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THE GAUSS MAP FOR SURFACES:
PART 2. THE EUCLIDEAN CASE
BY
JOEL L. WEINER

ABSTRACT. We study smooth maps #: M — G5 of a Riemann surface M into the
Grassmannian G§ of oriented 2-planes in E2"¢ and determine necessary and
sufficient conditons on ¢ in order that it be the Gauss map of a conformal
immersion X: M — E2*¢. We sometimes view ¢ as an oriented riemannian vector
bundle; it is a subbundle of E2;" ¢ the trivial bundle over M with fibre E2*¢. The
necessary and sufficient conditions obtained for simply connected M involve the
curvatures of ¢ and ¢+ | the orthogonal complement of ¢ in E3; ¢, as well as certain
components of the tension of ¢ viewed as a map t: M — S¢(1), where SC(1) is a
unit sphere of dimension C that contains G5 as a submanifold in a natural fashion.
If ¢ satisfies a particular necessary condition, then the results take two different
forms depending on whether or not ¢ is the Gauss map of a conformal minimal
immersion. The case t: M — G3 is also studied in some additional detail.

In [5, 6], Hoffman and Osserman study the following question: Let M be a
Riemann surface and #: M — G5 be a smooth map into the Grassmannian of
2-planes in (2 + c¢)-space; when is ¢ the Gauss map of a conformal immersion X:
M — E**¢? In [5, 6] necessary and sufficient conditions are established when M is
simply connected, in order for ¢ to be a Gauss map.

The purpose of this paper is primarily to redo the work of Hoffman and Osserman
from the point of view established in [12, 13]. One reason for doing this is to free
their results of its dependence on the use of complex variables in order to allow and
suggest generalizations from the case of surfaces to higher dimensional manifolds.

Also, to some extent, the necessary and sufficient conditions established in [5, 6]
in order for ¢ to be a Gauss map are somewhat mysterious (to me at least) and could
use some illumination. In particular, we obtain corresponding conditions which are
stated directly in terms of traditional geometric invariants. We will briefly describe
these invariants and also describe how they appear in the theorems of this paper.

Let g, be the standard metric on G5. We say t: M — Gj is conformal if g, = t*g,
induces the given conformal structure on M, where ¢, does not vanish. One may
view ¢ not only as a map but quite naturally as an oriented riemannian rank 2 vector
bundle over M, a subbundle of the trivial bundle of E3,¢ over M with fibre E***.
As such we can define k: M — R to be the curvature of ¢ with respect to the
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element of area associated to g, where ¢, is regular, i.e., has maximal rank, and to
be zero where ¢, is not regular—indeed, ¢ is flat as a bundle where 1 M — G5 is
not regular. Certainly k is a very natural measure of the curvature of the bundle .
Also -1 < k < 1. Theorem 2 states that if M is a simply connected noncompact
Riemann surface and ¢ is conformal with k = -1 where ¢, # 0, then ¢ is the Gauss
map of a conformal minimal immersion. The corollary to Proposition 2 says the
conditions on ¢ are also necessary.

Let t* be the orthogonal complement of the bundle ¢ in E3}¢ we call ¢+ the
normal bundle of ¢. It is also the case that ¢+ is an oriented riemannian vector
bundle over M. Let g be a riemannian metric on M. We define a section N, in
A%t , where A%t is the second exterior power of ¢ * . The projection of N,(p) for
p € M onto the unit decomposable 2-vector A € A%t *( p) is the curvature of the
“2-plane A” in ¢+ with respect to the area .element associated to g, the normal
curvature of A. The Grassmannian Gj is viewed as the space of unit decomposable
2-vectors in A’E2"¢; hence G§ € S€(1), the sphere of unit 2-vectors in AZE2*¢, Let
g denote the second fundamental form of G5 in S€(1). Set g = t*7; if ¢ is an
immersion, then g is the component of the second fundamental form of t: M — S€(1)
orthogonal to G5. In Theorem 1 we show that a necessary condition on ¢ in order for
it to be a Gauss map is that
(0) Str,(q) = N,
where g is any riemannian metric that induces the conformal structure on M. Note
that we may view jtr,(q) as the component of the tension of £ M — S€)
orthogonal to G5. Equation (0) is one of our necessary and sufficient conditions that
correspond to one of those of Hoffman and Osserman.

As is pointed out in the remark following Proposition 1, the map ¢, if it possibly is
a Gauss map, already determines whether any possible conformal immersion with it
as a Gauss map would be minimal or not, and if the immersion cannot be minimal
then ¢ already determines the direction of its mean curvature. Assuming (0) holds
and k& # -1 where ¢ is conformal and regular, we define in §3 a riemannian metric g
which induces the conformal structure on M. Let r denote the tension of 1: M — G5
with respect to the metrics § on M and g, on Gj;. Associated to 7 is a differential
1-form on M, #, which involves only the component of = in the direction of the
mean curvature just mentioned (see §3 for a complete explanation of what this
means). Theorem 3 states that if M is simply connected, (0) holds, k # —1 where ¢ is
conformal and regular, and d7 = 0, then ¢ is a Gauss map. Theorem 3 also points
out that the scalar mean curvature H of any conformal immersion with Gauss map ¢
is given by

1
H= Hoexp(zf ?),
where H;, € R, and the theorem also presents a representation for any conformal
immersion with Gauss map ¢ using H. The equation d7 = 0 is the other one of our

necessary and sufficient conditions that corresponds to one of those of Hoffman and
Osserman.
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In the last section of this paper, we focus on t: M — G2. In this setting equation
(0) takes on an especially interesting form. Since G2 = S2(1/V2) X S2(1/V2), we
let t; M — S*1/V2) be the ith component of ¢ for i € {1,2}. If g is a
riemannian metric on M, for i € {1,2}, let ¢,(g) and p,(g) be the energy density
and Jacobian of t;: M — S%(1/2), respectively, with respect to the metric g on M
and the standard metric on S2(1/v2). Then, according to Proposition 5, equation
(0) becomes

e,(g) +0.(8) =e,(g) +p:(2),

where g is a riemannian metric that induces the conformal structure on M. In fact,
we point out in Corollary 3 of Proposition 6 that

e(8) +p,(8) =IHJ"
for i € {1,2},if £ M — G7 is the Gauss map of an immersion with induced metric
g and mean curvature H.

Finally, Theorem 5 presents a characterization of the Gauss map of a conformal
minimal immersion into S3, the 3-sphere in E*. The theorem states that under the
assumption that M is simply connected, ¢ is the Gauss map of such an immersion if
and only if 1 M — G} is a conformal minimal immersion with flat normal bundle
t* and k > -1.

This paper draws heavily on [13], which we refer to as Part 1 throughout this
paper. The notation of Part 1 is used in this part and the ideas introduced in Part 1
are employed extensively here. In particular, the space of admissible maps, «, plays
an integral role in Part 2.

All maps that appear in this paper are C* with the exception of k which need not
be continuous when ¢ is not an immersion.

1. Preliminaries. Let M be a connected Riemann surface, i.e., M possesses a
conformal structure. The conformal structure orients M. Let G3 be the Grassman-
nian of oriented 2-planes in E**¢ and let g, denote the riemannian metric on Gj.
Suppose t: M — G5 is a smooth map; as in Part 1 we often view ¢ as an oriented
riemannian 2-plane bundle over M, a vector subbundle of E%;¢, the trivial bundle
over M with fibre E2*¢. We let t* denote the orthogonal complement of ¢ in E%/¢
and call t* the normal bundle. The splitting E3/¢ =& ¢* induces orthogonal
projections (- )" :E4“ > tand(--- )t Ey ¢ -t

If t: M — Gj is given, we show the following in Part 1: There exists over M the
rank 4 vector bundle 8 defined by

B, = {<I>: T,M — E**¢ linear map|<I>(TpM) C t(p)}

forall p € M. If ® € B, we define its second fundamental form /4 by
(1) ho(u,v) = tx(u)(®(v))
for all (u,v) € T,M X T,M. We view t,(u) as an element of GL(z(p),t*(p)) =

T, ;G5 (see §2 of Part 1 for details). Contained in B is the space of admissible maps,
a, which consists of all ® € B for which hg is symmetric. For each p € M, «a, is a




450 J. L. WEINER

subspace of B, of dimension a(p); if a: M - {0,1,2,3, 4} is constant, then a is a
subbundle of ,B Contained in a, for each p € M is a,, the space of admissible
maps at p with positive determmant A map @ € «, has positive determinant if and
only if ® maps a positively oriented frame of 7;,M into a positively oriented frame
of #(p). It may happen that a, = & for some p € M. Alsowelet a™=U, y a, .

We will often think of a conformal structure on a 2-dimensional vector space V as
a linear map J: ¥V — V such that J? = -1, for J determines an orientation— that
determined by (v, Jv) for 0 # v € V—and a collection of inner products which are
multiples of one another—those for which J is an isometry. Each plane 7 € G$ has
a conformal structure induced from its orientation and the inner product g on E>*¢;
we denote this conformal structure by J,. For each p € M, let J, be the conformal
structure on 7, M.

Let X: M — E?*¢ be an immersion with Gauss map ¢ that induces the given
conformal structure on M, i.e., X is a conformal immersion. Since ¢t is a Gauss map
it follows that condition [C] of Part 1 holds, i.e., if ® = dX then ® is a section in «
with values in a* and (d®)™ = 0. But, in addition, for each p € M, ®, must “pull
back” the conformal structure on #( p), J,), to that given on 7, M, J,, in order that
X induce the given conformal structure on M. This suggests that we introduce the
following rank 2 vector subbundle k of 8 where, for each p € M,

={®epl, =07}

Note that any nonzero member of k, has positive determinant and any two
members of «, differ by a composition with a similarlity transformation of #( p), i.e.,
a scalar multiple of rotation of ( p).

Hence, according to condition [C] of Part 1 and the definition of «, in order for a
section ® in B defined over a simply connected open subset U of M to be the
differential of a conformal immersion X: U — E2*¢ with Gauss map ¢, it is
necessary and sufficient that

K] ®,€(a,Nk,)—{0} and (d,®) =0 forall pe U.

Here d @ denotes the exterior differential of ® at p. When condition [K] holds for
some section ® in B|U, we say ¢ is a Gauss map on U.

As we just observed, in order for #: M — G5 to be a Gauss map it is necessary
that «) Nk, = (a,Nk,)— {0} # @ forall p € M. We now turn to a characteri-
zation of dim(e, N k,). We define the mean curvature H(®) for ® €k, — {0}, p
arbitrary, by

Q) B@) =5 Lh(07(e).07(e)) = 5 X ra(@7(e))(e):

NI'—'

where e,, e, is an orthonormal frame of #( p). The second equality in (2) follows
from (1). We leave it to the reader to check that H(®) is well defined. Note that
H(®) € ¢+ (p) for all ® € k, — {0}. Of course, if ® =d,X for an immersion X
with Gauss map 7, then H(®) is the mean of curvature of X at p.
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Note that J, is a rotation by +90° for all # € G5. Thus J,,,e® €k, if ® € «,,.
We will delete the subscript #(p) in J,,, in what follows. Also the reader is
reminded that « is the set of all ® € B such that Ay, is symmetric.

LEMMA 1. Let ® €k, — {0} for some p € M. Then hy, is symmetric if and only if
H(J®)=0

PROOF. Let e,, e, be a positively oriented orthonormal frame of 7( p) and define
vy, U, € T,M by ®(v;)=e; for i € {1,2}. Then note that Jo®(v,) = e, and
Jo®(v,) = —e,. Hence by (2) and (1)

H(J o ®) = 5[t4(-0y)(ey) + tu(v1)(e,)]
= %[hcb(vl’vz) - h¢(v2’vl)]'

PROPOSITION 1. For any p € M the following hold:

(1)) dim(a, N k) = 2 if and only if H(®) = 0 forall ® € x, — {0}.
(ii) dim(a, N «k,) = 0 if and only if H(®) # 0 for all ® € k, — {0}.
(iii) If dim(e, N k,) = 1, then H(®) # 0 forall ® € a] N k,,.

PRrOOF. First note that k, = {Jo®|® € «,}. Hence H(®) = 0 for all ® € «, —
{0}, if and only if H(J > ®) = 0 for all ® € k, — {0}, if and only if A is symmetric
for all ® € k, (by Lemma 1), if and only if «, C a,. This proves (i); a similar
argument proves (ii). For (iii), just note that if H(®) = H(Jo®) =0 for some
® €k, — {0}, then H(¥) =0 for all ¥ €k, — {0} by (2) since ¥' =r0' +
s(J o ®)~1 for appropriate reals r and s.

ReMARK. Choose v,, v, € T,M so that v, = Jv;. Then define

= span| 3 X b (0)(e)lrs

is a positively oriented orthonormal frame of ¢( p )} .

Now let X: M — E?*¢ be a conformal immersion with Gauss map ¢. According to
[K] and Proposition 1, X is minimal at p if and only if dim(#,) = 0; also if X is
not minimal then H(p), the mean curvature of X at p, lies in 5, which is
1-dimensional. Thus the Gauss map of X already determines whether or not X is
minimal at p, and if X is not minimal at p, then the Gauss map determines the
direction of the mean curvature at p. Hoffman and Osserman already pointed this
out in [S].

2. The dimension of a, N k,. We now study dim(a, N k,) more directly in terms
of the geometry of #: M — G and the curvatures of the vector bundles ¢ and 7+ .

We remind the reader that we defined the Weingarten map A4: ¢+ — B as the
adjoint of ¢, (see §2 of Part 1 for details). The curvature k of the oriented
riemannian vector bundle ¢ at p, with respect to p, a fixed area element on M, is
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given by

2+4+¢

k(p)= 2; det(A"ﬂ: .M - t(p)),

where A¢ denotes the value of A4 at e, and es, ..., e,, . is an orthonormal frame of
t* (p). The determinant of A%« may be defined as follows: Let v,, v, € T,M such
that p(v, A v,) =1 and let e, e, be a positively oriented orthonormal frame of
t( p); then define reals 1;‘1 fori,j€{1,2}and a € {3,...,2 + ¢}, by

(3) In = (1x(v))(e,), e4).

Since A4 and ¢, are adjoints, we see that
(A"ﬂ(vj), e,) =1

for i, j € {1,2} and a € {3,...,2 + c}. Then det(A*) = |/}}], where |/}| denotes
the determinant of the 2 X 2-matrix (/f}); ., , <,- In particular, we also have

(4) k(p) =X |13

If 7 is regular at p, e, rank(z4,) = 2, so that g, = 7*g, is an inner product at p
we may suppose j, = fio,, Where p, is the differential 2-form defined as follows: If
Uy, u, 1s a positively oriented frame of 7, M, then

2
poluy, uy) = go(“l”ﬁ)go(“za uy) — goluy, uy)".

Hence, when ¢ is regular at p so that p, = p,,, we may suppose vy, v, given above
in the definition of /7, form a positively oriented gy-orthonormal frame of 7, M.
Unless stated otherwise k( p) at a point p where ¢ is regular will be the curvature of
¢ at p with respect to p . It is easy to check that k(p) = 0 when ¢ is not regular at
p- We call k the pre-Gaussian curvature of t (see §2 of Part 1 for motivation of this
definition).

If = € G, then a positively oriented orthonormal frame e;,...,e,,. of E**¢ is
said to be “w-adapted” if e, e, is a positively oriented orthonormal frame of . If
l € T,G5 = GL(m, 7 *), then go(l, 1) =||l||% ie., if e;,...,e,,. is a m-adapted
frame of E**¢, and reals /* for i € {1,2}, a« € {3,...,2 + ¢} are defined by
1*=(l(e,), e,), then

(5) go(l.1) = L (1),

Assume ¢ is regular at p and reals /{, are defined as in (3) with v;, v, a positively
oriented gy-orthonormal frame of 7, M. Then, by (3) and (5),

(6) 8rs = gO(Ur’ Us) = Zl:lrlf;

forr,s € {1,2}.
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LEMMA 2. Suppose t is regular at p. Then |k(p)| < 1 and k(p) = +1 if and only if
L=+ and 5=+
forae {3,...,2 +c}.

PrOOF. Note, by (4), k(p) may be viewed as the dot product of the (2¢)-tuples
(U, By, B By I 150) and (1, =1, 135, —1, - 1374, ~1579). These (2¢)-
tuples are unit vectors by (6). Hence, the lemma follows directly from the Cauchy-
Schwarz inequality.

PROPOSITION 2. dim(a, N «,) = 2 if and only if either
(1) 14, =0, 0r
(i1) ¢ is conformal (and regular) at p and k(p) = 1.

PRrOOF. Throughout this proof let v,, v, be a positively oriented frame of T, M
and ey,...,e,, . a t(p)-adapted frame of E>*<. Then define reals [7 as in (3). The
vectors vy, v, and hence the reals /;; will have various additional properties as
needed in the course of the proof.

Suppose dim(a, N «,) = 2 and ¢4, # 0. We vill show ¢ is conformal at p and
k(p) = -1. Choose ® € k, — {0} and suppose ®(v;) = e, for i € {1,2}. Then, by
@,

12 = (ho(v,,0,),e,)

fori,j€ {1,2} and « € {3,...,2 + c}. By (i) of Proposition 1 and Lemma 1, both
hg and hj, 4 are symmetric. The symmetry of k4 and 4,4 implies in turn that

(7) =15 and I3 =-Iy

fora € {3,...,2+ ¢}. By (5), (I, 13,,..., I{,*<, 13, ) are the components of 7,(v,)
with respect to an orthonormal frame of 7, ,/G;. Hence, by (7), t4(v,) and 14(v,)
are orthogonal to one another and have the same (nonzero) length. Hence ¢ is
conformal (and regular) at p. Thus, by multiplying v, and v, by an appropriate
scalar if necessary, we may suppose v,, v, is a gy-orthonormal frame, too. Then (7)
and Lemma 2 imply k( p) = -1.

If 4, = 0, then dim(a,) = 4, so clearly dim(a, N «,) = 2. Therefore suppose ¢
is conformal and regular at p and k(p)= -1. Assume ® € k, — {0}. Since 7 is
conformal at p, g, induces the conformal structureon M at p. Since ®: T,M — t(p)
is also conformal, an appropriate multiple of ®, m®, is an isometry from T,M, with
the inner product g,, onto #( p). Now choose v,, v, so that (m®)(v,) = e; hence v,
v, is a gy-orthonormal frame, and /) = (h,,4(v,,v,), €,) by (1). But, by Lemma 2,
k(p)= -1 implies (7) holds. In particular, 4, is symmetric. Thus m® and hence
Pea,

COROLLARY. If X: M — E?*¢ is a conformal minimal immersion with Gauss map t,
then t is conformal with respect to the induced conformal structure on M and K = —p,
where K and p are the Gaussian curvature of X and the Jacobian of the Gauss map t,
respectively.
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PROOF. Since ® = dX is a section in « N k and H(®) = 0 on M, Proposition 1
implies & N k is a rank 2 vector bundle. Hence Proposition 2 implies that ¢ is
conformal and k& = -1 where ¢, # 0. But for the Gaussian curvature of X, K, it is
the case that K = pk, since p is the ratio of the area elements induced on M by ¢
and X. So where ¢, # 0, clearly K = —p. Where ¢, = 0, both K and p are zero; so
here too K = —p.

REMARK. It is well known that the Gauss map of a minimal immersion is
conformal. That K = —p follows immediately from [4, Theorem 1].

If M is simply connected and 2 M — G5 is the Gauss map of a conformal
minimal immersion, it is known that ¢ is the Gauss map of infinitely many essential
different conformal (minimal) immersions (see Hoffman and Osserman [5] or
Remark 2 after Theorem 2 of this paper). But are there other immersions with Gauss
map ¢ which induce conformal structures other than the given one on M? If a = 3
on M, ie., « is a rank 3 vector bundle, then one may show there exists a 3-plane
E? c E**¢ such that ©: M — G,(E*) € G (see §3 of Part 1). Hence, in this case, in
general there exist nonconformal immersions of the Riemann surface M with Gauss
map ¢ since the first and third fundamental forms of an immersion X: M — E3
need not be conformally equivalent. But if @ = 2 on a dense (and necessarily open)
subset of M, then the given conformal structure is the only one induced by any
immersion of M with Gauss map ¢. This is a consequence of

PROPOSITION 3. Suppose t is a Gauss map of a conformal immersion which is
minimal at p € M. If a(p) = 2, then the given conformal structure at p, is the only
conformal structure induced by an immersion with Gauss map t.

Proor. By Proposition 1, dim(a, N «,) = 2. Since a(p) =2, it must be that
k,=a, Let J* be another conformal structure at p and let x; = {® €
Byl Jipyo® =@ J)). Clearly @, N ky =k, Nk # {0} if there exists an immer-
sion with Gauss map ¢ which induces the conformal structure J,*. But k, N k; # {0}
obviously implies J,* = J,, the given conformal structure.

REMARK. If an immersion X: M — E2*¢ is minimal at p € M, then necessarily
a(p) = 2 by Proposition 1. It turns out that a(p) = 2 if and only if the normal
bundle of X at p is not flat.

We now turn our attention to determining when a, Nk, # {0}. In §2 of Part 1
we introduced the span of t,, S,, where

S, = span{ 14(v)(e)lv € T,M, e € 1(p)}.
Clearly S, C ¢ ( p); also we showed in Proposition 1 of Part 1 that dim(S,) = 4 —
a(p).

The Grassmannian G5 is regarded as the set of unit decomposable 2-vectors in
A’E?*<, Hence, in a natural way, G5 is a submanifold of S€(1), the set of unit
2-vectors in A’E2"¢; of course, C = (5 ?) — 1. Let g denote the second fundamental
form of G5 as a submanifold of S(1). We showed in §4 of Part 1 that for all
l € T,G = GL(m,7 %)

(8) ya(Ll) =1 ni(m),
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which makes sense since 7 is regarded as the positive unit 2-vector in the second
exterior power of the 2-plane 7, A%r. Now let ¢ = ¢*7. It is easy to see that q, takes
values in AZSP for all p € M. Hence, if a(p) > 2, so that dim(S,) < 2, it follows
that g, = 0. Assuming a(p) < 2,if A € Gy(S,) let rM. t+(p) = X be the orthogo-
nal projection onto A.

LEMMA 3. Suppose a(p) < 2. Ifv € T,M and X € G,(S,) C AZSP, then
‘%(q(l),l)), }\) = det(r}\°t*(0)).

PROOF. Let ¢, e,,...,e,,. be a t( p)-adapted frame such that A = span{e;,e,).
Then, since 1(p) = e; A e, and A = e; A e,, (8) implies

1(q(0,0),7) = (14(v) At4(v)(e; A ey),e5 A €,)
= det[(t*(v)(el)’ea)] l<i<2 = det(")\°t*(v))-

3<ax4

If g is a riemannian metric on M, we define tr,(¢q) by

tr,(q) = ;q(v.,v,),

where v,, v, is a g-orthonormal frame field defined on M.

We discuss for a moment the curvatures of ¢+, the normal curvatures of ¢. Let g
be a riemannian metric on M. If A is an oriented 2-plane in ¢ * ( p), we may define
the normal curvature of A with respect to g as follows: Let e,,...,e,, . be a
t-adapted frame field of E2*¢ defined near p such that e;(p), e,(p) is a positively
oriented frame of A. Then define (4%)¢: T,M — A for i € {1,2}, by letting

(9) (A (u) = - 23(a’e,(u),ea)e¢x

for all u € T,M. By det((A)¢) we mean the determinant of a matrix representing
(AM)¢ with respect to orthonormal frames of T,M and A. Then, the normal
curvature of A with respect to g, Ng", is defined by

2
(10) N} = Y det((4%)%).

=1
Of course, one may check that Ng" is independent of the choice of e, e, in ¢( p) and
e;, e, in A as well as the fact that Ng" actually depends on the area element on M
associated to g rather than g. Perhaps the easiest way to see this is to introduce
1-forms w{ = (de,, e,) fori € {1,2} and « € {3,...,2 + ¢}, and show that, at p,

2
A 4
N, = 2 o) A},
i=1
where 1, is the area element on M associated to g. Also one may show that if X is

an immersion with Gauss map ¢ which induces the metric g on M, then the normal
curvature of A € G,(¢*(p)) for X, at p, is given by Ng>\
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If e}, €5,...,€,,,1s a ¢( p)-adapted frame of E>*¢ and g is a riemannian metric
on M, set N3# = N} if X is the 2-plane having e,, 4 (in that order) for a positively
oriented frame, for distinct «, 8 € {3,...,2 + c}. Then define Ny M- t* at p by

N,(p)= X NPe, N e
a<pf

It is straightforward to check that N,(p) is independent of the choice of the
t( p)-adapted frame ey, e,,..., e, . Also since N,(p) actually only depends on the
associated area element p, of g, it follows that N,(p) is determined up to a scalar
multiple, in fact, up to a positive scalar multiple by the orientation of M. We call
N,(p) the primary normal curvature 2-vector at p (with respect to g). Clearly
N,(p) € A*t*(p). In fact, the following lemma holds.

LEMMA 4. N, (p) € A’S,.

Proor. It follows by letting e, = ®(v) in (1) of Part 1 and (9) that, for all
v E TpM,

(11) (4M)(v) = - a(t*(v)(e,),ea)em

where e,,...,e,,, is a t(p)-adapted frame of E**¢ and e,, e, is a positively
oriented frame of A. If A is orthogonal to S,, i.e., A contains a vector orthogonal to
S,, then clearly rank((4*)%) <2 for i€ {1,2}; consequently det((4*)*)= 0.
Therefore Ng)‘ = 0 by (10) if A is orthogonal to S, and thus N,(p) € A’S,.

PROPOSITION 4. Let g be a riemannian metric which induces the given conformal
structure on M, i.e., J*g = g. Then a, N «, # {0} if and only if 3tr,(q) = N, at p.

PRrOOF. If a(p) > 2, then dim(S,) < 2. Hence g, = 0, and thus tr(gq,) = 0. But
Lemma 4 also implies N, = 0 since AZSP = 0. However when a(p) > 2, clearly
a, Nk, # {0} because of dimensional reasons. Therefore, for the remainder of this
proof we assume a( p) < 2, i.e., dim(S,) > 2.

First observe that 3tr (q) = N, if and only if

(12) b (q,A) = N}

for all A € G,(S,). This is so since both tr,(g) and N, lie in A’S,, which is spanned
by G,(S,), and since (tr,(¢), \) = tr,(¢, ) and (N,, A) = N} for all A € G,(S,).

Let P: 8 & B — R be the nondegenerate skew-symmetric tensor field introduced
in §2 of Part 1. It is immediate from the definition of P that for any ®, ¥ € ,Bp

(13) vP(2,¥) = (2(v,),¥(v,)) = (2(v,), ¥(v1)),

where v = po(v; A v,) > 0. For each A € G,(S,), define a™ to be the P-orthogo-
nal complement of AN = {47|z € A} in B,. Clearly, by Lemma 2 of Part 1, the
collection {a™ |\ € G,(S,)} is the same as the collection of all 2-planes in B,
containing a,. This leads to our second observation: a, Nk, # {0} if and only if
a®n K, # {0} for all A € G,(S,).
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Using these two observations the proof of the proposition reduces to showing the
following: For all X € G,(S,), «™ Nk, # {0} if and only if (12) holds.

Pick A € G,(S,). Let v,, v, be a positively oriented g-orthonormal frame of T, M.
Also let ey, e,,...,e,,, be a t( p)-adapted frame of E**¢ with e;, e, a positively
oriented frame of A. Now define x,, x, € k, by x1(v,) = ¢; for i € {1,2}, and
X2 = J o x;. Clearly x,, x, is a basis of «,. Define P*: 8, > R for a € {3,4} by

PX(®) = P(A%,®)

for all ® € B,. By definition, ™ = ker(P?) N ker(P*). Hence a® Nk, # {0} if
and only if P*|k,, P*|k, are linearly dependent. The linear dependence may be
expressed using the basis x,, x, of ,. Hence a® N x, # {0} if and only if

P(x) Pxz)
PHx1) P*(x2)
Define reals /{; as in (3). Since by (13),
vP(x,) = vP(x;, A*)
= (x,(v)), 4°(v)) —(xi(v2), A%(vy))
= (t*(UZ)(Xi(Ul)) = 14(01)(x,(03)), €a)

fori € {1,2}, a € {3,4}, (14) becomes

(14)

3 3 3 3
112 - 121 111 + 122

4 4 4 4
112 - 121 111 + 122

’

1e.,
3 3
111 121

4 4
111 121

3 3
112 122

4 4
112 122

3 3
111 112

4 4
111 112

3 3
121 122

4 4 "
121 112

Using (11), this last equation states that
(15)  det(r*oz,(v,)) + det(r* ot 4(vy)) = det((4*)) + det((4*) ),

where r*: 14 (p) — A is the orthogonal projection onto A. Finally, applying Lemma
3 and (10), we obtain

— NA
%trg(q9>\) - Ng .
An immediate consequence of condition [K] and Proposition 4 is our first

theorem.

THEOREM 1. If t: M — G is a smooth map for which %trg(q) # N, for some (and
hence any) metric g which induces the conformal structure on M, then t is not a Gauss
map.

REMARK 1. The equation %trg(q) = N, corresponds to equation (2.20) of [5]. Both
these equations represent the algebraic aspect to the necessary and sufficient
conditions on ¢ in order for it to be locally a Gauss map.
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REMARK 2. If we view t: M — §(1), then we may view %trg(q) as the component
of the tension 7 = tr, V() (with respect to the metric g on M and the standard
metric on S€(1)) which is orthogonal to G5; cf. [4, §3].

3. The p.d.e. in [K]. We now turn to study the p.d.e. (d®)"= 0, where ® is a
section in a N k, under the regularity assumption that a N k is a vector bundle
necessarily of rank 1 or 2.

Let us consider first the situation in which & N k = «, i.e., rank(a N k) = 2, for
the given t: M — Gj. In order to carry out our investigations in this situation we
make the further assumptions that M is not compact and is simply connected. Since
both ¢ (viewed as a vector bundle) and a N « are of rank 2 and M is not compact,
there exists a globally defined positively oriented orthonormal frame field e, e, in ¢
and a globally defined nowhere vanishing section x in @ N k. Set E = e, — ie,; it is
a globally defined E2*¢ ® C-valued vector field on M. Hence there exists a globally
defined differential form ¢ of type (1,0) such that x = Re[E¢]. Also (dx) ' =
Re[E¢ A 1] for some differential form 5 of type (0,1). Any section @ in a N k may
be written ® = Re[ Eué], where u: M — C is smooth, and

(16) (d®)" = Re[E(du — un) A &].

Hence, by [K] and (16), for ¢ to be the Gauss map of a conformal immersion it is
sufficient to find a nowhere vanishing u: M — C satisfying du — un = 0, where du
is the (0, 1)-part of du. Thus it is sufficient to solve

(17) Iw =1

and set u = e”. Since M is not compact and is simply connected, and hence is
conformally equivalent to either the unit disk in C or C itself, it follows from
Theorem 4 of [3] that (17) has global solutions. In fact, the general solution of (17) is
of the form w, + f, where w, is a particular solution of (17) and f: M — C is
holomorphic. Hence, if M is not compact, is simply connected, and rank(a N k) = 2,
then ¢ is a Gauss map. Also, by Proposition 1(i), any conformal immersion with
Gauss map ¢ is necessarily minimal. We summarize these results in

THEOREM 2. Let M be a simply connected noncompact Riemann surface and suppose
t: M — G5 is a smooth conformal map. If k = -1, where t, # 0, then t is the Gauss
map of a conformal minimal immersion X: M — E**<,

PROOF. Proposition 2 implies a N k is a rank 2 vector bundle so indeed the
foregoing remarks apply.

REMARK 1. Theorem 2 is a partial converse to the corollary to Proposition 2. Also
Theorem 2 corresponds to Case 1 of Theorem 2.6 of Hoffman and Osserman [5},
since V = 0 (see [5]) corresponds to a N «k being a rank 2 vector bundle.

It is clear that if X is a conformal immersion with Gauss map ¢, then so is the
immersion sX + X, where 0 # s € R and X, € E**“. If Y is a conformal immer-
sion with Gauss map ¢ and not one of the immersions sX + X, we will say that Y is
essentially different from X.
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REMARK 2. Assume now that M is just noncompact. Let X be a conformal
minimal immersion with Gauss map #; necessarily & N k is a rank 2 vector bundle.
We may use Re[dX] for x above, where dX = (0X/dz)dz in a local complex
coordinate z. Any section ® in a Nk may be written as ® = Re[udX], and
condition [K] implies @ is the differential of a conformal immersion ¥ with Gauss
map ¢ if and only if u is a nonvanishing globally defined holomorphic function. The
immersion Y is essentially different from X if and only if u is not a (constant)
real-valued function. If we let u be a nonreal constant function, then we obtain a
conformal minimal immersion Y which is a multiple of what is called an associate
minimal surface to X (see [9, p. 117]). But any of these associate minimal surfaces Y
induces a riemannian metric on M which is a constant multiple of the one induced
on M by X. If u is a nonconstant holomorphic function, then the corresponding
conformal minimal immersion Y induces a metric on M which is not a constant
multiple of the one induced on M by X.

We now assume that a N k is a line bundle over M, i.e., rank(a N k) = 1, for the
given map ¢. Under this assumption we assume M is simply connected. Hence a N «
has a globally defined nowhere vanishing section which we denote by x. By
Proposition 1(iii) we may and, in fact, do suppose that H(x) is a unit vector field.
This determines x up to sign. Let g be the metric induced on M by ¥, ie,
g(u,v) = (x(u), x(v)) for all (u,v) € TM ® TM. Note that g is independent of the
sign of x.

Any nowhere vanishing section ® in @ N k may be written as

(18) ® = Hy,
where necessarily H(®) = H - H(x); thus ®’s “scalar mean curvature” is H.
Let e, e,,...,e,,, be a t-adapted frame field of E**¢ defined on some open

subset of M such that e; = H(x) (we may have to change the sign of x if ¢ = 1 in
order to accomplish this). Then x = e;y! + e,y?, where ¢!, ¢? are 1-forms such
that § = (y!)? + (¥?)2 For any section ® = H 'y in a N k,

(d®)"=d(H™") A(e! + exd?) + H' (4] = w}) Aed? = e9),
where the connection form 2 = —y}, is defined by dy* = -y} A ¢? and dy? = —{3
A Y}, and w? = (de,, e,). Writing the e, and e, components of the p.d.e. (d®)"= 0
of [K] for ® = H 'y leads to
d(H ) AY = H Y w0} —y2) Ay2=-H 1 x(w? —y2) AY,
d(H™) Ag? = -H (o —y7) Ayt = -H s (of —4) A2,
where * is the Hodge star operator associated with g. However, (19) may be written
more succinctly as

(20) d(log|H|) = *(w} - ¥}).
The integrability condition for (20), i.e., (d®)"= 0 for ® = H !y, is
(21) d*(w%—x[/%)=0.
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We now wish to find an interpretation for *(w? — ¢?). It turns out to be
intimately related to the tension of ¢ with respect to the metric § on M and the
standard metric g, on G5. From the work of Hoffman and Osserman [5], it is no
surprise that the tension is involved.

We again return to the geometry of G5. For i € {1,2} and a € {3,...,2 + ¢}, let
E; be the TGj-valued vector field along ¢ defined by E;(e;) = 8/e,, where 8 is
Kronecker’s delta, and let wZ be 1-forms defined by w? = (de,, e) for 4, B €
{1,2,...,2 + ¢}. Then E’s and w®’s are dual to one another in the sense that

+ = L; o Elwf. The Cartan structural equations imply

dE! = —ZE L4 XEBM

Let v, v, be vector fields in TM dual to ¢!, 1[/2, ie., x(v;,) = e; for i € {1,2}. Then
define /7 as in (3); one easily sees that

(22) = X Edsy

i,j,a

ie, wf =X /%y/. Note that [ =I5 by (1) since x is a section of a. For
Be€{3,.. 2 + ¢}, define m# = (I8 + 15,); then by (2) H(x) = ‘Lﬁm’ge,3 = e, SO
that m> = 1 and m# = 0 for 8 > 3. Now

O=diy= Y (-Elw/ A IS4* + S/ELdIS A Y% — ELIZYL A YF)

atij
i,j.k,a

+ Y Elog A IBYK,

ik,a,B

where i, j, k range over 1,2 and a, 8 range over 3,4,...,2 + c. Setting the coeffi-
cients of E! in the preceding equation equal to zero we conclude that

dity(v,) = dify(v,) — lfllll/z(vl) + 1501 (v) - lf‘z(“’%(vz) + ‘P:{(Uz))
- Z(lﬁ“’ﬂ(vz) - l “’B(Ul))

and
dl3(vy) = dig () + 1593 (0,) — [803(0,) + 15 (w3 (0;) + ﬁ(z{l))
- Z(IZZwB(Ul) - lZIwB(UZ))'

By (22), *t, =L, aEalf} * /. After computing *d *t,, replace dljy(v,) and
dl%,(v,) by the right-hand sides of the preceding equations. This gives the formula
we need for the tension = *d * ¢, of ¢ with respect to the metrics § and g, on M

and G3, respectively. The formula is

b7 = LEY dn*(0,) = m*(a ~ 42)(0;) = Embl(v,)|
a B

+ZE {dm"‘(vz)+m (w2 = ¢3)(vy) - Zmﬁwﬁ(vz)}
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or

%=Z {dm"‘+m *(w— ) - Zmﬁw}

Since m? = 1, and mﬁ = 0 for B8 > 3, this last equation becomes
tr = B (o~ ¥1)(0) + SEH(0)
We can easily solve for *(w? — ¢?2); in fact, we obtain
*(0f —y1) =1 K& (7. B = 1 E(r(e). e3) ¥
If we view (7,e;): t = Rby (7,e;5)(e) = (7(e),e;(p)) fore € t(p), p € M, then
(23) * (0] = ¢1) + 3(r,e3) 0 x
since x: TM — t equals T, e,{'". Set
F=(1,e5)c%.

Note that # is a 1-form which involves only the projection of 7 onto e;, the direction
of the mean curvature. Especially noteworthy is the observation that 7 is indepen-
dent of the sign of x and hence is well defined even if M is not simply connected.
Clearly 7 = 0 if and only if 7 = 0 and e, is parallel in the normal bundle 7+ . When

= 1, 7 = 0 if and only if ¥ = 0 since e, is automatically parallel in the line bundle
t 1

Hence by (23), (d®)" = 0 for ® = H !y, or (20) becomes

(24) d(log|H|) = 37,
and the integrability condition for (24) is
(25) di = 0.

Finally note from (18) and (24) that the general solution of (d®)"™=0, ® a
nonvanishing section in a N k, is determined up to an arbitrary nonzero factor.
Hence any conformal immersion X with Gauss map ¢, which is given by X = [ H 'y,
where H satisfies (24), is determined up a homothety and translation of E2*<,

We summarize the foregoing discussion in the statement of the following

THEOREM 3. Let M be a simply connected Riemann surface and t: M — G5 be a
smooth map. Also assume 3tr,(q) = N, on M, where g is a metric that induces the
conformal structure on M, and k #+ -1 anywhere t, is conformal and nonvanishing.
Then t is a Gauss map if and only if d¥ = 0. Any conformal immersion X with Gauss
map t is given by X = [ H 'x, where H is the scalar mean curvature of X. The scalar
mean curvature in turn is given by H = Hyexp(3 [7), where H, € R.

ProOF. The conditions that 2tr (9) =N, on M and k # -1 anywhere ¢, is
. conformal and nonvanishing 1mp1y that @ Nk is a rank 1 vector bundle by
Propositions 2 and 4. Hence the discussion preceding the statement of this theorem
proves the theorem.
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REMARK. Theorem 3 corresponds to Case 2 of Theorem 2.6 and Theorem 2.7 of
Hoffman and Osserman [5].
In the following, let R*= {r € R|r > 0}.

COROLLARY. Let M and t: M — G5 satisfy the same hypotheses as those of
Theorem 3. In addition, let H: M — R™ be a smooth function such that d(log H) = 37,
then there exists a conformal immersion X: M — E2*¢ with Gauss map t and scalar
mean curvature H. In particular, if ¥ =0, there exist conformal immersions with
Gauss map t and constant scalar mean curvature.

REMARK. This corollary generalizes to the higher codimensions results of Kenmotsu
(8].

Now we present the principal uniqueness result discovered by Hoffman and
Osserman [5].

THEOREM 4. Let X: M — E2%¢ be a conformal immersion with Gauss map t and
mean curvature H. If H(p) # 0 for some p € M, then there exist no conformal
immersions essentially different from X with Gauss map t.

PROOF. Any section ® in k may be written as ® = Re[ud X], where u: M — C is
smooth. If ® is the differential of an immersion, then (d®)™ = 0; this implies
du = 0, i.e., u is holomorphic on M. In a neighborhood of U of p, @ N k is a rank 1
bundle; hence if ® is the differential of an immersion, @ |U is a section in a N x|U,
so that u is real-valued on U. Thus u = real constant.

4. A closer look at t: M — G2. It is well known [1], when G? is regarded as the set
of unit decomposable 2-vectors in A’E# and A’E* is identified with E®, that

G = {(&m) e B x E =B ¢]" =l = 1),

ie., G2 = S%(1/v2) X S*1/V2) where these spheres lie in 3-planes orthogonal to
one another. Let g, be the riemannian metric on the ith factor of G; for i € {1,2}.
Clearly

(26) =8 T &-

In this section we view the second fundamental form § of G? in S*(1) as
real-valued; we can do this, since dim(= *) = 2 for each 7 € G2, as follows: For
| € T,G3, we redefine g by letting

(27) q(LD)mt=1A1(m);

this makes sense since / A I(7) € A’r+ and we regarded =+ as the positive unit
2-vector in A%z * . It turns out (cf. proof of Lemma 5 of Part 1) that

(L, 1) =det(l: m > ")

for all / € T,G7. We may also write g in terms of g;, i € {1,2}.
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LEMMAS. =g, — &;.

PrOOF. If 7 = (&7m) € S*(1/V2) x S*(1/V2) = G2, one may show [1] that

7+ = (& -n). Then
g=—(dm,dn*) = —((d¢,dn),(d¢, ~dn))
= -[(d¢, d§) = (dn,dn)] = -g; + .

If t: M — Gj3 is smooth we let g, = t*g, for i € {0,1,2} and g = t*g. Of course,
(26) and Lemma 5 imply
(28) 8o=8 t8 and g=-g +g,.

Let g be a riemannian metric on M. The primary normal curvature, N,( p), may
be redefined to be a scalar, since dim(¢ * ( p)) = 2, by setting

(29) N,(p) = N

Now let 1,; M — S%(1/y2) be the ith component of #: M — G2 = S*(1//2) X
S%(1/y2) for i € {1,2}. For i € {1,2), let ¢,(g) be the energy density of ¢; with
respect to the metrics g and g, (cf. [2]). Also, for i € {1,2}, define p,(g) by
B, = p,(8)1,, Where p, is the area element associated to g and p, is the “area
element” associated to g,; we call p,(g) the Jacobian of ¢, with respect to g and g..

PROPOSITION 5. Let g be a riemannian metric on M that induces the given conformal
structure; then a, N k, # {0} if and only if at p
e(g) +01(g) = e2(8) + p2(8)-
PROOF. Proposition 4 states that a, N «, # {0} if and only if %trg(qp) = N,(p);

this is clearly also true for g, and N,(p) redefined by (27) and (29), respectively.
But, by (28),

(30) %trg(‘I) = %trg(gz - &) =+¢(g) —&lg),

according to the definition of energy density. On the other hand, arguing as in [12,
§5], we can show

(31) Ng=P1(g)_P2(g)-
Hence, a, Nk, # {0} if and only if, at p, &,(g) — £(8) = p1(8) — P2(8)-
COROLLARY. Suppose t: M — G# is a Gauss map. Then t, is antiholomorphic at p if

and only if t, is antiholomorphic at p.

Proof. The component ¢, of ¢ is antiholomorphic at p if and only if ¢,(g) +
p.(g) =0 at p for i € {1,2}, where g is a metric on M which induces the given
conformal structure.

REMARK. The equation &(g) + p;(g) = &,(g) + p,(g) corresponds to equation
(4.7) of Hoffman and Osserman [6)].

PROPOSITION 6. Let ® € a, Nk, — {0} and let g be a riemannian metric on M
such that g, is the metric induced on T,M by ®. Then, at p, fori € {1,2}

e(g) +0,(g) = [H(®) .
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PROOF. Let e, e,, e;, e, be a t(p)-adapted frame of E*. Define v, € T,M by
®(v,) = e, for i€ {1,2}. Then define scalars /J; by (3) for i, j € {1,2} and
a € {3,4}. Since ® € a,, hy is symmetric; thus /3, =[], by (1). Clearly H(®)
= 1Y,  I2e, by (2); hence

(32) o) = 1X(xi)’

Since @, N «, # {0}, Proposition 5 implies &,(g) + p;,(g) = &,(g) + p,(g). Hence,
it is enough to prove Y2_;¢,(g) + p,(g) = 2|[H(®)||*. First, observe by the first
equation of (28) that &(g) + &,(g) = €,(g), the energy density of ¢ with respect to
g and g,. Next observe that p,(g) + p,(g) = K, the curvature of ¢ with respect to
g; this follows by arguing as in [12, §5]. Hence

(33) ;ei(g) +p.(8) = &(g) + K.

Since v, v, is a g-orthonormal frame,

(34) eo(g) =4 X (15)

and

(35) K, = %(15|.

Using (34) and (35) in the right side of (33) and simplifying we obtain
L e(s)+n(e) = 12 (2]

The proposition follows from (32).

COROLLARY 1. Suppose t 4, # 0 and g is a riemannian metric on M which induces
the given conformal structure. Then a, D k, if and only if €(g) + pi(g) =0 for
i€ (1,2).

PROOF. The proof is an immediate consequence of Propositions 1 and 6.
Of course, when ® = dX for an immersion X: M — E* we obtain information
about X.

COROLLARY 2. Suppose X: M — E* is an immersion with Gauss map t. Let g be the
induced metric and let N = N, be the normal curvature of X. Then N = &,(g8) — &(§g).

PROOF. This follows from Proposition 6 and (31).

COROLLARY 3. Suppose X: M — E* is an immersion with induced metric g and
mean curvature H. Then |H||* = ¢,(g) + p,(g) fori € {1,2}.

COROLLARY 4. An immersion X: M — E* is minimal if and only if each factor of t
is antiholomorphic.

PrOOF. The map ¢, is antiholomorphib if and only if p,(g) = —¢,(g).
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REMARK. Corollaries 2 and 3 of Proposition 6 are new results although the fact
that |HJ||* = ¢;(g) + p,(g) for i € {1,2} is hinted at in the calculations in [7].
Corollary 4 is, of course, well known.

We know of no particularly nice way of writing the integrability condition d7 = 0
for the p.d.e. (d®)™ = 0, where ® is a nowhere vanishing section in a N k, in terms
of the components #,, ¢, of t+ when ¢ = 2. Thus, since we can do little more than
replace the algebraic condition in Theorems 1-3 by ones involving ¢,(g) + p,(g),
i € {1,2}, we do not write out the corresponding theorems for the case ¢ = 2. We
turn instead to a characterization of the Gauss map of a minimal immersion into a
3-sphere S* of E*. But first we need

LEMMA 6. Suppose t is regular at p. Then %trgo(q) = —kN, atp.

PrOOF. By (28), %trgo(q) = det(g, — &, 8 + &,)/det(g,), where det( , ) stands
for the polarization of the quadratic form det on 2 X 2-matrices, and the g, for
i € {0,1,2} in the arguments of these determinants stand for matrices representing
the quadratic forms g, with respect to the same fixed basis. But

det(g, — g1, 8 + g,) = det(g,) — det(g,).

Hence tr, (9) = (det(g,) — det(g,))/det(go) = px(80)* = P1(80)* = —kN,,, since
k = p.(80) + p2(8o) and N, = p1(8;) — p2(8&o)-

That the normal bundle ¢ * is flat is independent of the conformal structure on M
since if N, = 0 for any riemannian metric on M, then N, = 0 for all riemannian
metrics on M.

THEOREM 5. Let t: M — G} be a smooth map of a simply connected Riemann
surface. Then t is the Gauss map of a conformal minimal immersion X: M — S* if and
only if t is a conformal minimal immersion with flat normal bundle t - and k > -1.

PROOF. Suppose ¢ is a conformal minimal immersion with N, =0 and & > -1.
By [4, Proposition 2], ¢ is a conformal harmonic immersion. Since ¢ is harmonic,
7 = 0 (cf. [2]); thus by Theorem 3 and (23), it is enough to show that %trgo(q) =N,
in order for ¢ to be the Gauss map of a conformal immersion. But we are given that
N,, = 0, and by Lemma 6, %trgo(q) = 0, too. Let X be a conformal immersion with
Gauss map ¢. Since ¢ is conformal, X is pseudoumbilic [10], and since ¢ is harmonic,
X has parallel mean curvature [11]. Also, by Proposition 2, X is nowhere minimal.
Thus, by the Lemma on p. 446 of [4], X is a conformal minimal immersion into a
3-sphere S c E*. The proof in the other direction is straightforward.

The condition that N, = p;(8,) — p,(8,) = 0 has a nice geometrical interpreta-
tion; by the results of [12, §5], it says that the tangent planes to #( M) make equal
angles with the two S2(1/ V2 )-factors of G2. Also since ¢ is the second fundamental
form of t: M — S3(1) in the direction normal to G2 in S°(1), it turns out by
Lemma 6 that the map ¢ is a conformal minimal immersion into S°(1).

COROLLARY. The Gauss map t: M — G; of a conformal minimal immersion into
S3 c H* is a conformal minimal immersion when we view t: M — S°(1).
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ReMARk. This Corollary is a direct consequence of a result in a paper by H. B.
Lawson, Jr., Complete minimal surfaces in S*, Ann. of Math. 92 (1970), 335-374. In
that paper Lawson points out that what he calls the bipolar of a minimal surface in
S3 is a conformal minimal immersion into S3(1). But Lawson’s bipolar is just the
normal bundle ¢+ . Moreover, the map on G} sending an oriented plane to its
oriented normal plane, which thus transforms ¢+ into ¢, is the restriction to G of
an isometry of S3(1).

REMARK. Note, by Lemma 6, that a conformal immersion t: M — G can be a
Gauss map only if k = -1 or the normal bundle ¢ * is flat.
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