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Chapter 1

Analysis in Banach
spaces

1.1. Differentiation and integration in Banach spaces

We first review some basic facts from calculus in Banach spaces.

Let X and Y be two Banach spaces and denote by C(X,Y ) the set of
continuous functions from X to Y and by L(X,Y ) ⊂ C(X,Y ) the set of
(bounded) linear functions. Let U be an open subset of X. Then a function
F : U → Y is called differentiable at x ∈ U if there exists a linear function
dF (x) ∈ L(X,Y ) such that

F (x+ u) = F (x) + dF (x)u+ o(u), (1.1)

where o, O are the Landau symbols. The linear map dF (x) is called deriv-
ative of F at x. If F is differentiable for all x ∈ U we call F differentiable.
In this case we get a map

dF : U → L(X,Y )
x 7→ dF (x)

. (1.2)

If dF is continuous, we call F continuously differentiable and write F ∈
C1(U, Y ).

Let Y =
∏m
j=1 Yj and let F : X → Y be given by F = (F1, . . . , Fm) with

Fj : X → Yi. Then F ∈ C1(X,Y ) if and only if Fj ∈ C1(X,Yj), 1 ≤ j ≤ m,
and in this case dF = (dF1, . . . , dFm). Similarly, if X =

∏m
i=1Xi, then one

can define the partial derivative ∂iF ∈ L(Xi, Y ), which is the derivative of
F considered as a function of the i-th variable alone (the other variables

1



2 1. Analysis in Banach spaces

being fixed). We have dF v =
∑n

i=1 ∂iF vi, v = (v1, . . . , vn) ∈ X, and
F ∈ C1(X,Y ) if and only if all partial derivatives exist and are continuous.

In the case of X = Rm and Y = Rn, the matrix representation of dF
with respect to the canonical basis in Rm and Rn is given by the partial
derivatives ∂iFj(x) and is called Jacobi matrix of F at x.

We can iterate the procedure of differentiation and write F ∈ Cr(U, Y ),
r ≥ 1, if the r-th derivative of F , drF (i.e., the derivative of the (r − 1)-
th derivative of F ), exists and is continuous. Finally, we set C∞(U, Y ) =⋂
r∈NC

r(U, Y ) and, for notational convenience, C0(U, Y ) = C(U, Y ) and

d0F = F .

It is often necessary to equip Cr(U, Y ) with a norm. A suitable choice
is

|F | = max
0≤j≤r

sup
x∈U
|djF (x)|. (1.3)

The set of all r times continuously differentiable functions for which this
norm is finite forms a Banach space which is denoted by Crb (U, Y ).

If F is bijective and F , F−1 are both of class Cr, r ≥ 1, then F is called
a diffeomorphism of class Cr.

Note that if F ∈ L(X,Y ), then dF (x) = F (independent of x) and
drF (x) = 0, r > 1.

For the composition of mappings we note the following result (which is
easy to prove).

Lemma 1.1 (Chain rule). Let F ∈ Cr(X,Y ) and G ∈ Cr(Y,Z), r ≥ 1.
Then G ◦ F ∈ Cr(X,Z) and

d(G ◦ F )(x) = dG(F (x)) ◦ dF (x), x ∈ X. (1.4)

In particular, if λ ∈ Y ∗ is a linear functional, then d(λ ◦F ) = dλ ◦ dF =
λ ◦ dF . In addition, we have the following mean value theorem.

Theorem 1.2 (Mean value). Suppose U ⊆ X and F ∈ C1(U, Y ). If U is
convex, then

|F (x)− F (y)| ≤M |x− y|, M = max
0≤t≤1

|dF ((1− t)x+ ty)|. (1.5)

Conversely, (for any open U) if

|F (x)− F (y)| ≤M |x− y|, x, y ∈ U, (1.6)

then

sup
x∈U
|dF (x)| ≤M. (1.7)
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Proof. Abbreviate f(t) = F ((1 − t)x + ty), 0 ≤ t ≤ 1, and hence

df(t) = dF ((1− t)x+ ty)(y − x) implying |df(t)| ≤ M̃ = M |x− y|. For the
first part it suffices to show

φ(t) = |f(t)− f(0)| − (M̃ + δ)t ≤ 0 (1.8)

for any δ > 0. Let t0 = max{t ∈ [0, 1]|φ(t) ≤ 0}. If t0 < 1 then

φ(t0 + ε) = |f(t0 + ε)− f(t0) + f(t0)− f(0)| − (M̃ + δ)(t0 + ε)

≤ |f(t0 + ε)− f(t0)| − (M̃ + δ)ε+ φ(t0)

≤ |df(t0)ε+ o(ε)| − (M̃ + δ)ε

≤ (M̃ + o(1)− M̃ − δ)ε = (−δ + o(1))ε ≤ 0, (1.9)

for ε ≥ 0, small enough. Thus t0 = 1.

To prove the second claim suppose there is an x0 ∈ U such that |dF (x0)| =
M+δ, δ > 0. Then we can find an e ∈ X, |e| = 1 such that |dF (x0)e| = M+δ
and hence

Mε ≥ |F (x0 + εe)− F (x0)| = |dF (x0)(εe) + o(ε)|
≥ (M + δ)ε− |o(ε)| > Mε (1.10)

since we can assume |o(ε)| < εδ for ε > 0 small enough, a contradiction. 2

As an immediate consequence we obtain

Corollary 1.3. Suppose U is a connected subset of a Banach space X. A
mapping F ∈ C1(U, Y ) is constant if and only if dF = 0. In addition, if
F1,2 ∈ C1(U, Y ) and dF1 = dF2, then F1 and F2 differ only by a constant.

Next we want to look at higher derivatives more closely. Let X =∏m
i=1Xi, then F : X → Y is called multilinear if it is linear with respect to

each argument.

It is not hard to see that F is continuous if and only if

|F | = sup
x:
∏m
i=1 |xi|=1

|F (x1, . . . , xm)| <∞. (1.11)

If we take n copies of the same space, the set of multilinear functions
F : Xn → Y will be denoted by Ln(X,Y ). A multilinear function is called
symmetric provided its value remains unchanged if any two arguments are
switched. With the norm from above it is a Banach space and in fact there is
a canonical isometric isomorphism between Ln(X,Y ) and L(X,Ln−1(X,Y ))
given by F : (x1, . . . , xn) 7→ F (x1, . . . , xn) maps to x1 7→ F (x1, .). In
addition, note that to each F ∈ Ln(X,Y ) we can assign its polar form
F ∈ C(X,Y ) using F (x) = F (x, . . . , x), x ∈ X. If F is symmetric it can be
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reconstructed from its polar form using

F (x1, . . . , xn) =
1

n!
∂t1 · · · ∂tnF (

n∑
i=1

tixi)|t1=···=tn=0. (1.12)

Moreover, the r-th derivative of F ∈ Cr(X,Y ) is symmetric since,

drFx(v1, . . . , vr) = ∂t1 · · · ∂trF (x+

r∑
i=1

tivi)|t1=···=tr=0, (1.13)

where the order of the partial derivatives can be shown to be irrelevant.

Now we turn to integration. We will only consider the case of mappings
f : I → X where I = [a, b] ⊂ R is a compact interval and X is a Banach
space. A function f : I → X is called simple if the image of f is finite,
f(I) = {xi}ni=1, and if each inverse image f−1(xi), 1 ≤ i ≤ n is a Borel
set. The set of simple functions S(I,X) forms a linear space and can be
equipped with the sup norm. The corresponding Banach space obtained
after completion is called the set of regulated functions R(I,X).

Observe that C(I,X) ⊂ R(I,X). In fact, consider the functions fn =∑n−1
i=0 f(ti)χ[ti,ti+1) ∈ S(I,X), where ti = a + i b−an and χ is the character-

istic function. Since f ∈ C(I,X) is uniformly continuous, we infer that fn
converges uniformly to f .

For f ∈ S(I,X) we can define a linear map
∫

: S(I,X)→ X by∫ b

a
f(t)dt =

n∑
i=1

xiµ(f−1(xi)), (1.14)

where µ denotes the Lebesgue measure on I. This map satisfies∫ b

a
f(t)dt ≤ |f |(b− a). (1.15)

and hence it can be extended uniquely to a linear map
∫

: R(I,X) → X
with the same norm (b− a). We even have∫ b

a
f(t)dt ≤

∫ b

a
|f(t)|dt. (1.16)

In addition, if λ ∈ X∗ is a continuous linear functional, then

λ(

∫ b

a
f(t)dt) =

∫ b

a
λ(f(t))dt, f ∈ R(I,X). (1.17)

We will use the usual conventions
∫ t2
t1
f(s)ds =

∫ b
a χ(t1,t2)(s)f(s)ds and∫ t1

t2
f(s)ds = −

∫ t2
t1
f(s)ds.

If I ⊆ R, we have an isomorphism L(I,X) ≡ X and if F : I → X

we will write Ḟ (t) in stead of dF (t) if we regard dF (t) as an element of
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X. In particular, if f ∈ C(I,X), then F (t) =
∫ t
a f(s)ds ∈ C1(I,X) and

Ḟ (t) = f(t) as can be seen from

|
∫ t+ε

a
f(s)ds−

∫ t

a
f(s)ds−f(t)ε| = |

∫ t+ε

t
(f(s)−f(t))ds| ≤ |ε| sup

s∈[t,t+ε]
|f(s)−f(t)|.

(1.18)

This even shows that F (t) = F (a) +
∫ t
a(Ḟ (s))ds for any F ∈ C1(I,X).

1.2. Contraction principles

A fixed point of a mapping F : C ⊆ X → C is an element x ∈ C such
that F (x) = x. Moreover, F is called a contraction if there is a contraction
constant θ ∈ [0, 1) such that

|F (x)− F (x̃)| ≤ θ|x− x̃|, x, x̃ ∈ C. (1.19)

Note that a contraction is continuous. We also recall the notation Fn(x) =
F (Fn−1(x)), F 0(x) = x.

Theorem 1.4 (Contraction principle). Let C be a closed subset of a Banach
space X and let F : C → C be a contraction, then F has a unique fixed point
x ∈ C such that

|Fn(x)− x| ≤ θn

1− θ
|F (x)− x|, x ∈ C. (1.20)

Proof. If x = F (x) and x̃ = F (x̃), then |x−x̃| = |F (x)−F (x̃)| ≤ θ|x−x̃|
shows that there can be at most one fixed point.

Concerning existence, fix x0 ∈ C and consider the sequence xn = Fn(x0).
We have

|xn+1 − xn| ≤ θ|xn − xn−1| ≤ · · · ≤ θn|x1 − x0| (1.21)

and hence by the triangle inequality (for n > m)

|xn − xm| ≤
n∑

j=m+1

|xj − xj−1| ≤ θm
n−m−1∑
j=0

θj |x1 − x0|

≤ θm

1− θ
|x1 − x0|. (1.22)

Thus xn is Cauchy and tends to a limit x. Moreover,

|F (x)− x| = lim
n→∞

|xn+1 − xn| = 0 (1.23)

shows that x is a fixed point and the estimate (1.20) follows after taking the
limit n→∞ in (1.22). 2

Next, we want to investigate how fixed points of contractions vary with
respect to a parameter. Let U ⊆ X, V ⊆ Y be open and consider F :
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U × V → U . The mapping F is called a uniform contraction if there is a
θ ∈ [0, 1) such that

|F (x, y)− F (x̃, y)| ≤ θ|x− x̃|, x, x̃ ∈ U, y ∈ V. (1.24)

Theorem 1.5 (Uniform contraction principle). Let U , V be open subsets
of Banach spaces X, Y , respectively. Let F : U × V → U be a uniform
contraction and denote by x(y) ∈ U the unique fixed point of F (., y). If
F ∈ Cr(U × V,U), r ≥ 0, then x(.) ∈ Cr(V,U).

Proof. Let us first show that x(y) is continuous. From

|x(y + v)− x(y)| = |F (x(y + v), y + v)− F (x(y), y + v)

+ F (x(y), y + v)− F (x(y), y)|
≤ θ|x(y + v)− x(y)|+ |F (x(y), y + v)− F (x(y), y)| (1.25)

we infer

|x(y + v)− x(y)| ≤ 1

1− θ
|F (x(y), y + v)− F (x(y), y)| (1.26)

and hence x(y) ∈ C(V,U). Now let r = 1 and let us formally differentiate
x(y) = F (x(y), y) with respect to y,

d x(y) = ∂xF (x(y), y)d x(y) + ∂yF (x(y), y). (1.27)

Considering this as a fixed point equation T (x′, y) = x′, where T (., y) :
L(Y,X) → L(Y,X), x′ 7→ ∂xF (x(y), y)x′ + ∂yF (x(y), y) is a uniform con-
traction since we have |∂xF (x(y), y)| ≤ θ by Theorem 1.2. Hence we get a
unique continuous solution x′(y). It remains to show

x(y + v)− x(y)− x′(y)v = o(v). (1.28)

Let us abbreviate u = x(y+ v)−x(y), then using (1.27) and the fixed point
property of x(y) we see

(1− ∂xF (x(y), y))(u− x′(y)v) =

= F (x(y) + u, y + v)− F (x(y), y)− ∂xF (x(y), y)u− ∂yF (x(y), y)v

= o(u) + o(v) (1.29)

since F ∈ C1(U × V,U) by assumption. Moreover, |(1− ∂xF (x(y), y))−1| ≤
(1− θ)−1 and u = O(v) (by (1.26)) implying u− x′(y)v = o(v) as desired.

Finally, suppose that the result holds for some r − 1 ≥ 1. Thus, if F is
Cr, then x(y) is at least Cr−1 and the fact that d x(y) satisfies (1.27) implies
x(y) ∈ Cr(V,U). 2

As an important consequence we obtain the implicit function theorem.
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Theorem 1.6 (Implicit function). Let X, Y , and Z be Banach spaces and
let U , V be open subsets of X, Y , respectively. Let F ∈ Cr(U×V,Z), r ≥ 1,
and fix (x0, y0) ∈ U×V . Suppose ∂xF (x0, y0) ∈ L(X,Z) is an isomorphism.
Then there exists an open neighborhood U1 × V1 ⊆ U × V of (x0, y0) such
that for each y ∈ V1 there exists a unique point (ξ(y), y) ∈ U1×V1 satisfying
F (ξ(y), y) = F (x0, y0). Moreover, the map ξ is in Cr(V1, Z) and fulfills

dξ(y) = −(∂xF (ξ(y), y))−1 ◦ ∂yF (ξ(y), y). (1.30)

Proof. Using the shift F → F − F (x0, y0) we can assume F (x0, y0) =
0. Next, the fixed points of G(x, y) = x − (∂xF (x0, y0))−1F (x, y) are the
solutions of F (x, y) = 0. The function G has the same smoothness properties
as F and since |∂xG(x0, y0)| = 0, we can find balls U1 and V1 around x0 and
y0 such that |∂xG(x, y)| ≤ θ < 1. Thus G(., y) is a uniform contraction
and in particular, G(U1, y) ⊂ U1, that is, G : U1 × V1 → U1. The rest
follows from the uniform contraction principle. Formula (1.30) follows from
differentiating F (ξ(y), y) = 0 using the chain rule. 2

Note that our proof is constructive, since it shows that the solution ξ(y)
can be obtained by iterating x− (∂xF (x0, y0))−1F (x, y).

Moreover, as a corollary of the implicit function theorem we also obtain
the inverse function theorem.

Theorem 1.7 (Inverse function). Suppose F ∈ Cr(U, Y ), U ⊆ X, and let
dF (x0) be an isomorphism for some x0 ∈ U . Then there are neighborhoods
U1, V1 of x0, F (x0), respectively, such that F ∈ Cr(U1, V1) is a diffeomor-
phism.

Proof. Apply the implicit function theorem to G(x, y) = y − F (x). 2

1.3. Ordinary differential equations

As a first application of the implicit function theorem, we prove (local)
existence and uniqueness for solutions of ordinary differential equations in
Banach spaces. Let X be an Banach space and U ⊆ X. Denote by Cb(I, U)
the Banach space of bounded continuous functions equipped with the sup
norm.

The following lemma will be needed in the proof.

Lemma 1.8. Suppose I ⊆ R is a compact interval and f ∈ Cr(U, Y ). Then
f∗ ∈ Cr(Cb(I, U), Cb(I, Y )), where

(f∗x)(t) = f(x(t)). (1.31)

Proof. Fix x0 ∈ Cb(I, U) and ε > 0. For each t ∈ I we have a δ(t) > 0
such that |f(x) − f(x0(t))| ≤ ε/2 for all x ∈ U with |x − x0(t)| ≤ 2δ(t).
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The balls Bδ(t)(x0(t)), t ∈ I, cover the set {x0(t)}t∈I and since I is compact,
there is a finite subcover Bδ(tj)(x0(tj)), 1 ≤ j ≤ n. Let |x − x0| ≤ δ =

min1≤j≤n δ(tj). Then for each t ∈ I there is ti such that |x0(t) − x0(tj)| ≤
δ(tj) and hence |f(x(t)) − f(x0(t))| ≤ |f(x(t)) − f(x0(tj))| + |f(x0(tj)) −
f(x0(t))| ≤ ε since |x(t)− x0(tj)| ≤ |x(t)− x0(t)|+ |x0(t)− x0(tj)| ≤ 2δ(tj).
This settles the case r = 0.

Next let us turn to r = 1. We claim that df∗ is given by (df∗(x0)x)(t) =
df(x0(t))x(t). Hence we need to show that for each ε > 0 we can find a
δ > 0 such that

sup
t∈I
|f(x0(t) + x(t))− f(x0(t))− df(x0(t))x(t)| ≤ ε sup

t∈I
|x(t)| (1.32)

whenever |x| = supt∈I |x(t)| ≤ δ. By assumption we have

|f(x0(t) + x(t))− f(x0(t))− df(x0(t))x(t)| ≤ ε|x(t)| (1.33)

whenever |x(t)| ≤ δ(t). Now argue as before to show that δ(t) can be chosen
independent of t. It remains to show that df∗ is continuous. To see this we
use the linear map

λ : Cb(I,L(X,Y )) → L(Cb(I,X), Cb(I, Y ))
T 7→ T∗x

, (1.34)

where (T∗x)(t) = T (t)x(t). Since we have

|T∗x| = sup
t∈I
|T (t)x(t)| ≤ sup

t∈I
|T (t)||x(t)| ≤ |T ||x|, (1.35)

we infer |λ| ≤ 1 and hence λ is continuous. Now observe df∗ = λ ◦ (df)∗.

The general case r > 1 follows from induction. 2

Now we come to our existence and uniqueness result for the initial value
problem in Banach spaces.

Theorem 1.9. Let I be an open interval, U an open subset of a Banach
space X and Λ an open subset of another Banach space. Suppose F ∈
Cr(I × U × Λ, X), then the initial value problem

ẋ(t) = F (t, x, λ), x(t0) = x0, (t0, x0, λ) ∈ I × U × Λ, (1.36)

has a unique solution x(t, t0, x0, λ) ∈ Cr(I1 × I2 × U1 × Λ1, X), where I1,2,
U1, and Λ1 are open subsets of I, U , and Λ, respectively. The sets I2, U1,
and Λ1 can be chosen to contain any point t0 ∈ I, x0 ∈ U , and λ0 ∈ Λ,
respectively.

Proof. If we shift t→ t−t0, x→ x−x0, and hence F → F (.+t0, .+x0, λ),
we see that it is no restriction to assume x0 = 0, t0 = 0 and to consider
(t0, x0) as part of the parameter λ (i.e., λ → (t0, x0, λ)). Moreover, using
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the standard transformation ẋ = F (τ, x, λ), τ̇ = 1, we can even assume that
F is independent of t.

Our goal is to invoke the implicit function theorem. In order to do this
we introduce an additional parameter ε ∈ R and consider

ẋ = εF (x, λ), x ∈ Dr+1 = {x ∈ Cr+1
b ((−1, 1), U)|x(0) = 0}, (1.37)

such that we know the solution for ε = 0. The implicit function theorem will
show that solutions still exist as long as ε remains small. At first sight this
doesn’t seem to be good enough for us since our original problem corresponds
to ε = 1. But since ε corresponds to a scaling t → εt, the solution for one
ε > 0 suffices. Now let us turn to the details.

Our problem (1.37) is equivalent to looking for zeros of the function

G : Dr+1 × Λ× (−ε0, ε0) → Crb ((−1, 1), X)
(x, λ, ε) 7→ ẋ− εF (x, λ)

. (1.38)

Lemma 1.8 ensures that this function is Cr. Now fix λ0, then G(0, λ0, 0) = 0

and ∂xG(0, λ0, 0) = T , where Tx = ẋ. Since (T−1x)(t) =
∫ t

0 x(s)ds we
can apply the implicit function theorem to conclude that there is a unique
solution x(λ, ε) ∈ Cr(Λ1 × (−ε0, ε0), Dr+1). In particular, the map (λ, t) 7→
x(λ, ε)(t/ε) is in Cr(Λ1, C

r+1((−ε, ε), X)) ↪→ Cr(Λ × (−ε, ε), X). Hence it
is the desired solution of our original problem. 2





Chapter 2

The Brouwer mapping
degree

2.1. Introduction

Many applications lead to the problem of finding all zeros of a mapping
f : U ⊆ X → X, where X is some (real) Banach space. That is, we are
interested in the solutions of

f(x) = 0, x ∈ U. (2.1)

In most cases it turns out that this is too much to ask for, since determining
the zeros analytically is in general impossible.

Hence one has to ask some weaker questions and hope to find answers for
them. One such question would be ”Are there any solutions, respectively,
how many are there?”. Luckily, this questions allows some progress.

To see how, lets consider the case f ∈ H(C), where H(C) denotes the
set of holomorphic functions on a domain U ⊂ C. Recall the concept of
the winding number from complex analysis. The winding number of a path
γ : [0, 1]→ C around a point z0 ∈ C is defined by

n(γ, z0) =
1

2πi

∫
γ

dz

z − z0
∈ Z. (2.2)

It gives the number of times γ encircles z0 taking orientation into account.
That is, encirclings in opposite directions are counted with opposite signs.

In particular, if we pick f ∈ H(C) one computes (assuming 0 6∈ f(γ))

n(f(γ), 0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
k

n(γ, zk)αk, (2.3)

11
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where zk denote the zeros of f and αk their respective multiplicity. Moreover,
if γ is a Jordan curve encircling a simply connected domain U ⊂ C, then
n(γ, zk) = 0 if zk 6∈ U and n(γ, zk) = 1 if zk ∈ U . Hence n(f(γ), 0) counts
the number of zeros inside U .

However, this result is useless unless we have an efficient way of comput-
ing n(f(γ), 0) (which does not involve the knowledge of the zeros zk). This
is our next task.

Now, lets recall how one would compute complex integrals along com-
plicated paths. Clearly, one would use homotopy invariance and look for a
simpler path along which the integral can be computed and which is homo-
topic to the original one. In particular, if f : γ → C\{0} and g : γ → C\{0}
are homotopic, we have n(f(γ), 0) = n(g(γ), 0) (which is known as Rouchés
theorem).

More explicitly, we need to find a mapping g for which n(g(γ), 0) can be
computed and a homotopy H : [0, 1]× γ → C\{0} such that H(0, z) = f(z)
and H(1, z) = g(z) for z ∈ γ. For example, how many zeros of f(z) =
1
2z

6 + z − 1
3 lie inside the unit circle? Consider g(z) = z, then H(t, z) =

(1 − t)f(z) + t g(z) is the required homotopy since |f(z) − g(z)| < |g(z)|,
|z| = 1, implying H(t, z) 6= 0 on [0, 1] × γ. Hence f(z) has one zero inside
the unit circle.

Summarizing, given a (sufficiently smooth) domain U with enclosing
Jordan curve ∂U , we have defined a degree deg(f, U, z0) = n(f(∂U), z0) =
n(f(∂U) − z0, 0) ∈ Z which counts the number of solutions of f(z) = z0

inside U . The invariance of this degree with respect to certain deformations
of f allowed us to explicitly compute deg(f, U, z0) even in nontrivial cases.

Our ultimate goal is to extend this approach to continuous functions
f : Rn → Rn. However, such a generalization runs into several problems.
First of all, it is unclear how one should define the multiplicity of a zero.
But even more severe is the fact, that the number of zeros is unstable with
respect to small perturbations. For example, consider fε : [−1, 2] → R,
x 7→ x2 − ε. Then fε has no zeros for ε < 0, one zero for ε = 0, two zeros
for 0 < ε ≤ 1, one for 1 < ε ≤

√
2, and none for ε >

√
2. This shows the

following facts.

(i) Zeros with f ′ 6= 0 are stable under small perturbations.

(ii) The number of zeros can change if two zeros with opposite sign
change (i.e., opposite signs of f ′) run into each other.

(iii) The number of zeros can change if a zero drops over the boundary.

Hence we see that we cannot expect too much from our degree. In addition,
since it is unclear how it should be defined, we will first require some basic
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properties a degree should have and then we will look for functions satisfying
these properties.

2.2. Definition of the mapping degree and the determinant
formula

To begin with, let us introduce some useful notation. Throughout this
section U will be a bounded open subset of Rn. For f ∈ C1(U,Rn) the
Jacobi matrix of f at x ∈ U is df(x) = (∂xifj(x))1≤i,j≤n and the Jacobi
determinant of f at x ∈ U is

Jf (x) = det df(x). (2.4)

The set of regular values is

RV(f) = {y ∈ Rn|∀x ∈ f−1(y) : Jf (x) 6= 0}. (2.5)

Its complement CV(f) = Rn\RV(f) is called the set of critical values. We
set Cr(U,Rn) = {f ∈ Cr(U,Rn)|djf ∈ C(U,Rn), 0 ≤ j ≤ r} and

Dr
y(U,Rn) = {f ∈ Cr(U,Rn)|y 6∈ f(∂U)}, Dy(U,Rn) = D0

y(U,Rn) (2.6)

for y ∈ Rn. We will use the topology induced by the sup norm for Cr(U,Rn)
such that it becomes a Banach space (cf. Section 1.1).

Note that, since U is bounded, ∂U is compact and so is f(∂U) if f ∈
C(U,Rn). In particular,

dist(y, f(∂U)) = inf
x∈∂U

|y − f(x)| (2.7)

is positive for f ∈ Dy(U,Rn) and thus Dy(U,Rn) is an open subset of

Cr(U,Rn).

Now that these things are out of the way, we come to the formulation of
the requirements for our degree.

A function deg which assigns each f ∈ Dy(U,Rn), y ∈ Rn, a real number
deg(f, U, y) will be called degree if it satisfies the following conditions.

(D1). deg(f, U, y) = deg(f − y, U, 0) (translation invariance).

(D2). deg(I, U, y) = 1 if y ∈ U (normalization).

(D3). If U1,2 are open, disjoint subsets of U such that y 6∈ f(U\(U1∪U2)),
then deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y) (additivity).

(D4). If H(t) = (1− t)f + tg ∈ Dy(U,Rn), t ∈ [0, 1], then deg(f, U, y) =
deg(g, U, y) (homotopy invariance).

Before we draw some first conclusions form this definition, let us discuss
the properties (D1)–(D4) first. (D1) is natural since deg(f, U, y) should have
something to do with the solutions of f(x) = y, x ∈ U , which is the same
as the solutions of f(x) − y = 0, x ∈ U . (D2) is a normalization since any
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multiple of deg would also satisfy the other requirements. (D3) is also quite
natural since it requires deg to be additive with respect to components. In
addition, it implies that sets where f 6= y do not contribute. (D4) is not
that natural since it already rules out the case where deg is the cardinality of
f−1(U). On the other hand it will give us the ability to compute deg(f, U, y)
in several cases.

Theorem 2.1. Suppose deg satisfies (D1)–(D4) and let f, g ∈ Dy(U,Rn),
then the following statements hold.

(i). We have deg(f, ∅, y) = 0. Moreover, if Ui, 1 ≤ i ≤ N , are disjoint

open subsets of U such that y 6∈ f(U\
⋃N
i=1 Ui), then deg(f, U, y) =∑N

i=1 deg(f, Ui, y).

(ii). If y 6∈ f(U), then deg(f, U, y) = 0 (but not the other way round).
Equivalently, if deg(f, U, y) 6= 0, then y ∈ f(U).

(iii). If |f(x) − g(x)| < dist(y, f(∂U)), x ∈ ∂U , then deg(f, U, y) =
deg(g, U, y). In particular, this is true if f(x) = g(x) for x ∈ ∂U .

Proof. For the first part of (i) use (D3) with U1 = U and U2 = ∅.
For the second part use U2 = ∅ in (D3) if i = 1 and the rest follows from
induction. For (ii) use i = 1 and U1 = ∅ in (ii). For (iii) note that H(t, x) =
(1− t)f(x) + t g(x) satisfies |H(t, x)− y| ≥ dist(y, f(∂U))− |f(x)− g(x)| for
x on the boundary. 2

Next we show that (D.4) implies several at first sight much stronger
looking facts.

Theorem 2.2. We have that deg(., U, y) and deg(f, U, .) are both continu-
ous. In fact, we even have

(i). deg(., U, y) is constant on each component of Dy(U,Rn).

(ii). deg(f, U, .) is constant on each component of Rn\f(∂U).

Moreover, if H : [0, 1] × U → Rn and y : [0, 1] → Rn are both contin-
uous such that H(t) ∈ Dy(t)(U,Rn), t ∈ [0, 1], then deg(H(0), U, y(0)) =
deg(H(1), U, y(1)).

Proof. For (i) let C be a component ofDy(U,Rn) and let d0 ∈ deg(C,U, y).
It suffices to show that deg(., U, y) is locally constant. But if |g − f | <
dist(y, f(∂U)), then deg(f, U, y) = deg(g, U, y) by (D.4) since |H(t) − y| ≥
|f − y| − |g − f | > 0, H(t) = (1− t)f + t g. The proof of (ii) is similar. For
the remaining part observe, that if H : [0, 1]× U → Rn, (t, x) 7→ H(t, x), is
continuous, then so is H : [0, 1]→ C(U,Rn), t 7→ H(t), since U is compact.
Hence, if in addition H(t) ∈ Dy(U,Rn), then deg(H(t), U, y) is independent
of t and if y = y(t) we can use deg(H(0), U, y(0)) = deg(H(t)− y(t), U, 0) =
deg(H(1), U, y(1)). 2
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Note that this result also shows why deg(f, U, y) cannot be defined mean-
ingful for y ∈ f(∂D). Indeed, approaching y from within different compo-
nents of Rn\f(∂U) will result in different limits in general!

In addition, note that if Q is a closed subset of a locally pathwise con-
nected space X, then the components of X\Q are open (in the topology of
X) and pathwise connected (the set of points for which a path to a fixed
point x0 exists is both open and closed).

Now let us try to compute deg using its properties. Lets start with a
simple case and suppose f ∈ C1(U,Rn) and y 6∈ CV(f) ∪ f(∂U). Without
restriction we consider y = 0. In addition, we avoid the trivial case f−1(y) =
∅. Since the points of f−1(0) inside U are isolated (use Jf (x) 6= 0 and
the inverse function theorem) they can only cluster at the boundary ∂U .
But this is also impossible since f would equal y at the limit point on the
boundary by continuity. Hence f−1(0) = {xi}Ni=1. Picking sufficiently small
neighborhoods U(xi) around xi we consequently get

deg(f, U, 0) =

N∑
i=1

deg(f, U(xi), 0). (2.8)

It suffices to consider one of the zeros, say x1. Moreover, we can even assume
x1 = 0 and U(x1) = Bδ(0). Next we replace f by its linear approximation
around 0. By the definition of the derivative we have

f(x) = df(0)x+ |x|r(x), r ∈ C(Bδ(0),Rn), r(0) = 0. (2.9)

Now consider the homotopy H(t, x) = df(0)x + (1 − t)|x|r(x). In order
to conclude deg(f,Bδ(0), 0) = deg(df(0), Bδ(0), 0) we need to show 0 6∈
H(t, ∂Bδ(0)). Since Jf (0) 6= 0 we can find a constant λ such that |df(0)x| ≥
λ|x| and since r(0) = 0 we can decrease δ such that |r| < λ. This implies
|H(t, x)| ≥ ||df(0)x| − (1 − t)|x||r(x)|| ≥ λδ − δ|r| > 0 for x ∈ ∂Bδ(0) as
desired.

In summary we have

deg(f, U, 0) =

N∑
i=1

deg(df(xi), U(xi), 0) (2.10)

and it remains to compute the degree of a nonsingular matrix. To this end
we need the following lemma.

Lemma 2.3. Two nonsingular matrices M1,2 ∈ GL(n) are homotopic in
GL(n) if and only if sign detM1 = sign detM2.

Proof. We will show that any given nonsingular matrix M is homotopic
to diag(sign detM, 1, . . . , 1), where diag(m1, . . . ,mn) denotes a diagonal ma-
trix with diagonal entries mi.
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In fact, note that adding one row to another and multiplying a row by
a positive constant can be realized by continuous deformations such that
all intermediate matrices are nonsingular. Hence we can reduce M to a
diagonal matrix diag(m1, . . . ,mn) with (mi)

2 = 1. Next,(
± cos(πt) ∓ sin(πt)
sin(πt) cos(πt),

)
(2.11)

shows that diag(±1, 1) and diag(∓1,−1) are homotopic. Now we apply this
result to all two by two subblocks as follows. For each i starting from n
and going down to 2 transform the subblock diag(mi−1,mi) into diag(1, 1)
respectively diag(−1, 1). The result is the desired form for M .

To conclude the proof note that a continuous deformation within GL(n)
cannot change the sign of the determinant since otherwise the determinant
would have to vanish somewhere in between (i.e., we would leave GL(n)). 2

Using this lemma we can now show the main result of this section.

Theorem 2.4. Suppose f ∈ D1
y(U,Rn) and y 6∈ CV(f), then a degree

satisfying (D1)–(D4) satisfies

deg(f, U, y) =
∑

x∈f−1(y)

sign Jf (x), (2.12)

where the sum is finite and we agree to set
∑

x∈∅ = 0.

Proof. By the previous lemma we obtain

deg(df(0), Bδ(0), 0) = deg(diag(sign Jf (0), 1, . . . , 1), Bδ(0), 0) (2.13)

since detM 6= 0 is equivalent to Mx 6= 0 for x ∈ ∂Bδ(0). Hence it remains
to show deg(df(0), Bδ(0), 0) = signJf (0).

If signJf (0) = 1 this is true by (D2). Otherwise we can replace df(0) by
M− = diag(−1, 1, . . . , 1) and it remains to show deg(M−, B1(0), 0) = −1.

Abbreviate U1 = B1(0) = {x ∈ Rn||xi| < 1, 1 ≤ i ≤ n}, U2 = {x ∈
Rn|1 < x1 < 3, |xi| < 1, 2 ≤ i ≤ n}, U = {x ∈ Rn|−1 < x1 < 3, |xi| < 1, 2 ≤
i ≤ n}, and g(r) = 2−|r−1|, h(r) = 1−r2. Now consider the two functions
f1(x) = (1 − g(x1)h(x2) · · ·h(xn), x2, . . . , xn) and f2(x) = (1, x2, . . . , xn).
Clearly f−1

1 (0) = {x1, x2} with x1 = 0, x2 = (2, . . . , 0) and f−1
2 (0) = ∅.

Since f1(x) = f2(x) for x ∈ ∂U we infer deg(f1, U, 0) = deg(f2, U, 0) =
0. Moreover, we have deg(f1, U, 0) = deg(f1, U1, 0) + deg(f1, U2, 0) and
hence deg(M−, U1, 0) = deg(df1(x1) = deg(f1, U1, 0) = −deg(f1, U2, 0) =
−deg(df1(x2)) = −deg(I, U2, 0) = −1 as claimed. 2

Up to this point we have only shown that a degree (provided there is one
at all) necessarily satisfies (2.12). Once we have shown that regular values
are dense, it will follow that the degree is uniquely determined by (2.12)
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since the remaining values follow from point (iii) of Theorem 2.1. On the
other hand, we don’t even know whether a degree exists. Hence we need to
show that (2.12) can be extended to f ∈ Dy(U,Rn) and that this extension
satisfies our requirements (D1)–(D4).

2.3. Extension of the determinant formula

Our present objective is to show that the determinant formula (2.12) can
be extended to all f ∈ Dy(U,Rn). This will be done in two steps, where
we will show that deg(f, U, y) as defined in (2.12) is locally constant with
respect to both y (step one) and f (step two).

Before we work out the technical details for these two steps, we prove
that the set of regular values is dense as a warm up. This is a consequence
of a special case of Sard’s theorem which says that CV(f) has zero measure.

Lemma 2.5 (Sard). Suppose f ∈ C1(U,Rn), then the Lebesgue measure of
CV(f) is zero.

Proof. Since the claim is easy for linear mappings our strategy is as
follows. We divide U into sufficiently small subsets. Then we replace f by
its linear approximation in each subset and estimate the error.

Let CP(f) = {x ∈ U |Jf (x) = 0} be the set of critical points of f . We first
pass to cubes which are easier to divide. Let {Qi}i∈N be a countable cover for
U consisting of open cubes such that Qi ⊂ U . Then it suffices to prove that
f(CP(f)∩Qi) has zero measure since CV(f) = f(CP(f)) =

⋃
i f(CP(f)∩Qi)

(the Qi’s are a cover).

Let Q be any of these cubes and denote by ρ the length of its edges.
Fix ε > 0 and divide Q into Nn cubes Qi of length ρ/N . Since df(x) is
uniformly continuous on Q we can find an N (independent of i) such that

|f(x)− f(x̃)− df(x̃)(x− x̃)| ≤
∫ 1

0
|df(x̃+ t(x− x̃))− df(x̃)||x̃− x|dt ≤ ερ

N
(2.14)

for x̃, x ∈ Qi. Now pick a Qi which contains a critical point x̃i ∈ CP(f).
Without restriction we assume x̃i = 0, f(x̃i) = 0 and set M = df(x̃i). By
detM = 0 there is an orthonormal basis {bi}1≤i≤n of Rn such that bn is
orthogonal to the image of M . In addition,

Qi ⊆ {
n∑
i=1

λib
i|

√√√√ n∑
i=1

|λi|2 ≤
√
n
ρ

N
} ⊆ {

n∑
i=1

λib
i| |λi| ≤

√
n
ρ

N
}
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and hence there is a constant (again independent of i) such that

MQi ⊆ {
n−1∑
i=1

λib
i| |λi| ≤ C

ρ

N
} (2.15)

(e.g., C =
√
nmaxx∈Q |df(x)|). Next, by our estimate (2.14) we even have

f(Qi) ⊆ {
n∑
i=1

λib
i| |λi| ≤ (C + ε)

ρ

N
, |λn| ≤ ε

ρ

N
} (2.16)

and hence the measure of f(Qi) is smaller than C̃ε
Nn . Since there are at most

Nn such Qi’s, we see that the measure of f(Q) is smaller than C̃ε. 2

Having this result out of the way we can come to step one and two from
above.

Step 1: Admitting critical values

By (ii) of Theorem 2.2, deg(f, U, y) should be constant on each com-
ponent of Rn\f(∂U). Unfortunately, if we connect y and a nearby regular
value ỹ by a path, then there might be some critical values in between. To
overcome this problem we need a definition for deg which works for critical
values as well. Let us try to look for an integral representation. Formally
(2.12) can be written as deg(f, U, y) =

∫
U δy(f(x))Jf (x)dx, where δy(.) is

the Dirac distribution at y. But since we don’t want to mess with distribu-
tions, we replace δy(.) by φε(. − y), where {φε}ε>0 is a family of functions
such that φε is supported on the ball Bε(0) of radius ε around 0 and satisfies∫
Rn φε(x)dx = 1.

Lemma 2.6. Let f ∈ D1
y(U,Rn), y 6∈ CV(f). Then

deg(f, U, y) =

∫
U
φε(f(x)− y)Jf (x)dx (2.17)

for all positive ε smaller than a certain ε0 depending on f and y. Moreover,
supp(φε(f(.)− y)) ⊂ U for ε < dist(y, f(∂U)).

Proof. If f−1(y) = ∅, we can set ε0 = dist(y, f(U)), implying φε(f(x)−
y) = 0 for x ∈ U .

If f−1(y) = {xi}1≤i≤N , we can find an ε0 > 0 such that f−1(Bε0(y))
is a union of disjoint neighborhoods U(xi) of xi by the inverse function
theorem. Moreover, after possibly decreasing ε0 we can assume that f |U(xi)

is a bijection and that Jf (x) is nonzero on U(xi). Again φε(f(x) − y) = 0
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for x ∈ U\
⋃N
i=1 U(xi) and hence∫
U
φε(f(x)− y)Jf (x)dx =

N∑
i=1

∫
U(xi)

φε(f(x)− y)Jf (x)dx

=
N∑
i=1

sign(Jf (x))

∫
Bε0 (0)

φε(x̃)dx̃ = deg(f, U, y), (2.18)

where we have used the change of variables x̃ = f(x) in the second step. 2

Our new integral representation makes sense even for critical values. But
since ε depends on y, continuity with respect to y is not clear. This will be
shown next at the expense of requiring f ∈ C2 rather than f ∈ C1.

The key idea is to rewrite deg(f, U, y2)−deg(f, U, y1) as an integral over
a divergence (here we will need f ∈ C2) supported in U and then apply
Stokes theorem. For this purpose the following result will be used.

Lemma 2.7. Suppose f ∈ C2(U,Rn) and u ∈ C1(Rn,Rn), then

(div u)(f)Jf = divDf (u), (2.19)

where Df (u)j is the determinant of the matrix obtained from df by replacing
the j-th column by u(f).

Proof. We compute

divDf (u) =
n∑
j=1

∂xjDf (u)j =
n∑

j,k=1

Df (u)j,k, (2.20)

where Df (u)j,k is the determinant of the matrix obtained from the matrix
associated with Df (u)j by applying ∂xj to the k-th column. Since ∂xj∂xkf =
∂xk∂xjf we infer Df (u)j,k = −Df (u)k,j , j 6= k, by exchanging the k-th and
the j-th column. Hence

divDf (u) =
n∑
i=1

Df (u)i,i. (2.21)

Now let J
(i,j)
f (x) denote the (i, j) minor of df(x) and recall

∑n
i=1 J

(i,j)
f ∂xifk =

δj,kJf . Using this to expand the determinant Df (u)i,i along the i-th column
shows

divDf (u) =

n∑
i,j=1

J
(i,j)
f ∂xiuj(f) =

n∑
i,j=1

J
(i,j)
f

n∑
k=1

(∂xkuj)(f)∂xifk

=
n∑

j,k=1

(∂xkuj)(f)
n∑
i=1

J
(i,j)
f ∂xjfk =

n∑
j=1

(∂xjuj)(f)Jf (2.22)

as required. 2
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Now we can prove

Lemma 2.8. Suppose f ∈ C2(U,Rn). Then deg(f, U, .) is constant in each
ball contained in Rn\f(∂U), whenever defined.

Proof. Fix ỹ ∈ Rn\f(∂U) and consider the largest ball Bρ(ỹ), ρ =
dist(ỹ, f(∂U)) around ỹ contained in Rn\f(∂U). Pick yi ∈ Bρ(ỹ) ∩ RV(f)
and consider

deg(f, U, y2)− deg(f, U, y1) =

∫
U

(φε(f(x)− y2)− φε(f(x)− y1))Jf (x)dx

(2.23)
for suitable φε ∈ C2(Rn,R) and suitable ε > 0. Now observe

(div u)(y) =

∫ 1

0
zj∂yjφ(y + tz)dt

=

∫ 1

0
(
d

dt
φ(y + t z))dt = φε(y − y2)− φε(y − y1), (2.24)

where

u(y) = z

∫ 1

0
φ(y + t z)dt, φ(y) = φε(y − y1), z = y2 − y1, (2.25)

and apply the previous lemma to rewrite the integral as
∫
U divDf (u)dx.

Since the integrand vanishes in a neighborhood of ∂U it is no restriction to
assume that ∂U is smooth such that we can apply Stokes theorem. Hence we
have

∫
U divDf (u)dx =

∫
∂U Df (u)dF = 0 since u is supported inside Bρ(ỹ)

provided ε is small enough (e.g., ε < ρ−max{|yi − ỹ|}i=1,2). 2

As a consequence we can define

deg(f, U, y) = deg(f, U, ỹ), y 6∈ f(∂U), f ∈ C2(U,Rn), (2.26)

where ỹ is a regular value of f with |ỹ − y| < dist(y, f(∂U)).

Remark 2.9. Let me remark a different approach due to Kronecker. For
U with sufficiently smooth boundary we have

deg(f, U, 0) =
1

|Sn−1|

∫
∂U
Df̃ (x)dF =

1

|Sn|

∫
∂U

1

|f |n
Df (x)dF, f̃ =

f

|f |
,

(2.27)
for f ∈ C2

y (U,Rn). Explicitly we have

deg(f, U, 0) =
1

|Sn−1|

∫
∂U

n∑
j=1

(−1)j−1 fj
|f |n

df1 ∧ · · · ∧ dfj−1 ∧ dfj+1 ∧ · · · ∧ dfn.

(2.28)
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Since f̃ : ∂U → Sn−1 the integrand can also be written as the pull back f̃∗dS
of the canonical surface element dS on Sn−1.

This coincides with the boundary value approach for complex functions
(note that holomorphic functions are orientation preserving).

Step 2: Admitting continuous functions

Our final step is to remove the condition f ∈ C2. As before we want the
degree to be constant in each ball contained in Dy(U,Rn). For example, fix

f ∈ Dy(U,Rn) and set ρ = dist(y, f(∂U)) > 0. Choose f i ∈ C2(U,Rn) such

that |f i − f | < ρ, implying f i ∈ Dy(U,Rn). Then H(t, x) = (1− t)f1(x) +

tf2(x) ∈ Dy(U,Rn) ∩ C2(U,Rn), t ∈ [0, 1], and |H(t) − f | < ρ. If we can
show that deg(H(t), U, y) is locally constant with respect to t, then it is
continuous with respect to t and hence constant (since [0, 1] is connected).
Consequently we can define

deg(f, U, y) = deg(f̃ , U, y), f ∈ Dy(U,Rn), (2.29)

where f̃ ∈ C2(U,Rn) with |f̃ − f | < dist(y, f(∂U)).

It remains to show that t 7→ deg(H(t), U, y) is locally constant.

Lemma 2.10. Suppose f ∈ C2
y (U,Rn). Then for each f̃ ∈ C2(U,Rn) there

is an ε > 0 such that deg(f + t f̃ , U, y) = deg(f, U, y) for all t ∈ (−ε, ε).

Proof. If f−1(y) = ∅ the same is true for f + t g if |t| < dist(y, f(U))/|g|.
Hence we can exclude this case. For the remaining case we use our usual
strategy of considering y ∈ RV(f) first and then approximating general y
by regular ones.

Suppose y ∈ RV(f) and let f−1(y) = {xi}Nj=1. By the implicit function

theorem we can find disjoint neighborhoods U(xi) such that there exists a
unique solution xi(t) ∈ U(xi) of (f + t g)(x) = y for |t| < ε1. By reducing
U(xi) if necessary, we can even assume that the sign of Jf+t g is constant on

U(xi). Finally, let ε2 = dist(y, f(U\
⋃N
i=1 U(xi)))/|g|. Then |f + t g| > 0 for

|t| < ε2 and ε = min(ε1, ε2) is the quantity we are looking for.

It remains to consider the case y ∈ CV(f). pick a regular value ỹ ∈
Bρ/3(y), where ρ = dist(y, f(∂U)), implying deg(f, U, y) = deg(f, U, ỹ).
Then we can find an ε̃ > 0 such that deg(f, U, ỹ) = deg(f + t g, U, ỹ) for
|t| < ε̃. Setting ε = min(ε̃, ρ/(3|g|)) we infer ỹ−(f+t g)(x) ≥ ρ/3 for x ∈ ∂U ,
that is |ỹ− y| < dist(ỹ, (f + t g)(∂U)), and thus deg(f + t g, U, ỹ) = deg(f +
t g, U, y). Putting it all together implies deg(f, U, y) = deg(f + t g, U, y) for
|t| < ε as required. 2

Now we can finally prove our main theorem.
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Theorem 2.11. There is a unique degree deg satisfying (D1)-(D4). More-
over, deg(., U, y) : Dy(U,Rn)→ Z is constant on each component and given

f ∈ Dy(U,Rn) we have

deg(f, U, y) =
∑

x∈f̃−1(y)

sign Jf̃ (x) (2.30)

where f̃ ∈ D2
y(U,Rn) is in the same component of Dy(U,Rn), say |f − f̃ | <

dist(y, f(∂U)), such that y ∈ RV(f̃).

Proof. Our previous considerations show that deg is well-defined and
locally constant with respect to the first argument by construction. Hence
deg(., U, y) : Dy(U,Rn)→ Z is continuous and thus necessarily constant on
components since Z is discrete. (D2) is clear and (D1) is satisfied since it

holds for f̃ by construction. Similarly, taking U1,2 as in (D3) we can require

|f − f̃ | < dist(y, f(U\(U1 ∪ U2)). Then (D3) is satisfied since it also holds

for f̃ by construction. Finally, (D4) is a consequence of continuity. 2

To conclude this section, let us give a few simple examples illustrating
the use of the Brouwer degree.

First, let’s investigate the zeros of

f(x1, x2) = (x1 − 2x2 + cos(x1 + x2), x2 + 2x1 + sin(x1 + x2)). (2.31)

Denote the linear part by

g(x1, x2) = (x1 − 2x2, x2 + 2x1). (2.32)

Then we have |g(x)| =
√

5|x| and |f(x) − g(x)| = 1 and hence h(t) =
(1− t)g+ t f = g+ t(f − g) satisfies |h(t)| ≥ |g|− t|f − g| > 0 for |x| > 1/

√
5

implying

deg(f,Br(0), 0) = deg(g,Br(0), 0) = 1, r > 1/
√

5. (2.33)

Moreover, since Jf (x) = 5+3 cos(x1 +x2)+sin(x1 +x2) > 1 the determinant
formula (2.12) for the degree implies that f(x) = 0 has a unique solution in
R2. This solution even has to lie on the circle |x| = 1/

√
5 since f(x) = 0

implies 1 = |f(x)− g(x)| = |g(x)| =
√

5|x|.
Next let us prove the following result which implies the hairy ball (or

hedgehog) theorem.

Theorem 2.12. Suppose U contains the origin and let f : ∂U → Rn\{0}
be continuous. If n is odd, then there exists a x ∈ ∂U and a λ 6= 0 such that
f(x) = λx.

Proof. By Theorem 2.15 we can assume f ∈ C(U,Rn) and since n is
odd we have deg(−I, U, 0) = −1. Now if deg(f, U, 0) 6= −1, then H(t, x) =
(1 − t)f(x) − tx must have a zero (t0, x0) ∈ (0, 1) × ∂U and hence f(x0) =
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t0
1−t0x0. Otherwise, if deg(f, U, 0) = −1 we can apply the same argument to

H(t, x) = (1− t)f(x) + tx. 2

In particular this result implies that a continuous tangent vector field
on the unit sphere f : Sn−1 → Rn (with f(x)x = 0 for all x ∈ Sn) must
vanish somewhere if n is odd. Or, for n = 3, you cannot smoothly comb a
hedgehog without leaving a bald spot or making a parting. It is however
possible to comb the hair smoothly on a torus and that is why the magnetic
containers in nuclear fusion are toroidal.

Another simple consequence is the fact that a vector field on Rn, which
points outwards (or inwards) on a sphere, must vanish somewhere inside the
sphere.

Theorem 2.13. Suppose f : BR(0)→ Rn is continuous and satisfies

f(x)x > 0, |x| = R. (2.34)

Then f(x) vanishes somewhere inside BR(0).

Proof. If f does not vanish, then H(t, x) = (1− t)x+ tf(x) must vanish
at some point (t0, x0) ∈ (0, 1)× ∂BR(0) and thus

0 = H(t0, x0)x0 = (1− t0)R2 + t0f(x0)x0. (2.35)

But the last part is positive by assumption, a contradiction. 2

2.4. The Brouwer fixed-point theorem

Now we can show that the famous Brouwer fixed-point theorem is a simple
consequence of the properties of our degree.

Theorem 2.14 (Brouwer fixed point). Let K be a topological space home-
omorphic to a compact, convex subset of Rn and let f ∈ C(K,K), then f
has at least one fixed point.

Proof. Clearly we can assume K ⊂ Rn since homeomorphisms preserve
fixed points. Now lets assume K = Br(0). If there is a fixed-point on the
boundary ∂Br(0)) we are done. Otherwise H(t, x) = x − t f(x) satisfies
0 6∈ H(t, ∂Br(0)) since |H(t, x)| ≥ |x| − t|f(x)| ≥ (1 − t)r > 0, 0 ≤ t < 1.
And the claim follows from deg(x− f(x), Br(0), 0) = deg(x,Br(0), 0) = 1.

Now let K be convex. Then K ⊆ Bρ(0) and, by Theorem 2.15 below,
we can find a continuous retraction R : Rn → K (i.e., R(x) = x for x ∈ K)

and consider f̃ = f ◦ R ∈ C(Bρ(0), Bρ(0)). By our previous analysis, there

is a fixed point x = f̃(x) ∈ hull(f(K)) ⊆ K. 2

Note that any compact, convex subset of a finite dimensional Banach
space (complex or real) is isomorphic to a compact, convex subset of Rn since
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linear transformations preserve both properties. In addition, observe that all
assumptions are needed. For example, the map f : R→ R, x 7→ x+1, has no
fixed point (R is homeomorphic to a bounded set but not to a compact one).
The same is true for the map f : ∂B1(0)→ ∂B1(0), x 7→ −x (∂B1(0) ⊂ Rn
is simply connected for n ≥ 3 but not homeomorphic to a convex set).

It remains to prove the result from topology needed in the proof of the
Brouwer fixed-point theorem.

Theorem 2.15. Let X and Y be Banach spaces and let K be a closed subset
of X. Then F ∈ C(K,Y ) has a continuous extension F ∈ C(X,Y ) such
that F (X) ⊆ hull(F (K)).

Proof. Consider the open cover {Bρ(x)(x)}x∈X\K for X\K, where ρ(x) =
dist(x,X\K)/2. Choose a (locally finite) partition of unity {φλ}λ∈Λ subor-
dinate to this cover and set

F (x) =
∑
λ∈Λ

φλ(x)F (xλ) for x ∈ X\K, (2.36)

where xλ ∈ K satisfies dist(xλ, suppφλ) ≤ 2 dist(K, suppφλ). By con-
struction, F is continuous except for possibly at the boundary of K. Fix
x0 ∈ ∂K, ε > 0 and choose δ > 0 such that |F (x) − F (x0)| ≤ ε for all
x ∈ K with |x − x0| < 4δ. We will show that |F (x) − F (x0)| ≤ ε for
all x ∈ X with |x − x0| < δ. Suppose x 6∈ K, then |F (x) − F (x0)| ≤∑

λ∈Λ φλ(x)|F (xλ) − F (x0)|. By our construction, xλ should be close to x
for all λ with x ∈ suppφλ since x is close to K. In fact, if x ∈ suppφλ we
have

|x− xλ| ≤ dist(xλ, suppφλ) + d(suppφλ) ≤ 2 dist(K, suppφλ) + d(suppφλ),
(2.37)

where d(suppφλ) = supx,y∈suppφλ
|x − y|. Since our partition of unity is

subordinate to the cover {Bρ(x)(x)}x∈X\K we can find a x̃ ∈ X\K such
that suppφλ ⊂ Bρ(x̃)(x̃) and hence d(suppφλ) ≤ ρ(x̃) ≤ dist(K, suppφλ).
Putting it all together we have |x− xλ| ≤ 3 dist(xλ, suppφλ) and hence

|x0−xλ| ≤ |x0−x|+ |x−xλ| ≤ |x0−x|+3 dist(xλ, suppφλ) ≤ 4|x−x0| ≤ 4δ
(2.38)

as expected. By our choice of δ we have |F (xλ)− F (x0)| ≤ ε for all λ with
φλ(x) 6= 0. Hence |F (x) − F (x0)| ≤ ε whenever |x − x0| ≤ δ and we are
done. 2

Note that the same proof works if X is only a metric space.

Finally, let me remark that the Brouwer fixed point theorem is equivalent
to the fact that there is no continuous retraction R : B1(0)→ ∂B1(0) (with
R(x) = x for x ∈ ∂B1(0)) from the unit ball to the unit sphere in Rn.
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In fact, if R would be such a retraction, −R would have a fixed point
x0 ∈ ∂B1(0) by Brouwer’s theorem. But then x0 = −f(x0) = −x0 which is
impossible. Conversely, if a continuous function f : B1(0) → B1(0) has no
fixed point we can define a retraction R(x) = f(x) + t(x)(x− f(x)), where
t(x) ≥ 0 is chosen such that |R(x)|2 = 1 (i.e., R(x) lies on the intersection
of the line spanned by x, f(x) with the unit sphere).

Using this equivalence the Brouwer fixed point theorem can also be de-
rived easily by showing that the homology groups of the unit ball B1(0) and
its boundary (the unit sphere) differ (see, e.g., [9] for details).

2.5. Kakutani’s fixed-point theorem and applications to
game theory

In this section we want to apply Brouwer’s fixed-point theorem to show the
existence of Nash equilibria for n-person games. As a preparation we extend
Brouwer’s fixed-point theorem to set valued functions. This generalization
will be more suitable for our purpose.

Denote by CS(K) the set of all nonempty convex subsets of K.

Theorem 2.16 (Kakutani). Suppose K is a compact convex subset of Rn
and f : K → CS(K). If the set

Γ = {(x, y)|y ∈ f(x)} ⊆ K2 (2.39)

is closed, then there is a point x ∈ K such that x ∈ f(x).

Proof. Our strategy is to apply Brouwer’s theorem, hence we need a
function related to f . For this purpose it is convenient to assume that K is
a simplex

K = 〈v1, . . . , vm〉, m ≤ n, (2.40)

where vi are the vertices. If we pick yi ∈ f(vi) we could set

f1(x) =
m∑
i=1

λiyi, (2.41)

where λi are the barycentric coordinates of x (i.e., λi ≥ 0,
∑m

i=1 λi = 1 and
x =

∑n
i=1 λivi). By construction, f1 ∈ C(K,K) and there is a fixed point

x1. But unless x1 is one of the vertices, this doesn’t help us too much. So
lets choose a better function as follows. Consider the k-th barycentric sub-
division and for each vertex vi in this subdivision pick an element yi ∈ f(vi).
Now define fk(vi) = yi and extend fk to the interior of each subsimplex as
before. Hence fk ∈ C(K,K) and there is a fixed point

xk =

m∑
i=1

λki v
k
i =

m∑
i=1

λki y
k
i , yki = fk(vki ), (2.42)
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in the subsimplex 〈vk1 , . . . , vkm〉. Since (xk, λk1, . . . , λ
k
m, y

k
1 , . . . , y

k
m) ∈ K2m+1

we can assume that this sequence converges to (x0, λ0
1, . . . , λ

0
m, y

0
1, . . . , y

0
m)

after passing to a subsequence. Since the subsimplices shrink to a point,
this implies vki → x0 and hence y0

i ∈ f(x0) since (vki , y
k
i ) ∈ Γ→ (v0

i , y
0
i ) ∈ Γ

by the closedness assumption. Now (2.42) tells us

x0 =

m∑
i=1

λki y
k
i ∈ f(x0) (2.43)

since f(x0) is convex and the claim holds if K is a simplex.

If K is not a simplex, we can pick a simplex S containing K and proceed
as in the proof of the Brouwer theorem. 2

If f(x) contains precisely one point for all x, then Kakutani’s theorem
reduces to the Brouwer’s theorem.

Now we want to see how this applies to game theory.

An n-person game consists of n players who have mi possible actions to
choose from. The set of all possible actions for the i-th player will be denoted
by Φi = {1, . . . ,mi}. An element ϕi ∈ Φi is also called a pure strategy for
reasons to become clear in a moment. Once all players have chosen their
move ϕi, the payoff for each player is given by the payoff function

Ri(ϕ), ϕ = (ϕ1, . . . , ϕn) ∈ Φ =

n∏
i=1

Φi (2.44)

of the i-th player. We will consider the case where the game is repeated
a large number of times and where in each step the players choose their
action according to a fixed strategy. Here a strategy si for the i-th player is
a probability distribution on Φi, that is, si = (s1

i , . . . , s
mi
i ) such that ski ≥ 0

and
∑mi

k=1 s
k
i = 1. The set of all possible strategies for the i-th player is

denoted by Si. The number ski is the probability for the k-th pure strategy
to be chosen. Consequently, if s = (s1, . . . , sn) ∈ S =

∏n
i=1 Si is a collection

of strategies, then the probability that a given collection of pure strategies
gets chosen is

s(ϕ) =

n∏
i=1

si(ϕ), si(ϕ) = skii , ϕ = (k1, . . . , kn) ∈ Φ (2.45)

(assuming all players make their choice independently) and the expected
payoff for player i is

Ri(s) =
∑
ϕ∈Φ

s(ϕ)Ri(ϕ). (2.46)

By construction, Ri(s) is continuous.
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The question is of course, what is an optimal strategy for a player? If
the other strategies are known, a best reply of player i against s would be a
strategy si satisfying

Ri(s\si) = max
s̃i∈Si

Ri(s\s̃i) (2.47)

Here s\s̃i denotes the strategy combination obtained from s by replacing
si by s̃i. The set of all best replies against s for the i-th player is denoted
by Bi(s). Explicitly, si ∈ B(s) if and only if ski = 0 whenever Ri(s\k) <
max1≤l≤mi Ri(s\l) (in particular Bi(s) 6= ∅).

Let s, s ∈ S, we call s a best reply against s if si is a best reply against
s for all i. The set of all best replies against s is B(s) =

∏n
i=1Bi(s).

A strategy combination s ∈ S is a Nash equilibrium for the game if it is
a best reply against itself, that is,

s ∈ B(s). (2.48)

Or, put differently, s is a Nash equilibrium if no player can increase his
payoff by changing his strategy as long as all others stick to their respective
strategies. In addition, if a player sticks to his equilibrium strategy, he is
assured that his payoff will not decrease no matter what the others do.

To illustrate these concepts, let us consider the famous prisoners dilemma.
Here we have two players which can choose to defect or cooperate. The pay-
off is symmetric for both players and given by the following diagram

R1 d2 c2

d1 0 2
c1 −1 1

R2 d2 c2

d1 0 −1
c1 2 1

(2.49)

where ci or di means that player i cooperates or defects, respectively. It is
easy to see that the (pure) strategy pair (d1, d2) is the only Nash equilibrium
for this game and that the expected payoff is 0 for both players. Of course,
both players could get the payoff 1 if they both agree to cooperate. But if
one would break this agreement in order to increase his payoff, the other
one would get less. Hence it might be safer to defect.

Now that we have seen that Nash equilibria are a useful concept, we
want to know when such an equilibrium exists. Luckily we have the following
result.

Theorem 2.17 (Nash). Every n-person game has at least one Nash equi-
librium.

Proof. The definition of a Nash equilibrium begs us to apply Kakutani’s
theorem to the set valued function s 7→ B(s). First of all, S is compact
and convex and so are the sets B(s). Next, observe that the closedness
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condition of Kakutani’s theorem is satisfied since if sm ∈ S and sm ∈ B(sn)
both converge to s and s, respectively, then (2.47) for sm, sm

Ri(s
m\s̃i) ≤ Ri(sm\smi ), s̃i ∈ Si, 1 ≤ i ≤ n, (2.50)

implies (2.47) for the limits s, s

Ri(s\s̃i) ≤ Ri(s\si), s̃i ∈ Si, 1 ≤ i ≤ n, (2.51)

by continuity of Ri(s). 2

2.6. Further properties of the degree

We now prove some additional properties of the mapping degree. The first
one will relate the degree in Rn with the degree in Rm. It will be needed
later on to extend the definition of degree to infinite dimensional spaces. By
virtue of the canonical embedding Rm ↪→ Rm × {0} ⊂ Rn we can consider
Rm as a subspace of Rn.

Theorem 2.18 (Reduction property). Let f ∈ C(U,Rm) and y ∈ Rm\(I +
f)(∂U), then

deg(I + f, U, y) = deg(I + fm, Um, y), (2.52)

where fm = f |Um, where U −M is the projection of U to Rm.

Proof. Choose a f̃ ∈ C2(U,Rm) sufficiently close to f such that y ∈
RV(f̃). Let x ∈ (I+ f̃)−1(y), then x = y−f(x) ∈ Rm implies (I+ f̃)−1(y) =

(I + f̃m)−1(y). Moreover,

JI+f̃ (x) = det(I + f̃ ′)(x) = det

(
δij + ∂j f̃i(x) ∂j f̃j(x)

0 δij

)
= det(δij + ∂j f̃i) = JI+f̃m(x) (2.53)

shows deg(I + f, U, y) = deg(I + f̃ , U, y) = deg(I + f̃m, Um, y) = deg(I +
fm, Um, y) as desired. 2

Let U ⊆ Rn and f ∈ C(U,Rn) be as usual. By Theorem 2.2 we
know that deg(f, U, y) is the same for every y in a connected component of
Rn\f(∂U). We will denote these components by Kj and write deg(f, U, y) =
deg(f, U,Kj) if y ∈ Kj .

Theorem 2.19 (Product formula). Let U ⊆ Rn be a bounded and open
set and denote by Gj the connected components of Rn\f(∂U). If g ◦ f ∈
Dy(U,Rn), then

deg(g ◦ f, U, y) =
∑
j

deg(f, U,Gj) deg(g,Gj , y), (2.54)

where only finitely many terms in the sum are nonzero.
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Proof. Since f(U) is is compact, we can find an r > 0 such that f(U) ⊆
Br(0). Moreover, since g−1(y) is closed, g−1(y) ∩ Br(0) is compact and
hence can be covered by finitely many components {Gj}mj=1. In particular,

the others will have deg(f, U,Gk) = 0 and hence only finitely many terms
in the above sum are nonzero.

We begin by computing deg(g ◦ f, U, y) in the case where f, g ∈ C1 and
y 6∈ CV(g ◦ f). Since d(g ◦ f)(x) = g′(f(x))df(x) the claim is a straightfor-
ward calculation

deg(g ◦ f, U, y) =
∑

x∈(g◦f)−1(y)

sign(Jg◦f (x))

=
∑

x∈(g◦f)−1(y)

sign(Jg(f(x))) sign(Jf (x))

=
∑

z∈g−1(y)

sign(Jg(z))
∑

x∈f−1(z)

sign(Jf (x))

=
∑

z∈g−1(y)

sign(Jg(z)) deg(f, U, z)

and, using our cover {Gj}mj=1,

deg(g ◦ f, U, y) =
m∑
j=1

∑
z∈g−1(y)∩Gj

sign(Jg(z)) deg(f, U, z)

=
m∑
j=1

deg(f, U,Gj)
∑

z∈g−1(y)∩Gj

sign(Jg(z)) (2.55)

=

m∑
j=1

deg(f, U,Gj) deg(g,Gj , y). (2.56)

Moreover, this formula still holds for y ∈ CV(g ◦ f) and for g ∈ C by
construction of the Brouwer degree. However, the case f ∈ C will need a
closer investigation since the sets Gj depend on f . To overcome this problem
we will introduce the sets

Ll = {z ∈ Rn\f(∂U)| deg(f, U, z) = l}. (2.57)

Observe that Ll, l > 0, must be a union of some sets of {Gj}mj=1.

Now choose f̃ ∈ C1 such that |f(x)− f̃(x)| < 2−1 dist(g−1(y), f(∂U)) for

x ∈ U and define K̃j , L̃l accordingly. Then we have Ul∩g−1(y) = Ũl∩g−1(y)
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by Theorem 2.1 (iii). Moreover,

deg(f ◦ g, U, y) = deg(f̃ ◦ g, U, y) =
∑
j

deg(f, U, K̃j) deg(g, K̃j , y)

=
∑
l>0

l deg(g, Ũl, y) =
∑
l>0

l deg(g, Ul, y)

=
∑
j

deg(f, U,Gj) deg(g,Gj , y) (2.58)

which proves the claim. 2

2.7. The Jordan curve theorem

In this section we want to show how the product formula (2.54) for the
Brouwer degree can be used to prove the famous Jordan curve theorem which
states that a homeomorphic image of the circle dissects R2 into two compo-
nents (which necessarily have the image of the circle as common boundary).
In fact, we will even prove a slightly more general result.

Theorem 2.20. Let Cj ⊂ Rn, j = 1, 2, be homeomorphic compact sets.
Then Rn\C1 and Rn\C2 have the same number of connected components.

Proof. Denote the components of Rn\C1 by Hj and those of Rn\C2 by
Kj . Let h : C1 → C2 be a homeomorphism with inverse k : C2 → C1. By
Theorem 2.15 we can extend both to Rn. Then Theorem 2.1 (iii) and the
product formula imply

1 = deg(k ◦ h,Hj , y) =
∑
l

deg(h,Hj , Gl) deg(k,Gl, y) (2.59)

for any y ∈ Hj . Now we have⋃
i

Ki = Rn\C2 ⊆ Rn\h(∂Hj) ⊆
⋃
l

Gl (2.60)

and hence fore every i we have Ki ⊆ Gl for some l since components are
maximal connected sets. Let Nl = {i|Ki ⊆ Gl} and observe that we have
deg(k,Gl, y) =

∑
i∈Nl deg(k,Ki, y) and deg(h,Hj , Gl) = deg(h,Hj ,Ki) for

every i ∈ Nl. Therefore,

1 =
∑
l

∑
i∈Nl

deg(h,Hj ,Ki) deg(k,Ki, y) =
∑
i

deg(h,Hj ,Ki) deg(k,Ki, Hj)

(2.61)
By reversing the role of C1 and C2, the same formula holds with Hj and Ki

interchanged.
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Hence∑
i

1 =
∑
i

∑
j

deg(h,Hj ,Ki) deg(k,Ki, Hj) =
∑
j

1 (2.62)

shows that if the number of components of Rn\C1 or Rn\C2 is finite, then
so is the other and both are equal. Otherwise there is nothing to prove. 2





Chapter 3

The Leray–Schauder
mapping degree

3.1. The mapping degree on finite dimensional Banach
spaces

The objective of this section is to extend the mapping degree from Rn to gen-
eral Banach spaces. Naturally, we will first consider the finite dimensional
case.

Let X be a (real) Banach space of dimension n and let φ be any isomor-
phism between X and Rn. Then, for f ∈ Dy(U,X), U ⊂ X open, y ∈ X,
we can define

deg(f, U, y) = deg(φ ◦ f ◦ φ−1, φ(U), φ(y)) (3.1)

provided this definition is independent of the basis chosen. To see this let
ψ be a second isomorphism. Then A = ψ ◦ φ−1 ∈ GL(n). Abbreviate

f∗ = φ ◦ f ◦ φ−1, y∗ = φ(y) and pick f̃∗ ∈ C1
y (φ(U),Rn) in the same

component ofDy(φ(U),Rn) as f∗ such that y∗ ∈ RV(f∗). Then A◦f̃∗◦A−1 ∈
C1
y (ψ(U),Rn) is the same component of Dy(ψ(U),Rn) as A ◦ f∗ ◦ A−1 =

ψ ◦ f ◦ ψ−1 (since A is also a homeomorphism) and

JA◦f̃∗◦A−1(Ay∗) = det(A)Jf̃∗(y∗) det(A−1) = Jf̃∗(y∗) (3.2)

by the chain rule. Thus we have deg(ψ ◦ f ◦ ψ−1, ψ(U), ψ(y)) = deg(φ ◦ f ◦
φ−1, φ(U), φ(y)) and our definition is independent of the basis chosen. In
addition, it inherits all properties from the mapping degree in Rn. Note also
that the reduction property holds if Rm is replaced by an arbitrary subspace
X1 since we can always choose φ : X → Rn such that φ(X1) = Rm.
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Our next aim is to tackle the infinite dimensional case. The general idea
is to approximate F by finite dimensional operators (in the same spirit as
we approximated continuous f by smooth functions). To do this we need to
know which operators can be approximated by finite dimensional operators.
Hence we have to recall some basic facts first.

3.2. Compact operators

Let X, Y be Banach spaces and U ⊂ X. An operator F : U ⊂ X → Y is
called finite dimensional if its range is finite dimensional. In addition, it is
called compact if it is continuous and maps bounded sets into relatively com-
pact ones. The set of all compact operators is denoted by C(U, Y ) and the
set of all compact, finite dimensional operators is denoted by F(U, Y ). Both
sets are normed linear spaces and we have F(U, Y ) ⊆ C(U, Y ) ⊆ C(U, Y ).

If U is compact, then C(U, Y ) = C(U, Y ) (since the continuous image of
a compact set is compact) and if dim(Y ) <∞, then F(U, Y ) = C(U, Y ). In
particular, if U ⊂ Rn is bounded, then F(U,Rn) = C(U,Rn) = C(U,Rn).

Now let us collect some results to be needed in the sequel.

Lemma 3.1. If K ⊂ X is compact, then for every ε > 0 there is a finite
dimensional subspace Xε ⊆ X and a continuous map Pε : K → Xε such that
|Pε(x)− x| ≤ ε for all x ∈ K.

Proof. Pick {xi}ni=1 ⊆ K such that
⋃n
i=1Bε(xi) covers K. Let {φi}ni=1

be a partition of unity (restricted to K) subordinate to {Bε(xi)}ni=1, that is,
φi ∈ C(K, [0, 1]) with supp(φi) ⊂ Bε(xi) and

∑n
i=1 φi(x) = 1, x ∈ K. Set

Pε(x) =
n∑
i=1

φi(x)xi, (3.3)

then

|Pε(x)− x| = |
n∑
i=1

φi(x)x−
n∑
i=1

φi(x)xi| (3.4)

≤
n∑
i=1

φi(x)|x− xi| ≤ ε.

2

This lemma enables us to prove the following important result.

Theorem 3.2. Let U be bounded, then the closure of F(U, Y ) in C(U, Y )
is C(U, Y ).
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Proof. Suppose FN ∈ C(U, Y ) converges to F . If F 6∈ C(U, Y ) then we
can find a sequence xn ∈ U such that |F (xn)− F (xm)| ≥ ρ > 0 for n 6= m.
If N is so large that |F − FN | ≤ ρ/4, then

|FN (xn)− FN (xm)| ≥ |F (xn)− F (xm)| − |FN (xn)− F (xn)|
− |FN (xm)− F (xm)|

≥ ρ− 2
ρ

4
=
ρ

2
(3.5)

This contradiction shows F(U, y) ⊆ C(U, Y ). Conversely, let K = F (U) and
choose Pε according to Lemma 3.1, then Fε = Pε ◦ F ∈ F(U, Y ) converges

to F . Hence C(U, Y ) ⊆ F(U, y) and we are done. 2

Finally, let us show some interesting properties of mappings I+F , where
F ∈ C(U, Y ).

Lemma 3.3. Let U be bounded and closed. Suppose F ∈ C(U, Y ), then I+F
is proper (i.e., inverse images of compact sets are compact) and maps closed
subsets to closed subsets.

Proof. Let A ⊆ U be closed and yn = (I + F )(xn) ∈ (I + F )(A). Since
{yn − xn} ⊂ F−1({yn}) we can assume that yn − xn → z after passing to a
subsequence and hence xn → x = y−z ∈ A. Since y = x+F (x) ∈ (I+F )(A),
(I + F )(A) is closed.

Next, let U be closed and K ⊂ Y be compact. Let {xn} ⊆ (I+F )−1(K).
Then we can pass to a subsequence ynm = xnm+F (xnm) such that ynm → y.
As before this implies xnm → x and thus (I + F )−1(K) is compact. 2

Now we are all set for the definition of the Leray–Schauder degree, that
is, for the extension of our degree to infinite dimensional Banach spaces.

3.3. The Leray–Schauder mapping degree

For U ⊂ X we set

Dy(U,X) = {F ∈ C(U,X)|y 6∈ (I + F )(∂U)} (3.6)

and Fy(U,X) = {F ∈ F(U,X)|y 6∈ (I + F )(∂U)}. Note that for F ∈
Dy(U,X) we have dist(y, (I + F )(∂U)) > 0 since I + F maps closed sets to
closed sets.

Abbreviate ρ = dist(y, (I + F )(∂U)) and pick F1 ∈ F(U,X) such that
|F − F1| < ρ implying F1 ∈ Fy(U,X). Next, let X1 be a finite dimensional
subspace of X such that F1(U) ⊂ X1, y ∈ X1 and set U1 = U ∩X1. Then
we have F1 ∈ Fy(U1, X1) and might define

deg(I + F,U, y) = deg(I + F1, U1, y) (3.7)
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provided we show that this definition is independent of F1 and X1 (as above).
Pick another operator F2 ∈ F(U,X) such that |F −F2| < ρ and let X2 be a
corresponding finite dimensional subspace as above. Consider X0 = X1+X2,
U0 = U ∩X0, then Fi ∈ Fy(U0, X0), i = 1, 2, and

deg(I + Fi, U0, y) = deg(I + Fi, Ui, y), i = 1, 2, (3.8)

by the reduction property. Moreover, set H(t) = I+(1−t)F1 +t F2 implying
H(t) ∈, t ∈ [0, 1], since |H(t)− (I + F )| < ρ for t ∈ [0, 1]. Hence homotopy
invariance

deg(I + F1, U0, y) = deg(I + F2, U0, y) (3.9)

shows that (3.7) is independent of F1, X1.

Theorem 3.4. Let U be a bounded open subset of a (real) Banach space X
and let F ∈ Dy(U,X), y ∈ X. Then the following hold true.

(i). deg(I + F,U, y) = deg(I + F − y, U, 0).

(ii). deg(I, U, y) = 1 if y ∈ U .

(iii). If U1,2 are open, disjoint subsets of U such that y 6∈ f(U\(U1∪U2)),
then deg(I + F,U, y) = deg(I + F,U1, y) + deg(I + F,U2, y).

(iv). If H : [0, 1]× U → X and y : [0, 1]→ X are both continuous such
that H(t) ∈ Dy(t)(U,Rn), t ∈ [0, 1], then deg(I + H(0), U, y(0)) =
deg(I +H(1), U, y(1)).

Proof. Except for (iv) all statements follow easily from the definition of
the degree and the corresponding property for the degree in finite dimen-
sional spaces. Considering H(t, x) − y(t), we can assume y(t) = 0 by (i).
Since H([0, 1], ∂U) is compact, we have ρ = dist(y,H([0, 1], ∂U) > 0. By
Theorem 3.2 we can pick H1 ∈ F([0, 1]×U,X) such that |H(t)−H1(t)| < ρ,
t ∈ [0, 1]. this implies deg(I +H(t), U, 0) = deg(I +H1(t), U, 0) and the rest
follows from Theorem 2.2. 2

In addition, Theorem 2.1 and Theorem 2.2 hold for the new situation as
well (no changes are needed in the proofs).

Theorem 3.5. Let F,G ∈ Dy(U,X), then the following statements hold.

(i). We have deg(I + F, ∅, y) = 0. Moreover, if Ui, 1 ≤ i ≤ N , are

disjoint open subsets of U such that y 6∈ (I+F )(U\
⋃N
i=1 Ui), then

deg(I + F,U, y) =
∑N

i=1 deg(I + F,Ui, y).

(ii). If y 6∈ (I+F )(U), then deg(I+F,U, y) = 0 (but not the other way
round). Equivalently, if deg(I + F,U, y) 6= 0, then y ∈ (I + F )(U).

(iii). If |f(x) − g(x)| < dist(y, f(∂U)), x ∈ ∂U , then deg(f, U, y) =
deg(g, U, y). In particular, this is true if f(x) = g(x) for x ∈ ∂U .

(iv). deg(I + ., U, y) is constant on each component of Dy(U,X).
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(v). deg(I + F,U, .) is constant on each component of X\f(∂U).

3.4. The Leray–Schauder principle and the Schauder
fixed-point theorem

As a first consequence we note the Leray–Schauder principle which says that
a priori estimates yield existence.

Theorem 3.6 (Leray–Schauder principle). Suppose F ∈ C(X,X) and any
solution x of x = tF (x), t ∈ [0, 1] satisfies the a priori bound |x| ≤ M for
some M > 0, then F has a fixed point.

Proof. Pick ρ > M and observe deg(I−F,Bρ(0), 0) = deg(I, Bρ(0), 0) =
1 using the compact homotopyH(t, x) = −tF (x). HereH(t) ∈ D0(Bρ(0), X)
due to the a priori bound. 2

Now we can extend the Brouwer fixed-point theorem to infinite dimen-
sional spaces as well.

Theorem 3.7 (Schauder fixed point). Let K be a closed, convex, and
bounded subset of a Banach space X. If F ∈ C(K,K), then F has at least
one fixed point. The result remains valid if K is only homeomorphic to a
closed, convex, and bounded subset.

Proof. Since K is bounded, there is a ρ > 0 such that K ⊆ Bρ(0).
By Theorem 2.15 we can find a continuous retraction R : X → K (i.e.,

R(x) = x for x ∈ K) and consider F̃ = F ◦ R ∈ C(Bρ(0), Bρ(0)). The

compact homotopy H(t, x) = −tF̃ (x) shows that deg(I − F̃ , Bρ(0), 0) =

deg(I, Bρ(0), 0) = 1. Hence there is a point x0 = F̃ (x0) ∈ K. Since F̃ (x0) =
F (x0) for x0 ∈ K we are done. 2

Finally, let us prove another fixed-point theorem which covers several
others as special cases.

Theorem 3.8. Let U ⊂ X be open and bounded and let F ∈ C(U,X).
Suppose there is an x0 ∈ U such that

F (x)− x0 6= α(x− x0), x ∈ ∂U, α ∈ (1,∞). (3.10)

Then F has a fixed point.

Proof. Consider H(t, x) = x−x0−t(F (x)−x0), then we have H(t, x) 6= 0
for x ∈ ∂U and t ∈ [0, 1] by assumption. If H(1, x) = 0 for some x ∈ ∂U ,
then x is a fixed point and we are done. Otherwise we have deg(I−F,U, 0) =
deg(I− x0, U, 0) = deg(I, U, x0) = 1 and hence F has a fixed point. 2

Now we come to the anticipated corollaries.
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Corollary 3.9. Let U ⊂ X be open and bounded and let F ∈ C(U,X).
Then F has a fixed point if one of the following conditions holds.

(i) U = Bρ(0) and F (∂U) ⊆ U (Rothe).

(ii) U = Bρ(0) and |F (x)− x|2 ≥ |F (x)|2− |x|2 for x ∈ ∂U (Altman).

(iii) X is a Hilbert space, U = Bρ(0) and 〈F (x), x〉 ≤ |x|2 for x ∈ ∂U
(Krasnosel’skii).

Proof. (1). F (∂U) ⊆ U and F (x) = αx for |x| = ρ implies |α|ρ ≤ ρ
and hence (3.10) holds. (2). F (x) = αx for |x| = ρ implies (α − 1)2ρ2 ≥
(α2 − 1)ρ2 and hence α ≤ 0. (3). Special case of (2) since |F (x) − x|2 =
|F (x)|2 − 2〈F (x), x〉+ |x|2. 2

3.5. Applications to integral and differential equations

In this section we want to show how our results can be applied to integral
and differential equations. To be able to apply our results we will need to
know that certain integral operators are compact.

Lemma 3.10. Suppose I = [a, b] ⊂ R and f ∈ C(I × I × Rn,Rn), τ ∈
C(I, I), then

F : C(I,Rn) → C(I,Rn)

x(t) 7→ F (x)(t) =
∫ τ(t)
a f(t, s, x(s))ds

(3.11)

is compact.

Proof. We first need to prove that F is continuous. Fix x0 ∈ C(I,Rn)

and ε > 0. Set ρ = |x0|+ 1 and abbreviate B = Bρ(0) ⊂ Rn. The function

f is uniformly continuous on Q = I × I ×B since Q is compact. Hence for
ε1 = ε/(b − a) we can find a δ ∈ (0, 1] such that |f(t, s, x) − f(t, s, y)| ≤ ε1

for |x− y| < δ. But this implies

|F (x)− F (x0)| = sup
t∈I

∣∣∣∣∣
∫ τ(t)

a
f(t, s, x(s))− f(t, s, x0(s))ds

∣∣∣∣∣
≤ sup

t∈I

∫ τ(t)

a
|f(t, s, x(s))− f(t, s, x0(s))|ds

≤ sup
t∈I

(b− a)ε1 = ε, (3.12)

for |x − x0| < δ. In other words, F is continuous. Next we note that if
U ⊂ C(I,Rn) is bounded, say |U | < ρ, then

|F (U)| ≤ sup
x∈U

∣∣∣∣∣
∫ τ(t)

a
f(t, s, x(s))ds

∣∣∣∣∣ ≤ (b− a)M, (3.13)
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where M = max |f(I, I, Bρ(0))|. Moreover, the family F (U) is equicontinu-
ous. Fix ε and ε1 = ε/(2(b− a)), ε2 = ε/(2M). Since f and τ are uniformly

continuous on I × I × Bρ(0) and I, respectively, we can find a δ > 0 such
that |f(t, s, x)−f(t0, s, x)| ≤ ε1 and |τ(t)−τ(t0)| ≤ ε2 for |t−t0| < δ. Hence
we infer for |t− t0| < δ

|F (x)(t)− F (x)(t0)| =

∣∣∣∣∣
∫ τ(t)

a
f(t, s, x(s))ds−

∫ τ(t0)

a
f(t0, s, x(s))ds

∣∣∣∣∣
≤
∫ τ(t0)

a
|f(t, s, x(s))− f(t0, s, x(s))|ds+

∣∣∣∣∣
∫ τ(t)

τ(t0)
|f(t, s, x(s))|ds

∣∣∣∣∣
≤ (b− a)ε1 + ε2M = ε. (3.14)

This implies that F (U) is relatively compact by the Arzelà-Ascoli theorem.
Thus F is compact. 2

As a first application we use this result to show existence of solutions to
integral equations.

Theorem 3.11. Let F be as in the previous lemma. Then the integral
equation

x− λF (x) = y, λ ∈ R, y ∈ C(I,Rn) (3.15)

has at least one solution x ∈ C(I,Rn) if |λ| ≤ ρ/M(ρ), where M(ρ) =
(b− a) max

(s,t,x)∈I×I×Bρ(0)
|f(s, t, x− y(s))| and ρ > 0 is arbitrary.

Proof. Note that, by our assumption on λ, λF + y maps Bρ(y) into
itself. Now apply the Schauder fixed-point theorem. 2

This result immediately gives the Peano theorem for ordinary differential
equations.

Theorem 3.12 (Peano). Consider the initial value problem

ẋ = f(t, x), x(t0) = x0, (3.16)

where f ∈ C(I × U,Rn) and I ⊂ R is an interval containing t0. Then
(3.16) has at least one local solution x ∈ C1([t0 − ε, t0 + ε],Rn), ε > 0. For
example, any ε satisfying εM(ε, ρ) ≤ ρ, ρ > 0 with M(ε, ρ) = max |f([t0 −
ε, t0 + ε], Bρ(x0))| works. In addition, if M(ε, ρ) ≤ M̃(ε)(1 + ρ), then there
exists a global solution.

Proof. For notational simplicity we make the shift t→ t−t0, x→ x−x0,
f(t, x)→ f(t+ t0, x+ t0) and assume t0 = 0, x0 = 0. In addition, it suffices
to consider t ≥ 0 since t→ −t amounts to f → −f .
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Now observe, that (3.16) is equivalent to

x(t)−
∫ t

0
f(s, x(s))ds, x ∈ C([−ε, ε],Rn) (3.17)

and the first part follows from our previous theorem. To show the second,
fix ε > 0 and assume M(ε, ρ) ≤ M̃(ε)(1 + ρ). Then

|x(t)| ≤
∫ t

0
|f(s, x(s))|ds ≤ M̃(ε)

∫ t

0
(1 + |x(s)|)ds (3.18)

implies |x(t)| ≤ exp(M̃(ε)ε) by Gronwall’s inequality. Hence we have an a
priori bound which implies existence by the Leary–Schauder principle. Since
ε was arbitrary we are done. 2



Chapter 4

The stationary
Navier–Stokes equation

4.1. Introduction and motivation

In this chapter we turn to partial differential equations. In fact, we will
only consider one example, namely the stationary Navier–Stokes equation.
Our goal is to use the Leray–Schauder principle to prove an existence and
uniqueness result for solutions.

Let U ( 6= ∅) be an open, bounded, and connected subset of R3. We
assume that U is filled with an incompressible fluid described by its velocity
field vj(t, x) and its pressure p(t, x), (t, x) ∈ R × U . The requirement that
our fluid is incompressible implies ∂jvj = 0 (we sum over two equal indices
from 1 to 3), which follows from the Gauss theorem since the flux trough
any closed surface must be zero.

Rather than just writing down the equation, let me give a short physical
motivation. To obtain the equation which governs such a fluid we consider
the forces acting on a small cube spanned by the points (x1, x2, x3) and
(x1 + ∆x1, x2 + ∆x2, x3 + ∆x3). We have three contributions from outer
forces, pressure differences, and viscosity.

The outer force density (force per volume) will be denoted by Kj and
we assume that it is known (e.g. gravity).

The force from pressure acting on the surface through (x1, x2, x3) normal
to the x1-direction is p∆x2∆x3δ1j . The force from pressure acting on the
opposite surface is −(p+ ∂1p∆x1)∆x2∆x3δ1j . In summary, we obtain

− (∂jp)∆V, (4.1)

41
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where ∆V = ∆x1∆x2∆x3.

The viscosity acting on the surface through (x1, x2, x3) normal to the x1-
direction is −η∆x2∆x3∂1vj by some physical law. Here η > 0 is the viscosity
constant of the fluid. On the opposite surface we have η∆x2∆x3∂1(vj +
∂1vj∆x1). Adding up the contributions of all surface we end up with

η∆V ∂i∂ivj . (4.2)

Putting it all together we obtain from Newton’s law

ρ∆V
d

dt
vj(t, x(t)) = η∆V ∂i∂ivj(t, x(t))− (∂jp(t, x(t)) + ∆V Kj(t, x(t)),

(4.3)
where ρ > 0 is the density of the fluid. Dividing by ∆V and using the chain
rule yields the Navier–Stokes equation

ρ∂tvj = η∂i∂ivj − ρ(vi∂i)vj − ∂jp+Kj . (4.4)

Note that it is no restriction to assume ρ = 1.

In what follows we will only consider the stationary Navier–Stokes equa-
tion

0 = η∂i∂ivj − (vi∂i)vj − ∂jp+Kj . (4.5)

In addition to the incompressibility condition ∂jvj = 0 we also require the
boundary condition v|∂U = 0, which follows from experimental observations.

In summary, we consider the problem (4.5) for v in (e.g.) X = {v ∈
C2(U,R3)| ∂jvj = 0 and v|∂U = 0}.

Our strategy is to rewrite the stationary Navier–Stokes equation in inte-
gral form, which is more suitable for our further analysis. For this purpose
we need to introduce some function spaces first.

4.2. An insert on Sobolev spaces

Let U be a bounded open subset of Rn and let Lp(U,R) denote the Lebesgue
spaces of p integrable functions with norm

|u|p =

(∫
U
|u(x)|pdx

)1/p

. (4.6)

In the case p = 2 we even have a scalar product

〈u, v〉2 =

∫
U
u(x)v(x)dx (4.7)

and our aim is to extend this case to include derivatives.

Given the set C1(U,R) we can consider the scalar product

〈u, v〉2,1 =

∫
U
u(x)v(x)dx+

∫
U

(∂ju)(x)(∂jv)(x)dx. (4.8)
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Taking the completion with respect to the associated norm we obtain the
Sobolev space H1(U,R). Similarly, taking the completion of C1

0 (U,R) with
respect to the same norm, we obtain the Sobolev space H1

0 (U,R). Here
Cr0(U, Y ) denotes the set of functions in Cr(U, Y ) with compact support.
This construction of H1(U,R) implies that a sequence uk in C1(U,R) con-
verges to u ∈ H1(U,R) if and only if uk and all its first order derivatives
∂juk converge in L2(U,R). Hence we can assign each u ∈ H1(U,R) its first
order derivatives ∂ju by taking the limits from above. In order to show that
this is a useful generalization of the ordinary derivative, we need to show
that the derivative depends only on the limiting function u ∈ L2(U,R). To
see this we need the following lemma.

Lemma 4.1 (Integration by parts). Suppose u ∈ H1
0 (U,R) and v ∈ H1(U,R),

then ∫
U
u(∂jv)dx = −

∫
U

(∂ju)v dx. (4.9)

Proof. By continuity it is no restriction to assume u ∈ C1
0 (U,R) and

v ∈ C1(U,R). Moreover, we can find a function φ ∈ C1
0 (U,R) which is 1 on

the support of u. Hence by considering φv we can even assume v ∈ C1
0 (U,R).

Moreover, we can replace U by a rectangle K containing U and extend
u, v to K by setting it 0 outside U . Now use integration by parts with
respect to the j-th coordinate. 2

In particular, this lemma says that if u ∈ H1(U,R), then∫
U

(∂ju)φdx = −
∫
U
u(∂jφ) dx, φ ∈ C∞0 (U,R). (4.10)

And since C∞0 (U,R) is dense in L2(U,R), the derivatives are uniquely de-
termined by u ∈ L2(U,R) alone. Moreover, if u ∈ C1(U,R), then the deriv-
ative in the Sobolev space corresponds to the usual derivative. In summary,
H1(U,R) is the space of all functions u ∈ L2(U,R) which have first order
derivatives (in the sense of distributions, i.e., (4.10)) in L2(U,R).

Next, we want to consider some additional properties which will be used
later on. First of all, the Poincaré-Friedrichs inequality.

Lemma 4.2 (Poincaré-Friedrichs inequality). Suppose u ∈ H1
0 (U,R), then∫

U
u2dx ≤ d2

j

∫
U

(∂ju)2dx, (4.11)

where dj = sup{|xj − yj | |(x1, . . . , xn), (y1, . . . , yn) ∈ U}.

Proof. Again we can assume u ∈ C1
0 (U,R) and we assume j = 1 for

notational convenience. Replace U by a set K = [a, b]×K̃ containing U and
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extend u to K by setting it 0 outside U . Then we have

u(x1, x2, . . . , xn)2 =

(∫ x1

a
1 · (∂1u)(ξ, x2, . . . , xn)dξ

)2

≤ (b− a)

∫ b

a
(∂1u)2(ξ, x2, . . . , xn)dξ, (4.12)

where we have used the Cauchy-Schwarz inequality. Integrating this result
over [a, b] gives∫ b

a
u2(ξ, x2, . . . , xn)dξ ≤ (b− a)2

∫ b

a
(∂1u)2(ξ, x2, . . . , xn)dξ (4.13)

and integrating over K̃ finishes the proof. 2

Hence, from the view point of Banach spaces, we could also equipH1
0 (U,R)

with the scalar product

〈u, v〉 =

∫
U

(∂ju)(x)(∂jv)(x)dx. (4.14)

This scalar product will be more convenient for our purpose and hence we
will use it from now on. (However, all results stated will hold in either case.)
The norm corresponding to this scalar product will be denoted by |.|.

Next, we want to consider the embedding H1
0 (U,R) ↪→ L2(U,R) a little

closer. This embedding is clearly continuous since by the Poincaré-Friedrichs
inequality we have

|u|2 ≤
d(U)√
n
|u|, d(U) = sup{|x− y| |x, y ∈ U}. (4.15)

Moreover, by a famous result of Rellich, it is even compact. To see this we
first prove the following inequality.

Lemma 4.3 (Poincaré inequality). Let Q ⊂ Rn be a cube with edge length
ρ. Then ∫

Q
u2dx ≤ 1

ρn

(∫
Q
udx

)2

+
nρ2

2

∫
Q

(∂ku)(∂ku)dx (4.16)

for all u ∈ H1(Q,R).

Proof. After a scaling we can assume Q = (0, 1)n. Moreover, it suffices
to consider u ∈ C1(Q,R).

Now observe

u(x)− u(x̃) =

n∑
i=1

∫ xi

xi−1

(∂iu)dxi, (4.17)
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where xi = (x̃1, . . . , x̃i, xi+1, . . . , xn). Squaring this equation and using
Cauchy–Schwarz on the right hand side we obtain

u(x)2 − 2u(x)u(x̃) + u(x̃)2 ≤

(
n∑
i=1

∫ 1

0
|∂iu|dxi

)2

≤ n
n∑
i=1

(∫ 1

0
|∂iu|dxi

)2

≤ n
n∑
i=1

∫ 1

0
(∂iu)2dxi. (4.18)

Now we integrate over x and x̃, which gives

2

∫
Q
u2dx− 2

(∫
Q
u dx

)2

≤ n
∫
Q

(∂iu)(∂iu)dx (4.19)

and finishes the proof. 2

Now we are ready to show Rellich’s compactness theorem.

Theorem 4.4 (Rellich’s compactness theorem). Let U be a bounded open
subset of Rn. Then the embedding

H1
0 (U,R) ↪→ L2(U,R) (4.20)

is compact.

Proof. Pick a cube Q (with edge length ρ) containing U and a bounded
sequence uk ∈ H1

0 (U,R). Since bounded sets are weakly compact, it is no
restriction to assume that uk is weakly convergent in L2(U,R). By setting
uk(x) = 0 for x 6∈ U we can also assume uk ∈ H1(Q,R) (show this). Next,
subdivide Q into N subcubes Qi with edge lengths ρ/N . On each subcube
(4.16) holds and hence∫

U
u2dx =

∫
Q
u2dx =

Nn∑
i=1

N

ρ

(∫
Qi

udx

)2

+
nρ2

2N2

∫
U

(∂ku)(∂ku)dx (4.21)

for all u ∈ H1
0 (U,R). Hence we infer

|uk − u`|22 ≤
Nn∑
i=1

N

ρ

(∫
Qi

(uk − u`)dx
)2

+
nρ2

2N2
|uk − u`|2. (4.22)

The last term can be made arbitrarily small by picking N large. The first
term converges to 0 since uk converges weakly and each summand contains
the L2 scalar product of uk − u` and χQi (the characteristic function of
Qi). 2

In addition to this result we will also need the following interpolation
inequality.
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Lemma 4.5 (Ladyzhenskaya inequality). Let U ⊂ R3. For all u ∈ H1
0 (U,R)

we have
|u|4 ≤ 4

√
8|u|1/42 |u|

3/4. (4.23)

Proof. We first prove the case where u ∈ C1
0 (U,R). The key idea is to

start with U ⊂ R1 and then work ones way up to U ⊂ R2 and U ⊂ R3.

If U ⊂ R1 we have

u(x)2 =

∫ x

∂1u
2(x1)dx1 ≤ 2

∫
|u∂1u|dx1 (4.24)

and hence

max
x∈U

u(x)2 ≤ 2

∫
|u∂1u|dx1. (4.25)

Here, if an integration limit is missing, it means that the integral is taken
over the whole support of the function.

If U ⊂ R2 we have∫∫
u4dx1dx2 ≤

∫
max
x

u(x, x2)2dx2

∫
max
y
u(x1, y)2dx1

≤ 4

∫∫
|u∂1u|dx1dx2

∫∫
|u∂2u|dx1dx2

≤ 4
(∫∫

u2dx1dx2

)2/2(∫∫
(∂1u)2dx1dx2

)1/2(∫∫
(∂2u)2dx1dx2

)1/2

≤ 4

∫∫
u2dx1dx2

∫∫
((∂1u)2 + (∂2u)2)dx1dx2 (4.26)

Now let U ⊂ R3, then∫∫∫
u4dx1dx2dx3 ≤ 4

∫
dx3

∫∫
u2dx1dx2

∫∫
((∂1u)2 + (∂2u)2)dx1dx2

≤ 4

∫∫
max
z
u(x1, x2, z)

2dx1dx2

∫∫∫
((∂1u)2 + (∂2u)2)dx1dx2dx3

≤ 8

∫∫∫
|u∂3u|dx1dx2dx3

∫∫∫
((∂1u)2 + (∂2u)2)dx1dx2dx3 (4.27)

and applying Cauchy–Schwarz finishes the proof for u ∈ C1
0 (U,R).

If u ∈ H1
0 (U,R) pick a sequence uk in C1

0 (U,R) which converges to u in
H1

0 (U,R) and hence in L2(U,R). By our inequality, this sequence is Cauchy

in L4(U,R) and converges to a limit v ∈ L4(U,R). Since |u|2 ≤ 4
√
|U ||u|4

(
∫

1 · u2dx ≤
√∫

1 dx
∫
u4dx), uk converges to v in L2(U,R) as well and

hence u = v. Now take the limit in the inequality for uk. 2

As a consequence we obtain

|u|4 ≤
(

8d(U)√
3

)1/4

|u|, U ⊂ R3, (4.28)
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and

Corollary 4.6. The embedding

H1
0 (U,R) ↪→ L4(U,R), U ⊂ R3, (4.29)

is compact.

Proof. Let uk be a bounded sequence in H1
0 (U,R). By Rellich’s theo-

rem there is a subsequence converging in L2(U,R). By the Ladyzhenskaya
inequality this subsequence converges in L4(U,R). 2

Our analysis clearly extends to functions with values in Rn since we have
H1

0 (U,Rn) = ⊕nj=1H
1
0 (U,R).

4.3. Existence and uniqueness of solutions

Now we come to the reformulation of our original problem (4.5). We pick
as underlying Hilbert space H1

0 (U,R3) with scalar product

〈u, v〉 =

∫
U

(∂jui)(∂jvi)dx. (4.30)

Let X be the closure of X in H1
0 (U,R3), that is,

X = {v ∈ C2(U,R3)|∂jvj = 0 and v|∂U = 0} = {v ∈ H1
0 (U,R3)|∂jvj = 0}.

(4.31)
Now we multiply (4.5) by w ∈ X and integrate over U∫

U

(
η∂k∂kvj − (vk∂k)vj +Kj

)
wj dx =

∫
U

(∂jp)wj dx = 0. (4.32)

Using integration by parts this can be rewritten as∫
U

(
η(∂kvj)(∂kwj)− vkvj(∂kwj)−Kjwj

)
dx = 0. (4.33)

Hence if v is a solution of the Navier-Stokes equation, then it is also a
solution of

η〈v, w〉 − a(v, v, w)−
∫
U
Kwdx = 0, for all w ∈ X , (4.34)

where

a(u, v, w) =

∫
U
ukvj(∂kwj) dx. (4.35)

In other words, (4.34) represents a necessary solubility condition for the
Navier-Stokes equations. A solution of (4.34) will also be called a weak
solution of the Navier-Stokes equations. If we can show that a weak solution
is in C2, then we can read our argument backwards and it will be also a
classical solution. However, in general this might not be true and it will
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only solve the Navier-Stokes equations in the sense of distributions. But let
us try to show existence of solutions for (4.34) first.

For later use we note

a(v, v, v) =

∫
U
vkvj(∂kvj) dx =

1

2

∫
U
vk∂k(vjvj) dx

= −1

2

∫
U

(vjvj)∂kvk dx = 0, v ∈ X . (4.36)

We proceed by studying (4.34). Let K ∈ L2(U,R3), then
∫
U Kwdx is a

linear functional on X and hence there is a K̃ ∈ X such that∫
U
Kwdx = 〈K̃, w〉, w ∈ X . (4.37)

Moreover, the same is true for the map a(u, v, .), u, v ∈ X , and hence there
is an element B(u, v) ∈ X such that

a(u, v, w) = 〈B(u, v), w〉, w ∈ X . (4.38)

In addition, the map B : X 2 → X is bilinear. In summary we obtain

〈ηv −B(v, v)− K̃, w〉 = 0, w ∈ X , (4.39)

and hence
ηv −B(v, v) = K̃. (4.40)

So in order to apply the theory from our previous chapter, we need a Banach
space Y such that X ↪→ Y is compact.

Let us pick Y = L4(U,R3). Then, applying the Cauchy-Schwarz in-
equality twice to each summand in a(u, v, w) we see

|a(u, v, w)| ≤
∑
j,k

(∫
U

(ukvj)
2dx
)1/2(∫

U
(∂kwj)

2dx
)1/2

≤ |w|
∑
j,k

(∫
U

(uk)
4dx
)1/4(∫

U
(vj)

4dx
)1/4

= |u|4|v|4|w|.(4.41)

Moreover, by Corollary 4.6 the embedding X ↪→ Y is compact as required.

Motivated by this analysis we formulate the following theorem.

Theorem 4.7. Let X be a Hilbert space, Y a Banach space, and suppose
there is a compact embedding X ↪→ Y . In particular, |u|Y ≤ β|u|. Let
a : X 3 → R be a multilinear form such that

|a(u, v, w)| ≤ α|u|Y |v|Y |w| (4.42)

and a(v, v, v) = 0. Then for any K̃ ∈ X , η > 0 we have a solution v ∈ X to
the problem

η〈v, w〉 − a(v, v, w) = 〈K̃, w〉, w ∈ X . (4.43)

Moreover, if 2αβ|K̃| < η2 this solution is unique.
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Proof. It is no loss to set η = 1. Arguing as before we see that our
equation is equivalent to

v −B(v, v) + K̃ = 0, (4.44)

where our assumption (4.42) implies

|B(u, v)| ≤ α|u|Y |v|Y ≤ αβ2|u||v| (4.45)

Here the second equality follows since the embedding X ↪→ Y is continuous.

Abbreviate F (v) = B(v, v). Observe that F is locally Lipschitz contin-
uous since if |u|, |v| ≤ ρ we have

|F (u)− F (v)| = |B(u− v, u)−B(v, u− v)| ≤ 2αρ |u− v|Y ≤ 2αβ2 ρ|u− v|.
(4.46)

Moreover, let vn be a bounded sequence in X . After passing to a subsequence
we can assume that vn is Cauchy in Y and hence F (vn) is Cauchy in X by
|F (u)− F (v)| ≤ 2αρ|u− v|Y . Thus F : X → X is compact.

Hence all we need to apply the Leray-Schauder principle is an a priori
estimate. Suppose v solves v = tF (v) + tK̃, t ∈ [0, 1], then

〈v, v〉 = t a(v, v, v) + t〈K̃, v〉 = t〈K̃, v〉. (4.47)

Hence |v| ≤ |K̃| is the desired estimate and the Leray-Schauder principle
yields existence of a solution.

Now suppose there are two solutions vi, i = 1, 2. By our estimate they
satisfy |vi| ≤ |K̃| and hence |v1 − v2| = |F (v1)− F (v2)| ≤ 2αβ2 |K̃||v1 − v2|
which is a contradiction if 2αβ2 |K̃| < 1. 2

Hence we have found a solution v to the generalized problem (4.34).

This solution is unique if 2(2d(U)√
3

)3/2|K|2 < η2. Under suitable additional

conditions on the outer forces and the domain, it can be shown that weak
solutions are C2 and thus also classical solutions. However, this is beyond
the scope of this introductory text.





Chapter 5

Monotone operators

5.1. Monotone operators

The Leray–Schauder theory can only be applied to compact perturbations
of the identity. If F is not compact, we need different tools. In this section
we briefly present another class of operators, namely monotone ones, which
allow some progress.

If F : R → R is continuous and we want F (x) = y to have a unique
solution for every y ∈ R, then f should clearly be strictly monotone in-
creasing (or decreasing) and satisfy limx→±∞ F (x) = ±∞. Rewriting these
conditions slightly such that they make sense for vector valued functions the
analogous result holds.

Lemma 5.1. Suppose F : Rn → Rn is continuous and satisfies

lim
|x|→∞

F (x)x

|x|
=∞. (5.1)

Then the equation

F (x) = y (5.2)

has a solution for every y ∈ Rn. If F is strictly monotone

(F (x)− F (y))(x− y) > 0, x 6= y, (5.3)

then this solution is unique.

Proof. Our first assumption implies that G(x) = F (x) − y satisfies
G(x)x = F (x)x − yx > 0 for |x| sufficiently large. Hence the first claim
follows from Theorem 2.13. The second claim is trivial. 2

51
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Now we want to generalize this result to infinite dimensional spaces.
Throughout this chapter, X will be a Hilbert space with scalar product
〈., ..〉. An operator F : X → X is called monotone if

〈F (x)− F (y), x− y〉 ≥ 0, x, y ∈ X, (5.4)

strictly monotone if

〈F (x)− F (y), x− y〉 > 0, x 6= y ∈ X, (5.5)

and finally strongly monotone if there is a constant C > 0 such that

〈F (x)− F (y), x− y〉 ≥ C|x− y|2, x, y ∈ X. (5.6)

Note that the same definitions can be made if X is a Banach space and
F : X → X∗.

Observe that if F is strongly monotone, then it automatically satisfies

lim
|x|→∞

〈F (x), x〉
|x|

=∞. (5.7)

(Just take y = 0 in the definition of strong monotonicity.) Hence the follow-
ing result is not surprising.

Theorem 5.2 (Zarantonello). Suppose F ∈ C(X,X) is (globally) Lipschitz
continuous and strongly monotone. Then, for each y ∈ X the equation

F (x) = y (5.8)

has a unique solution x(y) ∈ X which depends continuously on y.

Proof. Set

G(x) = x− t(F (x)− y), t > 0, (5.9)

then F (x) = y is equivalent to the fixed point equation

G(x) = x. (5.10)

It remains to show that G is a contraction. We compute

|G(x)−G(x̃)|2 = |x− x̃|2 − 2t〈F (x)− F (x̃), x− x̃〉+ t2|F (x)− F (x̃)|2

≤ (1− 2
C

L
(Lt) + (Lt)2)|x− x̃|2, (5.11)

where L is a Lipschitz constant for F (i.e., |F (x)−F (x̃)| ≤ L|x−x̃|). Thus, if
t ∈ (0, 2C

L ), G is a uniform contraction and the rest follows from the uniform
contraction principle. 2

Again observe that our proof is constructive. In fact, the best choice
for t is clearly t = C

L such that the contraction constant θ = 1 − (CL )2 is
minimal. Then the sequence

xn+1 = xn − (1− (
C

L
)2)(F (xn)− y), x0 = x, (5.12)
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converges to the solution.

5.2. The nonlinear Lax–Milgram theorem

As a consequence of the last theorem we obtain a nonlinear version of the
Lax–Milgram theorem. We want to investigate the following problem:

a(x, y) = b(y), for all y ∈ X, (5.13)

where a : X2 → R and b : X → R. For this equation the following result
holds.

Theorem 5.3 (Nonlinear Lax–Milgram theorem). Suppose b ∈ L(X,R) and
a(x, .) ∈ L(X,R), x ∈ X, are linear functionals such that there are positive
constants L and C such that for all x, y, z ∈ X we have

a(x, x− y)− a(y, x− y) ≥ C|x− y|2 (5.14)

and

|a(x, z)− a(y, z)| ≤ L|z||x− y|. (5.15)

Then there is a unique x ∈ X such that (5.13) holds.

Proof. By the Riez theorem there are elements F (x) ∈ X and z ∈ X
such that a(x, y) = b(y) is equivalent to 〈F (x)− z, y〉 = 0, y ∈ X, and hence
to

F (x) = z. (5.16)

By (5.14) the operator F is strongly monotone. Moreover, by (5.15) we infer

|F (x)− F (y)| = sup
x̃∈X,|x̃|=1

|〈F (x)− F (y), x̃〉| ≤ L|x− y| (5.17)

that F is Lipschitz continuous. Now apply Theorem 5.2. 2

The special case where a ∈ L2(X,R) is a bounded bilinear form which
is strongly coercive, that is,

a(x, x) ≥ C|x|2, x ∈ X, (5.18)

is usually known as (linear) Lax–Milgram theorem.

The typical application of this theorem is the existence of a unique weak
solution of the Dirichlet problem for elliptic equations

− ∂iAij(x)∂ju(x) + bj(x)∂ju(x) + c(x)u(x) = f(x), x ∈ U,
u(x) = 0, x ∈ ∂U,(5.19)

where U is a bounded open subset of Rn. By elliptic we mean that all
coefficients A, b, c plus the right hand side f are bounded and a0 > 0, where

a0 = inf
e∈Sn,x∈U

eiAij(x)ej , b0 = sup
x∈U
|b(x)|, c0 = inf

x∈U
c(x). (5.20)
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As in Section 4.3 we pick H1
0 (U,R) with scalar product

〈u, v〉 =

∫
U

(∂ju)(∂jv)dx (5.21)

as underlying Hilbert space. Next we multiply (5.19) by v ∈ H1
0 and inte-

grate over U∫
U

(
− ∂iAij(x)∂ju(x) + bj(x)∂ju(x) + c(x)u(x)

)
v(x) dx =

∫
U
f(x)v(x) dx.

(5.22)
After a partial integration we can write this equation as

a(v, u) = f(v), v ∈ H1
0 , (5.23)

where

a(v, u) =

∫
U

(
∂iv(x)Aij(x)∂ju(x) + bj(x)v(x)∂ju(x) + c(x)v(x)u(x)

)
dx

f(v) =

∫
U
f(x)v(x) dx, (5.24)

We call a solution of (5.23) a weak solution of the elliptic Dirichlet problem
(5.19).

By a simple use of the Cauchy-Schwarz and Poincaré-Friedrichs inequal-
ities we see that the bilinear form a(u, v) is bounded. To be able to ap-
ply the (linear) Lax–Milgram theorem we need to show that it satisfies
a(u, u) ≥ C

∫
|∂ju|2dx.

Using (5.20) we have

a(u, u) ≥
∫
U

(
a0|∂ju|2 − b0|u||∂ju|+ c0|u|2

)
, (5.25)

and we need to control the middle term. If b0 = 0 there is nothing to do
and it suffices to require c0 ≥ 0.

If b0 > 0 we distribute the middle term by means of the elementary
inequality

|u||∂ju| ≤
ε

2
|u|2 +

1

2ε
|∂ju|2 (5.26)

which gives

a(u, u) ≥
∫
U

(
(a0 −

b0
2ε

)|∂ju|2 + (c0 −
εb0
2

)|u|2
)
. (5.27)

Since we need a0− b0
2ε > 0 and c0− εb0

2 ≥ 0, or equivalently 2c0
b0
≥ ε > b0

2a0
, we

see that we can apply the Lax–Milgram theorem if 4a0c0 > b20. In summary,
we have proven

Theorem 5.4. The elliptic Dirichlet problem (5.19) has a unique weak so-
lution u ∈ H1

0 (U,R) if a0 > 0, b0 = 0, c0 ≥ 0 or a0 > 0, 4a0c0 > b20.
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5.3. The main theorem of monotone operators

Now we return to the investigation of F (x) = y and weaken the conditions
of Theorem 5.2. We will assume that X is a separable Hilbert space and
that F : X → X is a continuous monotone operator satisfying

lim
|x|→∞

〈F (x), x〉
|x|

=∞. (5.28)

In fact, if suffices to assume that F is weakly continuous

lim
n→∞

〈F (xn), y〉 = 〈F (x), y〉, for all y ∈ X (5.29)

whenever xn → x.

The idea is as follows: Start with a finite dimensional subspace Xn ⊂ X
and project the equation F (x) = y to Xn resulting in an equation

Fn(xn) = yn, xn, yn ∈ Xn. (5.30)

More precisely, let Pn be the (linear) projection onto Xn and set Fn(xn) =
PnF (xn), yn = Pny (verify that Fn is continuous and monotone!).

Now Lemma 5.1 ensures that there exists a solution un. Now chose the
subspaces Xn such that Xn → X (i.e., Xn ⊂ Xn+1 and

⋃∞
n=1Xn is dense).

Then our hope is that un converges to a solution u.

This approach is quite common when solving equations in infinite di-
mensional spaces and is known as Galerkin approximation. It can often
be used for numerical computations and the right choice of the spaces Xn

will have a significant impact on the quality of the approximation.

So how should we show that xn converges? First of all observe that our
construction of xn shows that xn lies in some ball with radius Rn, which is
chosen such that

〈Fn(x), x〉 > |yn||x|, |x| ≥ Rn, x ∈ Xn. (5.31)

Since 〈Fn(x), x〉 = 〈PnF (x), x〉 = 〈F (x), Pnx〉 = 〈F (x), x〉 for x ∈ Xn we can
drop all n’s to obtain a constant R which works for all n. So the sequence
xn is uniformly bounded

|xn| ≤ R. (5.32)

Now by a well-known result there exists a weakly convergent subsequence.
That is, after dropping some terms, we can assume that there is some x such
that xn ⇀ x, that is,

〈xn, z〉 → 〈x, z〉, for every z ∈ X. (5.33)

And it remains to show that x is indeed a solution. This follows from
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Lemma 5.5. Suppose F : X → X is weakly continuous and monotone, then

〈y − F (z), x− z〉 ≥ 0 for every z ∈ X (5.34)

implies F (x) = y.

Proof. Choose z = x ± tw, then ∓〈y − F (x ± tw), w〉 ≥ 0 and by
continuity ∓〈y−F (x), w〉 ≥ 0. Thus 〈y−F (x), w〉 = 0 for every w implying
y − F (x) = 0. 2

Now we can show

Theorem 5.6 (Browder, Minty). Suppose F : X → X is weakly continuous,
monotone, and satisfies

lim
|x|→∞

〈F (x), x〉
|x|

=∞. (5.35)

Then the equation
F (x) = y (5.36)

has a solution for every y ∈ X. If F is strictly monotone then this solution
is unique.

Proof. Abbreviate yn = F (xn), then we have 〈y−F (z), xn− z〉 = 〈yn−
Fn(z), xn− z〉 ≥ 0 for z ∈ Xn. Taking the limit implies 〈y−F (z), x− z〉 ≥ 0
for every z ∈ X∞ =

⋃∞
n=1Xn. Since X∞ is dense, 〈y − F (z), x− z〉 ≥ 0 for

every z ∈ X by continuity and hence F (x) = y by our lemma. 2

Note that in the infinite dimensional case we need monotonicity even
to show existence. Moreover, this result can be further generalized in two
more ways. First of all, the Hilbert space X can be replaced by a reflexive
Banach space if F : X → X∗. The proof is almost identical. Secondly, it
suffices if

t 7→ 〈F (x+ ty), z〉 (5.37)

is continuous for t ∈ [0, 1] and all x, y, z ∈ X, since this condition together
with monotonicity can be shown to imply weak continuity.
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Glossary of notation

Bρ(x) . . . ball of radius ρ around x
hull(.) . . . convex hull
C(U, Y ) . . . set of continuous functions from U to Y , 1
Cr(U, Y ) . . . set of r times continuously differentiable functions, 2
Cr0(U, Y ) . . . functions in Cr with compact support, 43
C(U, Y ) . . . set of compact functions from U to Y , 34
CP(f) . . . critical points of f , 13
CS(K) . . . nonempty convex subsets of K, 25
CV(f) . . . critical values of f , 13
deg(D, f, y) . . . mapping degree, 13, 22
det . . . determinant
dim . . . dimension of a linear space
div . . . divergence
dist(U, V ) = inf(x,y)∈U×V |x− y| distance of two sets

Dr
y(U, Y ) . . . functions in Cr(U, Y ) which do not attain y on the boundary, 13

Dy(U, Y ) . . . functions in C(U, Y ) which do not attain y on the boundary, 35
dF . . . derivative of F , 1
F(X,Y ) . . . set of compact finite dimensional functions, 34
GL(n) . . . general linear group in n dimensions
H(C) . . . set of holomorphic functions, 11
H1(U,Rn) . . . Sobolev space, 43
H1

0 (U,Rn) . . . Sobolev space, 43
inf . . . infimum
Jf (x) = det df(x) Jacobi determinant of f at x, 13
L(X,Y ) . . . set of bounded linear functions, 1
Lp(U,Rn) . . . Lebesgue space of p integrable functions, 42
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60 Glossary of notation

max . . . maximum
n(γ, z0) . . . winding number
O(.) . . . Landau symbol, f = O(g) iff lim supx→x0 |f(x)/g(x)| <∞
o(.) . . . Landau symbol, f = o(g) iff limx→x0 |f(x)/g(x)| = 0
∂U . . . boundary of the set U
∂xF (x, y) . . . partial derivative with respect to x, 1
RV(f) . . . regular values of f , 13
R(I,X) . . . set of regulated functions, 4
S(I,X) . . . set of simple functions, 4
sign . . . sign of a number
sup . . . supremum
supp . . . support of a functions



Index

Arzelà-Ascoli theorem, 39

Best reply, 27

Brouwer fixed-point theorem, 23

Chain rule, 2

Characteristic function, 4

Compact operator, 34

Contraction principle, 5

Critical values, 13

Derivative, 1

partial, 1

Diffeomorphism, 2

Differentiable, 1

Differential equations, 7

Distribution, 43

Elliptic equation, 53

Embedding, 45

Equilibrium

Nash, 27

Finite dimensional operator, 34

Fixed-point theorem

Altman, 38

Brouwer, 23

contraction principle, 5

Kakutani, 25

Krasnosel’skii, 38

Rothe, 38

Schauder, 37

Functional, linear, 4

Galerkin approximation, 55

Gronwall’s inequality, 40

Holomorphic function, 11

Homotopy, 12

Homotopy invariance, 13

Implicit function theorem, 7

Integral, 4

Integration by parts, 43

Inverse function theorem, 7

Jordan curve theorem, 30

Kakutani’s fixed-point theorem, 25

Ladyzhenskaya inequality, 46

Landau symbols, 1

Lax–Milgram theorem, 53

Leray–Schauder principle, 37

Mean value theorem, 2

monotone, 52

operator, 51

strictly, 52

strongly, 52

Multilinear function, 3

Nash equilibrium, 27

Nash theorem, 27

Navier–Stokes equation, 42

stationary, 42

n-person game, 26

Payoff, 26

Peano theorem, 39

Poincaré inequality, 44

Poincaré-Friedrichs inequality, 43

Prisoners dilemma, 27
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Proper, 35

Reduction property, 28

Regular values, 13
Regulated function, 4

Rellich’s compactness theorem, 45
Rouchés theorem, 12

Sard’s theorem, 17
Simple function, 4

Stokes theorem, 19

Strategy, 26
Symmetric multilinear function, 3

Uniform contraction principle, 6

Weak solution, 47, 54

Winding number, 11
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