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ABSTRACT.We study smooth maps t :  M + G; of a Riemann surface M into the 
Grassmannian Gi of oriented 2-planes in E l i '  and determine necessary and 
sufficient conditons on t in order that it be the Gauss map of a conformal 
immersion X: ,M - E2+' .We sometimes view t as an oriented riemannian vector 
bundle; it is a subbundle of E?,". the trivial bundle over M with fibre E ~ '' .  The 
necessary and sufficient conditions obtained for simply connected M involve the 
curcatures of t and r L  . the orthogonal complement of t in E;'. as aell as certa~n 
components of the tension of t viewed as a map t :  M -. S C ( l ) ,where S C ( l )is a 
unit sphere of dimension C that contains G$ as a submanifold in a natural fashion. 
If t satisfies a particular necessary condition. then the results take t~vo different 
forms depending on xvhether or not r is the Gauss map of a conformal /?~lnln~ul 
immersion. The case r :  M -. Gf is also studied in some additional detail. 

In [5,  61, Hoffman and Osserman study the following question: Let M be a 
Riemann surface and t :  M + G; be a smooth map into the Grassmannian of 
2-planes in (2 + c)-space; when is t the Gauss map of a conformal immersion X: 
M + E2+'?In [S,  61 necessary and sufficient conditions are established when M is 
simply connected, in order for t to be a Gauss map. 

The purpose of this paper is primarily to redo the work of Hoffman and Osserman 
from the point of view established in [12, 131. One reason for doing this is to free 
their results of its dependence on the use of complex variables in order to allow and 
suggest generalizations from the case of surfaces to higher dimensional manifolds. 

Also, to some extent, the necessary and sufficient conditions established in [S, 61 
in order for t to be a Gauss map are somewhat mysterious (to me at least) and could 
use some illumination. In particular, we obtain corresponding conditions which are 
stated directly in terms of traditional geometric invariants. We will briefly describe 
these invariants and also describe how they appear in the theorems of this paper. 

Let go be the standard metric on G;. We say t :  M + G; is conformal if go = t*g, 
induces the given conformal structure on M, where t ,  does not vanish. One may 
view t not only as a map but quite naturally as an oriented riemannian rank 2 vector 
bundle over M, a subbundle of the trivial bundle of E p '  over M with fibre E2". 
As such we can define k: M + R to be the curvature of t with respect to the 
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element of area associated to go where t ,  is regular, i.e., has maximal rank, and to 
be zero where t ,is not regular-indeed, t is flat as a bundle where t :  M + G; is 
not regular. Certainly k is a very natural measure of the curvature of the bundle t .  
Also -1 6 k G 1. Theorem 2 states that if M is a simply connected noncompact 
k e m a n n  surface and t is conformal with k = -1 where t ,  # 0, then t is the Gauss 
map of a conformal minimal immersion. The corollary to Proposition 2 says the 
conditions on t are also necessary. 

Let t l be the orthogonal complement of the bundle t in Ep';we call t l the 
normal bundle of t .  It is also the case that t l is an oriented riemannian vector 
bundle over M. Let g be a riemannian metric on M. We define a section N, in 
A2t ', where A2t is the second exterior power of t . The projection of N,( p )  for 
p E M onto the unit decomposable 2-vector A E A2t '( p )  is the curvature of the 
"2-plane A" in t l with respect to the area ,element associated to g, the normal 
curvature of A. The Grassmannian G;' is viewed as the space of unit decomposable 
2-vectors in A2E2+';hence G;' c SC(l), the sphere of unit 2-vectors in A2E2+'.Let 
ij denote the second fundamental form of G;' in ~ ~ ( 1 ) .  = t"q; if t is an Set q 
immersion, then q is the component of the second fundamental form of t :  M + SC(l) 
orthogonal to G;. In Theorem 1we show that a necessary condition on t in order for 
it to be a Gauss map is that 

(0) ttr,(q) = N,, 

where g is any riemannian metric that induces the conformal structure on M. Note 
that we may view itr,(q) as the component of the tension of t :  M + SC(l)  
orthogonal to G;. Equation (0) is one of our necessary and sufficient conditions that 
correspond to one of those of Hoffman and Osserman. 

As is pointed out in the remark following Proposition 1,the map t ,  if it possibly is 
a Gauss map, already determines whether any possible conformal immersion with it 
as a Gauss map would be minimal or not, and if the immersion cannot be minim~.l 
then t already determines the direction of its mean curvature. Assuming (0) holds 
and k # -1 where t is conformal and regular, we define in $3 a riemannian metric g 
which induces the conformal structure on M. Let r denote the tension of t :  M + G; 
with respect to the metrics g on M and go on G;. Associated to r is a differential 
I-form on M, i,which involves only the component of r in the direction of the 
mean curvature just mentioned (see $3 for a complete explanation of what this 
means). Theorem 3 states that if M is simply connected, (0) holds, k + -1 where t is 
conformal and regular, and d? = 0, then t is a Gauss map. Theorem 3 also points 
out that the scalar mean curvature H of any conformal immersion with Gauss map t 
is given by 

where H ,  E R, and the theorem also presents a representation for any conformal 
immersion with Gauss map t using H. The equation d? = 0 is the other one of our 
necessary and sufficient conditions that corresponds to one of those of Hoffman and 
Osserman. 
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In the last section of this paper, we focus on t: M + G;. In thls setting equation 
(0) takes on an especially interesting form. Since G; = s2(1/  fi) X s2(1/  a ) ,  we 
let t,: M + S2(1/f i )  be the ith component of t for i E {1,2). If g is a 
riemannian metric on M ,  for i E {1,2), let &,(g)and p,(g) be the energy density 
and Jacobian of t,: M + s2(1/  fi), respectively, with respect to the metric g on M 
and the standard metric on s2(1/  a ) .  Then, according to Proposition 5 ,  equation 
(0) becomes 

where g is a riemannian metric that induces the conformal structure on M. In fact, 
we point out in Corollary 3 of Proposition 6 that 

for i E {I,21, if t: M + G: is the Gauss map of an immersion with induced metric 
g and mean curvature H. 

Finally, Theorem 5 presents a characterization of the Gauss map of a conformal 
minimal immersion into s 3 ,  the 3-sphere in E4. The theorem states that under the 
assumptior, that M is simply connected, t is the Gauss map of such an immersion if 
and only if t: M + G; is a conformal minimal immersion with flat normal bundle 
t L  and k >  -1. 

This paper draws heavily on [13], which we refer to as Part 1 throughout this 
paper. The notation of Part 1 is used in thls part and the ideas introduced in Part 1 
are employed extensively here. In particular, the space of admissible maps, a,  plays 
an integral role in Part 2. 

All maps that appear in this paper are Cm with the exception of k which need not 
be continuous when t is not an immersion. 

1. Preliminaries. Let M be a connected kemann surface, i.e., M possesses a 
conformal structure. The conformal structure orients M. Let G: be the Grassman- 
nian of oriented 2-planes in E2+'  and let go denote the riemannian metric on G;. 
Suppose t: M + G;' is a smooth map; as in Part 1 we often view t as an oriented 
riemannian 2-plane bundle over M ,  a vector subbundle of E F C ,  the trivial bundle 
over M with fibre E2+'. We let t denote the orthogonal complement of t in E r '  
and call t the normal bundle. The splitting E F C  = t 8 t ' induces orthogonal 
projections ( . . . )T : E;' + t and ( . . . ) : E c C+ t I. 

If t: M + G;' is given, we show the following in Part 1: There exists over M the 
rank 4 vector bundle P defined by 

8, = ( @: TpM + E:+' linear map I @ ( T ~ M )c L ( ~ ) )  

for all p E M. If E Pp,we define its second fundamental form h ,  by 

for all (u, u) E TpM X TpM. We view t,(u) as an element of GL(t(p),  t (p))  s 

T,(,,G;' (see 52 of Part 1 for details). Contained in P is the space of admissible maps, 
a,  which consists of all @ E P for which h ,  is symmetric. For each p E M ,  a, is a 
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subspace of ,8, of dimension a ( p ) ; if a: M + {0 ,1 ,2 ,3 ,4 )  is constant, then a is a 
subbundle of 0. Contained in a ,  for each p E M is a;,  the space of admissible 
maps at p with positive determinant. A map @ E a ,  has positive determinant if and 
only if @ maps a positively oriented frame of T,M into a positively oriented frame 
of t ( p ) . It may happen that a; = 0 for some p E M. Also we let a+= Up,, a;. 

We will often think of a conformal structure on a 2-dimensional vector space V as 
a linear map J :  V + V such that J 2  = -1, for J determines an orientation-that 
determined by ( u ,  J u )  for 0 # u E V-and a collection of inner products which are 
multiples of one another-those for which J is an isometry. Each plane T E G; has 
a conformal structure induced from its orientation and the inner product g on E2+'; 
we denote this conformal structure by J,,. For each p E M ,  let J, be the conformal 
structure on T,M. 

Let X:  M + E2+' be an immersion with Gauss map t that induces the given 
conformal structure on M ,  i.e., X is a conformal immersion. Since t is a Gauss map 
it follows that condition [C] of Part 1holds, i.e., if 8 = dX then @ is a section in a 
with values in a +  and ( d @ ) ' =  0 .  But, in addition, for each p E M, cP, must "pull 
back" the conformal structure on t ( p ) ,  J,(,,, to that given on T,M, J,, in order that 
X induce the given conformal structure on M. This suggests that we introduce the 
following rank 2 vector subbundle K of ,8 where, for each p E M, 

Note that any nonzero member of K ,  has positive determinant and any two 
members of K ,  differ by a composition with a similarlity transformation of t ( p ) ,i.e., 
a scalar multiple of rotation of t ( p ) .  

Hence, according to condition [C] of Part 1 and the definition of K ,  in order for a 
section @ in ,8 defined over a simply connected open subset U of M to be the 
differential of a conformal immersion X: U + E2+'  with Gauss map t ,  it is 
necessary and sufficient that 

[Kl  @, E ( a ,  n K, )  - { 0 )  and (d,@)'= 0 for all p E U. 

Here d,@ denotes the exterior differential of @ at p. When condition [K] holds for 
some section @ in PIU, we say t is a Gauss map on U. 

As we just observed, in order for t :  M + G;' to be a Gauss map it is necessary 
that a; n K~ = ( a ,  n K,) - ( 0 ) # 0 for all p E M. We now turn to a characteri- 
zation of d im(a ,  n K ~ ) .We define the mean curvature H ( @ )  for @ E K ,  - { 0 ) ,  p 
arbitrary, by 

where e, ,  e ,  is an orthonormal frame of t ( p ) .  The second equality in ( 2 )  follows 
from (1).  We leave it to the reader to check that H ( @ )is well defined. Note that 
H ( @ )E t '( p )  for all @ E K~ - ( 0 ) .  Of course, if @ = d p X  for an immersion X 
with Gauss map t ,  then H(@)is the mean of curvature of X at p. 
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Note that J, is a rotation by + 90" for all a E Gi. Thus J,(,,0 O E K, if O E K,. 
We will delete the subscript t (p)  in J,(,, in what follows. Also the reader is 
reminded that a is the set of all O E /3 such that h, is symmetric. 

LEMMA1. Let O E K, - {o} for some p E M. Then h, is symmetric if and on& if 
H ( J 0 O )  = 0. 

PROOF. Let el, e2 be a positively oriented orthonormal frame of t (p )  and define 
ul, u2 E TpM by O(v,) = e, for i E {1,2). Then note that J o  O(ul) = e, and 
J 0 O(v2) = -el. Hence by (2) and (1) 

PROPOSITION1. For any p E M the following hold: 
(i) dim(a, n K,) = 2 if and only if H(O) = 0 for all O E K, - (0). 
(ii) dim(a, n K,) = 0 ifand only if H(O) # 0 for aN O E K, - (0). 
(iii) If dim(a, n K ~ )1, then H(O) # 0 for all O E a;= n K,. 

PROOF. First note that K, = { J 0 O I O E K,). Hence H(O) = 0 for all O E K, -

{0), if and only if H ( J  0 O) = 0 for all O E K, - {0), if and only if h, is symmetric 
for all O E K, (by Lemma I), if and only if K, c a,. This proves (i); a similar 
argument proves (ii). For (iii), just note that if H(O) = H(J0  0 )  = 0 for some 
O E K, - {0), then H(\k) = 0 for all \k E K, - (0) by (2) since \k-' = rO-' + 
s(J 0 @)-I for appropriate reals r and s. 

REMARK.Choose v,, u, E T, M so that u, = Ju,. Then define 

is a positively oriented orthonormal frame of t( p )  . 

Now let X: M + E2+'  be a conformal immersion with Gauss map t. According to 
[K] and Proposition 1, X is minimal at p if and only if dim(2,) = 0; also if X is 
not minimal then H(p), the mean curvature of X at p, lies in 2, which is 
1-dimensional. Thus the Gauss map of X already determines whether or not X is 
minimal at p ,  and if X is not minimal at p, then the Gauss map determines the 
direction of the mean curvature at p. Hoffman and Osserman already pointed this 
out in [5]. 

2. The dimension of n, n K,. We now study dim(a, n K,) more directly in terms 
of the geometry of t: M G i  and the curvatures of the vector bundles t and t '.-+ 

We remind the reader that we defined the Weingarten map A :  t '  -+ P as the 
+ adjoint of t, (see 52 of Part I for details). The curvature k of the oriented 

riemannian vector bundle t at p, with respect to p, a fixed area element on M, is 
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given by 

where A' denotes the value of A at e, and e,, . . . ,e,+, is an orthonormal frame of 
t '( p ) .  The determinant of A'. may be defined as follows: Let u,, v2 E TpM such 
that p(u, r\ u,) = 1 and let el ,  e2 be a positively oriented orthonormal frame of 
t ( p ) ;  then define reals 11: for i, j E {1,2) and a E (3, .  . . , 2  + c) ,  by 

Since A and t * are adjoints, we see that 

for i, j E {1,2)  and ci E (3,. . . , 2  + c) .  Then det(Aee) = IlPJI, where Ilp,l denotes 
the determinant of the 2 X 2-matrix (l;), ,,, 2. In particular, we also have 

If t is regular at p ,  i.e., rank(t, = 2, so that go = t *go is an inner product at p 
we may suppose pp = pol,, where po  is the differential 2-form defined as follows: If 
ul, u2 is a positively oriented frame of T,M, then 

Hence, when t is regular at p so that p, = pol,, we may suppose vl, u2 given above 
in the definition of I;, form a positively oriented go-orthonormal frame of TpM. 
Unless stated otherwise k ( p )  at a point p where t is regular will be the curvature of 
t at p with respect to pol,. It is easy to check that k ( p )  = 0 when t is not regular at 
p .  We call k the pre-Gaussian curvature of t (see $2 of Part 1 for motivation of this 
definition). 

If rn E G;', then a positively oriented orthonormal frame e l , .  . . ,e2+,, of E2+ '  is 
said to be "a-adapted" if el, e2 is a positively oriented orthonormal frame of n.  If 
1 E T,G;' G GL(n ,n i ) ,  then go(l, 1) = (11112, i.e., if e,, . . . , el+, is a n-adapted 
frame of E2+', and reals 1: for i E {1,2),  a E (3, .  . . , 2  + c )  are defined by 
lla = ( / (e l ) ,  em), then 

Assume t is regular at p and reals 1; are defined as in (3) with u,, u2 a positively 
oriented go-orthonormal frame of TpM. Then, by (3) and ( 3 ,  

for r, s E { l , 2 ) .  



453 THE GAUSS MAP FOR SURFACES: PART 2 

LEMMA2. Suppose t is regular a tp .  Then Ik(p)l ,< 1and k ( p )  = +1 ifand only if 

1; = T Ifl and = +IF, 

for a E (3 , .  . . , 2  + c) .  

PROOF. Note, by (4), k ( p )  may be viewed as the dot product of the (2c)-tuples 
2 + c(l;,, l;,, l:,, l;,,. . . , lIl ,1:;') and (l;,, -1:,, 1i2, -l:,,. . . , l;;', -1;;'). These (212)- 

tuples are unit vectors by (6). Hence, the lemma follows directly from the Cauchy- 
Schwarz inequality. 

PROPOSITION = 2 if and only if either 2. dim(ap n K,) 
(i) t , lP  = 0, or 
(ii) t is conformal (and regular) at p and k( p )  = -1. 

PROOF. Throughout thls proof let u,, u, be a hositively oriented frame of TpM 
and el,  ...,e,, ,, a t( p)-adapted frame of E2+'. Then define reals 1; as in (3). The 
vectors u,,  u, and hence the reals 1,; will have various additional properties as 
needed in the course of the proof. 

Suppose dim(a, n K,) = 2 and t , lp  # 0. We \:ill show t is conformal at p and 
k(  p )  = -1. Choose @ E K, - (0) and suppose O(ui) = el for i E {1,2).  Then, by 

(11, 

I!; = (h,(v,7 vl),  e,) 

for i, j E {1,2)  and a E (3 , .  . ., 2  + c) .  By (i) of Proposition 1and Lemma 1,both 
h, and h,, ,are symmetric. The symmetry of h, and h,, ,implies in turn that 

(7) 1 2 = ,  and l;,= -l;, 

for a E (3,.  . . , 2  + c) .  By ( 5 ) ,  (l:,, I:,, . . . l::',, 1;;') are the components of t,(u,) 
with respect to an orthonormal frame of T,(,,G;'. Hence, by (7), t ,(u,) and t ,(u2) 
are orthogonal to one another and have the same (nonzero) length. Hence t is 
conformal (and regular) at p .  Thus, by multiplying u, and u2 by an appropriate 
scalar if necessary, we may suppose u,, u, is a go-orthonormal frame, too. Then (7) 
and Lemma 2 imply k(  p )  = -1. 

If t. = 0, then dim(a,) = 4, so clearly dim(a, n K,) = 2. Therefore suppose t 
is conformal and regular at p and k ( p )  = -1. Assume E K, - (0).  Since t is 
conformal at p ,  go induces the conformal structure on M at p .  Since @: T, M + t( p )  
is also conformal, an appropriate multiple of a ,  m@, is an isometry from TpM, with 
the inner product go,onto t (p) .  Now choose u,, u, so that (m@)(u,) = el; hence u,, 
u2 is a go-orthonormal frame, and 1; = (h,,,(u,, u,), e,) by (1). But, by Lemma 2, 
k ( p )  = -1 implies (7) holds. In particular, h,,, is symmetric. Thus m@ and hence 
a E a,. 

COROLLARY. E2+' is a conformal minimal immersion with Gauss map t, If X: M + 

then t is conformal with respect to the induced conformal structure on M and K = -p, 
where K and p are the Gaussian curvature of X and the Jacobian of the Gauss map t, 
respectively. 
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PROOF. Since = dX is a section in a n K and H(@)= 0 on M, Proposition 1 
implies a n K is a rank 2 vector bundle. Hence Proposition 2 implies that t is 
conformal and k = -1 where t ,  # 0. But for the Gaussian curvature of X ,  K, it is 
the case that K = pk, since p is the ratio of the area elements induced on M by t 
and X.  So where t ,# 0, clearly K = -p. Where t ,= 0, both K and p are zero; so 
here too K = -p. 

REMARK. It is well known that the Gauss map of a minimal immersion is 
conformal. That K = -p follows immediately from [4, Theorem 11. 

If M is simply connected and t :  M - G; is the Gauss map of a conformal 
minimal immersion, it is known that t is the Gauss map of infinitely many essential 
different conformal (minimal) immersions (see Hoffman and Osserman [ S ]  or 
Remark 2 after Theorem 2 of this paper). But are there other immersions with Gauss 
map t which induce conformal structures other than the given one on M? If a = 3 
on M, i.e., a is a rank 3 vector bundle, then one may show there exists a 3-plane 
E 3  c EZiL such that t :  M + G2(E3)c G;' (see 53 of Part 1). Hence, in this case, in 
general there exist nonconformal immersions of the Riemann surface M withGauss 
map t since the first and thrd  fundamental forms of an immersion X: M - E 3  
need not be conformally equivalent. But if a = 2 on a dense (and necessarily open) 
subset of M, then the given conformal structure is the only one induced by any 
immersion of M with Gauss map t .  This is a consequence of 

PROPOSITION3. Suppose t is a Gauss map of a conformal immersion which is 
minimal at p E M .  If a ( p )  = 2, then the given conformal structure at p ,  is the only 
conformal structure induced by an immersion with Gauss map t.  

PROOF. By Proposition 1, dim(a, n K,) = 2. Since a ( p )  = 2, it must be that 
K, = a,. Let Jp* be another conformal structure at p and let K,* = { @  E 

b, 1 Jt(,,0 @ = @ 0 Jp*). Clearly a, n K,* = K, n K,* # (0) if there exists an immer- 
sion with Gauss map t which induces the conformal structure J,*. But K, n K,* # (0) 
obviously implies Jp* = J,, the given conformal structure. 

REMARK.If an immersion X: M + E2+' is minimal at p E M, then necessarily 
a ( p )  k 2 by Proposition 1. It turns out that a ( p )  = 2 if and only if the normal 
bundle of X at p is not flat. 

We now turn our attention to determining when a, n K, # (0).  In 52 of Part 1 
we introduced the span o f t ,  ,,, S,, where 

Clearly S, c t '( p ) ; also we showed in Proposition 1 of Part 1 that dim(S,) = 4 -

4 ~ ) .  
The Grassmannian G5 is regarded as the set of unit decomposable 2-vectors in 

A 2 ~ ' + " .  Hence, in a natural way, G; is a submanifold of SC(l), the set of unit 
2-vectors in A2E2+'; of course, C = ('.:') - 1. Let ij denote the secondfundamental 
form of G; as a submanifold of SC(l). We showed in 54 of Part 1 that for all 
1 E T,G;' = GL(n, n ') 

(8) +?j( / ,1 )  = 1 A / ( T I ,  
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which makes sense since n is regarded as the positive unit 2-vector in the second 
exterior power of the 2-plane n, A2n. Now let q = t*q. It is easy to see that q, takes 
values in h2sPfor all p E M. Hence, if a ( p )  2 2, so that dim(Sp) < 2, it follows 
that q, = 0. Assuming a ( p )  ,< 2, if X E G2(Sp) let r" t '( p )  + X be the orthogo- 
nal projection onto A. 

LEMMA3. Suppose a ( p )  < 2. I f v  E T,Mand X E G,(S,) c A'S,, then 

+ (q (u ,  v),  A) = det(r" t t .(v)) 

PROOF. Let e,, e,, . . . , e,+,. be a t(p)-adapted frame such that X = span{e,, e,). 
Then, since t ( p )  = e, A e, and X = e, A e,, (8) implies 

If g is a riemannian metric on M, we define tr,(q) by 

where u,, u, is a g-orthonormal frame field defined on M. 
We discuss for a moment the curvatures of t ', the normal curvatures of t. Let g 

be a riemannian metric on M. If X is an oriented 2-plane in t '( p ) ,  we may define 
the normal curvature of X with respect to g as follows: Let e,, . . . , e2+,  be a 
t-adapted frame field of E2+' defined near p such that e,(p), e,(p) is a positively 
oriented frame of A.Then define (Aqet :  TpM + h for i E {1,2), by letting 

for all u E T,M.  By det((Ayet) we mean the determinant of a matrix representing 
(Ayet  with respect to orthonormal frames of T,M and A. Then, the normal 
curvature of X with respect to g, N,",is defined by 

Of course, one may check that N," is independent of the choice of e,, e2 in t ( p )  and 
e,, e, in X as well as the fact that N; actually depends on the area element on M 
associated to g rather than g. Perhaps the easiest way to see this is to introduce 
1-forms wp = (de,, e,) for i E {1,2) and a E (3 , .  . . , 2  + c ) ,  and show that, at p ,  

where p, is the area element on M associated to g. Also one may show that if X is 
an immersion with Gauss map t which induces the metric g on M, then the normal 
curvature of X E G2(t'( p)) for X, at p ,  is given by N;. 
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If el,  e,, . . . , e2+,  is a t( p)-adapted frame of E2+ '  and g is a riemannian metric 
on M, set Nip  = N: if h is the 2-plane having e,, ep (in that order) for a positively 
oriented frame, for distinct a ,  ,8 E (3,. . . , 2  + c) .  Then define N,: M + t ' at p by 

It is straightforward to check that N,(p) is independent of the choice of the 
t( p)-adapted frame el,  e,, . . . ,e2+,.. Also since Ng( p )  actually only depends on the 
associated area element p, of g, it follows that Ng(p) is determined up to a scalar 
multiple, in fact, up to a positive scalar multiple by the orientation of M. We call 
N,(p) the primary normal curvature 2-vector at p (with respect to g). Clearly 
N,(p) E A2t (p ) .  In fact, the following lemma holds. 

PROOF. It follows by letting e, = @(v) in (1) of Part 1 and (9) that, for all 
v E TpM, 

where e l , .  . . , e2+, ,  is a t(p)-adapted frame of E2+', and e3, e4 is a positively 
oriented frame of A. If X is orthogonal to S,, i.e., X contains a vector orthogonal to 
S,, then clearly rank((AA)'1) < 2 for i E {1,2); consequently de t ( (~ ' ) '~ )  = 0. 
Therefore N: = 0 by (10) if h is orthogonal to S,, and thus N,(p) E A2Sp. 

PROPOSITION4. Let g be a riemannian metric which induces the given conformal 
structure on M, i.e., J*g = g. Then a, n K, # (0) if and only if itr,(q) = N, at p .  

PROOF. If a ( p )  > 2, then dim(S,) < 2. Hence q, = 0, and thus tr,(q,) = 0. But 
Lemma 4 also implies N, = 0 since A~S, = 0. However when a ( p )  > 2, clearly 
a, n K~ # (0) because of dimensional reasons. Therefore, for the remainder of this 
proof we assume a ( p )  G 2, i.e., dim(S,) > 2. 

First observe that itr,(q) = N, if and only if 

for all h E G2(Sp). Thls is so since both tr,(q) and N, lie in A2Sp, which is spanned 
by G2(Sp), and since (tr,(q), A) = tr,(q, A) and (N,, A) = N," for all h E G2(Sp). 

Let P: /3 @ /3 + R be the nondegenerate skew-symmetric tensor field introduced 
in 92 of Part 1. It is immediate from the definition of P that for any @, * E /3, 

where v = pO(u l A v2) > 0. For each h E G2(Sp), define a(" to be the P-orthogo- 
nal complement of A(" = {AZ1 z E A) in /3,. Clearly, by Lemma 2 of Part 1, the 
collection {a(")l X E G2(Sp)) is the same as the collection of all 2-planes in /3, 
containing a,. This leads to our second observation: a, n K, # (0) if and only if 
a"' n K, # (0) for all h E G2(Sp). 
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Using these two observations the proof of the proposition reduces to showing the 
following: For all X E G2(Sp),a(')  n K, # (0)  ifand only if (12) holds. 

Pick X E G,(S,). Let u,, u, be a positively oriented g-orthonormal frame of T,M. 
Also let el, e,, . . . , e,,, be a t(p)-adapted frame of E2+' with e3, e4 a positively 
oriented frame of A. Now define x,, X,  E K, by x1(v,) = e, for i E {1,2), and 
x 2  = J 0 xl .  Clearly xl ,  x 2 is a basis of K,. Define P a :  ,8, - R for a E {3,4) by 

P a ( @ )= P(Aee,@ )  

for all @ E ,8,. By definition, a(" = ker(P3) n ker(P4). Hence a(" )n K, # (0) if 
and only if P 3  I K,, p41 K, are linearly dependent. The linear dependence may be 
expressed using the basis x,, X,  of K,. Hence a(') n K, # (0)  if and only if 

Define reals 1; as in (3). Since by (13), 

vpa(x , )  = vP(x , ,  A',=) 

= ( ~ , ( ~ l ) ,  X XI('^), ~ ' ~ ( ~ 1 ) )~ ' ~ ( ~ 2 ) )  

= (t*(u2)(x1(u1))- t*(ul)(x,(u2)) ,ea)  

for i E {1,2), a E {3,4), (14)becomes 

Using ( l l ) ,  this last equation states that 

where r" t ( p )  + h is the orthogonal projection onto A. Finally, applying Lemma 
3 and (lo), we obtain 

An immediate consequence of condition [K] and Proposition 4 is our first 
theorem. 

THEOREM1. If t :  M -+ G; is a smooth map for which +trg(q) # Ng for some (and 
hence any) metric g which induces the conformal structure on M, then t is not a Gauss 
map. 

REMARK1. The equation ftrg(q) = Ng corresponds to equation (2.20) of [ S ] .  Both 
these equations represent the algebraic aspect to the necessary and sufficient 
conditions on t in order for it to be locally a Gauss map. 
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REMARK tr,(q) as the component 2. If we view t :  M + SC(l), then we may view 
of the tension T = trgv(t*) (with respect to the metric g on M and the standard 
metric on ~ ' ( 1 ) )  whlch is orthogonal to G i ;  cf. [4, $31. 

3. The p.d.e. in [K]. We now turn to study the p.d.e. (do) '=  0, where is a 
section in a n K ,  under the regularity assumption that a n K is a vector bundle 
necessarily of rank 1or 2. 

Let us consider first the situation in which a n K = K, i.e., rank(a n K )= 2, for 
the given t :  M + G;'. In order to carry out our investigations in this situation we 
make the further assumptions that M is not compact and is simply connected. Since 
both t (viewed as a vector bundle) and a n K are of rank 2 and M is not compact, 
there exists a globally defined positively oriented orthonormal frame field e l ,  e 2  in t 
and a globally defined nowhere vanishing section x in a n K.  Set E = e ,  - ie,; it is 
a globally defined E2+' 8 C-valued vector field on M. Hence there exists a globally 
defined differential form $ of type (1,O) such that x == Re[E$]. Also ( d ~ ) ~  
Re[E$ q ]  for some differential form q of type (0,l) .  Any section in a n K may 
be written 0 = Re[Eu$], where u: M + C is smooth, and 

(16) (d@)'  = ~ e [ ~ ( d uu q )  A $1-

Hence, by [K] and (16), for t to be the Gauss map of a conformal immersion it is 
sufficient to find a nowhere vanishing u:  M + C satisfying $ u  - u q  = 0, where a u  
is the (0, 1)-part of du. Thus it is sufficient to solve 

and set u = eW. Since M is not compact and is simply connected, and hence is 
conformally equivalent to either the unit disk in C or C itself, it follows from 
Theorem 4 of [3] that (17) has global solutions. In fact, the general solution of (17) is 
of the form w, + f ,  where w, is a particular solution of (17) and f :  M + C is 
holomorphic. Hence, if M is not compact, is simply connected, and rank(a n K )= 2, 
then t is a Gauss map. Also, by Proposition l(i), any conformal immersion with 
Gauss map t is necessarily minimal. We summarize these results in 

THEOREM2. Let M be a simply connected noncompact Riemann surface and suppose 
t :  M + G;' is a smooth conformal map. If k = -1, where t ,  # 0, then t is the Gauss 
map of a con formal minimal immersion X :  M + E 2+'. 

PROOF. Proposition 2 implies a n K is a rank 2 vector bundle so indeed the 
foregoing remarks apply. 

REMARK1. Theorem 2 is a partial converse to the corollary to Proposition 2. Also 
Theorem 2 corresponds to Case 1 of Theorem 2.6 of Hoffman and Osserman [S], 
since V = 0 (see [S]) corresponds to a n K being a rank 2 vector bundle. 

It is clear that if X is a conformal immersion with Gauss map t ,  then so is the 
immersion s X  + X,, where 0 + s E R and Xo E E2+'.If Y is a conformal immer- 
sion with Gauss map t and not one of the immersions sX + Xo, we will say that Y is 
essentially different from X. 
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REMARK2. Assume now that M is just noncompact. Let X be a conformal 
minimal immersion with Gauss map t; necessarily a n K is a rank 2 vector bundle. 
We may use Relax]  for x above, where aX = (dX/az)dz in a local complex 
coordinate z. Any section @ in a n K may be written as @ = Re[uaX], and 
condition [K] implies @ is the differential of a conformal immersion Y with Gauss 
map t if and only if u is a nonvanishing globally defined holomorpluc function. The 
immersion Y is essentially different from X if and only if u is not a (constant) 
real-valued function. If we let u be a nonreal constant function, then we obtain a 
conformal minimal immersion Y whlch is a multiple of what is called an associate 
minimal surface to X (see 19, p. 1171). But any of these associate minimal surfaces Y 
induces a riemannian metric on M which is a constant multiple of the one induced 
on M by X. If u is a nonconstant holomorphic function, then the corresponding 
conformal minimal immersion Y induces a metric on M wluch is not a constant 
multiple of the one induced on M by X. 

We now assume that a n K is a line bundle over M, i.e., rank(& n K )= 1, for the 
given map t. Under this assumption we assume M is simply connected. Hence a n K 

has a globally defined nowhere vanishing section which we denote by X.  By 
Proposition l(iii) we may and, in fact, do suppose that H(x) is a unit vector field. 
This determines x up to sign. Let g be the metric induced on M by X, i.e., 
g(u, u) = ( ~ ( u ) ,~ ( u ) )for all (u, u) E TM @ TM. Note that g is independent of the 
sign of X. 

Any nowhere vanishing section @ in a n K may be written as 

where necessarily H(@) = H . H(x); thus a ' s  "scalar mean curvature" is H. 
Let el, e,, . . . ,e, + ,, be a t-adapted frame field of E2+ '  defined on some open 

subset of M such that e, = H(x) (we may have to change the sign of x if c = 1in 
order to accomplish this). Then x = el#' + e2\ii2, where #', are 1-forms such 
that g = (#I), + (#,),. For any section @ = H-lX in a n K, 

where the connection form #; = -#: is defined by d#' = -#: A and d#, = -#: 
A #', and w: = (de,, e,). Writing the el and e, components of the p.d.e. (d@)'= 0 
of [K] for = H-lX leads to 

where * is the Hodge star operator associated with g.  However, (19) may be written 
more succinctly as 

The integrability condition for (20), i.e., (d@)'= 0 for @ = H-lX,  is 
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We now wish to find an interpretation for * ( a :  - 4;). It turns out to be 
intimately related to the tension of t with respect to the metric g on M and the 
standard metric go on G,'. From the work of Hoffman and Osserman [5] ,it is no 
surprise that the tension is involved. 

We again return to the geometry of G;. For i E { 1 , 2 )  and a E ( 3 , ... , 2  + c ) ,  let 
Ed, be the TGS-valued vector field along t defined by Ed,(e,) = S,'ea, where 6,' is 
Kronecker's delta, and let o; be 1-forms defined by o; = (de,, e B )  for A, B E 

{ 1 , 2 , .. . , 2  + c ) .  Then Ei ' s  and up's are dual to one another in the sense that 
t ,= I,, ,Ed,wP. The Cartan structural equations imply 

Let u,, u, be vector fields in TM dual to #', I + L 2 ,  i.e., ~ ( u , )= el for i E { 1 , 2 ) .Then 
define 1; as in (3);one easily sees that 

i.e., wp = C,lPJ$J. Note that 1; = 1; by (1) since x is a section of a. For 
p E ( 3 , . . . , 2  + c ) ,  define mP= +(I[+ / f 2 ) ; then by (2 )  H ( x )  = CpmPeP= e3 so 
that m3 = 1 and mP = 0 for /3 > 3. Now 

0 = dt* = (-E&: A I;#* + S,JEd,dl;k A #* - Ed,l;#i A p )  
r , j , k , a  

+ C Ed,$ A lpkI+Lk, 
r,k.a.P 

where i, j, k range over 1 ,2  and a, f l  range over 3 ,4 , .  . . , 2  + c. Setting the coeffi- 
cients of Ed, in the preceding equation equal to zero we conclude that 

and 

By (22), * t ,  = I,,,,,Ed,IP,* lCJ.  After computing * d * t,, replace dlp2(u,) and 
dl;,(u,) by the right-hand sides of the preceding equations. Thls gives the formula 
we need for the tension r = * d * t * of t with respect to the metrics g and go on M 
and Gi ,  respectively. The formula is 
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dm" + r n e * ( w ?  - $:) - x m & . ~ ) ( v , ) .  
P 

Since m 3  = 1, and mp = 0 for /3 > 3, this last equation becomes 

We can easily solve for * (o:- I/:); in fact, we obtain 

* ( w ?  - 4:) = ~ C E , ( T ,E ; ) + ~= t C ( r ( e i ) ,  e3)+'. 
i i 


If we view (7, e 3 ) :  t -+ R by ( 7 ,  e3 ) ( e )  = ( r ( e ) ,  e 3 ( p ) )  for e E t ( p ) ,  p E M, then 

since X: T M  + t equals Ci  e,+'. Set 

Note that iis a 1-form which involves only the projection of r onto e,, the direction 
of the mean curvature. Especially noteworthy is the observation that i is indepen- 
dent of the sign of x and hence is well defined even if M is not simply connected. 
Clearly T = 0 if and only if i = 0 and e, is parallel in the normal bundle r . When 
c = 1, T = 0 if and only if i = 0 since e ,  is automatically parallel in the line bundle 
t L .  

Hence, by (23), = 0 for = H-lX, or (20)becomes 

and the integrability condition for (24)is 

Finally note from (18) and (24) that the general solution of = 0,  4) a 
nonvanishing section in a n K, is determined up to an arbitrary nonzero factor. 
Hence any conformal immersion X with Gauss map t ,  which is given by X = j H-'x, 
where H satisfies (24),is determined up a homothety and translation of E2+'. 

We summarize the foregoing discussion in the statement of the following 

THEOREM3. Let M be a simply connected Riemann surface and t: M -, G i  be a 
smooth map. Also assume itr,(q) = N, on M, where g is a metric that induces the 
conformal structure on M, and k # -1 an.ywhere t ,  is conformal and nonvanishing. 
Then t is a Gauss map i f  and only i f  d i  = 0. Any conformal immersion X with Gauss 
map t is given by X = j H-lX, where H is the scalar mean curvature of X. The scalar 
mean curvature in turn is given by H = Hoexp($j?),where Ho E R. 

PROOF. The conditions that ttr,(q) = N, on M and k # -1 anywhere t ,  is 
conformal and nonvanishing imply that a n K is a rank 1 vector bundle by 

+ Propositions 2 and 4. Hence the discussion preceding the statement of this theorem 

proves the theorem. 
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REMARK.Theorem 3 corresponds to Case 2 of Theorem 2.6 and Theorem 2.7 of 
Hoffman and Osserman [5]. 

In the following, let R i=  { r  E R I r > 0).  

COROLLARY.Let M and t :  M -+ G;' satisfy the same hypotheses as those of 
Theorem 3. In addition, let H :  M -+ R +  be a smooth function such that d(1og H )  = t ? ;  
then there exists a conformal immersion X :  M -+ E 2 + '  with Gauss map t and scalar 
mean curvature H. In particular, if ? = 0, there exist conformal immersions with 
Gauss map t and constant scalar mean curvature. 

REMARK.This corollary generalizes to the higher codimensions results of Kenmotsu 

PI.  
Now we present the principal uniqueness result discovered by Hoffman and 

Osserman [S]. 

THEOREM4. Let X: M -+ E2+"be a conformal immersion with Gauss map t and 
mean curvature H .  If H ( p )  # 0 for some p E M ,  then there exist no conformal 
immersions essentially different from X with Gauss map t .  

PROOF. Any section @ in K may be written as @ = Re[uaX], where u:  M -+ C is 
smooth. If @ is the differential of an immersion, then ( d @ ) ' =  0; this implies -

du = 0, i.e., u is holomorphic on M. In a neighborhood of U of p, a n K is a rank 1 

bundle; hence if @ is the differential of an immersion, @ I U is a section in a n K I U ,  

so that u is real-valued on U. Thus u = real constant. 


4. A closer look at t :  M + G;. It is well known [I], when G; is regarded as the set 
of unit decomposable 2-vectors in A2E4 and A2E4 is identified with E6, that 

i.e., G; = s2 (1 /  f i )  x s2(1 /  f i )  where these spheres lie in 3-planes orthogonal to 
one another. Let g, be the riemannian metric on the ith factor of G: for i E {1,2).  
Clearly 

In this section we view the second fundamental form i j  of G: in as~ ~ ( 1 )  
real-valued; we can do this, since dim(a ') = 2 for each a E G;, as follows: For 
I E T,G;, we redefine ij by letting 

this makes sense since I A I(T) E A2a ' and we regarded a ' as the positive unit 
2-vector in A2a . It turns out (cf. proof of Lemma 5 of Part 1) that 

for all 1 E T,G~~.We may also write i j  in terms of g,, i E {1,2). 
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LEMMA5.  4 = g2 - gl. 

PROOF. If m = ( t ,11) E s 2 ( 1 /  a)x s 2 ( 1 /  a)= G;, one may show [ I ]  that 
m'= ( 5 ,  -7). Then 

4 = -(d.li, dm')  = - ( ( d 5 ,  d v ) ,  ( d 5 ,  - d v ) )  

= - [ ( d 5 ,  d 5 )  - ( d v ,  dv )1  = -81 + g 2 .  

If t :  M -,G; is smooth we let g, = t*g, for i E {O,1,2) and q = t*q. Of course, 
(26) and Lemma 5 imply 

(28)  g , = g ,  + g 2  and q =  -g1 + g 2 .  
Let g be a riemannian metric on M .  The primary normal curvature, N g ( p ) ,may 

be redefined to be a scalar, since dim(t '( p ) )= 2, by setting 

(29)  N g ( p )= N ; ~ ( P ) .  

Now let t,: M -+ s 2 ( 1 /  a)be the ith component of t :  M + G; = s 2 ( 1 /  6)X 

s 2 ( 1 /  a)for i E { 1 , 2 ) . For i E { 1 , 2 ) , let e i ( g )be the energy density of t i  with 
respect to the metrics g and g, (cf. [2]). Also, for i E { 1 , 2 } ,  define pi (g )  by 
p,, = p l ( g ) p g ,where pg is the area element associated to g and p ,  is the "area 
element" associated to g,; we call p,(g)  the Jacobian of t ,  with respect to g and g,. 

PROPOSITION5 .  Let g be a riemannian metric on M that induces the given conformal 
structure; then a,  n K ,  # ( 0 )  i f  and only i f a t p  

&l(d+ ~ l ( g )= & 2 ( d  + p2(g) .  
PROOF. Proposition 4 states that a, n K ,  # ( 0 )  if and only if +tr,(q,) = N g ( p ) ;  

this is clearly also true for q, and N,(p)  redefined by (27) and (29), respectively. 
But, by (281, 

1
(30)  2 t r g ( 9 )= +trg(g2- 81) = & 2 ( d  - & l ( g ) ,  

according to the definition of energy density. On the other hand, arguing as in [12, 
$51, we can show 

(31)  Ng = p , ( g )  - p,(g) .  

Hence, a, n K ,  # ( 0 ) if and only if, at p, e 2 ( g )  - q ( g )= p l ( g )  - p2(g) .  

COROLLARY.Suppose t:  M -+ G; is a Gauss map. Then t ,  is antiholomorphic at p if 
and only i f  t ,  is antiholomorphic at p. 

PROOF. The component t ,  of t is antiholomorphic at p if and only if q ( g )+ 
p , ( g )  = 0 at p for i E { 1 , 2 ) , where g is a metric on M which induces the given 
conformal structure. 

REMARK. The equation q ( g ) + p,(g) = ~ ~ ( g )+ p2(g)  corresponds to equation 
(4.7) of Hoffman and Osserman [6]. 

PROPOSITION E a, n K ,  ( 0 )  and let g be a riemannian metric on M 6. Let @ -

such that g, is the metric induced on TpM by @. Then, a t p ,  for i E { 1 , 2 }  
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PROOF. Let e l ,  e,, e,, e ,  be a t(p)-adapted frame of E ~ .Define v, E T,M by  
@ ( v , )= el for i E { 1 , 2 ) .  Then define scalars I: by (3)  for i ,  j E { 1 , 2 )  and 
a E { 3 , 4 ) .  Since @ E a,, h ,  is symmetric; thus 1: = 1; by (1).  Clearly H(@) 
= $,XI, ,  Ilqeaby (2);hence 

Since a, n K ,  Z { 0 ) ,  Proposition 5 implies e l ( g )+ p l ( g )  = e 2 ( g )+ p2(g).  Hence, 
it is enough to prove Cf=,e , (g)+ p l ( g )= 21)H(@)(12.First, observe by the first 
equation of (28) that e,(g) + e 2 ( g )= e,(g), the energy density of t with respect to 
g and go.Next observe that p l ( g )  + p2(g)= K g , the curvature of t with respect to 
g; this follows by arguing as in [12, $51. Hence 

Since u,, v2 is a g-orthonormal frame, 

and 

Using (34)and (35)in the right side of (33)and simplifying we obtain 

The proposition follows from (32). 

COROLLARY1. Suppose t *,, + 0 and g is a riemannian metric on M which induces 
the given conformal structure. Then a, 3 K, if and only if e , ( g )+ p l ( g )= 0 for 
1 € { 1 , 2 } .  

PROOF. The proof is an immediate consequence of Propositions 1 and 6. 
Of course, when @ = dX for an immersion X: M + E4, we obtain information 

about X. 

COROLLARY + E4 is an immersion with Gauss map t .  Let g be the 2. Suppose X: M 
induced metric and let N = Ng be the normal curvature of X. Then N = e 2 ( g )- e l (g ) .  

PROOF. This follows from Proposition 6 and (31). 

COROLLARY3. Suppose X: M + E4 is an immersion with induced metric g and 
mean curvature H .  Then JJH))= E ,  ( g )  + p l ( g )  for i E {I,2 ) .  

COROLLARY + E4 is minimal if and only i f  each factor o f t  4. An immersion X:  M 
is antiholomorphic. 

PROOF. The map t ,  is antiholomorphlc if and only if p,(g)  = -e,(g).  

mailto:21)H(@)(12
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REMARK.Corollaries 2 and 3 of Proposition 6 are new results although the fact 
that (lH1) = e,(g) + pl(g) for i E {1,2) is hinted at in the calculations in [7]. 
Corollary 4 is, of course, well known. 

We know of no particularly nice way of writing the integrability condition d? = 0 
for the p.d.e. (d@)'= 0, where @ is a nowhere vanishing section in a n K ,  in terms 
of the components t,, t 2  of t when c = 2. Thus, since we can do little more than 
replace the algebraic condition in Theorems 1-3 by ones involving e,(g) + p,(g), 
i E {1,2), we do not write out the corresponding theorems for the case c = 2. We 
turn instead to a characterization of the Gauss map of a minimal immersion into a 
3-sphere S 3  of E ~ .But first we need 

LEMMA6. Suppose t is regular at p. Then itrgo(q)= -kNgo at p 

PROOF. By (28), itrgo(q) = det(g2 - gl, gl + g2)/det(go), where det( , ) stands 
for the polarization of the quadratic form det on 2 x 2-matrices, and the g, for 
i E {O,l, 2) in the arguments of these determinants stand for matrices representing 
the quadratic forms g, with respect to the same fixed basis. But 

Hence itrgo(q)= (det(g,) - det(g,))/det(g,) = p2(gd2- pl(gOl2= -kNgo, since 
k = p,(g,) + p,(go) and Ngo = p,(g,) - p,(g,). 

That the normal bundle t ' is flat is independent of the conformal structure on M 
since if Ng = 0 for any riemannian metric on M ,  then Ng = 0 for all riemannian 
metrics on M. 

THEOREM5. Let t :  M -* G; be a smooth map of a simply connected Riemann 
surface. Then t is the Gauss map of a conformal minimal immersion X :  M -* S 3  if  and 
only if t is a conformal minimal immersion with flat normal bundle t ' and k > -1. 

PROOF. Suppose t is a conformal minimal immersion with Ngo = 0 and k > -1. 
By [4, Proposition 21, t is a conformal harmonic immersion. Since t is harmonic, 
7 = 0 (cf. [2]); thus by Theorem 3 and (23), it is enough to show that itrgo(q) = Ngo 
in order for t to be the Gauss map of a conformal immersion. But we are given that 
Ngo= 0, and by Lemma 6, itrgo(q) = 0, too. Let X be a conformal immersion with 
Gauss map t. Since t is conformal, X is pseudoumbilic [lo], and since t is harmonic, 
X has parallel mean curvature [ l l ] .  Also, by Proposition 2, X is nowhere minimal. 
Thus, by the Lemma on p. 446 of [4], X is a conformal minimal immersion into a 
3-sphere S 3  c E4.The proof in the other direction is straightforward. 

The condition that Ngo = p,(go) - p2(go)= 0 has a nice geometrical interpreta- 
tion; by the results of [12, $51, it says that the tangent planes to t (M)  make equal 
angles with the two S2(1/ 0)-factors of G;. Also since q is the second fundamental 
form of t :  M -, S5(1) in the direction normal to G; in S5(l),  it turns out by 
Lemma 6 that the map t is a conformal minimal immersion into S5(l).  

COROLLARY.The Gauss map t :  M - G; of a conformal minimal immersion into 
S C H is a conformal minimal immersion when we view t :  M - S5(1). 
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REMARK.This Corollary is a direct consequence of a result in a paper by H. B. 
Lawson, Jr., Complete minimal surfaces in S 3 ,Ann. of Math. 92 (1970), 335-374. In 
that paper Lawson points out that what he calls the bipolar of a minimal surface in 
S 3  is a conformal minimal immersion into S5(1) .But Lawson's bipolar is just the 
normal bundle t l. Moreover, the map on G: sending an oriented plane to its 
oriented normal plane, whch thus transforms t A into t ,  is the restriction to G; of 
an isometry of S5(1) .  

REMARK.Note, by Lemma 6, that a conformal immersion t :  M + G; can be a 
Gauss map only if k = -1 or the normal bundle t A is flat. 

1. S. S. Chern and E. Spanier, A theorem oi? or~entuble surfuces in four-drmens~oiiul spuce, Comment. 
Math. Helv. 25 (1951), 1-5. 

2. J. Eells and L. Lemaire, A report on hurmoi~rc mups, Bull. London Math. Soc. 10 (1978), 1-68. 
3. R. C. Gunning, Lectures on R~enlunn surfuces, Princeton Univ. Press, Princeton, N.J., 1966. 
4. D.  A. Hoffman and R. Osserrnan, The urea of the generuhzed Guussiuii rnluge and the s r a b ~ l r f ~  of 

n~riirmul surfaces rn S" and R",Math. Ann. 260 (1982), 437-452. 
5. , The Gauss nlup of surfaces rn R",J .  Differential Geometry 18 (1983), 733-754. 
6. , The Guuss mupfor surfuces In R~ und R4,Proc. London Math. Soc. (3) 50 (1985), 27-56. 
7. D.  A. Hoffman, R. Osserrnan and R. Schoen, On the Gauss nlup of complete surfuces of constuiit 

n~euii curouture In R~ und R4,Comment. Math. Helv. 57 (1982), 519-531. 
8. K. Kenrnotsu, Wererstruuss formulu for surfuces of prescribed meun curtuture, Math. Ann. 245 

(1979), 89-99. 
9. H.  B. Lawson, Jr., Lectures on mrnrn~ulsubmunrfolds. Vol. 1, Publish or Perish, Inc., Boston, 1980. 

10. M. Obata, The Gauss nlup of ~mmersrons of Riemunnrun munlfolds in spuce of coilstunt curuuture, J. 
Differential Geometry 2 (1968), 217-1223. 

11. E. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Arner. Math. Soc. 149 (1970), 
569-573. 

12. J. L. Weiner, The Guuss mup for surfuces rn 4-spuce, Math. Ann. 269 (1984), 541-560. 
13. , The Guuss nlup for surfuces: Part 1: The uffrne case, Trans. Amer. Math. Soc. 293 (1986), 

431 -446. 


