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Preface

Why would anyone bid $3.25 in an auction where the prize is a single

dollar bill? Can one “game” explain the apparent irrationality behind

both the arms race of the 1980s and the libretto of Puccini’s opera

Tosca? How can one calculation suggest the president has 4 percent

of the power in the United States federal system while another sug-

gests that he or she controls 77 percent? Is democracy (in the sense of

reflecting the will of the people) impossible?

Questions like these quite surprisingly provide a very nice forum for

some fundamental mathematical activities: symbolic representation

and manipulation, model–theoretic analysis, quantitative representa-

tion and calculation, and deduction as embodied in the presentation of

mathematical proof as convincing argument. We believe that an expo-

sure to aspects of mathematics such as these should be an integral

part of a liberal arts education. Our hope is that this book will serve

as a text for freshman-sophomore level courses, aimed primarily at

students in the humanities and social sciences, that will provide this

sort of exposure. A number of colleges and universities already have

interdisciplinary freshman seminars where this could take place.

Most mathematics texts for nonscience majors try to show that

mathematics can be applied to many different disciplines. A student’s
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interest in a particular application, however, often depends on his or

her general interest in the area in which the application is taking place.

Our experience at Union College and Williams College has been that

there is a real advantage in having students enter the course knowing

that virtually all the applications will focus on a single discipline—in

this case, political science.

The level of presentation assumes no college–level mathematical or

social science prerequisites. The philosophy underlying the approach

we have taken in this book is based on the sense that we (mathe-

maticians) have tended to make two errors in teaching nonscience

students: We have overestimated their comfort with computational

material, and we have underestimated their ability to handle concep-

tual material. Thus, while there is very little algebra (and certainly

no calculus) in our presentation, we have included numerous logical

arguments that students in the humanities and the social sciences will

find accessible, but not trivial.

There are several ways in which the second edition differs from the

first, most notably in the addition of a second author, for which the

first author is extremely grateful. Those who used the answer book to

the first edition will recognize Allison Pacelli as its author. There are

also several structural ways in which the second edition differs from

the first.

The first edition contained five main topics: escalation, conflict,

yes-no voting, political power, and social choice. The first part of

the text was made up of a single chapter devoted to each topic

(Chapters 1–5), while the second part of the text revisited each topic

(Chapters 6–10). For the second edition, we have completely reorga-

nized the ten chapters, both in the order in which they appear and

the choice of what material belongs in the first half of the book versus

what belongs in the second half. We have also added some material to

the existing chapters, and included two additional chapters devoted to

a new topic: Fairness.

Thus, the second edition contains six main topics: social choice, yes-

no voting, political power, conflict, fairness, and escalation. They are

covered in this order (Chapters 1–6) in the first part of the text, and they

are revisited in the second part of the text (Chapters 7–12). Within any

given chapter, there is little reliance on material from earlier chapters,

except for those devoted to the same topic. In addition to adding the
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two new chapters on fairness, we have introduced a new section to

two of the topics in the first edition of the book, and updated material

in a number of places. We also increased the number of exercises by

roughly fifty percent, and corrected a couple of glitches brought to our

attention by readers of the first edition.

The exercises are a crucial component of the book. They are not set

up, however, to be used in the “daily homework’’ fashion that is typical

in courses such as calculus, although such use is not ruled out. Rather,

we have had more success assigning groups of problems to be done

in a specified time period of one to two weeks, often discussing the

problems at great length in class during the week or two that students

are working on them. Another possibility is to have students work

together on the problems in groups of two to four people.

As a final note, let us mention the obvious. Institutional resources

permitting, a team–taught version of this course by a mathematician

and a political scientist is extremely interesting.
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Social Choice

C H A P T E R

1

...........................................................................................................

1.1 INTRODUCTION

In the present chapter we consider the situation wherein a group of

voters is collectively trying to choose among several alternatives. When

people speak of the area of “social choice,” it is typically this context

that they have in mind.

In the case where there are only two alternatives, the standard

democratic process is to let each person vote for his or her preferred

alternative, with the social choice (the “winner”) being the alternative

receiving the most votes. The situation, however, becomes complicated

if there are more than two alternatives. In particular, if we proceed

exactly as we did above where we had two alternatives, then we are not

taking advantage of some individual comparisons among the several

alternatives that could be made.

As a simple example of the kind of complication caused by more

than two alternatives, consider the 1980 U.S. Senate race in New York

among Alphonse D’Amato (a conservative), Elizabeth Holtzman (a lib-

eral), and Jacob Javits (also a liberal). While we don’t have complete

information on the “preference orders” of the voters in New York at

that time, we can make some reasonable estimates based on exit polls
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(showing, for example, that Javits’s supporters favored Holtzman over

D’Amato by a two-to-one margin). At any rate, for the sake of this

example, we’ll assume that each of the six possible (strict) preference

orderings was held by the percentage of voters indicated below.

22% 23% 15% 29% 7% 4%

D D H H J J

H J D J H D

J H J D D H

In addition to reflecting the intuitions confirmed by the exit polls,

the above figures yield results coinciding with the known vote tallies of

45% for D’Amato, 44% for Holtzman, and 11% for Javits. The figures

in the last two columns reflect the results of the actual exit poll that

took place as described above. The middle two columns reflect a sim-

ilar assumption as to the preference of Javits over D’Amato among

Holtzman supporters, although the two-to-one ratio we use was not,

to our knowledge, verified by exit polls. The first two columns are based

(with no real justification) on the assumption that D’Amato supporters

would be roughly evenly split between the two liberal candidates.

With each person voting for his or her top choice, D’Amato emerges

as a (close) winner. On the other hand—and this is what is striking—

notice that Holtzman would have defeated Javits in a two-person con-

test 66% to 34%, and she would have defeated D’Amato 51% to 49%.

Thus, if we make use of all the information provided by the indi-

vidual preference rankings, we get conflicting intuitions as to which

alternative should reasonably be regarded as the “social choice.”

It is precisely this kind of situation that motivates the considera-

tions of the present chapter. The general framework will be as follows.

There will be a set A whose elements will be called alternatives (or

candidates) and typically denoted by a, b, c, etc. There will also be

a set P whose elements will be called people (or voters) and typically

denoted by p1, p2, p3, etc. We shall assume that each person p in P

has arranged the alternatives in a list (with no ties) according to pref-

erence. As above, we will picture these lists as being vertical with the

alternatives displayed from most preferred on top to least preferred on

the bottom. Such a list will be called an individual preference list, or, for

brevity, a ballot. A sequence of ballots is called a profile. Our concern

in this situation will be with so-called social choice procedures, where
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a social choice procedure is, intuitively, a fixed “recipe” for choosing

an alternative based on the preference orderings of the individuals.

The mathematical notion underlying the concepts to be treated here

is a simple one, but one of enormous importance in mathematics. This

notion is that of a function. The definition runs as follows:

DEFINITION. Suppose that X and Y are (not necessarily distinct) sets.

Then a function from X to Y is a procedure that accepts each member

of the set X as input and produces, for each such input, a single cor-

responding output that is a member of the set Y . The set X is called

the domain of the function, and we speak of the procedure as being a

function on the set X.

A “social choice procedure” is a special kind of function where a

typical input is a profile and an output is a single alternative, or a

single set of alternatives if we allow ties, or “NW” indicating that there

is no winner.

Because of the importance of this notion, we record it here formally

as a definition.

DEFINITION. A social choice procedure is a function for which a typical

input is a sequence of lists (without ties) of some set A (the set of

alternatives) and the corresponding output is either an element of A, a

subset of A, or “NW.”

When discussing social choice procedures, we refer to the output as

the “social choice” or “winner” if there is no tie, or the “social choice

set” or “those tied for winner” if there is a tie.

In Section 1.2 we begin with the case of two alternatives and a

very elegant result (May’s theorem) characterizing majority rule. In

Section 1.3 we will present six examples of social choice procedures.

The examples are chosen to represent not only viable alternatives for

real-world applications (e.g., the Hare system and the Borda count),

but at least one extreme position (dictatorship) that will resurface

later in two important theoretical contexts (Arrow’s impossibility the-

orem and the Gibbard-Satterthwaite theorem). Section 1.4, on the

other hand, introduces five apparently desirable properties (includ-

ing independence of irrelevant alternatives and the Condorcet winner
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criterion, which are referred to below) that a given social choice pro-

cedure may or may not have. Sections 1.5 and 1.6 then consider the

obvious question: Which of the six social choice procedures satisfy

which of the five desirable properties? Positive results are presented

in Section 1.5 while negative results are in Section 1.6.

In Section 1.7 we foreshadow one of the cornerstones of social

choice theory—Arrow’s Theorem—that will be presented in Chapter 7

with the following impossibility theorem: There is no social choice pro-

cedure that satisfies independence of irrelevant alternatives, the Con-

dorcet winner criterion, and always produces a winner. In Section 1.8

we briefly discuss approval voting.

...........................................................................................................

1.2 MAY’S THEOREM FOR TWO ALTERNATIVES

In this section, we consider social choice procedures in which there are

only two alternatives. The most common example of this is an election

in which there are two candidates. If one alternative is represented by

the letter “a” and the other by the letter “b,” then there are only two

possible preference lists (or ballots): the one that has a over b and the

one that has b over a. We can think of the former preference list as a

vote for alternative a and the latter as a vote for alternative b.

Most people would agree that there is really only one social choice

procedure that suggests itself in this two-alternative situation: See

which of and a and b has the most votes and declare it to be the

winner. Indeed, this social choice procedure—typically called major-

ity rule and formalized in the following definition—seems to be the

cornerstone of our idea of democracy.

DEFINITION. Majority rule is the social choice procedure for two alter-

natives in which an alternative is a winner if it appears at the top of at

least half of the individual preference lists (equivalently, if at least half

of the voters vote for that alternative).

In terms of a mathematical analysis of this two-alternative situation,

there are two natural questions that suggest themselves: What prop-

erties of majority rule make it a compelling choice for democratic

decision-making? Are there other social choice procedures in the
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two-alternative case that also satisfy these same desirable properties?

Both of these questions are answered by the following elegant theorem

of Kenneth May.

THEOREM. (May, 1952) If the number of people is odd and each

election produces a unique winner, then majority rule is the only social

choice procedure for two alternatives that satisfies the following three

conditions:

1. It treats all the voters the same: If any two voters exchange ballots,

the outcome of the election is unaffected.

2. It treats both alternatives the same: If every voter reverses his or

her vote (changing a vote for a to a vote for b and vice-versa), then

the election outcome is reversed as well.

3. It is monotone: If some voter were to change his or her ballot

from a vote for the loser to a vote for the winner, then the election

outcome would be unchanged.

We do not give a proof of May’s theorem here, but a more gen-

eral version is proved in Chapter 7. Condition (1) in May’s theorem

is called anonymity and condition (2) is called neutrality. In many

ways, May’s theorem tells us that for two alternatives, the search for a

perfect voting system is really quite easy. Alas, things change dramat-

ically when we move to the case of three or more alternatives, as we

will now see.

...........................................................................................................

1.3 SIX EXAMPLES OF SOCIAL CHOICE PROCEDURES

We describe in this section six examples of social choice procedures.

We have tried to pick a variety that includes some that are well known

and often used, some that are inherently interesting, some that illus-

trate the desirable properties of the next section, and a final one

(dictatorship) to illustrate that such procedures need not correspond

to democratic choices (although many of the properties introduced

in the next section will arise as attempts to isolate exactly such

democratic choices). The examples are as follows.
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Social Choice Procedure 1: Condorcet’s Method

The social choice procedure known as Condorcet’s method tries to take

advantage of the success enjoyed by majority rule when there are only

two alternatives. lt does this by seeking an alternative that would, on

the basis of the individual preference lists, defeat (or tie) every other

alternative if the election had been between these two alternatives.

Thus, with Condorcet’s method, an alternative x is among the winners

if for every other alternative y, at least half the voters rank x over y

on their ballots. Although this method is typically attributed to the

Marquis de Condorcet (1743–1794), it dates back at least to Ramon

Llull in the thirteenth century.

To illustrate this idea of one-on-one competitions, suppose the

preference lists are:

c b b a c

b a c b a

a c a c b

Then b defeats a in a one-on-one contest by a score of 3 to 2, since

the first three voters rank b over a, while the last two voters rank a

over b. The reader can also check that b defeats c by a score of 3 to 2,

and that c defeats a by a score of 3 to 2.

Because b defeats each of the other alternatives in a one-on-one

contest, it is the (unique) winner for this profile when Condorcet’s

method is used.

Social Choice Procedure 2: Plurality Voting

Plurality voting is the social choice procedure that most directly gener-

alizes the idea of simple majority vote from the easy case of two alter-

natives to the complicated case of three or more alternatives. The idea

is simply to declare as the social choice(s) the alternative(s) with the

largest number of first-place rankings in the individual preference lists.

Social Choice Procedure 3: The Borda Count

First popularized by Jean-Charles de Borda in 1781, the social

choice procedure known as the Borda count takes advantage of the

information regarding individual intensity of preference provided by
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looking at how high up in the preference list of an individual a given

alternative occurs. More precisely, one uses each preference list to

award “points” to each of n alternatives as follows: the alternative at

the bottom of the list gets zero points, the alternative at the next to

the bottom spot gets one point, the next one up gets two points and

so on up to the top alternative on the list which gets n – 1 points. For

each alternative, we simply add the points awarded it from each of the

individual preference lists. The alternative(s) with the highest “Borda

score” is declared to be the social choice.

Social Choice Procedure 4: The Hare System

The social choice procedure known as the Hare procedure was intro-

duced by Thomas Hare in 1861, and is also known by names such as the

“single transferable vote system” or “instant runoff voting.” In 1862,

John Stuart Mill spoke of it as being “among the greatest improve-

ments yet made in the theory and practice of government.” Today, it

is used to elect public officials in Australia, Malta, the Republic of

Ireland, and Northern Ireland.

The Hare system is based on the idea of arriving at a social choice

by successive deletions of less desirable alternatives. More precisely,

the procedure is as follows. We begin by deleting the alternative or

alternatives occurring on top of the fewest lists. At this stage we have

lists that are at least one alternative shorter than that with which we

started. Now, we simply repeat this process of deleting the least desir-

able alternative or alternatives (as measured by the number of lists

on top of which it, or they, appear). The alternative(s) deleted last is

declared the winner.

Notice that if, at any stage, some alternative occurs at the top of

more than half the lists, then that alternative will turn out to be the

unique winner. However, an alternative occurring at the top of exactly

half the lists—even if it is the only one doing so—is not necessarily the

unique winner (although it must be among the winners).

Social Choice Procedure 5: Sequential Pairwise Voting

with a Fixed Agenda

One typically thinks of an agenda as the collection of things to be dis-

cussed or decided upon. In the context of social choice theory, however,
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the term agenda refers to the order in which a fixed set of things will be

discussed or decided upon. Thus, when we speak of a “fixed agenda,”

we are assuming we have a specified ordering a, b, c, . . . of the alterna-

tives. (This ordering should not be confused with any of the individual

preference orderings.) Sequential pairwise voting can be thought of

as a series of one-on-one competitions among the alternatives as in

Condorcet’s method.

The procedure known as sequential pairwise voting with a fixed

agenda runs as follows. We have a fixed ordering of the alternatives

a, b, c, . . . called the agenda. The first alternative in the ordering is pit-

ted against the second in a one-on-one contest. The winning alternative

(or both, if there is a tie) is then pitted against the third alternative in

the list in a one-on-one contest. An alternative is deleted at the end

of any round in which it loses a one-on-one contest. The process is

continued along the agenda until the “survivors” have finally met the

last alternative in the agenda. Those remaining at the end are declared

to be the social choices.

Social Choice Procedure 6: A Dictatorship

Of the six examples of social choice procedures we’ll have at hand,

this is the easiest to describe. Choose one of the “people” p and call

this person the dictator. The procedure now runs as follows. Given the

sequence of individual preference lists, we simply ignore all the lists

except that of the dictator p. The alternative on top of p’s list is now

declared to be the social choice.

We shall illustrate the six social choice procedures with a single

example that is somewhat enlightening in its own right.

Example:

Suppose we have five alternatives a, b, c, d, and e, and seven people who

have individual preference lists as follows:

a a a c c b e

b d d b d c c

c b b d b d d

d e e e a a b

e c c a e e a
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For each of our six procedures, we shall calculate what the resulting

social choice is.

Condorcet’s method: If we look at a one-on-one contest between

alternatives a and b, we see that a occurs over b on the first three ballots

and b occurs over a on the last four ballots. Thus, alternative b would

defeat alternative a by a vote of 4 to 3 if they were pitted against each

other. Similarly, alternative b would defeat alternative c (4 to 3, again)

and alternative e (6 to 1). Thus, we have so far determined that neither

a nor c nor e is the winner with Condorcet’s method. But alternative d

would defeat alternative b by a score of 4 to 3, and so b is not a winner

either. This leaves only alternative d as a possibility for a winner. But

alternative c handily defeats alternative d (5 to 2) and so d is also a

non-winner. Hence, there is no winner with Condorcet’s method.

Plurality: Since a occurs at the top of the most lists (three), it is the

social choice when the plurality method is used.

Borda count: One way to find the Borda winner is to actually make a

vertical column of values 4, 3, 2, 1, 0 to the left of the preference rank-

ings. (Another way is to count the number of symbols occurring below

the alternative whose Borda score is being calculated.) For example,

alternative a receives a total of 14 points in the Borda system: four

each for being in first place on the first three lists, none for being

in last place on the fourth list and the seventh list, and one each for

being in next to last place on the fifth and sixth lists. (Or, scanning the

columns from left to right, we see that the number of symbols below

a is 4 + 4 + 4 + 0 + 1 + 1 + 0.) Similar calculations, again left for the

reader, show that b gets 17 points, c and d each gets 16 points, and e

gets only 7 points. Thus, the social choice is b when the Borda count

is used.

Hare system: We decide which alternative occurs on the top of the

fewest lists and delete it from all the lists. Since d is the only alternative

not occurring at the top of any list, it is deleted from each list leaving

the following:

a a a c c b e

b b b b b c c

c e e e a a b

e c c a e e a
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Here, b and e are tied, each appearing on top of a single list, and so

we now delete both of these from each list leaving the following:

a a a c c c c

c c c a a a a

Now, a occurs on top of only three of the seven lists, and thus is

eliminated. Hence, c is the social choice when the Hare system is used.

Sequential pairwise voting with a fixed agenda a b c d e: We begin by

pairing a against b in a one-on-one contest. Since b occurs higher up

than a on a total of four of the seven lists (the last four), a is eliminated

(having lost this one-on-one contest to b by a score of 4 to 3). Now, b

goes against c and again emerges victorious by a score of 4 to 3, and

so c is eliminated. Alternative b now takes on d, but winds up losing

this one-on-one by a score of 4 to 3. Thus, b is eliminated and the final

round pits d against e, which the reader can check is an easy win for d.

Thus, d emerges as the social choice under sequential pairwise voting

with this particular fixed agenda.

A dictatorship: We could pick any one of the seven people to be the

dictator, but let’s make it person number seven. Then the social choice

is simply the alternative on top of the last list, which is e in this case.

Thus, our six examples of social choice procedures yield six differ-

ent results when confronted by these particular preference lists. This

raises the question of whether some procedures might be strictly bet-

ter than others. But better in what ways? This we investigate in the

next section.

...........................................................................................................

1.4 FIVE DESIRABLE PROPERTIES OF SOCIAL CHOICE

PROCEDURES

The phrase social choice suggests that we are primarily interested in

procedures that will select alternatives in a way that reflects, in some

sense, the will of the people. A meaningful comparison of different

procedures will require our having at hand some properties that are,

at least intuitively, desirable. The social choice theory literature is not

at all lacking in this regard. We shall, however, limit ourselves to the

introduction of five such properties; more are introduced in the exer-

cises. It should be noted that our choice of which properties to consider
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has been influenced, at least in part, by a desire to provide familiar-

ity with some of the important ideas underlying major theorems in

Chapter 7. In particular, a version of the property called “independence

of irrelevant altematives’’ will play a key role in Arrow’s impossibility

theorem.

The five properties are the following.

The Always-A-Winner Condition (AAW)

A social choice procedure is said to satisfy the always-a-winner condi-

tion (AAW) if every sequence of individual preference lists produces at

least one winner.

The Condorcet Winner Criterion

An alternative x is said to be a Condorcet winner if it is the unique

winner when Condorcet’s method is used. Thus, x is a Condorcet win-

ner provided that for every other alternative y, one finds x occurring

above y on strictly more than half the lists. This defines what we mean

by a Condorcet winner. For the definition of the “Condorcet winner

criterion,’’ we have the following:

A social choice procedure is said to satisfy the Condorcet winner

criterion (CWC) provided that—if there is a Condorcet winner—then

it alone is the social choice.

A sequence of preference lists often will not have a Condorcet win-

ner, as we saw in the example in the last section. For those sequences of

preference lists that do have a Condorcet winner, it always turns out to

be unique; the Condorcet winner criterion is saying that, in this case,

the unique Condorcet winner should be the unique winner produced

by the social choice procedure. We should also point out that there

are weaker versions of the Condorcet winner criterion that have been

considered in the literature; see Fishburn (1973) or Nurmi (1987).

The Pareto Condition

A social choice procedure is said to satisfy the Pareto condition (or

sometimes, for brevity, just Pareto) if the following holds for every

pair x and y of alternatives:

If everyone prefers x to y, then y is not a social choice.
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If we were not allowing ties, we could have said “the’’ social choice

instead of “a’’ social choice in the statement of the Pareto condition

(named after economist Vilfredo Pareto, who lived during the early

part of the twentieth century). With ties, however, what we are say-

ing is that if everyone finds x strictly preferable to y (recall that we

are not allowing ties in the individual preference lists), then alterna-

tive y should not be the social choice and should not even be among

the social choices if there is a tie.

Monotonicity

A social choice procedure is said to be monotone (or monotonic)

provided that the following holds for every alternative x:

If x is the social choice (or tied for such) and someone changes his

or her preference list by moving x up one spot (that is, exchanging x’s

position with that of the alternative immediately above x on his or her

list), then x should still be the social choice (or tied for such).

The intuition behind the monotonicity condition is that if x is the

social choice and someone changes his or her list in a way that is favor-

able to x (but not favorable to any other alternative) then x should

remain the social choice. Monotonicity has also been called “non-

perversity’’ in the literature. Indeed, a social choice procedure that

is not monotone might well be regarded as perverse.

Independence of Irrelevant Alternatives

A social choice procedure is said to satisfy the condition of indepen-

dence of irrelevant alternatives (IIA) provided that the following holds

for every pair of alternatives x and y:

If the social choice set includes x but not y, and one or more voters

change their preferences, but no one changes his or her mind about

whether x is preferred to y or y to x, then the social choice set should

not change so as to include y.

The point here is that if a preference list is changed but the relative

positions of x and y to each other are not changed, then the new list

can be described as arising from upward and downward shifts of alter-

natives other than x and y. Changing preferences toward these other

alternatives should, intuitively, be irrelevant to the question of social

preference of x to y or y to x.
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Of course, if we start with x a winner and y a nonwinner, and people

move some other alternative z around, then we cannot hope to con-

clude that x is still a winner. After all, everyone may have moved z to

the top of their list. Independence of irrelevant alternatives is simply

saying that y should remain a nonwinner.

To feel comfortable with these properties, one needs to see some

specific social choice procedures that provide illustrations of the prop-

erties themselves and—perhaps more importantly—examples of their

failure. This occurs in the next two sections.

...........................................................................................................

1.5 POSITIVE RESULTS—PROOFS

From the previous two sections we have at hand six social choice

procedures (Condorcet’s method, purality, Borda, Hare, sequential

pairwise, and dictatorship) and five properties (always a winner, the

Condorcet winner criterion, Pareto, monotonicity, and independence

of irrelevant alternatives) pertaining to such procedures. Which pro-

cedures satisfy which properties? The answer is given in the follow-

ing table (where a “yes’’ indicates the property holds for the given

procedure).

AAW CWC Pareto Mono IIA

Condorcet Yes Yes Yes Yes

Plurality Yes Yes Yes

Borda Yes Yes Yes

Hare Yes Yes

Seq Pairs Yes Yes Yes

Dictator Yes Yes Yes Yes

Our goal in this section is to prove the nineteen positive results

in the chart. The first five positive results—that all but Condorcet’s

method always produce at least one winner—are collected together in

Proposition 1 and treated in a somewhat dismissive manner. Each of

the other results will be stated as a proposition and provided with a

complete proof that emphasizes the structural aspects of the defini-

tions of the properties. That is, we clearly indicate that we are dealing

with an arbitrary sequence of preference lists, that we are making
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explicit assumptions, and that there is a specific thing to be shown in

each of the proofs. This, however, tends to obscure the heart of the

arguments and so we have added, for each, an informal brief explana-

tion of why the proposition is true. Probably little, if anything, is lost

by simply regarding these brief explanations as the formal proofs.

PROPOSITION 1. The plurality procedure, the Borda count, the

Hare system, sequential pairwise voting with a fixed agenda, and a

dictatorship all satisfy the always-a-winner condition.

PROOF. For each of the procedures, the description makes it clear that

there is at least one winner for every profile.

PROPOSITION 2. Condorcet’s method satisfies the Condorcet win-

ner criterion.

PROOF. Assume the social choice procedure being used is Con-

dorcet’s method and that we have an arbitrary sequence of individual

preference lists where there is an alternative x that is a Condorcet win-

ner. Then, by definition of Condorcet winner, x is the unique winner when

Condorcet’s method is used.

Briefly, by definition, a Condorcet winner is the unique winner when

Condorcet’s method is used.

PROPOSITION 3. Sequential pairwise voting with a fixed agenda

satisfies the Condorcet winner criterion.

PROOF. Assume the social choice procedure being used is sequential

pairwise voting with a fixed agenda and assume that we have an arbitrary

sequence of preference lists where there is an alternative x that is

the Condorcet winner. We want to show that x is the social choice. In

sequential pairwise voting the social choices are the alternatives that

are not eliminated at any stage in the sequence of one-on-one contests.

But being a Condorcet winner means that precisely this kind of one-on-

one contest is always won. Thus, x is the (only) social choice. This

completes the proof.
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Briefly, a Condorcet winner always wins the kind of one-on-one con-

test that is used to produce the social choice in sequential pairwise

voting.

PROPOSITION 4. Condorcet’s method satisfies the Pareto condition.

PROOF. Assume the social choice procedure being used is Con-

dorcet’s method and that we have an arbitrary sequence of individual

preference lists where everyone prefers alternative x to alternative y.

Then x defeats y in a one-on-one contest and so y cannot be a winner

with Çondorcet’s method.

Briefly, if everyone prefers x to y, then y fails to defeat x in a one-on-

one contest, and so y cannot be a winner with Çondorcet’s method.

PROPOSITION 5. The plurality procedure satisfies the Pareto

condition.

PROOF. Assume the social choice procedure being used is the plurality

procedure and assume that we have an arbitrary sequence of preference

lists where everyone prefers alternative x to alternative y. We must show

that y is not a social choice. But this is easy, since the social choice is

the alternative on top of the most lists, and y can’t be on top of any list,

since x occurs higher up than y on every list. This completes the proof.

Briefly, if everyone prefers x to y, then y is not on top of any list (let

alone a plurality) and thus y is certainly not a social choice.

PROPOSITION 6. The Borda count satisfies the Pareto condition.

PROOF. Assume the social choice procedure being used is the Borda

count and assume that we have an arbitrary sequence of preference

lists where everyone prefers alternative x to alternative y. We must show

that y is not a social choice. Since x occurs higher than y on each of

the preference lists, x receives more points from each list than does

y. Thus, when we add up the points awarded from each list we clearly

have a strictly higher total for x than for y. This does not guarantee that

x is the social choice, but it certainly guarantees that y is not, and this

is what we wanted to show. This completes the proof.
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Briefly, if everyone prefers x to y, then x receives more points from

each list than y. Thus, x receives a higher total than y and so y is

certainly not a social choice.

PROPOSITION 7. The Hare system satisfies the Pareto condition.

PROOF. Assume the social choice procedure being used is the Hare

system and assume that we have an arbitrary sequence of preference

lists where everyone prefers alternative x to alternative y. We must show

that y is not a social choice. Notice again that y is not on top of any list.

Thus, y is among the alternatives immediately deleted, since it occurs

at the top of no lists and that is as few as you can get. This shows that

y is not a social choice and completes the proof.

Briefly, if everyone prefers x to y, then y is not on top of any list.

Thus, y is eliminated at the very first stage. Hence, y is not a social

choice.

PROPOSITION 8. The dictatorship procedure satisfies the Pareto

condition.

PROOF. Assume the social choice procedure being used is a dictator-

ship and assume that we have an arbitrary sequence of preference lists

where everyone prefers alternative x to alternative y. We must show that

y is not a social choice. But if everyone prefers x to y then, in particular,

the dictator does and so y is not on top of the dictator’s list. Since

the social choice is whichever alternative happens to be on top of the

dictator’s list, this shows that y is not a social choice and completes

the proof.

Briefly, if everyone prefers x to y, then, in particular, the dictator

does. Hence, y is not on top of the dictator’s list and so is not a social

choice.

PROPOSITION 9. Condorcet’s method satisfies monotonicity.

PROOF. Assume the social choice procedure being used is Con-

dorcet’s method and that we have an arbitrary sequence of individual
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preference lists yielding x as a social choice. Now assume that some-

one exchanges x’s position with that of the alternative directly above x

on his or her list. We want to show that x is still a social choice. But

the change in the single list described above affects only the one-on-

one contest between x and the alternative with which it was switched.

Clearly x not only still wins this contest, but by a larger margin. Thus, x

is still a social choice using Condorcet’s method.

Briefly, moving x up on some list only improves x’s chances in one-

on-one contests.

PROPOSITION 10. The plurality procedure satisfies monotonicity.

PROOF. Assume the social choice procedure being used is the plurality

procedure and assume that we have an arbitrary sequence of preference

lists yielding x as a social choice. Now assume that someone exchanges

x’s position with that of the alternative above x on his or her list. We

want to show that x is still a social choice. But since x was originally a

social choice, x was at least tied for being on top of the most lists. The

change in the single list described above neither decreases the number

of lists that x is on top of nor increases the number of lists that any

other alternative is on top of. Thus, x is still among the social choices

and so the proof is complete.

Briefly, if x is on top of the most lists (or tied for such), then moving

x up one spot on some list (and making no other changes) certainly

preserves this.

PROPOSITION 11. The Borda count satisfies monotonicity.

PROOF. Assume the social choice procedure being used is the Borda

count and assume that we have an arbitrary sequence of preference lists

yielding x as a social choice. Now assume that someone exchanges x’s

position with that of the alternative above x on his or her list. We want

to show that x is still a social choice. But the change in the single list

described above simply adds one point to x’s total, subtracts one point

from that of the other alternative involved, and leaves the scores of all

the other alternatives unchanged. Thus, x is still a social choice and so

the proof is complete.
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Briefly, swapping x’s position with the alternative above x on some

list adds one point to x’s score and subtracts one point from that of the

other alternative; the scores of all other alternatives remain the same.

PROPOSITION 12. Sequential pairwise voting with a fixed agenda

satisfies monotonicity.

PROOF. Assume the social choice procedure being used is sequential

pairwise voting with a fixed agenda and assume that we have an arbitrary

sequence of preference lists yielding x as a social choice. Now assume

that someone exchanges x’s position with that of the alternative above

x on his or her list. We want to show that x is still a social choice. But

the change in the single list described above affects only the one-on-

one contest between x and the alternative with which it was switched.

Clearly x not only still wins this contest, but by a larger margin. Thus, x

is still a social choice and so the proof is complete.

Briefly, moving x up on some list only improves x’s chances in one-

on-one contests.

PROPOSITION 13. A dictatorship satisfies monotonicity.

PROOF. Assume the social choice procedure being used is a dictator-

ship and assume that we have an arbitrary sequence of preference lists

yielding x as a social choice. Now assume that someone exchanges

x’s position with that of the alternative above x on his or her list. We

want to show that x is still a social choice. Since x is a social choice, we

know that x is on top of the dictator’s list. Thus, the exchange described

above could not have taken place in the dictator’s list since there is no

alternative above x with which to exchange it. Thus, x is still on top of

the dictator’s list and so x is still the social choice. This completes the

proof.

Briefly, if x is the social choice then x is on top of the dictator’s list.

Hence, the exchange of x with some alternative immediately above x

must be taking place on some list other than that of the dictator. Thus,

x is still the social choice.
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PROPOSITION 14. Condorcet’s method satisfies independence of

irrelevant alternatives.

PROOF. Assume the social choice procedure being used is Con-

dorcet’s method and that we have an arbitrary sequence of individual

preference lists yielding x as a winner and y as a non-winner. Thus x

defeats every other alternative in a one-on-one contest. Now suppose

that preference lists are changed but no one changes his or her mind

about whether x is preferred to y or y to x. We want to show that y is not

among the social choices, which simply means that y does not defeat

every other alternative in a one-on-one contest. But because no one who

had x over y changed this to y over x, we still have y losing to x in a

one-on-one contest. Hence, y is not a social choice using Condorcet’s

method.

Briefly, if x is a Condorcet winner and thus defeats every other alter-

native one on one, and no one who had x over y moves y over x, then

y still loses to x one on one, and so is not a winner with Condorcet’s

method.

PROPOSITION 15. A dictatorship satisfies independence of irrele-

vant alternatives.

PROOF. Assume the social choice procedure being used is a dictator-

ship and assume that we have an arbitrary sequence of preference lists

yielding x as a winner and y as a nonwinner. Thus, x is on top of the

dictator’s list. Now suppose that preference lists are changed but no

one changes his or her mind about whether x is preferred to y or y to

x. We want to show that y is not now among the social choices, which

simply means that y is not now on top of the dictator’s list. But the

dictator’s list still has x over y (although x may no longer be on top).

Thus, y is not on top of the dictator’s list and so y is not a social choice.

This completes the proof.

Briefly, if x is the social choice and no one—including the dictator—

changes his or her mind about x’s preference to y, then y cannot wind

up on top of the dictator’s list. Thus, y is not the social choice.
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...........................................................................................................

1.6 NEGATIVE RESULTS—PROOFS

In the previous section we were concerned with the properties that

held for the various social choice procedures under consideration. Our

concern here, however, is with those that fail. In a sense, these results

are somewhat more striking than those of the previous section, since

most of the procedures and properties seem to be quite reasonable,

and one certainly expects reasonable procedures to satisfy reasonable

properties.

The following table indicates which properties fail for which proce-

dures. It is simply the “dual” of the table occurring at the beginning of

the last section.

AAW CWC Pareto Mono IIA

Condorcet No

Plurality No No

Borda No No

Hare No No No

Seq Pairs No No

Dictator No

Our goal in this section is to prove the eleven negative results in the

chart. Again, each will be stated as a proposition. The structure of the

proofs, however, will he quite different from those of the last section.

In particular, the properties we are dealing with all assert that regard-

less of what sequence of preference lists we happen to be considering,

some pathological thing does not take place. Thus, in proving that a

property holds, as we did in the last section, we had to consider an arbi-

trary sequence of preference lists (as opposed to a particular sequence

of our choosing). On the other hand, in proving that a property fails,

we need only produce one example of a sequence of preference lists

exhibiting the pathological behavior mentioned in the property.

PROPOSITION 1. Condorcet’s method fails to satisfy the always-

a-winner condition.

PROOF. We have already seen a proof of this; indeed, the sequence of

individual preference lists in the example in Section 1.3 had no winner
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with Condorcet’s method. But this result is important enough to justify

presenting the simplest example of this failure of Condorcet’s method

to produce a winner. This example involves only three alternatives and

three voters. It is known as “Condorcet’s voting paradox” or the “voting

paradox of Condorcet.”

Condorcet’s Voting Paradox

Voter 1 Voter 2 Voter 3

a b c

b c a

c a b

Alternative a is not a winner, because it is defeated by alternative c

(by a score of 2 to 1).

Alternative b is not a winner, because it is defeated by alternative a

(by a score of 2 to 1).

Alternative c is not a winner, because it is defeated by alternative b

(by a score of 2 to 1).

PROPOSITION 2. The plurality procedure fails to satisfy the Con-

dorcet winner criterion.

PROOF. Consider the three alternatives a, b, and c and the following

sequence of nine preference lists grouped into “blocs” of sizes four,

three, and two.

Voters 1–4 Voters 5–7 Voters 8 and 9

a b c

b c b

c a a

With the plurality procedure, alternative a is clearly the social choice

since it has four first-place votes to three for b and two for c. On the other

hand, we claim that b is a Condorcet winner. That is, b would defeat a

by a score of 5 to 4 in one-on-one competition, and b would defeat c by

a score of 7 to 2 in one-on-one competition. Thus, the Condorcet winner

b is not the social choice, and so the Condorcet winner criterion fails

for the plurality procedure.
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PROPOSITION 3. The Borda count does not satisfy the Condorcet

winner criterion.

PROOF. Consider the three alternatives a, b, and c and the following

sequence of five preference lists grouped into voting blocs of size three

and two.

Voters 1–3 Voters 4 and 5

a b

b c

c a

The Borda count produces b as the social choice since it gets a total

of 7 points (1+1+1+2+2) to 6 points for a (2+2+2+0+0) and

2 points for c (0 + 0 + 0 + 1 + 1). However, a is clearly the Condorcet

winner, defeating each of the other alternatives by a score of 3 to 2 in

one-on-one competitions. Since the Condorcet winner is not the social

choice in this situation, we have that the Borda count does not satisfy

the Condorcet winner criterion.

PROPOSITION 4. The Hare procedure does not satisfy the Codorcet

winner criterion.

PROOF. Consider the five alternatives a, b, c, d, and e and the following

sequence of seventeen preference lists grouped into blocs of size five,

four, three, three, and two:

Voters

1–5

Voters

6–9

Voters

10–12

Voters

13–15

Voters

16 and 17

a e d c b

b b b b c

c c c d d

d d e e e

e a a a a

We claim first that b is the Condorcet winner. The results and scores

are as follows: b defeats a (12 to 5), b defeats c (14 to 3), b defeats

d (14 to 3), b defeats e (13 to 4). On the other hand, the social choice

according to the Hare procedure is definitely not b; in the first stage
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of the procedure alternative b is deleted from all the lists since it has

only two first-place votes. This much already shows that the Condorcet

winner is not a social choice, and thus the proof is complete.

PROPOSITION 5. A dictatorship does not satisfy the Condorcet

winner criterion.

PROOF. Consider the three alternatives a, b, and c and the following

three preference lists:

Voter 1 Voter 2 Voter 3

a c c

b b b

c a a

Assume that Voter 1 is the dictator. Then a is the social choice,

although c is clearly the Condorcet winner since it defeats both others

by a score of 2 to 1.

PROPOSITION 6. Sequential pairwise voting with a fixed agenda

does not satisfy the Pareto condition.

PROOF. Consider the four alternatives a, b, c, and d and suppose

that this ordering of the alternatives is also the agenda. Consider the

following sequence of three preference lists:

Voter 1 Voter 2 Voter 3

a c b

b a d

d b c

c d a

Clearly, everyone prefers b to d. But with the agenda a b c d we

see that alternative a first defeats b by a score of 2 to 1, and then a

loses to c by this same score. Alternative c now goes on to face d, but

d defeats c again by a 2 to 1 score. Thus, alternative d is the social

choice even though everyone prefers b to d. This shows that Pareto

fails.
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PROPOSITION 7. TheHareproceduredoesnotsatisfymonotonicity.

PROOF. Consider the alternatives a, b, and c and the following sequ-

ence of seventeen preference lists grouped into voting blocs of size

seven, five, four, and one.

Voters

1–7

Voters

8–12

Voters

13–16

Voter

17

a c b b

b a c a

c b a c

We delete the alternatives with the fewest first place votes. In this

case, that would be alternatives c and b with only five first place votes

each as compared to seven for a. But now a is the only alternative left,

and so it is the social choice when the Hare procedure is used.

Now suppose that the single voter on the far right changes his or her

list by interchanging a with the alternative that is right above a on this

list. This apparently favorable-to-a-change yields the following sequence

of preference lists:

Voters

1–7

Voters

8–12

Voters

13–16

Voter

17

a c b a

b a c b

c b a c

If we apply the Hare procedure again, we delete the alternative with

the fewest first place votes. In this case, that alternative is b with only

four. But the reader can now easily check that with b so eliminated,

alternative c is on top of nine of the seventeen lists. Alternative a is

deleted and so c is the social choice. This change in social choice from

a to c shows that the Hare system does not satisfy monotonicity.

PROPOSITION 8. The plurality procedure does not satisfy indepen-

dence of irrelevant alternatives.

PROOF. Consider the alternatives a, b, and c and the following

sequence of four preference lists:
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Voter 1 Voter 2 Voter 3 Voter 4

a a b c

b b c b

c c a a

Clearly, alternative a is the social choice when the plurality procedure

is used. In particular, a is a winner and b is a nonwinner. Now suppose

that Voter 4 changes his or her list by moving the alternative c down

between b and a. The lists then become:

Voter 1 Voter 2 Voter 3 Voter 4

a a b b

b b c c

c c a a

Notice that we still have b over a in Voter 4’s list. However, plurality

voting now has a and b tied for the win with two first place votes each.

Thus, although no one changed his or her mind about whether a is

preferred to b or b to a, the alternative b went from being a nonwinner to

being a winner. This shows that independence of irrelevant alternatives

fails for the plurality procedure.

PROPOSITION 9. The Borda count does not satisfy independence

of irrelevant alternatives.

PROOF. Consider the alternatives a, b, and c and the following

sequence of five preference lists grouped into voting blocs of size three

and two.

Voters 1–3 Voters 4 and 5

a c

b b

c a

The Borda count yields a as the social choice since it gets 6 points

(2 + 2 + 2 + 0 + 0) to only five for b (1 + 1 + 1 + 1 + 1) and four for c

(0+ 0+ 0+ 2+ 2). But now suppose that Voters 4 and 5 change their
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list by lowering c from first to second position, but still maintaining the

same relative position of b over a. The lists then look as follows:

Voters 1–3 Voters 4 and 5

a b

b c

c a

The Borda count now yields b as the social choice with seven points

to only six for a and two for c. Thus, the social choice has changed

from a to b although no one changed his or her mind about whether a is

preferred to b or b to a. Hence, independence of irrelevant alternatives

fails for the Borda count.

PROPOSITION 10. The Hare procedure fails to satisfy independence

of irrelevant alternatives.

PROOF. Consider the alternatives a, b, and c and the same sequence

of four preference lists that we used in Proposition 8:

Voter 1 Voter 2 Voter 3 Voter 4

a a b c

b b c b

c c a a

Alternative a is the social choice when the Hare procedure is used

because alternatives b and c have only one first-place vote each. In

particular, a is a winner and b is a nonwinner. Now suppose, as we did

in the proof of Proposition 8, that Voter 4 changes his or her list by

moving the alternative c down between b and a. The lists then become:

Voter 1 Voter 2 Voter 3 Voter 4

a a b b

b b c c

c c a a

Notice that we still have b over a in Voter 4’s list. Under the Hare

procedure, we now have a and b tied for the win, since each has half
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the first place votes. Thus, although no one changed his or her mind

about whether a is preferred to b or b to a, the alternative b went from

being a nonwinner to being a winner. This shows that independence of

irrelevant alternatives fails for the Hare procedure.

PROPOSITION 11. Sequential pairwise voting with a fixed agenda

fails to satisfy independence of irrelevant alternatives.

PROOF. Consider the alternatives c, b, and a and assume this reverse

alphabetical ordering is the agenda. Consider the following sequence of

three preference lists:

Voter 1 Voter 2 Voter 3

c a b

b c a

a b c

In sequential pairwise voting, c would defeat b by the score of 2 to

1 and then lose to a by this same score. Thus, a would be the social

choice (and thus a is a winner and b is a nonwinner). But now suppose

that Voter 1 moves c down between b and a, yielding the following lists:

Voter 1 Voter 2 Voter 3

b a b

c c a

a b c

Now, b first defeats c and then b goes on to defeat a. Hence, the

new social choice is b. Thus, although no one changed his or her mind

about whether a is preferred to b or b to a, the alternative b went from

being a nonwinner to being a winner. This shows that independence of

irrelevant alternatives fails for sequential pairwise voting with a fixed

agenda.

This completes our task of verifying the eleven “no” entries from the

chart of procedures and properties at the beginning of this section.

One should, however, find the results of this section to be somewhat

unsettling. The properties, after all, seem to be quite reasonable, as do
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most of the procedures. Why haven’t we presented a number of natural

procedures that satisfy all of these properties and more? We turn to

this question next.

...........................................................................................................

1.7 A GLIMPSE OF IMPOSSIBILITY

In Chapter 7 we shall return to the issue of social choice and present

the single most famous theorem in the field: Arrow’s impossibility the-

orem. The natural context for Arrow’s theorem, however, is slightly

different from the context in which we have explored social choice

in the present chapter. Nevertheless, this section previews the kind of

difficulty that Arrow’s theorem shows is unavoidable. We will do this

by stating and proving an impossibility theorem in the context with

which we have worked in the present chapter. The proof of this the-

orem, like that of Arrow’s theorem, makes critical use of the voting

paradox of Condorcet.

Recall that in Section 1.4 we introduced five desirable properties

of social choice procedures: the always-a-winner condition, the Pareto

condition, the Condorcet winner criterion, monotonicity, and indepen-

dence of irrelevant alternatives. Of the six social choice procedures we

looked at, only Condorcet’s method and a dictatorship satisfied inde-

pendence of irrelevant alternatives, and only Condorcet’s method and

sequential pairwise voting satisfied the Condorcet winner criterion.

None of the six procedures satisfied all five of the desirable properties.

Suppose we were to seek a social choice procedure that satisfies all

five of our desirable properties. One possibility is to start with one of

the six procedures that we looked at and to modify it in such a way that

a property that was not satisfied by the original procedure would be

satisfied by the new version. For example, there is a very natural way to

modify a procedure so that the Condorcet winner criterion becomes

satisfied: If there is a Condorcet winner, then it is the social choice;

otherwise, apply the procedure at hand.

It is tempting to think that if we modify a dictatorship in the above

way, then we will have a social choice procedure that satisfies all five of

the desirable properties we discussed in this chapter. This turns out not

to be the case (and we will say why in a moment). But maybe there are

other ways to alter one or more of the procedures from this chapter so
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that the result will satisfy all the desirable properties. Or maybe there

are procedures that look very different from the ones we presented in

this chapter that already satisfy these desirable properties. Or maybe

no such procedures have ever been found, but that one will be found

a hundred years from now.

No way.

There is no social choice procedure that satisfies all five of the desir-

able properties that we listed in Section 1.4. We are not just saying

that none of the six procedures we looked at satisfies all five of the

desirable properties—we already know that. We are not just saying

that these procedures can’t be altered to yield one that satisfies all five

of the desirable properties. We are not just saying that no one has yet

found a social choice procedure that satisfies all five of the desirable

properties. We are saying that no one will ever find a social choice

procedure that satisfies these five desirable properties. In fact, more is

true:

THEOREM. There is no social choice procedure for three or more

alternatives that satisfies the always-a-winner criterion, independence

of irrelevant alternatives, and the Condorcet winner criterion.

We will assume that we have a social choice procedure that satisfies

both independence of irrelevant alternatives and the Condorcet winner

criterion. We will then show that if this procedure is applied to the

profile that constitutes Condorcet’s voting paradox (Section 1.6), then

it produces no winner. Because any procedure satisfying IIA and the

CWC fails to satisfy AAW, it follows that no procedure can satisfy all

three criteria.

PROOF. Assume that we have a social choice procedure that satis-

fies both independence of irrelevant alternatives and the Condorcet

winner criterion. Consider the following profile from the voting paradox

of Condorcet:
a c b

b a c

c b a

(1)

CLAIM 1. The alternative a is a nonwinner.
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PROOF. Consider the following profile (obtained by moving alternative

b down in the third preference list from the voting paradox profile):

a c c

b a b

c b a

(2)

Notice that c is a Condorcet winner for profile (2) (defeating both other

alternatives by a margin of 2 to 1). Thus, our social choice procedure

(which we are assuming satisfies the Condorcet winner criterion) must

produce c as the only winner. Thus, c is a winner and a is a nonwinner

for this profile. (We are not done proving the claim because this is not

the voting paradox profile.)

Suppose now that the third voter moves b up on his or her preference

list. The profile then becomes that of the voting paradox (since we just

undid what we did earlier). We want to show that a is still a nonwinner.

But no one changed his or her mind about whether c is preferred to

a or a is preferred to c. Thus, because our procedure is assumed to

satisfy independence of irrelevant alternatives, and because we had c

as a winner and a as a nonwinner in the profile with which we began the

proof of the claim, we can conclude that a is still a nonwinner when the

procedure is applied to profile (1). This proves the claim.

CLAIM 2. The alternative b is a nonwinner.

PROOF. Consider the following profile (obtained by moving alternative

c down in the second preference list from the voting paradox profile):

a a b

b c c

c b a

(3)

Notice that a is a Condorcet winner for profile (3) (defeating both other

alternatives by a margin of 2 to 1). Thus, our social choice procedure

(which we are assuming satisfies the Condorcet winner criterion) must

produce a as the only winner. Thus, a is a winner and b is a nonwinner

for this profile. (We are again not done proving the claim because this

is not the voting paradox profile.)
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Suppose now that the second voter moves c up on his or her pref-

erence list. The profile then becomes that of the voting paradox (since

we just undid what we did earlier). We want to show that b is still a

nonwinner.

But no one changed his or her mind about whether a is preferred to

b or b is preferred to a. Thus, because our procedure is assumed to

satisfy independence of irrelevant alternatives, and because we had a

as a winner and b as a nonwinner in the profile with which we began the

proof of the claim, we can conclude that b is still a nonwinner when the

procedure is applied to profile (1). This proves the claim.

CLAIM 3. The alternative c is a nonwinner.

PROOF. We leave this for the reader (see Exercise 40).

The above three claims show that when our procedure is confronted

with the voting paradox profile, it produces no winner. Thus, any

social choice procedure satisfying IIA and the CWC fails to satisfy AAW.

This completes the proof.

This is only part of the remarkable story of the difficulty with

“reflecting the will of the people.” More of the story will be told in

Chapter 7.

...........................................................................................................

1.8 APPROVAL VOTING

The voting systems we have considered so far are social choice pro-

cedures: a collection of individual preference lists (without ties) is

the input, and the output is a single or possibly a collection of alter-

natives. There are, however, other types of voting systems. Here we

consider one of the most popular alternative methods—approval vot-

ing. Approval voting was explicitly proposed in the 1971 Ph.D. thesis

of Robert Weber at Yale University. Since then, Steven Brams, a polit-

ical scientist at NYU, and Peter Fishburn, a former researcher at Bell

Laboratories, have done much more research on and promotion of

approval voting. Under approval voting, given a set A of alternatives,

each voter votes for (or “approves of”) as many alternatives as he or

she chooses. The voters do not rank the alternatives. The social choice
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is the alternative (or set of alternatives) with the largest number of

votes.

For example, suppose that there are three alternatives and five

voters. The ballots might look as follows, where each column

consists of the set of all alternatives approved of by the corre-

sponding voter. Remember that the ordering within the column is

arbitrary (alphabetical in this case); no ranking of alternatives is

indicated.

a a a b c

c b c

c

In this example, three voters approve of alternative a, two voters

approve of alternative b, and four voters approve of alternative c;

alternative c is therefore the social choice.

Many professional societies—including the American Mathematical

Society, the Mathematical Association of America, and the National

Academy of Sciences—use approval voting for some elections. Since

1996, approval voting has been used by the United Nations to elect

the Secretary-General; it has also been used in government elections

in Pennsylvania, Oregon, Eastern Europe, and the Soviet Union.

Supporters of approval voting argue that it is much easier to under-

stand than some other procedures. It allows individual voters to

equally value two or more alternatives unlike the social choice pro-

cedures we have looked at previously which do not allow ties. Because

voters essentially need only say yes or no for each alternative, approval

voting may be easier for the voters than other procedures which

require the voters to rank each alternative. Opponents, however, argue

that since approval voting does not use as much information about the

voters’ preferences, the resulting social choice does not as accurately

reflect the will of the people.

Another major argument in support of approval voting is that it will

reduce negative campaigning. Negative campaigning is more effective

in a plurality system, since only first-place votes matter. If a candidate

is not a voter’s first choice, then it makes no difference whether that

alternative is second or last in the voter’s opinion. It doesn’t matter,

therefore, if negative campaigning further lowers a candidate’s status

in a voter’s eyes. When voters can vote for more than one alternative
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though, candidates have a major incentive to remain well respected by

as many voters as possible since a voter may decide to vote for his top

two, three, four, or more candidates. It is quite possible that negative

campaigning would therefore decrease with approval voting because

negative campaigning is often looked down upon by voters. Note that

this argument applies not only to approval voting, but to any system

in which candidates can benefit by being high on (even if not on top

of) a voter’s preference list.

Another argument in support of approval voting is that it eliminates

the effect of spoiler candidates, candidates who cannot feasibly win an

election but sometimes alter the outcome of an election. For exam-

ple, many Gore supporters in 2000 blamed Ralph Nader voters when

George W. Bush was elected. Since there is reason to believe that the

majority of Nader voters preferred Gore to Bush, those voters would

likely have voted for Gore had Nader not been an alternative. It is pos-

sible then that the presence of Nader as a candidate caused Bush to win

over Gore. Supporters of third-party candidates often face the difficult

dilemma of voting for their true first-choice candidate, or strategi-

cally voting for their second-choice candidate since their first choice

is unlikely to win. With approval voting, voters have the option of vot-

ing for both; they are able to express their support for their desired

candidate while preventing that support from throwing the election to

their least favorite candidate. Again, it is worth noting that the social

choice procedures which use the voter’s full ranking of the candidates

also reduce the effect of spoiler candidates.

Approval voting allows more flexibility than plurality. Under app-

roval voting, a voter still has the option of voting solely for their first-

place alternative, but has the flexibility to vote for more. Opponents of

approval voting argue though that this flexibility is a drawback; one

can show that depending on where the voters draw the line between

approval and disapproval, almost any candidate can win. For example,

before an election using approval voting, the president of the Mathe-

matical Association of America issued the following statement to the

voters: “Suppose there are three candidates of whom two are outstand-

ing. Suppose the third is a person you believe is not yet ready for office

but whom you decide to vote for as a means of encouragement (in addi-

tion to voting for your favorite). If enough voters reason that way, you
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will elect that person now.” (L. Gilman, FOCUS). While this may be

alarming, it may be reasonable to assume that if the voters understand

the system, this situation would not occur. One might argue that if a

voter truly believes someone not ready for office, then he or she does

not “approve” of and therefore should not vote for that candidate.

...........................................................................................................

1.9 CONCLUSIONS

We began the chapter by looking at the 1980 U.S. Senate race in

New York where Alphonse D’Amato defeated Elizabeth Holtzman

and Jacob Javits, even though reasonable assumptions suggest that

Holtzman could have beaten either D’Amato or Javits in a one-on-

one contest. (In terminology from later in the chapter, Holtzman was

a Condorcet winner.) This introduction was meant to suggest some

potential difficulties in producing a “reasonable” social choice when

there are three or more alternatives. In terms of mathematical prelim-

inaries, we introduced the notion of a function and defined a social

choice procedure to be a special kind of function where a typical input

is a sequence of preference lists and the corresponding output is either

a single alternative (the social choice), a collection of alternatives, or

the symbol NW indicating no winner.

The chapter introduced six social choice procedures—Condorcet’s

method, plurality voting, the Borda count, the Hare system, sequen-

tial pairwise voting with a fixed agenda, and a dictatorship—and

five apparently desirable properties that pertain to such procedures—

the always-a-winner condition, the Pareto condition, the Condorcet

winner criterion, monotonicity, and independence of irrelevant alter-

natives. Asking the thirty obvious questions about which procedures

satisfy which properties produced both affirmative answers and nega-

tive answers. Among the negative answers were some striking results:

the Hare procedure fails to satisfy monotonicity, sequential pairwise

voting with a fixed agenda fails to satisfy the Pareto condition, and only

a dictatorship (among those considered here) satisfied both indepen-

dence of irrelevant alternatives and the always-a-winner condition.

In Section 1.7 we gave a concrete preview of some inherent difficul-

ties when dealing with three or more alternatives by proving that it is
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impossible to find a social choice procedure that satisfies the always-

a-winner condition, independence of irrelevant alternatives, and the

Condorcet winner criterion. Finally, we concluded in Section 1.8 with

a brief look at approval voting.

EXERCISES

The purpose of the first two exercises is to help the reader gain some

familiarity with the idea of a “function from a set X to a set Y” (as defined in

Section 1.1). For a procedure to be a function from X to Y , it must assign

to each object in X and unique object in Y . In each of the following, sets

X and Y are specified as is a procedure. Determine if the given procedure

is or is not a function from X to Y .

1. Let X and Y both be the set of non-negative integers: 0, 1, 2, 3, . . .

(a) The procedure corresponding to taking the square root of the

input.

(b) The procedure corresponding to doubling the input.

(c) The procedure that, given input x, outputs y if and only if y is

two units away from x on the number line.

(d) The procedure that, given input x, outputs the number 17.

2. Let X be the set of (finite) non-empty sequences of nonnegative

integers and let y be the set of nonnegative integers.

(a) The procedure that, given a finite sequence, outputs y if and

only if y is the seventh term of the sequence.

(b) The procedure that outputs n if and only if n is twice the length

of the sequence.

(c) The procedure that outputs y if and only if y is greater than the

last term of the sequence.

(d) The procedure that outputs the number 17 regardless of the

input.

3. For each of the six social choice procedures described in this chap-

ter, calculate the social choice or social choices resulting from the

following sequence of individual preference lists. (For sequential

pairwise voting, take the agenda to be abcde. For the last procedure,
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take the fourth person to be the dictator.)

c d c b e d c

a a e d d e a

e e d a a a e

b c a e c b b

d b b c b c d

4. For each of the six social choice procedures described in this chap-

ter, calculate the social choice or social choices resulting from the

following sequence of individual preference lists. (For sequential

pairwise voting, take the agenda to be acdeb. For the last procedure,

take the fifth person to be the dictator.)

a b c d e

b c b c d

e a e a c

d d d e a

c e a b b

5. Given the following sequence of individual preference lists, deter-

mine the social choice or social choices under each of the listed

procedures. The horizontal line in each voter’s preference list repre-

sents the cut-off line for approval voting; that is, the voter approves

of each candidate above that line.

a a b b c a d

d c d a b b b

b d c d d d c

c b a c a c a

(a) Condorcet’s method

(b) plurality

(c) Borda count

(d) Hare system

(e) approval voting

(f ) The procedure defined as follows: If there is a Condorcet win-

ner, that candidate is the social choice. Otherwise, use plurality

to determine the social choice.
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6. Given the following sequence of individual preference lists, deter-

mine the social choice or social choices under each of the listed

procedures. The horizontal line in each voter’s preference list repre-

sents the cut-off line for approval voting; that is, the voter approves

of each candidate above that line.

Voters

1–2

Voters

3–5

Voter 6 Voters

7–8

Voters

9–13

Voters

14–17

Voter

18

a a b b c c c

d c d a b b b

b d c d d a a

c b a c a d d

(a) Condorcet’s method

(b) plurality

(c) Borda count

(d) Hare system

(e) approval voting

(f ) The procedure defined as follows: If there is a Condorcet win-

ner, that candidate is the social choice. Otherwise, use the

Hare system to determine the social choice.

7. Given the following sequence of individual preference lists, deter-

mine the social choice or social choices under each of the listed

procedures. The horizontal line in each voter’s preference list repre-

sents the cut-off line for approval voting; that is, the voter approves

of each candidate above that line.

a a b b b b d d d

b d c a d a a a c

c c d c c d c b b

d b a d a c b c a

(a) Condorcet’s method

(b) plurality

(c) Borda count

(d) Hare system

(e) approval voting
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(f ) The procedure defined as follows: If there is a Condorcet win-

ner, that candidate is the social choice. Otherwise, use the

Borda count to determine the social choice.

8. Prove or disprove each of the following:

(a) Plurality voting always yields a unique social choice.

(b) The Borda count always yields a unique social choice.

(c) The Hare system always yields a unique social choice.

(d) Sequential pairwise voting with a fixed agenda always yields a

unique social choice.

(e) A dictatorship always yields a unique social choice.

9. Consider the following sequence of preference lists:

b c c a

a a d d

d b b b

c d a c

(a) Find the social choice using the Borda count.

(b) Suppose we change the way we assign points so that first place

is worth 8 points, second place is worth 4 points, third place

is worth −4 points, and fourth place is worth −8 points. Redo

the Borda procedure using these new numbers.

(c) Redo (b) using the points −1,−5,−9,−13 for (respectively)

first, second, third, and fourth place.

(d) Do as in (c) using 9, 4, 1, and 0 points for (respectively) first,

second, third, and fourth place.

(e) Propose a condition on the way points are assigned that is

sufficient to guarantee that the winner is the same as the Borda

winner with points assigned in the usual way.

10. lf we have a sequence of individual preference lists, and r and s

are two of the alternatives, then “Net(r > s)” is defined to be

the number of voters who prefer r to s minus the number of

voters who prefer s to r. Let’s also change the way we assign

points in computing the Borda score of an alternative so that

these scores are symmetric about zero. That is, for three alter-

natives, first place will be worth 2 points, second place will

be worth 0 points, and third place will be worth −2 points.

We will let “B(r)” denote the Borda score of the alternative r
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computed using these points. Consider the following preference

lists:

x x y

y z z

z y x

(a) Evaluate Net(x > y), Net(x > z), B(x), and B(z).

(b) Prove each of the following for this example:

Net(x > y) + Net(x > z) = B(x).

Net(y > z) + Net(y > x) = B( y).

Net(z > x) + Net(z > y) = B(z).

11. Suppose we have a social choice procedure that satisfies mono-

tonicity. Suppose that for the four alternatives a, b, c, d we have a

sequence of individual preference lists that yields d as the social

choice. Suppose person one changes his list:

from: a to: d

b a

c b

d c

Show that d is still the social choice, or at least tied for such. (The

procedure one uses to show this is called “iterating the definition.”)

12. Suppose we have three voters and four alternatives and suppose

the individual preference lists are as follows:

a c b

b a d

d b c

c d a

Show that if the social choice procedure being used is sequential

pairwise voting with a fixed agenda, and, if you have agenda setting

power (i.e., you get to choose the order), then you can arrange for

whichever alternative you want to be the social choice.
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13. Consider the following social choice procedure: if there is a Con-

dorcet winner, then that alternative is the social choice; otherwise

use the Borda count to determine the social choice.

(a) Explain why the social procedure above satisfies the Condorcet

winner criterion.

(b) Does this social choice procedure satisfy Pareto?

(c) Does this social choice procedure satisfy monononicity?

(d) Does this social choice procedure satisfy independence of

irrelevant alternatives?

14. Prove that for a given social choice procedure and a given sequence

of individual preference lists, a Condorcet winner, if it exists, must

be unique.

15. Show that, for a fixed sequence of individual preference lists and

an odd number of voters, an alternative is a Condorcet winner if and

only if it emerges as the social choice in sequential pairwise voting

with a fixed agenda regardless of the agenda.

16. Do you think there was a Condorcet winner in the 2000 Presidential

Election? Explain.

17. In the 1988 Minnesota gubernatorial election, the Republican can-

didate Norm Coleman received 34% of the vote, Democrat Hubert

“Skip” Humphrey III received 28% of the vote, and Reform candi-

date and professional wrestler Jesse Ventura received 37% of the

vote. The election was conducted with plurality, so Jesse Ventura

was the winner, yet there is evidence to suggest that most voters

who voted for Coleman or Humphrey ranked Ventura third. If this

is true, then 62% of the voters would have preferred either of the

the other two candidates to Ventura; in other words, Ventura would

have lost in a one-on-one contest against either of his opponents.

Say that an alternative is a Condorcet loser if it would be defeated

by every other alternative in the kind of one-on-one contest that

takes place in sequential pairwise voting with a fixed agenda. Fur-

ther, say that a social choice procedure satisfies the Condorcet loser

criterion provided that a Condorcet loser is never among the social

choices. Does the Condorcet loser criterion hold for:

(a) pluality voting?

(b) the Borda count?

(c) the Hare system?

(d) sequential pairwise voting with a fixed agenda?
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(e) a dictatorship?

18. Prove or disprove: A Condorcet loser, if it exists, is unique.

19. Prove that for three alternatives and an arbitrary sequence of indi-

vidual preference lists, there is no Condorcet loser if and only if

for each alternative there is an agenda under which that alternative

wins in sequential pairwise voting. (Your proof should not involve

producing three particular preference lists.)

20. Modify the individual preference lists from the voting paradox to

show that an alternative that loses in sequential pairwise voting for

every agenda need not be a Condorcet loser. (Notice that this does

not contradict Exercise 19).

21. Consider the following social choice procedure. If there is a Con-

dorcet winner, it is the social choice. Otherwise, the alternative on

top of the first person’s list is the social choice. (That is, if there is

no Condorcet winner, then person one acts as a dictator.) Give an

example with three people and three alternatives showing that this

procedure does not satisfy independence of irrelevant alternatives.

(Hint: Start with the same sequence of lists that produces the voting

paradox, and then move one alternative that should be irrelevant to

the social choice.)

22. Prove that the social choice procedure described in Exercise 21

satisfies the Pareto condition.

23. An interesting variant of the Hare procedure was proposed by the

psychologist Clyde Coombs. It operates exactly as the Hare system

does, but instead of deleting alternatives with the fewest first place

votes, it deletes those with the most last place votes. (In all other

ways, it operates as does the Hare procedure.)

(a) Find the social choice according to the Coombs procedure that

arises from the individual preference lists in Exercise 3.

(b) Does the Coombs system satisfy the Pareto condition?

(c) Does the Coombs system satisfy the Condorcet winner crite-

rion?

(d) Does the Coombs system satisfy monotonicity?

(e) Does the Coombs system satisfy independence of irrelevant

alternatives?

24. Suppose we have two voters and three alternatives. Find preference

lists so that one of the alternatives emerges as the social choice
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under the Coombs procedure, but the other two emerge as tied for

the win under the Hare procedure.

25. The following social choice procedure is due to A.H. Copeland. We

define the win-loss record for an alternative to be the number of

strict wins against other alternatives in a head-to-head competition

minus the number of strict losses. For example, the win-loss record

of a Condorcet winner is equal to one less than the total number of

alternatives. Under Copeland’s procedure, an alternative is a winner

if no alternative has a strictly better win-loss record.

(a) Prove that Copeland’s procedure satisfies monotonicity.

(b) Prove that Copeland’s procedure satisfies the Condorcet win-

ner criterion.

26. Say that a social choice procedure satisfies the “top condition” pro-

vided that an alternative is never among the social choices unless

it occurs on top of at least one individual preference list. Prove or

disprove each of the following:

(a) Plurality voting satisfies the top condition.

(b) The Borda count satisfies the top condition.

(c) The Hare system satisfies the top condition.

(d) Sequential pairwise voting satisfies the top condition.

(e) A dictatorship satisfies the top condition.

(f ) If a procedure satisfies the top condition, then it satisfies the

Pareto condition.

27. Suppose S is some social choice procedure. (Think of S as being

plurality voting for the moment.) Using S we will create a new social

choice procedure, denoted S∗, as follows:

Given a sequence of preference lists L1, . . . , Ln as input,

we first reverse each of the lists to get L∗
1, . . . , L

∗
n.

We now apply S to the reversed lists L∗
1, . . . , L

∗
n.

These "winners" are then deleted, and the process is repeated.

If we modify the above by declaring an alternative to be the winner

if—at any time in the above process—it occurs on top of at least

half of the nonreversed lists, then we shall denote the system by S#.

(a) Let P denote plurality voting and apply P∗ and P# to the

sequence of preference lists in Exercise 3.

(b) In a few sentences, explain why P∗ is the Coombs procedure.
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(c) Let H be the procedure wherein the social choice is a tie among

all the alternatives except the one (or ones) having the most

last place votes. Identify H∗ and explain your answer in a few

sentences.

(d) Make up two good questions (not involving particular lists)

about the “∗-process” or the “#-process.” Don’t answer the

questions (unless you want to). The point of this exercise is

simply to realize that good theorems are answers to good ques-

tions, and so the asking of good questions is both important

and nontrivial.

28. According to the anti-plurality social choice procedure, the social

choice is the alternative(s) with the fewest last-place rankings. Prove

whether or not the anti-plurality procedure satisfies each of the

following criteria.

(a) Pareto

(b) monotonicity

(c) independence of irrelevant alternatives

29. Cumulative voting is a social choice procedure similar to approval

voting in that each voter may vote for more than one candidate.

Specifically, each voter is given a set number of points C to dis-

tribute among the candidates. The candidates with the most points

win. Typically, in multi-winner elections, C is equal to the number

of candidates to be elected. For example, suppose that there are

three open seats on the local school board. Voters have 3 points

that they can distribute among the candidates; they might choose

to spread out their points among two or three different candidates,

or they might concentrate all three points on a single candidate.

Cumulative voting is often touted as a method for helping to elect

candidates from minority groups.

(a) Write down a modification of the Pareto condition that makes

sense for cumulative voting.

(b) Does cumulative voting satisfy your modified version of the

Pareto condition?

30. We say that a social choice system satisfies the criterion of unanim-

ity if an alternative is the unique social choice whenever every ballot

has that alternative ranked highest. Prove that if a social choice

procedure satisfies Pareto, then it must also satisfy unanimity.
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31. We say that a social choice system satisfies the criterion of non-

imposition if every alternative occurs as the unique winner for at

least one set of ballots.

(a) Explain why non-imposition is a desirable characteristic of a

social choice procedure.

(b) Prove that if a social choice procedure satisfies unanimity, then

it must also satisfy non-imposition.

32. We saw that sequential pairwise voting does not satisfy Pareto.

Does it satisfy unanimity? Non-imposition?

33. During the 1995 women’s World Figure Skating Championships,

with only one skater left to compete, Chen Lu of China was in first

place, Nicole Bobek of the U.S. was in second place, and Surya

Bonaly of France was in third place. After the last skater (a relatively

unknown Michelle Kwan) skated, however, the final rankings were:

Chen Lu in first, Surya Bonaly in second, and Nicole Bobek in third.

This example illustrates that the scoring procedure used at the time,

the best of majority (BOM) method, does not satisfy IIA.

The BOM Method works as follows. Suppose that there are six

skaters. Each of say nine judges ranks the skaters. To each skater,

we assign a sequence of numbers (x1, x2, x3, x4, x5, x6) where xi

denotes the number of i-th place rankings received by the skater.

Thus in the case of six skaters, we have 0 ≤ xi ≤ 6. Next, we

compute for each skater the lowest majority rank (LMR): the small-

est rank for which five (in general, a majority) or more judges rank

that skater at that rank or higher. The size of lowest majority (SLM)

is the number of judges that comprise this majority. For example,

suppose that the judges rankings of skaters is given by:

Judges

1 2 3 4 5 6 7 8 9

1 3 2 1 5 1 1 3 1

3 2 3 3 1 3 3 1 3

Skaters 5 1 1 2 2 5 5 2 2

2 5 4 5 4 2 2 6 5

6 4 6 4 3 6 6 4 6

4 6 5 6 6 4 4 5 4
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In this example, the LMR for skater 1 is 1 since a majority of judges

rank her first. The SLM for skater 1 is 5 since five judges rank

skater 1 first. The LMR for skater 3 is 2 since only two judges rank

skater 3 first, but a majority rank her second. The SLM for skater 3

is 8 since six judges rank her second, and two rank her first.

To arrive at the final ranking of the skaters, we rank the skaters

in order of ascending LMR; in the case of a tie, the skater with the

higher SLM wins that rank. If there is a tie between LMR and SLM,

then for each tied skater, we compute the sum of all the judges’

rankings, and the skater with the smaller sum wins the rank. If there

is still a tie, then the skaters remain tied in the final rankings.

(a) Calculate the LMR and SLM for skaters 3 through 6 in the

example above.

(b) According to the BOM Method, rank the skaters in the example

above.

(c) We saw that the BOM Method does not satisfy IIA. Does it

satisfy the Pareto condition?

(d) Does the BOM method satisfy monotonicity?

(e) Does the BOM method satisfy the Condorcet winner criterion?

34. Another desirable property of social choice procedures is the inten-

sity of binary preferences (IBP) criterion, introduced by Donald Saari.

For a given voter’s preference list, and for two alternatives x and y

with x ranked higher than y, we say that the intensity of x over y is

one more than the number of alternatives ranked between x and y.

The intensity of y over x is the negative of the intensity of x over y.

We say that a social choice procedure satisfies IBP provided that

the following holds for every pair of alternatives x and y:

If the social choice set includes x but not y, and one or more

voters change their preferences, but no one changes the intensity

of x over y in his preference list, then the social choice set should

not change so as to include y.

(a) Prove that if a social choice procedure satisfies IIA, then it

must also satisfy IBP. Thus we can think of the IBP criterion as

a weaker property than IIA. IBP was introduced in an attempt

to explain why so many social choice procedures fail to satisfy

IIA; perhaps it is not enough information to know that a voter

prefers alternative x to alternative y, we might also need to

know how much a voter prefers x to y.
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(b) Prove that the Borda count satisfies IBP.

(c) Prove that a dictatorship satisfies IBP.

(d) Prove that the Hare system does not satisfy IBP.

(e) Does the procedure in Exercise 13 satisfy IBP? Explain.

35. Because approval voting is very different from the social procedures

we studied earlier, not all of the desirable properties we used to eval-

uate the procedures even apply. We can modify them somewhat,

however, to analyze approval voting more closely. For example, we

could define a notion similar to the Pareto condition as follows:

If every voter approves of alternative a, then a is a social choice.

(a) Prove that with this modification, approval voting does satisfy

the Pareto condition.

A slightly different modification of the original Pareto condition is

the following:

If every voter prefers alternative a to alternative b, then b is not a

social choice.

This version of Pareto is more similar to the original than the one

mentioned above, but with the presence of the word “prefer,” we are

implicitly assuming that a voter has a ranked preference list of alter-

natives (which may include ties), but has the power under approval

voting to draw the cutoff line between approval and disapproval at

any point in the list.

(b) Prove that with this modification, approval voting does not

satisfy the Pareto condition.

(c) Write down a modified version of the monotonicity condition

that makes sense for approval voting. Does approval voting

satisfy this modified monotonicity condition?

36. Kate and her friends are planning a vacation for spring break. She

has never been to Paris, and is hoping to convince her friends that

that is the place to go. Most of the others in the group think Paris

is a good choice and rank it as their second choice, but Paris does

not have a lot of first-place votes. A few people are pushing the

Caribbean for a beach vacation, and a few others are strongly in

favor of a camping trip in the mountains. Kate has a pretty good idea

of her friends’ preferences. What social choice procedure should

she suggest that the group use in order to get the trip to Paris? Why?

37. A group of several friends are deciding which DVD to rent. At first

they are deciding between Raiders of the Lost Arc and Annie Hall.
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More people are in the mood for Woody Allen than Harrison Ford,

so they decide to rent Annie Hall. Then Michael remembers that

the library now has Breakfast at Tiffany’s, and proposes this to the

group. After some discussion, the group decides to rent Breakfast

at Tiffany’s. But Riki has been racking her brain trying to think of a

movie that she saw and loved a few years ago; at this point in the

discussion she remembers the name: Eternal Sunshine of the Spot-

less Mind. At this point, everyone agrees to rent Eternal Sunshine,

and they all go to the library. Which of the social choice procedures

discussed in this chapter does this scenario imitate? Explain.

38. Exhibit the preference orderings that correspond to a voting paradox

wherein we have ten alternatives and ten (groups of) people.

39. Construct a real-world example (perhaps involving yourself and two

friends) where the individual preference lists for three (or more)

alternatives are as in the voting paradox.

40. Compiete the proof of the impossibility theorem in Section 1.7 by

establishing the third claim. (Your proof will be almost word-for-word

the same as the proofs of Claims 1 and 2.)

41. In the 2000 presidential election, the popular vote totals were:

George W. Bush: 50,456,002

Al Gore: 50,999,897

Ralph Nader: 2,882,995

(source: Federal Election Commission)

In the absence of the Electoral College, discuss what the out-

come may have been if the Borda count or Hare system was used.

Be sure to list any assumptions that you are making about voter

preferences.

42. A particular voter has transitive preferences: if he or she prefers

alternative a to b and b to c, then he or she also prefers a to

c. One might then expect that a society’s preferences are transi-

tive as well: if the voters collectively prefer (as demonstrated by a

one-on-one contest) alternative a to b and b to c, then they prefer

alternative a to c. Give an example of a profile where the society’s

preferences are not transitive.

43. The following exercise was suggested by William Zwicker. Let’s

say that P1 and P2 are disjoint profiles if no voter is in both P1

and P2. For example, P1 might be the following profile (involving

voters 1–17):
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Voters 1–8 Voters 9–11 Voters 12–13 Voters 14–17

a b c d

b c b a

c d d c

d a a b

and P2 might be the following profile (involving voters 18–34):

Voters 18–25 Voters 26–28 Voters 29–30 Voters 31–34

a c b d

c b c a

b d d b

d a a c

When P1 and P2 are disjoint in this way, P1+P2 represents the com-

bined election. Thus, in our example above, P1 + P2 has 34 voters.

A social choice function is weakly consistent if for every pair of

disjoint profiles P1 and P2 (for the same set of alternatives), if an

alternative x is among the winners in the P1 election and among the

winners in the P2 election, then it is also among the winners in the

P1 + P2 election.

(a) Use the above profiles to prove that the Hare system is not

weakly consistent.

(b) Using a few sentences, prove that the plurality procedure is

weakly consistent.

(c) Using a few sentences, prove that the Borda count is weakly

consistent.

J. Smith and H. P. Young used a stronger form of consistency to

help characterize an important class of voting rules called scoring

rules. The plurality procedure and the Borda count are each scoring

rules.

44. Essay Question: Arrow’s theorem proves that there is no perfect

social choice procedure, but some are certainly better than others.

Which social choice procedure do you believe the United States

should use to elect its president (within the framework of the

Electoral College)?
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C H A P T E R
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2.1 INTRODUCTION

In Chapter 1, we considered voting systems in which the voters were

choosing among several candidates or alternatives. In the present

chapter, we deal with quite a different voting situation—the one in

which a single alternative, such as a bill or an amendment, is pitted

against the status quo. In theses systems each voter responds with a

vote of “yea” or “nay.” A yes–no voting system is simply a set of rules

that specifies exactly which collections of “yea” votes yield passage of

the issue at hand.

We begin in Section 2.2 with four real-world examples of yes–no

voting systems, including the all-important U. S. federal system. In

Section 2.3 we introduce the notion of a “weighted system.” These are

important because they are the ones that we feel we understand (in

some sense) the best. We show that—surprisingly—the voting system

used in the U. N. Security Council is a weighted system. This result

suggests the tantalizing possibility that all yes–no voting systems are

weighted.
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In Section 2.4 we show that, alas, the U. S. federal system is not a

weighted voting system. We do this via a notion known as swap robust-

ness. We show that every weighted system is swap robust, but the U. S.

federal system is not swap robust. In Section 2.5 we generalize the

notion of swap robustness to something called trade robustness, and

we show that the 1982 procedure to amend the Canadian constitution

is swap robust but not trade robust. We conclude in Section 2.6 by

stating the characterization theorem asserting that trade robustness

and weightedness are fully equivalent.

For a monograph-length treatment of yes–no voting systems, see

the 1999 book Simple Games by Alan Taylor and William Zwicker.

...........................................................................................................

2.2 FOUR EXAMPLES OF YES–NO VOTING SYSTEMS

Example 1: The European Economic Community

In 1958, the Treaty of Rome established the existence of a yes–no voting

system called the European Economic Community. The voters in this

system were the following six countries:

France

Germany

Italy

Belgium

the Netherlands

Luxembourg.

France, Germany, and Italy were given four votes each, while

Belgium and the Netherlands were given two votes and Luxembourg

one. Passage required a total of at least twelve of the seventeen votes.

The European Economic Community was altered in 1973 with the

addition of new countries and a reallocation of votes. This version of

the European Economic Community is discussed later.

Example 2: The United Nations Security Council

The voters in this system are the fifteen countries that make up the

Security Council, five of which (China, England, France, Russia, and

the United States) are called permanent members whereas the other
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ten are called nonpermanent members. Passage requires a total of at

least nine of the fifteen possible votes, subject to a veto due to a nay

vote from any one of the five permanent members. (For simplicity, we

ignore the possibility of abstentions.)

Example 3: The United States Federal System

There are 537 voters in this yes–no voting system: 435 members of the

House of Representatives, 100 members of the Senate, the vice presi-

dent, and the president. The vice president plays the role of tiebreaker

in the Senate, and the president has veto power that can be overridden

by a two-thirds vote of both the House and the Senate. Thus, for a bill

to pass it must be supported by either:

1. 218 or more representatives and 51 or more senators (with or

without the vice president) and the president.

2. 218 or more representatives and 50 senators and the vice

president and the president.

3. 290 or more representatives and 67 or more senators (with or

without either the vice president or the president).

Example 4: The System to Amend the Canadian Constitution

Since 1982, an amendment to the Canadian Constitution becomes law

only if it is approved by at least seven of the ten Canadian provinces

subject to the proviso that the approving provinces have, among them,

at least half of Canada’s population. For our purposes, it will suffice to

work with the following population percentages for the ten Canadian

provinces, based on Statistics Canada estimates as of January 1, 2007

(rounded):

Prince Edward Island (0%)

Newfoundland (2%)

New Brunswick (2%)
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Nova Scotia (3%)

Saskatchewan (3%)

Manitoba (4%)

Alberta (11%)

British Columbia (13%)

Quebec (23%)

Ontario (39%)

In a yes–no voting system, any collection of voters is called a coali-

tion. A coalition is said to be winning if passage is guaranteed by yes

votes from exactly the voters in that coalition. Coalitions that are not

winning are called losing. Thus, every coalition is either winning or

losing. In Example 1, the coalition made up of France, Germany, and

Italy is a winning coalition, as is the coalition made up of France,

Germany, Italy, and Belgium. Note that when one asserts that a col-

lection of voters is a winning coalition, nothing is being said about

how these players actually voted on a particular issue. One is simply

saying that if these people voted for passage of some bill and the other

players voted against passage of that bill, the bill would, in fact, pass.

For most yes–no voting systems, adding extra voters to a win-

ning coalition again yields a winning coalition. Systems with this

property are said to be monotone. For monotone systems, one can con-

centrate on the so-called minimal winning coalitions: those winning

coalitions with the property that the deletion of one or more voters

from the coalition yields a losing coalition. In our example above,

France, Germany, and Italy make up a minimal winning coalition,

while France, Germany, Italy, and Belgium do not. (In the European

Economic Community, the minimal winning coalitions are precisely

the ones with exactly twelve votes—see Exercise 2.)
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...........................................................................................................

2.3 WEIGHTED VOTING AND THE U.N. SECURITY

COUNCIL

The four examples of yes–no voting systems in the last section suggest

there are at least three distinct ways in which a yes–no voting system

can be described:

1. One can specify the number of votes each player has and how

many votes are needed for passage. This is what was done for

the European Economic Community. More generally, if we start

with a set of voters, then we can construct a yes–no voting sys-

tem by assigning real number weights to the voters (allowing for

what we might think of as either a fractional number of votes

for some voter, or even a negative number of votes) and then set

any real number q as the “quota.” A coalition is then declared to

be winning precisely when the sum of the weights of the voters

who vote “yea” meets or exceeds the quota. (Even in the real

world, quotas can be less than half the sum of the weights—see

Exercise 1.)

2. One can explicitly list the winning coalitions, or, if the system is

monotone, just the minimal winning coalitions. This is essen-

tially what is done in the description of the U.S. federal system

above, since the three clauses given there describe the three

kinds of winning coalitions in the U.S. federal system. In fact, if

one deletes the parenthetical clauses and the phrase “or more”

from those descriptions, the result is a description of the three

kinds of minimal winning coalitions in the U.S. federal system.

3. One can use some combination of the above two, with provisos

that often involve veto power. Both the U.N. Security Coun-

cil and the procedure to amend the Canadian Constitution are

described in this way. Moreover, the description of the U.S.

federal system in terms of the tie-breaking vote of the vice pres-

ident, the presidential veto, and the Congressional override of

this veto is another example of a description mixing weights

with provisos and vetoes. (We say “weights” in this context since,
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for example, one can describe majority support in the House by

giving each member of the House weight one and setting the

quota at 218, and two-thirds support from the House by setting

the quota at 290.)

The following observation is extremely important for everything we

shall do in this chapter: A given yes–no voting system typically can be

described in more than one way.

For example, instead of using weights, we could have described the

European Economic Community by listing the fourteen winning coali-

tions. A similar comment applies to the U.N. Security Council. In fact,

every yes–no voting system can be described by simply listing the win-

ning coalitions. Conversely, any collection of subsets of voters gives us

a yes–no voting system, although most of the systems arrived at in this

way would be of little interest.

These observations lead to the central definition of this chapter.

DEFINITION. A yes–no voting system is said to be a weighted system if

it can be described by specifying real number weights for the voters and

a real number quota—with no provisos or mention of veto power—such

that a coalition is winning precisely when the sum of the weights of the

voters in the coalition meets or exceeds the quota.

Example 1 (not surprising): The European Economic Community

is a weighted voting system.

There is no doubt about this, since we described the system by

explicitly producing the weights and the quota. Consider, however:

Example 2 (surprising): The U.N. Security Council is also a weighted

voting system.

This is not obvious. Although our description of this voting sys-

tem did involve weights (weight one for each of the fifteen members)

and a quota (nine), it also involved the statement that each of the five

permanent members has veto power.

So how does one show that a given yes–no voting system is, in fact,

weighted? The answer is that one must find (that is, produce) weights

for each of the voters and produce a quota q so that the winning coali-

tions are precisely the ones with weight at least q. The difficulty with



2.3. Weighted Voting and the U.N. Security Council 55

doing this for the U.N. Security Council is that we must somehow

assign extra weight (but how much?) to the permanent members in

such a way that this weight advantage alone builds in the veto effect.

Here is the intuition behind our method of finding a set of weights

and a quota q that will prove the U.N. Security Council is a weighted

voting system. Since all of the nonpermanent members clearly have the

same influence, we will begin by assigning them all the same weight,

and we will take this weight to be 1. The five permanent members also

have the same influence and so we will (temporarily) assign them all

the same unknown weight x. Now, exactly what must x and q satisfy

for this to work?

Consider a coalition made up of all ten nonpermanent members

together with any four permanent members. This has weight 4x +
10, and must be losing since the one permanent member not in the

coalition has veto power. Thus 4x+10 < q. On the other hand, the five

permanent members together with any four nonpermanent members

is a winning coalition, and so q ≤ 5x+4. Putting these two inequalities

together yields 4x + 10 < 5x + 4, and so 6 < x.

The previous two paragraphs suggest that in our pursuit of weights

and quota, we try weight 1 for the nonpermanent members and weight

7 for the permanent members. Our inequalities

4x + 10 < q and q ≤ 5x + 4

now imply that 38 < q ≤ 39. Thus, we certainly want to try q = 39.

It will now be relatively easy to demonstrate that these weights and

quota do, indeed, show that the U.N. Security Council is a weighted

voting system. (We should also note that to prove a system is weighted,

it suffices to produce the weights and quota and show they “work.” It

is not necessary to explain how you found them.) The argument we

seek runs as follows.

PROPOSITION. The U.N. Security Council is a weighted system.

PROOF. Assign weight 7 to each permanent member and weight 1 to

each nonpermanent member. Let the quota be 39. We must now show

that each winning coalition in the U.N. Security Council has weight at

least 39, and that each losing coalition has weight at most 38.
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A winning coalition in the U.N. Security Council must contain all five

permanent members (a total weight of 35) and at least four nonperma-

nent members (an additional weight of 4). Hence, any winning coalition

meets or exceeds the quota of 39. A losing coalition, on the other hand,

either omits a permanent member, and thus has weight at most

(7 × 4) + (1 × 10) = 28 + 10 = 38,

or contains at most three nonpermanent members, and thus has weight

at most

(7 × 5) + (1 × 3) = 35 + 3 = 38.

Hence, any losing coalition falls short of the quota of 39. This completes

the proof.

It turns out that if one alters any weighted voting system by giving

one or more of the voters veto power, the resulting yes–no voting sys-

tem is again a weighted voting system. See Exercises 5 and 6 at the

end of the chapter.

A natural response to what we have done so far is to conjecture that

every yes–no voting system is weighted. Perhaps, for example, even for

the U.S. federal system, we can do something as clever as what we

just did for the U.N. Security Council to find weights and a quota that

work. Alas, this turns out not to be the case, as we will see in the next

section.

...........................................................................................................

2.4 SWAP ROBUSTNESS AND THE

NONWEIGHTEDNESS OF THE FEDERAL SYSTEM

The U.S. federal system, it turns out, is not a weighted voting sys-

tem. But how does one prove that a system is not weighted? Surely

we cannot simply say that we tried our very hardest to find weights

and a quota and nothing that we tried appeared to work. Asserting

that a system is not weighted is saying no one will ever find weights

and a quota that describe the system. Moreover, we cannot check all

possible choices of weights and quota since there are infinitely many

such choices.
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Here is one answer. To prove that the U.S. federal system is not

weighted, it suffices to find a property that we can prove

1. holds for every weighted voting system, and

2. does not hold for the U.S. federal system.

One such property is given in the following definition:

DEFINITION. A yes–no voting system is said to be swap robust if a one-

for-one exchange of players (a “swap”) between two winning coalitions

X and Y leaves at least one of the two coalitions winning. One of the

players in the swap must belong to X but not Y , and the other must

belong to Y but not X.

Thus, to prove that a system is swap robust, we must start with two

arbitrary winning coalitions X and Y , and an arbitrary player x that is

in X but not in Y , and an arbitrary player y that is in Y but not in X . We

then let X ′ and Y ′ be the result of exchanging x and y. (Thus, x is now

in Y ′ but not X ′, while y is in X ′ but not Y ′.) We must then show that

either X ′ or Y ′ is winning. To illustrate this, consider the following.

PROPOSITION. Every weighted voting system is swap robust.

PROOF. Assume we have a weighted voting system and two arbitrary

winning coalitions X and Y with X containing at least one voter x not in

Y and Y containing at least one voter y not in X. Suppose now that voter

x from the winning coalition X is exchanged for voter y from the winning

coalition Y to yield X ′ and Y ′ as above. If x and y have the same weight

then both X ′ and Y ′ are winning, since X ′ weighs the same as X and

Y ′ weighs the same as Y . If, on the other hand, x is heavier than y, it

then follows that Y ′ weighs strictly more than Y , since Y ′ was obtained

by deleting y and adding the heavier x. Thus the weight of Y ′ certainly

exceeds the quota, and thus Y ′ is winning as desired. (In this latter

case, X ′ may or may not be winning.) If y is heavier than x, then the

argument is analogous to what we just gave. This completes the proof.

Our goal now is to show that a particular yes–no voting system—the

U.S. federal system—is not swap robust. To do this we must produce
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two winning coalitions X and Y and a trade between them that renders

both losing. Intuitively, X and Y should both be “almost losing” (in the

sense that we hope to make both actually losing by a one-for-one trade).

Thus, we will try to find appropriate X and Y among the minimal

winning coalitions. (Results related to this are in Exercise 17.)

The key to showing that the U.S. federal system is not swap robust

is the following observation: if one begins with two minimal winning

coalitions in the U.S. federal system and swaps a senator for a House

member, then both coalitions become losing (as desired) since one

of the resulting coalitions has too few senators (although a surplus of

House members) and the other has too few House members (although

a surplus of senators). If we simply formalize this slightly, we have:

PROPOSITION. The U.S. federal system is not swap robust.

PROOF. Let X consist of the president, the 51 shortest senators, and

the 218 shortest members of the House. Let Y consist of the president,

the 51 tallest senators, and the 218 tallest members of the House.

Now let x be the shortest senator and let y be the tallest member of

the House. Notice that both X and Y are winning coalitions, and that x

is in X but not in Y and y is in Y but not in X. Let X ′ and Y ′ be the result

of swapping x for y. Then X ′ is a losing coalition because it has only 50

senators, and Y ′ is a losing coalition because it has only 217 members

of the House. Thus, the U.S. federal system is not swap robust.

Notice that a “swap” cannot involve a voter who is a member of

both of the coalitions with which we begin. We avoided this in the

above proof by making x the shortest senator whereas Y involved the

51 tallest senators. This is why x was definitely in X but not in Y .

An immediate consequence of the above theorem is the following

corollary:

COROLLARY. The U.S. federal system is not a weighted voting

system.

PROOF. If the U.S. federal system were weighted, then it would be

swap robust by the first proposition in this section. But this would then

contradict the proposition we just proved.
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...........................................................................................................

2.5 TRADE ROBUSTNESS AND THE

NONWEIGHTEDNESS OF THE

CANADIAN SYSTEM

Section 2.4 provided us with a very nice way to show that the U. S.

federal system is not weighted—we simply showed that it is not swap

robust. But will this technique always work? That is, if a yes–no voting

system is truly not weighted, can we always prove it is not weighted

(assuming we are clever enough) by showing that it is not swap robust?

Here is another way to ask this same question. The first proposition

in Section 2.4 asserts that if a yes–no voting system is weighted, then it

is swap robust. The converse of this “if-then” statement is the following

assertion (which we are not claiming is true): if a yes–no voting system

is swap robust, then it is weighted. (Equivalently, if a yes–no voting

system is not weighted, then it is not swap robust.) Just because an

if-then statement is true, we cannot conclude that its converse is also

true. (For example, the statement: “if a number is larger than 10, then

it is larger than 8,” is true, but the number 9 shows that its converse is

false.) Thus, the question in the previous paragraph can be recast as

simply asking if the converse of the first proposition in Section 2.4 is

true. If the converse were true, this would say that weightedness and

swap robustness are fully equivalent in the sense that a yes–no voting

system would satisfy one of the properties if and only if it satisfied the

other property.

It turns out, however, that the converse of the first proposition in

Section 2.4 is false. That is, there are yes–no voting systems that are

not weighted, but nevertheless are swap robust. Hence, we cannot

prove that such a system fails to be weighted by using swap robust-

ness as we did for the U.S. federal system. This raises the question of

exactly how one shows that such a system is not weighted. Answering

this question is the primary goal of this section, but we begin with the

following.

PROPOSITION. The procedure to amend the Canadian Constitution

is swap robust (although we shall show later that it is not weighted).

PROOF. Suppose that X and Y are winning coalitions in the system for

amending the Canadian Constitution, and that x is a province (“voter”)
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in X but not in Y and that y is a province in Y but not in X. Let X ′ and

Y ′ be the result of swapping x for y. We must show that at least one of

X ′ and Y ′ is still a winning coalition. That is, we must show that at least

one of X ′ and Y ′ still satisfies both of the following conditions:

1. It contains at least seven provinces.

2. The provinces it contains represent at least half of the Canadian

population.

Note, however, that both X ′ and Y ′ certainly satisfy condition 1, since

each of the two coalitions started with at least seven provinces, and we

simply did a one-for-one swap of provinces to obtain X ′ and Y ′. The rest

of the argument is now reminiscent of the proof that a weighted system

is swap robust. That is, if x has more population than y, then Y ′ is a

winning coalition since it has more population than Y , and so it satisfies

condition 2 since Y satisfied condition 2. If, on the other hand, y has

more population than x, then X ′ is a winning coalition by an analogous

argument. This completes the proof.

Our parenthetical remark in the statement of the above proposition

promised a proof that the procedure to amend the Canadian Constitu-

tion is not weighted. But how do we do this? The answer lies in finding

a stronger property than swap robustness that, like swap robustness,

holds for every weighted voting system but that does not hold for the

procedure to amend the Canadian Constitution. One such property

that naturally suggests itself is the following strengthening of swap

robustness:

DEFINITION. A yes–no voting system is said to be trade robust if an

arbitrary exchange of players (that is, a series of trades involving groups

of players) among several winning coalitions leaves at least one of the

coalitions winning.†

†There are some subtleties here that need not concern a student. For example, we really
are working with sequences of coalitions instead of sets of coalitions. For a thorough
treatment, see Taylor-Zwicker, 1999.
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Thus, trade robustness differs from swap robustness in two impor-

tant ways:

1. In trade robustness, the exchanges of players are not necessarily

one-for-one as they are in swap robustness.

2. In trade robustness, the trades may involve more than two

coalitions.

The following is the expected strengthening of the first proposition

in Section 2.4.

PROPOSITION. Every weighted voting system is trade robust.

PROOF. Notice that a series of trades among several winning coali-

tions leaves the number of coalitions to which each voter belongs

unchanged. Thus, the total weight of all the coalitions added together

is unchanged. Moreover, since the total number of coalitions is also

unchanged, it follows that the average weight of these coalitions is

unchanged as well.

Thus, if we start with several winning coalitions in a weighted voting

system, then all of their weights at least meet quota. Hence, their aver-

age weight at least meets quota. After the trades, the average weight of

the coalitions is unchanged and so it still at least meets quota. Thus, at

least one of the coalitions must itself meet quota (since the average of

a collection of numbers each less than quota would itself be less than

quota). Hence, at least one of the coalitions resulting from the trades

is winning, as desired.

To conclude that the system to amend the Canadian Constitution is

not weighted, it suffices to establish the following:

PROPOSITION. The procedure to amend the Canadian Constitution

is not trade robust.

PROOF. Let X and Y be the following winning coalitions (with percent-

ages of population residing in the provinces also given):
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X Y

Prince Edward Island (0%) New Brunswick (2%)

Newfoundland (2%) Nova Scotia (3%)

Manitoba (4%) Manitoba (4%)

Saskatchewan (3%) Saskatchewan (3%)

Alberta (11%) Alberta (11%)

British Columbia (13%) British Columbia (13%)

Quebec (23%) Ontario (39%)

Now let X ′ and Y ′ be obtained by trading Prince Edward Island and

Newfoundland for Ontario. It then turns out that X ′ is a losing coali-

tion because it has too few provinces (having given up two provinces

in exchange for one), while Y ′ is a losing coalition because the eight

provinces in Y ′ represent less than half of Canada’s population.

COROLLARY. The procedure to amend the Canadian Constitution

is not a weighted voting system.

Lani Guinier was nominated by President Clinton to be his assistant

attorney general for civil rights. Her nomination was later withdrawn,

in part because some of her views were considered radical. One such

view involved the desirability (in certain circumstances) of a “minority

veto.” Interestingly, this idea also leads to a system that is swap robust

but not trade robust. See Exercise 17.

...........................................................................................................

2.6 STATEMENT OF THE CHARACTERIZATION THEOREM

In this section, we conclude with what might be described as the “evo-

lution of a theorem.” This evolution is worth a moment’s reflection,

as it serves to illustrate how theorems not only answer questions, but

raise new ones as well.

With the observation that the U.N. Security Council is a weighted

voting system, the following question naturally suggests itself:

Is every yes–no voting system a weighted system?
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The U.S. federal system, however, provides a negative answer to this

question, since it is not swap robust while every weighted voting

system is swap robust.

With this observation, one might be tempted to think that the only

thing preventing a yes–no voting system from being weighted is a lack

of swap robustness. Thus, one might conjecture that the following is

true (although it turns out not to be):

A yes–no voting system is weighted if and only if it is swap robust.

The procedure to amend the Canadian Constitution, however, shows

that this conjecture is false, since it is swap robust but not weighted.

But the proof that this system is not weighted suggests that the intu-

ition behind the above conjecture might have been sound, with its

failure resulting from the limited kind of trades involved in the notion

of swap robustness. This leads quite naturally to the notion of trade

robustness, and the conjecture that trade robustness exactly character-

izes the weighted voting systems. This conjecture, in fact, turns out to

be true, although its proof will not be given here. The result is proven

in Taylor and Zwicker (1992,1999), although its precursor goes back

several decades to Elgot (1960).

THEOREM. A yes–no voting system is weighted if and only if it is

trade robust.

It would be nice if trade robustness could be defined in terms of

trades between only two coalitions. This turns out not to be the case.

In Chapter 8, we consider this particular issue and others related to

yes–no voting systems, and we show that if one generalizes the notions

of “weights” and “quota” from numbers to vectors (defined later), then

every yes–no voting system is a “vector-weighted” system.

...........................................................................................................

2.7 CONCLUSION

In this chapter we considered voting systems in which a single alter-

native, such as a bill or an amendment, is pitted against the status

quo. Four examples of such yes–no voting systems were presented:
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the European Economic Community, the U.N. Security Council, the

U.S. federal system, and the 1982 procedure to amend the Canadian

Constitution.

Bydefinition,ayes–novotingsystemisweighted if it canbedescribed

by specifying a weight for each player and a quota so that the winning

coalitions are precisely the ones whose total weight meets or exceeds

the quota. (Such a description cannot involve provisos involving things

like veto power.) We showed that the European Economic Commu-

nity is obviously a weighted voting system, and that the U.N. Security

Council is also a weighted voting system, although this is a little less

obvious.

The remainder of this chapter dealt with the question of how one

shows that a given yes–no voting system is not weighted. In fact,

we showed that neither the U.S. federal system nor the procedure to

amend the Canadian Constitution is a weighted voting system. For the

former, we proved that every weighted voting system is swap robust

(that is, a one-for-one swap of players between two winning coalitions

leaves at least one of the resulting coalitions winning), but the U.S.

federal system is not swap robust (we traded a senator for a member

of the House, thus rendering two minimal winning coalitions losing).

We showed that this approach, however, would not work for the proce-

dure to amend the Canadian Constitution, since this system is, in fact,

swap robust. Thus, we introduced a stronger property, called trade

robustness, that we could show holds for every weighted system, but

does not hold for the procedure to amend the Canadian Constitution.

From a practical point of view, this chapter has provided some fairly

easy to use techniques to show that certain yes–no voting systems are

not weighted. We concluded with a statement of the theorem that char-

acterizes weighted voting systems as precisely those that are trade

robust.

EXERCISES

1. One way to have a case heard by the Supreme Court of the United

States involves what is called a grant of certiorari. The effect of

this is that a case will be considered by the court if at least four

of the nine justices deem the issue worthy of further consideration.

Explain how this corresponds to a weighted yes–no voting system
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with quota less than half the sum of the weights. Can this give rise

to paradoxical situations? Why or why not? Can you think of similar

situations where a quota of less than half the sum of the weights

might make sense?

2. Explain why the minimal winning coalitions in the European Eco-

nomic Community are precisely the ones having exactly twelve

votes. (First explain why it is that if a coalition has exactly twelve

votes, then it is a minimal winning coalition. Then explain why it is

that if a coalition has either fewer than twelve votes or more than

twelve votes, then it is not a minimal winning coalition.)

3. Suppose you are lobbying for a resolution that is being placed before

the European Economic Community. Disregarding the influence var-

ious nations have on one another through discussion and debate,

how important to you is Luxembourg’s support when it comes time

to actually vote on the issue. (“Not very important” is not a very

good answer.)

4. Suppose the U.N. Security Council had eight nonpermanent mem-

bers and three permanent members with passage requiring a total

of seven votes subject to the veto power of each of the permanent

members. Prove that this is a weighted voting system. (Include a

discussion—as in the text—showing how you found the appropriate

weights and quota.)

5. Suppose we have a four-person weighted voting system with pos-

itive weights a, b, c, and d for the voters named A, B, C, and D,

respectively. Assume the quota is the number q. Now suppose we

create a new yes–no voting system by adding a clause that gives

voter A veto power. Show that this is also a weighted voting system.

(Hint: Let r = a+b+c+d and then take the weights to be a+r, b, c,

and d. Set the quota at q+ r.)

6. Show that if a weighted voting system is altered by giving veto

power to some of the voters, then the resulting yes–no voting sys-

tem is again a weighted voting system. (To get started notationally,

assume the voters are named v1, . . . , vk, pk+1, . . . , pn, with weights

w1, . . . ,wn and suppose we want to give veto power to v1, . . . , vk.)

7. Suppose that five people—named A, B, C, D, and E—are seated at

a circular table with A next to B next to C next to D next to E next to

A. Suppose we form a yes–no voting system by declaring a coalition

to be winning if and only if it contains at least three people seated
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next to one another (for example: D, E, and A make up a winning

coalition). List the minimal winning coalitions and then determine if

this system is swap robust. Is it weighted?

8. The Bennet family consists of both parents, Tom and Jane, and

the three children Rachel, Melissa, and Rob. When making major

decisions like whether to go to Cape Cod again this year for vacation

or try something new, they use the following voting system: To pass,

any decision must have the support of at least one parent and two

children.

(a) List all winning coalitions.

(b) Is this voting system swap robust? Either explain why it is in

two or three sentences, or produce two winning coalitions and

a swap that illustrate why it is not.

9. The math department at the local college uses the following yes–

no voting system to make decisions. All assistant professors have

one vote, all associate professors have three votes, and all full

professors have five votes. For a proposal to pass, it must have the

support of:

(i) at least one-third of the total number of assistant professors,

(ii) at least half of the total number of full professors, and

(iii) at least half of the total number of possible votes.

(a) Suppose the department has 10 full professors, 4 associate

professors, and 6 assistant professors. If the proposal to

require all assistant professors to give weekend lectures at the

local elementary school has the support of 7 full professors,

2 associate professors, and no assistant professors, does it

pass?

(b) Suppose the department has 4 full professors, 2 associate pro-

fessors, and 2 assistant professors. List all winning coalitions.

(c) Is the system described above swap robust?

(d) Is the system described above a weighted voting system?

10. A board of directors for a small corporation consists of three mem-

bers: Derek with 5 votes as the largest shareholder, Christina with

3 votes as the next largest shareholder, and Isabelle with 2 votes

as the smallest shareholder. The quota for passage of any issue

is 7 votes. Prove that although each of the three directors has a

different number of votes, each has equal power in the sense that
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no one voter can singlehandedly pass a motion and any two voters

can pass any motion.

11. Suppose we have a “minority veto” yes–no voting system with five

voters: majority voters A,B,C and minority voters R and S. Passage

requires a total of at least three votes, at least one of which must

be a minority voter. Is this a weighted voting system? If so, find

weights for each voter and a quota.

12. Consider the version of the UN Security Council in which there are

2 non-permanent members, 4 permanent members, and passage

requires at least 5 of the 6 subject to a veto by any of the 4

permanent members.

(a) Find weights and a quota showing that this is weighted.

(b) Show that the weights and quota you found in part (a) work.

13. Consider the version of the UN Security Council in which there

are 8 non-permanent members, 3 permanent members, and pas-

sage requires at least 6 of the 11 subject to a veto by any of the

3 permanent members.

(a) Find weights and a quota showing that this is weighted.

(b) Show that the weights and quota you found in part (a) work.

14. Suppose the voters are the numbers 1, 2, 3, 4, and 5, and that

the winning coalitions are the ones that contain at least three

consecutive numbers. Determine if this is a weighted voting system.

15. Suppose we have four voters: A1, A2, A3, and A4. Let S2 denote the

yes–no voting system wherein a coalition X is winning if and only if:

(i) at least one of A1 and A2 is in X, and

(ii) at least one of A3 and A4 is in X.

Prove that S2 is not weighted.

16. One of the early proposals for a system to amend the Canadian Con-

stitution was the 1971 Victoria Charter. In this system, Ontario and

Quebec were given veto power, winning coalitions had to contain

at least two of the western provinces (Manitoba, Saskatchewan,

Alberta, and British Columbia) representing at least half of the pop-

ulation of the western provinces, and they had to contain at least

two of the Atlantic provinces (Newfoundland, Prince Edward Island,

Nova Scotia, and New Brunswick). Prove that this is not a weighted

voting system.

17. The following is a simple example (suggested by Matthew Frisoni

while he was a student at Siena College) of what Lani Guinier had in
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mind as a “minority veto system.” Assume we have a majority group

consisting of five voters: A, B, C, D, E, and a minority group consist-

ing of three voters: F, G, and H. Assume that passage requires not

only approval of at least five of the eight voters, but also approval

of at least two of the three minority voters.

(a) Prove that this system is swap robust.

(b) Prove that this system is not trade robust.

18. In a yes–no voting system, a dummy voter is a voter whose addition

to a losing coalition never renders it winning.

Sarah and Tim propose a voting system to their younger siblings

by which they can all make decisions. Sarah and Tim, the 16-year

old twins, will each receive 6 votes. Cindy who is half their age, gets

two votes, and Andy, the 5-year old, gets 1 vote.

(a) Find a quota for the system for which there are no dummy

voters.

(b) Find a quota for the system for which both Cindy and Andy are

dummy voters.

(c) Find a quota for the system for which Andy alone is a dummy

voter.

19. A dictator in a yes–no voting system is a voter who is a mem-

ber of every winning coalition and is not a member of any losing

coalitions.

(a) Prove that Ed is a dictator in the following yes–no voting sys-

tem: Ed has 10 votes, Josh has 5 votes, Will has 4 votes, and

Sean has 2 votes. The quota is 12.

(b) Is it possible for a yes–no voting system to have a dictator

without any dummy voters?

20. Let’s agree to call a yes–no voting system M-swap robust (“M” for

“minimal”) if a one-for-one exchange of players between twominimal

winning coalitions leaves at least one of the two coalitions winning.

(a) Prove that there is an M-swap robust yes–no voting system that

is not swap robust. (Hint: Let the voters be x, y, a, b, and let

the winning coalitions be xab, yb, x, a, b, y.)

(b) Prove that every monotone M-swap robust yes–no voting sys-

tem is swap robust. (Hint: Work with the contrapositive, that

is, assume we have an arbitrary yes–no voting system that is

not swap robust, and then show that it is not M-swap robust.

This takes a little thought.)
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21. Suppose we want to specify a notion of “winning coalition” by explic-

itly listing those subsets that we wish to have so designated. If our

notion is to be a reasonable one, which of the following properties

should be satisfied?

(a) If X is a winning coalition and every voter in X is also in Y , then

Y is also a winning coalition.

(b) If X and Y are winning coalitions, then so is the coalition

consisting of voters in both X and in Y .

(c) If X is a winning coalition and every voter in Y is also in X, then

Y is also a winning coalition.

(d) If X and Y are disjoint (that is, have no voters in common), then

at least one fails to be a winning coalition.

(e) If X and Y are winning coalitions, then so is the coalition

consisting of voters in either X or in Y .

(f) If X is the set of all players, then X is a winning coalition.

(g) If X is the empty set, then X is a winning coalition.

(h) If X is a winning coalition and X is split into two sets Y and Z

so that every voter in X is in exactly one of Y and Z, then either

Y is a winning coalition or Z is a winning coalition.

22. Suppose that we have a yes–no voting system with three voters

A,B, and C, where the winning coalitions are as follows:

ABC,AB,AC,A.

(a) Is there a dictator in this voting system?

(b) Are there any dummy voters?

23. Is the yes–no voting system in the previous exercise trade robust?

24. Suppose we have a yes–no voting system with four voters A,B,C,

and D, where the winning coalitions are as follows:

ABCD,ABC,ABD,ACD,BCD,AB,AD.

Is this a weighted voting system? If so, find weights for each voter

and a quota.

25. Prove that a yes–no voting system is weighted if and only if it is pos-

sible to assign weights to the voters so that every winning coalition

is strictly heavier than every losing coalition.
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26. Consider the 6-person voting system in which voters A,B, and C

belong to chamber 1, and voters D, E, and F belong to chamber

2. Suppose that a coalition is winning precisely when it contains

at least 2 voters from each chamber. Prove that this system is not

swap robust.

27. Suppose we have a 7-person yes–no voting system with a 4-person

House H = {a, b, c, d} and a 3-person Senate S = {x, y, z}. Suppose
that a coalition is winning when it has a total of at least 3 voters,

at least one of which is from the Senate.

(a) Prove or disprove that this system is swap robust.

(b) Prove or disprove that this system is trade robust.

28. Suppose that a yes–no voting system is swap robust, and that we

create a new yes–no voting system by giving voter p veto power

(thus, a coalition is winning in the new system precisely when it is

both winning in the old system and contains the voter p).

(a) Prove that the new system is swap robust.

(b) If we alter a yes–no voting system by giving 3 voters veto power,

is it still swap robust (why or why not)?

29. Use trade-robustness to prove that if we have a weighted yes–no

voting system, and we create a new system by giving some of the

voters veto power, then the resulting system is still weighted.
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3.1 INTRODUCTION

One of the central concepts of political science is power. While power

itself is certainly many-faceted (with aspects such as influence and

intimidation coming to mind), our concern is with the narrower

domain involving power as it is reflected in formal voting situations

(most often) related to specific yes–no issues. If everyone has one vote

and majority rule is being used, then clearly everyone has the same

amount of “power.” Intuition might suggest that if one voter has three

times as many votes as another (and majority rule is still being used

in the sense of “majority of votes” being needed for passage), then

the former has three times as much power as the latter. The following

hypothetical example should suffice to call this intuition (or this use

of the word power) into question.

Suppose the United States approaches its neighbors Mexico and

Canada with the idea of forming a three-member group analogous to

the European Economic Community as set up by the Treaty of Rome

in 1958. Recall that France, Germany, and Italy were given four votes

each, Belgium and the Netherlands two each, and Luxembourg one

vote, for a total of seventeen votes, with twelve of the seventeen votes
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needed for passage. Now suppose that in our hypothetical example

we suggest mimicking this with the United States getting three votes

while each of its two smaller neighbors gets one vote. With this total of

five votes we could also suggest using majority rule (three or more out

of five votes) for passage and argue that it is not unreasonable for the

United States to have three times as much “power” as either Canada

or Mexico. In this situation it is certainly unlikely that either Canada

or Mexico would be willing to go along with the previously suggested

intuition aligning “three times as many votes” with “three times as

much power.”

In the hypothetical example above, Canada and Mexico have no

“power” (although they have votes). So what is this aspect of power that

they are completely without? As an answer, “control over outcomes”

suggests itself, and, indeed, much of the present chapter is devoted to

quantitative measures of power that directly incorporate this control-

over-outcomes aspect of power. (It also turns out—and we’ll discuss

this in more detail later—that these quantitative measures of power

indicate that Luxembourg fared no better in the original European

Economic Community of 1958 than would Canada and Mexico in our

hypothetical example.)

In Section 3.2 we consider the most well-known cardinal notion of

power: the Shapley–Shubik index. This notion of power applies to any

yes–no voting system (and not just to weighted voting systems). The

mathematical preliminaries involved here include the “multiplication

principle” and its corollary giving the number of distinct arrangements

of n objects. In Section 3.3, we calculate the Shapley–Shubik indicies

for the European Economic Community, and we use later develop-

ments in this voting system to illustrate a phenomenon known as the

“paradox of new members” (where one’s power is actually increased

in a situation where it appears to have been diluted).

Section 3.4 contains the second most well-known cardinal notion

of power: the Banzhaf index. In Section 3.5, we introduce two meth-

ods, dating back to Allingham (1975) and Dahl (1957), for calculating

the Banzhaf index, and we illustrate these methods using both the

European Economic Community and a new paradox of Felsenthal and

Machover (1994) wherein a voter’s power, as measured by the Banzhaf

index, increases after giving away a vote. (A paradox, due to William
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Zwicker, that applies to the Shapley–Shubik index but not the Banzhaf

index is given in the exercises.)

Finally, in Section 3.6 we present an aspect of political power that is

quite different from those considered earlier in the chapter. The issue

here is a well-known paradox called the Chair’s paradox, and we use

it to illustrate that naïve measures of power need not correspond to

influence over outcomes.

Before continuing, we add one convention that will be in place

throughout this chapter (and Chapter 9):

CONVENTION. Whenever we say “voting system” we mean “monot-

one voting system in which the grand coalition (the one to which all

the voters belong) is winning, and the empty coalition (the one to which

none of the voters belong) is losing.”

With this convention at hand, we can now turn to our discussion of

power.

...........................................................................................................

3.2 THE SHAPLEY-SHUBIK INDEX OF POWER

We begin with some mathematical preliminaries. Suppose we have

n people p1, p2, . . ., pn where n is some positive integer. In how many

different ways (i.e., orders) can we arrange them? We check it for some

small values of n in Figure 1.

Notice how the orderings for n = 2 in Figure 1 arise from the single

ordering p1 for n = 1; that is, p2 can be placed in either the “box”

before the p1 or the “box” after the p1, as illustrated in Figure 2.

n = 1: clearly only one way p
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n = 2: two ways

n = 3: six ways
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Closer analysis reveals that the same thing is happening as we go

from the n = 2 case to the n = 3 case. That is, each of the two orderings

of p1 and p2 gives rise to three orderings of p1, p2, and p3 depend-

ing upon in which of the three boxes we choose to place p3. This is

illustrated in Figure 3.

If we were to display the n = 4 case as in Figure 1, then it should be

clear that for each of the six orderings of p1, p2 and p3 we’d have four

boxes in which to place p4. With four orderings so arising from each

of the previous six, we would see a total of twenty-four. Examining

the sequence of numbers that are suggesting themselves reveals the

following:

If n = 1, the number of orderings is 1.

If n = 2, the number of orderings is 2 = 2 × 1.

If n = 3, the number of orderings is 6 = 3 × 2 = 3 × 2 × 1.

If n = 4, the number of orderings is 24 = 4 × 6 = 4 × 3 × 2 =
4 × 3 × 2 × 1.

In general, the number of different ways that n people can be

arranged (i.e., ordered) is (n) × (n − 1) × (n − 2) × . . . × (3) × (2) × (1).

This number is called “n factorial” and is denoted by “n!” (e.g., 5! =
5 × 4 × 3 × 2 × 1 = 120). All of this is formalized in the following three

results.

PROPOSITION 1 (The Multiplication Principle). Suppose we are

considering objects each of which can be built in two steps. Suppose

there are exactly f (for “first”) ways to do the first step and exactly s (for

“second”) ways to do the second step. Then the number of such objects

(that can be built altogether) is the product f × s. (We are assuming

that different construction scenarios produce different objects.)
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FIGURE 4

PROOF. Consider Figure 4, where the dots (from now on called nodes)

labeled 1, 2, . . ., f on the first level represent the f ways to do the first

step in the construction process, and, for each of these, the nodes

labeled 1, 2, . . ., s represent the s ways to do the second step.

Notice that each node on level 2 (the so-called terminal nodes) cor-

responds to a two-step construction scenario. Moreover, the number of

terminal nodes is clearly f × s since we have f “clumps” (one for each

node on level 1) and each “clump” is of size s. This completes the proof.

Suppose now that we are building objects by a three-step process

where there are k1 ways to do the first step, k2 ways to do the second,

and k3 ways to do the third step. How many such objects can be con-

structed? The answer, it turns out, can be derived from Proposition 1

because we can regard this three-step process as taking place in two

“new steps” as follows:

1. New step one: same as old step one.

2. New step two: do the old step two and then the old step three.

Notice that Proposition 1 tells us there are k2 × k3 new step twos.

Since we know there are k1 new step ones, we can apply Proposition 1

again to conclude that the number of objects built by our new two-step

process (equivalently, by our old three-step process) is given by:

k1 × (k2 × k3) = k1 × k2 × k3.
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One could also derive this by looking at a version of Figure 4 with

three levels, and the general result—stated below as Proposition 2—is

usually derived via a proof technique known as mathematical induc-

tion. We’ll content ourselves here, however, with simply recording the

general result and the corollary.

PROPOSITION 2 (The General Multiplication Principle). Sup-

pose we are considering objects all of which can be built in n steps.

Suppose there are exactly k1 ways to do the first step, k2 ways to do

the second step, and so on up to kn ways to do the nth step. Then the

number of such objects (that can be built altogether) is

k1 × k2 × . . . × kn,

assuming that different construction scenarios produce different

objects.

As an application of Proposition 2, suppose we have n people and the

objects we are building are arrangements (i.e., orders) of the people.

Each ordering can be described as taking place in n steps as follows:

Step 1: Choose one person (from the n) to be first.

Step 2: Choose one person (from the remaining n − 1) to be

second.
...

Step n − 1: Choose one person (from the remaining 2) to be n − 1st.

Step n: Choose the only remaining person to be last.

Clearly there are n ways to do step 1, n − 1 ways to do step 2, n − 2

ways to do step 3, and so on down to 2 ways to do step n − 1 and 1

way to do step n. Thus, an immediate corollary of Proposition 2 is the

following:

COROLLARY. The number of different ways that n people can be

arranged is

n × (n − 1) × (n − 2) × · · · × (3) × (2) × (1),

which is, of course, just n! (factorial, not surprise).
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One final idea—that of a “pivotal player”—is needed before we can

present the formal definition of the Shapley–Shubik index. Suppose,

for example, that we have a yes–no voting system with seven players:

p1, p2, p3, p4, p5, p6, p7. Fix one of the 7! orderings; for example, let’s

consider:

p3 p5 p1 p6 p7 p4 p2.

We want to identify one of the players as being “pivotal” for this order-

ing. To explain this idea, we picture a larger and larger coalition being

formed as we move from left to right. That is, we first have p3 alone,

then p5 joins to give us the two-member coalition p3, p5. Then p1 joins,

yielding the three-member coalition p3, p5, p1. And so on. The pivotal

person for this ordering is the one whose joining converts this grow-

ing coalition from a non-winning one to a winning one. Since the

empty coalition is losing and the grand coalition is winning (by our

convention in Section 3.1), it is easy to see that some voter must be

pivotal.

Example:

Suppose X = {p1, . . . , p7} and each player has one vote except p4

who has three. Suppose five votes are needed for passage. Consider

the ordering: p7p3p5p4p2p1p6. Then, since {p7, p3, p5} is not a winning

coalition, but {p7, p3, p5, p4} is a winning coalition, we have that the

pivotal player for this ordering is p4.

The Shapley–Shubik index of a player p is the number between zero

and one that represents the fraction of orderings for which p is the

pivotal player. Thus, being pivotal for lots of different orderings cor-

responds to having a lot of power according to this particular way of

measuring power. More formally, the definition runs as follows.

DEFINITION. Suppose p is a voter in a yes–no voting system and let

X be the set of all voters. Then the Shapley–Shubik index of p, denoted

here by SSI(p), is the number given by:

SSI(p) =
the number of orderings of X for which p is pivotal

the total number of possible orderings of the set X
.
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Note the following:

1. The denominator in SSI(p) is just n! if there are n voters.

2. For every voter p we have 0 ≤ SSI(p) ≤ 1.

3. If the voters are p1, . . ., pn, then SSI(p1) + . . . + SSI(pn) = 1.

Intuitively, think of SSI (p) as the “fraction of power” that p has. The

following easy example is taken from Brams (1975); it is somewhat

striking.

Example:

Suppose we have a three-person weighted voting system in which p1

has fifty votes, p2 has forty-nine votes, and p3 has one vote. Assume

fifty-one votes are needed for passage. The six possible orderings (3! =
3×2×1 = 6) are listed below, and the pivotal player for each has been

circled. p1 ©p2 p3

p1 ©p3 p2

p2 ©p1 p3

p2 p3 ©p1

p3 ©p1 p2

p3 p2 ©p1

Since p1 is pivotal in four of the orderings, SSI( p1) = 4
6 = 2

3 .

Since p2 is pivotal in one of the orderings, SSI( p2) = 1
6 .

Since p3 is pivotal in one of the orderings, SSI( p3) = 1
6 .

Notice that although p2 has forty-nine times as many votes as p3,

they each have the same fraction of power (at least according to this

particular way of measuring power).

...........................................................................................................

3.3 CALCULATIONS FOR THE EUROPEAN

ECONOMIC COMMUNITY

We now return to the European Economic Community as set up in

1958 and calculate the Shapley–Shubik index for the member coun-

tries. Recall that France, Germany, and Italy had four votes, Belgium

and the Netherlands had two votes, and Luxembourg had one vote.

Passage required at least twelve of the seventeen votes.
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Let’s begin by calculating SSI(France). We’ll need to determine how

many of the 6! = 720 different orderings of the six countries have

France as the pivotal player. Because 720 is a fairly large number, we

will want to get things organized in such a way that we can avoid

looking at the 720 orderings one at a time.

Notice first that France is pivotal for an ordering precisely when

the number of votes held by the countries to the left of it is either

eight, nine, ten, or eleven. (If the number were seven or less, then the

addition of France’s four votes would yield a total of at most eleven,

and thus not make it a winning coalition. If the number were twelve or

more, it would be a winning coalition without the addition of France.)

We’ll handle these four cases separately, and then just add together the

number of orderings from each case in which France is pivotal to get

the desired final result.

Case 1: Exactly Eight Votes Precede France

There are three ways to total eight with the remaining numbers. We’ll

handle each of these as a subcase.

1.1: France is Preceded by Germany, Belgium,

and the Netherlands (with Votes 4, 2, and 2)

In this subcase, the three countries preceding France can be ordered

in 3! = 6 ways, and for each of these six, the two countries following

France (Italy and Luxembourg in this case) can be ordered in 2! = 2

ways. Thus we have 6 × 2 = 12 distinct orderings in this subcase.

(Equivalently, the number of orderings in this subcase—by Proposition

2—is 3 × 2 × 1 × 1 × 2 × 1 = 12.)

1.2: France is Preceded by Italy, Belgium, and the Netherlands

(with Votes 4, 2, and 2)

This case is exactly as 1.1, since both Germany and Italy have four

votes.
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1.3: France is Preceded by Germany and Italy (with Votes 4

and 4)

In this subcase, the two countries preceding France can be ordered

in 2! = 2 ways, and for each of these two, the three countries following

France (Belgium, the Netherlands, and Luxembourg in this case) can

be ordered in 3! = 6 ways. Thus we have 2 × 6 = 12 distinct orderings

in this subcase, also.

Hence, in case 1 we have a total of 36 distinct orderings in which

France is pivotal. For the next three cases (and their subcases), we’ll

leave the calculations to the reader and just record the results.

Case 2: Exactly Nine Votes Precede France

2.1: France is Preceded by Germany, Belgium, the Netherlands,

and Luxembourg (with Votes 4, 2, 2, and 1)

The number of orderings here turns out to be 4! × 1! = 24 × 1 = 24.

2.2: France is Preceded by Italy, Belgium, the Netherlands,

and Luxembourg (with Votes 4, 2, 2, and 1)

As in 2.1, the number of orderings here is 24.

2.3: France is Preceded by Germany, Italy, and Luxembourg

(with Votes 4, 4, and 1)

The number of orderings turns out to be 3! × 2! = 6 × 2 = 12.

Hence, in case 2 we have a total of 60 distinct orderings in which

France is pivotal.

Case 3: Exactly Ten Votes Precede France

3.1: France is Preceded by Germany, Italy, and Belgium

(with Votes 4, 4, and 2)

The number of orderings turns out to be 3! × 2! = 6 × 2 = 12.

3.2: France is Preceded by Germany, Italy, and the Netherlands

(with Votes 4, 4, and 2)

Exactly as in 3.1, the number here is 12.
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Hence, in case 3 we have a total of 24 distinct orderings in which

France is pivotal.

Case 4: Exactly Eleven Votes Precede France

4.1: France is Preceded by Germany, Italy, Belgium,

and Luxembourg (with Votes 4, 4, 2, and 1)

The number of orderings turns out to be 4! × 1! = 24 × 1 = 24.

4.2: France is Preceded by Germany, Italy, the Netherlands,

and Luxembourg (with Votes 4, 4, 2, and 1)

Exactly as in 4.1, the number here is 24.

Hence, in case 4 we have a total of 48 distinct orderings in which

France is pivotal.

Finally, to calculate the Shapley–Shubik index of France, we simply

add up the number of orderings from the above four cases (giving us

the number of orderings for which France is pivotal), and divide by the

number of distinct ways of ordering six countries (which is 6! = 720).

Thus,

SSI(France) =
36 + 60 + 24 + 48

720
=

168

720
=

14

60
≈ 23.3%

Germany and Italy also have a Shapley–Shubik index of 14/60 since,

like France, they have four votes. It turns out that the Netherlands

and Belgium both have a Shapley–Shubik index of 9/60, although

we’ll leave this as an exercise (which can be done in two different

ways) at the end of the chapter. Another exercise is to show that poor

Luxembourg has a Shapley–Shubik index of zero! (Hint: in order for

Luxembourg to be pivotal in an ordering, exactly how many votes

would have to be represented by countries preceding Luxembourg in

the ordering? What property of the numbers giving the votes for the

other five countries makes this total impossible?) These results are

summarized in the following chart:
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Country Votes Percentage

of votes

SSI Percentage

of power

France 4 23.5 14/60 23.3

Germany 4 23.5 14/60 23.3

Italy 4 23.5 14/60 23.3

Belgium 2 11.8 9/60 15.0

Netherlands 2 11.8 9/60 15.0

Luxembourg 1 5.9 0 0

We conclude this section by using the European Economic Com-

munity to illustrate a well-known paradox that arises with cardinal

notions of power such as those considered in the present chapter

(and later in Chapter 9). The setting is as follows: Suppose we have

a weighted voting body as set up among France, Germany, Italy,

Belgium, the Netherlands, and Luxembourg in 1958. Suppose now that

new members are added and given votes, but the percentage of votes

needed for passage remains about the same. Intuitively, one would

expect the “power” of the original players to become somewhat diluted,

or, at worst, to stay the same. The rather striking fact that this need not

be the case is known as the “Paradox of New Members.” It is, in fact,

precisely what occurred when the European Economic Community

expanded in 1973.

Recall that in the original European Economic Community, France,

Germany, and Italy each had four votes, Belgium and the Netherlands

each had two votes, and Luxembourg had one, for a total of seventeen.

Passage required twelve votes, which is 70.6 percent of the seventeen

available votes. In 1973, the European Economic Community was

expanded by the addition of England, Denmark, and Ireland. It was

decided that England should have the same number of votes as France,

Germany, and Italy, but that Denmark and Ireland should have more

votes than the one held by Luxembourg and fewer than the two held

by Belgium and the Netherlands. Thus, votes for the original members

were scaled up by a factor of 21
2 , except for Luxembourg, which only

had its total doubled. In summary then, the countries and votes stood

as follows:

France 10 Belgium 5 England 10

Germany 10 Netherlands 5 Denmark 3

Italy 10 Luxembourg 2 Ireland 3
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The number of votes needed for passage was set at forty-one, which is

70.7 percent of the fifty-eight available votes.

The striking thing to notice is that Luxembourg’s power—as mea-

sured by the Shapley–Shubik index—has increased. That is, while

Luxembourg’s Shapley–Shubik index had previously been zero, it is

clearly greater than zero now since we can produce at least one order-

ing of the nine countries for which Luxembourg is pivotal. (The actual

production of such an ordering is left as an exercise at the end of the

chapter.) Notice also that this increase of power is occurring in spite of

the fact that Luxembourg was treated worse than the other countries

in the scaling-up process. For some even more striking instances of

this paradox of new members phenomenon, see the exercises at the

end of the chapter where, for example, it is pointed out that even if

Luxembourg had been left with one vote, its power still would have

increased.

...........................................................................................................

3.4 THE BANZHAF INDEX OF POWER

A measure of power that is similar to (but not the same as) the Shapley–

Shubik index is the so-called Banzhaf index of a player. This power

index was introduced by the attorney John F. Banzhaf III in connection

with a lawsuit involving the county board of Nassau County, New York

in the 1960s (see Banzhaf, 1965). The definition takes place via the

intermediate notion of what we shall call the “total Banzhaf power” of

a player. The definition follows.

DEFINITION. Suppose that p is a voter in a yes–no voting system. Then

the total Banzhaf power of p, denoted here by TBP(p), is the number of

coalitions C satisfying the following three conditions:

1. p is a member of C.

2. C is a winning coalition.

3. If p is deleted from C, the resulting coalition is not a winning one.

If C is a winning coalition, but the coalition resulting from p’s

deletion from C is not, then we say that p’s defection from C is critical.
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Notice that TBP(p) is an integer (whole number) as opposed to a

fraction between zero and one. To get such a corresponding fraction,

we do the following (which is called “normalizing”).

DEFINITION. Suppose that p1 is a player in a yes–no voting sys-

tem and that the other players are denoted by p2, p3, . . . , pn. Then the

Banzhaf index of p1, denoted here by BI(p1), is the number given by

BI(p1) =
TBP(p1)

TBP(p1) + · · · + TBP(pn)
.

Notice that 0 ≤ BI(p) ≤ 1 and that if we add up the Banzhaf indices

of all n players, we get the number 1.

Example:

Let’s again use the example where the voters are p1, p2, and p3; and p1

has fifty votes, p2 has forty-nine votes, p3 has one vote; and fifty-one

votes are needed for passage. We will calculate TBP and BI for each

of the three players. Recall that the winning coalitions are

C1 = {p1, p2, p3},

C2 = {p1, p2},

C3 = {p1, p3}.

For TBP(p1), we see that p1 is in each of the three winning coalitions

and his defection from each is critical. On the other hand, neither p2’s

nor p1’s defection from C1 is critical, but p2’s is from C2 and p3’s is from

C3. Thus:

TBP(p1) = 3 TBP(p2) = 1 TBP(p3) = 1

and, thus,

BI( p1) =
3

(3 + 1 + 1)
=

3

5

BI( p2) =
1

(3 + 1 + 1)
=

1

5

BI( p3) =
1

(3 + 1 + 1)
=

1

5
.
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Recall that for the same example we had SSI( p1) = 2
3 , SSI( p2) = 1

6 ,

and SSI( p3) = 1
6 .

...........................................................................................................

3.5 TWO METHODS OF COMPUTING BANZHAF POWER

This section presents two new procedures for calculating total Banzhaf

power. Both procedures begin with a very simple chart that has the

winning coalitions enumerated in a vertical list down the left side of

the page, and the individual voters enumerated in a horizontal list

across the top. For example, if the yes–no voting system is the original

European Economic Community, the chart (with “F” for “France” etc.)

will have:

F G I B N L

across the top. Down the left side it will have the fourteen winning

coalitions which turn out to be (displayed horizontally at the moment

for typographical reasons):

FGI, FGBN, FIBN, GIBN

FGIL, FGBNL, FIBNL, GIBNL

FGIB, FGIN

FGIBL, FGINL

FGIBN

FGIBNL

Notice the order in which we have chosen to list the winning coali-

tions: the first four are precisely the ones with weight 12, the next four

are the ones with weight 13, then the two with weight 14, the two with

weight 15, the one with weight 16, and the one with weight 17. If the

voting system is weighted, this is a nice way to ensure that no win-

ning coalitions have been missed. In what follows, we shall need the

observation that there are fourteen winning coalitions in all.

We now present and illustrate the two procedures for calculating

total Banzhaf power. Notice that “critical defection” is not mentioned

in either procedure.
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PROCEDURE 1. Assign each voter (country) a “plus one” for each

winning coalition of which it is a member, and assign it a “minus one”

for each winning coalition of which it is not a member. The sum of these

“plus and minus ones” turns out to be the total Banzhaf power of the

voter. (The reader wishing to get ahead of us should stop here and

contemplate why this is so.) Continuing with the European Economic

Community as an example, we have:

F G I B N L

FGI 1 1 1 −1 −1 −1

FGBN 1 1 −1 1 1 −1

FIBN 1 −1 1 1 1 −1

GIBN −1 1 1 1 1 −1

FGIL 1 1 1 −1 −1 1

FGBNL 1 1 −1 1 1 1

FIBNL 1 −1 1 1 1 1

GIBNL −1 1 1 1 1 1

FGIB 1 1 1 1 −1 −1

FGIN 1 1 1 −1 1 −1

FGIBL 1 1 1 1 −1 1

FGINL 1 1 1 −1 1 1

FGIBN 1 1 1 1 1 −1

FGIBNL 1 1 1 1 1 1

TBP(sum) 10 10 10 6 6 0

PROCEDURE 2. Assign each voter (country) a “plus two” for each win-

ning coalition in which it appears (and assign it nothing for those in

which it does not appear). Subtract the total number of winning coali-

tions from this sum. The answer turns out to be the total Banzhaf power

of the voter. Continuing with the European Economic Community as an

example, we have:
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F G I B N L

FGI 2 2 2

FGBN 2 2 2 2

FIBN 2 2 2 2

GIBN 2 2 2 2

FGIL 2 2 2 2

FGBNL 2 2 2 2 2

FIBNL 2 2 2 2 2

GIBNL 2 2 2 2 2

FGIB 2 2 2 2

FGIN 2 2 2 2

FGIBL 2 2 2 2 2

FGINL 2 2 2 2 2

FGIBN 2 2 2 2 2

FGIBNL 2 2 2 2 2 2

(sum) 24 24 24 20 20 14

Minus

number

of winning −14 −14 −14 −14 −14 −14

coalitions

TBP 10 10 10 6 6 0

The following chart summarizes the Banzhaf indices (arrived at by

dividing each country’s total Banzhaf power by 10+10+10+6+6+0 =
42). This is analogous to what we did for the Shapley-Shubik indices

in Section 3.2.

Country Votes Percentage

of votes

BI Percentage

of power

France 4 23.5 5/21 23.8

Germany 4 23.5 5/21 23.8

Italy 4 23.5 5/21 23.8

Belgium 2 11.8 3/21 14.3

Netherlands 2 11.8 3/21 14.3

Luxembourg 1 5.9 0 0

Why is it that these two procedures give us the number of critical

defections for each voter? Let’s begin with the following easy observa-

tion: Procedure 2 yields the same numbers as does Procedure 1. That
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is, in going from Procedure 1 to Procedure 2, all the “minus ones”

became “zeros” and all the “plus ones” became “twos.” Hence, the

sum for each voter increased by one for each winning coalition. Thus,

when we subtracted off the number of winning coalitions, the result

from Procedure 2 became the same as the result from Procedure 1.

So we need only explain why Procedure 1 gives us the number of

critical defections that each voter has. (Recall that we are consider-

ing only monotone voting systems.) The key to understanding what is

happening in Procedure 1 is to have at hand a particularly revealing

enumeration of the winning coalitions. Such a revealing enumeration

arises from focusing on a single voter p, with different voters in the

role of p giving different enumerations. To illustrate such an enumera-

tion, let’s let the fixed voter p be the country Belgium in the European

Economic Community. The list of winning coalitions corresponding

to the fixed voter p will be made up of three “blocks” of coalitions:

Block 1: Those winning coalitions that do not contain p.

Block 2: The coalitions in Block 1 with p added to them.

Block 3: The rest of the winning coalitions.

For example, with Belgium playing the role of the fixed voter p, we

would have the fourteen winning coalitions in the European Economic

Community listed in the following order:

Block 1: FGI
FGIL
FGIN
FGINL

Block 2: FGIB
FGILB
FGINB
FGINLB

Block 3: FGNB
FINB
GINB
FGNLB
FINLB
GINLB
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There are several things to notice about the blocks. First, the coali-

tions in Block 2 are all winning because those in Block 1 are winning

and we are only considering monotone voting systems. Second, there

are exactly as many coalitions in Block 2 as in Block 1, because if X

and Y are two distinct winning coalitions in Block 1, and thus neither

contains p, then adding p to each of X and Y will again result in distinct

coalitions in Block 2. Moreover, every coalition in Block 2 arises from

one in Block 1 in this way. Third, every coalition in Block 3 contains

p, since all those not containing p were listed in Block 1.

Finally, and perhaps most importantly, is the observation that p’s

defection from a winning coalition is critical precisely for the coali-

tions in Block 3. That is, p does not even belong to the coalitions

in Block 1, and p’s defection from any coalition in Block 2 gives the

corresponding winning coalition in Block 1, and thus is not critical.

However, if p’s defection from a coalition X in Block 3 were to yield a

coalition Y that is winning, then Y would have occurred in Block 1,

and so X would have occurred in Block 2 instead of Block 3.

The reason Procedure 1 works is now clear: The minus ones in Block

1 are exactly offset by the plus ones in Block 2, thus leaving a plus one

contribution for each coalition in Block 3 and these are precisely the

ones for which p’s defection is critical.

Other consequences also follow. For example, a monotone yes-no

voting system with exactly seventy-one winning coalitions has no dum-

mies as defined in Exercise 18 in Chapter 2. (Exercise 19 asks why.)

Notice that the listing of winning coalitions corresponding to the fixed

voter p is used only to understand why the procedures work—such

listings need not be constructed to actually calculate Banzhaf power

using either Procedure 1 or Procedure 2.

Power indices tend to have some paradoxical aspects. For exam-

ple, Felsenthal and Machover (1994) noticed the following paradoxical

result for the Banzhaf index. Consider the weighted voting system in

which there are five voters with weights 5, 3, 1, 1, 1 and the quota is 8.

We denote this by:
[8 : 5, 3, 1, 1, 1].

The Banzhaf indicies of the voters turn out to be 9
19 , 7

19 , 1
19 , 1

19 , and
1

19 (Exercise 32). Now suppose that the voter with weight 5 gives one



90 3. POLITICAL POWER

of his “votes” to the voter with weight 3. This results in the weighted

system

[8 : 4, 4, 1, 1, 1].

It now turns out (Exercise 32 again) that the first voter has Banzhaf

index 1
2 . But 1

2 is greater than 9
19 ! (surprise, not factorial). Hence, by

giving away a single vote to a single player (and no other changes being

made), a player has increased his power as measured by the Banzhaf

index. (Part of what is going on here is that the transfer of a vote from

the first player to the second makes each of the last three players a

dummy. Hence, the first two players together share a larger fraction

of the power than they previously did, and—as one would expect—the

second player gains more than the first. The trade-off is that the first

player is gaining more from the gain caused by the effective demise

of the last three voters than he is losing from the transfer of one vote

from himself to the second voter.) More on this paradox is found in

Exercise 33.

It turns out (as pointed out by Felsenthal and Machover) that the

Shapley-Shubik index is not vulnerable to this particular type of para-

dox. But the Shapley–Shubik index is not immune to such quirks:

Exercise 34 presents a paradoxical aspect (due to William Zwicker) of

the Shapley–Shubik index that is not shared by the Banzhaf index.

...........................................................................................................

3.6 THE POWER OF THE PRESIDENT

Among the yes-no voting systems we have discussed, perhaps none is

of more interest than the United States federal system. This brings us

to an obvious question: What do the power indices have to say about

the fraction of power held by the president in the U.S. federal system?

The calculations we will be doing (especially for the Shapley–Shubik

index of the president) require some mathematical preliminaries. As

a simple illustration of the first such preliminary we must confront,

suppose we have four objects: a, b, c, and d. In how many ways can we

choose two of them (assuming that the order in which we choose them

does not matter)? The answer turns out to be six: ab, ac, ad, bc, bd, and

cd. In general, if we start with n objects (instead of four) and ask for
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the number of ways we can choose k of them, where k is between 1

and n, then the following notation is used:

NOTATION. If 1 ≤ k ≤ n, then the phrase “n choose k,” denoted

(
n

k

)

,

refers to the number of distinct ways we can choose exactly k objects

from a collection of exactly n objects.

The example above shows that “four choose two” equals six. The

following proposition gives a relatively easy way to calculate these

values.

PROPOSITION. For 1 ≤ k ≤ n (and the convention that 0! = 1), the

following holds:
(

n

k

)

=
n!

k!(n − k)!

PROOF. Recall from Section 3.2 that the number of different ways we

can arrange n objects is given by n!. With k fixed, we can think of each

such arrangement of the n objects as being obtained by the following

three-step process:

1. Choose k of the objects to be the initial “block.”

2. Arrange these k objects in some order.

3. Arrange the remaining n− k objects in some order.

For example, if the objects are a, b, c, d, e, and f , and k = 3, then step 1

might consist of choosing a, d, and f . Step 2 might consist of choosing

the following arrangement of the three chosen objects: f followed by a

followed by d. Step 3 might consist of choosing the following arrange-

ment of the remaining objects: e follwed by b followed by c. These three

steps yield the arrangement: f a d e b c.

Step 1 above can be done in n choose k different ways. Step 2 can

be done in k! different ways. Step 3 can be done in (n − k)! differ-

ent ways. Hence, according to the general multiplication principle from
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Section 3.2, the number of different ways the three-step process can

be done is arrived at by multiplying these three numbers together. That

is, the number of distinct arrangements of the n objects arrived at by

the three step process is:

n

number
of ways to
choose the
k objects

number
of ways to

arrange
these k

number
of ways to

arrange
the rest

k
¥ k!  ¥ (n –k)!.( (

Moreover, it should be clear that every arrangement of the n objects

can be uniquely arrived at by the above three-step process, and we

already know there are n! such arrangements. Thus,

(
n

k

)

× k! × (n− k)! = n!

and so, dividing both sides by k! × (n− k)! yields
(
n

k

)

=
n!

k!(n− k)!

as desired. This completes the proof.

With these preliminaries at hand, we can now turn to the task of

calculating the power of the president according to the two different

power indices that have been introduced. In the version of the U.S. fed-

eral system we will consider, the tie-breaking role of the vice president

is ignored. We consider each of the two power indices in turn.

The Shapley-Shubik Index of the President

Using the n choose k notation, it takes only a few lines to write down the

arithmetic expression giving the Shapley-Shubik index of the president

(and the reader who wishes to see it now can flip a few pages ahead and

find it there). However, explaining where this expression came from is

quite another story (and the one we want to tell). So, let’s consider a
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simpler version of the federal system—a “mini-federal system”—where

there are only six senators and six members of the House and the

president. (We choose the number six because it is the smallest positive

integer for which half it and two-thirds it are also integers, and these

are the fractions involved in the rules for passage.) Passage in the mini-

federal system requires either two-thirds of both houses or half of each

house and the president.

For the president to be pivotal in an ordering of the thirteen vot-

ers in our mini-federal system, he must be preceded by at least three

members of the House and at least three members of the Senate, but

by fewer than four members of at least one of the two chambers. This

can happen in the following seven ways:

1. Three House members and three senators precede the presi-

dent in the ordering (and, thus, three House members and three

senators follow the president in the ordering).

2. Three House members and four senators precede the presi-

dent in the ordering (and, thus, three House members and two

senators follow the president in the ordering).

3. Three House members and five senators precede the presi-

dent in the ordering (and, thus, three House members and one

senator follow the president in the ordering).

4. Three House members and six senators precede the president in

the ordering (and, thus, three House members and no senators

follow the president in the ordering).

5. Four House members and three senators precede the presi-

dent in the ordering (and, thus, two House members and three

senators follow the president in the ordering).

6. Five House members and three senators precede the presi-

dent in the ordering (and, thus, one House member and three

senators follow the president in the ordering).

7. Six House members and three senators precede the president in

the ordering (and, thus, no House members and three senators

follow the president in the ordering).
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We wish to count how many orderings of each of the seven kinds

there are. Consider first the orderings in the first entry on the list. Each

such ordering can be built in a four-step process:

Step 1: Choose three of the six House members to precede the pres-

ident in the ordering. This can be done in six choose three

ways.

Step 2: Choose three of the six senators to precede the president in

the ordering. This can be done in six choose three ways.

Step 3: Choose an ordering of the six people from steps 1 and 2 who

will precede the president. This can be done in 6! ways.

Step 4: Choose an ordering of the six people (the remaining House

members and senators) who will come after the president.

This can be done in 6! ways.

By the multiplication principle, we know that the total number of

orderings that can be constructed by the above four-step process is:
(

6

3

)(
6

3

)

6!6!.

A similar argument yields a similar expression for the number of

orderings that arise in the other six entries on the list. The sum of

these seven expressions gives us the total number of orderings of the

thirteen voters for which the president is pivotal. Hence, to obtain the

Shapley-Shubik index of the president in this mini-federal system, we

simply divide that result by 13! This yields:
(6
3

)(6
3

)

6!6! + 2
(6
3

)(6
5

)

7!5! + 2
(6
3

)(6
5

)

8!4! + 2
(6
3

)(6
6

)

9!3!
13!

.

This evaluation can be done by hand, and we leave it for the reader.

The following expression gives the numerator for the Shapley–

Shubik index of the president in the U.S. federal system (with the vice

president ignored). The denominator is 536 factorial. We leave it to the



3.6. The Power of the President 95

reader (see Exercise 39) to provide an explanation for this expression

that is analogous to what we did for the mini-federal system.

(
435

218

)[(
100

51

)

(218 + 51)!(535 − 218 − 51)! + · · ·

+
(

100

100

)

(218 + 100)!(535 − 218 − 100)!
]

+ · · ·

+
(

435

289

)[(
100

51

)

(289 + 51)!(535 − 289 − 51)! + · · ·

+
(

100

100

)

(289 + 100)!(535 − 289 − 100)!
]

+
(

435

290

)[(
100

51

)

(290 + 51)!(535 − 290 − 51)! + · · ·

+
(

100

66

)

(290 + 66)!(535 − 290 − 66)!
]

+ · · ·

+
(

435

435

)[(
100

51

)

(435 + 51)!(535 − 435 − 51)! + · · ·

+
(

100

60

)

(435 + 66)!(435 − 218 − 66)!
]

One would not want to simplify such an expression by hand.

Fortunately, there are computer programs available—like Mathemat-

ica—which make things easy. For example, to evaluate the above

expression (including the division by 536!) one simply types the

following as input for Mathematica:

Sum[Binomial [435, h] Binomial[100, s](s + h)!(535 − s − h)!,

{h, 218, 289}, {s, 51, 100}]/536!+

Sum[Binomial [435, h] Binomial[100, s](s + h)!(535 − s − h)!,

{h, 290, 435}, {s, 51, 66}]/536!
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One then simply waits (how long depends upon how fast your

computer is) until Mathematica responds with:

1205965382688186634391043269601662

11644652437238111390576\

1757128313706451941878271101036003/

7515229940063793084403227234743776

30024881179500218664184\

4565883705084200048715438500735040

Finding that response a little unsettling, one types “N[%]”. This

instructs Mathematica to express the answer as a nice decimal. The

output is then

0.16047.

Thus, according to the Shapley–Shubik index, the president has

about 16 percent of the power in the U.S. federal system.

The Banzhaf Index of the President

The Banzhaf index of power of the president is obtained by dividing his

total Banzhaf power by the sum of the Banzhaf powers of all the voters

in the U.S. federal system (i.e., the president, the 100 members of the

Senate, and the 435 members of the House – for simplicity, we are still

ignoring the vice president). Thus, to calculate the Banzhaf index of

the president, we need to determine not only his total Banzhaf power,

but also that of each member of the Senate and each member of the

House.

We will make these calculations of total Banzhaf power by using

the second procedure in Section 3.5, wherein a voter’s total Banzhaf

power was shown to be simply twice the number of winning coali-

tions to which that voter belongs minus the total number of winning

coalitions. A little notation will make things easier.

Let S denote the number of coalitions within the Senate that contain

at least two-thirds of the members of the Senate. Thus,

S =
(

100

67

)

+ · · · +
(

100

100

)

.
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Let Sp denote the number of coalitions within the Senate that con-

tain at least two-thirds of the members of the Senate and that contain

a particular senator p. Such a coalition is arrived at by choosing

anywhere from 66 to 99 of the other senators. Thus,

Sp =
(

99

66

)

+ · · · +
(

99

99

)

.

Let s denote the number of coalitions within the Senate that contain

at least one-half of the members of the Senate. Thus,

s =
(

100

50

)

+ · · · +
(

100

100

)

.

Let sp denote the number of coalitions within the Senate that con-

tain at least one-half of the members of the Senate and that contain

a particular senator p. Such a coalition is arrived at by choosing

anywhere from 49 to 99 of the other senators. Thus,

sp =
(

99

49

)

+ · · · +
(

99

99

)

.

Let H denote the number of coalitions within the House that contain

at least two-thirds of the members of the House. Thus,

H =
(

435

290

)

+ · · · +
(

435

435

)

.

Let Hp denote the number of coalitions within the House that con-

tain at least two-thirds of the members of the House and that contain

a particular member of the House p. Such a coalition is arrived at

by choosing anywhere from 289 to 434 of the other members of the

House. Thus,

Hp =
(

434

289

)

+ · · · +
(

434

434

)

.

Let h denote the number of coalitions within the House that contain

at least one-half of the members of the House. Thus,

h =
(

435

218

)

+ · · · +
(

435

435

)

.
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Let hp denote the number of coalitions within the House that con-

tain at least one-half of the members of the House and that contain

a particular member of the House p. Such a coalition is arrived at

by choosing anywhere from 217 to 434 of the other members of the

House. Thus,

hp =
(

434

217

)

+ · · · +
(

434

434

)

.

It is now easy to write down expressions involving S, Sp, s, sp, H, Hp,

h1 and hp (and the n choose k notation) that give us the total Banzhaf

power for the president, a member of the House, and a member of

the Senate. (Recall that the desired expression is simply two times the

number of winning coalitions to which a voter belongs, with the total

number of winning coalitions then subtracted from this.) We leave this

for the reader. However, as was the case for the Shapley–Shubik index,

actual calculations need be done on a computer. The results turn out

to be:

BI(the president) = .038.

BI(a senator) = .0033.

BI(a member of the House) = .0015.

A more meaningful way to view these results is in terms of per-

centages (of power) as opposed to small decimals. It is also more

meaningful to consider the power of the Senate as opposed to the

power of a single senator, and to do the same for the House (assuming

that power is additive—a risky assumption at best). The results then

become

(Banzhaf) Power held by the president = 4%

(Banzhaf) Power held by the Senate = 33%

(Banzhaf) Power held by the House = 63%

...........................................................................................................

3.7 THE CHAIR’S PARADOX

Our previous considerations of political power have focused on quanti-

tative measures of influence over outcomes. In this section, we change

gears slightly to give quite another view of this somewhat elusive con-

cept of power. We present a classic result known as the Chair’s paradox.
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The primary purpose of introducing this paradox is to illustrate the

extent to which apparent power need not correspond to control over

outcomes.

The situation we want to consider is the following. There are three

people, A, B, and C, and three alternatives, a, b, and c. The preference

lists of the three people are as illustrated below (and replicate those

from the voting paradox of Condorcet in Chapter 1).

A B C

a b c

b c a

c a b

The social choice procedure being used is somewhat different from

those we have considered before. That is, the preference lists will not

be regarded as inputs for the procedure, but will only be used to “test”

the extent to which each of A, B, and C should be happy with the

social choice. The social choice will be determined by a standard voting

procedure where voter A (the Chair) also has a tie-breaking vote. The

point of not using the preference lists themselves is that we do not

want to force any one of the three players to vote for his or her top

choice, although it is probably not clear at the moment why anything

else would benefit any of them. In fact, voting where everyone is bound

to vote for his or her top choice is called sincere voting. Anything else

(and this is our interest) is called sophisticated voting.

In our present situation, a strategy for any of the three people A, B,

or C is simply a choice for which of the three alternatives a, b, c to

vote. A sequence of such votes will be called a scenario.

DEFINITION. Fix a player P and consider two strategies V(x) and V(y)

for P. [Think of V(x) as being “vote for alternative x.”] Then we’ll say

that V(x) weakly dominates V(y) for player P provided that the following

both hold:

1. For every possible scenario (i.e., choice of alternatives for which

to vote by the other players), the social choice resulting from

V(x) is at least as good for Player P (as measured by his or her

preference list) as that resulting from V(y).



100 3. POLITICAL POWER

2. There is at least one scenario in which the social choice resulting

from V(x) is strictly better for Player P than that resulting from

V(y).

A strategy is said to be weakly dominant for Player P if it weakly

dominates every other available strategy.

In determining whether or not a strategy is a weakly dominant

one, we must consider all possible scenarios and compare the result

achieved by using it with that achieved by using (in our case) either

of the other two. What is needed, then, is a notation that will lay all

of this out before us so that we can check for the desired preferences.

In general, we’ll do this by displaying the scenarios of votes by other

players as a tree, and then listing the various strategies available to the

player under consideration as a vertical column to the left, with the

proposed dominant strategy at the bottom. Corresponding outcomes

will then be exhibited. All of this is illustrated in the following three

propositions, which refer, of course, to the setup described above.

PROPOSITION. “Vote for alternative a” is a weakly dominant strat-

egy for the Chairman A.

PROOF. There are nine scenarios that arise from what players B and

C might do, since each could vote for a, b, or c. These scenarios are

presented in what is called a tree in Figure 5.

The “start” node on top has no significance except to hold the tree

together. The next level down gives the three possibilities for B’s vote.

Below each of these, we have the same three possibilities for C to

choose among. Thus, the “tree of scenarios” for players other than the

Chair A is the top half of the following diagram. The columns below these

nine scenarios give the outcomes (i.e., the social choices) depending

upon whether Player A votes for c, b, or a (with the outcomes from top to

bottom, respectively). For example, the column enclosed in a rectangle

corresponds to the scenario where Player B votes for a and Player C

votes for b. Now, if the Chair A votes for c, then it’s a tie with one vote

for each alternative, and A’s tie-breaking vote now goes into effect to

yield c as the outcome. This is the “c” at the top of the column. If A

votes for b instead, then b wins by a two-to-one margin over a with c

getting no votes. This is the “b” in the middle of the column. Finally if
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start

a

a

B’s vote

C’s vote

A’s vote of c yields 

A’s vote of b yields 

A’s vote of a yields 

a

a

c

b

c c

b c a b c

b c c c c

b b b b b b c

a a a a b a a a c

a b c

b c

FIGURE 5

A votes for a, then it is the social choice with two votes, and this is the

“a” at the bottom of the column.

With the scenarios and outcomes set out before us in this way, it is

now easy to refer to player A’s preference list (a preferred to b preferred

to c), and see that “vote for a” is, indeed, a weakly dominant strategy

for A. That is, simply notice that the outcome at the bottom of each

column is never worse for A than either of the outcomes above it, and

that it is strictly better than both in at least one case (namely, the one

enclosed in a rectangle). We should point out that it wasn’t necessary to

find a single scenario that simultaneously demonstrated the potential

strict superiority of voting for a over voting for b and c. That is, we could

have said that the second column shows voting for a can be better for

A than voting for b, and the third column shows that voting for a can be

better for A than voting for c. This completes the proof.

It turns out that neither Player B nor Player C has a weakly dominant

strategy in the sense of the above proposition (see Exercise 40).

Thus, all that we can reasonably infer from what we have so far is

that Player A appears to have no rational justification for voting for

anything except alternative a. However, if we now assume that A will

definitely go with his or her weakly dominant strategy of voting for

a, then it is (literally) a whole new “game” and we can press on with
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an analysis of what rational self-interest will dictate for the other two

players in this new situation.

PROPOSITION. In the new situation where Player A definitely uses

his or her weakly dominant strategy of voting for a, the strategy “vote

for c” is a weakly dominant one for Player C.

PROOF. Since we are assuming that A votes for a, there are only three

scenarios in the tree part of the notational presentation.

start

aA’s vote

B’s vote

C’s vote of a yields

C’s vote of b yields

C’s vote of c yields

a

a

b

a

c

a

a b a

a a c

Column three shows there is a scenario (namely, B votes for c) where

voting for c yields a strictly better result for C than voting for either b or

a (since C prefers c to a). Notice again that we could have used column

two to show that the strategy “vote for c” dominates “vote for b” and

then used column three to show that “vote for c” dominates “vote for

a.” Of course, we also have to check that voting for c is at least as good

for C as voting for a or b in every other scenario, but this amounts to

just observing that C prefers a to b and c to a. This completes the proof.

Given the two previous propositions (and the common knowledge

assumption that is implicitly being made), we have that rational self-

interest yields a vote of a by A and a vote of c by C. This is not

too surprising since both are simply voting for their top choice. The

following, then, is somewhat more striking.
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PROPOSITION. In the new situation where Player A definitely votes

for a and Player C definitely votes for c, the strategy “vote for c” is a

weakly dominant one for Player B.

PROOF. The desired notational presentation is as follows:

B’s vote of a yields 

C’s vote

A’s vote

B’s vote of b yields 

B’s vote of c yields 

start

a

c

a

a

c

The proof is completed by simply observing that B prefers c to a.

Thus, the result of sophisticated voting (where everyone acts

according to rational self-interest and knows that everyone else is

doing the same, etc.) is:

A votes for a

B votes for c

C votes for c,

yielding an outcome of c. What is striking here is that c is A’s least

preferred alternative even though A was the Chair and had the addi-

tional “power” provided by a tie-breaking vote in addition to his or

her regular vote. It is also important to note that this outcome does

not depend on any cooperative effort on the part of B and C; each is

operating independently in his or her own self-interest without rely-

ing on the other doing anything except also acting in his or her own

self-interest.
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...........................................................................................................

3.8 CONCLUSIONS

We began this chapter with a hypothetical example illustrating that

“fraction of votes” and “fraction of power” need not be the same.

Turning to the most well-known quantitative measure of power, we

introduced the Shapley-Shubik index (and the necessary mathemati-

cal preliminaries, including the multiplication principle that will be

used in later chapters as well). As an application of the Shapley–

Shubik index we considered the European Economic Community as a

weighted voting body and calculated the relative power of each of the

six countries involved. The paradox of new members was illustrated by

the 1973 expansion of the Common Market and the observation that

Luxembourg’s “power” increased instead of being diluted as intuition

would suggest.

The second most well-known quantitative measure of power—the

Banzhaf index—was defined in terms of critical defections from win-

ning coalitions. We then presented a couple of new procedures that

allow one to calculate total Banzhaf power by making a single “run”

down the list of winning coalitions, and we illustrated this with the

European Economic Community.

With these two power indices at hand, we turned to the task of

calculating the power of the president (as well as the House and Sen-

ate) in the U.S. federal system according to the two power indices

introduced so far. This required introducing the “n choose k” notation

and the proposition that allows us to calculate n choose k in terms

of factorials. The power indices give somewhat different results. For

example, the Banzhaf index suggests that the president has 4 percent

of the power and the House holds roughly twice as much power as

the Senate. The Shapley-Shubik index gave the president 16 percent

of the power. So which of the two (or three or four) is more accurate,

and how can we test this against actual experience with the federal

government? Certainly, this is the right question to ask, but not of

non-political scientists. Hence, we will content ourselves here with

referring the reader to Brams, Affuso, and Kilgour (1989) and Packel

(1981).

We concluded with the so-called “Chair’s paradox,” which presents

a situation wherein individual preferences are such that even though
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the Chair has more “power” in terms of the voting scheme, he winds

up with his least-preferred alternative when the other two act indepen-

dently (and this independence of action is important to note) in their

own best interests. The actual preference lists occurring here are the

same ones that led to the voting paradox in Chapter 1.

EXERCISES

1. List out the 24 orderings of p1, p2, p3, p4. Arrange them so that

the first four orderings in your list arise from the first orderings

presented in Figure 3 in Section 3.2 (i.e., p3p2p1), the next four

from the second ordering presented in Figure 3 in Section 3.2 (i.e.,

p2p3p1), etc.

2. Illustrate the twenty-four possible orderings of p1, p2, p3, p4 by draw-

ing a tree with a start node at the top, four nodes on level one

corresponding to a choice of which pi will go first in the ordering,

three nodes immediately below each of these on the next level

corresponding to a choice of which pi then will go second, etc.

3. Suppose we want to form a large governmental committee by choos-

ing one of the two senators from each of the fifty states. How many

distinct such committees can be formed? (Hint: Step 1 is to choose

one of the two senators from Maine; there are two ways to do this.

Step 2 is to choose . . .) Comment on the size of this number.

4. Show that there are fewer than 362,881 different games of tic-

tac-toe with “X” going first. Note that two games of tic-tac-toe are

different if there is a number n, necessarily between one and nine,

so that the symbol being played (i.e., “X” or “O”) at move n is placed

in different squares in the two games.

5. Show that there are fewer than 20,000 three-letter words in the

English language.

6. If your college has 35 different academic departments, and each

department offers, on average, 20 courses each semester, and

you take four courses each semester, what is the total number of

distinct sets of courses you have to choose from? Express your

answer in n choose k notation.
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7. Using n choose k and factorial notation, indicate the number of

orderings in which the president is preceded by exactly 23 senators

and exactly 235 members of the House.

8. Suppose that x has five votes, y has three votes, z has three votes,

and w has two votes. Assume that eight votes are needed for pas-

sage. Calculate SSI(x), SSI(y), SSI(z), and SSI(w). Show all your

work.

9. Show that Luxembourg has a Shapley-Shubik index of zero.

10. Show that the Netherlands and Belgium both have a Shapley-Shubik

index of 9/60 in two different ways:

(a) By directly calculating it as we did for France.

(b) By using the fact that the sum of the indices must be one.

11. In the calculation of the Shapley-Shubik index of France (within the

European Economic Community), the details were increasingly omit-

ted as we proceeded from case 1 through case 4. Redo case 4 in

as much detail as was provided for case 1.

12. Consider the 1973 expansion of the European Economic Community

as described in Section 3.3. Show that Luxembourg has positive

Shapley–Shubik index by producing an ordering of the countries

involved for which Luxembourg is pivotal.

13. Show that even if Luxembourg had been left with just one vote in

the expansion of 1973 (with everything else as it actually was in

the expansion), the Shapley-Shubik index of Luxembourg still would

have been nonzero.

14. In the 1973 expansion of the European Economic Community, the

percentage of votes needed for passage rose the trivial amount from

70.6 percent to 70.7 percent. Suppose they had decided to require

forty (instead of forty-one) votes for passage. Would a paradox of

new members still have taken place?

15. Consider a voting system for the six New England states where there

are a total of seventeen votes and twelve or more are required for

passage. Votes are distributed as follows:

MA:4 ME:3 NH:2

CT:4 RI:3 VT:1

(a) Calculate SSI(MA).

(b) Calculate SSI(ME).
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(c) Calculate SSI(NH).

(d) Calculate SSI(VT).

16. Suppose that x has five votes, y has three votes, z has three votes,

and w has two votes. Assume that eight votes are needed for

passage.

(a) Calculate TBP for each voter by directly using the definition of

TBP in terms of critical defections. Show all your work.

(b) Calculate TBP for each voter by using Procedure 1 from

Section 3.4. (There are seven winning coalitions.)

(c) Calculate TBP for each voter by using Procedure 2 from

Section 3.4.

17. Calculate total Banzhaf power and the Banzhaf indices for the New

England states in the yes-no voting system from Exercise 15.

18. Explain how we know, in a monotone yes-no voting system, that

every voter belongs to at least half the winning coalitions. Explain

also why a voter in such a system is a dummy if and only if he

belongs to exactly half the winning coalitions.

19. Explain how we know that there are no dummies in a monotone

yes-no voting system with exactly 71 winning coalitions.

20. Suppose we have a yes-no voting system with four voters A, B, C,

and D, where the winning coalitions are as follows:

ABCD,ABC,ABD,ACD,BCD,AB,AD

(a) Compute the Banzhaf index of each voter.

(b) Compute the Shapley-Shubik index of each voter.

21. Listed below are the number of electoral votes of each state for the

2004 presidential election.

States Electoral States Electoral

Votes Votes

CA 55 TX 34

NY 31 FL 27

IL, PA 21 OH 20

MI 17 GA, NJ, NC 15

VA 13 MA 12

IN, MO, TN, WA 11 AZ, MD, MN, WI 10

AL, CO, LA 9 KY, SC 8

CT, IA, OK, OR 7 AR, KS, MS 6

NE, NV, NM, UT, WV 5 HI, ID, ME, NH, RI 4

AK, DE, DC, MT, ND, SD, VT, WY 3
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Suppose that the New England states (ME, MA, RI, CT, VT, NH)

decide to vote amongst themselves on a particular issue. They use

their electoral votes above to create a six-state weighted voting

system.

(a) Calculate the Banzhaf index of each state.

(b) Calculate the Shaley-Shubik index of each state.

22. Suppose that we have a yes-no voting system with three voters A,

B, and C, where the winning coalitions are as follows:

ABC,AB,AC,A

We saw in Exercise 22 in Chapter 2 that A is a dictator in this

system.

(a) Calculate the Banzhaf index of each of the three voters.

(b) Calculate the Shapley-Shubik index of each of the three voters.

23. Consider the weighted yes-no voting system in which four voters A,

B, C, and D have 8, 8, 4, and 2 votes, respectively and the quota

is 14.

(a) Calculate the Banzhaf index of each of the four voters.

(b) Calculate the Shapley-Shubik index of each of the four voters.

24. Consider the mini-federal system with thirteen votes wherein there

are six House members, six senators, and the president, and pas-

sage requires half the House, half the Senate, and the president,

or two-thirds of both houses.

(a) Calculate the Banzhaf index of the president.

(b) Calculate the Shapley-Shubik index of the president.

25. Assume that we have a four-person weighted voting system in which

one voter has 3 votes, two voters have 2 votes, and one voter has 1

vote and the quota is 5. Calculate the Banzhaf index of each voter.

26. Consider a 3-person yes-no voting system with voters A, B, and C.

Suppose that a coalition is winning if it contains either A or both B

and C.

(a) Calculate the Shapley-Shubik Index of each voter.

(b) Calculate the Banzhaf Index of each voter.

27. Assume that we change the quota in the EEC from 12 to 11,

leaving the weights of the countries as they were. Calculate

SSI(Luxembourg) in this new system.

28. Consider the minority veto system where there are six voters: A, B,

C, D, E, and F, two of whom (E and F) form a designated minority,
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and passage requires a total of at least four of the six votes and

at least one of the minority votes. Calculate the Banzhaf index for

each of the voters in this system. (There are 21 winning coalitions.)

29. Suppose we have a minority veto yes-no voting system with five

voters: majority voters A, B, C and minority voters R and S. Passage

requires a total of at least three votes, at least one of which must

be a minority voter.

(a) Write down all winning coalitions for this yes-no voting system.

(b) Calculate the Banzhaf index of each voter.

30. Amanda, Ben, Chris, Desdemona, and Ed spend a lot of time

together. They’ve created their own yes-no voting system to help

decide what to do each Saturday. Amanda has 5 votes since she’s

the glue that holds everyone together. Ben and Cate each have 4

votes, and Desdemona and Ed each get 3 votes because they are

newer to the group and sometimes a little annoying. Calculate the

Shapley-Shubik index of Desdemona.

31. Suppose that A is a dummy voter in a yes-no voting system.

(a) Does the Banzhaf index of A have to be 0? Prove that this is

true or give an example of a system where this is false.

(b) Does the Shapley Shubik index of A have to be 0? Prove that

this is true or give an example of a system where this is false.

32. Use Procedure 1 or 2 to verify the calculations in the Felsenthal-

Machover example in Section 3.5.

33. (a) Discuss whether or not you find it paradoxical that in going

from the system [8 : 5, 3, 1, 1, 1] to the system [8 : 4, 4, 0,

0, 0], the first player’s Banzhaf power increases.

(b) Discuss whether or not you find it paradoxical that two different

choices of weights, such as [8 : 4, 7, 0, 0, 0] and [8 : 4, 4, 1,

1, 1] give the same yes-no voting system.

(c) What, if anything, do your responses to (a) and (b) say about

the Felsenthal–Machover paradox?

34. The Shapley–Shubik index is not without paradoxical aspects. For

example, the following was pointed out by William Zwicker. Suppose

we have a bicameral yes–no voting system wherein an issue must

win in both the House and the Senate in order to pass. (We are not

assuming that the House and Senate necessarily use majority rule,

but we are assuming they have no common members.) Suppose

that both you and Fred belong to the House and that—when the
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House is considered as a yes–no voting system in its own right—

Fred has three times as much “power” as you have. Then shouldn’t

Fred still have three times as much power as you have when we

consider the bicameral yes-no voting system? (This is a rhetorical

question.)

(a) Suppose that X1, . . ., Xm are the winning coalitions in the House

and Y1, . . ., Yn are the winning coalitions in the Senate. Assume

that Fred belongs to t of the winning coalitions in the House and

that you belong to z of the winning coalitions in the House.

1. Show that there aremn winning coalitions in the bicameral

system.

2. Use Procedure 2 to show that Fred’s total Banzhaf power

in the House is 2t −m and that yours is 2z −m.

3. Use Procedure 2 to show that Fred’s total Banzhaf power

in the bicameral system is 2tn − mn and that yours is

2zn−mn.

4. Show that if Fred has v times as much power (as mea-

sured by the Banzhaf index) in the House as you have, then

Fred also has v times as much power (as measured by the

Banzhaf index) in the bicameral system as you have.

(b) Suppose the House consists of you, Fred, and Bill, and sup-

pose there are two minimal winning coalitions in the House:

Fred alone (as one), and you and Bill together (as the other). In

the Senate, there are two people and each alone is a minimal

winning coalition.

1. Show that in the House alone, Fred has four times as

much power—asmeasured by the Shapley-Shubik index—

as you have. (The values turn out to be 4
6 ,

1
6 ,

1
6 .)

2. Show that in the bicameral system, this is no longer ture.

(The values turn out to be 44
120 for me and 14

120 for you.)

35. Calculate each of the following:

(a) five choose three,

(b) four choose four,

(c) six choose two, and

(d) six choose four.

36. How many three-member subcommittees can be formed from a

parent committee of size nine?
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37. (a) List out the distinct ways of choosing two objects from the five

objects a, b, c, d, e.

(b) List out the distinct ways of choosing three objects from the

five objects a, b, c, d, e.

(c) Without mentioning the “factorial formula” from this section,

explain why the number of pairs you found in (a) was the same

as the number of triples you found in (b).

38. One way to obtain an ordering of the 536 voters in the United States

federal system for which the president is pivotal is to have him

preceded in the order by (say) 250 members of the House and by

(say) 60 senators. Using the “n choose k” and “factorial” notation,

write down an expression that gives the total number of such orders.

39. The first two lines in the expression used to get the Shapley–Shubik

index of the president was:

(
435

218

)[(
100

51

)

(218 + 51)!(535 − 218 − 51)! + . . .

+
(
100

100

)

(218 + 100)!(535 − 218 − 100)!
]

This represents a collection of orderings for which the president is

pivotal. Describe this collection of orderings.

40. In the Chair’s paradox, show that neither B nor C has a weakly dom-

inant strategy in the sense of the first proposition in Section 3.6.

41. Suppose that in the Chair’s paradox situation, person C changes

his preferences to b over a over c. Is “vote for a” still a weakly

dominant strategy for the Chair A?

42. Suppose that we have three people I, II, III and three alternatives

a, b, c. Suppose the preference orderings are as follows:

I II III

a a b

b c a

c b c

Consider the following semi-strange social choice procedure: Alter-

native c wins unless two or more people vote for a (in which case

a wins) or all three people vote for b (in which case b wins). Show

that “vote for b” weakly dominates “vote for c” for Player I.
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C H A P T E R

4

...........................................................................................................

4.1 INTRODUCTION

One of the central concepts of political science is conflict, that is, sit-

uations where the actions of one individual (or group) both influence

and are influenced by those of another. Real-world examples of such

conflict situations tend to be enormously complex, and a considerable

amount of influential work in political science deals with the analy-

sis of particular conflict situations and the ramifications of literally

dozens of subtle influences upon the events that took place.

The kind of analysis that we will undertake here, however, is at

the other end of the spectrum. Instead of the kind of fine analy-

sis that is very specific to a particular event, we will consider some

extremely simple game-theoretic models that provide a very coarse

analysis applicable to many different events of historical significance.

The justification for this undertaking, however, lies in the extent to

which these game-theoretic analyses, coarse though they may be, nev-

ertheless shed light on why various events unfolded as they did, as well

as to explain some of the intractabilities of situations such as the arms

race of the 1960s, 1970s, and 1980s.



4.2. Two-By-Two Games 113

We begin in Section 4.2 by introducing “2×2 games” (read as “two-

by-two games”), so called because they involve two parties each of

which is choosing one of two available strategies. In Section 4.3 we

introduce the notion of dominant strategies and Nash equilibria in

this context. Sections 4.4, 4.5, and 4.6 then examine 2×2 games that

model three real-world situations: the arms race, the Cuban missile

crisis, and the Yom Kippur War. The first model works extremely well,

the second moderately well, and the third model fails miserably. Yet, in

Section 4.7, we show how to embellish the model of the Yom Kippur

War via something called “the theory of moves,” and this, indeed, gives

a most satisfying analysis.

...........................................................................................................

4.2 TWO-BY-TWO GAMES

The games that our models will be based on are called “2 × 2 ordinal

games.” The framework for such a game is as follows:

1. There are two players: Row and Column.

2. Each player has a choice of two alternatives: C (for “cooperate”)

or N (for “noncooperate”). A choice of an alternative is called a

strategy.

3. The play of the game consists of a single move: Row and Column

simultaneously (and independently) choose one of the two alter-

natives, C or N. This yields four possible outcomes as displayed

in Figure 1.

4. Each player ranks the four possible outcomes according to his

or her relative preference. The outcome considered “best” (by,

say, Row) is labeled “4” (by Row); second best, “3”; third, “2”;

and, finally, the outcome considered worst (still, by Row) is

labeled “1” (by Row).

These games are called “ordinal” games since the labels 4, 3, 2, and 1

for the outcomes reflect only the order of preference as opposed to the

(absolute) magnitude of one’s preference for any particular outcome.

Thus, for example, an outcome (say CN) labeled “4” by Row should not
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Outcome a C C CC

C N CNOutcome b

N C NCOutcome c

N N NNOutcome d

Row’s
Choice

Column’s
Choice

Shorthand
Notation

FIGURE 1

Row’s
Preference
Ranking

Row

Column

C

C

N

3 1

4 2

N

FIGURE 2

Column’s
Preference
Ranking

Row

Column

C

C

N

3 4

1 2

N

FIGURE 3

be construed as twice as good (in Row’s view) as an outcome labeled

“2” by Row.

For the sake of illustrating the notation we will use, let us look at

a particular 2 × 2 ordinal game—one that will, in fact, turn out to

be important. Describing a 2 × 2 ordinal game means specifying a

total of eight things: Row’s preference ranking of the four possible

outcomes CC, CN, NC, NN, and Column’s ranking of the same four

possible outcomes. For the particular example we want to use here,

the preference rankings are shown in Figures 2 and 3 above.
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Thus, Row ranks the four outcomes, from best to worst, as NC, CC,

NN, CN, and Column ranks the outcomes, from best to worst, as CN,

CC, NN, NC.

The rectangular arrays we have used to describe Row and Column’s

preferences correspond to mathematical objects called “matrices”

(plural of “matrix”), more explicitly, “2 × 2 matrices,” since each array

has two rows (i.e., two horizontal sequences of numerical entries) and

two columns (i.e., two vertical sequences of numerical entries). This

explains the choice of “Row” and “Column” as names for the players.

Notice also that in the 2×2 game described above, both Row and Col-

umn prefer the outcome CC to the outcome NN. That is, both assign

mutual cooperation (CC) a “3” (second best) and mutual noncooper-

ation a “2” (second worst). In particular, a gain for one player is not

necessarily a loss for the other. For this reason these games are called

“variable-sum” as opposed to “zero-sum.”

The standard notation for presenting a particular 2×2 ordinal game

involves using a single 2 × 2 matrix to simultaneously present the

preference rankings of Row and Column. Each of the four entries in

this case involves two numbers: Row’s ranking and Column’s ranking.

Thus, for example, if we consider the upper right hand entry (that is,

the one that is simultaneously in the first row and the second column),

we find that Row ranks it, in our example, as “1” and Column ranks

it as “4.” Hence in the single matrix display of both Row’s preferences

and Column’s preferences, we could use something like “1/4” or “(1, 4)”

as the upper right hand entry as long as we agree that the first number

so displayed applies to Row and the second number to Column. We’ll

opt for the “ordered pair” notation (1,4). Thus, the single 2 × 2 matrix

representing the game described above is shown in Figure 4 below.

Row

Column

C

C

N

(3, 3) (1, 4)

(4, 1) (2, 2)

N

FIGURE 4
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There aren’t all that many 2 × 2 ordinal games, and most of those

are (and probably will remain) both uninteresting and unimportant.

In the rest of this chapter, however, we will concentrate on what are the

most well known and probably most interesting of the lot: Prisoner’s

Dilemma and Chicken.

...........................................................................................................

4.3 DOMINANT STRATEGIES AND NASH EQUILIBRIA

Recall that a strategy (for, say, Row) in a 2×2 ordinal game is a choice

of C or N. Recall also that an outcome in a 2 × 2 ordinal game is

an ordered pair, and that, for example, the outcome (3, 1) would be

preferred by Row to the outcome (2, 4). For brevity, we might simply

say that (3, 1) is better for Row than (2, 4). The central idea of this

section is the following.

DEFINITION. The strategy N is said to be dominant for Row in a (partic-

ular) 2× 2 ordinal game if—regardless of what Column does—it yields

an outcome that is better for Row than would have been obtained by

Row’s use of the strategy C.

We could, of course, similarly define the notions of C being dominant

for Row, N being dominant for Column, and C being dominant for Col-

umn. Illustrations of these concepts will occur in Sections 4.4 and 4.5

where we consider, respectively, Prisoner’s Dilemma and Chicken. For

the moment, however, we move on to the consideration of the second

fundamental idea that will be involved in the analysis of 2 × 2 ordinal

games.

DEFINITION. An outcome in a 2×2 ordinal game is said to be a Nash

equilibrium if neither player would gain by unilaterally changing his or

her strategy.

Our formalization of 2 × 2 ordinal games makes no provision for

either player actually changing his or her mind. The game is played by

a single simultaneous choice of strategy (C or N), and that’s the end of

it. There are, however, at least two good reasons for having the concept

of a Nash equilibrium at hand. First, the real world is not static; it is
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extremely dynamic. Hence, when we set up our models so that an

outcome of a 2 × 2 ordinal game corresponds to a real-world event,

we’ll want to ask about any predictions of events to unfold suggested by

the model. Second, we will later formalize this dynamic aspect of the

real world, developing models that allow precisely the kind of change

in choice of strategy indicated above.

An outcome that is a Nash equilibrium is one that we will think of as

being stable: No one wants to upset things—at least, not unilaterally.

We should also note that, in game theory, a Nash equilibrium is a set of

strategies, not an outcome. With 2 × 2 ordinal games, however, there

is no harm in identifying the outcome with the strategies that lead to

it since they are unique.

Examples of Nash equilibria will again occur in our presentations

of Prisoner’s Dilemma and Chicken. Nash equilibria, by the way, are

named for John Nash, whose remarkable story was told in the book

and movie entitled A Beautiful Mind.

...........................................................................................................

4.4 PRISONER’S DILEMMA AND THE ARMS RACE

Consider the following (hypothetical) situation. Two suspects are

charged with having jointly committed a crime. They are then sep-

arated and each is told that both he and his alleged accomplice will

be offered the choice between remaining silent (as permitted by the

Miranda Decision) or confessing. Each is also told that the following

penalties will then be applied:

1. If both choose to remain silent, they will each get a one-year

jail term based on a sure-fire conviction on the basis of a lesser

charge.

2. If both confess, they will each get a five-year prison sentence.

3. If one confesses and one remains silent, then the confessor

will be regarded as having turned state’s evidence and he or

she will go free. The other, convicted on the testimony of the

first, will get a ten-year sentence.
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The question of interest then becomes the following. Assume you

are one of the suspects and your sole interest is in minimizing the

length of time you will spend in jail. Do you remain silent or confess?

Intuition may yield a response such as: “I wish I knew what my part-

ner is doing.” Surprisingly, this is wrong. What your partner is doing

is irrelevant; you should confess. Let’s see why this is true. There are

two cases to consider. That is, your partner will either remain silent

or confess. In the former case (remaining silent), your confession gets

you off scot-free as opposed to the one-year jail term you’d get if you

also remained silent. In the latter case (where he confesses), your con-

fession gets you off with five years as opposed to the ten years you’d

get for remaining silent in the face of his confession. Hence, confess-

ing gets you a shorter jail sentence than remaining silent regardless of

whether your partner confesses or remains silent.

The same reasoning applies to your partner. Thus, rational action

(in terms of self-interest) leads to both you and your partner confessing

and hence serving five years each. What is paradoxical here, however,

is the observation that if both of you remained silent, you would serve

only one year each and thus both be better off.

The above situation lends itself naturally to a description via a

2×2 ordinal game where “cooperation” (C) corresponds to “remaining

silent” and “noncooperation” (N) to “confessing.” (Think of “cooper-

ating” as referring to cooperation with your partner as opposed to

cooperation with the D.A.) Then Row, for example, ranks the outcomes

from best (4) to worst (1) as:

4: NC – Row confesses and Column is silent: Row goes free.

3: CC – Row is silent and Column is silent: Row gets one year.

2: NN – Row confesses and Column confesses: Row gets five years.

1: CN – Row is silent and Column confesses: Row gets ten years.

Column’s ranking is the same for CC and NN, but with “1” and “4”

reversed for NC and CN. Hence the 2 × 2 ordinal game that models

this situation is precisely the example from Section 4.2 (duplicated in

Figure 5 on the next page in our present hypothetical scenario).

Thus, in the hypothetical situation involving “prisoners” both

should choose to confess even though both would benefit if both
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FIGURE 5

remained silent. The following proposition simply formalizes this in

the context of the 2 × 2 ordinal game Prisoner’s Dilemma.

PROPOSITION. The strategy N is a dominant strategy for both Row

and Column in the game Prisoner’s Dilemma.

PROOF. We prove that N is dominant for Row; the proof for Column is

analogous. Thus, we must show that, regardless of what Column does,

N is a better choice for Row than is C. Column can do two things; we

consider these separately.

Case 1: Column chooses C In this case, Row’s choice of N yields an

outcome for Row of “4” from (4, 1) as opposed to “3” from the outcome

(3, 3) that would have resulted from Row’s choice of the strategy C.

Case 2: Column chooses N In this case, Row’s choice of N yields an

outcome for Row of “2” from (2, 2) as opposed to “1” from the outcome

(1, 4) that would have resulted from Row’s choice of the strategy C.

Thus, we’ve shown that, regardless of what Column does (i.e.,

whether we’re in case 1 or case 2), N yields a better outcome for Row

than does C. This completes the proof.

The paradoxical nature of Prisoner’s Dilemma is now at least par-

tially formalized: both Row and Column have dominant strategies

leading to a (2, 2) outcome that is strictly worse—for both—than

the (3, 3) outcome available via mutual cooperation. Such mutual

cooperation could be induced by adding additional structure to the

model—threats, repeated plays of the game (see Exercises 27–29),

etc.—but in the absence of such things, how does one argue against

the use of a dominant strategy?
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The above proposition illustrates how to prove that a given strategy

is dominant for a given player. What it does not illustrate, however,

is how one finds the strategies (if they exist) that are dominant. With

a little experience, one can do this just by staring at the preference

matrix. A better method, however, is given in the exercises at the end

of the chapter.

Another paradoxical aspect of Prisoner’s Dilemma is the fact that not

only does the (2, 2) outcome arise from the use of dominant strategies,

but, once arrived at, it is incredibly stable. This stability is formalized

in the following.

PROPOSITION. The outcome (2, 2) is a Nash equilibrium in the

game Prisoner’s Dilemma.

PROOF. If Row unilaterally changes from N to C, the outcome would

change from (2, 2) to (1, 4) and, in particular, be worse for Row (having

gone from “2” to “1” in the first component). Similarly, if Column uni-

laterally changes from N to C, the outcome would change from (2, 2) to

(4, 1) and be worse for Column in exactly the same way as it was for

Row (having now gone from “2” to “1” in the second component). This

completes the proof.

For our purposes, the importance of Prisoner’s Dilemma is as a sim-

ple model of some significant political events. We consider one such

example now and several more potential examples in the exercises

at the end of the chapter. Our treatment is largely drawn from Brams

(1985a); the reader is referred there for more background and analysis.

The U.S.–Soviet arms race of the 1960s, 1970s, and 1980s is a natural

candidate for game-theoretic modeling since the actions of both coun-

tries certainly influenced and were influenced by those of the other.

There is also an intractability here that, at the time, seemed to defy

rationality in light of the economic burdens being imposed on both

countries. Our goal here is to model the arms race as a simple 2 × 2

ordinal game (which turns out to be Prisoner’s Dilemma) and thus

explain some of the intractability as being a consequence of the struc-

ture of preferences as opposed to irrationality on the part of either

country.
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The model will be an enormous oversimplification of the real-world

situation. It will ignore a number of admittedly important factors

(such as the political influence of the military-industrial complex in

each country and the economic role played by military expenditures

in avoiding recessions) and focus instead on the following underlying

precepts:

1. Each country has an option to continue its own military buildup

(to arm), or to discontinue the buildup and begin a reduction

(to disarm).

2. Both countries realize that the (primarily economic) hardships

caused by an arms race make a mutual decision to arm less

desirable than a mutual decision to disarm.

3. Each country would prefer military superiority to military par-

ity. (Notice here that, although we are talking about the 1960s,

1970s, and 1980s, this may well have been false by the late

1980s.)

Given these (and the obvious least preference for military domina-

tion by the other country), we see that each country would rank the

four possibilities, from most preferred to least preferred, as follows:

4. Military superiority (via the other’s unilateral disarmament).

3. Mutual disarmament (parity without economic hardships).

2. An arms race (parity, but with economic hardships).

1. Military inferiority (via its own unilateral disarmament).

Thus, if we let the Soviets play the role of “Column” and the U.S.

the role of “Row”, with “cooperate” (C) corresponding to “disarm”

and “noncooperate” (N) corresponding to “arm,” the 2 × 2 ordinal

game modeling this situation turns out to be (a relabeled version of)

Prisoner’s Dilemma (Figure 6 on the next page).

Again we see the paradox: Both countries prefer mutual

disarmament—the (3, 3) outcome—to an arms race—the (2, 2)

outcome. However, both countries have a dominant strategy to arm,

and thus individual rationality produces the arms race no one wants.
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...........................................................................................................

4.5 CHICKEN AND THE CUBAN MISSILE CRISIS

The 2×2 ordinal game known as “Chicken” is named after the less than

inspiring real-world (one would like to think hypothetical) “sport” in

which opposing drivers maintain a head-on collision course until at

least one of them swerves out of the way. The one who swerves first

loses. Ties can occur.

In modeling Chicken as a 2×2 ordinal game, we identify the strategy

“swerve” with cooperation, and “don’t swerve” with noncooperation.

The difference between Chicken and Prisoner’s Dilemma is the inter-

change of preference “2” and preference “1” for both players. That is,

in Prisoner’s Dilemma, your least preferred outcome is a combination

of cooperation on your part met by noncooperation on the part of

your opponent. In Chicken, however, this outcome—although not all

that great—is strictly better than mutual noncooperation. The matrix

notation for Chicken is shown in Figure 7 on the next page.

Notice that the game, like Prisoner’s Dilemma, is symmetric (i.e.,

seen the same way from the point of view of Column or Row). In terms

of dominant strategies and Nash equilibria, we have the following:

PROPOSITION. In the game of Chicken, neither Row nor Column

has a dominant strategy, but both (2, 4) and (4, 2) are Nash equilibria

(and there are no others).

PROOF. We shall begin by showing that C is not a dominant strategy

for Row. To do this, we must produce a scenario in which N yields a

better result for Row than does C. Consider the scenario where Column
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chooses C. Then, a choice of N by Row yields (4, 2) and hence “4” for

Row while a choice of C by Row yields (3, 3) and hence only “3” for

Row. Thus, N is a strictly better strategy for Row than C in this case

(i.e., in this scenario), and so C is not a dominant strategy for Row.

Similarly, one can prove that N is not a dominant strategy for Row, and

that neither C nor N is a dominant strategy for Column.

To show that (2, 4) is a Nash equilibrium, we must show that neither

player can gain by unilaterally changing his or her strategy. We’ll show it

for Row; the proof for Column is completely analogous. If Row unilaterally

changes from C to N, then the outcome would change from (2, 4) to

(1, 1) and, in particular, be worse for Row (having gone from “2” to “1”

in the first component). This shows that (2, 4) is a Nash equilibrium.

The proof that (4, 2) is a Nash equilibrium is left to the reader, as is the

proof that there are no others.

Comparing the above proposition with the one in Section 4.4,

we see the fundamental difference between Prisoner’s Dilemma and

Chicken:

1. In Prisoner’s Dilemma, both players have a dominant strategy,

and so there is an expected (although paradoxically unfortu-

nate) outcome of (2, 2). Moreover, because this outcome is the

result of dominant strategies, it is also a Nash equilibrium (see

Exercise 11), and thus (intuitively) stable.

2. In Chicken, there is no expected outcome (i.e., no dominant

strategies) although (3, 3) certainly suggests itself. This out-

come, however, is unstable (not a Nash equilibrium), and only
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a fear of the (1, 1) outcome would prevent Row and Column

from trying for the (4, 2) and (2, 4) outcomes.

Thus, instability and flirtations with noncooperation tend to char-

acterize those real-world situations most amenable to game-theoretic

models based on Chicken.

In October 1962, the United States and the Soviet Union came closer

to a nuclear confrontation than perhaps at any other time in history.

President John F. Kennedy, in retrospect, estimated the probability

of nuclear war at this time to be between one-third and one-half. The

event that precipitated this crisis was the Soviet installation of medium

and intermediate range nuclear missiles in Cuba, and the subsequent

detection of this by U.S. intelligence. History now refers to this event

as the Cuban missile crisis.

The events that actually unfolded ran as follows. By mid-October

1962, the Central Intelligence Agency had determined that Soviet mis-

siles had been installed in Cuba and were within ten days of being

operational. Kennedy convened a high-level executive committee that

spent six days in secret meetings to discuss Soviet motives, decide on

appropriate U.S. responses, conjecture as to Soviet reaction to U.S.

responses, and so on. The final decision of this group was to imme-

diately put in place a naval blockade to prevent further shipments of

missiles, while not ruling out the possibility of an invasion of Cuba

to get rid of the missiles already there. Khrushchev, on behalf of the

Soviets, responded by demanding that the United States remove its

nuclear missiles from Turkey (a demand later granted—although not

publicly—by Kennedy), and promise not to invade Cuba (a demand

granted by Kennedy). The Soviets then withdrew all their missiles from

Cuba.

Much has been written about the Cuban missile crisis and

game-theoretic models thereof. Our purpose here is to present two

of the simplest such models based on the game of Chicken. The first

is from Brams (1985a, 1985b). The difference in the two models lies

in the specification of alternatives available to the players. It may be

that the former model represents more of a U.S. point of view of the

situation and the latter more of a Soviet point of view. Figure 8 on the

next page presents the former.
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It should be pointed out that Brams (1985a, 1985b) embellishes the

model in several ways (e.g., by consideration of deception, threats,

sequential nature of the events, etc.), as well as considering a different

ranking of the alternatives by the players.

The actual Soviet motives for the installation of the missiles in the

first place are apparently still not known, although the fear of a U.S.

invasion of Cuba may well have played a role. For more on this, see

Brams (1993). If we accept this as a primary issue in the minds of

the Soviets, then the game (especially as perceived by the Soviets)

may have been as in Figure 9 below. Notice that the underlying 2 × 2

ordinal game is again Chicken. Thus, in both models, the structure

of the underlying game sheds light on the tensions of these dramatic

times in the early 1960s.

Give up option
to invade Cuba

(3, 3) (2, 4)

(4, 2) (1, 1)Invade Cuba

U.S.

Soviet Union

Withdraw
missiles

Maintain
missiles

FIGURE 9
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...........................................................................................................

4.6 THE YOM KIPPUR WAR

In October 1973, the Yom Kippur War pitted Israel against a combi-

nation of Egyptian and Syrian forces. Israel quickly gained the upper

hand, at which point the Soviet Union made it known that it was

seriously considering intervening on behalf of Egypt and Syria. The

Soviets also made it known that they hoped the United States would

cooperate in what they referred to as a peace initiative. On the other

hand, they were certainly aware of the U.S. option to frustrate this

Soviet initiative by coming to the aid of Israel.

The above situation, again in very simplistic terms, suggests a

2 × 2 ordinal game model (Figure 10 below), where the rankings of

preferences have not been filled in yet.

The question now becomes: How did the Soviet Union and the

United States rank the different outcomes, and was each aware of the

other’s preferences? History suggests that the Soviets were convinced

the preferences were as shown in Figure 11 on the next page.

Notice that this is not Prisoner’s Dilemma since the United States is

ranking CN ahead of NN. (That is, if the Soviets choose N, the United

States would rather choose C than N.) Why would the Soviets think the

United States would not respond to Soviet intervention by interven-

tion of its own? The answer here seems to lie with the U.S. political

situation at home at this time. The Watergate scandal was creating

what was perceived as a “crisis of confidence” in the U.S. political

Cooperate with the
Soviet initiative

(nonintervention)

Seek
diplomatic

solution

C

C

N

N

Supply Egypt
and Syria with

military aid

Frustrate the Soviet
initiative

(intervention)

U.S.

Soviets

FIGURE 10
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arena. Hence, the Soviets thought that a decision to give military aid

to Egypt and Syria would not be met with an appropriate response

from the United States.

President Nixon, however, realized exactly how the Soviets per-

ceived the situation, and the consequences of this perception (see

Exercise 1 at the end of the chapter). Hence, his immediate goal

became that of convincing the Soviets that the correct model was,

in fact, Prisoner’s Dilemma as shown in Figure 12 below.

Nixon’s method of accomplishing this was to place the U.S. forces

on worldwide alert—one of only about half a dozen times that nuclear

threats have been employed by the United States. This move (since

Seek
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N
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Soviet initiative

(nonintervention)
C

N

(3, 3) (1, 4)
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characterized by then–Secretary of State Henry Kissinger as a “delib-

erate overreaction”) seems to have been effective in convincing the

Soviets that Prisoner’s Dilemma was, in fact, the correct model for

U.S. and Soviet preferences in this situation.

The astute reader may well be asking the following question: Did

Nixon actually gain anything by convincing the Soviets that the game

was Prisoner’s Dilemma? This is the issue we take up in the next

section.

...........................................................................................................

4.7 THE THEORY OF MOVES

Recall that our basic 2×2-ordinal games are played by a single simul-

taneous choice of strategy (C or N) by both players. An outcome is

then decided, and that’s the end of it. In particular, as game-theoretic

models of real-world situations, these 2×2 games are about as simple

as one could hope for. The price paid for this simplicity, however, is a

loss of the dynamics found in the real world.

As a particular example of the kind of loss referred to above, let’s

return to the considerations in Section 4.6 and the Yom Kippur War.

Recall that Nixon placed U.S. forces on worldwide alert in order to

convince the Soviets that the game being played was really Prisoner’s

Dilemma. But now, let’s face up to a fundamental difficulty with this

game-theoretic model of that particular conflict:

It simply doesn’t work.

In what sense does the above model fail to work? The answer: It

fails to explain what actually happened. That is, the existence of dom-

inant strategies—for intervention in this case—should have resulted

in mutual noncooperation between the United States and the Soviet

Union. But, in fact, neither chose to intervene and so we wound up

at the (3, 3) outcome (which is also unstable in the sense of not being

a Nash equilibrium). What is wrong with our model, and can it be

modified to more faithfully reflect reality?

The most obvious place to look for a shortcoming in the Prisoner’s

Dilemma model of intervention in the Yom Kippur War is with the

preference rankings we assigned. But this is probably not where the
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problem lies in this particular case. The problem is even more basic

than the choice of preferences.

There is a very fundamental way in which a 2 × 2-ordinal game dif-

fers from the situation in which the United States and the Soviet Union

found themselves in 1973. This difference rests in what we might call

the “starting position.” In a 2×2-ordinal game, the starting position is

completely neutral—neither C nor N has any predetermined favored

status. But in the real-world situation of the Yom Kippur War, the

starting position was clearly one of mutual nonintervention. Hence,

the United States and the Soviet Union were already at the (3, 3) out-

come and the question was whether or not either side should change

its status quo strategy of C (nonintervention) to N (intervention).

From this point of view, the game certainly does start to explain the

events that unfolded. That is, the (3, 3) outcome is definitely not stable

(i.e., not a Nash equilibrium) and so it is certainly rational for each side

to try to find out the resolve of the other with respect to responding to

a switch from C to N. This, of course, is exactly what the Soviets did,

and Nixon’s response was designed to convey a very exact message

regarding this resolve. Thus, a better way to use the 2 × 2-ordinal

preference matrix in modeling this particular situation is to consider a

new kind of game where a starting position is determined in some way,

and then each player has the option of changing strategy. This leads us

directly to (a slightly modified version of) the so-called theory of moves

introduced by Brams and Wittman (1981) and extensively pursued in

Brams (1994). The precise definitions and rules are as follows.

To each 2×2-ordinal preference matrix (like that for Chicken or Pris-

oner’s Dilemma) we associate two “sequential games”—one in which

Row goes first and one in which Column goes first. We’ll describe the

former version; the latter is completely analogous. Suppose we have

a fixed 2 × 2-ordinal preference matrix. The “sequential game” (with

Row going first) proceeds as follows.

Step 1: Both players make an initial simultaneous choice of either

C or N. This determines what we will call an initial position

of the game.

Step 2: Row has the choice of leaving things as they are (“staying”),

or changing his strategy.

Step 3: Column has the same choices as did Row in step 2.
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They continue alternately. The game ends if any one of the following

situations occurs:

1. It is Column’s turn to move and the position of the game is (-, 4).

2. It is Row’s (second or later) turn and the position of the game

is (4, -). Thus, if the initial position is (4, -), the game does not

immediately end.

3. Either Row or Column chooses to stay, with the one exception to

this being that an initial “stay” by Row does not end the game;

we give Column a chance to move even if Row declines the

chance to switch strategy on his first move.

Notice that the effect of rules 1 and 2 is to build a bit of rationality

into the rules of the game. This guarantees that certain games will

terminate and thus be susceptible to the kind of tree analysis we want

to do.

The outcome at which a game ends is called the final outcome and

this (alone) determines the payoffs.

The analogue of a Nash equilibrium in the present context is given

by the following.

DEFINITION. An outcome is called a non-myopic equilibrium when Row

goes first if sequential rational play in the game described above results

in that outcome being the final outcome any time it is chosen as the

initial position. The notion of a “non-myopic equilibrium when Column

goes first” is defined similarly.

DEFINITION. A non-myopic equilibrium is an outcome that is both

a non-myopic equilibrium when Row goes first and a non-myopic

equilibrium when Column goes first.

We will analyze rational play in the kind of sequential game

described above by what is called “backward induction” or, more infor-

mally, “pruning the tree.” This so-called “game-tree analysis” begins at

any point in the tree where the next move will definitely end the game
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(according to the rules). Assuming the player about to make this final

move is rational—meaning that he will choose, of the two possible final

outcomes resulting from his move, the one that is better for him—we

can eliminate from consideration (and from the tree) the potential

move that will be rejected by this player. The result of our eliminating

this move is a smaller tree that nevertheless represents the same game

(assuming, as we are, that players are rational). Continuing this “prun-

ing” eventually reveals the optimal sequence of moves that would be

chosen by rational players.

We will illustrate backward induction in the sequential version of

Prisoner’s Dilemma where Row goes first. It will turn out, in fact, that

both the (2, 2) and (3, 3) outcomes are non-myopic equilibria. The

(3, 3) outcome, however, is the result of a dominant strategy in the

theory of moves version of Prisoner’s Dilemma.

Our method of analyzing the theory of moves version of Prisoner’s

Dilemma will be to consider separately the four possible initial posi-

tions in the game. For each, we’ll do a game-tree analysis and find the

corresponding final outcome. This will immediately show that (2, 2)

and (3, 3) are the only non-myopic equilibria. Further analysis at this

point will then yield the additional claim about the dominant strategy.

Recall that Row is going first.

Case 1: The Initial Position is (3, 3) in Prisoner’s Dilemma

The tree of possibilities, displayed in Figure 13 on the next page, is

constructed in the following way from the 2 × 2 ordinal game (which

is also reproduced in the small box within Figure 13).

1. The top node is the initial position, which is (3, 3) in this case.

2. Row gets to move first and has a choice between staying at

(3, 3) or switching strategies from “C” to “N” and thus moving

the position of the game to (4, 1). This explains the two nodes

labeled “stay at (3, 3)” and “(4, 1)” on the level of the tree just

below the top (3, 3) node. Notice that to the far left of these two

nodes is the word Row, indicating that the choice between these

two is being made by Row.
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3. Column gets to move next. Recall that even if Row chooses to

stay on the initial move, the game does not end. Thus, if Row

chooses to stay at (3, 3), Column could also stay, ending the

game at a final outcome of (3, 3), or Column could switch his

strategy from “C” to “N” and thus move the position of the game

from (3, 3) to (1, 4). Similarly, if Row had moved the game to

(4, 1) on his first move, Column would have a choice between

staying there, and ending the game at a final outcome of (4, 1),

or switching strategies from “C” to “N” and thus moving the

position of the game from (4, 1) to (2, 2).

4. Column and Row thus continue to alternate moves. Notice that

Row is controlling the “vertical movement among outcomes”

and Column is controlling “horizontal movement among out-

comes.”

5. Notice also that the game is finite, since the position of the game

becomes (1, 4) at a time when it is Column’s turn to move (thus

guaranteeing a stay at his “4” by Column according to the rules)

and the position of the game becomes (4, 1) at a time when it

is Row’s turn to move. (Not all games like this are finite—see

Exercise 5.)
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For the game-tree analysis of rational play we start at the bottom-

most nodes and work our way up the tree, transferring outcomes labels

up and “X-ing out” the position of the game that will not be passed

through on the way to the final outcome. This is illustrated in Figure 14

above. Note, for example, that starting at the lower left part of the tree,

Column has a choice between staying at (2, 2) or moving to (4, 1) where

Row will definitely stay. Since Column prefers the “2” from “(2, 2)” to

the “1” from “(4, 1)”, the option to move will be rejected as is indicated

by the “railroad tracks.” Moving one level higher on that same side of

the tree, we see that Row has a choice between staying at (1, 4) and

getting his worst outcome, or moving to (2, 2) which will turn out to

be the final outcome. Clearly he does the latter and so we “X-out” the

edge leading to “stay at (1, 4)” and we replace the temporary (1, 4)

label by the (2, 2) that we now know will be the final outcome if the

game reaches this position.

Conclusion The game-tree analysis from Figure 14 shows that rational

play dictates an initial choice to stay at (3, 3) by Row, followed by

Column’s choice to also stay and to thus let (3, 3) be the final outcome

as well as the initial position. Hence, (3, 3) is a non-myopic equilibrium

when Row goes first.
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For the three remaining cases, we will present only the analogues

of Figure 14 and the conclusions they yield.

Case 2: The Initial Position is (2, 2) in Prisoner’s Dilemma

Conclusion The outcome (2, 2) is a non-myopic equilibrium when Row

goes first (Figure 15 above). In fact, with (2, 2) as the initial position,

rational play dictates that Row will choose to stay as will Column.

Case 3: The Initial Position is (1, 4) in Prisoner’s Dilemma

Conclusion If the initial position is (1, 4) in Prisoner’s Dilemma,

then Row will switch strategies, thus moving the outcome to (2, 2)

(Figure 16 on the next page). Column will then choose to stay and the

game will end at (2, 2). Intuitively, this says that if Column is being

aggressive and Row is not, then Row will respond to this by also being

aggressive and that’s where things will stay.

Case 4: The Initial Position is (4, 1) in Prisoner’s Dilemma

Conclusion If the initial position is (4, 1) in Prisoner’s Dilemma, then

Row will switch strategies and thus move the outcome to (3, 3)

(Figure 17, next page). Column will then choose to stay. Intuitively,
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if Row is being aggressive and Column is not, then Row realizes that

if he does not back off to a nonaggressive stance, then Column will

become aggressive and the (2, 2) stalemate will prevail instead of the

(3, 3) compromise.
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The following table summarizes the theory of moves in Prisoner’s

Dilemma for the play where Row goes first.

Initial Positon Final Outcome

(3, 3) −→ (3, 3)

(2, 2) −→ (2, 2)

(1, 4) −→ (2, 2)

(4, 1) −→ (3, 3)

Notice that both Row and Column want (3, 3) as a final outcome

instead of (2, 2). Thus, both want either (3, 3) or (4, 1) as the initial

position. However—and this is a crucial observation—Column alone

can guarantee this simply by choosing C as his initial strategy. Then,

if Row chooses C we start at (3, 3) and if Row chooses N, we start at

(4, 1). Thus, Column has a dominant strategy of “C.”

Although the above analysis has been for the case where Row goes

first, it is now easy to see what happens when Column goes first. That

is, the game is symmetric. Thus, if we were to go through the corre-

sponding analysis in the latter case, we’d similarly find that (3, 3) and

(2, 2) are non-myopic equilibria when Column goes first and that the

(3, 3) final outcome occurs as the result of a dominant strategy of ini-

tial cooperation, this time by Row. In particular, we can now drop the

phrase when Row goes first, and simply conclude that (3, 3) and (2, 2)

are non-myopic equilibria, and that (3, 3) arises as a final outcome as

the result of a dominant strategy of initial cooperation on the part of

whichever player is not getting to move first.

Before concluding this section, let’s return to the Yom Kippur War

and consider the sequential version of Prisoner’s Dilemma provided by

the theory of moves as a potential model for the events that unfolded

at that time. Given that the initial position was clearly one of mutual

nonintervention—the (3, 3) outcome in our model—then the model

accurately predicts exactly what happened. That is, neither side elected

to change its initial choice of strategy. Notice that since (3, 3) is a non-

myopic equilibrium, the question of whether the United States or the

Soviet Union is “designated” as going first doesn’t arise. However, it

seems clear that in the analysis of the situation by both sides, the

Soviets were more likely to play this role.
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...........................................................................................................

4.8 CONCLUSIONS

In this chapter, we’ve introduced 2×2 ordinal games in general as well

as the two most interesting examples of such. The first—Prisoner’s

Dilemma—is one in which both players (independently) have domi-

nant strategies leading to a (2, 2) outcome that both consider inferior

to the (3, 3) outcome that is available. The (2, 2) outcome also turns out

to be stable in the sense of being a Nash equilibrium (where neither

player can gain by unilaterally changing his or her strategy). We also

presented in this chapter the classic application of Prisoner’s Dilemma

as a model of the U.S.-Soviet arms race of the 1960s, 1970s, and 1980s.

The second 2×2 ordinal game introduced in this chapter is Chicken.

This game is quite different from Prisoner’s Dilemma in the sense that

Prisoner’s Dilemma has an expected, although paradoxically unfor-

tunate, (2, 2) outcome, while there are no dominant strategies in

Chicken, although (2, 4) and (4, 2) are stable outcomes (arrived at

only by flirting with the disastrous (1, 1) outcome). As an application

of Chicken, we constructed two different models of the Cuban mis-

sile crisis. The difference between these models is in the choice of

strategies available to the two players.

We also considered the Yom Kippur War, and observed that the naïve

2×2 ordinal game-theoretic model simply did not work in the sense of

predicting what actually took place. With this in mind, we turned, in

Section 4.7, to a more complicated game involving the so-called the-

ory of moves. In particular, the theory of moves explains why an initial

position of mutual cooperation on a Prisoner’s Dilemma game board

will persist, even when both sides have the opportunity to (alternately)

change strategies.

EXERCISES

1. Suppose Row ranks the four possible outcomes, from best to worst,

in a 2 × 2 ordinal game as CN, CC, NC, NN and Column ranks the

four, again from best to worst, as CC, NN, NC, CN.

(a) Set up the 2 × 2 matrix (as in Figure 2 in Section 4.2) giving

Row’s preference ranking.
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(b) Set up the 2 × 2 matrix (as in Figure 3 in Section 4.2) giving

Column’s preference ranking.

(c) Express all this information in a single 2 × 2 matrix (as in

Figure 4 in Section 4.2).

2. Write out the proof that N is a dominant strategy for Column in

Prisoner’s Dilemma.

3. Show that C is a dominant strategy for (a) Row and (b) Column in

the following game.

C

C

Row

Column

(3, 4) (4, 2)

(1, 3) (2, 1)N

N

4. In the following 2 × 2 ordinal game:

(a) Show that C is not a dominant strategy for Row.

(b) Show that N is not a dominant strategy for Row.

(c) Show that C is not a dominant strategy for Column.

(d) Show that N is not a dominant strategy for Column.

C

C

Row

Column

(2, 3) (3, 1)

(4, 2) (1, 4)N

N

5. In this chapter and in the exercises so far, we have dealt with the

issue of how to prove that a given strategy is dominant in a particular

2×2 ordinal game. We have not yet addressed the question of how

one finds a dominant strategy if one is handed a 2×2 ordinal game.
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We illustrate one such procedure here. Consider, for example the

following game:

C

C

Row

Column

(3, 1) (4, 2)

(1, 4) (2, 3)N

N

We shall first check to see if Row has a dominant strategy. Our

starting point (regardless of the game) is the following chart (where

we have filled in only the part of the chart that does not require

looking at the game in question):

Column’s Choice

C

N

Row’s Best Response

For this particular game, we can see that if Column chooses C,

then the outcome will be either (3, 1) or (1, 4), and Row would

certainly prefer the “3” from (3, 1) to the “1” from (1, 4). Thus,

Row’s best response to a choice of C by Column is C, since this

is what yields the outcome (3, 1). A similar analysis when Column

chooses N shows that Row’s best response is also C in this case.

Thus, the rest of the chart can be filled out as follows:

Column’s Choice

C C (because 3 > 1)

C (because 4 > 2)N

Row’s Best Response

From this we can conclude that Row has a dominant strategy

of C. Notice, however, that the above chart is a poor excuse for a

proof that C is a dominant strategy for Row. That is, a proof is a

convincing argument, and the above chart conveys little to anyone
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who does not already understand the material. On the other hand,

the chart (together with the preference matrix) should make it easy

for the reader to:

(a) Write down a proof (with sentences as in the proof for Pris-

oner’s Dilemma from Section 4.4) that C is a dominant

strategy for Row in the above game.

(b) Fill out the following chart (which is the analogue for Column

of what we just did for Row):

Row9s Choice

C

N

Column’s Best Response

(c) Use what you found from the chart in part (b) to prove that

Column has no dominant strategy. (This should look like the

proof for Chicken in Section 4.5.)

Notice that in filling out these charts, there are four possibilities

for what can occur below the “Best Response” label:

C C N N

C N C N

In the first case, C is a dominant strategy, and in the last case,

N is a dominant strategy. In the second case, the optimal strategy

suggested is called “tit-for-tat.” In the third case, it is called “tat-

for-tit.”

6. Find the dominant strategies in the following game and prove that

they are, in fact, dominant.

C

C

Row

Column

(2, 1) (1, 2)

(4, 3) (3, 4)N

N
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7. Determine if there are any dominant strategies in the following

game.

C

C

Row

Column

(2, 4) (4, 1)

(3, 2) (1, 3)N

N

8. Extend what is done in Exercise 5 to answer the following: Does

Column have a dominant strategy in the following 2×3 game where

Column has three choices: C, N, and V? (Intuition: think of V as very

uncooperative.) Each ranks the six possible outcomes from 6 (best)

to 1 (worst).

C

C

Row

Column

(5, 4) (3, 5) (2, 6)

(1, 3)(6, 1) (4, 2)N

N V

9. Suppose that CC is a (4, 4) outcome in a 2 × 2 ordinal game.

Does this guarantee that C is a dominant strategy for both Row and

Column? (Either explain why it does, or find a 2 × 2 ordinal game

showing that it need not.)

10. In the following game:

(a) Show that (2, 3) is a Nash equilibrium.

(b) Show that (4, 2) is not a Nash equilibrium.

(c) Is (3, 4) a Nash equilibrium? (Why or why not?)

(d) Is (1, 1) a Nash equilibrium? (Why or why not?)
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C

C

Row

Column

(2, 3) (4, 2)

(1, 1) (3, 4)N

N

11. Suppose that Row and Column both have dominant strategies in a

2×2 ordinal game. Explain why the result of these strategies (used

simultaneously) is a Nash equilibrium.

12. Consider the following game:

C (2,2) (3,3)

N (1,4) (4,1)

C N

(a) Prove that Row has no dominant strategy.

(b) Prove that Column has no dominant strategy.

(c) Prove that this game has no Nash equilibrium.

13. Consider a two-player game in which the players simultaneously

show a penny, either heads up or tails up. If both players show

heads, then both players lose their pennies to a lucky third party,

and if both players show tails, each player keeps his or her own

penny. If both players show different sides, then the player who

shows heads gets both coins.

(a) Write down the two-by-two matrix for this game.

(b) Is Chicken or Prisoner’s Dilemma or neither a model for this

game?

(c) Do the players have a dominant strategy?

(d) Is there a Nash equilibrium?
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14. Consider the following game:

C (2,3) (4,2)

N (1,1) (3,4)

C N

(a) Prove that Row has a dominant strategy. What is it?

(b) Prove that Column has no dominant strategy.

(c) Are there any Nash equilibria?

15. In long distance cycling races, drafting is a frequent phenomenon.

When one cyclist rides behind someone else, the wind resistance is

cut, and it is much easier to pedal; experts suggest that the cyclist

in back can save between 20% and 40% of his energy during the

race. Top cycling teams often use this strategy; the team players

take turns riding in front of the team leader who then has a better

chance of winning the race.

Suppose that two friends enter a cycling race, and at one point

near the end of the race, the two cyclists find themselves a good

distance ahead of the rest of the group. Their energy is lagging, and

if both riders continue to work alone, the rest of the pack will soon

catch up, and neither will win. If the two take turns drafting, then

they will remain ahead of the pack for awhile; it’s possible that one

of the two will win, but it’s more likely that they will both tire enough

that someone else passes them in the end. If either cyclist pulls

just ahead of his friend, however, allowing him to draft the rest of

the race, then the two will remain ahead of the pack, and the cyclist

in back will certainly have the energy to pull ahead in the last leg

and win. Each cyclist would prefer to win the race, but would rather

see his friend win than a stranger. Model this scenario with a 2×2

ordinal game, and determine what, if anything, the model predicts

will happen. Is the game Prisoner’s Dilemma, Chicken, or neither?

16. Kathryn and Nadia each plan to throw a New Year’s Eve party; each

one has a back-up date as well, and the two back-up dates do not

conflict. Ideally, Kathryn hopes that she can throw the New Year’s

Eve party, and that Nadia will choose a different date. But if that

doesn’t happen, she really wants to be able to attend Nadia’s party,

even though she’ll be very jealous if Nadia’s party is on New Year’s

and she has to choose a different date.
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(a) If Nadia feels the same way as Kathryn, write down a 2 × 2

ordinal game that models the situation. What, if anything, does

the model predict will happen?

(b) Suppose that Nadia’s first priority is that her party is on New

Year’s Eve, and would absolutely hate it if Kathryn gets to throw

the New Year’s Eve party and she is forced to choose a differ-

ent date. Write down a new 2 × 2 ordinal game that models

the situation. What, if anything, does the model predict will

happen?

(c) For both scenarios above, is the game Prisoner’s Dilemma,

Chicken, or neither?

17. Consider the following hypothetical situation. NASA plans to launch

amanned vehicle into space, but the engineers feel that it is unsafe.

NASA has the options to launch or not, and the engineers have

the option to go public with their reservations or not. Assume that

NASA’s first priority is that the engineers remain silent (because

NASA honestly feels that they are wrong), and, as a second priority,

NASA would rather launch than not launch. Additionally, assume

that the engineers have a first priority of preventing the launch, and

a second priority of going public with their reservations. Model this

as a 2 × 2 game, and, in a few sentences, explain what outcome

is predicted by the existence of dominant strategies.

18. Suppose there are two colleges, both competing for the same group

of students (all of whom will go to one of the two colleges). Suppose

that each college knows that if one offers merit scholarships and the

other doesn’t, then the one that does will enroll more of the better

students and more than justify the expense. However, if both offer

merit scholarships, it will be costly and have no effect on which

students enroll where. Model this as a 2 × 2 game, and, in a few

sentences, explain what outcome is predicted by the existence of

dominant strategies.

19. Do there exist 2 × 2 ordinal games with a Nash equilibrium that is

not the result of dominant strategies by Row and Column? Give an

example or prove that one does not exist.
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20. (This requires extending what was in the text.) Find all Nash

equilibria in the following 3 × 3 game:

C

C

Row

Column

(1, 9) (4, 2) (7, 7)

(3, 4) (9, 3) (5, 1)

(6, 5) (2, 6) (8, 8)

N

V

N V

21. Find all Nash equilibria for the following 3 × 3 game, and for each

outcome that is not a Nash equilibrium, explain why it is not.

C (1,4) (2,5)

N (4,8) (5,9)

V (7,6) (8,7)

C N

(3,3)

(6,2)

(9,1)

V

22. Consider the Democratic primaries prior to the 2008 presidential

election. Assume that Hillary Clinton and Barack Obama had a

choice of waging an aggressive (negative) campaign directed at the

other’s weaknesses, or waging a positive campaign based on their

own strengths. Assume also that each felt that negative campaign-

ing, unless answered in kind, would be advantageous to the one

doing the negative campaigning, at least as far as the primaries

are concerned. Notice, however, that mutual negative campaigning

will certainly put the Democratic party in a worse position for the

general election than mutual positive campaigning.

(a) Assuming that each candidate is more concerned with his or

her own political success than doing what is best for the party,

model this as a 2 × 2 game and discuss what this suggests

as far as rational behavior on the part of the candidates.
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(b) How does your model change if we assume that each candidate

has the party’s best interests in mind?

23. In Puccini’s opera Tosca, the main characters are the beautiful

Tosca, her lover Cavaradossi, and Scarpia, the chief of police.

Scarpia has condemned Cavaradossi to death, but offers to spare

his life (by arranging to have blanks in the guns of the firing squad) in

exchange for Tosca’s favors. Tosca agrees and a meeting between

her and Scarpia is set (which—exercising mathematical license—

we shall assume is for the same time as the execution). Tosca

thus has a choice between submitting as agreed or double-crossing

Scarpia (perhaps by not showing up; perhaps in some other way).

Scarpia has a choice between arranging for the blanks as agreed

or double-crossing Tosca by not doing so. Tosca considers having

her lover spared to be more important than the issue of whether

she submits or not, even though—other things being equal—she

would rather not submit. Scarpia considers having Tosca submit to

be more important than the issue of whether Cavaradossi is exe-

cuted or not, even though—other things being equal—Scarpia would

rather have him killed.

(a) Model this as a 2 × 2 ordinal game and then determine what,

if anything, the model predicts will happen.

(b) Find out what happened in the opera and see if your predictions

are correct.

24. The following report appeared in The Daily Gazette (Schenectady,

NY, Sept. 25, 1993):

OPEC’s high oil output and falling prices have cost member

countries about $6 billion since the spring and some countries

continue to exceed production limits, the cartel said.

One day ahead of a crucial meeting on Saturday, the Organi-

zation of Petroleum Exporting Countries and its dozen members

were pumping about a million barrels above the ceiling of 23.6

million barrels.

To better understand this, let’s consider a hypothetical version of

OPEC consisting of six countries. Assume that as the number of bar-
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rels of oil produced by OPEC per day increases, the price decreases

according to the following table (which is also hypothetical):

Barrels per day produced 24 25 26 27 28 29 30

(in millions)

Resulting price per barrel 24 23 22 21 20 19 18

(in dollars)

Suppose OPEC agrees that each of the six countries will produce

four million barrels per day, even though each country has the abil-

ity to produce five million barrels per day at no additional cost to

itself. Suppose also that if anyone violates the agreement, no one

will know who did (but everyone will know how many countries did

because of the resulting price per barrel).

Assume you are the leader of one of the six OPEC countries and

you are only concerned with financial gain for your country. You

have to decide whether to produce four million barrels per day or

five million barrels per day.

(a) The number of OPEC countries, other than yours, who produce

five million barrels per day instead of four million could be 0,

1, 2, 3, 4, or 5. For each of these six cases, determine if your

country is better off financially producing five million barrels

per day or four million barrels per day.

(b) Still assuming your only concern is immediate financial gain

for your country, what does (a) indicate you should do and how

compelling is this indication?

(c) If all six countries care only about their own immediate financial

gain, what does (b) suggest will happen?

(d) Given what you said in (c), how does your country fare financially

compared to how it would do if everyone (including you) stuck

to the original agreement?

(e) In a well-written paragraph or two, discuss how this hypothetical

scenario is similar in spirit to something that arose in our study

of 2 × 2 ordinal games.

25. In 1960 William Newcomb, a physicist, posed the following prob-

lem: Suppose there are two boxes labeled A and B. You have a

choice between taking box B alone or taking both A and B. God

has definitely placed $1,000 in box A. In box B, He placed either

$1,000,000 or nothing, depending upon whether He knew you’d
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take box B alone (in which case He placed $1,000,000 in box B) or

take both (in which case He placed nothing in box B). The question

is: Do you take box B alone or do you take both? You can answer

this if you want to, but that’s not the point of this exercise. In fact,

hundreds of philosophical papers have been written on this prob-

lem. Most people think the answer is obvious, although they tend

to split quite evenly on which answer is obvious and which answer

is clearly wrong.

(a) Give an argument that suggests you should take both boxes.

(b) Give an argument that suggests you should take box B alone.

(c) Indicate which argument you find most compelling and why.

(d) Consider the following 2 × 2 ordinal game:

C

C

Row

Column

(3, 4) (1, 3)

(4, 1) (2, 2)N

N

Prove that Row has a dominant strategy of N. Now suppose that

we change the rules of the game so that Row chooses first, and then

Column—knowing what Row did—chooses second. Explain why,

even though Row has a dominant strategy of N in the game with the

usual rules, Row should choose C in this version of the game where

Row moves first. Here is our resolution of Newcomb’s problem.

(There are hundreds of “resolutions” in the literature; the reader

should take the authors’ with the grain of salt it probably deserves.)

Consider the following 2×2 ordinal game between God and us. God

has two choices: to put $1,000 in box A and $1,000,000 in box

B, or to put $1,000 in box A and $0 in box B. We also have two

choices: take both boxes or take box B alone. Our ranking of the

outcomes is clear, since the dollar amounts we receive for the four

possible outcomes are $1,001,000; $1,000,000; $1,000; and $0.

God, on the other hand, apparently regards the upper left outcome

as better than the upper right outcome (rewarding us for not being

greedy). Similarly, He would seem to regard the lower right outcome

as better than the lower left outcome (punishing us for our greed).
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Choose box B alone

$1,000 in A
$1,000,000 in B

$1,000 in A
$0 in B

Choose both boxes

(3, a+) (1, a)

(4, b) (2, b+)

Us

God

Notice that this game, assuming only that a+ is greater than a

and b+ is greater than b, has the same property as the game in

part (d): We have a dominant strategy of “choose both” in the usual

play of the game, but, in the game where we must move first, we

are better off not using this strategy.

This is the paradoxical nature of God’s action being based on

His knowledge of what we will do: Which game is being played—the

one where we go first (and if He knows what we will do, surely this

is equivalent to our already having done it), or the one where we

move independently (as in the usual play of a 2×2 ordinal game)?

26. A two-player game is said to be a somewhat finite game if every

play of the game ends after finitely many moves. “Hypergame” was

created by William Zwicker in the late 1970s. It is played by two

players as follows: The first move consists of Player 1 naming a

somewhat finite game of his or her choice. The second move in this

play of hypergame consists of Player 2 making a legitimate first

move in the somewhat finite game named in move 1. Player 1 now

makes a second move in the game named, and they continue to

alternate until this play of the game named is completed. (In some

ways, hypergame is like dealer’s choice poker.)

(a) Write down a compelling argument that hypergame is a some-

what finite game.

(b) Write down a compelling argument that hypergame is not a

somewhat finite game.

More on hypergame is readily available in Zwicker (1987).

27. Iterated Prisoner’s Dilemma is a two-player game in which two play-

ers play the Prisoner’s Dilemma game a fixed finite number N of

times.

(a) Determine each player’s strategy when N = 2.
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(b) Determine each player’s strategy when N = 3.

(c) Explain why each player’s strategy remains the same no matter

how large N is.

28. Robert Axelrod, a political scientist, organized a tournament in which

participants played an iterated version of Prisoner’s Dilemma, that

is, the game is played a certain number of times, and the players

may base their strategies in one round on their opponent’s behavior

in the previous round. The player who wins the most rounds is the

winner. Some possible strategies are as follows.

Pure Cooperation. The player cooperates during every iteration of

the game.

Pure Non-Cooperation. The player does not cooperate during every

iteration of the game.

Random. The player flips a coin for every iteration of the game:

if heads comes up, he cooperates, and if tails comes up, he does

not cooperate.

Alternation. The player cooperates during the first round and in

every other odd-numbered round, and does not cooperate in all even-

numbered rounds.

Tit-for-Tat. The player cooperates during the first round of play.

During all other rounds, the player uses the strategy that his

opponent used during the previous round.

(a) Suppose that two players play a 5-round Iterated Prisoner’s

Dilemma, and both use the Tit-for-Tat strategy. Describe the

outcome of the game, that is, who wins during each of the five

stages.

(b) Suppose that two players play a 5-round Iterated Prisoner’s

Dilemma; Player 1 uses the Pure Non-Cooperation strategy,

and Player 2 uses the Tit-for-Tat strategy. Discuss the outcome

of the game.

(c) Suppose that two players play a 5-round Iterated Prisoner’s

Dilemma; Player 1 uses the Alternation strategy, and Player 2

uses the Tit-for-Tat strategy. Discuss the outcome of the game.

(d) Suppose that you are playing a 5-round Iterated Prisoner’s

Dilemma, and you know your opponent will use Tit-for-Tat

strategy. What should you do at each stage of the game?

29. How might a player’s strategy for Iterated Prisoner’s Dilemma differ

if infinitely many rounds are played?
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30. The ultimatum game is a two-player game, played as follows:

Player 1 proposes a possible division of $1 between the two play-

ers (for example, they might split the $1 evenly between them).

Only divisions requiring quarters (no dimes, nickels, or pennies) are

allowed. Player 2 has two options: she can either accept the division

and the dollar is split as proposed, or she can reject the division in

which case neither player receives anything.

(a) Assuming each player just wants to maximize his profit, what

is Player’s 2 dominant strategy? What about Player 1?

(b) In practice, a large percentage of the people in Player 1’s role

offer a near 50-50 split. Compare this to your results in part

(a). How might you explain this difference?

31. Suppose the Soviets think that the correct model of the Yom Kippur

War is the one in Figure 11 in Section 4.6. Based on this model,

what would the Soviets expect to happen?

32. In a few sentences each, explain the steps in the analysis pictured

in Figures 15, 16, and 17 in Section 4.7.

33. Show that (3, 3) is a non-myopic equilibrium in the theory of moves

version of Chicken.

34. Do an analysis of the theory of moves version of Chicken that is

analogous to what was done for Prisoner’s Dilemma.

35. Show that the theory of moves version of the following game is not

finite. Assume that (2, 3) is the initial position and Row goes first.

C

C

Row

Column

(2, 3) (3, 1)

(4, 2) (1, 4)N

N
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5.1 INTRODUCTION

The central difficulty in solving most disputes is finding a solution that

all parties involved consider “fair.” Of course, fairness is a subjective

issue, and is very difficult to define or quantify. Surprisingly, however,

a mathematical perspective can help identify what it means for a solu-

tion to be fair and offer a variety methods or procedures for achieving

a solution in many types of disputes.

We will focus primarily on fairness in two distinct realms: appor-

tionment and fair division. According to the United States Constitu-

tion, the number of congressional representatives per state should be

assigned according to the state’s population. A naïve allocation of seats

to states—based on the fraction of the U.S. population residing in that

state—leads to an allocation in which the number of congressional

representatives for a state is not a whole number; such an allocation

is impossible to implement. And yet we can’t just round to the near-

est whole number because the sum of the seats allocated has to be a

certain fixed number (435). There are, in point of fact, a number of

procedures for handling this “rounding-off problem” that have been

proposed and used over the years, and we consider several in Sections

5.2 and 5.3.
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Just as the search for a perfect social choice procedure proved

doomed in Chapter 1, so too does the search for a perfect method

of apportionment. We illustrate this in Section 5.4 with a weakened-

but-still-striking version of the Balinski-Young impossibility theorem.

Another common type of dispute involves fairly allocating a number

of goods among several parties, such as that which occurs in the distri-

bution of marital assets in a divorce or the division of an estate among

two or more heirs. In fact, similar methods can be used for disputes in

which it is not a physical set of goods that is under contention but a set

of issues that need to be resolved. For example, two political parties

deciding on rules for a debate between candidates might argue over

the issues of the length of the debate, the source of the questions, and

the time allowed for initial answers and rebuttals. We will look at what

it means for solutions to these types of disputes to be fair, and how to

achieve such a solution.

In Section 5.5, we discuss fairness in the context of dispute resolu-

tion, and some criteria by which we can judge the “fairness” of a partic-

ular method of dispute resolution or fair division. In Section 5.6, we

look at a specific method, the adjusted winner procedure, for disputes

involving two parties. In Section 5.7 we apply the adjusted winner

procedure to the Israeli - Palestinian conflict in the Middle East.

...........................................................................................................

5.2 THE PROBLEM OF APPORTIONMENT

The U.S. House of Representatives has, at any given time, a fixed size—

presently 435. Article 1, Section 2 of the Constitution specifies that

these seats should be apportioned among the states “according to their

respective numbers.” This suggests that a state with 10% of the U.S.

population should have 10% of the 435 seats in the House. Alas, 10%

of 435 is 43.5, and a fraction of a seat is quite impossible.

A number such as 43.5, arrived at as we did in the previous para-

graph, is a state’s “ideal allotment” or “quota.” It is the number of

seats that a state would ideally have, if fractional seats were possible.

A state’s quota is thus calculated by multiplying the size of the House

(435) by the fraction that corresponds to the percentage of the U.S.

population residing in that state.
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The “apportionment problem”’ refers to the search for a method to

replace these quotas by whole numbers in a way that is as fair and equi-

table as possible. Unfortunately, the naïve solution of just rounding

each fraction to the nearest whole number fails because the result-

ing total will typically be either less than the fixed House size (leaving

seats unfilled) or greater than the fixed House size (thus apportioning

non-existent seats).

Alexander Hamilton, Secretary of the Treasury, proposed the first

solution to the apportionment problem following the initial U.S.

census in 1792. His proposal is easy to describe:

Hamilton’s Method of Apportionment: Begin by rounding all quotas

down to the nearest whole number and allocate seats accordingly,

leaving (typically) a number of seats not yet allocated. Now hand these

additional seats out, one at a time, according to the size of the frac-

tional part of the quota (so that a state with a quota of 13.92 would

get an extra seat before a state with a quota of 31.67, because .92 is

greater than .67).

Hamilton’s method was not used in 1792 because President George

Washington vetoed the bill (the first bill in U.S. history to suffer this

fate). It was, however, resurrected in 1850 and used for the next 40

years. In Section 5.3, we say more of the history of apportionment

in the U.S., and we’ll see that the choice of method to be used was

often based more on political considerations than objective issues of

fairness.

For the moment, let’s ask what it might mean to say that a spe-

cific method, such as Hamilton’s, for apportioning seats among the 50

states is “fair and equitable.” Without some attempt to formalize this

via desirable properties, we’re back at the constitutional directive to

do it “according to their respective numbers.”

As a starting point, Hamilton’s method possesses two properties that

certainly seem, at first blush, to be obvious desiderata.

The Monotonicity Property

A method of apportionment satisfies the monotonicity property (or is

said to be monotone or monotonic) if no state receives fewer seats than

a state with less (or the same) population. That is, if state A has fewer

seats than state B, then state A should have less population than state B.
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The Quota Property

A method of apportionment satisfies the quota property (or, more

briefly, satisfies quota) if the number of seats allotted to a state never

differs from its (ideal) quota by more than one. Thus, if a state’s quota

is 13.92, it should receive either 13 seats or 14 seats.

Adding to the challenge of achieving fairness in apportioning seats

is the fact that a census is conducted every 10 years, and so seats will

typically have to be reallocated. Achieving fairness in view of such tran-

sitions turns out to be surprisingly difficult, and Hamilton’s method

comes up a bit short. In particular, it fails to satisfy the following (as

we will later demonstrate).

The Population Property

A method of apportionment satisfies the population property (or avoids

the population paradox) if, following a census, no state should gain

population and lose a seat while some other state loses population

and gains a seat.

It turns out that there is no shortage of apportionment methods

that satisfy the population property. These are the so-called divisor

methods.

...........................................................................................................

5.3 DIVISOR METHODS OF APPORTIONMENT

In 1792, Hamilton’s proposal was immediately met by a counter-

proposal put forth by his chief political rival Thomas Jefferson.

Jefferson’s method (described below) seems to involve an enormous

number of trial-and-error calculations, but this is not really true in

practice. It is an example of a so-called “divisor method.”

Jefferson’s Method of Apportionment: Begin by choosing a whole

number d (called a “divisor”) as the desired size (population) of each

“congressional district.” Now allocate each state one seat for each con-

gressional district. (That is, divide the state’s population by the number

d, and then round down to the nearest whole number to get that state’s

allocation.) If the number of seats allocated is exactly the House size,

you’re done. If it’s less than the House size, go back and repeat the
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process with a larger choice for d. If it’s more than the House size, use

a smaller choice for d.

Politically, Jefferson’s method won out, and it was used to appor-

tion the House of Representatives for more than 50 years. However, by

always rounding down, it systematically favors large states—a reduc-

tion from an ideal allotment of 49.9 to 49 leaves a state only about 2%

short of ideal, whereas a reduction from an ideal allotment of 4.9 to

4 leaves a state about 20% short.

This favoritism of large states came to the forefront following the

census of 1830 when John Quincy Adams, the Representative from

Massachusetts, saw how badly the smaller New England states were

faring in comparison with large states like New York. He proposed

replacing Jefferson’s method with one now known as Adams’s method:

Adams’s Method of Apportionment: Proceed exactly as in Jefferson’s

method except, where Jefferson rounds down to the nearest whole

number, now round up to the nearest whole number.

Adams’s method favors small states for exactly the same reason that

Jefferson’s method favors large states: a rounding up from 4.1 to 5 is

a gain of roughly 20% while a rounding up from 49.1 to 50 is a gain

of roughly only 2%. It was left to Daniel Webster to propose a more

moderate alternative.

Webster’s Method of Apportionment: Proceed exactly as in Adams’s and

Jefferson’s methods except, where Jefferson rounds down and Adams

rounds up, now simply round to the nearest whole number as one

would normally do.

Historically, Webster’s method went into effect following the 1840

census, but is was replaced a decade later by Hamilton’s method,

rediscovered by Samuel F. Vinton and often referred to as “Vinton’s

method.” One might expect this to be the end of the story—at least for

divisor methods—but there turns out to be one more natural way to

round numbers, and the corresponding divisor method has been the

one that has been in effect since the census of 1930. It uses the idea of

the geometric mean.

DEFINITION. The geometric mean of two numbers A and B is the

square root of the product AB. “Rounding according to the geometric
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mean” means, for example, that a number x between 4 and 5 gets

rounded down to 4 if x is less than the geometric mean of 4 and 5 (i.e.√
20), and rounded up otherwise. This rounds x down if x <

√
20 and

up if x >
√
20.

The Hill-Huntington Method of Apportionment: Proceed exactly as in

Adams’s and Jefferson’s and Webster’s methods except, where Jefferson

rounds down and Adams rounds up and Webster rounds in the normal

fashion, now round according to the geometric mean.

The rationale behind the Hill-Huntington method can briefly be

described as follows. In 1911, Joseph A. Hill, then the chief statis-

tician in the census bureau, suggested a philosophical principle—as

opposed to a method—on which apportionment should be based. He

wanted to look at per capita representation, that is, a state’s population

divided by the number of seats. Thus, one state might have a per capita

representation of 1,740,000 while another might have a per capita

representation of 1,340,000 million. The difference, arrived at by sub-

tracting, is 400,000. But what one really wants to look at here is the

relative difference, in this case 400,000/1,340,000 = .2985 or 29.85%.

It may happen that transferring a seat from the state with the smaller

per capita representation to the one with the larger would reduce this

relative difference, thus improving the equity. Hill’s proposal was to

find an apportionment method with the property that no two states

could reduce the relative difference in per capita representation by

such a transfer of a seat.

Edward V. Huntington, a professor of mathematics at Harvard,

showed that the method now called the Hill-Huntington method does,

in fact, satisfy Hill’s principle.

...........................................................................................................

5.4 A GLIMPSE OF IMPOSSIBILITY

There is a remarkable result due to Michel L. Balinski and H. Peyton

Young that the only apportionment methods that satisfy the popula-

tion property are the divisor methods. But divisor methods, it turns

out, are never guaranteed to satisfy the quota condition. Thus, we have

a situation—an impossibility theorem—analogous to what we saw in

the context of social choice.
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While the Balinski-Young result is quite complicated, there is a

weaker result that is nevertheless striking. It shows that a search for a

perfect apportionment method is as doomed as the search for a perfect

social choice procedure.

THEOREM. There is no apportionment method that satisfies the

monotonicity property, the quota condition, and the population

property.

PROOF. Assume that we have an apportionment method that satisfies

the monotonicity property and the quota condition. We’ll show that it

must fail to satisfy the population property.

Consider the situation in which there are 7 seats, 4 states (A,B,C,

and D), and a total population of 4200 distributed as follows: A

has 3003, B has 400, C has 399, and D has 398. We can calcu-

late the quota for each in the usual way (for example, A’s quota is

[3003/4200] × 7 = 5.005). The results are as follows:

State Population Quota

A 3003 5.005

B 400 0.667

C 399 0.665

D 398 0.663

It is easy to see that because of the quota condition and monotonicity,

the only possible apportionments are 5,1,1,0 and 6,1,0,0 (see Exercise

1). In particular, state A gets at least 5 seats and state D gets no seats.

Now suppose that at the next census there are 1100 additional peo-

ple, with state A gaining 1, state D losing 1, and states B and D faring

as show below:

State Population Quota

A 3004 (+1) 3.968

B 1503 (+1103) 1.985

C 396 (−3) 0.523

D 397 (−1) 0.524
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Again, it is easy to see that because of the quota condition and monot-

onicity, the only possible apportionments are 4,2,0,1 and 4,1,1,1 and

3,2,1,1 (see Exercise 2). In particular, state A gets at most 4 seats and

state D gets at least one.

Thus, state A has gained population and lost a seat, while state D

has lost population and gained a seat. This completes the proof.

...........................................................................................................

5.5 DISPUTE RESOLUTION AND FAIR DIVISION

In Chapter 1, we studied social choice procedures, and evaluated each

according to a set of reasonably fair criteria that we intuitively believe

a social choice procedure should satisfy. In the last few sections, we

looked at apportionment methods and again evaluated each accord-

ing to a set of reasonably fair criteria that we intuitively believe an

apportionment method should satisfy. Next we look at the issue of fair-

ness in a different realm—dispute resolution. We will consider several

methods of dispute resolution, and again evaluate each according to

different notions of fairness.

Even most children are familiar with the method of “divide-and-

choose.” If two people want to fairly divide a candy bar in two pieces,

one person will physically divide the candy, and the second person will

choose which piece to take. Since the divider doesn’t know which piece

he will receive, it is clearly in his best interest to make the two pieces

equal size, thereby guaranteeing that he will receive half. The chooser

is also happy, of course, since she will definitely get the bigger piece.

This method of division works equally well if the item to be divided

is heterogeneous and the people’s valuations of each piece differ. For

example, we may be dividing a birthday cake into two pieces—one of

us just wants as big a piece as possible, while the other would rather

have a smaller piece if it contains more of the delicious frosting roses.

The divider might split the cake into two pieces of unequal size, but if

he values each piece equally, he will still be happy in the end since he

is guaranteed a piece worth half the total value.

The divide-and-choose method described above is well known and

commonly used. In fact, it has been used for thousands of years! In the

ancient Greek text Theogeny written by Hesiod over 2700 years ago,

Prometheus and Zeus divide some meat between them; Prometheus
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first splits the meat into two piles, and Zeus chooses a pile. A reference

dating even further back can be found in the Hebrew bible in the story

of Abram (later referred to as Abraham) and Lot. The two men travelled

together, and eventually reached a piece of land that would not support

both. To end the quarreling between the brothers’ herdsmen, Abram

proposed the following solution:

“Let there be no strife between you and me, between my herdsmen

and yours, for we are kinsmen. Is not the whole land before you? Let

us separate: if you go north, I will go south; and if you go south, I will

go north.” (Gen. 13:8-9)

Essentially, Abram divided the land, and Lot chose which piece he

preferred.

The divide-and-choose method appears to be a great choice for two

people who need to divide a single item, homogeneous or heteroge-

neous, but there are countless situations to which the method is not

applicable. Perhaps more than one item needs to be divided, and some

of the items are indivisible, like a TV. The TV will not be of much use

if we cut it in two! It might also be the case that the item(s) needs

to be split among three or more people. It is certainly not clear how

to extend divide-and-choose to work with three people. In fact, the

notion of fairness itself becomes more complicated when more than

two people are involved. We will discuss fair division procedures for

three or more people in Chapter 11.

In Chapter 1, we developed several properties that we used to eval-

uate the different social choice procedures. Similarly, we have several

criteria to evaluate the fairness of a particular fair division procedure.

Throughout our study of fair division, we will use the following criteria

to evaluate the fairness of a given procedure.

DEFINITION. If there are n parties involved, we say that an allocation

is proportional if each party receives at least 1/n of the total goods

according to his own valuation. So with two people, an allocation is

proportional if each party receives as least half the total value; with

three people, an allocation is proportional if each party receives at least

a third; and so on.

Note that it is possible (and occurs quite frequently in practice as we

will later see) that each of the n parties receives strictly more than 1/n

of the total. This may seem counterintuitive, and is, in fact, impossible
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if each party values the items exactly the same. But remember that each

party typically values the items differently. For an extreme example,

suppose that Annie and Ben are dividing a box of cookies that contains

both peanut butter cookies and chocolate chip cookies. If Annie hates

peanut butter and places no value on any of the peanut butter cookies,

and Ben similarly detests chocolate, then the allocation in which Annie

gets all the chocolate chip cookies and Ben receives all the peanut

butter cookies leaves both parties with an impressive 100% of the total

value!

We can think of the proportionality criteria as ensuring that each

party receives a “fair share" of the goods. But how fair a share does

this really guarantee? If Annie, Ben, and Chris are dividing a cake,

and Annie receives 40% of the cake (according to her valuation),

Ben receives 35% of the cake (according to his valuation), and Chris

receives 50% of the cake (according to his valuation), then that allo-

cation is proportional. If Annie values Ben’s portion of cake at half the

total value, however, then Annie would rather have Ben’s piece than

her own. Although the given allocation is proportional, Annie might

not consider it fair. A stronger fairness criteria is the following:

DEFINITION. An allocation is envy-free if no party values someone

else’s portion of goods more than his own.

In the example in the last paragraph, the allocation is proportional,

but not envy-free. As the following proposition shows, envy-freeness is

generally a stronger criterion than proportionality, although the two

are equivalent for two parties.

PROPOSITION. If an allocation is envy-free, then it must also be

proportional. For two parties, if an allocation is proportional, then it

is also envy-free.

PROOF. In order to show that every envy-free allocation is proportional,

it suffices to show that if an allocation is not proportional, then it is

not envy-free. For simplicity, we will assume that there are three people

named A, B, and C (with the general case left for the exercises). Assume

that we have an allocation that is not proportional and thus at least

one of the people—assume it is A—thinks he has received less than



162 5. FAIRNESS

one-third. Then A thinks that B and C between them have more than

two-thirds. But this means that A thinks that at least one of B and

C—assume it is B—has more than one-third. Thus, A thinks that he (A)

has less than one-third and A thinks that B has more than one-third.

Hence, A envies B, and so the allocation is not envy-free.

For the second part of the proposition, we assume that n = 2, so the

allocation is between two people A and B. From the above paragraph,

we know that if the allocation is envy-free, then is it proportional. On the

other hand, if it’s proportional, then each of A and B thinks he has at

least one-half, and thus thinks that the other has at most one-half. But

someone with at least one-half will never envy someone with at most

one-half. Thus the allocation is envy-free, as desired.

Even envy-freeness, however, may not be enough to guarantee that

all parties involved are happy with a given division of goods. For exam-

ple, suppose that the following matrix gives the valuations of Annie,

Ben, and Chris for a specific division of goods. The first column gives

Annie’s valuations of each of the three sets of goods, the second gives

Ben’s valuations, and the third gives Chris’s valuations. Note that the

numbers in each column must add to 100.

Annie Ben Chris

Item 1 80% 30% 25%

Item 2 10% 40% 25%

Item 3 10% 30% 50%

Looking along the main diagonal, we see that the allocation in

which Annie gets item 1, Ben gets item 2, and Chris gets item 3 is

proportional—each number is strictly bigger than 33 1/3. The alloca-

tion is also envy-free since each of the entries on the main diagonal is

greater than the other entries in that column. One can imagine though

that Ben and Chris might not view this division as fair. Although nei-

ther would switch with Annie since both Ben and Chris value their lots

as larger in value than hers, they might not be happy that she received

80% of the total goods in her opinion, whereas Ben and Chris received

only 40% and 50% of the total in their own estimations. In a sense,

Annie is happier with her portion than either Ben or Chris is with his.
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DEFINITION. An allocation is equitable if each party involved receives

exactly the same percentage of the total value according to his own

valuations of the goods.

In the example given above, the allocation is envy-free (and there-

fore proportional), but not equitable. As we will see in the exercises,

the criterion of equitability is independent from that of envy-freeness

and proportionality. That is, there are allocations that are envy-free

but not equitable and there are also allocations that are equitable,

but not envy-free. The last criterion of fairness that we will consider

here is that of efficiency, sometimes referred to in the literature as

Pareto-optimality.

DEFINITION. An allocation is efficient if there is no other allocation

possible that is at least as good for all parties and strictly better for at

least one party.

In the cookie example above, the allocation in which Annie gets all

the chocolate chip cookies and Ben gets all the peanut butter cookies is

efficient. Both receive 100% of the total value, so neither can do better.

It is important to note that efficiency itself is not a good measure of

fairness. For example, if one party receives everything, and all other

parties receive nothing, then that allocation is efficient, since the par-

ties receiving nothing cannot do better without the party who received

everything doing worse. The allocation is hardly fair however! It is only

in conjunction with the other criteria of proportionality, envy-freeness,

and equitability, that efficiency is meaningful. Intuitively, efficiency

ensures that there is no other allocation which would make everyone

happier.

...........................................................................................................

5.6 AN ALTERNATIVE TO DIVIDE-AND-CHOOSE

We saw that divide-and-choose yields an envy-free division of a single

heterogeneous good for two people. It is not equitable, however. The

divider cuts the cake into two equal pieces and therefore receives a

share worth exactly half the cake. Since the chooser typically does not

value the two pieces equally though, he or she chooses the bigger piece
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and receives a share worth strictly more than half the cake. Austin’s

moving knife procedure, discovered in 1982 by A. K. Austin, gives an

envy-free and equitable division for two people. The procedure works

as follows.

Austin’s Moving-Knife Procedure for Two People

Suppose Annie and Ben are dividing a rectangular cake between

themselves.

Step 1: Annie places one knife at the left edge of the cake. She places

a second knife at the dividing line, where she considers

the pieces of cake on either side of the knife to be equally

valuable.

Step 2: Annie then takes the two parallel knives and moves them

across the cake so that at any instant, Annie believes the

cake between the knives to be exactly half the cake.

Step 3: Ben yells “stop” when he considers the cake between the

knives to be exactly half the cake. The cake is cut at the

locations of the two knives.

Step 4: One person gets the piece of cake between the knives, and

the other gets the two pieces on the outsides of the knives.

It does not matter which person receives which portion.

If there is never a moment when Ben believes the cake between the

knives to be equal to half the cake, then the procedure does not work

since Step 3 never occurs. Fortunately, there must be such a moment

for the following reason. When Annie originally places her knives over

the cake Ben considers the cake to one side of the knife to be strictly

less than half the cake. He must therefore consider the cake to the other

side of the knife to be strictly more than half the cake. Let R denote

this portion of cake. Now if Ben never yells “stop” as Annie moves the

two knives, then the ending location of the knife on the left will be the

original location of the knife on the right; the knife on the right is now

at the rightmost edge of the cake. So the piece of cake between the

knives is exactly R which Ben values at over half the cake. The knives

originally bounded a piece of cake that Ben considered to be less than
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half the cake, and they end bounding a piece that Ben considers to

be more than half the cake. The knives were moving continuously

though, so at some moment the knives must have bounded exactly

half the cake.

Since Ben yells “stop” only when he considers the cake between the

knives to be exactly half, Ben sees the division as a 50-50 split. Simi-

larly, since Annie kept the knives at whatever distance was necessary

to ensure that the cake between the knives is half the cake, Annie also

sees the division as a 50-50 split. Thus the procedure is equitable. It is

also envy-free since each person sees each of the two portions of cake

as equally valuable.

In the description above, we are implicitly assuming that Annie and

Ben will act honestly, so we did not distinguish between the rules of

the procedure and the strategy. If Ben is feeling greedy and hoping to

benefit by misrepresenting his valuation of the cake, then he might

not yell “stop” at the point where he sees both sides of the knife as

equally valuable. In doing so, however, he risks getting a piece of cake

worth less than half the total value. In general, when we describe a

fair division procedure, we are describing the actions that each party

should take to be guaranteed a particular outcome. Acting insincerely

may, at times, result in a better outcome, but it may also result in a

strictly worse outcome. We further discuss dishonest strategies in the

exercises.

Unfortunately, Austin’s method is not efficient. Suppose the cake

is half vanilla and half chocolate. If Annie likes only vanilla and Ben

likes only chocolate, then giving Annie the vanilla half and Ben the

chocolate half gives each person a piece of cake worth 100% of the

total value of the cake. The Austin procedure, however, will give Annie

and Ben each exactly 50% of the cake’s value. Since the first allocation

is better for both, this shows that the Austin method is not efficient.

...........................................................................................................

5.7 ADJUSTED WINNER

Divide-and-choose and Austin’s moving-knife procedure are two

options for dividing a single good between two parties. Both are envy-

free, only Austin’s procedure is equitable, and neither is efficient (see

Exercise 7). When there are several goods (possibly indivisible) or
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issues in dispute, however, we can find an allocation that is envy-

free, equitable, and efficient, using the adjusted winner procedure.

Adjusted winner is a method of dispute resolution for two parties that

guarantees an outcome that is envy-free, equitable, and efficient. The

procedure uses a point-allocation system, and requires only simple

algebra to implement. Since the method is applicable when the dis-

pute involves not only goods but also issues, we will refer to the items

to be divided. For example, in a divorce settlement, a couple must often

deal with custody arrangements as well as joint property. “Winning"

the issue of custody might entail custody of the children on weekdays,

while “losing" that item would mean weekend custody. For issues like

these, the parties involved could determine together (or with a medi-

ator) before the procedure is applied what constitutes winning and

losing.

We will illustrate the procedure first with an example. Suppose that

Annie and Ben are getting divorced, and the following items are under

dispute.

1. House—The house is located very close to Annie’s office, and

Annie actually designed the recently renovated kitchen, so she

values the house more than Ben does.

2. Investment Account—The investment accounts are Annie and

Ben’s combined life savings, and very valuable to both.

3. Baby Grand Piano—Although Annie has been taking piano

lessons, Ben is the skilled pianist. It is his most prized posses-

sion.

4. Plasma TV—It was Ben’s idea to purchase the Plasma TV, and

he watches more TV than Annie does. He also uses it to screen

many movies, and writes reviews for a local newspaper.

5. Tawny, the golden retriever—Tawny goes to work with Annie

most days, so Annie spends much more time with Tawny than

Ben does. She is very attached to her dog.

6. Car—Annie walks to work everyday, and rides her bike fre-

quently, so the car is somewhat less valuable to Annie than

to Ben.
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Each party has 100 points to distribute over all the items accord-

ing to which they value most. Annie and Ben’s point distributions are

below.

Annie Item Ben

35 House 15

20 Investments 25

10 Piano 25

5 TV 15

25 Dog 10

5 Car 10

100 Total 100

The division of items occurs in two stages. During the first stage,

each item is initially awarded to the person who values it most. So

Annie receives the house and the golden retriever, and Ben receives

the investment account, baby grand piano, plasma TV, and the car.

At this point, Annie has 60 points, and Ben has 75 points. Since Ben

has more points, we say that Ben is the initial winner. The next stage

is the equitability adjustment. We need to transfer items, or fractions

thereof, from Ben to Annie until the point totals of each are equal and

the allocation is thus equitable.

The order of the items to be transferred is important. To determine

the order, we consider, for each of Ben’s items, the ratio of the points

assigned by Ben to the item to the points assigned by Annie to the item.

Note that each of these ratios will be at least 1, since Ben received the

items to which he had assigned more points. In the example at hand,

the ratios for each of Ben’s items are as follows:

Investments :
25

20
= 1.25

Piano :
25

10
= 2.5

TV :
15

5
= 3

Car :
10

5
= 2
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The transfer of items starts with the item for which the ratio above is

the smallest, then the next-smallest, and so on. Intuitively, this is the

fairest way to proceed since the “cost" to Ben per point transferred to

Annie is smallest. For example, transferring the TV requires lowering

Ben’s point total by 3 points for every 1 point transferred to Annie,

while transferring the car would only lower Ben’s point total by 2 for

every 1 point transferred to Annie. We will see in Chapter 11 that this

order is crucial to the proof that the resulting allocation is efficient.

Since the ratio for the investments is the smallest, we begin with

that. Notice that if we were to transfer the entire investment portfolio

to Annie, then Annie would have more points than Ben. A simple alge-

braic calculation will give the exact fraction of the investments to be

transferred in order to achieve equitability. Let x be the fraction of the

investments transferred to Annie, so that 1 − x is the fraction retained

by Ben. After the transfer, then, Annie will have 60 points (from the

house and dog) plus 20x (her portion of the investments), while Ben

will have 50 points (from the piano, TV, and car) plus 25(1−x) (his por-

tion of the investments). To guarantee that the resulting point totals

are equal, we need to ensure that

60 + 20x = 50 + 25(1 − x) = 75 − 25x.

Thus

45x = 15,

so x = 1/3. In the end, then, Annie receives the house, the golden

retriever Tawny, and one-third of the investment portfolio, while Ben

keeps the piano, TV, car, and two-thirds of the investments. Each per-

son walks away with an impressive total of 66 2/3 points, well over half

the total value.

In this example, splitting up the investment portfolio is not a diffi-

cult task, at least for the stock brokers. If we had needed to split the

piano, however, it certainly wouldn’t be simple since a third of a piano

is not very valuable to anyone! In this case, a mediator might perform

the adjusted winner procedure for Annie and Ben, and then reveal

that the piano needs to be split: one person will receive one-third,

the other two-thirds (without divulging who receives which portion).

Together, then, Annie and Ben might decide to sell the piano and split



5.7. Adjusted Winner 169

the profits according to the prescribed proportions. Or they might

decide that if Annie receives the larger half, they will sell the piano,

but if Ben receives the larger share, he will buy out Annie’s share. If the

golden retriever is to be divided, they might decide to share custody.

Many options are available when splitting items becomes necessary;

fortunately, as we will see, at most one item need ever be split.

Now that we’ve seen an example, let’s look at the adjusted winner

procedure in general.

Adjusted Winner Procedure

Step 1: Each item, for which there is no tie in point values, is initially

awarded to the party who awarded it more points. Next, in

any order and one at a time, the tied items are given to

whomever has fewer points at the time. If the point totals

are equal, then a tied item can be given to either party.

Step 2: If the point totals of each party are equal at the end of Step

1, then the procedure is done; an equitable allocation has

been achieved. Otherwise, the equitability adjustment (Step

3) occurs.

Step 3: Call the party with more points at the end of Step 1 the initial

winner. Calculate the ratio, for each item awarded to the ini-

tial winner during Step 1, of the points awarded to the item

by the initial winner to the points awarded to the item by the

other party. In order of ascending ratios, transfer items (or

fractions thereof) from the initial winner to the other party

until the point totals are equal.

Note that the procedure does in fact end. Only finitely many items

are under dispute. If after an item is transferred, the initial winner

still has the larger point total, then the next item is transferred. If

transferring an item results in equal point totals, then the procedure

is finished. If transferring an item would result in the initial winner

having fewer points than the other party, then that item must be split;

the procedure is then finished. Also note that the procedure can be

modified in the case of unequal entitlements, for instance if a pre-

nuptial agreement indicated that the shared property be divided 60% -

40%. See Exercise 15 for a specific example.
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The adjusted winner procedure is widely applicable to many types of

disputes, and is easy to use without hiring an expensive expert negotia-

tor. A mediator could be useful, however, in performing the procedure

and helping the parties to both identify issues at dispute and iden-

tify what winning at each issue entails. Allocating points to the items

at hand is not necessarily an easy task, but it does give each party a

degree of control in a difficult situation. Moreover, determining one’s

valuations can be done alone, with no time pressure, and can be much

less stressful than worrying about an emotional battle of wits with a

skillful debater. Better yet, if both parties submit honest valuations,

then each is guaranteed an outcome that is envy-free, equitable, and

efficient!

Equitability. It is easy to see that the procedure is equitable by design.

The procedure ends when the point totals of each party are equal.

Efficiency. Efficiency is often the most difficult of the three criteria to

satisfy, and therefore one of the most remarkable properties of the

adjusted winner procedure. The proof of efficiency, given in Chap-

ter 11, is one of the more complicated proofs that we present in the

book.

Envy-freeness. This property follows, in fact, from the other two when

exactly two parties are involved. Suppose, for contradiction, that the

allocation is equitable and efficient, but not envy-free. Since envy-

freeness and proportionality are equivalent for two parties, then it

must be the case that at least one of the parties received less than half

according to his own valuation. But equitability then implies that both

parties received less than half. This allocation is not efficient because

we can find another division in which both players do better: give

each party’s share to the other party. If each party originally received

x points, where x < 50, then now each receives 100− x > 50 points, so

this allocation is strictly better for both parties involved, contradicting

the efficiency of the original division.

Although adjusted winner can be a great method of dispute reso-

lution, it is clearly not always applicable. Sometimes disputes involve

more than two parties, and in Chapter 11, we will look at some alterna-

tive methods that can be used for more than two parties. Unfortunately,

just as there is no perfect social choice procedure and no perfect

method of apportionment, there is no perfect fair division procedure
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for three or more parties. We will see that it is impossible to guaran-

tee an envy-free, equitable, and efficient division for more than two

people!

...........................................................................................................

5.8 ADJUSTED WINNER AND THE MIDDLE EAST

Most of the examples we have looked at so far have been concerned

with dividing a number of physical goods, but the adjusted winner

procedure can also be applied to issues in all sorts of disputes. Here

we illustrate with an example applying the adjusted winner proce-

dure to the Israeli-Palestinian conflict in the Middle East. We will

give a simplified version addressing only 5 key areas of disagreement

between the Israelis and Palestinians. For a more in-depth treatment,

see T. G. Massoud’s paper in the Journal of Conflict Resolution (June

2000) which considers nine key issues of disagreement. The follow-

ing five issues are some of the most contentious sources of dispute

between the Israelis and Palestinians.

1. West Bank: Several areas of the West Bank are inhabited by

Israelis who have no desire to leave their homes. The Palestini-

ans, however, believe that these settlements are illegal, and that

the Israelis should evacuate.

2. East Jerusalem: In 1967, Israel unified control over all of

Jerusalem by defeating Jordanian forces in the Six Days War.

A majority of the residents of East Jerusalem are Palestinian,

however, and both Israelis and Palestinians argue that East

Jerusalem is central to their sovereignty.

3. Palestinian Refugees: Israel has refused to recognize that its

establishment and expansion in 1948 and 1967 displaced Pales-

tinian villages and communities. The Palestinians insist that

Israel recognize the refugees’ “right of return” to Israel, and

provide compensation for the refugees and to Arab states that

have hosted the refugees.
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4. Palestinian Sovereignty: Israel does not recognize Palestine

as a sovereign nation.

5. Security: There are several security issues involved in the

Israeli-Palestinian conflict. Some Israelis fear that terrorism

would flourish under a Palestinian state that lacks the means

to effectively fight terrorism. Specific security issues include:

border control, control of airspace, security in Jerusalem, and

“early warning stations” in the West Bank and Gaza that would

assuage Israeli concerns against surprise attacks but provide

insufficient military capability to threaten Palestinian forces.

It is, of course, impossible to know exactly how Israeli and Palestin-

ian leaders would allocate points to the issues above, and moreover,

there would be widespread disagreement as well among each nation’s

inhabitants. Massoud, a political scientist at Bucknell University,

examined expert opinions, interim agreements, and working plans to

arrive at a reasonable approximation of possible point allocations by

each side. His research (modified for this simplified version of the

dispute) suggests that one possible point allocation is as follows.

Israel Issue Palestine

22 West Bank 21

25 East Jerusalem 23

12 Palestinian Refugees 18

15 Palestinian Sovereignty 24

26 Security 14

100 Total 100

In the first stage of the adjusted winner procedure, Israel wins the

issues of the West Bank, East Jerusalem, and security, while Palestine

wins the issues of refugees and sovereignty. At this point, Israel has 73
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points and Palestine has 42 points. Since Israel is the initial winner,

then we look at the ratios of points for the issues won by Israel:

West Bank :
22

21

East Jerusalem :
25

23

Security :
26

14

The equitability adjustment begins with the West Bank since 22/21

< 25/23 < 26/14. Transferring the entire issue would give the Pales-

tinians more points than the Israelis. To determine the percentage of

the issue of the West Bank each party receives, we solve for x in the

following equation.

51 + 22x = 42 + 21(1 − x) = 63 − 21x

43x = 12

x = 12/43 ≈ 2/7

Thus the Israelis are left with the issues of East Jerusalem, security,

and roughly 2/7 of the issue of the West Bank. The Palestinians are left

with the issues of refugees, sovereignty, and roughly 5/7 of the issue of

the West Bank. Splitting the issue of the West Bank according to the

prescribed proportions might be as simple as giving 2/7 of the land to

the Israelis and 5/7 to the Palestinians.

...........................................................................................................

5.9 CONCLUSIONS

We began this chapter by considering the issue of apportionment. Just

as we saw in Chapter 1 with social choice procedures, there are sev-

eral different methods for apportionment that seem reasonable, so we

introduced three criteria by which we could measure the “fairness” of

each procedure: the monotonicity property, the quota property, and

the population property. Unfortunately, we saw that it is impossible

to find a single apportionment method that satisfies each of the three

criteria.
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Next, we turned to the issue of fairness in dispute resolution. We

looked at the divide-and-choose method for dividing a single good

between two parties, but just as we saw for social choice procedures,

the issue of dividing goods becomes considerably more complicated

when three or more parties are involved. Our strategy of analysis, how-

ever, remained the same: we considered several different criteria by

which we could measure the fairness of the fair division procedures.

We will revisit these criteria in Chapter 11 when we look at fair division

procedures for three or more parties.

The rest of the chapter was devoted to adjusted winner, a procedure

that guarantees each of two parties an efficient, envy-free, and equi-

table allocation of goods or issues. We looked at an example of how

the procedure could be applied to the Israeli-Palestinian conflict in the

Middle East.

EXERCISES

1. Prove that in the proof of the impossibility theorem in Section 5.4,

the quota condition and monotonicity imply that the only possible

apportionments in the first example are 5,1,1,0 and 6,1,0,0.

2. Prove that in the proof of the impossibility theorem in Section 5.4,

the quota condition and monotonicity imply that the only possible

apportionments in the second example are 4,2,0,1, 4,1,1,1, and

3,2,1,1.

3. Use the Hamilton method to round each of the following numbers

in the sum to a whole number, preserving the fact that the total is

20:

2.71 + 3.49 + 0.64 + 2.07 + 9.51 + 1.58 = 20

4. Apportionment methods can also be used in non-political contexts.

Consider, for example, the situation in which a mathematics depart-

ment has 10 faculty members, each of whom will teach 2 classes in

the fall semester. These 20 sections need to accommodate seven

different courses with enrollments (and “quota” to be commented

upon momentarily) as follows.
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Course Enrollment Quota

Calculus I 121 5.45

Calculus II 94 4.23

Calculus III 76 3.42

Linear Algebra 48 2.16

Real Variables 20 0.91

Cryptology 24 1.08

Math and Politics 61 2.75

Total 444 20

(a) Explain how the quotas were calculated.

(b) Find the apportionment of the 20 sections among the 7

courses resulting from the use of Hamilton’s method.

5. Prove that for any number of parties, if an allocation is envy-free,

then it must also be proportional.

6. Prove that if a division of goods between two parties is equitable,

then one of the following is also true.

(i) The division is also envy-free.

(ii) If the two parties switch shares, then the division is envy-free.

7. (a) Prove that the divide-and-choose procedure does not guarantee

an efficient allocation.

(b) Prove that Austin’s procedure does not guarantee an efficient

allocation.

8. (a) Describe a situation in which you would rather be the chooser

in the divide-and-choose procedure.

(b) Describe a situation in which you would rather be the divider

in the divide-and-choose procedure.

9. Is the divide-and-choose procedure manipulable? That is, can one

player achieve a strictly better outcome by misrepresenting his true

valuation of the cake? Prove that it is not, or give an example where

one player achieves a strictly better outcome than obtained with an

honest application of the divide-and-choose procedure.

10. Suppose that Annie and Ben are getting a divorce. The items under

dispute are: the lease to their apartment, a one-year old blue MINI-

Cooper, a baby-grand piano, a plasma TV, a sailboat, and a Golden

Retriever named Tsuki. They assign the following points to each

item:
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Annie Item Ben

35 Apartment 30

20 Mini-Cooper 20

15 Piano 20

5 TV 10

5 Sailboat 10

20 Dog 10

100 Total 100

Determine what items Annie and Ben each receive according to the

adjusted winner procedure.

11. (a) Determine the allocation determined by the adjusted winner

procedure for the following example.

Ross’s

Points

Item Rachel’s

Points

35 Manhattan Apartment 30

50 Custody of Daughter Emma 50

10 Share in ownership of local coffee shop 15

5 Right to spend Thanksgiving with Monica and Chandler 5

100 Total 100

(b) Explain why, in this example, each party gets relatively few

points overall.

12. Katie and Hubbell Gardiner are getting a divorce. They have valued

the items to be divided as follows. Determine who gets what under

the adjusted winner procedure.

Katie’s

Points

Item Hubbell’s

Points

25 Hubbell’s first story: “A Country Made of Ice Cream” 15

10 Hollywood Home 35

25 Custody of Daughter 15

15 Hubbell’s Navy Uniform 15

10 Katie’s Hair Iron 10

15 Typewriter 10

100 Total 100
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13. Allie and Michael are getting a divorce. The five major items to be

divided are: custody of Cauchy the cat, the wine collection, season

passes to the New York City Ballet, a pair of tap shoes autographed

by Savion Glover, and a first edition copy ofWalden by Thoreau. Their

point allocations are as follows. Determine who gets what according

to the adjusted winner procedure.

Allie’s Points Item Michael’s Points

20 Cat 40

10 Wine Collection 5

25 Ballet Tickets 25

30 Tap Shoes 20

15 Book 10

100 Total 100

14. Emma and Kate are planning to open a new restaurant, and have

several projects to finish before they will be ready to open. They

would rather split up the projects between them so that each person

has full control of a few specific issues instead of working together

on each of the different projects. Each person has devoted 100

points to the projects listed below. Use adjusted winner to deter-

mine who will be in charge of which issues. If one project is to be

divided, outline a possible division of labor for the specific project

to be divided.

Emma’s Points Item Kate’s Points

20 Menu Design 10

25 Interior Design 15

10 Advertising 5

15 Dining Room Layout 20

10 Bar Layout 20

10 Hiring Waitstaff 15

10 Hiring Chefs 15

100 Total 100

15. The adjusted winner procedure can be adapted for unequal enti-

tlements. Suppose, for example, that Annie and Ben are getting a
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divorce, but they signed a pre-nuptial agreement that gives Annie

60% of the joint property and Ben 40%. During the “equitabil-

ity” adjustment stage of the adjusted winner procedure, Annie’s

point total should be exactly 1.5 times that of Ben. Determine the

allocation dictated by adjusted winner for the following items.

Annie’s Points Item Ben’s Points

35 Right to retain lease on apartment 30

20 Entertainment System 15

15 Pool table 25

15 Antique Table 20

15 Washer & Dryer 10

100 Total 100

16. Another method for dividing goods or issues between two people

is balanced alternation, wherein the two parties take turns choos-

ing issues and the party that chooses second is compensated by

being able to choose two items during his first turn. For example,

if persons A and B are dividing six goods between them, then they

might choose in the following order: A,B,B,A,B,A.

(a) If Emma and Kate, in Exercise 14, use balanced alternation

rather than adjusted winner, what is the final allocation of

issues?

(b) Is Emma better or worse off with balanced alternation than with

adjusted winner? What about Kate?

(c) Describe a particular example of two sets of goods to be

divided where adjusted winner is far better than balanced

alternation.

(d) Is there any situation in which the parties might prefer to use

balanced alternation over adjusted winner?
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6.1 INTRODUCTION

Important examples of escalation are easy to find in political science,

such as the buildup of American troops in Vietnam during the 1960s

and the arms race of the 1960s, 1970s, and 1980s, to mention just two.

Such escalatory behavior is driven at least in part by a desire to keep

previous investments from having been wasted. In this chapter we

consider a model of escalatory behavior introduced by the economist

Martin Shubik and extensively analyzed by Barry O’Neill. This model

is known as the dollar auction.

Regular auctions do not elicit escalatory behavior since one can

always quit and be back where one started. In the dollar auction, how-

ever, the rules are changed so that when the bidding for the prize

(typically a dollar—hence the name) is completed, both the highest

and the second-highest bidder pay the auctioneer what he or she bid,

although only the highest bidder gets the prize. Hence, it is worse to

have bid and lost than never to have bid at all. An appreciation of

the escalatory nature of the dollar auction is certainly enhanced by

the opportunity to watch a group of one’s (unsuspecting) peers actu-

ally involved in the bidding process. Remarkable though it may seem,
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winning bids typically exceed one dollar, with the auctioneer often

pocketing more than three dollars, and having to give out only one

dollar.

The set-up for the dollar auction is given in Section 6.2, while in

Section 6.3 we provide an analysis of “rational behavior” in the dol-

lar auction for some fairly simple cases. The method of analysis used

is an important one; it is the naïve, straightforward, “brute-force”

attack that involves the organized presentation of all possibilities

in such a way that optimal strategies can be methodically—if not

easily—identified. A similar analysis was done with the chair’s paradox

(Section 3.7) and the theory of moves (Section 4.7).

In Section 6.4 we introduce the idea of a “back-of-the-envelope cal-

culation” and we demonstrate some serious limitations to the kind

of analysis done in Section 6.3, even in the presence of high-speed

computers. Section 6.5 deals with a beautiful theorem due to Barry

O’Neill that provides a complete analysis of the dollar auction without

ever looking at the associated game tree. The statement of the theo-

rem is easy to understand. The proof of the theorem is more difficult,

although it requires absolutely no mathematical preliminaries. It can

be found in Chapter 12. We conclude in Section 6.6 with a treatment

of Vickrey auctions.

...........................................................................................................

6.2 THE DOLLAR AUCTION

The setup for the dollar auction is as follows. We assume there are

only two people bidding, one of whom is designated to go first. The

one going first must bid. That is, passing is not an option at this point. A

given unit of money is fixed (for example, a unit may be a dime), and no

bid can involve a fractional part of a unit. We let s denote the number of

units in the stakes. (So if the units are dimes and the stakes one dollar,

then s = 10.) We also assume that each bidder has a fixed number of

units of money at his or her disposal to bid with and we assume it is

the same number for both bidders. Let b (for “bankroll”) denote this

number; e.g., if units are again dimes, then b = 120 corresponds to

both bidders having a bankroll of twelve dollars. Bidding proceeds as

usual with no communication, deals, threats, etc. allowed. When the

bidding is concluded (and the fact that the bankroll is fixed guarantees
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that it definitely will be concluded at some point), the higher bidder

pays what he or she bid and receives the stakes s; the other bidder pays

what he or she bid and receives nothing.

Following O’Neill, we will assume that both bidders in the dollar

auction adhere to the conservative convention: if either bidder deter-

mines that two or more bids will lead to the same eventual outcome

for himself or herself (and no bid leads to a better outcome), then that

bidder will choose to make the conservative (i.e., smaller) bid, where

we regard a pass as a bid of zero. For example, if b = s and the first

bidder opens with a bid of b − 1, then passing and bidding b yield

the same eventual outcome—money neither lost nor gained—for the

second bidder. Hence, according to the conservative convention, the

second bidder would pass in this situation.

The dollar auction is both interesting to think about and entertain-

ing to watch. From the point of view of political science, in fact, its

primary usefulness is as an observable model of escalatory behavior

in people. This “observable model” is what O’Neill refers to as the “real

dollar auction” in order to distinguish it from what he calls the “ideal

dollar auction.” For most of this chapter, however, our concern will

be with this “ideal” version of the dollar auction where one assumes

complete rational analysis and rational behavior on the part of both

players. The benefits of this game-theoretic analysis of rational bidding

in the dollar auction are far less in terms of a deeper understand-

ing of the dollar auction model itself than in an introduction to the

(mathematical) ideas of analyzing decision trees and strategies.

...........................................................................................................

6.3 GAME-TREE ANALYSES

The results obtained here and in the next section will show that optimal

strategies in this escalatory model are far from obvious. For example,

if the units are dimes, the stakes one dollar (i.e., s = 10), and the

bankroll twelve dollars (i.e., b = 120), then the optimal opening bid

is thirty cents (i.e., three units). The reader should find this—at the

moment—enormously nonobvious.

The situation that will be considered here is the one where both the

bankroll b and the stakes s are three units. The “organized presentation

of all possibilities” referred to above will involve a tree whose nodes
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Player 1’s bid

Player 2’s bid p
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p 3 p
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Player 1’s bid

Player 2’s bid

FIGURE 1

(the black and white dots in Figure 1 above) are labeled by numbers

indicating a legitimate bid possibility for either the first bidder (who

we’ll call Player 1) or the second bidder (Player 2). All the nodes in a

single horizontal row correspond to bids by the same player, and that

player is identified to the left of that row.

Again, the node at the top labeled “start” has no particular signifi-

cance except to make the tree appear connected instead of disjointed.

The three nodes on the level below the start node represent the three

possible opening bids for Player 1: one unit, two units, or three units.

Since b = 3, no higher bid is possible. The three nodes on the level

below the node on the left labeled “1” and connected to it by lines rep-

resent the responses that Player 2 can make to an opening bid of one

unit by Player 1. And so on.

The nodes labeled “p” (for “pass”) on this tree of possibilities are

called terminal nodes (terminal in the sense of being final—no further

bidding takes place). Any sequence of nodes beginning with “start”

and moving down the tree—but never up—until it reaches one of these

terminal nodes is called a branch of the tree. In particular, there are

seven branches in this tree corresponding to the seven terminal nodes

labeled with a p. Notice that these seven branches correspond to the

seven possible bidding scenarios that can take place in the dollar auc-

tion where the bankroll is three units. Notice also that the fact that the

stakes s is three units has not yet played any role.

The next thing we want to do is to embellish our “tree of possible

bidding scenarios” with labels that indicate the loss or gain for each
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player in each of the seven scenarios. That is, we will label each of

the seven terminal nodes with an ordered pair (i, j) indicating that the

result of following that bidding scenario (i.e., that branch) will be a

gain of i units for Player 1 and a gain of j units for Player 2. Both can’t

actually gain, so a label such as (−2, 0) means that Player 1 really loses

two units while Player 2 breaks even (see Figure 2 below).

To explain just one of these labels, notice that the lowest p on the

tree is labeled (0, −2). The bidding scenario here is an opening bid of

one unit by Player 1, a response of two units by Player 2, and a “close-

out” bid of three units by Player 1. (It is a “close-out” in the sense that

the bankroll b is three units so Player 2 is now forced to pass, ending

the bidding.) Thus, Player 1 pays the three units bid and receives the

stakes s, which is also three units. Hence, Player 1’s gain is zero. Player

2, of course, loses the two units he or she bid and this explains the “−2”

occurring in the label “(0, −2).”

Before continuing our analysis, we must tackle the question of

exactly what is meant by “rational play.” Part of what it means is that

each player will bid in such a way as to maximize his or her gain (or

minimize his or her loss), as opposed to, for example, trying to maxi-

mize the difference between what he or she gains and that of the other

player. But it means more than this. It also means that each player is

aware that the other is operating this way. Hence, in deciding how to

maximize one’s gain, one can look ahead and know that one’s oppo-

nent will respond in a way consistent with maximizing his or her own

Player 1’s bid
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(2, 0)

1

2

3 p
(-2, 0)

p
(-1, 0)

3

3
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(-1, 1)

2

start

Player 1’s bid

Player 2’s bid

FIGURE 2
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gain. It doesn’t quite stop there. Rational play also means that each is

aware that the other is aware that he or she operates in this way, and

so on. We also assume that not only does each player follow our con-

vention about choosing the more conservative of two equivalent bids,

but that each knows the other is following this convention, and each

knows the other knows that he or she is following this convention, and

so on.

We are now ready to begin the process of analyzing rational play

for this auction. The procedure used is again backward induction. It

involves deleting terminal nodes and transferring the outcome labels

to a node one level higher, and then repeating this process until the

analysis is complete.

For the sake of describing this pruning process, let’s call a node semi-

terminal if it is not a terminal node and all the nodes on the next level

that are connected to it have outcome labels. For example, in Figure 2

the semi-terminal nodes are precisely the four nodes corresponding to

a bid of three. Given our rationality assumption (and our conservative

convention), it is easy to see exactly what outcome will result if the

bidding scenario reaches a semi-terminal node: the player whose turn

it is will simply choose the (least) bid corresponding to a next lower

node with the best value for himself or herself. Our procedure will

be to transfer the appropriate outcome label from a terminal node to

a semi-terminal node, and then delete all of the terminal nodes that

follow semi-terminal nodes. These semi-terminal nodes then become

terminal nodes and so we can again search for (new) semi-terminal

nodes and repeat this process until the analysis is complete.

We illustrate all of the above in several steps, beginning with the four

semi-terminal nodes corresponding to bids of three. Figure 3 (next

page) reproduces the game tree (still for s = 3 and b = 3) with the four

semi-terminal nodes in boxes.

Figure 4 indicates the transfer of labels up to the semi-terminal

nodes. Finally, Figure 5 shows what the tree looks like after the “pass

nodes” (labeled “p”) below the semi-terminal nodes have been deleted.

If we look at the tree in Figure 5 resulting from the first step in the

pruning process, we see that there are now two (new) semi-terminal

nodes, both corresponding to a bid of two units. Consider the leftmost

(and lowest) one. The “2” indicates that Player 2 has just bid two units

and so Player 1 has the choice of passing—and getting (−1, 1) as the
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outcome—or bidding three units—and getting (0, −2) as the outcome.

Clearly, Player 1 would rather have 0 units from (0, 2) as the outcome

than to have −1 units from (−1, 1) as the outcome. Thus, we can delete

the “p” node with label (−1, 1) and transfer the (0, −2) label from the

“3” node up to the “2” node we are considering. The resulting tree is

given in Figure 6 below.

The other “2” bid is still semi-terminal, but the “1” bid (on the left)

is now also semi-terminal. It doesn’t matter in what order we take care

of these, but let’s do the “1” bid just for variety. Here, Player 1 has bid

one unit and Player 2 now has a choice of guaranteeing an outcome

of (2, 0), (0, −2), or (−1, 0). Player 2 only cares about his or her own

loss or gain and so opts for breaking even via (2, 0) or (−1, 0) rather

than losing two units via the outcome (0, −2). Since bids of “p” and

“3” lead to the same outcome for Player 2, our conservative convention

says “p” will be chosen. Thus, the (2, 0) outcome can be transferred

up to the node labeled “1” and it becomes a terminal node. A similar

analysis for the node labeled “2” (in the middle) results in it becoming

a terminal node with outcome label (1, 0). Hence, our tree now appears

as in Figure 7 below.

Finally, the start label in Figure 7 is semi-terminal. Player 1 now

sees that the eventual outcomes (for Player 1) corresponding to bids

of 1, 2, and 3, are (respectively): 2, from (2, 0); 1, from (1, 0); and 0,
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from (0, 0). Clearly 2 as an outcome is preferred so Player 1’s opening

bid will be one unit. Looking back to Figure 6, we can also see that

Player 2 will now pass. Thus, the optimal strategies are for Player 1

to bid one unit and for Player 2 to pass. This completes the game-tree

analysis for the dollar auction in the special case where both the stakes

s and the bankroll b are three units.

In the above presentation of the pruning process, notice that we con-

tinually redrew the game tree as we proceeded. Moreover, we actually

deleted, from the picture, those nodes that we no longer needed to

consider. There are at least two drawbacks to this notational way of

proceeding: the redrawing of the tree is tedious and the final result

(i.e., the final tree) gives no “history” of the pruning process. A better

notation, once the pruning process is understood, is simply to cross

out the edges that we no longer need to consider, and to rewrite the

labels as they get moved up in the tree. Our crossing-out will leave

a pattern that looks like railroad tracks as in the theory of moves in

Chapter 4. This is illustrated in Figure 8 below.

When the bankroll exceeds 3, the reader may want to consider delet-

ing the pass nodes that occur after a “closeout bid” of b. This, for

example, will give a tree as in Figure 5 to start the pruning process.

The gain in working with the smaller tree probably justifies carrying

a small piece of the process mentally.
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...........................................................................................................

6.4 LIMITATIONS AND BACK-OF-THE-ENVELOPE

CALCULATIONS

In the previous section we saw how game trees provide a notation that

permits one to analyze a dollar auction by explicitly looking at every

possible scenario. This is an example of a very fundamental problem-

solving technique: roll up your sleeves and look at all cases. On the

other hand, the particular game tree we considered in the previous

section corresponded to noticeably small values for the bankroll (b =
3) and stakes (s = 3). If we consider the kind of dollar auction often

done for illustrative purposes in class where, say, the units are dimes,

stakes are one dollar (s = 10), and the bankroll twelve dollars (b =
120), then we are clearly talking about an unwieldy tree with which

to deal. If this were the first half of the twentieth century, probably

nothing more regarding limitations of the game-tree analyses would

need be said. But now, of course, we have computers. So the question

we address here is the following:

Given a state-of-the-art computer, how long would it take you to do

the game-tree analysis for s = 10 and b = 120?

The answer will turn out to be a well-known expression and our

point about the limitations of this brute-force technique will have

been made. There is, however, an additional benefit to be derived from

the process undertaken in answering the above question. The idea

involved is simply that of using coarse numerical approximations to

gain substantial qualitative information about a particular situation.

Physicists often refer to this as a “back-of-the-envelope calculation.”

Recall that ab means “a multiplied by itself b (many) times.” (So 43 =
4x4x4 = 64). We’ll need the following two properties of exponents:

(1) ab × ac = ab+c i.e., [a × a × . . . × a]
︸ ︷︷ ︸

b of these

× [a × a × . . . × a]
︸ ︷︷ ︸

c of these

yields b + c many as)

(2) (ab)c = abc i.e., ab × ab × . . . × ab
︸ ︷︷ ︸

c of these

where ab = a × a × . . . × a
︸ ︷︷ ︸

b of these

yields
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a × a × . . . × a
︸ ︷︷ ︸

b of these

× a × a × . . . × a
︸ ︷︷ ︸

b of these

×. . . × a × a × . . . × a
︸ ︷︷ ︸

b of these
︸ ︷︷ ︸

c of these

so we have b × c “as” all together.

The real key to the limitations that will arise involves the size of the

game tree. In particular, our computer analysis will (at least) involve

having each terminal node looked at (i.e., considered). So, how many

terminal nodes are there? Notice that this depends on the size of the

bankroll b, but not on the stakes s. For b = 1, 2, and 3, the trees are

shown in Figure 9 below.

So, for b = 1, there is one terminal node; for b = 2, there are three

terminal nodes, and for b = 3 there are seven. In general, it turns out

that there are 2b − 1 terminal nodes for bankroll b. (If b = 1, then

2b − 1 = 21 − 1 = 2 − 1 = 1; if b = 2, then 2b − 1 = 22 − 1 = 4 − 1 = 3;

if b = 3, then 2b − 1 = 23 − 1 = 8 − 1 = 7.) Hence, for our bankroll

of twelve dollars, where the units are dimes (so we have b = 120), the

computer must do at least 2120 things; i.e., it must look at 2120 − 1

terminal nodes plus print an answer.

Now, using our properties of exponents, we see that:

2120 = 24×30 = (24)30 = 1630 > 1030.

Hence the computer must do more than 1030 things.

start
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Let’s assume that a state-of-the-art computer can do at most a

quadrillion things per second. Note that since a quadrillion is a thou-

sand trillion, and a trillion is a thousand billion, and a billion is a

thousand million we have

1 quadrillion

= 1,000 × 1 trillion

= 1,000 × 1,000 × 1 billion

= 1,000 × 1,000 × 1,000 × 1 million

= 1,000 × 1,000 × 1,000 × 1,000,000

= 103 × 103 × 103 × 106

= 1015.

Hence, the computer can do at most 1015 things per second.

Now that we know the computer must do (roughly) 1030 things

and that it can do (roughly) 1015 things per second, we can ask how

many seconds it will take to complete the task. For some readers, the

answer may quickly suggest itself. Nevertheless, we shall belabor one

reasonable line of thought leading to the answer, since a variant of this

line of thought will occur twice more before the end of this section.

The line of thought we shall pursue is the one that makes use of

the commonsense guidance provided by the units (seconds, things per

second, etc.). That is, the following is certainly true (where “#” denotes

“number” and the rest of the abbreviations should be self-evident):

[# things/second] × [# seconds] = [# things].

So, for example, if we had to do 27 things and could do 3 things per

second, the number of seconds it would take us would be found by

solving:

[3] × [# # seconds] = [27].

This gives us the correct answer of 9 seconds which the reader also

may have found by directly dividing (although he or she then probably

checked this answer by calculating 3 × 9 = 27 with the units in mind).
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If we go back to our computer calculation, then our equations (in

units and numbers) are:

[# things/second] × [# seconds] = [# things]

and

[1015] × [# seconds] = [1030].

So what is [# seconds]? Think of it as ten to some power. Then

1015 × 10? = 1030.

Since “exponents add,” the question mark must be 15. Hence, the

computer takes (more than) 1015 seconds.

Most of us don’t have much of a feel for how long 1015 seconds

is. It turns out to be a fairly long time, because there simply are not

that many seconds in a year. The calculation that yields the number of

seconds in a year can be arrived at by using the commonsense guidance

provided by the units as we did before:

#sec./year = #sec./min. × # min ./hour × #hours/day × #days/year.

Since we are doing a back-of-the-envelope calculation, we shall

assume there are 100 seconds in a minute, 100 minutes in an hour,

etc. This overestimation gives us:

#sec./year= #sec./min.× #min./hour× #hours/day ×days/year

< 100 × 100 × 100 × 1, 000

= 102 × 102 × 102 × 103

= 109.

Hence, there are fewer than 109 seconds in a year.

Now, given that we know

1. The computer takes at least 1015 seconds to complete the task,

and

2. There are fewer than 109 seconds in a year,
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we can ask how many years it will take the computer to complete the

task. Again, the units show the way:

[# seconds/year] × [# years] = [# seconds].

Thus,

[109] × [# years] = [1015].

So, if the number of years is a power of 10, we have,

109 × 10? = 1015.

Again, exponents add, so the question mark must be 6. We can now

conclude that (more than) 106 years are needed. But 106 = 1, 000, 000,

and so the answer to our question of how long it would take you to do

the game-tree analysis (by computer) is:

You couldn’t do it in a million years.

...........................................................................................................

6.5 STATEMENT OF O’NEILL’S THEOREM

The previous section suggests that, at least at the time of this writing,

the naïve pruning of the game tree to find the optimal opening bid in

the (ideal) dollar auction is simply not viable for values of the bankroll

b even as small as 120. Nevertheless, the game-tree analysis presented

should suffice to convince the reader that such pruning could, in the-

ory, be done, and, hence, there definitely exists an optimal opening bid.

But, how do we find it if not by actually pruning the tree? The answer

is given by the following elegant theorem of Barry O’Neill (1986):

THEOREM. (O’Neill). For stakes s > 1, equal bankrolls b > 0, and

the conservative convention, the optimal opening bid in the dollar auc-

tion can be calculated as follows: One repeatedly subtracts s− 1 from

b until one more subtraction would yield zero or a negative number.

The result of the last subtraction is the optimal opening bid. Ratio-

nality implies that if Player 1 opens with this bid, then Player 2 will

pass.
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We shall illustrate the use of O’Neill’s theorem for the case where

units are dimes, stakes one dollar (s = 10), and bankroll twelve dollars

(b = 120). Notice that s − 1 = 9. Thus, according to the theorem, we

simply subtract 9 from 120 as many times as we can without hitting

or going below zero. This final result will be our opening bid. The

sequence of calculations is as follows:

120 − 9 = 111

111 − 9 = 102

102 − 9 = 93

93 − 9 = 84

84 − 9 = 75

75 − 9 = 66

66 − 9 = 57

57 − 9 = 48

48 − 9 = 39

39 − 9 = 30

30 − 9 = 21

21 − 9 = 12

12 − 9 = 3

We stop here, since an additional subtraction of 9 would yield −6,

which is less than zero. Thus our conclusion, from the theorem, is that

the optimal opening bid is three units (i.e., thirty cents). As mentioned

earlier, the reader should find this extremely nonobvious.

As one more quick example, if b = 75 and s = 12, then s − 1 = 11,

and so the sequence of subtractions would yield:

75, 64, 53, 42, 31, 20, 9

Thus, the correct opening bid in this case is 9.

The proof of O’Neill’s theorem (using a proof technique known as

mathematical induction) is given in Chapter 12. One of the exercises

at the end of that chapter also asks the reader to use mathematical
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induction to prove the assertion we made in this section about the

number of branches in a binary tree. (We mention this for the sake of

the instructor or reader who prefers treatments to be as self-contained

as possible.)

We should also point out that in proving O’Neill’s theorem in

Chapter 12, we are led to consider a stronger version of the theo-

rem that answers the following question: Suppose s = one dollar,

b = twelve dollars, units are dimes, and you open with a bid of thirty

cents assuming rationality of your opponent. Suppose your opponent

(irrationally) says forty cents. What do you do? The answer, of course,

depends on whether or not you can count on your opponent to be

rational for the rest of the auction. If so, you should bid $1.20. (This

should be far from obvious.) If not, you’re on your own.

O’Neill (1986) makes a distinction between what he calls the “real

dollar auction” and the “ideal dollar auction.” The former refers to

what takes place among unsuspecting participants in such an auction,

while the latter refers to the result of sequential rationality via the kind

of analysis treated in this chapter. The distinction is an important one.

In fact, one might well argue that the former is of significance to politi-

cal science, but mathematically uninteresting, and the latter is just the

opposite. While we tend to agree with this, we do, however, feel that

the dollar auction serves as a striking introduction to the idea of ratio-

nal analysis based on looking ahead several moves in game-theoretical

situations, and that this is of importance in political science.

Nevertheless, the question of whether either the real dollar auction

or the ideal dollar auction is a “good” model of escalation is one that

certainly warrents consideration. In fact, one thing to be considered

in judging the value of a model is the quality and quantity of the ques-

tions it raises. For the ideal dollar auction and the real dollar auction,

O’Neill (1986) has given us exactly such a set of questions. He presents

a dozen aspects of escalation (limited ability to look ahead, availability

of third-party intervention, etc.) and discusses the models versus real-

world escalation in these contexts. We won’t, however, reproduce these

questions here; there simply is no substitute for going to the literature,

and so we refer the reader to O’Neill’s article for more on this.
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...........................................................................................................

6.6 VICKREY AUCTIONS

No one has ever suggested that the dollar auction is a serious mecha-

nism for selling any kind of goods or service. Indeed, we have discussed

it only as a model of escalatory behavior and to illustrate some ideas

of fundamental importance in game theory (strategy and rationality)

and mathematics in general (game-tree analyses). On the other hand,

real-world auctions are not only extremely interesting from a mathe-

matical point of view, but they serve as a mechanism for the transfer

of millions of dollars every day. For this reason, we will briefly discuss

real-world auctions and a very pretty theorem due to William Vickrey.

One usually distinguishes between two fundamental auction situ-

ations. The first type is referred to as a “private-value auction” and

is typified by the scenario in which we find ourselves standing in a

tent and bidding on a lamp that we have no intention of reselling, but

simply want for our own house. What the lamp is worth to us is inde-

pendent of what everyone else thinks the lamp is worth to them—it is

our own private value. The second type of auction situation is called

a “common-value auction.” This is typified by the bidding of several

companies for oil rights. The oil under the particular piece of ground

being auctioned off has a definite value and this value is essentially

the same for all the bidders. The problem is that none of the bidders

knows exactly what this value is because he or she doesn’t know how

much oil is there.

This dichotomy oversimplifies real life, since auctions tend to be

some combination of private value and common value. It turns out that

the private-value situation is the easier to analyze, while the common-

value situation is more important in terms of the amount of money

involved.

In addition to having two types of auctions (private value and com-

mon value), there are two kinds of auctions of each type: oral auctions

and sealed-bid auctions. Our primary interest here is with sealed-bid

auctions. Although one probably tends to think of sealed-bid auctions

in the context of construction projects such as a new building on an

academic campus or an addition to a private residence, we shall, for

simplicity, still focus on the simpler situation where we have several

people bidding for a lamp. The difference is in whether the auctioneer
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is the buyer or seller and, thus, whether the lowest bid wins or the

highest bid wins. By sticking with the lamp example, we remain in the

more familiar territory where the highest bidder wins.

The first kind of sealed-bid auction mechanism we consider is one

in which we ignore the possibilities of ties and the lamp simply goes

to the highest bidder who then pays the auctioneer whatever he or she

bid. We shall call this a first-price auction (for reasons that will become

clear in a moment). This is probably the only kind of sealed-bid auction

that suggests itself to the reader. Indeed, in spite of the results to be

presented, it is by far the most widely used kind of sealed-bid auction.

Intuition suggests that in a first-price sealed-bid auction, a bidder

may want to submit a bid that is less than the lamp’s actual value to

that bidder. In fact, if one formalizes the problem in the standard way

(which requires making certain assumptions about such things as the

value of the lamp to the other bidders), then it can be proven that (in

some sense) the optimal strategy is to submit a bid that is a fraction

of your true valuation, and that the appropriate fraction is

n − 1

n

where n is the total number of bidders. Thus, if there are two bidders,

one should bid only half of what he or she feels the lamp is really worth;

if there are three bidders, two-thirds; four bidders, three-fourths, and

so on. Although this is true, it should not be obvious.

In 1961, the economist William Vickrey published one of the truly

seminal papers in the theory of auctions (Vickrey, 1961). One of the

themes in his paper began with the observation that a first-price sealed-

bid auction is “strategically equivalent” to a descending oral auction

(also called a “Dutch auction”) in which the auctioneer begins at a

very high price and gradually lowers the price until someone calls

“mine.” The main point underlying this observation is that in both

auction situations, the bidder must choose how high to bid without

knowing the other bidders’ decisions. [More on this can be found in

the very nice survey papers of Preston McAfree and John McMillan

(1987) and Paul Milgrom (1989). We should also point out that small

laboratory experiments, according to Milgrom, have suggested that

bidders actually tend to pay a lower price in Dutch auctions than in

the theoretically equivalent first-price sealed-bid auctions.]
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Given that oral descending auctions (Dutch auctions) can be

replaced by first-price sealed-bid auctions, Vickery then asked the

following: Can one find a sealed-bid procedure that yields the same

outcome as an oral ascending auction (English auction)? The answer

to this requires a moment’s thought as to what price the winner actu-

ally pays for the lamp in question. The point is that the winning bidder

in an English auction is typically not paying the price that represents

the true value of the lamp to this bidder. He or she is paying (slightly

more than) the value of the lamp to the second-highest bidder. Thus,

Vickery introduced the notion of a second-price sealed-bid auction (also

known today as a Vickrey auction): the highest bidder wins the auction,

but he or she only pays the second-highest bid.

One question that should occur to the reader is the following: Why

would anyone trying to sell something at auction ever contemplate

using a second-price sealed-bid auction instead of a first-price sealed-

bid auction? Wouldn’t the former choice simply mean selling the lamp

at a lower price than the latter choice? The answer to this—under some

fairly reasonable assumptions—is quite surprising: the expected price

paid to the auctioneer is the same in a first-price sealed-bid auction

and a second-price sealed-bid auction. This is known as the revenue

equivalence theorem, and also goes back to Vickrey’s 1961 paper.

So how can this be? The answer lies in the intuition that says we can

afford to be more aggressive in the bidding if we know that the price

we will pay—if we win—is definitely less than what we bid. How much

more aggressive? The answer is given in the following remarkable the-

orem of Vickrey. It asserts that honesty is, indeed, the best policy in a

Vickrey auction, in the sense that one bidding strategy (in this case,

honesty) is said to weakly dominate another if it is at least as good as

the other in every scenario, and strictly better than the other in at least

one scenario.

THEOREM. In a second-price sealed-bid auction (a Vickrey auc-

tion), the strategy of bidding one’s true valuation for the object being

sold weakly dominates every other bidding strategy.

PROOF. Let v denote the actual value to us of the object being auc-

tioned, and let x denote the highest bid among those made by our
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competitors. We first show that a bid of v yields an outcome at least

as good as does any other bid we might make. (Although not necessary

for the proof, we show this is true even if we knew the value of x before

making this other bid.) We consider three cases:

Case 1: x is Greater than v

Any bid we might make that is less than x yields the same outcome for

us as does a bid of v: a loss of the auction. Any bid we might make

that is greater than x yields an outcome that is strictly worse for us

than does a bid of v: winning the object but paying more than we think

it is worth as opposed to losing the auction. (For a bid of x itself, see

Exercise 26.)

Case 2: x is Less than v

Any bid we might make that is less than x yields an outcome that is

strictly worse for us than does a bid of v: losing the auction as opposed

to winning the auction and paying less than we think the object is worth.

Any bid we might make that is greater than x yields the same outcome

for us as does a bid of v: winning the object and paying x, which is less

than we think it is worth. (For a bid of x itself, see Exercise 26.)

Case 3: x = v

See Exercise 27.

This shows that a bid of v is at least as good as any other bid. We

must now show that for any other potential bid there is a scenario where

a bid of v yields us a strictly better outcome than does this other bid.

Consider first a potential bid lo that is lower than v. If lo is less than

v − 1 and x = v − 1, then a bid of lo yields a loss, whereas a bid of

v results in winning the object and paying v − 1. This latter outcome

is strictly better than the former. (For the case where lo is v − 1, see

Exercise 28.)

Consider now a potential bid hi that is higher than v. If hi is greater

than v + 1 and x = v + 1, then a bid of hi yields a win but at a higher

price than we think the object is worth, whereas a bid of v yields a loss.

Again, the latter outcome is strictly better than the former, as desired.

(For the case where hi is v + 1, see Exercise 29.)

This completes the proof.
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In spite of this elegant result (and in spite of the revenue equivalence

theorem), Vickrey auctions are almost never used in the real world.

...........................................................................................................

6.7 CONCLUSIONS

In this chapter, we presented two theorems. The first, Barry O’Neill’s,

tells us that the optimal opening bid in the dollar auction (with dimes

as units and twelve dollars as bankroll) is thirty cents. The second,

William Vickrey’s, tells us that the optimal opening bid in a second-

price sealed-bid auction is the true value that we attach to the object

being sold. The point we want to make here involves a comparison of

the sense in which the prescribed behaviors are “optimal.”

Suppose, for example, that on the first day of some future semester

you find yourself confronted by an instructor who thumbtacks a dollar

bill to the strip over the blackboard and announces that he or she

will auction off the dollar bill—dime increments and no bid to exceed

twelve dollars. Would you open for thirty cents? Suppose that at some

future date, you find yourself half-standing in a puddle at the edge of

a tent where an old man with a Maine accent announces he is going

to hold a second-price sealed-bid auction for a lamp that strikes your

fancy. Do you make an honest bid of what the lamp is really worth to

you?

Our answers: No and yes.

Why do we come down on different sides of the two questions?

Primarily, it is because of the different nature of the assumptions in the

two theorems. O’Neill’s theorem says we should bid thirty cents if we’re

rational and everyone else is rational, etc. Moreover, for people to act

rationally, they have to be able to do the analysis required to know what

their rational strategy is. In the dollar auction, this means pruning

the tree (forget it) or knowing O’Neill’s theorem. Even if everyone in

the class knew O’Neill’s theorem, we’d still stay out of the auction all

together (or bid ninety-five cents, although we’ve seen students do this

and get burned by peers).

But Vickrey’s theorem gives us a weakly dominant strategy. We can’t

go wrong with it no matter how irrational the other bidders happen

to be. Moreover, we’re using the phrase can’t go wrong in a very strong
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way: if we are honest, when all is said and done, if we were given the

chance to change our bid, we wouldn’t do it.

Thus, O’Neill’s theorem requires that the other players are rational

and capable of calculating (in some way) the consequences of rational

play on everyone’s part. Vickrey’s theorem requires no such assump-

tion about one’s opponents’ rationality or the motives behind their

actions.

EXERCISES

1. Do the game-tree analysis for the standard dollar auction with the

conservative convention for the case where s = 3 and b = 4. (The

tree will have fifteen terminal nodes, and the analysis will show that

the optimal opening bid is not 1 unit as was the case for s = 3 and

b = 3.)

2. Do the game-tree analysis for the standard dollar auction with the

conservative convention for the case where s = 3 and b = 5. (The

tree for this one is fairly large. It can be done neatly on a standard-

size piece of paper, but it requires some care.)

Variants of the dollar auction for a fixed value of the stakes s

and bankroll b can be obtained by varying any of the following three

parameters:

A. The convention used when a place on the game tree is

reached for which two different bids are equivalent, in the

sense of yielding the same outcome for the player whose

turn it is to bid. For example:

(i) The conservative convention. This is what we used in

Section 6.3.

(ii) The “punishing convention”: One chooses between

two or more equivalent bids by selecting the one leading

to the result least preferred by his or her opponent. If two

or more equivalent bids lead to the same outcome for both

the bidder and his or her opponent, then the conservative

convention is invoked.
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B. The penalty imposed on the second-highest bidder. For

example:

(i) The second-highest bidder pays what he or she bid.

This is what we used in Section 6.3.

(ii) The second-highest bidder pays half of what he or she

bid.

C. The payoff awarded to the highest bidder. For example:

(i) The highest bidder receives the stakes (and pays what

he or she bid). This is what we used in Section 6.3.

(ii) The highest bidder receives the stakes minus the dif-

ference between his or her bid and the second-highest bid

(and pays what he or she bid).

These variants are referred to by letter and number in the follow-

ing exercises. For example, the variant of the dollar auction obtained

by using A(i), B(ii), and C(i) is referred to as the “Ai-Bii-Ci dollar

auction.”

3. Do the game-tree analysis of the Aii-Bi-Ci dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

4. Do the game-tree analysis of the Ai-Bii-Ci dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

5. Do the game-tree analysis of the Ai-Bi-Cii dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

6. Do the game-tree analysis of the Aii-Bii-Ci dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

7. Do the game-tree analysis of the Aii-Bi-Cii dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

8. Do the game-tree analysis of the Ai-Bii-Cii dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

9. Do the game-tree analysis of the Aii-Bii-Cii dollar auction for the case

where (a) s = 3 and b = 3, and (b) s = 3 and b = 4.

10. (a) Show that in the dollar auction, it is never rational to increase

your previous bid by more than s units. (Do not use O’Neill’s

theorem.)

(b) Show that in the dollar auction with the conservative conven-

tion, it is never rational to increase your bid by more than s−1

units. (Do not use O’Neill’s theorem.)
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11. Consider the game played as follows: On move 1, Player 1 chooses

one of the three letters: P, Q, R. On move 2, Player 2 chooses one

of the two letters: S, T. Finally, on move 3, Player 1 chooses one of

the three letters: U, V, W. Player 2 wins if the game results in any

of the following sequences: PSW, QSV, QSW, QTU, QTV, RSU, RSV,

RSW. Player 1 wins otherwise.

(a) Draw a tree that shows all possible plays of the game. (The

first level will have three nodes, labeled P, Q, and R.)

(b) Label each terminal node with a “1” or a “2” depending upon

whether the corresponding play of the game is a win for Player 1 or

Player 2.

(c) Use backward induction to find which player has a winning

strategy.

12. Calculate the exact number of seconds in a year.

13. If it costs 10 cents for every text message you send, and you send

10 messages every weekday and 12 messages every weekend day,

how much do your text messages cost you over the course of one

(non-leap) year? Assume January 1 is a Monday.

14. According to the World Health Organization, someone in the United

States dies of a motor vehicle or traffic accident almost every 5

minutes. How many people in the United States die each year in a

motor vehicle or traffic accident?

15. Suppose we have a personal computer (PC) that can do at most

100 million things per second. Suppose we want to do a game-tree

analysis of the dollar auction where the units are nickels, the stakes

one dollar, and the bankroll four dollars. Show that it would take a

reasonably long time. Can it be done in your lifetime?

16. Suppose units are pennies, stakes one dollar, and bankroll four

dollars. Do a back-of-the-envelope calculation to show that it would

take a very long time to do the game-tree analysis even with a com-

puter that looked at one trillion (=1,000 billion) nodes per second.

What does O’Neill’s theorem say is the optimal opening bid in this

situation?

17. According to O’Neill’s theorem, what should the opening bid be in

rational play of the dollar auction for the case where stakes are two

dollars, bankroll twenty dollars, and units quarters?
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18. According to O’Neill’s theorem, what should the opening bid be in

rational play of the dollar auction for the case where stakes are five

dollars, bankroll $100, and units quarters?

19. Construct a chart with 13 columns and 13 rows with the columns

labeled 2 through 14 representing values for the bankroll b and the

rows labeled 2 through 14 representing values for the stakes s. Use

O’Neill’s theorem to fill in the chart with optional opening bids.

20. Suppose two dollar auctions are going on simultaneously, with all

players bidding according to sequential rationality. Suppose the

units are nickels and the stakes one dollar in both cases. Within

each auction the bankrolls are fixed and equal, but the value of b

for the first auction is five cents more than the value of b in the sec-

ond auction. Will the opening bids necessarily differ by a nickel?

If so, explain why. If not, determine what the maximum possible

difference in opening bids (still assuming rational play) could be.

21. Read pages 43 to 49 of O’Neill (1986) and write a two-page paper

that both summarizes and comments on what he says.

22. According to O’Neil’s theorem, in a dollar auction with stakes $26,

the optimal opening bid is $15.

(a) Give at least five possibilities for what the bankroll might be.

(b) If you know that the bankroll is between $200 and $225, what

must the bankroll equal?

23. Suppose that a dollar auction is held in which the only legal bids that

either player can make are 3 units, 4 units, and 6 units. Passing is

allowed as usual, with player 1 making the first bid (which cannot

be a pass). Winner pays whatever he or she bid and receives the

stakes of s = 7. Loser pays what he or she bid. Do a game-tree

analysis to determine how the auction will rationally proceed.

24. Suppose that a computer can do 100 billion things per second.

Use a back-of-the-envelope calculation to estimate how many years

it would take the computer to do a game-tree analysis for the dollar

auction if the bankroll is 120 units. Assume that the number of

seconds in a year is less than 109.

25. Suppose that, in the standard dollar auction with the conservative

convention, the bankroll is 8, the stakes are 5, and player 1 opens

with a bid of 4. Suppose that player 2 irrationally responds with a bid

of 6. Assume that from now on, everyone will be rational, follow the
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conservative convention, etc. Do a game-tree analysis to determine

the optimal response for player 1.

26. In our discussion of Vickrey auctions, we ignored the possibility of

ties. In most real-world situations this results in little loss of gener-

ality since, for example, the probability of two contractors bidding

the same amount for a new library is fairly remote. In fact, one could

assign each of the bidders a different number between 0 and 9 and

demand that their bid (in dollars) end with that integer.

On the other hand, suppose we want to deal with ties. Let’s agree

that if two or more bidders are tied for high bid, a random device

decides who will receive the object and the bidder receiving the

object pays this tying bid. Since one’s true valuation of an object

is defined to be the price at which he or she is indifferent between

receiving the object at that price and not receiving the object at all,

bidders who are honest and find themselves tied for highest bid

should be indifferent to the choice made by the random device.

With this setup, assume x is the highest bid made by our competi-

tors and suppose v is the value to us of the object being auctioned.

Show that a bid of v is at least as good as a bid of x

(a) if x > v

(b) if x < v.

27. With the same setup as in Exercise 26, assume x = v. Show that

a bid of v is at least as good as

(a) any bid less than v

(b) any bid greater than v.

28. With the same setup as in Exercise 26, prove that, in a Vickrey

auction, bidding one’s true valuation v can be strictly better than

bidding v − 1 (i.e., produce one such scenario).

29. With the same setup as in Exercise 26, prove that, in a Vickery

auction, bidding one’s true valuation v can be strictly better than

bidding v + 1.

30. In what ways is a Vickrey auction like an auction on Ebay?



More Social Choice

C H A P T E R
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7.1 INTRODUCTION

Chapter 1 dealt with what might be called “concrete social choice

theory” in that specific social choice procedures were introduced

and analyzed. The present chapter deals with what might be called

“abstract social choice theory.” Rather than consider any particular

social choice procedures, this chapter establishes some limitations on

what kind of “better” procedures can ever be found. These are very

striking results. They are not saying that certain kinds of procedures

fail to exist in the sense that no one has yet discovered one, they’re

saying it is absolutely pointless even to look—one will never be found.

It is more convenient in this chapter to work with so-called social

welfare functions (which produce a “social preference list” as output)

rather than with social choice procedures (which produce a set of alter-

natives as output) as we did in Chapter 1. To obtain a still finer analysis,

we will speak of a social welfare function for a fixed set of alternatives

and/or a fixed set of individuals. (Recall that according to our defini-

tion in Section 1.2, social choice procedures have to be able to accept

as input sequences of individual preference lists corresponding to any

set of people and any set of alternatives.) Nevertheless, in Section 7.2
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we show that every social choice procedure as defined in Chapter 1

gives rise to a social welfare function for any set of alternatives and

any set of people. (The converse is, in a sense, also true, and much

easier to see.)

In Section 7.3 we state and prove a theorem that generalizes May’s

theorem (asserting that majority rule is the only “reasonable” voting

rule with two alternatives).

In Section 7.4 we state and prove the single most celebrated result

in social choice theory: the impossibility theorem of Kenneth Arrow.

The proof we give, although heavily based on ideas developed over the

past thirty years, provides a slightly better isolation of the role played

by the voting paradox of Condorcet and the condition of independence

of irrelevant alternatives.

The second-most prominant result in social choice theory is the

Gibbard-Satterthwaite theorem, and we give a proof of this in

Section 7.5.

Finally, in Section 7.6, we consider the relation that suggests itself

as the most natural candidate for a social welfare function: place x

over y in the social preference list if more than half the individuals

have x over y in their individual preference lists. This, in general, won’t

work, but some fairly natural conditions have been found that—when

imposed on the sequences of individual preference lists to be accepted

as inputs—guarantee that this will work. Two of the most well-known

theorems of this kind, those of Sen and Black, are presented here.

...........................................................................................................

7.2 SOCIAL WELFARE FUNCTIONS

Recall that in Section 1.2 we defined a social choice procedure to be

a function that

1. accepts as input a sequence of individual preference lists of

some set A (the set of alternatives), and

2. produces as output either a single alternative (the “winner”) or

a set of alternatives (i.e., ties were allowed), or the symbol “NW”

indicating there is no winner.
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The appropriate context for the theorems in this chapter is a slight

variant of the above that is usually referred to as a social welfare func-

tion. The difference is in the nature of the output. That is, while a

typical input is the same in both cases, the output from a social wel-

fare function is not just a single alternative (or a set of alternatives),

but a “social preference listing” of the alternatives. As such, it seems

to provide more information than a social choice procedure, since one

is now being told not only the alternative or alternatives that society

considers to be the best, but also the collection that society deems to

be in “second place,” “third place,” etc. The question of whether or not

to allow ties (in the preference lists of individuals or the social prefer-

ence list that is the output) again arises. For our purposes, it seems to

be most convenient to follow what we did for social choice functions

(i.e., allow ties in the outputs, but not in the inputs). Formalizing this

we have the following definition:

DEFINITION. A social welfare function is a function that

1. accepts as input a sequence of individual preference lists of

some set A (the set of alternatives), and

2. produces as output a listing (perhaps with ties) of the set A. This

list is called the social preference list.

With social choice procedures and social welfare functions for-

malized as we have, the apparent generality of the former—and the

apparent additional information provided by the latter—turn out to

be illusory. This is the content of the following proposition:

PROPOSITION. Every social welfare function (obviously) gives rise

to a social choice procedure (for that choice of voters and alterna-

tives). Moreover (and less obviously), every social choice procedure

that always produces a winner gives rise to a social welfare function.

PROOF. If we have a function that produces as output a listing of all

the alternatives, then we obviously can take whichever alternative or

alternatives are at the top of the list as the social choice. This shows
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that every social welfare function gives rise to a social choice proce-

dure (for that choice of voters and alternatives). The second part of the

proposition is slightly less obvious.

Suppose, then, that we have a social choice procedure. The question

is: How are we going to use this procedure to produce a listing of all

the alternatives in A? Obtaining the alternatives that will sit at the very

top of the list is easy—they are simply the winners obtained when using

the individual preference lists as input for the social choice procedure.

The real issue is: How do we determine the group of alternatives that

is to occupy “second place” in the social preference list? While not

the only possibility to suggest itself, the following may be the most

satisfactory: Simply delete from each of the individual preference lists

those alternatives that we’ve already chosen to be on top of the social

preference list. Now, input these new individual preference lists to the

social choice procedure at hand. The new group of “winners” is precisely

the collection of alternatives that we will choose to occupy second place

on the social preference list. Continuing this, we delete these “second-

round winners” and run the social choice procedure again to obtain the

alternatives that will occupy third place in the social preference list, and

so on until all alternatives have been taken care of. This completes the

proof.

Repeatedly applying a procedure as was done in the second part of

the above proof is called “iteration.” Some practice in iterating proce-

dures like the Hare procedure and the Borda count is provided in the

exercises at the end of the chapter.

Before proceeding, there is one more way in which we want to alter

the context in which we will work. In the way that we have formalized

both social choice procedures and social welfare functions, individual

listings of any set A of alternatives must be allowed as inputs. This

permits some fairly strange procedures of either type to be defined.

For example, we might designate one person to be the dictator if there

are only three alternatives, another if there are four alternatives, and

specify that the Borda count be used if there are five or more alterna-

tives. The theorems to follow are best stated in a context that allows

for the slightly finer analysis provided by the following definition:

DEFINITION. If A is a set (of alternatives) and P is a set (of people),

then a social welfare function for A and P is exactly like a social welfare
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function as defined above except that it accepts as inputs only those

sequences of individual preference listings of this particular set A that

correspond to this particular set P.

...........................................................................................................

7.3 A GENERALIZATION OF MAY’S THEOREM

We begin by introducing two new properties pertaining to social wel-

fare functions and revisiting an earlier one in this context. Recall that

a permutation of a collection is simply a rearranging of the collection.

PROPERTY 1. A social welfare function is said to be anonymous if it

is invariant under permutations of the people. In the general situation,

this means that interchanging, say, the fourth list and the seventh list in

a sequence of preference lists will not affect what the social preference

list looks like. In the context of the two alternatives 0 and 1, this means

that whether or not 0 wins depends only upon how many people vote

for 0.

PROPERTY 2. A social welfare function is said to be neutral if it is

invariant under permutations of the alternatives. In the present context,

this means, for example, that if:

input: (01101) yields output : 0

then

input: (10010) must yield output : 1.

That is, if all the ones are changed to zeros and the zeros changed to

ones in the input, then the same interchange should take place in the

outcome.

PROPERTY 3. In the two alternative context, a social welfare function

satisfies monotonicity provided that the following holds: If the outcome

is 0 and one or more votes are changed from 1 to 0, then the outcome

is still 0. We also require that the analogous thing hold for outcome 1.
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With these properties (illustrated in the exercises) at hand, we’re

ready to generalize May’s theorem, which says that if the number

of people is odd, then majority vote is the only procedure for two

alternatives that is anonymous, neutral, monotone, and always pro-

duces exactly one of the two alternatives as the social choice. With

ties allowed, however, there are others that satisfy anonymity, neu-

trality, and monotonicity. For example, consider the procedure that

simply declares the social choice to be a tie between the two alterna-

tives regardless of how the people vote. More generally, the following

collection of procedures provides a spectrum of possibilities between

majority vote and the “always tied” procedure just described.

QUOTA SYSTEMS

Suppose we have n people and two alternatives. Fix a number q (for

quota) that satisfies
n

2
< q ≤ n + 1.

Consider the procedure wherein the outcome is a tie unless one of the

alternatives has at least q votes. If one of the alternatives has q or more

votes, then it alone is the social choice. Such a procedure (i.e., such

a social welfare function for a set of two alternatives) will be called a

quota system.

If n is odd and q = (n+1)/2, then the corresponding quota system is

just majority vote. At the other extreme, if q = n+1 and there are only

n people, then the corresponding quota system is the one described

above where the outcome is always a tie (that is, the quota of n+1 can

never be achieved when there are only n people). It is easy to see that

quota systems all satisfy anonymity, neutrality, and monotonicity (see

Exercise 4). Much more striking is the following theorem:

THEOREM. Suppose we have a social welfare function for two

alternatives that is anonymous, neutral, and monotone. Then that

procedure is a quota system.

PROOF. Assume we have an arbitrary social welfare function at hand

that satisfies the three stated properties. Recall that n denotes the num-

ber of people and that we are considering the particular two alternatives
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0 and 1. We want to show that there exists a number q satisfying the

following two conditions:

1. The alternative 0 alone is the social choice precisely when q or

more people vote for 0.

2. n
2 < q ≤ n+ 1.

Since we are assuming that the procedure under consideration is invari-

ant under permutations of the people, we know that the outcome

depends only on the number of people who vote for, say, 0. Thus, it

makes sense to consider the set G of all numbers k such that 0 alone

is the social choice when exactly k people vote for 0. If G is empty,

then 0 alone never wins (and thus 1 alone never wins by neutrality), and

so the outcome is always a tie. This is precisely the case q = n + 1

described above and we’re done in this case. If G is not empty, then

we will let q be the smallest number in the set G.

Notice that monotonicity immediately gives us condition 1 above. To

see that condition 2 also holds, notice first that if k is in G then n − k

is definitely not in G. That is, if n− k were also in G, then, by neutrality,

we’d get 1 alone as the social choice when exactly n − k people voted

for 1. But there are n people all together and so we have exactly k of

them voting for 0 precisely when exactly n− k of them vote for 1.

Given this observation about k and n−k, we can invoke monotonicity

to conclude that if k is in G, then n − k is not as large as k. Thus,

n − k < k and so, adding k to both sides, n < 2k. Hence, n/2 < k for

any number k that is in G. But q is in G, and so we get n/2 < q exactly

as desired. This completes the proof.

An immediate consequence of the above is May’s theorem from

Section 1.2.

...........................................................................................................

7.4 ARROW’S IMPOSSIBILITY THEOREM

In 1950, Kenneth Arrow published a paper in the Journal of Political

Economy entitled “A Difficulty in the Concept of Social Welfare.” The

celebrated result contained in this paper has since become known as

Arrow’s impossibility theorem. According to Paul Samuelson—himself
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a Nobel Laureate—the discovery of the impossibility theorem was one

of the main reasons that Kenneth Arrow was awarded the Nobel Prize

in Economics.

Our goal in this section is to state and prove Arrow’s impossibility

theorem in the context of social welfare functions. (Recall that this

means that a typical input will be a sequence of individual preference

lists without ties, and a typical output will be a social preference list,

perhaps with ties.) Essentially no new ideas are needed for the exten-

sion to the case where ties are allowed in the individual preference

lists (see Exercise 11).

Our presentation of Arrow’s theorem is divided into three subsec-

tions:

1. The statement of Arrow’s theorem (including some motivation

intended to show that the question being asked is a natural one

and that the answer being provided is an extremely surprising

and unsettling one).

2. The setup for the proof (where we identify the key concept

of “decisiveness” and outline the strategy for the argument to

follow).

3. The five lemmas (and the very short proof of each) needed to

complete the proof of Arrow’s theorem.

The Statement of Arrow’s Theorem

Assume for the moment that we have a fixed set A of three or more

alternatives and a fixed finite set P of people. Suppose our goal is to find

a social welfare function for A and P that is “reasonable” in the sense

of reflecting the will of the people. The question is: Exactly what do we

mean by “reasonable”? The difficulty in defining such a term lies not

so much with generating a list of properties that everyone will agree

should be involved, but in trying to overcome the potentially infinite

sequence of objections that all begin: “Sure, all those properties should

be satisfied by any procedure that we are going to call ’reasonable,’

but what about the following additional properties that you haven’t

mentioned?”
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Thus, as a starting point, we might offer a definition of “weakly

reasonable” with the understanding that a definition of “reason-

able” might later be phrased as “weakly reasonable plus some other

conditions.” In this spirit, we offer the following definition:

INFORMAL DEFINITION. A social welfare function (for A and P) is

called weakly reasonable if it satisfies the following three conditions:

1. Pareto: If the input consists of a sequence of identical lists, then

this single list should also be the social preference list produced

as output.

2. Independence of irrelevant alternatives (IIA): Suppose we have

our fixed set A of alternatives and our fixed set P of people, but

two different sequences of individual preference lists. Suppose

also that exactly the same people have alternative x over alterna-

tive y in their list in the first sequence as in their list in the second

sequence. (Hence, exactly the same people have alternative y

over alternative x in their list.) Then—and this is the conclusion

guaranteed by IIA—we either get x over y in both social prefer-

ence lists, or we get y over x in both social preference lists, or we

get x and y tied in both social preference lists. (In other words,

the positioning of alternatives other than x and y in the individ-

ual preference lists is irrelevant to the question of whether x is

socially preferred to y or y is socially preferred to x.)

3. Monotonicity: If we get x over y in the social preference list,

and someone who had y over x in his individual preference list

interchanges the position of x and y in his list, then we still should

get x over y in the social preference list.

With this informal definition at hand, the obvious question now

becomes the following:

QUESTION. Are there any weakly reasonable social welfare functions

for A and P?

ANSWER. Yes—appoint a dictator.
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In the context of social welfare functions, the procedure corre-

sponding to the intuitive idea of a dictator involves not just taking

the alternative on top of the dictator’s list as the social choice, but

rather taking the dictator’s entire individual preference listing of A

and declaring it to be the social preference list.

Dictatorships are particularly unappealing in the context of trying

to reflect the “will of the people.” At the moment, however, this is not

too unsettling. It would simply seem to mean that when we pass from

our definition of weakly reasonable to reasonable, some additional

properties will need to be added to rule dictatorships out. Thus, we

could simply dismiss the above question, and ask instead the following:

QUESTION. Are there any others?

At this point, however, things become extremely unsettling and

our whole proposed program of arriving at “reasonable” social wel-

fare functions crumbles in the wake of the simple (to state) answer

provided by Arrow.

ANSWER. No.

THEOREM. (Arrow, 1950). If A has at least three elements and the

set P of individuals is finite, then the only social welfare function for

A and P satisfying the Pareto condition, independence of irrelevant

alternatives, and monotonicity is a dictatorship.

REMARKS.

1. It is worth again emphasizing that the theorem is saying that

weakly reasonable social welfare functions for A and P other

than a dictatorship simply do not exist—not that they haven’t

yet been found, but that they never will be found.

2. As remarked earlier, the proof we present suffices, with only

small modifications, to handle social welfare functions for which

ties are allowed in the individual preference lists. On the other

hand, in this context the statement of the theorem changes

slightly (see Exercise 11 at the end of the chapter).
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3. The reference to monotonicity is completely unnecessary. It is

included simply because it makes the proof conceptually easier.

The additional lemma needed to remove monotonicity from the

statement of Arrow’s theorem can be found in Exercise 10 at the

end of the chapter.

4. Arrow’s theorem is referred to as an impossibility result because

it can be restated in the following way (where we have stated

the stronger version that is indicated by the remarks above).

Non-dictatorship, as a property, simply says there is no individ-

ual whose placement of x over y in his individual preference list

guarantees that x will occur over y in the social preference list.

THEOREM. (Restatement of Arrow’s Theorem). If A has at least three

elements and the set P of individuals is finite, then it is impossible to

find a social welfare function for A satisfying the Pareto condition,

independence of irrelevant alternatives, and non-dictatorship.

The Setup for the Proof

Suppose we have a fixed set A of three or more alternatives, a finite

set P of individuals, and a social welfare function for A and P that

satisfies Pareto, independence of irrelevant alternatives, and mono-

tonicity. We will produce a dictator. In fact, one way to think about

the structure of the proof is to imagine we have before us a “black

box” into which we can feed any sequence of individual preference

lists, and which will then output a single (preference) list. We don’t yet

know what goes on inside the black box, but we do know that Pareto,

IIA, and monotonicity are always satisfied. Our goal is to show that

the “mystery procedure” is, in fact, a dictatorship.

There are four key elements in the setup for the proof: two def-

initions, a crucial observation, and an easily stated goal that will

immediately yield the dictator we want to produce. Keep in mind that

the definitions, etc. to follow apply to the particular social welfare

function for A and P that we have at hand.

DEFINITION. Suppose X is a set of people, and suppose x and y are

two distinct alternatives. Then we’ll say that “X can force x over y,” or

equivalently, “X can force y under x” to mean that we get x over y in the
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social preference list whenever everyone in X places x over y in their

individual preference lists.

Notice that we are not saying that the voters in X will necessarily

choose to rank x over y in any particular election. All we are saying is

that if they choose to do so, then we’ll definitely get x over y in the

social preference list.

CRUCIAL OBSERVATION. Because the fixed social welfare function

for A and P that we are considering satisfies independence of irrelevant

alternatives and monotonicity, it is much easier to show that a given set

X forces some alternative x over some other alternative y than it first

appears. That is, in order to show that X forces x over y it suffices to

produce a single sequence of individual preference lists for which the

following all hold:

1. Everyone in X has x over y in their lists.

2. Everyone not in X has y over x in their lists.

3. The resulting social preference list has x over y.

To see why this suffices, note first that independence of irrelevant alter-

natives says that whether or not we get x over y in the social preference

list does not depend in any way on the placement of other alternatives

in the individual preference lists. Hence, in showing that X forces x over

y, it suffices to consider a single sequence of individual preference lists

with all other alternatives strategically placed where we want in order for

our argument to go through. Condition 2 above merely reflects the fact

that monotonicity says it suffices to consider the “worst case scenario”

in which everyone not in X tries to prevent having x over y in the social

preference list by placing y over x in their individual preference lists.

We should point out that the standard terminology for “X can force

x over y” is “X is decisive for x against y.”

DEFINITION. A set X will be called a dictating set if X can force x over

y whenever x and y are two distinct alternatives in A.
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The reader can check his or her familiarity with the above two

definitions and crucial observation by verifying the following (see

Exercise 7):

1. If X is the set of all individuals, then X is a dictating set.

2. If p is one of the individuals and X is the set consisting of p

alone, then X is a dictating set if and only if p is a dictator.

Small dictating sets are intuitively harder to come by than large

ones. (In fact, in the presence of IIA, this is essentially what monoto-

nicity says.) Pareto and IIA start us off by guaranteeing that the best

possible candidate for a dictating set—namely X = P—indeed is a dic-

tating set. The conclusion we want to reach is at the other extreme.

That is, we want to find the smallest possible kind of dictating set, one

with only one element. The strategy for passing from the very large

dictating set P where we are starting to the very small dictating set { p}
where we want to end up involves the following:

GOAL. Show that if X is a dictating set, and if we split X into two sets

Y and Z (so that everyone in X is in exactly one of the two sets), then

either Y is a dictating set or Z is a dictating set.

In the next part of this section, we’ll prove five lemmas, the last of

which is precisely what we have stated as our goal. The proof that the

goal yields the desired dictator is left to the reader (see Exercise 8 at

the end of the chapter)

Before getting to the five lemmas, however, let’s prove one proposi-

tion that we could actually do without, but at the expense of a slight

complication in the five lemmas that follow. This proposition provides

a nice opportunity to see how independence of irrelevant alternatives

and Pareto are used together.

PROPOSITION. If A has at least three elements, then any social

welfare function for A that satisfies both independence of irrelevant

alternatives and the Pareto condition will never produce ties in the

output.
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PROOF. Assume, for contradiction, that we have a social welfare func-

tion for A that satisfies both independence of irrelevant alternatives and

the Pareto condition, and that some sequence of individual preference

lists results in a social preference list in which the alternatives a and

b are tied, even though we are not allowing ties in any of the individual

preference lists. Because of independence of irrelevant alternatives, we

know that a and b will remain tied as long as we don’t change any indi-

vidual preference list in a way that reverses that voter’s ranking of a

and b.

Let c be any alternative that is distinct from a and b. Let X be the set

of voters who have a over b in their individual preference lists, and let

Y be the rest of the voters (who therefore have b over a in their lists).

Thus, in notation that should be self-explanatory, we have:

X Y
︷ ︸︸ ︷ ︷ ︸︸ ︷

a a b b

… …

b b a a

yields

ab (tied).

Suppose we now insert c between a and b in the lists of the voters in

X, and we insert c above a and b in the lists of the voters in Y . Then we

will still get a and b tied in the social preference list (by independence

of irrelevant alternatives), and we will get c over b by Pareto, since c is

over b in every individual preference list. Thus, we have:

X Y
︷ ︸︸ ︷ ︷ ︸︸ ︷

a a c c

c … c b … b

b b a a

yields

c

ab.



7.4. Arrow’s Impossibility Theorem 219

Independence of irrelevant alternatives guarantees us that, as far as a

versus c goes, we can ignore b. Thus, we can conclude that if everyone

in X has a over c and everyone in y has c over a, then we get c over a

in the social preference list.

To get our desired contradiction, we will go back and insert c differently

from what we did before. This time, we will insert c under a and b for

the voters in X, and between a and b for the voters in Y . Using Pareto

as before shows that we now get:

X Y
︷ ︸︸ ︷ ︷ ︸︸ ︷

a a b b

b … b c … c

c c a a

yields

ab

c.

Once again, independence of irrelevant alternatives guarantees us that,

as far as a versus c goes, we can ignore b. Thus, we can now conclude

that if everyone in X has a over c and everyone in Y has c over a, then

we get a over c in the social preference list. This is the opposite of what

we concluded above, and thus we have the desired contradiction.

The cognoscenti should note that an immediate consequence of this

proposition and the voting paradox profile is that there is no social

welfare function satisfying Parato, independence of irrelevant alterna-

tives, and invariance under permutations of the alternatives (defined

in the natural way).

The Five Lemmas Yielding Arrow’s Theorem

The following five lemmas will suffice to complete the proof of Arrow’s

theorem. Notice that independence of irrelevant alternatives is directly

appealed to only in Lemma 1, and this is where the role played by the

voting paradox of Condorcet is clearly displayed.
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LEMMA 1. Suppose X forces a over b, and c is an alternative distinct

from a and b. Suppose now that X is split into two sets Y and Z (either

of which may be the empty set) so that each element of X is in exactly

one of the two sets. Then either Y forces a over c or Z forces c over b.

(Intuition: If X has the power to force a high and b low, then either Y

inherits the power to force a high or Z inherits the power to force b low.)

PROOF. Consider what happens when the social welfare function

under consideration is applied to the following sequence of individual

preference lists:

Everyone Everyone Everyone

in Y in Z else
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

a c b

b a c

c b a

(Alternatives other than a, b, and c can be placed arbitrarily in the

individual preference lists.) Notice that everyone in both Y and Z (and

thus everyone in X) has a over b. Since we are assuming that X forces

a over b, this means that we get a over b In the social preference list.

In particular, this means that we can’t get both b over c and c over a in

the social preference list, or else transitivity would give us b over a in

the social preference list, contrary to what we just said. Thus, we must

have either a over c or c over b in the social preference list. We consider

these two cases separately.

Case 1: We Get a Over c in the Social Preference List

In this case, we have produced a single sequence of individual prefer-

ence lists for which everyone in Y has a over c in their lists, everyone

not in Y has c over a in their lists, and the resulting social preference

list has a over c. By the crucial observation of the last subsection, this

suffices to show that Y forces a over c, and so the lemma is proved in

case 1.
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Case 2: We Get c Over b In the Social Preference List.

An argument completely analogous to that in case 1 (and left for the

reader as Exercise 9 at the end of the chapter) shows that Z forces c

over b in this case. This completes the proof of Lemma 1.

LEMMA 2. Suppose X forces a over b and c is an alternative distinct

from a and b. Then X forces a over c and X forces c over b.

(Intuition: If X can force a over b, equivalently, X can force b under a,

then X can force a over anything and X can forces b under anything.)

PROOF. Consider first the special case of Lemma 1 where Y is the

whole set X and Z is the empty set. The conclusion is then that either

X forces a over c (as desired) or the empty set forces c over b (which is

ruled out by the Pareto condition.) Thus X forces a over c. In a completely

analogous way, a consideration of the special case of Lemma 1 where

Y is the empty set and Z is the whole set X shows that X forces c over b.

LEMMA 3. If X forces a over b, then X forces b over a.

(Intuition: The forcing relation is symmetric.)

PROOF. Choose an alternative c distinct from a and b. (This is possible

since we are assuming that we have at least three alternatives.) Assume

that X forces a over b. Then, by Lemma 2, X forces a over anything. In

particular, X forces a over c. But Lemma 2 now also guarantees that X

forces c under anything—in particular, X forces c under b. This is the

same as saying X forces b over c. Thus, by Lemma 2 one more time, we

have that X forces b over anything, and so X forces b over a as desired.

Briefly,

X forces
a

b
⇒ X forces

a

c
⇒ X forces

b

c
⇒ X forces

b

a
.

LEMMA 4. Suppose there are two alternatives a and b so that X can

force a over b. Then X is a dictating set.

(Intuition: If X has a little local power, then X has complete global

power.)
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PROOF. Assume X can force a over b, and assume x and y are two

arbitrary alternatives. We must show that X can force x over y. Notice

that Lemma 3 guarantees that X can also force b over a. Thus, Lemma

2 now lets us conclude that X can force a over or under anything and X

can force b over or under anything.

Case 1: a = y

Here, we want to show that X can force x over a. But since we know X can

force a under anything, we have that X can force a under x. Equivalently,

X can force x over a, as desired.

Case 2: a 	= y

Since X forces a over b and a 	= y, we know that X can force a over

y. Equivalently, X can force y under a, and thus X can force y under

anything. In particular, X can force y under x. Thus, X can force x over y

as desired Briefly,

X forces a
b

⇒ X forces a
y

⇒ X forces x
y
.

LEMMA 5. Suppose that X is a dictating set and suppose that X is

split into two sets Y and Z so that each element of X is in exactly one

of the two sets. Then either Y is a dictating set or Z is a dictating set.

PROOF. Choose three distinct alternatives a, b, and c. Since X is a dic-

tating set, we have that X can force a over b. Lemma 1 now guarantees

that either Y can force a over c (in which case Y is a dictating set by

Lemma 4) or Z can force c over b (in which case Z is a dictating set

by Lemma 4 again). This completes the proof of Arrow’s impossibility

theorem.

...........................................................................................................

7.5 THE GIBBARD-SATTERTHWAITE THEOREM

During presidential elections, we often hear mention of “spoiler

candidates,” third party candidates who take away votes from the

Democratic and Republican nominees. For example, in 2000 and 2004,

Ralph Nader supporters were blamed by some Democratic voters for

giving the election to George W. Bush. Many Nader supporters were

torn between voting for their sincere first choice candidate or voting
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for their second choice candidate who had a better chance of winning

the election. Situations like these bring up the issue of manipula-

bility of voting systems—can a voter obtain a better outcome in an

election by voting insincerely? In this section, we discuss and prove

the main result regarding the manipulability of voting systems—the

Gibbard-Satterthwaite theorem.

In the early 1970s, the theorem was proven independently by

philosopher Allan Gibbard and economist Mark Satterthwaite. The

theorem is similar to Arrow’s theorem in many ways, and in fact, our

proof mirrors that of Arrow’s theorem at every step. Before we dis-

cuss the statement and proof, we will make more precise what we

mean by manipulability. Throughout our discussion, we consider only

social choice procedures in which ties are not allowed on ballots and

in which there is exactly one alternative in the resulting social choice

set. Notice that Condorcet’s method is not guaranteed to produce a

winner, so our treatment of manipulability does not apply (see the

exercises, however, for an analysis of Condorcet’s method with respect

to an alternate definition of manipulability).

DEFINITION. A social choice procedure is manipulable if there exists

a profile P = (B1, . . . ,Bn) which we think of as representing the true

preference lists of the n voters and another ballot B′
i representing the

insincere ballot of a single voter i such that voter i prefers the social

choice produced by profile P′ (obtained from P by switching the sincere

preference list Bi of voter i with the insincere preference list B′
i) to the

social choice produced by profile P. If a social choice procedure is not

manipulable, we say that it is non-manipulable.

Despite our intuition about the manipulability of the plurality

system, arising from scenarios like the 2000 and 2004 presidential

elections described above, plurality is non-manipulable under the def-

inition above when exactly one alternative appears in the social choice

set. Let’s consider the special case where there are two alternatives,

and an odd number of voters. The fact that there are an odd num-

ber of voters prevents ties, and guarantees that there will be exactly

one social choice for any given profile. Since first place rankings are

the only information taken into account and there are only two alter-

natives, then an insincere ballot is a first place vote for one’s second

choice alternative. Voting for the opposing alternative will not yield a
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better result, and so, the social choice procedure is non-manipulable

under these conditions. A similar argument (see Exercise 17) shows

that plurality is non-manipulable whenever ties are not allowed in

the outcome. If we do allow ties, however, or we consider the idea of

manipulability by a group rather than a single individual, then it turns

out that plurality is manipulable (see Exercises 18 and 19).

Another example of a non-manipulable social choice procedure is a

dictatorship. Since only the dictator’s preference list matters, an insin-

cere ballot from a voter that is not the dictator has no effect on the

outcome. An insincere ballot from the dictator will not yield a better

result for the dictator, since the alternative at the top of the dictator’s

list is the social choice. Recall that a dictatorship also satisfies the

Pareto condition and a dictatorship never produces a tie.

QUESTION. Are there other social choice procedures that never yield

a tie, satisfy Pareto, and are non-manipulable?

ANSWER. No.

Already we see the parallels with Arrow’s theorem. There are

no problems for plurality when only two alternatives are being

considered (although in this context, we do require that the num-

ber of voters be odd), and a dictatorship also satisfies the desired

properties (namely, non-manipulability in this context). Unfortunately,

the Gibbard-Satterthwaite theorem, like Arrow’s theorem, tells us that

for three or more alternatives, a dictatorship is the only social choice

procedure that satisfies the desirable properties of Pareto and non-

manipulability when the social choice procedure under consideration

always produces a single alternative as the social choice.

THEOREM (Gibbard-Satterthwaite, 1973). If the set A of alternatives

has at least three elements, and the set P of individuals is finite, then

the only social choice procedure for A and P which outputs exactly

one social choice and satisfies both the Pareto condition and non-

manipulability is a dictatorship.
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REMARKS.

1. Just as was the case with Arrow’s theorem, the proof we will present

of the Gibbard-Satterthwaite theorem suffices with some modifica-

tions to treat the situation when ties are allowed in the ballots (see

Exercise 20).

2. The full strength of the Pareto condition is not required for the the-

orem. The result still holds if we replace Pareto with the strictly

weaker condition of non-imposition (see Chapter 1, Exercise 21)

which is satisfied if every alternative occurs as the unique winner

for at least one set of ballots (see Exercise 22).

3. The Gibbard-Satterthwaite theorem is one more example of the

impossibility theorems that we have encountered. Non-dictatorship,

in this context, means that there is no single individual that can

guarantee that alternative a is the lone social choice by placing

a at the top of his or her individual preference list. An alternative

version of the theorem then is the following.

THEOREM (Restatement of the Gibbard-Satterthwaite Theorem).

If A has three or more elements, and the set P of individuals is

finite, then it is impossible to find a social choice procedure satis-

fying the Pareto condition, non-manipulability, and non-dictatorship,

and which always yields a unique winner.

The Setup for the Proof

The setup for the proof of the Gibbard-Satterthwaite theorem is

remarkably similar to that of Arrow’s theorem. Suppose that we have

a fixed set A of three or more alternatives, a finite set P of individuals,

and a social choice procedure for A and P that satisfies Pareto, non-

manipulability, and always outputs exactly one social choice. We will

produce a dictator. Just as with Arrow’s theorem, we will use the idea

of a dictating set. We will show that the set P of all individuals is a dic-

tating set, and we can continue to break P up into smaller and smaller

sets until we have a dictating set consisting of a single individual—that

individual is the dictator.
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The most significant difference in the statements of Arrow’s and

Gibbard-Satterthwaite’s theorem is that Arrow’s theorem was stated in

the context of social welfare functions, and the Gibbard-Satterthwaite

theorem is stated in the context of social choice procedures. Since the

social choice procedure produces a single social choice rather than a

ranking of alternatives, it no longer makes sense to talk about a set X

of voters forcing alternative x over alternative y. Instead, we introduce

the following notion to take its place.

DEFINITION. Suppose X is a set of people, and x and y are two distinct

alternatives. Then we’ll say that “X can use x to block y” to mean that

y is not the social choice whenver everyone in X places x over y in their

individual preferences lists.

Instead of appealing directly to the fact that our given social

choice procedure is non-manipulable, we will rely on another property

that all non-manipulable social choice procedures satisfy: down-

monotonicity.

DEFINITION. A social choice procedure is said to satisfy down-

monotonicity if the following holds for any distinct alternatives x and y:

If y is the social choice and x is not the social choice, and someone

changes his or her preference list by moving x down one spot (that is,

exchanging x’s position with that of the alternative immediately below x

on his or her preference list), then y should still be the social choice.

It turns out that any social choice procedure that satisfies down-

monotonicity must also satisfy monotonicity (see Exercise 12 at the

end of the chapter). What is important to us here, however, is that

any non-manipulable social choice procedure (that produces exactly

one social choice) must satisfy down-monotonicity; it is this property

that we will rely on in the proof of the Gibbard-Satterthwaite theorem

since it is easier, in practice, to apply than non-manipulability.

PROPOSITION. Any non-manipulable social choice procedure that

produces a single social choice must satisfy the down-monotonicity

condition.
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PROOF. Assume that the social choice procedure fails to satisfy

down-monotonicity. Then there must exist two profiles P and P′ and

alternatives x, y, v, and w such that:

(1) Alternative w (w 	= y) is the social choice for profile P, and

some fixed individual i ranks y immediately above x in his or

her preference list;

(2) Alternative v (v 	= w) is the social choice for profile P′, and P′ dif-

fers from P only in that individual i has interchanged the positions

of x and y on his or her ballot.

We will show that the social choice procedure is manipulable in

this situation, a contradiction. It must be the case, therefore, that our

social choice procedure does indeed satisfy the down-monotonicity

condition. We will consider three cases.

Case 1: In profile P, voter i ranks v above w.

Suppose that voter i’s ballot in profile P represents the sincere prefer-

ences of voter i, and the ballot in P′ is disingenuous. If voter i submits

his or her sincere ballot, then w is the social choice, but if voter i submits

the disingenuous ballot, then v is the social choice. Since voter i prefers

v to w, then voter i is better off submitting the insincere preference list.

Thus, in this case, the social choice procedure is manipulable.

Case 2: In profile P′, voter i ranks w above v.

Suppose now that voter i’s ballot in profile P′ represents the sincere

preferences of voter i, and the ballot in P is disingenous. If voter i

submits his or her sincere ballot, then v is the social choice, but if

voter i submits the disingenous ballot, then w is the social choice.

Since voter i prefers w to v, then voter i is again better off by submitting

the insincere preference list. Again, this shows that the social choice

procedure is manipulable.

Case 3: Otherwise.

In this case, we must have that in profile P, voter i ranks w above v,

and in profile P′, voter i ranks v above w. It must be the case then that
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y = w and x = v since x and y are the only alternatives that voter i is

switching. But then y is the social choice for profile P, a contradiction,

so case 3 is impossible. That completes the proof.

CRUCIAL OBSERVATION We can use the same strategy to show that X

can use x to block y that we used to show that X can force x over y. This

is not surprising since the two conditions are only different in so far as

one makes sense for social choice procedures and one makes sense

for social welfare functions. So to show that X can use x to block y, it

suffices (see Exercise 14) to produce a single sequence of individual

preference lists for which the following all hold:

1. Everyone in X has x over y in his or her preference list.

2. Everyone not in X has y over x in his or her preference list.

3. The resulting social choice is x.

As before, condition 2 reflects our consideration of the worst case sce-

nario; if some of the voters not in X also rank x over y in their preference

lists, then by monotonicity, the social choice is still x. Since we are

assuming that our social choice procedure is non-manipulable, it is

therefore down-monotonic. Since down-monotonicity implies monotonic-

ity, this strategy will always work to show that a set of voters X can use

alternative x to block alternative y.

DEFINITION. A set X of voters is called a dictating set if X can use x

to block y whenever x and y are distinct alternatives in A.

Just as with our previous definition of dictating set, the following

properties hold. We leave their verification to the reader.

1. The set X of all voters is a dictating set.

2. If p is one of the invidivuals and X is the set consisting of p

alone, then X is a dictating set if and only if p is a dictator.

We are now ready to prove five lemmas that will allow us to prove

the Gibbard-Satterthwaite theorem. The lemmas are completely anal-

ogous to four of the five used to prove Arrow’s theorem. The strategy
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is the same: we know that the set X of all individuals is a dictating

set. We will show that when we break X up into two smaller disjoint

sets, then one of the two sets must be a dictating set. Repeating this

procedure, we eventually obtain a dictating set consisting of a single

voter—that voter is the dictator.

The Five Lemmas Yielding the Gibbard - Satterthwaite

Theorem

LEMMA 1. Suppose X can use a to block b, and c is an alternative

distinct from a and b. Suppose that X is split into two sets Y and Z

(either of which may be the empty set) so that each element of X is in

exactly one of the two sets. Then either Y can use a to block c or Z can

use c to block b.

PROOF. We will apply the social choice procedure under consideration

to any profile in which everyone in Y ranks a, b, c (in that order) as

their top three alternatives, everyone in Z ranks c, a, b as their top

three alternatives, and everyone else ranks b, c, a as their top three

alternatives.

Everyone Everyone Everyone

in Y in Z else

a c b

b a c

c b a

By Pareto, the social choice must be one of the alternatives a, b, c

(since everyone prefers alternative a (or b or c) to a fourth alternative,

say d, then d is not the social choice). We also know that alternative

b can not be the social choice since everyone in X ranks a over b and,

by assumption, X can use a to block b. There are two possibilities to

consider then.

Case 1: Alternative a is the social choice.

In this case, we must have that Y can use a to block c since everyone

in Y ranks a over c, everyone not in Y ranks c over a, and a is the social

choice.
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Case 2: Alternative c is the social choice.

In this case, we must have that Z can use c to block b since everyone

in Z ranks c over b, everyone not in Z ranks b over c, and c is the social

choice.

Notice that by the crucial observation above, it is sufficient to consider

only profiles of the type described above. That completes the proof.

LEMMA 2. Suppose X can use a to block b, and c is an alternative

distinct from a and b. Then X can use a to block c, and X can use c

to block b.

PROOF. We will apply Lemma 1 in the special case that Y is all of X

and Z is the empty set. Lemma 1 then implies that either Y can use a to

block c or Z can use c to block b. But Z is the empty set, and by Pareto,

it is impossible for an empty set of voters to use c to block b. Thus Y

can use a to block c as desired. A completely analogous argument to

the one above, wherein Y is the empty set and Z is all of X, shows that

X can use c to block b as well.

LEMMA 3. If X can use a to block b, then X can also use b to block a.

PROOF. Choose an alternative c distinct from both a and b; this is

possible since A has at least 3 elements. Since X can use a to block b,

then Lemma 2 implies that X can use a to block any alternative. Thus X

can use a to block c. Applying Lemma 2 again shows that X can use any

alternative to block c; in particular, X can use b to block c. One more

application of Lemma 2 shows that X can use b to block anything; thus

X can use b to block a, as claimed.

LEMMA 4. Suppose there are two alternatives a and b for which X

can use a to block b. Then X is a dictating set.

PROOF. Let x and y be any distinct alternatives, and we will show that

X can use x to block y. Since x and y are arbitrary, this shows that X is

a dictating set.
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Case 1: y 	= a

Since X can use a to block b, and y 	= a, Lemma 2 implies that X can

use a to block y. Thus, again by Lemma 2, X can use any alternative to

block y; in particular, X can use x to block y.

Case 2: y = a

Since X can use a to block b, then Lemma 2 implies that X can use b

to block a. By Lemma 2, this means that X can use anything to block a;

in particular, X can use x to block a. Since a = y, this proves the claim.

LEMMA 5. Suppose that X is a dictating set and that X is split into

two sets Y and Z so that every element of X is contained in exactly one

of Y and Z. Then either Y is a dictating set or Z is a dictating set.

PROOF. We leave the proof as an exercise (see Exercise 15). The

argument is analogous to that used to prove Lemma 5 in the proof of

Arrow’s theorem.

...........................................................................................................

7.6 SINGLE PEAKEDNESS—THEOREMS OF BLACK

AND SEN

Suppose we have our fixed set A of alternatives and our fixed set P of

people. Intuition may well suggest the following as the most natural

way to construct a single social preference list given a sequence of

individual preference lists:

Place x over y in the social preference list if more than half of the

people have x over y in their individual preference lists. (And place x

and y tied if exactly half have x over y and half have y over x.)

What’s wrong with this?

The answer goes back one more time to the voting paradox of

Condorcet. That is if we apply the above procedure to the lists

a c b

b a c

c b a

we would get a over b in the social preference list as well as b over c and

c over a in the same list. This yields a relation among the alternatives,
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but it’s certainly not a list, and our use of the word over is misleading

at best.

Intuition again suggests that if we have a sequence of individual

preference lists where each list is similar (in some sense) to all the oth-

ers, then the natural way of defining a social welfare function described

above may, in fact, work. In this section, we investigate two ways to

formalize this notion of “similar to each other.” The first is a theorem

due to Sen (1966); the second is a classic (although weaker) result due

to Black (1958).

The concept occurring in Sen’s theorem that captures this idea of a

collection of individual preference lists being “similar to each other”

is given by the following definition:

DEFINITION. A sequence of individual preference lists will be called

Sen coherent if for every triple of alternatives there is at least one of

the three—call it x—such that at least one of the following holds:

1. No one places x above both of the other alternatives in the triple.

2. No one places x between the other two alternatives in the triple.

3. No one places x below both of the other alternatives in the triple.

Example:

We’ll go through the procedure for determining if the following

sequence of four individual preference lists is Sen coherent.

a d a c

b c d b

c b c a

d a b d

There are four triple of alternatives that we must consider. For each

triple, we’ll check to see if we can find one of the alternatives in the

triple and one of the positions “above the other two,” “between the

other two,” or “below the other two” with the property that the speci-

fied alternative does not occur in the specified position. If we can’t find

such an alternative and such a position (i.e., if they don’t exist), then
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we can conclude that this triple serves as witness to the fact that the

sequence of lists is not Sen coherent, and we’re done. If we can find

such an alternative and position, then we move on to check the next

triple. If all triples “check out,” we will conclude that the sequence of

lists is Sen coherent.

1. First triple: {a, b, c}

Does anyone place a above both b and c? Yes, person # 1 does.

Does anyone place a between b and c? No.

Conclusion: {a,b,c} “checks out.” We move on to the next triple.

2. Second triple: {a, b, c}

Does anyone place a above both b and d? Yes, person # 1 does.

Does anyone place a between b and d? Yes, person # 4 does.

Does anyone place a below both b and d? Yes, person # 2 does.

Does anyone place b above both a and d? Yes, person # 4 does.

Does anyone place b between a and d? Yes, person # 1 does.

Does anyone place b below both a and d? Yes, person # 3 does.

Does anyone place d above both a and b? Yes, person # 2 does.

Does anyone place d between a and b? Yes, person # 3 does.

Does anyone place d below both a and b ? Yes, person # 1 does.

Conclusion: {a, b, d} serves as witness to the fact that the

sequence of lists is not Sen coherent, since each of the three

alternatives occurs in all three positions.

NOTATION. Suppose we have a fixed sequence of individual prefer-

ence lists and suppose that x and y are two alternatives. Then we will

write
xPy

(read as “x is socially preferred to y”) to mean that more than half the

people have x over y in their individual preference lists.

The notation above is simply providing a name for the relation that

naturally arises when trying to generate a “social preference list.” The

preference lists involved in the voting paradox yield a situation where
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we have aPb and bPc and cPa. This violates the condition known as

transitivity.

The importance of transitivity as a property is demonstrated in the

following proposition. An outline of the proof occurs as Exercise 27 at

the end of the chapter.

PROPOSITION. If the number of people is odd and the relation P is

transitive, then it is possible to arrange the alternatives in a vertical

list so that for any two alternatives x and y, x is placed higher than y

in the list precisely when xPy holds.

We are now ready to prove the main result of this section. The fol-

lowing proof, which differs from that in Sen (1966), easily generalizes

to handle the version of the theorem that allows ties in the individual

preference lists. It should also be noted that this proof is not as con-

cise as possible (see Exercise 28 at the end of the chapter), but it is the

most direct approach that a naïve attack produces.

THEOREM. (Sen, 1966). Suppose that the number of individuals is

odd and that we have a sequence of individual preference lists that is

Sen coherent. Then the relation P is transitive.

PROOF. Assume that the number of people is odd and that we have a

sequence of individual preference lists that is Sen coherent. We want to

show that P is transitive. Thus, we assume that we have three arbitrary

alternatives x, y, and z, and that xPy and yPz both hold. (That is, more

than half the people have x over y in their individual preference lists,

and more than half have y over z.) We must show that xPz also holds.

Since the sequence of lists at hand is Sen coherent, we know that at

least one of the three alternatives (i.e., x, y, or z) fails to occur in at

least one of the three positions (i.e., above the other two, between the

other two, or below the other two). This yields nine separate cases to

be considered. We’ll show that in each of the nine, either the case can’t

occur (because of xPy and yPz) or that we get xPz as desired. This will

complete the proof.

For each of the following nine cases we will use the same notation.

That is, we’ll introduce sets of people denoted by A,B,C, and D (e.g.,

A might be the set of all people who place x over y in their list). The
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corresponding lower case letters will denote the number of people in

the set. (So a is the number of people in A, b is the number in B, etc.)

Typically, then, the total number of people will be given by a+b+ c+d.

Thus, if we have A as above and xPy, then we’ll know that a > (a+ b+
c + d)/2.

Case 1: No One has Alternative x Above the Other Two

In this case everyone has x either in the middle of y and z or below y

and z. Thus, we can decompose the set of people into four pairwise

disjoint sets as follows:

A is the set of people ranking y over x over z.

B is the set of people ranking z over x over y.

C is the set of people ranking y over z over x.

D is the set of people ranking z over y over x.

Notice that only the people in B have x over y. But we are assuming

that xPy, and so b is greater than (a+ b+ c+ d)/2. Similarly, since yPz

we have that a + c is greater than (a + b + c + d)/2. But then adding

the left-hand sides and the right-hand sides of these two inequalities

yields a + b + c is greater than a + b + c + d. This would mean that d

is negative, which, of course, it’s not. Thus, case 1 cannot occur.

Case 2: No One has Alternative x Between the Other Two.

In this case, everyone has x either above y and z or below y and z. Thus,

we can decompose the set of people into four pairwise disjoint sets as

follows.

A is the set of people ranking x over y over z.

B is the set of people ranking x over z over y.

C is the set of people ranking y over z over x.

D is the set of people ranking z over y over x.

Notice that only the people in A and B have x over y. Thus, since we

are assuming that xPy, we know that a + b > (a + b + c + d)/2. But

everyone in A and B also has x over z. Thus, we get xPz as desired.
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Case 3: No One has Alternative x Below the Other Two

In this case, everyone has x either above y and z or between y and z.

Thus, we can decompose the set of people into four pairwise disjoint

sets as follows.

A is the set of people ranking x over y over z.

B is the set of people ranking x over z over y.

C is the set of people ranking y over x over z.

D is the set of people ranking z over x over y.

Notice that only the people in A and C have y over z. Thus, since we

are assuming that yPz, we know that a + c > (a + b + c + d)/2. But

everyone in A and C also has x over z and so we get xPz as desired.

The Remaining Cases

The remaining six cases are left as an exercise for the reader (see

Exercise 29 at the end of the chapter). We’ll content ourselves here

to simply list what the cases are and to note the conclusions that will

arise: cases 5 and 9 are like case 1 in that they also can’t occur; cases

4, 6, 7, and 8 yield the conclusion that xPz as desired.

Case 4: No One has Alternative y Above the Other Two

Case 5: No One has Alternative y Between the Other Two

Case 6: No One has Alternative y Below the Other Two

Case 7: No One has Alternative z Above the Other Two

Case 8: No One has Alternative z Between the Other Two

Case 9: No One has Alternative z Below the Other Two

This completes the proof of Sen’s theorem.

Sen’s theorem arose as a generalization of a classic result first proved

in 1948 by Duncan Black. Black’s Theorem provides an answer to the

same question as does Sen’s theorem: Can we find a natural condition

pertaining to sequences of individual preference lists that will guaran-

tee the transitivity of the relation P, where xPy means that more then

half the people rank x over y? Instead of what we called “Sen coher-

ence,” Black’s theorem makes use of a coherence property based on
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the idea of “graphing” an individual preference list. We illustrate this

with the following example:

Example:

Suppose the set of alternatives is {a, b, c, d} and consider the fixed

ordering d b a c of these alternatives. Consider also the individual

preference list in which we have a over b over d over c. Then a graph

of this list with respect to this ordering is obtained in the following

way:

1. Place the alternatives on a horizontal line arranged from left to

right as in the given fixed ordering.

2. Place a dot above each alternative so that the dot above alterna-

tive x is placed higher than the dot above alternative y precisely

when alternative x occurs above y in the given individual

preference list.

3. (Optional) Connect each dot by a line to the ones immediately

to the left and right of it.

Notice that both of the following are graphs of the above list with

respect to the above given order.

d b a c d b a c

DEFINITION. A peak in a graph (arrived at as above) is a dot that is

higher than the dot immediately to its left (if there is one to its left) and

higher than the dot immediately to its right (if there is one to its right).
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Example:

The three possible kinds of peaks are illustrated in the following figure:

peak peak peak

.  .  .
.  .  .

.  .  ..  .  .
.  .  .

The following definition is the central concept in Black’s theorem.

It is what captures the notion of "coherence" that is exploited to yield

the desired transitivity.

DEFINITION. A sequence of individual preference lists is said to

satisfy single peaked preferences if there is a single ordering of the alter-

natives so that each of the individual preference lists has a graph—with

respect to this ordering—that has only one peak.

Example

Consider the following three individual preference lists:

#1 #2 #3

a c b

b a a

c b c

We will show that this sequence of preference lists satisfies single

peaked preferences. In order to do this, we must find a single ordering

of the alternatives that will yield graphs of the individual preference

lists that all have only one peak. Trial and error will work here, but for

three people and three alternatives there is a method that will always

produce such an ordering if one exists: choose an alternative that does

not occur on the bottom of any of the individual preference lists, and

put this alternative second in the ordering. In the present example,

alternative a doesn’t occur on the bottom of any of the lists, so we
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put it in the middle. Either b or c could go first; both will work. We’ll

choose the latter.

We claim that the ordering c a b shows that the above sequence of

individual preference lists satisfies single peaked preferences.

c a b c a b c a b

The single peak, in each case, has been circled. All three graphs could

have been drawn above a single copy of the c a b ordering.

At this point, we are ready to state and prove Black’s theorem. Recall

that the relation P is defined by xPy if more than half the people have

x over y in their individual preference lists.

THEOREM. (Black, 1958). Suppose that the number of individuals

is odd and that we have a sequence of individual preference lists that

satisfies single peaked preferences. Then the relation P is transitive.

PROOF. Assume that we have a sequence of individual preference lists

that satisfies single peaked preferences. We’ll show that the sequence

in Sen-coherent. Suppose that we have a triple of alternatives and

assume (without loss of generality) that they occur in the order x y z

which demonstrates that single peaked preferences is satisfied. We

must show that one of the three alternatives (x, y, z) fails to occur in

one of the positions (above the other two, between the other two, or

below the other two).

We claim that alternative y does not occur below the other two in any

of the individual preference lists. If it did, there would be at least two

peaks in the graph corresponding to that individual: one at the highest

dot to the left of y, and one at the highest dot to the right of y.

The desired result now follows from Sen’s theorem.
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...........................................................................................................

7.7 CONCLUSIONS

We began this chapter by introducing the idea of a social welfare func-

tion (where the output is a social preference list instead of just a set

of alternatives), and we proved that one could obtain a social wel-

fare function by simply “iterating” a social choice procedure. (That is,

running the choice procedure once yields the alternatives that will be

on top of the social preference list; running it a second time with the

previous “winners” deleted yields what will be second on the social

preference list; etc.)

Taking the case of two alternatives as a starting point, we proved

a generalized version of May’s theorem for two alternatives that

involved the idea of a quota of votes needed for passage. May’s the-

orem itself—asserting that, for two alternatives and an odd number of

people, majority vote is the only procedure that is anonymous, neutral,

monotone, and does not produce ties—followed easily.

In Section 7.4 we stated and proved Arrow’s impossibility theorem,

followed in Section 7.5 with a proof of the Gibbard-Satterthwaite the-

orem. Finally, in Section 7.6, we considered the most natural relation

(denoted here by P) that suggests itself for building a social preference

list. (That is, say that aPb holds if more than half the people prefer

a to b.) Coherency conditions on the sequence of individual prefer-

ence lists yield situations where the relation P does, in fact, work. Two

of the most well-known such results—those of Sen and Black—were

presented in Section 7.6.

EXERCISES

1. Consider the following sequence of individual preference lists:

a a a c c b e

b d d b d c c

c b b d b d d

d e e e a a b

e c c a e e a

(a) Consider the social welfare function arrived at by iterating the

plurality procedure. Write down the social preference list that
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results from applying this function to the above sequence of

individual preference lists.

(b) Do the same for the social welfare function arrived at by

iterating the Borda count.

(c) Do the same for the social welfare function arrived at by

iterating the Hare procedure.

(d) Do the same for the social welfare function arrived at by

iterating sequential pairwise voting with the fixed agenda

abcde.

(e) Do the same for the social welfare function arrived at by iter-

ating the procedure where the last person on the right is a

dictator.

2. Explain why:

(a) Procedure 1 in Section 1.2 does not satisfy anonymity.

(b) Procedure 2 in Section 1.2 does not satisfy neutrality.

(c) Procedure 3 in Section 1.2 does not satisfy monotonicity.

3. Suppose A = {a, b, c} and a given social welfare function produces:

output

a

b

c

when confronted with input

c a b

b c c

a b a

(a) If neutrality is satisfied, what is the output when confronted

with input:

a c b

b a a

c b c

(b) What input would definitely yield c over a over b as output?

4. Prove that all quota systems satisfy anonymity, neutrality, and

monotonicity.

5. In one or two sentences, explain why May’s theorem follows from

our result on quota systems.

6. Consider the social choice procedure that operates as follows.

There are two fixed individuals (call them Person #1 and Person

#2) and a fixed alternative (call it c). If both Person #1 and #2 are

among the set of individuals, then Person #1 is the dictator if c is

one of the alternatives, and Person #2 is the dictator if c is not one
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of the alternatives. If either Person #1 or #2 is not among the set

of individuals, then the procedure is a dictatorship with the person

on the far left being the dictator.

(a) Show that this social choice procedure satisfies independence

of irrelevant alternatives as defined in Chapter 1.

(b) Show that the iterated version of this procedure does not sat-

isfy independence of irrelevant alternatives as defined in the

present chapter by considering the following two sequences of

individual preference lists:

Person #1 Person #2 Person #1 Person #2

c b a b

a a b a

b c c c

7. Without using Arrow’s theorem, show that if a social welfare function

satisfies both Pareto and independence of irrelevant alternatives,

then

(a) the set P of all individuals is a dictating set, and

(b) a set {p} consisting of only one person is a dictating set if and

only if p is a dictator.

8. Give two proofs showing that Lemma 5 implies Arrow’s theorem—

one based on splitting sets into two pieces of roughly equal size

(intuitively: halving the set), and the other based on splitting a single

element off the set.

9. Provide the argument that handles case 2 in Lemma 1 of Arrow’s

theorem.

10. Show that the assumption of monotonicity is not needed in Arrow’s

theorem by using independence of irrelevant alternatives and the

Pareto condition to prove the following lemma:

LEMMA. Suppose that X has the property that for any two alter-

natives x and y, if everyone in X places x over y and everyone not in

X places y over x then we get x over y in the social preference list.

Suppose IIA and Pareto are satisfied. Then X is a dictating set.

11. If we had chosen to work in a context where ties are allowed in the

social preference list, then Arrow’s theorem no longer holds with the
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conclusion that there is a person whose list is always identical to

the social preference list. What can be concluded is the existence

of a person that is a weak dictator in the sense that if this person

places one alternative strictly above another, then the same is true

in the social preference list. However, if this weak dictator places

two alternatives tied, there is no guarantee they will be tied in the

social preference list.

(a) Show that the proof given in this chapter is adequate to yield

this version of Arrow’s theorem with ties. (The conclusion will

still be that there is a person p such that {p} is a dictating set.)

(b) Consider the social welfare function that proceeds as follows:

if Person #1 places x over y, then we get x over y in the social

preference list: if Person #1 has x and y tied, then x and y

appear in the social preference list as they do in the list of

Person #2. (I.e., Person #2 gets to be the tie-breaker, if he

chooses.) Show that this procedure satisfies all the conditions

in the hypothesis of Arrow’s theorem, but there is no (strong)

dictator.

12. Prove that any social choice procedure satisfying down-monotonicity

also satisfies monotonicity.

13. Give an example to show that each of the following social choice

procedures are manipulable.

(a) Borda count

(b) Hare system

14. Prove that to show that a set of voters X can use alternative x

to block alternative y, if suffices to produce a single sequence of

individual preference lists in which the following all hold:

1. Everyone in X has x over y in his or her preference list.

2. Everyone not in X has y over x in his or her preference list.

3. The resulting social choice is x.

15. Prove Lemma 5 used in the proof of the Gibbard-Satterthwaite

theorem.

16. Prove that Condorcet’s method is non-manipulable if we allow the

possibility that a social choice procedure produces no social choice.

17. Prove that if the social choice set always consists of exactly one

alternative, then plurality is non-manipulable.

18. Prove that if we consider social choice procedures where ties in the

outcome are allowed, then plurality is manipulable. Assume that if
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a voter prefers candidate A to candidate B, then the outcome in

which A alone is the social choice is preferable to the outcome in

which A and B are tied for social choice.

19. We say that a social choice procedure is group manipulable if there

is a collection of voters X and profiles B (which we think of as repre-

senting the sincere preference lists of all voters, including everyone

in X) and B′ (which we think of as representing the insincere prefer-

ence lists of at least some of those voters in X) such that everyone

not in X has the same preference list in both B and B′, and all

voters in X prefer the outcome with profile B′ to the outcome with

profile B.

(a) Given an example to show that plurality is group-manipulable.

(b) Prove that Condorcet’s method is not group-manipulable if we

allow the possibility that a social choice procedure produces

no social choice.

20. Prove that the Gibbard-Satterthwaite theorem still holds if we allow

ties in the individual preference lists.

21. Prove that the Gibbard-Satterthwaite theorem still holds if we

replace the Pareto assumption with the strictly weaker condition

of non-imposition (See Chapter 1, Exercise 31).

22. An anti-dictatorship is a social choice procedure in which the social

choice is the unique alternative at the bottom of a fixed individual’s

preference list.

(a) Prove that an anti-dictatorship satisfies the condition of non-

imposition, but not Pareto.

(b) Show that Arrow’s theorem fails if Pareto is replaced by non-

imposition.

23. Prove that any social choice procedure that is non-manipulable must

also satisfy the monotonicity criterion.

24. In two or three paragraphs, discuss the differences between Arrow’s

theorem and the Gibbard-Satterthwaite theorem.

25. Write down an individual preference list with more than one peak.

26. Determine if the following sequence of five preference lists is Sen

coherent.

a a c d b

c b a b d

b d b a a

d c d c c
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27. Complete the following proof of the proposition preceding Sen’s

theorem. Assume that we have an odd number of people and the

relation P is transitive. We want to show that we can arrange the

alternatives in a list so that x is placed higher than y in our list

precisely when xPy holds. The naïve way to proceed is to construct

the list by simply inserting the alternatives one by one in such a way

that if, for example, we are inserting y, then y is placed

(a) below every alternative x that has already been placed and that

satisfies xPy, and

(b) above every alternative z that has already been placed and that

satifies yPz.

For this to work, it is necessary (and sufficient) to know that all

the alternatives described in (a) have been placed higher in our list

than all the alternatives described in (b). To see that this is true,

take such an x and such a z . . . (Reader: Take it from here . . .)

28. A more concise proof of Sen’s theorem can be based on the

following lemma:

LEMMA. If xPyPz holds, then someone ranks x above the other two,

someone ranks y between the other two, and someone ranks z below

the other two.

(a) Prove this lemma.

(b) Use the lemma to prove Sen’s theorem. (Hint: Assume that

P is not transitive. Then there are alternatives a, b, and c so

that aPbPcPa holds. Notice that any of the alternatives a, b, or

c can play the role of any one of the alternatives x, y, z in the

lemma.

29. Provide the details in the argument for (a) case 4, (b) case 5, (c)

case 6, (d) case 7, (e) case 8, (f) case 9 in the proof of Sen’s

theorem.

30. By considering the six distinct orderings of the three alternatives

a, b, and c, show that the sequence of three preference lists used

in the voting paradox does not satisfy single peaked preferences.

31. Show that the sequence of preference lists in Exercise 26 satisfies

single peaked preferences.

32. The following exercise was suggested by William Zwicker, and and

builds on Exercise 43 in Chapter 1. Consider the social welfare func-

tion arising from the Hare system in which the social preference list
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ranks the alternatives in reverse order of elimination. This produces

a social preference list that often has ties. The following modifica-

tion in handling ties was proposed independently by V. Merlin and

by V. Conitzer and M. Rognlie. They suggest adding a “fork” in the

procedure when a tie occurs, making a separate copy of the profile

for each of the alternatives involved in the tie, and for each copy

of the profile, to continue with just that one alternative deleted at

that stage. Of course, more forking might occur at later stages. The

“winner” is a tie among the lists along each path in the tree created.

Thus, this is not a social welfare function.

(a) Use the above procedure on the profiles P1, P2, and P1 + P2

from Exercise 43 in Chapter 1.

(b) Define what weak consistency in this context would mean and

prove that this procedure is, in fact, weakly consistent.



More Yes–No Voting

C H A P T E R

8

...........................................................................................................

8.1 INTRODUCTION

In this chapter, as in Chapter 2, our primary interest is in yes–no voting

systems that are not weighted. We begin by returning to the theorem in

Chapter 2 that characterized the weighted voting systems as precisely

those that are trade robust (meaning that an arbitrary trade among sev-

eral winning coalitions can never simultaneously render all of them

losing). A natural question suggested by this result is whether trade

robustness really needs to be stated in terms of “several winning coali-

tions.” That is, perhaps a yes–no voting system is weighted if and only

if a (not necessarily one-for-one) trade between two winning coalitions

can never simultaneously render both losing. Recall that in showing

that the procedure to amend the Canadian constitution is not trade

robust we needed only two winning coalitions.

In Section 8.2, we show that life, or at least mathematics, is not

quite that simple. There, we present a yes–no voting system that is

not trade robust, but which has the property that an arbitrary trade

between two winning coalitions always leaves at least one of them

winning. Although not without its charms (we use a so-called magic
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square to construct the system), this is not a real-world example and,

indeed, we know of no such real-world example.

In Section 8.3, we introduce the notion of the dimension of a yes–no

voting system as the minimum number of weighted voting systems

needed to realize the given system as their intersection. Thus, a yes–

no voting system is of dimension 1 if and only it is weighted. We show

that every yes–no voting system has a dimension, and the dimension of

the United States federal system is (somewhat surprisingly) only 2. In

Section 8.4, we generalize the notion of a weighted voting system by

allowing the weights and quota to be vectors. We conclude by showing

that every yes–no voting system is a “vector-weighted” system.

...........................................................................................................

8.2 A MAGIC SQUARE VOTING SYSTEM

Throughout the text, we have tried to use real-world examples when-

ever possible. Sometimes, however, one simply has to roll up one’s

sleeves and (mathematically) construct a voting system (or whatever)

with the desired properties. This is precisely the situation we now face.

That is, suppose we agree to call a yes–no voting system two-trade

robust if an arbitrary exchange of players between two winning coali-

tions can never simultaneously render both losing. Thus, for example,

the procedure to amend the Canadian Constitution is not two-trade

robust. An affirmative answer to the following question would be nice

in that it would yield a neater version of the characterization theorem

in Chapter 2: Is every two-trade robust system automatically trade

robust, and thus weighted? Unfortunately, the answer turns out to be

“no,” as shown by the following theorem from Taylor-Zwicker (1995a

and 1999.):

THEOREM. There exists a yes–no voting system with nine voters that

is two-trade robust but not trade robust, and thus not weighted.

PROOF. Our starting point is the following array of nine numbers. It is

called a “magic square” since the sum of every row and every column

(as well as the diagonals) is the same (15).
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4 3 8

9 5 1

2 7 6

We shall construct the desired yes–no voting system as follows: The

voters will be the nine numbers 1, 2, . . ., 9. Every coalition with four or

more voters will be winning and every coalition with two or fewer voters

will be losing. For coalitions with exactly three voters, the ones with sum

greater than 15 will be winning and the ones with sum less than 15 will

be losing. Now, the only coalitions with exactly three voters and sum

exactly equal to 15 are the rows, the columns, and the two diagonals.

We shall declare the rows to be winning and the columns and diagonals

to be losing.

We claim that this yes–no voting system is two-trade robust but not

trade robust, and thus not weighted.

To see that the system is two-trade robust, suppose that we have

two winning coalitions X and Y , and a trade between them yielding X ′

and Y ′. We must show that either X ′ or Y ′ is still a winning coalition. We

consider three cases:

Case 1: X or Y has Four or More Voters

Without loss of generality, assume it is X. Since Y is winning, Y has

at least three voters. After the trade, the total number of voters is

unchanged, and so at least one of X ′ and Y ′ has four or more voters

and is thus winning, as desired.

Case 2: X or Y has Sum Strictly Greater than 15 and Each

Contains Exactly Three Voters

Without loss of generality, assume X has sum greater than 15. Since

Y is winning, Y has sum at least 15. Moreover, it is easy to see that

the sum of X and Y is the same as the sum of X ′ and Y ′. Thus, in this

case, either X ′ has sum strictly greater than 15 (and is thus winning) or

Y ′ has sum strictly greater than 15 (and is thus winning).
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Case 3: X and Y have Sum Exactly Equal to 15 and Each

Contains Exactly Three Voters

In this case X and Y must both be rows. If either X ′ or Y ′ has fewer than

three voters, then the other will have more than three and so it will be

winning, as desired. If either X ′ or Y ′ has sum less than 15, then the

other will have sum greater than 15 and so it will be a winning coalition

as desired. On the other hand, if both X ′ and Y ′ have sum exactly equal

to 15 and exactly three voters, then the only way they could both be

losing coalitions is if both were columns and/or diagonals. But one

cannot convert two rows into two columns and/or diagonals by a trade

(see Exercises 3 and 4). This completes the proof that the system is

two-trade robust.

To see that the system is not weighted, it suffices (by the second

theorem in Section 2.5) to show that it is not trade robust. For this,

we begin with the the three rows R1, R2, and R3, which are winning

coalitions. Thus,

R1 = {4, 3, 8};

R2 = {9, 5, 1};

R3 = {2, 7, 6}.

Now consider the trades that send

3 from R1 to R2,

8 from R1 to R3,

1 from R2 to R3,

9 from R2 to R1,

2 from R3 to R1, and

7 from R3 to R2.

These trades transform

R1 into {4, 9, 2}, which is the first column;

R2 into {3, 5, 7}, which is the second column; and

R3 into {8, 1, 6}, which is the third column.
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Since the three columns are losing, this shows that the system is not

trade robust. This completes the proof.

...........................................................................................................

8.3 DIMENSION THEORY AND THE U.S. FEDERAL

SYSTEM

Our starting point in this section is the observation that although the

procedure to amend the Canadian Constitution is not itself a weighted

voting system, it is, in fact, constructed by “putting together” two

weighted systems in a very natural way. That is, let’s fix the set of

voters to be the ten Canadian provinces and consider the following

two yes–no voting systems:

System I will have as its winning coalitions precisely those con-

sisting of seven or more voters (provinces). Let W1 be this collection

of coalitions.

System II will have as its winning coalitions precisely those repre-

senting at least half of Canada’s population. Let W2 be this collection

of coalitions.

Notice, for example, that the coalition made up of the seven least

populated provinces is in W1 but not in W2, while the coalition made

up of the two most heavily populated provinces is in W2 but not in W1.

System I is a weighted voting system since we can give each of the

provinces weight 1 and set the quota at 7. Similarly, System II is a

weighted voting system since we can give each province weight equal

to the percentage of Canada’s population residing there and set the

quota at 50.

Now, the procedure to amend the Canadian Constitution can be

described by declaring a coalition to be winning if and only if it is

winning in both System I and System II. That is, if we let W denote

the collection of winning coalitions in the Canadian system, then a

coalition X is in W if and only if it is in W1 and W2. Standard math-

ematical terminology would describe this by saying that the set W is

the intersection of the sets W1 and W2. Notationally:

W = W1 ∩ W2.
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Thus, we have shown that the Canadian system is not a weighted voting

system, but it can be described as the intersection of two weighted

voting systems.

This discussion of the Canadian system suggests that one way

to construct yes–no voting systems is to start with several different

weighted voting systems all of which have the same set V of voters.

One can then declare a coalition to be winning if and only if it is win-

ning in all of these weighted systems. As we have seen, this allows one

to construct non-weighted voting systems (like the Canadian system)

from weighted ones. Remarkably, every yes–no voting system can be

described in this way (without mention of vetoes or anything else).

That is the content of the following proposition:

PROPOSITION. Suppose S is a yes–no voting system for the set V

of voters, and let m be the number of losing coalitions in S. Then it

is possible to find m weighted voting systems with the same set V of

voters such that a coalition is winning in S if and only if it is winning

in every one of these m weighted systems. (Thus, the set of winning

coalitions in S is the intersection of the sets of winning coalitions from

these m weighted voting systems.)

PROOF. For each losing coalition L inS, we construct a weighted voting

system with set V of voters as follows: Every voter in L is given weight

−1. Every voter not in L is given weight +1. The quota is set at −|L|+1,

where |L| denotes the number of voters in L. (For example, if L has 7

voters, then the quota is set at −7 + 1 = −6.)

Notice that, in this weighted system, L is a losing coalition since it

has weight −|L| and −|L| < −|L| + 1. However, every other coalition is

a winning coalition in this weighted voting system, since they all have

weight strictly larger than L does (that is, every other coalition has weight

at least −|L| + 1).

It now follows that if a coalition is winning in S, then it is winning in

each of these weighted systems. Conversely, if a coalition is winning

in each of these weighted systems, then it is a winning coalition in S.

(That is, if it were a losing coalition in S, then it would be losing in the

particular weighted system we built from that losing coalition.) Thus,

a coalition is winning in S if and only if it is winning in each of these

weighted systems. This completes the proof.
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It is worth noting that if we start with a monotone yes–no voting

system, then the above proof can be modified so that all the weights

used are nonnegative (see Exercise 5).

The proof of the previous proposition provides a constructive pro-

cedure by which one can represent an arbitrary yes–no voting system

as the intersection of weighted voting systems (in the sense that the

set of winning coalitions in the original system is the set-theoretic

intersection of the sets of winning coalitions from the weighted sys-

tems). This procedure, however, tends to be an enormously inefficient

way to represent a given yes–no voting system as the intersection of

weighted systems. For example, there are dozens of losing coalitions

in the Canadian system, and so the proof of the above proposition

would provide a representation of the Canadian system that is far less

desirable than the representation we found of the Canadian system

as the intersection of only two weighted systems. (On the other hand,

Exercise 10 provides an example of a yes–no voting system wherein

the representation provided by the proof of the above proposition is

the best that can be achieved.)

Thus, although we have a proposition that guarantees every yes–

no voting system can be represented as the intersection of weighted

systems, it nevertheless becomes of interest to ask how efficiently this

can be done for a given system. The question of efficiency leads to the

following definition:

DEFINITION. A yes–no voting system is said to be of dimension k if and

only if it can be represented as the intersection of exactly k weighted

voting systems, but not as the intersection of k − 1 or fewer weighted

voting systems.

Notice, for example, that a yes–no voting system is of dimension 1 if

and only if it is weighted. We have already proved that the procedure

to amend the Canadian constitution is of dimension 2. (It turns out

that for each positive integer k, there is a voting system of dimension

k—see Exercises 7, 8, and 9.)

As another illustration of how inefficient the representation given

in the proof of the previous proposition can be, notice that the United

States federal system has literally millions of losing coalitions. More-

over, although the House and the Senate function as weighted voting



254 8. MORE YES–NO VOTING

systems in their own right, the U.S. federal system is further com-

plicated by the tie-breaking role of the vice president in the Senate,

the veto power of the president, and the possibility of a Congressional

override. Somewhat surprisingly, however, these emendations do not

drive up the dimension of the U.S. federal system, as we now show.

PROPOSITION. The U.S. federal system has dimension 2.

PROOF. We know from Chapter 3 that the U.S. federal system is not

weighted. Thus, it suffices to produce two weighted systems, with the

same set of voters as the U.S. federal system, whose intersection is

the U.S. federal system. The weighted systems that will do the trick are

the following.

System I will give:

Weight 0 to each member of the House;

Weight 1 to each member of the Senate;

Weight 1
2 to the vice president;

Weight 161
2 to the president;

and we set the quota at 67.

System II will give:

Weight 1 to each member of the House;

Weight 0 to each member of the Senate;

Weight 0 to the vice president;

Weight 72 to the president;

and we set the quota at 290.

We now want to show that a coalition is winning in the U.S. federal

system if and only if it is winning in both System I and in System II.

Suppose then that X is a coalition that is winning in the U.S. federal

system. Without loss of generality, we can assume that X is a minimal

winning coalition (Exercise 11 asks why we lose no generality with this

assumption). Thus, X is one of the following three kinds of coalition:

1. X consists of 218 House Members, 51 senators, and the

president;
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2. X consists of 218 House Members, 50 senators, the vice

president, and the president;

3. X consists of 290 House Members and 67 senators.

We leave it to the reader to verify that all three kinds of coalition achieve

quota in both System I and in System II (see Exercise 12).

For the converse, assume that X is a winning coalition in both System

I and in System II. We consider two cases:

Case 1: X Contains the President

Since X is winning in System I, it must have System I weight at least 67.

Since the System I weight of the president is 161
2 , the other members of

X must contribute at least weight 501
2 to the total System I weight of X.

But House members have weight 0 in System I, so X must contain either

51 (or more) senators or at least 50 senators and the vice president.

Now, looking at the System II weight of X, which is at least 290 including

the 72 contributed by the president, we see that X must also contain

at least 290 − 72 = 218 members of the House. Thus, in case 1, we

see that X is a winning coalition in the federal system, as desired.

Case 2: X does not Contain the President

This is left to the reader (see Exercise 13), and completes the proof.

We conclude this section with the observation that we know of no

real-world voting system of dimension 3 or higher.

...........................................................................................................

8.4 VECTOR-WEIGHTED VOTING SYSTEMS

In our early discussions of yes–no voting systems in Chapter 2, we

suggested that the observation that the U.N. Security Council is, in

fact, a weighted voting system might naturally lead one to conjecture

that every yes–no voting system is weighted. We now know that not to

be the case, and much of what we have done in Chapter 2 and Chapter 8

has been aimed at exploring the extent to which such a system can fail

to be weighted. In this section, however, we show that the intuition
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provided by the weightedness of the U.N. Security Council is far less

naïve than it might now seem.

Generalization has always played an important role in mathemat-

ics. For example, our original number system consisted of what we

now call positive integers. This system was generalized to include zero,

the negative numbers, then fractions, irrationals, and imaginaries. Of

course, generalization for its own sake can at least sometimes be point-

less. But a natural generalization of an important concept can often

shed considerable light. Our goal in this section is to provide such a

generalization of the notion of a weighted voting system.

Our starting point will be the observation that one can replace the

notion of a real number by one of its generalizations: an ordered pair

(x, y) of real numbers. These ordered pairs can be “added” as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Thus, for example, (2, 4)+(1
2 , −1) = (5

2 , 3). Moreover, we can “compare

the size” of ordered pairs as follows:

(x1, y1) ≤ (x2, y) if and only if x1 ≤ x2 and y1 ≤ y2.

Now, let’s return to the Canadian system (which we know is not

weighted) and show that it is a “generalized weighted system.” That

is, instead of assigning real numbers as weights, let’s assign ordered

pairs as weights in the following way:

weight of Prince Edward Island will be (1, 0)

weight of Newfoundland will be (1, 2)

weight of New Brunswick will be (1, 2)

weight of Nova Scotia will be (1, 3)

weight of Manitoba will be (1, 4)

weight of Saskatchewan will be (1, 3)

weight of Alberta will be (1, 11)

weight of British Columbia will be (1, 13)

weight of Quebec will be (1, 23)

weight of Ontario will be (1, 39).
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Notice that the first entry of each ordered pair is 1 and the second

entry is the percentage of the Canadian population residing in that

province. We shall let the ordered pair (7, 50) serve as the “quota.”

Given a coalition, it now makes sense to define the weight of the

coalition to be the ordered pair obtained by adding up all the ordered

pair weights of the provinces in the coalition (just as we obtained the

weight of a coalition in a weighted voting system by adding up the

weights of all the voters in the coalition). This yields an ordered pair

as “weight” for the coalition, which we can then compare (using ≤ as

defined above) with the ordered pair that is the quota.

For example, if X is the coalition consisting of Manitoba,

Saskatchewan, Alberta, British Columbia, and Ontario, then the

“weight” of X is

(1, 4) + (1, 3) + (1, 11) + (1, 13) + (1, 39) = (5, 70).

If we compare (5, 70) with the quota (7, 50) we find that the weight of

this coalition does not meet quota; that is, the statement

“(7, 50) ≤ (5, 70)”

is not true since 7 is not less than or equal to 5.

Notice that with these definitions of “weight” and “quota,” a coali-

tion’s weight meets quota if and only if it contains at least seven

provinces (thus guaranteeing the first entry in its weight is at least

as large as the first entry in the quota) and the combined population

of the provinces in the coalition is at least half the Canadian popula-

tion (thus guaranteeing that the second entry in its weight is at least as

large as the second entry in the quota). Thus, a coalition meets quota

if and only if it is a winning coalition in the Canadian system.

In the above discussion of the Canadian system, we used ordered

pairs as the “weights” and “quota.” As one might imagine, there are

other examples where the weights and quota are ordered triples

(x, y, z)
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that are “added” and “compared” in the obvious way. In general, if

x1, x2, . . . , xn are real number, then (x1, x2, . . . , xn) is called an ordered

n-tuple. Ordered n-tuples are added and compared as follows:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

and

(x1, . . . , xn) ≤ (y1, . . . , yn)

if and only if

x1 ≤ y1 and . . . and xn ≤ yn.

All of this leads to the following definition:

DEFINITION. A yes–no voting system is said to be a vector-weighted

system if, for some positive integer n, there exists an n-tuple “weight”

for each voter and an n-tuple “quota” such that a coalition is winning

precisely when the sum of the vector weights of the voters in the coali-

tion meets or exceeds quota (in the sense of comparing two n-tuples

described above).

Thus, for example, we have shown that the Canadian system is a

vector-weighted system. Remarkably, the following turns out to be

true.

THEOREM. Every yes–no voting system is a vector weighted system.

Moreover, if a system is of dimension n, then the weights and quota

can be taken to be n-tuples but not (n − 1)-tuples.

PROOF. Suppose S is an arbitrary yes–no voting system for the set V

of voters. By the proposition in the last section, we know that S has

dimension n for some n. Thus, we can choose weighted yes–no voting

systems S1, . . . ,Sn so that for every coalition X from V , we have that

X is winning in S

if and only if

X is winning in S1 and . . . and X is winning in Sn.

To keep the notation simple, let’s assume that n = 3. [Exercise 15(b)

asks the reader to redo the proof using n in place of 3.]
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Let w1 and q1 be the weight function and quota associated with S1,

and similarly let w2 and q2, and w3 and q3 be those for S2 and S3

respectively. Thus, if X is a coalition, then

X is winning in S1 and X is winning in S2 and X is winning in S3

if and only if

w1(X) ≥ q1 and w2(X) ≥ q2 and w3(X) ≥ q3.

If v is an arbitrary voter, we can produce a 3-tuple as weight for v by

using the three weights he or she is assigned in the three weighted

systems S1, S2, and S3 as follows:

w(v) = (w1(v),w2(v),w3(v)).

Moreover, we can combine the three quotas q1, q2, and q3 into a

3-tuple quota in the obvious way:

q = (q1, q2, q3).

We must still show that these 3-tuple weights and quota “work” in

the sense that a coalition should be winning in S if and only if its 3-tuple

weight meets or exceeds quota (in the sense of comparing 3-tuples).

Again, to keep the notation simple, let’s assume we have a two-voter

coalition X = {a, b}. Then

w1(X) = w1(a) + w1(b);

w2(X) = w2(a) + w2(b);

w3(X) = w3(a) + w3(b).

Now, putting this together with what we had above yields

X is winning in S

if and only if

X is winning in S1 and X is winning in S2 and X is winning in S3

if and only if

w1(X) ≥ q1 and w2(x) ≥ q2 and w3(X) ≥ q3

if and only if
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w1(a) + w1(b) ≥ q1 and w2(a) + w2(b) ≥ q2 and w3(a) + w3(b) ≥ q3

if and only if

(w1(a) + w1(b),w2(a) + w2(b),w3(a) + w3(b)) ≥ (q1, q2, q3)

if and only if

(w1(a),w2(a),w3(a)) + (w1(b),w2(b),w3(b)) ≥ (q1, q2, q3)

if and only if

w(a) + w(b) ≥ q

if and only if

w(X) ≥ q,

as desired.

Thus, the intuition that every yes–no voting system is a weighted

system is justified—at least if one is willing to accept the naturality of

vector-valued weights and quota.

...........................................................................................................

8.5 CONCLUSIONS

All the results in this chapter, as well as those in Chapter 3, were

inspired by the following question:

Is every yes–no voting system weighted, and—if not—can we find a

nice characterization of those that are?

It turned out that not every yes–no voting system is weighted, but

that the weighted ones can be characterized as precisely those that

are trade robust, meaning that an arbitrary sequence of trades among

several winning coalitions can never render all of them losing.

Our starting point in this chapter was the question of whether we

really needed to state trade-robustness in terms of several winning

coalitions instead of just two winning coalitions. That is, perhaps a

yes–no voting system is weighted if and only if one can never con-

vert two winning coalitions into two losing coalitions by a trade. In

Section 8.2, we showed that, alas, this is not the case. We constructed

there a nine-person yes–no voting system (using a 3 by 3 magic square)

that is not weighted but fails to be trade robust only when three or more

coalitions are involved.
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Section 8.3 returned to the attractive (but false) conjecture that

every yes–no voting system is weighted. We showed there that,

although the conjecture is not true, every yes–no voting system is the

intersection of weighted systems. We then defined the dimension of a

yes–no voting system to be the smallest number of weighted systems

whose intersection is the given system. We also showed that the U.S.

federal system—even with the tie-breaking vote of the vice president,

the presidential veto, and the possibility of an override of such a veto

by Congress—has dimension 2.

Section 8.4 revisited the material in Section 8.3 from a different

point of view. We introduced the idea of a “vector-weighted” system as

one in which the weights and quota are n-tuples of real numbers. The

weight of a coalition could then be calculated by adding the n-tuple

weights of its members, and this n-tuple weight of the coalition could

then be compared with the n-tuple quota to see if the coalition “meets

quota.” We concluded our discussion of yes–no voting systems by

proving that every yes–no voting system is a vector-weighted system.

EXERCISES

1. For the magic square yes–no voting system in Section 8.2, list out

the minimal winning coalitions and the maximal losing coalitions.

2. Prove that the magic square yes–no voting system is monotone.

3. In the magic square yes–no voting system, prove that it is impos-

sible to convert the first two rows into the first two columns by a

trade. Prove that it is impossible to convert the first two rows into

the first column and the upper right to lower left diagonal by a trade.

4. Generalize the result in Exercise 3 to explain why one can never

convert two rows into two columns and/or diagonals by a trade.

5. SupposeS is amonotone yes–no voting system with set V of voters.

Let X1, . . . , Xn denote the maximal losing coalitions. For each i =
1, . . . , n let Si be the weighted voting system that assigns weight

1 to each voter in Xi and weight |Xi| + 1 to each voter not in Xi

(where |Xi| denotes the number of voters in Xi). Find q so that Xi
and subsets of Xi are the only losing coalitions in Si and show that

S is the intersection of these n positively weighted voting systems.
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6. Prove or disprove: The dimension of a monotone yes–no voting

system is always the same as the number of maximal losing

coalitions.

7. Suppose we have four voters: A1, A2, A3, and A4. Let S2 denote the

yes–no voting system wherein a coalition X is winning if and only if

(i) at least one of A1 and A2 is in X, and

(ii) at least one of A3 and A4 is in X.

Prove that S2 has dimension 2. (Hint: In one weighting, give A1

and A2 weight 3 and give A3 and A4 weight 1. Set the quota at 3.

Do a similar thing for the other weighting.)

8. Suppose we have six voters: A1, A2, A3, A4, A5, and A6. Let S3

denote the yes–no voting system wherein a coalition X is winning if

and only if

(i) at least one of A1 and A2 is in X,

(ii) at least one of A3 and A4 is in X, and

(iii) at least one of A5 and A6 is in X.

(a) Prove that S3 has dimension at most 3.

(b) Suppose, for contradiction, that S3 can be expressed as the

intersection of two weighted systems. Since {A1, A2, A3, A4},

{A1, A2, A5, A6}, and {A3, A4, A5, A6} are all losing, each one

must be losing in at least one of the two weighted systems.

Hence, two of these—say {A1, A2, A3, A4} and {A3, A4, A5,

A6}—are losing in the same weighted system. Show that the

desired contradiction now can be achieved by an appropriate

trade.

9. Generalize Exercise 8 to show that for every n there is a monotone

yes–no voting system of exact dimension n.

10. Suppose V is a set of n voters and let S be the yes–no voting

system wherein a coalition is winning if and only if it contains an

odd number of voters. Suppose we have a single weighted voting

system for V with weight function w and quota q which makes all the

coalitions with an odd number of voters winning. Suppose X and Y

both have an even number of voters, v is in X but not in Y , w(X) < q,

and w(Y) < q. Derive from this a contradiction, and conclude that

the dimension of S is at least 2n−1. (It turns out that there are
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monotone yes–no voting systems with exponential dimension, but

they are somewhat more elaborate than this one.)

11. Explain why, in the proof that the U.S. federal system has dimension

2, we lose no generality in working with minimal winning coalitions.

12. Verify that all three kinds of minimal winning coalitions in the U.S.

federal system achieve quota in both System I and System II

described in the proof that the U.S. federal system has dimension 2.

13. Give the argument omitted in the proof that the U.S. federal system

has dimension 2.

14. In the system to amend the Canadian constitution, give three exam-

ples of minimal winning coalitions and three examples of maximal

losing coalitions. For each of your six coalitions, calculate its vector-

valued weight (which will be an ordered pair). In each case, compare

the weight of the coalition with the quota (which is also an ordered

pair) to verify the winningness or losingness of the coalition.

15. Prove that U.S. federal system is a vector weighted voting system by

explicitly producing the weights and quota and demonstrating that

they “work.”

16. Redo the proof of the last theorem in this chapter

(a) without the simplifying assumption that |X| = 2, and

(b) without the simplifying assumptions that the dimension of the

system is 3.

17. Consider the “minority veto” system where there are eleven vot-

ers, three of whom represent a minority interest. Passage requires

at least six of the eleven votes subject to a veto by two or more

of the three minority representatives. Show that this system is of

dimension 2.
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9.1 INTRODUCTION

We continue our study of political power in this chapter, beginning in

Sections 9.2 and 9.3 with two more quantitative measures of power.

Both of these power indices were introduced in the late 1970s, the

first appearing in Johnston (1978) and the second in Deegan–Packel

(1978). These indices are similar in some ways to the Shapley–Shubik

and Banzhaf indices introduced in Chapter 3, but they also differ in

some important respects from these earlier ones as well as from each

other. Additionally, we build on work of Brams, Affuso, and Kilgour

(1989) in applying these indices to measure the power of the president

in the context of the United States federal system as we did for the

Shapley–Shubik index and the Banzhaf index in Chapter 3. It turns out,

for example, that according to the Deegan–Packel index, the president

has less than 1 percent of the power. The Johnston index, however,

suggests that the president has 77 percent of the power.

In Sections 9.4 and 9.5, we offer a precise mathematical defin-

ition of what it means to say that two voters have comparable or

incomparable power. This definition provides us with what is called an
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ordinal notion of power—“ordinal” referring to the fact that the order-

ing is not derived from the assignment of numbers, as it was with the

four “cardinal” power indices (Shapley-Shubik, Banzhaf, Johnston,

and Deegan-Packel). This ordinal notion of power is closely linked

to the idea of “swap-robustness” from Chapter 2; the cognoscenti will

recognize it as leading to the well-known “desirability relation on indi-

viduals.” We conclude in Section 9.6 with a theorem from Straffin

(1980) that allows one to calculate the Shapley-Shubik index of a

so-called “voting bloc” in a fairly trivial way.

...........................................................................................................

9.2 THE JOHNSTON INDEX OF POWER

The Banzhaf index of power from Chapter 3 was based on the idea

of a critical defection from a winning coalition. It does not, however,

take into consideration the total number of players whose defection

from a given coalition is critical. The point is, one might well argue

that if a player p is the only one whose defection from C is critical,

then this is a stronger indication of power than if, say, every player

in C has a critical defection. This is the idea underlying the Johnston

index of power as formalized in the following two definitions (which

mimic those of Section 3.4).

DEFINITION. Suppose that p is one of the players in a yes–no voting

system. Then the total Johnston power of p, denoted here by TJP(p), is

the number arrived at as follows:

Suppose C1, . . . ,Cj are the winning coalitions for which p’s defection

is critical. Suppose n1 is the number of players whose defection from

C1, is critical, n2 is the number whose defection from C2 is critical and

so on up to nj being the number of players whose defection from Cj is

critical. Then

TJP(P) =
1

n1
+

1

n2
+ · · · +

1

nj
.

DEFINITION. Suppose that p1 is a player in a yes–no voting sys-

tem and that the other players are denoted by p2, p3, ..., pn. Then the

Johnston index of pl, denoted here by JI(pl), is the number given by

JI(p1) =
TJP(p1)

TJP(p1) + · · · + TJP(pn)
.



266 9. MORE POLITICAL POWER

Example:

Let’s stick with the same three player example that we used to illustrate

both the Shapley–Shubik index and the Banzhaf index in Chapter 3.

Thus, pl has fifty votes, p2 has forty-nine, and p3 has one. Passage

requires fifty-one votes. As before, the winning coalitions are

C1 = {pl, p2, p3}

C2 = {p1, p2}

C3 = {p1, p3}.

Now, p1, has the only critical defection from C1, but for both C2 and C3

it shares this property with the other member of the coalition. Thus, in

calculating the absolute Johnston voting power of p1, we get a contri-

bution of 1 from p1’s presence in C1, but only a contribution of 1
2 each

from its presence in C2 and C3. Similar comments hold for p2 and p3.

Thus we have:

TJP(p1) = 1 +
1

2
+

1

2
= 2

TJP(p2) = 0 +
1

2
+ 0 =

1

2

TJP(p3) = 0 + 0 +
1

2
=

1

2

and

JI(p1) =
2

2 + 1
2 + 1

2

=
2

3

JI(p2) =
1
2

2 + 1
2 + 1

2

=
1

6

JI(p3) =
1
2

2 + 1
2 + 1

2

=
1

6
.

Notice that these turn out to agree with the Shapley–Shubik values in

Section 3.2.

For yes–no voting systems where the number of winning coalitions

is reasonably small, one can calculate total Johnston power by using



9.2. The Johnston Index of Power 267

a chart as we did for total Banzhaf power in Section 3.6. The differ-

ence is that, with Johnston power, one needs to identify which voters

have critical defections from which winning coalitions. We illustrate

this by calculating the total Johnston power for the European Eco-

nomic Community as set up in 1958. Critical defections are italicized

in the chart below, and the number of countries italicized in a winning

coalition determines the fractions that occur to the right of that coali-

tion. Thus, in the winning coalition listed below as FIBNL, defections

by the four countries F, I, B, and N are critical. Hence, each of these

four countries receives a contribution of 1
4 from this winning coalition

towards its total Johnston power.

F G I B N L

FGI 1
3

1
3

1
3

FGBN 1
4

1
4

1
4

1
4

FIBN 1
4

1
4

1
4

1
4

GIBN 1
4

1
4

1
4

1
4

FGIL 1
3

1
3

1
3

FGBNL 1
4

1
4

1
4

1
4

FIBNL 1
4

1
4

1
4

1
4

GIBNL 1
4

1
4

1
4

1
4

FGIB 1
3

1
3

1
3

FGIN 1
3

1
3

1
3

FGIBL 1
3

1
3

1
3

FGINL 1
3

1
3

1
3

FGIBN

FGIBNL

TJP 3 3 3 3
2

3
2 0

JI 1
4

1
4

1
4

1
8

1
8 0

Summarizing these results as we did for the previous power indices in

Chapter 3 yields the following:
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Country Votes Percentage

of votes

JI Percentage

of power

France 4 23.5 1
4 25.0

Germany 4 23.5 1
4 25.0

Italy 4 23.5 1
4 25.0

Belgium 2 11.8 1
8 12.5

Netherlands 2 11.8 1
8 12.5

Luxembourg 1 5.9 0 0

The Johnston Index of the President

To calculate the Johnston index of the president, we need a break-

down of the types of winning coalitions possible since we also must

worry about how many players in each coalition have defections that

are critical. In the chart that follows, we will give a name (like “T11”)

for each type of winning coalition, and we will describe them by an

expression like “67 S and 290 H” to indicate that this type of coalition

is made up of 67 senators and 290 members of the House. “P” stands

for “president.”

Description of

the winning

coalitions

Number of

critical

defections

Whose

defection

is critical

T11: 67 S and 290 H 357 S H

T12: 67 S and 291–435 H 67 S

T13: 68–100 S and 290 H 290 H

T21: P and 51 S and 218 H 270 P S H

T22: P and 51 S and 219–289 H 52 P S

T23: P and 52–66 S and 218 H 219 P H

T24: P and 52–66 S and 219–289 H 1 P

T31: P and 67–100 S and 218 H 219 P H

T32: P and 67–100 S and 219–289 H 1 P

T41: P and 51 S and 290–435 H 52 P S

T42: P and 52–66 S and 290–435 H 1 P
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Now we can calculate the total Johnston power of the president, a

member of the Senate, and a member of the House.

The winning coalitions involved in calculating the total Johnston

power of the president can be obtained from column three above. They

are

T21, T22, T23, T24, T31, T32, T41, T42.

Let |T21| denote the number of coalitions of type T21. If we were cal-

culating the total Banzhaf power of the president, we would just add

the numbers: |T21|, |T22|, etc. However, since we are calculating the

Johnston power, we must “adjust” each factor by dividing it by the

number of people whose defection from such a coalition is critical.

These can be obtained from column two above. Thus,

TJP (The President) =
1

270
|T21| +

1

52
|T22| +

1

219
|T23|

+ |T24| +
1

219
|T31| + |T32| +

1

52
|T41| + |T42|.

The calculation of, say, |T24|, proceeds in a way similar to what we did

in the calculations of the Banzhaf power. That is,

|T24| =
[(

100

52

)

+ · · · +
(

100

66

)]

×
[(

435

219

)

+ · · · +
(

435

289

)]

.

Expressing |T21|, |T23|, etc. in “n choose k” notation is left to the reader.

(See Exercises 5 and 6 at the end of the chapter.)

Now let’s consider a fixed member of the Senate. Column three of

the previous chart again shows which types of coalitions will have to

be considered. They are

T11, T12, T21, T22, T41.

Here, however, we have to be a little careful since we do not want to use,

for example, |T11|. The point is, lots of the coalitions of type T11, do not

even include as a member the particular senator we are considering.

Thus, the contribution from type T11 coalitions will involve the number

of ways of choosing 66 other senators from the pool of 99 remaining

senators multiplied by the number of ways of choosing 290 members
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of the House from the available 435. In particular, the “n choose k”

expression will involve

(
99

66

)

and not

(
100

67

)

With this potential pitfall confronted, the calculations proceed in a

way similar to what we’ve done before, yielding

TJP(A Senator) =
1

357

[(
99

66

)

×
(

435

290

)]

+
1

67

(
99

66

) [(
435

291

)

+ . . . +
(

435

435

)]

+
1

270

[(
99

50

)

×
(

435

218

)]

+
1

52

(
99

50

) [(
435

219

)

+ · · · +
(

435

289

)]

+
1

52

(
99

50

) [(
435

290

)

+ · · · +
(

435

435

)]

.

Expressing the total Johnston power of a member of the House of

Representatives in a similar fashion is left to the reader. (See Exercise 8

at the end of the chapter.)

To obtain the desired Johnston indices, we sum the total Johnston

power of the 536 players involved, and then divide by the total. The

results turn out to be:

JI(The president) = .77

JI(A senator) = .0016

JI(A member of the House) = .00017.

Expressing these in terms of percentages of power instead of small

decimals yields:

(Johnston) Power held by the president = 77%

(Johnston) Power held by the Senate = 16%

(Johnston) Power held by the House = 7%
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The striking thing to notice is the very different measure of power

assigned the president by this index as opposed to those in Chapter 3. A

little more on this will be said in the concluding section of this chapter,

but there is no substitute for going directly to the literature.

...........................................................................................................

9.3 THE DEEGAN–PACKEL INDEX OF POWER

In 1978, Deegan and Packel introduced a power index based on three

assumptions:

1. Only minimal winning coalitions should be considered when

determining the relative power of voters.

2. All minimal winning coalitions form with equal probability.

3. The amount or power a player derives from belonging to some

minimal winning coalition is the same as that derived by any

other player belonging to that same minimal winning coalition.

These assumptions, in fact, uniquely determine a power index.

Moreover, the calculation required involves a nice blend of what we

did with the two procedures for Banzhaf power (Section 3.5) and

the calculation of Johnston power (Section 9.2). We begin with two

definitions.

DEFINITION. Suppose that p is one of the voters in a yes–voting sys-

tem. Then the total Deegan–Packel powerof p, denoted here by TDPP(p),

is the number arrived at as follows:

Suppose C1, ...,Cj are the minimal winning coalitions to which p

belongs. Suppose n1 is the number of voters in C1, n2 is the number in

C2, and so on up to nj being the number of voters in Cj. Then

TDPP(p) =
1

n1
+

1

n2
+ · · · +

1

nj
.
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DEFINITION. Suppose that p1 is a voter in a yes–no voting system and

that the other voters are denoted by p2, p3, . . . , pn. Then the Deegan–

Packel index of p1, denoted here by DPI(p1), is the number given by

DPI(p1) =
TDPP(p1)

TDPP(p1) + · · · + TDPP(pn)
.

Example:

Suppose again that p1 has fifty votes, p2 has forty-nine votes, and p3 has

one vote, with passage requiring fifty-one votes. The minimal winning

coalitions (subscripted as before) are:

C2 = {p1, p2}

C3 = {p1, p3}.

In calculating total Deegan–Packel power, p1 receives a contribution

of 1
2 from each of the two minimal winning coalitions, while p2 and

p3 each receive such a contribution from only one of the two minimal

winning coalitions. Thus:

TDPP(p1) =
1

2
+

1

2
= 1

TDPP(p2) =
1

2
+ 0 =

1

2

TDPP(p3) = 0 +
1

2
=

1

2

and

DPI(p1) =
1

1 + 1
2 + 1

2

=
1

2

DPI(p2) =
1
2

1 + 1
2 + 1

2

=
1

4

DPI(p3) =
1
2

1 + 1
2 + 1

2

=
1

4
.

For an additional illustration of how to calculate Deegan–Packel

power, we will return to the European Economic Community as set
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up in 1958. Notice that the chart we use now only includes the minimal

winning coalitions in the left hand column.

F G I B N L

FGI 1
3

1
3

1
3

FGBN 1
4

1
4

1
4

1
4

FIBN 1
4

1
4

1
4

1
4

GIBN 1
4

1
4

1
4

1
4

TDPP 5
6

5
6

5
6

3
4

3
4 0

DPI 5
24

5
24

5
24

3
16

3
16 0

Summarizing these results as we did for the previous power indices

yields the following:

Country Votes Percentage

of votes

DPI Percentage

of power

France 4 23.5 5
24 20.8

Germany 4 23.5 5
24 20.8

Italy 4 23.5 5
24 20.8

Belgium 2 11.8 3
16 18.8

Netherlands 2 11.8 3
16 18.8

Luxembourg 1 5.9 0 0

The Deegan–Packel Index of the President

Any minimal winning coalition in the federal system that contains

the president can be constructed by first choosing 51 members of the

Senate and then choosing 218 members of the House. Hence, the total

number of such minimal winning coalitions is

A =
(

100

51

)(
435

218

)

.
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Similarly the total number of minimal winning coalitions that do not

contain the president is given by

B =
(

100

67

)(
435

290

)

.

Note that every minimal winning coalition of the first type contains

270 voters (and so will contribute 1
270 to the total Deegan–Packel power

of each of its members), and every minimal winning coalition of the

second type contains 357 voters (and so will contribute 1
357 to the total

Deegan–Packel power of each of its members).

It follows from the above that the number of minimal winning coali-

tions is A + B (and so we will be dividing by A + B in passing from

total Deegan–Packel power to the Deegan–Packel index of each player).

First, however, we note that we immediately have the following:

TDPP(president) =
A

270
.

It also turns out (see Exercise 14) that

TDPP(A senator) =
1

357

(
99

66

)(
435

290

)

+
1

270

(
99

50

)(
435

218

)

and

TDPP(A House member) =
1

357

(
100

67

)(
434

289

)

+
1

270

(
100

51

)(
434

217

)

.

Dividing each of these expressions by A+B (and using Mathematica

to do the calculations) yields:

DPI(the president) = .0037

DPI(a senator) = .0019

DPI(a member of the House) = .0019

Again expressing these in terms of percentage of power instead of small

decimals, we have:

(Deegan–Packel) Power held by the president = .4%

(Deegan–Packel) Power held by the Senate = 18.9%

(Deegan–Packel) Power held by the House = 80.7%
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For more on the Deegan–Packel index and the U.S. federal systern,

see Packel (1981).

...........................................................................................................

9.4 ORDINAL POWER: INCOMPARABILITY

As we did in Chapter 3, we will assume throughout this section that

“yes–no voting system’’ means “monotone yes–no voting system.’’ Thus,

winning coalitions remain winning if new voters join them.

Suppose we have a yes–no voting system (and, again, not necessar-

ily a weighted one) and two voters whom we shall call x and y. Our

starting point will be an attempt to formalize (that is, to give a rig-

orous mathematical definition for) the intuitive notion that underlies

expressions such as the following:

“x and y have equal power”

“x and y have the same amount of influence”

“x and y are equally desirable in terms of the formation of a

winning coalition”

The third phrase is most suggestive of where we are heading and,

in fact, the thing we are leading up to is widely referred to as the

“desirability relation on individuals’’ (although we could equally well

call it the “power ordering on individuals’’ or the “influence ordering on

individuals’’). We shall begin with an attempt to formalize the notion

of x and y having “equal influence’’ or being “equally desirable.’’

If we think of the desirability of x and of y to a coalition Z, then

there are four types of coalitions to consider:

1. x and y both belong to Z.

2. x belongs to Z but y does not.

3. y belongs to Z but x does not.

4. Neither x nor y belongs to Z.

If x and y are equally desirable (to the voters in Z, who want the

coalition Z to be a winning one), then for each of the four situations

described above, we have a statement that should be true:
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1. If Z is a winning coalition, then x’s defection from Z should

render it losing if and only if y’s defection from Z renders it

losing.

2. If x leaves Z and y joins Z, then Z should go neither from being

winning to being losing nor from being losing to being winning.

3. If y leaves Z and x joins Z, then Z should go neither from being

winning to being losing nor from being losing to being winning.

4. x’s joining Z makes Z winning if and only if y’s joining Z makes

Z winning.

In fact, it turns out that condition 4 is strong enough to imply

the other three (see Exercises 11 and 12). This leads to the following

definition:

DEFINITION. Suppose x and y are two voters in a yes–no voting sys-

tem. Then we shall say that x and y are equally desirable (or, the

desirability of x and y is equal, or the same), denoted x ≈ y, if and

only if the following holds:

For every coalition Z containing neither x nor y,

the result of x joining Z is a winning coalition

if and only if

the result of y joining Z is a winning coalition.

For brevity, we shall sometimes just say: “x and y are equivalent” when

x ≈ y.

Example:

Consider again the weighted voting system with three players a, b, and

c who have weights 1, 49, and 50, respectively, and with quota q = 51.

Then the winning coalitions are {a, c}, {b, c}, and {a, b, c}. Notice that

a ≈ b: the only coalitions containing neither a nor b are the empty

coalition (call it Z1) and the coalition consisting of c alone (call it Z2).

The result of a joining Z1 is the same as the result of b joining Z1 (a

losing coalition) and the result of a joining Z2 is the same as the result

of b joining Z2 (a winning coalition). On the other hand, a and c are
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not equivalent, since neither belongs to Z = {b}, but a joining Z yields

{a, b} which is losing with 50 votes, while c joining Z yields {b, c} which

is winning with 51 votes.

This example shows that in a weighted voting system, two voters

with very different weights can be equivalent and, thus (intuitively)

have the same “power” or “influence.”

The relation of “equal desirability” defined above will be further

explored in Section 9.5. For now, however, we turn our attention to

the question of when two voters not only fail to have equal influence,

but when it makes sense to say that their influence is “incomparable.”

What should this mean? Mimicking what we did for the notion of equal

desirability, let’s say that x and y are incomparable if one coalition Z

desires x more than y, and another coalition Z′ desires y more than x.

Formalizing this yields:

DEFINITION. For two voters x and y in a yes–no voting system, we say

that the desirability of x and y is incomparable, denoted

x I y

if and only if there are coalitions Z and Z′, neither one of which contains

x or y, such that the following hold:

1. the result of x joining Z is a winning coalition, but the result of y

joining Z is a losing coalition, and

2. the result of y joining Z′ is a winning coalition, but the result of x

joining Z′ is a losing coalition.

For brevity, we shall sometimes just say “x and y are incomparable”

when x I y.

Example:

In the U.S. federal system, let x be a member of the House and let y

be a member of the Senate. Then x I y (see Exercise 14). On the other

hand if x is the vice president and y is a member of the Senate, then x

and y are not incomparable (see Exercise 15).
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The following proposition characterizes exactly which yes–no vot-

ing systems will have incomparable voters. Recall from Section 2.4

that a yes–no voting system is swap robust if a one-for-one exchange

of players between two winning coalitions always leaves at least one

of the two coalitions winning.

PROPOSITION. For any yes–no voting system, the following are

equivalent:

1. There exist voters x and y whose desirability is incomparable.

2. The system fails to be swap robust.

PROOF. (1 implies 2): Assume that the desirability of x and y is

incomparable, and let Z and Z′ be coalitions such that:

Z with x added is winning;

Z with y added is losing;

Z′ with y added is winning; and

Z′ with x added is losing.

To see that the system is not swap robust, let X be the result of adding

x to the coalition Z, and let Y be the result of adding y to the coalition

Z′. Both X and Y are winning, but the one-for-one swap of x for y renders

both coalitions losing.

(2 implies 1): Assume the system is not swap robust. Then we can

choose winning coalitions X and Y with x in X but not in Y , and y in Y

but not in X, such that both coalitions become losing if x is swapped

for y. Let Z be the result of deleting x from the coalition X, and let Z′ be

the result of deleting y from the coalition Y . Then

Z with x added is X, and this is winning;

Z with y added is losing;

Z′ with y added is Y, and this is winning; and

Z′ with x added is losing.

This shows that the desirability of x and y is incomparable and

completes the proof.
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COROLLARY. In a weighted voting system, there are never voters

whose desirability is incomparable.

PROOF. In Section 2.4, we showed that a weighted voting system is

always swap robust.

The question of what one can say about voters x and y whose desir-

ability is neither equal nor incomparable is taken up next, but, in the

meantime, the reader can try Exercise 17.

...........................................................................................................

9.5 ORDINAL POWER: COMPARABILITY

The emphasis in Section 9.4 was on formalizing the idea of what it

means to say that two voters in a yes–no voting system have incompa-

rable power. Here, however, we switch our emphasis to the question

of how we can use ordinal notions to formalize the idea of two voters

having comparable power.

The binary relation of “equal desirability” (Section 9.4) turns out to

be what is called an equivalence relation. This means that the relation

is reflexive, symmetric, and transitive. These notions are defined in the

course of recording the following proposition:

PROPOSITION. The relation of equal desirability is an equivalence

relation on the set of voters in a yes–no voting system. That is, the

following all hold:

1. The relation is reflexive: if x = y (that is, if x and y are literally

the same voter), then x and y are equally desirable.

2. The relation is symmetric: if x and y are equally desirable, then

y and x are equally desirable.

3. The relation is transitive: if x and y are equally desirable and y

and z are equally desirable, then x and z are equally desirable.

REMARK. The reader should avoid letting our use of the phrase equally

desirable lull him or her into thinking that the theorem is obvious. The

only thing that is obvious is that if the theorem could not be rigorously
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established using the precise formal definition of equal desirability that

we gave, then we would have been way out of line in choosing this phrase

(loaded as it is with intuition) for the mathematical notion presented in

the previous definition.

PROOF. We leave 1 and 2 to the reader (see Exercise 15). For 3,

assume that x and y are equally desirable and that y and z are equally

desirable. We want to show that x and z are equally desirable. Assume

then that Z is an arbitrary coalition containing neither x nor z. We must

show that the result of x joining Z is a winning coalition if and only if the

result of z joining Z is a winning coalition. We consider two cases:

Case 1: y Does not Belong to Z

Since x ≈ y and neither x nor y belongs to Z, we know that the result

of x joining Z is a winning coalition if and only if the result of y joining Z

is a winning coalition. But now, since y ≈ z and neither y nor z belongs

to Z, we know that the result of y joining Z is a winning coalition if and

only if the result of z joining Z is a winning coalition. Thus, the result of

x joining Z is a winning coalition if and only if the result of z joining Z is

a winning coalition, as desired.

Case 2: y Belongs to Z

This case is quite a bit more difficult than the last one, and the reader

should expect to spend several minutes checking to see that each line

of the proof follows from previous lines.

We will make use of some set-theoretic notation in what follows.

Suppose C is a coalition and v is a voter. Then

1. C ∪ {v} denotes the coalition resulting from v joining C. Typically,

this is used when v does not already belong to C. If v does belong

to C, then C ∪ {v} is the same as C.

2. C–{v} denotes the coalition resulting from v leaving C. Typically, this

is used when v belongs to C. If v does not belong to C, then C–{v}
is the same as C.

With this notation at hand, we can proceed with case 2.
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Let A denote the coalition resulting from y leaving Z. Thus

A = Z − {y}

and so

Z = A ∪ {y}.

Assume that Z ∪ {x} is a winning coalition. We want to show that

Z ∪ {z} is also a winning coalition. Now,

Z ∪ {x} = A ∪ {y} ∪ {x} = A ∪ {x} ∪ {y}.

Let Z′ = A ∪ {x}. Thus Z′ ∪ {y} is a winning coalition. Since y ≈ z and

neither y nor z belongs to Z′, we know that Z′ ∪ {z} is also a winning

coalition. But Z′ ∪ {z} = A ∪ {x} ∪ {z} = A ∪ {z} ∪ {x}. Let Z′′ = A ∪ {z}.
Thus Z′′ ∪ {x} is a winning coalition. Since x ≈ y and neither x nor y

belongs to Z′′, we know that Z′′ ∪ {y} is also a winning coalition. But

Z′′ ∪{y} = A∪{z}∪{y} = A∪{y}∪{z} = Z∪{z}. Thus, Z∪{z} is a winning

coalition as desired.

A completely analogous argument would show that if Z ∪ {z} is a

winning coalition, then so is Z ∪ {x}. This completes the proof.

For weighted voting systems, a naïve intuition would suggest that x

and y are equally desirable precisely when they have the same weight.

The problem with this intuition is that a given weighted voting system

can be equipped with weights in many different ways. For exam-

ple, consider the yes–no voting system corresponding to majority rule

among three voters. This is a weighted voting system, as can be seen

by assigning each of the voters weight 1 and setting the quota at 2.

But the same yes–no voting system is realized by assigning the voters

weights 1, 100, and 100, and setting the quota at 101. Notice that all

three voters have the same weight in one of the weighted systems, but

not in the other.

The above intuition, however, is not that far off. In fact, for a

weighted voting system, we can characterize exactly when two voters

are equally desirable as follows:

PROPOSITION. For any two voters x and y in a weighted voting

system, the following are equivalent:
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1. x and y are equally desirable.

2. There exists an assignment of weights to the voters and a quota

that realize the system and that give x and y the same weight.

3. There are two different ways to assign weights to the voters and

two (perhaps equal) quotas such that both realize the system,

but in one of the two weightings, x has more weight than y and,

in the other weighting, y has more weight than x.

PROOF. We first prove that 1 implies 2. Assume that x and y are equally

desirable and choose any weighting and quota that realize the system.

Let w(x), w(y) and q denote (respectively) the weight of x, the weight of

y, and the quota. Expressions like “w(Z)” will represent the total weight

of the coalition Z. We now construct a new weighting (where we will use

nw for “new weight” in place of w for “weight”) such that, with the same

quota q, this new weighting also realizes the system and nw(x) = nw(y).

The new weighting is obtained by keeping the weight of every voter

except x and y the same, and setting both nw(x) and nw(y) equal to the

average of w(x) and w(y).

To see that this new weighting still realizes the same system,

assume that Z is a coalition. We must show that Z is winning in the new

weighting if and only if Z is winning in the old weighting. We consider

three cases:

Case 1: Neither x nor y Belongs to Z

In this case, w(Z) = nw(Z) and so nw(Z) ≥ q if and only if Z is winning.

Case 2: Both x and y Belong to Z

We leave this for the reader.

Case 3: x Belongs to Z but y Does not Belong to Z

In this case, the new weight of Z is the average of the old weight of Z

and the old weight of Z − {x} ∪ {y}. That is:

nw(Z) =
w(Z) + w(Z − {x} ∪ {y})

2
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Since x and y are equally desirable, either both Z and Z − {x} ∪ {y} are
winning or both are losing. If both are winning, then

nw(Z) ≥
q+ q

2
= q.

If both are losing, then

nw(Z) <
q+ q

2
= q.

This completes the proof that 1 implies 2.

We now prove that 2 implies 3. Assume that we start with a weighting

and quota wherein x and y have the same weight. Let HL denote the

weight of the heaviest losing coalition, and let LW denote the weight of

the lightest winning coalition. Thus,

HL < q ≤ LW.

Let q′ be the average of HL and q. Then q′ still works as a quota and

HL < q′ < LW.

Let ǫ be any positive number that is small enough so that

HL+ ǫ < q′ < LW − ǫ.

We leave it for the reader to check that the system is unchanged if we

either increase the weight of x by ǫ or decrease the weight of x by ǫ.

This shows that there are two weightings that realize the system, one

of which makes x heavier than y and the other of which makes y heavier

than x.

Finally, we prove that 3 implies 1. Assume that we have two

weightings, w and w′, and two quotas, q and q′, such that

1. A coalition Z is winning if and only if w(Z) ≥ q.

2. A coalition Z is winning if and only if w′(Z) ≥ q′.
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3. w(x) > w(y).

4. w′(y) > w′(x).

To show that x and y are equally desirable, wemust start with an arbitrary

coalition Z containing neither x nor y and show that Z ∪ {x} is winning if

and only if Z ∪{y} is winning. This argument is asked for in Exercise 20.

Given this, the proof is complete.

Finally, what can we say about voters x and y whose desirability is

neither equal nor incomparable? Looking back at the definition, we

see that this happens only if (intuitively) some coalition desires one

more than the other, but no coalition desires the other more than this

one. Formally:

DEFINITION. For any two voters x and y in a yes–no voting system, we

say that x is more desirable than y, denoted

x > y,

if and only if the following hold:

1. for every coalition Z containing neither x nor y,if Z∪{y} is winning

then so is Z ∪ {x}, and

2. there exists a coalition Z′ containing neither x nor y such that

Z′ ∪ {x} is winning, but Z′ ∪ {y} is losing.

We shall also write x ≥ y to mean that either x > y or x ≈ y. (This is

analogous to what is done with numbers.) The relation ≥ is known in

the literature as the desirability relation on individuals.

Example:

In the U.S. federal system if x is a senator and y is the vice president,

then x > y (see Exercise 21).

The binary relation ≥ is called a preordering because it is transitive

and reflexive. A preordering is said to be linear if for every x and y one
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has either x ≥ y or y ≥ x. Linear preorders are also called weak order-

ings in the literature. With this, we conclude the present discussion

with one more definition and one more proposition.

DEFINITION. A yes–no voting system is said to be linear if there

are no incomparable voters (equivalently, if the desirability relation on

individuals is a linear preordering).

PROPOSITION. A yes–no voting system is linear if and only if it is

swap robust.

COROLLARY. Every weighted voting system is linear.

For proofs of these, see Exercise 22.

Finally, for weighted voting systems, we have the following very nice

characterization of the desirability relation on individuals.

PROPOSITION. In a weighted voting system we have x > y if and

only if x has strictly more weight than y in every weighting that realizes

the system.

A proof of this (which is quite short, given what we did earlier in

this section) is asked for in Exercise 23.

...........................................................................................................

9.6 A THEOREM ON VOTING BLOCS

This section considers a situation that reduces to a kind of weighted

voting body that is sufficiently simple so that we can prove a general

theorem, taken from Straffin (1980), that allows us to calculate the

Shapley–Shubik indices of the players involved in an easy way. We

begin with some notation and an example.

NOTATION. Suppose we have a weighted voting system with n players

p1, . . . , pn with weights w1, . . . ,wn (so, w1 is the weight of player p1,w2

of p2, etc.) Suppose that q is the quota. Then all of this is denoted by:

[q : w1,w2, . . . ,wn].
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For example, the European Economic Community is the system:

[12 : 4, 4, 4, 2, 2, 1]

With this notation at hand, we now turn to an extended example of

how the Shapley–Shubik index of a voting bloc can be calculated.

Extended Example:

Consider the United States Senate as a yes–no voting system with 100

voters, each of whom has one vote and with fifty-one votes needed

for passage. (We ignore the vice president.) Thus, the Shapley–Shubik

index of any one senator is 1/100, since they must all be the same and

sum to one. But now suppose the twelve senators from the six New

England states decide to vote together as a so-called voting bloc. Intu-

itively, the power of this bloc would seem to be greater than the sum

of the powers of the individual senators. Our goal in this example is

to treat the bloc as a single player with twelve votes, and to calcu-

late the Shapley–Shubik index of this bloc. The result obtained should

quantify the above intuition.

Consider, then, the weighted voting body [51 : 12, 1, 1, . . . , 1] where

there are eighty-eight ones (representing the senators from the forty-

four non-New England states). The first thing to notice is that we really

don’t have to consider all possible ways of ordering the eighty–nine

players. That is, this collection of 89! orderings is broken into 89 equal

size “clumps” determined by the place occupied by the “12” in the

string of eighty-eight ones. The eighty-nine “places” are pictured below.

place 1
1
place 2

1 · · · 1
place 88

1
place 89

(88 ones all together)

The different orderings within any one clump are arrived at simply

by permuting the “ones” involved. In particular, then, the twelve-vote

player is pivotal for one ordering in the clump only if it is pivotal for

every ordering in the clump. Thus, to calculate the Shapley–Shubik

index of the voting bloc, we must simply determine how many of the

eighty-nine distinct orderings (one from each clump) have the “12” in

a pivotal position.
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In order for the “12” to be in the pivotal position, the number of

ones preceding it must be at least thirty-nine. That is, if there were

thirty-eight or fewer then the addition of the twelve-vote bloc would

yield a coalition with fewer than the fifty-one votes needed to make it

a winning coalition. On the other hand, if the number of ones preced-

ing the “12” were more than fifty, then the coalition would be winning

before the “12” joined. Thus, the orderings that have “12” in the piv-

otal position are the ones with an initial sequence of ones of length

39, 40, . . . , 50. There are twelve numbers in this sequence. Hence, we

can conclude the following:

SSI(New England bloc) = 12/89.

Thus, although the fraction of votes held by the New England bloc is

only 12/100, the fraction of power (as measured by the Shapley–Shubik

index) is 12/89.

The answer of 12/89 arrived at in the above example is easy to

remember in terms of the parameters of the problem. That is, the

numerator is just the size of the voting bloc, while the denominator

is the number of distinct players when the bloc is considered to be a

single player. The following theorem tells us that this is no coincidence.

THEOREM. Suppose we have n players and that a single bloc of size

b forms. Consider the resulting weighted voting body:

[q : b, 1, 1, . . . , 1]
︷ ︸︸ ︷

n − b of these

Assume b − 1 ≤ q − 1 ≤ n − b. Then the Shapley–Shubik index of the

bloc is given by:

SSI(bloc) =
b

n − b + 1
.

PROOF. The argument is just a general version of what we did before.

Notice first that n−b+1 is just the number of distinct orderings. (Recall

that we are not distinguishing between two orderings in which the ones

have been rearranged.) Thus, we have n − b ones and the number of

places the b can be inserted is just one more than this. (in the example
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above, we had eighty-eight ones and eighty-nine places to insert the 12

bloc.)

The b bloc will be pivotal precisely when the initial sequence of ones

is of length at least q−b (since q−b+b is just barely the quota q), but

not more than q − 1 (or else the quota is achieved without b). Hence,

the b bloc is pivotal when the initial sequence of ones is any of the

following lengths:

q− 1, q− 2, . . . , q− b.

Notice that since q − 1 ≤ n − b and n − b is the number of ones

available, we can construct all of these sequences—even the one with

the initial segment requiring q − 1 ones. Clearly, there are exactly b

numbers in the above list. Thus, the Shapley–Shubik index of the bloc

of size b is given by:

SSI(b bloc) =
number of orders in which b is pivotal

total number of distinct orderings
=

b

n− b+ 1
.

...........................................................................................................

9.7 CONCLUSIONS

We began this chapter by introducing two more power indices: the

Johnston index and the Deegan–Packel index, and we calculated the

power of the president (as well as the House and Senate) in the U.S.

federal system according to these two power indices. The four power

indices considered (two in Chapter 3 and two here) give strikingly

different results. For example, the Banzhaf index suggests that the

president has 4 percent of the power and the House holds roughly

twice as much power as the Senate. The Johnston index, on the other

hand, suggests that the president has 77 percent of the power with

the remainder roughly divided 2 to 1 again, but with the Senate and

House reversed from what we had with the Banzhaf index. So which

of the two (or three or four) is more accurate, and how can we test this

against actual experience with the federal government? Certainly, this

is the right question to ask, but not of non–political scientists. Hence,

we will content ourselves here with referring the reader to Brams,

Affuso, and Kilgour (1989) and Packel (1981).

We also considered ordinal notions of power and introduced for-

mal definitions intended to capture the intuitive idea of comparing
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the extent to which two voters are desired by coalitions that wish to

become, or to remain, winning. The focus here was on a notion of

when two voters have “incomparable” power (Section 9.4) or “com-

parable” power (Section 9.5). We concluded with a theorem on voting

blocs.

EXERCISES

1. Consider the weighted voting system [8 : 5, 3, 1, 1, 1].

(a) Calculate the Johnston index of each voter.

(b) Calculate the Deegan–Packel index of each voter.

2. Consider a voting system for the six New England states where there

are a total of seventeen votes and twelve or more are required for

passage. Votes are distributed as follows:

MA:4 ME:3 NH:2

CT:4 RI:3 VT :1

(a) Calculate the Johnston index of each voter.

(b) Calculate the Deegan–Packel index of each voter.

3. Consider the mini-federal system with thirteen votes (used in

Section 3.6 wherein there are six House members, six sena-

tors, and the president. Passage requires half the House, half the

Senate, and the president, or two-thirds of both houses.

(a) Calculate the Johnston index of each voter.

(b) Calculate the Deegan–Packel index of each voter.

4. Consider the minority veto system wherein there are eleven voters,

three of whom are a designated minority, and passage requires a

total of at least six of the eleven votes including at least two of the

three minority votes.

(a) Calculate the Johnston index of each voter.

(b) Calculate the Deegan–Packel index of each voter.

5. Express |T21| in “n choose k” notation.

6. Express |T23| in “n choose k” notation.

7. Explain, in words, the “n choose k” expression of TJP(A senator).

8. Express the total Johnston power of a member of the House using

the “n choose k” notation. (Mimic what we did for a senator in

Section 3.6)
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9. Explain, in words, the expression giving the Deegan–Packel power

of a House member and a senator.

10. Consider the yes–no voting system in which there are six voters: a,

b, c, d, e, f. Suppose the winning coalitions are precisely the ones

containing at least two of a, b, and c and at least two of d, e, and f .

(a) Show that a and b are equally desirable (as defined in

Section 9.4)

(b) Show that the desirability of a and d is incomparable (using

the definition in Section 9.4)

11. Suppose that x and y are voters in a yes–no voting system and that

x ≈ y. Suppose that Z′ is a winning coalition to which both x and y

belong. Assume that x’s defection from Z′ is critical. Prove that y’s

defection from Z’ is also critical. (Hint: Assume, for contradiction,

that y’s defection from Z′ is not critical. Consider the coalition Z

arrived at by deleting x and y from Z′.)

12. Suppose that x and y are voters in a yes–no voting system and that

x ≈ y. Suppose that Z’ is a coalition that contains x but not y. Let

Z′′ be the coalition resulting from replacing x by y in Z′.

(a) Prove that if Z′ is winning, then Z′′ is also winning.

(b) Prove that if Z′ is losing, then Z′′ is also losing.

(Hint for both parts: Let Z be the result of deleting x from Z′ and

then argue by contradiction.)

13. Assume that x and y are voters in aweighted yes–no voting system.

(a) Assume that for some choice of weights and quota realizing

the system, x and y have exactly the same weight. Prove that

x ≈ y.

(b) Assume that there are two choices of weights and quota realiz-

ing the yes–no voting system under consideration, one of which

gives xmore weight than y and one of which gives y more weight

than x. Prove that x ≈ y.

[The converse of (a) and (b) is proved in Chapter 9, assuming the

system is, in fact, weighted.]

14. In the U.S. federal system, let x be a member of the House and let

y be a member of the Senate. Prove that x and y are incomparable.

15. In the U.S. federal system, let x be the vice president and let y be

a member of the Senate. Prove that x and y are not incomparable.

(One approach is to argue by contradiction.)
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16. Using the results from Chapter 2, give an example of a yes–no voting

system that is not weighted, but for which there are no incomparable

voters.

17. Suppose x and y are voters in a yes–no voting system and suppose

that their desirability is neither equal nor incomparable. Construct

definitions (similar to what we did for incomparability) that formal-

ize the notions that “x is more desirable than y” and “y is more

desirable than x.”

18. Prove that the relation of “equal desirability” as defined in

Section 9.5 is reflexive and symmetric. (This is part of the first

proposition in Section 9.5)

19. Explain why C − {x}
⋃

{x} = C if and only if x belongs to C.

20. Assume that we have two weightings, w and w′, and two quotas, q

and q′, such that

(i) A coalition is winning if and only if w′(Z) ≥ q.

(ii) A coalition is winning if and only if w′(Z) ≥ q′.

(iii) w(x) > w(y)

(iv) w′(y) > w′(x).

Assume that Z is an arbitrary coalition containing neither x nor y.

Prove that Z ∪ {x} is winning if and only if Z ∪ {y} is winning.

21. Prove that, in the United States federal system, if x is a senator and

y is the vice president, then x > y. (That is, prove that every senator

is more desirable–according to the definition in Section 9.5—than

is the vice president.)

22. Using results from earlier chapters, explain why a yes–no voting sys-

tem is linear if and only if it is swap robust, and why every weighted

voting system is linear. Is every linear voting system weighted?

23. Prove that, in a weighted voting system, we have x > y if and only

if x has strictly more weight than y in every weighting that realizes

the system. (The reader will want to make use of earlier theorems

to verify this.)

24. Consider the weighted voting body [5 : 2, 2, 1, 1, 1, 1, 1]. Calculate

SSI(x) where x is one of the people with two votes. (Hint: The theo-

rem in Section 9.6 does not directly apply here, but the underlying

ideas of that theorem are all that is needed. That is, hold the “2”

under consideration out, and ask how many distinct orderings of

the remaining five 1s and one 2 there are. For each ordering, where

is the insertion of the “2” under consideration pivotal?)
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25. Use the theorem from Section 9.6 (where it applies) to calculate

the Shapley–Shubik index of the voting bloc in each of the following

weighted voting bodies. If the theorem doesn’t apply, say why.

(a) [5 : 7, 1, 1, 1]

(b) [8 : 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

(c) [ 6 : 3, 1, 1, 1, 1, 1, 1]
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10.1 INTRODUCTION

In this chapter, we continue our study of 2 × 2 ordinal games (and

variants thereof) with particular emphasis on game-theoretic mod-

els of international conflict. In Section 10.2 we consider the joint

U.S.-Soviet policy of mutual assured destruction (“MAD”) from the

1960s, 1970s, and 1980s. This treatment of deterrence tries to take

into account not only the actual preferences of each side, but also

each side’s perception (perhaps better: fear) of the other’s preferences.

In Section 10.3 we return to the issue of deterrence and follow Brams

(1985a, 1985b) in considering a model of deterrence based on Chicken,

but with the choice of strategies being “probabilistic.” This section

also introduces the ideas of cardinal utilities and expected value, thus

setting the stage for an introduction of 2 × 2 zero-sum games in

Section 10.4.

...........................................................................................................

10.2 MODELS OF DETERRENCE

In the 1960s, 1970s, and 1980s, both the United States and the Soviet

Union had the nuclear capability to destroy the other via a preemptive



294 10. MORE CONFLICT

first strike. So, in one very real sense, each was defenseless and at the

complete mercy of the other. If this were the whole story, then rational

action (suitably, although perhaps questionably, defined) would result

in a race to the launch keys. But it’s not the whole story. The point is,

our ability to destroy each other did not include the capacity to destroy

each other’s ability to retaliate (although, of course, such retaliation

has no effect on the destruction visited upon oneself), and it is precisely

this ability to retaliate (and the mutual belief that such retaliation—

even if “irrational”—is not inconceivable) that was intended to deter

each side from initiating a first-strike attack. This mutual defense pol-

icy of deterrence is often referred to as “mutual assured destruction”

and better known by its acronym “MAD.”

Deterrence can be modeled as a 2 × 2 ordinal game with the United

States and the Soviet Union being the two players, and each having

the option to strike or not. Thus, the framework for this model is as in

Figure 1 below.

The real question here is: What are the preference rankings for

the four possible outcomes? The four possibilities in Figure 2 suggest

themselves; we phrase each in terms of U.S. preferences, although we

could equally well work with their analogues for Soviet preferences.

Notice that possibilities I and II are a pair in the sense of being the

same except for having 1 and 2 switched. Similarly, possibilities III

and IV are a pair (again with 1 and 2 switched). We can also regard

I and III as a pair (having 3 and 4 switched) and II and IV as a pair

Soviet Union

C (don’t strike)

C (don’t strike)

N (strike)

N (strike)

U.S.

FIGURE 1
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Soviets

That is:

That is: That is:

That is:

4 U.S. strikes — no retaliation

3 U.S. strikes — no retaliation 3 U.S. strikes — no retaliation

4 U.S. strikes — no retaliation
3 Neither side strikes

4 Neither side strikes 4 Neither side strikes

3 Neither side strikes
2 Soviets strike — no retaliation

2 Soviets strike — no retaliation
1 Soviets strike — no retaliation

1 Soviets strike — no retaliation1 Strike and retaliation

1 Strike and retaliation

2 Strike and retaliation

2 Strike and retaliation

N

N

3 2

14

C

I.

C
U.S.

Soviets

N

N

3 1

24

C

II.

C
U.S.

Soviets

N

N

4 2

13

C

III.

C
U.S.

Soviets

N

N

4 1

23

C

IV.

C
U.S.

FIGURE 2

(again with 3 and 4 switched). Thus, there are two questions giving

rise to the four possibilities:

1. Would either country prefer an unanswered nuclear strike on

the other to mutual coexistence?

2. If one country launched a first strike, would the other really

respond even though this would do nothing to better its own

situation?

We certainly don’t have the answer to either question, and, indeed,

the answers certainly need not have been constant throughout the

1960s, 1970s, and 1980s. Recollection of Khrushchev’s promise to

“bury you” or Reagan’s characterization of the Soviet Union as the

“evil empire” might suggest an affirmative answer to the first question

(i.e., preference for a “successful” first strike), but one must also keep
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in mind that in the 1950s the United States had a first-strike nuclear

capability and chose not to use it even though some influential peo-

ple were encouraging its use. The second question goes right to the

heart of the “paradox of deterrence.” That is, for deterrence to work,

each country must believe in at least the possibility of retaliation by

the other, even though, once a first strike is launched (and so deter-

rence has failed), there is nothing to gain—and the lives of millions

of innocent children to be lost—in actually retaliating. On the other

hand, one of the authors had an opportunity to ask one of the chief

U.S. arms negotiators for a previous administration if he thought the

United States would, in fact, launch an all out nuclear response to a

Soviet first strike, and, if so, why. The question was asked in a very

informal, one-on-one situation, and we certainly don’t think he was

being anything but candid. His reply: “Yes; just because.”

As a starting point, let’s assume (for the moment) that U.S. and

Soviet preferences are as in possibility I in Figure 2. Then the result-

ing 2 × 2 ordinal game is simply Chicken, relabeled and reproduced

in Figure 3. [In Section 10.3 we will follow Brams (1985b) in

embellishing this model via so-called probabilistic responses.]

The actual U.S. and Soviet preferences may be as in possibility II

in Figure 2. This would yield Prisoner’s Dilemma as a model of deter-

rence, and, indeed, this has been proposed and well argued by Zagare

(1987). Chicken, however, offers a more immediate explanation of the

unstable situation of mutual cooperation of the 1980s. That is, we

know that the (3,3)-outcome in Chicken is not a Nash equilibrium,

and so each country has an incentive to unilaterally change strategy.

It should also be noted that the Prisoner’s Dilemma model predicts

mutual first strikes, and this has not happened. There is, however, an

Soviet Union

Don’t strike

Don’t strike

Strike

Strike

(3, 3) (2, 4)

(1, 1)(4, 2)

U.S.

FIGURE 3
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important issue that needs to be introduced at this point: If one is only

talking about the actual U.S. and Soviet preferences, then a single 2×2

ordinal game suffices to display this information. If, however, one now

wants to talk about strategies in the game, then the following question

arises: Has each side correctly identified the other’s preference rank-

ing? The point is, the (true) preferences determine exactly which 2×2

ordinal game is actually being played. But strategies are based on the

2 × 2 ordinal game that each side perceives is being played, and this

perception depends on a best guess by each as to the preferences of

the other.

We think deterrence during, say, the 1970s provides an excellent

example of misperception in the above sense. In particular, we think

the actual preference rankings of both the United States and the Soviet

Union at this time may well have been as in possibility IV in Figure 2

(with mutual cooperation most preferred). However, each perceived

(perhaps better: feared) that the other had preference rankings as in

possibility II in Figure 2 (with a successful first strike most preferred).

This gives rise to the three 2 × 2 ordinal games in Figure 4 below.

True U.S.-Soviet
preferences for
deterrence model

U.S. fear of (Soviet)
preferences for
deterrence model

Soviet fear of (U.S.)
preferences for
deterrence model

Soviets

U.S.

C

C

N

N

(4, 4) (1, 3)

(3, 1) (2, 2)

Soviets

U.S.

C

C

N

N

(4, 3) (1, 4)

(3, 1) (2, 2)

Soviets

U.S.

C

C

N

N

(3, 4) (1, 3)

(4, 1) (2, 2)

FIGURE 4
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Looking, for example, at the middle game in Figure 4 we see an

explanation for the tension of the times. If we again consider the status

quo to be the (4, 3) mutual cooperation outcome, the United States will

perceive the Soviets as wanting to unilaterally move from C to N, that

is, (4, 3) is not a Nash equilibrium, and so we must retain a posture

that suggests we prefer mutual noncooperation (i.e., retaliation) to

one-sided nuclear annihilation.

Notice, however, that for deterrence to work, it is not necessary for

each side to convince the other that it will definitely retaliate against

a first strike. It is enough to convince the other side that one will

probably (whatever that means) retaliate. In Section 10.3, we address

deterrence in this context of uncertainty.

...........................................................................................................

10.3 A PROBABILISTIC MODEL OF DETERRENCE

While 2×2 ordinal games provide us with models that are easy to work

with, they are often too simple in structure to capture much of what

is going on with the real-world situation at hand. Our game-theoretic

model of the Yom Kippur War in Section 4.6 was one such example,

and we handled this by introducing the theory of moves in Section 4.7.

We now turn to our game-theoretic model of deterrence as Chicken in

Section 10.2, and we again ask if important aspects of the real-world

situation are being lost and if we can embellish the model to better

reflect reality.

Thus, our goal in this section is to identify three specific short-

comings of Chicken as a model of deterrence and to show how an

embellishment of a 2 × 2 ordinal game can be used to obtain a better

game-theoretic model of deterrence. The reader wishing to see more

on this (or other examples of embellishment involving threat power,

deception, etc.) should consult Brams (1985a, 1985b).

There are three shortcomings of the model of deterrence based on

the 2 × 2 ordinal game of Chicken:

1. The sequential nature of play is lost. That is, the 2 × 2 ordinal

game is played by both sides making a simultaneous choice

to “strike” or “not strike.” Real-world deterrence, on the other

hand, is based on considerations of retaliation—and retaliation
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is certainly a concept that only arises in the context of sequential

events.

2. Ordinal preferences contain less information than cardinal util-

ities. Recall that when we first introduced 2 × 2 ordinal games

in Section 4.2, we made a point of emphasizing that a pref-

erence ranking of 4 for an outcome should not be construed

as indicating that it is considered twice as good as the out-

come ranked 2. That is, the numbers 4, 3, 2, and 1 were ordinal

preferences—numbers indicating the order of preference of out-

comes without saying anything about the absolute “worth” of

the outcome. If we replace the 4, 3, 2, 1 with numbers that are

supposed to measure the absolute worth of the outcomes (in

units that are left unspecified), then we’re in the realm of cardi-

nal utilities. We can, in fact, always assume that the units have

been chosen so that the cardinal utility of the most preferred

outcome is one (unit) and that of the least preferred outcome

is zero (units). In between, then, we may have cardinal utilities

like 1
3 and 2

3 , or .01 and .02, or .98 and .99, or even .01 and .99.

Interpreting the last one, for example, we see that the two least

preferred outcomes are considered about the same (0 utility

versus .01 utility) while the most preferred pair is considered

much more desirable than is the least preferred pair.

3. Aspects of uncertainty are lost. A single 2 × 2 ordinal game

presents a situation of complete information, at least as it

applies to the preferences of one’s opponent. However—and

this is what we tried to illustrate with the models of deterrence

in Figure 4—in real life one typically can only make educated

guesses as to the preferences of one’s opponent. Phrases like

“Chances are three to one that he would prefer not to strike

even if we did” are not uncommon in this context.

Continuing with this last point, let’s convert the phrase “chances

are three to one . . .” to a phrase involving probabilities. “Three to one”

really means “three out of four” So when we say, “Chances are three to

one something will happen,” we really mean, “In the long run (i.e., if

this situation were re-created many many times), we’d expect that the
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something referred to would happen in (approximately) three-fourths

of the situations (briefly, three-fourths of the time).” Probabilities sim-

ply provide another terminology for expressing the same thing. To say,

“The probability of something happening is three-fourths,” is the same

as saying, “The chances of this thing happening are three to one.” Both

are meant to convey the idea that, if the situation were re-created many

many times, then the thing being referred to would take place in about

75 percent of the situations.

The final thing we have to do before presenting the models we wish

to consider is to give at least an informal treatment of something called

“an expected value calculation.” To illustrate this, let’s take a simple

example. Suppose that we plan to roll a single die, and, if it comes up

1 or 2, to give you ten dollars, and if it comes up anything else, to give

you thirty dollars. Suppose we repeat this over and over again. Then

it makes sense to ask what you’d expect the average amount of money

changing hands to be for this procedure. To see what the answer to this

is, notice first that a roll of 1 or 2 will occur about one-third of the time,

while a roll of something else will occur about two-thirds of the time.

Thus, in the long run, you can expect to get ten dollars about one-

third of the time, and thirty dollars two-thirds of the time. Hence, the

average per roll that you will receive is given by the following:

($10) × [fraction of time we roll a one or two] +

($30) × [fraction of time we roll something else]

which equals

($10) ×
1

3
+ ($30) ×

2

3
=

10

3
+

60

3
=

70

3
= 23

1

3
dollars.

Instead of the “average you’d receive in the long run,” probabilistic

terminology describes this as “an expected value of 231
3 dollars.” Notice

also that the “1
3” and “2

3” occurring above is a special case of the general

observation that if 0 ≤ p ≤ 1 and p is the probability of something

happening, then 1 − p is the probability of it not happening [since

p + (1 − p) equals one].

Now, let’s see how we can change the model of deterrence from one

based on the 2 × 2 ordinal game of Chicken to one based on a new
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(and slightly more complicated) game that will deal with the three

shortcomings listed above.

The “game board” is similar to that used for a 2 × 2 ordinal game in

that we have the same two players (Row and Column) and the same

two choices of strategy (C or N). Outcomes, however, are now labeled

by each player not just with preference rankings 1, 2, 3, and 4, but with

numbers giving the cardinal utility of that outcome for that player. We

assume that the units with which utility is being measured are chosen

so that a least preferred outcome has utility zero and a most preferred

outcome has utility one. We’ll use “r’s” for Row’s utilities and “c’s” for

Column’s. Thus, Row has utilities 0, r2, r3, and 1, while Column has

utilities 0, c2, c3, and 1. As an example—and this is the one based on

Chicken that we will be using—we might have Figure 5.

Be careful not to confuse “utility one,” which is best possible, with

“ordinal preference ranking one,” which is worst possible.

Given the game board, and we’ll continue here with the one in

Figure 5 for example, the game is played as follows:

1. Row goes first and chooses either C or N.

2. If Row chooses C, then so does Column and the outcome is

(r3, c3).

3. If Row chooses N, then Column does the following:

(a) With probability p, Column chooses C and the outcome

is (1, c2). Intuitively, Column has chosen to “wimp out” and not

retaliate, and thus get his next to worst outcome of c2 units

utility while allowing Row to get his maximum utility of one.

C

C

Row

Column

(r3, c3)

(1, c2)

(r2, 1)

(0, 0)N

N

FIGURE 5
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(b) With probability 1 − p, Column retaliates by choosing N

also. This yields an outcome of (0, 0).

This describes the game board and the play of the game. The

interesting question is: What does rationality dictate Row’s behav-

ior should be? (Notice that Column’s behavior is predetermined.)

Intuition suggests the following.

1. A large value of p (that is, a value of p close to 1) suggests that

Column has very little resolve, and so Row should tend toward

choosing the aggressive strategy of N. That is, in this situation

it might be reasonable for Row to sacrifice the sure r3 utility

of the CC outcome he can guarantee by initially cooperating,

since he stands a good chance of getting utility 1 from the NC

outcome that will result if Column chooses not to retaliate. The

risk is that Row gets zero utility if Column does retaliate.

2. A large value of r3 (that is, a utility value close to the top utility

value of 1) suggests that Row should play it safe and choose

C, thus getting the guaranteed outcome of CC and the utility r3

(which we’re assuming is only slightly less than the top utility

of 1 that Row might get by risking a utility outcome of zero).

If we do the expected value calculation, this intuition is borne out.

That is, the question of whether Row should choose C or N depends

on whether r3 is bigger than p or not. Row’s expected value in terms

of utility is calculated as follows.

1. If Row chooses C, then the utility for Row is r3.

2. If Row chooses N, then the expected value of the utility for Row

is given by:

(Probability Column chooses C) × (Utility to Row of this choice) +

(Probability Column chooses N) × (Utility to Row of this choice) =

(p) × (1) + (1 − p) × (0) =

p + 0 = p.
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Thus, p turns out to be the expected value of the utility that Row

achieves by choosing the aggressive strategy of N. Hence, rational

action dictates that Row should

1. choose C if r3 > p (and capitalize on the high utility—relative

to the probability that Column will not retaliate—of the CC

outcome),

2. choose N if p > r3 (and capitalize on the high probability—

relative to the utility of the CC outcome—that Column will not

retaliate).

A discussion of the above game in the context of models of

deterrence is asked for in Exercise 6 at the end of the chapter.

...........................................................................................................

10.4 TWO-PERSON ZERO-SUM GAMES

In this section, we consider 2 × 2 games that are called “zero-sum

games.” These games differ in three fundamental ways from the 2 × 2

ordinal games like Prisoner’s Dilemma that we dealt with earlier:

1. Outcomes will be expressed in terms of cardinal utilities that

measure the value of each outcome (perhaps in dollars, perhaps

not) to each player. Hence, an outcome with utility 4 for Row is,

in fact, twice as good for Row as an outcome with utility 2. We

also allow outcomes to have negative utility for either player:

an outcome with utility −4 for Row is twice as bad for Row as

one with utility −2.

2. The game is zero sum: the utility of any outcome to Row plus the

utility of that same outcome to Column is zero. Thus, Column’s

utilities are obtained from Row’s utilities by simply deleting the

minus sign from the negative numbers and adding a minus sign

to the positive numbers.

3. Each player will have two “pure strategy” options (which we

shall continue to call C and N except when modeling real-world

situations). But in addition to this, each player will have the
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option of choosing some number (e.g., a fraction) p strictly

between 0 and 1 as a strategy. These are called mixed strate-

gies. We interpret a choice of p as yielding a play wherein that

player employs a random device to determine whether he or she

will play C or N, and that this is done so that the probability that

C will be chosen is p. For example, if p = 1
4 , the player might

flip two coins and play C if and only if both come up tails. Or,

if p = 1
10 , he or she may start a digital stopwatch, stop it a few

seconds later, and then play C if and only the number of seconds

elapsed is of the form 3.06 or 3.16 or . . . or 3.96. (There will be,

on average, a “6” in the hundredths place one-tenth of the time.)

As a particular example of such a game, consider the following sit-

uation involving military intelligence. Suppose Column is a country

with two military installations, A and B, and resources sufficient to

defend only one of the two. Suppose Column is engaged in a war with

Row, and that Row has the resources to attack either A or B, but not

both. Suppose that installation A is three times more valuable to both

than installation B. Our starting point is to model this situation with

a 2 × 2 game where the payoffs are not ordinal rankings but cardinal

utilities. We assume that an attack of a defended position results in

neither a gain nor a loss for either player.

Column

Defend A Defend B

Attack A

Attack B

(0, 0) (3, -3)

(1, -1) (0, 0)

Row

The game is certainly zero sum. In fact, it is clear that we really

don’t need the ordered pair notation; if we simply give the payoffs to

Row, then we can obtain the payoffs to Column immediately. Thus,

the standard presentation of the above game would be:
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Column

Defend A Defend B

Attack A

Attack B

0 3

1 0

Row

Notice that a positive entry represents a gain for Row and a loss

for Column. A negative entry (of which there are none in this game)

represents a loss for Row and a gain for Column. Hence, this game

favors Row.

The question is, What is Column’s best strategy?

Wrong answer #1: Column says: “Row expects me to defend A,

so he will attack B. But Row knows that I will reason this way, and

so—assuming I therefore will defend B—he will attack A. But Row

also knows that 1 will reason this way, and so he will . . .”

Wrong answer #2: Flip a coin. Heads—defend A. Tails—defend B.

We shall see that, in some sense, wrong answer #1 asks too much of

mathematical analysis while wrong answer #2 asks too little of math-

ematical analysis. That is, #1 suggests that some kind of game-tree

analysis will, in fact, reveal one of the pure strategies to be Column’s

best choice. This turns out not to be the case. On the other hand, #2

suggests that if neither pure strategy is the best choice, then one sim-

ply throws up one’s hands and randomizes (with p = 1
2 ). This also

turns out to be false. The truth of the matter, for this particular game,

is given in the following proposition:

PROPOSITION. If Column chooses p = 3
4 (that is, if Column

chooses to defend installation A with probability 3
4 , and to defend

installation B with probability 1
4), then he will obtain an expected

value no worse than −3
4 , regardless of what pure or mixed strategy

Row chooses to employ. For any choice other than p = 3
4 by Column,

there is a strategy for Row (in fact, a pure strategy) that leaves Column

with a worse expected value than −3
4 .

The choice of p = 3
4 in the proposition is called Column’s minimax

strategy: it minimizes the maximum amount Row can expect to get in
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the long run (and thus maximizes the minimum amount Column can

expect to get in the long run).

PROOF. The proof consists of the following five claims. For claims 1

to 3, we are supposing that Column chooses p = 3
4 .

CLAIM 1. If Row chooses the pure strategy “Attack A,” then the

expected value of the payoff to Column is −3
4 .

PROOF. Picture hundreds and hundreds of plays of this game with Row

always choosing to attack A, and Column defending A three-fourths of

the time. Then three-fourths of the time (on average) the payoff to both

Row and Column is zero, since Row’s attack of A is met by Column’s

defense of A. In the other quarter of the cases, however, Row is gaining

a utility of 3 (and thus Column is “gaining” a utility of −3) because

Row is attacking A while Column is defending B. Thus Row’s expected

value is:
1

4
× 3 =

3

4
,

and so Column’s expected value must be −3
4 , as claimed.

CLAIM 2. If Row chooses the pure strategy “Attack B,” then the

expected value of the payoff to Column is −3
4 .

PROOF. Arguing as in Claim 1, we see that Row gains a utility of one

by attacking B in the (roughly) three-fourths of the plays where Column

defends A. Row gains nothing in the other quarter wherein he is attacking

B while Column is defending B. Thus, Row’s expected value is:

3

4
× 1 =

3

4
,

and so Column’s expected value must again be −3
4 , as claimed.

CLAIM 3. If Row chooses a mixed strategy of q, then the expected

value of the payoff to Column is −3
4 .

PROOF. As before, let’s picture many many plays of the game, but

now with Row sometimes attacking A and sometimes attacking B. This
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means that some fraction of the time we are in the situation dealt with

in claim 1 (in fact, this fraction is q) and some fraction of the time (1−q)

in the situation dealt with in claim 2. But now it is easy to calculate the

expected value for Column (since the results in claim 1 and claim 2

were the same). It is simply

[q× (−
3

4
)] + [(1 − q) × (−

3

4
)] = −

3

4
,

as claimed.

CLAIM 4. If x is some small positive number, and Column chooses

the mixed strategy 3
4 + x, then Column’s expected value will be strictly

worse than −3
4 if Row chooses the pure strategy of attacking B.

PROOF. This is Exercise 7 at the end of the chapter.

CLAIM 5. If x is some small positive number, and Column chooses

the mixed strategy 3
4 − x, then Column’s expected value will be strictly

worse than −3
4 if Row chooses the pure strategy of attacking A.

PROOF. This is Exercise 8 at the end of the chapter.

This completes the proof of the proposition.

In general, it is quite easy to prescribe “optimal play” in 2 × 2 zero-

sum games. The following theorem pretty much tells the whole story.

THEOREM. Suppose we have a 2 × 2 zero-sum game:

C a b

c d

C N

N

Assume neither player has a dominant strategy. (We assume that

if either player has a dominant strategy, then the reader can prescribe

optimal play for both Row and Column.) Suppose a is the largest

entry in the matrix and d is the second-largest entry in the matrix.
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(If there are no dominant strategies, this can always be achieved by

interchanging the columns and/or interchanging the rows.) Then:

1. The minimax strategy for Column is to play column 1 with

probability p, where

p =
d − b

(a − b) + (d − c)
.

2. The minimax strategy for Row is to play row 1 with probability q,

where

q =
d − c

(a − b) + (d − c)
.

3. The expected payoff to Row is

V =
ad − bc

(a − b) + (d − c)
.

We omit the proof of this theorem, although the exercises contain sev-

eral applications of it. The V occurring in part 3 of the theorem is

called the value of the game. We should also point out that by restrict-

ing our discussion to the 2 by 2 case, we have missed an opportunity

to discuss so-called saddle points of games. This is somewhat rectified

in the exercises.

We close our discussion of 2 × 2 zero-sum games by stating two

remarkable theorems, both of which apply to the case where both

players have several strategies (instead of just two) available to them.

The first is the celebrated minimax theorem of John von Neumann

(1928). The second is a beautiful result due to Julia Robinson (1951).

THEOREM. (John von Neumann, 1928). Suppose G is a two-person

zero-sum game with finitely many strategies available to each player.

Then there exists a number V, called the value of the game, such that

1. Row has a strategy (pure or mixed) that will give him an expected

value of at least V regardless of what (pure or mixed) strategy

Column uses, and
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2. Column has a strategy (pure or mixed) that will give him an

expected value of at least −V regardless of what (pure or mixed)

strategy Row uses.

THEOREM. (Julia Robinson, 1951). Suppose G is a game as in

the minimax theorem, above. Suppose G is played over and over

again with each player choosing the pure strategy that maximizes his

expected payoff against the “accumulated mixed strategy of his oppo-

nent up to then.” [By this, Robinson (1951) means that each player is

assuming that the probability that a given pure strategy will be used

against him at stage n+1 is equal to the fraction of times that strategy

was chosen in the first n stages.] Then these strategies converge to the

optimal mixed strategies guaranteed to exist in the minimax theorem.

Much more on zero-sum games can be found in Straffin (1993).

...........................................................................................................

10.5 CONCLUSIONS

Section 10.2 and 10.3 both involved models of deterrence. The first

section gave a somewhat standard treatment based on a 2 × 2 game,

but with an extended discussion of the problems caused if each side

misperceives the preferences of the other. Section 10.3, on the other

hand, contained quite a different treatment, and it set the stage for a

discussion of 2 × 2 zero-sum games in Section 10.4.

EXERCISES

1. On one page, write your thoughts on the two questions that follow

Figure 2 in Section 10.2.

2. Discuss dominant strategies and Nash equilibria for the three 2×2

ordinal games in Figure 4 in Section 10.2.

3. Consider the hypothetical situation where people fill out their federal

income tax forms based on expected value calculations as opposed

to the patriotic and moral considerations that are so dominant in

real life. We used to have the opportunity to claim a $100 tax exemp-

tion (i.e., an outright saving of $100) for contributions to political

candidates. Suppose 1 didn’t contribute, but 1 also knew that only
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7 percent of those who falsify their returns in this way were caught

by the I. R. S. What is the smallest fine that should have dissuaded

me from falsifying my return in this way?

4. Generalize the result in the previous exercise so as,to arrive at a

formula that gives the minimum penalty necessary to discourage (in

terms of expected value) the breaking of a law. The formula should

involve the probability of being caught and the gain achieved by

breaking the law.

5. Redo the probabilistic model of Chicken assuming that the utilities

are r1, r2, r3, r4 and c1, c2, c3, c4.

6. Do an analysis of “probabilistic Prisoner’s Dilemma” that mimics

what we did for Chicken.

7. In the attack-defend game from Section 10.4, prove that if x is

some small positive number, and Column uses the mixed strategy
3
4 + x, then Column’s expected value will be strictly worse than

negative 3
4 if Row chooses the pure strategy of attacking B. (This is

Claim 4 in the proposition in Section 10.4.)

8. In the attack-defend game in Section 10.4, prove that if x is some

small positive number, and Column uses the mixed strategy 3
4 − x,

then Column’s expected value will be strictly worse than negative
3
4 if Row chooses the pure strategy of attacking A. (This is claim 5

in the proposition in Section 10.4.)

9. Suppose we have a 2 × 2 zero-sum game:

C a b

c d

C N

N

Assume that a is the largest entry and assume that d is not

the second-largest entry. Show that either Row or Column has a

dominant strategy. (Assume, for simplicity that the numbers a, b, c,

and d are distinct.)

10. Consider the following 2 × 2 zero-sum game:

C a b

c d

C N

N
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Assume that a is the largest entry and that d is the second-largest

entry. Notice that if Column plays C with probability p, then Column

receives
p(−a) + (1 − p)(−b) if Row plays C,

and
p(−c) + (1 − p)(−d) if Row plays N.

(a) Set these two expressions equal to each other and solve for

p.

(b) Explain the relevance of this to the theorem for 2×2 zero-sum

games in Section 10.4.

(c) Repeat (a) and (b) for Row.

11. Find the optimal strategies and value for the following games. (If

there is a dominant strategy, then the value of the game is defined

to be the payoff for Row when the dominant strategy is used by

whichever player has it, and the other player responds with his or

her best choice of pure strategy.)

C

C 2 1

-1 3N

N C

C 4 1

-2 2N

NC

C -1 -2

3 4N

N

12. An outcome in a two-person zero-sum game, even allowing for the

possibility of more than two strategy choices for each player, is

called a saddle point if it is simultaneously the smallest (or tied for

such) entry in its row and the largest (or tied for such) entry in its

column. Prove that an outcome is a saddle point if and only if it is

a Nash equilibrium (in pure strategies).

13. Find the saddle points in the following games:

C -1 -2

C N C N V C N V

3 4

1 2-1

3 1 -2

1 0 2

3 41

1 0 -2

2 1 3

N

C

N

V

C

N

V
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14. In the book Superior Beings, the author, Steven J. Brams (1983)

of New York University’s Department of Politics, asks the following

question: If God is omniscient (“all knowing”), would we be able to

determine if He had this power via our interactions with Him? Brams

methodology consists of

(a) Rigorously defining omniscience game-theoretically,

(b) Modeling our relationship with God game-theoretically,

(c) Analyzing the game in 2 ways: assuming God is not omniscient

and then assuming God is omniscient,

(d) Concluding that if the outcomes are different then we can

detect the power if He has it.

The fundamental game that Brams uses tomodel our relationship

with God is the so-called Revelation Game:

People

Believe in God Don’t Believe

(3, 4)

(4, 2)

(1, 1)

(2, 3)
Don9t Reveal

Himself 

Reveal
Himself 

God

We take these preferences as given.

(a) Analyze the game. That is, does either God or People have a

dominant strategy and, if so and the other side knows it, what

will the outcome be?

(b) Assume that God is omniscient and that this means, game-

theoretically, that God knows which strategy People will

choose. This is equivalent to saying that people move first

and then God will respond with His move (and the game ends).

Analyze this version of the game.

(c) Can we determine if God is omniscient by this interaction?

15. In his book Biblical Games, Brams (1980) considers the story of

Samson—a “ferocious warrior of inhuman strength”—and his wife

Delilah who was paid by the Philistines to find out the secret of

Samson’s strength. Brams models the situation as follows:
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Samson

Tell Don’t Tell

Don’t Nag (4, 2)

(3, 3)

(2, 4)

(1, 1)Nag

Delilah

We take these preferences as given. Analyze this situation in two

different ways:

(a) As a 2 × 2 game played as usual, what does this predict will

happen?

(b) By the theory of moves starting at (2, 4) with Delilah going

first. Assume that a move from (4, 2) to (2, 4) by Samson is

impossible, since he can’t take back “telling.” What does this

predict will happen?
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...........................................................................................................

11.1 INTRODUCTION

In this chapter, we continue our study of fair division. We start

with a closer look at the adjusted winner procedure, introduced in

Section 5.6, that guarantees an efficient, equitable, and envy-free allo-

cation of goods for two people. In Section 11.2, we will prove the

efficiency of the procedure, and in Section 11.3, we will see that,

typically, honesty is the best strategy for the procedure.

Beginning in Section 11.4, we study cake-cutting procedures for

three or more people. Just as the addition of a third alternative con-

siderably complicates the search for a perfect social choice procedure,

we will see that the addition of a third party also complicates the search

for the best fair division method. We present in Section 11.4 a proce-

dure that guarantees each of three parties a proportional share of cake.

In Section 11.5, we consider two procedures which each guarantee

an envy-free portion of cake. In Section 11.6, we present an envy-free

procedure for four parties. None of the methods we consider here are

efficient nor equitable, however, and in Section 11.7, we will see that

our search for an efficient, envy-free, and equitable procedure for three
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or more parties will fare no better than our search for a perfect social

choice procedure or apportionment method.

...........................................................................................................

11.2 EFFICIENCY IN ADJUSTED WINNER

In Section 5.6, we saw that adjusted winner gives an allocation of

indivisible items for two people that is equitable and envy-free. We

now give the proof that adjusted winner guarantees an efficient allo-

cation as well, probably one of the most remarkable properties of the

procedure.

Recall that in the first stage of adjusted winner, every item is first

given to the person who valued it most. Items are then transferred from

the initial winner to the other party until both have an equal number of

points. The proof of efficiency hinges on the order in which the items

are transferred: the transfer begins with the item with the smallest

ratio of points given by the initial winner to points given by the other

party. In this way, we minimize the effective cost to the initial winner

for all points transferred to the other party. Intuitively, the adjusted

winner procedure is efficient because the initial stage of the procedure

is efficient, and then efficiency is not affected during the equitability

adjustment.

We will prove the efficiency of adjusted winner with the following

three lemmas. Call the two parties Annie and Ben. We will use the

notation G1, . . . , Gn to denote the items to be divided between Annie

and Ben. Let ai and bi denote the fractions of item Gi that Annie and

Ben, respectively, receive in a given allocation of items. Let Ai and Bi

denote the points awarded to item Gi by Annie and Ben, respectively.

LEMMA 1. Suppose that we have an allocation of the items in which

(i) Annie values item Gi at least as much as Ben does

(ii) Ben values item Gj at least as much as Annie does

Suppose that Annie trades her portion of Gi for Ben’s portion of Gj. If

this trade is strictly better for one player, then it is strictly worse for

the other.
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PROOF. Since Annie values item Gi at least as much as Ben does,

then we know that Ai ≥ Bi. Similarly, since Ben values item Gj at least

as much as Annie does, then we know that Bj ≥ Ai. We can ignore all

items except Gi and Gj since they are not involved in the trade. During

the trade, Annie gives away a total of ajAi points, and gains a total of

bjAj points. If the trade is strictly better for Annie, then

(1) bjAj > aiAi.

Notice that

Ben’s points after trade - Ben’s points

before trade = aiBi − bjBj

≤ aiAi − bjBj sinceBi ≤ Ai

≤ aiAi − bjAj sinceBj ≥ Aj

< 0by (1),

so Ben is strictly worse off after the trade. Similarly, if the trade is strictly

better for Ben, then it is strictly worse for Annie.

LEMMA 2. Suppose that we have an allocation of the items in which
Aj

Bj
≤ Ai

Bi
. If Annie trades her portion of Gi for Ben’s portion of Gj, and

this trade is strictly better for one player, then the trade is strictly worse

for the other.

PROOF. As in the proof of Lemma 1, if the trade is better for Annie,

then bjAj > aiAi. Since Aj/Bj ≤ Ai/Bi, then AjBj ≤ AjBj. Then

Ben’s points after trade - Ben’s

points before trade = aiBi − bjBj

< Bi

(
bjAj

Ai

)

− bjBj since bjAj > aiAi

= bj

(
BiAj − BjAi

Ai

)

< 0sinceAjBi ≥ AiBj,
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so Ben is strictly worse off after the trade. If the trade strictly benefits

Ben, however, then it follows that aiBi > bjBj. Then

Annie’s points after trade - Annie’s

points before trade = bjAj − aiAi

< bjAj − Ai

(
bjBj

Bi

)

since aiBi > bjBj

= bj

(
AjBi − AiBj

Bi

)

≤ 0sinceAjBi ≤ AiBj,

so Annie is strictly worse off after the trade.

LEMMA 3. If a given allocation is not efficient, there there exist goods

Gi and Gj and some portions thereof such that if Annie exchanges her

fraction ai of Gi for Ben’s fraction bj of Gj, the resulting trade yields an

allocation that is at least as good for both players and strictly better

for at least one of the players.

The proof of this lemma requires the assumption of weak additivity

of preferences: if A and B are disjoints sets of goods, and Annie values

A at least as much as some set X of goods and B at least as much as

some set Y of goods, then she must value A ∪ B at least as much as

X ∪ Y .

PROOF. Since the given allocation is not efficient, there is an alterna-

tive allocation that is at least as good for both Annie and Ben and strictly

better for at least one of the two, say Annie. So there exist disjoint sets

S and T of goods belonging to Annie and Ben, respectively, such that an

exchange of S for T makes Annie better off without hurting Ben. We just

need to show that S and T can each be taken to be (possibly a fraction

of) a single item. Write S = S1 ∪ . . . ∪ Sn, where the Si’s are pairwise

disjoint, and each is a fraction of a single item. Ben can now break up T

into a disjoint union T = T1∪ . . .∪Tn (not necessarily subsets of a single

item) such that an exchange of Si for Ti yields an allocation that is no

worse for him than the current allocation. It suffices for Ben to choose

each Ti such that the value to Ben of Ti is no more than the value to

Ben of Si; this must be possible by weak additivity of preferences.
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We claim that there exists an i such that Annie prefers the allocation

obtained by exchanging Si for Ti to the existing allocation. If such an i did

not exist, then the existing allocation is at least as good for Annie as the

one obtained by exchanging Si for Ti for all i. By additivity of preferences

again, then the existing allocation is at least as good for Annie as the

one obtained by exchanging S1 ∪ . . . ∪ Sn = S for T1 ∪ . . . ∪ Tn = T ,

contrary to assumption. Re-labeling if necessary, suppose that Annie

prefers the allocation obtained by exchanging S1 for T1 to the existing

allocation. Now S1 consists of some portion of a single good, but T1
may consist of portions of several goods. Write T1 as a disjoint union of

sets T11 ∪ . . . ∪ T1m and S1 as a disjoint union of sets S11 ∪ . . . ∪ S1m

such that each T1j is some portion of a single good and Annie is better

off with the allocation obtained by exchanging S1j for T1j than with the

existing allocation. This can be done for the same reason as above.

Now also by the same reasoning as above, there must exist a j such

that the allocation obtained by exchanging S1j for T1j is at least as good

for Ben as the existing allocation. Otherwise, the existing allocation is

better for Ben than the one obtained by exchanging S1j for T1j for all j.

It follows by additivity of preferences that the existing allocation is bet-

ter for Ben than the one obtained by exchanging S1 for T1, which is a

contradiction. Thus, we have found subsets S1j and T1j each consisting

of a portion of a single item for which a trade of S1j for T1j yields an

allocation that is strictly better for Annie and no worse for Ben than the

existing allocation. This completes the proof of the lemma.

Proof of Efficiency

We are now ready to prove that adjusted winner always yields an allo-

cation that is efficient. Suppose otherwise. By Lemma 3, there exist

goods Gi and Gj and portions thereof such that if Annie exchanges her

fraction ai of Gi for Ben’s fraction bj of Gj, the resulting trade yields

an allocation that is at least as good for both and strictly better for at

least one. Suppose that Annie was the initial winner after the first step

of the adjusted winner procedure. Since Annie still has at least ai of

item Gi after any necessary transfers, then Annie must value item Gi at

least as much as Ben does, so Ai ≥ Bi. Now if Ben values item Gj at

least as much as Annie does, then Lemma 1 implies that the trade will

not benefit both parties as we are assuming. So it must be the case
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that Ben values item Gi less than Annie does, that is, Bj < Aj. But Ben

has part of Gj, so he must have received that during the transfer stage

of the adjusted winner procedure. Since only one item is split among

the parties during adjusted winner, then Gj must be that item, so Annie

must have all of item Gi. Since item Gi was not involved in the trans-

fer stage, it follows that the ratio of points for item Gi in the adjusted

winner procedure is at least as big as the ratio of points for item Gj.

Thus Ai/Bi ≥ Aj/Bj. By Lemma 2, this contradicts our assumption that

the trade does not hurt either party. This completes the proof that the

adjusted winner procedure is efficient.

...........................................................................................................

11.3 ADJUSTED WINNER AND MANIPULABILITY

Dispute resolution is often a stressful time for the parties involved.

Determining point totals is itself not an easy task. The situation is still

more stressful if the parties involved need to worry about strategies as

well, especially in the case of a divorce where each party has in depth

knowledge of the other’s likes and dislikes. It is natural to wonder

whether this knowledge would enable one party to manipulate the

system, and achieve a better outcome by submitting disingenous point

allocations. Another advantage of the adjusted winner procedure is

that unless knowledge of the other’s party’s valuations is strictly one-

sided, then honesty is the best policy.

Suppose that Annie and Ben are getting a divorce, and currently

share the following items: a townhouse in Central Square, season

passes to the Red Sox, and a painting by Klee. They value the items as

follows:

Annie Item Ben

50 Townhouse 30

20 Red Sox Tickets 50

30 Klee painting 20

100 Total 100

Applying the adjusted winner procedure, we see that Annie is ini-

tially awarded the townhouse and the painting, while Ben gets the
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Red Sox tickets. Annie currently has 80 points, while Ben has 50, so

Annie is the initial winner. The ratio of points for the townhouse is

5/3, while the ratio for the painting is 3/2, so the painting needs to be

divided. Solving for x in the following equation gives the fraction of

the painting that Annie keeps:

50 + 30x = 50 + 20(1 − x) = 70 − 20x

50x = 20

x = 2/5

Annie ends up with the townhouse and 2/5 of the painting (Annie and

Ben decide that she will buy out his share of the painting), and Ben

gets the Red Sox tickets and 3/5 of the painting—each with a total of 62

points. Now Annie has known Ben for ten years, and knows how much

his Red Sox tickets mean to him. She is confident that she can estimate

Ben’s point allocations fairly well, and decides to submit the following

false valuations, rather than her true preferences given above.

Annie’s Fake Item Ben’s Sincere

Valuations Valuations

32 Townhouse 30

48 Red Sox Tickets 50

20 Klee painting 20

100 Total 100

Intuitively, Annie might do better under this scenario. By indicating

that she values the townhouse only slightly more than Ben, she hopes

to win the townhouse but at a lower cost, thereby winning a higher

percentage of the painting as well. This time, in the first step of the

process, Annie still gets the townhouse and the painting, and Ben gets

the Red Sox tickets. Annie has 52 points (according to her false point

allocations), and Ben has 50. Solving for x gives the fraction of the

painting that Annie keeps:

32 + 20x = 50 + 20(1 − x) = 70 − 20x

40x = 38

x = 19/20
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Under these false pretenses, then, Annie keeps 19/20 of the painting,

only needing to pay Ben 1/20, 5%, of the painting’s appraised value,

rather than the 60% of the value that she would have paid had she given

her true point allocations. Given the value of a Klee painting, Annie is

saving a significant amount of money! In terms of points, Ben ends up

with 50 + 1/20(20) = 51 points, significantly less than the 62 points

he had before. Annie appears to also have 51 points, but according to

her true valuations, she really gets 50 + 19/20(30) = 78.5 points.

It is definitely to Annie’s advantage to submit false point allocations

in the scenario above—but we were assuming that Ben would submit

his honest valuations. If Annie were really able to predict Ben’s point

scheme so well, then it is a fair assumption that Ben would also be

able to guess how Annie valued the items. With this kind of knowledge

on both sides, it becomes much riskier to submit false preferences;

while it may be to someone’s advantage to be dishonest (Annie might

still get lucky if Ben chooses to submit his true point allocations even

with knowledge of Annie’s preferences), this strategy can also backfire,

resulting in an outcome that is worse than the honest outcome. For

example, if Ben thinks that Annie will be honest, he may submit the

following point allocations:

Annie’s Sincere Item Ben’s Fake

Valuations Valuations

50 Townhouse 45

20 Red Sox Tickets 25

30 Klee painting 30

100 Total 100

We leave it as an exercise at the end of the section to see that if

Annie were honest, Ben and Annie would each get 52 8/11 points,

although this would really constitute over 77 points for Ben. But if

Annie and Ben both submit these false preferences, the result is not

good for either. In the first step of the process, Annie receives the Red

Sox tickets, and Ben gets the townhouse and the painting. The ratio for

the painting is 1.5 while the ratio for the townhouse is 45/32, strictly

less. The following calculation gives the fraction of the townhouse to
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be given to Annie:

48 + 32x = 30 + 45(1 − x) = 75 − 45x

77x = 27

x = 27/77

So Annie gets just over a third of the townhouse and the Red Sox

tickets, while Ben gets just under 2/3 of the townhouse and the paint-

ing. Although this appears to be just over 59 points for each with the

false point allocations, both Annie and Ben do much worse accord-

ing to their true preferences. Annie’s share gives her (27/77)(50) + 20,

roughly 37.5 points and Ben’s share gives him (50/77)(30) + 20, just

under 39.5 points. Both Annie and Ben would have fared much better

had they been honest!

The adjusted winner procedure then, in addition to guaranteeing

an allocation that is envy-free, equitable, and efficient also promotes

honesty, at least when knowledge of the other party’s preferences is

not strictly one-sided.

...........................................................................................................

11.4 FAIR DIVISION PROCEDURES FOR THREE

OR MORE PARTIES

In Section 5.7, we looked at the adjusted winner procedure, which

guarantees an envy-free, equitable, and efficient allocation of goods

to both parties. The procedure is for disputes involving two parties

only, however, and just as the theory of social choice procedures is

much more complicated for three or more alternatives, the theory of

fair division procedures is much more complicated for three or more

parties.

For our exploration of fair division procedures for three or more

parties, we will focus on the case of a single homogeneous item. We

continue to use the cake-cutting metaphor as with Austin’s procedure

in Section 5.6. We saw that both the divide-and-choose method and

Austin’s method provide envy-free solutions for two people, but it is

not at all clear if either procedure can be extended to three or more

parties. In fact, it wasn’t until 1960 that a procedure guaranteeing
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an envy-free solution for three people was first discovered by John

L. Selfridge, and independently by John H. Conway. Since envy-

freeness is a stronger property than proportionality for more than

two parties, we can also look at allocations that are proportional but

not necessarily envy-free. Envy-freeness is of course more desirable,

but unfortunately significantly more difficult to satisfy. We’ll look at

envy-free procedures in Section 11.4.

The first procedure we consider was discovered by Hugo Steinhaus

in 1948. As Steinhaus discovered, many procedures that work for three

people and even procedures that work for four people do not easily

extend to the case of five or more. In 1967, however, Harold Kuhn

was able to extend Steinhaus’s procedure to work for any number of

parties.

DEFINITION. Suppose that a cake is to be divided among n parties.

We will say that a piece of cake is acceptable to a person if it worth at

least 1/n of the total value of the cake to that person. So an allocation

is proportional if and only if each party finds his or her piece of cake

acceptable.

The Steinhaus Lone-Divider Procedure

Suppose Annie, Ben, and Chris are dividing a cake amongst them-

selves.

Step 1: Annie divides the cake into three pieces, each of which she

finds acceptable.

Step 2: Ben and Chris each indicate which of the pieces he finds

acceptable. Note that each one must find at least one piece

acceptable; otherwise, he views each piece as less than one-

third of the cake, contradicting the fact that the sum of the

three pieces must be 100% of the cake.

Step 3: There are two distinct possibilities: either both Ben and

Chris find exactly one of the three pieces acceptable or at

least one of the two considers two or more pieces to be

acceptable. Note that by the remark above, exactly one of

these possibilities must occur.
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Step 3A: If both Ben and Chris find only one of the three pieces to be

acceptable, then there is at least one of the three pieces that

both find unacceptable. Give this piece to Annie. Reassem-

ble the two remaining pieces, and Ben and Chris can

split this portion using the two-player divide-and-choose

method.

Annie clearly finds her share acceptable since she was

the original divider. Ben and Chris agree that the remain-

ing cake is worth at least two-thirds of the total value

because they each considered Annie’s piece to be strictly

less than one-third the cake. The two-player divide-and-

choose method then guarantees each a piece worth at least

half of the remaining cake, that is, at least half of two-

thirds. Thus Ben and Chris each receive an acceptable

share of cake.

Step 3B: Suppose at least one of Ben and Chris, say Ben, finds

at least two pieces of cake to be acceptable. First, Chris

decides which of the three pieces he wants. Next, Ben

chooses one of the remaining pieces. Finally, Annie

receives the remaining slice.

Since Chris chooses first, he is guaranteed an accept-

able piece of cake. Ben finds two pieces acceptable, and at

least one of these remains after Chris chooses, so Ben is

also guaranteed an acceptable piece of cake. As the original

divider, Annie finds all three pieces acceptable, including

the one she receives.

The procedure above guarantees each of the three parties a propor-

tional piece of cake, but it is not an envy-free procedure. For example,

suppose that Ben and Chris find only one piece acceptable. When the

two pieces are reassembled and re-divided according to two-player

divide and choose, it might be that Annie considers one to be half the

cake and the other one-sixth of the cake. Annie envies the person with

half the cake. As another example, suppose that Ben finds two pieces

acceptable: he considers one of the two to be one-third of the cake,

and one to be one-half the cake. If Chris chooses the piece that Ben

thinks is more valuable, then Ben envies Chris.



11.5. Envy-Free Procedures 325

The Steinhaus method is therefore not an envy-free procedure. We

see from the above examples that it is not equitable either. In fact, it

is not efficient—it fails all three of our fairness criteria! Suppose the

cake has three components: one vanilla, one chocolate, one hazelnut.

If Annie likes only vanilla, Ben likes only chocolate, and Chris likes

only hazelnut, then the best solution for everyone involved is to give

Annie the entire vanilla portion of cake, Ben the chocolate, and Chris

the hazelnut. Each receives 100% of the total value of the cake. In the

procedure above though, Annie must divide the vanilla portion equally

among three pieces of cake in order to guarantee herself an acceptable

piece; the resulting allocation will therefore not be as good as the one

above. For the same reason, we see that envy-freeness and efficiency

are generally difficult to satisfy simultaneously. Any procedure that

requires the individual players to cut the cake themselves forces the

players to “play it safe” in order to guarantee themselves a proportional

share; in the example above, Annie would never put the entire vanilla

portion of cake into one share if she is unaware of Ben and Chris’s

preferences since she risks receiving a share with no vanilla at all.

Playing it safe though, as in the example, often prevents the parties

from achieving the best possible outcome.

...........................................................................................................

11.5 ENVY-FREE PROCEDURES

It wasn’t until 1960 that a procedure guaranteeing an envy-free divi-

sion of a single heterogeneous item was found by John L. Selfridge

and John H. Conway. Surprisingly it was known in the 1940s that

if everyone’s preferences are “countably additive,” then an envy-free

allocation definitely exists for any number of people. The proof uses

some advanced mathematical analysis, and only proves the existence

of such an allocation; it does not provide a method for achieving such

an allocation, and so is of little practical value.

The Selfridge-Conway Procedure

Annie, Ben, and Chris are again dividing a cake amongst themselves.

Step 1: Annie cuts the cake into three pieces that she considers to

be equally valuable.
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Step 2: Ben trims the piece he considers the largest of the three in

order to create a tie between the two largest pieces in his

opinion. The trimmings are temporarily set aside.

Step 3: Chris chooses the piece he prefers most. Ben next chooses

one of the two remaining pieces, with the restriction that he

must choose the piece that he trimmed if it remains. Annie

receives the last piece.

Before we divide the trimmings, we will show that at this

point in the procedure, the allocation is envy-free. Since

Chris is the first person to choose a piece, he envies no one.

When it is Ben’s turn to choose, at least one of the two pieces

he considered tied for largest remains, so Ben too envies no

one. Now Annie cut the cake into three equal pieces origi-

nally, and the trimmed piece was taken by either Chris or

Ben. So Annie is guaranteed to receive one of those original

pieces which is equal to or greater in size than both Ben’s

and Chris’s, so Annie also envies no one.

One possibility for dividing the trimmings would be to

repeat the procedure. Eventually the trimmings would be

negligible (quite possibly after only a few iterations in prac-

tice). We can achieve an exact envy-free division of the

remaining cake, however, with only two additional cuts.

Suppose that Chris chose the piece of cake that had been

trimmed.

Step 4: Ben cuts the trimmings into three pieces that he considers

to be equal in size. If Ben had received the trimmed piece of

cake, then Chris cuts the trimmings into three pieces.

Step 5: Chris chooses the piece he prefers most. Annie chooses next,

followed by Ben.

Notice that Chris does not envy anyone else since he chose first.

Annie does not envy Ben since she chooses before him and therefore

prefers her piece to his. To see that Annie does not envy Chris, recall

that Chris’s first piece was the one that was trimmed. Annie originally

divided the cake into what she considered to be three equal pieces. So



11.5. Envy-Free Procedures 327

even if Chris received all of the trimmings, that would give him a piece

of cake equal in value to Annie’s first piece, excluding her share of the

trimmings. Thus Annie does not envy Chris either. Finally, Ben envies

no one because he cut the trimmings into three equal pieces, one of

which he receives.

The Selfridge-Conway method therefore guarantees each of three

parties an envy-free division, although it does require more cuts than

the Steinhaus procedure. While this may not be very important for

cutting cake, it could raise issues if say land were being divided, since

someone might receive two pieces of non-contiguous property. As with

the Steinhaus procedure, the Selfridge-Conway method also fails to be

efficient and equitable (see exercises).

We saw earlier that efficiency and envy-freeness are difficult to sat-

isfy simultaneously when the parties themselves are doing the cuts.

Perhaps a better solution could be obtained by using an alternative

method. Another common category of cake-cutting methods involves

“moving-knife” procedures. Austin’s moving-knife procedure for two

parties, which we saw in Chapter 5, is one such method. We now con-

sider a moving-knife procedure for three people, first discovered by

William Webb, that uses Austin’s method.

The Webb Moving-Knife Procedure

Once again, Annie, Ben, and Chris are dividing a cake. Assume the

cake is rectangular.

Step 1: An unbiased fourth party, who unfortunately receives no

dessert, slowly moves a knife across the cake until some-

one yells “Cut!” to indicate that he or she values the piece to

be cut off at one-third of the cake. Suppose that Annie is the

one who yells “cut,” and let P1, represent the piece of cake

that is cut off.

Step 2: Annie and Ben now use Austin’s procedure to divide the

remaining cake into two pieces that they both consider

equally valuable. Let P2 and P3 denote these two pieces.
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Step 3: Chris chooses first from the three pieces P1, P2, and P3. Ben

chooses next, and Annie chooses last.

Chris envies no one since he gets to choose first. Since Annie yelled

“cut” the first time, she believes that P1 is exactly one-third of the cake.

She thinks that P2 and P3 are equally valuable and together are worth

two-thirds of the cake, so she thinks P2 and P3 are each exactly one-

third of the cake as well. Since she considers each of the three pieces

to be equally valuable, she envies no one. Finally, Ben considers P1 to

be less than one-third the cake since he was not the one to yell “cut.”

So he thinks P2 and P3 together make up more than two-thirds of the

cake. So Ben values P2 and P3 equally, and strictly more than P1. Since

Ben chooses second, at least one of P2 and P3 will be available, so he

envies no one.

As usual, though, we fail to achieve efficiency, and the Webb

procedure is not equitable either. We leave the proof as an exercise.

...........................................................................................................

11.6 ENVY-FREE PROCEDURES FOR FOUR OR MORE

PARTIES

In trying to find a method of guaranteeing an envy-free allocation of

cake for four parties, it is not unreasonable to attempt to generalize

our previous methods for three parties. Suppose Annie, Ben, Chris,

and David are the four participants. We could try to generalize the

Selfridge-Conway procedure as follows by first having Annie cut the

cake into four pieces she values equally. Then Ben and Chris could

trim some pieces (we would need to figure out exactly how many each

would trim), creating ties for the largest pieces in their estimations.

David would choose first, followed by the remaining players in reverse

order: Chris, Ben, Annie. Unfortunately, this method is not envy-free,

as Annie might envy one of the other three players. We leave the details

to the exercises.

It is possible to find an envy-free solution for four parties though.

In fact, one can find an envy-free solution for any number of people,

although the procedure becomes significantly more complicated. We

will content ourselves here with a four-person solution.
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Suppose Annie, Ben, Chris, and David are dividing a cake.

Step 1: Annie and Ben use Austin’s procedure to divide the cake into

two pieces they both consider to be exactly half the cake.

Step 2: Annie and Ben repeat Austin’s procedure on each half of the

cake. The result is four pieces of cake that Annie and Ben

agree are equally valuable.

Step 3: Chris trims one piece (if necessary) to create a tie for the two

largest pieces in his opinion. The trimmings are temporarily

set aside.

Step 4: David chooses first. Chris chooses next, under the condition

that he must choose the trimmed piece if it remains. Annie

and Ben choose next, in either order.

At this stage, we have an envy-free allocation of the cake

minus the trimmings. David chooses first, so envies no one.

Chris is guaranteed to receive one of the two pieces he con-

siders tied for largest so he envies no one. Annie and Ben will

each receive a non-trimmed piece of cake, which they con-

sidered to be equal in value to the other non-trimmed pieces

and strictly better than the trimmed piece; consequently they

envy no one either.

Next we distribute the trimmings. Notice that the

trimmed piece of cake was chosen by either David or Chris.

Call the person with the trimmed piece the "noncutter" and

the other the "cutter."

Step 5: Annie and the cutter (hence the name cutter) use Austin’s

procedure (three times as in Steps 1 and 2) to divide the

trimmings into four pieces that each considers equal.

Step 6: From these four pieces, they choose in the following order:

noncutter, Ben, Annie, cutter.

The entire cake has now been allocated, and the result is envy-free.

The noncutter had first choice of the trimmed pieces, so he envies no
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one’s share of the trimmings. Since he did not envy anyone’s original

piece either, he does not envy anyone’s share of the entire cake. The

same reasoning shows that Ben does not envy either Annie or the cut-

ter since he chooses before them. Ben does not envy the noncutter

either; of the four original pieces of cake, the noncutter received the

trimmed piece. Since Ben received an untrimmed piece, he would con-

sider his piece as valuable as the noncutter’s share even if the noncutter

received all of the trimmings. Since the noncutter does not receive all

the trimmings, Ben strictly prefers his share of cake. Finally, Annie and

the cutter consider each of the four shares of trimmings to be equally

valuable, so they envy no one’s share of trimmings. They did not envy

anyone’s original piece of cake either, so the entire allocation of cake

is envy-free.

Unfortunately, the procedure above does not generalize to more than

four parties. It is possible to achieve an envy-free division of cake for

any number n of parties, but the procedures are considerably more

complicated. Interestingly, the primary difference for the procedures

for five or more parties is to cut the cake into more pieces, in the first

stage, than there are players. For more on this see Brams and Taylor

(1996).

...........................................................................................................

11.7 ANOTHER IMPOSSIBILITY RESULT

We have seen procedures for three or more parties that guarantee

envy-freeness, but none were efficient or equitable. In fact, it is impos-

sible to guarantee all three fairness criteria for three or more parties.

Again, just as with Arrow’s theorem, we emphasize that we are not

merely claiming that no procedure guaranteeing all three criteria has

yet been discovered; we are claiming that no such procedure will ever

be discovered.

We first demonstrate this fact with an example of indivisible goods

with three parties and three items. The entry in the first column and

i-th row gives the number of points, out of a possible 100, that Annie

gives to item i; the second column gives Ben’s point valuations, and

the third column gives Chris’s point valuations. Note that each column

adds to 100.
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Annie Ben Chris

Item 1 64 46 43

Item 2 30 31 20

Item 3 6 23 37

In this example, it is impossible to distribute the three items in a

way that is efficient, equitable, and envy-free. The situation is actually

much worse. Notice that each person values item 1 the most, so the

two people that do not get item 1 will envy the one who does. Thus no

envy-free allocation exists for this example, even if we are willing to

sacrifice equitability and efficiency. Since all nine entries in the chart

are distinct, there is also no way to achieve an equitable allocation,

even if we are willing to sacrifice envy-freeness and efficiency. There are

efficient allocations, for example, the one in which Annie gets item 1,

Ben gets item 2, and Chris gets item 3. The only way to improve Ben

or Chris’s outcome would be to give one of them item 1, but this would

hurt Annie.

Now with adjusted winner, it was often necessary to divide one item

in order to achieve all three fairness criteria. With three or more par-

ties though, even allowing one item to be divided is not sufficient to

guarantee that an envy-free, efficient, and equitable allocation exists.

In fact, one can show that even allowing all items to be divided is not

sufficient in the example above.

In the case of indivisible goods which adjusted winner deals with,

we can use mixed integer programming to find an envy-free, equitable,

and efficient allocation if it exists. If such a solution does not exist,

however, a solution satisfying any two of the three can be found. Of

course, deciding which of the three criteria to sacrifice is not easy, and

may depend on the particular situation. In the example above, we can

obtain an efficient and equitable allocation by giving item 2 to Ben,

item 3 to Chris, and splitting item 1 approximately in the proportions

0.653, 0.235, 0.112 to Annie, Ben, and Chris, respectively.

...........................................................................................................

11.8 CONCLUSIONS

We began this chapter by proving that the adjusted winner procedure

is efficient. Thus, for two parties, it is always possible to achieve an

envy-free, equitable, and efficient allocation of goods. Moreover, we
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saw that unless one party has strictly one-sided information about the

preferences of the other party, it pays to be honest.

We next considered cake-cutting methods for three or more parties.

As with social choice procedures, with three or more parties, it is sig-

nificantly more challenging to find an allocation that satisfies all of the

desired criteria. We saw one method which guarantees each of three

parties a proportional, but not envy-free, piece of cake, and we saw

two methods which guarantee each of three or four parties an envy-

free piece of cake, though these methods do tend to get quite involved

as the number of parties involved grows. Unfortunately, not one of the

procedures we considered is efficient or equitable.

We ended the chapter with one last look at the case of indivisible

goods. One might hope that the adjusted winner procedure which was

so successful for two parties might generalize to three or more parties.

This turns out not to be the case, however, and we saw an example with

three items and three people where it is impossible to achieve all three

fairness criteria.

EXERCISES

1. Prove that after Stage 1 of the adjusted winner procedure (that is,

before the equitability adjustment), the division of goods is efficient.

2. Show that, as mentioned in Section 11.3, if Annie submits honest

point allocations and Ben submits false point allocations as follows,

then each person appears to get 52 8/11 points, although Ben truly

values his share at over 77 points.

Annie’s Sincere Item Ben’s Fake

Valuations Valuations

50 Townhouse 45

20 Red Sox Tickets 25

30 Klee painting 30

100 Total 100

3. Give an example to illustrate that the Selfridge-Conway method for

three parties fails to be

(a) efficient

(b) equitable
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4. Describe a moving-knife procedure that is equivalent to divide-and-

choose for two parties.

5. Given the choice between an allocation of cake that is equitable,

envy-free, or efficient, which would you choose? Explain thoroughly.

6. Give an example to demonstrate that the Webb moving knife

procedure for three parties is not

(a) efficient

(b) equitable

7. Suppose that the following represent the sincere point allocations

of Annie and Ben.

Annie’s Points Item Ben’s Points

40 House 20

5 Pool table 15

25 Artwork 10

20 Rare book collection 15

10 Boat 40

100 Total 100

Show that it is possible for either to do better by submitting

insincere point allocations if the other party submits sincere point

allocations.

8. Annie, Ben, Chris, and David divide a cake amongst themselves

according to the following procedure.

Step 1: Annie cuts the cake into five pieces that she considers

equally valuable.

Step 2: Ben trims up to two of the five pieces to create a three-

way tie between the largest three pieces. The trimmings

are temporarily set aside.

Step 3: Chris next trims one of the five pieces if necessary (per-

haps further trimming one of the pieces already trimmed

by Ben) to create a tie for the two largest pieces. The

trimmings are temporarily set aside.

Step 4: David chooses his favorite of the five pieces. Next Chris

chooses one of the largest pieces under the condition
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that if the piece he trimmed in Step 3 remains, he must

choose that piece. Ben chooses one of the largest pieces

next under the condition that if a piece that he trimmed

in Step 2 remains, he must choose one of those. Annie

then chooses one of the untrimmed pieces, at least one

of which must remain.

(a) Prove that after Step 4, that is if we disregard the trimmings

and the remaining fifth piece left unchosen, no one envies

anyone else.

9. Generalize the Selfridge-Conway procedure to four people: Annie,

Ben, Chris, and David. Annie cuts the cake into four pieces she

values equally. Ben and Chris then trim some pieces (how many?)

to create ties for largest. David chooses first, followed by Chris,

Ben, and Annie. Fill in the details, and show that Annie may envy

one of the other players with this procedure.

10. Consider the following fair division procedure for 3-people: Amy,

Beth, and Colin.

• Amy divides the cake into two pieces of equal value in her

opinion.

• Beth takes the larger (in her opinion) of the two pieces, and

gives the remaining piece to Amy.

• Amy and Beth each divide their piece of cake into three

pieces of what they consider to be equal value. There are

now six pieces of cake.

• Colin chooses one piece of cake from Amy’s three pieces,

and one piece of cake from Beth’s three pieces. Amy keeps

her remaining two pieces and Beth keeps her remaining two

pieces.

(a) Is this procedure proportional? Why or why not?

(b) Is this procedure envy-free? Why or why not?

11. We saw that for three or more people, it is not always possible

to find an allocation of divisible goods that is equitable, envy-free,

and efficient. Which of the three fairness criteria would you most

be wiling to sacrifice if you were guaranteed the other two? Explain

thoroughly.

12. We saw that for three or more people and indivisible goods, it is

not always possible to find an allocation that is efficient, equitable,

and envy-free. Suppose that three heirs, Alex, Bella, and Cate, are
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dividing their parents’ estate. There are 6 items to be assigned:

the thoroughbred horse Old Ironside, the rare book collection, the

original Picasso, the 1957 Chevy Convertible, the house on the

Cape, and the Victorian house in Providence. Each of the three

heirs allocates a total of 100 points each to the six items. Let

A1,A2, . . . ,A6 be the points assigned by Alex, B1,B2, . . . ,B6 the

points assigned by Bella, and C1,C2, . . . ,C6 the points assigned

by Cate. Let x1, x2, . . . , x6 be the fraction of each item assigned to

Alex, y1, y2, . . . , y6, the fraction of each item assigned to Bella, and

z1, z2, . . . , z6, the fraction of each item assigned to Cate.

(a) What is the value of A1+A2+ . . .+A6? The same value should

hold as well for B1 + B2 + . . . + B6 and C1 + C2 + . . . + C6.

(b) What is the value of x1 + y1 + z1? The same value should hold

for xi + yi + zi for i = 2, 3, 4, 5, 6.

(c) Write down a set of 6 inequalities that hold if and only if the

allocation is envy-free.

(d) Write down a set of equalities that hold if and only if the

allocation is equitable.

13. Eighteen cookies are to be divided between three good friends

(Michael, Mike, and Peter) after a hard night’s work in Athens,

Georgia. There are six chocolate chip cookies, 6 peanut butter cook-

ies, and 6 sugar cookies with rainbow sprinkles. Michael is thinking

of going vegan (he’s already a vegetarian), so the chocolate chip

cookies are worthless to him (fortunately, the peanut butter and

sugar cookies were made without eggs, butter, or milk). He likes

the peanut butter and sugar cookies equally.

Mike is allergic to peanuts, so he cannot eat the peanut butter

cookies. He likes the chocolate chip and sugar cookies equally.

Peter likes the chocolate chip and peanut butter cookies equally

but does not like the sugar cookies at all—the sprinkles fall into

his mandolin. Give examples of allocations of cookies (all 18 must

be accounted for) that are

(a) envy-free but not equitable

(b) equitable but not envy-free

14. Suppose that Annie, Ben, Chris, and David are dividing a collection

of cupcakes among them. There are four varieties: lemon meringue

cupcakes, peanut butter cupcakes with chocolate frosting, carrot

cake cupcakes, and chocolate espresso cupcakes. Annie detests
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carrot cake and considers those cupcakes worthless. She likes the

lemon meringue and peanut butter cupcakes equally, but thinks the

chocolate espresso are twice as good. Ben is allergic to peanuts, so

the peanut butter cupcakes are worthless to him, but he likes the

other flavors equally. Chris tries to avoid caffeine, so while he likes

the chocolate espresso cupcakes, he thinks the lemon meringue

are twice as good. He thinks the lemon meringue and peanut but-

ter are equal in value, and three times as good as the espresso.

Finally, David likes all cupcakes equally, and just wants as many

as possible.

Show that the envy-free procedure described in Section 11.6 can

be used in this setting to find an envy-free allocation of cupcakes.

15. The following example is due to J.H. Reijnierse and J.A.M. Potters.

Annie Ben Chris

Item 1 40 30 30

Item 2 50 40 30

Item 3 10 30 40

Prove that if Annie, Ben, and Chris distribute their points as

shown, then it is impossible to achieve all three fairness criteria

without dividing any of the items.
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...........................................................................................................

12.1 INTRODUCTION

This chapter contains a proof of a very pretty theorem due to Barry

O’Neill that prescribes optimal play (for rational bidders) in the dol-

lar auction from Chapter 6. We prove this theorem in Sections 12.2

and 12.3. In Section 12.4, we explain the sense in which a Vickrey

auction is a “generalized Prisoner’s Dilemma.”

...........................................................................................................

12.2 STATEMENT OF THE STRONG VERSION OF

O’NEILL’S THEOREM

To facilitate the discussion in this section and the next, we shall work

with the special case of the dollar auction in which s = 20 and b =
100. If the units are nickels, this corresponds to the stakes being one

dollar and the bankroll five dollars. We also assume throughout this

section and the next that we are working with the setup as described

in Chapter 6: the second high bidder pays whatever he or she bid and

receives nothing, both bidders use the conservative convention, etc.
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Recall that O’Neill’s theorem tells us to calculate the optimal opening

bid (for bankroll b and states s) by subtracting s − 1 from b repeatedly

until we reach the point where one more subtraction would make the

result zero or less than zero. This point reached is the optimal opening

bid. If b = 100 and s = 20, this means subtracting 19 repeatedly from

100 to obtain the sequence

100, 81, 62, 43, 24, 5

at which point we stop since one more subtraction would yield −14,

which is less than zero. Hence, according to O’Neill’s theorem, the

optimal opening bid in this case is 5 units, which, if the units are

nickels, is twenty-five cents.

The statement of what we shall call the “strong version of O’Neill’s

theorem” requires a bit of terminology. Let’s agree to call the bids 5, 24,

43, 62, 81, and 100 special numbers. Thus, the rational opening bid,

according to O’Neill’s theorem, is the smallest special number. The

sense in which the rest of these numbers are “special” will be made

clear in a moment.

Let’s also say that a bid is rationally unavailable to a bidder if it

exceeds his or her previous bid (or zero, if no one has bid yet) by 20

or more. The choice of terminology is explained by the following.

LEMMA A. In the dollar auction with the conservative convention

and s = 20, it is never rational to choose a bid that exceeds your

previous bid (or zero, if no one has bid yet) by 20 or more.

PROOF. See Exercise 1. (This exercise also occurred at the end of

Chapter 6.)

If a bid is not rationally unavailable, we will say that it is rationally

available. Notice, however, that a rationally available bid is not nec-

essarily a rational choice for a bid; it is simply not irrational for the

particular reason we are discussing (i.e., exceeding your previous bid

by 20 or more).

We shall need one more lemma in the proof of O’Neill’s theorem.

We record it here.
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LEMMA B. In the dollar auction with the conservative convention,

suppose that there is a legal bid that

1. is rationally available to you (that is, it exceeds your last bid by at

most 19), and

2. will result in a pass by your opponent.

Then making this bid yields a strictly better outcome for you than

does passing or bidding higher than this. (Thus, while we cannot say

that making this bid is definitely the rational thing to do, we can say

that neither passing nor bidding higher than this is rational.)

PROOF. See Exercise 2.

The proof of O’Neill’s theorem involves doing something that should

strike the reader as slightly strange: verifying the truth of an asser-

tion that is strictly stronger than the theorem we are trying to prove.

Moreover, this is not something we are doing because we think the

stronger assertion is worth any extra effort it might entail (although

we would argue that it does). The point is that the proof technique

we shall be using (known as mathematical induction) often requires

proving a stronger statement than the assertion in which one is really

interested.

The stronger version of O’Neill’s theorem that we consider provides

an answer to the following question: Suppose two irrational people

(Bob and Carol) have been engaged in the dollar auction and sup-

pose Bob made the last bid, which we shall denote by the letter x.

Suppose now that Bob wants you to take over for him (even though

x may well exceed the stakes at this point), but he and Carol at least

provide you with the guarantee that Carol will be rational from now

on (and that she knows you are rational, etc.). Should you pass or bid?

If you choose to bid, how much?

In terms of the game-tree analyses we did in Chapter 6, the question

in the previous paragraph is equivalent to asking the following: Given

a node n on the tree, suppose we erase everything except that part

of the tree below the node n and connected to it by a branch. What

is left is again a tree, and it can be “pruned” as before. Which of the
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nodes immediately below and connected to the node n survives the

pruning process? The node n (which becomes the top of the new tree)

corresponds to the “state of the auction” when Bob turns it over to

you; the surviving node tells you what (if anything) to bid. (Exercises

3 and 4 provide specific examples of this kind of game-tree analysis.)

The answers to the questions in the two previous paragraphs are

provided by the following:

THEOREM (Strong Version of O’Neill’s Theorem). Suppose you are

engaged in the dollar auction with the stakes s = 20, the bankroll b =
100, and the conservative convention. Assume that your opponent’s

last bid was x (even though bidding x may have been an irrational

thing for him or her to have done). Assume that from this point on,

your opponent will definitely be rational, knows you will be rational,

knows that you know that he or she will be rational, etc. Then the

rational course of action is for you to

1. bid the smallest special number that is greater than x if one

exists and is rationally available to you, and

2. pass otherwise.

COROLLARY (O’Neill’s Theorem). The optimal opening bid in the

dollar auction with the conservative convention is the smallest special

number.

Our decision to work with the special case s = 20 and b = 100 was

based on a desire to simplify the proof. The statement of the general

version is an easy variant of the above (see Exercise 5).

Notice that the conclusion of the strong version of O’Neill’s theorem

is really a sequence of 100 statements (that we choose to number from

0 to 99 instead of from 1 to 100):

Statement 0: If x = 100, then you should pass.

Statement 1: If x = 99, then you should bid 100 if it is rationally

available, and pass otherwise.
...
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Statement 37: if x = 63, then you should bid 81 if it is rationally

available, and pass otherwise.
...

Statement 99: If x = 1, then you should bid 5 if it is rationally

available, and pass otherwise.

It might seem more natural to have reversed the ordering of the

statements so that Statement 1 (or 0) would correspond to x = 0; the

reason we chose not to do so will be clear in the next section.

The proof technique used in establishing the strong version of

O’Neill’s theorem is called mathematical induction. Our choice to work

with the special case b = 100 and s = 20 in the theorem was made

so that we could focus on a concrete illustration of the “ladder climb-

ing” idea (illustrated in what follows) that underlies this technique of

proof.

To prove the strong version of O’Neill’s theorem, we must verify that

every one of the 100 statements in its conclusion is true. Notice that

Statement 0 (corresponding to x = 100) is trivial to verify: The theorem

says you should pass in this case, and you have no choice but to do so

since your opponent just bid the whole bankroll. At the other extreme,

if we had a Statement 100 (corresponding to x = 0) it would literally be

O’Neill’s theorem as stated in Chapter 1, and this is, after all, what we

are primarily interested in. In fact, our choice to have O’Neill’s theorem

stated as a corollary instead of built into the theorem as Statement 100

was based entirely on a desire to avoid having x play two different roles

in the proof depending upon whether we were talking about the first

bid or not. Exercise 6 asks the reader to recast the theorem and proof

to avoid needing the corollary.

Thus, in some sense, the statements become harder to verify as x

moves down from 100 to 99 to 98 and on down to 1. So, if we start by

verifying Statement 0 (x = 100, which we have already done), and then

move to Statement 1 (x = 99), and then to Statement 2 (x = 98), and

so on, what is it that will allow us to continue to succeed in proving

the statements are true as they become harder and harder to verify?

The answer is that when we try to verify the statement correspond-

ing to, say, x = 97, we will have something more to work with than if

we tried to prove it right now. The “something more” we will have is

the knowledge that the statements corresponding to x = 100, x = 99,
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and x = 98 are definitely true and thus can be used in our verification

of the statement corresponding to x = 97. This is the key idea behind

mathematical induction.

To see how this goes, we will start with x = 100 and verify the first

few assertions. (If we were to provide a separate argument for each of

the 100 statements, this would be a very long proof. Fear not.)

Statement 0 (x = 100)

We have already verified this one, and it turned out to be com-

pletely trivial: Given the fact that our opponent has just bid the whole

bankroll, we have no choice but to pass, and this is what the theorem

prescribes since no special number is available to us as a bid under

the rules of the auction.

Statement 1 (x = 99)

There are only two available options—pass or bid 100. Notice also

that 100 is a special number, and so the theorem says we should bid

it if it is rationally available to us, and pass otherwise. But if 100 is

rationally available to us, then Lemma B says we should not pass (since

we know a bid of 100 will result in pass by our opponent). Thus, we

should bid 100 in this case as the theorem says. On the other hand,

if 100 is rationally unavailable to us, then we should not bid it (by

Lemma A), and so we should pass in this case, which is once again

what the theorem says.

Statement 2 (x = 98)

CLAIM. Passing is better than bidding 99.

PROOF. Notice that 100 is certainly rationally available to our oppo-

nent since it exceeds his or her previous bid by only 2. Thus, if we bid

99, then we know, because of the truth of Statement 1 (which is the

x = 99 case), that our opponent will bid 100. Thus, bidding 99 will

result in our losing 99, and this is strictly worse for us than passing.
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Hence, we should either pass or bid 100. Lemma B now says that

we should bid 100 unless it is rationally unavailable to us, in which

case we should pass, by Lemma A. Thus, we have verified the theorem

in this case.

Statement 3 (x = 97)

CLAIM. Passing is better than bidding 99 or 98.

PROOF. Notice that 100 is certainly rationally available to our oppo-

nent since it exceeds his or her previous bid by only 3. Thus, if we bid

99 or 98, then we know, because of the truth of Statements 1 and 2

(which are the x = 99 and x = 98 case), that our opponent will bid

100. Thus, bidding 99 or 98 will result in our losing 99 or 98, and this

is strictly worse for us than passing.

Hence, we should either pass or bid 100. Lemma B now says that

we should bid 100 unless it is rationally unavailable to us, in which

case we should pass by Lemma A. Thus, we have verified the theorem

in this case.

Statements 4 (x = 96) Through 19 (x = 81)

The arguments for x = 96, . . . , 81 are analogous to what we just did

because, in all these cases, 100 is rationally available to our opponent.

(Exercise 7 asks for the case x = 96.) Thus, we can assume we have

verified the statement for x = 81 through x = 100. Notice also that if

x = 81, then 100 is rationally unavailable to us, and so we should pass.

Let’s do one more.

Statement 20 (x = 80)

If 81 (which is the smallest rational number greater than x) is rationally

unavailable to us, then so is every bid greater than 81 and so we should

pass, by Lemma A. If 81 is rationally available to us, then a bid of it

will result in a pass by our opponent, since 100 (the next largest special

number) is rationally unavailable to him since it exceeds his last bid

of 80 by 20, and we know that Statement 19 (x = 81) is true. Lemma B

now guarantees that 81 is the rational bid for us to make in this case.
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At this point, the reader is probably convinced that we could present

a sequence of 100 proofs—each one built upon the facts established by

the preceding ones—verifying all 100 statements corresponding to the

100 possible previous bids by our opponent. What we need, of course,

is an argument that convinces us of the existence of the sequence of 100

proofs without actually producing each one of them. This is precisely

what a general proof by mathematical induction does. We illustrate

this for the theorem at hand in the following section.

...........................................................................................................

12.3 PROOF (BY MATHEMATICAL INDUCTION)

OF THE STRONG VERSION OF O’NEILL’S

THEOREM

For n = 0 to n = 99, let “Statement n” be the following assertion:

Statement n: If your opponent’s last bid was x = 100 − n and it is

now your bid, then the rational course of action is for you to bid the

smallest special number that is greater than x if this bid is rationally

available to you, and to pass otherwise.

Notice first that Statement 0 (corresponding to the state of the auc-

tion being x = 100) is certainly true, since the rules of the auction force

you to pass at this point and passing is what the statement prescribes

in this case. (Recall also that we are assuming that everyone is rational

from this point in the auction on.)

For the so-called inductive step, assume that n is an arbitrary num-

ber between 0 and 98 and that we have verified the truth of Statement

0 through Statement n. This assumption of the truth of Statements 0

through n is called the inductive hypothesis. We want to show that

Statement n + 1 is also true. Thus, we are assuming that

1. your opponent’s last bid was x = 100 − n,

2. it is now your bid, and

3. we know what rational play will yield when anyone’s last bid is

between x and 100.
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Notice for 3 that, although we are phrasing our arguments as if

they are applying to the reader, the conclusions we reach surely apply

equally well to the reader’s opponent.

Let La denote our last bid and let Sp denote the smallest special

number greater than x. Thus:

La < x < Sp.

Notice that Sp is rationally available to our opponent since it is the

smallest special number greater than x and so exceeds x by at most

19. Thus, if we bid anything from x + 1 to Sp − 1, we know from the

inductive hypothesis that our opponent will bid Sp and then we will

pass. Thus, bidding anything from x + 1 to Sp − 1 is worse for us than

passing and so is not rational.

On the other hand, bidding Sp will—because of the inductive

hypothesis again—definitely result in a pass by our opponent, since

the next special number is rationally unavailable to him or her. This

shows that bidding anything greater than Sp is not rational (since it is

worse for us than a bid of Sp).

Thus, the only candidates for a rational bid left for us are passing

and bidding Sp. Lemmas A and B now yield the desired result: If Sp

is rationally unavailable to us, we should pass by Lemma A. If Sp is

rationally available to us, then (since we know it will force a pass by

our opponent) we should not pass, by Lemma B. This completes the

proof.

Proof of the Corollary (O’Neill’s Theorem).

The theorem guarantees us that if we make an opening bid less than

the smallest special number Sp, our opponent will respond with Sp as

a bid and we will pass, thus losing money. On the other hand, if we

open with Sp as a bid, then our opponent will pass (since the next

larger special number will be rationally unavailable to him or her).

Winning with a bid of Sp is better for us than winning with a larger

opening bid (or losing). Hence, we have shown that opening with a

bid of Sp is the rational course of action, as desired.
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...........................................................................................................

12.4 VICKREY AUCTIONS AS A GENERALIZED

PRISONER’S DILEMMA

Rothkopf, Teisberg, and Kahn (1990) discuss several reasons why

Vickrey auctions are seldom used in the real world. Five of these

reasons are dismissed by the authors and two are supported: (1) con-

cerns over bidding cheating, and (2) bidder reluctance (based on a

consideration of future transactions) to use truth-revealing strate-

gies. In this section, we offer a more structural explanation, based

on Taylor–Zwicker (1995c), of the scarcity of Vickrey auctions. This

explanation is based on the observation that a Vickrey auction is a

generalized Prisoner’s Dilemma.

Recall from Chapter 4 that Prisoner’s Dilemma (PD) is the following

2 × 2-ordinal game:

C

C

Row

Column

(3, 3) (1, 4)

(4, 1) (2, 2)N

N

A strategy in this case is a choice of “C” or “N”. Strategies are often

denoted by the Greek letters σ and τ . Thus, we might say: “Consider the

strategy σ = C for the Row player.” If we were talking about auctions

instead of 2 × 2 ordinal games, a strategy would be a choice of what

to bid. Thus, we might say: “Consider the strategy σ that corresponds

to bidding one’s true valuation of the worth of the object being sold.”

The thing that makes PD paradoxical is that each player has a dom-

inant strategy of N, but the resulting (2, 2) outcome is worse for both

players than the (3, 3) result arrived at if both were to use the strategy

C. Thus, we might say that the strategy sequence 〈C, C〉 “dominates”

the strategy sequence 〈N, N〉 in the sense that the use of 〈C, C〉 yields

a better outcome for both players than the use of 〈N, N〉. Notice here

that we are talking about the use of a sequence of strategies, meaning



12.4. Vickrey Auctions as a Generalized Prisoner’s Dilemma 347

that Player 1 (Row) uses the first strategy in the sequence and Player

2 (Column) use the second strategy in the sequence.

To speak of generalized versions of PD, we need to generalize the

notions from the previous paragraph. We know what it means to say

that a strategy σ dominates a strategy τ : σ yields a strictly better out-

come for the player using it than does τ . For our purposes, though, we

are more interested in the notion of a strategy σ weakly dominating a

strategy τ , which, we recall, means that σ yields an outcome at least

as good for the player using it as does τ in every scenario, and there

is at least one scenario in which σ yields a strictly better outcome for

that player than does τ .

Turning now to sequences of strategies in an n-person game, let’s

say that the sequence 〈τ1, . . . , τn〉 of strategies weakly dominates the

sequence 〈σ1, . . . , σn〉 of strategies if and only if:

1. the outcome resulting from the players use of the τ ’s is at least as

good for every player as the outcome resulting from the players

use of the σ ’s, and

2. the outcome resulting from the players use of the τ ’s is strictly

better for at least one player than the outcome resulting from

the players use of the σ ’s.

With this terminology at hand, we can now offer the following:

DEFINITION. An n-person game will be called a generalized Prisoner’s

Dilemma if and only if there are two sequences of strategies,

〈σ1, . . . , σn〉 and 〈τ1, . . . , τn〉

such that

1. for every i, the strategy σi is the unique strategy for Player i that

weakly dominates every other strategy for Player i, and

2. the sequence 〈τ1, . . . , τn〉 weakly dominates the sequence

〈σ1, . . . , σn〉.
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Where this is all heading is given by the following:

PROPOSITION. A Vickrey auction (in which the players are the n

bidders, but not the bid-taker) is a generalized Prisoner’s Dilemma.

PROOF. For each i let σi be the truth-revealing strategy for Player i.

Then we know from the theorem in the last section that σi weakly domi-

nates every other strategy that is available to Player i. However if τi is the

strategy in which Player i bids (say) exactly half of what he or she thinks

the object is really worth, then the sequence 〈σ1, . . . , σn〉 is weakly dom-

inated by the sequence 〈τ1, . . . , τn〉. That is, for every bidder except the
high bidder, the outcome resulting from the players’ use of the τ ’s is the

same as the outcome resulting from the players’ use of the σ ’s (i.e., a

loss of the auction), while, for the high bidder, the sequence 〈τ1, . . . , τn〉
yields a strictly better outcome than the sequence 〈σ1, . . . , σn〉 since he

or she pays only half as much for the object won.

The above theorem suggests why bidders might be reluctant to bid

honestly in a Vickrey auction. For example, suppose we have six con-

tractors bidding for a job. Then, even if all six can be convinced that

they can individually do no better than to make honest bids, it is both

true and relatively transparent that cooperation benefits all six in the

long run. Moreover, the phrase in the long run is quite appropriate here,

since in many such situations it is the same collection of six contrac-

tors who will be engaged in repeated play of this game (and repeated

play is well known to produce cooperation in PD). Moreover, in good

economic times, bidders such as these six contractors have even more

incentive to cooperate, since losing one auction simply means a short

delay before it is their “turn” to win.

...........................................................................................................

12.5 CONCLUSIONS

In this chapter we proved Barry O’Neill’s theorem giving the optimal

opening bid in the dollar auction. We also illustrated the sense in which

a Vickrey auction is a generalized prisoner’s dilemma.
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EXERCISES

1. (a) Show that in the dollar auction, it is never rational to increase

your previous bid by more than s units. (Do not use O’Neill’s

theorem.)

(b) Show that in the dollar auction with the conservative conven-

tion, it is never rational to increase your previous bid by more

than s− 1 units. (Do not use O’Neill’s theorem.)

2. Prove Lemma B from Section 12.2.

3. In the dollar auction with b = 6 and s = 3, assume that you (Player

1) open with a bid of 2 as O’Neill’s theorem says, but your oppo-

nent irrationally responds with a bid of 3. Assume, however, that

from now on your opponent will be rational, follow the conservative

convention, etc.

(a) Draw the part of the game tree for b = 6 and s = 3 that has

a bid of 3 by Player 2 in place of the start node. (The tree will

have eight terminal nodes.)

(b) Do the game tree analysis (backward induction) as in Chapter 6

to show that your optimal response is now to bid 4 as

prescribed by the strong version of O’Neill’s theorem.

4. Redo Exercise 3 under the assumption that your opponent res-

ponded to your opening bid of 2 with a bid of 4.

5. Define “special bid” for the general case where the stakes are

s and the bankroll is b in O’Neill’s theorem, and then state the

corresponding strong version of O’Neill’s theorem.

6. Restate the strong version of O’Neill’s theorem so that it involves

101 statements instead of 100 and so that Statement 100 is

O’Neill’s theorem. (This requires slightly changing the role of x.)

7. Write out the verification of the x = 96 case in the proof of the

strong version of O’Neill’s theorem.
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...........................................................................................................

Chapter 1

The inspiration for much of what is here is Straffin’s early work (1977),

although he did not consider independence of irrelevant alternatives

in this context. (We did so to make Arrow’s theorem in Chapter 7 a

little easier.) As mentioned in the preface, the student team of Eskin,

Johnson, Powers, and Rinaldi contributed to the exercises. The impos-

sibility theorem, as far as we know, originated in the first edition of

this book.

...........................................................................................................

Chapter 2

Most of the material in Chapter 2 is based on joint work of Alan

Taylor and William Zwicker, much of which is included in Taylor and

Zwicker (1999). The nonweightedness of the U.N. Security Council is

well known. The Canadian System was first analyzed by Marc Kilgour

(1983) and is also treated in Straffin (1993). The characterization
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theorem is due to Taylor and Zwicker (1992), although an early ver-

sion in a different context (and via a very different proof) goes back to

Elgot (1960).

...........................................................................................................

Chapter 3

The material on the Shapley-Shubik index, the European Economic

Community, and the paradox of new members is well known—see

Brams (1975), for example. More on the Banzhaf index can be found

in Dubey and Shapley (1979).

...........................................................................................................

Chapter 4

Dominant strategies and Nash equilibria are standard fare, as is our

discussion of Prisoner’s Dilemma and its application as a model of

the arms race. The game of Chicken is well known, as is its use in

modeling the Cuban missle crisis (although the second model given

was new to the first edition of this book). The material on the Yom

Kippur War and the theory of moves is from Brams (1994), although

our rules are slightly different. The OPEC example in the exercises, and

the treatment of Newcomb’s program there both originated in the first

edition of this book, although others, including Steven Brams, have

noticed that there are games in which a player has a dominant strategy

that should not be used if he or she is moving first. The game-theoretic

analysis of Tosca goes back to Rapoport (1962) and Hypergame is due

to Zwicker (1987).

...........................................................................................................

Chapter 5

The material on apportionment is standard fare, while the example

in Section 5.4 is a slight modification of a known result. The adjusted

winner procedure is due to Steven Brams and Alan Taylor.
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...........................................................................................................

Chapter 6

The dollar auction is attributed to Martin Shubik (1971). Our descrip-

tion (and the use of the conservative convention) is based on the article

by Barry O’Neill (1986). The game-tree analyses and the section on

limitations use well-known techniques, but their application in this

context may be new. More on the dollar auction can be found in

Leininger (1989).

...........................................................................................................

Chapter 7

The version of May’s theorem given is a slight elaboration of the usual

one. For more on this, see Young, Taylor, and Zwicker (1995). Our

proofs of Arrow’s theorem and Sen’s theorem are based on well-known

ideas, but differ from the usual in what we think are some signifi-

cant ways. For more on Arrow’s Theorem, see Kelly (1978), and for a

deeper treatment of Sen’s theorem, see Zwicker (1991). The proof of

the Gibbard-Satterthwaite theorem is from Taylor (2002, 2005).

...........................................................................................................

Chapter 8

Virtually all of the material in this chapter is due to Taylor and Zwicker

and can be found in Taylor and Zwicker (1993, 1999). Results similar

to the theorem in Section 8.2, but from quite a different context, were

obtained by Gableman (1961) in his Ph.D. thesis.

...........................................................................................................

Chapter 9

Most of what is in Chapter 9 is based on well-known material cited

there. For more on ordinal notions of power, see Taylor and Zwicker

(1999). The theorem on voting blocs is due to Straffin (1977, 1980).
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...........................................................................................................

Chapter 10

The models of deterrence are somewhat standard fare, as is the

material on two-person zero-sum games. The probabilistic model of

deterrence is due to Brams (1985a). The idea in exercises 3 and 4 is

not ours.

...........................................................................................................

Chapter 11

The four-person moving-knife scheme in Section 11.6 is due to Brams,

Taylor, and Zwicker. The fact that AW does not extend to three parties is

due to J.H. Riejnierse and J.A.M. Potters. For more on what is treated

here, see Brams and Taylor (1996).

...........................................................................................................

Chapter 12

The proof we give of O’Neill’s theorem originated in the first edition,

but it uses the same ideas as in O’Neill’s original proof (1986). The

Vickrey auction material is well known, although viewing it as a gene-

ralized Prisoner’s Dilemma is from Taylor and Zwicker (1995).
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