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Preface

For some 30 years, I have taught two “Mathematical Physics” courses. One of
them was previously named “Engineering Analysis.” There are several text-
books of unquestionable merit for such courses, but I could not find one that
fitted our needs. It seemed to me that students might have an easier time if
some changes were made in these books. I ended up using class notes. Actually,
I felt the same about my own notes, so they got changed again and again.
Throughout the years, many students and colleagues have urged me to publish
them. I resisted until now, because the topics were not new and I was not sure
that my way of presenting them was really much better than others. In recent
years, some former students came back to tell me that they still found my
notes useful and looked at them from time to time. The fact that they always
singled out these courses, among many others I have taught, made me think
that besides being kind, they might even mean it. Perhaps it is worthwhile to
share these notes with a wider audience.

It took far more work than expected to transcribe the lecture notes into
printed pages. The notes were written in an abbreviated way without much
explanation between any two equations, because I was supposed to supply
the missing links in person. How much detail I would go into depended on the
reaction of the students. Now without them in front of me, I had to decide the
appropriate amount of derivation to be included. I chose to err on the side of
too much detail rather than too little. As a result, the derivation does not
look very elegant, but I also hope it does not leave any gap in students’
comprehension.

Precisely stated and elegantly proved theorems looked great to me when
I was a young faculty member. But in later years, I found that elegance in
the eyes of the teacher might be stumbling blocks for students. Now I am
convinced that before the student can use a mathematical theorem with con-
fidence, he or she must first develop an intuitive feeling. The most effective
way to do that is to follow a sufficient number of examples.

This book is written for students who want to learn but need a firm hand-
holding. I hope they will find the book readable and easy to learn from.



VI Preface

Learning, as always, has to be done by the student herself or himself. No one
can acquire mathematical skill without doing problems, the more the better.
However, realistically students have a finite amount of time. They will be
overwhelmed if problems are too numerous, and frustrated if problems are too
difficult. A common practice in textbooks is to list a large number of problems
and let the instructor to choose a few for assignments. It seems to me that is
not a confidence building strategy. A self-learning person would not know what
to choose. Therefore a moderate number of not overly difficult problems, with
answers, are selected at the end of each chapter. Hopefully after the student
has successfully solved all of them, he or she will be encouraged to seek more
challenging ones. There are plenty of problems in other books. Of course, an
instructor can always assign more problems at levels suitable to the class.

On certain topics, I went farther than most other similar books, not in the
sense of esoteric sophistication, but in making sure that the student can carry
out the actual calculation. For example, the diagonalization of a degenerate
hermitian matrix is of considerable importance in many fields. Yet to make
it clear in a succinct way is not easy. I used several pages to give a detailed
explanation of a specific example.

Professor I.I. Rabi used to say “All textbooks are written with the prin-
ciple of least astonishment.” Well, there is a good reason for that. After all,
textbooks are supposed to explain away the mysteries and make the profound
obvious. This book is no exception. Nevertheless, I still hope the reader will
find something in this book exciting.

This volume consists of three chapters on complex analysis and three chap-
ters on theory of matrices. In subsequent volumes, we will discuss vector
and tensor analysis, ordinary differential equations and Laplace transforms,
Fourier analysis and partial differential equations. Students are supposed to
have already completed two or three semesters of calculus and a year of college
physics.

This book is dedicated to my students. I want to thank my A and B
students, their diligence and enthusiasm have made teaching enjoyable and
worthwhile. I want to thank my C and D students, their difficulties and mis-
takes made me search for better explanations.

I want to thank Brad Oraw for drawing many figures in this book, and
Mathew Hacker for helping me to typeset the manuscript.

I want to express my deepest gratitude to Professor S.H. Patil, Indian Insti-
tute of Technology, Bombay. He has read the entire manuscript and provided
many excellent suggestions. He has also checked the equations and the prob-
lems and corrected numerous errors. Without his help and encouragement,
I doubt this book would have been.

The responsibility for remaining errors is, of course, entirely mine. I will
greatly appreciate if they are brought to my attention.

Tacoma, Washington K.T. Tang
October 2005
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Part I

Complex Analysis





1

Complex Numbers

The most compact equation in all of mathematics is surely

eiπ + 1 = 0. (1.1)

In this equation, the five fundamental constants coming from four major
branches of classical mathematics – arithmetic (0, 1), algebra (i), geometry
(π) , and analysis (e) , – are connected by the three most important math-
ematic operations – addition, multiplication, and exponentiation – into two
nonvanishing terms.

The reader is probably aware that (1.1) is but one of the consequences of
the miraculous Euler formula (discovered around 1740 by Leonhard Euler)

eiθ = cos θ + i sin θ. (1.2)

When θ = π, cos π = −1, and sinπ = 0, it follows that eiπ = −1.
Much of the computations involving complex numbers are based on the

Euler formula. To provide a proper setting for the discussion of this for-
mula, we will first present a sketch of our number system and some historic
background. This will also give us a framework to review some of the basic
mathematical operations.

1.1 Our Number System

Any one who encounters for the first time these equations cannot help but be
intrigued by the strange properties of the numbers such as e and i. But strange
is relative, with sufficient familiarity, the strange object of yesterday becomes
the common thing of today. For example, nowadays no one will be bothered by
the negative numbers, but for a long time negative numbers were regarded as
“strange” or “absurd.” For 2000 years, mathematics thrived without negative.
The Greeks did not recognize negative numbers and did not need them. Their
main interest was geometry, for the description of which positive numbers are
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entirely sufficient. Even after Hindu mathematician Brahmagupta “invented”
zero around 628, and negative numbers were interpreted as a loss instead of
a gain in financial matters, medieval Europe mostly ignored them.

Indeed, so long as one regards subtraction as an act of “taken away,”
negative numbers are absurd. One cannot take away, say, three apples from
two.

Only after the development of the axiomatic algebra, the full acceptance
of negative numbers into our number system was made possible. It is also
within the framework of axiomatic algebra, irrational numbers and complex
numbers are seen to be natural parts of our number system.

By axiomatic method, we mean the step by step development of a subject
from a small set of definitions and a chain of logical consequences derived
from them. This method had long been followed in geometry, ever since the
Greeks established it as a rigorous mathematical discipline.

1.1.1 Addition and Multiplication of Integers

We start with the assumption that we know what integers are, what zero is,
and how to count. Although mathematicians could go even further back and
describe the theory of sets in order to derive the properties of integers, we are
not going in that direction.

We put the integers on a line with increasing order as in the following
diagram:

0 1 2 3 4 5 6 7 · · ·
↓ ↑
2 − − −

If we start with certain integer a, and we count successively one unit b times
to the right, the number we arrive at we call a + b, and that defines addition
of integers. For example, starting at 2, and going up 3 units, we arrive at 5.
So 5 is equal to 2 + 3.

Once we have defined addition, then we can consider this: if we start with
nothing and add a to it, b times in succession, we call the result multiplication
of integers; we call it b times a.

Now as a consequence of these definitions it can be easily shown that
these operations satisfy certain simple rules concerning the order in which the
computations can proceed. They are the familiar commutative, associative,
and distributive laws

a + b = b + a Commutative Law of Addition
a + (b + c) = (a + b) + c Associative Law of Addition

ab = ba Commutative Law of Multiplication
(ab)c = a(bc) Associative Law of Multiplication

a(b + c) = ab + ac Distributive Law.

(1.3)
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These rules characterize the elementary algebra. We say elementary algebra
because there is a branch of mathematics called modern algebra in which some
of the rules such as ab = ba are abandoned, but we shall not discuss that.

Among the integers, 1 and 0 have special properties:

a + 0 = a,

a · 1 = a.

So 0 is the additive identity and 1 is the multiplicative identity. Furthermore

0 · a = 0

and if ab = 0, either a or/and b is zero.
Now we can also have a succession of multiplications: if we start with 1

and multiply by a, b times in succession, we call that raising to power : ab. It
follows from this definition that

(ab)c = acbc,

abac = a(b+c),

(ab)c = a(bc).

These results are well known and we shall not belabor them.

1.1.2 Inverse Operations

In addition to the direct operation of addition, multiplication, and raising to
a power, we have also the inverse operations, which are defined as follows. Let
us assume a and c are given, and that we wish to find what values of b satisfy
such equations as a + b = c, ab = c, ba = c.

If a+b = c, b is defined as c−a,which is called subtraction. The operation
called division is also clear: if ab = c, then b = c/a defines division – a solution
of the equation ab = c “backwards.”

Now if we have a power ba = c and we ask ourselves, “What is b?,” it is
called ath root of c : b = a

√
c. For instance, if we ask ourselves the following

question, “What integer, raised to third power, equals 8?,” then the answer
is cube root of 8; it is 2. The direct and inverse operations are summarized as
follows:

Operation Inverse Operation
(a) addition : a + b = c (a′) subtraction : b = c − a
(b) multiplication : ab = c (b′) division : b = c/a
(c) power : ba = c (c′) root : b = a

√
c
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Insoluble Problems

When we try to solve simple algebraic equations using these definitions, we
soon discover some insoluble problems, such as the following. Suppose we try
to solve the equation b = 3 − 5. That means, according to our definition of
subtraction, that we must find a number which, when added to 5, gives 3. And
of course there is no such number, because we consider only positive integers;
this is an insoluble problem.

1.1.3 Negative Numbers

In the grand design of algebra, the way to overcome this difficulty is to broaden
the number system through abstraction and generalization. We abstract the
original definitions of addition and multiplication from the rules and integers.
We assume the rules to be true in general on a wider class of numbers, even
though they are originally derived on a smaller class. Thus, rather using the
integers to symbolically define the rules, we use the rules as the definition
of the symbols, which then represent a more general kind of number. As an
example, by working with the rules alone we can show that 3 − 5 = 0 − 2.
In fact we can show that one can make all subtractions, provided we define a
whole set of new numbers: 0− 1, 0− 2, 0− 3, 0− 4, and so on (abbreviated
as −1, −2, −3, −4, . . .), called the negative numbers.

So we have increased the range of objects over which the rules work, but
the meaning of the symbols is different. One cannot say, for instance, that
−2 times 5 really means to add 5 together successively −2 times. That means
nothing. But we require the negative numbers to obey all the rules.

For example, we can use the rules to show that −3 times −5 is equal to
15. Let x = −3(−5), this is equivalent to x + 3(−5) = 0, or x + 3 (0 − 5) = 0.
By the rules, we can write this equation as

x + 0 − 15 = (x + 0) − 15 = x − 15 = 0.

Thus, x = 15. Therefore negative a times negative b is equal to positive ab,

(−a)(−b) = ab.

An interesting problem comes up in taking powers. Suppose we wish to
discover what a(3−5) means. We know that 3−5 is a solution of the problem,
(3 − 5) + 5 = 3. Therefore

a(3−5)+5 = a3.

Since

a(3−5)+5 = a(3−5)a5 = a3
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it follows that:

a(3−5) = a3/a5.

Thus, in general

an−m =
an

am
.

If n = m, we have

a0 = 1.

In addition, we found out what it means to raise a negative power. Since

3 − 5 = −2, a3/a5 =
1
a2

.

So

a−2 =
1
a2

.

If our number system consists of only positive and negative integers, then
1/a2 is a meaningless symbol, because if a is a positive or negative integer,
the square of it is greater than 1, and we do not know what we mean by 1
divided by a number greater than 1! So this is another insoluble problem.

1.1.4 Fractional Numbers

The great plan is to continue the process of generalization; whenever we find
another problem that we cannot solve we extend our realm of numbers. Con-
sider division: we cannot find a number which is an integer, even a negative
integer, which is equal to the result of dividing 3 by 5. So we simply say
that 3/5 is another number, called fraction number. With the fraction num-
ber defined as a/b where a and b are integers and b �= 0, we can talk about
multiplying and adding fractions. For example, if A = a/b and B = c/b, then
by definition bA = a, bB = c, so b(A + B) = a + c.Thus, A + B = (a + c)/b.
Therefore

a

b
+

c

b
=

a + c

b
.

Similarly, we can show

a

b
× c

d
=

ac

bd
,

a

b
+

c

d
=

ad + cb

bd
.

It can also be readily shown that fractional numbers satisfy the rules
defined in (1.3). For example, to prove the commutative law of multiplication,
we can start with
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a

b
× c

d
=

ac

bd
,

c

d
× a

b
=

ca

db
.

Since a, b, c, d are integers, so ac = ca and bd = db. Therefore ac
bd = ca

db . It
follows that:

a

b
× c

d
=

c

d
× a

b
.

Take another example of powers: What is a3/5? We know only that
(3/5)5 = 3, since that was the definition of 3/5. So we know also that

(a(3/5))5 = a(3/5)(5) = a3.

Then by the definition of roots we find that

a(3/5) = 5
√

a3.

In this way we can define what we mean by putting fractions in the various
symbols. It is a remarkable fact that all the rules still work for positive and
negative integers, as well as for fractions!

Historically, the positive integers and their ratios (the fractions) were
embraced by the ancients as natural numbers. These natural numbers together
with their negative counter parts are known as rational numbers in our present
day language.

The Greeks, under the influence of the teaching of Pythagoras, elevated
fractional numbers to the central pillar of their mathematical and philosoph-
ical system. They believed that fractional numbers are prime cause behind
everything in the world, from the laws of musical harmony to the motion of
planets. So it was quite a shock when they found that there are numbers that
cannot be expressed as a fraction.

1.1.5 Irrational Numbers

The first evidence of the existence of the irrational number (a number that
is not a rational number) came from finding the length of the diagonal of a
unit square. If the length of the diagonal is x, then by Pythagorean theorem
x2 = 12 + 12 = 2. Therefore x =

√
2. When people assumed this number is

equal to some fraction, say m/n where m and n have no common factors, they
found this assumption leads to a contradiction.

The argument goes as follows. If
√

2 = m/n, then 2 = m2/n2, or 2n2 = m2.
This means m2 is an even integer. Furthermore, m itself must also be an even
integer, since the square of an odd number is always odd. Thus m = 2k for
some integer k. It follows that 2n2 = (2k)2, or n2 = 2k2. But this means n is
also an even integer. Therefore, m and n have a common factor of 2, contrary
to the assumption that they have no common factors. Thus

√
2 cannot be a

fraction.
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This was shocking to the Greeks, not only because of philosophical argu-
ments, but also because mathematically, fractions form a dense set of numbers.
By this we mean that between any two fractions, no matter how close, we can
always squeeze in another. For example

1
100

=
2

200
>

2
201

>
2

202
=

1
101

.

So we find 2
201 between 1

100 and 1
101 . Now between 1

100 and 2
201 , we can squeeze

in 4
401 , since

1
100

=
4

400
>

4
401

>
4

402
=

2
201

.

This process can go on ad infinitum. So it seems only natural to conclude –
as the Greeks did – that fractional numbers are continuously distributed on
the number line. However, the discovery of irrational numbers showed that
fractions, despite of their density, leave “holes” along the number line.

To bring the irrational numbers into our number system is in fact quite
the most difficult step in the processes of generalization. A fully satisfactory
theory of irrational numbers was not given until 1872 by Richard Dedekind
(1831–1916), who made a careful analysis of continuity and ordering. To make
the set of real numbers a continuum, we need the irrational numbers to fill
the “holes” left by the rational numbers on the number line. A real num-
ber is any number that can be written as a decimal. There are three types
of decimals: terminating, nonterminating but repeating, and nonterminating
and nonrepeating. The first two types represent rational numbers, such as
1
4 = 0.25; 2

3 = 0.666 . . . . The third type represents irrational numbers, like√
2 = 1.4142135 . . . .

From a practical point of view, we can always approximate an irrational
number by truncating the unending decimal. If higher accuracy is needed,
we simply take more decimal places. Since any decimal when stopped some-
where is rational, this means that an irrational number can be represented by
a sequence of rational numbers with progressively increasing accuracy. This
is good enough for us to perform mathematical operations with irrational
numbers.

1.1.6 Imaginary Numbers

We go on in the process of generalization. Are there any other insoluble equa-
tions? Yes, there are. For example, it is impossible to solve this equation:
x2 = −1. The square of no rational, of no irrational, of nothing that we have
discovered so far, is equal to −1. So again we have to generalize our numbers
to still a wider class.

This time we extend our number system to include the solution of this
equation, and introduce the symbol i for

√
−1 (engineers call it j to avoid
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confusion with current). Of course some one could call it −i since it is just as
good a solution. The only property of i is that i2 = −1. Certainly, x = −i also
satisfies the equation x2 + 1 = 0. Therefore it must be true that any equation
we can write is equally valid if the sign of i is changed everywhere. This is
called taking the complex conjugate.

We can make up numbers by adding successively i’s, and multiplying i’s by
numbers, and adding other numbers and so on, according to all our rules. In
this way we find that numbers can all be written as a + ib, where a and b are
real numbers, i.e., the numbers we have defined up until now. The number
i is called the unit imaginary number. Any real multiple of i is called pure
imaginary. The most general number is of course of the form a + ib and is
called a complex number. Things do not get any worse if we add and multiply
two such numbers. For example

(a + bi) + (c + di) = (a + c) + (b + d)i. (1.4)

In accordance with the distributive law, the multiplication of two complex
number is defined as

(a + bi) (c + di) = ac + a(di) + (bi)c + (bi)(di)
= ac + (ad)i + (bc)i + (bd)ii = (ac − bd) + (ad + bc)i, (1.5)

since ii = i2 = −1. Therefore all the numbers have this mathematical form.
It is customary to use a single letter, z, to denote a complex number

z = a + bi. Its real and imaginary parts are written as Re(z) and Im(z),
respectively. With this notation, Re(z) = a, Im(z) = b. The equation z1 = z2

holds if and only if

Re (z1) = Re (z2) and Im (z1) = Im (z2) .

Thus any equation involving complex numbers can be interpreted as a pair of
real equations.

The complex conjugate of the number z = a + bi is usually denoted as
either z∗, or z, and is given by z∗ = a − bi. An important relation is that the
product of a complex number and its complex conjugate is a real number

zz∗ = (a + bi)(a − bi) = a2 + b2.

With this relation, the division of two complex numbers can also be written
as the sum of a real part and an imaginary part

a + bi
c + di

=
a + bi
c + di

c − di
c − di

=
ac + bd

c2 + d2
+

bc − ad

c2 + d2
i.

Example 1.1.1. Express the following in the form of a + bi:

(a) (6 + 2i) − (1 + 3i), (b) (2 − 3i)(1 + i),

(c)
(

1
2 − 3i

)(
1

1 + i

)
.



1.1 Our Number System 11

Solution 1.1.1.

(a) (6 + 2i) − (1 + 3i) = (6 − 1) + i(2 − 3) = 5 − i.

(b) (2 − 3i)(1 + i) = 2 (1 + i) − 3i(1 + i) = 2 + 2i − 3i − 3i2

= (2 + 3) + i(2 − 3) = 5 − i.

(c)
(

1
2 − 3i

)(
1

1 + i

)
=

1
(2 − 3i) (1 + i)

=
1

5 − i

=
5 + i

(5 − i) (5 + i)
=

5 + i
52 − i2

=
5
26

+
1
26

i.

Historically, Italian mathematician Girolamo Cardano was credited as the
first to consider the square root of a negative number in 1545 in connection
with solving quadratic equations. But after introducing the imaginary num-
bers, he immediately dismissed them as “useless.” He had a good reason to
think that way. At Cardano’s time, mathematics was still synonymous with
geometry. Thus the quadratic equation x2 = mx + c was thought as a vehicle
to find the intersection points of the parabola y = x2 and the line y = mx+ c.
For an equation such as x2 = −1, the horizontal line y = −1 will obviously
not intersect the parabola y = x2 which is always positive. The absence of
the intersection was thought as the reason of the occurrence of the imaginary
numbers.

It was the cubic equation that forced complex numbers to be taken seri-
ously. For a cubic curve y = x3, the values of y go from −∞ to +∞. A line
will always hit the curve at least once. In 1572, Rafael Bombeli considered
the equation

x3 = 15x + 4,

which clearly has a solution of x = 4. Yet at the time, it was known that
this kind of equation could be solved by the following formal procedure. Let
x = a + b, then

x3 = (a + b)3 = a3 + 3ab(a + b) + b3,

which can be written as

x3 = 3abx + (a3 + b3).

The problem will be solved, if we can find a set of values a and b satisfying
the conditions

3ab = 15 and a3 + b3 = 4.
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Since a3b3 = 53 and b3 = 4 − a3, we have

a3(4 − a3) = 53,

which is a quadratic equation in a3

(
a3

)2 − 4a3 + 125 = 0.

The solution of such an equation was known for thousands of years,

a3 =
1
2
(
4 ±

√
16 − 500

)
= 2 ± 11i.

It follows that:

b3 = 4 − a3 = 2 ∓ 11i.

Therefore

x = a + b = (2 + 11i)1/3 + (2 − 11i)1/3
.

Clearly, the interpretation that the appearance of imaginary numbers sig-
nifies no solution of the geometric problem is not valid. In order to have the
solution come out to equal 4, Bombeli assumed

(2 + 11i)1/3 = 2 + bi; (2 − 11i)1/3 = 2 − bi.

To justify this assumption, he had to use the rules of addition and multipli-
cation of complex numbers. With the rules listed in (1.4) and (1.5), it can be
readily shown that

(2 + bi)3 = 8 + 3 (4) (bi) + 3(2) (bi)2 + (bi)3

=
(
8 − 6b2

)
+

(
12b − b3

)
i.

With b = ±1, he obtained

(2 ± i)3 = 2 ± 11i,

and

x = (2 + 11i)1/3 + (2 − 11i)1/3 = 2 + i + 2 − i = 4.

Thus he established that problems with real coefficients required complex
arithmetic for solutions.

Despite Bombelli’s work, complex numbers were greeted with suspicion,
even hostility for almost 250 years. Not until the beginning of the 19th century,
complex numbers were fully embraced as members of our number system. The
acceptance of complex numbers was largely due to the work and reputation
of Gauss.
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Karl Friedrich Gauss (1777–1855) of Germany was given the title of “the
prince of mathematics” by his contemporaries as a tribute to his great achieve-
ments in almost every branch of mathematics. At the age of 22, Gauss in his
doctoral dissertation gave the first rigorous proof of what we now call the Fun-
damental Theorem of Algebra. It says that a polynomial of degree n always
has exactly n complex roots. This shows that complex numbers are not only
necessary to solve a general algebraic equation, they are also sufficient. In
other words, with the invention of i, every algebraic equation can be solved.
This is a fantastic fact. It is certainly not self-evident. In fact, the process
by which our number system is developed would make us think that we will
have to keep on inventing new numbers to solve yet unsolvable equations. It
is a miracle that this is not the case. With the last invention of i, our number
system is complete. Therefore a number, no matter how complicated it looks,
can always be reduced to the form of a + bi, where a and b are real numbers.

1.2 Logarithm

1.2.1 Napier’s Idea of Logarithm

Rarely a new idea was embraced so quickly by the entire scientific community
with such enthusiasm as the invention of logarithm. Although it was merely
a device to simplify computation, its impact on scientific developments could
not be overstated.

Before 17th century scientists had to spend much of their time doing
numerical calculations. The Scottish baron, John Napier (1550–1617) thought
to relieve this burden as he wrote: “Seeing there is nothing that is so trouble-
some to mathematical practice than multiplications, divisions, square and
cubical extractions of great numbers,. . . . . . I began therefore in my mind by
what certain and ready art I might remove those hinderance.” His idea was
this: if we could write any number as a power of some given, fixed number b
(later to be called base), then multiplication of numbers would be equivalent
to addition of their exponents. He called the power logarithm.

In modern notation, this works as follows. If

bx1 = N1; bx2 = N2

then by definition

x1 = logb N1; x2 = logb N2.

Obviously

x1 + x2 = logb N1 + logb N2.
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Since

bx1+x2 = bx1bx2 = N1N2

again by definition

x1 + x2 = logb N1N2.

Therefore

logb N1N2 = logb N1 + logb N2.

Suppose we have a table, in which N and logb N (the power x) are listed side
by side. To multiply two numbers N1 and N2, you first look up logb N1 and
logb N2 in the table. You then add the two numbers. Next, find the number
in the body of the table that matches the sum, and read backward to get the
product N1N2.

Similarly, we can show

logb

N1

N2
= logb N1 − logb N2,

logb Nn = n logb N, logb N1/n =
logb N

n
.

Thus, division of numbers would be equivalent to subtraction of their expo-
nents, raising a number to nth power would be equivalent to multiplying the
exponent by n, and finding the nth root of a number would be equivalent
to dividing the exponent by n. In this way the drudgery of computations is
greatly reduced.

Now the question is, with what base b should we compute. Actually it
makes no difference what base is used, as long as it is not exactly equal to 1.
We can use the same principle all the time. Besides, if we are using logarithms
to any particular base, we can find logarithms to any other base merely by
multiplying a factor, equivalent to a change of scale. For example, if we know
the logarithm of all numbers with base b, we can find the logarithm of N with
base a. First if a = bx, then by definition, x = logb a, therefore

a = blogb a. (1.6)

To find loga N, first let y = loga N. By definition ay = N . With a given by
(1.6), we have

(
blogb a

)y
= by logb a = N.

Again by definition (or take logarithm of both sides of the equation)

y logb a = logb N.
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Thus

y =
1

logb a
logb N.

Since y = loga N, it follows:

loga N =
1

logb a
logb N.

This is known as change of base. Having a table of logarithm with base b will
enable us to calculate the logarithm to any other base.

In any case, the key is, of course, to have a table. Napier chose a number
slightly less than one as the base and spent 20 years to calculate the table. He
published his table in 1614. His invention was quickly adopted by scientists all
across Europe and even in far away China. Among them was the astronomer
Johannes Kepler, who used the table with great success in his calculations of
the planetary orbits. These calculations became the foundation of Newton’s
classical dynamics and his law of gravitation.

1.2.2 Briggs’ Common Logarithm

Henry Briggs (1561–1631), a professor of geometry in London, was so impres-
sed by Napier’s table, he went to Scotland to meet the great inventor in
person. Briggs suggested that a table of base 10 would be more convenient.
Napier readily agreed. Briggs undertook the task of additional computations.
He published his table in 1624. For 350 years, the logarithmic table and the
slide rule (constructed with the principle of logarithm) were indispensable
tools of every scientist and engineer.

The logarithm in Briggs’ table is now known as the common logarithm.
In modern notation, if we write x = log N without specifying the base, it is
understood that the base is 10, and 10x = N .

Today logarithmic tables are replaced by hand-held calculators, but loga-
rithmic function remains central to mathematical sciences.

It is interesting to see how logarithms were first calculated. In addition to
historic interests, it will help us to gain some insights into our number system.

Since a simple process for taking square roots was known, Briggs computed
successive square roots of 10. A sample of the results is shown in Table 1.1.
The powers (x) of 10 are given in the first column and the results, 10x, are
given in the second column. For example, the second row is the square root
of 10, that is 101/2 =

√
10 = 3.16228. The third row is the square root of the

square root of 10,
(
101/2

)1/2
= 101/4 = 1.77828. So on and so forth, we get a

series of successive square roots of 10. With a hand-held calculator, you can
readily verify these results.

In the table we noticed that when 10 is raised to a very small power, we
get 1 plus a small number. Furthermore, the small numbers that are added
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Table 1.1. Successive square roots of ten

x (log N) 10x (N) (10x − 1)/x

1 10.0 9.00
1
2

= 0.5 3.16228 4.32

( 1
2
)2 = 0.25 1.77828 3.113

( 1
2
)3 = 0.125 1.33352 2.668

( 1
2
)4 = 0.0625 1.15478 2.476

( 1
2
)5 = 0.03125 1.074607 2.3874

( 1
2
)6 = 0.015625 1.036633 2.3445

( 1
2
)7 = 0.0078125 1.018152 2.3234

( 1
2
)8 = 0.00390625 1.0090350 2.3130

( 1
2
)9 = 0.001953125 1.0045073 2.3077

( 1
2
)10 = 0.00097656 1.0022511 2.3051

( 1
2
)11 = 0.00048828 1.0011249 2.3038

( 1
2
)12 = 0.00024414 1.0005623 2.3032

( 1
2
)13 = 0.00012207 1.000281117 2.3029

( 1
2
)14 = 0.000061035 1.000140548 2.3027

( 1
2
)15 = 0.0000305175 1.000070272 2.3027

( 1
2
)16 = 0.0000152587 1.000035135 2.3026

( 1
2
)17 = 0.0000076294 1.0000175675 2.3026

to 1 begins to look as though we are merely dividing by 2 each time we take
a square root. In other words, it looks that when x is very small, 10x − 1 is
proportional to x. To find the proportionality constant, we list (10x − 1)/x
in column 3. At the top of the table, these ratios are not equal, but as they
come down, they get closer and closer to a constant value. To the accuracy of
five significant digits, the proportional constant is equal to 2.3026. So we find
that when s is very small

10s = 1 + 2.3026s. (1.7)

Briggs computed successively 27 square roots of 10, and used (1.7) to obtain
another 27 squares roots.

Since 10x = N means x = log N, the first column in Table 1.1 is also the
logarithm of the corresponding number in the second column. For example,
the second row is the square root of 10, that is 101/2 = 3.16228. Then by
definition, we know

log(3.16228) = 0.5.

If we want to know the logarithm of a particular number N, and N is not
exactly the same as one of the entries in the second column, we have to break
up N as a product of a series of numbers which are entries of the table. For
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example, suppose we want to know the logarithm of 1.2. Here is what we do.
Let N = 1.2, and we are going to find a series of ni in column 2 such that

N = n1n2n3 · · · .

Since all ni are greater than one, so ni < N . The number in column 2 closest
to 1.2 satisfying this condition is 1.15478, So we choose n1 = 1.15478, and we
have

N

n1
=

1.2
1.15478

= 1.039159 = n2n3 · · · .

The number smaller than and closest to 1.039159 is 1.036633. So we choose
n2 = 1.036633, thus

N

n1n2
=

1.039159
1.036633

= 1.0024367.

With n3 = 1.0022511, we have

N

n1n2n3
=

1.0024367
1.0022511

= 1.0001852.

The plan is to continue this way until the right-hand side is equal to one.
But most likely, sooner or later, the right-hand side will fall beyond the table
and is still not exactly equal to one. In our particular case, we can go down a
couple of more steps. But for the purpose of illustration, let us stop here. So

N = n1n2n3(1 + ∆n),

where ∆n = 0.0001852. Now

log N = log n1 + log n2 + log n3 + log(1 + ∆n).

The terms on the right-hand side, except the last one, can be read from the
table. For the last term, we will make use of (1.7). By definition, if s is very
small, (1.7) can be written as

s = log(1 + 2.3026s).

Let ∆n = 2.3026s, so s = ∆n
2.3026 = 0.0001852

2.3026 = 8.04 × 10−5. It follows:

log(1 + ∆n) = log[1 + 2.3026
(
8.04 × 10−5

)
] = 8.04 × 10−5.

With log n1 = 0.0625, log n2 = 0.015625, log n3 = 0.0009765 from the table,
we arrived at

log(1.2) = 0.0625 + 0.015625 + 0.0009765 + 0.0000804 = 0.0791819.

The value of log(1.2) should be 0.0791812. Clearly if we have a larger table we
can have as many accurate digits as we want. In this way Briggs calculated the
logarithms to 16 decimal places and reduced them to 14 when he published his
table, so there were no rounding errors. With minor revisions, Briggs’ table
remained the basis for all subsequent logarithmic tables for the next 300 years.



18 1 Complex Numbers

1.3 A Peculiar Number Called e

1.3.1 The Unique Property of e

Equation (1.7) expresses a very interesting property of our number system. If
we let t = 2.3026s, then for a very small t, (1.7) becomes

10
t

2.3026 = 1 + t. (1.8)

To simplify the writing, let us denote

10
1

2.3026 = e. (1.9)

Thus (1.8) says that e raised to a very small power is equal to one plus the
small power

et = 1 + t for t → 0. (1.10)

Because of this, we find the derivative of ex is equal to itself.
Recall the definition of the derivative of a function:

df(x)
dx

= lim
∆x→0

f(x + ∆x) − f(x)
∆x

.

So

dex

dx
= lim

∆x→0

ex+∆x − ex

∆x
= lim

∆x→0

ex(e∆x − 1)
∆x

.

Now ∆x approaches zero as a limit, certainly it is very small, so we can write
(1.10) as

e∆x = 1 + ∆x.

Thus

ex(e∆x − 1)
∆x

=
ex(1 + ∆x − 1)

∆x
= ex.

Therefore
dex

dx
= ex. (1.11)

The function ex (or written as exp(x)) is generally called the natural exponen-
tial function, or simply the exponential function. Not only is the exponential
function equal to its own derivative, it is the only function (apart from a mul-
tiplication constant) that has this property. Because of this, the exponential
function plays a central role in mathematics and sciences.
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1.3.2 The Natural Logarithm

If ey = x, then by definition

y = loge x.

The logarithm to the base e is known as the natural logarithm. It appears
with amazing frequency in mathematics and its applications. So we give it a
special symbol. It is written as ln x. That is

y = loge x = ln x.

Thus

eln x = x.

Furthermore,

ln ex = x ln e = x.

In this sense, the exponential function and the natural logarithm are inverses
of each other.

Example 1.3.1. Find the value of ln 10.

Solution 1.3.1. Since

10
1

2.3026 = e, ⇒ 10 = e2.3026

it follows:

ln 10 = ln e2.3026 = 2.3026.

The derivative of lnx is of special interests.

d(ln x)
dx

= lim
∆x→0

ln(x + ∆x) − ln x

∆x
,

ln(x + ∆x) − ln x = ln
x + ∆x

x
= ln

(
1 +

∆x

x

)
.

Now (1.10) can be written as

t = ln(1 + t)
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for a very small t. Since ∆x approaches zero as a limit, for any fixed x, ∆x
x

can certainly be made as small as we wish. Therefore, we can set ∆x
x = t, and

conclude
∆x

x
= ln

(
1 +

∆x

x

)
.

Thus,

d(lnx)
dx

= lim
∆x→0

1
∆x

ln
(

1 +
∆x

x

)
= lim

∆x→0

1
∆x

∆x

x
=

1
x

.

This in turn means

d (ln x) =
dx

x
or ∫

dx

x
= ln x + c, (1.12)

where c is the constant of integration. It is well known that because of

dxn+1

dx
= (n + 1)xn,

we have ∫
xndx =

xn+1

(n + 1)
+ c.

This formula holds for all values of n except for n = −1, since then the
denominator n + 1 is zero. This had been a difficult problem, but now we see
that (1.12) provides the “missing case.”

In numerous phenomena, ranging from population growth to the decay of
radioactive material, in which the rate of change of some quantity is propor-
tional to the quantity itself. Such phenomenon is governed by the differential
equation

dy

dt
= ky,

where k is a constant that is positive if y is increasing and negative if y is
decreasing. To solve this equation, we write it as

dy

y
= k dt

and then integrate both sides to get

ln y = kt + c, or y = ekt+c = ektec.

If y0 denotes the value of y when t = 0, then y0 = ec and

y = y0 ekt.

This equation is called the law of exponential change.
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1.3.3 Approximate Value of e

The number e is found of such great importance, but what is the numerical
value of e, which we have, so far, defined as 10(1/2.3025)? We can use our table
of successive square root of 10 to calculate this number. The powers of 10
are given in the first column of Table 1.1. If we can find a series of numbers
n1, n2, n3, . . . in this column, such that

1
2.3026

= n1 + n2 + n3 + · · · ,

then

10
1

2.3026 = 10n1+n2+n3+··· = 10n110n210n3 · · · .

We can read from the second column of the table 10n1 , and 10n2 , and 10n3

and so on, and multiply them together. Let us do just that.

1
2.3026

= 0.43429 = 0.25 + 0.125 + 0.03125 + 0.015625

+ 0.0078125 + 0.00390625 + 0.00048828 + 0.00012207
+ 0.000061035 + 0.000026535.

From the table we find 100.25 = 1.77828, 100.125 = 1.33352, . . . etc. except for
the last term for which we use (1.7). Thus

e = 10
1

2.3026 = 1.77828 × 1.33352 × 1.074607 × 1.036633 × 1.018152
× 1.009035 × 1.0011249 × 1.000281117 × 1.000140548
× (1 + 2.3026 × 0.000026535) = 2.71826.

Since 1
2.3026 is only accurate to 5 significant digits, we cannot expect our result

to be accurate more than that. (The accurate result is 2.71828 · · ·) Thus what
we get is only an approximation. Is there a more precise definition of e? The
answer is yes. We will discuss this question in the next section.

1.4 The Exponential Function as an Infinite Series

1.4.1 Compound Interest

The origins of the number e are not very clear. The existence of this peculiar
number could be extracted from the logarithmic table as we did. In fact there
is an indirect reference to e in the second edition of Napier’s table. But most
probably the peculiar property of the number e was noticed even earlier in
connection with compound interest.

A sum of money invested at x percent annual interest rate (x expressed
as a decimal, for example x = 0.06 for 6%) means that at the end of the year
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the sum grows by a factor (1 + x). Some banks compute the accrued interest
not once a year but several times a year. For example, if an annual interest
rate of x percent is compounded semiannually, the bank will use one-half of
the annual rate as the rate per period. Hence, if P is the original sum, at the
end of the half-year, the sum grows to P

(
1 + x

2

)
, and at the end of the year

the sum becomes [
P

(
1 +

x

2

)](
1 +

x

2

)
= P

(
1 +

x

2

)2

.

In the banking industry one finds all kinds of compounding schemes – ann-
ually, semiannually, quarterly, monthly, weekly, and even daily. Suppose the
compounding is done n times a year, at the end of the year, the principal P
will yield the amount

S = P
(
1 +

x

n

)n

.

It is interesting to compare the amounts of money a given principal will
yield after one year for different conversion periods. Table 1.2 shows that
the amounts of money one will get for $100 invested for 1 year at 6% annual
interest rate at different conversion periods. The result is quite surprising. As
we see, a principal of $100 compounded daily or weekly yield practically the
same. But will this pattern go on? Is it possible that no matter how large n
is, the values of (1+ x

n )n will settle on the same number? To answer this ques-
tion, we must use methods other than merely computing individual values.
Fortunately, such a method is available. With the binomial formula,

(a + b)n = an + nan−1b +
n(n − 1)

2!
an−2b2

+
n(n − 1)(n − 2)

3!
an−3b3 + · · · + bn,

we have
(
1 +

x

n

)n

= 1 + n
(x

n

)
+

n(n − 1)
2!

(x

n

)2

+
n(n − 1)(n − 2)

3!

(x

n

)3

+ · · · +
(x

n

)n

= 1 + x +
(1 − 1/n)

2!
x2 +

(1 − 1/n)(1 − 2/n)
3!

x3 + · · ·
(x

n

)n

.

Now as n → ∞, k
n → 0. Therefore

lim
n→∞

(
1 +

x

n

)n

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·. (1.13)

becomes an infinite series. Standard tests for convergence show that this is a
convergent series for all real values of x. In other words, the value of (1 + x

n )n

does settle on a specific limit as n increase without bound.
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Table 1.2. The yields of $100 invested for 1 year at 6% annual interest rate at
different conversion periods

n x/n 100(1 + x/n)n

Annually 1 0.06 106.00
Semiannually 2 0.03 106.09
Quarterly 4 0.015 106.136
Monthly 12 0.005 106.168
Weekly 52 0.0011538 106.180
Daily 365 0.0001644 106.183

1.4.2 The Limiting Process Representing e

In early 18th century, Euler used the letter e to represent the series (1.13) for
the case of x = 1,

e = lim
n→∞

(
1 +

1
n

)n

= 1 + 1 +
1
2!

+
1
3!

+
1
4!

+ · · · . (1.14)

This choice, like many other symbols of his, such as i, π , f (x), became
universally accepted.

It is important to note that when we say that the limit of 1
n as n → ∞

is 0 it does not mean that 1
n itself will ever be equal to 0, in fact, it will not.

Thus, if we let t = 1
n , then as n → ∞, t → 0. So (1.14) can be written as

e = lim
t→0

(1 + t)1/t
.

In words, it says that if t is very small, then

et =
[
(1 + t)1/t

]t

= 1 + t, t → 0.

This is exactly the same equation as shown in (1.10). Therefore, e is the same
number previously written as 101/2.3026. Now the formal definition of e is given
by the limiting process

e = lim
n→∞

(
1 +

1
n

)n

,

which can be written as an infinite series as shown in (1.14). The series con-
verges rather fast. With seven terms, it gives us 2.71825. This approximation
can be improved by adding more terms until the desired accuracy is reached.
Since it is monotonely convergent, each additional term brings it closer to the
limit: 2.71828 · · · .
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1.4.3 The Exponential Function ex

Raising e to x power, we have

ex = lim
n→∞

(
1 +

1
n

)nx

.

Let nx = m, then x
m = 1

n . As n goes to ∞, so does m. Thus the above
equation becomes

ex = lim
m→∞

(
1 +

x

m

)m

.

Now m may not be an integer, but the binomial formula is equally valid for
noninteger power (one of the early discoveries of Isaac Newton). Therefore by
the same reason as in (1.13), we can express the exponential function as an
infinite series,

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · . (1.15)

It is from this series that the numerical values of ex are most easily obtained,
the first few terms usually suffice to obtain the desired accuracy.

We have shown in (1.11) that the derivative of ex must be equal to itself.
This is clearly the case as we take derivative of (1.15) term by term,

d
dx

ex = 0 + 1 + x +
x2

2!
+

x3

3!
+ · · · = ex.

1.5 Unification of Algebra and Geometry

1.5.1 The Remarkable Euler Formula

Leonhard Euler (1707–1783) was born in Basel, a border town between
Switzerland, France, and Germany. He is one of the great mathematicians
and certainly the most prolific scientist of all times. His immense output fills
at least 70 volumes. In 1771, after he became blind, he published three vol-
umes of a profound treatise of optics. For almost 40 years after his death, the
Academy at St. Petersburg continued to publish his manuscripts. Euler played
with formulas like a child playing toys, making all kinds of substitutions until
he got something interesting. Often the results were sensational.

He took the infinite series of ex, and boldly replaced the real variable x in
(1.15) with the imaginary expression iθ and got

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · · .
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Since i2 = −1, i3 = −i, i4 = 1, and so on, this equation became

eiθ = 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ · · · .

He then changed the order of terms, collecting all the real terms separately
from the imaginary terms, and arrived at the series

eiθ =
(

1 − θ2

2!
+

θ4

4!
+ · · ·

)
+ i

(
θ − θ3

3!
+

θ5

5!
+ · · ·

)
.

Now it was already known in Euler’s time that the two series appearing in
the parentheses are the power series of the trigonometric functions cos θ and
sin θ, respectively. Thus Euler arrived at the remarkable formula (1.2)

eiθ = cos θ + i sin θ,

which at once links the exponential function to ordinary trigonometry.
Strictly speaking, Euler played the infinite series rather loosely. Collecting

all the real terms separately from the imaginary terms, he changed the order
of terms. To do so with an infinite series can be dangerous. It may affect its
sum, or even change a convergent series into a divergent series. But this result
has withstood the test of rigor.

Euler derived hundreds of formulas, but this one is often called the most
famous formula of all formulas. Feynman called it the amazing jewel.

1.5.2 The Complex Plane

The acceptance of complex number as a bona fide members of our number
system was greatly helped by the realization that a complex number could
be given a simple, concrete geometric interpretation. In a two-dimensional
rectangular coordinate system, a point is specified by its x and y components.
If we interpret the x and y axes as the real and imaginary axes, respectively,
then the complex number z = x + iy is represented by the point (x, y). The
horizontal position of the point is x, the vertical position of the point is y,
as shown in Fig. 1.1. We can then add and subtract complex numbers by
separately adding or subtracting the real and imaginary components. When
thought in this way, the plane is called the complex plane, or the Argand
plane.

This graphic representation was independently suggested around 1800 by
Wessel of Norway, Argand of France, and Gauss. The publications by Wessel
and by Argand went all but unnoticed, but the reputation of Gauss ensured
wide dissemination and acceptance of the complex numbers as points in the
complex plane.

At the time when this interpretation was suggested, the Euler formula
(1.2) had already been known for at least 50 years. It might have played the
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r

y

x
q

z = x+iy

y

x

Fig. 1.1. Complex plane also known as Argand diagram. The real part of a complex
number is along the x-axis, and the imaginary part, along the y-axis

role of guiding principle for this suggestion. The geometric interpretation of
the complex number is certainly consistent with the Euler formula. We can
derive the Euler formula by expressing eiθ as a point in the complex plane.

Since the most general number is a complex number in the form of a real
part plus an imaginary part, so let us express eiθ as

eiθ = a (θ) + ib (θ) . (1.16)

Note that both the real part a and the imaginary part b must be functions of
θ. Here θ is any real number. Changing i to −i, in both sides of this equation,
we get the complex conjugate

e−iθ = a (θ) − ib (θ) .

Since

eiθe−iθ = eiθ−iθ = e0 = 1,

it follows that

eiθe−iθ = (a + ib)(a − ib) = a2 + b2 = 1.

Furthermore

d
dθ

eiθ = ieiθ = i(a + ib) = ia − b

but

d
dθ

eiθ =
d
dθ

a + i
d
dθ

b = a′ + ib′,

equating the real part to real part and imaginary part to imaginary part of
the last two equations, we have

a′ =
d
dθ

a = −b, b′ =
d
dθ

b = a.
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Y

Xα

1

a

b

z

Fig. 1.2. The Argand diagram of the complex number z = eiθ = a+ib. The distance
between the origin and the point (a, b) must be 1

Thus

a′b = −b2, b′a = a2

and

b′a − a′b = a2 + b2 = 1.

Now let a (θ) represent the abscissa (x-coordinate) and b (θ) represent the
ordinate (y-coordinate) of a point in the complex plane as shown in Fig. 1.2.
Let α be the angle between the x-axis and the vector from the origin to the
point. Since the length of this vector is given by the Pythagorean theorem

r2 = a2 + b2 = 1,

clearly

cos α =
a(θ)
1

= a (θ) , sin α =
b (θ)

1
= b (θ) , tan α =

b (θ)
a (θ)

. (1.17)

Now

d tan α

dθ
=

d tan α

dα

dα

dθ
=

1
cos2 α

dα

dθ
=

1
a2

dα

dθ
,

but

d tan α

dθ
=

d
dθ

(
b

a

)
=

b′a − a′b

a2
=

1
a2

.

It is clear from the last two equations that

dα

dθ
= 1.

In other words,

α = θ + c.
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To determine the constant c, let us look at the case θ = 0. Since ei0 = 1 = a+ib
means a = 1 and b = 0, in this case it is clear from the diagram that α = 0.
Therefore c must be equal to zero, so

α = θ.

It follows from (1.17) that:

a(θ) = cos α = cos θ, b (θ) = sinα = sin θ.

Putting them back to (1.16), we obtain again

eiθ = cos θ + i sin θ.

Note that we have derived the Euler formula without the series expansion.
Previously we have derived this formula in a purely algebraic manner. Now
we see that cos θ and sin θ are the cosine and sine functions naturally defined
in geometry. This is the unification of algebra and geometry.

It took 250 years for mathematicians to get comfortable with complex
numbers. Once fully accepted, the advance of theory of complex variables was
rather rapid. In a short span of 40 years, Augustin Louis Cauchy (1789–1857)
of France and Georg Friedrich Bernhard Riemann (1826–1866) of Germany
developed a beautiful and powerful theory of complex functions, which we will
describe in Chap. 2.

In this introductory chapter, we have presented some pieces of historic
notes for showing that the logical structure of mathematics is as interesting
as any other human endeavor. Now we must leave history behind because of
our limited space. For more detailed information, we recommend the following
references, from which much of our accounts are taken:

Richard Feynman, Robert B. Leighton, and Mathew Sands, The Feynman
Lectures on Phyics, Vol. 1, Chapter 22, (1963) Addison Wesley

Eli Maor, e: the Story of a Number, (1994) Princeton University Press
Tristan Needham, Visual Complex Analysis, Chapter 1, (1997) Oxford

University Press

1.6 Polar Form of Complex Numbers

In terms of polar coordinates (r, θ), the variable x and y are

x = r cos θ, y = r sin θ.

The complex variable z is then written as

z = x + iy = r (cos θ + i sin θ) = reiθ. (1.18)

The quantity r, known as the modulus, is the absolute value of z and is
given by
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r = |z| = (zz∗)1/2 =
(
x2 + y2

)1/2
.

The angle θ is known as the argument, or phase, of z. Measured in radians,
it is given by

θ = tan−1 y

x
.

If z is in the second or third quadrants, one has to use this equation with
care. In the second quadrant, tan θ is negative, but in a hand-held calculator,
or a computer code, a negative arctangent is interpreted as an angle in the
fourth quadrant. In the third quadrant, tan θ is positive, but a calculator will
interpret a positive arctangent as an angle in the first quadrant. Since an
angle is fixed by its sine and cosine, θ is uniquely determined by the pair of
equations

cos θ =
x

|z| , sin θ =
y

|z| .

But in practice we usually compute tan−1 (y/x) and adjust for the quadrant
problem by adding and subtracting π. Because of its identification as an angle,
θ is determined only up to an integer multiple of 2π. We shall make the usual
choice of limiting θ to the interval of 0 ≤ θ < 2π as its principal value.
However, in computer codes the principal value is usually chosen in the open
interval of −π ≤ θ < π.

Equation (1.18) is called the polar form of z. It is immediately clear that,
the complex conjugate of z in the polar form is

z∗ (r, θ) = z (r,−θ) = re−iθ.

In the complex plane, z∗ is the reflection of z across the x-axis.
It is helpful to always keep the complex plane in mind. As θ increases, eiθ

describes an unit circle in the complex plane as shown in Fig. 1.3. To reach a
general complex number z, we must take the unit vector eiθ that points at z
and stretch it by the length |z| = r.

It is very convenient to multiply or divide two complex numbers in polar
forms. Let

z1 = r1eiθ1 , z2 = r2eiθ2 ,

then

z1z2 = r1eiθ1r2eiθ2 = r1r2ei(θ1+θ2) = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)],

z1

z2
=

r1eiθ1

r2eiθ2
=

r1

r2
ei(θ1−θ2) =

r1

r2
[cos (θ1 − θ2) + i sin (θ1 − θ2)].
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reiq

eiq

q
ei π = e−i π = −1

ei 3π/2 = e−i π/2 = −i

ei 2π = e0 =1

ei π/2 = i

Fig. 1.3. Polar form of complex numbers. The unit circle in the complex plane is
described by eiθ. A general complex number is given by reiθ

1.6.1 Powers and Roots of Complex Numbers

To obtain the nth power of a complex number, we take the nth power of the
modulus and multiply the phase angle by n,

zn =
(
reiθ

)n
= rneinθ = rn (cos nθ + i sin nθ) .

This is a correct formula for both positive and negative integer n. But if n
is a fraction number, we must use this formula with care. For example, we
can interpret z1/4 as the fourth root of z. In other words, we want to find a
number whose 4th power is equal to z. It is instructive to work out the details
for the case of z = 1. Clearly

14 =
(
ei0

)4
= ei0 = 1,

i4 =
(
eiπ/2

)4

= ei2π = 1,

(−1)4 =
(
eiπ

)4
= ei4π = 1,

(−i)4 =
(
ei3π/2

)4

= ei6π = 1.

Therefore there are four distinct answers

11/4 =

⎧⎪⎪⎨
⎪⎪⎩

1 ,
i ,
−1 ,
−i .

The multiplicity of roots is tied to the multiple ways of representing 1 in the
polar form: ei0, ei2π, ei4π, etc. Thus to compute all the nth roots of z, we
must express z as
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z = reiθ+ik2π, (k = 0, 1, 2, . . . , n − 1)

and

z
1
n = n

√
reiθ/n+ik2π/n, (k = 0, 1, 2, . . . , n − 1).

The reason that k stops at n−1 is because once k reaches n, eik2π/n = ei2π = 1
and the root repeats itself. Therefore there are n distinct roots.

In general, if n and m are positive integers that have no common factor,
then

zm/n = n

√
|z|mei m

n (θ+2kπ) = n

√
|z|m

[
cos

m

n
(θ + 2kπ) + i sin

m

n
(θ + 2kπ)

]

where z = |z| eiθ and k = 0, 1, 2, . . . , n − 1.

Example 1.6.1. Express (1 + i)8 in the form of a + bi.

Solution 1.6.1. Let z = (1 + i) = reiθ, where

r = (zz∗)1/2 =
√

2, θ = tan−1 1
1

=
π

4
.

It follows that:

(1 + i)8 = z8 = r8ei8θ = 16ei2π = 16.

Example 1.6.2. Express the following in the form of a + bi:
(

3
2

√
3 + 3

2 i
)6

(√
5
2 + i

√
5
2

)3 .

Solution 1.6.2. Let us denote

z1 =
(

3
2

√
3 +

3
2
i
)

= r1eiθ1 ,

z2 =

(√
5
2

+ i

√
5
2

)
= r2eiθ2 ,

where

r1 = (z1z
∗
1)1/2 = 3, θ1 = tan−1

(
1√
3

)
=

π

6
,

r2 = (z2z
∗
2)1/2 =

√
5, θ2 = tan−1 (1) =

π

4
.
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Thus
(

3
2

√
3 + 3

2 i
)6

(√
5
2 + i

√
5
2

)3 =
z6
1

z3
2

=

(
3eiπ/6

)6

(√
5eiπ/4

)3 =
36eiπ

(√
5
)3

ei3π/4

=
729
5
√

5
ei(π−3π/4) =

729
5
√

5
eiπ/4

=
729
5
√

5

(
cos

π

4
+ i sin

π

4

)
=

729
5
√

10
(1 + i) .

Example 1.6.3. Find all the cube roots of 8.

Solution 1.6.3. Express 8 as a complex number z in the complex plane

z = 8eik2π, k = 0, 1, 2, · · · .

Therefore

z1/3 = (8)1/3eik2π/3 = 2eik2π/3, k = 0, 1, 2.

z1/3 =

⎧⎨
⎩

2ei0 = 2, k = 0
2ei2π/3 = 2

(
cos 2π

3 + i sin 2π
3

)
= −1 + i

√
3, k = 1

2ei4π/3 = 2
(
cos 4π

3 + i sin 4π
3

)
= −1 − i

√
3, k = 2.

Note that the three roots are on a circle of radius 2 centered at the origin.
They are 120◦ apart.

Example 1.6.4. Find all the cube roots of
√

2 + i
√

2.

Solution 1.6.4. The polar form of
√

2 + i
√

2 is

z =
√

2 + i
√

2 = 2eiπ/4+ik2π.

The cube roots of
√

2 + i
√

2 are given by

z1/3 =

⎧⎪⎨
⎪⎩

(2)1/3 eiπ/12 = (2)1/3 (cos π
12 + i sin π

12

)
, k = 0,

(2)1/3 ei(π/12+2π/3) = (2)1/3 (cos 3π
4 + i sin 3π

4

)
, k = 1,

(2)1/3 ei(π/12+4π/3) = (2)1/3 (cos 17π
12 + i sin 17π

12

)
, k = 2.

Again the three roots are on a circle 120◦ apart.
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Example 1.6.5. Find all the values of z that satisfy the equation z4 = −64.

Solution 1.6.5. Express −64 as a point in the complex plane

−64 = 64eiπ+ik2π, k = 0, 1, 2, . . . .

It follows that:

z = (−64)1/4 = (64)1/4 ei(π+2kπ)/4, k = 0, 1, 2, 3,

z =

⎧⎪⎪⎨
⎪⎪⎩

2
√

2(cos π
4 + i sin π

4 ) = 2 + 2i, k = 0
2
√

2(cos 3π
4 + i sin 3π

4 ) = −2 + 2i, k = 1
2
√

2(cos 5π
4 + i sin 5π

4 ) = −2 − 2i, k = 2
2
√

2(cos 7π
4 + i sin 7π

4 ) = 2 − 2i, k = 3.

Note that the four roots are on a circle of radius
√

8 centered at the origin.
They are 90◦ apart.

Example 1.6.6. Find all the values of (1 − i)3/2
.

Solution 1.6.6.

(1 − i) =
√

2eiθ, θ = tan−1(−1) = −π

4
.

(1 − i)3 = 2
√

2ei3θ+ik2π, k = 0, 1, 2, . . . .

(1 − i)3/2 = 4
√

8ei(3θ/2+kπ), k = 0, 1.

(1 − i)3/2 =
{

4
√

8
[
cos

(
− 3π

8

)
+ i sin

(
− 3π

8

)]
, k = 0

4
√

8
[
cos

(
5π
8

)
+ i sin

(
5π
8

)]
, k = 1.

1.6.2 Trigonometry and Complex Numbers

Many trigonometric identities can be most elegantly proved with complex
numbers. For example, taking the complex conjugate of the Euler formula

(eiθ)∗ = (cos θ + i sin θ)∗,

we have

e−iθ = cos θ − i sin θ.

It is interesting to write this equation as

e−iθ = ei(−θ) = cos(−θ) + i sin(−θ).
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Comparing the last two equations, we find that

cos(−θ) = cos θ

sin(−θ) = − sin θ

which is consistent with what we know about the cosine and sine functions of
trigonometry.

Adding and subtracting eiθ and e−iθ, we have

eiθ + e−iθ = (cos θ + i sin θ) + (cos θ − i sin θ) = 2 cos θ,

eiθ − e−iθ = (cos θ + i sin θ) − (cos θ − i sin θ) = 2i sin θ.

Using them one can easily express the powers of cosine and sine in terms of
cos nθ and sinnθ. For example, with n = 2

cos2 θ =
[
1
2
(
eiθ + e−iθ

)]2

=
1
4
(
ei2θ + 2eiθe−iθ + e−i2θ

)

=
1
2

[
1
2
(
ei2θ + e−i2θ

)
+ ei0

]
=

1
2

(cos 2θ + 1) ,

sin2 θ =
[

1
2i

(
eiθ − e−iθ

)]2

= −1
4
(
ei2θ − 2eiθe−iθ + e−i2θ

)

=
1
2

[
−1

2
(
ei2θ + e−i2θ

)
+ ei0

]
=

1
2

(− cos 2θ + 1) .

To find an identity for cos (θ1 + θ2) and sin (θ1 + θ2), we can view them as
components of exp[i(θ1 + θ2)]. Since

eiθ1eiθ2 = ei(θ1+θ2) = cos (θ1 + θ2) + i sin (θ1 + θ2) ,

and

eiθ1eiθ2 = [cos θ1 + i sin θ1][cos θ2 + i sin θ2]
= (cos θ1 cos θ2 − sin θ1 sin θ2) + i (sin θ1 cos θ2 + cos θ1 sin θ2) ,

equating the real and imaginary parts of these equivalent expressions, we get
the familiar formulas

cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

sin (θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

From these two equations, it follows that:

tan (θ1 + θ2) =
sin (θ1 + θ2)
cos (θ1 + θ2)

=
sin θ1 cos θ2 + cos θ1 sin θ2

cos θ1 cos θ2 − sin θ1 sin θ2
.
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Dividing top and bottom by cos θ1 cos θ2, we obtain

tan (θ1 + θ2) =
tan θ1 + tan θ2

1 − tan θ1 tan θ2
.

This formula can be derived directly with complex numbers. Let z1

and z2 be two points in the complex plane whose x components are both equal
to 1.

z1 = 1 + iy1 = r1eiθ1 , tan θ1 =
y1

1
= y1,

z2 = 1 + iy2 = r2eiθ2 , tan θ2 =
y2

1
= y2.

The product of the two is given by

z1z2 = r1r2ei(θ1+θ2), tan (θ1 + θ2) =
Im(z1z2)
Re (z1z2)

.

But

z1z2 = (1 + iy1) (1 + iy2) = (1 − y1y2) + i (y1 + y2) ,

therefore

tan (θ1 + θ2) =
Im(z1z2)
Re (z1z2)

=
y1 + y2

1 − y1y2
=

tan θ1 + tan θ2

1 − tan θ1 tan θ2
.

These identities can, of course, be demonstrated geometrically. However, it is
much easier to prove them algebraically with complex numbers.

Example 1.6.7. Prove De Moivre formula

(cos θ + i sin θ)n = cos nθ + i sin nθ.

Solution 1.6.7. Since (cos θ + i sin θ) = eiθ, it follows: that

(cos θ + i sin θ)n =
(
eiθ

)n
= einθ

= cos nθ + i sin nθ.

This theorem was published in 1707 by Abraham De Moivre, a French math-
ematician working in London.
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Example 1.6.8. Use De Moivre’s theorem and binomial expansion to express
cos 4θ and sin 4θ in terms of powers of cos θ and sin θ.

Solution 1.6.8.

cos 4θ + i sin 4θ = ei4θ =
(
eiθ

)4
= (cos θ + i sin θ)4

= cos4 θ + 4 cos3 θ(i sin θ) + 6 cos2 θ(i sin θ)2

+ 4 cos θ(i sin θ)3 + (i sin θ)4

=
(
cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

)
+ i

(
4 cos3 θ sin θ − 4 cos θ sin3 θ

)
Equating the real and imaginary parts of these complex expressions, we obtain

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ,

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

Example 1.6.9. Express cos4 θ and sin4 θ in terms of multiples of θ.

Solution 1.6.9.

cos4 θ =
[
1
2
(
eiθ + e−iθ

)]4

=
1
16

[(
ei4θ + e−i4θ

)
+ 4

(
ei2θ + e−i2θ

)
+ 6

]

=
1
8

cos 4θ +
1
2

cos 2θ +
3
8
.

sin4 θ =
[

1
2i

(
eiθ − e−iθ

)]4

=
1
16

[(
ei4θ + e−i4θ

)
− 4

(
ei2θ + e−i2θ

)
+ 6

]

=
1
8

cos 4θ − 1
2

cos 2θ +
3
8
.

Example 1.6.10. Show that

cos(θ1 + θ2 + θ3) = cos θ1 cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3

− sin θ1 sin θ3 cos θ2 − sin θ2 sin θ3 cos θ1,

sin(θ1 + θ2 + θ3) = sin θ1 cos θ2 cos θ3 + sin θ2 cos θ1 cos θ3

+ sin θ3 cos θ1 cos θ2 − sin θ1 sin θ2 sin θ3.
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Solution 1.6.10.

cos(θ1 + θ2 + θ3) + i sin(θ1 + θ2 + θ3) = ei(θ1+θ2+θ3) = eiθ1eiθ2eiθ3 ,

eiθ1eiθ2eiθ3 = (cos θ1 + i sin θ1) (cos θ2 + i sin θ2) (cos θ3 + i sin θ3)
= cos θ1 (1 + i tan θ1) cos θ2 (1 + i tan θ2) cos θ3 (1 + i tan θ3) .

Since

(1 + a) (1 + b)(1 + c) = 1 + (a + b + b) + (ab + bc + ca) + abc,

(1 + i tan θ1) (1 + i tan θ2) (1 + i tan θ3) = 1 + i (tan θ1 + tan θ2 + tan θ3)
+ i2 (tan θ1 tan θ2 + tan θ2 tan θ3 + tan θ3 tan θ1) + i3 tan θ1 tan θ2 tan θ3

= [1 − (tan θ1 tan θ2 + tan θ2 tan θ3 + tan θ3 tan θ1)]
+ i [(tan θ1 + tan θ2 + tan θ3) − tan θ1 tan θ2 tan θ3] .

Therefore

eiθ1eiθ2eiθ3 = cos θ1 cos θ2 cos θ3

×
{

[1 − (tan θ1 tan θ2 + tan θ2 tan θ3 + tan θ3 tan θ1)]
+ i [(tan θ1 + tan θ2 + tan θ3) − tan θ1 tan θ2 tan θ3]

}
.

Equating the real and imaginary parts

cos(θ1 + θ2 + θ3) = cos θ1 cos θ2 cos θ3

× [1 − (tan θ1 tan θ2 + tan θ2 tan θ3 + tan θ3 tan θ1)]
= cos θ1 cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3

− sin θ1 sin θ3 cos θ2 − sin θ2 sin θ3 cos θ1,

sin(θ1 + θ2 + θ3) = cos θ1 cos θ2 cos θ3

× [(tan θ1 + tan θ2 + tan θ3) − tan θ1 tan θ2 tan θ3]
= sin θ1 cos θ2 cos θ3 + sin θ2 cos θ1 cos θ3

+ sin θ3 cos θ1 cos θ2 − sin θ1 sin θ2 sin θ3.

Example 1.6.11. If θ1, θ2, θ3 are the three interior angles of a triangle, show
that

tan θ1 + tan θ2 + tan θ3 = tan θ1 tan θ2 tan θ3.
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Solution 1.6.11. Since

tan (θ1 + θ2 + θ3) =
sin(θ1 + θ2 + θ3)
cos(θ1 + θ2 + θ3)

,

using the results of the previous problem and dividing the top and bottom by
cos θ1 cos θ2 cos θ3, we have

tan (θ1 + θ2 + θ3) =
tan θ1 + tan θ2 + tan θ3 − tan θ1 tan θ2 tan θ3

1 − tan θ1 tan θ2 − tan θ2 tan θ3 − tan θ3 tan θ1
.

Now θ1, θ2, θ3 are the three interior angles of a triangle, so θ1 + θ2 + θ3 = π
and tan (θ1 + θ2 + θ3) = tan π = 0. Therefore

tan θ1 + tan θ2 + tan θ3 = tan θ1 tan θ2 tan θ3.

Example 1.6.12. Show that

cos θ + cos 3θ + cos 5θ + · · · + cos (2n − 1) θ =
sin nθ cos nθ

sin θ
,

sin θ + sin 3θ + sin 5θ + · · · + sin (2n − 1) θ =
sin2 nθ

sin θ
.

Solution 1.6.12. Let

C = cos θ + cos 3θ + cos 5θ + · · · + cos (2n − 1) θ,

S = sin θ + sin 3θ + sin 5θ + · · · + sin (2n − 1) θ.

Z = C + iS = (cos θ + i sin θ) + (cos 3θ + i sin 3θ)
+ (cos 5θ + i sin 5θ) + · · · + (cos (n − 1) θ + i sin (2n − 1) θ)

= eiθ + ei3θ + ei5θ + · · · + ei(2n−1)θ.

ei2θZ = ei3θ + ei5θ + · · · + ei(2n−1)θ + ei(2n+1)θ,

Z − ei2θZ = eiθ − ei(2n+1)θ,

Z =
eiθ − ei(2n+1)θ

1 − ei2θ
=

eiθ(1 − ei2nθ)
eiθ (e−iθ − eiθ)

=
einθ

(
e−inθ − einθ

)
(e−iθ − eiθ)

=
einθ sinnθ

sin θ
=

cos nθ sinnθ

sin θ
+ i

sin nθ sin nθ

sin θ
.

Therefore

C =
cos nθ sin nθ

sin θ
, S =

sin2 nθ

sin θ
.
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Example 1.6.13. For r < 1, show that
( ∞∑

n=0

r2n cos nθ

)2

+

( ∞∑
n=0

r2n sinnθ

)2

=
1

1 − 2r2 cos θ + r4
.

Solution 1.6.13. Let

Z =
∞∑

n=0

r2n cos nθ + i
∞∑

n=0

r2n sinnθ

=
∞∑

n=0

r2n(cos nθ + i sin nθ) =
∞∑

n=0

r2neinθ

= 1 + r2eiθ + r4ei2θ + r6ei3θ + · · · .

Since r < 1, so this is a convergent series

r2eiθZ = r2eiθ + r4ei2θ + r6ei3θ + · · · .

Z − r2eiθZ = 1,

Z =
1

1 − r2eiθ
.

|Z|2 = ZZ∗ =
1

1 − r2eiθ
× 1

1 − r2e−iθ

=
1

1 − r2(eiθ + e−iθ) + r4
=

1
1 − 2r2 cos θ + r4

,

But

|Z|2 =

( ∞∑
n=0

r2n cos nθ + i
∞∑

n=0

r2n sinnθ

)( ∞∑
n=0

r2n cos nθ − i
∞∑

n=0

r2n sin nθ

)

=

( ∞∑
n=0

r2n cos nθ

)2

+

( ∞∑
n=0

r2n sinnθ

)2

.

Therefore( ∞∑
n=0

r2n cos nθ

)2

+

( ∞∑
n=0

r2n sinnθ

)2

=
1

1 − 2r2 cos θ + r4
.

This is the intensity of the light, transmitted through a film after multiple
reflections at the surfaces of the film and r is the fraction of light reflected
each time.
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1.6.3 Geometry and Complex Numbers

There are three geometric representations of the complex number z = x + iy:
(a) as the point P (x, y) in the xy plane,
(b) as the vector OP from the origin to the point P ,
(c) as any vector that is of the same length and same direction as OP .
For example, zA = 3 + i can be represented by the point A in Fig. 1.4.

It can also be represented by the vector zA. Similarly zB = −2 + 3i can be
represented by the point B and the vector zB . Now let us define zC as zA+zB ,

zC = zA + zB = (3 + i) + (−2 + 3i) = 1 + 4i.

So zC is represented by the point C and the vector zC . Clearly the two shaded
triangles in Fig. 1.4 are identical. The vector AC (from A to C) is not only
parallel to zB, it is also of the same length as zB. In this sense, we say that
the vector AC can also represent zB . Thus zA, zB, and zA + zB are three
sides of the triangle OAC. Since the sum of two sides of a triangle must be
greater or equal to the third side, it follows that

|zA| + |zB | ≥ |zA + zB| .

Since zB = zC − zA, and zB is the same as the AC, we can interpret zC − zA

as the vector from the tip of zA to the tip of zC . The distance between C and
A is simply |zC − zA|.

If z is a variable and zA is fixed, then a circle of radius r centered at zA is
described by the equation

|z − zA| = r.

y

x
O

A

C

ZB

ZB
ZC

ZA

B

1

1

2

3

4

2 3 4
−1

−1−2−3−4

−2

−3

Fig. 1.4. Addition and subtraction of complex numbers in the complex plane.
A complex number can be represented by a point in the complex plane, or by the
vector from the origin to that point. The vector can be moved parallel to itself



1.6 Polar Form of Complex Numbers 41

C

D

A

B

αβ

γ

Fig. 1.5. Perpendicular segments. If AB and CD are perpendicular, then the ratio
of zB − zA and zD − zC must be purely imaginary

If the two segments AB and CD are parallel, then

zB − zA = k (zD − zC) ,

where k is a real number. If k = 1, then A, B, C, D must be the vertices of
a parallelogram.

If the two segments AB and CD are perpendicular to each other, then the
ratio zD−zC

zB−zA
must be a pure imaginary number. This can be seen as follows.

The segment AB in Fig. 1.5 can be expressed as

zB − zA = |zB − zA| eiβ ,

and segment CD as

zD − zC = |zD − zC | eiα.

So

zD − zC

zB − zA
=

|zD − zC | eiα

|zB − zA| eiβ
=

|zD − zC |
|zB − zA|

ei(α−β).

It is well known that the exterior angle is equal to the sum of the two interior
angles, that is, in Fig. 1.5 α = β + γ, or γ = α − β. If AB is perpendicular to
CD, then γ = π

2 , and

ei(α−β) = eiγ = eiπ/2 = i.

Thus

zD − zC

zB − zA
=

|zD − zC |
|zB − zA|

i.

Since |zD−zC |
|zB−zA| is real, so zD−zC

zB−zA
must be imaginary.
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The following examples will illustrate how to use these principles to solve
problems in geometry.

Example 1.6.14. Determine the curve in the complex plane that is described
by

∣∣∣∣z + 1
z − 1

∣∣∣∣ = 2.

Solution 1.6.14.
∣∣∣ z+1
z−1

∣∣∣ = 2 can be written as |z + 1| = 2 |z − 1| . With z =
x + iy, this equation becomes

|(x + 1) + iy| = 2 |(x − 1) + iy| ,

{[(x + 1) + iy] [(x + 1) − iy]}1/2 = 2 {[(x − 1) + iy] [(x − 1) − iy]}1/2
.

Square both sides

(x + 1)2 + y2 = 4 (x − 1)2 + 4y2.

This gives

3x2 − 10x + 3y2 + 3 = 0,

which can be written as

(
x − 5

3

)2

+ y2 −
(

5
3

)2

+ 1 = 0,

or

(
x − 5

3

)2

+ y2 =
(

4
3

)2

.

This represents a circle of radius 4
3 with a center at

(
5
3 , 0

)
.

Example 1.6.15. In the parallelogram shown in Fig. 1.6, the base is fixed along
the x-axis and is of length a. The length of the other side is b. As the angle
θ between the two sides changes, determine the locus of the center of the
parallelogram.
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a

z

θ

b e
iθ

AO

CB

Fig. 1.6. The curve described by the center of a parallelogram. If the base is fixed,
the locus of the center is a circle

Solution 1.6.15. Let the origin of the coordinates be at the left bottom corner
of the parallelogram. So

zA = a, zB = beiθ.

Let the center of the parallelogram be z which is at the midpoint of the
diagonal OC. Thus

z =
1
2

(zA + zB) =
1
2
a +

1
2
beiθ

or

z − 1
2
a =

1
2
beiθ

It follows that: ∣∣∣∣z − 1
2
a

∣∣∣∣ =
∣∣∣∣12beiθ

∣∣∣∣ =
1
2
b.

Therefore the locus of the center is a circle of radius 1
2b centered at 1

2a. Half
of the circle is shown in Fig. 1.6.

Example 1.6.16. If E, F , G, H are midpoints of the quadrilateral ABCD.
Prove that EFGH is a parallelogram.

Solution 1.6.16. Let the vector from origin to any point P be zP , then from
Fig. 1.7 we see that

zE = zA +
1
2

(zB − zA) ,

zF = zB +
1
2

(zC − zB) ,
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A B

C

D

E

F

G

H

Fig. 1.7. Parallelogram formed by the midpoints of a quadrilateral

zF − zE = zB +
1
2

(zC − zB) − zA − 1
2

(zB − zA) =
1
2

(zC − zA) .

zG = zD +
1
2

(zC − zD) ,

zH = zA +
1
2

(zD − zA) ,

zG − zH = zD +
1
2

(zC − zD) − zA − 1
2

(zD − zA) =
1
2

(zC − zA) .

Thus

zF − zE = zG − zH .

Therefore EFGH is a parallelogram.

Example 1.6.17. Use complex number to show that the diagonals of a rhombus
(a parallelogram with equal sides) are perpendicular to each other, as shown
in Fig. 1.8.

CD

A B

Fig. 1.8. The diagonals of a rhombus are perpendicular to each other
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Solution 1.6.17. The diagonal AC is given by zC −zA, and the diagonal DB
is given by zB − zD. Let the length of each side of the rhombus be a, and the
origin of the coordinates coincide with A. Furthermore let the x-axis be along
the line AB. Thus

zA = 0, zB = a, zD = aeiθ.

Furthermore,

zC = zB + zD = a + aeiθ.

Therefore

zC − zA = a + aeiθ = a
(
1 + eiθ

)
,

zB − zD = a − aeiθ = a
(
1 − eiθ

)
.

Thus

zC − zA

zB − zD
=

a
(
1 + eiθ

)
a (1 − eiθ)

=

(
1 + eiθ

)
(1 − eiθ)

(
1 − e−iθ

)
(1 − e−iθ)

=
eiθ − e−iθ

2 − (eiθ + e−iθ)
= i

sin θ

1 − cos θ
.

Since sin θ
1−cos θ is real, zC−zA

zD−zB
is purely imaginary. Hence AC is perpendicular

to DB.

Example 1.6.18. In the triangle AOB, shown in Fig. 1.9, the angle between
AO and OB is 90◦ and the length of AO is the same as the length of OB. The
point D trisects the line AB such that AD = 2DB, and C is the midpoint of
OB. Show that AC is perpendicular to OD.

B

C

D

AO

Fig. 1.9. A problem in geometry. If OA is perpendicular to OB and OA = OB,
then the line CA is perpendicular to the line OD where C is the midpoint of OB
and DA = 2BD
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Solution 1.6.18. Let the real axis be along OA and the imaginary axis along
OB. Let the length of OA and OB be a. Thus

zO = 0, zA = a, zB = ai, zC =
1
2
ai,

zD = zA +
2
3

(zB − zA) = a +
2
3

(ai − a) =
1
3
a (1 + 2i) ,

zD − zO =
1
3
a (1 + 2i) − 0 =

1
3
a (1 + 2i) .

The vector AC is given by zC − zA,

zC − zA =
1
2
ai − a = i

1
2
a (1 + 2i) .

Thus

zC − zA

zD − zO
= i

3
2
.

Since this is purely imaginary, therefore AC is perpendicular to OD.

1.7 Elementary Functions of Complex Variable

1.7.1 Exponential and Trigonometric Functions of z

The exponential function ez is of fundamental importance, not only for its
own sake, but also as a basis for defining all the other elementary functions.
The exponential function of real variable is well known. Now we wish to give
meaning to ez when z = x+iy. In the spirit of Euler, we can work our way in
a purely manipulative manner. Assuming that ez obeys all the familiar rules
of the exponential function of a real number, we have

ez = ex+iy = exeiy = ex (cos y + i sin y) . (1.19)

Thus we can define ez as ex (cos y + i sin y). It reduces to ex when the imagi-
nary part of z vanishes. It is also easy to show that

ez1ez2 = ez1+z2 .

Furthermore, in Chap. 2 we shall consider in detail the meaning of derivatives
with respect to a complex z. Now it suffices to know that

d
dz

ez = ez.

Therefore the definition of (1.19) preserves all the familiar properties of the
exponential function.
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We have already seen that

cos θ =
1
2
(eiθ + e−iθ), sin θ =

1
2i

(eiθ − e−iθ).

On the basis of these equations, we extend the definitions of the cosine and
sine into the complex domain. Thus we define

cos z =
1
2
(eiz + e−iz), sin z =

1
2i

(eiz − e−iz).

The rest of the trigonometric functions of z are defined in a usual way. For
example,

tan z =
sin z

cos z
, cot z =

cos z

sin z
,

sec z =
1

cos z
, csc z =

1
sin z

.

With these definitions we can show that all the familiar formulas of trigono-
metry remain valid when real variable x is replaced by complex variable z:

cos(−z) = cos z, sin (−z) = − sin z,

cos2 z + sin2 z = 1,

cos (z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2,

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,

d
dz

cos z = − sin z,
d
dz

sin z = cos z.

To prove them, we must start with their definitions. For example,

cos2 z + sin2 z =
[
1
2
(eiz + e−iz)

]2

+
[

1
2i

(eiz − e−iz)
]2

=
1
4
(ei2z + 2 + e−i2z) − 1

4
(ei2z − 2 + e−i2z) = 1.

Example 1.7.1. Express e1−i in the form of a + bi, accurate to three decimal
places.

Solution 1.7.1.

e1−i = e1e−i = e (cos 1 − i sin 1) .

Using a hand-held calculator, we find

e1−i � 2.718(0.5403 − 0.8415i)
= 1.469 − 2.287i.
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Example 1.7.2. Show that

sin 2z = 2 sin z cos z.

Solution 1.7.2.

2 sin z cos z = 2
1
2i

(eiz − e−iz)
1
2
(eiz + e−iz)

=
1
2i

(ei2z − e−i2z) = sin 2z.

Example 1.7.3. Compute sin(1 − i).

Solution 1.7.3. By definition

sin (1 − i) =
1
2i

(
ei(1−i) − e−i(1−i)

)
=

1
2i

(
e1+i − e−1−i

)

=
1
2i

{e [cos(1) + i sin(1)]} − 1
2i

{
e−1 [cos(1) − i sin(1)]

}

=
1
2i

(
e − e−1

)
cos(1) +

1
2
(
e + e−1

)
sin(1).

We can get the same result by using the trigonometric addition formula.

1.7.2 Hyperbolic Functions of z

The following particular combinations of exponentials arise frequently,

cosh z =
1
2
(
ez + e−z

)
, sinh z =

1
2
(
ez − e−z

)
.

They are called hyperbolic cosine (abbreviated cosh) and hyperbolic sine
(abbreviated sinh) . Clearly

cosh(−z) = cosh z, sinh (−z) = − sinh z.

The other hyperbolic functions are defined in a similar way to parallel the
trigonometric functions:

tanh z =
sinh z

cosh z
, coth z =

1
tanh z

,

sec hz =
1

cosh z
, csc hz =

1
sinh z

.

With these definitions, all identities involving hyperbolic functions of real
variable are preserved when the variable is complex. For example,



1.7 Elementary Functions of Complex Variable 49

cosh2 z − sinh2 z =
1
4
(
ez + e−z

)2 − 1
4
(
ez − e−z

)2 = 1,

sinh 2z =
1
2
(
e2z − e−2z

)
=

1
2
(
ez − e−z

) (
ez + e−z

)
= 2 sinh z cosh z.

There is a close relationship between the trigonometric and hyperbolic
functions when the variable is complex. For example,

sin iz =
1
2i

(
ei(iz) − e−i(iz)

)
=

1
2i

(
e−z − ez

)

=
i
2
(
ez − e−z

)
= i sinh z.

Similarly we can show

cos iz = cosh z,

sinh iz = i sin z, cosh iz = cos z.

Furthermore,

sin z = sin(x + iy) = sin x cos iy + cos x sin iy
= sin x cosh y + i cos x sinh y,

cos z = cos x cosh y − i sin x sinh y.

Example 1.7.4. Show that

d
dz

cosh z = sinh z,
d
dz

sinh z = cosh z.

Solution 1.7.4.

d
dz

cosh z =
d
dz

1
2
(
ez + e−z

)
=

1
2
(
ez − e−z

)
= sinh z,

d
dz

sinh z =
d
dz

1
2
(
ez − e−z

)
=

1
2
(
ez + e−z

)
= cosh z.

Example 1.7.5. Evaluate cos(1 + 2i).

Solution 1.7.5.

cos(1 + 2i) = cos 1 cosh 2 − i sin 1 sinh 2
= (0.5403) (3.7622) − i (0.8415) (3.6269) = 2.033 − 3.052i.
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Example 1.7.6. Evaluate cos (π − i) .

Solution 1.7.6. By definition,

cos(π − i) =
1
2

(
ei(π−i) + e−i(π−i)

)
=

1
2
(
eiπ+1 + e−iπ−1

)

=
1
2
(−e − e−1) = − cosh (1) = −1.543.

We get the same result by the expansion,

cos(π − i) = cos π cosh (1) + i sin π sinh (1)
= − cosh (1) = −1.543.

1.7.3 Logarithm and General Power of z

The natural logarithm of z = x + iy is denoted ln z and is defined in a similar
way as in the real variable, namely as the inverse of the exponential function.
However, there is an important difference. A real valued exponential y = ex

is a one to one function, since two different x always produce two different
values of y. Strictly speaking, only one to one function has an inverse, because
only then will each value of y can be the image of exactly one x value. But
the complex exponential ez is a multivalued function, since

ez = ex+iy = ex (cos y + i sin y) .

When y is increased by an integer multiple of 2π, the exponential returns to
its original value. Therefore to define a complex logarithm we have to relax
the one to one restriction. Thus,

w = ln z

is defined for z �= 0 by the relation

ew = z.

If we set

w = u + iv, z = reiθ,

this becomes

ew = eu+iv = eueiv = reiθ.

Since

|ew| =
[
(ew) (ew)∗

]1/2 =
(
eu+iveu−iv

)1/2
= eu,
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|ew| =
[(

reiθ
) (

reiθ
)∗]1/2

=
[(

reiθ
) (

re−iθ
)]1/2

= r,

Therefore

eu = r.

By definition,

u = ln r.

Since ew = z,

eueiv = reiv = reiθ

it follows that:

v = θ.

Thus

w = u + iv = ln r + iθ.

Therefore the rule of logarithm is preserved,

ln z = ln r eiθ = ln r + iθ. (1.20)

Since θ is the polar angle, after it is increased by 2π in the z complex plane,
it comes back to the same point and z will have the same value. However,
the logarithm of z will not return to its original value. Its imaginary part will
increase by 2πi. If the argument of z in a particular interval of 2π is denoted
as θ0, then (1.20) can be written as

ln z = ln r + i(θ0 + 2πn), n = 0,±1,±2, . . . .

By specifying such an interval, we say that we have selected a particular
branch of θ as the principal branch. The value corresponding to n = 0 is
known as the principal value and is commonly denoted as Ln z, that is

Ln z = ln r + iθ0.

The choice of the principal branch is somewhat arbitrary.
Figure 1.10 illustrates two possible branch selections. Figure 1.10a depicts

the branch that selects the value of the argument of z from the interval −π <
θ ≤ π. The values in this branch are most commonly used in complex algebra
computer codes. The argument θ is inherently discontinuous, jumping by 2π
as z crosses the negative x-axis. This line of discontinuities is known as the
branch cut. The cut ends at the origin, which is known as the branch point.
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y

x

(b)

zo = −3 −4izo = −3 −4i

y

x

(a)

−0.705π

1.295π

4

3

2

1

4

3

2

1

−4 −3 −2 −1 −4 −3 −2 −1−1

−2

−3

−4

−1

−2

−3

−4

1 2 3 4 1 2 3 4

Fig. 1.10. Two possible branch selections. (a) Branch cut on the negative x-axis.
The point −3 − 4i has argument −0.705π. (b) Branch cut on the positive x-axis.
The point −3 − 4i has argument 1.295π

With the branch cut along the negative real axis, the principal value of
the logarithm of z0 = −3 − 4i is given by ln(|z0| eiθ) where θ = tan−1 4

3 − π,
thus the principal value is

ln(−3 − 4i) = ln 5eiθ = ln 5 + i(tan−1 4
3
− π) = 1.609 − 0.705πi.

However, if we select the interval 0 ≤ θ < 2π as the principal branch, then
the branch cut is along the positive x-axis, as shown in Fig. 1.10b. In this case
the principal value of the logarithm of z0 is

ln(−3 − 4i) = ln 5 + i(tan1 4
3

+ π) = 1.609 + 1.295πi.

Unless otherwise specified, we shall use the interval 0 ≤ θ < 2π as the principal
branch.

It can be easily checked that the familiar laws of logarithm which hold for
real variables can be established for complex variables as well. For example,

ln z1z2 = ln r1 eiθ1r2 eiθ2 = ln r1r2 + i (θ1 + θ2)

= ln r1 + ln r2 + iθ1 + iθ2

= (ln r1 + iθ1) + (ln r2 + iθ2) = ln z1 + ln z2.

This relation is always true as long as infinitely many values of logarithms
are taken into consideration. However, if only the principal values are taken,
then the sum of the two principal values ln z1 + ln z2 may fall outside of the
principal branch of ln(z1z2).
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Example 1.7.7. Find all values of ln 2.

Solution 1.7.7. The real number 2 is also the complex number 2 + i0, and

2 + i0 = 2ein2π, n = 0,±1,±2, . . . .

Thus

ln 2 = Ln 2 + n2πi
= 0.693 + n2πi, n = 0,±1,±2, . . . .

Even positive real numbers now have infinitely many logarithms. Only one of
them is real, corresponding to n = 0 principal value.

Example 1.7.8. Find all values of ln(−1).

Solution 1.7.8.

ln (−1) = ln ei(π±2πn) = i (π + 2πn) , n = 0,±1,±2, . . . .

The principal value is iπ for n = 0.

Since ln a = x means ex = a, so long as the variable x is real, a is always
positive. Thus, in the domain of real numbers, the logarithm of a negative
number does not exist. Therefore the answer must come from the complex
domain. The situation was still sufficiently confused in the 18th century that
it was possible for so great a mathematician as D’Alembert (1717–1783) to
think ln(−x) = ln(x), so ln(−1) = ln(1) = 0. His reason was the follow-
ing. Since (−x) (−x) = x2, therefore ln [(−x) (−x)] = lnx2 = 2 ln x. But
ln [(−x) (−x)] = ln (−x) + ln (−x) = 2 ln (−x) , so we get ln (−x) = lnx. This
is incorrect, because it applies the rule of ordinary algebra to the domain of
complex numbers. It was Euler who pointed out that ln(−1) must be equal to
the complex number iπ, which is in accordance with his equation eiπ = −1.

Example 1.7.9. Find the principal value of ln(1 + i).

Solution 1.7.9. Since

1 + i =
√

2eiπ/4,

ln(1 + i) = ln
√

2 +
π

4
i = 0.3466 + 0.7854i.
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We are now in a position to consider the general power of a complex
number. First let us see how to find ii. Since

i = ei( π
2 +2πn),

ii =
[
ei( π

2 +2πn)
]i

= e−( π
2 +2πn), n = 0,±1,±2, . . . .

We get infinitely many values – all of them real. In a literal sense, Euler
showed that imaginary power of an imaginary number can be real.

In general, since a = eln a, so

ab =
(
eln a

)b
= eb ln a.

In this formula, both a and b can be complex numbers. For example, to find
(1 + i)1−i

, first we write

(1 + i)1−i =
[
eln(1+i)

]1−i

= e(1−i) ln(1+i).

Since

ln(1 + i) = ln
√

2ei( π
4 +2πn) = ln

√
2 + i(

π

4
+ 2πn), n = 0,±1,±2, . . . ,

now

(1 + i)1−i = e(ln
√

2+i(π
4 +2πn)−i ln

√
2+(π

4 +2πn))

= eln
√

2+ π
4 +2πnei(π

4 +2πn−ln
√

2).

Using

ei2πn = 1, eln
√

2 =
√

2,

we have

(1 + i)1−i =
√

2e
π
4 +2πn

[
cos

(π

4
− ln

√
2
)

+ i sin
(π

4
− ln

√
2
)]

.

Using a calculator, this expression is found to be

(1 + i)1−i = e2πn (2.808 + 1.318i) , n = 0,±1,±2, . . . .

Example 1.7.10. Find all values of i1/2.

Solution 1.7.10.

i1/2 =
[
ei(π

2 +2πn)
]1/2

= eiπ/4einπ, n = 0,±1,±2, . . . .

Since einπ = 1 for n even, and einπ = −1 for n odd, thus

i1/2 = ±eiπ/4 = ±
(
cos

π

4
+ i sin

π

4

)
= ±

√
2

2
(1 + i) .

Notice that although n can be any of the infinitely many integers, we find
only two values for i1/2 as we should, for it is the square root of i.
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Example 1.7.11. Find the principal value of 2i.

Solution 1.7.11.

2i =
[
eln 2

]i
= ei ln 2 = cos (ln 2) + i sin (ln 2)

= 0.769 + 0.639i.

Example 1.7.12. Find the principal value of (1 + i)2−i
.

Solution 1.7.12.

(1 + i)2−i = exp [(2 − i) ln (1 + i)] .

The principal value of ln(1 + i) is

ln (1 + i) = ln
√

2eiπ/4 = ln
√

2 + i
π

4
.

Therefore

(1 + i)2−i = exp
[
(2 − i)

(
ln
√

2 + i
π

4

)]

= exp
(
2 ln

√
2 +

π

4

)
exp

[
i
(π

2
− ln

√
2
)]

= 2eπ/4
[
cos

(π

2
− ln

√
2
)

+ i sin
(π

2
− ln

√
2
)]

= 4.3866 (sin 0.3466 + i cos 0.3466) = 1.490 + 4.126i.

1.7.4 Inverse Trigonometric and Hyperbolic Functions

Starting from their definitions, we can work out sensible expressions for the
inverse of trigonometric and inverse hyperbolic functions. For example, to find

w = sin−1 z,

we write this as

z = sin w =
1
2i

(
eiw − e−iw

)
.

Multiplying eiw, we have

zeiw =
1
2i

(
ei2w − 1

)
.
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Rearranging, we get a quadratic equation in eiw,

(
eiw

)2 − 2izeiw − 1 = 0.

The solution of this equation is

eiw =
1
2

(
2iz ±

√
−4z2 + 4

)
= iz ±

(
1 − z2

)1/2
.

Taking logarithm of both sides

iw = ln
[
iz ±

(
1 − z2

)1/2
]
.

Therefore

w = sin−1 z = −i ln
[
iz ±

(
1 − z2

)1/2
]
.

Because of logarithm, this expression is multivalued. Even in the principal
branch, sin−1 z has two values for z �= 1 because of the square roots.

Similarly, we can show

cos−1 z = −i ln
[
z ±

(
z2 − 1

)1/2
]
,

tan−1 z =
i
2

ln
i + z

i − z
,

sinh−1 z = ln
[
z ±

(
1 + z2

)1/2
]
,

cosh−1 z = ln
[
z ±

(
z2 − 1

)1/2
]
,

tanh−1 z =
1
2

ln
1 + z

1 − z
.

Example 1.7.13. Evaluate cos−1 2.

Solution 1.7.13. Let w = cos−1 2, so cos w = 2. It follows:

1
2
(
eiw + e−iw

)
= 2

Multiplying eiw, we have a quadratic equation in eiw

(eiw)2 + 1 = 4eiw.

Solving for eiw

eiw =
1
2
(4 ±

√
16 − 4) = 2 ±

√
3.
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Thus

iw = ln
(
2 ±

√
3
)

.

Therefore

cos−1 2 = w = −i ln
(
2 ±

√
3
)

.

Now

ln(2 +
√

3) = 1.317, ln(2 −
√

3) = −1.317.

Note only in this particular case, − ln(2 +
√

3) = ln(2 −
√

3), since

− ln(2 +
√

3) = ln(2 +
√

3)−1 = ln
1

2 +
√

3
= ln

2 −
√

3
22 − (

√
3)2

= ln(2 −
√

3).

Thus the principal values of ln
(
2 ±

√
3
)

= ±1.317. Therefore

cos−1 2 = ∓1.317i + 2πn, n = 0,±1,±2, . . . .

In real variable domain, the maximum value of cosine is one. Therefore we
expect cos−1 2 to be complex numbers. Also note that ± solutions may be
expected since cos (−z) = cos (z) .

Example 1.7.14. Show that

tan−1 z =
i
2
[ln(i + z) − ln (i − z)].

Solution 1.7.14. Let w = tan−1 z, so

z = tanw =
sin w

cos w
=

eiw − e−iw

i (eiw + e−iw)
,

iz
(
eiw + e−iw

)
= eiw − e−iw,

(iz − 1) eiw + (iz + 1) e−iw = 0.

Multiplying eiw and rearranging, we have

ei2w =
1 + iz
1 − iz

.
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Taking logarithm on both sides

i 2w = ln
1 + iz
1 − iz

= ln
i − z

i + z
.

Thus

w =
1
2i

ln
i − z

i + z
= − i

2
ln

i − z

i + z
=

i
2

ln
i + z

i − z
,

tan−1 z = w =
i
2
[ln(i + z) − ln (i − z)].

Exercises

1. Approximate
√

2 as 1.414 and use the table of successive square root of
10 to compute 10

√
2.

Ans. 25.94

2. Use the table of successive square root of 10 to compute log 2.

Ans. 0.3010

3. How long will it take for a sum of money to double if invested at 20%
interest rate compounded annually? (This question was posted in a clay
tablet dated 1700 BC now at Louvre.)
Hint: Solve (1.2)x = 2.

Ans. 3.8 years, or 3 years 8 months and 18 days.

4. Suppose the annual interest rate is fixed at 5%. Banks are competing
by offering compound interests with increasing number of conversions,
monthly, daily, hourly, and so on. With a principal of $100, what is the
maximum amount of money one can get after 1 year?
Ans. 100 e0.05 = 105.13

5. Simplify (express it in the form of a + ib)

cos 2α + i sin 2α

cos α + i sin α
.

Ans. cos α + i sin α.

6. Simplify (express it in the form of a + ib)

(cos θ − i sin θ)2

(cos θ + i sin θ)3
.

Ans. cos 5θ − i sin 5θ.
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7. Find the roots of

x4 + 1 = 0.

Ans.
√

2
2 + i

√
2

2 ,−
√

2
2 + i

√
2

2 ,
√

2
2 − i

√
2

2 ,−
√

2
2 − i

√
2

2 .

8. Find all the distinct fourth roots of 8 − i8
√

3.

Ans. 2
(
cos 5π

12 + i sin 5π
12

)
, 2

(
cos 11π

12 + i sin 11π
12

)
,

2
(
cos 17π

12 + i sin 17π
12

)
, 2

(
cos 23π

12 + i sin 23π
12

)
.

9. Find all the values of the following in the form of a + ib.

(a) i2/3, (b) (−1)1/3
, (c) (3 + 4i)4 .

Ans. (a) − 1, (1 ± i
√

3)/2, (b) − 1, (1 ± i
√

3)/2, (c) −527 − 336i.

10. Use complex numbers to show

cos 3θ = 4 cos3 θ − 3 cos θ,

sin 3θ = 3 sin θ − 4 sin3 θ.

11. Use complex numbers to show

cos2 θ =
1
2

(cos 2θ + 1) ,

sin2 θ =
1
2

(1 − cos 2θ) .

12. Show that
n∑

k=0

cos kθ =
1
2

+
sin

[(
n + 1

2

)
θ
]

2 sin 1
2θ

,

n∑
k=0

sin kθ =
1
2

cot
1
2
θ −

cos
[(

n + 1
2

)
θ
]

2 sin 1
2θ

.

13. Find the location of the center and the radius of the following circle:∣∣∣∣z − 1
z + 1

∣∣∣∣ = 3.

Ans. (− 5
4 , 0) r = 3

4 .

14. Use complex numbers to show that the diagonals of a parallelogram bisect
each other.

15. Use complex numbers to show that the line segment joining the two mid-
points of two sides of any triangle is parallel to the third side and half its
length.
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16. Use complex numbers to prove that medians of a triangle intersect at
a point two-thirds of the way from any vertex to the midpoint of the
opposite side.

17. Let ABC be an isosceles triangle such that AB = AC. Use complex num-
bers to show that the line from A to the midpoint of BC is perpendicular
to BC.

18. Express the principal value of the following in the form of a + ib :

(a) exp
(

iπ
4

+
ln 2
2

)
, (b) cos(π − 2i ln 3), (c) ln(−i).

Ans. (a) 1 + i, (b) − 41
9 , (c) −iπ

2 or i3π
2 .

19. Express the principal value of the following in the form of a + ib :

(a) i3+i, (b) (2i)1+i, (c)

(
1 + i

√
3

2

)i

.

Ans. (a) −0.20788i, (b) −0.2657 + 0.3189i, (c) 0.35092.

20. Find all the values of the following expressions:

(a) sin
(

i ln
1 − i
1 + i

)
, (b) tan−1(2i), (c) cosh−1

(
1
2

)

Ans. (a) 1, (b) 1+2n
2 π + i12 ln 3, (c) i

(
±π

3 + 2nπ
)
.

21. With z = x + iy, verify the following

sin z = sinx cosh y + i cos x sinh y,

cos z = cos x cosh y − i sin x sinh y,

sinh z = sinhx cos y + i cosh x sin y,

cosh z = cosh x cos y + i sinh x sin y.

22. Show that

sin 2z = 2 sin z cos z,

cos 2z = cos2 z − sin2 z,

cosh2 z − sinh2 z = 1.

23. Show that

cos−1 z = −i ln
[
z +

(
z2 − 1

)1/2
]
,

sinh−1 z = ln
[
z +

(
1 + z2

)1/2
]
.
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Complex Functions

Complex numbers were first used to simplify calculations. In the course of
time, it became clear that the theory of complex functions is a very effective
tool in engineering and sciences. Often the most elegant solutions of important
problems in heat conduction, elasticity, electrostatics, and hydrodynamics are
produced by complex function methods. In modern physics, complex variables
have even become an intrinsic part of the physical theory. For example, it is
a fundamental postulate in quantum mechanics that wave functions reside in
a complex vector space.

In engineering and sciences the ultimate test is in the laboratory. When
you make a measurement, the result you get is, of course, a real number. But
the theoretical formulation of the problem often leads us into the realm of
complex numbers. It is almost a miracle that, if the theory is correct, further
mathematical analysis with complex functions will always lead us to an answer
that is real. Therefore the theory of complex functions is an essential tool in
modern sciences.

Complex functions to which the concepts and structure of calculus can be
applied are called analytic functions. It is the analytic functions that dominate
complex analysis. Many interesting properties and applications of analytic
functions are studied in this chapter.

2.1 Analytic Functions

The theory of analytic functions is an extension of the differential and integral
calculus to realms of complex variables. However, the notion of a derivative
of a complex function is far more subtle than that of a real function. This
is because of the intrinsically two-dimensional nature of the complex num-
bers. The success made in analyzing this question by Cauchy and Riemann
left a deep imprint on the whole of mathematics. It also had a far reaching
consequences in several branches of mathematical physics.
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2.1.1 Complex Function as Mapping Operation

From the complex variable z = x + iy, one can construct complex functions
f(z). Formally we can define functions of complex variables in exactly the same
way as functions of real variables are defined, except allowing the constants
and variables to assume complex values.

Let w = f(z) denote some functional relationship connecting w and z.
These functions may then be resolved into real and imaginary parts

w = f(x + iy) = u(x, y) + iv(x, y)

in which both u(x, y) and v(x, y) are real functions. For example, if

w = f(z) = z2,

then

w = (x + iy)2 = (x2 − y2) + i2xy.

So the real and imaginary parts of w (u, v) are, respectively,

u(x, y) = (x2 − y2), (2.1)
v(x, y) = 2xy. (2.2)

Since two dimensions are needed to specify the independent variable z(x, y)
and another two dimensions to specify the dependent variable w (u, v), a com-
plex function cannot be represented by a single two- or three-dimensional plot.
The functional relationship w = f(z) is perhaps best pictured as a mapping, or
a transformation, operation. A set of points (x, y), in the z-plane (z = x+ iy)
are mapped into another set of points (u, v), in the w-plane (w = u + iv). If
we allow the variable x and y to trace some curve in the z-plane, this will
force the variable u and v to trace an image curve in the w-plane.

In the above example, if the point (x, y) in the z-plane moves along the
hyperbola x2 − y2 = c (where c is a constant), the image point given by (2.1)
will move along the curve u = c, that is a vertical line in the w-plane. Similarly,
if the point moves along the hyperbola 2xy = k, the image point given by
(2.2) will trace the horizontal line v = k in the w-plane. The hyperbolas
x2−y2 = c and 2xy = k form two families of curves in the z-plane, each curve
corresponding to a given value of the constant c or k. Their image curves form
a rectangular grid of horizontal and vertical lines in the w-plane, as shown in
Fig. 2.1.

2.1.2 Differentiation of a Complex Function

To discuss the differentiation of a complex function f (z) at certain point z0,
the function must be defined in some neighborhood of the point z0. By the
neighborhood we mean the set of all points in a sufficiently small circular
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X

Y

U

V

z-plane w-plane

Fig. 2.1. The function w = z2 maps hyperbolas in the z-plane onto horizontal and
vertical lines in the w-plane

region with center at z0. If z0 = x0 + iy0 and z = z0 + ∆z are two nearby
points in the z-plane with ∆z = ∆x + i∆y, the corresponding image points
in the w-plane are w0 = u0 + iv0 and w = w0 + ∆w, where w0 = f (z0) and
w = f (z) = f (z0 + ∆z) . The change ∆w caused by the increment ∆z in z0 is

∆w = f (z0 + ∆z) − f (z0) .

These functional relationships are shown in Fig. 2.2.
Now we define the derivative f ′ (z) = dw

dz by the usual formula

f ′ (z0) = lim
∆z→0

∆w

∆z
= lim

∆z→0

f (z0 + ∆z) − f (z0)
∆z

. (2.3)

It is most important to note that in this formula z = z0 + ∆z can assume
any position in the neighborhood of z0 and ∆z can approach zero along any
of the infinitely many paths joining z with z0. Hence if the derivative is to
have a unique value, we must demand that the limit be independent of the
way in which ∆z is made to approach zero. This restriction greatly narrows
down the class of complex functions that possess derivatives.

x u

vy

∆
∆w

∆y

∆

∆u
∆v

x

z

z = z0+∆z

z0

w0

w0 = f(z0)

w = f(z)
w = w0+∆w

Fig. 2.2. The neighborhood of z0 in the z-plane is mapped onto the neighborhood
of w0 in the w-plane by the function w = f (z)
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For example, if f(z) = |z|2 , then w = zz∗, and

∆w

∆z
=

|z + ∆z|2 − |z|2

∆z
=

(z + ∆z) (z∗ + ∆z∗) − zz∗

∆z

= z∗ + ∆z∗ +
z∆z∗

∆z
= x − iy + ∆x − i∆y + (x + iy)

∆x − i∆y

∆x + i∆y
.

For the derivative f ′(z) to exist, the limit of this quotient must be the same
no matter how ∆z approaches zero. Since ∆z = ∆x + i∆y, ∆z → 0 means,
of course, both ∆x → 0 and ∆y → 0. However, the way they go to zero may
make a difference. If we let ∆z approach zero along path I in Fig. 2.3, so that
first ∆y → 0 and then ∆x → 0, we get

lim
∆z→0

∆w

∆z
= lim

∆x→0

{
lim

∆y→0

[
x − iy + ∆x − i∆y + (x + iy)

∆x − i∆y

∆x + i∆y

]}

= 2x.

But if we take path II and first allow ∆x → 0 and then ∆y → 0, we obtain

lim
∆z→0

∆w

∆z
= lim

∆y→0

{
lim

∆x→0

[
x − iy + ∆x − i∆y + (x + iy)

∆x − i∆y

∆x + i∆y

]}

= −2iy.

These limits are different, and hence w = |z|2 has no derivative except possibly
at z = 0.

On the other hand, if we consider w = z2, then

w + ∆w = (z + ∆z)2 = z2 + 2z ∆z + (∆z)2 ,

so that

∆w

∆z
=

2z ∆z + (∆z)2

∆z
= 2z + ∆z.

z

z+∆z

x

y

I

II

∆y

∆x

Fig. 2.3. To be differentiable at z, the same limit must be obtained no matter which
path ∆z is taken to approach zero
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The limit of this quotient as ∆z → 0 is invariably 2z, whatever may be
the path along which ∆z approaches zero. Therefore the derivative exists
everywhere and

dw

dz
= lim

∆z→0

∆w

∆z
= lim

∆z→0
(2z + ∆z) = 2z.

It is clear that not every combination of u(x, y) + iv(x, y) can be differ-
entiated with respect to z. If a complex function f(z) whose derivative f ′(z)
exists at z0 and at every point in the neighborhood of z0, then the function
is said to be analytic at z0. An analytic function is a function that is analytic
in some region (domain) of the complex plane. A function that is analytic
in the whole complex plane is called an entire function. A point at which an
analytic function ceases to have a derivative is called a singular point.

2.1.3 Cauchy–Riemann Conditions

We will now investigate the conditions that a complex function must satisfy
in order to be differentiable.

It follows from the definition:

f (z) = f (x + iy) = u (x, y) + iv (x, y) ,

that

f (z + ∆z) = f ((x + ∆x) + i(y + ∆y))
= u (x + ∆x, y + ∆y) + iv (x + ∆x, y + ∆y) .

Since w = f (z) and w + ∆w = f (z + ∆z) , so

∆w = f (z + ∆z) − f (z) = ∆u + i∆v,

where

∆u = u (x + ∆x, y + ∆y) − u (x, y) ,

∆v = v (x + ∆x, y + ∆y) − v (x, y) .

We can add 0 = −u(x, y + ∆y) + u(x, y + ∆y) to ∆u without changing its
value

∆u = u(x + ∆x, y + ∆y) − u(x, y)
= u(x + ∆x, y + ∆y) − u(x, y + ∆y) + u(x, y + ∆y) − u(x, y).

Recall the definition of partial derivative

lim
∆x→0

1
∆x

[u(x + ∆x, y + ∆y) − u(x, y + ∆y)] =
∂u

∂x
.
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In this expression only x variable is increased by ∆x and y variable remains
the same. If it is implicitly understood that the symbol ∆x carries the meaning
that it is approaching zero as a limit, then we can move it to the right-hand
side

u(x + ∆x, y + ∆y) − u(x, y + ∆y) =
∂u

∂x
∆x.

Similarly, in the following expression only y variable is increased by ∆y, so:

u(x, y + ∆y) − u(x, y) =
∂u

∂y
∆y.

Therefore
∆u =

∂u

∂x
∆x +

∂u

∂y
∆y. (2.4)

Likewise,

∆v =
∂v

∂x
∆x +

∂v

∂y
∆y.

Hence the derivative given by (2.3) can be written as

dw

dz
= lim

∆z→0

∆u + i∆v

∆x + i∆y
= lim

∆z→0

(∂u
∂x + i ∂v

∂x )∆x + (∂u
∂y + i∂v

∂y )∆y

∆x + i∆y
.

Dividing both the numerator and denominator by ∆x, we have

dw

dz
= lim

∆z→0

(∂u
∂x + i ∂v

∂x ) + (∂u
∂y + i∂v

∂y )∆y
∆x

1 + i∆y
∆x

= lim
∆z→0

(∂u
∂x + i ∂v

∂x )

1 + i∆y
∆x

[
1 +

(∂u
∂y + i∂v

∂y )

(∂u
∂x + i ∂v

∂x )
∆y

∆x

]
.

There are infinitely many paths that ∆z can approach zero, each path is
characterized by its slope ∆y

∆x as shown in Fig. 2.4. For all these paths to give
the same limit, ∆y

∆x must be eliminated from this expression. This will be the
case if and only if

(∂u
∂y + i∂v

∂y )

(∂u
∂x + i ∂v

∂x )
= i, (2.5)

since then the expression becomes

dw

dz
= lim

∆z→0

(∂u
∂x + i ∂v

∂x )

1 + i∆y
∆x

[
1 + i

∆y

∆x

]
=

∂u

∂x
+ i

∂v

∂x
, (2.6)

which is independent of ∆y
∆x .
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z

z+∆z

x

y

Fig. 2.4. Infinitely many paths ∆z can approach zero, each characterized by its
slope

From (2.5), we have

∂u

∂y
+ i

∂v

∂y
= i

∂u

∂x
− ∂v

∂x
.

Equating the real and imaginary parts, we arrive at the following pair of
equations:

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

These two equations are extremely important and are known as Cauchy–
Riemann equations.

With the Cauchy–Riemann equations, the derivative shown in (2.6) can
be written as

dw

dz
=

∂v

∂y
− i

∂u

∂y
=

∂u

i∂y
+ i

∂v

i∂y
. (2.7)

The expression in (2.6) is the derivative with ∆z approaching zero along
the real x-axis and the expression in (2.7) is the derivative with ∆z approach-
ing zero along the imaginary y-axis. For an analytic function, they must be
the same.

Thus if u(x, y), v(x, y) are continuous and satisfy the Cauchy–Riemann
equations in some region of the complex plane, then f(z) = u(x, y) + iv(x, y)
is an analytic function in that region. In other words, Cauchy–Riemann
equations are necessary and sufficient conditions for the function to be differ-
entiable.

2.1.4 Cauchy–Riemann Equations in Polar Coordinates

Often the function f (z) is expressed in polar coordinates, so it is convenient
to express the Cauchy–Riemann equations in polar form.
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Since x = r cos θ and y = r sin θ, so by chain rule

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
=

∂u

∂x
cos θ +

∂u

∂y
sin θ,

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ
= −∂u

∂x
r sin θ +

∂u

∂y
r cos θ.

Similarly,

∂v

∂r
=

∂v

∂x

∂x

∂r
+

∂v

∂y

∂y

∂r
=

∂v

∂x
cos θ +

∂v

∂y
sin θ,

∂v

∂θ
=

∂v

∂x

∂x

∂θ
+

∂v

∂y

∂y

∂θ
= −∂v

∂x
r sin θ +

∂v

∂y
r cos θ.

With the Cauchy–Riemann conditions

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

we have

∂v

∂r
= −∂u

∂y
cos θ +

∂u

∂x
sin θ,

∂v

∂θ
=

∂u

∂y
r sin θ +

∂u

∂x
r cos θ.

Thus

∂u

∂r
=

1
r

∂v

∂θ
,

1
r

∂u

∂θ
= −∂v

∂r

are the Cauchy–Riemann equations in the polar form.
It is instructive to derive these equations from the definition of the deriv-

ative

f ′(z) = lim
∆z→0

∆w

∆z
.

In the polar coordinates, z = r eiθ,

∆w = ∆u (r, θ) + i∆v (r, θ) ,

∆z = (r + ∆r) ei(θ+∆θ) − r eiθ.

For ∆z → 0, we can first let ∆θ → 0 and obtain

∆z = (r + ∆r) eiθ − r eiθ = ∆r eiθ,

and then let ∆r → 0, so

f ′(z) = lim
∆r→0

∆u (r, θ) + i∆v (r, θ)
∆r eiθ

=
1
eiθ

(
∂u

∂r
+ i

∂v

∂r

)
.
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But if we let ∆r → 0 first, we get

∆z = r ei(θ+∆θ) − r eiθ.

Since

ei(θ+∆θ) − eiθ =
deiθ

dθ
∆θ = ieiθ∆θ,

so ∆z can be written as

∆z = r ieiθ∆θ,

and when we take the limit ∆θ → 0, the derivative becomes

f ′(z) = lim
∆θ→0

∆u (r, θ) + i∆v (r, θ)
r ieiθ∆θ

=
1

i r eiθ

(
∂u

∂θ
+ i

∂v

∂θ

)
.

For an analytic function, the two expressions of derivative must be the same,

1
eiθ

(
∂u

∂r
+ i

∂v

∂r

)
=

1
i r eiθ

(
∂u

∂θ
+ i

∂v

∂θ

)
.

Therefore

∂u

∂r
=

1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
,

which is what we obtained by direct transformation.
Furthermore, the derivative is given by either of the equivalent expressions

f ′ (z) = e−iθ

(
∂u

∂r
+ i

∂v

∂r

)

=
1
i r

e−iθ

(
∂u

∂θ
+ i

∂v

∂θ

)
.

2.1.5 Analytic Function as a Function of z Alone

In any analytic function w = u(x, y) + iv(x, y), the variables x, y can be
replaced by their equivalents in terms of z, z∗:

x =
1
2

(z + z∗) and y =
1
2i

(z − z∗) ,

since the complex variable z = x + iy and z∗ = x − iy. Thus an analytic
function can be regarded formally as a function of z and z∗. To show that w
depends only on z and does not involve z∗, it is sufficient to compute ∂w

∂z∗ and
verify that it is identically zero. Now by chain rule
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∂w

∂z∗
=

∂(u + iv)
∂z∗

=
∂u

∂z∗
+ i

∂v

∂z∗

=
(

∂u

∂x

∂x

∂z∗
+

∂u

∂y

∂y

∂z∗

)
+ i

(
∂v

∂x

∂x

∂z∗
+

∂v

∂y

∂y

∂z∗

)
.

Since, from the equations expressing x and y in terms of z and z∗, we have

∂x

∂z∗
=

1
2

and
∂y

∂z∗
=

i
2
,

we can write

∂w

∂z∗
=

(
1
2

∂u

∂x
+

i
2

∂u

∂y

)
+ i

(
1
2

∂v

∂x
+

i
2

∂v

∂y

)

=
1
2

(
∂u

∂x
− ∂v

∂y

)
+

i
2

(
∂u

∂y
+

∂v

∂x

)
.

Since w, by hypothesis, is an analytic function, u and v satisfy the Cauchy–
Riemann conditions, therefore each of the quantities in parentheses in the last
expression vanishes. Thus

∂w

∂z∗
= 0. (2.8)

Hence, w is independent of z∗, that is, it depends on x and y only through
the combination x + iy.

Therefore if w is an analytic function, then it can be written as

w = f(z),

and its derivative is defined as

dw

dz
= lim

∆z→0

f(z + ∆z) − f(z)
∆z

.

This definition is formally identical with that for the derivatives of a function
of a real variable. Since the general theory of limits is phrased in terms of
absolute values, so if it is valid for real variables, it will also be valid for
complex variables. Hence formulas in real variables will have counterparts in
complex variables. For example, formulas such as

d (w1 ± w2)
dz

=
dw1

dz
± dw2

dz
,

d (w1w2)
dz

= w1
dw2

dz
+ w2

dw1

dz
,

d (w1/w2)
dz

=
w2(dw1/dz) − w1(dw2/dz)

w2
2

, w2 �= 0,
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d (wn)
dz

= nwn−1 dw

dz

are all valid as long as w1, w2, and w are analytic functions.
Specifically, any polynomial in z

w (z) = anzn + an−1z
n−1 + · · · + a1z + a0

is analytic in the whole complex plane and therefore is an entire function. Its
derivative is

w′ (z) = nanzn−1 + (n − 1)an−1z
n−2 + · · · + a1.

Consequently any rational function of z (a polynomial over another polyno-
mial) is analytic at every point for which its denominator is not zero. At
the zeros of the denominator, the function blows up and is not differentiable.
Therefore the zeros of the denominator are the singular points of the function.

In fact we can take (2.8) as an alternative statement of the differentiability
condition. Thus, the elementary functions defined in the previous chapter are
all analytic functions, (some with singular points), since they are functions
of z alone. It can be easily shown that they satisfy the Cauchy–Riemann
conditions.

Example 2.1.1. Show that the real part u and the imaginary part v of w = z2

satisfy the Cauchy–Riemann equations. Find the derivative of w through the
partial derivatives of u and v.

Solution 2.1.1. Since

w = z2 = (x + iy)2 =
(
x2 − y2

)
+ i2xy,

so the real and imaginary parts are

u (x, y) = x2 − y2, v (x, y) = 2xy.

Therefore

∂u

∂x
= 2x =

∂v

∂y
,

∂u

∂y
= −2y = −∂v

∂x
.

Thus the Cauch–Riemann equations are satisfied. It is differentiable and

dw

dz
=

∂u

∂x
+ i

∂v

∂x
= 2x + i2y = 2z

which is what we found before regarding z as a single variable.
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Example 2.1.2. Show that the real part u and the imaginary part v of f (z) =
ez satisfy the Cauchy–Riemann equations. Find the derivative of f (z) through
the partial derivatives of u and v.

Solution 2.1.2. Since

ez = ex+iy = ex (cos y + i sin y)

the real and imaginary parts are, respectively,

u = ex cos y and v = ex sin y.

It follows that:

∂u

∂x
= ex cos y =

∂v

∂y
,

∂u

∂y
= −ex sin y = −∂v

∂x
.

So the Cauchy–Riemann equations are satisfied, and

f ′ (z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez,

which is what we expect by regarding z as a single variable.

Example 2.1.3. Show that the real part u and the imaginary part v of ln z
satisfy the Cauchy–Riemann equations, and find d

dz ln z through the partial
derivatives of u and v. (a) use rectangular coordinates, (b) use polar coordi-
nates.

Solution 2.1.3. (a) With rectangular coordinates, z = x + iy,

ln z = u (x, y) + iv (x, y) = ln
(
x2 + y2

)1/2
+ i(tan−1 y

x
+ 2nπ).

So

u = ln
(
x2 + y2

)1/2
, v = (tan−1 y

x
+ 2nπ),

∂u

∂x
=

1
2

2x

(x2 + y2)
=

x

(x2 + y2)
,

∂u

∂y
=

1
2

2y

(x2 + y2)
=

y

(x2 + y2)
,

∂v

∂x
=

−y/x2

1 + (y/x)2
= − y

(x2 + y2)
,

∂v

∂y
=

1/x

1 + (y/x)2
=

x

(x2 + y2)
.
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Therefore

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

The Cauchy–Riemann equations are satisfied, and

d
dz

ln z =
∂u

∂x
+ i

∂v

∂x
=

x

(x2 + y2)
− i

y

(x2 + y2)

=
x − iy

(x2 + y2)
=

x − iy
(x + iy) (x − iy)

=
1

(x + iy)
=

1
z
.

(b) With polar coordinates, z = reiθ,

ln z = u (r, θ) + iv (r, θ) = ln r + i (θ + 2nπ) .

u = ln r, v = θ + 2nπ,

∂u

∂r
=

1
r
,

∂v

∂r
= 0,

∂u

∂θ
= 0,

∂v

∂θ
= 1.

Therefore the Cauchy–Riemann conditions in polar coordinates

∂u

∂r
=

1
r

=
1
r

∂v

∂θ
,

1
r

∂u

∂θ
= 0 = −∂v

∂r
,

are satisfied. The derivative is given by

d
dz

ln z = e−iθ

(
∂u

∂r
+ i

∂v

∂r

)
= e−iθ 1

r
=

1
r eiθ

=
1
z
,

as expected.

Example 2.1.4. Show that the real part u and the imaginary part v of zn

satisfy the Cauchy–Riemann equations, and find d
dz zn through the partial

derivatives of u and v.

Solution 2.1.4. For this problem, it is much easier to work with polar coor-
dinates with z = reiθ,

zn = u (r, θ) + iv (r, θ) = rneinθ = rn (cos nθ + i sin nθ) .

u = rn cos nθ, v = rn sinnθ,
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∂u

∂r
= nrn−1 cos nθ,

∂u

∂θ
= −nrn sin nθ,

∂v

∂r
= nrn−1 sinnθ,

∂v

∂θ
= nrn cos nθ.

Therefore the Cauchy–Riemann conditions in polar coordinates

∂u

∂r
= nrn−1 cos nθ =

1
r

∂v

∂θ
,

1
r

∂u

∂θ
= −nrn−1 sin nθ = −∂v

∂r
,

are satisfied and the derivative of zn is given by

d
dz

zn = e−iθ

(
∂u

∂r
+ i

∂v

∂r

)
= e−iθ

(
nrn−1 cos nθ + inrn−1 sinnθ

)

= e−iθnrn−1einθ = nrn−1ei(n−1)θ = n
(
r eiθ

)n−1
= nzn−1,

as one would get regarding z as a single variable.

2.1.6 Analytic Function and Laplace’s Equation

Analytic functions have many interesting important properties and applica-
tions. One of them is that both the real part and imaginary part of an analytic
function satisfy the two-dimensional Laplace equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0.

A great many physical problems lead to Laplace’s equation, naturally we are
very much interested in its solution.

If f(z) = u(x, y) + iv(x, y) is analytic, then u and v satisfy the Cauchy–
Riemann conditions

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Differentiate the first equation with respect to x and the second equation with
respect to y, we have

∂2u

∂x2
=

∂2v

∂x∂y

∂2u

∂y2
= − ∂2v

∂y∂x
.
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Adding the two equations, we get

∂2u

∂x2
+

∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂y∂x
.

As long as they are continuous, the order of differentiation can be interchanged

∂2v

∂x∂y
=

∂2v

∂y∂x
,

therefore it follows that:

∂2u

∂x2
+

∂2u

∂y2
= 0.

This is the Laplace equation for u. Similarly, if we differentiate the first
Cauchy–Riemann equation with respect to y, and the second one with respect
to x, we can show that v also satisfies the Laplace equation

∂2v

∂x2
+

∂2v

∂y2
= 0.

Functions satisfying the Laplace equation are called harmonic functions.
Two functions that satisfy both the Laplace equation and the Cauchy–
Riemann equations are known as conjugate harmonic functions. We have
shown that real and imaginary parts of an analytic function are conjugate
harmonic functions.

A family of two-dimensional curves can be represented by the equation

u(x, y) = k.

For example if u(x, y) = x2 + y2 and k = 4, then this equation represents a
circle centered at the origin with radius 2. By changing the constant k, we
change the radius of the circle. Thus the equation x2 + y2 = k represents a
family of circles all centered at the origin with various radii.

Each of the conjugate harmonic functions forming the real and imaginary
parts of an analytic function f (z) generates a family of curves in the x–y
plane. That is, if f (z) = u (x, y) + iv (x, y) , then u(x, y) = k and v (x, y) = c,
where k and c are constants, are two families of curves.

If ∆u is the difference of u at two nearby points, then by (2.4)

∆u =
∂u

∂x
∆x +

∂u

∂y
∆y.

Now if the two points are on the same curve, that is

u (x + ∆x, y + ∆y) = k, u (x, y) = k,

then

∆u = u (x + ∆x, y + ∆y) − u (x, y) = 0.
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In this case

0 =
∂u

∂x
∆x +

∂u

∂y
∆y.

To find the slope of this curve, we divide both sides of this equation by ∆x

0 =
∂u

∂x
+

∂u

∂y

∆y

∆x
,

therefore the slope of the curve u (x, y) = k is given by

∆y

∆x
|u = −∂u/∂x

∂u/∂y
.

Similarly, the slope of the curve v (x, y) = c is given by

∆y

∆x
|v = −∂v/∂x

∂v/∂y
.

Since u and v satisfy the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

the slope of the curve v (x, y) = c can be written as

∆y

∆x
|v =

∂u/∂y

∂u/∂x
,

which, at any common point, is just the negative reciprocal of the slope of the
curve u (x, y) = k. From the analytic geometry, we know that the two families
of curves are orthogonal (perpendicular) to each other. For example, the real
part of the analytic function z2 is u(x, y) = x2 − y2, the family of curves of
u = k is the hyperbolas asymptotic to the line y = ±x as shown in the z-plane
of Fig. 2.1. The imaginary part of z2 is v(x, y) = 2xy, the family of curves of
v = c is the hyperbolas asymptotic to the x and y axes, also shown in the
z-plane of Fig. 2.1. It is seen that they are indeed orthogonal to each other at
the points of intersections.

These remarkable properties of analytic functions serve as basis for many
important methods used in fluid dynamics, electrostatics and other branches
of physics.

Example 2.1.5. Let f(z) = u(x, y) + i v(x, y) be an analytic function. If
u(x, y) = xy, find v(x, y) and f(z)
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Solution 2.1.5.

∂u

∂x
= y =

∂v

∂y
,

∂u

∂y
= x = −∂v

∂x
.

Method 1: Find f(z) from its derivatives

df

dz
=

∂u

∂x
+ i

∂v

∂x
= y − ix = −i(x + iy) = −iz,

f (z)= − i
1
2
z2 + C.

f(z) = − i
2
(x + iy)2 + C = xy − i

2
(x2 − y2) + C,

v(x, y) = −1
2
(x2 − y2) + C ′.

Method 2: Find v(x, y) first

∂v

∂y
= y =⇒ v(x, y) =

∫
y dy =

1
2
y2 + k(x),

∂v

∂x
= −x =⇒ ∂v

∂x
=

dk(x)
dx

= −x, =⇒ k(x) = −1
2
x2 + C;

v(x, y) =
1
2
y2 − 1

2
x2 + C.

f(z) = xy + i
1
2
(
y2 − x2 + 2C

)
,

x =
1
2
(z + z∗), y =

1
2i

(z − z∗) implies f(z) = −1
2
z2i + C ′.

Example 2.1.6. Let f(z) = u(x, y) + iv(x, y) be an analytic function. If
u(x, y) = ln(x2 + y2), find v(x, y) and f(z)

Solution 2.1.6.

∂u

∂x
=

2x

(x2 + y2)
=

∂v

∂y
,

∂u

∂y
=

2y

(x2 + y2)
= −∂v

∂x
.
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Method 1: Find f(z) first from its derivatives

df

dz
=

∂u

∂x
+ i

∂v

∂x
=

2x

(x2 + y2)
− i

2y

(x2 + y2)

= 2
x − iy

(x2 + y2)
= 2

x − iy
(x − iy) (x + iy)

= 2
1

x + iy
=

2
z
,

f(z) = 2 ln z + C = ln z2 + C,

z = reiθ; r = (x2 + y2)1/2; θ = tan−1 y

x

ln z2 = ln(x2 + y2)ei2θ = ln(x2 + y2) + i2 tan−1 y

x
,

v(x, y) = 2 tan−1 y

x
+ C.

Method 2: Find v(x, y) first

∂v

∂y
=

2x

(x2 + y2)
=⇒ v(x, y) =

∫
2x

(x2 + y2)
dy = 2 tan−1 y

x
+ k(x),

∂v(x, y)
∂x

= 2
(
−y

x2

)
1

(1 + y2/x2)
+

dk(x)
dx

=
−2y

(x2 + y2)
+

dk(x)
dx

,

∂v

∂x
=

−2y

(x2 + y2)
=⇒ dk(x)

dx
= 0, k(x) = C,

v(x, y) = 2 tan−1 y

x
+ C.

f(z) = ln(x2 + y2) + i2 tan−1 y

x
+ iC

= ln(x2 + y2)ei2θ + iC
f(z) = ln z2 + C ′.

Example 2.1.7. Let f(z) = 1
z = u (x, y)+iv (x, y) , (a) show explicitly that the

Cauchy–Riemann equations are satisfied; (b) show explicitly that both real
part and imaginary part satisfy the Laplace equation; (c) Describe the family
of curves u (x, y) = k and v (x, y) = c and sketch them; (d) show explicitly
that the curves u (x, y) = k and v (x, y) = c are perpendicular to each other
at the points they intersect.
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Solution 2.1.7.

f (z) =
1
z

=
1

x + iy
=

1
x + iy

· x − iy
x − iy

=
x − iy
x2 + y2

=
x

x2 + y2
− i

y

x2 + y2
.

Therefore

u (x, y) =
x

x2 + y2
, v (x, y) = − y

x2 + y2
.

(a)

∂u

∂x
=

1
x2 + y2

− 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂u

∂y
=

−2xy

(x2 + y2)2
,

∂v

∂x
=

2xy

(x2 + y2)2
,

∂v

∂y
=

−1
x2 + y2

+
2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Clearly the Cauchy–Riemann equations are satisfied

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

(b)

∂2u

∂x2
=

−2x

(x2 + y2)2
+

(y2 − x2) (−2) (2x)
(x2 + y2)3

=
2x3 − 6xy2

(x2 + y2)3
,

∂2u

∂y2
=

−2x

(x2 + y2)2
+

−2xy (−2) (2y)
(x2 + y2)3

=
−2x3 + 6xy2

(x2 + y2)3
.

Thus the real part satisfies the Laplace equation

∂2u

∂x2
+

∂2u

∂y2
= 0.

Furthermore,

∂2v

∂x2
=

2y

(x2 + y2)2
+

(2xy) (−2) (2x)
(x2 + y2)3

=
2y3 − 6x2y

(x2 + y2)3
,

∂2v

∂y2
=

2y

(x2 + y2)2
+

(−x2 + y2) (−2) (2y)
(x2 + y2)3

=
−2y3 + 6x2y

(x2 + y2)3
.

The imaginary part also satisfies the Laplace equation.
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∂2v

∂x2
+

∂2v

∂y2
= 0.

(c) The equation

u (x, y) =
x

x2 + y2
= k

can be written as

x2 + y2 =
x

k

or

(
x − 1

2k

)2

+ y2 =
1

4k2
,

which is a circle for any given constant k. Therefore u (x, y) = k is a family
of circles centered at

(
1
2k , 0

)
with radius 1

2k . This family of circles is shown in
Fig. 2.5 as solid circles. Similarly

v (x, y) = − y

x2 + y2
= c

can be written as

x2 + y2 = −y

c
or x2 +

(
y +

1
2c

)2

=
1

4c2
.

Therefore v (x, y) = c is a family of circles of radius 1
2c , centered at (0,− 1

2c ).
They are shown as the dotted circles in Fig. 2.5.

X

Y

Fig. 2.5. The families of curves described by the real part and imaginary part of
the function f(z) = 1

z
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(d) On the curve represented by

u (x, y) =
x

x2 + y2
= k,

du =
∂u

∂x
dx +

∂u

∂y
dy = 0,

which is given by

du =
[

1
x2 + y2

− 2x2

(x2 + y2)2

]
dx − 2xy

(x2 + y2)2
dy = 0.

It follows that:

dy

dx
|u =

y2 − x2

2xy
.

Similarly, with

v (x, y) = − y

x2 + y2
= c,

dv =
2xy

(x2 + y2)2
dx −

[
1

x2 + y2
− 2y2

(x2 + y2)2

]
dy = 0

and

dy

dx
|v =

2xy

x2 − y2
.

Since the two slopes are negative reciprocals of each other, the two curves are
perpendicular.

Those who are familiar with electrostatics will recognize that the curves
in Fig. 2.5 are electric field lines and equipotential lines of a line dipole.

2.2 Complex Integration

There are some elegant and powerful theorems regarding integrating analytic
functions around a loop. It is these theorems that make complex integrations
interesting and useful. But before we discuss these theorems, we must define
complex integration.

2.2.1 Line Integral of a Complex Function

When a complex variable z moves in the two-dimensional complex plane, it
traces out a curve. Therefore to define a integral of complex function f(z)
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A

B

z1
z2 z3

zi

zi

zi-1

zi-1

∆zi

∆xi

∆yi

Γ

y

X

Fig. 2.6. The Riemann sum along the contour Γ which is subdivided into n segments

between two points A and B, we must also specify the path (called contour)
along which z moves. The value of the integral will be dependent, in general,
upon the contour. However, we will find, that under certain conditions, the
integral does not depend upon which of the contours is chosen.

We denote the integral of a complex function f(z) = u(x, y) + iv(x, y)
along a contour Γ from point A to point B as

I =
∫ B

A,Γ

f (z) dz.

The integral can be defined in terms of a Riemann sum as in the real variable
integration. The contour is subdivided into n segments as shown in Fig. 2.6.

We form the summation

In =
n∑

i=1

f (ζi) (zi − zi−1) =
n∑

i=1

f (ζi) ∆zi,

where z0 = A, zn = B, and f (ζi) is the function evaluated at a point on Γ
between zi−1 and zi. If In approaches a limit as n → ∞ and |∆zi| → 0, then
we can define the integral as

∫ B

A,Γ

f (z) dz = lim
|∆zi|→0, n→∞

n∑
i=1

f (zi) ∆zi.

Since ∆zi = ∆xi + i∆yi as shown in Fig. 2.6, the integral can be written as
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∫ B

A,Γ

f (z) dz =
∫ B

A,Γ

(u + iv)(dx + idy) =
∫ B

A,Γ

[(u dx − v dy) + i(v dx + u dy)]

=
∫ B

A,Γ

(u dx − v dy) + i
∫ B

A,Γ

(v dx + u dy). (2.9)

Thus the complex contour integral is expressed in terms of two line integrals.

Example 2.2.1. Evaluate the integral I =
∫ B

A
z2dz from zA = 0 to zB = 1 + i,

(a) along the contour Γ1: y = x2, (b) along y-axis from 0 to i, then along the
horizontal line from i to 1 + i, as Γ2 shown in Fig. 2.7.

Γ1

Γ2

C(0,1)
B(1,1)

A(0,0) x

y

Fig. 2.7. Two contours Γ1 and Γ2 from A (zA = 0) to B (zB = 1 + i), Γ1 : along
the curve y = x2, Γ2 : first along y-axis to C (zC = i), then along a horizontal line
to B

Solution 2.2.1.

f (z) = z2 = (x + iy)2 =
(
x2 − y2

)
+ i2xy = u + iv,

∫ B

A,Γ

f (z) dz =
∫ B

A,Γ

[(x2 − y2)dx − 2xy dy] + i
∫ B

A,Γ

[2xy dx + (x2 − y2)dy].

(a) Along Γ1, y = x2, dy = 2xdx,

∫ B

A,Γ1

f (z) dz =
∫ 1

0

[(x2 − x4)dx − 2xx22xdx]+ i
∫ 1

0

[2xx2dx+ (x2 − x4)2xdx]

=
∫ 1

0

(x2 − 5x4)dx + i
∫ 1

0

(4x3 − 2x5)dx = −2
3

+
2
3
i.
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(b) Let zC = i as shown in Fig. 2.7. So
∫ B

A,Γ2

f (z) dz =
∫ C

A,Γ2

f (z) dz +
∫ B

C,Γ2

f (z) dz.

From A to C : x = 0,dx = 0
∫ C

A,Γ2

f (z) dz = i
∫ 1

0

(−y2)dy = −1
3
i.

From C to B : y = 1, dy = 0
∫ B

C,Γ2

f (z) dz =
∫ 1

0

(x2 − 1)dx + i
∫ 1

0

2xdx = −2
3

+ i.

∫ B

A,Γ2

f (z) dz = −1
3
i − 2

3
+ i = −2

3
+

2
3
i.

The integrals along Γ1 and Γ2 are observed to be equal.

2.2.2 Parametric Form of Complex Line Integral

If along the contour Γ , z is expressed parametrically, these line integrals can
be transformed into ordinary integrals in which there is only one independent
variable. For if z = z (t) , where t is a parameter, and A = z (tA), B = z (tB) ,
then ∫ B

A

f (z) dz =
∫ tB

tA

f (z (t))
dz

dt
dt. (2.10)

For instance, on Γ1 of the previous example, y = x2, we can set z (t) =
x (t) + iy (t) with x(t) = t and y(t) = t2. It follows that dz

dt = 1 + i2t, and
∫ B

A,Γ1

z2dz =
∫ 1

0

(
t + it2

)2
(1 + i2t) dt

=
∫ 1

0

[(t2 − 5t4) + i(4t3 − 2t5)]dt = −2
3

+
2
3
i.

Similarly, on Γ2 of the previous example, from A to C, we can set z (t) = it
with 0 ≤ t ≤ 1, and dz

dt = i. From C to B, we can set z (t) = (t − 1) + i with
1 ≤ t ≤ 2, and dz

dt = 1. Thus
∫ B

A,Γ2

z2dz =
∫ 1

0

(it)2 idt +
∫ 2

1

(t − 1 + i)2 dt

= −1
3
i − 2

3
+ i = −2

3
+

2
3
i.
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Parametrization of a Circular Contour

A circular contour can be easily parameterized with the angular variable of
the polar coordinates. This is of considerable importance because through the
principle of deformation of contours, which we will soon see, other contour
integrations can also be carried out by changing the contour into a circle.

Consider the integral I =
∮

C
f (z) dz, where C is a circle of radius r cen-

tered at the origin. Clearly we can express z as

z (θ) = r cos θ + i r sin θ = r eiθ,

dz

dθ
= −r sin θ + i r cos θ = i r eiθ.

This means dz = i r eiθdθ, so the integral becomes

I =
∫ 2π

0

f
(
r eiθ

)
i r eiθdθ.

The following example will illustrate how this is done.

Example 2.2.2. Evaluate the integral
∮

C
zndz, where n is an integer and C is

a circle of radius r around the origin.

Solution 2.2.2.
∮

C

zndz =
∫ 2π

0

(
r eiθ

)n
i r eiθ dθ = i rn+1

∫ 2π

0

ei(n+1)θdθ.

For n �= −1
∫ 2π

0

ei(n+1)θdθ =
1

i (n + 1)

[
ei(n+1)θ

]2π

0
=

1
i (n + 1)

[1 − 1] = 0.

For n = −1
∫ 2π

0

(
r eiθ

)n
i r eiθdθ = i

∫ 2π

0

dθ = 2πi.

This means ∮
C

zndz = 0 for n �= −1,

∮
C

dz

z
= 2πi.

Note that these results are independent of the radius r.
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Some Properties of Complex Line Integral

The parametric form of the complex line integral enables us to see immediately
that many formulas of ordinary integration of real variables can be directly
applied to the complex integration. For example, the complex integral from B
to A along the same path Γ is given by the right-hand side of (2.10) with tA
and tB interchanged, introducing a negative sign to the equation. Therefore∫ B

A,Γ

f (z) dz = −
∫ A

B,Γ

f (z) dz.

Similarly, if C is on Γ, then∫ B

A,Γ

f (z) dz =
∫ C

A,Γ

f (z) dz +
∫ B

C,Γ

f (z) dz.

If the integral from A to B is along Γ1 and from B back to A is along a
different contour Γ2, we can write the sum of the two integrals as∫ B

A,Γ1

f (z) dz +
∫ A

B,Γ2

f (z) dz =
∮

Γ

f (z) dz,

where Γ = Γ1 + Γ2 and the symbol
∮

Γ
is to signify that the integration is

taken counterclockwise along the closed contour Γ. Thus∮
c.c.w.

f (z) dz =
∫ B

A,Γ1

f (z) dz +
∫ A

B,Γ2

f (z) dz

= −
∫ A

B,Γ1

f (z) dz −
∫ B

A,Γ2

f (z) dz = −
∮

c.w.

f (z) dz,

where c.c.w. means counterclockwise and c.w. means clockwise.
Furthermore, we can show that∣∣∣∣∣

∫ B

A,Γ

f (z) dz

∣∣∣∣∣ ≤ ML, (2.11)

where M is the maximum value of |f (z)| on Γ and L is the length of Γ. This
is because ∣∣∣∣

∫ tB

tA

f (z)
dz

dt
dt

∣∣∣∣ ≤
∫ tB

tA

∣∣∣∣f (z)
dz

dt

∣∣∣∣dt,

which is a generalization of |z1 + z2| ≤ |z1|+ |z2| . By the definition of M , we
have ∫ tB

tA

∣∣∣∣f (z)
dz

dt

∣∣∣∣dt ≤ M

∫ tB

tA

∣∣∣∣dz

dt

∣∣∣∣ dt = M

∫ B

A

|d| = ML.

Thus, starting with (2.10) , we have∣∣∣∣∣
∫ B

A

f (z) dz

∣∣∣∣∣ =
∣∣∣∣
∫ tB

tA

f (z)
dz

dt
dt

∣∣∣∣ ≤ ML.
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2.3 Cauchy’s Integral Theorem

As we have seen, the results of integrations of z2 along Γ1 and Γ2 of Fig. 2.7
are exactly the same. Therefore a closed loop integration from A to B along
Γ1 and returning from B to A along Γ2 is equal to zero. In 1825, Cauchy
proved a theorem which enables use to see that this must be the case without
carrying out the integration. Before we discuss this theorem, let us first review
the Green’s lemma of real variables.

2.3.1 Green’s Lemma

There is an important relation that allows us to transform a line integral into
an area integral for lines and areas in the xy plane. It is often referred to as
Green’s lemma, which states that

∮
C

[P (x, y)dx + Q(x, y)dy] =
∫∫

R

[
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

]
dxdy, (2.12)

where C is a closed curve surrounding the region R. The curve C is traversed
counterclockwise, that is with the region R always to the left as shown in
Fig. 2.8.

To prove Green’s lemma, let us use Fig. 2.9, part (a) to carry out the first
part of the area double integral

∫∫
R

∂Q(x, y)
∂x

dxdy =
∫ d

c

[∫ x=g2(y)

x=g1(y)

∂Q(x, y)
∂x

dx

]
dy

=
∫ d

c

[Q(x, y)]x=g2(y)
x=g1(y) dy.

y

R

x

C

Fig. 2.8. The closed contour C of the line integral in the Green’s lemma. C is
counterclockwise and is defined as the positive direction with respect to the interior
of R
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y

x

g
1
(y)

f
2
(y)

g
2
(y)

y

x

(a) (b)

a b

c

d

f
1
(y)

Fig. 2.9. Same contour but with two different ways to carry out the area double
integral in the Green’s lemma

Now
∫ d

c

[Q(x, y)]x=g2(y)
x=g1(y) dy =

∫ d

c

Q(g2(y), y)dy −
∫ d

c

Q(g1(y), y)dy

=
∫ d

c

Q(g2(y), y)dy +
∫ c

d

Q(g1(y), y)dy.

The contour of the last line integral is from y = c going through g2(y) to y = d
and then returning through g1(y) to y = c. Clearly it is counterclockwise closed
loop integral ∫∫

R

∂Q(x, y)
∂x

dxdy =
∮

c.c.w

Q (x, y) dy. (2.13)

Next we will use Fig. 2.9, part (b) to carry out the second part of the area
double integral
∫∫

R

∂P (x, y)
∂y

dxdy=
∫ b

a

[∫ y=f2(x)

y=f1(x)

∂P (x, y)
∂y

dy

]
dx=

∫ b

a

[P (x, y)]y=f2(x)
y=f1(x) dx.

∫ b

a

[P (x, y)]y=f2(x)
y=f1(x) dx =

∫ b

a

P (x, f2(x))dx −
∫ b

a

P (x, f1(x))dx

=
∫ b

a

P (x, f2(x))dx +
∫ a

b

P (x, f1(x))dx.

In this case the contour is from x = a going through f2(x) to x = b and then
returning to x = a through f1(x). Therefore it is clockwise

∫∫
R

∂P (x, y)
∂y

dxdy =
∮

c.w.

P (x, y)dx = −
∮

c.c.w.

P (x, y)dx. (2.14)

In the last step we changed the sign to make it counterclockwise.
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Subtracting (2.14) from (2.13), we have the Green’s lemma
∫∫

R

[
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

]
dxdy =

∮
c.c.w.

[Q(x, y)dy + P (x, y)dx].

2.3.2 Cauchy–Goursat Theorem

An important theorem in complex integration is the following:
If C is a closed contour and f(z) is analytic on and inside C, then

∮
C

f(z)dz = 0. (2.15)

This is known as Cauchy’s theorem. The proof goes as follows. Starting with
∮

C

f(z)dz =
∮

C

(u dx − v dy) + i
∮

C

(v dx + u dy), (2.16)

making use of the Green’s lemma of (2.12) and identifying P as u and Q as
−v, we have

∮
C

(u dx − v dy) =
∫ ∫

R

[
−∂v

∂x
− ∂u

∂y

]
dxdy.

Since f(z) is analytic, so u and v satisfy Cauchy–Riemann conditions. In
particular

−∂v

∂x
=

∂u

∂y
,

therefore the area double integral is equal to zero, thus
∮

C

(u dx − v dy) = 0.

Similarly, identifying u as Q and v as P, from Green’s lemma we have
∮

C

(v dx + u dy) =
∫ ∫

R

[
∂u

∂x
− ∂v

∂y

]
dxdy.

Because of the other Cauchy–Riemann condition

∂u

∂x
=

∂v

∂y
,

the integral on the left-hand side is also equal to zero
∮

C

(v dx + u dy) = 0.
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Thus both line integrals on the right-hand side of (2.16) are zero, therefore∮
C

f (z) dz = 0,

which is known as Cauchy’s integral theorem.
In this proof, we have used Green’s lemma which requires the first partial

derivatives of u and v to be continuous. Therefore we have implicitly assumed
that the derivative of f (z) is continuous. In 1903, Goursat proved this theorem
without assuming the continuity of f ′ (z) . Therefore this theorem is also called
Cauchy–Goursat theorem. Mathematically Goursat’s removal of the continu-
ity assumption from the proof of the theorem is very important because it
enables us to rigorously establish that derivatives of analytic functions are
analytic, and they are automatically continuous. A version of Goursat’s proof
can be found in Complex Variables and Applications, by J.W. Brown and
R.V. Churchill Complex Variable and Applications, 5th edn. (McGraw-Hill,
New York 1989).

2.3.3 Fundamental Theorem of Calculus

If the closed contour Γ is divided into two parts Γ1 and Γ2, as shown in
Fig. 2.7, and f (z) is analytic on and between Γ1 and Γ2, then Cauchy’s integral
theorem can be written as∮

Γ

f(z)dz =
∫ B

A Γ1

f(z)dz +
∫ A

B Γ2

f(z)dz

=
∫ B

A Γ1

f(z)dz −
∫ B

A Γ2

f(z)dz = 0,

where the negative sign appears since we have exchanged the limit on the last
integral. Thus we have

∫ B

A Γ1

f(z)dz =
∫ B

A Γ2

f(z)dz, (2.17)

showing that the value of a line integral between two points is independent
of the path provided that the integrand is an analytic function in the domain
on and between the contours.

With this in mind, we can show that, as long as f(z) is analytic in a region
containing A and B

∫ B

A

f (z) dz = F (B) − F (A) ,

where

dF (z)
dz

= lim
∆z→0

F (z + ∆z) − F (z)
∆z

= f (z) .
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The integral

F (z) =
∫ z

z0

f (z′) dz′ (2.18)

uniquely define the function F (z) if z0 is a fixed point and f (z′) is analytic
throughout the region containing the path between z0 and z. Similarly, we
can define

F (z + ∆z) =
∫ z+∆z

z0

f (z′) dz′ =
∫ z

z0

f (z′) dz′ +
∫ z+∆z

z

f (z′) dz′.

Clearly

F (z + ∆z) − F (z) =
∫ z+∆z

z

f (z′) dz′.

For a small ∆z, the right-hand side reduces to
∫ z+∆z

z

f (z′) dz′ → f (z)∆z,

which implies that

F (z + ∆z) − F (z)
∆z

= f (z) .

Thus

dF (z)
dz

= f (z)

and the fundamental theorem of calculus follows:∫ B

A

f (z) dz =
∫ B

A

dF (z) = F (B) − F (A) .

Example 2.3.1. Find the value of the integral
∫ 1+i

0
z2 dz.

Solution 2.3.1.
∫ 1+i

0

z2dz =
[
1
3
z3

]1+i

0

=
1
3

(1 + i)3 = −2
3

+
2
3
i.

Note that the result is the same as in Example 2.2.1.

Example 2.3.2. Find the values of the following integrals:

I1 =
∫ πi

−πi

cos z dz, I2 =
∫ 4−3πi

4+πi

ez/2dz.
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Solution 2.3.2.

I1 =
∫ πi

−πi

cos z dz = [sin z]πi
−πi = sin (πi) − sin (−πi)

= 2 sin (πi) = 2
1
2i

(
ei(iπ) − e−i(iπ)

)
=

(
eπ − e−π

)
i � 23.097i.

I2 =
∫ 4−3πi

4+πi

ez/2dz =
[
2ez/2

]4−3πi

4+πi
= 2

(
e2−i3π/2 − e2+iπ/2

)

= 2e2
(
e−i3π/2 − eiπ/2

)
= 2e2(i − i) = 0.

Example 2.3.3. Find the values of the following integral:
∫ i

−i

dz

z
.

Solution 2.3.3. Since z = 0 is a singular point, the path of integration must
not pass through the origin. Furthermore

∫
dz

z
= ln z + C,

where ln z is a multivalued function, therefore there is a branch cut. To eval-
uate this definite integral we must specify the path of z going from −i to i.
There are two possibilities as shown in (a) and (b) of the following figure:

(b)(a)

ii

−i−i

11 22 −1−1 −2−2

(a) To go from −i to i in the right half of the complex plane, we must take
the negative real axis as the branch cut. In the principal branch, −π < θ < π.
Thus

∫ i

−i

dz

z
= [ln z]i−i =

[
ln eiθ

]θ= 1
2 π

θ=− 1
2 π

= [iθ]θ= 1
2 π

θ=− 1
2 π

= i
1
2
π + i

1
2
π = iπ.
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(b) To go from −i to i in the left half of the complex plane, we must take the
positive real axis as the branch cut. Therefore 0 < θ < 2π. Thus

∫ i

−i

dz

z
= [ln z]i−i =

[
ln eiθ

]θ= 1
2 π

θ= 3
2 π

= [iθ]θ= 1
2 π

θ= 3
2 π

= i
1
2
π − i

3
2
π = −iπ.

2.4 Consequences of Cauchy’s Theorem

2.4.1 Principle of Deformation of Contours

There is an immediate, practical consequence of the Cauchy Integral Theorem.
The contour of a complex integral can be arbitrarily deformed through an
analytic region without changing the value of the integral.

Consider the integration along the two contours shown on the left side of
Fig. 2.10. If f(z) is analytic, then

∮
abcda

f(z)dz = 0, (2.19)

∮
efghe

f(z)dz = 0. (2.20)

Naturally the sum of them is also equal to zero
∮

abcda

f(z)dz +
∮

efghe

f(z)dz = 0. (2.21)

Notice that the integrals along ab and along he are in the opposite direction.
If ab coincides with he, their contributions will cancel each other. Thus if the
gaps between ab and he, and between cd and fg are shrinking to zero, the
sum of these two integrals becomes the sum of the integral along the outer

y

e a C1

C2
h b

cg

f d
o

y

ox x

Fig. 2.10. Contour deformation
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contour C1 and the integral along the inner contour C2 but in the opposite
direction. If we change the direction of C2, we must change the sign of the
integral. Therefore∮

abcda

f(z)dz +
∮

efghe

f(z)dz =
∮
C1

f(z)dz −
∮
C2

f(z)dz = 0.

It follows: ∮
C1

f(z)dz =
∮
C2

f(z)dz. (2.22)

Thus we have shown that the line integral of an analytic function around any
closed curve C1 is equal to the line integral of the same function around any
other closed curve C2 into which C1 can be continuously deformed as long as
f (z) is analytic between C1 and C2 and is single-valued on C1 and C2.

2.4.2 The Cauchy Integral Formula

The Cauchy integral formula is a natural extension of the Cauchy integral
theorem. Consider the integral

I1 =
∮

C1

f(z)
z − z0

dz, (2.23)

where f(z) is analytic everywhere in the z-plane, and C1 is a closed contour
that does not include the point z0 as shown in Fig. 2.11a.

Since (z − z0)−1 is analytic everywhere except at z = z0, and z0 is outside
of C1, therefore f(z)/(z − z0) is analytic inside C1. It follows from Cauchy’s
integral theorem that

I1 =
∮

C1

f(z)
z − z0

dz = 0. (2.24)

y y

x x

z

z

ε
z0 z0

(a) (b)

c1
c2

c0

Fig. 2.11. Closed contour integration. (a) The singular point z0 is outside of the
contour C1. (b) The contour C2 encloses z0, C2 can be deformed into the circle C0

without changing the value of the integral
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Now consider a second integral

I2 =
∮

C2

f(z)
z − z0

dz, (2.25)

similar to the first, except now the contour C2 encloses z0, as shown in
Fig. 2.11b. The integrand in this integral is not analytic at z = z0 which
is inside C2, so we cannot invoke the Cauchy integral theorem to argue that
I2 = 0. However, the integrand is analytic everywhere, except at the point
z = z0, so we can deform the contour into an infinitesimal circle of radius ε
centered at z0, without changing its value

I2 = lim
ε→0

∮
C0

f(z)
z − z0

dz. (2.26)

This deformation is also shown in Fig. 2.11b.
This last integral can be evaluated. In order to see more clearly, we enlarge

the contour in Fig. 2.12.
Since z is on the circle C0, with the notation shown in Fig. 2.12, it is clear

that

z = x + iy,

x = x0 + ε cos θ,

y = y0 + ε sin θ.

Therefore
z = (x0 + iy0) + ε(cos θ + i sin θ). (2.27)

Since

z0 = x0 + iy0,

eiθ = cos θ + i sin θ,

y

x

x
0

y
0

z

ε
qz

0

C
0

Fig. 2.12. Circular contour for the Cauchy integral formula
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we can write
z = z0 + εeiθ. (2.28)

On C0, ε is a constant, and θ goes from 0 to 2π. Therefore

dz = i ε eiθdθ (2.29)

and
∮

C0

f(z)
z − z0

dz =
∫ 2π

0

f
(
z0 + ε eiθ

)
ε eiθ

i ε eiθdθ = i
∫ 2π

0

f
(
z0 + ε eiθ

)
dθ. (2.30)

As ε → 0, f
(
z0 + ε eiθ

)
→ f(z0) and can be taken outside the integral

I2 =
∮

C2

f(z)
z − z0

dz = lim
ε→0

∮
C0

f(z)
z − z0

dz

= lim
ε→0

i
∫ 2π

0

f
(
z0 + ε eiθ

)
dθ = i f(z0)

∫ 2π

0

dθ = 2πi f(z0), (2.31)

where C is any closed, counterclockwise path that encloses z0, and f(z) is
analytic inside C. This result is known as Cauchy’s integral formula, usually
written as

f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz. (2.32)

2.4.3 Derivatives of Analytic Function

If we differentiate both sides of Cauchy’s integral formula, interchanging the
order of differentiation and integration, we get

f ′(z0) =
1

2πi

∮
C

f (z)
d

dz0

1
(z − z0)

dz =
1

2πi

∮
C

f(z)
(z − z0)2

dz.

To establish this formula in a rigorous manner, we may start with the formal
expression of the derivative

f ′(z0) = lim
∆z0→0

f(z0 + ∆z0) − f(z0)
∆z0

= lim
∆z0→0

1
∆z0

[f(z0 + ∆z0) − f(z0)]

= lim
∆z0→0

1
∆z0

[
1

2πi

∮
C

f(z)
z − z0 − ∆z0

dz − 1
2πi

∮
C

f(z)
z − z0

dz

]
.

Now∮
C

f(z)
z − z0 − ∆z0

dz −
∮

C

f(z)
z − z0

dz =
∮

C

f(z)
(

1
z − z0 − ∆z0

− 1
z − z0

)
dz

=
∮

C

f(z)
∆z0

(z − z0 − ∆z0)(z − z0)
dz = ∆z0

∮
C

f(z)dz

(z − z0 − ∆z0)(z − z0)
.
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Therefore

f ′(z0) = lim
∆z0→0

1
∆z0

[
∆z0

2πi

∮
C

f(z)dz

(z − z0 − ∆z0)(z − z0)

]

= lim
∆z0→0

1
2πi

∮
C

f(z)dz

(z − z0 − ∆z0)(z − z0)
=

1
2πi

∮
C

f(z)
(z − z0)2

dz.

In a like manner we can show that

f ′′(z0) =
2

2πi

∮
C

f(z)
(z − z0)3

dz (2.33)

and in general

f (n)(z0) =
n!
2πi

∮
C

f(z)
(z − z0)n+1

dz. (2.34)

Thus we have established the fact that analytic functions possess derivatives of
all orders. Also, all derivatives of analytic functions are analytic. This is quite
different from our experience with real variables, where we have encountered
functions that possess first and second derivatives at a particular point, but
yet the third derivative is not defined.

Cauchy’s integral formula allows us to determine the value of an analytic
function at any point z interior to a simply connected region by integrating
around a curve C surrounding the region. Only values of the function on the
boundary are used. Thus, we note that if an analytic function is prescribed
on the entire boundary of a simply connected region, the function and all its
derivatives can be determined at all interior points. The Cauchy’s integral
formula can be written in the form of

f(z) =
1

2πi

∮
C

f(ς)
ς − z

dς, (2.35)

where z is any interior point inside C. The complex variable ς is on C and
is simply a dummy variable of integration that disappears in the integration
process. Cauchy’s integral formula is often used in this form.

Example 2.4.1. Evaluate the integrals

(a)
∮

z2 sinπz

z − 1
2

dz, (b)
∮

cos z

z3
dz

around the circle |z| = 1.

Solution 2.4.1. (a) The singular point is at z = 1
2 which is inside the circle

|z| = 1. Therefore

∮
z2 sinπz

z − 1
2

dz = 2πi
[
z2 sin πz

]
z=1/2

= 2πi
(

1
2

)2

sin
(

π
1
2

)
=

1
2
πi.
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(b) The singular point is at z = 0 which is inside the circle |z| = 1. Therefore
∮

cos z

z3
dz =

2πi
2!

[
d2

dz2
cos z

]
z=0

= πi[− cos (0)] = −πi.

Example 2.4.2. Evaluate the integral
∮

z2 − 1
(z − 2)2

dz

around (a) the circle |z| = 1, (b) the circle |z| = 3.

Solution 2.4.2. (a) The singular point is at z = 2. It is outside the circle of
|z| = 1, as shown in Fig. 2.13a. Inside the circle |z| = 1, the function z2−1

(z−2)2
is

analytic, therefore
∮

z2 − 1
(z − 2)2

dz = 0.

(b) Since z = 2 is inside the circle |z| = 3, as shown in Fig. 2.13b, we can write
the integral as

∮
z2 − 1

(z − 2)2
dz =

∮
f (z)

(z − 2)2
dz = 2πi f ′ (2) ,

where

f (z) = z2 − 1, f ′ (z) = 2z, and f ′ (2) = 4.

Thus ∮
z2 − 1

(z − 2)2
dz = 2πi4 = 8πi.

1 12 2−1 −1−2 −2

(a) (b)

Fig. 2.13. (a) |z| = 1, (b) |z| = 3
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Example 2.4.3. Evaluate the integral
∮

z2

z2 + 1
dz

(a) around the circle |z − 1| = 1, (b) around the circle |z − i| = 1, (c) around
the circle |z − 1| = 2.

Solution 2.4.3. Unless the relationship between the singular points and the
contour is clear as in previous examples, to solve problems of closed contour
integration, it is best to first find the singular points (known as poles) and
display them on the complex plane, then draw the contour. In this particular
problem, the singular points are at z = ±i, which are the solutions of z2 +1 =
0. The three contours are shown in Fig. 2.14.

(a) It is seen that both singular points are outside of the contour |z − 1| = 1,
therefore

∮
z2

z2 + 1
dz = 0.

(b) In this case, only one singular point z = i is inside the contour, so we can
write

∮
z2

z2 + 1
dz =

∮
z2

(z − i)(z + i)
dz =

∮
f (z)
z − i

dz,

where

f (z) =
z2

z + i
.

Thus, it follows:
∮

z2

z2 + 1
dz =

∮
f (z)
z − i

dz = 2πi f(i) = 2πi
(i)2

i + i
= −π.

i i i

−i −i −i
1 1 12 2 2−1 −1−2 −2 −2

(a) (b) (c)

−1

Fig. 2.14. (a) |z − 1| = 1, (b) |z − i| = 1, (c) |z − 1| = 2
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(c) In this case, both singular points are inside the contour. To make use of
the Cauchy integral formula, we first take the partial fraction of 1

z2+1 ,

1
z2 + 1

=
1

(z − i)(z + i)
=

A

(z − i)
+

B

(z + i)

=
A(z + i) + B(z − i)

(z − i)(z + i)
=

(A + B)z + (A − B)i
(z − i)(z + i)

.

So

A + B = 0, (A − B)i = 1,
B = −A, 2Ai = 1,

A =
1
2i

= − i
2
, B =

i
2
.

It follows that:
∮

z2

z2 + 1
dz =

∮
z2

(
− i

2
1

(z − i)
+

i
2

1
(z + i)

)
dz

= − i
2

∮
z2

z − i
dz +

i
2

∮
z2

z + i
dz.

Each integral on the right-hand side has only one singular point inside the
contour. According the Cauchy integral formula

∮
z2

z − i
dz = 2πi(i)2 = −2πi,

∮
z2

z + i
dz = 2πi (−i)2 = −2πi.

Therefore
∮

z2

z2 + 1
dz = − i

2
(−2πi) +

i
2

(−2πi) = 0.

Example 2.4.4. Evaluate the integral
∮

z − 1
2z2 + 3z − 2

dz

around the square whose vertices are (1, 1), (−1, 1), (−1,−1), (1,−1).

Solution 2.4.4. To find the singular points, we set the denominator to zero

2z2 + 3z − 2 = 0,

which gives the singular points at
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z =
1
4
(
−3 ±

√
9 + 16

)
=

{
1
2 ,
−2.

The denominator can be written as

2z2 + 3z − 2 = 2
(

z − 1
2

)
(z + 2).

The singular points and the contour are shown in the following figure:

i

−i

1 2−2 −1

Since only the singular point at z = 1
2 is inside the contour, we can write the

integral as

∮
z − 1

2z2 + 3z − 2
dz =

∮
z − 1

2(z − 1
2 )(z + 2)

dz =
∮

f (z)
(z − 1

2 )
dz = 2πi f

(
1
2

)
,

where

f (z) =
z − 1

2(z + 2)
, f

(
1
2

)
= − 1

10
.

Therefore ∮
z − 1

2z2 + 3z − 2
dz = −1

5
πi.

Several important theorems can be easily proved by Cauchy’s integral
formula and its derivatives.

Gauss’ Mean Value Theorem

If f (z) is analytic inside and on a circle C with center at z0, then the mean
value of f (z) on C is f (z0) .

This theorem follows directly from the Cauchy’s integral formula:

f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz.
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Let the circle C be |z − z0| = r, thus

z = z0 + r eiθ, and dz = i r eiθdθ.

Therefore

f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz =
1

2πi

∮
C

f(z0 + r eiθ)
r eiθ

i r eiθdθ

=
1
2π

∮
C

f
(
z0 + r eiθ

)
dθ,

which is the mean value of f(z) on C.

Liouville’s Theorem

If f(z) is analytic in the entire complex plane and |f (z)| is bounded for all
values of z, then f(z) is a constant.

To prove this theorem, we start with

f ′(z) =
1

2πi

∮
C

f(z′)
(z′ − z)2

dz′.

The condition that |f(z)| is bounded tells us that a nonnegative constant M
exists such that |f(z)| ≤ M for all z. If we take C to be the circle |z′ − z| = R,
then

|f ′(z)| ≤
∣∣∣∣ 1
2πi

∣∣∣∣
∮

C

|f(z′)|
|(z′ − z)2| |dz′|

≤ 1
2π

1
R2

M2πR =
M

R
.

Since f (z′) is analytic everywhere, we may take R as large as we like. It is
clear that M

R → 0, as R → ∞. Therefore |f ′(z)| = 0, which implies that
f ′ (z) = 0 for all z, so f (z) is a constant.

Fundamental Theorem of Algebra

The following theorem is now known as the fundamental theorem of algebra.
In the last chapter we mentioned that this theorem is of critical importance
in our number system.

Every polynomial equation

Pn (z) = a0 + a1z + · · · + anzn = 0

of degree one or greater has at least one root.
To prove this theorem, let us first assume the contrary, namely that

Pn (z) �= 0 for any z. Then the function

f (z) =
1

Pn (z)
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is analytic everywhere. Since nowhere will f (z) go to infinity and f (z) → 0
as z → ∞, so |f (z)| is bounded for all z. By Liouville’s theorem we conclude
that f(z) must be a constant, and hence Pn (z) must be a constant. This is a
contradiction, since Pn(z) is given as a polynomial of z. Therefore, Pn (z) = 0
must have at least one root.

It follows from this theorem that Pn (z) = 0 has exactly n roots. Since
Pn (z) = 0 has at least one root, let us denote that root ż1. Thus

Pn (z) = (z − z1)Qn−1 (z) ,

where Qn−1(z) is a polynomial of degree n − 1. By the same argument, we
conclude that Qn−1(z) must have at least one root, which we denote it as z2.
Repeating this procedure n times we find

Pn (z) = (z − z1) (z − z2) · · · (z − zn) = 0.

Hence Pn (z) = 0 has exactly n roots.

Exercises

1. Show that the real and the imaginary parts of the following functions f(z)
satisfy the Cauchy–Reimann conditions

(a) z2, (b) ez, (c) 1
z+2 .

2. Show that both the real part u(x, y) and the imaginary part v (x, y) of
the analytic function ez = u (x, y) +iv (x, y) satisfy the Laplace equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0.

3. Show that the derivative of 1
z+2 calculated in the following three different

ways gives the same result:
(a) Let ∆y = 0, so that ∆z → 0 parallel to the x-axis. In this case

f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

(b) Let ∆x = 0, so that ∆z → 0 parallel to the y-axis. In this case

f ′(z) =
∂u

i∂y
+

∂v

∂y
.

(c) Use the same rule as if z were a real variable. That is

f ′(z) =
df

dz
.
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4. Let z2 = u (x, y)+iv (x, y) , find the point of intersection of u (x, y) = 1 and
v (x, y) = 2. Show that at the point of intersection the curve u(x, y) = 1
is perpendicular to v (x, y) = 2.

5. Let f(z) = u(x, y) + iv(x, y) be an analytic function. If u(x, y) is given by
the following function:

(a)x2 − y2; (b) ey sin x,

show that they satisfy the Laplace equation. Find the corresponding
conjugate harmonic function v(x, y). Express f(z) as a function of z
only.
Ans. (a) v (x, y) = 2xy + c, f (z) = z2 + c. (b) v (x, y) = ey cos x +
c, f (z) = ie−iz + c.

6. In which quadrants of the complex plane is f (z) = |x| − i |y| an analytic
function?
Hint: In first quadrant, x > 0, so ∂u

∂x = ∂|x|
∂x = ∂x

∂x = 1, in the second
quadrant, x < 0, so ∂u

∂x = ∂|x|
∂x = ∂(−x)

∂x = −1, and so on.
Ans. f (z) is analytic only in the second and fourth quadrants.

7. Express the real part and the imaginary part of (z + 1)2 in terms of polar
coordinates, that is, find u (r, θ) and v (r, θ) in the expression

(z + 1)2 = u (r, θ) + iv (r, θ) .

Show that they satisfy the Cauchy–Riemann equations in the polar form:

∂u (r, θ)
∂r

=
1
r

∂v (r, θ)
∂θ

,
1
r

∂u (r, θ)
∂θ

= −∂v (r, θ)
∂r

.

8. Show that when an analytic function is expressed in terms of polar coordi-
nates, both its real part and its imaginary part satisfy Laplace’s equation
in polar coordinates

∂2φ

∂r2
+

1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2
= 0.

9. To show that line integral are, in general, dependent on the path of inte-
gration, evaluate

∫ i

−1

|z|2 dz

(a) along the straight line from the initial point −1 to the final point i, (b)
along the arc of the unit circle |z| = 1 traversed in the clockwise direction
from the initial point −1 to the final point i.
Hint: (a) Parameterize the line segment by z = −1 + (1 + i)t, 0 ≤ t ≤ 1.
(b) Parameterize the arc by z = eiθ, π ≥ θ ≥ π/2.

Ans. (a) 2(1 + i)/3, (b)1 + i.
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10. To verify that the line integral of an analytic function is independent of
the path, evaluate ∫ 3+i

0

z2dz

(a) along the line y = x/3, (b) along the real axis to 3 and then vertically
to 3 + i, (c) along the imaginary axis to i and then horizontally to 3 + i.
Ans. (a) 6 + 26

3 i, (b) 6 + 26
3 i, (c) 6 + 26

3 i.

11. Verify the Green’s lemma∮
[A(x, y)dx + B(x, y)dy] =

∫∫
R

[
∂B(x, y)

∂x
− ∂A(x, y)

∂y

]
dxdy

for the integral ∮
[(x2 + y)dx − xy2dy]

taken around the boundary of the square with vertices at (0,0), (1,0), (0,1),
(1,1).

12. Verify the Green’s lemma for the integral∮
[(x − y)dx + (x + y)dy]

taken around the boundary of the area in the first quadrant between the
curve y = x2 and y2 = x.

13. Evaluate ∫ 3+i

0

z2dz

with fundamental theorem of calculus. That is,

if
dF (z)

dz
= f (z) , then

∫ B

A

f (z) dz = F (B) − F (A) ,

provided f (z) is analytic in a region between A and B.

Ans. 6 + 26
3 i.

14. What is the value of ∮
C

3z2 + 7z + 1
z + 1

dz

(a) if C is the circle |z + 1| = 1? (b) if C is the circle |z + i| = 1? (c) if C
is the ellipse x2 + 2y2 = 8?
Ans. (a) −6πi, (b) 0, (c) −6πi.
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15. What is the value of ∮
C

z + 4
z2 + 2z + 5

dz

(a) if C is the circle |z| = 1? (b) if C is the circle |z + 1 − i| = 2? (c) if C
is the circle |z + 1 + i| = 2?
Ans. (a) 0, (b) 1

2 (3 + 2i) π, (c) 1
2 (−3 + 2i) π.

16. What is the value of ∮
C

ez

(z + 1)2
dz

around the circle |z − 1| = 3?
Ans. 2πie−1.

17. What is the value of ∮
C

z + 1
z3 − 2z2

dz

(a) If C is the circle |z| = 1? (b) If C is the circle |z − 2 − i| = 2? (c) If C
is the circle |z − 1 − 2i| = 2?
Ans. (a) − 3

2πi, (b) 3
2πi, (c) 0.

18. Find the value of the closed loop integral∮
z3 + sin z

(z − i)3
dz

taken around the boundary of the triangle with vertices at ±2, 2i.
Ans. π

(
e − e−1

)
/2 − 6π.

19. What is the value of ∮
C

tan z

z2
dz

if C is the circle |z| = 1?
Ans. 2πi.

20. What is the value of ∮
C

ln z

(z − 2)2
dz

if C is the circle |z − 3| = 2?
Ans. πi.
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Complex Series and Theory of Residues

Series expansions are ubiquitous in science and engineering. In the theory of
complex functions, series expansions play a crucial role because they are the
basis for deriving and using the theory of residues, which provide a power-
ful method for calculating both complex contour integrals and some difficult
integrals of real variable. Before the formal development, we will first review
a basic geometric series.

3.1 A Basic Geometric Series

Let
S = 1 + z + z2 + z3 + · · · + zn. (3.1)

Multiplying by z,

zS = z + z2 + z3 + · · · + zn + zn+1

and subtracting the two series

(1 − z)S = 1 − zn+1

we get

S =
1 − zn+1

1 − z
.

Now if |z| < 1, zn+1 → 0 as n → ∞. Thus, if n goes to infinity,

S =
1

1 − z
,
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and it follows from (3.1) that

1
1 − z

= 1 + z + z2 + z3 + · · · =
∞∑

k=0

zk. (3.2)

Clearly it will diverge for |z| ≥ 1. It is important to remember that this series
converges only for |z| < 1. Under this condition, the following alternative
series is also convergent:

1
1 + z

=
1

1 − (−z)
=

∞∑
k=0

(−z)k = 1 − z + z2 − z3 + · · · . (3.3)

3.2 Taylor Series

Taylor series is perhaps the most familiar series in real variables. Taylor series
in complex variable is even more interesting.

3.2.1 The Complex Taylor Series

In many applications of complex variables, we wish to expand an analytic
function f(z) into a series around a particular point z = z0. We will show
that if f(z) is analytic in the neigborhood of z0 including the point at z = z0,
then f(z) can be represented as a series of positive powers of (z − z0).

First let us recall

f(z) =
1

2πi

∮
C

f(t)
t − z

dt, (3.4)

where t is the integration variable and it is on the enclosed contour C, inside
which f(z) is analytic. The quantity (z−z0) can be introduced into the integral
through the identity

1
t − z

=
1

(t − z0) + (z0 − z)
=

1

(t − z0)
(
1 − z−z0

t−z0

) .

If ∣∣∣∣z − z0

t − z0

∣∣∣∣ < 1, (3.5)

then by the basic geometric series (3.2)

1
1 − z−z0

t−z0

= 1 +
(

z − z0

t − z0

)
+

(
z − z0

t − z0

)2

+
(

z − z0

t − z0

)3

+ · · · . (3.6)
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Therefore (3.4) can be written as

f(z) =
1

2πi

∮
C

f(t)
t − z

dt

=
1

2πi

∮
C

f(t)
t − z0

[
1 +

(
z − z0

t − z0

)
+

(
z − z0

t − z0

)2

+
(

z − z0

t − z0

)3

+ · · ·
]

dt

=
1

2πi

∮
C

f(t)
t − z0

dt +
[

1
2πi

∮
C

f(t)
(t − z0)2

dt

]
(z − z0)

+
[

1
2πi

∮
C

f(t)
(t − z0)3

dt

]
(z − z0)2

+
[

1
2πi

∮
C

f(t)
(t − z0)4

dt

]
(z − z0)3 + · · · . (3.7)

According to Cauchy’s integral formula and its derivatives

f (n) (z0) =
n!
2πi

∮
C

f(t)
(t − z0)n+1

dt

the earlier equation (3.7) becomes

f(z) =
∑
n=0

f (n) (z0)
n!

(z − z0)
n

= f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)2 + · · · . (3.8)

This is the well-known Taylor series.

3.2.2 Convergence of Taylor Series

To discuss the convergence of the Taylor series, let us first recall the definition
of singular points.

Singularity

If f(z) is analytic at all points in the neighborhood of zs but is not differen-
tiable at zs, then zs is called a singular point. We also say that f(z) has a
singularity at z = zs. For example:

1
z2+1 has singularities at z = i, −i.
tan z = sin z

cos z has singularities at z = ±π
2 , ± 3π

2 , ± 5π
2 , . . .

1+2z
z2−5z+6 has singularities at z = 2, 3.

1
ez+1 has singularities at z = ±iπ, ±i3π, ±i5π, . . . .
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Radius of Convergence

The Cauchy integral formula of (3.4) is, of course, valid for all z inside the
Contour C, if f(t) is analytic in and on C. However, in developing the Taylor
series around z = z0, we have used (3.6), which is true only if the condition
of (3.5) is satisfied. This means |z − z0| must be less than |t − z0| . Since t
is on the contour C as shown in Fig. 3.1, the distance |t − z0| is changing as
t is moving around C. With the contour shown in the figure, the smallest
|t − z0| is |s − z0| where s is the point on C closest to z0. For |z − z0| to be
less than all possible |t − z0| , |z − z0| must be less than |s − z0| . This means
the Taylor series of (3.8) is valid only for those points of z which are inside
the circle centered at z0, with a radius R = |s − z0|.

If f(z) is analytic everywhere, we can draw the contour C as large as we
want. Therefore the Taylor series is convergent in the entire complex plane.
However, if f(z) has a singular point at z = s, then the contour must be
so drawn in such way that the point z = s is outside of C. In Fig. 3.1, the
contour C can be infinitesimally close to s, but s must not be on or inside C.
For such a case the largest possible radius of convergence is |s − z0| . Therefore
the radius of convergence of a Taylor series is equal to the distance between
its expansion center and the nearest singular point.

The discussion earlier applies equally well to a circular region about the
origin, z0 = 0. The Taylor series about the origin

f(z) = f(0) + f ′ (0) z +
f ′′ (0)

2!
z2 + · · ·

is called the Maclaurin series.
Even in the expansion of a function of a real variable, the radius of con-

vergence is equally important. To illustrate, consider

z
z̊0

t

R

t

t

C

s

Fig. 3.1. Radius of convergence of the Taylor series. The expansion center is at z0.
The singular point at s limits the region of convergence within the interior of the
circle of radius R
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f(z) =
1

1 + z2
= 1 − z2 + z4 − z6 + · · · .

This series converges throughout the interior of the largest circle around the
origin in which f(z) is analytic. Now, f(z) has two singular points at z =
±i, and even though one may be concerned solely with real values of z, for
which 1/(1+x2) is everywhere infinitely differentiable with respect to x, these
singularities in the complex plane set an inescapable limit to the interval of
convergence on the x axis. Since the distance between the expansion center
at z = 0 and the nearest singular point, i or −i is |i − 0| = 1, the radius of
convergence is equal to one. The series is convergent only inside the circle of
radius 1, centered at origin. Thus the interval of convergence on the x axis is
between x = ±1. In other words, the Maclaurin series

1
1 + x2

= 1 − x2 + x4 − x6 + · · ·

is valid only for −1 < x < 1, although 1/(1 + x2) and its derivatives of all
orders are well defined along the real axis x. Now if we expand the real function
1/(1 + x2) into Taylor series around x = x0, then the radius of convergence is
equal to |i − x0| =

√
1 + x2

0. This means that this series will converge only in
the interval between x = x0 −

√
1 + x2

0 and x = x0 +
√

1 + x2
0.

3.2.3 Analytic Continuation

If we know the values of an analytic function in some small region around z0,
we can use the Taylor expansion about z0 to find the values of the function in
a larger region. Although the Taylor expansion is valid only inside the circle
of radius of convergence which is determined by the location of the nearest
singular point, a chain of Taylor expansions can be used to determine the
function throughout the entire complex plane except at the singular points of
the function. This process is illustrated in Fig. 3.2.

Suppose we know the values around z0 and the singular point nearest to z0

is s0. The Taylor expansion about z0 holds within a circular region of radius
|z0 − s0| . Since the Taylor expansion gives the values of the function and all
its derivatives at every point in this circle, we can use any point in this circle
as the new expansion center. For example, we may expand another Taylor
series about z1 as shown in Fig. 3.2. We can do this because fn (z1) is known
for all n from the first Taylor expansion about z0. The radius of convergence
of this second Taylor series is determined by the distance from z1 to the
nearest singular point s1. Continuing this way, as indicated in Fig. 3.2, we can
cover the whole complex plane except at the singular points s0, s1, s2, . . . .
In other words, the analytic function everywhere can be constructed from the
knowledge of the function in a small region. This process is called analytic
continuation.

An immediate consequence of analytic continuation is the so called identity
theorem. It states that if f(z) and g(z) are analytic and f (z) = g (z) along
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z0

z1

z2

z3

s0

s1

s3

s2

Fig. 3.2. Analytic Continuation. A series of Taylor expansions which analytically
continue a function originally known in the region around z0. The first expansion
about z0 is valid only inside the circle of radius |z0 − s0|, where s0 is the singular
point nearest to z0. The next Taylor expansion is around z1 which is inside the first
circle. The second Taylor expansion is limited by the singular point s1, and so on

a curve L in a region D, then f (z) = g (z) throughout D. We can show this
by considering the analytic function h (z) = f (z)− g (z) . If we can show that
h(z) is identically zero throughout the region, then the theorem is proved.

If we choose a point z = z0 on L, then we can expand h (z) in a Taylor
series about z0,

h (z) = h (z0) + h′ (z0) (z − z0) +
1
2!

h′′ (z0) (z − z0)
2 + · · · ,

which will converge inside the some circle that extends as far as the nearest
point of the boundary of D. But since z0 is on L, h (z0) = 0. Furthermore, the
derivatives of h must also be zero if z is approaching z0 along L. Since h (z)
is analytic, its derivatives are independent on the way how z is approaching
z0, this means

h′ (z0) = h′′ (z0) = · · · = 0.

Therefore, h (z) = 0 inside the circle. We may now expand about a new point,
which can lie anywhere inside the circle. Thus by analytic continuation, we
may show that h (z) = 0 throughout the region D.

3.2.4 Uniqueness of Taylor Series

If there are constants an (n = 0, 1, 2, . . .) such that

f (z) =
∞∑

n=0

an (z − z0)
n
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is convergent for all points z interior to some circle centered at z0, then this
power series must be the Taylor series, regardless of how those constants are
obtained. This is quite easy to show, since

f (z) = a0 + a1 (z − z0) + a2 (z − z0)
2 + a3 (z − z0)

3 + · · · ,

f ′ (z) = a1 + 2a2 (z − z0) + 3a3 (z − z0)
2 + 4a4 (z − z0)

3 + · · · ,

f ′′ (z) = 2a2 + 3 · 2a3 (z − z0) + 4 · 3 (z − z0)
2 + · · · ,

clearly

f (z0) = a0, f ′ (z0) = a1, f ′′ (z0) = 2a2, f ′′′ (z0) = 3 · 2a3, . . . .

It follows that:

an =
1
n!

f (n) (z0) ,

which are the Taylor coefficients. Thus, Taylor series is unique. Thus no matter
how the power series is obtained, if it is convergent in some circular region, it
is the Taylor series. The following examples illustrate some of the techniques
of expanding a function into its Taylor series.

Example 3.2.1. Find the Taylor series about the origin and its radius of con-
vergence for

(a) sin z, (b) cos z, (c) ez.

Solution 3.2.1. (a) Since f(z) = sin z,

f ′ (z) = cos z, f ′′ (z) = − sin z, f ′′′ (z) = − cos z, f4 (z) = sin z, . . . .

Hence

f (0) = 0, f ′ (0) = 1, f ′′ (0) = 0, f ′′′ (0) = −1, f4 (0) = 0, . . . .

Thus

sin z =
∞∑

n=0

1
n!

f (n) (0) zn

= z − 1
3!

z3 +
1
5!

z5 + · · · .

This series is valid for all z, since sin z is an entire function (analytic for the
entire complex plane).

(b) If f (z) = cos z, then

f ′ (z) = − sin z, f ′′ (z) = − cos z, f ′′′ (z) = sin z, f4 (z) = cos z, . . .
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f (0) = 1, f ′ (0) = 0, f ′′ (0) = −1, f ′′′ (0) = 0, f4 (0) = 1, . . . .

Therefore

cos z = 1 − 1
2!

z2 +
1
4!

z4 − · · · .

This series is also valid for all z.
(c) For f (z) = ez, then

f (n) (z) =
dn

dzn
ez = ezandf (n) (0) = 1.

It follows:

ez = 1 + z +
1
2!

z2 +
1
3!

z3 + · · · .

This series converges for all z, since ez is an entire function.

Example 3.2.2. Find the Taylor series about the origin and its radius of con-
vergence for

f (z) =
ez

cos z
.

Solution 3.2.2. The singular points of the function are at the zeros of the
denominator. Since cos π

2 = 0, the singular point nearest to the origin is at
z = ±π

2 . Therefore the Taylor series about the origin is valid for |z| < π
2 .

We can find the constants an of

ez

cos z
= a0 + a1z + a2z

2 + · · ·

from f (n) (0), but the repeated differentiations become increasingly tedious.
So we take the advantage of the fact that the Taylor series for ez and cos z
are already known. Replacing ez and cos z with their respective Taylor series
in the equation

ez =
(
a0 + a1z + a2z

2 + a3z
3 + · · ·

)
cos z,

we obtain

1 + z +
1
2!

z2 +
1
3!

z3 + · · · =
(
a0 + a1z + a2z

2 + a3z
3 + · · ·

)
(

1 − 1
2!

z2 +
1
4!

z4 − · · ·
)

.
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Multiplying out and collecting terms, we have

1 + z +
1
2!

z2 +
1
3!

z3+· · · = a0 + a1z +
(

a2−
1
2
a0

)
z2 +

(
a3−

1
2
a1

)
z3 + · · · .

Therefore

a0 = 1, a1 = 1, a2 −
1
2

a0 =
1
2
, a3 −

1
2

a1 =
1
3!

, . . .

It follows that:

a2 =
1
2

+
1
2

a0 = 1, a3 =
1
3!

+
1
2

a1 =
2
3
, . . .

and

ez

cos z
= 1 + z + z2 +

2
3

z3 + · · · , |z| <
π

2
.

Example 3.2.3. Find the Taylor series about z = 2 for

(a)
1
z
, (b)

1
z2

.

Solution 3.2.3. (a) The function 1/z has a singular point at z = 0, the
distance between this point and the expansion center is 2. Therefore the Taylor
series about z = 2 is convergent for |z − 2| < 2 and has the form

1
z

= a0 + a1(z − 2) + a2 (z − 2)2 + · · · .

We can write the function as

1
z

=
1

2 + (z − 2)
=

1
2

1
1 +

(
z−2
2

) .

For |z − 2| < 2,
∣∣ z−2

2

∣∣ < 1. Therefore we can use the geometric series (3.3)
to expand

1
1 +

(
z−2
2

) = 1 −
(

z − 2
2

)
+

(
z − 2

2

)2

−
(

z − 2
2

)3

+ · · · .

It follows that for |z − 2| < 2

1
z

=
1
2

[
1 −

(
z − 2

2

)
+

(
z − 2

2

)2

−
(

z − 2
2

)3

+
(

z − 2
2

)4

− · · ·
]

=
1
2
− 1

4
(z − 2) +

1
8

(z − 2)2 − 1
16

(z − 2)3 +
1
32

(z − 2)4 − · · · .
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(b) Since

1
z2

= − d
dz

1
z
,

therefore

1
z2

= − d
dz

(
1
2
− 1

4
(z − 2) +

1
8

(z − 2)2 − 1
16

(z − 2)3 +
1
32

(z − 2)4 − · · ·
)

=
1
4
− 1

4
(z − 2) +

3
16

(z − 2)2 − 1
8

(z − 2)3 + · · · .

Example 3.2.4. Find the Taylor series about the origin for

f (z) =
1

1 + z − 2z2
.

Solution 3.2.4. Since 1+z−2z2 = (1−z)(1+2z), the function f (z) has two
singular points at z = 1 and z = −1/2. The Taylor series expansion about
z = 0 will be convergent for |z| < 1

2 . Furthermore

1
1 + z − 2z2

=
1/3

1 − z
+

2/3
1 + 2z

.

For |z| < 1
2 and |2z| < 1

1
1 − z

= 1 + z + z2 + z3 + · · · ,

1
1 + 2z

= 1 − 2z + 4z2 − 8z3 + · · · .

Thus

f (z) =
1
3
(
1 + z + z2 + z3 + · · ·

)
+

2
3
(
1 − 2z + 4z2 − 8z3 + · · ·

)

= 1 − z + 3z2 − 5z3 + · · · .

Example 3.2.5. Find the Taylor series about the origin for

f (z) = ln (1 + z) .

Solution 3.2.5. First note that

d
dz

ln (1 + z) =
1

1 + z
,

and
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1
1 + z

= 1 − z + z2 − z3 + · · · ,

so

d ln (1 + z) =
(
1 − z + z2 − z3 + · · ·

)
dz.

Integrating both sides, we have

ln (1 + z) = z − 1
2
z2 +

1
3
z3 + · · · + k.

The integration constant k = 0, since at z = 0, ln(1) = 0. Therefore

ln (1 + z) = z − 1
2
z2 +

1
3
z3 + · · · .

This series converges for |z| < 1, since at z = −1, f (z) is singular.

3.3 Laurent Series

In many applications, it is necessary to expand functions around points at
which, or in the neighborhood of which, the functions are not analytic. The
method of Taylor series is obviously inapplicable in such cases. A new type of
series known as Laurent expansion is required. This series furnishes us with a
representation which is valid in the annular ring bounded by two concentric
circles, provided that the function being expanded is analytic everywhere on
and between the two circles.

Consider the annulus bounded by two circles of C0 and Ci with a common
center z0 as shown in Fig. 3.3a. The function f(z) is analytic inside the an-
nular region; however, there may be singular points inside the smaller circle

t t

z0 z0

z z
co

ci

c1

c2

c3

c4
rori

r

(a) (b)

Fig. 3.3. Annular region between two circles where the function is analytic and
the Laurent series is valid. Inside the inner circle and outside the outer circle, the
function may have singular points



118 3 Complex Series and Theory of Residues

or outside the larger circle. We can apply the Cauchy’s integral formula to
the region which is cut up as shown in Fig. 3.3b. The region is now simply
connected and is bounded by the curve C ′ = C1 + C2 + C3 + C4. Cauchy’s
integral formula is then

f(z) =
1

2πi

∮
C′

f(t)
t − z

dt

=
1

2πi

(∫
C1

f(t)
t − z

dt +
∫

C2

f(t)
t − z

dt +
∫

C3

f(t)
t − z

dt +
∫

C4

f(t)
t − z

dt

)
,

where t is on C ′ and z is a point inside C ′. Now let the gap between C2 and
C4 shrink to zero, then the integrals along C2 and C4 will cancel each other,
since they are oriented in the opposite directions, if f (z) is single valued.
Furthermore, the contour C1 becomes C0 and the contour C3 is identical to
Ci turning the opposite direction. Therefore

f(z) =
1

2πi

∮
C0

f(t)
t − z

dt − 1
2πi

∮
C

i

f(t)
t − z

dt, (3.9)

where C0 and Ci are both traversed in the counterclockwise direction. The
negative sign results because the direction of integration was reversed on Ci.

We can introduce z0, the common center of C0 and Ci, as the expansion
center. For the first integral in (3.9) with t on C0, we can write

1
t − z

=
1

t − z0 + z0 − z
=

1
(t − z0) − (z − z0)

=
1

(t − z0)
(
1 − z−z0

t−z0

) . (3.10)

Since t is on C0 and z is inside C0, as shown in Fig. 3.3a

∣∣∣∣z − z0

t − z0

∣∣∣∣ =
r

ro
< 1,

so we can expand
(
1 − z−z0

t−z0

)−1

with the geometric series of (3.2), and (3.10)
becomes

1
t − z

=
1

t − z0

[
1 +

z − z0

t − z0
+

(
z − z0

t − z0

)
+

(
z − z0

t − z0

)2

+
(

z − z0

t − z0

)3

+ · · ·
]

for t on C0. (3.11)
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For the second integral with t on Ci and z is between C0 and Ci, we can
write

1
t − z

= − 1
z − t

= − 1
z − z0 + z0 − t

= − 1
(z − z0) − (t − z0)

= − 1

(z − z0)
[
1 − t−z0

z−z0

] .

Since ∣∣∣∣ t − z0

z − z0

∣∣∣∣ =
ri

r
< 1

as shown in Fig. 3.3a, we can again expand
(

1 − t − z0

z − z0

)−1

with the geometric series, and write

1
t − z

= − 1
z − z0

[
1 +

t − z0

z − z0
+
(

t − z0

z − z0

)2

+
(

t − z0

z − z0

)3

+ · · ·
]

for t on Ci.

(3.12)
Putting (3.11) and (3.12) into (3.9), we have

f(z) = IC0 + ICi
,

where

IC0 =
1

2πi

∮
C0

f(t)
t − z0

[
1 +

z − z0

t − z0
+

(
z − z0

t − z0

)2

+
(

z − z0

t − z0

)3

+ · · ·
]

dt

=
1

2πi

∮
C0

f(t)
t − z0

dt +

(
1

2πi

∮
C0

f(t)
(t − z0)2

dt

)
(z − z0)

+

(
1

2πi

∮
C0

f(t)
(t − z0)3

dt

)
(z− z0)2+

(
1

2πi

∮
C0

f(t)
(t − z0)4

dt

)
(z−z0)3+· · ·

and

ICi
=

1
2πi

∮
C

i

f(t)
z − z0

[
1 +

t − z0

z − z0
+

(
t − z0

z − z0

)2

+
(

t − z0

z − z0

)3

+ · · ·
]

dt

=

(
1

2πi

∮
C

i

f(t)dt

)
1

z − z0
+

(
1

2πi

∮
C

i

f(t)(t − z0)dt

)
1

(z − z0)
2

+

(
1

2πi

∮
C

i

f(t)(t − z0)2dt

)
1

(z − z0)
3 + · · · .
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Therefore, in the region between Ci and C0, f(z) can be expressed as

f(z) =
∞∑

n=0

an(z − z0)n +
∞∑

k=1

bn
1

(z − z0)
k
,

where

an =
1

2πi

∮
C0

f(t)
(t − z0)n+1

dt, bk =
1

2πi

∮
Ci

f (t) (t − z0)
k−1 dt.

Because of the principle of deformation of contours, we can replace both Ci

and C0 by a closed contour C between Ci and C0 without changing the values
of the integrals. Thus we can write this series as

f(z) =
∞∑

n=−∞
an(z − z0)n,

with

an =
1

2πi

∮
C

f(t)
(t − z0)n+1

dt. (3.13)

This expansion is known as the Laurent series which contains both negative
and positive powers of (z − z0).

It should be noted that the coefficients of positive powers of (z−z0) cannot
be replaced by the derivative expressions, since f(z) is not analytic inside
C. However, if there is no singular point inside Ci, then these coefficients
can indeed be replaced by f (n)(z0)/n!, at the same time the coefficients of
the negative powers of (z − z0) are identically equal to zero by the Cauchy
theorem, since f(t)(t − z0)−n−1 for n ≤ −1 are analytic inside C. In such a
case, the Laurent expansion reduces to the Taylor expansion.

3.3.1 Uniqueness of Laurent Series

Just as Taylor series, Laurent series is unique. If a series

∞∑
n=−∞

an (z − z0)
n =

∞∑
n=1

a−n

(z − z0)
n +

∞∑
n=0

an (z − z0)
n

converges to f (z) at all points in some annular domain about z0, then regard-
less how the constants an are obtained, the series is the Laurent expansion
for f (z) in powers of (z − z0) for that domain. This statement is proved if we
can show that

an =
1

2πi

∮
C

f (t)
(t − z0)

n+1 dt. (3.14)
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We now show that this is indeed the case. Let gk (t) be defined as

gk (t) =
1

2πi
1

(t − z0)
k+1

,

where k is an integer, either positive or negative, or zero. Furthermore let C
be a circle inside the annulus centered at z0 and taken in the counterclockwise
direction, so ∮

C

gk (t) f (t) dt =
1

2πi

∮
C

f (t)

(t − z0)
k+1

dt. (3.15)

Now if f (t) is expressible as

f (t) =
∞∑

n=−∞
an (t − z0)

n
,

then ∮
C

gk (t) f (t) dt =
1

2πi

∮
C

1

(t − z0)
k+1

( ∞∑
n=−∞

an (t − z0)
n

)
dt

=
∞∑

n=−∞
an

1
2πi

∮
C

1

(t − z0)
k−n+1

dt.

The last integral can be easily evaluated by setting t−z0 = reiθ, so dt = ireiθdθ
and ∮

C

1

(t − z0)
k−n+1

dt =
∫ 2π

0

ireiθ

rk−n+1ei(k−n+1)θ
dθ (3.16)

=
i

rk−n

∫ 2π

0

ei(n−k)dθ = 2πiδnk =
{

0 n �= k,
2πi n = k.

Thus ∮
C

gk (t) f (t) dt =
∞∑

n=−∞
an

1
2πi

2πiδnk = ak. (3.17)

It follows from (3.15) that:

ak =
1

2πi

∮
C

f (t)

(t − t0)
k+1

dt. (3.18)

Since k is an arbitrary integer, (3.14) must hold.
Thus no matter how the expansion is obtained, as long as it is valid in the

specified annular domain, it is the Laurent series. This enables us to deter-
mine the Laurent coefficients with elementary techniques, as illustrated in the
following examples. The integral representations of the Laurent coefficients
(3.18) are important, not as means of finding the coefficients, but as means of
using the coefficients to evaluate these integrals. We will elaborate this aspect
of the Laurent series in following sections on the theory of residues.
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Example 3.3.1. Find the Laurent series about z = 0 for the function

f (z) = e1/z.

Solution 3.3.1. Since f(z) is analytic for all z, except for z = 0, the
expansion of f(z) about z = 0 will be a Laurent series valid in the annulus
0 < |z| < ∞. To obtain the expansion, let 1/z = t, and note

et = 1 + t +
1
2!

t2 +
1
3!

t3 + · · · .

Therefore

e1/z = 1 +
1
z

+
1
2!

(
1
z

)2

+
1
3!

(
1
z

)3

+ · · · .

Example 3.3.2. Find all possible Laurent expansions about z = 0 of

f (z) =
1 + 2z2

z3 + z5
,

and specify the regions in which they are valid.

Solution 3.3.2. By setting the denominator to zero z3+z5 = z3
(
1 + z2

)
= 0,

We get three singular points, z = 0, and z = ±i. They are shown in Fig. 3.4.
Therefore we can expand the function about z = 0 in two different Laurent
series, one is valid for the region 0 < |z| < 1 as shown in (a), the other is valid
in the region |z| > 1 as shown in (b).

The function can be written as

f (z) =
1 + 2z2

z3 + z5
=

1 + 2z2

z3(1 + z2)
=

2(1 + z2) − 1
z3(1 + z2)

=
1
z3

(
2 − 1

1 + z2

)
.

1 11

i ii

−i -i-i-i

i

1

(b)(a)

−i

Fig. 3.4. If the function has three singular points at z = 0 and z = ±i, then the
function can be expanded into two different Laurent series about z = 0. (a) One
series is valid in the region 0 < |z| < 1, (b) the other series is valid in the region
1 < |z|
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In the case of (a), |z| < 1, so is
∣∣z2

∣∣ < 1. We can use the geometric series to
express

1
1 + z2

= 1 − z2 + z4 − z6 + · · · .

Therefore

f (z) =
1
z3

(
2 −

[
1 − z2 + z4 − z6 + · · ·

])

=
1
z3

+
1
z
− z + z3 + · · · for 0 < |z| < 1.

In the case of (b),
∣∣z2

∣∣ > 1, we first write

1
1 + z2

=
1

z2
(
1 + 1

z2

) .

Since
∣∣ 1
z2

∣∣ < 1, again we can use the geometric series

1(
1 + 1

z2

) = 1 − 1
z2

+
1
z4

− 1
z6

+ · · · .

Thus

f (z) =
1
z3

(
2 − 1

z2

[
1 − 1

z2
+

1
z4

− 1
z6

+ · · ·
])

=
2
z3

− 1
z5

+
1
z7

− 1
z9

+ · · · , for |z| > 1.

Example 3.3.3. Find the Laurent series expansion of

f(z) =
1

z2 − 3z + 2

valid in each of the shaded regions shown in Fig. 3.5.

Solution 3.3.3. First we note that z2−3z+2 = (z−2)(z−1), so the function
has two singular points at z = 2 and z = 1. Taking the partial fraction, we
have

f(z) =
1

z2 − 3z + 2
=

1
(z − 2)(z − 1)

=
1

z − 2
− 1

z − 1
.
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(b)(a)

2

2 2

2

(c) (d)

11 2

1 1 2

1

Fig. 3.5. The function with two singular points at z = 1 and z = 2 can be expanded
into different Laurent series in different regions: (a) expanded about z = 0 valid in
the region 1 < |z| < 2, (b) expanded about z = 0 valid in the region 2 < |z|, (c)
expanded about z = 1 valid in the region 0 < |z − 1| < 1, (d) expanded z = 2 valid
in the region 1 < |z − 2|

(a) In this case, we have to expand around z = 0, so we are seeking a series
in the form of

f(z) =
∞∑

n=−∞
anzn.

The values of |z| between the two circles are such that 1 < |z| < 2. To make
use of the basic geometric series, we write

1
z − 2

= − 1
2(1 − z

2 )
.

Since |z/2| < 1, so

1
z − 2

= −1
2

[
1 +

z

2
+

(z

2

)2

+
(z

2

)3

+ · · ·
]

= −1
2
− z

4
− z2

8
− z3

16
− · · · .

As for the second fraction, we note that |z| > 1, so |1/z| < 1. Therefore we
write
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− 1
z − 1

= − 1
z(1 − 1

z )

= −1
z

[
1 +

1
z

+
(

1
z

)2

+
(

1
z

)3

+ · · ·
]

= −1
z
− 1

z2
− 1

z3
− 1

z4
− · · · .

Thus the Laurent series in region (a) is

f(z) = · · · − 1
z3

− 1
z2

− 1
z
− 1

2
− z

4
− z2

8
− z3

16
− · · · .

(b) Again the expansion center is at the origin, but in region (b) |z| > 2. So
we expand the first fraction as

1
z − 2

=
1

z
(
1 − 2

z

)

=
1
z

[
1 +

2
z

+
(

2
z

)2

+
(

2
z

)3

+ · · ·
]

=
1
z

+
2
z2

+
4
z3

+
8
z4

+ · · · .

Note that the expansion of the second fraction we worked out in part (a) is
still valid in this case

− 1
z − 1

= −1
z
− 1

z2
− 1

z3
− 1

z4
− · · · .

Thus the Laurent series in region (b) is the sum of these two expressions

f(z) =
1

z − 2
− 1

z − 1

=
1
z2

+
3
z3

+
7
z4

+ · · · .

(c) In this region, we are expanding around z = 1, so we are seeking a series
of the form

f(z) =
∞∑

n=−∞
an(z − 1)n.

Since in this region 0 < |z − 1| < 1, so we choose to write the function as

f(z) =
1

(z − 1)(z − 2)
=

1
(z − 1) [(z − 1) − 1]

= − 1
(z − 1) [1 − (z − 1)]

,
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and use the geometric series for

1
1 − (z − 1)

= 1 + (z − 1) + (z − 1)2 + (z − 1)3 + · · ·

Therefore the desired Laurent series valid in region (c) is

f(z) = − 1
(z − 1)

(
1 + (z − 1) + (z − 1)2 + (z − 1)3 + · · ·

)

= − 1
(z − 1)

− 1 − (z − 1) − (z − 1)2 − · · · .

(d) In this region we are seeking an expansion about z = 2 in form of

f(z) =
∞∑

n=−∞
an(z − 2)n.

that is valid for |z − 2| > 1. So we choose to write the function as

f(z) =
1

(z − 1)(z − 2)
=

1
[(z − 2) + 1](z − 2)

=
1

(z − 2)2
[
1 + 1

z−2

] .

Since
∣∣∣ 1
z−2

∣∣∣ < 1, we can use the geometric series for

[
1 +

1
z − 2

]−1

= 1 − 1
(z − 2)

+
1

(z − 2)2
− 1

(z − 2)3
+ · · · .

Therefore the desired Laurent series valid in region (d) is

f(z) =
1

(z − 2)2

(
1 − 1

(z − 2)
+

1
(z − 2)2

− 1
(z − 2)3

+ · · ·
)

=
1

(z − 2)2
− 1

(z − 2)3
+

1
(z − 2)4

− 1
(z − 2)5

+ · · · .

3.4 Theory of Residues

3.4.1 Zeros and Poles

Zeros

If f (z0) = 0, then the point z0 is said to be a zero of the function f (z) . If
f (z) is analytic at z0, then we can expand it in a Taylor series
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f(z) =
∞∑

n=0

an(z − z0)n = a0 + a1(z − z0) + a2(z − z0)2 + · · · .

Since z0 is a zero of the function, clearly a0 = 0. If a1 �= 0, then z0 is said to
be a simple zero. If both a0 and a1 are zero and a2 �= 0, then z0 is a zero of
order two, and so on.

If f (z) has a zero of order m at z0, that is, a0, a1, . . . , am−1 are all zero
and am �= 0, then f (z) can be written as

f (z) = (z − z0)
m

g (z) ,

where

g (z) = am + am+1 (z − z0) + am+2(z − z0)2 + · · · .

It is clear that g (z) is analytic (therefore continuous) at z0, and g (z0) = am �=
0. It follows that in the immediate neighborhood of z0, there is no other zero,
because g (z) cannot suddenly drop to zero, since it is continuous. Therefore
there exists a disk of finite radius δ surrounds z0, within which g (z) �= 0. In
other words,

f (z) �= 0 for 0 < |z − z0| < δ.

In this sense, z0 is said to be an isolated zero of f (z) .

Isolated Singularities

As we recall, a singularity of a function f (z) is a point at which f (z) is not
analytic. A point at which f (z) is analytic is called a regular point. A point
z0 is said to be an isolated singularity of f (z) if there exists a neighborhood
of z0 in which z0 is the only singular point of f (z) . For example, a rational
function P (z) /Q (z), (the ratio of two polynomials), is analytic everywhere
except at zeros of Q (z) . If all the zeros of Q (z) are isolated, then all the
singularities of P (z) /Q (z) are isolated.

Poles

If f(z) has an isolated singular point at z0, then in the immediate neighbor-
hood of z0, f (z) can be expanded in a Laurent series

f(z) =
∞∑

n=0

an(z − z0)n +
a−1

(z − z0)
+

a−2

(z − z0)
2 +

a−3

(z − z0)
3 + · · · .

The portion of the series involving negative powers of (z − z0) is called the
principal part of f (z) at z0. If the principal part contains at least one nonzero
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term but the number of such terms are finite, then there exists an integer m
such that

a−m �= 0 and a−(m+1) = a−(m+2) = · · · = 0.

That is, the expansion takes the form

f(z) =
∞∑

n=0

an(z − z0)n +
a−1

(z − z0)
+

a−2

(z − z0)
2 + · · · + a−m

(z − z0)
m ,

where a−m �= 0. In this case, the isolated singular point z0 is called a pole of
order m. A pole of order one is usually referred to as a simple pole.

If an infinite number of coefficients of negative powers are nonzero, then
z0 is called an essential singular point.

3.4.2 Definition of the Residue

If z0 is an isolated singular point of f (z), then the function f(z) is analytic
in the neighborhood of z = z0 with the exception of the point z = z0 itself. In
the immediate neighborhood of z0, f(z) can be expanded in a Laurent series

f(z) =
∞∑

n=−∞
an(z − z0)n. (3.19)

The coefficients an are expressed in terms of contour integrals of (3.13). Among
the coefficients, a−1 is of particular interest,

a−1 =
1

2πi

∮
C

f(z) dz, (3.20)

where C is a closed contour in the counterclockwise direction around z0. It is
the coefficient of (z − z0)−1 term in the expansion, and is called the residue
of f (z) at the isolated singular point z0. We emphasize once again, for a−1 of
(3.20) to be called the residue at z0, the closed contour C must not contain
any singularity other than z0. We shall denote this residue as

a−1 = Resz=z0 [f (z)] .

The reason for the name “residue” is that if we integrate the Laurent
series term by term over a circular contour, the only term which survives the
integration process is the a−1 term. This follows from (3.19) that

∮
f (z) dz =

∞∑
n=−∞

an

∮
(z − z0)ndz.

These integrals can be easily evaluated by setting z − z0 = reiθ and dz =
ireiθdθ,
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∮
(z − z0)ndz =

∫ 2π

0

irn+1ei(n+1)θdθ =
{

0 n �= −1
2πi n = −1.

Thus, only the term with n = −1 is left. The coefficient of this term is called
the residue

1
2πi

∮
f (z) dz = a−1.

3.4.3 Methods of Finding Residues

Residues are defined in (3.20). In some cases, we can carry out this integral
directly. However, in general, residues can be found by much easier methods.
It is because of these methods, residues are so useful.

Laurent Series

If it is easy to write down the Laurent series for f (z) about z = z0 that is valid
in the immediate neighborhood of z0, then the residue is just the coefficient
a−1 of the term 1/ (z − z0) . For example

f (z) =
3

z − 2

is already in the form of a Laurent series about z = 2 with a−1 = 3 and an = 0
for n �= −1. Therefore the residue at 2 is simply 3.

It is also easy to find the residue of exp(1/z2) at z = 0, since

e1/z2
= 1 +

1
z2

+
1
2

1
z4

+
1
3!

1
z6

+ · · · .

There is no 1/z term, therefore the residue is equal to zero.

Simple Pole

Suppose that f(z) has a simple, or first-order, pole at z = z0, so we can write

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + · · · .

If we multiply this identity by (z − z0), we get

(z − z0)f(z) = a−1 + a0(z − z0) + a1(z − z0)2 + · · · .
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Now if we let z approach z0, we obtain for the residue

a−1 = lim
z→a

(z − z0)f(z).

For example, if

f(z) =
4 − 3z

z(z − 1)(z − 2)
,

the residue at z = 0 is

Resz=0 [f (z)] = lim
z→0

z
4 − 3z

z(z − 1)(z − 2)
=

4
(−1) (−2)

= 2,

the residue at z = 1 is

Resz=1 [f (z)] = lim
z→1

(z − 1)
4 − 3z

z(z − 1)(z − 2)
=

4 − 3
1 (−1)

= −1,

and the residue at z = 2 is

Resz=2 [f (z)] = lim
z→2

(z − 2)
4 − 3z

z(z − 1)(z − 2)
=

4 − 6
2 (1)

= −1.

These results can also be understood in terms of partial fractions. It can
be readily verified that

f(z) =
4 − 3z

z(z − 1)(z − 2)
=

2
z

+
−1

z − 1
+

−1
z − 2

.

In the region |z| < 1, both −1
z−1 and −1

z−2 are analytic. Therefore they can be
expressed in terms of Taylor series, which has no negative power terms. Thus,
the Laurent series of f(z) about z = 0 in the region 0 < |z| < 1 is of the form

f(z) =
2
z

+ a0 + a1z + a2z
2 + · · · .

It is seen that a−1 comes solely from the first term. Therefore the residue at
z = 0 must equal to 2.

Similarly, the Laurent series of f(z) about z = 1 in the region 0< |z−1|< 1
is of the form

f(z) =
−1

z − 1
+ a0 + a1(z − 1) + a2(z − 1)2 + · · · .

Hence a−1 is equal to −1. For the same reason, the residue at z = 2 comes
from the term −1

z−2 , and is clearly equal to −1.
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Multiple-Order Pole

If f(z) has a third-order pole at z = z0, then

f(z) =
a−3

(z − z0)3
+

a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · · .

To obtain the residue a−1, we must multiply this identity by (z − a)3

(z − z0)3f(z) = a−3 + a−2(z − z0) + a−1(z − z0)2 + a0(z − z0)3 + · · ·

and differentiate twice with respect to z

d
dz

[(z − z0)3f(z)] = a−2 + 2a−1(z − z0) + 3a0(z − z0)2 + · · · ,

d2

dz2
[(z − z0)3f(z)] = 2a−1 + 3 · 2a0 (z − z0) + · · · .

Next we let z approach z0

lim
z→z0

d2

dz2
[(z − z0)3f(z)] = 2a−1,

and finally divide it by 2,

1
2

lim
z→z0

d2

dz2
[(z − z0)3f(z)] = a−1.

Thus, if f(z) has a pole of order m at z = z0, then the residue of f(z) at
z = z0 is

Resz=z0 [f (z)] =
1

(m − 1)!
lim

z→z0

dm−1

dzm−1
[(z − a)mf(z)].

For example,

f (z) =
1

z (z − 2)4

clearly has a fourth order pole at z = 2. Thus

Resz=2 [f (z)] =
1
3!

lim
z→2

d3

dz3

[
(z − 2)4

1
z (z − 2)4

]

=
1
6

lim
z→2

d3

dz3

1
z

=
1
6

lim
z→2

(−1) (−2) (−3)
z4

= − 1
16

.

To check this result, we can expand f (z) in a Laurent series about z = 2 in
the region 0 < |z − 2| < 2. For this purpose, let us write f (z) as

f (z) =
1

z (z − 2)4
=

1
(z − 2)4

1
[2 + (z − 2)]

=
1

2 (z − 2)4
1(

1 + z−2
2

) .
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Since
∣∣ z−2

2

∣∣ < 1, so we have

f (z) =
1

2 (z − 2)4

[
1 − z − 2

2
+

(
z − 2

2

)2

−
(

z − 2
2

)3

+ · · ·
]

=
1
2

1
(z − 2)4

− 1
4

1
(z − 2)3

+
1
8

1
(z − 2)2

− 1
16

1
(z − 2)

+
1
32

− · · · .

It is seen that the coefficient of the (z − 2)−1 is indeed −1/16.

Derivative of the Denominator

If p(z) and q(z) are analytic functions, and q (z) has a simple zero at z0 and
p(z0) �= 0, then

f(z) =
p(z)
q(z)

has a simple pole at z0. As q(z) is analytic, so it can be expressed as a Taylor
series about z0

q(z) = q (z0) + q′(z0)(z − z0) +
q′′(z0)

2!
(z − z0)2 + · · · .

But it has a zero at z0, so q(z0) = 0, and

q(z) = q′(z0)(z − z0) +
q′′(z0)

2!
(z − z0)2 + · · · .

Since f(z) has a simple pole at z0, its residue at z0 is

Resz=z0 [f (z)] = lim
z→z0

(z − z0)
p(z)
q(z)

= lim
z→z0

(z − z0)
p(z)

q′(z0)(z − z0) + q′′(z0)
2! (z − z0)2 + · · ·

=
p(z0)
q′(z0)

.

This formula is very often the most efficient way of finding the residue.
For example, the function

f (z) =
z

z4 + 4

has four simple poles, located at the zeros of the denominator

z4 + 4 = 0.
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The four roots of this equation are

z1 =
√

2eiπ/4 = 1 + i,
z2 =

√
2ei(π/4+π/2) = −1 + i,

z3 =
√

2ei(π/4+π) = −1 − i,
z4 =

√
2ei(π/4+3π/2) = 1 − i.

The residues at z1, z2, z3, and z4 are

Resz=z1 [f (z)] = lim
z→z1

z

(z4 + 4)′
= lim

z→z1

z

4z3
= lim

z→z1

1
4z2

= lim
z→(1+i)

1
4z2

=
1

4 (1 + i)2
= −1

8
i,

Resz=z2 [f (z)] = lim
z→(−1+i)

1
4z2

=
1

4 (−1 + i)2
=

1
8
i,

Resz=z3 [f (z)] = lim
z→(−1−i)

1
4z2

=
1

4 (−1 − i)2
= −1

8
i,

Resz=z4 [f (z)] = lim
z→(1−i)

1
4z2

=
1

4 (1 − i)2
=

1
8
i.

It can be readily verified that

z

z4 + 4
=

−i/8
z − (1 + i)

+
i/8

z − (−1 + i)
+

−i/8
z − (−1 − i)

+
i/8

z − (1 − i)
.

Therefore the calculated residues must be correct.

3.4.4 Cauchy’s Residue Theorem

Consider a simple closed curve C containing in its interior a number of isolated
singular points, z1, z2, . . . , of a function f(z). If around each singular point
we draw a circle so small that it encloses no other singular points as shown in
Fig. 3.6, so f(z) is analytic in the region between C and these small circles.
Then introducing cuts as in the proof of Laurent series, we find by the Cauchy
theorem that the integral around C counterclockwise plus the integral around
the small circles clockwise is zero, since the integrals along the cuts cancel.
Thus

1
2πi

∮
C

f(z)dz − 1
2πi

∮
C1

f(z)dz + · · · − 1
2πi

∮
Cn

f(z)dz = 0,

where all integrals are counterclockwise, the minus sign is to account for the
clockwise direction of the small circles. It follows that:

1
2πi

∮
C

f(z)dz =
1

2πi

∮
C1

f(z)dz + · · · + 1
2πi

∮
Cn

f(z)dz.
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c1

c2

cN

c

z1

z2

zN

Fig. 3.6. The circles C1, C2, . . . , CN enclosing, respectively, the singular points
z1, z2, . . . , zN within a simple closed curve

The integrals on the right are, by definition, just the residues of f(z) at the
various isolated singularities within C. Hence we have established the impor-
tant residue theorem:

If there are n number of singular points of f(z) inside the contour C, then
∮

C

f(z)dz = 2πi {Resz=z1 [f (z)] + Resz=z2 [f (z)] + · · · + Resz=zn
[f (z)]} .

(3.21)
This theorem is known as Cauchy’s residue theorem or just the residue
theorem.

3.4.5 Second Residue Theorem

If the number of singular points inside the enclosed contour C is too large, or
there are nonisolated singular points interior in C, it will be difficult to carry
out the contour integration with the Cauchy’s residue theorem. For such cases,
there is another residue theorem that is more efficient.

Suppose f (z) has many singular points in C and no singular point outside
of C, as shown in Fig. 3.7.

If we want to evaluate the integral
∮

C
f (z) dz, we can first construct a

circular contour CR outside of C, centered at the origin with a radius R.
Then by the principle of deformation of contours∮

C

f (z) dz =
∮

CR

f (z) dz.

Now if we expand f (z) in terms of Laurent series about z = 0 in the region
|z| > R,

f (z) = · · · + a−3

z3
+

a−2

z2
+

a−1

z
+ a0 + a1z + a2z

2 + · · · ,

the coefficient a−1 is given by the integral
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C
CR

R

Fig. 3.7. If the number of singularities enclosed in C is too large, then it is more
convenient to replace the contour C with a large circular contour CR centered at
the origin

a−1 =
1

2πi

∮
CR

f (z) dz.

Note that a−1 in this equation is not the residue of f (z) about z = 0, because
the series is not valid in the immediate neigborhood of z = 0. However, if we
change z to 1/z, then

f

(
1
z

)
= · · · + a−3z

3 + a−2z
2 + a−1z + a0 +

a1

z
+

a2

z2
+ · · · ,

is convergent for |z| < 1/R. It is seen that a−1 is the residue at z = 0 of the
function 1

z2 f
(

1
z

)
, since

1
z2

f

(
1
z

)
= · · · + a−3z + a−2 +

a−1

z
+

a0

z2
+

a1

z3
+ · · · ,

is a Laurent series valid in the region 0 < |z| < 1
R . Hence we arrived at the

following theorem.
If f(z) is analytic everywhere except for a number of singular points inte-

rior to a positive oriented closed contour C, then∮
C

f (z) dz = 2πi Resz=0

[
1
z2

f

(
1
z

)]
.

Example 3.4.1. Evaluate the integral
∮

C
f (z) dz for

f(z) =
5z − 2

z(z − 1)
,

where C is along the circle |z| = 2 in the counterclockwise direction. (a) Use
the Cauchy residue theorem. (b) Use the second residue theorem.
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Solution 3.4.1. (a) The function has two single poles at z = 0, z = 1. Both
lie within the circle |z| = 2. So∮

C

f (z) dz = 2πi {Resz=0[f (z)] + Resz=1[f (z)]} .

Since

Resz=0[f (z)] = lim
z→0

z
5z − 2

z(z − 1)
=

−2
−1

= 2,

Resz=1[f (z)] = lim
z→1

(z − 1)
5z − 2

z(z − 1)
=

3
1

= 3,

thus ∮
C

f (z) dz = 2πi (2 + 3) = 10πi.

If C is in the clockwise direction, the answer would be −10πi.

(b) According to the second residue theorem
∮

C

f (z) dz = 2πi Resz=0

[
1
z2

f

(
1
z

)]
.

Now

f

(
1
z

)
=

5/z − 2
1/z(1/z − 1)

=
(5 − 2z)z

1 − z
,

1
z2

f

(
1
z

)
=

5 − 2z

z (1 − z)
,

which has a simple pole at z = 0. Thus

Resz=0

[
1
z2

f

(
1
z

)]
= lim

z→0
z

5 − 2z

z (1 − z)
=

5
1

= 5.

Therefore ∮
C

f (z) dz = 2πi · 5 = 10πi.

Not surprisingly, this is the same result obtained in (a).

Example 3.4.2. Find the value of the integral∮
C

dz

z3 (z + 4)

taken counterclockwise around the circle (a) |z| = 2, (b) |z + 2| = 3.
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Solution 3.4.2. (a) The function has a third-order pole at z = 0 and a
simple pole at z = −4. Only z = 0 is inside the circle |z| = 2. Therefore

∮
C

dz

z3 (z + 4)
= 2πi Resz=0[f (z)].

For the third-order pole,

Resz=0[f (z)] =
1
2!

lim
z→0

d2

dz2
z3 1

z3 (z + 4)
=

1
2

lim
z→0

2
(z + 4)3

=
1
64

.

Therefore ∮
C

dz

z3 (z + 4)
= 2πi

1
64

=
π

32
i.

(b) For the circle |z + 2| = 3, the center is at z = −2 and the radius is 3.
Both singular points are inside the circle. Thus

∮
C

dz

z3 (z + 4)
= 2πi {Resz=0[f (z)] + Resz=−4[f (z)]} .

Since

Resz=−4[f (z)] = lim
z→−4

(z + 4)
1

z3 (z + 4)
=

1
(−4)3

= − 1
64

,

so ∮
C

dz

z3 (z + 4)
= 2πi

{
1
64

− 1
64

}
= 0.

Example 3.4.3. Find the value of the integral
∮

C

tan πzdz

taken counterclockwise around the unit circle |z| = 1.

Solution 3.4.3. Since

f (z) = tan πz =
sin πz

cos πz
,

and

cos
2n + 1

2
π = 0, for n = . . . ,−2,−1, 0, 1, 2, . . . ,

therefore z = (2n + 1)/2 are zeros of cos πz. Expanding cosπz about any of
these zeros in Taylor series, one can readily see that f (z) has a simple pole at
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each of these singular points. Among them, z = 1/2 and z = − 1/2 are inside
|z| = 1. Hence∮

C

tan πzdz = 2πi
{
Resz=1/2[f (z)] + Resz=−1/2[f (z)]

}
.

The simplest way to find these residues is by the “derivative of the denomi-
nator” method,

Resz=1/2[f (z)] =
[

sin πz

(cos πz)′

]
z= 1

2

=
[

sinπz

−π sinπz

]
z= 1

2

= − 1
π

,

Resz=−1/2[f (z)] =
[

sin πz

(cos πz)′

]
z=− 1

2

=
[

sin πz

−π sinπz

]
z=− 1

2

= − 1
π

.

Therefore ∮
C

tan πzdz = 2πi
{
− 1

π
− 1

π

}
= −4i.

Example 3.4.4. Evaluate the integral
∮

C
f (z) dz for

f(z) = z2 exp
(

1
z

)
,

where C is counterclockwise around the unit circle |z| = 1.

Solution 3.4.4. The function f (z) has an essential singularity at z = 0. Thus
∮

C

z2 exp
(

1
z

)
dz = 2πi Resz=0[f (z)].

The residue is simply the coefficient of the z−1 term in the Laurent series
about z = 0,

z2 exp
(

1
z

)
= z2

(
1 +

1
z

+
1
2!

1
z2

+
1
3!

1
z3

+
1
4!

1
z4

+ · · ·
)

= z2 + z +
1
2

+
1
3!

1
z

+
1
4!

1
z2

+ · · · .

Therefore

Resz=0[f (z)] =
1
3!

=
1
6
.

Hence ∮
C

z2 exp
(

1
z

)
dz = 2πi

1
6

=
π

3
i.
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Example 3.4.5. Evaluate the integral
∮

C
f (z) dz for

f(z) =
z99 exp

(
1
z

)
z100 + 1

,

where C is counterclockwise around the circle |z| = 2.

Solution 3.4.5. There are 100 singular points located on the circumference
of the unit circle |z| = 1 and an essential singular point at z = 0. Obviously
the second residue theorem is more convenient. That is,

∮
C

f (z) dz = 2πi Resz=0

[
1
z2

f

(
1
z

)]
.

Now

f

(
1
z

)
=

(1/z)99 exp (z)
(1/z)100 + 1

=
z exp (z)
1 + z100

,

1
z2

f

(
1
z

)
=

exp (z)
z(1 + z100)

.

So

Resz=0

[
1
z2

f

(
1
z

)]
= lim

z→0
z

exp (z)
z(1 + z100)

= 1.

Therefore
∮

C

z99 exp
(

1
z

)
z100 + 1

dz = 2πi.

Example 3.4.6. (a) Show that if z = 1 and z = 2 are inside the closed contour
C, then

∮
C

1
(z − 1) (z − 2)

dz = 0.

(b) Show that if all the singular points s1, s2, . . . , sn of the following function

f (z) =
1

(z − s1) (z − s2) · · · (z − sn)

are inside the closed contour C, then

I =
∮

C

f (z) dz = 0.
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Solution 3.4.6. (a) Taking partial fraction, we have

1
(z − 1) (z − 2)

=
A

(z − 1)
+

B

(z − 2)
.

So ∮
C

1
(z − 1) (z − 2)

dz =
∮

C

A

(z − 1)
dz +

∮
C

B

(z − 2)
dz

= 2πi (A + B) .

Since
A

(z − 1)
+

B

(z − 2)
=

A (z − 2) + B (z − 1)
(z − 1) (z − 2)

=
(A + B)z − (2A + B)

(z − 1) (z − 2)

and
(A + B)z − (2A + B)

(z − 1) (z − 2)
=

1
(z − 1) (z − 2)

,

it follows that:

A + B = 0.

Therefore ∮
C

1
(z − 1) (z − 2)

dz = 0.

(b) The partial fraction of f (z) is of the form

1
(z − s1) (z − s2) · · · (z − sn)

=
r1

(z − s1)
+

r2

(z − s2)
+ · · · + rn

(z − sn)
.

Therefore∮
C

f (z) dz =
∮

C

r1

(z − s1)
dz +

∮
C

r2

(z − s2)
dz + · · · +

∮
C

rn

(z − sn)
dz

= 2πi (r1 + r2 + · · · + rn) .

Now
r1

(z − s1)
+

r2

(z − s2)
+ · · · + rn

(z − sn)
=

(r1 + r2 + · · · + rn) zn−1 + · · ·
(z − s1) (z − s2) · · · (z − sn)

,

and
(r1 + r2 + · · · + rn) zn−1 + · · ·
(z − s1) (z − s2) · · · (z − sn)

=
1

(z − s1) (z − s2) · · · (z − sn)
.

Since the numerator of the right-hand side has no zn−1 term, therefore

(r1 + r2 + · · · + rn) = 0,

and ∮
C

1
(z − s1) (z − s2) · · · (z − sn)

dz = 0.
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3.5 Evaluation of Real Integrals with Residues

A very surprising fact is that we can use the residue theorem to evaluate
integrals of real variable. For certain classes of complicated real integrals,
residue theorem offers a simple and elegant way of carrying out the integration.

3.5.1 Integrals of Trigonometric Functions

Let us consider the integral of the type

I =
∫ 2π

0

F (cos θ, sin θ)dθ.

If we make the substitution

z = eiθ,
dz

dθ
= ieiθ = iz,

then

cos θ =
1
2
(eiθ + e−iθ) =

1
2

(
z +

1
z

)
,

sin θ =
1
2i

(eiθ − e−iθ) =
1
2i

(
z − 1

z

)
,

and

dθ =
1
iz

dz.

The given integral takes the form

I =
∮

C

f(z)
dz

iz
,

the integration being taken counterclockwise around the unit circle centered
at z = 0.

We illustrate this method with following examples.

Example 3.5.1. Show that

I =
∫ 2π

0

dθ√
2 − cos θ

= 2π.
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Solution 3.5.1. With the transformation just discussed we can write the
integral as

I =
∮

C

dz[√
2 − 1

2

(
z + 1

z

)]
iz

=
∮

C

−2 dz

i(z2 − 2
√

2z + 1)

= −2
i

∮
C

dz

(z −
√

2 − 1)(z −
√

2 + 1)
.

The integrand has two simple poles. The one at
√

2 + 1 lies outside the unit
circle and is thus of no interest. The one at

√
2 − 1 is inside the unit circle,

and the residue at that point is

Resz=
√

2−1 [f (z)] = lim
z→

√
2−1

(z −
√

2 + 1)
1

(z −
√

2 − 1)(z −
√

2 + 1)
= −1

2
.

Thus

I = −2
i
2πi

(
−1

2

)
= 2π.

Example 3.5.2. Evaluate the integral

I =
∫ π

0

dθ

a − b cos θ
, a > b > 0.

Solution 3.5.2. Since the integrand is symmetric about θ = π, so we can
extend the integration interval to [0, 2π],

I =
1
2

∫ 2π

0

dθ

a − b cos θ
,

which can be written as an integral around an unit circle in the complex plane

I =
1
2

∮
1

a − b 1
2 (z + 1

z )
dz

iz
=

∮
1

2az − bz2 − b

dz

i
.

Now ∮
1

2az − bz2 − b

dz

i
= − 1

bi

∮
1

z2 − 2a
b z + 1

dz,

taking this seemingly trivial step of making the coefficient of z2 to be 1 can
actually avoid many pitfalls of what follows. The singular points of the inte-
grand are at the zeros of the denominator,

z2 − 2a

b
z + 1 = 0.
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Let z1 and z2 be the roots of this equation. They are easily found to be

z1 =
1
b

(
a −

√
a2 − b2

)
, z2 =

1
b

(
a +

√
a2 − b2

)
.

Since

(z − z1)(z − z2) = z2 − (z1 + z2) + z1z2 = z2 − 2a

b
z + 1,

it follows that:

z1z2 = 1.

This means that one root must be greater than 1, and the other less than 1.
Furthermore, z1 < z2, z1 must be less than 1 and z2 greater than 1. Therefore
only z1 is inside the unit circle. Thus

∮
dz

(z − z1) (z − z2)
= 2πi Resz=z1 [f(z)]

= 2πi lim
z→z1

(z − z1)
1

(z − z1) (z − z2)
= 2πi

1
(z1 − z2)

,

and

1
(z1 − z2)

= − b

2
√

a2 − b2
.

Therefore

I = − 1
bi

2πi
(
− b

2
√

a2 − b2

)
=

π√
a2 − b2

.

Example 3.5.3. Show that
∫ 2π

0

cos2n θdθ =
2π (2n)!
22n (n!)2

.

Solution 3.5.3. The integral can be written as

I =
∫ 2π

0

cos2n θdθ =
∮

C

[
1
2

(
z +

1
z

)]2n dz

iz
=

1
22ni

∮
C

[
2n∑

k=0

C2n
k z2n−k 1

zk

]
dz

z
,

where C2n
k are the binomial coefficients

C2n
k =

(2n)!
k!(2n − k)!

.
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Carrying out the integration term by term, the only nonvanishing term is the
term of z−1. Since[

2n∑
k=0

C2n
k z2n−k 1

zk

]
1
z

=

[
2n∑

k=0

C2n
k z2n−2k

]
1
z
,

it is clear that the coefficient of z−1 is given by term with k = n. Thus

I =
1

22ni

∮
C

[
z2n−1 + 2nz2n−3 + · · · + C2n

n

z
+ · · · + 1

z2n+1

]
dz

=
1

22ni
2πiC2n

n =
2π (2n)!
22n(n!)2

.

3.5.2 Improper Integrals I: Closing the Contour with a Semicircle
at Infinity

We consider the real integrals of the type

I =
∫ ∞

−∞
f(x)dx.

Such an integral, for which the interval of integration is not finite, is called
improper integral, and it has the meaning

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx.

Under certain conditions, this type of integral can be evaluated with the
residue theorem. The idea is to close the contour by adding additional pieces
along which the integral is either zero or some multiple of the original integral
along the real axis.

If f(x) is a rational function (i.e., ratio of two polynomials) with no
singularity on the real axis and

lim
z→∞

zf (z) = 0,

then it can be shown that the integral along the real axis from −∞ to ∞
is equal to the integral around a closed contour which consists of (a) the
straight line along the real axis and (b) the semicircle CR at infinity as shown
in Fig. 3.8.

This is so, because with

z = Reiθ, dz = iReiθdθ = izdθ,
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R−R x

y

CR

Fig. 3.8. As R → ∞, the semicircle CR is at infinity. The contour consists of the
real axis and CR encloses the entire upper half-plane

∣∣∣∣
∫

CR

f (z) dz

∣∣∣∣ =
∣∣∣∣
∫ π

0

f (z) izdθ

∣∣∣∣ ≤ Max |f (z) z|π,

which goes to zero as R → ∞, since limz→∞ zf (z) = 0. Therefore

lim
R→∞

∫
CR

f (z) dz = 0.

It follows that:
∫ ∞

−∞
f(x)dx = lim

R→∞

[∫ R

−R

f(x)dx +
∫

CR

f (z) dz

]
=

∮
u.h.p

f (z) dz,

where u.h.p means the entire upper half-plane. As R → ∞, all the poles of
f (z) in the upper half-plane will be inside the contour. Hence

∫ ∞

−∞
f(x)dx = 2πi (sum of residues of f (z) in the upper half-plane) .

By the same token, we can, of course, close the contour in the lower half-
plane. However, in that case, the direction of integration will be clockwise.
Therefore∫ ∞

−∞
f(x)dx =

∮
l.h.p

f (z) dz

= −2πi (sum of residues of f (z) in the lower half-plane) .

Example 3.5.4. Evaluate the integral

I =
∫ ∞

−∞

1
1 + x2

dx.
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Solution 3.5.4. Since

lim
z→∞

z
1

1 + z2
= 0,

we can evaluate this integral with contour integration. That is
∫ ∞

−∞

1
1 + x2

dx =
∮

u.h.p

1
1 + z2

dz

The singular points of

f (z) =
1

1 + z2

are at z = i and z = −i. Only z = i is in the upper half-plan. Therefore

I = 2πi Resz=i[f (z)] = 2πi lim
z→i

(z − i)
1

(z − i)(z + i)
= π.

Now, if we close the contour in the lower half-plane, then

I = −2πi Resz=−i[f (z)] = −2πi lim
z→−i

(z + i)
1

(z − i)(z + i)
= π,

which is, of course, the same result.

Example 3.5.5. Show that
∫ ∞

−∞

1
x4 + 1

dx =
π√
2
.

Solution 3.5.5. The four singular points of the function

f (z) =
1

z4 + 1

are eiπ/4, ei3π/4, ei5π/4, ei7π/4. Only two, eiπ/4, ei3π/4 are in the upper half-
plane. Therefore

∮
u.h.p.

1
z4 + 1

dz = 2πi{Resz=exp(iπ/4)[f (z)] + Resz=exp(i3π/4)[f (z)]}.

For problems of this type, it is much easier to find the residue by the method
of p(a)/q′(a). If we use the method of limz→a(z− a)f(z), the calculation will
be much more cumbersome. Since
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Resz=exp(iπ/4)[f (z)] =
[

1
(z4 + 1)′

]
z=eiπ/4

=
[

1
4z3

]
z=exp(iπ/4)

=
1
4
e−i3π/4,

Resz=exp(i3π/4)[f (z)] =
[

1
4z3

]
z=exp(i3π/4)

=
1
4
e−i9π/4 =

1
4
e−iπ/4,

so ∫ ∞

−∞

1
x4 + 1

dx = 2πi
[
1
4
e−i3π/4 +

1
4
e−iπ/4

]

=
π

2

[
e−iπ/4 + eiπ/4

]
= π cos

(π

4

)

3.5.3 Fourier Integral and Jordan’s Lemma

Another very important class of integrals of the form

I =
∫ ∞

−∞
eikxf(x)dx

can also be evaluated with the residue theorem. This class is known as the
Fourier integral of f(x). We will show that as long as f (x) has no singularity
along the real axis and

lim
z→∞

f (z) = 0, (3.22)

the contour of this integral can be closed with an infinitely large semicircle in
the upper half-plane if k is positive, and in the lower half-plane if k is negative.
This statement is based on the Jordan’s lemma, which states that, under the
condition (3.22),

lim
R→∞

∫
CR

eikzf (z) dz = 0,

where k is a positive real number and CR is the semicircle in the upper half-
plane with infinitely large radius R.

To prove this lemma, we first make the following observation. In Fig. 3.9,
y = sin θ and y = 2

π θ are shown together. It is seen that in the interval [0, π
2 ],

the curve y = sin θ is concave and always lies on or above the straight line
y = 2

π θ. Therefore

sin θ ≥ 2
π

θ for 0 ≤ θ ≤ π

2
.

With

z = Reiθ = R cos θ + iR sin θ, dz = iReiθdθ,
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y

q

y = sin q

1

y = 2
π q

2
π

π

Fig. 3.9. Visualization of the inequality sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2

we have∣∣∣∣
∫

CR

eikzf (z) dz

∣∣∣∣ =
∣∣∣∣
∫ π

0

eikzf (z) iReiθdθ

∣∣∣∣ ≤
∫ π

0

∣∣eikz
∣∣ |f (z)|R

∣∣eiθ
∣∣ dθ.

Since
∣∣eikz

∣∣ =
∣∣∣eik(R cos θ+iR sin θ)

∣∣∣ =
∣∣eikR cos θ

∣∣ ∣∣e−kR sin θ
∣∣ = e−kR sin θ,

so ∣∣∣∣
∫

CR

eikzf (z) dz

∣∣∣∣ ≤ Max |f (z)|R
∫ π

0

e−kR sin θdθ.

Using sin (π − θ) = sin θ, we can write the last integral as

∫ π

0

e−kR sin θdθ = 2
∫ π/2

0

e−kR sin θdθ.

Now, sin θ ≥ 2
π θ in the interval [0, π/2], therefore

2
∫ π/2

0

e−kR sin θdθ ≤ 2
∫ π/2

0

e−kR2θ/πdθ =
π

kR

(
1 − e−kR

)
. (3.23)

Thus ∣∣∣∣
∫

CR

eikzf (z) dz

∣∣∣∣ ≤ Max |f (z)| π

k

(
1 − e−kR

)
.

As z → ∞, R → ∞ and the right-hand side of the last equation goes to zero,
since limz→∞ f (z) = 0. It follows that:

lim
z→∞

∫
CR

eikzf (z) dz = 0,
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and Jordan’s lemma is proved. By virtue of this lemma, the Fourier integral
can be written as

∫ ∞

−∞
eikxf(x) dx = lim

R→∞

(∫ R

−R

eikxf(x) dx +
∫

CR

eikzf (z) dz

)

=
∮

u.h.p

eikzf (z) dz = 2πi
all∑
i=1

Ru.h.p

[
eikzf (z)

]
,

where
∑all

i=1 Ru.h.p

[
eikzf (z)

]
means the sum of all residues of eikzf (z) in the

upper half-plane.
Note that if k is negative, we cannot close the contour in the upper half-

plane, since in (3.23) the factor e−kR will blow up. However, in this case we
can close the contour in the lower half-plane, because integrating from θ = 0
to θ = −π will introduce another minus sign to make the large semicircular
integral in the lower half-plane vanish. Therefore

∫ ∞

−∞
e−i|k|xf(x) dx = −2πi

all∑
i=1

Rl.h.p

[
e−i|k|zf (z)

]
,

where
∑all

i=1 Rl.h.p

[
e−i|k|zf (z)

]
means the sum of all residues of e−i|k|zf (z)

in the lower half-plane. The minus sign is due to the fact that in this case the
closed contour integration is clockwise.

Since sin kx and cos kx are linear combinations of eikx and e−ikx, the real
integrals of the form

∫ ∞

−∞
cos kxf(x) dx and

∫ ∞

−∞
sin kxf(x) dx

can be obtained easily from this class of integrals,
∫ ∞

−∞
cos kxf(x) dx =

1
2

[∫ ∞

−∞
eikxf(x) dx +

∫ ∞

−∞
e−ikxf(x) dx

]
, (3.24)

∫ ∞

−∞
sin kxf(x) dx =

1
2i

[∫ ∞

−∞
eikxf(x) dx −

∫ ∞

−∞
e−ikxf(x) dx

]
. (3.25)

If it is certain that the result of the integration is a finite real value, then
we may write

∫ ∞

−∞
cos kxf(x) dx = Re

∫ ∞

−∞
eikxf(x) dx, (3.26)

∫ ∞

−∞
sin kxf(x) dx = Im

∫ ∞

−∞
eikxf(x)dx. (3.27)

These formulae must be used with caution. While (3.24) and (3.25) are always
valid, (3.26) and (3.27) are valid only if there is no imaginary number in f(x).
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Example 3.5.6. Evaluate the integral

I =
∫ ∞

−∞

sin x

x + i
dx.

Solution 3.5.6. There is a simple pole located in the lower half-plane, and
∫ ∞

−∞

sin x

x + i
dx =

1
2i

∫ ∞

−∞

eix

x + i
dx − 1

2i

∫ ∞

−∞

e−ix

x + i
dx.

To evaluate the first integral in the right-hand side, we must close the contour
in the upper half-plane as shown in Fig. 3.10a.

Since the function is analytic everywhere in the upper half-plane, therefore
∫ ∞

−∞

eix

x + i
dx =

∮
u.h.p

eiz

z + i
dz = 0.

To evaluate the second integral, we must close the contour in the lower half-
plane as shown in Fig. 3.10b. Since there is a simple pole located at z = −i,
we have ∫ ∞

−∞

e−ix

x + i
dx =

∮
l.h.p

e−iz

z + i
dz = −2πi Resz=−i

[
e−iz

z + i

]

= −2πi lim
z→−i

(z + i)
e−iz

z + i
= −2πie−1.

Thus

I =
∫ ∞

−∞

sin x

x + i
dx =

1
2i

[
0 −

(
−2πie−1

)]
=

π

e
.

Clearly

I �= Im
∫ ∞

−∞

eix

x + i
dx,

this is because there is the imaginary number i in the function.

R

R
−R

−R

−i

(a) (b)

Fig. 3.10. Closing the contour with an infinitely large semicircle. (a) contour closed
in the upper half-plane, (b) contour closed in the lower half-plane
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Example 3.5.7. Evaluate the integral

I =
∫ ∞

−∞

1
x2 + 4

e−iωxdx, ω > 0.

Solution 3.5.7.

I =
∮

l.h.p

1
z2 + 4

e−iωzdz.

The only singular point in the lower half-plane is at z = −2i, therefore

I = −2πi Resz=−2i

[
e−iωz

z2 + 4

]

= −2πi lim
z→−2i

(z + 2i)
e−iωz

(z + 2i)(z − 2i)
= −2πi

e−2ω

−4i
=

π

2
e−2ω.

This integral happens to be the Fourier transform of 1
x2+4 , as we shall see

in a later chapter.

Example 3.5.8. Evaluate the integral

I (t) =
A

2π

∫ ∞

−∞

eiωt

R + iωL
dω,

for both t > 0 and t < 0.

Solution 3.5.8.

I =
A

2π

1
iL

ωL

∫ ∞

−∞

eiωt(
R
iL

)
+ ω

dω =
A

2π

1
iL

∫ ∞

−∞

eiωt

ω − iR
L

dω.

For t > 0, we can close the contour in the upper half-plane.

I =
A

2π

1
iL

∮
u.h.p

eitz

z − iR
L

dz.

The only singular point is located in the upper half-plane at z = iR
L . Therefore

I =
A

2π

1
iL

2πi lim
z→i R

L

(
z − i

R

L

)
eitz

z − iR
L

=
A

L
eit(i R

L ) =
A

L
e−

R
L t.

For t < 0, we must close the contour in the lower half-plane. Since there is no
singular point in the lower half-plane, the integral is zero. Thus

I (t) =
{

A
L e−

R
L t t > 0,

0 t < 0.
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For those who are familiar with AC circuits, this integral I(t) is the current
in a circuit with resistance R and inductance L connected in series under a
voltage impulse V. A high pulse in a short duration can be expressed as

V (t) =
A

2π

∫ ∞

−∞
eiωtdω,

and the impedance of the circuit is Z = R + iωL for the ω component, and
the corresponding current is given by V

Z . Thus the total current is the integral
we have evaluated.

Example 3.5.9. Evaluate the integral

I =
∫ ∞

−∞

x sinx

(x2 + 1)
dx.

Solution 3.5.9.

I =
∫ ∞

−∞

x sinx

(x2 + 1)
dx = Im

∫ ∞

−∞

xeix

(x2 + 1)
dx,

∫ ∞

−∞

xeix

(x2 + 1)
dx =

∮
u.h.p

zeiz

(z2 + 1)
dz.

There is only one singular point in the upper half-plane located at z = i. So
∮

u.h.p

zeiz

(z2 + 1)
dz = 2πi Resz=i

[
zeiz

(z2 + 1)

]

= 2πi lim
z→i

(z − i)
zeiz

(z2 + 1)
= 2πi

ie−1

2i
=

π

e
i,

and

I = Im
(π

e
i
)

=
π

e
.

Example 3.5.10. (a) Show that

I =
∫ ∞

0

cos bx

x2 + a2
dx =

π

2a
e−ba, a > 0, b > 0.

(b) Use the result of (a) to find the value of
∫ ∞

0

cos bx

(x2 + a2)2
dx.
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Solution 3.5.10. (a) Since the integrand is an even function, so
∫ ∞

0

cos bx

x2 + a2
dx =

1
2

∫ ∞

−∞

cos bx

x2 + a2
dx.

∫ ∞

−∞

cos bx

x2 + a2
dx = Re

∫ ∞

−∞

eibx

x2 + a2
dx = Re

∮
u.h.p

eibz

z2 + a2
dz

The singular point in the upper half-plane is at z = ia, so
∮

u.h.p

eibz

z2 + a2
dz = 2πi Resz=ia

[
eibz

z2 + a2

]

= 2πi lim
z→ia

(z − ia)
eibz

(z − ia) (z + ia)
= 2πi

eib(ia)

2ai
=

π

a
e−ba.

Thus,
∫ ∞

0

cos bx

x2 + a2
dx =

1
2
Re

(π

a
e−ba

)
=

π

2a
e−ba.

(b) Taking derivative of both sides with respect to a,

d
da

∫ ∞

0

cos bx

x2 + a2
dx =

d
da

( π

2a
e−ba

)
,

we have ∫ ∞

0

−2a cos bx

(x2 + a2)2
dx =

−π

2a2
e−ba +

π (−b)
2a

e−ba.

Therefore ∫ ∞

0

cos bx

(x2 + a2)2
dx =

π

4a3
(1 + ab) e−ba.

3.5.4 Improper Integrals II: Closing the Contour with Rectangular
and Pie-shaped Contour

If the integrand does not go to zero fast enough on the infinitely large contour
CR, then the contour cannot be closed with a large semicircle, up or down.
For such a case, there may be other types of closed contours that will enable
us to eliminate all parts of the integral but the desired portion. However,
selecting appropriate contour requires considerable ingenuity. Here we present
two additional kinds of contours that are known to be useful.
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Rectangular Contour

If the height of the rectangle can be so chosen that the integral along the top
side of the rectangle is equal to a constant multiple of the integral along the
real axis, then such a contour may be useful for evaluating integrals whose
integrand vanishes as the absolute value of the real variable goes to infinity.
Generally, integrands containing exponential function or hyperbolic functions
are good candidates for this method. Again the method is best illustrated by
an example.

Example 3.5.11. Show that

I =
∫ ∞

−∞

eax

1 + ex
dx =

π

sin aπ
, for 0 < a < 1.

Solution 3.5.11. First we analytically continue the integrand to the complex
plane

f (z) =
eaz

1 + ez
.

The denominator of f (z) is unchanged if z is increased by 2πi, whereas the
numerator changes by a factor of ea2πi. Thus a rectangular contour shown in
Fig. 3.11 may be appropriate.

Integrating around the rectangular loop, we have∮
f (z) dz = J1 + J2 + J3 + J4,

where

J1 =
∫

L1

eaz

1 + ez
dz =

∫ R

−R

eax

1 + ex
dx,

J2 =
∫

L2

eaz

1 + ez
dz =

∫ 2π

0

ea(R+iy)

1 + eR+iy
i dy,

J3 =
∫

L3

eaz

1 + ez
dz =

∫ −R

R

ea(x+i2π)

1 + e(x+i2π)
dx = ei2πa

∫ −R

R

eax

1 + ex
dx,

J4 =
∫

L3

eaz

1 + ez
dz =

∫ 0

2π

ea(−R+iy)

1 + e−R+iy
i dy.

R

πi

−R+2πi R+2πi

−R 0 L1

L2

L3

L4

Fig. 3.11. A closed rectangular contour
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As R → ∞,

lim
R→∞

J1 = lim
R→∞

∫ R

−R

eax

1 + ex
dx =

∫ ∞

−∞

eax

1 + ex
dx = I,

lim
R→∞

J3 = lim
R→∞

ei2πa

∫ −R

R

eax

1 + ex
dx = −ei2πa

∫ ∞

−∞

eax

1 + ex
dx = −ei2πaI.

Furthermore, since
∣∣ea(R+iy)

∣∣ = eaR and the minimum value of
∣∣1 + eR+iy

∣∣ is∣∣1 − eR
∣∣, hence

lim
R→∞

|J2| ≤ lim
R→∞

∣∣∣∣ eaR

1 − eR

∣∣∣∣ 2π = lim
R→∞

2π

e(1−a)R
→ 0, since a < 1.

Similarly,

lim
R→∞

|J4| ≤ lim
R→∞

∣∣∣∣ e−aR

1 − e−R

∣∣∣∣ 2π = lim
R→∞

2πe−aR → 0, since a > 0.

Therefore

lim
R→∞

∮
eaz

1 + ez
dz = (1 − ei2πa)I.

Now inside the loop, there is a simple pole at z = iπ, since

1 + ez = 1 + eiπ = 1 − 1 = 0.

By the residue theorem, we have∮
eaz

1 + ez
dz = 2πi Resz=iπ

[
eaz

1 + ez

]
= 2πi

[
eaz

(1 + ez)′

]
z=iπ

= 2πi
eiπa

eiπ
= −2πieiπa.

Thus,

(1 − ei2πa)I = −2πieiπa,

so

I =
−2πieiπa

1 − ei2πa
=

−2πi
e−iπa − eiπa

=
π

sinπa
.

Pie-shaped Contour

If the integral is from 0 to ∞, instead of from −∞ to ∞ and none of the earlier
methods is applicable, then a pie-shaped contour may work. In the following
example, we will illustrate this method with the evaluation of the Fresnel
integrals, which are important in diffraction theory and signal propagation.
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Example 3.5.12. Evaluate the Fresnel integrals

Ic =
∫ ∞

0

cos
(
x2

)
dx, Is =

∫ ∞

0

sin
(
x2

)
dx.

Solution 3.5.12. The two Fresnel integrals are the real and imaginary parts
of the exponential integral,∫ ∞

0

eix2
dx = Ic + iIs.

We integrate the complex function eiz2
around the pie-shaped contour shown

in Fig. 3.12. Since the function is analytic within the closed contour, the loop
integral must be zero, ∮

eiz2
dz = 0.

This loop integral naturally divides into three parts. First from 0 to R along
the real x axis, then along the path of an arc CR from R to R′. Finally
returning to 0 along the straight radial line with θ = π/4.

∫ R

0

eix2
dx +

∫
CR

eiz2
dz +

∫ 0

R′
eiz2

dz = 0.

In the limit of R → ∞, the first integral is what we want to find,

lim
R→∞

∫ R

0

eix2
dx =

∫ ∞

0

eix2
dx.

On the path of the third integral, with z = reiθ and θ = π/4,

z2 = r2ei2θ = r2eiπ/2 = ir2,

dz = eiθdr = eiπ/4dr,

π/4

0 R

R�

CR

Fig. 3.12. A pie-shaped contour. In the complex plane, R′ is at z (R′) = Reiπ/4
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so the third integral becomes
∫ 0

R′
eiz2

dz =
∫ 0

R

e−r2
eiπ/4dr = −eiπ/4

∫ R

0

e−r2
dr.

We will now show that the second integral along CR is equal to zero in the
limit of R → ∞. On CR

z = Reiθ, dz = iReiθdθ,

z2 = R2ei2θ = R2(cos 2θ + i sin 2θ),

so the second integral can be written as

∫
CR

eiz2
dz = iR

∫ π/4

0

eiR2(cos 2θ+i sin 2θ)eiθ

dθ = iR
∫ π/4

0

ei(R2 cos 2θ+θ)e−R2 sin 2θdθ.

Thus ∣∣∣∣∣
∫ R′

R

eiz2
dz

∣∣∣∣∣ ≤ R

∫ π/4

0

e−R2 sin 2θdθ =
R

2

∫ π/2

0

e−R2 sin φdφ,

where φ = 2θ. According to (3.23) of Jordan’s lemma,

∫ π/2

0

e−R2 sin φdφ ≤ π

2R2
(1 − e−R2

).

Therefore, it goes to zero as 1/R2 for R → ∞. With the second integral equal
to zero, we are left with

∫ ∞

0

eix2
dx − eiπ/4

∫ ∞

0

e−r2
dr = 0. (3.28)

Now it is well known that
∫ ∞

0

e−x2
dx =

√
π

2
.

To verify this expression, define

I =
∫ ∞

0

e−x2
dx =

∫ ∞

0

e−y2
dy,

so

I2 =
∫ ∞

0

e−x2
dx

∫ ∞

0

e−y2
dy =

∫ ∞

0

∫ ∞

0

e−(x2+y2)dxdy.
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In polar coordinates

I2 =
∫ ∞

0

∫ π/2

0

e−ρ2
ρdϕ dρ =

π

2

∫ ∞

0

e−r2
ρdρ =

π

4
,

so I =
√

π/2.

It follows from (3.28) that
∫ ∞

0

eix2
dx = eiπ/4

∫ ∞

0

e−r2
dr = eiπ/4

√
π

2
=

(
cos

π

4
+ i sin

π

4

) √
π

2

=
(

1√
2

+ i
1√
2

) √
π

2
=

√
π

8
+ i

√
π

8
.

Therefore ∫ ∞

0

cos
(
x2

)
dx =

∫ ∞

0

sin
(
x2

)
dx =

√
π

8
.

3.5.5 Integration Along a Branch Cut

Some integrals of multivalued functions can also be evaluated by Cauchy’s
residue theorem. For example, the integrand of the integral

I =
∫ ∞

0

x−αf (x) dx

is multivalued if α is not an integer. In the complex plane, z−α is multivalued
because with z expressed as

z = rei(θ+n2π),

where n is an integer, z−α becomes

z−α = e−α ln z = e−α(ln r+iθ+in2π).

It is seen that z−α is a multivalued function. For instance, with α = 1/3,

z−
1
3 =

⎧⎪⎨
⎪⎩

e−
1
3 (ln r+iθ) n = 0

e−
1
3 (ln r+iθ)ei2π/3 = (− 1

2 + i
√

3
2 ) e−

1
3 (ln r+iθ) n = 1

e−
1
3 (ln r+iθ)ei4π/3 = (− 1

2 − i
√

3
2 ) e−

1
3 (ln r+iθ) n = 2.

To define z−α as a single valued function, the angle θ must be restricted in an
interval of 2π by a branch cut. If we choose the branch cut along the positive x
axis, then our real integral is an integral along the top of the branch cut. Very
often the problem can be solved with a closed contour as shown in Fig. 3.13,
in which the entire branch cut is excluded from the interior of the contour.
Again let us illustrate the method with an example.
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y

x−1

Cε

CR

Γ+

 

Γ−

Fig. 3.13. A contour that excludes the branch cut along the positive x axis

Example 3.5.13. Evaluate the integral

I =
∫ ∞

0

x−α

1 + x
dx, 0 < α < 1.

Solution 3.5.13. Consider the contour integral∮
z−α

1 + z
dz

around the closed contour shown in Fig. 3.13. Since the branch point at z = 0
and the entire branch cut are excluded, the only singular point inside this
contour is at z = −1. Therefore∮

z−α

1 + z
dz = 2πi Res

[
z−α

1 + z

]
= 2πi (−1)−α = 2πieiπ(−α) =

2πi
eiπα

.

This integral consists of four parts∮
z−α

1 + z
dz =

∫
Γ+

z−α

1 + z
dz +

∫
CR

z−α

1 + z
dz +

∫
Γ−

z−α

1 + z
dz +

∫
Cε

z−α

1 + z
dz.

The first integral is along the top of the branch cut with θ = 0, the second
integral is along the outer large circle with radius R, the third integral is along
the bottom of the branch cut with θ = 2π, and the fourth integral is along
the inner small circle with radius ε.

With z = reiθ, it is clear that when θ = 0 and θ = 2π, r is the same as x.
Therefore∫

Γ+

z−α

1 + z
dz =

∫ R

ε

x−α

1 + x
dx,

∫
Γ−

z−α

1 + z
dz =

∫ ε

R

x−αei2π(−α)

1 + xei2π
ei2π dx = −e−i2πα

∫ R

ε

x−α

1 + x
dx.
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On CR, z = Reiθ,
∣∣∣∣
∫

CR

z−α

1 + z
dz

∣∣∣∣ ≤
∣∣∣∣ R−α

1 − R
2πR

∣∣∣∣ ,
where R−α is maximum of the numerator, 1 − R is the minimum of denomi-
nator, and 2πR is the length of CR. As R → ∞,

∣∣∣∣ R−α

1 − R
2πR

∣∣∣∣ ∼ R−α → 0, since α > 0.

Similarly, on Cε, z = εeiθ,
∣∣∣∣
∫

Cε

z−α

1 + z
dz

∣∣∣∣ ≤ ε−α

1 − ε
2πε.

As ε → 0,

ε−α

1 − ε
2πε ∼ ε1−α → 0, since α < 1.

On taking the limit R → ∞ and ε → 0, we are left with
∮

z−α

1 + z
dz =

∫ ∞

0

x−α

1 + x
dx − e−i2πα

∫ ∞

0

x−α

1 + x
dx =

2πi
eiπα

.

Thus

(
1 − e−i2πα

) ∫ ∞

0

x−α

1 + x
dx =

2πi
eiπα

,

and ∫ ∞

0

x−α

1 + x
dx =

2πi
eiπα (1 − e−i2πα)

=
2πi

eiπα − e−iπα
=

π

sin πα
.

3.5.6 Principal Value and Indented Path Integrals

Sometimes we have to deal with integrals
∫

f (x) dx whose integrand becomes
infinite at a point x = x0 in the range of integration

lim
x→x0

f (x) = ∞.

In order to make sense of this kind of integral, we define the principal value
integral as

P

∫ R

−R

f (x) dx = lim
ε→0

[∫ x0−ε

−R

f (x) dx +
∫ R

x0+ε

f(x) dx

]
.
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It is a way to avoid the singularity. One integrates to within a small distance ε
of the singularity in question, skips over the singularity, and begins integrating
again at a distance ε beyond the singularity.

When evaluating the integral using the residue theorem, we are not allowed
to have a singularity on the contour, however, with principal value integrals
we can accommodate simple poles on the contour by deforming the contour
so as to avoid the poles.

The principal value integral

P

∫ ∞

−∞
f (x) dx

can be evaluated by the theorem of residue for a function f (z) that satisfies
the asymptotic conditions that we have discussed. That is, either zf (z) → 0
as z → ∞, or f (z) = eimzg (z) and g (z) → 0 as z → ∞. Let us first assume
that f (z) has one simple pole on the real axis at z = x0 and is analytic
everywhere else. In this case, it is clear that the closed contour integral around
the indented path shown in Fig. 3.14 is equal to zero

∮
f (z) dz = 0,

since the only singular point is outside the contour.
The integral can be written as

∮
f (z) dz =

∫ x0−ε

−R

f (x) dx +
∫

Cε

f (z) dz +
∫ R

x0+ε

f (x) dx +
∫

CR

f (z) dz.

In the limit of R → ∞, with f (z) satisfying the specified conditions, we have
shown ∫

CR

f (z) dz = 0.

Cε

y

x
R−R

CR

x0

Fig. 3.14. The closed contour consists of a large semicircle CR in the upper half-
plane of radius R, the line segments from −R to x0 − ε and from x0 + ε to R along
the real axis, and a small semicircle Cε of radius ε above the singular point x0
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Furthermore, the two line integrals along the x axis become the principal value
integral as ε → 0

lim
ε→0

[∫ x0−ε

−∞
f (x) dx +

∫ ∞

x0+ε

f (x) dx

]
= P

∫ ∞

−∞
f (x) dx.

Since f (z) has a simple pole at z = x0, so in the immediate neighborhood
of x0, the Laurent series of f (z) has the form

f (z) =
a−1

z − x0
+

∞∑
n=0

an (z − x0)
n

.

On the semicircle Cε around x0,

z − x0 = εeiθ, dz = iεeiθdθ,

where ε is the radius of the semicircle. The integral around Cε can thus be
written as

∫
Cε

f (z) dz =
∫ 0

π

(
a−1

εeiθ
+

∞∑
n=0

an

(
εeiθ

)n

)
iεeiθdθ.

On taking the limit ε → 0, every term vanishes except the first. Therefore

lim
ε→0

∫
Cε

f (z) dz =
∫ 0

π

a−1idθ = −iπa−1 = −iπResz=x0 [f (z)] .

It follows that in the limit R → ∞ and ε → 0
∮

f (z) dz = P

∫ ∞

−∞
f (x) dx − iπRes [f (z)] = 0.

Therefore

P

∫ ∞

−∞
f (x) dx = iπRes [f (z)] .

Note that to avoid the singular point, we can just as well go below it
instead above. For the semicircle below the x axis, the direction of integration
is counterclockwise

lim
ε→0

∫
Cε

f (z) dz =
∫ 2π

π

a−1idθ = iπa−1 = iπResz=x0 [f (z)] .

However, in that case, the singular point is inside the closed contour, and the
loop integral is equal to 2πi times the residue at z = x0. So we have

∮
f (z) dz = P

∫ ∞

−∞
f (x) dx + iπResz=x0 [f (z)] = 2πi Resz=x0 [f (z)] .
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Not surprisingly we get the same result

P

∫ ∞

−∞
f (x) dx = 2πi Resz=x0 [f (z)] − iπResz=x0 [f (z)] = iπResz=x0 [f (z)] .

Now if f (z) has more than one pole on the real axis, (all of them first-
order), furthermore, it has other singularities in the upper half-plane, (not
necessary first-order), then by the same argument one can show that

P

∫ ∞

−∞
f (x) dx = πi

(∑
residues on x axis

)

+2πi
(∑

residues in upper half-plane
)

.

Example 3.5.14. Find the principal value of

P

∫ ∞

−∞

eix

x
dx

and use the result to show ∫ ∞

−∞

sin x

x
dx = π.

Solution 3.5.14. The only singular point is at x = 0, therefore

P

∫ ∞

−∞

eix

x
dx = πi Resz=0

[
eiz

z

]
= πi

[
eiz

z′

]
z=0

= πi.

Since

P

∫ ∞

−∞

eix

x
dx = P

[∫ ∞

−∞

cos x

x
dx + i

∫ ∞

−∞

sin x

x
dx

]
,

therefore,

P

∫ ∞

−∞

sinx

x
dx = Im

(
P

∫ ∞

−∞

eix

x
dx

)
= π.

We note that x = 0 is actually a removable singularity of sinx/x, since as
x → 0, sinx/x = 1. This means that ε, instead of approaching zero, can be
set equal to exactly zero. Therefore the principal value of the integral is the
integral itself

∫ ∞

−∞

sin x

x
dx = π.
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It is instructive to check this result in the following way. Since sinx/x
is continuous at x = 0, if we move the path of integration an infinitesimal
amount at x = 0, the value of the integral will not be changed. So let the
path go through an infinitesimally small semicircle Cε on top of the point at
x = 0. Let us call the indented path as the path from −∞ to ε along x axis,
followed by Cε and then continue from ε to ∞ along the x axis. Then∫ ∞

−∞

sin x

x
dx =

∫
Indented

sin z

z
dz.

Now let us make use of the identity

sin z =
1
2i

(
eiz − e−iz

)
,

so ∫ ∞

−∞

sin x

x
dx =

1
2i

∫
Indented

eiz

z
dz − 1

2i

∫
Indented

e−iz

z
dz.

For the first integral in the right-hand side, we can close the contour with an
infinitely large semicircle C+

R in the upper half-plane, as shown in Fig. 3.15a.
Since the singular point is outside the closed contour, so the contour integral
vanishes ∫

Indented

eiz

z
dz =

∮
u,h.p

eiz

z
dz = 0.

For the second indented path integral, we cannot close the contour in the
upper half-plane because of e−iz, so we have to close the contour in the lower
half-plane with C−

R , as shown in Fig. 3.15b. In this case, the singular point at
z = 0 is inside the contour, therefore∫

Indented

e−iz

z
dz =

∮
l.h.p

e−iz

z
dz = −2πi Resz=0

[
e−iz

z

]
= −2πi.

y y

x x
R

R

−R

−R
Cε Cε

ε ε− ε −ε

CR
+

CR  
−

(a) (b)

Fig. 3.15. (a) The indented path from −R to R is closed by a large semicircle C+
R

in the upper half-plane. (b) The same indented path from −R to R is closed by a
large semicircle C−

R in the lower half-plane
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The minus sign accounts for the clockwise direction. It follows that:
∫ ∞

−∞

sin x

x
dx =

1
2i

0 − 1
2i

(−2πi) = π,

which is the same as we obtained before.

Exercises

1. Expand f(z) = z−1
z+1 in a Taylor’s series (a) around z = 0 and (b) around

the point z = 1. Determine the radius of convergence of each series.
Ans:

(a)f(z) = −1 + 2z − 2z2 + 2z2 − · · · |z| < 1

(b)f(z)=
1
2
(z − 1) − 1

4
(z − 1)2+

1
8
(z − 1)3 − 1

16
(z − 1)4+· · · |z − 1| < 2.

2. Find the Taylor series expansion about the origin and the radius of con-
vergence for

(a) f(z) = sin z, (b) f(z) = cos z,

(c) f(z) = ez, (d) f(z) =
1

(1 − z)m
.

Ans:

(a) sin z = z − 1
3!

z3 +
1
5!

z5 − 1
7!

z7 + · · · all z,

(b) cos z = 1 − 1
2
z2 +

1
4!

z4 − 1
6!

z6 + · · · all z,

(c) ez = 1 + z +
1
2
z2 +

1
3!

z3 + · · · all z,

(d)
1

(1 − z)m
=1 + mz+

m(m + 1)
2

z2+
m(m + 1)(m + 2)

3!
z3 + · · · |z|<1.

3. Find the Taylor series expansion of

f(z) = ln z

around z = 1 by noting that

d
dz

ln z =
1
z
.



166 3 Complex Series and Theory of Residues

Ans:
ln z = (z − 1) − 1

2 (z − 1)2 + 1
3 (z − 1)3 − 1

4 (z − 1)4 + · · · |z − 1| < 1.

4. Expand

f(z) =
1

(z + 1)(z + 2)

in a Taylor’s series (a) around z = 0 and (b) around the point z = 2.
Determine the radius of convergence of each series.
Ans:

(a) f(z) =
1
2
− 3

4
z +

7
8
z2 − 15

16
z3 + · · · |z| < 1.

(b) f(z) =
(

1
3
− 1

4

)
−

(
1
32

− 1
42

)
(z − 2)

+
(

1
33

− 1
43

)
(z − 2)2 − · · · |z − 2| < 3.

5. Without obtaining the series, determine the radius of convergence of each
of the following expansions:

(a) tan−1 z around z = 1,

(b)
1

ez − 1
around z = 4i,

(c)
x

x2 + 2x + 10
around x = 0.

Ans: (a)
√

2, (b) 2π − 4, (c)
√

10.

6. Find the Laurent series for

f(z) =
1

z2 − 3z + 2

in the region of

(a) |z| < 1, (b) 1 < |z| < 2, (c) 0 < |z − 1| < 1,

(d) 2 < |z| , (e) |z − 1| > 1, (f) 0 < |z − 2| < 1.

Ans:

(a) f(z) =
1
2

+
3
4
z +

7
8
z2 +

15
16

z3 + · · ·

(b) f(z) = · · · − 1
z3

− 1
z2

− 1
z
− 1

2
− 1

4
z − 1

8
z2 − 1

16
z3.

(c) f(z) = − 1
(z − 1)

− 1 − (z − 1) − (z − 1)2 − · · ·
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(d) f(z) = · · · + 15
z5

+
7
z4

+
3
z3

+
1
z2

.

(e) f(z) = · · · + 1
(z − 1)4

+
1

(z − 1)3
+

1
(z − 1)2

.

(f) f(z) =
1

z − 2
− 1 + (z − 2) − (z − 2)2 + (z − 2)3 − · · ·

7. Expand

f(z) =
1

z2(z − i)

in two different Laurent expansions around z = i and tell where each
converges.
Ans:
f(z) = − 1

z−i − 2i + 3(z − i) − 4i(z − i)2 + · · · 0 < |z − i| < 1
f(z) = · · · 4i

(z−i)6 − 3
(z−i)5 − 2i

(z−i)4 + 1
(z−i)3 |z − i| > 1.

8. Find the values of
∮
C

f(z) dz, where C is the circle |z| = 3, for the

following functions:

(a) f(z) =
1

z(z + 2)
, (b) f(z) =

z + 2
z(z + 1)

, (c) f(z) =
z

(z + 1)(z + 2)
,

(d) f(z) =
1

z(z + 1)2
, (e) f(z) =

1
(z + 1)2

, (f) f(z) =
1

z(z + 1)(z + 4)

by expanding them in an appropriate Laurent series f(z) =
∑n=∞

n=−∞ anzn

and using a−1 = 1
2πi

∮
C

f(z)dz.

Ans: (a) 0, (b) 2πi, (c) 2πi, (d) 0, (e) 0, (f) −iπ/6.

9. Find the residue of

f(z) =
z

z2 + 1

(a) at z = i and (b) at z = −i.
Ans: (a) 1/2; (b) 1/2.

10. Find the residue of

f(z) =
z + 1

z2(z − 2)

(a) at z = 0 and (b) at z = 2.

Ans: (a) −3/4; (b) 3/4.
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11. Find the residue of

f(z) =
z

z2 + 2z + 5

at each of its poles.
Ans: r(−1 + 2i) = (2 + i)/4; r(−1 − 2i) = (2 − i)/4

12. What is the residue of

f(z) =
1

(z + 1)3

at z = −1 ?
Ans: 0.

13. What is the residue of

f(z) = tan z

at z = π/2 ?
Ans: −1

14. What is the residue of

f(z) =
1

z − sin z

at z = 0 ?
Ans: 3/10

15. Use the theory of residue to evaluate
∮
C

f(z)dz if C is the circle |z| = 4

for each of the following functions:

(a)
z

z2 − 1
, (b)

z + 1
z2(z + 2)

, (c)
1

z(z − 2)3
,

(d)
1

z2 + z + 1
(e)

1
z(z2 + 6z + 4)

.

Ans. (a) 2πi, (b) 0, (c) 0, (d) 0, (e) (5 − 3
√

5)iπ/20.

16. Show that ∮
C

1
(z100 + 1) (z − 4)

dz =
−2πi

4100 + 1
,

if C is the circle |z| = 3.
Hint: First find the value of the integral along |z| = 5, then do the inte-
gration along |z| = 5 and |z| = 3 with a cut between them.
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17. Use the theory of residue to evaluate the following definite integrals

(a)
∫ 2π

0

dθ

2 + cos θ
,

(b)
∫ 2π

0

cos 3θdθ

5 − 4 cos θ
,

(c)
∫ π

0

cos 2θdθ

1 − 2a cos θ + a2
where (−1 < a < 1),

(d)
∫ π

0

sin2n θdθ where n = 1, 2, . . . .

Ans. (a) 2π/
√

3, (b) π/12, (c) πa2/
(
1 − a2

)
, (d) π (2n)!/

(
22n(n!)2

)
.

18. Show that

(a)
∫ ∞

0

dx

x2 + 1
=

π

2
,

(b)
∫ ∞

−∞

x2 + 1
x4 + 1

dx =
√

2π

(c)
∫ ∞

0

dx

(x2 + 1)2
=

π

4
,

(d)
∫ ∞

0

ab

(x2 + a2)(x2 + b2)
dx =

π

2(a + b)
.

19. Evaluate

(a)
∫ ∞

−∞

ei3x

x − 2i
dx,

(b)
∫ ∞

0

cos kx

x2 + 1
dx,

(c)
∫ ∞

−∞

cos mx

(x − a)2 + b2
dx,

(d)
∫ ∞

−∞

cos mx

(x2 + a2)(x2 + b2)
dx.

Ans. (a) 2πi/e6, (b) π
2 e−|k|, (c) π

b e−mb cos ma, (d) π
a2−b2

(
e−bm

b − e−am

a

)
.

20. Use a rectangular contour to show that∫ ∞

−∞

cos mx

e−x + ex
dx =

π

emπ/2 + e−mπ/2
.

21. Use the “integration along the branch cut” method to show that∫ ∞

0

x1/3

(1 + x)2
dx =

2π

3
√

3
.
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22. Use a pie-shaped contour with θ = 2π/3 to show that

∫ ∞

0

1
x3 + 1

dx =
2
√

3π

9
.

23. Find the principal value of the following

P

∫ ∞

−∞

1
(x + 1) (x2 + 2)

dx.

Ans.
√

2π/6.

24. Show that

1 − e2iz

z2

has a simple pole at z = 0. Find the principal value of

P

∫ ∞

−∞

1 − e2ix

x2
dx.

Use the result to show that
∫ ∞

0

sin2 x

x2
dx =

π

2
.

Ans. 2π.
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Determinants and Matrices





4

Determinants

Determinants are powerful tools for solving systems of linear equations and
they are indispensable in the development of matrix theory. Most readers
probably already possess the knowledge of evaluating second- and third-order
determinants. After a systematic review, we introduce the formal definition
of a nth order determinant through the Levi-Civita symbol. All properties of
determinants can be derived from this definition.

4.1 Systems of Linear Equations

4.1.1 Solution of Two Linear Equations

Suppose we wish to solve for x and y from the system of 2×2 linear equations
(2 equations and 2 unknowns)

a1x + b1y = d1, (4.1)
a2x + b2y = d2, (4.2)

where a1, a2, b1, b2, d1, and d2 are known constants. We can multiply (4.1) by
b2 and (4.2) by b1, and then take the difference. In so doing, y is eliminated,
and we are left with

(b2a1 − b1a2)x = b2d1 − b1d2,

therefore
x =

d1b2 − d2b1

a1b2 − a2b1
, (4.3)

where we have written b2a1 as a1b2, since the order is immaterial in the
product of two numbers. It turns out that if we use the following notation, it
is much easier to generalize this process to larger systems of n × n equations

a1b2 − a2b1 =
∣∣∣∣a1 b1

a2 b2

∣∣∣∣ . (4.4)
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(−)

(+)

a1

= a1b2 − a2b1

b1

b2a2

Fig. 4.1. A schematic diagram for a second-order determinant

The 2 × 2 square array of the four elements on the right-hand side of this
equation is called a second-order determinant. Its meaning is just that its
value is equal to the left-hand side of this equation. Explicitly, the value of a
second-order determinant is defined as the difference between the two products
of the diagonal elements as shown in the schematic diagram (Fig. 4.1).

With determinants, (4.3) can be written as

x =

∣∣∣∣d1 b1

d2 b2

∣∣∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣
(4.5)

and with a similar procedure one can easily show that

y =

∣∣∣∣a1 d1

a2 d2

∣∣∣∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣
. (4.6)

Example 4.1.1. Find the solution of

2x − 3y = −4,

6x − 2y = 2.

Solution 4.1.1.

x =

∣∣∣∣−4 −3
2 −2

∣∣∣∣∣∣∣∣ 2 −3
6 −2

∣∣∣∣
=

8 + 6
−4 + 18

= 1,

y =

∣∣∣∣ 2 −4
6 2

∣∣∣∣∣∣∣∣ 2 −3
6 −2

∣∣∣∣
=

4 + 24
−4 + 18

= 2.
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4.1.2 Properties of Second-Order Determinants

There are many general properties of determinants that will be discussed in
later sections. At this moment we want to list a few which we need in the fol-
lowing discussion of third-order determinant. For a second-order determinant,
these properties are almost self-evident from its definition. Although they are
generally valid for nth order determinant, at this point we only need them to
be valid for second-order determinant to continue our discussion:

1. If the rows and columns are interchanged, the determinant is unaltered,
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ = a1b2 − b1a2 =
∣∣∣∣a1 b1

a2 b2

∣∣∣∣ . (4.7)

2. If two columns (or two rows) are interchanged, the determinant changes
sign, ∣∣∣∣ b1 a1

b2 a2

∣∣∣∣ = b1a2 − b2a1 = −(a1b2 − a2b1) = −
∣∣∣∣a1 b1

a2 b2

∣∣∣∣ . (4.8)

3. If each element in a column (or in a row) is multiplied by m, the determi-
nant is multiplied by m,

∣∣∣∣ma1 b1

ma2 b2

∣∣∣∣ = ma1b2 − ma2b1 = m(a1b2 − a2b1) = m

∣∣∣∣a1 b1

a2 b2

∣∣∣∣ .
4. If each element of a column (or of a row) is sum of two terms, the deter-

minant equals the sum of the two corresponding determinants,
∣∣∣∣ (a1 + c1) b1

(a2 + c2) b2

∣∣∣∣ = (a1 + c1)b2 − (a2 + c2)b1 = a1b2 − a2b1 + c1b2 − c2b1

=
∣∣∣∣a1 b1

a2 b2

∣∣∣∣ +
∣∣∣∣ c1 b1

c2 b2

∣∣∣∣ .

4.1.3 Solution of Three Linear Equations

Now suppose we want to solve a system of three equations

a1x + b1y + c1z = d1, (4.9)

a2x + b2y + c2z = d2, (4.10)

a3x + b3y + c3z = d3. (4.11)

First we can solve for y and z in terms of x. Writing (4.10) and (4.11) as

b2y + c2z = d2 − a2x,

b3y + c3z = d3 − a3x,
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then in analogy to (4.5) and (4.6), we can express y and z as

y =

∣∣∣∣ (d2 − a2x) c2

(d3 − a3x) c2

∣∣∣∣∣∣∣∣ b2 c2

b3 c3

∣∣∣∣
, (4.12)

z =

∣∣∣∣ b2 (d2 − a2x)
b3 (d3 − a3x)

∣∣∣∣∣∣∣∣ b2 c2

b3 c3

∣∣∣∣
. (4.13)

Substituting these two expressions into (4.9) and then multiplying the entire
equation by ∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ ,
we have

a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣x + b1

∣∣∣∣ (d2 − a2x) c2

(d3 − a3x) c3

∣∣∣∣ + c1

∣∣∣∣ b2 (d2 − a2x)
b3 (d3 − a3x)

∣∣∣∣ = d1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ . (4.14)

By properties 3 and 4, this equation becomes

a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣x + b1

{∣∣∣∣d2 c2

d3 c3

∣∣∣∣−
∣∣∣∣a2 c2

a3 c3

∣∣∣∣x
}

+ c1

{∣∣∣∣ b2 d2

b3 d3

∣∣∣∣−
∣∣∣∣ b2 a2

b3 a3

∣∣∣∣x
}

= d1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ . (4.15)

It follows:
Dx = Nx, (4.16)

where

Nx = d1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣− b1

∣∣∣∣d2 c2

d3 c3

∣∣∣∣− c1

∣∣∣∣ b2 d2

b3 d3

∣∣∣∣ , (4.17)

and

D = a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣− b1

∣∣∣∣a2 c2

a3 c3

∣∣∣∣− c1

∣∣∣∣ b2 a2

b3 a3

∣∣∣∣ . (4.18)

Expanding the second-order determinants, (4.18) leads to

D = a1b2c3 − a1b3c2 − b1a2c3 + b1a3c2 − c1b2a3 + c1b3a2. (4.19)

To express these six terms in a more systematic way, we introduce a third-
order determinant as a short hand notation for (4.19)

D =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ . (4.20)
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a1

= a1b2c3 + b1c2a3 + c1a2b3 − a3b2c1 − b3c2a1 − c3a2b1

b1 a1 b1

a2 b2

a3 b3

c1

a2 b2 c2

a3 b3 c3

(+) (+) (+)

(−)(−)(−)

Fig. 4.2. A schematic diagram for a third-order determinant

A useful device for evaluating a third-order determinant is as follows. We write
down the determinant column by column, after the third column, we repeat
the first, then the second column, creating a 3 × 5 array of numbers. We can
form a product of three elements along each of the three diagonals going from
upper left to lower right. These products carry a positive sign. Similarly, three
products can be formed along the diagonals from lower left to upper right.
These three latter products carry a minus sign. The value of the determinant
is equal to the sum of these six terms. This is shown in the diagram (Fig. 4.2).

This is seen to be exactly equal to the six terms in (4.19).
Using the determinant notation, one can easily show that Nx in (4.17) is

equal to

Nx =

∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

d3 b3 c3

∣∣∣∣∣∣ . (4.21)

Therefore

x =

∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

d3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
.

Similarly we can define

Ny =

∣∣∣∣∣∣
a1 d1 c1

a2 d2 c2

a3 d3 c3

∣∣∣∣∣∣ , Nz =

∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣ ,

and show

y =
Ny

D
, z =

Nz

D
.
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The determinant in the denominator D is called the determinant of the coef-
ficients. It is simply formed with the array of the coefficients on the left-hand
sides of (4.9)–(4.11). To find the numerator determinant Nx, start with D,
erase the x coefficients a1, a2, and a3, and replace them with the constants
d1, d2, and d3 from the right-hand sides of the equations. Similarly we re-
place the y coefficients in D with the constant terms to find Ny, and the z
coefficients in D with the constants to find Nz.

Example 4.1.2. Find the solution of

3x + 2y + z = 11,
2x + 3y + z = 13,
x + y + 4z = 12.

Solution 4.1.2.

D =

∣∣∣∣∣∣
3 2 1
2 3 1
1 1 4

∣∣∣∣∣∣ = 36 + 2 + 2 − 3 − 3 − 16 = 18,

Nx =

∣∣∣∣∣∣
11 2 1
13 3 1
12 1 4

∣∣∣∣∣∣ = 132 + 24 + 13 − 36 − 11 − 104 = 18,

Ny =

∣∣∣∣∣∣
3 11 1
2 13 1
1 12 4

∣∣∣∣∣∣ = 156 + 11 + 24 − 13 − 36 − 88 = 54,

Nz =

∣∣∣∣∣∣
3 2 11
2 3 13
1 1 12

∣∣∣∣∣∣ = 108 + 26 + 22 − 33 − 39 − 48 = 36.

Thus

x =
18
18

= 1, y =
54
18

= 3, z =
36
18

= 2.

Clearly, with determinant notation, the results can be given in a system-
atic way. While this procedure is still valid for systems of more than three
equations, as we shall see in the section on Cramer’s rule, but the diagonal
scheme of expanding the determinants shown in this section is generally cor-
rect only for determinants of second- and third-orders. For determinants of
higher order, we must pay attention to the formal definition of determinants.
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4.2 General Definition of Determinants

4.2.1 Notations

Before we present the general definition of an arbitrary order determinant,
let us write the third-order determinant in a more systematic way. Equations
(4.19) and (4.20) can be written in the following form:∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ =
3∑

i=1

3∑
j=1

3∑
k=1

εijkaibjck, (4.22)

where

ε123 = ε231 = ε312 = 1,

ε132 = ε321 = ε213 = −1, (4.23)
εijk = 0 for all others.

Writing out term by term the right-hand side of (4.22), one can readily verify
that the six nonvanishing terms are exactly the same as in (4.19).

In order to generalize this definition for a nth order determinant, let us ex-
amine the triple sum more closely. First we note that εijk = 0 if any two of the
three indices i, j, k are equal, e.g., ε112 = 0, ε333 = 0. Eliminating those terms,
(4.22) is a particular linear combination of six products, each product contains
one and only one element from each row and from each column. Each product
carries either a positive or a negative sign. The arrangements of (i, j, k) in the
positive products are either in the normal order of (1, 2, 3), or are the results
of an even number of interchanges between two adjacent numbers of the nor-
mal order. Those in the negative products are the results of an odd number
of interchanges in the normal order. For example, it takes two interchanges to
get (2, 3, 1) from (1, 2, 3) [123 (interchange 12)→213 (interchange 13)→231],
and a2b3c1 is positive (ε231 = 1); it takes only one interchange to get (1, 3, 2)
from (1, 2, 3) [123 (interchange 23)→132], and a1b3c2 is negative (ε132 = −1).
The diagram (Fig. 4.3) can help us to find out the value of εijk quickly. If a
set of indices goes in the clockwise direction, it gives a positive one (+1), if it
goes in the counterclockwise direction, it gives a negative one (−1).

−1 +1

1

23

Fig. 4.3. Levi-Civita symbol εijk where i, j, k take the value of 1, 2, or 3. If the set
of indices goes clockwise, εijk = +1, if counterclockwise, εijk = −1



180 4 Determinants

These properties are characterized by the Levi-Civita symbol εi1i2···in
,

which is defined as follows:

εi1i2···in
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
if (i1, i2, . . . , in) is an even permutation

of the normal order (1, 2, . . . , n)

−1
if (i1, i2, . . . , in) is an odd permutation

of the normal order (1, 2, . . . , n)
0 if any index is repeated.

An even permutation means that an even number of pairwise interchanges
of adjacent numbers is needed to obtain the given permutation from the nor-
mal order, and an odd permutation is associated with an odd number of
pairwise interchanges. As we have shown, (2, 3, 1) is an even permutation,
and (1, 3, 2) is an odd permutation.

An easy way to determine whether a given permutation is even or odd
is to write out the normal order and write the permutation directly below
it. Then connect corresponding numbers in these two arrangements with line
segments, and count the number of intersections between pairs of these lines.
If the number of intersections is even, then the given permutation is even. If
the number of intersections is odd, then the permutation is odd. For exam-
ple, to find the permutation (2, 3, 4, 1), we write out the normal order and
permutation in the diagram (Fig. 4.4, we call it “permutation diagram”):

There are three intersections. Therefore the permutation is odd and
ε2341 = −1. The reason this scheme is valid is because of the following. Start-
ing with the smallest number that is not directly below the same number,
an exchange of this number with the number to its left will eliminate one
intersection. In the earlier example, after the interchange between 1 and 4,
only two intersections remain. Clearly two more interchanges will eliminate
all intersections and return the permutation to the normal order. Thus three
intersections indicate three interchanges are needed. Therefore the permuta-
tion is odd.

When we count the number of intersections, we are counting the intersec-
tions of pairs of lines. Therefore one should avoid to have more than two lines
intersecting at a point. The lines joining the corresponding numbers need not
to be straight lines.

1   2   3   4

2   3   4   1

1   2   3   4

2   3   1   4

After one

interchange

Fig. 4.4. Permutation diagram. The permutation is written directly below the
normal order. The number of intersections between pairs of lines connecting the
corresponding numbers is equal to the number of interchanges needed to obtain the
permutation from the normal order. This diagram shows that one intersection point
represents one interchange between two adjacent members
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Example 4.2.1. What is the value of the the Levi-Civita symbol ε1357246?

Solution 4.2.1. There are six intersections in Fig. 4.5, therefore the permu-
tation is even and ε1357246 = 1.

1   2   3   4   5   6   7

1   3   5   7   2   4   6

1   2   3   4   5   6   7

1   2   3   5   7   4   6

1   2   3   4   5   6   7

1   2   3   4   5   7   6

1   2   3   4   5   6   7

1   2   3   4   5   6   7

Fig. 4.5. In this diagram, six intersections represent that six interchanges are needed
to obtain the permutation 1357246 from the normal order 1234567

4.2.2 Definition of a nth Order Determinant

In discussing a general nth order determinant, it is convenient to use the
double-subscript notation. Each element of the determinant is represented
by the symbol aij . The subscripts ij indicate that it is the element at ith
row and jth column. With this notation, a1b2c3 becomes a11a22a33; a2b3c1

becomes a21a32a13, and aibjck becomes ai1aj2ak3. The determinant itself is
denoted by a variety of symbols. The following notations are all equivalent:∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
= |aij | = |A| = det |A| = Dn. (4.24)

The value of the determinant is given by

Dn =
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1

εi1i2···in
ai11ai22 · · · ainn. (4.25)

This equation is the formal definition of a nth order determinant. Clearly,
for n = 3, it reduces to (4.22). Note that for a nth order determinant, there
are n! possible products because i1 can take one of n values, i2 cannot repeat
i1, so it can take only one of n−1 values, and so on. We can think of evaluating
a determinant in terms of three steps. (1) Take n! products of n elements such
that in each product there is one and only one element from each row and
one and only one element from each column. (2) Attach a positive (+) sign
to the product if the row subscripts are an even permutation of the column
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subscripts, and a minus sign (−) if an odd perturbation. (3) Sum over n!
products with these signs.

Stated in this way, it is clear that the definition of a determinant is sym-
metrical between the rows and columns. The determinant (4.25) can just as
well be written as

Dn =
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1

εi1i2···in
a1i1a2i2 · · · anin

. (4.26)

It follows that any theorem about the determinant which involves the rows is
also true for the columns, and vice-versa.

Another property that is clear from this definition is this. If any two rows
are interchanged, the determinant changes sign. First it is easy to show that if
the two rows are adjacent to each other, this is the case. This follows from the
fact that an interchange of two adjacent rows corresponds to an interchange
of two adjacent row indices in the Levi-Civita symbol. It changes an even
permutation into an odd permutation, and vice versa. Therefore it introduces
a minus sign to all the products.

Now suppose the row indices i and j are not adjacent to each other and
there are n indices between them:

i a1 a2 a3 · · · an j .

To bring j to the left requires n + 1 adjacent interchanges leading to

j i a1 a2 a3 · · · an .

Now bringing i to the right requires n adjacent interchanges leading to

j a1 a2 a3 · · · an i .

Therefore all together there are 2n+1 number of adjacent interchanges leading
to the interchange of i and j. Since 2n + 1 is an odd integer, this brings in an
overall minus sign.

Example 4.2.2. Let

D2 =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ,
use (4.25) to (a) expand this second-order determinant, (b) show explicitly
that the interchange of the two rows changes its sign.

Solution 4.2.2. (a) According to (4.25)

D2 =
2∑

i1=1

2∑
i2=1

εi1i2ai11ai22,
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i1 = 1, i2 = 1 : εi1i2ai11ai22 = ε11a11a12

i1 = 1, i2 = 2 : εi1i2ai11ai22 = ε12a11a22

i1 = 2, i2 = 1 : εi1i2ai11ai22 = ε21a21a12

i1 = 2, i2 = 2 : εi1i2ai11ai22 = ε22a21a22.

Since ε11 = 0, ε12 = 1, ε21 = −1, ε22 = 0, the double sum gives the second-
order determinant as

2∑
i1=1

2∑
i2=1

εi1i2ai11ai22 = a11a22 − a21a12.

(b) To express the interchange of two rows, we can simply replace ai11ai22 in
the double sum with ai21ai12 (i1 and i2 are interchanged), thus

∣∣∣∣a21 a22

a11 a12

∣∣∣∣ =
2∑

i1=1

2∑
i2=1

εi1i2ai21ai12.

Since i1 and i2 are running indices, we can rename i1 as j2 and i2 as j1, so

2∑
i1=1

2∑
i2=1

εi1i2ai21ai12 =
2∑

j2=1

2∑
j1=1

εj2j1aj11aj22 =
2∑

j1=1

2∑
j2=1

εj2j1aj11aj22.

The last expression is identical with that of the original determinant except
the indices of the Levi-Civita symbol are interchanged.

∣∣∣∣a21 a22

a11 a12

∣∣∣∣ =
2∑

j1=1

2∑
j2=1

εj2j1aj11aj22

= ε11a11a12 + ε21a11a22 + ε12a21a12 + ε22a21a22

= −a11a22 + a21a12 = −
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ .
This result can, of course, be obtained by inspection. We have taken the risk
of stating the obvious. Hopefully, this step by step approach will remove any
uneasy feeling of working with indices.

4.2.3 Minors, Cofactors

Let us return to (4.18), written in the double-subscript notation this equation
becomes

D3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣ , (4.27)
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where we have interchanged the two columns of the last second-order deter-
minant of (4.18) and changed the sign. It is seen that∣∣∣∣a22 a23

a32 a33

∣∣∣∣
is the second-order determinant formed by removing the first row and first
column from the original third-order determinant D3. We call it M11 the
minor complementary to a11. In general, the minor Mij complementary to aij

is defined as the (n − 1)th order determinant formed by deleting the ith row
and the jth column from the original nth order determinant Dn. The cofactor
Cij is defined as (−1)i+jMij .

Example 4.2.3. Find the value of the minors M11, M23 and the cofactors C11,
C23 of the determinant

D4 =

∣∣∣∣∣∣∣∣

2 −1 1 3
−3 2 5 0
1 0 −2 2
4 2 3 1

∣∣∣∣∣∣∣∣
.

Solution 4.2.3.

M11 =

∣∣∣∣∣∣∣∣

∗ ∗ ∗ ∗
∗ 2 5 0
∗ 0 −2 2
∗ 2 3 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
2 5 0
0 −2 2
2 3 1

∣∣∣∣∣∣ ; M23 =

∣∣∣∣∣∣∣∣

2 −1 ∗ 3
∗ ∗ ∗ ∗
1 0 ∗ 2
4 2 ∗ 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
2 −1 3
1 0 2
4 2 1

∣∣∣∣∣∣ .

C11 = (−1)1+1

∣∣∣∣∣∣
2 5 0
0 −2 2
2 3 1

∣∣∣∣∣∣ ; C23 = (−1)2+3

∣∣∣∣∣∣
2 −1 3
1 0 2
4 2 1

∣∣∣∣∣∣ .

4.2.4 Laplacian Development of Determinants by a Row
(or a Column)

With these notations, (4.27) becomes

D3 = a11M11 − a12M12 + a13M13 =
3∑

j=1

(−1)1+ja1jM1j (4.28)

= a11C11 + a12C12 + a13C13 =
3∑

k=1

a1kC1k. (4.29)

This is known as the Laplace development of the third-order determinant on
elements of the first row. It turns out this is not limited to the third-order
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determinant. It is a fundamental theorem that determinants of any order can
be evaluated by a Laplace development on any row or column

Dn =
n∑

j=1

(−1)i+jaijMij =
n∑

j=1

aijCij for any i, (4.30)

=
n∑

i=1

(−1)i+jaijMij =
n∑

i=1

aijCij for any j. (4.31)

The proof may be given by induction and is based on the definition of the
determinant. According to (4.25), a determinant is the sum of all the n! prod-
ucts which are formed by taking exactly one element from each row and each
column and multiplying by 1 or −1 in accordance with the Levi-Civita rule.

Now the minor Mij of a nth order determinant is a (n−1)th determinant.
It is a sum of (n − 1)! products. Each product has one element from each
row and each column except the ith row and jth column. It is then clear
that

∑n
j=1 kijaijMij is a sum of n(n− 1)! = n! products, and each product is

formed with exactly one element from each row and each column. It follows
that, with the appropriate choice of kij , the determinant can be written in a
row expansion

Dn =
n∑

j=1

kijaijMij (4.32)

or in a column expansion

Dn =
n∑

i=1

kijaijMij . (4.33)

The Laplace development will follow if we can show:

kij = (−1)i+k.

First let us consider all the terms in (4.25) containing a11. In these terms
i1 = 1. We note that if (1, i2, i3, . . . , in) is an even (or odd) permutation
of (1, 2, 3, . . . , n), it means (i2, i3, . . . , in) is an even (or odd) permutation of
(2, 3, . . . , n). The number of intersections in the following two “permutation
diagrams” are obviously the same:

(
1 2 3 · · · n
1 i2 i3 · · · in

)
;

(
2 3 · · · n
i2 i3 · · · in

)
,

therefore

ε1i2···in
= εi2···in

.
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So terms containing a11 sum to

n∑
i2=1

· · ·
n∑

in=1

ε1i2···in
a11ai22 · · · ainn = a11

n∑
i2=1

· · ·
n∑

in=1

εi2···in
ai22 · · · ainn,

which is simply a11M11, where M11 is the minor of a11. On the other hand,
according to (4.32), all the terms containing a11 sum to k11a11M11. Therefore

k11 = +1.

Next consider the terms in (4.25) which contain a particular element aij .
If we interchange the ith row with the one above it, the determinant changes
sign. If we move the row up in this way (i − 1) times, the ith row will have
moved up into the first row, and the order of the other rows is not changed.
The process will change the sign of the determinant (i− 1) times. In a similar
way, we can move the jth column to the first column without change the order
of the other columns. Then the element aij will be in the top left corner of the
determinant, in the place of a11, and the sign of the determinant has change
(i − 1 + j − 1) times. That is

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1j · · · a1n

· · · · · · · · · · · · · · ·
ai1 · · · aij · · · ain

· · · · · · · · · · · · · · ·
an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣
= (−1)i+j−2

∣∣∣∣∣∣∣∣∣∣

aij ai1 ai2 · · · ain

a1j a11 a12 · · · a1n

a2j a21 a22 · · · a2n

· · · · · · · · · · · · · · ·
anj an1 an2 ann

∣∣∣∣∣∣∣∣∣∣
.

In the rearranged determinant, aij is in the place of a11, thus the sum of all
the terms containing aij is equal to aijMij . But there is a factor (−1)i+j−2

in front of the rearranged determinant. Therefore the terms containing aij in
the right-hand side of the equation sum to (−1)i+j−2aijMij . On the other
hand, according to (4.32), all the terms containing aij in the determinant of
the left-hand side of the equation sum to kijaijMij . Therefore,

kij = (−1)i+j−2 = (−1)i+j . (4.34)

This completes the proof of the Laplace development, which is very important
in both theory and computation of determinants. It is useful to keep in mind
that kij forms a checkboard pattern:

∣∣∣∣∣∣∣∣∣∣∣∣

+1 −1 +1
−1 1 −1
+1 −1 +1

· · ·
+1 −1
−1 +1

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Example 4.2.4. Find the value of the determinant

D3 =

∣∣∣∣∣∣
3 −2 2
1 2 −3
4 1 2

∣∣∣∣∣∣
by (a) a Laplace development on the first row; (b) a Laplace development on
the second row; (c) a Laplace development on the first column.

Solution 4.2.4.

(a) D3 = a11M11 − a12M12 + a13M13 = a11C11 + a12C12 + a13C13

= 3
∣∣∣∣ 2 −3
1 2

∣∣∣∣− (−2)
∣∣∣∣ 1 −3
4 2

∣∣∣∣ + 2
∣∣∣∣ 1 2
4 1

∣∣∣∣
= 3(4 + 3) + 2(2 + 12) + 2(1 − 8) = 35.

(b)

D3 = −a21M21 + a22M22 − a23M23

= −1
∣∣∣∣−2 2

1 2

∣∣∣∣ + 2
∣∣∣∣ 3 2
4 2

∣∣∣∣− (−3)
∣∣∣∣ 3 −2
4 1

∣∣∣∣
= −(−4 − 2) + 2(6 − 8) + 3(3 + 8) = 35.

(c)

D3 = a11M11 − a21M21 + a31M31

= 3
∣∣∣∣ 2 −3
1 2

∣∣∣∣− 1
∣∣∣∣−2 2

1 2

∣∣∣∣ + 4
∣∣∣∣−2 2

2 −3

∣∣∣∣
= 3(4 + 3) − (−4 − 2) + 4(6 − 4) = 35.

Example 4.2.5. Find the value of the triangular determinant

Dn =

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

· · · · · · · · · · · · · · ·
0 0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣
.

Solution 4.2.5.

Dn = a11

∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

0 a33 · · · a3n

· · · · · · · · · · · ·
0 0 · · · ann

∣∣∣∣∣∣∣∣
= a11a22

∣∣∣∣∣∣
a33 · · · a3n

· · · · · · · · ·
0 · · · ann

∣∣∣∣∣∣ = a11a22a33 · · · ann.
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4.3 Properties of Determinants

By mathematical induction, we can now show that properties 1 to 4 of second-
order determinants are generally valid for nth order determinants. Based on
the fact that it is true for (n − 1)th order determinants, we will show that it
must also be true for nth order determinants. All properties of the determinant
can be derived directly from its definition of (4.25). However, in this section,
we will demonstrate them with Laplace expansions.

1. The value of the determinant remains the same if rows and columns are
interchanged.

Let the Laplace expansion of Dn on elements of the first row be

Dn =
n∑

j=1

(−1)1+ja1jM1j . (4.35)

Let DT
n (known as the transpose of Dn) be the nth order determinant formed

by interchanging rows and columns of the determinant Dn.The Laplace ex-
pansion of DT

n on elements of the first column (which are elements of the first
row of Dn) is then given by

DT
n =

n∑
j=1

(−1)1+ja1jM
T
1j , (4.36)

where MT
1j is the minor complement to a1j , and is equal to the determinant

M1j with rows and columns interchanged. In the case of n = 3, the minors
are second-order determinants. By (4.7), MT

1j = M1j . Therefore D3 = DT
3 .

This process can be carried out, one step at a time, to any n. Therefore we
conclude

Dn = DT
n . (4.37)

2. The determinant changes sign if any two columns (or any two rows) are
interchanged.

First we will verify this property for the third-order determinant D3. Let
E3 be the determinant obtained by interchanging two columns of D3. Suppose
column k is not one of those exchanged. Using Laplace development to expand
D3 and E3 by their kth column, we have

D3 =
3∑

i=1

(−1)i+kaikMik; (4.38)

E3 =
3∑

i=1

(−1)i+kaikM ′
ik, (4.39)
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where M ′
ik is a second-order determinant and is equal to Mik with the two

columns interchanged. By (4.8), M ′
ik = −Mik. Hence E3 = −D3. Now by

mathematical induction, we assume this property holds for (n−1)th order
determinants. The same procedure will show that this property also holds for
determinants of nth order.

This property is called antisymmetric property. It is frequently used in
quantum mechanics in the construction of an antisymmetric many particle
wave functions.

3. If each element in a column (or in a row) is multiplied by a constant m,
the determinant is multiplied by m.

This property follows directly from the Laplacian expansion. If the ith
column is multiplied by m, this property can be shown in the following way:∣∣∣∣∣∣∣∣

a11 · · · ma1i · · · a1n

a21 · · · ma2i · · · a2n

· · · · · · · · ·
an1 · · · mani · · · ann

∣∣∣∣∣∣∣∣
=

n∑
j=1

majiCji = m

n∑
j=1

ajiCji

= m

∣∣∣∣∣∣∣∣

a11 · · · a1i · · · a1n

a21 · · · a2i · · · a2n

· · · · · · · · ·
an1 · · · ani · · · ann

∣∣∣∣∣∣∣∣
. (4.40)

4. If each element in a column (or in a row) is a sum of two terms, the
determinant equals the sum of the two corresponding determinants.

If the ith column is a sum of two terms, we can expand the determinant
on elements of the ith column∣∣∣∣∣∣∣∣

a11 · · · a1i + b1i · · · a1n

a21 · · · a2i + b2i · · · a2n

· · · · · · · · ·
an1 · · · ani + bni · · · ann

∣∣∣∣∣∣∣∣
=

n∑
j=1

(aji + bji)Cji =
n∑

j=1

ajiCji +
n∑

j=1

bjiCji

=

∣∣∣∣∣∣∣∣

a11 · · · a1i · · · a1n

a21 · · · a2i · · · a2n

· · · · · · · · ·
an1 · · · ani · · · ann

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

a11 · · · b1i · · · a1n

a21 · · · b2i · · · a2n

· · · · · · · · ·
an1 · · · bni · · · ann

∣∣∣∣∣∣∣∣
. (4.41)

From these four properties, one can derive many others. For example:

5. If two columns (or two rows) are the same, the determinant is zero.

This follows from the antisymmetric property. If we exchange the two
identical columns, the determinant will obviously remain the same. Yet the
antisymmetric property requires the determinant to change sign. The only
number that is equal to its negative self is zero. Therefore the determinant
must be zero.
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6. The value of a determinant is unchanged if a multiple of one column is
added to another column (or if a multiple of one row is added to another
row).

Without loss of generality, this property can be expressed as follows:
∣∣∣∣∣∣∣∣

a11 + ma12 a12 · · · a1n

a21 + ma22 a22 · · · a2n

· · · · · ·
an1 + man2 an2 · · · ann

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

ma12 a12 · · · a1n

ma22 a22 · · · a2n

· · · · · ·
man2 an2 · · · ann

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
+ m

∣∣∣∣∣∣∣∣

a12 a12 · · · a1n

a22 a22 · · · a2n

· · · · · ·
an2 an2 · · · ann

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
. (4.42)

The first equal sign is by property 4, the second equal sign is because of
property 3, and the last equal sign is due to property 5.

Example 4.3.1. Show that
∣∣∣∣∣∣
1 a bc
1 b ac
1 c ab

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ .

Solution 4.3.1.∣∣∣∣∣∣
1 a bc
1 b ac
1 c ab

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a (bc + a2)
1 b (ac + ab)
1 c (ab + ac)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a (bc + a2 + ba)
1 b (ac + ab + b2)
1 c (ab + ac + bc)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1 a (bc + a2 + ba + ca)
1 b (ac + ab + b2 + cb)
1 c (ab + ac + bc + c2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 a (bc + ba + ca)
1 b (ac + ab + cb)
1 c (ab + ac + bc)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ + (ab + bc + ca)

∣∣∣∣∣∣
1 a 1
1 b 1
1 c 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ .

First we multiply each element of the second column by a and add to the
third column. For the second equal sign, we multiply the second column by
b and add to the third column. Do the same thing except multiplying by c
for the third equal sign. The fourth equal sign is due to property 4. The fifth
equal sign is due to property 3. And lastly, the determinant with two identical
column vanishes.
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Example 4.3.2. Evaluate the determinant

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + a1 a2 a3 · · · an

a1 1 + a2 a3 · · · an

a1 a2 1 + a3 · · · an

·
·

·
·

·
·

· · ·
· · ·

·
·

a1 a2 a3 · · · 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣
.

Solution 4.3.2. Adding column 2, column 3, all the way to column n to
column 1, we have

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

1 + a1 + a2 + a3 + · · · + an a2 a3 · · · an

1 + a1 + a2 + a3 + · · · + an 1 + a2 a3 · · · an

1 + a1 + a2 + a3 + · · · + an a2 1 + a3 · · · an

·
·

·
·

·
·

· · ·
· · ·

·
·

1 + a1 + a2 + a3 + · · · + an a2 a3 · · · 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣

= (1 + a1 + a2 + a3 + · · · + an)

∣∣∣∣∣∣∣∣∣∣∣∣

1 a2 a3 · · · an

1 1 + a2 a3 · · · an

1 a2 1 + a3 · · · an

·
·

·
·

·
·

· · ·
· · ·

·
·

1 a2 a3 · · · 1 + an

∣∣∣∣∣∣∣∣∣∣∣∣
.

Multiplying row 1 by −1 and add it to row 2, and then add it to row 3, and
so on

Dn = (1 + a1 + a2 + a3 + · · · + an)

∣∣∣∣∣∣∣∣∣∣∣∣

1 a2 a3 · · · an

0 1 0 · · · 0
0 0 1 · · · 0
·
·

·
·

·
·

· · ·
· · ·

·
·

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (1 + a1 + a2 + a3 + · · · + an) .

Example 4.3.3. Evaluate the following determinants (known as Vandermonde
determinant):

(a) D3 =

∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣ , (b) Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3

·
·

·
·

·
·

· · ·
· · ·

·
·

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Solution 4.3.3. (a) Method I.∣∣∣∣∣∣
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 x1 x2

1

0 (x2 − x1) (x2
2 − x2

1)
0 (x3 − x1) (x2

3 − x2
1)

∣∣∣∣∣∣ = (x2 − x1)(x3 − x1)
∣∣∣∣ 1 (x2 + x1)
1 (x3 + x1)

∣∣∣∣
= (x2 − x1)(x3 − x1)(x3 − x2).

Method II. D3 is a polynomial in x1 and it vanishes when x1 = x2, since then
the first two rows are the same. Hence it is divisible by (x1 − x2). Similarly,
it is divisible by (x2 − x3) and (x3 − x1). Therefore

D3 = k (x1 − x2) (x1 − x3) (x2 − x3) .

Furthermore, since D3 is of degree 3 in x1, x2, x3, k must be a constant. The
coefficient of the term x2x

2
3 in this expression is k(−1)(−1)2. On the other

hand, the diagonal product of the D3 is +x2x
2
3. Comparing them shows that

k(−1)(−1)2 = 1. Therefore k = −1 and

D3 = − (x1 − x2) (x1 − x3) (x2 − x3) = (x2 − x1)(x3 − x1)(x3 − x2).

(b) With the same reason as in Method II of (a),

Dn = k(x1 − x2)(x1 − x3) · · · (x1 − xn)(x2 − x3) · · · (x2 − xn) · · · (xn−1 − xn).

The coefficient of the term x2x
2
3 · · ·xn−1

n in this expression is k(−1)(−1)2 · · ·
(−1)n−1. Compare this with the diagonal product of Dn, we have

1 = k(−1)(−1)2 · · · (−1)n−1 = k(−1)1+2+3+···+(n−1).

Since

1 + 2 + 3 + · · · + (n − 1) =
1
2
n(n − 1),

therefore

Dn =(−1)n(n−1)/2(x1 − x2)(x1 − x3) · · · (x1 − xn)(x2 − x3) · · · (x2 − xn) · · ·
(xn−1 − xn).

Example 4.3.4. Pivotal Condensation. Show that

D3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
1

a11

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12

a21 a22

∣∣∣∣
∣∣∣∣a11 a13

a21 a23

∣∣∣∣
∣∣∣∣a11 a12

a31 a32

∣∣∣∣
∣∣∣∣a11 a13

a31 a33

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
.

Clearly, a11 must be nonzero. If it is zero, then the first row (or first column)
must be exchanged with another row (or another column), so that a11 �= 0.
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Solution 4.3.4.∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
1

a2
11

∣∣∣∣∣∣
a11 a11a12 a11a13

a21 a11a22 a11a23

a31 a11a32 a11a33

∣∣∣∣∣∣

=
1

a2
11

∣∣∣∣∣∣
a11 (a11a12 − a11a12) (a11a13 − a11a13)
a21 (a11a22 − a21a12) (a11a23 − a21a13)
a31 (a11a32 − a31a12) (a11a33 − a31a13)

∣∣∣∣∣∣

=
1

a2
11

∣∣∣∣∣∣
a11 0 0
a21 (a11a22 − a21a12) (a11a23 − a21a13)
a31 (a11a32 − a31a12) (a11a33 − a31a13)

∣∣∣∣∣∣
=

1
a11

∣∣∣∣ (a11a22 − a21a12) (a11a23 − a21a13)
(a11a32 − a31a12) (a11a33 − a31a13)

∣∣∣∣

=
1

a11

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12

a21 a22

∣∣∣∣
∣∣∣∣a11 a13

a21 a23

∣∣∣∣
∣∣∣∣a11 a12

a31 a32

∣∣∣∣
∣∣∣∣a11 a13

a31 a33

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
.

This method can be applied to reduce a nth order determinant to a (n− 1)th
order determinant and is known as pivotal condensation. It may not offer any
advantage for hand calculation, but it is useful in evaluating determinants
with computers.

4.4 Cramer’s Rule

4.4.1 Nonhomogeneous Systems

Suppose we have a set of n equations and n unknowns

a11x1 + a12x2 + · · · + a1nxn = d1

a21x1 + a22x2 + · · · + a2nxn = d2

· · · · · · · · · · · · = ·
an1x1 + an2x2 + · · · + annxn = dn. (4.43)

The constants d1, d2, . . . , dn on the right-hand side are known as nonhomoge-
neous terms. If they are not all equal to zero, the set of equations is known
as a nonhomogeneous system. The problem is to find x1, x2, . . . , xn to satisfy
this set of equations. We will see by using the properties of determinants, this
set of equations can be readily solved for any n.

Forming the determinant of the coefficients and then multiplying by x1,
with the help of property 3 we have
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x1

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a11x1 a12 · · · a1n

a21x1 a22 · · · a2n

· · · · · ·
an1x1 an2 · · · ann

∣∣∣∣∣∣∣∣
.

We multiply the second column of the right-hand side determinant by x2 and
add it to the first column, and then multiply the third column by x3 and add
it to the first column and so on. According to property 6, the determinant is
unchanged

x1

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a11x1 + a12x2 · · · + a1nxn a12 · · · a1n

a21x1 + a22x2 · · · + a2nxn a22 · · · a2n

· · · · · · · ·
an1x1 + an2x2 · · · + annxn an2 · · · ann

∣∣∣∣∣∣∣∣
.

Replacing the first column of the right-hand side determinant with the con-
stants of the right-hand side of (4.43), we obtain

x1

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

d1 a12 · · · a1n

d2 a22 · · · a2n

· · · · · ·
d3 an2 · · · ann

∣∣∣∣∣∣∣∣
.

Clearly if we multiply the determinant of the coefficients by x2, we can analyze
the second column of the determinant in the same way. In general

xiDn = Ni, 1 ≤ i ≤ n, (4.44)

where Dn is the determinant of the coefficients

Dn =

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
and Ni is the determinant obtained by replacing the ith column of Dn by the
nonhomogeneous terms

Ni =

∣∣∣∣∣∣∣∣

a11 · · · a1i−1 d1 a1i+1 · · · a1n

a21 · · · a2i−1 d2 a2i+1 · · · a2n

· · · · · · · · · · ·
an1 · · · ani−1 dn ani+1 · · · ann

∣∣∣∣∣∣∣∣
. (4.45)

Thus if the determinant of the coefficients is not zero, the system has a
unique solution

xi =
Ni

Dn
, 1 ≤ i ≤ n. (4.46)
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This procedure is known as Cramer’s rule. For the special cases of n = 2
and n = 3, the results are, of course, identical to what we derived in the first
section. Cramer’s rule is very important in the development of the theory of
determinants and matrices. However, to use it for solving a set of equations
with large n, it is not very practical. Either because the amount of computa-
tions is so large and/or because the demand of numerical accuracy is so high
with this method, even with high speed computers it may not be possible to
carry out such calculations. There are other techniques to solve that kind of
problems, such as the Gauss-Jordan elimination method which we will discuss
in the chapter on matrix theory.

4.4.2 Homogeneous Systems

Now if d1, d2, . . . , dn in the right-hand side of (4.43) are all zero, that is

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

· · · · · · · · · · · · · = ·
an1x1 + an2x2 · · · + annxn = 0,

the set of equations is known as a homogeneous system. In this case, all N ′
is

in (4.45) are equal to zero. If Dn �= 0, then the only solution by (4.46) is a
trivial one, namely x1 = x2 = · · · = xn = 0. On the other hand, if Dn is
equal to zero, then it is clear from (4.44), xi do not have to be zero. Hence
a homogeneous system can have a nontrivial solution only if the coefficient
determinant is equal to zero. Conversely, one can show that if

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
= 0, (4.47)

then there is always a nontrivial solution of the homogeneous equations. For
a 2×2 system, the existence of a solution can be shown by direct calculation.
Then one can show by mathematical induction that the statement is true for
any n × n system.

This simple fact has many important applications.

Example 4.4.1. For what values of λ do the equations

3x + 2y = λx,

4x + 5y = λy

have a solution other than x = y = 0?
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Solution 4.4.1. Moving the right-hand side to the left gives the homogeneous
system

(3 − λ)x + 2y = 0,

4x + (5 − λ)y = 0.

For a nontrivial solution, the coefficient determinant must vanish:∣∣∣∣ 3 − λ 2
4 5 − λ

∣∣∣∣ = λ2 − 8λ + 7 = (λ − 1)(λ − 7) = 0.

Thus the system has a nontrivial solution if and only if λ = 1 or λ = 7.

4.5 Block Diagonal Determinants

Frequently we encounter determinants with many zero elements and the
nonzero elements which form square blocks along the diagonal. For example
the following fifth-order determinant is a block diagonal determinant:

D5 = |A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 0 0 0

a21 a22 0 0 0

∗ ∗ a33 a34 a35

∗ ∗ a43 a44 a45

∗ ∗ a53 a54 a55

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In this section, we will show that

D5 =

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣ ·

∣∣∣∣∣∣∣∣∣∣

a33 a34 a35

a43 a44 a45

a53 a54 a55

∣∣∣∣∣∣∣∣∣∣
,

regardless the values the elements ∗ assume.
By definition

D5 =
5∑

i1=1

5∑
i2=1

5∑
i3=1

5∑
i4=1

5∑
i5=1

εi1i2i3i4i5ai11ai22ai33ai44ai55.

Since a13 = a14 = a15 = a23 = a24 = a25 = 0, all terms containing these
elements can be excluded from the summation. Thus
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D5 =
5∑

i1=1

5∑
i2=1

5∑
i3=3

5∑
i4=3

5∑
i5=3

εi1i2i3i4i5ai11ai22ai33ai44ai55.

Furthermore, the summation over i1 and i2 can be written as from 1 to 2,
since 3, 4, and 5 are taken up by i3, i4, or i5, and the Levi-Civita symbol is
equal to zero if any index is repeated. Hence

D5 =
2∑

i1=1

2∑
i2=1

5∑
i3=3

5∑
i4=3

5∑
i5=3

εi1i2i3i4i5ai11ai22ai33ai44ai55.

Under these circumstances, the permutation of i1, i2, i3, i4, i5 can be separated
into two permutations as schematically shown later:(

1 2 3 4 5
i1 = 1, 2 i2 = 1, 2 i3 = 3, 4, 5 i4 = 3, 4, 5 i5 = 3, 4, 5

)

=
(

1 2
i1 i2

)(
3 4 5
i3 i4 i5

)
.

The entire permutation is even if the two separated permutations are both
even or both odd. The permutation is odd if one of the separated permutations
is even and the other is odd. Therefore

εi1i2i3i4i5 = εi1i2 · εi3i4i5 .

It follows

D5 =
2∑

i1=1

2∑
i2=1

5∑
i3=3

5∑
i4=3

5∑
i5=3

εi1i2 · εi3i4i5ai11ai22ai33ai44ai55

=
2∑

i1=1

2∑
i2=1

εi1i2ai11ai22 ·
5∑

i3=3

5∑
i4=3

5∑
i5=3

εi3i4i5ai33ai44ai55

=

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣ ·

∣∣∣∣∣∣∣∣∣∣

a33 a34 a35

a43 a44 a45

a53 a54 a55

∣∣∣∣∣∣∣∣∣∣
.

When the blocks are along the “antidiagonal” line, we can evaluate the
determinant in a similar way, except we should be careful about its sign. For
example, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 a13 a14

0 0 a23 a24

a31 a32 ∗ ∗

a41 a42 ∗ ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
a31 a32

a41 a42

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
a13 a14

a23 a24

∣∣∣∣∣∣ , (4.48)
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and
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 a14 a15 a16

0 0 0 a24 a25 a26

0 0 0 a34 a35 a36

a41 a42 a43 ∗ ∗ ∗
a51 a52 a53 ∗ ∗ ∗
a61 a62 a63 ∗ ∗ ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣
a41 a42 a43

a51 a52 a53

a61 a62 a63

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣
a14 a15 a16

a24 a25 a26

a34 a35 a36

∣∣∣∣∣∣∣
. (4.49)

We can establish the result of (4.48) by changing it to a block diagonal deter-
minant with an even number of interchanges between two rows. However, we
need an odd number of interchanges between two rows to change (4.49) into
a block diagonal determinant, therefore a minus sign.

Solution 4.5.1. Example 4.5.1. Evaluate

D5 =

∣∣∣∣∣∣∣∣∣∣

0 2 0 7 1
1 0 3 0 0
0 0 0 5 1
1 0 4 0 0
0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣
.

Solution 4.5.2.

D5 =

∣∣∣∣∣∣∣∣∣∣

0 2 0 7 1
1 0 3 0 0
0 0 0 5 1
1 0 4 0 0
0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣
→ (Row 4 − Row 2) =

∣∣∣∣∣∣∣∣∣∣

0 2 0 7 1
1 0 3 0 0
0 0 0 5 1
0 0 1 0 0
0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣ 0 2
1 0

∣∣∣∣ ·
∣∣∣∣∣∣
0 5 1
1 0 0
0 1 0

∣∣∣∣∣∣ = −2 · 1 = −2.

4.6 Laplacian Developments by Complementary Minors

(This section can be skipped in the first reading.)
The Laplace expansion of D3 by the elements of the third column is

D3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣− a23

∣∣∣∣a11 a12

a31 a32

∣∣∣∣ + a33

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ .
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The three second-order determinants are minors complementary to their re-
spective elements. It is also useful to think that the three elements a13, a23, a33

are complementary to their respective minors. Obviously the expansion can
be written as

D3 =

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ a33 −
∣∣∣∣a11 a12

a31 a32

∣∣∣∣ a23 +
∣∣∣∣a21 a22

a31 a32

∣∣∣∣ a13. (4.50)

In this way, it is seen that the determinant D3 is equal to the sum of the signed
products of all the second-order minors contained in the first two columns,
each multiplied by its complementary element. In fact, any determinant Dn,
even for n > 3, can be expanded in the same way, except the complementary
element is of course another complementary minor. For example, for a 4th
order determinant

D4 =

∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣
, (4.51)

six second-order minors can be formed from the first two columns. They are

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ ,
∣∣∣∣a11 a12

a31 a32

∣∣∣∣ ,
∣∣∣∣a11 a12

a41 a42

∣∣∣∣ ,
∣∣∣∣a21 a22

a31 a32

∣∣∣∣ ,
∣∣∣∣a21 a22

a41 a42

∣∣∣∣ ,
∣∣∣∣a31 a32

a41 a42

∣∣∣∣ .
Let us expand D4 in terms of these six minors. First expanding D4 by its first
column, then expanding the four minors by their first columns, we have

D4 = a11C11 + a21C21 + a31C31 + a41C41, (4.52)

where

C11 =

∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣ = a22

∣∣∣∣a33 a34

a43 a44

∣∣∣∣− a32

∣∣∣∣a23 a24

a43 a44

∣∣∣∣ + a42

∣∣∣∣a23 a24

a33 a34

∣∣∣∣

C21 = −

∣∣∣∣∣∣
a12 a13 a14

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣ = −a12

∣∣∣∣a33 a34

a43 a44

∣∣∣∣ + a32

∣∣∣∣a13 a14

a43 a44

∣∣∣∣− a42

∣∣∣∣a13 a14

a33 a34

∣∣∣∣

C31 =

∣∣∣∣∣∣
a12 a13 a14

a22 a23 a24

a42 a43 a44

∣∣∣∣∣∣ = a12

∣∣∣∣a23 a24

a43 a44

∣∣∣∣− a22

∣∣∣∣a13 a14

a43 a44

∣∣∣∣ + a42

∣∣∣∣a13 a14

a23 a24

∣∣∣∣

C41 = −

∣∣∣∣∣∣
a12 a13 a14

a22 a23 a24

a32 a33 a34

∣∣∣∣∣∣ = −a12

∣∣∣∣a23 a24

a33 a34

∣∣∣∣ + a22

∣∣∣∣a13 a14

a33 a34

∣∣∣∣− a32

∣∣∣∣a13 a14

a23 a24

∣∣∣∣ .
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Putting these cofactors back into (4.52) and collecting terms, we have

D4 = (a11a22 − a21a12)
∣∣∣∣a33 a34

a43 a44

∣∣∣∣− (a11a32 − a31a12)
∣∣∣∣a23 a24

a43 a44

∣∣∣∣

+(a11a41 − a41a12)
∣∣∣∣a23 a24

a33 a34

∣∣∣∣ + (a21a32 − a31a22)
∣∣∣∣a13 a14

a43 a44

∣∣∣∣

−(a21a42 − a41a22)
∣∣∣∣a13 a14

a33 a34

∣∣∣∣ + (a31a42 − a41a32)
∣∣∣∣a13 a14

a23 a24

∣∣∣∣ . (4.53)

Clearly,

D4 =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ·
∣∣∣∣a33 a34

a43 a44

∣∣∣∣−
∣∣∣∣a11 a12

a31 a32

∣∣∣∣ ·
∣∣∣∣a23 a24

a43 a44

∣∣∣∣

+
∣∣∣∣a11 a12

a41 a42

∣∣∣∣ ·
∣∣∣∣a23 a24

a33 a34

∣∣∣∣ +
∣∣∣∣a21 a22

a31 a32

∣∣∣∣ ·
∣∣∣∣a13 a14

a43 a44

∣∣∣∣
−
∣∣∣∣a21 a22

a41 a42

∣∣∣∣ ·
∣∣∣∣a13 a14

a33 a34

∣∣∣∣ +
∣∣∣∣a31 a32

a41 a42

∣∣∣∣ ·
∣∣∣∣a13 a14

a23 a24

∣∣∣∣ . (4.54)

If D4 is a block diagonal determinant,

D4 =

∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

0 0 a33 a34

0 0 a43 a44

∣∣∣∣∣∣∣∣
,

then only the first term in (4.54) is nonzero, therefore

D4 =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ·
∣∣∣∣a33 a34

a43 a44

∣∣∣∣ ,
in agreement with the result derived in the last section.

If we adopt the following notation

Ai1i2,j1j2 =
∣∣∣∣ai1j1 ai1j2

ai2j1 ai2j2

∣∣∣∣
and Mi1i2,j1j2 as the complementary minor to Ai1i2,j1j2 , the determinant D4

in (4.51) can be expanded in terms of the minors formed by the elements of
any two columns,

D4 =
3∑

i1=1

4∑
i2>i1

(−1)i1+i2+j1+j2Ai1i2,j1j2Mi1i2,j1j2 . (4.55)
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With j1 = 1, j2 = 2, it can be readily verified that (4.55) is, term by term,
equal to (4.54). The proof of (4.55) goes the same way as in the Laplacian
expansion by a row. First (4.55) is a linear combination of 4! products, each
product has one element from each row and one from each column. The coef-
ficients are either +1 or −1, depending on whether an even or odd number of
interchange are needed to move i1 to the first row, i2 to the second row, and
j1 to the first column, j2 to the second column, without changing the order
of the rest of the elements. Obviously, the determinant can also be expanded
in terms of the minors formed from any number of rows.

For a nth order determinant Dn, one can expand it in a similar way, not
only in terms of second-order minors but also in terms of kth order minors
with k < n. Of course, for k = n − 1, it reduces to the regular Laplacian
development by a column. Following the same procedure of expanding D4,
one can show that

Dn =
∑
(i)

(−1)i1+i2+···+ik+j1+j2+···+jkAi1i2···ik,j1j2···jk
Mi1i2···ik,j1j2···jk

,

where the symbol
∑

(i) indicates that the summation is taken over all possible
permutations in the following way. The first set of subscripts i1i2 . . . ik is from
n indices 12 . . . n taken k at a time with the restriction i1 < i2 · · · < ik. The
second set subscripts j1j2 . . . jk are chosen arbitrarily but remain fixed for
each term of the expansion. This formula is general, but is seldom needed for
the evaluation of a determinant.

Example 4.6.1. Evaluate

D4 =

∣∣∣∣∣∣∣∣

2 1 3 1
1 0 2 5
2 1 1 3
1 3 0 2

∣∣∣∣∣∣∣∣
by (a) expansion with minors formed from the first two columns, (b) expansion
with minors formed from the second and fourth rows.

Solution 4.6.1. (a)

D4 =
∣∣∣∣ 2 1
1 0

∣∣∣∣ ·
∣∣∣∣ 1 3
0 2

∣∣∣∣−
∣∣∣∣ 2 1
2 1

∣∣∣∣ ·
∣∣∣∣ 2 5
0 2

∣∣∣∣ +
∣∣∣∣ 2 1
1 3

∣∣∣∣ ·
∣∣∣∣ 2 5
1 3

∣∣∣∣

+
∣∣∣∣ 1 0
2 1

∣∣∣∣ ·
∣∣∣∣ 3 1
0 2

∣∣∣∣−
∣∣∣∣ 1 0
1 3

∣∣∣∣ ·
∣∣∣∣ 3 1
1 3

∣∣∣∣ +
∣∣∣∣ 2 1
1 3

∣∣∣∣ ·
∣∣∣∣ 3 1
2 5

∣∣∣∣
= −2 − 0 + 5 + 6 − 24 + 65 = 50.
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(b)

D4 = (−1)2+4+1+2

∣∣∣∣ 1 0
1 3

∣∣∣∣ ·
∣∣∣∣ 3 1
1 3

∣∣∣∣ + (−1)2+4+1+3

∣∣∣∣ 1 2
1 0

∣∣∣∣ ·
∣∣∣∣ 1 1
1 3

∣∣∣∣
+(−1)2+4+1+4

∣∣∣∣ 1 5
1 2

∣∣∣∣ ·
∣∣∣∣ 1 3
1 1

∣∣∣∣ + (−1)2+4+2+3

∣∣∣∣ 0 2
3 0

∣∣∣∣ ·
∣∣∣∣ 2 1
2 3

∣∣∣∣
+(−1)2+4+2+4

∣∣∣∣ 0 5
3 2

∣∣∣∣ ·
∣∣∣∣ 2 3
2 1

∣∣∣∣ + (−1)2+4+3+4

∣∣∣∣ 2 5
0 2

∣∣∣∣ ·
∣∣∣∣ 2 1
2 1

∣∣∣∣
= −24 − 4 − 6 + 24 + 60 − 0 = 50.

4.7 Multiplication of Determinants of the Same Order

If |A| and |B| are determinants of order n, then the product

|A| · |B| = |C|

is a determinant of the same order. Its elements are given by

cij =
n∑

k=1

aikbkj .

(As we shall show in Chap. 5, this is the rule of multiplying two matrices.)
For second-order determinants, this relation is expressed as

|A| · |B| =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ·
∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ =
∣∣∣∣ (a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

∣∣∣∣ .
To prove this, we use the property of block diagonal determinants.

|A| · |B| =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ·
∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ =

∣∣∣∣∣∣∣∣

a11 a12 0 0
a21 a22 0 0
−1 0 b11 b12

0 −1 b21 b22

∣∣∣∣∣∣∣∣
.

Multiplying the elements in the first column by b11 and the elements in the
second column by b21 and then add them to the corresponding elements in
the third column, we obtain

|A| · |B| =

∣∣∣∣∣∣∣∣

a11 a12 (a11b11 + a12b21) 0
a21 a22 (a21b11 + a22b21) 0
−1 0 0 b12

0 −1 0 b22

∣∣∣∣∣∣∣∣
.
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In the same way, we multiply the elements in the 1st column by b12 and the
elements in the second column by b22 and then add them to the corresponding
elements in the fourth column, it become

|A| · |B| =

∣∣∣∣∣∣∣∣

a11 a12 (a11b11 + a12b21) (a11b12 + a12b22)
a21 a22 (a21b11 + a22b21) (a21b12 + a22b22)
−1 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣
.

By (4.48)

|A| · |B| =
∣∣∣∣−1 0

0 −1

∣∣∣∣ ·
∣∣∣∣ (a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

∣∣∣∣
=

∣∣∣∣ (a11b11 + a12b21) (a11b12 + a12b22)
(a21b11 + a22b21) (a21b12 + a22b22)

∣∣∣∣ ,
which is the desired result. This procedure is applicable to determinants of
any order. (This property is of considerable importance, we will revisit this
problem for determinant of higher order in the chapter on matrices.)

Example 4.7.1. Show that
∣∣∣∣∣∣
b2 + c2 ab ca

ab a2 + b2 bc
ca bc a2 + b2

∣∣∣∣∣∣ = 4a2b2c2.

Solution 4.7.1.∣∣∣∣∣∣
b2 + c2 ab ca

ab a2 + b2 bc
ca bc a2 + b2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b c 0
a 0 c
0 a b

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
b a 0
c 0 a
0 c b

∣∣∣∣∣∣ = (−2abc)2 = 4a2b2c2.

4.8 Differentiation of Determinants

Occasionally, we require an expression for the derivative of a determinant. If
the derivative is with respect to a particular element aij , then

∂Dn

∂aij
= Cij ,

where Cij is the cofactor of aij , since

Dn =
n∑

j=1

aijCij for 1 ≤ i ≤ n.
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Suppose the elements are functions of a parameter s, the derivative of Dn

with respect to s is then given by

dDn

ds
=

n∑
i=1

n∑
j=1

∂Dn

∂aij

daij

ds
=

n∑
i=1

n∑
j=1

Cij
daij

ds
.

For example

D3 =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
3∑

j=1

a1jC1j =
3∑

j=1

a2jC2j =
3∑

j=1

a3jC3j ,

dD3

ds
=

3∑
j=1

da1j

ds
C1j +

3∑
j=1

da2j

ds
C2j +

3∑
j=1

da3j

ds
C3j

=

∣∣∣∣∣∣
da11
ds

da12
ds

da13
ds

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 a12 a13
da21
ds

da22
ds

da23
ds

a31 a32 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23
da31
ds

da32
ds

da33
ds

∣∣∣∣∣∣ .

Example 4.8.1. If D2 =
∣∣∣∣ cos x sin x
− sin x cos x

∣∣∣∣ , find dD2
dx .

Solution 4.8.1.

dD2

dx
=

∣∣∣∣− sin x cos x
− sin x cos x

∣∣∣∣ +
∣∣∣∣ cos x sinx
− cos x − sin x

∣∣∣∣ = 0.

This is an obvious result, since D2 = cos2 x + sin2 x = 1.

4.9 Determinants in Geometry

It is well known in analytic geometry that a straight line in the xy-plane is
represented by the equation

ax + by + c = 0. (4.56)

The line is uniquely defined by two points. If the line goes through two points
(x1, y1) and (x2, y2), then both of them have to satisfy the equation

ax1 + by1 + c = 0, (4.57)
ax2 + by2 + c = 0. (4.58)
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These (4.56)–(4.58) may be regarded as a system in the unknowns a, b, c which
cannot all vanish if (4.56) represents a line. Hence the coefficient determinant
must vanish: ∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = 0. (4.59)

It can be easily shown that (4.59) is indeed the familiar equation of a line.
Expanding (4.59) by the third column, we have

∣∣∣∣∣∣
x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = (x1y2 − x2y1) − (xy2 − x2y) + (xy1 − x1y) = 0.

This equation can be readily transformed into (4.56) with a = y1 − y2, b =
x2 − x1, c = x1y2 − x2y1. Or it can be put in form

y = mx + y0,

where m = y2−y1
x2−x1

is the slope and y0 = y1 − mx1 is the y-axis intercept.
It follows from (4.59) that a necessary and sufficient condition for three

points (x1, y1), (x2, y2), and (x3, y3) to lie on a line is
∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0. (4.60)

Now if the three points are not on a line, then they form a triangle and
the determinant (4.60) is not equal to zero. In that case it is interesting to
ask what does the determinant represent. Since it has the dimension of an
area, this strongly suggests that the determinant is related to the area of the
triangle.

The area of the triangle formed by three points A(x1, y1), B(x2, y2),
and C(x3, y3) shown in Fig. 4.6 is seen to be

Area ABC = Area AA′C ′C + Area CC ′B′B − Area AA′B′B.

The area of a trapezoid is equal to half of the product of its altitude and the
sum of the parallel sides:

Area AA′C ′C =
1
2
(x3 − x1)(y1 + y3),

Area CC ′B′B =
1
2
(x2 − x3)(y2 + y3),

Area AA′B′B =
1
2
(x2 − x1)(y1 + y2).
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A ′

A (x1,y1)

C (x3,y3)

B (x2,y2)

C ′ B ′

Fig. 4.6. The area of ABC is equal to the sum of the trapezoids AA′C′C and
CC′B′B minus the trapezoid AA′B′B. As a consequence, the area ABC can be
represented by a determinant

Hence

Area ABC =
1
2
[(x3 − x1)(y1 + y3) + (x2 − x3)(y2 + y3)

−(x2 − x1)(y1 + y2)]

=
1
2

[(x2y3 − x3y2) − (x1y3 − x3y1) + (x1y2 − x2y1)]

=
1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ . (4.61)

Notice the order of the points ABC in the figure is counterclockwise. If
it is clockwise, the positions of B and C are interchanged. This will result in
the interchange of row 2 and row 3 in the determinant. As a consequence, a
minus sign will be introduced. Thus we conclude that if the three vertices of
a triangle are A(x1, y1), B(x2, y2), C(x3, y3), then

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = ±2 × Area of ABC, (4.62)

where the + or − sign is chosen according to the vertices being numbered
consecutively in the counterclockwise or the clockwise direction.

Example 4.9.1. Use a determinant to find the circle that passes through (2,6),
(6,4), (7,1).

Solution 4.9.1. The general expression of a circle is

a(x2 + y2) + bx + cy + d = 0.
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The three points must all satisfy this equation

a(x2
1 + y2

1) + bx1 + cy1 + d = 0,

a(x2
2 + y2

2) + bx2 + cy2 + d = 0,

a(x2
3 + y2

3) + bx3 + cy3 + d = 0.

These equations may be regarded as a system of equations in the unknowns
a, b, c, d which cannot all be zero. Hence the coefficient determinant must
vanish

∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

∣∣∣∣∣∣∣∣∣
= 0.

Put in the specific values ∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1
40 2 6 1
52 6 4 1
50 7 1 1

∣∣∣∣∣∣∣∣∣
= 0.

Replacing the first row by (row 1 − row 2), and the third row by (row 3 −
row 2) and the fourth row by (row 4 − row 2), we have

∣∣∣∣∣∣∣∣

x2 + y2 x y 1
40 2 6 1
52 6 4 1
50 7 1 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

(x2 + y2 − 40) (x − 2) (y − 6) 0
40 2 6 1
12 4 −2 0
10 5 −5 0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
(x2 + y2 − 40) (x − 2) (y − 6)

12 4 −2
10 5 −5

∣∣∣∣∣∣
= −10(x2 + y2 − 40) + 40 (x − 2) + 20 (y − 6) = 0,

or

x2 + y2 − 40 − 4(x − 2) − 2(y − 6) = 0.

which can be written as

(x − 2)2 + (y − 1)2 = 25.

So the circle is centered at x = 2, y = 1 with a radius of 5.
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Example 4.9.2. What is the area of the triangle whose vertices are (−2, 1),
(4, 3), (0, 0)?

Solution 4.9.2.

Area =

∣∣∣∣∣∣
−2 1 1
4 3 1
0 0 1

∣∣∣∣∣∣ = −10.

The area of the triangle is 10 and the order of the vertices is clockwise.

Exercises

1. Use determinants to solve for x, y, z from the following system of
equations:

3x + 6z = 51,

12y − 6z = −6,

x − y − z = 0.

Ans. x = 7, y = 2, z = 5.

2. By applying the Kirchhoff’s rule to a electric circuit, the following equa-
tions are obtained for the currents i1, i2, i3 in three branches

i1R1 + i3R3 = VA

i2R2 + i3R3 = VC

i1 + i2 − i3 = 0.

Express i1, i2, i3 in terms of resistance R1, R2, R3, and voltage source
VA, VC .

Ans.

i1 =
(R2 + R3)VA − R3VC

R1R2 + R1R3 + R2R3
,

i2 =
(R1 + R3)VC − R3VA

R1R2 + R1R3 + R2R3
,

i3 =
R2VA + R1VC

R1R2 + R1R3 + R2R3
.
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3. Find the value of the following fourth-order determinant (which happens
to be formed from one of the matrices appearing in Dirac’s relativistic
electron theory)

D4 =

∣∣∣∣∣∣∣∣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣∣
.

Ans. 1.

4. Without computation, show that a skew-symmetric determinant of odd
order is zero

Dss =

∣∣∣∣∣∣∣∣∣∣

0 a b c d
−a 0 e f g
−b −e 0 h i
−c −f −h 0 j
−d −g −i −j 0

∣∣∣∣∣∣∣∣∣∣
= 0.

[Hint: DT = D and (−1)nDss = DT
ss.

5. Show that

∣∣∣∣∣∣
a d 2a − 3d
b e 2b − 3e
c f 2c − 3f

∣∣∣∣∣∣ = 0.

6. Determine x such that

∣∣∣∣∣∣
1 2 −3
−x 1 + 3x 3 − x
0 −6 5

∣∣∣∣∣∣ = 36.

Ans. 13.

7. The development of the determinant Dn on the ith row elements aik is∑n
k=1 aikCik, where Cik is the cofactor of aik. Show that

n∑
k=1

ajkCik = 0 for j �= i.

[Hint: The expansion is another determinant with two identical rows.]

8. Evaluate the following determinant by a development on (a) the first
column, (b) the second row

D4 =

∣∣∣∣∣∣∣∣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

∣∣∣∣∣∣∣∣
.

Ans. 1.

9. Use the properties of determinants to transform the determinant in prob-
lem 6 into a triangular form and then evaluate it as the product of the
diagonal elements.



210 4 Determinants

10. Evaluate the determinant in problem 6 by expanding it in terms of the
2×2 minors formed from the first two columns.

11. Evaluate the determinant

D5 =

∣∣∣∣∣∣∣∣∣∣

3 −1 0 0 0
2 4 0 0 0
0 0 5 0 0
0 0 1 2 7
0 0 3 −6 1

∣∣∣∣∣∣∣∣∣∣
.

Ans. 3080.
[The quickest way to evaluate is to expand it in terms of the 2×2 minors
formed from the first two columns.]

12. Without expanding, show that
∣∣∣∣∣∣
y + z z + x x + y

x y z
1 1 1

∣∣∣∣∣∣ = 0.

[Hint: Add row 1 and row 2, factor out (x + y + z).]

13. Show that (a)
∣∣∣∣∣∣

x y z
x2 y2 z2

yz zx xy

∣∣∣∣∣∣ = (xy + yz + zx)

∣∣∣∣∣∣
x y z
x2 y2 z2

1 1 1

∣∣∣∣∣∣
[Hint: Replace row 3 successively by x · row 1 + row 3, then by y · row 1 +
row 3, then by z · row 1 + row 3. Express the result as a sum of two deter-
minants, one of them is equal to zero.]
(b) Use the result of the Vandermonde determinant to show that

∣∣∣∣∣∣
x y z
x2 y2 z2

yz zx xy

∣∣∣∣∣∣ = (xy + yz + zx)(x − y)(y − z)(z − x).

14. State the reason for each step of the following identity:
∣∣∣∣∣∣∣∣

a −b −a b
b a −b −a
c −d c −d
d c d c

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

2a −2b −a b
2b 2a −b −a
0 0 c −d
0 0 d c

∣∣∣∣∣∣∣∣

=
∣∣∣∣ 2a −2b
2b 2a

∣∣∣∣ ·
∣∣∣∣ c −d
d c

∣∣∣∣ = 4(a2 + b2)(c2 + d2)
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15. State the reason for each step of the following identity∣∣∣∣∣∣∣∣

a b c d
b a d c
c d a b
d c b a

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

(a + b) b (c + d) d
(b + a) a (d + c) c
(c + d) d (a + b) b
(d + c) c (b + a) a

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

(a + b) b (c + d) d
0 a − b 0 c − d

(c + d) d (a + b) b
0 c − d 0 a − b

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

(a + b) (c + d) b d
(c + d) (a + b) d b

0 0 a − b c − d
0 0 c − d a − b

∣∣∣∣∣∣∣∣
= [(a + b)2 − (c + d)2][(a − b)2 − (c − d)2].

16. Show and state the reason for each step of the following identity∣∣∣∣∣∣∣∣∣∣∣∣

0 1 2 3 · · · n − 1
1 0 1 2 · · · n − 2
2 1 0 1 · · · n − 3
3 2 1 0 · · · n − 4
· · · · · · · ·

n − 1 n − 2 n − 3 n − 4 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −(−2)n−2(n − 1).

[Hint: 1. Replace column 1 by column 1 + last column. 2. Factor out
(n − 1). 3. Replace row i by row i − row(i − 1), starting with the last
row. 3. Replace row i by row i + row 2. 4. Evaluating the triangular
determinant.]

17. Evaluate the following determinant

Dn =

∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n
n + 1 n + 2 n + 3 · · · 2n
2n + 1 2n + 2 2n + 3 · · · 3n

· · · · · · ·
(n − 1)n + 1 (n − 1)n + 2 (n − 1)n + 3 · · · n2

∣∣∣∣∣∣∣∣∣∣
.

Ans. For n = 1, D1 = 1; n = 2, D2 = −2; n ≥ 3, Dn = 0.
[Hint: For n ≥ 3, replace row i by row i − row(i − 1).]

18. Use the rule of product of two determinants of same order to show the∣∣∣∣∣∣
b2 + c2 ab ca

ab a2 + b2 bc
ca bc a2 + b2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b2 + ac bc c2

ab 2ac bc
a2 ab b2 + ac

∣∣∣∣∣∣ .

[Hint: ∣∣∣∣∣∣
b c 0
a 0 c
0 a b

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
b a 0
c 0 a
0 c b

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b c 0
a 0 c
0 a b

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
b c 0
a 0 c
0 a b

∣∣∣∣∣∣ .



212 4 Determinants

19. If f(s) is given by the following determinants, without the expansion of
f(x) find d

dxf(x)

(a) f(x) =

∣∣∣∣∣∣
ex e−x 1
ex −e−x 0
ex −e−x x

∣∣∣∣∣∣ ; (b) f(x) =

∣∣∣∣∣∣
cos x sin x ln |x|
− sin x cos x 1

x
− cos x − sin x − 1

x2

∣∣∣∣∣∣ .

Ans. (a) −2; (b) 1/x + 2/x3.

20. The vertices of a triangle are (0, t), (3t, 0), (t, 2t). Find a formula for the
area of the triangle.
Ans. 2t.

21. The equation representing a plane is given by ax + by + cz + d = 0. Find
the plane that goes through (1, 1, 1), (5, 0, 5), (3, 2, 6).
Ans. 3x + 4y − 2z − 5 = 0.



5

Matrix Algebra

Matrices were introduced by British mathematician Arthur Cayley (1821–
1895). The method of matrix algebra has extended far beyond mathemat-
ics into almost all disciplines of learning. In physical sciences, matrix is not
only useful, but also essential in handling many complicated problems. These
problems are mainly in three categories. First in the theory of transformation,
second in the solution of systems of linear equations, and third in the solu-
tion of eigenvalue problems. In this chapter, we shall discuss various matrix
operations and different situations in which they can be applied.

5.1 Matrix Notation

In this section, we shall define a matrix and discuss some of the simple oper-
ations by which two or more matrices can be combined.

5.1.1 Definition

Matrices

A rectangular array of elements is called a matrix. The array is usually en-
closed within curved or square brackets. Thus, the rectangular arrays

⎛
⎝ 4 7

12 6
−9 3

⎞
⎠ ,

(
x + iy
x − iy

)
,

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠ (5.1)

are examples of a matrix. It is convenient to think of every element of a matrix
as belonging to a certain row and a certain column of the matrix. If a matrix
has m rows and n columns, the matrix is said of order m by n, or m × n.
Every element of a matrix can be uniquely characterized by a row index and
a column index. It is convenient to write a m × n matrix as
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A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ ,

where aij is the element of ith row and jth column, it may be real or complex
number or functions. The elements may even be matrices themselves, in which
case the elements are called submatrices and the whole matrix is said to be
partitioned.

Thus, if the first matrix in (5.1) is called matrix A, then A is a 3×2 matrix,

it has three rows: (4 7), (12 6), (−9 3) and two columns:

⎛
⎝ 4

12
−9

⎞
⎠ ,

⎛
⎝ 7

6
3

⎞
⎠ . Its

elements are a11 = 4, a12 = 7, a21 = 12, a22 = 6, a31 = −9, and a32 = 3.
Some times it is convenient to use the notation

A = (aij)m×n

to indicate that A is a m×n matrix. The elements aij can also be expressed as

aij = (A)ij .

5.1.2 Some Special Matrices

There are some special matrices, which are named after their appearances.

Zero Matrix

A matrix of arbitrary order is said to be a zero matrix if and only if every
element of the matrix equals zero. A zero matrix is sometimes called a null
matrix.

Row Matrix

A row matrix has only one row, such as (1 0 3). A row matrix is also called
a row vector. If it is called row vector, the elements of the matrix are usually
referred as components.

Column Matrix

A column matrix has only one column, such as

⎛
⎝ 3

4
5

⎞
⎠. A column matrix is

also called a column vector. Again if it is called column vector, the elements
of the matrix are usually called the components of the vector.
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Square Matrix

A matrix is said to be a square matrix if the number of rows equals the
number of columns. A square matrix of order n simply means it has n rows
and n columns. Square matrix is of particular importance. We will be dealing
mostly with square matrices together with column and row matrices.

For a square matrix A, we can calculate the determinant

det(A) = |A| ,

as defined in Chap. 4. Matrix is not a determinant. Matrix is an array of
numbers, determinant is a single number. The determinant of a matrix can
only be defined for a square matrix.

Let A = (aij)n be a square matrix of order n. The diagonal going from
the top left corner to the bottom right corner of the matrix, its elements
a11, a22, . . . , ann, are called the diagonal elements. All the remaining elements
aij for i �= j are called the off-diagonal elements.

There are several special square matrices that are of interest.

Diagonal Matrix

A diagonal matrix is a square matrix whose diagonal elements are not all
equal to zero, but off-diagonal elements are all zero. For example,

⎛
⎜⎝

1 0 0
0 0 0
0 0 −2

⎞
⎟⎠ and

⎛
⎜⎝

3 0 0
0 4 0
0 0 5

⎞
⎟⎠

are diagonal matrices. Therefore for a diagonal matrix

(A)ij = aiiδij ,

where

δij =
{

1 i = j,
0 i �= j.

This kind of notation may seem to be redundant, as a diagonal matrix can
easily be visualized. However, this notation is useful in manipulating matrices
as we shall see later.

Constant Matrix

If all elements of a diagonal matrix happen to be equal to each other, it is
said to be a constant matrix or a scalar matrix.
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Unit Matrix

If the elements of a constant matrix are equal to unity, then it is a unit matrix.
A unit matrix is also called the Identity matrix, denoted by I, that is

I=

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ .

Triangular Matrix

A square matrix having only zero elements on one side of the principal diagonal
is a triangular matrix. Thus

A =

⎛
⎝1 2 3

0 3 4
0 0 −2

⎞
⎠ , B =

⎛
⎝ 1 0 0

3 2 0
4 5 0

⎞
⎠ , C =

⎛
⎝0 0 0

5 0 0
4 3 0

⎞
⎠

are examples of a triangular matrix. A matrix for which aij = 0 for i > j is
called a right-triangular matrix or a upper triangular matrix, such as matrix
A above. Whereas a matrix with aij = 0 for i < j is called a left-triangular
matrix or a lower triangular matrix, such as matrix B. If all the principal
diagonal elements are zero, the matrix is a strictly triangular matrix, such
as matrix C. Diagonal matrix, identity matrix as well as zero matrix are all
triangular matrices.

5.1.3 Matrix Equation

Equality

Two matrices A and B are equal to each other if and only if, every elements
of A is equal to the corresponding element of B. Clearly A and B must be of
the same order, in other words they must have the same rows and columns.
Thus if

A =
(

1 2
3 4

)
, B =

(
0 1 2
0 3 4

)
, C =

(
1 2 0
3 4 0

)
,

we see that
A �= B, B �= C, C �= A.

Therefore, a matrix equation A = B means that A and B are of the same
order and their corresponding elements are equal, i.e., aij = bij . For example,
the equation (

x1 x2

y1 y2

)
=

(
3t 1 + 2t
4t2 0

)

means x1 = 3t, y1 = 4t2, x2 = 1 + 2t, y2 = 0.
With this understanding, often we can use a single matrix equation to

replace a set of equations. This will not only simplify the writing but will also
enable us to systematically manipulate these equations.
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Addition and Subtraction

We may now define the addition and subtraction of two matrices of the same
order. The sum of two matrices A and B is another matrix C. By definition

A + B = C

means
cij = aij + bij .

For example,

A =
(

1 3 12
−2 4 −6

)
, B =

(
−10 5 −6
7 3 2

)
,

then

A + B =
(

(1 − 10) (3 + 5) (12 − 6)
(−2 + 7) (4 + 3) (−6 + 2)

)
=

(
−9 8 6
5 7 −4

)
,

A − B =
(

(1 + 10) (3 − 5) (12 + 6)
(−2 − 7) (4 − 3) (−6 − 2)

)
=

(
11 −2 18
−9 1 −8

)
.

The sum of several matrices is obtained by repeated addition. Since matrix
addition is merely the addition of corresponding elements, it does not matter
in which order we add several matrices. To be explicit, if A,B,C are three
m × n matrices, then both commutative and associative laws hold

A + B = B + A,

A + (B + C) = (A + B) + C.

Multiplication by a Scalar

It is possible to combine a matrix of arbitrary order and a scalar by scalar
multiplication. If A is a matrix of order m × n

A = (aij)m×n

and c a scalar, we define cA to be another m × n matrix such that

cA = (caij)m×n.

For example, if

A =
(

1 −3 5
−2 4 −6

)
,

then

−2A =
(
−2 6 −10
4 −8 12

)
.

The scalar can be a real number, a complex number, or a function, but it
cannot be a matrix quantity.
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Note the difference between the scalar multiplication of a square matrix cA
and the scalar multiplication of its determinant c |A|. For cA, c is multiplied
to every elements of A, whereas for c |A|, c is only multiplied to the elements
of a single column or a single row. Thus, if A is a square matrix of order n,
then

det(cA) = cn |A| .

5.1.4 Transpose of a Matrix

If the rows and columns are interchanged, the resulting matrix is called the
transposed matrix. The transposed matrix is denoted by Ã, called A tilde, or
by AT. Usually, but not always, the transpose of a single matrix is denoted
by the tilde and the transpose of the product of a number of matrices by the
superscript T.

Thus, if

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ ,

then

Ã = AT =

⎛
⎜⎜⎜⎝

a11 a21 . . . am1

a12 a22 . . . am2

...
...

...
...

a1n a2n . . . amn

⎞
⎟⎟⎟⎠ .

By definition, if we transpose the matrix twice, we should get the original
matrix, i.e.,

ÃT = A.

Using index notation, this means(
Ã
)

ij
= (A)ji ,

(
ÃT

)
ij

= (A)ij .

It is clear that the transpose of m×n matrix is a n×m matrix. The transpose
of a square matrix is another square matrix. The transpose of a column matrix
is a row matrix, and the transpose of a row matrix is a column matrix.

Symmetric Matrix

A symmetric matrix is a matrix that is equal to its transpose, i.e.,

A = Ã,

which means
aij = aji.

It is symmetric with respect to its diagonal. A symmetric matrix must be a
square matrix.
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Antisymmetric Matrix

An antisymmetric matrix is a matrix that is equal to the negative of its
transpose, i.e.,

A = −Ã,

which means
aij = −aji.

Thus the diagonal elements of an antisymmetric matrix must all be zero. An
antisymmetric matrix must also be a square matrix. Antisymmetric is also
known as skew-symmetric.

Decomposition of a Square Matrix

Any square matrix can be written as the sum of a symmetric and an antisym-
metric matrix. Clearly

A =
1
2

(
A + Ã

)
+

1
2

(
A − Ã

)

is an identity. Furthermore, let

As =
1
2

(
A + Ã

)
, Aa =

1
2

(
A − Ã

)
,

then As is symmetric, since

AT
s =

1
2

(
AT + ÃT

)
=

1
2

(
Ã + A

)
= As,

and Aa is antisymmetric, since

AT
a =

1
2

(
AT − ÃT

)
=

1
2

(
Ã − A

)
= −Aa.

Therefore

A = As + Aa,

Ã = As − Aa.

Example 5.1.1. Express the matrix

A =

⎛
⎝ 2 0 1

0 3 2
−1 4 2

⎞
⎠

as the sum of a symmetric matrix and an antisymmetric matrix.
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Solution 5.1.1.
A = As + Aa,

As =
1
2

⎡
⎣
⎛
⎝ 2 0 1

0 3 2
−1 4 2

⎞
⎠ +

⎛
⎝ 2 0 −1

0 3 4
1 2 2

⎞
⎠
⎤
⎦ =

⎛
⎝ 2 0 0

0 3 3
0 3 2

⎞
⎠ ,

Aa =
1
2

⎡
⎣
⎛
⎝ 2 0 1

0 3 2
−1 4 2

⎞
⎠−

⎛
⎝2 0 −1

0 3 4
1 2 2

⎞
⎠
⎤
⎦ =

⎛
⎝ 0 0 1

0 0 −1
−1 1 0

⎞
⎠ .

5.2 Matrix Multiplication

5.2.1 Product of Two Matrices

The multiplication, or product, of two matrices is not a simple extension
of the concept of multiplication of two numbers. The definition of matrix
multiplication is motivated by the theory of linear transformation, which we
will briefly discuss in Sect. 5.3.

Two matrices A and B can be multiplied together only if the number of
columns of A is equal the number of rows of B. The matrix multiplication
depends on the order in which the matrices occur in the product. For example,
if A is of order l × m, and B is of order m × n, then the product matrix
AB is defined but the product BA, in that order is not unless m = l. The
multiplication is defined as follows. If

A = (aij)l×m, B = (bij)m×n,

then AB = C means that C is a matrix of order l × n and

C = (cij)l×n ,

cij =
m∑

k=1

aikbkj .

So the element of the C matrix at ith row and jth column is the sum of all
the products of the elements of ith row of A and the corresponding elements
of jth column of B. Thus, if

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12 b13

b21 b22 b23

)
, C = AB,

then

C =
(

(a11b11 + a12b21) (a11b12 + a12b22) (a11b13 + a12b23)
(a21b11 + a22b21) (a21b12 + a22b22) (a21b13 + a22b23)

)
.
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a11 b11
c11

ci 1 ci 2

cl 2cl 1

cin

clnclj

cij

c12 c1j c1n

c2nc2jc21 c22
b12 b1n

b2nb22b21

bm1 bm 2 bmnbmj

b2j

b1j
a12 a1m

a2ma22a21

ai 1

al1 al 2 al m

ai 2 ai m

· ·
··
··

··
··

··

··

··

··

····

··
··

···
···

···

···

··

··

· ·
····· ·

··
·

·
·

·
·

·
·

· ··

·
·
·

·
·
··

····

=

Fig. 5.1. Illustration of matrix multiplication. The number of columns of A must
equal the number of rows of B for the multiplication AB = C to be defined. The
element at ith row and jth column of C is given by cij = ai1b1j +ai2b2j +· · ·+aimbmj

The multiplication of two matrices is illustrated in Fig. 5.1.
If the product AB is defined, A and B are said to be comformable (or

compatible). If the matrix product AB is defined, the product BA is not
necessarily defined. Given two matrices A and B, both the products of AB
and BA will be possible if, for example, A is of order m×n and B is of order
n×m. AB will be of order m×m, and BA of order n× n. Clearly if m �= n,
AB cannot equal to BA, since they are of different order. Even if n = m, AB
is still not necessarily equal to BA. The following examples will make this
clear.

Example 5.2.1. Find the product AB, if

A =
(

1 2
3 4

)
, B =

(
3 2 1
4 5 6

)
.

Solution 5.2.1.

AB =
(

1 2
3 4

)(
3 2 1
4 5 6

)

=
(

(1 × 3 + 2 × 4) (1 × 2 + 2 × 5) (1 × 1 + 2 × 6)
(3 × 3 + 4 × 4) (3 × 2 + 4 × 5) (3 × 1 + 4 × 6)

)

=
(

11 12 13
25 26 27

)
.

Here A is 2 × 2 and B is 2 × 3, so that AB comes out 2 × 3, whereas BA is
not defined.

Example 5.2.2. Find the product AB, if

A =
(

1 2
3 4

)
, B =

(
5
6

)
.
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Solution 5.2.2.

AB =
(

1 2
3 4

)(
5
6

)
=

(
5 + 12
15 + 24

)
=

(
17
39

)
.

Here AB is a column matrix and BA is not defined.

Example 5.2.3. Find AB and BA, if

A =
(
1 2 3

)
, B =

⎛
⎝2

3
4

⎞
⎠ .

Solution 5.2.3.

AB =
(
1 2 3

)
⎛
⎝ 2

3
4

⎞
⎠ =

(
2 + 6 + 12

)
= (20) ,

BA =

⎛
⎝ 2

3
4

⎞
⎠(

1 2 3
)

=

⎛
⎝ 2 4 6

3 6 9
4 8 12

⎞
⎠ .

This example dramatically shows that AB �= BA.

Example 5.2.4. Find AB and BA, if

A =
(

1 2
3 4

)
, B =

(
3 4
5 6

)
.

Solution 5.2.4.

AB =
(

1 2
3 4

)(
3 4
5 6

)
=

(
13 16
29 36

)

and

BA =
(

3 4
5 6

)(
1 2
3 4

)
=

(
15 22
23 34

)
.

Clearly
AB �= BA.

Example 5.2.5. Find AB and BA, if

A =
(

1 1
2 2

)
, B =

(
−1 1
1 −1

)
.



5.2 Matrix Multiplication 223

Solution 5.2.5.

AB =
(

1 1
2 2

)(
−1 1
1 −1

)
=

(
0 0
0 0

)
,

BA =
(
−1 1
1 −1

)(
1 1
2 2

)
=

(
1 1
−1 −1

)
.

Not only AB �= BA, but also AB = 0 does not necessarily imply A = 0 or
B = 0 or BA = 0.

Example 5.2.6. Let

A =
(

2 0
0 0

)
, B =

(
0 3
0 4

)
, C =

(
0 3
0 2

)

show that
AB = AC.

Solution 5.2.6.

AB =
(

2 0
0 0

)(
0 3
0 4

)
=

(
0 6
0 0

)
,

AC =
(

2 0
0 0

)(
0 3
0 2

)
=

(
0 6
0 0

)
.

This example shows that AB = AC can hold without B = C or A = 0.

5.2.2 Motivation of Matrix Multiplication

Much of the usefulness of matrix algebra is due to its multiplication property.
The definition of matrix multiplication, as we have seen, seems to be “un-
natural” and somewhat complicated. The motivation of this definition comes
from the “linear transformations.” It provides a simple mechanism for chang-
ing variables. For example, suppose

y1 = a11x1 + a12x2 + a13x3, (5.2a)
y2 = a21x1 + a22x2 + a23x3, (5.2b)

and further

z1 = b11y1 + b12y2, (5.3a)
z2 = b21y1 + b22y2. (5.3b)



224 5 Matrix Algebra

In these equations the x’s and the y’s are variables, while the a’s and the
b’s are constants. The x’s are related to the y’s by the first set of equations,
and the y’s are related to the z’s by the second set of equations. To find out
how the x’s are related to the z’s, we must substitute the values of the y’s
given by the first set of equations into the second set of equations

z1 = b11 (a11x1 + a12x2 + a13x3) + b12 (a21x1 + a22x2 + a23x3) , (5.4a)
z2 = b21 (a11x1 + a12x2 + a13x3) + b22 (a21x1 + a22x2 + a23x3) . (5.4b)

By multiplying them out and collecting coefficients, they become

z1 = (b11a11 + b12a21)x1

+(b11a12 + b12a22)x2 + (b11a13 + b12a23)x3, (5.5a)
z2 = (b21a11 + b22a21)x1

+(b21a12 + b22a22)x2 + (b21a13 + b22a23)x3. (5.5b)

Now, using matrix notation, (5.2) can be written simply as

(
y1

y2

)
=

(
a11 a12 a13

a21 a22 a23

)⎛
⎝x1

x2

x3

⎞
⎠ , (5.6)

and (5.3) as (
z1

z2

)
=

(
b11 b12

b21 b22

)(
y1

y2

)
. (5.7)

Not only the coefficients of x1, x2, and x3 in (5.5) are precisely the elements
of the matrix product

(
b11 b12

b21 b22

)(
a11 a12 a13

a21 a22 a23

)
,

but also they are located in the proper position. In other words, (5.5) can be

obtained by simply substituting
(

y1

y2

)
from (5.6) into (5.7)

(
z1

z2

)
=

(
b11 b12

b21 b22

)(
a11 a12 a13

a21 a22 a23

)⎛
⎝x1

x2

x3

⎞
⎠ . (5.8)

What we have shown here is essentially two things. First, matrix multi-
plication is defined in such a way that linear transformation can be written
in compact forms. Second, if we substitute linear transformations into each
other, we can obtain the composite transformation simply by multiplying co-
efficient matrices in the right order. This kind of transformation is not only
common in mathematics, but is also extremely important in physics. We will
discuss some of them in later sections.
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5.2.3 Properties of Product Matrices

Transpose of a Product Matrix

A result of considerable importance in matrix algebra is that the transpose
of the product of two matrices equals the product of the transposed matrices
taken in reverse order,

(AB)T = B̃Ã. (5.9)

To prove this we must show that every element of the left-hand side is
equal to the corresponding element in the right-hand side. The ijth element
of the left-hand side of (5.9) is given by

(
(AB)T

)
ij

= (AB)ji =
∑

k

(A)jk(B)ki. (5.10)

The ijth element of the left-hand side of (5.9) is
(
B̃Ã

)
ij

=
∑

k

(
B̃
)

ik

(
Ã
)

kj
=

∑
k

(B)ki(A)jk

=
∑

k

(A)jk(B)ki, (5.11)

where in the last step we have interchanged (B)kj and (A)jk because they are
just numbers. Thus (5.9) follows.

Example 5.2.7. Let

A =
(

2 3
0 −1

)
and B =

(
1 5
2 4

)
,

show that
(AB)T = B̃Ã.

Solution 5.2.7.

AB =
(

2 3
0 −1

)(
1 5
2 4

)
=

(
8 22
−2 −4

)
, (AB)T =

(
8 −2
22 −4

)
,

B̃ =
(

1 2
5 4

)
, Ã =

(
2 0
3 −1

)
; B̃Ã =

(
1 2
5 4

)(
2 0
3 −1

)
=

(
8 −2
22 −4

)
.

Thus, (AB)T = B̃Ã.
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Trace of a Matrix

The trace of square matrix A = (aij) is defined as the sum of its diagonal
elements and is denoted by Tr A

Tr A =
n∑

i=1

aii.

An important theorem about trace is that the trace of the product of a finite
number of matrices is invariant under any cyclic permutation of the matrices.
We can first prove this theorem for the product of two matrices, and then the
rest automatically follow.

Let A be a n × m matrix and B be a m × n matrix, then

Tr (AB) =
m∑

i=1

(AB)ii =
m∑

i=1

n∑
j=1

aijbji,

Tr(BA) =
n∑

j=1

(BA)jj =
n∑

j=1

m∑
i=1

bjiaij .

Since aij and bij are just numbers, their order can be reversed. Thus

Tr (AB) = Tr(BA).

Notice that the trace is defined only for a square matrix, but A and B do
not have to be square matrices as long as their product is a square matrix.
The order of AB may be different from the order of BA, yet their traces are
the same.

Now

Tr(ABC) = Tr(A(BC)) = Tr((BC)A)
= Tr(BCA) = Tr(CAB). (5.12)

It is important to note that the trace of the product of a number of matrices
is not invariant under any permutation, but only a cyclic permutation of the
matrices.

Example 5.2.8. Let

A =

⎛
⎝ 4 0 6

5 2 1
7 8 3

⎞
⎠ , B =

⎛
⎝ 1 0 1

9 1 2
0 4 1

⎞
⎠ ,

show that (a) Tr(A + B) = Tr(A) + Tr(B), and (b) Tr(AB) = Tr(BA).
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Solution 5.2.8.

(a) Tr(A + B) = Tr

⎧⎨
⎩
⎛
⎝4 0 6

5 2 1
7 8 3

⎞
⎠ +

⎛
⎝ 1 0 1

9 1 2
0 4 1

⎞
⎠
⎫⎬
⎭ = Tr

⎛
⎝ 5 0 7

14 3 3
7 12 4

⎞
⎠

= 5 + 3 + 4 = 12,

Tr(A) + Tr(B) = Tr

⎛
⎝4 0 6

5 2 1
7 8 3

⎞
⎠ + Tr

⎛
⎝ 1 0 1

9 1 2
0 4 1

⎞
⎠

= (4 + 2 + 3) + (1 + 1 + 1) = 12.

(b)

Tr(AB) = Tr

⎛
⎝ 4 0 6

5 2 1
7 8 3

⎞
⎠

⎛
⎝ 1 0 1

9 1 2
0 4 1

⎞
⎠ = Tr

⎛
⎝ 4 24 10

23 6 10
79 20 26

⎞
⎠ = 36,

Tr(BA) = Tr

⎛
⎝ 1 0 1

9 1 2
0 4 1

⎞
⎠

⎛
⎝ 4 0 6

5 2 1
7 8 3

⎞
⎠ = Tr

⎛
⎝11 8 9

55 18 61
27 16 7

⎞
⎠ = 36.

Associative Law of Matrix Multiplication

If A, B, and C are three matrices such that the matrix product AB and BC
are defined, then

(AB) C = A (BC) . (5.13)

In other words, it is immaterial which two matrices are multiplied together
first. To prove this, let

A = (aij)m×n , B = (bij)n×o , C = (cij)o×p .

The ijth element of the left-hand side of (5.13) is then

((AB)C)ij =
o∑

k=1

(AB)ik(C)kj =
o∑

k=1

(
n∑

l=1

(A)il(B)lk

)
(C)kj

=
o∑

k=1

n∑
l=1

ailblkckj ,

while the ijth element of the right-hand side (5.13) is
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(A(BC))ij =
n∑

l=1

(A)il(BC)lj =
n∑

l=1

(A)il

o∑
k=1

(B)lk(C)kj

=
n∑

l=1

o∑
k=1

ailblkckj .

Clearly ((AB)C)ij = (A(BC))ij .

Example 5.2.9. Let

A =
(

1 2
−1 3

)
, B =

(
1 0 −1
2 1 0

)
, C =

⎛
⎝ 1 −1

3 2
2 1

⎞
⎠ ,

show that
A (BC) = (AB) C.

Solution 5.2.9.

A (BC) =
(

1 2
−1 3

)(
1 0 −1
2 1 0

)⎛
⎝ 1 −1

3 2
2 1

⎞
⎠

=
(

1 2
−1 3

)(
−1 −2
5 0

)
=

(
9 −2
16 2

)
,

(AB)C =
[(

1 2
−1 3

)(
1 0 −1
2 1 0

)]⎛
⎝1 −1

3 2
2 1

⎞
⎠

=
(

5 2 −1
5 3 1

)⎛
⎝1 −1

3 2
2 1

⎞
⎠ =

(
9 −2
16 2

)
.

Clearly A (BC) = (AB)C. This is one of the most important properties of
matrix algebra.

Distributive Law of Matrix Multiplication

If A, B, and C are three matrices such that the addition B + C and the
product AB and BC are defined, then

A(B + C) = AB + AC. (5.14)

To prove this, let

A = (aij)m×n , B = (bij)n×p , C = (cij)n×p , (5.15)
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so that the addition B + C and the products AB and AC are defined. The
ijth element of the left-hand side of (5.14) is then

(A(B + C))ij =
n∑

k=1

(A)ik(B + C)kj =
n∑

k=1

(A)ik(Bkj + Ckj)

=
n∑

k=1

aik(bkj + ckj).

The ijth element of the right-hand side of (5.14) is

(AB + AC)ij = (AB)ij + (AC)ij

=
n∑

k=1

(A)ik(B)kj +
n∑

k=1

(A)ik(C)kj

=
n∑

k=1

aik(bkj + ckj).

Thus, (5.14) follows.

Example 5.2.10. Let

A =
(

1 2
3 0

)
, B =

(
2 −1
3 4

)
, C =

⎛
⎝ 2 −2

1 3
4 −1

⎞
⎠ ,

show that
C (A + B) = CA + CB.

Solution 5.2.10.

C (A + B) =

⎛
⎝ 2 −2

1 3
4 −1

⎞
⎠

[(
1 2
3 0

)
+

(
2 −1
3 4

)]

=

⎛
⎝ 2 −2

1 3
4 −1

⎞
⎠

(
3 1
6 4

)
=

⎛
⎝−6 −6

21 13
6 0

⎞
⎠ ,

CA + CB =

⎛
⎝ 2 −2

1 3
4 −1

⎞
⎠

(
1 2
3 0

)
+

⎛
⎝2 −2

1 3
4 −1

⎞
⎠

(
2 −1
3 4

)

=

⎛
⎝−4 4

10 2
1 8

⎞
⎠ +

⎛
⎝−2 −10

11 11
5 −8

⎞
⎠ =

⎛
⎝−6 −6

21 13
6 0

⎞
⎠ .

Hence, C (A + B) = CA + CB.
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5.2.4 Determinant of Matrix Product

We have shown in the chapter on determinants that the value of the determi-
nant of the product of two matrices is equal to the product of two determi-
nants. That is, if A and B are square matrices of the same order, then

|AB| = |A| |B| .

This relation is of considerable interests. It is instructive to prove it with the
properties of matrix products. We will use 2 × 2 matrices to illustrate the
steps of the proof, but it will be obvious that the process is generally valid for
all orders.

1. If D is a diagonal matrix, it is easy to show |DA| = |D| |A|.
For example, let D =

(
d11 0
0 d22

)
, then

DA =
(

d11 0
0 d22

)(
a11 a12

a21 a22

)
=

(
d11a11 d11a12

d22a21 d22a22

)
,

|D| =
∣∣∣∣d11 0

0 d22

∣∣∣∣ = d11d22,

|DA| =
∣∣∣∣d11a11 d11a12

d22a21 d22a22

∣∣∣∣ = d11d22

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = |D| |A| .

2. Any square matrix can be diagonalized by a series of row operations which
add a multiple of a row to another row.

For example, let B =
(

1 2
3 4

)
. Multiply row 1 by −3 and add it to row

3, the matrix becomes
(

1 2
0 −2

)
. Then add row 2 to row 1, we have the

diagonal matrix
(

1 0
0 −2

)
.

3. Each row operation is equivalent to premultiplying the matrix by an ele-
mentary matrix obtained from applying the same operation to the identity
matrix.

For example, multiply row 1 by −3 and add it to row 2 of
(

1 0
0 1

)
, we

obtain the elementary matrix
(

1 0
−3 1

)
. Multiply this matrix to the left

of B, (
1 0
−3 1

)
(B) =

(
1 0
−3 1

)(
1 2
3 4

)
=

(
1 2
0 −2

)
,

we get the same result as operating directly on B. The elementary matrix

for adding row 2 to row 1 is
(

1 1
0 1

)
. Multiplying this matrix to the left of(

1 2
0 −2

)
, we have the diagonal matrix
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(
1 1
0 1

)(
1 2
0 −2

)
=

(
1 0
0 −2

)
.

4. Combine the last equations
(

1 1
0 1

)(
1 2
0 −2

)
=

(
1 1
0 1

)(
1 0
−3 1

)(
1 2
3 4

)
=

(
1 0
0 −2

)
.

Let

E =
(

1 1
0 1

)(
1 0
−3 1

)
=

(
−2 1
−3 1

)
, D =

(
1 0
0 −2

)
,

we can write the equation as

EB =
(
−2 1
−3 1

)(
1 2
3 4

)
=

(
1 0
0 −2

)
= D.

This equation says that the matrix B is diagonalized by the matrix E,
which is the product of a series of elementary matrices.

5. Because of the way E is constructed, multiplying E to the left of any
matrix M is equivalent to repeatedly adding a multiple of a row to another
row of M . From the theory of determinants, we know that these operations
do not change the value of the determinant. For example,

|EB| = |D| =
∣∣∣∣ 1 0
0 −2

∣∣∣∣ = −2,

|B| =
∣∣∣∣ 1 2
3 4

∣∣∣∣ = 4 − 6 = −2.

Therefore the determinant of the diagonalized matrix D is equal to the
determinant of the original matrix B,

|D| = |B| .

In fact M can be any matrix, as along as it is compatible,

|EM | = |M | .

6. Now let M = BA,
|E(BA)| = |BA| .

But
|E(BA)| = |(EB)A| = |DA| = |D| |A| ,

since D is diagonal. On the other hand |D| = |B|, therefore

|BA| = |B| |A| .

Since |B| |A| = |A| |B|, it follows |BA| = |AB|, even though BA may not
be equal to AB.
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5.2.5 The Commutator

The difference between the two products AB and BA is known as the com-
mutator

[A,B] = AB − BA.

If in particular, AB is equal to BA, then

[A,B] = 0,

the two matrices A and B are said to commute with each other.
It follows directly from the definition that:

• [A,A] = 0
• [A, I] = [I,A] = 0
• [A,B] = − [B,A]
• [A, (B + C)] = [A,B] + [A,C]
• [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

Example 5.2.11. Let

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

show that

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy.

Solution 5.2.11.

σxσy =
(

0 1
1 0

)(
0 −i
i 0

)
= i

(
1 0
0 −1

)
,

σyσx =
(

0 −i
i 0

)(
0 1
1 0

)
= −i

(
1 0
0 −1

)
,

[σx, σy] = σxσy − σyσx = 2i
(

1 0
0 −1

)
= 2iσz.

Similarly, [σy, σz] = 2iσx and [σz, σx] = 2iσy.

Example 5.2.12. If a matrix B commutes with a diagonal matrix with no two
elements equal to each other, then B must also be a diagonal matrix.
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Solution 5.2.12. To prove this, let B commute with a diagonal matrix A of
order n, whose elements are

(A)ij = aiδij (5.16)
ai �= aj if i �= j.

We are given that
AB = BA.

Let the elements of B be bij , we wish to show that bij = 0, unless i = j.
Taking the ijth element of both sides, we have

n∑
k=1

(A)ik(B)kj =
n∑

k=1

(B)ik(A)kj .

On using (5.16), this becomes

n∑
k=1

aiδikbkj =
n∑

k=1

bikakδkj ,

with the definition of delta function

aibij = bijaj .

This shows
(ai − aj)bij = 0.

Thus bij must be all equal to zero for i �= j, since for those cases ai �= aj . The
only elements of B which can be different from zero are the diagonal elements
bii, proving that B must be a diagonal matrix.

5.3 Systems of Linear Equations

The method of matrix algebra is very useful in solving a system of linear
equations. Let x1, x2, . . . , xn be a set of n unknown variables. An equation
which contains first degree of xi and no products of two or more variables is
called a linear equation. The most general system of m linear equations in n
unknowns can be written in the form

a11x1 + a12x2 + · · · + a1nxn = d1,
a21x1 + a22x2 + · · · + a2nxn = d2,

· · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = dm.

(5.17)

Here the coefficients aij and the right-hand side terms di are supposed to be
known constants.
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We can regard the variables x1, x2, . . . , xn as components of the n × 1
column vector x

x =

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠

and the constants d1, d2, . . . , dm as components of the m× 1 column vector d

d =

⎛
⎜⎜⎜⎝

d1

d2

...
dm

⎞
⎟⎟⎟⎠ .

The coefficients aij can be written as elements of the m × n matrix A

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ .

With the matrix multiplication defined in Sect. 5.2, (5.17) can be written as
⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d1

d2

...
dm

⎞
⎟⎟⎟⎠ .

If all the components of d are equal to zero, the system is called
homogeneous. If at least one component of d is not zero, the system is called
nonhomogeneous. If the system of linear equations is such that the equations
are all satisfied simultaneously by at least one set of values of xi, then it is
said to be consistent. The system is said to be inconsistent if the equations
are not satisfied simultaneously by any set of values. An inconsistent system
has no solution. A consistent system may have an unique solution, or an in-
finite number of solutions. In the following sections, we will discuss practical
ways of finding these solutions, as well as answer the question of existence and
uniqueness of the solutions.

5.3.1 Gauss Elimination Method

Two linear systems are equivalent if every solution of either system is a solu-
tion of the other. There are three elementary operations that will transform
a linear system into another equivalent system:
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1. Interchanging two equations
2. Multiplying an equation through by a nonzero number
3. Adding to one equation a multiple of some other equation

That a system is transformed into an equivalent system by the first oper-
ation is quite apparent. The reason that the second and third kinds of opera-
tions have the same effect is that when the same operations are done on both
sides of an equal sign, the equation should remain valid. In fact, these are
just the techniques we learned in elementary algebra to solve a set of simul-
taneous equations. The goal is to transform the set of equations into a simple
form so that the solution is obvious. A practical procedure is suggested by
the observation that a linear system, whose coefficient matrix is either upper
triangular or diagonal, is easy to solve.

For example, the system of equations

−2x2 + x3 = 8,

2x1 − x2 + 4x3 = −3, (5.18)
x1 − x2 + x3 = −2,

can be written as ⎛
⎝ 0 −2 1

2 −1 4
1 −1 1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 8

−3
−2

⎞
⎠ .

Interchange equation 1 and equation 3, the system becomes

x1 − x2 + x3 =−2
2x1 − x2 + 4x3 =−3

−2x2 + x3 = 8

⎛
⎝ 1 −1 1

2 −1 4
0 −2 1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−2

−3
8

⎞
⎠ ,

where we have put the matrix equation representing the system right next to
it. Multiply equation 1 of the rearranged system by −2 and add to equation
2, we have

x1 − x2 + x3 =−2
x2 + 2x3 = 1

−2x2 + x3 = 8

⎛
⎝1 −1 1

0 1 2
0 −2 1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−2

1
8

⎞
⎠ .

Multiply equation 2 of the last system by 2 and add to equation 3

x1 − x2 + x3 =−2
x2 + 2x3 = 1

5x3 = 10

⎛
⎝ 1 −1 1

0 1 2
0 0 5

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−2

1
10

⎞
⎠ . (5.19)

These four systems of equations are equivalent because they have the same
solution. From the last set of equations, it is clear that x3 = 2, x2 = 1−2x3 =
−3, and x1 = −2 + x2 − x3 = −7.

This procedure is often referred to as the Gauss elimination method, the
echelon method, or triangularization.
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Augmented Matrix

To simplify the writing further, we introduce the augmented matrix. The
matrix composed of the coefficient matrix plus an additional column whose
elements are the nonhomogeneous constants di is called the augmented matrix
of the system. Thus ⎛

⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

∣∣∣∣∣∣∣∣∣

d1

d2

...
dn

⎞
⎟⎟⎟⎠

is the augmented matrix of (5.17). The portion in front of the vertical line
is the coefficient matrix. The entire matrix, disregarding the vertical line, is
the augmented matrix of the system. Clearly the augmented matrix is just a
succinct expression of the linear system.

Instead of operating on the equations of the system, we can just operate on
the rows of the augmented matrix with the three elementary row operations
which consist of:

1. Interchanging of any two rows
2. Multiplying of any row by a nonzero scalar
3. Adding a multiple of a row to another row

Thus we can summarize the Gauss elimination method as using the ele-
mentary row operations to reduce the augmented matrix of the original system
to an echelon form. A matrix is said to be in echelon form if:

1. The first element in the first row is nonzero.
2. The first (n − 1) elements of the nth row are zero, the rest elements may

or may not be zero.
3. The first nonzero element of any row appears to the right of the first

nonzero element in the row above.
4. As a consequence, if there are rows whose elements are all zero, then they

must be at the bottom of the matrix.

Thus we can think of solving the linear system of (5.18) in the above
example as reducing the augmented matrix from

⎛
⎝ 0 −2 1

2 −1 4
1 −1 1

∣∣∣∣∣∣
8
−3
−2

⎞
⎠

to the echelon form ⎛
⎝ 1 −1 1

0 1 2
0 0 5

∣∣∣∣∣∣
−2
1
10

⎞
⎠

from which the solution is easily obtained.
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Gauss–Jordan Elimination Method

For a large set of linear equations, it is sometimes advantageous to continue
the process to reduce the coefficient matrix from the triangular form to a
diagonal form. For example, multiply the third row of the last matrix by 1/5

⎛
⎝ 1 −1 1

0 1 2
0 0 1

∣∣∣∣∣∣
−2
1
2

⎞
⎠ (5.20)

Multiply row 3 by −2 and add to row 2
⎛
⎝ 1 −1 1

0 1 0
0 0 1

∣∣∣∣∣∣
−2
−3
2

⎞
⎠ .

Multiply row 3 by −1 and add to row 1:
⎛
⎝ 1 −1 0

0 1 0
0 0 1

∣∣∣∣∣∣
−4
−3
2

⎞
⎠ .

Add row 2 to row 1: ⎛
⎝1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
−7
−3
2

⎞
⎠ ,

which corresponds to x1 = −7, x2 = −3, and x3 = 2. This process is known
as the Gauss–Jordan elimination method.

5.3.2 Existence and Uniqueness of Solutions of Linear Systems

For a linear system of m equations and n unknowns, the order of the coefficient
matrix is m × n that of the augmented matrix is m × (n + 1). If m < n, the
system is underdetermined. If m > n, the system is overdetermined. The most
interesting case is m = n. In all three cases, we can use Gauss elimination
method to reduce the augmented matrix into an echelon form. Once in the
echelon form, the problem is either solved, or else shown to be inconsistent.
A few examples will make this clear.

Example 5.3.1. Solve the following system of equations:

x1 + x2 − x3 = 2,

2x1 − x2 + x3 = 1,

3x1 − x2 + x3 = 4.
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Solution 5.3.1. The augmented matrix is⎛
⎝ 1 1 −1

2 −1 1
3 −1 1

∣∣∣∣∣∣
2
1
4

⎞
⎠ .

Multiply row 1 by −2 and add to row 2:⎛
⎝1 1 −1

0 −3 3
3 −1 1

∣∣∣∣∣∣
2
−3
4

⎞
⎠ .

Multiply row 1 by −3 and add to row 3:⎛
⎝1 1 −1

0 −3 3
0 −4 4

∣∣∣∣∣∣
2
−3
−2

⎞
⎠ .

Multiply row 2 by −1/3:⎛
⎝1 1 −1

0 1 −1
0 −4 4

∣∣∣∣∣∣
2
1
−2

⎞
⎠ .

Multiply row 2 by 4 and add to row 3:⎛
⎝1 1 −1

0 1 −1
0 0 0

∣∣∣∣∣∣
2
1
2

⎞
⎠ .

This represents the system of equations

x1 + x2 − x3 = 2,

x2 − x3 = 1,

0 = 2.

Since no values of x1, x2, and x3 can make 0 = 2, the system is inconsistent,
and has no solution.

Example 5.3.2. Solve the following system of equations:

x1 + 3x2 + x3 = 6,

3x1 − 2x2 − 8x3 = 7,

4x1 + 5x2 − 3x3 = 17.

Solution 5.3.2. The augmented matrix is⎛
⎝ 1 3 1

3 −2 −8
4 5 −3

∣∣∣∣∣∣
6
7
17

⎞
⎠ .
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Multiply row 1 by −3 and add to row 2:⎛
⎝ 1 3 1

0 −11 −11
4 5 −3

∣∣∣∣∣∣
6

−11
17

⎞
⎠ .

Multiply row 1 by −4 and add to row 3:⎛
⎝ 1 3 1

0 −11 −11
0 −7 −7

∣∣∣∣∣∣
6

−11
−7

⎞
⎠ .

Multiply row 2 by −1/11:⎛
⎝1 3 1

0 1 1
0 −7 −7

∣∣∣∣∣∣
6
1
−7

⎞
⎠ .

Multiply row 2 by 7 and add to row 3:⎛
⎝ 1 3 1

0 1 1
0 0 0

∣∣∣∣∣∣
6
1
0

⎞
⎠ .

This represents the system

x1 + 3x2 + x3 = 6,

x2 + x3 = 1,

0 = 0.

This says x2 = 1−x3 and x1 = 6−3x2−x3 = 3+2x3. The value of x3 may be
assigned arbitrarily, therefore the system has an infinite number of solutions.

Example 5.3.3. Solve the following system of equations:

x1 + x2 = 2,

x1 + 2x2 = 3,

2x1 + x2 = 3.

Solution 5.3.3. The augmented matrix is⎛
⎝1 1

1 2
2 1

∣∣∣∣∣∣
2
3
3

⎞
⎠ .

Multiply row 1 by −1 and add to row 2:⎛
⎝1 1

0 1
2 1

∣∣∣∣∣∣
2
1
3

⎞
⎠ .
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Multiply row 1 by −2 and add to row 3:
⎛
⎝1 1

0 1
0 −1

∣∣∣∣∣∣
2
1
−1

⎞
⎠ .

Add row 2 to row 3: ⎛
⎝1 1

0 1
0 0

∣∣∣∣∣∣
2
1
0

⎞
⎠ .

The last augmented matrix says

x1 + x2 = 2,

x2 = 1,

0 = 0.

clearly x2 = 1 and x1 = 1. Therefore this system has an unique solution.

To answer questions of existence and uniqueness of solutions of linear
systems, it is useful to introduce the concept of the rank of a matrix.

Rank of a Matrix

There are several equivalent definitions for the rank of a matrix. For our
purpose, it is most convenient to define the rank of a matrix as the number of
nonzero rows in the matrix after it has been transformed into a echelon form
by elementary row operations.

In Example 5.3.1, the echelon forms of the coefficient matrix Ce and of the
augmented matrix Ae are, respectively,

Ce =

⎛
⎝ 1 1 −1

0 1 −1
0 0 0

⎞
⎠ , Ae =

⎛
⎝ 1 1 −1 2

0 1 −1 1
0 0 0 2

⎞
⎠ .

In Ce, there are two nonzero rows, therefore the rank of the coefficient matrix
is 2. In Ae, there are three nonzero rows, therefore the rank of the augmented
matrix is 3. As we have shown, this system has no solution.

In Example 5.3.2, the echelon forms of these two matrices are

Ce =

⎛
⎝ 1 3 1

0 1 1
0 0 0

⎞
⎠ , Ae =

⎛
⎝ 1 3 1 6

0 1 1 1
0 0 0 0

⎞
⎠ .

They both have only two nonzero rows. Therefore the rank of the coefficient
matrix equals the rank of the augmented matrix. They both equal to 2. As
we have seen, this system has infinite number of solutions.
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In Example 5.3.3, the two echelon forms are

Ce =

⎛
⎝1 1

0 1
0 0

⎞
⎠ , Ae =

⎛
⎝ 1 1 2

0 1 1
0 0 0

⎞
⎠ .

Both of them have two nonzero rows, therefore the coefficient matrix and the
augmented matrix have the same rank of 2. As we have shown, this system
has an unique solution.

From the results of these examples, we can make the following observa-
tions:

1. A linear system of m equations and n unknowns has solutions if and only
if the coefficient matrix and the augmented matrix have the same rank.

2. If the rank of both matrices is r, and r < n, the system has infinitely
many solutions.

3. If r = n, the system has only one solution.

Actually these statements are generally valid for all linear systems regard-
less of whether m < n, m = n, or m > n.

The most interesting case is m = n = r. In that case, the coefficient
matrix is a square matrix. The solution of such systems can be obtained from
(1) the Cramer’s rule discussed in the chapter of determinants, (2) the Gauss
elimination method discussed in this section, and (3) the inverse matrix which
we will discuss in Sect. 5.4.

5.4 Inverse Matrix

5.4.1 Nonsingular Matrix

The square matrix A is said to be nonsingular if there exists a matrix B such
that

BA = I,

where I is the identity (unit) matrix. If no matrix B exists, then A is said
to be singular. The matrix B is the inverse of A and vice versa. The inverse
matrix is denoted by A−1

A−1 = B.

The relationship is reciprocal. If B is the inverse of A, then A is the inverse
of B. Since

BA = A−1A = I, (5.21)

applying B−1 from the left

B−1BA = B−1I.

It follows:
A = B−1. (5.22)
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Existence

If A is nonsingular, then determinant |A| �= 0.

Proof. If A is nonsingular, then by definition A−1 exists and AA−1 = I. Thus∣∣AA−1
∣∣ = |A| ·

∣∣A−1
∣∣ = |I| .

Since |I| = 1, neither |A| nor
∣∣A−1

∣∣ can be zero.
If |A| �= 0, we will show in following sections that A−1 can always be found.

��

Uniqueness

The inverse of a matrix, if it exists, is unique. That is, if

AB = I,

AC = I,

then
B = C.

This can be seen as follows. Since AC = I, by definition C = A−1. It follows
that:

CA = AC = I.

Multiplying this equation from the right by B, we have

(CA)B = IB = B.

But
(CA)B = C(AB) = CI = C.

It is clear from the last two equations that B = C.

Inverse of Matrix Products

The inverse of the product of a number of matrices, none of which is singular,
equals the product of the inverses taken in the reverse order.

Proof. Consider three nonsingular matrices A, B, and C. We will show

(ABC)−1 = C−1B−1A−1.

By definition
ABC(ABC)−1 = I.

Now

ABC(C−1B−1A−1) = AB(CC−1)B−1A−1

= ABB−1A−1 = AIA−1 = AA−1 = I.

Since the inverse is unique, it follows that:

(ABC)−1 = C−1B−1A−1.
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5.4.2 Inverse Matrix by Cramer’s Rule

To find A−1, let us consider the set of nonhomogeneous linear equation

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

d1

d2

...
dn

⎞
⎟⎟⎟⎠ (5.23)

written as

(A)(x) = (d). (5.24)

According to Cramer’s rule discussed in the chapter on determinants

xi =
Ni

|A| ,

where |A| is the determinant of A and Ni is the determinant

Ni =

∣∣∣∣∣∣∣∣∣

a11 . . . a1i−1 d1 a1i+1 . . . a1n

a21 . . . a2i−1 d2 a2i+1 . . . a2n

...
...

...
...

...
...

...
an1 . . . ani−1 dn ani+1 . . . ann

∣∣∣∣∣∣∣∣∣
.

Expanding Ni over the ith column, we have

xi =
1
|A|

n∑
j=1

djCji, (5.25)

where Cji is the cofactor of jth row and ith column of A.
Now let A−1 = B, i.e.,

A−1 = B =

⎛
⎜⎜⎜⎝

b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

...
...

bn1 bn2 . . . bnn

⎞
⎟⎟⎟⎠ .

Applying A−1 to (5.24) from the left

(A−1)(A)(x) = (A−1)(d),

so
(x) = (A−1)(d),
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or ⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

...
...

bn1 bn2 . . . bnn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d1

d2

...
dn

⎞
⎟⎟⎟⎠ .

Thus

xi =
n∑

j=1

bijdj . (5.26)

Compare (5.25) and (5.26), it is clear

bij =
1
|A|Cji =

1
|A| C̃ij .

Thus the process of obtaining the inverse of a nonsingular matrix involves
the following steps:

(a) Obtain the cofactor of every element of the matrix A and write the matrix
of cofactors in the form

C =

⎛
⎜⎜⎜⎝

C11 C12 . . . C1n

C21 C22 . . . C2n

...
...

...
...

Cn1 Cn2 . . . Cnn

⎞
⎟⎟⎟⎠ .

(b) Transpose the matrix of cofactors to obtain

C̃ =

⎛
⎜⎜⎜⎝

C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
...

C1n C2n . . . Cnn

⎞
⎟⎟⎟⎠ .

(c) Divide this by detA to obtain the inverse of A

A−1 =
1
|A|

⎛
⎜⎜⎜⎝

C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
...

C1n C2n . . . Cnn

⎞
⎟⎟⎟⎠ .

Example 5.4.1. Find the inverse of the following matrix by Cramer’s rule:

A =

⎛
⎝−3 1 −1

15 −6 5
−5 2 −2

⎞
⎠ .
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Solution 5.4.1. The nine cofactors of A are

C11 =
∣∣∣∣−6 5

2 −2

∣∣∣∣ = 2, C12 = −
∣∣∣∣ 15 5
−5 −2

∣∣∣∣ = 5, C13 =
∣∣∣∣ 15 −6
−5 2

∣∣∣∣ = 0,

C21 = −
∣∣∣∣ 1 −1
2 −2

∣∣∣∣ = 0, C22 =
∣∣∣∣−3 −1
−5 −2

∣∣∣∣ = 1, C23 = −
∣∣∣∣−3 1
−5 2

∣∣∣∣ = 1,

C31 =
∣∣∣∣ 1 −1
−6 5

∣∣∣∣ = −1, C32 = −
∣∣∣∣−3 −1
15 5

∣∣∣∣ = 0, C33 =
∣∣∣∣−3 1
15 −6

∣∣∣∣ = 3.

The value of the determinant of A can be obtained from the Laplacian expan-
sion over any row or any column. For example, over the first column

|A| = −3C11 + 15C21 − 5C31 = −6 + 0 + 5 = −1.

So the inverse exists. The matrix of cofactors C is

C =

⎛
⎝ 2 5 0

0 1 1
−1 0 3

⎞
⎠ .

The inverse of A is then obtained by transposing C and dividing it by detA.
Therefore

A−1 =
1
|A| C̃ =

1
−1

⎛
⎝ 2 5 0

0 1 1
−1 0 3

⎞
⎠

T

=

⎛
⎝−2 0 1

−5 −1 0
0 −1 −3

⎞
⎠ . (5.27)

It can be directly verified that

A−1A =

⎛
⎝−2 0 1

−5 −1 0
0 −1 −3

⎞
⎠

⎛
⎝−3 1 −1

15 −6 5
−5 2 −2

⎞
⎠ =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

In literature, the transpose of the cofactor matrix of A is sometimes defined
as the adjoint of A, i.e., adj A = C̃. However, the name adjoint has another
meaning, especially in quantum mechanics. It is often defined as the Hermitian
conjugate A†, i.e., adjA = A†. We will discuss Hermitian matrix in Chap. 6.

For a large matrix, there are more efficient techniques to find the inverse
matrix. However, for a 2 × 2 nonsingular matrix

A =
(

a11 a12

a21 a22

)
,

one readily obtains from this method

A−1 =
1
|A|

(
a22 −a12

−a21 a11

)
.

This result is simple and useful, It may even be worthwhile to memorize it.
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Example 5.4.2. Find the inverse matrices for

A =
(

1 2
3 4

)
, R =

(
cos θ sin θ
− sin θ cos θ

)
.

Solution 5.4.2.

A−1 =
1

(4 − 6)

(
4 −2
−3 1

)
=

(
−2 1
3/2 −1/2

)
,

R−1 =
1

(cos2 θ + sin2 θ)

(
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

One can readily verify
(
−2 1
3/2 −1/2

)(
1 2
3 4

)
=

(
1 0
0 1

)
,

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
1 0
0 1

)
.

5.4.3 Inverse of Elementary Matrices

Elementary Matrices

An elementary matrix is a matrix that can be obtained from the identity
matrix I by an elementary operation. For example, the elementary matrix E1

obtained from interchanging row 1 and row 2 of the identity matrix of third
order is

E1 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ .

On the other hand, the elementary row operation of interchanging row 1
and row 2 of any matrix A of order 3×n can be accomplished by premultiplying
A by the elementary matrix E1⎛

⎝0 1 0
1 0 0
0 0 1

⎞
⎠

⎛
⎝a11 a12

a21 a22

a31 a32

⎞
⎠ =

⎛
⎝a21 a22

a11 a12

a31 a32

⎞
⎠ .

The second elementary operation, namely multiplying a row, say row 2,
by a scalar k can be accomplished as follows:

⎛
⎝1 0 0

0 k 0
0 0 1

⎞
⎠

⎛
⎝a11 a12

a21 a22

a31 a32

⎞
⎠ =

⎛
⎝ a11 a12

ka21 ka22

a31 a32

⎞
⎠ .
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Finally, to add the third row k times to the second row, we can proceed
in the following way

⎛
⎝1 0 0

0 1 k
0 0 1

⎞
⎠

⎛
⎝a11 a12

a21 a22

a31 a32

⎞
⎠ =

⎛
⎝ a11 a12

a21 + ka31 a22 + ka32

a31 a32

⎞
⎠ .

Thus, to effect any elementary operation on a matrix A, one may first
perform the same elementary operation on an identity matrix to obtain the
corresponding elementary matrix. Then premultiply A by the elementary
matrix.

Inverse of an Elementary Matrix

Since the elementary matrix is obtained from the elementary operation on
the identity matrix, its inverse simply represents the reverse operation. For
example, E1 is obtained from interchanging row 1 and row 2 of the identity
matrix I

E1I = E1 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ .

Since

E−1
1 E1 = I =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ ,

E−1
1 represents the operation of interchanging row 1 and row 2 of E1. Thus

E−1
1 is also given by

E−1
1 =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ = E1.

The inverses of the two other kinds of elementary matrices can be obtained
in a similar way, namely

E2 =

⎛
⎝ 1 0 0

0 k 0
0 0 1

⎞
⎠ , E−1

2 =

⎛
⎝1 0 0

0 1/k 0
0 0 1

⎞
⎠ ,

E3 =

⎛
⎝ 1 0 0

0 1 k
0 0 1

⎞
⎠ , E−1

3 =

⎛
⎝1 0 0

0 1 −k
0 0 1

⎞
⎠ .

It can be readily shown by successive elementary operations that

E4 =

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠ , E−1

4 =

⎛
⎝ 1/a 0 0

0 1/b 0
0 0 1/c

⎞
⎠



248 5 Matrix Algebra

and

E5 =

⎛
⎜⎜⎝

1 0 0 0
0 1 n m
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , E−1

5 =

⎛
⎜⎜⎝

1 0 0 0
0 1 −n −m
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

5.4.4 Inverse Matrix by Gauss–Jordan Elimination

For a matrix of large order, Cramer’s rule is of little practical use. One of the
most commonly used methods for inverting a large matrix is the Gauss–Jordan
method.

Equation (5.23) can be written in the form
⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d1

d2

...
dn

⎞
⎟⎟⎟⎠ , (5.28)

or symbolically as
(A)(x) = (I)(d). (5.29)

If the both sides of this equation is under the same operation, the equa-
tion will remain to be valid. We will operate them with the Gauss–Jordan
procedure. Each step is an elementary row operation which can be thought
as premultiplying (multiplying from the left) both sides by the elementary
matrix representing that operation. Thus the entire Gauss–Jordan process is
equivalent to multiplying (5.29) by a matrix B which is a product of all the
elementary matrices representing the steps of the Gauss–Jordan procedure

(B)(A)(x) = (B)(I)(d). (5.30)

Since the process reduces the coefficient matrix A to the identity matrix I, so

BA = I.

Postmultiplying both sides by A−1

BAA−1 = IA−1,

we have
B = A−1.

Therefore when the left-hand side of (5.30) becomes a unit matrix times the
column matrix x, the right-hand side of the equation must be equal to the
inverse matrix times the column matrix d.

Thus if we want to find the inverse of A, we can first augment A by
the identity matrix I, and then use elementary operations to transform this
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matrix. When the submatrix A is in the form of I, the form assumed of the
original identity matrix I must be A−1.

We have found the inverse of

A =

⎛
⎝ −3 1 −1

15 −6 5
−5 2 −2

⎞
⎠

in Example 5.4.1 by Cramer’s rule. Now let us do the same problem by
Gauss–Jordan elimination. First we augment A by the identity matrix I

⎛
⎝ −3 1 −1 �

15 −6 5 �

−5 2 −2 �

1 0 0
0 1 0
0 0 1

⎞
⎠ .

Divide the first row by −3, second row by 15, and third row by −5:
⎛
⎜⎝

1 − 1
3

1
3

1 − 6
15

5
15

1 − 2
5

2
5

�

�

�

− 1
3 0 0

0 1
15 0

0 0 − 1
5

⎞
⎟⎠ ,

leave the first row as it is, subtract the first row from the second row and put
it in the second row, and subtract the first row from the third row and put it
back in the third row ⎛

⎜⎝
1 − 1

3
1
3

0 − 1
15 0

0 − 1
15

1
15

�

�

�

− 1
3 0 0

1
3

1
15 0

1
3 0 − 1

5

⎞
⎟⎠ ,

multiply the second and third row by −15
⎛
⎝ 1 − 1

3
1
3

0 1 0
0 1 −1

�

�

�

− 1
3 0 0

−5 −1 0
−5 0 3

⎞
⎠ ,

leave the second row where it is, subtract it from the third row and put the
result back to the third row, and then add 1/3 of the second row to the first
row ⎛

⎝ 1 0 1
3

0 1 0
0 0 −1

�

�

�

−2 − 1
3 0

−5 −1 0
0 1 3

⎞
⎠ ,

multiply the third row by −1, and then subtract 1/3 of it from the first row
⎛
⎝ 1 0 0

0 1 0
0 0 1

�

�

�

−2 0 1
−5 −1 0
0 −1 −3

⎞
⎠ .
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Finally we have changed matrix A to the unit matrix I, the original unit
matrix on the right side must have changed to A−1, thus

A−1 =

⎛
⎝−2 0 1

−5 −1 0
0 −1 −3

⎞
⎠ .

which is the same as (5.27) obtained in Sect. 5.3.
This technique is actually more adapted to modern computers. Computer

codes and extensive literature for the Gauss–Jordan elimination method are
given in W.H. Press, B.P. Flannery, S.A. Teukolsky,, and W.T. Vetterling,
Numerical Recipes, 2nd edn. (Cambridge University Press, Cambridge 1992).

Exercises

1. Given two matrices

A =
(

2 5
−2 1

)
, B =

(
2 0
2 1

)
,

find B − 5A.

Ans.
(
−8 −25
12 −4

)
.

2. If A and B are the 2×2 matrices

A =
(

2 4
−3 1

)
, B =

(
3 −1
4 2

)
,

find the products AB and BA.

Ans. AB =
(

22 6
−5 5

)
, BA =

(
9 11
2 18

)
.

3. If

A =
(

2 −1 4
−3 2 1

)
, B =

⎛
⎝ 1 −4

3 −2
−1 1

⎞
⎠ ,

find AB and BA if they exist.

Ans. AB =
(
−5 −2
2 9

)
, BA =

⎛
⎝ 14 −9 0

12 −7 10
−5 3 −3

⎞
⎠ .

4. If

A =

⎛
⎜⎜⎝

2 1 −3
0 2 −2
−1 −1 3
2 0 1

⎞
⎟⎟⎠ , B =

⎛
⎝ 3 0

2 4
2 −1

⎞
⎠ ,
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find AB and BA if they exist.

Ans. AB =

⎛
⎜⎜⎝

2 7
0 10
1 −7
8 −1

⎞
⎟⎟⎠ , BA does not exist.

5. If

A =
(

1 2
−2 3

)
, B =

(
3 1
2 0

)
, C =

(
4 3
2 1

)
,

verify the associative law by showing that

(AB) C = A (BC) .

6. Show that if

A =
(

1 1
0 1

)
,

then

An =
(

1 n
0 1

)
.

Hint: An =
[(

1 0
0 1

)
+

(
0 1
0 0

)]n

.

7. Given

A =
(
−1 0
0 −1

)
, B =

(
0 1
1 0

)
, C =

(
0 −1
−1 0

)
, I =

(
1 0
0 1

)
.

Find all possible products of A,B,C and I, two at a time including
squares.
(Note that the products of any two matrices is another matrix in this
group. These four matrices form a representation of a mathematical group,
known as viergruppe (vier is the German word four).)

8. If

A =
(

ab b2

−a2 −ab

)
,

show that A2 = 0.

9. Find the value of (
1 2

)(−1 0
2 1

)(
2
1

)
.

Ans. 8.

10. Explicitly verify that (AB)T = B̃Ã, if

A =
(

1 2
3 4

)
, B =

(
−1 0
1 2

)
.
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11. Show that matrix A is symmetric, if

A = BB̃.

Hint: aij =
∑
k

bik b̃kj .

12. Let A =
(

1 3
5 12

)
, find a matrix E such that EA is diagonal and

|EA| = |A|.

Ans.
(
−4 1
−5 1

)
.

13. Let

A =
(

1 0
2 −1

)
, B =

(
2 1
0 3

)
,

explicitly show that

AB �= BA but |AB| = |BA| .

14. Show that if
[A,B] �= 0,

then

(A − B)(A + B) �= A2 − B2,

(A + B)2 �= A2 + 2AB + B2.

15. Show that
[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

16. Show that ∣∣A−1
∣∣ = |A|−1

.

Hint: AA−1 = I, |AB| = |A| |B|.

17. Let

A =
(

1 3
5 7

)
, B =

(
2 4
6 8

)
,

find A−1, B−1, and (AB)−1 by Cramer’s rule and verify that (AB)−1 =
B−1A−1.

18. Reduce the augmented matrix of the following system to an echelon form
and show that this system has no solution

x1 + x2 + 2x3 + x4 = 5,

2x1 + 3x2 − x3 − 2x4 = 2,

4x1 + 5x2 + 3x3 = 7.
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Ans.

⎛
⎝ 1 1 2 1

0 1 −5 −4
0 0 0 0

∣∣∣∣∣∣
5
−8
−5

⎞
⎠ .

19. Solve the following equations by Gauss’ elimination

x1 + 2x2 − 3x3 = −1,

3x1 − 2x2 + 2x3 = 10,
4x1 + x2 + 2x3 = 3.

Ans. x3 = −1, x2 = −3, x1 = 2.

20. Let

A =

⎛
⎝ 1 2 −3

3 −2 2
4 1 2

⎞
⎠ ,

find A−1 by Gauss–Jordan elimination. Find x1, x2, x3 from⎛
⎝x1

x2

x3

⎞
⎠ = A−1

⎛
⎝−1

10
3

⎞
⎠ ,

and show that

A

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−1

10
3

⎞
⎠ .

21. Determine the rank of the following matrices:

(a)

⎛
⎝ 4 2 −1 3

0 5 −1 2
12 −4 −1 5

⎞
⎠ , (b)

⎛
⎝3 −1 4 −2

0 2 4 6
6 −1 10 −1

⎞
⎠ .

Ans. (a) 2, (b) 2.

22. Determine if the following systems are consistent. If consistent, is the
solution unique?

(a)
x1 − x2 + 3x3 = −5,

−x1 + 3x3 = 0,
2x1 + x2 = 1.

(b)
x1 − 2x2 + 3x3 = 0,
2x1 + 3x2 − x3 = 0,
4x1 − x2 + 5x3 = 0.

Ans. (a) unique solution, (b) infinite number of solutions.

23. Find the value of λ so that the following linear system has a solution

x1 + 2x2 + 3x3 = 2,

3x1 + 2x2 + x3 = 0,

x1 + x2 + x3 = λ.

Ans. λ = 0.5.
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24. Let

L+ =

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠ , L− =

⎛
⎝ 0 0 0

1 0 0
0 1 0

⎞
⎠ ,

|−1〉 =

⎛
⎝ 0

0
1

⎞
⎠ , |0〉 =

⎛
⎝ 0

1
0

⎞
⎠ , |1〉 =

⎛
⎝ 1

0
0

⎞
⎠ , |null〉 =

⎛
⎝ 0

0
0

⎞
⎠ .

Show that

L+ |−1〉 = |0〉 , L+ |0〉 = |1〉 , L+ |1〉 = |null〉 ,

L− |1〉 = |0〉 , L− |0〉 = |−1〉 , L− |−1〉 = |null〉 .
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Eigenvalue Problems of Matrices

Given a square matrix A, to determine the scalars λ and the nonzero column
matrix x which simultaneously satisfy the equation

Ax = λx (6.1)

is known as the eigenvalue problem (eigen in German means proper). The
solution of this problem is intimately connected to the question of whether
the matrix can be transformed into a diagonal form.

The eigenvalue problem is of great interests in many engineering appli-
cations, such as mechanical vibrations, alternating currents, and rigid body
dynamics. It is of crucial importance in modern physics. The whole struc-
ture of quantum mechanics is based on the diagonalization of certain type of
matrices.

6.1 Eigenvalues and Eigenvectors

6.1.1 Secular Equation

In the eigenvalue problem, the value λ is called the eigenvalue (characteris-
tic value) and the corresponding column matrix x is called the eigenvector
(characteristic vector). If A is a n × n matrix, (6.1) is given by⎛

⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ .

Since

λ

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = λIx,
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where I is the unit matrix, we can write (6.1) as

(A − λI)x = 0. (6.2)

This system has nontrivial solutions if and only if the determinant of the
coefficient matrix vanishes

∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

...
...

...
...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣
= 0. (6.3)

The expansion of this determinant yields a polynomial of degree n in λ, which
is called characteristic polynomial P (λ). The equation

P (λ) = |A − λI| = 0 (6.4)

is known as the characteristic equation (or secular equation). Its n roots
are the eigenvalues and will be denoted λ1, λ2, . . . , λn. They may be real
or complex. When one of the eigenvalues is substituted back into (6.2), the
corresponding eigenvector x(x1, x2, . . . , xn) may be determined. Note that
the eigenvectors may be multiplied by any constant and remain a solution of
the equation.

We will denote xi as the the eigenvector belonging to the eigenvalue λi.
That is, if

P (λi) = 0,

then
Axi = λixi.

If n eigenvalues are all different, we will have n distinct eigenvectors. If
two or more eigenvalues are the same, we say that they are degenerate. In
some problems, a degenerate eigenvalue may produce only one eigenvector, in
other problems a degenerate eigenvalue may produce more than one distinct
eigenvectors.

Example 6.1.1. Find the eigenvalues and eigenvectors of A, if

A =
(

1 2
2 1

)
.

Solution 6.1.1. The characteristic polynomial of A is

P (λ) =
∣∣∣∣ 1 − λ 2

2 1 − λ

∣∣∣∣ = λ2 − 2λ − 3,



6.1 Eigenvalues and Eigenvectors 257

and the secular equation is

λ2 − 2λ − 3 = (λ + 1)(λ − 3) = 0.

Thus the eigenvalues are

λ1 = −1, λ2 = 3.

Let the eigenvector x1 corresponding to λ1 = −1 be
(

x11

x12

)
, then x1 must

satisfy
(

1 − λ1 2
2 1 − λ1

)(
x11

x12

)
= 0 =⇒

(
2 2
2 2

)(
x11

x12

)
= 0.

This reduces to
2x11 + 2x12 = 0.

Thus for this eigenvector x11 = −x12. That is, x11 : x12 = −1 : 1. Therefore
the eigenvector can be written as

x1 =
(
−1
1

)
.

Any constant, positive or negative, times it will also be a solution, but it will
not be regarded as another distinct eigenvector. With a similar procedure, we
find the eigenvector corresponding to λ2 = 3 to be

x2 =
(

x21

x22

)
=

(
1
1

)
.

Example 6.1.2. Find the eigenvalues and eigenvectors of A, if

A =
(

3 −5
1 −1

)
.

Solution 6.1.2. The characteristic polynomial of A is

P (λ) =
∣∣∣∣ 3 − λ −5

1 −1 − λ

∣∣∣∣ = λ2 − 2λ + 2,

so the secular equation is
λ2 − 2λ + 2 = 0.

Thus the eigenvalues are
λ = 1 ± i.

Let λ1 = 1+i, and the corresponding eigenvector x1 be
(

x11

x12

)
, then x1 must

satisfy
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(
3 − (1 + i) −5

1 −1 − (1 + i)

)(
x11

x12

)
= 0,

which gives

(2 − i)x11 − 5x12 = 0,

x11 − (2 + i)x12 = 0.

The first equation gives

x11 =
5

2 − i
x12 =

5(2 + i)
4 + 1

x12 =
2 + i

1
x12,

which is the same result from the second equation, as it should be. Therefore
x1 can be written as

x1 =
(

2 + i
1

)
.

Similarly, for λ = λ2 = 1 − i, the corresponding eigenvector is

x2 =
(

2 − i
1

)
.

So we have an example of a real matrix with complex eigenvalues and complex
eigenvectors.

Example 6.1.3. Find the eigenvalues and eigenvectors of A, if

A =

⎛
⎝−2 2 −3

2 1 −6
−1 −2 0

⎞
⎠ .

Solution 6.1.3. The characteristic polynomial of A is

P (λ) =

∣∣∣∣∣∣
−2 − λ 2 −3

2 1 − λ −6
−1 −2 −λ

∣∣∣∣∣∣ = −λ3 − λ2 + 21λ + 45.

The secular equation can be written as

λ3 + λ2 − 21λ − 45 = (λ − 5) (λ + 3)2 = 0.

This equation has a single root of 5 and a double root of −3. Let

λ1 = 5, λ2 = −3, λ3 = −3.
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The eigenvector belonging to the eigenvalue of λ1 must satisfy the equation
⎛
⎝−2 − 5 2 −3

2 1 − 5 −6
−1 −2 0 − 5

⎞
⎠

⎛
⎝x11

x12

x13

⎞
⎠ = 0.

With Gauss’ elimination method, this equation can be shown to be equivalent
to ⎛

⎝−7 2 −3
0 1 2
0 0 0

⎞
⎠

⎛
⎝x11

x12

x13

⎞
⎠ = 0,

which means

−7x11 + 2x12 − 3x13 = 0,

x12 + 2x13 = 0.

Assign x13 = 1, then x12 = −2, x11 = −1. So corresponding to λ1 = 5, the
eigenvector x1 can be written as

x1 =

⎛
⎝−1

−2
1

⎞
⎠ .

Since the eigenvalue of −3 is twofold degenerate, corresponding to this eigen-
value, we may have one or two eigenvectors. Let us express the eigenvector

corresponding to the eigenvalue of −3 as

⎛
⎝x1

x2

x3

⎞
⎠. It must satisfy the equation

⎛
⎝−2 + 3 2 −3

2 1 + 3 −6
−1 −2 0 + 3

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ = 0.

With Gauss’ elimination method, this equation can be shown to be equivalent
to ⎛

⎝1 2 −3
0 0 0
0 0 0

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ = 0,

which means
x1 + 2x2 − 3x3 = 0.

We can express x1 in terms of x2 and x3, and there is no restriction on x2

and x3. Let x2 = c2 and x3 = c3, then x1 = −2c2 + 3c3. So we can write
⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−2c2 + 3c3

c2

c3

⎞
⎠ = c2

⎛
⎝−2

1
0

⎞
⎠ + c3

⎛
⎝ 3

0
1

⎞
⎠ .
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Since c2 and c3 are arbitrary, we can first assign c3 = 0 and get an eigenvector,
and then assign c2 = 0 and get another eigenvector. So corresponding to the
degenerate eigenvalue λ = −3, there are two distinct eigenvectors

x2 =

⎛
⎝−2

1
0

⎞
⎠ , x3 =

⎛
⎝3

0
1

⎞
⎠ .

In this example, we have only two distinct eigenvalues, but we still have three
distinct eigenvectors.

Example 6.1.4. Find the eigenvalues and eigenvectors of A, if

A =

⎛
⎝ 4 6 6

1 3 2
−1 −5 −2

⎞
⎠ .

Solution 6.1.4. The characteristic polynomial of A is

P (λ) =

∣∣∣∣∣∣
4 − λ 6 6

1 3 − λ 2
−1 −5 −2 − λ

∣∣∣∣∣∣ = −λ3 + 5λ2 − 8λ + 4.

The secular equation can be written as

λ3 − 5λ2 + 8λ − 4 = (λ − 1) (λ − 2)2 = 0.

The three eigenvalues are

λ1 = 1, λ2 = λ3 = 2.

From the equation for the eigenvector x1 belonging to the eigenvalue of λ1

⎛
⎝ 4 − 1 6 6

1 3 − 1 2
−1 −5 −2 − 1

⎞
⎠

⎛
⎝x11

x12

x13

⎞
⎠ = 0,

we obtain the solution

x1 =

⎛
⎝ 4

1
−3

⎞
⎠ .
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The eigenvector

⎛
⎝x1

x2

x3

⎞
⎠, corresponding to the twofold degenerate eigenvalue

2, satisfies the equation

⎛
⎝ 4 − 2 6 6

1 3 − 2 2
−1 −5 −2 − 2

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ = 0.

With Gauss’ elimination method, this equation can be shown to be equivalent
to ⎛

⎝ 1 1 2
0 2 1
0 0 0

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ = 0,

which means

x1 + x2 + 2x3 = 0,

2x2 + x3 = 0.

If we assign x3 = −2, then x2 = 1 and x1 = 3. So

x2 =

⎛
⎝ 3

1
−2

⎞
⎠ .

The two equations above do not allow any other eigenvector which is not just
a constant times x2. Therefore for this 3×3 matrix, there are only two distinct
eigenvectors.

Computer Code

It should be noted that for large systems, the eigenvalues and eigenvectors
would usually be found with specialized numerical methods (see, for example,
G.H. Golub and C.F. Van Loan, Matrix Computations, John Hopkins Uni-
versity Press, 1983). There are excellent general purpose computer programs
for the efficient and accurate determination of eigensystems (see, for exam-
ple, B.T. Smith, J.M. Boyle, J. Dongarra, B. Garbow, Y. Ikebe, V.C. Klema,
and C.B. Moler, Matrix Eigensystem Routines: EISPACK Guide, 2nd edn.
Springer-Verlag, 1976).

In addition, eigenvalues and eigenvectors can be found with a simple com-
mand in computer packages such as, Maple, Mathematica, MathCad, and
MuPAD. These packages are known as Computer Algebraic Systems.

This book is written with the software “Scientific WorkPlace,” which also
provides an interface to MuPAD (before version 5, it also came with Maple).
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Instead of requiring the user to adhere to a rigid syntax, the user can use
natural mathematical notations. For example, to find the eigenvalues and
eigenvectors of ⎛

⎝ 5 −6 −6
−1 4 2
3 −6 −4

⎞
⎠ ,

all you have to do is (1) type the expression in the math-mode, (2) click on the
“Compute” button, (3) click on the “Matrices” button in the pull-down menu,
and (4) click on the “Eigenvectors” button in the submenu. The program will
return with

eigenvectors :

⎧⎨
⎩
⎛
⎝ 1

− 1
3

1

⎞
⎠
⎫⎬
⎭ ↔ 1,

⎧⎨
⎩
⎛
⎝ 2

0
1

⎞
⎠ ,

⎛
⎝ 2

1
0

⎞
⎠
⎫⎬
⎭ ↔ 2.

You can ask the program to check the results. For example, you can type

⎛
⎝ 5 −6 −6

−1 4 2
3 −6 −4

⎞
⎠

⎛
⎝ 2

1
0

⎞
⎠ ,

and click on the “Compute” button, and then click on the “Evaluate” button.
The program will return with

⎛
⎝ 5 −6 −6

−1 4 2
3 −6 −4

⎞
⎠

⎛
⎝ 2

1
0

⎞
⎠ =

⎛
⎝4

2
0

⎞
⎠ ,

which is of course equal to 2

⎛
⎝ 2

1
0

⎞
⎠, showing

⎛
⎝ 2

1
0

⎞
⎠ is indeed an eigenvector

belonging to eigenvalue 2. The other two eigenvectors can be similarly checked.
Computer Algebraic Systems are wonderful as they are, they must be

used with caution. It is not infrequent that the system will return with an
answer to a wrong problem without the user knowing it. Therefore answers
from these systems should be checked. Computer Algebraic Systems are useful
supplements, but they are no substitute for the knowledge of the subject
matter.

6.1.2 Properties of Characteristic Polynomial

The characteristic polynomial has several useful properties. To elaborate on
them, let us first consider the case of n = 3.
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P (λ) =

∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
a11 a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
−λ a12 a13

0 a22 − λ a23

0 a32 a33 − λ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33 − λ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 0 a13

a21 −λ a23

a31 0 a33 − λ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
−λ a12 a13

0 a22 a23

0 a32 a33 − λ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
−λ 0 a13

0 −λ a23

0 0 a33 − λ

∣∣∣∣∣∣

=

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 a12 0
a21 a22 0
a31 a32 −λ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 0 a13

a21 −λ a23

a31 0 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
a11 0 0
a21 −λ 0
a31 0 −λ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
−λ a12 a13

0 a22 a23

0 a32 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
−λ a12 0
0 a22 0
0 a32 −λ

∣∣∣∣∣∣ +

∣∣∣∣∣∣
−λ 0 a13

0 −λ a23

0 0 a33

∣∣∣∣∣∣ +

∣∣∣∣∣∣
−λ 0 0
0 −λ 0
0 0 −λ

∣∣∣∣∣∣

= |A| +
(∣∣∣∣a11 a12

a21 a22

∣∣∣∣ +
∣∣∣∣a11 a13

a31 a33

∣∣∣∣ +
∣∣∣∣a22 a23

a32 a33

∣∣∣∣
)

(−λ)

+ (a11 + a22 + a33) (−λ)2 + (−λ)3. (6.5)

Now let λ1, λ2, λ3 be the eigenvalues, so P (λ1) = P (λ2) = P (λ3) = 0.
Since P (λ) is a polynomial of degree 3, it follows that:

P (λ) = (λ1 − λ)(λ2 − λ)(λ3 − λ) = 0.

Expanding the characteristic polynomial,

P (λ) = λ1λ2λ3 + (λ1λ2 + λ2λ3 + λ3λ1)(−λ) + (λ1 + λ2 + λ3)(−λ)2 + (−λ)3.

Comparison with (6.5) shows

λ1 + λ2 + λ3 = a11 + a22 + a33 = Tr A.

This means that the sum of the eigenvalues is equal to the trace of A. This
is a very useful relation to check if the eigenvalues are calculated correctly.
Furthermore

λ1λ2 + λ2λ3 + λ3λ1 =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ +
∣∣∣∣a11 a13

a31 a33

∣∣∣∣ +
∣∣∣∣a22 a23

a32 a33

∣∣∣∣ ,
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which is the sum of principal minors (minors of the diagonal elements), and

λ1λ2λ3 = |A| .

That the product of all eigenvalues is equal to the determinant of A is also
a very useful relation. If A is singular |A| = 0, at least one of the eigenvalue
must be zero. It follows that the inverse of A exists if and only if none of the
eigenvalues of A is zero.

Similar calculations can generalize these relationships for matrices of
higher orders.

Example 6.1.5. Find the eigenvalues and the corresponding eigenvectors of the
matrix A if

A =

⎛
⎝5 7 −5

0 4 −1
2 8 −3

⎞
⎠ .

Solution 6.1.5.

P (λ) =

⎛
⎝ 5 − λ 7 −5

0 4 − λ −1
2 8 −3 − λ

⎞
⎠

=

∣∣∣∣∣∣
5 7 −5
0 4 −1
2 8 −3

∣∣∣∣∣∣−
(∣∣∣∣ 4 −1

8 −3

∣∣∣∣ +
∣∣∣∣ 5 −5
2 −3

∣∣∣∣ +
∣∣∣∣ 5 7
0 4

∣∣∣∣
)

λ + (5 + 4 − 3) λ2 − λ3

= 6 − 11λ + 6λ2 − λ3 = (1 − λ)(2 − λ) (3 − λ) = 0.

Thus the three eigenvalues are

λ1 = 1, λ2 = 2, λ3 = 3.

As a check, the sum of the eigenvalues

λ1 + λ2 + λ3 = 1 + 2 + 3 = 6

is indeed equal to the trace of A

Tr A = 5 + 4 − 3 = 6.

Furthermore, the product of three eigenvalues

λ1λ2λ3 = 6

is indeed equal to the determinant∣∣∣∣∣∣
5 7 −5
0 4 −1
2 8 −3

∣∣∣∣∣∣ = 6.
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Let the eigenvector x1 corresponding to λ1 be

⎛
⎝x11

x12

x13

⎞
⎠, then

⎛
⎝ 5 − λ1 7 −5

0 4 − λ1 −1
2 8 −3 − λ1

⎞
⎠

⎛
⎝x11

x12

x13

⎞
⎠ =

⎛
⎝ 4 7 −5

0 3 −1
2 8 −4

⎞
⎠

⎛
⎝x11

x12

x13

⎞
⎠ = 0.

By Gauss’ elimination method, one can readily show that⎛
⎝4 7 −5

0 3 −1
2 8 −4

⎞
⎠ =⇒

⎛
⎝ 4 7 −5

0 3 −1
0 4.5 −1.5

⎞
⎠ =⇒

⎛
⎝ 4 7 −5

0 3 −1
0 0 0

⎞
⎠ .

Thus the set of equations is reduced to

4x11 + 7x12 − 5x13 = 0,

3x12 − x13 = 0.

Only one of the three unknowns can be assigned arbitrary. For example, let
x13 = 3, then x12 = 1 and x11 = 2. Therefore corresponding to the eigenvalue
λ1 = 1, the eigenvector can be written as

x1 =

⎛
⎝2

1
3

⎞
⎠ .

Similarly, corresponding to λ2 = 2 and λ3 = 3, the respective eigenvectors are

x2 =

⎛
⎝1

1
2

⎞
⎠ and x3 =

⎛
⎝−1

1
1

⎞
⎠ .

6.1.3 Properties of Eigenvalues

There are other properties related to eigenvalue problems. Taken individu-
ally, they are almost self-evident, but collectively they are useful in matrix
applications.

• The transpose Ã
(
AT

)
has the same eigenvalues as A.

The eigenvalues of A and AT are, respectively, the solutions of |A − λI| = 0
and

∣∣AT − λI
∣∣ = 0. Since AT − λI = (A − λI)T and the determinant of a

matrix is equal to the determinant of its transpose

|A − λI| =
∣∣(A − λI)T

∣∣ =
∣∣AT − λI

∣∣ ,
the secular equations of A and AT are identical. Therefore they have the same
set of eigenvalues.
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• If A is either upper or lower triangular, then the eigenvalues are the diag-
onal elements.

Let |A − λI| = 0 be
∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

0 a22 − λ . . . a2n

0 0
...

...
0 0 0 ann − λ

∣∣∣∣∣∣∣∣∣
= (a11 − λ)(a22 − λ) · · · (ann − λ) = 0.

Clearly λ = a11, λ = a22, . . . , λ = ann.

• If λ1, λ2, λ3, . . . , λn are the eigenvalues of A, then the eigenvalues of the
inverse A−1 are 1/λ1, 1/λ2, 1/λ3, . . . , 1/λn.

Multiplying the equation Ax = λx from the left by A−1

A−1Ax = A−1λx = λA−1x

and using A−1Ax = Ix = x, we have x = λA−1x. Thus

A−1x =
1
λ
x.

• If λ1, λ2, λ3, . . . , λn are the eigenvalues of A, then the eigenvalues of Am

are λm
1 , λm

2 , λm
3 , . . . , λm

n .

Since Ax = λx, it follows:

A2x = A(Ax) = Aλx = λAx = λ2x.

Similarly
A3x = λ3x, . . . , Amx = λmx.

6.2 Some Terminology

As we have seen that for a n × n square matrix, the eigenvalues may or may
not be real numbers. If the eigenvalues are degenerate, we may or may not
have n distinct eigenvectors.

However, there is a class of matrices, known as hermitian matrices, the
eigenvalues of which are always real. A n × n hermitian matrix will always
have n distinct eigenvectors.

To facilitate the discussion of these and other properties of matrices, we
will first introduce the following terminology.
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6.2.1 Hermitian Conjugation

Complex Conjugation

If A = (aij)m×n is an arbitrary matrix whose elements may be complex num-
bers, the complex conjugate matrix denoted by A∗ is also a matrix of order
m × n with every element of which is the complex conjugate of the corre-
sponding element of A, i.e.,

(A∗)ij = a∗
ij .

It is clear that
(cA)∗ = c∗A∗.

Hermitian Conjugation

When the two operations of complex conjugation and transposition are car-
ried out one after another on a matrix, the resulting matrix is called the
hermitian conjugate of the original matrix and is denoted by A†, called A
dagger. Mathematicians also refer to A† as the adjoint matrix. The order of
the two operation is immaterial. Thus

A† = (A∗)T = (Ã)∗. (6.6)

For example, if

A =
(

(6 + i) (1 − 6i) 1
(3 + i) 4 3i

)
, (6.7)

then

A† = (A∗)T =
(

(6 − i) (1 + 6i) 1
(3 − i) 4 −3i

)T

=

⎛
⎝ (6 − i) (3 − i)

(1 + 6i) 4
1 −3i

⎞
⎠ , (6.8)

A† = (Ã)∗ =

⎛
⎝ (6 + i) (3 + i)

(1 − 6i) 4
1 3i

⎞
⎠

∗

=

⎛
⎝ (6 − i) (3 − i)

(1 + 6i) 4
1 −3i

⎞
⎠ . (6.9)

Hermitian Conjugate of Matrix Products

We have shown in Chap. 5 that the transpose of the product of two matrices
is equal to the product of the transposed matrices taken in reverse order. This
leads directly to the fact that

(AB)† = B†A†,

since
(AB)† = (A∗B∗)T = B̃∗Ã∗ = B†A†. (6.10)
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6.2.2 Orthogonality

Inner Product

If a and b are two column vectors of the same order n, the inner product
(or scalar product) is defined as a†b. The hermitian conjugate of the column
vector is a row vector

a† =

⎛
⎜⎜⎜⎝

a1

a2

...
an

⎞
⎟⎟⎟⎠

†

=
(
a∗
1 a∗

2 · · ·a∗
n

)
,

therefore the inner product is one number

a†b =
(
a∗
1 a∗

2 · · ·a∗
n

)
⎛
⎜⎜⎜⎝

b1

b2

...
bn

⎞
⎟⎟⎟⎠ =

n∑
k=1

a∗
kbk.

There are two other commonly used notations for the inner product.
The notation most often used in quantum mechanics is the bracket nota-

tion of Dirac. The row and column vectors are, respectively, defined as the
bra and ket vectors. Thus we may write the column vector

b = | b〉

as the ket vector, and the row vector

a† = 〈a|

as the bra vector. The inner product of two vectors is then represented by

〈a|b〉 = a†b.

Notice that for any scalar c,

〈a|cb〉 = c 〈a|b〉 ,

whereas
〈ca|b〉 = c∗ 〈a|b〉 .

Another notation that is often used is the parenthesis notation:

(a,b) = a†b = 〈a|b〉 .

If A is a matrix, then
(a, Ab) =

(
A†a,b

)
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is an identity, since

(
A†a,b

)
=

(
A†a

)†
b = a† (A†)† b = a†Ab = (a, Ab) .

Thus if
(a, Ab) = (Aa,b) ,

then A is hermitian. Mathematicians refer to the relation A† = A as self-
adjoint.

Orthogonality

Two vectors a and b are said to be orthogonal if and only if

a†b = 0.

Note that in three-dimensional real space

a†b =
n∑

k=1

a∗
kb∗k = a1b1 + a2b2 + a3b3

is just the dot product of a and b. It is well known in vector analysis that if
the dot product of two vectors is equal to zero, then they are perpendicular.

Length of a Complex Vector

If we adopt this definition of the scalar product of two complex vectors,
then we have a natural definition of the length of a complex vector in a
n-dimensional space. The length ‖x‖ of a complex vector x is taken to be

‖x‖2 = x†x =
n∑

k=1

a∗
kak =

n∑
k=1

|ak|2 .

6.2.3 Gram–Schmidt Process

Linear Independence

The set of vectors x1,x2, . . . ,xn is linearly independent if and only it

n∑
i=1

aixi = 0

implies every ai = 0. Otherwise the set is linearly dependent.
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Let us test the three vectors

x1 =

⎛
⎝ 1

0
1

⎞
⎠ , x2 =

⎛
⎝0

1
0

⎞
⎠ , x3 =

⎛
⎝ 1

0
0

⎞
⎠ ,

for linear independence. The question is if we can find a set of ai, not all zero
such that

3∑
i=1

aixi = a1

⎛
⎝ 1

0
1

⎞
⎠ + a2

⎛
⎝ 0

1
0

⎞
⎠ + a3

⎛
⎝ 1

0
0

⎞
⎠ =

⎛
⎝a1 + a3

a2

a1

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

Clearly this requires a1 = 0, a2 = 0, and a3 = 0. Therefore these three vectors
are linearly independent.

Note that linear independence or dependence is a property of the set as a
whole, not of the individual vectors.

It is obvious that if x1,x2,x3 represent three noncoplanar three-
dimensional vectors, they are linearly independent.

Gram–Schmidt Process

Given any n linearly independent vectors, one can construct from their linear
combinations a set of n mutually orthogonal unit vectors.

Let the given linearly independent vectors be x1,x2, . . . ,xn. Define

u1 =
x1

‖x1‖

to be the first unit vector. Now define

u′
2 = x2 − (x2,u1)u1.

The inner product of u′
2 and u1 is equal to zero,

(u′
2,u1) = (x2,u1) − (x2,u1) (u1,u1) = 0,

since (u1,u1) = 1. This shows u′
2 is orthogonal to u1.

We can normalize u′
2

u2 =
u′

2

‖u′
2‖

to obtain the second unit vector u2 which is orthogonal to u1.
We can continue this process by defining

u′
k = xk −

k−1∑
i=1

(xk,ui)ui,
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and

uk =
u′

k

‖u′
k‖

.

When all xk are used up, we will have n unit vectors u1, u2, . . . , uk orthogonal
to each other. They are called an orthonormal set. This procedure is known
as Gram–Schmidt process.

6.3 Unitary Matrix and Orthogonal Matrix

6.3.1 Unitary Matrix

If the square matrix U satisfies the condition

U†U = I,

then U is called unitary. The n columns in a unitary matrix can be considered
as n column vectors in an orthonormal set.

In other words, if

u1 =

⎛
⎜⎜⎜⎝

u11

u12

...
u1n

⎞
⎟⎟⎟⎠ ,u2 =

⎛
⎜⎜⎜⎝

u21

u22

...
u2n

⎞
⎟⎟⎟⎠ , . . . ,un =

⎛
⎜⎜⎜⎝

un1

un2

...
unn

⎞
⎟⎟⎟⎠ ,

and

u†
iuj =

(
u∗

i1 u∗
i2 · · · u∗

in

)
⎛
⎜⎜⎜⎝

uj1

uj2

...
ujn

⎞
⎟⎟⎟⎠ =

{
1 if i = j
0 if i �= j

,

then

U =

⎛
⎜⎜⎜⎝

u11 u21 . . . un1

u12 u22 . . . un2

...
...

...
...

u1n un2 . . . unn

⎞
⎟⎟⎟⎠

is unitary. This is because

U† =

⎛
⎜⎜⎜⎝

u∗
11 u∗

12 . . . u∗
1n

u∗
21 u∗

22 . . . u∗
2n

...
... . . .

...
u∗

n1 u∗
n2 . . . u∗

nn

⎞
⎟⎟⎟⎠
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therefore

U†U =

⎛
⎜⎜⎜⎝

u∗
11 u∗

12 . . . u∗
1n

u∗
21 u∗

22 . . . u∗
2n

...
...

...
...

u∗
n1 u∗

n2 . . . u∗
nn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u11 u21 . . . un1

u12 u22 . . . un2

...
...

...
...

u1n u2n . . . unn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ .

Multiply U−1 from the right, we have

U†UU−1 = IU−1.

It follows that hermitian conjugate of a unitary matrix is its inverse, i.e.,

U† = U−1.

6.3.2 Properties of Unitary Matrix

• Unitary transformations leave lengths of vectors invariant.

Let

a = Ub, so a† = b†U†,

and

‖a‖2 = a†a = b†U†Ub.

Since

U†U = U−1U = I,

it follows:

‖a‖2 = a†a = b†b = ‖b‖2
.

Thus the length of the initial vector is equal to the length of the transformed
vector.

• The absolute value of the eigenvalues of an unitary matrix is equal to one.

Let x be a nontrivial eigenvector of the unitary matrix U belonging to the
eigenvalue λ

Ux = λx.

Take the hermitian conjugate of both sides

x†U† = λ∗x†.
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Multiply the last two equations

x†U†Ux = λ∗x†λx.

Since U†U = I and λ∗λ = |λ|2, it follows:

x†x = |λ|2 x†x.

Therefore

|λ|2 = 1.

In other words, the eigenvalues of a unitary matrix must be on the unit circle
in the complex plane centered at the origin.

6.3.3 Orthogonal Matrix

If the elements of an unitary matrix are all real, the matrix is known as an
orthogonal matrix. Thus the properties of unitary matrices are also properties
of orthogonal matrices. In addition,

• The determinant of an orthogonal matrix is equal to either positive one or
negative one.

If A is a real square matrix, then by definition

A† = Ã∗ = Ã.

If, in addition, A is unitary, A† = A−1, then

Ã = A−1.

Thus
AÃ = I. (6.11)

Since the determinant of A is equal to the determinant of Ã, so

|AÃ| = |A||Ã| = |A|2 .

But
|AÃ| = |I| = 1,

therefore
|A|2 = 1.

Thus, the determinant of an orthogonal matrix is either +1 or −1.
Very often (6.11) is used as the definition of an orthogonal matrix. That

is, a square real matrix A satisfying the relation expressed in (6.11) is called
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an orthogonal matrix. This is equivalent to the statement “that the inverse of
an orthogonal matrix is equal to its transpose.”

Written in terms of its elements, (6.11) is given by
∑
j=1

aij ãjk =
∑
j=1

aijakj = δik (6.12)

for any i and any j. Similarly, ÃA = I can be expressed as
∑
j=1

ãijajk =
∑
j=1

ajiajk = δik. (6.13)

However, (6.13) is not independent of (6.12), since AÃ = ÃA. If one set of
conditions is valid, the other set must also be valid.

Put in words, these conditions mean that the sum of the products of the
corresponding elements of two distinct columns (or rows) of an orthogonal
matrix is zero, while the sum of the squares of the elements of any column
(or row) is equal to unity. If we regard the n columns of the matrix as n real
vectors, this means that these n column vectors are orthogonal and normal-
ized. Similarly, all the rows of an orthogonal matrix are orthonormal.

6.3.4 Independent Elements of an Orthogonal Matrix

An nth order square matrix has n2 elements. For an orthogonal matrix, not
all these elements are independent of each other, because there are certain
conditions they must satisfy. First, there are n conditions for each column
to be normalized. Then there are n(n − 1)/2 conditions for each column to
be orthogonal to any other column. Therefore the number of independent
parameters of an orthogonal matrix is

n2 − [n + n(n − 1)/2] = n(n − 1)/2.

In other words, an nth order orthogonal matrix can be fully characterized by
n(n − 1)/2 independent parameters.

For n = 2, the number of independent parameters is one. This is illustrated
as follows.

Consider an arbitrary orthogonal matrix of order 2

A =
(

a c
b d

)
.

The fact that each column is normalized leads to

a2 + b2 = 1, (6.14)
c2 + d2 = 1. (6.15)
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Furthermore, the two columns are orthogonal

(
a b

)( c
d

)
= ac + bd = 0. (6.16)

The general solution of (6.14) is a = cos θ, b = sin θ, where θ is a scalar.
Similarly, (6.15) can be satisfied, if we choose c = cos φ, d = sin φ, where φ is
another scalar. On the other hand, (6.16) requires

cos θ cos φ + sin θ sinφ = cos(θ − φ) = 0,

therefore
φ = θ ± π

2
.

Thus, the most general orthogonal matrix of order 2 is

A1 =
(

cos θ − sin θ
sin θ cos θ

)
or A2 =

(
cos θ sin θ
sin θ − cos θ

)
. (6.17)

Every orthogonal matrix of order 2 can be expressed in this form with some
value of θ. Clearly the determinant of A1 is equal to +1 and that of A2, −1.

6.3.5 Orthogonal Transformation and Rotation Matrix

The fact that in real space, orthogonal transformation preserving the length
of a vector suggests that the orthogonal matrix is associated with rotation of
vectors. In fact the orthogonal matrix is related to two kinds of rotations in
space. First it can be thought as an operator which rotates a vector. This is
often called active transformation. Secondly, it can be thought as the transfor-
mation matrix when the coordinate axes of the reference system are rotated.
This is also referred as passive transformation.

First let us consider the vectors shown in Fig. 6.1a. The x and y compo-
nents of the vector r1 are given by x1 = r cos ϕ and y1 = r sin ϕ, where r is
the length of the vector. Now let us rotate the vector counterclockwise by an
angle θ, so that x2 = r cos(ϕ + θ) and y2 = r sin(ϕ + θ). Using trigonometry,
we can write

x2 = r cos (ϕ + θ) = r cos ϕ cos θ − r sin ϕ sin θ = x1 cos θ − y1 sin θ,

y2 = r sin (ϕ + θ) = r sinϕ cos θ + r cos ϕ sin θ = y1 cos θ + x1 sin θ.

We can display the set of coefficients in the form of
(

x2

y2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1

y1

)
.

It is seen that the coefficient matrix is the orthogonal matrix A1 of (6.17).
Therefore the orthogonal matrix with determinant equal to +1 is also called



276 6 Eigenvalue Problems of Matrices

φ
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S

(a) (b)

Fig. 6.1. Two interpretations of the orthogonal matrix A1 whose determinant is
equal to +1. (a) As a operator, it rotates the vector r1 to r2 without changing its
length. (b) As the transformation matrix between the coordinates of the tip of a
fixed vector when the coordinate axes are rotated. Note that the rotation in (b) is
in the opposite direction as in (a)

rotation matrix. It rotates the vector from r1 to r2 without changing the
magnitude.

The second interpretation of rotation matrix is as follows. Let P be the tip
of a fixed vector. The coordinates of P are (x, y) in a particular rectangular
coordinate system. Now the coordinate axes are rotated clockwise by an angle
θ as shown in Fig. 6.1b. The coordinates of P in the rotated system become
(x′, y′). From the geometry in Fig. 6.1b, it is clear that

x′ = OT − SQ = OQ cos θ − PQ sin θ = x cos θ − y sin θ,

y′ = QT + PS = OQ sin θ + PQ cos θ = x sin θ + y cos θ,

or (
x′

y′

)
=

(
cos θ sin θ
sin θ − cos θ

)(
x
y

)
.

Note that the matrix involved is again the orthogonal matrix A1. However,
this time A1 is the transformation matrix between the coordinates of the tip
of a fixed vector when the coordinate axes are rotated.

The equivalence between these two interpretations might be expected,
since the relative orientation between the vector and coordinate axes is the
same whether the vector is rotated counterclockwise by an angle θ, or the
coordinate axes are rotated clockwise by the same angle.

Next, let us consider the orthogonal matrix A2, the determinant of which
is equal to −1. The matrix A2 can be expressed as

A2 =
(

cos θ sin θ
sin θ − cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
.



6.3 Unitary Matrix and Orthogonal Matrix 277

φ θ

φ φ

X X

X′

Y Y

(a) (b)

−Y′

−Y−Y

r1

r3
r2

r

Y′

θ

Fig. 6.2. Two interpretations of the orthogonal matrix A2 whose determinant is
−1. (a) As an operator, it flips the vector r1 to r2 symmetrically with respect to
X-axis, and then rotates r2 to r3. (b) As the transformation matrix between the
tip of a fixed vector when the Y -axis is inverted and then the coordinate axes are
rotated. Note that the rotation in (b) seems to be in the same direction as in (a)

The transformation (
x2

y2

)
=

(
1 0
0 −1

)(
x1

y1

)

gives
x2 = x1, y2 = −y1.

Clearly this corresponds to the reflection of the vector with respect to the
X-axis. Therefore A2 can be considered as an operator which first symmetri-
cally flips the vector r1 over the X-axis and then rotates it to r3 as shown in
Fig. 6.2a.

In terms of coordinate transformation, one can show that (x′, y′) in the
equation (

x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

represents the new coordinates of the tip of a fixed vector after the Y -axis is
inverted and the whole coordinate axes are rotated by an angle θ, as shown in
Fig. 6.2b. In this case one has to be careful about the sign of the angle. The
sign convention is that a counterclockwise rotation is positive and a clockwise
rotation is negative. However, after the Y -axis is inverted as in Fig. 6.2b, a
negative rotation (rotating from the direction of the positive X-axis toward
the negative of the Y -axis) appears to be counterclockwise. This is why in
Fig. 6.1a, b, the vector and the coordinate axes are rotating in the opposite
direction, whereas in Fig. 6.2a, b, they seem to rotate in the same direction.

So far we have used rotations in two dimensions as examples. However,
the conclusions that orthogonal matrix whose determinant equals to +1 repre-
sents pure rotation, and orthogonal matrix whose determinant is equal to −1
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represents a reflection followed by a rotations are generally valid in higher-
dimensional space. In the chapter on vector transformation, we will have a
more detailed discussion.

6.4 Diagonalization

6.4.1 Similarity Transformation

If A is a n × n matrix and u is a n × 1 column vector, then Au is another
n × 1 column vector. The equation

Au = v (6.18)

represents a linear transformation. Matrix A acts as a linear operator sending
vector u to vector v. Let

u =

⎛
⎜⎜⎜⎝

u1

u2

...
un

⎞
⎟⎟⎟⎠ , v =

⎛
⎜⎜⎜⎝

v1

v2

...
vn

⎞
⎟⎟⎟⎠ ,

where ui and vi are, respectively, the ith components of u and v in the n-
dimensional space. These components are, of course, measured in a certain
coordinate system (reference frame). Let the unit vectors, ei, known as bases,
along the coordinate axes of this system be

e1 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , e2 =

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ , . . . , en =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ ,

then

u =

⎛
⎜⎜⎜⎝

u1

u2

...
un

⎞
⎟⎟⎟⎠ = u1

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ + u2

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ + · · · + un

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ =

n∑
i=1

uiei. (6.19)

Suppose there is another coordinate system, which we designate as the
prime system. Measured in that system, the components of u and v become

⎛
⎜⎜⎜⎝

u′
1

u′
2
...

u′
n

⎞
⎟⎟⎟⎠ = u′,

⎛
⎜⎜⎜⎝

v′
1

v′
2
...

v′
n

⎞
⎟⎟⎟⎠ = v′. (6.20)
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We emphasize that u and u′ are the same vector except measured in two
different coordinate systems. The symbol u′ does not mean a vector different
from u, it simply represents the collection of components of u in the prime
system as shown in (6.20). Similarly, v and v′ are the same vectors. We can
find these components if we know the components of ei in the prime system.

In (6.19)
u = u1e1 + u2e2 + · · · + unen,

the u′
i are just numbers which are independent of the coordinate system. To

find the components of u in the prime system, we only need to express ei in
the prime system.

Let ei measured in the prime system be

e1 =

⎛
⎜⎜⎜⎝

s11

s21

...
sn1

⎞
⎟⎟⎟⎠ , e2 =

⎛
⎜⎜⎜⎝

s12

s22

...
sn2

⎞
⎟⎟⎟⎠ , . . . , en =

⎛
⎜⎜⎜⎝

s1n

s2n

...
snn

⎞
⎟⎟⎟⎠ ,

then the components of u measured in the prime system can be written as

⎛
⎜⎜⎜⎝

u′
1

u′
2
...

u′
n

⎞
⎟⎟⎟⎠ = u1

⎛
⎜⎜⎜⎝

s11

s21

...
sn1

⎞
⎟⎟⎟⎠ + u2

⎛
⎜⎜⎜⎝

s12

s22

...
sn2

⎞
⎟⎟⎟⎠ + · · · + un

⎛
⎜⎜⎜⎝

s1n

s2n

...
snn

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

u1s11 + u2s12 + · · · + uns1n

u1s21 + u2s22 + · · · + uns2n

...
u1sn1 + u2sn2 + · · · + unsnn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

s11 s12 . . . s1n

s21 s22 . . . s2n

...
...

...
...

sn1 sn2 . . . snn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2

...
un

⎞
⎟⎟⎟⎠ .

This equation can be written in the form

u′ = Tu, (6.21)

where

T =

⎛
⎜⎜⎜⎝

s11 s12 . . . s1n

s21 s22 . . . s2n

...
...

...
...

sn1 sn2 . . . snn

⎞
⎟⎟⎟⎠ .

It is clear from this analysis that the transformation matrix between the
vector components in two coordinate systems is the same for all vectors, since
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it depends only on the transformation of the basis vectors in the two refer-
ence frames. Therefore v′ and v are also related to the same transformation
matrix T ,

v′ = Tv. (6.22)

The operation of sending u to v, expressed in the original system is given
by Au = v. Let the same operation expressed in the prime system be

A′u′ = v′.

Since u′ = Tu and v′ = Tv,

A′Tu = Tv.

Multiply both sides by the inverse of T from the left,

T−1A′Tu = T−1Tv = v.

Since Au = v, if follows that:

A = T−1A′T. (6.23)

If we multiply this equation by T from the left and by T−1 from the right, we
have

TAT−1 = A′.

What we have found is that as long as we know the relationship between
the coordinate axes of two reference frames, not only we can transform a
vector from one reference frame to the other, but we can also transform a
matrix representing a linear operator from one reference frame to the other.

In general, if there exits a nonsingular matrix T such that T−1AT = B
for any two square matrices A and B of the same order, then A and B are
called similar matrices, and the transformation from A to B is called similarity
transformation.

If two matrices are related by a similarity transformation, then they rep-
resent the same linear transformation in two different coordinate systems.

If the rectangular coordinate axes in the prime system are generated
through a rotation from the original system, then T is an orthogonal ma-
trix as discussed in the Sect. 6.3. In that case T−1 = T̃ , and the similarity
transformation can be written as T̃AT . If we are working in the complex
space, the transformation matrix is unitary, and the similarity transformation
can be written as T †AT . Both of these transformations are known as unitary
similarity transformation.

A matrix that can be brought to diagonal form by a similarity transforma-
tion is said to be diagonalizable. Whether a matrix is diagonalizable and how
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to diagonalize it are very important questions in the theory of linear transfor-
mation. Not only because it is much more convenient to work with diagonal
matrix, but also because it is of fundamental importance in the structure of
quantum mechanics. In the following sections, we will answer these questions.

6.4.2 Diagonalizing a Square Matrix

The eigenvectors of the matrix A can be used to form another matrix S in
such a way that S−1AS becomes a diagonal matrix. This process often greatly
simplifies a physical problem by a better choice of variables.

If A is a square matrix of order n, the eigenvalues λi and eigenvectors xi

satisfy the equation
Axi = λixi (6.24)

for i = 1, 2, . . . , n. Each eigenvector is a column matrix with n elements

x1 =

⎛
⎜⎜⎜⎝

x11

x12

...
x1n

⎞
⎟⎟⎟⎠ ,x2 =

⎛
⎜⎜⎜⎝

x21

x22

...
x2n

⎞
⎟⎟⎟⎠ , . . . ,xn =

⎛
⎜⎜⎜⎝

xn1

xn2

...
xnn

⎞
⎟⎟⎟⎠ .

Each of the n equations of (6.24) is of the form⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xi1

xi2

...
xin

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λixi1

λixi2

...
λixin

⎞
⎟⎟⎟⎠ . (6.25)

Collectively they can be written as⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
...

x1n x2n . . . xnn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

λ1x11 λ2x21 . . . λnxn1

λ1x12 λ2x22 . . . λnxn2

...
...

...
...

λ1x1n λ2x2n . . . λnxnn

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
...

x1n x2n . . . xnn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

⎞
⎟⎟⎟⎠ . (6.26)

To simplify the writing, let

S =

⎛
⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
...

x1n x2n . . . xnn

⎞
⎟⎟⎟⎠ , (6.27)
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Λ =

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

⎞
⎟⎟⎟⎠ , (6.28)

and write (6.26) as
AS = SΛ. (6.29)

Multiplying both sides of this equation by S−1 from the left, we obtain

S−1AS = Λ. (6.30)

Thus, by using the matrix of eigenvectors and its inverse, it is possible to
transform a matrix A to a diagonal matrix whose elements are the eigenvalues
of A. The transformation expressed by (6.30) is referred to as the diagonal-
ization of matrix A.

Example 6.4.1. If A =
(

1 2
2 1

)
, find S such that S−1AS is a diagonal matrix.

Show that the elements of S−1AS are the eigenvalues of A.

Solution 6.4.1. Since the secular equation is∣∣∣∣ 1 − λ 2
2 1 − λ

∣∣∣∣ = (λ + 1)(λ − 3) = 0,

the eigenvalues are λ1 = −1, λ2 = 3. The eigenvectors are, respectively,

x1 =
(

1
−1

)
, x2 =

(
1
1

)
. Therefore

S =
(

1 1
−1 1

)
.

It can be readily checked that S−1 =
1
2

(
1 −1
1 1

)
and

S−1AS =
1
2

(
1 −1
1 1

)(
1 2
2 1

)(
1 1
−1 1

)
=

(
−1 0
0 3

)
=

(
λ1 0
0 λ2

)
.

Note that the diagonalizing matrix S is not necessary unitary. However, if
the eigenvectors are orthogonal, then we can normalize the eigenvectors and
form an orthonormal set. The matrix with members of this orthonormal set as
columns is a unitary matrix. The diagonalization process becomes a unitary
similarity transformation which is much more convenient and useful.

The two eigenvectors in the above example are orthogonal, since

(
1 −1

)(1
1

)
= 0.
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Normalizing them, we get

u1 =
1√
2

(
1
−1

)
, u2 =

1√
2

(
1
1

)
.

The matrix constructed with these two normalized eigenvectors is

U =
(
u1 u2

)
=

1√
2

(
1
−1

1
1

)

which is an orthogonal matrix. The transformation

ŨAU =
(
−1 0
0 3

)

is a unitary similarity transformation.
First we have eliminated the step of finding the inverse of U , since U is an

orthogonal matrix, the inverse of U is simply its transpose. More importantly,
U represents a rotation as discuss in Sect. 6.3. If we rotate the two original
coordinate axes to coincide with u1 and u2, then with respect to this rotated
axes, A is diagonal.

The coordinate axes of a reference system, in which the matrix is diagonal,
are known as principal axes. In this example, u1 and u2 are the unit vectors
along the principal axes. From the components of u1, we can easily find the
orientation of the principal axes. Let θ1 be the angle between u1 and the
original horizontal axis, then

u1 =
(

cos θ1

sin θ1

)
=

1√
2

(
1
−1

)

which gives θ1 = −π/4. This means that to get the principal axes, we have to
rotate the original coordinate axes 45◦ clockwise. For consistence check, we
can calculate θ2, the angle between u2 and the original horizontal axis. Since

u2 =
(

cos θ2

sin θ2

)
=

1√
2

(
1
1

)
,

θ2 = +π/4. Therefore the angle between θ1 and θ2 is π/2. This shows that u1

and u2 are perpendicular to each other, as they must.
Since θ2 = π/2 + θ1, cos θ2 = − sin θ1, and sin θ2 = cos θ1, the unitary

matrix U can be written as

U =
(
u1 u2

)
=

(
cos θ1

sin θ1

cos θ2

sin θ2

)
=

(
cos θ1

sin θ1

− sin θ1

cos θ1

)
,

which, as seen in (6.17), is indeed a rotation matrix.
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6.4.3 Quadratic Forms

A quadratic form is a homogeneous second degree expression in n variables.
For example,

Q(x1, x2) = 5x2
1 − 4x1x2 + 2x2

2

is a quadratic form in x1 and x2. Through a change of variables, this expression
can be transformed into a form in which there is no crossproduct term. Such
a form is known as canonical form. Quadratic forms are important because
they occur in a wide variety of applications.

The first step to change it into a canonical form is to separate the
crossproduct term into two equal terms, (4x1x2 = 2x1x2 + 2x2x1), so that
Q (x1, x2) can be written as

Q(x1, x2) =
(
x1 x2

)( 5 −2
−2 2

)(
x1

x2

)
, (6.31)

where the coefficient matrix

C =
(

5 −2
−2 2

)

is symmetric. As we shall see in Sect. 6.5 that symmetric matrices can always
be diagonalized. In this particular case, we can first find the eigenvalues and
eigenvectors of C. ∣∣∣∣ 5 − λ −2

−2 2 − λ

∣∣∣∣ = (λ − 1) (λ − 6) = 0.

Corresponding to λ1 = 1 and λ2 = 6, the two normalized eigenvectors are
found to be, respectively,

v1 =
1√
5

(
1
2

)
, v2 =

1√
5

(
−2
1

)
.

Therefore the orthogonal matrix

U =
(
v1 v2

)
=

1√
5

(
1
2
−2
1

)

will diagonalize the coefficient matrix

ŨCU =
1
5

(
1
−2

2
1

)(
5 −2
−2 2

)(
1
2
−2
1

)
=

(
1 0
0 6

)
.

If we make a change of variables
(

x1

x2

)
= U

(
u1

u2

)
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and take the transpose of both sides
(
x1 x2

)
=

(
u1 u2

)
Ũ ,

we can write (6.31) as

(
u1 u2

)
ŨCU

(
u1

u2

)
=

(
u1 u2

)( 1 0
0 6

)(
u1

u2

)
= u2

1 + 6u2
2, (6.32)

which is in a canonical form, i.e., it has no crossterm.
Note that the transformation matrix T defined in (6.21) is equal to Ũ .

Example 6.4.2. Show that the following equation

9x2 − 4xy + 6y2 − 2
√

5x − 4
√

6y = 15

describes an ellipse by transforming it into a standard conic section form.
Where is the center and what are the lengths of its major and minor axes?

Solution 6.4.2. The quadratic part of the equation can be written as

9x2 − 4xy + 6y2 =
(
x y

)( 9 −2
−2 6

)(
x
y

)
.

The eigenvalues of the coefficient matrix are given by
∣∣∣∣ 9 − λ −2
−2 6 − λ

∣∣∣∣ = (λ − 5) (λ − 10) = 0.

The normalized eigenvectors corresponding to λ = 5 and λ = 10 are found to
be, respectively,

v1 =
1√
5

(
1
2

)
, v2 =

1√
5

(
−2
1

)
.

Therefore the orthogonal matrix

U =
(
v1 v2

)
=

1√
5

(
1
2
−2
1

)

diagonalizes the coefficient matrix

ŨCU =
1
5

(
1
−2

2
1

)(
9 −2
−2 6

)(
1
2
−2
1

)
=

(
5 0
0 10

)
.

Let (
x
y

)
= U

(
x′

y′

)
=

1√
5

(
1
2
−2
1

)(
x′

y′

)
,
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which is equivalent to

x =
1√
5

(x′ − 2y′) , y =
1√
5

(2x′ + y′) ,

then the equation can be written as

(
x′ y′ ) ŨCU

(
x′

y′

)
− 2

√
5

1√
5

(x′ − 2y′) − 4
√

5
1√
5

(2x′ + y′) = 15,

or

5x′2 + 10y′2 − 10x′ = 15,

x′2 + 2y′2 − 2x′ = 3.

Using (x′ − 1)2 = x′2 − 2x′ + 1, the last equation becomes

(x′ − 1)2 + 2y′2 = 4,

or
(x′ − 1)2

4
+

y′2

2
= 1,

which is the standard form of an ellipse. The center of the ellipse is at x =
1/
√

5, y = 2/
√

5 (corresponding to x′ = 1, y′ = 0). The length of the major
axis is 2

√
4 = 4, that of the minor axis is 2

√
2.

To transform the equation into this standard form, we have rotated the
coordinate axes. The major axis of the ellipse is along the vector v1 and the
minor axis is along v2. Since

v1 =
(

cos θ
sin θ

)
=

1√
5

(
1
2

)
,

the major axis of the ellipse makes an angle θ with respect to the horizontal
coordinate axis and θ = cos−1(1/

√
5).

6.5 Hermitian Matrix and Symmetric Matrix

6.5.1 Definitions

Real Matrix

If A∗ = A, then aij = a∗
ij . Since every element of this matrix is real, it is

called a real matrix.
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Imaginary Matrix

If A∗ = −A, this implies that aij = −a∗
ij . Every element of this matrix is

purely imaginary or zero, so it is called a imaginary matrix.

Hermitian Matrix

A square matrix is called hermitian if A† = A. It is easy to show that the
elements of a hermitian matrix satisfy the relation a∗

ij = aji. Hermitian matrix
is very important in quantum mechanics.

Symmetric Matrix

If the elements of the matrix are all real, a hermitian matrix is just a sym-
metric matrix. Symmetric matrix is of great importance in classical physics,
hermitian matrix is essential in quantum mechanics.

Antihermitian Matrix and Antisymmetric Matrix

Finally, a matrix is called antihermitian or skew-hermitian if

A† = −A, (6.33)

which implies a∗
ij = −aji.

Again, if the elements of the antihermitian matrix are all real, then the
matrix is just an antisymmetric matrix.

6.5.2 Eigenvalues of Hermitian Matrix

• The eigenvalues of a hermitian (or real symmetric) matrix are all real.

Let A be a hermitian matrix, and x be the nontrivial eigenvector belonging
to eigenvalue λ

Ax = λx. (6.34)

Take the hermitian conjugate of the equation

x†A† = λ∗x†. (6.35)

Note that λ is only a number (real or complex), its hermitian conjugate is
just the complex conjugate, it can be multiplied either from left or from the
right.

Multiply (6.34) by x† from the left

x†Ax = λx†x.

Multiply (6.35) by x from the right

x†A†x = λ∗x†x.

Subtract it from the preceding equation

(λ − λ∗)x†x = x†(A − A†)x.
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But A is hermitian, A = A†, so

(λ − λ∗)x†x = 0.

Since x†x �= 0, it follows that λ = λ∗. That is, λ is real.
For real symmetric matrices, the proof is identical, since if the matrix is

real, a hermitian matrix is a symmetric matrix.

• If two eigenvalues of a hermitian (or a real symmetric) matrix are different,
the corresponding eigenvectors are orthogonal.

Let

Ax1 = λ1x1,

Ax2 = λ2x2.

Multiply the first equation by x†
2 from the left

x†
2Ax1 = λ1x

†
2x1.

Take the hermitian conjugate of the second equation and multiply by x1 from
the right

x†
2Ax1 = λ2x

†
2x1,

where we have used the facts that (Ax2)† = x†
2A

†, A† = A, and λ2 = λ∗
2.

Subtracting these two equations, we have

(λ1 − λ2)x
†
2x1 = 0.

Since λ1 �= λ2, it follows:
x†

2x1 = 0.

Therefore x1 and x2 are orthogonal. For real symmetric matrices, the proof
is the same.

6.5.3 Diagonalizing a Hermitian Matrix

• A hermitian (or a real symmetric) matrix can be diagonalized by a unitary
(or a real orthogonal) matrix.

If the eigenvalues of the matrix are all distinct, the matrix can be diago-
nalized by a similarity transformation as we discussed before. Here we only
need to show that even if the eigenvalues are degenerate, as long as the ma-
trix is hermitian, it can always be diagonalized. We will prove it by actually
constructing a unitary matrix that will diagonalize a degenerate hermitian
matrix.

Let λ1 be a repeated eigenvalue of the n × n hermitian matrix H, let
x1 be a normalized eigenvector corresponding to λ1. We can take any n lin-
early independent vectors with the only condition that the first one is x1 and
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construct with the Gram–Schmidt process an orthonormal set of n vectors
x1,x2, . . . ,xn, each of them has n elements.

Let U1 be the matrix with xi as its ith column

U1 =

⎛
⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

...
...

x1n x2n . . . xnn

⎞
⎟⎟⎟⎠ ,

as we have shown this automatically makes U1 an unitary matrix. The unitary
transformation U†

1HU1 has exactly the same set of eigenvalues as H, since they
have the same characteristic polynomial

∣∣∣U†
1HU1 − λI

∣∣∣ =
∣∣U−1

1 HU1 − λU−1
1 U1

∣∣ =
∣∣U−1

1 (H − λI)U1

∣∣
=

∣∣U−1
1

∣∣ |H − λI| |U1| = |H − λI| .

Furthermore, since H is hermitian, U†
1HU1 is also hermitian, since

(
U†

1HU1

)†
= (HU1)

†
(
U†

1

)†
= U†

1H†U1 = U†
1HU1.

Now

U†
1HU1 =

⎛
⎜⎜⎜⎝

x∗
11

x∗
21
...

x∗
n1

x∗
12

x∗
22
...

x∗
n2

. . .

. . .
...

. . .

x∗
1n

x∗
2n
...

x∗
nn

⎞
⎟⎟⎟⎠H

⎛
⎜⎜⎜⎝

x11

x12

...
x1n

x21

x22

...
x2n

. . .

. . .
...

. . .

xn1

xn2

...
xnn

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

x∗
11

x∗
21
...

x∗
n1

x∗
12

x∗
22
...

x∗
n2

. . .

. . .
...

. . .

x∗
1n

x∗
2n
...

x∗
nn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1x11

λ1x12

...
λ1x1n

h21

h22

...
h2n

. . .

. . .
...

. . .

hn1

hn2

...
hnn

⎞
⎟⎟⎟⎠ ,

where we have used the fact that x1 is an eigenvector of H belonging to the
eigenvalue λ1

H

⎛
⎜⎜⎜⎝

x11

x12

...
x1n

⎞
⎟⎟⎟⎠ = λ1

⎛
⎜⎜⎜⎝

x11

x12

...
x1n

⎞
⎟⎟⎟⎠ ,

and have written

H

⎛
⎜⎜⎜⎝

xi1

xi2

...
xin

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

hi1

hi2

...
hin

⎞
⎟⎟⎟⎠
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for i �= 1. Furthermore

U†
1HU1=

⎛
⎜⎜⎜⎝

x∗
11

x∗
21
...

x∗
n1

x∗
12

x∗
22
...

x∗
n2

. . .

. . .
...

. . .

x∗
1n

x∗
2n
...

x∗
nn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1x11

λ1x12

...
λ1x1n

h21

h22

...
h2n

. . .

. . .
...

. . .

hn1

hn2

...
hnn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 . . . 0
0 α22 α32 . . . αn2

0 . . . . . . . . . . . .
...

...
...

...
...

0 α2n α3n . . . αnn

⎞
⎟⎟⎟⎟⎟⎠

.

The first column is determined by the orthonormal condition

(
x∗

i1 x∗
i2 · · · x∗

in

)
⎛
⎜⎜⎜⎝

x11

x12

...
x1n

⎞
⎟⎟⎟⎠ =

{
1 if i = 1,
0 if i �= 1.

The first row must be the transpose of the first column because U†
1HU1 is

hermitian (or real symmetric) and λ1 is real and the complex conjugate of zero
is itself. The crucial fact in this process is that the last n − 1 elements of the
first row are all zero. This is what distinguishes hermitian (or real symmetric)
matrices from other square matrices.

If λ1 is a twofold degenerate eigenvalue of H, then in the characteristic
polynomial p(λ) = |H − λI|, there must be a factor (λ1 − λ)2. Since

p(λ) = |H − λI| =
∣∣∣U†

1HU1 − λI
∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

λ1 − λ
0
0
...
0

0
α22 − λ

α23

...
α2n

0 . . .
α32 . . .

α33 − λ . . .
...

...
α3n . . .

0
αn2

αn3

...
αnn − λ

∣∣∣∣∣∣∣∣∣∣∣

= (λ1 − λ)

∣∣∣∣∣∣∣∣∣

α22 − λ α32 . . . αn2

α23 α33 − λ . . . αn3

...
...

...
...

α2n α3n . . . αnn − λ

∣∣∣∣∣∣∣∣∣
,

the part ∣∣∣∣∣∣∣∣∣

α22 − λ α32 . . . αn2

α23 α33 − λ . . . αn3

...
...

...
...

α2n α3n . . . αnn − λ

∣∣∣∣∣∣∣∣∣
must contain another factor of (λ1 − λ). In other words, if we define H1 as
the (n − 1) × (n − 1) submatrix
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⎛
⎜⎜⎜⎝

α22 α32 . . . αn2

α23 α33 . . . αn3

...
...

...
...

α2n α3n . . . αnn

⎞
⎟⎟⎟⎠ = H1,

then λ1 must be an eigenvalue of H1. Thus we can repeat the process and
construct an orthonormal set of n− 1 column vectors with the first one being
the eigenvector of H1 belonging to the eigenvalue λ1. Let this orthonormal
set be

y1 =

⎛
⎜⎜⎜⎝

y22

y23

...
y2n

⎞
⎟⎟⎟⎠ ,y2 =

⎛
⎜⎜⎜⎝

y32

y33

...
y3n

⎞
⎟⎟⎟⎠ , . . . ,yn−1 =

⎛
⎜⎜⎜⎝

yn2

yn3

...
ynn

⎞
⎟⎟⎟⎠ ,

and let U2 be another unitary matrix defined as

U2 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

0
y22

y23

...
y2n

0 . . .
y32 . . .
y33 . . .
...

...
y3n . . .

0
yn2

yn3

...
ynn

⎞
⎟⎟⎟⎟⎟⎠

,

then the unitary transformation U†
2 (U†

1HU1)U2 can be shown as

U†
2 (U†

1HU1)U2 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

0
y∗
22

y∗
32
...

y∗
2n

0 . . .
y∗
23 . . .

y∗
33 . . .
...

...
y∗
3n . . .

0
y∗
2n

y∗
3n
...

y∗
nn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

λ1

0
0
...
0

0
α22

α23

...
α2n

0 . . .
α32 . . .
α33 . . .
...

...
α3n . . .

0
αn2

αn3

...
αnn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

0
y22

y23

...
y2n

0 . . .
y32 . . .
y33 . . .
...

...
y3n . . .

0
yn2

yn3

...
ynn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

λ1

0
0
...
0

0
λ1

0
...
0

0 . . .
0 . . .

β33 . . .
...

...
β3n . . .

0
0

βn3

...
βnn

⎞
⎟⎟⎟⎟⎟⎠

.

If λ1 is m-fold degenerate, we repeat this process m times. The rest can be
diagonalized by the eigenvectors belonging to different eigenvalues. After the
n × n matrix is so transformed n − 1 times, it will become diagonal.

Let us define
U = U1U2 · · ·Un−1,

then U is unitary because all Ui are unitary. Consequently the hermitian ma-
trix H is diagonalized by the unitary transformation U†HU and the theorem
is established.

This construction leads to the following important corollary.
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• Every n×n hermitian (or real symmetric) matrix has n orthogonal eigen-
vectors regardless of the degeneracy of its eigenvalues.

This is because U†HU = Λ, where the elements of the diagonal matrix
Λ are the eigenvalues of H. Since U† = U−1, it follows from the equation
U(U†HU) = UΛ that HU = UΛ, which shows that each column of U is an
normalized eigenvector of H.

The following example illustrates this process.

Example 6.5.1. Find an unitary matrix that will diagonalize the hermitian
matrix

H =

⎛
⎝ 2 i 1

−i 2 i
1 −i 2

⎞
⎠ .

Solution 6.5.1. The eigenvalues of H are the roots of the characteristic
equation

p (λ) =

∣∣∣∣∣∣
2 − λ i 1
−i 2 − λ i
1 −i 2 − λ

∣∣∣∣∣∣ = −λ3 + 6λ2 − 9λ = −λ(λ − 3)2 = 0.

Therefore the eigenvalues λ1, λ2, λ3 are

λ1 = 3, λ2 = 3, λ3 = 0.

It is seen that λ = λ1 = λ2 = 3 is twofold degenerate. Let one of the eigen-
vectors corresponding to λ1 be

E1 =

⎛
⎝x1

x2

x3

⎞
⎠ ,

so ⎛
⎝ 2 − λ1 i 1

−i 2 − λ1 i
1 −i 2 − λ1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝−1 i 1

−i −1 i
1 −i −1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ = 0.

The three equations

−x1 + ix2 + x3 = 0,

−ix1 − x2 + ix3 = 0,

x1 − ix2 − x3 = 0

are identical to each other. For example, multiply the middle one by i will
change it to the last one. The equation
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x1 − ix2 − x3 = 0 (6.36)

has an infinite number of solutions. A simple choice is to set x2 = 0, then
x1 = x3. Therefore

E1 =

⎛
⎝ 1

0
1

⎞
⎠

is an eigenvector. Certainly

E1 =

⎛
⎝ 1

0
1

⎞
⎠ , E2 =

⎛
⎝ 0

1
0

⎞
⎠ , E3 =

⎛
⎝ 1

0
0

⎞
⎠

are linearly independent. Now let us use the Gram–Schmidt process to find
an orthonormal set x1,x2,x3.

x1 =
E1

‖E1‖
=

√
2

2

⎛
⎝1

0
1

⎞
⎠ ,

E2 is already normalized and it is orthogonal to E1, so

x2 = E2 =

⎛
⎝ 0

1
0

⎞
⎠ ,

x′
3 = E3 − (E3,x1)x1 − (E3,x2)x2

=

⎛
⎝ 1

0
0

⎞
⎠−

⎡
⎣(1 0 0

) √
2

2

⎛
⎝ 1

0
1

⎞
⎠
⎤
⎦
√

2
2

⎛
⎝ 1

0
1

⎞
⎠−

⎡
⎣(1 0 0

)
⎛
⎝ 0

1
0

⎞
⎠
⎤
⎦
⎛
⎝ 0

1
0

⎞
⎠

=

⎛
⎝ 1

0
0

⎞
⎠− 1

2

⎛
⎝1

0
1

⎞
⎠ =

1
2

⎛
⎝ 1

0
−1

⎞
⎠ ,

x3 =
x′

3

‖x′
3‖

=
√

2
2

⎛
⎝ 1

0
−1

⎞
⎠ .

Form a unitary matrix with x1,x2,x3

U1 =
(
x1 x2 x3

)
=

⎛
⎜⎝

√
2

2 0
√

2
2

0 1 0√
2

2 0 −
√

2
2

⎞
⎟⎠ .
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The unitary similarity transformation of H by U1 is

U†
1HU1 =

⎛
⎜⎝

√
2

2 0
√

2
2

0 1 0√
2

2 0 −
√

2
2

⎞
⎟⎠

⎛
⎝ 2 i 1

−i 2 i
1 −i 2

⎞
⎠

⎛
⎜⎝

√
2

2 0
√

2
2

0 1 0√
2

2 0 −
√

2
2

⎞
⎟⎠

=

⎛
⎝3 0 0

0 2 −
√

2i
0

√
2i 1

⎞
⎠ .

Since H and U†
1HU1 have the same set of eigenvalues, therefore λ = 3 and

λ = 0 must be the eigenvalue of the submatrix

H1 =
(

2 −
√

2i√
2i 1

)
.

This can also be shown directly. The two normalized eigenvector of H1 corres-
ponding to λ = 3 and λ = 0 are found, respectively, to be

y1 =

(
−

√
6

3 i√
3

3

)
, y2 =

( √
3

3 i√
6

3

)
.

Therefore

U2 =

⎛
⎜⎝

1 0 0
0 −

√
6

3 i
√

3
3 i

0
√

3
3

√
6

3

⎞
⎟⎠ ,

and

U = U1U2 =

⎛
⎜⎝

√
2

2 0
√

2
2

0 1 0√
2

2 0 −
√

2
2

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 −

√
6

3 i
√

3
3 i

0
√

3
3

√
6

3

⎞
⎟⎠

=

⎛
⎜⎝

√
2

2

√
6

6

√
3

3

0 −
√

6
3 i

√
3

3 i√
2

2 −
√

6
6 −

√
3

3

⎞
⎟⎠ .

It can be easily checked that

U†HU =

⎛
⎜⎝

√
2

2 0
√

2
2√

6
6

√
6

3 i −
√

6
6√

3
3 −

√
3

3 i −
√

3
3

⎞
⎟⎠

⎛
⎝ 2 i 1

−i 2 i
1 −i 2

⎞
⎠

⎛
⎜⎝

√
2

2

√
6

6

√
3

3

0 −
√

6
3 i

√
3

3 i√
2

2 −
√

6
6 −

√
3

3

⎞
⎟⎠

=

⎛
⎝3 0 0

0 3 0
0 0 0

⎞
⎠
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is indeed diagonal and the diagonal elements are the eigenvalues. Furthermore,
the three columns of U are indeed three orthogonal eigenvectors of H

Hu1 = λ1u1 :

⎛
⎝ 2 i 1

−i 2 i
1 −i 2

⎞
⎠

⎛
⎜⎝

√
2

2
0√
2

2

⎞
⎟⎠ = 3

⎛
⎜⎝

√
2

2
0√
2

2

⎞
⎟⎠ ,

Hu2 = λ2u2 :

⎛
⎝ 2 i 1

−i 2 i
1 −i 2

⎞
⎠

⎛
⎜⎝

√
6

6

−
√

6
3 i

−
√

6
6

⎞
⎟⎠ = 3

⎛
⎜⎝

√
6

6

−
√

6
3 i

−
√

6
6

⎞
⎟⎠ ,

Hu3 = λ3u3 :

⎛
⎝ 2 i 1

−i 2 i
1 −i 2

⎞
⎠

⎛
⎜⎝

√
3

3√
3

3 i
−

√
3

3

⎞
⎟⎠ = 0

⎛
⎜⎝

√
3

3√
3

3 i
−

√
3

3

⎞
⎟⎠ .

We have followed the steps of the proof in order to illustrate the procedure.
Once it is established, we can make use of the theorem and the process of
finding the eigenvectors can be simplified considerably.

In this example, one can find the eigenvector for the nondegenerate eigen-
value the usual way. For the degenerate eigenvalue λ = 3, the components
(x1, x2, x3) of the corresponding eigenvectors must satisfy

x1 − ix2 − x3 = 0,

as shown in (6.36). This equation can be written as x2 = i(x3 − x1). So in
general

u =

⎛
⎝ x1

i(x3 − x1)
x3

⎞
⎠ ,

where x1 and x3 are arbitrary. It is seen that u1 is just the normalized eigen-
vector obtained by choosing x1 = x3

u1 =
√

2
2

⎛
⎝1

0
1

⎞
⎠ .

The other eigenvector must also satisfy the same equation and be orthogonal
to u1. Thus

(
1 0 1

)
⎛
⎝ x1

i(x3 − x1)
x3

⎞
⎠ = 0,
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which gives x1 + x3 = 0, or x3 = −x1. Normalizing the vector

⎛
⎝ x1

−2x1

−x1

⎞
⎠, one

obtains the other eigenvector belonging to λ = 3

u2 =
√

6
6

⎛
⎝ 1

−2i
−1

⎞
⎠ .

6.5.4 Simultaneous Diagonalization

If A and B are two hermitian matrices of the same order, the following im-
portant question often arises. Can they be simultaneously diagonalized by the
same matrix S? That is to say, does there exist a basis in which they are both
diagonal? The answer is yes if and only if they commute.

First we will show that if they can be simultaneously diagonalized, then
they must commute. That is, if

D1 = S−1AS and D2 = S−1BS,

where D1 and D2 are both diagonal matrices, then AB = BA.
This follows from the fact

D1D2 = S−1ASS−1BS = S−1ABS,

D2D1 = S−1BSS−1AS = S−1BAS.

Since diagonal matrices of the same order always commute (D1D2 = D2D1),
so we have

S−1ABS = S−1BAS.

Multiplying S from the left and S−1 from the right, we obtain AB = BA.
Now we will show that the converse is also true. That is, if they commute,

then they can be simultaneously diagonalized. First let A and B be 2 × 2
matrices. Since hermitian matrix is always diagonalizable, let S be the unitary
matrix that diagonalizes A

S−1AS =
(

λ1 0
0 λ2

)
,

where λ1 and λ2 are the eigenvalues of A. Let

S−1BS =
(

b11 b12

b21 b22

)
.

Now

S−1ABS = S−1ASS−1BS =
(

λ1 0
0 λ2

)(
b11 b12

b21 b22

)
=

(
b11λ1 b12λ1

b21λ2 b22λ2

)
,

S−1BAS = S−1BSS−1AS =
(

b11 b12

b21 b22

)(
λ1 0
0 λ2

)
=

(
b11λ1 b12λ2

b21λ1 b22λ2

)
.
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Since AB = BA, so S−1ABS = S−1BAS(
b11λ1 b12λ1

b21λ2 b22λ2

)
=

(
b11λ1 b12λ2

b21λ1 b22λ2

)
.

It follows that:
b21λ2 = b21λ1, b12λ1 = b12λ2.

If λ2 �= λ1, then b12 = 0 and b21 = 0. In other words

S−1BS =
(

b11 0
0 b22

)
.

Therefore A and B are simultaneously diagonalized.
If λ2 = λ1 = λ, we cannot conclude that S−1BS is diagonal. However, in

this case

S−1AS =
(

λ 0
0 λ

)
.

Moveover, since B is hermitian, so the unitary similarity transform S−1BS
is also hermitian, therefore S−1BS is diagonalizable. Let T be the unitary
matrix that diagonalize S−1BS

T−1
(
S−1BS

)
T =

(
λ′

1 0
0 λ′

2

)
.

On the other hand,

T−1
(
S−1AS

)
T = T−1

(
λ 0
0 λ

)
T =

(
λ 0
0 λ

)
T−1T =

(
λ 0
0 λ

)
.

Thus the product matrix U = ST diagonalizes both A and B. Therefore, with
or without degeneracy, as long as A and B commute, they can be simultane-
ously diagonalized.

Although we have used 2 × 2 matrices for illustration, the same “proof”
can obviously be applied to matrices of higher order.

Example 6.5.2. Let

A =
(

2 1
1 2

)
, B =

(
3 2
2 3

)
.

Can A and B be simultaneously diagonalized? If so, find the unitary matrix
that diagonalized them.

Solution 6.5.2.

AB =
(

2 1
1 2

)(
3 2
2 3

)
=

(
8 7
7 8

)
,

BA =
(

3 2
2 3

)(
2 1
1 2

)
=

(
8 7
7 8

)
.
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Thus [A,B] = 0, therefore they can be simultaneously diagonalized
∣∣∣∣ 2 − λ 1

1 2 − λ

∣∣∣∣ = (λ − 1) (λ − 3) = 0.

The normalized eigenvectors corresponding to λ = 1, 3 are, respectively,

x1 =
1√
2

(
1
−1

)
, x2 =

1√
2

(
1
1

)
.

Therefore

S =
1√
2

(
1
−1

1
1

)
, S−1 =

1√
2

(
1
1
−1
1

)
.

S−1AS =
1√
2

(
1
1
−1
1

)(
2 1
1 2

)
1√
2

(
1
−1

1
1

)
=

(
1 0
0 3

)
,

S−1BS =
1√
2

(
1
1
−1
1

)(
3 2
2 3

)
1√
2

(
1
−1

1
1

)
=

(
1 0
0 5

)
.

Thus they are simultaneously diagonalized. It also shows that 1 and 5 are the
eigenvalues of B. This can be easily verified, since

∣∣∣∣ 3 − λ 2
2 3 − λ

∣∣∣∣ = (λ − 1) (λ − 5) = 0.

If we diagonalize B first, we will get exactly the same result.

6.6 Normal Matrix

A square matrix is said to be normal if and only if it commutes with its
hermitian conjugate. That is, A is normal, if and only if

AA† = A†A. (6.37)

It can be easily shown that all hermitian (or real symmetric), antihermitian
(or real antisymmetric), and unitary (or real orthogonal) matrices are normal.
All we have to do is to substitute these matrices into (6.37). By virtue of their
definition, it is immediately clear that the two sides of the equation are indeed
the same.

So far we have shown that every hermitian matrix is diagonalizable by a
unitary similarity transformation. In what follows, we will prove the general-
ization of this theorem that every normal matrix is diagonalizable.

First, if the square matrix A is given, that means all elements of A are
known, so we can take its hermitian conjugate A†. Then let
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B =
1
2
(A + A†),

C =
1
2i

(A − A†).

So
A = B + iC. (6.38)

Since (A†)† = A and (A + B)† = A† + B†,

B† =
1
2
(A + A†)† =

1
2
(A† + A) = B,

C† =
1

2i∗
(A − A†)† = − 1

2i
(A† − A) = C.

Thus, B and C are both hermitian. In other words, a square matrix can always
be decomposed into two hermitian matrices as shown in (6.38). Furthermore

BC =
1
4i

(
A2 − AA† + A†A − A†2) ,

CB =
1
4i

(
A2 − A†A + AA† − A†2) .

It is clear that if A†A = AA†, then BC = CB. In other words, if A is normal,
then B and C commute.

We have shown in Sect. 6.5 that if B and C commute, then they can be
simultaneously diagonalized. That is, we can find a unitary matrix S such
that S−1BS and S−1CS are both diagonal. Since

S−1AS = S−1BS + iS−1CS,

it follows that S−1AS must also be diagonal.
Conversely, if S−1AS = D is diagonal, then

(
S−1AS

)†
= S−1A†S = D† = D∗,

since S is unitary and D is diagonal. It follows that:

S−1AA†S = (S−1AS)
(
S−1A†S

)
= DD∗,

S−1A†AS = (S−1A†S)(S−1AS) = D∗D.

Since DD∗ = D∗D, clearly AA† = A†A. Therefore we conclude.

• A matrix can be diagonalized by a unitary similarity transformation if and
only if it is normal.

Thus both hermitian and unitary matrices are diagonalizable by a unitary
similarity transformation.
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The eigenvalues of a hermitian matrix are always real. This is the reason
why in quantum mechanics observable physical quantities are associated with
the eigenvalues of hermitian operators, because the result of any measurement
is, of course, a real number. However, the eigenvectors of a hermitian matrix
may be complex, therefore the unitary matrix that diagonalizes the hermitian
matrix is, in general, complex.

A real symmetric matrix is a hermitian matrix, therefore its eigenvalues
must also be real. Since the matrix and the eigenvalues are both real, the
eigenvectors can be taken to be real. Therefore, the diagonalizing matrix is a
real orthogonal matrix.

Unitary matrices, including real orthogonal matrices, can be diagonalized
by a unitary similarity transformation. However, the eigenvalues and eigenvec-
tors of a unitary matrix are, in general, complex. Therefore the diagonalizing
matrix is not a real orthogonal matrix, but a complex unitary matrix. For
example, the rotation matrix is a real orthogonal matrix, but, in general, it
can only be diagonalized by a complex unitary matrix.

6.7 Functions of a Matrix

6.7.1 Polynomial Functions of a Matrix

Any square matrix A can be multiplied by itself. The associative law of matrix
multiplication guarantees that the operation of A times itself n times, which
is denoted as An, is an unambiguous operation. Thus

AmAn = Am+n.

Moreover, we have defined the inverse A−1 of a nonsingular matrix in such a
way that AA−1 = A−1A = I. Therefore it is natural to define

A0 = A1−1 = AA−1 = I, and A−n =
(
A−1

)n
.

With these definitions, we can define polynomial functions of a square matrix
in exactly the same way as scalar polynomials.

For example, if f (x) = x2 + 5x + 4, and A =
(

1 1
2 3

)
, we define f (A), as

f (A) = A2 + 5A + 4.

Since

A2 =
(

1 1
2 3

)(
1 1
2 3

)
=

(
3 4
8 11

)
,

f (A) =
(

3 4
8 11

)
+ 5

(
1 1
2 3

)
+ 4

(
1 0
0 1

)
=

(
12 9
18 30

)
.
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It is interesting to note that f (A) can also be evaluated by using the
factored terms of f (x). For example

f (x) = x2 + 5x + 4 = (x + 1) (x + 4) ,

so

f (A) = (A + I) (A + 4I)

=
[(

1 1
2 3

)
+

(
1 0
0 1

)][(
1 1
2 3

)
+ 4

(
1 0
0 1

)]

=
(

2 1
2 4

)(
5 1
2 7

)
=

(
12 9
18 30

)
.

Example 6.7.1. Find f (A), if

A =
(

1 1
2 3

)
and f (x) =

x

x2 − 1
.

Solution 6.7.1.

f (A) =
A

A2 − I
= A

(
A2 − I

)−1
=

(
1 1
2 3

)(
2 4
8 10

)−1

=
1
6

(
−1 1
2 1

)
.

Note that f (A) can also be evaluated by partial fraction. Since

f (x) =
x

x2 − 1
=

1
2

1
x − 1

+
1
2

1
x + 1

,

f (A) =
1
2

(A − I)−1 +
1
2

(A + I)−1

=
1
2

(
0 1
2 2

)−1

+
1
2

(
2 1
2 4

)−1

=
1
6

(
−1 1
2 1

)
.

6.7.2 Evaluating Matrix Functions by Diagonalization

When the square matrix A is similar to a diagonal matrix, the evaluation of
f (A) can be considerably simplified.

If A is diagonalizable, then

S−1AS = D,

where D is a diagonal matrix. It follows that:

D2 = S−1ASS−1AS = S−1A2S,

Dk = S−1Ak−1SS−1AS = S−1AkS.
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Thus

Ak = SDkS−1,

An + Am = SDnS−1 + SDmS−1 = S (Dn + Dm) S−1.

If f (A) is a polynomial, then

f (A) = Sf (D) S−1.

Furthermore, since D is diagonal and the elements of D are the eigenvalues
of A,

Dk =

⎛
⎜⎜⎜⎝

λk
1 0 . . . 0
0 λk

2 . . . 0
...

...
... 0

0 0 0 λk
n

⎞
⎟⎟⎟⎠ ,

f (D) =

⎛
⎜⎜⎜⎝

f(λ1) 0 . . . 0
0 f(λ2) . . . 0
...

...
... 0

0 0 0 f(λn)

⎞
⎟⎟⎟⎠ .

Therefore

f (A) = S

⎛
⎜⎜⎜⎝

f(λ1) 0 . . . 0
0 f(λ2) . . . 0
...

...
... 0

0 0 0 f(λn)

⎞
⎟⎟⎟⎠S−1.

Example 6.7.2. Find f (A), if

A =
(

0 −2
1 3

)
and f (x) = x4 − 4x3 + 6x2 − x − 3.

Solution 6.7.2. First find the eigenvalues and eigenvectors of A

∣∣∣∣ 0 − λ −2
1 3 − λ

∣∣∣∣ = (λ − 1) (λ − 2) = 0.

The eigenvectors corresponding to λ1 = 1 and λ2 = 2 are, respectively,

u1 =
(

2
−1

)
, u2 =

(
1
−1

)
.

Therefore

S =
(

2 1
−1 −1

)
, S−1 =

(
1 1
−1 −2

)
,
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and

D = S−1AS =
(

1 0
0 2

)
.

Thus

f (A) = Sf (D) S−1 = S

(
f (1) 0

0 f (2)

)
S−1.

Since
f(1) = −1, f (2) = 3,

f (A) = Sf (D) S−1 =
(

2 1
−1 −1

)(
−1 0
0 3

)(
1 1
−1 −2

)
=

(
−5 −8
4 7

)
.

Example 6.7.3. Find the matrix A such that

A2 − 4A + 4I =
(

4 3
5 6

)
.

Solution 6.7.3. Let us first diagonalize the right-hand side
∣∣∣∣ 4 − λ 3

5 6 − λ

∣∣∣∣ = (λ − 1) (λ − 9) = 0.

The eigenvectors corresponding to λ1 = 1 and λ2 = 9 are, found to be,
respectively,

u1 =
(

1
−1

)
, u2 =

(
3
5

)
.

Thus

S =
(

1 3
−1 5

)
, S−1 =

1
8

(
5 −3
1 1

)
,

and

D = S−1

(
4 3
5 6

)
S =

(
1 0
0 9

)
.

Therefore

S−1
(
A2 − 4A + 4I

)
S = S−1

(
4 3
5 6

)
S =

(
1 0
0 9

)
.

The left-hand side must also be diagonal, since the right-hand side is diagonal.
Since we have shown that, as long as S−1AS is diagonal, S−1AkS will be
diagonal, we can assume

S−1AS =
(

x1 0
0 x2

)
.
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It follows that:

S−1
(
A2 − 4A + 4I

)
S =

(
x2

1 − 4x1 + 4 0
0 x2

2 − 4x2 + 4

)
=

(
1 0
0 9

)
,

which gives

x2
1 − 4x1 + 4 = 1,

x2
2 − 4x2 + 4 = 9.

From the first equation we get x1 = 1, 3, and from the second equation we ob-

tain x2 = 5,−1. Therefore there are four possible combinations for
(

x1 0
0 x2

)
,

namely

Λ1 =
(

1 0
0 5

)
, Λ2 =

(
1 0
0 −1

)
, Λ3 =

(
3 0
0 5

)
, Λ4 =

(
3 0
0 −1

)
.

Thus the original equation has four solutions

A1 = SΛ1S
−1 =

(
1 3
−1 5

)(
1 0
0 5

)
1
8

(
5 −3
1 1

)
=

1
2

(
5 3
5 7

)
,

and similarly

A2 =
1
4

(
1 −3
−5 −1

)
, A3 =

1
4

(
15 3
5 17

)
, A4 =

1
2

(
3 −3
−5 1

)
.

For every scalar function that can be expressed as an infinite series, a
corresponding matrix function can be defined. For example, with

ex = 1 + x +
1
2
x2 +

1
3!

x3 + · · · ,

we can define
eA = I + A +

1
2
A2 +

1
3!

A3 + · · · .

If A is diagonalizable, then

S−1AS = D, An = SDnS−1,

eA = S

(
I + D +

1
2
D2 +

1
3!

D3 + · · ·
)

S−1,

where

D =

⎛
⎜⎜⎜⎝

λ1 . . . . . . 0
0 λ2 . . . 0
...

...
...

...
. . . . . . . . . λn

⎞
⎟⎟⎟⎠ .
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It follows that:

eA = S

⎛
⎜⎜⎜⎝

1 + λ1 + 1
2λ2

1 · · · . . . . . . 0
0 1 + λ2 + 1

2λ2
2 · · · . . . 0

...
...

...
...

0 0 . . . 1 + λn + 1
2λ2

n · · ·

⎞
⎟⎟⎟⎠S−1

= S

⎛
⎜⎜⎜⎝

eλ1 . . . . . . 0
0 eλ2 . . . 0
...

...
...

...
0 0 . . . eλn

⎞
⎟⎟⎟⎠S−1.

Example 6.7.4. Evaluate eA if A =
(

1 5
5 1

)
.

Solution 6.7.4. Since A is symmetric, it is diagonalizable.
∣∣∣∣ 1 − λ 5

5 1 − λ

∣∣∣∣ = λ2 − 2λ − 24 = 0,

which gives λ = 6,−4. The corresponding eigenvectors are found to be

u1 =
(

1
1

)
, u2 =

(
1
−1

)
.

Thus

S =
(

1 1
1 −1

)
, S−1 =

1
2

(
1 1
1 −1

)
.

Therefore

eA = S

(
e6 0
0 e−4

)
S−1 =

1
2

(
1 1
1 −1

)(
e6 0
0 e−4

)(
1 1
1 −1

)

=
1
2

(
(e6 + e−4)
(e6 − e−4)

(e6 − e−4)
(e6 + e−4)

)
.

6.7.3 The Cayley–Hamilton Theorem

The famous Cayley–Hamilton theorem states that every square matrix satis-
fies its own characteristic equation.

That is, if P (λ) is the characteristic polynomial of the nth order matrix A

P (λ) = |A − λI| = cnλn + cn−1λ
n−1 + · · · + c0,
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then
P (A) = cnAn + cn−1A

n−1 + · · · + c0I = 0.

To prove this theorem, let xi be the eigenvector corresponding to the
eigenvalue λi. So

P (λi) = 0, Axi = λixi.

Now

P (A)xi =
(
cnAn + cn−1A

n−1 + · · · + c0I
)
xi

=
(
cnλn

i + cn−1λ
n−1
i + · · · + c0

)
xi

= P (λi)xi = 0xi.

Since this is true for any eigenvector of A, P (A) must be a zero matrix.
For example, if

A =
(

1 2
2 1

)
,

P (λ) =
∣∣∣∣ 1 − λ 2

2 1 − λ

∣∣∣∣ = λ2 − 2λ − 3.

P (A) =
(

1 2
2 1

)(
1 2
2 1

)
− 2

(
1 2
2 1

)
− 3

(
1 0
0 1

)

=
(

5 4
4 5

)
−

(
2 4
4 2

)
−

(
3 0
0 3

)
=

(
5 − 3 − 2 4 − 4

4 − 4 5 − 3 − 2

)
=

(
0 0
0 0

)
.

Inverse by Cayley–Hamilton Theorem

The Cayley–Hamilton theorem can be used to find the inverse of a square
matrix. Starting with the characteristic equation of A

P (λ) = |A − λI| = cnλn + cn−1λ
n−1 + · · · + c1λ + c0 = 0,

we have
P (A) = cnAn + cn−1A

n−1 + · · · + c1A + c0I = 0.

Multiplying this equation from the left by A−1, we obtain

A−1P (A) = cnAn−1 + cn−1A
n−2 + · · · + c1I + c0A

−1 = 0.

Thus
A−1 = − 1

c0

(
cnAn−1 + cn−1A

n−2 + · · · + c1I
)
.
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Example 6.7.5. Find A−1 by Cayley–Hamilton theorem if

A =

⎛
⎝5 7 −5

0 4 −1
2 8 −3

⎞
⎠ .

Solution 6.7.5.

P (λ) =

⎛
⎝5 − λ 7 −5

0 4 − λ −1
2 8 −3 − λ

⎞
⎠ = 6 − 11λ + 6λ2 − λ3,

P (A) = 6I − 11A + 6A2 − A3 = 0,

A−1P (A) = 6A−1 − 11I + 6A − A2 = 0,

A−1 =
1
6
(
A2 − 6A + 11I

)
,

A−1 =
1
6

⎡
⎣
⎛
⎝ 5 7 −5

0 4 −1
2 8 −3

⎞
⎠

⎛
⎝5 7 −5

0 4 −1
2 8 −3

⎞
⎠− 6

⎛
⎝ 5 7 −5

0 4 −1
2 8 −3

⎞
⎠ + 11

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠
⎤
⎦

=
1
6

⎡
⎣
⎛
⎝ 15 23 −17

−2 8 −1
4 22 −9

⎞
⎠−

⎛
⎝ 30 42 −30

0 24 −6
12 48 −18

⎞
⎠ +

⎛
⎝ 11 0 0

0 11 0
0 0 11

⎞
⎠
⎤
⎦

=
1
6

⎛
⎝−4 −19 13

−2 −5 5
−8 −26 20

⎞
⎠ .

It can be readily verified that

A−1A =
1
6

⎛
⎝−4 −19 13

−2 −5 5
−8 −26 20

⎞
⎠

⎛
⎝5 7 −5

0 4 −1
2 8 −3

⎞
⎠ =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

High Powers of a Matrix

An important application of the Cayley–Hamilton theorem is in the represen-
tation of high powers of a matrix. From the equation P (A) = 0, we have

An = − 1
cn

(
cn−1A

n−1 + cn−2A
n−2 + · · · + c1A + c0I

)
. (6.39)

Multiplying through by A

An+1 = − 1
cn

(cn−1A
n + cn−2A

n−1 + · · · + c1A
2 + c0A), (6.40)
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and substituting An from (6.39) into (6.40), we obtain

An+1 =
(

c2
n−1

c2
n

− cn−2

cn

)
An−1 + · · · +

(
cn−1c1

c2
n

− c0

cn

)
A +

cn−1c0

c2
n

I. (6.41)

Clearly this process can be continued. Thus any integer power of a matrix of
order n can be reduced to a polynomial of the matrix, the highest degree of
which is at most n − 1. This fact can be used directly to obtain high powers
of A.

Example 6.7.6. Find A100, if A =
(

1 3
3 1

)
.

Solution 6.7.6. Since∣∣∣∣ 1 − λ 3
3 1 − λ

∣∣∣∣ = λ2 − 2λ − 8 = (λ − 4)(λ + 2) = 0,

the eigenvalues of A are λ1 = 4 and λ2 = −2. The eigenvalues of A100 must
be λ100

1 and λ100
2 , i.e.,

A100x1 = λ100
1 x1, A100x2 = λ100

2 x2.

On the other hand, from the Cayley–Hamilton theorem, we know that A100

can be expressed as a linear combination of A and I, since A is of second
order matrix (n = 2).

A100 = αA + βI,

thus

A100x1 = (αA + βI)x1 = (αλ1 + β)x1,

A100x2 = (αA + βI)x2 = (αλ2 + β)x2.

Therefore
λ100

1 = αλ1 + β, λ100
2 = αλ2 + β.

It follows:

α =
1

λ1 − λ2

(
λ100

1 − λ100
2

)
=

1
6
(4100 − 2100),

β =
1

λ1 − λ2

(
λ1λ

100
2 − λ2λ

100
1

)
=

1
3
(4100 + 2101).

Hence
A100 =

1
6
(4100 − 2100)A +

1
3
(4100 + 2101)I.
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Exercises

1. Find the eigenvalues and eigenvectors of the matrix
(

19 10
−30 −16

)
.

Ans. λ1 = 4, x1 =
(

2
−3

)
; λ2 = −1, x2 =

(
1
−2

)
.

2. Find the eigenvalues and eigenvectors of the matrix
(

6 − 2i −1 + 3i
9 + 3i −4 + 3i

)
.

Ans. λ1 = 2, x1 =
(

1 − i
2

)
; λ2 = i, x2 =

(
1 − i

3

)
.

3. Find the eigenvalues and eigenvectors of the matrix
⎛
⎝ 2 −2 1

2 −4 3
2 −6 5

⎞
⎠ .

Ans. λ1 = 0, x1 =

⎛
⎝1

2
2

⎞
⎠; λ2 = 1, x2 =

⎛
⎝1

1
1

⎞
⎠; λ3 = 2, x3 =

⎛
⎝ 0

1
2

⎞
⎠.

4. If U†U = I, show that (a) the columns of U form an orthonormal set; (b)
UU† = I and the rows of U form an orthonormal set.

5. Show that eigenvalues of antihermitian matrix are either zero or pure
imaginary.

6. Find the eigenvalues and eigenvectors of the following matrix:

1
5

(
7 6i

−6i −2

)
,

and show explicitly that the two eigenvectors are orthogonal.

Ans. λ1 = 2, x1 =
(

2i
1

)
; λ2 = −1, x2 =

(
1
2i

)
.

7. Show the two eigenvectors in the previous problem are orthogonal. Con-
struct an unitary matrix U with the two normalized eigenvectors, and
show that

U†U = I.

Ans. U = 1√
5

(
2i 1
1 2i

)
.
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8. Find the eigenvalues and eigenvectors of the following symmetric matrix:

A =
1
5

(
6 12
12 −1

)
.

Construct an orthogonal matrix U with the two normalized eigenvectors
and show that

ŨAU = Λ,

where Λ is a diagonal matrix whose elements are the eigenvalues of A.

Ans. U = 1
5

(
4 −3
3 4

)
, Λ =

(
3 0
0 −2

)
.

9. Diagonalize the hermitian matrix

A =
(

1 1 + i
1 − i 2

)
,

with a unitary similarity transformation

U†AU = Λ.

Find the unitary matrix U and the diagonal matrix Λ.

Ans. U =

⎛
⎝− 1+i√

3
1+i√

6

1√
3

2√
6

⎞
⎠ , Λ =

(
0 0
0 3

)
.

10. Diagonalize the symmetric matrix

A =

⎛
⎝ 1 1 0

1 0 1
0 1 1

⎞
⎠ ,

with a similarity transformation

U†AU = Λ.

Find the orthogonal matrix U and the diagonal matrix Λ.

Ans. U =

⎛
⎜⎜⎝

1√
2

1√
6

1√
3

0 − 2√
6

1√
3

− 1√
2

1√
6

1√
3

⎞
⎟⎟⎠ , Λ =

⎛
⎝1 0 0

0 −1 0
0 0 2

⎞
⎠.

11. Diagonalize the symmetric matrix

A =
1
3

⎛
⎝−7 2 10

2 2 −8
10 −8 −4

⎞
⎠ ,
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with a similarity transformation

ŨAU = Λ.

Find the orthogonal matrix U and the diagonal matrix Λ.

Ans. U =

⎛
⎜⎜⎝

2
3

1
3

2
3

2
3 − 2

3 − 1
3

1
3

2
3 − 2

3

⎞
⎟⎟⎠ , Λ =

⎛
⎝ 0 0 0

0 3 0
0 0 −6

⎞
⎠.

12. If A is a symmetric matrix (so Ã = A), S is an orthogonal matrix and
A′ = S−1AS, show that A′ is also symmetric.

13. If u and v are two column matrices in a two-dimensional space, and they
are related by the equation

v = Cu,

where

C =
(

cos θ − sin θ
sin θ cos θ

)
,

find C−1 by the following methods:
(a) By Cramer’s rule.
(b) Show that C is orthogonal, so C−1 = C̃.
(c) The equation v = Cu means that C rotates u to v. Since u = C−1v,

C−1 must rotate v back to u. Therefore C−1 must also be a rotation
matrix with an opposite direction of rotation.

14. Find the eigenvalues λ1, λ2, and the corresponding eigenvectors of the
two-dimensional rotation matrix

C =
(

cos θ − sin θ
sin θ cos θ

)
.

Find the unitary matrix U , such that

U†CU =
(

λ1 0
0 λ2

)
.

Ans. eiθ,

(
1
−i

)
, e−iθ,

(
1
i

)
, U = 1√

2

(
1
−i

1
i

)
.

15. Show that the canonical form (in which there is no crossproduct terms)
of the quadratic expression

Q(x1, x2) = 7x2
1 + 48x1x2 − 7x2

2

is
Q′ (x′

1, x
′
2) = 25x2

1 − 25x2
2,
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where (
x1

x2

)
= S

(
x′

1

x′
2

)
.

Find the orthogonal matrix S.

Ans. S = 1
5

(
4 −3
3 4

)
.

16. If A =
(

0 −2
1 3

)
and f (x) = x3 + 3x2 − 3x − 1, find f (A).

Ans.
(
−13 −26
13 26

)
.

17. If A =
(

1 0
2 1

4

)
, find An and limn→∞ An.

Ans. An =
(

1 0
8
3 − 8

3

(
1
4

)n (
1
4

)n

)
, limn→∞ =

(
1 0
8
3 0

)
.

18. Solve for X, if X3 =
(
−6 14
−7 15

)
.

Ans. X =
(

0 2
−1 3

)
.

19. Solve the equation

M2 − 5M + 3I =
(

1 −4
2 −5

)
.

Ans. M1 =
(

0 2
−1 3

)
, M2 =

(
−1 4
−2 5

)
, M3 =

(
6 −4
2 0

)
, M4 =

(
5 −2
1 2

)
.

20. According to Cayley–Hamilton theorem, every square matrix satisfies its
own characteristic equation. Verify this theorem for each of the following
matrices:

(a)
(

3 4
5 6

)
, (b)

(
−1 −2
3 4

)
.

21. Find A−1 by Cayley–Hamilton theorem if A =

⎛
⎝2 1 0

1 2 0
0 0 3

⎞
⎠.

Ans. A−1 = 1
3

⎛
⎝ 2 −1 0

−1 2 0
0 0 1

⎞
⎠.
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