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June 17, 2010 Preface

This collection of exercises contains over 150 explicitly solved problems for linear partial
differential equations (PDEs) and boundary value problems based on more than 10 years of
experience in teaching beginner PDE courses at several North American universities.

A multitude of excellent introductory textbooks are available on PDEs, such as the mono-
graphs by Haberman [1], Churchill and Brown [2]|, Debanth, Mint-U [3], and Asmar [4],
among others. Although these books give a concise, detailed, and easily accessible introduc-
tion to the theory of linear PDEs, they provide only a limited number of solved examples.
When teaching from these textbooks, we are always asked by students for additional prob-
lems. Many students in these courses are studying engineering or another science and can
be easily confused by abstract constructions. These students tend to benefit from a more
drill-like repetition of problems and solutions. Here we address exactly this need. The prob-
lems in our textbook are all completely solved and explained in great detail. Any student in
a corresponding course should have no trouble understanding the problems.

The final two chapters of this textbook contain four sample midterm exams and four sample
final exams. These sample exams are all real exams that were given between 2004 and 2009
at the University of Alberta. They provide students with a useful guideline of what to expect
as well as an opportunity to test their abilities.

To help students use this book, we incorporated two special features. First, we rank the
problems according to their difficulty. Of course, this is a subjective task. Still, it gives a
good indication of the anticipated level of difficulty. We use

rank 0 g for very simple problems
rank 1 X for simple problems

rank 2 XX for more involved problems
rank 3 XXX for difficult problems.

To be successful in a classical PDE course, you should be able to solve some of the rank 2
problems. Candidates for an A grade should be able to solve some of the rank 3 problems.
The other feature of this textbook is a detailed table of contents that lists all of the problems.
With this, an instructor or student can keep track of which problems were discussed in class,
included in an assignment, or given in an exam. Students can also make notes such as
mastered or not yet mastered or revisit later and so forth.
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We hope this textbook will provide useful assistance to all interested in learning to solve linear
PDEs. We have chosen not to include yet another description of the underlying theory, since
several excellent theoretical textbooks are already on the market. Some titles are mentioned
above. Nevertheless, we expect these problems will help you understand linear PDEs and
enable you to get a glimpse of the beautiful theory behind them.

Ed and Thomas,
Edmonton, November 2009
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Theory



Chapter 1

Introduction

June 17, 2010

Many physical, biological and engineering problems can be expressed mathematically
by means of partial differential equations (abbreviated PDEg together with initial and/or
boundary conditions. PDEs are used in basically all scientific areas, for example, the
Schrodinger equation in quantum mechanics, Maxwells equations in electrodynamics, the
reaction-diffusion equations chemistry and in mathematical biology, models for spatial spread
of populations, heat conduction problems, and also the Black-Scholes formula for financial
markets. A mathematical definition of PDEs is quite simple, since a PDE is an equation
which involves partial derivatives. The fascinating aspect of partial differential equations is
that they can be classified into three PDE kingdoms which are called elliptic, parabolic
and hyperbolic. Each of these kingdoms has a king, that is, a simple equation which shows
all of the properties which are typical for this group. Elliptic equations are represented by
the Laplace equation, parabolic equations are represented by the heat equation and
hyperbolic equations are represented by the wave equation. The classification is defined
for linear second order equation in Section 7?7, the properties of these types, however, carry
much further and also higher order equations behave ”wave-like” or ”diffusion-like”. The
study of the three basic equations which represent the three subgroups is the content of this
course. If you learn the methods for the wave equation, you will be able to study fluid flow
in a pipeline, and the Schrodinger equation to gain an understand of quantum mechanics.
Laplaces equation is a prototype for Maxwells equations in electrostatics, two dimensional
fluid flow, and the statics of buildings and bridges. The theory of the heat equation prepares
you for the study of reaction-diffusion equations in population biology and for heat flow
problems in conducting materials.

In this course we will deal almost exclusively with linear partial differential equations
(the simplest type) and we will primarily use one technique for solving them. This technique
is called separation of variables. This technique involves reducing (i.e. simplifying) the
PDEs to ordinary differential equations (abbreviated ODEs ), which then can be solved using
ODE methods.

Generally, a PDE will have infinitely many solutions. To isolate a unique solution, we will
introduce side conditions (auxiliary conditions) which typically appear as initial conditions
and boundary conditions. Before we dick into the theory, we recall some basic facts about



functions and their partial derivatives. Then we can define the concepts of elliptic, parabolic
and hyperbolic PDEs in a proper manner.

1.1 Partial Differential Equations

Let f : Q — R be a function defined on an open set  C R? . The partial derivatives of
f(z,y) are defined as

0 .
a_xf(xuy) = lim

0 .
a_yf(xuy) = lim

provided the limits exist. Thus, we differentiate with respect to one of the variables while
holding the other variable fixed. Alternative notations, which we use in this text include

0 of (x 0 of(x
T = LD~ o). L) = LED ey

or even simpler
af

%:f:c _:fy

Further notations, which we will not use here but which can be found in other textbooks
include

fx:flzaxf:lea fx:f2:ayf:D2f

As a rule of thumb in mathematics you will observe that the more important a concept is,
the more notations it has. Hence partial derivatives are quite important!

In general, a partial differential equation for an unknown function u(z,y), u(z,y, 2)
or u(z,y,z,t), ...etc ...can be written as a general function

F(l’, Y, Uy Ugy Ugyy Uy Ugyyy Uypyyy Uy © * ) = O>

We now define some terminology. In the above equations u (the unknown function) is
referred to as the dependent variable with all remaining variables x,y, z,t being called
the independent variables. A PDE in some unknown function wu, is called linear if the
equation is of first degree in v and the derivatives of u. A PDE is called homogeneous if
for a solution u each scalar multiple awu is also a solution. The order of a PDE refers to
the order of the highest derivative that appears in the equation. Finally, the dimension of
a PDE refers to the number of independent variables present. If there is a clear distinction
between time and space variables, then dimension is also used for the spatial part alone.



Exercise 1.1. g

Find dimension and order of the following partial differential equations. Which
if these are linear and which are homogeneous?

heat equation uy = Dug, + f(x) (1.1)
wave equation U — Cllgy = 0 (1.2)
Laplace equation Ugg + Uyy =0 (1.3)
ou  Ou
dvecti ti — - — =1 1.4
advection equation g + o ) (1.4)
0u . 0%
(no name) Er + e¥sin 2 528~ U (1.5)
52
(no name) &chy = sin u, (1.6)
KdV equation U + UlUgy + Ugze = 1. (1.7)

Solution:

1.2

Equation (1.1) is a 2-dimensional, 2nd order, linear, (non-homogeneous for f # 0)
PDE. It is sometimes called one-dimensional heat equation, since the space variable x
is one-dimensional.

Equation (1.2) is a 2-dimensional, 2nd order, linear, homogeneous PDE, which is
sometimes called one dimensional wave equation, since the space variable = is one-
dimensional.

Equation (1.3) is a 2—dimensional, 1st order, linear, homogeneous PDE.

3
Equation (1.4) is a 2—dimensional, 1st order, linear, homogeneous PDE.

is a 2—dimensional, 2nd order, nonlinear, homogeneous PDE.

)

)

) is a 3—dimensional, 2nd order, linear, homogeneous PDE.
Equation (1.6)
)

(

(
Equation (1.5

(1.6
Equation (1.7) is a 2-dimensional, 3rd order, nonlinear, non-homogeneous PDE.

Classification of linear, second order PDEs

The classification into the kingdoms of elliptic, parabolic and hyperbolic can be obtained
from the study of linear, second order PDEs. A general homogeneous linear second order
PDE can be written as

Uy + 2bUgy + cyy + duy, + euy + fu = 0, (1.8)



with real coefficients a, b, ¢, d, e, f (The factor 2 in front of the b-term is just a convention, so
that in the end it looks nicer). The type of this equation is defined by its principal part,
which are the highest order terms

AlUgy + 20Uy + Clyy.

This expression can be written in an abstract matrix notation as

0
) (5 0) (%)
oxr Oy b ¢ By
Here we just pretend that a% and a% are symbols which can be entered as components of a
vector. The interpretation is that this vector is applied as derivatives on the function u(z,y):

o 0 b 2 o 0 b Gu
DON(a by () u = (Z2) (2 (g
oxr Jy b ¢ oy oxr Jy b ¢ By
B 2 2 au, + bu,
~ \ 0z dy bu, + cu,
= QUgg + Dlyy + Dligy + Cliy,
= QUgy + 2DUgy + cuy,
For the last equality we use the assumption that u(x,y) is twice continuously differentiable
such that the mixed derivative are identical, u,, = wu,,. The matrix ( Z lc) ) is called
coefficient matrix of the PDE, or the symbol of the PDE. The classification of PDE’s
is based on the relative sign of the eigenvalues of the symbol. Notice that the symbol is

symmetric, hence thei eigenvalues are real (not complex). As in good old linear algebra, the
determinant of this matrix gives the product of the eigenvalues:

>\1)\2 =det A =ac— b2
tells us a lot about the type of equation.
Definition 1. The PDE (1.8) is said to be

e elliptic if and only if ac — b* > 0, i.e. the eigenvalues of A have the same sign and
are not zero (both positive or both negative).

e parabolic if and only if ac — b* = 0, i.e. at least one eigenvalue is 0.

e hyperbolic if and only if ac — b* < 0., i.e. the eigenvalues have opposite sign and are
non zero.

Now we have defined our PDE kingdoms. Next we introduce the corresponding rulers of
these kingdoms.



e The Laplace equation in two dimensions reads u,, + wu,, = 0. It’s symbol is A =

( (1) (1) ) with determinant det A =1 > 0, hence the Laplace equation is elliptic.

e The heat equation in one (spatial) dimension reads u; = kug,. It’s symbol is A =

( IS 8 ) with determinant det A = 0, hence the heat equation is parabolic.

e The wave equation in one (spatial) dimension reads uy — Uy, = 0. It’s symbol
-2 0
is A = OC 1 ) with determinant det A = —c? < 0, hence the wave equation is

hyperbolic.

Exercise 1.2. g

Classify the following linear 2nd order PDEs.

1. U + 2utt i 3uzz =0
2. 1Tuyy +3u, +u=0
3. dugy + 2Ugy + Uyy =0

4. Uyy — Ugg — 2Ugy =0

Solution:
20 o
1. Symbol A = ( 0 3 ), det A =6 > 0, elliptic.
0 0 :
2. Symbol A = ( 0 17 ), det A = 0, parabolic.
2 2 .
3. Symbol A = ( 5 1 ), det A = —2 < 0, hyperbolic.
-1 -1 :
4. Symbol A = ( 11 ), det A = —2 < 0, hyperbolic.

One would expect that a classification scheme should not depend on the coordinate
system in which the PDE is expressed. To see that this is the case, consider a change of
independent variable:

E=E&(xy),  n=nry).



The transformation is nonsingular if the Jacobian of the transformation is nonzero, i.e. if
a(&,

;. 9En)

O(x,y)

Let us denote the transformed dependent variable as w(§,n) = u(z,y). Then the PDE (1.8)
becomes

£ 0.

QWee + 2Bwey + Yy + Oug + €uy + fu =0,

where

o = a&l + 2b&,&, + &,

B = a&ene + b(Eany + Eyn) + cyny,
v = an; + 2bngn, + cn;

0 = d&,; + e&,

€ = dn, + en,

Computing the symbol for A for the transformed equation and computing its determinant
gives

detA = ary — 2 = (ac — b*) (det J)*.

The sign of ary — 3% is the same as the sign of ac — b?, hence the classification of PDEs is
invariant under a change of coordinates.

1.3 Side Conditions

Remember from the methods for ODEs, that solving linear ordinary differential equations
one usually finds a “general” solution which involves a number of undetermined constants.
To find these constants, some side conditions are needed. Quite often initial conditions are
used to identify a unique solution. This idea is similar for PDEs. Also here, the PDE alone
does not give rise to uniqueness as can be seen for the 2-dimensional Laplace equation:

EXAMPLE 1.1. Take the 2-dimensional Laplace equation:
Ugg + Uyy = 0.

This equation is a 2nd order, linear partial differential equation. Solutions of this equation
include:

u(z,y) = cxy, u(z,y) = esin(nzx) cosh(ny),

u(@,y) = c(a® —y?), u(z,y) = ce™? cos(x),

u(@,y) = c(z® — 3zy?), u(w,y) = cln(a® +y7),

u(w,y) =c(a’ —62%y" +y"),  ule,y) = ctan" (y/2),

u(z,y) = c(z® — 102%% + 5ayt)  u(z,y), = ce@ W) gin(cosz sinhy),



where in each case the constant c is arbitrary. The list goes on. Polynomial solutions of any
order exist, as do solutions involving various combinations of exponential and trigonometric
functions and others. Linear combinations of solutions are again solutions. In fact, we can not
write down “the” general solution of Laplace’s equation without specifying side consitions.

We have just seen that partial differential equations alone often have infinitely many
solutions. In order to get a unique solution for a particular problem, additional conditions
must be applied. These auxiliary conditions are typically of two types: initial conditions
and boundary conditions.

Initial conditions are typically given at a chosen start time, usually at ¢ = 0. Boundary
conditions are used to describe what the system does on the domain boundaries. As example,
we introduce classical boundary conditions for the heat equation. Let €2 C R™ be a given
piecewise smooth domain. Piecewise smooth means that at all but a finite number of points
there exist a unique normal vector to the boundary 92. The heat equation on €2 reads

w = kAu.

1. Initial condition: We prescribe the initial temperature distribution in 2 at some
specific time (usually at time ¢ = 0). In 3 dimensions this takes the form u(x,y, z,0) =

UQ(Z', Y, Z)

2. Boundary condition: give conditions on the boundary 02 for all time. Boundary
conditions are divided into three categories:

(a) Dirichlet Condition: We prescribe u on 0f). This takes the form u(z,y, z,t) =
g(x,y, z,t) for (z,y,2) € 0. A common example are homogeneous Dirichlet
boundary conditions u(z,y, z,t) = 0 on 0.

(b) Neumann Condition: We prescribe the heat flow through the boundary 0f2.
—
This takes the form g—z = g for (z,y, 2) € 0f), where % = Vu- n is a directional
derivative (ﬁ being the outward pointing unit normal to 02). A common example
is no heat flow through the boundary (representing perfect insulation). These are
ou

called homogeneous Neumann boundary conditions: - = 0.

(c) Robin’s Conditions are a mixture of Dirichlet and Neumann boundary condi-
tions. This takes the form au—l—ﬁ% = g for (z,y,2) € 0Q and t > 0. This type of
boundary condition occurs when, for example, Newton’s law of cooling is applied.
Newton’s law of cooling states that the rate at which heat is transferred across a
boundary is proportional to the temperature difference across the boundary. If we
denote the temperature outside the region {2 by T', then Newton’s law of cooling
can be written as

0
Ku + V—u = rT.

on



A complete problem for a PDE consists of the PDE plus an appropriate number of side
conditions. For example a complete problem for a general heat equation is given by

‘Z—TZ V. (K(@)Vu) +Qx) 12 (1,9.2) €0, t>0, (1.9)

u(z,y,2,0) = f(x,y, 2) (x,y,2) € Q, (1.10)

(e, 2 1)+ (e, 2 0) = gy 1) (ny2) €00, 120 (L)
We see that

a # 0, B =0 corresponds to a Dirichlet condition;
a =0, f # 0 corresponds to a Neumann condition;
a # 0, B # 0 corresponds to a Robin’s condition.
If a PDE is studied on an infinite domain, then typically appropriate decay conditions
are used. For example
cox?

lim u(x,t) < cre”
T—00

with appropriate constants ¢y, cs.

1.3.1 Boundary Conditions on an Interval
Most of this text deals with PDE’s on n-dimensional intervals

I = [al,bl] X X [an,bn]

In that case the following rule of thumb can be applied:

Hillen’s rule of thumb: To formulate a complete problem for a PDE on an
interval the number of side conditions for each of the variables ¢, x,y,... corre-
sponds to the maximum order of this variable.

For example, the heat equation u; = k(g + uyy) on I = [0,1] x [0, 1] needs one initial
condition (order of time derivatives is one), two boundary conditions for x and two boundary
conditions for y. These could be of Dirichlet form, for example

u(m,y,O)zg(m,y), U(O,y,t):fl(y,t), u<1vyvt):f2(yvt)7 u(x707t>:f3(x7t)v u(x717t>:f4(x7t>’

The one-dimensional wave equation wuy — c*t,, = 0 on [0, 1] needs two initial conditions,
usually for location u(z,0) = go(x) and for initial velocity u:(x,0) = ¢1(x) and two boundary
conditions, typically at u(0,t) and u(1,¢). Hillen’s rule of thumb is a nice tool to check if the
right number of side conditions is given. This rule can be extended to more general domains
(for example circular domains), but one has to be careful to gain the right intuition. We will
give many examples later.



10

1.4 Linear PDEs

In this section we will explore a bit more about linear PDEs. We will find a very important
tool called the superposition principle. This principle is the very foundation of our solu-
tion theory. Without it, we could finish this textbook right here.

Every linear PDE can be written in one of two forms:

Lu =0, (homogeneous)

Lu=f, (nonhomogeneous)

for some linear differential operator L. What exactly do we mean by a linear differential
operator? The definition is analogous to the definition with which you are familiar from your
course in linear algebra.

Definition 1 (Linear Operator). An operator L with domain of definition D(L) is called
linear if it satisfies:

1. L(cu) = cLu, for any constant ¢ € R and v € D(L)

2. L(uy 4 ug) = Luy + Lus, for two functions uy, us € D(L).

For differential operators we usually take the domain as the set of those functions which are
continuously differentiable on the underlying set €2. A couple of examples.

EXAMPLE 1.2. If L = a% + 6%, then the equation Lu = 0 is equivalent to u, +u, = 0. The
domain of L is D(L) = {set of continuously differentiable functions}. We checked already
earlier that the advection equation is linear.

EXAMPLE 1.3. If L = g—; + e¥ sin(x)a% — 1, then the equation Lu = 0 is equivalent to
Uy + €Y sin(x)u, = u. The domain of L is D(L) = {set of twice continuously differentiable

functions}. And it is straightforward to check that L is linear.

The main reason that linear PDEs are so much easier to deal with than nonlinear ones
is the principle of superposition.

Theorem 2. (Principle of Superposition)
If uy and uy are solutions of a linear, homogeneous PDE Lu = 0, then ciuy + coug is also a
solution for arbitrary constants ¢y and cs.

Proof.

We have Lu; = 0 and Luy = 0 since u; and uy are solutions. Therefore

L(01u1 + CQUQ) = L(clul) + L(CQUQ) = clLul + CQLUQ =C (0) + 02(0) = 0.
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EXAMPLE 1.4. Consider the 2-dimensional Laplace’s equation Lu = 0, where L = V? =

5962 + ay Let u,(x,y) = cos(nzx)sinh(ny) for n = 1,2,3,.... For each n, u, is a solution to
Laplace’s equation since
0? 92
Lu,, = 5 ——(cos(nx) sinh(ny)) + W(cos(n:c) sinh(ny))

= —n” cos(nx) sinh(ny) + n” cos(nz) sinh(ny) = 0.

Hence, by the principle of superposition

N N
= Z At (T,y) = Z a, cos(nx) sinh(ny)
n=1 n=1

is also a solution for any integer N and any constants a,,.

What the principle of superposition gives us is a means of constructing new solutions if
a few solutions are already known. This does not generally hold for nonlinear equations as
the following example illustrates.

EXAMPLE 1.5. Consider the 2-dimensional, first order, nonlinear PDE
Uy + uu, = 0.

The functions

Y
pu— ]_ pu—
ul(x>y) ’ u2(:L',y) 1+ZL”
are solutions of the PDE since
Ouy ouy Ouy Ouy Y Yy 1
— =04+(1)(0) =0 d = — =0
8$+ oy +(1)(0) =0, an ox +u20y (1+1’)2jL 1+z) \1+x
But, the sum of the two u(z,y) = wi(z,y) + us(z,y) = 1 + % is not a solution since

ou ou Y Y 1 1
— — 1 = 0
or T dy (1—|—x)2+< +1+:c) (1—|—x) 1+:c7£
The principle of superposition holds for linear, homogeneous equations. For nonhomoge-
neous equations we have the following result.

Theorem 3. If
o u, is a solution to the nonhomogeneous PDE Lu = f (i.e. Lu, = f) and
e uy, is a solution to the homogeneous PDE Lu =0 (i.e. Luy =0)

then u = cup, + u, is a solution to Lu = f for any constant c.
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Proof.
Lu = L(cup, + up) = cLuy, + Luy, = ¢(0) + f = f.

What this result says is that if a particular solution to a nonhomogeneous linear PDE is
known and a solution to the homogeneous counterpart is also known, then a new solution to
the nonhomogeneous PDE may be constructed. In fact, any solution to a nonhomogeneous

linear PDE will be of this form, for suppose w is any solution to the nonhomogeneous PDE
Lu = f (i.e. Lu= f). Define u;, = u — u,. Then

Lup = L(u—u,) = Lu— Lu,=f— f=0,

thus wy is a solution to the homogeneous equation Lu = 0. Hence, any solution u of
the nonhomogeneous equation Lu = f can be written as the sum of a solution to the
homogeneous equation plus any particular solution:

U= Up + Up.

1.5 Steady States and Equilibrium Solutions

Definition 4. A STEADY STATE or EQUILIBRIUM SOLUTION of an initial-boundary value
problem of a PDE is a solution that does not depend on time, i.e. u(z,t) = u(z).

EXAMPLE 1.6. (Diffusion through a cell membrane)

We are interested to compute the concentration of a nutrient u(x,t), for example oxygen,
through a cell membrane of thickness [. We assume that the oxygen concentration inside and
outside of the cell are constant with values ¢; (inside) and ¢, (outside). The corresponding
initial-boundary value problem employs the diffusion equation:

Uy = Du:c:c
u(0,z) = f(x)
u(t,0) = ¢, u(t,l) = co.

This is a nonhomogeneous Dirichlet problem for the diffusion equation, where D denotes the
diffusion coefficient of oxygen in the cell membrane and f(z) denotes the initial distribution
of oxygen. We will learn later how to completely solve this model. Here we are only interested
in a steady state distribution. A steady state does not depend on time, hence

w(t,z) =0, ie. wu(x,t)=u(x).

Then we obtain
Uyy = 0

which leads to 4’ = a; and u(x) = a;x 4+ ay with two unknown constants aj,as. We find
these constants from the boundary conditions. At x = 0 we have

ﬂ(O) = C1 = a4y
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Hence ay = ¢;. At x = [ we have
u(l) = o = arl + 1.
Hence a; = 7 and we find the steady state solution

Ca— (1

l

u(zr) = x4+ .

To make sure that we found the right solution we test this solution. It is linear, hence indeed
u” =0. At z = 0 we have u(0) = ¢; and at x = [ we find u(l) = cs.

The concentration profile through a membrane is a linear function which interpolates
between the two concentration levels ¢; and c¢s.

EXAMPLE 1.7. Now we are interested in the steady states of a homogeneous Neumann
problems for the heat equation on [0, [].

u(z,t) = Dugy(z,t)
u(0,z) = f(z)
u.(0,t) =0 uz(l,t) =0

As before, we find that at steady state we have u(x,t) = u(z) and u”(z) = 0. Hence u(x) is
linear @(z) = a;x+ay with two unknown constants a; and ay. Using the boundary conditions
we find

ﬂm(()) = a; = 0 and ﬂx(l) = a1 = 0.
Both boundary conditions require that a; = 0, hence

u(x) = as

is a constant function. But now we have already used both boundary conditions. How
can we find the missing constant as? To answer this question we need to dig a bit deeper
and understand the conservation of mass property of the heat equation with homogeneous
Neumann boundary conditions.

The integral

M(t) = /0 ()

can be understood as the total mass (in case of the diffusion equation) or as total heat (in
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case of heat equation) in the system. Using the fundamental theorem of calculus we find

d d |
— M) = —
7 (1) r s u(x, t)dz

= /lut(:c t)dx
= /Dum

= (£,1) = us(t, 0)]
= O.

Hence M (t)=const. and the total mass is conserved. Then we expect that the steady state
u(z) has the same total mass as the initial condition f(z). The initial mass is

= /Ol f(z)dx

l l
MO :/ ﬂ(l’)dl’ :/ a2dx:a2l.
0 0
Mo

Hence a; = =® and the steady state solution for the above problem is
M,
() = TO
EXAMPLE 1.8. Here we add a source term to the heat equation: Find the steady state
of the following PDE on [0, 27]:

Then we require

U = BUy, +9sinx
u(z,0) = O9sinx

u(0,t) = 9
u(2m,t) = 0

The steady state u(x) satisfies
3u" +9sinz =0

Hence u” = —3sin z which is solved by
u(z) = 3sinz + ¢z + co.

The boundary condition at x = 0 gives u(0) = 9 = ¢o. For the right boundary, we need the
derivative: u,(x) = 3cosz + ¢;. The corresponding boundary condition gives

uy(2m) =0 =3+ ¢y,
hence ¢; = —3. The steady state solution is

u(xr) =3sinz — 3x + 9.
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1.6 First Example for Separation of Variables

Separation of variables is a method that tries to seperate the dependence of the corresponding
variables. For example suppose we have a linear PDE for some unknown function wu(z,y).
Then we look for a solution of the form

u(z,y) = X(2)Y (y).

So far we do not know if this idea works. Nevertheless, we plug this assumed form of
solution into the PDE, perform some manipulations and, hopefully, end up with ODEs for
the unknown functions X and Y which we can solve. Let us study our first example for
separation:

EXAMPLE 1.9. One dimensional heat equation with Dirichlet boundary conditions on
the interval [0, £]:

o o

a_th :ka—;, zeQ=[0,0, t>0, (1.12)
(e, 0) = 3sin(2”7x) — (@), (1.13)
u(0,4) = 0, (1.14)
u(l,t) = 0. (1.15)

Here u represents the temperature in a bar at time ¢ at position x. We try the method of
separation of variables. Assume a solution of the form

u(z,t) = X(x)T(t). (1.16)
Then 5 o
U U
S ) = X@T W, 5t = X))
Plug this into Eq. (1.12) to get
XT' =kX"T,

This can be rewritten

T/ X//

KT~ X

The left side is a function only of time ¢, whereas the right hand side of the equation is a
function of the position x only. Since x and t are independent of each other, both sides must
equal a constant, which we call —\. Hence we get two equations:

T/ X//
S

oYX
The value of this constant is, at this point, unknown. Thus, we get two ODEs , one for T

and one for X:
T + kT =0, X"+ XX =0.
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Now insert Eq. (1.16) into the boundary conditions (1.14) and (1.15):

0,
u(l,t) = X(OT(t) = 0.

But 7'(t) = 0 for all ¢ implies that u = 0 which would mean that the initial condition would
not be satisfied. Therefore the only conclusion is that

The problems for 7" and X become:

T +MT =0, t>0, X'+\X=0, ze€l0,, (1.17)
X(0) = X(¢) = 0. (1.18)

The equation for 7' is easy to solve:
T(t) = ce™™, (c an arbitrary constant)

with no restriction as yet on \.

Let us turn to the problem (1.17) and (1.18) for X. Notice that X (x) = 0 is a solution (called
the trivial solution) of the problem. However, the trivial solution leads to u(x,t) = 0
which does not satisfy the initial condition. Therefore we seek nontrivial solutions to (1.17)
and (1.18) for X. As we shall see, nontrivial solutions exist only for certain values of A,
called eigenvalues. The corresponding nontrivial solutions X are called eigenfunctions.
More complicated problems will result in more complicated eigenvalue problems known as
“Sturm-Liouville” problems. More on this will appear later.

The solution of (1.17) and (1.18) for X will depend on the sign of A\. There are three cases
to consider: \ negative, positive or zero.

e case (i): (A <0)
Let A = —u? # 0. Then

X"—p’X =0 = X(x) = acosh(ur) + bsinh(uz).
The left boundary condition gives us
X(0)=0 = a=0 = X(z)=bsinh(ux).
The right boundary condition now gives us
X(W)=0 = bsinh(wl)=0 = b=0 0.50r  0.5sinh(ul) = 0.

But pl # 0, therefore b = 0 which means that X(x) = 0. There are no nontrivial
solutions for A < 0.
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e case (ii): (A =0)
Then X” = 0 which yields X (z) = ax + b. However, the boundary conditions imply
that @ = b = 0 which again leads to the trivial solution. So there are no nontrivial

solutions for the case A = 0.

e case (iii): (A > 0)
Let A = % # 0. Then

X"+ 1’X =0 = X(x)=acos(uz)+ bsin(uzx).
The left boundary condition gives us
X0)=0 = a=0 = X(z)=bsin(ux).
The right boundary condition now gives us
X(W)=0 = bsin(w)=0 = b=0 0.50r  0.5sin(ul) = 0.

A nontrivial solution results only when sin(uf) = 0. This occurs for ul = nm, n =

+1,+£2,.... Thus, we get nontrivial solutions only for
22
A=)\, =p2 = ng;r , n=1,23, ... (eigenvalues)

with corresponding nontrivial solutions

X = X, (z) = sin(p,z) = sin(@ : (eigenfunctions)

)
If we now put these eigenvalues into the solution to the 7' equation, we get
T=T,(t)=e™" n=123 ...

For every n = 1,2,3,... we have a solution u,(z,t) = X, (2)T,(t) which satisfies the
PDE and the boundary conditions. And, since the PDE is linear, a multiple of a solution is
also a solution, so

U (,t) = ape M sin(#), n=123,...

are solutions. It remains only to satisfy the initial condition (1.13).
u(z,0) = f(zr) = n=2, 0.5ay = 3.

The solution to the problem is

2
u(z,t) = 3e=4m R/ gin (2T

¢
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In the previous example the initial condition was of a very specific form. In fact, the
initial condition f(z) is one of the eigenfunctions sin(*7*) for n = 2. Now suppose that the
initial condition had been f(z) = x(¢ —x). Then the initial condition is not an eigenfunction
and hence can not be satisfied for any n. Does this mean that our method doesn’t work for
this case? But, the PDE is linear and homogeneous (as are the boundary conditions) so the

principle of superposition can be applied. Doing so yields

] =

Crtin (2, t

n=1

or, more generally

= i Cplin(x,t) = i cnXn(x) Z cpe M sin
n=1 n=1

Now applying the initial condition yields

W$

- > nww
= CcnXn(x), ie. z(l —x) = ¢, sin(——).
> e (t=0) =3 cusin*F)

At this point a few questions come to mind:

1. Does the infinite series above converge?

2. What class of functions can be represented by an infinite series of the type given above?

3. If a functions f can be represented by such a series, how does one find the constant

¢,'s?

1.7 Physical basis of the Heat Equation

Consider a region 2 C R3 (see Figure 1.1), consisting of some substance with boundary given

by 02 = S. Let us introduce the following notation:

u = temperature at the point (x,y, z) € { at time t;
K = thermal conductivity of substance at (z,v, 2);
p = density of substance at (z,y, 2);

¢ = heat capacity per unit mass at (z,y, 2);
%

J = heat flux vector (gives magnitude and direction of heat flow);

h = rate of internal heat generation per unit volume at (z,y, z).
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The above quantities have the following physical dimensions:

[u] = T; 8T = temperature;

H
= 2 H= heat;
=17 eat
—_— m —_— :
p] = I t = time;
H
[c] = T L = length;
H
[h] = 5y M= mass.

Suppose we let
dV = an element of volume;
dS = an element of surface area;

n = outward pointing unit vector of dS.

— —
The vector Vu points in the direction of the most rapid increase of u, that is Vu is orthogonal
to the surface u = constant. We use Fourier’s law, which states that heat flows from regions

.
of high temperature to regions of low temperature, where the flux J satisfies

— —
J = —KVu. (1.19)
We have
ifj;tl' Zfelrlsztlt} = mass X heat capacity x temp. = pcudV;
Total amt. of
heat in Q }—///pcudM
Q
Rate at which heat -
enters through dS } =—J - nd5;
Total rate at which heat enters| _ } 7 dS
through the boundary S B @
S
Total rate at which heat | _ hdV
is generated internally [ ’
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Conservation of energy implies that

Rate of change | Rate at which heat Rate at which heat
of heat in Q | ] enters through boundary S is generated internally

in other words

%/ﬂ//pcudvz—é/7ﬁds+/9//hdv.

Using the divergence theorem from advanced calculus, we can rewrite this as

///pc—dV— /Q/ 3-7dv+///hdv,

Q

///{pc—+v J - h} v = 0.

This must hold for an arbitrary region €2 so the integrand must be identically zero. Using
the definition for the flux vector in Eq. (1.19), we get

or

ou 1= - h )
o = Ev (KVu) + E ) 6(heat equation)

It is often the case that p, ¢ and K are constant. In that case we define

K h
k= —, 6F := —
pc pc

The constant k is called the thermal diffusivity and F', which is not necessarily constant,
is called the forcing. The heat equation then becomes:

2_1: =kViu+ F| 6(heat equation in standard form) (1.20)

Written explicitly in terms of Cartesian coordinates:

ou azu a2u aZu

o r -d h ' 1.21

ot k (axg + Dy? + 822) + F, 6(3-d heat equation) (1.21)
2

ou _ ]{;a— + F. (1-d heat equation) (1.22)

ot Ox?
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1.8 Physical basis of the Wave Equation

Here we will only give a derivation for the one-dimensional wave equation. Consider a string
stretched over an interval [a, b]. Let us introduce the following notation:

u = displacement above the z-axis,
o = surface tension;

p = density per unit length;

t = time;

h = vertical force per unit length;

«, B = angles indicated in the figure.

The above quantities have the following physical dimensions:

[u] = L; 8 L = length

o] = F; F = force;

o] = %; m = mass;
F

h) =—.

="

We shall make two simplifying assumptions: p and o are constant; and |u|, o, 5 are small.
The angles «, 5 being small implies that cos a« &= 1 which in turn implies that tan o =~ sin «,
and similarly for tan 5. We have

mass = pAx,

ou :
8—(z, t) = tana = sin a,
x
%(1’ + Az, t) = tan  ~ sin S.

The forces acting on the segment of rope are:

Horizontal force: A4F), = o(cos f — cosa) =~ 0;
Vertical force: F, =o(sin 8 —sina) + h(z")Az
~o %(z + Az, t) — %(m,t) + h(z")Ax.

_>
Applying Newton’s law of motion: F = mg, we have

82
F,=0, 1(no horizontal motion) A4F, = ma—tg(x*, t).
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Therefore we have

>u * %($+Ax>t)_%(x>t)
Pw@ t)=o0 Ar

+ h(z").
If we take the limit as Ax — 0, then z* — x and

0*u 0*u
pﬁ(z, t) = aw(aj, t) + h(x).

If we let ¢? := 2, and [ := @, then we get

— =c*—+F| 4(1-d wave equation).
x

The higher dimensional wave equations are given by

a_t?; _ 2 <8—;2L + 8—;;) + F, 6 (2-d wave equation)
@_ 5 82u+82u+82u
oz \0xz2  Oy* 022

) + F.(3-d wave equation)

In general we have
0?u

_ 2\72

(1.23)

(1.24)

(1.25)

The boundary conditions for the wave equation are the same as they are for the heat equation.
However, since the wave equation has two time derivatives, two initial conditions are required.
Thus, a complete problem for the wave equation consists of the partial differential equation

itself plus two initial conditions plus boundary conditions:

0%u 9

w:cVujLF 12 (z,y,2) € Q, 1t >0,
u(z,y,2,0) = f(x,y,2) (z,y,2) € Q,

ou

E(x,y,z,o) =g(x,y,2) (z,y,2) € Q,

au(z7y7 Z? t) _l_ ﬁg_z(x? y? Z?t) = h(x? y? Z?t)(zﬁy’ Z) 6 aQ? ]‘t 2 0'

1.9 Physical basis of the Laplace Equation

From the previous two sections we have

uy = kV?u + F, 6 (heat equation)

uy = *V3u + F. 6(wave equation)

(1.26)
(1.27)

(1.28)

(1.29)
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If we look for a steady state (i.e. time independent) solution to either the heat equation or
the wave equation, then we get an equation of the form

Vu = h. 6(Poisson’s equation)

If h =0, then we have
Viu = 0. 6(Laplace’s equation)

Laplace’s equation, also called the potential equation, occurs in many areas of physics such
as hydrodynamics, elasticity, electric field theory, ...etc. A complete problem for Laplace’s
equation consists of the partial differential equation itself plus boundary conditions:

Vu =0, 18 (z,y,2) € Q, (1.30)

(e, ,2) + F g0 (2,,2) = £(2,4,2), (2,0, 2) € 09 (1.31)
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Figure 1.1: Region {2

Figure 1.2: Flux J through a surface element d.S

1 1 '
T T T

Figure 1.3: Forces acting on a segment of string



Chapter 2

Fourier Series
June 17, 2010

2.1 Piecewise Continuous Functions
In most physical problems we may expect to use “nice” smooth functions. However, it will

be convenient to allow for certain types of discontinuous functions. Consider the behaviour
of a function f near a point zy. In particular consider the following limits:

f(xo+) == lim_f(z), flzo—) = lim f(x).

T =T
We make the following definition:

Definition 5. If
(i) f(xo+) = f(xo—) = f(xo), then [ is continuous at x = o,
(i) f(xo+) = f(xo—) # f(xo), then f has a removable discontinuity at x = xo;
(i11) f(xo+) # f(xo—), then f has a jump discontinuity at x = xo;
(i) f(zo+) or f(xeo—) does not exist, then f has a “bad” discontinuity at x = xq.

Definition 6. A function f is PIECEWISE CONTINUOUS (abbreviated p-cts), sometimes called
sectionally continuous, on an interval (a,b) if

(i) [ is continuous for x € (a,b) except possibly at a finite number of points;

(i) f(x+) exists for all x € [a,b);

(i1i) f(xz—) exists for all x € (a,b].

A function f is piecewise continuous on an interval (a, b) if f has at most a finite number of
discontinuities, none of which is worse than a jump discontinuity.

EXAMPLE 2.1. The function

T 0<z<1
flx)=4¢-1 1<z<2
1 2<x<3

is piecewise continuous on the interval (0, 3).

25
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EXAMPLE 2.2. The function f(z) =1 is not piecewise continuous on (0, 1), since

1
f(0+) = lim f(z) = lim — does not exist.

z—07F z—0t T
It is convenient to introduce the following notation:
Definition 7. PC(a,b) := {set of all p-cts functions on (a,b)}.
Properties of PC(a,b):
(i) if f,g € PC(a,b), then af + g € PC(a,b) for all a, f € R;
(ii) if f,g € PC(a,b), then fg € PC(a,b);
(iii) if f € PC(a,b), then f; |f(z)] dz exists.
. From property (i) above it follows that PC(a,b) is a vector space.

Definition 8. A function f is PIECEWISE SMOOTH (abbreviated p-smooth) on (a,b) if
(i) fe PC(a,b); and
(i) € PC(a,b).

Definition 9. PC*(a,b) := {set of all p-smooth functions on (a,b)}.
It is clear that PC'(a,b) C PC(a,b).

2.2 Even, Odd and Periodic Functions
We begin with a definition.

Definition 10. A function f s
(1) EVEN if f(—z) = f(z) for all x € Dy;
(i) opD if f(—x) = —f(x) for all x € Dy;
(iii) PERIODIC with period p if f(z + p) = f(z) for all x € Dy.
EXAMPLE 2.3.
i) f(z)=a™is even if n is an even integer.
ii) f(x)=a"1is odd if n is an odd integer.
() = cos(z) is even and 27-periodic.
() = sin(z) is odd and 27-periodic.
(x) = €” is not even, odd or periodic.
(x) = cosh(x) is even.
(vii) f(x) = sinh(x) is odd.

If f is p-periodic, then

/aa+pf(:c) i = /Opf(x) da (2.1)

If a function f is defined on an interval (a,b), it is sometimes useful to extend the definition
of f to the entire real line.
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EXAMPLE 2.4. The PERIODIC EXTENSION of f, denoted f, is defined as
f(x)=f(x+np) for a—np<xz<b—np, 1In € Z,
where p = b — a.

Frequently in applications we will encounter a function f defined on an interval (0, ).
We want to construct periodic extensions of f. Let f be defined on (0, ¢).

Definition 11. The ODD EXTENSION of f on (—{, (), denoted f,, is defined as

) flx) O<z</{
fol@) = {—f(—x) l<z<0

Definition 12. The EVEN EXTENSION of f on (—(, (), denoted f., is defined as

) fl@) O<z<t
fe(m)_{f(—x) A <x<0

We then extend f. and f, to get periodic extensions f. and f,.

2.3 Orthogonal Functions

- = —
Consider vectors in 3—dimensional vector space R®. A basis for R? is given by {4, j, k}. For

convenience we rewrite the basis as
5> o o A
{ela €2, 63} = { yJ k}
Consider the vectors:
3
— — — — —
v =(a1,a9,a3) =aje;+azes +azes = g Q; €4,
i=1

3
W= (b1, bs) =bre1+bycatbses=> b,
i=1
The dot product of two vectors is given by

3
. ’(z = albl + a2b2 + CL3b3 = Zalbl
1=1

N
(%

Putting in all of the steps we have:

3 3
j=1

3 3

3 3 3
- =
aibjelw ej: E E aibjéij E aibi,
i=1

i=1 i=1 j=1 i=1 j=1
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where

T
0ij = 1 Z j is the Kronecker delta.
0 ifi#£j

Consider two sets of basis vectors in R?:

—

— — N
E1 = (1,0), E2 = (1, 1), and €1 = (1, 1), €9 = (1, —1)

- =
Now we want to write the vector v = (1,2) in terms of {Ey, Es} and {€1, €2}

N — —
If v = A1E1 + A2E2 then
— — — — —
. E1 — AlEl . E1 + A2E2 . E1

— —

— — —
'E2 — AlEl 'E2+A2E2 'E2

S

which becomes

]_:Al—l-Ag
3:A1—|—2A2

and therefore A; = —1 and A, = 2 and

v =—F +2FE,
If?zalgl—i-cmgg then
- = - = - =
V-ep=a1€e1-€1+axeq- ey
- = - = - =
V-€o=0a1€1" €9+ Ug€9 - €9
which becomes
3—2@1
—1:2a2
and therefore a; = 3/2 and ay = —1/2.
— 32 1=
R e
2t 277

While this is a simple 2-dimensional example, it is clear that the calculation on the right is
much simpler. The reason for this is the fact that the basis vectors on the right {21, 22}
form an orthogonal set. The significance of this becomes more evident in higher dimensional
spaces. For example, in R? we have

— — —
= A B+ Ay + AsEs,

— — —
a1€1+ as€o + ases.

STANSHE
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A little manipulation yields:

e e - = o =
AlEl'Ei+A1E1'Ei+A1E1'Ei:’U'EZ, 121,2,3
In matrix form this is
e =
FE,-E, Ey FE; Eg'El Al v - By
- = - = - = o =
Ey-Ey Ey-Ey Ez-Eof |A2| = |V Fy
e A, o =
El'E3 E2'E3 Eg'E3 ’U'E3

To solve this equation requires the inversion of a 3 X 3 matrix.
However, if the second set of basis vectors is orthogonal, i.e. €, - E)j = 0 for ¢ # j, then

the matrix equation becomes

- = - =
€1 €1 0 0 aq V- eq
- = - =
0 €9 €9 0 as| = |v-eq
- = - =
0 0 €3 €3 as V- €3
which is easily solved to get
- = - = - =
V- eq V- €9 V- €3
a ===, = =, G- =
€1 €1 €9 €9 €3 €3
Using summation notation, we have
— —
v = E a;e;
i=1
3 3
- = — — - = - = .
v-ej= E a;e; -ej:E a€e;-€;=aje;-€; (since orthogonal)
i=1 i=1
Therefore
- =
v
_ j :
a; = = , J=123.
€5 €5

Recall that the norm of a vector (or length of a vector) is given by
15 = V7.

If v = Zle a,?i, then

=9 = = i — i —
|v]|*=Vwv- -v= Zaiei . aje;
i=1 j=1
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If the ¢; are unit vectors (i.e. || €| = 1), then

%
|v]| =1/a} + a3 + 3.

Definition 13. An INNER PRODUCT is any function (-,-) that acts on pairs of vectors v
and W in a vector space X that satisfies the following properties:

(i) (¥,0) = (w,7);
.. — — — - — - —
(1) <U,UJ1 +w2> = <U,w1> + <U,w2> :
(iii) <c?j2>::c<3;5>;
(iv) @1?>>o.
The dot product is but one example of an innerproduct. What we want to do is generalize
these concepts of inner product and norms to p-cts functions.

Here we will give an heuristic motivation for how to define an inner product for p-cts
functions. Let

\/

f.g,w € PC(a,b) with w > 0.

Recall from elementary calculus the definition of the integral as the limit of a Riemann sum:

b
= i A
| @yt ds = jim Z Flag(ew(z) A,
where a = xy < r1 < --- < xy = b is a paartition of the interval (a,b) and Ax; = z; — x;_1.

If we define
a; = f(.flfi)\/ w(:cl)A:cZ, bl = g(l‘i)\/ w(:cl)A:cZ,
b N
[ @@t ds = fim S ab.

The sum on the right looks like an inner product in N-dimensions. This leads us to make
the following definition.

then

Definition 14. Let f,g,w € PC(a,b) with w(x) > 0. The INNER PRODUCT of f and g with

weight w is defined as )
(f.9) 3:/ f(z)g(z)w(z) d.

The function w(x) is called the WEIGHT function. Quite often we use w(x) = 1.

It is easily verified that this definition satisfies all the properties given in the definition of

inner product. Recall that we saw earlier that PC(a,b) is a vector space. One can think of

this definition as an inner product defined on an “infinite dimensional” vector space PC(a,b).
We give a couple more definitions.
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Definition 15. The NORM of f € PC(a,b) with weight w is given by ||f|| :== \/{f, f)-

Definition 16. Let f,g,w € PC(a,b) with w(x) > 0. Then f and g are said to be ORTHOG-
ONAL on (a,b) relative to the weight w if (f,g) = 0.

We will illustrate these concepts with the following important example.

EXAMPLE 2.5. Consider the functions ¢,, s, € PC(a,b) for n =0,1,2,3,... defined by

b—
en(x) = cos(@ Sp(x) == sin(@ 0= ¢

=), =) b= (2.2)

with inner product

(f,q) = / f@)g(@)de.  (weight w(z) = 1)

We see that ¢, is 2¢-periodic, since

nm(x + 20) nmwx nwx

cn(z + 20) = cos( 7 )= COS(T +2nm) = COS(T) = cp(x).

Similarly, s,, is 2¢-periodic. Thus, for n = 0, we have

b b
(co,co>:/ cg(:c)dx:/ de =b—a=2L.

For n # 0 we have

b 20
(CnyCm) = / cn(T)em () de = / cn(T)em () dz (using property (2.1) with p = 2¢)
a 0

20 27
14
= / cos(@) cos(mmg) dr = —/ cos(n&) cos(m&) d¢  (using & = E)
0 14 1 T Jo 14
14
= —(Opm™) = Opml.
T
A similar calculation yields
<Sn> Sm> = 5nm€a <Sn> Cm> =0.
Therefore the set {co,c1,51,¢2,80,...} = {1,cos(Z),sin(ZE), cos(22), sin(#2),...} is an

orthogonal set of functions on [a, b] relative to the above inner product.



32

2.4 Fourier Series

If f is periodic with period p, then one might attempt to represent f with an infinite series
of p-periodic functions. Notice that the set
T, . ,TT 2rx 2rx

7),sm(7),cos(7),sin(7),...} (2.3)

consists of functions having common period p = 2¢. Suppose f is 2¢-periodic. We could try
to represent f as follows:

{1, cos(

+ Z a,, cos( )+ by, sm(ngx)

Each term in the series has period %, so the sum, if it exists, we would expect would also
be 2¢-periodic. Two questions come to mind:

1. How does one find the constants ag, a,,b,”

2. Once the constants are found, does the series converge to f?

In example 2.5 we saw that the elements of the set (2.3) are orthogonal. This makes
calculation of the constants in the series easy. Writing f in the more compact notation

flx :—00+Zancn + by sp ()

and using the inner product of example 2.5 we get

a o
(f,co) = <§Oco + ;(ancn + b,Sn), co>

o0

= (co, co +Z an (Cn, Co) + by (p, Co))
n=1

a,
= 50(%) + Z(andno +0) = al.

n=1

Therefore

For m # 0 we have

(f,cm) = <§cm+z (anCn + bpsn), m>

n=1

o
= COacm Z an Cnacm +b <Snacm>)

=0+ Z(aneanm +0) = apl.

n=1
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Therefore
1
Ay = Z <f7 Cm> )
and similarly
1
= Z <.fa Sm) .
This prompts the following definition:
Definition 17. The series
nmx
n b,
—i—Za cos( ) + by, sin(—— 7 ),
where
1 I
a, = - (f,c >:—/f(a:)cos(@)dx, n=0,1,2 ...,
l ‘), l
1 I
b= 3 fos) = 7 [ s T dn. n=12,.

1s called the FOURIER SERIES for f, and a, and b, are called the FOURIER COEFFICIENTS.

Note that if f € PC(a,b), then all of the above integrals exist. We have answered question
1 above: we have simple formulas for the Fourier coefficients. Again, we reiterate that the
reason for the simplicity of these formulas is due to the orthogonality of the sine and cosine
functions on the given interval relative to the given inner product. It remains to determine
whether this infinite series converges, and if so, to what function does it converge? Until
convergence can be determined we write

(e e}

+ Z ay, cos( )+ by, Sm(ngz)

EXAMPLE 2.6. Find the Fourier series for the 27-periodic function f defined

0 —7<ax<0

f(x)Z{ ;o S+ 2m) = f(x).

r O<z<m

Solution
We take the interval to be (a,b) = (—m, 7). Then ¢ = 7, ¢,(x) = cos(nx) and s,(z) =
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sin(nx). We get

agp :%(f,co) = %/_if(x)dx: %/wadz: g,
ap = % (f,cn) = %/wacos(nz) dx = (_172;2_ 1,
b, = % (f,sn) = %/wasin(n:c) dx = (_172n+1
Therefore, the Fourier series is given by
f(x) ~ % + ni::l[an cos(nx) + by, sin(nz)] ~ % + g[% cos(nx) + (—17: +1 sin(nx)]
~ % - %cos(x) + sin(z) — %sin(2x) — 9% cos(3x) + %sin(?)x) — .

Another example.

EXAMPLE 2.7. Find the Fourier series for the 2¢-periodic function f defined
fle)=2, —l<z<l, flz+20)=f(x).

Solution

In this case we have ¢, (z) = cos(*7*) and s,(z) = sin(“7*). We get
1 1 [

@ =7 (f,cn) = Z/_ZICOS($>dI =0,

1

¢\

) = 1/ esin("0) dr = 25 -1y,

b, =
CJ_, l nm

{f,

Therefore, the Fourier series is given by

2 K (1) nma
xw?; - sin( 7 ) for —l <z <. (2.4)

Note that in this last example at @ = ¢ the L.H.S. of (2.4) equals ¢ whereas the R.H.S.
equals 0. This indicates that at least at one point, the Fourier series does not converge to
the function. Another observation concerning this last example: the function f is an odd
function and the Fourier series is a sum of odd terms. This should not be surprising. In
general,

if fis odd, then f(z) ~ > b,sin(*5%), called a Fourier sine series;
n=1

[ee]
if f is even, then f(z) ~ % + ) b, cos("7%), called a Fourier cosine series.
n=1
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2.5 Convergence of Fourier Series

Definition 18. A function f is PIECEWISE SMOOTH on (a,b) if
(i) f is piecewise continuous (i.e. f € PC(a,b));
(i1) f' is piecewise continuous (i.e. f' € PC(a,b)).

Let PC'(a,b) := {all piecewise smooth functions on (a,b)}. Then PC'(a,b) C PC(a,b).
EXAMPLE 2.8. If
—1 1 -1
f(:):):{a; <z <0 then f’(:)s):{ <:):<O.

¢ O<ax<l1 2 O<ao<xl

Therefore f € PC'(a,b).

EXAMPLE 2.9. If f(z) = 2*®  lon (—1,1), then f'(z) = :-35. Wehave f € PC(—1,1)
but f' & PC(—1,1). Therefore f ¢ PC*(—1,1).
Theorem 19. If
(i) f € PC(a,b);
(ii) f is the (b — a)-periodic extension of f,
then the Fourier Series

nwx nwx b—a

Qo > . .
) + ; an COS(T) + b, sm(T), where { = 5

converges to

flat) + fz—)
; :

This says that if f is continuous at = (i.e. f(z+) = f(z—) = f(z)), then the Fourier

Series converges to f(z) and if f has a jump discontinuity at z (i.e. f(z+) # f(x—)), then
the Fourier Series converges to the point midway between the limiting values.

EXAMPLE 2.10. If we go back to Example 2.7, we found the Fourier Series for the function
flx)=2, —l<x<dl, f(z+27)=f(2),

to be

() ~ 2;2 (_QH sin("7%).

n=1

But f(¢+) = —¢ and f({—) = 4/, therefore
fUH)+fll=) 4+
2 2

The Fourier Series evaluated at z = ¢:
2_£ o (_1)n+1

™ n
n=1

0.

sin(nm) = 0.
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EXAMPLE 2.11. Again we go back to Example 2.7 but this time we evaluate the Fourier
Series at © = (/2. Since f is continuous at x = (/2 we get

O 2GS EYD Conr 2 [ (2n =D ()P
2 " n sm(7) s nZ:: { 2n —1 sin( 2 )+ 2n sm(mr)} '

Rearranging this expression gives:

© n+1

, n—l > 1 1 1
1 nzzn—lsm +; 2n BERA I R

2.6 Operations on Fourier Series

Here we will examine what kind of manipulation may be legitimately be carried out on
Fourier Series. The next few results will be stated without proof.

Theorem 20. If f is periodic and p-cts, then its Fourier Series is unique.
Next we show that the operation of finding the Fourier series is a linear operation.
Theorem 21. If
(i) Flz) ~ g 4 Z an cos(25E) + by sin(%42); and

(i) f(z) —0 + Z ap cos( M52 L) 4 b, sin(272),
then

T

N - a a > R N nmx ~ ~...n
af +ef v+ 0250 + 3 [(erlin + cotin) cos(—5=) + (c1bn + cabn) sin(—=)].
n=1

2

Theorem 22. If
(i) f € PC(R), 20-periodic with f(x) ~ %@ + Z ap cos("5E) 4 by sin(%5%); and

(i) g€ PC(a,B), "

then
/ F(2)g(x) dz = /a dx+z / ap cos(“22) 1 b, sm<"7)]g(x)dx.

EXAMPLE 2.12. Going back to Eq. (2.4) of Example 2.7, using g(z) = 1, we get
2 ¢ 2 ntlort 202 S (—1)"
%:/0 rdr = fz( D /o sin(?)dx:i (1) (=)™ —1].

2 2
n=1 n m n=1 n

After a little manipulation we get

Z syl
2n—1 32 527

n=1



37

The following theorem gives us the conditions under which term-by-term differentiation
is justified.

Theorem 23. If f is 2(-periodic, continuous and p-smooth for all x, then the Fourier Series

—|— Z ay, cos( )+ by, sm(mgx)

is differentiable for all x at which f" exists and

Z ay, cos(—) + Sy, Sm(n;rx)

NTan

where o, = %b" and 3, = —

EXAMPLE 2.13. Again consider Eq. (2.4) of Example 2.7

X/ 1\n+l
f(:)s):arwz—g;( 173 sin(mgm) for —l<x <.

We have f'(x) =1, f/(0) = 1 and the differentiated Fourier Series looks like

———'COS

T n 14

[e.9] o0
20~ (=)™ mrx Z 17+ cos( 71‘1’)‘
n=1 n=1

Atz =0: 2 Z( )" =2{1-1+1—-1+1-1+---} does not converge. However, this

does not contradlct the theorem since f is not continuous.

One last result.

Theorem 24. If
(i) [ is periodic with Fourier coefficients a,, b,; and
(i1) > (|n*a,| + |n*b,|) converges for some integer k > 1,
n=1
then f has continuous derivatives f', f", ..., f% whose Fourier Series are the differentiated
series of f.

2.7 Mean Error

While some functions can be represented by an infinite Fourier Series, in practice we can
only evaluate a finite series. The question that arises is: how good an approximation is a
truncated Fourier Series? Before we can answer this we need a way to measure the “distance”
between two functions.
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Suppose we have a function f together with two approximations to f given by ¢; and
go. The question is: which is a better approximation t f? We use norms to measure the
“distance” between functions. We say that g; is a better approximation to f than g, if

1f =il < If = gall-

For f € PC(a,b) there is more than one way to define a norm. Two possible norms are:

b 1/2
Il = s £, and o= (0 = | [ Py

a<z<

Which is the “better” norm? The answer is not at all obvious, as the following illustrates.
Consider f, g1,92 € PC(0, 6%) defined as follows:

2 0<ax<e?
1 e2<ax<di’
€

flz) =1, gi(z) =1+¢, 92(x) = {

Then
1 0<ax<e?

0 <<%

|f(x) = g1(@)] =, and |f(z) — go(2)| = {
so that

1f = gille = sup |f(z) —gi(2)] = ¢,

ogxgsiz
1f = galloc = sup [f(x) = ga(2)] = 1,
Ogmgé%

1/2

1/e? 1/e2
||f—91||L2={/0 |f<x>—gl<x>|2dx} ={/ d} _1,

1/e2 1/2 1/€2 1/2
||f—gz||L2={/0 () — 02(2)| dx} :{/ 1dx} -

Hence, relative to the sup—norm, g, is a better approximation to f than is g, whereas, relative
to the L?> norm, ¢» is the better approximation to f. Because the L?> norm is related to an
inner product (see definition 15), we will find it convenient to adopt the L*-norm.
Now that we have a way to measure the distance between functions, we return to the
original question, namely how good an approximation is a truncated Fourier Series?
Suppose f € PC(a,b) has Fourier Series

b—a
5

ap - nmwx . nmwx
f(x) ~ 5 T ;an COS(T) + by, SIH(T)’ where ( =
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Define

+ Z ay, cos( )+ b Sm(ngz) (fn is the truncated Fourier Series of f)

+ZA cos( )+ B, sm(m;z)

We now try to ﬁnd constants A, and B, so that gy is a better approximation to f than is
fn relative to the L? norm.

Define:
En = |f—gnl.
Now find A,,, and B,, which minimize Ey. We have
Ez2v =|f - QNH2 =(f—gn, f—gn) =, ) —2(f,9n) + {9n, 90m1) (2.5)

Examine each term in (2.5) individually. The first term is easy: (f, f) = ||f||*. Using the
notation introduced in (2.2), the second term becomes

(f,gn) = < ZA ¢n(@) + Busn(x )>

N
fCO +Z Cn +B <f >)
n=1

A%ao + Z (Anla, + Bylb,)

n=1

N
1
=/ {—CLQA() Z(aNAn + ann)} .

n=1

The third term becomes

(9N, gN) = <—co + ZA cn(x) + Bpsp(x) )+ Z Apcm(x) + Bpsm(x )>

A2 N oA A
- ZO (co, co) + 2 ; <70AN (co,cn) + TOBH (co, sn>)

N N
)0 (AnAn (en ) + AnBu (e $m) + AmBn (s $n) + BuBuy (Sn, $m))

n=1 m=1
A3

= Z(%)
A

2
_ 0 2 2
_e{7+§ :An+bn)}.

n=1

1m=1

N
4 Z Z(AnAm€5nm + Baneénm)
N

(
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Plug these expressions into (2.5) to get

En = |IfIF = 2(f, gn) + (g, 9ar)

N N
= ||f]* —2¢ 1 A9 (anA, +b,B e A% 4 p?
= an 0 anAp + Oy, n) + 9 +Z( n+ n)

n=1 n=1

A2 al
= fI*+¢ {70 — apAg + Z(Ai —2a,4, + B} — anBn)}

n=1

:||f||2+€{%(A0—a0)2—;+Z (A — an)® — a2 + (Bn — by)? —bi]}

= 1A w{ (Ao —a0)® + > [(An — an)’ + (By — bm} — ! {5 +> (a2 + bi)} :

n=1

The first and last term are fixed; only the middle term contains A,,’s and B,,’s. The middle
term, being the sum of squares, is non-negative and so is minimized by setting A,, = a,, and
B,, = b, for all n. Thus, the best gy to approximate f is gy = fy. In this case the minimum

error is
N
EJQV:||f||2—€{ + (a2 +12) }
n=1

Using E% > 0 gives Bessel’s inequality:

Mz

2 b
Y@ <= [ P

3
Il
—

Taking the limit N — oo yields

2 > b
G+ <GP =7 [ e

Using the fact that the Fourier Series converges and the previous theorem on term-by-term
integration, this condition can be strenghtened to what is called Parseval’s equation

+Za +02) = ||f||2

See Figure 2.1 for several approximations to the function defined in Example 2.7 with
{=m.
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Figure 2.1: Truncated Fourier Series fy for N =1, 3,5, 10, 20.

2.8 Complex Fourier Series
A well known formula in complex variables is

e = cosf +isin. 8(Euler’s formula)

JFrom this we can deduce

i0 —i0 i0 —i0
e’ +e , ) e —e .
cos) = ——— = coshif sin = ———— = —isinh 6.
2 ’ 2
i

We can make use of these formulas to write a Fourier Series in complex form. Suppose
f € PC(a,b) has Fourier Series

o0 b B
f(z) ~ % + ;an cos(?) +b, Sin(ﬂ;)’ where ¢ — . a
Then
fla)~ 2t i {an(€™F + 777 —ib, (77 — 77}
2 2 —
2 2 —
~ Co+ Z(Cneln% + c_ne_iml;w )’
n=1
where . '

The Fourier Series may be conveniently rewritten

[e.9]
f(z) ~ Z et

n=—oo
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Recall the formulas for the Fourier coefficients:

1 [t I
—z/a f(:v)cos(niex)dx, bn = Z/a f(l")sm(ni;)dx'

/f )dx,

cn:§( 2€/f cos( )—zsm(mm /f e

1 nTrfE
Con 2(an+zb %/ f(x)[cos( )+zsm( )] dx = —/ f(x dr.

These lead to

To summarize, we have the following:

Theorem 25. The complex Fourier Series for f € PC(a,b) is

[ee]
jnTT
x) ~ E et

n=—0oo

1 ’ _jnrz b—a
cn—ﬁ/af(:c)e o dz, (= 5

We finish this section with an example.

EXAMPLE 2.14. Calculate the complex Fourier Series for
fle)=2, —nm<z<m flz+21)=f(2).

where

Solution
The complex Fourier coefficients are

1 [" -
Cn = 5o /_7r f(z)e " dux.

We get
/ flx —/ xdr =0,
1 [2m 2 ]
Cp = 27r xe ’"xdx—%{%cosmr—i-ﬁsinmr} :%(—1)", n #0
Therefore




Chapter 3

Separation of Variables

June 17, 2010

3.1 Homogeneous Equations

In Example 1.9 we successfully applied separation of variables to a linear homogeneous
PDE The PDE was the 1-d heat equation u; = ku,,, where k was assumed constant. Looking
for a solution of the form u(x,t) = X (z)T'(t) we got:

T X
KT~ X

The left side of the equation is a function of time t only whereas the right side is a function
of x only. This means that both sides must equal some constant (—\ say):

T/ X//
— ==\
ET X

This lead to ODEs for 7" and X:
T + kT =0, X"+ XX =0.

Let us try this method for a Neuman problems of the heat equation

43
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Exercise 3.1. XX
Consider the Neumann problem for the heat equation:
ou 0%u
— =k— L, t
5 oy O<xz<L,t>0
ou
—(0,%) = t
8x(0’ ) =0, >0
ou

(a) Give a short physical interpretation of this problem.

(b) Use the method of separation of variables to solve this problem. First
show that there are no separated solutions which grow exponentially in
time.

Hint: The solution can be written as

u(z,t) = Ay + Z Ape " cos ?

n=1

Find the A, .

(c) Show that the initial condition, u(x,0) = f(x), leads to the Fourier cosine

series:
nwx

flz) = Ao+ ;An cos ——.
(d) Solve for A,, by using

nmTT MTT if n=m

L
/OCOSTCOS 7 do =

for n, m > 0,.

o N~

if n#m

(e) Consider the limit tlim u(x,t). Find the steady state solution and show
—00

that u(z,t) approaches this steady-state solution as t — oc.

Solution:
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(a) The partial differential equation describes heat flow in a one-dimensional rod where

all thermal properties are constant in any cross-section,

there is no heat flow through the lateral sides, that is, the lateral sides are perfectly
insulated,

there are no internal heat sources in the rod,

the boundary conditions imply that there is no heat flow through the ends of the
rod, and

the initial temperature distribution in the rod is u(z,0) = f(z) for 0 < z < L.

(b) In order to show that there are no separated solutions which grow exponentially in
time, we have to show that there are no negative eigenvalues.

Assuming a solution of the form

u(z,t) = ¢(z) - G(t)

and separating variables, we get

S G
o(r) ~ KC()

where ) is a constant. The partial differential equation is reduced to two ordinary
differential equations:

Spatial Equation:

Time Equation:

G'(t) + kAG(t) =0, t>0.

Case 1: We consider the spatial equation first, suppose that A = —u? < 0, where
i # 0, the general solution in this case is

¢(z) = Acosh px + Bsinh px.

Applying the boundary conditions, since

¢'(x) = pAsinh pz + pB cosh pz,

we get ¢'(0) = uB = 0, and B = 0. Also, ¢/(L) = pAsinhpuL = 0, so that A = 0.
Thus, the only solution in this case is the trivial solution ¢(x) = 0, and there are no
separated solutions which grow exponentially in time.
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Case 2: X = p? > 0, where p # 0.

The general solution in this case is
o(x) = Acos px + Bsin pa.
Since
¢ (r) = —pAsin pz + pB cos px,
applying the first boundary condition, we have
¢'(0) =puB-1=0,
so that B = 0. Applying the second boundary condition, we have
¢ (L) = —Apsin uL = 0,

and if A = 0 we get only the trivial solution again. Therefore, we get nontrivial
solutions if and only if sin u. = 0, that is, when

_nw

=T

where n > 1. The eigenvalues for this problem are

n2m?

An:ui:?,

with corresponding eigenfunctions

form=1,2,3,....
Case 3: X = 0.

The general solution in this case is
¢(z) = Az + B,

Applying the boundary conditions, we get ¢'(0) = A =0, and ¢'(L) = A = 0, and the
only solution in this case is the constant solution ¢g(x) = B. The eigenvalue for this
problem is \g = 0, with corresponding eigenfunction ¢g(x) = 1.

The solutions to the time equation corresponding to these nontrivial solutions are

kn?m3t

Gut)=e I

forn=0,1,2,3,....



47

For n > 0, the functions
kn2m3t
tn(2,1) = B(x) - Gult) = cos 2™ T
are also solutions to the partial differential equation satisfying the boundary conditions,
and since the partial differential equation and the boundary conditions are homoge-
neous, by the superposition principle, the solution is

kn2n2t
u(z,t) = AO+ZA cos T e I?

n=1

Note that the constant Ay corresponds to the n = 0 term.

The initial condition is
u(z,0) = f(z)
for 0 < x < L, so that if
flz) = A+ ZAncos e

n=1
for 0 < x < L, then the initial condition will be satisfied.

nmx
L

mnzx
L

In order to determine the coefficients A,, we use the fact that cos 2Z%£ and cos

orthogonal on the interval [0, L] in the sense that

are

for n,m >0, n#m

L
nmwxr mmx J— J—
/0 cos " cos it dr = for n=m#0

SN

for n=m=0.
Starting from the initial condition

f(x) = AO—I—ZA cos "TF = ZA cos "FF

n=1

m7r:c

for 0 < x < L, we multiply both sides of this equation by cos
the interval [0, L] to get

/ f(z)cos ™= dx = E / A, cos "F cos TFE dx,

and from the orthogonality of the eigenfunctions on the interval [0, L], we have

L
L / Agdx = LAy for m=0
/ f(x) cos ™= dx = 0
0

, and integrate over

LA, }
— otherwise.
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Therefore
1 [* 2 [*
Ao——/ f(z)dx and An:—/ f(z)cos “Ftdx, n>1
L Jo L Jo
(e) The solution is
kn2m2t
u(z,t) = AO+ZA cos "ft e LT
n=1
where
1 L
:—/ f(x)dx and / f(z)cos "2 d n > 1.
L Jg

Taking the limit as ¢ — oo, we have

kn2r2t
lim u(x,t) = hm (AO + ZA cos T - e L7 )

t—o00
n=1

> kn2m2t
= Ao+ tlggo (2:1 Ay cos ™t eT I )
= A07
and
lim u(z,t) / f(x
t—o0

Let v denote the steady-state solution, then v satisfies the boundary value problem

d*v

@ = 0, O<zxz<L
dv
—(0) =20
7.(0)
dv
—(L)=0
7 (L)
The general solution is
(r)=Az+ B
and p
v
—(x) = A.
77 ()
Applying the boundary conditions, we have
d d
Y0y =%r) =0,

- 20 =
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and the steady-state solution is
v(r)=B, 0<uz<L.

To evaluate the constant B, we note that since the total heat energy in the bar is

constant, then
L L L L
/de:/ v(x)dz:/ u(x,())dx:/ f(z)dx,
0 0 0 0

B-L:/Lf(z)dx,
0

so that

that is, .
1
v(r) =B = z/o f(x)dx

for 0 < x < L.

3.1.1 General Linear Homogeneous Equation
Now suppose we consider a slightly more general linear homogeneous PDE:

A1Us + AUy = k:lum + k‘gux + k’gu.
If we try separation of variables u(z,t) = X (x)T'(t) we get
T// T/ X// X/
— — =k1— + ko— + k3.
a1T+a2T 1X+2X+3

If the coefficients are constant, then the left side of the equation is a function of time ¢ only
and the right side of the equation is a function of the spatial variable x only. This means
that both sides must equal some constant (—\ say):

and so we get ODEs for T and X:
CL1T// -+ CLQT/ + N = O, ]{ZlX// + kQX/ + (1{53 + >\)X = 0.

So, once again, separation of variables seems to work.
But what happens if the coefficients are not constant? For example consider the PDE u; =
rtug,. In this case, separation of variables leads to

T X"
T X
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which leads to ODEs in 7" and X. But for u; = (x + t)u,,, separation of variables leads to

"

= (z+ t)y

!
T

In this case it doesn’t work.
The success of the method of separation of variables in Example 1.9 depended not only on
the fact that the PDE was linear and homogeneous, but also on the fact that the boundary

conditions were linear and homogeneous. Inserting u(x,t) = X (x)T'(t) into the homogeneous
boundary conditions lead to

More generally, the homogeneous Robin’s conditions
ou
)+ B8=(0,t) =
Qu(0,) + B5(0,1) = 0

leads to
aX(0)+ BX'(0) =0.

What happens when either the PDE or the boundary conditions are no longer homoge-
neous? For a nonhomogeneous PDE like

Uy = kg, + 7,
using u(x,t) = X (z)T'(t) leads to
T/ X// ,}/
KT X kEXT
so the method doesn’t work. For the nonhomogeneous boundary conditions

u(0,t) = ¢y, u(l,t) = ¢y

we get the inconsistency

Again, the method doesn’t work.

In summary, what we conclude is that if we have a linear homogeneous PDE with linear
homogeneous boundary conditions, then separation of variables may work. But the method
may not work. It depends on the particular problem. For nonhomogeneous problems, the
method does not work; at least not directly. In the latter case, however, all is not lost, as
we shall see in the next section.



51

Exercise 3.2. XXX

The one-dimensional wave equation in presence of a damping term, where in
the simplest case the resistance can be assumed to be proportional to the
velocity, is called the damped one-dimensional wave equation:

0*u N 2k8u , 0%

— — =c"— 0O<ax< L, t>0.
ot o or oS

Solve this equation subject to the boundary conditions
u(0,t) =0 and  u(L,t) =0 for all ¢ >0,

and the initial conditions

u(x,0) = f(x) and a(fﬁ, 0) = g(x) for 0<z< L.

Solution:

(a) Assuming a product solution of the form u(x,t) = X (2)T'(t), and substituting this into
the equation we have
XT" +2kXT = X"T.

Dividing by ¢2XT and separating variables, we obtain

T// 2kT/ X//

T + 2T X
Since z and t are independent variables and the left-hand-side depends only on ¢, while
the right hand side depends only on x, then both sides must be constant, and so

T// 2]{:T/ X//
— + —==-A d — =
ET © @T X ’
where A is the separation constant, and the functions X and 7' satisfy the following
indexOrdinary differential equationordinary differential equations

X"+ AX =0
T" 4+ 2kT" + \*T = 0.

Now, we can satisfy the boundary conditions by requiring that X (0) = X (L) = 0, and
so X satisfies the boundary value problem

X"+ XX =0
X(0)=0
X(L)=0.
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As in the previous problems, we only get a nontrivial solution if the separation constant
A is positive, say A = p? where u # 0, and in this case, the equations for X and T
become

X"+ 12X =0, X(0)=0, X(L)=0,
T" + 2kT" + (puc)*T =0,

where p # 0.

The general solution to the equation
X"+ 12X =0
is given by
X(z) = Acos px + Bsin uz,

where the constants are determined from the boundary conditions. Since X (0) = 0,
then we must have A = 0; and since X (L) = 0, the only nontrivial solutions arise when
sin u, = 0, and this happens if and only if uL. = n7, where n is an integer.

Therefore, the only nontrivial solutions to the boundary value problem for X occur for

nm

and the solutions are
X =X, =sin "F*

form=1,2,....

For each integer n > 1, the corresponding equation for 7 is

T" + 2kT' + (<) T = 0,

a second order, linear, homogeneous, constant coefficient equation which we know how
to solve. Assuming a solution of the form T'(t) = e*, and plugging this into the
differential equation we get the characteristic equation

2

a? + 2ka + P =

and the roots of this quadratic equation are

2.-2.2 2.-2.2
n1 = —k + 4/ k2 — 5% and  apo = —k —\/k? — 5%

In order to find the corresponding solutions 7T, (t), we need to consider three cases,

n?m3c?

according to whether k% — 755 s zero, positive or negative.
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Case 1: k* — 22222 — (). In this case, we have equal real roots, and the solution is

12
T, (t) = e ¥ (a, + byt)

where k = "“c > (.

Case 2: k* — ﬂ > (. In this case, we have two distinct real roots, and the solution
is

T, (t) = e (a, cosh a,t + b, sinh a,t)
where a,, = \/k? — ”22202

Case 3: k? — ¢ < (. In this case, we have two distinct imaginary roots, and the

L2
solution is
T,.(t) = e (a, cos ant + by sin a,t)

222

where a;, = /5= — k2

Since the partial differential equation and the boundary conditions are linear and homo-
geneous, we use the superposition principle to write the solution as a linear combination
of the solutions that we found in part (c)

= un(z,t) =) Xo(x)

If % is not a positive integer, then
]{72 o nzzjcz % O,
and either 1 < n < == orn > 22 so we are in Case 2 or Case 3, and the solution is

u(z,t) = e Z sin "% (ay, cosh ay,t 4 by, sinh )

1<n<kL/mc
+e M E sin *F- (a, cos apnt + by sin a,t)
kL/me<n<oo
o 2
where these sums run over nonnegative integers only, and «,, = ‘k2 — (%) ‘

Also, to satisfy the initial conditions, the a, are the Fourier sine coefficients for the
odd periodic extension of f(x), that is,

/ f(x)sin 7= d

form=1,2,....
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If we differentiate this expression for u(z,t) with respect to ¢, and set ¢ = 0, then we
see that —ka,, + a,,b,, are just the Fourier sine coefficients of the odd periodic extension
of g(z), that is,

o L
—ka, + a,b, = —/ g(x) sin "% dx
L J

form=1,2,....

(e) If % is a positive integer, then we have to add the corresponding term in the sum

when the n = EL,
e

In this case, if ng = %, the solution is as in (d) with the one additional term

kx

sin - (akL/ﬂce_kt + bkL/Wcte_kt)

with a,, and b, as in (d), except that by . is determined from the equation

2 L
—kagrjxe + Ok jre = 17 / g(x)sin k—cx dx.
0

3.2 Nonhomogeneous Equations

We saw in the previous section that the method of separation of variables can not be directly
applied to problems where either the PDE or the boundary conditions are nonhomogeneous.
To handle problems of this type, where either the PDE or the boundary conditions are
nonhomogeneous, we split the problem into two parts: one part is an ODE to which the
nonhomogeneities are attached, and another part consisting of the homogeneous counterpart
of the original PDE This is best illustrated by means of an example.

EXAMPLE 3.1. Consider the following nonhomogeneous, 1-dimensional heat equation:

%:%+7, 0<ae <1, t>0,
u(0,t) = cf, (7, cL, cr are positive constants)
u(l,t) =cp
u(x,0) = 0.

This problem governs the temperature inside a one-dimensional rod of unit length in which
heat is generated internally. Notice that neither the PDE nor the boundary conditions are
homogeneous.
If we try the usual separation of variables form of solution u(x,t) = X(z)7T'(t) in the
PDE we get
T/ X// fy
—_— =t —,
ET X kXT
which is not separable, and if we try this in the boundary conditions we get the inconsistency
€1 C2
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What we will do is split the solution into two pieces
u(z,t) = v(z) + w(z,t). (3.1)
Inserting this into the original PDE yields
Wy = Weg + V" + 7.

We have a single PDE in two unknown functions: v and w. Since we have two unknowns,
we need two equations. We impose the following condition:

v+ =0.
If we now insert (3.1) into the boundary conditions we get

v(0) +w(0,t) = ¢p,
v(1) +w(l,t) = cg.

Impose the conditions v(0) = ¢z, and v(1) = cg. The initial condition becomes
v(z) + w(z,0) =0 or  w(z.0)=—v(z).

Putting everything together we get that v satisfies

and w satisfies

%—f:% 0<z<1, 1t>0,
w(0,t) =0,
w(l,t) =0,
w(z,0) = —v(z).

The nonhomogeneities of the original problem have been shifted over to the ODE for v.
The problem for w is a linear, homogeneous PDE with homogeneous boundary conditions.
Solving the problem for v we get

1 1
v(r) = —§7x2 + (57 — ¢+ cr)T + cp.

To solve the problem for w we apply separation of variables:

w(z,t) = X(2)T(t).
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This leads to

Problem for T : Problem for X :
T +\T =0, X"+ 2X =0,
X(0)=X(1)=0.

Solving the problem for X, we get a nontrivial solution only for A > 0:
A=\, =n’r% X = X,(z) = sin(nrz), n=12....

This means that T'=T,,(t) = e*™*t and the family of solutions we get for w is

W (1) = Xn(2)T,(t) = e ™ sin(nmz), n=12....

Foreachn =1,2,... w, is a solution to the PDE for w which also satisfies the homogeneous
boundary conditions. We construct more general solutions by applying the principle of

superposition:
ZbX Z:be"2 Psin(nmx).

We now apply the initial condition w(z,0) = —v(z) to get
= Z b, sin(nmx). (Fourier sine series)

Since we have a Fourier sine series, we let v, be the odd, 2¢-periodic extension of v (with
¢ =1) so we get

¢ 1
b, = %/ —vo() sin(nigx) dr = —2/ v(x) sin(nmzx) dr
0

—L

1
1 1
= —2/ [—=y2® + (27 — ¢ + cr)T + cp] sin(n7r) do
0

2 2
= {1 = 1+ fer — (~1)"eal, (32
The final solution is
u(x,t) = v(x) + w(x,t) +Zb e gin (nmx)
1, 1 2 § 5 Y
=30 + (57 —cL+cr)r +cp +2 Z {n37r3 (=) —=1]+ %[CL —(=1) cR]} e sin(nma
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Notice that tlim u(z,t) = tlim {v(z)+w(z,t)} = v(z). For this reason, w is sometimes called
—00 —00

the transient solution, while v(z) is called the equilibrium solution, or the steady
state solution. For the special case v = 0, the solution reduces to

2 =1 22
t) = _ - - —(=1)" —n Tt : )
u(x,t) = (cp —cr)r +cp + - nEZI n[cL (—1)"cgle sin(nmr)

Here we plot some results with the following parameter values: v = 15, ¢, = 1, cg = 2.
Figure 3.1 contains a plot of the steady state solution v(z). Figure 3.2 shows approximations
to u(x,t) by using a truncated series with N = 5,50, at early times. In Figure 3.3 we show
the evolution of u(z,t) as time ¢ — 0.6. Notice that convergence to the limiting solution
takes place very quickly.

‘;j 02 04 * 06 0.8 1

Figure 3.1: Steady state solution v(x)

47 44

3] 3]

2] 2] |

17 4 |
o . I |

0 02 04 _ 06 08 10 02 04 0.6 0.8 1

WE N=5, 1=0 WE N=50, 1=0

47 44

3] 3]

2] 2]

IE IE

0 02 04 0.6 08 10 02 04 06 0.8 1

WE N=5,  1=0.001 WE N=50,  1=0.001

47 47

3] 3]

2] 2]

I’\ / 14 /

— 77,// \\,,77 _
0 02 04 0.6 0.8 10 02 04 ] 0.8 1
WE N=5,  1=0.01 WE N=50, 1=0.01

Figure 3.2: Different approximations for u(x,t) with N = 5,50

The previous example dealt with a nonhomogeneous problem in which the nonhomo-
geneities, both in the PDE and in the boundary conditions, were constant. In the next
example we consider a problem with non—constant nonhomogeneities.
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EXAMPLE 3.2. Consider the following nonhomogeneous, 1-dimensional heat equation:

%—azu—i-fy(x,t) 0<z<1,t>0,
u(0,t) = et
u(l,t) = cp(t
u(z,0) = g(x).

The technique we employed in the previous example, namely writing u(z,t) = v(z) +w(z, t),
won’t work in this case since nonhomogeneous terms depend on the time . In order to solve
this problem we proceed in two steps. First we remove the nonhomogeneous terms from the
boundary conditions (actually move them up into the PDE itself) and then we solve the
nonhomogeneous PDE with homogeneous boundary conditions.

) (v, cr, cr are positive constants)
)

In the previous example we saw, that for v = 0, that v was a linear function, i.e. v was
of the form v(x) = a + bx. This suggests that we try writing u as follows:

u(z,t) = A(t) + 2 B(t) + w(z, 1), (3.3)

where A and B are chosen to eliminate the nonhomogeneous terms in the boundary condi-
tions. Plugging this expression into the boundary conditions yields

u(0,1) = cL(t) N A(t) +w(0,t) = cp(t)

u(1,t) = cgp(t) A(t)+ B(t) + w(l,t) = cg(t)
We want homogeneous boundary conditions for w, so we choose

A(t) :==cp(t), B(t) := cr(t) — cp(t).

This leads to w(0,t) = w(1,t) = 0. Now plugging (3.3) into the PDE gives:
ow  0Pw
ot 0x?
and the initial condition becomes A(0) + B(0) + w(x,0) = g(x). The problem for w is:

ow 021,0

w(0,t) =0, lw(l,t) =0,
w(z,0) = f(z),

A'(t)+xB'(t) + — + (2, 1),

where

= y(x,t) — A'(t) — xB'(t),
= —A(0) — 2B(0) + g(x),
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Equation (3.4) is still nonhomogeneous but the boundary conditions associated with it are
homogeneous. Before solving (3.4), we consider the homogeneous problem associated with
it, namely

o _
ot Ox?’

v(0,t) = 0, lu(1,t) =0,
v(z,0) = f(z).

This problem is now in the form of the problem in Example 1.9. Applying separation of
variables v(x,t) = X (z)T'(t) leads to

(3.5)

2

X = X, (z) =sin(nmz), T=T,t)=e""" n=123,....

We know that any piecewise continuous function can be expanded in a Fourier series, in this
case a Fourier sine series. In particular

= i fnsin(nrx),
n=1
F(x,t) = f: F,(t) sin(nmx),
where -
1
Jn= 2/0 f(z)sin(nrx) dx,

Fu(t) = 2 /0 Fla, 1) sin(nrz) da.

The homogeneous problem sets the stage for this problem. We use the eigenfucntions of the
homogeneous problem to exoand the solution as

w(z,t) = w,(t)Xn(z) =Y w,(t) sin(nrz), (3.6)

which is called method of eigenfunction expansion. Plugging this into (3.4) gives
Z w) (t) sin(nmr) Z n*m*w, (t) sin(nrx) + Z F,(t)sin(nmz)
n=1
which, upon rearrangement gives

Z ) 4+ 07w, (t) — F,(t)] sin(nrz) = 0.

n=1
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If we plug (3.6) into the initial condition associated with (3.4), we get

o0
E wy, (0) sin(nmzx) E fnsin(nmrz)
n=1

This leads to the following ODEs for the w,’s:

w (t) + n’mw,(t) = F,(t), n=1,2,3,...,
wa(0) = fu-

This is a first order, homogeneous linear ODE | which can always be solved by means of an
integrating factor. The solution is

W (t) = e ™™ {fn /0 e”zﬁQSFn(s)ds].

Thus, the solution to the original problem is:

u(z,t) = A(t) + xB(t) + an ) sin(nmz),

n=1

where
2 t 2.2
W (t) = e ™ [fn / e T F,(s) ds] :
0
1
F.(t) = 2/ F(x,t)sin(nmz) dz,
0

Jn= 2/ f(x)sin(nrx) d,

F(o,t) = 1(x,1) — A't) — 2B/(2),
f(x) == =A(0) — 2B(0) + g(x),
A(t) :==cp(t),

B(t) := cg(t) — cp(t)

Speial cases:

1. (y=cp =cg=0). (i.e. homogeneous case)
Then A(t) = B(t) = F(z,t) =0, f(z) = g(x), w,(t) = gne~™ and

Z gne "™ tsin(nmx).
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. (7, ¢, cr constant, g(x) = 0). (i.e. Example 3.1)
Then A=c¢p, B=cgr—cp, A=B =0, F(x,t) =7, f(x) = —¢ — (cr — )z,

fo=2 /0 @) sin(nre) dz = o — (=1) e,
F.(t) = 2/0 ysin(nmzx) de = 2—7[1 — (—=1)"].
This gives

¢
wy(t) =e™" s lfn + Fn/ e ds}
0

F, F, F,
— e 272 [fn + (en27r2t N 1):| _ <fn o )en27r2t + .

n2m? n2mr2 )
Therefore
u(x,t) = A(t) + xB(t) + Z wy(t) sin(nmz) = —f(z) + Z wy(t) sin(nmr)
n=1 n=1
N = Fo \ e B
= ;[wn(t) — fo]sin(nrz) = nZ::l [(fn _ n%z) enimt | i fn} sin(nmx)

= Z (fn — nf;) <e"2”2t — 1) sin(nmz).
n=1

Does this agree with the result of Example 3.17 To see that it does, recall that

= Z b, sin(nrx),
n=1

where the b,’s are given by (3.2). Thus, we have

fom = e (~1)eq] — 22

n?w? nrw n3m3

Therefore

Z by, ( ) sin(nmx)

= —Zb sin(nmx +Zb " ™t sin(nmx) —I—Zb e" ™ sin(nmr).
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We now have a relatively systematic way to handle nonhomogeneities that may arise in
our PDEs and/or boundary conditions. The crucial part is being able to solve the corre-
sponding homogeneous problem. In the examples we have considered thus far, the homoge-
neous PDEs have been relatively easy to solve. Suppose we now consider some slightly more
complicated homogeneous PDEs. Recall the general heat equation:

ou 1= - h
V. (K 0
5 pcv (KVu) + pe

where p is density, ¢ is heat capacity, K is thermal conductivity, and h is the rate of internal
heat generation. Let us consider the one-dimensional case with h = hyu:

mm@%zé%m%%mmu

1+ auxiliary conditions

If we try separation of variables u(z,t) = X (x)T'(t) on this equation we get
! d /
peXT' = —(KX)T + mXT

which separates to

T/ KX/ !
LSS S L Y
T pcX pc

The equation for X is (K X') + (hy + Apc) X = 0. This second order ODE with nonconstant
coefficients is, of course, much more difficult to solve than the X” + AX = 0 equation we
had before. In general, we need to consider ODEs of the following type:

(r(x)¢') + [a(z) + Ap(x)]o = 0, x € (a,b),
1+ boundary conditions.

Notice that for the case r(x) = p(r) = 1 and ¢(x) = 0 this ODE reduces to ¢” + A\¢ = 0,
which is the simple ODE that what we had before. The question is: for what values of A will
nontrivial solutions exist? These eigenvalue problems are called Sturm-—Liouville problems
and will be the subject of study in the next chapter.



Exercise 3.3. XX
Solve the nonhomogeneous heat equation with time-dependent source
ou 0u
— =k— t
ot Ox? +Q(=.?)
u(z,0) = f(z)
and nonhomogeneous boundary conditions
Ju
u(0,t) = A(?) and 8_(L’t) = B(t).
x

Hint: Reduce the problem to one with homogeneous boundary conditions
by writing u(z,t) = w(z,t) + v(z,t) and assuming that v satisfies just the
boundary conditions (and nothing else), then use the method of eigenfunction
expansions to solve for w(x,t).
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Solution: If u(x,t) is a solution to the problem (x), we reduce the problem to one with
homogeneous boundary conditions by writing

u(z,t) =v(x,t) +w(x,t)

where v(z,t) satisfies only the boundary conditions

for t >

v(0,t) = A(t)
ov
O (1.1) = B

0. We take the simplest possible such function, namely,

vz, t) = B(t) + A(t),

then
u(z,t) =w(z,t) + B(t) z + A1),
and
Ju Ow dB(t) dA(t)
o "o T ar T Tar
and
Pu  PPw
0r® 022
Therefore

ow  Pw  dB(t) dA(t)
I Tk e G
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Also,
A(t) =u(0,t) = w(0,t) + A(t) so that  w(0,t) =0,
while 5 5 5
u w w
B(t) = %(L,t) = %(L,t) + B(t) so that %(L,t) =0.

Therefore, w(x,t) satisfies the problem with homogeneous boundary conditions given by

ow Pw dB(t)  dA(Y)

— = Se<L,t>
T k@:ﬁ T i +Q(z,t), 0<x t>0 (5 % %)
w(0,t) =0, t=0
ow
=0, t>
8x( 4 =0, 0

w(z,0) = f(z) — B(0)z — A(0), 0<z<L.

The initial value-boundary value problem for w(z,t) now consists of a nonhomogeneous
partial differential equation, but with homogeneous boundary conditions. As is usual with
nonhomogeneous equations, we first find the solution to the homogeneous problem

ow d*w

ot kax2
w(0,t) =0

ow
S (L) =0

using separation of variables. Assuming a solution of the form w(z,t) = ¢(z) - T'(t), we get
two ordinary differential equations:

¢" () +Mp(x) =0, 0<z<L, T'(t)+XeT(t) =0, t=>0,
$(0) =0
0

The eigenvalues are

i (2n—D7mzx
¢n(x) = sin =57

with corresponding eigenfunctions

forn > 1.

Now, we are not solving the T equation and finding the general solution to the ho-
mogeneous problem, instead we use the method of eigenfunction expansions to write the



65

solution w(x,t) to (* x %), the nonhomogeneous problem, in terms of the eigenfunctions of
the homogeneous problem:

Z an sm (2n 1) 7rx’ (T)

n=1

where indexVariation of parameters(similar to the method of variation of parameters) the
coefficients a,(t) depend on t.

Next, we force this to be a solution to the equation (x x x) by requiring that each a,(t)
satisfies a first-order ordinary differential equation together with an initial condition. We
look at the initial conditions first, when ¢ = 0 we want

w(z,0) = f(x) - B(O) Zan sin G
and from the orthogonality of the eigenfunctions on the interval [0, L], we find the coefficients
2 [* 2n-1)
an(0) = Z/0 [f(x) — B(0)z — A(0)] sin 2072 gy

forn > 1.
Now from (f) we have

ow 2 da,(t) . 2n—1)r @n—1)r\? . (@n—1)mz
E:n:1 i sin 7= and 8$2_ Zan ( )sm ST

and substituting these expressions into the equation (x % x), after some simplification, we
obtain

da'n (2n—1)rx __ dB(t) dA(t)
Z[dt + kA, an} sin = = L o + Q(x, ).

The left-hand side of this equation is just the generalized Fourier series of the function

dB(t)  dA(t)
a T dt

gla,t) = — +Q(z,1),

so that
2 L
dan \ gn an — / g(x, t)sin E=0 gy — G (1), ()
dt L/

and a,(t) satisfies the initial-value problem

day,(t)
dt

a,(0) = f/o [f(x) — B(0) x — A(0)] sin 21" g,

RNy an(t) = Go(t), t=0
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Multiplying by the integrating factor e’ **, we can solve this first-order linear equation
to get
t
an(t) = ap, (0)e Mkt 4 o= kt/ Gu(s)eMFds, t>0 (tt1)
0
forn > 1.

The solution to the original equation is

u(e,t) = Bt)z + A(t) + Y _ an(t)sin /A, 2

- ((2n2—L1)w)2

and a,(t) is given by (11 1) for n > 1.

for0 <z <L, t>0, where
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Figure 3.3: Time evolution of u(x,t) with N =5



Chapter 4

Sturm-Liouville Problems
June 17, 2010

4.1 Formulaton

Consider the following ODE for an unknown function ¢(z) together with boundary condi-
tions:

(p(2)¢") + [q(z) + Ao (x)]¢ = 0, a<x<b, (4.1)
a1¢(a) — fid'(a) = 0,
asp(b) + B2¢'(b) =0

The function ¢(z) = 0 is always a solution, called the trivial solution. What we wish to
determine is for what values of the constant A, if any, do nontrivial solutions exist. Such
problems are generally called eigenvalue problems.

Definition 26. A REGULAR STURM—LIOUVILLE EIGENVALUE PROBLEM denotes the prob-
lem to find a pair (¢, \) of eigenfucntion and eigenvalue which solve (4.1), where

(i) p,p',q,0 are continuous for a < x < b;

(i1) p(x) > 0 and o(z) > 0 fora <z < b;

(iii) a2 + B # 0 and o3 + B2 # 0.

Definition 27. A Sturm-—Liouville problem is called SINGULAR if at least one of the condi-
tions in the above definition fails.
The most common singular Sturm-Liouville problem one encounters is one where p(x) > 0

for a < x < b, but either p(a) = 0 or p(b) = 0.

EXAMPLE 4.1. Consider the following boundary value problem that we have solved sev-
eral times before:

"+ Xp=0, 0<z<Y,
$(0) = ¢(¢) = 0.
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This is a regular Sturm—Liouville problem with p(z) = o(x) =1, ¢(x) =0, and a; = g = 1,
B1 = B2 = 0. Nontrivial solutions exist only for

22
A=)\, = n;; , n=1,23, ..., (eigenvalues)
On(z) = sin(?). (eigenfunctions)
2,2
Clearly A\, > 0 for all n and lim A, = lim nrTo_ 00.
n—o00 n—0o00 £2
i
0.5%
0 i 02 04 06 0.8 1
0.5
-1

Figure 4.1: Eigenfunctions ¢;(x), ¢o(x) ¢3(x)

Definition 28. The values of A for which nontrivial solutions to (4.1) exist are called EIGEN-
VALUES. The set of all eigenvalues is the called SPECTRUM. The nontrivial solution corre-
sponding to an eigenvalue 1s called an EIGENFUNCTION.

4.2 Properties of Sturm—Liouville Problems
Theorem 29. A regular Sturm-—Liouville problem has an infinite spectrum.

Theorem 30. If \,, and \, are distinct eigenvalues to a regqular Sturm—Liouville problem
(i.e. Ay # An), then the corresponding eigenfunctions ¢,, and ¢, are orthogonal relative to
the inner product

(f,9) :/ f(x)g(x)o(z) dx.
Proof.

Since ¢, and ¢,, are solutions to the Sturm-Liouville problem, they satisfy the boundary
conditions:

a1¢m(a) — 19, (a)
a1¢n(a) — Prd),(a)

0,
0.

0, a2¢m(b) + B2, (D)
0, s () + By, (b)

The boundary condition at x = a can be written in matrix form

@ gll] -1
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Since o + B2 # 0, the determinant of the coefficient matrix must be singular
1 1

dula) Dua)| _
On(a) ¢(a)|
Therefore
Pm(a)dr,(a) — ¢r(a)dn(a) = 0. (4.2)
A similar argument at the right boundary x = b yields
O ()97, (0) — &7, (b)Pn () = 0. (4.3)

Since ¢,, and ¢,, also satisfy the ODE we have
(p(2)¢r,)" + [9(x) + Ao (2)]dm =0,
(p(x)¢n)" + [a(x) + Ano (2)]n = 0.
Multiplying the first by ¢,, and the second by ¢,, and subtracting yields
On(PP1) = Om(pen) + (Am — An)o Pmn = 0.

Integrating over the interval gives

b b
[ 600, = 600685 = O =) [ e = 0.

Further manipulation results in

(= M) (s ) = / 6u(p0h) — du(pdl)] da

b b

b b
= pond,| — / Ph @ A — pom@),| + / Py, @), da

a \ ,
= p(6udhy, — Smdl)| — / P&, — &) da

= p(0)[@n(b)¢r, (b) — & (0) 81, (0)] — p(a)[¢n(a) ), (a) — Pm(a)dh,(a)]
= 0.

But, since the eigenvalues are distinct, we have (¢,,,®,) = 0. Thus, the eigenfunctions
corresponding to distinct eigenvalues are orthogonal.

EXAMPLE 4.2. (Cauchy — Euler equation)

(x¢')'+%¢20, 1<x <Y,
¢(1) =0, ¢(¢)=0.
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This is a regular Sturm-Liouville problem with p(z) = z, o(x) = 1/x, ¢(z) = 0, and
ar=ay =1, = =0.
Making the transformation

leads to
u + = 0.

This is easily solved (with A = p?) to give
u(s) = ¢1 cos s + co sin ps.

Therefore
() = crcos(pulnx) + cosin(plnx).

Applying the boundary conditions yields

2.2
A = (7;:&72)2, n=12 ..., (eigenvalues)

1
On(z) = sin(nw%). (eigenfunctions)

For m # n we have

o Inz\ ; Inx ™
T el 1 1
(G, bn) = / sin(mm ) sin(nm3,7) drx = It sin(mt) sin(nt)dt ~ 6(using t = Wl n;)
1 X s 0 n
1 T 1 . _ . s
_ Inf [cos(n — m)t — cos(n +m)t] dt = Il [sin(n —m)t _ sin(n +m)t = 0.
2m Jo 2m n—m n+m 0

Therefore eigenfunctions are orthogonal.

Theorem 31.

1. The regular Sturm—Liouville problem has an infinite spectrum with A\, — 00 asn — 0.

2. If the eigenvalues are ordered A\ < Aoy < ---, then the eigenfunction corresponding to
An has ezxactly (n — 1) zeros in the interval a < x < b.

3. Ifq(x) <0, anfy = 0 and asfly = 0, then N\, = 0 for all n.

Proof.
(part (3) only)
The inner product we use is one with weight function o(z):

(d,A) = /b OAo(x) de.
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Let A\, be an eigenvalue with corresponding eigenfunction ¢,,. Then

(p(x)d,,) + [q(x) + Ao (2)]¢n = 0.

Manipulating, we get

Aallonll® = A (G ) = A /¢2

B / a()9i(x) do = / [p()6/,(2)) 6u(), dz

= A, + B,.
We have
b
A, = —/ q(z)¢% (x) dr > 0, (since, by assumption ¢(z) < 0)
CLb b b
Bu =~ [ Ip@)6f, (@)} ona).do = —pla)df,(@)6n(2)| + [ pla)df(x)da = C,+ Dy
Clearly
b
D, = / p(x)¢l (z)dx > 0, (since, by assumption p(x) > 0)
and

Cp = Fu(a) — Fu(b), where F,(x) := p(x)dn(v)¢),(2).
We first examine Fj,(a). There are two possibilities: either §; = 0 or 51 # 0. We have
fi=0 = ¢u(a)=0 = F,(a)=0

HL#EO = %(@‘E%() = Iu(a) =

Either way, F,(a) > 0. Similarly for F,(b). There are two possibilities: either o = 0 or
Bs # 0. We have

Be=0 = ¢o(b)=0 = F,(b)=0
&%)

By#£0 = cb;(b):—%cbn(b) = Fu(b) = (1)) <O

Either way, F,(b) < 0. Therefore C,, = F,(a) — F,,(b) = 0. Finally

But [|¢,||? # 0, therefore A, > 0.
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4.3 Eigenfunction Expansions
Consider the regular Sturm-Liouville problem

(p(2)¢') + [g(x) + Ao(x)]l¢ =0,  a
a1¢(a) — f1¢/(a) =0,
asd(a) + Pag’(a) = 0.

Denote the eigenvalues by )\, and the corresponding eigenfunctions by ¢,. Define the inner
product

N
8

N\
<

(4.4)

(f,9) 3:/ f(z)g(z)o(x) dx.

We know that (¢,,, ¢,) = 0 for m # n.
Question: Can we represent a function f defined on (a,b) by a series of eigenfunctions?

ie. f(x) = Z Cn®n ().

Assume for the moment that this is the case. Then the coefficients of the series are calculated
as follows:

<f7 ¢m> = <Z Cn®n; ¢m> = Z Cn <¢n7 ¢m>
n=1 n=1

=0 <¢17¢m>+02<¢27¢m>+"'+Cm<¢mu¢m>+"'
=040+ 40+ Cullpm]? +0+ -

Therefore
_ ([ dm)
Cm = 5
[l
Definition 32. Let f be a piecewise continuous function on |a,b]. The eigenfucntion expan-
s10m

f(x) ~ ) eatnl()

with coefficients

{6

T gl
where the inner product is based on the weight function o(z), is called a GENERALIZED
FOURIER SERIES of f .

Theorem 33. If f is piecewise smooth on (a,b), then the generalized Fourier series

{f, dn)
1$nll?”

chgbn(x), where ¢, =
n=1
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converges to
flat) + fla—)
5 :
This says that if f is continuous at = (i.e. f(z+) = f(z—) = f(z)), then the eigenfunction
expansion converges to f(x) and if f has a jump discontinuity at = (i.e. f(z+) # f(z—)),
then the eigenfunction expansion converges to the point midway between the limiting values.

EXAMPLE 4.3. Consider the regular Sturm—Liouville problem

&' 4+ Mo =0, 0<x<l,

$(0) =0,
2¢(1) — ¢'(1) = 0.
Note that in this case asf8y = —2 < 0, hence Theorem 31 does not guarantee non-negative

eigenvalues.

e case (i): (A <0)
Let A\ = —p2. Then

¢ —pPp=0 = ¢(x) = acosh(ux) + bsinh(uz).
The left boundary condition gives us
$»(0)=0 = a=0 = ¢(x)=bsinh(ux).

The right boundary condition now gives us

26(1) — ¢/(1) =0 = 2bsinh(p) — bpcosh(p) =0 = tanh(,u):g.

This equation has a solution at p = 0, £p. Only po yields a nontrivial solution
¢o(z) = sinh(pox).

e case (ii): (A >0)
Let A = pu? # 0. Then

¢ +1fp=0 = ¢(x) = acos(ur) + bsin(uz).
The left boundary condition gives us

$p0)=0 = a=0 = ¢(x)=bsin(ux).
The right boundary condition now gives us

20(1) —¢'(1) =0 = 2bsin(u) —bucos(u) =0 = tan(u) = g
).

This equation has infinitely many solutions p, g, ... with ¢, (x) = sin(pu,z



To summarize, we have an infinite set of eigenvalues:

fin

—ug,,u%,ug,..., where tanh py = @, tan p,, = > n=1,2,3--,

2

with corresponding eigenfunctions

¢o(z) = sinh(poz), ¢n(x) =sin(u,z), n=1,2,3,---

The norms of the eigenfunctions are given by

1 |

n=0- H¢0H2 _ <¢0’¢0> _ /O SinhQ(MOx)dl’ = % (1 — %) )
1 |

n£0: |6l = (6n dn) = / sin® (un)de = % (1 - %) ’

An eigenfunction expansion for a function f € PC(0,1) is given by

(f: &n)
lonll®

x) ~ Z Cn®n(x), where ¢, =
n=0

Given the boundary value problem

a <1+)\x)

M%ZO

on the interval [1,2]. Put the equation in Sturm-Liouville form and decide
whether the problem is regular or singular.

Exercise 4.1. X

Solution: An equation is in Sturm-Liouville form if it has the form
(p(=)y) +a(z) y + Ao(x)y = 0.
We can rewrite the boundary value problem above in the form

1
(1-y')'+;y+)\y:0
y(1)=0
y(2) =0
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, o(x) = 1 are all continuous on the interval [1, 2],
,2].

The boundary conditions are of the form

cay(1) +ey'(1) =0
d1y(2) +day'(2) = 0

where ¢; = d; =1 and ¢; = dy = 0, and so are Sturm-Liouville type boundary conditions.

and here p(z) =1, p/(xz) =0, ¢(z) =

!
T
with p(z) > 0 and r(x) > 0 for all x € |1

Therefore, this is a regular Sturm-Liouville problem on the interval [1,2].

Exercise 4.2. XX
Consider the regular Sturm-Liouville problem

"+ Xp=0 0<z<n

¢'(0) =0
¢(m) =0
(a) Find the eigenvalues A2 and the corresponding eigenfunctions ¢, for this

problem.

(b) Show directly, by integration, that eigenfunctions corresponding to dis-
tinct eigenvalues are orthogonal.

2 2
(c) Given the function f(x) = T 5 ‘ , 0 < <, find the eigenfunction
expansion for f.
(d) Show that
ORI S N N S
32 = ¥ 58 ¢ 9

Solution:
(a) case(i): A=0
The general solution to the equation ¢” + A\2¢ = 0 in this case is
o(x) =c1x + co,

and differentiating, ¢'(z) = ¢, and the condition ¢'(0) = 0 implies that ¢; = 0. The
condition ¢(7) = 0 implies that co = 0, so there are no nontrivial solutions in this case.

case(ii): A # 0 The general solution to the equation ¢” + A\?¢ = 0 in this case is

o(x) = ¢1 cos A\x + o sin Az,
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and differentiating, we get
@' () = —cyAsin Ax + e\ cos A\x.
The condition ¢'(0) = 0 implies that co A = 0, and so ¢; = 0. The solution is then
¢(x) = c1 cos Az,
and the condition ¢(7) = 0 implies that cos A\m = 0, and therefore the eigenvalues are

A2 — )‘i _ (2712—1)2’

for n > 1. The corresponding eigenfunctions are

o (2n—1)
¢n(z) = cos 5=,

for n > 1.

(b) Let A, = 2”2_1 for n=1,2,3,..., then for m # n, we have

/ G (T)Pp () do = / COS A\ @ €OS A\ dix
0 0

1 ™
=3 / {cos(Am + A\n)x + cos(A\y, — Ap)z} dx
0

1 " 1 "
= ——sin(A\, + Ay ———sin(\,, — A\
20 ) sin(A,, + A\, ) + 2 — ) sin( G i
-t sin(Am + An)m + ! sin(A, — An)
T2t A 0 = T
=0

since (A, + Ap)m = (m +n— )7 and (A, — \p)7m = (m — n)7.

(c) Writing
2 — x?

f(x) = 9 ~ ch(j)n(l’),

the coefficients ¢, in the eigenfunction expansion are found using the orthogonality of
the eigenfunctions on [0, 7].

2 ™ 2 .2
Cp = —/ (W ! ) cos A\, dx
T Jo 2

2 sin )\nﬂ' 16 sin (2n—1)
= — = 1 m
T A3 m(2n —1)3 2
B 16(_1)n+1

w(2n —1)3
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where the integral was evaluated by repeated integration by parts.

Therefore, the eigenfunction expansion of f is given by

7’ — 2 16 (_1)n+1 (2n—1)
~— coS
2 T £~ (2n—1)° 2

x.

(d) In this particular problem, the eigenfunction expansion is actually the Fourier cosine
series for f. Since the function f is piecewise smooth on the interval [0, 7] and since
the even extension of f to [—m, 7| is continuous at « = 0, then by Dirichlet’s theorem

the series converges to f(0) = % when x = 0, and therefore

™ ] 1 n 1 1 N 1 N

32 3 5B B
EXAMPLE 4.4. Here we summarize the four most frequent Sturm Liouville problems. The
underlying computations can be found in Part II within the problems on Sturm Liouville
problems. These SL-problems should be memorized:

Model type SL-problem Spectrum eigenfunctions

homogeneous | ¢"(z) = —Ap(x) A = (”—5)2, n=12 ... ¢, = sin “F*

Dirichlet b.c. | ¢(0) = ¢(L) =0

homogeneous | ¢"(z) = —)\gb(x) An = ("—L“)z, n=0,1,... ¢p = cos "TE

Neumann b.c. | ¢/(0) = ¢'(L) =

mixed b.e. I | ¢(z) = —)\qb(x) A, = <<2”2—L”“>2, n=12..|¢,=snlm
6(0) = 0,¢/(L) = |

mixed b.e. 11 | ¢"(z) = —Ab(z) | Ao = <<2"2—L””>2, n=12..|¢,=cosnlm
¢'(0) =0,0(L) =

4.3.1 Rayleigh Quotient
It is often important to estimate the first (LEADING) eigenvalue. If the leading eigenvalue
is positive, then the system is stable, in the sense that small perturbations are damped and
the system converges to the equilibrium steady state. If the leading eigenvalue is negative,
then the system is unstable and small perturbations are amplified. This can have adverse
consequences to the system at hand (crashing bridges or towers, for example).

The Rayleigh quotient is a simple and elegant methods to estimate the leading eigenvalue.

Theorem 34. If (\,, ¢,) is a solution of a reqular SL problem, then A, can be calculated by
the RAYLEIGH QUOTIENT

—p(2)du(@) 7 (@) [F + [y (p(2)],(2)* = g(2) du(w)?)da

Ap =
Jy dal@)?o(z)dx

(4.5)
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Proof.
Multiplication of the SL problem by ¢,, gives

d /
cbn—d (pgl) + q? + \op? = 0.
X

Integration and integrating py parts gives
Ly L L
0 = [ g wide s [ adidnt [ hooids
0 dx 0 0

L L L
— Galpdl)IE — / &0 de + / (e + / Ao ¢

0

Hence (4.5) follows after rearrangement.

Lemma 35. If —p¢,¢, |5 >0 and ¢ <0 and 0 <z < L, then A\, > 0!/

We can write down the Rayleigh quotient for any function (it does not have to be an
eigenfunction). We define

_ —pudf§ g (pu® — qu?)de
fOL u?odr

R(u)

We find that the leading eigenvalue is the smallest of all those Rayleigh quotients, for func-
tions that satisfy the correct boundary conditions:

Theorem 36. Let D(L) denote the set of all continuous functions that satisfy the boundary
conditions

a1u(0) — B/ (0) = 0, asu(L) + pau' (L) = 0,
then
AL = ungl(nL) R(u)
1s the leading eigenvalue.

EXAMPLE 4.5. Find a good upper and lower estimate for the leading order eigenvalue of
the SL problem

2¢"(x) + Ap(x) =0,  ¢'(0) =¢/(L) = 0.
Here we have p =2,¢g = 0,0 = 1 and the boundary term in R is
—ppd'fs = —2¢(L)¢ (L) — 2¢(0)¢'(0) = 0.
Hence the Rayleigh quotient reads
L
fo 2¢ (x)dx -0

R(d) =
O = s >
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and a lower estimate is
AL > 0.

To find an upper estimate, we choose a test function which satisfies the boundary conditions
(but possibly not the equation). For example w(z) = 5 satisfies the boundary conditions.

For this function we find

L
2-0dx

Relw) = I}L 25dx =Y
0

hence
A <0.

Together with the previous estimate we find
>\1 = 0

We can compare the exact solution of this SL problem. With the transformation of \/2 = p
the above SL problem becomes

¢"+up=0,  ¢'(0)=¢(L)=0,

which is one of our standard problems. The eigenvalues are A, = (n7/L)? forn =0,1,2,....
Hence the leading eigenvalue is \g = 0. Notice that here the leading eigenvalue is called Ay
just for convenience, since the index n starts at 0.

EXAMPLE 4.6. Find good upper and lower bounds for the leading eigenvalue of
" —xp+Ap=0, #'(0) =0, ¢'(1)+24(i) =0.
We have p =1,¢g = —z,0 = 1 and the boundary term reads
—ppd'ls = —o(1)¢'(1) + ¢(0)¢(0) = 2¢(1)* = 0
Since ¢ = —x < 0 we have R(¢) > 0, hence
A1 > 0.

For a lower estimate we choose a test function which satisfies the boundary conditions. Here
it is not so easy to guess a function, so we make the Ansatz:

w(x) = Az® + Bz + C.
Substituting this function into the boundary conditions we get

0=B, 24+24+20=0
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Hence B =0 and C = —2A. We choose A = 1, then f(z) = 2* — 2 is a test function which
satisfies the boundary conditions. We compute

—FFS+ L2+ af)da

R(f) =
(f) Fon

The first term is
~frlh=2

The integrals are

1 1
/f'2+xf2d:)::/ 4o 4 x(z* — 42 + 4)dr = =
0

0

and
43

1
Qd—/ —4 4)dx
fodx 0(:17 z% + 4) =15

Together we get

135
R = — ~ 1.57.
() ==
Hence we find
0< )\ <157

Exercise 4.3. Find the general Fourier series solution for the following homo-
geneous Neumann problem for the wave equation. Use the Rayleigh quotient
to show that A\; > 0.

a(z)uy = (T(2)ug)s — B(2)
ug(0,t) =0, wu,(L,t)=0
U(I, O) = f(.’L’), ut(xa 0) = .T)

where a(z), 7(x), B(x) > 0.

0<z<L

S

Solution Separation of variables with u(x,t) = T'(¢) X (z) leads to the time problem
T"(t) = =\T(t)
and the spatial problem

(r(z)X'(z))" = B(x
X/(O)

=
I =

which is a regular SL problem with

p(x) =7(2),q(x) = —p(z) <0, and o(z)=a(zx).
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From the general theory it follows that we have a complete set of eigenvalues A{, o, ... and
corresponding eigenfunctions ¢q, ¢o, ... .
We study the Rayleigh quotient. The boundary term reads

—p(@)¢(x)¢/ (2)|5 = 7(L)d(L)¢ (L) — 7(0)$(0)¢'(0) = 0

Since ¢(z) < 0 we find A\; > 0. This is the information which we needed for the time problem.
T" = =\, T for A\, > 0 is solved by

T (t) = ap cos(v/Ant) + by sin(v/Ant).

Hence, after using superposition, we find the solution in the form of a generalized Fourier
series

u(z,t) = Z(an cos(v/Ant) + by sin(v/Ant)) én(2).

Finally, we adapt the initial conditions. At ¢t = 0 we get for the initial displacement
fl@) = u(z,0) = andn(z)

which is the generalized Fourier series of f(x) with coefficients

(f(x), dn(x))
[red|

a, =
Similarly, we get for the initial velocity
9(x) = u(2,0) = >/ Abnn(2).
n=1

Hence the coefficients of the generalized Fourier series of g(z) are

S, {9@).0u(2))
T Nl

which gives

1 (9(e), dn(a))

b, =
Vi, el
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Figure 4.2: Intersection of y = tanh(u) and y = u/2.

1
“j B 3 /R/x
—

Figure 4.3: Intersection of y = tan(u) and y = /2.



Chapter 5

Problems in Cartesian Coordinates
June 17, 2010

5.1 Heat Equation
EXAMPLE 5.1. Consider the following 1-dimensional heat equation:

wp = k(g + yu), O<ax</l t>0,

u.(0,t) =0,
ru(l,t) + u.(¢,t) =0,
u(z,0) = f(x).

This is a homogeneous PDE with homogeneous boundary conditions. Try a separation of
variables solution u(z,t) = X (x)T'(t). Plug into the PDE to get:

T/ X//
This gives the following problems for X and 7"
T + (N —y)kT =0, X"+ 2X =0,
X'(0) =0,

kX () + X'(¢) = 0.

The problem for X is a regular Sturm—Liouville problem with ¢(z) = 0, oy, = 0 and
asfy = 0. According to Theorem 31 (part 3) all the eigenvalues are non-negative. So,
letting A\ = pu? we get

X(z) = acos(pz) + bsin(ux),
X'(z) = —apsin(ux) 4+ bu cos(uz).

At the left boundary x = 0 we have
X'0)=0 = b=0 = X(z)=acos(uzr), X'(z) = —apsin(uzx).

84
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At the right boundary z = ¢ we have
kX)) +X'(0)=0 = arcos(ul) —apsin(ul) =0 = tan(ul) = g

Thus we get

Mo=p2, n=12---, where tan(u,() = £7

n

Xo(x) = cos(pn),
T,(t) = o~ (Ha—"kt

The norm of the eigenfunctions, relative to the appropriate inner product, is

V4 4 1 in(2
]|Xn]|2:<Xn,Xn):/ Xg(x)dx:/ cos () do — © (04 SO
0 0 2 2,un

Apply the principle of superposition to get

u(x,t) = Z nXn(x)T,(t) = Z cne FRTR cog( ).
n=1

n=1

Now apply the initial condition: u(z,0) = f(x) to get

flz) = Z Cp COS(fp ).

Thus, the problem is solved provided we can expand f in an eigenfunction expansion. We
know that we can, if f € PC(0,/), with the coefficients given by

(f, Xn) 2 /é
Cp = = . f(x) cos(ppx) dz.
X, o e

Let us interpret the long time behaviour of the results. We have

T 3m ™
< < — — <K < — — < < — —

~| 3

Clearly p,, depends on k so we can write

< (k) < 20— 1) 2

(n—1) 57

~| 3

We consider two cases.
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e case (i): (perfect insulation x — 0)
We have lirr(l] tn(k) = (n — 1)z and, in particular, lir% p1(k) = 0. Other quantities
K— K—

14

simplify as follows:

1 sin(24,¢) 1 sin2(n — 1)7 L on#1
2+ _ — {2
1% =5 (” 2 ) > (“ 3(n — D)/t ¢ n=1
(n— 17z

9 ot
cn=- [ f(x)cos(———>—)dx,
[ ) cos( =
u(z,t) = ™ {01 + Z Cpe ikt cos(,unx)} .
n=2

Taking the limit as ¢ — co we get

tlim u(z,t) = +o0. (assuming ¢,y > 0)
—00

Does this result make sense? Yes it does. Remember that v > 0 represents internal
heat generation. With perfect insulation, no heat can escape so the temperature must
continue to rise indefinitely.

e case (ii): (imperfect insulation k > 0)
The solution is

u(z, t) = ;e M cos(puyz) + Z Cn TR Cos( ).

n=2
Taking the limit as ¢ — co we get
+00 v > ui,
lim u(z,t) = e cos(z) v = ui,
0 v <l

With imperfect insulation there is heat loss. What this result is saying is that if the
internal heat generation is sufficiently large (i.e. v > p?), then heat is generated at
a rate faster than it can escape through the boundary. Therefore the temperature
rises indefinitely. On the other hand, if internal heat generation is very low, then heat
escapes faster than it is generated internally, and the temperature eventually goes to
zero. But, if the rate of internal heat generation is just right, (i.e. ¥ = u?), then there
is a balance between internal heat generation and heat loss through the boundary and
an equilibrium temperature distribution is reached. The critical value of internal heat
generation is precisely the value of the smallest eigenvalue \;.
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5.2 Wave Equation
Recall the general wave equation derived earlier
0u 9o
The one—dimensional, homogeneous version is

Pu 0%

o~ o

The one—dimensional wave equation is one of the rare PDEs for which the “general” solution
can actually be found. How this is done is not immediately obvious, so we will apply
separation of variables.

EXAMPLE 5.2. Consider the following one-dimensional wave equation:

Pu 0%

W:c@, O<z</{ t>0, (c= constant)
u(0,t) =0, wu(l,t)=0,

ou
u(z,0) = f(z), 5-(2,0) = g(z).

This problem governs the vertical displacement of a string with its end points fixed at x =0
and z = (. At time ¢t = 0 we give the string an initial displacement f(x), and an initial
velocity ¢(z), and then the solution to this problem governs the subsequent motion of the
string.

The boundary conditions are homogeneous so we try separation of variables u(x,t) =
X (x)T(t). Plug this into the equation to get

T// X//

XT// — 2X//T -
¢ 2T~ X

—A.  (constant)

The boundary conditions imply that X (0) = X (¢) = 0, so we get the following problems for
X and T

T" + \*T =0 X"+ AX =0.
X(0)=X(¢) =0.

For the problem in X, Theorem 31 implies that all the eigenvalues are non-negative. Letting
A = p? we get
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The equation for T" becomes
T+ T =0,
which is easily solved:
T, (t) = ay, cos(cpunt) + B sin(cpnt).

Since the equation and the boundary conditions are homogeneous we may apply the principle
of superposition to get

u(z, t) = Z Xn(2)T,(t) = Z sin( @) [, cos(cpnt) + By sin(cunt)],

n=1

ou

E(:c, t) = ; Clly SIN () [—au, sin(cpnt) + By, cos(cpnt))

Apply the initial conditions:

u(z,0) = f(z) f(x) = i oy, sin(p, ), (Fourier sine series)
0 - S
6_2;(93’ 0) = g(x) g(z) = Z_:l CBnpin sin(p,z).  (Fourier sine series)

Let f, and g, be the odd, 2¢-periodic extensions of f and g respectively. Then

00 l

fo(z) = Z Qi sin( i, x) where ap, = %/ f(z) sin(p,x) dz,
n=1 0

Jo(x) = Zan sin( i, ) where Bn = ” E/ g(x) sin(p,z) dz.
n=1 n 0

For convenience we define
G(x) = /go(:z) dr = — Zcﬁn cos(pnx).
n=1

Note that G is even and 2¢-periodic. Looking more closely at the solution u(zx,t) yields

u(z,t) = Z sin(p,x) [, cos(cpnt) + By sin(cu,t)]

n=1

= % Z{an[sin i (x — ct) + sin p, (z + ct)] + Brlcos pn(x — ct) + cos u, (x + ct)]}

= Sl —ct) + Fola +ct) — 2[Gla — ct) — Glo + )]}
= %[fo(a: —ct) + folz + ct)] + 2% /_t Go(§) d€.
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We have the solution in closed form! In other words, the series has been summed.
We now attempt to give a physical interpretation to the solution. For simplicity we
consider the case g(x) = 0 (zero initial velocity):

() = %[fo(x — ) + folw + ct)].

Define £ := x — ct, called a phase. If £ is constant, then d{/dt = 0, that is dz/dt = c.
Therefore the function f,(¢) = f,(x — ct) represents a wave travelling to the right with
speed c. Similarly, if we define another phase 1 := x + ct, then 1 = constant implies that
dx/dt = —c. That is, f,(z + ct) represents a wave travelling to the left with speed c.

Suppose f is defined as the “hat” function as given in Figure 5.2.

Figure 5.3 shows how a string, with y = f(z) as its initial displacement, evolves with
time. Specifically, the figure exhibits snapshots of the string’s displacement at various times.
The left side of Figure 5.3 shows the evolution of f,, the odd, 2¢-periodic extension of f.
The right side of Figure 5.3 shows the evolution of the actual physical string itself.

Since the solution to the wave equation in the previous example represents two waves: one
travelling to the left and one travelling to the right, we consider going back to the beginning
and making a change of coordinates:

E=x+ct, n=ax—ct, and u(z,t)=w(n).

By the chain rule we get

ou_ow  ou
ox o0& On’
Pu  Pw Pw  Pw

522~ oz ggan o

ou B Jow Ow

g (% %)

Pu _ , (Pw 20210 0*w
o ¢ <as2 " “agan " (‘W)

Plug into the wave equation to get

0_@_02@_ ) 02w_282w +02w B 02w+282w +02w __402821,0
o2 ox? &2 oo  On? 0¢2 oo on? ) ocon’
Therefore
Pw 0
ocon

This is easily solved:

8 8’(1] 8’(1] / _
a_n(&_g):o = =00 = wEn) =06+
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Therefore
uw(z,t) = ¢(x + ct) + (z — ct).

This is the general solution to the 1-dimensional wave equation. It is known as d’Alembert’s
solution.
We now apply the auxiliary conditions. Taking 0/0t we get

—(z,t) = c[¢(x + ct) — ' (x — ct)].
At ¢t = 0 we have

AL R B A N S O Ut B

Therefore

8(e) = 3@+ 2C@), b() = 5[f@) ~ ~G()]

The functions ¢ and 1 are only defined for 0 <z < ¢. But x — ¢t and = + ¢t go beyond the
interval (0,¢). Let f and G be extensions of f and G to the entire real line. Then we have

be) = 5lF@) + G v = 5[f@) - 3G, e

We now apply the boundary conditions. At z = 0 we have

w(0,t) =0 =  &(ct) +¢(—ct)=0 = f(ct)+ f(—ct)+

G(ct) — G(—ct)] = 0.

S

But f and g are independent functions, so we must have
Flct)+ f(=ct) =0 and G(ct) — G(—ct) = 0.
This means that

flct) = —f(—ct) for all t, therefore [ is odd,
G(ct) = G(—ct) for all ¢, therefore G is even.

At the right boundary x = ¢ we have u(¢,t) = 0 which implies

ol +ct)+Yp(l —ct) =0 = f(l+ct)+ f(l—ct)+

[G(l+ct)— Gl —ct)] =0.

[

Again, since f and g are independent functions, we must have

fl+ct)=—f(l—ct) and G(l+ct) =Gl — ct).
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Manipulating further

fodd = f(l+ct)= f(—l+ct)= f(l+ct—20)
Geven = Gl+ct)=G(—l+ct)=G(l+ct —20)

Therefore fand G are 2(-periodic. Hence

f = foa and é = /go(z) dr = G.
Therefore

(e, 1) = 0l -+ et) + (e — ct) = S[fole — ct) + fola +et)] + o (Gl + ef) — Gla —ct)]

In the next example we consider a 1-dimensional wave equation on an infinite domain
with time dependent boundary conditions.

EXAMPLE 5.3. Consider the following;:

Pu 0%

w:c et x>0,t>0, (c= constant)
u(0,t) = h(t),

ou
u(z,0) =0, E(I,O) =0.

This problem governs the vertical displacement of a “semi-infinite” string with the motion
at its (one and only) boundary = = 0 precribed. The general solution to the equation is

u(z,t) = ¢p(x + ct) + ¢Y(z — ct).

Differentiating with respect to ¢ gives

8u / !
o (@) = ¢ (z + ct) = ¢/ (w = b)),

Applying the initial conditions at ¢t = 0 gives
o)+ ¢(x) =0, ¢'(x)—¢'(z)=0, forxz>0.
We have
P(r) = —d(z) = ¢@@)=0 = o¢@)=A4, )=—-A, forx>0,
where A is some constant. At the boundary z = 0 we have

o(ct) +(—ct) =h(t) = A+¢Y(—ct)=nht) = P(—ct)=h(t)—A, fort>0.
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Thus we have

Mg):{—A for &€ > 0,

h(=¢/c)— A for £ <0.

The solution becomes

uw(z,t) = ¢(x +ct) +P(x —ct) = A+ (x — ct) = P(x — ct),

where
~ _J0 for £ > 0,
06 = A+ v(6) = { N e

Therefore
~ {O for z > ct,

u(z,t) =1yY(xr —ct) =
(1) =¥ ) h(t —x/c) for z < ct.
This represents a rightward travelling wave moving at speed “c”. A physical interpretation

is given in Figure 5.4. Here we have the displacement given as a function of time at various
positions:

0 fort <0 0 fort <1 0 for t < 2

u(0,t) = . u(et) = . u(2e,t) = :
h(t) fort >0 h(t—1) fort>1

and here we give snapshots of the string at various time intervals:

0 for x > ¢ (2.2) 0 for x > 2c¢
) U ) = N
h(1—xz/c) forx<c h(2—z/c) forx < 2c

u(z,0) =0, wu(x,1)= {

5.3 Laplace’s Equation

Laplace’s equation, also called the potential equation, may be compactly written as

Vu = 0.
Written out explicitly, we have
0? 0?
8—;; 8—;; =0, (2-d Laplace equation)
0? 0? 0?
u . ) (3-d Laplace equation)

+—+
ox?  Oy? 022
Time independent solutions of either the heat equation or the wave equation satisfy Laplace’s

equation. Solutions of Laplace’s equation are called harmonic functions. A complete well—
posed problem consists of Laplace’s equation together with boundary conditions:

Vi =0, inQ,
ou
au+ f— = f, on 0,
on

h(t—2) fort>2
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where

U - - . - . . ..
— =Vu-n, with n beint the unit outward pointing normal of €.

EXAMPLE 5.4. (Potential in a rectangle)
Consider Laplace’s equation defined on a rectangle:

Pu  0%u

9% oy
u(@,0) = fi(z), u(0,y) =0,
u(@,b) = folw), ula,y) =0.

0, O<zx<a 0<y<hb,

Notice that according to Hillen’s rule of thumb, we have four boundary conditions. T'wo
are homogeneous boundary conditions on one pair of opposite sides. Try separation of
variables: u(z,y) = X ()Y (y). Plug into the equation to get:

X// Y//

= v —)\.  (constant)

Using the homogeneous boundary conditions, we get

u(0,y) =0 X(0)Y (y) =0 X(0)=0
u(a,y):()} — {X(a)Y(y) 0} — {X(a):O'

We get the following ODEs for X and Y:

X" 42X =0, Y —\Y =0,
X(0) = X(a) =0.

Clearly, the qualitative nature of the solutions of the X equation will be different than
those of the Y equation. The problem fo X is a regular Sturm—Liouville problem. From
Theorem 31, the eigenvalues for the X problem are all non-negative. Therefore set A = 2.
We get
X"+ 12X =0 Ao =12 =" pn=1,2...
X(0) = X(a) = O} {Xn(x) = sin(™2%)
The equation for Y becomes
Y — 12Y =0,

which is easily solved to give

Y, (y) = au, cosh(pny) + By sinh(u,y), n=12....

Foreachn =1,2,... we have u,(z,y) = X, (x)Y,(y) which is a solution to Laplace’s equation
which also satisfies the homogeneous boundary conditions. However, none of these can
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individually be made to satisfy the nonhomogeneous boundary conditions. Since Laplace’s
equation is linear and homogeneous we can apply the principle of superposition:

=) Xu(@)Ya(y) = > _lan cosh(pny) + Bu sinh(uny)] sin(pn).

We now apply the remaining boundary conditions. At y = 0 we have
u(z,0) = fi(zr) = filz Zan sin( i,z

Therefore the «,,’s must be the Fourier sine coefficients

2 a
= 5/0 fi(zx) sin(?)da&

At y = b we get

u(z,b) = fo(z) = fa(z) = Z[an cosh(u,b) + B sinh(u,b)] sin(p,z),
n=1
from which we conclude
ay, cosh(p,b) + B, sinh(p,b) / fo(x) sin nms) dr =: v,

or
Yn — Ot cosh(p,b)

sinh(p,,b)

5n =
Hence we get

Yn — Qv cosh(p,b)
sinh(p,b)

= smh( ) [sinh(p,b) cosh(pu,y) — cosh(p,b) sinh(p,y)] +
1

Y. (y) = a, cosh(uny) + By sinh(p,y) = a, cosh(p,y) + sinh(f1,,y)

"
m sinh(ny)

— m[an sinh (g, (b — y)) + Y sinh(u,y)].

The final solution is:

oo

u(z,y) = ; m[an sinh (f1, (b — y)) + n sinh(p,y)] sin(p,),

where
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Consider the following more general problem:

o
ox?  Oy?
u(z,0) = filz), w0,y)=0(y),
u(z,b) = falx), ula,y) = g2(y).

0, O<zx<a 0<y<hb,

None of the boundary conditions is homogeneous. To solve this problem we split it into
two, each of which is in a form similar to the one in the preceding example. Consider the
following problems for v and w:

@ + @ =0 82_10 + az_w =0

or?  Oy? ’ or?  Oy? ’
U(Iv()) = f1($), U(Ovy) =0, w(x,O) =0, w(O,y) = gl(y>7
v(z,b) = fo(x), wv(a,y)=0, w(z,b) =0, w(a,y) = g2(y).

Then u(z,y) = v(z,y) + w(z,y) is the solution to the original problem.

5.4 Maximum Principle
Consider a closed, bounded region R € R? with boundary OR.

Theorem 37. Let u(x,y) be any continuous solution of
Vu = F(x,y). (Poisson’s equation)

Then
1. The maximum of u in R occurs on the boundary OR if F' > 0 in R.
2. The minimum of u in R occurs on the boundary OR if F' < 0 in R.

Proof.
(by contradiction)

We do only part 1 with F'(z,y) > 0 for all (x,y) € R. Proof of the second part is similar.
Since wu is a continuous solution in R (a closed, bounded set) it has a maximum at some
point (zg,yo) € R. Suppose that (xg,y0) € R° (the interior of R), (i.e. (xo,v0) &€ OR). It

follows that 3 5
u u
%(x(]vy(]) = a_y(xoayo) =0.

Since u has a maximum at (z¢,yo) we have

0%u 9%u

@(xo,yo) <0, 8—y2(x0,y0) < 0. (i.e. concave down)
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Summing these yields

Pu  u

-4+ <0,

ox2  oy?
which contradicts w,, + u,, = F > 0. Hence, it cannot be that the point (xg,yo) at which u
attains its maximum in the interior of R. Therefore this point lies on the boundary.

Theorem 38. If u is a continuous solution of V*u = 0 in the closed, bounded region R,
then the maximum and minimum of u occur on the boundary of R.

Proof.

Let M be the maximum of u on R, which exists since R is a closed, bounded set. In other
words
lu(z,y)| < M, V(z,y) € OR.

What we want to show is that this inequality holds, not only for (z,y) € OR, but for all
(z,y) € R. To this end, consider a square of length 2¢, where ¢ is large enough so that the
square contains all of R. Then

(x,y) e R = |z| <L
Let € > 0 be arbitrary. Define
v(z,y) = u(z,y) + ex’.

For (z,y) € OR we have
v(z,y) = u(z,y) +ex® < M + el

Differentating yields
Vi = V?u + eV (2?) = 2.

Since V2v = 2¢ > 0, the previous theorem implies that v attains its maximum on OR.
Therefore
v(r,y) < M +¢el?, Y(r,y) € R.

For u we have
u(z,y) = v(z,y) — e’ <v(z,y) < M+l V(x,y) €R.
But £ was arbitrary, so letting ¢ — 0 we get
u(z,y) < M, Y(x,y) € R.

Thus M, the global maximum for u, occurs on the boundary 0R. The proof for the case of
the minimum value is similar.
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5.5 Wave Equation (2—d)
Recall te general wave equation derived earlier:
o
ot?

We now consider the 2-d wave equation on a rectangle.

=Vu + f.

EXAMPLE 5.5. Consider the following 2-dimensional, homogeneous wave equation de-
fined on a rectangle;

uy = 2V?u, O<z<a 0<y<b t>0,
w(0,y,t) =0, wu(z,0,t) =0,
u(a,y,t) =0, wu(x,b,t)=0,

u(z,y,0) = f(z,y),
u(x,y,0) =0.

Notice that we need six side conditions, according to our rule of thumb. This problem
governs the vertical displacement u of a membrane (think of a rectangular drum) stretched
over a rectangle and fastened at the edges. Since the PDE itself and the boundary conditions
are homogeneous, we try separation of variables: u(x,y,t) = ¢(x,y)T'(t). Here we look for
a solution whereby the spatial variables can be separated from the time variable. Plug into
the equation to get:

T" V2 (b

2T = S = —A\. (const.)

OT" = (V)T

Plug u(z,y,t) = ¢(x,y)T(t) into the homogeneous boundary conditions to get boundary
conditions for ¢. We end up with the following problems for ¢ and 7T

Vip=—-X\p, O0<z<a, 0<y<b, T"+X*T =0, t>0
¢(0,y) =0, ¢(z,0) =0, T'(0) = 0.
P(a,y) =0, ¢(z,b) = 0.

The equation for ¢ is a linear, homogeneous PDE with homogeneous boundary conditions.
We try separation of variables: ¢(z,y) = X (2)Y (y). The ¢ equation becomes:

X// Y//
XY + XY" = -\XY = ¥ ="y = A= —v. (const.)

Plug ¢(x,y) = X(2)Y (y) into the boundary conditions and we get the following problems
for X and Y:

X"+49X =0, 0<z<a, Y'+A=7)Y =0, 0<y<b,
X(0) = X(a) =0. Y (0) =Y (b) = 0.
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The problem for X is a regular Sturm-Liouville problem. By Theorem 31, the eigenvalues
are all non-negative. So setting v = p? we get:

2,2
Yo = 2 = n ;T , n=1,2,... (eigenvalues)
a
Xp(x) = sin(p,x). (eigenfunctions)

The problem for Y is a regular Sturm-Liouville problem. By Theorem 31, the eigenvalues
are all non-negative. So setting A — v = w? we get:

mim

For ¢ we can write

G (2, ) = X (@)Y (y) = sin(pnx) sin(wmy).

But A = v + w? = p? + w?, therefore

An, = pp + w2, = m° <n_2 + m_2) = a2,
The equation for T" becomes

"+ a2, T =0,

which is easily solved to give

Ton(t) = A cos(cmnt) + B sin(cam,t).
Applying the initial condition 7 . (0) = 0 implies that B,,, = 0, so we end up with

Ton(t) = A cos(camnt).

We now apply the principle of superposition:

u(zx,y,t) Z Z Gran (T, Y) T () = i i A sin(p, ) sin(wy,y) cos(cant).

m=1n=1 m=1 n=1

It now remains to satisfy the last initial condition: u(z,y,0) = f(z,y).

Z Z A sin(pn ) sin(w,,y) = f: Fo(x) sin(wny), (5.1)
m=1

m=1 n=1

where we have defined

= Z A sin(p, ). (5.2)
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¢From (5.1) it is clear that the F},’s are just the Fourier sine coefficients of f, and from (5.2)
it is clear that the A,,,’s are just the Fourier sine coefficients of the F},’s. Hence we have

b
Fule) = 5 [ #(ag)sinGenm) dy
Ay = g/a F,.(z) sin(p,z) d.

0

a

Combining results the final solution to the problem is

u(z,y,t) = Z Z A sin( g, ) sin(wy,y) cos(camnt),

m=1 n=1
where

a prb
A = i/ / f(z,y) sin(pu,x) sin(wny) dy dz.
ab 0 0

For the one dimensional problems, the coefficients in the series solution were obtained by
means of inner products. Can the same be done in this case? Can the formula for the A,,,’s
be expressed in terms of inner products? If we examine the formula for A,,,’s more closely
we see that

a b
Ay = %/ / f(x,y)pmn(x,y) dyder which resembles (const.) - (f, dmn)
o Jo

for some “appropriate” inner product. In the next section we shall see how this can be done
in a systematic way.

5.6 Eigenfunctions in Two Dimensions

Consider the homogeneous version of either the two-dimensional heat equation or the two-
dimensional wave equation:

ou 0%u

_ = k’v2u’ D C2V2u,
ot ot?
+ b.c.’s, + b.c.’s,
+i.c.’s. +ic.’s.

If we apply separation of variables u(z,y,t) = ¢(z,y)T(t), we get

T/ v2¢ T// V2¢
— = =), or — ==\
kT 10) 2T 10)
Either way, we end up with a two-dimensional eigenvalue problem for ¢
Vi = —\g,
+ b.c.’s.



100

Typically, problems of this type will have an infinite, discrete (i.e. countable) spectrum. In
other words, nontrivial solutions exist for an infinite, but discrete, set of values of A. The
main result of this section will be to show that, with the appropriate inner product, distinct
eigenfunctions are orthogonal.

To accomplish these results, we will need Green’s Theorem, along with what are known
as Green’s identities.

Theorem 39 (Green’s Theorem). If
(1) Q is a domain in the xy-plane with boundary O0S);
(i) P and Q) are continuous with continuous partial derivatives in §);

franasauna- [ (2-5) u

We will demonstrate the following:

then

Green’s } { Green’s 1% } {Green’s Q"d} { eigenfunctions

theorem identity identity are orthogonal

Theorem 40 (Green’s 1% identity).
If u and v are twice continuously differentialble in the region Q C R?, then

// uV%—i—Vu Vv dA = %u—ds

In the above equation, g—z refers to the directional derivative of v in the direction of ﬁ),

the unit outward pointing normal of {2, and s refers to arc-length.

Proof.

Parameterize the boundary 0f2 in terms of arc-length as follows:

o fo=0

y =y(s).

o
Let 7 be the position vector to a point (z,y) € 99, T be the unit tangent vector at (z,vy),
and 7 be the unit, outward pointing normal vector. Then

N > dr de dy, - dy da

r = (xvy)v T = E - (%7%)7 n = (%7_%>
Let 5 5
P=uZ’ Q——u—v
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Then
oP  0*v  Oudv 0Q v Oudv

Yo Toyay o o2 owox

Now we get

v v ou Ou. ,0v Ov
2
//(qu+Vu Vo) dA = // [u(azz )+(0x ay) (0:)3 ay)} dA
0

// [( o*v 0u@)+<u@+8u8v)} A
022 ' Or Ox dy?>  Jy dy

Q

// (—@jLa—P) dA:—%P(x,y)dijQ(x,y)dy

o0

Q

B v v B Jvdr Ovdy

——7{<ua—ydx—ua—$dy) —%u< Dy ds +8a:ds) ds
9 o0

_j{ (01) ov, . dy dx

g g (=g = fuv s = fuas
o0 o0 o0

The next result is much easier to prove.

Theorem 41 (Green’s 2"¢ identity).
If u and v are twice continuously differentialble in the region Q C R?, then

v ou
2 2 _ ov _ ou
//(uv v —ovVu)dA %(uan U&n) ds.
Q

o0

Proof.

;From Green’s 1% identity we have

// UV2U—|—VU Vv)dA %ug—vds

Re writing this with « and v reversed yields

//(vV%—l—%v-%u) dA = vg—z ds.

Subtraction gives the result.

We now come to one of the two main results of this section.
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Theorem 42 (main result 1).
FEigenfunctions corresponding to distinct eigenvalues of either problem

24 _ - 2. _ -
I: Vig=—X¢ inll 3or 311 aV(b g in Y
=0 on 0N a—i: on 0f)

are orthogonal relative to the following inner product:

(f, ) = / £z, y)g(x, ) dA

Pmof

Let A and A be distinct eigenvalues to one of the above problems (i.e. X #£ )\) with corre-
sponding eigenfunctions q5 and q5 respectively. Then we have

V2= -\, and V2= -\

Therefore
//w% SV23) dA = // “30) — (—AP)dA = (X — )\/ dodA = () — A)<$,$>.

Using Green’s 2"? identity we get

B-(58) - [[@va- v f (552550 ) acn

)
Since A # A, it follows that <gg, $> =
The final result.

Theorem 43 (main result 2).
The eigenvalues of either of the problems

2, _ - 2, _ -
I: Vig=—d¢ inll 3or 311 aV(b g in Y
=0 on 0N a—i: on 0f)

are non-negative.

Proof.

Let A be an eigenvalue to either problem I or II above with corresponding eigenfunction ¢.
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Then we have

NG = A (6, 8) = (A, &) = (—V?6,6) = / / o6 dA

= - {f¢g¢ ds — // €¢ : % dA} (using Green’s 1% identity with u = v = ¢)
n
o9 )

:o+//|§¢\2dA>o.
Q

It follows that A > 0.
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Figure 5.1: Eigenvalues

Figure 5.2: The hat function
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Figure 5.3: Snapshots of the string at various times.
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Figure 5.4: Snapshots of the wave front at various times.



Chapter 6

Problems in Cylindrical Coordinates
June 17, 2010

6.1 Polar Coordinates
There are certain geometries, such as those shown in Figure 6.1, for which polar coordinates
are more useful than Cartesian coordinates.

Polar coordinates are defines as follows

T = pCos ¢, p2=:)32—|-y2,
Yy = psin @, gb:tan_ly.
x

The Jacobian determinant for the transformation is

Nz, y)

Ap, o)
which indicates that the transformation is singular at p = 0 (i.e. at the origin). The Laplacian
in polar coordinates is:

o2 19 ([ ou N 1 %u

u=——p=— i
pop \"op) " 2 0g?

We shall begin by considering Laplace’e equation defined in a circular region.

cos¢ —psin @
sing psing

EXAMPLE 6.1. (potential in a disk)
Consider Laplace’s equation in a circular disk:

Viu =0, O<p<a, —-T<op<m,
u(a, ) = f(¢).
When we consider the domain in the pg-plane (see Figure 6.2), it appears as a rectangle.
Three of the boundaries of this rectangle are not “real physical” boundaries. Nevertheless, if

we treat the region as a rectangle in the pg-plane, we need to impose boundary conditions on
these “unphysical boundaries”. To this end, we make the following additional assumptions:

Al: U(p, 7T) = u(p7 _ﬂ-) and g_Z(Pa 7T) = %(pv _77-)7

107
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A2: |u(p, ¢)| bounded as p — 0.

The first assumption is justified since the line ¢ = 7 and ¢ = —7 in the p¢-plane actually
represent the same line in the physical plane. The second assumption is to preclude the
occurrence of singular solutions that may arise due to the singular nature of the transfor-
mation to polar coordinates. While these boundary conditions are quite different than those
we have experienced before, and are not homogeneous, they do allow us to use separation of
variables.

Look for a solution of the form u(p, ¢) = R(p)S(¢). Then

10

16 _St
pOp

2
:O

1
(pR)S + ?RS" =0 = ﬁ(pR')' = A 1(constant).

R

Assumption (Al) implies that S(7) = S(—=), and likwise for S’, and assumption (A2)
implies that |R(p)| is bounded as p — 0. We get the following problems for R and S:

p(pR) — AR =0 S"+AS =0,
|R(p)| is bdd as p — 0 S(m) = S(—mn),
S'(m) = S'(—m).

The problem for S is not a standard Sturm—-Liouville problem as we described such problems
earlier. Each boundary condition for the S equation involves both boundary points, which
differs from the standard Sturm Liouville problem. Nevertheless, it is easily verified that one
gets nontrivial solutions for S equation only for A > 0. If we set A = p2, then

S(¢) = acos(ug) + bsin(ug) and  S'(¢) = p[—asin(ue) + beos(ud)].
.From the boundary conditions for S we get

a cos pum + bsin um = a cos um — bsin puw . bsin um =0 . - .
p[—asin pmw + beos pr| = plasin pr + bcos ] pasin pmw = 0 M= pp = N.
Therefore we get

Ap = 2 =n?, (eigenvalues)
Sn(¢) = ay, cos(ng) + by, sin(ne). (eigenfunctions)

The equation for R becomes
p(pR) — 2R =0, or p*R’+ pR —n’R=0. (Cauchy Euler equation)
Looking for a solution of the form R(p) = p™, we get

[mim—1)+m—-n*)p" =0 = m=4n = R.(p)=a,p"+B.p "
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But (A2) implies that g, = 0 for all n. Therefore

Ro(p) = anp” = ualp,®) = Ru(p)Sn(9) = p"[An cos(ng) + B, sin(ne)].
Applying the principle of superposition we get
u(p, @) =  Ru(p)Su(¢) = p"[An cos(ng) + By sin(ng)].
n=0 n=0

It remains to satisfy the last boundary condition in the p¢-plane, which corresponds to the
boundary condition at the actual physical boundary: u(a, ) = f(¢), we get

f(o) = Z a"[A,, cos(nd) + B, sin(ng)| = Ay + Z a"[A,, cos(ng) + By, sin(ng)].
n=0 n=1
Hence the A,’s and B,’s are the Fourier coefficients of f. The final solution is
u(p, @) = Ao + Z p"[A, cos(nd) + B, sin(ng)], (6.1)
n=1

where
1 s
to=5- [ fieras,
A= [ H@)eostnoyas. n=1.2.....
anﬁ/_if(qb)sin(nqb)d(b, n=12, ...

A couple of observations:

e At p =0 we have

u(0,6) = Ay = 2 [ <¢>d¢=i/7ru<a,¢>d¢

T or o 2 J_.
so u at the centre of the disk is just the average of u over the boundary.

o If f(¢) = fo is a constant, then Ay = fy, and A, = B, = 0, so that u(p,¢) = fo
(i.e. u const. on the boundary means that u is const. everywhere). This should not be
surprising, since the maximum principle implies that the maximum and minimum of u
occur on the boundary. So if u is constant on the boundary, then « must be constant
everywhere.
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We have the solution v in the form of an infinite series. It turns out that we can express
u as an integral over the boundary. To see how to do this, we examine the terms in (6.1):

Ay cos(ng) = 2 / F(6) costng) cos(nd) de, "By sin(ng) = 2 / £(€) sin(n€) sin(ng) dt.
Adding these yields

p" A, cos(ng) + B, sin(ng)| = % /ﬂ f(&)[cos(n&) cos(neg) + sin(n) sin(ne)| d§

2 [ H©slnto - o) e

The solution (6.1) becomes

YR > é | 1@ cosin(s - )¢

s

—Ao+ ( p—os¢§>d§

an
n=1

#ﬁ;/_ﬂf@é%{ Z"W}

R >
_A0+7T/_7rf §R{ > eid—¢ }df

Lei(9—¢

I , N
:Ao—l—— f %{1“ ewg}dg 5(since Zl,u =

T /f p{ Lot m&)]}dg

1 apcos(p— €) -
I RIS T ~ 2apeon(s - T

-/ @ {% * ip2(;(:§fs<¢§) o+ } .

Thus we get

P for |y < 1)
—

2 9
0 =5 / f(& — 2apios(ng— 917 de. (Poisson’s integral formula)

6.2 Bessel Functions
6.2.1 Series Solution of Bessel's Equation
The general second order linear homogeneous ODE can be written in the form

"+ P(x)u' + Q(x)u = 0. (6.2)
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Definition 44. A point xq is called an ordinary point of (6.2) if P and Q) are analytic at
x =y (i.e. P and Q can be expanded in a Taylor series at x = xzo). Otherwise the point
xr = xq 18 called a sinqular point.

If xq is an ordinary point of Eq. (6.2), then two linearly independent solutions of the form

u(x) = Z an(x — x0)"

can be found. What happens if zy is a singular point? We can get an idea as to what
happens if we re—examine the Cauchy—Euler equation:

22" + pru’ +qu =0, (p,q= const.). (6.3)
If we look for a solution of the form u = 2", this leads to
P+ (p—1)r+q=0. (6.4)
Thus, u = z" is a solution to Eq. (6.3) only if r is a root of the quadratic equation.

EXAMPLE 6.2. For the equation 3z%u” + 11axu’ — 3u = 0 the quadratic (6.4) becomes
72 4+ (8/3)r — 1 = 0 which leads to two linearly independent solutions u;(x) = x'/? and
us(z) = 1/23.

In general, the solution to the Cauchy—Euler equation (6.3) is

clx” + CQ$T2’ if 1 % T,
u(z) = ¢ 17" + cpa” Inw, if r=ry=r, (6.5)

x%¥[cycos(Blnx) 4+ cosin(flnx)], if ry,rm =axif.

So how does this help? When written in standard form

u + Lol 1 %u =0, (6.6)
x x
it is clear that z = 0 is a singular point of the equation. The solutions will also usually be

singular at x = 0 as was the case in Example 6.2. This prompts us to make the following
definition.

Definition 45. Suppose xq is a singular point of Eq. (6.2). If (x—x0)P(z) and (x—0)*Q(x)
are analytic at x = x, then xq is called a reqular singular point of (6.2), otherwise it is called
an wrreqular sinqular point.

If xq is a regular singular point of Eq. (6.2), then P and @ can be written as

Pla) = Qa) = 2

T — 1z (x — x)%’
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where A and B are analytic at z. Equation (6.2) now becomes

py A, Bw
T — T (x — xq)?
or alternatively
(z — m0)*u” + A(2)(z — z0)t/ + B(x)u = 0. (6.7)

Equation (6.7) resembles the Cauchy—Euler equation so we look for a solution of the form
u(z) = (x — 20)"Ul(z),

where U is analytic at xg. Since U is assumed to be analytic, it can be expanded in a Taylor
series so the form of solution we seek is

u(z) = (z —x)" Z an(r — x0)" = Z an(x — 20)" "7, 3ag # 0. (6.8)

The series in (6.8) is called a Frobenius series and the exponent 7 is called the indicial
exponent. In fact, if xq is a regular singular point of (6.2), then a solution in the form of a
Frobenius series always exists and a second linearly independent solution will be of the form

u(z) = (x —x0)°V(z) or wu(x)=(x— ) U(x)n(z—x0) + (x — 20)°V(x),

where V' is analytic at x = x.
Now consider Bessel’s equation:

22" + v + (22 = Au=0. (A= const.) (6.9)

Written in standard form:

. s o 1 2 \2
u”+5u’+x )\u:O, with P(:C)Ig Q(@Zx )\‘

2 2

Clearly x = xy = 0 is a singular point of Bessel’s equation. It is, in fact, a regular singular
point since

zP(z) =1, which is analytic at 2 = 0,
rQ(x) = x* — N2, which is analytic at 2 = 0.

So we look for a solution to Bessel’s equation in the form of a Frobenius series:

o0 o
u(x) = 2" Z a,z" = Z anx™t", ag # 0.
n=0 n=0

Plug this into Eq. (6.9) to get

Z(n +r)(n+r—1)a,z™" + Z(n +r)a, " + Z an ("2 — N2 = 0.
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After simplification this becomes

(r? — Magr” + [(1+7)* = Nagz™ + Z{[(n +7)% = Na, + ap_ot2™" = 0.
n=2

Since this must be identically zero, we set the coefficients of 2" to zero, yielding
n=0: (r*—\)ay =0, (6.10)
n=1: [(1+7)*—N]a; =0, (6.11)
n>=2: [(n+r)?—Na, +a, 2=0. (6.12)
We have
(6.10) = r==A\ 1(since ag # 0). For now we consider r = +\.
1
(6.11) = (2A+1)a; =0 = a3 =0. (unless A\ = —5)
—Up—2 —Up—2
6.12) = a,= = . n=234,....
(6.12) ¢ (n+A)2=X  n(n+2)\) "
It is clear that
ap=0 = a3=0 = a5=0 — e = &2n+1:0,
and
—Q Qo
Ay = = - ’
2(2+2)) 22(14+))
ar — —a2 . —Q2 . ao
T2 2222+ 0 20201+ N2+ N
e — —Aay . —Qy . —ayg
ST 6(6+2)) 22-33+)N) 26.2.3(1+MN2+ANB+N)
a —0g —dadg Qo
8 p— p—

8(8+2\) 2243+ 2822341+ N2+NB+NE+N)

e VI (=1)"ao
R N 2l NCENGBENA N ()

For convenience we set ag = Then we get

1
22T(1+N)

_ (=1)" _ (=1)"
S22 T+ AT+ N2 +NB+NE+A) - (n+A) 22 pl T(n+ A+ 1)

Aop,

One solution of Bessel’s equation is

; - o nin o (_1)nx)\+2n
@)= ma™ =) o TntA+1)
n=0

n=0
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This is known as Bessel’s function of the first kind of order A. If A is not an integer, then a
second linearly independent solution (recall that the indicial exponents are r = +\) is given
by J_x. In this case the general solution is

u(z) = e Jy() + coJ_x(x).

If \ =n € Z, then J, and J_,, are linearly independent (since indicial exponents differ by
an integer r; —ry = 2n). In this case a second linearly independent solution can be obtained
as follows:

Jr(x) cos(Am) — J_x(x)

o) = sin( ) ’ SA ¢ Z,
Yo(z) = lim Y3 (2) = % 8€§x) 3 (—1)"‘”5;(5“) B

It can be shown that .J, and Y,, are linearly independent. The function Y) is called a Bessel
function of the second kind of order A. The general solution in this case is

w(x) = c1Jp(z) + Y, (2).

6.2.2 Properties of Bessel Functions
We look at Bessel functions of integer order. For A = n € Z we have

I () = Z (—=1)Famt " Z (—1)kx _an {l B x x

L il (n 4 k) 20 £ 22K (n 4 k) 2

In particular we have

x?  at
1T
JQ([L’) 4+64 y
x 2 2t
— 2= .
Ji(z) 2[ T }

It is clear that Jy(0) = 1 and J,,(0) = 0 for n > 1. A plot of the first few Bessel functions of
the first kind of integer order is given in Figure 6.3.

For Bessel functions of the second kind we merely state a few of the properties. The most
relevent property is that they are singular at the origin. In fact

Yo(z) ~ Clnz, 3Yi(x) ~ % l(as z — 07).

A plot of the first few Bessel functions of the second kind of integer order is given in Figure 6.4.

Lemma 46. Bessel functions of the first kind satisfy the following recurrence relations:

% [z (2)] = =27 M s (2), % [2* I\(2)] = 2* ().

Proof.

Exercise.

W 2man) 22yl
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Zeros of Bessel Functions.
Consider Bessel’s equation written in standard form:

1 A2
u” + U +(1—;)u:0.

For large x this equation resembles u” +u = 0, and so one might expect that Bessel functions
behave like sinz and cosx for large x. This is indeed the case. We will show that Bessel
functions are oscillatory and that the spacing between the zeros approaches 7. To this end
we make a transformation

w(z) = Vau(x).

Then we have

1
2?u” + o + (2% = N)u = 27 V{22 + (2 + 1 Mw}.

Thus
P au + (2P - Nu=0 = {270+ (2*+ i — Mw} =0.
We now consider a phase plane analysis: {w,w'} — {R, 0}
w(z) = R(x) cosb(x), w'(z) = —R(x) sin 6(z). (6.13)
Then we have

w' = R cosf — RO sinf) = —Rsin 6,
I

w” = —R'sinf — RO cos = —(1 + Yo —)Rcos@,

which can be rewritten as

cos —Rsinf| [R'| —Rsin9
—sinf —Rcosf| ||  |—(1+ 2 —2 2)Rcosf|’

422

and easily solved for R’ and ¢’

R'(x) = % sin f(x) cos 0(x), (6.14)
9()—1—|—Ccos 0(x), (6.15)
where C) = i — A2 We consider the above equations subject to the following initial

conditions:
R(ZL’Q) = Ry 7& 0, 9(1’0) = 90, xo > 0.

A couple of remarks are in order. The transformation to “polar like” coordinates in the
phase plane has resulted in nonlinear ODEs in R and 6. It is usually not a wise move to
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transform a linear equation to a nonlinear one. In this case however it is not so much an
explicit solution that we are after, which we can’t get anyway, so much as the qualitative
behaviour of the solutions. Further examination of Equations (6.14) and (6.15) reveals that
they are partially decoupled so that in principle one would solve Eq. (6.15) for #, then plug
6 into Eq. (6.14) to get a linear ODE for R. The resulting ODE for R is easily solved

Rla) = R o 22510
We now make some observations.
Ry#0 = R(z)#0Vex.
Therefore it follows from (6.13) that
w(z) =0 lonly if  1lcosf(z) =0, ie. only if 10(z) = (2n—1)= 1(an odd multiple of g

Integrating Eq. (6.15) yields

T 2
H(x)—e(xo):a?—xo+/ COST

Further manipulation yields.

|6(2) = 8(0) — (z — w0)| = |C4]

T 2 T
/ cos(6(¢)) d&\@m %€ _ o (%0_1) <o

£2 o) £2 T Lo
Letting x — oo we get

C
lim [0(z) — 0(z0) — (z — 20)| < 1A &
from which it follows that

lim 0(z) = +o0.

T—> 00
Thus T
Vn 3z, such that 0(x,) = (2n — 1)5

In other words, w has infinitely many zeros x,,, with x,, — co.
To determine the spacing between zeros consider

It cos? f
T =0(xp1) —0(x,) = xp1q —xn+C’>\/ #dﬁ
Taking the limit of the above integral as n — oo we get
Tnt1 2 Tp41
0 < lim Md&g lim/ & _ lim Lo = 0. (since x, — 00)
n—oo [, 52 n—oo [, 52 n—oo \ I'p Tn41
Therefore

lim (2,41 — x,) = 7.
n—oo
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6.3 Heat Equation (2-d)

Recall the general heat equation;

0 1z = h

v, (KVu) + —. 6(heat equation)

at  pc pc
If the material properties are constant and there is no internal heat generation, then the
heat equation simplifies to

ou 9
e = kV-u

We now consider an example of a 2-dimensional heat equation for a circular disk.

EXAMPLE 6.3. Consider the following problem governing the temperature of a circular
plate:
ou 9
E:kVu, O<p<a, —m<op<m t>0,
u(a, d,t) = f(9),
u(p, ¢,0) = g(p, ¢).

As before, we consider the domain €2 in the p¢-plane. The following extra conditions for the
artificial boundaries are required:

AL u(p,m,t) = u(p, —m,t) and g5 (p, 7, 1) = §5(p, —7,1);
A2: |u(p, ¢,t)| bounded as p — 0.

Since the boundary conditions are not homogeneous, we look for a solution of the form

u(p, ¢,t) = v(p,¢) + wip, ,1).

This is analogous to the method we employed earlier for nonhomogeneous problems. Plug
this into the problem to get

ow 9 9
5 = k(V*v + VZw),

v(a, @) +w(a, o,t) = f(9),
v(p, @) +w(p, d,0) = g(p, d).

We split this into two problems in the obvious way

Vv =0, 0 _ v
ot
v(a, @) = f(0), w(a, é,t) =
U(pv 7T) = <p7 _ﬂ-)u (puﬂ-vt) = (pv -n t)
g_:;(p> 7T) = g_:;(pa _7T)a (21; (paﬂ-at = ( ﬂ-at)a
|v(p, )| bounded as p — 07, wl(p, o, 1)| bounded as p— 0T,

(p7 ¢7O) = g(pv ¢) - U(pv ¢) = h’(pv ¢)
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The problem for v is Laplace’s equation in a disk. The solution to this problem was obtained
earlier. It is

1 /7 2 2
v(p,¢) = o /_7r f(§) JER 2apios(qf— 97 7 dg. (Poisson’s integral formula)

For the equation in w we try separation of variables: w(p, ¢,t) = V(p, »)T'(t). This leads to

% = V;\I/ = —\. (const.)
We get one equation for 7" and one for U:
T + kT = 0, VU = -\,
U(a,¢) =0,
U(p,m) = ¥(p, —m),
ov ov

8_¢(p’ ™) = 8—¢('0’ —),
| (p, ¢)| bounded as p — 0.
The solution to the equation for 7' is
T(t) = e,

.From the last theorem of the last chapter, we know that the eigenvalues of the problem for
U are non-negative. So, letting A = p?, the equation becomes:

Lo ( owy 10w
pop \"ap p? 09?

We again try separation of variables: W (p, ¢) = R(p)S(¢). Plug into the equation to get

= — 120,

p(pR’)’ 2 2 _S_// _
o +up” = g =V (const.)
We get an ODE for R and one for S:
P’R" 4+ pR + (1*p* — V)R =0, S"+vS =0,
R(a) =0, S(m) = 5(=m),
| B(p)| < o0, §'(m) = &' (=m).

We have solved this equation for S before. Nontrivial solutions exist only for non-negative
v. Let v = w?. The solutions are:

W=w, =n, 6n=20,1,2,...,

Sn(¢) = ay cos(ng) + by, sin(ne).
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The equation for R resembles, but is not quite, Bessel’s equation. If we make the change of

independent variable x = up, then T = pd— and the equation becomes
% P
Zd’°R dR
F + T + (2 —n*)R =0, (Bessel’s equation of order n)

the solution of which is
R, =C,J(x) + D, Y, (x), hence R,(p)= CpnJu(up)+ DpYn(1p).
The boundary condition |R,(p)| < oo implies that D,, = 0 resulting in

Ru(p) = Ju(pp).

The other boundary condition yields

R.(a) =0 = J(ua)=0 = = pipx= %, k=1,2,... (where oy is the k™ zero of J,)
a

Thus we have

Rok(p) = Jn(pinip),  Toe(t) = e Foxt - and  S,(¢) = an cos(ng) + b, sin(na).

Combining these gives

(9, 8) = Ju 1) [ A cOS(n) + B sin(n).

If we define

\I]nk(p’ ¢) = Jn(/"tnkp) COS(n¢), (I\Ink(p> ¢) = Jn(:unkp) sin(ngb), n = 0a1>2a"'a k = 1a2>"'>
then \ink and \Tfnk are 2—dimensional eigenfunctions and

A solution to the w equation (applying superposition) can we written as

wpd:0) =3 > Tuilp = 37 > TAuTu(p. 0) + BuuWoilp, )5
n=0 k=1 n=0 k=1
Applying the remaining initial condition: w(p, ¢,0) = h(p, ¢) we get

=3 (A Ti(p. 6) + BurWar(p, 0)], where (0, A) = / / DA dA.
Q

n=0 k=1
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Therefore the coefficients are given by

Apk = = / / (p, @) Jn(ptnrp) cos(ng) pdp dg,
H‘I’nkH2 e, kH -
<h xynk / /
= (0, @) In(pnnp) sin(ng) p dp d¢.
H‘I’nkH2 2 kHz —n

The norms in the above expressions can be evaluated explicitly as follows:

10| = /_ /0 Tn(finkp) cos®(ng) pdp dp = ( / cos?(ng) dcb) < /0 3 (k) dp) = anbu,

where
4 if n #0
" — 2 d — Tr? 1 b
¢ /_W cos™(ng) d¢ {27? if n =0,
¢ 2 2, Onk 0,2 2 .
bop = / P2 (pnrp) dp = / pJ: ( p)dp = §Jn+1(o¢nk). (exercise)
0 0
Therefore

_ a2
||‘I’01fH2 = 7TG2J12(040k)7 H‘I’nk||2 J5+1(0‘nk) n#0

2

with similar expressions for ¥,,. The coefficients may now be written as

2 — Gon
Ang = . / / (P, @) Jn(pnkp) cos(ng) pdp do,

T Jn—i—l ank

2 — don
B = — 0o / / (0, 6) Julptnip) sin(n6) p dp do.

T Jn—i—l ank

Suppose we consider the special case with no angular dependence, in other words the
case with f(¢) = 0 and g(p, ¢) = g(p). Then v(p,¢) =0, h(p, ) = g(p) and

1
Ak = — / / n(Hnkp) cos(ne) pdp do
[V |* S =7

) !|\Tfik||2 (/_ cos(ne) d¢) ( | oot dp)

277'(50”

= = T (i) dp.
H‘I’nk|l2/0 P 9(P)Jn(pnkp) dp

Therefore

9 a
a*Ji(aor) Jo
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In this case the final solution to the problem reduces to

ulp: ¢,t) = ZAO%EIOk(Pa ¢)eMont = Z AorJo(orp) e~ 1ot
k=1 k=1



122

y y

Figure 6.1: Geometries more suited to polar coordinates.
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Figure 6.2: Representations of {2 in the zy-plane and the p¢-plane.
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Figure 6.3: Bessel functions of the first kind of integer order.
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Figure 6.4: Bessel functions of the second kind of integer order.
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Figure 6.5: Representations of {2 in the zy-plane and the p¢-plane.



Chapter 7

Problems in Spherical Coordinates
June 17, 2010

7.1 Spherical Coordinates

Spherical coordinates {r,0, ¢} are related to Cartesian coordinates {x,y, z} as follows

x = rsinf cos ¢, r =0,
y = rsinfsin ¢, —T < Q<
z=rcosb, 0<o<m.

The Jacobian determinant for the transformation is
sinfcos¢ rcosfcos¢ —rsinfsing
= |sinfsing rcosfsing rsinfcose | =r’sinf
cos —7rsinf 0

0(z,y,2)
o(r,0,¢)

which indicates that the transformation is singular at r = 0 and § = 0,7 (i.e. along the
entire z-axis). The Laplacian in spherical coordinates is

Vzu:i{2 <r20—u>+ = 2<sin(9a—u)+L@}
r2 | or or sin 6 00 00 sin? @ 0¢?
_ T + g@vLi (ﬁ +cot9% —|—0302982—u)

or2  ror r2\ 062 00 0% )

Consider the homogeneous version of either the three-dimensional heat equation or the
three-dimensional wave equation:

du ) Pu 4,

E = kV u, w = C V u,
+ b.c.’s, + b.c.’s,
+1i.¢c.’s. +1i.c.’s.

If we apply separation of variables u(r, 0, ¢,t) = W(r,0,¢)T'(t), we get

ﬂ_VQ‘I’__; o T"_VZxIJ__X
kw7 T v
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Either way, we end up with a three-dimensional eigenvalue problem for ¥

VAU = -\,
+ b.c.’s.
As was the case for two-dimensional eigenvalue problems, this three-dimensional eigenvalue

problem, for either Dirichlet or Neumann boundary conditions, will only have non-negative
eigenvalues. So we set A\ = p? and consider the problem

V20 = — 120,

We look for separated solutions of the form W(r,0,¢) = R(r)Y (6, ¢). Plug this into the
equation to get

2
! {Q(T2R/)Y+ o ﬁ(sinea—y)—i- A ay}:—,quY

r2 | or sin # 00 00 sin? 9?&
(r’R'Y 29 1 o (. oY 1 Y]
R = Ysinf |06 Sme% +sin9W =A

We get an ODE for R and a PDE for Y

2 2,2 —
(r*R) + (u“r* = N)R =0, 0450

+AY =0.

1 0 oYy 1 9%
00

P Ry v

Solutions to the equation for Y are called spherical harmonics. We apply separation of
variables again: Y (0, ¢) = S(0)Q(¢). Plug into the equation for Y to get

1 0. , 1 " B
Sme@(sm@S )Q + sinzﬁsQ +ASQ =0
: : 1\/ "
—smﬁ(s;n b5) + Asin® 0 = o) =v.
Thus we get an ODE in S and an ODE in @). Collecting all of the equations we have
(r*R)Y + (p*r* = )R =0, r >0,
sinf(sinfS") + (Asin®f — v)S = 0, 0<6<m,
Q" +vQ =0, —T< P <.

The first of these equations is

R4+ 2rR' + (u*r* — MR = 0| (spherical Bessel’s equation)

In the second of these equations, if we let = cos# and v(x) = S(#), then 0 < § < 7 implies
that —1 <z < 1 and we get

(1 — 2" — 220 + <)\ 1 v 2) v=0]| (associated Legendre equation)
—x
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For the special case v = 0 this reduces to

(1 =2 — 220" + v =0 (Legendre’s equation)

Before we can go any further in trying to solve the heat equation or wave equation in
spherical coordinates, we need to get some understanding of the behaviour of the solutions
to the spherical Bessel and Legendre’s equations.

7.2 Legendre Functions
7.2.1 Legendre Polynomials
Consider Legendre’s equation:

(1 —2*)" — 220" + Mo = 0, —-l<z<l.

Clearly x = 0 is an ordinary point of Legendre’s equation and x = +1 are regular singular
points. In applications, we require bounded solutions at x = +1 (which correspond to
0 = 0,7, which correspond to the positive and negative z-axis in physical space).

Since z = 0 is an ordinary point, all solutions will be analytic at = 0 so we may expand

them in a Taylor series:
v(x) = Z anx".
n=0

Plug into the equation to get
> {0 +2)(n+ Dange + A —n(n + D]a,}a" = 0.
n=0

Therefore the a,,’s satisfy the following recurrence relation:

A—n(n+1)
n+2)(n+1)

an+2:—( A, n=0,1,2,....

Writing out the first few explicitly we get

_ A A2
a9 = 2(1;0, az = 3.2a1’

__A—2-3 _AA-2-3) CA-34 (A=A -3-49)
“ 1.3 2?7 4139 O a5 = 5.4 B7 5l ap,
o= ATA5, M2 =45 o (A=2A=3-HA=56)

6! 7!
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Therefore
A AAN—2-3 AMA—2-3)(\—4-5
v(x) = ag {1—5332—#%3:4— ( 6)!( )x6+
ta {x_/\;2x3+(>\—2)(g\'—3-4)x5_(A—Q)(/\—?;'-4)(,\_5.6)I7

The even and odd parts are linearly independent. The quantities in square brackets are
multiples of what are called Legendre functions.

Special Case: (A= N(N + 1), N € Z") For this case the recurrence relation becomes

~ NN+1)—n(n+1)
On+2 = m+2)n+1) ™

with anyo =0.

In this case the series terminates giving a polynomial. When suitably scaled, these are called
Legendre polynomials, denoted Py. The scaling is chosen so that Py(1) = 1. The first few
Legendre polynomials are listed below:

Px)=1,  Pix)=u g(@:%(sﬁ—n,

1 1
Py(z) = 5(5:53 —31),  Pyz) = g(35:54 —302% + 3).

Lemma 47. Legendre polynomials satisfy the following properties:

1. P(1)=1,  1Py(~1)=(-1)"

1
2. (Pn, Pn) =0 if n # m, where (0, A) :/ OA dx.

-1

2
B2 = .
I Bl 2n+1
4. Pu(z) = ! ﬁ(:c2 -1 (Rodrigues’ formula)
COMY T onp) dan ' g
1

= > P,(x)t", for |x| <1|t| < 1. (generating function)

b, —Y——
V 1—2xt + 2 n=0
6. (n+1)Pa(x) = (2n+ 1)zP,(xz) — nP,_1(x), In=1,2,....

7. 2n+1)P,(x) = P, (x) — P _ (x).

For the case A = N(N + 1) one of the series terminates, but the other one does not. The
functions represented by the other series, when suitably scaled, are denoted @y, and are
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called Legendre functions of the second kind. The general solution of Legendre’s equation is
then given by

’U(SL’) = Cle(SL’) + CQQN(LL’).

The first few Legendre functions of the second kind are listed below:

1. 1+ r, 1+w 1 I1+z 3
Qo(sc):§ln1_x, Ql(x):§ln1—x_1’ Q2(3:):Z(3:c2—1)1n1_$—§x.
In fact the general formula is
1 1+ 1
Qnlw) = S Pa(2) In T = Wai(2),  where W,,_y(z) = ]; 2Pt (2) P ().
Notice that Legendre functions of the second kind are singular at +1: linil1 |Qn(z)] = oc.
z—

In fact, the only bounded solutions are Legendre polynomials. We have the following result
which we state without proof.

Theorem 48. Legendre’s equation has bounded solutions on the interval [—1,1] if and only
if
A=n(n+1), n=0,1,2,....

7.2.2 Associated Legendre Functions
Consider Legendre’s equation:

(1 —2*)" — 220" + 2 = 0. (7.1)
We can derive the associated Legendre equation from Legendre’s equation by the following
rather convoluted argument. Recall the Leibniz rule for derivatives of a product
qm m _ . m(m —1
—(fg) = Z (m) FU) glm=i) — fg(m)+mf/g(m—1)+¥fug(m_2)+_ o fD g ) g

dx™ s J 2

We differentiate each of the terms in (7.1) m times.

dm

d—[(l — 2" = (1 — 2)o™? — 2man™Y — m(m — 1)o™,
xm

d—(2xv’) = 200D 4 2mp(™),

xm

We now differentiate Legendre’s equation m times to get

(1 — 2™ — 2m + 2)zo"™ Y + X — m(m + 1)v™ = 0.
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w' = (1 — 2270 —mg(1 — 22)% 1™,
(1—22)w = (1 — 227 o™ —ma(1 —22)2 0™,
(1 —2®)w') = (1 —22)2 ™2 — (2m 4+ 2)2(1 — 22) 2 0™ 4 m222(1 — 2%) 2~ —m(1 — 22 o™
2\ ™ 2y, (m+2) (m+1) m*z’ (m)
=1 —-2°)2{(1—2) — (2m +2)av —I—[l 5 — mju™}
—x
2.2
— (1= F A tmlm+1)+ 17” L mp™
2
m
=[-\+ 1 x2]w.
Therefore w satisfies the equation
2 nt m2
[(1—2a2)w']) + [\ — 1_I2]w:0
2 Z / m2
(1 —2%)w" = 2zw +P\_1—x2]w:0' (7.2)

Eq. (7.2) is the associated Legendre equation with v = m?.

v a solution of (7.1) == w is a solution of (7.2).

As with Legendre’s equation, we have the following result for the associated Legendre’s
equation:

Theorem 49. The associated Legendre’s equation has bounded solutions on the interval

[—1,1] if and only if
A=n(n+1), n=20,1,2,....

Associated Legendre functions of the first kind are defined as follows:

m z d"
Pr(z) = (1_:’32)2619@

n

(P, (x)), 0<m<n.

Note that P%(x) = P,(x) for all n and P™(z) = 0 if m > n. The first few associated
Legendre functions are

Pl(x) = (1—a%)2, Py (w) = 3(1 - 2?),
Pl(z) = 3z(1 — 2°)2, P2(z) = 152(1 — 2?),
Plz) = 2(1 — )} (522 — 1), Pi(x) = 15(1 — 22)
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We may extend the definition of associated Legendre functions to negative values of m by
using Rodrigues’ formula in the definition above. Thus, we redefine associated Legendre

functions of the first kind
1 dm+n
P (z) = 1—a?
() n n!( ) dgmtn

Associated Legendre functions of the second kind are defined as follows:

(% — 1), —n<m<n.

m
2

Qi) = (-1 (i), 0<m<n

Lemma 50. Associated Legendre functions of the first kind satisfy the following properties:

L ey e

2. (P,T,le>:/ Pr(z)PMx)de =0  1ifk#IL

-1

7.3 Spherical Bessel Functions
Consider the radial equation obtained earlier with A = n(n + 1):
R’ +2rR + (u*r* —n(n+1))R = 0.
Let = pr and u(z) = R(r). Then we get
v u” + 2zu' + (2* —n(n +1))u = 0. (spherical Bessel’s equation)

This resembles Bessel’s equation, but differs because of the 2 in the second term. We can
transform it into Bessel’s equation as follows: let u(z) = x7w(z). Plug into the equation to
get

22" + 2(y 4+ Daw' + [2* — n(n + 1) +y(y + 1)]w = 0.

Now set 2(y+ 1) = 1. Thus 7 = —1/2 and the equation becomes

1
?w” + zw' + [2° — (n + 5)2]111 = 0.

This is Bessel’s equation of order n + % One solution is

w(r) = Jn+%(1’), therefore w(x) = w(z) = 1

N

().

[NIES

Jntl (x), (first kind)

(). (second kind)
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The first few spherical Bessel functions are listed below:

. sin x COS ¥
Jo(w) = : Yo(z) = — :
T T
. (:c) sinx cosz ( ) cosr sinx
— — xr) = — _
W 1’2 T ) U 1'2 T )
o () o1 sin 5 cos T, (z) ’ —i— ! cos 5 sin
=———)sinz — — z)=|—— — —sinx.
/2 2 oz 2 Y2 2 2

Lemma 51. Spherical Bessel functions satisfy the following properties:
1. jo(0) =1, 7,(0)=0, n>1.

2. yp(x) = —00 as x — 07,

arm () (5). e (1) ()

4. / G2 (ur)r*dr = Zo‘nmjni (),  where  jp () = 0.
0

1 [e.9] .
5. —sinva? + 2xt = g y i )t", 2|t < |z
x
n=0

1 %) P

6. —cosvaZ—2at="S 2 1‘(x)t", 2/t < ||

x n!
n=0

7.4 Laplace’s Equation (3-d)

We now conside an example of Laplace’s equation in a sphere.

EXAMPLE 7.1. (Laplace’s equation in a sphere)

Vu =0, 0<r<a,
u(a,b,¢) = f(6,9) —T<¢<m,
0<b<m.

Analogous to what was done before, we consider the domain in the rf¢-space. Several of
the boundaries of this rectanglar region are not “real physical” boundaries. So, similar to
the approach we adopted earlier, we make the following additional assumptions:

ou ou
%(T’e’ﬂ)za_gb

A2: Ju(r,0,¢)| bounded everywhere.

Al u(r,0,m) = u(r,0, —m) and (r,0,—m);
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We apply separation of variables: u(r, 6, ¢) = R(r)S(0)Q(¢). The equation becomes

i ﬁ 7,2@ + 1 3 ine@ _|_La2_u =0
r2 | or or sin 6 00 i 00 sin?00¢? [

RQ , . RS
2 DI/ N/ " —
(r R)SQ+—Sm9(sm«95) +sin29Q 0
(r’RR'  (sing S"Y Q" 0
R sindS  Qsin’6
(r’RR' B _(sin@S’)’ B Q" )
R B sinf S Qsin?0
This leads to
(PR — AR =0 —Sme(sgles) FAsin’ = 5 =
The second of these leads to
sinf(sin 6 S") + (Asin®f — v)S =0, Q"+vQ=0|

We first solve the equation for () with the appropriate boundary conditions:

Q"+rQ=0 v =m? m=0,1,2,...
o Y i

If we let x = cosf and v(x) = S(0), then the equation for S becomes

m2

1 — 2 //_2 / A\ —
(1 —2%)w v’ + | [

Juo=0.

i From (A2) we get
lu(r,0,¢)| bdd. = |S()] bdd. = |v(z)|bdd. = A=n(n+1).

Therefore v satisfies

m2

1 — 22

(1 —2?)" — 220" + [n(n + 1) — Ju=0.

Hence
() = ' P (x) + d Q' ().
But again |v(z)| bounded implies that d) = 0 so that

v(x) =Pl (x), SH(0) = P (cosB).

n
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The equation for R becomes
r?R" +2rR —n(n+1)R = 0. (Cauchy—Euler equation)
Looking for a solution of the form R(r) = r* implies that
+a-nn+1)=0 = a=n-1-n = R@E)=cr"+cr ™"
But |R(r)| bounded implies ¢; = 0, hence R(r) = r". Therefore
up'(r,0,¢0) = r" P (cos0)(a cos(mo) + 51 sin(ma)).

Applying superposition yields

u(r, 0, ¢) = Z Z r" P (cos 0) () cos(me) + B, sin(mae)).

n=0 m=0

Apply the one remaining genuine boundary condition wu(a,, ¢) = f(0, ¢) to get

=> ) a"P(cosb)(al cos(me) + B sin(ma)).

n=0 m=0

If we let
Y70, ) = P™(cos ) cos(me), Y0, ¢) :== P™(cosf) sin(me), (spherical harmonics)

n

then

ZZ aTYT(6,6) + BIYI(6, ).

The coefficients are given by

pan TR )

n TS ) n T o )

1Y 12 Y12

where the inner product is given by

(f.9): /_ﬂ/fﬁqb ¢) sin 6 df do.

We have
Y| = 0))? cos? 'Hded:(ﬂ 2 d)(wpgl 62'9d6)
Y.l /_ﬂ/ (cos 0))? cos®(ma) sin ¢ /_ﬂ cos”(mo) do /0 (P (cosf))”sin
2m (n+m)! .
. . fm=#£0
_ 1fm7£0}_ lpm 24y d 20 +1 (n—m)! '
{27? if m =0 /_1( w (7)) de Ar —

2n+1
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Similarly
9 !
T  (n+m if m £ 0
Smi2 2n+1 (n—m)!
=42
T fm=
2n + 1 1

The final solution is

u(r,0,¢) = Z Z r" P (cos 8)(ay' cos(me) + B, sin(me)),

n=0 m=0
where
—m) [T
o = (2 8,0 "L EZ ﬁ; || 6.0 cos0) cosm)sino s do,
—m) [T
B = (2 — 6m0>2n4;:_— L EZ+2;' /—n/o f(0,0) P (cos 0) sin(me) sin 0 df d.

Special Case: (f(0,¢) = f(0))
In this case we get

am = ansz /_ ] / F(8) P (cos 0) cos(m) sin 6 df do

- fnf;;z (/7r s(me) d¢) (/ F(0)P™(cos 0) smede) 0  ifm#0,
gm = anYmZ /_ W / F(8) P (cos ) sin(me) sin 0 df d

_ m < /_ W sin(mo) d¢> ( /0 " F(0) P (cos ) smede) —0  forallm.

Thus we have

where
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Figure 7.1: Legendre polynomials



Chapter 8

Problems in Infinite Domains

June 17, 2010

8.1 Fourier Integrals
Consider f € PC(—/, /) with Fourier series

nmx

Fl) ~ T4 D (@ cos(5=) + by sin(5)).

where

¢ ni ¢ nmr
0 = %/_éf(x) cos(T0) dr, b = %/_Zf(x) sin("7%) .

We want to generalize this to the case where f € PC(R). That is, we wish to consider the
limiting case where ¢ — oo.

Heuristic motivation
We begin by introducing some notation. Let

Wp 1= —, Ay(w) = —/ f(z) coswz dz, Alw) == lim Ay(w),

E T .y {—00

¢
Aw = wpi1 — Wy = z, By(w) = l/ f(z)sinwz dz, B(w) := lim By(w).

l—00

~
=
|

~

Then
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Now, taking the limit ¢/ — oo, we get

R nmx R r [
Zlgglo {; an 005(7)} = ZIE& {; Ag(wy) cos(wnz)Aw} :/0 A(w) cos(wr) dw,

R nmx e v [
Zlgglo {;bn COS(T)} = ZIE& {; By(wy) cos(wnx)Aw} :/0 B(w) cos(wzx) dw.

The last dubious equalities are suggested by the fact that the sums resemble Riemann sums
and the limits resemble the original definitions of a Riemann integral. So is it legitimate to
write

f(z) ~ / [A(w) cos(wz) + B(w) sin(wx)] dw.
0
The answer is yes. The derivation is given below. We will need a few lemmas.

* sinw T

Lemma 52. / dw = —.
0 w 2
Proof.
sin w )
Let F' be the Laplace transform of . That is, let
w
F(z) = / il
0 W

Then

Differentiating F' we get

o a . 0o —wx w=00 _1
F'(z) = /0 52 {e_“’x&zw} dw = —/0 e ¥ sinwdw = ﬁ[m sin w—+cos w] . =1
Integrating " we get
T , x dg o x . T
F(z) = F(z)=0=F(z)=F(o0) = | F(§)d =~ —tan'¢| = —tan "'zt o
Thus .
/ smwd :F(O):E
0 w
% gin we 5 if € >0,
Lemma 53. / SIS o = 0, if € =0,
0 w
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Proof.

If £ =0, the result is obvious. If £ > 0 then
sin z

/ smw{dw:/
0 w 0 X

On the other hand, if £ < 0 then

/°° sinwfdw:_/“’ sinxdx:_z
0 w 0 xr 2

Lemma 54. If f is piecewise continuous, then

(using = = w¢)

(using z = —w¢)

Proof.

We now define the following function

sin wh

2/00'
T Jo w

/ —[sinw(z + h) —sinw(z — h)] dw
0 W

K(z,h):=

Then we have

>1|>~

coswx dw.

_l{/ smwx+h)dw_/ smw(x—h)dw}
. —%—(—%) r < —h
= z—(-3) —h<x<h (using Lemma 53)
53— (5) x> h
1'0 r<—h
=—<7m —h<x<h
T
0 z>h
)1zl <h
1o |zl >h

Note that K is an even function in x.
We are now ready to give the main result
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Theorem 55. If
(i) f € PC*(a,b) on any interval (a,b); and

(ii) / (@) dz < oo,

then
flz+) + f(z—) _ / [A(w) coswz + B(w) sinwzx] dw,
2 0
where - o0
:%/_oof(x)coswxdx, B(w):%/_mf(aj)sinwxdx.
Proof.
We have
f(z+) ; fla—) _ lim o f(&)dé  (using Lemma 54)

8 &

|
5

FEK (x =&, h)dS

|
3

I
5

£(€) {2 /Oo sinwh cosw(x — &) dw} d¢  (using the definition of K)

> >
1 1
() o
N N e

g

fe L_)O — ]coswx— ) dw d§

83

Nhé\g\é\

g

f(&) cosw(x — &) dw d€

Qﬁé\\

f(&)[coswz cos wé + sin waz sin wf] d€ dw

( f(& coswgdg) coswx + (/ f(&) sinwg dﬁ) smwx} dw
)

[A(w) coswz + B(w) sinwz|dw.

I |
S— A= A= A= 3=
83
8
r—/H\
g 8

The expression

/000 [A(w) coswz + B(w) sinwzx]dw

is called the Fourier integral representaion of f, and A(w) and B(w) are called the Fourier
integral coefficients of f.

EXAMPLE 8.1. Calculate the Fourier integral of f(z) = el

Solution:
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We have
1 o 2 [ 2 e” *
— “coswrdr = = e "l coswr dr = = 5 (Wsinwz — sinwz)
T T Jo Tl4+w =0
1 : .
— lsin wa dr = 0. (since f is even)
7T —00

Hence

o 2 /°° COS WX
el =— dw.
T Jo 1+ w?

Suppose f is defined on (0, 00). We define

fe(z) == fx) —w>0 (even extension of f),
f(=z) <0
folz) == /() v=0 (odd extension of f).
—f(=z) =<0
Then
fe(z) ~ / A(w) coswz dw, (Fourier cosine integral)
0
fo(z) ~ / A(w) sinwz dw. (Fourier sine integral)
0
where

= %/000 f(x) coswz du, B(w) = %/000 f(x)sinwz d.

8.2 Fourier Transform

There is also a complex form of the Fourier integral. Notice the symmetries of the Fourier

integral coefficients:

= %/_oo f(x) coswz dx, A(~w) = A(w),

= %/_Oo f(z)sinwz dz, B(-w) = —B(w).
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Manipulating the Fourier integral we get

f(x) = /000 [A(w) coswz + B(w) sinwz] dw

=5 | AW ) i) - e e
=5 | ) - e dos 5 [TlA@) + B o
=5 | A =B e+ 5 [ A B
-5/ w AG) + Bl dt 5 [ 1AG) + Bl d
= % /_ Z[A(M)Jr’éB(u)]e‘w dp = /_ Z F(p)e™" dp,
where
F) = 50+ i8G0] = 5 [ f@)feos e+ isinpualas = - [~ playen=

~

The expression F'(w) is called the Fourier Transform of f and is sometimes denoted by f(w).
Thus we have

= / flz)e™* dz, (Fourier Transform)
T

f(x) = / F(w)e ™" dw. (inverse Fourier Transform)

Remark: Unfortunately, there is no unique way to define the Fourier transform. What makes
the Fourier transform so powerful is the relation between transfrom and inverse transform,
the detailed definition of the transform, however, allows various choices. Hence in some text-
books you will find Fourier Transform and inverse Fourier Transform with different factors
in front:

Flw) = \/% /_ T @t e, fl) = V% /_ " Pw)e dw.

In other textbooks the sign of the exponential might be flipped:

o0

=5 [ e g = [P

[e.e]
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EXAMPLE 8.2. If f(z) = e71®l, then its Fourier Transform is

1 [ . 1 0 . o0 .
F(w) = 2—/ e~ l#le gy = oy {/ ™1+ +/ e v(1=w) d:)s}
T J 00 ™ —00 0

B 1 ex(l-i—iw) 0 —z(l—iw) |>© B 1 1 N 1 B 1
C2m | 1w | o 2 \l4iw 1-iw/) w(14w?)

e
Therefore
[e’e) ] 1 o] —iwT
eIzl = / F(w)e ™ dw = —/ )
. T ) oo 1+ w?

For f defined on (0,00), we can calculate the Fourier Transform for the even and odd
extensions f, and f,.

oo 0 oo
— % /_OO fo(z)e™* dx = % {/_OO fo(z)e™® d:v+/0 fo(x)e™® dx}
1 & . > )
S {/0 fla)eer d:):+/0 fla)es dx}

- iﬁ /OOO f(@)(e™" 4+ e ) dx = %/000 f(z) coswz dz.

1 —w

Note that F is an even function. To invert this we have

o= [ roean= [ roesas [T Reesa

:/ F(w)e™” dw+/ F(w)e ™ dw
0 0

:/ F(w)(e™® + e™™7) dw:/ 2F (w) coswx dw.
0 0

A similar calculation holds for the odd extension. So, for a function defined on (0, 00), we
define

F.(w):=— / f(x) coswz dx, (Fourier cosine transform)
f(z) = / F.(w) coswx dw, (inverse Fourier cosine transform)
/ f(z)sinwz dz, (Fourier sine transform)

f(z) = / Fy(w) sinwz dw. (inverse Fourier sine transform)
0
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8.3 Applications
Here we will give examples of solving the heat equation and the wave equation on infinite
domains. First the heat equation.

EXAMPLE 8.3. Consider the heat equation:

Uy = hilgy, —o0o < x<oo,t>0,

u(z,0) = e 1ol
We require the additional assumption that the solution be bounded for all x € R.

Solution 1.
Apply separation of variables. Look for a solution of the form w(z,t) = X (x)T'(t). Plug this
into the equation to get:

T/ X//
X H
This leads to ODEs is X and T":
X"+ uX =0, T + uT =0,
| X (x)| < bdd.

The equation for X will have bounded solutions only for > 0. So, set u = w? to get
X"+ WX =0, = X(z;w)=e""",

Note that, without finite boundary conditions, there is no restriction on w. Thus w € R is
arbitrary. We now have

T(t;w) = e " and w(z, t;w) = F(w)e “%e .

The function u(z,t;w) is a bounded solution to the heat equation for any F' and for any
w € R. We now apply a generalized principle of superposition. In earlier problems we took a
liear combination of solutions over all eigenvalues. In those problems the spectrum (the set
of all eigenvalues) was discrete and so the linear combination consisted of a discrete sum. In
this case the spectrum is continuous (all w € R) and so the appropriate linear combination
will consist of a continuous sum (i.e. an integral). We get

(1) = / Flw)e sk gy

[e.9]

We now apply the initial condition u(z,0) = e~1#| to get

el :/ F(w)e ™" dw.

—00



144

Thus F must be the Fourier transform of e~*/, hence

1 [ : 1
Flw) = %/ e~ llewr do — m (from Example 8.2)

—0o0
Therefore, the final solution to the problem, in integral form, is

1 00 e—iwx—kat
)= = —_—dw.
uet) =+ [ e

[e.e]

Solution 2.
We now solve the problem in a slightly different manner. Let U(w, t) br the Fourier transform
of u(z,t):

Ulw.t) =5 [ Z u(w, 1) da.
Then
u(x,t) = /00 U(w,t)e"* dw,
ug(x,t) = /00 Up(w, t)e ™ dw,
Uge (T, 1) = /00 (—w)U(w, t)e”™™ dw
Plug into the equation:
U — kg, =0 = /OO [Up(w, t) + kw?U(w, t)]e”™* dw = 0.
Set the integrand to zero:
ou 2 —kw?t = —iwz ,—kw?t
S =AU = U= F@e ™ = e = /_Oo Flw)e e gy,
Apply the initial condition u(z,0) = e~1*l to get
eIl = /00 F(w)e ™" dw.
Thus F must be the Fourier transform of e, hence
F(w) = % /_Z e~ ltler dg = m (from Example 8.2)

Therefore, the final solution to the problem, in integral form, is

1 0o —iwr—kw?t
u(x,t) = —/ ¢

T ) o 14+ w?
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We now consider a problem involving the wave equation.

EXAMPLE 8.4.

U = Uy, —oo < x<oo,t>0,
u(z,0) = f(z),
u(x,0) = g(z).
We use an approach analogous to the second solution given in the previous example. Let

U(w,t) be the Fourier transform of u(z,t), and let F' and G be the Fourier transforms of f
and g respectively. Then

U(w,t) = i/OO u(x,t)e™” dx u(z, t) = /_OO Ulw, t)e ™ duw,

[e.e]

e da, fa)= [ F@etrdo (s

(e e]

“x - s
6w =5 [ gw)erar sa) = [ Gwetras (52

[e.e]

Differentiating u we get

uy(w,t) = / Un(w,t)e™ dw,  uge(z,t) = — / WU (w, t)e™ ™7 duw.

[e.e] —00

It is clear that F(w) = U(w,0) and G(w) = Uy(w,0). Plug into the equation:
Uy — gy = — / [U(w, t) + AU (w, t)]e ™" dw = 0.

We get the following initial value problem for U:

0*U
W -+ C w U= O
U(w,0) = F(w), 1U(w,0) = G(w).
The solution to the ODE is
U(w,t) = A(w) cos(cwt) + B(w) sin(cwt).

The initial conditions imply

Therefore

u(z,t) = /_OO [F(w) cos(cwt) + G(w)sméj"t)]e—mx dx
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However, further manipulation yields

- - 1 [ . , ,
/ F(w) cos(cwt)e™* dw = 5 / F(w)[e" " + e " e™™7 dw

—00 [e.9]

1 [ . .
_ 5/ F(w)[e—zw(m—ct) + e—zw(m—l—ct)] dw

_ %[f(x —et)+ flz+ct)]. (using (8.1))

and

0 : o) icwt —icwt
/ G(w)sm(cwt) iwe g 1 / Glw e —e i g

00 (609) . ic

1 0 G —zw z— ct) —zw(x-l—ct) y
T2 / . ic n
1 o8 T+ct )

=— [ Gw ( / et dg) dw
2c ot
1 w—l—ct )

/ Je " dw) d¢
r—ct -

=5 /i : g(&) de. (using (8.2))

Therefore we recover D’Alembert’s solution obtained earlier

x+ct

wat) = 5+ e+ S =)+ 5 [ g©)de

ct

We now redo the previous example involving the heat equation and show how to obtain
an explicit representation of the solution, for an arbitrary initial condition, involving only
one integration and not involving the Fourier transform. To do this we need the following
result:

Lemma 56. Let a > 0 be constant. Then

o0
aw?—i T _a?
/ e “‘””dw:\/je 1a,
oo a

Proof.

Exercise.

EXAMPLE 8.5. Consider the following one-dimensional heat equation:

Uy = kg, —o<zr<oo,t>0,

u(z,0) = f(x).
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Let U(w,t) and F(w) be the Fourier transforms of u(z,t) and f(z) respectively. Then

U(w, t) = % / u(l” t)eiwx dx’ U(l’, t) = / U(w’ t)e—iwx dw

[e.e] —00

Fw) =5 [ fwera, fo) = [ P

[e.e] —00

It is clear that F'(w) = U(w, 0). Differentiating u we get

(e e}

ut($>t)=/ Up(w, t)e™ ™" dw, um(:):,t):/ —w2U (w, t)e ™ duw.

oo [e.e]

Plug into the equation:
U — kg, =0 = / [Ui(w, t) + kw®U(w, t)]e”™" dw = 0.

We get the following ODE for U:

o + kw?U = 0,

ot
U(w,0) = F(w).

This is easily solved to get ,
Ulw,t) = F(w)e ™™,

The solution to the problem is

u(z, t) = /_OO F(w)e ®temir gy, (8.3)

[e o]

This of course is the solution we obtained in the example before last. However, further
manipulation yields

u(z, t) = % /_Z /_Z f(g)eiwge_szte_“x d€ dw
o [ feee g
o [ rof [ et ae
R

=52 f(6) 1e_(zijf d¢ (using Lemma 56)
2m J_ o kt

(z—6)?2

§e™ W dg

]

1 o 52
Tr—S8)e 1kt (s.
2\/7Tk't /—oof( )
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Thus we obtain the explicit representation

u(z,t) =

/ £ e (8.4)

2\/—

The function
_(z—)?
e~ dkt

2V kt

is called the Gauss—Weirstrass kernel or the fundamental solution of the heat equation.
The explicit representation (8.4) is preferable to the Fourier representation (8.3) for several
reasons: (a) it is computationally more direct, requiring only one integration; (b) it makes
sense for many functions f for which the Fourier transform is undefined, for example, any
bounded continuous function; and (c) it does not require any smoothness in order to satisfy

the initial value problem.

Special case: f(£) = ugp, a constant.

u(z,t) =

8.3.1 Error Function

2\/—

Special case: f(§) = §(£) Dirac d-function.

u(z,t) =

uoe ir ds = Ug.

1 e_ZTi.
2V rkt

Another helpful tool to solve the heat equation on the real line R is the error function

erf(w

We illustrate it’s use in an example:

f/ s

Exercise 8.1.

ou_ 1
ot 100 0x2’

100
u(z,0) = ¢ 50

0

X

Use convolutions, the error function, and operational properties of the Fourier
transform to solve the initial boundary value problem

—o<zxr<oo, t>0,

if —2<x<0,
if 0<z<l,
otherwise.
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Solution: Transforming the heat equation and the initial conditions, we get the solution
to the transformed problem

U(w, t) = flw)e @100,

Since this is the product of two Fourier transforms, we know that it is 1/27 times the Fourier
transform of a convolution, and using the convolution theorem, the solution can be written
as

u(z,t) = %}"_1 (e‘“%/mo) * f(x).

. . . 2
Computing the inverse Fourier transform of e~ /100

(o]
_ 2 2 i
F-1 (e w t/100> :/ e~ H100 i g

we let
o? Wit
4 100’
so that
o\/25 V25
w = and dw = ——do,
Vit Vi
and

Fo (emnoo) = \/\/2?‘\/@ / ) ,/—i_ e eV do
— o T

V25 2522
= —Vdre Tt
Vit

that is,

5 0 25(z—s)? 1 25(z—s)?
u(z,t) = —— [/ 100e” ¢ ds +/ 50e” ¢ ds] :
0

We can write the solution

( ) 5 [/0 25(x—s)? 1 25(x—s)2
w(x,t) = — 100e” ¢ ds +/ 50e” ¢ ds]
\/7?25 -2 0
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in terms of the error function

2 Y
erf(w) = ﬁ/o e dz,
5

, 5(x — s)
by letting z = , so that dz = ———=ds, then
00 [ 50 [V
Vit 2 Vit 2
u(x,t) = — e dz+ — e dz
’ 5z 5(z—1) ’
vr s VR
that is,

u(z,t) =50 [erf (5(%2)> —erf (%)} +25 [erf (%) —erf (5(5::/_21

)

)



Chapter 9

Method of Characteristics

June 17, 2010

9.1 Introduction to the Method of Characteristics
The METHOD OF CHARACTERISTICS is an interesting new concept, which we will develop
now. It is mathematically quite simple, but it involves an interesting logical twist. To explain
this twist, we introduce the idea of an ANCHOR POINT, a concept which is not used in other
textbooks.

We begin with a sinple first order partial differential equation on —oo < z < +00

0z(x,t) N 0z(x,t)

g = 0, z(x,0) = f(z).

Notice that no boundary condition is needed, since we work on the whole real line.

As seen earlier, a solution of a PDE for a function of two variables z(z,t) can be under-
stood as a surface over the (z,t) plane. To parametrize this surface, we use a phantastic
idea:

Find curves z(t) in the (x,t)-plane, such that the PDE can be reduced to an
ODE along these curves. These ODEs can be solved and pieced back together
to find the solution of the PDE.

Assume there is a curve z(t) and we study z along this curve z(z(t),t)). Then by the
chain rule we obtain

d 0z(x(t),t) Ox(t 0z(x(t),t
Doy - 2O 00 | :a(0).1)
dt ox ot ot
Notice, here you can clearly see the difference between a total derivative % and a partial
derivative %. Now if we compare the last expression with the original PDE, we see that it

0z (t)
ot

would be cool if = c¢. If this would be true, then we have

d 0z 0z

az(x(t),t) = c% + T 0

151
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Z(X(t), 1)

Z(X,1)

X
Figure 9.1: Schematic of a typical characteristic curve z(t) and the part z(x(t),t) of the

solution surface z which lies directly above

hence the solution is constant along this curve x(¢). To make all this happen, we have to
solve two ODEs, which are called the CHARACTERISTIC ODES:

do(t) . dz(x(t),t) 0
a7 da
We solve the first one first:
x(t) = ct + a, with an unknown constant a.

We observe that at t = 0 we have z(0) = a, hence this constant a is the point where the
characteristic curve starts. We call it the ANCHOR POINT. If a point (x,t) is given, then we
can always find the corresponding anchor point as

a=x—ct.
Now we solve the second characteristic equation:
z(x(t),t) = const.

If z is constant along the characteristic, it must have the same value as at the point where
the characteristic starts, i.e. the anchor point. Hence

2(2((t), 1) = 2(x(0),0) = f(x(0)) = f(a) = f(z —ct)

where we used the initial condition f(x). Which means for each given (x,t) we find the
solution

z(x,t) = f(x — ct).

This is a transition to the left with velocity c:
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t (X, 1)

a X
anchor point

Figure 9.2: Schematic of a typical characteristic curve x(¢) and the anchor point. Notice
that in general characteristic curves are not necessarily straight lines.

Figure 9.3: Schematic of a travelling wave that moves to the right with constant speed c.
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Exercise 9.1. %

Solve the following PDE for z(z,t) on —oo < x < o0

2

2+ 52, =0, 2(z,0) =e .

Solution: The first characteristic equation is

dx(t)

=5
dt

which is solved by
x(t)=5t+a, or a=ux—>5t

The second characteristic equation is solved by

Hence the solution is ,
2(z,t) = e (@507,

Now we extend the method to allow for linear source or sink terms.

EXAMPLE 9.1. Solve the following PDE for u(z,t) on —oo < x < oo:
Uy + aug + fu = 0.

Again we look for solutions of the form u(x(t),¢). From the chain rule we get

d
Eu(z(t), t) = upxy + Uy
Hence the characteristic equations become
dx(t) d
praialt and Eu(x(t),t) = —fu(x(t),t).

These are solved as
z(t)=at+a, ora=xz—at
and
w(z(t), ) = u(x(0),0)e™"

Hence for each given (x,t) we find the corresponding anchor point @ = z — at and then the
solution is given by
u(z,t) = u(a,0)e P = f(x — at)e™ "
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Exercise 9.2. %

Solve the following PDE for u(z,t) on —oco < & < 00:

ug + V3ug 4 fu =0, u(z,0) = sin’(z).

Solution: The characteristic equations, their solutions and the anchor point are given
by

dl’(t):\/g x(t):\/gt‘f‘a, a:x—\/gt

= 16u(t) u(t) = u(0)e'®

Then the solution is

u(z,t) = (sin(z — V/3t))%eto.

0.2 D’Alembert’s solution from Method of Characteristics

The method of characteristics can also be used to derive the D’Alembert solution for the
one-dimensional wave equation on the whole axis —o0 < z < 00

_ 2
U = C Ugy

u(z,0) = f(z)
u(2,0) = g(x)

We assume that the solution is twice continuously differentiable, such that w,; = uy,.

We will again take a more abstract view and do some algebra with differential operators,
whereby we employ the binomial a? — b* = (a+b)(a — b) = (a — b)(a + b). We can write the
wave equation as

oo P lu (P L0
"o “arr ~ \oe “ar2) "

0 0 0 0

0 0 0 0

Now we introduce a new variable
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Then equation (9.1) can be written as

0 0
0= (i~ c5p) ) = grn ) —egeten)

This is, in fact, the simplest first order equation which we used at the beginning of this
chapter. Its solution has the form

2(z,t) = Qx + ct)

for an appropriate function Q(x).
Now we do the same with (9.2). We introduce

and obtain 9 9 9 9
0= (E + C%) ’U(ZL’,t) - Ev(l’>t) - Ca_xv(z’t)'

Its solution has the form
v(x,t) = P(x — ct)

for an appropriate function P(z). Notice that P and @ only depend on one variable:
Q(A), A=x+ct, P(B), B=ux—ct.

We need anti derivatives of these functions in the following form. Let G(A) and F'(B) satisfy

C(A)= JQU).  —cF'(B)= LP(B)
Then
W — «G'(A) = ~Q(A) = ~Q(x + ct)
and
8F(I - Ct) . / 1 — 1
S F(B) = SP(B) = 5Pl - ct),

So far we have
z2(z,t) = us + cuy, = Q(x + ct)

and
v(w,t) = uy — cup, = P(x — ct).
Hence ' o o
up = §(Q(I—l—ct) + P(x —ct)) = = T or

which we integrate to
u(z,t) = Gz +ct) + F(x — ct) + ¢,
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where ¢; is a constant of integration. Notice that F' and G were defined as antiderivatives
of @) and P. Hence they are only unique up to constants and we can absorb the constant ¢,
into these functions. For example just define G = G + S and F=F+ 5 and then remove
the tilde”. Hence the general solution reads:

u(x,t) = G(x +ct) + F(x — ct) (9.3)

which is the sum of two traveling waves with speeds 4c¢, moving in opposite directions.
To find F' and G we need the initial conditions. At ¢ = 0 we have for the initial displace-
ment

f(z) =u(z,0) = G(z) + F(x) (9.4)
For the initial velocity we find
9(x) = w(x,0) = cG'(z) — cF'(x)
We differentiate (9.4) once more to get a system for F’ and G’
G'(x)+ F'(z) = f(2) (9.5)
cG'(z) —cF'(z) = g(x) (9.6)

Adding the equations (9.5) and (9.6) we obtain

¢ -5 (£ +42)

which gives
1 1 r
Glr) = L (o) + —/ o(s)ds + k.
0

2 2c
Subtracting the equations (9.5) and (9.6) we obtain

P =3 (70 - 242)

2 c

which gives
1 1 [

From (9.4) we observe that k; +ky = 0. Then from (9.3) we get the D’ALEMBERT SOLUTION

u(z,t) = %(f(x—irct) + f(z —ct)) + i/x ) g(s)ds.

20 —ct
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Chapter 10

Fourier Series Problems

Exercise 10.1. g

Suppose that f is T-periodic and let F' be an antiderivative of f, for example,

F(z) = /Oxf(t)dt, —00 < & < 00.

Show that F'is T-periodic if and only if the integral of f over any interval of length
T is 0.

Solution: Note that

z+T x z+T z+T
F@+ﬂ:A f@ﬁ:Af@ﬁ+/ f@ﬁ:ﬂm+/ £t dt

for all z € R. Therefore F(xz +T) = F(z) for all x € R if and only if

z+T
/ F(tydt =0

for all x € R. This holds if and only if the integral of f over any interval of length T is 0. Since f
is T-periodic, then F' is T-periodic if and only if

T
/iﬂwﬁ:a
0

160
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Exercise 10.2. XX
Let f(z) = z — 2 [ZH], (where [ ] denotes the floor function, i.e. the greatest
integer less or equal to the argument), and consider the function
h(z) = |f(@)| = |z — 2 [5]].
(a) Show that h is 2-periodic.
(b) Plot the graph of h.

(c) Generalize (a) by finding a closed formula that describes the 2a-periodic tri-
angular wave
glz) =|z| if —a<zx<a,

and
g(xz +2a) = g(x) otherwise.

Solution: Note that if we can show that

is 2-periodic, then for any x € R, we have
Mz +2) =[f(z+2)| = [f(z)| = h(z)

for all x € R, so that h is also 2-periodic.

(a) Now,
flea4+2)=x+2-2 (x—i—;)—i—l]
:m+2—2{$;—1+1}
=z 422 {x;w +1>
:m_2{x—2kl]

and f is 2-periodic, and from the remark above h = |f| is also 2-periodic.

(b) Since f(z) =z for —1 < x < 1, then h(x) = |z| for —1 < & < 1, and the graph of h is shown
below.
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(¢) In order to find a 2a-periodic triangular wave, we use the 2a-periodic function

o) =o -2 | 11

2a

and note that f(z) = x on the interval —a < x < a. We leave it to you to check, exactly as
in part (a), that this is 2a-periodic and that f(z) =z for —a < z < a. Therefore,

g(z) =

- — 9 [x—l—a}

2a

is a 2a-periodic triangular wave which is equal to |z| on the interval —a < = < a.

Exercise 10.3. X
Evaluate

L
nmwr mmx
/0 cos "7 cos "f dx

forn >0, m > 0.
Use the trigonometric identity:

1
cosacosb = 5 [cos(a + b) + cos(a — b)]

(consider a — b = 0 and a + b = 0 separately).

Solution: If n > m > 0, then from the addition formula for the cosine, we have

L 1 L
cos 7Z cos ML dp = — cos (n=m)mz + cos (ntm)me dx
o L L 0 13 T

2
— L sin (=T ! L sin (m)m !
27(n —m) Loy 2m(n+m) Lo
= sin(n - m)w + o sin(n + m)
_27r(n—m)smn m)m 27r(n+m)smn m)m
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If n=m >0, then

L L 1 L
nwe mnx _ 2 mnzx _ = 2mmx
/0 cos *7* cos = dr —/0 cos” HrE dx = 2/0 (1 + cos = ) dx

"L
-

If n =m =0, then

Exercise 10.4. X
Evaluate

L
: nmwx : mmax
/0 sin #7% sin 7f dx

for n > 0, m > 0 and consider n = m separately.

Use the trignometric identity: sinasinb = 5 [cos(a — b) — cos(a + b)] .

Solution: If m and n are positive integers with m # n, then

L L 1
s s e = [ foos e — o ]
— L . (n—m)mx L L . (n+m)mz L
= 2(n — m) Sin T 0 2(TL T ’I’)’L) Sin 7 .
L [Sin(n m) sin 0] N [Sin(n + m) sin 0]
= — — T — _ T —
2(n —m) 2(n + m)

while if n =m > 0, then

0
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Therefore

for m=n>0

o N

L
: nmwr : mmx J—
/ sin #7% sin M7 dr =
0 for m >0, n>0, m#n.

Exercise 10.5. X
Compute the Fourier series of the 2w-periodic function f given by

1 if 0<ax<m/2,
flz)= 0 if w/2<|z| <m,
-1 if —7m/2<z<0.

For which values of z does the Fourier series for f converge? Sketch the graph of
the Fourier series.

Solution: Note that f is an odd function on the interval —m < x < 7, so that

1 ™
a = o _Wf(w) z =0,
and e
ap = — f(x)cosnxdx =0,
™ —TT
form=1,2,....

We calculate the b,

1 s
by, = —/ f(x)sinnx dx
m —T
1 0 1 /2
= —/ (—1)sinnzdr + —/ sinnz dz
™ J—m/2 ™ Jo
9 w/2
= —/ sinnz dx
T Jo
9 1 w/2
= — [——cosnw]
T n 0
2
— 2 [1—cos2E
— [1— cos %]

and the Fourier series is

(o]
2 1 —cos & |
— g — < sinna.
T n

n=1

The graph of the Fourier series of f on the interval —m < & < 7 is shown below.
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Note that the original function f is piecewise smooth and has only a finite jump discontinuity at
x = 0 and ¢ = +7/2, thus, from the Fourier series representation theorem, the Fourier series of
f will converge to 0 at all points x = 2nm, n = 0,£1,+2,43, ..., and for all points (2n + 1)7/2,
the Fourier series of f will converge to (—1)"7/2, n = 0,41,+2,£3,.... The rest of the graph of
the Fourier series can be obtained by translating this graph by an integer multiple of 27 in the
x-direction.

Exercise 10.6. XX
Compute the Fourier series of the 2m-periodic function given on —7 < x < 7 by
f(z) = | cosz|. For which values of 2 does the Fourier series for f converge? Sketch
the graph of the Fourier series.

Solution: Note that f is even, since

f(=x) = | cos(-

1, and we only need to compute a,, for n > 0.

z)| = [cosa| = f(z)

for all x € R, therefore b, = 0 for all n >

Now,
1 ™ 1 (7 1 /2 m
ag = — |cos:n|d3::—/ |cos:n|d3::—/ cosa:da:—/ cos x dx
2m ) ™ Jo ™ Jo /2
S G T A | 12
= —sinx — —sinx :——(_1)_:_7
T 0 T a2 T T
and for n > 1, since cosnx is also an even function, we have
1 (7 2 (7
an:—/ ]cosx]cosnxdx:—/ | cos x| cos nx dx
L ™ Jo
92 w/2 9 [T
:—/ coswcosnxdx——/ cos x cos nx dx.
™ Jo T Jr/2
If n =1, then
2 w/2 2 T
alz—/ cos2xdx——/ cos? z dz
™Jo ™ Jr/2
2 /7r/2 ! + ! 2z ) d 2 /7T + 2z | d
= — — 4+ —cos2zx | dov — — — 4+ —cos2x | dx
T Jo 2 2 T2 \2 2
-G-)=25-
= — |- — \TT — — _ — | — = | =
T L2 2 Tl2 2
Now,

2cos z cosnz = cos(n + 1)z + cos(n — 1)z
so that for n # 1, we have

2

w/2
—/ cosxcosnrdr =
0

/ (cos(n + 1)x + cos(n — 1)x) dx
™ 0

1
™
1
; )

sin(n + 1)7/2  sin(n — 1)7/2
n+1 n—1
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and
2 (7 1 (7
— / cosrcosnrdr = — / (cos(n+ 1)x + cos(n — 1)x) dx
™ Jr/2 ™ Jr/2
1 [Sin(n +1)7/2  sin(n — 1)77/2}
= = + )
us n+1 n—1

For n # 1, we have

2 [sin(n+1)7/2  sin(n — 1)7/2
ap = —
"o n+1 n—1 '

and if n is odd, then a, = 0.

However, if n is even, say n = 2k, then

2 [sin(2k + 1)7/2  sin(2k — 1)7w/2
asgy, = —
S 2k + 1 2%k — 1
_2[(=pF (=
Com[2k+1 2k-1
_ 4 (=D*
o4k -1
and the Fourier series is
[ee] [ee]
2 4 (—1)k
agp —I—Zagkcos%:m = + ;Z PR cos 2kx.
k=1 k=1
Since f(—m) = f(m), then the piecewise smooth 27-periodic function with f(z) = |cosz|, —7 <

x < 7 is continuous at each x € R, and therefore the Fourier series converges to f(z) for each
r € R.

Exercise 10.7. X
Consider the parabola f(r) = 2% on —a < x < a and show that the Fourier series
of f is given by

a?  4a?

1 1
3 = 7 |cos (rz/a) — 52 C08 (2rz/a) + 37 ©08 Brx/a) — +---

Find its values at the points of discontinuity of f.

Solution: Note that since f(a) = a®> = (—a)?> = f(—a), then the piecewise smooth 2a-periodic
function is continuous everywhere, and so has no points of discontinuity.
Also, since f is an even function, then b, = 0 for all n > 1, and the Fourier series for f has only
cosine terms:
[e.9]
ap + Z an cos (nmzx/a)

n=1

aozl/oaf(:n)dm

where

a
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and .
an = %/0 f(z)cos (nwz/a) dx

forn > 1.
In order to calculate the coefficients a,,, we have

a 2

I 12?
aoz—/ dr=-2] =2
a Jo a 3 0 3
For n > 1, we integrate by parts twice to get
2 (¢ 2 ¢ 2 @
ap = —/ 2% cos (nmz/a) do = = [iwz sin (nmzx/a) | — _a/ xsin (nmz/a) d:n]
a o a |nm o N7 Jo
“ 4 a “oa [
= — [ zsin(nrz/a) de = — [——w cos (nmzfa) | + —/ cos (nmz/a) dw]
nm Jo nw | nw o nmJo
4a?
=z
forn =1,2,3,.... The Fourier series of f is
2 2
4 1 1
% - % |:COS (rz/a) — o2 08 (2mz/a) + 32 ©08 (3mx/a) — +-- } ,

and since f is piecewise smooth and continuous everywhere, the Fourier series given above converges
to f(x) for each z € R.

Exercise 10.8. X
Consider the 2a-periodic function f that is given on the interval —a < z < a by
f(x) = x. Show that the Fourier series of f is given by

2 ce (_1)n+1

s
n=1

sin (nmx/a)

by differentiating the Fourier series in the previous problem (Exercise 10.7) term by
term. Justify your work.

Solution: Since the 2a-periodic function F'(x) in the previous problem is piecewise smooth and
continuous everywhere, the Fourier series converges to the function everywhere, and

2 4 2 -1 n+1
% - %HZI%COS (nmx/a)

Fx) =

where F(x) = 22 for —a < z < a. Since this function also has a piecewise smooth derivative, and

Fl(z) =22 =2 f(x)
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for —a < x < a, then the coefficients in the Fourier series of F’(z) can be obtained by differentiating
the above series term-by-term. Therefore, the Fourier series of F’(x) is given by

4a® K (—1)" g 4a N (—1)n
— ~———sin (nrx/a) = — Z sin (nmzx/a) ,
2 2
T = nfa T
and the Fourier series of f(x) is
20 o (—1)"*!
2o 5~ (D" sin (nwz/a),
T n=1

which converges to f(z) for all x # +na, and to 0 for x = £na.

Exercise 10.9. XX
Obtain the expansion

(acosnx — nsinnx)

inh = (1)
eaz:sm W&Z (—1)

7T a? +n?
=—00

valid for all real numbers a # 0, and all —7 < x < 7.

Solution: Note, the solution can be obtained using the standard Fourier series of e**. However, it
turns out that it is easier to use the (equivalent) complex form of the Fourier series, which we do
here. If f(x) is a 2m-periodic piecewise smooth function, the complex form of the Fourier series of

f(x)is
[ee]
Z c ein:v
n
n=-—o00

where the Fourier coefficients are given by

1 [" -
Cp = — f(t)e " dt.
27 J_,
Here the N*™® partial sum
N
Sn(z) = Z cne™®
n=—N
is the same as the usual partial sum (check this).
Now, if f(z) = e* for —m < x < 7, then
1 T ) 1 e(a—in)x ™
Cp = — 0T oTINT Jon :
2 J_, 2 a—in |__

1 e(a—in)ﬂ _ e—(a—in)w iea(_l)n _ e—a(_l)n

2 a—1n 2 a—1in

_ (=1L)"sinh7ma  (—1)"(a + in)sinh7a
 7wla—in) m(a? 4+ n?)

)
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and the Fourier series of f is

inh 00 _1)n . 4 inh o _1)n
sinhra g~ CUHatin) g _sihma o= (D" osne — nsinng),
™ ™

(a? 4 n?) a? +n?

n=—oo n=—oo

where we used the fact that
(a+in)e™ = (a + in)(cos nx + isinnz) = (acosnr — nsinnz) + i(asin nz + ncosnx),

and the fact that the Fourier series of a real valued function is real valued, so that

oo

=D" .
E T 5 (asinnx + ncosnr) = 0.
a’+n

n=—oo

Since the function f is piecewise smooth and is continuous for —7 < x < 7, then we have

inh = (=)
eam_sm W&Z (—1)

(acosnz — nsinnx)

T a? + n?
n=-—oo
for —m <z <.
Exercise 10.10. XX
For any complex number z € C with z £ 1 show the identity
1— n+1
l+z+22 4 +2"= 172
—z

and then use it to derive Lagrange’s trigonometric identity:

1+C0$9+00529+"-+cosn9:14_ sin [(2n + 1)60/2]

2 2 sin (0/2) (0 <6 <2m).

Use the fact that cosnf = Re (eme) .

Solution: If z # 1, then

A—2) 14242242 =1424+224+ - +2"—(z24+ 22+ + 2"
=1— "

so that
1_Zn+1
- if 1
1424224 2" = 1—=z ifz#

n+1 if z=1.
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Taking z = €', where 0 < < 27, then z # 1, so that
] ) ] 1 — e(n+1)ib
1+ e 420 ... 4 enif = 716_61.9

1— e(n—l—l)i@

_¢if/2 (ei€/2 _ e—i€/2)

_e—it/2 (1- e(n-l—l)i@)

2isin (0/2)
i <e—i9/2 _ e(n+%)i€>
- 2sin (0/2)
1 sin(n+3)0 i

=5+ 25in (0)2) +2Sin(9/2)(cos(9/2)—cos(n—k%)@)

Equating real and imaginary parts, we have

1 sin(n+31)0
1+cos0+cos29+---+cosn9:§+2S(in7(9/22))

for 0 < 6 < 27, and as an added bonus,

CoS (n+%)9

1
N6+ sin20 + - +sinnd = - 9) — ——\" T 2)7
sin 6 + sin 26 + - + sinnf 5 cot (0/2) 350 (02)

for 0 < 6 < 2.

Exercise 10.11. X
Let f(z) =coshz, —-n<z<7, f(r+421) = f(x).

(a) Find the Fourier series of f.
Note: coshz = 1(e® +e72).

(b) For which values of z € [—m, 7| does the Fourier series of f converge to f(z)?

o0
(c) Evaluate the infinite series n++1 using part (b).

n=1

Solution:

o0
(a) Writing f(z) = ao+ >_ (a, cos nx+by, sin nz), the coefficients in the Fourier series are computed

n=1
as follows: since f(z) = coshz is an even function on the interval [—m, 7], then b, = 0 for all
n > 1, and
s 1 s . h
ag = — coshzdr = —sinhz| = "
2 J_ . 27 s

—Tr
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while for n > 1,

I 1 [7
ap = —/ cosh x cosnx dx = 2—/ (e" + e ™) cos nx d

T ) Fy
s ™
= — e’ cosnx dr + — e ¥ cosnxdx
2 J_, 2 J_,
1 [e"(cosnx +nsinnz) | | n 1 (e ®(—cosnz +nsinnz) ) |"
2 n?2 +1 . 2m n? 41 .
~ 2(—=1)" sinh~
S on2+l ow

where we integrated by parts twice to get

. .
e’ (cosnx + nsinne
/ e’ cosnx dr = ( ) and /

e *(—cosnx + nsinnw)
n?+1

n?2+1

e Tcosnrdr =

The Fourier series for f is therefore

—_

s n2 +
n=1

inh7r (1 o= (—1)"
Coshva?sm W{i—l-z (1) cosn:n}
for —o0 < x < 0.

(b) From Dirichlet’s theorem, the Fourier series converges to f(z) for all @ € [—m, 7], since f is
piecewise smooth on [—, 7], continuous at each x € [—m, 7|, and f(—7") = f(77).

(c¢) Again, from Dirichlet’s theorem, the Fourier series converges to cosh 7 at = 7, and so

sinh7 [1 o= (=1)"
coshm =2 {§+Z cosmr},
n

2
T —n +1
therefore .
Z 1 N s COth ™ — 1
n24+1 2 ’
n=1
Exercise 10.12. X

Sketch the Fourier series of f(z) and determine the Fourier coefficients for the fol-
lowing functions defined on the interval —L < x < L,

R for |z| < L/2
(a) f) = {0 for |z| > L/2

@)ﬂ@={1 ifo0<z<L

0 if —L<x<0

Solution:
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(a) From Dirichlet’s theorem the Fourier series of f(z) converges to

1

S ) + £

The graph of the Fourier series of f(z) on the interval —L < x < L is shown below.

y
1
‘ '
| (0
-L -L/2 L/2 L X

Since f(z) is an even piecewise smooth function on the interval [—L, L], it has a Fourier series
representation of the form

o0
f@) ~ap+ Y ancos M

n=1

where
1 [E 1 [ 1
ao L/o f(z)dx L/o T =3
and
2 L nmxr 2 % nmwx 2 3 nmxr % 2 : nm
anzf/o f(x)coswa:Z/o COSde:ESlnTOZESIHT

for n > 1, that is,
2(—1)k
ap, =<{ w(2k+1)’
0, if n =2k is even.

if n=2k+1 is odd

Hence, the Fourier series of f(z) is

2 (_1)k (2k+1) 7z
=Y :

COSs
L
— (2k+1)

1
2

(b) Again, from Dirichlet’s theorem the Fourier series of f(x) converges to

1

5 ) + 7).

The graph of the Fourier series of f(x) on the interval —L < x < L is shown below.

y
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1
We could compute the Fourier series directly, but instead we observe that f(z)— 3 is an odd

piecewise smooth function on the interval [—L, L]. Hence it has a Fourier series representation
of the form

1 [e.9]
flx) — 5~ ansin e,
n=1

where

b —E/L f(:n)—l sinmd:n—l/Lsinmdm
"= T, 2 I

L
nmx
= —— LIS —_ _ 1
— cos °F . — (cosnm — 1)
1
= [1— (-1
[ (1)
for n > 1, that is,
2
_ if n=2k+1 is odd
b, =< m(2k+1)
0, if n =2k is even.
Hence the Fourier series of f(z) is
1 2 — . (2k4+1)mx
@)~ g+ 2 T
k=0
Exercise 10.13. X

Show that finding the Fourier series operation is a linear operation, that is, the
Fourier series of

cf(x) + c2g(w)
is the sum of ¢; times the Fourier series of f(x) plus ¢y times the Fourier series of
g(x).

Solution: Suppose that the Fourier series of f and g are given by

s o0
f(x) ~Ag+ Z (A, cos XL + B, sin 12) and g(x) ~ Co+ Z (Cy cos "2 + Dy, sin 272)

n=1 n=1

where
1 L 1 L 1 [
AOZE/_Lf(x)dac, An:z/_Lf(w)cos%dw, anz/_Lf(w)sin%dx
forn > 1, and

1 L 1 L 1 [E
Co:_/ g(x) da, an—/ g() cos BEE d, Dn:—/ g(x)sin 27 du
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forn>1.
If ¢1 and ¢y are scalars, and the Fourier series of ¢1 f + cag is

o0
cf(x) + cog(z) ~ Ey + Z (Ep cos "% + F, sin 272 |

n=1
then
1 [L L
Eozi/ [c1f(z) + cag( / f(z d$+—/ g(x) dz = c1Ag + c2Co.
—L —L
Also,
1 L
E, = I / [c1f(x) + cag(x)] cos “F= da
L

C1 L C9 L
:—/ f(a:)cos%d:n—l——/ g(x) cos “F* dx
L), L

~L
=1 A, + 0,
for n > 1. Similarly,
1 L
F, = I / [e1f(x) + cog(x)] sin *7% dx
-L

C1 L : 2 L s onmx
f/_Lf(az)sm%daz—l—f/ g(x) sin “F dw

iy
=C Bn + CZDn
for n > 1. Therefore the Fourier series for c1 f + cag is

c1f(z) + cog(x) ~ c1Ag + c2Co + Z [(c14n + c2C) cos T2 + (¢ By, + c2Dy,) sin “72 |

n=1

A0+Z A cos “I* + By, sm””) + ¢o

n=1

~ e f (@) + cag ().

Exercise 10.14. g

Show that e® is the sum of an even function and an odd function.

C’O—I—Z C cos “7* + Dy, sm”zx)]

n=1

Solution: We can write

e’ = + = coshz + sinh z,



and cosh z is an even function while sinh x is an odd function.
In general, if f(x) is an arbitrary function, then we can write

f(l') = feven(gj) + fodd(x)

where

o) - HE I
is even, and

o) = L2 =1

is odd.

Exercise 10.15.
Given the function
f(z) =cos™f, 0<z<a

find the Fourier sine series for f.

Solution: Writing

the coefficients b,, in the Fourier sine series are computed as follows:

2 [¢ 1 [ _
b, = 5/0 cos TF sin “7E dw = o /0 (sin LJF?” + sin (B=Dm2 i)m) dx

a a
Y cos Tz ) 12 cos Bz
T n+1 a 0 T n—1 a 0
1 1 1+ (=)™ 1 1
=—(-D)"+1)+ —((-1D)"+1) =
7T(n+1)(( ) )+7T(n—1)(( 41 T <n+1 n—1
4 (=1 2
N T n2—1"
Therefore,
4in » .
if n i n
b, — ) 7= 1) s eve
0 if n isodd, n=>3.
Forn =1,

2 [ 1 “
by = — sin I cos I dp = —sin® TZ| = (.
a a a a a
0 0

The Fourier sine series for f is therefore

8 n
cos TF ~ — E 5 sin 2";” .
T 4n® —1
n=1

for0 <z <a.

)
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Exercise 10.16. XX
For each of the following functions find the Fourier series of f(z), the Fourier sine
series of f(z), and the Fourier cosine series of f(z), and sketch the appropriate
extensions of the functions and all the series involved:
T —-L<x<0
a ) =
( ) f( ) 14+ =z O<z<L
2, —L<x<0
b ) =
(b) f(@) e " 0<x <L
Solution:

(a) Fourier Series: The graphs of f(z) and the Fourier series of f(z) are shown below.

Y 24

0o L 2L 3L x

L oL X 3L 2oL

The dfxFourier series representation of f(z) is

(o]
f(x) ~ag+ ay, cos L + b, sin 72 ) |
L L
n=1
where

1 [ 1 [E 1 [ 1 1
=— de = — dr +— [ lde=—1==
a0 MLKLf@)x ﬂL[Lw Thop ), M Tt Ty

since the function z is an odd function on [—L, L].

Forn > 1,
I I I
an:f/_Lf(w)cos%dw:f/_Lxcos"—Fdx—i—f/o cos “T* dx
1 L
= —sin “7F| =0,
nm 0
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since x cos 7% is an odd function on [—~L, L], and

I I I
:f/_Lf(w)sin%dw:E/_Lxsin”—gxdx—i—f/o sin “7* dx

2 [E 1 [k
:f/ xsin%dz—i—z/ sin%dz
0 0

2| L Lopot 1/ L L
= — [——wcos% +— cos *7* dx <——cos %)
L o N Jo nm 0
1 2L(—1)"
=—[1-(-1)" -
nm 1= (=1)7] nw
Hence the Fourier series of f(x)
1 + 1 i [1 — (_1)71] — 2L(_1)n nre
—+ = sin
2 n E3

which is a sine series plus a constant term.

Fourier Sine Series: The graphs of the odd extension of f(z) to the interval [—L, L] and the
Fourier sine series of f(xz) are shown below.

V Wi 4l
AR YA7 78

Odd Extension Sine Series

The Fourier sine series representation of f(x) is

o0
x) ~ E by sin “FE,
n=1

where
2 [t 2 [t
bnzf/o f(a:)sm%dmzz/o (14 z)sin 7= dx
:z[—a(1+:ﬂ)cos e O+E ; COSle’]
2 L 2L(—1)"
= 2y 2O

nm nm
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Hence the Fourier sine series of f(x) is

2§ Mo (U
n=1

Fourier Cosine Series: The graphs of the even extension of f(z) to the interval [-L, L] and
the Fourier cosine series of f(z) are shown below.

y y
1 vw /v
3L -L 0 L 3L

-L 0 L X - X
Even Extension Cosine Series
The Fourier cosine series representation of f(x) is
o0
x) ~ ag + Zan cos "7,
where
1 [* 1 [* 1 B L
ag = — r)dr = — 1+z)d — |z — =1+ —,
o=1 J t@dr=g [Carmdr= el + 5 =143

and for n > 1,

2 [F 2 [F
:z/o f(x)cos%dwzz/o (1+x)cos "% dx

L L
L .
- — sin ”—zx dx
0 nm 0

L
—— 1 nmx
[mr( + ) sin “7%

boar
© n2r2?

nTr

[(=1)" —1],

that is,
4L

a, =4 722k +1)2
0, if n =2k is even.

if n=2k+1 is odd

Hence, the Fourier cosine series of f(z) is

L 4L & (2k+1)7r:c
2 2 Ez: 2/<;+1 L




(b) Fourier Series: The graphs of f(z) and the Fourier series of f(x) are shown below.

The Fourier series representation of f(z) is

o
f(z) NCL0+Z (an cos “TZ + by, sin 272 ) |

n=1
where
1 [F 1 /0 1 [F 1
- de = — 2dr + — Ty = — (2L +1—eL).
ag 2L/_Lf(3:):n oL, 3:+2L/Oe T 2L( +1—e")

Using integration by parts twice, we obtain

axr

/e“z cosbr dr = ﬁ (bsinbx + acosbx),
a
so that
I I I
anzE/_Lf(x)cos%dx:Z/_L2cos%dx+z/0 e " cos "TF dx
2 oo 0 nw e e mm L L B - L
DR IR e iy e L
L -L
T L2422 [1—e(-1)"]
forn>1.
Similarly, we have
axr
/eaz sin bz dr = pr—E (asinbx — beosbr),
a
so that
1 [k I I
bnzz/ f(w)sin%dw:z/ 2sin%dw+z/ e sin "TF dx
-L -L 0
2 - 0 L Cx e onm L nm _ - L
:_ECOS%_L_me mSln%O—me xCOSn_LwO

nm

- s 1=

179
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forn>1.

Hence the Fourier series of f(x) is

2L+1—et XK1-ef(-1)" . .
5 + Z 2 i [L cos “7F + nmsin an] .
n=1

Fourier Sine Series: The graphs of the odd extension of f(z) to the interval [—L, L] and the
Fourier sine series of f(z) are shown below.

. BN

‘ ‘
4 i s ; +

—L\o L X —SC\ —Li\o Li\i 3L X
N Y N

The Fourier sine series representation of f(x) is

o0
x) ~ E by sin “FE,
n=1

where

2 [t 2 [t
:z/o f(a:)sin%dmzz/o e " sin M7 dx

2L T nr L 2nm —x nnT g
22t ST . 12 122t 9L .
2nm I
2 1 n2n2 [1—e " (=1)"]

for n > 1, and the Fourier sine series of f(x) is
1—e %(=1)" -
2772 L2—|—n2 2 nsin *7*.

Fourier Cosine Series: The graphs of the even extension of f(z) to the interval [—L, L] and
the Fourier cosine series of f(x) are shown below.

y y

1 1

-L 0o L X -3L -L o L 3L X



The Fourier cosine series representation of f(x) is

o
f(z) ~ap+ Zan cos 77,
n=1

where . ; .
1/ 1 1 1
ap = — f(x)dx:—/ Fdr=——€e"" =—
T J, T J, . L
Since e
/e‘” cosbx dx = ﬁ (bsinbz + acosbx),
a
then
2 [t 2 [t
ap = — f(a:)cosmda::—/ e ¥ cos L dx
" L/O L L J L
2nm e mm L 2L _ .
T L2 4 n2n2® xsm%o T2t n2n2® * cos °7*
oL .
T 12 4 n2r2 [1—e(=1)"]

for n > 1, and the Fourier cosine series of f(z) is

L

0

Exercise 10.17.

1
d
Consider the integral / ’
0

1422
(a) Evaluate the integral explicitly.
1+ 22
for the integral.

(c) Equate part (a) to part (b) in order to derive a formula for .

XXX

1
(b) Use the Taylor series of —— (a geometric series) to obtain an infinite series

Solution:
(a) Since
1
— (tan~! —
dz ( an m) 1+ 22’
we have

L | ! T
/ dr=tan"'z| =tan"'1—tan" 10 = 1
0

181
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(b) Recall that the geometric series

1
1+t2 =1ttt =10
that is,
1 o0
n2n
2 :Z(_l) t
14+t =

converges for all —1 < ¢ < 1.

Integrating from 0 to x, where |z| < 1, we get

[ilaa=[ (i_mzn) dt

n=0
o
i t2n+1 x
n—0 0
o0
Z 22+
and therefore
o0
. (1" gr 1, 1. 1
tan"lz = e =g S 22— 2T
HZ::O 2n +1 3 5 7

for —1 < 2 < 1, and this is Gregory’s series for tan~—! z, discovered by James Gregory about
1670.

Letting x — 17, then a theorem of Abel tells us that

— = _ = 1l1im = 111m —T
4 0 1 + t2 z—17 Jo 1 + t2 r—1— =0 2n + 1

so that

this is Leibniz’s formula for



183

(¢) From part (b), we have

o0
(-
—4 .
m=4) o+ 1
n=0

The convergence is very slow however.

Another proof of Leibniz’s formula which doesn’t require integrating an infinite series term-
by-term is given below.

1 1 1 —1)nt !
1—§+g——+---+L:/ (1—2?+a* =2+ 4+ (-1)" 12?7 ?) da
0

7 2n — 1
1 2n
1 —
:/ 0w
0 1+1’2
1 1 2n
1
e [
0 1+IL' 0 1+.Z'
and therefore,

77 1 1 1 (-1t Log2n t, 1
(124 4. )= dr < " dr = — 0
1 ( 3t 7T 2n—1>‘ /0 1+a22 " /0”” T a1

as n — oQ.

Exercise 10.18. XX
Assume the function f(z) is continuous on [—L, L].

(a) Under what conditions does f(z) equal its Fourier series for all x € [-L, L] ?
(b) Under what conditions does f(z) equal its Fourier sine series for all « € [0, L] ?

(¢) Under what conditions does f(x) equal its Fourier cosine series for all x €
[0,L]?

Hint: What does the Fourier series converge to at the end points of the interval?

(a) From Dirichlet’s theorem, we know that for any zy with —L < x¢ < L, the Fourier series of
f converges to f(zg) since f is continuous at xg.

We also know that at the endpoints © = —L and x = L, the Fourier series converges to

1 _

S+ (L7,
and if f is continuous at the endpoints, that is, continuous from the left at + = L and
continuous from the right at £ = —L, then the Fourier series converges to

(L) + f(=L)
2

at © = L and at x = —L, so that the Fourier series converges to f(z) for all z € [-L, L] if

and only if f(L) = f(—L).
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(b)

Again, from Dirichlet’s theorem, if 0 < xg < L, then the Fourier sine series of f converges to
f(xg) since f is continuous at .

If foqq is the odd extension of f to [—L, L], then at x = 0, the Fourier sine series of f
converges to

5 [Foaal07) + foaa(0)] = 5 [=1(0) + JO) =0,

and the Fourier sine series converges to f at = 0 if and only if f(0) = 0.

If foqq is the odd extension of f to [—L, L], then at x = L, the Fourier sine series of f
converges to

% [foda(L7) + foaa(—L7)] = % [foaa(L) + foad(—L)] = 5 [f(L) — f(L)] =0,

and the Fourier sine series converges to f at x = L if and only if f(L) = 0.

From Dirichlet’s theorem, if 0,29 < L, then the Fourier cosine series of f converges to f(z¢)
since f is continuous at xg.

If feven is the even extension of f to [—L, L], then at x = 0, the Fourier cosine series of f

converges to
1

5 [even(07) + fewn(0)] = 5 [0) + £(0)] = 7(0),

and the Fourier cosine series of f converges to f at x = 0 if and only if f is continuous from
the right at x = 0.

If feven is the even extension of f to [—L, L], then at x = L, the Fourier cosine series of f
converges to

5 [fovn(E7) + foven(~ L)) = 3 [feven(D) + feven(~D)] 5 [F(1) + F(D)] = F(L),

and the Fourier cosine series of f converges to f at x = L if and only if f is continuous from
the left at z = L.



Chapter 11

Heat Equation Problems

Exercise 11.1. g

For each of the initial value-boundary value problems below, determine whether or
not an equilibrium temperature distribution exists and find the values of 8 for which
an equilibrium solution exists.

ou  0*u ou Ou

&) % =a2th oz M =h glh=F
ou  0*u ou Ou

®) % = oar 0= g0 =0
ou 9%u ou ou

O Z=gmte=Fh FOH=0 FEH=0

Solution: If the temperature has reached an equilibrium distribution, then u no longer depends

0
on the time ¢, so that 8_:: =0 and u = ¢(z) is a function of  alone.

(a) In this case the boundary value problem for the equilibrium temperature distribution is

#"(z)+1=0, 0<z<L
¢'(0) =1,
¢'(L) = B.
The general solution is

2

o(z) = —7+Ax+B with d(z)=—-z+A
for0 <ax < L.

From the first boundary condition, we have ¢'(0) = A = 1, while from the second boundary
condition we have ¢/(L) = 3, on the other hand, ¢'(L) = —L + 1. Therefore there exists an
equilibrium temperature distribution if and only if 8 = 1 — L. In this case we have

2

u(m)z—%%—:ﬂ—l—B, 0<z<L

185
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where B is a constant.

In this case the boundary value problem for the equilibrium temperature distribution is

¢"(x)=0, 0<ax<L
¢'(0) =1,
¢'(L) = B.

The general solution is
¢(r) =Ar+ B with ¢ (z)=A

for0 <z < L.

From the first boundary condition, we have ¢'(0) = A = 1, while from the second bound-
ary condition we have ¢'(L) = (3, and therefore there exists an equilibrium temperature
distribution if and only if 8 = 1. In this case the equilibrium temperature distribution is

u=¢(r)=c+B, 0<z<L
where B is a constant.
In this case the boundary value problem for the equilibrium temperature distribution is

" (x)+x—B=0, 0<z<L

¢'(0) =0,
¢'(L) = 0.
The general solution is
3 2 9
¢(z) = TP et B with ¢()= -2 4y Br+A

6 2 2

for 0 <z < L.

From the first boundary condition, we have ¢'(0) = A = 0, while from the second boundary

condition
L2
¢'(L) = Y +BL =0

L
which implies that § = 5

In this case the equilibrium temperature distribution is

3 L2
u(m):—%—ka—kB, 0<z<lL

where B is a constant.
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Exercise 11.2. X
Consider the homogeneous Dirichlet problem for the heat equation

Ou _ 0% L t30

=, - Va3 o ITx L, U=

ot Ox?’

subject to the boundary conditions
u(0,t) =0 and uw(L,t) =0

for ¢ > 0, with initial conditions

for 0 <z < L.

Solution: Since both the partial differential equation and the boundary conditions are linear and
homogeneous we can use separation of variables, and write

u(x,t) - (;5(1‘) ’ h(t)

where ¢ depends only on x and h depends only on t. Substituting this into the partial differential
equation, we have

bW =k h,
and separating variables,

¢// h/

_— = — = —)\

10} kh

for a yet unspecified constant A.

We obtain the two ordinary differential equations
" +Xp=0 and h 4+ Xeh =0.

Since

u(0,t) = ¢(0) - h(t) and u(L,t) = ¢(L) - h(t)
we can satisfy the boundary conditions by requiring that ¢(0) = ¢(L) = 0, so that ¢(z) must satisfy
the boundary value problem
" +Xp=0, 0<2<L
¢(0) =0
b(L) = 0.

Now we find those values of A for which this boundary value problem has a nontrivial solution.
Case 1: A\=0



188

In this case, the differential equation is ¢” = 0, with general solution
¢(z) = Az + B,

where A and B are constants. Applying the boundary condition ¢(0) = 0, we get B = 0, so that
¢(x) = Az. Applying the second boundary condition ¢(L) = 0 we get A = 0. In this case the
equation has only the trivial solution ¢(x) =0 for 0 < =z < L.

Case 2: A <0, say A = —u? where j > 0

In this case, the differential equation becomes ¢” — p?¢ = 0, with general solution

¢(x) = Acosh px + Bsinh pz

where A and B are constants.
Applying the first boundary condition, we have

»(0)=A so that A =0,
and the solution is
¢(x) = Bsinh pz.
Applying the second boundary condition

¢(L) = BsinhuL =0 so that B=0

since p > 0 and sinh L # 0. Therefore, in this case the only solution is ¢(x) = 0, and again there
are no nontrivial solutions.

Case 3: A > 0, say A = p? where > 0
In this case, the differential equation becomes ¢ + u?¢ = 0, with general solution

¢(z) = Acos px + Bsin px

where A and B are constants.
Applying the first boundary condition, we have

»(0)=A so that A=0,

and the solution is
¢(z) = Bsin ux.

Now however, when we apply the second boundary condition
¢(L)=BsinuL =0

in order to get a nontrivial solution, we must require that B # 0, so that sin uLL = 0, and L = nz
for some integer n.

Therefore, in the case of Dirichlet boundary conditions, we get a nontrivial solution only for
the eigenvalues \,,, where

n?n?

L2’

An:/‘i:
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with corresponding eigenfunctions
nmwx

¢n(z) = sin e

for each integer n > 1. The corresponding solution to the time equation
hl (t) + Ak hp(t) = 0
is
hn(t) = ekt = (=g

forn > 1.
For each n > 1, the function

n27'r2
Un (2, 8) = () - h(t) = €7 12 " sin 212

is a solution to the partial differential equation satisfying both boundary conditions.
Using the superposition principle, we write

o n27r2
s onmx — 55kt
u(x,t) =) bpsin™ffe L
n=1

for0<ax<L,and t > 0.

We determine the constants b,, from the initial condition
L
1 for <z < 3

u(z,0) =
L

2 for <x <

ol O

—

for 0 < z < L, and setting ¢t = 0 in the expression for u(z,t) above, we have

nmx

u(ﬂj, 0) = Z bn sin T
n=1

Hence we need to find the Fourier sine series of u(xz,0) on the interval [0, L], and the coeffcieints
are

9 L
b, = T /0 u(x,0) sin ? dz
forn > 1.
Now L L/2 L
/ u(x,O)sin@da::/ sin@daz—i—/ 2sin@dx,
0 L 0 L L/2 L
so that 5 5 4
by, = ——I——COSE——(— )"
nwT o nmw 2 nmw

for all n > 1, and the solution to the initial value problem is
u(z,t) = Z by sin BFE e” L2
n=1

for0<ax<L,and t > 0.
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Exercise 11.3. X
Solve the following initial value-boundary value problem for the heat equation

ou k82u

ot Ox?’

u(0,t) =0 and u(L,t) = 0.

for 0 <z < L.

Solution: Assuming a solution of the form
u(z,t) = ¢(x) - G(t)

and separating variables, we get
¢"(z) _ G'(t)
o(x)  kG()

where X\ is a constant. The partial differential equation is reduced to two ordinary differential
equations:

=)

Spatial Equation:

Time Equation:
G'(t) + kAG(t) =0, t=>0.

Since it has a complete set of homogeneous Dirichlet boundary conditions, we solve the spatial
equation first.
The eigenvalues and corresponding eigenfunctions for this problem are (see the previous problem)

A= and  ¢y(x) = sin 2

forn=1,2,3,....
The solutions to the time equation corresponding to these nontrivial solutions are

_ kn2m2¢

Gn(t)=e L2
forn=1,2,3,....
For n > 1, the functions

kn2m2¢

Un(2,t) = ¢n(x) - Gp(t) =sin 22 . e™ L7
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are also solutions to the partial differential equation satisfying the boundary conditions, and since
the partial differential equation and the boundary conditions are linear and homogeneous, by the
superposition principle, the function

kn?m2t

[e.9]
u(x,t) = E by sin 278 - e L2
n=1

is also a solution. We determine the constants b,, for n > 1, using the initial condition, namely

[ee]
u(z,0) = g by, sin 222 = 3sin T — sin 7L,

n=1
from the orthogonality of the eigenfunctions on the interval [0, L] we see immediately that the
coefficients of the Fourier sine series are

b =3, by3=-—1, and b, =0 for n#1,3.

The solution is therefore

. _k7r2t .3 _9k7r2t
u(z,t) = 3sin e L[? —sin=Fre L7

for0<ax<L,t>=0.

Exercise 11.4. X
Solve the boundary value problem for the one dimensional heat equation

ou  0%u

—=—, O<z<mt>0

ot Ox? T

u(0,t) =0, t>0
u(m,t) =0, t>0
u(z,0) =30sinz, 0<z<m,

and give a brief physical explanation of the problem.

Solution: Using separation of variables, since we have homogeneous Dirichlet boundary conditions,
we obtain the solution (kK =1 and L = 7 here)

[e.9]
u(z,t) = Z bpe " sin n,
n=1
2 s
where b, = —/ f(z)sinnx dx for n > 1.
T Jo

Now,
u(z,0) = f(z) = 30sinz

for 0 < x < m, that is, f(x) is its own Fourier sine series, so that b; = 30, and b, = 0 for all n > 2.
The solution is
u(z,t) = 30e " sin,
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and this gives the temperature in a bar whose sides are insulated and whose ends x =0 and r =7
are kept at 0 temperature, with an initial temperature distribution given by u(z,0) = 30sinz, 0 <
T <.

Exercise 11.5. X
Solve the following homogeneous Dirichlet problem for the heat equation:
%z%, 0<x<1,t>0
u(0,t) =0, t>0
u(l,t) =0, ¢t>0
u(z,0)=e"* 0<zxz<l,

and give a brief physical explanation of the problem.

Solution: After separating variables, applying the initial conditions, and using the superposition
principle, we obtain the solution

o0
22 .
w(x,t) = bpe ™ T tsinnmx
) n )
n=1

where

1
b, = 2/ e Tsinnwxdr
0

forn > 1.
Integrating by parts, we get

1 oz 1
/ e "sinnrrdr = ————— (sinnmr + nwcos nwx)
0 1+n*m 0
o nr n+l -1
= T 1+ (-1 e,

so that

u(z,t) = 2w Z T2 (14 (-1)" e e "™ sin nra,

and this gives the temperature in a bar whose sides are insulated and whose ends z = 0 and z = 1 are
kept at 0 temperature, with an initial temperature distribution given by u(z,0) =™, 0 < x < 1.
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Exercise 11.6. X
Solve the problem of heat transfer in a bar of length 1 with initial heat distribution

f(z) =cosmz, 0<z<1

and no heat loss at either end, where the thermal diffusivity is & = 1, that is, solve
the initial boundary value problem below:

ou  0%*u

E—W, 0<.’IJ<1, t>0
ou ou

Z2(0,t) = —(1,) =0, ¢

Mo =2t1n=0, 150

u(z,0) = cos ez, 0<z<l.

Solution: Since both the partial differential equation and the boundary conditions are linear and
homogeneous we may use separation of variables, and we write

u(z,t) = X(x) - T(t)

where X depends only on z and T" depends only on ¢. Substituting this into the partial differential
equation, we have

X -T'=X"-T,
and separating variables,

Xl/ Tl )\

X7

where A denotes the unknown separation constant. We obtain two ordinary differential equations
X"+AX =0 and T +\T = 0.

Since

%(o,t)zX’(O).T(t) and %(1,t):X’(1)-T(t)

we can satisfy the boundary conditions by requiring that X’(0) = X’(1) = 0, so that X (x) must
satisfy the boundary value problem

X"+2X =0, 0O<z<l1l, t>0
X'(0)=0
X'(1) =1,

with homogeneous Neumann boundary conditions.

Since it has a complete set of homogeneous Neumann boundary conditions, we solve the spatial
equation first.

The eigenvalues and corresponding eigenfunctions for this problem are

A = nr? and X, (z) = cosnmx
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forn=0,1,2,3,....
The corresponding solutions to the time equation 77 4 n?7%T = 0 are
To(t) = e ™
forn=0,1,2,3,....
For each n > 0, the product
up(x,t) = Xp(x) - Tp(t) = e eosnrr, O<z<1, t>0

satisfies the heat equation and the boundary conditions, and since they are both linear and ho-
mogeneous, then any linear combination does also, so we can use the superposition principle to
write

[ee]
2.2
u(z,t) = ap + E ane” ™ ™ L cos
n=1

and all we need to do now is find the coefficients a,, for n > 0, so that the initial condition is also
satisfied. Setting ¢t = 0 in the series above, we have

[e.e]
cosmr = u(x,0) = ag + E ap, COSNTX,
n=1
that is, the a,’s are just the coefficients in the Fourier cosine series for cos 7z on the interval [0, 1].
Since cos mx is its own Fourier cosine series on the interval [0, 1], then

0 for n #1,
apn =
1 for n=1.
and the solution is ,
u(z,y) =e ™ Lcosmx
for0<z<1, t>0.
Exercise 11.7. XX

Solve the problem of heat transfer in a bar of length L. = 7 and thermal diffusivity
k =1, with initial heat distribution u(x,0) = sinz where one end of the bar is kept
at a constant temperature u(0,t) = 0, while there is no heat loss at the other end

of the bar so that a—u(w,t) = 0, that is, solve the boundary value — initial value
T

problem below:

Ou _ 0% O<az<m t>0
9t 0x2 S U
u(0,t) = 0, £>0

ou

L ty=0, t>0

836(7r )

u(z,0) =sinz, 0<z <.
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Solution: Assuming u(xz,t) = X(z) - T(t) and separating variables, we get the two ordinary
differential equations X” + AX = 0 and 7" + AT = 0, and the boundary conditions lead to the
following boundary value problem for X :

X"+XX =0, 0<z<m
X(0)=0
X'(r)=0

Arguing as in previous problems, the only nontrivial solutions occur when A > 0, say A = p? where
u # 0, and the differential equation becomes

X" 4+ N2 X =0
with general solution
X(x) = Acos px + Bsin pux
and applying the first boundary condition, we have A = 0, so that

X(z) = Bsin pz and X'(x) = puB cos pz.
Applying the second boundary condition, we have
Bcospum =0,

(2n — )7

5 for some positive integer n.

and in order to get nontrivial solutions we must have ur =

The eigenvalues are
2n —1)?
Ap = (LEL = 7( 1 )

and the corresponding eigenfunctions are

Xn(z) =sin (2"51)96
while the corresponding solutions to the equation 7" + 2T = 0 are

(2n—1)2t
T,(t)y=e 4

forn > 1.
For each n > 1, the function

(2n—1)%t on1
Un(1,8) = Xp(2) To(t) =¢™ 1 sin 2250

satisfies the heat equation and the boundary conditions, and using the superposition principle, we

write
(2n—1)2¢

[e.e]
u(z,t) = Z bpe” 4 sin (2"51)96
n=1

forO0<ax<m, t>0.
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Setting ¢ = 0, in order to satisfy the initial condition we need

o0
sinz = u(z,0) = Z by, sin (2"51)96 (%)
n=1
for 0 <z <.
Note that sinz is not of the form
sin (2n;1)w’

hence we cannot just say that sinz is its own Fourier series. Here we have to compute the full

generalized Fourier series of sinz in terms of sin w
In order to determine the coefficients b,, we use the fact that the functions {sin w} . are
nz

orthogonal on the interval [0, 7]. To see this, note that if n # m, then

™ 1 s
/ SIN fly @ SN @ dr = 3 / [cos(ftm, — fin)T — cOS(fim + fin)z] dz
0 0

s

TSt i)
0 2(Nm + Nn)

SIn (ftm — fin)
2(pm — fin)

0

sin(m —n)m  sin(m +n)mw
2(m —n) 2(m+n)

Also, if m = n, then

/ sin? ppx de = / <— — — Co8 2,um:17> dx
0 o \2 2

s

o sin2upe

T2 |
m  sin(2m — 1)w

=3 emo1)
7T

T2

Multiplying the equation (%) by sin i,z and integrating from 0 to m, and using the orthogonality
result just proven, we have

s T T
/ sin x sin ppy,x de = bm/ sin? pu,, de = 5 Do,
0 0
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that is,
2 K ) ) 1 s
by, = — | sinzsinp,xde = —/ [cos(pim — 1) — cos(puy, + 1)z] dx
T Jo T Jo
_sin(pm — D |"  sin(py + 1z T sin(py, — )7 sin(pm + D7
T(m — 1) o T(um +1) | m(pm — 1) m(pm +1)
. e s I TG G Vi
S| (2m—3) 2m+1) | 7 [(2m—=3) (2m+1)
that is,
L8 ()
" (2m=3)2m+ 1)’
since sin (2m;1)7r = (—1)™.
Therefore, the solution is
8 0 (_1)n _(2n—1)2t . (2n—1)z
t) = — 1
ul(@, w; 2n—3)2n+1)° ST
for0<ax<m, t>0.
Exercise 11.8. X
Consider the homogeneous Neumann problem problem for the heat equation
Ou 0%u
— =k— Lt
5 Rt O<z<L, t>0
@(0 t)=0, t>0; @(L t)y=0, t>0; wu(z,0)=f(x), 0<z<L
81‘ I — ¥ ) &r ) — ¥ I ) - ) .

Solve this problem by looking for a solution as a Fourier cosine series in terms of
2

ou U U
cos “7%, n > 0. Assume that v and —— are continuous and 922 and 5 are piecewise
7

smooth. Justify all differentiations of infinite series.

Solution: We assume a solution of the form

[e.9]
t) = Z an(t) cos MFE
n=0

and assuming all derivatives are continuous, we have

E an(t "T COS%

and since u(x,t) satisfies the heat equation,

ou ka%

ot 0x?
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we have
[e.9]
/ 'I’LT('"E _ 'I’L 'I’LT('"E
E a, (t) cos 1= —k:g an(t) (%F) ? cos e

Collecting terms that multlply cos *7* forn > 0 for n > 1, and using the fact that these trigono-
metric functions are linearly mdependent (they are orthogonal on the interval [0, L]), then we get

al(t) = —kay(t) (%7)?,

and we can solve these first order linear ordinary differential equations for a,(t) to get

an(t) = Ane_(%)%t

)

and the solution u(z,t) becomes
o0
—(M)2 nrz
= Z Ape VL Cos —f=

Note that if we started the solution using separation of variables, we would arrive at the same
formula as above.

Differentiating this with respect to z, we get

au o nw zkt
a—(m,t) = — ZAne_(T) (%) sin “7E,
z n=0
and setting x = 0, we get
ou
= —(0,¢
2 (0,1),

and the first boundary condition is satisfied.

2
M
E A,e L cos"zx

The solution is now

ou
and we note that the second boundary condition —(L,t) = 0 is also satisfied, so we only need to

find the constants A,, to satisfy the initial condition u(z,0) = f(x).
Setting ¢t = 0 in the above expression for u(z,t), we have

[ee]
f(z) =u(x,0) = A, cos 222,
n=0
and the A,, are the Fourier cosine series coefficients of f(z), so that

9 L
:f/ f(x)cos Tt dx, n>1
0

:%/OLf(a:)dx

and for n =0,
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Exercise 11.9. XX
Consider the partial differential equation which describes the temperature u in the
problem of heat transport with convection:

ou 0%u ou

o~ o Vg

where k denotes the specific heat and V[, the convective velocity.

(a) Use separation of variables and show that the resulting spatial equation is
not of Sturm-Liouville form. Find an appropriate multiplier to get it into
Sturm-Liouville form.

(b) Solve the initial value-boundary value problem

u(0,t) =0, t>0
w(L,t) =0, t>0
u(z,0) = f(z), 0<z<L

Solution:

(a) Assuming a solution of the form u(z,t) = ¢(z)-h(t), the partial differential equation becomes
oh = (k¢" — Voo )h,

and separating variables

where X is the separation constant.

Thus, we have the following two ordinary differential equations
/! ‘/O / .
o) (x)—?qb(ac)%—/\(b(ac)—(), 0<z<lL
and
B'(t) + Ak h(t) =0, t>0.
The spatial equation is not of the form

d

e (p(x)qﬁ’(x)) + (@) + Ao(2)]¢(z) =0, 0<z<L

where p, ¢, and o satisfy the conditions for a Sturm-Liouville problem, since we would need

Vo

pa) =1 ad g =—
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Yoz
and that doesn’t work. We can, however, multiply the spatial equation by e~ % , and obtain

d [ _Vozde Voo
- ko —— k=
T (e dm) + Xe ¢ =0,

which is of Sturm-Liouville form.
(b) The heat equation with convection satisfies the boundary value — initial value problem:

%:k%—%%, O<az<L, t>0
u(0,t) =0, t>0

u(L,t) =0, t>0

u(z,0) = f(z), 0<z<L

Assuming a solution of the form u(x,t) = ¢(z)- h(t) and separating variables, we get the two

problems:
& (z) — % () + Ao(@) =0, 0<z<L W)+ ARh(t) =0, t>0,
$(0) =0,
¢(L) =0,
Making the transformation
Vox
y=e 2 g,

then y satisfies the boundary value problem
7
" Yo _
Y +<)\ 4k;2>y 0, O0<zx<L

y(0) =0,
y(L) =0,

which has nontrivial solutions if and only if

‘/'(]2 ‘/'(]2_,”27.‘.2
ATt o AT

for some integer n > 1, and the corresponding solutions are

nmwr

yn(LU) = sin -7 -

Therefore for the Sturm Liouville problem, the eigenvalues are

‘/02 Tl27'('2

Ay = 0
TR
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with corresponding eigenfunctions

Yoz Vox
n(r) = €2k yp(x) =e2k sin %, 0<z <L

forn>1.

The corresponding solutions to the time equation are
o (t) = e Mkt

forn > 1.

For each n > 1, the products

Vo
Up (2, 1) = e2k" e~ Akt gin nae

satisfy the partial differential equation as well as the boundary conditions.

From the superposition principle, we write
[e%s) Vo
t) = Z bye2k® e Akt gin nae,
and we can satisfy the initial condition
[e.e]
EJE : nmx
flz) =u(z,0) = Z bne2k” sin 7E
n=1

using the orthogonality of the eigenfunctions on the interval [0, L] with respect to the weight
function

We have

/ flx “sin *TF dx

Therefore the solution to the initial value — boundary value problem is

forn>1.

0o Vo
= Z bye2k® e~ Akt gin nae

/ flx ¥ sin *TE dx

where

forn>1.
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Exercise 11.10. XX
Consider the homogeneous Neumann problem for heat transport in a nonhomoge-
neous rod of length L

ou 0 ou
CPE_%<KO%>+O(U7 0<$<L,t>0
ou

S2(0,) =0, >0

ou

%(L,t)_o, t>0

u(z,0) = f(z), 0 <z < L,

where c(z), p(z), Ko(z), a(z) are continuous functions on the interval [0, L], and
Ky, ¢ and p are nonnegative.

Assume that the appropriate eigenfunctions of the spatial problem are known and
denote them by ¢y, (z).

Show that the eigenvalues of the spatial problem are positive if & < 0 and solve the
initial value-boundary value problem, briefly discussing tliglo u(x,t).

Solution: We use separation of variables. Assume a solution of the form wu(z,t) = ¢(x)h(t) and
substitute this into the partial differential equation to get

cpol! = (Kod') h+agh.

Separating variables,

Ko¢') h

(Ko ¢') LI
cpo cp h

where )\ is the separation constant.
This leads to the two ordinary differential equations:

(Ko(2) ¢/ () + alz) ¢(x) + Ae(z) p(x) $(x)
¢'(0)
¢'(L)

, 0

N
8
N
s

h'(t) +Ah(t) =0, t>0.

9

Il
o o o

9

The spatial equation is a regular Sturm-Liouville problem with

p(z) = Ko(z), () = a(zx), and o(z) = c(z) p(z),

all of which are assumed continuous on the closed interval [0, L]. In addition, on physical grounds
we assume that Ky, ¢, and p are nonnegative and not identically zero on [0, L].

If X is an eigenvalue with corresponding eigenvector ¢(x), 0 < x < L, from the boundary conditions
we have
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and the reduces to

L
/ [Ko(z) ¢ (z)? — a(z) d(x)?] da

/ o(a)pla) cle) da
and if a(z) <0 for 0 <z < L, then A > 0
Note that in this case, A = 0 is impossible, since that would imply that ¢(z) =0 for all 0 < z < L,
which is a contradiction. Therefore all the eigenvalues are strictly positive.

The boundary value problem for ¢ is a regular Sturm-Liouville problem and has an infinite sequence
of eigenvalues and corresponding eigenfunctions {(\,, ¢n)}n>1 where the ¢,’s form a complete
orthogonal set of functions in the linear space of piecewise continuous functions on [0, L] with
respect to the weight function o(x) = ¢(x) p(z).

The corresponding solutions to the time equation are

ho(t) = cpe™t >0

forn > 1.
Using the superposition principle, we can write

t) = Z cne_’\”tqbn(x)
n=1

for 0 < x < L, t > 0, and this satisfies the partial differential equation and the boundary conditions.
In order to satisfy the initial condition, we use the orthogonality of the eigenfunctions to write the
generalized Fourier series

f@) = u(@,0) =Y cagn()
n=1

where

/f ) 6 (z) c(2) pl) d

/ bu(2)? o(a) plx) da

Since \,, > 0 for all n > 1, then for each term in the series,

e Mt 0,

as t — oo, and therefore
lim u(x,t) =0

t—o00

for each x € (0,L).
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Exercise 11.11. XXX
Consider the heat equation on a two-dimensional plate occupying the rectangular
region 0 <x < L, 0<y < H,

ou_, (@ o
ot \0z2  0Oy?

subject to the initial condition

u(a:,y,()) = f($ay)

Solve the initial value-boundary value problem and analyze the temperature as
t — oo if the boundary conditions are

ou ou ou
u(0,y,t) =0, —(L,y,t) =0, a—y(m,O,t) =0, 8_y(

H.t) =0.
Oz =, L8 ) = 0

Solution: Since the equation and the boundary conditions are linear and homogeneous we can
use separation of variables. Assuming a solution of the form u(x,y,t) = X(x) - Y(y) - T'(¢t) and
substituting this into the partial differential equation we have

T' ()X (@)Y (y) =k [X"(@)Y ()T () +Y" (y) X ()T(1)] ,

so that T() X() Y()
/t B ”Q: //y o
M) X Y

where A is the separation constant. This gives

X"(x) _Y'(y)

X(x) Y(y)

where 7 is another separation constant.
We can satisfy the boundary conditions by requiring that

X(0)=X'(L)=0 and Y'(0)=Y'(H)=0,

and therefore X and Y satisfy the boundary value problems

X"(z)+7X(x) =0, 0<z<L, Y'(y)+aY(y) =0, 0<y<H,
X(0) =0 Y'(0) =0
X'(L)=0 Y'(H)=0

where o = X\ — 7, while T satisfies the differential equation

T +MeT =0, t>0.
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The eigenvalues and corresponding eigenfunctions for the X-problem are (see Exercise 11.7)

_((@2n—-1)m 2 . (@n—Dra _
=g and  Xp(r) =sin——5—, n=123,...

while the eigenvalues and corresponding eigenfunctions for the Y-problem are

mmy

2
QO = (@) and Ym(y) :(3()577 m=20,1,2,3,...

H

The corresponding solutions to the time equation T"(t) + A\kT(t) are

Tnm — e—)\nmk)t
where for
\ fa (2n— )7 2+ (mW)Q
= T = - -
we need to use all possible combinations of indices n =1,2,3,... and m =0,1,2,3,... .

The products

o (2n — 1D)mx mmy _
Unm (2, y,t) = X (2) Yo (y) T (t) = sin ( ) cos g~ Anmkt

2L H
satisfy the partial differential equation and the boundary conditions, and by the superposition

principle, the function

- . Cn—-Drx  mry
u(w,y,t):ZZCnmsm 5T cos ——e n

n=1m=0

also satisfies the partial differential equation and all the boundary conditions.
In order to satisfy the initial condition, we could use the fact that the eigenfunctions

{ . 2n—1)mx  mmy
sin

COS }
2L H n=>1,m>0

form an orthogonal set on the rectangle [0, L] x [0, H] in R?. However, we use another method which
is similar to the methods used for one-dimensional Fourier series expansions.
Setting ¢t = 0 in the expression above for u(z,y,t), we want

B B L . (2n— D7z mmy
f(x7y) _u(x7y70) _chnmsnl oL COSs H

n=1m=0

for 0 <x < L, 0 <y < H, and writing this as

f(:an) = Z ( Z Chrm €O m};y > sin (271 ;Ll)ﬂ-xy

n=1 “m=0

Bn(y)
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we have

(2n — 1)z
B, (y) si 7.
Z )sin 21

This is a Fourier sine series expansion of f (ac, y) on the interval [0, L] holding y fixed, and therefore

L _
Bat) = % [ fapsin 2TV de iz

However, for n > 1,

> mmy
= E Clum COS
m=0

is the expansion of By, (y) on the interval [0, H], so that

— Dz
= = >1
Cho = H/ y)dy = LH/ / flx,y) sm 2L d:ﬂdy, n
f (2n — )7z mry o S 1
nm_H cos LH x,y) sin 5T cos ——drdy, n,m > 1.

Finally, note that in the solution

2n — )m mm
u(zx,y,t Z Z Chm sm L) cos Hye_’\”mkt,

n=1m=0
all terms in the sum for which either n > 1 or m > 1 contain a factor of
o~ Anmkt
where \,,;,, > 0, and as t — oo, all these terms tend to 0, and therefore

Jim u(z,y, t) = 0.

Exercise 11.12. XX
Find the temperature distribution in a thin two dimensional plate in the shape of a
unit square, with thermal diffusivity £ = 1 and with insulated faces and edges kept
at zero temperature with an initial temperature distribution given by

flz,y) =zy(1 —z)(1 - y)

for 0 < z,y < 1, that is, solve the boundary value — initial value problem given

below:
ou  0*u  %u
= %5 T 55 1 1, t>0
o 83:2+8y2’ 0<z<l, O<y<l,
u(0,y,t) = u(1,y,t) =0, 0O<y<1, t>0
u(z,0,t) = u(z,1,t) =0, O<z<l1l, t>0

u(z,y,0) =zy(l—2)(1—-y), 0<z<l, O0<y<l.
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Solution: After separating variables, applying the boundary conditions, and using the superposi-
tion principle, we find the solution has the form

o0 o0
. . — \/m2 2
u(zx,y,t) = E E B sinnrxsinmuy e VML

n=1m=1

We evaluate B,, ,,, using the initial condition

1 1
By = 4/ / z(1 — 2)y(1 — y) sin nra sinmry dy dz
o Jo

= <2 /le(l — z)sinnrx dm) : (2 /Oly(l —y) sinmﬂydy>

16[1 - (=D)"]-[1 = (=1)"]

n3m3n6

for n,m > 1, that is,

64 i

B — P if both n,m are odd

0 otherwise.

The solution is therefore
- 64 > 2,2
u(z,y,t) = Z Z 5 8in(2n — D sin(2m — 1)my e~ [@n=1)%+(@2m-1)]x?¢

76(2n —1)3(2m — 1)

n=1m=1

for0<z<1, 0<y<1,t>0.

Exercise 11.13. XX
Consider the heat equation with a steady source

ou 0%u

e it

= Fom T OO

subject to the boundary and initial conditions:
u(0,t) =0
u(L,t) =0

u(,0) = f(z).

Obtain the solution by the method of eigenfunction expansions. Show that the
solution approaches a steady-state solution.

Solution: Since the problem already has homogeneous boundary conditions, we consider the
corresponding homogeneous problem:

@ k82u
ot ox?’

u(0,t) =0, t=0
w(L,t) =0, t=0.



208

The eigenvalues and eigenfunctions for this problem are

An = —5— and ¢n(z) = sin 272

forn>1.
We write the solution to the nonhomogeneous problem as an expansion in terms of these eigen-

functions:
o
t) =" an(t)sin 272,
n=1

and determine the coefficients a,(¢) which force this to be a solution to the nonhomogeneous
problem.
We will need the eigenfunction expansions for Q(z) and f(z) :

= g qn Sin °7E, with Gn = —/ Q(x) sin *7% dx
™ Jo
n=1

[e%S) L
2
x) = E fnsin “7F, with fn= —/ f(x)sin *7* dx.
T Jo
n=1

Substituting these expansions into the nonhomogeneous equation

ou d%u
ot~ g TR
we obtain
S dan( ) n7rx n7rx n7rx
7 = g k ) sin 2£ + E qp sin &

n=1
and using the orthogonality of the eigenfunctions on the interval [0, L], the coefficients a, (t) satisfy
the initial value problem
dan(t) n’n?
dt L?

kan(t)=¢qn, t=0

an(0) = fn

forn>1.
The solution to this initial value problem is

n?r?

ey b _nir?,
an(t) = fne L7 t+Qn/ e 1T M) g,
0

that is,

n-mw n-mw

L2 L2

2 2
q q _77/71"
an(t): 2nz+<fn_ ;2)6 L kt’ t=>20

forn>1.
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Note that since k£ > 0, we have lim a,(t) = q;L > for n > 1.
t—o00 nL72r
The solution to the heat equation with a steady source is therefore

n2mr2
— 4n —T okt | o nr
“—Z[M (fn—W>e t ]mT

L2

for0<z<Landt>0
For large value of ¢, this solution approaches r(x) where

o0

) = Jim ) = 3 2o
n=1 L2
for 0 < x < L, where
2 L
= ;/0 Q(x) sin "7 d

forn > 1.
Differentiating this twice with respect to x, we see that

o 1

and since r(0) = r(L) = 0, then the function r(z) satisfies the boundary value problem

d2

d2+Q—0 0<z<L
r(0)=0
r(L)=0

which is exactly the boundary value problem for the steady state solution, that is, 7(z) is the steady
state or equilibrium solution to the original heat flow problem.

Exercise 11.14. XXX
Solve the two-dimensional heat equation with circularly symmetric time-independent
sources, boundary conditions, and initial conditions (inside a circle):

du k0O ( du
ot ror <T§> +Q0r)

u(r,0) = f(r) and u(a,t) =T.

with

Solution: As usual with problems involving polar coordinates, we seek solutions that are bounded
as r — 07, so that |u(r,t)] < M asr — 0T,
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We first convert the problem into one with homogeneous boundary conditions and then use the
method of eigenfunction expansions to solve the nonhomogeneous equation that results.
Step 1: In order to get a problem with homogeneous boundary conditions we write

u(r,t) = v(r) +w(r,t)

where v(r), the steady-state or equilibrium solution, satisfies

1
V2v:;£<r%>:0, 0<r<a,
>0

’U((I):T, t =20,
lo(r)| < M, asr—0%.

then
ou Ov Ow Ow
o o et o
and
V2u = V0 4+ VZuw = V2.

Therefore, w(r,t) satisfies the boundary value — initial value problem

ow k0 [ ow
% =ror (ar) re
w(a,t) =0

w(r,0) = f(r) —v(r)

19 (v _,
r or or)

vu(r) = cilogr + e,

We solve the v equation

to get

with two integration constants c¢; and co.
From the boundedness condition, we have ¢; = 0, while from the boundary condition v(a) = ¢y = T,
so that

v(ir)=T
for 0 <r <a.
Therefore, u(r,t) = w(r,t) + T, and w satisfies the nonhomogeneous equation with homogeneous
boundary conditions:

5= () +ew ()
w(a,t) =0

w(r,0) = f(r)—T.
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Step 2: Next we find the eigenvalues and eigenfunctions for the corresponding homogeneous prob-

lem:
dw _k9 ( dw (%)
ot ror " or

w(a,t) =0

|w(r,t)] bounded at r =0.
Using separation of variables, we assume that w(r,t) = ¢(r) - T'(t), and separating variables we get

(r¢’)’+>\r¢:0, 0<r<a

T +XkT =0, t>0.
The boundary condition w(a,t) = 0 for all ¢ > 0 is satisfied if we require
¢(a) = 0.
Also, since r = 0 is a singular point of the differential equation for ¢, we add the requirement
|¢(r)| bounded at r =0,

which is equivalent to requiring that |w(r,t)| be bounded at r = 0.
Thus, ¢ satisfies the boundary value problem

(r(b/)/—i—)\r(bzo, 0<r<a
¢(a) =0, (1)
|¢(r)] bounded at r = 0.
We multiply the equation by r and recognize the equation
r?¢" +r¢' + Ar?p =0
as Bessel’s equation of order zero, for which the function
o(r) = Jo(VAr)

is the solution bounded at r = 0.
In order to satisfy the boundary condition ¢(a) = 0, we must have

Jo(\/XCL) =0,

or
Vina=z,, n=1,2 ...

where z,, are the positive zeros of the Bessel function Jj.
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Therefore the eigenvalues and eigenfunctions of the boundary value problem satisfied by ¢(r) are

2
Ay = z—g and On(r) = Jo(\/xr)

forn > 1.
Step 3: Now we use an eigenfunction expansion for w(r,t) as

w(r,t) =Y an(®)Jo(v/ A7)
n=1

and determine the coefficients a,,(t) so that w(r,t) is a solution to the nonhomogeneous equation

5= () +ew ()
w(a,t) =0

w(r,0) = f(r) =T,

and this means we will need the Fourier-Bessel Series for Q(r) and f(r) — T

o0 /a Jo(v/ A )Q(r)r dr
Q(T‘) = ZQnJO(\/ET% with gn = 0 a
n=1 / Jo(\/Anr)?r dr

0

| /A sr) =~ Dy
/a Jo(mr)Qrdr '

0

) =T =" fado(V Aur),  with  f, =
n=1

Note that the Sturm-Liouville problem () has the weight function o(r) = r, hence the factor r in
the integrals.
Substituting these expansions into (), we have

Z da;t(t) Jo(V/ Anr) = Zan(t)(—)\n)Jo(\/)an) + Z%Jo(\/zr),
=t n=1 n=1

and using the orthogonality of the eigenfunctions, the coefficients a,,(t) satisfy the linear differential
equation
day,(t)
dt

+ )\nan(t) =qn, t=20

forn > 1.
From the initial condition

w(r,0) =Y an(0)Jo(VAnr) = f(r) =T =Y fado(v/ Aur),
n=1 n=1
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using the orthogonality again, we have

an(o) = f n
forn > 1.
Therefore, a,(t) satisfies the initial value problem

day (t)
dt

+ Apan(t) =¢qn, t=0

forn > 1.
Multiplying by the integrating factor et the differential equation becomes

d

it (an(t)eAnt> = Qne)\nt7

and integrating,
¢
1O~ an(0) = [ g.e ds,
0

so that

t
an(t) = an(0)e ! + / gne ) ds = a, (0)e Mt 4 ;]\—" (1 - e_)‘”t> , 120
0 n

forn > 1.
Step 4: Putting everything together, the solution is

u(r,t) =v(r) +w(rt) =T+ an(®)Jo(v/ A7),
n=1

that is,

u(r,t) =T + g:l [i—z + (fn - i—’i) e_)‘"t] Jo(v/ Au)

EiS

z
for 0 <r <a, t >0, where \,, = —, and

Q
N

/Oa Jo(\/Xr)Q(r)r dr

dn = a
/0 Jo(mr)2rdr
| ) - Tyrar
fn: 0

/Oa Jo(\/ An7)2r dr

forn>1.
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Exercise 11.15. XX
A thin homogeneous bar of length 7 has poorly insulated sides, so that heat radiates
freely from the bar along its entire length. Assuming that the heat transfer coeffi-
cient A is constant, and that the temperature 17" of the surrounding medium is also
constant, the temperature u(x,t) in the bar satisfies the following partial differential
equation:

ou  0%*u

E:w—A(u—T), O<z<m t>0.

The ends of the bar are kept at temperature 7', and the initial temperature is
u(z,0)=x+T, 0<z<m.
(a) State the initial value-boundary value problem satisfied by w(z,t).
(b) Transform this problem into a familiar one by setting
v(z, t) = e [u(z,t) — T)
and then finding the initial value-boundary value problem satisfied by v(z,t).

(c) Use the method of separation of variables to solve the problem in part (b),
and hence obtain the solution u(x,t) to the original problem.

Solution:

(a) The problem satisfied by the temperature function is

ou  d*u
E_W_A(U_T)’ O<z<m t>0

u(0,t) =T, t>0
u(m,t) =T, t>0
u(z,t)=2x+T, 0<z<m.
(b) We let v(z,t) = e [u(z,t) — T], so that
u="T+e My

ot ot
02~ ¢ o2

If u is a solution to the partial differential equation in part (a), then

Ae Aty

4, Ov B 0%
oAU g At A

—At
ot ox? Ae™,
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and, since e~ is never zero, v satisfies the one dimension heat equation

v 0%

ot 9z
As for the boundary conditions, we have
v(0,t) = e [u(0,t) — T] = e [T — T] = 0,
and
v(m,t) = e [u(m,t) — T] = M [T — T] =0,
while for the initial condition, we have
v(z,0) =u(z,0) —T=2+T—-T ==z

Therefore, v(z,t) = e [u(x,t) — T] satisfies the initial value-boundary value problem

—=—, O<z<m t>0

v(0,8) =0, t>0
v(m,t) =0, t>0

v(x,t) =z, 0<x<m.

(c) Using separation of variables, the solution to the Dirichlet problem in part (b) is

(o]
v(x,t) = Z bysinnze "
n=1
where
2 [T 2(—1)"
bn:—/ rsinnx dr = (1)
™. Jo n

for n > 1. Therefore, the solution to the original heat transfer problem is

2(=1)"

n2t

sinnx e

[ee]
u(z,t) =T 4 e A Z
n=1

forO0<ax<m, t>0.
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Exercise 11.16. XXX
Consider the homogeneous Robin problem for heat flow in a homogeneous rod of
length a where we have convection at the ends into a medium at zero temperature,
and where the initial temperature is f(x).

ou 0%u

E—kw, 0<x<a,t>0
@(Ot)—hu(Ot)—O t>0

ax ) ) - )

%(a,t) + hu(a,t) =0, t>0

u(z,0) = f(z), 0<z<a,

where h > 0.

Solution: We use separation of variables. Assume a solution of the form u(x,t) = ¢(z)T'(t) and
substitute this into the partial differential equation to get

0T =ko'T.
Separating variables,

qbl/ T/

E = ﬁ — —

where ) is the separation constant.
This leads to the two ordinary differential equations:

¢ (x) + A b(a)
#(0) ~ ho(0)
#(a) + ho(a) =

The spatial equation is a regular Sturm-Liouville problem with

0<z<a T'(t)+ XNkT(t) =0, t>0.

0,
0,
0,

p(x)=1, ¢q(z) =0, and o(x)=1,

all of which are continuous on the closed interval [0, a.
If X\ is an eigenvalue with corresponding eigenvector ¢(x), 0 < z < a, from the boundary conditions

we have a

= h[p(a)® + ¢(0)?],

0

[ —p(@) ¢(z) ¢' ()]

and the Rayleigh quotient reduces to

h[6(a)® + 6(0)?] + / " (@) da

/Oa o(z)? dx
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and A > 0. Note that A = 0 is impossible, since that would imply that ¢(z) =0 for all 0 < z < a,
which is a contradiction. Therefore all the eigenvalues are strictly positive.

The boundary value problem for ¢ is a regular Sturm-Liouville problem and has an infinite sequence
of eigenvalues and corresponding eigenfunctions {(\, ¢p)}n>1 where the ¢,’s form a complete
orthogonal set of functions in the linear space of piecewise continuous functions on [0, a] with
respect to the weight function o(x) = 1.

In fact, if we write A = u?, where p > 0, then the boundary value problem becomes
¢" + u’¢ =0
¢/(0) — ho(0) =0
¢'(a) + he(a) = 0,
with general solution
¢(z) = Acos px + Bsin px and ¢ (x) = —pAsin ux + pB cos p.

Applying the first boundary condition we have
A p

B R
and applying the second boundary condition we have

h2_ 2
h,u sin pa + 2p cos pa = 0,

and the boundary value problem has a nontrivial solution if and only if

2uh

tanﬂa = m

We determine the eigenvalues from the graphs of the functions

B ~ 2uh
f(p)=tanpa  and  g(p) = 02
for p > 0.

Note that for p > 0, we have

2h h h

g('u):,u2—h2:,u—|—h+,u—h’

so that
h h

I =~ mE e -

and g is decreasing on the interval (0, ) and on the interval (h, o) and the line u = h is a vertical
asymptote to the graph. The graphs of g and f are shown below.

0
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y= tanpa

| 5T/22 L 7T2a
1 / : / u

From the figure it is clear that there are an infinite number of distinct positive solutions u = p, to
the equation

2uh

tan Hna = m, (*)
and the eigenvalues are \,, = 2, for n > 1.
Since lim pu, = 400, then
n—o0 h
2
lim tan p,a = lim % =0,
n—00 n—oo U2 — h
. 2uh .
and the roots of the equation tan pua = T2 approach the roots of the equation tan ua = 0, that
M J—
is, for large n,
in@ & N,
and therefore 5 o
9 nom
An = iy, & =
for large n.
The corresponding eigenfunctions are
on(x) = cos pupx + uin sin g (%)

forn>1.

The corresponding solutions to the time equation are
T, (t) = e *at ¢ >0
forn>1.

Using the superposition principle, we can write

u(z,t) = Z A Gn () e_k“%t
n=1
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for 0 < x < a, t > 0, and this satisfies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition, we use the orthogonality of the eigenfunctions to write the
generalized Fourier series

f(z) = u(z,0) Zan(bn

/f ) Gz
" /qzan

a
In order to determine the normalization constant / ¢n(x)? dz, we note that
0

where

so that
a a a a 9
w2 [ e == [Condtidr =00l + [ (6) o

0 0 0 0

However,
U ®n () = pin COS i@ + hsin pi,x
and
@ (x) = — iy, Sin @ + hcos pipx

so that

12 ()% + (¢, ()% = u2 + h?

for 0 < z < a, and integrating we have

2 [ 2 ¢ 2 ) 2
it [ onardet [ (@n@) e = (1) a

Also . . .
2 2 _ / 2 _ /
2 /0 bn(2)? da /0 (¢4))" dx = ~6uch|

and adding we obtain

a

2,u% /a ¢n(x)2 dr = (,ui + h2) a— ¢pdl| = (,ui + h2) a-+h (¢n(a)2 + ¢n(0)2) . (% * *)
0 0

Since
126, (2)? + (8, ()% = u2 + h?
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for 0 < x < a, from the first boundary condition we have
Hndn(0)? + W26 (0)* = (i + h%) 60 (0)* = pij, + 1%,
so that ¢,(0)? = 1. Similarly, from the second boundary condition we have
Hindn(0)? + h2pn()? = (uf + h?) on(a)® = pi; + 17,
so that ¢, (a)? =1, and from (* * x) we have

(12 + h*) a+ 2h
243

/0 " bn(w)? do =

for n > 1.

The solution to the homogeneous Robin problem is
> 2
u(zx,t) = Z an <cos HnT + /inn sin ,unm> e kunt
n=1

for 0 <z < a, t >0, where the u,’s are the positive roots of the transcendental equation

; 2uh
an ua4 = ———
HE= "2 2
and
2/‘% /a( + h o >f( )d
a, = COS X + = sin (T z) dx
" g R ek o TP S
for n > 1.
Exercise 11.17. XX

Solve the following boundary value problem for the steady-state temperature u(z,y)
in a thin plate in the shape of a semi-infinite strip when heat transfer to the sur-
roundings at temperature zero takes place at the faces of the plate:

0?u  0*u
92 T 0u=0 0<@<oo, O<y<l
ou
Hoy)=0, O<y<l
5 (02 Y) Y
u(z,0) =0, 0<z<oo

u(z,1) = f(z), 0<zx<oo

1 0<z<a
where b is a positive constant and f(z) =

0 T > a.
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Solution: Given the boundary value problem

Pu
@+a_312—bu:0, O<x<oo, O<y<l
ou
—O7 :O7 O<y<l1
5 (0 Y) Y
u(x,0) =0, 0<z<oo

u(z,1) = f(z), 0<z<oo

1 0<z<a
where b is a positive constant and f(z) =
0 T > a.

We try separation of variables, writing

u(z,y) = X(x)Y(y),
then the partial differential equation becomes

XY + XY" - bXY =0,

that is
X// Y//
~Y - v +b=p (constant)
and we obtain the two ordinary differential equations
X"-pX =0, 0<z<o0 Y'+(p-0Y =0, 0<y<l1
X'(0) =0, Y (0) =0,

| X (x)] bounded as x — oo,

case (i =0
case (i) p

The general solution to the equation X” =0 is
X(x)=crz+c

and the condition X’(0) = 0 implies that ¢; = 0, the solution is therefore X (z) = 1.

case (i) p > 0, say p = u?
The general solution to the equation X” — u? X =0 is

X (x) = ¢1 cosh px + c2 sinh px

and the condition X’(0) = 0 implies ¢o = 0, while the condition | X (z)| bounded as z — oo implies
that ¢; = 0. There are no non-trivial solutions in this case.

case (iii) p < 0, say p = —\?

The general solution to the equation X” + X2 X = 0 is

X(x) =c1 cos Az + ¢z sin Az
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the condition X’(0) = 0 implies that ¢co = 0, and the solution is X (z) = ¢; cos Az, which is bounded
as T — 00.

Therefore, for any A > 0, the function X, (z) = cos Az satisfies the differential equation, the
boundary condition, and the boundedness condition. In this case we no longer have a discrete
spectrum, that is, a discrete set of eigenvalues, and every A > 0 is an eigenvalue.

The corresponding equation for Y is given by

Y- (N 4+bY = 0
Y(0) =

and has general solution
Y (y) = ¢ sinh ((1 — y)\/A2—+b) + ¢g sinh (yv/ A% +b).
The condition Y (0) = 0 implies that ¢; = 0, and the solutions are
Ya(y) =sinh (yvV/ A2 +b).
Using the superposition principle, we write
u(z,y) = /000 A(X) cos Az sinh (y/ A% +b) dX

and u(x,1) = f(x) implies that

A(X) sinh VA2 +b = 2 / f(z) cos Az dx
T Jo

2 a
= —/ cos \x dx
™ Jo

= —sin \a.

A
Therefore,

dX

u(z,y) = g /OO sin Aa cos \x sinh(y\/m)
R 0 A sinhv/AZ + b

forO<z<oo, O0<y<l.



Chapter 12

Wave Equation Problems

Exercise 12.1. X
Use the method of separation of variables to solve the one dimensional wave equation
with homogeneous Dirichlet boundary conditions as given below
2 2

%:%%, O<x<1,t>0

u(0,t) =0, t>0

u(l,t) =0, t>0

u(xz,0) =sinmTrcosmr, 0<x <1,

ou

E(ZI),O):O, 0<z<l.

Solution: We assume a solution of the form wu(z,t) = X (x)T'(t) to obtain two ordinary differential
equations:
X"+ Am’X =0 and T"+ N =0,

with separation constant .
We can satisfy the two boundary conditions by requiring that X (0) = 0 and X (1) = 0, so that X
satisfies the boundary value problem:

X"+ Ma’X =0, 0<z<l1
X(0)=0
X(1)=0.
The cases A = 0 and A < 0 both result in the trivial solution X (z) = 0 for all z € [0, 1], and the

only nontrivial solution arises when A > 0, say A = pu?, where pu # 0. In this case the boundary
value problem

X"+ 2m?X =0, 0<z<l1
X(0)=0
X(1)=o0.

has general solution
X (x) = Acos umx + Bsin urx,

223
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and applying the first boundary condition, we have X (0) = A = 0. Applying the second boundary
condition, we have X (1) = Bsinpur = 0, and in order to get a nontrivial solution we must have
sin uwr = 0, but this can only happen if umr = nm, where n is an integer. The eigenvalues and
corresponding eigenfunctions are

A = n’r? and Xp(z) = sinnrz

forn > 1.

The corresponding T-equation is
T"+n’T =0

with solutions
T,(t) = a, cosnt + by, sinnt

forn > 1.
For each integer n > 1, the function

up(z,t) = X, (z) - T, (t) = sinnrz (a, cos nt + by, sin nt)
satisfies the wave equation and the two homogeneous boundary conditions and using the superpo-

sition principle, we write

[ee]
u(x,t) = Z sin nmx (a, cos nt + by, sinnt) .

n=1

In order to satisfy the initial conditions, we need

u(z,0) = Zan sinnmz, (1)
n=1
and
@(:17 0) = inb sinnmx (2)
at I - — n )

u
that is, the Fourier sine series of u(z,0) and —(z,0).

ot

Therefore, from (1) we have

1
an = 2/ u(z,0) sinnrz dx
0

and .
nby, =2 / @(az, 0) sin nmzx dz
0 Ot

forn>1.

0
Note that b, = 0 for all n > 1, since a—j(x,O) =0for0<z <1
Also, we have

. 1.
u(x,0) = sinmx cos T = 5 sin 2z,
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so that u(x,0) is its own Fourier sine series, and

ifn=2

N —

Ap =

0 if n £ 2.

Therefore, the solution is

1
u(z,t) = 3 sin 27z cos 2t

for0<z<1,t>0.

Exercise 12.2. X
Solve the following boundary value — initial value problem for the wave equation
?u  0%u
— ==, O0<z<1,t>0
otz 0x?’ A

u(0,t) =0, t>0
u(l,t) =0, ¢t>0
u(z,0) = sinmz + %sin?ﬂm} +3sin7rxz, 0<xz<l,
ou

E(x,O) =sin2rz, 0<z <1

Solution: Similar to the previous problem, we use separation of variables and the superposition
principle to get the general solution

[ee]
u(z,t) = Z sin nwx (a, cosnnt + by, sinnmnt) ,

n=1

where the coefficients are to be determined using the initial conditions. Differentiating, we have

8 oo
8—?(1, t) = Z sinnwx (—nmwa, sinnwt + nwb, cosnnt),

n=1

and setting ¢t = 0, we get

ou

N (x,0) = Z nmby, sinnrx,

n=1

[ee]
u(z,0) = E ap sinnmwx and
n=1

and again these are just the Fourier sine series of f(z) and g(x), the initial displacement and initial
velocity.
From the first initial condition

u(z,0) = sinwz + § sin 37z + 3sin Trz,

we see that )
611:1, (13:5, (17:3,
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and a,, = 0 for all other values of n.
From the second initial condition

%(m,O) = sin 27z,
so that )
— if n =2,
by, = 2
0 if n # 2.

Therefore, the solution is
. L. ) L. .
u(x,t) = sinwz cos t + 7, sin 27z sin 27t + 5 sin 3wz cos 3wt + 3sin Tmx cos Tmt
s

for0<xz<1,t>0.

Exercise 12.3.
Show that the solution to the wave equation

Pu  ,0%u
a2~ oa?
u(0,¢t) =0, t>0

w(L,t) =0, t>0
u(z,0) = f(z), O0<ax<L,
ou

E(m,O)zO, 0<z<lL

O<x<L,t>0

is given by

1 _
u(z,t) = > Z an [sin m(”TL ) 1 sin m(x;d)
n=1

9 L
Whereanzf/ f(z)sin T dz, n=1,2,....
0

Solution: Using separation of variables, the solution to this problem is given by

[e.e]

u(z,t) = Z sin 222 (a,, cos 22 + b, sin 27<L)
n=1
where
a :g/Lf(x)sinmdx and b _ 2 Lg(w)sinmdw
" L 0 L " nmwec Jo L
forn > 1.

Since g(z) = 0 for 0 < z < L, then b, = 0 for all n > 1, and the solution is given by

[ee]
u(zx,t) = g ay, sin 27 cos 22

n=1




and since )
sin Acos B = 5 [sin(A — B) +sin(A + B)],

then

1 o _
u(z,t) = 3 Zan [sinw - sinw
n=1

) L
where a, = — / f(x)sin *7* dx.
L Jo

Exercise 12.4.
Consider the homogeneous Dirichlet problem for the wave equation

*u  ,0%u

22~ © 92
u(0,t) =0, wu(L,t)=0 for 0<z<L
u(z,0) = f(x), %(m,()) =0 for ¢>0.

Show that the solution can be written as
1
u(z,t) = B e = @) @)

where F'(x) is the odd periodic extension of f(z).
Hint: Use separation of variables and

sinacosb =

[sin(a + b) + sin(a — b)].

DN | =

XX

Solution: We assume a solution of the form
u(z,t) = X(t) - T(t)
and separate variables to obtain the two ordinary differential equations

X"z)+ XX (z)=0, O<z<L T't)+AX2T({t)=0, t>0

X(

=
SN—
Il

0 T'(0) = 0.

and Xn(x) = sin 272

227



228

for n > 1, and the corresponding solutions of the T-equation are

T (t) = ay cos 2T + by, sin 27

forn > 1.
Using the superposition principle, we write the solution as

[e.e]
= E (an cos 27 + b, sin 27 ) gin 2L
n=1

and

ou -
5t —(x,t) = Z( ap, € sin 27 4 b, M cos BECL) gin ML
n=1
We determine the coefficients using the initial conditions and the orthogonality of the eigenfunctions
on the interval [0, L].
From the first initial condition we have

o0
f(x) =u(z,0) = Zansm o,
n=1
so that
2 L
ap = —/ f(x)sin *7% dx
L Jo
forn > 1.

From the second initial condition we have

ou >
0= E(x’o) — Z n 2 sin 7L

n=1

so that b, = 0 for n > 1.
The solution is

0o
_ 1
Z ay, COS mrct mrgc Z {_ sin mr(xL ct) + 5 sin n7r(:2+ct) }

for0 <x < Landt>0.
Note that if f € PW S0, L], that is, f is piecewise smooth on the interval [0, L], the series

o0
E ap sin *7% dx
n=1

is the Fourier sine series for f, and converges for all real numbers z, and, except for at most
countably many values of z, it converges to the odd periodic extension F' of f.
Therefore, assuming the odd periodic extension F' is continuous, the solution is

1 [e's)
t) = 52:1anSiHn
n—=

for0 <z < Landt>0.

1 1
)42 Z a, sin & x+d) = §F(x —ct) + §F(:17 + ct)



Exercise 12.5. XX
Consider the homogeneous Dirichlet problem for the wave equation with given initial
velocity

Pu  ,0%u

52 = o2

u(0,t) =0, wu(L,t)=0 for O0<z<L
ou

u(z,0) =0, E(:E,O):g(aj) for t>0.

Show that
1 xr+ct
u(zx,t) = / G(s)ds,

2c —ct

where G(x) is the odd periodic extension of g(z).
Hint: Use separation of variables and

sinasinb = = [ cos(a — b) — cos(a + b)].

N | —

Solution: As in the previous exercise, we assume a solution of the form

u(z,t) = X (t) - T(t)

and separate variables to obtain two ordinary differential equations

X"(x)+AX(x) =0, O<z<L T'@#t)+AXPT({t)=0, t>0
X(0)=0 T(0) = 0.

X(L)=0

As before, the eigenvalues and eigenfunctions for the X-equation are

2.2
M=z and X (2) = sin 2

for n > 1, and the corresponding solutions of the T-equation are

t . t
T, (t) = an cos 5= + by, sin 7=

forn > 1.
Using the superposition principle, we write the solution as

and

[ee]
u(z,t) = Z(an cos 22 4+ b, sin 22 sin 7L

n=1

ou >
_ Nme 3.4 et nme nmwcty o3, NTT
E(m,t) = E (—an "7 sin 7% + b, 7€ cos M%) sin M7E.

n=1

229
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We determine the coefficients using the initial conditions and the orthogonality of the eigenfunctions
on the interval [0, L].
From the first initial condition we have

0 = u(z,0) E ansm"”

so that a,, = 0 for n > 1.
From the second initial condition we have
au G TL’TI'C ’I’LT('"E
g(x) = E(m,O) = Zb sin “7E

n=1
so that
9 L
b, = — ) sin 2 dx
" nmwec Jo g( ) L

for n > 1, and the solution is

(o]
Z by, sin "’mt n 72 Z { "W(IL—d) _ %cos _"“(JULJrct)}

for 0 <z < Landt>0.
Now,

anmrc sin mr(w ct) ‘|‘ Zb nme ¢ mr(w—l—ct)
and if g € PW S[0, L], that is, g is piecewise smooth on the mterval [0, L], then the series
(o]
D_ busin “f*
n=1

is the Fourier sine series for g, and converges for all real numbers z, and, except for at most
countably many values of z, it converges to the odd periodic extension G of g, that is,

ou 1 1
E(m,t) =3 Gz —ct) + 5 G(x + ct).
Integrating this from 0 to t, we have
t
%(az, T)dr = u(z,t) — u(z,0) = u(x,t)
-

since u(z,0) = 0. Therefore

1 r—ct 1 z+ct
/G(L’—CT )dr + = /Gaz—i—CT G(s)ds+—/ G(s)ds
2 2c J,

where we made the substitution s =  — ¢7 in the first 1ntegral, and s = x + c7 in the second
integral, and assuming the odd periodic extension of g is continuous, the solution is

1 z+ct
u(x,t) = %/ t G(s)ds

for0 <z < Landt>0.



Exercise 12.6. XX
Derive d’Alembert’s solution to the wave equation

Pu  ,0%u
W:Cw, —OO<$<OO, t>0

and use it and the superposition principle to solve the wave equation with initial

data 9
2 u B i
u(z,0) =e ", E(w,O)—m, —00 < T < 00.

Solution: Using the change of variables

a=zx+ct and 8 =x—ct,

then from the chain rule we have

ou_oude oudd_ou ou
Or OJadx 0B0x Oa 0B’

0
and replacing u by a—u, we get
x

that is,

Again,

Pu_ 0 (0w ou\_ 0 (u ow\ 0 (0w ou
0x2 0z \da  0B) Oa \da = 0B 0B \oa  08)’

@_8211_1_2 d%u +82u
or2 a2 OadB 0?2

from the chain rule, we have

8u_8u8_oz oudp  Ou ou

o oot oot “9a ‘B

0
and replacing u by 8_1;’ we get

that is,

Pu_0(0u_ Ou\_ 0 (0u_0u)_ 0 (0u_  Ou
a2~ 9t \“9a ~08) = 9a \“0a ~“85) ~ 95 \“0a ‘33

@ = Ou —2¢2 O +02@
o2 da? 0adp op?’

and substituting these expressions into the wave equation, we obtain

d%u

0adB 0

231
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0
This equation says that % doesn’t depend on «, and therefore
ou

where ¢ is an arbitrary differentiable function.
Now, integrating this equation with respect to 3, holding « fixed, we get

" g_gd’@+F(a) :/g(/@)d5+F(a) :F(a)+G(ﬂ),

where F' is an arbitrary differentiable function and G is an antiderivative of g.

Finally, using the fact that @« = x + ¢t and f = x — ct, we get d’Alembert’s solution to the
one-dimensional wave equation:

u(z,t) = F(xz +ct) + G(x — ct),

where F' and GG are arbitrary differentiable functions.

Now, in order to solve the original question, we solve the following initial-boundary-value problems,
and use the superposition principle to combine them to get a solution to the original problem:

v 0%

W_C@, —OO<IIJ‘<OO, t}O,
v(m,O):e_Iz, —00 < x < 00 (1)
0
8_:($’0):0 —o00 <z <00,

and

Pw  ,0%w

_ — — >
5 Caaﬂ’ o <r<oo, t=0,
w(z,0) =0, —oo<z <00 (2)
ow T
E(‘T,O):m —OO<.Z'<OO,

the solution to the original problem is then u = v + w. (Check this!!!)
For problem (1), we use the initial conditions to write
v(z,0) = e = F(z) + G(z),

2

so that F(x) + G(z) = e *", and

so that
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where C is an arbitrary constant. Therefore,
2F (x) = e 4 C and 2G(x)=e* = C,

and the solution to the first problem is
1
v(w,t) = Fla +ct) + Glo —ct) = 5 [e—(l’*ct)z + e‘(x—CtV] .

For problem (2), we use the initial conditions to write
w(z,0) =0 = F(x) + G(x),
so that G(x) = —F(x), and

a—w(:n,()) =

T = cF'(z) — ¢G'(x),

x
(14 22)?
so that cF'(x) — ¢G'(x) = 2¢F'(x) = ﬁ, and integrating we have

x
1 -1
QCF(.%) = 5 . m + 2CC,

where C' is an arbitrary constant. Therefore,

F(z) L ¢ d  G() !

r)=—— an r)=—— —
4e(1 4 x2)

and the solution to the second problem is

1 1
wiz,t) = {l—l—(:n%—ct)Q i 1+(x—6t>2} '

The solution to the original initial valuer— boundary value problem is then

1 2 2 1 _1 1
_ _ = | (ztet) —(z—ct) _
u(,t) = v(z,t) +w(@,t) = 5 [6 te }MC [1+(w+ct)2+1+(90—0t)2]

Exercise 12.7. g

Use d’Alembert’s solution of the wave equation to solve the boundary value - initial
value problem:

Pu 1 0%

@20—2@, —OO<I'<OO,t>0
u(z,0) = f(z), —co<zx <00

ou

E(x,O) =g(z), —co <z <00

1
14+ 22

with f(z) =0 and g(z) =
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Solution: The boundary value - initial value problem for the displacement of an infinite vibrating
string is

0*u 1 0%u

@26—2@, —oco<x <00, t>0
u(z,0) = f(z), —co<z<o0

ou

E(m,O) =g(z), —co <z <00

and the general solution, that is, d’Alembert’s solution to the wave equation, is

N

x+ct
u(z,t) = [f(ac—ct)%—f(m—l—ct)}%—i/ g(s)ds

2c —ct

for —oo <z < 00, t > 0, and since f(z) =0 for —oo < x < oo, then

1 T+ct 1 x+ct 1
u(zx,t) = / g(s)ds = —/ ds.

2_C r—ct 2c r—ct 1+82

The solution is therefore
1
u(x,t) = % [tan_l(ac + ct) — tan" 1 (z — ct)],
c

for —co < x < o0, t > 0.

Exercise 12.8. g

Use d’Alembert’s solution to solve the boundary value problem for the wave equation

Pu  0%u
o2~ 0z2
u(0,t) =0, t>0
u(l,t) =0, t>0
u(z,0) =0, O0<x<l1,
ou

a(x,O):l, 0<z<l.

O<ax<1,t>0

Solution: d’Alembert’s solution to the wave equation is

z+ct
[f*(m—ct)—i—f*(x—i-ct)]—l—%/ g*(s)ds

c

N —

u(z,t) =

where f* and g* are the the odd 2-periodic extensions of f and g.
For this problem, we have ¢ = 1, and f(z) =0 for 0 < z < 1, so that f*(z) =0 for all z € R.



Also, we have g(z) =1 for 0 < x < 1, so that

and ¢*(z+2)=g"(x) otherwise.

1 for O<z<l1
-1 for —1<z<0,

An antiderivative of g*(x) on the interval [—1,1] is given by

f O0<zr<l1
Gla) = T or x
—x for —1<z<0,

and G(x + 2) = G(z) otherwise.
Therefore, the solution is

where G is as above.

Exercise 12.9. g

Use d’Alembert’s solution to solve the boundary value—initial value problem for the
wave equation

Pu  9%u
o~ a2’
w0,8) =0, t>0
u(l,t) =0, t>0
u(z,0) =0, 0<zx<l,
ou

E(m,O) =sinmz, 0<z <1

0<z<1,t>0

Solution: As in the previous problems, d’Alembert’s solution to the wave equation is

z+ct
[f*(m—ct)—i—f*(x—i-ct)]—l—i/ g*(s)ds

c —ct

N —

u(z,t) =

where f* and g* are the the odd 2-periodic extensions of f and g.
For this problem, we have ¢ = 1, and f(z) =0 for 0 < z < 1, so that f*(z) =0 for all z € R.
Also, we have g(z) = sinma for 0 < z < 1, so that

g"(z) =sinmx

for x € R.
An antiderivative of g*(x) is given by

G(z) = . COS T

235
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for z € R.
Therefore, the solution is

1 1
u(zx,t) = o [cosT(z —t) —cosm(x +1t)] = = sin z sin 7t

for0<ax <1, t>0.

Exercise 12.10. g

Use d’Alembert’s solution to solve the boundary value—initial value problem for the
wave equation

0%u 0%u

w:25w, —OO<.'L’<OO,t>O
u(z,0) =22, —oco<z<o0

0

8—1;@,0):3 —00 <z < 00.

Solution: d’Alembert’s solution to the wave equation is

x+ct
w(@ ) = S [f(a+et) + fla—ct)] + i/ o(s) ds

2¢ r—ct

N =

where ¢ = 5, f(z) = 22, and g(x) = 3, so that

N

u(z,t) = = [(z+5t)* + (x — 5t)%] + ! /m%t 3ds

1_0 x—bt
1 3
=5 [2% + 102t + 25t + 27 — 102t + 25¢°] +1g e+ 5t — 2+ 5
= 22 + 25 + 3t,
and the solution is
u(z,t) =z + 25t% + 3t

for —co <z <ooandt>0.
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Exercise 12.11. XX

Using the one-dimensional wave equation governing the small vertical displacements
of a uniform vibrating string,
*u  ,0%u
— =c"—, O<ax<L,t>0
ot? Ox?

derive the conservation of energy for a vibrating string,

dE  ,0udul’

E:pc ox ot

)
0

where the total enery F is the sum of the kinetic energy and the potential energy,
L 2 2 ,L 2
p ou pc ou
E@) =< — | d — — | d=x.
o=5[ (5) @+ [ (G)
Solution: The total energy (potential energy plus kinetic energy) of the string at time ¢ is given

by
=4 [ r (20 o ()] wemt o (22) (2] e

Using Leibniz’s rule, we have
ou\ ou\
2
— — d
‘ (m«) +<6t>] )

_ /L 20u Ou  Ou Pul
), |0z otor "ot 2|

I A R T TR R P

_ 02/L£ Ou Ouy
—PC ), oz \ozr ot

L

- _ 1

0u o
ot

.
Note that if the string is fixed at both ends, so that

ou ou
E(Ovt) - E(I%t) =0

for all ¢ > 0, then E’(t) = 0 for all ¢ > 0, that is, the total energy of the string is conserved.



238

Exercise 12.12. XXX
Consider the initial value — boundary value problem (with h > 0) given by

*u  ,0%u

o~ o
2 0,1) — hu(0,1) = 0 u(z,0) = f(2)
9 0
XLy =0 5 (®0) = 9(@)

Use separation of variables to do the following:
(a) Show that there are an infinite number of different frequencies of oscillation.

(b) Estimate the leading eigenvalue of the spatial problem and then estimate the
large frequencies of oscillation.

(¢) Solve the initial value — boundary value problem.

Solution: Since the partial differential equation is linear and homogeneous and the boundary
conditions are linear and homogeneous, we can use separation of variables. Assuming a solution of
the form

u(z,t) =¢(z)-G(t), 0<z<L, t=0

and separating variables, we have two ordinary differential equations:

¢" () + Xp(z) =0, 0<az<L, G"(t)+ A\2G(t) =0, t>0,
#(0) — ho(0) = 0
¢'(L) =0

(a) We use the Rayleigh quotient to show that A > 0 for all eigenvalues .

Let A\ be an eigenvalue of the Sturm-Liouville problem, and let ¢(x) be the corresponding
eigenfunction, then

since p(z) =o(x) =1for 0 <z < L.
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Note that if A =0, then
L
ho(0)? + / ¢ (x)*dx =0
0
implies that
L
h¢(0)2 =0 and / ¢ (x)? dz = 0.
0

Since h > 0, this implies that ¢(0) = 0, and since ¢’ is continuous on [0, L], that ¢/(z) = 0 for
0 < & < L. Therefore ¢(x) is constant on [0, L], so that ¢(x) = ¢(0) =0 for 0 < x < L, and
A = 0 is not an eigenvalue. Hence all of the eigenvalues A of this Sturm-Liouville problem
satisfy A > 0.

If A > 0, then A = p? where p # 0, and the differential equation becomes ¢” + p?¢ = 0 with
general solution

¢(x) = Acos px + Bsin pz, with ¢ (z) = —pAsin pz + pB cos ur

for 0 <z < L.
Applying the first boundary condition,

¢/(0) — hé(0) = ~hA + B =0,
h
so that B = —A.
0
Applying the second boundary condition,
¢ (L) = —pAsinuL + uBcospuL = A(—psinuL + hcos uL) = 0,
and the boundary value problem has a nontrivial solution if and only if
h
tan pl = —.
1
From the figure below it is clear that there are an infinite number of distinct eigenvalues

An = p2, and that lim )\, = +oo.
n—oo
y

y=tanplL
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(b) Note that since lim p, = 400, then
n—o0

lim tan p,L = lim — =0,
n—oo n— o0 /’[/77/
and the roots of the equation
h
tan pup, L = —

n

are approaching the roots of the equation tan u, L = 0, that is, for large n, we have

nm
Hn I
and therefore for large n the eigenvalues are
5  mim?
Ap = Uy, & 7o

The frequency of oscillation refers to the frequency arising from the solution of the corre-
sponding time equation
G (t) = ay cos pnct + by, sin pyct,

and one period of oscillation corresponds to p,cT = 2m, and

2
T — _777
HnC
and the frequency of oscillation is
1 ppc
V= — — ——
T 2n’
and for large n,
ne
VR —.
2L

(¢) The solutions to the spatial problem are

h
On(x) = cos ppx + —sinppz, 0<x <L

n
and the corresponding solutions to the time equation are
Gn(t) = ay cos ppct + by, sin ppct, ¢ >0

and from the superposition principle, the function

oo [ee] h
u(z,t) = Z On(z) - Gp(t) = Z <cos HnT + o sin ,unx> (ap, cos ppct + by sin ,ct)
n=1

n=1 n

satisfies the partial differential equation and the boundary conditions.
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Since the spatial problem is a regular Sturm-Liouville problem, then the eigenfunctions are
orthogonal on the interval [0, L], and we use this fact to satisfy the initial conditions

= Z an‘bn(w) = Z bnﬂncqﬁn(w)
n=1 n=1

where the generalized Fourier coefficients are given by
L
/ 9(x)pp () dz
_ Jo

) /f Jonl b
,unc/o bn(z)? dz

/qbn

and

for n > 1.

Exercise 12.13. XX
Solve the problem for a vibrating square membrane with side length 1, where the
vibrations are governed by the following indexTwo dimension wave equationtwo
dimensional wave equation:

%:%(%4-%), O<x<l, O<y<l, t>0
u(0,y,t) =u(l,y,t) =0, 0<y<1, >0

u(z,0,t) =u(z,1,t) =0, 0<a<l, t=0

u(z,y,0) =sinmrsiny, 0<zx<1l, 0<y<1

ou .

E(az,y,())zsmmv, 0<z<1, 0<y«<l1

Solution: Separating variables, we write u(z,y,t) = ¢(z,y) - T(t), and substitute this into the
wave equation

" 2 2
2T_ — l @ + @ _)\’
T ¢ \0x2  0Oy?
to obtain the two equations
A 0’ 0%¢
T+ 5T = d = —Ao.
+ 3 0 an 922 + = B )

Separating variables again in the second equation, we write ¢(z,y) = X (x) - Y(y), and substitute

this into the equation, to obtain
X// Y//
—\,

that is,
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where k is a second separation constant. The boundary conditions give rise to the two boundary
value problems

X"+kX=0  Y'+(N-r)Y
X(0)=0 Y (0
X(1)=0 Y (1

— ~—
I
o o o

We find nontrivial solutions to the X equation first, since it involves only one separation constant.

As in previous problems, there are nontrivial solutions if and only if x,, = n?7? and the eigenfunc-

tions are
Xy (z) = sinnrz

forn > 1.
For each n > 1, the function Y satisfies the boundary value problem

Y+ (A=n?1?)Y =0
Y(0)=0
Y(1) =0,

and as in previous problems, this has nontrivial solutions if and only if A — n?7? = m?x2, that is

A = (n? + m?)72, and the eigenfunctions are
Yin(y) = sinmmy

for m > 1.
For each n,m > 1, the function
On,m(2,y) = sinnmz - sinmmy

satisfies the equation for ¢, as well as the four boundary conditions.

A
The solutions of the equation T + — 1" = 0 corresponding to the separation constant A = (n? +

T
m?)n? are

Tom = Apm cos Vn? +m2t+ B,y siny/n? +m2t

and for each n,m > 1, the function

Unm (2, Y, 1) = Gpm(2,y) - T (t) = sinnra sinmmy (Amm cos \V/n? +m?t+ By, sin v/ n? + m? t)

satisfies the wave equation and all four boundary conditions. Using the superposition principle, we
write the solution as

o0 o0
u(x,y,t) = Z Z sin nmx sin mmy (Amm cos V/n? +m?t + By, sin v/ n? + m? t) )
n=1m=1

We evaluate the constants A, ,, and B, ,, using the initial conditions. Setting ¢ = 0 in the above
expression for u(x,y,t) we see that

o0 o0
sintzsinmy = u(x,y,0) = E E Ay sinnmz sinmmy,

n=1m=1
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so that

1 for n=m=1,
Anm:

)

0 otherwise.

Differentiating the expression for u(x,y,t) with respect to ¢, and setting ¢t = 0, we see that
8“ (o] [o¢]
sinTr = E(z, y,0) = Z Z n? +m? By, p, sinnre sinmry,

n=1m=1

that is,

(o] (o]
sinTr = E sinnmx ( E V'n?+m? By, sin mﬂy) ,
n=1 m=1

and we need

(o.] o
Z V14 m? By ,sinmry = 1, and Z Vn2+m?B, psinmry =0 if n#l
m=1 m=1

Therefore, we may take By, ,,, = 0 for all n # 1, while for n = 1, we want V1 + m? By ,, to be the
coefficients in the Fourier sine series of the function f(z) =1, 0 < z < 1, that is,

2 1 2
o m/o ydy = s (1= (217
for m > 1.
Therefore,

2[1 = (=1)™]
mmyv/ 1+ m?

[e.9]
u(z,y,t) = sin w sin 7y cos V27t + Z

m=1

sinx cosmmy sin V1 +m?t

for 0 <x,y<1,t>0.

Exercise 12.14. XX
Solve the wave equation for a vibrating radially symmetric circular membrane

Pu_40 (0
o2 ror \_ or

), 0<r<1,t>0
u(1,t) =0,
u(r,0) = 5Jy (23 7)

%(T,O):O, 0<r<l,

where Jy(z) denotes the Bessel function of the first kind of order zero, and z,, denotes
the n'h zero of Jy(2).
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Solution: We use separation of variables, assuming u(r,t) = ¢(r) - T(t), the wave equation above

becomes 4

Sd) T =0T,

r

and dividing by 4 ¢ - T, the variables are separated, and we get

(r¢'(r))” _ T"(1)
ré(r)  AT(t)

The two sides of this equation must be a constant, say —\, which yields two ordinary differential
equations

(r¢/),+)\r¢:0, 0<r«l1
T" +4\T =0, t>0.
The boundary condition u(1,t) = 0 for all ¢t > 0 is satisfied if we require
(1) =0.
Also, since 7 = 0 is a singular point of the differential equation for ¢, we add the requirement
|¢(r)| bounded at r =0,

which is equivalent to requiring that |u(r,¢)| be bounded at r = 0.
Thus, ¢ satisfies the boundary value problem

(r(b/)/—i—)\r(bzo, 0<r«i1
¢(1) =0,
|6(r)| bounded at r = 0.
We multiply the equation by r and recognize the equation
r?¢" +r¢' + Ar?¢ =0
as Bessel’s equation of order zero, for which the function
o(r) = Jo(VAr)

is the solution bounded at r = 0.
In order to satisfy the boundary condition ¢(1) = 0, we must have

or
VA =2n, n=12 ...

where z,, are the zeros of the function Jy.
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Therefore the eigenvalues and eigenfunctions of the boundary value problem satisfied by ¢(r) are

Ay, = zg and On(r) = Jo(V/ AnT)
forn>1.

For these values of A\ which give a nontrivial solution to the boundary value problem for ¢, the
differential equation for 7" is

T"(t) + 4\, T(t) = 0

with general solution

T (t) = ap cos2y/ Ap t + by sin 24/ Ay, ¢,

forn>1.
For each n > 1, the product solution

Un (1, t) = ¢ (r) - Ty (t)

to the original partial differential equation satisfies the boundary condition u(1,£) = 0 and the
boundedness condition |u(r,t)| bounded at r = 0 for all ¢ > 0.

Using the isuperposition principle we write the solution as
(o]
u(r,t) = Z Jo(\/ AnT) [an cos 2v/ Ay t + by, sin 24/ N\, t} .
n=1

The initial conditions are satisfied if

u(r,0) = Z ando(\/ Anr) = 5Jy (237)
n=1

ou e
5, (1.0) = ;2bnm=}o<mr> =0,

for 0 <r<1.

Using the fact that the eigenfunctions {Jy(v/An7)}n>1 are orthogonal on the interval [0,1] with
respect to the weight function o(r) = r, we see that a,, = 0 for all n # 3, and ag = 5, while b, =0
for all n > 1. Therefore the solution is

u(r,t) = 5Jo (23 1) cos 2zst

for 0 <r <1, t >0, where 23 is the third zero of Jy(2).
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Exercise 12.15. XXX
Find the solution for the vibrating circular membrane in polar coordinates

0%u O*u  10u

— =100 =5 + ——= 0 1, t>0
ot? <8r2+7“8r>’ STS S U=
w(1,) =0, t>0

u(r,0) =1 —r?% 0<r<l1

0

5%n®=1, 0<r<l.

You may use the formula

@ a aPt?
/0 ZP g, (;7;) dx = TJpH(a)

where « is a positive zero of Jy,(2), the Bessel function of the first kind of order p.

Solution: Since f(r) = 1 — 2 and g(r) = 1 are radially symmetric, we may assume that the
solution does not depend on # (we can show this by separating variables and applying periodicity
conditions in ). Also, we expect periodic functions in ¢, and in order to separate variables we write
u(r,t) = R(r) - T(t), and obtain the problems

rR'+R +)XrR=0, 0<r<l1
R(a) =0,
|R(r)| < M, forr — 0T,

where the last condition is added to exclude singular solutions (physically, a singular solution would
correspond to a ripping membrane). The time equation is

T" +100\°T =0, t>0.

The differential equation in the radial problem is known as Bessel’s equation of order 0, hence the
solutions to the first problem are

R(r) = Jo(Ar), r>0,

where Jj is the Bessel function of order 0 of the first kind. The boundary condition u(1,t) = 0 for
all ¢ > 0 can be satisfied by requiring that R(1) = 0, that is, Jy(A) = 0, so that A must be a root
of the Bessel function Jy. Now, Jy has infinitely many positive zeros, and we write them as

ap <oy <ag < - <ap <o,
and therefore we have nontrivial solutions to the boundary value problem if and only if

)\n = Qip,
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n =1,2,3,.... These are the eigenvalues of the boundary value problem, and the corresponding
eigenfunctions are

R, (r) = Jo (anr),

forn=1,2,3....
The solution to the differential equation for T" corresponding to A\, = «, is given by

T, (t) = Ay, cos 10\t + By, sin 10\, ¢,

and the functions
un(r,t) = (A cos 10\t + By, sin 10\, t) Jo(An1)

satisfy the wave equation and the boundary condition for each n =1,2,....
Using the superposition principle, we write the solution as a Fourier-Bessel series

u(r,t) = Z (A, cos 10A,t + By, sin 10\, t) Jo(An7), (%)
n=1

and evaluate the coefficients A,, and B,, from the initial conditions. In order to do this, we need
the orthogonality conditions

/01 rJo(Anr) Jo(Amr) dr =0
for n # m. In order to see this, we recall that R,, and R,, satisfy the equations
(rR.) + X2rR, =0
(rR,,) + A2, 7Ry =0
and multiplying the first equation by R, and the second equation by R,, and subtracting, we get
(rBL) Ron = (rB2)" B = (A = A2)r R B,

that is,
(r(RmRl, — RaR.)) = (A2 = A2 )r Ry R,

and integrating this last equation from 0 to 1 and using the fact that R,,(1) = R, (1) = 0, we have

(A2 —A2) /01 "R,y (r) Ry (r) dr =0

for n # m, and since A\, # A, we have

1
/0 rJo (anr) Jo (mr) dr =0 (%)

for n # m, and the eigenfunctions are orthogonal with respect to the weight function r on the
interval [0, 1].
In order to determine the coefficient A,, from the initial condition, we also need to know the value

of .
/ rR,(r)? dr,
0
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and we can determine this by considering the differential equation satisfied by R,,, namely,
(rR.,) + A\2rR, =0,

and multiplying this by 2rR!, to get

—j [(rRL)?] + 20272 R, R, = 0,
r
and integrating both terms we get

1 1

1
—/ 2r R, (1)? dr] =0,
o Jo

where we integrated by parts in the second integral. Since R, (1) = 0, we get

+ A [P R (r)?

0

(TR;L(T))z

1
RL(1)2 - A2 / o0 R (r)2 dr = 0,
0

that is,

1
1 1 1
/0 rRy,(r)? dr = mR;(lf = 5J()(An)2 = §J1()\n)2 (% % %)
for n =1,2,3,.... Where we have used the identity Jj)(r) = —Ji(r).
Now we can use the initial conditions to determine the coefficients in the solution (k). Setting ¢t = 0,
multiplying by rR,,(r), and integrating from 0 to 1, we get

1 1 )
| 8@ R ar = Ay [ (e ar = 4, 202
0 0
and since f(r) = 1 — r2, we have
2 L ) ) . 2
m= T v 9 _ . _ 1 i
An = 0w /0 r(L=7%) Ry (r) dr AOE /0 (1 — %) Jo(Amr) dr

form=1,2,3,....
If we make the substitution s = A,,r in the last integral, we get

1 1 [P
/ (1 — 1)) Jog(A\nr) dr = XN / s(A2, — s%)Jo(s)ds,
0 m JO

and integrating by parts with u = A2, — s% and dv = Jy(s)s ds so that

v= /sJo(s) ds = sJi(s),

we get

1 ) 2 Am ) ) ) Am 9
/0 r(1 = 12)Jo Ot dr = g/0 B()ds = 525 1(5)| | = s (Am),

m 0 m
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form=1,2,3,..., where we used the identity
/a:p+1Jp(x) dr = 2P, (2) + C.

Therefore,

2 ! 5 4D (M)
A, = 7J1()\m)2 /0 r(1—r%)Jo(Apr) dr = 7)\%J1()\m)27

and finally, since A, is a zero of Jy, from the identity

To(@) + Ja(z) = %Jl(x),

we have
8
A= A1 (Am)
form=1,2,3,..., and
- 8
112 = f(r) 227)\3 0N )JO(/\nr), 0<r<1
n=1""T m

is the Fourier-Bessel expansion for the initial displacement.
In order to compute the B,,’s, we differentiate () with respect to ¢ and then set t = 0 to get

ou

L=g(r) = 5-(r,0) = > 10ABrJo(Anr),
n=1

and a similar argument to that above shows that

1
Bp=———
5>‘$n=]1 (/\m)
form=1,2,3,..., therefore the solution is
> J(]()\nT‘) .
u(r,t) = nZ::l BN () [40 cos(10A,t) + Ay, sin(10A,1)]

for0<r<1,and ¢t > 0.
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Exercise 12.16. XX
Find a solution for the vibrating circular membrane given below:

On _ (G 160 g ocn go
o2 \orz2  ror)’ ’
u(1,t) = 0, t>0

u(r,0) =0, 0<r<l1

0

8—1:(7”, 0) = Jo(asr), 0<r<l,

where ag denotes the third root of the Bessel function Jy. You may use the formula

a 2
Nz a®
/0 J, (—x) rdr = 5 Jpr1(@)

a

where « is a positive zero of J,(z).

Solution: As in the previous problem (12.15), the solution is

u(r,t) = Z (A;, cos Ayt + By sin Apt) Jo(Anr),

n=1

where ), is the n'® positive root of the Bessel function Jp.
In this case, however, u(r,0) = f(r) = 0 for 0 < r < 1, so that A, = 0 for all n > 1. We use the
initial condition

ou

E(T,O) = Jo(agr), 0<r<1

and the orthogonality to determine the B,’s, as in the previous problem, we have

2

1
— rdo(Asr)Jo(Apr)dr =0
7 [, TR )

B, =
)\njl(

for all n # 3, while for n = 3, we have

2 1 2 1
By = ——+ rdosr)2dr = ———— - = J1(\3)? = —
3 )\3J1()\3)2/0 0(Asr) YA 1(As) A3

and the solution is

1
’LL(T‘, t) = /\—BJ(]()\?,T') sin )\3t

for0<r<1,and ¢t > 0.
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Exercise 12.17. XX
Solve the wave equation on a disk of radius a > 0

d%u

ou
U _ 292 . o _
52 — C Vu subject to 5 (a,0,t) =0
with initial conditions
0
u(r,0,0) =0, 8—1:(7’,6’,0) = B(r).

Solution: Since neither the boundary conditions nor the initial conditions depend on the variable
0, we look for a solution that is also independent of 0, say u = wu(r,t). In this case the problem

becomes
@_53 @ biect t @( t)_o
a2~ 7 or \ or subJect to or Y=
with initial conditions
ou

u(r,0) =0, E(r, 0) = B(r).

Separating variables, we write u(r,t) = R(r) - T'(t), then R and T satisfy the following boundary
value and initial value problems, respectively,

(rRY + \srR=0, 0<r<a, T+ T =0, t>0,
R'(a) =0 T(0) =0
|R(0)| < o0

We solve the singular Sturm-Liouville problem for R first. The Rayleigh quotient is
+ / r(R')*dr
o Jo

/ r R dr
0

and from the boundedness and boundary condition,

a

—rRR’

A=

= —aR(a)R'(a) =0,
0

—rRR’

so that A\ > 0, that is, there are no negative eigenvalues.
case 1. If A = 0, then the differential equation is

(rR) =0,

with general solution
R(r) = Alogr + B.

Applying the boundedness condition, we have A = 0, and the eigenfunction is

Ro(r)=1
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for 0 <r <a.
case 2. If A > 0, then the differential equation is

(rR") + ArR =0,
which is Bessel’s equation of order 0, with general solution

R(r) = AJo(VAr) + BYy(VAr).

Applying the boundedness condition, we have B = 0, and the solution is

R(r) = AJy(Var),
and applying the boundary condition, we have

R'(a) = AVAJ)(VAa) =0,

so that v/ Aa = z,, the n'® positive root of J§(z).
The eigenvalues and corresponding eigenfunctions in this case are

A = (%")2 and  Ruo = Jo(v/ o)

form=1,2,3, ...
The corresponding time equation is

T"(t) + AT =0, t>0
7(0) = 0.

If A =0, the equation is 7" (t) = 0, with general solution
T(t) = At + B,
and from the initial condition we have 7'(0) = B = 0, and we may take A = 1, so that
To(t) =t

for t > 0.
If A > 0, the equation is 7" + \,0T = 0 with general solution

T(t) = Acos VAct + Bsin vV Act,
and from the initial condition we have T'(0) = A = 0, and we may take
Tho(t) = sin/Apoct
for t > 0.

Using the superposition principle, we write

u(r,t) = cot + Z cndo(V/ Anor) - sin v/ Apoct

n=1
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forO0<r<a,t>0.
Finally, applying the nonhomogeneous initial condition, we have

5 = 20,0) = o+ 3 endo(V Ao 1)V e
n=1

for 0 < r < a, and using the orthogonality of the eigenfunctions

and

Cp =

form=1,2,3,....

Exercise 12.18. - XXX
Solve the wave equation for a “pie-shaped” membrane of radius a and angle 3 (=60°)

0%u 99
— =cVu

ot?
Assume that A > 0. Determine the natural frequencies of oscillation if the boundary
conditions are

ou

s
,O,t :Oa (,—,t):(), a..
u(r,0,t) u(m 3 o

(a,6,t) =0

Solution: The wave equation in polar coordinates is

otz ror \| or r2 002 )’
and assuming a solution of the form u(r,0,t) = R(r) - ©(0) - T'(t), we have
T// 1 / 1
7= 7 F) + 260" =
where X is the separation constant. This gives

@//_ 9 r //_
E——)\r —E(TR) = -7

where T is another separation constant.
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We can satisfy the boundary conditions in 6,
m
u(r,0,t) =0 and U (T, g,t> =0
for all 0 < r < a and t > 0, by requiring that

00)=0 and © (g) — 0.

Also, if the solution is to be bounded we need to require the boundedness condition
|u(0,0, )] < oo,

for all 0 < 6 < %, and ¢t > 0. We can satisfy the boundedness condition as well as the boundary
condition that

ou
or
for 0 <6< % and ¢t > 0, by requiring that

(a,0,t) =0

R'(a) =0 and |R(0)| < oo.
Therefore R and © satisfy the boundary value problems

r(rR)Y +(M? —7)R=0, 0<r<a, 0" +70 =0, 0<0<g,

R'(a) =0 0(0) =0
IR(0)] < e (g) =0

while T satisfies the differential equation
T+ X*T =0, t=>0.

Since the problem for © has a complete set of homogeneous boundary conditions, we solve this
first. The eigenvalues and corresponding eigenfunctions are

7, = (3m)? and ©,,(0) = sin 3m#

form=1,2,...
The boundary value problem for the corresponding functions R(r) is

r(rR') + (A\r* —9m?)R
R/ (a)
|R(0)]

0<r<a,

0
0
00

A

Making the substitution z = v/Ar, this equation becomes

d*R dR
52 2 2
Z2+z Z+(z 9m*) =0



255

which is Bessel’s equation of order 3m for m = 0,1, 2, ..., and the general solution to the R-equation
is

R(r)=ac ng(\/XT) + chg,m(\/XT‘)

where J3,(vV/\r) is the Bessel function of the first kind of order 3m, and Yz,,(v/Ar) is the Bessel
function of the second kind of order 3m.
Applying the boundedness condition |R(0)| < oo, then ca = 0, and the solutions are

R(r) = ¢1J3m (VA1)

for 0 <r <a.
Applying the boundary condition R'(a) = 0, we have

R/(a) = 1%, (Va) = 0,
and we have a nontrivial solution if and only if J; (v/Aa) = 0, that is,
\/Xa = W3m,n

for n =1,2,3,..., where w3, ,, denotes the value of z for which J3,,,(2) has minima and maxima
in increasing order, that is, the positive roots of Jj,, ().

W3m,n 2
/\3m,n = <—>
a

Therefore the eigenvalues are

with corresponding eigenfunctions

Rimn = J3m (s/)\gmmr)

for m > 0, n > 1. We note that A3, ,, > 0 and for a fixed m, the eigenfunctions

W3m,n

R3m,n:J3m< T), n=12,3,...

are orthogonal on the interval 0 < r < a with weight function o(r) = r, so that
“ w w
/ J3m ( Sm.k r) J3m < Sm. 7‘) rdr =0
0 a a
for k # £.

The corresponding solutions to the time equation

T" + X3 *T =0, t>0,

are given by

T30 (t) = Agm,n cOS (\/Agm’nct> + B3y sin (\/Agmmct) , t>=0.

Thus, the frequencies of oscillation v, ,, satisfy

\/ /\3m,nc _9

Vm,n

T,
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that is,
v oV )‘3m7nc _ W3mnC
e 2w 2ma
form>1andn > 1.
Exercise 12.19. XXX

(a) Show that small displacements u(z,t) of a hanging chain of length L are
governed by the initial value - boundary value problem

9%u 0*u  Ou
oz I

UL ) g<ca<L, t>0,
x8x2+81’> ’

u(L,t) =0, t>0,

u(z,t) bounded, as x — 0%, ¢ >0,
u(z,0) = f(z), 0<z<L,

ou
E(az,()) =v(zr), 0<z<L.

where g is the acceleration due to gravity (assumed constant).

(b) Solve the initial value - boundary value problem above.

Solution:

(a) First we give a more detailed description of the Hanging Chain Problem. A flexible chain

of length L and density (mass per unit length) p is fixed at the upper end (z = L) and
allowed to make small vibrations in a vertical plane. We let u(x,t) be the deflection from
the vertical in this plane. In the equilibrium position, the weight of the chain below a point
x is equal to the tension in the chain:

Ty(r) = pgz,

where g is the gravitational acceleration (assumed constant and acting vertically downward).

At time ¢ > 0, the horizontal displacement of the chain at the point z is given by u = u(x, t),
and applying Newton’s second law to the portion of the chain between z and z + Az, we
obtain

2

Y = T(a + Az)sin(0(z + Az)) — T(z) sin(6(z)), (+)

PATSE

where 0(x) is the angle between the vertical and the tension T'(z), as in the figure.
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T(X+AX)

-

~— B(X+AX)
X+AX

For small displacements, we have

ou @

sin(f(x)) = %(x, t) and sin(f(x + Az)) = g (x + Az, t),
and dividing by Az in (), we have
Pu .1 ou ou
P = An [T(aj + Am)%(x + Az, t) — T(a:)%(a:,t)} . (%)

Letting Az — 0 in (*x), in the limit we get the equation
0? 0 0
u [T u} '

PoE =z | TWa,

For small displacements, the tension T'(z) is approximately the equilibrium tension Ty(z) =
pgz, and the partial differential equation governing small displacements of the hanging chain

1S
0%u Pu  Ou
oz~ I\ o2 T oz ) (%)

Since the chain is fixed at x = L, one boundary condition is

u(L,t) =0

for0 <z < L,and t > 0.

for t > 0.

Also, since the displacement is to remain bounded as x — 07, we require the boundedness
condition
lu(z,t)] < M, forall ¢t>0

asz — 07,
Finally, to obtain a unique solution to this problem, we need the initial conditions
u(z,0) = f(z) the initial shape of the chain

@ z,0) = v(z the initial velocity of the chain.
ot
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The displacement of the hanging chain satisfies the initial value — boundary value problem:

0? 0? 0
8—£:g<xa—£+a—z>, O<ax<L,t>0

w(,t) =0, t>0

lim [u(z, )] <M, t>0

z—0t
u(z,0) = f(z), 0<zxz<L

ou
E(JE,O) =uv(zr), 0<z<L.

(b) Since the partial differential equation and the boundary condition are both linear and homo-
geneous, we can use separation of variables.

Step 1: Assuming a solution of the form w(z,t) = X (x) - G(¢) and substituting this into the
partial differential equation, we get

X -G"=g(xXx" -G+ X" Q)

and separating variables,
.Z'X// + X/ G//

X 9G A
where )\ is the separation constant.
We obtain the two problems:
2 X"(z) + X'(x) + AX () =0, O0<z<L G"(t)+AgG(t)=0, t>0
X(L) =0,
| X (0)] < oo.

The spatial problem can be written in Sturm-Liouville form

d [ dX

S el X =

Ir (m dx) + A 0,

where p(z) = z, ¢(x) =0, and o(z) = 1, for 0 < z < L. Note that this is a singular Sturm-

Liouville problem since p(0) = 0, and the boundary conditions are not of Sturm-Liouville
type.

However, if A is an eigenvalue of this problem with corresponding eigenfunction X, then the
relationship between A and X still holds, that is, A is given by the Rayleigh quotient

L
—z X (2)X'(2) . + fOL rX'(z)? dx

)

A= RX) = fOL X(2)? dw
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and from the boundary condition and the boundedness condition we have

\_ fOL X' (r)? d:z:
el v

fOL X ()% dx

so that all of the eigenvalues of this singular Sturm-Liouville problem are nonnegative. We
leave it as an exercise to show that A = 0 is not an eigenvalue, and in fact, all of the eigenvalues
are positive.

Therefore we can write A = u? where p # 0, and the boundary value problem for X becomes
X"+ X'+ 42X =0, 0O<z<L
X(L)=0,
|X(0)] < oo.
We can transform this into Bessel’s equation of order zero, by letting
s=2va  and  g(s) = X(a(s)),

then from the chain rule we have

dX dy ds 1 dy

de ~ ds dr Jz ds’

and
X d 1 odp\ 1 P 1 dp
de? VT ds r ds2 9,3 ds
Therefore
ax 2 de
dx s ds
¢X 4 dp 4 dyp
dx?  s2 ds2  s3 ds’
and

X"+ X'+ 42X =0
implies that

2 (4 d*o 4 dy 2 dgp
S S A i -0
4 <s2 ds?  s3 ds>+ ds Tt =0,
that is,
o 1 de 2 dp
& s s s as TP
so that 2 p
2 ¥ ap
d2+ s +us<p 0,

which is Bessel’s equation of order zero.
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The general solution is
p(s) = Ado(us) + BYo(us),

and from the boundedness condition at x = 0, we must have B = 0, so that

p(s) = AJo(us)

for 0 < s < 2v/L.
Applying the boundary condition p(2v/L) = 0, we have a nontrivial solution if and only if

p(2VL) = AJo(12vVL) = 0,

and A # 0, that is, if and only if 1,2V L = z,, the n'™ positive zero of Jy.

2
Z
)\n: %: = )
a (2@)

and the corresponding eigenfunctions are

onls) = Jo (M>

The eigenvalues are

forn>1.
ZnS

2vV'L

respect to the weight function w(s) = s, so that
2VL
ZnS ZmS
Ji J sds =10
/o ' <2\/z> ' (2@)
. s 1
Since z = R then dx = 53 ds, and we have
L
[ D)
if n # m.

Therefore the eigenfunctions

Note that the functions {Jo < )} are orthogonal on the interval 0 < s < 2v/L with
n>1

if n # m.

T
Xn(x) = Jy <zn Z)
for n > 1 are orthogonal on the interval 0 < x < L with respect to the weight function
o(x) =1.
§2
Note that after the substitution x = R the normalization

/2\/Z ) P )
Js <L> sds =2LJ{(zp)
0 2\/E
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becomes
L T
/ J§ (Z"\ / —) dr = LJ?2(z,)
0 L

The corresponding time equation is

forn > 1.

2
Z
") G=0,
2\/E>

lg z ) [g z
Gn(t):Ancos< %Ent>+anm< %%t)
Using the superposition principle we can write the solution as

u(z,t) = g:lxn(m) Ga(t) = g:l Jo (zn\/%> [An cos (@%" t> + B, sin (@%" t>]

forO<ax< L, t>0.

G”+g<

with general solution

forn>1.

Finally, we use the initial conditions and the orthogonality of the eigenfunctions to determine
the constants A,, and B,,.

Step 3: For t = 0, we have

n=1
with . o f(@)J (zn\/%> dz ) JE () <Zn \/Z) "
foL J02 (Zn %) da LJF(z)

forn > 1, and

with

Ba = it /OL”“)"O (Z”@ o

forn > 1.



Chapter 13

Laplace Equation Problems

Au = 0.

Exercise 13.1. g

Show that the function

is harmonic, that is, it is a solution to the three dimensional Laplace equation

1

Vaz+y?+ 22

u =

Solution: By symmetry, we need only calculate the derivatives with respect to one of the variables,
say x, and obtain the other derivatives by permuting the variables. For example,

so that

Similarly,

so that

Therefore,

o
0z?

ow_o( 1 \_
or Oz V2 4 y2 + 22 _(w2+y2+z2)3/2’

ou —y ou —z
— = 372 and =
W (a2 +y?+22)

a0z (m2+y2+22)3/2'

@_2 -z 22— y? - AP
022~ 01 \ (22 442 4+ 2232 ) (a2 442 4 22)Y%

0%u 2y? — 22 — 22 d 0%u 222 — 2% — 92
— = an — = .
Oy® (a2 +y? + 22)° 022 (22 +y? + 22)°

Pu  Pu (222 —y? = 22) + (20 — 2? - 22) + (222 — 2% — o?)
—_—+ — = — 07
dy? 022 (22 + y2 + 22)7/2

that is, u satisfies Laplace’s equation Au = 0.

262



Exercise 13.2. g

Compute the Laplacian of the function

u(z,y) = tan ™" (%)

in polar coordinates. Decide if the given function satisfies Laplace’s equation Au = 0.

Solution: Note that in polar coordinates # = tan~! (Q) , so that
x

and since

u(r,0) =0,
o _#u_,
or  orz 7

then Laplace’s equation becomes

Pu  10u @ B %0

e e e Y

and u(x,y) = tan™! <Q> does satisfy Laplace’s equation.
T

Exercise 13.3. g

Compute the Laplacian of the function
u(z,y) = In(z”® + y?)

in an appropriate coordinate system and decide if the given function satisfies
Laplace’s equation V2u = 0.

Solution: Note that in polar coordinates, > = z? + 42, so that

and

u(r,0) =Inr? = 2Inr,

10u 2 q 0%u 2
ror r? Or? r2’

2

u
and since — = 0, then

062
Pu 1w a2 2
or2  ror 002 2 2

and u(x,y) = In(2? + y?) does satisfy Laplace’s equation.

263
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Exercise 13.4. X
Solve Laplace’s equation inside a rectangle:
Pu  0%u
2, _
VU—W-Fa—yQ, O<x<L, O<y< H

subject to the boundary conditions
u(0,y) = g(y), u(z,0)=0,
u(L,y) = 0, u(z,H) =0,

forO0<z< L, 0<y<H.

Solution: Since the boundary conditions at y = 0 and y = H are homogeneous, we can find a
solution using the method of separation of variables.
Writing u(z,y) = X (z) Y (y) we obtain

X/l Y/l
Y ="y = A (constant)

and hence the two ordinary differential equations

X" XX =0 O0<z<L and Y'+AY =0 O<y<H

X(L)=0 Y(0)=0
Y(H)=0.
Solving the boundary value problem for Y, and writing A, = p2, the eigenvalues are
2,2
9. n'Tm
/\TL = Hp = H?2

and the corresponding eigenfunctions are
Y, (y) = sin pny.
The corresponding solutions to the equation X” — 2 X = 0 are
Xn(x) = ap cosh pn (L — x) + by sinh pu,, (L — ),

for n > 1, and from the boundary condition X (L) = 0, we must have a,, = 0 for all n > 1.
Using the superposition principle, we write

o0

u(x,y) = Z by, sinh p, (L — ) sin pyy.
n=1

From the boundary condition u(0,y) = ¢g(y), we have

o0
g(y) = Z by, sinh % Sin fi,y

n=1
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so that
b, sinh 2= "’TL / ) sin ppy dy,
and
bn = H sinh 7= "“L / )sin iy dy
forn>1.
Exercise 13.5. XX

Solve Laplace’s equation inside a rectangle 0 < z < L, 0 < y < H, with the following
boundary conditions:

ou ou
( ) 833(0 y) g(y)a %(Lay) - Oa U(ZL‘,O) - Oa U($,H) =0
Su o 1 for0<az<L/2, gy

(b) 52(0.9) =0, Z=(L,y) = 0, u(w,0) = () = 0

0 forL/2<z<L, %

Solution:

(a) We assume a solution of the form u(z,y) = X(x) - Y(y), and substitute this into Laplace’s
equation to obtain
X'(x) - Y(y) + X(x) - Y"(y) =0,

so that
X'(@) _ Y'(y)
X(x) Y(y)

and we have two ordinary differential equations

=)\, (constant)

X"(z) = AX(z) =0 and Y"(y) + AY (y) = 0.
We can satisfy the (homogeneous) boundary conditions by requiring that
Y(0)=0, Y(H)=0 and X'(L) = 0.

Therefore X and Y satisfy the boundary value problems

X"z) - AX(z)=0, 0<az<L Y'(y)+XY(y)=0, 0<y<H
X'(L)=0 Y (0) =
Y(H)=0

We solve the complete (Dirichlet) boundary value problem for Y first, the eigenvalues are

= ()
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with corresponding eigenfunctions

forn > 1.

The corresponding functions X (z) satisfy the boundary value problem
X! - A\X,=0, 0<x<L
X, (L) =0,

and since the boundary condition at x = L is homogeneous, we choose the following repre-
sentation for the general solution

X, (z) = Acosh w + Bsinh w

The condition X/ (L) = 0 implies that B = 0, and therefore the solution to the boundary
value problem for X is
Xn(z) = cosh W, O<z<L

forn > 1.

From the superposition principle, the function
Z By, sin %5 cosh M (%)

satisfies Laplace’s equation in the region 0 < x < L, 0 < y < H, and satisfies all of the
o ou
boundary conditions except 8_(0’ y) = g(y).
i

In order to satisfy this last condition, we use the orthogonality of the eigenfunctions on the
interval 0 < y < H. Differentiating (%) with respect to x, and setting z = 0 we get

o0
9(y) = Z Fw n =7 sinh %

Multiplying both sides of this equation by sin %, and integrating over the interval 0 < y <
H, we obtain

2\ nw H
— E ﬁsinh%Bn/ sin 774 sin =24 dy
0

n=1

H
/ 9(y)sin T dy =
0
and using the orthogonality of the eigenfunctions, we have

By = ) sin =7 dy (%)

m sinh 22~ me /

for m > 1.

The solution to Laplace’s equation satisfying the given boundary conditions is given by (%),
where the coefficients B,,, m > 1, are given by (xx).
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(b) As above, we assume a solution of the form u(z,y) = X (z) - Y (y) and separate variables we
get the boundary value problems
X"(x) +AX(z) =0, 0<x<L Y'(y) =AY (y) =0, 0<y<H
X'(0)=0 Y'(H) =0
X'(L) =0.

We solve the complete (Neumann) boundary value problem for X first, the eigenvalues are
N 2
= ()
L

Xn(x) = cos 7%

with corresponding eigenfunctions

for n > 0.

The corresponding functions Y,,(y) satisfy the boundary value problem
Y- \Y,=0, 0<y<H
Y!(H) =0,

and since the boundary condition at ¥y = H is homogeneous, we choose to represent the
general solution as follows

Yn(y) — ACOSh W + BSiHh W

The condition Y, (H) = 0 implies that B = 0, and therefore the solution to the boundary
value problem for Y is
Yo(y) =cosh™Hw) g <y < H

for n > 0.

From the superposition principle, the function
(o]
u(z,y) = Z Ay cos "L cosh L(Iz_y) (+)
n=0
satisfies Laplace’s equation in the region 0 < x < L, 0 < y < H, and satisfies all of the
boundary conditions except
1 for 0<z<L/2,

u(z,0) = f(z) =
0 for L/2<a<L.

In order to satisfy this condition, we use the orthogonality of the eigenfunctions on the
interval 0 < o < L, and setting y = 0 we get

f(z) =u(z,0) = ZA" cos “7% cosh #

n=0
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m” , and integrating over the interval 0 < x <

Multiplying both sides of this equation by cos
L, we obtain

L o0 L
/ f(x)cos "[* da = E cosh @An / cos 'TE cos T dw
0 oy 0

so that

2 sin 2T 2

Ay = and Am = (++)

1
2 mm cosh 22H

for m > 1.
From (+4) and (++) the solution to Laplace’s equation satisfying the given boundary condi-
tions is given by

2sin 5

nm cosh 222 ””H

nmTx

nm(H—y)
cos - — L

cosh

1 [e.9]
>

forO0<ax< Land 0<y< H.

XX

[0, 1] with the boundary conditions

Exercise 13.6.
Solve Laplace’s equation for the square [0, 1] x
given below:

Pu 0%

—+—=0, 0<z<l, O<y<l1
8$2+ay2 ) ‘r M y 7
u(z,0) =0 0<z<,

Solution: We split the original problem into two problems, as below

v 0%

—+=—==0, O<z<l, O<y<l,
ox? = Oy? . 4
v(x,0) =0 0<z<1,

v(z,1) =100, 0<x <,

L
SN— S S— S—
Il Il
o o
o o
NN
< <
NN
—_ =
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and
ngJrng—o, O<z<l, 0<y<l,
w(z,0) =0 0<z<l,
w(z,1) =0, 0<z <1,
w(0,y) =0 0<y<l,
w(l,y) = 100, 0<y<l1

each with one pair of homogeneous boundary conditions (so we can use separation of variables)
and the soluton to the original problem is then u(z,y) = v(z,y) + w(x,y).

Now note that we only have to solve one of these problems, say the first, for v(z,y), since we can
get the solution to the second problem by interchanging = and y in the solution to the first problem,
that is, w(x,y) = v(y, x), so that the solution to the original problem is u(z,y) = v(z,y) + v(y, x).

Writing v(z,y) = X (x) - Y(y), after substituting this into Laplace’s equation and separating vari-
ables, we have
Xl/ Yl/
—_—_— —— = —)\’
X Y
with separation constant A. We get the following boundary value problems for X and Y,

X" 4+AX =0 Y'-AY =0
X(0) =0 Y(0) =0
X(1) =0

We solve the complete x-problem first (it has two boundary conditions). As in previous problems,
we have a nontrivial solution for X only if A = x? > 0, and in this case the general solution is

X(z) = Acos px + Bsin ux,
applying the boundary conditions, we have
X(0)=0=A4, and X(1) =0 = Bsinp.

We get a nontrivial solution only when B # 0, in which case we need p = nr for some positive
272, and the eigenfunctions are

integer n, the eigenvalues are p2 = n
Xp(z) = sinnrz
for n > 1. For each n > 1, the corresponding equation for Y is Y” — 2Y = 0, with general solution
Y (y) = Acoshnmy + Bsinhnry,
and applying the boundary condition Y'(0) = 0, we get A = 0, so the corresponding solutions are

Y, (y) = sinhnry, n>1.
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For each n > 1, the function
vp(z,y) = Xp(x) - Yy (y) = sinnrz sinh nry

satisfies Laplace’s equation and all of the boundary conditions except v(z,1) = 100.
Now we use the superposition principle to write

o0
v(z,y) = Z by, sin nma sinh ny

n=1

and determine the constants b,, using this last boundary condition, that is,

o0
100 = v(zx, 1) Z by, sinnma sinhnw = Z(bn sinh nm) sin nrz,
n=1 n=1

and we recognize the constant b,, sinh nm as the Fourier sine series coefficient of the constant function
100 on the interval [0, 1], therefore

400

! 200 —  ifnisodd
b, sinhnm = 2/ 100sinnrzde = —[1 — (=1)"] = ¢ n7T
0 nn 0 if n is even.
The solution to the first problem is therefore
400 = 1
= — in(2n — 1 inh(2n — 1
v(x,y) - Z: @~ D) snh(@n = Dr sin(2n — 1)z sinh(2n — 1)y

for 0 < z,y < 1. Interchanging = and y in this solution, we get the solution to the second problem,

400 1

™ ne1 (2n — 1) slnh(2n — 1)7T Sln( n )7Ty S1n ( n )7'('1-

w(way) -

and the solution to the original problem is therefore

4
00 Z ) smh(2n =y [sin(2n — 1)7z sinh(2n — 1)y + sin(2n — 1)wy sinh(2n — 1)7x]

for 0 <z,y < 1.

Exercise 13.7. XX
Solve Laplace’s equation in the unit square with boundary conditions as given below:
% %:O, O<x<l O<y<l,
u(z,0)=1—2 0<xz<]1,
u(z,1) =z, 0<z <1,
u(0,y) =0 0<y<l,
u(l,y) =0, 0<y<1
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Solution: As in the previous problem, we divide the problem into two problems:

922 T 3y =0, O0<axy<l, 92 32 =0, 0<zx,y<l,
v(xz,0) =0, 0<x<], w(z,0)=1—2, 0<x<]1,
v(z,1) =z, 0<z<1, w(z,1) =0, 0<z <1,
v(0,y9) =0, 0<y<1, w(0,y) =0, 0<y<l,
v(Ly)=0, 0<y<1, w(l,y) =0, 0<y<l1

each with one pair of homogeneous boundary conditions (so we can use separation of variables)
and the solution to the original problem is then u(z,y) = v(z,y) + w(z,y).
Note that if we find the solution v(z, y) to the first problem, then the solution to the second problem
is

w(z,y) =v(l —z,1—1y).
We leave it to you to check that w(x, y) satisfies Laplace’s equation, and for the boundary conditions,
note that

w(z,0)=v(l—2,1)=1—-=x
w(z,1) =v(l —2,0) =0
w(0,y) =v(1,1-y) =
w(l,y) =v(0,1—y)=0

so that w(z,y) is a solution to the second problem.

We can use separation of variables as in the previous problem to find the solution v(z,y), and the
result is

o0
v(z,y) = Z by, sin nrx sinh nwy
n=1

and the constants b,, are determined from the second boundary condition

x=uv(x,1) E b, sinh nmsin nmx

n=1
so that
) 1 ] 2(_1)n+1
b, sinhnm = 2 rsinnrrdr = ———,

0 nm

and
2(_1)n+1

~ nrsinhnr

forn > 1.

The solution to the first problem is

n+1

[ee]
2 .
— E sin na sinh nry,
T Slnh nm
n—=
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and the solution to the second problem is

> q\n+l

T nsnhnr nm(l — z)sinhnr(l —y).

The solution to the original problem is given by
o0 (_1)n+1

2 . . . .
u(z,y) = g Z b [sin nra sinh nry + sinnw(l — z) sinhnr (1 — y)]

forO<z<1, 0<y<l.

Exercise 13.8. X
Approximate the temperature at the center of the plate from Exercise (13.7).

Solution: Note that at the center of the plate z =y = %, and from the previous problem

1 1 4 n+1
nm L3 nm
5,5) = — sin &F sinh &F.
(3:2) ™ Z_: nsmh nm 2 2
Now,
sinhnm = 2sinh & cosh 7,
and
: nmw __

sin 5+ =0
if n is even, while

2k+1

sin ¢ —5 g (—1)*

if n =2k + 1 is odd.
Therefore,

2\ (=D*
u(l7l) ——
22 szz(](2k+1)coshw

A geometric symmetry argument as given below shows that this series converges to i, that is,

L ly=1

u(i? b)
To see this, note that we can decompose the problem when the solution is identically 1 on the
boundary of the square into four separate problems as shown in the figure:

1 X 1-X
1 1= 0 0 + O 0
1 1-X X
0 0
+ vy -y * 1y y
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By symmetry, each of the four problems has exactly the same value of the solution at the center
(%, %), and since the solution to the original problem is identically 1 on the square, then

4“(%7 %) =1,

that is, u(3,1) = 1.

XXX

Exercise 13.9.
Solve Laplace’s equation inside a circle of radius a,

10 ou 1 0%u
Au=— —|r— —= o5 = Sr<a, —7m<0<
U o <T8r>+r2 902 0, 0<r<a, 7w<0<n

subject to the boundary condition
u(a,d) = f(0), —-w<O<m.
Hint: You will need to require a boundedness condition on the solution at » = 0 :
[u(0,0)] <oo, —m<LOKT
and periodicity conditions on the solution and its derivative:

u(r,—m) = u(r,m)

ou ou
%(Ta —71') - %(Ta 7T)

for r > 0.

Solution: This is a classic problem known as the Dirichlet Problem for Laplace’s Equation in a
Disk. We have to solve

Au=0

in the disk D(a) = {(7,y) € R? | 22 +y? < a?}.
Here the appropriate coordinate system consists of plane polar coordinates r and 6, where x = r cos 6
and y = rsind. The disk above can then be described as D(a) = {(r,0) |0 <r <a, —7 <0 < 7}.

A formal statement of the problem is given below:
(i) The function u(r, 0) must satisfy Laplace’s equation in polar coordinates r, 0, that is,
Au—@—l—l@—%i@—lg T@ +i@_0 (*)
o2 ror  r2002  ror\ or r2 062
for (r,0) € D(a).
(ii) In order to ensure that the solution is single-valued, u(r, #) must satisfy periodicity conditions
at 0 = £, that is,
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for0<r<a.

(iii) In order to ensure that the solution is continuous, u(r,#) must satisfy boundedness conditions
at r = 0, that is,
lim w(r,0) = u(0,0) (finite)

r—0+t

for —m <0 < 7.
(iv) Finally, the solution must satisfy the boundary condition at r = a, that is,
u(a,0) = f(0)
for —m <0 <.

The interior Dirichlet problem for Laplace’s equation on the disk D(a) models, among other things,
the steady-state temperature distribution of a circular plate with top and bottom perfectly insu-
lated, and boundaries held at the temperatures given.

We look for a separable solution, that is, a solution of the form

u(r,0) = R(r)o(0),
and substituting this into Laplace’s equation (x), we obtain

1d*0

rar \"ar Zagz Y

1i< dR)-@+R-

that is,
P?R'-©+rR -0+ R-0"=0.
Separating variables, we have
@// T‘2R” 4y R/
©® R B

where A is the separation constant, and we have two ordinary differential equations:

-2

e The angle problem :
0"+ X0 =0

e The radius problem:
R +rR —AR=0

Note that the periodicity conditions (ii) imply that
R(r)O©(—7) = R(r)O(n) and R(r)®'(—7) = R(r)®'(n)
for all 0 < r < a, and in order to obtain a nontrivial solution, we must have

O(—m) = O(r)
O'(—7) = ©'(m).
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Therefore, © satisfies the regular Sturm-Liouville problem

0"+X0=0
O(—m) = O(m)
©'(—7) = ©'(n),
with eigenvalues and corresponding eigenfunctions given by

)\0 = O, @0(9) = ay, n=>0

2 0,(0) = ap cosnx + by sinnz, n > 1.

Ap =N

The corresponding problem for R,

r’R'+rR —AR=0
is a Cauchy-FEuler equation, and we assume a solution of the form R(r) = r*, so that

R/(r) = sro71 and R'(r) = s(s — 1)r* 72,
and substituting this into the equation we have
s(s = 1)r® +sr® — Arf = 0.

Assuming r # 0, we get the characteristic equation

s(s=1)+s—A=0

that is, s2 = \, and s = £V \.
Now we have to consider two cases:

(a) If n = 0, then A, = 0, and s = 0 is a double root of the characteristic equation, and one
solution to the Euler equation is R(r) = ¢, that is, a constant solution. In order to find a
second linearly independent solution, we consider the original differential equation for A = 0,

integrating,
dR
r—==c
dr 2
so that
dR o C9
dr 7

and a second independent solution is
R(r) = cologr.
The general solution to the radius equation for A\g = 0 is then
Ro(r) =1 + cologr

for0<r <a.
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(b) If n > 0, then A2 = n, and s = +n, and the general solution to the radius equation for
A, = n? is
R, (r) = c3r™ 4+ cqr™"

for0<r <a.

From the boundedness condition (iii), we need
lu(r, 8)] < oo
as r — 07, so we must have co = 0 and ¢4 = 0, and so
R,(r)=1r"
for n > 0.

Using the superposition principle, we write

u(r,0) = Z r" (ay, cosnb + by, sinnb) (%)

n=0

and determine the constants from the boundary condition (iv), so that

flp) =ula,p) = i a" (ay, cosng + by, sinney)

n=0
where
1 /[ 1 ™ 1 T .
w=5- | floyde,  an=—m | flp)eosnpdp,  bo=o | flp)sinngdy,
forn>1.

Substituting these values of a,, and b,, into (xx), we have

I 1 [T = 1 7
u(r,0) = Py fl)dp + Z — f(p)r™ cosnb cosnp dp + Z g f(o)r" sinnb sinnp de
T n=1 -m n=1 T

1 [7 o .n o
=5 - f(‘P)<1 + 2; o (cosn@cosngp—ksmn@smngp)) dp
1 ™ X n
=5 _7T]f(<;0)<1+2n§::1a—(:osn(0—4p)>d<p7
and
1 ™ © n
u(?“,e):%/_Wf(90)<1—I—ZZZ—ncosn(@—gp))dgp (% * *)
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We can evaluate the series inside the integral by noting that
2cosnf cosf = cos(n + 1) + cos(n — 1)6,
and if |b] < 1, then

2 Z b" cosnb cos ) = % Z b cos(n 4+ 1)0 +b Z b cos(n —1)0

n=1 n=1 n=1

ib"cosnﬂ—l—l

n=1

— % [Zb”cosn@—bcos@ +b

n=1

1 S
= (E—i—b)Zb cosnb + b — cos b,

n=1
so that -
[1 — 2bcos O + bQ] Zb" cosnf = bcos — b2,
n=1
and

ib”cosn@— bcosf — b2
— 1 —2bcosh + b2’

Replacing b by " and 9 by 6 — ¢ under the integral sign in (* x %), we have
a

1 " arcos(f — @) —1r?
S 142
u(r, ) o /_7r f(@)( + a? — 2ar cos(0 — @) + r? de

and

_at—r? [T ()
u(r,6) = 27 /_,T a? — 2ar cos(f — @) + r? de (+)

for 0 < r <a, —m < 0 < 7. This is called Poisson’s integral formula for the disk D(a), and gives
the unique solution to the interior Dirichlet problem for Laplace’s equation on the disk.

Exercise 13.10. XXX
Find the solution of the exterior Dirichlet problem for a disk, that is, find a bounded
solution to the problem:

10 ([ ou 1 0%u
IF =0, a<r<oo, —m<O<m

ror\'or) " 12002
u(r,m) = u(r, —m), a<r<oo
ou ou

%(r,w) = %(r, —m), a<r <o

u(a,0) = f(0), —mT <6<
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Solution: A solution to Laplace’s equation in polar coordinates which satisfies the periodicity
conditions is given by

in (Cn cosnf + D, sin n9) },

T

u(r,8) = Ay + By logr + Z {T”(An cosnf + B, sin n9) +

n=1

and in order to satisfy the boundedness condition
lim |u(r,0)| < oo,
r—00

we need Bg = A, =B, =0,forn=1,2,3,--- .
Therefore,

=1
f)=A —(C), 0+ D,, sinnf).
) 0+n§::17‘”( cosnb + smn)
When r = a we have

f0) =wu(a,0) = A0+Z (Cy, cosnb + D,, sinnf),

where
1 ™
A== [ 1@,
=" 1) cosnodo,
D=2 [ 16) sinnods
form=1,2,3---.
Therefore
u(r,0) = % ' f(p)do + % Z (%)n ' f(¢){ cosng cosnf + sinng sinnb} do,
- n=1 -
that is,

u(r,0) = o {1+2Z )" cosn(0 — ¢)} do.

To evaluate the sum we could use the same method as in the previous problem. However, here we
give an alternative method, and set z = %62(9_¢), so that

2" = (%)nem(‘g—@ = (2)"[cosn(0 — @) +i sinn(d — ¢)],

and

1—1—22 "cosn(h — ¢) = Re<1+2iz">.
n=1
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And since [z| = 2 < 1, then

2z 1+2 r? —a?
1+2 (6 — Re( 1 =R = :
+ Z “cosn(8 —¢) = e( +1—;;) e<1—z> a? — 2ar cos(f — ¢) + r?

The solution to the exterior Dirichlet problem for the disk is therefore

B r2—a® [T f(9)
u(r,0) = o7 /_7T a? — 2ar cos(f — @) + r? 4,

fora<r<oo, —-w<0<m.
Notice the similarity to the solution for the interior Dirichlet problem for the disk obtained in the
previous problem.

Exercise 13.11. XXX
Solve Laplace’s equation inside a circular annulus (0 < a <7 < b)

0 ( Ou 1 9%
Au = T@T(TE>+EW=07 a<r<b —m<l<m

subject to the boundary conditions

ou ou

5. (@0 =f(0),  =-(b,6) =g(0),

for —m < 0 < .

Solution: Note that we need to include two periodicity conditions to ensure the solution is single
valued and continuous (and to get the right number of boundary conditions):

ou ou

%(T, _7T) = %(7’, 77)

u(r,—m) = u(r,m) and

fora<r<b.
We assume a solution of the form u(r,0) = ¢(0) - G(r), and substitute this into Laplace’s equation

to get
r d dG 1 @ 1y
G dr o de?r T
We can satisfy the periodicity conditions by requiring that
¢(—m) =¢(r) and  ¢(-7) =¢'(7),

a—z(a,ﬁ) = 0 by requiring G’(a) = 0. and we have two

and we can satisfy the boundary condition

boundary value problems:

dG B B
T%<dr> AMG=0, a<r<b ¢"(0) + \o(0) =0, T<l<m

G'(a) =0 P(—m) = ¢(m)
¢'(—m) = ¢'(m).
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We solve the complete (two periodicity conditions) boundary value problem for ¢ first, again we
consider three cases.
case (i): If A = 0, the general solution to the differential equation ¢ = 0 is ¢() = Af + B, with

¢'(#) = A. The first periodicity condition implies that
—Anr+ B=An+ B,

so that A = 0. The solution is now ¢(#) = B, and the second periodicity condition is also satisfied,
the (nontrivial) solution is ¢(f) = B. In this case, the eigenvalue is Ao = 0 with corresponding
eigenfunction ¢g(0) = 1.

case (ii): If A < 0, then A = —u? where u # 0, and the general solution to the differential equation

¢ — P =01is
() = Acosh 6 + Bsinh u6, with ¢'(0) = pAsinh pf + B cosh pf.
The first periodicity condition implies that
A cosh(—pum) + Bsinh(—um) = Acosh um + Businh ur,
and since cosh pf is an even function and sinh 6 is an odd function, then
2B sinh pym = 0,

so that B = 0. The solution is now ¢(6) = A cosh 6, and the second periodicity condition implies
that
pwAsinh(—pmr) = pAsinh pr,

so that 2uA sinh pm = 0, and so A = 0. In this case we have only the trivial solution ¢(0) = 0, —7 <
0 <m.
case (iii): If A > 0, then A\ = pu? where p # 0, and the general solution to the differential equation

¢+ uPp = 0is
@(0) = Acos puf + Bsin pb, with ¢ (0) = —pAsin ub + pB cos pb.
The first periodicity condition implies that
Acos(—pm) + Bsin(—um) = Acos um + Busin pr,
and since cos pf is an even function and sin pf is an odd function, then
2B sin pum = 0.
The second periodicity condition implies that
—pAsin(—pum) + pBcos(—pum) = —pAsin umw + pB cos p,

so that
2uAsin pm = 0.
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There is a nontrivial solution if and only if at least one of A and B is nonzero, and the above implies
that sin um = 0, that is, um = nx for some integer n. In this case the eigenvalues are )\, = n?, with
corresponding eigenfunctions

¢n(0) = cosnb and dn(0) = sinnf

forn>1.
If n > 1, and we assume a solution to the corresponding equation

d ([ dG 24
o <r—dr> —n"G =0
of the form G(r) = r?®, then

r— (ar®) — n*r® =0,

dr

that is,
2

a?r® —n%r® =0,
so that a = £+n, and we get two linearly independent solutions

Gip(r)=1r" and Gon(r) = in

T

and the general solution is
B
Gn(r) = Ar" + T—n,

forn>1.
If n = 0, the corresponding differential equation for G(r) is

Ti TE =0
dr dr )] 7

and we get two linearly independent solutions
Gio(r) =1 and Goo(r) = logr,

and the general solution is
Go(r) = A+ Blogr,

From the superposition principle, the function

- 1
u(r,0) = Ag + Bologr + Z [r"(An cos nf + By, sinnf) + r_n(C" cos nf + Dy, sin n@)] (1)

n=1

with

B
%(7‘, 0) = 204 Z [m‘”_l(An cosnf + By, sinnf) — %(C’n cos nf + D, sin n@)}



282

satisfies the periodicity conditions and Laplace’s equation in the annular region a < r < b, —7 <
0 <.
We can satisfy the boundary conditions

ou ou

5(6% 9) = f(@) and 5(@ 9) = 9(9)
for ; —m < 6§ < 7 by requiring that
=4 Z [ Y(A,, cosnf + B, sinnf) — a:+1 (Cp cosnb + D, sin n@)}

(1)

Z [ b1 (A, cosnf + By, sinnf) — (Cy, cosnb + Dy, Slnnﬁ)}

b-‘rl

where the coefficients are determined using the orthogonality of the eigenfunctions
{1, cosf, sinf, cos26, sin26, cos36, sin36, ---}

on the interval —m < 0 < .
Multiplying equations (f1) above by the eigenfunction 1 and integrating over the interval [—7, 7],
we obtain

a b [T

5 | f( ) do and By = — B g(0)do,

B
0= 2

that is,

_ﬂ £(6)ad6 — / " 4(0) bdo.

—T

Note that this also follows from the divergence theorem, since

/ 8u(b 0)bdo — / @(a,H)adHZ/ gradu-nds:// Aurdrdd =0,
—r or - or oD D

where D is the closed annular region between the circles r = a and r = b and n is the outward unit
normal to the boundary of D.

Multiplying the equations (f1) by the appropriate eigenfunctions and integrating over the interval
[—7, 7], we get

T _ n—1 1
- f(6)cosnfdo = nm <a A, — ch

w 1

_ n—1
/_7r g(0) cosnfdf =nm | b" A, — ] Cn)
- f(0)sinnf df = nn <a"_an - anl-i-l Dn)

T 1
: _ n—1
/ g(0)sinnfdf =nw | b" "B, — rEs} Dn> ,

—Tr
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and solving for A,,, By, C,, and D,,, we have

1 [ [T n "
An = m _b /_Wg(e) COSTLdeG—a . f(@) COSTLH(IdH:|
1 o , T .
BTL = m _b /_Wg(ﬁ) Slnnebdﬁ—a . f(@) Slnneada]
C—L_"/W (0)cosndbdd — " | F(0)cosndads
" nm(b?n — a?n) _a _Wg o8 —r s
a™b" [ (7 . n [T .
D, = —mr(b2" — ) _a _Wg(H) sinnfbdd — b - f(0)sinnbhadd

forn > 1.

The solution to the Neumann problem for Laplace’s equation in the annulus a < r < b is given by
(t), where the coefficients A,,, By, Cy, and D,, for n > 1 are given above, while

a

Bo=2 [ poyan=" /”gw)de,

T o r T on e

and Ag is an arbitrary constant.



Chapter 14

Method of Characteristics Problems

Exercise 14.1. XX
Assume that u(x,t) is the linear density of particulate matter being carried by the
wind from a dump truck at the Oil Sands at position = 0 and time ¢.

The wind is moving in the positive z-direction with a constant speed of k meters/sec,
and the particulates are condensing out of the air at a rate ru(z,t), where r > 0 is

constant.
The density u satisfies the initial value problem
%(x,t)—i—k%(m,t):—ru(x,t), 0<z<oo, t>0 (%)

u(z,0) = ¢(z), 0<z<o0

where ¢(x) is the initial distribution of the particle density.
Solve this initial value - boundary value problem using the method of characteristics.

Solution: The method of characteristics reduces the partial differential equation to a pair of
ordinary differential equations, one of which is solved for the characteristic curves in the (x,t)-
plane along which the solutions to the other equation are easily found.

We write the partial differential equation so that the partial differential operator resembles a di-
rectional deriative or a total derivative. For example,

ou n Ou dx ()
— o =-Tu
ot  Ox dt ’
where p
x
— =k
dt
The family of curves with differential equation
dx
=k
dt
are the characteristic curves of the partial differential equation (x).
If x = 2(t) is a characteristic curve of (x), then along this curve the equation (#*) becomes

0 0 dx

E(u(m(t),t)) + %(u(ac(t),t)) i —ru(z(t),t),

284
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that is, p
2 (u(a(t),1) = —rula(t). ),

which is an ordinary differential equation for u(x(t),t).

Letting v(t) = u(x(t),t) for t > 0, then v satisfies the ordinary differential equation
dv

E+rv:0,

that is, a first order, linear, homogeneous, ordinary differential equation, and to solve it we multiply
by the integrating factor M (t) = €', to get
d

el rt _ . r
dt(e v)—e

(dv

dt

dv

re"ty = et
+ (5

—i—rv) =0

for all t > 0.
Therefore, e"'v(t) is a constant, so that

that is,

so that

u(x(t),t) = e "p(x(0))
for all t > 0.
Given a point (z,t) in the (z,t)-plane with ¢ > 0, there is exactly one characteristic curve that
passes through this point, namely,

x(t) = kt + z(0),
where
x = z(t) = kt + x(0),
and for this characteristic curve, 2(0) = x —kt. 2(0) is called the anchor point of the characteristic
through (x,t).
Therefore
u(z,t) = e "(x(0)) = e p(x — kt),

and, since (x,t) was arbitrary, then the solution to the initial value problem is given by

u(z,t) = e "p(x — kt)

for 0 < & < oo, t > 0. Finally, we note that e"u(x,t) is constant along the characteristic curves.

Exercise 14.2. X
Use the method of characteristics to solve the initial value problem

0 0
8—7:]4-58—“):6&, —xo<r<oo, t=0
T

w(z,0) = e, —co< <00
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Solution: Let
_y
a7

then along the characteristic curve z(t) = 5t + a, the partial differential equation becomes

dw _Ow  Owds _ 4
ot Odxdt
so that

1
w(z(t),t) = gegt + K

1
where K is a constant, and K = w(x(0),0) — 3 50 that

1 1 1 1 1 2 1
t,t :—3t 0’0__:_3t ’0__:_3t —a__'
w(e(0),1) = 6% +w(@(0),0) - 3 = 2% +w(a,0) - 5 = 3¢+ 2
Given the point (z,t), let £ = 5t + a be the unique characteristic curve passing through this point,

then the anchor point is a = x — 5t and the solution is

1 3t _ 2 1 1 3t —(z—5 2 1
t) = = a” _ = — = (z=5t)* _ —
w(x,t) 3¢ +e 3 = 3¢ +e 3
for —oo < & < oo and t > 0.
Exercise 14.3. X
Use the method of characteristics to solve the initial value problem
dw _ 0w _ <z<oo, t>0
— —r— = —00 < & < 00
ot Ox ’ '
w(z,0) =23 —1, —oo <z < oo

Solution: Let
o,
a7
then along the characteristic curve x(t) = zge™!, the partial differential equation becomes
do_ow owds
dt ot  Ordt
so that
w(z(t),t) = K
where K is a constant, and K = w(x(0),0), so that
w(z(t),t) = w(z(0),0) = w(xg,0) = x5 — 1.

Given the point (x,t), let & = zge ™" be the unique characteristic curve passing through this point,
then g = xe' is the anchor point and the solution is

w(z,t) =xp —1=a3%3 — 1

for —co <z <ooandt>0.
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Exercise 14.4. X
Use the method of characteristics to solve the initial value problem

8Z+382 in 27t <z < t>0

— +3— =sin2rt, —oo0o<z <0

ot oz ’ ’
z2(z,0) =cosz, —o0 <z < 00.

Solution: Let
a7

then along the characteristic curve z(t) = 3t + a, the partial differential equation becomes
dz_8z+8zd3:_ i
dt 0t Ordt
so that )
t),t) = —— 2t + K
z(z(t),t) 5, o8 2m +

where K is a constant, and

1
2(x(0),0) = o + K = cosa = cos(z(t) — 3t),
™
so that )
K= — 3t —.
cos(x(t) — 3t) + 5

Given the point (z,t), let £ = 3t + a be the unique characteristic curve passing through this point,
then the anchor point is a = x — 3t and the solution is

1 1
z(ﬂi, t) = 5 cos 27t + cos(:n — 3t) + oy (*)

for —co <z <ooandt>0.

As a check, we note that for

1 1
z(x,t) = — g cos 27t + cos(z — 3t) + o
we have
% _ 4 27t + 3sin(x — 3t)
5 = Sm2m
and 9
8—; = —sin(z — 3t),
so that 9 5
a—i + 38_; = sin 2mt.
Also,

1 1
z(x,0) = o +cosz + 7

and (x) is a solution to the given initial value problem.
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Exercise 14.5. X
Solve the following first-order equation

0 0

8_j+3x8_5_2t’ —co<xr<oo, t=0

u(z,0) = In(1 + %), —oo < < oo.

Solution: Let
dx 3
— = O
dt ’
then along the characteristic curve z(t) = ae®, the partial differential equation becomes

du _Du dudr
dt ot Oxdt
so that
u(z(t),t) =t* + K

where K is a constant, and K = u(x(0),0) so that
u(z(t),t) = t2 + u(x(0),0) = t* + u(a,0) = t> + In(1 + a?).

Given the point (x,t), let # = ae® be the unique characteristic curve passing through this point,
then the anchor point is @ = ze 3! and the solution is

u(z,t) =t* +1In (1+ xze_&)

for —co <z <ooandt>0.

Exercise 14.6. X
Using the method of characteristics, solve

ow ow
=e¥ —oco<z<oo, t=0

ot o

w(z,0) = f(z), —oo0 <z < o0.

Solution: Let
dx

E:

then along the characteristic curve z(t) = ct + a, the partial differential equation becomes

&

dw 0w Owdr _ ou4) _ a(ctta)
& ot Tera 0 ¢ 7
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so that ) )
D) = — 2ct+2a K= — 2:C(t) K
w(z(t),t) 2ce + 2ce +

1
where K is a constant, and K = w(z(0),0) — %6%(0) so that

R0 0
that is,

1 1 .
w(z(t),1) = 5O + f(a(t) - et) = 2O,

Given the point (z,t), let © = ¢t + a be the unique characteristic curve passing through this point,
then the anchor point is a = x — ¢t and the solution is

1
w(z,t) = 2—629” (1—e ) + f(x —ct)
c
for —oo <z < oo and t > 0.
Exercise 14.7. X
Using the method of characteristics, solve
8w+t8w_1 —o<zr<oo, t=0
ot ox T

w(z,0) = f(x), —oo <z < o0.

Solution: Let
dx _y

i
2
then along the characteristic curve z(t) = B + a, the partial differential equation becomes

dv_ow duds |
dt ot Ox dt ’
so that
w(z(t),t) =t+ K

where K is a constant, and K = w(x(0),0) so that

w(z(t),t) =t + w(x(0),0) =t + f(a).

2
Given the point (z,t), let x = 0l + a be the unique characteristic curve passing through this point,

2
then the anchor is ¢ = z — 5 and the solution is

w(:n,t):t+f<m—§>

for —co <z <ooandt>0.
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Exercise 14.8. X
Consider

Show that the characteristics are straight lines.

Solution: Along the characteristic curve x = z(t) whose differential equation is

dx
= 2u(a(t) 1),

the partial differential equation becomes

d ou dr Ou
(), 0] = St al0),0) + S (1)) = 0,

so that u(x(t),t) = constant = u(x(0),0), and

dx

= 2ulz(t),1) = 2u(2(0),0),

so that

x(t) = 2u(x(0),0)t + z(0) = 2f(x(0))t + x(0)

for t > 0, and the characteristic curves are the straight lines x = 2f(x¢)t + ¢ and intersect the
zr-axis at the point xg.

Exercise 14.9. XX
Consider
0 0
8_1;+ ua—Z—O, —co<x<oo, t=0
with
1 <0
u(z,0) = f(x) =¢1+x/L 0<z<lL
2 z > L.
(a) Determine the equations for the characteristics. Sketch the characteristics.
(b) Determine the solution wu(z,t). Sketch u(x,t) for ¢ fixed.

Solution:

(a) The equations for the characteristics are

x = 2f(x0)t + xo,

where the parameter x( is the intersection of the characteristic with the x-axis for
ro < 00.
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(i) For xzy < 0, we have f(zo) = 1, and the characteristics have the equation:
T =2t + xg.
(ii) For 0 < z¢ < L, we have f(z9) =1+ zo/L, and the characteristics have the equation:
x=2(14 zo/L)t + xo.
(iii) For x > L, we have f(x¢) = 2, and the characteristics have the equation:
r =4t + xg.

The characteristics are sketched below.
t

(b) The solution along the characteristic © = 2f(x¢)t + x¢ is given by
u(z,t) = f(zo),

and considering the cases where zo < 0, 0 < xg < L, and L < g, we have

1 for x <2t
L
u(zx,t) = 2—14:275 for 2t<ax<4t+L
2 for x> 4t+ L.

For a fixed t > 0, the solution is sketched below.
u

i

0 2t 4t + L X
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Exercise 14.10. X
Derive the general solution of the equation
ou ou

(Iaﬁ‘b%:u, a,b;éO

by using an appropriate change of variables.

Solution: Let
a=Ax + Bt and 8 =Cz+ Dt,

where A, B, C, and D are to be determined so as to reduce the partial differential equation to an
ordinary differential equation, which we can then solve.
From the chain rule, we have

ou ou ou
5}4—4455-+(753
ou ou ou

and the original partial differential equation becomes

(@B +b4)2% 4 (D +50) 2

Now let B=—b, A=a,C =0, and D = 1/a, then the equation becomes
ou
L _u=0
a3 "7
and multiplying this equation by e~?, we have
e_ﬁg—g —ePu= 0,
that is,
% (e‘ﬁu) =0,
and the quantity e Pu is independent of 3. Therefore, the solution is
u= f(a)e’

where f is an arbitrary function of a. In terms of the original variables, the solution is

u(z,t) = flax — bt)et/.

Exercise 14.11. X
Solve the partial differential equation on —oo < x < 0o
Ow U _ oy | gint <z<oo, t>0
— +t— = sin —00 < T < 00
ot ox ' ’
w(z,0) =2® +5, —o0o <z < 00.
At the end you might check if your solution really satisfies the above problem.
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2

dz
Solution: Let i t, then along the characteristic curve z(t) = ) + a, the partial differential

equation becomes

o _ou vodr_,
dt ot " owar  THRh

so that
w(x(t),t) =t* — cost + K
where K is a constant, and K = w(x(0),0) + 1, and
w(x(t),t) = t? — cost +w(z(0),0) + 1 = t* — cost 4+ w(a,0) + 1
2

2\ 2
=t? —cost+a’>+5+1=1t>—cost+ <x(t)——> + 6.

2
Given a point (z,t) in the z,t-plane, let © = B + a be the unique characteristic curve passing

2
through this point, then the anchor is a = x — 0l and the solution is

2\
w(a:,t):tz—cost+a2+6:t2_cost+ (m—;) + 6,

that is,
2\ 2
w(x,t) =t* — cost + (m——) +6 (%)

for —co < x < o0, t > 0.

As a check, note that for this function w(z,t) we have

9, 9] t2 t2
a—zf +ta—: = 2t +sint + 2 <x— 5) (—t) + 2t <a;— 5) = 2t +sint.
and it satisfies the partial differential equation, while

w(z,0) = 22 + 5,

and (x) is the solution to the problem above.
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Exercise 14.12.

equation
ou _ o
ot? ox?’
At time ¢ = 0 an initial signal is given of the form

—oco<x<oo, t>0.

a for 0<ax<1
u(z,0) = f(z) =¢ —x+2 for 1<z<?2

0 otherwise
%(m,()):() —00 < T < 00.

(a) Solve the above problem.

(b) Sketch the solution for three times t1, to, t3 with

t1 =0, 0<ty <1, 1 < t3.

(¢) At which time does the signal reach the point T = 117

XXX

The displacement u = u(x,t) of an infinitely long string is governed by the wave

Solution:

(a) D’Alembert’s solution to the wave equation is given by

1 1 et
u(m,t):—[f(x+2t)+f(x—2t)]+—/ g(s)ds,
2 4 Jo—ot
where
T+ 2t if 0<z+2t<1
fla+2)={ —z—2t+2 if l<z4+2<2
0 if z4+2t<0 or x+2t>2,
and
x— 2t if 0<z—-2t<1
fla—2t) =< —x+2t+2 if 1<zx—2t<2
0 if x—2t<0 or x—2t>2,

and g(x) =0 for —oco < x < 0.

(b) We sketch the solution by considering the following 10 regions in the x, t-plane.




— - t 5 =
X+2t=0 X+2t=1 X+2t=2 X—-2t=0

Xx-2t=1

X-2t=2

First note that v = 0 in regions I, IV, and VII.

Region II: 0 < x4+ 2t < 1 and =z — 2t < 0, that is,
2 <r<1l-—2t and r<1-—2t

and the solution in this region is

1 1
u(x,t):i[x+2t+0]:§[x+2t].

Region III: 1 < x + 2t < 2 and o — 2t < 0, that is,
1-2t<z<2-2¢t and r <2t

and the solution in this region is

1 1
u(x,t):i[—w—2t+2+0]25[2—95—215].

Region V: 0 < x — 2t < 1 and = + 2t > 2, that is,
Q<< 1+2t and x>2—2t

and the solution in this region is

u(x,t):%[x—2t+0]:%[x—%].

Region VI: 1 < 2 — 2t < 2 and x + 2t > 2, that is,
1+2t <z <242t and x>2—2t

and the solution in this region is

1 1
u(a:,t)zi[—:n—l—2t+2—|—0]25[2—3:4—215].

295
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Region VIII: 1 <x —2t <2 and 1 <z + 2t < 2, that is,

1+2t<z <242t and 1—-2t<z<2—-2t

and the solution in this region is

[—24+2t+2—2—2t+2] =2 —u.

DO =

u(z,t) =

Region IX: 0 <x —2t <1 and 0 < x + 2t < 1, that is,

A<r<1+2t and —2t<e <]l —2t

and the solution in this region is

1
u(x,t):i[x+2t+x—2t]:x.

Region X: 0 <z —2t <1 and 1 < z + 2t < 2, that is,

A<r<1+2t and 1-2t<ae<2-—2t

and the solution in this region is
1
u(x,t):i[x—2t—x—2t+2] =1-2t.

We sketch the solution for

1 1 1 1
t1:0, 0<t2<1, t3:1’ Z<t4<§, t5:
u
t=t,
AP o 1 2 3 4 X
u
t=t2
2 0 1 2 3 4 X
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u
t=1t3
-2 -1 0 1 2 3 4 X
u
t=t,
-2 -1 0 1 2 3 4 X
u
t=ts
_‘2 ;1 0 ‘1 2 3 4 X

(c) Note that the right-moving signal will reach the point T = 11 when z + 2t = 11, and this

characteristic hits the ¢-axis when ¢t = 5

Exercise 14.13. XXX
Use the method of characteristics to solve the initial value problem for the one-
dimensional wave equation.

Pu  ,0%u

- = =
BrE) c@xz’ co<r<oo, t=0
u(z,0) = f(z), —oco<z<o0

0

8—?(1‘,0) =g(z), —o0 <z < 0.

Solution: Since the wave operator has constant coefficients, then it can be factored as
P L0 (0 9N(D 0\ _ (0 0\(d O
o2~ “ 922 \ot ‘ox)\ot  “ox) " \ot " “ox)\ot  “ox)°

_ (0 _ 9N _9du_ Odu
UT\or T % ) T ot Con

If we let
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and

_ (9, .9, 0w, Ou
YT\t T %9 ) T o T o

where u = u(x,t) is a twice continuously differentiable solution to the one-dimensional wave equa-
tion, we obtain the system of partial differential equations

v v u 0%

o or "o Co
ow  Ow 0w ,0%

ot “ox o Coa?

=0 (1)

=0, (2)

since the second mixed partial derivatives are equal.

We solve equation (1) using the method of characteristics. Let

a7
then equation (1) becomes
dv  Ov dxOv

at " or Cdtor

and along the characteristic curve x(t) = ¢t + k, v is a constant, and
v(z(t),t) = v(z(0),0) = v(k,0) = v(z(t) — ct,0).

Therefore, given a point (xg, tg), the solution along the characteristic curve x(t) — ct = xg —cty = k
is constant and is given by

v(zo, to) = v(z(t),t) = v(2(0),0) = v(k,0) = v(xo — cto,0) = (o — cto)

where ¢ is an arbitrary twice continuously differentiable function of a single variable, and since the
point (xg,ty) was arbitrary, then

ou ou
E(m,t) - ca—x(x,t) =v(x,t) = ¢(x — ct) (3)

for —oco < x < o0, t > 0.

Similarly, we solve equation (2) using the method of characteristics, and given a point (zg, o), the
solution along the characteristic curve x(t) + ¢t = xg + cto = k is constant and is given by

w(zo,to) = w(x(t),t) = w(x(0),0) = w(k,0) = w(xg + cto,0) = Y(xo + cto)

where 1 is an arbitrary twice continuously differentiable function of a single variable, and since the
point (xg,ty) was arbitrary, then

ou ou
o @)+ oo (@,1) = w(a, 1) = Y(@ + ct) (4)
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for —oco < & < 00, t > 0. Now we solve equations (3) and (4) using the method of characterstics.

To solve equation (3), we let d—j = —c¢, and along the characteristic z(t) = —ct + b the differential

equation becomes

du Ou dxdu
PTaT + W or P(x(t) — ),

and letting F'(s) be any antiderivative of ¢(s), we have
uw(z(t),t) = F(x(t) — ct) = F(—2ct + b) (5)
along the characteristic curve z(t) = —ct + b.

x
To solve equation (4), we let O and along the characteristic z(t) = ¢t + a the differential

du Ou dxdu
PTaT + Hor U(a(t) + ct),

and letting G(s) be any antiderivative of 9 (s), we have

equation becomes

u(z(t),t) = G(x(t) + ct) = G(2ct + a) (6)
along the characteristic curve z(t) = ct + a.

Now let (z,t) be an arbitrary point with —oo < 2 < oo, and t > 0, as in the figure,

dx
e if the forward facing characteristic i ¢ passing through (x,t) hits the z-axis at a, then
r—ct=aand 2ct+a=x+ct

d
e if the backward facing characteristic d—j = —c passing through (z,1)

hits the z-axis at b, then =z + ¢t = b and —2ct + b=z — ct

t
(X 1)

AN

a b X

Therefore
u(z,t) = F(x — ct) and u(z,t) = G(x + ct)

where F'(s) is an antiderivative of ¢(s) and G(s) is an antiderivative of ¥(s).

Adding these two equations we get

u(z,t) = = [F(z — ct) + G(z + ct)] (7)

1
2

for —oco < x < o0, t > 0.
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Now, in order to solve the original problem, we solve the following initial value problems, and use
the superposition principle to combine them to get the solution:

82U1 2 82’&1

92 :CW, —oco<x<oo, t=0,
ui(z,0) = f(z), —oco<z <00 (8)
0
%(JE,O):O —o00o <z <00,

and

W:CW, —o0 < T <00, t}O,
ug(z,0) =0, —oo<x<o0 9)
8u2

E(az,O):g(az) —00 <& <00,

the solution to the original problem is then u = uy + us.

For problem (8), we use the initial conditions to write

ui(@,0) = f(@) = 3 [F(@) + G(a)]
so that
F(z) + G(z) = 2f(2),
and 5
U1 C / /
Wzozi [F(m)—G(x)],
so that

F(z) — G(z) = 2K,

where K is an arbitrary constant. Therefore,
2F (z) =2f(x) + 2K and 2G(z) = 2f(z) — 2K,

and the solution to the first problem is

[F(z +ct)+ Gz —ct)] = = [f(z+ct) + f((z — ct)].

N —

1
Uy ($7 t) = 5
For problem (9), we use the initial conditions to write (a different ' and G)

| =

so that G(x) = —F(z), and

8u2

S @,0) = g(2) = 5 [F(2) - G'(a)].

2
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so that cF'(x) — ¢G'(z) = 2¢F'(z) = 2¢(x), and integrating we have
cF(z) = / g(s)ds + 2K,
0

where K is an arbitrary constant. Therefore,

1
- 2

x N 1 1 r ~
/ g(s)ds + K and —G(x)=—=— [ g(s)ds— K
0

F
(z) 2 2 Jo

1
2

and the solution to the second problem is

1 x+ct r—ct 1 x+ct
ug(x,t) = % {/0 g(s)ds —/0 g(s) ds} = %/ t g(s)ds.

The solution to the original initial value problem is therefore

z+ct
[f(:n+ct)+f(3:—ct)]+%/ g(s)ds

NN

u(z,t) = ui(x,t) + ua(z,t) =

for —oco < x < o0, t = 0.

Exercise 14.14. XXX
The following hyperbolic model arises as the equation for the moment generating
function A(s,t) of a stochastic birth - death process

0A 0A
E(S’t) — (s —1)(bs —4(t)) E(s,t) =0 (%)

A(s,0) = s"°

where b denotes a constant birth rate and 6(¢) a time-dependent death rate. Find
A(s,t).

Solution: We use the method of characteristics to solve for A(s,t).
Note that if s = s(¢) is a curve in the ¢, s-plane such that

d

= (s = 1) (bs = (1)), (++)
dt

then from the chain rule, along this curve the partial differential equation (*) becomes

d 0A dt  0A ds

7 AG@) 0] = 5-(s(t).1) - = + 5=(s(1),) - = = 0,

that is,
A(s(t),t) = constant = A(s(0),0) = s(0)"°

and we need only solve the characteristic equation

ds(t)
o =—(s—1)(bs —4(t)) (% * %)
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for the equation of the curve passing through the point (s(0),0).
The differential equation (x x %) can be written as
ds

i (1—s)(bs—6(t)=(1—5)(=b+bs+b—0(t) =(1—s)(b—0(t) —b(1l—s)?

that is,
1 @_b—é(t)_
(1-s)2d 1-s ’
1

1—s(t)

and letting y(t) = , we have

dy

& (b bty = . (1

This is a first-order linear differential equation for y = y(¢) which can be solved using an integrating
factor or the method of variation of parameters. Multiplying by the integrating factor

A(t) = exp (- /0 ‘- 8(r)) d7> ,

I (0)] = ~bAE),

integrating and using the fact that A(0) = 1, we have

we have

AWt = y(0) =b [ A7) ar.

Therefore,

O T s
1—-s(t) 1-s(0) b/OA()d’

and we can solve this equation for s(¢) and obtain an explicit form for the equation of the charac-
teristic curve s = s(t).
However, since

A(s(t),t) = constant = A(s(0),0) = s(0)"°, (t1)
we need to find the anchor point (s(0),0). We solve the above equation for s(0) to get
1

A(t) ¢ ’
1= s(0) +b/0 A(7)dr

and the solution is constant along the characteristic s = s(t), so that

no

A(s(t), 1) = A(s(0),0) = s(0)" = |1 - (F11)

1
A(t) t
0 +b/0 A(r) dr
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where

A(t) = exp <— /0 t (b—8(r)) dT> .

Since the initial value problem

B 1
~1-35(0)

y(0)

has a unique solution, given a point (s,t) in the (s,t)-plane, there exists a unique characteristic
passing through this point with s(0) = sp, and

no

Als, 1) = Also,0) = 50" = |1 = s - (+)
A
T + b/o (1)dr
where .
A(t) = exp <— / (b—5(r)) d7> .
0
This can be simplified somewhat by substituting the expression for A(t), and we find
t no
exp </ (b—4(2)) dz>
As,t) = 1= - : (++)

1is+b/0texp [/:(b—é(z))dz} dr
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Chapter 15

Sturm-Liouville Theory Problems

Exercise 15.1.
Given the differential equation

d*¢
S L N

lowing boundary conditions.
(a) #(0) =0 and ¢(7) = 0.
(b) ¢(0) =0 and ¢(1) = 0.

do do
(c) %(0) =0 and %(L) =0.
(d) $(0) = 0 and Z—i(L) 0.

() fl—i(m — 0 and $(L) = 0.

(f) ¢(a) =0 and ¢(b) = 0 (you may assume that A > 0).

(g) #(0) =0 and %(L) + ¢(L) = 0.

real.

XX

determine the eigenvalues A and corresponding eigenfunctions if ¢ satisfies the fol-

Analyze three cases: A > 0, A =0, A < 0. You may assume that the eigenvalues are

Solution:

(a) If ¢ satisfies the boundary value problem

¢ (x) + Ap(x) =

, 0z

we have to consider three cases.

305
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case 1: If A = 0, the equation is
¢"(x) =0

with general solution
¢p(x)=Ax+ B, 0<z<m.

The first boundary condition gives ¢(0) = B = 0, and the solution is now

The second boundary condition gives ¢(m) = Ar = 0, so that A = 0. In this case the only
solution is the trivial solution ¢(x) =0 for 0 < = < 7.

case 2: If A < 0, then A = —p? where p # 0, and the equation is
¢ (x) = pPd(x) = 0

with general solution
¢(x) = Acosh pux + Bsinh pz.

The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(r) = Bsinhpz, 0<z <7

The second boundary condition gives ¢(7) = Bsinh um = 0, so that B = 0, since sinh pur # 0.
In this case the only solution is the trivial solution ¢(zx) =0 for 0 < x < 7.

case 3: If A > 0, then A = p? where p # 0, and the equation is
¢"(x) + p?e(x) =0

with general solution
¢(x) = Acos px + Bsin px.

The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(x) = Bsinpzx, 0<z <.

The second boundary condition gives ¢(m) = Bsinum = 0, and if B = 0, then again we get
the trivial solution. In this case we have a nontrivial solution if and only if ur = nx for some
integer n, that is, u = n for some integer n.

2 with corresponding eigenfunctions

The eigenvalues are \,, = n
¢n(x) =sinnz, 0<zx <

forn > 1.

(b) If ¢ satisfies the boundary value problem

¢"(x) + Ap(x) =0, 0

N
8

N
—_
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we have to consider three cases.

case 1: If A = 0, the equation is
(b”(x) — O

with general solution
o) =Axr+B, 0<z<l1.

The first boundary condition gives ¢(0) = B = 0, and the solution is now

The second boundary condition gives ¢(1) = A = 0, so that A = 0. In this case the only
solution is the trivial solution ¢(x) =0 for 0 < z < 1.

case 2: If A < 0, then A = —p? where p # 0, and the equation is
¢ (@) — p(x) = 0

with general solution
¢(x) = Acosh px + Bsinh px.

The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(x) = Bsinhpx, 0<z <1

The second boundary condition gives ¢(1) = Bsinh u = 0, so that B = 0, since sinh p # 0.
In this case the only solution is the trivial solution ¢(x) =0 for 0 < =z < 1.

case 3: If A > 0, then A = p? where i # 0, and the equation is

¢(z) + u2(x) = 0

with general solution
¢(x) = Acos px + Bsin px.

The first boundary condition gives ¢(0) = A = 0, and the solution is now

¢(r) =Bsinpz, 0<z<1

N

The second boundary condition gives ¢(1) = Bsinp = 0, and if B = 0, then again we get
the trivial solution. In this case we have a nontrivial solution if and only if y = nx for some
integer n.

The eigenvalues are \, = (n7)?, with corresponding eigenfunctions
¢n(z) =sinnrzr, 0<z<1

forn>1.
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(c) If ¢ satisfies the boundary value problem

d"(z)+Ap(z) =0, 0<z<L
¢'(0) =0,
¢'(L) =0
we have to consider three cases.
case 1: If A =0, the equation is
¢"(x) =0

with general solution
¢(r) =Ax+ B, 0<z<L.

The first boundary condition gives ¢'(0) = A = 0, and the solution is now
¢(r) =B, 0<z<L.

The second boundary condition gives ¢/(L) = A = 0. In this case we have a nontrivial solution
¢(r)=Bfor 0 <ax < L.

case 2: If A < 0, then A = —p? where p # 0, and the equation is
¢"(z) = pPp(x) = 0
with general solution
¢(x) = Acosh pr + Bsinh uz,0 < z < L.
The first boundary condition gives ¢/(0) = uB = 0, so that B = 0, and the solution is now
¢(z) = Acoshpux, 0<x<L.

The second boundary condition gives ¢'(L) = pAsinh uL = 0, so that A = 0, since sinh uL #
0. In this case the only solution is the trivial solution ¢(x) =0 for 0 < z < L.

case 3: If A > 0, then A = p? where p # 0, and the equation is

¢"(z) + 1’p(z) =0

with general solution
¢(x) = Acos px + Bsin px.

The first boundary condition gives ¢/'(0) = uB = 0, so that B = 0, and the solution is now
¢(x) = Acospuxr, 0<x<L.

The second boundary condition gives ¢'(L) = —puAsinuL = 0, and if A = 0, then again we
get the trivial solution. In this case we have a nontrivial solution if and only if uL = nz for

. . nmw .
some integer n, that is, u = A for some integer n.
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N 2
The eigenvalues are \,, = <%> , with corresponding eigenfunctions
nwx
¢n(:13):cos—7£ , 0<z<L

for n > 0.

Note that this includes the constant solution obtained for Ag = 0.

If ¢ satisfies the boundary value problem

d"(z)+Ap(z) =0, 0<xz<L
0) =0,
¢'(L)=0
we have to consider three cases.
case 1: If A = 0, the equation is
¢"(x) =0

with general solution
¢(x) =Ax+ B, 0<z<L.

The first boundary condition gives ¢(0) = B = 0, and the solution is now

The second boundary condition gives ¢'(L) = A = 0. In this case we have only the trivial
solution ¢(x) =0 for 0 < = < L.

case 2: If A <0, then A = —p? where i # 0, and the equation is
¢"(z) — p’p(z) =0
with general solution
¢(x) = Acosh pr + Bsinh uz,0 < z < L.
The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(zr) = Bsinhpz, 0<z < L.

The second boundary condition gives ¢/(L) = pBcoshpul = 0, so that B = 0, since
weosh L # 0. In this case the only solution is the trivial solution ¢(z) =0 for 0 < < L.

case 3: If A > 0, then A = p? where p # 0, and the equation is
¢"(x) + pPe(x) = 0

with general solution
¢(x) = Acospx + Bsinpz, 0<z<L.
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The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(x) = Bsinpx, 0<z<L.

The second boundary condition gives ¢'(L) = puBcosuL = 0, and if B = 0, then again we
get the trivial solution. In this case we have a nontrivial solution if and only if

(2n— )7
L=——
a 2
for some integer n > 1, that is,
_ (@2n—-1)m
=L
for some integer n > 1.
The eigenvalues are
N = (2n — 1)\ >
n — 2L 9
with corresponding eigenfunctions
2n —1
n (T :sinw, 0<z<L
2L

forn>1.
(e) If ¢ satisfies the boundary value problem

¢" () +Mp(z) =0, 0<z<L

¢'(0) = 0,
¢(L) =0
we have to consider three cases.
case 1: If A =0, the equation is
¢"(x) =0

with general solution
¢(r) =Ax+ B, 0<z<L.

The first boundary condition gives ¢'(0) = A = 0, and the solution is now
¢(z) =B, 0<xz<L.

The second boundary condition gives ¢/(L) = B = 0. In this case we have only the trivial
solution ¢(x) =0 for 0 < = < L.

case 2: If A < 0, then A = —p? where p # 0, and the equation is
¢" () — p?e(x) =0
with general solution

¢(z) = Acosh px + Bsinh pz,0 <z < L.
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The first boundary condition gives ¢/(0) = uB = 0, so that B = 0, and the solution is now
¢(z) = Acoshpux, 0<x<L.

The second boundary condition gives ¢(L) = A cosh uL = 0, so that A = 0, since cosh uL # 0.
In this case the only solution is the trivial solution ¢(x) =0 for 0 < =z < L.

case 3: If A > 0, then A = p? where i # 0, and the equation is
¢"(z) + pPp(x) = 0

with general solution
¢(x) = Acospx + Bsinpuz, 0<z < L.

The first boundary condition gives ¢/(0) = uB = 0, so that B = 0, and the solution is now
¢(z) = Acospzr, 0<z< L.

The second boundary condition gives ¢(L) = Acos uL = 0, and if A = 0, then again we get
the trivial solution. In this case we have a nontrivial solution if and only if

(2n— )7
L=—"7
K 2

for some integer n > 1, that is,

_ (2n—-1)rm
H="9r

- <(2n2—Ll)7T>27

with corresponding eigenfunctions

for some integer n > 1.

The eigenvalues are

(2n — 1)z
= -_— <z <
¢n () = cos 5T , 0<z<L
forn > 1.
If ¢ satisfies the boundary value problem
¢"(z) + Ap(z) =0, 0<z<7
¢(a) =0,
p(b) =0
we have to consider three cases.
case 1: If A = 0, the equation is
(b//(x) — O

with general solution
¢(r)=Az+ B, a<z<hb.
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The first boundary condition gives ¢(a) = Aa+ B = 0, so that B = —aA, and the solution
is now
¢(x) =Alx —a), a<xz<b

The second boundary condition gives ¢(b) = A(b —a) = 0, so that A = 0. In this case the
only solution is the trivial solution ¢(x) =0 for a < x < b.

case 2: If A < 0, then A = —p? where p # 0, and the equation is

¢"(x) — pPe(x) =0
with general solution

¢(r) = A + Be ™" a<x<b.

The first and second boundary conditions give the following homogeneous system of linear
equations for A and B

Ael* + Be M =0

Aet’ + Be " =0

and the determinant of the coefficient matrix is

et eTHa

b mib| = eta=b) _ o=nla=b) — 9ginh yu(a — b) # 0,

since a # b. Therefore this system of equations has a unique solution A =0, B = 0, and in
this case the only solution to the boundary value problem is the trivial solution ¢(z) = 0 for
a<z<hb

case 3: If A > 0, then A = p? where p # 0, and the equation is
¢"(z) + p*p(z) = 0

with general solution
¢(x) = Acos px + Bsin px.

The first boundary condition gives
¢(a) = Acos pa + Bsinpa = 0,
while the second boundary condition gives
¢(b) = Acos ub+ Bsinub =0,
and we have the following homogeneous system of linear equations for A and B

Acos pa+ Bsinpua =0
Acos pub+ Bsin ub =0
and the determinant of the coefficient matrix is

cos pa  sin pa
cos ub  sin pb

= cos pa sin pub — sin pa cos pb = sin pu(b — a).
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The boundary value problem has the trivial solution if and only if this determinant is nonzero,
so we get a nontrivial solution if and only if sin u(b—a) = 0, that is, if and only if u(b—a) = nx
for some integer n.

The eigenvalues are

with corresponding eigenfunctions

(bn(x):sinnW(i_a), a<z<b

forn>1.

If ¢ satisfies the boundary value problem

¢"(x) + Ao

&
I

(
(

<

we have to consider three cases.

case 1: If A = 0, the equation is
(ﬁ”((ﬂ) — O

with general solution
¢(x)=Ax+ B, 0<z<L.

The first boundary condition gives ¢(0) = B = 0, and the solution is now

The second boundary condition gives ¢'(L) + ¢(L) = A(1 + L) = 0, so that A = 0. In this
case the only solution is the trivial solution ¢(z) =0 for 0 < z < L.

case 2: If A <0, then A = —p? where p # 0, and the equation is
¢'(x) — 126(x) = 0
with general solution
¢(x) = Acosh pz + Bsinhuzx, 0<z < L.
The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(z) = Bsinh pz.
The second boundary condition gives

@' (L) + ¢(L) = uBcosh uL + Bsinh uL = B cosh uL(p + tanh uL) = 0.
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If we look at the graphs of y = tanh uL and y = —u below

y=tanhpL

we see that p + tanh uL = 0 if and only if g = 0. Therefore, since u # 0, and cosh L # 0,
then the second boundary condition implies that B = 0. In this case the only solution is the
trivial solution ¢(x) =0 for 0 < z < L.

case 3: If A > 0, then A = p? where i # 0, and the equation is

¢"(x) + p?¢(x) = 0

with general solution

¢(x) = Acospx + Bsinpz, 0<z<L.

The first boundary condition gives ¢(0) = A = 0, and the solution is now
¢(x) = Bsin ux.
The second boundary condition gives
¢ (L) + ¢(L) = uBcos uL + Bsin uL = B(pcos uL + sin puL) = 0,
and we have a nontrivial solution if and only if
peos pl +sin pl, = 0,

that is, if and only if
tan pL = —p.

From the graphs of y = tan u and y = —pu below
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y
y=tanplL

-372 | -2 | T2 | 32
1 ; 0 | ! H

we see that there are an infinite number of solutions p,,. The eigenvalues are
An = pi
where tan u, L = —u,, and the corresponding eigenfunctions are
¢n(x) =sinppr, 0<z<L
for n > 1.
Note: Since cot u,L = —i, and u, — 0o as n — 00, then the zeros of the equation
tan p, L = —u, approach the nzeros of cos u, L, and for large n, u, is given approximately by

o @2n—Dr
Fn ™=

Exercise 15.2. X
Use the energy method to show that there are no negative eigenvalues for the

Neumann problem

d2
—¢+)\¢:0, O<x<L

dg?
g,
—(0)=0
g, .
—(L)=0

This means, multiply the equation by ¢, integrate and solve for X\. Does the expres-

sion for \ look familiar?
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Solution: Suppose that A is an eigenvalue of the boundary value problem with corresponding
eigenvector ¢, then ¢ satisfies the differential equation and the boundary conditions, and multiplying
the differential equation by ¢, we have

d2¢

e + A2 =

¢

for 0 <z < L.

Integrating over the interval [0, L], we have

/ ¢d¢2d +/\/0L¢2d:n:0,

and integrating the first integral by parts,

(g g
—/0 <£> da;+)\/0 ¢ dxr =0,

that is, ,
d d brd L
o) F0) 00 L0 - [((5) aren [ das=o
and since %(0) j—i( ) =0, then
L d¢
2
)\/Oqﬁdx—/ <%> z =0,
that is,

[ (&)«

—_— X
A:% >0,
/ $? dx

0

and there are no negative eigenvalues for this boundary value problem. Note that the expression
for A is in fact the Rayleigh quotient for the above Sturm-Liouville eigenvalue problem.

ALTERNATIVE SOLUTION: We can show this explicitly by solving the boundary value problem.
Assuming a solution of the form ¢(z) = "%, we get (r2 + \)e™ = 0, and since €"* is never zero,
the auxiliary equation is 72 + \ = 0.

Now if A < 0, then A = —pu? where p # 0, and the auxiliary equation 72 — y? = 0 has two real
roots, namely vy = p and ro = —pu.

We have two linearly independent eigenfunctions: ¢q(z) = cosh ux and ¢o(x) = sinh pz, and the
general solution to the differential equation is

¢(x) = Acosh px + Bsinh px.

Differentiating, we have
d
d—¢ (x) = pAsinh px + pB cosh pz.
x
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From the first boundary condition

and since p # 0, then B = 0.
From the second boundary condition

¢
dx
and since p # 0 and sinh L # 0, then A = 0 also.

Therefore we have only the trivial solution ¢(z) = 0 on [0, L], and A > 0, that is, the boundary
value problem has no negative eigenvalues.

(L) = pAsinh puL = 0,

Exercise 15.3. XX
Solve the initial value problem

y' +9y = F(t)
y(0) =0
y'(0)=0

where F(t) is the 27-periodic input function given by its Fourier series

Solution: Since the differential equation is a linear equation with constant coefficients, then the
general solution to the nonhomogeneous equation is given by

y(t) = yn(t) + yp(t)

where yp,(t) is the general solution to the corresponding homogeneous equation and y,(t) is any
particular solution to the nonhomogeneous equation.
The solution to the homogeneous equation is

yn(t) = c1 cos 3t + cosin 3t

where ¢; and ¢y are arbitrary constants.
In order to find a particular solution to the nonhomogeneous equation, we solve the equation

y"(t) + 9y(t) = A, cosnt + B, sinnt

for n > 0, where A,, and B,, are the Fourier coefficients of the driving force F'(t), that is, Ay =
BO = 07

Anzi and Bn:(

forn > 1.
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Note that for n # 3, from the method of undetermined coefficients, the n'" normal mode of vibration
is

yn(t) = ay cosnt + by, sinnt
where the constants a,, and b,, are determined from the Fourier coefficients of F'(¢) to be
1 (=1)"
=5 n n2(9—n2)" " n(9—n?)
forn > 1, n # 3.

While for n = 3, the term in the driving force has the same frequency as the natural frequency of
the system, and we have to solve the nonhomogeneous equation

y4 (t) + 9ys3(t) = Az cos 3t + By sin 3t.
In this case the method of undetermined coefficients suggests a solution of the form
y3(t) = t(as cos 3t + b sin 3t).

In order to determine the constants ag and bz, we substitute this expression into the differential

equation
Y4 + 9y3 = Agcos 3t + B3 sin 3t
to obtain B )
3 3
a3 = —— and by = —.
’ 6 °7 6

The particular solution to the nonhomogeneous equation can then be written as

1 -nm . t 1 1.
yp(t) = Z (m cosnt + msmnt) + 6 <_§ cos 3t + §SID37§> ,

n=1

n#3

and the general solution to the nonhomogeneous equation is

[e.9]

t+ =" t) 42 L 3t+1 in 3t
cosn ——=_SInn — —— COS — S1n
) 6\ 3 9

[e.e]
y(t):clcos3t—|—028in3t+1;< -

n;3

and the constants ¢; and ¢y can now be evaluated using the initial conditions y(0) = y'(0) = 0.

n2(9 — n?)

Applying the initial conditions, we find

o0 o0
1 1 I (-1
“ ;n2(9—n2) e 2T g 3;9—712
n#3 n#3
Exercise 15.4. XXX

Find the eigenvalues and eigenfunctions of the regular Sturm-Liouville problem
(x?’X')/—i—)\xX:O l<zx<e

X(1) =0
X(e)=0
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Solution: Let X = —, then X' = — so that 23X’ = 22Y’ — 2V, and

Y Y’
x x x?’

(a:gX')' = (azxY')/ ~Y —2Y' =2Y’ —i—a;(a;Y')/ —-Y —2Y' = a:(xY')/ -Y.
Therefore the original boundary value problem is equivalent to the following problem:
(:nY’)’+%Y:0 l<z<e

Y (1) =0
Y(e)=0

where pp = A — 1.
Now let z = ! and Y (t) = Y ('), then

dY dY dt 1dY
dr ~ dt de =z dt’
that is,
dy dYy
‘T% = %
Also,

d( dy\ d/dv\dt 14V _ d%Y
dx x dt?

Pdr ) T dat\dt Jdz "z der a2

and therefore g iy
— |z — +BY:O for 1<z<e
dx dx T

if and only if R

2
e‘tg—l—e_t,uY:O for 0<t<1

dt?
So we have the equivalent regular Sturm-Liouville problem
S
— Y=0, 0<t<l1
7 TH , <t<
Y(0)=0
Y(1) =0

272, and eigenfunctions

with eigenvalues p, =n
Y, (t) =sinnat, 0<t<1

forn=1,2,3,---.
The eigenvalues for the original problem are therefore

Ap =14 n?7%
and the corresponding eigenfunctions are
1
Xn(x) = — sin(nrlogz), l<z<e
x

form=1,2,3,---.
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Exercise 15.5. X
Solve the eigenvalue problem

i Ap =0

&z T

subject to the periodicity conditions

d¢
dx

_d¢

#(0) = ¢(2m) and (0) = T (2m).

Solution: Again, we consider three cases.
case 1: If A = 0, then the equation is ¢” = 0 with general solution ¢(z) = Az + B. From the first
periodicity condition ¢(0) = ¢(27) we have

#»(0)=A-0+B=A 21+ B,

so that 2rA = 0, and A = 0. The solution is now

The second periodicity condition ¢'(0) = ¢(27) holds automatically, since
¢'(0) = 0 = ¢'(2m).
Therefore A\g = 0 is an eigenvalue with corresponding eigenfunction
do(z) =1, 0<x<2m.

case 2: If A < 0, then A = —pu? where p # 0. The differential equation is ¢” — u2¢ = 0 with general
solution
¢(x) = Acosh ux + Bsinhpz, 0<z <27

From the first periodicity condition
¢(0) = A = Acosh 2wy + Bsinh 2rp = ¢(27),
while from the second periodicity condition
#'(0) = uB = pAsinh 2y + pB cosh 2t = ¢/ (27).
We have the homogeneous system of linear equations for A and B

(cosh2mp — 1) A +sinh 27 B = 0
sinh 27y A + (cosh 2 — 1) B = 0,

and the determinant of the coefficient matrix is

cosh2mp — 1 sinh 27 p

sinh 27 cosh 2wy — 1| 2(1 — cosh 27 ) 4sinh” wp # 0
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since 7 # 0, and this system has only the trivial solution A = B = 0. In this case the boundary
value problem has only the trivial solution ¢(x) = 0 for 0 < =z < 2.
case 3: If A > 0, then A\ = p? where p # 0, and the differential equation is ¢” + ¢ = 0 with
general solution

¢(x) = Acos px + Bsinpz, 0<z < 27.

From the first periodicity condition
»(0) = A = Acos2mp + Bsin2wu = ¢(27),
while from the second periodicity condition
#'(0) = uB = —pAsin2wp + pB cos 2 = ¢/ (27).
We have the homogeneous system of linear equations for A and B
(1 —cos2mp) A+ sin2ru B =0 (%)

—sin2rp A+ (1 — cosh2mp) B =0,

and the determinant of the coefficient matrix is

1 —cos2mpu sin 27 .9
=2(1 —cos2 =4
—sin27p 1 —cos2mp ( €08 27j1) ST

and this system has a nontrivial solution if and only if this determinant is zero, that is, if and only
if sin? mp = 0, that is if and only if 7 = n7 for some integer n.
In this case the boundary value problem has a nontrivial solution if and only if u = n for some
integer n. The eigenvalues are

An = N% - n27
forn>1.

For these eigenvalues the coefficient matrix in (%) becomes the zero matrix, and both coefficients
are undetermined. Hence for each n > 1, we have two linearly independent eigenfunctions:

$1n(z) = cosnx and ¢an(x) = sinnx

forn>1.
Thus, the solution to this eigenvalue problem has eigenvalues

Ap =1

with corresponding eigenfunctions
{ cos nx, sinnx }

for n > 0.

Exercise 15.6. g

Assume that f(z) is an even function and g(z) is an odd function. Show that the
set of functions {f(x),g(x)} is orthogonal with respect to the weight function

w(z) =1

on any symmetric interval [—a, a] containing 0.
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Solution: We have

a 0 a
[ rageris = [ @@ e+ [ @) ds

—a

t=—zx

zi/af@¢m@4)ﬁ+i/af@ﬂ%xﬁh
0 0

:_/Z@Mwﬁ+/ﬂuw@wx
0 0

=0,

and therefore f and g are orthogonal on the symmetric interval [—a,a] with respect to the weight
function w(z) = 1.

Exercise 15.7. . X
Show that the set of Laguerre polynomials {1, 1—x, 3 (2—4z+ x2)} is orthogonal

with respect to the weight function

w(z)=e

on the interval [0, 00).

Solution: This problem can be solved by pairwise integration of the functions with the weight
function e~*. Since this is quite tedious, we give a more elegant method using the gamma function.
Recall that for n > 0 we have

o
F'n+1) = / 2"e " dx = n!,
0
and therefore

[ee]
<1,1—w>:/ (I1—z)e*dx=0—1!=0,
0
1 , 1
<L52-dr+a’)>=00-2-145-A=1-2+1=0

and finally,

1 1 1
<1—x,§(2—4w+$2)>:< 1,5(2—41’+ZE2)>—<:L',§(2—41’—|-:L'2)>

3!
—0—(11—2.21 4=
0- (1-2243)

= —144-3

=0,
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1
and the set of Laguerre polynomials < 1, 1 — x, 5(2 —4x + wz)} forms an orthogonal set on the

interval [0, 00) with respect to the weight function w(x) = e™*.

Exercise 15.8. . X
Is the set of functions {5(2 —4x + x?), —12z + 83:3} orthogonal with respect to

the weight function
w(z) =€~

on the interval [0, 00)?

—T

Solution: These functions are not orthogonal with respect to the weight function w(x) = e~* on
the interval [0, c0), in fact,
1
<8w3—12x,§(w2—4w+2) >=2<2z—3z,2%> -4z +2>
[e.9]
= 2/ (223 — 3x) (2% — 4z + 2)e " dx
0
oo
= 2/ (225 — 82t 4 23 + 1222 — 62)e % dx
0
=2[2-5!-8-41+31+12-21 —6-1]]
=2-72=144.
Exercise 15.9. g
Given the boundary value problem
(1 —22)y" — 2zy’ + (1 + Azx)y =0
y(=1) =0
y(1) =0,
on the interval [—1, 1]. Put the equation in Sturm-Liouville form and decide whether
the problem is regular or singular.
Solution: We can rewrite the boundary value problem in the form
(1 —2?)y) + (1 + )y =0
y(=1) =0
y(1) =0
and here p(z) = 1 — 22, p'(z) = —2z, ¢(z) = 1, o(x) = z are all continuous on the interval [—1, 1].

Also, ¢c; =dy =1 and co = ds = 0.
However, p(z) = 0 at the endpoints of the interval [—1,1], and o(0) = 0, so this is a singular
Sturm-Liouville problem.
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Exercise 15.10. X
Find the eigenvalues and eigenfunctions of the periodic eigenvalue problem

y'+ iy =0

y(=m) = y(m)

y'(=m) =y'(m).

Solution:
Case 1: If A = 0, then the equation y” = 0 has general solution y(x) = Az + B with y' = A. The
first periodicity condition gives

—Ar+B=Anr+B

so that A = 0. The second periodicity condition is then automatically satisfied, so there is one
nontrivial solution in this case. The eigenvalue is A = 0 with corresponding eigenfunction yg = 1.

Case 2: If X\ < 0, say A = —pu? where u # 0, then the differential equation becomes 3" — p?y = 0,
and has general solution y(z) = A cosh px + B sinh ux with y' = pA sinh px + pB cosh px. The first
periodicity condition gives

A cosh pum — Bsinh ym = A cosh pum + Bsinh u,

since cosh px is an even function and sinh px is an odd function. We have 2B sinh ur = 0, and since
sinh pum # 0, then B = 0. The solution is then y = A cosh pz, and the second periodicity condition
gives

—pAsinh ur = pAsinh pr,

so that 2uAsinh pr = 0, and since p # 0, then sinh um # 0, so we must have A = 0. Therefore,
there are no nontrivial solutions in this case.

Case 3 If A > 0, say A = pu? where p # 0, the differential equation becomes y” + p?y = 0, and has
general solution y(z) = Acos pux + B sin pz, with y/(x) = —Apsin pz + B cos px.

Applying the first periodicity condition, we have
y(—m) = Acos um — Bsin um = Acos um + Bsin ur = y(m)

so that 2B sin um = 0.

Applying the second periodicity condition, we have
y'(—7) = Apsin pur + B cos um = — Apsin um + B cos ur = o' ()
so that 2A sin um = 0. Therefore, the following equations must hold simultaneously:

Asinur =0
Bsinur =0
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In order to get a nontrivial solution, we must have either A # 0, or B # 0, and if the equations
hold, we must have sin um = 0. Therefore, ;4 must be an integer, so that the eigenvalues are

A = p2 = n?

forn=1,2,3..., and the eigenfunctions corresponding to these eigenvalues are sin nx and cosnx
form=1,2,3....
The full set of orthogonal eigenfunctions for the above periodic eigenvalue problem is

{1, cosnz, sinnz;n=1,23,... }

for0 <z <.

Exercise 15.11. XX
Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

y'+Ay=0
y(0) +4'(0) =0
y(2m) = 0.

Solution:
Case 1: If A = 0, then the equation y” = 0 has general solution y(x) = Az + B with y' = A. The
first boundary condition gives

B+A=0

so that A = —B. The second boundary condition gives
2tA+B =0

so that (2r —1)A =0, and A = —B = 0, so there are no nontrivial solutions in this case.

Case 2: If X\ < 0, say A = —pu? where p # 0, then the differential equation becomes 3" — p?y = 0,
and has general solution y(z) = A cosh px + B sinh ux with y' = pA sinh px + pB cosh px. The first
boundary condition gives

A+puB =0

so that A = —uB. The second boundary condition gives

Acosh2mp + Bsinh2rp =0

and since cosh 27 # 0, then
B(tanh 2mp — p) =0,

and in order to get nontrivial solutions we need

tanh 2wpu = p.
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The graphs of f(u) = tanh 27p and g(p) = p intersect at the origin, x4 = 0, and since

lim tanh2mp =1 and lim tanh27p = —1,
HU—>00

H—>—00

and
f1(0) =2m > 1=4/(0),

they intersect again in exactly two more points p = +pug, where pg is the positive root of the
equation tanh 27y = u. There is one nontrivial solution in this case, with eigenvalue A\ = —(ug)?
and the corresponding eigenfunction is

sinh pox — o cosh ppx.

Case 3: If A > 0, say A = p? where p # 0, then the differential equation becomes y" + p?y = 0,
and has general solution y(z) = Acos pz + Bsinux with y' = —pAsin px + pB cos px. The first
boundary condition gives

y(0) +y/(0) = A+ uB =0

so that A = —uB. The second boundary condition gives
y(2m) = Acos2mp + Bsin2mp = 0,

and so
B [sin 2wy — pcos 2mu) = 0,

and the eigenvalues are \, = p2, where p, is the n'™ positive root of the equation tan 27y = u
(which has an infinite number of solutions p,, n =1,2,3,...).
The corresponding eigenfunctions are

Ypn = SIN by T — [hy, COS Up T

forn=1,2,3,....
Exercise 15.12. XXX
Show that the boundary value problem
y' =y =0
y(0) +4'(0) =0
y(1) +y'(1) =0

has one positive eigenvalue. Does this contradict the Theorem below?

Theorem. The eigenvalues of a regular Sturm-Liouville problem are all real and
form an increasing sequence

M <A< A3< -

where \,, — oo as n — oo.
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Solution:
Case 1: If X = 0, the differential equation y” = 0 has general solution y = Ax + B, with 3/ = A.
Applying the first boundary condition, we have

B+ A=0,
so that B = —A. Applying the second boundary condition, we have
A+ B+ A=0,

so that B = —2A, and therefore B = 2B, and B = A = 0. Therefore, there are no nontrivial
solutions in this case.

Case 2: If X < 0, say A = —p? where p # 0, the differential equation becomes y” + p?y = 0 and
has general solution

y = Acos uzr + Bsin uzx, with y' = —pAsin px + pB cos .
The first boundary condition gives

y(0) +y(0) = A+uB =0

so that A = —uB. The second boundary condition gives

y(1) + 1/ (1) = Acosu + Bsinpy — pAsin pu + puBcos pu = 0,

that is,
(cosp — psin ) A + (sinp + pcos ) B = 0.

The system of linear equations for A and B

A+puB =0
(cos pp — psinpu)A + (sinp + peos u)B =0

has nontrivial solutions if and only if the determinant of the corresponding coefficient matrix is
zero, that is,
(1+ p?)sinp =0,

2 with corresponding

that is, if and only if siny = 0. The eigenvalues are A\, = —(un)? = —n
eigenfunctions

Ypn, = SINNT — N COS NT

form=1,2,3,....
Case 3 If X > 0, say A\ = p?, the differential equation becomes y” — p?y = 0 and has general
solution

y = Acosh ux + Bsinh px, with y' = puAsinh px + pB cosh .

The first boundary condition gives

y(0) +y(0) = A+uB =0
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The second boundary condition gives

y(1) +9'(1) = Acosh pu + Bsinh p + pAsinh y + pBcosh = 0,
that is,
(cosh p + psinh p) A + (sinh g + pcosh p) B = 0.
The system of linear equations for A and B

A+puB=0
(cosh p + psinh ) A + (sinh g + pcosh u) B =0

has nontrivial solutions if and only if the determinant of the corresponding coefficient matrix is
zero, that is,
(1 — p?)sinhp =0,

and since sinh p # 0, the system has nontrivial solutions if and only if 1 — u? = 0, that is, if and
only if = +1.
Therefore, there is only one positive eigenvalue, namely

A= (£1)2 =1,

with corresponding eigenfunction
y = sinhx — cosh .

Note: Here the weight function is o(z) = —1 < 0, and the problem is not a regular Sturm-Liouville
problem, and so this does not contradict the Theorem, since the Theorem does not apply. We can,
however, redefine the eigenvalue as A = —A, then the problem becomes a regular Sturm-Liouville

problem and the Theorem does apply. According to the above computations we get for A the
eigenvalues —1, and n? forn =1,2,....

Exercise 15.13. X
Show explicitly that there are no negative eigenvalues for the boundary value prob-
lem
d2
—f+)\¢=0, 0<x<L
dx
do
—(0) =0
70
do
—(L)=0
25
Hint: Multiply the equation by ¢ and integrate.

Solution: Following the hint, we can show this using the differential equation and the boundary
conditions. Suppose that A is an eigenvalue of the boundary value problem with corresponding
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eigenvector ¢, then ¢ satisfies the differential equation and the boundary conditions, and multiplying
the differential equation by ¢, we have

d*¢ 2
63 + A8 =0

for 0 <z < L.
Integrating over the interval [0, L], we have

L d2 L
/ ¢—‘fda;+A/ $*dx =0,
0 dx 0

and integrating the first integral by parts,

dqb L L d¢ 2 L ) B

¢%0—/0 (E) d:n—l—)\/OQde—O,
that is,

do do brdo? by
o) P8 =00 0 - [((5) doea [ dan=o.
and since %(0) = %(L) =0, then
L L d¢ 2
2 _
/\/Oqu:E—/O (E) dr =0,

that is,

L d¢ 2
Jo ()

A=20 NS >,

L
/ 2 dx
0

and there are no negative eigenvalues for this boundary value problem.

Alternatively, we can show this by solving the boundary value problem. Assuming a solution of

the form ¢(x) = €™, we get (r? + \)e"™ = 0, and since €™ is never zero, the auxiliary equation is
2 _

r +A=0.

Now if A\ < 0, then A\ = —u? where p # 0, and the auxiliary equation 72 — 2 = 0 has two real

roots, namely r; = g and ro = —p.

We have two linearly independent eigenfunctions: ¢1(z) = cosh pz and ¢o(x) = sinh pz, and the

general solution to the differential equation is

¢(x) = Acosh px + Bsinh pz.

Differentiating, we have
d
d—¢ (x) = pAsinh px + pB cosh pz.
x
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From the first boundary condition

do
—(0)=uB =0
7,0 =n ,
and since p # 0, then B = 0.
From the second boundary condition
d
ﬁ(L) = pAsinh puL =0,

and since p # 0 and sinh uL # 0, then A = 0 also, so if A < 0, we have only the trivial solution
¢(z) = 0 on [0, L]. Therefore we must have A > 0, that is, the boundary value problem has no
negative eigenvalues.

Exercise 15.14. X
Consider the non-Sturm-Liouville differential equation

d*¢ d¢

w aF (X(ZI))% aF [)\,6(1’) SN ’Y(m)]gb =0.

Multiply this equation by H(z). Determine H(x) such that the equation may be
reduced to the standard Sturm-Liouville form:

2 [ %] + Doto) +a@ls =0

Given a(x), 5(x), and y(z), what are p(z), o(x), and g(x)?

Solution: Multiplying the differential equation by H(z) we have

d2 d
H—¢+aH—¢+/\BH¢+7H¢:O,
dx? dx

and we want to determine H so that the first two terms are an exact derivative, that is,

d dé 26 dé
il Pl_gl? )2 e
dx [p(m)daj} az T
that is,
d*¢  dp(x) dp d*¢ d¢
itk 4 S N
P(@) dz? + dr dz dx? ta dx

Thus, we want
p(x)=H(z) and  p'(z)=a(x)H

so that H(z) satisfies the differential equation

If we take
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then the differential equation is in Sturm-Liouville form

% [p(x)%] + [Ao(z) +q(2)]¢ = 0.

where

p(z) = exp ( / a(z) dw) . q(z) = y(z) exp ( / a() dx) . o(z) = B(z) exp ( / a() dx) .

Note that p(z) > 0 and o(x) > 0 provided that g(x) > 0.

Exercise 15.15. X
For the Sturm-Liouville eigenvalue problem,
d2
—¢+>\¢:0, O<x<L
dz?
d¢
—(0)=0
dx( ) Y
¢(L) =0,

verify the following general properties:
There are an infinite number of eigenvalues with a smallest but no largest.

(a
(

)

b) The n'" eigenfunction has n — 1 zeros.

(¢) The eigenfunctions are complete and orthogonal.
)

(d) What does the Rayleigh quotient say concerning negative and zero eigenval-
ues ?

Solution:

(a) Assuming that the eigenvalues are real, we have to consider the three cases when A = 0, A <0,
and A > 0.

case 1: If A = 0, the general solution to the differential equation ¢”(z) = 0 is ¢(z) = Az + B,
with ¢/(z) = A, and applying the first boundary condition ¢/(0) = 0, we have A = 0, and the
solution is ¢(x) = B for 0 < x < L. Applying the second boundary condition ¢(L) = 0, we
have B = 0, and the only solution in this case is the trivial solution ¢(z) =0 for 0 < z < L.
Therefore A = 0 is not an eigenvalue.

case 2: If A\ < 0, then A\ = —p? where p # 0, and the general solution to the differential
equation ¢ — p%¢p =0 is

¢(x) = Acosh px + Bsinh ux with ¢'(z) = pAsinh pz + pB cosh px.
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Applying the first boundary condition ¢/(0) = uB = 0 implies that B = 0, and the solution
is now

¢(x) = Acosh pz
Applying the second boundary condition ¢(L) = 0 implies that A cosh L = 0, so that A = 0,
and in this case we have only the trivial solution ¢(z) =0 for 0 < = < L.

case 3: If A > 0, then A = p? where ;1 # 0, and the general solution to the differential
equation ¢’ 4+ ¢ =0 is

¢(z) = Acos puxr + Bsin px with ¢ (z) = —pAsin px + puB cos px.

Applying the first boundary condition ¢’'(0) = 0 implies that B = 0, so that B = 0, and the
solution is now

¢(x) = Acos px
Applying the second boundary condition ¢(L) = 0 implies that AcospuL = 0, and if A =0
we get only the trivial solution. The boundary value problem has a nontrivial solution if and
only if cos uL = 0, that is, if and only if uL = (n — %)71' for some integer n > 1, and therefore
the eigenvalues are

A — <(2n—1)7r>2

n = 2L

with corresponding eigenfunctions

2n—1)mwx
¢n(x) = cos ( 2L)

forn=1,2,....
The eigenvalues are therefore ordered as
D<M < < <A<,

and there are an infinite number of eigenvalues with the smallest one being \; = 4LL25, but
there is no largest eigenvalue.

For n > 1, the eigenfunction ¢,, is given by

2n—1)mwx
¢n(x) = cos ( 2L)

for 0 < z < L. Note that
: 2n—1)mw
dn(0) =1 while ¢n(L) = cos % =0,

and all the zeros of ¢, occur in the interval (0, L].

Also, ¢ (z) = 0 exactly when
2n—1)rz _ (2k—1)7w

2L~ 2
for 1 < k < n, that is,
= <2k—1> I
— \2n—-1
for 1 < k < n, and the eigenfunction ¢,,(z) = cos W has exactly n zeros in the interval

(0, L], that is, ¢, (x) has exactly n — 1 zeros in the open interval (0, L).
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(¢) From Dirichlet’s theorem we know that every f in the linear space of all piecewise smooth

functions on [0, L] has a Fourier series expansion in terms of the eigenfunctions, that is, the
eigenfunctions form a complete set in the linear space PWS|0, L]. The eigenfunctions form
what is usually called a Schauder Basis for the linear space PWS|0, L].

Finally, we note that

/OL O () Pp(x) do = /OL Ccos

1 with m # n, and the set of eigenfunctions forms an orthogonal set.

(2m—1)mx

2n—1)7x
- ( )z

5T r=0

COS

for m,n >

Using the boundary conditions
¢'(0) =0 ¢(L) =0

for the regular Sturm-Liouville problem above, we can write the eigenvalues in terms of the
corresponding eigenfunctions as follows
/ e

_/m

and

and clearly A, > 0

If A\g = 0 is an eigenvalue then

/<z>o
" o

and then ¢)(z) =0 for 0 < z < L, and ¢o(z) is a constant, and then ¢o(L) = 0 implies that
¢o(x) =0 for 0 < x < L, which is a contradiction, and therefore A\g = 0 is not an eigenvalue.

Exercise 15.16. X

Show that A > 0 for the eigenvalue problem

2

Zer(,\ ?)¢p=0, 0<z<l1
with ié dé

d:v( )=0 and d:v( ) =0.

Solution: This is a regular Sturm-Liouville problem with

and
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for 0 < x < 1, and from the boundary conditions

and the Rayleigh quotient reduces to

1
/0 [¢/($)2 + 3:2¢(3:)2] dx

/01 o(x)? dx

If A =0 is an eigenvalue and ¢ is the corresponding eigenfunction (and is thus not identically zero
on the interval [0,1]), then

A= R(¢) = >0,

and all of the eigenvalues are nonnegative.

1
/ (6 (2)? + 2o (2)?] da
OZR(¢0) = =0 1 ’
/0¢0(33)2d33

assuming that ¢y and ¢{, are continuous on the interval [0, 1], this implies that

¢p(x)* =0  and  2’¢o(z)’ =0

for all z € [0,1], and this implies that ¢o(x) = 0 for all € [0, 1], which is a contradiction. Therefore
Ao = 0 is not an eigenvalue.

Exercise 15.17. X
Give an example of an eigenvalue problem where there is more than one eigenfunction
corresponding to an eigenvalue.

Solution: Consider the boundary value problem with periodicity conditions as given below.

2

%4—/\@25:0, —r<r<mT
P(—m) = ¢(m)

do 9

dx (=m) = dx (m).
The eigenvalues are A\, = n? with corresponding eigenfunctions
¢n(z) = cosnx and Y (z) = sinnx
for n > 0.

Therefore there are two linearly independent eigenfunctions for each eigenvalue A, for n > 1. For
Ao = 0, there is only one eigenfunction, namely, ¢o(z) =1 for —7 < = < 7.

Note that the periodicity conditions given here are not boundary conditions of Sturm-Liouville type,
they are mized boundary conditions, in the sense that each contains the function or its derivative
evaluated at both endpoints of the interval.



Exercise 15.18. XX
Consider a fourth-order linear differential operator,
d4
T dat

(a) Show that u L(v) — v L(u) is an exact differential.
(b) Evaluate
/01 [uL(v) —v L(u)] dz
in terms of the boundary data for any functions v and wv.
(c) Show that
/01 [u L(v) —v L(u)] dz =0
if w and v are any two functions satisfying the boundary conditions
$0)=0  41)=0

do B dqu B
%(0) =0 @(1) =

(d) Give another example of boundary conditions such that
1
/ u L(v) — v L(w)] dz = 0.
0

(e) For the eigenvalue problem below using the boundary conditions from (c)

4

%Jr)\emqﬁzo, O<x<l,
9(0)=0  #(1)=0

do d%¢

E(O) =0 @(1):0,

show that the eigenfunctions corresponding to distinct eigenvalues are orthog-
onal. What is the weight function ?

Solution:
(a) We consider
ww™® = (u") — " = (w") — (W) +u"",
and by symmetry,

Uu(4) _ (Uu///)/ N (v/u//)/ + v//u//7

335
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and subtracting (xx) from (%) we have
uL(v) — vL(u) = (w"” —vu" —u'v" + fu'u”)/,
and uL(v) —vL(u) is an exact differential.

We have

1 1
/ [uL(v) — vL(u)] dz = [un” — vu" — u'v" 4+ v'u"]
0 0

= w1 (1) —v(1)u" (1) — /()" (1) + o' (1)u" (1)
—u(0)v"(0) + v(0)u”(0) + u'(0)v"(0) — ' (0)u” (0).
If w and v are any two functions satisfying the boundary conditions
$(0) =0, ¢(1) =0,
¢'(0)=0, ¢"(1)=0.
From part (b) each of the first four terms contains either u(1), v(1), «”(1), or v”(1), each of

which is 0, while each of the last four terms contains either u(0), v(0), u/(0), or v/(0), each
of which is also 0.

Another set of boundary conditions for which

L
/0 uL(v) — vL(u)] dz =0
is given by
S0)=0, &(1)=0,
SO =0, $"1)=0.

Let (An, &) and (A, ¢p) be distinct eigenvalue - eigenfunction pairs satisfying the boundary
value problem

d4
—¢+Aew¢ =0, O<z<l,
dazt

¢'(0) =0, ¢"(1)=0,

then we have

1
0= / SnL(6m) — OmL(dn) da
0

1
B /0 [(bn (_)‘mex(bm) - ¢m (_)‘nex(b")] dx

1
- ()\n - )\m)/o ¢n¢m6x dz
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and if A\, # A, then
1
/ Ondme” dz =0
0

and ¢, and ¢, are orthogonal on the interval [0, 1] with respect to the weight function

o(x) =e"

for x € [0,1].

Exercise 15.19. X
Let u(z) = Jo(ax) and v(x) = Jo(Sz).

(a) Show that zu” + u' + o?zu = 0 and xv” + v’ + B2xv = 0.
(b) Show that [z (u'v — v'u)]" = (6% — a?)zuv.

(c) Show that

(32— a?) /:EJo(aa:)Jo(ﬁ:E) dz = z [aJy(az)Jo(Bz) — BJy(Bz)Jo(ax)] .

This is one of a set of formulas called Lommel’s integrals.

(d) Show that if o and 8 are distinct zeros of Jy(z), then

1
/0 xJo(ax)Jo(Bx) dx =0

so that Jy(ax) and Jy(Bx) are orthogonal on the interval [0, 1] with respect
to the weight function o(z) = x.

Solution:
(a) Since u(z) = Jo(ax) and v(x) = Jo(Bz) are solutions to Bessel’s equation of order zero, then
(zd/(2))" + o?zu(z) =0  and (zv'(2))" + BPzv(z) =0,
that is,
zu(z) + () + ru(z) =0  and  x’(2) + ' (2) + fPav(z) =0

for 0 <z <1

(b) From part (a), we have
zu (z)v(x) + o' (z)v(z) + oPru(z)v(z) =0

and
20" (z)u(z) + ' (x)u(z) + f2zv(z)u(z) =0,
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and subtracting the second equation from the first, we have

that is,

for0 <z < 1.

(c) Integrating this last expression, we have an indefinite integral

(5% — a?) /xu(:n)v(m) dx = / (zu/ (z)v(z) — :Ev'(:n)u(:n))/dx

= (zu/(@)v(2) — 20/ (2)u(z)),

that is,

(8% — a?) /a;Jo(am)Jo(ﬂx) dz = z [aJy(az)Jo(Bz) — BJy(Bz)Jo(ax)] .

(d) Now, if @ and 3 are distinct zeros of Jy(z), then

1
(8% — o?) /0 vJo(ox)Jo(Bx) dx = oy () Jo(8) — BI4(B)Jo(a) =0,

and since « # 3, then

1
/ xJo(ax)Jo(Bx) dx =0,
0

so that Jy(ax) and Jy(Bz) are orthogonal on the interval [0, 1] with respect to the weight
function o(z) = .
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Exercise 15.20. XXX
Consider the boundary value problem

20 re=0, 0<a<t,

8(0) - 52(0) =0,

s+ L) =0

(a) Using the Rayleigh quotient, show that A > 0. Why is A > 07

(b) Prove that eigenfunctions corresponding to different eigenvalues are orthogo-
nal.

(c) Show that

tan VA = il
Determine the eigenvalues graphically. Estimate the large eigenvalues.
(d) Solve
ou _ o
ot Ox?
with
ou
t —(0,¢
u(0,t) g (0,t) =0
ou
1,t) + —(1,¢t
u(L, )+ S2(1,1) =0
u(z,0) = f().

You may call the relevant eigenfunctions ¢,(x) and assume that they are
known.

Solution:

(a) We use the Rayleigh quotient to show that A > 0 for all eigenvalues A.

Let A be an eigenvalue of the Sturm-Liouville problem above, and let ¢(x) be the correspond-
ing eigenfunction, then
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and since ¢(x) =0 < 0 for all 0 < x < 1, then

1
6(0)2 + $(1)° + /0 ¢ ()? da

A= 1
/0 o(z)? da

>0

since p(z) =o(x) =1for 0 <z < 1.
If A =0, then

1
H(0) + B(1)? + /0 ¢ () dz = 0,

1
so that ¢(0) = ¢(1) = 0 and / ¢'(x)? dz = 0, and since ¢ is continuous on [0, 1], then ¢(x)
0
is constant on [0, 1], so that ¢(x) = ¢(0) = 0 for all 0 < & < 1. Therefore A = 0 is not an

eigenvalue of this boundary value problem, and all the eigenvalues satisfy A > 0.

(b) If Ay and A9 are distinct eigenvalues of this boundary value problem, with corresponding
eigenfunctions ¢ and ¢, respectively, then

/1/+)\1¢1 =0 and /2/4-)\2@252 :0,
so that
P29 — 165 + (A1 — A2)p1pa = 0,

that is,
(P20 — d19h)" + (A1 — A2)p1op2 = 0,

and integrating, we have

1

1
(2 — d195)| + (M — >\2)/0 b1 dx = 0.

0
However,

1

= 2(1)¢' (1) — ¢1(1)@5(1) — $2(0)$1(0) + ¢1(0)¢5(0)

0

(¢29) — d16%)

= —g2(1)p1(1) + ¢1(1)p2(1) + ¢2(0)91(0) — ¢1(0)92(0) = 0,

so that .
(A1 — Az)/ P12 dx = 0.
0

Since A1 # Ao, then

1
/0 o1(x)p2(x) dx =0,

that is, ¢1 and ¢, are orthogonal on the interval [0, 1].
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(c) If A > 0, then A\ = p?, where p # 0, and the differential equation is ¢” + u?¢ = 0 with general
solution

¢(x) = Acos px + Bsin px and ¢ () = —pAsin ux + pB cos px

for 0 <z < 1.

From the first boundary condition
$(0) +¢'(0) = A - uB =0,

and A = uB.

From the second boundary condition
(1) + ¢/'(1) = Acos pu+ Bsinp — pAsin ju + puBcos i = 0,

that is,
B [2pcos p — (2 — 1) sin p| =0,

and the boundary value problem has a nontrivial solution if and only if

t 2p
an =
h=
that is, if and only if
2V A
tan VA = )\—\f_l

In order to determine the eigenvalues we sketch the graphs of the functions

f(p)=tanp  and  g(u) =

for p > 0.

Note that for p > 0, we have

so that
1 1

P07 (1)

and g is decreasing on the interval (0,1) and on the interval (1,00) and the line p =1 is a
vertical asymptote to the graph. The graphs of g and f are shown below.

<0

g(:u’):_(
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y=tanp

B % — %
o\ 1 w2 7 7 7 M
i § % §

From the figure it is clear that there are an infinite number of distinct solutions u, to the
equation

tan pu = 22,u ,
s —1
and the eigenvalues are \,, = pu2, for n > 1.
Since lim p, = 400, then
n—o0
24n

gt =l

=0,

and the roots of the equation tan y =

2 /j 1 approach the roots of the equation tan yu = 0,
that is, for large n,

L R N,
and therefore

\p = p2 ~ n’r?

for large n.

(d) We want to solve the boundary value — initial value problem

ou_
ot Ox?
ou
u(0,t) — %(O,t) =0
ou
u(l,t) + %(1,& =0
u(x70) = f(l‘),

and since both the equation and the boundary conditions are linear and homogeneous, we
can use separation of variables.
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Assuming a solution of the form u(x,t) = ¢(z) - h(t), and separating variables we get the two
ordinary differential equations

¢"(z) + Mp(z) =0, 0<z<1, h'(t) + Mkh(t) =0, t >0,
$(0) — ¢'(0) =0
¢(1) +¢'(1) =0

From part (a) we know that we have a nontrivial solution if and only if A > 0, in which
case A\ = p? where p # 0, and the differential equation becomes ¢” 4 ?¢ = 0 with general
solution

¢(x) = Acos px + Bsin px with ¢ (z) = —pAsin pz + uB cos pux.

Applying the boundary conditions as in part (c¢), the only values of x for which we have a
nontrivial solution are those for which

t 2p
anpy = ——-
M M2—17

and we have an infinite sequence of positive eigenvalues
D<A << <A< en
where )\, = 2. The corresponding eigenfunctions are
On(T) = iy €OS @ + sin py,x
forn > 1.
The corresponding solutions to the time equation are

hn(t) = e,

and from the superposition principle the sum

u(z, Z ap, (fn €OS fp + sin p,x) e —Hikt

n=1

satisfies the partial differential equation and the boundary conditions.

In order to satisfy the initial condition we use the orthogonality of the eigenfunctions from
part (c), and write

f() = u(@,0) Zanqbn

/fqbn
" /qsn

where
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forn>1.

As in Exercise 11.16, you can verify that the normalization constant is given by

1 2
| onta o =52
0 2

so that .
2
an = W/O f(x)pn(x) d

forn > 1.



Chapter 16

Fourier Transform Problems

NOTE: The Fourier transform is defined as

and the inverse transform is defined as
FURO= [ Fwe .
The convolution of two functions f(z) and g(z) is defined to be
fra = [ fla= g

and the convolution theorem says that if F'(w) and G(w) are the Fourier transforms of f and g,
respectively, then

FAP@GE) (@) = 5 wo(@) =5 [ fo=ta0dr

Exercise 16.1. X
Evaluate the Fourier integral formula for the function

1—cosx if —IZ<a<i,
flz)= 2 2
0 otherwise.

Solution: The Fourier integral representation of f(z) is given by
f(z) ~ / (A(w) coswz + B(w) sinwz) dw,
0

where

Alw) = % /_OO f(t) coswt dt and B(w) = %/_OO f(t)sinwt dt.

Since f(x) is an even function, then B(w) = 0 for all w.
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Also, since f(xz) is even and f(x) = 0 for || > 7, then for all w # 0 and w # %1, we have

2 w/2
Alw) = — (1 — cost)coswtdt
™ Jo
) 7r/2 2 7T/2
:—/ coswtdt——/ cos t cos wt dt
™ Jo m™.Jo

_ 2sin(wr/2) 1 /7r/2 [cos(1 — w)t + cos(1 + w)t] dt
0

T w T
_ 2sin(wn/2)  1sin(l —w)t A sin(1 + w)t /2
Com w T l-w | T l+w |

2sin(wn/2)  1sin((1 —w)m/2)  1sin((1 +w)m/2)

0 w 0 1—w 0 14+w
2 sin(wm/2)  cos(wm/2) 1 1
== - +
7r w 7r l-w 14w
_ 2 [sin(wm/2)  cos(wm/2)
o7 w 1-—w? |’
so that 5 e ) )
Aw) = 2 sin(wm/2)  cos(wm/2)
T w 1—w?
for w # 0, £1.
If w =0, then
2 (/2 2 2
A(0) = ;/0 (1 —cost)dt = 2 [T —sin(/2)] =12
If w = +£1, then
2sin(£7/2) 2 [™/? 2 2 ["2/1 2 2 1
A(il):—w——/ cosztdt:———/ Lhcosa dt = — — —.
us +1 T Jo T Ty 2 T2
Note that A(w) is continuous for all w.
From Dirichlet’s theorem, the integral
2 [ [si
_/ [sm(wﬂ/2) B cos(ww/f)} 08 wi du
T Jo w 1-w

converges to 1 —cos  for all |z| < Z, converges to 0 for all [z| > Z, and converges to 1 for z = £Z.
Thus, if we redefine f(+7/2) = %, then the Fourier integral representation of f(z) is given by

1—cosx for |z] <
2 / Fm(m/m B cos<w/2>]comdw:f<x>: 0 for || >
0

(NE]

INIE]

T w 1 —w?
1 — 4
3 for x==+7.
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Exercise 16.2. X
Find the Fourier integral representation of the function

7 it —-l<z<l,
2—x if 1<x<?2,
fz) = .
—2—z if —-2<z<-1,
0 otherwise.

Solution: The graph of f(x) is shown below and it is easy to see that the function f(z) is an odd
function.

Therefore, A(w) = 0 for all w, and
2 [? 2 [ 2 [?
B(w) = —/ f(t)sinwtdt = —/ tsinwt dt + —/ (2 —t)sinwt dt.
™ Jo ™ Jo T

Integrating by parts, we have

2 [t L leoswt| 2
B(w) = — | — coswt —I—/ iihed ] + =
s w 0 0 w 7T

—241

cos wt

1

B . . 2
2 cosw  sinwt 2 |cosw  sinwt
B 2 — o 2
T w w | T w w |
2 [2sinw  sin2w
T w? w?

- 2 [ 2sinw — sin 2w
o7 w? ’

5w =2 (

that is,

2

2sinw — sin 2w
w

for all w # 0.
If w =0, then

2
B(0) = %/0 F(t)sin(0 - ) dt = 0.
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Since f(x) is continuous everywhere, from Dirichlet’s theorem, the Fourier sine integral converges
to f(x) for all z, and therefore

2 [%° (2sinw —sin2w .
—/0 (—2>smwwdw:f(w)

T w
for all z € R.
Exercise 16.3. X
Let
x if |z <1,
€Tr) =
f(=) { 0 otherwise.

(a) Plot the function f(z) and find its Fourier transform.

(b) If fis real valued, plot it; otherwise plot | ﬂ

Solution:

(a) The graph of the function f(z) is plotted below.
y

14

The Fourier transform of f(z) is computed as

—~ 1 [>® . 1 [/t
- t zwtdt: - t zwtdt
f)=5- [ rota=5- [

1 1
_ i iwt o i eiwt dt]
27 | ww o tw oy
= i _i (eiw Te zw) 1 eiwt !
27 | iw (iw)? .

9 eiw + e—iw eiw o e—iw
:%K 2w >_< 2iw? )}

1 fwcosw —sinw
=\ 2 |
e w
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so that
~ 1 fwcosw —sinw
flor = 5 ()
for all w # 0.
If w =0, then

1
= 0,
-1

- 1 ! 1 ¢2
= — tdt = ——
f(O) /_1 dt 27 2

~ ~

and from L’Hospital’s rule, we see that lim0 f(w) = 0 also, so that f(w) is continuous at each
w—
w.

Since
f(w) _ % (wcosc;; sinw> ’
then
‘f(w)‘ _ % sinw ;;ucosw‘
for all w.

Note that the zeros of the function g(w) = sinw — wcosw are precisely the roots of the

equation tanw = w, so the graph of ‘f(w)‘ looks something like the figure below.

mﬂﬂﬂﬂm




350

Exercise 16.4. X
Reciprocity relation for the Fourier transform.

(a) From the definition of transforms, explain why

1
o

F(f)(=) FHf)(~a).

(b) Use (a) to derive the reciprocity relation
1
2 —_ .
Pf)@) = 51 (-2),
where F2(f) = F (F(f)).
(c) Conclude the following: f is even if and only if F2(f)(z) = — f(x);
s

and f is odd if and only if F2(f)(x) = —%f(x)

(d) Show that for any f, F*(f) = 4—7172‘)0'

Solution:

(a)

Note that the Fourier transform of f is

1 [ ,
FN@ =5 [ foeat
™ —0o0
and evaluating this transorm at w = x, and making a change of variables, we get
1 >~ it 1 > —iw(—x) 1 —1
F@)=o- [ f)edt=— [ flw)e dw = —F(f) (=),
27 J_ 2 J_ 2
that is,

for all z € R.

Let f be the Fourier transform of f, from part (a) we have

F()@) = 5= F () (-2) = 5-F(~),
and therefore )
Pf)w) = 5= f(-2)

for all x € R.
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(c¢) The function f is even if and only if f(—x) = f(z) for all x € R, but from part (b), we have
f is even if and only if

P 1

F(f)a) = F(F) @) = 5= f(-2) = 5 ()

for all z € R. Similarly, f is odd if and only if f(—z) = —f(z) for all 2 € R, but again from
part (b), we have f is odd if and only if

FA(f)(@) = F(f) (@) = = f(-a) = —5-1 ()
for all x € R.
(d) For any integrable f, we have
FA) @) = P (FAF) (@) = 5-FA)(~2) = 7 F(~(-2)) = 15 1)
for all z € R.
Exercise 16.5. X

Basic Properties of Convolutions.

Establish the following properties of convolutions. (These properties can be derived
directly from the definitions or by using the operational properties of the Fourier
transform.)

(a) fxg=g=[f (commutativity).
(b) f=x(g*h)=(f=*g)=*h (associativity).

(c) Let a be a real number and let f, denote the translate of f by a, that is,

falz) = f(z —a).

Show that
(fa) * g =f*(ga) = (f * 9)a-

This important property says that convolutions commute with translations.

Solution: The most convenient way to prove these properties are true is to use the uniqueness of
the Fourier transform, that is, if f and g are integrable and if f = g, then f = g. However, we will
prove them directly from the definition of the convolution.

(a) Given absolutely integrable functions f and g, we make a simple substitution in the definition
of the convolution to get

fro@ = [ " fa— gty = / " f()g(x — s)ds = g+ f (2),

for all z € R, and therefore f x g =g * f.
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(b) Let f, g, and h be absolutely integrable, then for each x € R we have

I I
I\I\
g & g 8

/\/\Q/_\
|
g 8
=
=
=
=
|
=
Na)
=S
|
=

jo8

~

QL

(Va)

=

I

=

|

=

for all w, so that
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We have
F((f *9)alx)) = F ((f * 9)(z — a))
= ¢UF ((f * g)(x))
= 27 ™ F(f(2))F(g(z))
= 21 F(fa(x))F(g(z))

= F((fa) x9)(2)) ,
and F ((f * g)a) = F ((fa) * g)) . Since the Fourier transform is unique, then (f*g), = (fa)*g-

We can also prove this directly, as follows.

(f*9)alz) = (f *g)(x —a)
:/_°° f(@—a—tyg(t)dt

~ [ hte- o0
= ((fa) * 9)(x)
for all z € R, so that (f *g)q = (fa) * g

Also, since f * g = g * f, we have

(fx9)a= (9% fla=(9a) * [ = [ *(ga)-

Exercise 16.6. X
Determine the solution of the following initial boundary value problem for the heat
equation

ou 1 0%

E:ZW7 o0 <r<oo, t>0,

u(z,0) = e, —00 < < 0.

Give your answer in the form of an inverse Fourier transform.

Solution: We hold ¢ fixed and take the Fourier transform of the partial differential equation
and the initial condition with respect to the space variable to get the initial value problem for
u(w, t) = Flu(z, 1)) (w) :

du w?

E(wat) - —ZU(W,ZL/),
~ 2 1 w?
U(w,0) = F(e ) (w) = e 7.
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The general solution to this first-order linear equation is

2
w
Tt

u(w,t) = Alw)e™ 41,

and we can determine the “constant” of integration A(w) from the initial condition. Setting ¢ = 0,
we get

U(w,0) = A(w) = e 4,

so that

U(w,t) =

1
Var Vi

Taking the inverse transform, the solution is

o0 w2 .
u(x,t) = —2ﬁ/ e~ 1 (4D g—iwe g,

for —oco < x < o0, t > 0.

Exercise 16.7. g

Use the Fourier transform to solve the following initial value — boundary value

problem
Qu_0u  ocr<oo, t>0
or  ot’ S ESY ’
u(z,0) = f(z), —oo<z<o0.

Assume that the function f has a Fourier transform.

Solution: Taking the Fourier transform of the partial differential equation and the initial condition
with respect to x, we have
du

E(w,t) + iwt(w,t) =0,

o~

U(w,0) = f(w).
The general solution to this first-order linear equation is

u(w,t) = Alw) e~ Wt

2

and we can determine the “constant” of integration A(w) from the transformed initial condition

o~

U(w,0) = A(w) = f(w).

Therefore,



and taking the inverse Fourier transform, we have

u(zx,t) = / f(w) e Wt gm0 g,

f(w) e~ w(@+t) g,
(

flx+1t),

and the solution is
u(z,t) = f(z+1t)

for —co <z < o0, t > 0.

Exercise 16.8.
Find the Fourier cosine transform of

1—x if 0<z<l,
f(x)_{ 0 B il

the fact that if f(x), > 0, is the restriction of an even function f., then

Fe(F)(w) = 2F(fe)(w)

for all w > 0.

and write f(z) as an inverse cosine transform. Use a known Fourier transform and

Solution: The Fourier cosine transform of the function f is given by

00 1
fC(W):%/O f(t)coswtdt:%/o (1 —t)coswtdt,

355

and this is the same as the Fourier transform of the even extension f. of f to the whole real line R.

In this case however, we can evaluate the last integral directly by integration by parts:

1 1 1
/(l—t)coswtdt:/ coswtdt—/ t coswt dt
0 0 0
1 Loq o
— — | sinwtdt
o “Jo

i]

sin wt

[ sin wt
— |t
w

w o

sinw  sinw 1 1
= - + — | ——coswi
w

w w w
B 1 —cosw
= 5
and therefore 5 1
~ — cosw
w))=—" —
fel(w) 7r w2
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for w > 0.
Knowing that f. is absolutely integrable implies that fc is continuous at w = 0, and we have

~ 2 1—cosw 2 sinw 1
- s e
by L’Hospital’s rule.
Therefore, we have
21—
R - :;SW for w>0
fe(w) = 1
— for w=0.
T

Since f, is continuous for all x € R, from Dirichlet’s theorem the inverse Fourier cosine transform
of f.is given by

2 %1 _ cosw 1—=x for 0<x<1
— / ——5— " COsSwx dw =
T Jo w 0 for =z >1.
Exercise 16.9. X
Find the Fourier sine transform of
T
fz) = T2 © >0,

and write f(z) as an inverse sine transform. Use a known Fourier transform and the
fact that if f(z), = > 0, is the restriction of an odd function f,, then

Fs(H)w) = =2iF(f,)(w)

for all w > 0.
Hint: Consider the Fourier sine transform of g(z) = e™*.

Solution: We can find the Fourier sine transform of the given function using the suggested method,
or we can find it directly. To do this, we consider the function

Pl
E
I
R
h

3
)

L
&,
=
I
<+
QL
~



and we can evaluate this integral by integrating by parts:

o0 e teoswt|™ 1 [
/ etsinwtdt = ————|  — —/ et ecoswt dt
0 0

w 0 w
[e.e] 1 o0
+—/ e_tsinwtdt}
0 w Jo

11 >,

=——— e "sinwtdt
w w 0

1 1
w  w

_; sinwt
e .
w

so that

1 <, 1
1+—2 e ‘sinwtdt = —.
w 0 w

© w
/ e tsinwtdt = 5
0 1 + w

Therefore,

for w > 0, so that

2
gs(w)—;- 1+ w?

for w > 0.
Taking the inverse Fourier sine transform of this, we have

00 9 [
g((ﬂ) = /O /Q\S(W) sinwzx dw = ;/0 msinwwdw.

Now interchanging x and w, we have

2 o0
e =gw) = —/ 1 —fﬁ sinwx dex,
0

and

w

. 9 [o©
fs(w) = ;/0 1 foﬂ sinwzdr = g(w) = e~

for w > 0.
From the above, we can write f(z) as an inverse Fourier sine transform:

X

flx) = 2 :/0 e Y sinwx dw

for x > 0.

Exercise 16.10.
Show that

 cos Az T
o d)\ - = ax
/0 a? + A2 2a°

fora>0, z>0.
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Solution: Let f(z) = e~ for z > 0 and let f. be the even extension of f to all of (—o0,c0).
Since f, is piecewise smooth and agrees with f for > 0, then we can write (again from Dirichlet’s
theorem)

e :/ A(N)cosAxdh, = >0
0

where

2 [ee]
AN) = —/ e cos \x dx.
T Jo

In order to evaluate A()\), integrating by parts twice, since a > 0 we have

/ e cos A d — C o SMAT _/ (za)e™*"sindz
0 A 0 0 A

_ o[ ereosdz® /°° (a)e " cosha

A A 0 0 A
1 [e'e]

= % [X _% ; e_axcos/\xdaj} ,

so that
2 [e%)
<1 + %) /0 e cos \x dr = %_

Therefore

& a
e eos\rdr = ———=
/0 A2 +a?

for A > 0 (you should check that this holds for A = 0 also). Therefore

2a

A()‘) = ma

for A > 0, and

e—am:z/oo a2COS/\§ d\.
™ Jo a +A

for 0 < & < co. Thus,
> cos Az T
——d\= —e @
/0 a? + N2 2 ¢

for z > 0.



Exercise 16.11.

0 for
1 fi
Give the function f(z) = o
2 for
0 for

(
(

(
(

XX

x <0
O<ze<l1
1< <2
T > 2.

(a) Find the Fourier integral formula for f(x).

(b) Find the Fourier sine integral formula for f(x).

d) Find the Fourier transform of f(x).

)
)
c¢) Find the Fourier cosine integral formula for f(x).
)
e) Find the Fourier sine transform of f(z).

)

f) Find the Fourier cosine transform of f(x).

Solution:

(a) The Fourier integral representation of f is given by

fE)+ f@7)
2

where

= /OOO (A(w) coswz + B(w) sinwz) dw,

Alw) = %/_OO f(x)coswzx dx and B(w) = %/_OO f(x)sinwz dz

for 0 < w < o0.

We have

Alw) = ! /2 f(z) coswz dz
T Jo

1 1
:%A

. 1
S W

coswz dx + —

1 /2
/ 2 coswx dx
T J1

. 2
2sinwx

W

:%<_

0 W

1

sinw  2sin 2w>
+
w w
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and
1 /2
B(w):—/ f(x)sinwz dz
T Jo
1 [ 1 [?
:—/ sinwxdm—i——/ 2sinwx dz
T Jo m™J1
= — (1 —cosw + 2cosw — 2cos 2w)
Tw
= — (14 cosw — 2 cos 2w)
W
so that
+ - 00 /g 1
w:/ (Smw[4cosw—1]coswaz+—(3+cosw—4coszw)sinwx> dw
0 Tw Tw

for —oo < x < 0.

(a’) For those of you that prefer the complex Fourier integral representation of f, we have

f(.Z'—i—) + f(.Z'_) _ > —iwT
— = / F(w)e dw

where
1 [ -
Fw) =g [ feeeae,
™ — 0o
and
1 /b ¢ 1 2 ¢
F(w):%/oe d£+%/1 2e"s d¢
=L et g ],
2miw
so that . ‘
+ — ] W LW .
f((L' )—i—f(l’ ):i/ <[2€ € 1:|e—zw:c> dw
2 2m J_ w

for —oo < z < 0.

(b) The Fourier sine integral formula for f(z) is

Flz) = /OOO B(w) sinwa dw

where

B(w) = g/oo f(x)sinwz dz.
T Jo



For the function f above, we have

B(w) = 2 /OO f(z)sinwzx dz
T Jo

2
2 .
=— [ f(z)sinwzdzx
T Jo
2 [t 2 [? .
=— sinwz dr + — 2sinwx dx
T Jo T J1
1 2
= —— COSWT| — — COSWT
W 0 Tw 1
2
= ——cosw+ — — —(cos 2w — cosw),
W W W

so that

2
B(w) = —(1 4 cosw — 2 cos 2w)
w

for 0 < w < 0.

The Fourier sine integral formula for f(z) is

2 /OO (14 2cosw — cos2w)
0

flx)=— sin wx dw

™ w

for 0 < z < o0.

The Fourier cosine integral formula for f(x) is

Flz) = /0 " A(w) cos wa dw

where

2 o
Alw) = —/ f(z) coswx dx.
T Jo
For the function f above, we have

Alw) = %/Ooo f(z)coswzx dx

9 (2
= —/ f(x) coswz dx
T Jo

9 [1 9 2
:—/ coswa:da;+—/ 2coswx dr
m™Jo T™J1

1

+ —sinwx
0 Tw

2

2 .
= —sinwz
W

1

: 4 . :
= —sinw + —(sin 2w — sinw),
w w
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so that

Alw) = %(sin 2w — 2sinw)

for 0 < w < 0.

The Fourier cosine integral formula for f(x) is

o) = 2/000 (sin2w;2sinw)

s

cos wx dw

for 0 < z < oo.

(d) The Fourier transform of f(x) is

Fw) =5 [ f(eede

for —oo < x < o0, and for the function given we have

I 12,
F(w):%/o ewgdf%—%/l 28 d¢

1 . .
_ ) 2iw _ iw 1
i 267 €]
that is,
1 .
F _ ) 24w w1
) = g 27 =¥ =1

for —o0 < x < 0.

(e) The Fourier sine transform of f(x) is

w

2 [ 2 (/142 - 2
Fy(w) =— flx)sinwrde = — +2cosw — cos W
s 0 ™

for 0 < w < o0.
(f) The Fourier cosine transform of f(x) is

2 [ 2 (sin 2w — 2si
F.(w) = E/o f(x)coswr dr = - <w>

w

for 0 < w < o0.

Exercise 16.12.
Use Fourier transforms to find the solution to

ou  0%*u
52—83}2’ —xo<r<oo, t>0
100 <1
u(zx,0) = 2
0 |z| > 1

in terms of the error function.




363

Solution: Let u(w,t) = F (u(x,t)), taking the transform of both sides of the partial differential
equation we have
Ju(w, t)
ot

= (iw)*U(w, t) = —w?i(w, 1),

and the initial condition gives

1

N 1 ,
U(w,0) = f(w) = 7 /1 100 "% dz.

The solution to this ordinary differential equation is
i(w,t) = ti(w, 0) e~

and from the convolution theorem we have

1 1 1 (z—s)?
u(a:,t) — %f-’—l (e_wzt) * f(x) = \/m/l 100e~ 4t ds.

The solution

1 1 (z—s)?
u(z,t) = \/ﬁ/llooe_ i ds

for —oo < & < 00, t > 0, can be written in terms of the error function by making the substitution

z = i and dz:—ﬁds,

Vit Vit

1 -1
when s = —1, then z = * , and when s = 1, then z = x—, so that

Vit Vit

100 [ (Vi Wz

4t 42 4t 42
= — e dt—/ e " dt
VT /0 0
= @ [erf<$+1> —erf(x_1>]
2 Vit Vat )|’

u(z,t) = 50 [erf (%) et (%)]

for —oo < & < 00, t > 0, where
2 r 2
erf(x) = —/ e dz
VT Jo

therefore

is the error function.
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Exercise 16.13. X

(a) Show that the Fourier transform is a linear operator; that is, show that

Fleif(z) + c2g()] = e1 F(w) + c2G(w)

(b) Show that F [f(z)g(x)] # F(w)G(w).

Solution:

(a) If the Fourier transforms of f and g both exist, and ¢; and ¢y are constants, then

Fleif(z) + cog(z)] = 1 /OO (1 [ () + cag(z)) €7 due

2 J_
- 20_; /_Z f(@)e® da + 26_727 /_Z g(x)e™” dx
= F (f(z)) + caF (9(x)),

that is,
Fleif(z) + c2g(2)] = a1 F (f(2)) + 2 F (9(2))

and the Fourier transform is a linear operator.

(b) Let f and g are functions such that F(f(z)) = F(w) and F(g(x)) = G(w) both exist, for
example,

1, for |z|<a
0, for |z|>a

then

F(w) = G(w) ! / e gy = 2000

2 J_, Tw

Now let h(z) = f(z) - g(z) for —oo < z < o0, clearly h(x) = f(z) = g(z) for all z, and

sin wa sin? wa

H(w) === # —5 = F(w) - G(w).

Exercise 16.14. g

If F(w) is the Fourier transform of f(z), show that the inverse Fourier transform
of e“PF(w) is f(x — B). This result is known as the Shift Theorem for Fourier
transforms.




Solution: We have

= - F(w)e‘iw(m_ﬁ) dw
= f(z - B)

Exercise 16.15.
(a) Solve

o _ 0t
ot o2

u(z,0) = f(z), —00 < T < 00.

—co<r<oo, t>0

(b) Does your solution suggest a simplifying transformation ?

Solution:
(a) If u(x,t) is the solution to
o _
ot~ "oz T

u(z,0) = f(z), —oo<ax< o0,

—oco<x<oo,t>0

let

~

U(w, t) = F(u(z,t)) and U(w,0) = f(w),

then u(w, t) satisfies the initial value problem

o
d_? = —(k®+ )T, t>0
U(w,0) = f(w),

with solution R , R ,
U(w, t) = flw)e” BNt = F)e m tet,

The solution to the partial differential equation is

u(z,t) = F ' (ulw, 1))
— 1 <]’c\(w)e—kw2te—~/t>
= e F! (f(w)e_kw2t> (since F~1 is linear)

|
=e Vt%f*g(x7t)
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where

g(z,t) = % ek

u(w,t) = et /oo f(s)M ds
T —c0 Varkt

Therefore

for —-co < x <ooandt>0.

(b) If we multiply the solution above by €', we find

eytu(x,t) = 2i f*xg (,m’t) = 1 / f(s) e—(x—s)2/4kt ds,
™ — 0o

varkt

which looks like the solution to a homogeneous heat equation.

Indeed, if we define
w(z,t) = u(x,t),

then
ow ou
e 2 el
ot ye'u+e D
d%u
t
=yw + €’ (kw — ’yu)
= yw + k82_w —yw
so that
ou _ P
ot 0z
w(z,0) = f(z)
for —co<x < o0, t>0.
Exercise 16.16. XX
Solve
ou &%u
=k— 0 t>0
= L <z <oo, t>
ou
—(0,t) =0 t>0
5, (0:1) =0, >
u(z,0) = f(z), 0<z<oc.
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Solution: Since the boundary condition is a Neumann condition, we use the Fourier cosine trans-
form. Let

u(w,t) = Fo(u(x,t)) = 2 /000 u(zx,t) coswx dx,

T
and .
Flw) = Fulf@) = = /0 F() coswa da,
then ) -
U m
Fc <E> ot (w t)
and

d%u 2 0u
k. (W): 22U 0,1) — P )

and from the boundary condition, %(0, t) =0, so that

2
) <%> Wi, B).

After taking the Fourier cosine transform of both sides of the partial differential equation
ou ké)zu
ot 0x?’

the transform u(w, t) satisfies the initial value problem

du

o — (w, ) + kw’u(w,t) =0

u(w,0) = f(w),

with solution

t(w,t) = u(w, O)e—aﬂkt _ f(w)e‘wz’“

for —oo < w < oo and ¢ > 0.
Therefore

u(z,t) / f ¢ cos wz dw

for 0 <z < oo and t > 0.

Note that each of the functions f(w), e_“’zkt, and coswz in the integrand is an odd function of w,
so that

/ f tcoswz dw = / f ¢ cos wz dw.

Since sinwx is an odd function of w, then

/ f bsin wa dw = 0,
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and we can write the solution u(zx,t) as

1 [~
u(z,t) = 3 / f(w)e_“ﬂkt(cos wr —isinwz) dw
—00
_ /OO f(w) e—w2kte—iwx dw,
—o 2
that is,

_ — f(w) —w?kt
u(x,t)—]:1<Te k) (*)

Let foven be the even extension of f(z) to (—oo,00), then

@ :%%/Ooof(a:)coswxdx

1 o0
=5 /_Oo feven(z) coswz dx

1 o0
= — / feven(z)(cos wx + isinwx) dx
2r J_

1 o0 .
=5 /_OO feven(z)e™* dz

= F (feven(2)) ,
so that
fw)
o F (feven(T)) - ()
From (*) and (xx) it follows that w(z,t) is the solution to the initial value — boundary value problem
ou 0%u
ar_ g "
ot k8$2, oo < x < 00, >0
ou
—(0,7) =0, t>0
8:17( 1) =0, t>
U(JE,O) = fovcn(x), —00 < T < 00,

and therefore
u(ﬂj‘, t) = fovon * G ($7 t)

where G(x,t) is the heat kernel or Gaussian kernel

G(l‘,t) _ \/ﬁ e—x2/4kt‘



The solution is then

u(az,t) = fevcn * G (l‘,t)

1
Varkt

_ 41 — /OO f(S) (e—(:v+s)2/4kt + e—(m—s)2/4kt) ds,
vV am 0

/ feven(s)e—(x—s)2/4kt ds

so that
1

Varkt

u(x,t) = / f(s) (e—(x+s)2/4kt +e—(x—s)2/4kt> ds
0

for 0 < x < oo, t>0.

Exercise 16.17.

domain:
ou k O ou
awa(rﬂ’ =
v bounded as r — 07, t>0
0
ru—u—>0 asr—o00, t>0
or

u(r,0) = f(r), r>0.

XXX

Solve the circularly symmetric diffusion equation on an infinite two- dimensional

Solution: We solve this problem using separation of variables, we write

u(rt) = (1) - T),
so that

o) 70 = £ () 70 = (k') + £ ) 1)
and separating variables, we have

ry S0+ )

T o) = —\ (constant).

Thus, we obtain the following two ordinary differential equations
/! 1 /
Pt A =0,

T' + \kT = 0.
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Note that the boundedness conditions on ¢ are satisfied if ¢ satisfies the following singular Sturm-
Liouville problem

(P”-F%QO/—F)\@:O, 0<7r<oo
¢(r) bounded as 7 — 0T,
ro(r)¢’(r) — 0 asr — oo.

Multiplying by r, the spatial problem can be written in the form
"+ +Arp =0, 0<r<oo
¢(r) bounded as r — 07,

ro(r)e’ (r) =0 asr — oo.

We solve the singular Sturm-Liouville problem for ¢ first. The Rayleigh quotient is
[e.9]
+ / r(¢")? dr
0 0

o0 bl
/ T(p2 dr
0

[e.9]

—rpy’

A=

and from the boundedness conditions,

o0

= — lim ro(r)¢'(r) =0,

T—00

—rog’

0

so that A > 0, that is, there are no negative eigenvalues.
case 1. If A = 0, then the differential equation is

(r¢') =0,

with general solution
o(r) = Alogr + B.

Applying the boundedness condition, we have A = 0, and the eigenfunction is
wo(r)=1

for 0 < r < 0.
case 2. If A > 0, then the differential equation is

(r¢")' + Arp =0,
which is Bessel’s (parametric) equation of order 0, with general solution

o(r) = AJy (\/Xr> + BY) <\/X7‘) .
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Applying the boundedness condition, we have B = 0, and the solution may be written

@(r) = Jo (ur)

for 0 < r < oo, where \ = 2.
The corresponding T' equation

T + 12T =0
has solution .
T(t)=e* Jet
for ¢t > 0.
Therefore, for each p > 0, the function
u(r,t,pw) = Jo (ur) e Mk 0<r<oo, t>0

satisfies the partial differential equation and the boundedness condition, and from the superposition
principle, we write

ret) = [ 4G Gur) e,

and this satisfies (formally) the diffusion equation as well as the boundedness conditions. The only
thing not satisfied is the initial condition

u(r,0) = f(r), 0<r<oo

S0 we want
f(r) = u(r,0) :/0 A(p)Jo (pr) pedp

for 0 < r < o0.
In order to determine the coefficients A(u), we have a theorem analogous to Dirichlet’s theorem,
called Hankel’s integral theorem

Theorem. Given a function f defined on the interval (0, c0), which is piecewise continuous and of
bounded variation on every finite subinterval [a, b], where 0 < a < b < oo, and such that

/0°°mf<r>|dr <o,

then for each r > 0 we have

frT)+ f(r7)] = /OO AN)Jo (M) AdA
0

N —

where

AN = /000 f(r)Jo (Ar)rdr.

Note: The coefficient -
AN = / fr)Jo (Ar)rdr
0
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is called the Fourier-Bessel transform of f(r), or the Hankel transform of f(r).

The solution to the circularly symmetric diffusion equation on an infinite 2-dimensional domain is
therefore given by

u(r,t) = / A(p)Jo (pr) e_“2ktu dp, 0<r<oo, t>0
0

where

Ap) = /0 " F0) o (ur) v dr

for p > 0.



Chapter 17

Four Sample Midterm Examinations

17.1 Midterm Exam 1

Exercise 17.1. X
Find the values of A2 for which the boundary value problem

d*u 9 T
@‘1—)\ uw =0, 0<:1:<§

u(0) =0

has nontrivial solutions.

Exercise 17.2. X
Let f(z) =cos?z, 0<z <, and f(z + 27) = f(x) otherwise.

(a) Find the Fourier sine series for f on the interval [0, 7].

Hint: For n > 1

1 1
/COS2 xsinnz dr = — 5, COSTE I 1 / [sin(n + 2)z + sin(n — 2)z| dx.
n

(b) Find the Fourier cosine series for f on the interval [0, 7].

(c) For which values of x in [0, 7] do the series in (a) and (b) converge to f(x)?

373
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Exercise 17.3.

state solution v(x).

Let v(x) be the steady-state solution to the initial boundary value problem

@—H‘—l@ O<zx<a, t>0
0zx2 kot’ ’
u(O,t):To, t>0

0

8—1;((1,15):0, t>0

X

where 7 is a constant. Find and solve the boundary value problem for the steady-




375

17.2 Midterm Exam 2

Exercise 17.4. X
The neutron flux u in a sphere of uranium obeys the differential equation

A1 d ([ ,du
—_— — ’,"_
372 dr dr

>+(l<:—1)Au:0

for 0 < r < a, where A is the effective distance traveled by a neutron between
collisions, A is called the absorption cross section, and k is the number of neutrons
produced by a collision during fission. In addition, the neutron flux at the boundary
of the sphere is 0.

(a) Make the substitution

dv

and show that v(r) satisfies 2 +p2v=0,0<r<a.
r
(b) Find the general solution to the differential equation in part (a) and then find
u(r) that satisfies the boundary condition and boundedness condition:

u(a) =0 and lim |u(r)| bounded.

r—0t

(¢) Find the critical radius, that is, the smallest radius a for which the solution
is not identically 0.

Exercise 17.5. XX
Show that

for —oo < x < o0. )

Hint: Using the identity sin A cos B = 3 [sin(A+ B)+sin(A— B)], find the Fourier
cosine series of the function f(x) = sinz, for 0 < = < 7, and then use Dirichlet’s
theorem.
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Exercise 17.6.

Solve Laplace’s equation in the square 0 < z < w, 0 < y < 7 with the boundary

conditions given below

Ou
0z2

S

=0,

Il Il Il
o o o

I
—

N
8
N

N

<
N

o
N

<
VAN

o
N
I
N
3

o
N
5]
N
A

XX
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17.3 Midterm Exam 3

Exercise 17.7. XX
Consider the following eigenvalue problem on the interval [0,1 ] :

u'(z) + 20 (z) — u(x) + A (z + 1)2e ¥ u(z) =0
u'(0) =0
u'(1) =0
(a) Explain the meaning of eigenvalue problem.

(b) Show that this eigenvalue problem is not of Sturm-Liouville type.

(c) Multiply the above equation by e%* to obtain a Sturm-Liouville problem. Iden-
tify p(z), q(z), and o(x).

(d) Use the Rayleigh quotient to show that the leading eigenvalue is positive, that
is, A; > 0.

(e) Find an upper bound for the leading eigenvalue.

Exercise 17.8. XX
Consider Laplace’s equation for the steady state temperature distribution in a square
plate of side length 1.

u  O%u
5 t+t575=0, 0<z<1,0<y<1
Ox? u oy? * J

w(0,y) =1, wu(l,y)=1 for 0<y<1

ou ou

—(33,0) :0, 8_y

3y (z,1)=0 for 0<z<Ll

Obviously, the solution is u(z,y) =1 for 0 < z < 1, 0 < y < 1. Show that this is
the case using separation of variables.
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17.4 Midterm Exam 4

Exercise 17.9. X
Solve the normalized wave equation

Pu  0%u

— ===, 0<z<w, t=20

otz 0x?

u(0,t) =0, w(mt)=0, t=0

u(z,0) =sinz, —(z,0)=sinz, 0<z <.

Exercise 17.10. XX
Consider the regular Sturm-Liouville problem

(@) + Ap(@) =0, 0
©(0) =0
p(1) —h¢'(1)=0

N
8

N
—

where h > 0.

Show that there is a single negative eigenvalue Aq if and only if h < 1. Find )y and
the corresponding eigenfunction ¢g(x).

Hint: Assume A = —p? for some real number p # 0.

Exercise 17.11. X
Consider Laplace’s equation

r Or or r2 902

in a semi-circular disk of radius a centered at the origin with boundary conditions

Solve this problem using separation of variables.




Chapter 18
Four Sample Final Examinations

18.1 Final Exam 1

Exercise 18.1. ﬁ

Assume that f(x) is absolutely integrable and a is a given real constant. Show that

~

F (e f(2)) (W) = f(w - a).

Exercise 18.2. XX
Hermite’s differential equation reads

y" —2zy’ + My =0, —0 <z <00

(a) Multiply by e~ and bring the differential equation into Sturm-Liouville form.
Decide if the resulting Sturm-Liouville problem is regular or singular.

(b) Show that the Hermite polynomials
Ho(z) =1, Hy(z) =2z,  Ho(x)=4x>-2,  Hj(z)=8z>—-12z

are eigenfunctions of the Sturm-Liouville problem and find the corresponding
eigenvalues.

(c¢) Use an appropriate weight function and show that H; and Hy are orthogonal
on the interval (—oo, 00) with respect to this weight function.

Exercise 18.3. X
Find all functions ¢ for which u(x,t) = ¢(x — ct) is a solution of the heat equation
Pu  10u o w < oo

ox2  kot’

where k and ¢ are constants.
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Exercise 18.4. XX
Consider the regular Sturm-Liouville problem

d"+X2¢p=0 O0<z<m
¢'(0) =0
¢(m) =0

(a) Find the eigenvalues A2 and the corresponding eigenfunctions ¢,, for this prob-
lem.

(b) Show directly, by integration, that eigenfunctions corresponding to distinct
eigenvalues are orthogonal.

2 _ .2
(c) Given the function f(z) = T 5 ’ , 0 <z < m, find the eigenfunction
expansion for f.
(d) Show that
™1 PRSI SN S
32~ 3 5 79
Exercise 18.5. XX
Given the following initial boundary value problem for the heat equation on [0, 1].
ou 10%u
S 1
ot 90z
u(0,t) =0,
u(1,t) =0
u(x,0) = 7sin 3mx

(a) If u(x,t) is the solution to the problem above, find an initial boundary value
problem satisfied by
w(z,t) = elu(z,t).

(b) Solve the problem found in part (a) for w(z,t).

(c) Find the solution u(z,t) to the original problem.

(d) Find the time Tj such that u(z,t) < 1 for every x € [0,1] and every ¢t > T;.
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18.2 Final Exam 2

Exercise 18.6. X
Let 0 < a < m, given the function

1 .
fa) = % if |z|<a
0 if xz€[-mn], and |z|>a

find the Fourier series for f and use Dirichlet’s convergence theorem to show that

isinna B 1(71'—&)

= n 2
for 0 < a < .
Exercise 18.7. X
Consider the heat equation with a steady source
ou  O0%u .
E = W + 7sin 3x

subject to the initial and boundary conditions:
u(0,t) =0, u(m,t) =0, and u(z,0) = 5sin 3z.

Solve this problem using the method of eigenfunction expansions. Show that the
solution approaches a steady-state solution as ¢ — co.
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Exercise 18.8. X
Consider torsional oscillations of a homogeneous cylindrical shaft. If w(x,t) is the
angular displacement at time ¢ of the cross section at z, then

Pw 0w

W—GW, 0<z<L, t>0.
where the initial conditions are

&
ot

and the ends of the shaft are fixed elastically:

w(x,0) = f(z), and z,0)=0, 0<z<L,

Ow ow
%(O,t)—aw(o,t)—O, and %(L,t)—i—aw(L,t)—O, t>0

with « a positive constant.
(a) Why is it possible to use separation of variables to solve this problem ?

(b) Use separation of variables and show that one of the resulting problems is a
regular Sturm-Liouville problem.

(c) Show that all of the eigenvalues of this regular Sturm-Liouville problem are
positive.

Note: You do not need to solve the initial value problem, just answer the questions
(a), (b), and (c).

Exercise 18.9. X
(a) Using the method of characteristics, solve

aw—i—caw—ezx o< r<oo, t=0
Ot ox ’ -

1
w(z,0) = 562”, —00 < T < 00.

(b) For which values of ¢ does this initial value problem have a time-independent
solution?
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18.3 Final Exam 3

Exercise 18.10. g

Assume that f”(t) is absolutely integrable and

lim f(t) =0 and lim f/(¢) = 0.

t—o00 t—o0

Show that 9
Fo () (@) = =2, () @) + = 0/ 0).

Exercise 18.11. XX
Legendre’s differential equation reads

(1 —22)y" — 22y + My =0, —-l<zx<l1

(a) Write the differential equation in Sturm-Liouville form. Decide if the resulting
Sturm-Liouville problem is regular or singular.

(b) Show that the first four Legendre polynomials
Py(z) =1, Pi(z)==z, P(x)=35(32"-1), Pa(z)=3(52" - 3z)

are eigenfunctions of the Sturm-Liouville problem and find the corresponding
eigenvalues.

(c) Use an appropriate weight function and show that P; and P, are orthogonal
on the interval (—1,1) with respect to this weight function.

Exercise 18.12. X
Find all functions ¢ for which u(x,t) = ¢(x + ct) is a solution of the heat equation
P _10u
ox2 kot

where k and ¢ are constants.
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Exercise 18.13.
Let

fla) = {cosa; lz| <,

0 |z| > 7.

(a) Find the Fourier integral of f.
(b) For which values of x does the integral converge to f(z)?

(c) Evaluate the integral

/ A sin A7 cos Az I\
0

1— )2

for —oo < z < 0.

XX
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18.4 Final Exam 4

Exercise 18.14. X
A fluid occupies the half plane y > 0 and flows past (left to right, approximately)
a plate located near the z-axis. If the x and y components of the velocity are
Uy + u(z,y) and v(z,y) , respectively where Uy is the constant free-stream velocity,
then under certain assumptions, the equations of motion, continuity, and state can
be reduced to

ou  Ov ou  Ov

— = 1-M)—+—=0

oy Oz’ ( ) Ox u dy ’ ()
valid for all —co < z < 00, 0 < y < .
Suppose there exists a function ¢ (called the velocity potential), such that

_ 09 _ 99

=5 and v—a—y.

u

(a) State a condition under which the first equation in (%) above becomes an
identity.

(b) Show that the second equation in (x) above becomes (assuming the free-stream
Mach number M is a constant) a partial differential equation for ¢ which is
elliptic if M < 1 or hyperbolic if M > 1.

Exercise 18.15. X
Besides linear equations, some nonlinear equations can also result in traveling wave
solutions of the form
u(z,t) = ¢(x — ct).

Fisher’s equation , which models the spread of an advantageous gene in a population,
where u(x,t) is the density of the gene in the population at time ¢ and location x,
is given by

ou 0%u

ot Ox?
Show that Fisher’s equation has a solution of this form if ¢ satisfies the nonlinear
ordinary differential equation

"+ et + p(1 —¢) = 0.

+ u(l —u).




386

Exercise 18.16. XX
Given the regular Sturm-Liouville problem

¢"(x) + N2p(x) =0, 0<az<T
$(0) =0,
¢(m) =0
(a) Find the eigenvalues A2 and corresponding eigenfunctions ¢, () for this prob-

lem.

(b) Show directly, by integration, that eigenfunctions corresponding to distinct
eigenvalues are orthogonal on the interval [0, 7].

(c) Use the method of eigenfunction expansions to find the solution to the bound-
ary value problem

(d) Solve the problem in (c) by direct integration and use this result to show that

a;(7r2 — z? Qi ot sinnx
n=1
for —m <z < 7.

Exercise 18.17. XX
Find the solution to Laplace’s equation on the rectangle:

?u  0*u

—+—=0, 0<z<a, 0O0<y<b

Ox? + Oy? Y

u(0,y)=1, 0<y<b
u(a,y) =1, 0<y<b

g—;(x,O)zo, 0<z<a
g—Z(x,b)zo, 0<z<a

using the method of separation of variables. Is your solution what you expected?




Exercise 18.18. X
Solve the following initial value problem for the damped wave equation
Pu O, Pu <z<oo, t>0
— —tu=—, —00<r<x
ot? ot dz?’ ’
1
u(w,O):m, —00 < & < 00
@(a:O)—l —00 < & < 00
at ) - ) *

Hint: Do not use separation of variables, instead solve the initial value — boundary
value problem satisfied by w(z,t) = et - u(x,t).
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Appendix A

Higher Dimensional Fourier Transforms

Notice: In this appendix, the Fourier transform has been defined using ¢ "** whereas

in the previous section we used e¢**. These definitions are equivalent in the sense
that the results will be the same. The computations, however, need to be adjusted to
reflect the sign change. We will make these changes in future reviews.

One can define n-dimensional Fourier transforms and inverse Fourier transforms as follows:

o
Je "M T dxy .. dxy,

o [ [ R

where 7 = (x1,...,my,) and "= (s ey fn)-
EXAMPLE A.1. Consider the following two-dimensional heat equation:

up = k(Ugg + Uy, —oo < x,y <oo, t >0,
u(z,y,0) = f(z,y).
Let U(p, A\, t) and F'(u, A) be the Fourier transforms of u(z,y,t) and f(z,y) respectively. Then

U, A\, t) =12 / / u(z,y,t —ietN) g dy, u(zx,y,t / / U(p, A\ t)e Un2Y) gy d),

Fu,\) = 2/ / flay)e WM dpdy,  f(a,y) / / )elHeTN) iy .

It is clear that F'(u, \) = U(p, A, 0). Differentiating u we get
ug(x,y,t) :/ / Uy (1, A, t)é? UntAY) gy g\,

u(z,y,t / / —(p? +2?) (u,)\,t)ei(“H)‘y) dp d.

Plug into the equation to get

up — kg, =0 — / / {U; + k(% + XU} 29 dp dx = 0.
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This gives the following ODE for U:

Wk 40U =0, U(nA0) = Flp,A).

Therefore
U A1) = F(pn, \)e FEHA0E

Thus, the solution to the heat equation is
u(z,y,t) :/ / F(,u,/\)e_k(“2+/\2)tei(”x+’\y) dpd\
- 4—12 /°° /OO /Oo /°° F(&,m)e e o=k AN i +29) e iy dyy d
T
2/ / f 6 T] {/ —kuzt—l—iu(m—g) du} {/OO e_k:)\Qt—l—i)\(y—n) d}\} dg dn

T .
I _e)2? 2

471'2/ / f&mn) ( - x4k€t) > <1 /%6_@473) >d£d77

T4 kt/ / F(g e alem T gy,

T

Special case: f(£,n) = d(£)d(n).

1 24

Akt ©

u(z,y,t) =
Before going on to solve the 3—dimensional wave equation, the following example will prove useful.

EXAMPLE A.2. Find the 3-dimensional Fourier transform of

)L (z,y,2) €Qr
ﬂ%%”‘{a (r,1,7) & O

where Qg = {(7,y, 2) € R3|z% + y* + 22 < R?}.

Solution:
We have

F(N — // f Ty, 2 —i(pr+Ay+vz) dV, = /// —i(pr+Ay+rz) dv,
9 7 ) 27[- .

To evaluate this integral we change to spherical coordinates with the z-axis oriented in the direction
_>
of the fixed vector p = (u, A,v). Then we get

px+ Ay +vz=p -2 = ||| cosd
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and the Fourier transform becomes

F(R) = Flu, A\ v) /// e~ E gy,
1 / / / —i|u\7’cos€ 2
= —— e r=sin 6 df do dr
2m)3 Jo JoxJo

1 R 7 o 1 R _—i|ji|rcos6 |7
= —2/ / e~ HHlreos 0.2 i 0 df dr = 2/ ¢ —
(2m)* Jo il plr

0

‘M/rmmv ()w[mwm 7R eos(|| R).

For any R, let Sg := 0Qg. That is Sg = {(z,y, 2) € R?|2% + y? + 22 = R?}. The following lemma

will also prove useful.
d
Ndo = — dV.
[Jene =35 f]] 0
Sk Qr
Proof.
The surface integral in spherical coordinates is given by

!R/(’)d(’:/_z /OW(')R2Sin9d9d¢.

The volume integral in spherical coordinates is given by

/Qé/(')dv:/()R/_Z/Oﬂ(-)rzsinedeqﬁdr:/oR Z/(,)da dr

The result follows by differentiating with respect to R.

redr

Lemma 57.

We now apply this lemma to a result obtained in the previous example:

; d — — — 41 —
T o, = _ﬂywmwas—{ [MMm—wmmwmﬂz—Jmmmm
Qﬁ dR dR \ [P i

This result, more conveniently written

// z,u z dO’m A R2SID(‘M‘R) (Al)
4| R

will be used in the next example.
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EXAMPLE A.3. Consider the following 3—dimensional wave equation:

uy = V2, (z,y,2) €R®, t >0,
u(x7 y7 Z7 0) = f(x7 y7 Z)7
Ut(ﬂj,y, Z70) = g(:l:,y,z).

For convenience we denote 7 = (z,y,z) and /_f = (g, \,v). Let U, F, and G represent the 3—
dimensional Fourier transforms of u, f, and ¢ respectively. Then we have

U t) = # / / / (@, e E gy, w(@ 1) = / / / UG, 667 v,
R3 R3
— a7 [ 1@ av, 1@ = [[[ P av,.
R3 R3
Gi) = e [[ [ 9@ ave, o@) = [[[c@eiZav. (a2
R3 B3

Differentiating u we get
uaawzfﬁbamww”dm,

umxt ///,uU,ut dV
uyyxt // \N2U ,u, dV,
uzzmt /// 2U,ut’”de

Plug into the wave equation to get

// U (1, t) + A (u? + 22 + u%U(ﬁ,t)]eiﬁ'; dv, =0.
3

This leads to the following initial value problem for U:

2

22 T AU =0,
U(1i,0) = F(i),
O .0) = GG,
The solution is easily obtained:
_ sin(c||t)

UG, 0) = P cos(elile) + GGH™ Z2
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Therefore the solution to the wave equation is

/ / / Jeos(elF) + G SR, i3 gy (A3)

ol ]

This is the Fourier transform representation of the solution to the wave equation. We now derive
the 3—dimensional analogue of d’Alembert’s solution. To this end, recall (A.1). Replace R with ct

and re-arrange (A.1) to get:
sm(c|,u|t
T anc?t / / W do
el e

Sct

—

Multiply by G(/_ﬁ))ei“z and integrate over R3 to get

) sin(c|i|t) ;7.2 1 =\ ind inE
/// — et A, = G(p) et s dog dv,
el )b
zﬁ ¥+H) av. | a
=g [ | J[] e

Sct

_ Wzt / / 9@+ €)doe.  (using (A.2))

Sct

For the other part of the solution we have

/// ) cos(c| i [t)e iz v, = /// ) sin c|,u|t)e,ﬁ_¥ v,
o el
N _t 47Tc2t //f dai

Sct

Therefore the solution to the wave equation is

u(z,t):% ﬁ//f(?%—?)dag o // ) do. (A1)

Sct Sct

This formula is due to Poisson, but is known as Kirchhoff’s formula, and is the 3—dimensional
analogue of d’Alembert’s solution.

It is worthwhile to compare the two forms of the solution to the wave equation. To evaluate
Eq. (A.3) a six fold integration is required: a triple integral to evaluate F' and G, and then another
triple integral to get the solution u. However, to evaluate Eq. (A.4), only a double (surface) integral
is required. For this reason Kirchhoff’s formula is by far the more desirable way to represent the
solution.



393

We can write Kirchhoff’s formula in a more compact form if we define the following mean value

operator:
= d(7
R | R2 // f &

This integral operator gives the mean value of f on the surface of the sphere Sr. Kirchhoff’s
formula may now be written as

0
u(7,t) = o (EMe[f]) + tMealg) (A.5)
EXAMPLE A.4. Consider the following 2-dimensional wave equation:

uy = V2, (z,y) € R, t >0,
u(z,y,0) = f(z,y),
Ut($7y70) = g($7y)

In order to solve this 2-dimensional problem we use the solution of the 3—dimensional problem and
make use of the fact that the relevant functions are independent of z. Consider the expression

1
Mmm=15¥/79@+¢y+md%-
Sgr

Since the integrand is independent of z (and (), the integral is just double the integral over the
upper hemisphere of Sg. For the upper hemisphere of Sg : €2+ n? + (2 = R? we have

ocN?  [oc\? R
. d%:wqa_g) B
1 1 glx+&y+n)
Vil = o [[ ot v &vamdoc= 5o [ T B acan
Sk Dgr

Dg:={(&n) e R*E® + 7 < R?}.
Apply this result to both terms in (A.5) to get

x+£y+n glz+&y+n)
u(r,y. 1) = 5 at// e +// et d

It is worth while comparing the solutions for the 2 and 3 dimensional wave equations:

Hence

where

—

1 0 1 - = 1 - 7
u(:p,t)zm 5 ;/ flx + &)doe +Z//g(3:+£)d0§ , (3-d)

Sct Sct

> 1 |0 + ¢ (%+3
u(Z 0= 5 a[l[\/ﬁdwml[ct/jﬁdwn L (2-)
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This representation displays an important property of the three dimensional wave equation. This
property is known as Huygens’ principle and it may be stated as follows: If the initial data f
and g have compact support, i.e. they are identically zero outside of a sufficently large set, then
the solution u(z,y, z,t) = 0 for sufficently large time ¢. This is clear since the expression for the
solution contains only surface integrals over a sphere of radius ¢t which, for sufficently large ¢, is
so large so as to not intersect the set where f # 0 and g # 0. Thus, a limited initial disturbance is
experienced by an observer for a finite duration.

For the two dimensional wave equation the situation is quite different. In this case the expression
for the solution contains integrals over the interior of a circle of radius c¢t. What this means is that
the integration will always cover the region where f # 0 and g # 0, even though the boundary of
the circle extends beyond the region where f £ 0 and g # 0. As a consequence, Huygens’ principle
is not wvalid for the two dimensional wave equation. For example, a pebble dropped in a pond of
water will create a wave motion on the surface of the water. An observer positioned r units away
from the initial disturbance will sense the disturbance at time ¢t = r/c later. However, after this
time the disturbance experienced by the observer will continue to be non zero for all subsequent
time. This is the phenonenon of a wake behind the initial disturbance. This wake phenonenon is a
property of the two dimensional wave motion. Huygens’ principle can be restated to say that, in
three dimensional wave motion, no wake is present.

As one final example with the wave equation, we show that d’Alembert’s solution for the one
dimensional wave motion actually is the one dimensional version of Kirchhoff’s formula.

EXAMPLE A.5. Consider the following 1-dimensional wave equation:

U = C Ugpy, ze€R, t>0,
’U,(LE,O) = f(x)7
Ut(.ﬁl’,O) :g(l')

In order to solve this 1-dimensional problem we use the solution of the 3—dimensional problem and
make use of the fact that the relevant functions are independent of y and z. Consider the expression

Malg] = -5 [ [ ata+ &) doe.
SR

If we parameterize Sr with spherical coordinates
&= Rcosf, mn=Rsinfcos¢, (= Rsinfsin¢

then the expression for Mg[g] becomes

1 1 s ™ )
Mglg] = A R? //g(a:+§)d05: 47TR2/ /0 g(m+Rcos€)R281n0d9d¢
Sh T

1

T ) 1 R
—5/0 g(x + Rcosh) Slnﬁdﬁ—ﬁ/_Rg(x—l-é)d&.
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Apply this result to both terms in (A.5) to get

o (1 [¢ 1

u(z,t) = &{2_0 _th(x+£ d£}+2—c/ g(r +¢&)d
1 1 xr+ct
§[f(m+ct)—|—fm—ct +%

which is just d’Alembert’s solution.

We now use Fourier transforms to find a solution to Laplace’s equation in a half-plane.
EXAMPLE A.6. Consider the following 2—dimensional Laplace equation:

V2u =0, zeR, y>0,t>0,
u(z,0) = f(z).

We require the additional assumption that |u(x,y)| < oo. Let U(u,y) and F(u) be the Fourier
transforms of u(z,y) and f(x) respectively. Then

1 o0 o0 i
Up,y) = —/ u(z,y)e " dz, u(w,y)z/ Ulp,y) e dp,

-5 / f(x) e da, f(a) = / F( e dp.

Plug into the equation to get

Ugp + Uy =0 = / (12U (11, y) + Uyy (1, )€™ dpp = 0.

This leads to the following problem for U:
—— — U =0,  3U(u0) = F(p).

Notice that this is a second order ODE with only one auxiliary condition. The second condition
we use is that we require that U be bounded. The soluton to the ODE itself is

Ulp,y) = a(p)e™ + b(p)e .

. From the boundedness condition we get

U(p,y)| < oo = {Z((z)):g’ forp>0"_ Ulp,y) = A(p)e M.

The other condition then gives

U(u,0) = F(p) = Ulp,y) = Fu)e .
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The soluton to the problem is

u(wy) = / F(u)e e dy

= % /Z C:f e—|M|yeiM~’U€—iu€ d¢ du

! °° |y i(a—¢

=g [ ([T et g ac

L7 e < by [cos(( — £)) + i sin(u(z — £)) du) ¢

1 - f& < /Ooe MY cos(p 5))d,u> dg

—00 0

1 0 e 1Y ] ©
-1 / 116 (g veostuts — )+ (=g sintuta— 1) | o
_L [ yfe
- w/_oo RGN

This is Poisson’s integral formula for the half plane.



Appendix B

Generalizations to Higher Dimensions

B.1 Classification of PDEs in R"

For the classification of second order linear PDEs in two variables in Chapter 1, we wrote the PDE
in matrix form, and introduced the symbol A of a differential operator Chapter 1Introduce the

following notation:
0 9\ [a b 2
<_83: _8y> < b . ) < Zﬁ: > U = QUgy + 2bUgy + Clyy.

Then we classified the equations according to the sign pattern of the eigenvalues of the matrix

(31)

We use the same approach for higher dimensional second order equations.

Now consider a 2" order PDE in n independent variables x1, zo, . .., &p:
n n
0%u
ZZaij(m)i = F(x,u,ugy, ..., Uy, ), (B.1)
=1 j=1
where = (x1,22,...,2,). Since the classification only depends on the highest order terms (2nd

order terms), we summarized all lower order terms in a big function F'. The above PDE may be
written in matrix form as

OxTAdgu=F,
where the symbol

a1 a2 - Qlp

az1 a2 -+ A2

A= |

anl Ap2 - Gpp
. . . - o 0 o 1"
is a real symmetric matrix, and the vector of derivatives 0x = 95 Ba;  dan| -

We may now generalize the classification scheme to second order PDEs of any dimension.

Definition 58. Eq. (B.1) is said to be
(i) elliptic if all eigenvalues of A have the same sign;

397
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(ii) parabolic if at least one eigenvalue of A is zero;
(iii) hyperbolic if one eigenvalue of A has a sign different from the others; and
(iv) ultrahyperbolic if two or more eigenvalues of A have a sign different from the others.

Note that ultrahyperbolic equations occur only for dimension n > 4.
EXAMPLE B.1. For the 3-d Laplace equation V?u = 0 (i.e. uz, + Uyy + U = 0) we have
10 0][2
& o1 o] |F]u=0
7
To get the eigenvalues:
A—pl|=0 = (u-10°=0 — m=1p=1,p=1
Therefore the PDE is elliptic.
EXAMPLE B.2. For the 3-d heat equation u; = V?u we have

To get the eigenvalues:

A—pl=0 = pp+1°=0 = wm=0pu=-1,p3=—1, pg=—1
Therefore the PDE is parabolic.
EXAMPLE B.3. For the 3-d wave equation uy = V?u we have

1 0 0 07/[&]

To get the eigenvalues:
A—pll=0 = (u-Du+1)’=0 = m=1 mp=-1 p=—-1 =1L
Therefore the PDE is hyperbolic.
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B.2 Adjoint Operators

In this section we assume that Q C R¥ is a bounded set, that = = (x1,22,...,2y), and that we
have some inner product defined:

(f,g) = /Qf(a:) g(z)w(x)dV, (dV =drydxy...doy)

where w is some non-negative weight function. Suppose we have a function f: 2 — R. We define
the support of f as follows:

Definition 59. The support of the function f: Q2 — R, denoted supp(f), is

supp(f) := {x € Q; f(z) # 0}.

I 0<z<4
EXAMPLE B.4. Suppose Q = [—4,4], and f(z) = 22, g(z) = 1—z% and h(z) = {Zm(x) A v <0
—4< T <

Then

supp(f) = {z € @ f(x) # 0} = [-4,0) U(0,4] = [-4,4] = O
supp(g) = [ €% g(@) 0} = 4D U (L U (L4 = [~4,4] =
supp(h) = {xz € Q; h(z) # 0} = (0,7) U (7m,4) = [0,4].

We introduce some more notation. Let Q C RY be open.

C(Q) ={f: QcRY = R; fis continuous};

C'Q) ={f:QcRN = R; 0f/0x; cC" 1 (Q), i=1,...,N}, neN;
C2(Q) = N2, C™(Q);

Co(22) = {f € C(Q); supp(f) is compact. };

Cip(©) = Co(@2) N C™(Q):

C5e(Q2) = Co(2) N C=(Q).

Note that ¢ € C§°(2) implies that ¢ and all of its derivatives are zero near 9€2. Functions in
C°(Q) are sometimes called “test functions”.

EXAMPLE B.5. Let Q = (—2,2) and let

{el/(xQ_l) lz| <1
€Tr) =

0 lz] > 1"
Then supp(¢) = [—1,1] is compact. It can be verified that all derivatives of ¢ exist so that
¢ € C§°(—2,2). The first couple of derivatives of ¢ are:
20 1/(z2-1) 3at—1 _1/(x%-1)
() = | T-1P° |z <1 () = L e ol <1
0 lz| > 1 0 lz| > 1

Suppose we have a linear operator L: C™(2) — C™(§2). We define the adjoint as follows:
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Definition 60. The formal adjoint of L, denoted L*, is the linear operator that satisfies the
following:

(Lu,d) = (u, L*¢) Yue C"(Q), Yo € C(Q).

That such an adjoint always exists will not be proven here. We merely illustrate with several
examples. First a couple of one dimensional examples.

EXAMPLE B.6. Suppose L: C'(a,b) — C(a,b) is defined by L := d/dz. Then we have

b

b b b
(Lu.0) = [ Lods = [ u(@)ola)do = u(w)ot)| - [ ulw)é'(@)do

a

b
— u(b)é(b) — u(a)d(a) - / w(Lg)dz =0 — 0 — {u, L$) = (u, — L)

Therefore L* = —L = —d/dx.

EXAMPLE B.7. Suppose L: C?(a,b) — C(a,b) is defined by L := d?/dz*. Then we have

= (u, L) .
Therefore L* = L = d?/dx?.
This prompts the following definition:

Definition 61. A linear operator L is said to be formally self-adjoint if L = L*.

Now for a few higher dimensional examples.

EXAMPLE B.8. Suppose L: C%(Q) — C(Q), where Q C R3, is defined by L := V2. Before
proceeding with the main calculation, we need to use a couple of vector identities. We have

V- (¢Vu) = V6 - Vu+ ¢V2,
3 . (u€¢) = % . %qﬁ +uV?¢.

Subtracting one from the other we get

SV = uV2+ V - (¢Vu — uVe). (B.2)
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Now, proceeding to calculate the adjoint, we have

(Lu,¢>:///(Lu)¢dV:// (V2u)p dV
Q Q

— ///[uvzqﬁ + % . (qﬁeu — ue(b)] av 7(using (B.2))
Q

9 — — N
= /// uVopdV + //(qqu —uVo) - ndo (using the divergence theorem)
Q 0N

= (u,V?¢) +0 = (u, Lg). 12(since ¢ € C3°(Q2))
Therefore L* = L = V2. The Laplacian is formally self-adjoint.

EXAMPLE B.9. Suppose L: C1(Q) — C(Q2), where Q C R", is defined by L := E bi(x ) - with
i=1
b; € C1(Q). We have

(Lu, ¢) = /(Zb >¢ )dV = Z/ 8% )p(x) dV
/Z o (tsud) — - (b0) | av

= / Z bjupn; do — / Z ui(bi(b) dv (using the divergence theorem)
00— Qi O

"9 "9 )
- /QU <; a—xi(bi@) dv = <U7—Za—$i(bi¢)> = (u, L"¢).

i=1

n

Therefore L*¢ = — > 5%( i}).

=1

n n
EXAMPLE B.10. Suppose L: C%(2) — C(Q), where Q C R™, isdefined by L := Y > a;; (x)aw‘?—;mj

i=1j=1 !
with a;; € C?(Q). It can be shown, in a manner similar to the calulation of the previous example

(exercise), that the adjoint is given by L*¢ = z z am ax (a;jo).
i=1j=1

One can easily show that the adjoint operator satisfies the following property:
(Ll + Lg)* = 1( + L;.

Using this property, together with the results of the last two examples, we see that the adjoint for
the general 2°4 order linear differential operator

Lu=)_> ajx) ax 8% Zb

i=1 j=1 i=1

(x)u
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is given by

In this case we have

Lu—L*u—Z:Z:&UZ ua + c(z)u.

=1 j=1

EXAMPLE B.11. If we let n = 3 and a;j(z) = d;jp(x) in the previous expression, then

a - 0 2 2
(6ijp(w) 5 —) + (@ :; 52, P 8% )+ c(x)u =V - (p(x)Vu) + c(z)u.

Thus, the differential operator that appears in the general heat equation is self-adjoint.

We now define a certain bilinear functional:
Definition 62. Let J: C™(2) x C"(2) — R be given by
J(u,v) == (Lu,v) — (u, L*v) .
Notice that J(u,¢) = (Lu, ) — (u, L*¢) = 0 for all ¢ € C5°(2) but that, in general, J(u,v) # 0.

EXAMPLE B.12. Suppose L: C?(a,b) — C(a,b) is defined by L := d*/dz?. Then we saw before
that L = L* and we have

b
J(u,v) = (Lu,v) — (u, Lv) = / (v —w") dx

b b
= / [(u'v) — vV — (w) + v dx = / [(u'v) — (w)] dx
b

=4/ (b)v(b) — u(b)v' (b) — v (a)v(a) + u(a)v'(a).

a

= (u'v — w")

Boundary value problems consist of a PDE together with appropriate boundary conditions. Let
Q C R". Define the following “linear boundary operator”:

B:C*(09Q) — C(0) by Bu:=au

ou
o Fon

If @ = (a,b), then 0Q = {a} U {b} (a disconnected set) so that B splits into two parts:

Biu = aji(a)u(a) — fr1(a)u (a) + aia(b)u(b) — Bia(b)u’(b),
Bou = g (a)u(a) + Ba1(a)u’(a) + aag(b)u(b) + Bz (b)u’ (b).
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Typically B; applies at x = a and By applies at x = b, in which case this reduces to
Biu = aq1(a)u(a) — B11(a)u'(a) = ar(a)u(a) — Bi(a)u(a),
Bou = ana(b)u(b) + Bao(b)u'(b) = aa(b)u(b) + Ba(b)u’ (b).

Consider the following linear homogeneous boundary value problem with linear homogeneous
boundary conditions:

Lu =0, reQCR", (B.3)
Bu =0, x € 0N.

Solutions to this problem will lie in the set M := {u € C*(Q)| Bu = 0}. It is easily shown that the
set M is a vector subspace of C?().
We now define the following set associated with M:

M* = {v e C*Q)| J(u,v) =0 Yu € M}.
There exists an operator B* such that M* can be rewritten as
M* ={v e C*Q)| B*v=0}.
We call B* the adjoint boundary operator.

EXAMPLE B.13. Suppose L: C%(a,b) — C(a,b) is defined by L := d?/dx? and the boundary
operator is given by
Biu =u'(a) —u(b), Bou =u'(b).

Then M and M* are given by

M = {u e C*a,b)| v (a) = u(b), /(1) = 0},
M* = {v e C?*a,b)| J(u,v) = 0Vu e M}.

b
J(u,v) = (Lu,v) — (u, Lv) = / (v —w") dx
b b
= / [(u/'v) — vV — (w) + v dx = / [(u'v) — (w)] dx

b
= (u'v —w’)

a

Thus we have
ueM = J(u,v) =u(b)v(b) —ud)'(b) — v (a)v(a) + u(a)v'(a)
=0 —u(b)v'(b) — )
—u(b)[v'(b) + v(a)] + u(a)v’

Therefore
veM' = Juv)=0VueM = {UE
v

and we get
M* = {v e C%*(Q)| v(a) + ' (b) =0, v/'(a) = 0}.
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The adjoint problem to (B.3) is defined as
L*u =0, e CRY,
B*u =0, x € 0N).
A boundary value problem is said to be self-adjoint iff L* = L and B* = B.

B.3 Finite Fourier Transforms

Suppose we have two linear differential operators K and L, where
K involves only time derivatives (either first or second order) and
L involves only spatial derivatives.

Consider the following nonhomogeneous PDE with nonhomogeneous initial and boundary condi-
tions.

Ku+ Lu = F(x,t), 3x = (z1,22,...,2,) €, t >0,
Bu = g(x,t), 3x €0, t >0, (B.4)
u(z,0) = f(x), x € Q,
ug(x,0) = f(az), x € Q. (if K is of second order)
In addition, consider the following associated eigenvalue problem:
Lé = po,
B¢ =0,

with an appropriate inner product (-,-). Denote the eigenvalues and normalized eigenfunctions by
. and ¢, (k=1,2,...) respectively. Then we have

Loy = pdr,
By =0,
where (¢y, ¢;) = ;-
We now look for a solution to (B.4) of the form

(@, t) =Y up(t)dr(x).
k=1

Then uj, must satisfy uy = (u, ¢). We call the collection {uy}72, the finite Fourier transform
of w.

Expand F', f, and fin eigenfunction expansions:

F(z,t) =) Fu(t)dr(x), Fi = (F, ¢r),
k=1

fla) =" frdu(x), fo=(f ox)
k=1

f(@) :Zﬁc¢k(x)a = <]?7¢k>
k=1
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We have
(Lu, ¢r) = (u, L ¢x) + J (u, d)
= (u, Loy + J(u, dr,) (assuming L* = L)
= (u, e d) + J (u, o)
= pruk + Hi(t),
where Hy(t) := J(u, ¢). Going back to the original PDE Ku + Lu = F, we get
(Ku, ¢r) + (Lu, ) = (F, dr)

K (u, o) + pu (u, @) + J(u, ox) = (F, dx)
Kug(t) + prun(t) = Fi(t) — He(t).

The initial conditions become

ug(0) = (u(z,0), ¢r(x )> (f(x), qbk( )>=fk,

w(0) = (us(,0), 6x(2) = (Fla), du(a) ) = Fi.
Thus, we get the following sequence of ODEs for wuy:
Kuk(t) + ,Ukuk(t) = Fk(t) — Hk(t), (B5)
ui(0) = f.
EXAMPLE B.14. Consider the following nonhomogeneous heat equation:
up = ugw — ¥ (u — ¢), 0<ax <,
u(z,0) = f(x), 9¢, cr, cr,7y const.

u(0,t) = cr, lu(¢,t) = cp.
This problem is of the form of problem (B.4) with

k=2 L——8—2+ F(x,t) =~%, Bu=
_at7 - 8 /77 9 _’77 -

The associated eigenvalue problem is
Lo = po —(¢" —7%¢) = o
ool o

This is easily solved to get

k22

€2

op(x) = \/%sin(kax). (eigenfunctions)

pe =2+ 1k=1,2,..., (eigenvalues)
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We have

¢
J(u,v) = (Lu,v) — (u, L*v) = (Lu,v) — (u, Lv) = /0 (vLu — ulv) dx

L

l l
= —/0 (Ugr¥ — ULy ) d = —/0 [(uzpv)r — (uvy)s] dr = —(ugpv — uvy,)
= —[uz (¢, t)v(l,t) — u(l, t)v. (¢, t) — uz(0,£)v(0,t) + u(0, t)v,(0,)],

0

therefore

Hy(t) = J(u, ¢r) = —[us (€, 1) 6x(€) — u(l, )¢ (€) — uz(0,)dx (0) + (0, 1)}, (0)]

=2 e,
Filt) = (F, 6¢) = \[/ sin(™ 78 do = ([ 2oPer 1 - (<14,

fo = (f.én) = \[/f sin(*7%) d ﬁ

Eq. (B.5) for u; becomes

k2m? 2/
u;€+(fy2+ 62 )uk:\/ga)\k, k‘:1,2,...,
ug(0) = fr,

where \p = 72[1 — (—1)*]c + %[CL — (=1)kcg]. This ODE is easily solved to get

2 Ak )\k > —( 2 2 }
t = — - @ v Y +wk)t
ui(f) 4 {Wk(72 + w3?) " <ak (P +wd)) € ’

where wy, : k“ . The final solution is

o0

A (2 4w? .
t = L Y +w )t .
u(x,t) =7 Z {wk 7 o) + <(1k R w,%)) e k } sin(wgr)

k=

EXAMPLE B.15. Consider the following problem governing the temperature of a circular plate:

g::—k‘vz O<p<a, - m<o<m, t>0,
u(a7¢7 )_f((b)?

U(p, b, 0) = g(pv ¢)

As before, we consider the domain ) in the pg¢-plane. The following extra conditions for the
artificial boundaries are required:
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Al: U(p,ﬂ',t) = U(p, _Wat) and g_;(/)ﬂﬂt) = g_u(/% _7T7t);

<

A2: |u(p, ¢,t)| bounded as p — 0F.

This problem is of the form of problem (B.4) with

K = a7 L= _kV27 F(‘Tat) = 7267 Bu = u(a767t)‘

The associated eigenvalue problem is

Lo = ¢ —kV2p = g
ng:O} — {u(a,@,t) =0

This we solved earlier. The eigenfunctions are

n T;/Z)\nm(ry 9) 7 Jnm (Ta 0)
(bnm(ra 9) = = ) (bnm(ry 6) = ~ )
[[¢nm]|? [¢nm I

where

Q,an(r, 0) = Jn(Anmr) cos(nb), Jnm(r, 0) = Jn(Anmr)sin(n), Ay = azm, In(anm) = 0.

We have

J(u,v) = (Lu,v) — (u, Lv) = —k / / (V2u)o — u(V20)]dA
Q

= —k//[e . [v%u - u%v]dA = —k/(v@ — @)ds.

on u@n
o0
Using the fact that
O Mnm .
o = Anm ), (AnmT) cos(nd), i Anmdy, (Anm 1) sin(n@),
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we get

]?Inm = J(u, (an) = —ka/ [(}Enm(a,e)%(a,e,t) — u(a,@,t)aaim (a,0)]do

= —ka)\nm%/ f(0) cos(nb) db,

Ho = J (1, ) = —a / " B (@, e)g (a,0,1) — u(a,0,1) ‘g’;m (a,0)] d6

= —kalnm n+1 () / f(0)sin(nd)d

|

Tnm = <g, quﬁnm> = é/g(r, H)ngbnm(r,@) dA = Wnlw /_7; /Oa g(r,0) T (A1) cos(nb) r dr db,

~ ~ 1 ™ a .
<g, ¢nm> = /Q/g(r, 0)Prm (r,0) dA = H{/;anz /—7r/0 g(r,0)Jp (Apmr) sin(n@) r dr d6.

We look for a solution of the form

7" 9 t Z Z unm 7" 9) +’Lan( )gnm(ne)]’

n=0m=1

where R B
anm = <’LL, ¢nm> ; ﬂnm = <u7 ¢nm> .
Manipulating the equation we get
w4+ Lu=0 — <Ut7 (/b\nm> + <Lu7 (/b\nm>
o ~ ~
— at <u ¢nm> + <uyL¢nm> + J(’LL, ¢nm) =0
— U, + kN2, U + Hpm = 0.

This is a first order ODE for ,,,, with initial condition u,,(0) = gnm. This is easily solved to

giving

~ ~ ﬁnm —kN2 ¢ ﬁnm

A similar calculation for $nm yields:

~ |~ ﬁnm —k\2 t ﬁnm

nm nm

The solution is now complete.
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Figure B.1: Representations of () in the xy-plane and the pg-plane.
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Appendix C

Gamma Function

We summarize a few properties of the gamma function. For z € C, with R{z} > 0, define

o0
I'i(2) ::/ e t*m L dt.
0
Then I'; is analytic in {z € C; R{z} > 0}. Integration by parts yields a recurrence relation

o
i(z+1) = / et dt = —t7e!
0

oo [e'e}
+ z/ e” 'l dt = 21, (2).  (using u = t°)
0 0

Repeated use of this recurrence relation yields

I'i(z+n)

Ti(e+n)=(z+n—1) (2 +1)I4(2) = TIi(z)= 24+ 0)(z+2) - (z+n—1)

This allows us to extend the definition to the right half plane by analytic continuation.

Definition.

I, (2) R{z} >0,
[(z):= Ii(z+n)
2(z+1)(z+2)---(z+n—1)

The gamma function I' is analytic in the complex plane except at z = 0, —1,—2,... where it has
simple poles. A graph of the gamma function for real values of its argument is given below.
We derive a couple more useful results. For a € R, with 0 < o < 1, we have

* a1 - 20 2ya—1 > 2 201 : 2
I'(«) :/ et dt :/ e Y (y ) 2ydy = 2/ eV y** dy. (usingt =y*)
0 0 0
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—n<R{z} < —n+1, 1z £ —n+1, In=1,2,3,....



Therefore

F(a)'(1 — «) <2/ 2y2°‘_1 dy) <2/ e T gpl2e dm)
0 0
oo 2a—1
4/ / (E) e~ (@) gy dy
0 X
= 4/ / (tan 9)20‘_16_T2 rdrdf
o Jo

= 3/2 (tan #)?*~1 dp
0

/ e d¢ = T (using & = tan? 0)
o 14+¢ sinTa’ 867
where the last equality follows from residue theory. Evaluating at o = 1/2 gives:
T T T T
r=r=z)=———m—m-= (=) =+m.
G =Gmmmy ~" — G v

Extending by analytic continuation yields

One last formula is the following:
& 1 1_ 1 1 1
| eta=s [Tt g = ri) ),
0 HJo KR

The main properties of the gamma function are summarized in
Theorem 63. The gamma function satisfies the following:

1. T(z+1) = 2I'(2).

2. (1) =1.

3. T'(n+1)=nl'(n)=n!, forn=1,23,....
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20

2 2
-1dt
- 20l

Figure C.1: A plot of y = I'(z).



Appendix D

Useful Formulas

1. Method of Characteristics for first order equations:
u(z, t) = u(xz(t),t)
First find z(t), then find u(z(t),t).

2. D’Alemberts formula for the wave equation on (—o0, 00):

(o, 1) = %(f(;v bot)+ fla—ct) 4~ /Hc o(s) ds.

2c —ct
3. Fourier series on [—L, LJ:
f(x) =ao+ Z ap cos(nmx /L) + by, sin(nmxz/L)
n=1

1 L

ap = i/_Lf(x)d:E
1 L

an = —/ f(z)cos(nmx/L) dx
LJ_p

1 L
by, = —/ f(z)sin(nrz/L) dx
L)
4. Fourier cosine series on [0, L]:

f(z) =ap+ Z an cos(nmx/L)

n=1
L
ag :%/0 f(x)dx

L
an = %/0 f(z)cos(nmz/L) dx
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10.

11.

. Fourier sine series on [0, L]:

= Z by sin(nmwz /L)

hll\D:

=1
/ )sin(nmz/L) dx

Separation of variables:
(a) Write u(z,t) = X(z) - T(t).
(b) Solve the Sturm-Liouville problem for X (z).
(c) Solve the corresponding time problem for 7'(t).
(d) Use superposition.
)

(e) Use the initial conditions.

Laplacian in polar coordinates:
0%u . Pu 10 [ ou n 1 0%u
- - = r— -
ox2 Oy ror \  or r2 002
Generalized eigenfunction expansion with a weight function w(z):

t)dt

2 f "
Z f<z>, ¢i()

. Fourier-integral formula on (—oo, c0):

f(z) = / (A(w) coswz + B(w) sinwz) dw
0
1 o0
= —/ f(x)coswzx dx
m — 0o
1 [ .
= —/ f(x)sinwz dz
T J—c0
Fourier-cosine-integral formula on [0, 00):
f(z) = / A(w) cos wz dw
0
2 [ee]
= —/ f(z)coswzx dz
T Jo
Fourier-sine-integral formula on [0, c0):
f(z) :/ B(w) sinwz dw
0
2 [ .
= —/ f(z)sinwz dz
T Jo



12.

13.

14.

15.

16.

Fourier transform on (—o0, 00):

FNw) = f@) = o [ raerdr
FUP@ = @)= [ fwe a

Fourier cosine transform on [0, 00):
Fo(f)w) = felw) = %/0 f(x) cos wz dx
fz) = /OO fe(w) cos wa dw
0

Fourier sine transform on [0, co):

Fs(f)(w) = fs(w) = %/000 f(z)sinwz dz
flx) = /000 fs(w) sinwz dw

Gauss kernel

Error function
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