2
2L

∫ L

−L
g(x) dx = c1A0 + c2C0.

Also,

En =
1

L

∫ L

−L
[c1f(x) + c2g(x)] cos

nπx
L dx

=
c1
L

∫ L

−L
f(x) cos nπx

L dx+
c2
L

∫ L

−L
g(x) cos nπx

L dx

= c1An + c2Cn

for n > 1. Similarly,

Fn =
1

L

∫ L

−L
[c1f(x) + c2g(x)] sin

nπx
L dx

=
c1
L

∫ L

−L
f(x) sin nπx

L dx+
c2
L

∫ L

−L
g(x) sin nπx

L dx

= c1Bn + c2Dn

for n > 1. Therefore the Fourier series for c1f + c2g is

c1f(x) + c2g(x) ∼ c1A0 + c2C0 +

∞∑

n=1

[
(c1An + c2Cn) cos

nπx
L + (c1Bn + c2Dn) sin

nπx
L

]

= c1

[
A0 +

∞∑

n=1

(
An cos

nπx
L +Bn sin

nπx
L

)
]
+ c2

[
C0 +

∞∑

n=1

(
Cn cos

nπx
L +Dn sin

nπx
L

)
]

∼ c1f(x) + c2g(x).

Exercise 10.14.

���
Show that ex is the sum of an even function and an odd function.

Solution: We can write

ex =
ex + e−x

2
+
ex − e−x

2
= coshx+ sinhx,
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and coshx is an even function while sinhx is an odd function.

In general, if f(x) is an arbitrary function, then we can write

f(x) = feven(x) + fodd(x)

where

feven(x) =
f(x) + f(−x)

2
is even, and

fodd(x) =
f(x)− f(−x)

2
is odd.

Exercise 10.15. %
Given the function

f(x) = cos πx
a , 0 6 x < a

find the Fourier sine series for f.

Solution: Writing

f(x) = cos πx
a ∼

∞∑

n=1

bn sin
nπx
a ,

the coefficients bn in the Fourier sine series are computed as follows:

bn =
2

a

∫ a

0
cos πx

a sin nπx
a dx =

1

a

∫ a

0

(
sin (n+1)πx

a + sin (n−1)πx
a

)
dx

=
1

π

(
− 1

n+ 1
cos (n+1)πx

a

∣∣∣∣
a

0

)
+

1

π

(
− 1

n− 1
cos (n−1)πx

a

∣∣∣∣
a

0

)

=
1

π(n+ 1)
((−1)n + 1) +

1

π(n− 1)
((−1)n + 1) =

1 + (−1)n

π

(
1

n+ 1
+

1

n− 1

)

=
1 + (−1)n

π

2n

n2 − 1
.

Therefore,

bn =





4n

π(n2 − 1)
if n is even

0 if n is odd, n > 3.

For n = 1,

b1 =
2

a

∫ a

0
sin πx

a cos πx
a dx =

1

a
sin2 πx

a

∣∣∣∣
a

0

= 0.

The Fourier sine series for f is therefore

cos πx
a ∼ 8

π

∞∑

n=1

n

4n2 − 1
sin 2nπx

a .

for 0 6 x < a.
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Exercise 10.16. %%
For each of the following functions find the Fourier series of f(x), the Fourier sine
series of f(x), and the Fourier cosine series of f(x), and sketch the appropriate
extensions of the functions and all the series involved:

(a) f(x) =





x −L < x < 0

1 + x 0 < x < L

(b) f(x) =





2, −L < x < 0

e−x 0 < x < L

Solution:

(a) Fourier Series : The graphs of f(x) and the Fourier series of f(x) are shown below.

x2L−L L 3L−3L −2L −L

y y

1 1

00 L x

The dfxFourier series representation of f(x) is

f(x) ∼ a0 +
∞∑

n=1

(
an cos

nπx
L + bn sin

nπx
L

)
,

where

a0 =
1

2L

∫ L

−L
f(x) dx =

1

2L

∫ L

−L
x dx+

1

2L

∫ L

0
1 dx =

1

2L
L =

1

2
,

since the function x is an odd function on [−L,L].

For n > 1,

an =
1

L

∫ L

−L
f(x) cos nπx

L dx =
1

L

∫ L

−L
x cos nπx

L dx+
1

L

∫ L

0
cos nπx

L dx

=
1

nπ
sin nπx

L

∣∣∣∣
L

0

= 0,
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since x cos nπx
L is an odd function on [−L,L], and

bn =
1

L

∫ L

−L
f(x) sin nπx

L dx =
1

L

∫ L

−L
x sin nπx

L dx+
1

L

∫ L

0
sin nπx

L dx

=
2

L

∫ L

0
x sin nπx

L dx+
1

L

∫ L

0
sin nπx

L dx

=
2

L

[
− L

nπ
x cos nπx

L

∣∣∣∣
L

0

+
L

nπ

∫ L

0
cos nπx

L dx

]
+

1

L

(
− L

nπ
cos nπx

L

) ∣∣∣∣
L

0

=
1

nπ
[1− (−1)n]− 2L(−1)n

nπ
.

Hence the Fourier series of f(x) is

1

2
+

1

π

∞∑

n=1

[1− (−1)n]− 2L(−1)n

n
sin nπx

L

which is a sine series plus a constant term.

Fourier Sine Series : The graphs of the odd extension of f(x) to the interval [−L,L] and the
Fourier sine series of f(x) are shown below.

Sine Series

L 3L−3L −L

y

0 x−L L0

y

x

1 1

Odd Extension

The Fourier sine series representation of f(x) is

f(x) ∼
∞∑

n=1

bn sin
nπx
L ,

where

bn =
2

L

∫ L

0
f(x) sin nπx

L dx =
2

L

∫ L

0
(1 + x) sin nπx

L dx

=
2

L

[
− L

nπ
(1 + x) cos nπx

L

∣∣∣∣
L

0

+
L

nπ

∫ L

0
cos nπx

L dx

]

=
2

nπ
[1− (−1)n]− 2L(−1)n

nπ
.
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Hence the Fourier sine series of f(x) is

2

π

∞∑

n=1

[1− (−1)n]− L(−1)n

n
sin nπx

L .

Fourier Cosine Series : The graphs of the even extension of f(x) to the interval [−L,L] and
the Fourier cosine series of f(x) are shown below.

Even Extension Cosine Series

L 3L−3L −L

y

x

1

0−L L

y

x

1

0

The Fourier cosine series representation of f(x) is

f(x) ∼ a0 +
∞∑

n=1

an cos
nπx
L ,

where

a0 =
1

L

∫ L

0
f(x) dx =

1

L

∫ L

0
(1 + x) dx =

1

L

[
x

∣∣∣∣
L

0

+
x2

2

∣∣∣∣
L

0

]
= 1 +

L

2
,

and for n > 1,

an =
2

L

∫ L

0
f(x) cos nπx

L dx =
2

L

∫ L

0
(1 + x) cos nπx

L dx

=
2

L

[
L

nπ
(1 + x) sin nπx

L

∣∣∣∣
L

0

− L

nπ

∫ L

0
sin nπx

L dx

]

=
2L

n2π2
cos nπx

L

∣∣∣∣
L

0

=
2L

n2π2
[(−1)n − 1] ,

that is,

an =




− 4L

π2(2k + 1)2
, if n = 2k + 1 is odd

0, if n = 2k is even.

Hence, the Fourier cosine series of f(x) is

1 +
L

2
− 4L

π2

∞∑

k=0

1

(2k + 1)2
cos (2k+1)πx

L .
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(b) Fourier Series : The graphs of f(x) and the Fourier series of f(x) are shown below.

3LxL0−L

y

1

2

x−L0−L

y

1

2

−3L

The Fourier series representation of f(x) is

f(x) ∼ a0 +

∞∑

n=1

(
an cos

nπx
L + bn sin

nπx
L

)
,

where

a0 =
1

2L

∫ L

−L
f(x) dx =

1

2L

∫ 0

−L
2 dx+

1

2L

∫ L

0
e−x dx =

1

2L

(
2L+ 1− e−L

)
.

Using integration by parts twice, we obtain
∫
eax cos bx dx =

eax

a2 + b2
(b sin bx+ a cos bx) ,

so that

an =
1

L

∫ L

−L
f(x) cos nπx

L dx =
1

L

∫ 0

−L
2 cos nπx

L dx+
1

L

∫ L

0
e−x cos nπx

L dx

=
2

nπ
sin nπx

L

∣∣∣∣
0

−L

+
nπ

L2 + n2π2
e−x sin nπx

L

∣∣∣∣
L

0

− L

L2 + n2π2
e−x cos nπx

L

∣∣∣∣
L

0

=
L

L2 + n2π2
[
1− e−L(−1)n

]

for n > 1.

Similarly, we have ∫
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) ,

so that

bn =
1

L

∫ L

−L
f(x) sin nπx

L dx =
1

L

∫ 0

−L
2 sin nπx

L dx+
1

L

∫ L

0
e−x sin nπx

L dx

= − 2

nπ
cos nπx

L

∣∣∣∣
0

−L

− L

L2 + n2π2
e−x sin nπx

L

∣∣∣∣
L

0

− nπ

L2 + n2π2
e−x cos nπx

L

∣∣∣∣
L

0

=
nπ

L2 + n2π2
[
1− e−L(−1)n

]
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for n > 1.

Hence the Fourier series of f(x) is

2L+ 1− e−L

2L
+

∞∑

n=1

1− e−L(−1)n

L2 + n2π2
[
L cos nπx

L + nπ sin nπx
L

]
.

Fourier Sine Series : The graphs of the odd extension of f(x) to the interval [−L,L] and the
Fourier sine series of f(x) are shown below.

y

x0

1

3LxL0

1

−L

−1

−L

−1

L−3L

y

The Fourier sine series representation of f(x) is

f(x) ∼
∞∑

n=1

bn sin
nπx
L ,

where

bn =
2

L

∫ L

0
f(x) sin nπx

L dx =
2

L

∫ L

0
e−x sin nπx

L dx

= − 2L

L2 + n2π2
e−x sin nπx

L

∣∣∣∣
L

0

− 2nπ

L2 + n2π2
e−x cos nπx

L

∣∣∣∣
L

0

=
2nπ

L2 + n2π2
[
1− e−L(−1)n

]

for n > 1, and the Fourier sine series of f(x) is

2π

∞∑

n=1

1− e−L(−1)n

L2 + n2π2
n sin nπx

L .

Fourier Cosine Series : The graphs of the even extension of f(x) to the interval [−L,L] and
the Fourier cosine series of f(x) are shown below.

1

x0 3LxL0−L −L L−3L

y y

1
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The Fourier cosine series representation of f(x) is

f(x) ∼ a0 +

∞∑

n=1

an cos
nπx
L ,

where

a0 =
1

L

∫ L

0
f(x) dx =

1

L

∫ L

0
e−x dx = − 1

L
e−x

∣∣∣∣
L

0

=
1

L

(
1− e−L

)
.

Since ∫
eax cos bx dx =

eax

a2 + b2
(b sin bx+ a cos bx) ,

then

an =
2

L

∫ L

0
f(x) cos nπx

L dx =
2

L

∫ L

0
e−x cos nπx

L dx

=
2nπ

L2 + n2π2
e−x sin nπx

L

∣∣∣∣
L

0

− 2L

L2 + n2π2
e−x cos nπx

L

∣∣∣∣
L

0

=
2L

L2 + n2π2
[
1− e−L(−1)n

]

for n > 1, and the Fourier cosine series of f(x) is

1− e−L

L
+ 2L

∞∑

n=1

1− e−L(−1)n

L2 + n2π2
cos nπx

L .

Exercise 10.17. %%%
Consider the integral

∫ 1

0

dx

1 + x2
.

(a) Evaluate the integral explicitly.

(b) Use the Taylor series of
1

1 + x2
(a geometric series) to obtain an infinite series

for the integral.

(c) Equate part (a) to part (b) in order to derive a formula for π.

Solution:

(a) Since
d

dx

(
tan−1 x

)
=

1

1 + x2
,

we have ∫ 1

0

1

1 + x2
dx = tan−1 x

∣∣∣∣
1

0

= tan−1 1− tan−1 0 =
π

4
.
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(b) Recall that the geometric series

1

1 + t2
= 1− t2 + t4 − t6 + · · · ,

that is,

1

1 + t2
=

∞∑

n=0

(−1)nt2n

converges for all −1 < t < 1.

Integrating from 0 to x, where |x| < 1, we get

∫ x

0

1

1 + t2
dt =

∫ x

0

( ∞∑

n=0

(−1)nt2n

)
dt

=

∞∑

n=0

(−1)n
∫ x

0
t2n dt

=

∞∑

n=0

(−1)n
t2n+1

2n+ 1

∣∣∣∣
x

0

=
∞∑

n=0

(−1)n

2n+ 1
x2n+1,

and therefore

tan−1 x =
∞∑

n=0

(−1)n

2n+ 1
x2n+1 = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · ·

for −1 < x < 1, and this is Gregory’s series for tan−1 x, discovered by James Gregory about
1670.

Letting x→ 1−, then a theorem of Abel tells us that

π

4
=

∫ 1

0

1

1 + t2
dt = lim

x→1−

∫ x

0

1

1 + t2
dt = lim

x→1−

∞∑

n=0

(−1)n

2n + 1
x2n+1

=

∞∑

n=0

(−1)n

2n+ 1
lim

x→1−
x2n+1 =

∞∑

n=0

(−1)n

2n+ 1
,

so that
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · ,

this is Leibniz’s formula for
π

4
, discovered by Leibniz in 1673.
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(c) From part (b), we have

π = 4

∞∑

n=0

(−1)n

2n+ 1
.

The convergence is very slow however.

Another proof of Leibniz’s formula which doesn’t require integrating an infinite series term-
by-term is given below.

1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n−1

2n− 1
=

∫ 1

0

(
1− x2 + x4 − x6 + · · · + (−1)n−1x2n−2

)
dx

=

∫ 1

0

1− x2n

1 + x2
dx

=

∫ 1

0

1

1 + x2
dx−

∫ 1

0

x2n

1 + x2
dx

and therefore,

∣∣∣∣
π

4
−
(
1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n−1

2n− 1

)∣∣∣∣ =
∫ 1

0

x2n

1 + x2
dx 6

∫ 1

0
x2n dx =

1

2n+ 1
−→ 0

as n→ ∞.

Exercise 10.18. %%
Assume the function f(x) is continuous on [−L,L].

(a) Under what conditions does f(x) equal its Fourier series for all x ∈ [−L,L] ?

(b) Under what conditions does f(x) equal its Fourier sine series for all x ∈ [0, L] ?

(c) Under what conditions does f(x) equal its Fourier cosine series for all x ∈
[0, L] ?

Hint: What does the Fourier series converge to at the end points of the interval?

(a) From Dirichlet’s theorem, we know that for any x0 with −L < x0 < L, the Fourier series of
f converges to f(x0) since f is continuous at x0.

We also know that at the endpoints x = −L and x = L, the Fourier series converges to

1

2

[
f(L−) + f(−L+)

]
,

and if f is continuous at the endpoints, that is, continuous from the left at x = L and
continuous from the right at x = −L, then the Fourier series converges to

f(L) + f(−L)
2

at x = L and at x = −L, so that the Fourier series converges to f(x) for all x ∈ [−L,L] if
and only if f(L) = f(−L).
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(b) Again, from Dirichlet’s theorem, if 0 < x0 < L, then the Fourier sine series of f converges to
f(x0) since f is continuous at x0.

If fodd is the odd extension of f to [−L,L], then at x = 0, the Fourier sine series of f
converges to

1

2

[
fodd(0

−) + fodd(0
+)
]
=

1

2
[−f(0) + f(0)] = 0,

and the Fourier sine series converges to f at x = 0 if and only if f(0) = 0.

If fodd is the odd extension of f to [−L,L], then at x = L, the Fourier sine series of f
converges to

1

2

[
fodd(L

−) + fodd(−L+)
]
=

1

2
[fodd(L) + fodd(−L)] =

1

2
[f(L)− f(L)] = 0,

and the Fourier sine series converges to f at x = L if and only if f(L) = 0.

(c) From Dirichlet’s theorem, if 0, x0 < L, then the Fourier cosine series of f converges to f(x0)
since f is continuous at x0.

If feven is the even extension of f to [−L,L], then at x = 0, the Fourier cosine series of f
converges to

1

2

[
feven(0

−) + feven(0
+)
]
=

1

2
[f(0) + f(0)] = f(0),

and the Fourier cosine series of f converges to f at x = 0 if and only if f is continuous from
the right at x = 0.

If feven is the even extension of f to [−L,L], then at x = L, the Fourier cosine series of f
converges to

1

2

[
feven(L

−) + feven(−L+)
]
=

1

2
[feven(L) + feven(−L)]

1

2
[f(L) + f(L)] = f(L),

and the Fourier cosine series of f converges to f at x = L if and only if f is continuous from
the left at x = L.



Chapter 11

Heat Equation Problems

Exercise 11.1.

���
For each of the initial value–boundary value problems below, determine whether or
not an equilibrium temperature distribution exists and find the values of β for which
an equilibrium solution exists.

(a)
∂u

∂t
=
∂2u

∂x2
+ 1,

∂u

∂x
(0, t) = 1,

∂u

∂x
(L, t) = β

(b)
∂u

∂t
=
∂2u

∂x2
,

∂u

∂x
(0, t) = 1,

∂u

∂x
(L, t) = β

(c)
∂u

∂t
=
∂2u

∂x2
+ x− β,

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

Solution: If the temperature has reached an equilibrium distribution, then u no longer depends

on the time t, so that
∂u

∂t
= 0 and u = φ(x) is a function of x alone.

(a) In this case the boundary value problem for the equilibrium temperature distribution is

φ′′(x) + 1 = 0, 0 6 x 6 L

φ′(0) = 1,

φ′(L) = β.

The general solution is

φ(x) = −x
2

2
+Ax+B with φ′(x) = −x+A

for 0 6 x 6 L.

From the first boundary condition, we have φ′(0) = A = 1, while from the second boundary
condition we have φ′(L) = β, on the other hand, φ′(L) = −L+ 1. Therefore there exists an
equilibrium temperature distribution if and only if β = 1− L. In this case we have

u(x) = −x
2

2
+ x+B, 0 < x < L

185
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where B is a constant.

(b) In this case the boundary value problem for the equilibrium temperature distribution is

φ′′(x) = 0, 0 6 x 6 L

φ′(0) = 1,

φ′(L) = β.

The general solution is

φ(x) = Ax+B with φ′(x) = A

for 0 6 x 6 L.

From the first boundary condition, we have φ′(0) = A = 1, while from the second bound-
ary condition we have φ′(L) = β, and therefore there exists an equilibrium temperature
distribution if and only if β = 1. In this case the equilibrium temperature distribution is

u = φ(x) = x+B, 0 < x < L

where B is a constant.

(c) In this case the boundary value problem for the equilibrium temperature distribution is

φ′′(x) + x− β = 0, 0 6 x 6 L

φ′(0) = 0,

φ′(L) = 0.

The general solution is

φ(x) = −x
3

6
+
βx2

2
+Ax+B with φ′(x) = −x

2

2
+ βx+A

for 0 6 x 6 L.

From the first boundary condition, we have φ′(0) = A = 0, while from the second boundary
condition

φ′(L) = −L
2

2
+ βL = 0

which implies that β =
L

2
.

In this case the equilibrium temperature distribution is

u(x) = −x
3

6
+
Lx2

2
+B, 0 < x < L

where B is a constant.
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Exercise 11.2. %
Consider the homogeneous Dirichlet problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 6 x 6 L, t > 0

subject to the boundary conditions

u(0, t) = 0 and u(L, t) = 0

for t > 0, with initial conditions

u(x, 0) =





1 for 0 6 x 6
L

2

2 for
L

2
< x 6 L

for 0 6 x 6 L.

Solution: Since both the partial differential equation and the boundary conditions are linear and
homogeneous we can use separation of variables, and write

u(x, t) = φ(x) · h(t)

where φ depends only on x and h depends only on t. Substituting this into the partial differential
equation, we have

φ · h′ = kφ′′ · h,
and separating variables,

φ′′

φ
=

h′

kh
= −λ

for a yet unspecified constant λ.

We obtain the two ordinary differential equations

φ′′ + λφ = 0 and h′ + λk h = 0.

Since

u(0, t) = φ(0) · h(t) and u(L, t) = φ(L) · h(t)
we can satisfy the boundary conditions by requiring that φ(0) = φ(L) = 0, so that φ(x) must satisfy
the boundary value problem

φ′′ + λφ = 0, 0 6 x 6 L

φ(0) = 0

φ(L) = 0.

Now we find those values of λ for which this boundary value problem has a nontrivial solution.

Case 1: λ = 0
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In this case, the differential equation is φ′′ = 0, with general solution

φ(x) = Ax+B,

where A and B are constants. Applying the boundary condition φ(0) = 0, we get B = 0, so that
φ(x) = Ax. Applying the second boundary condition φ(L) = 0 we get A = 0. In this case the
equation has only the trivial solution φ(x) ≡ 0 for 0 6 x 6 L.

Case 2: λ < 0, say λ = −µ2 where µ > 0

In this case, the differential equation becomes φ′′ − µ2φ = 0, with general solution

φ(x) = A cosh µx+B sinhµx

where A and B are constants.

Applying the first boundary condition, we have

φ(0) = A so that A = 0,

and the solution is
φ(x) = B sinhµx.

Applying the second boundary condition

φ(L) = B sinhµL = 0 so that B = 0

since µ > 0 and sinhµL 6= 0. Therefore, in this case the only solution is φ(x) = 0, and again there
are no nontrivial solutions.

Case 3: λ > 0, say λ = µ2 where µ > 0

In this case, the differential equation becomes φ′′ + µ2φ = 0, with general solution

φ(x) = A cosµx+B sinµx

where A and B are constants.

Applying the first boundary condition, we have

φ(0) = A so that A = 0,

and the solution is
φ(x) = B sinµx.

Now however, when we apply the second boundary condition

φ(L) = B sinµL = 0

in order to get a nontrivial solution, we must require that B 6= 0, so that sinµL = 0, and µL = nπ
for some integer n.

Therefore, in the case of Dirichlet boundary conditions, we get a nontrivial solution only for
the eigenvalues λn, where

λn = µ2n =
n2π2

L2
,
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with corresponding eigenfunctions

φn(x) = sin
nπx

L
for each integer n > 1. The corresponding solution to the time equation

h′n(t) + λnk hn(t) = 0

is

hn(t) = e−λnkt = e−
n2π2

L2 kt

for n > 1.

For each n > 1, the function

un(x, t) = φn(x) · hn(t) = e−
n2π2

L2 kt sin nπx
L

is a solution to the partial differential equation satisfying both boundary conditions.

Using the superposition principle, we write

u(x, t) =

∞∑

n=1

bn sin
nπx
L e−

n2π2

L2 kt

for 0 6 x 6 L, and t > 0.

We determine the constants bn from the initial condition

u(x, 0) =





1 for 0 6 x 6
L

2

2 for
L

2
< x 6 L

for 0 6 x 6 L, and setting t = 0 in the expression for u(x, t) above, we have

u(x, 0) =
∞∑

n=1

bn sin
nπx

L
.

Hence we need to find the Fourier sine series of u(x, 0) on the interval [0, L], and the coeffcieints
are

bn =
2

L

∫ L

0
u(x, 0) sin

nπx

L
dx

for n > 1.

Now ∫ L

0
u(x, 0) sin

nπx

L
dx =

∫ L/2

0
sin

nπx

L
dx+

∫ L

L/2
2 sin

nπx

L
dx,

so that

bn =
2

nπ
+

2

nπ
cos

nπ

2
− 4

nπ
(−1)n

for all n > 1, and the solution to the initial value problem is

u(x, t) =

∞∑

n=1

bn sin
nπx
L e−

n2π2

L2 kt

for 0 6 x 6 L, and t > 0.
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Exercise 11.3. %
Solve the following initial value–boundary value problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
,

u(0, t) = 0 and u(L, t) = 0.

u(x, 0) = 3 sin πx
L − sin 3πx

L

for 0 6 x 6 L.

Solution: Assuming a solution of the form

u(x, t) = φ(x) ·G(t)

and separating variables, we get
φ′′(x)
φ(x)

=
G′(t)
kG(t)

= −λ

where λ is a constant. The partial differential equation is reduced to two ordinary differential
equations:

Spatial Equation:

φ′′(x) + λφ(x) = 0, 0 6 x 6 L

φ(0) = 0

φ(L) = 0.

Time Equation:

G′(t) + kλG(t) = 0, t > 0.

Since it has a complete set of homogeneous Dirichlet boundary conditions, we solve the spatial
equation first.

The eigenvalues and corresponding eigenfunctions for this problem are (see the previous problem)

λn = n2π2

L2 and φn(x) = sin nπx
L

for n = 1, 2, 3, . . . .

The solutions to the time equation corresponding to these nontrivial solutions are

Gn(t) = e−
kn2π2t

L2

for n = 1, 2, 3, . . . .

For n > 1, the functions

un(x, t) = φn(x) ·Gn(t) = sin nπx
L · e−

kn2π2t
L2
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are also solutions to the partial differential equation satisfying the boundary conditions, and since
the partial differential equation and the boundary conditions are linear and homogeneous, by the
superposition principle, the function

u(x, t) =
∞∑

n=1

bn sin
nπx
L · e−

kn2π2t
L2

is also a solution. We determine the constants bn, for n > 1, using the initial condition, namely

u(x, 0) =
∞∑

n=1

bn sin
nπx
L = 3 sin πx

L − sin 3πx
L ,

from the orthogonality of the eigenfunctions on the interval [0, L] we see immediately that the
coefficients of the Fourier sine series are

b1 = 3, b3 = −1, and bn = 0 for n 6= 1, 3.

The solution is therefore

u(x, t) = 3 sin πx
L e

−kπ2t
L2 − sin 3πx

L e−
9kπ2t
L2

for 0 6 x 6 L, t > 0.

Exercise 11.4. %
Solve the boundary value problem for the one dimensional heat equation

∂u

∂t
=
∂2u

∂x2
, 0 < x < π, t > 0

u(0, t) = 0, t > 0

u(π, t) = 0, t > 0

u(x, 0) = 30 sin x, 0 < x < π,

and give a brief physical explanation of the problem.

Solution: Using separation of variables, since we have homogeneous Dirichlet boundary conditions,
we obtain the solution (k = 1 and L = π here)

u(x, t) =

∞∑

n=1

bne
−n2t sinnx,

where bn =
2

π

∫ π

0
f(x) sinnx dx for n > 1.

Now,
u(x, 0) = f(x) = 30 sinx

for 0 < x < π, that is, f(x) is its own Fourier sine series, so that b1 = 30, and bn = 0 for all n > 2.
The solution is

u(x, t) = 30e−t sinx,
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and this gives the temperature in a bar whose sides are insulated and whose ends x = 0 and x = π
are kept at 0 temperature, with an initial temperature distribution given by u(x, 0) = 30 sin x, 0 <
x < π.

Exercise 11.5. %
Solve the following homogeneous Dirichlet problem for the heat equation:

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = e−x, 0 < x < 1,

and give a brief physical explanation of the problem.

Solution: After separating variables, applying the initial conditions, and using the superposition
principle, we obtain the solution

u(x, t) =
∞∑

n=1

bne
−n2π2t sinnπx,

where

bn = 2

∫ 1

0
e−x sinnπx dx

for n > 1.

Integrating by parts, we get

∫ 1

0
e−x sinnπx dx = − e−x

1 + n2π2
(sinnπx+ nπ cosnπx)

∣∣∣∣
1

0

=
nπ

1 + n2π2
[
1 + (−1)n+1e−1

]
,

so that

u(x, t) = 2π

∞∑

n=1

n

1 + n2π2
[
1 + (−1)n+1e−1

]
e−n2π2t sinnπx,

and this gives the temperature in a bar whose sides are insulated and whose ends x = 0 and x = 1 are
kept at 0 temperature, with an initial temperature distribution given by u(x, 0) = e−x, 0 < x < 1.
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Exercise 11.6. %
Solve the problem of heat transfer in a bar of length 1 with initial heat distribution

f(x) = cos πx, 0 < x < 1

and no heat loss at either end, where the thermal diffusivity is k = 1, that is, solve
the initial boundary value problem below:

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, t > 0

u(x, 0) = cos πx, 0 < x < 1.

Solution: Since both the partial differential equation and the boundary conditions are linear and
homogeneous we may use separation of variables, and we write

u(x, t) = X(x) · T (t)

where X depends only on x and T depends only on t. Substituting this into the partial differential
equation, we have

X · T ′ = X ′′ · T,
and separating variables,

X ′′

X
=
T ′

T
= −λ,

where λ denotes the unknown separation constant. We obtain two ordinary differential equations

X ′′ + λX = 0 and T ′ + λT = 0.

Since
∂u

∂x
(0, t) = X ′(0) · T (t) and

∂u

∂x
(1, t) = X ′(1) · T (t)

we can satisfy the boundary conditions by requiring that X ′(0) = X ′(1) = 0, so that X(x) must
satisfy the boundary value problem

X ′′ + λX = 0, 0 < x < 1, t > 0

X ′(0) = 0

X ′(1) = 1,

with homogeneous Neumann boundary conditions.

Since it has a complete set of homogeneous Neumann boundary conditions, we solve the spatial
equation first.

The eigenvalues and corresponding eigenfunctions for this problem are

λn = n2π2 and Xn(x) = cosnπx
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for n = 0, 1, 2, 3, . . . .

The corresponding solutions to the time equation T ′ + n2π2T = 0 are

Tn(t) = e−n2π2t

for n = 0, 1, 2, 3, . . . .

For each n > 0, the product

un(x, t) = Xn(x) · Tn(t) = e−n2π2t cosnπx, 0 < x < 1, t > 0

satisfies the heat equation and the boundary conditions, and since they are both linear and ho-
mogeneous, then any linear combination does also, so we can use the superposition principle to
write

u(x, t) = a0 +

∞∑

n=1

ane
−n2π2t cosnπx

and all we need to do now is find the coefficients an for n > 0, so that the initial condition is also
satisfied. Setting t = 0 in the series above, we have

cos πx = u(x, 0) = a0 +

∞∑

n=1

an cosnπx,

that is, the an’s are just the coefficients in the Fourier cosine series for cos πx on the interval [0, 1].

Since cos πx is its own Fourier cosine series on the interval [0, 1], then

an =





0 for n 6= 1,

1 for n = 1.

and the solution is
u(x, y) = e−π2t cos πx

for 0 < x < 1, t > 0.

Exercise 11.7. %%
Solve the problem of heat transfer in a bar of length L = π and thermal diffusivity
k = 1, with initial heat distribution u(x, 0) = sinx where one end of the bar is kept
at a constant temperature u(0, t) = 0, while there is no heat loss at the other end

of the bar so that
∂u

∂x
(π, t) = 0, that is, solve the boundary value – initial value

problem below:

∂u

∂t
=
∂2u

∂x2
, 0 < x < π, t > 0

u(0, t) = 0, t > 0

∂u

∂x
(π, t) = 0, t > 0

u(x, 0) = sinx, 0 < x < π.
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Solution: Assuming u(x, t) = X(x) · T (t) and separating variables, we get the two ordinary
differential equations X ′′ + λX = 0 and T ′ + λT = 0, and the boundary conditions lead to the
following boundary value problem for X :

X ′′ + λX = 0, 0 < x < π

X(0) = 0

X ′(π) = 0

Arguing as in previous problems, the only nontrivial solutions occur when λ > 0, say λ = µ2 where
µ 6= 0, and the differential equation becomes

X ′′ + µ2X = 0

with general solution
X(x) = A cosµx+B sinµx

and applying the first boundary condition, we have A = 0, so that

X(x) = B sinµx and X ′(x) = µB cosµx.

Applying the second boundary condition, we have

B cosµπ = 0,

and in order to get nontrivial solutions we must have µπ =
(2n − 1)π

2
for some positive integer n.

The eigenvalues are

λn = µ2n =
(2n− 1)2

4

and the corresponding eigenfunctions are

Xn(x) = sin (2n−1)x
2

while the corresponding solutions to the equation T ′ + µ2nT = 0 are

Tn(t) = e−
(2n−1)2t

4

for n > 1.

For each n > 1, the function

un(x, t) = Xn(x) · Tn(t) = e−
(2n−1)2t

4 sin (2n−1)x
2

satisfies the heat equation and the boundary conditions, and using the superposition principle, we
write

u(x, t) =

∞∑

n=1

bne
− (2n−1)2t

4 sin (2n−1)x
2

for 0 < x < π, t > 0.
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Setting t = 0, in order to satisfy the initial condition we need

sinx = u(x, 0) =

∞∑

n=1

bn sin
(2n−1)x

2 (∗)

for 0 < x < π.

Note that sinx is not of the form

sin (2n−1)x
2 ,

hence we cannot just say that sinx is its own Fourier series. Here we have to compute the full
generalized Fourier series of sinx in terms of sin (2n−1)x

2 .

In order to determine the coefficients bn, we use the fact that the functions
{
sin (2n−1)x

2

}
n>1

are

orthogonal on the interval [0, π]. To see this, note that if n 6= m, then

∫ π

0
sinµmx sinµnx dx =

1

2

∫ π

0
[cos(µm − µn)x− cos(µm + µn)x] dx

=
sin(µm − µn)x

2(µm − µn)

∣∣∣∣
π

0

− sin(µm + µn)x

2(µm + µn)

∣∣∣∣
π

0

=
sin(m− n)π

2(m− n)
− sin(m+ n)π

2(m+ n)

= 0.

Also, if m = n, then

∫ π

0
sin2 µmx dx =

∫ π

0

(
1

2
− 1

2
cos 2µmx

)
dx

=
π

2
− sin 2µmx

4µm

∣∣∣∣
π

0

=
π

2
− sin(2m− 1)π

2(2m − 1)

=
π

2
.

Multiplying the equation (∗) by sinµmx and integrating from 0 to π, and using the orthogonality
result just proven, we have

∫ π

0
sinx sinµmx dx = bm

∫ π

0
sin2 µm dx =

π

2
· bm,
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that is,

bm =
2

π

∫ π

0
sinx sinµmx dx =

1

π

∫ π

0
[cos(µm − 1)x− cos(µn + 1)x] dx

=
sin(µm − 1)x

π(µm − 1)

∣∣∣∣
π

0

− sin(µm + 1)x

π(µm + 1)

∣∣∣∣
π

0

=
sin(µm − 1)π

π(µm − 1)
− sin(µm + 1)π

π(µm + 1)

=
2

π

[
sin (2m−3)π

2

(2m− 3)
− sin (2m+1)π

2

(2m+ 1)

]
=

2

π

[
(−1)m

(2m− 3)
− (−1)m

(2m+ 1)

]
,

that is,

bm =
8

π

(−1)m

(2m− 3)(2m + 1)
,

since sin (2m+1)π
2 = (−1)m.

Therefore, the solution is

u(x, t) =
8

π

∞∑

n=1

(−1)n

(2n− 3)(2n + 1)
e−

(2n−1)2t
4 sin (2n−1)x

2

for 0 < x < π, t > 0.

Exercise 11.8. %
Consider the homogeneous Neumann problem problem for the heat equation

∂u

∂t
= k

∂2u

∂x2
, 0 < x < L, t > 0

∂u

∂x
(0, t) = 0, t > 0;

∂u

∂x
(L, t) = 0, t > 0; u(x, 0) = f(x), 0 < x < L.

Solve this problem by looking for a solution as a Fourier cosine series in terms of

cos nπx
L , n > 0. Assume that u and

∂u

∂x
are continuous and

∂2u

∂x2
and

∂u

∂t
are piecewise

smooth. Justify all differentiations of infinite series.

Solution: We assume a solution of the form

u(x, t) =

∞∑

n=0

an(t) cos
nπx
L

and assuming all derivatives are continuous, we have

∂2u

∂x2
= −

∞∑

n=0

an(t)
(
nπ
L

)2
cos nπx

L

and since u(x, t) satisfies the heat equation,

∂u

∂t
= k

∂2u

∂x2
,
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we have ∞∑

n=0

a′n(t) cos
nπx
L = −k

∞∑

n=0

an(t)
(
nπ
L

)2
cos nπx

L .

Collecting terms that multiply cos nπx
L for n > 0 for n > 1, and using the fact that these trigono-

metric functions are linearly independent (they are orthogonal on the interval [0, L]), then we get

a′n(t) = −kan(t)
(
nπ
L

)2
,

and we can solve these first order linear ordinary differential equations for an(t) to get

an(t) = Ane
−(nπ

L )
2
kt,

and the solution u(x, t) becomes

u(x, t) =

∞∑

n=0

Ane
−(nπ

L )
2
kt cos nπx

L .

Note that if we started the solution using separation of variables, we would arrive at the same
formula as above.

Differentiating this with respect to x, we get

∂u

∂x
(x, t) = −

∞∑

n=0

Ane
−(nπ

L )
2
kt
(
nπ
L

)
sin nπx

L ,

and setting x = 0, we get

0 =
∂u

∂x
(0, t),

and the first boundary condition is satisfied.

The solution is now

u(x, t) =

∞∑

n=0

Ane
−(nπ

L )
2
kt cos nπx

L ,

and we note that the second boundary condition
∂u

∂x
(L, t) = 0 is also satisfied, so we only need to

find the constants An to satisfy the initial condition u(x, 0) = f(x).

Setting t = 0 in the above expression for u(x, t), we have

f(x) = u(x, 0) =

∞∑

n=0

An cos
nπx
L ,

and the An are the Fourier cosine series coefficients of f(x), so that

An =
2

L

∫ L

0
f(x) cos nπx

L dx, n > 1

and for n = 0,

A0 =
1

L

∫ L

0
f(x) dx.
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Exercise 11.9. %%
Consider the partial differential equation which describes the temperature u in the
problem of heat transport with convection:

∂u

∂t
= k

∂2u

∂x2
− V0

∂u

∂x
,

where k denotes the specific heat and V0 the convective velocity.

(a) Use separation of variables and show that the resulting spatial equation is
not of Sturm-Liouville form. Find an appropriate multiplier to get it into
Sturm-Liouville form.

(b) Solve the initial value–boundary value problem

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

Solution:

(a) Assuming a solution of the form u(x, t) = φ(x) ·h(t), the partial differential equation becomes

φh′ = (kφ′′ − V0φ
′)h,

and separating variables
h′

k h
=
φ′′

φ
− V0

k

φ′

φ
= −λ

where λ is the separation constant.

Thus, we have the following two ordinary differential equations

φ′′(x)− V0
k
φ′(x) + λφ(x) = 0, 0 < x < L

and

h′(t) + λk h(t) = 0, t > 0.

The spatial equation is not of the form

d

dx

(
p(x)φ′(x)

)
+ [q(x) + λσ(x)]φ(x) = 0, 0 6 x 6 L

where p, q, and σ satisfy the conditions for a Sturm-Liouville problem, since we would need

p(x) = 1 and p′(x) = −V0
k
,
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and that doesn’t work. We can, however, multiply the spatial equation by e−
V0x
k , and obtain

d

dx

(
e−

V0x
k
dφ

dx

)
+ λe−

V0x
k φ = 0,

which is of Sturm-Liouville form.

(b) The heat equation with convection satisfies the boundary value – initial value problem:

∂u

∂t
= k

∂2u

∂x2
− V0

∂u

∂x
, 0 < x < L, t > 0

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

Assuming a solution of the form u(x, t) = φ(x) ·h(t) and separating variables, we get the two
problems:

φ′′(x)− V0
k
φ′(x) + λφ(x) = 0, 0 < x < L h′(t) + λk h(t) = 0, t > 0,

φ(0) = 0,

φ(L) = 0,

Making the transformation

y = e−
V0x
2k φ,

then y satisfies the boundary value problem

y′′ +

(
λ− V 2

0

4k2

)
y = 0, 0 < x < L

y(0) = 0,

y(L) = 0,

which has nontrivial solutions if and only if

λ− V 2
0

4k2
> 0 and λ− V 2

0

4k2
=
n2π2

L2

for some integer n > 1, and the corresponding solutions are

yn(x) = sin nπx
L .

Therefore for the Sturm Liouville problem, the eigenvalues are

λn =
V 2
0

4k2
+
n2π2

L2
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with corresponding eigenfunctions

φn(x) = e
V0x
2k yn(x) = e

V0x
2k sin nπx

L , 0 < x < L

for n > 1.

The corresponding solutions to the time equation are

hn(t) = e−λnkt

for n > 1.

For each n > 1, the products

un(x, t) = e
V0
2k xe−λnkt sin nπx

L

satisfy the partial differential equation as well as the boundary conditions.

From the superposition principle, we write

u(x, t) =

∞∑

n=1

bne
V0
2k xe−λnkt sin nπx

L ,

and we can satisfy the initial condition

f(x) = u(x, 0) =

∞∑

n=1

bne
V0
2k x sin nπx

L

using the orthogonality of the eigenfunctions on the interval [0, L] with respect to the weight
function

σ(x) = e−
V0
k x.

We have

bn =
2

L

∫ L

0
f(x)e−

V0
2k

x sin nπx
L dx

for n > 1.

Therefore the solution to the initial value – boundary value problem is

u(x, t) =

∞∑

n=1

bne
V0
2k xe−λnkt sin nπx

L ,

where

bn =
2

L

∫ L

0
f(x)e−

V0
2k

x sin nπx
L dx

for n > 1.
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Exercise 11.10. %%
Consider the homogeneous Neumann problem for heat transport in a nonhomoge-
neous rod of length L

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ αu, 0 < x < L, t > 0

∂u

∂x
(0, t) = 0, t > 0

∂u

∂x
(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L,

where c(x), ρ(x), K0(x), α(x) are continuous functions on the interval [0, L], and
K0, c and ρ are nonnegative.
Assume that the appropriate eigenfunctions of the spatial problem are known and
denote them by φn(x).
Show that the eigenvalues of the spatial problem are positive if α < 0 and solve the
initial value–boundary value problem, briefly discussing lim

t→∞
u(x, t).

Solution: We use separation of variables. Assume a solution of the form u(x, t) = φ(x)h(t) and
substitute this into the partial differential equation to get

c ρ φh′ =
(
K0 φ

′)′ h+ αφh.

Separating variables,
(K0 φ

′)′

c ρ φ
+

α

c ρ
=
h′

h
= −λ

where λ is the separation constant.

This leads to the two ordinary differential equations:

(
K0(x)φ

′(x)
)′
+ α(x)φ(x) + λ c(x) ρ(x)φ(x) = 0, 0 6 x 6 L; h′(t) + λh(t) = 0, t > 0.

φ′(0) = 0,

φ′(L) = 0,

The spatial equation is a regular Sturm-Liouville problem with

p(x) = K0(x), q(x) = α(x), and σ(x) = c(x) ρ(x),

all of which are assumed continuous on the closed interval [0, L]. In addition, on physical grounds
we assume that K0, c, and ρ are nonnegative and not identically zero on [0, L].

If λ is an eigenvalue with corresponding eigenvector φ(x), 0 < x < L, from the boundary conditions
we have

[
− p(x)φ(x)φ′(x)

] ∣∣∣∣
L

0

= 0,
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and the reduces to

λ = R(φ) =

∫ L

0

[
K0(x)φ

′(x)2 − α(x)φ(x)2
]
dx

∫ L

0
φ(x)2ρ(x) c(x) dx

,

and if α(x) < 0 for 0 6 x 6 L, then λ > 0.

Note that in this case, λ = 0 is impossible, since that would imply that φ(x) = 0 for all 0 < x < L,
which is a contradiction. Therefore all the eigenvalues are strictly positive.

The boundary value problem for φ is a regular Sturm-Liouville problem and has an infinite sequence
of eigenvalues and corresponding eigenfunctions {(λn, φn)}n>1 where the φn’s form a complete
orthogonal set of functions in the linear space of piecewise continuous functions on [0, L] with
respect to the weight function σ(x) = c(x) ρ(x).

The corresponding solutions to the time equation are

hn(t) = cne
−λnt, t > 0

for n > 1.

Using the superposition principle, we can write

u(x, t) =
∞∑

n=1

cne
−λntφn(x)

for 0 < x < L, t > 0, and this satisfies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition, we use the orthogonality of the eigenfunctions to write the
generalized Fourier series

f(x) = u(x, 0) =
∞∑

n=1

cnφn(x),

where

cn =

∫ L

0
f(x)φn(x) c(x) ρ(x) dx

∫ L

0
φn(x)

2 c(x) ρ(x) dx

.

Since λn > 0 for all n > 1, then for each term in the series,

e−λnt −→ 0,

as t→ ∞, and therefore

lim
t→∞

u(x, t) = 0

for each x ∈ (0, L).
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Exercise 11.11. %%%
Consider the heat equation on a two-dimensional plate occupying the rectangular
region 0 < x < L, 0 < y < H,

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)

subject to the initial condition

u(x, y, 0) = f(x, y).

Solve the initial value–boundary value problem and analyze the temperature as
t → ∞ if the boundary conditions are

u(0, y, t) = 0,
∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x,H, t) = 0.

Solution: Since the equation and the boundary conditions are linear and homogeneous we can
use separation of variables. Assuming a solution of the form u(x, y, t) = X(x) · Y (y) · T (t) and
substituting this into the partial differential equation we have

T ′(t)X(x)Y (y) = k
[
X ′′(x)Y (y)T (t) + Y ′′(y)X(x)T (t)

]
,

so that
T ′(t)
kT (t)

=
X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= −λ

where λ is the separation constant. This gives

X ′′(x)
X(x)

= −λ− Y ′′(y)
Y (y)

= −τ

where τ is another separation constant.

We can satisfy the boundary conditions by requiring that

X(0) = X ′(L) = 0 and Y ′(0) = Y ′(H) = 0,

and therefore X and Y satisfy the boundary value problems

X ′′(x) + τX(x) = 0, 0 < x < L, Y ′′(y) + αY (y) = 0, 0 < y < H,

X(0) = 0 Y ′(0) = 0

X ′(L) = 0 Y ′(H) = 0

where α = λ− τ, while T satisfies the differential equation

T ′ + λkT = 0, t > 0.
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The eigenvalues and corresponding eigenfunctions for the X-problem are (see Exercise 11.7)

τn =

(
(2n − 1)π

2L

)2

and Xn(x) = sin (2n−1)πx
2L , n = 1, 2, 3, . . .

while the eigenvalues and corresponding eigenfunctions for the Y -problem are

αm =
(mπ
H

)2
and Ym(y) = cos

mπy

H
, m = 0, 1, 2, 3, . . .

The corresponding solutions to the time equation T ′(t) + λkT (t) are

Tnm = e−λnmkt

where for

λnm = τn + αm =

(
(2n− 1)π

2L

)2

+
(mπ
H

)2

we need to use all possible combinations of indices n = 1, 2, 3, . . . and m = 0, 1, 2, 3, . . . .

The products

unm(x, y, t) = Xn(x)Ym(y)Tnm(t) = sin
(2n− 1)πx

2L
cos

mπy

H
e−λnmkt

satisfy the partial differential equation and the boundary conditions, and by the superposition
principle, the function

u(x, y, t) =

∞∑

n=1

∞∑

m=0

Cnm sin
(2n− 1)πx

2L
cos

mπy

H
e−λnmkt

also satisfies the partial differential equation and all the boundary conditions.

In order to satisfy the initial condition, we could use the fact that the eigenfunctions

{
sin

(2n − 1)πx

2L
cos

mπy

H

}

n>1,m>0

form an orthogonal set on the rectangle [0, L]× [0,H] in R
2. However, we use another method which

is similar to the methods used for one-dimensional Fourier series expansions.

Setting t = 0 in the expression above for u(x, y, t), we want

f(x, y) = u(x, y, 0) =

∞∑

n=1

∞∑

m=0

Cnm sin
(2n− 1)πx

2L
cos

mπy

H

for 0 6 x 6 L, 0 6 y 6 H, and writing this as

f(x, y) =
∞∑

n=1

( ∞∑

m=0

Cnm cos
mπy

H
︸ ︷︷ ︸

Bn(y)

)
sin

(2n− 1)πx

2L
,
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we have

f(x, y) =
∞∑

n=1

Bn(y) sin
(2n− 1)πx

2L
.

This is a Fourier sine series expansion of f(x, y) on the interval [0, L] holding y fixed, and therefore

Bn(y) =
2

L

∫ L

0
f(x, y) sin

(2n− 1)πx

2L
dx, n > 1.

However, for n > 1,

Bn(y) =

∞∑

m=0

Cnm cos
mπy

H

is the expansion of Bn(y) on the interval [0,H], so that

Cn0 =
1

H

∫ H

0
Bn(y) dy =

2

LH

∫ H

0

∫ L

0
f(x, y) sin

(2n − 1)πx

2L
dxdy, n > 1

Cnm =
2

H

∫ H

0
Bn(y) cos

mπy

H
dy =

4

LH

∫ H

0

∫ L

0
f(x, y) sin

(2n− 1)πx

2L
cos

mπy

H
dxdy, n,m > 1.

Finally, note that in the solution

u(x, y, t) =

∞∑

n=1

∞∑

m=0

Cnm sin
(2n− 1)πx

2L
cos

mπy

H
e−λnmkt,

all terms in the sum for which either n > 1 or m > 1 contain a factor of

e−λnmkt

where λnm > 0, and as t→ ∞, all these terms tend to 0, and therefore

lim
t→∞

u(x, y, t) = 0.

Exercise 11.12. %%
Find the temperature distribution in a thin two dimensional plate in the shape of a
unit square, with thermal diffusivity k = 1 and with insulated faces and edges kept
at zero temperature with an initial temperature distribution given by

f(x, y) = xy(1− x)(1− y)

for 0 6 x, y 6 1, that is, solve the boundary value – initial value problem given
below:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, 0 < x < 1, 0 < y < 1, t > 0

u(0, y, t) = u(1, y, t) = 0, 0 < y < 1, t > 0

u(x, 0, t) = u(x, 1, t) = 0, 0 < x < 1, t > 0

u(x, y, 0) = xy(1− x)(1 − y), 0 < x < 1, 0 < y < 1.
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Solution: After separating variables, applying the boundary conditions, and using the superposi-
tion principle, we find the solution has the form

u(x, y, t) =

∞∑

n=1

∞∑

m=1

Bn,m sinnπx sinmπy e−cπ
√
n2+m2 t.

We evaluate Bn,m using the initial condition

Bn,m = 4

∫ 1

0

∫ 1

0
x(1− x)y(1− y) sinnπx sinmπy dy dx

=

(
2

∫ 1

0
x(1− x) sinnπx dx

)
·
(
2

∫ 1

0
y(1− y) sinmπy dy

)

=
16 [1− (−1)n] · [1− (−1)m]

n3m3π6

for n,m > 1, that is,

Bn,m =





64

n3m3π6
if both n,m are odd

0 otherwise.

The solution is therefore

u(x, y, t) =
∞∑

n=1

∞∑

m=1

64

π6(2n − 1)3(2m− 1)3
sin(2n − 1)πx sin(2m− 1)πy e−[(2n−1)2+(2m−1)2]π2 t

for 0 < x < 1, 0 < y < 1, t > 0.

Exercise 11.13. %%
Consider the heat equation with a steady source

∂u

∂t
= k

∂2u

∂x2
+Q(x)

subject to the boundary and initial conditions:

u(0, t) = 0,

u(L, t) = 0,

u(x, 0) = f(x).

Obtain the solution by the method of eigenfunction expansions. Show that the
solution approaches a steady-state solution.

Solution: Since the problem already has homogeneous boundary conditions, we consider the
corresponding homogeneous problem:

∂u

∂t
= k

∂2u

∂x2
, 0 6 x 6 L, t > 0

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0.
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The eigenvalues and eigenfunctions for this problem are

λn =
n2π2

L2
and φn(x) = sin nπx

L

for n > 1.

We write the solution to the nonhomogeneous problem as an expansion in terms of these eigen-
functions:

u(x, t) =
∞∑

n=1

an(t) sin
nπx
L ,

and determine the coefficients an(t) which force this to be a solution to the nonhomogeneous
problem.

We will need the eigenfunction expansions for Q(x) and f(x) :

Q(x) =

∞∑

n=1

qn sin
nπx
L , with qn =

2

π

∫ L

0
Q(x) sin nπx

L dx

f(x) =
∞∑

n=1

fn sin
nπx
L , with fn =

2

π

∫ L

0
f(x) sin nπx

L dx.

Substituting these expansions into the nonhomogeneous equation

∂u

∂t
= k

∂2u

∂x2
+Q(x),

we obtain ∞∑

n=1

d an(t)

dt
sin nπx

L = −
∞∑

n=1

k
n2π2

L2
an(t) sin

nπx
L +

∞∑

n=1

qn sin
nπx
L ,

and using the orthogonality of the eigenfunctions on the interval [0, L], the coefficients an(t) satisfy
the initial value problem

d an(t)

dt
+
n2π2

L2
k an(t) = qn, t > 0

an(0) = fn

for n > 1.

The solution to this initial value problem is

an(t) = fne
−n2π2

L2 kt + qn

∫ t

0
e−

n2π2

L2 k(t−s) ds,

that is,

an(t) =
qn

kn2π2

L2

+

(
fn − qn

kn2π2

L2

)
e−

n2π2

L2 kt, t > 0

for n > 1.
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Note that since k > 0, we have lim
t→∞

an(t) =
qn

kn2π2

L2

for n > 1.

The solution to the heat equation with a steady source is therefore

u(x, t) =
∞∑

n=1

[
qn

kn2π2

L2

+

(
fn − qn

kn2π2

L2

)
e−

n2π2

L2 kt

]
sin nπx

L

for 0 6 x 6 L and t > 0.

For large value of t, this solution approaches r(x) where

r(x) = lim
t→∞

u(x, t) =
∞∑

n=1

qn

kn2π2

L2

sin nπx
L

for 0 6 x 6 L, where

qn =
2

π

∫ L

0
Q(x) sin nπx

L dx

for n > 1.

Differentiating this twice with respect to x, we see that

r′′(x) = −
∞∑

n=1

qn
k

sin nπx
L = −1

k
Q(x),

and since r(0) = r(L) = 0, then the function r(x) satisfies the boundary value problem

k
d2r

dx2
+Q = 0, 0 6 x 6 L

r(0) = 0

r(L) = 0,

which is exactly the boundary value problem for the steady state solution, that is, r(x) is the steady
state or equilibrium solution to the original heat flow problem.

Exercise 11.14. %%%
Solve the two-dimensional heat equation with circularly symmetric time-independent
sources, boundary conditions, and initial conditions (inside a circle):

∂u

∂t
=
k

r

∂

∂r

(
r
∂u

∂r

)
+Q(r)

with
u(r, 0) = f(r) and u(a, t) = T.

Solution: As usual with problems involving polar coordinates, we seek solutions that are bounded
as r → 0+, so that |u(r, t)| 6M as r → 0+.
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We first convert the problem into one with homogeneous boundary conditions and then use the
method of eigenfunction expansions to solve the nonhomogeneous equation that results.

Step 1: In order to get a problem with homogeneous boundary conditions we write

u(r, t) = v(r) + w(r, t)

where v(r), the steady-state or equilibrium solution, satisfies

∇2v =
1

r

∂

∂r

(
r
∂v

∂r

)
= 0, 0 6 r 6 a,

v(a) = T, t > 0,

|v(r)| 6M, as r → 0+.

then
∂u

∂t
=
∂v

∂t
+
∂w

∂t
=
∂w

∂t
,

and
∇2u = ∇2v +∇2w = ∇2w.

Therefore, w(r, t) satisfies the boundary value – initial value problem

∂w

∂t
=
k

r

∂

∂r

(
r
∂w

∂r

)
+Q(r)

w(a, t) = 0

w(r, 0) = f(r)− v(r)

We solve the v equation
1

r

∂

∂r

(
r
∂v

∂r

)
= 0

to get
v(r) = c1 log r + c2,

with two integration constants c1 and c2.

From the boundedness condition, we have c1 = 0, while from the boundary condition v(a) = c2 = T,
so that

v(r) = T

for 0 6 r 6 a.

Therefore, u(r, t) = w(r, t) + T, and w satisfies the nonhomogeneous equation with homogeneous
boundary conditions:

∂w

∂t
=
k

r

∂

∂r

(
r
∂w

∂r

)
+Q(r) (∗)

w(a, t) = 0

w(r, 0) = f(r)− T.
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Step 2: Next we find the eigenvalues and eigenfunctions for the corresponding homogeneous prob-
lem:

∂w

∂t
=
k

r

∂

∂r

(
r
∂w

∂r

)
(∗∗)

w(a, t) = 0

|w(r, t)| bounded at r = 0.

Using separation of variables, we assume that w(r, t) = φ(r) · T (t), and separating variables we get

(
rφ′
)′
+ λ r φ = 0, 0 6 r 6 a

T ′ + λk T = 0, t > 0.

The boundary condition w(a, t) = 0 for all t > 0 is satisfied if we require

φ(a) = 0.

Also, since r = 0 is a singular point of the differential equation for φ, we add the requirement

|φ(r)| bounded at r = 0,

which is equivalent to requiring that |w(r, t)| be bounded at r = 0.

Thus, φ satisfies the boundary value problem

(
rφ′
)′
+ λ r φ = 0, 0 6 r 6 a

φ(a) = 0, (†)

|φ(r)| bounded at r = 0.

We multiply the equation by r and recognize the equation

r2φ′′ + rφ′ + λ r2φ = 0

as Bessel’s equation of order zero, for which the function

φ(r) = J0(
√
λ r)

is the solution bounded at r = 0.

In order to satisfy the boundary condition φ(a) = 0, we must have

J0(
√
λa) = 0,

or √
λn a = zn, n = 1, 2, . . .

where zn are the positive zeros of the Bessel function J0.
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Therefore the eigenvalues and eigenfunctions of the boundary value problem satisfied by φ(r) are

λn =
z2n
a2

and φn(r) = J0(
√
λn r)

for n > 1.

Step 3: Now we use an eigenfunction expansion for w(r, t) as

w(r, t) =

∞∑

n=1

an(t)J0(
√
λn r)

and determine the coefficients an(t) so that w(r, t) is a solution to the nonhomogeneous equation

∂w

∂t
=
k

r

∂

∂r

(
r
∂w

∂r

)
+Q(r) (∗)

w(a, t) = 0

w(r, 0) = f(r)− T,

and this means we will need the Fourier-Bessel Series for Q(r) and f(r)− T :

Q(r) =

∞∑

n=1

qnJ0(
√
λn r), with qn =

∫ a

0
J0(
√
λn r)Q(r)r dr

∫ a

0
J0(
√
λn r)

2r dr

f(r)− T =

∞∑

n=1

fnJ0(
√
λn r), with fn =

∫ a

0
J0(
√
λn r)(f(r)− T )r dr

∫ a

0
J0(
√
λn r)

2r dr

.

Note that the Sturm-Liouville problem (†) has the weight function σ(r) = r, hence the factor r in
the integrals.

Substituting these expansions into (∗), we have

∞∑

n=1

dan(t)

dt
J0(
√
λn r) =

∞∑

n=1

an(t)(−λn)J0(
√
λn r) +

∞∑

n=1

qnJ0(
√
λn r),

and using the orthogonality of the eigenfunctions, the coefficients an(t) satisfy the linear differential
equation

dan(t)

dt
+ λnan(t) = qn, t > 0

for n > 1.

From the initial condition

w(r, 0) =

∞∑

n=1

an(0)J0(
√
λn r) = f(r)− T =

∞∑

n=1

fnJ0(
√
λn r),
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using the orthogonality again, we have
an(0) = fn

for n > 1.

Therefore, an(t) satisfies the initial value problem

dan(t)

dt
+ λnan(t) = qn, t > 0

an(0) = fn

for n > 1.

Multiplying by the integrating factor eλnt, the differential equation becomes

d

dt

(
an(t)e

λnt
)
= qne

λnt,

and integrating,

an(t)e
λnt − an(0) =

∫ t

0
qne

λns ds,

so that

an(t) = an(0)e
−λnt +

∫ t

0
qne

−λn(t−s) ds = an(0)e
−λnt +

qn
λn

(
1− e−λnt

)
, t > 0

for n > 1.

Step 4: Putting everything together, the solution is

u(r, t) = v(r) + w(r, t) = T +

∞∑

n=1

an(t)J0(
√
λn r),

that is,

u(r, t) = T +

∞∑

n=1

[
qn
λn

+

(
fn − qn

λn

)
e−λnt

]
J0(
√
λn r)

for 0 6 r 6 a, t > 0, where λn =
z2n
a2
, and

qn =

∫ a

0
J0(
√
λn r)Q(r)r dr

∫ a

0
J0(
√
λn r)

2r dr

,

fn =

∫ a

0
J0(
√
λn r)(f(r)− T )r dr

∫ a

0
J0(
√
λn r)

2r dr

for n > 1.
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Exercise 11.15. %%
A thin homogeneous bar of length π has poorly insulated sides, so that heat radiates
freely from the bar along its entire length. Assuming that the heat transfer coeffi-
cient A is constant, and that the temperature T of the surrounding medium is also
constant, the temperature u(x, t) in the bar satisfies the following partial differential
equation:

∂u

∂t
=
∂2u

∂x2
−A(u− T ), 0 < x < π, t > 0.

The ends of the bar are kept at temperature T, and the initial temperature is

u(x, 0) = x+ T, 0 < x < π.

(a) State the initial value–boundary value problem satisfied by u(x, t).

(b) Transform this problem into a familiar one by setting

v(x, t) = eAt [u(x, t)− T ]

and then finding the initial value–boundary value problem satisfied by v(x, t).

(c) Use the method of separation of variables to solve the problem in part (b),
and hence obtain the solution u(x, t) to the original problem.

Solution:

(a) The problem satisfied by the temperature function is

∂u

∂t
=
∂2u

∂x2
−A(u− T ), 0 < x < π, t > 0

u(0, t) = T, t > 0

u(π, t) = T, t > 0

u(x, t) = x+ T, 0 < x < π.

(b) We let v(x, t) = eAt [u(x, t) − T ] , so that

u = T + e−Atv

∂u

∂t
= e−At ∂v

∂t
−Ae−Atv

∂2u

∂x2
= e−At ∂

2v

∂x2
.

If u is a solution to the partial differential equation in part (a), then

e−At ∂v

∂t
−Ae−Atv = e−At ∂

2v

∂x2
−Ae−Atv,
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and, since e−At is never zero, v satisfies the one dimension heat equation

∂v

∂t
=
∂2v

∂x2
.

As for the boundary conditions, we have

v(0, t) = eAt [u(0, t) − T ] = eAt [T − T ] = 0,

and

v(π, t) = eAt [u(π, t) − T ] = eAt [T − T ] = 0,

while for the initial condition, we have

v(x, 0) = u(x, 0) − T = x+ T − T = x.

Therefore, v(x, t) = eAt [u(x, t)− T ] satisfies the initial value–boundary value problem

∂v

∂t
=
∂2v

∂x2
, 0 < x < π, t > 0

v(0, t) = 0, t > 0

v(π, t) = 0, t > 0

v(x, t) = x, 0 < x < π.

(c) Using separation of variables, the solution to the Dirichlet problem in part (b) is

v(x, t) =

∞∑

n=1

bn sinnx e
−n2t

where

bn =
2

π

∫ π

0
x sinnx dx =

2(−1)n

n

for n > 1. Therefore, the solution to the original heat transfer problem is

u(x, t) = T + e−At
∞∑

n=1

2(−1)n

n
sinnx e−n2t

for 0 < x < π, t > 0.
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Exercise 11.16. %%%
Consider the homogeneous Robin problem for heat flow in a homogeneous rod of
length a where we have convection at the ends into a medium at zero temperature,
and where the initial temperature is f(x).

∂u

∂t
= k

∂2u

∂x2
, 0 < x < a, t > 0

∂u

∂x
(0, t)− hu(0, t) = 0, t > 0

∂u

∂x
(a, t) + hu(a, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < a,

where h > 0.

Solution: We use separation of variables. Assume a solution of the form u(x, t) = φ(x)T (t) and
substitute this into the partial differential equation to get

φT ′ = kφ′′ T.

Separating variables,
φ′′

φ
=

T ′

kT
= −λ

where λ is the separation constant.

This leads to the two ordinary differential equations:

φ′′(x) + λφ(x) = 0, 0 6 x 6 a; T ′(t) + λkT (t) = 0, t > 0.

φ′(0) − hφ(0) = 0,

φ′(a) + hφ(a) = 0,

The spatial equation is a regular Sturm-Liouville problem with

p(x) = 1, q(x) = 0, and σ(x) = 1,

all of which are continuous on the closed interval [0, a].

If λ is an eigenvalue with corresponding eigenvector φ(x), 0 < x < a, from the boundary conditions
we have

[
− p(x)φ(x)φ′(x)

] ∣∣∣∣
a

0

= h
[
φ(a)2 + φ(0)2

]
,

and the Rayleigh quotient reduces to

λ = R(φ) =

h
[
φ(a)2 + φ(0)2

]
+

∫ a

0
φ′(x)2 dx

∫ a

0
φ(x)2 dx

,
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and λ > 0. Note that λ = 0 is impossible, since that would imply that φ(x) = 0 for all 0 < x < a,
which is a contradiction. Therefore all the eigenvalues are strictly positive.

The boundary value problem for φ is a regular Sturm-Liouville problem and has an infinite sequence
of eigenvalues and corresponding eigenfunctions {(λn, φn)}n>1 where the φn’s form a complete
orthogonal set of functions in the linear space of piecewise continuous functions on [0, a] with
respect to the weight function σ(x) = 1.

In fact, if we write λ = µ2, where µ > 0, then the boundary value problem becomes

φ′′ + µ2φ = 0

φ′(0) − hφ(0) = 0

φ′(a) + hφ(a) = 0,

with general solution

φ(x) = A cos µx+B sinµx and φ′(x) = −µA sinµx+ µB cosµx.

Applying the first boundary condition we have

A

B
=
µ

h
,

and applying the second boundary condition we have

h2 − µ2

h
sinµa+ 2µ cosµa = 0,

and the boundary value problem has a nontrivial solution if and only if

tanµa =
2µh

µ2 − h2
.

We determine the eigenvalues from the graphs of the functions

f(µ) = tanµa and g(µ) =
2µh

µ2 − h2

for µ > 0.

Note that for µ > 0, we have

g(µ) =
2µh

µ2 − h2
=

h

µ+ h
+

h

µ− h
,

so that

g′(µ) = − h

(µ+ h)2
− h

(µ− h)2
< 0

and g is decreasing on the interval (0, h) and on the interval (h,∞) and the line µ = h is a vertical
asymptote to the graph. The graphs of g and f are shown below.
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h

2
µ2y  = _2µ

h
y =  tan µ a

π /2a π /2a3 π /2a5 π /2a7 µ0 

y
h

From the figure it is clear that there are an infinite number of distinct positive solutions µ = µn to
the equation

tanµa =
2µh

µ2 − h2
, (∗)

and the eigenvalues are λn = µ2n, for n > 1.

Since lim
n→∞

µn = +∞, then

lim
n→∞

tanµna = lim
n→∞

2µnh

µ2n − h2
= 0,

and the roots of the equation tanµa =
2µh

µ2 − h2
approach the roots of the equation tan µa = 0, that

is, for large n,
µna ≈ nπ,

and therefore

λn = µ2n ≈ n2π2

a2

for large n.

The corresponding eigenfunctions are

φn(x) = cosµnx+ h
µn

sinµnx (∗∗)

for n > 1.

The corresponding solutions to the time equation are

Tn(t) = e−kµ2
nt, t > 0

for n > 1.

Using the superposition principle, we can write

u(x, t) =

∞∑

n=1

anφn(x) e
−kµ2

nt
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for 0 < x < a, t > 0, and this satisfies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition, we use the orthogonality of the eigenfunctions to write the
generalized Fourier series

f(x) = u(x, 0) =
∞∑

n=1

anφn(x),

where

an =

∫ a

0
f(x)φn(x) dx
∫ a

0
φn(x)

2 dx

.

In order to determine the normalization constant

∫ a

0
φn(x)

2 dx, we note that

φ′′n + µ2nφn = 0,

so that

µ2n

∫ a

0
φ2n dx = −

∫ a

0
φnφ

′′
n dx = −φnφ′n

∣∣∣∣
a

0

+

∫ a

0

(
φ′n
)2
dx

However,

µnφn(x) = µn cosµnx+ h sin µnx

and

φ′n(x) = −µn sinµnx+ h cosµnx

so that

µ2nφn(x)
2 +

(
φ′n(x)

)2
= µ2n + h2

for 0 6 x 6 a, and integrating we have

µ2n

∫ a

0
φn(x)

2 dx+

∫ a

0

(
φ′n(x)

)2
dx =

(
µ2n + h2

)
a.

Also

µ2n

∫ a

0
φn(x)

2 dx−
∫ a

0

(
φ′n(x)

)2
dx = −φnφ′n

∣∣∣∣
a

0

,

and adding we obtain

2µ2n

∫ a

0
φn(x)

2 dx =
(
µ2n + h2

)
a− φnφ

′
n

∣∣∣∣
a

0

=
(
µ2n + h2

)
a+ h

(
φn(a)

2 + φn(0)
2
)
. (∗ ∗ ∗)

Since

µ2nφn(x)
2 +

(
φ′n(x)

)2
= µ2n + h2
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for 0 6 x 6 a, from the first boundary condition we have

µ2nφn(0)
2 + h2φn(0)

2 =
(
µ2n + h2

)
φn(0)

2 = µ2n + h2,

so that φn(0)
2 = 1. Similarly, from the second boundary condition we have

µ2nφn(a)
2 + h2φn(a)

2 =
(
µ2n + h2

)
φn(a)

2 = µ2n + h2,

so that φn(a)
2 = 1, and from (∗ ∗ ∗) we have

∫ a

0
φn(x)

2 dx =

(
µ2n + h2

)
a+ 2h

2µ2n

for n > 1.

The solution to the homogeneous Robin problem is

u(x, t) =
∞∑

n=1

an

(
cosµnx+ h

µn
sinµnx

)
e−kµ2

nt

for 0 6 x 6 a, t > 0, where the µn’s are the positive roots of the transcendental equation

tan µa =
2µh

µ2 − h2

and

an =
2µ2n

(µ2n + h2) a+ 2h

∫ a

0

(
cosµnx+ h

µn
sinµnx

)
f(x) dx

for n > 1.

Exercise 11.17. %%
Solve the following boundary value problem for the steady-state temperature u(x, y)
in a thin plate in the shape of a semi-infinite strip when heat transfer to the sur-
roundings at temperature zero takes place at the faces of the plate:

∂2u

∂x2
+
∂2u

∂y2
− b u = 0, 0 < x <∞, 0 < y < 1

∂u

∂x
(0, y) = 0, 0 < y < 1

u(x, 0) = 0, 0 < x <∞

u(x, 1) = f(x), 0 < x <∞

where b is a positive constant and f(x) =





1 0 < x < a

0 x > a.
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Solution: Given the boundary value problem

∂2u

∂x2
+
∂2u

∂y2
− b u = 0, 0 < x <∞, 0 < y < 1

∂u

∂x
(0, y) = 0, 0 < y < 1

u(x, 0) = 0, 0 < x <∞

u(x, 1) = f(x), 0 < x <∞

where b is a positive constant and f(x) =





1 0 < x < a

0 x > a.

We try separation of variables, writing

u(x, y) = X(x)Y (y),

then the partial differential equation becomes

X ′′Y +XY ′′ − bXY = 0,

that is
X ′′

X
= −Y

′′

Y
+ b = p (constant)

and we obtain the two ordinary differential equations

X ′′ − pX = 0, 0 < x <∞ Y ′′ + (p− b)Y = 0, 0 < y < 1

X ′(0) = 0, Y (0) = 0,

|X(x)| bounded as x→ ∞,

case (i) p = 0
The general solution to the equation X ′′ = 0 is

X(x) = c1 x+ c2

and the condition X ′(0) = 0 implies that c1 = 0, the solution is therefore X(x) = 1.
case (ii) p > 0, say p = µ2

The general solution to the equation X ′′ − µ2X = 0 is

X(x) = c1 coshµx+ c2 sinhµx

and the condition X ′(0) = 0 implies c2 = 0, while the condition |X(x)| bounded as x→ ∞ implies
that c1 = 0. There are no non-trivial solutions in this case.
case (iii) p < 0, say p = −λ2
The general solution to the equation X ′′ + λ2X = 0 is

X(x) = c1 cos λx+ c2 sinλx
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the condition X ′(0) = 0 implies that c2 = 0, and the solution is X(x) = c1 cos λx, which is bounded
as x→ ∞.

Therefore, for any λ > 0, the function Xλ(x) = cos λx satisfies the differential equation, the
boundary condition, and the boundedness condition. In this case we no longer have a discrete
spectrum, that is, a discrete set of eigenvalues, and every λ > 0 is an eigenvalue.

The corresponding equation for Y is given by

Y ′′ − (λ2 + b)Y = 0

Y (0) = 0

and has general solution

Y (y) = c1 sinh
(
(1− y)

√
λ2 + b

)
+ c2 sinh

(
y
√
λ2 + b

)
.

The condition Y (0) = 0 implies that c1 = 0, and the solutions are

Yλ(y) = sinh
(
y
√
λ2 + b

)
.

Using the superposition principle, we write

u(x, y) =

∫ ∞

0
A(λ) cos λx sinh

(
y
√
λ2 + b

)
dλ

and u(x, 1) = f(x) implies that

A(λ) sinh
√
λ2 + b =

2

π

∫ ∞

0
f(x) cos λx dx

=
2

π

∫ a

0
cos λx dx

=
2

πλ
sinλa.

Therefore,

u(x, y) =
2

π

∫ ∞

0

sinλa cos λx sinh(y
√
λ2 + b)

λ sinh
√
λ2 + b

dλ

for 0 < x <∞, 0 < y < 1.
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Wave Equation Problems

Exercise 12.1. %
Use the method of separation of variables to solve the one dimensional wave equation
with homogeneous Dirichlet boundary conditions as given below

∂2u

∂t2
=

1

π2
∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = sinπx cos πx, 0 < x < 1,

∂u

∂t
(x, 0) = 0, 0 < x < 1.

Solution: We assume a solution of the form u(x, t) = X(x)T (t) to obtain two ordinary differential
equations:

X ′′ + λπ2X = 0 and T ′′ + λT = 0,

with separation constant λ.

We can satisfy the two boundary conditions by requiring that X(0) = 0 and X(1) = 0, so that X
satisfies the boundary value problem:

X ′′ + λπ2X = 0, 0 < x < 1

X(0) = 0

X(1) = 0.

The cases λ = 0 and λ < 0 both result in the trivial solution X(x) = 0 for all x ∈ [0, 1], and the
only nontrivial solution arises when λ > 0, say λ = µ2, where µ 6= 0. In this case the boundary
value problem

X ′′ + µ2π2X = 0, 0 < x < 1

X(0) = 0

X(1) = 0.

has general solution
X(x) = A cos µπx+B sinµπx,

223
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and applying the first boundary condition, we have X(0) = A = 0. Applying the second boundary
condition, we have X(1) = B sinµπ = 0, and in order to get a nontrivial solution we must have
sinµπ = 0, but this can only happen if µπ = nπ, where n is an integer. The eigenvalues and
corresponding eigenfunctions are

λn = n2π2 and Xn(x) = sinnπx

for n > 1.

The corresponding T -equation is
T ′′ + n2T = 0

with solutions
Tn(t) = an cosnt+ bn sinnt

for n > 1.

For each integer n > 1, the function

un(x, t) = Xn(x) · Tn(t) = sinnπx (an cosnt+ bn sinnt)

satisfies the wave equation and the two homogeneous boundary conditions and using the superpo-
sition principle, we write

u(x, t) =

∞∑

n=1

sinnπx (an cosnt+ bn sinnt) .

In order to satisfy the initial conditions, we need

u(x, 0) =

∞∑

n=1

an sinnπx, (1)

and

∂u

∂t
(x, 0) =

∞∑

n=1

nbn sinnπx, (2)

that is, the Fourier sine series of u(x, 0) and
∂u

∂t
(x, 0).

Therefore, from (1) we have

an = 2

∫ 1

0
u(x, 0) sin nπx dx

and

nbn = 2

∫ 1

0

∂u

∂t
(x, 0) sin nπx dx

for n > 1.

Note that bn = 0 for all n > 1, since
∂u

∂t
(x, 0) = 0 for 0 < x < 1.

Also, we have

u(x, 0) = sinπx cos πx =
1

2
sin 2πx,
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so that u(x, 0) is its own Fourier sine series, and

an =





1

2
if n = 2

0 if n 6= 2.

Therefore, the solution is

u(x, t) =
1

2
sin 2πx cos 2t

for 0 6 x 6 1, t > 0.

Exercise 12.2. %
Solve the following boundary value – initial value problem for the wave equation

∂2u

∂t2
=
∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = sinπx+ 1
2 sin 3πx+ 3 sin 7πx, 0 < x < 1,

∂u

∂t
(x, 0) = sin 2πx, 0 < x < 1.

Solution: Similar to the previous problem, we use separation of variables and the superposition
principle to get the general solution

u(x, t) =
∞∑

n=1

sinnπx (an cosnπt+ bn sinnπt) ,

where the coefficients are to be determined using the initial conditions. Differentiating, we have

∂u

∂t
(x, t) =

∞∑

n=1

sinnπx (−nπan sinnπt+ nπbn cosnπt) ,

and setting t = 0, we get

u(x, 0) =
∞∑

n=1

an sinnπx and
∂u

∂t
(x, 0) =

∞∑

n=1

nπbn sinnπx,

and again these are just the Fourier sine series of f(x) and g(x), the initial displacement and initial
velocity.

From the first initial condition

u(x, 0) = sinπx+ 1
2 sin 3πx+ 3 sin 7πx,

we see that

a1 = 1, a3 =
1

2
, a7 = 3,
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and an = 0 for all other values of n.

From the second initial condition
∂u

∂t
(x, 0) = sin 2πx,

so that

bn =





1

2π
if n = 2,

0 if n 6= 2.

Therefore, the solution is

u(x, t) = sinπx cos πt+
1

2π
sin 2πx sin 2πt+

1

2
sin 3πx cos 3πt+ 3 sin 7πx cos 7πt

for 0 < x < 1, t > 0.

Exercise 12.3. %
Show that the solution to the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0

u(0, t) = 0, t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L,

∂u

∂t
(x, 0) = 0, 0 < x < L

is given by

u(x, t) =
1

2

∞∑

n=1

an

[
sin nπ(x−ct)

L + sin nπ(x+ct)
L

]

where an =
2

L

∫ L

0
f(x) sin nπx

L dx, n = 1, 2, . . . .

Solution: Using separation of variables, the solution to this problem is given by

u(x, t) =

∞∑

n=1

sin nπx
L

(
an cos

nπct
L + bn sin

nπct
L

)

where

an =
2

L

∫ L

0
f(x) sin nπx

L dx and bn =
2

nπc

∫ L

0
g(x) sin nπx

L dx

for n > 1.

Since g(x) = 0 for 0 < x < L, then bn = 0 for all n > 1, and the solution is given by

u(x, t) =

∞∑

n=1

an sin
nπx
L cos nπct

L ,
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and since

sinA cosB =
1

2
[sin(A−B) + sin(A+B)] ,

then

u(x, t) =
1

2

∞∑

n=1

an

[
sin nπ(x−ct)

L + sin nπ(x+ct)
L

]

where an =
2

L

∫ L

0
f(x) sin nπx

L dx.

Exercise 12.4. %%
Consider the homogeneous Dirichlet problem for the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

u(0, t) = 0, u(L, t) = 0 for 0 < x < L

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0 for t > 0.

Show that the solution can be written as

u(x, t) =
1

2

[
F (x− ct) + F (x+ ct)

]
,

where F (x) is the odd periodic extension of f(x).
Hint : Use separation of variables and

sin a cos b =
1

2

[
sin(a+ b) + sin(a− b)

]
.

Solution: We assume a solution of the form

u(x, t) = X(t) · T (t)

and separate variables to obtain the two ordinary differential equations

X ′′(x) + λX(x) = 0, 0 < x < L T ′′(t) + λc2T (t) = 0, t > 0

X(0) = 0 T ′(0) = 0.

X(L) = 0

The eigenvalues and eigenfunctions for the X-equation are

λn =
n2π2

L2
and Xn(x) = sin nπx

L
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for n > 1, and the corresponding solutions of the T -equation are

Tn(t) = an cos
nπct
L + bn sin

nπct
L

for n > 1.

Using the superposition principle, we write the solution as

u(x, t) =

∞∑

n=1

(an cos
nπct
L + bn sin

nπct
L ) sin nπx

L ,

and
∂u

∂t
(x, t) =

∞∑

n=1

(−an nπc
L sin nπct

L + bn
nπc
L cos nπct

L ) sin nπx
L .

We determine the coefficients using the initial conditions and the orthogonality of the eigenfunctions
on the interval [0, L].

From the first initial condition we have

f(x) = u(x, 0) =

∞∑

n=1

an sin
nπx
L ,

so that

an =
2

L

∫ L

0
f(x) sin nπx

L dx

for n > 1.

From the second initial condition we have

0 =
∂u

∂t
(x, 0) =

∞∑

n=1

bn
nπc
L sin nπx

L ,

so that bn = 0 for n > 1.

The solution is

u(x, t) =

∞∑

n=1

an cos
nπct
L sin nπx

L =

∞∑

n=1

an

{
1

2
sin nπ(x−ct)

L +
1

2
sin nπ(x+ct)

L

}

for 0 < x < L and t > 0.

Note that if f ∈ PWS[0, L], that is, f is piecewise smooth on the interval [0, L], the series

∞∑

n=1

an sin
nπx
L dx

is the Fourier sine series for f, and converges for all real numbers x, and, except for at most
countably many values of x, it converges to the odd periodic extension F of f.

Therefore, assuming the odd periodic extension F is continuous, the solution is

u(x, t) =
1

2

∞∑

n=1

an sin
nπ(x−ct)

L +
1

2

∞∑

n=1

an sin
nπ(x+ct)

L =
1

2
F (x− ct) +

1

2
F (x+ ct)

for 0 < x < L and t > 0.
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Exercise 12.5. %%
Consider the homogeneous Dirichlet problem for the wave equation with given initial
velocity

∂2u

∂t2
= c2

∂2u

∂x2

u(0, t) = 0, u(L, t) = 0 for 0 < x < L

u(x, 0) = 0,
∂u

∂t
(x, 0) = g(x) for t > 0.

Show that

u(x, t) =
1

2c

∫ x+ct

x−ct
G(s) ds,

where G(x) is the odd periodic extension of g(x).
Hint : Use separation of variables and

sin a sin b =
1

2

[
cos(a− b)− cos(a+ b)

]
.

Solution: As in the previous exercise, we assume a solution of the form

u(x, t) = X(t) · T (t)

and separate variables to obtain two ordinary differential equations

X ′′(x) + λX(x) = 0, 0 < x < L T ′′(t) + λc2T (t) = 0, t > 0

X(0) = 0 T (0) = 0.

X(L) = 0

As before, the eigenvalues and eigenfunctions for the X-equation are

λn =
n2π2

L2
and Xn(x) = sin nπx

L

for n > 1, and the corresponding solutions of the T -equation are

Tn(t) = an cos
nπct
L + bn sin

nπct
L

for n > 1.

Using the superposition principle, we write the solution as

u(x, t) =

∞∑

n=1

(an cos
nπct
L + bn sin

nπct
L ) sin nπx

L ,

and
∂u

∂t
(x, t) =

∞∑

n=1

(−an nπc
L sin nπct

L + bn
nπc
L cos nπct

L ) sin nπx
L .
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We determine the coefficients using the initial conditions and the orthogonality of the eigenfunctions
on the interval [0, L].

From the first initial condition we have

0 = u(x, 0) =
∞∑

n=1

an sin
nπx
L ,

so that an = 0 for n > 1.

From the second initial condition we have

g(x) =
∂u

∂t
(x, 0) =

∞∑

n=1

bn
nπc
L sin nπx

L ,

so that

bn =
2

nπc

∫ L

0
g(x) sin nπx

L dx

for n > 1, and the solution is

u(x, t) =
∞∑

n=1

bn sin
nπct
L sin nπx

L =
∞∑

n=1

bn

{
1

2
cos nπ(x−ct)

L − 1

2
cos nπ(x+ct)

L

}

for 0 < x < L and t > 0.

Now,

∂u

∂t
(x, t) =

1

2

∞∑

n=1

bn
nπc
L sin nπ(x−ct)

L +
1

2

∞∑

n=1

bn
nπc
L sin nπ(x+ct)

L

and if g ∈ PWS[0, L], that is, g is piecewise smooth on the interval [0, L], then the series

∞∑

n=1

bn sin
nπx
L

is the Fourier sine series for g, and converges for all real numbers x, and, except for at most
countably many values of x, it converges to the odd periodic extension G of g, that is,

∂u

∂t
(x, t) =

1

2
G(x− ct) +

1

2
G(x+ ct).

Integrating this from 0 to t, we have
∫ t

0

∂u

∂τ
(x, τ) dτ = u(x, t)− u(x, 0) = u(x, t)

since u(x, 0) = 0. Therefore

u(x, t) =
1

2

∫ t

0
G(x− cτ) dτ +

1

2

∫ t

0
G(x+ cτ) dτ = − 1

2c

∫ x−ct

x
G(s) ds +

1

2c

∫ x+ct

x
G(s) ds,

where we made the substitution s = x − cτ in the first integral, and s = x + cτ in the second
integral, and assuming the odd periodic extension of g is continuous, the solution is

u(x, t) =
1

2c

∫ x+ct

x−ct
G(s) ds

for 0 < x < L and t > 0.
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Exercise 12.6. %%
Derive d’Alembert’s solution to the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x <∞, t > 0

and use it and the superposition principle to solve the wave equation with initial
data

u(x, 0) = e−x2
,

∂u

∂t
(x, 0) =

x

(1 + x2)2
, −∞ < x <∞.

Solution: Using the change of variables

α = x+ ct and β = x− ct,

then from the chain rule we have

∂u

∂x
=
∂u

∂α

∂α

∂x
+
∂u

∂β

∂β

∂x
=
∂u

∂α
+
∂u

∂β
,

and replacing u by
∂u

∂x
, we get

∂2u

∂x2
=

∂

∂x

(
∂u

∂α
+
∂u

∂β

)
=

∂

∂α

(
∂u

∂α
+
∂u

∂β

)
+

∂

∂β

(
∂u

∂α
+
∂u

∂β

)
,

that is,
∂2u

∂x2
=
∂2u

∂α2
+ 2

∂2u

∂α∂β
+
∂2u

∂β2

Again, from the chain rule, we have

∂u

∂t
=
∂u

∂α

∂α

∂t
+
∂u

∂β

∂β

∂t
= c

∂u

∂α
− c

∂u

∂β
,

and replacing u by
∂u

∂t
, we get

∂2u

∂t2
=

∂

∂t

(
c
∂u

∂α
− c

∂u

∂β

)
= c

∂

∂α

(
c
∂u

∂α
− c

∂u

∂β

)
− c

∂

∂β

(
c
∂u

∂α
− c

∂u

∂β

)
,

that is,
∂2u

∂t2
= c2

∂2u

∂α2
− 2c2

∂2u

∂α∂β
+ c2

∂2u

∂β2
,

and substituting these expressions into the wave equation, we obtain

∂2u

∂α∂β
= 0.
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This equation says that
∂u

∂β
doesn’t depend on α, and therefore

∂u

∂β
= g(β),

where g is an arbitrary differentiable function.

Now, integrating this equation with respect to β, holding α fixed, we get

u =

∫
∂u

∂β
dβ + F (α) =

∫
g(β) dβ + F (α) = F (α) +G(β),

where F is an arbitrary differentiable function and G is an antiderivative of g.

Finally, using the fact that α = x + ct and β = x − ct, we get d’Alembert’s solution to the
one-dimensional wave equation:

u(x, t) = F (x+ ct) +G(x− ct),

where F and G are arbitrary differentiable functions.

Now, in order to solve the original question, we solve the following initial-boundary-value problems,
and use the superposition principle to combine them to get a solution to the original problem:

∂2v

∂t2
= c2

∂2v

∂x2
, −∞ < x <∞, t > 0,

v(x, 0) = e−x2
, −∞ < x <∞ (1)

∂v

∂t
(x, 0) = 0 −∞ < x <∞,

and

∂2w

∂t2
= c2

∂2w

∂x2
, −∞ < x <∞, t > 0,

w(x, 0) = 0, −∞ < x <∞ (2)

∂w

∂t
(x, 0) =

x

(1 + x2)2
−∞ < x <∞,

the solution to the original problem is then u = v + w. (Check this!!!)

For problem (1), we use the initial conditions to write

v(x, 0) = e−x2
= F (x) +G(x),

so that F (x) +G(x) = e−x2
, and

∂v

∂t
= 0 = cF ′(x)− cG′(x),

so that
F (x)−G(x) = C,
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where C is an arbitrary constant. Therefore,

2F (x) = e−x2
+ C and 2G(x) = e−x2 − C,

and the solution to the first problem is

v(x, t) = F (x+ ct) +G(x− ct) =
1

2

[
e−(x+ct)2 + e−(x−ct)2

]
.

For problem (2), we use the initial conditions to write

w(x, 0) = 0 = F (x) +G(x),

so that G(x) = −F (x), and
∂w

∂t
(x, 0) =

x

(1 + x2)2
= cF ′(x)− cG′(x),

so that cF ′(x)− cG′(x) = 2cF ′(x) =
x

(1 + x2)2
, and integrating we have

2cF (x) =
1

2
· −1

1 + x2
+ 2cC,

where C is an arbitrary constant. Therefore,

F (x) =
−1

4c(1 + x2)
+ C and G(x) =

1

4c(1 + x2)
− C

and the solution to the second problem is

w(x, t) =
1

4c

[ −1

1 + (x+ ct)2
+

1

1 + (x− ct)2

]
.

The solution to the original initial valuer– boundary value problem is then

u(x, t) = v(x, t) + w(x, t) =
1

2

[
e−(x+ct)2 + e−(x−ct)2

]
+

1

4c

[ −1

1 + (x+ ct)2
+

1

1 + (x− ct)2

]
.

Exercise 12.7.

���
Use d’Alembert’s solution of the wave equation to solve the boundary value - initial
value problem:

∂2u

∂x2
=

1

c2
∂2u

∂t2
, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞
∂u

∂t
(x, 0) = g(x), −∞ < x <∞

with f(x) = 0 and g(x) =
1

1 + x2
.
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Solution: The boundary value - initial value problem for the displacement of an infinite vibrating
string is

∂2u

∂x2
=

1

c2
∂2u

∂t2
, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞
∂u

∂t
(x, 0) = g(x), −∞ < x <∞

and the general solution, that is, d’Alembert’s solution to the wave equation, is

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct
g(s) ds

for −∞ < x <∞, t > 0, and since f(x) = 0 for −∞ < x <∞, then

u(x, t) =
1

2c

∫ x+ct

x−ct
g(s) ds =

1

2c

∫ x+ct

x−ct

1

1 + s2
ds.

The solution is therefore

u(x, t) =
1

2c

[
tan−1(x+ ct)− tan−1(x− ct)

]
,

for −∞ < x <∞, t > 0.

Exercise 12.8.

���
Use d’Alembert’s solution to solve the boundary value problem for the wave equation

∂2u

∂t2
=
∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = 0, 0 < x < 1,

∂u

∂t
(x, 0) = 1, 0 < x < 1.

Solution: d’Alembert’s solution to the wave equation is

u(x, t) =
1

2
[f∗(x− ct) + f∗(x+ ct)] +

1

2c

∫ x+ct

x−ct
g∗(s) ds

where f∗ and g∗ are the the odd 2-periodic extensions of f and g.

For this problem, we have c = 1, and f(x) = 0 for 0 < x < 1, so that f∗(x) = 0 for all x ∈ R.



235

Also, we have g(x) = 1 for 0 < x < 1, so that

g∗(x) =

{
1 for 0 < x < 1

−1 for − 1 < x < 0,
and g∗(x+ 2) = g∗(x) otherwise.

An antiderivative of g∗(x) on the interval [−1, 1] is given by

G(x) =

{
x for 0 < x < 1

−x for − 1 < x < 0,

and G(x+ 2) = G(x) otherwise.

Therefore, the solution is

u(x, t) =
1

2
[G(x+ t)−G(x− t)]

where G is as above.

Exercise 12.9.

���
Use d’Alembert’s solution to solve the boundary value–initial value problem for the
wave equation

∂2u

∂t2
=
∂2u

∂x2
, 0 < x < 1, t > 0

u(0, t) = 0, t > 0

u(1, t) = 0, t > 0

u(x, 0) = 0, 0 < x < 1,

∂u

∂t
(x, 0) = sinπx, 0 < x < 1.

Solution: As in the previous problems, d’Alembert’s solution to the wave equation is

u(x, t) =
1

2
[f∗(x− ct) + f∗(x+ ct)] +

1

2c

∫ x+ct

x−ct
g∗(s) ds

where f∗ and g∗ are the the odd 2-periodic extensions of f and g.

For this problem, we have c = 1, and f(x) = 0 for 0 < x < 1, so that f∗(x) = 0 for all x ∈ R.

Also, we have g(x) = sinπx for 0 < x < 1, so that

g∗(x) = sinπx

for x ∈ R.

An antiderivative of g∗(x) is given by

G(x) = − 1

π
cos πx
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for x ∈ R.

Therefore, the solution is

u(x, t) =
1

2π
[cos π(x− t)− cos π(x+ t)] =

1

π
sinπx sinπt

for 0 < x < 1, t > 0.

Exercise 12.10.

���
Use d’Alembert’s solution to solve the boundary value–initial value problem for the
wave equation

∂2u

∂t2
= 25

∂2u

∂x2
, −∞ < x <∞, t > 0

u(x, 0) = x2, −∞ < x <∞

∂u

∂x
(x, 0) = 3 −∞ < x <∞.

Solution: d’Alembert’s solution to the wave equation is

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds

where c = 5, f(x) = x2, and g(x) = 3, so that

u(x, t) =
1

2

[
(x+ 5t)2 + (x− 5t)2

]
+

1

10

∫ x+5t

x−5t
3 ds

=
1

2

[
x2 + 10xt+ 25t2 + x2 − 10xt+ 25t2

]
+

3

10
[x+ 5t− x+ 5t]

= x2 + 25 + 3t,

and the solution is

u(x, t) = x2 + 25t2 + 3t

for −∞ < x <∞ and t > 0.
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Exercise 12.11. %%
Using the one-dimensional wave equation governing the small vertical displacements
of a uniform vibrating string,

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0

derive the conservation of energy for a vibrating string,

dE

dt
= ρc2

∂u

∂x

∂u

∂t

∣∣∣∣
L

0

,

where the total enery E is the sum of the kinetic energy and the potential energy,

E(t) =
ρ

2

∫ L

0

(
∂u

∂t

)2

dx+
ρc2

2

∫ L

0

(
∂u

∂x

)2

dx.

Solution: The total energy (potential energy plus kinetic energy) of the string at time t is given
by

E(t) =
1

2

∫ L

0

[
T

(
∂u

∂x

)2

+ ρ

(
∂u

∂t

)2
]
dx =

ρ

2

∫ L

0

[
c2
(
∂u

∂x

)2

+

(
∂u

∂t

)2
]
dx.

Using Leibniz’s rule, we have

E′(t) =
d

dt

(
ρ

2

∫ L

0

[
c2
(
∂u

∂x

)2

+

(
∂u

∂t

)2
]
dx

)

= ρ

∫ L

0

[
c2
∂u

∂x
· ∂

2u

∂t∂x
+
∂u

∂t
· ∂

2u

∂t2

]
dx

= ρ

∫ L

0

[
c2
∂u

∂x
· ∂

2u

∂x∂t
+
∂u

∂t
· c2 ∂

2u

∂x2

]
dx

= ρc2
∫ L

0

∂

∂x

(
∂u

∂x
· ∂u
∂t

)
dx

= ρc2
∂u

∂x
· ∂u
∂t

∣∣∣∣
L

0

.

Note that if the string is fixed at both ends, so that

∂u

∂t
(0, t) =

∂u

∂t
(L, t) = 0

for all t > 0, then E′(t) = 0 for all t > 0, that is, the total energy of the string is conserved.
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Exercise 12.12. %%%
Consider the initial value – boundary value problem (with h > 0) given by

∂2u

∂t2
= c2

∂2u

∂x2

∂u

∂x
(0, t)− hu(0, t) = 0 u(x, 0) = f(x)

∂u

∂x
(L, t) = 0

∂u

∂t
(x, 0) = g(x).

Use separation of variables to do the following:

(a) Show that there are an infinite number of different frequencies of oscillation.

(b) Estimate the leading eigenvalue of the spatial problem and then estimate the
large frequencies of oscillation.

(c) Solve the initial value – boundary value problem.

Solution: Since the partial differential equation is linear and homogeneous and the boundary
conditions are linear and homogeneous, we can use separation of variables. Assuming a solution of
the form

u(x, t) = φ(x) ·G(t), 0 6 x 6 L, t > 0

and separating variables, we have two ordinary differential equations:

φ′′(x) + λφ(x) = 0, 0 6 x 6 L, G′′(t) + λc2G(t) = 0, t > 0,

φ′(0)− hφ(0) = 0

φ′(L) = 0

(a) We use the Rayleigh quotient to show that λ > 0 for all eigenvalues λ.

Let λ be an eigenvalue of the Sturm-Liouville problem, and let φ(x) be the corresponding
eigenfunction, then

−p(x)φ(x)φ′(x)
∣∣∣∣
L

0

= −φ(L)φ′(L) + φ(0)φ′(0) = hφ(0)2 > 0,

and since q(x) = 0 6 0 for all 0 6 x 6 L, then

λ =

hφ(0)2 +

∫ L

0
φ′(x)2 dx

∫ L

0
φ(x)2 dx

> 0

since p(x) = σ(x) = 1 for 0 6 x 6 L.
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Note that if λ = 0, then

hφ(0)2 +

∫ L

0
φ′(x)2 dx = 0

implies that

hφ(0)2 = 0 and

∫ L

0
φ′(x)2 dx = 0.

Since h > 0, this implies that φ(0) = 0, and since φ′ is continuous on [0, L], that φ′(x) = 0 for
0 6 x 6 L. Therefore φ(x) is constant on [0, L], so that φ(x) = φ(0) = 0 for 0 < x < L, and
λ = 0 is not an eigenvalue. Hence all of the eigenvalues λ of this Sturm-Liouville problem
satisfy λ > 0.

If λ > 0, then λ = µ2 where µ 6= 0, and the differential equation becomes φ′′ + µ2φ = 0 with
general solution

φ(x) = A cosµx+B sinµx, with φ′(x) = −µA sinµx+ µB cosµx

for 0 < x < L.

Applying the first boundary condition,

φ′(0)− hφ(0) = −hA+Bµ = 0,

so that B =
h

µ
A.

Applying the second boundary condition,

φ′(L) = −µA sinµL+ µB cosµL = A (−µ sinµL+ h cosµL) = 0,

and the boundary value problem has a nontrivial solution if and only if

tanµL =
h

µ
.

From the figure below it is clear that there are an infinite number of distinct eigenvalues
λn = µ2n, and that lim

n→∞
λn = +∞.

h µ=  tany

µ0 

y

π/2 3π/2 5π/2 7π/2

y  = µ L
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(b) Note that since lim
n→∞

µn = +∞, then

lim
n→∞

tan µnL = lim
n→∞

h

µn
= 0,

and the roots of the equation

tan µnL =
h

µn

are approaching the roots of the equation tanµnL = 0, that is, for large n, we have

µn ≈ nπ

L
,

and therefore for large n the eigenvalues are

λn = µ2n ≈ n2π2

L2
.

The frequency of oscillation refers to the frequency arising from the solution of the corre-
sponding time equation

Gn(t) = an cosµnct+ bn sinµnct,

and one period of oscillation corresponds to µncT = 2π, and

T =
2π

µnc
,

and the frequency of oscillation is

ν =
1

T
=
µnc

2π
,

and for large n,

ν ≈ nc

2L
.

(c) The solutions to the spatial problem are

φn(x) = cosµnx+
h

µn
sinµnx, 0 6 x 6 L

and the corresponding solutions to the time equation are

Gn(t) = an cosµnct+ bn sinµnct, t > 0

and from the superposition principle, the function

u(x, t) =
∞∑

n=1

φn(x) ·Gn(t) =
∞∑

n=1

(
cosµnx+

h

µn
sinµnx

)
(an cosµnct+ bn sinµnct)

satisfies the partial differential equation and the boundary conditions.
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Since the spatial problem is a regular Sturm-Liouville problem, then the eigenfunctions are
orthogonal on the interval [0, L], and we use this fact to satisfy the initial conditions

f(x) =

∞∑

n=1

anφn(x) and g(x) =

∞∑

n=1

bnµncφn(x),

where the generalized Fourier coefficients are given by

an =

∫ L

0
f(x)φn(x) dx

∫ L

0
φn(x)

2 dx

and bn =

∫ L

0
g(x)φn(x) dx

µnc

∫ L

0
φn(x)

2 dx

for n > 1.

Exercise 12.13. %%
Solve the problem for a vibrating square membrane with side length 1, where the
vibrations are governed by the following indexTwo dimension wave equationtwo
dimensional wave equation:

∂2u

∂t2
=

1

π2

(
∂2u

∂x2
+
∂2u

∂y2

)
, 0 < x < 1, 0 < y < 1, t > 0

u(0, y, t) = u(1, y, t) = 0, 0 6 y 6 1, t > 0

u(x, 0, t) = u(x, 1, t) = 0, 0 6 x 6 1, t > 0

u(x, y, 0) = sinπx sinπy, 0 6 x 6 1, 0 6 y 6 1

∂u

∂t
(x, y, 0) = sinπx, 0 6 x 6 1, 0 6 y 6 1.

Solution: Separating variables, we write u(x, y, t) = φ(x, y) · T (t), and substitute this into the
wave equation

π2
T ′′

T
=

1

φ

(
∂2φ

∂x2
+
∂2φ

∂y2

)
= −λ,

to obtain the two equations

T ′′ +
λ

π2
T = 0 and

∂2φ

∂x2
+
∂2φ

∂y2
= −λφ.

Separating variables again in the second equation, we write φ(x, y) = X(x) · Y (y), and substitute
this into the equation, to obtain

X ′′

X
+
Y ′′

Y
= −λ,

that is,
X ′′

X
= −Y

′′

Y
− λ = −κ
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where κ is a second separation constant. The boundary conditions give rise to the two boundary
value problems

X ′′ + κX = 0 Y ′′ + (λ− κ)Y = 0

X(0) = 0 Y (0) = 0

X(1) = 0 Y (1) = 0.

We find nontrivial solutions to the X equation first, since it involves only one separation constant.

As in previous problems, there are nontrivial solutions if and only if κn = n2π2 and the eigenfunc-
tions are

Xn(x) = sinnπx

for n > 1.

For each n > 1, the function Y satisfies the boundary value problem

Y ′′ + (λ− n2π2)Y = 0

Y (0) = 0

Y (1) = 0,

and as in previous problems, this has nontrivial solutions if and only if λ − n2π2 = m2π2, that is
λ = (n2 +m2)π2, and the eigenfunctions are

Ym(y) = sinmπy

for m > 1.

For each n,m > 1, the function

φn,m(x, y) = sinnπx · sinmπy

satisfies the equation for φ, as well as the four boundary conditions.

The solutions of the equation T ′′ +
λ

π2
T = 0 corresponding to the separation constant λ = (n2 +

m2)π2 are

Tn,m = An,m cos
√
n2 +m2 t+Bn,m sin

√
n2 +m2 t

and for each n,m > 1, the function

un,m(x, y, t) = φn,m(x, y) ·Tn,m(t) = sinnπx sinmπy
(
An,m cos

√
n2 +m2 t+Bn,m sin

√
n2 +m2 t

)

satisfies the wave equation and all four boundary conditions. Using the superposition principle, we
write the solution as

u(x, y, t) =
∞∑

n=1

∞∑

m=1

sinnπx sinmπy
(
An,m cos

√
n2 +m2 t+Bn,m sin

√
n2 +m2 t

)
.

We evaluate the constants An,m and Bn,m using the initial conditions. Setting t = 0 in the above
expression for u(x, y, t) we see that

sinπx sinπy = u(x, y, 0) =

∞∑

n=1

∞∑

m=1

An,m sinnπx sinmπy,
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so that

An,m =





1 for n = m = 1,

0 otherwise.

Differentiating the expression for u(x, y, t) with respect to t, and setting t = 0, we see that

sinπx =
∂u

∂t
(x, y, 0) =

∞∑

n=1

∞∑

m=1

√
n2 +m2Bn,m sinnπx sinmπy,

that is,

sinπx =

∞∑

n=1

sinnπx

( ∞∑

m=1

√
n2 +m2Bn,m sinmπy

)
,

and we need

∞∑

m=1

√
1 +m2B1,m sinmπy = 1, and

∞∑

m=1

√
n2 +m2Bn,m sinmπy = 0 if n 6= 1.

Therefore, we may take Bn,m = 0 for all n 6= 1, while for n = 1, we want
√
1 +m2B1,m to be the

coefficients in the Fourier sine series of the function f(x) = 1, 0 6 x 6 1, that is,

B1,m =
2√

1 +m2

∫ 1

0
sinmπy dy =

2

mπ
√
1 +m2

[1− (−1)m]

for m > 1.

Therefore,

u(x, y, t) = sinπx sinπy cos
√
2πt+

∞∑

m=1

2 [1− (−1)m]

mπ
√
1 +m2

sinπx cosmπy sin
√

1 +m2 t

for 0 < x, y < 1, t > 0.

Exercise 12.14. %%
Solve the wave equation for a vibrating radially symmetric circular membrane

∂2u

∂t2
=

4

r

∂

∂r

(
r
∂u

∂r

)
, 0 6 r 6 1, t > 0

u(1, t) = 0,

u(r, 0) = 5J0 (z3 r)

∂u

∂t
(r, 0) = 0, 0 6 r 6 1,

where J0(z) denotes the Bessel function of the first kind of order zero, and zn denotes
the nth zero of J0(z).
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Solution: We use separation of variables, assuming u(r, t) = φ(r) · T (t), the wave equation above
becomes

4

r

(
rφ′
)′ · T = φ · T ′′,

and dividing by 4φ · T, the variables are separated, and we get

(rφ′(r))′

rφ(r)
=
T ′′(t)
4T (t)

.

The two sides of this equation must be a constant, say −λ, which yields two ordinary differential
equations

(
rφ′
)′
+ λ r φ = 0, 0 6 r 6 1

T ′′ + 4λT = 0, t > 0.

The boundary condition u(1, t) = 0 for all t > 0 is satisfied if we require

φ(1) = 0.

Also, since r = 0 is a singular point of the differential equation for φ, we add the requirement

|φ(r)| bounded at r = 0,

which is equivalent to requiring that |u(r, t)| be bounded at r = 0.

Thus, φ satisfies the boundary value problem

(
rφ′
)′
+ λ r φ = 0, 0 6 r 6 1

φ(1) = 0,

|φ(r)| bounded at r = 0.

We multiply the equation by r and recognize the equation

r2φ′′ + rφ′ + λ r2φ = 0

as Bessel’s equation of order zero, for which the function

φ(r) = J0(
√
λ r)

is the solution bounded at r = 0.

In order to satisfy the boundary condition φ(1) = 0, we must have

J0(
√
λ) = 0,

or √
λn = zn, n = 1, 2, . . .

where zn are the zeros of the function J0.
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Therefore the eigenvalues and eigenfunctions of the boundary value problem satisfied by φ(r) are

λn = z2n and φn(r) = J0(
√
λn r)

for n > 1.

For these values of λ which give a nontrivial solution to the boundary value problem for φ, the
differential equation for T is

T ′′(t) + 4λn T (t) = 0

with general solution

Tn(t) = an cos 2
√
λn t+ bn sin 2

√
λn t,

for n > 1.

For each n > 1, the product solution

un(r, t) = φn(r) · Tn(t)

to the original partial differential equation satisfies the boundary condition u(1, t) = 0 and the
boundedness condition |u(r, t)| bounded at r = 0 for all t > 0.

Using the isuperposition principle we write the solution as

u(r, t) =

∞∑

n=1

J0(
√
λn r)

[
an cos 2

√
λn t+ bn sin 2

√
λn t

]
.

The initial conditions are satisfied if

u(r, 0) =
∞∑

n=1

anJ0(
√
λn r) = 5J0 (z3 r)

∂u

∂t
(r, 0) =

∞∑

n=1

2bn
√
λnJ0(

√
λn r) = 0,

for 0 6 r 6 1.

Using the fact that the eigenfunctions {J0(
√
λn r)}n>1 are orthogonal on the interval [0, 1] with

respect to the weight function σ(r) = r, we see that an = 0 for all n 6= 3, and a3 = 5, while bn = 0
for all n > 1. Therefore the solution is

u(r, t) = 5J0 (z3 r) cos 2z3t

for 0 6 r 6 1, t > 0, where z3 is the third zero of J0(z).
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Exercise 12.15. %%%
Find the solution for the vibrating circular membrane in polar coordinates

∂2u

∂t2
= 100

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, 0 < r < 1, t > 0

u(1, t) = 0, t > 0

u(r, 0) = 1− r2, 0 < r < 1

∂u

∂t
(r, 0) = 1, 0 < r < 1.

You may use the formula

∫ a

0
xp+1Jp

(α
a
x
)
dx =

ap+2

α
Jp+1(α)

where α is a positive zero of Jp(z), the Bessel function of the first kind of order p.

Solution: Since f(r) = 1 − r2 and g(r) = 1 are radially symmetric, we may assume that the
solution does not depend on θ (we can show this by separating variables and applying periodicity
conditions in θ). Also, we expect periodic functions in t, and in order to separate variables we write
u(r, t) = R(r) · T (t), and obtain the problems

rR′′ +R′ + λ2rR = 0, 0 < r < 1

R(a) = 0,

|R(r)| < M, for r → 0+,

where the last condition is added to exclude singular solutions (physically, a singular solution would
correspond to a ripping membrane). The time equation is

T ′′ + 100λ2T = 0, t > 0.

The differential equation in the radial problem is known as Bessel’s equation of order 0, hence the
solutions to the first problem are

R(r) = J0(λr), r > 0,

where J0 is the Bessel function of order 0 of the first kind. The boundary condition u(1, t) = 0 for
all t > 0 can be satisfied by requiring that R(1) = 0, that is, J0(λ) = 0, so that λ must be a root
of the Bessel function J0. Now, J0 has infinitely many positive zeros, and we write them as

α1 < α2 < α3 < · · · < αn < · · · ,

and therefore we have nontrivial solutions to the boundary value problem if and only if

λn = αn,
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n = 1, 2, 3, . . . . These are the eigenvalues of the boundary value problem, and the corresponding
eigenfunctions are

Rn(r) = J0 (αnr) ,

for n = 1, 2, 3 . . . .

The solution to the differential equation for T corresponding to λn = αn is given by

Tn(t) = An cos 10λnt+Bn sin 10λnt,

and the functions
un(r, t) = (An cos 10λnt+Bn sin 10λnt)J0(λnr)

satisfy the wave equation and the boundary condition for each n = 1, 2, . . . .

Using the superposition principle, we write the solution as a Fourier-Bessel series

u(r, t) =

∞∑

n=1

(An cos 10λnt+Bn sin 10λnt)J0(λnr), (∗)

and evaluate the coefficients An and Bn from the initial conditions. In order to do this, we need
the orthogonality conditions ∫ 1

0
rJ0(λnr)J0(λmr) dr = 0

for n 6= m. In order to see this, we recall that Rn and Rm satisfy the equations

(
rR′

n

)′
+ λ2nrRn = 0

(
rR′

m

)′
+ λ2mrRm = 0

and multiplying the first equation by Rm and the second equation by Rn and subtracting, we get

(
rR′

n

)′
Rm −

(
rR′

m

)′
Rn = (λ2m − λ2n)rRnRm,

that is, (
r(RmR

′
n −RnR

′
m)
)′
= (λ2n − λ2m)rRnRm,

and integrating this last equation from 0 to 1 and using the fact that Rm(1) = Rn(1) = 0, we have

(λ2n − λ2m)

∫ 1

0
rRn(r)Rm(r) dr = 0

for n 6= m, and since λn 6= λm, we have

∫ 1

0
rJ0 (αnr)J0 (αmr) dr = 0 (∗∗)

for n 6= m, and the eigenfunctions are orthogonal with respect to the weight function r on the
interval [0, 1].

In order to determine the coefficient An from the initial condition, we also need to know the value
of ∫ 1

0
rRn(r)

2 dr,
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and we can determine this by considering the differential equation satisfied by Rn, namely,

(
rR′

n

)′
+ λ2nrRn = 0,

and multiplying this by 2rR′
n to get

d

dr

[
(rR′

n)
2
]
+ 2λ2nr

2RnR
′
n = 0,

and integrating both terms we get

(
rR′

n(r)
)2
∣∣∣∣
1

0

+ λ2n

[
r2Rn(r)

2

∣∣∣∣
1

0

−
∫ 1

0
2rRn(r)

2 dr

]
= 0,

where we integrated by parts in the second integral. Since Rn(1) = 0, we get

R′
n(1)

2 − λ2n

∫ 1

0
2rRn(r)

2 dr = 0,

that is,

∫ 1

0
rRn(r)

2 dr =
1

2λ2n
R′

n(1)
2 =

1

2
J ′
0(λn)

2 =
1

2
J1(λn)

2 (∗ ∗ ∗)

for n = 1, 2, 3, . . . . Where we have used the identity J ′
0(r) = −J1(r).

Now we can use the initial conditions to determine the coefficients in the solution (∗). Setting t = 0,
multiplying by rRm(r), and integrating from 0 to 1, we get

∫ 1

0
rf(r)Rm(r) dr = Am

∫ 1

0
rRm(r)2 dr = Am

J1(λm)2

2
,

and since f(r) = 1− r2, we have

Am =
2

J1(λm)2

∫ 1

0
r(1− r2)Rm(r) dr =

2

J1(λm)2

∫ 1

0
r(1− r2)J0(λmr) dr

for m = 1, 2, 3, . . . .

If we make the substitution s = λmr in the last integral, we get

∫ 1

0
r(1− r2)J0(λmr) dr =

1

λ4m

∫ λm

0
s(λ2m − s2)J0(s)ds,

and integrating by parts with u = λ2m − s2 and dv = J0(s)s ds so that

v =

∫
sJ0(s) ds = sJ1(s),

we get

∫ 1

0
r(1− r2)J0(λmr) dr =

2

λ4m

∫ λm

0
J1(s)s

2 ds =
2

λ4m
s2J2(s)

∣∣∣∣
λm

0

=
2

λ2m
J2(λm),
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for m = 1, 2, 3, . . . , where we used the identity

∫
xp+1Jp(x) dx = xp+1Jp+1(x) + C.

Therefore,

Am =
2

J1(λm)2

∫ 1

0
r(1− r2)J0(λmr) dr =

4J2(λm)

λ2mJ1(λm)2
,

and finally, since λm is a zero of J0, from the identity

J0(x) + J2(x) =
2

x
J1(x),

we have

Am =
8

λ3mJ1(λm)

for m = 1, 2, 3, . . . , and

1− r2 = f(r) =

∞∑

n=1

8

λ3mJ1(λm)
J0(λnr), 0 < r < 1

is the Fourier-Bessel expansion for the initial displacement.

In order to compute the Bn’s, we differentiate (∗) with respect to t and then set t = 0 to get

1 = g(r) =
∂u

∂t
(r, 0) =

∞∑

n=1

10λnBnJ0(λnr),

and a similar argument to that above shows that

Bm =
1

5λ2mJ1(λm)

for m = 1, 2, 3, . . . , therefore the solution is

u(r, t) =
∞∑

n=1

J0(λnr)

5λ3nJ1(λn)
[40 cos(10λnt) + λn sin(10λnt)]

for 0 6 r 6 1, and t > 0.
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Exercise 12.16. %%
Find a solution for the vibrating circular membrane given below:

∂2u

∂t2
=

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, 0 < r < 1, t > 0

u(1, t) = 0, t > 0

u(r, 0) = 0, 0 < r < 1

∂u

∂t
(r, 0) = J0(α3r), 0 < r < 1,

where α3 denotes the third root of the Bessel function J0. You may use the formula

∫ a

0
J2
p

(α
a
x
)
x dx =

a2

2
J2
p+1(α)

where α is a positive zero of Jp(z).

Solution: As in the previous problem (12.15), the solution is

u(r, t) =

∞∑

n=1

(An cos λnt+Bn sinλnt)J0(λnr),

where λn is the nth positive root of the Bessel function J0.

In this case, however, u(r, 0) = f(r) = 0 for 0 < r < 1, so that An = 0 for all n > 1. We use the
initial condition

∂u

∂t
(r, 0) = J0(α3r), 0 < r < 1

and the orthogonality to determine the Bn’s, as in the previous problem, we have

Bn =
2

λnJ1(λn)2

∫ 1

0
rJ0(λ3r)J0(λnr) dr = 0

for all n 6= 3, while for n = 3, we have

B3 =
2

λ3J1(λ3)2

∫ 1

0
rJ0(λ3r)

2 dr =
2

λ3J1(λ3)2
· 1
2
J1(λ3)

2 =
1

λ3

and the solution is

u(r, t) =
1

λ3
J0(λ3r) sinλ3t

for 0 6 r 6 1, and t > 0.
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Exercise 12.17. %%
Solve the wave equation on a disk of radius a > 0

∂2u

∂t2
= c2∇2u subject to

∂u

∂r
(a, θ, t) = 0

with initial conditions

u(r, θ, 0) = 0,
∂u

∂t
(r, θ, 0) = β(r).

Solution: Since neither the boundary conditions nor the initial conditions depend on the variable
θ, we look for a solution that is also independent of θ, say u = u(r, t). In this case the problem
becomes

∂2u

∂t2
=
c2

r

∂

∂r

(
r
∂u

∂r

)
subject to

∂u

∂r
(a, t) = 0

with initial conditions

u(r, 0) = 0,
∂u

∂t
(r, 0) = β(r).

Separating variables, we write u(r, t) = R(r) · T (t), then R and T satisfy the following boundary
value and initial value problems, respectively,

(rR′)′ + λrR = 0, 0 < r < a, T ′′ + λc2T = 0, t > 0,

R′(a) = 0 T (0) = 0

|R(0)| <∞

We solve the singular Sturm-Liouville problem for R first. The Rayleigh quotient is

λ =

−rRR′
∣∣∣∣
a

0

+

∫ a

0
r(R′)2 dr

∫ a

0
r R2 dr

,

and from the boundedness and boundary condition,

−rRR′
∣∣∣∣
a

0

= −aR(a)R′(a) = 0,

so that λ > 0, that is, there are no negative eigenvalues.

case 1. If λ = 0, then the differential equation is

(rR′)′ = 0,

with general solution
R(r) = A log r +B.

Applying the boundedness condition, we have A = 0, and the eigenfunction is

R0(r) = 1
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for 0 < r < a.

case 2. If λ > 0, then the differential equation is

(rR′)′ + λrR = 0,

which is Bessel’s equation of order 0, with general solution

R(r) = AJ0(
√
λr) +BY0(

√
λr).

Applying the boundedness condition, we have B = 0, and the solution is

R(r) = AJ0(
√
λr),

and applying the boundary condition, we have

R′(a) = A
√
λJ ′

0(
√
λa) = 0,

so that
√
λa = zn, the n

th positive root of J ′
0(z).

The eigenvalues and corresponding eigenfunctions in this case are

λn0 =
(zn
a

)2
and Rn0 = J0(

√
λn0)

for n = 1, 2, 3, . . .

The corresponding time equation is

T ′′(t) + λc2T = 0, t > 0

T (0) = 0.

If λ = 0, the equation is T ′′(t) = 0, with general solution

T (t) = At+B,

and from the initial condition we have T (0) = B = 0, and we may take A = 1, so that

T0(t) = t

for t > 0.

If λ > 0, the equation is T ′′ + λn0T = 0 with general solution

T (t) = A cos
√
λct+B sin

√
λct,

and from the initial condition we have T (0) = A = 0, and we may take

Tn0(t) = sin
√
λn0ct

for t > 0.

Using the superposition principle, we write

u(r, t) = c0t+

∞∑

n=1

cnJ0(
√
λn0r) · sin

√
λn0ct
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for 0 < r < a, t > 0.

Finally, applying the nonhomogeneous initial condition, we have

β(r) =
∂u

∂t
(r, 0) = c0 +

∞∑

n=1

cnJ0(
√
λn0 r)

√
λn0 c

for 0 < r < a, and using the orthogonality of the eigenfunctions

c0 =

∫ a

0
β(r) r dr
∫ a

0
r dr

=
2

a2

∫ a

0
β(r) r dr

and

cn =

∫ a

0
β(r)J0(

√
λn0 r) r dr

√
λn0 c

∫ a

0
J0(
√
λn0 r)

2r dr

for n = 1, 2, 3, . . . .

Exercise 12.18. %%%
Solve the wave equation for a “pie-shaped” membrane of radius a and angle

π

3
(= 60◦)

∂2u

∂t2
= c2∇2u

Assume that λ > 0. Determine the natural frequencies of oscillation if the boundary
conditions are

u(r, 0, t) = 0, u
(
r,
π

3
, t
)
= 0,

∂u

∂r
(a, θ, t) = 0.

Solution: The wave equation in polar coordinates is

∂2u

∂t2
= c2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
,

and assuming a solution of the form u(r, θ, t) = R(r) ·Θ(θ) · T (t), we have

T ′′

c2T
=

1

rR

(
rR′)′ + 1

r2Θ
Θ′′ = −λ

where λ is the separation constant. This gives

Θ′′

Θ
= −λr2 − r

R

(
rR′)′ = −τ

where τ is another separation constant.
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We can satisfy the boundary conditions in θ,

u(r, 0, t) = 0 and u
(
r,
π

3
, t
)
= 0

for all 0 6 r 6 a and t > 0, by requiring that

Θ(0) = 0 and Θ
(π
3

)
= 0.

Also, if the solution is to be bounded we need to require the boundedness condition

|u(0, θ, t)| <∞,

for all 0 6 θ 6 π
3 , and t > 0. We can satisfy the boundedness condition as well as the boundary

condition that
∂u

∂r
(a, θ, t) = 0

for 0 6 θ 6 π
3 and t > 0, by requiring that

R′(a) = 0 and |R(0)| <∞.

Therefore R and Θ satisfy the boundary value problems

r(rR′)′ + (λr2 − τ)R = 0, 0 6 r 6 a, Θ′′ + τΘ = 0, 0 6 θ 6
π

3
,

R′(a) = 0 Θ(0) = 0

|R(0)| <∞ Θ
(π
3

)
= 0

while T satisfies the differential equation

T ′′ + λc2T = 0, t > 0.

Since the problem for Θ has a complete set of homogeneous boundary conditions, we solve this
first. The eigenvalues and corresponding eigenfunctions are

τ2m = (3m)2 and Θm(θ) = sin 3mθ

for m = 1, 2, . . .

The boundary value problem for the corresponding functions R(r) is

r(rR′)′ + (λr2 − 9m2)R = 0, 0 6 r 6 a,

R′(a) = 0

|R(0)| <∞

Making the substitution z =
√
λr, this equation becomes

z2
d2R

dz2
+ z

dR

dz
+ (z2 − 9m2) = 0
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which is Bessel’s equation of order 3m form = 0, 1, 2, . . . , and the general solution to the R-equation
is

R(r) = c1J3m(
√
λr) + c2Y3m(

√
λr)

where J3m(
√
λr) is the Bessel function of the first kind of order 3m, and Y3m(

√
λr) is the Bessel

function of the second kind of order 3m.

Applying the boundedness condition |R(0)| <∞, then c2 = 0, and the solutions are

R(r) = c1J3m(
√
λr)

for 0 6 r 6 a.

Applying the boundary condition R′(a) = 0, we have

R′(a) = c1J
′
3m(

√
λa) = 0,

and we have a nontrivial solution if and only if J ′
3m(

√
λa) = 0, that is,

√
λa = ω3m,n

for n = 1, 2, 3, . . . , where ω3m,n denotes the value of z for which J3m(z) has minima and maxima
in increasing order, that is, the positive roots of J ′

3m(z).

Therefore the eigenvalues are

λ3m,n =
(ω3m,n

a

)2

with corresponding eigenfunctions

R3m,n = J3m

(√
λ3m,nr

)

for m > 0, n > 1. We note that λ3m,n > 0 and for a fixed m, the eigenfunctions

R3m,n = J3m

(ω3m,n

a
r
)
, n = 1, 2, 3, . . .

are orthogonal on the interval 0 6 r 6 a with weight function σ(r) = r, so that
∫ a

0
J3m

(ω3m,k

a
r
)
J3m

(ω3m,ℓ

a
r
)
r dr = 0

for k 6= ℓ.

The corresponding solutions to the time equation

T ′′ + λ3m,nc
2T = 0, t > 0,

are given by

T3m,n(t) = A3m,n cos
(√

λ3m,nct
)
+B3m,n sin

(√
λ3m,nct

)
, t > 0.

Thus, the frequencies of oscillation νm,n satisfy

√
λ3m,nc

νm,n
= 2π,
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that is,

νm,n =

√
λ3m,nc

2π
=
ω3m,nc

2πa

for m > 1 and n > 1.

Exercise 12.19. %%%
(a) Show that small displacements u(x, t) of a hanging chain of length L are

governed by the initial value - boundary value problem

∂2u

∂t2
= g

(
x
∂2u

∂x2
+
∂u

∂x

)
, 0 < x < L, t > 0,

u(L, t) = 0, t > 0,

u(x, t) bounded, as x→ 0+, t > 0,

u(x, 0) = f(x), 0 < x < L,

∂u

∂t
(x, 0) = v(x), 0 < x < L.

where g is the acceleration due to gravity (assumed constant).

(b) Solve the initial value - boundary value problem above.

Solution:

(a) First we give a more detailed description of the Hanging Chain Problem. A flexible chain
of length L and density (mass per unit length) ρ is fixed at the upper end (x = L) and
allowed to make small vibrations in a vertical plane. We let u(x, t) be the deflection from
the vertical in this plane. In the equilibrium position, the weight of the chain below a point
x is equal to the tension in the chain:

T0(x) = ρgx,

where g is the gravitational acceleration (assumed constant and acting vertically downward).

At time t > 0, the horizontal displacement of the chain at the point x is given by u = u(x, t),
and applying Newton’s second law to the portion of the chain between x and x + ∆x, we
obtain

ρ∆x
∂2u

∂t2
.
= T (x+∆x) sin(θ(x+∆x))− T (x) sin(θ(x)), (∗)

where θ(x) is the angle between the vertical and the tension T (x), as in the figure.



257

0

)(T

∆ x+x )(T

∆ x+x )(θ

x)(θ

∆ x+x

x

u

x

L

x

For small displacements, we have

sin(θ(x))
.
=
∂u

∂x
(x, t) and sin(θ(x+∆x))

.
=
∂u

∂x
(x+∆x, t),

and dividing by ∆x in (∗), we have

ρ
∂2u

∂t2
.
=

1

∆x

[
T (x+∆x)

∂u

∂x
(x+∆x, t)− T (x)

∂u

∂x
(x, t)

]
. (∗∗)

Letting ∆x→ 0 in (∗∗), in the limit we get the equation

ρ
∂2u

∂t2
=

∂

∂x

[
T (x)

∂u

∂x

]
.

For small displacements, the tension T (x) is approximately the equilibrium tension T0(x) =
ρgx, and the partial differential equation governing small displacements of the hanging chain
is

∂2u

∂t2
= g

(
x
∂2u

∂x2
+
∂u

∂x

)
, (∗ ∗ ∗)

for 0 < x < L, and t > 0.

Since the chain is fixed at x = L, one boundary condition is

u(L, t) = 0

for t > 0.

Also, since the displacement is to remain bounded as x → 0+, we require the boundedness
condition

|u(x, t)| 6M, for all t > 0

as x→ 0+.

Finally, to obtain a unique solution to this problem, we need the initial conditions

u(x, 0) = f(x) the initial shape of the chain

∂u

∂t
(x, 0) = v(x) the initial velocity of the chain.
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The displacement of the hanging chain satisfies the initial value – boundary value problem:

∂2u

∂t2
= g

(
x
∂2u

∂x2
+
∂u

∂x

)
, 0 < x < L, t > 0

u(L, t) = 0, t > 0

lim
x→0+

|u(x, t)| 6M, t > 0

u(x, 0) = f(x), 0 < x < L

∂u

∂t
(x, 0) = v(x), 0 < x < L.

(b) Since the partial differential equation and the boundary condition are both linear and homo-
geneous, we can use separation of variables.

Step 1: Assuming a solution of the form u(x, t) = X(x) ·G(t) and substituting this into the
partial differential equation, we get

X ·G′′ = g(xX ′′ ·G+X ′ ·G),

and separating variables,
xX ′′ +X ′

X
=
G′′

gG
= −λ

where λ is the separation constant.

We obtain the two problems:

xX ′′(x) +X ′(x) + λX(x) = 0, 0 < x < L G′′(t) + λ g G(t) = 0, t > 0

X(L) = 0,

|X(0)| <∞.

The spatial problem can be written in Sturm-Liouville form

d

dx

(
x
dX

dx

)
+ λX = 0,

where p(x) = x, q(x) = 0, and σ(x) = 1, for 0 < x < L. Note that this is a singular Sturm-
Liouville problem since p(0) = 0, and the boundary conditions are not of Sturm-Liouville
type.

However, if λ is an eigenvalue of this problem with corresponding eigenfunction X, then the
relationship between λ and X still holds, that is, λ is given by the Rayleigh quotient

λ = R(X) =

−xX(x)X ′(x)

∣∣∣∣
L

0

+
∫ L
0 xX ′(x)2 dx

∫ L
0 X(x)2 dx

,
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and from the boundary condition and the boundedness condition we have

λ =

∫ L
0 xX ′(x)2 dx
∫ L
0 X(x)2 dx

> 0,

so that all of the eigenvalues of this singular Sturm-Liouville problem are nonnegative. We
leave it as an exercise to show that λ = 0 is not an eigenvalue, and in fact, all of the eigenvalues
are positive.

Therefore we can write λ = µ2 where µ 6= 0, and the boundary value problem for X becomes

xX ′′ +X ′ + µ2X = 0, 0 < x < L

X(L) = 0,

|X(0)| <∞.

We can transform this into Bessel’s equation of order zero, by letting

s = 2
√
x and ϕ(s) = X(x(s)),

then from the chain rule we have

dX

dx
=
dϕ

ds
· ds
dx

=
1√
x
· dϕ
ds
,

and
d2X

dx2
=

d

dx

(
1√
x
· dϕ
ds

)
=

1

x
· d

2ϕ

ds2
− 1

2x
3
2

· dϕ
ds
.

Therefore

dX

dx
=

2

s
· dϕ
ds

d2X

dx2
=

4

s2
· d

2ϕ

ds2
− 4

s3
· dϕ
ds
,

and
xX ′′ +X ′ + µ2X = 0

implies that
s2

4

(
4

s2
· d

2ϕ

ds2
− 4

s3
· dϕ
ds

)
+

2

s
· dϕ
ds

+ µ2ϕ = 0,

that is,
d2ϕ

ds2
− 1

s
· dϕ
ds

+
2

s
· dϕ
ds

+ µ2ϕ = 0,

so that

s2
d2ϕ

ds2
+ s

dϕ

ds
+ µ2s2ϕ = 0,

which is Bessel’s equation of order zero.
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The general solution is
ϕ(s) = AJ0(µs) +BY0(µs),

and from the boundedness condition at x = 0, we must have B = 0, so that

ϕ(s) = AJ0(µs)

for 0 < s < 2
√
L.

Applying the boundary condition ϕ(2
√
L) = 0, we have a nontrivial solution if and only if

ϕ(2
√
L) = AJ0(µ2

√
L) = 0,

and A 6= 0, that is, if and only if µn2
√
L = zn, the n

th positive zero of J0.

The eigenvalues are

λn = µ2n =

(
zn

2
√
L

)2

,

and the corresponding eigenfunctions are

ϕn(s) = J0

(
zns

2
√
L

)

for n > 1.

Note that the functions

{
J0

(
zns

2
√
L

)}

n>1

are orthogonal on the interval 0 6 s 6 2
√
L with

respect to the weight function w(s) = s, so that

∫ 2
√
L

0
J0

(
zns

2
√
L

)
J0

(
zms

2
√
L

)
s ds = 0

if n 6= m.

Since x =
s2

4
, then dx =

1

2
s ds, and we have

∫ L

0
J0

(
zn

√
x

L

)
J0

(
zm

√
x

L

)
dx = 0

if n 6= m.

Therefore the eigenfunctions

Xn(x) = J0

(
zn

√
x

L

)

for n > 1 are orthogonal on the interval 0 6 x 6 L with respect to the weight function
σ(x) = 1.

Note that after the substitution x =
s2

4
, the normalization

∫ 2
√
L

0
J 2
0

(
zns

2
√
L

)
s ds = 2LJ 2

1 (zn)
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becomes ∫ L

0
J 2
0

(
zn

√
x

L

)
dx = LJ 2

1 (zn)

for n > 1.

The corresponding time equation is

G′′ + g

(
zn

2
√
L

)2

G = 0,

with general solution

Gn(t) = An cos

(√
g

L

zn
2
t

)
+Bn sin

(√
g

L

zn
2
t

)

for n > 1.

Using the superposition principle we can write the solution as

u(x, t) =
∞∑

n=1

Xn(x) ·Gn(t) =
∞∑

n=1

J0

(
zn

√
x

L

)[
An cos

(√
g

L

zn
2
t

)
+Bn sin

(√
g

L

zn
2
t

)]

for 0 < x < L, t > 0.

Finally, we use the initial conditions and the orthogonality of the eigenfunctions to determine
the constants An and Bn.

Step 3: For t = 0, we have

f(x) = u(x, 0) =
∞∑

n=1

AnJ0

(
zn

√
x

L

)

with

An =

∫ L
0 f(x)J0

(
zn

√
x

L

)
dx

∫ L
0 J 2

0

(
zn

√
x

L

)
dx

=

∫ L
0 f(x)J0

(
zn

√
x

L

)
dx

LJ 2
1 (zn)

for n > 1, and

v(x) =
∂u

∂t
(x, 0) =

∞∑

n=1

Bn

√
g

L

zn
2
J0

(
zn

√
x

L

)

with

Bn =
2

znJ 2
1 (zn)

√
gL

∫ L

0
v(x)J0

(
zn

√
x

L

)
dx

for n > 1.
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Laplace Equation Problems

Exercise 13.1.

���
Show that the function

u =
1√

x2 + y2 + z2

is harmonic, that is, it is a solution to the three dimensional Laplace equation
∆u = 0.

Solution: By symmetry, we need only calculate the derivatives with respect to one of the variables,
say x, and obtain the other derivatives by permuting the variables. For example,

∂u

∂x
=

∂

∂x

(
1√

x2 + y2 + z2

)
=

−x
(x2 + y2 + z2)3/2

,

so that
∂u

∂y
=

−y
(x2 + y2 + z2)3/2

and
∂u

∂z
=

−z
(x2 + y2 + z2)3/2

.

Similarly,

∂2u

∂x2
=

∂

∂x

(
−x

(x2 + y2 + z2)3/2

)
=

2x2 − y2 − z2

(x2 + y2 + z2)5/2
,

so that

∂2u

∂y2
=

2y2 − x2 − z2

(x2 + y2 + z2)5/2
and

∂2u

∂z2
=

2z2 − x2 − y2

(x2 + y2 + z2)5/2
.

Therefore,

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=

(2x2 − y2 − z2) + (2y2 − x2 − z2) + (2z2 − x2 − y2)

(x2 + y2 + z2)5/2
= 0,

that is, u satisfies Laplace’s equation ∆u = 0.

262
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Exercise 13.2.

���
Compute the Laplacian of the function

u(x, y) = tan−1
(y
x

)

in polar coordinates. Decide if the given function satisfies Laplace’s equation ∆u = 0.

Solution: Note that in polar coordinates θ = tan−1
(y
x

)
, so that

u(r, θ) = θ,

and since
∂u

∂r
=
∂2u

∂r2
= 0,

then Laplace’s equation becomes

∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂θ2
=
∂2θ

∂θ2
= 0,

and u(x, y) = tan−1
(y
x

)
does satisfy Laplace’s equation.

Exercise 13.3.

���
Compute the Laplacian of the function

u(x, y) = ln(x2 + y2)

in an appropriate coordinate system and decide if the given function satisfies
Laplace’s equation ▽2u = 0.

Solution: Note that in polar coordinates, r2 = x2 + y2, so that

u(r, θ) = ln r2 = 2 ln r,

and
1

r

∂u

∂r
=

2

r2
and

∂2u

∂r2
= − 2

r2
,

and since
∂2u

∂θ2
= 0, then

∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂θ2
= − 2

r2
+

2

r2
= 0

and u(x, y) = ln(x2 + y2) does satisfy Laplace’s equation.
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Exercise 13.4. %
Solve Laplace’s equation inside a rectangle:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
, 0 < x < L, 0 < y < H

subject to the boundary conditions

u(0, y) = g(y), u(x, 0) = 0,

u(L, y) = 0, u(x,H) = 0,

for 0 < x < L, 0 < y < H.

Solution: Since the boundary conditions at y = 0 and y = H are homogeneous, we can find a
solution using the method of separation of variables.

Writing u(x, y) = X(x)Y (y) we obtain

X ′′

X
= −Y

′′

Y
= λ (constant)

and hence the two ordinary differential equations

X ′′ − λX = 0 0 < x < L and Y ′′ + λY = 0 0 < y < H

X(L) = 0 Y (0) = 0

Y (H) = 0.

Solving the boundary value problem for Y, and writing λn = µ2n, the eigenvalues are

λn = µ2n =
n2π2

H2

and the corresponding eigenfunctions are

Yn(y) = sinµny.

The corresponding solutions to the equation X ′′ − µ2nX = 0 are

Xn(x) = an coshµn(L− x) + bn sinhµn(L− x),

for n > 1, and from the boundary condition X(L) = 0, we must have an = 0 for all n > 1.

Using the superposition principle, we write

u(x, y) =
∞∑

n=1

bn sinhµn(L− x) sinµny.

From the boundary condition u(0, y) = g(y), we have

g(y) =

∞∑

n=1

bn sinh
nπL
H sinµny
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so that

bn sinh
nπL
H =

2

H

∫ H

0
g(y) sin µny dy,

and

bn =
2

H sinh nπL
H

∫ H

0
g(y) sin µny dy

for n > 1.

Exercise 13.5. %%
Solve Laplace’s equation inside a rectangle 0 6 x 6 L, 0 6 y 6 H, with the following
boundary conditions:

(a)
∂u

∂x
(0, y) = g(y),

∂u

∂x
(L, y) = 0, u(x, 0) = 0, u(x,H) = 0

(b)
∂u

∂x
(0, y) = 0,

∂u

∂x
(L, y) = 0, u(x, 0) =





1 for 0 < x < L/2,

0 for L/2 < x < L,

∂u

∂y
(x,H) = 0

Solution:

(a) We assume a solution of the form u(x, y) = X(x) · Y (y), and substitute this into Laplace’s
equation to obtain

X ′′(x) · Y (y) +X(x) · Y ′′(y) = 0,

so that
X ′′(x)
X(x)

= −Y
′′(y)
Y (y)

= λ, (constant)

and we have two ordinary differential equations

X ′′(x)− λX(x) = 0 and Y ′′(y) + λY (y) = 0.

We can satisfy the (homogeneous) boundary conditions by requiring that

Y (0) = 0, Y (H) = 0 and X ′(L) = 0.

Therefore X and Y satisfy the boundary value problems

X ′′(x)− λX(x) = 0, 0 6 x 6 L Y ′′(y) + λY (y) = 0, 0 6 y 6 H

X ′(L) = 0 Y (0) = 0

Y (H) = 0.

We solve the complete (Dirichlet) boundary value problem for Y first, the eigenvalues are

λn =
(nπ
H

)2
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with corresponding eigenfunctions

Yn(y) = sin nπy
H

for n > 1.

The corresponding functions X(x) satisfy the boundary value problem

X ′′
n − λnXn = 0, 0 < x < L

X ′
n(L) = 0,

and since the boundary condition at x = L is homogeneous, we choose the following repre-
sentation for the general solution

Xn(x) = A cosh nπ(L−x)
H +B sinh nπ(L−x)

H .

The condition X ′
n(L) = 0 implies that B = 0, and therefore the solution to the boundary

value problem for X is
Xn(x) = cosh nπ(L−x)

H , 0 < x < L

for n > 1.

From the superposition principle, the function

u(x, y) =

∞∑

n=1

Bn sin
nπy
H cosh nπ(L−x)

H (∗)

satisfies Laplace’s equation in the region 0 < x < L, 0 < y < H, and satisfies all of the

boundary conditions except
∂u

∂x
(0, y) = g(y).

In order to satisfy this last condition, we use the orthogonality of the eigenfunctions on the
interval 0 6 y 6 H. Differentiating (∗) with respect to x, and setting x = 0 we get

g(y) =
∂u

∂x
(0, y) = −

∞∑

n=1

nπ

H
Bn sin

nπy
H sinh nπL

H .

Multiplying both sides of this equation by sin mπy
H , and integrating over the interval 0 6 y 6

H, we obtain

∫ H

0
g(y) sin mπy

H dy = −
∞∑

n=1

nπ

H
sinh nπL

H Bn

∫ H

0
sin mπy

H sin nπy
H dy

and using the orthogonality of the eigenfunctions, we have

Bm =
−2

mπ sinh mπL
H

∫ H

0
g(y) sin mπy

H dy (∗∗)

for m > 1.

The solution to Laplace’s equation satisfying the given boundary conditions is given by (∗),
where the coefficients Bm, m > 1, are given by (∗∗).
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(b) As above, we assume a solution of the form u(x, y) = X(x) · Y (y) and separate variables we
get the boundary value problems

X ′′(x) + λX(x) = 0, 0 6 x 6 L Y ′′(y)− λY (y) = 0, 0 6 y 6 H

X ′(0) = 0 Y ′(H) = 0

X ′(L) = 0.

We solve the complete (Neumann) boundary value problem for X first, the eigenvalues are

λn =
(nπ
L

)2

with corresponding eigenfunctions

Xn(x) = cos nπx
L

for n > 0.

The corresponding functions Yn(y) satisfy the boundary value problem

Y ′′
n − λnYn = 0, 0 < y < H

Y ′
n(H) = 0,

and since the boundary condition at y = H is homogeneous, we choose to represent the
general solution as follows

Yn(y) = A cosh nπ(H−y)
L +B sinh nπ(H−y)

L .

The condition Y ′
n(H) = 0 implies that B = 0, and therefore the solution to the boundary

value problem for Y is
Yn(y) = cosh nπ(H−y)

L , 0 < y < H

for n > 0.

From the superposition principle, the function

u(x, y) =

∞∑

n=0

An cos
nπx
L cosh nπ(H−y)

L (+)

satisfies Laplace’s equation in the region 0 < x < L, 0 < y < H, and satisfies all of the
boundary conditions except

u(x, 0) = f(x) =





1 for 0 < x < L/2,

0 for L/2 < x < L.

In order to satisfy this condition, we use the orthogonality of the eigenfunctions on the
interval 0 6 x 6 L, and setting y = 0 we get

f(x) = u(x, 0) =

∞∑

n=0

An cos
nπx
L cosh nπH

L .



268

Multiplying both sides of this equation by cos mπx
L , and integrating over the interval 0 6 x 6

L, we obtain

∫ L

0
f(x) cos mπx

L dx =
∞∑

n=0

cosh nπH
L An

∫ L

0
cos mπx

L cos nπx
L dx

so that

A0 =
1

2
and Am =

2 sin mπ
2

mπ cosh mπH
L

(++)

for m > 1.

From (+) and (++) the solution to Laplace’s equation satisfying the given boundary condi-
tions is given by

u(x, y) =
1

2
+

∞∑

n=1

2 sin nπ
2

nπ cosh nπH
L

cos nπx
L cosh nπ(H−y)

L

for 0 < x < L and 0 < y < H.

Exercise 13.6. %%
Solve Laplace’s equation for the square [0, 1] × [0, 1] with the boundary conditions
given below:

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < 1, 0 < y < 1,

u(x, 0) = 0 0 6 x 6 1,

u(x, 1) = 100, 0 6 x 6 1,

u(0, y) = 0 0 6 y 6 1,

u(1, y) = 100, 0 6 y 6 1.

Solution: We split the original problem into two problems, as below

∂2v

∂x2
+
∂2v

∂y2
= 0, 0 < x < 1, 0 < y < 1,

v(x, 0) = 0 0 6 x 6 1,

v(x, 1) = 100, 0 6 x 6 1,

v(0, y) = 0 0 6 y 6 1,

v(1, y) = 0, 0 6 y 6 1
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and

∂2w

∂x2
+
∂2w

∂y2
= 0, 0 < x < 1, 0 < y < 1,

w(x, 0) = 0 0 6 x 6 1,

w(x, 1) = 0, 0 6 x 6 1,

w(0, y) = 0 0 6 y 6 1,

w(1, y) = 100, 0 6 y 6 1

each with one pair of homogeneous boundary conditions (so we can use separation of variables)
and the soluton to the original problem is then u(x, y) = v(x, y) + w(x, y).

Now note that we only have to solve one of these problems, say the first, for v(x, y), since we can
get the solution to the second problem by interchanging x and y in the solution to the first problem,
that is, w(x, y) = v(y, x), so that the solution to the original problem is u(x, y) = v(x, y) + v(y, x).

Writing v(x, y) = X(x) · Y (y), after substituting this into Laplace’s equation and separating vari-
ables, we have

X ′′

X
= −Y

′′

Y
= −λ,

with separation constant λ. We get the following boundary value problems for X and Y,

X ′′ + λX = 0 Y ′′ − λY = 0

X(0) = 0 Y (0) = 0

X(1) = 0

We solve the complete x-problem first (it has two boundary conditions). As in previous problems,
we have a nontrivial solution for X only if λ = µ2 > 0, and in this case the general solution is

X(x) = A cos µx+B sinµx,

applying the boundary conditions, we have

X(0) = 0 = A, and X(1) = 0 = B sinµ.

We get a nontrivial solution only when B 6= 0, in which case we need µ = nπ for some positive
integer n, the eigenvalues are µ2n = n2π2, and the eigenfunctions are

Xn(x) = sinnπx

for n > 1. For each n > 1, the corresponding equation for Y is Y ′′−µ2nY = 0, with general solution

Y (y) = A cosh nπy +B sinhnπy,

and applying the boundary condition Y (0) = 0, we get A = 0, so the corresponding solutions are

Yn(y) = sinhnπy, n > 1.
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For each n > 1, the function

vn(x, y) = Xn(x) · Yn(y) = sinnπx sinhnπy

satisfies Laplace’s equation and all of the boundary conditions except v(x, 1) = 100.

Now we use the superposition principle to write

v(x, y) =

∞∑

n=1

bn sinnπx sinhnπy

and determine the constants bn using this last boundary condition, that is,

100 = v(x, 1) =
∞∑

n=1

bn sinnπx sinhnπ =
∞∑

n=1

(bn sinhnπ) sinnπx,

and we recognize the constant bn sinhnπ as the Fourier sine series coefficient of the constant function
100 on the interval [0, 1], therefore

bn sinhnπ = 2

∫ 1

0
100 sin nπx dx =

200

nπ
[1− (−1)n] =





400

nπ
if n is odd

0 if n is even.

The solution to the first problem is therefore

v(x, y) =
400

π

∞∑

n=1

1

(2n− 1) sinh(2n − 1)π
sin(2n − 1)πx sinh(2n − 1)πy

for 0 6 x, y 6 1. Interchanging x and y in this solution, we get the solution to the second problem,

w(x, y) =
400

π

∞∑

n=1

1

(2n − 1) sinh(2n− 1)π
sin(2n− 1)πy sinh(2n − 1)πx,

and the solution to the original problem is therefore

u(x, y) =
400

π

∞∑

n=1

1

(2n− 1) sinh(2n − 1)π
[sin(2n− 1)πx sinh(2n − 1)πy + sin(2n − 1)πy sinh(2n− 1)πx]

for 0 6 x, y 6 1.

Exercise 13.7. %%
Solve Laplace’s equation in the unit square with boundary conditions as given below:

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < 1, 0 < y < 1,

u(x, 0) = 1− x 0 6 x 6 1,

u(x, 1) = x, 0 6 x 6 1,

u(0, y) = 0 0 6 y 6 1,

u(1, y) = 0, 0 6 y 6 1.
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Solution: As in the previous problem, we divide the problem into two problems:

∂2v

∂x2
+
∂2v

∂y2
= 0, 0 < x, y < 1,

∂2w

∂x2
+
∂2w

∂y2
= 0, 0 < x, y < 1,

v(x, 0) = 0, 0 6 x 6 1, w(x, 0) = 1− x, 0 6 x 6 1,

v(x, 1) = x, 0 6 x 6 1, w(x, 1) = 0, 0 6 x 6 1,

v(0, y) = 0, 0 6 y 6 1, w(0, y) = 0, 0 6 y 6 1,

v(1, y) = 0, 0 6 y 6 1, w(1, y) = 0, 0 6 y 6 1

each with one pair of homogeneous boundary conditions (so we can use separation of variables)
and the solution to the original problem is then u(x, y) = v(x, y) + w(x, y).

Note that if we find the solution v(x, y) to the first problem, then the solution to the second problem
is

w(x, y) = v(1− x, 1− y).

We leave it to you to check that w(x, y) satisfies Laplace’s equation, and for the boundary conditions,
note that

w(x, 0) = v(1− x, 1) = 1− x

w(x, 1) = v(1− x, 0) = 0

w(0, y) = v(1, 1 − y) = 0

w(1, y) = v(0, 1 − y) = 0

so that w(x, y) is a solution to the second problem.

We can use separation of variables as in the previous problem to find the solution v(x, y), and the
result is

v(x, y) =

∞∑

n=1

bn sinnπx sinhnπy

and the constants bn are determined from the second boundary condition

x = v(x, 1) =
∞∑

n=1

bn sinhnπ sinnπx

so that

bn sinhnπ = 2

∫ 1

0
x sinnπx dx =

2(−1)n+1

nπ
,

and

bn =
2(−1)n+1

nπ sinhnπ

for n > 1.

The solution to the first problem is

v(x, y) =
2

π

∞∑

n=1

(−1)n+1

n sinhnπ
sinnπx sinhnπy,
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and the solution to the second problem is

w(x, y) =
2

π

∞∑

n=1

(−1)n+1

n sinhnπ
sinnπ(1− x) sinhnπ(1− y).

The solution to the original problem is given by

u(x, y) =
2

π

∞∑

n=1

(−1)n+1

n sinhnπ
[sinnπx sinhnπy + sinnπ(1− x) sinhnπ(1− y)]

for 0 < x < 1, 0 < y < 1.

Exercise 13.8. %
Approximate the temperature at the center of the plate from Exercise (13.7).

Solution: Note that at the center of the plate x = y = 1
2 , and from the previous problem

u(12 ,
1
2) =

4

π

∞∑

n=1

(−1)n+1

n sinhnπ
sin nπ

2 sinh nπ
2 .

Now,
sinhnπ = 2 sinh nπ

2 cosh nπ
2 ,

and
sin nπ

2 = 0

if n is even, while
sin (2k+1)π

2 = (−1)k

if n = 2k + 1 is odd.

Therefore,

u(12 ,
1
2) =

2

π

∞∑

k=0

(−1)k

(2k + 1) cosh (2k+1)π
2

.

A geometric symmetry argument as given below shows that this series converges to 1
4 , that is,

u(12 ,
1
2 ) =

1
4 .

To see this, note that we can decompose the problem when the solution is identically 1 on the
boundary of the square into four separate problems as shown in the figure:

0

−x

1−x

1−y 1−y

+=
1

00

x 

x 

0 0

+

11

1

+y y

0

0 0

1
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By symmetry, each of the four problems has exactly the same value of the solution at the center
(12 ,

1
2), and since the solution to the original problem is identically 1 on the square, then

4u(12 ,
1
2) = 1,

that is, u(12 ,
1
2) =

1
4 .

Exercise 13.9. %%%
Solve Laplace’s equation inside a circle of radius a,

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0, 0 6 r 6 a, −π 6 θ 6 π

subject to the boundary condition

u(a, θ) = f(θ), −π 6 θ 6 π.

Hint : You will need to require a boundedness condition on the solution at r = 0 :

|u(0, θ)| <∞, −π 6 θ 6 π

and periodicity conditions on the solution and its derivative:

u(r,−π) = u(r, π)

∂u

∂θ
(r,−π) = ∂u

∂θ
(r, π)

for r > 0.

Solution: This is a classic problem known as the Dirichlet Problem for Laplace’s Equation in a
Disk. We have to solve

∆u = 0

in the disk D(a) = {(x, y) ∈ R
2 | x2 + y2 6 a2}.

Here the appropriate coordinate system consists of plane polar coordinates r and θ, where x = r cos θ
and y = r sin θ. The disk above can then be described as D(a) = {(r, θ) | 0 6 r 6 a, −π 6 θ 6 π}.
A formal statement of the problem is given below:

(i) The function u(r, θ) must satisfy Laplace’s equation in polar coordinates r, θ, that is,

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0 (∗)

for (r, θ) ∈ D(a).

(ii) In order to ensure that the solution is single-valued, u(r, θ) must satisfy periodicity conditions
at θ = ±π, that is,

u(r,−π) = u(r, π)

∂u

∂θ
(r,−π) = ∂u

∂θ
(r, π)
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for 0 6 r 6 a.

(iii) In order to ensure that the solution is continuous, u(r, θ) must satisfy boundedness conditions
at r = 0, that is,

lim
r→0+

u(r, θ) = u(0, θ) (finite)

for −π 6 θ 6 π.

(iv) Finally, the solution must satisfy the boundary condition at r = a, that is,

u(a, θ) = f(θ)

for −π 6 θ 6 π.

The interior Dirichlet problem for Laplace’s equation on the disk D(a) models, among other things,
the steady-state temperature distribution of a circular plate with top and bottom perfectly insu-
lated, and boundaries held at the temperatures given.

We look for a separable solution, that is, a solution of the form

u(r, θ) = R(r)Θ(θ),

and substituting this into Laplace’s equation (∗), we obtain

1

r

d

dr

(
r
dR

dr

)
·Θ+R · 1

r2
d2Θ

dθ2
= 0,

that is,

r2R′′ ·Θ+ r R′ ·Θ+R ·Θ′′ = 0.

Separating variables, we have
Θ′′

Θ
= −r

2R′′ + r R′

R
= −λ

where λ is the separation constant, and we have two ordinary differential equations:

• The angle problem :

Θ′′ + λΘ = 0

• The radius problem :

r2R′′ + r R′ − λR = 0

Note that the periodicity conditions (ii) imply that

R(r)Θ(−π) = R(r)Θ(π) and R(r)Θ′(−π) = R(r)Θ′(π)

for all 0 6 r 6 a, and in order to obtain a nontrivial solution, we must have

Θ(−π) = Θ(π)

Θ′(−π) = Θ′(π).
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Therefore, Θ satisfies the regular Sturm-Liouville problem

Θ′′ + λΘ = 0

Θ(−π) = Θ(π)

Θ′(−π) = Θ′(π),

with eigenvalues and corresponding eigenfunctions given by

λ0 = 0, Θ0(θ) = a0, n = 0

λn = n2 Θn(θ) = an cosnx+ bn sinnx, n > 1.

The corresponding problem for Rn

r2R′′ + r R′ − λR = 0

is a Cauchy-Euler equation, and we assume a solution of the form R(r) = rs, so that

R′(r) = srs−1 and R′′(r) = s(s− 1)rs−2,

and substituting this into the equation we have

s(s− 1)rs + srs − λrs = 0.

Assuming r 6= 0, we get the characteristic equation

s(s− 1) + s− λ = 0

that is, s2 = λ, and s = ±
√
λ.

Now we have to consider two cases:

(a) If n = 0, then λn = 0, and s = 0 is a double root of the characteristic equation, and one
solution to the Euler equation is R(r) = c1, that is, a constant solution. In order to find a
second linearly independent solution, we consider the original differential equation for λ = 0,

r
d

dr

(
r
dR

dr

)
= 0,

integrating,

r
dR

dr
= c2,

so that
dR

dr
=
c2
r

and a second independent solution is

R(r) = c2 log r.

The general solution to the radius equation for λ0 = 0 is then

R0(r) = c1 + c2 log r

for 0 < r 6 a.
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(b) If n > 0, then λ2n = n, and s = ±n, and the general solution to the radius equation for
λn = n2 is

Rn(r) = c3r
n + c4r

−n

for 0 < r 6 a.

From the boundedness condition (iii), we need

|u(r, θ)| <∞

as r → 0+, so we must have c2 = 0 and c4 = 0, and so

Rn(r) = rn

for n > 0.

Using the superposition principle, we write

u(r, θ) =
∞∑

n=0

rn (an cosnθ + bn sinnθ) (∗∗)

and determine the constants from the boundary condition (iv), so that

f(ϕ) = u(a, ϕ) =
∞∑

n=0

an (an cosnϕ+ bn sinnϕ)

where

a0 =
1

2π

∫ π

−π
f(ϕ) dϕ, an =

1

πan

∫ π

−π
f(ϕ) cosnϕdϕ, bn =

1

πan

∫ π

−π
f(ϕ) sin nϕdϕ,

for n > 1.

Substituting these values of an and bn into (∗∗), we have

u(r, θ) =
1

2π

∫ π

−π
f(ϕ) dϕ +

∞∑

n=1

1

πan

∫ π

−π
f(ϕ)rn cosnθ cosnϕdϕ +

∞∑

n=1

1

πan

∫ π

−π
f(ϕ)rn sinnθ sinnϕdϕ

=
1

2π

∫ π

−π
f(ϕ)

(
1 + 2

∞∑

n=1

rn

an
(cosnθ cosnϕ+ sinnθ sinnϕ)

)
dϕ

=
1

2π

∫ π

−π
f(ϕ)

(
1 + 2

∞∑

n=1

rn

an
cosn(θ − ϕ)

)
dϕ,

and

u(r, θ) =
1

2π

∫ π

−π
f(ϕ)

(
1 + 2

∞∑

n=1

rn

an
cosn(θ − ϕ)

)
dϕ (∗ ∗ ∗)

for 0 6 r 6 a, −π 6 θ 6 θ.
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We can evaluate the series inside the integral by noting that

2 cos nθ cos θ = cos(n+ 1)θ + cos(n − 1)θ,

and if |b| < 1, then

2

∞∑

n=1

bn cosnθ cos θ =
1

b

∞∑

n=1

bn+1 cos(n+ 1)θ + b

∞∑

n=1

bn−1 cos(n− 1)θ

=
1

b

[ ∞∑

n=1

bn cosnθ − b cos θ

]
+ b

[ ∞∑

n=1

bn cosnθ + 1

]

=

(
1

b
+ b

) ∞∑

n=1

bn cosnθ + b− cos θ,

so that
[
1− 2b cos θ + b2

] ∞∑

n=1

bn cosnθ = b cos θ − b2,

and ∞∑

n=1

bn cosnθ =
b cos θ − b2

1− 2b cos θ + b2
.

Replacing b by
r

a
and θ by θ − ϕ under the integral sign in (∗ ∗ ∗), we have

u(r, θ) =
1

2π

∫ π

−π
f(ϕ)

(
1 + 2

ar cos(θ − ϕ)− r2

a2 − 2ar cos(θ − ϕ) + r2

)
dϕ

and

u(r, θ) =
a2 − r2

2π

∫ π

−π

f(ϕ)

a2 − 2ar cos(θ − ϕ) + r2
dϕ (+)

for 0 6 r 6 a, −π 6 θ 6 π. This is called Poisson’s integral formula for the disk D(a), and gives
the unique solution to the interior Dirichlet problem for Laplace’s equation on the disk.

Exercise 13.10. %%%
Find the solution of the exterior Dirichlet problem for a disk , that is, find a bounded
solution to the problem:

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0, a < r <∞, −π < θ < π

u(r, π) = u(r,−π), a < r <∞

∂u

∂θ
(r, π) =

∂u

∂θ
(r,−π), a < r <∞

u(a, θ) = f(θ), −π < θ < π.
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Solution: A solution to Laplace’s equation in polar coordinates which satisfies the periodicity
conditions is given by

u(r, θ) = A0 +B0 log r +
∞∑

n=1

{
rn
(
An cosnθ +Bn sinnθ

)
+

1

rn
(
Cn cosnθ +Dn sinnθ

)}
,

and in order to satisfy the boundedness condition

lim
r→∞

|u(r, θ)| <∞,

we need B0 = An = Bn = 0, for n = 1, 2, 3, · · · .
Therefore,

u(r, θ) = A0 +
∞∑

n=1

1

rn
(
Cn cosnθ +Dn sinnθ

)
.

When r = a we have

f(θ) = u(a, θ) = A0 +

∞∑

n=1

1

an
(
Cn cosnθ +Dn sinnθ

)
,

where

A0 =
1

2π

∫ π

−π
f(φ) dφ,

Cn =
an

π

∫ π

−π
f(φ) cosnφdφ,

Dn =
an

π

∫ π

−π
f(φ) sinnφdφ

for n = 1, 2, 3 · · · .
Therefore

u(r, θ) =
1

2π

∫ π

−π
f(φ) dφ+

1

π

∞∑

n=1

(a
r

)n
∫ π

−π
f(φ)

{
cosnφ cosnθ + sinnφ sinnθ

}
dφ,

that is,

u(r, θ) =
1

2π

∫ π

−π
f(φ)

{
1 + 2

∞∑

n=1

(a
r

)n
cosn(θ − φ)

}
dφ.

To evaluate the sum we could use the same method as in the previous problem. However, here we
give an alternative method, and set z = a

r e
i(θ−φ), so that

zn =
(
a
r

)n
ein(θ−φ) =

(
a
r

)n[
cosn(θ − φ) + i sinn(θ − φ)

]
,

and

1 + 2

∞∑

n=1

(
a
r

)n
cosn(θ − φ) = Re

(
1 + 2

∞∑

n=1

zn
)
.



279

And since |z| = a
r < 1, then

1 + 2
∞∑

n=1

(
a
r

)n
cosn(θ − φ) = Re

(
1 +

2z

1− z

)
= Re

(
1 + z

1− z

)
=

r2 − a2

a2 − 2ar cos(θ − φ) + r2
.

The solution to the exterior Dirichlet problem for the disk is therefore

u(r, θ) =
r2 − a2

2π

∫ π

−π

f(φ)

a2 − 2ar cos(θ − φ) + r2
dφ,

for a < r <∞, −π < θ < π.

Notice the similarity to the solution for the interior Dirichlet problem for the disk obtained in the
previous problem.

Exercise 13.11. %%%
Solve Laplace’s equation inside a circular annulus (0 < a < r < b)

∆u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0, a < r < b, −π < θ < π

subject to the boundary conditions

∂u

∂r
(a, θ) = f(θ),

∂u

∂r
(b, θ) = g(θ),

for −π < θ < π.

Solution: Note that we need to include two periodicity conditions to ensure the solution is single
valued and continuous (and to get the right number of boundary conditions):

u(r,−π) = u(r, π) and
∂u

∂θ
(r,−π) = ∂u

∂θ
(r, π)

for a 6 r 6 b.

We assume a solution of the form u(r, θ) = φ(θ) ·G(r), and substitute this into Laplace’s equation
to get

r

G

d

dr

(
r
dG

dr

)
= − 1

φ

d2φ

dθ2
= λ.

We can satisfy the periodicity conditions by requiring that

φ(−π) = φ(π) and φ′(−π) = φ′(π),

and we can satisfy the boundary condition
∂u

∂r
(a, θ) = 0 by requiring G′(a) = 0. and we have two

boundary value problems:

r
d

dr

(
r
dG

dr

)
− λG = 0, a < r < b φ′′(θ) + λφ(θ) = 0, −π < θ < π

G′(a) = 0 φ(−π) = φ(π)

φ′(−π) = φ′(π).



280

We solve the complete (two periodicity conditions) boundary value problem for φ first, again we
consider three cases.

case (i): If λ = 0, the general solution to the differential equation φ′′ = 0 is φ(θ) = Aθ + B, with
φ′(θ) = A. The first periodicity condition implies that

−Aπ +B = Aπ +B,

so that A = 0. The solution is now φ(θ) = B, and the second periodicity condition is also satisfied,
the (nontrivial) solution is φ(θ) = B. In this case, the eigenvalue is λ0 = 0 with corresponding
eigenfunction φ0(θ) = 1.

case (ii): If λ < 0, then λ = −µ2 where µ 6= 0, and the general solution to the differential equation

φ′′ − µ2φ = 0 is

φ(θ) = A cosh µθ +B sinhµθ, with φ′(θ) = µA sinhµθ + µB coshµθ.

The first periodicity condition implies that

A cosh(−µπ) +B sinh(−µπ) = A cosh µπ +Bµ sinhµπ,

and since cosh µθ is an even function and sinhµθ is an odd function, then

2B sinhµπ = 0,

so that B = 0. The solution is now φ(θ) = A coshµθ, and the second periodicity condition implies
that

µA sinh(−µπ) = µA sinhµπ,

so that 2µA sinhµπ = 0, and so A = 0. In this case we have only the trivial solution φ(θ) = 0, −π <
θ < π.

case (iii): If λ > 0, then λ = µ2 where µ 6= 0, and the general solution to the differential equation

φ′′ + µ2φ = 0 is

φ(θ) = A cos µθ +B sinµθ, with φ′(θ) = −µA sinµθ + µB cosµθ.

The first periodicity condition implies that

A cos(−µπ) +B sin(−µπ) = A cosµπ +Bµ sinµπ,

and since cosµθ is an even function and sinµθ is an odd function, then

2B sinµπ = 0.

The second periodicity condition implies that

−µA sin(−µπ) + µB cos(−µπ) = −µA sinµπ + µB cosµπ,

so that

2µA sinµπ = 0.
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There is a nontrivial solution if and only if at least one of A and B is nonzero, and the above implies
that sinµπ = 0, that is, µπ = nπ for some integer n. In this case the eigenvalues are λn = n2, with
corresponding eigenfunctions

φn(θ) = cosnθ and φn(θ) = sinnθ

for n > 1.

If n > 1, and we assume a solution to the corresponding equation

r
d

dr

(
r
dG

dr

)
− n2G = 0

of the form G(r) = rα, then

r
d

dr
(αrα)− n2rα = 0,

that is,

α2rα − n2rα = 0,

so that α = ±n, and we get two linearly independent solutions

G1n(r) = rn and G2n(r) =
1

rn

and the general solution is

Gn(r) = Arn +
B

rn
,

for n > 1.

If n = 0, the corresponding differential equation for G(r) is

r
d

dr

(
r
dG

dr

)
= 0,

and we get two linearly independent solutions

G10(r) = 1 and G20(r) = log r,

and the general solution is

G0(r) = A+B log r,

From the superposition principle, the function

u(r, θ) = A0 +B0 log r +

∞∑

n=1

[
rn(An cosnθ +Bn sinnθ) +

1

rn
(Cn cosnθ +Dn sinnθ)

]
(†)

with

∂u

∂r
(r, θ) =

B0

r
+

∞∑

n=1

[
nrn−1(An cosnθ +Bn sinnθ)−

n

rn+1
(Cn cosnθ +Dn sinnθ)

]
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satisfies the periodicity conditions and Laplace’s equation in the annular region a 6 r 6 b, −π 6

θ 6 π.

We can satisfy the boundary conditions

∂u

∂r
(a, θ) = f(θ) and

∂u

∂r
(b, θ) = g(θ)

for ;−π < θ < π by requiring that

f(θ) =
B0

a
+

∞∑

n=1

[
nan−1(An cosnθ +Bn sinnθ)−

n

an+1
(Cn cosnθ +Dn sinnθ)

]

g(θ) =
B0

b
+

∞∑

n=1

[
nbn−1(An cosnθ +Bn sinnθ)−

n

bn+1
(Cn cosnθ +Dn sinnθ)

]
(††)

where the coefficients are determined using the orthogonality of the eigenfunctions

{ 1, cos θ, sin θ, cos 2θ, sin 2θ, cos 3θ, sin 3θ, · · · }

on the interval −π 6 θ 6 π.

Multiplying equations (††) above by the eigenfunction 1 and integrating over the interval [−π, π],
we obtain

B0 =
a

2π

∫ π

−π
f(θ) dθ and B0 =

b

2π

∫ π

−π
g(θ) dθ,

that is, ∫ π

−π
f(θ) adθ =

∫ π

−π
g(θ) bdθ.

Note that this also follows from the divergence theorem, since
∫ π

−π

∂u

∂r
(b, θ) b dθ −

∫ π

−π

∂u

∂r
(a, θ) a dθ =

∫

∂D
grad u · n ds =

∫∫

D
∆u rdrdθ = 0,

where D is the closed annular region between the circles r = a and r = b and n is the outward unit
normal to the boundary of D.

Multiplying the equations (††) by the appropriate eigenfunctions and integrating over the interval
[−π, π], we get

∫ π

−π
f(θ) cosnθ dθ = nπ

(
an−1An − 1

an+1
Cn

)

∫ π

−π
g(θ) cos nθ dθ = nπ

(
bn−1An − 1

bn+1
Cn

)

∫ π

−π
f(θ) sinnθ dθ = nπ

(
an−1Bn − 1

an+1
Dn

)

∫ π

−π
g(θ) sinnθ dθ = nπ

(
bn−1Bn − 1

bn+1
Dn

)
,
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and solving for An, Bn, Cn, and Dn, we have

An =
1

nπ(b2n − a2n)

[
bn
∫ π

−π
g(θ) cos nθ b dθ − an

∫ π

−π
f(θ) cosnθ a dθ

]

Bn =
1

nπ(b2n − a2n)

[
bn
∫ π

−π
g(θ) sin nθ b dθ − an

∫ π

−π
f(θ) sinnθ a dθ

]

Cn =
anbn

nπ(b2n − a2n)

[
an
∫ π

−π
g(θ) cos nθ b dθ − bn

∫ π

−π
f(θ) cosnθ a dθ

]

Dn =
anbn

nπ(b2n − a2n)

[
an
∫ π

−π
g(θ) sin nθ b dθ − bn

∫ π

−π
f(θ) sinnθ a dθ

]

for n > 1.

The solution to the Neumann problem for Laplace’s equation in the annulus a < r < b is given by
(†), where the coefficients An, Bn, Cn, and Dn for n > 1 are given above, while

B0 =
a

2π

∫ π

−π
f(θ) dθ =

b

2π

∫ π

−π
g(θ) dθ,

and A0 is an arbitrary constant.



Chapter 14

Method of Characteristics Problems

Exercise 14.1. %%
Assume that u(x, t) is the linear density of particulate matter being carried by the
wind from a dump truck at the Oil Sands at position x = 0 and time t.
The wind is moving in the positive x-direction with a constant speed of k meters/sec,
and the particulates are condensing out of the air at a rate ru(x, t), where r > 0 is
constant.
The density u satisfies the initial value problem

∂u

∂t
(x, t) + k

∂u

∂x
(x, t) = −ru(x, t), 0 < x <∞, t > 0 (∗)

u(x, 0) = φ(x), 0 < x <∞

where φ(x) is the initial distribution of the particle density.
Solve this initial value - boundary value problem using the method of characteristics.

Solution: The method of characteristics reduces the partial differential equation to a pair of
ordinary differential equations, one of which is solved for the characteristic curves in the (x, t)-
plane along which the solutions to the other equation are easily found.

We write the partial differential equation so that the partial differential operator resembles a di-
rectional deriative or a total derivative. For example,

∂u

∂t
+
∂u

∂x

dx

dt
= −ru, (∗∗)

where
dx

dt
= k.

The family of curves with differential equation

dx

dt
= k

are the characteristic curves of the partial differential equation (∗).
If x = x(t) is a characteristic curve of (∗), then along this curve the equation (∗∗) becomes

∂

∂t

(
u(x(t), t)

)
+

∂

∂x

(
u(x(t), t)

)
· dx
dt

= −ru(x(t), t),

284
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that is,
d

dt

(
u(x(t), t)

)
= −ru(x(t), t),

which is an ordinary differential equation for u(x(t), t).

Letting v(t) = u(x(t), t) for t > 0, then v satisfies the ordinary differential equation

dv

dt
+ rv = 0,

that is, a first order, linear, homogeneous, ordinary differential equation, and to solve it we multiply
by the integrating factor M(t) = ert, to get

d

dt

(
ertv

)
= ert

dv

dt
+ rertv = ert

(
dv

dt
+ rv

)
= 0

for all t > 0.

Therefore, ertv(t) is a constant, so that

ertv(t) = er0v(0) = v(0)

that is,
ertu(x(t), t) = u(x(0), 0) = φ(x(0))

so that
u(x(t), t) = e−rtφ(x(0))

for all t > 0.

Given a point (x, t) in the (x, t)-plane with t > 0, there is exactly one characteristic curve that
passes through this point, namely,

x(t) = kt+ x(0),

where
x = x(t) = kt+ x(0),

and for this characteristic curve, x(0) = x−kt. x(0) is called the anchor point of the characteristic
through (x, t).

Therefore
u(x, t) = e−rtφ(x(0)) = e−rtφ(x− kt),

and, since (x, t) was arbitrary, then the solution to the initial value problem is given by

u(x, t) = e−rtφ(x− kt)

for 0 < x <∞, t > 0. Finally, we note that ertu(x, t) is constant along the characteristic curves.

Exercise 14.2. %
Use the method of characteristics to solve the initial value problem

∂w

∂t
+ 5

∂w

∂x
= e3t, −∞ < x <∞, t > 0

w(x, 0) = e−x2
, −∞ < x <∞.
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Solution: Let
dx

dt
= 5,

then along the characteristic curve x(t) = 5t+ a, the partial differential equation becomes

dw

dt
=
∂w

∂t
+
∂w

∂x

dx

dt
= e3t,

so that

w(x(t), t) =
1

3
e3t +K

where K is a constant, and K = w(x(0), 0) − 1

3
, so that

w(x(t), t) =
1

3
e3t + w(x(0), 0) − 1

3
=

1

3
e3t + w(a, 0) − 1

3
=

1

3
e3t + e−a2 − 1

3
.

Given the point (x, t), let x = 5t+ a be the unique characteristic curve passing through this point,
then the anchor point is a = x− 5t and the solution is

w(x, t) =
1

3
e3t + e−a2 − 1

3
=

1

3
e3t + e−(x−5t)2 − 1

3

for −∞ < x <∞ and t > 0.

Exercise 14.3. %
Use the method of characteristics to solve the initial value problem

∂w

∂t
− x

∂w

∂x
= 0, −∞ < x <∞, t > 0

w(x, 0) = x3 − 1, −∞ < x <∞.

Solution: Let
dx

dt
= −x,

then along the characteristic curve x(t) = x0e
−t, the partial differential equation becomes

dw

dt
=
∂w

∂t
+
∂w

∂x

dx

dt
= 0,

so that
w(x(t), t) = K

where K is a constant, and K = w(x(0), 0), so that

w(x(t), t) = w(x(0), 0) = w(x0, 0) = x30 − 1.

Given the point (x, t), let x = x0e
−t be the unique characteristic curve passing through this point,

then x0 = xet is the anchor point and the solution is

w(x, t) = x30 − 1 = x3e3t − 1

for −∞ < x <∞ and t > 0.



287

Exercise 14.4. %
Use the method of characteristics to solve the initial value problem

∂z

∂t
+ 3

∂z

∂x
= sin 2πt, −∞ < x <∞, t > 0

z(x, 0) = cos x, −∞ < x <∞.

Solution: Let
dx

dt
= 3,

then along the characteristic curve x(t) = 3t+ a, the partial differential equation becomes

dz

dt
=
∂z

∂t
+
∂z

∂x

dx

dt
= sin 2πt,

so that

z(x(t), t) = − 1

2π
cos 2πt+K

where K is a constant, and

z(x(0), 0) = − 1

2π
+K = cos a = cos(x(t)− 3t),

so that

K = cos(x(t)− 3t) +
1

2π
.

Given the point (x, t), let x = 3t+ a be the unique characteristic curve passing through this point,
then the anchor point is a = x− 3t and the solution is

z(x, t) = − 1

2π
cos 2πt+ cos(x− 3t) +

1

2π
(∗)

for −∞ < x <∞ and t > 0.

As a check, we note that for

z(x, t) = − 1

2π
cos 2πt+ cos(x− 3t) +

1

2π

we have
∂z

∂t
= sin 2πt+ 3 sin(x− 3t)

and
∂z

∂x
= − sin(x− 3t),

so that
∂z

∂t
+ 3

∂z

∂x
= sin 2πt.

Also,

z(x, 0) = − 1

2π
+ cos x+

1

2π
,

and (∗) is a solution to the given initial value problem.
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Exercise 14.5. %
Solve the following first-order equation

∂u

∂t
+ 3x

∂u

∂x
= 2t, −∞ < x <∞, t > 0

u(x, 0) = ln(1 + x2), −∞ < x <∞.

Solution: Let
dx

dt
= 3x,

then along the characteristic curve x(t) = ae3t, the partial differential equation becomes

du

dt
=
∂u

∂t
+
∂u

∂x

dx

dt
= 2t,

so that

u(x(t), t) = t2 +K

where K is a constant, and K = u(x(0), 0) so that

u(x(t), t) = t2 + u(x(0), 0) = t2 + u(a, 0) = t2 + ln(1 + a2).

Given the point (x, t), let x = ae3t be the unique characteristic curve passing through this point,
then the anchor point is a = xe−3t and the solution is

u(x, t) = t2 + ln
(
1 + x2e−6t

)

for −∞ < x <∞ and t > 0.

Exercise 14.6. %
Using the method of characteristics, solve

∂w

∂t
+ c

∂w

∂x
= e2x, −∞ < x <∞, t > 0

w(x, 0) = f(x), −∞ < x <∞.

Solution: Let
dx

dt
= c,

then along the characteristic curve x(t) = ct+ a, the partial differential equation becomes

dw

dt
=
∂w

∂t
+
∂w

∂x

dx

dt
= e2x(t) = e2(ct+a),
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so that

w(x(t), t) =
1

2c
e2ct+2a +K =

1

2c
e2x(t) +K

where K is a constant, and K = w(x(0), 0) − 1

2c
e2x(0) so that

w(x(t), t) =
1

2c
e2x(t) + f(x(0))− 1

2c
e2x(0),

that is,

w(x(t), t) =
1

2c
e2x(t) + f(x(t)− ct)− 1

2c
e2(x(t)−ct).

Given the point (x, t), let x = ct+ a be the unique characteristic curve passing through this point,
then the anchor point is a = x− ct and the solution is

w(x, t) =
1

2c
e2x
(
1− e−2ct

)
+ f(x− ct)

for −∞ < x <∞ and t > 0.

Exercise 14.7. %
Using the method of characteristics, solve

∂w

∂t
+ t

∂w

∂x
= 1, −∞ < x <∞, t > 0

w(x, 0) = f(x), −∞ < x <∞.

Solution: Let
dx

dt
= t,

then along the characteristic curve x(t) =
t2

2
+ a, the partial differential equation becomes

dw

dt
=
∂w

∂t
+
∂w

∂x

dx

dt
= 1,

so that
w(x(t), t) = t+K

where K is a constant, and K = w(x(0), 0) so that

w(x(t), t) = t+ w(x(0), 0) = t+ f(a).

Given the point (x, t), let x =
t2

2
+ a be the unique characteristic curve passing through this point,

then the anchor is a = x− t2

2
and the solution is

w(x, t) = t+ f

(
x− t2

2

)

for −∞ < x <∞ and t > 0.
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Exercise 14.8. %
Consider

∂u

∂t
+ 2u

∂u

∂x
= 0, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞.

Show that the characteristics are straight lines.

Solution: Along the characteristic curve x = x(t) whose differential equation is

dx

dt
= 2u(x(t), t),

the partial differential equation becomes

d

dt
[u(x(t), t)] =

∂u

∂t
(x(t), t) +

dx

dt
· ∂u
∂x

(x(t), t) = 0,

so that u(x(t), t) = constant = u(x(0), 0), and

dx

dt
= 2u(x(t), t) = 2u(x(0), 0),

so that
x(t) = 2u(x(0), 0)t + x(0) = 2f(x(0))t+ x(0)

for t > 0, and the characteristic curves are the straight lines x = 2f(x0)t + x0 and intersect the
x-axis at the point x0.

Exercise 14.9. %%
Consider

∂u

∂t
+ 2u

∂u

∂x
= 0, −∞ < x <∞, t > 0

with

u(x, 0) = f(x) =





1 x < 0

1 + x/L 0 < x < L

2 x > L.

(a) Determine the equations for the characteristics. Sketch the characteristics.

(b) Determine the solution u(x, t). Sketch u(x, t) for t fixed.

Solution:

(a) The equations for the characteristics are

x = 2f(x0)t+ x0,

where the parameter x0 is the intersection of the characteristic with the x-axis for −∞ <
x0 <∞.
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(i) For x0 < 0, we have f(x0) = 1, and the characteristics have the equation:

x = 2t+ x0.

(ii) For 0 < x0 < L, we have f(x0) = 1 + x0/L, and the characteristics have the equation:

x = 2(1 + x0/L)t+ x0.

(iii) For x > L, we have f(x0) = 2, and the characteristics have the equation:

x = 4t+ x0.

The characteristics are sketched below.

L
x

t

0

(b) The solution along the characteristic x = 2f(x0)t+ x0 is given by

u(x, t) = f(x0),

and considering the cases where x0 < 0, 0 < x0 < L, and L < x0, we have

u(x, t) =





1 for x < 2t

x+ L

L+ 2t
for 2t < x < 4t+ L

2 for x > 4t+ L.

For a fixed t > 0, the solution is sketched below.

x0 2t 4t + L

u
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Exercise 14.10. %
Derive the general solution of the equation

a
∂u

∂t
+ b

∂u

∂x
= u, a, b 6= 0

by using an appropriate change of variables.

Solution: Let
α = Ax+Bt and β = Cx+Dt,

where A, B, C, and D are to be determined so as to reduce the partial differential equation to an
ordinary differential equation, which we can then solve.

From the chain rule, we have

∂u

∂x
= A

∂u

∂α
+C

∂u

∂β

∂u

∂t
= B

∂u

∂α
+D

∂u

∂β

and the original partial differential equation becomes

(aB + bA)
∂u

∂α
+ (aD + bC)

∂u

∂β
= u.

Now let B = −b, A = a, C = 0, and D = 1/a, then the equation becomes

∂u

∂β
− u = 0,

and multiplying this equation by e−β , we have

e−β ∂u

∂β
− e−βu = 0,

that is,
∂

∂β

(
e−βu

)
= 0,

and the quantity e−βu is independent of β. Therefore, the solution is

u = f(α)eβ,

where f is an arbitrary function of α. In terms of the original variables, the solution is

u(x, t) = f(ax− bt)et/a.

Exercise 14.11. %
Solve the partial differential equation on −∞ < x <∞

∂w

∂t
+ t

∂w

∂x
= 2t+ sin t, −∞ < x <∞, t > 0

w(x, 0) = x2 + 5, −∞ < x <∞.

At the end you might check if your solution really satisfies the above problem.
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Solution: Let
dx

dt
= t, then along the characteristic curve x(t) =

t2

2
+ a, the partial differential

equation becomes

dw

dt
=
∂w

∂t
+
∂w

∂x

dx

dt
= 2t+ sin t,

so that

w(x(t), t) = t2 − cos t+K

where K is a constant, and K = w(x(0), 0) + 1, and

w(x(t), t) = t2 − cos t+ w(x(0), 0) + 1 = t2 − cos t+ w(a, 0) + 1

= t2 − cos t+ a2 + 5 + 1 = t2 − cos t+

(
x(t)− t2

2

)2

+ 6.

Given a point (x, t) in the x, t-plane, let x =
t2

2
+ a be the unique characteristic curve passing

through this point, then the anchor is a = x− t2

2
and the solution is

w(x, t) = t2 − cos t+ a2 + 6 = t2 − cos t+

(
x− t2

2

)2

+ 6,

that is,

w(x, t) = t2 − cos t+

(
x− t2

2

)2

+ 6 (∗)

for −∞ < x <∞, t > 0.

As a check, note that for this function w(x, t) we have

∂w

∂t
+ t

∂w

∂x
= 2t+ sin t+ 2

(
x− t2

2

)
(−t) + 2t

(
x− t2

2

)
= 2t+ sin t.

and it satisfies the partial differential equation, while

w(x, 0) = x2 + 5,

and (∗) is the solution to the problem above.
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Exercise 14.12. %%%
The displacement u = u(x, t) of an infinitely long string is governed by the wave
equation

∂2u

∂t2
= 4

∂2u

∂x2
, −∞ < x <∞, t > 0.

At time t = 0 an initial signal is given of the form

u(x, 0) = f(x) =





x for 0 < x < 1

−x+ 2 for 1 < x < 2

0 otherwise

∂u

∂t
(x, 0) = 0 −∞ < x <∞.

(a) Solve the above problem.

(b) Sketch the solution for three times t1, t2, t3 with

t1 = 0, 0 < t2 < 1, 1 < t3.

(c) At which time does the signal reach the point x = 11?

Solution:

(a) D’Alembert’s solution to the wave equation is given by

u(x, t) =
1

2
[f(x+ 2t) + f(x− 2t)] +

1

4

∫ x+2t

x−2t
g(s) ds,

where

f(x+ 2t) =





x+ 2t if 0 < x+ 2t < 1

−x− 2t+ 2 if 1 < x+ 2t < 2

0 if x+ 2t 6 0 or x+ 2t > 2,

and

f(x− 2t) =





x− 2t if 0 < x− 2t < 1

−x+ 2t+ 2 if 1 < x− 2t < 2

0 if x− 2t 6 0 or x− 2t > 2,

and g(x) = 0 for −∞ < x <∞.

(b) We sketch the solution by considering the following 10 regions in the x, t-plane.
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2

2 = 0 x −    t2 = 1 x −    t2 = 2x +   t2 = 0 x +   t2 = 1
x +   t2 = 2

I

II

III

IV

V

VI

VIII
VII

IX

X

x

1/4

1/2

t

0 1

x −    t

First note that u = 0 in regions I, IV, and VII.

Region II: 0 < x+ 2t < 1 and x− 2t < 0, that is,

−2t < x < 1− 2t and x < 1− 2t

and the solution in this region is

u(x, t) =
1

2
[x+ 2t+ 0] =

1

2
[x+ 2t] .

Region III: 1 < x+ 2t < 2 and x− 2t < 0, that is,

1− 2t < x < 2− 2t and x < 2t

and the solution in this region is

u(x, t) =
1

2
[−x− 2t+ 2 + 0] =

1

2
[2− x− 2t] .

Region V: 0 < x− 2t < 1 and x+ 2t > 2, that is,

2t < x < 1 + 2t and x > 2− 2t

and the solution in this region is

u(x, t) =
1

2
[x− 2t+ 0] =

1

2
[x− 2t] .

Region VI: 1 < x− 2t < 2 and x+ 2t > 2, that is,

1 + 2t < x < 2 + 2t and x > 2− 2t

and the solution in this region is

u(x, t) =
1

2
[−x+ 2t+ 2 + 0] =

1

2
[2− x+ 2t] .
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Region VIII: 1 < x− 2t < 2 and 1 < x+ 2t < 2, that is,

1 + 2t < x < 2 + 2t and 1− 2t < x < 2− 2t

and the solution in this region is

u(x, t) =
1

2
[−x+ 2t+ 2− x− 2t+ 2] = 2− x.

Region IX: 0 < x− 2t < 1 and 0 < x+ 2t < 1, that is,

2t < x < 1 + 2t and − 2t < x < 1− 2t

and the solution in this region is

u(x, t) =
1

2
[x+ 2t+ x− 2t] = x.

Region X: 0 < x− 2t < 1 and 1 < x+ 2t < 2, that is,

2t < x < 1 + 2t and 1− 2t < x < 2− 2t

and the solution in this region is

u(x, t) =
1

2
[x− 2t− x− 2t+ 2] = 1− 2t.

We sketch the solution for

t1 = 0, 0 < t2 <
1

4
, t3 =

1

4
,

1

4
< t4 <

1

2
, t5 =

1

2
.

3

1t =

x 1 20−1−2

u

4

t

−2

2t =

x

u

432 10−1

t
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−2

3t =

x

u

432 10−1

t

−2

4t =

x

u

42 3 10−1

t

4

5t =

x

u

−2 −1 0  1 2 3

t

(c) Note that the right-moving signal will reach the point x = 11 when x + 2t = 11, and this

characteristic hits the t-axis when t =
11

2
.

Exercise 14.13. %%%
Use the method of characteristics to solve the initial value problem for the one-
dimensional wave equation.

∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞

∂u

∂t
(x, 0) = g(x), −∞ < x <∞.

Solution: Since the wave operator has constant coefficients, then it can be factored as

∂2

∂t2
− c2

∂2

∂x2
=

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
.

If we let

v =

(
∂

∂t
− c

∂

∂x

)
u =

∂u

∂t
− c

∂u

∂x
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and

w =

(
∂

∂t
+ c

∂

∂x

)
u =

∂u

∂t
+ c

∂u

∂x
,

where u = u(x, t) is a twice continuously differentiable solution to the one-dimensional wave equa-
tion, we obtain the system of partial differential equations

∂v

∂t
+ c

∂v

∂x
=
∂2u

∂t2
− c2

∂2u

∂x2
= 0 (1)

∂w

∂t
− c

∂w

∂x
=
∂2u

∂t2
− c2

∂2u

∂x2
= 0, (2)

since the second mixed partial derivatives are equal.

We solve equation (1) using the method of characteristics. Let

dx

dt
= c,

then equation (1) becomes
dv

dt
=
∂v

∂x
+
dx

dt

∂v

∂x
= 0,

and along the characteristic curve x(t) = ct+ k, v is a constant, and

v(x(t), t) = v(x(0), 0) = v(k, 0) = v(x(t) − ct, 0).

Therefore, given a point (x0, t0), the solution along the characteristic curve x(t)− ct = x0− ct0 = k
is constant and is given by

v(x0, t0) = v(x(t), t) = v(x(0), 0) = v(k, 0) = v(x0 − ct0, 0) = φ(x0 − ct0)

where φ is an arbitrary twice continuously differentiable function of a single variable, and since the
point (x0, t0) was arbitrary, then

∂u

∂t
(x, t)− c

∂u

∂x
(x, t) = v(x, t) = φ(x− ct) (3)

for −∞ < x <∞, t > 0.

Similarly, we solve equation (2) using the method of characteristics, and given a point (x0, t0), the
solution along the characteristic curve x(t) + ct = x0 + ct0 = k is constant and is given by

w(x0, t0) = w(x(t), t) = w(x(0), 0) = w(k, 0) = w(x0 + ct0, 0) = ψ(x0 + ct0)

where ψ is an arbitrary twice continuously differentiable function of a single variable, and since the
point (x0, t0) was arbitrary, then

∂u

∂t
(x, t) + c

∂u

∂x
(x, t) = w(x, t) = ψ(x+ ct) (4)
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for −∞ < x <∞, t > 0. Now we solve equations (3) and (4) using the method of characterstics.

To solve equation (3), we let
dx

dt
= −c, and along the characteristic x(t) = −ct+ b the differential

equation becomes
du

dt
=
∂u

∂t
+
dx

dt

∂u

∂x
= φ(x(t)− ct),

and letting F (s) be any antiderivative of φ(s), we have

u(x(t), t) = F (x(t)− ct) = F (−2ct+ b) (5)

along the characteristic curve x(t) = −ct+ b.

To solve equation (4), we let
dx

dt
= c, and along the characteristic x(t) = ct + a the differential

equation becomes
du

dt
=
∂u

∂t
+
dx

dt

∂u

∂x
= ψ(x(t) + ct),

and letting G(s) be any antiderivative of ψ(s), we have

u(x(t), t) = G(x(t) + ct) = G(2ct + a) (6)

along the characteristic curve x(t) = ct+ a.

Now let (x, t) be an arbitrary point with −∞ < x <∞, and t > 0, as in the figure,

• if the forward facing characteristic
dx

dt
= c passing through (x, t) hits the x-axis at a, then

x− ct = a and 2ct+ a = x+ ct

• if the backward facing characteristic
dx

dt
= −c passing through (x, t)

hits the x-axis at b, then x+ ct = b and −2ct+ b = x− ct

)

xa b

x t( ,

t

Therefore
u(x, t) = F (x− ct) and u(x, t) = G(x+ ct)

where F (s) is an antiderivative of φ(s) and G(s) is an antiderivative of ψ(s).

Adding these two equations we get

u(x, t) =
1

2
[F (x− ct) +G(x+ ct)] (7)

for −∞ < x <∞, t > 0.



300

Now, in order to solve the original problem, we solve the following initial value problems, and use
the superposition principle to combine them to get the solution:

∂2u1
∂t2

= c2
∂2u1
∂x2

, −∞ < x <∞, t > 0,

u1(x, 0) = f(x), −∞ < x <∞ (8)

∂u1
∂t

(x, 0) = 0 −∞ < x <∞,

and

∂2u2
∂t2

= c2
∂2u2
∂x2

, −∞ < x <∞, t > 0,

u2(x, 0) = 0, −∞ < x <∞ (9)

∂u2
∂t

(x, 0) = g(x) −∞ < x <∞,

the solution to the original problem is then u = u1 + u2.

For problem (8), we use the initial conditions to write

u1(x, 0) = f(x) =
1

2
[F (x) +G(x)] ,

so that

F (x) +G(x) = 2f(x),

and
∂u1
∂t

= 0 =
c

2

[
F ′(x)−G′(x)

]
,

so that

F (x)−G(x) = 2K,

where K is an arbitrary constant. Therefore,

2F (x) = 2f(x) + 2K and 2G(x) = 2f(x)− 2K,

and the solution to the first problem is

u1(x, t) =
1

2
[F (x+ ct) +G(x− ct)] =

1

2
[f(x+ ct) + f((x− ct)] .

For problem (9), we use the initial conditions to write (a different F and G)

u2(x, 0) = 0 =
1

2
[F (x) +G(x)] ,

so that G(x) = −F (x), and

∂u2
∂t

(x, 0) = g(x) =
c

2

[
F ′(x)−G′(x)

]
,
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so that cF ′(x)− cG′(x) = 2cF ′(x) = 2g(x), and integrating we have

cF (x) =

∫ x

0
g(s) ds + 2cK̂,

where K̂ is an arbitrary constant. Therefore,

1

2
F (x) =

1

2c

∫ x

0
g(s) ds + K̂ and

1

2
G(x) = − 1

2c

∫ x

0
g(s) ds − K̂

and the solution to the second problem is

u2(x, t) =
1

2c

[∫ x+ct

0
g(s) ds −

∫ x−ct

0
g(s) ds

]
=

1

2c

∫ x+ct

x−ct
g(s) ds.

The solution to the original initial value problem is therefore

u(x, t) = u1(x, t) + u2(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds

for −∞ < x <∞, t > 0.

Exercise 14.14. %%%
The following hyperbolic model arises as the equation for the moment generating
function A(s, t) of a stochastic birth - death process

∂A

∂t
(s, t)− (s− 1) (bs− δ(t))

∂A

∂s
(s, t) = 0 (∗)

A(s, 0) = sn0

where b denotes a constant birth rate and δ(t) a time-dependent death rate. Find
A(s, t).

Solution: We use the method of characteristics to solve for A(s, t).

Note that if s = s(t) is a curve in the t, s-plane such that

ds

dt
= −(s− 1) (bs− δ(t)) , (∗∗)

then from the chain rule, along this curve the partial differential equation (∗) becomes

d

dt
[A(s(t), t)] =

∂A

∂t
(s(t), t) · dt

dt
+
∂A

∂s
(s(t), t) · ds

dt
= 0,

that is,
A(s(t), t) = constant = A(s(0), 0) = s(0)n0

and we need only solve the characteristic equation

ds(t)

dt
= −(s− 1) (bs− δ(t)) (∗ ∗ ∗)
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for the equation of the curve passing through the point (s(0), 0).

The differential equation (∗ ∗ ∗) can be written as

ds

dt
= (1− s) (bs− δ(t)) = (1− s) (−b+ bs+ b− δ(t)) = (1− s) (b− δ(t)) − b(1− s)2,

that is,
1

(1− s)2
ds

dt
=
b− δ(t)

1− s
− b,

and letting y(t) =
1

1− s(t)
, we have

dy

dt
− (b− δ(t))y = −b. (†)

This is a first-order linear differential equation for y = y(t) which can be solved using an integrating
factor or the method of variation of parameters. Multiplying by the integrating factor

Λ(t) = exp

(
−
∫ t

0
(b− δ(τ)) dτ

)
,

we have
d

dt
[Λ(t)y(t)] = −bΛ(t),

integrating and using the fact that Λ(0) = 1, we have

Λ(t)y(t) = y(0)− b

∫ t

0
Λ(τ) dτ.

Therefore,
Λ(t)

1− s(t)
=

1

1− s(0)
− b

∫ t

0
Λ(τ) dτ,

and we can solve this equation for s(t) and obtain an explicit form for the equation of the charac-
teristic curve s = s(t).

However, since

A(s(t), t) = constant = A(s(0), 0) = s(0)n0 , (††)

we need to find the anchor point (s(0), 0). We solve the above equation for s(0) to get

s(0) = 1− 1

Λ(t)

1− s(t)
+ b

∫ t

0
Λ(τ) dτ

,

and the solution is constant along the characteristic s = s(t), so that

A(s(t), t) = A(s(0), 0) = s(0)n0 =


1−

1

Λ(t)

1− s(t)
+ b

∫ t

0
Λ(τ) dτ




n0

(† † †)
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where

Λ(t) = exp

(
−
∫ t

0
(b− δ(τ)) dτ

)
.

Since the initial value problem

dy

dt
− (b− δ(t))y = −b

y(0) =
1

1− s(0)

has a unique solution, given a point (s, t) in the (s, t)-plane, there exists a unique characteristic
passing through this point with s(0) = s0, and

A(s, t) = A(s0, 0) = s0
n0 =


1−

1

Λ(t)

1− s
+ b

∫ t

0
Λ(τ) dτ




n0

(+)

where

Λ(t) = exp

(
−
∫ t

0
(b− δ(τ)) dτ

)
.

This can be simplified somewhat by substituting the expression for Λ(t), and we find

A(s, t) =


1−

exp

(∫ t

0
(b− δ(z)) dz

)

1

1− s
+ b

∫ t

0
exp

[∫ t

τ
(b− δ(z)) dz

]
dτ




n0

. (++)
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Chapter 15

Sturm-Liouville Theory Problems

Exercise 15.1. %%
Given the differential equation

d2φ

dx2
+ λφ = 0,

determine the eigenvalues λ and corresponding eigenfunctions if φ satisfies the fol-
lowing boundary conditions.

(a) φ(0) = 0 and φ(π) = 0.

(b) φ(0) = 0 and φ(1) = 0.

(c)
dφ

dx
(0) = 0 and

dφ

dx
(L) = 0.

(d) φ(0) = 0 and
dφ

dx
(L) = 0.

(e)
dφ

dx
(0) = 0 and φ(L) = 0.

(f) φ(a) = 0 and φ(b) = 0 (you may assume that λ > 0).

(g) φ(0) = 0 and
dφ

dx
(L) + φ(L) = 0.

Analyze three cases: λ > 0, λ = 0, λ < 0. You may assume that the eigenvalues are
real.

Solution:

(a) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 π

φ(0) = 0,

φ(π) = 0

we have to consider three cases.

305
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case 1: If λ = 0, the equation is
φ′′(x) = 0

with general solution
φ(x) = Ax+B, 0 6 x 6 π.

The first boundary condition gives φ(0) = B = 0, and the solution is now

φ(x) = Ax, 0 6 x 6 π.

The second boundary condition gives φ(π) = Aπ = 0, so that A = 0. In this case the only
solution is the trivial solution φ(x) = 0 for 0 6 x 6 π.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution
φ(x) = A coshµx+B sinhµx.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinhµx, 0 6 x 6 π.

The second boundary condition gives φ(π) = B sinhµπ = 0, so that B = 0, since sinhµπ 6= 0.
In this case the only solution is the trivial solution φ(x) = 0 for 0 6 x 6 π.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution
φ(x) = A cosµx+B sinµx.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinµx, 0 6 x 6 π.

The second boundary condition gives φ(π) = B sinµπ = 0, and if B = 0, then again we get
the trivial solution. In this case we have a nontrivial solution if and only if µπ = nπ for some
integer n, that is, µ = n for some integer n.

The eigenvalues are λn = n2, with corresponding eigenfunctions

φn(x) = sinnx, 0 6 x 6 π

for n > 1.

(b) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 1

φ(0) = 0,

φ(1) = 0
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we have to consider three cases.

case 1: If λ = 0, the equation is

φ′′(x) = 0

with general solution

φ(x) = Ax+B, 0 6 x 6 1.

The first boundary condition gives φ(0) = B = 0, and the solution is now

φ(x) = Ax, 0 6 x 6 1.

The second boundary condition gives φ(1) = A = 0, so that A = 0. In this case the only
solution is the trivial solution φ(x) = 0 for 0 6 x 6 1.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution

φ(x) = A coshµx+B sinhµx.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinhµx, 0 6 x 6 1.

The second boundary condition gives φ(1) = B sinhµ = 0, so that B = 0, since sinhµ 6= 0.
In this case the only solution is the trivial solution φ(x) = 0 for 0 6 x 6 1.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution

φ(x) = A cosµx+B sinµx.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinµx, 0 6 x 6 1.

The second boundary condition gives φ(1) = B sinµ = 0, and if B = 0, then again we get
the trivial solution. In this case we have a nontrivial solution if and only if µ = nπ for some
integer n.

The eigenvalues are λn = (nπ)2, with corresponding eigenfunctions

φn(x) = sinnπx, 0 6 x 6 1

for n > 1.
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(c) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 L

φ′(0) = 0,

φ′(L) = 0

we have to consider three cases.

case 1: If λ = 0, the equation is

φ′′(x) = 0

with general solution

φ(x) = Ax+B, 0 6 x 6 L.

The first boundary condition gives φ′(0) = A = 0, and the solution is now

φ(x) = B, 0 6 x 6 L.

The second boundary condition gives φ′(L) = A = 0. In this case we have a nontrivial solution
φ(x) = B for 0 6 x 6 L.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution

φ(x) = A coshµx+B sinhµx, 0 6 x 6 L.

The first boundary condition gives φ′(0) = µB = 0, so that B = 0, and the solution is now

φ(x) = A cosh µx, 0 6 x 6 L.

The second boundary condition gives φ′(L) = µA sinhµL = 0, so that A = 0, since sinhµL 6=
0. In this case the only solution is the trivial solution φ(x) = 0 for 0 6 x 6 L.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution

φ(x) = A cosµx+B sinµx.

The first boundary condition gives φ′(0) = µB = 0, so that B = 0, and the solution is now

φ(x) = A cos µx, 0 6 x 6 L.

The second boundary condition gives φ′(L) = −µA sinµL = 0, and if A = 0, then again we
get the trivial solution. In this case we have a nontrivial solution if and only if µL = nπ for

some integer n, that is, µ =
nπ

L
for some integer n.
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The eigenvalues are λn =
(nπ
L

)2
, with corresponding eigenfunctions

φn(x) = cos
nπx

L
, 0 6 x 6 L

for n > 0.

Note that this includes the constant solution obtained for λ0 = 0.

(d) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 L

φ(0) = 0,

φ′(L) = 0

we have to consider three cases.

case 1: If λ = 0, the equation is

φ′′(x) = 0

with general solution

φ(x) = Ax+B, 0 6 x 6 L.

The first boundary condition gives φ(0) = B = 0, and the solution is now

φ(x) = Ax, 0 6 x 6 L.

The second boundary condition gives φ′(L) = A = 0. In this case we have only the trivial
solution φ(x) = 0 for 0 6 x 6 L.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution

φ(x) = A coshµx+B sinhµx, 0 6 x 6 L.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinhµx, 0 6 x 6 L.

The second boundary condition gives φ′(L) = µB cosh µL = 0, so that B = 0, since
µ coshµL 6= 0. In this case the only solution is the trivial solution φ(x) = 0 for 0 6 x 6 L.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution

φ(x) = A cosµx+B sinµx, 0 6 x 6 L.
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The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinµx, 0 6 x 6 L.

The second boundary condition gives φ′(L) = µB cosµL = 0, and if B = 0, then again we
get the trivial solution. In this case we have a nontrivial solution if and only if

µL =
(2n− 1)π

2

for some integer n > 1, that is,

µ =
(2n− 1)π

2L

for some integer n > 1.

The eigenvalues are

λn =

(
(2n − 1)π

2L

)2

,

with corresponding eigenfunctions

φn(x) = sin
(2n − 1)πx

2L
, 0 6 x 6 L

for n > 1.

(e) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 L

φ′(0) = 0,

φ(L) = 0

we have to consider three cases.

case 1: If λ = 0, the equation is
φ′′(x) = 0

with general solution
φ(x) = Ax+B, 0 6 x 6 L.

The first boundary condition gives φ′(0) = A = 0, and the solution is now

φ(x) = B, 0 6 x 6 L.

The second boundary condition gives φ′(L) = B = 0. In this case we have only the trivial
solution φ(x) = 0 for 0 6 x 6 L.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution

φ(x) = A coshµx+B sinhµx, 0 6 x 6 L.
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The first boundary condition gives φ′(0) = µB = 0, so that B = 0, and the solution is now

φ(x) = A cosh µx, 0 6 x 6 L.

The second boundary condition gives φ(L) = A cosh µL = 0, so that A = 0, since coshµL 6= 0.
In this case the only solution is the trivial solution φ(x) = 0 for 0 6 x 6 L.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution
φ(x) = A cosµx+B sinµx, 0 6 x 6 L.

The first boundary condition gives φ′(0) = µB = 0, so that B = 0, and the solution is now

φ(x) = A cos µx, 0 6 x 6 L.

The second boundary condition gives φ(L) = A cosµL = 0, and if A = 0, then again we get
the trivial solution. In this case we have a nontrivial solution if and only if

µL =
(2n− 1)π

2

for some integer n > 1, that is,

µ =
(2n− 1)π

2L

for some integer n > 1.

The eigenvalues are

λn =

(
(2n − 1)π

2L

)2

,

with corresponding eigenfunctions

φn(x) = cos
(2n − 1)πx

2L
, 0 6 x 6 L

for n > 1.

(f) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 π

φ(a) = 0,

φ(b) = 0

we have to consider three cases.

case 1: If λ = 0, the equation is
φ′′(x) = 0

with general solution
φ(x) = Ax+B, a 6 x 6 b.
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The first boundary condition gives φ(a) = Aa+ B = 0, so that B = −aA, and the solution
is now

φ(x) = A(x− a), a 6 x 6 b.

The second boundary condition gives φ(b) = A(b − a) = 0, so that A = 0. In this case the
only solution is the trivial solution φ(x) = 0 for a 6 x 6 b.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution
φ(x) = Aeµx +Be−µx, a 6 x 6 b.

The first and second boundary conditions give the following homogeneous system of linear
equations for A and B

Aeµa +Be−µa = 0

Aeµb +Be−µb = 0

and the determinant of the coefficient matrix is
∣∣∣∣
eµa e−µa

eµb e−µb

∣∣∣∣ = eµ(a−b) − e−µ(a−b) = 2 sinhµ(a− b) 6= 0,

since a 6= b. Therefore this system of equations has a unique solution A = 0, B = 0, and in
this case the only solution to the boundary value problem is the trivial solution φ(x) = 0 for
a 6 x 6 b.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution
φ(x) = A cosµx+B sinµx.

The first boundary condition gives

φ(a) = A cosµa+B sinµa = 0,

while the second boundary condition gives

φ(b) = A cos µb+B sinµb = 0,

and we have the following homogeneous system of linear equations for A and B

A cos µa+B sinµa = 0

A cos µb+B sinµb = 0

and the determinant of the coefficient matrix is
∣∣∣∣
cosµa sinµa
cosµb sinµb

∣∣∣∣ = cosµa sinµb− sinµa cosµb = sinµ(b− a).
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The boundary value problem has the trivial solution if and only if this determinant is nonzero,
so we get a nontrivial solution if and only if sinµ(b−a) = 0, that is, if and only if µ(b−a) = nπ
for some integer n.

The eigenvalues are

λn =

(
nπ

b− a

)2

,

with corresponding eigenfunctions

φn(x) = sinnπ

(
x− a

b− a

)
, a 6 x 6 b

for n > 1.

(g) If φ satisfies the boundary value problem

φ′′(x) + λφ(x) = 0, 0 6 x 6 π

φ(0) = 0,

φ′(L) + φ(L) = 0

we have to consider three cases.

case 1: If λ = 0, the equation is

φ′′(x) = 0

with general solution

φ(x) = Ax+B, 0 6 x 6 L.

The first boundary condition gives φ(0) = B = 0, and the solution is now

φ(x) = Ax, 0 6 x 6 L.

The second boundary condition gives φ′(L) + φ(L) = A(1 + L) = 0, so that A = 0. In this
case the only solution is the trivial solution φ(x) = 0 for 0 6 x 6 L.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the equation is

φ′′(x)− µ2φ(x) = 0

with general solution

φ(x) = A cosh µx+B sinhµx, 0 6 x 6 L.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinhµx.

The second boundary condition gives

φ′(L) + φ(L) = µB cosh µL+B sinhµL = B coshµL(µ+ tanhµL) = 0.
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If we look at the graphs of y = tanhµL and y = −µ below

y
_=y

Lµ=  tanhy

1_

1

µ0 

µ

we see that µ + tanhµL = 0 if and only if µ = 0. Therefore, since µ 6= 0, and cosh µL 6= 0,
then the second boundary condition implies that B = 0. In this case the only solution is the
trivial solution φ(x) = 0 for 0 < x < L.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the equation is

φ′′(x) + µ2φ(x) = 0

with general solution

φ(x) = A cosµx+B sinµx, 0 6 x 6 L.

The first boundary condition gives φ(0) = A = 0, and the solution is now

φ(x) = B sinµx.

The second boundary condition gives

φ′(L) + φ(L) = µB cosµL+B sinµL = B(µ cosµL+ sinµL) = 0,

and we have a nontrivial solution if and only if

µ cosµL+ sinµL = 0,

that is, if and only if

tan µL = −µ.

From the graphs of y = tanµL and y = −µ below
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−3π/2

_=y Lµ=  tany

0 µ

y

π/2 3π/2−π/2

µ

we see that there are an infinite number of solutions µn. The eigenvalues are

λn = µ2n

where tanµnL = −µn, and the corresponding eigenfunctions are

φn(x) = sinµnx, 0 < x < L

for n > 1.

Note: Since cotµnL = − 1

µn
, and µn → ∞ as n → ∞, then the zeros of the equation

tanµnL = −µn approach the zeros of cosµnL, and for large n, µn is given approximately by

µn ≈ (2n− 1)π

2L
.

Exercise 15.2. %
Use the energy method to show that there are no negative eigenvalues for the
Neumann problem

d2φ

dφ2
+ λφ = 0, 0 < x < L

dφ

dx
(0) = 0

dφ

dx
(L) = 0

This means, multiply the equation by φ, integrate and solve for λ. Does the expres-
sion for λ look familiar?



316

Solution: Suppose that λ is an eigenvalue of the boundary value problem with corresponding
eigenvector φ, then φ satisfies the differential equation and the boundary conditions, and multiplying
the differential equation by φ, we have

φ
d2φ

dφ2
+ λφ2 = 0

for 0 < x < L.

Integrating over the interval [0, L], we have

∫ L

0
φ
d2φ

dφ2
dx+ λ

∫ L

0
φ2 dx = 0,

and integrating the first integral by parts,

φ
dφ

dx

∣∣∣∣
L

0

−
∫ L

0

(
dφ

dx

)2

dx+ λ

∫ L

0
φ2 dx = 0,

that is,

φ(L)
dφ

dx
(L)− φ(0)

dφ

dx
(0) −

∫ L

0

(
dφ

dx

)2

dx+ λ

∫ L

0
φ2 dx = 0,

and since
dφ

dx
(0) =

dφ

dx
(L) = 0, then

λ

∫ L

0
φ2 dx−

∫ L

0

(
dφ

dx

)2

dx = 0,

that is,

λ =

∫ L

0

(
dφ

dx

)2

dx

∫ L

0
φ2 dx

> 0,

and there are no negative eigenvalues for this boundary value problem. Note that the expression
for λ is in fact the Rayleigh quotient for the above Sturm-Liouville eigenvalue problem.

Alternative Solution: We can show this explicitly by solving the boundary value problem.
Assuming a solution of the form φ(x) = erx, we get (r2 + λ)erx = 0, and since erx is never zero,
the auxiliary equation is r2 + λ = 0.

Now if λ < 0, then λ = −µ2 where µ 6= 0, and the auxiliary equation r2 − µ2 = 0 has two real
roots, namely r1 = µ and r2 = −µ.
We have two linearly independent eigenfunctions: φ1(x) = cosh µx and φ2(x) = sinhµx, and the
general solution to the differential equation is

φ(x) = A coshµx+B sinhµx.

Differentiating, we have
dφ

dx
(x) = µA sinhµx+ µB cosh µx.
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From the first boundary condition
dφ

dx
(0) = µB = 0,

and since µ 6= 0, then B = 0.

From the second boundary condition

dφ

dx
(L) = µA sinhµL = 0,

and since µ 6= 0 and sinhµL 6= 0, then A = 0 also.

Therefore we have only the trivial solution φ(x) ≡ 0 on [0, L], and λ > 0, that is, the boundary
value problem has no negative eigenvalues.

Exercise 15.3. %%
Solve the initial value problem

y′′ + 9y = F (t)

y(0) = 0

y′(0) = 0

where F (t) is the 2π-periodic input function given by its Fourier series

F (t) =

∞∑

n=1

[
cosnt

n2
+ (−1)n

sinnt

n

]
.

Solution: Since the differential equation is a linear equation with constant coefficients, then the
general solution to the nonhomogeneous equation is given by

y(t) = yh(t) + yp(t)

where yh(t) is the general solution to the corresponding homogeneous equation and yp(t) is any
particular solution to the nonhomogeneous equation.

The solution to the homogeneous equation is

yh(t) = c1 cos 3t+ c2 sin 3t

where c1 and c2 are arbitrary constants.

In order to find a particular solution to the nonhomogeneous equation, we solve the equation

y′′(t) + 9y(t) = An cosnt+Bn sinnt

for n > 0, where An and Bn are the Fourier coefficients of the driving force F (t), that is, A0 =
B0 = 0,

An =
1

n2
and Bn =

(−1)n

n

for n > 1.
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Note that for n 6= 3, from the method of undetermined coefficients, the nth normal mode of vibration
is

yn(t) = an cosnt+ bn sinnt

where the constants an and bn are determined from the Fourier coefficients of F (t) to be

a0 = 0, an =
1

n2(9− n2)
, bn =

(−1)n

n(9− n2)

for n > 1, n 6= 3.

While for n = 3, the term in the driving force has the same frequency as the natural frequency of
the system, and we have to solve the nonhomogeneous equation

y′′3(t) + 9y3(t) = A3 cos 3t+B3 sin 3t.

In this case the method of undetermined coefficients suggests a solution of the form

y3(t) = t(a3 cos 3t+ b3 sin 3t).

In order to determine the constants a3 and b3, we substitute this expression into the differential
equation

y′′3 + 9y3 = A3 cos 3t+B3 sin 3t

to obtain

a3 = −B3

6
and b3 =

A3

6
.

The particular solution to the nonhomogeneous equation can then be written as

yp(t) =
∞∑

n=1
n 6=3

(
1

n2(9− n2)
cosnt+

(−1)n

n(9− n2)
sinnt

)
+
t

6

(
−1

3
cos 3t+

1

32
sin 3t

)
,

and the general solution to the nonhomogeneous equation is

y(t) = c1 cos 3t+ c2 sin 3t+

∞∑

n=1
n 6=3

(
1

n2(9− n2)
cosnt+

(−1)n

n(9− n2)
sinnt

)
+
t

6

(
−1

3
cos 3t+

1

9
sin 3t

)

and the constants c1 and c2 can now be evaluated using the initial conditions y(0) = y′(0) = 0.

Applying the initial conditions, we find

c1 = −
∞∑

n=1
n 6=3

1

n2(9− n2)
and c2 =

1

32 · 6 − 1

3

∞∑

n=1
n 6=3

(−1)n

9− n2
.

Exercise 15.4. %%%
Find the eigenvalues and eigenfunctions of the regular Sturm-Liouville problem

(
x3X ′)′ + λxX = 0 1 < x < e

X(1) = 0

X(e) = 0
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Solution: Let X =
Y

x
, then X ′ =

Y ′

x
− Y

x2
, so that x3X ′ = x2Y ′ − xY, and

(
x3X ′)′ =

(
xxY ′)′ − Y − xY ′ = xY ′ + x

(
xY ′)′ − Y − xY ′ = x

(
xY ′)′ − Y.

Therefore the original boundary value problem is equivalent to the following problem:
(
xY ′)′ + µ

x
Y = 0 1 < x < e

Y (1) = 0

Y (e) = 0

where µ = λ− 1.

Now let x = et and Ŷ (t) = Y (et), then

dY

dx
=
dŶ

dt

dt

dx
=

1

x

dŶ

dt
,

that is,

x
dY

dx
=
dŶ

dt
.

Also,
d

dx

(
x
dY

dx

)
=

d

dt

(
dŶ

dt

)
dt

dx
=

1

x

d2Ŷ

dt2
= e−t d

2Ŷ

dt2
,

and therefore
d

dx

(
x
dY

dx

)
+
µ

x
Y = 0 for 1 < x < e

if and only if

e−t d
2Ŷ

dt2
+ e−tµ Ŷ = 0 for 0 < t < 1

So we have the equivalent regular Sturm-Liouville problem

d2Ŷ

dt2
+ µ Ŷ = 0, 0 < t < 1

Ŷ (0) = 0

Ŷ (1) = 0

with eigenvalues µn = n2π2, and eigenfunctions

Ŷn(t) = sinnπt, 0 < t < 1

for n = 1, 2, 3, · · · .
The eigenvalues for the original problem are therefore

λn = 1 + n2π2,

and the corresponding eigenfunctions are

Xn(x) =
1

x
sin(nπ log x), 1 < x < e

for n = 1, 2, 3, · · · .
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Exercise 15.5. %
Solve the eigenvalue problem

d2φ

dx2
+ λφ = 0

subject to the periodicity conditions

φ(0) = φ(2π) and
dφ

dx
(0) =

dφ

dx
(2π).

Solution: Again, we consider three cases.

case 1: If λ = 0, then the equation is φ′′ = 0 with general solution φ(x) = Ax+ B. From the first
periodicity condition φ(0) = φ(2π) we have

φ(0) = A · 0 +B = A · 2π +B,

so that 2πA = 0, and A = 0. The solution is now

φ(x) = B, 0 6 x 6 2π.

The second periodicity condition φ′(0) = φ(2π) holds automatically, since

φ′(0) = 0 = φ′(2π).

Therefore λ0 = 0 is an eigenvalue with corresponding eigenfunction

φ0(x) = 1, 0 6 x 6 2π.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0. The differential equation is φ′′ −µ2φ = 0 with general
solution

φ(x) = A cosh µx+B sinhµx, 0 6 x 6 2π.

From the first periodicity condition

φ(0) = A = A cosh 2πµ +B sinh 2πµ = φ(2π),

while from the second periodicity condition

φ′(0) = µB = µA sinh 2πµ + µB cosh 2πµ = φ′(2π).

We have the homogeneous system of linear equations for A and B

(cosh 2πµ− 1)A + sinh 2πµB = 0

sinh 2πµA+ (cosh 2πµ− 1)B = 0,

and the determinant of the coefficient matrix is
∣∣∣∣
cosh 2πµ − 1 sinh 2πµ
sinh 2πµ cosh 2πµ− 1

∣∣∣∣ = 2(1 − cosh 2πµ) = −4 sinh2 πµ 6= 0
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since πµ 6= 0, and this system has only the trivial solution A = B = 0. In this case the boundary
value problem has only the trivial solution φ(x) = 0 for 0 6 x 6 2π.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the differential equation is φ′′ + µ2φ = 0 with
general solution

φ(x) = A cos µx+B sinµx, 0 6 x 6 2π.

From the first periodicity condition

φ(0) = A = A cos 2πµ +B sin 2πµ = φ(2π),

while from the second periodicity condition

φ′(0) = µB = −µA sin 2πµ + µB cos 2πµ = φ′(2π).

We have the homogeneous system of linear equations for A and B

(1− cos 2πµ)A+ sin 2πµB = 0 (∗)
− sin 2πµA+ (1− cosh 2πµ)B = 0,

and the determinant of the coefficient matrix is∣∣∣∣
1− cos 2πµ sin 2πµ
− sin 2πµ 1− cos 2πµ

∣∣∣∣ = 2(1− cos 2πµ) = 4 sin2 πµ

and this system has a nontrivial solution if and only if this determinant is zero, that is, if and only
if sin2 πµ = 0, that is if and only if πµ = nπ for some integer n.

In this case the boundary value problem has a nontrivial solution if and only if µ = n for some
integer n. The eigenvalues are

λn = µ22 = n2,

for n > 1.

For these eigenvalues the coefficient matrix in (∗) becomes the zero matrix, and both coefficients
are undetermined. Hence for each n > 1, we have two linearly independent eigenfunctions:

φ1,n(x) = cosnx and φ2,n(x) = sinnx

for n > 1.

Thus, the solution to this eigenvalue problem has eigenvalues

λn = n2

with corresponding eigenfunctions {
cosnx, sinnx

}

for n > 0.

Exercise 15.6.

���
Assume that f(x) is an even function and g(x) is an odd function. Show that the
set of functions {f(x), g(x)} is orthogonal with respect to the weight function

w(x) = 1

on any symmetric interval [−a, a] containing 0.
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Solution: We have
∫ a

−a
f(x)g(x) dx =

∫ 0

−a
f(x)g(x) dx

︸ ︷︷ ︸
t=−x

+

∫ a

0
f(x)g(x) dx

=

∫ a

0
f(−t)g(−t) dt+

∫ a

0
f(x)g(x) dx

= −
∫ a

0
f(t)g(t) dt+

∫ a

0
f(x)g(x) dx

= 0,

and therefore f and g are orthogonal on the symmetric interval [−a, a] with respect to the weight
function w(x) = 1.

Exercise 15.7. %
Show that the set of Laguerre polynomials

{
1, 1− x,

1

2
(2− 4x+ x2)

}
is orthogonal

with respect to the weight function

w(x) = e−x

on the interval [0,∞).

Solution: This problem can be solved by pairwise integration of the functions with the weight
function e−x. Since this is quite tedious, we give a more elegant method using the gamma function.

Recall that for n > 0 we have

Γ(n+ 1) =

∫ ∞

0
xne−x dx = n!,

and therefore

< 1, 1− x >=

∫ ∞

0
(1− x)e−x dx = 0!− 1! = 0,

< 1,
1

2
(2− 4x+ x2) >= 0!− 2 · 1! + 1

2
· 2! = 1− 2 + 1 = 0

and finally,

< 1− x,
1

2
(2− 4x+ x2) > =< 1,

1

2
(2− 4x+ x2) > − < x,

1

2
(2− 4x+ x2) >

= 0−
(
1!− 2 · 2! + 3!

2

)

= −1 + 4− 3

= 0,
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and the set of Laguerre polynomials

{
1, 1− x,

1

2
(2− 4x+ x2)

}
forms an orthogonal set on the

interval [0,∞) with respect to the weight function w(x) = e−x.

Exercise 15.8. %
Is the set of functions

{
1

2
(2− 4x+ x2), −12x+ 8x3

}
orthogonal with respect to

the weight function
w(x) = e−x

on the interval [0,∞)?

Solution: These functions are not orthogonal with respect to the weight function w(x) = e−x on
the interval [0,∞), in fact,

< 8x3 − 12x,
1

2
(x2 − 4x+ 2) > = 2 < 2x3 − 3x, x2 − 4x+ 2 >

= 2

∫ ∞

0
(2x3 − 3x)(x2 − 4x+ 2)e−x dx

= 2

∫ ∞

0
(2x5 − 8x4 + x3 + 12x2 − 6x)e−x dx

= 2 [2 · 5!− 8 · 4! + 3! + 12 · 2!− 6 · 1!]

= 2 · 72 = 144.

Exercise 15.9.

���
Given the boundary value problem

(1− x2)y′′ − 2xy′ + (1 + λx)y = 0

y(−1) = 0

y(1) = 0,

on the interval [−1, 1]. Put the equation in Sturm-Liouville form and decide whether
the problem is regular or singular.

Solution: We can rewrite the boundary value problem in the form
(
(1− x2)y′

)′
+ (1 + λx)y = 0

y(−1) = 0

y(1) = 0

and here p(x) = 1− x2, p′(x) = −2x, q(x) = 1, σ(x) = x are all continuous on the interval [−1, 1].
Also, c1 = d1 = 1 and c2 = d2 = 0.

However, p(x) = 0 at the endpoints of the interval [−1, 1], and σ(0) = 0, so this is a singular

Sturm-Liouville problem.
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Exercise 15.10. %
Find the eigenvalues and eigenfunctions of the periodic eigenvalue problem

y′′ + λy = 0

y(−π) = y(π)

y′(−π) = y′(π).

Solution:

Case 1: If λ = 0, then the equation y′′ = 0 has general solution y(x) = Ax + B with y′ = A. The
first periodicity condition gives

−Aπ +B = Aπ +B

so that A = 0. The second periodicity condition is then automatically satisfied, so there is one
nontrivial solution in this case. The eigenvalue is λ = 0 with corresponding eigenfunction y0 = 1.

Case 2: If λ < 0, say λ = −µ2 where µ 6= 0, then the differential equation becomes y′′ − µ2y = 0,
and has general solution y(x) = A coshµx+B sinhµx with y′ = µA sinhµx+µB cosh µx. The first
periodicity condition gives

A cosh µπ −B sinhµπ = A cosh µπ +B sinhµπ,

since coshµx is an even function and sinhµx is an odd function. We have 2B sinhµπ = 0, and since
sinhµπ 6= 0, then B = 0. The solution is then y = A cosh µx, and the second periodicity condition
gives

−µA sinhµπ = µA sinhµπ,

so that 2µA sinhµπ = 0, and since µ 6= 0, then sinhµπ 6= 0, so we must have A = 0. Therefore,
there are no nontrivial solutions in this case.

Case 3: If λ > 0, say λ = µ2 where µ 6= 0, the differential equation becomes y′′ + µ2y = 0, and has
general solution y(x) = A cosµx+B sinµx, with y′(x) = −Aµ sinµx+Bµ cosµx.

Applying the first periodicity condition, we have

y(−π) = A cosµπ −B sinµπ = A cosµπ +B sinµπ = y(π)

so that 2B sinµπ = 0.

Applying the second periodicity condition, we have

y′(−π) = Aµ sinµπ +Bµ cosµπ = −Aµ sinµπ +Bµ cosµπ = y′(π)

so that 2A sinµπ = 0. Therefore, the following equations must hold simultaneously:

A sinµπ = 0

B sinµπ = 0
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In order to get a nontrivial solution, we must have either A 6= 0, or B 6= 0, and if the equations
hold, we must have sinµπ = 0. Therefore, µ must be an integer, so that the eigenvalues are

λn = µ2n = n2

for n = 1, 2, 3 . . . , and the eigenfunctions corresponding to these eigenvalues are sinnx and cosnx
for n = 1, 2, 3 . . . .

The full set of orthogonal eigenfunctions for the above periodic eigenvalue problem is

{
1, cosnx, sinnx; n = 1, 2, 3, . . .

}

for 0 6 x 6 π.

Exercise 15.11. %%
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y′′ + λy = 0

y(0) + y′(0) = 0

y(2π) = 0.

Solution:

Case 1: If λ = 0, then the equation y′′ = 0 has general solution y(x) = Ax + B with y′ = A. The
first boundary condition gives

B +A = 0

so that A = −B. The second boundary condition gives

2πA+B = 0

so that (2π − 1)A = 0, and A = −B = 0, so there are no nontrivial solutions in this case.

Case 2: If λ < 0, say λ = −µ2 where µ 6= 0, then the differential equation becomes y′′ − µ2y = 0,
and has general solution y(x) = A coshµx+B sinhµx with y′ = µA sinhµx+µB cosh µx. The first
boundary condition gives

A+ µB = 0

so that A = −µB. The second boundary condition gives

A cosh 2πµ +B sinh 2πµ = 0

and since cosh 2πµ 6= 0, then

B(tanh 2πµ− µ) = 0,

and in order to get nontrivial solutions we need

tanh 2πµ = µ.
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The graphs of f(µ) = tanh 2πµ and g(µ) = µ intersect at the origin, µ = 0, and since

lim
µ→∞

tanh 2πµ = 1 and lim
µ→−∞

tanh 2πµ = −1,

and

f ′(0) = 2π > 1 = g′(0),

they intersect again in exactly two more points µ = ±µ0, where µ0 is the positive root of the
equation tanh 2πµ = µ. There is one nontrivial solution in this case, with eigenvalue λ = −(µ0)

2

and the corresponding eigenfunction is

sinhµ0x− µ0 coshµ0x.

Case 3: If λ > 0, say λ = µ2 where µ 6= 0, then the differential equation becomes y′′ + µ2y = 0,
and has general solution y(x) = A cosµx + B sinµx with y′ = −µA sinµx + µB cosµx. The first
boundary condition gives

y(0) + y′(0) = A+ µB = 0

so that A = −µB. The second boundary condition gives

y(2π) = A cos 2πµ+B sin 2πµ = 0,

and so

B [sin 2πµ − µ cos 2πµ] = 0,

and the eigenvalues are λn = µ2n, where µn is the nth positive root of the equation tan 2πµ = µ
(which has an infinite number of solutions µn, n = 1, 2, 3, . . . ).

The corresponding eigenfunctions are

yn = sinµnx− µn cosµnx

for n = 1, 2, 3, . . . .

Exercise 15.12. %%%
Show that the boundary value problem

y′′ − λy = 0

y(0) + y′(0) = 0

y(1) + y′(1) = 0

has one positive eigenvalue. Does this contradict the Theorem below?

Theorem. The eigenvalues of a regular Sturm-Liouville problem are all real and
form an increasing sequence

λ1 < λ2 < λ3 < · · ·

where λn → ∞ as n→ ∞.
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Solution:

Case 1: If λ = 0, the differential equation y′′ = 0 has general solution y = Ax + B, with y′ = A.
Applying the first boundary condition, we have

B +A = 0,

so that B = −A. Applying the second boundary condition, we have

A+B +A = 0,

so that B = −2A, and therefore B = 2B, and B = A = 0. Therefore, there are no nontrivial
solutions in this case.

Case 2: If λ < 0, say λ = −µ2 where µ 6= 0, the differential equation becomes y′′ + µ2y = 0 and
has general solution

y = A cosµx+B sinµx, with y′ = −µA sinµx+ µB cosµx.

The first boundary condition gives

y(0) + y′(0) = A+ µB = 0

so that A = −µB. The second boundary condition gives

y(1) + y′(1) = A cosµ+B sinµ− µA sinµ+ µB cosµ = 0,

that is,
(cosµ− µ sinµ)A+ (sinµ+ µ cosµ)B = 0.

The system of linear equations for A and B

A+ µB = 0

(cos µ− µ sinµ)A+ (sinµ+ µ cosµ)B = 0

has nontrivial solutions if and only if the determinant of the corresponding coefficient matrix is
zero, that is,

(1 + µ2) sinµ = 0,

that is, if and only if sinµ = 0. The eigenvalues are λn = −(µn)
2 = −n2, with corresponding

eigenfunctions
yn = sinnx− n cosnx

for n = 1, 2, 3, . . . .

Case 3: If λ > 0, say λ = µ2, the differential equation becomes y′′ − µ2y = 0 and has general
solution

y = A cosh µx+B sinhµx, with y′ = µA sinhµx+ µB cosh µx.

The first boundary condition gives

y(0) + y′(0) = A+ µB = 0
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The second boundary condition gives

y(1) + y′(1) = A cosh µ+B sinhµ+ µA sinhµ+ µB cosh µ = 0,

that is,

(coshµ+ µ sinhµ)A+ (sinhµ+ µ cosh µ)B = 0.

The system of linear equations for A and B

A+ µB = 0

(cosh µ+ µ sinhµ)A+ (sinhµ+ µ coshµ)B = 0

has nontrivial solutions if and only if the determinant of the corresponding coefficient matrix is
zero, that is,

(1− µ2) sinhµ = 0,

and since sinhµ 6= 0, the system has nontrivial solutions if and only if 1 − µ2 = 0, that is, if and
only if µ = ±1.

Therefore, there is only one positive eigenvalue, namely

λ = (±1)2 = 1,

with corresponding eigenfunction

y = sinhx− cosh x.

Note: Here the weight function is σ(x) = −1 < 0, and the problem is not a regular Sturm-Liouville
problem, and so this does not contradict the Theorem, since the Theorem does not apply. We can,
however, redefine the eigenvalue as λ̃ = −λ, then the problem becomes a regular Sturm-Liouville
problem and the Theorem does apply. According to the above computations we get for λ̃ the
eigenvalues −1, and n2 for n = 1, 2, . . . .

Exercise 15.13. %
Show explicitly that there are no negative eigenvalues for the boundary value prob-
lem

d2φ

dx2
+ λφ = 0, 0 < x < L

dφ

dx
(0) = 0

dφ

dx
(L) = 0

Hint: Multiply the equation by φ and integrate.

Solution: Following the hint, we can show this using the differential equation and the boundary
conditions. Suppose that λ is an eigenvalue of the boundary value problem with corresponding
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eigenvector φ, then φ satisfies the differential equation and the boundary conditions, and multiplying
the differential equation by φ, we have

φ
d2φ

dx2
+ λφ2 = 0

for 0 < x < L.

Integrating over the interval [0, L], we have

∫ L

0
φ
d2φ

dx2
dx+ λ

∫ L

0
φ2 dx = 0,

and integrating the first integral by parts,

φ
dφ

dx

∣∣∣∣
L

0

−
∫ L

0

(
dφ

dx

)2

dx+ λ

∫ L

0
φ2 dx = 0,

that is,

φ(L)
dφ

dx
(L)− φ(0)

dφ

dx
(0) −

∫ L

0

(
dφ

dx

)2

dx+ λ

∫ L

0
φ2 dx = 0,

and since
dφ

dx
(0) =

dφ

dx
(L) = 0, then

λ

∫ L

0
φ2 dx−

∫ L

0

(
dφ

dx

)2

dx = 0,

that is,

λ =

∫ L

0

(
dφ

dx

)2

dx

∫ L

0
φ2 dx

> 0,

and there are no negative eigenvalues for this boundary value problem.

Alternatively, we can show this by solving the boundary value problem. Assuming a solution of
the form φ(x) = erx, we get (r2 + λ)erx = 0, and since erx is never zero, the auxiliary equation is
r2 + λ = 0.

Now if λ < 0, then λ = −µ2 where µ 6= 0, and the auxiliary equation r2 − µ2 = 0 has two real
roots, namely r1 = µ and r2 = −µ.
We have two linearly independent eigenfunctions: φ1(x) = cosh µx and φ2(x) = sinhµx, and the
general solution to the differential equation is

φ(x) = A coshµx+B sinhµx.

Differentiating, we have
dφ

dx
(x) = µA sinhµx+ µB cosh µx.
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From the first boundary condition
dφ

dx
(0) = µB = 0,

and since µ 6= 0, then B = 0.

From the second boundary condition

dφ

dx
(L) = µA sinhµL = 0,

and since µ 6= 0 and sinhµL 6= 0, then A = 0 also, so if λ < 0, we have only the trivial solution
φ(x) ≡ 0 on [0, L]. Therefore we must have λ > 0, that is, the boundary value problem has no
negative eigenvalues.

Exercise 15.14. %
Consider the non-Sturm-Liouville differential equation

d2φ

dx2
+ α(x)

dφ

dx
+
[
λβ(x) + γ(x)

]
φ = 0.

Multiply this equation by H(x). Determine H(x) such that the equation may be
reduced to the standard Sturm-Liouville form:

d

dx

[
p(x)

dφ

dx

]
+
[
λσ(x) + q(x)

]
φ = 0.

Given α(x), β(x), and γ(x), what are p(x), σ(x), and q(x) ?

Solution: Multiplying the differential equation by H(x) we have

H
d2φ

dx2
+ αH

dφ

dx
+ λβ H φ+ γ H φ = 0,

and we want to determine H so that the first two terms are an exact derivative, that is,

d

dx

[
p(x)

dφ

dx

]
= H

d2φ

dx2
+ αH

dφ

dx
,

that is,

p(x)
d2φ

dx2
+
dp(x)

dx

dφ

dx
= H

d2φ

dx2
+ αH

dφ

dx
.

Thus, we want
p(x) = H(x) and p′(x) = α(x)H

so that H(x) satisfies the differential equation

H ′(x) = α(x)H(x).

If we take

p(x) = H(x) = exp

(∫
α(x) dx

)
,
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then the differential equation is in Sturm-Liouville form

d

dx

[
p(x)

dφ

dx

]
+
[
λσ(x) + q(x)

]
φ = 0.

where

p(x) = exp

(∫
α(x) dx

)
, q(x) = γ(x) exp

(∫
α(x) dx

)
, σ(x) = β(x) exp

(∫
α(x) dx

)
.

Note that p(x) > 0 and σ(x) > 0 provided that β(x) > 0.

Exercise 15.15. %
For the Sturm-Liouville eigenvalue problem,

d2φ

dx2
+ λφ = 0, 0 < x < L

dφ

dx
(0) = 0,

φ(L) = 0,

verify the following general properties:

(a) There are an infinite number of eigenvalues with a smallest but no largest.

(b) The nth eigenfunction has n− 1 zeros.

(c) The eigenfunctions are complete and orthogonal.

(d) What does the Rayleigh quotient say concerning negative and zero eigenval-
ues ?

Solution:

(a) Assuming that the eigenvalues are real, we have to consider the three cases when λ = 0, λ < 0,
and λ > 0.

case 1: If λ = 0, the general solution to the differential equation φ′′(x) = 0 is φ(x) = Ax+B,
with φ′(x) = A, and applying the first boundary condition φ′(0) = 0, we have A = 0, and the
solution is φ(x) = B for 0 < x < L. Applying the second boundary condition φ(L) = 0, we
have B = 0, and the only solution in this case is the trivial solution φ(x) = 0 for 0 < x < L.
Therefore λ = 0 is not an eigenvalue.

case 2: If λ < 0, then λ = −µ2 where µ 6= 0, and the general solution to the differential
equation φ′′ − µ2φ = 0 is

φ(x) = A cosh µx+B sinhµx with φ′(x) = µA sinhµx+ µB coshµx.
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Applying the first boundary condition φ′(0) = µB = 0 implies that B = 0, and the solution
is now

φ(x) = A cosh µx

Applying the second boundary condition φ(L) = 0 implies that A cosh µL = 0, so that A = 0,
and in this case we have only the trivial solution φ(x) = 0 for 0 < x < L.

case 3: If λ > 0, then λ = µ2 where µ 6= 0, and the general solution to the differential
equation φ′′ + µ2φ = 0 is

φ(x) = A cosµx+B sinµx with φ′(x) = −µA sinµx+ µB cosµx.

Applying the first boundary condition φ′(0) = 0 implies that µB = 0, so that B = 0, and the
solution is now

φ(x) = A cos µx

Applying the second boundary condition φ(L) = 0 implies that A cosµL = 0, and if A = 0
we get only the trivial solution. The boundary value problem has a nontrivial solution if and
only if cosµL = 0, that is, if and only if µL = (n− 1

2)π for some integer n > 1, and therefore
the eigenvalues are

λn =
(
(2n−1)π

2L

)2

with corresponding eigenfunctions

φn(x) = cos (2n−1)πx
2L

for n = 1, 2, . . . .

The eigenvalues are therefore ordered as

0 < λ1 < λ2 < · · · < λn < · · · ,

and there are an infinite number of eigenvalues with the smallest one being λ1 = π2

4L2 , but
there is no largest eigenvalue.

(b) For n > 1, the eigenfunction φn is given by

φn(x) = cos (2n−1)πx
2L

for 0 < x < L. Note that

φn(0) = 1 while φn(L) = cos (2n−1)π
2 = 0,

and all the zeros of φn occur in the interval (0, L].

Also, φn(x) = 0 exactly when
(2n−1)πx

2L = (2k−1)π
2

for 1 6 k 6 n, that is,

x =
(
2k−1
2n−1

)
L

for 1 6 k 6 n, and the eigenfunction φn(x) = cos (2n−1)πx
2L has exactly n zeros in the interval

(0, L], that is, φm(x) has exactly n− 1 zeros in the open interval (0, L).
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(c) From Dirichlet’s theorem we know that every f in the linear space of all piecewise smooth
functions on [0, L] has a Fourier series expansion in terms of the eigenfunctions, that is, the
eigenfunctions form a complete set in the linear space PWS [0, L]. The eigenfunctions form
what is usually called a Schauder Basis for the linear space PWS [0, L].
Finally, we note that

∫ L

0
φm(x)φn(x) dx =

∫ L

0
cos (2m−1)πx

2L cos (2n−1)πx
2L dx = 0

for m,n > 1 with m 6= n, and the set of eigenfunctions forms an orthogonal set.

(d) Using the boundary conditions

φ′(0) = 0 and φ(L) = 0

for the regular Sturm-Liouville problem above, we can write the eigenvalues in terms of the
corresponding eigenfunctions as follows

λn = R(φn) =

∫ L

0
φ′n(x)

2 dx

∫ L

0
φn(x)

2 dx

,

and clearly λn > 0.

If λ0 = 0 is an eigenvalue then

λ0 = R(φ0) =

∫ L

0
φ′0(x)

2 dx

∫ L

0
φ0(x)

2 dx

= 0,

and then φ′0(x) = 0 for 0 6 x 6 L, and φ0(x) is a constant, and then φ0(L) = 0 implies that
φ0(x) = 0 for 0 < x < L, which is a contradiction, and therefore λ0 = 0 is not an eigenvalue.

Exercise 15.16. %
Show that λ > 0 for the eigenvalue problem

d2φ

dx2
+
(
λ− x2

)
φ = 0, 0 < x < 1

with
dφ

dx
(0) = 0 and

dφ

dx
(1) = 0.

Solution: This is a regular Sturm-Liouville problem with

p(x) = 1, q(x) = −x2 6 0, and σ(x) = 1
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for 0 6 x 6 1, and from the boundary conditions

[
− p(x)φ(x)φ′(x)

] ∣∣∣∣
1

0

= 0,

and the Rayleigh quotient reduces to

λ = R(φ) =

∫ 1

0

[
φ′(x)2 + x2φ(x)2

]
dx

∫ 1

0
φ(x)2 dx

> 0,

and all of the eigenvalues are nonnegative.

If λ = 0 is an eigenvalue and φ0 is the corresponding eigenfunction (and is thus not identically zero
on the interval [0, 1]), then

0 = R(φ0) =

∫ 1

0

[
φ′0(x)

2 + x2φ0(x)
2
]
dx

∫ 1

0
φ0(x)

2 dx

,

assuming that φ0 and φ′0 are continuous on the interval [0, 1], this implies that

φ′0(x)
2 = 0 and x2φ0(x)

2 = 0

for all x ∈ [0, 1], and this implies that φ0(x) = 0 for all x ∈ [0, 1], which is a contradiction. Therefore
λ0 = 0 is not an eigenvalue.

Exercise 15.17. %
Give an example of an eigenvalue problem where there is more than one eigenfunction
corresponding to an eigenvalue.

Solution: Consider the boundary value problem with periodicity conditions as given below.

d2φ

dx2
+ λφ = 0, −π < x < π

φ(−π) = φ(π)

dφ

dx
(−π) = dφ

dx
(π).

The eigenvalues are λn = n2 with corresponding eigenfunctions

φn(x) = cosnx and ψn(x) = sinnx

for n > 0.

Therefore there are two linearly independent eigenfunctions for each eigenvalue λn for n > 1. For
λ0 = 0, there is only one eigenfunction, namely, φ0(x) = 1 for −π < x < π.

Note that the periodicity conditions given here are not boundary conditions of Sturm-Liouville type,
they are mixed boundary conditions, in the sense that each contains the function or its derivative
evaluated at both endpoints of the interval.
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Exercise 15.18. %%
Consider a fourth-order linear differential operator,

L =
d4

dx4
.

(a) Show that uL(v) − v L(u) is an exact differential.

(b) Evaluate ∫ 1

0
[uL(v) − v L(u)] dx

in terms of the boundary data for any functions u and v.

(c) Show that ∫ 1

0
[uL(v)− v L(u)] dx = 0

if u and v are any two functions satisfying the boundary conditions

φ(0) = 0 φ(1) = 0

dφ

dx
(0) = 0

d2φ

dx2
(1) = 0.

(d) Give another example of boundary conditions such that

∫ 1

0
[uL(v) − v L(u)] dx = 0.

(e) For the eigenvalue problem below using the boundary conditions from (c)

d4φ

dx4
+ λexφ = 0, 0 < x < 1,

φ(0) = 0 φ(1) = 0

dφ

dx
(0) = 0

d2φ

dx2
(1) = 0,

show that the eigenfunctions corresponding to distinct eigenvalues are orthog-
onal. What is the weight function ?

Solution:

(a) We consider

uv(4) = (uv′′′)′ − u′v′′′ = (uv′′′)′ − (u′v′′)′ + u′′v′′, (∗)
and by symmetry,

vu(4) = (vu′′′)′ − (v′u′′)′ + v′′u′′, (∗∗)
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and subtracting (∗∗) from (∗) we have

uL(v)− vL(u) =
(
uv′′′ − vu′′′ − u′v′′ + v′u′′

)′
,

and uL(v)− vL(u) is an exact differential.

(b) We have
∫ 1

0
[uL(v)− vL(u)] dx =

[
uv′′′ − vu′′′ − u′v′′ + v′u′′

] ∣∣∣∣
1

0

= u(1)v′′′(1)− v(1)u′′′(1) − u′(1)v′′(1) + v′(1)u′′(1)

− u(0)v′′′(0) + v(0)u′′′(0) + u′(0)v′′(0)− v′(0)u′′(0).

(c) If u and v are any two functions satisfying the boundary conditions

φ(0) = 0, φ(1) = 0,

φ′(0) = 0, φ′′(1) = 0.

From part (b) each of the first four terms contains either u(1), v(1), u′′(1), or v′′(1), each of
which is 0, while each of the last four terms contains either u(0), v(0), u′(0), or v′(0), each
of which is also 0.

(d) Another set of boundary conditions for which
∫ L

0
[uL(v) − vL(u)] dx = 0

is given by

φ′(0) = 0, φ′(1) = 0,

φ′′′(0) = 0, φ′′′(1) = 0.

(e) Let (λn, φn) and (λm, φm) be distinct eigenvalue - eigenfunction pairs satisfying the boundary
value problem

d4φ

dx4
+λexφ = 0, 0 < x < 1,

φ(0) = 0, φ(1) = 0,

φ′(0) = 0, φ′′(1) = 0,

then we have

0 =

∫ 1

0
φnL(φm)− φmL(φn) dx

=

∫ 1

0
[φn (−λmexφm)− φm (−λnexφn)] dx

= (λn − λm)

∫ 1

0
φnφme

x dx



337

and if λn 6= λm, then ∫ 1

0
φnφme

x dx = 0

and φn and φm are orthogonal on the interval [0, 1] with respect to the weight function

σ(x) = ex

for x ∈ [0, 1].

Exercise 15.19. %
Let u(x) = J0(αx) and v(x) = J0(βx).

(a) Show that xu′′ + u′ + α2xu = 0 and xv′′ + v′ + β2xv = 0.

(b) Show that [x (u′v − v′u)]′ = (β2 − α2)xuv.

(c) Show that

(β2 − α2)

∫
xJ0(αx)J0(βx) dx = x

[
αJ ′

0(αx)J0(βx)− βJ ′
0(βx)J0(αx)

]
.

This is one of a set of formulas called Lommel’s integrals.

(d) Show that if α and β are distinct zeros of J0(z), then

∫ 1

0
xJ0(αx)J0(βx) dx = 0

so that J0(αx) and J0(βx) are orthogonal on the interval [0, 1] with respect
to the weight function σ(x) = x.

Solution:

(a) Since u(x) = J0(αx) and v(x) = J0(βx) are solutions to Bessel’s equation of order zero, then

(
xu′(x)

)′
+ α2xu(x) = 0 and

(
xv′(x)

)′
+ β2xv(x) = 0,

that is,

xu′′(x) + u′(x) + α2xu(x) = 0 and xv′′(x) + v′(x) + β2xv(x) = 0

for 0 6 x 6 1.

(b) From part (a), we have

xu′′(x)v(x) + u′(x)v(x) + α2xu(x)v(x) = 0

and
xv′′(x)u(x) + v′(x)u(x) + β2xv(x)u(x) = 0,
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and subtracting the second equation from the first, we have

xu′′(x)v(x) + u′(x)v(x) − (xv′′(x)u(x) + v′(x)u(x)) − (β2 − α2)xu(x)v(x) = 0,

that is,

(β2 − α2)xu(x)v(x) =
(
xu′(x)v(x) − xv′(x)u(x)

)′

for 0 6 x 6 1.

(c) Integrating this last expression, we have an indefinite integral

(β2 − α2)

∫
xu(x)v(x) dx =

∫ (
xu′(x)v(x) − xv′(x)u(x)

)′
dx

=
(
xu′(x)v(x) − xv′(x)u(x)

)
,

that is,

(β2 − α2)

∫
xJ0(αx)J0(βx) dx = x

[
αJ ′

0(αx)J0(βx)− βJ ′
0(βx)J0(αx)

]
.

(d) Now, if α and β are distinct zeros of J0(z), then

(β2 − α2)

∫ 1

0
xJ0(αx)J0(βx) dx = αJ ′

0(α)J0(β)− βJ ′
0(β)J0(α) = 0,

and since α 6= β, then

∫ 1

0
xJ0(αx)J0(βx) dx = 0,

so that J0(αx) and J0(βx) are orthogonal on the interval [0, 1] with respect to the weight
function σ(x) = x.
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Exercise 15.20. %%%
Consider the boundary value problem

d2φ

dx2
+ λφ = 0, 0 6 x 6 1,

φ(0) − dφ

dx
(0) = 0,

φ(1) +
dφ

dx
(1) = 0.

(a) Using the Rayleigh quotient, show that λ > 0. Why is λ > 0 ?

(b) Prove that eigenfunctions corresponding to different eigenvalues are orthogo-
nal.

(c) Show that

tan
√
λ =

2
√
λ

λ− 1
.

Determine the eigenvalues graphically. Estimate the large eigenvalues.

(d) Solve

∂u

∂t
= k

∂2u

∂x2

with

u(0, t)− ∂u

∂x
(0, t) = 0

u(1, t) +
∂u

∂x
(1, t) = 0

u(x, 0) = f(x).

You may call the relevant eigenfunctions φn(x) and assume that they are
known.

Solution:

(a) We use the Rayleigh quotient to show that λ > 0 for all eigenvalues λ.

Let λ be an eigenvalue of the Sturm-Liouville problem above, and let φ(x) be the correspond-
ing eigenfunction, then

−p(x)φ(x)φ′(x)
∣∣∣∣
1

0

= −φ(1)φ′(1) + φ(0)φ′(0) = φ(1)2 + φ(0)2 > 0,
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and since q(x) = 0 6 0 for all 0 6 x 6 1, then

λ =

φ(0)2 + φ(1)2 +

∫ 1

0
φ′(x)2 dx

∫ 1

0
φ(x)2 dx

> 0

since p(x) = σ(x) = 1 for 0 6 x 6 1.

If λ = 0, then

φ(0)2 + φ(1)2 +

∫ 1

0
φ′(x)2 dx = 0,

so that φ(0) = φ(1) = 0 and

∫ 1

0
φ′(x)2 dx = 0, and since φ′ is continuous on [0, 1], then φ(x)

is constant on [0, 1], so that φ(x) = φ(0) = 0 for all 0 6 x 6 1. Therefore λ = 0 is not an
eigenvalue of this boundary value problem, and all the eigenvalues satisfy λ > 0.

(b) If λ1 and λ2 are distinct eigenvalues of this boundary value problem, with corresponding
eigenfunctions φ1 and φ2, respectively, then

φ′′1 + λ1φ1 = 0 and φ′′2 + λ2φ2 = 0,

so that

φ2φ
′′
1 − φ1φ

′′
2 + (λ1 − λ2)φ1φ2 = 0,

that is,

(φ2φ
′
1 − φ1φ

′
2)

′ + (λ1 − λ2)φ1φ2 = 0,

and integrating, we have

(φ2φ
′
1 − φ1φ

′
2)

∣∣∣∣
1

0

+ (λ1 − λ2)

∫ 1

0
φ1φ2 dx = 0.

However,

(φ2φ
′
1 − φ1φ

′
2)

∣∣∣∣
1

0

= φ2(1)φ
′
1(1)− φ1(1)φ

′
2(1) − φ2(0)φ

′
1(0) + φ1(0)φ

′
2(0)

= −φ2(1)φ1(1) + φ1(1)φ2(1) + φ2(0)φ1(0)− φ1(0)φ2(0) = 0,

so that

(λ1 − λ2)

∫ 1

0
φ1φ2 dx = 0.

Since λ1 6= λ2, then ∫ 1

0
φ1(x)φ2(x) dx = 0,

that is, φ1 and φ2 are orthogonal on the interval [0, 1].
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(c) If λ > 0, then λ = µ2, where µ 6= 0, and the differential equation is φ′′+µ2φ = 0 with general
solution

φ(x) = A cosµx+B sinµx and φ′(x) = −µA sinµx+ µB cosµx

for 0 6 x 6 1.

From the first boundary condition

φ(0) + φ′(0) = A− µB = 0,

and A = µB.

From the second boundary condition

φ(1) + φ′(1) = A cos µ+B sinµ− µA sinµ+ µB cosµ = 0,

that is,

B
[
2µ cosµ− (µ2 − 1) sin µ

]
= 0,

and the boundary value problem has a nontrivial solution if and only if

tanµ =
2µ

µ2 − 1
,

that is, if and only if

tan
√
λ =

2
√
λ

λ− 1
.

In order to determine the eigenvalues we sketch the graphs of the functions

f(µ) = tanµ and g(µ) =
2µ

µ2 − 1

for µ > 0.

Note that for µ > 0, we have

g(µ) =
2µ

µ2 − 1
=

1

µ+ 1
+

1

µ− 1
,

so that

g′(µ) = − 1

(µ+ 1)2
− 1

(µ− 1)2
< 0

and g is decreasing on the interval (0, 1) and on the interval (1,∞) and the line µ = 1 is a
vertical asymptote to the graph. The graphs of g and f are shown below.
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1

y =  tan
1_2µ

µ2y  =

µ0 

y

π/2 3π/2 5π/2 7π/2

µ

From the figure it is clear that there are an infinite number of distinct solutions µn to the
equation

tanµ =
2µ

µ2 − 1
,

and the eigenvalues are λn = µ2n, for n > 1.

Since lim
n→∞

µn = +∞, then

lim
n→∞

tan µn = lim
n→∞

2µn
µ2n − 1

= 0,

and the roots of the equation tanµ =
2µ

µ2 − 1
approach the roots of the equation tan µ = 0,

that is, for large n,

µn ≈ nπ,

and therefore

λn = µ2n ≈ n2π2

for large n.

(d) We want to solve the boundary value – initial value problem

∂u

∂t
= k

∂2u

∂x2

u(0, t) − ∂u

∂x
(0, t) = 0

u(1, t) +
∂u

∂x
(1, t) = 0

u(x, 0) = f(x),

and since both the equation and the boundary conditions are linear and homogeneous, we
can use separation of variables.
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Assuming a solution of the form u(x, t) = φ(x) ·h(t), and separating variables we get the two
ordinary differential equations

φ′′(x) + λφ(x) = 0, 0 6 x 6 1, h′(t) + λkh(t) = 0, t > 0,

φ(0) − φ′(0) = 0

φ(1) + φ′(1) = 0.

From part (a) we know that we have a nontrivial solution if and only if λ > 0, in which
case λ = µ2 where µ 6= 0, and the differential equation becomes φ′′ + µ2φ = 0 with general
solution

φ(x) = A cosµx+B sinµx with φ′(x) = −µA sinµx+ µB cosµx.

Applying the boundary conditions as in part (c), the only values of µ for which we have a
nontrivial solution are those for which

tanµ =
2µ

µ2 − 1
,

and we have an infinite sequence of positive eigenvalues

0 < λ1 < λ2 < · · · < λn < · · · ,

where λn = µ2n. The corresponding eigenfunctions are

φn(x) = µn cosµnx+ sinµnx

for n > 1.

The corresponding solutions to the time equation are

hn(t) = e−λnkt,

and from the superposition principle the sum

u(x, t) =
∞∑

n=1

an (µn cosµnx+ sinµnx) e
−µ2

nkt

satisfies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition we use the orthogonality of the eigenfunctions from
part (c), and write

f(x) = u(x, 0) =

∞∑

n=1

anφn(x),

where

an =

∫ 1

0
f(x)φn(x) dx

∫ 1

0
φn(x)

2 dx
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for n > 1.

As in Exercise 11.16, you can verify that the normalization constant is given by

∫ 1

0
φn(x)

2 dx =
µ2n + 3

2

so that

an =
2

µ2n + 3

∫ 1

0
f(x)φn(x) dx

for n > 1.
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Fourier Transform Problems

NOTE: The Fourier transform is defined as

F(f)(ω) = f̂(ω) =
1

2π

∫ ∞

−∞
f(t)eiωt dt,

and the inverse transform is defined as

F−1(f̂)(t) =

∫ ∞

−∞
f̂(ω)e−iωt dω.

The convolution of two functions f(x) and g(x) is defined to be

f ∗ g (x) =
∫ ∞

−∞
f(x− t)g(t) dt

and the convolution theorem says that if F (ω) and G(ω) are the Fourier transforms of f and g,
respectively, then

F−1 (F (ω)G(ω)) (x) =
1

2π
f ∗ g (x) = 1

2π

∫ ∞

−∞
f(x− t)g(t) dt.

Exercise 16.1. %
Evaluate the Fourier integral formula for the function

f(x) =

{
1− cosx if − π

2 < x < π
2 ,

0 otherwise.

Solution: The Fourier integral representation of f(x) is given by

f(x) ∼
∫ ∞

0
(A(ω) cos ωx+B(ω) sinωx) dω,

where

A(ω) =
1

π

∫ ∞

−∞
f(t) cosωt dt and B(ω) =

1

π

∫ ∞

−∞
f(t) sinωt dt.

Since f(x) is an even function, then B(ω) = 0 for all ω.

345
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Also, since f(x) is even and f(x) = 0 for |x| > π
2 , then for all ω 6= 0 and ω 6= ±1, we have

A(ω) =
2

π

∫ π/2

0
(1− cos t) cos ωt dt

=
2

π

∫ π/2

0
cosωt dt− 2

π

∫ π/2

0
cos t cosωt dt

=
2

π

sin(ωπ/2)

ω
− 1

π

∫ π/2

0
[cos(1− ω)t+ cos(1 + ω)t] dt

=
2

π

sin(ωπ/2)

ω
− 1

π

sin(1− ω)t

1− ω

∣∣∣∣
π/2

0

− 1

π

sin(1 + ω)t

1 + ω

∣∣∣∣
π/2

0

=
2

π

sin(ωπ/2)

ω
− 1

π

sin((1− ω)π/2)

1− ω
− 1

π

sin((1 + ω)π/2)

1 + ω

=
2

π

sin(ωπ/2)

ω
− cos(ωπ/2)

π

[
1

1− ω
+

1

1 + ω

]

=
2

π

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]
,

so that

A(ω) =
2

π

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]

for ω 6= 0,±1.

If ω = 0, then

A(0) =
2

π

∫ π/2

0
(1− cos t) dt =

2

π

[π
2
− sin(π/2)

]
= 1− 2

π
.

If ω = ±1, then

A(±1) =
2

π

sin(±π/2)
±1

− 2

π

∫ π/2

0
cos2 t dt =

2

π
− 2

π

∫ π/2

0

(
1 + cos 2t

2

)
dt =

2

π
− 1

2
.

Note that A(w) is continuous for all ω.

From Dirichlet’s theorem, the integral

2

π

∫ ∞

0

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]
cosωxdω

converges to 1− cos x for all |x| < π
2 , converges to 0 for all |x| > π

2 , and converges to 1
2 for x = ±π

2 .

Thus, if we redefine f(±π/2) = 1
2 , then the Fourier integral representation of f(x) is given by

2

π

∫ ∞

0

[
sin(ωπ/2)

ω
− cos(ωπ/2)

1− ω2

]
cosωxdω = f(x) =





1− cos x for |x| < π
2

0 for |x| > π
2

1
2 for x = ±π

2 .
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Exercise 16.2. %
Find the Fourier integral representation of the function

f(x) =





x if − 1 < x < 1,

2− x if 1 < x < 2,

−2− x if − 2 < x < −1,

0 otherwise.

Solution: The graph of f(x) is shown below and it is easy to see that the function f(x) is an odd
function.

1

2 −1

−1

y

x1 20−

Therefore, A(ω) = 0 for all ω, and

B(ω) =
2

π

∫ 2

0
f(t) sinωt dt =

2

π

∫ 1

0
t sinωt dt+

2

π

∫ 2

1
(2− t) sinωt dt.

Integrating by parts, we have

B(ω) =
2

π

[
−t
ω

cosωt

∣∣∣∣
1

0

+

∫ 1

0

cosωt

ω

]
+

2

π

[
−2 + t

ω
cosωt

∣∣∣∣
2

1

−
∫ 2

1

cosωt

ω
dt

]

=
2

π

[
−cosω

ω
+

sinωt

ω2

∣∣∣∣
1

0

]
+

2

π

[
cosω

ω
− sinωt

ω2

∣∣∣∣
2

1

]

=
2

π

[
2 sinω

ω2
− sin 2ω

ω2

]

=
2

π

(
2 sinω − sin 2ω

ω2

)
,

that is,

B(ω) =
2

π

(
2 sinω − sin 2ω

ω2

)

for all ω 6= 0.

If ω = 0, then

B(0) =
2

π

∫ 2

0
f(t) sin(0 · t) dt = 0.
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Since f(x) is continuous everywhere, from Dirichlet’s theorem, the Fourier sine integral converges
to f(x) for all x, and therefore

2

π

∫ ∞

0

(
2 sinω − sin 2ω

ω2

)
sinωxdω = f(x)

for all x ∈ R.

Exercise 16.3. %
Let

f(x) =

{
x if |x| < 1,

0 otherwise.

(a) Plot the function f(x) and find its Fourier transform.

(b) If f̂ is real valued, plot it; otherwise plot
∣∣ f̂
∣∣.

Solution:

(a) The graph of the function f(x) is plotted below.

1

1

−1

y

x10

−

The Fourier transform of f(x) is computed as

f̂(ω) =
1

2π

∫ ∞

−∞
f(t)eiωt dt =

1

2π

∫ 1

−1
teiωt dt

=
1

2π

[
t

iω
eiωt
∣∣∣∣
1

−1

− 1

iω

∫ 1

−1
eiωt dt

]

=
1

2π

[
1

iω

(
eiω + e−iω

)
− 1

(iω)2
eiωt
∣∣∣∣
1

−1

]

=
2

2πi

[(
eiω + e−iω

2ω

)
−
(
eiω − e−iω

2iω2

)]

=
1

πi

(
ω cosω − sinω

w2

)
,
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so that

f̂(ω) =
1

πi

(
ω cosω − sinω

w2

)

for all ω 6= 0.

If ω = 0, then

f̂(0) =
1

2π

∫ 1

−1
t dt =

1

2π

t2

2

∣∣∣∣
1

−1

= 0,

and from L’Hospital’s rule, we see that lim
ω→0

f̂(ω) = 0 also, so that f̂(ω) is continuous at each
ω.

(b) Since

f̂(ω) =
1

πi

(
ω cosω − sinω

w2

)
,

then

∣∣∣f̂(ω)
∣∣∣ = 1

π

∣∣∣∣
sinω − ω cosω

ω2

∣∣∣∣

for all ω.

Note that the zeros of the function g(ω) = sinω − ω cosω are precisely the roots of the

equation tanω = ω, so the graph of
∣∣∣f̂(ω)

∣∣∣ looks something like the figure below.

y

x
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Exercise 16.4. %
Reciprocity relation for the Fourier transform.

(a) From the definition of transforms, explain why

F(f)(x) =
1

2π
F−1(f)(−x).

(b) Use (a) to derive the reciprocity relation

F2(f)(x) =
1

2π
f(−x),

where F2(f) = F (F(f)) .

(c) Conclude the following: f is even if and only if F2(f)(x) =
1

2π
f(x);

and f is odd if and only if F2(f)(x) = − 1

2π
f(x).

(d) Show that for any f, F4(f) =
1

4π2
f.

Solution:

(a) Note that the Fourier transform of f is

F(f)(ω) =
1

2π

∫ ∞

−∞
f(t)eiωt dt,

and evaluating this transorm at ω = x, and making a change of variables, we get

F(f)(x) =
1

2π

∫ ∞

−∞
f(t)eixt dt =

1

2π

∫ ∞

−∞
f(ω)e−iω(−x) dω =

1

2π
F−1(f)(−x),

that is,

F(f)(x) =
1

2π
F−1(f)(−x)

for all x ∈ R.

(b) Let f̂ be the Fourier transform of f, from part (a) we have

F
(
f̂
)
(x) =

1

2π
F−1

(
f̂
)
(−x) = 1

2π
f(−x),

and therefore

F2(f)(x) =
1

2π
f(−x)

for all x ∈ R.
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(c) The function f is even if and only if f(−x) = f(x) for all x ∈ R, but from part (b), we have
f is even if and only if

F2(f)(x) = F
(
f̂
)
(x) =

1

2π
f(−x) = 1

2π
f(x)

for all x ∈ R. Similarly, f is odd if and only if f(−x) = −f(x) for all x ∈ R, but again from
part (b), we have f is odd if and only if

F2(f)(x) = F
(
f̂
)
(x) =

1

2π
f(−x) = − 1

2π
f(x)

for all x ∈ R.

(d) For any integrable f, we have

F4(f)(x) = F2
(
F2(f)

)
(x) =

1

2π
F2(f)(−x) = 1

4π2
f(−(−x)) = 1

4π2
f(x)

for all x ∈ R.

Exercise 16.5. %
Basic Properties of Convolutions.

Establish the following properties of convolutions. (These properties can be derived
directly from the definitions or by using the operational properties of the Fourier
transform.)

(a) f ∗ g = g ∗ f (commutativity).

(b) f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity).

(c) Let a be a real number and let fa denote the translate of f by a, that is,

fa(x) = f(x− a).

Show that
(fa) ∗ g = f ∗ (ga) = (f ∗ g)a.

This important property says that convolutions commute with translations.

Solution: The most convenient way to prove these properties are true is to use the uniqueness of
the Fourier transform, that is, if f and g are integrable and if f̂ = ĝ, then f = g. However, we will
prove them directly from the definition of the convolution.

(a) Given absolutely integrable functions f and g, we make a simple substitution in the definition
of the convolution to get

f ∗ g (x) =
∫ ∞

−∞
f(x− t)g(t)dt =

∫ ∞

−∞
f(s)g(x− s)ds = g ∗ f (x),

for all x ∈ R, and therefore f ∗ g = g ∗ f.
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(b) Let f, g, and h be absolutely integrable, then for each x ∈ R we have

(f ∗ (g ∗ h)) (x) =
∫ ∞

−∞
f(x− t)(g ∗ h)(t) dt

=

∫ ∞

−∞
f(x− t)

(∫ ∞

−∞
g(t− s)h(s) ds

)
dt

=

∫ ∞

−∞

(∫ ∞

−∞
f(x− t)g(t − s)h(s) ds

)
dt

=

∫ ∞

−∞

(∫ ∞

−∞
h(s)f(x− t)g(t− s) dt

)
ds (v = x− s)

=

∫ ∞

−∞

(∫ ∞

−∞
h(x− v)f(x− t)g(t− (x− v)) dt

)
dv (u = x− t)

=

∫ ∞

−∞

(∫ ∞

−∞
h(x− v)f(u)g(v − u) du

)
dv

=

∫ ∞

−∞
h(x− v)

(∫ ∞

−∞
f(u)g(v − u) du

)
dv

=

∫ ∞

−∞
h(x− v)(g ∗ f) (v) dv

=

∫ ∞

−∞
h(x− v)(f ∗ g) (v) dv

= (h ∗ (f ∗ g)) (x) = ((f ∗ g) ∗ h) (x)

(c) We use the shift theorem

F(fa)(ω) = F(f(x− a))(ω)

=
1

2π

∫ ∞

−∞
f(t− a)eiωt dt

=
1

2π

∫ ∞

−∞
f(s)eiω(s+a) ds

=
eiωa

2π

∫ ∞

−∞
f(s)eiωs ds

= eiωaF(f)(ω),

for all ω, so that

F(fa) = eiωaF(f).
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We have

F ((f ∗ g)a(x)) = F ((f ∗ g)(x− a))

= eiωaF ((f ∗ g)(x))

= 2π eiωaF(f(x))F(g(x))

= 2πF(fa(x))F(g(x))

= F ((fa) ∗ g)(x)) ,

and F ((f ∗ g)a) = F ((fa) ∗ g)) . Since the Fourier transform is unique, then (f ∗g)a = (fa)∗g.

We can also prove this directly, as follows.

(f ∗ g)a(x) = (f ∗ g)(x− a)

=

∫ ∞

−∞
f(x− a− t)g(t) dt

=

∫ ∞

−∞
fa(x− t)g(t) dt

= ((fa) ∗ g)(x)

for all x ∈ R, so that (f ∗ g)a = (fa) ∗ g.

Also, since f ∗ g = g ∗ f, we have

(f ∗ g)a = (g ∗ f)a = (ga) ∗ f = f ∗ (ga).

Exercise 16.6. %
Determine the solution of the following initial boundary value problem for the heat
equation

∂u

∂t
=

1

4

∂2u

∂x2
, −∞ < x <∞, t > 0,

u(x, 0) = e−x2
, −∞ < x <∞.

Give your answer in the form of an inverse Fourier transform.

Solution: We hold t fixed and take the Fourier transform of the partial differential equation
and the initial condition with respect to the space variable to get the initial value problem for
û(ω, t) = F(u(x, t))(ω) :

dû

dt
(ω, t) = −ω

2

4
û(ω, t),

û(ω, 0) = F
(
e−x2)

(ω) =
1√
4π

e−
ω2

4 .
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The general solution to this first-order linear equation is

û(ω, t) = A(ω) e−
ω2

4 t,

and we can determine the “constant” of integration A(ω) from the initial condition. Setting t = 0,
we get

û(ω, 0) = A(ω) =
1√
4π

e−
ω2

4 ,

so that

û(ω, t) =
1√
4π

e−
ω2

4 e−
ω2

4 t =
1√
4π

e−
ω2

4 (1+t).

Taking the inverse transform, the solution is

u(x, t) =
1

2
√
π

∫ ∞

−∞
e−

ω2

4 (1+t) e−iωx dω

for −∞ < x <∞, t > 0.

Exercise 16.7.

���
Use the Fourier transform to solve the following initial value – boundary value
problem

∂u

∂x
=
∂u

∂t
, −∞ < x <∞, t > 0,

u(x, 0) = f(x), −∞ < x <∞.

Assume that the function f has a Fourier transform.

Solution: Taking the Fourier transform of the partial differential equation and the initial condition
with respect to x, we have

dû

dt
(ω, t) + iωû(ω, t) = 0,

û(ω, 0) = f̂(ω).

The general solution to this first-order linear equation is

û(ω, t) = A(ω) e−iωt,

and we can determine the “constant” of integration A(ω) from the transformed initial condition

û(ω, 0) = A(ω) = f̂(ω).

Therefore,
û(ω, t) = f̂(ω) e−iωt,
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and taking the inverse Fourier transform, we have

u(x, t) =

∫ ∞

−∞
f̂(ω) e−iωt e−iωx dω

=

∫ ∞

−∞
f̂(ω) e−iω(x+t) dω

= f(x+ t),

and the solution is
u(x, t) = f(x+ t)

for −∞ < x <∞, t > 0.

Exercise 16.8. %
Find the Fourier cosine transform of

f(x) =

{
1− x if 0 < x < 1,

0 if x > 1.

and write f(x) as an inverse cosine transform. Use a known Fourier transform and
the fact that if f(x), x > 0, is the restriction of an even function fe, then

Fc(f)(ω) = 2F(fe)(ω)

for all ω > 0.

Solution: The Fourier cosine transform of the function f is given by

f̂c(ω) =
2

π

∫ ∞

0
f(t) cosωt dt =

2

π

∫ 1

0
(1− t) cosωt dt,

and this is the same as the Fourier transform of the even extension fe of f to the whole real line R.

In this case however, we can evaluate the last integral directly by integration by parts:

∫ 1

0
(1− t) cos ωt dt =

∫ 1

0
cosωt dt−

∫ 1

0
t cosωt dt

=
sinωt

ω

∣∣∣∣
1

0

−
[
t · sinωt

ω

∣∣∣∣
1

0

− 1

ω

∫ 1

0
sinωt dt

]

=
sinω

ω
− sinω

ω
+

1

ω

[
− 1

ω
cosωt

∣∣∣∣
1

0

]

=
1− cosω

ω2
,

and therefore

f̂c(ω) =
2

π
· 1− cosω

ω2
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for ω > 0.

Knowing that fc is absolutely integrable implies that f̂c is continuous at ω = 0, and we have

f̂c(0) = lim
ω→0+

2

π
· 1− cosω

ω2
=

2

π
· lim
ω→0+

sinω

2ω
=

1

π

by L’Hospital’s rule.

Therefore, we have

f̂c(ω) =





2

π
· 1− cosω

ω2
for ω > 0

1

π
for ω = 0.

Since fe is continuous for all x ∈ R, from Dirichlet’s theorem the inverse Fourier cosine transform
of f̂c is given by

2

π

∫ ∞

0

1− cosω

ω2
· cosωxdω =




1− x for 0 6 x < 1

0 for x > 1.

Exercise 16.9. %
Find the Fourier sine transform of

f(x) =
x

1 + x2
, x > 0,

and write f(x) as an inverse sine transform. Use a known Fourier transform and the
fact that if f(x), x > 0, is the restriction of an odd function fo, then

Fs(f)(ω) = −2iF(fo)(ω)

for all ω > 0.
Hint: Consider the Fourier sine transform of g(x) = e−x.

Solution: We can find the Fourier sine transform of the given function using the suggested method,
or we can find it directly. To do this, we consider the function

g(x) = e−x, x > 0

with Fourier sine transform given by

ĝs(ω) =
2

π

∫ ∞

0
e−t sinωt dt
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and we can evaluate this integral by integrating by parts:

∫ ∞

0
e−t sinωt dt = −e

−t cosωt

ω

∣∣∣∣
∞

0

− 1

ω

∫ ∞

0
e−t cosωt dt

=
1

ω
− 1

ω

[
e−t · sinωt

ω

∣∣∣∣
∞

0

+
1

ω

∫ ∞

0
e−t sinωt dt

]

=
1

ω
− 1

ω2

∫ ∞

0
e−t sinωt dt

so that (
1 +

1

ω2

)∫ ∞

0
e−t sinωt dt =

1

ω
.

Therefore, ∫ ∞

0
e−t sinωt dt =

ω

1 + ω2

for ω > 0, so that

ĝs(ω) =
2

π
· ω

1 + ω2

for ω > 0.

Taking the inverse Fourier sine transform of this, we have

g(x) =

∫ ∞

0
ĝs(ω) sinωxdω =

2

π

∫ ∞

0

ω

1 + ω2
sinωxdω.

Now interchanging x and ω, we have

e−ω = g(ω) =
2

π

∫ ∞

0

x

1 + x2
sinωxdx,

and

f̂s(ω) =
2

π

∫ ∞

0

x

1 + x2
sinωxdx = g(ω) = e−ω

for ω > 0.

From the above, we can write f(x) as an inverse Fourier sine transform:

f(x) =
x

1 + x2
=

∫ ∞

0
e−ω sinωxdω

for x > 0.

Exercise 16.10. %
Show that ∫ ∞

0

cos λx

a2 + λ2
dλ =

π

2a
e−ax

for a > 0, x > 0.



358

Solution: Let f(x) = e−ax for x > 0 and let fe be the even extension of f to all of (−∞,∞).
Since fe is piecewise smooth and agrees with f for x > 0, then we can write (again from Dirichlet’s
theorem)

e−ax =

∫ ∞

0
A(λ) cos λx dλ, x > 0

where

A(λ) =
2

π

∫ ∞

0
e−ax cos λx dx.

In order to evaluate A(λ), integrating by parts twice, since a > 0 we have

∫ ∞

0
e−ax cos λx dx =

e−ax sinλx

λ

∣∣∣∣
∞

0

−
∫ ∞

0

(−a)e−ax sinλx

λ
dx

=
a

λ

[
−e

−ax cos λx

λ

∣∣∣∣
∞

0

+

∫ ∞

0

(−a)e−ax cos λx

λ
dx

]

=
a

λ

[
1

λ
− a

λ

∫ ∞

0
e−ax cos λx dx

]
,

so that
(
1 +

a2

λ2

)∫ ∞

0
e−ax cos λx dx =

a

λ2
.

Therefore
∫ ∞

0
e−ax cos λx dx =

a

λ2 + a2

for λ > 0 (you should check that this holds for λ = 0 also). Therefore

A(λ) =
2a

π(a2 + λ2)
,

for λ > 0, and

e−ax =
2

π

∫ ∞

0

a cos λx

a2 + λ2
dλ.

for 0 < x <∞. Thus,
∫ ∞

0

cos λx

a2 + λ2
dλ =

π

2a
e−ax

for x > 0.
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Exercise 16.11. %%
Give the function f(x) =





0 for x < 0

1 for 0 < x < 1

2 for 1 < x < 2

0 for x > 2.

(a) Find the Fourier integral formula for f(x).

(b) Find the Fourier sine integral formula for f(x).

(c) Find the Fourier cosine integral formula for f(x).

(d) Find the Fourier transform of f(x).

(e) Find the Fourier sine transform of f(x).

(f) Find the Fourier cosine transform of f(x).

Solution:

(a) The Fourier integral representation of f is given by

f(x+) + f(x−)
2

=

∫ ∞

0
(A(ω) cos ωx+B(ω) sinωx) dω,

where

A(ω) =
1

π

∫ ∞

−∞
f(x) cosωxdx and B(ω) =

1

π

∫ ∞

−∞
f(x) sinωxdx

for 0 < ω <∞.

We have

A(ω) =
1

π

∫ 2

0
f(x) cosωxdx

=
1

π

∫ 1

0
cosωxdx+

1

π

∫ 2

1
2 cosωxdx

=
sinωx

πω

∣∣∣∣
1

0

+
2 sinωx

πω

∣∣∣∣
2

1

=
1

π

(
−sinω

ω
+

2 sin 2ω

ω

)



360

and

B(ω) =
1

π

∫ 2

0
f(x) sinωxdx

=
1

π

∫ 1

0
sinωxdx+

1

π

∫ 2

1
2 sinωxdx

=
1

πω
(1− cosω + 2cos ω − 2 cos 2ω)

=
1

πω
(1 + cosω − 2 cos 2ω)

so that

f(x+) + f(x−)
2

=

∫ ∞

0

(
sinω

πω
[4 cos ω − 1] cosωx+

1

πω

(
3 + cosω − 4 cos2 ω

)
sinωx

)
dω

for −∞ < x <∞.

(a’) For those of you that prefer the complex Fourier integral representation of f, we have

f(x+) + f(x−)
2

=

∫ ∞

−∞
F (ω)e−iωx dω

where

F (ω) =
1

2π

∫ ∞

−∞
f(ξ)eiωξ dξ,

and

F (ω) =
1

2π

∫ 1

0
eiωξ dξ +

1

2π

∫ 2

1
2eiωξ dξ

=
1

2πiω

[
2e2iω − eiω − 1

]
,

so that
f(x+) + f(x−)

2
=

1

2πi

∫ ∞

−∞

([
2e2iω − eiω − 1

ω

]
e−iωx

)
dω

for −∞ < x <∞.

(b) The Fourier sine integral formula for f(x) is

f(x) =

∫ ∞

0
B(ω) sinωxdω

where

B(ω) =
2

π

∫ ∞

0
f(x) sinωxdx.
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For the function f above, we have

B(ω) =
2

π

∫ ∞

0
f(x) sinωxdx

=
2

π

∫ 2

0
f(x) sinωxdx

=
2

π

∫ 1

0
sinωxdx+

2

π

∫ 2

1
2 sinωxdx

= − 2

πω
cosωx

∣∣∣∣
1

0

− 4

πω
cosωx

∣∣∣∣
2

1

= − 2

πω
cosω +

2

πω
− 4

πω
(cos 2ω − cosω),

so that

B(ω) =
2

πω
(1 + cosω − 2 cos 2ω)

for 0 < ω <∞.

The Fourier sine integral formula for f(x) is

f(x) =
2

π

∫ ∞

0

(1 + 2 cos ω − cos 2ω)

ω
sinωxdω

for 0 < x <∞.

(c) The Fourier cosine integral formula for f(x) is

f(x) =

∫ ∞

0
A(ω) cos ωxdω

where

A(ω) =
2

π

∫ ∞

0
f(x) cosωxdx.

For the function f above, we have

A(ω) =
2

π

∫ ∞

0
f(x) cosωxdx

=
2

π

∫ 2

0
f(x) cosωxdx

=
2

π

∫ 1

0
cosωxdx+

2

π

∫ 2

1
2 cosωxdx

=
2

πω
sinωx

∣∣∣∣
1

0

+
4

πω
sinωx

∣∣∣∣
2

1

=
2

πω
sinω +

4

πω
(sin 2ω − sinω),
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so that

A(ω) =
2

πω
(sin 2ω − 2 sinω)

for 0 < ω <∞.

The Fourier cosine integral formula for f(x) is

f(x) =
2

π

∫ ∞

0

(sin 2ω − 2 sinω)

ω
cosωxdω

for 0 < x <∞.

(d) The Fourier transform of f(x) is

F (ω) =
1

2π

∫ ∞

−∞
f(ξ)eiωξ dξ

for −∞ < x <∞, and for the function given we have

F (ω) =
1

2π

∫ 1

0
eiωξ dξ +

1

2π

∫ 2

1
2eiωξ dξ

=
1

2πiω

[
2e2iω − eiω − 1

]
,

that is,

F (ω) =
1

2πiω

[
2e2iω − eiω − 1

]

for −∞ < x <∞.

(e) The Fourier sine transform of f(x) is

Fs(ω) =
2

π

∫ ∞

0
f(x) sinωxdx =

2

π

(
1 + 2 cos ω − cos 2ω

ω

)

for 0 < ω <∞.

(f) The Fourier cosine transform of f(x) is

Fc(ω) =
2

π

∫ ∞

0
f(x) cosωxdx =

2

π

(
sin 2ω − 2 sinω

ω

)

for 0 < ω <∞.

Exercise 16.12. %
Use Fourier transforms to find the solution to

∂u

∂t
=
∂2u

∂x2
, −∞ < x <∞, t > 0

u(x, 0) =

{
100 |x| < 1

0 |x| > 1

in terms of the error function.
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Solution: Let û(ω, t) = F (u(x, t)) , taking the transform of both sides of the partial differential
equation we have

∂û(ω, t)

∂t
= (iω)2û(ω, t) = −ω2û(ω, t),

and the initial condition gives

û(ω, 0) = f̂(ω) =
1

2π

∫ 1

−1
100 eiωx dx.

The solution to this ordinary differential equation is

û(ω, t) = û(ω, 0) e−ω2t

and from the convolution theorem we have

u(x, t) =
1

2π
F−1

(
e−ω2t

)
∗ f(x) = 1√

4πt

∫ 1

−1
100 e−

(x−s)2

4t ds.

The solution

u(x, t) =
1√
4πt

∫ 1

−1
100 e−

(x−s)2

4t ds

for −∞ < x <∞, t > 0, can be written in terms of the error function by making the substitution

z =
x− s√

4t
and dz = − ds√

4t
ds,

when s = −1, then z =
x+ 1√

4t
, and when s = 1, then z =

x− 1√
4t
, so that

u(x, t) =
100√
4πt

(−
√
4t)

∫ x−1√
4t

x+1√
4t

e−z2 dz

=
100√
π



∫ x+1√

4t

0
e−t2 dt−

∫ x−1√
4t

0
e−t2 dt




=
100

2

[
erf

(
x+ 1√

4t

)
− erf

(
x− 1√

4t

)]
,

therefore

u(x, t) = 50

[
erf

(
x+ 1√

4t

)
− erf

(
x− 1√

4t

)]

for −∞ < x <∞, t > 0, where

erf(x) =
2√
π

∫ x

0
e−z2 dz

is the error function.
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Exercise 16.13. %
(a) Show that the Fourier transform is a linear operator; that is, show that

F [c1f(x) + c2g(x)] = c1F (ω) + c2G(ω)

(b) Show that F [f(x)g(x)] 6= F (ω)G(ω).

Solution:

(a) If the Fourier transforms of f and g both exist, and c1 and c2 are constants, then

F [c1f(x) + c2g(x)] =
1

2π

∫ ∞

−∞
(c1f(x) + c2g(x)) e

iωx dx

=
c1
2π

∫ ∞

−∞
f(x)eiωx dx+

c2
2π

∫ ∞

−∞
g(x)eiωx dx

= c1F (f(x)) + c2F (g(x)) ,

that is,

F [c1f(x) + c2g(x)] = c1F (f(x)) + c2F (g(x))

and the Fourier transform is a linear operator.

(b) Let f and g are functions such that F(f(x)) = F (ω) and F(g(x)) = G(ω) both exist, for
example,

f(x) = g(x) =





1, for |x| < a

0, for |x| > a

then

F (ω) = G(ω) =
1

2π

∫ a

−a
eiωx dx =

sinωa

πω
.

Now let h(x) = f(x) · g(x) for −∞ < x <∞, clearly h(x) = f(x) = g(x) for all x, and

H(ω) =
sinωa

πω
6= sin2 ωa

π2ω2
= F (ω) · Ĝ(ω).

Exercise 16.14.

���
If F (ω) is the Fourier transform of f(x), show that the inverse Fourier transform
of eiωβF (ω) is f(x − β). This result is known as the Shift Theorem for Fourier
transforms.
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Solution: We have

F−1
(
eiωβF (ω)

)
=

∫ ∞

−∞
F (ω)eiωβe−iωx dω

=

∫ ∞

−∞
F (ω)e−iω(x−β) dω

= f(x− β).

Exercise 16.15. %
(a) Solve

∂u

∂t
= k

∂2u

∂x2
− γu, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞.

(b) Does your solution suggest a simplifying transformation ?

Solution:

(a) If u(x, t) is the solution to

∂u

∂t
= k

∂2u

∂x2
− γu, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞,

let
û(ω, t) = F(u(x, t)) and û(ω, 0) = f̂(ω),

then û(ω, t) satisfies the initial value problem

dû

dt
= −(kω2 + γ)û, t > 0

û(ω, 0) = f̂(ω),

with solution
û(ω, t) = f̂(ω)e−(kω2+γ)t = f̂(ω)e−kω2te−γt.

The solution to the partial differential equation is

u(x, t) = F−1 (û(ω, t))

= F−1
(
f̂(ω)e−kω2te−γt

)

= e−γtF−1
(
f̂(ω)e−kω2t

)
(since F−1 is linear)

= e−γt 1

2π
f ∗ g (x, t)
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where

g(x, t) =

√
π

kt
e−x2/4kt.

Therefore

u(x, t) = e−γt

∫ ∞

−∞
f(s)

e−(x−s)2/4kt

√
4πkt

ds

for −∞ < x <∞ and t > 0.

(b) If we multiply the solution above by eγt, we find

eγtu(x, t) =
1

2π
f ∗ g (x, t) = 1√

4πkt

∫ ∞

−∞
f(s) e−(x−s)2/4kt ds,

which looks like the solution to a homogeneous heat equation.

Indeed, if we define

w(x, t) = eγtu(x, t),

then

∂w

∂t
= γeγtu+ eγt

∂u

∂t

= γw + eγt
(
k
∂2u

∂x2
− γu

)

= γw + k
∂2w

∂x2
− γw,

so that

∂w

∂t
= k

∂2w

∂x2

w(x, 0) = f(x)

for −∞ < x <∞, t > 0.

Exercise 16.16. %%
Solve

∂u

∂t
= k

∂2u

∂x2
, 0 < x <∞, t > 0

∂u

∂x
(0, t) = 0, t > 0

u(x, 0) = f(x), 0 < x <∞.
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Solution: Since the boundary condition is a Neumann condition, we use the Fourier cosine trans-
form. Let

ũ(ω, t) = Fc(u(x, t)) =
2

π

∫ ∞

0
u(x, t) cos ωxdx,

and

f̃(ω) = Fc(f(x)) =
2

π

∫ ∞

0
f(x) cosωxdx,

then

Fc

(
∂u

∂t

)
=
∂ũ

∂t
(ω, t),

and

Fc

(
∂2u

∂x2

)
= − 2

π

∂u

∂x
(0, t) − ω2ũ(ω, t),

and from the boundary condition,
∂u

∂x
(0, t) = 0, so that

Fc

(
∂2u

∂x2

)
= −ω2ũ(ω, t).

After taking the Fourier cosine transform of both sides of the partial differential equation

∂u

∂t
= k

∂2u

∂x2
,

the transform ũ(ω, t) satisfies the initial value problem

dũ

dt
(ω, t) + kω2ũ(ω, t) = 0

ũ(ω, 0) = f̃(ω),

with solution

ũ(ω, t) = ũ(ω, 0)e−ω2kt = f̃(ω)e−ω2kt

for −∞ < ω <∞ and t > 0.

Therefore

u(x, t) =

∫ ∞

0
f̃(ω)e−ω2kt cosωxdω

for 0 < x <∞ and t > 0.

Note that each of the functions f̃(ω), e−ω2kt, and cosωx in the integrand is an odd function of ω,
so that ∫ ∞

0
f̃(ω)e−ω2kt cosωxdω =

1

2

∫ ∞

−∞
f̃(ω)e−ω2kt cosωxdω.

Since sinωx is an odd function of ω, then

∫ ∞

−∞
f̃(ω)e−ω2kt sinωxdω = 0,
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and we can write the solution u(x, t) as

u(x, t) =
1

2

∫ ∞

−∞
f̃(ω)e−ω2kt(cosωx− i sinωx) dω

=

∫ ∞

−∞

f̃(ω)

2
e−ω2kte−iωx dω,

that is,

u(x, t) = F−1

(
f̃(ω)

2
e−ω2kt

)
. (∗)

Let feven be the even extension of f(x) to (−∞,∞), then

f̃(ω)

2
=

1

2

2

π

∫ ∞

0
f(x) cosωxdx

=
1

2π

∫ ∞

−∞
feven(x) cos ωxdx

=
1

2π

∫ ∞

−∞
feven(x)(cos ωx+ i sinωx) dx

=
1

2π

∫ ∞

−∞
feven(x)e

iωx dx

= F (feven(x)) ,

so that

f̃(ω)

2
= F (feven(x)) . (∗∗)

From (∗) and (∗∗) it follows that u(x, t) is the solution to the initial value – boundary value problem

∂u

∂t
= k

∂2u

∂x2
, −∞ < x <∞, t > 0

∂u

∂x
(0, t) = 0, t > 0

u(x, 0) = feven(x), −∞ < x <∞,

and therefore
u(x, t) = feven ∗G (x, t)

where G(x, t) is the heat kernel or Gaussian kernel

G(x, t) =
1√
4πkt

e−x2/4kt.
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The solution is then

u(x, t) = feven ∗G (x, t)

=
1√
4πkt

∫ ∞

−∞
feven(s)e

−(x−s)2/4kt ds

=
1√
4πkt

∫ ∞

0
f(s)

(
e−(x+s)2/4kt + e−(x−s)2/4kt

)
ds,

so that

u(x, t) =
1√
4πkt

∫ ∞

0
f(s)

(
e−(x+s)2/4kt + e−(x−s)2/4kt

)
ds

for 0 < x <∞, t > 0.

Exercise 16.17. %%%
Solve the circularly symmetric diffusion equation on an infinite two- dimensional
domain:

∂u

∂t
=
k

r

∂

∂r

(
r
∂u

∂r

)
, r > 0, t > 0

u bounded as r → 0+, t > 0

r u
∂u

∂r
→ 0 as r → ∞, t > 0

u(r, 0) = f(r), r > 0.

Solution: We solve this problem using separation of variables, we write

u(r, t) = ϕ(r) · T (t),

so that

ϕ(r) · T ′(t) =
k

r

(
rϕ′(r)

)′ · T (t) =
(
kϕ′′(r) +

k

r
ϕ′(r)

)
· T (t),

and separating variables, we have

T ′(t)
kT (t)

=
ϕ′′(r) +

1

r
ϕ′(r)

ϕ(r)
= −λ (constant).

Thus, we obtain the following two ordinary differential equations

ϕ′′ +
1

r
ϕ′ + λϕ = 0,

T ′ + λkT = 0.
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Note that the boundedness conditions on ϕ are satisfied if ϕ satisfies the following singular Sturm-
Liouville problem

ϕ′′ +
1

r
ϕ′ + λϕ = 0, 0 < r <∞

ϕ(r) bounded as r → 0+,

rϕ(r)ϕ′(r) → 0 as r → ∞.

Multiplying by r, the spatial problem can be written in the form

rϕ′′ + ϕ′ + λrϕ = 0, 0 < r <∞

ϕ(r) bounded as r → 0+,

rϕ(r)ϕ′(r) → 0 as r → ∞.

We solve the singular Sturm-Liouville problem for ϕ first. The Rayleigh quotient is

λ =

−rϕϕ′
∣∣∣∣
∞

0

+

∫ ∞

0
r(ϕ′)2 dr

∫ ∞

0
r ϕ2 dr

,

and from the boundedness conditions,

−rϕϕ′
∣∣∣∣
∞

0

= − lim
r→∞

rϕ(r)ϕ′(r) = 0,

so that λ > 0, that is, there are no negative eigenvalues.

case 1. If λ = 0, then the differential equation is

(rϕ′)′ = 0,

with general solution

ϕ(r) = A log r +B.

Applying the boundedness condition, we have A = 0, and the eigenfunction is

ϕ0(r) = 1

for 0 < r <∞.

case 2. If λ > 0, then the differential equation is

(rϕ′)′ + λrϕ = 0,

which is Bessel’s (parametric) equation of order 0, with general solution

ϕ(r) = AJ0

(√
λr
)
+BY0

(√
λr
)
.
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Applying the boundedness condition, we have B = 0, and the solution may be written

ϕ(r) = J0 (µr)

for 0 < r <∞, where λ = µ2.

The corresponding T equation
T ′ + µ2kT = 0

has solution
T (t) = e−µ2kt

for t > 0.

Therefore, for each µ > 0, the function

u(r, t, µ) = J0 (µr) e
−µ2kt, 0 < r <∞, t > 0

satisfies the partial differential equation and the boundedness condition, and from the superposition
principle, we write

u(r, t) =

∫ ∞

0
A(µ)J0 (µr) e

−µ2ktµdµ,

and this satisfies (formally) the diffusion equation as well as the boundedness conditions. The only
thing not satisfied is the initial condition

u(r, 0) = f(r), 0 < r <∞

so we want

f(r) = u(r, 0) =

∫ ∞

0
A(µ)J0 (µr)µdµ

for 0 < r <∞.

In order to determine the coefficients A(µ), we have a theorem analogous to Dirichlet’s theorem,
called Hankel’s integral theorem

Theorem. Given a function f defined on the interval (0,∞), which is piecewise continuous and of
bounded variation on every finite subinterval [a, b], where 0 < a < b <∞, and such that

∫ ∞

0

√
r |f(r)| dr <∞,

then for each r > 0 we have

1

2

[
f(r+) + f(r−)

]
=

∫ ∞

0
A(λ)J0 (λr)λdλ

where

A(λ) =

∫ ∞

0
f(r)J0 (λr) r dr.

Note: The coefficient

A(λ) =

∫ ∞

0
f(r)J0 (λr) r dr
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is called the Fourier-Bessel transform of f(r), or the Hankel transform of f(r).

The solution to the circularly symmetric diffusion equation on an infinite 2-dimensional domain is
therefore given by

u(r, t) =

∫ ∞

0
A(µ)J0 (µr) e

−µ2ktµdµ, 0 < r <∞, t > 0

where

A(µ) =

∫ ∞

0
f(r)J0 (µr) r dr

for µ > 0.



Chapter 17

Four Sample Midterm Examinations

17.1 Midterm Exam 1

Exercise 17.1. %
Find the values of λ2 for which the boundary value problem

d2u

dx2
+ λ2u = 0, 0 < x <

π

2

u(0) = 0

∫ π
2

0
u(t) dt = 0

has nontrivial solutions.

Exercise 17.2. %
Let f(x) = cos2 x, 0 6 x 6 π, and f(x+ 2π) = f(x) otherwise.

(a) Find the Fourier sine series for f on the interval [0, π].

Hint: For n > 1
∫

cos2 x sinnx dx = − 1

2n
cosnx+

1

4

∫
[sin(n+ 2)x+ sin(n− 2)x] dx.

(b) Find the Fourier cosine series for f on the interval [0, π].

(c) For which values of x in [0, π] do the series in (a) and (b) converge to f(x)?

373
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Exercise 17.3. %
Let v(x) be the steady-state solution to the initial boundary value problem

∂2u

∂x2
+ r =

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, t > 0

∂u

∂x
(a, t) = 0, t > 0

where r is a constant. Find and solve the boundary value problem for the steady-
state solution v(x).
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17.2 Midterm Exam 2

Exercise 17.4. %
The neutron flux u in a sphere of uranium obeys the differential equation

λ

3

1

r2
d

dr

(
r2
du

dr

)
+ (k − 1)Au = 0

for 0 < r < a, where λ is the effective distance traveled by a neutron between
collisions, A is called the absorption cross section, and k is the number of neutrons
produced by a collision during fission. In addition, the neutron flux at the boundary
of the sphere is 0.

(a) Make the substitution

u =
v

r
and µ2 =

3(k − 1)A

λ

and show that v(r) satisfies
d2v

dr2
+ µ2 v = 0, 0 < r < a.

(b) Find the general solution to the differential equation in part (a) and then find
u(r) that satisfies the boundary condition and boundedness condition:

u(a) = 0 and lim
r→0+

|u(r)| bounded.

(c) Find the critical radius, that is, the smallest radius a for which the solution
is not identically 0.

Exercise 17.5. %%
Show that

| sinx| = 2

π
− 2

π

∞∑

n=2

1 + (−1)n

n2 − 1
cosnx

for −∞ < x <∞.

Hint: Using the identity sinA cosB =
1

2

[
sin(A+B)+sin(A−B)

]
, find the Fourier

cosine series of the function f(x) = sinx, for 0 6 x 6 π, and then use Dirichlet’s
theorem.
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Exercise 17.6. %%
Solve Laplace’s equation in the square 0 6 x 6 π, 0 6 y 6 π with the boundary
conditions given below

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 6 x 6 π, 0 6 y 6 π

u(0, y) = 0, 0 6 y 6 π

u(π, y) = 0, 0 6 y 6 π

u(x, 0) = 0, 0 6 x 6 π

u(x, π) = 1, 0 6 x 6 π.
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17.3 Midterm Exam 3
Exercise 17.7. %%
Consider the following eigenvalue problem on the interval [ 0, 1 ] :

u′′(x) + 2u′(x)− u(x) + λ (x+ 1)2e−2x u(x) = 0

u′(0) = 0

u′(1) = 0

(a) Explain the meaning of eigenvalue problem.

(b) Show that this eigenvalue problem is not of Sturm-Liouville type.

(c) Multiply the above equation by e2x to obtain a Sturm-Liouville problem. Iden-
tify p(x), q(x), and σ(x).

(d) Use the Rayleigh quotient to show that the leading eigenvalue is positive, that
is, λ1 > 0.

(e) Find an upper bound for the leading eigenvalue.

Exercise 17.8. %%
Consider Laplace’s equation for the steady state temperature distribution in a square
plate of side length 1.

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 6 x 6 1, 0 6 y 6 1

u(0, y) = 1, u(1, y) = 1 for 0 6 y 6 1

∂u

∂y
(x, 0) = 0,

∂u

∂y
(x, 1) = 0 for 0 6 x 6 1.

Obviously, the solution is u(x, y) = 1 for 0 6 x 6 1, 0 6 y 6 1. Show that this is
the case using separation of variables.
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17.4 Midterm Exam 4
Exercise 17.9. %
Solve the normalized wave equation

∂2u

∂t2
=
∂2u

∂x2
, 0 6 x 6 π, t > 0

u(0, t) = 0, u(π, t) = 0, t > 0

u(x, 0) = sinx,
∂u

∂t
(x, 0) = sinx, 0 6 x 6 π.

Exercise 17.10. %%
Consider the regular Sturm-Liouville problem

ϕ′′(x) + λϕ(x) = 0, 0 6 x 6 1

ϕ(0) = 0

ϕ(1) − hϕ′(1) = 0

where h > 0.
Show that there is a single negative eigenvalue λ0 if and only if h < 1. Find λ0 and
the corresponding eigenfunction ϕ0(x).
Hint: Assume λ = −µ2 for some real number µ 6= 0.

Exercise 17.11. %
Consider Laplace’s equation

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0

in a semi-circular disk of radius a centered at the origin with boundary conditions

u(r, 0) = 0, 0 < r 6 a,

u(r, π) = 0, 0 < r 6 a,

u(a, θ) = sin θ, 0 6 θ 6 π,

|u(r, θ)| <∞ as r → 0+.

Solve this problem using separation of variables.



Chapter 18

Four Sample Final Examinations

18.1 Final Exam 1

Exercise 18.1.

���
Assume that f(x) is absolutely integrable and a is a given real constant. Show that

F
(
eiaxf(x)

)
(ω) = f̂(ω − a).

Exercise 18.2. %%
Hermite’s differential equation reads

y′′ − 2xy′ + λy = 0, −∞ < x <∞

(a) Multiply by e−x2
and bring the differential equation into Sturm-Liouville form.

Decide if the resulting Sturm-Liouville problem is regular or singular.

(b) Show that the Hermite polynomials

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x

are eigenfunctions of the Sturm-Liouville problem and find the corresponding
eigenvalues.

(c) Use an appropriate weight function and show that H1 and H2 are orthogonal
on the interval (−∞,∞) with respect to this weight function.

Exercise 18.3. %
Find all functions φ for which u(x, t) = φ(x− ct) is a solution of the heat equation

∂2u

∂x2
=

1

k

∂u

∂t
, −∞ < x <∞

where k and c are constants.
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Exercise 18.4. %%
Consider the regular Sturm-Liouville problem

φ′′ + λ2 φ = 0 0 6 x 6 π

φ′(0) = 0

φ(π) = 0

(a) Find the eigenvalues λ2n and the corresponding eigenfunctions φn for this prob-
lem.

(b) Show directly, by integration, that eigenfunctions corresponding to distinct
eigenvalues are orthogonal.

(c) Given the function f(x) =
π2 − x2

2
, 0 < x < π, find the eigenfunction

expansion for f.

(d) Show that
π3

32
= 1− 1

33
+

1

53
− 1

73
+

1

93
−+ · · ·

Exercise 18.5. %%
Given the following initial boundary value problem for the heat equation on [0, 1].

∂u

∂t
=

1

9

∂2u

∂x2
− 2u

u(0, t) = 0,

u(1, t) = 0

u(x, 0) = 7 sin 3πx

(a) If u(x, t) is the solution to the problem above, find an initial boundary value
problem satisfied by

w(x, t) = e2tu(x, t).

(b) Solve the problem found in part (a) for w(x, t).

(c) Find the solution u(x, t) to the original problem.

(d) Find the time T1 such that u(x, t) < 1 for every x ∈ [0, 1] and every t > T1.
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18.2 Final Exam 2

Exercise 18.6. %
Let 0 < a < π, given the function

f(x) =





1

2a
if |x| < a

0 if x ∈ [−π, π], and |x| > a

find the Fourier series for f and use Dirichlet’s convergence theorem to show that

∞∑

n=1

sinna

n
=

1

2
(π − a)

for 0 < a < π.

Exercise 18.7. %
Consider the heat equation with a steady source

∂u

∂t
=
∂2u

∂x2
+ 7 sin 3x

subject to the initial and boundary conditions:

u(0, t) = 0, u(π, t) = 0, and u(x, 0) = 5 sin 3x.

Solve this problem using the method of eigenfunction expansions. Show that the
solution approaches a steady-state solution as t→ ∞.
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Exercise 18.8. %
Consider torsional oscillations of a homogeneous cylindrical shaft. If ω(x, t) is the
angular displacement at time t of the cross section at x, then

∂2ω

∂t2
= a2

∂2ω

∂x2
, 0 6 x 6 L, t > 0.

where the initial conditions are

ω(x, 0) = f(x), and
∂ω

∂t
(x, 0) = 0, 0 6 x 6 L,

and the ends of the shaft are fixed elastically:

∂ω

∂x
(0, t)− αω(0, t) = 0, and

∂ω

∂x
(L, t) + αω(L, t) = 0, t > 0

with α a positive constant.

(a) Why is it possible to use separation of variables to solve this problem ?

(b) Use separation of variables and show that one of the resulting problems is a
regular Sturm-Liouville problem.

(c) Show that all of the eigenvalues of this regular Sturm-Liouville problem are
positive.

Note: You do not need to solve the initial value problem, just answer the questions
(a), (b), and (c).

Exercise 18.9. %
(a) Using the method of characteristics, solve

∂w

∂t
+ c

∂w

∂x
= e2x, −∞ < x <∞, t > 0

w(x, 0) =
1

2
e2x, −∞ < x <∞.

(b) For which values of c does this initial value problem have a time-independent
solution?
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18.3 Final Exam 3

Exercise 18.10.

���
Assume that f ′′(t) is absolutely integrable and

lim
t→∞

f(t) = 0 and lim
t→∞

f ′(t) = 0.

Show that

Fs

(
f ′′
)
(ω) = −ω2Fs (f) (ω) +

2

π
ωf(0).

Exercise 18.11. %%
Legendre’s differential equation reads

(1− x2)y′′ − 2xy′ + λy = 0, −1 < x < 1

(a) Write the differential equation in Sturm-Liouville form. Decide if the resulting
Sturm-Liouville problem is regular or singular.

(b) Show that the first four Legendre polynomials

P0(x) = 1, P1(x) = x, P2(x) =
1
2(3x

2 − 1), P3(x) =
1
2(5x

3 − 3x)

are eigenfunctions of the Sturm-Liouville problem and find the corresponding
eigenvalues.

(c) Use an appropriate weight function and show that P1 and P2 are orthogonal
on the interval (−1, 1) with respect to this weight function.

Exercise 18.12. %
Find all functions φ for which u(x, t) = φ(x+ ct) is a solution of the heat equation

∂2u

∂x2
=

1

k

∂u

∂t

where k and c are constants.
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Exercise 18.13. %%
Let

f(x) =

{
cos x |x| < π,

0 |x| > π.

(a) Find the Fourier integral of f.

(b) For which values of x does the integral converge to f(x)?

(c) Evaluate the integral ∫ ∞

0

λ sinλπ cos λx

1− λ2
dλ

for −∞ < x <∞.
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18.4 Final Exam 4
Exercise 18.14. %
A fluid occupies the half plane y > 0 and flows past (left to right, approximately)
a plate located near the x-axis. If the x and y components of the velocity are
U0 + u(x, y) and v(x, y) , respectively where U0 is the constant free-stream velocity,
then under certain assumptions, the equations of motion, continuity, and state can
be reduced to

∂u

∂y
=
∂v

∂x
,

(
1−M2

) ∂u
∂x

+
∂v

∂y
= 0, (∗)

valid for all −∞ < x <∞, 0 < y <∞.
Suppose there exists a function φ (called the velocity potential ), such that

u =
∂φ

∂x
and v =

∂φ

∂y
.

(a) State a condition under which the first equation in (∗) above becomes an
identity.

(b) Show that the second equation in (∗) above becomes (assuming the free-stream
Mach number M is a constant) a partial differential equation for φ which is
elliptic if M < 1 or hyperbolic if M > 1.

Exercise 18.15. %
Besides linear equations, some nonlinear equations can also result in traveling wave
solutions of the form

u(x, t) = φ(x− ct).

Fisher’s equation , which models the spread of an advantageous gene in a population,
where u(x, t) is the density of the gene in the population at time t and location x,
is given by

∂u

∂t
=
∂2u

∂x2
+ u(1− u).

Show that Fisher’s equation has a solution of this form if φ satisfies the nonlinear
ordinary differential equation

φ′′ + cφ′ + φ(1− φ) = 0.
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Exercise 18.16. %%
Given the regular Sturm-Liouville problem

φ′′(x) + λ2φ(x) = 0, 0 6 x 6 π

φ(0) = 0,

φ(π) = 0.

(a) Find the eigenvalues λ2n and corresponding eigenfunctions φn(x) for this prob-
lem.

(b) Show directly, by integration, that eigenfunctions corresponding to distinct
eigenvalues are orthogonal on the interval [0, π].

(c) Use the method of eigenfunction expansions to find the solution to the bound-
ary value problem

u′′(x) = −x, 0 6 x 6 π

u(0) = 0,

u(π) = 0.

(d) Solve the problem in (c) by direct integration and use this result to show that

x(π2 − x2)

6
= 2

∞∑

n=1

(−1)n+1 sinnx

n3

for −π 6 x 6 π.

Exercise 18.17. %%
Find the solution to Laplace’s equation on the rectangle:

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b

u(0, y) = 1, 0 < y < b

u(a, y) = 1, 0 < y < b

∂u

∂y
(x, 0) = 0, 0 < x < a

∂u

∂y
(x, b) = 0, 0 < x < a

using the method of separation of variables. Is your solution what you expected?
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Exercise 18.18. %
Solve the following initial value problem for the damped wave equation

∂2u

∂t2
+ 2

∂u

∂t
+ u =

∂2u

∂x2
, −∞ < x <∞, t > 0

u(x, 0) =
1

1 + x2
, −∞ < x <∞

∂u

∂t
(x, 0) = 1, −∞ < x <∞.

Hint: Do not use separation of variables, instead solve the initial value – boundary
value problem satisfied by w(x, t) = et · u(x, t).



Appendix A

Higher Dimensional Fourier Transforms

Notice: In this appendix, the Fourier transform has been defined using e−iλx whereas

in the previous section we used eiλx. These definitions are equivalent in the sense

that the results will be the same. The computations, however, need to be adjusted to

reflect the sign change. We will make these changes in future reviews.

One can define n-dimensional Fourier transforms and inverse Fourier transforms as follows:

F (
→
µ) =

1

(2π)n

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(

→
x)e−i

→
µ ·→x dx1 . . . dxn

f(
→
x) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
F (

→
µ)ei

→
µ ·→x dµ1 . . . dµn,

where
→
x = (x1, . . . , xn) and

→
µ = (µ1, . . . , µn).

EXAMPLE A.1. Consider the following two–dimensional heat equation:

ut = k(uxx + uuu), −∞ < x, y <∞, t > 0,

u(x, y, 0) = f(x, y).

Let U(µ, λ, t) and F (µ, λ) be the Fourier transforms of u(x, y, t) and f(x, y) respectively. Then

U(µ, λ, t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
u(x, y, t)e−i(µx+λy) dx dy, u(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞
U(µ, λ, t)ei(µx+λy) dµ dλ,

F (µ, λ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(µx+λy) dx dy, f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (µ, λ)ei(µx+λy) dµ dλ.

It is clear that F (µ, λ) = U(µ, λ, 0). Differentiating u we get

ut(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞
Ut(µ, λ, t)e

i(µx+λy) dµ dλ,

∇2u(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞
−(µ2 + λ2)U(µ, λ, t)ei(µx+λy) dµ dλ.

Plug into the equation to get

ut − kuxx = 0 =⇒
∫ ∞

−∞

∫ ∞

−∞
{Ut + k(µ2 + λ2)U}ei(µx+λy) dµ dλ = 0.
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This gives the following ODE for U :

∂U

∂t
+ k(µ2 + λ2)U = 0, U(µ, λ, 0) = F (µ, λ).

Therefore

U(µ, λ, t) = F (µ, λ)e−k(µ2+λ2)t.

Thus, the solution to the heat equation is

u(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞
F (µ, λ)e−k(µ2+λ2)tei(µx+λy) dµ dλ

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)e−i(µξ+λη)e−k(µ2+λ2)tei(µx+λy) dξ dη dµ dλ

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)

{∫ ∞

−∞
e−kµ2t+iµ(x−ξ) dµ

}{∫ ∞

−∞
e−kλ2t+iλ(y−η) dλ

}
dξ dη

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)

(√
π

kt
e−

(x−ξ)2

4kt

)(√
π

kt
e−

(y−η)2

4kt

)
dξ dη

=
1

4πkt

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)e−

1
4kt

[(x−ξ)2+(y−η)2 ] dξ dη.

Special case: f(ξ, η) = δ(ξ)δ(η).

u(x, y, t) =
1

4πkt
e−

x2+y2

4kt .

Before going on to solve the 3–dimensional wave equation, the following example will prove useful.

EXAMPLE A.2. Find the 3–dimensional Fourier transform of

f(x, y, z) =

{
1, (x, y, z) ∈ ΩR

0, (x, y, z) 6∈ ΩR

where ΩR := {(x, y, z) ∈ R
3|x2 + y2 + z2 6 R2}.

Solution:

We have

F (µ, λ, ν) =
1

(2π)3

∫∫∫

R3

f(x, y, z)e−i(µx+λy+νz) dVx =
1

(2π)3

∫∫∫

ΩR

e−i(µx+λy+νz) dVx.

To evaluate this integral we change to spherical coordinates with the z-axis oriented in the direction
of the fixed vector

→
µ = (µ, λ, ν). Then we get

µx+ λy + νz =
→
µ · →x = |→µ | |→x | cos θ
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and the Fourier transform becomes

F (
→
µ) = F (µ, λ, ν) =

1

(2π)3

∫∫∫

ΩR

e−i
→
µ ·→x dVx

=
1

(2π)3

∫ R

0

∫ π

−π

∫ π

0
e−i|→µ |r cos θr2 sin θ dθ dφ dr

=
1

(2π)2

∫ R

0

∫ π

0
e−i|→µ |r cos θr2 sin θ dθ dr =

1

(2π)2

∫ R

0

e−i|→µ |r cos θ

i|→µ |r

∣∣∣∣
π

0

r2 dr

=
2

(2π)2|→µ|

∫ R

0
r sin(|→µ |r) dr = 2

(2π)2|→µ |3
[sin(|→µ |R)− |→µ |R cos(|→µ |R)].

For any R, let SR := ∂ΩR. That is SR = {(x, y, z) ∈ R
3|x2 + y2 + z2 = R2}. The following lemma

will also prove useful.

Lemma 57. ∫∫

SR

(·)dσ =
d

dR

∫∫∫

ΩR

(·)dV.

Proof.
The surface integral in spherical coordinates is given by

∫∫

SR

(·)dσ =

∫ π

−π

∫ π

0
(·)R2 sin θ dθ dφ.

The volume integral in spherical coordinates is given by

∫∫∫

ΩR

(·)dV =

∫ R

0

∫ π

−π

∫ π

0
(·)r2 sin θ dθ dφ dr =

∫ R

0



∫∫

Sr

(·) dσ


 dr.

The result follows by differentiating with respect to R.

We now apply this lemma to a result obtained in the previous example:

∫∫

SR

ei
→
µ ·→x dσx =

d

dR

∫∫∫

ΩR

ei
→
µ ·→x dVx =

d

dR

{
4π

|→µ |3
[sin(|→µ |R)− |→µ |R cos(|→µ |R)]

}
=

4π

|→µ |
R sin(|→µ |R).

This result, more conveniently written

∫∫

SR

ei
→
µ ·→x dσx = 4πR2 sin(|

→
µ |R)

|→µ |R
(A.1)

will be used in the next example.
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EXAMPLE A.3. Consider the following 3–dimensional wave equation:

utt = c2∇2u, (x, y, z) ∈ R
3, t > 0,

u(x, y, z, 0) = f(x, y, z),

ut(x, y, z, 0) = g(x, y, z).

For convenience we denote
→
x = (x, y, z) and

→
µ = (µ, λ, ν). Let U , F , and G represent the 3–

dimensional Fourier transforms of u, f , and g respectively. Then we have

U(
→
µ, t) =

1

(2π)3

∫∫∫

R3

u(
→
x, t)e−i

→
µ ·→x dVx, u(

→
x, t) =

∫∫∫

R3

U(
→
µ, t)ei

→
µ ·→x dVµ,

F (
→
µ) =

1

(2π)3

∫∫∫

R3

f(
→
x)e−i

→
µ ·→x dVx, f(

→
x) =

∫∫∫

R3

F (
→
µ)ei

→
µ ·→x dVµ,

G(
→
µ) =

1

(2π)3

∫∫∫

R3

g(
→
x )e−i

→
µ ·→x dVx, g(

→
x) =

∫∫∫

R3

G(
→
µ)ei

→
µ ·→x dVµ. (A.2)

Differentiating u we get

utt(
→
x, t) =

∫∫∫

R3

Utt(
→
µ, t)ei

→
µ ·→x dVµ,

uxx(
→
x, t) = −

∫∫∫

R3

µ2U(
→
µ, t)ei

→
µ ·→x dVµ,

uyy(
→
x, t) = −

∫∫∫

R3

λ2U(
→
µ, t)ei

→
µ ·→x dVµ,

uzz(
→
x, t) = −

∫∫∫

R3

ν2U(
→
µ, t)ei

→
µ ·→x dVµ.

Plug into the wave equation to get
∫∫∫

R3

[Utt(
→
µ, t) + c2(µ2 + λ2 + ν2)U(

→
µ, t)]ei

→
µ ·→x dVµ = 0.

This leads to the following initial value problem for U :

∂2U

∂t2
+ c2|→µ |2U = 0,

U(
→
µ, 0) = F (

→
µ),

∂U

∂t
(
→
µ, 0) = G(

→
µ).

The solution is easily obtained:

U(
→
µ, t) = F (

→
µ) cos(c|→µ |t) +G(

→
µ)

sin(c|→µ |t)
c|→µ |

.
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Therefore the solution to the wave equation is

u(
→
x, t) =

∫∫∫

R3

[F (
→
µ) cos(c|→µ |t) +G(

→
µ)

sin(c|→µ |t)
c|→µ |

] ei
→
µ ·→x dVµ. (A.3)

This is the Fourier transform representation of the solution to the wave equation. We now derive
the 3–dimensional analogue of d’Alembert’s solution. To this end, recall (A.1). Replace R with ct
and re-arrange (A.1) to get:

sin(c|→µ |t)
c|→µ |

=
1

4πc2t

∫∫

Sct

ei
→
µ ·

→
ξ dσξ.

Multiply by G(
→
µ)ei

→
µ ·→x and integrate over R3 to get

∫∫∫

R3

G(
→
µ)

sin(c|→µ |t)
c|→µ |

ei
→
µ ·→x dVµ =

1

4πc2t

∫∫∫

R3

∫∫

Sct

G(
→
µ) ei

→
µ ·→x ei

→
µ ·

→
ξ dσξ dVµ

=
1

4πc2t

∫∫

Sct



∫∫∫

R3

G(
→
µ) ei

→
µ ·(→x+

→
ξ ) dVµ


 dσξ

=
1

4πc2t

∫∫

Sct

g(
→
x +

→
ξ ) dσξ . (using (A.2))

For the other part of the solution we have

∫∫∫

R3

F (
→
µ) cos(c|→µ |t)ei

→
µ ·→x dVµ =

∂

∂t

∫∫∫

R3

F (
→
µ)

sin(c|→µ |t)
c|→µ |

ei
→
µ ·→x dVµ

=
∂

∂t





1

4πc2t

∫∫

Sct

f(
→
x +

→
ξ ) dσξ



 .

Therefore the solution to the wave equation is

u(
→
x, t) =

∂

∂t





1

4πc2t

∫∫

Sct

f(
→
x +

→
ξ ) dσξ



+

1

4πc2t

∫∫

Sct

g(
→
x +

→
ξ ) dσξ . (A.4)

This formula is due to Poisson, but is known as Kirchhoff’s formula, and is the 3–dimensional
analogue of d’Alembert’s solution.

It is worthwhile to compare the two forms of the solution to the wave equation. To evaluate
Eq. (A.3) a six fold integration is required: a triple integral to evaluate F and G, and then another
triple integral to get the solution u. However, to evaluate Eq. (A.4), only a double (surface) integral
is required. For this reason Kirchhoff’s formula is by far the more desirable way to represent the
solution.
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We can write Kirchhoff’s formula in a more compact form if we define the following mean value
operator:

MR[f ] :=
1

4πR2

∫∫

SR

f(
→
x +

→
ξ ) dσξ.

This integral operator gives the mean value of f on the surface of the sphere SR. Kirchhoff’s
formula may now be written as

u(
→
x, t) =

∂

∂t
(tMct[f ]) + tMct[g]. (A.5)

EXAMPLE A.4. Consider the following 2–dimensional wave equation:

utt = c2∇2u, (x, y) ∈ R
2, t > 0,

u(x, y, 0) = f(x, y),

ut(x, y, 0) = g(x, y).

In order to solve this 2–dimensional problem we use the solution of the 3–dimensional problem and
make use of the fact that the relevant functions are independent of z. Consider the expression

MR[g] =
1

4πR2

∫∫

SR

g(x+ ξ, y + η) dσξ .

Since the integrand is independent of z (and ζ), the integral is just double the integral over the
upper hemisphere of SR. For the upper hemisphere of SR : ξ2 + η2 + ζ2 = R2 we have

ζ =
√
R2 − ξ2 − η2, =⇒ dσξ =

√

1 +

(
∂ζ

∂ξ

)2

+

(
∂ζ

∂η

)2

dξ dη =
R√

R2 − ξ2 − η2
dξ dη.

Hence

MR[g] =
1

4πR2

∫∫

SR

g(x+ ξ, y + η) dσξ =
1

2πR

∫∫

DR

g(x+ ξ, y + η)√
R2 − ξ2 − η2

dξ dη,

where
DR := {(ξ, η) ∈ R

2|ξ2 + η2 6 R2}.
Apply this result to both terms in (A.5) to get

u(x, y, t) =
1

2πc




∂

∂t

∫∫

Dct

f(x+ ξ, y + η)√
R2 − ξ2 − η2

dξ dη +

∫∫

Dct

g(x + ξ, y + η)√
R2 − ξ2 − η2

dξ dη



 .

It is worth while comparing the solutions for the 2 and 3 dimensional wave equations:

u(
→
x, t) =

1

4πc2




∂

∂t


1

t

∫∫

Sct

f(
→
x +

→
ξ ) dσξ


+

1

t

∫∫

Sct

g(
→
x +

→
ξ ) dσξ



 , (3-d)

u(
→
x, t) =

1

2πc




∂

∂t

∫∫

Dct

f(
→
x +

→
ξ )√

R2 − |
→
ξ |2

dξ dη +

∫∫

Dct

g(
→
x +

→
ξ )√

R2 − |
→
ξ |2

dξ dη



 . (2-d)



394

This representation displays an important property of the three dimensional wave equation. This
property is known as Huygens’ principle and it may be stated as follows: If the initial data f
and g have compact support, i.e. they are identically zero outside of a sufficently large set, then
the solution u(x, y, z, t) = 0 for sufficently large time t. This is clear since the expression for the
solution contains only surface integrals over a sphere of radius ct which, for sufficently large t, is
so large so as to not intersect the set where f 6= 0 and g 6= 0. Thus, a limited initial disturbance is
experienced by an observer for a finite duration.

For the two dimensional wave equation the situation is quite different. In this case the expression
for the solution contains integrals over the interior of a circle of radius ct. What this means is that
the integration will always cover the region where f 6= 0 and g 6= 0, even though the boundary of
the circle extends beyond the region where f 6= 0 and g 6= 0. As a consequence, Huygens’ principle
is not valid for the two dimensional wave equation. For example, a pebble dropped in a pond of
water will create a wave motion on the surface of the water. An observer positioned r units away
from the initial disturbance will sense the disturbance at time t = r/c later. However, after this
time the disturbance experienced by the observer will continue to be non zero for all subsequent
time. This is the phenonenon of a wake behind the initial disturbance. This wake phenonenon is a
property of the two dimensional wave motion. Huygens’ principle can be restated to say that, in
three dimensional wave motion, no wake is present.

As one final example with the wave equation, we show that d’Alembert’s solution for the one
dimensional wave motion actually is the one dimensional version of Kirchhoff’s formula.

EXAMPLE A.5. Consider the following 1–dimensional wave equation:

utt = c2uxx, x ∈ R, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

In order to solve this 1–dimensional problem we use the solution of the 3–dimensional problem and
make use of the fact that the relevant functions are independent of y and z. Consider the expression

MR[g] =
1

4πR2

∫∫

SR

g(x+ ξ) dσξ.

If we parameterize SR with spherical coordinates

ξ = R cos θ, η = R sin θ cosφ, ζ = R sin θ sinφ

then the expression for MR[g] becomes

MR[g] =
1

4πR2

∫∫

SR

g(x+ ξ) dσξ =
1

4πR2

∫ π

−π

∫ π

0
g(x+R cos θ)R2 sin θ dθ dφ

=
1

2

∫ π

0
g(x+R cos θ) sin θ dθ =

1

2R

∫ R

−R
g(x+ ξ) dξ.
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Apply this result to both terms in (A.5) to get

u(x, t) =
∂

∂t

{
1

2c

∫ ct

−ct
f(x+ ξ) dξ

}
+

1

2c

∫ ct

−ct
g(x + ξ) dξ

=
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds,

which is just d’Alembert’s solution.

We now use Fourier transforms to find a solution to Laplace’s equation in a half-plane.

EXAMPLE A.6. Consider the following 2–dimensional Laplace equation:

∇2u = 0, x ∈ R, y > 0, t > 0,

u(x, 0) = f(x).

We require the additional assumption that |u(x, y)| < ∞. Let U(µ, y) and F (µ) be the Fourier
transforms of u(x, y) and f(x) respectively. Then

U(µ, y) =
1

2π

∫ ∞

−∞
u(x, y)e−iµx dx, u(x, y) =

∫ ∞

−∞
U(µ, y) eiµx dµ,

F (µ) =
1

2π

∫ ∞

−∞
f(x) e−iµx dx, f(x) =

∫ ∞

−∞
F (µ) eiµx dµ.

Plug into the equation to get

uxx + uyy = 0 =⇒
∫ ∞

−∞
[−µ2U(µ, y) + Uyy(µ, y)]e

iµx dµ = 0.

This leads to the following problem for U :

∂2U

∂y2
− µ2U = 0, 3U(µ, 0) = F (µ).

Notice that this is a second order ODE with only one auxiliary condition. The second condition
we use is that we require that U be bounded. The soluton to the ODE itself is

U(µ, y) = a(µ)eµy + b(µ)e−µy .

¿From the boundedness condition we get

|U(µ, y)| <∞ =⇒
{
a(µ) = 0, for µ > 0

b(µ) = 0, for µ < 0
=⇒ U(µ, y) = A(µ)e−|µ|y.

The other condition then gives

U(µ, 0) = F (µ) =⇒ U(µ, y) = F (µ)e−|µ|y.
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The soluton to the problem is

u(x, y) =

∫ ∞

−∞
F (µ)e−|µ|yeiµx dµ

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(ξ)e−|µ|yeiµxe−iµξ dξ dµ

=
1

2π

∫ ∞

−∞
f(ξ)

(∫ ∞

−∞
e−|µ|yeiµ(x−ξ) dµ

)
dξ

=
1

2π

∫ ∞

−∞
f(ξ)

(∫ ∞

−∞
e−|µ|y[cos(µ(x− ξ)) + i sin(µ(x− ξ))] dµ

)
dξ

=
1

2π

∫ ∞

−∞
f(ξ)

(
2

∫ ∞

0
e−µy cos(µ(x− ξ)) dµ

)
dξ

=
1

π

∫ ∞

−∞
f(ξ)

(
e−µy

(x− ξ)2 + y2
[−y cos(µ(x− ξ)) + (x− ξ) sin(µ(x− ξ))]

) ∣∣∣∣
∞

µ=0

dξ

=
1

π

∫ ∞

−∞

y f(ξ)

(x− ξ)2 + y2
dξ

This is Poisson’s integral formula for the half plane.



Appendix B

Generalizations to Higher Dimensions

B.1 Classification of PDEs in R
n

For the classification of second order linear PDEs in two variables in Chapter 1, we wrote the PDE
in matrix form, and introduced the symbol A of a differential operator Chapter 1Introduce the
following notation:

(
∂

∂x

∂

∂y

)(
a b
b c

)( ∂
∂x
∂
∂y

)
u = auxx + 2buxy + cuyy.

Then we classified the equations according to the sign pattern of the eigenvalues of the matrix

A =

(
a b
b c

)
.

We use the same approach for higher dimensional second order equations.

Now consider a 2nd order PDE in n independent variables x1, x2, . . . , xn:

n∑

i=1

n∑

j=1

aij(x)
∂2u

∂xi∂xj
= F (x, u, ux1 , . . . , uxn), (B.1)

where x = (x1, x2, . . . , xn). Since the classification only depends on the highest order terms (2nd
order terms), we summarized all lower order terms in a big function F . The above PDE may be
written in matrix form as

∂x
TA ∂xu = F̃ ,

where the symbol

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann




is a real symmetric matrix, and the vector of derivatives ∂x =
[

∂
∂x1

∂
∂x2

· · · ∂
∂xn

]T
.

We may now generalize the classification scheme to second order PDEs of any dimension.

Definition 58. Eq. (B.1) is said to be
(i) elliptic if all eigenvalues of A have the same sign;

397
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(ii) parabolic if at least one eigenvalue of A is zero;
(iii) hyperbolic if one eigenvalue of A has a sign different from the others; and
(iv) ultrahyperbolic if two or more eigenvalues of A have a sign different from the others.

Note that ultrahyperbolic equations occur only for dimension n > 4.

EXAMPLE B.1. For the 3-d Laplace equation ∇2u = 0 (i.e. uxx + uyy + uzz = 0) we have

[
∂
∂x

∂
∂y

∂
∂z

]




1 0 0

0 1 0

0 0 1







∂
∂x

∂
∂y

∂
∂z



u = 0.

To get the eigenvalues:

|A− µI| = 0 =⇒ (µ − 1)3 = 0 =⇒ µ1 = 1, µ2 = 1, µ3 = 1.

Therefore the PDE is elliptic.

EXAMPLE B.2. For the 3-d heat equation ut = ∇2u we have

[
∂
∂t

∂
∂x

∂
∂y

∂
∂z

]




0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







∂
∂t

∂
∂x

∂
∂y

∂
∂z




u = 0.

To get the eigenvalues:

|A− µI| = 0 =⇒ µ(µ + 1)3 = 0 =⇒ µ1 = 0, µ2 = −1, µ3 = −1, µ4 = −1.

Therefore the PDE is parabolic.

EXAMPLE B.3. For the 3-d wave equation utt = ∇2u we have

[
∂
∂t

∂
∂x

∂
∂y

∂
∂z

]




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







∂
∂t

∂
∂x

∂
∂y

∂
∂z




u = 0.

To get the eigenvalues:

|A− µI| = 0 =⇒ (µ− 1)(µ + 1)3 = 0 =⇒ µ1 = 1, µ2 = −1, µ3 = −1, µ4 = −1.

Therefore the PDE is hyperbolic.
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B.2 Adjoint Operators
In this section we assume that Ω ⊂ R

N is a bounded set, that x = (x1, x2, . . . , xN ), and that we
have some inner product defined:

〈f, g〉 :=
∫

Ω
f(x) g(x)w(x) dV, (dV = dx1 dx2 . . . dxN )

where w is some non-negative weight function. Suppose we have a function f : Ω → R. We define
the support of f as follows:

Definition 59. The support of the function f : Ω → R, denoted supp(f), is

supp(f) := {x ∈ Ω; f(x) 6= 0}.

EXAMPLE B.4. Suppose Ω = [−4, 4], and f(x) = x2, g(x) = 1−x2 and h(x) =
{
sin(x) 0 < x < 4

0 −4 < x 6 0
.

Then

supp(f) = {x ∈ Ω; f(x) 6= 0} = [−4, 0) ∪ (0, 4] = [−4, 4] = Ω;

supp(g) = {x ∈ Ω; g(x) 6= 0} = [−4,−1) ∪ (−1, 1) ∪ (1, 4] = [−4, 4] = Ω;

supp(h) = {x ∈ Ω; h(x) 6= 0} = (0, π) ∪ (π, 4) = [0, 4].

We introduce some more notation. Let Ω ⊂ R
N be open.

C(Ω) = {f : Ω ⊂ R
N → R; f is continuous};

Cn(Ω) = {f : Ω ⊂ R
N → R; ∂f/∂xi ∈ Cn−1(Ω), i = 1, . . . , N}, n ∈ N;

C∞(Ω) = ∩∞
n=1C

n(Ω);
C0(Ω) = {f ∈ C(Ω); supp(f) is compact.};
Cn
0 (Ω) = C0(Ω) ∩ Cn(Ω);

C∞
0 (Ω) = C0(Ω) ∩ C∞(Ω).

Note that φ ∈ C∞
0 (Ω) implies that φ and all of its derivatives are zero near ∂Ω. Functions in

C∞
0 (Ω) are sometimes called “test functions”.

EXAMPLE B.5. Let Ω = (−2, 2) and let

φ(x) =

{
e1/(x

2−1) |x| < 1

0 |x| > 1
.

Then supp(φ) = [−1, 1] is compact. It can be verified that all derivatives of φ exist so that
φ ∈ C∞

0 (−2, 2). The first couple of derivatives of φ are:

φ′(x) =

{
2x

(x2−1)2
e1/(x

2−1) |x| < 1

0 |x| > 1
, φ′′(x) =

{
2 3x4−1
(x2−1)4

e1/(x
2−1) |x| < 1

0 |x| > 1
.

Suppose we have a linear operator L : Cn(Ω) → Cm(Ω). We define the adjoint as follows:
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Definition 60. The formal adjoint of L, denoted L∗, is the linear operator that satisfies the
following:

〈Lu, φ〉 = 〈u,L∗φ〉 ∀u ∈ Cn(Ω), ∀φ ∈ C∞
0 (Ω).

That such an adjoint always exists will not be proven here. We merely illustrate with several
examples. First a couple of one dimensional examples.

EXAMPLE B.6. Suppose L : C1(a, b) → C(a, b) is defined by L := d/dx. Then we have

〈Lu, φ〉 =
∫ b

a
(Lu)φdx =

∫ b

a
u′(x)φ(x) dx = u(x)φ(x)

∣∣∣∣
b

a

−
∫ b

a
u(x)φ′(x) dx

= u(b)φ(b) − u(a)φ(a) −
∫ b

a
u(Lφ) dx = 0− 0− 〈u,Lφ〉 = 〈u,−Lφ〉 .

Therefore L∗ = −L = −d/dx.

EXAMPLE B.7. Suppose L : C2(a, b) → C(a, b) is defined by L := d2/dx2. Then we have

〈Lu, φ〉 =
∫ b

a
(Lu)φdx =

∫ b

a
u′′(x)φ(x) dx = u′(x)φ(x)

∣∣∣∣
b

a

−
∫ b

a
u′(x)φ′(x) dx

= u′(b)φ(b) − u′(a)φ(a) −
{
u(x)φ′(x)

∣∣∣∣
b

a

−
∫ b

a
u(x)φ′′(x) dx

}

= −[u(b)φ′(b)− u(a)φ′(a)] +
∫ b

a
u(x)φ′′(x) dx

= 〈u,Lφ〉 .

Therefore L∗ = L = d2/dx2.

This prompts the following definition:

Definition 61. A linear operator L is said to be formally self-adjoint if L = L∗.

Now for a few higher dimensional examples.

EXAMPLE B.8. Suppose L : C2(Ω) → C(Ω), where Ω ⊂ R
3, is defined by L := ∇2. Before

proceeding with the main calculation, we need to use a couple of vector identities. We have

→
∇ · (φ

→
∇u) =

→
∇φ ·

→
∇u+ φ∇2u,

→
∇ · (u

→
∇φ) =

→
∇u ·

→
∇φ+ u∇2φ.

Subtracting one from the other we get

φ∇2u = u∇2φ+
→
∇ · (φ

→
∇u− u

→
∇φ). (B.2)
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Now, proceeding to calculate the adjoint, we have

〈Lu, φ〉 =
∫∫∫

Ω

(Lu)φdV =

∫∫∫

Ω

(∇2u)φdV

=

∫∫∫

Ω

[u∇2φ+
→
∇ · (φ

→
∇u− u

→
∇φ)] dV 7(using (B.2))

=

∫∫∫

Ω

u∇2φdV +

∫∫

∂Ω

(φ
→
∇u− u

→
∇φ) · →n dσ (using the divergence theorem)

=
〈
u,∇2φ

〉
+ 0 = 〈u,Lφ〉 . 12(since φ ∈ C∞

0 (Ω))

Therefore L∗ = L = ∇2. The Laplacian is formally self-adjoint.

EXAMPLE B.9. Suppose L : C1(Ω) → C(Ω), where Ω ⊂ R
n, is defined by L :=

n∑
i=1

bi(x)
∂

∂xi
with

bi ∈ C1(Ω). We have

〈Lu, φ〉 =
∫

Ω

(
n∑

i=1

bi(x)
∂u

∂xi
(x)

)
φ(x) dV =

n∑

i=1

∫

Ω
bi(x)

∂u

∂xi
(x)φ(x) dV

=

∫

Ω

n∑

i=1

[
∂

∂xi
(biuφ)− u

∂

∂xi
(biφ)

]
dV

=

∫

∂Ω

n∑

i=1

biuφni dσ −
∫

Ω

n∑

i=1

u
∂

∂xi
(biφ) dv (using the divergence theorem)

= 0−
∫

Ω
u

(
n∑

i=1

∂

∂xi
(biφ)

)
dv =

〈
u,−

n∑

i=1

∂

∂xi
(biφ)

〉
= 〈u,L∗φ〉 .

Therefore L∗φ = −
n∑

i=1

∂
∂xi

(biφ).

EXAMPLE B.10. Suppose L : C2(Ω) → C(Ω), where Ω ⊂ R
n, is defined by L :=

n∑
i=1

n∑
j=1

aij(x)
∂2

∂xi∂xj

with aij ∈ C2(Ω). It can be shown, in a manner similar to the calulation of the previous example

(exercise), that the adjoint is given by L∗φ =
n∑

i=1

n∑
j=1

∂2

∂xi∂xj
(aijφ).

One can easily show that the adjoint operator satisfies the following property:

(L1 + L2)
∗ = L∗

1 + L∗
2.

Using this property, together with the results of the last two examples, we see that the adjoint for
the general 2nd order linear differential operator

Lu =

n∑

i=1

n∑

j=1

aij(x)
∂2u

∂xi∂xj
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u
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is given by

L∗u =

n∑

i=1

n∑

j=1

∂2

∂xi∂xj
(aij(x)u) −

n∑

i=1

∂

∂xi
(bi(x)u) + c(x)u.

Under what conditions is L self-adjoint? It can be show that L is self-adjoint if

bi(x) =

n∑

j=1

∂aij
∂xj

.

In this case we have

Lu = L∗u =
n∑

i=1

n∑

j=1

∂

∂xi
(aij

∂u

∂xj
) + c(x)u.

EXAMPLE B.11. If we let n = 3 and aij(x) = δijp(x) in the previous expression, then

Lu =

3∑

i=1

3∑

j=1

∂

∂xi
(δijp(x)

∂u

∂xj
) + c(x)u =

3∑

i=1

∂

∂xi
(p(x)

∂u

∂xj
) + c(x)u =

→
∇ · (p(x)

→
∇u) + c(x)u.

Thus, the differential operator that appears in the general heat equation is self-adjoint.

We now define a certain bilinear functional:

Definition 62. Let J : Cn(Ω)× Cn(Ω) → R be given by

J(u, v) := 〈Lu, v〉 − 〈u,L∗v〉 .

Notice that J(u, φ) = 〈Lu, φ〉 − 〈u,L∗φ〉 = 0 for all φ ∈ C∞
0 (Ω) but that, in general, J(u, v) 6= 0.

EXAMPLE B.12. Suppose L : C2(a, b) → C(a, b) is defined by L := d2/dx2. Then we saw before
that L = L∗ and we have

J(u, v) = 〈Lu, v〉 − 〈u,Lv〉 =
∫ b

a
(u′′v − uv′′) dx

=

∫ b

a
[(u′v)′ − u′v′ − (uv′)′ + u′v′] dx =

∫ b

a
[(u′v)′ − (uv′)′] dx

= (u′v − uv′)

∣∣∣∣
b

a

= u′(b)v(b) − u(b)v′(b)− u′(a)v(a) + u(a)v′(a).

Boundary value problems consist of a PDE together with appropriate boundary conditions. Let
Ω ⊂ R

n. Define the following “linear boundary operator”:

B : C2(∂Ω) → C(∂Ω) by Bu := αu

∣∣∣∣
∂Ω

+ β
∂u

∂n

∣∣∣∣
∂Ω

.

If Ω = (a, b), then ∂Ω = {a} ∪ {b} (a disconnected set) so that B splits into two parts:

B1u = α11(a)u(a) − β11(a)u
′(a) + α12(b)u(b)− β12(b)u

′(b),

B2u = α21(a)u(a) + β21(a)u
′(a) + α22(b)u(b) + β22(b)u

′(b).
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Typically B1 applies at x = a and B2 applies at x = b, in which case this reduces to

B1u = α11(a)u(a) − β11(a)u
′(a) = α1(a)u(a)− β1(a)u

′(a),

B2u = α22(b)u(b) + β22(b)u
′(b) = α2(b)u(b) + β2(b)u

′(b).

Consider the following linear homogeneous boundary value problem with linear homogeneous
boundary conditions:

Lu = 0, x ∈ Ω ⊂ R
n, (B.3)

Bu = 0, x ∈ ∂Ω.
Solutions to this problem will lie in the set M := {u ∈ C2(Ω)| Bu = 0}. It is easily shown that the
set M is a vector subspace of C2(Ω).

We now define the following set associated with M:

M∗ := {v ∈ C2(Ω)| J(u, v) = 0 ∀u ∈ M}.
There exists an operator B∗ such that M∗ can be rewritten as

M∗ = {v ∈ C2(Ω)| B∗v = 0}.
We call B∗ the adjoint boundary operator.

EXAMPLE B.13. Suppose L : C2(a, b) → C(a, b) is defined by L := d2/dx2 and the boundary
operator is given by

B1u = u′(a)− u(b), B2u = u′(b).

Then M and M∗ are given by

M = {u ∈ C2(a, b)| u′(a) = u(b), u′(1) = 0},
M∗ = {v ∈ C2(a, b)| J(u, v) = 0 ∀u ∈ M}.

J(u, v) = 〈Lu, v〉 − 〈u,Lv〉 =
∫ b

a
(u′′v − uv′′) dx

=

∫ b

a
[(u′v)′ − u′v′ − (uv′)′ + u′v′] dx =

∫ b

a
[(u′v)′ − (uv′)′] dx

= (u′v − uv′)

∣∣∣∣
b

a

= u′(b)v(b) − u(b)v′(b)− u′(a)v(a) + u(a)v′(a).

Thus we have

u ∈ M =⇒ J(u, v) = u′(b)v(b) − u(b)v′(b)− u′(a)v(a) + u(a)v′(a)

= 0− u(b)v′(b)− u(b)v(a) + u(a)v′(a)

= −u(b)[v′(b) + v(a)] + u(a)v′(a).

Therefore

v ∈ M∗ =⇒ J(u, v) = 0 ∀u ∈ M =⇒
{
v′(b) + v(0) = 0

v′(a) = 0
=⇒

{
B∗

1v = v(a) + v′(b),

B∗
2v = v′(a),

and we get
M∗ = {v ∈ C2(Ω)| v(a) + v′(b) = 0, v′(a) = 0}.
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The adjoint problem to (B.3) is defined as

L∗u = 0, x ∈ Ω ⊂ R
n,

B∗u = 0, x ∈ ∂Ω.

A boundary value problem is said to be self-adjoint iff L∗ = L and B∗ = B.

B.3 Finite Fourier Transforms
Suppose we have two linear differential operators K and L, where
K involves only time derivatives (either first or second order) and
L involves only spatial derivatives.

Consider the following nonhomogeneous PDE with nonhomogeneous initial and boundary condi-
tions.

Ku+ Lu = F (x, t), 3x = (x1, x2, . . . , xn) ∈ Ω, t > 0,

Bu = g(x, t), 3x ∈ ∂Ω, t > 0, (B.4)

u(x, 0) = f(x), x ∈ Ω,

ut(x, 0) = f̂(x), x ∈ Ω. (if K is of second order)

In addition, consider the following associated eigenvalue problem:

Lφ = µφ,

Bφ = 0,

with an appropriate inner product 〈·, ·〉. Denote the eigenvalues and normalized eigenfunctions by
µk and φk, (k = 1, 2, . . . ) respectively. Then we have

Lφk = µkφk,

Bφk = 0,

where 〈φk, φj〉 = δkj.

We now look for a solution to (B.4) of the form

u(x, t) =

∞∑

k=1

uk(t)φk(x).

Then uk must satisfy uk = 〈u, φk〉. We call the collection {uk}∞k=1 the finite Fourier transform

of u.

Expand F , f , and f̂ in eigenfunction expansions:

F (x, t) =

∞∑

k=1

Fk(t)φk(x), Fk = 〈F, φk〉 ,

f(x) =

∞∑

k=1

fkφk(x), fk = 〈f, φk〉 ,

f̂(x) =

∞∑

k=1

f̂kφk(x), f̂k =
〈
f̂ , φk

〉
.
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We have

〈Lu, φk〉 = 〈u,L∗φk〉+ J(u, φk)

= 〈u,Lφk〉+ J(u, φk) (assuming L∗ = L)

= 〈u, µkφk〉+ J(u, φk)

= µk 〈u, φk〉+ J(u, φk)

= µkuk +Hk(t),

where Hk(t) := J(u, φk). Going back to the original PDE Ku+ Lu = F , we get

〈Ku,φk〉+ 〈Lu, φk〉 = 〈F, φk〉
K 〈u, φk〉+ µk 〈u, φk〉+ J(u, φk) = 〈F, φk〉

Kuk(t) + µkuk(t) = Fk(t)−Hk(t).

The initial conditions become

uk(0) = 〈u(x, 0), φk(x)〉 = 〈f(x), φk(x)〉 = fk,

u′k(0) = 〈ut(x, 0), φk(x)〉 =
〈
f̂(x), φk(x)

〉
= f̂k.

Thus, we get the following sequence of ODEs for uk:

Kuk(t) + µkuk(t) = Fk(t)−Hk(t), (B.5)

uk(0) = fk,

u′k(0) = f̂k.

EXAMPLE B.14. Consider the following nonhomogeneous heat equation:

ut = uxx− γ2(u− c), 0 < x < ℓ,

u(x, 0) = f(x), 9c, cL, cR, γ const.

u(0, t) = cL, 1u(ℓ, t) = cR.

This problem is of the form of problem (B.4) with

K =
∂

∂t
, L = − ∂2

∂x2
+ γ2, F (x, t) = γ2c, Bu =

{
B1u = u(0, t) = cL

B2 = u(ℓ, t) = cR
.

The associated eigenvalue problem is

Lφ = µφ
Bφ = 0

}
=⇒

{
−(φ′′ − γ2φ) = µφ
φ(0) = φ(ℓ) = 0

.

This is easily solved to get

µk = γ2 +
k2π2

ℓ2
, 1k = 1, 2, . . . , (eigenvalues)

φk(x) =

√
2

ℓ
sin(

kπx

ℓ
). (eigenfunctions)
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We have

J(u, v) = 〈Lu, v〉 − 〈u,L∗v〉 = 〈Lu, v〉 − 〈u,Lv〉 =
∫ ℓ

0
(vLu− uLv) dx

= −
∫ ℓ

0
(uxxv − uvxx) dx = −

∫ ℓ

0
[(uxv)x − (uvx)x] dx = −(uxv − uvx)

∣∣∣∣
ℓ

0

= −[ux(ℓ, t)v(ℓ, t) − u(ℓ, t)vx(ℓ, t)− ux(0, t)v(0, t) + u(0, t)vx(0, t)],

therefore

Hk(t) = J(u, φk) = −[ux(ℓ, t)φk(ℓ)− u(ℓ, t)φ′k(ℓ)− ux(0, t)φk(0) + u(0, t)φ′k(0)]

= −
√

2

ℓ

kπ

ℓ
[cL − (−1)kcR],

Fk(t) = 〈F, φk〉 = γ2c

√
2

ℓ

∫ ℓ

0
sin(

kπx

ℓ
) dx =

√
2

ℓ
γ2c

ℓ

kπ
[1− (−1)k],

fk = 〈f, φk〉 =
√

2

ℓ

∫ ℓ

0
f(x) sin(

kπx

ℓ
) dx =:

√
2

ℓ
ak.

Eq. (B.5) for uk becomes

u′k + (γ2 +
k2π2

ℓ2
)uk =

√
2

ℓ

ℓ

kπ
λk, k = 1, 2, . . . ,

uk(0) = fk,

where λk = γ2[1− (−1)k]c+ k2π2

ℓ2
[cL − (−1)kcR]. This ODE is easily solved to get

uk(t) =

√
2

ℓ

{
λk

ωk(γ2 + ω2
k)

+

(
ak −

λk
ωk(γ2 + ω2

k)

)
e−(γ2+ω2

k)t

}
,

where ωk := kπ
ℓ . The final solution is

u(x, t) =

∞∑

k=1

uk(t)φk(x) =
2

ℓ

∞∑

k=1

{
λk

ωk(γ2 + ω2
k)

+

(
ak −

λk
ωk(γ2 + ω2

k)

)
e−(γ2+ω2

k)t

}
sin(ωkx).

EXAMPLE B.15. Consider the following problem governing the temperature of a circular plate:

∂u

∂t
= k∇2u, 0 < ρ < a, −π < φ < π, t > 0,

u(a, φ, t) = f(φ),

u(ρ, φ, 0) = g(ρ, φ).

As before, we consider the domain Ω in the ρφ-plane. The following extra conditions for the
artificial boundaries are required:
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A1: u(ρ, π, t) = u(ρ,−π, t) and ∂u
∂φ(ρ, π, t) =

∂u
∂φ(ρ,−π, t);

A2: |u(ρ, φ, t)| bounded as ρ→ 0+.

This problem is of the form of problem (B.4) with

K =
∂

∂t
, L = −k∇2, F (x, t) = γ2c, Bu = u(a, θ, t).

The associated eigenvalue problem is

Lφ = µφ
Bφ = 0

}
=⇒

{
−k∇2φ = µφ
u(a, θ, t) = 0

.

This we solved earlier. The eigenfunctions are

φ̂nm(r, θ) =
ψ̂nm(r, θ)

‖ψ̂nm‖2
, φ̃nm(r, θ) =

ψ̃nm(r, θ)

‖ψ̃nm‖2
,

where

ψ̂nm(r, θ) = Jn(λnmr) cos(nθ), ψ̃nm(r, θ) = Jn(λnmr) sin(nθ), λnm =
αnm

a
, Jn(αnm) = 0.

We have

J(u, v) = 〈Lu, v〉 − 〈u,Lv〉 = −k
∫∫

Ω

[(∇2u)v − u(∇2v)]dA

= −k
∫∫

Ω

[
→
∇ · [v

→
∇u− u

→
∇v]dA = −k

∫

∂Ω

(v
∂u

∂n
− u

∂v

∂n
)ds.

Using the fact that

∂ψ̂nm

∂r
= λnmJ

′
n(λnmr) cos(nθ),

∂ψ̃nm

∂r
= λnmJ

′
n(λnmr) sin(nθ),
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we get

Ĥnm = J(u, φ̂nm) = −ka
∫ π

−π
[φ̂nm(a, θ)

∂u

∂r
(a, θ, t)− u(a, θ, t)

∂φ̂nm
∂r

(a, θ)] dθ

= −kaλnm
Jn+1(αnm)

‖ψ̂nm‖2

∫ π

−π
f(θ) cos(nθ) dθ,

H̃nm = J(u, φ̃nm) = −ka
∫ π

−π
[φ̃nm(a, θ)

∂u

∂r
(a, θ, t)− u(a, θ, t)

∂φ̃nm
∂r

(a, θ)] dθ

= −kaλnm
Jn+1(αnm)

‖ψ̃nm‖2

∫ π

−π
f(θ) sin(nθ) dθ,

ĝnm =
〈
g, φ̂nm

〉
=

∫∫

Ω

g(r, θ)φ̂nm(r, θ) dA =
1

‖ψ̂nm‖2

∫ π

−π

∫ a

0
g(r, θ)Jn(λnmr) cos(nθ) r dr dθ,

g̃nm =
〈
g, φ̃nm

〉
=

∫∫

Ω

g(r, θ)φ̃nm(r, θ) dA =
1

‖ψ̃nm‖2

∫ π

−π

∫ a

0
g(r, θ)Jn(λnmr) sin(nθ) r dr dθ.

We look for a solution of the form

u(r, θ, t) =

∞∑

n=0

∞∑

m=1

[ûnm(t)φ̂nm(r, θ) + ũnm(t)φ̃nm(r, θ)],

where
ûnm =

〈
u, φ̂nm

〉
, ũnm =

〈
u, φ̃nm

〉
.

Manipulating the equation we get

ut + Lu = 0 =⇒
〈
ut, φ̂nm

〉
+
〈
Lu, φ̂nm

〉

=⇒ ∂

∂t

〈
u, φ̂nm

〉
+
〈
u,Lφ̂nm

〉
+ J(u, φ̂nm) = 0

=⇒ û′nm + kλ2nmûnm + Ĥnm = 0.

This is a first order ODE for ûnm, with initial condition ûnm(0) = ĝnm. This is easily solved to
giving

ûnm(t) =

(
ĝnm +

Ĥnm

kλ2nm

)
e−kλ2

nmt − Ĥnm

kλ2nm
.

A similar calculation for φ̃nm yields:

ũnm(t) =

(
g̃nm +

H̃nm

kλ2nm

)
e−kλ2

nmt − H̃nm

kλ2nm
.

The solution is now complete.
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Figure B.1: Representations of Ω in the xy-plane and the ρφ-plane.



Appendix C

Gamma Function

We summarize a few properties of the gamma function. For z ∈ C, with ℜ{z} > 0, define

Γ+(z) :=

∫ ∞

0
e−ttz−1 dt.

Then Γ+ is analytic in {z ∈ C; ℜ{z} > 0}. Integration by parts yields a recurrence relation

Γ+(z + 1) =

∫ ∞

0
e−ttz dt = −tze−t

∣∣∣∣
∞

0

+ z

∫ ∞

0
e−ttz−1 dt = zΓ+(z). (using u = tz)

Repeated use of this recurrence relation yields

Γ+(z + n) = (z + n− 1) · · · (z + 1)zΓ+(z) =⇒ Γ+(z) =
Γ+(z + n)

z(z + 1)(z + 2) · · · (z + n− 1)
.

This allows us to extend the definition to the right half plane by analytic continuation.

Definition.

Γ(z) :=




Γ+(z) ℜ{z} > 0,

Γ+(z + n)

z(z + 1)(z + 2) · · · (z + n− 1)
−n < ℜ{z} 6 −n+ 1, 1z 6= −n+ 1, 1n = 1, 2, 3, . . . .

The gamma function Γ is analytic in the complex plane except at z = 0,−1,−2, . . . where it has
simple poles. A graph of the gamma function for real values of its argument is given below.

We derive a couple more useful results. For α ∈ R, with 0 < α < 1, we have

Γ(α) =

∫ ∞

0
e−ttα−1 dt =

∫ ∞

0
e−y2(y2)α−12y dy = 2

∫ ∞

0
e−y2y2α−1 dy. (using t = y2)
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Therefore

Γ(α)Γ(1 − α) =

(
2

∫ ∞

0
e−y2y2α−1 dy

)(
2

∫ ∞

0
e−x2

x1−2α dx

)

= 4

∫ ∞

0

∫ ∞

0

(y
x

)2α−1
e−(x2+y2) dx dy

= 4

∫ π
2

0

∫ ∞

0
(tan θ)2α−1e−r2 r dr dθ

= s

∫ π
2

0
(tan θ)2α−1 dθ

=

∫ ∞

0

ξα−1

1 + ξ
dξ =

π

sinπα
, (using ξ = tan2 θ)

where the last equality follows from residue theory. Evaluating at α = 1/2 gives:

Γ(
π

2
)Γ(

π

2
) =

π

sin(π/2)
= π =⇒ Γ(

π

2
) =

√
π.

Extending by analytic continuation yields

Γ(z)Γ(1− z) =
π

sinπz
.

One last formula is the following:

∫ ∞

0
e−tµ dt =

1

µ

∫ ∞

0
e−ξξ

1
µ
−1
dξ =

1

µ
Γ(

1

µ
) = Γ(

1 + µ

µ
).

The main properties of the gamma function are summarized in

Theorem 63. The gamma function satisfies the following:

1. Γ(z + 1) = zΓ(z).

2. Γ(1) = 1.

3. Γ(n+ 1) = nΓ(n) = n!, for n = 1, 2, 3, . . . .

4. Γ(z)Γ(1 − z) =
π

sinπz
.
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Figure C.1: A plot of y = Γ(x).



Appendix D

Useful Formulas

1. Method of Characteristics for first order equations:

u(x, t) = u(x(t), t)

First find x(t), then find u(x(t), t).

2. D’Alemberts formula for the wave equation on (−∞,∞):

u(x, t) =
1

2
(f(x+ ct) + f(x− ct) +

1

2c

∫ x+ct

x−ct
g(s) ds.

3. Fourier series on [−L,L]:

f(x) = a0 +

∞∑

n=1

an cos(nπx/L) + bn sin(nπx/L)

a0 =
1

2L

∫ L

−L
f(x) dx

an =
1

L

∫ L

−L
f(x) cos(nπx/L) dx

bn =
1

L

∫ L

−L
f(x) sin(nπx/L) dx

4. Fourier cosine series on [0, L]:

f(x) = a0 +

∞∑

n=1

an cos(nπx/L)

a0 =
1

L

∫ L

0
f(x) dx

an =
2

L

∫ L

0
f(x) cos(nπx/L) dx
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5. Fourier sine series on [0, L]:

f(x) =
∞∑

n=1

bn sin(nπx/L)

bn =
2

L

∫ L

0
f(x) sin(nπx/L) dx

6. Separation of variables:

(a) Write u(x, t) = X(x) · T (t).
(b) Solve the Sturm-Liouville problem for X(x).

(c) Solve the corresponding time problem for T (t).

(d) Use superposition.

(e) Use the initial conditions.

7. Laplacian in polar coordinates:

∂2u

∂x2
+
∂2u

∂y2
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

8. Generalized eigenfunction expansion with a weight function w(x):

f(x) =

∞∑

i=1

∫ b
a f(t)φi(t)w(t) dt∫ b
a φi(t)

2w(t) dt
φi(x)

9. Fourier-integral formula on (−∞,∞):

f(x) =

∫ ∞

0
(A(ω) cos ωx+B(ω) sinωx) dω

A(ω) =
1

π

∫ ∞

−∞
f(x) cosωxdx

B(ω) =
1

π

∫ ∞

−∞
f(x) sinωxdx

10. Fourier-cosine-integral formula on [0,∞):

f(x) =

∫ ∞

0
A(ω) cosωxdω

A(ω) =
2

π

∫ ∞

0
f(x) cosωxdx

11. Fourier-sine-integral formula on [0,∞):

f(x) =

∫ ∞

0
B(ω) sinωxdω

B(ω) =
2

π

∫ ∞

0
f(x) sinωxdx
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12. Fourier transform on (−∞,∞):

F(f)(ω) = f̂(ω) =
1

2π

∫ ∞

−∞
f(x)eiωx dx

F−1(f̂)(x) = f(x) =

∫ ∞

−∞
f̂(ω)e−iωx dω

13. Fourier cosine transform on [0,∞):

Fc(f)(ω) = f̂c(ω) =
2

π

∫ ∞

0
f(x) cosωxdx

f(x) =

∫ ∞

0
f̂c(ω) cosωxdω

14. Fourier sine transform on [0,∞):

Fs(f)(ω) = f̂s(ω) =
2

π

∫ ∞

0
f(x) sinωxdx

f(x) =

∫ ∞

0
f̂s(ω) sinωxdω

15. Gauss kernel

g(x, t) =
1√
2Dt

e−
x2

4Dt .

16. Error function

erf(z) :=
2√
π

∫ z

0
e−x2

dx.


