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Introduction. In the previous paper [5], we have studied the groups of

projective transformations of affinely connected manifolds by the applica-

tion of the theory of normal projective connections. The main purpose of

the present paper is to study the conformal properties of complete Rieman-

nian spaces of some special type by the application of the theory of normal

conformal connections.

We shall introduce a family of Riemannian spaces, the elements of

which are characterized by conditions on the Ricci tensor fields and will be

called of type © (Definition 4). Einstein spaces are of type © and, in general,

a Riemannian space of type © is locally isomorphic with the direct product

of two Einstein spaces of different signs. Our main result (Theorem 1) states

that two conformally equivalent Riemannian metrics on a manifold which

are complete and of type © necessarily coincide, except the case where either

of the two metrics is an Einstein metric with the vanishing or negative Ricci

tensor field. Some results are also obtained in the exceptional case. We see

from this theorem that the group of all conformal transformations of a com-

plete Riemannian space of type © coincides with the group of all isometries,

except the case of an Einstein space with the vanishing or negative Ricci

tensor field (Theorem 2).

The proof of Theorem 1 is based on the theory of normal conformal con-

nections; it has been suggested by a result of K. Yano and S. Sasaki [8]

stating that the conformal holonomy group of a Riemannian space of type

© fixes a point or a sphere. In §§1-4, we shall show how to construct the

normal conformal connection when an arbitrary class of conformally equiva-

lent Riemannian metrics is given. The conditions for the normal conformal

connection are exhibited in Proposition 5.

Finally we mention that our formulation of the normal conformal con-

nection is efficacious for many other problems concerning the group of con-

formal transformations or the conformal holonomy group, for example, for

such a problem as is treated in [8], cited above. We want to take up these

problems at another occasion.

I would like to express my sincere thanks to Professor K. Nomizu for his

constant encouragement and kind interest in my work.

Remarks about notations and terminologies. Throughout this paper, we

follow, in principle, the notations and terminologies adopted in the author's
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paper [5]. By a manifold (a mapping) we shall always mean that of class C°°.

Let M be a manifold. We shall denote by Mp the tangent vector space to

Mat a point p of Mand by %(M) the set of all vector fields on M. %(M) may

be considered as a vector space over the field of all real numbers.

Let M and N be two manifolds and let/ be a mapping of M into N. For

each tangent vector X to M,fX denotes the result of applying the differential

of / to X (in Chevalley's notation, fX = df(X)). Now, assume that N is a

Lie group. For each pEM and XEMP, we denote by f~ldf(X) the result of

applying the differential of the mapping M3q-J>f~1(p)f(q)E^ to X. Then,

f^df(X) is naturally identified with an element of the Lie algebra n of N and

the mapping X—>f~1df(X) defines an n-valued 1-form on M, which we denote

by/-id/-
Let N be a manifold and let u(t) be a curve in M. We denote by u'(t)

the tangent vector to u(f) at /. In the case where A'' is a Lie group, we denote

by m(/)-1k'(<) the result of applying the differential of the left translation a

—>m(2)_1o- to u'(t). If we set X(f)=u(f)-1u'(f), then X(f) may be considered

as a curve in the Lie algebra n of N. Conversely, for each curve X(f) in n there

exists one and only one curve u(f) in A7 such that m(/)_1m'(;) =X(f) and w(0) =e

(the unit element of N) [6, p. 29]. In §§5 and 6, we make use of this fact.

Let P(M, G) be a principal fiber bundle over a base space M with struc-

ture group G. For each aEG, we denote by i?„ the right translation of P onto

itself which corresponds to a. For each zEP, Gz denotes the subspace of Pz

which is tangent to the fiber through z. Let g be the Lie algebra of G. For

each AES, A* denotes the vector field on P induced by the one-parameter

group Ra(i), where a(t) =exp tA. Then, Gz is equal to the subspace of Pz com-

posed of all the elements A* where A runs over g.

Let P(M, G) and P'(M, G') be two principal fiber bundles over the same

base space M. Let/ be a homomorphism of G into G'. A mapping/ of P into

P' is called a homomorphism corresponding to the homomorphism / of G

into G', if, for each zEP and cr£G, f(z-a)=f(z)-f(a) and if it induces the

identity transformation of M onto itself. In the case where G is a subgroup

of G', a homomorphism/ of P into P' corresponding to the injection of G into

G' is called an injection. If we identify P with a submanifold of P' by the

injection, we shall say that P is a subbundle of P' or P is contained in P'.

1. Mobius space. In this section, we define the Mobius space as a homo-

geneous space and study the homogeneous structure from an infinitesimal

point of view.

(1.1) Let Fn+2 be an (w+2)-dimensional vector space over the field R of

all real numbers. We consider a fixed decomposition of Fn+2:

Fn+t = Fo + Fn + Fn,

where F0 and Fx are 1-dimensional subspaces of Fn+2 and F„ is an rc-dimen-

sional subspace of Fn+2. Choose, once for all, bases £o and £„, in F0 and F„
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respectively. Denote by F* the dual space of Fn and by (£, E) the product

between ^EFn and EEF*.

(1.2) We consider an inner product 4>(X, Y) in Fn+2 satisfying the fol-

lowing conditions:

(i) *tto, «o) = *(€., U = *(fo, 9 = *($., 0 = 0, «(fo, f J = - 1
where £EF„;

(ii) The restriction of <p to Fn is positive definite. We shall denote by c6

the linear isomorphism of Fn onto F* defined by (£, <£(£')) =<?>(|, £'). Let P„+i

be the (w + l)-dimensional projective space constructed from Fn+2. We denote

by Mn the quadric in Pn+i defined by the quadratic equation in Fn+2: (p(X, X)

= 0. We denote by C the cone in Fn+2 — (0) defined by the same equation and

by co the projection of C onto Mn. We set o = w(£o) and °° = co(£00).

(1.3) Let AT be the subgroup of the general linear group of Fn+2 which

leaves the inner product <p(X, Y) invariant and let co be the projection of N

into the projective group of P„+i. If we set M(n)=u(N), we see that M(n)

leaves Mn invariant; more precisely, M(n) operates on Mn as follows:

u(a)u(X) = u(aX)    for all a E N and X E C.

An important result is that M(n), considered as a transformation group on

Mn, is effective and transitive on Mn. Thus Mn may be represented as a

homogeneous space

Mn = M(n)/M'(n),

where M'(n) denotes the isotropy group of M(n) at o. We call this homo-

geneous space the w-dimensional Mobius space. It is homeomorphic with the

re-dimensional sphere. M(n) is called the Mobius group of dimension re.

(1.4) Let 0(n) he the orthogonal group of Fn with respect to the inner

product c6 and let S(n) be the similarity group of Fn. Let R+ he the multi-

plicative group of all positive real numbers. We know that S(n) is the sub-

group of the general linear group of Fn composed of all the elements \<r where

~\ER+ and aEO(n). If we identify R+ with a subgroup of 5(re) by the iso-

morphism i?+9X—>Xl£5(re), where 1 denotes the unit element of S(n), then

we have the following expression

S(n) = 0(n)-R+ (direct product).

We denote by 5 and p the corresponding projections of S(n) onto 0(n) and R+

respectively.

(1.5) Now we construct a Lie group, denoted by L(S(n), F*), from S(n)

and F* as follows: The underlying manifold is equal to S(n)XF* and the

operation of multiplication is given by (r, E) ■ (t', E') = (tt', *t'E+E'), where

r, T'ES(n) and E, E'EK- Namely, L(S(n), Ft) is identical with the so-

called abelian extension of S(n) with respect to the star representation of

S(n). We show that L(S(n), Ft) may be identified with M'(n). Indeed, we
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define an isomorphism \p of L(S(n), F^) into N by yj/(cr) = f ■ E for all a = (r, £)

ES(n)XF*, where f and £ denote the elements of N defined respectively as

follows:

rio = p(t)_1£o, TV = s(t)t), r|M = p(t)£w;

££o = U &i = (v, E)U + V, E& = 2-1(cp-1E, E) + 4r*E + {„,

where nEFn. We see easily that a> o i/> gives an isomorphism of L(S(n), F*)

with M'(n). In the following, we identify S(n) with a subgroup of M'(n)

by the isomorphism S(m)9t->(t, O)GAf'(w) and we write exp£ = (l, E).

With this notation, we see that every element a of M'(n) is expressed uniquely

as

<r = l(cr)-exp E(o),

where 1(a) is in S(n) and E(cr) in F*. The correspondence cr—>Z(cr) gives a

homomorphism of M'(n) onto 5(jt-). Finally we have the following diagram:

M(n)   mJ'  M'(n) S(n)

.  . s      inj.
in].

0(n)

where inj. means injection and where 5 o 1(a) =<r for all aEO(n).

(1.6) Let 8(w) be the Lie algebra of S(n) which is identified with a sub-

algebra of the Lie algebra of all endomorphisms of Fn. Then, corresponding

to the decomposition of S(n) given in (1.4), we have the decomposition of

«(»):

8(») = o(n) + R.

For each A E8(n), we denote by A0(„) and AR the o(n)- and i?-components of

A respectively.

(1.7) In what follows, we study the Lie algebra of M(n). Let n be the Lie

algebra of N which is identified with the Lie algebra composed of all the

endomorphisms of F„+2 which leave the inner product cp in Fn+2 invariant.

First of all, n may be identified with the Lie algebra of M(n), because the

kernel of w: N—>M(n) is a discrete subgroup of N. Now consider the formal

direct sum m(«) of the three vector spaces Fn, g(w) and F*:

tn(») = Fn + «(») + F*.

We now define an isomorphism \p of m(w) onto n by the following formulae:

iP(A)lo = - SRZo + £,       tiA)^ = *-*£ + SRU

4>(A)V = (v, E)£o + SaMv + *(«, *)*..,
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where A=£+S+E, £EFn, SGS(re), EEFt and r)EFn. f being an isomor-

phism of m(re) onto rt, we can transfer the structure of the Lie algebra to

rrt(w) in such a way that $ becomes an isomorphism of Lie algebras: The

bracket operation of m(re) is given as follows:

(i) For £, %EFn, A, BE%(n) and E, E'EFt, [$, £']=0, [E, E']=0,

[A,B]=AB-BA, [A,S]=A$, [A,E]=-'AE;
(ii)  For HEFn and EEFt,   [£,  E]  belongs   to  «(»): [£, £]« = <£,  E);

where 77 is in 7^. In the following, we identify tn(re), provided with this bracket

operation, with the Lie algebra of M(n).

(1.8) We have exp A=u(exp^p(A)), that is,

exp A -co(A) = co(exp ̂ z(A)-X) for all A E m(re) and XGC

In particular, we have exp £-0=co(£o+£+<?K£, £)/2£oo). If we set E„ = Af„

— { 00 }, the mapping £—>exp £ • 0 gives a one-to-one corresponden ce of Fn

with En. This mapping is known as the stereographic projection of the

Euclidean space into the sphere. Finally we remark that the notation exp,

introduced in (1.5), is legitimate, because we have expxp(E) =^((1, E)) for

each EEFt.
(1.9) The Lie algebra m'(re) of M'(n) is given by

m'(re) = o(re) +R + F*.

(1.10) The decomposition of m(re)

m(«) = F„+ m'(re)

is fundamental for our later considerations. For each A Gm(re), we denote by

AFn and 4m'<«) the Fn- and m'(re)-components of A respectively. We have the

following formulae on the adjoint representation of M'(n) in m(re):

ad <r£ = <r£; ad o-E = 'o-^E;    ad (exp E)A = A + [E, A];

ad (exp £)£ = !+ [E, f] + 2~^[E, [E, $]],

where aES(n), £EFn, A G«(«) and EEFt- It follows that, for each oEM'(n)

and %EFn, 1(a) = (ad o!~)Fn = ad l(a)l-, from which we see that / may be con-

sidered as the homomorphism of the isotropy group M'(n) of M(n) at 0 onto

the linear isotropy group.

(1.11) Let / be a linear mapping of F„ into Ft. We now define a bilinear

mapping J of FnXFn into $l(Fn) (the Lie algebra of all endomorphisms of

J(€, r)« = - ([€, /«] + [/«). TD-Crtf for all V e Fn.

Later on, we shall use

Lemma 1. For any bilinear function 0/(£, £') ore FnXF„, there exists one

and only one linear mapping J of F„ into Fn such that
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(i) Tr(/(£, r)) = q«, n ^ «n 5, r e f„.

Afore precisely, J is given by

where we have set Qo= 23?-1 (?(£»> £>')> (£») oe*'»g a« orthogonal base of Fn with

respect to the inner product cp.

2. Orthogonal bundles and conformal S(w)-bundles. In the following, we

shall denote by M a connected manifold which satisfies the second countabil-

ity axiom, and we always assume that the dimension n of M is ^3.

We shall say that two Riemannian metrics g and g on a manifold M are

conformally equivalent, if there exists a positive function X on If such that

I = x2g.

X will be called the associated function of £ with respect to g. Now, fix a

Riemannian metric g on M. A transformation /of M onto itself is, by defini-

tion, a conformal transformation of g, \if*g and g are conformally equivalent.

The group C(g) of all the conformal transformations of g contains the group

1(g) of all the isometries of g.

Let M be a manifold and let Pl be the bundle of frames of M. Then, PL

may be considered as a principal fiber bundle over the base space M with the

general linear group of Fn as structure group. Each element x of Pl gives a

linear isomorphism of Fn with Mp such that (x-o-) •£ = x- (cr£) for all oEGL(n)

and t,EFn, where we have set irL(x) =p, irL being the projection of Pl onto M.

We know that to each Riemannian metric on M there corresponds a

principal fiber bundle Po over the base space M with structure group 0(n)

which is a subbundle of Pl- Such a bundle is usually called an orthogonal

bundle. Given a Riemannian metric g on M, P0 is defined as the subset of Pl

composed of all the elements x such thatg(x£, x-£') =<£(£> £') for all £, £'£Fn.

Definition 1. .4 conformal S(n)-bundle over a manifold M is a principal

fiber bundle over the base space M with structure group S(n) which is a subbundle

of the bundle of frames of M.
We first show that to each class 5 of conformally equivalent Riemannian

metrics on M there corresponds a conformal S(n)-bundle Ps over M. Let S

be a class of conformally equivalent Riemannian metrics. Fixing an element

g of S, Ps is defined as the subset of PL composed of all the elements x as

follows: There exists a real number p such that

g(x ■ £, x ■ ?) = P • <£(£, r) for all £, f' £ F*.

Clearly Ps does not depend on the choice of g and the structure of Ps as a

principal fiber bundle is naturally induced from that of Pl- From the defini-

tion of Ps, we see that the assignment g—>P0 gives a one-to-one correspond-
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ence of £ with the set of all the orthogonal bundles over M which are con-

tained in Ps- In the same way, the assignment (S—>Ps gives a one-to-one.

correspondence of the set of all classes of conformally equivalent Riemannian

metrics with the set of all the conformal S(n)-bundles.

Let Ps he a conformal S(n) -bundle over a manifold M and let Po he an

arbitrary orthogonal bundle contained in Ps- We define a homomorphism 5

of Ps onto Po corresponding to the homomorphism 5 of S(n) onto 0(n)

defined in (1.4), by the requirement that s(x) =x for all x£Po. Now consider

a second Riemannian metric g which is conformally equivalent to g. Let Pu

he the corresponding orthogonal bundle and let s be the corresponding homo-

morphism of Ps onto Po- Let X be the associated function of f with respect to

g. Then, we have

(2.1) s(x) = s(x) \ o ts(x) for all x E Ps,

where ws denotes the projection of Ps onto M and X o irs(x) is identified with

an element of R+ES(n).

In the following, we shall give some definitions and formulations about

an orthogonal bundle and connections in it which we need in the subsequent

sections.

Let Po be an orthogonal bundle over a manifold M. An affine connection

in P0 (in the sense of Cartan connection) is usually called a Euclidean con-

nection in Po- This may be formulated as follows [5, p. 6]: A Euclidean con-

nection in Po is a linear mapping B0 of Fn into T£(Po) which satisfies the fol-

lowing conditions:

(E.l) Pox = B0x + 0(n)x, where Box denotes the subspace of Po* composed

of all the elements Bo(£)x where !;EF„;

(E.2) R,Bo(i)=B0(o-^);
(E.3) 8Bo(t;)x = t;, where 8 denotes the P„-valued 1-form on P0 defined by

8(X) =x-1-tt0X for all A^GPo* and xEPo-
The assignment x—>Box defines a connection in Po, which we call the linear

connection in P0 associated with the Euclidean connection B0. By (E.l),

there exist, for each xGPo, bilinear mappings Tx and Rx of F„ X Fn into F„ and

o(re) respectively such that

-[Bo®, Bo(?)]x = Bo(Tx(Z, £'))* + *,«, ?),*.

Tx (resp. Rx) corresponds to the torsion (resp. the curvature) tensor field of

the Euclidean connection. There exists one and only one Euclidean connec-

tion in Po, called the Riemannian connection in P0, such that 7^ = 0 for all

x<=Po.
Let Bo be a Euclidean connection in P0. We now define, for each x£P0,

a bilinear function Sx on FnXFn by

ss, n = Tr(&($, r»,
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where Rx denotes the bilinear mapping of FnXFn into gI(F„) defined by

&(f. i')l = R*(b V)& for all 77, £, ?EFn. If we denote by S(X, Y) the ordinary
Ricci tensor field of the Euclidean connection, then we have

5,(i, r) -5(*-$,*-r).
Finally, we define, for each x£P0, a linear mapping J^of F„ into F* by the

formula
1     / Soix) \

(2.2)        <*,/.(r)) = —-(5,({, n - „,    '   *({, £')),
w — 2 \ 2(» — 1) /

where 50(x) = ^?-i ^(f., £<)> (£>) being an orthogonal base of F„. S0 cor-

responds to what is usually called the scalar curvature.

3. Conformal Af'(«)-bundle associated with a conformal 5(w)-bundle.

Proposition 1. For each conformal Sin)-bundle Ps over a manifold M

there exists a collection (P', I, a) as follows: P' is a principal fiber bundle over

the base space M with structure group M'(n); I is a homomorphism of P' onto

Ps corresponding to the homomorphism I of M'in) onto Sin) defined in (1.5);

a is an R-valued 1-form on P' having the following two properties:

(i) aiA*) =AR for all ^4£tn'(w), where AR denotes the R-component of A

in the decomposition of m'in) given in (1.9);

(ii) R*a = a+[ad licr)-xB, F(cr)]fi for all oEM'in), where 8 denotes the

Fn-valued 1-form on P' defined by BiX) =liz)~1irX for each XEP'z and zEP',

ir being the projection of P' onto M, and where <r = Z(<7) exp F(er), F(<r)£Fn-

Proof. Fix an orthogonal bundle PoEPs and let 5 be the homomorphism

of Ps onto Fo defined in §2. By making use of P0 and the injection of O(w)

into M'in), we get a principal fiber bundle P' over the base space M with

structure group M'in) together with an injection h of Po into P'. Next, we

define / to be the homomorphism of P' onto Ps such that / o A(x) =x for all

xEPo. a is defined as follows: Since, for each zEP', z and ho so /(z) lie in

the same fiber of P', it follows that there is a mapping a of P' into M'in)

such that z = h o s o liz) a(z). By applying s olto this formula and using the

fact that / o /s(x) =x for all x£P0, we have siaiz)) =e, from which it follows

that there exist mappings p and E of P' into R+ and F* respectively such that

a(z) =p(z) -exp £(z). Now define a to be a=p_1dp+ [8, E]R. That the form a,

just defined, has the properties (i) and (ii) follows from the following Lemma

2.

Lemma 2.

(i) p(z-er)=p(z)-po/(<7), £(zcr)=ad/(cr)-1£(z)+£(<r);

(ii) R*8 = adlia)~18,8iA*)=0.

Lemma 3. Let V be a manifold and let f and g be two mappings of Vinto P'.

Assume that there exist mappings p and E of V into R+EM'(n) and F*Em'(n)

respectively such that
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f(u) = g(u) ■p(u)■exp E(u) for all u E V.

Then, for each uEV and XE Vu, we get

fX = RaM ogX+ (p-HP(X))*M + (\p-HP(X), E(u)} + b-1db(X))*M,

where a(u) = p(u) ■ exp E(u)  and b(u) =exp E(u). p~1dp (resp. b~xdb) is an

R-(resp. Ft-) valued 1-form on V.

Proposition 2. Let (P', I, a) be a collection having the properties in Propo-

sition 1. Then, for each orthogonal bundle PoEPs there exists one and only one

injection h of P0 into P' such that

(i) I o h(x) = x for all xEPa;
(ii)  h*a = 0.

Proof. We first show that there exists at least one injection, say h0, of Po

into P' such that I o h0(x) =x for all x£P0. For this purpose, we introduce a

fiber bundle, denoted by P'/S(n), over M, which is the quotient space by the

following equivalence relation ~ in P': z'~z if and only if there is a rES(n)

such that z'=2-r. The standard fiber of P'/S(n) is given by M'(n)/S(n) (the

space of left cosets of M'(n) modulo S(n)), which is obviously homeomorphic

to a Euclidean space; hence P'/S(n) admits a (differentiable) section g over

M. Now denoting by p the projection of P' onto P'/S(n), we see that, for

each xGPo, there is a unique element ho(x) of P' such that l(ho(x)) =x and

p(ho(x)) = g(irx); clearly the correspondence x—>ho(x) defines an injection of

Po into P' such that I o ^0(x) =x for all x£Po, which proves our assertion.

Now we shall prove the existence of k having the properties (i) and (ii).

Let Bo he the Riemannian connection in Po. Defining a mapping E of Po into

Ft by <£, E(x))= [£, E(x))R= -h*a(Bo(k)x) for all xEPo and £<EPn, we de-

fine h by h(x) = h0(x) ■ exp E(x). First of all, we see that / o h(x)=x for all

xEPo- By applying Lemma 3 to the case where F = Po, f=h, g = ho and

X = B0(£)X, we have

hB0(Ox = Rax) o haBa(£)x + (b-1db(Bo(Ox))*k(x),

where b(x) =exp £(x). Applying a to this formula and using the properties of

a and the fact that h*8(Bo(£)x) =£, we have

(3.1) h*a(Bo(£)x) = h0*a(Bo(Z)x) + [?, E(x)]B = 0;

furthermore, we have h*a(A*)=AR = 0 for all ^4Go(«). It follows immedi-

ately that h*a = 0.

Now assume that there exist two injections h and ho which both have the

properties (i) and (ii). It follows from property (i) that there is a mapping E

of Po into Ft such that h(x) =h0(x) -exp E(x) for all x£Po- Then, by the

first equality of (3.1), we see that (f, E(x))=0 for all ^EFn and x£Po, that

is, £(x)=0, whence h = h0. q.e.d.
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Proposition 3. Let (P', /, a) be a collection having the properties in Proposi-

tion 1. Let Po be an orthogonal bundle contained in Ps and let h be the correspond-

ing injection of Po into P' whose existence is assured by Proposition 2. Then,

there exist mappings p and E of P' into R+ and F* respectively such that

z = ho so /(z)■ piz) ■ exp £(z)

and, using these p and E, a is expressed as

a = P-HP + [B, E]R.

Proof. By applying Lemma 3 to the case where F = P',/= the identity

transformation of P' onto itself, g = ho sol and u = z, we obtain

X = RaM ohosolX+ ip-HpiX))* + ([p-^p(Z), E(z)] + b'HbiX))*.

Applying a to this formula and using the properties of a and the fact that

h*a = 0, we have a(J)=[adp(z)-'«(AosoJZ), £(z)]ie+p-Wp(Z').  By an

analogous argument, we have 8iX) =ad p(z)-10(/s o 5 o IX). q.e.d.

By Propositions 2 and 3 we have easily

Proposition 4. Let (P', /, a) and (P', I, a) be two collections both having

the properties in Proposition 1 for the same conformal Sin)-bundle Ps- Then,

there exists a unique isomorphism f of P' onto P' such that lof=l andf*a = a.

These observations lead us to the following

Definition 2. Let Ps be a conformal Sin)-bundle over a manifold M. The

conformal M' in)-bundle associated with Ps is the principal fiber bundle P' to-

gether with a homomorphism I and a form a having the properties in Proposition

1 [1;7;3;2].

The prototype of conformal M'in)-bundles is given by the Mobius space

Mn: By the homogeneous structure of Mn = Min)/M'in), the Mobius group

Min) may be considered as a principal fiber bundle P' over the base space

Mn with structure group M'in). At the same time, since the linear isotropy

group of Min) at o is identified with Sin), the homogeneous structure yields

a conformal S(w)-bundle Ps over Mn together with a homomorphism I of P'

onto Ps- Moreover, we have a left invariant form a on P'( = Min)) such that

aiX) =XR for all XEmin), where XR denotes the F-component of X in the

decomposition of min) given in (1.6) and (1.7), and it can be proved that it

has the properties stated in Proposition 1. Therefore, we see that P' together

with I and a, obtained in this way, gives the conformal M'in)-h\xnd\a associ-

ated with Ps, and it is considered as the prototype of conformal M' («)-

bundles.

Remark. Let Ps be a conformal S(w)-bundle over a manifold M and let

P' together with I and a be the corresponding conformal M'in)-bundle. Given

an orthogonal bundle PoEPs, the existence of the injection h of P0 into P'

assured by Proposition 2 corresponds to that of the so-called "Veblen's
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repere" which is uniquely determined by the Riemannian metric on M which

corresponds to Po and by a choice of a coordinate system [7; 3].

Let P' he a conformal M'(re)-bundle over a manifold M. For each point

p of M, the fiber over p of the associated fiber bundle of P' with standard

fiber Mn is called the tangent Mobius space at p, which we shall denote by

Mn(p). Every element z of P' gives a one-to-one correspondence of Mn with

Mn(p) such that (z-a)-u = z- (au) for all oEM'(n) and uEM„, where ir(z) =p.

The origin p* of the tangent Mobius space at p is the point of M„(p) defined

by p* =z o, where z is an element of P' such that ir(z) =p. Clearly, the defini-

tion is consistent. By making use of P' and the injection of M'(re) into M(n),

we define a principal fiber bundle P over the base space M with structure

group M(n). In this case, we identify P' with a subbundle of P.

Finally we have the following diagram:

inj. I
P P' Ps

s      inj.
h J

Po

4. Normal conformal connection associated with a conformal 5(re)-bundle.

Proposition 5. Let Ps be a conformal S(n)-bundle over a manifold M and

let P' together with I and a be the corresponding conformal M'(n)-bundle. Then,

there exists a unique linear mapping B of F„ into H(P') which satisfies the follow-

ing conditions:

(C.l) Bz + M'(n), = Pi (direct sum), where Bz denotes the subspace of PI

composed of all the elements B(£)z where £ runs over Fn;

(C.2) R,B(I-) =B((ad ff-'|)0 + (ad <r-^(n);
(C.3) 8B(^) =£, where8 denotes the Fn-volued 1-form on P' defined in Propo-

sition 1;

(C.4) aB(£)=0;
(C.5) For each orthogonal bundle PoEPs, let h be the corresponding injec-

tion of Po into P'. Then we have

hBo(£)x = B($)h{x) + /,({)?(«>,

where Bo denotes the Riemannian connection in Po associated with P0 and Jx

the linear mapping of Fn into Ft given by formula (2.2).

The above proposition corresponds to Proposition 1 of [5] which is con-

cerned with the normal projective connection associated with a class of

projectively equivalent affine connections. One will see that the proof of

Proposition 5 is parallel to that of Proposition 1 cited above.

Proof of Proposition 5. The proof is divided into three steps.

I. A linear mapping B of F„ into X(P') will be called a conformal connec-
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tion in the conformal M'(w)-bundle P' if it satisfies conditions (C.l), (C.2),

(C.3) and (C.4) (see Definition 3).

Let B be a conformal connection in P'. We see from condition (C.l) that,

for each zEP', there exist bilinear mappings Tz and Az of F„ XF„ into F„ and

m'in) respectively such that

-[B®, Binh = we*, eo). + i«.(€, n.*.
Denoting by JF*(£, £') the o(»)-component of .4,(£, £') in the decomposition

of m'in) given in (1.9), we have the following two formulae (cf.  [5, p. 8]).

(i) T..S, n = ad /GO^r/ad l(a)i, ad /(o)f);

(4.1) (ii) If T, - 0       for all a EP',

WV.tt, ?) = ad /(ff)-W,(ad /(„){, ad *(<r){').

Let Po be an orthogonal bundle contained in Ps and let h be the cor-

responding injection of Po into P'. We know from Proposition 3 that there

exist mappings p and E of P' into R+ and F* respectively such that

z — ho so liz)-p(z)-exp £(z).

By applying Lemma 3 to the case where V=P',f=the identity transforma-

tion of P' onto itself, g = ho so I and X = B(j-)hiX), we have

£(£W) = hosolB(g)h(x) + Ax(g)hix) - /„(£)*(«),

where we have set ^(g) = p-1dp(B(^)Hx)) and /x(£) = -b-1db(B(^)h(x)). By

condition (C.4) and the formula of a in Proposition 3, we have -4X(£) =0 for

all £EF„. If we define a linear mapping 50 of F„ into S(P0) by Fo(£)*

= 5 o lBi$j)h(X), then we see from conditions (C.l), (C.2) and (C.3) that it

satisfies conditions (E.l), (E.2) and (E.3) for a Euclidean connection in P0.

The Euclidean connection B0 in Po which is obtained in this way will be

said to be induced by Po (with respect to the conformal connection B). For

each x£Po, the correspondence £—>-/*(£) defines a linear mapping of F„ into

F*, which will be said to be induced by P0. With the above definition, we have

(4.2) kBod), = B(QhM + /.({)!(.).

Let P0 be an orthogonal bundle contained in Ps and let B0 (resp. Jx) be

the Euclidean connection in P0 (resp. the linear mapping of F„ into F*) in-

duced by P0. As we have observed in §2, we can take, for each x£P0, bilinear

mappings Ti and Rx of FnXFn into F„ and o(n) respectively such that

- [50({), F0(r)]x - Po(7Y ft, £'))* + *,({, n.*.

TJ (resp. Fx) corresponds to the torsion (resp. the curvature) tensor field of

Po. Then, we have
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(i)   n <*>(£,?') = ZVfcf);
(io wmx)& n = s*(z, n + (fc /«')] + [/*«), r])0(n)

(cf. [5, p. 10]).
II. Let B he a conformal connection in P'. Now consider the following

condition for B:

(C 5') W T^' *° = °;
(ii) Tr(TF2(£, £')) = 0,

where Wz(t-, £') denotes the bilinear mapping of F„XFn intogl(P„) defined by

Wz(£, ?)r, = W.& vW for all r,EFn.
We shall show that, if a conformal connection in P' satisfies condition

(C.5'), then it satisfies also condition (C.5). Let P0 be an orthogonal bundle

contained in Ps and let Bo (resp. Jx) be the Euclidean connection in Po (resp.

the linear mapping of Fn into Ft) induced by Po- By formula (4.2), it is suffi-

cient to show that B0 is the Riemannian connection in P0 and Jx is given by

formula (2.2). It follows from formula (i) of (4.3) that TL (?, £') = THx)(%, £')

= 0, which shows that B0 is the Riemannian connection inP0. Formula (ii) of

(4.3) can be written as

(4.4) wh w («, r) = us, r) - J*& r);

if we observe that Tr (Rx(£,,€0)-5.({, £')< formula (ii) of (C.5') gives

Tr (/j;^, £')) =SX(£, £'). Now, by Lemma 1, we see that Jx is given by formula

(2.2), which proves our assertion.

III. Now we can prove Proposition 5.

We first prove the uniqueness of B: Fix an orthogonal bundle PoEPs

and let h be the corresponding injection of Po into P'. By Proposition 3, we

can take mappings p and E such that z = ho so l(z) -p(z) exp E(z). Now, by

condition (C.2), we have easily

(4.5) S({), = RaMB(ad p(z)$W) - ((ad b(z)-^)mM)*

where x = so/(z) and b(z)=exp E(z). If we take account of the formula

B(i)h(x) =hBo(^)x — Jx(l;)*,(x), formula (4.5) implies that B is uniquely deter-

mined by the orthogonal bundle Po only, which proves the uniqueness of B.

We shall now prove the existence of B: Fix an orthogonal bundle PoEPs

and let h he the corresponding injection of Po into P'. Let B0 he the Rie-

mannian connection in P0 and define Jx by formula (2.2). We now define a

linear mapping B of F„ into X(P') in the following way. First, we define, for

each xGPo and ££F„, -B(£)A(I) by the formula B(£)hM=hBo(£)x — Jx(£)mx).

Next, we define, for each zEP' and ££Pn, B(£)z by formula (4.5) by the use

of B(£)h(x), just defined. Then, the linear mapping B which is obtained in this

way satisfies the required conditions. In fact, by condition (E.2) and the fact

that /i.t(£) = V7i(t£) for all x£Po and t£0(«), we have easily i2T5(£)»w
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= B(adT~1^)h{x.r)- Therefore, we see that condition (C.2) follows from the

following two formulae p(z ■ cr) = p(z) ■ p o l(cr) and b(z) ■ cr = l(cr) ■ b(z ■ cr) (see

Lemma 2). In order to verify condition (C.l), it is sufficient to deal with the

case where z is of the form z = h(x). From the proof of Proposition 3, we know

that, for each XEP'h(z)> there exist a YEPox and an AEtn'(n) such that

X = hY+A*{x)- We now see that condition (C.l) follows from condition (E.l).

Condition (C.3) is obvious from condition (E.3). Condition (C.4) follows

from the properties of a. Therefore, we have only to check condition (C.5).

For this purpose, it is sufficient, by the argument in II, to show that B satis-

fies condition (C.5'). By definition of B we see that B0 and Jx coincide with

the ones induced by Po with respect to the conformal connection B. From

formula (i) of (4.3), we have ThM(^, £')=0, because Ti(£, £')=0 (note that

Po is the Riemannian connection in P0). It follows from formula (i) of (4.1)

that P,(£, £')=0. Moreover, by Lemma 1, we have Tr (/*(£, £'))=.$*(£, £')

and, using formula (4.4), we have Tr(Wh(X)(%, £'))=0. It follows from for-

mula (ii) of (4.1) that Tr(W,(%, £'))=0; thus B satisfies condition (C.5').

Therefore we have completed the proof of Proposition 5.

Remark. The bilinear mapping Tz (resp. Wz) which appears in the proof

of Proposition 5 corresponds to what is usually called the torsion tensor field

(resp. the Weyl's conformal curvature tensor field) of the conformal connec-

tion B.

Remark. The proof of Proposition 5 shows that, given a conformal con-

nection B in P', conditions (C.5) and (C.5') are mutually equivalent.

Definition 3. Let Ps be a conformal S(n)-bundle over a manifold M and let

P' together with I and a be the corresponding conformal M' (n)-bundle. A con-

formal connection in P' is a linear mapping B of F„ into X(P') which satisfies

conditions (C.l), (C.2), (C.3) and (C.4) in Proposition 5. The normal con-

formal connection associated with the conformal S(n)-bundle Ps is the con-

formal connection B which satisfies condition (C.5) in Proposition 5 or, equiv-

alently, condition (C.5') in the proof of Proposition 5 [l; 7; 3; 2].

5. Conformal development. This section corresponds to §5 of [5], in

which we proved a proposition about projective development. For the defini-

tion and fundamental properties of a connection in a principal fiber bundle,

we follow the book of K. Nomizu [6].

Let Ps be a conformal S(n)-bundle over a manifold M. Let P' be the

corresponding conformal M'(n)-bundle and letP be the principal fiber bundle

over the base space M with structure group M(n) defined in §3. As is well

known, a conformal connection B in P' gives rise to a connection Q in P.

The horizontal space Qz at a point z of P' is given by the subspace of P*

composed of all the elements B(g)z — £* where £ runs over F„Cm(w) (note

that P' is identified with a subspace of P).

We now define conformal development as follows: Let p be a point of M

and let u(t) be a curve in M beginning at p. Let z(f) be a horizontal curve in
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P which covers u(t), with respect to the connection Q in P. There is a curve

a(t) in M(n) such that z(t) -a(t) EP' for all /. Then the conformal development

of u(t) at p is defined as the curve u*(t) =z(0) -a(t)o in the tangent Mobius

space Mn(p) at p. Clearly the definition is consistent.

We recall here the definition of Euclidean development, cf. [5, p. 14].

Let -Bo be a Euclidean connection in an orthogonal bundle Po over M. Let

p he a point of M and let u(t) be any curve in M beginning at p. Let x(t) he a

horizontal curve in P0 which covers u(t), with respect to the linear connection

associated with the Euclidean connection Bo- There is a curve %(t) in Fn

such that Bo(l-(i))X(t)=x'(t). Now the Euclid development of u(t) at p is

defined as the curve v(t) =x(0) -w(t) in the tangent Euclidean space Mp at p,

where w(t) =fo'£(t)dt.
The following Proposition 6 may be considered as an alternative descrip-

tion of conformal development in terms of a Euclidean connection.

Let Ps he a conformal .S(re)-bundle over a manifold M and let P' be the

corresponding conformal M'(re)-bundle. Let Po be any orthogonal bundle and

let h be the corresponding injection of Po into P'. For each x£P0, we define

Jx by formula (2.2) starting with the Riemannian connection in P0. More-

over, we identify Mn (resp. F„) with the tangent Mobius space Mn(p) (resp.

the tangent Euclidean space Mp) by h(x) (resp. x). With these preparations,

we have

Proposition 6. Let p be a point of M and let u(t) be a curve in M beginning

at p. Fix a point x of Po such that 7r0(x) =p. Let u*(t) (resp. v(t)) be the develop-

ment of u(t) at p into the tangent Mobius space Mn (resp. the tangent Euclidean

space F„) at p with respect to the normal conformal connection in P' (resp. the

Riemannian connection in Po). Then, we have u*(t)=a(t)o, where a(t) denotes

the curve in the Mobius group M(n) which is determined by the differential equa-

tion

(5.1) a(0-V(0 = *'(/) + Jx(f,(v'(t))

with the initial condition a(Q)=e, where x(t) denotes the lift of u(t) through x

with respect to the linear connection associated with the Riemannian connection

in Po-

The proof of this proposition is quite similar to that of Proposition 2 of

[5 ]. We here remark the following point only. Let z(t) be the lift of u(t) through

h(x) with respect to the connection in P which corresponds to the normal con-

formal connection in P'. Then, we have

z(t)-a(t) = h(x(l)).

6. Some properties of a complete Riemannian space of type ©. Let g he

a Riemannian metric on a manifold M. By a field of projections of rank m

we shall mean a tensor field H of type (1,1) which satisfies the following
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conditions: (i) H is parallel with respect to the Riemannian connection,

(ii) H' = H, (iii) g(HX, Y) =g(X, HY) for all tangent vectors X, Y and (iv)

the rank of Hp is equal to m at each point p of M.

Definition 4. Let M be an n-dimensional manifold.

(i) A Riemannian metric g on M is of type (g"1-1 (0^/w^w), if there exists

afield H' of projections of rank m and if the Ricci tensor field S of gis expressed

as

S = im- l)goH' - in-m- l)goH",

where H" denotes the tensor field of type (1,1) defined by H"X = X — H'X for
all tangent vectors X.

(ii) A Riemannian metric g on M is of type <3°°, if the Ricci tensor field is

zero. When a Riemannian metric g on M is of type g"1-1 or @°°, we shall say

that it is of type @.

From the definition, we see that a Riemannian space of type @_1 (resp.

©n_1) is nothing but an Einstein space with the negative (resp. positive)

Ricci tensor field, and that, in general, a Riemannian space of type @m_1 is

locally isomorphic to the direct product of two Einstein spaces with the

Ricci tensor fields of different signs. Riemannian spaces of type @ have been

studied by S. Sasaki and K. Yano [4; 8] and it was proved that the con-

formal holonomy group of a space of type <§ fixes an im — l)-dimensional

sphere or a point, according as the space is of type (g"*-1 or ©°° (in the case

where m = 0, the fixed sphere should be considered as an imaginary one).

Moreover, they also dealt with the converse problem.

The main purpose of this section is to establish

Theorem 1. Let g and g be two conformally equivalent Riemannian metrics

which are complete and of type ©.

(i) If g is of type <&m~l and m^l, then g and £ coincide;

(ii) // g is of type @°°, then the associated function of g with respect to g is

constant.

In the above theorem, let/ be an arbitrary element of Cig). Then the

Riemannian metric f*g is clearly complete and of type ©. Now, by taking

g=f*g, we have

Theorem 2. Let g be a complete Riemannian metric.

(i) If g is of type S™-1 and m'Sil, then Cig) and 7(g) coincide;

(ii) If g is of type ©", then Cig) is homothetic.

Proof of Theorem 1. The proof is divided into three steps.

I. In the following, by a projection of F„, we mean an endomorphism H

of F„ into itself satisfying (i) H* = H and (ii) <p(/F£, £') =<£(£, H?) for all £,

£'£Fn. We shall say that a linear mapping / of F„ into F* is of type @m_1, if

there exists a projection H' of F„ which is of rank m and if it is expressed as
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1 1
/ = — 4>oH'-<jS o H",

2 2

where H" denotes the endomorphism of Fn into itself defined by H"% = % — H'%

forall££P„.
Fix a linear mapping J of Fn into Ft which is of type ©m_1 (0^m^«)

and consider the decomposition of Fn associated with the projection H':

Fn=V'+ V",

where V'=H'Fn and V"=H"Fn. We denote by t(J) the subalgebra of m(n)

generated by all the elements £ + /(£), where £ runs over Fn, and denote by

K(J) the subgroup of M(n) generated by t(J). By the stereographic projec-

tion £—>exp £-o, we define an (?re —l)-dimensional sphere <!>/ of Mn as follows:

*/ = {exp r-o | *«',«') = 4, rer).

Denote by X/ the connected component of Mn—$j which contains o.

Then we have

Lemma 4. Let J be a linear mapping of Fn into Ft which is of type ©m_1.

(i) Every element of K(J) fixes Kj;

(ii) Every element p of Kj can be written as

p = exp (£ + J(£))ofor some £ E Fn.

Proof. Denote by I' (resp. I") the subspace of t(J) composed of all the

elements £'+c6(£')/2 where £'GF' (resp. £"-c&(£")/2 where £"GF") and

consider the subspace q' (resp. g") of m(w) as follows:

g' = I' + o(m) (resp. g" = I" + o(re — m)),

where o(m) (resp. o(« — m)) denotes the subalgebra of o(w) which operates

trivially on V" (resp. V). An easy calculation shows that [I', l'] = o(m),

[V, o(m)] = l', [I", l"] = o(n-m), [t", o(re-rez)] = 1" and [g', g"]=0. It fol-

lows that g' and g" are subalgebras of m(re) and that f(J) is expressed as a

direct sum of g' and g":

t(J) = o' + g".

In order to prove (i), it is sufficient to show that the elements of the form

exp A where -<4£g' or g" fix <&j. Let p he an arbitrary point of 4>j. Then we

see from (1.8) that it is expressed as £ = co(£0+x'+2£00), where x'EV. If

AE&", we have ^G4)(£o+x'+2£M) =0, from which it follows that expAp

= p. Now assume that ^4Gg'. We have^(^4)(£0 —2£M)=0. If we set exp ^(^4)

•(£o+x'+2£M)=y0£o+y'+y°c£oo, then we have <Ky0£o+y'+y»£°°, ?o-2£oo)=0,

from which it follows that 4yl = (p(y', y'). We have

exp A p = a>(yo%o + y' + yx£x) = exp ((l/yo)y')-o (E$j).
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Now we shall prove (ii). For this purpose, we define four subsets Mm,

Mn.m, S°m and SZ of Mn as follows: Mm= {exp £'-o|£'£F'} W{ « }, Mn-m

= {exPro|r£F"}W{^}, 5°ra={expr-o|0(r, £'X4} and 5: = {exp
i'-o\ </>(£', £')>4j W{ oo } = {exp </>(£')-o|</>(£', £')<1}. Then we have easily

Kj =  Mn -  $J =   Mn-m \j{Mn-   iMm^> Mn-m) }   U Sm W .£.

Since we have, for each ££F„,

exp (£ + /(f)) = exp ({' + <Kr)/2) exp (?" - *({")/2),

where £' = H'ii and t-" = H"%, the statement of (ii) follows from the verifica-

tion of the following four cases:

(a) For each pEMn-m, there is a £"£ F" such that

j*-«p(€"-*(r0/2)-*;

(b) For each pEMn — iMmKJMn-m), there are a £'£F' and a qEMn-m

such that p = exp (£'+c/>(£')/2) q;

(c) For each ££S£, there is a £'£ F' such that p = exp (£'+c/>(£')/2) -o;

(d) For each ££-S„, there is a £'£ V such that £ = exp (£'+<p(£')/2) • « .

We write down the proof for case (b) only, since the other cases can be

treated similarly by using Lemma 5. Let p be an arbitrary point of

Mn — iMmVJMn-m)■ We see that p is expressed as p = exp x-o, where x£F„.

If we set x' = H'x and x" =H"x, then we have x'5^0 and x"r^0. Now define

an element £' of V and an element y" of V" as follows: £' = (6/(<p(x', x'))1/2)x'

and y" = (/3/(c/>(x", x"))1/2)x", where /3 and 8 are respectively given by

_ <pix, x) - 4 + Hcpix, x) - 4)2 + 16c6(x", x"))1'2

^ ~ 2(0(*", x"))1'2

and

s.n _0_ = /4(/?-(0(x'',x''))'/2)\"2

Sm 2       \(«(«", x"))>'2(4 + /J2)/

Then, we have £ = expx-o = exp (£'+2_1<p(£')) exp y" 0. Indeed, if we set

p = 1 + (sinh 0/2)2 + 4-1 (sinh 0/2)2<Ky", y"),

then we have

px = (sinh 0/0) (1 + 4"1 <*>(/', y"))|' + y".

Therefore, by Lemma 5, we have

exp 4' Uo + y" -\-£» J = p Uo + x H-— U)

where A'=W +<p(g)/2). But, in view of (1.8), this is nothing but the de-
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sired formula. Since q = exp y" -oEMn-m, we have completed the proof of b).

q.e.d.

Lemma 5.

(i) For each !-EF„, set A =^(£+c6(£)/2). Then, we have

exp A = 1 + (sinh 8/6)A + (cosh 8 - 1/82)A2,

where 8 =(c/>(£, £))1/2;

(ii) For each £GPn, set A =^(£— </>(£)/2). Then, we have exp ^4=1 +

(sin 8/8)A -((cos 0-l)/02).42, w&ere 0=(0(£, £))1/2.

We shall use

Lemma 6. Let J and / be two linear mappings of Fn into F* which are both

of type ©m_1, where m^l. We assume that there exist an element p of R+ and

an element E of Ft such

p-exp E$j = $/.

Then, we have p = 1 and £ = 0.

Proof. Let H' and H' he the projections of Fn defining J and / respec-

tively. If we set V=H'Fn and V' = H'Fn, then, in view of the definition of

$j and <J>j, we see that there is a mapping £—>»? of {£GF'|0(£, £)=4} onto

{r]EV'\<p(n, n)=4} such that

p • exp E ■ exp £ • o = exp 17 • 0.

But, by (1.8), we see that this is equivalent to the following two formulae:

(0 P2 = 1 + (£, E) + ((b-'E, E);

(ii) pv = £ + 2(p~1E.

Observing that -£G {£G F'|<p(£, £)=4}, it follows from formula (i) that

p2 = 1 + (4>~1E, E). Moreover, from formulae (i) and (ii), we have p2

= l+p(n, E)-^-^, E); as above, it follows that p2 = 1 -(</>"'£, E). There-

fore, we havep = l and £ = 0. q.e.d.

II. Let g be a Riemannian metric on a manifold M. Let Ps he the cor-

responding conformal 5(re)-bundle and let P' together with / and a he the

conformal AP(re)-bundle associated with Ps- Let P0 be the orthogonal bundle

corresponding to g and let h be the corresponding injection of Po into P'.

Under the assumption that g is of type ©, we define, at each point p of M,

two subsets $0(p) and Kg(p) of the tangent Mobius space Mn(p) at p as

follows:

The case where g is of type ©m_1. In this case, the Ricci tensor field 5 of

g is expressed as S=(m — l)goH' — (n — m—l)goH". For each xGPo, we

denote by Hx the endomorphism of Fn into itself which is defined by Hx

= x~1-H' x. Let Bo he the Riemannian connection in P0. If we observe that
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Six!;, x •£')= Sxif;, £') and g(x£, x-£')=0(£, £'), an easy calculation shows

that the linear mapping Jx which is defined by formula (2.2) starting with

the Riemannian connection P0 is given by the formula Jx = 2~1cpo Hi

-2-^0 Hi', where Hi'£ = £-HiZ for all ££F„. This means that Jx is of

type @m_1. Therefore, the argument in II applies to Jx. We now define Qgip)

and Kgip) as follows:

$,ip) = *(*) • */s;       K„ip) = *(*) • Kjx,

where x is an element of Po such that tto(x) =p. The definition does not de-

pend on the choice of x£Po such that 7to(x) =p. Indeed, if we set Vi =HiF„,

then we have V'x.a = o—1Vi for each x£Po and crEOin). It follows immedi-

ately from the definition of <lv and Kj that $jx.„ =o-~1$jx and Kjx.a = o—1Kjx.

The case where g is of type ©°°. In this case, we define $aip) and Kaip) as

follows:

*.(#) = *(*) • °° ;       K„ip) = hix) ■ En,

where x is an element of Po such that tto(x) =p and where En = Mn— { « },

as was defined in (1.8). The definition is independent of the choice of x£Po

such that 7r0(x) =p, because Oin) fixes oo.

In each case, Kgip) is an open submanifold of Mnip) which contains the

origin p*, and $gip) is the boundary of K0ip).

Lemma 7. Assume that g is a complete Riemannian metric of type @.

(i) At each point p of M, every curve through p in M is developed into the

part Kgip) of the tangent Mobius space Mnip) at p with respect to the normal

conformal connection associated with Ps.

(ii) For each point p of M and each point q* of Ksip), there exists a curve in

Kgip) which joins p* ithe origin of Mnip)) and q* and which admits the develop-

ment into the base space.

Proof. Fix a point x of Po such that 7T0(x) =p and identify F„ (resp. Mn)

with the tangent Euclidean space Mp (resp. the tangent Mobius space

Mnip)) at P by x (resp. hix)). In the following, we use the notation in Propo-

sition 6.

The case where g is of type ©OT_1. Let uif) be an arbitrary curve through

p in M. We know from Proposition 6 that the conformal development u*if)

of uif) at p is given by «*(/) =ait)o, where ait) is the curve in M(n) which is

uniquely determined by the differential equation a(2)-1a'(<) =v'if) + J»(«)(»''if))

with the initial condition o(0) =e. Since the Ricci tensor field S of g is paral-

lel, we see that SxW is constant for any horizontal curve in P0 (with respect

to the Riemannian connection in P0). It follows from formula (2.2) that

/„(0 is constant, hence, v'it)+Jxwiv'(t))=vJ(f)+Jx(v'(t)) is contained in

tiJx). It follows that ait) is a curve in KiJx), because KiJx) is the subgroup

of M(n) generated by !(/*). Therefore, by (i) of Lemma 4, we see that
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a(t)o is a curve in Kjx, which proves (i) (note the Kjx is identified with

Kg(p) by h(x)).
Now we shall prove (ii). Let q* be an arbitrary element of KJx. We know

from (ii) of Lemma 4 that there is an element £ of Fn such that q*

= exp (£ + /(£))• Now consider the geodesic u(t) of g such that re'(O) =£ (we

identify £ with a vector in Mp by x). Since the metric g is complete, the geo-

desic u(i) is defined for any real number /. We show that the conformal de-

velopment u*(t) of u(t) at p joins p* and q*. u(t) being a geodesic such that

w'(0)=£, the Euclidean development v(t) of u(t) at p is given by v(t)=tt;.

Hence, by Proposition 6, the conformal development u*(t) of u(t) at p is

given by u*(t)=a(t)o, where a(<)_1a'(<) =£+/*(«>(£) = £+/*(£), that is, a(t)

= exp <(£+-/x(£)). We have re*(l) =a(l)o = c»*, which proves our assertion, we

have thereby proved (ii).

The case where g is of type @°°. The proof is similar to the case where g

is of type ©m_1. We remark the following points. The linear mapping Jx of

Fn into Ft which is defined by formula (2.2) reduces to zero. The stereo-

graphic projection £—>exp£o gives a one-to-one correspondence of Fn with

En, and En is identified with K„(p) by h(x). We have thus completed the

proof of Lemma 7.

Remark. A theorem of K. Yano and S. Sasaki [4; 8] states that the

assignment p^>Q„(p) is parallel with respect to the normal conformal con-

nection, which is almost evident by Lemma 7, if we remark that $„(p) is the

boundary of Kg(p).

III. Now consider a second Riemannian metric £ on If which is complete

and of type @ and which is conformally equivalent to g. Let Po and h he the

corresponding orthogonal bundle and injection of Po into P'. At each point

p of M, we define 3ra(p) and Kg(p) as in II starting with g.

Lemma 8. &„(p) =^(p) at each point p of M.

Proof. $g(p) (resp. ^(p)) is the boundary of Kg(p) (resp. Kg(p)). There-

fore, it is sufficient to prove that Kg(p) =Kg(p). Let q* he an arbitrary point

of Kg(p). We know from (ii) of Lemma 7 that there is a curve u*(t) in Kg(p)

joining p* and q* which admits the development u(t) into the base space.

Now, by applying (i) of Lemma 7 to £, we see that u*(t) is a curve in Kg(p)

and, in particular, q* is contained in Kg(p). Thereby we have proved that

Kg(p)EKg(p). In the same way, we have Kg(p)EKg(p), whence Kg(p)

= Kg(p). q.e.d.
By using Lemma 8, we now prove Theorem 1. To do this, we need several

formulae concerning the relation between P0 and Po- Let 5 (resp. s) be the

homomorphism of Ps onto P0 (resp. P0) defined in §2 and let X be the asso-

ciated function of £ with respect to g. By Proposition 3, applied to Po,

there exist mappings p and E of P' into R+ and P* respectively such that
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z = h o soliz) -piz) -exp £(z) and a = p~1dp+ [d, E]R. If we set p = p o h and

E=Eoh, then it follows that

(6.1) hix) = ho j(x)-p(x)-exp £(x) for all x £ P0;

(6.2) p^cZp + [0', £]B = 0, where 0' = h*d;

(6.3) p(x) = Xo7rs(x).

(6.2) follows from the fact that h*a = 0 and (6.3) is obtained by applying I

to formula (6.1) and taking account of formula (2.1).

(i) The case where g is of type (g1"-1 (777.2:1). By Lemma 8, we see that

| is also of type ©m_I. Fix a point x of Po and set y = six) and p = ir0ix). We

have

$„(/>) = h ix)-$Jx   and   fyip) = %)-4>J„

where Jy denotes the linear mapping of Fn into F* defined by formula (2.2)

starting with |. It follows from Lemma 8 and formula (6.1) that

p(x)-exp E(x)$Jx = <$>JV.

Therefore, by Lemma 6, we have p(x) = l and hence, by formula (6.3),

\(p) = l. p being arbitrary, we have X = l, whence g = £.

(ii) The case where g is of type <&°°. It follows from Lemma 8 that g is

also of type <S°°. Fix a point x of Po and set y= S(x) and p=iroix). We have

$„(/>) = hix) ■ oo    and    $i(p) = h~iy) ■ oo.

It follows from Lemma 8 and formula (6.1) that

p(x) • exp F(x) ■ oo = co.

But, by (1.8), we have

P(x)-exp £(*)•« = ccil/2pix)(cb-1Eix), F(x))£0 + cb^Eix) + p(*)£„);

furthermore, we have oo =co(£oo). It follows immediately that F(x) =0. Now,

by formula (6.2), we see that p is constant and hence, by formula (6.3) that

X is constant, which proves our assertion. Thus we have completed the proof

of Theorem 1.
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