
The Fundamental Theorem of Calculus and the

Poincaré Lemma
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Introduction

The Fundamental Theorem of Calculus is usually stated in two parts. The

“evaluation” part gives

f(b)− f(a) =

∫ b

a

f ′(x) dx.

It can be viewed as a method of calculating information about the boundary

values of a function, when you know the rates of change of the function in

the interior of its domain. This part generalizes to the (generalized) Stokes’

Theorem in higher dimensions.

The other part of the Fundamental Theorem gives

d

dx

∫ x

a

f(t) dt = f(x) (∗)

for f continuous. Are there higher dimensional versions of this part? Indeed

they have been known for a long time as the Poincaré Lemma, which we de-

scribe. In addition to its intrinsic interest, equation (*) allows us to calculate

many wonderful things, such as the speed and altitude of an object falling

under the acceleration of gravity. The same theorem is used to define useful

functions such as the logarithm, ln, and the error function, erf. In fact it

provides a solution to every differential equation

y′(x) = f(x) with y(x0) = y0
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in which f is a given continous function. The solution is

y(x) = y0 +

∫ x

x0

f(t) dt.

The Poincaré Lemma similarly gives solutions to certain partial differential

equations. The usual statement of the Poincaré Lemma, briefly, is that a

closed form on a starshaped set is exact. We do not assume familiarity with

this terminology. Our goal here is to describe a vector field version. We

assume no knowledge of differential forms except in the Appendix.

The Poincaré Lemma

For the Poincaré Lemma in the differential form language see Spivak [7] or

the nice inductive development in Yap [8]. Samelson [5] has pointed out that

it ought to be called Volterra’s Theorem. Here is a vector version of the

Poincaré Lemma.

Poincaré Lemma. If v is a smooth vector field and f a smooth scalar

field defined in a ball in R3 centered at the origin, then the following relations

hold.

v(r) = ∇
(∫ 1

0

v(tr) · r dt

)
+

∫ 1

0

curlv(tr)× tr dt (1)

v(r) = curl

(∫ 1

0

(v(tr)× tr) dt

)
+

∫ 1

0

t2rdiv v(tr) dt (2)

f(r) = div

(∫ 1

0

t2rf(tr) dt

)
(3)

Here r = x~ı + y~ + z~k is the usual notation for points of R3.

A proof is given in the next section, where we also offer some contexts

for the meaning of the various terms.

But first, we focus on equation (3) because it is easy to prove and immedi-

ately useful. It says that every smooth scalar field f(x, y, z) defined in a ball

is the divergence of some vector field. For example, we can guess that x2z is
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the divergence of the vector field 1
3
x3zi, and also of the field x2yzj, and others.

But what about something a little harder, say sin(xyz)? A straightforward

computation of the integral in equation (3) produces the field

1− cos(xyz)

3xyz
(xi + yj + zk).

The fraction extends to a smooth function along the planes where xyz = 0.

The divergence of this field is indeed sin(xyz).

Proof of equation (3):

Let

Cf (r) =

∫ 1

0

t2rf(tr) dt.

Since f is smooth we have by the chain rule

div Cf (r) =

∫ 1

0

(t2 · 3f + t3r · ∇f) dt =

∫ 1

0

∂(t3f(tr))

∂t
dt = f(r).

That concludes the proof of equation (3). The reader might wish to check

that an n-dimensional version of (3) also holds provided that one replaces

the factor t2 in the integral by tn−1.

Application. One of the Maxwell equations

div E =
ρ

ε0

relates electric field E to charge density ρ (ε0 is a physical constant). Taking a

particular family of functions ρ, we can use equation (3) to see that Coulomb’s

inverse square field
q

4πε0

r

|r|3
may be expressed as a limit of the solutions C ρ

ε0
.

Let ρ(r) = h3w(h|r|), where h is a positive parameter and w is a smooth

function. Assume also that
∫∞

0
4πw(s)s2 ds = q is finite. Then the total

charge ∫∫∫

R3

ρ dV = 4π

∫ ∞

0

h3w(hs) s2ds = q
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is independent of h. The (nonunique) solution to div E = ρ
ε0

given by equa-

tion (3) is

E(r) =

∫ 1

0

t2r
ρ(tr)

ε0

dt =

∫ 1

0

t2r
h3w(ht|r|)

ε0

dt.

Substituting s = h|r|t when r 6= 0, this gives

E(r) =

∫ h|r|

0

(
s

h|r|
)2

rh3w(s)

ε0

ds

h|r| =
r

ε0|r|3
∫ h|r|

0

w(s)s2 ds.

Now for each r 6= 0, let h approach infinity. This concentrates the charge

toward the origin, and E(r) approaches

q

4πε0

r

|r|3 .

This application also serves as a reminder that a pointwise limit of smooth

fields need not be smooth, and that the nonsmooth limit may have scientific

importance.

Proof of the Lemma

We begin a systematic development of the Poincaré Lemma.

The Work Operator

We start with a vector field v and attempt to solve the differential equation

∇w = v

As motivation, think of v as a force field, and remember that force times

distance gives energy. So a reasonable guess is that v might be the gradient

of a work integral. Parametrize a line segment from 0 to each point r and

interpret the line integral

Wv(r) =

∫ 1

0

v(tr) · r dt
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Figure 1: The segment from 0 to r parametrized.

v
U

Figure 2: Two vector fields are shown with level sets and gradients of their

work integrals.

as the work done by v along the segment. No assumption is made about v

being “conservative” or independent of path. Rather we choose the specific

set of straight segments along which to integrate, and assume only that v is

smooth there.

Now we ask whether ∇Wv is equal to v. Here are two examples that

show it is not equal in general.

Examples. Define two vector fields v(r) = (x, 0, 0) and u(r) = (0, x, 0).

We easily find that curlv = 0, curlu 6= 0, Wv(r) = 1
2
x2, and Wu(r) = 1

2
xy.

Figure 2 shows sections of v and u in the plane z = 0, together with some

level sets of Wv and Wu, respectively. It is visually apparent that the gradient

of the work integral matches the first field, but not the second.

Let’s study the difference between v and ∇Wv. Let v be a smooth vector

field defined in a ball. At this point it is convenient to change notation

slightly. Denote points in the ball as r = (x1, x2, x3) and components of v as
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vj, so that v(r) = v(x1, x2, x3) = (v1(r), v2(r), v3(r)). For each real number

t ∈ [0, 1] the notation v(tr) means the value of v at the point tr. Then the

first coordinate of ∇Wv(r) is

∂

∂x1

(∫ 1

0

(v1(tr)x1 + v2(tr)x2 + v3(tr)x3) dt

)

=

∫ 1

0

(
∂v1

∂x1

(tr)tx1 + v1(tr) +
∂v2

∂x1

(tr)tx2 +
∂v3

∂x1

(tr)tx3

)
dt

by the chain rule and product rule. Regrouping terms, we see that the first

coordinate of ∇Wv(r) is

=

∫ 1

0

(
∂(tv1(tr))

∂t
− t

∂v1

∂x2

(tr)x2− t
∂v1

∂x3

(tr)x3 +
∂v2

∂x1

(tr)tx2 +
∂v3

∂x1

(tr)tx3

)
dt,

which by the fundamental theorem of calculus is

= v1(r) +

∫ 1

0

((∂v2

∂x1

(tr)− ∂v1

∂x2

(tr)
)
tx2 +

(∂v3

∂x1

(tr)− ∂v1

∂x3

(tr)
)
tx3

)
dt.

The other two coordinates are similar. Thus we get

∇Wv(r) = v(r) +

∫ 1

0

(r× curlv)(tr) dt.

This proves equation (1) in our statement of the Poincaré Lemma. We evi-

dently need to study this last integral.

For any smooth field v define the vector field

Fv(r) = −
∫ 1

0

(r× v)(tr) dt.

The “F” is for flux, as we will understand soon. We can rewrite equation (1)

then as

v = ∇Wv + Fcurlv. (1′)

In particular we see that if the curl of v is zero, then v is the gradient of Wv.

Next we indicate a context for the F construction.

6



���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

t

r

r

a

0

t
1

a
2

+tr
1

S

v

a
r

0

Figure 3: A parametrized triangle and some flux through it.

The Flux Operator

We have seen that equation (1) can be motivated by thinking of vector field

v as a force field. In this section we think of v instead as the velocity or

momentum of a fluid, gas or liquid, and consider the flux of v across various

surface elements. This gives a context to explore the meaning of Fv. Let a

be a vector based at point r. Consider the flux of v through the oriented

triangle S which has vertices at 0, r, and r + a. Parametrize the triangle by

labeling points as t1r + t2a, (0 ≤ t2 ≤ t1 ≤ 1) as in Figure 3. Then r× a is

in the oriented normal direction.

Next we show that the flux of v through S is

∫∫

S

v · n dσ = Fv(r) · a + o(a)

where the “little o” term means that lim|a|→0
o(a)
|a| = 0. This equation is the

reason that we refer to F as a flux operator.

proof:

The flux of v through triangle S is

∫∫

S

v · n dσ =

∫ 1

0

∫ t1

0

v(t1r + t2a) · (r× a) dt2dt1.

7



By the mean value theorem, v(t1r + t2a) = v(t1r) + O(a), where the “big

O” term means that O(a)
|a| is bounded for a near 0. So the flux is

=

∫ 1

0

∫ t1

0

(v(t1r)+O(a))·(r×a) dt2dt1 = −
(∫ 1

0

∫ t1

0

r× v(t1r) dt2dt1

)
·a+o(a)

= −
(∫ 1

0

(r× v)(t1r) dt1

)
· a + o(a) = Fv(r) · a + o(a).

Thus Fv(r) is a vector which contains information about the flux of v through

narrow triangles unfurled from the vector r. Further, allow the vector a to

vary in the figure. We see that the flux of v is maximized when a is aligned

with Fv, and the magnitude of Fv(r) is that maximum flux divided by the

length |a|.

The Content Operator

Next we prove equation (2) of the Poincaré Lemma. In order to develop that

equation, we recall first that the gradient of the work integral gave informa-

tion leading to equation (1). Motivated by this success we next calculate

curl (Fv) =

−curl

∫ 1

0

(x2v3(tr)− x3v2(tr), x3v1(tr)− x1v3(tr), x1v2(tr)− x2v1(tr))t dt

= −
∫ 1

0

(
x1v2,2(tr)t−x2v1,2(tr)t−v1(tr)−(x3v1,3(tr)t− x1v3,3(tr)t + v1(tr)) , . . .

)
t dt.

We have abbreviated partial derivatives here using comma subscripts. Adding

and subtracting x1tv1,1 from the first coordinate, and similarly for the second

and third not shown, we see that the curl (Fv) is

= −
∫ 1

0

(x1tdiv v(tr)−2v1(tr)−x1tv1,1(tr)−x2tv1,2(tr)−x3tv1,3(tr), . . . )t dt

= −
∫ 1

0

(
t2rdiv v(tr)− 2v(tr)t− t2

d

dt
(v(tr))

)
dt =
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−Cf +

∫ 1

0

d

dt
(vt2) dt = −Cf + v.

This proves equation (2), and yields a short version of it:

v = curl Fv + Cdiv v. (2′)

Application. Consider the partial differential equation

curlu = v.

Suppose v is a given smooth vector field in a ball, and suppose there is a

smooth solution u. The equality of continuous mixed partial derivatives gives

the identity div curl = 0. Applying this to the PDE we see the necessary

condition that div v = 0. Conversely, assuming that div v = 0, equation (2’)

says that one solution is given by u = Fv.

The equation curlu = v occurs in fluid mechanics and electromagnetism.

In the case of fluids, u is the velocity field, and the vorticity field ω is given

by curlu = ω. In the case of electromagnetism there is the magnetic field B,

and we find a vector potential A such that curlA = B.

Remark. The identity div curl = 0 is called the “Poincaré Lemma”

in some references, and what we have stated, they call the converse of the

lemma. See for example [6] and [1]. The solution u = Fv which we have

given to curlu = v does not seem to have been prominently displayed in

many texts. A formula equivalent to it occurs as an exercise in Griffiths [2].

It may also be found in the first chapter in Madsen and Tornehave [4].

Example. We also give an elementary example of equation (2’). Con-

sider a linear vector field v(r) = Ar, where A is a three by three matrix and

we write r as a column for this purpose. Then div (v) = tr(A) and equation

(2) becomes

Ar = curl (−1

3
r× Ar) +

1

3
tr(A)r.

Thus Ar is, or is not, a curl depending on the trace of A.

Finally we give a context for understanding the Cf construction. Recall

that Cf (r) =
∫ 1

0
t2f(tr)r dt. Imagine that f is the energy density due to the
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Figure 4: A three-dimensional cone.

temperature within some material. Keeping track of units, then f ought to

be the (specific heat)×(density)×(temperature). We show that the energy

content of the three-dimensional cone (Figure 4) is

∫∫∫
f dV = Cf (r) · (a× b) + o(

√
|a|2 + |b|2).

Proof:

Label points of the cone as (t1r + t2a + t3b) with 0 ≤ t3, t2 ≤ t1 ≤ 1, and

assume that (r, a,b) is a righthand frame as suggested by the figure. Then

the energy

∫∫∫
f dV =

∫ 1

0

∫ t1

0

∫ t1

0

f(t1r + t2a + t3b)|det[r a b]|dt3dt2dt1

=

∫ 1

0

∫ t1

0

∫ t1

0

(f(t1r) + O(
√
|a|2 + |b|2))r · (a× b)dt3dt2dt1

=

(∫ 1

0

t21f(t1r)r dt1

)
· (a× b) + o(

√
|a|2 + |b|2)

= Cf (r) · (a× b) + o(
√
|a|2 + |b|2).

This concludes the proof.
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This suggests one meaning of Cf : a radial vector field whose flux through

any small rectangle based at r is the “f content” of the subtended cone.

But why, heuristically, should we believe that this has divergence equal to

f? Consider a solid region D having rectangle R = a×b based at point r as

one face, and a rescaled copy R′ = a′ × b′ based at r′, where a′ = (1 + ε)a,

b′ = (1 + ε)b, and r′ = (1 + ε)r, ε > 0. That is, D is a segment of a cone

like that in Figure 4. The field Cf is radial, so the flux of Cf out through

the boundary surface of D is the same as the flux through R′ minus the flux

through R. By the divergence theorem this is equal to the integral of div Cf

over D, and by our calculation it is also well approximated by the integral

of f over D, for a and b small. So the divergence of Cf is f .

Conclusion. The Poincaré Lemma deserves to be better known as a gen-

eralization of the Fundamental Theorem of Calculus to higher dimensions.

Like the Fundamental Theorem, it has broad implications that help us solve

various equations and derive important relationships. It is not too advanced

for consideration in the vector calculus course.

Appendix on the Relation to Forms

Some readers may want to know how the preceeding discussion relates to

differential forms. We assume here a slight familiarity with differential forms.

Functions f are by definition 0-forms, but when we think of such applica-

tions as heat energy content then it is better to let f give rise to the 3-form

fdx1 ∧ dx2 ∧ dx3 which assigns to any small volume element its energy con-

tent. Similarly a vector field v can give us a 2-form v1dx2 ∧ dx3 + v2dx3 ∧
dx1 + v3dx1 ∧ dx2 when we think of flux of momentum field v, or a 1-form

v1dx1 + v2dx2 + v3dx3 if we think of work done by force field v.

The exterior derivatives and cone operations fit a nice pattern:
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field: f ← v ← v ← f

cone operator: W F C

form dimension: 0 → 1 → 2 → 3

derivative: ∇ curl div

The modern Poincaré Lemma includes a formula which looks like

ω = dIω + Idω (4)

where the exterior derivative d covers all the cases grad, curl, div, and the

cone integral I represents the work, flux, and content constructions W , F ,

and C. Equation (4) includes our three equations (1), (2), and (3). For

example, given a vector field v we can associate the 2-form

ω =
∑
i1<i2

ωi1i2dxi1 ∧ dxi2 = v1(r)dy ∧ dz + v2(r)dz ∧ dx + v3(r)dx ∧ dy

Then the I operation, see Spivak [7], gives the 1-form

Iω =
∑
i1<i2

2∑
α=1

(−1)α−1
( ∫ 1

0

t2−1ωi1i2(tx) dt
)
xiαdxi1 ∧ . . . ∧ d̂xiα ∧ . . . ∧ dxi2

=

∫ 1

0

tv1(tr) dt(y dz − z dy) +

∫ 1

0

tv2(tr) dt(z dx− x dz)

+

∫ 1

0

tv3(tr) dt(x dy − y dx)

This exactly matches our F operation, in the sense that it is the 1-form we

associate with Fv in the diagram above.

Roughly speaking, in every case a (k+1)-form is modified to assign values

to a k-dimensional object by integrating: the cone of a k-dimensional object

has dimension k+1, so that the integral makes sense. The “cone” terminology

came from Hubbard [3].

12



Acknowledgement I have learned much from anonymous referees of this

article. I also thank John Hubbard, Todd Kemp, and William Terrell for

comments.

References

[1] R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Macmil-

lan, New York, 1968.

[2] D. J. Griffiths, Introduction to Electrodynamics, Pearson Education,

Delhi, India, 1999.

[3] J. Hubbard with B. Hubbard, Vector Calculus, Linear Algebra, and Dif-

ferential Forms: A Unified Approach, 2nd ed., Prentice Hall, Upper

Saddle River, NJ, 2002.

[4] I. Madsen and J. Tornehave, From Calculus to Cohomology, De Rham

Cohomology and characteristic classes, Cambridge University Press,

1997

[5] H. Samelson, Differential Forms, the Early Days; or the Stories of

Deahna’s Theorem and of Volterra’s Theorem, Amer. Math. Monthly,

108, #5, 2001.

[6] R. M. Santilli, Foundations of Theoretical Mechanics I, Springer Verlag,

New York, 1978.

[7] M. Spivak, Calculus on Manifolds, Benjamin Cummings, Menlo Park,

California, 1965.
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