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ABSTRACT

THE GEOMETRY OF TANGENT BUNDLE AND ITS
APPLICATIONS

Stileyman Tek
M.S. in Mathematics
Supervisor: Prof. Dr. Metin Giirses
September, 2003

In this thesis, we first give a brief summary of the Riemannian Geometry
which is the extension of Euclidean Geometry. Later we introduce the Finsler
Geometry and the geometry of tangent bundle. Finally we give the applications
of the geometry of the tangent bundle to the physics. We find Schwarzschild-like

spacetime solutions and modified red shift formula.

Keywords: Riemannian geometry, Finsler geometry, the geometry of tangent bun-
dle, Schwarzschild-like spacetime.
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OZET

TANJANT DEMETI GEOMETRISI VE
UYGULAMALARI

Stileyman Tek
Matematik, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Metin Giirses
Eyliil, 2003

Bu tezde, ilk once Oklid Geometrisinin genellestirilmisi olan Rieman Ge-
ometrisinin kisa bir 6zetini verecegiz. Sonra Finsler Geometri ve tanjant demeti
geometrisini tanimhyacagiz. Son olarak tanjant demeti geometrisinin fizige
uygulamasi olarak Schwarzschild-gibi ¢oztimlerini ve degistirilmis kizil kayma
formiiliinii verecegiz.

Anahtar sézciikler: Rieman geometrisi, Finsler geometri, tanjant demeti ge-

ometrisi, Schwarzchild-gibi uzay zaman geometrisi.
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Chapter 1

Introduction

Euclid constructed his geometry on flat spaces. Euclidean Geometry is based on
the points, lines, planes, angles, etc. in R™ and on some fundamental relation-
ships between them given by some propositions and theorems which themselves
follow from some axioms. (Pythagoras’ Theorem, formulas in trigonometry, etc.)
To understand the nature we need to construct geometry on spaces which are not
flat. Gauss introduced nonflat spaces by studying 2-surfaces in R?. He measured
the inner angles of a triangle whose vertices the peaks of three high mountains
far apart in Germany, and tried to guess which geometry reflected the nature or
the real world. Later G. F. B. Riemann, in his Habilitationsschrift, “Uber die
Hypotheses, welche der Geometrie grund-liegen” in 1854, opened an era in Geom-
etry and in other areas of Mathematics and also in other branches of science. He
proposed the notion of “Mannigfaltigkeiten” (manifolds) which are locally home-
omorphic to Euclidean spaces. Then he introduced the notion of Riemannian
metric which is needed to measure the length of curves, distance between two
points, angles between vectors, etc., on a manifold. Riemannian metric is defined

by a positive definite inner product as
ds® = g;j(u)du'du’

where u' are local coordinates of an open subset U of the manifold and g;; = g;; are

smooth functions on U. He introduced the notion of curvature which is a measure
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of how much a surface is curved. A zero curvature surface in Riemannian geom-
etry can be thought as an Fuclidean plane. Riemann’s idea was developed later
by T. Levi-Civita and Elwin Christoffel by introducing the notion of torsion-free
and metric-compatible connection which is called Christoffel Levi-Civita connec-
tion. This connection is one of the main tools in the classical tensor calculus.
Tensor calculus plays an important role in the general relativity theory which
was developed by Einstein in 1916 [1]-[4].

Riemann constructed his metric as a quadratic differential form. He recog-
nized that his metric is a special case and thought there must be a general case.
Paul Finsler introduced a metric on an m dimensional manifold M in the general

case. He introduced the Finsler metric in his thesis in 1918 as
ds = F(u;du), w= (u',...,u™), du= (du',... du™),

where F(u; X) is the Finsler function. Details about the Finsler function and
Finsler Geometry are given in Chapter 3. There is a close relation between
Finsler geometry and calculus of variations. As Riemannian geometry, Finsler
geometry also plays an important role in other areas of mathematics and has
applications to other branches of science like biology, control theory, engineering
and physics [5]-[13].

Finsler geometry is based on the projectivised tangent bundle (PT'M) which
is obtained by using line bundles or sphere bundle (SM) of a Finsler manifold
M instead of T'M in Riemannian geometry. Berwald, Cartan and Chern defined
connections on Finsler manifold in 1926, 1934 and 1948, respectively. Cartan
connection is metric-compatible but it has torsion. Chern connection is torsion-
free and almost metric-compatible which is the generalization of the Christoffel
Levi-Civita connection. Chern connection differs from the Berwald connection by
the term A which will be introduced in Chapter 3. In Finsler geometry we have
horizontal-horizontal and horizontal-vertical curvatures. Vertical-vertical curva-
ture vanishes identically. The Riemannian curvature is called as the horizontal-
horizontal curvature [14], [15], [16].

K. Yano and E. T. Davies [18] constructed geometries on the tangent bun-

dles of Finsler and Riemannian manifolds in 1963. By using the components of
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fundamental tensor g;; they constructed a metric on the tangent bundle. For the
ease of calculations they introduced the special frames and also the anholonomic
basis. They defined the adapted Christoffel Levi-Civita connection and curvature
on the tangent bundle. Components of that adapted Christoffel Levi-Civita con-
nection and curvature tensor have extra terms different from the classical ones

which come from the anholonomic basis.

Howard E. Brandt in 1991 [19] constructed a metric of the 8-dimensional
spacetime tangent bundle by using the proper acceleration a, which is given in
Einstein’s general relativity theory. He adapted the results of K. Yano and E.
T. Davies’s work [18] and used them in the spacetime tangent bundle which is
constructed from the spacetime and the four-velocity space. In the same work he

also calculated the Riemannian scalar curvature of the spacetime tangent bundle.

Howard E. Brandt again in 1991 [20] defined an action on the bundle manifold
and considered the maximal acceleration invariant fiber bundles which are defined
on a special spacetime as Riemannian Schwarzschild-like spacetime. By using the
results of [19] and the Euler-Lagrange equations of motion from this action, he
found the Schwarzschild-like solutions. He obtained the modified red shift formula

for a static emitter and observer in Schwarzschild-like spacetime.

In Chapter 2 we give a brief summary of the Riemannian geometry. We define
a metric and a linear connection on a manifold for the calculation of curvature
tensors and geodesics. Then, we introduce the curvature which is one of the

invariants of a manifold.

In Chapter 3 we introduce the Finsler geometry and its properties. Firstly,
we state the Euler’s theorem on homogeneous functions. By using that we define
the Finsler function F'. Then we consider the projectivised tangent bundle and
define the Finsler metric by using the Finsler function F. We give the definition
of the Chern connection I', the Cartan tensor A and obtain the components of
the connection matrix on the projectivised tangent bundle which satisfies the
torsion-free and almost metric-compatible structure equations. By writing the
Chern connection in natural coordinates we obtain formulas for I', first and second

curvature tensors R and P in natural coordinates. We obtain symmetry relations
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of horizontal and vertical derivatives of R and P. We define the Geodesic spray,
the Flag curvature and the Ricci curvature. We prove the Schur’s lemma which is
related to the scalar Flag curvature. Finally we give some special Finsler spaces

and compare their structure equations.

In Chapter 4 we introduce the geometry of the tangent bundle. We first
define a metric on that tangent bundle and almost complex structure, then we
introduce a special frame which makes the metric and almost complex structure
simpler. By using these special frames we define an anholonomic basis, the Levi-
Civita connection and the curvature tensor on the tangent bundle. Finally we
obtain some relations among the connection coefficients and components of the

Riemannian curvature tensor.

In Chapter 5 we construct the spacetime tangent bundle by using the space-
time and the four-velocity space. We first define metric on the spacetime tangent
bundle by using the proper acceleration a, and then we define connection and cal-
culate the connection coefficients, the curvature tensor, the Ricci and the scalar
curvatures. Then we define an action on the spacetime tangent bundle and consid-
ering the Riemannian Schwarzschild-like spacetime, we obtain the Euler-Lagrange
equations of motion coming from the action and then find the Schwarzschild-like
solutions. Finally we obtain the modified red shift formula on the Schwarzschild-
like spacetime. We observe that the contribution of the tangent bundle metric to

the red shift formula is at order of the square of the gravitational constant G.



Chapter 2

Riemannian Geometry

In this chapter we will give a brief summary of the Riemannian geometry. We
will not give the proof of theorems. One can find the proof of theorems from any
Differential Geometry book which includes Riemannian geometry [1], [2], [14].
Firstly, on manifold we define a metric. Secondly, we define a linear connection on
this manifold for the calculation of curvature tensors and geodesics. Connection
plays the role of differential calculus in Euclidean geometry. Then, we will define
the curvature which is one of the invariants for the manifolds. In this thesis we
use the Einstein’s summation convention, i.e., if we have repeated indices in the

same term, then they are summed up over the range of the indices.

2.1 Riemann Metric

Let M be an m-dimensional C* manifold and u¢, 1 < i < m be a local coordinate
system on an open subset U C M. T,,(M) and T}; (M) are respectively the tangent
and cotangent spaces of M at the point p € M.

T(M) and T*(M) are tangent and cotangent bundles on M such that

T(M) =] T,(M), T(M) = | T;(M). (2.1)

pEM peEM
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T7(p; M) is the (r, s)-type tensor space of M at point p € M such that

T M) =T,(M) @ - @ T,(M) @ Ty (M) @ @ T;(M),  (22)

Vo N
T s

where r and s are contravariant and covariant order respectively. T7 (M) is an

(r, s)-type tensor bundle on M such that

Ti(M) = | T M), (23)

peM

The natural basis {-2,1 < i < m} and {du’,1 < i < m} are local frame

out’
field of T'(M) and local coframe field of T*(M) on U, respectively. Tangent and

cotangent vector fields X and Z are written in local coordinates as X = X i%

and Z = Z;du', respectively.

Suppose G is a symmetric, positive definite (0,2)-type tensor space. Here

symmetric means,

G(X,Y)=G(Y, X), (2.4)
and positive definite means,
GX,X)>0 if X#0, (2.5)
for all X,Y € T,(M). G can be written in local coordinate system (U;u’) as
G = gi;(u)du' ® du?, (2.6)

where g;; = g;; are smooth functions on U. G defines a smooth inner product on

T,(M) at every point p € M as
(X.Y) = G(X.Y), (2.7)

for all X,Y € T,(M). Then X,Y € T'(M) can be written in coordinate base as

0 0
= X'— Vi
X=Xo0n Y=Y (2.8)

and G(X,Y) takes the form

. . 9 9 . o
G(X,)Y) = g;jdu’ @ du’ (Xk%, Yl@) = gin’“Yl525i = g; XY, (2.9)
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since du’(3%;) = 6. By taking X* = Y' =1, we have

0o 0

(2.6) can be written as
ds* = G = gjdu'du’ (2.11)

and is called Riemannian metric. Here g;; are components of Riemannian
metric in matrix form. ¢“ is components of the inverse matrix (g;;)~'. We will
lower and raise the indices by g;; and g%.

For example,
95T = Tants 9" i = Fjil- (2.12)

Definition 2.1.1 Let M be an m-dimensional C*° manifold with metric G. Then

M is called Riemannian manifold.

2.2 Riemannian Connection

Definition 2.2.1 Let M be an m-dimensional Riemannian manifold. An affine

connection on M 1s a map
D:TNT(M)) — T'(T"(M)®T(M)), (2.13)

which have the following properties

1) D(& +5%) = D% + D%

out Ou’ oul’?

for any f € C®°(M). And locally it is defined as

0 0 i i
D@ui = wi]%, and  Ddu' = —w;'du’, (2.14)
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Here I'(T(M)) denotes the infinitely differentiable vector fields. w,” are the com-

ponents of the connection matrix of D and has the form as,
w =T, du", (2.15)

where TV, are infinitely differentiable functions on U. For X € T(M), the abso-
lute differential of X has the form

DX = X'+ X'w")® 0

out
0X? ki ~ 0
<8uj + X kj>duj®

out’

(2.16)

From now on D denotes the affine connection. DX% and Dxdu® denote the

o)
Ou’

D X% satisfies the following properties

covariant derivative of

and du’ along the vector field X € T, (M), respectively.

P o o
1) Dxiyv5: = Dx3.: + Dygza,

2) Dfx% = fDX%7

3) DX(aii + %) = DX% + DX%»

4) DX(fa(zz) - (Xf>aiz +fDX%7

for any X,Y € T(M) and f € C>(M). Taking X’ = 1 and since X = X*-2; we

Ou?
have 0 o . 0 0. 0 0
ok 9NVO9 kg0, 90 o O
D% oui Vi (8u1)8u’“ = Dadu (8uj)8uk =T 4 uk’ (2.17)
and
i i 0 k i 1, 0 k i k
D%du = —w (%)du = —I",du (%)du = —I"};du”, (2.18)

- 10y _ gl k Tk g
since du'(5.7) = 6; and w;* = ', du’.

Definition 2.2.2 Let T be a linear map as

T : T(T(M)) x T(T(M)) — (T (M)) (2.19)
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and can be written in tensor form locally as
8 ,L ,
T = T@W ® du' @ du?, (2.20)

where Tkij = iji - Fkij and iji are components of the connection coefficients.
Then T is called torsion tensor of the connection D. And T(X,Y) is defined
as

T(X,Y) =DxY — DyX — [X,Y], (2.21)

for any tangent vector fields X,Y .

Definition 2.2.3 Let M be a Riemannian manifold with metric G and affine
connection D. If (2.21) equal to zero such that

DxY — Dy X =[X,Y] (i.e., the torsion tensor vanishes), (2.22)

then D is called torsion-free connection.

Definition 2.2.4 Let M be a Riemannian manifold with metric G and affine

connection D. If
DG = D(gi;du’ @ du’) = (dgij — w;*grj — wjkgik) Rdu' @du’ =0, (2.23)

then D 1is called metric-compatible connection.

Theorem 2.2.1 (Fundamental Theorem of Riemannian Geometry). Let
M be an m-dimensional Riemannian manifold with metric G. There ex-
ist a unique linear connection D on manifold M which is metric-compatible
and torsion-free. This connection is called the Riemannian connection or

Christoffel Levi-Civita connection.

From now on, the connection on the Riemannian manifold will be takes as the
Christoffel Levi-Civita connection. Now, we will obtain the connection coefficient
I, interms of the components of the Riemannian metric g;;. D is torsion-free

: k _ Tk k

I‘k“ = Fk“ and also iji = Fkij, (2'24)

Ji ijs
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and D is metric-compatible, so we have

dgi; = w;" gy + w;" g (2.25)
or equivalently
09ij
ai Lqul = T*ydul giy + Tydul g = (T + Tige)dul (2.26)
From (2.26) and cycling the indices, we have
09ij
62; = Lju + Lijis (2.27)
9gi
%93 _p ot 2.29
ui i + L g, (2.29)
By taking the sum of the last two equalities minus the first one and using I';z; =
[y we get
L/0gu  Ogu  0gi
T = 5 (o + 22 - ), 2.30
W o\ Gui * out  oul (2.30)

and multiplying by ¢'*, we obtain

S kl(@ﬂil g 09@‘)‘ (2.31)

C oul — out  ou
Here (2.30) and (2.31) are called Christoffel symbols of the first kind and

second kind, respectively.

We have made use of the natural frame field of M. We could use an arbitrary
frame field. Suppose {e;, 1 <4 < m} is a local frame field and {0°, 1 <1i < m}

is coframe field. The connection on frame field e; can be defined as

De; = 07¢; (2.32)
where 6 is components of the connection matrix of D. Torsion-free condition of
D is

g’ =07 NG’ (2.33)
and metric-compatible condition is

which can be obtained from the fact that G = ¢;;0'®67 and DG = (dg; —6," gr; —
0. gin) ® 6 @ 67 = 0.
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2.3 Geodesic

Let C be a differentiable curve on M with local coordinate system u’ such that
C:t—u'=u'({t)=Ct)eM, te]lab]CR. (2.35)
The length of C' is defined as

dut du’
|t dw 2.36
Definition 2.3.1 Let C be a curve on M as (2.35) and X (t) be a tangent vec-
tor field with X(t) = X'(t)%.

covariant derivative in the direction of the tangent vector to C'is zero,

X(t) is called parallel along the curve C' if its

du’ 0
O—D%X(t) = Ddtau X(t) = o X()auﬂ
0 0 du 0
= dX F L — 2.
ou’ (9uJ 9 Ouk (2:37)
dX ‘ du'y 0
= Xt/ :
(dt - ”“dt)@uﬂ’
From there we can write the parallel condition along C for X (t) as
X’ - du
X, — =0. 2.38

Definition 2.3.2 A differentiable parametrized curve C(t) as in (2.35) is called
geodesic if its tangent vectors are parallel along C(t). Equivalently , C(t) is

geodesic if and only if
d?u’ - dut duF
I - =0. 2.
a2 R dr 0 (2:39)

And since C(t) is on M, we call also geodesic of the Riemannian manifold M.

2.4 Curvature

Definition 2.4.1 Q7 = dw,” — w;" Aw,” are called the components of the cur-

vature matrix of D.
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Definition 2.4.2 Let R be a map as
R:T(T(M))x (T (M)) x I(T'(M)) — T'(T(M)), (2.40)
and can be written in tensor form locally as
9 i
R= Rﬂkl% ® du' @ du® @ du'. (2.41)
Then R is called curvature tensor of the connection D. R(X,Y) is defined as

R(X,Y)Z = DxDyZ — DyDxZ — Dix |7, (2.42)

for any tangent vector fields X,Y, Z.

We will obtain the coefficient of the curvature Rl-jkl in terms of the Christoffel

symbols by using the curvature matrix. Consider the curvature matrix
Q7 = dw,” —w," ANw,’. (2.43)
By writing wij = Fjikduk, we get

Q) = d(riikduk) — (T, du'y A (17, du®)

oy, k h o . .

1017, 1017
= pou M Ty A (2.44)
- §Fhilrjhkdul A duF + §rhﬂp1hkduk A dul

1{or7,  or’ . ‘
= 5 au;k’ _ au’z_l + FhikF]hl _ Fhilrjhk dul A duk

1 .
éRi]lkdul A duF

From there
Q7 = %Rﬂlkdul A du”, (2.45)
where . :
Ry, = aar—;;k - %FTJ;Z + Ty =TT (2.46)

Multiplying both sides of (2.45) by g;, we get

1
Qij = §Rijlkdul AN duk, (247)
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where
Qij = dwij + wil VAN Wi (248)
In the above equation applying the procedure in (2.44), we get

Ol OTju
ou! ouk

Ry = + T Drjr — T e (2.49)

The curvature tensor can be written as

R = Rijkldui @ du' @ dv! @ du' @ du'. (2.50)
Theorem 2.4.1 The curvature tensor R, have the following properties:

1) Riju = —Rjire = —Rijik,
2) Rijui + Riij + Rajr =0,

3) Rijki = Ryiij-

By contracting (2.41) with (Z, W)X and (2.50) with (X,Y, Z, W), respectively,

we get 5
R(Z, W)X = Rijklxizkwlﬁ, (2.51)
and
R(X,Y,Z, W) = Rju XY Z"W!, (2.52)
or equivalently
o)

where X, Y, Z, W are tangent vector fields and du'(z5%) = 6.

By (Theorem 2.4.1) and (2.52) we have the followings

1) R(X,Y,Z,W)=-R(X,Y,W,Z)=R(Y,X,Z,W),
2) R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z)=0,

3) R(X,Y,Z,W)=R(Z,W.X,Y).
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For the Riemannian metric G we can define the following function

G(X,Y,Z,W) = G(X, Z)G(Y,W) — G(X,W)G(Y, Z). (2.54)

Definition 2.4.3 For each two dimensional subspace E of T,,(M) we define the
sectional curvature on E

R(X,Y, X,Y)

K(E) = TGX,Y.X,Y)

(2.55)

where X,Y € T,(M) are any vectors spanning E.

The term which is in the denominator of the sectional curvature, denotes the

square of the area of parallelogram spanned by X, Y and so it nonzero, such that

G(X,Y,X,Y) = | X|*[Y]* - (X, V)% (2.56)

Definition 2.4.4 An m-dimensional Riemannian manifold M is called wander-

ing at point p € M if K(F) is constant at p.

Definition 2.4.5 An m-dimensional Riemannian manifold M is called a con-

stant curvature space if K(p) is constant and everywhere wandering.

Theorem 2.4.2 (F. Schur’s Theorem). Suppose M is a connected m-
dimensional Riemannian manifold that is everywhere wandering. If m > 3, then

M s a constant curvature space.

Definition 2.4.6 The trace of the curvature tensor is called Ricci curvature.

The components of the Rici curvature are

Ri; = RS,

i (2.57)
Definition 2.4.7 The trace of the Ricci curvature is called scalar curvature.

The scalar curvature is

R = Ryg". (2.58)
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Definition 2.4.8 If Ricci curvature tensor is scalar multiple of the metric tensor,
then Riemannian metric is called Einstein metric. The components of the

FEinstein metric are
1

2.5 Summary

|
P
Q
|
NS

Riemannian metric: G = g;;(u)du'du?, g;;

Levi-Civita Connection: D_» 52 =T%.-% D » du’ = I du*,
Fu7 Ou J Ou 3 J

Connection coefficients:

o 1/0gy  Ogj  0gij
Vg = 2 (8uj out  oul )’

1 dga  Ogji  0gij
=3 kl(ai; t e~ aii)’

Torsion tensor: T(X,Y) = DxY — Dy X — [X,Y],

Torsion-free condition: DxY — Dy X — [X,Y] =0,

Metric compatibility condition: dg;; —w;*gr; — 'lUjkgik: = 0, where wij S aduf,

Curvature tensor: R (X,Y) = DxDy — DyDx — Dxyy,

Curvature matrix: Q. = dw,” — w," Aw,” = %Rijlkdul A duF,

Components of Curvature matrix:

R’jlk — arjik 8FJ¢1

ou! Ouk

b h T
+ T = T s

with properties

1) Rijii = —Rjim = —Rijur,
2) Rijri + Rikij + Rijr = 0,

3) Riji = Ry,

_ R(X7Y7X7Y)
G(X7Y7X7Y) !

G(X,Y,Z,W)=G(X,2)GY,W) — G(X,W)G(Y, Z),

Sectional curvature: K(F) =
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o bk
Ricci curvature: R = R, ;,

Scalar curvature: R = Rijgij ,

Einstein tensor: G;; = R;; — %gin7

16



Chapter 3

Finsler Geometry

In this chapter we will be interested in Finsler geometry and its properties [14],
[15], [16]. Firstly, we state the Euler’s theorem on homogeneous functions. By
using that we define the Finsler function F. Then we consider projectivised
tangent bundle and define Finsler metric by using Finsler function F. We define
the Chern connection I'; the Cartan tensor A and obtain the components of the
connection matrix on projectivised tangent bundle which satisfy torsion-free and
almost metric-compatible structure equations. By writing the Chern connection
in natural coordinates we obtain formulas for I, first and second curvature tensors
R and P in natural coordinates. We obtain some relations about symmetries,
horizontal and vertical derivatives of R and P. We define Geodesic spray, Flag
curvature and Ricci curvature in terms of the Flag curvature. We prove the
Schur’s lemma which is related to scalar Flag curvature. At the end we give some
special Finsler spaces and compare their structure equations. Our convention is
as follows: Latin indices denote the natural bases and run from 1 to m (except
m). Greek indices denote the frame field and coframe field and run from 1 to
m. Greek indices with bar run 1 to m — 1. m is the dimension of the Finsler

manifold.

17
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3.1 Finsler Structure and Euler’s Theorem

Let M be an m-dimensional C* manifold and «* , 1 < ¢ < m be a local co-

ordinates on open subset U C M . TM and T*M are tangent and cotangent

bundle with natural bases 8?”- and du’, respectively on M. They have the natural
projection as
m:TM — M , m:T*M — M.

(u’; X*), 1 < i < m are local coordinates on an open subset 7= 4(U) C T'(M).
We can write any tangent and cotangent vector as

0

X =X'—
out’

7 = Zdu'. (3.1)

Definition 3.1.1 Let F: R™ — R be a real-valued function. F(X?) is homo-
geneous of degree k in X' if

FOX") = FR(XY), for X>0,i=1,...,m. (3.2)

Theorem 3.1.1 (Euler). Let F': R™ — R be a real-vaued function. If F is
homogeneous of degree one in X then

LOF(X)

X ,
0X'

= F(X), X=(XY...,X™),i=1,...,m. (3.3)

Proof: Taking k =1 in (3.2), we get
FOA\X) = \F(X). (3.4)

Differentiating (3.4) with respect to X", we have

OF(AX)  OF(X)

= = ‘ 3.5
IOXT)  oxi (3:5)
Differentiating (3.4) with respect to A, we have
OF(\X) _,;
OFOX) vi - p(x), (3.6)

aNXY)
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Inserting (3.5) in (3.6), we get

xi 0 _ F(X), i

e (3.7)

I
E

]

From now on Fy: and F,; denotes the partial dervative of F' with respect to X*

and u’, respectively. In that notation Euler’s theorem take the form
X'Fyi=F (3.8)
Differentiating (3.8) with respect to X* and u’, we obtain followings as corollary

of Euler’s theorem.

Corollary 3.1.1 If F is homogeneous function of X = (X, ..., X™) with degree
one such that X'Fy: = F then we have

2) XkFXngxk - _FXina

3) XlinXijxk — _2FXinXk’

4) X'Fxii = F.
Definition 3.1.2 Suppose F' is a function on tangent bundle T (M) such that
F:TM — [0,00) and has the following properties:

1) FisC*® onTM \ 0,

2) Positive symmetrically homogeneous of degree one in the X ’s

F(u; \X) = A\F(u; X),
where A€ R, u= (u',...,u™), X =(X',...,X™),
3) F has the strong convexity property such that the m X m matriz

(915) = @F)Xx

is positive definite at every point of TM \ 0.
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4) F(u,X)>0 for X #£0,

5) Fu,X)+ F(u,Y)>F(u,X+Y).
Then F' is called Finsler function or Finsler structure of M.

Riemannian geometry is constructed on the quadratic form as
ds® = F? = g;j(u)du'du’ . (3.9)
We construct the Finsler geometry on
ds = F(u;du), (3.10)

such that I does not satisfy the quadratic restriction (3.9). Here F is the Finsler

function.

Definition 3.1.3 Let C be a differentiable curve on M such that
C:t—u =u(t)=0C() € M, t € [a,b] C R. (3.11)
If the arclength of C is defined as

b du
L)y = [ds= / F(u, Tt (3.12)
dut

where u = (u',...,u™),

m . . .
‘fl—? = (% dst ) and F is Finsler function. Then

(M, F) is called the Finsler manifold.

3.2 Projective Tangent Bundle, Finsler Metric
and Hilbert Form

Projectivised tangent bundle (PT M) of M is obtained from T(M), by identifying
the non-zero vectors differening from each other by a real factor i.e. the bundles

of line elements of M. (ui, X i), 1 <4 < m are also local coordinates of PT M with
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X?%s are homogeneous coordinates of degree one. On PT'M, there are quantities
which are homogeneous of degree zero in X. So F' is not defined on PT M, since
it is homogeneous of degree one in X°.

Let p be a projection map such that p : PI'M — M and defined as
p(ul, X7) = (). (3.13)

p*T'M is the m-dimensional pulled-back tangent bundle with dual p*T*M. T, (M)
and T¥(M) are fibers of p*T'M and p*T*M in local coordinates u’, respectively.
PTM is (2m — 1)-dimensional base manifold of p*T' M.

Definition 3.2.1 The one-form on PT M
w = Fxidu' (3.14)

1s called the Hilbert form.

Fyi is homogeneous of degree zero in X*. So w is homogeneous of degree zero
in X* and it is on PTM. By Euler’s theorem, arclength of C' can be written in

terms of the Hilbert form as

L(C):/ds:/abp(u,z—’;)dt:/:w. (3.15)

Let 5% and du’ be bases of T(M) and T*(M), respectively. By using these

bases, we write the sections of p*T'M and p*T™* M.

Let

* Qui’
be section of (or an orthonormal frame field on the bundle) p*T'M | and the
differential one-form on PT'M

a=1,...,m. (3.16)

e =¢€

w® = e%du’, a=1,...,m. (3.17)
be section of p*T™* M, which is coframe field of e,.

These sections have the orthonormality and duality conditions as

(€a,ep) = eakeﬁl(w, %) = eakg;m»eﬁZ = du- (3.18)
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where ( ai'w 61”) = Gi-

From (3.18), we can write
g* :ealéaﬁeﬁk, Lk=1,...,m. (3.19)

and

0%elg =€  B=1..m.j=1,..m (3.20)

By using e ‘e”. = 67 we have the following

0
(eq,wP) = (ef W,eﬁdu) — e fel ol
= elel =67, (3.21)
where (e%) and (e,) are inverse to each other and <a -, du?) = &7, By using (3.16)
and (3.17) we can write the inversion formula
0 * du’ = w°e, =1 (3.22)
- = e,e, u' = w,, i=1,...,m. :
ou! ’

Definition 3.2.2 Suppose F' is Finsler function and G is a symmetric, positive
definite (0,2) -type tensor such that
0? (1F2)

_ i=
G = gydu' ® du? = XX

—2 _“du' ® du’. (3.23)

Then G is called the Finsler metric (or fundamental tensor).

Here g;; has the form

By contracting (3.24) with X*X7 and using Euler’s theorem and its corollary, we

obtain the following useful fact
9i; X' X7 = FFxix; X'X? + X'Fxi X' Fy; = F?, (3.25)

Here g;; is the components of the metric tensor and homogeneous of degree zero
in X%’s and it is defined on PT M. In Riemannian geometry, components of metric

gi; are only functions of local coordinates u’ of M. In Finsler geometry, g;; are
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functions of local coordinates (u’, X?) of PTM. We now write the expressions

for the global sections on p*T'M and p*T™* M, respectively as
X Ko, -0

= —— = 3.26
‘ Fou  ™ou (3:26)
from that ,
i X (3.27)
Cm = T :
and
w=w" = Fx:du' = e"du’, (3.28)
from that
e = Fyi. (3.29)
By using Euler’s theorem, (3.27) and (3.29) we have
. Xt Xt
We can write the following useful relations
e X" =0, a=1,....m—-1 (3.31)
since '
(e XZ _a 554 _ O
eiF =€i€n =0y = U,
and
Fyiel =¢emel = 0" =0, a=1,....,m—1. (3.32)

To construct contact structure on PT'M and torsion-free condition of Chern
connection, we will obtain the exterior derivative of w™ on PTM. Taking the

exterior derivative of w™, we get

dw = dw™ = Fixrdu® A du® + FyixrdX? A du®
= FuiXke;eﬁkwo‘ AwP + inxkeﬁkde AwP. (3.33)

Expanding the summation indices as a = (@, m) and using the corallary of

Euler’s theorem we can write dw™ in a closed form as

dw™ = w* Nw,™, (3.34)
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where one-forms w,™ has the following general form

+ e&iijFu@-ijB + )\dgwg, (3.35)
where A3 are arbitrary but it must satisfy A\;5 = Ags. Later, we will obtain the

Asp interms of F'. We now prove the condition of having a contact structure by

the following lemma.

Lemma 1 . The Hilbert form w = Fy:du® satisfies the following condition
w A (dw)™ 1 #0, (3.36)

on PTM.

Proof: Denote I = w A (dw)™!. Writing the expressions for dw and w,™ and
using (3.24),(3.32) and the fact that wedge product of two one forms is zero, we

obtain

I = wA(dw)™ ' =wAdwA... dw

= F /\awo‘ /\awa’"

A (o)

= :F/\awa/\& (e&jgjkka> , (3.37)
since g;; positive definite and el are invertibles, so eJ g;kdX* are linearly
independent on PT'M. The one-forms w® are also linearly independent and does

not have term dX*. Thus A w® and A, <e&j girdX k) are linearly independent.

Wedge product of two linearly independent terms is non zero, so

I = :F/\awa/\(i (e&jgjkka) # 0.
[

Definition 3.2.3 If there is a one-form w which satisfies (3.36), then (2m—1)-
dimensional manifold PT' M have a contact structure and w s called a contact

form.
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3.3 The Chern Connection

Let the connection one-from in the bundle PT M defined as
De, = w,eg, (3.38)

where e, is the orthonormal frame field with dual coframe field w®, and w,
are components of connection matrix (of one-form) on PT'M. The connection is
called torsion-free if

dw® = w’ Awg, (3.39)

since

D(eq @w®) = wLes Nw® + eqdw® = eq(dw® — w’ A wy) = 0. (3.40)

3.3.1 Determination of the Torsion-Free Connection

We have the expression for dw™ in (3.34) and wy" in (3.35). We choose
w,™ = 0. By differentiating w® in (3.17) and using (3.22), e%.d(e,*) = edk%,

we obtain

Qi

dw® = de% A du”

= egde?, AN’ =d(efe%) Aw’ —d(ef)e Aw’

= —ea‘kdeﬂk A’ = —e&kdegk Aw’ — e%.de,f N w™
_ ~ 1
= wﬁ A (Gakdegk) + ’[Um A (FGdeXk). (341)

dw® can be written in a closed form as
dw® = w’ A wg +w™ Aw,, (3.42)
where w,;" and w;" have the general form
wy' = efdes + £ W™ + pgtw?, (3.43)

_ 1 _
w,® = Feakka + &S ", (3.44)
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Here &, and p Bﬁ& are arbitrary but pu Bﬁa must be symmetric in the lower indices
Le. um@ = ,uﬁﬁd. Again we will obtain the coefficients &,* and ,um& interms of

the Finsler function F'.

Thus we found the connection forms w?, with components w,™ in (3.35)
satisfying (3.34) and w5, w, in (3.43), (3.44) satisfying (3.42), satisfies the
torsion-free condition. Using (3.35) and (3.44), we get

wy" + daew,’ =0 (mod w®) . (3.45)

Substituting (3.35) and (3.44) in (3.45) and taking the terms parenthesis of d X7,

m

w™ and w?, we get

__e0 i
50406 j €a

ja - e@iFXin>de + {5@5 nf + F(Ful — XjFXiuj>}wm

+ (5@5@5 t+ejed Fux + A@B)wﬁ —0. (3.46)

wy" + dasw,] = (

By using (3.18), (3.24) and (3.32), the coefficient of dX? vanishes. In (3.46),
w™ and w? are linearly independent one-forms, so their coefficients equal to zero.

From (3.46) we obtain the expressions for £, and ;% as

~ 5acr K )
& = = (Fus = X7 Fiu ) (3.47)
gga — _5076 <66_ie*jFXjui + /\6B> . (348)

To complete the determination of connection forms w?, we need to write Asp and

1 B”‘/d in terms of the known terms. For this purpose we put the following condition
W, Va5 + W, 055 = 0 mod w, . (3.49)

This implies that, de can be chosen at most (m — 1)(m — 2)/2 of them to be
linearly independent of each other. We will state a lemma without proof which
gives the basis for T*(PTM).

Lemma 2 . The (2m — 1) + (m — 1)(m — 2)/2 Pfaffian forms w® (o =

L...,m),w® (@ =1,....m —1), and w&B (@, =1,....m—1l;a < ) are

linearly independent and form basis for the space of coframes on PT M and given
by (3.17), (3.18) and (3.28). The (2m — 1) Pfaffian forms w* (o = 1,...,m),

w,¥ (@=1,...,m—1) at each point p € PTM form basis for T;(PTM).

m
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To write (3.49) in a compact form, we have to obtain the following expression.

Consider
Gij = eo‘ie’@jé eae 063+ €€ 0mm = e%e 5a5 + Fxixi. (3.50)
By using the above equality and (3.24), we can write
% 835 = i — FxiFxi = FFyxixs. (3.51)

By exterior differentiating, contracting with e, and eﬁj and using (3.31), (3.32),
Euler’s theorem and its corollary, we get the expression which will be used in
(3.49) as
Savede ) + Oapetide, = —e5jepid(FFXin>. (3.52)

By using (3.52), (3.48) and (3.43), the condition (3.49) takes the form
5.6[5*p = 5&5—6dideﬁi + 5&ﬁ€aid€6_i - ec-jepi{Fuin _|‘ Fqui }wm

— 2)\p5wm + (5@5[11[3,75[ + 6@5—#6,—?)@07

— e e_z{d<FFX1X]> (Fuixj + Fujxi)wm} (3.53)

— 205w™ + (Oastiys + astiss )w? =0 mod w, .
Since, F'Fyix; is homogeneous of degree zero in X?, so it is on PTM. And its
differential forms d(F Fxiy;) is an element of T*(PT M), according to Lemma 2
we can write that as a linear combination of basis w® and w,? as the following

form

d(FFXin) = Sz‘j dw&m + Gij,gw’g. (354)

We now determine S;;®,

Gijp, Mpo and . First, by contracting (3.54) with

Fe 5% and using (3.35) for wy", (du’, 3%¢) = 0, (3.24), (3.32) and (3.18), we
determine S, as
a «a m a = 0
<d<FFXin>’FeEkW> = 5;; " (ws F% W> + Gijy (w7, Fegk—a k>
Fek 0 FFuivi) = —S Gesekpp
s oXFk Xixi | = TRy €acp L lxsxk

= —Sij&eﬁsegk(gij — F)@F)@n)
— —5,. %5 (3.55)

)



CHAPTER 3. FINSLER GEOMETRY 28

get S, as

a o 8
8% = —Feg = (FFxixs). (3.56)

We determine Gjg in two parts as Gyjn, and G;5. Contracting (3.54) with e, =
X° 0 and using (3.35), (3.21), we obtain Gj,, as

F ous
X*® 0 _
<d<FFXin>’ T o) = S (wa" em) + Gijs(w”, em),
X 0 _eS
B g (FFx) = S5 (Fur = X7y Ju™ ) + Gl

Thus from the above expression we get Gy, as

s [a%
—Ca Sij

F

X® 0
F ous

Gijm = (Fur = X" Four ) + (FFeo).  (359)

To determine A;5 and p g , we need to write Gy, in a simpler form. For that

reason consider the following quantities which will help us.

Xk
G Fxi=e)0e) =ele Fyi = - (3.59)
where we opened the summation indices and used Euler’s theorem, (3.32) and

(3.27).

X? X? XX
F (Fus - XTFXSUT) == F XTFXrus -

where we used the corollary of Euler’s theorem. Now consider

Fyegr =0, (3.60)

J o, i a,J m_ j
5i_6iea = €,€4 +eiem7

which leads to

e&ie@j = 5f —ee,) (3.61)

X X! X oxs  oxt X+ X
55— F) fr A 3.62
< R Y A R A e S S S o (3.62)
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Here we used again Euler’s theorem. By using the above quantities and (3.56)

for SZJO‘, the first term of Gjj,,, can be expressed as

0
w9 o (FFxix ) (Fus = X Feur)

0
_ (5; — e";enj) e <FXin> (Fu _ XTFXSUT>
Xs
= (5ls — FXZF)QM (FXk:FXZX] + FFXngxk) (Fu5 — XTFXSu7'>

- gksFFXkXin <F/LL'5 — XTFXSUT') . (363)

Thus by (3.58) and (3.63) we can write Gjj,, in a simpler form as
Gim = g™ FFxuxix; (Fu — X?”FXSUT>
S Xs

Now, we obtain the expressions for the terms A;; and ,uﬁ, By using (3.54),
(3.45), we can write (3.53) as

5‘5@ = —e5 67 {S wy" + Gmw + Gijmw™ + (Fuin + Fqui)wm}
— 205w + (Jastiyy + Oastter )0 =0 (mod wg™).  (3.65)

Equating the coefficient of w™ to zero in the above expression, we get

1
Aoz = —56,, e (Gijm + Fxiui + inuj). (3.66)
We obtained expression for G, and also we have to find G,;3. For this purpose,

we contract (3.54) with ez and obtain

; )
Gijg = =5, " (wg" ep) +¢5 (FFX1X3> (3.67)

,6’ Ouk
By using (3.59), (3.61), (3.62), corollary of Euler’s theorem, (3.56) for SF and
(3.66) for A\;5, we can write the first term on the right hand side of (3.67) as

—8; % (wg" e5) = Feoyg™ <FXkFXin + FFXinXk)

1
X |:€&T€BS urXs — 56({66‘9 (Grsm + FXsu’" -+ FX’“uS>:|

F
= Ee()‘leareﬁ—sglk<FXkFXin—f-FFXinXk)
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X

FuTXS - Grsm - FXSuT:|

F . ( X"
= Zgtkes(or —
g eﬁ l F

2 FX[)

Furxs — Fxrys — Gmm) <FXkFXin + FFXinXk)

X
=/

= 5638 <Fu’°XS — Fxrus — Grsm)

(FQQMFXZ'XJ'X’@ + XTFXin>. (3.68)

X

Thus, inserting that equation into (3.67) we obtain G ;5 as

1
GZJB = 658{5 (FuTXS — FXrus — Grsm> <F2grkinX]'Xk
And equating the coefficient of w? to zero in (3.65), we get
(Saaﬁeﬁie&jgij 5= 5385 “ZB + 698, M§g~ (3.70)

Two similar equations can be obtained by commuting the index set (p, o, ) in

cyclic order. Adding these and subtracting (3.70) and using symmetry of p,*

: a a
Le. g5 = Pps » We get

& 1 - i i i i i
:uﬁa = 5(5 5(6[;6’3]01']'5 —6;3 66]Gij5+€&€B]Gijﬁ)' (371)

Thus, by w," in (3.35) with A;5 in (3.66), wy in (3.43) with Eaﬁ in (3.48) and
'“a[j in (3.71), w,% in (3.44) with &% in (3.47) and w,”™ = 0, we determined

the components of connection matrix w,® of Chern connection which satisfy the

torsion-free condition.

3.3.2 The Cartan Tensor and Determination of the Al-

most Metric-Compatible Connection

In this section, we will investigate the metric-compatibility of the Chern connec-
tion. We first define the Cartan tensor.
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Using (3.45), we can write (3.49) as

W s+ w0, sy = — epi e S, % =24 fw.
= —2A455w,7, (3.72)

where
Assa = A6 54 (3.73)

The indices Az take the values 1 to m —1. We can write A,,3 which the indices

take the values 1 to m with the condition
A.py =0  whenever any index has the value m. (3.74)
With the condition (3.74), we can write (3.72) as
Wap + Wao = —2Aa8,W0,,) (3.75)

where
Wap = wavéw. (376)

The (0,3) tensor with respect to w”?
A=Az @uw’ @u, (3.77)

is called the Cartan tensor. We now obtain a formula for A,s, interms of F.
By using (3.32) and (3.56) for S%; in (3.72), we can write A4 as

o vpta

F
Aﬁ(—fd = 56 6 6 |:FX’€FX1XJ + FFXZX]XIC
oo
= §€5J€ﬁleak [FXkFXlX] + FX]FXZX]C + szFijk + FFXlX]Xk

F 83(%2) i ik F 09” ] k
2 OXIOXIgXF T P T 9 gxk©e 6p €q - (3.78)

By using (3.24), Euler’s theorem and its corollary we have

- O0gi _ x!

X5 0xXi " 9xi

=0. (3.79)
By using the above expressions, we can write (3.78) as an expression so that
all indices take the values from 1 to m as
k k

F P . F
(%) elelel = (g,])Xkeaepea. (3.80)

A oo T Aaviaviavk
P70 T Y OXIOXIOXR T P e T
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Thus we get the Cartan tensor with components (3.80) with respect to w® as
A=A’ @uw’ @uw. (3.81)
By using (3.17) we can write the Cartan tensor with respect to the natural basis
du’ as
A = A’ @u’ @w
F

= 5(grs)7Xte(fep’"ejepie"jerduZ ® du’ ® du®

F . .
= Ajpdu’ @ dv’ @ du”. (3.82)

By using (3.79) and (3.82), we can write
X' Aijr = X7 Aijp = X" Ayjr = 0. (3.83)

Above A;j; and A,,, are both symmetric in all indices. By using (3.22) and

(3.18), we can write G interms of w® as
G = gijdu’ @ du? = g,-jeofeﬁjwa Q@ uw’ = dopw® ® w”. (3.84)
For the metric-compatibility, consider
DG = §,pdw® @ w’ + 5w @ dw’. (3.85)

Chern connection is torsion-free, so using dw® = w” Aw,” in the above equation,
we get

DG = —|dpw,” N ® w’ + (5agwf ANw* @ w?

= — _(504511)7“ + 5a5wﬂ°‘} w? @ w’

= - -w,yg + wm} w? @ w’ =24, 50w, W @ WP, (3.86)

Thus DG is not directly zero. It is zero if A, g, is zero. So the Chern connection
is not metric-compatible. We can say, it is almost metric-compatible and almost

metric-compatibility condition is
Wyg + Wy = —2A, 5,0, (3.87)

We can write the following theorem for the Chern connection which summarize

all calculations about the torsion-freeness and almost metric-compatibility.
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Theorem 3.3.1 (Chern). Let M be an m-dimensional Finsler manifold. Then
there exist unique torsion-free and almost metric-compatible connection D on
p*T'M such that

D:T(p'TM) —T(p'TM @ T*(PTM)), (3.88)
and defined as
De, = w,eg, (3.89)

where components of connection matriz w,’ satisfy the torsion-free and almost

metric-compatible structure equations, respectively as
dw® = w’ ANwg, (3.90)
and
Wap + Wpa = —ZAQB,YU)”;Y. (391)

Here e, and w® are sections of p"T'M and p*T*M, respectively. A = Ayp,w® &
w? @ w is Cartan tensor with components A,p, = g(gij),Xkeﬁjeofeyk where F' is

Finsler function.

We know that Finsler metric is Riemannian if g;; is independent of X'. As a

consequence of that fact we can state the following corollary.

Corollary 3.3.1 The Finsler metric is Riemannian if and only if the Cartan

tensor vanish i.e. Aqpy = 0.

If the Finsler metric is Riemannian then almost metric-compatibility takes
the form of metric-compatibility. In that case, Chern connection reduces to

Christoffel-Levi-Civita cannection.

3.3.3 Chern Connection and Formulas for Connection Co-

efficients ' in Natural Coordinates

In this section, we will consider the Chern connection in natural coordinates. By

Lemma (2) w® and w,” form bases for 7*(PTM). w* has the form in natural
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coordinates, w® = ¢,%du’. But we do not have yet a formula for w,® in natural
coordinates. For that purpose, firstly we obtain w.;™ in terms of the natural bases
du' and dX'. Using (3.17), (3.28), (3.61) and (3.66)(for \;;), we can write w,™
n (3.35) as

w@m = —€ lszX]dX]
X7
+ |:2FFXI¢ <Gl.7m +FX]uz — Fqu])
1
-3 (Gikm + Fyige — kauﬂ du®. (3.92)

To write the second term of the above expression in the right hand side, we define

the following fact

G = o (3.93)
IR . R
G = ‘(X ausaXl_%)
_ %(XSFUSFXHFXSFFXZUS—FFul), (3.94)
G = ¢'g. (3.95)

By using the above facts, (3.64) for G, Euler’s theorem and corollary, (3.32)
and after complicated calculations, we can write the second term of (3.92) as
“[ar

1
- = (lem + Fxiye — FXkuz>:| du®

2
_iY oG’
= & andu : (3.96)

Thus we can write w,™ in natural bases as

m gij 0G?
W= —em [Fj&X’fd + FyixrdX* (3.97)

We can write Gj;g in terms of natural coordinates which gives the common for-
mula for (3.64) and (3.69). By contracting (3.54) with eg = eﬂl% and using
(3.97) in (3.54), (3.22) and (3.21), we get

, 0

h (PP = 8,7 ( ~ edou 23

aXt> + G (3.98)
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By using (3.56) for S, , (3.61), (3.59), Euler’s theorem and corollary in the above

’Lj Y
expression, we get

Gijs = ¢4 | ;l (FFon) - %%(FF)(W)]. (3.99)

By using that formula we can write \;5 and u-- in natural coordinates as

og" 0

o = =5 (e [P =

(FFXlXJ)] ¥ Fyryi + FXiuj), (3.100)

. 5( O ogr o .
a __ af o i l l
Woe = 50 ( . (FFxixi) — WW(FF)@X])) [egeﬁ]e- —ej'es eﬁ +e; eﬁ ep]
(3.101)
We have w® in natural coordinates as w® = e%du’. By using (3.45), (3.24), (3.18),

(3.32), (3.20) and (3.97), we can write w,” in natural coordinate as

5 i9ij oG k Gij FxiFx; i
55 = du = - = 2)dX/
Wnlas = Cap " F oXF e )
0GI e, .
% k J
— —dX. 102
F@Xkdu+Fd (3.102)
From there we get
w,e = e 06X, (3.103)
where a9
. 1 v
== 3.104
J FoXxi’ ( )
and ix
] J
0X7 = (3.105)

Thus we can write the bases w® and w,* of T*(PTM) in terms of the natural
bases. The dual orthonormal vectors of w® and w,® have the forms respectively,

as

.0
éo‘ze‘;éui’ a=1,...,m, (3.106)
and 5
N J — .
Cmta = €5 57 a=1,...,m—1, (3.107)
where 5 5 5
= —FN,/—, (3.108)
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and 5 5
=P (3.109)
Here 3 and 32 are dual to du’ and X" form local bases for T(T'M \ 0) and

T(TM\ 0). {w* w2} and {é s,én+a} form local bases for T*(PTM) and
T(PTM) and also dual to each other.

We now define the Chern connection in natural coordinates as follows

D:T(p'TM) - T(pTMT*(TM\DO0)),

0 ; 0 , o
- =0, — Ddu' = —6."du’ A1
S 0, S du 0, du’, (3.110)

where 0,7 are the components of the connection matrix in natural coordinates.

To find the relation between 6,7 and w,?, considering

D(ej%) = Dey = weg,

we get
(3.111)

Comparing the coefficients of % in (3.111) and then contracting the resulting

equation with €7, we get the relation for w,® interms of Hl-j as
w = el (dei +eib)). (3.112)

Comparing the coefficients of 57 in (3.111) and then contracting the result equa-

tion with e®., we get the relatlon for ‘91‘] in terms of w/” as

0, = =e4 I(de’ + e“w ). (3.113)

(2

By wedge product (3.112) with du’ and using (3.17), e e”; = 67, the torsion-free

condition (3.39) is equivalent to

du' NG = du' A e de’; + efew,]]
= eﬁj du'de” + w”eﬂfeﬁj e*w,’
_ J gy Yo Jopy B
= egdw” +wlegw,

= eﬁj(dwa + w”/\wf). (3.114)
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Chern connection is torsion-free so dw® + w” A wvﬁ = 0. From there
du* N7 =0, (3.115)

We can say the above expression is equivalent to torsion-free condition of the
Chern connection in natural coordinates. Wedge product of Hij and du’ is zero

in (3.115), so they are linearly dependent. We can write Gij in terms of du’ as
0, =T7,du'. (3.116)
By (3.115) we can write the following symmetry property
v, =17, (3.117)

By using (3.116), we can write (3.110) as
0 ; 0
D— =T",du ® —. 3.118
out it ou’ ( )

We obtain IV ;4 in terms of g;; and N ji by using the almost metric-compatibility

of the Chern connection. Contracting (3.23) with (i i), we get

Ou'? OuI
o 0
9ij = G(%v %> (3.119)
Applying D to the above equation we have
o 0 g 0 0 0
dgij = (DG)<%> %> + G<DW’ %) + G(%’D%) (3.120)

By (3.86), (3.17), (3.80) for A,p,, (3.82) for A;j; and (3.103),we get

DG = —(wus+ we)w” @ w’
= 24,50, 0" @ W’
= 2A0 X du' @ du?. (3.121)

Thus, the first term of (3.120) is

o 0
DG(—.,—.) — A, 40X 3.122
out’ dud " ( )
By using (3.23), (3.118), the second and third terms of (3.120), respectively are

2 i)
ouk’” ow
= IMgrdu’ = Tjaddd, (3.123)

G(D 0 a> - gmdu’@dusrkildul(

oui’ dui
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8 a o r sk l a a
G(ur Dgur) = oo @ duTyd (500 0
Fkﬂgikdul == Fijldul. (3124)

Inserting these terms and (3.122) into (3.120), we obtain the almost metric-

compatibility condition in natural coordinates as

dg;; = gkjl“kildul + gikfkjkdul + 2Aijk5Xk
= giti" + gikejk + 24,0 X", (3.125)

By using (3.105), (3.116) and g, = Tij, we get the equivalent equation of
(3.125) as
dX!

09,y 1 g
aij dul + 8?(31 Xm = Fiﬂdul + Fjl-ldul + 2Aijl? + 2AijkNl kdul (3126)

Comparing the coefficients of du! and dX* in the above equation, we get respec-

tively
Lij + Ty —%—QA»'NZ (3.127)
ijk jik — 8uk il VE .
F 0g;;
Ajjr = 5%, (Cartan tensor). (3.128)
Consider the following expression
(Fz‘jk + Fjik) - (iji + iji) + <Fkij + Fikj)- (3.129)

Using (3.117) and (3.127), we find

1 (8% n Ogii agj{c)

Lij =

2\ 9wk ' ow out
F 109 ! Ogri I 09,k 1
- 5(8X]5Nk + SN = SN, ) (3.130)

Using the fact I k= g"T;x, we can write the above equation as

oo gri(agij OGri 8gjk:>
k= ~

2 \ouk " ow Oui
Foi00i5 1 O9ki .1 OGjk oy
- 59 <aXlNk - SRN = SN, ) (3.131)

As in the Riemannian case, denoting

(3.132)

_ 1 39z’j agki agjk
%jk_2<auk ul aui>’
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il
I g_<agij Ogri agjk)
Tk =5 \ouk i ouw — out /)’

(3.133)

which are called the Cristoffel symbols of the first and second kinds, re-

spectively. We can write I'j;, and ng respectively as

94:: O 94
95N, I gﬂ’“N/), (3.134)

F
Lije = ij ——<
kT X T XY T axT

r r ir agl] l agkl l 89]1@ 1
== 50" (G 5 - oyi)
We can write Nji in terms of Cartan tensor and Christoffel symbols of second
kind as

(3.135)

; ; Xk ; XX
Ny = — A M’fm—p : (3.136)
Using (3.79)and (3.130) we can write
i X7 i
r T N, (3.137)
or ,
i i X
Ny'du® = 6;'—. (3.138)

3.4 Curvature

In this section we investigate the properties of the curvature tensor ) of the
Chern connection. €2 splits into two parts R and P, where the R-part is the

generalization of the Riemann curvature tensor.

3.4.1 Expressions for R and P in Natural Coordinates

Let " and 6,7, be basis one-form and connection one-form, then
Qf=db — 0" noy, (3.139)

are called the curvature two-form of the Chern connection in natural coordinates.

Since it is a two-form on the manifold 7'M \ 0, we can express it as

(5X 5X’“ (SXZ

.1

J
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Here the terms R, P and @ are respectively, horizontal-horizontal (h-h),
horizontal-vertical (h-v) and vertical-vertical (v-v) curvature tensors of the Chern

connection in natural coordinates. R and () satisfy the following property

jikl = _Rjilkv jSkz = _jSlk' (3-141)
By (3.115), we have
du’ A 9]." = 0.
Also from above, we can write
du/ NOF NG =0. (3.142)
Exterior differentiation of (3.115), given
du’ N db;' = 0. (3.143)
By subtracting (3.142) from (3.143), we get
du? (deji — 0.5 A 9,;’) —0, (3.144)
or equivalently
du/ A Q= 0. (3.145)

Substituting (3.140) into (3.145), we obtain

1. L 5X!

5 B du’ A du® A du' + P, du? A du® A -+

1., . 0XF X

5@ mdw’ N —= A =10 (3.146)

The three terms of (3.146) are different types, so they vanish. From the vanishing
of the third term, ) must be symmetric. Together with (3.141) we obtain that

- (3.147)

Thus curvature two-form take the form

7 ]' 7 7 l % k 5Xl

From the vanishing of the second term, we have

Pjikl = _Pkijb (3-149)
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and from the vanishing of the first term, we obtain the Bianchi identity

R du? A du® A du' = 0. (3.150)

J

By changing the indices and order of the wedge products, we have the following
Ry jdu? A duf A du! =0, (3.151)
R, du? A dub A du' = 0. (3.152)
Adding (3.150), (3.151) and (3.152), we get
(Rj"kl + R+ Rﬁjk>duﬂ’ A duF A dul = 0. (3.153)
Thus we obtained the Bianchi identity as

J

We now obtain formulas for R and P in natural coordinates. Consider

i ; ;1 0X"!
;' — 0" NG, =Q, =3 e A du' 4 P du N (3.155)

By using (3.116), we can write df;’ as
df;" = dr'" ;; A du'. (3.156)

Since dI'" ; is a one-form on T'M \ 0, we can write it as

. or or & 5 X+
) Jl k Jt

AUy = —Fdu" + F o= (3.157)

Writing (3.157) into (3.156), we get
oI o', 6X
do; = ]ldu’“/\dulJrFankl - "

oI ort X!

= —dd Ad' — F anl’“d , 5F : (3.158)

Consider the following term which is in (3.155)

=0, N0 =06, N0 =T, " du® A du'. (3.159)
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Substituting (3.158) and (3.159) into (3.155), we get

o1’ : or 6 X!
Jjl h k l Jk k _
( Suk T ﬂ)d“ N = Fogsrdut AT =
1 5Xl
or equivalently

16T 10T,
§§]lduk/\dul —5ldu A dut +
1 1 8P" 5X!
1 6Xl

Comparing the coefficients of du* Adu' and duk/\%xl in (3.161), we obtain formulas

for Ry, and P;%,; in terms of natural coordinates, respectively as

Ri'w=g5xr — 5%t T L ARV R A (3.162)
and or
i jk

Let us introduce the following quantities which will simplify some calculations to

obtain the Ricci curvature.

R’k_e]RZklem, (3.164)
Ry, = e, Rjine,., (3.165)
Ry =eiR, (3.166)
and
Pl =eilPy. (3.167)

3.4.2 Relations for (), R and P in Natural Coordinates
and Arbitrary Orthogonal Basis

We have made use of the natural coordinates for the curvature two-form and its

R, P parts. Let us denote the curvature two-form of the Chern connection for
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the arbitrary orthogonal basis sections as {15* such that
Q" = dwg” —wy' AN, (3.168)
where w4 are components of the Chern connection. It is torsion-free such that
dw® = w’ Awg. (3.169)
By taking exterior derivative of (5.2), we have
0=w" A (dw,” —w,” Awg®), (3.170)
or equivalently
w A Q2 =0, (3.171)
Q4" are two-form on PT'M, so we can express it as linear combinations of w” Aw?,
w? Aw,? and w,? A w,? as
a 1 [e] o a o 1 [} o o
Q5" = §Rﬁ oW’ A7 + Pg® w? Nw,; + 5@/@» oW, N, (3.172)
By using (4.106) which is consequence of torsion-freeness of the Chern connection

and as in natural coordinates, we get

Qs = 0. (3.173)

Thus Ba take the form

@ ]' o o @ o
Qg = §R5 oW’ AW + P swf Aw,]. (3.174)

We now obtain formulas for Q4*, Rs*,, and P,%, in terms of the Q¢, R}, and
P, Consider Q;" as

;1 ox!

By usmg du’ = e w* and ° —e Jw,® in (5.5) and contracting the result equation

with eje, we get
. 1 . . _
ed Qe = 56[3 el e R} etw’ Aw? + eﬁjepke&lelkleo‘iwp Awe. (3.176)
Considering (5.4) with (5.6), we can write the following relations
Q5 = Qe (3.177)
Ry, = eﬂ efe R e, (3.178)
Py, =ejelelP e (3.179)
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3.4.3 Some Computations

In this section we obtain some relations which will be utilized later. Almost

metric-compatibility condition of the Chern connection in natural coordinates is

dgij — g0, — gud," = 2Aij85—;(5. (3.180)
Exterior derivative of Cartan tensor A = A,j,du’ @ du? @ du® is
DA = (dAiﬂ — Apy* — Ay} — Aijkelk) du' ® di? @ dud
= (DA),;du’ @ du’ @ du', (3.181)

Here (DA);;; are one-forms on TM \ 0 and can be expressed in terms of the bases

du® and 5% as

0X*

(DA)ijl = Az‘jklsdus + Az‘jk;sT- (3.182)
Using (3.116) and dA;;; = 6(;:;51 + Faa‘égfsl X in (3.181) and considering the du®

and 5% parenthesis, we get A;jrs and A;jy.s, respectively as

0A;;
Aijrs = 5uik - Aljkrlz‘s - Aiklrljs - Aijlrlks, (3.183)
and oA

Apigy = F=25 184
ijkss aXs (3 8 )

Here Ajjps and Ajyjp.s denote the horizontal and vertical covariant derivatives of

A;jr. We obtain some facts which will be useful in the next section. Consider

dF 1

d(log F) = = :F(indXi—l—Fuidui)
F i Fz .
- % (5)(1 Zduﬂ) - —du. (3.185)
Here we used dX' = 0X' — N,;'dv/. By using (3.136), (3.9), (3.31), (3.32),
emgt =e’, eiAiir =0, X X" g, = F?, we can write (3.185) as
F, .
o 7 z 7 k z 7 rvVSs 7
d(log F) = F(SX F VX Fdu? — FA]k’y X" X5du? + I —du
em . X°X*0g,; Ogin  Ogy . Fi
= Cigxi (S - 22 ) — S Ay, XTXdud + —du’
F 2F% \ouk  Ous + ou’ Y o v F
em .1 (X XEg) F, .
= Sigxio SRS S Ik gy T gy
F 2 ow P
e™ F, . . Fu

. e™ .
— [ 7 7 u v __ 1
F&X qu +—qu F5X.
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Thus we obtain
Fyi

F
By using (3.135), X7 A, = 0, symmetry of Cartan tensor and (3.136), we have

d(log F) = —=-6X". (3.187)

X D €A N,* N.$ N.$
l _ l li k 7 J
YaE T O E T FY (A7 = AT+ )
o v i X’ s
= 7 ij -9 F_gAkiij
l x’ lin s t 1 s t [ V]
- V]kF g ﬁAkzs(ry th FA jt rsX X)
l @’ Alks s t 1 ! lk:s s I vt
v ik I F2 Y ]tXJX - <’Y ij] - T ]tX]X )
N l
= ?’“ (3.188)
Thus we obtain A
;X7 Nkl
By using (3.183), (3.83), (3.107) and (3.189), we have
0A;;
AjjklsCm = ( 5uik — Al — AT 5, — Az‘jlrlks>€nf
0 Aijr
= 6—?;677]; — AiﬂFlksen]f
™ Qus soXrm ViR
1 8(Az-ijk) N," 8(Aiijk) & Nsl
= 5 - ( _AZ]k(Sr) Azjl_
F ou® F Xr F
N_" N
Thus we get
Aijrisens = 0. (3.191)
Let us denote A;ji e, as
Aijr = Aijrgsern (3.192)

By using (3.191), we can wtite

Agrek, = 0. (3.193)



CHAPTER 3. FINSLER GEOMETRY 46

By using (3.184) and (3.83), we have

Auisem = P T
A XF
% — Aijrok. (3.194)
Hence we get
Aijk;senlf = _Aijs- (3195)

Exterior derivative of e,, is formed

De,, = (de —|—e]9 ) 0

ou!
X XI N D
= (1) 5950
e,
= (Dey) —. 3.196
(Dew) - (3.196)
By using (3.189) and (3.105), (De,,)’ can be written as
. dX' XWdF X . dX' XWdF X,
(Dem) = I3 — 2 FGJ = Ia - 2 +7F jkdu
_ A XdF N
- F F? F
’Xt X
= — —d(log F' 1
2 Fd( og F). (3.197)
By (3.196) and (3.197), we can write
6X" ‘ . .
7 = de,, +en0," + e d(log F'). (3.198)
Taking exterior derivative of (3.198) and using (3.139), (3.198), we get
6X°
d( F) — d(e,])0, + e,7d(8,") + d(e,)d(log F)
Y ¢ 5X¢
_ 0ty i em
A0 + o (0 = en ) (3.199)

3.4.4 Some Relations for R and P from Almost Metric-
Compatibility in Natural Coordinates

Taking exterior derivative of (3.180) and using (3.139) for Q,7, gi;Q,7 = Q1. and

after some simplification we have

6X! 5X!
Qi + Qs = —2|d Ay, — A, — A,-klejk] = - 2Awld< - ) (3.200)
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By using (3.181) in the above expression, we get

l

5X! 5X
Qi+ = —2|(DA),; + Aiyeb, k] N - 2Aiﬂd(?) (3.201)
G SXE. . 8X!

By using (3.140), left hand side of (3.201) can be written as

Qij + Qj,’ = Qlkékg + Q]k(slm

1 5X
= O <§Rﬁmdu’“ Adu® + PF du™ A 7 ) +
1 G
O <§Rjkrsdu’" Adu® + P du’ A= ) (3.202)
1 X

== 5 (Rijrs + Rjirs) du” A\ du® + (Pijrs + Pjirs)dur A F .

By using(3.182), (3.199), (3.140), ¢,"R,*,, = R*, and ¢,”P.*, = P *, left hand

side of (3.201) can be written as

Xk oXk 5X!
—~2(DA) A - — 24 [d(T) + 0,5 A ?}
. §X5\  6X® . 5XT
= —2<Ai]~k|5du + Aijk;ST) A\ Ia — 2Aijk:€mQrk — ZAZ]kT A QTk +
C5XT SX* 5X
2A,»jke TT VAN T - 2Aijk91k VAN T
U k l u k 6Xl
NOXESX!
Q(Aijk;l - Aijle l> T VAN ? (3203)
Inserting (3.202) and (3.203) into (3.201), we get
1 0X*
5 <Rijrs + Rjirs)dur A du’ + (F)ijrs + P)jirs)dur A
u k l U k 5Xl
= - <Al]uR kl)du Adu' — 2<AZJUP kl + A””k)du AN ? +
S\ OXESX!
2<Aijk;l - Aijlel )T A T (3204)

Comparing the coefficients of du® A du' in (3.204), we get the relation

Rijiy + Rjin = 2( — AijjuR uk1> = 2Biju- (3.205)
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By using (3.205), we calculate the following combination

(Bijkl - Bklz’j) + (Biljk + Bjkil) + (Bljki + Bkilj> — Rijig + Ryj
Rijui + Rje Ripuj + Riij Ragre + Riuge . Rjea + Ryja
- + + +
2 2 2 2
Rjpa + Rk Rraj + R
2 + 2

1 1
= 73 (Rijkl + Ryjii + leik) + 5 <Rklz‘j + Ry + leki) +

1 1
B (Rlijk + Rji + Rkilj) + B (Riklj + Rygji + Rjkil) =0. (3.206)

— Rijul + Ryuij

Here we used the Bianchi identities of the form Ry;j + Rjir + Riik; = 0. Thus we

get another Bianchi identity as
Riji — Ry = (Bijkl - Bklz’j) + (Bz'ljk + Bjkz’l) + (Bz]'m' + Bkilj)- (3.207)
Comparing the coefficients of du* A %Xl in (3.204), we get
Pk + Pjigg = —2A55u P Yy — 2A5500 = 2550 — 2A51- (3.208)
Consider the following combination
<Pz’jkl + szkl) - <Pﬂm + ijil) + (Pkijl + Pikjl)- (3.209)
By using the symmetry of P, (3.209) takes the form
<Pijkl + sz‘kl) — <ijil + ijz‘l) + (Pkijl + Pz‘kjl) = 2Pjin. (3.210)
By using (3.208), (3.209) takes the form
(Pijkl + szkz> - (P]k’ll + ijil) + <Pkijl + Pikjl)
= 2B — 2B + 2By — 2Agu + 245000 — 245, (3.211)
Considering (3.210) with (3.211), we get the following relation
Pjigy = (Eijkl — Ejpa + Ekijl) - (Aijl|k — Ajui + Akil|j)- (3.212)
By using (3.163) and Euler’s theorem, we have

Pi el _ ariijl_ Xl@Fijk
jkEm = TN T T T Xt

=0, (3.213)
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where ', is homogeneous of degree zero in X*. By (3.208) and (3.83), we have
Eijne,l = —Ajue,l P4, = 0. (3.214)
Contracting (3.212) with e, and using (3.192), (3.193), (3.191), (3.195), we get
Piine,) = P = —Apje,) = —Aar. (3.215)

And from this

Pjie ey = —Age,r = 0. (3.216)

m

By using (3.215) and symmetry of Cartan tensor, we get

Thus, we get the second Chern curvature tensor P in terms of the Cartan tensor

and its horizontal covariant derivative Ay, as
Pjiyy = — <Az‘jl\k + Ajuyi + Akil|j> + A“Z-]-Aukl - AujkAuil + A% Ay (3.218)
similarly we obtain
Pijr + Py = —2A:, P — 2A5, = _2Auz‘jAukl — 25k, (3.219)
or equivalently

. 1
Aiji = Auz’jAukl 5 (Pijkl + Pjikl)- (3.220)

From there we can say Pj;y; vanishes if and only if A;j,; vanishes. We need the

following facts to obtain R %, in terms of N,’ and F.

6Tt 6(e,rT ) N7

T jk m= jk 7 s
= I, 3.221
€m (5U$ (5U5 + Jk F ) ( )

which comes directly from definition of s>- and (3.189). By contracting (3.162)
with e,Je,! and using (3.164), (3.221) and (3.189) we get R i, as

; (0 (N § (N,

By multiplying the above expression with g; we get the Ricci curvature in terms

of N,7 as
(6 (N; 5 (N,
—gred | — L) - — =k
Ry, gzlem(duk(F) (SuJ(F))' (3.223)

We can state a theorem to summarize the symmetry properties of Chern curvature

tensors Rj and Pj.
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Theorem 3.4.1 First and second curvature tensors of Chern connection have

the following properties:

1) Rji = —Rjik,
2) Rjir + Ryij + Riijr = 0,

3) Rjik:l + Rijkl = 2(_AijuRukl) = QBijklv

4) Rijri — Ruij = (Bijkl - Bklz’j) + (Bz'ljk + Bjkil) + (Bljkz’ + Bkz‘lj);

5) Priji = Pjin,

6) Pijui + Pjit = —2A:5uP Yy — 25516 = 2Eij1 — 2A58.

§Ai

Suk

3.4.5 Formulas for Horizontal and Vertical Covariant

Derivative of R and P

In this part, we will obtain some formulas for horizontal and vertical covariant

derivatives of R and P. We have the curvature two-form of the Chern connection

as

By taking exterior derivative of (3.224), we have
i k i k i
Thus we get the second Bianchi identity as
i k i i k
By using (3.140) for 7, (3.199), (3.215), we can write (3.226) as

1 . : 5X! , ¢
éd(Rj’kl)du’“ A du' + d(P;")du® A - P du® A d(?)

(3.224)

(3.225)

(3.226)
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1 ) )
= SOFR L du Adut = 0P du A

1

J
+ —Qk’R Sdu” A du’ —HkZP Sdu” A

1 7
= 5( ykl\tdu + Ry ja

— Pyt /\[ <1R

t rs

k rs

— §0ij,jmduT Adu® — 0 P du” A

1 7 r s 7 i r 5
+ 50 R du" A du® — 6,/ P}’ du” A

= 5( e — B R lt) du® A du' A du' + 5 <Rj ki — 20 A lt)
i oo 5X! aXt
+ (Pj wt — Ly >duk/\?/\?:0-

du” Adu® + PL_du” A

0X*
F

)+

Xt
)du A dul + (P gedut + Py

dX?
F

X!

F

(0 e

51

6X!

du® N —

F

")

o X1
du® A dut N —
u U F

(3.227)

From this equation and changing order of wedge product and indices, we get the

following three equations

7 _ ) u
R’y = Py s

J

i _
Pj klit —

Similarly by using (3.228), we get the following identity

J

By using (3.230), we get the following identity
1Djikl;t - F)jikt;l = Psze"i -

By contracting (3.231) with e,/ and using (3.215), we get
jikl|t + Rjilt|k + Rjitk|l =—A" R —
similarly by contracting (3.232) with e, and using (3.215), we have
Pjikl - Pl ikj = Aikj;l

By using (3.218), the above expression can be written as

7 _ 7 7
Ak:]l Akzl] - Ak:j\l_ kl)j

Pi

§ k€1

m

At
tk_Atu

i
_Akl;j‘

R; kit — P] kt|l — Pg Itk — <Pg klA it Pk luA kt>7

R'ikl\t + Rjilt\k + Rjitkﬂ = PjikuR Yt PjiluR Yot PjituR Y-

u
kl»

(3.228)
(3.229)
(3.230)

(3.231)

(3.232)

(3.233)

(3.234)

(3.235)

(A A A A = (AT A A A,
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Similarly by taking the vertical derivative of e,/ R, = R *}; with respect to X",
we get
engRji e = I8 ikl;t — Ry +eTR Y, (3.236)

By contracting (3.229) with e,/ and using (3.236), (3.215), we have
Rjikz;ten‘z = erglajikt\z - enzpjilﬂk - <e7rszikuAult - enzpkiluAukJ (3.237)
R ikl;j - Rjikl + "R = <Ailj|k - Aikj\l + AikuAulj - AiluAukj>
Rjikl =R ikl;j + "R " — <Ailj\k - Aikj\l + AikuAulj - AiluAukj>'
By taking the vertical derivative of ¢,“R *,, = R *, with respect to X", we get
e R juy = Ry + R e — Ry (3.238)

Contracting (3.237) with e,} and using (3.191), (3.193), we get

Rinet =Ry +2R "+ R+ Alel. (3.239)

J m
Consider the Bianchi identity of the form
Ry + Ry + By = 0. (3.240)
Contracting (3.240) with e,!, we get

R/ yet + R e+ Ry =0. (3.241)

J

Inserting (3.239) into (3.241), we obtain
R kl == §<R k;l — R l;k) + §<R ke 1 — R le k> (3242)

By using (3.237), (3.242), we obtain an expression for the curvature tensor

i 1 i i
Ry = g(R kilig — R

gy

+e"Ri,—¢"R ;';k> (3.243)

+ §( k;jel—Rl;jek—l-ngjl_ngjk)_(Ajl|k_Auk+AukAjl_AulAjk>'
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3.5 (Geodesic Spray

Let us introduce

G =7 X X", (3.244)
where jx are the Christoffel symbols. By taking the partial derivative of (3.244)
with respect to X7 and using (3.79), (3.104) and (3.9) we obtain

OG' D [ w0 [ r 3k i vk
0 = g (XX = g (1) XXt 20X
(g"*)1 (094  Ogr | Ogrs i vk
9% 3Gt ~ e T ) T 20X

9 . .
= —waﬂsij]Xk + 29", X"

_ 2<¢‘. P Xka) = 2N, (3.245)
ik F jk J

Thus from the first partial derivative of 1G* with respect to X7, we obtain the
nonlinear connection as o

1 ¢ -

———=N_." 3.246

20X7 J ( )
Consider the second derivative by using (3.189), symmetry of P, (3.163) and
(3.215) as

3(6) e = W= (1),

81”'. . . ) Xl
_ Jl 1 i I _ 1 7
- WX+Fjl§k_ij_ IR
- Fijk -0 ijkenlz = Fijk + Aijk = brijk- (3.247)

Thus, by taking the second partial derivative of %Gi with respect to X*, we get
the Berwald connection. The differences between Chern connection and Berwald
connection is the A’ term.

By using (3.107), (3.246) and Euler’s theorem, consider the vector field

) 0 ) o 1.,0G" 9
k _ )(k . i _ X'k _ = Xk
Suk <auk Ny 8Xi> ouk 27 9XkoXFk
o 1.0
kK Y = 7
X — 22G S (3.248)

where G* is homogeneous of degree two in X*. The above vector field is called

the geodesic spray. We will obtain the curvature tensors R and °P for the
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Berwald connection. Consider the following expression
. ) 1 ) )
;' — 0" N6, = §ij’klduk Adut +° P du® A dud. (3.249)

Now, we will calculate df;" and —6," A6’ with respect to the Berwald connection.
By using (3.116), (3.247), we have

o = d( briﬂdul) — (d(rijl) +d(Aiﬂ)> A dul

J

ore ort s X+
_ il gk ! il !
. 0XF . 0X!
and by using (3.116), (3.247), we have
—0 NG = 6 N0 = (Fihk + Aihk> du® A (thl + Ahﬂ)dul
— (Fihkrhjl + A"hkAhﬂ>du’f A dud. (3.251)
Writing (3.250) and (3.251) into (3.249), we have
1 (Tijl H‘ijk i h i Th
1o AR R
. . L L o, .. 5X!
1, : 5X!
— §ij’klduk A dul +° Pydu® A — (3.252)

Comparing the coefficients of du®* A du' and du® A %Xlin (3.252) and using (3.162),

(3.163), we get the expressions relating the Berwald and the Chern curvatures
bR]'ikl - Rj’ kT [Aijl\k N Aijkll T AihkAhjl N AihlAhjk ’ (3.253)
and
ijikl _ Pjikl _ Aijk;l' (3.254)

)

3.6 Flag Curvature and Ricci Curvature

In this section, we will define the flag curvature which is the generalization of

the sectional curvature in Riemannian geometry and obtain a formula for Ricci
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curvature in terms of Flag curvature. We can define the curvature tensor as
RX,)Y):T'(pT'M) — T'(p"TM).

As in Riemannian geometry it is given by

. . 0
R(Z, W)X = Rjzle]Z’“W’%, (3.255)
and
R(X,Y,Z,W) = Ry X' Y'Z"W', (3.256)
or equivalently
R(X,)Y, Z,W)=G(R(Z,W)X,Y), (3.257)

where XY, Z, W are local sections of p*T'M over TM \ 0.

By Theorem 3.4.1, R(X,Y, Z, W) have the following properties:

1) R(X,Y,Z,W) = —R(X,Y,W, Z),
2) R(X,Y,Z, W)+ R(ZY,W,X)+RW,Y,X,Z) =0,
3) R(X,Y,Z, W)+ R(Y, X, Z,W) = —2A(X,Y, R(Z,W)e,,)=2B(XY ZW),

4) R(X,Y,Z,W)—R(Z,W,X,Y) = [B(XYZW) — B(ZWXY)]
+ [B(XWY Z)+ BYZXW)] + [BIWY ZX) + B(ZXWY)].

Flag curvature is one of the invariants which is the generalization of the sectional
curvature of Riemannian geometry. Flag is an object which is based at p € M

with flagpole X € T,,(M) and transverse edge V = V* Zi' Denote the flag as
X, X
K(X,V) = RV, X, X,V) 5 (3.258)

or equivalently

VI XI R X)V*
G(X, X)G(V,V) —G(X,V)*
where (u, X) € TM \ 0 and X,V are section of pulled-back bundle 7*T"M.
By using corollary of Euler’s theorem, we have

k !
Glem,em) = gijduiduj(X 0 X 8)

K(X,V) = (3.259)

F ouk’ F oul
X' X7

= (FFyiy;i + FyiFyj)—— =1. 3.260
( XX+XX)FF ( )
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Taking X = e, in (3.259) and using (3.260), right hand side does not change so
we have
Vi(e,d Rjime, ) V*
Glem,em)G(V,V) = Glem, V)’
V(e Rjirien) V"
G(V,V) = Glew, V)

K(e,,V) =

(3.261)

which is called flag curvature of the flag e,, A V. To obtain the Ricci curvature

in terms of K, let us define the following object

Vi(erﬂ;Rﬁklebe)Wk
GOVIV) = Glem V)Clem, W)
ViR, WH
- 262
GOVIV) = Glem, VIGlem V)’ (3.262)

K(em,V.W) =

which is algebraically a predecessor of the Flag curvature. In (3.262) by taking
V=2 W 9 we get

2arr W =34
o 0 Ry
K(em, s ) = 55 5 5 (3.263)
Ou” o ) G 507) = Glems 50) G (ems 507)
Let us obtain the quantities G(%, %), G(em, %) and G(em, %) to determine
Ricci curvature in a closed form.
o 0 o 0
Gl =, = ) = gudvfdu' | =——, = | = g 3.264
(8u”8uj> grdu u(au”auﬂ) Gij, ( )
0 0 0 . .
G(em, %> = gkldukdul (6771%, auz) = g,-jew]l =€, , (3265)
0 koif i 000 i m
By inserting (3.264), (3.265) and (3.266) into (3.262) we get
g 0 R;
Kl(em —,— | = L (3.267)
ou'” Qu? gij — €;"e;"

Thus we obtain the Ricci curvature in terms of K as

m_ m 9 0
Ry = (gij —6 € )K(ema B %) (3.268)
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3.7 Schur’s Lemma

o7

By rotating the transverse edge V around the flagpole X, if the flag curvature

does not change then we call it a scalar flag curvature. Denote that scalar as

A = A(u, X). For ease of calculation, we use the following notations

_ m_m
hljzglj—ezej,

J— m m
hiji = gij€"y, — gike”;.
We obtain some useful relations.

s L ON X0
B T R

since A is homogeneous of degree zero in X*.

, O\, X L OF O\ LO(%)
Arsem = Foxs T =N oxvaxs TP axe
)\ )\
= o T Paxr =0
oA

since F' and Z%-

hisen‘zs = (gzs - eniler);)e s =€ —e = 07
hijsem = (9ij€"s — gis€"})€m = gij — €77€"; = hyj;,
97 i = g7 (gix — €"ie") = & — eel,
97hi; = g7 (gi — €e™) =n —1,
gijhijk = gij (gijen}c - giken}) = ne"}, — (%677} = (n—1)e",
hijie = (955 — €€}k = Gigie — €"pe”; — €€ = 0,

since vertical derivative of g;; and €} are zero.

- m m m m o __
hijeit = Gijn€’y, — 9ij€ e — Gikpe’; — gine'jy = 0.

are homogeneous of degree 1 and —1, respectively.

(3.269)

(3.270)

(3.271)

3.278

(3.279)

We will now state a proposition which gives some relations with first curvature

tensor R and flag curvature scalar .

Proposition 1 . For the Finsler manifold M, the followings are equivalent:
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2) Rigr = Mu, X)hiy + %(hikA;l — haAg),
3) Rijkl = )\(uaX)(gikgjl - gilgjk) - (Az'jl|k - Az‘jk|l + AiskASjl - AislASjk) +

Ajhir + 3 [/\;k(e”fhjl + hiji) — Aa(€"thy + hz‘jk)] + 3 (hirdig — hidig)-

Proof: 1) = 2) By using (3.242) with lowering index ¢, vertical derivative of
(3.269) with respect to X!, (3.270) and after some cancellation, we have

1 2 m m
Ry = 3 <Rz‘k;l - Rz‘l;k) + 3 <Rik€ | — Rye k)
1 2
= 3 (A;lhik + Mgy — Aghip — )\hil;k) + 3 (Ahikenll - Ahilen}g)
1 A 2
= 3 <)\;lhik — A;khil) + 3 (gz’ken? — gz‘lewi) + EY <gz‘k67rf - gilenli)

1
= M + 3 (A;zhik — )\;khu>-
2) = 1) Contracting 3) with e,! and using (3.271), (3.273), (3.274), we have
1
Riklem == )\hikleﬁi + g <hik)\;leni — h;leni)\;k>
R = Mg,

2) = 3) Consider (3.243) with lowering index i as
Rjip = %(Rik;l;j — R + en}Rik;z — 6”}Rz’z;k>
+ §<Rz'k;j€nf — Rue"y + Rung — Rilek:)
(Aijuk — Ajuk + A A"y — AmzA“jk>-

By using (3.269) and 1), we can get an expression for the R;;. By using that

and similar terms in the above equation and after some simplification we have

R = MNoiwgj — 9agjx) + (Aijlwc — A + Aiuk’Aujl - AiulAujk;>

)\f m m >\§l m m )\ﬂ m m . _m
+ gj(gike | — gac"y) — g(gz‘je k — Gik€ j) - ?e i (g — €e"e j)
)\;k m m >‘;k m m_m
+ ?(sz@ | — gue”;) + ?e i (g — €"1e™)
1
+ g(hz‘M;l;j — hiAk;j)
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= MNgikgji — 9ugjk) — (Aijl\k - Aijku + AiskASjl - AislASjk;>
1 1
+ Agha 5 [A;k(e’?hﬂ + hiji) — A€y + hz‘jk)] + g(hz’k/\;z;j — hadk;)-

3) = 2) Contracting 3) with e,/ and using (3.191), (3.193), (3.273) and (3.272),

we have
Rijm = MNawe, g — gae,lgir) — e, <Aijl|k: - Az’jkz|l + AiskASjl - AislAsjk>

‘ 1 . .
+enAghin £ 5 [A;k(e%nihﬂ + hiji) — Aa(ee bk + hz’jk)]

1 ) )
+ §<hikerrjb)\§l;j — hie Akj)
1
= Mgwe] — gue™y) + 3 (hik:/\;l — hil/\;k>

1
= Myw + 3 (hik)\;l - hil)\;k)-

[]

By lowering the indices i of (3.231) and contracting it with e 7, e,! and using
(3.213), (3.215) we have

R iupen + R ap — R iy = — A% Ry + A%, Ry (3.280)
By using 1) and 2) of Proposition, (3.278), (3.279) in the above equation, we get
1
Aeemhig + g(hik)\;l\teni — hihgeent) + Npha — Nl
= — A% Mg 4 A%y \hg. (3.281)
Contracting the above equation with ¢** and using (3.272), (3.275), (3.277) and

denoting Ae,t = A, we have

Ahigg™ + %(Qikhik)\;zteni — g hadgpe,t) + ArgFha +
— NG hip = =A% g% Mg + A g Ahg,

Am —1)e™ + %((m — DAgeent — (6] — en]fe"l‘))\;k“eni) +
+ /\|k(6lk —efem) — (m — DXy =0

(m —2)

(m —2)Ae™ — (m — 2)\; + e, = 0. (3.282)

We will now state the Schur’s lemma when the scalar of the scalar flag curvature

depends on only u .i.e. A(u).
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Lemma 3 (Schur’s lemma) . Suppose M is Finsler manifold with dimension
m > 3 and scalar of the scalar flag curvature deponds on only u .i.e. A = \(u)

then )\ is constant.

Proof: We have

(2D
Ni=F— = 2
» X 0, (3.283)
and A OA OA O\
T ow T dut T OXT T ud (3.284)
since A does not depend on X. From there (3.282) takes the form
Aji = Ae™. (3.285)

By taking vertical derivative of the above equation with respect to 7, we get
/\|i;j = /.\;je"; —|— )\hU (3286)

A is a function of only w and by (3.284) A; is also a function of u only, so

Niyj = F% = 0. (3.286) takes the form

Aje™ 4+ Ahy; = 0. (3.287)

Dimension of M is greater than 1 so there is at least one nonzero arbitrary basis

section U orthogonal to e™. Contracting (3.287) with U*, we have

where U’ is orthogonal to ™. From (3.288), we have AU = 0 and also A = 0.

By using (3.285) and (3.284), we have \; = % = 0. From there, we can say \ is

constant on the connected manifold M.
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3.8 Special Finsler Spaces

A) Riemannian Spaces

C* manifold M with metric G = g;;(u)du’du’ is called Riemannian manifold.
That G defines a Finsler function F' on TM \ 0 by F(u,X) = +/¢;j(u) X" X/.
From there it is clear that, every Riemannian manifold is Finslerian. Finsler
manifold is Riemannian if the components of Finsler metric g;; is independent
of X. In Riemannian manifold, Cartan tensor and second curvature tensor of
Chern connection vanish in natural coordinates. Chern connection coefficients
I ;i take the form of ok ;& which is the second kind Christoffel symbols in natural
coordinates. First curvature tensor of the Chern connection R/}, is of the form
B aVijl aVijk

Rjikl = 0wt ou ‘*”Yihk’Y}}l_’Vihz’V@k-

B) Berwald Spaces

A Finsler manifold M is a Berwald space if the Chern connection coefficients
K ;& 1n natural coordinates are independent of X. As a consequence of this
condition, we can say that the second curvature tensor of Chern connection P
vanishes. In Berwald space, first curvature tensor R, in natural coordinates

take the form , )

B = ouk ou!

+ Fihkzrhjl - Fihlrhjk'

C) Randers space

Suppose M is an m—dimensional manifold. A Randers metric is a Finsler

function on 7'M \ 0 of the form
F(u,X) = a(u, X) + ((u, X), (3.289)

where a(u, X) = /a,;(u) X' X7 and B(u, X) = by(u) X"
Here a;; are components of a Riemannian metric on M with inverse @ and also
we lower and raise the indices by a;;. l;, are one-forms on M. m-—dimensional

manifold M with Finsler function of the form (3.289) is called Randers space.
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D) Locally Minkowskian Spaces

A Finsler manifold M is locally Minkowskian if the first and second cur-
vature tensors of the Chern connection Ry, P;%; in natural coordinates vanish.

We will state a lemma without proof. One can find the proof in [17].

Lemma 4 . Suppose M is a finite dimensional manifold with torsion-free con-
nection D. Let p be any point in M. If the curvature of D vanishes in a neighbour-
hood of p, then there exist a local coordinate system u' such that all the connection

coefficients T & aT€ Z€eTo.

That lemma helps us to prove the lemma given below which puts the restriction

on the Finsler function F' to make the manifold locally Minkovskian.

Lemma 5 . A Finsler manifold M is locally Minkowskian if and only if, for
every point p of M and local coordinates u® around p, there exist local coordinates

(u', X*) on TM which the Finsler function F is independent of u'.

Proof: (<) Suppose there exist local coordinate system (u’, X*) and F,: = 0.
Gij = (FFXin + FXiFX,j), so 2 =, Consequence of that yijk = g'—ﬂ<% —

Ouk s \ Ouk

ouk oud

that and 2% = 0, I, in (3.135) vanishes. By using that fact R}, and Py,

9org 4 M) = 0. By (3.136) N,* is directly depends on 7*;;, so N;* = 0. By using

Auk
C ; oTi ., oTi , ,
vanish since they have the form R}, = s — 55 + F’hthﬂ — ththjk and
4 ori o L : .
Py = —F—55¢. Thus R = P = 0 which is definition of locally Minkovskian.

(=) Suppose M is locally Minkovskian such that first and second Chern curvature

tensors vanish. From the vanishing of second curvature tensor we have

M _g 3.290
axt ( : )

By using that fact and vanishing of first curvature tensor we have
Bivw=a ~ 3 T el = Tl = 0, (3.291)

By (3.290) and (3.291) we have a torsion-free connection and curvature of this

connection vanishes. By applying Lemma 4, we have a local coordinate system
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u' which all the connection coefficients I' ;& vanishes. By using that fact and
(3.137) we have N;* = 0. By using that N;* = 0, I, = 0 and (3.127), we get
g‘zi,f = 0 which means g;; is independent of u’. Consider ¢;; = (F Fyixi+ FxiFx).
Contracting that with X*X7 and using Euler’s theorem we get X'X7g;; = F2.

Thus F is independent of u’ since g;; is independent of u’.

3.9 Summary

. " . . i, yviOF _
F'is positively homogeneous with degree one in X*: X'2% = F,

and have identities
2) XkFXixjxk:—inxj,
3) XZFXiX_ijXk = _2FXinXk7

4) XiFyiy = Fy.

Finsler metric: G = g;;(u, X)du'dw’ = (%FQ) du'du?,
Components of Finsler metric: ¢;; = F'Fxixi + FxiFxi,
9

Orthonormal frames: e, = e/== and its dual w® = e*du’,

XX

I P —
(eou eﬁ) =€, gkieﬁz = 5&,@7
X' 0 — i
F du* = "mout’

Chern connection: De,, = weg,

Global sections: e, = and w = w™ = Fyidu' = e"du’,
Torsion-free condition: dw® = w? A wg,
1) dw™ = w* ANw;™,

a
m )

2) dwd:wg/\wgé‘%—wm/\w
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where

wy" = —e  FxixidX? + %J(Fuz — XU Fyigi)w™ + eaiijFuinwB + /\dgwg,
Ao = _%eﬁiea'j <Gijm + Fxiui + inuf)7

Gism = " F Fxxix (Fu — X’"Fxsur) + X Fyxixs + 5 Fos Fyixs,

* = e&kdegk + Sgdwm + ,uﬁﬁdwﬁ,

es

B

a__ 1 & k Qv
W,y = €A X" + & fw”,

o]
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Hoo = %(55‘5 (e[{eﬁ]GW — eﬁieEjGijg + eaiijGW),
GZ]B = eBS %(FUTXS _FXT'U,S GT‘S?TL) <F2ngFXiX‘jxk +XTFX1X]> —|—FU<FX2XJ —|—
FFustX] }’
Components of Cartan tensor in natural basis: A, = ggfgi,
with XZAka = Xinjk == XkAwk == 0,
Components of Cartan tensor in frame w®: A,yq = %3?;1 ejejel,
Almost metric-compatibility condition: w.z + wg, = —24,,w,,
g= %FQ,
Gi = (X528 — 35) = § (X P Fx + X*FFyu,e — FFy ),
gi = gilgl)
Basis of T*(PTM): w,} =e%0X’7 and w® = e%du’, where
60X =dX'F + N du¥ and N,' = 9%
Basis of T(PTM): é, =e/ 5 and é,:q = €4 555, where
s — 8 j_d S — 1.0
s = ow — INiTgxy and 5 = Fai, |
Chern connection in natural basis: D 881- =0’ %, Ddu' = —6.'du/,
4 ' Ju [ J
or Daii =TY,du' ® %, where 6,7 =TV ,du!,

Connection coefficients:

_ F (995 \7 14 Ogki n7 1 995k AT
Lijk —%‘jk—g(a)ﬁNk + 3%t N; = SN >7

. i ) 94
Frjk — ’)/rjk . §g1r<691Nkl 4 89k1N‘l _ 995k N‘l>7

X! axtiVj axt Vi
= 1(%9 | Ogx; _ 99k
Yijk = 5\ b T Bw — oui )
1 — g% ( 0gij Ogki __ 99k
/ij ) <8uk + ouJ out )

N ji in terms of Cartan tensor and Christoffel symbols:
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N’—fy

Fi

JkF

F_ Qi Ak XTX

ij jk7 rs [2

7
Nk’

Curvature two-form in natural basiS' Q f=db; —0,* N6, and
Q' = 3R, kldu A du' + P kldu A X2 where

i
Rjkl

i
ijz—

61" 61"Z
— 7 l
ore .,
—F 5%

i o— o ipi

R'.=e)] Rj 1€

le_ejRﬂkle R kl:e R] kL
7 —

Pk;l:empjkl?

Curvature matrix in basis w® and w,®

Qﬁa -

%Rﬂo‘pawp ANw? + P w? Aw

o
m?

Relations of Q-j and Qaﬁ:
Q & — = €5 Q e
Rﬁ oo = eﬁ e ke ZR ’kle"i,

Pgs —eﬁe Fe lP; ’kle

7 )
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Propeties of first and second curvature tensors R, P and their horizontal and

vertical derivatives, respectively:

1)

Ry = — Ry,
Rjik + Ry + Rijr = 0,

Rjir + Rijr = 2(—AijuRY,) = 2Biju,

Rijp — Ryij = (Bijkl - Bklij) + <Bz’ljk + Bjkz'l) + (Bljkz' + Bk:ilj)a

Priji = Pjin,
Pijri + Pjirg = —2Ai5u P 'y — 2Ai6 = 2Eij00 — 2 A1,
R+ By + By gy = — AR G — AR Yy — AT R Yy,

i i At Aé
ijl_Plkj_Akj;l_Akl;ja

i 1 7 ) m % m %
Rj'n = 5( kg — AU gy €y — € R l;k) +

%(R Z;jen?_ %}je”HR ?;gﬂ—R igjk> - <Aijl|k_Aiuk+AiukAujl_AiulAujk>
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: . ko _ xk 9 _ lorvi_0_
Geodesic sparay: X"e=p = X¥55 — 52G" 5%,

Vi(end Rypie,l )JVE
G(V,V) —G(Em 7V)2 )

Flag curvature: K(e,,, V) =

66



Chapter 4

The Geometry of Tangent Bundle

In this chapter we study the geometry of the tangent bundle [18]. We first define
a metric on that tangent bundle and an almost complex structure, then for the
ease of calculations we define special frame which makes the metric and almost
complex structure simpler. By using this special frame we define an anholonomic
basis. We calculate Levi-Civita connection and curvature tensor on tangent bun-
dle. Finally we obtain some relations among the connection coefficients and

components of Riemannian curvature tensor.

4.1 Defining Metric on T(M)

Suppose M is an m-dimensional C°° manifold with local coordinates u, 1 <
i < m. T(M) is 2m-dimensional tangent bundle of M with local coordinates
YI=(y,y"),1<i<m, m+1<i* <2m. Here y' and y* are respectively the

base manifold and fiber coordinates. It is convenient to write
Yi=(yy") = (v, X7 (4.1)

for the consistency of our notations. Except when otherwise stated; upper case
Latin indices and Greek indices denote the natural basis and anholonomic basis,

respectively. First eight letters of Latin alphabet and the remainings are used

67
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to expand the Greek indices and upper case Latin indices, respectively.i.e. a =
(a,a*), 1 <a<m, m+1 <a*<2mandl = (i,i*), 1 <i<m, m+1 <i* <2m.
The indices without star and the indices with star denote the components of base
manifold (except the indices of X') and the components of fiber, respectively.

F (u', X?) is a function which is defined on T'(M) and satisfies the properties of

Finsler function. By using F', the components of the metric tensor has the form

gij (u, X) = (%F2> s’ (4.2)

which is homogeneous in X with degree 0. As in previous chapter let w be a

globally defined one-form or Hilbert form as
w = e"'du’. (4.3)

(Here m is not an index. It is the last values of every index) By using e,7¢;; = ™

as in previous chapter, we can write (4.3) as
w = ge,ldu’. (4.4)

Here we take e,/ = X7 which is different from the previous chapter. By taking

exterior derivative of (4.4) and using the fact (3.79), we have

dw = dgge)du' + gi;d (e;]))du’

99ij 1 kxigiy 99 ki g i , .
= Wdu Xdu +WdX X7du' + g;;d X7 N du
109k Ogik]| vkqi .4, L Lo Z, }
= 3 {81/}' ~ S X%du' N du +§gijdX A du’ — Egijdu NdX7. (4.5)

We can write dw in a closed form as

1
dw = §Ludyf ANdY? (4.6)

ou’ ouJ
gij and L;«;« = 0 or we can write L7 in a matrix form as

where Y = (yi,yi*) = (v', X") and L;; = <8gjk — ag—“-“) X* Lij» = —gij, Lirj =

Ogjk _ gk k
Lis — <8ui T o X 9ij
J =

—Yij 0

(4.7)
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Here L is skew-symmetric in lower-indices and has maximum rank 2m. Let G;;

be a positive definite metric on T'(M) such that

LLjGrr = G, (4.8)
where
L = L,G’%, (4.9)
and
LALJ = —6]. (4.10)

From these equations we can say that L, denote an almost complex structure
compatible with metric G. Later we will obtain G and L in terms of F. Now, by

using (4.7) and (4.9) we obtain the components of L,” as
L7 = LigGY = LyGM + Ly.G*I

ki 99ij \ i ki .
= (= - L) XIGN — ¢, G, 4.11
( Wy 000} X9GH — gy (11)

e (4.12)

L7 = LigGR" = LyGM" 4 Ly GF7

Ogui 0Gii\ <
— ( 8%; — #) XIGr" — ., GFT (4.13)

L7 = LpxgGR" = LiyGM 4 L GF'T°
= guG"" (4.14)

We can write L;” in a matrix form as

LipGH — guGF'I gy Ghi
Lﬂ—( g Jik Jik ) (4.15)

- LixGM'™ — g G 77 gy, GM°
By using (4.9) and (4.10), we can write the following relation

LixL GEY = Gyj. (4.16)
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By using (4.7) and (4.16), we obtain some relations for Gy, as
Gij = LikLj,G""

= LyLjyG*" — LignG™ — g LyG"' + gingnGF", (4.17)

= giijlel - gikglekl*a (4-18)

= guLiG" — gingynG*', (4.19)

Gi*j* p— Li*KLj*LGKL
9ingiG*. (4.20)

Consider the fibre of T (M) which is obtained from y* = X? and also it is n-
dimensional submanifold of T'(M). The vectors which are tangent to these fiber,

are
C =6 =1(0,68]), (4.21)

and by using L, we get its orthogonal which has the form
B;' = L{C;F = Ljl. (4.22)
By using (4.15) and (4.22), we can write the components of B, as
Bj' = Lj. = gG", B;" = L\ = gG*". (4.23)

C,I are tangent to fiber of T'(M) so it is an element of T' (7' (M)) and its orthog-
onal B;! are an element of T* (T (M)).

4.2 Determination of Metric ¢ and Almost

Complex Structure L

Let us denote
GKLBjKBiL = GKLLj*KLi*L = Gij- (424)
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By (4.8), left hand side of the above equation is G+;». Thus, we get the one of

the components of GG in terms of F' as
G = gji- (4.25)
By using (4.21) and (4.25) we can write
GrrCECl =G = gji (4.26)

Thus we get the relations for C,X and B;* in terms of g;;. By using (4.20) and
(4.25), we have

9ingitG* = gij. (4.27)
That equality holds if GF = ¢g* with g*g;; = 5;“ . Here we get another relation

for G as
GY = g", (4.28)

where g;; and g help us to lower and raise the indices of objects. Let us introduce
—G7 = -G = N4, (4.29)
By using (4.20), (4.28) and (4.29), we have
Gij* = gleikal - gik:glek*l = Lij + Nji- (4-30)
Denoting G+ = NN;; and using the above relation, we get
Lij = N;j — Ny;. (4.31)

Let us introduce
GM = gM 4 g NN (4.32)

By using (4.17), (4.31), (4.32) and after some simplification, we get another rela-

tion for G as

Gij = (Nir — Nii) (Nji — Nij) g™ 4 gj1 (Nig — Nii) N¥
+ gk (Nji — Nig) N* + gingu (6™ + g N,"N,")
= gij + gulV;'N;". (4.33)

By using (4.19) and (4.31), we have

Girj = giijlel - gikglekl* = Nj;. (4.34)
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Thus we can write Gy and G in terms of gi; and Nij in the matrix form as
Gy = | P IE ) (4.35)
Nij 9ij

and

©j _Nji
¢gv=( 7 ). (4.36)
=N g7+ g"N,'N,

By using (4.35) and (4.36), the components of L;’ can be rewritten as

L = (Nt — Nii) g% + g N7" = N7, (4.37)
L7 = gug" = o, (4.38)
LI" = (Ng— N) (=N") = g (6" + g" N,FN_9)
= —6/ — NyNM, (4.39)
L = gu (~N*¥) = —N,”. (4.40)

Thus L,” in terms of N, in the matrix form is

PP 5
= . . . (4.41)
—0] — N;*N,” =N’

4.3 A Special Frame and Anholonomic Basis

In the previous section we obtained the metric G which has all components G;;,
Gi+j, Gij«, Gi=j«. To obtain G which has components no mixed parts, we define

special frame as
E!=(B,),C,),  withinverse  E% = (B%,C%). (4.42)
By using (4.21), (4.22), (4.23) and (4.41), we can write
B =LJCr=L]=(8,-N7), CJ=(06]), (4.43)

and

BY = (68,0),  C% = (N,%6). (4.44)
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By using this special frame we can write the components of G and L as

Gop = GrLE,NES, (4.45)
and

Log =Lk EFES. (4.46)

By using (4.35), (4.41), (4.42) and after some simplification, we obtain compo-

nents of G and L in this special frame as
Gab - GKLEQKEbL
= Yab, (4.47)

= leCalfBbl + Gk*lCaf* Bbl + le*CaffBbl* + Gk*l*Caf*Bbl*
— N~ Npu =0, (4.48)

Gab* - GKLEQKEI)*L
= GuBC)l+ Gy B C)f + GBFO)Y + G- BN CF
= Ng— Ng = 07 (449>

Gey = GrrEFSE}E
= leCabef + Gk*lCaf* Cb»f + Gy Cafbef* + Gk*l*(]af* Ob**
= Yab- (450)

We can write G,z and GP7 in matrix form as

be
Gos— [ 9 ") emo (T V) (4.51)
0 ga 0 g

Thus we obtained metric in a simpler form by defining special frame.

Loy = L EXE* = Lij — (Nij — Nj;) =0, (4.52)

Loy = Lx BN EYY = gklfsgfszl) = Gab; (4.53)
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Loy = LKLEaKEb*L = —gkléfjéé = ~Yab; (4.54)

Lo = L E,XEE =0. (4.55)

We can write Las and L' in matrix form as

0 o 0 of
La,@ = Jab ) Lg’y = ’ ) (456)
—Yab 0 —55 0

where we obtained components of L /37 by multiplying the components of L,z with

¢%. Now we introduce the anholonomic basis vectors by using the special frame

as a
E,=FEfF — 4.57
[e% 8YK7 ( )
and its dual as
W = EdYX. (4.58)

where E, = (E,, Eg-), W* = (W, W) and E, (W?) = 65.
By using (4.1), (4.42), (4.43), (4.44) and expanding the indices as K = (k, k*),

we obtain

) ) ) ) . 0
Ea N — _ K_~ _ E kY E k
Syt dur e gyK T Me ggn Tl G
) )
= — N — 4.59
oul ¢ OXE’ ( )
§ ) ) ) .0
E, = = —Ef — =pF — +EF
Syv . oxe et gyk  Petgg TR G
)
= — 4.
oxa’ (4.60)
W = 0y* = ou® = E%dY" = E°dy* + E°.dy*" = du®, (4.61)
W =6y” = 0X°=E"%dY" = E%dy" + E.dy*
= dX"+ N,“du". (4.62)

Thus we obtained an anholonomic basis as
0 0 0
Eq = (Eq4 Ep) = - N} —, :
(Eo: Eor) (8u“ ¢ 0Xk 8X“)
W= (W W) = (du",dX* + N, *du") . (4.63)
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So that G has no mixed components. We can write the line element of the tangent

bundle in the anholonomic basis as
do?® = GosWW? (4.64)

where

Gop = ( ggb ’ ) W= (W W) = (du®,dX*+ N, du*) . (4.65)
Yab

Our special frame (4.42) is not a natural frame, so we have anholonomic objects.
We now obtain the components of the anholonomic objects by using the Lie
brackets of (4.59), (4.60), (4.61) and (4.62). By definition of Lie brackets we have

[Eaa EB] - CaﬁﬂE,m (466)

where C_ V' s are structure constants or components of the anholonomic objects

and skew-symmetric in lower indices. By using (4.66) for E, and FEj, we have
[Ea, By = Cpy*Ey = Cpp Ee + Cpp B, (4.67)

By using the formula (4.59) for E,, direct calculation of Lie bracket of E, and E,

18

9 9 9
_ _ k _ k
B i) = (aua Ne an) (aub Mo an)

5, . 0 0 . 0
ow W an> <8u“ — N an)

- ONS 0 [ON 0N 9

B 0ub Ny’ oxXt | 0X* Ju® “0X*k| 0X!
SN, * 5N 10 ON,© OGN,

— _ f— a — E * . 4
[ dub } 0X* { dub due } ‘ (4.68)

Comparing (4.67) and (4.68) we get

. ~  ONS  ONS

Cut =0, Oy =54 = b= F, (4.69)

At the end of the chapter we will get an explicit formula for F Vaﬁ on the whole
tangent bundle. By using (4.66) for E, and Ej-, we have

[Ea, Eb*] — Cab* E — O E + C ab* Ec N (470)



CHAPTER 4. THE GEOMETRY OF TANGENT BUNDLE 76

By using the formula (4.59) and (4.60) for E, and Ej«, direct calculation of Lie
bracket of E, and Ep« is

5, . 0 5, 8 9 . 0
(aua — N an> <aXb) B <8Xb) (aua — N an)
ONS 0 _ ON,

OXb 9Xk — gyt T

[Eq, Ep]

(4.71)
Comparing (4.70) and (4.71) we get

. ON .
Cabf - 0, C ¢ = 4 = ¢C ab* - (472)

Using similar method we get

a*b — aya* = _¢C ba* - (473)
By using (4.66) for E,« and Ej«, we have
[Ea*, Eb*] == Canga - Ca CEC + Ca*bf* o* .

*

(4.74)

By using the formula (4.60) for E,« and Ej-, direct calculation of Lie bracket of
E, and Ey- given

B, By = (%) (%) _ (%) ( 3;9@) 0. (4.75)

Comparing (4.70) and (4.71) we get

(4.76)

4.4 Determination of Connection Coefficients [’

and Curvature Tensor R

Levi-Civita connection on the tangent bundle in anholonomic basis defined as

D(Eg) =T",,W* ® Ej, (4.77)
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where I, is Levi-Civita connection coefficients. Now we obtain a formula for
r* op 1 terms of metric of tangent bundle G.3 and components of anholonomic

objects Caﬁ“ . From the definition of Lie bracket we have

[Ea,Es] = Dg,Es— Dg,E,
= [F“ﬁa — r“aﬁ] E,. (4.78)

Comparing that with (4.66), we get the relation of connection coefficients and

components of anholonomic objects as

—C =T, T (4.79)

&7

From the covariant derivative of G\ we have

G
syn

D;LGaﬁ = - F’YauGﬁ{g — F’YBMG’YQ = 0, (480)

which is the consequence of metric-compatibility of the Levi-Civita connection.

From there we have
0Gap

oY
By changing the indices «, (, p and adding and subtracting F'YQBG

=17,,G5+175,Ga (4.81)

~us We have

0Gua | 0Gus  6Gap
5YE T Sye T Syn

= 207 4G+ (17, — ) G+ (Ww — Wﬁu) Gra
- (M —T17,) Gy (4.82)

Using (4.79) and arranging the above equality and multiplying both sides by
G and lowering the indices with G.5, we get the components of Levi-Civita

connection on the bundle manifold as

1 0G 0Ga  0G,
Fas = §GM { (SYNff tys 5yf + Chap + Cupa — Caﬁu} ~ (4.83)

a0 w 0

Gog = [ 9 = I , (4.84)
0 Gab O Gaxb*
ab O ab 0

GoP = ( 0 ) = ( e ) . (4.85)
0 g 0 g

Let us set

and
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Let us introduce

o _ L (0Gas | 0Gyy  0G,
Tor=3C <5Yv TovE T ) (4.86)

Now we obtain I' for different indices by using the formula (4.83). These com-
ponents of the connection I' will help us to calculate Ricci curvature and scalar
curvature tensors of the tangent bundle in the next chapter. Scalar curvature will
play a central role to get the Schwarzchild solution and to compute the gravita-
tional red shift.

By using (4.59), (4.69), (4.84), (4.85) and (4.86) we have

1 5G,  0G,. 0G.
Ie, = —GW[ by ke b+0ucb+0“bc—(]bw}

2 oye oye  §yn

1y Ogay . 09ac  OGen -
— _gle — = 5% . 4.87
2 [&LC doub  oud be (4.87)

By denoting
Iy 09y~ 0gac  Ogen

¢ = —g» — 4.88
The =59 (8140 - oub  Oud (4.88)

and using (4.59) for 52, we can obtain

Lg% |:agdb Oga agkb:| 1 [ N » 09

. o _gda
2 ouc oub oud 2 ¢ oXr

a
Fbc

0Gde 9.
+Nbr 9d N, gb:|

oxr 4 oxr

L g Oga 9Yadc 9Get
= 7% — =g |N." N," R\ : 4.
Y be 29 |i cHxT + b oXT d oXT ( 89)
Here ~%,. are the Christoffel symbols of the base manifold.
By using (4.60), (4.69), (4.72), (4.73), (4.84) and (4.85) we have
1 5G b 6G * (5G *b
re. = -G z o Crerb + Cruper — Cper
be 9 |:5yc* Syb SY H + Cperp + Cpp b u]
L 3,090 1 4
= — a —_ = aFC* . 4
27 oxe 27 T (4.90)
Let us denote 5 5 5
_ L, Gdb Gde Geb
e = =g™ — 4.91
Ve =59 (aXc Taxr T axd ) (4.91)
By using (4.91), we get
o L 994c | 09w Ogue | Ogoa | Oghc  0gea
Taeb T bed =5 \9XP T 9Xe T 0X7 T 9Xe | 9X4  OXV
_ Y (4.92)

oXe
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Using the identity

_ _ dgdb
Yderb + Voerd = <o (4.93)
oy°
and Fogp = —Fpq we can write (4.90) as
a 1 = Q = a a
I be* — 5 (’Y c*b + Vo + Fc*b ) : (494)
Similarly we can obtain
a 1 =~ a = a a
I b — 5 (7 c*b + Vocx + Fc*b ) : (495)

By using (4.59), (4.72), (4.76), (4.84), (4.85) we have

0G| 0Gue  0Gey
Sy< eyt oyn

(
" 1
Fb*c* - 2
1 da 5gc*b* 1 d 1 d
W Lgag Ly 4.96
5 29 Pbrd +2g Gerab (4.96)
(

—GH

+ Cuc*b* + Cub*c* - Cb*c*u

“sud
By using (4.84), (4.85) and (4.86) we get the following relation

= = 5gb*c*
Verdrr T Vorder = syl (4.97)

which leads to

e = 2 (e 00%) + (e — 8]
= —% (T, % + Ty ) (4.98)
where
Ty =7y = 9%, (4.99)

By using (4.60), (4.69), (4.72), (4.84), (4.85) and the fact (4.93) we have

a* 1 a* 6G b 5G C 5Gcb
r be — -G+ |: 5yl: + &g/lj - Sy +C,ucb+0ubc — Cbc“:|

1 * gk agcb 1 1 a* _ o _ o
_§gd aXd + 2 [F be Ve b W c} : (4100)
By using (4.59), (4.72), (4.73), (4.84), (4.85), (4.97) and (4.99) we obtain

d*a*
g Fd *be —

re. = -G - £ — —— + Cpep + Cuper — Cer
be 2 {&Jc* + Syb SY H + Cpesp + Cpp b u]
1 d*a* 5gd* c* 1 d*a* 1 d*a*
= 59 Sub 59 Perbd 59 P be+

f:yabc* - ¢abc* + ’:yc*ba - ¢c*ba ]

T + Ty | (4.101)
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By using (4.59), (4.73), (4.84), (4.85), (4.97), (4.99), adding and subtracting 7%.

we obtain

. 1 e [0G | 0Gue 0Geny
re., = -G" £ e Chert + Cuber — Cr

29 5ub — 39 Gerbar + 9 ¥ Brper
e

— 1 — * * —
= Ve T B [Fers” — ey — (7abc* - ¢abc*)]
—_—— 1 * *
= Ve +3 [T.," —T%.] (4.102)

By using (4.60), (4.76), (4.84), (4.85) and (4.86) we obtain

r b*c* 5?./0* (Syb* SY # + Cuc*b* + C(ub*c* - Cb*c*u

e [0Gur | 0Gue  0Gic
2
1 k% a * h* a * ¥ a * ¥ :a*
= 59" < Jak | Hde o )27 e (4.103)

0Xe ox? 0Xd

Curvature tensor of the Levi-Civita connection D for the anholonomic basis is

defined as

R(Es, Es) = Dp, D, — Dg,Dg,, — D[EWEB]' (4.104)
where componentwise form of R is
R=R/ \Es@W*@ W e W (4.105)

We can write the components of the curvature tensor in the anholonomic basis

as
RS ,=R(E.,W’ E, E\) =W (R(E,,E)) - E,). (4.106)

By using (4.57), (4.58), (4.66), (4.78), (4.106) and (4.104) we get the components

of the curvature tensor as

R/, = W’[(Dg,Dp, — Di,Dg, — Dig, p,]) Ea]
— W [E7 (1%, \Es) +T°,\T% E, — By (T°,.) Es
- Féavrp(i)\EP - C’yA(SFpa(FEP]
= E’Y<Fﬂa)\) - EA(Fﬂa'y) + Féo&\rﬂé'y - Fda'yrﬁé)\ - C’ykérﬁaé

0y _ W% 1o s B o o8
= Syr " ayr Tl el Ul O (4107)
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From the previous chapter, Equation (3.189) gives the following relation
X34 =N, (4.108)

By using that fact and (4.69) we obtain a formula for C,,¢" in terms of R as

C c* — a (Xdi/czla) o XT":yd a (Xss/ci;a) o a (de?cgb) + XT":}/d a (XSf:yci;b)
ab dub T 9Xxd due e 9Xxd
8;}/6* sai/c* a’:yc*a Sa,:YC*a =r =c* =r =c*
= —Xd[auzb—Na adeb_< auzl _Nb 8de +’7 dbY ra =V da”V b
55/6* 5ﬁc*a =r =c* =r =c* H c*
= —X‘ {ij - 51; TV @Y ra =7 da rb:| = _Xde ab- (4.109)
Comparing that with (4.69) we get
Fc*ab - XdeC;bv (4.110)

Here Fis called the gauge curvature field and on the whole tangent bundle it has

the form
Y —_ d D Y
Fs = Y°R; s
05" 557
|8 Ve oa = .
=Y Sy~ Gys TV ha T Ve s (4.111)

where gauge curvature field is skew-symmetric in the lower indices.i.e. F 'Yaﬁ =
—Fga.

4.5 Summary

Metric on the tangent bundle in natural basis:
9ij +91kN,~lek Nji
G]J - )
Nij 9ij
Almost complex structure in natural basis:

I - i ] ’
~§] = N,*N; —N,

Special frame: Ef = (B,!,C,!), with inverse E% = (B%,C% ), where
BaI = (527 _Nai) ) Caf = (075;) and B = (47,0), Oal* = (Niaa(;g)'
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Anholonomic basis:

Ey=(Ey, Ey) = (5% — N,*52, 522)
and its dual

Wwe = (W“, W“*) = (du“, dXxXe + Nk“duk) )

Components of the bundle metric in special frame:

. 0
Gog = | .
0 ga*b*

Alomost comlex structure in special frame:

b
i 0 %)
“ —6* 0
The line element of the tangent bundle: do? = G,zWW¥.

Components of the anholonomic objects such that [E,, Es] = C, 3 E, where
CbC: abf:O*bC:O*bgzca*bf :0,

a . a . a
© 8N, ON,© -
ct __ _ b = c

Cab ” — Fab7

*

- Sub . Sud
c* o 6Nac _ c*
ab* T gybt T (b ab*»
* ON, c* *
cC — _ b — __AC
Ca*b - oyt — ¢ ba**

Levi-Civita connection on the tangent bundle:
D(Eg) =T%, W*® E,,
where the components of the connection coefficients are

A 1o |96 0G0 6Gq
r af — §GM 5YHf + 5Yuﬁ - 5Yf + C/mﬁ + Cuﬁa - Caﬂu] :

The components of the connection coefficients for different indices which belong

to base and fiber sectors:

%, = iabc’

D = T oy = 5 (Vo + Moo + Fry)
% = =3 (T, o + T.%0),

Dee = =5 (T o + T,

a _ =a* 1 a* a*
F *h fY be* + 5 (TC*b - T bC*> 9

where

= _ l P (sGAg (SG)\,y _ JG/BW
Yoy = 3G vy T oye T avs )
—a _ 1 _da (994 994 g

Ve = 29 (axc+axg _axg)v
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_1.da (0 99dc __ Ogbc
fyabc - §g “ (%4— agljb - aibd) )
oY, = ONg™
By oYy »
_ T«
Taﬁ'y =Ty~ ¢aﬂ'y‘
Components of the curvature tensor without the components of the anholonomic
objects:
> 5[99 6y =a =\ =a =\
Ry%y =Y [ 55— w8 oy — VT s8] -
The gauge curvature field:
_Vip
Foyy = VPR,
Components of curvature tensor of the tangent bundle:

CRN) SN i 8 1o B s 3 5
Ryyn="57% Gy Tl — T, = 17,000




Chapter 5

Structure of Spacetime Tangent
Bundle

In this chapter make applications of the geometry of tangent bundle [19], [20],
[21], [22]. We construct the spacetime tangent bundle by using spacetime and
four-velocity space. We first define a metric on spacetime tangent bundle by
using the proper acceleration a, and then we define connection and obtain the
connection coefficients, curvature tensor, Ricci curvature and scalar curvature.
Then we define an action on the spacetime tangent bundle and considering the
Schwarzschild-like spacetime we obtain the Euler-Lagrange equations of motion
coming from the action and obtain a Schwarzschild-like solution. Finally we

obtain the modified red shift formula on the Schwarzschild-like spacetime.

5.1 Metric, Connection and Curvature of

Spacetime Tangent Bundle

In Riemannian geometry, we have a positive definite quadratic differential two-
form ds* = g;jdu’du’ and is called Riemannian metric. u’ are local coordinates

and g;; are symmetric smooth functions on Riemannian manifold. Here we obtain

84
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a positive definite quadratic differential form by using the proper acceleration a,
of an object in curved spacetime, which is given by Einstein’s theory of general

relativity as
DX' DX
a® = —c4g,»j? Faa (5.1)

where c¢ is velocity of light in vacuum, g¢;; are components of spacetime metric

du®

tensor. u' and X' = &,

(1=0,1,2,3) are spacetime coordinates of an object

and four-velocity coordinates, respectively. Covariant derivative of X* is

DX dX? o duF
_ xiri, &
ds ds + ik s’

where I ;. are affine connection coefficients of spacetime. Let ag be the maximal

(5.2)

proper acceleration. We can state the following condition
a® < ay?, (5.3)

since the proper acceleration can not reach to the maximal acceleration. By using
(5.1) and (5.3) we have

., DXiDXi )
O gy S %
2\> DX!DXJ <
ao Jig ds ds —
DX DX
00291'3‘? 15 1>0, (5.4)

where pg = % Spacetime and four-velocity spaces determine an 8—dimensional
tangent bundle with local coordinates Y! = (3%, 5" ) = (u!, ppX?). First three
components of spacetime are spatial coordinates and the fourth component is the

time component. Let us define the positive definite quadratic differential form
do® = G;DY'DY”’ = gj;du'dv’ + py*g;; DX DX (5.5)
By using (5.2) and (5.4) we can write (5.5) as
do® = gydu'du’ + po’gi;(dX' + X' du) (dX7 + X1, du™)
= gijduiduj + pozg,-jdXi AdX7 + pozginijmndXi A du”™
+ 0029 X T dul A dX7 + poPgy XEXTT T dul A du”
= [gij + PigmX T X™T" ] dul A du? + pfgn; X T" du’ A dX7

+  Pogn XTI AXT A du? + phgid XA dXT > 0. (5.6)
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Let us write the above expressions as
do* = GrdY'dY”’, (5.7)

which is the line element with positive definite metric G;; on the spacetime

tangent bundle in the natural coordinates. G; has the form

i+ 2 nXkFl xXmpn Qn'Xan )
G]J _ Gij Po2gl ki mj PoYnj , mi 7 (58)
poginXanmj PoYij
or by using the fact
X, = N, (5.9)
and lower the indices by g¢;; we can write Gr; as
i'+ 2 nN-lNzn 2Ni'
Gy — ( 9ij Poi]l i Vg Po2 J ) (5.10)
PsNji P6is

Thus we get the metric on spacetime tangent bundle which is the same form of
the previous chapter. Again as in previous chapter for the ease of calculations let

us introduce the special frame as

E = (B,,C}) with inverse  E% = (B%,C%), (5.11)
where
B =(6,,-N,), Cl=(0,6)), (5.12)
and
B =(67,0), O =(N;%5). (5.13)

The bundle metric in the special frame has the form

Gop =G E,E, (5.14)

w0
Gog = [ % . (5.15)
0 Garb*

The anholonomic basis have the form

or in matrix form as

— _ (0 _ Iark 9 4 0
Eo = (B, Ey) = <8ua P N 55 P aXa)’ (5.16)
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and its dual has the form
W = (W W) = (du®, ppdX* + N, du") . (5.17)
This anholonomic basis also satisfy the duality condition
E, (WP) =65 (5.18)

The line element of the spacetime tangent bundle in the anholonomic basis has

the form
do?® = GogWW>. (5.19)

We define the Levi-Civita connection on spacetime tangent bundle in the anholo-

nomic basis as
DE, =1’ ,W’® Ej,

where the connection coefficients have been found in previous chapter as

oG 0G .. 0G,
Mop = 50" 5YM5 sy T 5yf + Cuap + Cupa — Cagy| (5.20)

5 (6 1.9 N _ (08 _  —1abd —19 v ~
where 3o = (5ua>:00 aXa) = (aua Po Nu' 5555 Po axa) . Here Cag are compo

nents of the anholonomic objects and defined as [E,, Eg| = Caﬂ“ E,. In previous

chapter, Caﬂ” have been found for different indices as

Cpt =0 =0t =0yl =Cpf =0,

C,¢ = 5?2: — 5?2: =F, (5.21)
Cur = G =

Oa*bc* = 88]\; IZLC = —¢C*ba*

The connection coefficients I' of the tangent bundle for different indices have the

form

FOLbc = ’T/ ber (522)
D% =T oy = = (A% + Fpor + Fp ), (5.23)

Fab*c* —- — = (Tb*a c* _'_ Tc*a b*) 9 (524)
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I, % (F% = 3" —7.") » (5.25)
r,. % (T + T, "), (5.26)
Ty = 7" e + % (T, = T%,.), (5.27)
| A L (5.28)

Here Y%, Y% Y%er ¢4, 1'%, have the forms as

_ 1 0GHrg  0G, 0Gpg
%, = 3G L - 5.29
TH T g (5Yv+5yﬁ oY ) (5:29)
_ U 4o (O9ay | Ogac  Ogye
@ = —g* - 5.30
Ly Ogay . 09ac  Oge
4 = —g* — 5.31
Ve =59 (8uc oub  oud )’ (5:31)
ON &
a B
B = gy (5.32)
Ty =¥y — 0%y (5.33)
The gauge curvature field F% has the form
« D «
where sa0 520
= Y5 Y63  za = =a =
B =Y° cSW7 oy T 3o oy = T a5 - (5.35)
Curvature tensor R of the bundle manifold in the anholonomic basis has the form
6T’ Or%,
R p =532 = o A DD = D, — T (5.36)

5.2 Ricci Curvature And Scalar Curvature of

Bundle Manifold

The Ricci and scalar curvature tensor of the tangent bundle have the form

Ray =R/, (5.37)



CHAPTER 5. STRUCTURE OF SPACETIME TANGENT BUNDLE 89

R = RoxG™ = Ryeg®™ + Ryeerg™ © . (5.38)

We obtain the scalar curvature tensor on tangent bundle in terms of Is. But
firstly we have to obtain Ricci vurvature. The Ricci curvature tensor of spacetime
is

Rec =R/ = Rl + Rl (5.39)

By using (5.36) we can write (5.39) as

6Fbac 5Fbab b d b d*
Ree = SY?P - NG + T de ac T r d*bF ac
- decrdab - de*crd;b - debcbcd - Fbad" C’bcd*
+ 5Yb* - 5Yc + I db*r ac + I d*b*r ac
— T, T T, Gt T O (5.40)

By contracting (5.40) with ¢ and using (5.21), formulas (5.22)-(5.28) for I's,
(5.35) for Rs%., and (5.33) for T%, we get

ac 5’:ybac &?bab

Rug = g |TTee 0Ty 0 50 50,50,
b L (Fa 47 i) (P = 3T~ 25)
B QIM (Fae” + 7 are +7eat) (F = %5 = "a)
_ %ac (Frea® + Faa + Tud) (Fe)
+ 97 (T e + T ) A + %b (F e = 7" = 7.%0)
_ QT (F¥se =34 e = 3" 0) (Fya® + %0 + Tu?)
- [ b ] @ )
N %ac (T, + T} (T —3%,.). (5.41)

In the above equation expanding the parenthesis, arranging the indices and terms,
using the skew-symmetry of F%  in the lower indices and after complicated sim-

plification we get

ac ac p 1 c _bd* —c
Racg™ = 9" Rac = 5F" Foae = 27", ¥,
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1 _C 1k — _ *C_ _c & — — *C_
+ = s + 3 Feaes + T Foare + A Fpae]

2
1 s gk *ed* *cb* *ed*
- 3 [T T + T Ty + TV Ty + T T
. 5T, o
Tb *—da _ _ac ab* _ _ac ac . 542
+ db*Va 9 Suc 9 ayb* ( )

We obtain some useful facts to write the above expression in a more compact

form. Consider
agd* c*

VYd*a*cr + Verards = o (543)
dy
Contracting that equation with ¢¢*" and using ¢%g.q = 6% we get
_ a* + —a* o c*a* agd*c* o 85&: agc*a*
ﬂyd*d* r)/ a*d* - g aya* - aya* gd*c* aya*
agc*a*
= —Qdrcr (- (5.44)
dy°
Contracting that expression with ¢¢*" we get
* * * * aga*b*
=b* a —a* b
S+ . == —. 5.45
Tt T o (5.45)
Consider et g
3., = L Da (5.46)

Ya C_Taye*'

By taking the partial derivative of the above expression with respect to v,

contracting the resulting equation with ¢*, using Yaa+c + Yeard = ggfji and (5.44)

we get

ac a’j/ab*c _ gac 8gb*e* YGac 4 gacgb*e* 0 8gac
oy 2 Oyt Oy 2y \ 9y
gac e* b* gacgb*e* a (ﬁae*c + ’Vce*a)

- T (_ pe T f_}’b*b*e*> (Yaere + Yeera) + 9 oy

1 ac=e* b* = ac=e* b* = ac=b* e* - ac=b* e* -
- 2 [g ol b*b Vaere + 9*F° b*b Yeera + 9 '76 be Yaere TG 'Yb b* '766*0]

gb*e* a (gac%e*c) - agac a (gac%e*a) ~ agac:|

+ 73 + (5.47)

9 8yb* ae*c ﬁyb* 8yb* — Yee*a W

By arranging the indices and terms and using the similar fact of (5.45) for %

we can write the above expression as

acaﬁ/ab*c ge*b* 6/7 e*c —e*b* —c —b*e* ¢
8yb* - 9 8yb* =7 vV ete =7 7 ere

+ 3 [ﬁae*cﬁ/ae*c + ﬁae*cﬁce*a + ch*aﬁ/ae*c + 'Vce*aﬁce*a} . (548)

\)
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Since Jgere = %g;’g: or we can write it as
1 0gac
Nace = = . 5.49
ol 5 5 (5.49)
By using that fact we can write (5.48) as
gac 6,7111]*0 — ge*b* aﬁce*c o ,Veb* ,70 o ,—Yb*e ,—yc
ayb* 2 ayb* b* I ec b* | ec
I _ _ o o
+ 5 h/aec/yaec + 7&66706& + Vcearyaec + Yeea cea] . (550)

Substituting that expression into (5.42), making simplification in the resulting

equation, arranging terms and indices and using the fact (5.49) we get
ac S 1 bdc ~be —c
Racg = ‘R-— §F Fyae = 7B e

1
Z [dechdc + TCdebdc + decTcdb + Tcdecdb}

e*b e*c —c =be ac ab =da b
g —3yb* YV b*:| - [g Suc — 7T | - (5.51)
Let us introduce b o
ab __ ab =c b
Dub = Sub -7 abT cb) (552)

and . 5
f}/ce*c — ﬁce*c = ~C
Dy = ogr %Y e (5.53)

We can write the last two terms of (5.51) in terms of these new notations. Con-

sider

8yb* - ’Ycec/yee*b*:|

— e*b 76*5 = ryec. (554)
Dyb Dye*
Here we used the fact
VA e = g =g

= 5 7%, (5.55)
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~ce ~b* _ ~c ~eb* _ ~c e .
and gep Y e = Gerbr VoV pr = VoV oorpe - Consider

YA
ouc

5Tbab

ouc

5T,

= g% [Wzb - ’ydcadeb:|

ac D Tbab — D Tbab
Du¢ — Du,

ac _ ,—ydaadeb _ gac |: . gacfydaadeb:|

=g (5.56)

Inserting (5.54) and (5.56) into (5.51) we get the first term of the scalar curvature

tensor of the tangent bundle as

D, 1 —be —c
Racgac = "R — §F0decdb - Wb b7 ec

1

o Z [TCdecdb + decTcdb + TCdebdc + dechdc}

_ D’_ycec _ DTbab (5 57)
DpoX.  Duy '

where *R is the spacetime sector of R. Now we obtain the second term of the

scalar curvature of tangent bundle. Let us write Ricci curvature of the fiber as
Ry = R 5 = Ryl + Ryl (5.58)

By using (5.36) we can write (5.58) as

5Fba*c* 6Fba*b b d b d*
Ra*c* == 5Yb — 5YC* + F de a*c* + F d*bF a*c*
b d b d* b d b d*
- F dc*r a*b - F d*C*F a*b - F dbeC* - F a*d*cbc*
(SFb*a*c* (SFb;*b* b* d b* d*
+ 6Yb* - 5YC* + F db*r a*c* + F *b*r a*c*

b* d b* d* b* d b* d*
- F dC*F a*b* - F d*C*F a*b* - F db*Ob*C* - F a*d*Ob*C* . (559)

By contracting (5.59) with g% ¢ and using (5.21), formulas (5.22)-(5.28) for I'’s,
(5.35) for Ry, and (5.33) for T%, we get

=p* =p*
arer |07 arer O grpr

a*c* =b* =d* =b* =d*
Ra*c*g = g Sy - Sy e + Y @Y arer =V drex arb
ga*c* b* b d d
- 4 (T db* + Tb*d ) (Ta* c* + Tc* a*)

ga*c*

4 (Tb*dc* + Tc*db*) (Ta* db* + Tb* da*)
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_I_

_I_

5 (T,.0 + T..°.)

(F*b +7a*b+%a)

f:ybdb (Ta* dc* + Tc* da*)

— %

ey Ve + ’Vbd*) Y gres

(F
(Fc *d + f_ybc*d + ’_ydc’l‘)) (Fa*bd + ’_yda*b + :)/ba*d)

a*c . 1
J ’7dba* +

(Ta*g* - Td*ba*) (Td* -+ Tc* d*)

DO |

5 (Tl + T o) (T — A% ) - (5.60)

In the above expression expanding the parenthesis, arranging the indices and

terms, using skew-symmetry of F'4  in lower indices, Y e = A% e, (5.49),
(5.54) and (5.56) we get

%
Ra*c*ga C

* ok — ].
= ga ¢ Ra*c* + ZI}?abd‘Fabd
1

7 aba¥*™ + Fana ¥ + Faba 7™ + Faba}

u o 57 . b gt
- dedea_ < b_ga c*’Ybb%z* )

5T X
db da* ~bd
- g (W — gan”Y bTada*)

D’j/bab o DTada

dba]

— 1
— YR _FabdFa . _ de T
+ 1 bd DpoXa Duy, vl da
L —a =~  =a =~ =dba ~  =dba
= 7 [T 4 Jasa ¥ + Japa 7" + Fara 7] (5.61)

where "R is the four-velocity sector of R. Writing the expressions (5.57) and

(5.61) into (5.38) and arranging the indices we get the scalar curvature of bundle

manifold as

R

DT?,
Dub
[TabcTabc + chaTabC + Tabccha + chacha}

"R+"R — 4F“bCFabc T T, —2
1

Z [ﬁabcﬁabc + ,—ycba,—yabc + fvabcﬁcba + ﬁcbaﬁ/dm}

(5.62)
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5.3 Scalar Curvature of Riemannian Spacetime

Tangent Bundle

In the Riemannian case, spacetime metric g, is independent of X¢.i.e.

gi’g’; — (5.63)
Consequence of that
Y e = Vbes (5.64)
A% =0, (5.65)
and 5 O’ N’ b d b od
‘R =g" < auZC - 6—2; TV @Y ac — VacY ab) ="R, (5.66)

which is the ordinary spacetime scalar curvature. By using (5.63), (5.64) and the
formula for YR, we can say "R vanishes i.e. YR = 0. By using (5.34) and the fact
RY.,=°R}., we get

acd a

Fbcd = pO(Xa)SRabcd7 (567)

where

' 0V'at _ 07 c .
Rabcd = aucd - W + /ybec’y ad ’Ybedfy ac’ (568)

which is the spacetime curvature. By using (5.9), (5.32), (5.63) and (5.64) we get
T% = 0. (5.69)

In Riemannian spacetime tangent bundle, by using the above facts (5.62) takes

the form

1
R="°R— Z—lFabCFabc, (5.70)

which is the Riemannian scalar curvature of the Riemannian spacetime tangent

bundle.
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5.4 Action for the Spacetime Tangent Bundle

We can define an action with Lagrangian v/G'R on maximal-acceleration invariant

spacetime tangent bundle as
L= / D¥YVGR = / d*un/=gpyd* X/—gR, (5.71)

where G is the determinant of the bundle metric (5.15), D¥YV/G is the volume
measure of the spacetime tangent bundle and R is the scalar curvature of the
bundle manifold. In the case of Finslerian spacetime manifold, the components
of the spacetime metric g, (v, X) are homogeneous in the fiber coordinates X°¢

with degree zero. We can write g, (v, X) in terms of the Finsler function F' as

Jab (u, X) = (%Fz (u, X))XaXb. (5.72)

If spacetime manifold is Finslerian and the spacetime connection is the Levi-Civita
connection then the connection coefficients which are given (5.22)-(5.28), are Levi-
Civita connection coefficients of the tangent bundle of the Finsler manifold. To
have the consistency of the connection coefficients with Cartan’s theory of Finsler
space, the gauge curvature field F'%_ must be vanish [18].

In fact, the maximal acceleration fibre bundle is defined on a general spacetime
manifold. A Finslerian spacetime geometry and Riemannian spacetime tangent
bundle are special spacetime manifolds. But needed general spacetime manifold
did not find yet. Here, we consider one of the special case, the Riemannian
spacetime manifold. We consider Schwarzschild-like solution for the Riemannian

spacetime metric. Spacetime manifold is Riemannian so we have

agab -
axe 0, (5.73)
which leads to
Fabc = P)/abc' (574)

Let us consider a body with mass m which is stationary and spatially symmetric

gravitating and an observer on the four-velocity space X defined by

du® duF 1 .
T <didi) = (900.0,0),  k=123a=0123  (575)
S S
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Here we can say, the action (5.71) is restricted to a distribution in the spacetime
tangent bundle. That distribution is determined by the singular distribution in
terms of the Dirac delta function as

1 1
V=g V900

)53 (poX), X = (X° X', X2 X%), X = (X', X2, X?).
(5.76)

We can insert that distribution into the integration measure. By using that fact
and (5.70) for R we can write (5.71) as

1
L= /péd4U\/ —gd4X\/ —g\/—__gé(poXO — Lo

5(/70X0 — Po

_ 1
)53 (poX) {SR — ZFa"CFa,,C] :
(5.77)
By taking integral on tangent space, using (5.67) and properties of Dirac delta

1
Vv 900

function we get a reduced action defined on the base manifold

1 2 1 L /s paobe\ (s
L= /Péd“ux/—_gg (SR — % (g900)% (9°)* ("R ( Ra%c)) ’
0

L= / d*u/—g <SR — ng (*R*") (SRQOI,C)) . (5.78)

5.5 Schwarzschild-like Spacetime

Now we consider a Schwarzschild-like metric on the spacetime manifold as
ds® = e’d(ct)? — e dr® — r2df? — r’sin® 0d¢?, (5.79)

where v and A depend on r.i.e. v(r),A(r). The metric on the spacetime tangent

bundle has the form

2

do? = ds* + D (poX)* = (1 - Z—%) ds?, (5.80)

where the covariant acceleration of the spacetime curve is constant and given [20]
DXx* ay ., 9 c?

Fr (c_2> n®, n°=—1and py = e (5.81)

Let us denote the Lagrangian of (5.78) as

L(r;\v)=+v—g (SR - ng (*R*") (SRaObC)) : (5.82)
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We can write the Euler-Lagrange equations of (5.78) as
oL 0 (0L 0* (0L
a o (a) o (w) =0 (5:83)

oL 0 (0L 9> [ OL
5 - g (w) + w (81/’) =0. (5.84)

From now on X, X" and v/, v/ denote first and second derivative of A and v

and

with respect to r, respectively. In Schwarzschild-like metric (5.79) let us use the

following notations

goo = e”, g11 = —6/\7 go2 = —7“27 g33 = —r?sin? 0, (5-85)
with inverses
00 v 11 A 922 —2 33 —1
g =€ ,9 =—¢ g =-T = S oy (5.86)
r2sin” 0
and
W=t ul=r =0, u=o. (5.87)

We obtain the Lagrangian (5.82) by using Schwarzschild-like metric and (5.68).
By expanding the summation indices in (5.82), using (5.68) and lowering the
indices with goo.i.c. R0 = (%) (*R%yy;) we can write the Lagrangian (5.82)
with the nonvanishing terms as

L=V R B () [(R) + (o) + (B ]} (559

The nonvanishing curvature tensors and determinant of the metric for the

Schwarzschild-like metric are found as

2 N/ "2
I P N

2 2 2

s pl 2 02 v—A,,/
("Rloo)” = BN (5.90)

2 /
sl ) = — el 5.91
( 001) 9 € . ( )

g = 900911922933 and /—g = r2e M/ 26in 9. (5.92)
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To find scalar curvature *R we need the Ricci curvature. By using (5.68) and

Schwarzschild-like metric we obtain the components of Ricci curvature as

02 4N 2

*Rop = —e" ™ ( NV 4+ (V) + zy”) , (5.93)
2° r
N\ N/ (V/)2 A

? = — - = 94
Rll r 4 9 ’ (5 9 )
Rog =1 — ¢ [g (' — N) + 1} (5.95)

s o2 A f AN
R33 = sin“ 0 {e [2 (N =) 1} + 1} : (5.96)

By using these components and (5.86) we obtain the scalar curvature as

sR — 5R00900+5R11g11+sR22g22+3R33g33

2/ 2N VN (V) 2 2
-2 "
= — 4+ + 5| - =. 5.97

‘ ( T r 2 2 YR 72 (5.97)

By using (5.89), (5.90) and (5.91) we get

(5R1001)2 4 (5R2002)2 + (5R3003) — e 2(v—2X) (Q + ﬂ (598)

212 16
N (V’)2 ()\/)2 B (V/)?) X Ny N (V/)2 A N (y//)Q
16 8 4 4 4 '
By using (5.92), (5.97) and (5.98) we get the Lagrangian as
N ! 20 2\ 2
L = r%ing|et—Ve(y 22 W) v A (5.99)
2 2 r r r
2 (v+X)/2 2
_ e . ] po?” Slneey 3>\/2|: —i—(V/)zV//
r
A)2()2 "2
+ ( )4(7/) N+ +( //) V) :|

Using this Lagrangian in the Euler-Lagrangian equations (5.83) and (5.84) and in

the resulting equation arranging the terms and after complicated simplification

we get
Vo1 e oy A N 2
A . A[ A% (5.100)
3N (V)? 2 6(/)° 2()
- —1—2)\/ / //( //) + - . .
n 20 (VI)2 _ 40" 4+ /\//(V//)Q — oM ,

T r
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and
No1oé _ _10_(2)€—>\ B () n N ()? B V)" N 11 (V) ()
r rz 72 8 ) 4 9 3
INVY 3 (V) n V) 5N (V) N 8"
2 2 r2 r ,
N 5(N)% 14NV 3()\’)3 v N 11 ()\’)2 V"
r r 2 2
+ 4/\/2V/ + 20" + XX _ 6NV — ANV
r r
8V/// 9
+ _ )\// (V/) o 4)\//1/// . )\///V/ + 2]///// . (5101)
”

Here we take perturbative solutions for r > py as (perturbation about the clas-

sical Schwarzschild solution)

Y 2Gm
e/ =1-— 2, +e(r), (5.102)
and .
2Gm\
A
et = <1 ~ 3 ) +4d(r), (5.103)

which are given by [20]. Here € (r) and § (r) are small perturbations about the

classical Schwarzschild solutions. By taking derivative of (5.102) with respect to

2Gm
2

r, from now on denoting = A and arranging the resulting equation we get

ve = T—2+€/
/ 1 A +EI
Vo= —m [ =
1—A/r+e \r?
1 1 A
= - ——1—6'). (5.104)
(1—A/r) 1+ =57 (r2

e
1-A/r

By using the series expansion of 1/ <1 + ) and taking the first two terms

(because of ¢ < 1) we get

- G- (B) =)

A r A
= r_ 1
T—A+T—A€ (r—A)287 (5.105)
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where e’ — 0 since ¢ < 1. By taking derivative of (5.103) with respect to r,

arranging the terms and using the similar facts which we used above we get

;L (r—A A A
>\_5< - )—T(T_A)Jrﬁé. (5.106)

Inserting (5.103), (5.105) and (5.103), (5.106) into the left hand sides of (5.100)
and (5.101), respectively we get

Vo1 e 1 A (r—A)

I S - 1

r T2 r—A(E r(r—A)E 2 5)’ (5.107)
N o1 e (r=A) [, r+A4
r o r? + r2 72 (5 + r(r—A) 5) (5.108)

On right hand sides of (5.100) and (5.101) all the terms are products of powers
of the derivatives of A and v. So we do not consider the perturbative terms ¢ and
d in (5.102) and (5.103). Therefore we have

A
V=1—-— 5.109
e = ( )
and .
ne
= <1 — ?) ) (5.110)

By using (5.109) and (5.110) all the needed derivatives of A and v with respect
to r in the right hand sides of (5.100) and (5.101) have the forms

/
174 =

A s A=A, 24 24 (2r — A)®
2 R STy L 7 T 3

r?—rA (7‘2 —rA) (r2—rA) (r2—rA)

/- 4A (27’ - A) 8A (27“ - A) B 6A (27" - A)S

, 5.111
(r2 — TA)2 (r2 — T‘A)3 (r2 — 'r’A)4 ( )
and
Vo— A 7)\,,:A(ZT—A)7
r2—rA (r2 — rA)2
2
o 24 B 2A(2r — A) ' (5.112)

(r2 —rA)? (r2 —rA)?

By inserting (5.111) and (5.112) into the right hand sides of (5.100) and (5.101),

respectively and after complicated calculation we get
3p2A?

ST (5.113)
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and
3pa A?
&5 (r — A)’
Considering (5.107), (5.108) and (5.113), (5.114), respectively we get the following

differential equations

/ A (T_A)
g_r(T—A)g_ r o+ 8rd

(5.114)

302 A2
o, (5.115)

and

(r+A) 5_ 3paA?
r(r—A)" 8 (r— A)?
First let us solve (5.116). Solution of the homogeneous part of (5.116) has the

& + = 0. (5.116)

form
,

(r—A4)"

To obtain the solution of (5.116) we parameterize the constant of the homogeneous

d=oc ¢y is an arbitrary constant. (5.117)

part solution as

r
0=c1(r)——. 5.118
e 5.113)
We need to determine ¢ (7). From the derivative of ¢ in (5.118) we have
1 2r r
§ = — a(r)+ ——a. 5.119
((T—Af (r—A)S) 1(r) (r— AP (5:119)
Substituting (5.118) and (5.119) into (5.116) we get ¢1(r) as
2 12
poA
c(r)=— 93" (5.120)
Thus the solution of (5.116) is
2A2
§=cr(r)—— = Fo . (5.121)

(r — A)’ 92 (r— A)°
By substituting that ¢ into (5.115) and applying the similar procedure which we
used to solve (5.116) we get the solution of (5.115) as

e = %. (5.122)
By writing (5.121) and (5.122) into (5.102) and (5.103), respectively and writing
the expression for A we obtain
_2Gm | ppGPm®

1%
e/ =1
c2r 2cird 7

(5.123)
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and o
A 1 poG=m

1 2Gm/cPr 2kt (1 —2Gm/c*r)*

Thus we get the nontrivial components of the Schwarzschild-like metric as

e (5.124)

2G'm 2G2m?
4 Po

c2r 2cird 7 (5.125)

goo =¢€" =1—

and
1 PeG*m?

Tl 2Gm/ccr i (1 —2Gm/c*r)*

gn = —e’ (5.126)

5.6 Red Shift For Static Emitter and Observer

Let an emitter emit wave with frequency f(r) and number of wave crest n(r) in

a proper time A7(r) at radius r. So the number of crests n(r) at radius r is
n(r) = f(r)Ar(r), (5.127)

and the number of wave crests n(r) at large r is

Tim n(r) = lim (F(r)Ar(r)) = (Tlggo f(r)) At = f(c0)At. (5.128)
They are equal so we have
n(r) = f(r)Ar(r) = f(oco)At. (5.129)

If the maximal acceleration invariance is require in the frame of the emitter then
the infinitesimal path do(r) which is traversed by the emitter in the bundle, must

have the same value at the infinitesimal path at a = 0 as
do(r) = do(r)|e=o, (5.130)
equivalently by using
a2
do® = ds* + paDX? = <1 — —) ds?, (5.131)
we have

2\ 1/2
do(r) =d(ct (r)) = do(r)|a=o = (1 - —) goo'?cdt, (5.132)
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this leads to

a2\ /2
AT(r) = (1 - ?) goo'/2At. (5.133)
Substituting (5.133) into (5.129) we get
a2 1/2
1 (1-5) w20 = o), (5.134)
equivalently
a2\ M2
Fo0) = 1) (1-%) aw' (5.135)

From the begining of the chapter we know that the proper acceleration a in a

curved spacetime is

oo DX'DX’
- YGab ds ds )

(5.136)

a .
and —Dj{ was glven as
s

DXe dX*®
= 444 XPX© 1

And from the previous section we have X¢ = (gaol/ 2,0,0,0) . Using this and

expanding the summation indices in (5.137) we get

DX dg”” . g e 1,
P ;Z +700900/900/ :%700' (5.138)

By using that fact we can write (5.136) as

4 a b
a’® = M_ (5.139)
900
Expanding the summation indices of g.;7%,7’ We see that the only nonvanishing
term is g117'507 0o+ Let us compute 7'y, which has form
1 g" <3g01 n 9910 900)

700:7

9 T o ol (5.140)

In the above expression, by using gio = 0, u! = r, goo = 1 — A/r + p2A%/8r",
g =1/{p2A?/8* (1 — A/r) —1/[1 — A/r]} and applying the procedure similar
to (5.105) we get

T | 1 A poA’
Too T 5 pgA? r2 25

1
1-A/r — 8ri(1—A/r)
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2 A2 2 A2
L ot g ) (Aoad
2= 8r4 (1 —A/r) r2  2rd

1-A/r
r—A " pRA? A_p3A2
o 2r r4(1—A/r)) \r? 2
r—A (A plA? PR A3
= — — 141
2r <r2 o5+ 8o (r—A))’ (5.141)

which leads to

72 21

1 A A2\ (r—A) (A 2A? 2A3
91171007100 _ _1911911 ( Po > ( ) < Po Po )

r 2 2r5  &d(r—A))
By using the fact g;;¢'! = 1 and 7 is large enough so that the terms riﬁ, 7%7,. .. are
ignored and the above equation takes the form
1(r—A)A?
11
=——— 5.142
9117 007 00 4 5 ) ( )
and using the facts in (5.141) we can write g3, as
2 2 A2
2 (r—A4) poA
=—(14+—]. 5.143
Joo r2 ( + 4r3 (r — A) ( )
By substituting (5.142) and (5.143) into (5.139) we get
2 = et 1 (_EM)
r—A)2 2 A2 5
{ 7‘2A) <1 + 47‘5?’;‘4—14)) 4 "
4 2A2 A2
S A (P & T Y (i (5.144)
4r—A 4r3 (r — A) r4
Considering the above equation with r large enough, we get
4 A2
2= (5.145)

T4t
By using (5.125) for ggo, ag = /%, (5.135) for f(oo) and (5.145) for a® we get the
modified red shift as

8f _floo) = f(r) _ floo) (@'
[ T R ) 1‘<1 ) o0~

0

1a2 A 2 42\ /2
- ) (1-24 85
2a ro 8rt

(
_ (1 _ 10_4A_27“P_3) (5.146)
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And writing the expression for A we get the modified red shift as

5 2Gm\ /2 2012,,2
Tf N (1 - 627T“n> —h- dpd S 1/2° (5.147)
2¢hr4 (1 — 2G'm/c?r)

Hence we obtain the red shift formula of the Schwarzschild geometry modified

by the tangent bundle metric. Contribution of the tangent bundle metric is the
order of ’%GC# which is extremely smaller than the contribution of the pure

Schwarzschild metric.

5.7 Summary

Proper acceleration of an object: a,

Proper acceleration which is given by Einstein’s theory of general relativity:

2 DX* DXJ
a = _C 95 ds ds

Metric on spacetime tangent bundle in natural basis:

l k
Gy — ( 9ij + guN; ' N; % Ny ) |

Nij 9ij
Spec1al frame: E,f = (B,!,C,!), with inverse E% = (B%,C ), where
= (6,—N,), CI=(0,0") and B% = (6¢,0), C% = (N,2,6%).

Anholonomlc basis:

E, _(EOHE ) (82‘1 _PolNaka?(kapgla;fw)

and its dual
W = (W“, W“*) = (du“, pPod X + Nkaduk) )

Components of the bundle metric in special frame:

a 0
Gog = | 9 .
0 Garb*

The line element of the spacetime tangent bundle: do? = GzW*W?.
Components of the anholonomic objects such that [E,, Eg] = C 5 Ey:

C __ c __ c __ c __ J—
C e _ ON,© _ 6Nb ° = FC*

ab T 6ub du®
c* c*
Cab* - ayb* - §b ab*»
* 8N
c* __ c*
Ca*b - = _¢ ba*

Levi-civita connectlon on the spacetime tangent bundle:
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D(Eg) =T W ® E,,
where the components of the connection coefficients are

A 1, |06 0G0 5G,
r af T 5@# csyuofj + 5YHB - ayf + Cuaﬁ + Cuﬁoc - Caﬁu] '

The components of the connection coefficients for different indices which belong

to spacetime and fiber sectors:

Fabc" = Fa *h — % (ﬁac*b + ﬁbcg + Fc*ba) )

where

=a _ 1.0a [ G 0Gry  0Ggy
Yy = 3G (53/7 t5vr v )
~a _ 1 _da (994 09de _ OGbe

Ve = 29 (aXc + axtb axd) ,

0 094c _ Ogye
Ve = 39 (agudcb + G — G)
oo = ON >
By — BY‘Y ’
T%, =78y = by
Components of the curvature tensor without the components of the anholonomic
objects:
6y 55 o =)\
Ry, =Y° [sy‘? — S T e = VT e8| -
The gauge curvature field:
_ VoD
F%G, =Y°Rs%..
Components of curvature tensor of the spacetime tangent bundle:
_ o ol B s B s 8 5
R/ =7 — gy T I — T, = 17000
Ricci curvature of the spacetime tangent bundle: R,y = Raﬁ s
Scalar curvature of the spacetime tangent bundle:
R = RypzG = Ryeg™ + Ryeerg® ¢
= R+"R— {FFy — T" T, — 275t
1 [TabCTa be + TCbaTabc + TvabcT'C b + chacha}
[’}/abc’}/abc + 7 ﬂ}/abc + ﬁ)/ ")/cba + '7 P)/cba}

_ ~ab = _ D’Y ba
’)/ afy be DpoXe®

DT",




Chapter 6

Conclusion

In this thesis we have studied the Finsler geometry and the geometry of the tan-
gent bundle. In the last chapter we have considered an application of the geometry
of the tangent bundle to physics. We defined the maximal acceleration invariant
fiber bundle on a Riemannian spacetime and an action on the bundle manifold.
Then we considered the Riemannian Schwarzschild-like spacetime. We obtained
the Euler-Lagrange equations which yields two nonlinear differential equations.
We solved these partial differential equations using a perturbative expansions
around the Schwarzschild solutions. The solutions of these equations define the
components of the Schwarzschild-like metric. By using this Schwarzschild-like
solution we obtained the modified red shift formula for a static emitter and ob-
server on a Schwarzschild-like spacetime. We have observed that the contribution
coming from the acceleration is extremely small compared with the standard red

shift expression.

In general the maximal acceleration invariant fiber bundle is defined on a
general spacetime manifold which does not need to be Riemannian, Finslerian
or Kahlerian spacetime. All these are special cases. Applications of general

spacetime tangent bundles have not been done yet and remain to be explored.
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