CONFORMAL CONNECTIONS AND CONFORMAL
TRANSFORMATIONS

BY
NOBORU TANAKA

Introduction. In the previous paper [5], we have studied the groups of
projective transformations of affinely connected manifolds by the applica-
tion of the theory of normal projective connections. The main purpose of
the present paper is to study the conformal properties of complete Rieman-
nian spaces of some special type by the application of the theory of normal
conformal connections.

We shall introduce a family of Riemannian spaces, the elements of
which are characterized by conditions on the Ricci tensor fields and will be
called of type & (Definition 4). Einstein spaces are of type & and, in general,
a Riemannian space of type & is locally isomorphic with the direct product
of two Einstein spaces of different signs. Our main result (Theorem 1) states
that two conformally equivalent Riemannian metrics on a manifold which
are complete and of type & necessarily coincide, except the case where either
of the two metrics is an Einstein metric with the vanishing or negative Ricci
tensor field. Some results are also obtained in the exceptional case. We see
from this theorem that the group of all conformal transformations of a com-
plete Riemannian space of type & coincides with the group of all isometries,
except the case of an Einstein space with the vanishing or negative Ricci
tensor field (Theorem 2).

The proof of Theorem 1 is based on the theory of normal conformal con-
nections; it has been suggested by a result of K. Yano and S. Sasaki [8]
stating that the conformal holonomy group of a Riemannian space of type
& fixes a point or a sphere. In §§1-4, we shall show how to construct the
normal conformal connection when an arbitrary class of conformally equiva-
lent Riemannian metrics is given. The conditions for the normal conformal
connection are exhibited in Proposition 5.

Finally we mention that our formulation of the normal conformal con-
nection is efficacious for many other problems concerning the group of con-
formal transformations or the conformal holonomy group, for example, for
such a problem as is treated in [8], cited above. We want to take up these
problems at another occasion.

I would like to express my sincere thanks to Professor K. Nomizu for his
constant encouragement and kind interest in my work.

Remarks about notations and terminologies. Throughout this paper, we
follow, in principle, the notations and terminologies adopted in the author’s
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paper [5]. By amanifold (a mapping) we shall always mean that of class C*.

Let M be a manifold. We shall denote by M, the tangent vector space to
M at a point p of M and by X(M) the set of all vector fields on M. ¥(M) may
be considered as a vector space over the field of all real numbers.

Let M and N be two manifolds and let f be a mapping of M into N. For
each tangent vector X to M, fX denotes the result of applying the differential
of f to X (in Chevalley’s notation, fX =df(X)). Now, assume that N is a
Lie group. For each p&E M and X € M,, we denote by f~1df(X) the result of
applying the differential of the mapping M2 g—f1(p)f(¢) EN to X. Then,
f~1df(X) is naturally identified with an element of the Lie algebra n of N and
the mapping X —f~1df(X) defines an n-valued 1-form on M, which we denote
by f~1df.

Let N be a manifold and let u(¢) be a curve in M. We denote by #'(¢)
the tangent vector to #(¢) at ¢. In the case where N is a Lie group, we denote
by u(t)~'u’(t) the result of applying the differential of the left translation o
—u(t)"lo to #'(¢). If we set X(¢) =u(t)~'4’(¢), then X ({) may be considered
as a curve in the Lie algebra n of V. Conversely, for each curve X (¢) in n there
exists one and only one curve %(¢) in NV such that «(¢)~''(f) = X () and #(0) =e
(the unit element of N) [6, p. 29]. In §§5 and 6, we make use of this fact.

Let P(M, G) be a principal fiber bundle over a base space M with struc-
ture group G. For each 0 €G, we denote by R, the right translation of P onto
itself which corresponds to o. For each 2&E P, G, denotes the subspace of P,
which is tangent to the fiber through 2. Let g be the Lie algebra of G. For
each 4 &g, A* denotes the vector field on P induced by the one-parameter
group Ra(), where a(f) =exp 4. Then, G, is equal to the subspace of P, com-
posed of all the elements A} where 4 runs over g.

Let P(M, G) and P’(M, G’) be two principal fiber bundles over the same
base space M. Let f be a homomorphism of G into G’. A mapping f of P into
P’ is called a homomorphism corresponding to the homomorphism f of G
into G’, if, for each 2&EP and ¢ &G, f(z-0) =f(3) - f(¢) and if it induces the
identity transformation of M onto itself. In the case where G is a subgroup
of G’, a homomorphism f of P into P’ corresponding to the injection of G into
G’ is called an injection. If we identify P with a submanifold of P’ by the
injection, we shall say that P is a subbundle of P’ or P is contained in P’.

1. Mdbius space. In this section, we define the M&bius space as a homo-
geneous space and study the homogeneous structure from an infinitesimal
point of view.

(1.1) Let Fny2 be an (n+42)-dimensional vector space over the field R of
all real numbers. We consider a fixed decomposition of F,:

Fn+2=F0+Fn+Fwy

where Fy and F, are 1-dimensional subspaces of Fn;s and F, is an #-dimen-
sional subspace of Fri2. Choose, once for all, bases & and £, in Fy, and F,
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respectively. Denote by Fy the dual space of F, and by (£, E) the product
between ¢ F, and ECF;.

(1.2) We consider an inner product ¢(X, V) in F.,. satisfying the fol-
lowing conditions:

(l) d’(EO; EO) = ¢‘(Ew) Eco) = ¢(£07 E) = d’(swy E) =0, d’(EO; Eoo) =-1
where £EF,;

(ii) The restriction of ¢ to F, is positive definite. We shall denote by ¢
the linear isomorphism of F, onto Fy defined by (£, ¢(¢'))=¢(%, £'). Let Pyt
be the (z+1)-dimensional projective space constructed from F,... We denote
by M, the quadric in P.4: defined by the quadratic equation in Fnie: ¢(X, X)
=0. We denote by C the cone in F,.s— (0) defined by the same equation and
by w the projection of C onto M,. We set o =w(§,) and »© =w({.).

(1.3) Let N be the subgroup of the general linear group of F.i. which
leaves the inner product ¢(X, Y) invariant and let w be the projection of NV
into the projective group of P,.1. If we set M(n) =w(N), we see that M(n)
leaves M, invariant; more precisely, M(n) operates on M, as follows:

w(o)w(X) = w(eX) foralle & N and X & C.

An important result is that M(n), considered as a transformation group on
M,, is effective and transitive on M,. Thus M, may be represented as a
homogeneous space

M, = M(n)/M'(n),

where M’(n) denotes the isotropy group of M(n) at o. We call this homo-
geneous space the n-dimensional Mébius space. It is homeomorphic with the
n-dimensional sphere. M(n) is called the M&bius group of dimension #.

(1.4) Let O(n) be the orthogonal group of F. with respect to the inner
product ¢ and let S(n) be the similarity group of F.. Let R, be the multi-
plicative group of all positive real numbers. We know that S(#) is the sub-
group of the general linear group of F, composed of all the elements Ao where
AER, and ¢€0(n). If we identify R, with a subgroup of S(n) by the iso-
morphism R, DA—A1ES(n), where 1 denotes the unit element of S(n), then
we have the following expression

S(n) = O(n)- Ry (direct produqt).

We denote by s and p the corresponding projections of S(n) onto O(n) and R,
respectively.

(1.5) Now we construct a Lie group, denoted by L(S(n), Fy), from S(n)
and F¥ as follows: The underlying manifold is equal to S(n) X Fy and the
operation of multiplication is given by (r, E)- (', E’) = (7', ‘r' E+E'), where
r, 7 E€S(n) and E, E'EF;. Namely, L(S(n), F¥) is identical with the so-
called abelian extension of S(#) with respect to the star representation of
S(n). We show that L(S(n), F;) may be identified with M’'(n). Indeed, we
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define an isomorphism ¢ of L(S(#n), Fy) into N by y(¢) =7- E for all ¢ = (r, E)
€S(n) X Fy, where 7 and E denote the elements of NV defined respectively as
follows:

7 = p(‘r)_lfo, ™ = 3(7)"7) T = p(T)fw;

EE‘J = &y, E’] = ("h E)EO + 1, Eseo = 2—1<¢_1E) E) + ¢7E 4+ £y
where nE F,. We see easily that w o ¥ gives an isomorphism of L(S(%n), Fy)
with M’(n). In the following, we identify S(n) with a subgroup of M’(n)
by the isomorphism S(n)2D71—(r, 0)E M’(n) and we write exp E=(1, E).

With this notation, we see that every element ¢ of M’ (%) is expressed uniquely
as

o = l(c)-exp E(o),

where I(¢) is in S(n) and E(c¢) in Fy. The correspondence o—l(s) gives a
homomorphism of M’(n) onto S(n). Finally we have the following diagram:

inj. l
M(n) M'(n) S(n)
. s inj.
inj.
O(n)

where inj. means injection and where s o /(o) =¢ for all s E0(n).

(1.6) Let 8(n) be the Lie algebra of S(#n) which is identified with a sub-
algebra of the Lie algebra of all endomorphisms of F,. Then, corresponding
to the decomposition of S(z) given in (1.4), we have the decomposition of
8(n):

8(n) = o(n) + R.
For each 4 €8(n), we denote by Aoy and Ak the o(n)- and R-components of
A respectively.

(1.7) In what follows, we study the Lie algebra of M(n). Let n be the Lie
algebra of N which is identified with the Lie algebra composed of all the
endomorphisms of F,;» which leave the inner product ¢ in F,,, invariant.
First of all, n may be identified with the Lie algebra of M(#n), because the
kernel of w: N—M(n) is a discrete subgroup of N. Now consider the formal
direct sum m(z) of the three vector spaces F, 8(n) and Fj:

m(n) = F, + 8(n) + F.*.
We now define an isomorphism y of m(n) onto n by the following formulae:

V(4)6o = — Sebo+ & ¥(4)éo = ¢7'E + Skbu,
'p(A)ﬂ = (7’: E)£0 + So(n)Tl + ¢(E) ﬂ)f«n
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where A =({+S+E, ¢€F,, SE8(n), EEF, and nEF,. ¢ being an isomor-
phism of m(n) onto n, we can transfer the structure of the Lie algebra to
m(n) in sueh a way that ¥ becomes an isomorphism of Lie algebras: The
bracket operation of m(n) is given as follows:

(i) For £ §EF., A, BE8(n) and E, E'CF;, [¢ £]=0, [E, E']=0,
[4, B]=AB—BA, [4, £]=4¢, [A, E]=—'AE;

(ii) For ¢EF, and EEF;, [, E] belongs to 8(n): [§, E]lg=(§, E);
[& Eloey = (n, EYe—¢(£, n)¢71E,
where 7 is in F,. In the following, we identify m(#), provided with this bracket
operation, with the Lie algebra of M(#n).

(1.8) We have exp 4 =w(exp ¢(4)), that is,

exp 4 -w(X) = w(exp ¥(4)-X) forall 4 € m(n) and X &€ C.

In particular, we have exp £-o=w(&+E40(&, £)/28,). If we set E,=M,
- { £ }, the mapping £—exp £-0 gives a one-to-one correspondence of F,
with E,. This mapping is known as the stereographic projection of the
Euclidean space into the sphere. Finally we remark that the notation exp,
introduced in (1.5), is legitimate, because we have exp ¢(E) =¢/((1, E)) for
each EEFY.

(1.9) The Lie algebra m’(n) of M’(n) is given by

m'(n) = o(n) + R + F.F.
(1.10) The decomposition of m(n)
m(n) = F, + m’'(n)

is fundamental for our later considerations. For each 4 €m(z), we denote by
Ar, and Aw (»y the F,- and m’(n)-components of 4 respectively. We have the
following formulae on the adjoint representation of M’'(n) in m(n):

ad ot = of; ad dE = '%0'E; ad (exp E)4 = A + [E, A];
ad (exp E)¢ = £ + [E, &] + 27'[E, [E, £]],
where s €S(n), EEF,, A E8(n) and ECF,. It follows that, for each ¢ € M’(n)
and §EF,, I(c) =(ad o) r, =ad I(0)£, from which we see that / may be con-
sidered as the homomorphism of the isotropy group M’(n) of M(n) at o onto
the linear isotropy group.

(1.11) Let J be a linear mapping of F, into F,. We now define a bilinear
mapping J of F,XF, into gl(F.) (the Lie algebra of all endomorphisms of

F.) by .
JE& &m=— (& T)] + [J®, 1))omt  foralln € Fa.
Later on, we shall use

LEMMA 1. For any bilinear function Q(&, £') on F.X Fn, there exists one
and only one linear mapping J of F, into Fy such that
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(1) Tr(J (5 &) = Q& ¢) for all &, £ &€ Fa.
More precisely, J is given by

a1 n Qo9 E)
@ 676 = = (0w - 5220,

where we have set Qo= D 1y Q(&, £1), (£:) being an orthogonal base of F, with
respect to the inner product ¢.

2. Orthogonal bundles and conformal S(z)-bundles. In the following, we
shall denote by M a connected manifold which satisfies the second countabil-
ity axiom, and we always assume that the dimension %z of M is =3.

We shall say that two Riemannian metrics g and g on a manifold M are
conformally equivalent, if there exists a positive function X on M such that

g =M.

X\ will be called the associated function of g with respect to g. Now, fix a
Riemannian metric g on M. A transformation f of M onto itself is, by defini-
tion, a conformal transformation of g, if f*g and g are conformally equivalent.
The group C(g) of all the conformal transformations of g contains the group
I(g) of all the isometries of g.

Let M be a manifold and let Py, be the bundle of frames of M. Then, P
may be considered as a principal fiber bundle over the base space M with the
general linear group of F, as structure group. Each element x of Py gives a
linear isomorphism of F, with M, such that (x-0)-£=x-(c£) for all e EGL(n)
and §E F,, where we have set m(x) =, 71 being the projection of P, onto M.

We know that to each Riemannian metric on M there corresponds a
principal fiber bundle P, over the base space M with structure group O(n)
which is a subbundle of P;. Such a bundle is usually called an orthogonal
bundle. Given a Riemannian metric g on M, P, is defined as the subset of P,
composed of all the elements x such that g(x- £, x-£') =¢(§, &) for all £, ¢ EF,.

DEFINITION 1. A conformal S(n)-bundle over a manifold M is a principal
fiber bundle over the base space M with structure group S(n) which is a subbundle
of the bundle of frames of M.

We first show that to each class € of conformally equivalent Riemannian
metrics on M there eorresponds a conformal S(z)-bundle Pg over M. Let €
be a class of conformally equivalent Riemannian metrics. Fixing an element
g of €, Pg is defined as the subset of P, composed of all the elements x as
follows: There exists a real number p such that

gx-§ x-&) = p-9(t, &) for all ¢, & € Fu.

Clearly Pg does not depend on the choice of g and the structure of Pgs as a
principal fiber bundle is naturally induced from that of P;. From the defini-
tion of Pg, we see that the assignment g— P, gives a one-to-one correspond-
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ence of € with the set of all the orthogonal bundles over M which are con-
tained in Pg. In the same way, the assignment €—Pg gives a one-to-one.
correspondence of the set of all classes of conformally equivalent Riemannian
metrics with the set of all the conformal S(n)-bundles.

Let Pgs be a conformal S(n)-bundle over a manifold M and let P, be an
arbitrary orthogonal bundle contained in Ps. We define a homomorphism s
of Ps onto P, corresponding to the homomorphism s of S(#) onto O(n)
defined in (1.4), by the requirement that s(x) =x for all x & P,. Now consider
a second Riemannian metric g which is conformally equivalent to g. Let P,
be the corresponding orthogonal bundle and let § be the corresponding homo-
morphism of Pg onto P,. Let \ be the associated function of g with respect to
g. Then, we have

(2.1) s(x) = 5(x) Ao ws(x) for all x € Py,

where 75 denotes the projection of Pgonto M and A o ws(x) is identified with
an element of R, CS(n).

In the following, we shall give some definitions and formulations about
an orthogonal bundle and connections in it which we need in the subsequent
sections.

Let P, be an orthogonal bundle over a manifold M. An affine connection
in Py (in the sense of Cartan connection) is usually called a Euclidean con-
nection in Po. This may be formulated as follows [5, p. 6]: A Euclidean con-
nection in P, is a linear mapping By of F, into ¥(P,) which satisfies the fol-
lowing conditions:

(E.1) Py,=By,+0(n)., where B,, denotes the subspace of Py, composed
of all the elements By(£), where £E Fa;

(E.2) R,Bo(§) =Bo(07%);

(E.3) 0By(£),=£, where 0 denotes the F,-valued 1-form on P, defined by
0(X)=x"1-moX for all XE Py, and x & P,.

The assignment x— B, defines a connection in Py, which we call the linear
connection in P, associated with the Euclidean connection By. By (E.1),
there exist, for each x & P,, bilinear mappings T, and R, of F, X F, into F, and
o(n) respectively such that

—[Bo(®), Bo(¥)]e = Bo(T:(£, £))= + Ra(t, £)2.

T, (resp. R.) corresponds to the torsion (resp. the curvature) tensor field of
the Euclidean connection. There exists one and only one Euclidean connec-
tion in P, called the Riemannian connection in Py, such that T,=0 for all
xEPo.

Let By be a Euclidean connection in P,. We now define, for each x &Py,
a bilinear function S, on F, X F, by

Sa(§ &) = Tr(R.(8 £)),
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where R, denotes the bilinear mapping of F,XF, into gl(F,) defined by
R.(E, &)n=R.(%, n)¢ for all 9, £, & € F.. If we denote by S(X, ¥) the ordinary
Ricci tensor field of the Euclidean connection, then we have

SI(E: EI) = S(xfy x‘E')-

Finally, we define, for each x Py, a linear mapping J, of F, into Fy by the
formula
R e C et 10
. ) z n— 2 z\6y 2(” _ 1) ) ’
where Sy(x) = Z:‘., Sz, &), (£) being an orthogonal base of F,. S, cor-
responds to what is usually called the scalar curvature.
3. Conformal M'(n)-bundle associated with a conformal S(z)-bundle.

ProposITION 1. For each conformal S(n)-bundle Pg over a manifold M
there exists a collection (P’, 1, a) as follows: P’ is a principal fiber bundle over
the base space M with structure group M'(n); I is a homomorphism of P’ onto
Py corresponding to the homomorphism | of M'(n) onto S(n) defined in (1.5);
a is an R-valued 1-form on P’ having the following two properties:

(i) a(A*)=Ag for all AEmW'(n), where Ar denotes the R-component of A
in the decomposition of m'(n) given in (1.9);

(i) R¥fa=a+[ad l(e)~0, E(o)]r for all e EM'(n), where 0 denotes the
Fr-valued 1-form on P’ defined by 6(X) =I(z)"'wX for each X EP, and z&P’,
w being the projection of P’ onto M, and where o =I(c)-exp E(s), E(s) EFy.

Proof. Fix an orthogonal bundle PyC Py and let s be the homomorphism
of Pg onto P, defined in §2. By making use of P, and the injection of O(n)
into M’(n), we get a principal fiber bundle P’ over the base space M with
structure group M’(n) together with an injection % of Py into P’. Next, we
define / to be the homomorphism of P’ onto Pg such that /o k(x) =x for all
x&P,. « is defined as follows: Since, for each 2&EP’, z and ko s o I(2) lie in
the same fiber of P’, it follows that there is a mapping a of P’ into M’'(n)
such that =% o s 0 I(2) -a(2). By applying s o I to this formula and using the
fact that / o A(x) =x for all xEP,, we have s(a(z)) =e, from which it follows
that there exist mappings p and E of P’ into R, and Fj respectively such that
a(z) =p(z)-exp E(2). Now define a to be a=p~'dp+ [#, E]z. That the form a,
just defined, has the properties (i) and (ii) follows from the following Lemma
2.

LEMMA 2.
() p(z-0)=p(2)-pol(s), E(z-0) =ad i(6)1E(2) + E(0);
(i) R*9=ad I(c)9, (A *) =0.

LEMMA 3. Let V be a manifold and let f and g be two mappings of Vinto P'.
Assume that there exist mappings p and E of V into R, C M'(n) and FyCm'(n)
respectively such that
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f(u) = g(u)-p(u) exp E(u) forallu & V.
Then, for each uCV and X &V, we get

FX = Rag 08X + (57'dp(X))j ) + ([67'dp(X), E@)] + 6-1db(X))} s

where a(u) =p(u)-exp E(u) and b(u)=exp E(u). p~'dp (resp. b~'db) is an
R-(resp. Fi-) valued 1-form on V.

PROPOSITION 2. Let (P, [, @) be a collection having the properties in Propo-
sition 1. Then, for each orthogonal bundle PoC Pg there exists one and only one
injection b of Py into P’ such that

(1) 1o h(x)=x for all xS Py,

(ii) A*a=0.

Proof. We first show that there exists at least one injection, say ko, of P,
into P’ such that / o ky(x) =x for all x& P,. For this purpose, we introduce a
fiber bundle, denoted by P’/S(%), over M, which is the quotient space by the
following equivalence relation ~ in P’: z’~z if and only if there is a 1&S(n)
such that 2’ =z-7. The standard fiber of P'/S(n) is given by M'(n)/S(n) (the
space of left cosets of M’(n) modulo S(%)), which is obviously homeomorphic
to a Euclidean space; hence P’/S(n) admits a (differentiable) section g over
M. Now denoting by p the projection of P’ onto P’/S(n), we see that, for
each x&EP,, there is a unique element %¢(x) of P’ such that I(kh(x)) =x and
p(ho(x)) =g(mx); clearly the correspondence x—ho(x) defines an injection of
Py into P’ such that /o ko(x) =x for all x& Py, which proves our assertion.

Now we shall prove the existence of & having the properties (i) and (ii).
Let By be the Riemannian connection in Py. Defining a mapping E of P, into
F¥ by (¢, E(x))=[£, E(x)]e= —k*a(Bo(£).) for all x&P, and £E F,, we de-
fine & by h(x) =ho(x)-exp E(x). First of all, we see that / o h(x) =x for all
x&Py. By applying Lemma 3 to the case where V=P, f=h, g=ho and
X =By(§)., we have

kBo(®). = Rocey © hoBo(£)e + (6-'db(Bo(£))) ),

where b(x) =exp E(x). Applying a to this formula and using the properties of
a and the fact that Ag08(Bo(£).) =&, we have

3.1 F*a(Bo(§)s) = hfa(Bo(§)2) + [ E®)]r = 0;

furthermore, we have h*a(4¥) =Ar=0 for all A So(n). It follows immedi-
ately that A*a=0.

Now assume that there exist two injections % and %, which both have the
properties (i) and (ii). It follows from property (i) that there is a mapping E
of P, into Fy such that k(x) =ho(x)-exp E(x) for all x€P,. Then, by the
first equality of (3.1), we see that (¢, E(x))=0 for all £EF, and x&P,, that
is, E(x) =0, whence A=h,. q.e.d.
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ProPosITION 3. Let (P’, I, o) be a collection having the properties in Proposi-
tion 1. Let Py be an orthogonal bundle contained in Ps and let k be the correspond-
ing injection of P, into P’ whose existence is assured by Proposition 2. Then,
there exist mappings p and E of P’ into R, and F respectively such that

z=hosol(z) p(z) exp E(z)
and, using these p and E, o is expressed as
a = p~ldp + [0, E]R.

Proof. By applying Lemma 3 to the case where V=P’, f=the identity
transformation of P’ onto itself, g=k o s ol and # =3z, we obtain

X = RunohosolX + (571dp(X)) ¥ + ([67'dp(X), E(z)] + b~1db(X)) .

Applying a to this formula and using the properties of o and the fact that
h*a=0, we have a(X)=[ad p(2)~0(hosolX), E(2)]r+p'dp(X). By an
analogous argument, we have 0(X) =ad p(2)70(k 0 s 0 IX). q.e.d.

By Propositions 2 and 3 we have easily

PRrROPOSITION 4. Let (P', I, a) and (P', I, &) be two collections both having
the properties in Proposition 1 for the same conformal S(n)-bundle Pg. Then,
there exists a unique isomorphism f of P’ onto P’ such that l o f=1I and f*a = a.

These observations lead us to the following

DEFINITION 2. Let Pg be a conformal S(n)-bundle over a manifold M. The
conformal M'(n)-bundle associated with Pgs is the principal fiber bundle P’ to-
get[her with a]homomorphism Land a form o having the properties in Proposition
1(1;7;3;2].

The prototype of conformal M’(n)-bundles is given by the M&bius space
M,: By the homogeneous structure of M,= M(n)/M'(n), the Mébius group
M(n) may be considered as a principal fiber bundle P’ over the base space
M, with structure group M’(n). At the same time, since the linear isotropy
group of M(n) at o is identified with S(n), the homogeneous structure yields
a conformal S(n)-bundle Ps over M, together with a homomorphism I of P’
onto Ps. Moreover, we have a left invariant form « on P’'(= M(n)) such that
a(X) =Xp for all XEm(n), where Xr denotes the R-component of X in the
decomposition of m(z) given in (1.6) and (1.7), and it can be proved that it
has the properties stated in Proposition 1. Therefore, we see that P’ together
with / and «, obtained in this way, gives the conformal M’(n)-bundle associ-
ated with Pg, and it is considered as the prototype of conformal M’(n)-
bundles.

REMARK. Let Pg be a conformal S(z)-bundle over a manifold M and let
P’ together with / and a be the corresponding conformal M’(x)-bundle. Given
an orthogonal bundle PyCPg, the existence of the injection % of P, into P’
assured by Proposition 2 corresponds to that of the so-called “Veblen's
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repére” which is uniquely determined by the Riemannian metric on M which
corresponds to Py and by a choice of a coordinate system [7; 3].

Let P’ be a conformal M’(n)-bundle over a manifold M. For each point
p of M, the fiber over p of the associated fiber bundle of P’ with standard
fiber M, is called the tangent Mébius space at p, which we shall denote by
M.(p). Every element z of P’ gives a one-to-one correspondence of M, with
M, (p) such that (z-0) -u=2z-(ou) for all e E M’'(n) and uE M, where w(z) = p.
The origin p* of the tangent M&bius space at ¢ is the point of M,(p) defined
by p*=2z-0, where z is an element of P’ such that w(z) =p. Clearly, the defini-
tion is consistent. By making use of P’ and the injection of M’(n) into M(n),
we define a principal fiber bundle P over the base space M with structure
group M(n). In this case, we identify P’ with a subbundle of P.

Finally we have the following diagram:

inj. l
P P’ Pg
L s inj.

Py
4. Normal conformal connection associated with a conformal S(x)-bundle.

PROPOSITION 5. Let Pg be a conformal S(n)-bundle over a manifold M and
let P’ together with | and o be the corresponding conformal M’ (n)-bundle. Then,
there exists a unique linear mapping B of F. into X(P") which satisfies the follow-
ing conditions:

(C.1) B,+ M'(n).,=P! (direct sum), where B, denotes the subspace of P.
composed of all the elements B(§), where & runs over F,;

(C.2) R,B(§)=B((ad 6¥)r,) +(ad e )7 m;

(C.3) 6B(£) =&, where denotes the Fn.-valued 1-form on P’ defined in Propo-
sition 1;

(C.4) aB(§)=0;

(C.5) For each orthogonal bundle Py Pgs, let h be the corresponding injec-
tion of Pg into P'. Then we have

hBo(E)z = B(E)h(z) + Jz(E):(z))

where By denotes the Riemannian connection in P, associated with P, and J.
the linear mapping of F. into Fy given by formula (2.2).

The above proposition corresponds to Proposition 1 of [5] which is con-
cerned with the normal projective connection associated with a class of
projectively equivalent affine connections. One will see that the proof of
Proposition 5 is parallel to that of Proposition 1 cited above.

Proof of Proposition 5. The proof is divided into three steps.

I. A linear mapping B of F, into ¥(P’) will be called a conformal connec-
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tion in the conformal M’(n)-bundle P’ if it satisfies conditions (C.1), (C.2),
(C.3) and (C.4) (see Definition 3).

Let B be a conformal connection in P’. We see from condition (C.1) that,
for each z&P’, there exist bilinear mappings T, and 4, of F, X F, into F, and
m’(n) respectively such that

—[B@®), B(#)]. = B(T.(£, £)). + 4., &) >

Denoting by W.(¢, £') the o(n)-component of 4.(§, ¢) in the decomposition
of m’(n) given in (1.9), we have the following two formulae (cf. [5, p. 8]).

() Tuolt, &) = ad Uo)1T.(ad Ko)£, ad I(o)E);
“4.1) () IUT,=0 forallz € F/,
Wt &) = ad (o)W .(ad U(0)E, ad U(o)¥).

Let P, be an orthogonal bundle contained in Pg and let % be the cor-
responding injection of P, into P’. We know from Proposition 3 that there
exist mappings p and E of P’ into R, and Fj respectively such that

2 = hosol(z) p(z)-exp E(z).

By applying Lemma 3 to the case where V=P’, f=the identity transforma-
tion of P’ onto itself, g=hosoland X =B(£)x), we have

B®nw = hosolB(Eww + Az(’é):(z) - Jz(E):(z)x

where we have set A4.(£) =p~'dp(B({)i)) and J(§) = —b'db(B()nw). By
condition (C.4) and the formula of & in Proposition 3, we have 4.(£) =0 for
all £€F,. If we define a linear mapping B, of F, into ¥(P,) by Bo(£).
=50 IB({)r), then we see from conditions (C.1), (C.2) and (C.3) that it
satisfies conditions (E.1), (E.2) and (E.3) for a Euclidean connection in P,.
The Euclidean connection B, in P, which is obtained in this way will be
said to be induced by P, (with respect to the conformal connection B). For
each x &Py, the correspondence §é—J;(£) defines a linear mapping of F, into
Fy, which will be said to be induced by P,. With the above definition, we have

(4.2) EBo(®): = B®)nw + Jo(®reor-

Let Py be an orthogonal bundle contained in Pg and let B, (resp. J,) be
the Euclidean connection in P, (resp. the linear mapping of F, into Fy) in-
duced by P,. As we have observed in §2, we can take, for each x € P,, bilinear
mappings T, and R, of F, X F, into F, and o(n) respectively such that

—[Bo(®), Bu(¥)]: = Bo(TZ (& ). + Ralt, &),

T. (resp. R;) corresponds to the torsion (resp. the curvature) tensor field of
By. Then, we have
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@) Tawt &) = T (& £);
(D) Waw (& &) = R, &) + ([&, TE)] + =), £ Do

(cf. [5, p. 10]).
II. Let B be a conformal connection in P’. Now consider the following
condition for B:

(4.3)

(i) T &) = 0;
(i) Tr(W.( £)) = 0,

where W, (£, &) denotes the bilinear mapping of F, X F, into g{(F,) defined by
W &)n=W.(& n)E for all nEF..

We shall show that, if a conformal connection in P’ satisfies condition
(C.5"), then it satisfies also condition (C.5). Let P, be an orthogonal bundle
contained in Pg and let B, (resp. J.) be the Euclidean connection in P, (resp.
the linear mapping of F, into Fy) induced by P,. By formula (4.2), it is suffi-
cient to show that B, is the Riemannian connection in P, and J, is given by
formula (2.2). It follows from formula (i) of (4.3) that T/ (&, &) =T (¢, &)
=0, which shows that B, is the Riemannian connection in Py. Formula (ii) of
(4.3) can be written as

(4.4) Wit &) = Ral§, &) — T8, £);

if we observe that Tr (R.(§, &))=S.(§, &), formula (ii) of (C.5') gives
Tr (J.(& &) =S.(¢, ¢). Now, by Lemma 1, we see that J, is given by formula
(2.2), which proves our assertion.

III. Now we can prove Proposition 5.

We first prove the uniqueness of B: Fix an orthogonal bundle PyCPs
and let & be the corresponding injection of P, into P’. By Proposition 3, we
can take mappings p and E such that z=#% o0 s o I(2) - p(3) -exp E(z). Now, by
condition (C.2), we have easily

(4.5) B(t): = RayB(ad p(2)E)neey — ((ad 5(2) )mem)s

where x=s01(z) and b(z) =exp E(2). If we take account of the formula
B(&)h =hBo(£):— Jo(£)n @, formula (4.5) implies that B is uniquely deter-
mined by the orthogonal bundle P, only, which proves the uniqueness of B.

We shall now prove the existence of B: Fix an orthogonal bundle PoCPs
and let % be the corresponding injection of P, into P’. Let B, be the Rie-
mannian connection in Py and define J, by formula (2.2). We now define a
linear mapping B of F, into ¥(P’) in the following way. First, we define, for
each x€P, and £EF,, B({)sw by the formula B(§)aw =hBo(§):— J-(E)rw-
Next, we define, for each 2EP’ and ¢E F,,, B(£), by formula (4.5) by the use
of B()ne, just defined. Then, the linear mapping B which is obtained in this
way satisfies the required conditions. In fact, by condition (E.2) and the fact
that J,..(§) ='rJ.(r£) for all xEP, and 1&€0(n), we have easily R,B(§)w

(C.5")
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=B(ad 77£)5¢.r). Therefore, we see that condition (C.2) follows from the
following two formulae p(z-0)=p(z)-pol(c) and b(2)-o=I(s)-b(z-0) (seé
Lemma 2). In order to verify condition (C.1), it is sufficient to deal with the
case where z is of the form z="/£(x). From the proof of Proposition 3, we know
that, for each X € Py, there exist a YE Py, and an A Em’(n) such that
X =hY+A},. We now see that condition (C.1) follows from condition (E.1).
Condition (C.3) is obvious from condition (E.3). Condition (C.4) follows
from the properties of a. Therefore, we have only to check condition (C.5).
For this purpose, it is sufficient, by the argument in II, to show that B satis-
fies condition (C.5’). By definition of B we see that By and J, coincide with
the ones induced by P, with respect to the conformal connection B. From
formula (i) of (4.3), we have Th,y (¢, £') =0, because T (¢ &) =0 (note that
By is the Riemannian connection in P,). It follows from formula (i) of (4.1)
that T.(£, £¢) =0. Moreover, by Lemma 1, we have Tr (J.(§, §))=S.(, &)
and, using formula (4.4), we have Tr(Wiw(£, £))=0. It follows from for-
mula (ii) of (4.1) that Tr(W.(§, &))=0; thus B satisfies condition (C.5’).
Therefore we have completed the proof of Proposition 5.

ReEMARK. The bilinear mapping T, (resp. W,) which appears in the proof
of Proposition 5 corresponds to what is usually called the torsion tensor field
(resp. the Weyl’s conformal curvature tensor field) of the conformal connec-
tion B.

REMARK. The proof of Proposition 5 shows that, given a conformal con-
nection B in P’, conditions (C.5) and (C.5’) are mutually equivalent.

DEFINITION 3. Let Py be a conformal S(n)-bundle over a manifold M and let
P’ together with | and o be the corresponding conformal M'(n)-bundle. A con-
formal connection in P’ is a linear mapping B of F. into X(P') which satisfies
conditions (C.1), (C.2), (C.3) and (C.4) in Proposition 5. The normal con-
formal connection associated with the conformal S(n)-bundle Pg is the con-
formal connection B which satisfies condition (C.5) in Proposition S or, equiv-
alently, condition (C.5') in the proof of Proposition 5 [1;7; 3; 2].

5. Conformal development. This section corresponds to §5 of [5], in
which we proved a proposition about projective development. For the defini-
tion and fundamental properties of a connection in a principal fiber bundle,
we follow the book of K. Nomizu [6].

Let Ps be a conformal S(n)-bundle over a manifold M. Let P’ be the
corresponding conformal M’(n)-bundle and let P be the principal fiber bundle
over the base space M with structure group M(n) defined in §3. As is well
known, a conformal connection B in P’ gives rise to a connection Q in P.
The horizontal space Q. at a point z of P’ is given by the subspace of P,
composed of all the elements B(£),—&; where £ runs over F,Cm(n) (note
that P’ is identified with a subspace of P).

We now define conformal development as follows: Let p be a point of M
and let u(¢) be a curve in M beginning at p. Let 3(¢) be a horizontal curve in
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P which covers u(t), with respect to the connection Q in P. There is a curve
a(t) in M(n) such that z(¢) -a(¢) €EP’ for all t. Then the conformal development
of u(f) at p is defined as the curve u*(f) =2(0)-a(t)o in the tangent Méobius
space M,(p) at p. Clearly the definition is consistent.

We recall here the definition of Euclidean development, cf. [5, p. 14].
Let By be a Euclidean connection in an orthogonal bundle Py over M. Let
p be a point of M and let () be any curve in M beginning at p. Let x(f) be a
horizontal curve in Py which covers %(t), with respect to the linear connection
associated with the Euclidean connection By. There is a curve £(¢) in F,
such that By(£(£))zy =x"(f). Now the Euclid development of %(f) at p is
defined as the curve v(£) =x(0) - w(¢) in the tangent Euclidean space M, at p,
where w(t) = [o*(t)dt.

The following Proposition 6 may be considered as an alternative descrip-
tion of conformal development in terms of a Euclidean connection.

Let Pg be a conformal S(n)-bundle over a manifold M and let P’ be the
corresponding conformal M’(n)-bundle. Let P, be any orthogonal bundle and
let % be the corresponding injection of Py into P’. For each x& Py, we define
J. by formula (2.2) starting with the Riemannian connection in P,. More-
over, we identify M, (resp. F,) with the tangent M&bius space Mn(p) (resp.
the tangent Euclidean space M,) by k(x) (resp. x). With these preparations,
we have

PROPOSITION 6. Let p be a point of M and let u(t) be a curve in M beginning
at p. Fix a point x of Py such that mo(x) =p. Let u*(t) (resp. v(t)) be the develop-
ment of u(t) at p into the tangent Mobius space M, (resp. the tangent Euclidean
space F,) at p with respect to the normal conformal connection in P’ (resp. the
Riemannian connection in Po). Then, we have u*(t) =a(t)o, where a(t) denotes
the curve in the Miobius group M(n) which is determined by the differential equa-
tion

(5.1) a1’ () = V() + J20(' ()

with the initial condition a(0) =e, where x(t) denotes the lift of u(t) through x
with respect to the linear connection associated with the Riemannian connection
1:” P 0.

The proof of this proposition is quite similar to that of Proposition 2 of
[5]. We here remark the following point only. Let z(¢) be the lift of u(t) through
h(x) with respect to the connection in P which corresponds to the normal con-
formal connection in P'. Then, we have

z(1) - a(t) = h(x(1)).

6. Some properties of a complete Riemannian space of type &. Let g be
a Riemannian metric on a manifold M. By a field of projections of rank m
we shall mean a tensor field H of type (1, 1) which satisfies the following
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conditions: (i) H is parallel with respect to the Riemannian connection,
(ii) H*=H, (iii) g(HX, Y)=g(X, HY) for all tangent vectors X, ¥ and (iv)
the rank of H, is equal to m at each point p of M.

DEFINITION 4. Let M be an n-dimensional manifold.

(1) A Riemannian metric g on M is of type @™ 1 (0=<m =<n), if there exists
a field H' of projections of rank m and if the Ricci tensor field S of g is expressed
as

S=m—1)goH —(n—m— 1)go H",

where H'' denotes the tensor field of type (1, 1) defined by H'X =X —H'X for
all tangent vectors X.

(ii) A Riemannian metric g on M is of type &=, if the Ricci tensor field is
zero. When a Riemannian metric g on M is of type S™1 or &=, we shall say
that it is of type ©.

From the definition, we see that a Riemannian space of type &1 (resp.
&"1) is nothing but an Einstein space with the negative (resp. positive)
Ricci tensor field, and that, in general, a Riemannian space of type &1 is
locally isomorphic to the direct product of two Einstein spaces with the
Ricci tensor fields of different signs. Riemannian spaces of type & have been
studied by S. Sasaki and K. Yano [4; 8] and it was proved that the con-
formal holonomy group of a space of type & fixes an (m —1)-dimensional
sphere or a point, according as the space is of type &1 or &> (in the case
where m =0, the fixed sphere should be considered as an imaginary one).
Moreover, they also dealt with the converse problem.

The main purpose of this section is to establish

THEOREM 1. Let g and g be two conformally equivalent Riemannian metrics
which are complete and of type ©.

(1) If gis of type @™ 1and m=1, then g and g coincide;

(i1) If g is of type ©=, then the associated function of g with respect to g is
constant.

In the above theorem, let f be an arbitrary element of C(g). Then the
Riemannian metric f*g is clearly complete and of type &. Now, by taking
g=f*g, we have

THEOREM 2. Let g be a complete Riemannian meltric.
(i) If g is of type ©™ ! and m=1, then C(g) and I(g) coincide;
(ii) If g is of type ©=, then C(g) is homothetic.

Proof of Theorem 1. The proof is divided into three steps.

I. In the following, by a projection of F,, we mean an endomorphism H
of F, into itself satisfying (i) H?=H and (ii) ¢(HE, &) =¢(¢, HE') for all &,
¢ €F,. We shall say that a linear mapping J of F, into Fy is of type &», if
there exists a projection H’ of F, which is of rank m and if it is expressed as
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1 1
J=—¢0oH ——¢oH,
2¢ 2¢

where H"' denotes the endomorphism of F, into itself defined by H"§=¢(—H'¢
for all EEF..

Fix a linear mapping J of F, into F, which is of type &™! (0 Sm <n)
and consider the decomposition of F, associated with the projection H':

Fo=V 47V,
where V' =H'F, and V"' =H'"F,. We denote by ¥(J) the subalgebra of m(%)
generated by all the elements £+ J(£), where £ runs over F,, and denote by

K(J) the subgroup of M(n) generated by £(J). By the stereographic projec-
tion §—exp £-0, we define an (m —1)-dimensional sphere ®; of M, as follows:

&, = {expt-o| o, &) =4,¢ EV}.

Denote by K, the connected component of M, —®; which contains o.
Then we have

LEMMA 4. Let J be a linear mapping of F, into Fy which is of type Sm 1.
(i) Every element of K(J) fixes Ky;
(ii) Every element p of Ky can be written as

p = exp (§ + J(§))o for some § € Fa.

Proof. Denote by I’ (resp. I”’) the subspace of ¥(J) composed of all the
elements & +¢(£')/2 where £ EV’ (resp. £’ —¢(£’)/2 where £'€ V") and
consider the subspace g’ (resp. ¢'') of m(n) as follows:

g’ =1+ o(m) (resp. ¢’ =1 + o(n — m)),

where o(m) (resp. o(n—m)) denotes the subalgebra of o(n) which operates
trivially on V" (resp. V’). An easy calculation shows that [I', '] =0(m),
[V, o(m)] =Y, [I”, V"] =0(n—m), [{", o(n—m)]=1" and [¢’, g ] =0. It fol-
lows that ¢’ and g’ are subalgebras of m(n) and that ¥(J) is expressed as a
direct sum of ¢’ and ¢"’:

i) = ¢ +g".

In order to prove (i), it is sufficient to show that the elements of the form
exp A where A€g’ or ¢” fix ®;. Let p be an arbitrary point of ®;. Then we
see from (1.8) that it is expressed as p=w(fo+x'+2£,), where x’ € V', If
AEyg”, we have Y(4)(£+x"+2£,) =0, from which it follows that exp 4 -p
= p. Now assume that 4 €g’. We have ¥(4)(§—2£.) =0. If we set exp Y(4)
: (£0+x,+2£w) =3’050+y' +9Ywbw, then we have ¢(y0£0+y’+yw£uor $0—2£,) =0,
from which it follows that 4y;=¢(y’, »'). We have

exp A-p = w(yoko + ¥ + Yubw) = exp ((1/50)y") -0 (E2s).
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Now we shall prove (ii). For this purpose, we define four subsets My,
Ma_m, S° and S; of M, as follows: M, = {exp £’~o!$’€ V’}U{ 0 }, Mu_n
={expt’-o|t’€V"}U{ o}, Sh={expt o|p@#, ¥)<4} and Sp={exp
goo|lp, &)>4}U{ o} ={exp () o|¢(, &) <1}. Then we have easily

Ki=My— 3 = My { My — (Mp\U M,_)} U SaVU S
Since we have, for each (€ F,,

exp (£ + J(8) = exp (¢ + ¢(¢)/2) exp (¢’ — ¢(£")/2),

where £ = H'¢ and £/ =H'"'£, the statement of (ii) follows from the verifica-
tion of the following four cases:
(a) For each p&E M,_n, there is a £’ E V" such that

p = exp (8" — ¢(¢")/2)-0;

(b) For each pE M, — (M,\J M,_.), there are a £EV’ and a ¢EM,_n
such that p=exp (¢ +¢(&)/2)-g;

(c) For each pESY, there is a &€V’ such that p=exp (¢ +¢(£)/2) -0;

(d) For each p&.S,,, there is a £ & V' such that p=exp (£ +¢(£)/2)- .

We write down the proof for case (b) only, since the other cases can be
treated similarly by using Lemma 5. Let p be an arbitrary point of
M,—(M,\JM,_.). We see that p is expressed as p =exp x-0, where xC F».
If we set x’ =H'x and x’’ = H"x, then we have x' 0 and x’’ 0. Now define
an element ¢ of V' and an element v’/ of V"’ as follows: & = (0/(¢(x', x)) /%)’
and v’/ =(B/(¢(x", x'"))/?)x"", where 8 and 8 are respectively given by

9 3) = 4+ (6%, %) = D2 + 166", )2
26(", &)

B

and

.6 (4(6 = (o=, x""))11?) )”2
sin — = .
2 (o=, 2'"))1*(4 + B%)
Then, we have p=exp x-o=exp (£ +2"1¢(£')) -exp ¥’ - 0. Indeed, if we set
p = 1+ (sinh 6/2)* + 471 (sinh 6/2)%¢(y", ¥"),
then we have
px = (sinh 6/6)(1 + 471 o(y", y")E + »".
Therefore, by Lemma 5, we have
o(v'", ") é(x, %)
exp A'(Eo-l-y"'i-(yTyfoo) =P<$o+ x4+ 2 Ew)
where A’ =y (£ +¢(£')/2). But, in view of (1.8), this is nothing but the de-
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sired formula. Since g=exp y"'-0& M, _n, we have completed the proof of b).
q.e.d.

LEMMA 5.
(1) For each EE Fn, set A=y (E+¢(£)/2). Then, we have

exp A = 1+ (sinh 6/6)4 + (cosh 6 — 1/62) A2,

where 6= ($(£, £))''%
(i1) For each (€ F., set A=y(E—¢()/2). Then, we have exp A=1+
(sin 0/0)A — ((cos 0—1)/60%) A2, where 0= (p(£, £))1/2.

We shall use

LEMMA 6. Let J and T be two linear mappings of Fn into F* which are both
of type ©@™1, where m=1. We assume that there exist an element p of R, and
an element E of Fy such

p-exp E®; = &7.
Then, we have p=1 and E=0.

Proof. Let H’ and H' be the projections of F, defining J and J respec-
tively. If we set V'=H'F, and V' =H'F,, then, in view of the definition of
®; and ®7, we see that there is a mapping £—7 of {EE 14 |¢(3;', £ =4} onto
{n€V'|¢(n, 7) =4} such that

p-exp E-exp &-0 = exp g-o0.
But, by (1.8), we see that this is equivalent to the following two formulae:
® =1+ <£’ E) + <¢—1E’ E>)
(ii) pn = £+ 2¢7'E.

Observing that —EE{EE V’|¢(.§, £)=4}, it follows from formula (i) that
p? =14 (p7E, E). Moreover, from formulae (i) and (ii), we have p?
=1+4p(n, E)—(¢7'E, E); as above, it follows that p2=1—(¢—1E, E). There-
fore, we have p=1 and E=0. q.e.d.

II. Let g be a Riemannian metric on a manifold M. Let Pg be the cor-
responding conformal S(n)-bundle and let P’ together with / and « be the
conformal M’'(n)-bundle associated with Pg. Let P, be the orthogonal bundle
corresponding to g and let & be the corresponding injection of P, into P’.
Under the assumption that g is of type &, we define, at each point p of M,
two subsets ®,(p) and K,(p) of the tangent Mobius space M.(p) at p as
follows:

The case where g is of type ©=~1, In this case, the Ricci tensor field S of
g is expressed as S=(m—1)go H' —(n—m—1)go H”. For each x&P,, we
denote by H. the endomorphism of F, into itself which is defined by H.
=x"1. H'-x. Let B, be the Riemannian connection in P,. If we observe that
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Sx-& x-8)=S.(§ &) and g(x-& x-&)=¢(, &), an easy calculation shows
that the linear mapping J, which is defined by formula (2.2) starting with
the Riemannian connection B, is given by the formula J,=2"1¢ o0 H/
—2-1¢po H!', where H!'t=(—H]! ¢ for all {€F,. This means that J, is of
type ©&m~1. Therefore, the argument in II applies to J,. We now define ®,(p)
and K,(p) as follows:

®,(p) = h(x) - &s,; Ky(p) = h(x)'KJ,’

where x is an element of P, such that wo(x) =p. The definition does not de-
pend on the choice of xE P, such that mo(x) = p. Indeed, if we set V! =H/! F,,
then we have V..,=d¢"1V, for each x&€Py, and ¢ €0(n). It follows immedi-
ately from the definition of ®; and K, that ®;,, =¢~'®;, and K,,.,=0"1Ky,.

The case where g is of type ©=. In this case, we define $,(p) and K,(p) as
follows:

Bo(p) = h(x)- =;  Ky(p) = h(x)-En,

where x is an element of P, such that my(x) =p and where E,= M, — { © },
as was defined in (1.8). The definition is independent of the choice of x &P,
such that m(x) =p, because O(n) fixes ».

In each case, Ky(p) is an open submanifold of M,(p) which contains the
origin p*, and ®,(p) is the boundary of K,(p).

LEMMA 7. Assume that g is a complete Riemannian metric of type S.

(1) At each point p of M, every curve through p in M is developed into the
part K,(p) of the tangent Mébius space M.(p) at p with respect to the normal
conformal connection associated with Pg.

(i1) For each point p of M and each point g* of K,(p), there exists a curve in
K, (p) which joins p* (the origin of M.(p)) and q* and which admits the develop-
ment into the base space.

Proof. Fix a point x of Py such that mo(x) =p and identify F, (resp. M,)
with the tangent Euclidean space M, (resp. the tangent Mé&bius space
M, (p)) at p by x (resp. h(x)). In the following, we use the notation in Propo-
sition 6.

The case where g is of type ©™ 1. Let u(f) be an arbitrary curve through
p in M. We know from Proposition 6 that the conformal development u*(¢)
of u(t) at p is given by u*(t) =a(t)o, where a(¢) is the curve in M(n) which is
uniquely determined by the differential equation a(¢)~'a’(£) =v'(¢) + Jz(5 (v’ (£))
with the initial condition a(0) =e. Since the Ricci tensor field S of g is paral-
lel, we see that S is constant for any horizontal curve in P, (with respect
to the Riemannian connection in P,). It follows from formula (2.2) that
Jzn is constant, hence, v'(f)+J.y(¥'(¢)) =v'(¢) +J.(v'(t)) is contained in
£(J2). It follows that a(¢) is a curve in K(J,), because K(J,) is the subgroup
of M(n) generated by f(J,). Therefore, by (i) of Lemma 4, we see that
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a(t)o is a curve in Ky ,, which proves (i) (note the K, is identified with
K,(p) by h(x)).

Now we shall prove (ii). Let ¢* be an arbitrary element of K;,. We know
from (ii) of Lemma 4 that there is an element £ of F, such that ¢*
=exp (§+J(¥)). Now consider the geodesic #(¢) of g such that #'(0) =£ (we
identify £ with a vector in M, by x). Since the metric g is complete, the geo-
desic «(¢) is defined for any real number {. We show that the conformal de-
velopment u*(t) of u(f) at p joins p* and g*. u(¢) being a geodesic such that
%'(0) =§, the Euclidean development v(¢) of u(¢) at p is given by v(¢) =tE.
Hence, by Proposition 6, the conformal development u*(f) of u(¢) at p is
given by u*(t) =a(t)o, where a(t)~1a’(¢) =&+ Toy(§) =E+T,(E), that is, a(f)
=exp t(E+T.(£)). We have u*(1) =a(1)o=g¢*, which proves our assertion, we
have thereby proved (ii).

The case where g is of type ©=. The proof is similar to the case where g
is of type @™ 1. We remark the following points. The linear mapping J. of
F, into Fy which is defined by formula (2.2) reduces to zero. The stereo-
graphic projection £—exp £-0 gives a one-to-one correspondence of F, with
E,, and E, is identified with K,(p) by h(x). We have thus completed the
proof of Lemma 7.

REMARK. A theorem of K. Yano and S. Sasaki [4; 8] states that the
assignment p—®,(p) is parallel with respect to the normal conformal con-
nection, which is almost evident by Lemma 7, if we remark that ®,(p) is the
boundary of K,(p).

III. Now consider a second Riemannian metric g on M which is complete
and of type & and which is conformally equivalent to g. Let Py and % be the
corresponding orthogonal bundle and injection of P, into P’. At each point
p of M, we define ;(p) and K;(p) as in II starting with z.

LEMMA 8. ®,(p) =P;(p) at each point p of M.

Proof. ®,(p) (resp. ;(p)) is the boundary of K (p) (resp. K;(p)). There-
fore, it is sufficient to prove that K,(p) =K;(p). Let ¢* be an arbitrary point
of K,(p). We know from (ii) of Lemma 7 that there is a curve »*(f) in K,(p)
joining p* and ¢* which admits the development u(¢) into the base space.
Now, by applying (i) of Lemma 7 to g, we see that «*(¢) is a curve in K3(p)
and, in particular, ¢* is contained in K,(p). Thereby we have proved that
K,(p) CKi(p). In the same way, we have K;(p) CK,(p), whence K,(p)
=K,(p). q.e.d.

By using Lemma 8, we now prove Theorem 1. To do this, we need several
formulae concerning the relation between P, and Py. Let s (resp. 3) be the
homomorphism of Pg onto Py (resp. Po) defined in §2 and let X be the asso-
ciated function of gz with respect to g. By Proposition 3, applied to P,
there exist mappings p and E of P’ into Ry and F, respectively such that
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o50l(2)-p(2)-exp E(z) and a=p"'dp+ [0, E]z. If we set p=po0 k and
E=E ok, then it follows that

6.1) h(x) = ho5(x) p(x)-exp E(x) for all x € Py;
6.2) p~ldp + [0, E]lz = 0, where 6’ = ©*0;
(6.3) p(x) = Nows(x).

(6.2) follows from the fact that k*a=0 and (6.3) is obtained by applying !
to formula (6.1) and taking account of formula (2.1).

(1) The case where g is of type S (m=1). By Lemma 8, we see that
Z is also of type &=, Fix a point x of P, and set y=3(x) and p =m(x). We
have

®,(p) = h(x)-®s, and &;(p) = h(y)- 37,

where J, denotes the linear mapping of F, into Fy defined by formula (2.2)
starting with g. It follows from Lemma 8 and formula (6.1) that

p(x)-exp E(x)®;, = &7,.

Therefore, by Lemma 6, we have p(x)=1 and hence, by formula (6.3),
A(p) =1. p being arbitrary, we have A=1, whence g=3.

(ii) The case where g is of type ©=. It follows from Lemma 8 that g is
also of type &=. Fix a point x of Py and set y=35(x) and p=m¢(x). We have

@y(p) = h(x)-» and Fi(p) = h(y)- .
It follows from Lemma 8 and formula (6.1) that
p(x)-exp E(x) - = o.
But, by (1.8), we have
p(x)-exp E(x)- » = w(1/2p(x){¢7E(x), E(x))to + ¢ E(x) + p(x)£x);

furthermore, we have © =w(£,). It follows immediately that E(x) =0. Now,
by formula (6.2), we see that p is constant and hence, by formula (6.3) that
\ is constant, which proves our assertion. Thus we have completed the proof
of Theorem 1.
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