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THE GAUSS MAP FOR SURFACES: 

PART 1. THE AFFINE CASE 


BY 


JOEL L. WEINER 


ABSTRACT.Let M be a connected oriented surface and let G; be the Grassmannian 
of oriented 2-planes in Euclidean (2 + c)-space, E2+' .Smooth maps t :  M + Gi  are 
studied to determine whether or not they are Gauss maps. Both local and global 
results are obtained. If r is a Gauss map of an immersion X:  M - E 2 + ' ,we study 
the extent to which t uniquely determines X under certain circumstances. 

Let X: M + En+'be an immersion of an oriented n-dimensional manifold into 
Euclidean (n + c)-space. Associated to X is the tangent plane map t: M G,;,-+ 

where G,' is the Grassmannian of oriented n-planes through the origin of El1+".The 
map t assigns to p E X the oriented n-plane dX(T,M), where TpM is the tangent 
space to M at p. This generalizes the classical Gauss map for surfaces in E3,SO we 
call t the Gauss map of X. On the other hand, suppose t :  M -, G,:' is a smooth map. 
Is t the Gauss map of an immersion, or even locally a Gauss map, and to what 
extent does t determine X? In [9] we consider this question for n = 2 and c = 2 
under the assumption that t is an immersion. Y. A. Aminov [2] studied the same 
existence question under essentially the same assumptions as imposed in [9]. More 
recently, Hoffman and Osserman 14, 51 studied a closely related question for n = 2 
and c arbitrary under the additional assumption that M is a Riemann surface, i.e., 
M possesses a conformal structure. In this paper, we again consider the given 
question, but only under the assumption that M is a surface, i.e., n = 2. In Part 2 of 
this paper, we take a second look at the results of Hoffman and Osserman [4, 51 
from the point of view established in this paper. 

Some of the main results in this paper deal with maps t whlch are not immersions. 
Theorem 1 states a necessary and sufficient condition for a rank 1map t: M -, G i  
-i.e., rank(t , = 1for all p E M-defined on a simply connected plane domain 
M to be a Gauss map. A corollary to Theorem 1 is that any rank 1 map t :  
M -+ Gi = S2(1) defined on a simply connected plane domain is a Gauss map. In 
Theorem 2 we establish a sufficient condition on t in order for t to be a Gauss map 
on a neighborhood of a point p given that rank(t, = 1. 

We also show that the theory developed in [9] for immersions t: M G; holds-+ 

exactly in the same form for immersions t: M -+ G;, where c 2 2, if what we call 
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the vector bundle of admissible maps, a,  has rank equal to 2. The assumption that t 
is an immersion is necessary in order for t to be a Gauss map once we assume that a 
has rank equal to 2. 

For any c, G; is in a natural way a submanifold of SC(l),  the unit sphere of 
dimension C = $(c + 2)(c + 1) - 1 and radius 1. We let q denote the second 
fundamental form of G;' in SC(l).  Theorem 3 deals with t: M + G;' for which the 
bundle a has rank equal to 1(and for which necessarily c >, 3). If t ,(TM) contains 
no asymptotic vectors of q, then the bundle a induces a unique conformal structure 
on M with the property that if X: M -, E 2 + '  is an immersion with Gauss map t ,  
then X induces the same conformal structure on M. This implies the following: If 
X :  M + E2+ '  (c  2 3) is an inflection point free immersion, then the Gauss map of 
X already determines the conformal structure to be induced on M by X. Finally 
Theorem 4 states that an immersion X: M -, E2+ '  ( C  > 3) is determined up to 
translation and homothety by its Gauss map if the set of inflection points of X on 
M is nowhere dense. Similar results of this sort involve as well either the induced 
metric [I], the induced conformal structure [4], or convexity assumptions 181. 

The main question and the theorems stated with the exception of Theorem 3 
belong to the theory of affine differential geometry since they are independent of the 
chosen Euclidean structure on ( n  + c)-space. However, for primarily computational 
reasons it is convenient to use the available Euclidean structure. But note, in fact, 
that the objects of principal interest in this paper, the kernels of linear transforma- 
tions, the signs of determinants of linear transformations or quadratic forms, the 
signatures of quadratic forms, etc., are independent of the chosen Euclidean struc- 
ture on E n + '  or the induced inner production REn+',  the exterior algebra of En+' .  

If E is a vector bundle over a manifold N and p E N, we let 6, denote the fibre 
over p. In the case of the tangent bundle of N, TN, we write T,N for (TN),. If S is 
a set and f: E + S is a map, we denote the restriction of f to 6, by f,. Also Ak(() 
denotes the bundle of k-forms on N with values in <. 

We use ( , ) to denote the inner product on E2+ '  and the inner product on the 
exterior algebra of E2+ '  induced from the one on E2+'. Throughout this paper M 
denotes a connected oriented C" surface. Also all maps are C" unless noted 
otherwise. 

1. Preliminary remarks. Let V be a linear space. We use G,(V) to denote the 
Grassmannian of oriented 2-planes in V. Our primary interest is with V = E2+', 
c > 0, and we abbreviate G,(E,+") by G;'. The Grassmannian G;' is viewed as the 
set of unit decomposable 2-vectors in A 2 ~ 2 + ' .On the other hand, R 2 ~ 2 + 'is 
identified with EC+',  where C = $(c + 2)(c + 1) - 1; thus G; c SC(l)c EC+', 
where SC(l)  is the unit sphere centered at the origin of EC+'. Let go be the metric 
induced on G; from EC+'. This is the standard metric on G; (see e.g. [6] and $2 of 
this paper for other descriptions of t h s  metric). 

Let a E G;'; by a "a-adapted" frame of E2+ '  we mean a positively oriented 
orthonormal frame el,  e,, . . . , e2+,  of E2+ '  such that el, e, is a positively oriented 
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frame of a .  Let U be an open subset of G;; a frame field el, e,, . . . ,e,+,, of E2+ '  
defined on U is said to be "adapted" if e l (a ) ,  e,(a), . . . ,e,+,.(a) is m-adapted for 
each a E U. We use the notation m ' to denote the oriented c-plane in E2+'  with 
positively oriented frame e,, e,, . . . ,e2+,  if el ,  e,, e,, . . .,e2+,  is a a-adapted frame. 
Thus for each a E G;' we have the orthogonal splitting E,+' = m @ m with 
corresponding orthogonal projections ( . . . )T  : E2+ '  -+ a and ( ...)I: E2+ '  -+ a '. 

Let M be a connected oriented surface and let t: M + G;' be a smooth map. Let 
g, = t*g,; g, is a quadratic form on M and it is positive definite where t, has 
maximal rank. When t is an immersion, g, is, of course, a riemannian metric. We 
define a 2-form p, on M as follows: If u,, v2 is a positively oriented frame of TpM, 
then 

On the open subset of M where t, has maximal rank, p0 is an area element, i.e., a 
positive 2-form. 

In this paper, we let p be a fixed area element on M. In most circumstances the 
choice of the element of area p is immaterial to the discussion, but when t is an 
immersion we may as well and, in fact, will let p = p,. 

A frame field el, e,, . . . ,e,+,, of E2+ '  defined on a subset of M is said to be 
"t-adapted" if el(  p), e,( p) ,  . . . ,e,+,( p )  is t( p)-adapted for each p in the subset. 

Assume X: M + E2+ '  is an immersion with t: M + G;' its Gauss map, i.e., for 
all p E M, the differential of X at p ,  dpX, maps the oriented 2-dimensional vector 
space TpM onto the oriented 2-plane t (p) ,  preserving the orientation. If we view dX 
as a differential l-form with values in the trivial bundle E F '  over M with fibre 
E ~ + ' ,  i.e., dX is a section in A1(EF'), we have as usual d(dX) = 0. Therefore, a 
necessary and (by Poincarit's Lemma) sufficient condition for any section @ in 
A1(E;') defined over any simply connected open subset U of M to be the 
differential dX of an immersion X: U -+ E2+ '  is given by 

[cl Q~(T,M) c t ( p ) ,  > 0, 0 for all p E U ,d e t ( ~ ~ )  dp@= 

where det(Qp) is defined as follows: Let vp be the element of area on t ( p )  induced 
from E2+"; then det(Qp) satisfies 

We shall study the conditions of [C] now more closely; without causing confusion 
we shall consider the map t: M + GI in the following as an oriented riemannian 
%-plane bundle over M, a vector subbundle of E F C  with t ( p )  c E2+"  as its fibre 
over p E M, the metric being induced from E2+'. Correspondingly we obtain the 
oriented normal bundle t ' of t in E F C ,  where t '( p )  = ( t (p ) )  for all p E M. 

In view of the first condition of [C] we introduce the following rank 4 vector 
subbundle /? of the bundle A'(E? '), the fibre of whch is given by 

6 = ( @: TpM -+ E,+' linear m a p l @ ( ~ , ~ )  t ( p ) )c 
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for all p E M. Any section @ in 0 can be viewed therefore as a differential 1-form 
with values in E2+'; hence, the vanishing of the differential 2-form d @  with values 
in E2+C is . (because of E F '  = t $ t ') equivalent to 

IC'I 

and 

But @ + ( d o )  ' is a tensorial operation (see 19, $11). Therefore we have 

LEMMA 1. There exists a vector bundle homomorphism C: 0 + A2(t') char-
acterized by C(@) = (dQ,)' for every section @ in P, and condition [C'] reduces to 
the purely algebraic condition 

DEFINITION1. For each p E M, let a, = ker(C,: P, -, A2(t'(p))). Let P = 

(B, a , M), where B is the total space of ,L3 and a:  B -, M is the projection of B 
onto M. If A = Up,, a,, then a = (A, (plA), M )  is called the space of admissible 
maps. Let a :  M + Z, the integers, be the function defined by 

If a is a constant on M, then a = ker(C) is a vector subbundle of P, the bundle of 
admissible maps. (This terminology is motivated by Lemma 1.) 

The second condition in [C], that det(0,) > 0 for all p E U, motivates the 
introduction of a function Q: a + R defined as follows: For every p E M the 
determinant function det: ,LIP + R (as defined in [C]) is a nondegenerate quadratic 
form of signature 0-i.e., it has two positive and two negative eigenvalues-on the 
4-dimensional vector space 0,. Therefore the restriction of det to the vector subspace 

a, of P,, 
Q, = detla,, 

is a quadratic form on a, which, according to the position of a, in P,, can be either 
definite, indefinite, or degenerate. We will use Q to represent its polarization 
whenever necessary. Finally let a + =  { @  E a l e (@)> 0). Note that a section @ in 
A ' ( E ~ , + ' )satisfies the first two conditions in [C] as well as [C'] if and only if Q, takes 
values in a + .  Hence condition [C] on a simply connected open set U c M reduces to 

[Cl @ , t a ;  and (dP@) '=0  f o r a l l p ~  U, 

where the second condition, [C"], can be viewed by considering independent 
tangential components of (dp@)T as a system of two homogeneous linear first order 
partial differential equations. Whether the system is undetermined, overdetermined, 
or like (2) of 191, depends on the value of the function a on M. 

When there exists a section Q, in a (U  satisfying [C] in some neighborhood U of 
each point p E M we will say that t is locally a Gauss map. When an immersion X: 
M + E2+"exits with t as its Gauss map we say t is a Gauss map. 
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2. The Weingarten map. It is clear from the preceding section that the dimension 
of a,, a ( p ) ,  as well as a knowledge of the behavior of Q,-i.e., whether Q, is 
degenerate, definite, or indefinite-is vitally important. We turn our attention to 
these items in the present section. 

If a E G;', then it is well known that T,G; = G L ( a ,  a ' ) .  The isomorphism 1 :  

T,G;' + G L ( a ,  a  ') can be defined as follows: Let 1 E T,G;' and e E a ;  then 

where e is an E~+"-valued function defined near a that extends e ,  i.e., Z ( a ) = e ,  
with e ( A )E X for all X E G;' near a ,  and (lZ)' = (dZ(1))' . In the future, we will 
suppress the isomorphism 1 ,  sometimes suppress the bar over e ,  and simply write 
l ( e )= ( l e )'. 

When 1 E T,G;' is viewed as an element of G L ( a ,  a ' ) ,  then g o ( / ,I )  = llllj2, the 
norm squared of 1, i.e., if e l ,  e,, . . . , e 2 + ,  is a \a-adapted frame of E2+ '  and we 
define reals 1; for i E { 1 , 2 ) ,  a  E {3 ,4 , .. . , 2  + c )  by 1; = ( l ( e , ) ,  e,), then g,(l, 1 )  
= C,,,(l;)2 (cf. [6,p. 3381 keeping in inind the preceding paragraph). 

If t :  M -,G;' is a smooth map and u E T p M ,  then t , (u )  E T,(,,G;' = 

G L ( t ( p ) ,  t  i ( p ) ) .  For @ E P, and u E TpM,  @ ( u )  E t ( p ) .It turns out (see [9, $21) 
that 

where u@( u )  denotes the directional derivative of @ ( u ) - actually any extension of 
@ ( u )to a section in t defined near p-with respect to u. If @ is the differential of 
an immersion X, then the second fundamental form h of X is defined by 

h ( u ,  u )  = ( u @ ( u ) ) '  for all ( u ,  u )  E TM fB T M  

It  follows from (1)that 

h ( u ,  u )  = t , ( u ) ( @ ( u ) )  for all ( u ,  u )  E T M  @ T M .  

,:hthe quadratic form P,,is an arbitrary element of @Therefore if 
t '( p )  defined by 

T,M X T,M + 

(2) h,(u,  u )  = t , ( u ) ( @ ( u ) )  for all ( u ,  u )  E TpM x T,M, 

is called the second fundamental form of @. One may check (see [9, $21) that a is 
precisely the set of all @ for which the second fundamental form h ,  is symmetric. 

DEFINITION2. For all u E T, M ,  t  ,(u) E GL( t (  p ) ,  t  '( p ) ) .By the span of t  , 
denoted S,, we mean the span of { t  ,(u)(e)(u E T,M, e E t ( p ) ) .  Clearly S, C 

[ ' ( P I .  
We give another interpretation of S,. Note that we also view t ,  T,M + T,(,,G; 

= G L ( t (  p ) ,  t  '( p ) )as the linear map 

where t , l p ( u8 e )  = t , l , (u)(e)  for all u E T,M and all e E t ( p ) .  Then S, = 

ran(t , the range of t, From this point of view the transpose of t, is a linear 
map from t '( p ) *  into [T,M @ t ( p ) ] * .Since both t( p )  and t '( p ) are endowed 
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with an inner product we may identify t( p )*  and t '( p)*  with t( p )  and t '( p) ,  
respectively. We denote the transpose of t by A, and note that with the above 
identifications 

A,: t L ( p )  -+ T,*M 8 t ( p )  = ,Bp. 

Thus we obtain a vector bundle homomorphism A: t '+ ,B. Also we denote the 
value of A at z E t ' by A'. If E ,LIP, then (2) implies 

( h ~ ( u , u ) ,z )  = (AZ(u) ,  a ( " ) )  for all u ,u  E T p M .  

This fact motivates 
DEFINITION3. For any t: M + G;' we call A: t '+ ,B the Weingarten map of t. 

Finally note that AIS, is an isomorphism and ran(A,) = A(S,) for all p E M; this 
fact follows immediately from the fact that h , lp  and A, are transposes of one 
another. 

Define a nondegenerate skew-symmetric tensor field P :  ,L3 $ ,8 + R as follows: 
For 0 ,  + E ,Bp, let 

where u,, u2 E TpM and p(u, A 21,) = 1. 

LEMMA2. a, = { a  E ,8,1P(AZ,@)= Oforallz E S,). 

PROOF. The definitions for P given here and in [9] are insignificantly different. 
Noting this, one may check that the proof of the same lemma in [9]given under the 
assumptions that c = 2 and t is an immersion holds in this more general setting. 

PROOF. Since P is nondegenerate, dim(a,) = 4 - dim(A(S,)) = 4 - dim(S,) 
since A is an isomorphism on S,. Also c >, dim(S,) since S, c t '( p ) .  

COROLLARY.If dim(S,) = 4 for somep E M, then t is not locally a Gauss map. 

In  the following, if B is a quadratic form, the number of positive eigenvalues of B 
minus the number of negative eigenvalues of B will be the signature of B, denoted 

a (B) .  
Let a; denote the det,-orthogonal complement of a, in 0,; then let Q,l = 

detla;. By Lemma 5 of [9] we know that o(Q,) = -o(Q;) since ~ ( d e t , )  = 0 
where, of course, det, is viewed as a quadratic form on 0,. 

Both P, and det, are nondegenerate and so determine in a standard fashion 
isomorphisms b , ,  id,,: P + P*, respectively. Define an isomorphism I :  P -+ P by 
setting I = 120 1,. Also set Q; = det,lran(A,). Then (again see [9] for details) the 
following hold: 

Clearly a(Q,) = -o(Q;). 
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Now let F = A*(det); F is a quadratic form on t . Clearly a(Q,) = -a(F,). 
Since A,: S, + ran(A,) is an isomorphism we need only consider FJS, to determine 
the signature of F. This proves 

LEMMA3. u(Q,) = -a(F(S,) for allp t M. 

We now define a function k: M -+ R by 

k ( ~ )= ~ r (F~s,)for all p t M. 

The trace, Tr(F(S,), is computed with respect to the inner product induced on S, 
from E2+". We set k ( p )  = O at any point p where S, = {0), i.e., t = 0. The 
function k is the curvature of the oriented riemannian vector bundle t with respect 
to p. It is easy to check that k ( p )  = O if rank(t,lp) < 2. If rank(t,lp) = 2 and 
p p  = pol,, then (k(p) l  < 1; this follows easily from the remarks preceding Lemma 7 

\ 
of [9]. We call k the pre-Gaussian curvature of t (with respect to p). If X is an 
immersion of M with Gauss map t, then the Gaussian curvature of X, K, is given by 
K = p(dX)k, where p(dX) = l /Q(dX) may be interpreted as the Jacobian of the 
Gauss map, i.e., the ratio of the element of area p to the element of area induced on 
M by X. 

What is important about k is that o(F(S,) and k ( p )  have the same sign under 
just the right set of circumstances. 

We now turn to a case-by-case study of t; each case is determined by a ( p )  = 

dim(a,). By the corollary to Proposition 1 we need not consider t for which there 
are points p at which a ( p )  = 4. Also the case a = O is not interesting in this setting. 

3. a = 3. In this section we study the consequences of assuming a ( p )  = 3, for 
some p E M, or assuming a = 3 on M. 

When a ( p )  = 3 for p t M, Q, has a positive eigenvalue. This is the case since 
det,: p, + R has two positive eigenvalues and a, has codimension 1 in ,LIP. In 
particular a; Z 0. With a little more work, we could show Q, has eigenvalues of 
signs ( + , + , -), ( + , 0, -), or ( + , -, -) according as k ( p )  is negative, zero, or 
positive. 

Now assume a = 3 on M. For any p E M, it must be the case that rank(t, = 1 
or 2. Of course, if rank(t , ,)  = 2, then rank(t ,) = 2 in a neighborhood of p .  
Therefore, let us first suppose t: M -+ G; is an immersion with a = 3. 

LEMMA4. Let t: M + G;' be an immersion with a = 3, i.e., S ,  is 1-dimensional for 
all p E M. Then there is a subspace E~ c E2+ '  such that t ( p )  c E 3  for all p E M. 
Hence t may be viewed as an immersion into G2(E3) = s2(1),  which is a submanifold 
of G;'. 

PROOF.The proof is a straightforward exercise in the use of the Cartan structural 
equations. 

If a = 3 and k > O on M, then trivially t is a Gauss map of an immersion X: 
M -+ E 3  C E ~ " .  In fact, t is the Gauss map of the immersion X = e, (where el, 
e,, e3 is a t-adapted frame of E3)  since dX = -Ae3 and det(dX) = det(-Aei) = k 
> 0.In this case t is a Gauss map for any M. If k < O on M, then necessarily M 
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must not be closed in order for t to be a Gauss map (since every closed surface in E 3  
has a point of positive Gaussian curvature). If M is simply connected and not closed 
when k < 0 on M, then t is a Gauss map. First observe that 

if k < 0; this follows immediately from the fact that det(t,) = det(Ae3), which is 
easily verified. Then one may give M a conformal structure (with the given 
orientation on M )  for which t ,: TM + TG2(E3) is antiholomorphic. Now use Case 
1 of Theoren 2.6 of [4] or the results in Part 2 of this paper to prove t is a Gauss 
map. 

Now suppose t , has rank 1for all p E M; we call such a t a rank 1map. As we 
will see in Proposition 2 of 55 ,  it is necessary that a = 3 in order for t to be locally a 
Gauss map. Since each I E T,G; for .rr E Gi Ipay be viewed as a linear transforma- 
tion we may speak of 1's rank. Clearly, if t , l p  has rank 1, then a ( p )  = 3, i.e., 
dim(S,) = 1,if and only if t ,(u) has rank 1for all u E ker(t 

THEOREM1. Let M be a simply connected plane domain and let t: M -, Gi be a 
rank 1map. Then t is a Gauss map if and only if rank(t ,(u)) g 1for all u E TM. 

PROOF. We have just observed that necessarily rank(t ,(u)) < 1for all u E TM. 
Now suppose t is a rank 1map and rank(t ,(u)) < 1for all u E TM. By [lo]there 

exists an orientation preserving local diffeomorphism q :  M -, q ( M )  c R2 which 
maps the kernel of t, into vertical vectors in R2. Let q = (x, y )  and note that 
locally we may use (x, y )  as positively oriented coordinates on M so that it makes 
sense to introduce a/ax, d/dy and take partial derivatives with respect to x and y. 
Note that t ,(d/dy) = 0, t,(d/ax) # 0, and hence rank(t ,(a/dx)) = 1. Since M is 
simply connected we may find a global t-adapted framing el,  e,, . . . , e,,,, with 
e, E ker(t ,(a/ax)) and e, spanning ran(t ,(d/ax)). Define l-forms op on M by 
wp = (de,, e,) for i E {1,2), a E (3 , .  . . , 2  + c) .  By equation (I), wp(u) = 

(t,(u)(e,), e,) for all vector fields u on M. Set m = o:(d/ax). Since o:(d/ay) = 0, 
it follows that w: = mdx. Also, oy = 0 for cu > 3, and o; = 0 for all a. Using the 
Cartan structural equations 

it follows that there exists a real-valued function f on M such that o: = fdx and 
af/ay = 0. Note that e, @ dx, e l  @ dy, e, @ dx, and e, @ dy are globally defined 
linearly independent sections in P. Also Ae3 = -e, @ o: = -me, @ dx. Hence, by 
Lemma 2, a has a global framing given by e, @ dx, e2 @ dx and e, @ dy. According 
to condition [C]we look for a global section 

in a ,  where +:, &, and +; are unknown real-valued functions on M, satisfying 
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and 

Q(@)= +',+: > 0. 

If we require, in addition, that (p', = (p:, we need only find functions (pt and (pi on 
M satisfying 

a(p',/ay = -f(p', and a(p:/ay = a(p',au, 

with (p: never 0. Such a solution is 

(pi= (p: = e-f'y and (p; = + e-f'J' - 1)f P 2 .( a f / a ~ ) ( f . ~ e - f ' ~  

Hence a globally defined immersion X: M + E2+'exists with dX = and thus t is 
a Gauss map. 

COROLLARY.Let M be a simply connected plane domain and let t: M + Gi be a 
rank 1map. Then t is a Gauss map. 

PROOF.All nonzero vectors 1 E TGi have rank equal to 1. 
REMARK.When c > 1, it turns out, as you will see in later sections, that a vector 

1E T,Gf is of rank 1 if and only if it is an asymptotic vector (of the second 
fundamental form) of G,' as a submanifold of SC(l). 

If a = 3 and the sign of k is not constant, then it is not immediately clear that t is 
a Gauss map in a neighborhood of any point p for which k (p)  = 0. Bleecker and 
Wilson [3]state without proof that this is so if c = 1(for when c = 1, rank(t ,,,) = 1 
if and only if a ( p )  = 3 and k (p)  = 0). 

THEOREM2. Let t: M -, G,' be a smooth map with a = 3. If rank(t, ,,) = 1, then 
there is a neighborhood U ofp such that tlU is a Gauss map. 

PROOF.The bundle a is 3-dimensional and we seek three linearly independent 
sections in a defined near p. Choose el,.  . . , e,+, to be a t-adapted frame defined 
near p such that e3(p) spans S,. Define 1-forms w4 as in the proof of the preceding 
theorem. First 

Aej = - (e l  €3 w i  + e, €3 w:), 

and since t has rank 1at p, w i  A w: = 0 but w i  and w: are not both zero at p. By 
rotating el and e,, we may suppose w: # 0 and w: = 0 at p. Let \kl, \k2 be a 
framing of T *M near p such that \kl = at p. Then define functions m1 and m, 
by w: = ml\kl + m2\k2 and note that ml(p) = 0 and m,(p) = 0. 

Now by Lemma 2, Q, = el €3 (pl + e, O (p2, for 1-forms (pl, (p2, is a section in a 
near p if and only if (pl A w i  + (p2 A w: = 0. Clearly a, = -Ae3 = el €3 w i  + e, €3 

w:, a, = -mlel €3 \k2 + e2 €3 \k2, and a, = el €3 + e, €3 w i  are linearly inde- 
pendent sections in a near p. Any section Q, in a near p can be written Q, = C;,, ukak 
for suitable real-valued functions uk defined near p, k E {1,2,3). If we seek Q, 

which is the differential of an immersion into E2+' with Gauss map t for which 
u3 = 0, condition [C] reduces to solving 
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with no derivatives of u' on the right side of these equations, subject to 

(4) (m2)2(u1)2+ (1 + (m,)') u1u2 > 0, 

where the subscripts 1 and 2 in (u'),, (u ') ,  are defined by df = fl\kl + f2\k2. At p ,  
(3) becomes 

(u1)2= . . . 
(u2)1 = . . . 

which shows that (3) is hyperbolic at and hence near p .  Also at p (4) becomes 
1u1u2> 0. Thus we need a solution ul, u2 of a hyperbolic system with u1u2 > 0 at 
p .  This can be easily accomplished. 

COROLLARY.Let t: M + Gi be a smooth map with t ,  never 0. Then t is locally a 
Gauss map. . 

PROOF. Necessarily a = 3 on M. 
To  what extent the map t of the last corollary is a Gauss map, even supposing M 

is simply connected, is unknown to me. 

4. The second fundamental form of G;' in ~ ' (1 ) .  Let ij denote the second 
fundamental form of G; in SC(l);  4, is a quadratic form on T,G;' with values in 
A2n I ,  the normal space to G;' at n in SC(l),  for all n E G;'. For c = 1, ij = 0 since 
G: = S2(1). For c > 1, ij has an interesting interpretation when we view T,G;' = 

GL(n,  n I ) .  If 1 E T,G;', then 1 A 1: A2n + A2n' is the induced transformation on 
2-vectors. According to our convention, a is the positive unit 2-vector in A2n; hence 
I A l ( n )  E h2n  '. 

LEMMA5. For all 1 E T,G; 

+ i j ( l> l )= 1 A l ( n ) .  

PROOF. Let A be a unit length decomposable 2-vector in A2n . It is enough to 
show that 

(5) (+q(1,1), A )  = (1 A / ( a ) ,  A ) .  

If we let r \  a '-+ A denote orthogonal projection onto A, then (5) is equivalent to 


(iij(1, l ) ,  A )  = det(r"1). 

Let e l ,  e,, . . . ,e2+<,be an adapted frame field of E2+ '  defined near n such that 
A = span{e,(a), e4(n)) .  Then, at n, using / (e l )  = (de,(l))' we obtain 

det(rA 01)  = det[(l(e,) ,  ea)] ,=1.2 = det[(de,(l) ,  e,)] ,=I . ,  
a = 3 , 4  a=3 .4  

~ ~ ~ 0 ; 2 ) ( i ,= det[wp(l)] = (40; - 1).  
a=3 ,4  

The 1-forms wp are defined by op = (de,, e,) for i E {1,2),  a E (3, .  . . , 2  + c) .  On 
the other hand, one may check that at a 

( 4 ,  A) = - ( d ( e ,  A e,),  d ( e3  A e4))  = 2(0:0,4 - 0:~;) .  

Hence (g(1, I), A) = 2 det(r" 1). 
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If t: M + G;' is a smooth map, we let q = t*q. Note that q, is a quadratic form 
on TpM with values in A2sP since t ,(v) has values just in S, for all v E T,M. So if 
a ( p )  = 3, i.e., dim(S,) = 1, then q, = 0. When a ( p )  = 2, give S, an orientation if 
it does not have one (i.e., if S, # a'). Let 3, denote this oriented S,, so by 
convention 3, E A2a'; then q, takes values that are multiples of sp.When this is 
the case it is natural to redefine q, to be real-valued, i.e., we set 

+q,(v, v) = det(t ,(u):  t ( p )  -+ 3,) 
for all v E T,M. This determines q, up to sign, except when c = 2; when c = 2, 
$ = 77' .  

Let KG denote the sectional curvature of Gi. When t is an immersion we define 
Kt:  M + R by K, (p)  = K,(t,(T,M)). Also, when t is an immersion, we may view 
q as the restriction of ij to M; hence we may use q together with the Gauss 
curvature equation to compute Kt. In pa;ticular when a ( p )  = 2 so that 
qt(,,lt ,(Tp M )  takes values only in the Spdirection, we have (remembering that q is 
the second fundamental form of G; in SC(l)) 

K , ( P )  = 1 + Det(q,), 
where Det(q,) stands for the deterlninant of the (real-valued) quadratic form q, 
with respect to go = t*g, at p .  Note that Det(q,) is well defined even though q,, in 
general, is defined up to sign. This yields 

LEMMA6. I f a ( p )  = 2 and t is regular at p (i.e., rank(t,lp) = 2), then Det(q,) = 

Kt( P I  - 1. 

5. a = 2. First we turn our attention to the algebraic consequences of assuming 
a ( p )  = 2 for p E M. Then we study existence and uniqueness questions for an 
immersion X with t as its Gauss map assuming a = 2 on M. 

When a ( p )  = 2, there is no restriction on the possible signs of the eigenvalues of 
Q,. We need another invariant beside a(Q,) to determine its behavior. So choose 
and fix an inner product on P. By Det(Q,) we mean the determinant of Q, 
computed using a frame in a, that is orthonormal with respect to the imposed inner 
product on P,. Since S, lies in a Euclidean space, it carries an inner product induced 
from that Euclidean space. By Det(FIS,) we mean the determinant of FIS, with 
respect to that inner product. The next lemma is proved in [9, $31. One may check 
that the proof does not use the facts that c = 2 or t is an immersion as is assumed 
throughout [9]. 

LEMMA7. If a (  p )  = 2, then 


sign ~ e t ( ~ , )  = sign ~ e t (  FIS,). 


Thus Lemmas 3 and 7 tell us how the behavior of FISpcompletely determines the 
behavior of Q,. For example, suppose a ( p )  = 2 and rank(t,,,) = 1. Then there 
exists a nonzero vector v E ker(t,lp). Clearly v E ker(AZ) for all z E t ' (p ) .  Thus 
det(AZ)= 0 for all z E Sp, i.e., FIS, = 0. Then Lemmas 3 and 7 imply Q, = 0. This 
proves 

LEMMA8. If a (  p )  = 2 and rank(t ,,,) = 1, then Q, = 0. 
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When rank(t = 1, it follows easily from Proposition 1 that a ( p )  = 2 or 3 
since necessarily dim(S,) = 1or 2. This observation, along with the previous lemma, 
proves 

PROPOSITION = 3 in order for t to be 2. If rank(t,l,) 1, then necessarily a ( p )  = 

locally a Gauss map. 

Now we turn out attention to the relationship between the behaviors of Q, and q, 
when a ( p )  = 2 and t is regular at p ,  i.e., rank(t,l,) = 2. 

If B is a quadratic form on a vector space V we call a l-dimensional subspace of 
V an isotropic direction if it is spanned by an isotropic vector of B. Let YB be the 
set of isotropic directions of B. In our situation dim(V) = 2 so that YB consists of 
0, 1, 2, or every l-dimensional subspace of V. Let # 9 B  denote the number of 
elements in 3 B ;  thus # 9 B  = 0,1, 2, or w .  

LEMMA9. If a ( p )  = 2 and t is regular at p ,  then #9Q, = #.Pq,. This is 
equivalent to saying 

sign D e t ( ~ , )  = sign Det( q,) 

and, moreover, Q, = 0 if and only if q, = 0. 

PROOF. Clearly #9Q, = #9(FISp) by Lemmas 3 and 7. We will show 
#Y(FIS,) = #Yq, to prove the lemma. Let L E Y(FIS,) and choose 0 # z E L. 
Then det(Az) = F(z )  = 0 by A' # 0 since z E S, - (0).  The kernel of AZ is 
l-dimensional and independent of the choice of z E L - (0). Let 0 # v E ker(AZ); 
then ran(t ,(u)) c S, but is orthogonal to z. Thus det(t ,(u): t( p )  -+ S,) = 0. Hence 
q(u, u) = 2 det(t,(v)) = 0. Therefore ker(Az) E $9,. Thus we define a function f: 
9(F ISp)  + $9, as follows: If L E 3(FlSp) ,  then 

We now show f is a bijection. Suppose ker(Az) = ker(Aw), where Sp= span{z, w}. 
If 0 Z u E ker(AZ)= ker(Aw), then ran(t,(u)) is orthogonal to span{z, w) = Sp. 
Thus t ,(v) = 0, contradicting the fact that rank(t , = 2. Hence f is an injection. 
Now suppose that span{u} E 99,. Then there exists 0 # z E S, such that 
ran(t ,(u)) 1z; thus u E ker(AZ). Thus f is surjective. 

An immediate consequence of Lemmas 6 and 9 is the next lemma. Thls is also 
proved in [9]for c = 2 by different means. 

LEMMA10. If a ( p )  = 2 and t is regular a tp ,  then 

Suppose again a ( p )  = 2. Since sign k(  p )  = sign Tr(F(,S,) = signa(FIS,) when 
Det(FIS,) 1, 0, we conclude from Lemma 3 that signa(Q,) = - s ignk(p)  when 
Det(Q,) >, 0. We summarize the results we have obtained. 

PROPOSITION3. Suppose a (  p )  = 2 and r is regular at p. Then 
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and if Det(Q,) > 0, then 

COROLLARY.If a ( p )  = 2 and t is regular at p, then a,+ # 0 if and only if (1) 
K, (p)  < 1, or (2) K,(p)  > 1andk(p )  < 0. 

REMARK.When a ( p )  = 2, let E4  = span(t(p) u S,); then G2(E4) is a totally 
geodesic submanifold of Gi passing through t(p) .  It is straightforward to show that 
t *(Tp M )  c T,(,,G2(E4). Hence, since the sectional curvatures of G; lie between 0 
and 2 inclusive, it is clear that 0 ,< K,(p)  g 2. Also, since t is an immersion so that 
p = p,, we know that Ik(p)l 6 1. However, arguing as in [9] we can show that it is 
not the case that simultaneously K,(p)  = 1 and k ( p )  = h1 since this implies 
a ( p )  = 3. Otherwise there are no other restrictions on the possible values of 

( K , ( P ) , ~ ( P ) )  when a ( p )  = 2.  
If K , (p )  > 1and k ( p )  > 0, then changing the orientation of M changes the sign 

of k(  p )  resulting in a,+ # 0. However, if Kt(  p )  = 1and k ( p )  = 0, then a,+ = 0 
under either orientation; in fact, at such p, Proposition 3 implies Q, = 0. These 
points at which K, = 1and k = 0 are the essence of the example of Arninov [2, pp. 
166-1681 of a surface in G; which is not locally the image of a Gauss map. 

Let us suppose a = 2 on M and t is an immersion (for if t fails to be an 
immersion then Proposition 3 implies that t is not locally a Gauss map). Also 
suppose a: # 0 for all p E M. Exactly as in [9] one may show that the type of the 
linear system of two partial differential equations one gets by considering two 
independent components of = 0, i.e., condition [C"], depends on sign Det(Q,) 
which equals sign Det(q,) by Lemma 9. The next proposition then follows from 
Lemma 6. 

PROPOSITION4. Let t: M + Gi be an immersion with a = 2 for which a,+ # 0for 
all p E M. Then the type of (d@)T = 0 is elliptic, parabolic, or hyperbolic according 
as K, (p)  - 1is positive, zero, or negative. 

=REMARK.The characteristic directions of the partial differential equation 
0 at p are the isotropic (or, viewing q, as a second fundamental form of t ,  the 
asymptotic) directions of q,. To see this combine the proof of Lemma 9 with the 
following fact: A vector v is a characteristic vector of (d@)T = 0 at p (i.e., points in 
a characteristic direction) if and only if there is a nonzero vector z E S, such that 
v E ker(A2). For the proof of this use Lemma 2 and 19,541. 

Now that Propositions 3 and 4 have been established, we may proceed as in [9] to 
prove existence and uniqueness theorems identical to those in [9] under the assump- 
tions a = 2 and t is an immersion when K, < 1 or when Kt > 1 and k < 0 
regardless of the codimension. The invariant A that appears in the uniqueness 
theorems, Theorem 3, its corollary, and Theorem 5 of [9] can still be defined 
precisely because a = 2. Aminov [2] has proved similar local existence theorems 
under the assumptions c = 2 and K, # 1. 
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If X: M -,E ~ + "is an immersion with c >, 3 and with Gauss map t for which 
a = 2, then necessarily at each point of M the span of the values of the second 
fundamental form is 2-dimensional. Examples of such immersions for c >, 3 are 
minimal immersions whose normal bundle is nowhere flat. 

6. a = 1. When a (p )  = 1, u(Qp) completely determines the behavior of Q,, and 
u(Q,) is positive, zero, or negative according as the signs of the eigenvalues of FIS, 
are 

(-1, -1, + I ) ,  (-l,O, + I ) ,  or (-1, + I ,  + I ) .  

Note that t is necessarily regular at p when a ( p )  = 1since S, is 3-dimensional. If 
we view t ,(T,M) c GL(t(p), t '(p)), then, in fact, t,(T,M) can contain at most 
one linearly independent rank 1 linear transformation, because if t,(T,M) had a 
basis of rank 1 linear transformations, then dim(S,) Q 2. When t,(T,M) contains 
the rank 1linear transformation t,(u) for u E TpM, then q(u, u) = 0, i.e., q, has an 
isotropic direction. On the other hand if t,(T,M) has no rank 1linear transforma- 
tions, clearly q, has no isotropic directions. 

LEMMA11. Suppose a( p )  = 1; q, has an isotropic direction if and only if Q, = 0. 

PROOF.Suppose there exists u E TpM such that t,(u) has rank 1. Then there is 
A E G2(Sp) such that ran(t,(u)) IA. Equivalently, A2(u) = 0 for all z E A. Thus 
det(A2)= 0 for all z E A; hence FIX = 0. But FIS, can have a 2-dimensional 
isotropic subspace only if it has a zero eigenvalue, so Q, = 0. 

Now suppose Q, = 0. Since FIS, has a zero eigenvalue there exists 0 f z E S, 
such that F(z,w) = 0 for all w E S,; hence det(A2, A") = 0 for all w E S,. In 
particular, det(A2) = 0. Let 0 f u E ker(A2) and suppose u, u is a basis for T,M. 
Then det(A2, A") = 0 implies A' A Aw(uA u) = A2(u) A Aw(u)= 0. If 0 # e E 

t( p )  is orthogonal to A2(u) f 0, then Aw(u) Ie for all w E A. Hence t ,(u)(e) I A 
and thus t,(u) has rank 1. 

REMARK.Hence if a (p )  = 1and q, has an isotropic direction at p E M, then t is 
not locally a Gauss map. 

Equivalently, Lemma 11states that q, has no isotropic directions precisely when 
Q, is definite. Also note that changing the orientation of T, M (when Q, is definite) 
will change Q, from being positive definite to being negative definite or vice versa. 
Hence there is just one orientation on T, M such that Q, is positive definite. 

PROPOSITION5. Let t be the Gauss map of an immersion X: M E 2+ '  with c >, 3. 
If there is a point p of M which is not an inflection point of X, then t is not locally a 
Guass map of M with the opposite orientation. 

PROOF.If p is a point that is not an inflection point, i.e., the span of the values of 
the second fundamental form at p is 3-dimensional, then a (p )  = 1. Since t is a 
Gauss map, Q, must be positive definite when M has its given orientation. 

Note that when Q, is definite, a, induces a conformal structure on TpM since 
each nonzero E a, pulls back the same conformal structure to TpM (since all 
nonzero E a, are multiples of one another); in fact, the conformal structure is the 
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one with the orientation making Q ,  positive definite. Finally notice that if X is an 
immersion with Gauss map t ,  then X induces on T,M the conformal structure just 
described since necessarily d ,  X E a,. 

THEOREM3. Let t :  M + G; be a smooth map for which a = 1 (and hence c > 3). 
If q has no isotropic (or  asymptotic) directions on M ,  then the bundle a induces a 
unique conformal structure on M with the property that if X :  M + E2+' is an 
immersion with Gauss map t ,  then X induces the same conformal structure on M. 

REMARK. This is clearly not an affine theorem since the induced conformal 
structure depends on the Euclidean structure E2+' .  

By considering independent tangential components of (d@)'  condition [C"], i.e., 
( d @ ) ' =  0, becomes a system of two linear ptrtial differential equations in one 
unknown function (since a = 1).  It is overdetermined and thus we ought to look for 
an integrability condition. But it is most natural to look for the integrability 
condition using the conformal structure induced on M by a (since we necessarily 
assume Q is positive definite on M ) .  We therefore postpone any existence theorems 
to Part 2 of this paper where we consider the conformal aspects of our general 
problem. 

Suppose X :  M -+ E2+' is an immersion with Gauss map t .  Since t already 
determines the conformal structure to be induced on M at p by X when a ( p )  = 1 ,  
we ought to expect that two immersions with the same Gauss map differ at most by 
a translation and homothety if a = 1 at most points of M. This observation is 
suggested by the uniqueness results of Hoffman and Osserman [4] or Part 2 of this 
paper. 

THEOREM4. Let X,: M -+ E2+' for i E { 1 , 2 )  be immersions with c > 3 which have 
the same Gauss map. If the set of inflection points of X I  (and hence X 2 )  is nowhere 
dense, then X2 = sXl + f for some nonzero scalar s E R and some f E E2+'.  

PROOF. Both Xl and X2 have the same set of inflection points (since they have the 
same Gauss map); let M * be the complement of the set of inflection points. M * is 
a dense open set. Since a = 1 on M *, d X c l  0 dX2:  T,M + T, M is a multiple of the 
identity for all p E M*.  By continuity, d X f - l o  dX ,  is a multiple of the identity for 
all p E M. Define a smooth function s:  M -+ R by dX ,  = sdXl. Hence XI  and X2 
induce the same conformal structure on M as well as have the same Gauss map. 
Since the mean curvature does not vanish on M * (because points where the mean 
curvature vanishes are inflection points when c > 3) ,  s is constant on each compo- 
nent of M * by Theorem 2.5 of [4]. Thus ds = 0on M *; by continuity ds = 0on M. 
Thus s = constant and the result follows. 

REMARK.Generically, when c > 3,  the set of inflection points of an immersion X: 
M -+ E2+' has codimension > 1 and so is nowhere dense. Thus generically 
immersions of surfaces into Euclidean spaces of dimension greater than 4 are 
essentially uniquely determined by their Gauss maps alone. 
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REMARK.Some of the results in this paper also appear in two papers by Yu. A. 
Aminov, Determining a surface in E4 from its degenerate Grassmann transform, 
Ukrain. Geom. Sb. 26 (1983), 6-13 (Russian), and Restoration of a two-dimensional 
surface in n-dimensional Euclidean space from its Grassmann transform, Mat. Zametki 
36 (1984), 223-228 (Russian). Aminov's methods are markedly different from those 
employed in this paper. 
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