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Abstract

The Lie point symmetries of the one-dimensional quantum Zakharov (qZ) system of equations
are considered, which is a general model to describe the coupling between the Langmuir and
the ion-acoustic waves in a quantum setting. It is demonstrated that the Lie symmetries of the
gZ system are exactly similar to those of the classical Zakharov equations. Further, similarity
reductions are conducted based on the obtained Lie symmetries. A pure general periodic
similarity ion-acoustic wave solution is obtained with the presence of constant linear and
time-dependent nonlinear shears and time-dependent background, where the quantum effect
increases the period of the waves.

PACS numbers: 04.20.Jb, 02.20.Sv, 52-35.

1. Introduction 3?n  92n  92|E)2 ’
W nE T e )
Several aspects related to the gZ system have been

studied. In L] where the qZ system was first derived, the
system was applied to the four-wave interactions and the

Recently, Garcizet al [1] obtained a one-dimensional (1D)
guantum Zakharov (gZ) system of equations

JE  9°E | ,,0%E

I at ¥ 0x2 x4 nE, @) decay instability, respectively. A kinetic description of the qZ

5 5 4 i equations was introduced ir8][ by applying the Wigner
9n_9"n + H2a_n - I7E| ) transform #] to the Langmuir propagation equation and then
otz 9x? ax*  ax2 ' the modulational instability was performed to the resulting

to model the nonlinear interaction between quantugyuations, which revealed that the modulational instability is
Langmuir waves and quantum ion-acoustic waves in @&hhanced due to the combination of partial coherence and
electron-ion dense quantum plasma. In the dimensionlgfgantum corrections. The existence of quantum solitons of the
equations 1) and @), E = E(x, 1) is the Langmuir envelope ¢z system was investigated ifjfand several quantum solitary
electric field, n=n(x, t) is the density fluctuationH = \ayve solutions were presented including the bright solitons,
howi/iTe (R is the Planck constant divided byr2«s is  gray solitons, W-solitons and M-solitons (unfortunately, their
the Boltzmann constand; is the ion plasma frequency, andregyits are incorrect, reasons will be given below). Recently,
Te is the electron temperature) is the quantum paramejgsgg B] presented approximate solutions of equatiohs (

representing the ratio between the ion plasmon energy aghy p) through a variational formulation and a trial function
the electron thermal energy. The effect of this quantufethod.

correction is to introduce higher-order dispersion. The
classical limitH = 0 leads the above quantum system to thgx
original classical Zakharov equatior,[which, in 1D, one
dimension, are written as

It has been pointed out inl] that a huge amount
physical and mathematical aspects already assessed in
the classical Zakharov equations certainly have quantum
counterparts, which ask for equally careful investigations.
dE  9°E Therefore, in this paper, we will continue the investigation

: ot * G2 nE, (3 on the gZ equations by focusing on the Lie symmetries and
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similarity solutions. The work is organized as follows. Irwherec (i =1, 2, 3,4 and 5) are arbitrary constants. The
section 2, we obtain the Lie point symmetries of equatidps (presence of these arbitrary constants leads to a finite-
and @). It is found that the Lie symmetry vector fields arelimensional Lie algebra of symmetries. The corresponding
exactly the same as those of the classical Zakharov equatigastor field is given by
presented inq]. The corresponding similarity solutions and
similarity reduction equations are given in sect®i$ectiord V = cli + czi + (%c3t2 +cqt + Cs) vi
contains a brief conclusion. ax ot ) 9 )

— (3Cst? +Cat +5) Umt (Gt +Co) o, (15)

2. Lie point symmetries . . .
whose Lie algebra is spanned by the following generators

In order to find the Lie symmetries of the gqZ equations, we P 9 9 9

first write the complex electrical field & = u +iv with real i=——. Vo= Ve=voo—u—. (16)

fieldsu andv. Substituting it into equationsl) and @) and

separating the imaginary and real parts leads to the following

equations V4:vti—uti+i, Vs = EtZi_Et2i+ i’
u v ,o% du dv  an 2 0u 2 9v an
ﬁ+W—H W—nv:o, (5) (17)

with only two nonvanishing commutator¥{, V4] = V3 and
— — — +H?—+nu=0, (6) [V2, V5] = Vi. Itis seen that the vector field§) is exactly
X the same as that of the classical Zakharov equations obtained
in [7]. Consequently, the quantum corrections (the entrance
°n_ 9°n 284_n _ 3_2 (u2+v2) -0 @) of higher-order dispersion—thél terms in equations1j

92 9x2 x4 9x2 and @) do not have any effect on the symmetries of the
The Lie point symmetries,(p = u, v, n) of the form underlying system.
op= Xpx +Tp: — Qp. (8) 3. Similarity reduction solutions

with X, T, Qp being functions of the variablesx(t,u,v Similarity reduction solutions can be obtained from the
and n), are the solutions of the linearized equations dtharacteristic equation
equations¥)— (7), namely,

dx dt dp

— ===, =u,v,n, 18
do, 9%, %oy, X T Qp P ’ (18)
e S W —ow—no, =0, (9) |
ot  ax X with X, T, Qp given by (13) and (14). For the most general

generatoV (15), we obtain the similarity solutions

2 4
do, 0 ou , ,0%y

— = in(Lcatd+ Lyt 1c.t3
e 5y Tonu+noy =0, (10) U= Ay sin(gcst® + 3c4t% +cst) + Az cos(zCat
) , \ , +3Cat? +cst) (19)
00,  0°0n 20%0n d
a2 9x2 +H ax4 _ZW (Uoy +voy) =0. (11) 312
. . . = — = + = +
It means that equation$)(7) are form invariant under the v Az Sm(603t 2t + st)
transformations + A; cos(zcat® + Jeat® +cst) (20)
U— u+eoy, v—>v+eo,, N— N+eop, (12)
n= %c3t2 +cat + N, (21)

with a small paramete. _ . o
Substituting 8) into (9)—(11), eliminating the quantities Whereci (i =2, 3, 4 and 5) have been redefined, for simplicity
Ui, v, N and their higher order derivatives by meangvnhou_t loss of _generallty, an_et\l_, A_g andl_\l are similarity
of (5)(7), and setting zero for all the coefficients of thdeduction functions of the similarity variablg = x —cat,
independent terms of the polynomials ofv, n and their satisfying the following similarity reduction equations
partial derivatives, an over-deter_mined set of equations are dA; A, ,d4A,
produced for the unknown functions, T and Qy(p=u, v ng + dE2 - &
andn). Solving these over-determined equations, we obtain

+(cs— N)A, =0, (22)

dA, A L d'A

X=c, T=c, Qu=(3ct’+cst+cs)v,  (13) © G @ H o (cs— N)A; =0, (23)
N *N P
2 2 2 2 _
Q= (lestP+ot+os)u, Quecatics, (1) (@ Vg tHigm gz (At A)re=0 (29)
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Therefore, once the coupled ordinary differential equa- ()
tions (ODESs) are solved, the solutions of the original sys-
tem (1) and @) can be obtained vial@)—(21). However, it
is still difficult to obtain explicit analytical solutions of the 20
nonlinearly coupled ODEs2Q)—(24), hence, in order to in-
vestigate quantum effects on the electric fieléind the den-
sity fluctuation, numerical calculation has to be utilized by —20
imposing appropriate initial and boundary conditions. Instead _,4
of doing numerical calculations, let us consider a special case.
Evidently, if we takeA; = A, = 0, then we have a single de-
coupled ODE of the similarity reduction functidd, which
has a general solution

_BH2 (G2

b)
N = cos £+£ (
-1 H
2 B + B 2

Y/

!
V)0
V1l

N1/

for cg > 1, where &, Bij(i=1,2 and 3) are integration
constants. Then, transformed back to the variables of the 190
original system, the exact similarity solution foreads

By H2 -1 -15
n:—Cz_lcos H X—cot)+&
2 47 10
8 2 (25 4By x Figure 1. Plot of the periodic similarity i i i
77 > 1 3 igure 1. Plot of the periodic similarity ion-acoustic waves, given
2 -1 e by (26) for the parameter valugg = B, =0, Bs=C; = H = 1,
C3 2 ¢, = 1.3, B; = 20 andc; = 0 for the constant linear shear (a), and
- 2(c2 — 1)t +(Ca— C2Ba)t + By. (26) cs = 0.5 for the time-dependent nonlinear shear (b), respectively.

The similarity solution 26) represents periodic waves with an

arbitrary amplitude forc3 > 1, corresponding to supersoniceisty equation @) in [5] is linear, and thus can be solved

flow. In addition, the presence of arbitrary constani€s, B, jmmediately to give a general solution. However, they just
and B implies the intrusion of constant linear and timey,qeq this equation once and later did not require their solutions
dependent nonlinear shears and time-dependent backgroygdsasisty this simple linear equation. Secondly, the result
Two representative periodic similarity ion-acoustic Waves agg their leading order analysis is erroneous because it is

displayed in figurel, where (a) corresponds to the case Ql,nagictory to that of the original system of equations.
a constant linear shear by settiog=0 and (b) is related

to the case of a weak time-dependent nonlinear shear with

cs = 0.5. Quantum effects on the periodic similarity ion4. Conclusion

acoustic waves are graphically shown in fig@rer different

guantum parameter valué$ = 0.5, 1 and 3. It is seen that The Lie symmetry analysis has been applied on the gZ
the guantum corrections lead to an increase of the spaﬁaﬁtem of equations, which model the nonlinear interactions
frequency of oscillations. Notice that wh@® = c; = ¢, =0, between the quantum Langmuir and quantum ion-acoustic

the solution 26) is identical to the periodic solution reportedvaves in an electron—ion dense quantum plasma. It is found
in [1]. that the classical Lie symmetries are exactly the same as

It is noted that we could not obtain nonlinear coherefifose of the classical Zakharov equations, which thus shows
solutions of the qZ equationsl) and @) by the Lie thatthe quantum correction to the classical Zakharov system
group approach. On the other hand, Ha$$ pointed has no effect on the symmetries of the underlying system.
out that quantum effects result in the decaying of thBased on the Lie symmetries, similarity reduction solutions
Langmuir solitons, and that the appearance of instabiliti@se obtained where the similarity reduction functions are
of a purely quantum nature might eventually destroy arfietermined by the coupled reduced ODEs.
coherent structures. Therefore, both show that quantum It is noted that we could not obtain nonlinear coherent
soliton solutions might not exist in gZ equations, whiclsoliton solutions of the qZ system of equations. In a special
might also be a manifestation that the results presenteaise withE = 0, a pure general periodic similarity nonlinear
in [5] are not correct. In fact, it can be easily checke@n-acoustic wave solution is obtained with the presence of
by directly substituting their solutions (equatiork3}-(18) constant linear and time-dependent nonlinear shears and time-
in [5]) in the original system. In addition, there are twalependent background. Figurshows the ion-acoustic waves
evident places demonstrating the error of those solutionsith different shears and background, and figRishows the
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(@)

It is known that the classical gZ equations are
nonintegrable though they have envelope soliton solutigs [
For instance, it has been proved to be a non-Painlevé
system 9] because it cannot pass the Painlevé test at the
third step for the compatibility condition at the resonance
2 is not satisfied. The gZ system of equatiod} &énd @)
might be nonintegrable as well since we are still not able
to obtain soliton solutions of these equations. Moreover,
following [9] we carry out the Painlevé analysis of the gqZ
equations and find that they cannot pass the Painlevé test at the
second step for they have noninteger resonandesermined
by (r?—13 +60)(r>—9r +38)(r?2—5r +24) =0, besides
r=-1,0,6,7,9and 10.
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