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Preface

This book presents a new approach to the modular representation theory
of a finite group G . Its aim is to provide a comprehensive treatment of
the theory of G-algebras and to show how this theory is used to solve
various problems in representation theory. Significant results have been
obtained over the last 15 years by means of this approach, which also sheds
new light on modular representation theory. So it appears that a need has
arisen for an expository book on the subject. I hope to meet this need and
to introduce a wider audience to these new ideas.

The modular representation theory originated in the pioneering work
of R. Brauer, who defined and studied blocks of characters of finite groups,
developed many important ideas, proved deep structural results, and ap-
plied with success the theory to the structure of finite groups. The next
important stage in the development of the theory is due to J.A. Green,
who started the systematic study of indecomposable modules over group
algebras and found many of their important properties. He also introduced
some crucial concepts which unify and extend earlier work; he showed in
particular that G-algebras can be used as a tool for handling both the
block theory and the G-module theory.

A major new stage started in the late seventies with the work of
J.L. Alperin, M. Broué, and L. Puig, who set the foundations of the p-local
theory of blocks and representations. Alperin and Broué introduced the
Brauer pairs (also called subpairs) and these were used by Broué and Puig
in their work on nilpotent blocks. Refining this notion, Puig defined the
concept of pointed group on a G-algebra and developed during the eighties
the general theory of pointed groups. Some deep results were proved by
means of this new approach, the most striking achievement being Puig’s
theorem on nilpotent blocks which determines entirely the representation
theory of such a block.

This book is a systematic treatment of Puig’s theory of G-algebras and
pointed groups, with applications to block theory and G-module theory.
Many classical results of modular representation theory are also included,
but often stated or proved in a non-classical way. First the general theory
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viii Preface

is developed: the defect theory of pointed groups, source algebras, multi-
plicity modules, the Puig and Green correspondences, and various other
general results. Then the module theory is discussed: the parametrization
of indecomposable G-modules, p-permutation modules, endo-permutation
modules, sources of simple modules, diagrams, almost split sequences and
their defect groups. The next topic is block theory: source algebras of
blocks, Brauer pairs, the classical main theorems of Brauer, blocks with a
normal defect group, structural results about source algebras, and Robin-
son’s theorem on the number of blocks with a given defect group. A whole
chapter is concerned with control of fusion and nilpotent blocks: Alperin’s
fusion theorem, Puig’s theorem on the source algebras of nilpotent blocks,
and the computation of ordinary characters of nilpotent blocks. Finally,
the last chapter presents a generalization of the defect theory of pointed
groups to the case of maximal ideals in G-functors.

Some further developments of the theory of G-algebras are not treated
in this book, in particular source algebras of blocks with cyclic defect group
or Klein four defect group, extensions of nilpotent blocks, blocks of sym-
metric groups and Chevalley groups, the parametrization of primitive in-
terior G-algebras, and the analogue of Brauer’s second main theorem for
G-modules. However this text should be a sufficient introduction to the
research papers concerned with these topics. It should also be noted that
many other aspects of modular representation theory are not mentioned
here and appear in other books.

Apart from a systematic introduction to the theory of G-algebras and
pointed groups, the main aim of the book is to show how Puig’s new point
of view can be applied in various situations. This approach is not used in
other books about modular representation theory, with the single exception
of the short lecture notes by Kiilshammer [1991a]. However the aim of
Kiilshammer’s book is essentially to prove Puig’s theorem about nilpotent
blocks in characteristic p. The more difficult result in characteristic zero
is included here and of course the theory of G-algebras is also developed
in many other directions.

I have not tried to attribute each result of this text to some mathe-
matician, but I have rather included short notes (at the end of the first
chapter and then at the end of each section from Section 10 onwards).
I tried in these notes to give credit to the mathematicians who contributed
significantly to some of the results of the text and I sometimes made some
remarks about further developments. At the end of each section, I have
also gathered a few exercises. Many of them are just easy applications of
the theory and none of them is supposed to be difficult. In fact I have often
included generous hints which sometimes are close to a complete solution.

This book would not have existed without Lluis Puig’s influence. Of
course his contribution to the mathematical results presented here is es-
sential, but I also benefitted from numerous conversations with him. He
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explained to me many aspects of his work, including unpublished results
and open questions, and gave me copies of various personal notes which
were very helpful. Finally he made valuable comments and suggestions
about the first chapters of this book. It is a great pleasure to thank him
for all the help he gave me during the many years of our acquaintance.

I am also indebted to many other people for assisting me with this
work. In a private lecture about Puig’s theorem, Markus Linckelmann
explained to me all the details of the proof and on this occasion found
a significant simplification of one of Puig’s arguments. He also read the
first chapters of this book and made numerous suggestions. Paul Boisen
read carefully the first six chapters, spotted various mistakes, and of-
ten contributed to the improvement of the text by correcting my En-
glish. Burkhard Kiilshammer made useful comments about several chap-
ters. Some parts of the manuscript were also read by J.L. Alperin, D. Ar-
lettaz, L. Barker, M. Broué, H. Fottner, J.A. Green, M. Harris, G.I. Lehrer,
M. Ojanguren, P. Symonds, and P. Webb, who made useful remarks and
suggestions. I wish to express my gratitude to all these people for their
help. T also thank Walter Feit for allowing me to include his conjecture
about sources of simple modules and Marc Burger who convinced me of
the need to write a detailed introduction to the subject and who made
useful comments about it. Finally, I am grateful to Nicolas Repond and
Pierre Joyet who solved the numerous problems I faced while preparing the
manuscript in TEX.

I have to apologize for the style in which this book is written. English
is a beautiful language which ought to be reserved to native writers. I am
sorry that the rules of the international scientific world have encouraged
me to write this book in a language which is foreign to me. As a result,
the style of this text is as far from actual English as ordinary sounds are
from music.

Jacques Thévenaz
Lausanne, October 1994
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Introduction

Within the representation theory of a finite group G, the modular theory
deals with a fixed prime number p and is concerned with all the finer prop-
erties of representations which can be obtained by looking specifically at p .
The prime p comes into play essentially in two ways. Firstly representa-
tions can be realized over some ring of integers and reduced modulo p, so
that one ends up with representations over a field of characteristic p; the
interplay between characteristic zero and characteristic p is crucial. Sec-
ondly one deals with all elements of G whose order is either prime to p or
a power of p; more generally one considers also all subgroups of G whose
order is a power of p (called p-subgroups).

In this introduction, we wish to convey some of the main ideas of
the subject and show how the development of the theory leads to several
new concepts which are studied in this book. Before we can discuss the
modular theory, it is necessary to recall some standard results of ordinary
representation theory.

Ordinary representation theory

Let K be a field of characteristic zero. We suppose that K is large enough
in the sense that K contains all |G|-th roots of unity, where |G| denotes
the order of the group G . In the classical theory, K is the field of complex
numbers, but this does not play any important role and we shall actually
need another choice of K . The group algebra of G with coefficients in K
is the K-algebra KG having G as a basis, with bilinear multiplication
induced by the product of basis elements. A KG-module is also called
a representation of G over K . We assume that all modules are finitely
generated and this amounts here to the condition that they have finite
dimension as K-vector spaces.

By Maschke’s theorem, the group algebra K G is semi-simple. Since
K is large enough, it follows from Wedderburn’s theorem that the group
algebra is isomorphic to a direct product of matrix algebras

KG = H M, (K).

=1
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xiv Introduction

Moreover any KG-module V' can be written V = @::1 V; , where V; is a
module over M, (K) (with zero action of the other factors of the product).
In other words the category mod(KG) of KG-modules decomposes as the
direct product of the categories mod(M,,(K)). Now there is only one
simple M, (K)-module S; up to isomorphism and every M, (K)-module
is isomorphic to a direct sum of copies of S; . This reduces the classification
of K G-modules to the listing of the r distinct simple modules S; , called
the irreducible representations of G over K .

The character of a KG-module V is the function xy : G — K
mapping g to the trace of the action of g on V (that is, the trace of the
matrix representing the action of g with respect to some K-basis of V).
By elementary properties of the trace, every character is a central function,
that is, it is constant on every conjugacy class of group elements. The
irreducible characters are the characters x; of the simple KG-modules S;
and the character table of G is the matrix (x;(g)) where x; runs over
the set of all irreducible characters and g runs over the set of all elements
of G up to conjugation. A basic result asserts that the character table
is a square matrix. Many properties of the group G are encoded in this
matrix. For instance all the normal subgroups of G can be reconstructed
from the knowledge of the character table.

One of the purposes of the modular representation theory is to find new
information on this table by working with a fixed prime number p. One of
the original ideas of R. Brauer, who initiated the modular theory, was to
deduce results about the structure of G from this new kind of information.
He applied this programme with success and proved deep group theoretical
results by means of this approach.

Block theory

In order to be able to reduce modulo p, we need a suitable ring of integers
in K , hence a suitable choice of K . We choose a principal ideal domain O
with field of fractions K of characteristic zero, and since we have fixed a
single prime p, it is enough to work with a local domain (in other words a
discrete valuation ring). We let p be the unique maximal ideal of O and
we assume that the residue field & = O/p has characteristic p. As in the
case of ordinary representation theory, the main theory is developed over
an algebraically closed field; so we assume that k is algebraically closed.
Finally, for technical reasons, we assume that O is complete with respect
to the p-adic topology; this allows us to lift roots of polynomials from k&
to O (Hensel’s lemma) and also to lift idempotents in algebras. We note
that it is a standard result of ring theory that such a ring O exists.

We consider the group algebra OG with coefficients in O and its
reduction modulo p, namely the group algebra kG . In contrast with the
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situation over K , we cannot in general decompose OG as a direct product
of matrix algebras, but we can obviously decompose it as much as possible.

We let
m
[15
j=1

be the finest possible decomposition as a direct product (which is unique up
to isomorphism) and we let b; be the corresponding central idempotent
of OG (namely b; projects to 1 in B, and to zero in all the other
factors). In other words we have a decomposition 1 = Z;nzl b; into central
idempotents which are orthogonal (that is, bjb; =0 if j # i) and primitive
in the centre of OG (that is, b; cannot be decomposed as a sum of two non-
zero orthogonal central idempotents). Thus we have B; = OGb; , called a
block algebra, while the idempotent b; itself is called a block idempotent
of OG . We shall also simply call b; a block of G'. We note that the blocks
are uniquely determined central elements of OG . We also note that OGb
is a subalgebra of OG , but with a different unity element, namely b.

Let b be a block of G and let OGb be the corresponding block
algebra. By reduction modulo p, we obtain over k a block algebra
OGb/p-OGb = kGb , where b is the image of b. Since O is complete, this
k-algebra is indecomposable (because one can lift idempotents from kG
to OG). Therefore, for the block decomposition of the group algebra, it is
immaterial whether one works over k or over O. Note that OGb is free
as an O-module and the image in kGb of an O-basis of OGb is a k-basis
of kGb.

We can also extend scalars to the field of fractions K of O and
consider the K-algebra KGb. Any O-basis of OGb is also a K-basis
of KGb. Considering the decomposition of KG as the direct product
of matrix algebras, we see that K Gb is isomorphic to the direct product
of a certain subset of the set of matrix algebras appearing in the decom-
position of KG. But every matrix algebra corresponds to an irreducible
representation of G over K . So we have partitioned the set of irreducible
representations of G over K into “blocks”: with each block algebra OGb
are associated certain irreducible representations of G over K ; explicitly
the block idempotent b acts as the identity map on each of them and
annihilates all the irreducible representations associated with other blocks.

Similarly indecomposable OG-modules are associated with a block.
If V is an indecomposable OG-module or kG-module, then V = bV for
some block idempotent b, and b acts as the identity map (while V is
annihilated by the other block idempotents). In fact the whole represen-
tation theory over O or over k is partitioned naturally into blocks. In
particular the set of simple kG-modules (also called modular irreducible
representations) is partitioned by the blocks of G .

oG

1%



xvi Introduction

One of the main goals of modular representation theory is to under-
stand the structure of a block algebra OGb and of the associated module
category mod(OGb) (which includes mod(kGb) since any kGb-module
can be viewed as an OGb-module). By the Krull-Schmidt theorem (which
holds because O is complete), every module decomposes into indecompos-
able summands in a unique way up to isomorphism. It should be noted
that there are in general infinitely many non-isomorphic indecomposable
kGb-modules. Thus the module category of OGb can be considerably more
complicated than that of KGb.

It may happen that a block algebra OGb is simply isomorphic to a
matrix algebra M, (O), in which case KGb = M, (K) (so that there is a
unique simple K G-module associated with b) and similarly kGb = M, (k)
(so that there is also a unique simple kG-module associated with o). Such
a block is called a block of defect zero, and it is the most elementary
possibility. If p does not divide |G|, each block is of this form; in particular
the representation theory over k is just the same as that over K if p does
not divide |G|. So we really only have to consider groups of order divisible
by p. For those who know about groups of Lie type, we note that any
Chevalley group in natural characteristic p always has a block of defect
zero, whose unique simple module is the Steinberg module.

We need to consider blocks with a higher level of complexity. The
first invariant which measures this complexity is the defect group of the
block, which will be defined later. It is a p-subgroup of G (unique up to
conjugation), hence sandwiched somewhere between the trivial subgroup
and a Sylow p-subgroup. This subgroup is trivial precisely for a block of
defect zero. At the other extreme, it is a Sylow p-subgroup if the block
is for instance the principal block, namely the unique block which contains
the trivial one-dimensional representation of G .

Now we can explain one of the most crucial ideas of block theory. When
one allows G to vary (for instance in some specific class of finite groups),
there are numerous examples of an infinite family of blocks which all look
the same: they all have equivalent module categories and they all have
identical behaviour as far as character values are concerned (more precisely
they all have the same matrix of generalized decomposition numbers, see
below). So all these blocks are equivalent, in a sense which will be made
precise when we introduce source algebras. A natural necessary condition
for this phenomenon to happen is that all these equivalent blocks have the
same defect group (which must therefore be a subgroup of all finite groups
under consideration). As an example of this, all blocks of defect zero are
equivalent.

This kind of observation immediately leads to the question of classify-
ing blocks up to equivalence. It is conjectured that for a given p-group P,
there are finitely many equivalence classes of blocks with defect group P .
We shall return to this point.
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Character theory and decomposition theory

We already understand the concept of the character of a KG-module and
this is called an ordinary character. There is also the notion of modular
character, which is attached to every kG-module M . This is a function
¢um : Greg — K defined on the set of all elements of G of order prime to p
(called p-regular elements), with values in the field K of characteristic
zero. If s € Greg, We can restrict M to the cyclic subgroup S gener-
ated by s and get a kS-module, written Resg(M). Since p does not
divide |S|, we can lift Res§ (M) uniquely to a K S-module Mg (because
the representation theories over k and over K are the same). Now we
can take the ordinary character of MS and evaluate it on s; this gives
the definition of ¢r(s). If M is a simple kG-module, then its modular
character ¢ps is called irreducible. We note that it would not be a good
idea to define modular characters by simply using traces over k, because
if a diagonal entry of a matrix appears p times then its contribution to
the trace is zero and one loses quite a lot of information. This is why we
use the process of lifting from %k to K . Another reason is that we can
now compute everything in K and therefore relate ordinary characters and
modular characters.

Ordinary characters and modular characters are connected by means of
the generalized decomposition numbers, which we now define. First recall
that any element g € G can be written uniquely as a product g = us,
where s is p-regular, u is a p-element (that is, the order of u is a power
of p), and v and s commute. Thus for any p-element wu, we have to
consider all p-regular elements which commute with « , and this is the set
Cc(u)reg , where Cg(u) denotes the centralizer of w. Now the modular
characters of the group Cg(u) are functions on Cg(u)rweg . If X is an
ordinary irreducible character of G and if we fix a p-element w, then the
function

Ca(t)reg — K, s+ x(us)

is a central function on Cg(u)reg and therefore is uniquely a linear com-
bination of the irreducible modular characters ¢ (because they form in
fact a basis of the space of central functions on Cg(u)reg ). The coefficient
of ¢ is an element of K (which is actually a sum of roots of unity). It is
written d, (u,¢) and is called a generalized decomposition number (it is
not called generalized in case uw = 1). Therefore the ordinary character
value of x on the element g = us can be written

X(us) =Y dy(u, §)d(s)
¢

where ¢ runs over the set of all irreducible modular characters of Cg(u) .
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We have already hinted that the blocks partition the whole represen-
tation theory and this is crucial here. Indeed one can show that the blocks
of G partition the irreducible modular characters of C(u), so that every
such character ¢ is associated with some block of G . Moreover, if the or-
dinary character x is associated with a block b but if ¢ is not associated
with b, then d,(u,¢) = 0. Thus in some sense the character values of x
can be computed within the block b.

Another important fact is that d,(u,¢) =0 if u does not belong to
a defect group of b. In particular x necessarily vanishes on ws if u is
not contained in a defect group of b. This is a very strong restriction on
the character table of G : if for instance b is a block of defect zero, then
its unique ordinary character x vanishes on all elements of order divisible
by p.

The numbers d, (u, ) form a matrix with rows indexed by the set of
all ordinary characters x associated with b and columns indexed by con-
jugacy classes of pairs (u, ¢), where u is a p-element in a defect group of b
and ¢ is an irreducible modular character of Cg(u) associated with b.
This is in fact a square matrix called the generalized decomposition matriz
of the block b.

We have already mentioned the idea that many blocks of various finite
groups are equivalent. It will turn out that equivalent blocks all have
exactly the same generalized decomposition matrix. This is the part of
the information which is called p-local, in the sense that it depends only
on p-elements (or more generally p-subgroups). In contrast the modular
character values ¢(s) are not local since they depend on Cg(u) and this
group is highly dependent upon G . Thus in the above expression of x(us)
as a sum, there is a p-local part consisting of all generalized decomposition
numbers d,(u,¢) and this part is the same for all equivalent blocks.

In order to give a not too difficult example of this phenomenon, we
consider a fixed p-group P and all possible blocks b of finite groups G
such that P is central in G and is a defect group of b. In this case the
generalized decomposition matrix of b is simply the ordinary character
table of P . This only depends on P and so is part of the p-local informa-
tion. In fact all blocks with a fixed central defect group P are equivalent
(and it is easy to see that there are infinitely many such blocks).

Another remarkable example is the case where the p-group P is cyclic.
The generalized decomposition matrix of a block with a cyclic defect group
was completely described by E.C. Dade, and this is one of the important
achievements of the theory. Moreover all indecomposable modules asso-
ciated with such a block have been classified. It is the only case where
there are actually finitely many such indecomposable modules up to iso-
morphism.
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Module theory

A very large part of block theory and decomposition theory is due to the
pioneering work of R. Brauer, from the forties to the sixties. The next im-
portant stage in the development of modular representation theory is due
to J.A. Green, who started in the early sixties the systematic study of in-
decomposable OG-modules and found many of their important properties.
A basic tool is induction, which already plays a crucial role in ordinary rep-
resentation theory. If H is a subgroup of G and if L is an OH-module,
then the induced module Ind% (L) is the OG-module OG ®¢y L. Given
an indecomposable OG-module M , consider a minimal subgroup P such
that M is isomorphic to a direct summand of Indg(L) for some inde-
composable OP-module L. Then P is a p-subgroup of G, called a
vertex of M , while the corresponding indecomposable OP-module L is
called a source of M . The important point here is that such a minimal
pair (P,L) is unique up to conjugation. The concept of vertex is the
counterpart for modules of the concept of defect group for blocks. More-
over if M is associated with a block b, then a vertex of M is always
contained in a defect group of b. We also mention an important tool,
called the Green correspondence, which is a bijection between the set of all
indecomposable OG-modules with vertex P and the set of all indecom-
posable ONg(P)-modules with vertex P. This was used for instance in
the classification of modules associated with a block with a cyclic defect
group.

Green’s theory of vertices and sources in some sense reduces the study
of OG-modules to the case of a p-group P . This case is quite hard to han-
dle in general because the categories mod(OP) and mod(kP) are almost
always wild, in a sense which can be defined precisely. (We note in passing
that there is a fruitful approach, developed by J.F. Carlson and others in
the eighties, which is based on associating an algebraic variety with every
kG-module.) However, there are still some very deep questions of finite-
ness. In particular W. Feit conjectured that, for a given p-group P, there
are only finitely many kP-modules which can be the source of some simple
kG-module for some finite group G. Here G runs over the infinitely many
finite groups having P as a subgroup. There are known infinite families
of simple modules which all have the same source and this is part of the
evidence for the conjecture.

It was shown in the seventies by M. Auslander and I. Reiten that
the category of modules may be endowed with extra structure. With
each indecomposable kG-module M is associated another indecompos-
able kG-module L and a short exact sequence

Sy : 0—L—FE—M-—0
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called the almost split sequence terminating in M . By definition the se-
quence does not split but every homomorphism f: X — M can be lifted
to a homomorphism f: X — E | except if f is a split epimorphism (be-
cause otherwise this would force the splitting of Sj; ). The remarkable fact
is that Sps is unique up to isomorphism (for any given M ). For trivial
reasons, we have to assume in this discussion that M is not a projective
kG-module. Almost split sequences have turned out to be very useful ob-
jects both in module theory and block theory. Other types of diagrams of
OG-modules (such as complexes or cycles) have also been considered with
significant success.

G-algebras

It was first observed by J.A. Green that a common concept can be used
for handling both the block theory and the module theory. He defined a
G-algebra to be an O-algebra endowed with an action of G by algebra
automorphisms. The group algebra OG and any block algebra OGb are
G-algebras for the conjugation action of G. On the other hand if M is an
OG-module, then Endp (M) is also a G-algebra for the conjugation action
of G. It was later emphasized by L. Puig that it is important to view these
examples as instances of interior G-algebras, namely algebras A endowed
with a group homomorphism G — A* (where A* denotes the group of
invertible elements of A). Any interior G-algebra is a G-algebra by con-
jugation. The importance of the concept of interior G-algebra stems from
the fact that an induction procedure is available for interior G-algebras,
but not for G-algebras.

Whenever a group acts on a set, it is useful to look at fixed points.
For every subgroup H of G, we let A” be the set of all elements of the
G-algebra A which are fixed under H . Then Endp(M)? = Endepy (M),
the subalgebra of all endomorphisms of M which commute with the ac-
tion of H . In particular any projection onto a direct summand of M as
an OG-module is an idempotent of Endp(M)®. In the other example,
(OG)Y is the centre of OG , where all the block idempotents lie. If M
is indecomposable, then Endp (M) has no idempotent except 0 and 1.
Similarly if OGb is a block algebra, then (OGb)“ has no non-trivial idem-
potent. We say in that case that the G-algebra is primitive.

A useful way of constructing fixed elements is to sum all the elements
of a G-orbit. If H is a subgroup of G and if a € A" | we write

@)= Y ga

g€e[G/H]

where [G/H] denotes a set of representatives of cosets of G modulo H .
This defines a linear map t% : Af — A% | called the relative trace map.
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If A isa primitive G-algebra, we can now define a defect group of A to be a
minimal subgroup P such that tIGD is surjective. The important property is
that a defect group is unique up to conjugation (this is where the primitivity
of the G-algebra comes into play). When A = OGb, this provides the
definition of a defect group of the block b. When A = Endp(M) where
M is an indecomposable OG-module, one actually recovers the concept of
a vertex of M (the equivalence between the two definitions is known as
Higman’s criterion).

We have now unified in some way block theory and module theory
under the single concept of G-algebra. Apart from the obvious advantage
of elegance, this approach has many other benefits. First of all the concept
also applies to other objects, such as diagrams of OG-modules and in
particular short exact sequences of OG-modules, yielding a new method
for handling these objects. For instance, with every almost split sequence
is associated a primitive G-algebra (hence a defect group and so forth),
which reflects the structure of the sequence. The next feature is that some
invariants or constructions which have been used successfully in one theory
can be introduced for arbitrary G-algebras and applied to other objects.
This procedure sheds some new light on the subject and turns out to yield
decisive new results.

Pointed groups

During the eighties, L. Puig extended Green’s work on G-algebras and
developed a new approach to the modular representation theory. He intro-
duced new invariants, gave a new point of view on classical topics, proved
structural results, and proposed difficult open problems. The cornerstone
of Puig’s approach is the notion of pointed group which we are now going
to define.

If M is an OG-module and if H is a subgroup of G, then a direct
summand N of M asan OH-module corresponds to an idempotent pro-
jection e € A”  where A = Endp(M) is the corresponding G-algebra.
Moreover N is indecomposable if and only if e is a primitive idempo-
tent of A (that is, e cannot be decomposed as the sum of two non-zero
idempotents annihilating each other). Finally two such direct summands
N and N’ are isomorphic if and only if the corresponding idempotents
e and €' are conjugate in A¥ . Thus the important notion is that of
conjugacy class of primitive idempotents.

For any QO-algebra B, a conjugacy class of primitive idempotents
is called a point of B. It is not difficult to prove that any point of B
is contained in all maximal two-sided ideals of B except one, and this
provides a bijection between the set of points of B and the set of maximal
two-sided ideals of B. (This explains the terminology, in analogy with
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commutative algebra, where a geometric point corresponds to a maximal
ideal.) If A = Endp(M) as above, a point of A corresponds to an
isomorphism class of indecomposable direct summands of M , viewed as
an OH-module by restriction. If for instance M is indecomposable with
vertex P and source L, then there is a unique point of A® consisting of
the singleton idy; (because M is indecomposable), while the isomorphism
class of L corresponds to a point of A” | called a source point of A.

If A is an arbitrary G-algebra and if we consider the points of all
subalgebras A where H runs over all subgroups of G, we are led to
introduce pairs (H,«) where H is a subgroup and « is a point of A .
Such a pair is called a pointed group on the G-algebra A and is always
written H, , both for notational convenience and because pointed groups
are usually treated as generalizations of subgroups. For instance there is an
easy notion of containment between two pointed groups which generalizes
the containment relation between subgroups.

We have seen what a pointed group is in module theory. Similarly it
is clear how to define the direct sum of two diagrams of OG-modules (for
instance short exact sequences) and the resulting notion of direct summand
can be reinterpreted as a pointed group on the G-algebra corresponding
to the diagram. We now turn to the question of how useful this notion is
in the case of a group algebra.

If U is a p-subgroup of G, there is a surjective algebra homomor-
phism bry : (OG)Y — kCq(U) (called the Brauer homomorphism) map-
ping Cg(U) to itself by the identity map and mapping all the other basis
elements to zero. (One needs to reduce modulo p in order to get a ring
homomorphism.) Moreover any simple kCq(U)-module V is specified by
a surjective algebra homomorphism = : kCg(U) — Endg (V). The com-
position 7 = mbry is a surjective homomorphism 7 : (OG)Y — Endy (V)
onto a simple algebra, so its kernel is a maximal ideal. By the bijection
between points and maximal ideals, this defines a point a of (OG)Y,
hence a pointed group U, on the group algebra OG. So any simple
kCq(U)-module, and hence any irreducible modular character of Cg(U),
corresponds to a pointed group U, on OG.

Let x be an ordinary irreducible character of G . If we apply this ob-
servation to the subgroup U generated by a p-element u , we see that the
generalized decomposition number d, (u, ¢) actually depends on a point «
of (OG)Y rather than a modular character ¢. It turns out that the value
of dy(u,¢) is simply equal to x(uj) where j is an arbitrary idempotent
in the point «. Thus any generalized decomposition number is in fact a
character value on a suitable element of the group algebra. Instead of using
Brauer’s classical approach explained before, we can now define general-
ized decomposition numbers as being the values x(uj) and derive from
this all the classical results of Brauer. This point of view also provides the
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way of computing these numbers via source algebras (see below). This is
a very good example of how Puig’s approach to a classical notion yields
more precise results.

Source algebras

If M is an indecomposable OG-module with vertex P and source L, we
have seen that the source module L can be viewed as a point v of AP,
where A = Endp (M) . Similarly, for any primitive G-algebra A, one as-
sociates with A a defect group P and a source point + of A | hence a
pointed group P, , called a defect pointed group of A. The main fact still
holds: all defect pointed groups are conjugate. Now with any primitive
idempotent ¢ in the source point 7, we can construct the algebra iAi,
called a source algebra of A. This is a P-algebra (because 4 is fixed
under P by construction) and moreover it is primitive (because 4 is prim-
itive). The choice of i does not change the source algebra up to isomor-
phism. If A has an interior G-algebra structure, then the source algebra
is also an interior P-algebra (and this improvement is actually crucial for
blocks).

So we have now constructed a new invariant of a primitive G-algebra,
the source algebra, unique up to conjugation. If M is an indecomposable
OG-module with vertex P and source L and if A = Endp(M) is the
G-algebra associated with M | then the source algebra iAi is simply the
P-algebra associated with the source L (because 4 is the projection onto L
and i Endp(M)i =2 Endp (L) ). But this new notion is also defined for other
objects, in particular for blocks. It turns out that source algebras of blocks
contain all the p-local information about blocks and have many remarkable
properties, so that they should be considered as one of the crucial objects
to be studied in block theory.

The first main result is that the source algebra S of a block alge-
bra OGb is Morita equivalent to OGb. This means that the module
categories mod(OGb) and mod(S) are equivalent. So we do not lose the
kind of information we want by passing to the source algebra. In particular
the simple modules for the block are in bijection with the simple modules
for the source algebra.

The second main result is that the generalized decomposition numbers
of the block b can be computed from the source algebra S . Recall that
these numbers have the form x(uj) where x is an ordinary irreducible
character, u is a p-element, and j is a primitive idempotent of (OG)".
One can show that j can be chosen in its conjugacy class so that it belongs
to the source algebra and the result essentially follows from this.

Now we can define the notion of equivalence for blocks which we men-
tioned earlier. Two blocks are equivalent if they have the same defect
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group and isomorphic source algebras. In particular they necessarily have
the same module categories and the same generalized decomposition ma-
trix. So the classification of blocks up to equivalence reduces to the problem
of classifying all possible source algebras for a given defect group. This is
a hard problem which is far from being solved. Many properties of source
algebras of blocks are known, but they do not suffice yet to characterize
them.

In analogy with Feit’s conjecture about sources of simple kG-modules,
L. Puig conjectured that, for a given defect group P, there are only finitely
many interior P-algebras which can be the source algebra of some block.
Thus there would only be finitely many equivalence classes of blocks with a
given defect group. It was proved by Puig that, for a given defect group P,
there are only finitely many possible source algebras of any given dimen-
sion; thus Puig’s conjecture reduces to the statement that the dimension
of source algebras is bounded (in terms of P).

A number of results are known about source algebras of blocks. For
blocks with a cyclic defect group, Puig’s conjecture has been recently proved
by Linckelmann, using deep structural theorems which extend the results
of Dade already mentioned. The structure of source algebras has also been
described when the defect group is a Klein four group, when the block is
nilpotent (see below), when the group is p-soluble, and for some blocks of
Chevalley groups. Weaker forms of Puig’s conjecture have also been proved,
for instance for blocks of p-soluble groups only, or symmetric groups only.

Fusion and nilpotent blocks

We have already mentioned that, whenever @ is a p-subgroup of G, the
blocks of G partition the set of simple kC¢(Q)-modules (or in other words
the set of irreducible modular characters of Cg(Q) ). But there is an even
more precise fact: the blocks of G partition the set of blocks of kC¢(Q) , so
that every block e of C(Q) is associated with some block b of G . More
precisely e is associated with b if and only if it appears in a decomposition
of brg(b), where brg is the Brauer homomorphism.

Let b be a block of G. A Brauer pair associated with b is a
pair (Q,e) where @ is a p-subgroup of G and e is a block of kCq;(Q)
associated with b. The use of such pairs started with Brauer (in a special
case) and was systematically introduced by J.L. Alperin and M. Broué in
the late seventies. They defined a partial order relation on the set of Brauer
pairs and obtained a poset (partially ordered set). Their idea was to view
Brauer pairs as generalizations of p-subgroups and the poset of Brauer
pairs as analogous to the poset of p-subgroups. The maximal elements of
this poset are all conjugate (their first components are in fact the defect
groups of b) and they play the role of the Sylow p-subgroups. This work
of Alperin and Broué set the foundations of the p-local theory of blocks.
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Refining this notion, one can consider pairs (Q,¢) where @ is a
p-subgroup of G and ¢ is an irreducible modular character of kCq(Q)
associated with b. This is a refinement since every such ¢ is necessarily
associated with some block e of Cg(Q). But we have already mentioned
that any such ¢ can be lifted uniquely to a point a of (OG)?. Thus
these new pairs are just pointed groups on OG and this is in fact the
original reason why L. Puig introduced pointed groups.

If P is a Sylow p-subgroup of G, two p-subgroups @ and Q' of P
can be conjugate in G without being conjugate in P . This type of phe-
nomenon is called “fusion” and happens also with both the Brauer pairs
and the finer notion of pointed group. Without giving the precise definition
of fusion, we simply mention that an element g € N (Q) induces a fusion
of @ with itself, but this fusion is considered to be trivial if ¢ € Cx(Q)
because ¢ induces the trivial automorphism of ). In the so-called p-local
group theory (which is at the heart of the classification of finite simple
groups), one of the first standard results, due to Frobenius, asserts that
a group in which there is no phenomenon of fusion must necessarily be
p-nilpotent (that is, a Sylow p-subgroup must have a normal complement).
In analogy, a block is called nilpotent if there is no phenomenon of fusion
in the poset of Brauer pairs, or equivalently in the finer poset of pointed
groups. This notion (which of course can be made precise) is due to Broué
and Puig, who proved many of the remarkable properties of such blocks.
For instance they proved that any nilpotent block has a unique simple
module over k., hence a unique irreducible modular character, and they
computed the generalized decomposition numbers.

The structure of a source algebra of a nilpotent block was later deter-
mined by Puig. This is a remarkable achievement, but in some way it is
only the first step of the p-local theory of blocks, since by definition there
is no fusion in the case of nilpotent blocks. More complicated structures
should appear if non-trivial fusion occurs.

Puig’s theorem asserts that a source algebra of a nilpotent block b
with defect group P is isomorphic to S ®» OP , where S = Endp(M) is
the endomorphism algebra of an endo-permutation OP-module M . This
means by definition that S has a P-invariant basis. As a result OGb is
Morita equivalent to S ®, OP , hence to OP since S is a matrix algebra
(a matrix algebra plays no role for an equivalence of module categories).
However, S plays a role for the computation of the generalized decom-
position matrix. If § = O, that is, if a source algebra is simply OP
(as in the case of blocks with a central defect group), then the generalized
decomposition matrix is the character table of P. In the general case,
each generalized decomposition number has to be modified by a sign which
comes from the action of P on M (that is, from the interior P-algebra
structure of S).
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We note that the condition that S is an endo-permutation module is
a very strong one. Those modules were first introduced by E.C. Dade in
the seventies and play a prominent role in modular representation theory.
There are several open questions about them, including the tantalizing
problem of their classification.

Multiplicity modules

Another important concept of Puig’s theory is that of defect multiplicity
module. Let A be a primitive G-algebra with defect group P and source
point v (or in short with defect pointed group P, ). We know that the
point v corresponds to a maximal ideal m of AP, hence to a simple alge-
bra AP /m, which we can write A”/m = End;,(V(y)) for some k-vector
space V() (because k is algebraically closed). The stabilizer Ng(P,)
of P, acts on this simple algebra and P acts trivially by construction,
so that Endg(V(y)) is an N-algebra, where N = Ng(P,)/P . Using the
Skolem—Noether theorem, it is elementary to deduce that V(y) is canon-
ically endowed with a structure of module over a twisted group algebra
of the group N (in other words V(v) is a “projective” representation in
Schur’s sense). The crucial fact is that this module is indecomposable pro-
jective. It is called the defect multiplicity module of A and is an interesting
invariant of A. If A is a block algebra, this notion specializes to Brauer’s
notion of root, but it is also defined for other objects, in particular for
OG-modules.

We have now three invariants of a primitive G-algebra: the defect
group, the source algebra, and the defect multiplicity module, defined up to
conjugacy. For an interior G-algebra A (still primitive), a remarkable fact
is that these three invariants essentially characterize A up to isomorphism.
We have added the word “essentially” because the third invariant has to be
handled with some care. In fact we obtain a parametrization of primitive
interior G-algebras with three invariants. In particular indecomposable
OG-modules can be parametrized by the conjugacy classes of their three
invariants: vertex, source, and defect multiplicity module. Similarly blocks
are parametrized by their defect group, their source algebra, and their
root. The problem here is that we do not know yet what sort of interior
algebras occur as source algebras of blocks, although there are numerous
restrictions. This is precisely the problem which was mentioned earlier.

An important tool of the theory of G-algebras is the Puig correspon-
dence, which can be viewed as a generalization of the Green correspon-
dence. If A is a G-algebra which is not necessarily primitive, then each
point of A® still has a defect pointed group. If we fix such a defect
pointed group P, , we can still consider the corresponding simple alge-
bra End;(V(y)) and V(y) is still a module over a twisted group algebra
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of the group N . However, this module need not be indecomposable pro-
jective. The Puig correspondence is a bijection between the set of all points
of A® with defect pointed group P, and the set of all isomorphism classes
of indecomposable direct summands of V(v) which are projective. This
correspondence can be considered as a reduction to the case of indecom-
posable projective modules over a (twisted) group algebra and in this sense
it is more powerful than the Green correspondence. In fact the Green cor-
respondence can easily be deduced from the Puig correspondence. In the
special case where A is primitive, the Puig correspondence reduces to a
bijection between the unique point {1} of A“ and the defect multiplicity
module of A, as mentioned above.

We note that the Puig correspondence is the crucial tool used for the
parametrization of primitive interior G-algebras (and in particular inde-
composable OG-modules). We also note that the use of defect multiplicity
modules provides a fruitful new point of view on various subjects, including
trivial source modules, endo-permutation modules, almost split sequences,
Knorr’s theorem on vertices of irreducible modules, and Robinson’s theo-
rem about the number of blocks with a given defect group.






CHAPTER 1

Algebras over a complete

local ring

In this chapter, we develop the general theory of algebras and points which
is used in this text. We work over a commutative complete local noetherian
ring O with an algebraically closed residue field k of prime characteris-
tic p. This allows us to deal with primitive idempotents, which play a
prominent role in this book. These assumptions suffice for the essential
part of the representation theory of finite groups.

We prove a strong version of the theorem on lifting idempotents and
use it to deduce a number of basic properties of O-algebras and modules.
We also study semi-simple subalgebras of O-algebras and we introduce
symmetric algebras. Finally we discuss the notion of Morita equivalence
between O-algebras.

In non-commutative algebra, many properties and results involve con-
jugation, in particular some uniqueness statements, and it turns out that
it is often much more convenient to work with the conjugacy classes of
objects rather than the objects themselves. For this reason, we define sev-
eral concepts as conjugacy classes: a point is a conjugacy class of primitive
idempotents and an exomorphism is a conjugacy class of homomorphisms.
These notions play a prominent role throughout this book.
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§1 PRELIMINARIES

In this section, we list without proof some basic results which are proved
in many textbooks. For instance most proofs can be found in Curtis—
Reiner [1981], Feit [1982], Landrock [1983]. Most results are concerned with
semi-simple rings, the Jacobson radical, and basic facts about groups and
modules. We end the section with a survey of some elementary properties
of group cohomology needed in this text.

Unless otherwise stated, all rings have a unity element, all modules
are finitely generated left modules and all homomorphisms act on the left.
The unity element of a ring A is written 14, or sometimes simply 1. All
algebras are associative algebras with a unity element. We assume the
reader is familiar with some basic notions of ring theory, in particular the
concepts of noetherian ring, local ring, and principal ideal domain.

We shall be mainly concerned with non-commutative rings. If a and u
are two elements of a ring A and if w is invertible, we write a* = u 'au
and Ya = uau~!. We shall use more often the latter notation because we
usually choose to work with left actions. Two elements a and b are called
conjugate if there exists an invertible element u € A* such that b = “a.
Here A* denotes the group of invertible elements of A. It is clear that
conjugation is an equivalence relation and an equivalence class is called a
conjugacy class.

By an ideal in a ring A, we shall always mean a two-sided ideal of A
(unless otherwise stated). We denote by Max(A) the set of all maximal
ideals of A. If A is a finite dimensional algebra over a field, then Max(A)
is a finite set. We denote by Irr(A) the set of isomorphism classes of
simple A-modules (also called irreducible A-modules). We often abusively
identify a simple A-module with its isomorphism class. The Jacobson
radical J(A) of a ring A is the intersection of all maximal left ideals
of A. It is a two-sided ideal and is in fact also the intersection of all
maximal right ideals of A. Any maximal ideal of A contains J(A), so
that J(A) € Nyemax(a) M- An important property of the Jacobson radical
is Nakayama’s lemma.

(1.1) PROPOSITION (Nakayama’s lemma). Let A be a ring and let V
be a finitely generated A-module. If J(A)-V =V, then V =0.

One often needs to apply Nakayama’s lemma to a module of the form
V/W where W is a submodule of V. In that case the result can be
restated as follows: if W+ J(A)V =V, then W=V,



§1. Preliminaries 3

(1.2)  PROPOSITION. If A is a commutative noetherian ring, then
ﬂnzo J(A)n =0.

Note that the proof consists essentially in applying Nakayama’s lemma
to the ideal (1,5, J(A4)".

Recall that if O is a commutative ring and if M is an O-module, then
M is called free if M has a basis. In that case the number of elements of
a basis is independent of the choice of basis (because O is commutative);
it is called the dimension of M and is written dime(M). Thus M is
isomorphic to a direct sum of dime (M) copies of O.

If A is a not necessarily commutative ring, then a free A-module of
rank r is an A-module isomorphic to a direct sum of r copies of A. We
use here the word rank rather than dimension, because we shall apply this
to the case of an (O-algebra A which is free as an O-module. Thus a
free A-module has both a rank (over A) and a dimension (over O). If
dimp(A) = n, then a free A-module of rank r has dimension rn over O.

Another easy consequence of Nakayama’s lemma is the following result
(see Exercise 1.3).

(1.3) PROPOSITION. Let O be a local commutative ring with unique

maximal ideal p and residue field k = OJ/p. Let M and N be two

finitely generated free O-modules, and let M = M /pM and N = N/pN .

(a) Let f: M — N be an O-linear map and let f : M — N be its
reduction modulo p. If f is surjective, then f is surjective. If f is
an isomorphism, then f is an isomorphism.

(b) Let x1,...,2, € M . If their images T1,...,%, in M form a k-basis
of M, then {x1,...,2,} is an O-basis of M .

(1.4)  COROLLARY. Let O be a local commutative ring. Then any
direct summand of a finitely generated free O-module is free.

Another way of obtaining free modules is the following. Recall that an
O-module M is called torsion-free if, whenever A\-m = 0 for some A € O
and some non-zero m € M , then A =0.

(1.5)  PROPOSITION. Let O be a principal ideal domain. Any finitely
generated torsion-free O-module is free. In particular any submodule of a
finitely generated free O-module is free.

A ring A is called simple if A has precisely two ideals, namely 0
and A. Thus A is non-zero and 0 is the unique maximal ideal of A. We
shall only deal with simple rings which are finite dimensional algebras over
a field k. Their structure is described by the following result. Denote by
M, (D) the ring of n x n-matrices with coefficients in the ring D .
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(1.6) THEOREM (Wedderburn). Let k be a field and let A be a finite

dimensional k-algebra. The following conditions are equivalent.

(a) A is a simple ring.

(b) A= M,(D) for some integer n and some finite dimensional division
k-algebra D .

(¢) A=Endp(V) for some finite dimensional division k-algebra D and
some finite dimensional D-vector space V .

If these conditions are satisfied, then V is a simple A-module and is the

unique simple A-module (up to isomorphism); thus Irr(A) contains a sin-

gle element. Moreover D = End4(V)°P, so that the k-algebra D is

uniquely determined up to isomorphism.

If the endomorphism algebra End4 (V) = D°P of the unique simple
A-module V' is isomorphic to k, then the simple k-algebra A is called
split. In that case A = Endy (V) = M, (k).

Since we shall usually be concerned with algebraically closed fields, we
mention the following special case.

(1.7)  PROPOSITION. Let k be an algebraically closed field.

(a) Any finite dimensional division algebra D over k is isomorphic to k .

(b) Any finite dimensional simple k-algebra is split, hence isomorphic to
Endg (V) & M, (k), where V is a k-vector space of dimension n .

The previous results contain implicitly Schur’s lemma, which we now
state in full.

(1.8) LEMMA (Schur). Let k be a field, let A be a finite dimensional

k-algebra, and let V' and W be two simple A-modules.

(a) Homa(V,W) =0 if V and W are not isomorphic.

(b) Enda(V) is a division algebra. In particular Enda(V) = k if k is
algebraically closed.

Another important result about simple rings is the Skolem—Noether
theorem.

(1.9) THEOREM (Skolem—Noether). Let S be a simple finite dimen-
sional algebra over a field k and assume that the centre of S is k. Then
every k-algebra automorphism of S is an inner automorphism.

A finite dimensional k-algebra is called semi-simple if it is isomorphic
to a finite direct product of simple k-algebras. It is moreover called split if
every simple factor is split. A module is called semi-simple if it is isomor-
phic to a direct sum of simple modules. Note that this direct sum must be
finite since all of our modules are finitely generated.
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(1.10) THEOREM. Let k be a field and let A be a finite dimensional
k-algebra. The following conditions are equivalent.

(a) A is a semi-simple algebra.

(b) A is a semi-simple left A-module.

(c) Every left A-module is semi-simple.

(d) J(A)=0.

If these conditions are satisfied, then A =[] c\jax(a) A/m . Moreover the
annihilator of a simple A-module is a maximal ideal and this sets up a
bijection between Irr(A) and Max(A).

Let A be a finite dimensional k-algebra. A simple A-module V is
called absolutely simple if k' ®, M is a simple k' ®, A-module for every
field extension k' of k.

(1.11) PROPOSITION. Let k be a field, let A be a finite dimensional
k-algebra, and let V' be a simple A-module. Then V is absolutely simple
if and only if Enda (V) 2 k.

In particular, a semi-simple k-algebra A is split if and only if every
simple A-module is absolutely simple. In that case A is isomorphic to a
direct product of matrix algebras over k. We shall only occasionally need
the following result and for simplicity we assume that k£ has characteristic
zero in order to avoid questions of separability.

(1.12) PROPOSITION. Let k be a field of characteristic zero and let A
be a semi-simple k-algebra. There exists a finite extension k' of k such
that k' ®, A is split.

As we shall deal with rings which have many properties in common
with finite dimensional k-algebras, the next result is particularly important
for our purposes.

(1.13) THEOREM. Let k be a field and let A be a finite dimensional
k-algebra. Then the following properties hold.

(a) J(A) is nilpotent and every nilpotent ideal of A is contained in J(A) .
(b) Max(A) is finite.

(¢) J(A) = Nmemax(a) ™ -

(d) A/J(A) is semi-simple.

(e) A/J(A) = [Lnemaxa) A/m -

(f) Irr(A) =Irr(A/J(A)) is in bijection with Max(A) .

(g) A is noetherian.
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Now we recall some facts about idempotents. An idempotent of a
ring A is an element e € A such that e? = e. There are always two
idempotents in A, namely 0 and 1, called trivial idempotents. If e is
an idempotent, then so is 1 —e. Two idempotents e and f are called
orthogonal if ef = 0 and fe = 0. In particular any idempotent e is
orthogonal to 1 —e. An idempotent e is called primitive if e # 0 and
whenever e = f 4+ g where f and g are orthogonal idempotents, then
either f=0 or g=0.

A decomposition of an idempotent e is a finite set I of pairwise or-
thogonal idempotents such that e = >, ;i. The decomposition is called
primitive if every idempotent ¢ € I is primitive. Note that ¢ = ei = ie,
so in particular e commutes with each 7. The latter two equalities are
equivalent to the single equality i = eie (as one checks by multiplying
by e on the left and on the right). Conversely if f is an idempotent
which satisfies f = efe, then f appears in some decomposition of e,
because e = f+4(e— f) is an orthogonal decomposition. These elementary
observations will be used repeatedly. Instead of referring to a decomposi-
tion of an idempotent e as being a set I, we shall often say abusively that
the expression e =}, ;i is a decomposition of e.

Recall that two idempotents e and f are called conjugate if there
exists u € A* such that f = Y. Most of the concepts and constructions
which we are going to introduce for idempotents will depend on conjugacy
classes of idempotents rather than idempotents themselves. We define a
point of A to be a conjugacy class of primitive idempotents of A. The
set of points of A will be written P(A). The relevance of this notion will
become clear in Section 4, where we will have strong assumptions on A .
For the moment, we only mention what are the points of a semi-simple
algebra, starting with the case of a simple algebra.

(1.14) PROPOSITION. Let S = Endp(V) be asimple k-algebra, where
k is a field, D is a division algebra, and V is a finite dimensional D-vector
space.

(a) S has a single point, that is, all primitive idempotents of S are
conjugate.

(b) An idempotent e of S is primitive if and only if e is a projection
onto a one-dimensional D-subspace of V .

(c) Two idempotents of S are conjugate if and only if they have the same
rank as D-linear maps (that is, the dimensions over D of their images
are equal).

(d) Any two primitive decompositions of 1g are conjugate under S* .
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(1.15) PROPOSITION. Let k be a field and let A =51 x...x S, be
a semi-simple k-algebra, where each S; is a simple k-algebra.

(a) Every primitive idempotent of A has the form (0,...,0,¢,0,...,0)
where e is a primitive idempotent of S; .

(b) Every maximal ideal of A has the form S1x...xS;_1xS;41X...XSp,
where 1 <i<mn.

(c) For every point a of A, there is a unique maximal ideal m of A
such that e ¢ m for some e € «. In fact e ¢ m for every e € «.

(d) The correspondence in (c) sets up a bijection between the sets P(A)
and Max(A4).

(e) For every point « of A, there is a unique simple A-module V' (up to
isomorphism) such that e-V # 0 for some e € «. In fact e-V #0
for every e € @ and V = Ae.

(f) The correspondence in (e) sets up a bijection between the sets P(A)
and Irr(A) .

(g) Any two primitive decompositions of 14 are conjugate under A* .

The theorem on lifting idempotents allows us to generalize (c)—(g) to
any finite dimensional k-algebra, but we shall consider in Section 3 an even
more general situation. The following result is another useful fact about
decompositions of idempotents.

(1.16) PROPOSITION. Let A be a ring.

(a) Let 14 = >_,.;i be a decomposition of the unity element. Then A
decomposes as the direct sum of left ideals A = ®;c1 Ai .

(b) Let A = ®xea Vs be a finite direct sum decomposition of A into
left ideals. Then there exists a decomposition of the unity element
1ap = Z)\eAik such that Vy = Aiy .

(c) An idempotent e of A is primitive if and only if the left ideal Ae is
indecomposable.

(d) If A is noetherian, there exists a primitive decomposition of the unity
element 1,4 .

There is an important localization procedure which we now describe.
If e is an idempotent in A, then eAe is a subalgebra of A with unity el-
ement 1.4, = e. Note that an element a € A belongs to eAe if and only
if ea =a = ae (or in other words a = eae ). Any decomposition (respec-
tively primitive decomposition) of e in A is a decomposition (respectively
primitive decomposition) of the unity element e of ede in eAe (because
if e=f1+ fo with fi, fo orthogonal, then ef; = f; and fie=f; ). In
particular e is primitive in A if and only if the only idempotents of eAe
are the trivial ones, namely 0 and e. Thus the effect of passing from A
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to eAe is that one “forgets” about all of the idempotents which are orthog-
onal to e, and one only keeps idempotents appearing in a decomposition
of e. This explains why the procedure is called a “localization” (see ex-
ercise 1.1 for a mathematical reason). For example if S = Endp(V) is a
simple k-algebra and if e is a primitive idempotent of S, then eSe = D
(because e is a projection onto a one-dimensional subspace).

(1.17)  PROPOSITION. Let A be a ring and let e be an idempotent

of A.

(a) J(eAe) =eJ(A)e.

(b) If A is a finite dimensional k-algebra over a field k, then e is prim-
itive if and only if eAe is a local ring. In that case eJ(A)e is the
unique maximal ideal of eAe .

In the second part of this first section, we recall some standard notions
of group theory and module theory and we also fix some notation. Let H
be a subgroup of a group G. If g € G, we use the following notation for
the conjugate subgroup:

IH = gHgi1 and HY = ging.

As we usually choose to work with left actions, we shall in general use the
first notation. Similarly 9% = ghg~! for every h € G. The normalizer
of H is the subgroup

Ng(H)={geG | ‘H=H},
while the centralizer of H is the subgroup
Co(H)={geG | h=h forall he H }.

If G acts on the left on some set X , we write G\X for the set of orbits
and [G\X] for a set of representatives in X of the set of orbits. In the
case of right actions, we use the notation X/G and [X/G].

The subgroup H acts on G by left multiplication and the orbit Hg
of g is called a left coset of H . Some authors call this a right coset but
we prefer to be consistent with the notion of left orbit. Similarly gH is a
right coset. If K is another subgroup of G, the group H x K acts (on the
left) on G via left and right multiplication: explicitly the action of (h, k)
on g is equal to hgk™!. An orbit HgK for this action is called a double
coset. As a special case of the above notation we have the set H\G of left
cosets, the set G/H of right cosets, and we also write H\G/K for the set
of double cosets. We shall often consider sums indexed by representatives
g € [G/H] or g € [H\G/K], and it will always be the case that the value
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of the sum does not depend on the choice of representatives. A set of
representatives [G/H] is also called a transversal of H in G .

Let X and Y betwosetsandlet f: X — Y beamap. If there exists
amap s:Y — X such that fs = idy, then s is called a section of f
(and then [ is necessarily surjective). If there exists a map r: Y — X
such that rf = idx, then r is called a retraction of f (and then f
is necessarily injective). If X and Y are groups and if f is a group
homomorphism, then a section of f is a group homomorphism s:Y — X
such that fs = idy (and similarly for retractions). If X and Y are
modules and if f is a module homomorphism, then a section of f is a
module homomorphism s : ¥ — X such that fs = idy (and similarly
for retractions). Similar definitions apply for other algebraic structures. It
will always be clear in the context if a section or a retraction refers to a
set-theoretic map, a group-theoretic map, or a module-theoretic map.

We assume the reader is familiar with the notion of exact sequence of
groups or modules. The trivial group will be written simply 1 (because
groups are written multiplicatively), while the trivial module is written 0.
A short exact sequence of modules

0—L-IsM-45N—0

is said to be split if ¢ has a section, or equivalently if j has a retraction.
In that case M is isomorphic to the direct sum L @ N . A short exact
sequence of groups ,

1—A-LE-LG—1

is called a group extension with kernel group A and factor group G, or
also an extension of G by A. Such an extension is called central if the
image of A in E is a central subgroup of E. The group extension is said
to be split if ¢ has a section s. In that case one can use the injection s
to identify G with a subgroup of E and it follows that E is isomorphic
to the semi-direct product AxG with respect to the conjugation action
of G on A. Note that one obtains a stronger condition if one requires
the existence of a retraction r of j. Indeed in that case the kernel of r
is a normal subgroup of FE isomorphic to G and it follows that E is
isomorphic to the direct product A x G .

We now define the notion of pull-back. Let f: X — Z and g: Y — Z
be two maps with the same codomain. A pull-back of the pair of maps (f,g)
is atriple (P, f,§), where P isasetand f: P =Y, §: P — X are maps
satisfying ¢ f: f g, such that the following universal property holds: for
every triple (P, f',q") where P’ isasetand f': P —>Y, ¢ :P - X
are maps satisfying gf’ = f4g', there exists a unique map h : P — P
such that fh = f" and gh =g’ . We shall sometimes abusively call P a
pull-back of (f,g), without mentioning the maps f and g.
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As always with a universal property, we have uniqueness in a strong
sense. If (Pl,]?l,ﬁl) and (Pg,fg,'g}) are pull-backs of (f,g), there exists
a unique isomorphism h : P; — P, such that fg h = fl and goh = g1 .
For this reason we shall refer to the pull-back of (f,g) as being any one of
them. In practice, one can choose the following construction of pull-backs,
which shows at the same time that they always exist. We define

P={(z,y) € X xY | f(z)=g(v)}

and we let g: P — X and f: P — Y be the first and second projections
respectively. Then clearly g f: f g and it is straightforward to check that
the universal property holds.

Pull-backs for groups or modules are defined in exactly the same way.
In the whole discussion above, it suffices to replace sets by groups (respec-
tively modules) and maps by group homomorphisms (respectively module
homomorphisms). In particular the explicit construction using the direct
product of X and Y works in the same way.

It (P, f,ﬁ) is the pull-back of (f,g) and if f is surjective, then it is
easy to see that ]? is surjective. Moreover if we are dealing with modules
(or groups), then one can check that Ker(f) = Ker(f), so that we have a
commutative diagram of short exact sequences

0—>Ker(f)—>Pi>Y—>0

lg P lg

0 — Ker(f) — X L z — o.

This creates some sort of dissymmetry in the construction of pull-backs.
We shall often encounter this situation and for convenience we shall say
that ]7: P —Y is the pull-back of f: X — Z along g:Y — Z.

When dealing with group extensions, we shall occasionally need some
standard results about group cohomology. In fact we shall only use the
first two cohomology groups H'(G, A) and H?(G, A), where G is a finite
group and A is a G-module (that is, an abelian group endowed with a
Z-linear action of G). The required properties of group cohomology can
be found in many textbooks (for instance Huppert [1967] or Brown [1982]).
The main facts that we need are gathered in the following proposition.
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(1.18) PROPOSITION. Let G be a group and let A be a G-module.

(a) If G is finite, its order |G| annihilates the abelian group H"(G, A)
for all n > 1. In particular H"(G,A) = 0 if A is finite of order
prime to |G| .

(b) There is a bijection between H?(G,A) and the equivalence classes
of group extensions with factor group G and kernel A (with its
G-module structure coming from the conjugation action of the fac-
tor group G ), such that the class of the split extension (semi-direct
product) corresponds to the zero element of H*(G, A).

(c) For a given split extension FE with kernel A and factor group G,
there is a bijection between H'(G,A) and the conjugacy classes of
complements of A in E (or equivalently the A-conjugacy classes of
sections G — E of the surjection E — G ).

(dIf 0— A B2 —0 is an exact sequence of G-modules,
then there exists an exact sequence of abelian groups

0 — A% L5 B¢ 2 06 % gY(G, A) L5 HY(G,B) 25 H'(G,C)
L HX(G, A) L5 H2(G,B) 2 HA(G,C) 2 ..

where f, and g. areinduced by f and g respectively, and d denotes
the connecting homomorphism.

In fact we shall mainly use Proposition 1.18 when A is a trivial
G-module, in which case the extensions with kernel A and factor group G
are precisely the central extensions, and a split extension is isomorphic to
the direct product A x G. For a split extension F = A x G, the group
H'(G, A) is in bijection with the actual set of sections G — E, because
the action of the central subgroup A is trivial.

Exercises

(1.1) Let e be a primitive idempotent of a finite dimensional k-algebra A .
Prove that if A is commutative, then A = Ae x A(1 —e) and Ae is the
localization of A with respect to the maximal ideal J(A)e x A(1 —e).

(1.2) Prove the following more precise version of the Skolem-Noether the-
orem. If 77 and T, are two simple subalgebras of the simple k-algebra
S = Endg(V) and if f: Ty — Ty is an isomorphism of k-algebras, then
f extends to an inner automorphism of S. [Hint: The vector space V
has two Tj-module structures, the first via 77 < S and the second via
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T i> Ty — S. Since T3 is simple, any two Tj-modules of the same di-
mension are isomorphic. The isomorphism in this case is an element g € S
and the inner automorphism defined by ¢ is the required extension. Note
that a slight modification of the proof yields the same result for an arbitrary
simple k-algebra S = Endp(V) with centre & .]

(1.3) Prove Proposition 1.3. [Hint: For the proof of part (a), first apply
Nakayama’s lemma to Coker(f) to reduce to the case where f is surjec-
tive. Then f splits because N is free, and one can apply Nakayama’s
lemma to Ker(f). For the proof of part (b), let F' be a free O-module
with basis yi1,...,y, and apply (a) to the homomorphism f : F — M
mapping y; to x; .]

(14) Let A and B be two rings and let n and m be two positive
integers. Prove that M, (A x B) = M, (4) x M,(B) and M, (M,,(A)) =
Mym(A) .

§2 ASSUMPTIONS AND BASIC PROPERTIES
OF ALGEBRAS

In this section, we set the scene which is used throughout this book. We
introduce algebras over complete local rings and discuss the main results
concerning the Jacobson radical of such algebras.

We first describe the ring which will be used as a base ring throughout
this book. Let O be a commutative local noetherian ring with unique
maximal ideal p = J(O) and residue field £k = O/p of prime characteris-
tic p. We assume that O is complete with respect to the p-adic topology.
Recall that the ideals p™ form a system of fundamental (closed) neigh-
bourhoods of 0 and that (,~,p" = {0} by Proposition 1.2 (because O
is noetherian). The completeness assumption means that O is isomorphic
to the inverse limit of rings ligl O/p™. In other words, if (ag)r>0 is a

sequence of elements of O such that for every n > 0 there exists N with
ap — ag41 € p" for k> N (that is, a Cauchy sequence in O ), then there
exists a € O such that for every n > 0 there exists N with a — a; € p”
for k> N (that is, a converges to a).

The next assumption which will be in force is that the residue field & is
algebraically closed. In many cases this assumption is irrelevant, but when
we come to the heart of representation theory, it becomes an important
simplification which still conveys the essential part of the theory.
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(2.1) ASSUMPTION. As a base ring, we take a commutative local noethe-
rian ring O with maximal ideal p, complete with respect to the p-adic
topology, and such that the field &k = O/p is algebraically closed of char-
acteristic p.

(2.2) EXAMPLES. (a) We do not exclude the possibility p = 0, in which
case O =k is simply an algebraically closed field of characteristic p.

(b) The second case of interest occurs when O is a complete discrete
valuation ring of characteristic zero. Recall (Serre [1962]) that this means
that O is a local principal ideal domain. Thus the unique maximal ideal
p is principal, generated by some element 7. It is proved in Serre’s book
that such a ring exists for any given perfect residue field k of charac-
teristic p, thus in particular when k is algebraically closed. Moreover
O is unique up to isomorphism if we assume further that it is absolutely
unramified; this means by definition that the prime number p is a gener-
ator of p. The other possibilities for O are then obtained by means of
totally ramified extensions (that is, extensions with a trivial residue field
extension). This example is particularly important for the representation
theory of finite groups because such a ring establishes the link between a
field of characteristic zero (the field of fractions of @) and the field k& of
characteristic p, by reduction modulo p. Note however that one does not
need a principal ideal domain to pass from characteristic zero to charac-
teristic p. Indeed the largest part of modular representation theory works
as well with a complete local domain of characteristic zero with a higher
Krull dimension. If G is a finite group of order n , one usually needs n-th
roots of unity for the representation theory of G . By Hensel’s lemma (see
Section 4), all roots of unity of order prime to p lie in @ because they lie
in k. If one needs p"-th roots of unity, then one can always enlarge O by
considering an appropriate finite extension (necessarily totally ramified).

(¢) Any factor ring of O satisfies again the assumption 2.1, and so
can be used as a base ring. For instance it is sometimes useful to work
with O/p™.

Since O is a local ring, any element outside p is invertible and
therefore the group homomorphism O* — k* is surjective and its ker-
nel is 1+p . We shall occasionally use the following result, which is proved
in Serre [1962].

(2.3) LEMMA. The short exact sequence 1 — 1+p — O* = k* — 1
splits uniquely. In other words k* can be identified with a subgroup of O* .
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By an O-algebra A, we shall always mean an associative O-algebra
which is finitely generated as an O-module and which has a unity element,
denoted 14, or sometimes simply 1. In most cases A will be either
free as an (O-module, or annihilated by p in which case A is in fact a
finite dimensional k-algebra. Of course other cases may occur, including
algebras over O/p™. By the finite generation assumption and since O is
noetherian, an O-algebra A is noetherian.

(2.4) CONVENTION. Throughout this book (except in Chapter 8), we
assume that every O-algebra A is finitely generated as an O-module. Also
the word “module” will always mean “finitely generated module”, and all
modules are left modules, unless otherwise stated. Thus an A-module,
being finitely generated over A, is also finitely generated over O.

(2.5) EXAMPLE. Let G be a finite group and let OG be the free
O-module with basis G'. The product in the group G gives rise to a multi-
plication of basis elements in OG which can be extended by O-bilinearity
to a multiplication in OG. Thus OG is an Q-algebra, called the group
algebra of G .

(2.6) EXAMPLE. Let V be an O-module. The algebra Endp (V) of all
O-linear endomorphisms of V' is an O-algebra. If V is a free O-module

of dimension n, then a choice of basis for V yields an isomorphism
Endop(V) = M,(0).

Let A be an O-algebra and let J(A) be the Jacobson radical of A.
Since A is a finitely generated O-module, so is any simple left A-module V'
and it follows from Nakayama’s lemma that p-V # V  sothat p-V =0
(because p -V is an A-submodule of V). If M is a maximal left ideal
of A, then A/M is a simple A-module and therefore M contains p- A.
This proves that p- A C J(A). It follows that J(A) is the inverse image
in A of the Jacobson radical J(B) of the finite dimensional k-algebra
B=A/p-A. Consequently A/J(A)= B/J(B).

Any maximal (two-sided) ideal m of A contains J(A) and therefore
m is the inverse image of some maximal ideal m of B. Thus the set
Max(A) of maximal ideals of A is in bijection with Max(B). Similarly
the set Irr(A) of all isomorphism classes of simple A-modules is in bijection
with Irr(B) (because J(A) annihilates any simple A-module W).

By Theorem 1.13, J(B) is nilpotent and is equal to the intersection of
all maximal ideals of B . Moreover the set Max(B) is finite and B/J(B)
is isomorphic to a direct product of simple k-algebras

A/JA)=B/JB)= ][] Bm= ][] A/m.

meMax(B) meMax(A)
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By Wedderburn’s theorem, every simple k-algebra A/m 2 B/m is isomor-
phic to the algebra Endy (V) of all endomorphisms of a finite dimensional
k-vector space V' (because k is algebraically closed). Now V is the only
simple End(V)-module up to isomorphism and we can view V as a simple
module for B, or for A.

Any simple A-module W arises in this way (up to isomorphism) be-
cause the Jacobson radical of A annihilates W, so that W is in fact
a simple A/J(A)-module, thus a simple module over one of the simple
k-algebras A/m , with the other simple factors of A/J(A) annihilating W .
Moreover since there is a single isomorphism class of simple modules over
the finite dimensional simple k-algebra A/m = Endy (V) , the simple mod-
ule W is isomorphic to V. Note also that m is the annihilator of V.
Therefore the set Irr(A) is in bijection with Max(A).

We now summarize the analysis above.

(2.7) 'THEOREM. Let A be an O-algebra (finitely generated as an

O-module) and let J(A) be the Jacobson radical of A.

(a) We have p-A C J(A). Moreover there exists an integer n such that
J(A)" Cp-A.

(b) A/J(A) is a finite dimensional semi-simple k-algebra and we have

AfJA) = [ Endi(v).
Velrr(A)

(c) Every maximal two-sided ideal m of A is the annihilator of some
V € Irr(A), that is, the kernel of one of the canonical surjections
A — End (V). Moreover this sets up a bijection between Max(A)
and Irr(A).

(d) J(A) = anMax(A) m.
Another important property of O-algebras is the following.

(2.8) PROPOSITION. If A is an O-algebra, then A is complete in the
J(A)-adic topology.

Proof. See Feit [1982], Theorem 9.11. O
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Let A and B be two O-algebras. By a homomorphism from A
to B, we shall always mean a homomorphism f: A — B of O-algebras
which is not required to map 14 to 1g. Thus f is O-linear and satisfies
flab) = f(a)f(b) for all a,b € A. If a homomorphism f : A — B
satisfies f(14) = 1p, then f is called unitary. In the general case f(14)
is an idempotent of B and the image of f is contained in the subalgebra
f(14)Bf(14) of B. For exampleif e is an idempotent of A, the inclusion
of eAe into A is a homomorphism. It is in fact precisely in order to be able
to consider these inclusions that one does not require homomorphisms to be
unitary. So another way of visualizing a homomorphism f: A — B is to
view it as a unitary homomorphism f: A — eBe, for some idempotent e
of B, followed by the inclusion eBe — B. Note that if a € A*, then
f(a) is in general not invertible (unless f is unitary). But if one adds
the complementary idempotent 1p — f(14), then f(a)+ (15 — f(14)) is
invertible in B, with inverse f(a=!) + (1 — f(14)). Indeed the product
of f(a) with 15 — f(14) (in either order) is zero. Therefore f induces a
group homomorphism A* — B*, a— f(a)+ (15 — f(14)) .

After morphisms, we consider subobjects. By a subalgebra B of an
O-algebra A, we mean a subset of A which is an O-algebra and such that
the inclusion B — A is a homomorphism. Thus we do not require B to
have the same unity element as A . In particular the subalgebras B = eAe
(where e is some idempotent of A ) will play an extremely important role
in the theory of pointed groups.

Exercises

(2.1) Let B be a subalgebra of an O-algebra A.
(a) Prove that J(A)N B C J(B).
(b) If A= B+ J(A), prove that J(A)NB = J(B).

(2.2) If f: A— B is a surjective homomorphism of O-algebras, prove
that f(J(A)) C J(B), so that f induces a homomorphism of k-algebras
f:A/J(A) = B/J(B). Construct an example of a non-surjective homo-
morphism for which these properties fail to hold.

(2.3) Let A be an O-algebra. Prove that (1,5, J(A4)" = {0}.

(2.4) Let A beanon-zero O-algebra. Prove that the subgroup k* of O*
(see Lemma 2.3) maps injectively into A*, so that k* can be identified
with a subgroup of A*. [Hint: The kernel of the ring homomorphism
O — A is contained in p ]
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(2.5) Let A be an O-algebra and let n be a positive integer. Prove that
J(My(A)) = Mn(J(A)) and M, (A)/J (M, (A)) = Ma(A/J(A)).

§3 LIFTING IDEMPOTENTS

In this section we prove the fundamental theorem on lifting idempotents.
Although many of the results appear in other textbooks, our treatment
includes material which is less standard. In particular we show that idem-
potents can be lifted from any quotient of an (O-algebra.

Let O be a ring satisfying Assumption 2.1. Recall that a point of an
O-algebra A is a conjugacy class of primitive idempotents of A. The set
of points of A will be written P(A). We shall see in the next section that
P(A) is in bijection with Max(A), hence also with Irr(A). But we first
need to prove the theorem which allows us to lift idempotents as well as
invertible elements from A/J(A) up to A.

(3.1) THEOREM. Let A be an O-algebra, let A= A/J(A), and denote

by @ the image of an element a € A in A.

(a) If @ is invertible in A, then a is invertible in A. Thus there is an
exact sequence of groups

1 — 14+JA) — A — A — 1.

(b) For any idempotent e € A, there exists an idempotent ¢ € A such
that e =e.

(c) Two idempotents e, f € A are conjugate in A if and only if € and f
are conjugate in A . More precisely if € = ufu ', then u lifts to
an invertible element u € A* such that e = ufu~!. In particular if
€= f, then there exists u € (1 + J(A)) such that e = ufu™"'.

(d) An idempotent e € A is primitive in A if and only if € is primitive
in A.

(e) The map A — A induces a bijection P(A) — P(A).

(f) If e € A is an idempotent and if I is a decomposition (respectively a
primitive decomposition) of € in A, then I lifts to a decomposition I
(respectively a primitive decomposition) of e in A.

(g) Let I be a decomposition of an idempotent e € A and let J be
a decomposition of an idempotent f € A. If T = uJu ' for some
ueA , then u lifts to an element w € A* such that I = uJu™!.
In particular if T = J, then there exists u € (1 + J(A)) such that
I=uJu ',

(h) If a is an ideal of A and if e is an idempotent of A, then e € a if
and only if e€ a.
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Proof. (a) If a € A is not invertible, then either Aa or aA is not
equal to A (in fact both) and we assume Aa # A. Then a € M for some
maximal left ideal M by Zorn’s lemma. Since M D J(A), its image M is
a maximal left ideal of A and we have @ € M . Thus @ is not invertible.

(b) Choose a; € A such that @ = e and let by = a? — a; . Define
by induction two sequences of elements of A:

2
Gp =0n—1+bp_1—20,_1bp—1 and b, =a;, —a,.

We show by induction that a? = a, (mod J(A)"), or in other words that
b, € J(A)™. Assuming that this holds for n, we have b2 € J(A)"+!
(because (J(A)™)? C J(A)"*H1), and since a2 = a,, + b, we obtain

aiﬂ = a2 + 2a,b, — 4a2%b, = a, + b, + 2a,b, — 4(a, + by,)b,
=a, + by — 20,0, = any1 (mod J(A)"T).

It follows that (b,) converges to 0 and that (a,) is a Cauchy sequence
(in the J(A)-adic topology). Since A is complete (by Lemma 2.8), (a,)
converges to some element ¢ € A and €2 — € = limb, = 0. Moreover
€ =a; = e. Without reference to the sequence (b,), one can also define
directly a, = 3a2_; —2a3_, .

(c) It is clear that € and f are conjugate if e and f are conjugate.
Conversely assume that € and f are conjugate by some element @ € A"
Then by (a), we know that any lift u € A* is invertible and so, replacing f
by ufu~', we can assume € = f. Now let v =14 —e — f + 2ef. Then
by (a), v € A", because T = 1 . Moreover one has ev =ef = vf and it
follows that e = vfv~".

(d) We use localization. Recall that e is primitive in A if and only
if e and 0 are the only idempotents of eAe. Since J(eAde) = eJ(A)e =
J(A)NeAe by Proposition 1.17, we have eAe/J(eAe) = eAe =eAe. If f
is a non-trivial idempotent of A€, then by (b) applied to the algebra eAe ,
the idempotent f lifts to an idempotent f € eAe. This proves that € is
primitive if e is primitive. Conversely if e is not primitive, there exists
a non-trivial idempotent f € eAe. Then f is not conjugate (that is, not
equal) to 0 nor to the unity element e. By (c) it follows that f is a
non-trivial idempotent of €Ae .

(e) This follows immediately from (b), (c) and (d).

(f) Replacing A by ede, we can assume that e = 1. We write
I=1{i1,...,i, } and we use induction on n. If f is an idempotent which
lifts f =491 + ...+ in_1, there exists a decomposition f =141 +...+ip_1
such that 4, lifts 4, for 1 <r <mn —1. Letting i, = 1 — f, we obtain
a decomposition 1 =i; +...+14, and i, lifts i, as required. Moreover
by (d), i, is primitive if and only if 7, is primitive.
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(g) We can first lift u arbitrarily and replace J by uJu~! (because u
is invertible by (a)). Thus we can assume that I = J . Next we know by (c)
that e = vfv~! for some v € (1+J(A)) and, replacing J by vJv~!, we
can assume as well that e = f. Write

Iz{ih...,in} and JZ{jl,...,jn}7

labelled in such a way that i, = j, for 1 <r <n. Now let

U)—erjr (1—e).

We have w = 1, so that w € (1 + J(A)). Moreover i,w = i,j, = wj,
and it follows that wj,w™! =i, .
(h) One implication is trivial. Assume that € € @. Then we have
€ (a+J(A)) and since e is idempotent, e € (a+J(A))" C a+J(A)" for
all n. But (a+J(A))/a=J(A/a) and (a+ J(A)")/a= J(A/a)™. Since
Nn>o J(A/a)" = {0} by Proposition 1.2 (because A/a is noetherian), we
have (,>o(a+ J(A)") = a, and it follows that e € a. O

Our first application of Theorem 3.1 is a generalization of that theorem
which allows us to lift idempotents from a quotient A/b for an arbitrary
ideal b.

(3.2) THEOREM. Let A be an O-algebra, let b be an ideal of A, let

A = A/b, and denote by @ the image of an element a € A in A.

(a) The map A* — A" is surjective.

(b) For any idempotent € € A and any primitive decomposition I of €,
there exists an idempotent e € A lifting € and a primitive decompo-
sition I of e lifting T .

(c) Let e € A be an idempotent. If e is primitive, then € is either zero or
primitive. If conversely € is primitive, then there exists an orthogonal
decomposition e = €' + f where €' is primitive and f € b (so that
e =€)

(d) Let I be a primitive decomposition of an idempotent e € A such that
i ¢ b forevery i € I and let J be a primitive decomposition of an
idempotent f € A such that j ¢ b forevery j € J. If I =uJu !
for some u € Z*, then u lifts to an element uw € A* such that
I = wJu~'. In particular if T = J, then there exists u € A* with
u=1 such that I =uJu™".

(e) The map A — A induces a bijection P(A —b) — P(A), where
P(A —b) denotes the set of points of A which do not lie in b.

(f) If a is an ideal of A and if e is a primitive idempotent of A — b,
then e € a ifand only if e € @.
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Proof. Consider the following diagram where 74 and 74 denote the
canonical surjections:

0 — JA) — A ™ A/JA) — 0

Lo !

0 — JA — A & A/ 0

D
All vertical maps are surjective because J(A) = (J(A) 4+ b)/b = J(A).
Since A/J(A) is semi-simple, we have A/J(A) = A/J(A) x B where
B is a semi-simple algebra (in fact B = (b + J(A))/J(A) as an ideal
of A/J(A)). It follows that the map on the right hand side has a section
s:A/J(A) — A/J(A) which is an algebra homomorphism (mapping 1 to
an idempotent of A/J(A)). Now consider the corresponding diagram for
invertible elements:

0 — 14+J(A) — A 5% (A/J(A) — 0

| l |

0 — 1+J@A) — A 5 @A/JA))Y — 0

By Theorem 3.1, both horizontal sequences are exact. Since J(A) maps
onto J(A), the vertical map on the left hand side is surjective. The one
on the right hand side is surjective too because (A/J(A))* is isomorphic
to the direct product (A/J(A))* x B*. Therefore by elementary diagram
chasing, the middle vertical map is surjective, which proves (a).

(b) It is clear that any primitive decomposition of an idempotent
in A/J(A) can be lifted to A/J(A) via the section s. Applying this
to m(I) (which is a primitive decomposition by Theorem 3.1) and then
lifting the result to A, one obtains an idempotent e € A and a primitive
decomposition J of e such that n(J) = 75(I). By Theorem 3.1, there
exists W € (1+J(A)) such that I =wuJu~'. Lifting @ to u € (1+J(A)),
one gets a primitive decomposition I = uJu~' which maps to I in A.
This completes the proof of (b).

(¢) By Theorem 3.1, the primitivity of idempotents can be read in
semi-simple quotients. Thus it suffices to prove that m4(e) is primitive if
and only if 7(€) is primitive. But this is clear because the assumption
on e implies that in the decomposition A/J(A) = A/J(A) x B, the
idempotent m4(e) has zero component in B = (b + J(A))/J(A) (using
part (h) of Theorem 3.1), while the other component is m(€) .

(d) We have I = uwJu~' by assumption and we know by (a) that
@ lifts to an invertible element of A. Thus we can replace J by a con-
jugate and assume that I = J. Consider the images m4(I) and ma(J)
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in A/J(A) = A/J(A)x B. By assumption the primitive idempotents in I
and J do not belong to b and this implies that their images in B are zero.
On the other hand the images of I and J in A/J(A) are both equal to
75(I) = mx(J) . Therefore mo(I) = wa(J). It follows from Theorem 3.1
that I and J are conjugate.

The more precise statement that I and J are conjugate by an ele-
ment v such that 7 =1 follows from the proof of part (g) of Theorem 3.1.
The details are left as an exercise for the reader.

(e) This is a direct consequence of (b), (c) and (d).

(f) This is an easy exercise. The result is also a special case of Corol-
lary 4.11 which is proved in the next section. O

Exercises

(3.1) Let M be a left ideal in an O-algebra A. Prove that either M
contains an idempotent or we have M C J(A).

(3.2) Let e and f be two idempotents of an O-algebra A . Prove that if
e=ab and f =ba for some a,b € A, then e and [ are conjugate (and
conversely). [Hint: Reduce the problem to the case where A is a matrix
algebra over k and then use Proposition 1.14.]

(3.3) Let a and b be two elements of an O-algebra A such that ab=1.
Prove that ba = 1. [Hint: Use exercise 3.2.]

(3.4) Complete the details of the proof of parts (d) and (f) of Theorem 3.2.

§4 IDEMPOTENTS AND POINTS

We use the main theorem on lifting idempotents to derive various important
results on idempotents and points. In particular we show that primitive de-
compositions are unique up to conjugation and that there are bijections be-
tween points, maximal ideals, and simple modules. We also include proofs
of the Krull-Schmidt theorem, Hensel’s lemma and Rosenberg’s lemma.
We continue with our base ring O satisfying Assumption 2.1.

First we combine Theorem 3.1 with Proposition 1.15 to obtain the
following two basic theorems.
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(4.1) THEOREM. Let A be an Q-algebra. Any two primitive decom-
positions of 14 are conjugate under A* .

In the commutative case, the theorem takes the following form, which
is often useful.

(4.2) COROLLARY. If A is a commutative O-algebra, then there exists
a unique primitive decomposition of 14 . In particular any two primitive
idempotents of A are either equal or orthogonal.

The other theorem which follows from Theorem 3.1 and Proposi-
tion 1.15 is the following.

(4.3) THEOREM. Let A be an -algebra. The set P(A) of points
of A is in bijection with both Max(A) and Irr(A). If o € P(A), the
corresponding maximal ideal m, is characterized by the property e ¢ m,
for some e € a (or equivalently for every e € « ), while the corresponding
simple A-module V(«) is characterized by the property e -V (a) #0 for
some e € o (or equivalently for every e € o). Also V(a) = Ae/J(A)e if
ec .

For every point « € P(A), the notation m, and V(a) of the theorem
will be in force throughout this book. Also the simple algebra A/m, will
be written S(a). Thus we have S(«) = End;(V(«)) and the notation for
the semi-simple quotient of A becomes

AlJA) = I Sa).

a€P(A)

An important application of Theorem 4.1 is the Krull-Schmidt theorem.
Recall that a module M is called indecomposable if M # 0 and if M
cannot be decomposed as the direct sum of two non-zero submodules.

(4.4) THEOREM (Krull-Schmidt). Let A be an O-algebra and let M

be an A-module (finitely generated).

(a) There exists a decomposition M = @,., My as a finite direct sum
of indecomposable A-modules.

(b) For any decomposition of M as a finite direct sum of indecomposable
A-modules M = @scn Mg, there exist a bijection o : A 5 A and
an A-linear automorphism ¢ of M such that ¢(M)) = Mé(/\) for
every A€ A.
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Proof. By Proposition 1.16, a direct sum decomposition of M corre-
sponds to an idempotent decomposition of idy; in End4 (M) . Explicitly, if
M = @)\E/\ M) , then idy =), ex where ey is the projection onto My
with kernel LA M,, . Moreover M) is indecomposable if and only if ey
is primitive. Since M is finitely generated and A is finitely generated as
an O-module, M is finitely generated as an O-module and therefore so
is Endp(M) , as well as its subalgebra End 4 (M) . In particular End (M)
is noetherian and by Proposition 1.16, there exists a primitive decomposi-
tion of idys , proving (a).

If the decomposition M = s M into indecomposable summands
corresponds to a primitive decomposition idy; = ) se€j, then by Theo-
rem 4.1, this decomposition is conjugate to the given one by some element
¢ € Enda(M)*, that is, ¢erxg™t = €, for some bijection o : A SA.
Then for every A € A, we have

O(My) = p(eaxM) = pexp™ "M = e, \\M = My,

as required. O

(4.5) COROLLARY. Let A be an O-algebra, let M be an A-mod-
ule, and let N and N’ be two direct summands of M , corresponding
to idempotents e and e of Endy(M) respectively (that is, N = eM
and N' = e¢'M ). Then N is isomorphic to N’ if and only if e and €’
are conjugate in End (M) .

Proof. If there exists ¢ € Enda(M)* such that ¢ep~! = €', then
the automorphism ¢ of M maps eM isomorphically onto e'M . Assume
conversely that eM = e'M . Then we have two decompositions

M=eM®&(l—e)M=eM&(1—-¢)M

and by an easy application of the Krull-Schmidt theorem (Exercise 4.2),
we also have an isomorphism (1—e)M = (1—e’)M . The direct sum of the
two isomorphisms yields an automorphism ¢ of M such that ¢(eM) =
eM and ¢((1 —e)M) = (1 —¢')M. Then ¢edp~! is an idempotent with
kernel (1 —¢’)M and image €M , which means that ¢ep~ ' =¢'. O

The next application of Theorem 3.1 tells us that the localization eAe
is indeed a local ring when e is primitive.
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(4.6) COROLLARY. Let A be an OQ-algebra and let e be an idempotent
of A. Then e is primitive if and only if eAe is a local ring. In that
case, J(eAe) = eJ(A)e is the unique maximal ideal of eAe , with simple
quotient eAe/eJ(A)e isomorphic to k.

Proof. Suppose first that eAe is a local ring. If e = f + g, where f
and g are orthogonal idempotents of A, then f and g necessarily belong
to eAe (because f = efe and g = ege). But a local ring cannot have
any non-trivial idempotent (because if 7 is an idempotent of a local ring,
then either ¢ or 1 —¢ must be invertible, hence equal to 1). It follows
that either f or g is equal to e, which is the unity element of eAe.

Suppose now that e is primitive. Since every maximal ideal of eAe
contains J(eAe) and since J(eAe) = eJ(A)e by Proposition 1.17, it suf-
fices to prove that ede/eJ(A)e = k. But ede/eJ(A)e is a semi-simple
finite dimensional k-algebra and its unity element is primitive by part (d)
of Theorem 3.1. This forces eAe/eJ(A)e to be a division algebra and
this can only be isomorphic to k since k is algebraically closed (Proposi-
tion 1.7). O

A useful consequence of Theorem 3.1 is Hensel’s lemma. Since k is
algebraically closed by assumption, any polynomial over k£ has all its roots
in k£ and the lemma deals with the question of lifting these roots to O.

(4.7) PROPOSITION (Hensel’s lemma). Let f € O[t] be a polynomial
in an indeterminate t, with leading coefficient 1, and let f € k[t] be its
image modulo p . If all the roots of f are distinct, then these roots lift
uniquely to roots of f in O and f decomposes as a product of linear
factors over O.

Proof. Let A= O[t]/(f) and A= A/pA = k[t]/(f). By assumption
and by the Chinese remainder theorem, we have

n

A Hk:[t]/(t—ai) = []*.

i=1

where n is the degree of f and {@y,...,@, } are the distinct roots of f .
Moreover the projection onto the i-th factor maps t to @;. Let €; be
the primitive idempotent of A mapping to 1 in the i-th factor and to
zero in the other factors, so that Ae; = k. By Theorem 3.1, e; lifts
to an idempotent e; € A and ) .e; = 1. Since A has dimension 7,
the primitive idempotents €; form a k-basis of A. Since f has leading
coefficient 1, A is a free O-module (with basis {1,¢,¢%,...,¢t""1}) and
it follows from Proposition 1.3 that the idempotents e; form an O-basis
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of A. The decomposition A = ), Ae; now implies that Ae; = O and
therefore we have ring isomorphisms

Since t is aroot of f in A, itsimage «; in the i-th factor is a root of f
in O. Clearly o; lifts @; and f=[[_,(t— ;). O

(4.8) COROLLARY. Let a € O* and let n be a positive integer not
divisible by p. Then a has n distinct n-th roots in O .

Proof. Let @ be the image of a in k. Apply Hensel’s lemma to the
polynomial f = t" —a. Its image f = t" — @ has distinct roots in k
because its derivative nt"~! is non-zero (since n is prime to p) and has
no root in common with f (because @ # 0 since a is invertible). O

Another application of Theorem 3.1 is Rosenberg’s lemma. An alter-
native proof is given in Exercise 4.1.

(4.9) PROPOSITION (Rosenberg’s lemma). Let e be a primitive idem-
potent of an (O-algebra A and let X be a family of ideals of A. If we
have e € ) ., @, then there exists a € X' such that e € a.

Proof. Part (h) of Theorem 3.1 allows us to replace A by its semi-
simple quotient A/J(A). In the semi-simple case, the result is trivial
because an ideal is necessarily a direct sum of some of the simple factors,
while a primitive idempotent lies in exactly one of the factors. O

(4.10) COROLLARY. Let o € P(A) be a point of A, let m, be the
corresponding maximal ideal, let e € o, and let b be an ideal of A. The
following conditions are equivalent.

(a) e¢b.

(b) aZb.

(c) b Cm,.

Proof. Since b is an ideal, it is clear that (a) and (b) are equivalent.
Since e ¢ m,, (c) implies (a). Finally if e ¢ b, then Rosenberg’s lemma
implies that e ¢ b+m,, . Therefore b+m, # A and by maximality of m,,,
it follows that b C m, . This proves that (a) implies (¢). O
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Another useful consequence of Rosenberg’s lemma is the following.

(4.11) COROLLARY. Let f: A — B be a homomorphism of O-alge-
bras, let b be an ideal of A, and let e be a primitive idempotent of A
which does not belong to Ker(f). Then e € b if and only if f(e) € f(b).

Proof. We have f(e) € f(b) if and only if e € b+ Ker(f). By
Rosenberg’s lemma, this is equivalent to e € b because e ¢ Ker(f). O

If f: A— B is a homomorphism of O-algebras, the image of a prim-
itive idempotent of A is in general not a primitive idempotent of B . The
easiest example occurs when A = O and f is the natural map making B
into an O-algebra: the image of the primitive idempotent 1 is 15, which
decomposes according to the points of B and their multiplicities (defined
below). As a result, a homomorphism of O-algebras may not induce a map
between the points of A and the points of B. However, we prove here
that if e is an idempotent of A, the inclusion eAe — A behaves very well
with regard to points.

(4.12) PROPOSITION. Let A be an O-algebra, let e be an idempotent

of A, and let j and j' be two idempotents of eAe .

(a) If j is primitive in eAe, then j is primitive in A (and conversely).

(b) If j and j' are conjugate in A, then they are conjugate in eAe (and
conversely).

(c) The inclusion eAe — A induces an injection P(eAe) — P(A).

Proof. First note that (c) is a direct consequence of (a) and (b): the
existence of a map P(ede) — P(A) follows from (a) (and the converse
of (b)), and (b) shows that this map is injective.

Let B = eAe. Recall that J(B) =eJ(A)e, thatis, J(B) = J(A)NB.
Therefore the inclusion B — A induces an injective homomorphism of
semi-simple algebras B/J(B) — A/J(A). The image of this homomor-
phism is €A (where A = A/J(A) and € is the image of e in A). Since
primitivity as well as conjugation of idempotents can be read in semi-simple
quotients (Theorem 3.1), it follows that it suffices to prove (a) and (b) for
semi-simple algebras.

If A=5;x...%x S, issemi-simple, then e = (ey,...,e,) where ¢; is
an idempotent of S; , and ede = e;S1e1 X...xe.S €, is the decomposition
of eAe into simple algebras. Decomposing the idempotents j and ;' into
their r components, it is clear that it suffices to prove (a) and (b) for each
simple algebra S; . Thus we can assume that A is simple, hence isomorphic
to Endg(V), where V is a finite dimensional k-vector space (thanks to
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our assumption that k is algebraically closed, see Proposition 1.7). Then
e is a projection onto some subspace W and eAe = Endg(W).

Now (a) is obvious since, by Proposition 1.14, a primitive idempotent
of either Endy (V) or Endg (W) is a projection onto some one-dimensional
subspace. Proposition 1.14 also implies (b) since the conjugacy of idempo-
tents comes down to the equality of their ranks. O

We note that (a) can be proved in a more direct fashion (Exercise 4.5).

With each point « € P(A), we associate an ideal which will be used
extensively, namely the ideal AaA generated by «. An element of AaA
is a finite sum of elements of the form aeb, where e € a and a,b € A.
Note that since all elements of « are conjugate, we have AaA = AeA for
every ¢ € «. If 8 € P(A) is a point of A, the image of AaA in the
simple quotient S(8) is equal to zero if 5 # « and to the whole of S(«)
otherwise. Thus the image AaA of AaA in A = A/J(A) is equal to
the minimal ideal of A isomorphic to S(a). The ideal AaA is minimal
with respect to the property that its image in S(«) is non-zero (that is,
the whole of S(«)). Indeed, since a primitive idempotent e in « has
non-zero image in S(«), an ideal satisfying this property must contain e
by Theorem 3.2, hence the whole of « since it is an ideal. Summarizing
these remarks, we also express these properties in terms of maximal ideals.

(4.13) LEMMA. Let A be an O-algebra and let a € P(A) with corre-

sponding maximal ideal m, and simple quotient S(«) .

(a) The ideal AaA is the unique minimal element of the set of all ideals b
such that b+m, =A.

(b) Theideal AaA satisfies Ao A C mg for every § € P(A) with f# .

(c) The image of AaA in the semi-simple quotient A = A/J(A) is equal
to the minimal ideal of A isomorphic to S(a).

The ideals AaA are often used in the following context.

(4.14) PROPOSITION. Let A be an O-algebra and let b be an ideal
of A.

(a) b= >, (AaAnNb). In particular A= >, AaA.
acP(A) acP(A)
(b) 6C > AaA+J(A4).

a€EP(A)
aChb
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Proof. (a) Writing 14 as a sum of primitive idempotents and multi-
plying (say on the left) by an arbitrary element of b, one obtains immedi-
ately b =73 cp4)(Aanb). The result follows from the obvious inclusion
Aa C AaA.

(b) It suffices to prove the result for the image of b in A/J(A).
Thus we can assume that A is semi-simple. The result is trivial in that
case because an ideal is necessarily a direct sum of some of the simple
factors S(«), and o C b if and only if S(a) C b. Here for simplicity we
have identified S(«) with the minimal ideal of A isomorphic to S(a). O

Finally we introduce multiplicities. Let A be an O-algebra and let
I be a primitive decomposition of 14 . For every point o € P(A), we
consider the set I, = I N« of all idempotents in the decomposition which
belong to «. Therefore we can write

o= Y > i

aEP(A) i€l

The number of elements of I, is called the multiplicity of o in A and is
written m, (not to be confused with the maximal ideal m, ). In other
words m, is the number of occurrences of idempotents of « in a prim-
itive decomposition of 14 . Since all primitive decompositions of 14 are
conjugate, m, does not depend on the choice of I.

By Theorem 3.1, the image in A/J(A) of the primitive decomposition
above yields a primitive decomposition of the unity element of A/J(A),
so that the multiplicities of points can be read in A/J(A). Moreover
A/J(A) = [1aepca) S(@) (where each S(a) is the simple quotient of A
corresponding to « ), and the primitive decomposition of 1 in A/J(A) is
the sum of primitive decompositions of the unity element of each S(a).
Therefore the image in S(a) of the sum »,_; i is a primitive decom-
position of the unity element of S(a) = Endi(V(«)). Since a prim-
itive idempotent of S(«) is a projection onto a one-dimensional sum-
mand of V(a) (Proposition 1.14), it follows that m, is the dimension
of V(a). In other words m, is the size of the matrix algebra S(a),
that is, dimg(S(a)) = m2 . We record these facts for later use.

(4.15) PROPOSITION. Let A be an O-algebra and let m, be the

multiplicity of a point o € P(A).

(a) mq = dimg(V (), where V(o) is a simple A-module corresponding
to .

(b) m2 = dimy(S(c)), where S(«) is the simple quotient of A corre-
sponding to o .
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For the reasons above, the simple quotient S(a) corresponding to a
point « is called the multiplicity algebra of the point « . Similarly, if we
write S(a) = Endg(V(«)), the simple A-module V(«) is also called the
multiplicity module of the point « .

If e is an idempotent of A, one can also consider the multiplicity of «
in e, namely the number of idempotents in « appearing in a primitive
decomposition of e. This number is written my(e). It is not difficult
to see that my(e) is either zero or is the multiplicity of a point of the
algebra eAe (Exercise 4.3).

(4.16) PROPOSITION. Let A be an O-algebra and let e and f be
two idempotents of A. Then e and f are conjugate if and only if we
have mg(e) = ma(f) for every a € P(A).

Proof. If e and f are conjugate, it is clear that mqy(e) = mq(f)
for every o € P(A). Assume conversely that these equalities hold. Since
two idempotents are conjugate in A if and only if they are conjugate
in A/J(A) (by Theorem 3.1) and since the multiplicities do not change by
passing to A/J(A), we can assume that A is semi-simple. Then it suffices
to consider the components of e and f in each simple factor of A, so we
can assume that A is simple, thus with a single point « . The assumption
on multiplicities now reduces to the fact that both e and f decompose
as a sum of m primitive idempotents, where m = mg,(e) = my(f). But
S = Endg (V) for some k-vector space V' and since a primitive idempotent
is a projection onto a one-dimensional subspace, it is clear that e is a
projection onto an m-dimensional subspace. The same holds for f and
therefore e and f are conjugate (Proposition 1.14). O

Exercises
(4.1) Use Corollary 4.6 to give an alternative proof of Rosenberg’s lemma.

(4.2) Let A be an O-algebra. Let L, M and N be A-modules such
that L& M = L @ N . Prove that M = N .

(4.3) Let e be an idempotent of an O-algebra A and let o € P(A).

(a) If « is not the image of a point of eAe (that is, aNede =0), prove
that mqa(e) =0.

(b) If « is the image of a point o’ of eAe (that is, o/ = aNede = eae),
prove that mg(e) is the multiplicity of o' .
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(4.4) Let A be an O-algebra and let B be a subalgebra of A such that
A = B+ J(A). Prove that the inclusion map B — A induces a bijection
P(B) — P(A) . More precisely, prove that the image of a point 5 € P(B)
is the A*-conjugacy closure of . [Hint: Use Exercise 2.1.]

(4.5) Prove directly part (a) of Proposition 4.12. [Hint: Notice that we
have jAj = j(eAe)j and apply Corollary 4.6.]

(4.6) Let A be an O-algebra, let n be a positive integer, and consider
the homomorphism f: A — M, (A) mapping a to the matrix having a
as top left entry and zeros elsewhere. Prove that f induces a bijection
P(A) — P(M,(A)). [Hint: Use Exercises 1.4 and 2.5.]

§5 PROJECTIVE MODULES

In this section, we review some basic properties of projective modules,
projective covers and the Heller operator. Recall that throughout this
book, all modules are assumed to be finitely generated and that O is a
ring satisfying Assumption 2.1.

Let A be an (O-algebra. Recall that an A-module P is called projec-
tive if it is a direct summand of a free A-module, or equivalently, if for every
surjective homomorphism f : M — N, any homomorphism g : P — N
lifts to a homomorphism g : P — M such that fg=g. In fact it is suf-
ficient to assume this when g = id, that is, to require that any surjective
homomorphism f: M — P splits.

Recall also that an A-module I is called injective if for every injec-
tive homomorphism f : M — N, any homomorphism ¢ : M — I extends
to a homomorphism g : N — I such that gf = ¢g. Again it is suffi-
cient to assume this when ¢ = id, that is, to require that any injective
homomorphism f:I — N splits.

In the following proposition we review some of the main properties
of projective A-modules. In particular we obtain that the set Proj(A) of
isomorphism classes of indecomposable projective A-modules is in bijection
with the set P(A), and also with the set Irr(A4).
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(5.1) PROPOSITION. Let A be an O-algebra.

(a) Any projective A-module P decomposes as a finite direct sum of inde-
composable projective A-modules. This decomposition is essentially
unique in the sense that any other such decomposition of P is the
image of the given one by an A-linear automorphism of P .

(b) A projective A-module is indecomposable if and only if it is isomorphic
to Ae for some primitive idempotent e of A.

(c) Two indecomposable projective A-modules Ae and Af are isomor-
phic if and only if the primitive idempotents e and [ are conjugate
in A.

(d) The correspondence in (b) sets up a bijection between the sets Proj(A)
and P(A).

(e) An indecomposable projective A-module Ae has a unique maximal
submodule, namely J(A)e, hence a unique simple quotient Ae/J(A)e.
Moreover Ae = Af if and only if Ae/J(A)e = Af/J(A)f.

(f) The correspondence in (e) sets up a bijection between the sets Proj(A)
and Irr(A).

Proof. (a) This is a direct application of the Krull-Schmidt theo-
rem 4.4.

(b) By (a) it suffices to decompose a free A-module into indecompos-
able summands, and it suffices in turn to decompose the free module A of
dimension one. The result now follows from Proposition 1.16.

(c) This is an application of Corollary 4.5, because End4(A) & AP,
acting on A via right multiplication.

(d) This follows immediately from (b) and (c).

(e) For any maximal submodule M of Ae, we have J(A)-(Ae/M) =0
because J(A) annihilates every simple A-module. Therefore J(A)e C M .
But Ae/J(A)e is simple by Theorem 4.3, so that J(A)e is a maximal
submodule. This proves the first claim. Now by Proposition 1.15, two
simple A-modules Ae/J(A)e and Af/J(A)f are isomorphic if and only
if € is conjugate to f in A/J(A). By part (c) of Theorem 3.1, this holds
if and only if e and f are conjugate in A, and the result follows by (c).

(f) This is immediate by (e). O

(5.2) COROLLARY. Let A be an O-algebra and let A = A/pA.
Then reduction modulo p induces a bijection between the sets Proj(A)

and Proj(A).

Proof. This follows immediately from Proposition 5.1 and Theorem 3.1
on lifting idempotents, because pA C J(A) (see also Exercise 5.3). O
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For every point a € P(A), we write V(a) for a simple A-module
corresponding to « (see Theorem 4.3), and P(«) for an indecomposable
projective A-module corresponding to « . These are uniquely determined
by « up to isomorphism. Explicitly P(a) = Ae and V(a) = Ae/J(A)e
where e € .

(5.3) COROLLARY. Let A be an O-algebra.

(a) Let oo € P(A). In a decomposition of A as direct sum of indecom-
posable projective A-modules, the number of occurences of modules
isomorphic to P(«) is equal to mq = dimg(V(a)) .

(b) If A is free as an O-module, then we have

dimp(A) = Y dime(P(a)) dimg(V(a)).
acP(A)

Proof. (a) By Proposition 1.16, a decomposition of A as in the state-
ment corresponds to a primitive decomposition of 14 . By Proposition 5.1,
isomorphic summands correspond to conjugate idempotents. Therefore
the number of occurrences of P(«) is equal to the multiplicity m, of the
point o, which is known to be equal to dimg(V(«)) (Proposition 4.15).

(b) This follows immediately from (a). Note that P(«) is free as
an O-module because any direct summand of a free O-module is free
(Corollary 1.4). O

With our strong assumptions on O, we also have the useful prop-
erty that an arbitrary (finitely generated) A-module can be covered in
a unique minimal fashion by a projective module. This is the notion of
projective cover which we now define. First we define a projective cap of
an A-module M to be a pair (P, f) where P is a projective A-module
and f: P — M is a homomorphism of A-modules which is surjective. A
projective cap of M is called a projective cover of M if the restriction
of f to any proper submodule of P is not surjective. Instead of (P, f)
we shall often abusively call P a projective cover of M . Before examin-
ing the question of the existence of projective covers, we first prove their
minimality property and their uniqueness.

(5.4) PROPOSITION. Let A be an O-algebra and let (P, f) be a pro-

jective cover of an A-module M .

(a) If g: Q — M is a projective cap of M , there exists a split surjective
homomorphism h:Q — P such that fh = g. In other words g is
isomorphic to the direct sum

QL M) = (P-L e @ —o),

where @' = Ker(h) . In particular Ker(g) = Ker(f) ® Q' .
(b) If (P, f") is another projective cover of M , there exists an isomor-
phism h: P'— P such that fh=f".
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Proof. (a) Since @ is projective and f surjective, the map g lifts
to a homomorphism % : @ — P such that fh = g. The image of h
is a submodule of P, which maps surjectively onto M via f because
f(Im(h)) = Im(g) = M . Therefore Im(h) = P by definition of a pro-
jective cover and so h is surjective. Since P is projective, there exists a
homomorphism s: P — @ such that hs=1id, that is, h is split.

(b) By part (a), there exists a surjective homomorphism h : P’ — P
which is split by a homomorphism s : P — P’ and such that fh = f'.
The image of s is a submodule of P’, which maps surjectively onto M
via f’ because f's= fhs= f. Therefore Im(s) = P’ by definition of a
projective cover and so s is surjective. It follows that h and s are mutual
inverses. O

Note that since the homomorphism h constructed in the proposition
is in general not unique, property (a) is not universal (but might be called
“versal”). In our next result, we assume the existence of a projective cover
of M , but we note that this is always satisfied, as we shall prove below.

(5.5) PROPOSITION. Let A be an O-algebra, let f : Q — M be a

projective cap of an A-module M , and assume that a projective cover

of M exists. The following conditions are equivalent.

(a) (Q,f) is a projective cover of M .

(b) Every A-linear endomorphism ¢ : Q@ — @ such that fg = f is an
isomorphism.

Proof. If (Q, f) is a projective cover of M and g: @ — @ satisfies
fg=f, then Im(g) maps onto M via f, and therefore Im(g) = Q.
The result follows from the fact that any surjective endomorphism of a
noetherian module is injective. Indeed the increasing sequence of submod-
ules Ker(g*) must stop, that is, Ker(g") = Ker(¢"*!) for some n, and
if g(x) =0, then x = g"(y) by surjectivity, and ¢"*'(y) = 0 implies
g"(y) =0, thatis z =0.

Conversely assume that (b) holds. Since a projective cover of M
exists by assumption, we can apply Proposition 5.4. Thus there is a direct

sum decomposition (Q ER M) = (P N M) & (Q — 0) where (P, f")
is a projective cover of M (and f’ is the restriction of f to the direct
summand P ). Since the idempotent projection g: @Q — @ with image P
satisfies fg = f, it must be an isomorphism, and so P=Q . O

Turning to the question of the existence of projective covers, we first
mention that they do not exist for arbitrary rings (Exercise 5.1). Recall that
the radical J(M) of an A-module M is the intersection of all maximal
submodules of M .
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(5.6) LEMMA. Let A be an O-algebra and let M be an A-module.
Suppose that (P, f) is a projective cover of M/J(M). Then f lifts to a
homomorphism f: P — M and (P, f) is a projective cover of M .

Proof. Since the canonical map ¢ : M — M/J(M) is surjective, the
surjection f: P — M/J(M) lifts to a homomorphism f:P — M such
that qf = f. Let N be any proper submodule of M. Then N is
contained in some maximal submodule of M (because M is noetherian)
and so q(N) # M/J(M). Applying this argument with N = Im(f)
and noting that Im(f) maps surjectively onto M/J(M) (because [ is
surjective), we deduce that Im( f) M , proving the surjectivity of f It
now @ is a proper submodule of P, then we know that f(Q) # M/J(M),
and it follows immediately that f(Q) # M . Thus (P, f) is a projective
cover of M. O

It follows from the lemma that it suffices to prove the existence of
projective covers for a module M such that J(M) = 0. Our assumptions
on O imply that such a module is semi-simple.

(5.7) LEMMA. Let A be an O-algebra and let M be an A-module.
(a) J(IM)=J(A)-M.
(b) M/J(M) is semi-simple.

Proof. We have J(A)-(M/N) =0 for every maximal submodule N
of M, because J(A) annihilates every simple A-module. It follows that
J(A)-M C N and therefore J(A)-M C J(M).

The module M/J(A)-M is a module over the ring A/J(A), which is
a semi-simple k-algebra (Theorem 2.7). It follows that M/J(A)-M is a
semi-simple module (Theorem 1.10). In particular J(M/J(A)-M) =0, so
that J(M) C J(A)-M . Therefore J(M) = J(A)-M and it follows that
M/J(M) is semi-simple. O

Since we are dealing with finitely generated modules, a semi-simple
module is a finite direct sum of simple modules. Our next lemma deals
with direct sums.

(5.8) LEMMA. Let A be an O-algebra, let My, ..., M be A modules,
and let (P, f;) be a projective cover of M;. Then (@ P, @ fi) is a

n
projective cover of €@ M, .
i=1

Proof. This is an easy exercise which is left to the reader. O
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We are left with the case of a simple A-module.

(5.9) LEMMA. Let A bean O-algebra andlet V be a simple A-module.
There exists a primitive idempotent e of A such that V = Ae/J(A)e.
Moreover the canonical surjection Ae — Ae/J(A)e is a projective cover
of Ae/J(A)e.

Proof. The first assertion follows from Theorem 4.3. Moreover by
Proposition 5.1, J(A)e is the unique maximal submodule of the projec-
tive module Ae and therefore the surjection Ae — Ae/J(A)e must be a
projective cover. O

Combining all the preceding lemmas, we obtain the existence of pro-
jective covers.

(5.10) THEOREM. Let A be an O-algebra and let M be an A-module.
Then a projective cover of M exists and is unique up to isomorphism.

The Heller operator ) is a map from the set of isomorphism classes of
A-modules to itself, defined as follows. Let M be an A-module and choose
a projective cover (P, f) of M. Then QM = Ker(f) is an A-module
which is uniquely defined up to isomorphism, because (P, f) is unique up
to isomorphism by Proposition 5.4. We also say that QM is the Heller
translate of M . Thus there is an exact sequence

0— QM —P-Lsm—0.

Clearly QP = 0 if and ounly if P is projective (because (P,id) is a
projective cover of a projective module P ). Lemma 5.8 implies that
QP, M;) = P, QM; . Moreover if g : Q — M is an arbitrary projec-
tive cap of M , then by Proposition 5.4, Ker(g) = QM & Q' for some
projective A-module Q’.

The module of all homomorphisms from an indecomposable projective
A-module Ae to another module can be described in the following way.
Recall that the opposite algebra A°P of an (O-algebra A is the same
O-module A, but endowed with the product * defined by a*b = ba .
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(5.11) PROPOSITION. Let A be an O-algebra, let e be an idempotent

of A, and let M be an A-module.

(a) Homy(Ae, M) = eM as O-modules, via evaluation at e .

(b) In particular if f is an idempotent in A, then Homu(Ae, Af) 2 eAf
and the inverse isomorphism maps a € eAf to the right multiplication
by a.

(c) Enda(Ae)? = eAe as O-algebras.

Proof. (a) Let ¢ : Homa(Ae, M) — eM given by ¢(h) = h(e). It is
clear that ¢ is an (O-linear map. Given an element m € eM , one defines
h:Ae — M by h(a) = am, and this provides the inverse of ¢, using the
fact that h(a) = h(ae) = ah(e). Now (b) follows immediately.

(c) Let ¢ : Enda(Ae) — eAe be the isomorphism of part (b). If
g,h € Enda(Ae), then

¢(gh) = ghle) = g(h(e)e) = h(e)g(e) = ¢(h)o(g)-

Therefore ¢ is an isomorphism of algebras, provided one of the algebras is
considered with the opposite multiplication. O

We now consider the special case of an algebra over the field k. By
our convention 2.4, every A-module M is a finite dimensional k-vector
space. In particular M has a composition series, that is, a sequence of
submodules

O=MycCcMyC...CM,=M

such that each successive quotient M;/M;_; is a simple A-module. Every
such quotient is called a composition factor of M . By the Jordan—Hélder
theorem, the set of isomorphism classes of composition factors of M is
independent of the choice of a composition series (but of course the simple
factors may appear in another order). In particular the number of com-
position factors of M isomorphic to some given simple A-module V is
independent of the composition series and is called the multiplicity of V
as a composition factor of M .

Since both Irr(A) and Proj(A) are in bijection with P(A), with each
point « are associated an indecomposable projective A-module P(«) and
a simple A-module V(«), which are uniquely determined up to isomor-
phism. Explicitly P(a) = Ae and V(a) =2 Ae/J(A)e if e € a. We define
the Cartan integer cq 3 to be the multiplicity of V(«) as a composition
factor of P(8). Thus (cap) is a square matrix indexed by the points,
called the Cartan matriz of A. It has a very natural interpretation as the
matrix of a linear map between two Grothendieck groups (see Serre [1971]
or Curtis—Reiner [1981] for details).
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As an example, we mention that the Cartan matrix of the group al-
gebra kG of a finite group G is symmetric (see Exercise 6.5 of the next
section). Moreover it is non-singular, with determinant a power of p. We
shall return in Section 42 to this basic result of modular representation
theory.

We now give another characterization of the Cartan integers in terms
of homomorphisms.

(5.12) PROPOSITION. Let A be a k-algebra, let «, € P(A), and let
ec€a, fe€f. Then

Ca,p = dim(Homx (P(a), P(8))) = dim(eAf).

Proof. Since P(a) & Ae and P(B) = Af, the second equality is
an immediate consequence of the isomorphism Homg(Ae, Af) = eAf of
Proposition 5.11. If N is a submodule of an A-module M , then since
P(a) is projective, the sequence

0— Hom 4 (P(a), N)— Homy (P(a), M) — Homyu (P(a), M/N)—0
is exact. Therefore we have

dim(Hom 4 (P(a), N))+dim(Homy (P(a), M/N)) = dim(Hom 4 (P(«), M))
and if 0=MyC M, C...C M, = P(f) is a composition series of P(f),
it follows by induction on the length that

dim(Hom 4 (P(«), P(B))) = Zdim(HomA(P(oz)7 M;/M;_1)) .
i=1
Since P(«a) has a unique maximal submodule J(P(«)), with simple quo-
tient V(a) = P(a)/J(P(«)), any homomorphism P(a) — M;/M;_1 fac-
torizes through V(«) because M;/M;_; is simple. Therefore
HOIHA(P(OZ), Mi/Mi—l) = HOHIA(V(Oé), Mz/Mz—l)
and by Schur’s lemma 1.8 we have

. ) ) _ 1 if V(a) = ]\4'2‘/]\41',17
dim(Hom  (P(a), M;/M;_1)) = {0 iV (a) 2 M, /M, 1.
This proves that dim(Homa(P(«), P(8))) is the multiplicity of V(a) as
a composition factor of P(f), which is ¢ g by definition. O
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A very useful way of decomposing a k-algebra A as a direct product
is provided by the following result. It says essentially that if the Cartan
matrix of A can be decomposed into diagonal blocks (with off-diagonal
blocks zero), then A decomposes accordingly as a direct product.

(5.13) PROPOSITION. Let A be a k-algebra. Assume that there exists

a disjoint union decomposition P(A) = Py U P, such that c, 3 =0 and

cgo =0 forall a € Py and € P,. Let I be a primitive decomposi-

tion of 14 and, for r = 1,2, let e, be the sum of all idempotents in I

belonging to points in P, , so that 14 =e1 +e3.

(a) e1 and ey are central idempotents. In particular Ae, is a k-algebra
with unity element e, .

(b) A%Ael X A€2 .

(c) The surjection A — Ae, induces a bijection P, = P(Ae,).

Proof. (a) By Proposition 5.12, the assumption implies that iAj =0
and jAi = 0 if ¢ belongs to a point in P; and j belongs to a point
in Py . Therefore e;Aes =0 and esAe; = 0. It follows that if a € A, we
have

a = (e1 + ez)ale; + e2) = eraey + esaes

so that eja = ejae; = aep , and similarly esa = aes .

(b) Every a € A can be written uniquely a = a1 +as with a, € Ae, .
Indeed the existence follows from the decomposition a = aey + aes , and
we have uniqueness because a, = ae, (after right multiplication by e, ).
Moreover ajas = ajejases = ajageies = 0, and similarly asa; = 0 (where
a, € Ae, ). Therefore we obtain an isomorphism Ae; X Aes — A mapping
(al, CLQ) to a1 + as .

(¢) If ¢ € I belongs to a point « € Py, then ie; =i and ies = 0.
Thus a € P; if and only if o € Aes = Ker(A — Ae;). By Theo-
rem 3.2, this implies that the surjection A — Ae; induces a bijection
P = P(Ael) . g

An important special case is the following.

(5.14) COROLLARY. Let A be a k-algebra and assume that there exists

a simple A-module V' which is projective and injective.

(a) A=2Endi(V)x A" for some k-algebra A’.

(b) If A has no non-trivial central idempotent, then A = End (V) and
A is a simple k-algebra.
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Proof. (a) We have V = V() for some point o € P(A) . Since V(«)
is projective, it coincides with its projective cover P(«). Therefore V(«a)
is the only composition factor of P(«) and so cg, = 0 for every point
8 # a. If now co3 # 0 for some point [, then there exists a non-zero
homomorphism f : V(a) = P(a) — P(8) by Proposition 5.12. As V(«)
is simple, the submodule Ker(f) is zero, so that f is injective. Since V(«)
is an injective A-module, f splits and therefore V(«) is isomorphic to
a direct summand of P(f). But as P(f) is indecomposable, it follows
that V(o) & P(B), forcing a = . This proves that c, 3 = 0 for every
point B # «. Thus the assumptions of Proposition 5.13 are satisfied with
Py ={a} and P, =P(A) — {a}.

By Proposition 5.13, A = Ae; x Aes where e, is defined as in the
proposition. Moreover Ae; is a k-algebra with a single point «, and
the unique simple Aej-module V' («) is projective. This forces the semi-
simplicity of all Aej-modules, so that Ae; is a semi-simple k-algebra,
hence a simple algebra since there is a single point. Therefore we have
Aeq =2 Endg(V(a)), as required.

(b) This follows immediately from (a). D

Exercises

(5.1) Let p be a prime number. Prove that Z/pZ does not have a pro-
jective cover as a Z-module. Prove that J(Z) = 0 but that Z is not
semi-simple as a Z-module.

(5.2) Prove Lemma 5.8.

(5.3) Let A be an O-algebra and let A = A/pA = k ®, A. For any
indecomposable projective A-module P, show that P = P/pP is an inde-
composable projective A-module, and that P is the projective cover of P
as an A-module. Prove that this provides a bijection between Proj(A)

and Proj(A) such that the following two diagrams of bijections commute
(where the bijections are defined by Proposition 5.1).

L g L

P(A) = Proj(4) = Trr(A)
PA) = Proj(d) 5 In(A)
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(5.4) Let A = K[X]/(X™). Prove that the modules k[X]/(X") (for
1 <r <m) form a complete list of indecomposable A-modules. Show that
the Heller operator is periodic on non-projective indecomposable modules,
by showing that its square Q2 is the identity.

§6 SYMMETRIC ALGEBRAS

In this section we examine the special case of symmetric algebras where
more information on projective modules, projective covers and the Heller
operator is available. Asusual O denotes a ring satisfying Assumption 2.1.

Let A be an (-algebra and let M be an A-module. We define the
dual of M to be the right A-module M* = Home(M,O). The right
A-module structure on M* is given by (fa)(m) = f(am), for a € A,
feM* and m € M. Similarly if M is a right A-module, then M* is a
left A-module via (af)(m) = f(ma). If M is free as an O-module, then
so is M™* | but without any assumption on M or O it may happen that
M* =0 (for instance if O is a discrete valuation ring and M is a torsion
module).

Let M and N be two O-modules and let ¢ : M x N — O be an
O-bilinear form. The form ¢ corresponds to an O-linear map 6 : M — N*
defined by 0(x)(y) = ¢(z,y) for all x € M and y € N, and similarly to a
map ¢ : N — M* defined by 6'(y)(x) = é(x,y) . The O-bilinear form ¢
is called non-degenerate if the corresponding linear maps 6 and 6’ are
injective, and ¢ is called unimodular if # and 6’ are isomorphisms. When
O =k is a field, then both notions coincide, because the injectivity of 6
and 0" forces the vector spaces M and N to have the same dimension and
an injective linear map between two vector spaces of the same dimension
is necessarily an isomorphism. However, this is not the case when O is
a complete discrete valuation ring, and the distinction between the two
notions will turn out to be quite important.

We shall often work with the case where M and N are equal. A
bilinear form ¢ : M x M — O is called symmetric if ¢(x,y) = ¢(y,z) for
all z,y € M . In that case the corresponding maps 6 and 6’ coincide, so
that the non-degeneracy or unimodularity of ¢ is a condition on the single
map 6.

If now M is a right A-module and N is a left A-module, then
0: M — N* is an O-linear map between two right A-modules. The re-
quirement that 6 be A-linear is equivalent to the condition that ¢(za,y) =
¢(z,ay) forall z € M, y € N,and a € A. Applying all thisto A, we let
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Ay (respectively A, ) denote A with its left (respectively right) A-module
structure.

(6.1) PROPOSITION. Let A be an O-algebra. The following three
conditions are equivalent.
(a) There exists an isomorphism of right A-modules 6 : A, — A} which
is symmetric (that is, 6(a)(b) = 0(b)(a) for all a,be A).
(b) There exists a unimodular symmetric O-bilinear form ¢ : Ax A — O
which is associative (that is, ¢(ab,c) = ¢(a,be) for all a,b,c € A ).
(c) There exists an O-linear map A : A — O with the following three
properties:
(i) X\ is symmetric (that is, A(ab) = A(ba) for all a,b € A).
(ii) Ker(\) does not contain any non-zero right ideal of A .
(iii) For any O-linear map f: A — O, there exists a € A such that
f(b) = A(ab) forall be A.

Proof. The connection between 6 and ¢ is given by the formula
0(a)(b) = ¢(a,b). The fact that 6 is A-linear corresponds to the require-
ment that ¢ be associative. The equivalence between (a) and (b) follows.

The connection between ¢ and A is given by the formula ¢(a,b) =
A(ab) . The associativity of ¢ corresponds to the associativity of the mul-
tiplication in A . Moreover if 6 : A, — A} is the map corresponding to ¢,
then 6 is injective if and only if Ker(\) does not contain any non-zero
right ideal of the form aA , that is, if and only if Ker(\) does not contain
any non-zero right ideal of A. Finally 6 is surjective if and only if any
linear map f: A — O has the form f(b) = A(ab) for some a. O

An QO-algebra A satisfying the equivalent conditions of the proposi-
tion is called a symmetric algebra and any linear form A : A — O satis-
fying condition (c) is called a symmetrizing form for A. Instead of call-
ing A symmetric, one often says that A\ is central if A(ab) = A(ba) for all
a,be A.

Note that condition (i) on Ker(\) guarantees the non-degeneracy
of ¢, while the additional condition (iii) guarantees the unimodularity
of ¢. Thus over a field k, (iii) is a consequence of (ii). Note also that (iii)
implies (ii) if A is free as an O-module. Indeed the dual A* is then also
free of the same dimension and the surjectivity of 6 implies its injectivity
(because A is noetherian).

By the symmetry condition, one can also view # as an isomorphism
of left A-modules A, — A’ . For the same reason, one can require equiva-
lently that Ker(\) does not contain any non-zero left ideal of A, and also
that ¢ satisfies ¢(ab,c) = ¢(b,ca) for all a,b,c€ A.
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Let A be a symmetric algebra and let A be a symmetrizing form
for A. If I is an ideal of A, we define the orthogonal I+ of I to be

I ={acA| XNab)=0 forallbeT}.

The map I — I+ is order reversing, and we have I C I+ . Equality holds
over a field but fails to hold in general (Exercise 6.1). A basic property
of symmetric algebras is that the (left or right) annihilator of an ideal I
coincides with I+ . The proof of this is left to the reader (see Exercise 6.2).

(6.2) EXAMPLE. The group algebra OG of a finite group G is a sym-
metric algebra. A symmetrizing form for OG is the form X : OG — O
mapping a basis element ¢ to zero if ¢ # 1 and to 1 if ¢ = 1. The
symmetry condition follows from a straightforward computation. By con-
sidering the dual basis { g~ | g € G }, it is easy to check the unimodularity
condition.

(6.3) EXAMPLE. The matrix algebra A = M, (O) is a symmetric al-
gebra. Indeed the trace map tr: M,(O) — O is a symmetrizing form,
because it satisfies tr(ab) = tr(ba) and the canonical basis (e;;) has a
dual basis, namely (e;;). More generally any finite direct product of ma-
trix algebras is a symmetric algebra, using the sum of the trace maps of
the factors.

If A is a symmetric algebra and e € A is an idempotent, it is often
useful to know that eAe is again a symmetric algebra. We now prove a
slightly more general result.

(6.4) PROPOSITION. Let A be a symmetric O-algebra and let A\ be
a symmetrizing form for A. If e and [ are idempotents of A, then A\
induces by restriction a unimodular bilinear form

eAf x fAe — O.

In particular eAe is a symmetric algebra.

Proof. Let a € eAf and suppose that A(ab) =0 for every b € fAe.

Since a = eaf , we have for every c € A
Aac) = Meafe) = Ma(fce)) =0.
Therefore a = 0 by non-degeneracy of A. Suppose now that h: fAe — O
is a linear form. Then h extends to a linear form h: A — O by setting
h(z) = h(fxe). By unimodularity of A, there exists a € A such that
h(c) = Aac) for all ¢ € A. Then for every b € fAe, we have b = fbe
and therefore
A(eaf)b) = Aafbe) = A(ab) = h(D).

This proves that the linear form h is the image of eaf under the map
eAf — (fAe)*, proving unimodularity. The special case follows by taking
e=f. O
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We shall see in Section 33 a natural example of a symmetric algebra
which is not free as an O-module. However, the notion of symmetric alge-
bra is particularly useful when the algebra is free as an O-module and we
make this assumption for the rest of this section. Over an O-algebra A
which is free as an O-module, it is natural to consider the category of
A-lattices. An A-lattice is an A-module which is free as an O-module
(and finitely generated, as usual). Any direct summand of an A-lattice is
again an A-lattice, because a direct summand of a free O-module is again
free (Corollary 1.4). In particular, since a free A-module is free over O,
all projective A-modules are A-lattices, and we shall call them projective
A-lattices in the sequel. Clearly the dual M* of a (left) A-lattice M is
a (right) A-lattice. Moreover the evaluation map M** = M is an isomor-
phism of (left) A-lattices. We are going to use this for the dualization of
the notions of the previous section. This would not be possible for arbitrary
A-modules since for instance the dual of an A-module may be zero.

An A-lattice I is called injective relative to O, or simply O-injective,
if the following condition holds: for any given injective homomorphism of
A-modules f : N — M and any homomorphism ¢g : N — I having
an O-linear extension h : M — I (that is, h f = g), there exists an
A-linear extension h : M — I (that is, h f = g). Taking in particular
g = idr , one obtains that any injective homomorphism f: I — M having
an O-linear retraction h: M — I has an A-linear retraction h: M — I .
In other words, if we let M’ = Coker(f), then the short exact sequence of
A-modules 0 — I — M — M’ — 0 splits provided it splits as a sequence of
O-modules. Taking now M to be an A-lattice, the splitting of the sequence
over O is equivalent to the condition that M’ be again a lattice (because
on the one hand a direct summand of a free O-module is a free O-module
and on the other hand a short exact sequence of A-lattices necessarily
splits over O ). Thus we obtain in particular that if I is O-injective, then
every short exact sequence of A-lattices 0 — I — M — M’ — 0 splits. It
can be shown that this condition is in fact equivalent to the O-injectivity
of I, but we shall not need this.

An O-injective A-lattice is not necessarily an injective A-module be-
cause, in the definition, an O-linear extension may not exist. For instance if
O is a domain with p # 0, then for any A-lattice M , the endomorphism
of M equal to the multiplication by an element A € p is injective but has
no retraction. However, if O = k is a field (in which case the notion of
lattice coincides with that of module), then a k-injective A-module is an
injective A-module, because any k-linear map can always be extended to
a larger k-vector space (alternatively any injective map of k-vector spaces
always has a k-linear retraction).

Similarly an A-lattice P is called O-projective if the following con-
dition holds: given a surjective homomorphism f: M — N of A-modules
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and a homomorphism g : P — N which has an O-linear lift h: P — M
(that is, fh = g), then there exists an A-linear lift h: P — M (that is,

fh =g). Taking in particular g = idp and M to be an A-lattice, we
obtain in particular that if P is O-projective, then every short exact se-
quence of A-lattices terminating in P splits. But we now show that the
notion of O-projectivity is in fact equivalent to projectivity.

(6.5) LEMMA. Let A be an O-algebra which is free as an O-module
and let P be a (left) A-lattice. The following conditions are equivalent.
(a) P is a projective left A-lattice.

(b) P is an O-projective left A-lattice.

(¢c) The dual P* is an O-injective right A-lattice.

Proof. The equivalence between (b) and (c¢) follows immediately from
the definitions and duality. It is clear that (a) implies (b). Finally, to
show that (b) implies (a), assume that P is an O-projective A-lattice
and let f : @ — P be a projective cap of P. Since P is free over O,
the surjection f:@Q — P splits over O, hence over A by O-projectivity.
Therefore P is isomorphic to a direct summand of @, so is projective. O

In order to define the notion of O-injective hull, we dualize the charac-
terization of projective covers given in Proposition 5.5. An O-injective hull
of an A-lattice M is a pair (I, f), where I is an O-injective A-lattice
and f: M — I is an injective homomorphism of A-modules, such that f
has an O-linear retraction and any endomorphism ¢ : I — [ with g f = f
is an isomorphism. Instead of (I, f) we shall often abusively call I an
O-injective hull of M . We emphasize that an O-injective hull of a lattice
is in general not its injective hull as a module (unless O =k is a field). We
also define the Heller operator Q=1 by setting Q~(M) = Coker(f) where
(I, f) is an O-injective hull of M . Since f has an O-linear retraction by
definition, the exact sequence

0—M-LT1—a M) —o0
splits over O and therefore ~!(M) is again an A-lattice. The properties

of O-injective hulls are similar to those of projective covers. In particular
we show that they exist.

(6.6) PROPOSITION. Let A be an Q-algebra which is free as an
O-module and let M be an A-lattice. Then an O-injective hull of M
exists and is unique up to isomorphism.

Proof. Let (P, f) be a projective cover of the right A-lattice M™*,
which exists by Proposition 5.10. Since M* is free over O, there exists
an O-linear section s : M* — P of f. Then clearly (P*, f*) is an
O-injective hull of M** =2 M with O-linear retraction s*. The proof of
uniqueness is left to the reader. O
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Let A be an O-algebra which is free as an O-module. Then A is
called self-injective if the left A-module A, is an O-injective A-lattice.
If A is symmetric, then it is self-injective since, by Proposition 6.1, A, is
isomorphic to the dual of a free right lattice and is therefore O-injective
by Lemma 6.5. For self-injective algebras, we have the following result.

(6.7) PROPOSITION. Let A be a self-injective O-algebra (free as an

O-module).

(a) An A-lattice is projective if and only if it is O-injective.

(b) If M is an A-lattice with no non-zero projective direct summand,
then we have QQ 1M = M and Q~1QM = M .

(c) If M is an indecomposable non-projective A-lattice, then QM and
Q~'M are indecomposable non-projective A-lattices.

Proof. (a) Since Ay is O-injective, so is any direct summand of a
free A-lattice. Thus a projective A-lattice is O-injective. In particular
Proj(A) C Inj(A), where Inj(A) denotes the set of isomorphism classes of
indecomposable O-injective (left) A-lattices. By the duality of Lemma 6.5,
Inj(A) is in bijection with the set Proj,.(A) of isomorphism classes of
indecomposable projective right A-lattices. By Proposition 5.1 both sets
Proj(A) and Proj,.(A) are in bijection with P(A) (which is intrinsically
defined without any one-sided condition). Since all these sets are finite, it
follows that Proj(A) = Inj(A), and consequently any O-injective A-lattice
is projective.

(b) Since © and Q7! are additive, we can assume that M is in-
decomposable non-projective. Let j : M — P be an O-injective hull
of M, with cokernel Q~1M . Since P is a projective A-lattice by (a),
one can apply Proposition 5.4 to the surjective map f: P — Q~'M . Thus
P is the direct sum of a projective cover of Q7'M and some projective
A-lattice @, and we have f(Q) = 0. Therefore M = Ker(f) is the direct
sum of QO ~'M and Q. Since M is indecomposable non-projective, we
must have Q =0 and M = QO ~'M . Dualizing the whole argument, we
obtain M = Q7 1QM .

(c) Let M be an indecomposable non-projective A-lattice and let
f P — M be a projective cover of M . If @ is an O-injective direct
summand of QM , then the projection QM — @ extends to a homomor-
phism ¢ : P — @, which is the identity on @ . Thus P = @ @ Ker(g)
and since @ C Ker(f), we have f(Ker(g)) = M and hence Ker(g) = P
by definition of a projective cover. Therefore @ = 0 and QM has no
non-zero O-injective direct summand. If QM = N @& N’, then by (b)
M=Q71OM = Q!N ® Q !N’ and by indecomposability of M it fol-
lows that Q7'N = M and Q7 'N’ = 0 (or vice versa). This implies
that N’ = 0 because the Heller operator Q~! is non-zero on a non-zero
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non- O-injective A-lattice. This shows that QM is indecomposable, and
non- O-injective, that is, non-projective by (a). The dual of this argument
implies similarly that Q~'M is indecomposable non-projective. O

Returning to the special case of symmetric algebras, we show some of
their most important properties, which hold over a field k. We need the no-
tion of socle. For any k-algebra A, the socle Soc(M) of an A-module M
is the sum of all simple submodules of M . In other words Soc(M) is the
largest semi-simple submodule of M . Since a module is semi-simple pre-
cisely when it is annihilated by J(A), the socle is the largest submodule
of M annihilated by J(A). Applying this to the left A-module A,, we
have the left socle Soc(Ap), which is easily seen to be a two-sided ideal
of A. Similarly Soc(A,) is the right socle of A. In case A is symmetric,
then Soc(Ay) = Soc(A4,) by Exercise 6.2, and this ideal is simply called
the socle of A, written Soc(A).

Let A be a symmetric k-algebra. In particular A is self-injective, so
that projective and injective A-modules coincide (Proposition 6.7). Du-
alizing the fact that every indecomposable projective A-module P has a
unique simple quotient P/J(P), we see that every indecomposable pro-
jective A-module P has a unique simple submodule Soc(P). For an ar-
bitrary k-algebra, the socle of an indecomposable projective module need
not be simple, but this is the case for any self-injective k-algebra. This
argument does not apply over an arbitrary complete local ring O , because
the simple A-module P/J(P) is in general not an A-lattice; this is why
we have to work over a field k. The extra property of the socle in the
symmetric case is the following.

(6.8) PROPOSITION. Let A be a symmetric k-algebra and let P be
an indecomposable projective A-module. Then Soc(P) = P/J(P).

Proof. Since P is isomorphic to Ae for some primitive idempotent e
of A, we can assume that P = Ae. Then Soc(P) is a left ideal of A and
therefore A(Soc(P)) # 0 by definition of a symmetric algebra, where A
denotes a symmetrizing form for A. Thus there exists a € Soc(P) such
that A(a) # 0 and, by symmetry, we have A(ea) = Aae) = A(a) # 0
(notice that a = ae since a € P). This shows that eSoc(P) # 0 and
so Homx(Ae,Soc(P)) # 0 by Proposition 5.11. Since Soc(P) is simple,
a non-zero homomorphism Ae — Soc(P) factorizes through the unique
simple quotient Ae/J(A)e of Ae. Then the non-zero homomorphism
Ae/J(A)e — Soc(P) must be an isomorphism since both modules are
simple. O

There is another useful property of socles for symmetric algebras.
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(6.9) PROPOSITION. Let A be a symmetric k-algebra and let P be

an indecomposable projective A-module.

(a) Ends(P) is a symmetric algebra.

(b) Let f € Enda(P). Then f € Soc(End4(P)) if and only if we have
Im(f) C Soc(P) .

Proof. (a) We have P = Ae for some primitive idempotent e of A
and there is an isomorphism End 4 (P) = (eAe)°? by Proposition 5.11. By
Proposition 6.4, eAe is a symmetric algebra, and therefore so is (eAe)°?
by just taking the same symmetrizing form.

(b) Since P is indecomposable, idp is a primitive idempotent of the
algebra End4(P), so that End(P) is a local ring (Corollary 4.6). There-
fore J(Enda(P)) consists exactly of the non-invertible endomorphisms
of P. Since P is a finite dimensional k-vector space, any non-invertible
endomorphism has a non-zero kernel and a proper image. But as P is pro-
jective indecomposable, J(P) is its unique maximal submodule (Proposi-
tion 5.1) and Soc(P) is its unique minimal submodule (Proposition 6.8).
Thus any f € J(Enda(P)) has a kernel containing Soc(P) and an image
contained in J(P).

By Proposition 6.8, there exists an isomorphism & : P/J(P) = Soc(P)
and h lifts to an endomorphism h € End(P) such that Ker(h) = J(P)
and Im(h) = Soc(P). It follows that for any f € J(Enda(P)), we have
Im(h) C Ker(f) and Im(f) C Ker(h), and therefore fh =0 and hf =0.
This shows that h belongs to the annihilator of J(End4(P)), which is
equal to Soc(Enda(P)).

Since End4(P) is a local ring, Enda(P)/J(Enda(P)) = k, and
therefore Soc(Enda(P)) = k as Enda(P)-modules by Proposition 6.8.
Thus Soc(End4(P)) consists exactly of the scalar multiples of h. Fi-
nally we show that the endomorphisms f satisfying Im(f) C Soc(P) are
also exactly the scalar multiples of h. Indeed if Im(f) C Soc(P) and
f # 0, then Im(f) = Soc(P) by simplicity of Soc(P), and therefore
Ker(f) = J(P) since P/J(P) is the only simple quotlent of P. In other
words f induces an isomorphism f : P/J(P) = Soc(P). By Schur’s
lemma End4(P/J(P)) = Enda(Soc(P)) = k and so any endomorphism
P/J(P) — Soc(P) is a scalar multiple of h. Thus f is a scalar multiple
of h. D

(6.10) REMARK. With a little bit more work, it can be shown that this
proposition holds more generally for an arbitrary projective module over a
symmetric k-algebra A .
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Exercises

(6.1) Let A be a symmetric O-algebra and let I and J be ideals of A.

(a) Prove that if I C J, then J+ C I+.

(b) Prove that I C I+ and that I = I+t if O = k. [Hint: Over k, we
have dim(I+) + dim(I) = dim(A) and dim(I*++) = dim([) .]

(c) Construct an example for which I # I+ . [Hint: Choose a domain O

with p # 0 and a symmetric algebra A which is free as an O-module.
Consider the ideal pA ]

(6.2) Let A be a symmetric O-algebra.

(a) Let I be an ideal of A, let ¢(I) = {a € A | al = 0} be the
left annihilator of I, andlet r(I)= {a€ A | Ia=0} be the right
annihilator of I. Prove that r(I) is a two-sided ideal and that it is
equal to the orthogonal I+ of I. Similarly prove that ¢(I) = I+ and
deduce that r(I) = ¢(I).

(b) Assume that O = k. Prove that Soc(Ay) = Soc(A,) = J(A)*, where
Soc(Ay) is the left socle of A and Soc(A4,) is the right socle of A.

(6.3) Let A be a symmetric O-algebra and let A : A — O be a sym-
metrizing form for A. Let u : A — O be a linear form, so that by
Proposition 6.1 there exists u € A such that p(a) = A(au) for all a € A.
Prove that p is a symmetrizing form for A if and only if w is central
and invertible. In particular describe all symmetrizing forms for a matrix
algebra.

(6.4) Prove the uniqueness of O-injective hulls up to isomorphism (Propo-
sition 6.6).

(6.5) Let A be a symmetric k-algebra. Prove that the Cartan matrix
of A is symmetric. [Hint: Use Proposition 6.4.]
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§7 SIMPLE ALGEBRAS AND SUBALGEBRAS

In this section, we introduce the important class of O-simple algebras,
and show their crucial properties as subalgebras of arbitrary algebras. We
continue with a ring O satisfying Assumption 2.1.

An O-algebra S is called O-simple if S is isomorphic to Endp (V)
for some free O-module V , or in other words if S is isomorphic to a matrix
algebra M, (O) over O (where n is the dimension of V). In that case
J(S) =pS and S/J(S) is a simple algebra isomorphic to M, (k). Thus S
has only one point, with multiplicity n. An O-algebra S is called O-semi-
simple if S is isomorphic to a direct product of O-simple algebras. Note
that an (O-semi-simple algebra is always free as an O-module. We first
prove that the Skolem—Noether theorem 1.9 holds for O-simple algebras,
starting with a useful lemma.

(7.1) LEMMA. Let S be an O-simple algebra, so that we can write
S = Endp (V) for some free O-module V .

(a) V is an indecomposable projective S-module.

(b) V is the unique indecomposable S-lattice up to isomorphism.

Proof. (a) Choose an O-basis (v;) of V and let e be the projection
onto Quv; , with kernel containing all the other basis elements. By the the-
orem on lifting idempotents, e is a primitive idempotent of S, because
its image in S/pS = Endy(V/pV) is a projection onto a one-dimensional
k-subspace of the k-vector space V/pV . Therefore Se is an indecompos-
able projective S-module (Proposition 5.1). Informally, Se is isomorphic
to the first column of the matrix algebra S, hence is isomorphic to V.
More explicitly, the map f : Se — V mapping s to s(v1) is clearly
S-linear. Moreover f is surjective by elementary linear algebra, and is
therefore an isomorphism since both Se and V' are free O-modules of the
same dimension (Proposition 1.3).

(b) Let M be an S-lattice. Since S/pS = Endy(V/pV) is a simple
k-algebra with unique simple module V/pV | the (S/pS)-module M/pM
is isomorphic to (V/pV)™ for some n (Theorem 1.10). Since V™ is pro-
jective by (a), the map V"™ — (V/pV )" =2 M /pM lifts to a homomorphism
f: V™ —= M. Then f must be an isomorphism since its reduction mod-
ulo p is an isomorphism (Proposition 1.3). Thus M = V"™ and so, by the
Krull-Schmidt theorem, V is the unique indecomposable S-lattice up to
isomorphism. O
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(7.2) THEOREM (Skolem—Noether). Let S be an O-simple algebra.
Then every O-algebra automorphism of S is an inner automorphism.

Proof. By assumption S 2 Endp (V) for some free O-module V' and
we identify S with Endp (V). By Lemma 7.1, V is the unique indecom-
posable S-lattice up to isomorphism. Now let g be an automorphism of S .
Then V carries another S-module structure, defined by s*v = g(s)(v)
(where s € S and v € V'), and this is again indecomposable. By unique-
ness of V', the new module structure on V is isomorphic to the original
one. Therefore there exists an O-linear automorphism A of V' such that
h(s*v) = s(h(v)) forall s€ S and v € V. But h € Endp(V) =S and
h is invertible, so that we obtain g(s)(v) = s * v = h=tsh(v), or in other
words g(s) = h7lsh forall s€S. O

Now we consider O-semi-simple subalgebras. Given an O-algebra A
and an O-semi-simple subalgebra S of A, it follows from Exercise 2.1
that J(A) NS = J(S) because J(S) = pS C J(A). Therefore the semi-
simple k-algebra S/J(S) embeds into the semi-simple k-algebra A/J(A).
There are many possible such embeddings since on the one hand any ma-
trix algebra M, (k) has subalgebras of the form M, (k) x ... x M,, (k)
(provided a; +...a, < n) and on the other hand M, (k) can be embed-
ded diagonally in M, (k) x M,,(k) (provided a < n and a < m). We
are particularly interested in the extreme case where S/J(S) = A/J(A),
or in other words S + J(A) = A; this means that S is an O-semi-simple
lift in A of the k-semi-simple quotient A/J(A). In that case S turns
out to be a mazimal O-semi-simple subalgebra of A and any maximal
O-semi-simple subalgebra is of that type, as we now prove.

(7.3) THEOREM. Let A be an O-algebra which is free as an O-module.

(a) There exists an O-semi-simple subalgebra S such that S+J(A) = A.

(b) An O-semi-simple subalgebra S of A is maximal if and only if we
have S+ J(A) = A. In particular any O-semi-simple subalgebra T
of A is contained in an O-semi-simple subalgebra S of A such that
S+JA)=A.

(c) Any two maximal O-semi-simple subalgebras of A are conjugate by
an element of A* .

Proof. (a) In a primitive decomposition of 1,4, one can choose one
idempotent e, for each point a of A and write the others as conjugates
of those. Thus we have

=2 2

aEP(A) uel,
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where U, is a finite set of invertible elements of A (whose cardinality
is necessarily the multiplicity of o). Now consider the elements u~le,v
where « € P(A) and u,v € U, . They satisfy the following orthogonality

relations:

(7.4) tlequ - vl epw = {t‘leaw ifa:'ﬁandu:v,

0 otherwise.
Indeed t~lequ - v legw = t~luet - egv_lw and we know that the two
middle idempotents are orthogonal if they are not equal.

The first consequence of the relations 7.4 is that the elements u~le,v
are (O-linearly independent, and are even part of an O-basis of A. Indeed
by Proposition 1.3 (and because A is free as an O-module by assump-
tion), it suffices to prove this in the k-algebra A = A/pA. But since
pA C J(A), the images u '€,0 of the elements u~le,v are non-zero
in A (by the theorem on lifting idempotents). If Za,u,v Ao unl €00 =0
(where A\, 4. € k), it suffices to multiply this relation by u~'e,v to ob-
tain /\%u,vﬂ_léaﬁ = 0 and therefore A, . = 0. This proves the required
linear independence.

The next observation is that the relations 7.4 correspond exactly to
the multiplication rules for the standard basis of a matrix algebra. Thus
for each point «a, we see that S(a) =D, ,ep, O u~teqv is isomorphic
to a matrix algebra over O (of size |U,|) and therefore

S = @ O-ulteqv = H S(a)

a€P(A) a€P(A)
u,veUq

is an O-semi-simple subalgebra of A . Since the images in A/J(A) of the
elements u~le,v are non-zero (by the theorem on lifting idempotents),
they generate a semi-simple k-algebra which is the whole of A/J(A) by
construction (or by comparison of dimensions). Therefore S+ J(A4) = A4,
as required.

(b) Assume that S+ J(A) = A and that S is contained in some
maximal O-semi-simple subalgebra S’. Then we also have S+ J(A) = A
and both S and S’ lift the semi-simple k-algebra A/J(A). It follows
that S’ = S + pS’ and therefore S’ = S by Nakayama’s lemma. This
shows that S is maximal.

Conversely let 7" be an O-semi-simple subalgebra of A. We have
to show that T C S where S is O-semi-simple and S + J(A) = A.
The element 17 is an idempotent of A, and T is a subalgebra of the
O-semi-simple algebra T = T x O(1la — 17). Replacing T by T’, we
can assume that 1r = 14 . Either by the argument of part (a) applied
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to T or by direct inspection of the standard basis of a matrix algebra (see
Exercise 7.1), we can write

u
= D Oulea,
a€eP(T)

u,u’ €U,

where e, is a primitive idempotent of T belonging to «, where all
u,u’ € U, are invertible elements of 7', and where 1 = 3 > i, eq
is a primitive decomposition of 1 in 7. Each e, is primitive in T,

but not necessarily in A. So choose a primitive decomposition in A of

each e, ,
ca= Y, > fis

BEP(A) vEVa,p

where fo,g € B or fopg = 0, and V, g is a finite subset of A*. For
every 8 € P(A), fix some primitive idempotent gg in 8 and write fqo 3 =

gg(a’ﬂ ) whenever it is non-zero. Then we obtain a primitive decomposition

of 1 in A
Z(Z > X g,

BEP(A) aeP(T) u€Uas vEVL s
fa B#O

Therefore, as in the proof of part (a), we have an O-semi-simple subalge-
bra S of A having an O-basis { (w(«, B)vu)~tgs (w(a, B)v'u’) } and such
that S+ J(A) = A. By construction it is clear that each element u~te,u’
belongs to S and this proves that T is contained in S .

(c) Let S and T be two maximal O-semi-simple subalgebras of A .
As above we can write

@ O-utegu and T= @ O-vlf,

aeP (S) aeP(T)
u,u EUa v,v/EVa

where 15 =3 > cy. €4 isa primitive decomposition of 15 (and simi-
larly for T'). We can assume that the sets U, are disjoint: with respect
to the decomposition S =[], S(«) into simple O-algebras, it suffices to
choose the elements of U, with all components equal to 1, except in S(a)
where they can be taken different from 1 (using a central element of S(«)
instead of 1 if necessary). Similarly we can assume that the sets V, are
disjoint.

Since S is maximal, it maps onto A/J(A) (because by (b) we have
S + J(A) = A) and therefore each idempotent e, remains primitive
in A/J(A), hence also in A. Thus it is clear that the inclusion S — A
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induces a bijection between P(S) and P(A), and consequently we can in-
dex both sets of points of S and T by « € P(A). Moreover the primitive
idempotents e, and f, belong to the same point of A, so are conjugate
in A; we write f, = €S for some c, € A*.

Since the cardinalities of U, and V, are equal (they are both the
multiplicity of a'), there exists a bijection ¢ : U, Us — U, Vo mapping
U, onto V, , using the fact that the sets U, (respectively V, ) are disjoint.
Now consider the element of A

a= D, ) wiepcpgw).
BEP(A) wEUs
We have orthogonality relations similar to the relations 7.4 (because the
idempotents 2™ = g(u)~lcsleq Ca g(u) are orthogonal). Therefore

Z w™tep cp g(w ))( Z 9(37)_1 ) Z wlegw =1,

BEP(A YEP(A) BEP(A)
wEUﬁ zeU, weUg

and similarly for the product in the other order (or use Exercise 3.3). Thus
a is invertible. Now the orthogonality relations also imply that

Tleat)a=uTleacag(W) = a (g(u) e ea ca g(u)).

It follows that
a’_l(u_lea ’U’/)a = g(u)_lc(;leoz Ca g(u’) = g(u)_lfa g<ul> :
Thus conjugation by a maps S onto T, as required. O

(u

Let B be a non-zero (J-algebra and assume that O maps injectively
into B (via A+ A-1p). This condition is satisfied for instance if B is
free as an (O-module, and this always holds if O = k. Then it is clear
that the algebra A = M, (B) has an O-simple subalgebra S isomorphic
to M, (O). Moreover there is an isomorphism of algebras S ®, B = A.
Recall that the centralizer of a subalgebra S in A is the subalgebra

Ca(S)={acA|as=sa forallseS}.

It is easy to see here that C4(S) consists of the diagonal matrices with
all diagonal entries equal to some b € B. Thus C4(S) & B and the
isomorphism maps a € C4(S) to its top left entry, which can also be
viewed as the matrix eae = ea = ae, where e is the idempotent matrix
having a single non-zero entry equal to 1 in the top left corner. Note that
e is a primitive idempotent of S (but not necessarily of A ). Therefore A
is isomorphic to S ®» C4a(S) and C4(S) = ede = B. The proofs of all
these assertions are easy and are left to the reader (Exercise 7.3).

We now wish to prove that if an arbitrary (O-algebra A merely has
an O-simple subalgebra S with the same unity element as A, then we
are necessarily in the situation described above, so that A decomposes as
the tensor product of S and its centralizer.
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(7.5) PROPOSITION. Let A be an O-algebra and let S be an O-simple
subalgebra of A with 1g =14 . Let C4(S) be the centralizer of S and
let e be a primitive idempotent of S .

(a) There is an isomorphism of O-algebras

$:S®pCa(S) A, s®aw sa.

In other words A = M, (Ca(S)) if S= M,(O).
(b) There is an isomorphism of O-algebras

Ca(S) = ede, ar ea=ae=eae.

Proof. (a) It is clear that ¢ is well-defined and is an O-linear map.
It is a homomorphism of algebras because S and Cy4(S) commute by
definition:

d((s®a)(s ®a')) = d(ss’' ®@aa') = ss'aa’ = sas’a’ = p(s @ a)p(s' @ a’).

Since S is O-simple, all primitive idempotents of S are conjugate and so
there is a primitive decomposition

15':26“7

uelU

where U is a finite set of invertible elements of S. As in the proof of
Theorem 7.3, the elements u~'ev (for u,v € U) form an O-basis of §
and satisfy orthogonality relations as in 7.4. This implies in particular that
for any eae € eAe, the element ) . (eae)” commutes with S, because
its product on either side with the basis element u 'ev yields u 'eaev .
Thus ), cp(eae)” € C4(S) and this allows us to define the following

O-linear map:
PY:A— S®,Ca(S), ar Z (u'ev® Z (euav—'e)").
u,velU welU
We now show that 1 is the inverse of ¢ . First we have

PY(a) = Z u e Z(euavile)w = Z uteuavtev

u,velU welU u,velU

=1lgalg =a,

because 1g = 14 . On the other hand let b € C4(S) and let s~let be a
basis element of S (with s,¢ € U). Then

V(s let @ b) = Z (u'ev® Z (eus™tetbv~'e)").

u,velU welU
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We have eus 'e = ue%e’s™! = 0 if u # s, while for u = s the term

in the inner sum is equal to etbv~'e = betv~le, using the fact that b
centralizes S. This is again zero by orthogonality unless ¢ = v. For
u=s and ¢t = v, the inner sum is equal to

> (be)t = be” =blg=b,

welU welU

using the fact that b = b since b centralizes w € S. Therefore we have
Yo(s et @b) = s tet@b.

(b) Let C = Cyx(S). Clearly S ® 1 corresponds to S under the
isomorphism ¢ of part (a), and 1 ® C corresponds to C'. The definition
of the inverse map v constructed above shows that an arbitrary element
of C' can be written c= ), . (eae)” where eae € eAe. We can assume
that e is one of the idempotents in the decomposition 1g =) e* and,
by orthogonality, we have ece = eae. It is then clear that ¢ + ece and
eae + »_ cy(eae)” are inverse isomorphisms between C' and ede. O

In the situation of the proposition, for any A-module M , it is clear
that eM is a C-submodule of M, where C = C4(S). On the other
hand Se is an S-module (which is indecomposable projective). Thus
Se ®n eM is an S ®, C-module, which can be viewed as an A-module
via the isomorphism ¢ .

(7.6) PROPOSITION. With the notation of the previous proposition, let
M be an A-module. Then there is an isomorphism of A-modules

Se®@peM — M, s®m— sm.

Proof. 1t is easy to see that the map is a homomorphism of A-modules.
Letting 1 =), e" be a primitive decomposition in S as in the proof of the
previous proposition, we define the inverse map by m — " ule®eum.
The details of the proof are left to the reader. O

(7.7) REMARK. In the situation of the proposition above, the correspon-
dence M + eM is in fact a functor from the category of A-modules to
the category of C-modules, and this functor is an equivalence of categories.
Thus A and C are Morita equivalent in the sense of Section 9.
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Exercises

(7.1) Let e be the matrix in M, (O) with a single non-zero entry ej; = 1.
Find a set {uj,...,u,} of invertible elements such that (u;leuj)lgi’jgn
is the canonical basis of M, (O).

(7.2) Let A be an O-algebra and let B be a subalgebra of A such that
A= B+ J(A). Prove that any maximal O-semi-simple subalgebra of B
is also a maximal O-semi-simple subalgebra of A.

(7.3) Prove that a commutative O-semi-simple algebra is isomorphic to a
direct product of copies of O . Prove that the commutative O-semi-simple
subalgebras of an (O-algebra A are in bijection with the decompositions
of 14 into orthogonal idempotents, and that the maximal ones correspond
to the primitive decompositions. For commutative O-semi-simple subalge-
bras, state and prove a theorem analogous to Theorem 7.3.

(7.4) Let B bean O-algebra and assume that O maps injectively into B.
Let S = M, (O) be the O-simple subalgebra of A = M, (B) and let e
be the primitve idempotent of S with a single non-zero entry e;; = 1.
Prove directly all the facts mentioned before Proposition 7.5, namely that
S®pB= A, that C4(S) consists of diagonal matrices, and that we have
Ca(S) X ede > B.

(7.5) Provide the details of the proof of Proposition 7.6.

(7.6) Let A bean O-algebra which is free as an O-module. Assume that
A/pA is a semi-simple k-algebra. Prove that A is O-semi-simple. [Hint:
Use Proposition 1.3.]
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§8 EXOMORPHISMS AND EMBEDDINGS

One of the prominent features of non-commutative algebra is the use of
concepts which are only defined up to conjugation. We have already seen
it with the definition of points, but this applies to homomorphisms as well
and leads to the fundamental concepts of exomorphism and embedding.
We prove in this section some of the main properties of embeddings, in
particular two cancellation results which will be often used in the sequel.
As usual O is a ring satisfying Assumption 2.1.

Let A and B be two O-algebras. For many purposes, the composi-
tion of a homomorphism f: A — B with an inner automorphism of either
A or B (or both) has to be considered as equivalent to f. It is clear that
this defines an equivalence relation on the set of homomorphisms from A
to B and an equivalence class is called an ezxomorphism from A to B
(or also exterior homomorphism). If a € A* | write Inn(a) for the inner
automorphism defined by a, that is Inn(a)(z) = % (using the notation
4 = aza~'). Then for any homomorphism f: A — B, we have

(8.1) f-Inn(a) = Inn(f(a) + 1 — f(1a)) - f

using the invertibility of f(a) + 15 — f(14) which we noticed at the end
of Section 2. It follows that the exomorphism containing f is also simply
the set

F ={Inn(b) - f | b€ B*}.

We shall use freely the notation F: A — B for an exomorphism F from
A to B. Equation 8.1 also implies immediately the following lemma which
shows that exomorphisms can be composed.

(8.2) LEMMA. Let A, B and C be O-algebras. Let F : A— B and
G : B — C be two exomorphisms. Then the set

G-F={9-flgeg feTF}
is an exomorphism from A to C'.

The exomorphism containing the identity map id4 : A — A con-
sists of all inner automorphisms of A and deserves the name of identity
ezomorphism. Thus the category of (O-algebras and exomorphisms is per-
fectly well-defined. An isomorphism in this category consists of ordinary
isomorphisms and will be called an exo-isomorphism (or also an exterior
isomorphism). An exomorphism containing an automorphism is called an
exo-automorphism or also an outer automorphism (which is a more classical
terminology).
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The next important definition is that of an embedding. An exomor-
phism F from A to B is called an embedding if some f € F is injective
and has for image the whole of f(14)Bf(14). Since conjugation in B is
harmless, it is clear that any f € F has the same two properties. If e
is an idempotent in B and j : eBe — B is the inclusion, then the ex-
omorphism J containing j is an embedding. This is in fact essentially
the only example since any embedding is clearly the composition of an
exo-isomorphism followed by an embedding of this special type.

If o isapoint of A and e belongs to «, the subalgebra eAe depends
on the choice of e. But we wish to have a concept which only depends on
the point « and which is unique in some natural sense. Thus we define an
embedding associated with the point « to be an embedding F : B — A
such that f(1p) € a for some f € F (and thus for each f € F). To
show the existence of such an embedding, it suffices to choose some e € «
and take the exomorphism containing the inclusion f : ede — A. We
now prove that associated embeddings are unique up to a unique exo-
isomorphism.

(8.3) LEMMA. Let F: B — A and F' : B' — A be two embeddings as-
sociated with a point « of A. Then there exists a unique exo-isomorphism
‘H:B' — B such that F'=F -H.

Proof. Let f € F and e = f(1g). By definition of embedding, one
can factorize f as the composition of an isomorphism fy : B — eAe fol-
lowed by the inclusion ede — A. For [’ € F', the idempotent f/'(15/)
belongs by assumption to the same point o as e = f(1g). After con-
jugation, one can choose f’ such that f/(1p/) = e and so f’ factorizes
as the composition of an isomorphism fj : B’ — eAe followed by the
inclusion eAe — A. Then the isomorphism h = (fo)~!f} is the unique
isomorphism satisfying f' = fh and it follows that the exomorphism #
containing A is the required exo-isomorphism. The uniqueness of H is an
easy consequence of the uniqueness of h. O

We emphasize that this crucial result is a uniqueness property of the
pair (B,F). If we only consider the algebra B (for instance if we choose
B = eAe), then we obtain an object which is unique up to isomorphism,
but not necessarily up to a wunique exo-isomorphism (because an exo-
isomorphism can always be composed with an arbitrary exo-automorphism
of B). Note also that both the definition of associated embeddings and
their uniqueness property show the relevance of the concept of exomor-
phism, as opposed to homomorphisms.
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(8.4) EXAMPLE. Consider the matrix algebra A = M,(O) and its
unique point «. For each e € « (for instance the matrix with a sin-
gle non-zero entry equal to 1 at the top left corner), eAe is isomorphic
to O. There is in this case a canonical choice for an embedding associated
with «a, namely the exomorphism O — A containing the map defined by
1o — e. Another choice of e yields the same exomorphism.

We now consider the behaviour of points with respect to embeddings
and we give a version of Proposition 4.12 which takes into account exomor-
phisms. Let F: A — B be an embedding of O-algebras and let f € F.
By Proposition 4.12, f induces an injective map P(A) — P(B) which
maps a € P(A) to the point § € P(B) such that f(a) C . In other
words S is the conjugacy closure of f(«). If f/ =1Inn(b)f is another rep-
resentative of the exomorphism F and if i € o, then f/(i) = bf(i)b~t.
Thus f’(i) belongs to the same point S and this proves that the map
P(A) — P(B) is independent of the choice of f € F . Moreover the image
of a is the set

B=Fla)={f@) | feF,ica},
because this is now closed under conjugation.
The first part of the next result summarizes this discussion.

(8.5) PROPOSITION. Let F: A — B be an embedding of O-algebras.

(a) F induces an injective map P(A) — P(B), aw— F(a).

(b) F induces an embedding F : A — B, where A = A/J(A) and
B=B/J(B).

Proof. The first statement was proved above, so we consider the sec-
ond. Let f € F and e = f(14). Denote by a bar the images of ele-

ments of B in B. Since F is an embedding, f induces an isomorphism
A2 f(A) = eBe. By Proposition 1.17 we have

F(J(A) =J(f(A)) = J(eBe) =eJ(B)e=J(B)NeBe=J(B)N f(A).
It follows that on the one hand f induces f:A— B and on the other
hand f is injective. If f/ = Inn(b)f is another representative of F, then
obviously 7 =Inn(d)f and it follows that the exomorphism F contain-
ing f is well-defined. Finally consider the commutative diagram

A L eBe

! !

a 1y &Be.

Since f and the vertical maps are surjective, we have f(A) = eBe and
this shows that F is an embedding. O
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If g is an injective map, it is clear that ¢gf = gf’ implies f = f’. This
property does not hold for exomorphisms: if f, f': O — O x O are the two
distinct embeddings and if g: O x O — M>(O) is the injection onto the
diagonal, then ¢gf and gf’ belong to the same exomorphism, but f and f’
do not differ by an inner automorphism (since O x O is commutative). In
other words an injective exomorphism is not necessarily a monomorphism
in the category of O-algebras and exomorphisms. However, we now prove
that an embedding is a monomorphism.

(8.6) PROPOSITION. Let F,F : A — B be two exomorphisms of
O-algebras and let G : B — C' be an embedding of O-algebras.

(a) If GF = GF', then F = F'. In other words G is a monomorphism.
(b) F is an embedding if and only if GF is an embedding.

Proof. (a) Let fe F, f/ € F and g € G. Then by assumption
there exists ¢ € C* such that

gf'(a)=c-gf(a)-c* forall a € A .
Let 7 = f(14) and j' = f'(14). Then g¢(j) and g(j') are conjugate
in C, but since G is an embedding, it follows from Proposition 4.12 that
j and j’ are already conjugate in B. Changing the choice of f' € F’,
we can therefore assume that f(14) = f'(14) =7 .

We deduce from the equation above that the idempotent ¢(j) com-
mutes with ¢ (and with ¢7!). Since G is an embedding, g is injective
and its image is g(15)C g(15), which contains ¢(j)C g(j) . Therefore the
element ¢(j)c = cg(j) = g(§)cg(j) is the image under ¢ of a unique el-
ement b € B. Similarly there is a unique b € B with g(b') = g(j)ct.
Moreover jb=0b="bj, j' =b =1'j and bb' = j because these equalities
hold after applying the injective map g¢. It follows that by = b+ (15 — j)
is invertible in B with inverse by = b+ (15 —j), because j and (1p—j)
are orthogonal. Now for all a € A, we have

f'(a)=bo- f(a) by
because by applying g to the right hand side, we obtain
(9(i)e +g(1B) 9(7) 9f(aala) (9()e™" + g(18) - 9(4))

=(9(i)e+9(1p) - ( ) 9()gf(@)g(i) (9()e" +9(1p) = 9(j))

=cg(j)gf(a)g(j) ¢t =cgf(a)c™ = gf'(a).
This proves that f’ = Inn(by) f and F =F'.

(b) Tt is straightforward to see that the composite of two embeddings
is an embedding. Conversely, if GF and G are embeddings, let f € F
and g € G. It is clear that f is injective since gf is. Moreover if
be f(1a)Bf(1a), then g(b) € gf(14)C gf(14) and so there exists a € A
such that ¢(b) = ¢gf(a). By injectivity of g, we obtain b = f(a), and this
completes the proof that F is an embedding. O
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With an extra assumption on the embedding G, we prove that it is
also an epimorphism in the category of O-algebras and exomorphisms.
Thus it is both a monomorphism and an epimorphism (without being an
isomorphism).

(8.7)  PROPOSITION. Let F,F' : A — B be two exomorphisms of
O-algebras and let G : C — A be an embedding of O-algebras. Assume
that C' and A have the same number of points.

(a) If FG = F'G, then F = F . In other words G is an epimorphism.
(b) F is an embedding if and only if FG is an embedding.

Proof. Without loss of generality we can assume that C' = eAe and
that G is the embedding containing the inclusion g : eAe — A, where
e is an idempotent of A. By Proposition 8.5, G induces an injection
G.: P(C) = P(A) and since these two sets have the same cardinality by
assumption, the map G, is a bijection. This means that for every point
a € P(A), there exists e, € a with e, € C'. Then, as in the proof of
Theorem 7.3, we can write a primitive decomposition of the unity element

= 2 D uten,

a€P(A) uelUq

where U, is a finite set of invertible elements of A (whose cardinality is
necessarily the multiplicity of «). Then for «,3 € P(A) and u € U,
v € Ug, we have the orthogonality relations

_ ifa=pand u=w
8.8 ati- v leg = {ea ! )
(88) Calt U €P 0  otherwise.

(a) Let f € F and f' € F'. By assumption fg = Inn(b)f’g for
some b € B*. Thus changing the choice of f' € F', we can assume
that fg = f'g. In other words f and f’ coincide on the subalgebra
C = eAe and we have to show that they belong to same exomorphism.
Since each e, belongs to C', we can define

Ja = flea) = f/(ea)-

Then we have

Zf 71 .]ozf Zf* Jaf* )a
Zf (ujaf'(u Zf afl(u),
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where f.(u) = f(u) + (1p = f(14)) and fi(u) = f'(u) + (1p — f'(14)) .
Here 15— f(14) and 1p — f/(14) are added in order to make fi(u) and
fi(u) invertible, but they cancel since

(g — f(1a))ja = (15 — f(1a))f(ea) = (1p — f(14))f(1a) f(ea) =0,
and similarly with f’. The above decompositions of f(14) and f/(14)
are orthogonal and they involve conjugates of the same idempotents j, .
Therefore f(14) and f/(14) have the same multiplicities and, by Propo-
sition 4.16, they are conjugate:

f'(1a) =b"1f(14)b for some b€ B*.
Now define
(X X S W) + (s = f0)b (s — f(14)),
a€P(A) u€Ua

= (X D S0 + (s = )b (s — f(14))-

BEP(A) vEUs
Using the images under f of the orthogonality relations 8.8, as well as
the fact that (1p — f(14))f(u™t) = (1p — f(14))f(1a)f(u™!) = 0 and
fw)y(1p — f(lA)) =0, we have

c=( X X i @)

a€P(A) uela
+ (1p—f'(14)) b (1p—f(1a) b(1p—f'(14))

Y D ulequ) + (1 — f/(1a))?
a€P(A) ueUa
=f'Qa)+ (15— f'(1a) =15.
By a similar computation (or by Exercise 3.3), ¢¢’ = 15. Now we prove
that Inn(c)f = f’, which will establish the result. For a € A, we compute
clf(a)e = c71f(14)f(a)f(1a)c. In the expressions for ¢ and ¢!, the
terms (1p — f(14))b(1p — f'(14)) and (1p — f'(1a)) b~ (15 — f(1a))
cancel with f (14) . Moreover by the orthogonality relations 8.8, we obtain

S Faiet) @ (Y fisf )

QEPLS'A ﬁE'PUA)
ue veUp
= Z Zf’(u_l)f(eauav_leg)f’(v)
a,u B
=D > fu ) (cauav"es) f(v)
a,u v

(Zf (™o () £'( (Zf (v isf )

= f(La)f'(a)f'(1a) = f'(a) .
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We use that equavles = eequavlege € eAe = C, so that f and [
coincide on this element. This completes the proof of (a).

(b) It is clear that FG is an embedding if F is an embedding. Assume
now that FG is an embedding. Let f € F and assume that f(a) =0 for
some a € A. As in the proof of the first part, we have

0= f(a)=f(1a)f Z Zf )V flequav™eg) f(v).

a,u B

Multiplying by f(equ) on the left and by f(v=les) on the right, and
using the orthogonality relations 8.8, we obtain f(ejuav=teg) = 0. Since
equav~leg belongs to C' and since fg (that is, the restriction of f to C)
is injective, it follows that e,uav=les =0 and so

a=1galy = Z Zu_leauav_leﬁv =0,

a,u B

proving the injectivity of f. Now for b € B, we have

fAa)bf(la) = Z Zf Yeau) b f(v tegu)

a,u B

=Y fw ) f(e)feau)bf(v ™ es) f(e) F(v).

au B

Since FG is an embedding, any element of f(e)Bf(e) is in the image of
the restriction of f to eAe = C'. Thus we obtain that f(14)bf(14) isin
the image of f, and this completes the proof that F is an embedding. O

A practical way of verifying the assumption of the last proposition is
the following.

(8.9) LEMMA. Let F: A — B be an embedding of O-algebras. If there
exists an embedding of B into a matrix algebra M, (A) over A (for some
integer n ), then A and B have the same number of points.

Proof. By Proposition 8.5, F induces an injection P(A) — P(B).
Similarly the other embedding induces an injection P(B) — P(M,(A4)).
Thus it suffices to prove that A and M, (A) have the same number of
points. This follows either from Exercise 4.6 or from the Morita equivalence
between A and M, (A) (see the next section and Exercise 9.4). O
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Exercises

(8.1) Let A be an O-algebra which is free as an O-module and denote
by m: A— A/J(A) the quotient map. Prove that there exists a unique
exomorphism F : S — A with the following properties:

(a) S is O-semi-simple.

(b) f is injective for some f € F (or equivalently for every f € F).

(¢c) wf is surjective for some f € F (or equivalently for every f € F).

(8.2) Let m and n be two integers such that m <mn < 2m.

(a) Prove that there is a unique non-zero exomorphism of -algebras
M, (0) = M, (O) and that it is an embedding.

(b) Prove that there are exactly two distinct non-zero exomorphisms of
O-algebras M, (O) — My, (0), that both are injective and that one
of them is an embedding.

(c¢) Generalize to arbitrary integers.

(8.3) Let F : A — B be an embedding of O-algebras, let o € P(A)
and let o/ € P(B) be its image under the injection P(A) — P(B) of
Proposition 8.5. Prove that for any f € F, we have m, = f !(ma).
Deduce that F induces an embedding of simple k-algebras S(a) — S(a/),
where S(a) = A/m, and S(o/) = B/my .

(8.4) Let F: A — B be an embedding of k-algebras, let a,f € P(A)
and let o/, 3" € P(B) be their images under the injection P(A) — P(B)
of Proposition 8.5. Prove that the Cartan integers co g and co g are
equal. [Hint: Use Proposition 5.12.]
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§9 MORITA EQUIVALENCE

We discuss in this section the basic properties of Morita equivalences and
prove a simple criterion for the existence of a Morita equivalence. Recall
that O is a ring satisfying Assumption 2.1 and that all modules are as-
sumed to be finitely generated (left) modules. This assumption also applies
to bimodules.

Let A and B be two O-algebras. An (A, B)-bimodule is an abelian
group M endowed with a left A-module structure and a right B-module
structure, which coincide on restriction to O (thatis, (A-14)m = m(A-1p)
for every A € O and m € M ), and such that (am)b = a(mb) for every
acA, beB, meM.

Two O-algebras A and B are said to be Morita equivalent if there
exist a (B, A)-bimodule M , an (A, B)-bimodule N, an isomorphism of
(A, A)-bimodules ¢ : Nz M — A, and an isomorphism of (B, B)-bimod-
ules n: M ®4 N — B, such that the following two diagrams of isomor-

phisms commute.

M@, NozM 25 M, A

| |

BoyM —" % M
9.1)
idN@mn
N®BM®AN“—>N®BB

E(X)idNJ/ Nl

A9u,N ——— N

In this situation there is an equivalence of categories between the cat-
egory mod(A) of (left) A-modules and the category mod(B) of (left)
B-modules, as follows. There are two functors

M ®, — : mod(A4) — mod(B), Vi Me, VvV,
N ®p — : mod(B) — mod(A4), W= NgW,

and for every A-module V' and B-module W, there are natural isomor-

phisms .
NogMo,V 229 Ag, V=V,

Mo, NogW 2% po w=w.
These data show that the two functors M ® 4 — and N ®p — are inverse
equivalences of categories. The detailed proof is left to the reader (Exer-

cise 9.1). Note also that it follows easily from the definition that the Morita
equivalence is an equivalence relation.
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(9.2) REMARK. It is not necessary to assume that the additional condi-
tion 9.1 holds in order to get an equivalence of categories, but the condi-
tion can in fact always be realized for a suitable choice of the two isomor-
phisms e and 7 (which are not unique). Indeed the two functors in an
equivalence of categories are always left and right adjoint of each other (see
Mac Lane [1971], § IV.4), and one can take € and n to be the units and
counits of the adjunctions. More precisely n~! ®idy and € ®idy are the
unit and counit of one adjunction, and ¢! ® idy and n ® idy are the
unit and counit of the other adjunction. Any one of the two adjunction
properties is then equivalent to the condition 9.1 (see Mac Lane [1971],
§ IV.1). Note also that the Morita theorem asserts that an equivalence
between two module categories can be chosen to be of the above type; thus
there is no limitation in defining a Morita equivalence in this way. The
advantage of introducing the extra condition 9.1 lies in the next lemma.
The lemma asserts that one can in fact suppress some redundancy in the
definition.

(9.3) LEMMA. Let A and B be two O-algebras, let M be a (B, A)-bi-
module, let N be an (A, B)-bimodule, let ¢ : N @ M — A be a homo-
morphism of (A, A)-bimodules, and let n: M ® 4 N — B be a homomor-
phism of (B, B)-bimodules. Assume that ¢ and 7 are surjective and that
the two diagrams 9.1 commute. Then € and 7 are isomorphisms (so that
A and B are Morita equivalent).

Proof. By surjectivity of e, we can write 14 =¢(>_, n; ® m;) , where

n; € N and m; € M. Let 3 ,z; ®y; € Ker(e), where z; € N and
y; € M . Multiplying this by 14, and using 9.1, we obtain:

Zx]— ®y; = (ij ®Y;) s(an ®m;)
J J i

= ij ® (yj-e(ni @my;)) = Z:pj ® (n(y; ® ng)-m;)
i,j ij

= (@jnly; @n)) @ms =Y (e(z; @ y;)ni) @m;
i,J i,J

=D _z;@y) O ni®wm) =0.

j i
This proves the injectivity of €. The proof for 7 is similar. O

An equivalence of categories preserves all properties which are defined
in categorical terms. For instance we mention the following results.
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(9.4) PROPOSITION. Let A and B be two Morita equivalent O-alge-

bras and assume that the equivalence is realized by a (B, A)-bimodule M

and an (A, B)-bimodule N . Let V' be an A-module and let M ®4V be

the corresponding B-module.

(a) V is zero if and only if M ® 4 V' is zero.

(b) Let S:0—=V = V' = V" = 0 be a sequence of A-modules and
let M@,8:0 5> M@, VosMe, VoM@, V" — 0 be the
corresponding sequence of B-modules. Then S is exact if and only if
M ®,4 S is exact. Moreover S splits if and only if M ® 4 S splits.

(c) V issimple if and only if M ® 4 V is simple.

(d) V is projective if and only if M ® , V' is projective.

(e) V is indecomposable if and only if M ® 4,V is indecomposable.

(f) The partially ordered set of A-submodules of V' is isomorphic to the
partially ordered set of B-submodules of M @4V .

(g) The O-algebras Ends(V) and Endg(M ® 4 V) are isomorphic.

Proof. (a) If M®,V =0,then 0=NQpMe,V=2A,V==V.
(b) We first show that the functor M ® 4 — preserves injections. Let
f:V =V’ be injective and let

W=Ker(idy @ f : M@,V — Mx,V').

If i : W — M®,V denotes the inclusion, then (idy ® f)i = 0. Apply-
ing N ®p —, we see that the composite map f(e ® idy)(idy ® i) in the
following diagram is zero.

N, W % Ng, Mg,V NS, No Mo,V

€®idvl la@idv/

1% %

But since f is injective and € ® idy is an isomorphism, this implies that
idy ®9=0. Applying now M ® 4 —, we have a commutative diagram

M@, N@yW MEUNSL o Noy Mo,V

n®idwl Jf]@idM®idv

1% : M®,V

with the top map equal to zero. Since n®idy, is an isomorphism, it follows
that ¢ = 0. This means that W = 0, proving the injectivity of idy ® f .
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Using cokernels instead of kernels, one can prove in a analogous fashion
that the functor M ®, — preserves surjections. Similarly the functor
N ®p — preserves injections and surjections.

Now assume that the sequence 0 — V Ly & v 0 s exact.
Then idy; ® f is injective by the above argument, and the composite in
the sequence

Mo,V 8y, v 2O g v

is zero, so that Im(idy ® f) € K = Ker(idys ® g). Thus we have a
sequence of maps

Mo,V Lok 2 Mo,V 2% e, v

where f is the injection induced by idy ® f and j is the inclusion.
Applying N ® 5 —, which preserves injections, we have a sequence of maps

NogMo,V 28 Noy, K X% Ngo Mo, V!

iidN ®idp g

NRgM®, V"

the first two being injective, and the composite of the last two being zero.
But the sequence

NRgMe,V—NRgMe,V —-NgMe,V"

is exact (because it is isomorphic to V. — V' — V" via e® —). It
follows that the image of idy ® j must be contained in the image of
idyon @ f = (idy ® j)(idy ® f), or in other words that idy ® f must
be an isomorphism. Then f is an isomorphism too (because we recover f
from idy® f by tensoring with M and applying the isomorphism n® — ).
Since f is induced by idy ® f, it follows that the image of idy @ f is
equal to K = Ker(idys ® g) . This proves that the sequence

M@ VoasMu Vs Me, V!

is exact, as required.

The converse implication follows in a similar way by applying the func-
tor N®pg—, and then the isomorphism e® — . The proof of the additional
statement about splitting is elementary and is left to the reader.

(¢) V is not simple if and only if there exists a short exact sequence
0=V -V —>V"—0 with V/ and V" non-zero. Thus the statement
is an immediate consequence of (a) and (b).
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(d) V is projective if and only if every short exact sequence terminat-
ing in V splits. Thus the statement is an immediate consequence of (b).

(e V=VeaV' thhn M@, V=M, V)& (Mce,V").
Moreover by (a), M ®, V' and M ®, V" are non-zero if V' and V"
are non-zero. The converse follows similarly by applying N ® — and the
isomorphism € ® — .

The proof of (f) and (g) is left as an exercise for the reader. O

(9.5) COROLLARY. A Morita equivalence between two O-algebras A
and B induces bijections Irr(A) = Irr(B) and Proj(A) = Proj(B) .

If M and N are bimodules realizing a Morita equivalence between
two O-algebras A and B, then it is elementary to check that M = M /pM
and N = N/pN realize a Morita equivalence between the k-algebras
A= A/pA and B = B/pB (by tensoring everything with & and using the
isomorphism k®» M = M/pM , and similarly with N, A and B). Now
A and B are finite dimensional k-algebras (by our Convention 2.4), so that
all finitely generated modules have finite composition lengths. By Proposi-
tion 9.4, the Morita equivalence preserves simple modules as well as short
exact sequences. Thus by induction on the length of a composition series,
we deduce that the composition factors of an A-module V are mapped by
the equivalence to the composition factors of the B-module M @7 V.

We now apply this fact to the multiplicities of composition factors
of indecomposable projective modules and we obtain that the Cartan inte-
ger ¢, g , associated with two simple A-modules V() and V(j), is equal
to the Cartan integer associated with the corresponding simple B-modules
M @5 V(o) and M @5 V(8). The Cartan matrix of A is indexed
by Irr(A) x Irr(A) and similarly for B. In the following result, we use
the implicit convention that the index set for the Cartan matrix of A cor-
responds to the index set for the Cartan matrix of B under the bijection
induced by the Morita equivalence.

(9.6) COROLLARY. Iftwo O-algebras A and B are Morita equivalent,
then A/pA and B/pA are Morita equivalent and the Cartan matrices
of A/pA and B/pA are equal.

Another important property is that a Morita equivalence preserves
centres.
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(9.7) PROPOSITION. If two O-algebras A and B are Morita equiva-
lent, then the centres Z(A) and Z(B) are isomorphic O-algebras.

Proof. We first show that Z(A) is isomorphic to the ring Nat(A) of
natural transformations between the identity functor idp,q(a) and itself.
If a € Z(A), then multiplication by a is a natural transformation be-
tween idyoq(4) and itself. Indeed it is elementary to check that for any
A-module V', the map v — a-v is a homomorphism of A-modules (be-
cause a is central), and that it is a natural transformation. Conversely
let ¢ be any natural transformation between idp,,q(a) and itself, given by
maps ¢y : V — V for each A-module V. Choosing V = A, we define
a=¢a(la) € A. Then for any A-module V' and v € V', consider the ho-
momorphism of A-modules f: A — V mapping 14 to v. By naturality
of ¢, we have

ov(v) =odv(f(1a)) = f(0a(la)) = f(a) = awv.

It follows that ¢ coincides with the multiplication by a. In particular «
is central because for any b € A, we have

ab = d)A(b) = ¢A(b'1A) = b¢A(1A) =ba.

This completes the proof that Z(A) = Nat(A). In particular Nat(A4) is
endowed with an O-algebra structure.

Now since A and B are Morita equivalent, there exist bimodules M
and N such that the functors M ® 4 — and N ® 5 — are inverse equiva-
lences. We use these functors to construct an isomorphism between Nat(A)
and Nat(B). If ¢ € Nat(A), then we define 1) € Nat(B) by setting

Yw = (n @ idw)(idy @ pnew) (™ @ idw).
We clearly obtain an O-algebra homomorphism
Nat(A) — Nat(B), ¢— .

It is an easy exercise to check that this is an isomorphism. In fact one can
use condition 9.1 to check that the inverse isomorphism maps ¥ to ¢,
where ¢ is defined by ¢y = (e ® idy ) (idy ®@ Vymev)(e7! @idy) . Details
are left to the reader. O

(9.8) COROLLARY. If two commutative O-algebras are Morita equiva-
lent, then they are isomorphic.

Having discussed properties of Morita equivalences, we now come to
the question of the existence of a Morita equivalence. A very simple and
useful condition is provided by the following result.
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(9.9) THEOREM. Let A be an O-algebra and let e be an idempotent
of A. The following conditions are equivalent.

(a) eAe and A are Morita equivalent.

(b) eAe and A have the same number of points.

(c) AeA = A, where AeA denotes the ideal generated by e .

Proof. (a) = (b). By Corollary 9.5, Irr(eAe) and Irr(A) are in
bijection. By Theorem 4.3, P(A) is in bijection with Irr(A) (and similarly
with eAe). Therefore eAe and A have the same number of points.

(b) = (c). By Proposition 4.12, the inclusion eAe — A induces an
injection P(eAe) — P(A). Since both sets are finite, (b) means that the
map is bijective. Thus if « € P(A), there exists i € a such that i € eAe,
so that ¢ belongs to the ideal AeA. Thus AeA is not contained in the
maximal ideal m, (Corollary 4.10). Since this holds for every maximal
ideal m, of A, we have AeA = A.

(¢) = (a). Consider the (ede, A)-bimodule eA and similarly the
(A, eAe)-bimodule Ae. There is an isomorphism of (eAe, eAe)-bimodules
(which does not depend on the assumption)

/

n:eA®, Ae — eAe, nla®ad') = aa

whose inverse maps b € ede to b®e (note that we have b@e =eb®e =
e®be=e®b). Consider the (A4, A)-linear map

e:Ae®, 4. eA— A, cla®ad)=ad .

The image of ¢ is equal to the ideal AeA, which is the whole of A by
assumption. Thus e is surjective. Finally condition 9.1 is trivially sat-
isfied, for it comes down to the associativity of multiplication in A. By
Lemma 9.3, eAe and A are Morita equivalent. O

One can construct explicitly the inverse of the map e in the above
proof, using the fact that eAe and A have the same number of points
(Exercise 9.6). This provides in fact a direct proof that (b) implies (a).

It should be noted that, in the above theorem, the Morita equivalence
between A and eAe maps an A-module V to the eAe-module eV,
which is a direct summand of V . Indeed the equivalence is realized by the
(eAe, A)-bimodule eA , and we have an isomorphism eA®, V = eV .

We have seen before that an embedding which preserves the number
of points is not far from an isomorphism in the sense that it is both a
monomorphism and an epimorphism. Theorem 9.9 shows that it is not far
from an isomorphism in another sense: it induces a Morita equivalence.
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(9.10) COROLLARY. Let F: B — A be an embedding of O-algebras
and assume that A and B have the same number of points. Then A
and B are Morita equivalent.

Proof. By definition of an embedding, B = eAe for some idempo-
tent e of A. O

Any O-algebra A clearly embeds in M, (A) and they have the same
number of points (Exercise 4.6). Thus Corollary 9.10 shows in particular
that A and M, (A) are always Morita equivalent. However, this can be
shown more directly (Exercise 9.4). More generally we have the following
useful characterization of Morita equivalences.

(9.11) THEOREM. Let A and B be two O-algebras. The following

conditions are equivalent.

(a) A and B are Morita equivalent.

(b) There exist embeddings A — M,,(B) and B — M,(A) for some
positive integers m and n .

Proof. (a) = (b). Suppose that A and B are Morita equiva-
lent and that the equivalence is realized by a (B, A)-bimodule M and
an (A, B)-bimodule N. As a B-module, M is isomorphic to the im-
age M ®4 A of the A-module A under the equivalence. It follows that
Endp(M) = End4(A) and this is isomorphic to A° (Proposition 5.11).
On the other hand M is a projective B-module (because A is a pro-
jective A-module), so that M @& Q = B™ for some B-module @ and
some integer m. Therefore the O-algebra Endp(M) = A°P embeds
into Endg(B™), which is isomorphic to M,,(Endg(B)) = M,,(B).
Consequently A°P embeds into M,,(B°) and so A embeds into M,,(B).
The same argument using the other bimodule N shows that B embeds
into M, (A) for some n.

(b) = (a). The embedding A — M,,(B) induces an injective map
P(A) — P(M,(B)). Therefore, since B and M,,(B) have the same
number of points (Exercise 4.6), we have |P(A)| < |P(B)|. Similarly
|P(B)| < |P(A)], so that |P(A)| = |P(B)| = |P(Mn(B))|. We now have
an embedding A — M,,,(B) with the same number of points, so that A is
Morita equivalent to M,,(B) by Corollary 9.10. It follows that A is Morita
equivalent to B since B is always Morita equivalent to M,,(B). O
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Exercises

(9.1) Provide the details of the proof that if A and B are Morita equiv-
alent, then the categories mod(A) and mod(B) are equivalent.

(9.2) Complete the proof of Proposition 9.4.

(9.3) If A is an O-algebra, let Nat(A) be the ring of natural transfor-
mations between the identity functor idyoq(a) : mod(A) — mod(A) and
itself. Complete the proof of Proposition 9.7 by showing that if A and B
are Morita equivalent, then Nat(A4) and Nat(B) are isomorphic.

(9.4) For any O-algebra A, prove directly that A and M,,(A) are Morita
equivalent by constructing suitable bimodules.

(9.5) Let A be an O-algebra and let S = Endp(L) be an O-simple

algebra.

(a) Prove that S®,A is Morita equivalent to A, via the functor mapping
an A-module M to the S®» A-module L®, M . [Hint: Remember
that L = Se where e is a primitive idempotent of S, and use the
idempotent e ® 1,4 . Compare with Proposition 7.6.]

(b) Prove the assertions made in Remark 7.7.

(9.6) The purpose of this exercise is to construct the inverse of the map &
appearing in the proof of Theorem 9.9, providing a direct proof that (b)
implies (a). We assume that eAe and A have the same number of points.
(a) Prove that there exists a primitive decomposition of the unity element

14 = Z Z u_liau,

a€P(A) uel,

where i, € aNede, and U, is a finite set of invertible elements of A
(for each point o € P(A) ). Moreover the elements u~'i,u satisfy the
orthogonality relations 8.8. [Hint: Use the argument of the beginning
of the proof of Proposition 8.7.]

(b) Consider the map

A— Ae®, 4. €A, a Z Zuilia@)iaua.
a€P(A) u€lUy

Prove that this is the inverse of the map & of Theorem 9.9.



74 Chapter 1. Algebras over a complete local ring

(9.7) Let A and B be two Morita equivalent O-algebras.

(a) Provide the details of the proof that k®, A and k ®, B are Morita
equivalent.

(b) Suppose that O is a domain and let K be the field of fractions of O .
Prove that K ® , A and K ®, B are Morita equivalent.

(¢) Generalize to an arbitrary ring homomorphism O — O’.

Notes on Chapter 1

As most of the results of this chapter are standard, we leave to the historian
the task of attributing them to the right mathematicians. We just mention
a few facts. The idea of working systematically with points rather than
primitive idempotents, and with exomorphisms and embeddings rather
than homomorphisms, is due to Puig [1981]. Our treatment is also in-
spired by Puig [1984]. The existence of maximal O-semi-simple algebras
(Theorem 7.3) is a version of the Wedderburn-Malcev theorem, but our
approach is taken from Puig [1981]. For the Morita theorem (mentioned in
Remark 9.2), a short proof can be found in Benson [1991], and a detailed
discussion appears in Curtis—Reiner [1981].



CHAPTER 2

G-algebras and pointed groups

We introduce in this chapter a finite group G acting on an O-algebra
and we develop the main concepts and their properties: G-algebras, inte-
rior G-algebras, the Brauer homomorphism, pointed groups, local pointed
groups, associated embeddings, the containment relation between pointed
groups, and relative projectivity. We continue with our assumption that
O is a commutative complete local noetherian ring with an algebraically
closed residue field k of characteristic p. We postpone until Chapter 8 the
task of dropping hypotheses and generalizing some of the notions. Through-
out this chapter and for the rest of this book, G denotes a finite group.
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§10 EXAMPLES OF G-ALGEBRAS AND
INTERIOR G-ALGEBRAS

The main concept of this book is introduced in this section, together with
important examples.

A G-algebra (or more precisely a G-algebra over O) is a pair (A4, )
where A is an O-algebra and 9 : G — Aut(A) is a group homomorphism.
Here Aut(A) denotes the group of O-algebra automorphisms of A. As
usual we only write A instead of (A,v) to denote a G-algebra. Equiv-
alently one can define a G-algebra to be an O-algebra endowed with an
action of G by algebra automorphisms. The (left) action ¥(g) of g € G
on A will always be written 9(g)(a) = % for a € A. Thus the tempo-
rary notation v will never be used. If A and B are G-algebras, a map
f A — B is called a homomorphism of G-algebras if it is a homomor-
phism of O-algebras such that f(%) = 9f(a)) forall g€ G and a € A.
We recall that we do not require f to be unitary.

The following definition will turn out to be even more important than
the previous one. An interior G-algebra is a pair (A,¢) where A is an
O-algebra and ¢ : G — A* is a group homomorphism. Since there is a
canonical group homomorphism A* — Aut(A4) mapping a to the inner
automorphism Inn(a) , any interior G-algebra is in particular a G-algebra.
In other words g € G acts on A via the inner automorphism Inn(¢(a))
(and this is the origin of the terminology). Note that a G-algebra may
have several different interior G-algebra structures, or no such structure
(Exercise 10.1). Again the notation ¢ is never used and is replaced by the
following one: for every a € A and g € G, we define

g-a=dd(g)a and a-g=ad(yg).

Thus we see that we obtain a left O-linear action as well as a right O-linear
action of G on A and the associativity of the multiplication in A implies
that these two actions commute. The G-algebra structure then corresponds
to the conjugation action 9% = g-a-g~'. The group homomorphism ¢ is
recovered from the latter notation via ¢(g) =¢g-14 = 14-g. Note that we
do not require ¢ to be injective so that g-14 can be equal to 14 . Thus
¢ should not be identified with its image g-14 in A (despite the fact that
the terminology may suggest that the group G can be found in the interior
of A). We shall always use a dot to denote the left and the right action
of G on A, but we shall usually not write a dot for the multiplication
in A. It is clear that for all g,h € G and a,b € A, we have

(g-a)-h=g-(a-h), g-la=14-g,
(10.1) g-(ab)=(g-a)b,  (ab)-g=a(b-g),
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and also simply

(10.2) (a-g)b=ua(g-0b).

Conversely, given an O-algebra A endowed with a left O-linear action
and a right O-linear action of G which satisfy either the relations 10.1 or
the relations 10.2, then the map g — g-14 = 14 - g defines an interior
G-algebra structure on A (see Exercise 10.2).

If A and B are interior G-algebras, amap f: A — B is called a ho-
momorphism of interior G-algebras if it is a homomorphism of O-algebras
such that f(g-a) = g¢g- f(a) and f(a-g) = f(a)-g for all g € G and
a € A. Note that this is equivalent to requiring that f(1,4) is fixed un-
der the conjugation action of G and that f(g-14) = g- f(14) for all
g € G (Exercise 10.3). However, since we do not require algebra homo-
morphisms to preserve unity elements, we emphasize that the composite

map G — A 4. B is not the structural map of the interior G-algebra B
(unless f is unitary). Of course any homomorphism of interior G-algebras
is in particular a homomorphism of G-algebras.

The relevance of the concept of interior G-algebra as opposed to that
of G-algebra will become clear later. For the time being, we shall work with
arbitrary G-algebras. If H is a subgroup of G, then any G-algebra A can
be viewed as an H-algebra by restriction. This H-algebra will be written
Resg(A) , in order to always make clear which group is considered as acting
on the algebra. The same notation will be used for the restriction of interior
G-algebras. Given two G-algebras A and B, the tensor product A®y, B
is an O-algebra which carries a G-algebra structure: the action of g € G
is given by Ya®b) = %9 ® %. In case A and B are interior G-algebras,
then so is A®p B, viathemap G — (A®B)*, g— (9-14)®(g9-1B).
The opposite algebra A°P of a G-algebra A is clearly again a G-algebra,
and is interior if A is interior.

If H is a subgroup of G, if A is an H-algebra, and if g € G, we
define the conjugate algebra 9A to be the 9H-algebra which is equal to A
as an (D-algebra and which is endowed with the action of 9H defined by
(z,a) — (97 w9y, (where x € 9H and a € A). In other words the struc-
tural group homomorphism 9H — Aut(9A) is obtained by composing the
conjugation by ¢! with the structural homomorphism H — Aut(A).
Note that if H is a normal subgroup of G (or more precisely if g nor-
malizes H ), then 94 is again an H-algebra. Similarly, if A is an interior
H-algebra, the conjugate algebra 94 is the interior 9H-algebra obtained
by composing the conjugation by ¢g~! with the structural homomorphism
H— A*.
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(10.3) EXAMPLE: Group algebras.

Consider the group algebra A = OG, namely the free O-module on the
basis G, endowed with the product which extends O-bilinearly the product
of group elements. We identify the group G with the basis of OG . The
canonical inclusion G — (OG)* obviously makes OG into an interior
G-algebra. For an arbitrary interior G-algebra A, the structural map
G — A* extends uniquely by O-linearity to a homomorphism of interior
G-algebras ¢ : OG — A. In fact an interior G-algebra can be defined
to be an O-algebra A endowed with a unitary algebra homomorphism
¢ : OG — A. Then ¢ is obviously a unitary homomorphism of interior
G-algebras and is unique with this property. Thus interior G-algebras can
be viewed as those algebras which are directly connected with the group
algebra via a homomorphism. An important property of group algebras
is Maschke’s theorem, which asserts that the group algebra kG is semi-
simple if and only if p does not divide the order of the group G. If
one works over O rather than k, one has to replace semi-simplicity by
O-semi-simplicity. We shall return to this in Section 17. We emphasize
however that the purpose of modular representation theory is to study the
case where p divides |G| .

(10.4) EXAMPLE: Twisted group algebras.
These algebras arise when a central extension is given as follows:

1—0" %076 —1.

Thus G is a group having a central subgroup ¢(O*) isomorphic to the
multiplicative group O* of the ring O, and the quotient G/¢(O*) is
isomorphic to G'. We define the twisted group algebra OyG to be

0;G = 0 @y OG,

where OG denotes the group algebra of the infinite group G and 0[0*]
is the group algebra of the group O* . Here O[O*] acts on the left on oG
via ¢ and acts on the right on O via the inclusion O* — O. More explic-
itly, (’)ﬁG is isomorphic to the quotient of OG by the ideal I generated
by the elements ¢(A) — A1, where A € O*. Thus the central subgroup
$(O*) =2 O* is identified With the scalars O* of the group algebra. Multi-
plying the generators of I by arbitrary elements x € G , we see that I is
the O-linear span of the elements ¢(A\) z—A-z, where A € O* and = € G.
Thus if o : G — G is a map such that or = ide (so that {o(z) | z € G}
is a set of representatives of the cosets G/¢(O*) ), then the images of the
elements o(x), for z € G, form a basis of the algebra Oﬁé. Therefore
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Oﬁé has a basis indexed by the elements of G'. The product of two basis
elements is not (in general) the corresponding product of group elements,
but is modified by a scalar in O*; indeed o(zy) = A(z,y)o(x)o(y) for
some A(z,y) € O*. In particular we see that Oﬁé is an O-algebra sat-
isfying our convention 2.4 (that is, it is finitely generated over O ), and
moreover it is a G-algebra: the action of g € G is by definition the conju-
gation by o(g). This is well-defined since o(g) is defined up to a central
clement of G (which is mapped to a scalar in Oﬂé ). When the central
extension above splits (so that G~0" xG ), then we can choose o to
be a group homomorphism and it follows that Oﬁé is isomorphic to the
ordinary group algebra OG (but there are in general several such isomor-
phisms, unless G is perfect or G is a p-group and O = k). As in the
case of group algebras, one can show that Oﬁa is semi-simple if p does
not divide |G| (see Section 17).

Note that Oué is in general not an interior G-algebra, unless the
algebra happens to be isomorphic to the ordinary group algebra. However,
0;G can be given an interior structure over G since G maps to (O3G)* .
This is an obvious extension of the definition of an interior algebra to the
case of infinite groups. More generally, whenever there is a unitary algebra
homomorphism OﬁG — A, then A is an interior G- algebra. This struc-
ture is not arbitrary since the subgroup O* of G maps to the scalars of A*
by the identity. We shall only occasionally refer to interior G-algebras, but
they will always be of this special type.

Finally we show that O;G is a symmetric algebra. As above, let
{o(x) | v € G} be an O-basis of Oﬁé, with o(zy) = Mz, y)o(x)o(y)
for some A(z,y) € O*. We choose o(1) = 1, from which it follows
that A(x,z7) = Mz~ 1, 2) (by computing o(z)o(x~!)o(z)). Define an
O-linear map

Then u(o(x)o(y)) = 0 = p(o(y)o(@)) if y#a" and
po(@)oa™) = Ma,a ™) = AMa ', 2) = plo(e o).

Thus p is symmetric. The unimodularity condition follows from the fact
that {a( )71 | x € G} is the dual basis of the above basis (note that

o(z)™t =AMz, 27 lo(z7h)).

We now show that any twisted group algebra over k is in fact a
quotient of the ordinary group algebra of a finite group.
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(10.5) PROPOSITION. Let G be a central extension of G by k* and
let kﬁé’ be the corresponding twisted group algebra. Then there exists a
central extension of finite groups 1 — Z — F' — G — 1, with Z cyclic of
order prime to p, such that kyG is isomorphic to a quotient of the group

~

algebra kKF'. More precisely kyG = kFe for some central idempotent e
of kF' .

Proof. Let n = |G| be the order of the group G, and consider the
map ¢ : k* — k* defined by ¢(\) = A". This is a surjective group
homomorphism because k is algebraically closed by Assumption 2.1. The
kernel Z of ¢ consists of all n-th roots of unity in £* , but since a field of
characteristic p has no non-trivial p"-th root of unity (for any r > 1), Z
consists of m-th roots of unity where m is the part of n of order prime
to p (that is, n = mp"” where m is not divisible by p). Thus Z is cyclic
of order m .

We use some standards facts from the cohomology theory of groups,
which are recalled in Proposition 1.18. Consider k* as a trivial G-module.
For every positive integer ¢, the automorphism ¢ induces an automor-
phism ¢, of the cohomology group H?(G,k*), and ¢, is multiplication
by n in this abelian group (in additive notation). Therefore ¢, = 0 since
the order of the group annihilates HY9(G,k*). Associated with the exact

sequence 1 — Z -5 k* A 1 , there is a long exact sequence of group
cohomology, and a portion of this sequence is

H2(G,Z) 15 H2(G, k) -5 HX(G, k"),

so that the map 7. : H?(G, Z) — H*(G,k*) is surjective.

Now H?(G,k*) classifies the central extensions with kernel k* and
quotient group G (the extensions are central because we consider the triv-
ial action of G on k*). Let ¢ € H?(G,k*) be the cohomology class
associated with the given central extension G. By surjectivity of 7,
there exists a class d € H(G, Z) such that n.(d) = ¢, and d corresponds
in turn to a central extension 1 -2 - F — G — 1. As both Z and G
are finite, F' is finite too. From the construction of a central extension
associated with a cohomology class, the equation 7.(d) = ¢ means that
there is a commutative diagram

1 - 77 — F — GG — 1

|

1 — k¥ — 4 — G — 1.
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The group homomorphism 7 : F' — G induces an algebra homomorphism
7 : kF — kG, and since by construction k4G is a quotient of kG, we

~

obtain by composition an algebra homomorphism 7 : kF — kG . If
{o(g) | ¢ € G} is a set of representatives of F/Z = G in F, then
{7(c(g)) | g € G} is a set of representatives of G in G, and therefore
{7(c(g)) | g € G} is a basis of the twisted group algebra kﬂé. This
shows that 7 is surjective and completes the proof of the first statement.

We only sketch the proof of the second more precise statement and
leave the details to the reader. The element

1 1
e:mZn(z )z

z€Z

is a central idempotent of kF | so that kF = kFe x kF (1 —e). Moreover
7(e) =1 (by construction of kﬁ@ as a quotient of kG ) and we obtain by
restriction a surjection 7 : kFe — kﬁé. In order to show that this is an
isomorphism, it suffices to note that {o(g)e | g € G} is a basis of kFe
(because for every z € Z we have ze = e for some \ € k*). O

Note that the group homomorphism 7 : F' — G is injective, so that
F' can be identified with a finite subgroup of G. The above result is in
fact a consequence of the much more precise theory of the Schur multiplier,
but only this special case will be used in this text.

(10.6) EXAMPLE: Modules over group algebras.

We recall our convention that an OG-module is always finitely generated.
Since G is finite, it is equivalent to require that the module is finitely
generated as an O-module (because the set of all translates by the action
of G of a set of generators over OG is a set of generators over O ). Recall
also that an OG-module comes down to the same thing as an O-module M
together with a group homomorphism p : G — Autp(M), that is, a
representation of G over O . If A =Endp(M), the group homomorphism
p: G — Auto(M) = A* makes the algebra A into an interior G-algebra.
This is our second important example.

If M = O with trivial action of G (that is, every g € G acts as the
identity), then one obtains the trivial OG-module and the corresponding
interior G-algebra is also called trivial. If O = k is a field, then the
representation p: G — Autg (M) is called irreducible if the corresponding
kG-module M is simple.

Instead of arbitrary OG-modules, we shall usually only work with
OG-lattices. An OG-lattice is defined to be an OG-module which is free
as an O-module. In that case the algebra A = Endp(M) is isomorphic
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to a matrix algebra over O (that is, A is O-simple) and we have a rep-
resentation of G as a group of matrices over O. There are two cases of
interest: either O = k is an (algebraically closed) field of characteristic
p and we are dealing with arbitrary (finitely generated) kG-modules, or
O is an integral domain in characteristic zero and an OG-lattice M is
indeed a lattice in the K-vector space K ®, M , where K is the field
of fractions of O . Note that conversely any interior G-algebra A which
is O-simple is isomorphic to the algebra of O-linear endomorphism of an
OG-lattice M ; indeed by O-simplicity of A, we have A = Endp(M) for
some (O-lattice M and the interior G-algebra structure provides a homo-
morphism G — Autp(M) = A* which defines an OG-module structure
on M.

The tensor product M ®» N of two OG-lattices M and N is again
an OG-lattice. The action of g € G is defined by ¢ (zx ®y) = gz ® gy
for z € M and y € N, and then the action of an arbitrary element
of OG is defined by O-linearity. There is an isomorphism of interior
G-algebras Endp (M) ®p Endp(N) = Endo(M ®4, N) , mapping a®b to
the endomorphism z®y — a(z) ®@b(y) . Indeed one can use bases to check
that this is an isomorphism of algebras, and it is straightforward to deal
with the interior structure.

If M and N are two OG-lattices, then Homep (M, N) is again an
OG-lattice. The action of g € G is defined by (g-f)(x) = g-f(g~*-z) for
f € Homp(M,N) and « € M, and then the action of an arbitrary ele-
ment of OG is defined by O-linearity. In particular the action of g € G
on Endp(M) coincides with the action of g coming from the G-algebra
structure. Taking N = O, the trivial module, we see that the dual lat-
tice M* = Homop(M,O) is again an OG-lattice. Note that the right
OG-module structure on M* defined in Section 6 has been turned here
into a left module structure by defining the left action of ¢ € G to be
equal to the right action of g—'. There is an isomorphism of OG-lattices
M* ®» N 2 Homp(M,N) mapping f®y € M*®4» N to the homomor-
phism x — f(x)y (where x € M ). Indeed one can choose bases to show
that this is an isomorphism of O-lattices, and it is straightforward to check
that this isomorphism commutes with the action of G (Exercise 10.6).

Many standard results for OG-lattices turn out to be special cases of
results on interior G-algebras. This more general point of view will always
be adopted in this text. Also we shall see in Chapter 5 that it is often very
important to work with the algebra Endp (M) rather than the module M
itself. But in order to be able to specialize to OG-lattices the results on
interior algebras, one often needs to apply the following lemma.
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(10.7) LEMMA. Two OG-lattices L and M are isomorphic if and only
if the interior G-algebras Endp(L) and Endp(M) are isomorphic.

Proof. Let A =Endp(L) and B =Endp(M). If L= M, it is clear
that A = B. Assume that A = B as interior G-algebras. Since L is
free as an O-module, A is isomorphic to a matrix algebra over O . As in
Lemma 7.1, L can be identified with Ai , where ¢ is any primitive idempo-
tent of A (for instance i is the projection onto Oey , where e; is the first
basis vector of L, and Ai is the set of all matrices having only the first col-
umn non-zero). Let f: A — B be an isomorphism of interior G-algebras
and let j = f(i). Then M can be identified with Bj and it is clear that
the restriction to Ai of the isomorphism f induces an isomorphism of
O-modules Ai = Bj. This is an isomorphism of OG-modules because f
is an isomorphism of interior G-algebras, so that we have f(g-a) = g-f(a)
forall ge G and a € A. O

This result does not hold for arbitrary OG-modules (unless further
assumptions are made either on O or on the modules). Indeed, already
without the presence of the group G, one may have isomorphic algebras
Endp (L) 2 Endp (M) for two non-isomorphic O-modules L and M (Ex-
ercise 10.8). However, the interior G-algebra Endp (M) is always a very
useful tool for studying an arbitrary OG-module M .

(10.8) EXAMPLE: Modules over twisted group algebras.

Again let A be an O-simple algebra over O, so that A = Endp(M) for
some free O-module M . Assume that A is endowed with a G-algebra
structure (but not necessarily interior as in the previous example). By the
Skolem—Noether theorem 7.2, the action of an element g € G on A is an
inner automorphism, thus of the form Inn(p(g)) for some p(g) € A. The
element p(g) is not uniquely determined by g, but it is well-defined up
to a central element of A (because Inn(a) = Inn(b) if and only if ab~! is
central). Therefore p(g) is well-defined up to a scalar in O* - 14 (which
we identify with O* ). This defines a map

p:G — A*JO* = GL(M)/O* = PGL(M)

which is a group homomorphism since the inner automorphism Inn(p(gh))
is equal to Inn(p(g)p(h)) = Inn(p(g)) Inn(p(h)) (because both are equal to
the action of gh on A). Here GL(M) and PGL(M) denote respectively
the general linear group and the projective general linear group on the
O-module M . In other words p is a “projective” representation of the
group G, in the sense of Schur (a terminology which has nothing to do
with projective modules).
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We want to view a “projective” representation of G as a module
over a suitable twisted group algebra of the group G . Given the group
homomorphism p: G — PGL(M), we let G be the central extension of
the group G by the central subgroup O* defined by the following pull-back
diagram.

¢

1 — o0 — il G — 1

bk I

1 — 0 —— GL(M) s PGL(M) — 1

l

The triple (é , P, ) is unique up to a unique group isomorphism. In prac-
tice we can choose G to be the set of all pairs (a,g) € GL(M) x G such
that mas(a) = p(g) , and then p and 7 are the first and second projections
respectively. By the construction above, the equation mas(a) = p(g) means
that the action of g on A is equal to the inner automorphism Inn(a).
Therefore G is the set of all pairs (a,9) € GL(M) x G such that Inn(a)
realizes the action of g.

The “projective” representation p is now lifted to an ordinary repre-
sentation p of the (infinite) group G on the O-module M . The repre-
sentation p is not arbitrary since it maps the central subgroup O* to
the centre O* of GL(M) by the identity map. Taking into account
only this special type of representation comes down to the same thing
as considering modules over the twisted group algebra Oué, in just the
same way as a representation of G over O is the same thing as an
OG-module. More precisely the group homomorphism p: G— GL(M)
extends by O-linearity to an algebra homomorphism p : OG — Endp (M),
and since p(¢p(A)) = X -idy for every A € OF, it is clear that the
ideal I which appears in the definition of a twisted group algebra (see
Example 10.4 above) is in the kernel of p. Therefore we obtain an al-
gebra homomorphism p : Oﬁé — Endp(M) which provides M with an
(’)ﬁ@—module structure. Thus the lift p of the “projective” representation
p:G— PGL(M) induces an Oﬂé—module structure on M . Conversely
with any Oﬁ@—module M is associated a canonical group homomorphism
p: G — PGL(M), because the module structure defines a group homo-
morphism p: G- GL(M) which induces a “projective” representation
p: G — PGL(M) by passing to the quotient by O* on both sides.

Starting from any G-algebra A over O which is O-simple, so that
A = Endp(M) for some free O-module M, the G-algebra structure
on Endp(M) lifts to a canonical Oﬁ@—module structure on M , where
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Oﬁé is the twisted group algebra canonically associated with A. Con-
versely for any module M over a twisted group algebra Oﬁé , there is an
induced group homomorphism G — PGL(M), hence a G-algebra struc-
ture on A = Endp(M) since PGL(M) = A*/O* is the group of (inner)
automorphisms of A .

We note that the analysis above also shows that any G-algebra A
over O which is O-simple is automatically an interior é—algebra (via the
homomorphism p), in the sense defined in Example 10.4 above.

(10.9) EXAMPLE: Simple G-algebras which are interior for a subgroup.
Again let A be an O-simple algebra, so that A = Endp(M) for some
free O-module M . Suppose that A has a G-algebra structure such that
Res% (A) is endowed with an interior H-algebra structure, where H is a
subgroup of G'. We continue with the notation of Example 10.8. Thus
we have a group homomorphism p: G — PGL(M), but we wish to lift it
to a group homomorphism p: G — GL(M) which takes into account the
interior structure for the subgroup H . As Res%(A) is interior, M is in
fact an OH-module. In other words a homomorphism py : H - GL(M)
is given, which lifts the restriction of p to H . By definition of a pull-back,
there is a unique group homomorphism i : H — G whose composition with
7 : G — G is the inclusion of H into G and such that pi = py . In other
words the central extension splits on restriction to H . We identify H
with a subgroup of G via i, so that the group algebra OH is identi-
fied with a subalgebra of the twisted group algebra Oﬁ@. It follows that
the group homomorphism p : G — GL(M) extends the map py and
this gives an Oﬁé—module structure on M whose restriction to H is the
given OH-module structure. Thus we obtain that a G-algebra structure
on A =Endp(M) which extends a given interior H-algebra structure lifts
to an (’)ﬁ@-module structure on M which extends the given OH-module
structure.

If H is a normal subgroup of G, it is natural to take into account
the conjugation action of G on H and to assume that py is a G-map, in
the sense that py(ghg™t) = 9pu(h)) for all g € G and h € H. Notice
that this equation automatically holds if g € H since the action of ¢ is
just conjugation by pg(g). It is not difficult to prove that this additional
assumption on py implies that ¢ is also a G-map, so that H is identified
with a normal subgroup of G via 1.

(10.10) EXAMPLE: Extensions of simple modules from a normal sub-

group.
Let H be a normal subgroup of G and let M be an OH-module. If
g € G, the conjugate module 9M is the OH-module obtained as follows:
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the underlying O-module structure of 9M is the same as that of M , but
the action of h € H is equal to the action of g='hg in the old module
structure of M . It is clear that we have 99M = 9'(9M). The inertial
subgroup of M is the set of all g € G such that the conjugate module 9M
is isomorphic to M . It is clearly a subgroup, and it contains H , because
the action of h € H on M realizes an isomorphism between "M and M .

Assume now that M is a simple kH-module and that the inertial sub-
group of M is the whole of G (in which case M is said to be G-invariant).
Then an isomorphism between 90 and M is an automorphism 1, of M
as a k-vector space such that t,((g7 hg)-v) = hapy(v) for all v € M
and h € H (or equivalently ¢! (h-w) = (g7 hg)-1; (w) for all w e M
and h € H). If ¢, has the same property, then we immediately de-
duce that ¢, ¢ (h-v) = h-p; ') (v) for all v € M and h € H, so that
1/19_11/); is an automorphism of the kH-module M . Since M is simple,
Endig(M) = k by Schur’s lemma (and the fact that k is algebraically
closed). Therefore ’(/Jg_l’l/J; = Midyr for some A € k*, and so ¢ = A\, .
This shows that the automorphism 1, is well-defined up to multiplication
by a scalar in k* and therefore conjugation by v, is a uniquely defined
automorphism of Endg(M). If g,¢' € G, it follows from a straightfor-
ward computation that 41, is an isomorphism between 99N and M ,
so that g1, and 1y, induce the same conjugation map on Endy (M) .
This shows that Endy(M) is a G-algebra. Moreover if h € H, then
one can choose for v the action of A on M and this means that the
H-algebra structure on Res (End,(M)) comes from an interior structure,
namely the given interior H-algebra structure. By Example 10.9, we ob-
tain a ky G-module structure on M which extends (in a canonical way) the
given kH-module structure on M . In other words any simple kH-module
which is G-invariant can be “extended” in a canonical way to G, provided
we use a twisted group algebra.

We note that the additional property that H — GL(M) is a G-map
is satisfied in this situation (because (g~ "'hg)-v = ¢, " (h-1hg(v)) as we have
noticed above). Therefore, by the remark at the end of Example 10.9, H
can be identified with a normal subgroup of G.
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Exercises

(10.1) Let A be an O-algebra.

(a) Show that two interior G-algebra structures on A induce the same
G-algebra structure if and only if they differ by a group homomorphism
of G into the centre of A.

(b) Construct an example of a G-algebra whose structure is not induced
by an interior G-algebra structure. [Hint: Choose A commutative.]

(10.2) Let A be an O-algebra endowed with a left O-linear action of G
and a right O-linear action of G . Prove that the following conditions are
equivalent:
(i) The map G — A, g+ g-14 defines an interior G-algebra structure
on A.
(ii) The left and right actions of G satisfy the relations 10.1.
(iii) The left and right actions of G satisfy the relations 10.2.

(10.3) Let A and B be two interior G-algebras. Show that an algebra
homomorphism f : A — B is a homomorphism of interior G-algebras if
and only if f(g-14) =g f(1la) forall g € G and f(14) is fixed under
G-conjugation.

(10.4) Let G be a cyclic group. Show that any twisted group algebra kﬁ@
of G is isomorphic to the group algebra kG . Prove that this isomor-
phism is not unique, unless G is a p-group. [Hint: Remembering that k
is algebraically closed, prove that any central extension G of G by k*
necessarily splits. Describe all the splittings in order to deal with the non-
uniqueness.]

(10.5) Complete the details of the proof of the second statement of Propo-
sition 10.5.

(10.6) Let M and N betwo OG-lattices. Provide the details of the proof
that the two OG-lattices M* ®» N and Homep (M, N) are isomorphic.

(10.7) Let M be an OG-lattice and let A = Endp(M). Prove that
Endp(M*) is isomorphic to A°P as interior G-algebras.

(10.8) Suppose that O is a domain with field of fractions K and that

the maximal ideal p is not principal.

(a) Prove that p 2 O as O-modules but Endp(p) = Endp(O). [Hint:
Extending scalars to K , show that Endg (K ®¢ p) = Endg (K) ]

(a) Deduce that Lemma 10.7 does not hold for arbitrary OG-modules.
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Notes on Section 10

The concept of G-algebra was introduced by Green [1968], as a convenient
tool for handling both OG-modules and group algebras. The definition of
an interior G-algebra is due to Puig [1981].

§11 SUBALGEBRAS OF FIXED ELEMENTS AND
THE BRAUER HOMOMORPHISM

We introduce in this section various basic objects and maps associated with
an arbitrary G-algebra A .
If H is a subgroup of G, the set of H-fized elements of A is written

AP ={ac A| "a=aforall he H}.

Clearly A is a subalgebra of A (with the same unity element). For
instance if A = Endp(M) is the algebra of O-endomorphisms of an
OG-module M (Example 10.6), then an endomorphism f € A is fixed
under H if and only if f commutes with every element of H, that
is, if and only if f is an OH-linear endomorphism of M . Therefore
AH = EIld@H(M) .

For a conjugate subgroup 9H = gHg ', we have A"H = 9AM)
because ghg_l( 9a) = %a if a € A®. In particular the action of the nor-
malizer Ng(H) preserves A | and therefore A¥ is endowed with an
Ng(H)-algebra structure. Since H acts trivially on A7 | we can also view
this structure as that of an N (H)-algebra, where Ng(H) = Ng(H)/H .
Note that if A is an interior G-algebra, A isin general not an interior
N¢(H)-algebra; however, we get an interior structure on restriction to the
centralizer C(H) , because g-1 € AH if g € Cq(H) . We shall sometimes
use the notation Conj(g) for the action of g € Ng(H) on A¥ . When A
is an interior G-algebra, Conj(g) is the restriction of the inner automor-
phism Inn(g-14), but is not necessarily inner (unless g € Co(H) ).

If K is a subgroup of H , then obviously A7 C AKX : in particular the
smallest subalgebra of fixed elements is A® and the largest is AU} = A.
In order to always make clear in which algebra we work (and also in order
to prepare the more general setting of Chapter 8), we shall give a name
to the inclusions between various subalgebras of fixed elements. Thus if
K is a subgroup of H, we define 7 : A” — AK to be the inclusion
(and we sometimes call it restriction map); it is obviously a unitary algebra
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homomorphism. We shall use this notation whenever we feel that it clarifies
understanding.

There is also a map going in the reverse direction, called the relative
trace map and defined by

ti AR 5 Af ti(a) = Z Pa,
he[H/K]

where [H/K] denotes a set of representatives of the right cosets of K
in H. Since a € AX | it is clear that "a does not depend on the choice
of h in its coset; thus the map tf is well-defined. Its image is contained
in A” because for g € H , we have

i) = Y a= > Ma=tf(a),

h€e[H/K] h'€[H/K]

because h' = gh also runs through some set of representatives [H/K].
It is also clear that tZ is O-linear, but of course in general tZ is not an
algebra homomorphism.

The behaviour of tII}{ with respect to multiplication is given by the
formulae

(11.1) t¥(ab) = tf(a)b and tH(ba) =bti(a) if a € AKX, be AT

or in other words t#(arft(b)) = ti(a)b and tZ(rf(b)a) = bti(a). The
proof is straightforward:

tic(ab) = > Mab)= > Tab=ti(a)b,

he[H/K] helH/ K]

and similarly on the other side.

An immediate consequence of 11.1 is that the image of the relative
trace map tH£(AK) is an ideal in A¥ . This ideal will be written A . Tt
plays an important role in the sequel.

We also need to know about the composition of the restriction and the
relative trace maps. There are two properties, the first being easy:

(11.2) trf(a)=|H: K| -a if a e A" .

The second property is called the Mackey decomposition formula: if K
and L are subgroups of H and if a € AX | then

(11.3) @ = Stk Kt
he[L\H/K]
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where [L\H/K] denotes a set of representatives of the double cosets LhK .
Ignoring inclusions, we can also write tf(a) = D ohe[L\H/K] tE g (Ma),
but some thinking is required to know where each element of this formula
lies. For the proof of 11.3, we first write the decomposition of H/K into
L-orbits
H/K= |J L-(hK)
he[L\H/K)]

and we note that the stabilizer of the element hK of H/K is LN "K.
Thus we can write

tii(a) = ) Yo Ma= Y tig(Ma),

he[L\H/K] ge[L/LN K] he[L\H/K]

and 11.3 is proved.

We now collect the above results and add some trivial properties of
the restriction and relative trace maps.

(11.4) PROPOSITION. Let A be a G-algebra. With the notation above,

the following properties hold.

(a) If L< K < H, then rXril =l and ¢t =1

(b) ’I“g = tH = idAH .

(c) If K< H, ac AX  and b € A" | then 9(ri(b)) = r,H(9b) and
(11 (a)) = ¢ 41 %0)

(d) (Mackey decomposition formula) If L, K < H and a € AX | then

h
Tfl t%(a) = Z tfm hK rwa(hK(ha)'
he[L\H/K]

(e) If K< H, ac AX  and b€ A" | then ti(ari(b)) = ti(a)b and
H 1 (b) a) = b (a)

(f) If K< H, a,be A" | then rf(ab) = rf(a)ri(d).

(g) titril is multiplication by |H : K| .

These properties show that the family of algebras A¥ (with H run-
ning over the set of subgroups of G'), together with the family of maps r£
and tL | is a cohomological Green functor for G over O, in the sense of
Chapter 8.

If f: A — B is a homomorphism of G-algebras, then for every
subgroup H of G, the map f restricts to a homomorphism of O-algebras
fH A" — BH | The maps f commute with the restriction and relative
trace maps in the obvious sense:

(11.5) ril fH = K and tiL R = fH



§11. Subalgebras of fized elements and the Brauer homomorphism 91

With the terminology of Chapter 8, this says that the family of maps f¥
defines a morphism of Green functors for G .

‘We now introduce one of the key concepts: the Brauer homomorphism.
Given a subgroup P of G, we know that Ag = tg(AQ) is an ideal of A"
for every subgroup @ of P. Thus the sum of all those ideals, for @
running over the set of all proper subgroups of P, is again an ideal and we
can consider the quotient algebra A / ZQ <P Ag . For technical reasons
(see Remark 11.8 below), it is also convenient to pass to the quotient by
the ideal pA” and we define the Brauer quotient

AP)=A"/(> AL +pA").
Q<P

Since pA(P) = 0, it is clear that A(P) is a k-algebra. Moreover the
action of Ng(P) on AP obviously preserves the ideal > o<p Ag (by
Proposition 11.4 (c)) as well as the ideal pA” (because G acts O-linearly),
and therefore induces an Ng(P)-algebra structure on A(P). Since P acts
trivially on AT | it is often convenient to view A(P) asan Ng(P)-algebra,
where Ng(P) = Ng(P)/P . Note in particular that for P = 1, we have
A1) =A/pA= ke, A.
The canonical surjection

bra . AP — A(P)

is called the Brauer homomorphism corresponding to the subgroup P .
Whenever we are working with a single G-algebra A, we often write sim-
ply brp instead of brs. By construction, brp is a homomorphism of
Ng(P)-algebras. If A is an interior G-algebra, then A” is an interior
Cg(P)-algebra; therefore so is A(P) and brp is a homomorphism of in-
terior Cg(P)-algebras. For every subgroup H containing P, we can
compose with the inclusion 7# : A# — AP and since the image of r¥ is
fixed under Ny (P), we obtain an algebra homomorphism

brpri : AH — A(p)Nu(P)

If f: A— B is a homomorphism of G-algebras, then its restriction
ff AP — BP commutes with the relative trace map (by 11.5) and
maps pAF to pBT . Therefore f¥ induces a homomorphism of k-algebras
f(P) : A(P) — B(P) such that

(11.6) F(P)brp =brB f7.

We now use for the first time our assumption that p is the charac-
teristic of the residue field &k = O/p. Any integer which is prime to p is
invertible in k, hence in O since O is a local ring.
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(11.7) LEMMA. Let A be a G-algebra and let H be a subgroup of G .
(a) Let Q be a Sylow p-subgroup of H . Then AH = Ag.
(b) If H is not a p-group, then A(H) =0.

Proof. (a) Since |H:Q)| is invertible in O, we have a = tg(|H:Q|’1a)
for every a € A” | by 11.2. Now (b) follows immediately from (a). O

If P isa p-subgroup of G, the k-algebra A(P) is in general non-
zero. For instance if A = O with trivial G-action, then for each Q < P,
we have

AL =1P:Q|- A" =|P:Q|-OCyp
because p € p and |P: Q| is a power of p. Therefore A(P)=0/p=k.

(11.8) REMARK. Every non-trivial p-subgroup P contains a subgroup @
of index p. Thus

AL 2tGrp(AT) = |P: Q|- A" =p- A7,

and it follows that B = A" / ZQ <p Ag is annihilated by p. Thus B is
an algebra over the field F, with p elements, but not necessarily over k.
This is why it is convenient to also take the quotient by p in the defi-
nition of A(P). This procedure does not change the points of B, since
the surjection B — A(P) induces a bijection P(B) — P(A(P)) (be-
cause pB C J(B)). For instance assume that O is a complete discrete
valuation ring of characteristic zero with maximal ideal p generated by
an element 7. If O is unramified over the ring Z, of p-adic integers
(that is, if one can choose m = p as a generator of p), then we do not
need to take the quotient by p and B = A(P) is a k-algebra. However, if
O is ramified and p generates the ideal 7¢O, then B is an algebra over
the artinian ring O = O/7°-O, and it seems natural to take the quotient
by the nilpotent ideal 7O to obtain the k-algebra A(P).

The next result is a fundamental property of the Brauer homomor-
phism which connects the relative trace maps in the G-algebra A and in
the Ng(P)-algebra A(P).

(11.9) PROPOSITION. Let A be a G-algebra, let P be a p-subgroup
of G, and let H be a subgroup of G containing P . Then for every
a € A” | we have

brprE th(a) = tlﬁH(P) brp(a),

where tiVH(P) . A(P) — A(P)Nu(P) s the relative trace map in the

N¢(P)-algebra A(P). In particular brpri(AZ) = A(P)]lvH(P) .
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Proof. The proof is an easy application of the Mackey decomposition
formula and of the fact that, for h € H, we have brp(AL .p) =0 if
PN"P < P, that is, if h ¢ Ng(P).

brprE t(a) = Z brp(thnnp("a)) = Z brp("a)
he[P\H/P] h€[Nu (P)/P]

= 3P brp(a)) = 11" (brp(a) . O

We now derive a more general result (which is the proposition when
P=K).

(11.10) COROLLARY. Let A be a G-algebra andlet P< K < H <G
where P is a p-subgroup of G . Then for every a € AK | we have

Ny (P
brprH tf(a) = tﬁiEP; brprh(a).
Proof. Since a € AX | we can write a = t5(b). Applying the propo-
sition for both subgroups K and H , we get

brp g ti(a) = brerf t(0) = 1 brp (o) = e 01 brp(0)

_ Nu(P) K K/ _ ,Nu(P) 1%
= tNK(P) brprp tp(b) = tﬁK(P) brprp(a). O

Exercises

(11.1) Let A = OG be the group algebra. Show that A% = Z(OG) , the
centre of OG . Find an O-basis of A% . More generally find an (-basis
of A” where H is a subgroup of G .

(11.2) Let A = OG be the group algebra. Prove that t{’ is surjective if
and only if p does not divide |G| .

(11.3) Show that the Jacobson radical is in general not preserved by the
maps 7 and L by constructing examples of a G-algebra A with either
rig(J(AM)) € J(AK) or ti(J(AR)) € J(AT).

(11.4) Let A be a G-algebra with a G-invariant basis X . If P is a
p-subgroup of G, let XP be the set of _P-fixed elements in X . Show
that {brp(z) | z € XF} is a k-basis of A(P).
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(11.5) For the group algebra A = OG, prove that A(P) = kCg(P) for
every p-subgroup P of G. [Hint: Use the previous exercise.]

Notes on Section 11

The systematic study of subalgebras of fixed elements in an arbitrary
G-algebra finds its origin in the paper of Green [1968]. In the case of
the group algebra, the concept of Brauer homomorphism was introduced
by Brauer [1956, 1959], but with a different point of view. The idea of
defining such a homomorphism for an arbitrary G-algebra is due to Broué
and Puig [1980].

§12 EXOMORPHISMS AND EMBEDDINGS
OF G-ALGEBRAS

In this section we discuss exomorphisms and embeddings of G-algebras.
We show that the notion of embedding generalizes the concept of direct
summand of modules. We prove some fundamental results about restriction
of exomorphisms and cancellation of embeddings.

If Inn(a) is an inner automorphism of an interior G-algebra A, then
for every g € G, we have by definition a(g-1)a™! = g-aa=! = g-1, so that
(g-1)"ta(g-1) = a, that is a € (A%)* . Conversely any a € (A%)* defines
an inner automorphism of the interior G-algebra A . The situation is more
complicated in the case of G-algebras. An inner automorphism Inn(a) of
a G-algebra A commutes by definition with the G-action and it follows
easily that (%) 'a must lie in the centre Z(A) of A. Thus a is fixed
under G in A*/Z(A)*, but does not necessarily lie in (A%)* . Conversely
any element a € A* whose image in A*/Z(A)* is fixed under G defines an
inner automorphism Inn(a) of the G-algebra A. However, we shall only
consider inner automorphisms Inn(a) such that a € A® because we do not
want to allow an inner automorphism to move the points of A | and this
phenomenon may happen if a € (4*/Z(A)*)¢ but a ¢ AY (Exercise 12.1).
With this restriction on inner automorphisms (which is no restriction in
the case of interior algebras), we can say that an inner automorphism is
“harmless”, and so it is worth working modulo inner automorphisms, as in
the following definitions.

If A and B are G-algebras, we define an exomorphism of G-algebras
F : A — B to be an equivalence class of homomorphisms of G-algebras
f:A— B, where two such homomorphisms f and f’ are equivalent if
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f" = Inn(b) fInn(a) for some a € (A%)* and b € (BY)*. By the argu-
ment already used for exomorphisms of (O-algebras (see 8.1), it suffices to
compose f with inner automorphisms of B, so that

F={Ilm(b) - f | be (B)"}.

It should be noted that an exomorphism F : A — B of G-algebras
is (in general) not an exomorphism of -algebras, because we compose
with fewer inner automorphisms Inn(b) (namely b lies in (B%)* rather
than B*). However, the restriction to G-fixed elements F¢ : A — B¢
is an exomorphism of (O-algebras. As in the case of (O-algebras, an ex-
omorphism is called an ezxo-isomorphism if it consists of isomorphisms,
and an exo-automorphism or outer automorphism if it consists of automor-
phisms. Also one can compose exomorphisms of G-algebras, as in the case
of O-algebras (see Lemma 8.2).

If one considers interior G-algebras, then an exomorphism of interior
G-algebras is defined in the same way. Thus it is obtained by compos-
ing a homomorphism of interior G-algebras f : A — B with all inner
automorphisms Inn(b) where b € (B%)*.

Let F: A — B be an exomorphism of G-algebras. On restriction
to a subgroup H, any f € F is also a homomorphism of H-algebras,
which is denoted Res%(f). The exomorphism containing Res$(f) is writ-
ten Res%(F) : Res$(A) — Resb(B). Note that Res$(F) contains in
general more homomorphisms than F , because one has to compose with
more inner automorphisms. The evaluation on H-fixed elements gives rise
to an exomorphism of O-algebras FH : AH — BH . One of the first fea-
tures of interior G-algebras is the following result, often used for the trivial
subgroup H = 1. It is not clear whether a similar result holds in the case
of G-algebras.

(12.1) PROPOSITION. Let F : A - B and F' : A — B be two
exomorphisms of interior G-algebras. If Res$(F) = Res$(F') for some
subgroup H of G, then F =F'.

Proof. Let f € F and f' € F',and let i = f(14) and i = f'(14)
(which both belong to B¢ ). By assumption there exists b € (B)* such
that f/(a) = bf(a)b=! for all a € A. Applying this to a =14 -g where
g € G, we have

-/

g-i' =i -g="0(i-g)b""

and in particular i'b = bi (when g =1). Therefore

g-bi=g-i'b="bi-g
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and this shows that bi € BY . Similarly
bl g=b"Yg-iN=(i-gb ' =g-ibt=g-b"14

so that =1’ € BE .

Since (bi)(b=1i") = (i) =i’ and (b=1i')(bi) =i® =i, it follows from
Exercise 3.2 that i and i’ are conjugate in BY (since bi,b~'i’ € BY).
Therefore, replacing f' by another representative of F', we can assume
that f(14) = f'(14) = i. In particular the arguments above show that
bi =ib € B¢ and b= =ib~' € B®. Now let ¢ = bi+ (1p —i) € BY,
with inverse ¢! =b71i+ (1p —i). Then for all a € A,

cf(a)c ™ = cf(laalp)e™ = cif(a)ic™! = bif(a)ib~' = bf(a)b™ = f'(a),

and this means that f’ = Inn(c)f. Since ¢ € BY, we conclude that f
and f’ belong to the same exomorphism of interior G-algebras. O

An exomorphism F : A — B of G-algebras is called an embedding
if some f € F (and hence every f € F) is injective and has as image
the whole of f(14)Bf(14). In other words Res(F) is required to be an
embedding, but we emphasize that f(14) is necessarily fixed under G.
Note that if i € B¢ is any idempotent fixed under G, then iBi is always
a G-algebra; in case B is interior, then ¢Bi is interior with respect to the
map

G— (iBi)*, g—gi=ig=igi.

The exomorphism containing the inclusion ¢B¢ — B is an embedding.
Any embedding is the composition of an exo-isomorphism followed by an
embedding of this special type.

As in the case of O-algebras (Propositions 8.6 and 8.7), we have two
results on the cancellation of embeddings. The second one uses Proposi-
tion 12.1 and therefore holds for interior G-algebras.

(12.2) PROPOSITION. Let F,F' : A — B be two exomorphisms of
G-algebras and let £ : B — C be an embedding of G-algebras.

(a) If EF =EF', then F = F'.

(b) F is an embedding if and only if EF is an embedding.

Proof. We give a complete proof for interior G-algebras (using Propo-
sition 12.1) and sketch at the end another proof which works for arbitrary
G-algebras. In order to prove (a), it suffices by Proposition 12.1 to prove
that ResC(F) = Res¥(F’). Thus we are left with a statement about
O-algebras, which was proved in Proposition 8.6. This result also applies
for part (b) since F is an embedding of interior G-algebras if and only if
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ReslG(]: ) is an embedding of O-algebras. This completes the proof in the
interior case.

For arbitrary G-algebras, one can prove the result by following each
step of the proof of Proposition 8.6, which is the analogous result for
O-algebras. It is elementary to check that the elements ¢, b and by which
appear in that proof are fixed under G . This is the only modification one
needs to observe, for the rest of the proof applies verbatim. 0O

(12.3) PROPOSITION. Let F,F': A — B be two exomorphisms of
interior G-algebras and let £ : C — A be an embedding of G-algebras.
Assume that C and A have the same number of points (as O-algebras).
(a) If FE =F'E, then F =F'.

(b) F is an embedding if and only if FE is an embedding.

Proof. In order to prove (a), it suffices by Proposition 12.1 to prove
that Resy(F) = Res{(F’). Thus we are left with a statement about
O-algebras, which was proved in Proposition 8.7. This result also applies
for part (b) since F is an embedding of interior G-algebras if and only if
Res¥(F) is an embedding of O-algebras. O

It is not clear whether a similar result holds in the case of G-algebras.
Contrary to the previous result, there is this time no obvious modification in
the proof of Proposition 8.7 which would allow us to deal with G-algebras.

We end this section with the discussion of the case of OG-modules.
We want to show that the concept of embedded subalgebra corresponds
to taking a direct summand of a module. Let M be an OG-module
and let ¢M Dbe a direct summand of M, where ¢ € Endpg(M) is an
idempotent projection with image iM . Relative to the decomposition
M =iM&(1—i)M , the algebra Endp (M) decomposes in matrix notation

Endo (iM) Homo ((1—i)M, iM)
Endp(M) =
Homoe (iM, (1—i)M)  Endo((1—i)M)

and it follows that iEndp(M)i can be identified with Endep(iM). We

now prove this in a more explicit fashion.
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(12.4) LEMMA. Let M be an OG-module and let i € Endpg(M) be
an idempotent. Then the interior G-algebras Endp(iM) and i Endp(M)i
are isomorphic.

Proof. Let m: M — iM be the projection with kernel (1 —i)M and
let €:¢M — M be the inclusion map. Both ¢ and © commute with the
action of G because G commutes with i. Define

f:iEndo(M)i — Endo(iM), ¢ — moe.

It is easy to check that f is a homomorphism of O-algebras. It preserves
the interior structures because f(g-i) = mgic = g-mwie = g-id;pr . The
inverse of f is the map

Endo(iM) —s iEndo(M)i, 1 epr.

Indeed we have weyme = ¢ for ¢ € Endp(iM) since me = id;ps , while
engen = igi = ¢ for ¢ € iEndp(M)i since er = i. It follows that [ is
an isomorphism of interior G-algebras. O

For simplicity we shall only work with OG-lattices instead of arbitrary
OG-modules. In this special case we know from Lemma 10.7 that we
can recover an (OG-lattice from its endomorphism algebra. The precise
relationship between embeddings and direct summands is provided by the
following result.

(12.5) PROPOSITION. Let L and M be two OG-lattices. There exists
an embedding of interior G-algebras F : Endo(L) — Endp(M) if and
only if L is isomorphic to a direct summand of M . Moreover in that case
the embedding F is unique.

Proof. Let F : Endo(L) — Endp(M) be an embedding, let f € F,
and let
i = f(idy) € Endp(M)€ = Endpg(M).

By definition of an embedding, f induces an isomorphism of interior
G-algebras Endp(L) = iEndp(M)i. By Lemma 12.4 above, we have
Endp(L) 2 Endp(iM) . Now M is an OG-lattice since any direct sum-
mand of a lattice is a lattice (because a direct summand of a free O-module
is free by Corollary 1.4). Therefore Lemma 10.7 applies and it follows that
the OG-modules L and ¢M are isomorphic, proving that L is isomorphic
to a direct summand of M . Conversely if L = iM for some idempotent
i € Endpg(M), then Endp(L) = Endp(iM) = iEndp(M)i and this
isomorphism induces an embedding Endp (L) — Endp (M) .
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We now prove uniqueness. Let A = Endp(L) and B = Endp(M).
Let 7/ : A — B be another embedding, choose f € F and [ € F',
and let i = f(14) and ¢ = f’(14). By definition of an embedding,
A is isomorphic to both iBi and ¢'Bi’'. Since iBi = Endp(iM) and
i'Bi’ 2 Endp(i’M) by Lemma 12.4, we have iM = ¢ M by Lemma 10.7.
Now by Corollary 4.5 applied to the algebra BY = Endpg (M), the two
idempotents 7 and i’ are conjugate in B , say by some element b € B .
Changing the choice of f' € F' (that is, replacing f’ by Inn(b)f’ ), we can
assume that 7 = 4. Then f and f’ induce two isomorphisms A = iBi
and so there exists an automorphism of interior G-algebras h : A = A
such that f/ = fh. But A = Endp(L) is an O-simple algebra and by
the Skolem—Noether theorem 7.2, h = Inn(a) is an inner automorphism.
As h is an automorphism of interior G-algebras, we must have a € A®
and this proves that f’ = fInn(a) belongs to the exomorphism F . Thus
F =F', as was to be shown. O

This proposition shows that embeddings are generalizations of the
notion of direct summand. But we emphasize that the general case of
G-algebras is more complicated than that of OG-lattices. Indeed an em-
bedding F : A — B is not necessarily unique, because of two factors which
do not appear in the case of OG-lattices, as is shown clearly in the proof
above. The first one is that for two idempotents 4, € BY , the two em-
bedded subalgebras iBi and i’ Bi’ may be isomorphic without ¢ and
being conjugate in B¢ (Exercise 12.3); in that case the inclusion iBi < B
and the composite iBi = i'Bi’ < B belong to two distinct embeddings.
The second factor is that one can always compose F with an outer au-
tomorphism H of A to obtain a new embedding FH : A — B. These
two reasons explain why we have chosen to prove uniqueness as we did in
Proposition 12.5. There is another approach based on the observation that
there is a unique embedding of O-algebras A — B by Corollary 4.5 (where
A =Endp(L) and B =Endp(M) as above). Thus if F,F': A— B are
two embeddings of interior G-algebras, we have Res{(F) = Res&(F'),
and therefore F = F’ by Proposition 12.1.
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Exercises

(12.1) Let G be the cyclic group of order 2 acting on the algebra of
2 x 2-matrices A = M5(O) by exchanging the rows and columns. Assume
that the characteristic of k£ is not 2 and consider the matrices

111 11 -1 (01
"ol 1) T\ 1) YT o0)

(a) Prove that i and j are primitive idempotents in AY but do not
belong to the same point of A“. Show that a defines an inner au-
tomorphism Inn(a) which is an automorphism of G-algebras, but
permutes the idempotents ¢ and j.

(b) Prove that A has two different interior G-algebra structures which
induce the above G-algebra structure. Moreover show that Inn(a) is
not an automorphism of interior G-algebras.

(12.2) Let A be an interior G-algebra. Prove that there exists a unique
unitary exomorphism of interior G-algebras F : OG — A and that F
consists of a single homomorphism. Deduce that the group of (outer) au-
tomorphisms of OG is trivial.

(12.3) Find an example of a G-algebra A and two idempotents 4,i’ € AY
such that 747 and i’ Ai’ are isomorphic G-algebras, but ¢ and i’ are not
conjugate in A“. [Hint: Consider the direct product of two isomorphic
G-algebras.]

(12.4) Let P be a p-subgroup of G, let F: A — B be an embedding
of G-algebras, and let F© : A" — BT be the embedding of O-algebras

obtained by restriction. Prove that F induces an embedding of k-algebras
F(P): A(P) — B(P) such that F(P)brg =brB FrF.

Notes on Section 12

The main results of this section and the idea of working systematically with
exomorphisms and embeddings are due to Puig [1981, 1984].



§18. Pointed groups and multiplicity modules 101

§13 POINTED GROUPS AND MULTIPLICITY MODULES

We define in this section the fundamental concept of pointed group and
we discuss the various objects attached to every pointed group. Then we
introduce the order relation between pointed groups and describe it in the
special case of modules.

Let A be a G-algebra. We consider the points in each algebra of fixed
elements A¥ (where H runs over the set of subgroups of G'). A pointed
group on A is defined to be a pair (H,«), where H is a subgroup of G
and a € P(A®) is a point of A® . One of the fundamental ideas is
to treat pointed groups as a generalization of subgroups, for instance by
introducing a partial order relation between pointed groups on A. Thus
we think of a pointed group as a subgroup together with some additional
structure, namely a point. For this reason, a pointed group (H,«) will
always be written H, . The set of all pointed groups on A is a finite set,
written PG(A).

With any pointed group H, on A are associated several mathemat-
ical objects which we now describe. First, following Theorem 4.3, we have
the maximal ideal m, of AY corresponding to «, the simple quotient
S(a) = A" /m, , and the quotient map =, : A — S(a). The simple
k-algebra S(«) is called the multiplicity algebra of the pointed group H, .
If we write S(a) = Endy(V(a)), then the simple A7-module V(a) is
called a multiplicity module of H,. We are going to see below that
S(a) and V(a) carry more structure, coming from the group G. Re-
call from 4.13 that we also have an ideal A7 oA | which is minimal with
respect to the property AfaAf +m, = A” and satisfies AHa A" Cmg
for every point 3 € P(Af) different from « (that is, for every pointed
group Hg different from H, ).

The next fundamental object is the localization of A with respect
to H, , which is written A, . The first approach consists in defining A, to
be the O-algebra iAi, where i € « is an arbitrary idempotent in « . Since
i is fixed under H (because « is a point of A ), the group H actson iAi
so that iAi is an H-algebra. If A is an interior G-algebra, then iAi is
an interior H-algebra (via the map H — (i4i)* , h > i-h = hi = i-h-i).
If we choose another idempotent j € «, then j is conjugate to i by
some element a € (AH)*. Tt follows that conjugation by a induces an
isomorphism of H-algebras jAj = iAi (commuting with the action of H
because a is fixed under H ). Thus we see that, up to isomorphism, the
localization A, is independent of the choice of 7 € . Note that since i
is primitive in A® | then (iAi)f =iAHi is a local ring.

However, we wish to have a concept which is unique up to a unique
exo-isomorphism, and therefore we follow the same route as in Section 8.
Given a pointed group H, on a G-algebra A, we define an embedding



102 Chapter 2. G-algebras and pointed groups

associated with H,, to be an embedding of H-algebras F : B — Res%(A)
such that f(1g) € a for some f € F (hence for every f € F). To
show the existence of such an embedding, it suffices to choose i € a and
consider the embedding containing the inclusion i4i — A. Uniqueness
follows from the next lemma.

(13.1) LEMMA. Let F : B — Res$(A) and F' : B’ — Res$(A) be
two embeddings associated with a pointed group H, on a G-algebra A.
Then there exists a unique exo-isomorphism of H-algebras £ : B’ — B
such that F' = F -E.

Proof. The argument is the same as that of Lemma 8.3, using only
conjugations by elements fixed under H . O

Note that an embedding F : B — Res$(A) associated with H, is
in general not an embedding associated with a point of A (as introduced
for O-algebras in Section 8), because « need not be a point of A (an
idempotent ¢ € « is not necessarily primitive in A ). But the restriction
to H-fixed elements F¥ : BH — A" is an embedding associated with the
point «, in the sense of Section 8.

If F: B — Res$(A) is an embedding associated with a pointed
group H, ,the H-algebra B will be called a localization of A with respect
to H, and will be written A, . The embedding F will usually be written
Fuo i Ao — Res%(A). We emphasize that there are two notions: the
localization A, is simply an H-algebra (unique up to exo-isomorphism),
while an embedding associated with H, is a pair (A,,F,) (unique up to
a unique exo-isomorphism).

In the special case of endomorphism algebras of OG-lattices, we know
that embeddings correspond to the notion of direct summand of lattices
(Proposition 12.5). It is often convenient to deal with a lattice which is
isomorphic to a direct summand without being a genuine direct summand.
We have a similar situation in the definition above since we have allowed
the localization A, to be isomorphic to a subalgebra of A without being
a genuine subalgebra. This will turn out to be extremely useful in the
development of the theory.

If a G-algebra A has the property that A¢ is a local ring, it will be
called a primitive G-algebra. This is equivalent to requiring that A® has
a single point with multiplicity one. For example for any pointed group H,,
on a G-algebra A, the H-algebra A, is a primitive H-algebra. It should
be noted that this notion has nothing to do with the ring-theoretic concept
of primitive ring (that is, a ring having a faithful simple module). In fact, if
an (J-algebra in our sense is a primitive ring, then it is a simple k-algebra
by Theorem 2.7.



§18. Pointed groups and multiplicity modules 103

Up to now the action of the group G has been little used. We first
note that G acts on the set of pointed groups: if H, is a pointed group
on A and if g € G, then 9H,) = (9H)q4, where 9H = gHg~! is the
conjugate subgroup and Y% is the image of a under the action of g (note
that 9(AH) = A°H so that Y% is indeed a point of A" ). The stabi-
lizer of H, is written Ng(H,) and is called the normalizer of the pointed
group H, . It is a subgroup of the normalizer Ng(H) of the subgroup H .
Moreover H < Ng(H,) because H normalizes H and acts trivially
on A” . If A is an interior G-algebra, then we know that A is an inte-
rior Cg(H)-algebra. Therefore the action of an element g € Cg(H) on a
point a of A¥ is by conjugation by the element g-14, € A” . By definition
of a point, we then have 9% = «, and it follows that Cq(H) < Ng(H,) .
Thus we have proved the following result.

(13.2) LEMMA. Let A be a G-algebra and let H, be a pointed group
on A. Then we have H < Ng(H,) < Ng(H). If moreover A is an
interior G-algebra, then HCg(H) < Ng(H,) .

One can even slightly improve this result if A is an interior G-algebra.
If g € Ng(H) centralizes the image of H in A (but not necessarily H it-
self), then g-14 € A and therefore g € Ng(H,). If Co(H-14) denotes
the centralizer of H-14 in G, then we have equality Cq(H-14) = Cg(H)
if for instance the map G — A* is injective. But Cg(H:14) is in general
larger than Cg(H) and we have Cg(H-14) N Ng(H) < Ng(H,) , which
improves Lemma 13.2. However, the isomorphism type of the group H-14
is not invariant under embeddings, because for h € H and for some idem-
potent ¢ of A, we may have h-14 # 14 but h-i = ¢. Therefore the
group Cg(H-14) is not invariant under embeddings (whereas Ng(H,)
is, as we shall see in Section 15). For this reason we usually only work
with Cg(H) when dealing with the interior algebra structure on A .

We now describe the extra structure of the multiplicity algebra S(«)
and the multiplicity module V(«) of a pointed group H, on A. Since
the group Ng(H,) stabilizes « by definition, it stabilizes the maximal
ideal m, . Therefore Ng(H,) acts on the quotient S(a) = AH/m, .
In other words, S(«) is an Ng(H,)-algebra. Since H acts trivially
on Af it is also convenient to view S(a) as an Ng(H,)-algebra, where
Ng(H,) = Ng(H,)/H . We now use in an essential way our assumption
that the residue field k = O/p is algebraically closed. By Proposition 1.7,
S(a) 2 Endg(V(a)) for some simple S(a)-module V(«) and the centre
of S(a) is equal to k- 1g(q). Therefore we can apply Example 10.8 to
conclude that the multiplicity module V(«) can be canonically endowed

with a module structure over a twisted group algebra kyNg(H,) which is
associated with S(«). Instead of passing to the quotient by H , it is also
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possible if necessary to view S(«) as an Ng(H,)-algebra and V(a) as a
module over the corresponding twisted group algebra kuﬁg(Ha) .

If A isan interior G-algebra, then A is an interior Cg(H)-algebra,
and therefore so is its quotient S(a). In other words V(a) is a mod-
ule over the group algebra kCg(H) and we are precisely in the situation
of Example 10.9. Of course the corresponding Cg(H )-algebra structure
of S(a) is the same as the one obtained by restriction from the canon-
ical Ng(H,)-algebra structure. However, there is in general no way of
extending the interior structure from Cqg(H) to Ng(H,). The central
extension ]vg(Ha) of the group Ng(H,) can be mapped into S(a)* by
a group homomorphism which extends the map Cg(H) — S(a)*. Thus
the multiplicity module V(«) is endowed with a kﬁJ/\\fg(Ha)-module struc-
ture which extends the given kCq(H )-module structure.

The Ng(H,)-algebra structure on S(«) is trivial on restriction to H ,
but the interior Cg(H )-algebra structure on S(a) does not in general pass
to the quotient by H . Indeed if h € HNCg(H) = Z(H), we only know
that h-1g) acts trivially on S(a), and this means that h-lg) € k,
the centre of S(«). Since any finite multiplicative subgroup of k* is
cyclic, Z(H)-1g(a) is cyclic, but not necessarily trivial. However, there
is one important special case where one can pass to the quotient by H ,
namely when H is a p-group. Indeed Z(H)-1g(,) is then a p-subgroup
of k*, forcing Z(H)-1ga) = {1} because there is no non-trivial p-th
root of unity in a field of characteristic p (since 1 is the only root of the
polynomial X?” —1 = (X —1)?"). Thus in that case the N¢(H,)-algebra
structure on S(a) is interior on restriction to Cg(H) = HCg(H)/H =
Cq(H)/Z(H) . Therefore if H is a p-group, the multiplicity module V («)

is endowed with a kyN ¢ (H,)-module structure which extends the given
kCq(H)-module structure.
By the multiplicity module V(«) of a pointed group H, , we shall al-

ways mean the k-vector space V(a) endowed with its ky N (H,)-module
structure. Similarly the multiplicity algebra S(«) always comes equipped
with its Ng(H,)-algebra structure, and with its interior Cg(H)-algebra
structure in the interior case.

Having concentrated for some time on a single pointed group, we now
introduce a relation between different pointed groups. It is an order relation
on PG(A) which is a refinement of the order relation between subgroups.
If K < H, recall that ’I"Ih(( : AT — AK denotes the inclusion map. If
H, and Kjs are pointed groups on A, then we say that Kz is contained
in H, and we write Kg < H, if K < H and for some i € o, there
exists j € [ such that j appears in a decomposition of rib([ (7). We
first give equivalent characterizations of this relation. One of them uses
the surjection mg : A% — S(B) and another uses the ideal (rf)=1(mg)
of Af .



§18. Pointed groups and multiplicity modules 105

(13.3) LEMMA. Let A be a G-algebra and let H, and Kz be two

pointed groups on A . Assume that K < H . The following conditions are

equivalent.

(a) Kﬂ S Ha .

(b) For every i € «, there exists j € 8 such that j appears in a decom-
position of T (i) .

(c) ms(ri(a)) # {0}

(d) (rg)~'(ms) S ma

Proof. (a) < (b). It suffices to conjugate by some element of A
(which is also fixed under K).

(a) = (c). The primitive idempotents j €  are precisely those which
are not mapped to zero by ms. Therefore 0 # ms(j) = m5(rf(i)j) and
this forces mg(rk(i)) #0.

(¢c) = (d). There exists i € a such that ms(rf(i)) # {0}, that is,
rH(i) ¢ mg . Therefore we have i ¢ (rff)~1(mg) and by Corollary 4.10 we
obtain (rf)=1(mg) Cm, .

(d) = (a). Let i € . Then i ¢ m, and so ri(i) ¢ mg by as-
sumption. Since all primitive idempotents outside § belong to mg (see
Theorem 4.3), at least one idempotent in S must appear in a decomposi-
tion of (7). O

We have purposely stressed the role of the restriction map 7 | but as
we shall often free ourselves from the use of this map, we now restate the
conditions of the lemma.

(a) - (b) For some (respectively every) i € «, there exists j € 8 such
that j =iji.
(c) ms(a) # {0}

(d) mgnNA" Cm,.

It is clear from either the definition or (d) that the relation < is
reflexive and transitive. Moreover if Kg < H, and H, < Kg, then
K = H and (d) implies that m, = mg, that is, « = 8. Therefore the
relation < is a partial order relation on PG(A). It is easily seen that
< is compatible with the action of G (see Exercise 13.4). We also write
H, > Kz instead of Kg < H,, and Kg < H, when Kz < H, and
Kg # H,. If A is a primitive G-algebra and if o = {14} denotes the
unique point of A% | then any pointed group H s on A is contained in G,
because every idempotent i € A satisfies 14014 =i.
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(13.4) EXAMPLE. Let M be an OG-module and A = Endp(M). Re-
call from 10.6 that A is an interior G-algebra. If H is a subgroup of G,
then an endomorphism f € A is fixed under H if and only if f commutes
with every element of H , that is, if and only if f is an OH-linear endo-
morphism of M . Therefore A” = Endpy(M). Consequently an idem-
potent i in AM is the same thing as a projection onto a direct summand
of Res$ (M) (that is, M considered as an OH-module by restriction).
Moreover i is primitive in A® if and only if the corresponding direct
summand @M is indecomposable as an OH-module. Note in particular
that A is a primitive G-algebra if and only if M is an indecomposable
OG-module. Now two direct summands iM and jM of Res$ (M) are
isomorphic if and only if the corresponding idempotents ¢ and j are con-
jugate in AH (see Corollary 4.5). Therefore a point o of A corresponds
to an isomorphism class of indecomposable direct summands of Resg(M ).
We write M, for such a direct summand, so that M, = iM = jM . Note
that up to isomorphism, the localization A, is the endomorphism algebra
of M, because for i € a, we have iAi = Endp(iM) by Lemma 12.4.

The inertial subgroup Ng(H, M,) of the OH-module M, is by def-
inition the subgroup of Ng(H) cousisting of all g € Ng(H) such that
M, = 9M,), where 9M,) denotes the conjugate module (that is, the
module structure on 9M,) is obtained by first applying Conj(g~!) and
then the old module structure of M, ). Now the stabilizer Ng(H,) of the
pointed group H, is equal to the inertial subgroup Ng(H,M,) of M, .
This follows from the observation that the direct summand My, corre-
sponding to the conjugate pointed group 9 H,) is precisely the conjugate
module 9M,), and that 9M,) = M, if and only if % = a (Corol-
lary 4.5).

The order relation between pointed groups on A = Endp (M) is now
easy to interpret: it corresponds for indecomposable modules to the prop-
erty of being isomorphic to a direct summand of the restriction. More
precisely let H, and Kz be pointed groups on A, corresponding to di-
rect summands M, and Mp respectively. Let ¢ € o and suppose that
K < H. Then by condition (a) in Lemma 13.3, Kz < H, if and only if
there exists j € 8 such that jM is a direct summand of Res? (M), that
is, Mg is isomorphic to a direct summand of Rest(M,,) .

We shall usually restrict to the case of OG-lattices (but this is no
restriction when O = k). If M is an OG-lattice, any direct sum-
mand iM of M is again an (OG-lattice, because a direct summand of
a free O-module is free by Corollary 1.4. This fundamental example has
several special features, the first being that A = Endp (M) is an O-simple
algebra. As we have seen in Proposition 12.5, embeddings are unique when-
ever they exist and the existence of an embedding Endp (M) — Endep (L)
is equivalent to the property that M is isomorphic to a direct summand
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of L. Also there is a unique minimal pointed group 1, (where 1 denotes
the trivial subgroup), because A is O-simple and hence A = A! has a
unique point «.

(13.5) EXAMPLE. The previous example can be extended without es-
sential change to the case of modules over a twisted group algebra. Let
A be a G-algebra which is O-simple, so that A = Endp(M) for some
free O-module M . Then by Example 10.8, M is endowed with a mod-
ule structure over a twisted group algebra OuG For any subgroup H
of G, there is a subalgebra (’)ﬁH of (’)ﬁG: the inverse image H of H
in G is a central extension of H by O* and the corresponding twisted
group algebra is clearly a subalgebra of Oﬁé . By the construction of the
action of Oﬁé on M, we see that f € AF if and only if f commutes
with every element of (’)ﬁfl , that is, if and only if f is an Oﬁﬁ—linear
endomorphism of M . Therefore A¥ = End o, ﬁ(M ), as in the previous

example, and all the observations of that example remain valid. Thus a
primitive idempotent i of AH is a projection onto an indecomposable
direct summand of Res$ (M), where for simplicity we write Res& (M)

0,G
instead of Resoﬁﬁ(M ). Again a point of A¥ corresponds to an isomor-
#

phism class of indecomposable direct summands of Res$ (M), and the
order relation between pointed groups is interpreted as before.

The reader who is familiar with a module-theoretic approach to rep-
resentation theory can use these two examples as both a motivation and a
guide for the more general treatment of pointed groups on G-algebras. In
the examples, the condition that jV be a direct summand of Resg (V)
can be reinterpreted in terms of algebras by the fact that the subalgebra
jAj = Endp(jV) embeds into iAi = Endp(iV). This translation of a
condition on modules to a property of algebras has the advantage of being
applicable to any G-algebra. In other words the order relation can be re-
stated in terms of localizations. We now prove this, using the conceptual
approach to localization which was introduced above.

(13.6) PROPOSITION. Let H, and Kg be two pointed groups on a
G-algebra A and let F, : Ay — Res$(A) and Fz : Ay — Res%(A)
be embeddings associated with H, and Kpg respectively. Assume that
K < H. Then Kg < H, if and only if there exists an exomorphism
£ : Ag — Rest(A,) such that the following diagram of exomorphisms
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commutes. Fs
Ay —% Res$(A)

“"J/ /(Resﬁ(]:a)
Rest(Aq)

If this condition is satisfied, the exomorphism & is an embedding and is
unique.

Proof. Assume that Kg < H,. Let i € o and j € § be such
that ij = j = ji. By Lemma 13.1, we can assume that A, = iAi and
Ap = jAj, and that F, and Fp are the exomorphisms determined by
the inclusions into A. Let £ be the exomorphism containing the inclusion
jAj CiAi. Then clearly Resf(F,)&=Fp.

Conversely assume that &£ exists and let e € £, f, € F,. Then
e(la,) is an idempotent in AX and its image j = foe(la,) belongs to
the point B of AX  because f,e € Fs by commutativity of the diagram
and the fact that Fg is an embedding associated with Kg. Moreover
i = fa(la,) belongs to a. Since 1a,e(la,) = e(la,) =e(la,)la, , we
obtain ij = j = ji. This proves that Kz < H,, .

Finally the uniqueness of £ and the fact that it is an embedding is an
immediate application of Proposition 12.2. O

The unique embedding appearing in Proposition 13.6 will usually be
written Fg : Ag — Resg(Aa). This embedding expresses the property
Kg < H,.

Exercises

(13.1) Let M be an OG-module and let A = Endp(M) be the corre-
sponding interior G-algebra. Prove that A is primitive if and only if M
is an indecomposable OG-module.

(13.2) Let H be a subgroup of G'. By constructing suitable examples
of G-algebras, prove that any subgroup K such that H < K < Ng(H)
can be realized as the normalizer Ng(H,) of a pointed group. State and
prove a similar result for interior G-algebras.
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(13.3) Let A be an interior G-algebra, let P be a p-subgroup of G,
and let P, be a pointed group on A. Let H = Cg(P-14) N Ng(P) and
H = PH/P . Show that on restriction to H , the multiplicity algebra S(v)
of P, is an interior H-algebra, so that the multiplicity module V(v) is a
kH-module.

(13.4) Let H, and Kjz be pointed groups on a G-algebra A and let
g € G . Show that if H, > Kg, then 9(H,) > 9Kjp).

(13.5) Let A be a G-algebra.

(a) Let H, be a pointed group on A and K a subgroup of H. Show
that there exists a point 8 € P(AX) such that Kz < H, .

(b) Let Kz be a pointed group on A and H a subgroup of G con-
taining K . Show that there exists a point a € P(AH) such that
Kz < H, .

(c) Let H, and L. be pointed groups on A with L, < H, and let K
be a subgroup of H containing L. Show that there exists a point
B € P(AK) such that L, < Kg < H, .

(13.6) Let A be a G-algebra. Recall that m, denotes the multiplicity

of a point «.

(a) Let Hy and Kp be pointed groups on A such that Kg < H, . Prove
that mg > m, .

(b) Let Kz be a pointed group on A with mg = 1. Prove that there
exists a unique pointed group H, such that Kg < H,. Moreover
Mo = 1.

Notes on Section 13

Pointed groups were first introduced by Puig [1981], refining the notion of
Brauer pairs due to Alperin and Broué [1979]. Multiplicity modules appear
in Puig [1988a].
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§14 RELATIVE PROJECTIVITY AND LOCAL POINTS

We define in this section another relation between pointed groups, called
relative projectivity, by making use of the relative trace map. Then we
introduce the crucial notion of local pointed group and we prove an ele-
mentary but essential property of local pointed groups.

Let A be a G-algebra. For the definition of the order relation < be-
tween pointed groups, one only needs the restriction maps rf : A — AK .
We now use the relative trace maps ti : AX — AH | Given two pointed
groups H, and Kg on A, we say that H, is projective relative to Kg,
and we write Hy,pr Kg,if H > K and o C t%(AKﬁAK) . We know that
tH(AKBAK) is an ideal (by 11.1), so this is equivalent to requiring that
some ¢ € « belongs to this ideal. For the same reason, the relation can
also be written AfaAf C tZL(AKBAK)  and this makes clear that pr is
an order relation beween pointed groups. The order relation pr is easily
seen to be compatible with the action of G (see Exercise 14.1).

Recall that the ideal AXBAK is the set of all finite sums > a,jb,
where a,,b, € AX and j € f. We show that one can get rid of sums for
the definition of relative projectivity of pointed groups.

(14.1) LEMMA. Let A be a G-algebra, let H, and Kg be two pointed
groups on A, let i € a and j € B, and assume that K < H . Then
H, pr Kz if and only if there exist a,b € AX such that i = ti(ajb) .

Proof. If i = tfl(ajb), it is clear from the definition that H, pr Kg.
If conversely H, pr Kg, then i =3 "_, t!(a,jb,) for some positive inte-
ger n and some a,,b, € AKX . Multiplying on both sides by i, we have

n n
i= iti(aniby)i =Y tit(ia,jbyi).
r=1 r=1

Since 4 is a primitive idempotent of A | the ring iAfi is local with
unity element ¢ (Corollary 4.6). Therefore there exists an index 7 such
that tfl(ia,jb.i) is invertible, so that

i = ti (ia,jbi)c = ti(ia,jbyic)
for some ¢ € iAH4. This proves the result since ia,,byic € AX . 0O

A pointed group H,, is said to be projective relative to K if it is pro-
jective relative to Kp for some 3 € P(AK). Also H, is called projective
if it is projective relative to the trivial subgroup 1. In that case one also
says that « is a projective point of A” . There is a more direct way of de-
tecting the projectivity relative to a subgroup. Recall that A = tZL(AK)

is an ideal of A® (by 11.1).
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(14.2) LEMMA. A pointed group H, is projective relative to K if and
only if K < H and o C Afl . In particular H, is projective if and only
if o C A{{ .

Proof. If H, is projective relative to K , it is clear that K < H
and a C A%. Assume now that K < H and o C A%. Choosing a
primitive decomposition of 14x and multiplying by A% on both sides,
one obtains AKX = 2 BeP(AK) AKBAK | and therefore

A=) tf(ARpAR).
BEP(AK)

Applying Rosenberg’s lemma (Proposition 4.9) to some i € a, we have
i € tiL(AKBAK) for some B and so o C tH(AKBAK) as required. O

If H is a subgroup of G, we say that a G-algebra A is projective
relative to H if the relative trace map t% : A” — A% is surjective. Since
the image Ag of the relative trace map is an ideal, this is equivalent to
requiring that 14 € A% . Also by Lemma 14.2, A is projective relative
to H if and only if every pointed group on A of the form G, is projective
relative to H . Thus this new definition is a global analogue of the one
introduced for pointed groups. We also say that a G-algebra A is projective
if it is projective relative to the trivial subgroup 1. The following easy result
is often useful.

(14.3) LEMMA. Let A be a G-algebra and assume that A is projective
relative to a subgroup H . Then A ®y B is projective relative to H for
any G-algebra B . In particular A ®» B is projective if A is projective.

Proof. By assumption there exists a € A such that t%(a) = 14.
Thus we have

t%(a@lg): Z Yo ® 9 = Z 9a®1p
g€[G/H] 9€[G/H]

=tF(a)®@1p=1a® 15 =lagp,
proving the result. O

One of the important ideas of the defect theory of pointed groups (see
Section 18) is to write a primitive idempotent i € A¥ as an image of a
trace map ¢ = tg (a) for a subgroup @ as small as possible. We are now
interested in the extreme case where this is not possible for any proper
subgroup @ of H. By Lemma 11.7, this forces H to be a p-subgroup,

which we write as P instead of H .
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(14.4) LEMMA. Let P be a subgroup of G and let P, be a pointed
group on a G-algebra A. The following conditions are equivalent.

(a) P, is minimal with respect to the relation pr .

(b) P, is not projective relative to a proper subgroup of P .

(C) Y g ZQ<PA5 .

(d) brp(v) #{0}.

(e) Ker(brp) Cm, .

If these conditions are satisfied, then P is a p-group.

Proof. Tt is clear that (a) and (b) are equivalent. The equivalence
of (b) and (c) follows from Lemma 14.2 and Rosenberg’s lemma (Proposi-
tion 4.9). Since we always have pAY C m, (because J(AP) Cm,), we
have v Z pAF (see Corollary 4.10) and therefore (c) holds if and only if

v ¢ pAf + Z Ag = Ker(brp),
Q<P

which is the statement (d). Finally (d) and (e) are equivalent thanks
to Corollary 4.10 again. If these equivalent conditions are satisfied, then
Ker(brp) is a proper ideal of A” andso P isa p-group by Lemma 11.7. O

A pointed group P, on a G-algebra A is called a local pointed group
if it satisfies the equivalent conditions of the lemma. The corresponding
point v of AT is called a local point of AP . The word local has nothing
to do with the localization procedure introduced before, but rather with
the customary terminology for objects connected with p-subgroups of a
finite group. In fact pointed groups are generalizations of subgroups and
local pointed groups are generalizations of p-subgroups (Exercise 14.2).

For a fixed p-subgroup P, the set of local points of AF is writ-
ten LP(AP). It should be noted that, for a point of A | the property of
being local depends on the algebra A together with its P-action, so it is
not a property depending only on the O-algebra A . Thus, whereas the
set of all points P(A”) only depends on AF | the set LP(AF) depends
on A, a fact which is not incorporated in the notation.

(14.5) LEMMA. Let A be a G-algebra and let P be a p-subgroup
of G . The Brauer homomorphism brp : AP — A(P) induces a bijection
LP(AF) 5 P(A(P)).

Proof. This is an application of part (e) of Theorem 3.2, using the
characterization of local points given in part (d) of Lemma 14.4 above. In
terms of maximal ideals rather than points, the result is obvious by part (e)
of Lemma 14.4. O
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(14.6) COROLLARY. Let P, be alocal pointed group on a G-algebra A.
Then the corresponding simple quotient S(y) = AF/m. is canonically
isomorphic to a quotient of A(P) . Conversely any simple quotient of A(P)
corresponds to a local point of AT .

The set of all pointed groups on a G-algebra A is a poset (that is, a
partially ordered set) and we shall be particularly interested in the subposet
of local pointed groups. The first component of a local pointed group is
always a p-group, but an arbitrary p-group is not necessarily the first
component of a local pointed group (see Exercises 14.2, 14.3 and 14.4).
Note however that any pointed group 1, (where 1 denotes the trivial
subgroup) is always local.

We have seen in Proposition 11.9 that the Brauer homomorphism brp
has a property linking the relative trace maps in the G-algebra A and in
the Ng(P)-algebra A(P). Now if v is a local point of AP with simple
quotient S(7), we want to show that the canonical map m, : A” — S(v)
has a similar property, using the N¢(P,)-algebra structure of S(v). Since
7, factorizes through A(P) via the Brauer homomorphism (by Corol-
lary 14.6 above), this can be seen as a specialization of Proposition 11.9
to each local point of AP . In the following statement, one can ignore the
inclusion map 7% if one prefers.

(14.7) PROPOSITION. Let A be a G-algebra, let P, be a local pointed
group on A, and let m, : A¥ — S(v) be the canonical map. Then for
a € A” and for every subgroup H of G containing P, we have

7y rE tH(a) = {tiVH(Pv) my(a) ifae ATyA,
yTptpla) =
0 ifa€ APy AP and +' is not Ny (P)-conjugate to 7.

Moreover m, 1§ (Af) = m, rfl(t (AP AP)) = ST ")
Proof. We use the Mackey decomposition formula 11.3 and the fact

that m,(Ag) =0 if Q@ < P (because v is local so that we have by
Lemma 14.4 Ker(brp) C m, = Ker(w,,) ). We obtain

T 7p tp(a) = Z oy (tprnp("a)) = Z m ("a).

he[P\H/P] he[Nu (P)/P]

If a € APy AP where 4" € P(AF) is not Ny (P)-conjugate to ~y, then
hg € AP M/ AP but ™/ +£ -+, and so my("a) = 0. Thus m, rE ti(a)=0.
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If now a € APyAP | then for every h € Ng(P) — Ny(P,), we have
"o € APPyAP but My # v, and so 7,("a) = 0. Thus we are left with a
sum running over Ny (P,)/P and we obtain

Ng (P, Nu (P
it = Y () =" (m(0) = 1) (my(a),
h€[Ng(Py)/P]

as required.

For the second assertion, we note that AZ = 2 oeP(AP) tH(APy AT
and that tE (AP AF) = tHH(APyAP) if 4 is Ny(P)-conjugate to ~y
(because if h € Ng(P) and a € AT | we have t2("a) = ti(a)). By the
first part of the proposition, we obtain

Nu(P,
myrB(AR) = my rH APy AT) = 67 7, (AP Y AT).

The result follows from the observation that .,(APyAP) is the whole
of S(v), because it is a non-zero ideal in this simple algebra. O

More generally the relative trace map t£ is related to a relative trace
map in S(y), provided we consider only certain elements of AX . The
previous proposition corresponds to the special case K = P.

(14.8) COROLLARY. Let P, be alocal pointed group on a G-algebra A,

let AP — S(v) be the canonical map, and let P < K < H <G . For
every a € ti(APyAF) | we have

Ty TII;I tﬁ(a) = NK(P«,) TyTp (a) .

Proof. We write a = t5(b) with b € APyAF and we apply the
proposition for both subgroups K and H . Thus we have

my it (a) = my Bt () = 67 (b) = e ) NP )

NK(P’Y) 1
Nu(Py) Ny (Py)
= ﬁi(&) LT LS () :tﬁi(P:)mY r&(a). O

(14.9) REMARK. In the situation of Proposition 14.7, let T be the im-
age of the homomorphism ., 7 : A# — S(y). Then T is a subalgebra
and is contained in S(y)N#() | because we have a homomorphism of

Ny (Py)-algebras and Ny (Py) < H acts trivially on A7 . Moreover the

imaggof the ideal AZ is an ideal of T" which is equal to S(W)lﬁH(P”) . But

S(’y)ivH(P”) is also an ideal of the larger ring S(7)V#(P) | g0 we are in
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a somewhat special situation. For instance if we assume that A2 = AH |

then S(’y)lﬁH(P”) = T, so in particular 17 belongs to this ideal. But

17 = 1g(,) and therefore we also have S(’y)lNH(P”) = S(’y)NH(PW) . This is
a very strong condition on S(v) which we shall exploit later in Section 19.

Exercises

(14.1) Let H, and Kz be pointed groups on a G-algebra A and let
g € G. Show that if H,pr Kg, then 9H,)pr 9(Kg).

(14.2) Let A = O with trivial G-action.

(a) Show that the poset of pointed groups on A is isomorphic to the poset
of all subgroups of G .

(b) Show that the poset of local pointed groups on A is isomorphic to the
poset of all p-subgroups of G .

(14.3) Let A = Endp(M) where M is a free OG-module. Show that
there is a unique local pointed group on A (whose first component is the
trivial subgroup). [Hint: If P is a subgroup of G, then Res$(M) is a free
OP-module; deduce from this that the relative trace map ! is surjective.]

(14.4) Take p =2 andlet P be the direct product of two cyclic groups of
order 2, generated by g and h respectively. Let M be the 2-dimensional
kP-module with a k-basis {v,w} and an action of P defined by

g v=v4+w, gw=w, hv=v+lw, h w=w,
where A € k, A # 0, A # 1. Let A = Endg(M). Show that there
are exactly two local pointed groups on A, whose first components are 1
and P respectively. [Hint: Show that the restriction of M to any proper
subgroup @ of P is a free k@-module and apply Exercise 14.3. For the
subgroup P itself, show that any a € A” leaves W =< w > invariant,
that the kernel I of the restriction map A" — Endy(W) is a nilpotent
ideal of A" with quotient isomorphic to k, and that the image of the
relative trace map tg is contained in [ if Q < P ]

Notes on Section 14

The concept of local point and its basic properties are due to Puig [1981].
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§15 POINTS AND MULTIPLICITY MODULES
VIA EMBEDDINGS

We show in this section that an embedding of G-algebras induces on the
one hand a very well-behaved injective map between pointed groups, and
on the other hand embeddings between multiplicity algebras as well as
embeddings between Brauer quotients.

If M is a direct summand of an OG-module N and if L is an
indecomposable direct summand of M , then clearly L is also an inde-
composable direct summand of N . It is this simple observation that we
want to generalize to G-algebras and put in a suitable setting. Our pur-
pose is to show that if e is a G-fixed idempotent of a G-algebra B, the
inclusion eBe — B induces a well-behaved injective map between pointed
groups on eBe and pointed groups on B. As before we shall work with
embeddings rather than inclusions eBe — B.

Let F : A — B be an embedding of G-algebras. For every sub-
group H of G, let F” : A" — BH be the corresponding embedding of
O-algebras. Then F induces an injection P(A) — P(B) mapping
a to FH(a), which is a point of B¥ (Proposition 8.5). For simplicity
we write F(a) = FH(a), but it should be noted that this set is usually
larger than the set { f(i) | f € F,i € a}, which is closed under conju-
gation by (BY)*, but not necessarily (B¥)*. In any case F(a) is the
(BH)*-conjugacy closure of f(i), for any f € F and i € a. If H, is
a pointed group on A, then Hpr(,) is a pointed group on B, called the
image of H, in B.

(15.1) PROPOSITION. Let F : A — B be an embedding of G-algebras.

(a) F induces an injective map F. : PG(A) — PG(B), defined by
Fi(Ha) = Hr(a) -

(b) Let H, and Kpg be pointed groups on A. Then H, > Kg if and
only if Hr(o) > Kz . Moreover if Hr,) > Kg for some pointed
group Kg on B, then B’ = F(B) for some B € P(A) (and so
H, > Kg ).

(c) Let H, and Kg be pointed groups on A. Then H,prKpg if and
Oﬂly if H]-'(a) pr KJ‘_(,B) .

(d) Let P, be a pointed group on A. Then P, is local if and only if
Pr(,y is local.

(e) Let H, be a pointed group on A. If g € G, then the image of 9 H,)
is Y Hz(q)) . In particular Ng(Hr()) = No(Hy) -

(f) Let H, be a pointed group on A. If F, : Ay — Res%(A) is an
embedding associated with H, , then Res% (F) Fy : Aq — Res$(B)
is an embedding associated with Hr(, . In other words A, is also
the localization of B with respect to the pointed group Hr () -
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Proof. (a) This is a restatement of Proposition 8.5 and the remarks
above.

(b) Let feF and i € a. If H, > Kp, there exists j € 5 such that
iji = j. Applying f to this equality shows that Hr) > Kz . Con-
versely if Hr(,) > Kg , then there exists j’ € 8" such that f(i)j'f(i) = j'.
Multiplying on both sides by f(14), we see that j' = f(14)j7 f(14) be-
longs to f(14)Bf(14), which is the image of f since F is an embedding.
Therefore j' = f(j) for some j € A and the injectivity of f shows that
j is a primitive idempotent of AX such that iji = j. If § is the point
of AX containing j, it follows that 8’ = F(8) and H, > Kz.

(c) Let fe F.If a Cti(AKBAK)  then

fla) St (fAR)F(B)F(AR)) C i (B" f(B)BY).

If conversely f(a) C 5 (B f(8)BX) , one can multiply f(a) and f(3)
by f(1a) on both sides to get

fle) CHR(f(La)BR f(1a)F(B)f(1a)BR f(1a)) = ti£ (F(AF) F(B) F(AT)) .
The injectivity of f yields a C ti(AKBAK).
(d) The argument is the same as in (c¢), using this time the ideal
AL = Y t5H(A9).
Q<P

(e) The first assertion is trivial because any f € F commutes with
the action of G . The special case follows immediately using the injectivity
of the map a— F(a).

(f) The exomorphism Res$(F) F, is an embedding, because the com-
posite of two embeddings is an embedding. If f € F, f, € Fu, then
fa(la,) =i € a by definition and so f fo(1a,) = f(i) € F(«). Therefore
Res% (F) F, is an embedding associated with the pointed group H Fla) - O

Given an embedding F : A — B, an important simplification which
will be often used consists in considering the map F : PG(A) — PG(B)
as an inclusion rather than an injection. In other words we shall often
identify the pointed groups on A with pointed groups on B. We note
that multiplicities are not preserved by this identification: the multiplicity
of a point o of A is always smaller than or equal to the multiplicity
of a considered as a point of B . For instance A always embeds in
B = M,(A) but the multiplicities are multiplied by n (Exercise 15.2).

One crucial application of this identification occurs when we consider
an embedding F, : Ay — Resg(A) associated with a pointed group H, ,
which is an embedding of H-algebras. The algebra AX is a local ring
(that is, A, is primitive) and its unique point {14_ } (with multiplicity
one) is identified with the point o of A¥ . For arbitrary pointed groups
on A, , we have the following result, which shows in particular that the
containment relation between pointed groups can be read in the localiza-
tion.
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(15.2) PROPOSITION. Let F, : Ay — Res%(A) be an embedding
associated with a pointed group H, on a G-algebra A. Then F, induces
an isomorphism between the poset PG(A,) and the poset of all pointed
groups on A which are contained in H, .

Proof. We have noticed above that the unique point o' = {14}
of AX is mapped to the point o of A . By part (b) of Proposition 15.1,
the set of all pointed groups on A, which are contained in H,- is mapped
bijectively onto the set of all pointed groups on A which are contained
in H,. But any pointed group on A, is contained in H,s because any
idempotent i € AX satisfies 14,314, = i. The fact that this bijection
preserves the order relation < also follows from Proposition 15.1. O

We have noticed above that the injective map F. : PG(A) — PG(B)
induced by an embedding F : A — B does not preserve multiplicities. We
now discuss the precise behaviour of multiplicity algebras and multiplicity
modules. Let H, be a pointed group on A and let H, € PG(B) be
its image under F. (here we do not identify o and o’). Let S(«) and
S(a’) be the respective multiplicity algebras. By Proposition 15.1, H,
and H,s have the same normalizer N = Ng(H,) = Ng(H,). Thus both
S(a) and S(a’) are N-algebras, where N = N/H .

We use a slight modification of the argument of Exercise 8.3 to show
that the embedding F : A — B induces an embedding of N-algebras
F(a) : S(a) = S(a/). Choose f € F and consider the homomorphisms
of N-algebras fH : A# — BH (that is, the restriction of f) and the
canonical map m : BY — S(a’). Clearly m, f# induces an injective
homomorphism of N-algebras

fi A" [Ker(no f7) — S(a).

Since F is an embedding, the image of f is equal to iBHi where
i= f(14), and since 7, is surjective, the image of f is equal to iS(a’')i
where i = (7). But iS(a’)i is a simple k-algebra because if we set
as usual S(a) = Endg(V(a)), then we have iS(a/)i = Endg(iV («)) (see
Lemma 12.4). Therefore AH /Ker(m, f7) is simple (since f is injective)
and so Ker(my f) is a maximal ideal of A¥ . But since f¥(a) C o,
we have a € Ker(my f), hence Ker(m, fH) C m, by Corollary 4.10.
It follows that Ker(rm, f#) = m, and therefore

AH [ Ker(my f7) = S(a).
Thus f is an injective homomorphism of N-algebras f:S(a) — S(a/)

whose image is the whole of iS(a’)i, and so f belongs to an exomor-
phism F(«a) of N-algebras which is an embedding. If one changes the
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choice of f € F, one has to modlfy f by Inn(b) where b € BY.
Then b=r%(b) € BH is fixed under N and its image b = 7, (b) be-

longs to S(a N . In the construction above, we see that f is modified
by Inn(b), so that we end up with a homomorphism belonging to the same
exomorphism F(a). Therefore we have proved the following result.

(15.3) PROPOSITION. Let F: A — B be an embedding of G-algebras,
let H, be a pointed group on A, let H, be its image in B, and let
N =Ng(Hy) = Ng(Hy ). Then F induces an embedding of N-algebras
F(a): S(a) — S(a’) such that the following diagram commutes

AHf—H>BH

“l lwa,

S(a) 2% S(a)
where F : AH — BH js the embedding of N-algebras induced by F .

We now consider the behaviour of multiplicity modules with respect to
the above embedding F (). Changing notation for simplicity, and gener-
alizing to O-simple algebras for later use, we let H : S — S’ be an embed-
ding of O-simple G-algebras. By Example 10.8, we have S = Endp (V)
and V is endowed with an Oﬁé—module structure. Similarly we have
S’ 2 Endp (V') and V' is endowed with an Oﬁ@/—module structure. We

use the following explicit description of G and G (see Example 10.8):

={(a,9) € S* x G | Inn(a)(s) = 9 forall s S},
={(d',g) € (S)" xG | Inn(a’)(s') = 9% forall s’ €S }.

Q) Q>

Now we prove that the embedding H : S — S” induces an isomorphism of
central extensions H* : G’ — G (which is naturally defined in the reverse
direction).

(15.4) PROPOSITION. Let S =2 Endp(V) and S’ =2 Endp(V’) be two

O-simple G-algebras and let H : S — S" be an embedding of G-algebras.

(a) Let h € H and i =h(lg). If (a/,g) € G, then id' = a/i = id’i and
the unique element a € S such that h(a) =ia’ is independent of the
choice of h € H .

(b) There is an isomorphism of central extensions

H G — G, (', g)— (a,g),
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where a is defined by h(a) =1ia’ for h € H. Moreover H* induces
the identity on both the quotie,nt G _and the central subgroup O* .

(c) Using the isomorphism H* : G — G of part (b), the OyG-module V
has an Oﬁé/—module structure. Endowed with this structure, V is
isomorphic (via H ) to a direct summand of V' .

Proof. (a) We first note that if (a/,g) € G, then a/ commutes
with (S)¢. Indeed Inn(a’) is equal to the action of g, which is the
identity on (S")¢. In particular @’ commutes with i = h(lg), proving
the first assertion. Let Inn(b)h be another representative of #H , where
be (59, and let j = Inn(b)h(lg) = Inn(b)(i). If a € S is the unique el-
ement such that h(a) = iad’, then Inn(b)h(a) = Inn(b)(¢) Inn(b)(a’) = ja',
because a’ commutes with b by the remark above. This shows that a is
independent of the choice of & . _

(b) To show that (a,g) € G, we must prove that a is invertible and
that Inn(a) is the action of g on S. Since h defines an isomorphism
S 5 iS'i, it suffices to show that h(a) is invertible in iS’i and that
Inn(h(a)) is the action of g on iS’i. First note that i(a’)~! is the inverse
of h(a) =ia’ in iS’i because ¢’ commutes with ¢. Now for ¢ € i5"i, we
have

Inn(h(a))(c) = id'ci(a’) ™" = d’ici(a’) ™' = Inn(a’) (ici) = Inn(a')(c) = %,

using the fact that ¢ = ici. This completes the proof that (a,g) € é, SO
that H* is well-defined.

Let (a},91), (ay,g2) € G andlet ay,ay € S be such that h(ay) = ia)
and h(ag) = ial, . Then the image of the product (ajab, g1g2) is equal to
the product (ajasg,g1g2) of the images, because

araz) = h(ai)h(as) = iajia, = i“ajay = tajasy .
h () h(az) = iahial = a}a) = iaaf

Thus H* is a group homomorphism, which by construction induces the
identity on the quotient G'. Finally H* is also the identity on O~ be-
cause O* is identified with the central subgroups O*-1g x {1} C G and
O*1g x {1} € G respectively, and clearly h(A-1g) = iX-1lg for A € O*.

(¢) The Oﬁ@—module structure of V' is provided by the first projection
p:G— §* GL(V) . Similarly the Oﬁél—module structure of V' is given
by the map p' : G — ($')* 2 GL(V'). Choose h € H and let i = h(lg).
Let (a/,g) € G and (a,g) = H*(a',g) (so that h(a) = ia’). Using
the isomorphism #H*, the action of (a’,g) on V is the endomorphism a
of V. Via the embedding # , this corresponds to the action of the element
h(a) = ia’ of iS"i = Endp(¢V’'), which is precisely the action of (a’,g)
restricted to the direct summand iV’ (because @’ and ia’ = a'i coincide
on this summand). Another choice of h yields another isomorphic direct
summand of V'. O
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Note that the isomorphism H* : G > G depends on the embed-
ding H : S — §’. Thus a different embedding yields a different iso-
morphism, hence a different OnG/—module structure on V', which may
correspond to another isomorphism class of direct summands of V' (Ex-
ercise 15.3).

By Proposition 15.3, an embedding of G-algebras F : A — B in-
duces an embedding of N-algebras F(a) : S(a) — S(a’). Applying
Proposition 15.4, we obtain in particular the following statement about
multiplicity modules.

(15.5) COROLLARY. Let F: A — B be an embedding of G-algebras,

let H, be a pointed group on A, and let H, be its image in B . Let

N =Ng(H,) = Ng(Hy), and let F(a) : S(a) — S(a’) be the embed-

ding of N-algebras induced by F (Proposition 15.3). Then F(«a) induces
—~1 ~

an isomorphism of central extensions F(a)*: N —LN , inducing the iden-
tity on both k* and N . Using the isomorphism F(«)*, the multiplicity

=~/
module V(a) has a kyN -module structure; endowed with this structure,
V(«) is isomorphic (via F(a) ) to a direct summand of V(a/) .

We end this section with the observation that embeddings also induce
embeddings between Brauer quotients.

(15.6) PROPOSITION. Let F : A — B be an embedding of G-algebras,
let P be a p-subgroup of G , and let N = Ng(P)/P . Then F induces an
embedding of N-algebras .7-"( ) : A(P) — B(P) such that the following

diagram commutes P
AP 2 BFP

brﬁJ{ lbrg

arp) I B
where F¥ : AP — BT is the embedding of N-algebras induced by F .

Proof. We only sketch the proof, leaving the details as an exercise for
the reader. Choose f € F and let ¢ = f(14). Since i is fixed under any
subgroup of G, the Brauer homomorphism brg : BY — B(P) restricts
to a surjective homomorphlsm iBYi — brB(i)B(P)brB (i) which can only
be the Brauer homomorphism of ¢Bi. Indeed the ideal appearing in the
definition of the kernel of the Brauer homomorphism is

Z tQ ((iBi)% Z tQ (iB9i) Z th(BQ Z tQ (B9))niB"i.

Q<P Q<P Q<P Q<P
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Therefore (iBi)(P) = br5(i)B(P)br5(i). Since f induces a G-algebra
isomorphism A = iBi, we obtain an isomorphism

A(P) 3 brB () B(PYrE (),
hence an embedding A(P) — B(P), as required. O

We know from Proposition 15.1 that F induces an injective map
LP(AF) — LP(BF). This can also be deduced from the above propo-

sition since LP(AF) = P(A(P)) (Lemma 14.5).

Exercises
(15.1) Complete the details of the proof of part (d) in Proposition 15.1.

(15.2) Let A be a G-algebra. Define a natural G-algebra structure on
the matrix algebra M, (A) and a canonical embedding F : A — M, (A).
Show that the induced map F, : PG(A) — PG(M,(A)) is a bijection and
that the multiplicities of points are multiplied by n .

(15.3) Let G be a cyclic group of order 2 generated by ¢ and suppose
that the characteristic p is not equal to 2. Let S = My(k) = End(V),
endowed with the action of ¢ defined by

a b a —b
(¢ a)= (2 7)

Prove that the corresponding twisted group algebra kﬁé is isomorphic to
the ordinary group algebra kG, but not canonically (there are two such
isomorphisms). Prove that there are two distinct embeddings of G-algebras
k — S (where k is the trivial G-algebra). In each case describe in detail
the corresponding isomorphism of central extensions and the identification
of the one dimensional module for k& with a direct summand of V' (Propo-
sition 15.4). Show that this procedure for the two embeddings yields two
non-isomorphic direct summands of V' (corresponding, under some non-
canonical isomorphism kﬂé =~ kG, to the trivial and the sign representa-
tions of G respectively).

(15.4) Provide the details of the proof of Proposition 15.6.

Notes on Section 15

For the results of this section, we have followed Puig [1981, 1984, 1988a).



CHAPTER 3

Induction and defect theory

The main purpose of this chapter is the defect theory of pointed groups
which is a reduction to the case of p-groups and projective modules. In the
case of interior G-algebras, it is closely related to an induction procedure,
which is only defined for interior structures. One of the most important
tool is the Puig correspondence, which implies the Green correspondence.
We continue with our assumption that G is a finite group and that O is
a commutative complete local noetherian ring with an algebraically closed
residue field k& of characteristic p.
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§16 INDUCTION OF INTERIOR G-ALGEBRAS

In this section we introduce an induction procedure for interior G-algebras
which has no analogue for arbitrary G-algebras. The construction is a
generalization of the concept of induction of modules.

Let H be a subgroup of G and let B be an interior H-algebra. We
define Ind%(B) to be the O-module OG ®py B®py OG and we wish to
put an interior G-algebra structure on Indy (B) . First note that OG is a
free right OH-module with basis [G/H], and also a free left OH-module
with basis [H\G]. Choosing [H\G] as the set of inverse elements of the
elements of [G/H], it follows that

mdf(B)= @ fOH®eyBwoy OHg'= @ feoBeg!.
f,9€[G/H] f,9€lG/H]

In particular if B is O-free (with some basis (b;)ics ), then Ind$(B)
is O-free (with basis (fb;g~') where i € I and f,g € [G/H]). Thus
dime (Ind% (B)) = |G : H|?dime(B) .

The multiplication of elements of Ind$(B) is defined as follows. If
z, 2, y,y € G and b, b € B, then

rRb-yr -V @y ifyr € H,

/ / N —
(z2bey) (@ @b ®y)—{0 if yz' ¢ H.

The multiplication of arbitrary elements of Ind%(B) is defined by extend-
ing this product O-linearly. It is immediate from the definition that for
hi,hs, hs, hy € H, we have

(zh1 @ b® hay)(2'hs @ @ hay') = (x @ h1bha ® y)(z' @ hab'hy @ y'),

and therefore the multiplication is well-defined and is O-bilinear. It is also
clear that this product is associative and has a unity element equal to

— -1
11nd§(3) = Z g®1lp®g .
g€[G/H]

Thus Ind%(B) is endowed with an O-algebra structure.

(16.1) LEMMA. Let H be a subgroup of G of index n. Then we have
md%(B) = M, (B) as O-algebras.

Proof. We choose a transversal [G/H| and we index the entries of
an n X n-matrix by pairs in [G/H]. Then we define an O-linear iso-
morphism 6 : Ind§ (B) — M, (B) by extending O-linearly the map send-
ing f@b®g ! (where f,g € [G/H] and b € B) to the matrix whose
(f, g)-entry is equal to b and whose other entries are all zero. Since elemen-
tary matrices of this kind multiply in the same way as the corresponding
elements of Indg (B), the map 6 is an isomorphism of O-algebras. O
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We now put an interior G-algebra structure on Indg(B) . It is defined
by the map

¢:G—Indf(B), g— > gf@lp®f "
relG/H]

To check that ¢ is a group homomorphism from G to Ind%(B)*, let
9,9 € G. We first note that for each f € [G/H]|, there is a unique
f’ € [G/H] such that f~'¢/f' € H (and f+ f’ defines a permutation
of [G/H], induced by left multiplication by (¢’)~!). Therefore we obtain

d@olg)= > gfef g -1pa(f)

felG/H]

= Y gff'dfelse )

s/
= Y gdfelsef)!
elG/n)

= ¢(g99') -

Thus Indg(B ) is an interior G-algebra. Notice that the expression of the
unity element can be rewritten as 1pqc () = t%(1®1p®1). In particular

Ind% (B) is projective relative to H .

The interior G-algebra structure induces an (OG, OG)-bimodule struc-
ture by left and right multiplication by elements ¢(g) for g € G. But on
the other hand Ind%(B) = OG ®py B ®py OG has in a natural way an
(OG, OG)-bimodule structure.

(16.2) LEMMA. The two (OG,OG)-bimodule structures on Ind%(B)
coincide. Explicitly

Plg)- (fRbaf)=gf@ba f' and (fRbef) ¢(g)=fRb2fg

for g,f,f' € G and be B.

Proof. We only check the left OG-module structure. We can choose
a transversal [G/H]| containing f. Then

$lg)- (foba )= Y (grelzoz ') - (fobe[)

z€[G/H]
=gfQf oo f =gf@b® [,

as required. O
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Alternatively, the interior G-algebra structure on Indg(B) could be
defined by using Exercise 10.2: the natural (OG, OG)-bimodule structure
satisfies the conditions of this exercise, hence induces an interior G-algebra
structure.

Now we prove that induction is transitive.

(16.3) PROPOSITION. Let K < H < G and let A be an interior
K-algebra. Then there is an isomorphism of interior G-algebras

¢ : Ind (Ind(A4)) = md%(A), g (h®ae®h)®g¢ — ghadhg .

Proof. We choose transversals [G/H] and [H/K]. Then the set
{gh | g€ [G/H],h € [H/K]} is a transversal of K in G. It is now
staightforward to check that ¢ is well-defined and is an O-linear isomor-
phism. The proof that ¢ is a homomorphism of interior G-algebras is an
easy exercise which is left to the reader. O

(16.4) EXAMPLE. Let H < G and let M be an OH-module. The
induced module Ind$ (M) is by definition the OG-module OG ® 4y M .
We know from Example 10.6 that Endo(M) is an interior H-algebra,
and similarly Ende(Ind% (M)) is an interior G-algebra. The relationship
between the two induction procedures is that there is an isomorphism of
interior G-algebras

Ind$ (Ende(M)) = Ende (Ind$ (M) .

In order to prove this, we first note that, since OG is a free right O H-mod-
ule with basis [G/H], there is an O-module decomposition

mdG(M)= P zeM.
z€[G/H]

Thus Ende(Ind$(M)) is isomorphic to a matrix algebra of size |G : H|
over Endp(M). By Lemma 16.1, Ind$ (Endp(M)) is also isomorphic to
a matrix algebra of size |G : H| over Endp(M). For the identification
of those two algebras, we define an O-linear action of Ind%(Ende(M))
on Ind% (M) in the following way. If f € Endo(M), z,y,z € [G/H],
and v € M, then

-1 . 1
($®f®yl)(z®v):{$®f(y Z'U) lfy Z.EH,
0 otherwise.

This action induces a homomorphism of (O-algebras

¢ : Ind% (Endp(M)) — Ende (Ind$ (M)
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mapping z® f®y "' to the endomorphism of Inde(M) which sends y& M
to @M via f and is zero on the other summands of Ind% (M) (that is,
an elementary matrix with a single non-zero entry equal to f). It follows
from this and Lemma 16.1 that ¢ is an isomorphism of (O-algebras.

Since (Zze[G/H] grRidy ®x71) (20v) = gz®@v for g € G, we have

olg- 1) =0( Y go@idy ®a7") =g idiag a) -
z€[G/H)

that is, the action of g on Indg(M ). It follows that ¢ is a homomorphism
of interior G-algebras.

This example suggests a generalization of known results on induction
of modules to the case of interior algebras. Indeed this will be one of our
leading themes, but the reader need not be acquainted with those results
on modules. Here is a first instance.

(16.5) PROPOSITION. Let H be a subgroup of G, let A be an in-
terior G-algebra, and let B be an interior H-algebra. Then there is an
isomorphism of interior G-algebras

¢ : Ind§ (Res%(A) ® B) —» A®p Ind§(B)
TR (D)@Y = (v ay)R@ERbRY).

Proof. 1t is staightforward to check that ¢ is well-defined and is an
O-linear homomorphism. It is an isomorphism because it has the following
inverse:

A ®pInd%(B) — Ind%(Res%(A) @, B)

a2 (ERby) = @ ey lob)ey.

The proof that ¢ is a homomorphism of interior G-algebras is an easy
exercise which is left to the reader. O

It is well-known (and easy to check) that if an OG-module M is a
direct sum of O-submodules M = L1®...® L, andif G permutes transi-
tively the submodules L; , then M 2 Ind$ (L;) where H is the stabilizer
of Ly . The analogous property for interior algebras is the following.
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(16.6) PROPOSITION. Let A be an interior G-algebra and let H be a
subgroup of G . Assume that there exists an idempotent i € A” such that
14 =1t5(i) and i% =0 for all g € G — H . Then there is an isomorphism
of interior G-algebras

f:nd%(idi) =5 A, by~ zby  (z,ye G, beili).

Proof. 1t is clear that f is an O-linear map which is well-defined.
The assumptions imply that f is a homomorphism of interior G-algebras.
Indeed let a =2 ®b®y and o' =2’ @V ®y' belong to Ind% (iAi). By
definition of the product in Ind% (iAi), we have

n_ Jax-boyd Wy ifya’ € H,
f(a“)_{o if ya' ¢ H.

On the other hand f(a)f(a’) =z -b-yx’ -V -y’ , so we have to show that
this is zero if yx’ ¢ H . But since ¢ v*’i = () by assumption, we have

beyx' b =bi-yx’ b =bi ¥i-yz b =0

as required. This proves that f is a homomorphism of O-algebras. More-
over it is clear that f is a homomorphism of interior G-algebras.
The following argument for a € A shows the surjectivity of f:

a=1-a-1=t50)at$(i) = Z r-i-xtacy-ioyt
z,y€(G/H]

:f( Z x®i~w_1-a-y~i®y_1).

z,y€[G/ H]

To prove the injectivity of f, let EI’yE[G/H] T®b,, @y ! € Ker(f),
where b,, € iAi. Multiply the image of this element by i -2z~ on the
left and ¢ -4 on the right, where z,¢ € [G/H]. By the argument already
used above, we have i-27'2-i=0 and i-y 't-i=0 unless z 'z € H

and y~'t € H,thatis, z =2 and t =y. Thus we obtain

0= > iz lweibpyi-y toi=i%b,, 0% =b.,.
©,y€[G/H)

This shows the injectivity of f and completes the proof. O
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We now consider homomorphisms and exomorphisms. If f: A — B
is a homomorphism of interior H-algebras, it is easy to check that the
O-linear map

md%(f) : md%(A) — Id%(B), z®@a®@y—z® fla)®y

is well-defined and is a homomorphism of interior G-algebras. If f and f’
belong to the same exomorphism of interior H-algebras F : A — B, then
there exists b € (BH)* such that f’(a) = bf(a)b™! for all a € A. Let
C =2 eiq/mrT®b® 21 € Ind%(B), which is clearly invertible (with
inverse ¢! =3 g/ r @b @a!). We have

IndG(f)(z@a®y) =2 @bf(a)b' @y =cz® f(a)®y)c*
= c(Indg(f)(a: ®a® y))ci1

by an easy computation. Then either by using Proposition 12.1 (applied
to the restriction to the trivial subgroup) or by showing directly that
¢ is G-invariant (which is elementary), one deduces that Ind$(f) and
Ind%(f’) belong to the same exomorphism of interior G-algebras. This
induced exomorphism will be written Ind%(F) .

Consider now the homomorphism of interior H-algebras
d$% B — Res$Ind%(B), b—10b®1.

Restricted to the trivial subgroup (that is, viewed as a homomorphism of
O-algebras), dg maps B onto the top left corner of the matrix algebra
Res® Ind% (B) = MG.|(B) (see Lemma 16.1). Thus df is injective
and its image is i Ind§(B)i where i = 1® 15 ® 1. It follows that the
exomorphism D$ containing d$ is an embedding of interior H-algebras.
It is called the canonical embedding of B into its induced algebra. When
we need to emphasize the dependence on B, we write DG (B) = D§ and
d%(B) = dS .

As local pointed groups play a crucial role in the whole theory (in
particular in the defect theory), it is important to know what they are on
an induced algebra Indg (B) . The following result answers this question
and shows that the local pointed groups on Ind%(B) always come from B
up to conjugation.
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(16.7) PROPOSITION. Let H be a subgroup of G, let B be an interior
H-algebra, and let D§ : B — Res$ Ind% (B) be the canonical embedding.
For every local pointed group P, on Indg (B), there exists g € G such
that 9(P,) is in the image of D% . In particular 9P < H .

Proof. Let m, : Ind%(B)” — S() be the canonical surjection onto
the multiplicity algebra of ~. Since t%(1 ® 1 ® 1) is the unity element
of Ind%(B), we have

lsqy =y r8t5(10 1@ 1) = Y mythrrpha(9®1p@g7")
ge[P\G/H]

by the Mackey decomposition formula 11.3. Since < is local, we have
Ker(brp) C Ker(m,), and so 7y t5 ;=0 unless P < 9H. It follows
that there exists g € G such that P < 90 and 7, T;H(g R1p®g 1) #£0.
Conjugating by h = g~ !, we get "P < H and T( hy) riIP(l ®R1p®1)#0.
This means that some idempotent i € "y appears in a primitive decom-
position of rffp(l ®1p ®1), or in other words

i=(1®1p®1)i(lelp®l).

Therefore i is in the image of the map d% , so that "(P,) is in the image
of DG . O

Exercises
(16.1) Complete the proof of Proposition 16.3.
(16.2) Complete the proof of Proposition 16.5.

(16.3) Prove the analogue of 16.5 and 16.6 for the restriction and induction
of OG-lattices and O H-lattices (either directly or by deducing the result
from 16.5 and 16.6, using Lemma 10.7).

(16.4) Let H be a subgroup of G and let M* be the dual lattice of an
OH-lattice M . Prove that Ind$(M*) 2 Ind%(M)* .
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(16.5) Let H be a subgroup of G, let M be an OG-lattice, and let N
be an O H-lattice.
(a) Prove the Frobenius reciprocity isomorphisms:

Homog (Ind% (N), M) = Home g (N, Res$ (M),
Homoe (M, Ind$ (N)) = Home g (Res$ (M), N) .

[Hint: The first one follows from the definition of induction and the
second one can be deduced from the first by duality, using the previous
exercise.]

(b) Prove that the Frobenius reciprocity isomorphisms are natural (in the
sense of category theory) with respect to OG-linear maps M — M’
as well as with respect to OH-linear maps N — N'.

Notes on Section 16

Induction of interior G-algebras has been introduced by Puig [1981]. We
have also followed Puig [1984].
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§17 INDUCTION AND RELATIVE PROJECTIVITY

We show in this section how, for interior G-algebras, relative projectivity
can be expressed in terms of induced algebras. We prove one main theorem,
working with an arbitrary idempotent j. The first application is of a global
nature and follows by taking j7 = 1,4 . It implies Higman’s criterion for the
relative projectivity of modules. The second application follows by taking
for j a primitive idempotent and gives an interpretation of the relation pr
between pointed groups in terms of induced algebras.
We first establish the following general result.

(17.1) THEOREM. Let A be an interior G-algebra, let H be subgroup
of G, and let j be an idempotent of A" . Let & : ]Aj — Res%(A)
be the embeddmg contauung the inclusion e: jAj — ResH(A) and let
DG jAj — ReSH IndH (jAj) be the canonical embedding associated with
the interior H-algebra jAj . The following conditions are equivalent.

(a) There exist a/,a” € A™ such that 14 = t%(a’ja").

(b) There exists an embedding F : A — Ind% (jAj) such that the follow-

ing diagram of exomorphisms commutes.

G
jAj 2R Res@ IndS (jAj)
SJ/ AGEH

Res$ (A)

If moreover these conditions are satisfied, then the embedding F is unique.

Proof. (b) = (a). Let f € F. By the commutativity of the diagram
in (b), f(j) is conjugate to 1 ® j ® 1 = d%(j) (here d$ € D% is the
canonical homomorphism). Therefore there exists ¢ € Ind% (jAj)" such
that 1®j®1=cf(j)ct. We have

lnaggay = », *@j@z ' =tflejel) =tfcf(j)e).
z€[G/H)

Multiplying on both sides by f(14) and using the fact that f(14) is fixed
under G, it follows that

FOa) =t5(FQa)efG)e f(1a) =5 (FQa)ef (1) FG)fQa)e f(1a))

Since F is an embedding, we can write f(14)cf(14) = f(a’) for a uniquely
determined element o’ € AX and similarly f(14)c™1f(14) = f(a”) where
"€ AH . Thus we obtain

FLa) = tG (F(d) f() F(d") = t5(f(d'ja")) = f(tG(a'ja"))
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and therefore 14 = t%(a’ja"), proving (a).
(a) = (b). We have 14 = t%(a’ja") by assumption and we define

f:A— Ind%(jAj), fla) = Z r®jdxz Vaydjoyt.
z,y€[G/H]

It is clear that f is O-linear. If a,b € A, we write

f(b) = Z 2@ ja" -z L otdj @t !
z,t€[G/H]

and we have

fla)f(b) = Z r®ja" -z a ( Z ya'ja"y ) btdjet!

z,te[G/H] y€(G/H]

= f(ab)

since the inner sum is equal to t%(a’ja”) = 14. If now g € G, then for
each = € [G/H], write g~'x = 2'h, for some 2’ € [G/H] and h, € H
(so that x +— 2’ is a permutation of [G/H]). For a € A, we obtain

flga)= > zojda 'gaydjoy

z,y€[G/H]

= > glgre)®id (g e) haydjoyt
z,y€[G/ H]

= Y g'h.@ja" M (@) ey i@y
z,y€[G/H]

= Y. grejd @) taeydjoyt
a’y€e[G/H]

= g-f(a)

because ja’-h;' = h;'-ja” (since ja” € AM) and then h;! cancels

with h; . This completes the proof that f is a homomorphism of interior
G-algebras. We define F to be the exomorphism containing f .

We now show the commutativity of the diagram in the statement. Re-
call that e: jAj — Resg(A) denotes the inclusion. Writing for simplicity
B = Res% Ind% (jAj) , we have to prove that the map Res$(f)e : jAj — B
belongs to the same exomorphism as the canonical map

d% :jAj — B, d%@)=10ae®1.
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Consider
Z r®ja’z7j®1 and b= Z 1®jydjy !
z€[G/H)| y€[G/H]

which are both easily seen to belong to B . We have f(a) = b/ (1®a®1)b”
for all a € jAj (using a = jaj) and in particular f(j) = b'b”. On the
other hand

VY = Y l@jadjlja et @l =1t (dja")jel = 10je1.
z€[G/H]

By Exercise 3.2, the two idempotents f(j) and i =1® j® 1 of B¥ are
conjugate: f(j) = % where u € (BH)*.

We claim that the element b = u='b' + (1g — i) is invertible in B
with inverse b= = bv"u+ (15 —i) . Indeed we have b'i =’ and ib" =b",
so that ¥ (1p —i) =0 and (1 —)b” = 0. Therefore

(W™ + (g —9) (V'u+ (1p —i)) =u ' D'V"u+ (1 — 1)

=u" ' f(ju+ (1p i)
—i+lp—i=1p.

By Exercise 3.3, we also have (b"u+ (1p—1i)) (u™'0'+ (1 —i)) = 1p and
this completes the proof of the claim. It follows that ubi = b'i = V' and
bty =it =" .

Now for all a € jAj, we have

fla)=V1®@aex )V =ubil®a®1)ib 'u! =ub(l®@a® )b~ u™?t,

because i(1®a®1)i=1®a®1. Thus f(a)= "Yd%(a)), and since both
u and b belong to (BY)* | we obtain that Res%(f)e and d% belong to
the same exomorphism, as required.

Finally we have to prove that F is an embedding. Note first that
since 14 =} ciq/m “a’ja”) we have in particular A = AjA (because
9j = g-j-g71 € AjA). By Theorem 9.9, jAj and A have the same num-
ber of points. But by Lemma 16.1, there is an isomorphism of O-algebras
md$ (jAj) = M,(jAj) (where n = |G : J; ) and M, (jAj) is Morita
equivalent to jAj. Consequently A and Ind(jAj) have the same num-
ber of points. Thus Proposition 12.3 apphes (since we are dealing with
interior G-algebras) and asserts that Res%(F) is an embedding (because
Res% (F)E = DG is an embedding). This obviously means that F is an
embedding.

In order to establish the additional statement, we note that, by Propo-
sition 12.3 again, the equation Res$ G (F)E = DG determines umquely the
embedding Res%(F). By Proposition 12.1 the uniqueness of Res% (F)
implies the uniqueness of F. O
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We now prove the global result expressing relative projectivity in terms
of induced algebras. Recall that a G-algebra A is projective relative to a
subgroup H if the relative trace map t$ : A% — A% is surjective. This
is equivalent to requiring that 14 € A% .

(17.2) THEOREM. Let A be an interior G-algebra and let H be a sub-

group of G'. Denote by D% : Res§(A) — Res§ Ind%, Res$(A) the canon-

ical embedding associated with the interior H-algebra Res%(A). The

following conditions are equivalent.

(a) A is projective relative to H .

(b) There exists an exomorphism F : A — Ind$ Res%(A) such that
Res$ (F) = D .

(¢) There exists an embedding € : A — Ind$(B) where B is some
interior H-algebra.

Moreover, if these conditions are satisfied, the exomorphism F is an em-

bedding and is unique.

Proof. Tt is clear that (a) implies (b), by Theorem 17.1 applied with
j=14 (and jAj = Res%(A)).

If (b) holds, then F is necessarily an embedding because D% is an
embedding. Thus (c) is satisfied with B = Res$(A). Moreover F is
unique by Proposition 12.1, proving the additional statement of the theo-
rem.

Assume now that (c) holds and let e € £. Since we cannot directly
apply the previous theorem, we have to produce a similar argument. As
e(la) is fixed under G, we have

e(14) = e(1a) Irag gy e(1a) = t5(e(1a)(1 @ 15 @ 1)e(14)) -

Since £ is an embedding, we can write e(14)(1®1p®1)e(14) = e(a) for
a uniquely determined a € A7 . Then 1, = tfl(a) , because this relation
holds after applying e. This proves (a) and completes the proof of the
theorem. O

In the special case of OG-modules, Theorem 17.2 is known as Hig-
man’s criterion. We state the result in full.

(17.3) COROLLARY (Higman’s criterion). Let M be an OG-lattice

and let H be a subgroup of G . The following conditions are equivalent.

(a) The G-algebra Endp(M) is projective relative to H .

(b) M is isomorphic to a direct summand of Ind$, Res$ (M) .

(¢) M is isomorphic to a direct summand of Ind% (L) where L is some
OH -lattice.
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Proof. We consider the interior G-algebra A = Endp(M) and we
apply Theorem 17.2. By Example 16.4, condition (b) in that theorem
(together with the extra statement that F is an embedding) says that
there is an embedding

Endo (M) — Ind$ (Ende (Res$ (M)) = Endo (Ind$ Res$ (M) .

By Proposition 12.5, this is equivalent to condition (b) of the corollary.
A similar argument shows that condition (¢) in Theorem 17.2 applied to
B = Endp(L) yields condition (c) of the corollary. The result follows
immediately from these observations. O

We shall see below (Proposition 17.7) that Higman’s criterion actually
holds for arbitrary OG-modules. For an OG-module M , the usual defini-
tion of the projectivity relative to H is the third statement of the corollary,
namely that M is isomorphic to a direct summand of Indg(L) for some
OH-module L. Thus Higman’s criterion asserts that M is projective rela-
tive to H as an OG-module if and only if Endp (M) is projective relative
to H as a G-algebra. As a useful special case, we consider now the case
H = 1. Recall that a G-algebra A is called projective if it is projective
relative to 1. The next result justifies this terminology.

(17.4) COROLLARY. An OG-lattice M is a projective OG-module if
and only if the G-algebra Endp(M) is projective.

Proof. By Corollary 17.3 (applied with H = 1), the G-algebra
Endp (M) is projective if and only if M is isomorphic to a direct summand
of Ind{(L) for some O-lattice L. Thus it suffices to prove that Ind$ (L)
is a free OG-module. But this is clear since Ind¥(L) = OG @, L and L
is free as an O-module. O

We warn the reader that this corollary does not hold for arbitrary
OG-modules, simply because arbitrary O-modules are no longer projective
(or equivalently free) over O.

The condition of projectivity for (G-algebras is a condition on the
relative trace map. The use of this map for describing the projectivity of
modules (Corollary 17.4) finds its origin in the averaging argument which
appears in the classical proof of Maschke’s theorem. We recover this result
of course, which we extend slightly as follows.
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(17.5) THEOREM (Maschke). The following conditions are equivalent.
(a) p does not divide |G| .

(b) The group algebra OG is a projective G-algebra.

(¢) Every OG-lattice is projective.

(d) The trivial OG-lattice O is projective.

(e) The group algebra OG is O-semi-simple.

Proof. (a) = (b). The assumption implies that |G|-1x # 0, so
that |G|-1) is invertible in k. It follows that |G|-1p is invertible in O.
Therefore the relative trace map in OG satisfies

t7 (G171 = (161~ 1HE (1) = (I6[1) 1 (G11) = 1.

Thus (OG)§ contains 1.

(b) = (c). Let M be an OG-lattice and A = Endp(M). There is
a unique unitary homomorphism of interior G-algebras ¢ : OG — A. By
assumption there exists a € OG such that t¥(a) = log. Applying ¢ to
this equation, it follows that t¥(¢(a)) = 14 and therefore the G-algebra A
is projective. By Corollary 17.4, M is a projective OG-module.

(¢) = (d). Trivial.

(d) = (a). Consider the augmentation map ¢ : OG — O map-
ping every basis element g € G to 1. This is OG-linear and since
O is a projective OG-module by assumption, there exists an (OG-linear
map o : 0O — OG such that ec = id. Let a = o(1). Then we have
ga=o0(g-1l) =0(l) =a because G acts trivially on O. It follows that if
we write a =3 .o Agg with A\g € O, then all coefficients Ay must be
equal, so that a = )\decg. Thus

l=co(l) =e(a) =X =£(g) = NG| 1,

geG

proving that |G|-1 is invertible in O . Therefore |G|-1j is also invertible
in k and so the characteristic p cannot divide |G].

(a) & (e). Since (a) does not make any reference to the ground
ring O, we can apply the equivalence between (a) and (c) (which we have
just proved) in the situation where k is the ground ring. Thus (a) is
equivalent to the projectivity of all kG-modules, which in turn is equivalent
to the semi-simplicity of the algebra kG , because the projectivity of simple
modules forces the semi-simplicity of all modules. Finally by Exercise 7.6,
the semi-simplicity of kG is equivalent to the O-semi-simplicity of OG . O

When p does not divide |G|, it is easy to describe all OG-lattices.
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(17.6) COROLLARY. Suppose that p does not divide |G| .

(a) For every simple kG-module V(«) (corresponding to a € P(OG) ),
there exists an OG-lattice L(a), unique up to isomorphism, such that
L(a)/pL(a) 2 V(a). Moreover L(«) is projective indecomposable.

(b) Every indecomposable OG-lattice is isomorphic to L(«) for some
a € P(OG).

Proof. By Theorem 17.5, every OG-lattice is projective, and so is a
direct sum of indecomposable projective OG-lattices. The result follows
from the bijection between Proj(OG) and Irr(OG) (Proposition 5.1). In-
deed the Jacobson radical of OG is pOG because OG/pOG = kG is
semi-simple. Thus an indecomposable projective OG-lattice L maps by
reduction modulo p to a simple kG-module L/pL .

Alternatively, OG is O-semi-simple by Theorem 17.5, and one can
apply Lemma 7.1 to each simple factor of OG. O

Higman’s criterion (Corollaries 17.3 and 17.4) also holds for modules
over a twisted group algebra O;G, but one needs some additional facts.

The first approach would be to use the concept of interior é—algebra al-
ready mentioned in Example 10.4 and to define induction for such interior
structures. The main results on induction remain valid in this more general
context. Specializing to the case of modules, one obtains the two corollaries
above for twisted group algebras. But for simplicity we give a different and
direct approach, which is module theoretic. In the special case of ordinary
group algebras, this provides a new proof of Corollary 17.3, which in fact
holds for arbitrary (finitely generated) OG-modules. The above proof does
not apply for arbitrary OG-modules because of the use of Lemma 10.7.
Let OyG be a twisted group algebra corresponding to a central exten-
sion G of G by O*. Recall that for any subgroup H of G, the inverse
image of H in G isa subgroup H which is a_central extensmn of H
by O* . Moreover the twisted group algebra OﬁH is clearly a subalgebra

of OuG In particular for H = 1, we obtain the subalgebra O . For any
(’)ﬁG -module M , we use the notation ReSH(M) as in Example 13.5. If NV
is an OuH module, we define

md%(N) = 0,G Do, N.

Let [G/H] be a set of coset representatives of H in G (in bijection with
a set [G/H] of coset representatives of H in G, via the canonical map

G — G). Then Oﬂ@ is a free module over Ouﬁ with basis [@/ﬁ] , and

therefore
mdf(N)= € zeN.
2€[G/H]
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We also note that Ind$(N) = Ind%(N ), using the ordinary definition of

induction from the subgroup H (which has finite index in G ). Now we
can state Higman’s criterion for modules over a twisted group algebra.

(17.7) PROPOSITION (Higman’s criterion). Let M be an Oﬁ@—module

and let H be a subgroup of G . The following conditions are equivalent.

(a) The G-algebra Endo(M) is projective relative to H .

(b) M is isomorphic to a direct summand of Ind$ Res$ (M) .

(¢c) M is isomorphic to a direct summand of Ind$;(N) where N is some
Oy H-module.

Proof. (a) = (b). Consider the homomorphism of Oﬁ@—modules
7 : Ind$ Res$ (M) — M, TRV T,

We can assume that the transversal [G/H] contains 1. Then 7 has an
Oy H-linear section s defined by s(v) = 1®wv. By assumption there exists
a € Endp(M) such that t$(a) = idy . We construct a new section of 7
as follows:

o : M — Ind% Res$ (M), v Z z-sa(z™ ).
ve[G/H]

Since 7 commutes with the action of G , we have

z€[G/H] z€[G/H]

so that o is indeed a section of 7. The proof that ¢ commutes with the
action of G is elementary (and is the same as the proof that the image
of t% is contained in the set of G-fixed elements). Thus 7 has a section o
which is Oﬁ@—linear, and this proves that M is isomorphic (via o) to a
direct summand of Ind% Res$ (M) .

(b) = (c). This is trivial.

(¢) = (a). By assumption there exists an idempotent

i € End,, &(Idf(N)) = Endo (IndF (N))¢

such that M 2 i Ind$(N) . Thus Endep (M) =i Endp(Ind$(N))i and we
have to show that i belongs to the image of the trace map t% . It suffices
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to prove that the whole G-algebra Ende(Ind$(N)) is projective relative
to H . Consider the decomposition

mdG(N)= @ zoN
and let a € Endp(Ind%(N)) be the projection onto 1® N . Then for
y € [G/H], we have

tG@yev)= > z-a@'-@yov)= Y z-azyev)
z€[G/H] v€[G/H]
=y-(1®v)=y®v,
so that t%(a) = idrmag () > proving the relative projectivity. 0

As before the special case H = 1 is particularly important. The
statement only holds for lattices.

(17.8) COROLLARY. An Oﬁ@—lattjce M is projective if and only if the
G-algebra Endp (M) is projective.

Proof. The argument is the same as that of Corollary 17.4. Indeed if L
is a free O-module, then Ind¥ (L) = (’)ﬁG ®p L is a free (’)ﬁG—module m|

We now turn to the second application of Theorem 17.1, a result con-
necting induced algebras and relative projectivity of pointed groups. We
first fix the notation. Let G, and Hg be pointed groups on an interior
G-algebra A and assume that G, > Hg. By Proposition 13.6, there exists
a unique embedding Fg : Ag — Resg(Aa) which expresses the contain-
ment Hy < G, . Let also D% : Ag — Res§ Ind%(Ag) be the canonical
embedding associated with the interior H-algebra Ag .

(17.9) THEOREM. Let G, and Hg be pointed groups on an interior

G-algebra A. Assume that Go > Hpg. The following conditions are

equivalent.

(a) GoprHg.

(b) There exists an embedding F : A, — Ind% (Ag) such that the follow-
ing diagram of exomorphisms commutes (using the notation above).

e}
A[g VDE% Resg Indg (A[g)
‘Fgl Aesg(}')

Resfl (An)
If this condition is satisfied, the embedding F is unique.
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Proof. Assume first that the embedding F exists. We have to prove
that G pr Hg in the interior G-algebra A. We use the identification of
pointed groups given by Proposition 15.1. Since there is an embedding
Fo i Aq — A, it suffices to prove that G, pr Hg in A, . We use here the
fact that the pointed group Hpg is the image of a pointed group on A, ,
because G, > Hg by assumption (Proposition 15.2). Now there is also
an embedding F : A, — Indg(Aﬂ) , so we have to prove that G, pr Hg
in Ind%(Ag), where o’ and ' denote the images of the points o and j
under F . By the commutativity of the diagram of exomorphisms in the
statement, the point S’, being the image of 8 via the composite of Fg
and Resg (F), is also the image of S under the exomorphism Dg . But
the point 3 on Apg is just the singleton 14, and its image 3’ under DE is
the point of Indg(Aﬁ)H containing i = 1®14,®1 (by definition of DF ).
Thus we have to prove that o C t§(B7iB") where B =Ind$(As). By
the construction of induced algebras, we have

lp= Y g®la,@g " =t5(i).
g€(G/H]

Therefore the ideal t%(BHiBH) contains 1p and so is the whole of B .
Thus o (like any other point of BY ) is contained in this ideal, as required.

Now we assume that G, pr Hg and we have to construct F . Since
Hp is the image of a pointed group on A, (because G, > Hpg ), only A,
comes into play (together with the embedded algebra Ag). Thus we can
assume that A = A, , so that a = {14} and A® is a local ring. We can
choose Ag = jAj where j € 8 and then take F§ to be the exomorphism
containing the inclusion f§ : jAj — A. By Lemma 14.1, our hypothesis
that G, pr Hg is equivalent to the existence of a’,a” € Af such that
14 = t%(a’ja"). Thus we are exactly in the situation of Theorem 17.1.
It follows that there exists an embedding F : A — Ind%(Ag) such that
Res% (F )Fg = D$ | and that this embedding is unique. O

We remark that in Theorem 17.1 and Theorem 17.9 it is in general not
possible to choose representatives of the exomorphisms in such a way that
one gets a commutative diagram of homomorphisms (Exercise 17.1). This
is one of the key reasons for introducing exomorphisms.

(17.10) COROLLARY. Let A be an interior G-algebra and let G, and
Hpg be pointed groups on A such that G, > Hg and G,pr Hg. Then
the O-algebras A, and Ag are Morita equivalent.
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Proof. The restriction Resfl (F§) yields an embedding of O-algebras

Ag = A, . By the theorem, there exists an embedding F : A, — Indg(Ag)
and its restriction to the trivial subgroup is an embedding A, — M, (Ag)
where n = |G:H| (by Lemma 16.1). Therefore by Lemma 8.9, A, and Ag
have the same number of points and by Theorem 9.9 they are Morita equiv-
alent. O

Theorem 17.9 gives a characterization of the relation pr under the
assumption that the other relation > holds. But the relation pr may
hold when > does not hold (Exercise 17.5), and one may ask for a direct
interpretation of the relation pr in terms of induced algebras. There is
a general answer to this question, but in this text we only treat the case
of OG-modules, and this provides an improvement of Theorem 17.9 in
that case. Although it is actually not a restriction to work with a pointed
group G, corresponding to the whole group G, we state the result for an
arbitrary pair of pointed groups.

(17.11) PROPOSITION. Let A = Endp(M) be the interior algebra
associated with an OG-module M | let H, be a pointed group on A cor-
responding to an indecomposable direct summand M, of Resg (M), and
let K3 be a pointed group on A corresponding to an indecomposable di-
rect summand Mg of Res% (M) . The following conditions are equivalent.
(a) HoprKg.

(b) M, is isomorphic to a direct summand of Ind%(Mj) .

Proof. As we cannot apply Theorem 17.9, we need to use another argu-
ment, which is module-theoretic (hence applies to arbitrary OG-modules
rather than OG-lattices). We choose i € « and M, = iM , and similarly
j€B and Mg=jM.

Assume that (a) holds, that is, i € t£(AKjAK). By Lemma 14.1,
there exist a,b € AX such that tZ(ajb) = i. The OK-linear endomor-
phism ia restricts to an OK-linear map

M — iM v = ia(v),
and this induces an O H-linear map
m:IndE(GM) — iM,  h®ve— hialv) =iha(v).

It is easy to see that the following map commutes with the action of H ,
hence is O H-linear:

oM — Indg(jM), v Z h®jb'h71(v)-
he[H/K]
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Now o is a section of 7w because if v € iM

mo(v) = Z i-h-ajb-h~t(v) = it (ajb)(v) = i(v) = v.
h€e[H/K]

Therefore iM is isomorphic (via ¢ ) to a direct summand of Ind%(jM) .

Conversely assume now that M is isomorphic to a direct summand
of Indf(jM). We consider M only with its ©H-module structure and
for simplicity of notation we write M instead of Res% (M) and A in-
stead of Res$%(A). Let L = Ind¥(jM) and consider the OH-module
X = M @ L and its endomorphism algebra B = Endp(X). Let e € BY
be the projection onto M and let f € BH be the projection onto L, so
that idx = e+ f is an orthogonal decomposition in B with M = eX
and L = fX . Then by Lemma 12.4 there is an isomorphism of H-algebras
eBe 2 A = Endp(M) and we identify A with eBe . In particular we have
i,7 € eBe so that i = ete and j = eje.

Let j/ € BX be the projection onto the direct summand jM of
Res mdf (jM) = Res? (L), so that j/ = fj'f. Let i/ € BY be the
projection onto the direct summand of L isomorphic to ¢M , which exists
by assumption. We have i’ = fi’f . By Corollary 4.5, i = ci’c™! for some
c € BF and j = dj’d™' for some d € BX . The identity map id; of
the induced module L = Ind% (jM) is the relative trace of the projection
onto jM (see Example 16.4). Thus t(j’) is the identity on L and is
zero on M , that is, ti(j’) = f. In particular i’ = i'f = tf(i'j') and
therefore

i=ci'c b =tl(ci'j'cY) = ti(ci’'dVjde™Y).

But as ¢ = eie and j = eje, it follows that
i = eie = ti(eci’d tejedc ™ e) € tH(AK jAK)

because eBe = A . This shows that H, pr Kg and completes the proof. O
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Exercises

(17.1) Assume for simplicity that A is a primitive interior G-algebra
and let a = {14}. In the situation of Theorem 17.9, prove that one can
choose representatives of the exomorphisms in such a way that one gets a
commutative diagram of homomorphisms if and only if there exists j € 3
such that 14 = t%(j) and j9 =0 for all g € G — H. In this situation
A is isomorphic to Ind$(Ag) .

(17.2) The purpose of this exercise is to prove a result of Higman: the
number of isomorphism classes of indecomposable kG-modules is finite if
and only if a Sylow p-subgroup of G is cyclic.

(a) Show that any kG-module is isomorphic to a direct summand of an
induced module Indg(M ), where P is a Sylow p-subgroup of G.
Deduce that the number of isomorphism classes of indecomposable
kG-modules is finite if and only if the number of isomorphism classes
of indecomposable kP-modules is finite, using the Krull-Schmidt the-
orem 4.4.

(b) Let P be a cyclic group of order p™ generated by h. Prove that
kP = E[t]/(t*") where t is an indeterminate, mapping to h—1 in kP .
Show that the modules k[t]/(t") (for 1 < r < p™) form a complete
list of indecomposable kP-modules up to isomorphism.

(¢c) Let P be a non-cyclic p-group. Show that some quotient of P is
isomorphic to a direct product of two cyclic groups of order p.

(d) Let P be the direct product of two cyclic groups of order p, generated
by z and y respectively. Show that the following modules M} (for
k > 1) form an infinite sequence of pairwise non-isomorphic indecom-
posable kP-modules. The module M is 2k-dimensional with basis
(v1,..., Vg, w1, ..., wg). The action of P is defined by (z—1)-w; =0,
(y—1) -w;, =0, (x—1) v, = w; (for 1 < i < k) and finally
(y—1) v, =wjpq (for 1<i<k—1)and (y—1) -v;=0.

(e) Complete the proof of Higman’s result.

(17.3) Let G be a central extension of G by k* and let kﬁ@ be the
corresponding twisted group algebra. Prove that if p does not divide |G|,
then k‘ﬁé is semi-simple. [Hint: Use the method of Theorem 17.5. The
converse statement will be proved in Exercise 21.3.]

(17.4) Let M be an OG-lattice and assume that M is projective relative
to a subgroup H . Prove that the OG-lattices M ®, N, Homp (M, N),
and Home (N, M) are projective relative to H , for any OG-lattice N . In
particular these OG-lattices are projective if M is projective. [Hint: Use
Lemma 14.3. Remember also the isomorphisms Homp (M, N) 2 M*®, N
and Endp(M*) =2 Endp(M)°P ]
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(17.5) Let G be the symmetric group on 3 letters, let P be a subgroup

of order 2, and take p=2. Let M =Ind%(k) and A = Endy(M).

(a) Prove that M = k@ L where L is a projective kG-module. [Hint: If
a is a generator of the normal subgroup of order 3, then {1,a,a?} are
coset representatives of G/P . Prove that (1+a+a?)® 1) generates
a trivial submodule of Ind%(k) , and that { (14+a)®1x, (1+a2)®1; }
is a basis of a 2-dimensional kG-submodule L of Ind$%(k), which is
free on restriction to P .]

(b) Let a be the point of A® corresponding to the direct summand L,
and let + be the point of A" corresponding to the trivial direct
summand k. Prove that G, pr P, , but G, 2P, .

(17.6) Let K be a field of characteristic not dividing |G| (for instance

characteristic zero).

(a) Define the notion of G-algebra over K and prove that any G-algebra
over K is projective.

(b) Prove that any (finitely generated) KG-module is projective. [Hint:
Follow either the method of Corollaries 17.3 and 17.4, or that of Propo-
sition 17.7 and Corollary 17.8.]

(c) Prove that KG is a semi-simple K-algebra (Maschke’s theorem).

Notes on Section 17

Higman’s criterion goes back to Gaschiitz [1952] as well as Higman [1954].
The generalization to interior G-algebras is due to Puig [1981]. The result
of Exercise 17.2 is due to Higman [1954]. For arbitrary interior G-algebras,
there is a characterization of the relation pr in terms of induced algebras
which generalizes Proposition 17.11. This appears in Barker [1994c].
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§18 DEFECT THEORY

This section is devoted to the defect theory of pointed groups, which is a
reduction to the case of p-groups and local points. The results are first
developed for arbitrary G-algebras. At the end of the section, we consider
the case of interior algebras, where a much finer result holds, involving the
induction procedure introduced in Section 16. We shall extend the theory
in the next section, where we discuss a reduction to the case of projective
modules.

Let A be a G-algebra and let H, be a pointed group on A. We
define a defect pointed group of H, , or simply a defect of H, , to be a
pointed group P, such that H, > P,, H,pr P, , and P, is local. Note
that by Exercises 13.4 and 14.1, any H-conjugate of P, is also a defect
of H, . It is not clear from this definition that a defect of H, exists. We
first prove this.

(18.1) LEMMA. Let H, be a pointed group on a G-algebra A. Then
a defect of H, exists.

Proof. Let P be a minimal subgroup such that o« C AE . Let i € «
and let J be a primitive decomposition of 7 (3) , that is, 7 (i) = Zjer i
Since i € AZ | we can write i = tX(a) for some a € AT | and we obtain

i=i*=tp(a)i=tp(arf (i) =tp (D) aj).
jeJ

It follows that i € Y., t3(A”jAF) and by Rosenberg’s lemma (Propo-
sition 4.9), there exists j such that i € t(AFjAF). This means that
H, pr P, where v is the point of A” containing j. Since j appears in a
decomposition of rH (i), we also have H, > P, . Finally, in order to prove
that P, is local, suppose that P, prQs for some pointed group @s. By
transitivity, we have H, pr Qs and in particular H, is projective relative
to @, thatis, a C Ag . By minimality of the choice of P, we deduce that
() = P. By Lemma 14.4, this shows that P, is local and completes the
proof that P, is a defect of H,. O

The next result is the crucial lemma.
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(18.2) LEMMA. Let A be a G-algebra and let H,, Kz and P, be
pointed groups on A . Assume that
(i) P, islocal and H, > P, ,
(ii)) HoprKg.
Then there exists h € H such that Kz > "(P,).

Proof. Let S(v) be the simple quotient of A" corresponding to v and
let 7, : AP — S(v) be the canonical map. Let i € a. Since H,prKg,
there exists a € AKBAK such that i = tfl(a). Now restrict to P and
apply m, . By the Mackey decomposition formula 11.3, we obtain

. h h
Ty rp (i) = Z Ty tgm R TPIrg n ha) = Z Ty rpt( ha)
he[P\H/K] he[P\H/K]
P<"K

because P, is local, so that Ker(my) 2 Ker(brp) (Lemma 14.4) and
Ty t§ = 0 for every proper subgroup X of P. On the other hand
since H, > P,, we have m,rH (i) # 0 (see Lemma 13.3), and it fol-
lows that there exists h € H such that P < "K and T, T;K(ha) #0.
But a € AXBAX and so m, T;K(hﬁ) # 0. This means exactly that
MKg) > P,. Thus Kz > " (P,) as required. O

We can now state the first main result of the defect theory. Note that
the words minimal and maximal always refer to the containment relation >
between pointed groups.

(18.3) THEOREM. Let H, be a pointed group on a G-algebra A .
(a) All defect pointed groups of H, are conjugate under H .
(b) The following conditions on a pointed group P, on A are equivalent.
(i) P, is a defect of H, .
(ii) P, is a minimal pointed group such that H, pr P, .
(iii) P, is a maximal pointed group such that P, islocal and H, > P, .
(iv) Hopr P, and brpri(a) #£0.
(v) P, islocal, H, > P, and H, Is projective relative to P .

Proof. We first prove the equivalences of part (b). Let Qs be a defect
of H,, which exists by Lemma 18.1. Many steps of the proof consist in
comparing P, with s, using Lemma 18.2.

(i) = (ii). Let R. be such that H,prR. and P, > R.. By
Lemma 18.2 (applied to H,, R. and P,), we have R. > "(P,) for
some h € H . This forces the equality P, = R. and proves the minimality
condition on P, .
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(i) = (iii). By Lemma 18.2 (applied to H,, P, and Qs ), we have
> h(Q(;) for some h € H and by minimality of P, , it follows that
= ™Qs). In particular P, is local and H, > P,. Let R. be a
pomted group such that R. islocal and H, > R. > P, . By Lemma 18.2
(applied to H,, P, and R.), we have P, > "(R.) for some h' € H.
This forces the equality P, = R. and proves the maximality condition

(iii) = (iv). By Lemma 18.2 (applied to H,, Qs and P, ), we have

for some h € H and by maximality of P, , it follows that
. In particular H, pr P, , proving the first statement. Since
7y is local, ¥ = brp(y) is a point of A(P) (see Lemma 14.5) and the
canonical morphism ., : A — S(v) is the composite of the morphisms
brp : AP — A(P) and 7= : A(P) — S(v). Since P, < H, , we have by
Lemma 13.3

e
I
=
O
>
— 2

0# 7, (ri (@) = my bre(rp (o)) -

Therefore brprf (a) # 0 as required.

(iv) = (v). By Lemma 18.2 (applied to H,, P, and Qs ), we have
P, > "Qs) for some h € H. Since brpri(a) # 0, there exists i € a and
a primitive idempotent j of AT such that j appears in a decomposition
of rH(i) and brp(j) # 0. Hence if £ denotes the point of AP contain-
ing j, wehave H, > P. and P. islocal. By Lemma 18.2 (applied to H, ,
Qs and P.), we obtain Qs > h/(Pe) for some h' € H. Combining this
with the other relation above, we necessarily have P, = "(Qs) = ().
Thus P, is a defect of H,, since any H-conjugate of Qs is a defect.
In particular P, satisfies (v).

(v) = (i). Since H, is projective relative to P, there exists a point &
such that H, pr P . By Lemma 18.2 (applied to H,, P. and P, ), there
exists h € H such that P. > "(P,) (and therefore h € Ny (P)). Conju-
gating by h~! the relation H, pr P., we obtain H, pr P, , as was to be
shown.

We have seen in the proof that any pointed group satisfying either
(i), (iii) or (iv) is H-conjugate to Qs . This shows that all pointed groups
satisfying the equivalent conditions are conjugate under H , proving (a). O

A very useful way to visualize the third equivalent condition in the
theorem is the following.

(18.4) COROLLARY. Let H, be a pointed group on a G-algebra A.
The partially ordered set of local pointed groups Qs such that Qs < H,
has a unique H-conjugacy class of maximal elements, consisting of the
defect pointed groups of H,, .
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We have already noticed that pointed groups are generalizations of
subgroups and that local pointed groups are generalizations of p-subgroups
(Exercise 14.2). Now defect pointed groups (that is, maximal local pointed
groups) are generalizations of Sylow p-subgroups and are all conjugate.
Note that Corollary 18.4 actually contains as a special case the fact that
all Sylow p-subgroups of a finite group are conjugate (Exercise 18.1).

If P, is a defect of H,, the subgroup P is called a defect group
of H, , and the point ~ is called a source point of H, . Thus all defect
groups of H, are H-conjugate, and for a fixed defect group P, all points
of AP which are source points of H, are conjugate under Ng(P).

If we localize with respect to the source point 7y, we obtain a primitive
P-algebra A, , called a source algebra of H, . An associated embedding
Fyi Ay — Resg(A) is unique up to a unique exo-isomorphism, but A,
alone (that is, without the embedding F,) is simply defined up to iso-
morphism. Thus, given a source point <y, a source algebra A, is unique
up to isomorphism. But for a fixed defect group P, a source point ~ is
only unique up to Ng(P)-conjugation, and for this reason the source al-
gebras are not unique up to isomorphism, but only up to conjugation: if
g € Ng(P), then Ay, = 9A,), the conjugate P-algebra. If g € Ng(Py),
then % =+ and 9A,) = A, ; but if g € Ng(P) — Ng(Py), then 9A,)
need not be isomorphic to A, . Of course 9(A,) is isomorphic to A, as
an (J-algebra, but the P-algebra structure may differ. Note that if A is
an interior G-algebra, then a source algebra is also an interior P-algebra.

By definition of a primitive G-algebra A, the unique point a = {14}
of AC is singled out and it is very convenient to assign to A itself the var-
ious invariants attached to G, . Thus if A is a primitive G-algebra, we
define a defect pointed group of A, a defect group of A, a source point
of A and a source algebra of A as being those of the corresponding
pointed group G, . In the special case where the primitive G-algebra
A =Endp (V) corresponds to an indecomposable OG-lattice V , a defect
group of A is also called a vertex of the module V. Moreover if P is
a vertex of V and if j € AP belongs to a source point of A, then the
indecomposable OP-lattice jV is called a source of V . For a fixed source
point, all sources of V' are isomorphic, because a different choice of j in
the source point yields an isomorphic O P-lattice.

If A is now an arbitrary G-algebra and « is a point of A“ | then we
can localize with respect to a and consider the above invariants for the
primitive G-algebra A, . If the pointed groups on A, are identified with
pointed groups on A (via the identification of Propositions 15.1 and 15.2),
then it is elementary to check that a defect pointed group of A, , a defect
group of A, , a source point of A, , and a source algebra of A, are
precisely those of the corresponding pointed group G, (Exercise 18.2).
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This allows us to say that a source algebra A, of G, is a source algebra
of the primitive G-algebra A, , and similarly for the other invariants.

Our next result shows that one can directly characterize defect groups
without introducing the corresponding source points.

(18.5) PROPOSITION. Let H, be a pointed group on a G-algebra A.
The following conditions on a subgroup P are equivalent.

(a) P is a defect group of H,, .

(b) P is a minimal subgroup such that H, is projective relative to P .
(c) P is a maximal subgroup such that P < H and brprH(a)#0.
(d) H, is projective relative to P and brprH(a) #0.

Proof. (a) < (b). Assume that (b) holds. Since H, is projective
relative to P, there exists v € P(AF) such that H, pr P,. Moreover
the minimality of P implies the minimality of P, with respect to this
property. Thus the property (ii) of Theorem 18.3 is satisfied and P, is a
defect pointed group of H, . This proves that (a) holds. One shows that
(a) implies (b) by reversing this argument.

(a) < (c). Assume that (c) holds and let j be a primitive idempotent
of A(P) appearing in the decomposition of brp r (i), where i € . Then
j belongs to a point 7 € P(A(P)), which lifts to a local point v € LP(AT)
(by Lemma 14.5). The canonical map m, : A” — S(y) onto the multi-
plicity algebra of v factorizes as the composite of brp : A” — A(P) and
7+ A(P) — S(v) . Therefore we obtain

7 (rf (@) = mrbrp(rf (@) # 0.

By Lemma 13.3, this shows that H, > P, . Conversely, reversing this
argument, we see that if there exists a local point v € LP(AF) such that
H, > P, , then brpri(a) # 0. Clearly the maximality of P with respect
to the property (c) is equivalent to the maximality of the local pointed
group P, with respect to the property H, > P, . This proves that (c)
holds if and only if there exists v satisfying condition (iii) of Theorem 18.3.
This completes the proof of the equivalence of (a) and (c).

(a) < (d). By definition, H, is projective relative to P if and
only if there exists v € P(AP) such that H,prP,. Thus we obtain
the condition (iv) in Theorem 18.3 and this shows the equivalence of (a)
and (d). O
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As a special case of the proposition, we obtain that a pointed group H,
is projective if and only if the trivial subgroup 1 is a defect group of H, .

The minimality of P with respect to a condition of relative projec-
tivity corresponds to the most common definition of a defect group (or of
a vertex in the case of an OG-module). But in fact it turns out that one
uses very often the characterization of defect groups and defect pointed
groups by a maximality condition (the third one in both the theorem and
the proposition). This remark applies for instance to the case of a primitive
G-algebra A, as follows.

(18.6) COROLLARY. Let A be a primitive G-algebra.

(a) A local pointed group on A is maximal local if and only if it is a defect
pointed group of A. In particular all maximal local pointed groups
on A are conjugate under G .

(b) Any maximal subgroup P such that A(P) # 0 is a defect group
of A.

Proof. (a) Let a = {14} be the unique point of AY. Then any
pointed group P, on A is contained in G, and the result follows from
property (iii) in Theorem 18.3.

(b) This follows from the observation that for a given subgroup @,
there is a local point Qs if and only if A(Q) # 0. Alternatively one can
use part (c) of Proposition 18.5. O

In Section 15 we have seen that an embedding induces an injective
map between pointed groups. We now mention that this map behaves well
with respect to defects.

(18.7) PROPOSITION. Let F : A — B be an embedding of G-algebras.
Let P, and H, be pointed groups on A and let P, and H, be their
images in B. Then P, is a defect of H, if and only if P, is a defect
of Ha/ .

Proof. P, is a defect of H, if and only if H, > P,, HyprP,,
and P, is local. By Proposition 15.1, each of these three properties is
invariant under the map PG(A) — PG(B) induced by F. The result
follows immediately. O

There is an important characterization of defect pointed groups which
uses the multiplicity algebra S(v) of P,. Recall that S(v) is endowed
with its canonical N (P, )-algebra structure.
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(18.8) PROPOSITION. Let A be a G-algebra, let H, and P, be
two pointed groups on A, and let 7, : A — S(y) be the canonical
homomorphism. Assume that P, is local and that H, > P,. Then P,

is a defect of H, if and only if . (rf(a)) C (S(’y))lﬁH(P”) .

Proof. Since P, islocal and H, > P, it follows from the definition
that P, is a defect of H, if and only if H,prP,, or in other words
a Cth(APyAP) . Now consider the homomorphism

H T
AF 2 AP T ()

We have o Z Ker(r,rH) because H, > P, (see Lemma 13.3). There-
fore by part (f) of Theorem 3.2 (applied to the surjective homomorphism
myrf A — Im(m, rf) and to the ideal t(AP~vAP) of A™), we have
a CtH(APyAF) if and only if

ry 7l (@) C my r (1 (AP AT)).

Now we are exactly in the situation of Proposition 14.7 and we deduce that
the latter inclusion holds if and only if 7., rH (a) C S('y)ivH(P”) . O

We now specialize to the case of an interior G-algebra A and give
another characterization of defect pointed groups. For simplicity we only
consider a pointed group G, corresponding to the whole group G . This is
no real restriction because for an arbitrary pointed group H, , one can al-
ways work with the interior H-algebra Res%(A) in which the whole defect
theory of H, is taking place. We fix the following notation. Let G, be a
pointed group on an interior G-algebra A, let P, be a pointed group on A
such that Go > P, , and let FJ: A, — Res$(Aq,) be the corresponding

embedding (Proposition 13.6). Also, let D§ : A, — Res& Ind%(A,) be the
canonical embedding.

(18.9) PROPOSITION. Let A be an interior G-algebra and let G,
and P, be pointed groups on A such that Go > P,. Then P, is a
defect of G, if and only if the following two conditions hold (with the
notation above):

(a) P, islocal.

(b) There exists an embedding F : A, — Ind%(A,) of interior G-algebras

such that Res$(F) Fy = D§.
If (b) is satisfied, then F is unique.

Proof. By Theorem 17.9, we have G4 pr P, if and only if condition (b)
holds. O
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Instead of considering conditions (a) and (b), one can also character-
ize a defect pointed group P, as a minimal pointed group satisfying (b),
thanks to Theorem 18.3 again.

We also emphasize an important property of source algebras of interior
algebras.

(18.10) PROPOSITION. Let P, be a defect of a pointed group G, on
an interior G-algebra A. Then the O-algebras A, and A, are Morita
equivalent. In particular if A is a primitive interior G-algebra, then A is
Morita equivalent to a source algebra of A.

Proof. Since G, > P, and G, pr Py, this is immediate by Corol-
lary 17.10. O

The proof above is based on the induction procedure (Theorem 17.9
and Corollary 17.10), which is only available for interior algebras. There
is a more elementary proof which holds more generally for G-algebras A
such that the induced action of G on P(A) is trivial (Exercise 18.3).

For the sake of completeness we specialize once again to the case of
OG-modules. Let A = Endp(M) be the endomorphism algebra of an
OG-module M . The pointed groups G, and P, on A correspond to
direct summands M, of M and M, of Res%(M) respectively. By Ex-
ample 13.4 the relation G, > P, is equivalent to the property that M,
is isomorphic to a direct summand of Res%(M,). Similarly by Proposi-
tion 17.11 the relation G, pr Py is equivalent to the property that M, is
isomorphic to a direct summand of Indg(M,y) . In order to characterize a
defect it remains to translate the meaning of the word “local”.

(18.11) PROPOSITION. Let A = Endp(M) be the endomorphism al-
gebra of an OG-module M . Let G, and P, be pointed groups on A
corresponding to direct summands M, of M and M, of Resg(M ) re-
spectively.
(a) Py is local if and only if M., is not projective relative to a proper
subgroup of P . In other words P, islocal if and only if P is a vertex
of M, .
(b) P, is a defect of G, (that is, P is a vertex of M, and M, is a
source of M,, ) if and only if the following three conditions are satisfied:
(i) M., is not projective relative to a proper subgroup of P (that is,
M., has vertex P ),
(ii) M, is isomorphic to a direct summand of Res%(M,),
(iii) M, is isomorphic to a direct summand of Ind%(M.,) .
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Proof. (a) Let Ay = Endp(M,,) and identify v with the unique point
of A$ . By Lemmas 14.2 and 14.4, P, is local if and only if A, is not pro-
jective relative to a proper subgroup. By Higman’s criterion (Corollary 17.3
and Proposition 17.7), this means that M., is not projective relative to a
proper subgroup. The second assertion follows from Proposition 18.5.

(b) By the remarks preceding the proposition, this is immediate since
P, is a defect of G, if and only if P, islocal, G, > P, and Gopr P, . O

Of course, vertices and sources of OG-modules can also be character-
ized by a minimality criterion, or by a maximality criterion, as in Theo-
rem 18.3.

Exercises

(18.1) Let O be the trivial interior G-algebra (corresponding to the trivial
group homomorphism G — O* ). Find a defect pointed group and a source
algebra of O. Deduce that all Sylow p-subgroups of a finite group are
conjugate.

(18.2) Let A be a G-algebra and let « be a point of AY. Via the
identification of the pointed groups on A, with pointed groups on A
(Propositions 15.1 and 15.2), prove that a defect pointed group of A, ,
a defect group of A, , a source point of A, and a source algebra of A,
are those of the corresponding pointed group G, .

(18.3) Prove that Proposition 18.10 holds more generally for a primitive
G-algebra A such that the induced action of G on P(A) is trivial and
show that this condition is satisfied if A is an interior G-algebra. [Hint:
One can assume that A, = iAi. Use the assumption on the action of G
and the theorem on lifting idempotents to prove that % is conjugate to 4
for every x € G. Deduce that the ideal AiA is G-invariant and use the
relative trace map to show that AiAd = A ]

Notes on Section 18

The classical defect theory is due to Brauer in the case of group algebras,
and to Green in the case of kG-modules and OG-lattices. The common
treatment using G-algebras was initiated by Green [1968] and extended by
Puig [1981], who proved in particular the maximality criteria for the defi-
nition of defect pointed groups. All the other results of this section (18.6—
18.10) are due to Puig [1981]. Exercise 18.3 is due to Linckelmann [1994].
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§19 THE PUIG CORRESPONDENCE

This section is devoted to a fundamental tool in the theory: a bijective
correspondence between pointed groups, due to L. Puig. It can be viewed
as a reduction to the case of projective modules. Moreover the important
concept of defect multiplicity module is introduced.

Recall that a pointed group H, on a G-algebra A is called projective
if it is projective relative to 1, that is, if a C A¥ . By Proposition 18.5,
it is equivalent to require that the defect group of H, is equal to 1. The
Puig correspondence can be viewed as a reduction to the case of projective
points on an algebra which is simple, namely a multiplicity algebra. In fact
this simple algebra is the multiplicity algebra S(v) of a fixed local pointed
group P, on a G-algebra A. Recall that S(y) has an Ng(P,)-algebra
structure and that for H > P, the composite map

TH .
AR 2y AP 25 S(y)
has an image contained in S(W)NH(PV) .

(19.1) THEOREM (Puig correspondence). Let P, be a local pointed
group on a G-algebra A and let H be a subgroup of GG containing P .
The algebra homomorphism 7, rH : A — S(y)Nu (P induces a bijec-
tion between the sets

{a e P(A™) | P, is a defect of H,} and
{5 € P(S(y)NuP)Y | Ny (P))s is projective}.

If o corresponds to § under this bijection, then the corresponding maxi-
mal ideals m, and mg satisfy

my = (myr8) 7 (ms) .

Moreover 7, rf induces an isomorphism between the multiplicity algebras

S(a) = AP jmy =5 5(8) = S(7)Nr ) Jm

In particular the multiplicities of « and § are equal.
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Proof. Let T be the image of 7,7, a subalgebra of S(’y)NH(Pw) .

By Lemma 13.3, a point « € P(Af) is not in the kernel of ., rH if and
only if H, > P, . Therefore by Theorem 3.2, m,r% induces a bijection

{acPA®) | Hy> P} = P(T).

Now by Proposition 14.7, S(fy)lﬁH(P”) is an ideal of S(y)N#(P) contained
in T (see also Remark 14.9). Moreover a pointed group H, > P, has

defect P, if and only if 7, rf(a) C S(’y)lﬁH(P”) (Proposition 18.8). Thus

the bijection above restricts to a bijection

{aeP(A?) | P, is a defect of Hy} "5 {6 €P(T) |6 C S(V)?H(Pﬂ }
If o corresponds to § under this bijection, then the composite
s ’I"H s
AT 8 T 5 T /ms = S(6)

is a surjective map onto a simple algebra and the image of « is non-zero.
Therefore this map induces an isomorphism S(a) = S(J) and it is clear
that m, = (7, rH) "1 (ms).

It remains to pass from T to S(’y)ﬁH(Pw). Recall that a pointed

group Ny (Py)s on S(v) is projective if and only if § C S(’y)lﬁH(P”) . Let

us write

R=S8(NuP)  and =8N

Thus T is a subalgebra of R and I is an ideal of R contained in 7. We
have to prove that the inclusion 7' — R induces a bijection

(6eP(T) | 6CI} {8 ePR)|§CI},

with isomorphisms between corresponding multiplicity algebras. An idem-
potent i € § remains primitive in R since any orthogonal decomposi-
tion i =j+j' in R is also an orthogonal decomposition in 7' (because
j=1j € I CT and similarly j' € T'). Therefore i belongs to a point ¢’
of R contained in I and 6 C ¢’. We shall see below that two primitive
idempotents ¢ and ¢’ in I which are conjugate in R are already conju-
gate in T (in other words ¢ = §’). This will establish that the desired
bijection is simply the identity. The algebra homomorphism

T — R ™ R/mg = S(0')

is surjective since I maps onto S(6") (because I, which contains ¢’ , maps
to a non-zero ideal of S(d’)). Therefore we obtain S(§) = S(¢’) and we
have ms =msgsNT. Now if 1 € ¢, then i € I C T and the image of ¢
in S(6) =2 S(¢") is non-zero, so that ¢ must belong to the point ¢ of T.
Thus § = ¢, as was to be shown. O
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The bijection in Theorem 19.1 is called the Puig correspondence. The
projective pointed group Ng(P,)s on S(7) corresponding to the pointed
group H, on A is called the Puig correspondent of H, (with respect
to P,). We also say that ¢ is the Puig correspondent of o when the
context is clear. Conversely H, is also called the Puig correspondent
of NH(P'y)é .

Let V() be the multiplicity module of P, , which is endowed with a

k3N g (P,)-module structure. By Example 13.5, we know that the pointed
group Ny (Py)s on S(v) corresponds to an isomorphism class of indecom-

posable direct summands W; of the kﬁNH(P )-module Resxc((l; ))(V('y)) .

Since the pointed group Ny (P,)s is projective, the localization S(7v)s

is a projective N (P, )-algebra, and since this localization is the endo-
morphism algebra of Ws (Lemma 12.4), the module Wy is projective
byAHigman’s criterion (Corollary 17.8). The indecomposable projective
k4N g (Py)-module Ws (up to isomorphism) is also called the Puig corre-
spondent of the pointed group H, . Thus the Puig correspondence can be
viewed as a reduction to the case of indecomposable projective modules
over a suitable twisted group algebra (for a much smaller group).

When we specialize to the case of a primitive G-algebra A , we obtain a
much sharper result. The Puig correspondent of the unique point of A% is
a projective pointed group on the multiplicity algebra S(v), where P, isa
defect of A, and the Puig correspondence reduces in that case to a bijection
between two singletons. But in fact there is a direct proof of this which pro-
vides much more information. Recall that if ., : A — S(v) is the canon-
ical map, the image of 7, r& : A9 — S(v) is contained in S(W)NG(P” .

(19.2) THEOREM. Let A be a primitive G-algebra, let P, be a de-
fect of A, let S(y) = Endg(V(vy)) be the multiplicity algebra of P.

and let 7, : A¥ — S(y) be the canonical map. Consider the multi-
plicity motiu]e V(v) with its module structure over the twisted group

algebra kyNq(P,) .

(a) The homomorphism m,r$% : A9 — S(vy YNe(Py) s surjective. In par-
ticular we have m,r%(J(AY)) = J(S(y)Ne(P)y .

(b) The N¢(Py)-algebra S(v) is primitive. In other words the multiplic-
ity module V(v) is an indecomposable kﬂﬁg(Pv)—module.

(c) The Ng(Py)-algebra S(v) is projective. In other words the multi-
plicity module V (v) is a projective kuﬁg(Pv)—module.
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Proof. Since A is primitive, there is a unique point a = {14} of A%
and A% is a local ring. Since P is a defect group of G , the point « is
contained in the ideal tG(AF) = AG . It follows that AG = A¢ . By Propo-

sition 14.7 and Remark 14.9, the image of m,r% is equal to S(’y)ivG(P”)

iVG(PW) — S(V)NG(P” and so 7@7“1(3; is
WG(PW)

and contains 1g(,) . Therefore S(v)
surjective. Since AY is a local ring, so is its image S(v)
have m,78(J(A%)) = J(S(7)Ne(P2)) | Thus (a) is proved.

Now S(V)WG(PW) is isomorphic to a quotient of AC | hence is a local
ring too. This means that S(y) is a primitive Ng(P,)-algebra. Thus

, and we

1g(y) is a primitive idempotent of S (fy)ﬁG(P ») and this means that the

corresponding kyNg(P,)-module V(v) is indecomposable (because any
direct sum decomposition of V() corresponds to a decomposition of 1g()

as an orthogonal sum of idempotents of S ('V)WG(P »)). This completes the

proof of (b). Finally we have seen that S(’y)lﬁG(PW) = S(y)Ne(Py) | This
means that the Nqg(P,)-algebra S(v) is projective and by Corollary 17.8,

this is equivalent to the projectivity of the kyNg(P,)-module V(). O

In the situation of Theorem 19.2 above (that is, if A is a primi-
tive G-algebra), the projective primitive N (P, )-algebra S(v) is called
a Qefect multiplicity algebra of A. Also the projective indecomposable
kyN¢(Py)-module V(v) is called a defect multiplicity module of A. Both
concepts depend on the choice of a defect pointed group P, .

The Puig correspondence is a bijection between two singletons when
A is a primitive G-algebra. The general case can be reduced in some
sense to this one by localization: if G, is a pointed group on an arbitrary
G-algebra A, with defect P, having multiplicity algebra S(7), then the
localization A, is a primitive G-algebra whose defect multiplicity algebra
is precisely the localization S(7)s , where ¢ is the Puig correspondent of «
under the correspondence within the algebra A (Exercise 19.1).

In the case of a primitive G-algebra, we also note that the Puig cor-
respondence yields the following important characterization of the defect.

(19.3) COROLLARY. Let A be a primitive G-algebra, let P, be a
local pointed group on A, and let V() be the corresponding multiplicity

module (with its kyNg(P,)-module structure). The following conditions
are equivalent.

(a) P is a defect group of A.

(b) P, is a defect pointed group of A.

(c) V(v) is indecomposable projective.

(d) V() is projective.

(e) V(v) has a non-zero projective direct summand.
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Proof. (b) implies (a) by definition. Let Qs be a maximal local
pointed group on A with P, < @s. By Corollary 18.6, Qs is a defect
of A. Thus if (a) holds, we must have P = @, hence P, = Qs , prov-
ing (b).

By the definition of the defect multiplicity module, (b) implies (c) (see
Theorem 19.2). It is clear that (c) implies (d) and that (d) implies (e).

Assume now that (e) holds, and let W be an indecomposable pro-
jective direct summand of V(y). Thus W corresponds to a projective
point & of S(y)Ne() . By the Puig correspondence, § corresponds to a
point o of A% such that G, has defect P, . But since A is primitive,
{14} is the unique point of A%, so that a = {14} and P, is a defect
of A, proving (b). O

We emphasize that the last condition in Corollary 19.3 can be re-
stated as follows. If A is a primitive G-algebra, if Qs is a local pointed
group which is not maximal, and if V(§) is the corresponding multi-
plicity module, then no non-zero direct summand of V(§) is projective

over kﬁﬁg (Q(;) .

Exercises

(19.1) Let G, be a pointed group on a G-algebra A, let P, be a defect
of Gy, and let S(v) be the multiplicity algebra of . Let § be the
Puig correspondent of «. Prove that S(v)s is isomorphic to the defect
multiplicity algebra of the primitive G-algebra A, .

(19.2) Let P, be a local pointed group on a G-algebra A. Let H,
and Kz be two pointed groups on A with defect P, , and let Ny (Py)z,
respectively N g (Py)7, be their Puig correspondents (with respect to Py ).
Prove that H, > Kz if and only if Ny (P,)z > NK(P’Y)B'
Notes on Section 19

The Puig correspondence is only implicit in Puig [1981]. The full statement
and a sketch of proof appears in Puig [1988a]. The defect multiplicity
module is introduced in Puig [1988a).
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§20 THE GREEN CORRESPONDENCE

One important consequence of the Puig correspondence is another bijection
called the Green correspondence, due to J.A. Green in the case of modules.

(20.1) THEOREM (Green correspondence). Let A be a G-algebra, let

P, be a local pointed group on A, and let H be a subgroup of G con-

taining Ng(Py) .

(a) If a is a point of AY such that P, is a defect of G, , then there
exists a unique point B of A such that G, > Hg > P, .

(b) The correspondence defined by (a) is a bijection between the sets

{a e P(A%) | P, is a defect of G} and
{BePA™) | P, is a defect of Hg }.

(c) The bijection of part (b) has the following properties. Let 3 € P(Af)
be the image of o € P(A®) under this bijection, and let mg and m,,
be the corresponding maximal ideals of A" and A® respectively.
Then

() my = (1)~ (ms) = A Ay
(ii) rg induces an isomorphism between the multiplicity algebras

S(a) = A%/m, = S(B) = A Jmg..

In particular the multiplicities of o and 3 are equal.
(iii) GoprHg.

Proof. (b) Since we have H > N¢(P,) by assumption, the subgroups
Ny (P,) and Ng(P,) are equal and we set

N = Nu(P,) = Na(P,).

Let S(y) be the multiplicity algebra of . Instead of working with points,
it is here more convenient to work with the corresponding maximal ideals.
Consider the following sets:

X ={m, € Max(AY) | P, is a defect of G, },
Y = {mg € Max(A") | P, is a defect of Hg},

Z = { ms € Max(S(7)™) | N5 is projective } .

By the Puig correspondence, X is in bijection with Z via (7, r%)~! and
similarly Y is in bijection with Z via (m,r#)~!. Thus it is clear that X
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is in bijection with Y via (r&)~!. If m, € X corresponds to mg € Y,

we have (r%)~!(mg) = m, and in particular G, > Hz by Lemma 13.3.
Thus G, > Hg > P, , and the proof of (b) will be complete if we prove
that (a) holds, since the bijection just constructed then coincides with the
one defined by (a).

(a) Let 8 be the image of « by the bijection constructed above, and
let B € P(AH) such that G, > Hg and ' # (. Since we have the
two relations Go > Hg and G, > Hg , then for ¢ € a there is an
orthogonal decomposition r%(i) = j + j' +e where j € 3, j/ € B’ and
e is some idempotent in A . By the construction of the bijection above,
we have m,78(a) = § = 7, rH(B), where § € P(S(y)V) is the Puig
correspondent of both « and 3. Therefore 7, r&(i) and 7., rH(j) are

primitive idempotents. Now the orthogonal decomposition
G- Hy - Hy - H
Ty 15 (1) = 7y 1P () + 7y 7P (57) + 7y 7P (€)

forces m,rH(j’) = 0 = m,rH(e) and the first of these equalities means
that Hg 2P, . This proves the uniqueness of .

(¢) We have already proved (i) at the end of the proof of (b). It is
also clear that r% induces an isomorphism between the multiplicity alge-
bras S(«) and S(B), since they are both isomorphic to the multiplicity
algebra S(8) of the corresponding ms € Z, via m, 7% and 7, rH respec-
tively. We are left with the proof of (iii), that is, we have to prove that
a C tG(ATBAH) . By Corollary 4.11, it suffices to prove that the inclu-
sion 7,18 (a) C m, rE(tG(AFBAH)) holds (because m.,75(a) # {0}).
Since P, is a defect of Hg, we have in particular Hgpr P, , that is,
AHBAH C tH(APyAFP) . Therefore Corollary 14.8 applies and we obtain

Ng(Py
my PR (AT BAM) = 12O (AY AT = my rf (AT pAT),

since Ny(P,) = Ng(P,). Therefore it suffices to prove that the inclu-
sion m,r8(a) C m, rZ(ATBAM) holds. But we have 7, r%(a) =4 and
Ty rH(B) =&, where 4 is the Puig correspondent of both a and . Thus
we have to prove the inclusion & C (7, rH (A7) 6 (7, rE (AH)), which is
trivial since 1 € (m, rE(A)). O

The bijection of part (b) in Theorem 20.1 is called the Green corre-
spondence. If « corresponds to 8 under this bijection, then [ is called
the Green correspondent of .. We also say that the pointed group Hp is
the Green correspondent of G, .
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(20.2) REMARK. It should be noted that the Green correpondence de-
pends on the choice of a local pointed group P, , and may differ for the
choice of a conjugate of P,. A consequence of this observation is that
a pointed group G, may have several distinct Green correspondents for
a given subgroup H . Indeed for two distinct defect pointed groups P
and 9P,) of G, , it may happen for instance that Ng(P,) = Ng(9Py)),
with P, and 9(P,) not conjugate in this subgroup (Exercise 20.1). If H
denotes this subgroup, then G, has a Green correspondent Hg for the
Green correspondence with respect to P, and another correspondent Hg
for the correspondence with respect to 9(Py) . In particular we see that for
a given Gy, , the pointed group Hg is not uniquely determined by the two
properties G, > Hg and G pr Hg . This last problem does not arise with
the inverse bijection: if Hp is given, the corresponding G, is uniquely
determined by the two properties G, > Hp and G, pr Hg (Exercise 20.2).

(20.3) REMARK. In Theorem 20.1, (r%)~! induces a bijection between
maximal ideals, but we emphasize that rg does not induce a map between
the corresponding points. If « corresponds to § under the bijection and

1 € o, then rg(z) is in general not a primitive idempotent in A | as we

have seen in the proof of (a). Only its image in S(’y)ﬁ under 7., 7 is a
primitive idempotent.

Our next result is known as the Burry—Carlson—Puig theorem.

(20.4) THEOREM. Let P, be a local pointed group on a G-algebra A
and let H be a subgroup containing Ng(P,). Let G, and Hg be pointed
groups on A such that G, > Hg > P, . The following conditions are
equivalent.

(a) P, is maximal local in G, (that is, P, is a defect of Gy ).

(b) P, is maximal local in Hg (that is, P, is a defect of Hg ).

If these conditions are satisfied, then Hg is the Green correspondent of G
(with respect to P, ).

Proof. If P, is maximal local such that G, > P, , it is clear that
P, is also maximal local such that Hg > P, . Assume conversely that
P, is a defect of Hg. Since H > Ng(P,), we have Ny(Py) = Ng(P,)
and we set N = Ny (P,) = Ng(P,). Let Ns be the Puig correspondent
of Hg (with respect to P,). Then Ny is the Puig correspondent of
a unique pointed group G, (with defect P, ), and Hp is the Green
correspondent of G,/ . By Theorem 20.1, the corresponding maximal ideals

satisfy mo = (r§)71(mg) . But since G, > Hg by assumption, we also

have m, 2O (r§)~!(mg). By maximality of m,/ , we obtain m, = m,,
and so a = o/. This completes the proof because we know that P, is a

defect of G . O
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An important application of this result is the following. Recall that
if @ is a proper subgroup of a Sylow p-subgroup P of G, then there
exists a p-subgroup R mnormalizing @ such that Q < R < P (in fact we
can take R = Np(Q)). We now prove that the same result holds for local
pointed groups.

(20.5) COROLLARY. Let A be a G-algebra and let Q5 and P, be
local pointed groups on A such that Qs < P, . Then there exists a
local pointed group R. such that Qs < R. < P, and R < Np(Qs).
In particular Q < Np(Qs) .

Proof. Let H = Np(Qs) . There exists a point «a € P(AH) such that
Qs < H, < P, (Exercise 13.5). Since ()5 is not maximal local in P,
(because P, islocal), Qs is not maximal local in H, by Theorem 20.4.
Therefore there exists a local pointed group R. such that Qs < R. < H,, .
In particular R, < P, and @ < H , as was to be shown. O

Our next application of Theorem 20.4 has to do with the poset of
pointed groups. Recall that a poset is a partially ordered set. For a
G-algebra A, the set PG(A) of all pointed groups on A is a poset for
the partial order >. Moreover there is an order-preserving action of the
group G on this poset by conjugation (Exercise 13.4).

(20.6) COROLLARY. Let A be a G-algebra, let P, be a local pointed

group on A, let N = Ng(Py), and let N. be a pointed group with de-

fect P, . Let X(N.) be the poset of all pointed groups H, on A such that

H, > N. and let X(N.) be the G-conjugacy closure of X(N.) (that is,

H, € X(N.) if and only if there exists g € G such that 9H, € X(N.) ).

(a) For every H, € X(N.), P, is a defect of H, .

(b) For every subgroup H > N , there exists a unique point o € P(AH)
such that H, > N . In other words the poset X (N.) is isomorphic
to the poset of subgroups containing N .

(c) There is no fusion in X(N.) in the following sense: whenever we have
H,, Kz € X(N.), H, > Kg, and H, > 9Kg) for some g € G,
then g € H . In particular Ng(H,) = H for every H, € X(N.).

Proof. (a) This is an immediate consequence of Theorem 20.4, because
H, > N, > P, and P, is a defect of N;.

(b) The pointed group N. has a Green correspondent H, . By Theo-
rem 20.4 again, any pointed group H,  such that H, > N. must be the
Green correspondent of N. . Therefore a = o' .

(c) After conjugating the whole situation, we may assume that Kz
belongs to X'(N), so that Kz has defect P, by (a). Thus 9Kj3) has de-
fect 9(Py). Then by (a) again, H, > Kg has defect P, and H, > 9Kj3)
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has defect 9(P,) . Since all defect pointed groups are conjugate, there exists
h € H such that 9P,) = "(P,). Therefore we have h=lg € Ng(P,) = N
and since N < K < H, we obtain g € H , as required. The special case
follows by taking H, = Kg. O

Assume now that the G-algebra A is interior and primitive. Let
a = {14} be the unique point of A%, let P, be a defect of G, , let
H > Ng(P,), and let Hg be the Green correspondent of G, . By The-
orem 20.1, we have both relations G, > Hg and G, pr Hg. Therefore
by Theorem 17.9, there exists an embedding F : A — Inde(Ag) such
that Res%(F)Fs = DG . Here Fs : Ag — Res§(A) is an embedding
associated with Hpg , and DS : Ag — Res$ Ind%(Ap) is the canonical em-
bedding associated with the interior H-algebra Ag. Welet ', 5" and +/
be the images of o, f and v in Indg(Ag) under the embedding F . We
know that o and § have isomorphic multiplicity algebras (Theorem 20.1).
In general multiplicities become larger via embeddings (or more precisely
there is an embedding between the corresponding multiplicity algebras, see
Proposition 15.3). But we now show that the multiplicities of o’ and §’
do not grow.

20.7) PROPOSITION. Let A be a primitive interior G-algebra, let
a = {14} be the unique point of A%, let P, be a defect of G, , let
H > Ng(Py), and let Hg be the Green correspondent of G, . Let
F:A—nd%(As) be the embedding defined above and let o/ and '
denote the images of o and 8 under F. Then o' and [’ have multi-
plicity one.

Proof. Let +' be the image of v under F. Since embeddings
preserve containment and defect (Propositions 15.1 and 18.7), we have
Gy > Hg > Py and P, is a defect of G,/ . Therefore Hg/ is the Green
correspondent of G,/ and consequently o’ and 3’ have the same multi-
plicity (Theorem 20.1). Thus it suffices to show that ' has multiplicity
one.

Let B = Ag and write D = D§ : B — Resg Indg(B). Since
P, < Hg, we can view 7 as a point of BY | that is, we identify the point v
of AP with its preimage under the embedding Fp : Ag — Res$ (A) . Since
Res$ (F)Fs =D, we have D(v) =" By Proposition 15.3, we know that
D induces an embedding of N-algebras D(y) : S(y) — S(v'), where
N = Ng(P,) = Ng(Py) and N = N/P. We are going to show that D(y)
is an exo-isomorphism.

Assuming this, it follows that S(y/) is a primitive and projective
N-algebra. Indeed, since B is a primitive H-algebra with defect P,
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the N-algebra S(v) is primitive and projective by Theorem 19.2. Thus
S(v")N has a unique projective point § with multiplicity one. The Puig
correspondence reduces to a bijection between the singleton ¢’ and a point
of Tnd% (B)" which can only be (', since Hg has defect P, . Since the
Puig correspondence preserves multiplicities, 3’ has multiplicity one, as
required.

Now we prove that D(v) is an exo-isomorphism. Let d € D, where
d = d% : B — Res% Ind%(B) is defined by d(b) = 1®b® 1. Then d

induces d € D(y) and there is a commutative diagram

d
BP 2 md%(B)*

|~ |

S() —I=  Sy)

(see Proposition 15.3). Since d belongs to an embedding, it suffices to
show that d(ls(y)) = lg(y) to deduce that d is an isomorphism. By
construction of induced algebras, we have Linag gy = =t9%(1elp®l).

Moreover since B = Ag is a primitive H- algebra with defect P, , there
exists a € BPyBY such that tH(a) = 15 . Therefore, by Proposition 14.7,
we have

d(Ls(y)) = dmy(1p) = 1y d(lp) =7y rp tp (1@ a® 1)
=Ny (1®a®1) =y rEt3(1®a® 1) = 1y 1 (Lipag ()

= lsens
as required. O

Once again we specialize to the case of OG-modules and we give a
second form of the Green correspondence, which will be an overall corre-
spondence between modules rather than a correspondence within a fixed
G-algebra. Let L be an indecomposable OG-module with vertex P and
source X . We know that L isisomorphic to a direct summand of Indg(X )
(Proposition 17.11). Let H > Ng(P,X), where Ng(P,X) denotes the
inertial subgroup of the module X . Recall that Ng(P, X)= Ng(P,)
where P, is the pointed group on Ende(Ind%(X)) corresponding to the
OP-direct summand X . An indecomposable OH-module M with ver-
tex P and source X is isomorphic to a dlrect summand of IndH (X),
hence also to a direct summand of Res ¥ Ind%(X), since Ind P( ) is iso-
morphic to a direct summand of Res$ Ind% (Indp ( )) = Res% Ind%(X) .
Thus for both G and H , the indecomposable modules with vertex P and
source X correspond to pointed groups on A = Endp(Ind$%(X)) with de-
fect P,. Applying Theorem 20.1 to the G-algebra A, we obtain the
following result, which is the first form of the Green correspondence for
modules.
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(20.8) PROPOSITION. Let P be a p-subgroup of G, let X be an

indecomposable OP-module with vertex P, and let H > Ng(P,X).

(a) If L is an indecomposable OG-module with vertex P and source X ,
then Resg(L) has a unique isomorphism class of direct summands M
with vertex P and source X .

(b) The correspondence in (a) induces a bijection between the set of iso-
morphism classes of indecomposable OG-modules L with vertex P
and source X , and the set of isomorphism classes of indecomposable
OH-modules M with vertex P and source X .

(c) If M corresponds to L under this bijection, then M is isomorphic
to a direct summand of Res$ (L) and L is isomorphic to a direct
summand of Ind$ (M) .

Proof. The result follows from Theorem 20.1 applied to the G-algebra
A =Endp(Ind%(X)). If L corresponds to a point a of A% and M
corresponds to a point 3 of A¥ | then G, > Hs and G, prHg. These
properties mean respectively that M is isomorphic to a direct summand
of Res% (L) (Example 13.4) and L is isomorphic to a direct summand
of Ind% (M) (Proposition 17.11). O

The bijection of part (b) in Proposition 20.8 is called the Green corre-
spondence (for modules). The indecomposable OH-module M (up to iso-
morphism) corresponding to the indecomposable OG-module L is called
the Green correspondent of L. More properties of the Green correspon-
dence for modules are given in Exercise 20.4. If we keep the p-subgroup P
fixed but allow the source X to vary, we can choose for H any subgroup
containing Ng(P) and we obtain the second form of the Green correspon-
dence for modules.

(20.9) COROLLARY. Let P bea p-subgroup of G and let H be a sub-
group containing Ng(P). The Green correspondence induces a bijection
between the set of isomorphism classes of indecomposable OG-modules L
with vertex P, and the set of isomorphism classes of indecomposable
OH-modules M with vertex P . Moreover corresponding modules have a
source in common.

Proof. Since a source is only defined up to Ng(P)-conjugation (for
a fixed P), we have to choose one module X in each Ng(P)-conjugacy
class of indecomposable OP-modules with vertex P . Then the disjoint
union of the bijections of the last proposition (one for each X ) yields the
result. O
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(20.10) REMARK. There is also a Green correspondence between isomor-
phism classes of primitive interior G-algebras with defect group P and
source algebra B, and isomorphism classes of primitive interior H-algebras
with defect group P and source algebra B, provided H > Ng(P,B)
where Ng(P, B) is the inertial subgroup of the P-algebra B. The proof
is similar to that of Proposition 20.8, but more elaborate, because distinct
points of IndIGD(B)G may have isomorphic localizations, so that a primi-
tive interior G-algebra with defect group P and source algebra B may
correspond to several points of Indg(B)G . However, one can obtain a cor-
respondence which is induced by the Green correspondence between points
described in Theorem 20.1.

Exercises

(20.1) Construct explicitly an example of a pointed group G, having two
distinct Green correspondents Hg and Hg: , as explained in Remark 20.2.
[Hint: Take G to be the alternating group on 4 letters; the three conjugate
subgroups P of order 2 have the same normalizer.]

(20.2) Let Hpg be a pointed group on a G-algebra A and assume that
H > Ng(Py) for some defect pointed group P, of Hg. Prove that there
exists a unique pointed group G, satisfying the two properties G, > Hg
and G, pr Hg. Moreover Hpg is the Green correspondent of G, .

(20.3) Let N be the normalizer of a Sylow p-subgroup of G . Show that
there is no fusion in the poset of all subgroups H containing a conjugate
of N, and that in particular Ng(H) = H for any such subgroup H .

(20.4) Let L be an indecomposable OG-module with vertex P and
source X . Let H be a subgroup containing Ng(P, X) and let the in-
decomposable OH-module M be the Green correspondent of L .

(a) Prove that in a decomposition of Res% (L) into indecomposable sum-
mands, there is a unique summand isomorphic to M .

(b) Prove that in a decomposition of Ind% (M) into indecomposable sum-
mands, there is a unique summand isomorphic to L. [Hint: Use
Proposition 20.7.]

(¢) Prove that any indecomposable direct summand of Ind% (M) not iso-
morphic to L has vertex strictly contained in P .

(d) Use Exercise 20.1 to show that the property of Res% (L) analogous
to (c) may fail to hold. Prove however that a vertex of an indecom-
posable direct summand of Resg(L) not isomorphic to M cannot
contain P.
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(20.5) Let L be an indecomposable OG-module, let P be a p-subgroup
of G, let X be an indecomposable direct summand of Res%(L) which
is its own source, let H > Ng(P,X), and let M be an indecomposable
direct summand of Res%(L). Prove that L has vertex P and source X
if and only if M has vertex P and source X . [Hint: This is the Burry—
Carlson-Puig theorem in the case of modules.]

Notes on Section 20

The Green correspondence is due to Green [1964] for OG-modules. The
version with points is not explicitly stated in Puig’s work. The version
of the correspondence for primitive interior algebras (mentioned in Re-
mark 20.10) appears in Thévenaz [1993]. The Burry—Carlson—Puig the-
orem 20.4 was proved by Puig [1981], and independently by Burry and
Carlson [1982] in the case of OG-modules.



CHAPTER 4

Further results on G-algebras

In this chapter we prove various results on G-algebras. Some of them
will be useful in applications. The first section is concerned with some
specific results about p-groups. Then we prove a theorem on lifting idem-
potents which is used in the case of p-groups to establish some results
about primitive idempotent decompositions and induction of primitive in-
terior algebras. Finally we introduce the notion of covering exomorphism
and its local characterizations. We continue with our assumption that G
is a finite group and that O is a commutative complete local noetherian
ring with an algebraically closed residue field k of characteristic p.
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§21 BASIC RESULTS FOR p-GROUPS

In this section we prove two results connected with a p-group P . Of course
p denotes as before the characteristic of the field & = O/p (which need
not be algebraically closed throughout this section). First we prove that
the group algebra OP is a local ring and that the trivial module & is the
only simple OP-module. The second result asserts that any twisted group
algebra for a p-group is isomorphic in a canonical way to the ordinary
group algebra (provided k is perfect).

Let OG be the group algebra of G. The augmentation homomor-
phism is the map ¢ : OG — O defined on the basis of OG by e(g) =1 for
every g € G . It is a homomorphism of O-algebras. In particular O is en-
dowed via ¢ with an OG-module structure, called the trivial OG-module.
The augmentation ideal of OG is the kernel of € and is written I(OG) . It
is freely generated as an O-module by the elements g—1 for g € G—{1}.
The composition of ¢ with the map 7: O — O/p = k is a ring homomor-
phism with kernel m = I(OG) +p - OG , which is a maximal ideal of OG .
These definitions also apply if O is replaced by k.

(21.1) PROPOSITION. Let P be a p-group.

(a) The trivial kP-module k is the only simple kP-module up to isomor-
phism.

(b) The augmentation ideal I(kP) of kP is the Jacobson radical of kP .
It is the unique maximal ideal of kP and it is nilpotent.

(c) The ideal m = I(OP) +p - OP is the Jacobson radical of OP . It is
the unique maximal ideal of OP and it is nilpotent modulo p - OP .

(d) The only idempotents of OP are 0 and 1.

(e) Every (finitely generated) projective OP-module is free.

Proof. (a) Since k has characteristic p, it contains the prime field F,
with p elements. Let V be a simple kP-module, let v € V' with v #£ 0
and let W be the F,-vector subspace of V' generated by all the elements
g-v for g€ P. Then W is finite and is invariant under the action of P
by construction. We decompose W as a disjoint union of orbits. The
orbit of an element w reduces to {w} if and only if w is fixed under P.
Therefore the union of all the orbits with one element is the subspace W’
of P-fixed elements in W . If the orbit of w is non-trivial, the stabilizer @
of w is a proper subgroup of P and the cardinality of the orbit is |P : @],
which is a power of p since P is a p-group. Therefore W is the disjoint
union of W and of orbits of cardinality divisible by p. Since |W| is a
power of p (because W is a vector space over F,, ), it follows that |[W | is
divisible by p. Now W contains 0, hence must contain at least one other
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element w . Thus we have proved that the kP-module V' always contains
a non-zero element w fixed under P . The one-dimensional k-subspace
generated by w is a kP-submodule of V' | hence equal to the whole of V
by simplicity of V. Therefore V is one-dimensional and is isomorphic to
the trivial kP-module since P acts trivially on it.

(b) We apply Theorem 1.13. Since, by (a), Irr(kP) has a single
element and since Max(kP) is in bijection with Irr(kP), the maximal
ideal I(kP) is the unique maximal ideal of kP . Therefore I(kP) is equal
to the Jacobson radical J(kP), which is nilpotent (Theorem 1.13).

(¢) By Theorem 2.7, p-OP C J(OP). Since OP/p-OP = kP and
since the image of I(OP) in kP is I(kP), the inverse image in OP of
J(kP) = I(kP) is the ideal m and is the Jacobson radical of OP . Also
by Theorem 2.7, we have J(OP)" C p-OP for some integer n .

(d) By (c), the semi-simple quotient of OP is OP/m = k , whose only
idempotents are 0 and 1. Since one can lift idempotents (Theorem 3.1),
the same holds for OP .

(e) By Proposition 5.1, any projective indecomposable OP-module is
isomorphic to OPe where e is a primitive idempotent of OP . But e =1
by (d) and it follows that any projective OP-module is isomorphic to a
direct sum of copies of OP , hence free. O

(21.2) COROLLARY. Let P be a normal p-subgroup of G and let

7:0G — O(G/P) be the quotient map.

(a) We have Ker(r) C J(OG) .

(b) The subgroup P acts trivially on every simple OG-module, so that
Irr(OG) =Irr(kG) can be identified with Irr(O(G/P))=Irr(k(G/P)) .

Proof. (a) Since p- OG C J(OG), it suffices to work over k. The
ideal Ker(7) is generated over k by the elements (u— 1)g where g € G
and u € P. In other words, as an ideal, it is generated by I(kP). More-
over for ¢g,¢' € G and u,u’ € P, we have

(u—1)g(u' ~1)g" = (u—1)(%'~1)gg".

It follows by induction that Ker(r)" is generated as an ideal by I(kP)™.
Since I(kP) is nilpotent by Proposition 21.1, so is Ker(7) and therefore
Ker(r) C J(kG) (Theorem 1.13).

(b) Since u—1 € Ker(7) for u € P, it belongs to J(OG) by (a) and
hence annihilates every simple OG-module. In other words u acts as the
identity. O
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Now we prove that the only twisted group algebra for a p-group is the
ordinary group algebra. The proof follows essentially the same line as that
of Proposition 10.5. But as the present result also involves a uniqueness
statement, we repeat the argument for simplicity. The result holds for a
perfect field k of characteristic p (this means that any element of £ is a
p-th power), thus in particular if & is finite or algebraically closed.

(21.3) PROPOSITION. Let P be a p-group and let k be a perfect field
of characteristic p. Then any central extension 1 — k* — P—P—1
splits in a unique way. Therefore the corresponding twisted group alge-
bra kzﬁﬁ is isomorphic to kP .

Proof. Let g = |P|, a power of p. Since the characteristic of k is p,
the only element A € k* such that A2 = 1 is A = 1. Therefore the
map A +— A? is an injective group homomorphism ¢ : k* — k* and it is
also surjective because k is perfect. We use some standard facts from the
cohomology theory of groups, which are recalled in Proposition 1.18. Con-
sider the cohomology group H"(P,k*), where n > 1 and k* is viewed
as a trivial P-module. The automorphism ¢ induces an automorphism
of H™(P,k*), which is multiplication by the group order. Since the or-
der of the group annihilates H™(P,k*), we deduce that H™(P k*) = 0.
Now H?(P,k*) classifies the central extensions with kernel k* and quo-
tient group P (the extensions are central because the action of P on k*
is trivial). Thus H?(P,k*) = 0 means that any such extension splits.
Moreover H!(P,k*) = 0 means that there is a single conjugacy class of
splittings. But conjugacy by the central subgroup k* is trivial, so that the
conjugacy class consists of a single splitting. O

We leave to the reader the task of stating the exact condition on the
isomorphism kyP = kP to guarantee its uniqueness.

(21.4) COROLLARY. Let k be a perfect field of characteristic p, let
P be a p-group, and let S = Endy (M) be a simple P-algebra (where M
is a k-vector space). Then there is a unique interior P-algebra structure
on S inducing the given P-algebra structure. In other words M becomes
a kP-module in a unique way.

Proof. We know from Example 10.8 that the P-algebra structure on S
lifts uniquely to a group homomorphism P — S*. The unique splitting
of the central extension of the previous proposition yields a unique group
homomorphism P — S*. O
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If one works over O rather than k&, the situation is slightly more
complicated but can be completely described when the dimension is prime
to p. As we need roots of unity, we return for simplicity to our usual
assumption that k is algebraically closed.

(21.5) PROPOSITION. Let P be a p-group and let S = Endo (M) be
an O-simple P-algebra (where M is a free O-module). Assume that the
dimension of M is prime to p.

(a) There exists an interior P-algebra structure on S inducing the given
P-algebra structure. Explicitly there exists a group homomorphism
¢: P — S*, such that “s = ¢(u)sp(u)~" for all uw € P and s€S.
In other words M becomes an OP-lattice via ¢ .

(b) If ¢' : P — S* is another group homomorphism as in (a), then there
exists a group homomorphism X\ : P — O* (that is, a linear character)
such that ¢'(u) = AMu)¢(u) for all u € P .

(c) There exists a unique group homomorphism ¢ as in (a) with the
additional property that det(¢(u)) =1 for all ue P.

Proof. 1t is clear that (a) is a consequence of the more precise state-
ment (c¢). For the proof of (b), we note that since ¢(u) and ¢'(u) in-
duce the same action by conjugation on S, there exists a central element
Au) € O* such that ¢'(u) = A(u)¢(u) . It is elementary to check that A
is a group homomorphism.

It remains to prove (¢). Let GL(M) = S*, let PGL(M) = S§*/0O*,
let SL(M) = Ker(det : GL(M) — O*), and let PSL(M) be the image
of SL(M) in PGL(M). We first prove that PSL(M) = PGL(M).
Let @€ PGL(M), let a € GL(M) be an arbitrary lift of @ and let
A =det(a) € O*. Since n = dim(M) is prime to p, A has an n-th
root pu € O* by Corollary 4.8. Then det(u~la) = p~"det(a) =1 and @
is still the image of p~'a in PGL(M). Therefore @ € PSL(M).

By the Skolem—Noether theorem, the action of v € P on S is equal
to some inner automorphism Inn(p(u)) and since p(u) is only defined up
to a central element, this defines a group homomorphism

p: P — PGL(M) = PSL(M).
Let K =Ker(SL(M) — PSL(M)). Then K consists of scalars A such

that A™ = 1, hence is a (cyclic) group of order n (because t™ —1 has n
distinct roots in O* by Corollary 4.8). Consider now the pull-back X of
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the two maps p: P — PSL(M) and SL(M) — PSL(M). We obtain a
diagram

s

1 - K — X — P — 1

b !

1 — K —— SL(M) —— PSL(M) — 1

in which both rows are exact. By definition of a pull-back, p lifts to a ho-
momorphism ¢ : P — SL(M) if and only if 7 has a section o : P — X .
Moreover ¢ is unique if and only if ¢ is unique. Thus we are left with
the proof of the existence and uniqueness of o . Since K has order prime
to p, multiplication by |P| is an automorphism of H*(P, K) and is also
zero because the order of a group annihilates its cohomology. Therefore
H*(P,K) =0 and the argument used at the end of the proof of Proposi-
tion 21.3 shows the existence and uniqueness of the required section o. O

Corollary 21.2 can be generalized to the case of a twisted group algebra
over k.

(21.6) PROPOSITION. Let kﬂé be a twisted group algebra of G and

suppose that G has a normal p-subgroup P .

(a) There is a canonical surjection T : ku@ — ku(G//TD) onto a twisted
group algebra of the quotient group G/P .

(b) We have Ker(r) C J(k‘ﬁé). In particular Ker(r) annihilates ev-
ery simple kﬂ@—module M, so that M can be viewed as a simple

kﬁ(GT/\P)-module.

Proof. (a) On restriction to P, we have kﬁﬁ >~ kP by Proposi-
tion 21.3, and kP has a canonical basis {u | v € P} . Choose a transver-
sal [G/P] and, for each g € [G/P], let § € G be an element mapping
onto ¢g. Then the set {ug | v € P,g € [G/P]} is a basis of k‘ﬁé.
The ideal I generated by I(kP) is generated over k by the elements
(u—1)g. Thus the images of the elements g for g € [G/P] form a
k-basis of (ku@) /I and it is clear that (ku@) /I is a twisted group alge-
bra of G/P . Since the isomorphism kﬁﬁ =~ kP is unique, the ideal I is
canonically associated with the data, and therefore we obtain a canonical
surjection 7 : kﬂ@ — (kﬁé)/l = ku(G//\P) .

(b) As in the proof of part (a) of Corollary 21.2, we have

(u—1)g(u’ — 1)g" = (u—1)(%' — 1)gg",
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and it follows by induction that I™ is generated as an ideal by I(kP)".
Since I(kP) is nilpotent by Proposition 21.1, so is I. Therefore we have

~

IC J(kﬁG). O

Exercises

(21.1) Prove the converse of Proposition 21.1: if the augmentation ideal
I(kG) is the Jacobson radical of kG, then G is a p-group. [Hint: Raise
g — 1 to the power p™, where g € G ]

(21.2) Let P be a Sylow p-subgroup of G'.

(a) Prove that the dimension of a projective kG-module is a multiple
of |P|. [Hint: Consider the restriction of the module to P. This
result will be improved in Exercise 23.2.]

(b) Let G be a central extension of G by k* and let kué be the cor-
responding twisted group algebra. Prove that the dimension of a pro-
jective kyG-module is a multiple of |P|. [Hint: Restrict the module
to P and use Proposition 21.3.]

(21.3) Let G be a central extension of G by k* and let kﬁ@ be the
corresponding twisted group algebra. If kzua is semi-simple, prove that
p does not divide |G|. [Hint: Use the previous exercise to show that
the dimension of every module is a multiple of |P|, where P is a Sylow
p-subgroup of G . Then find a module of dimension prime to p, for instance
the module Ind% (k) = kyG®,pk , where k denotes the trivial kP-module.
The result of this exercise is the converse of Exercise 17.3.]

(21.4) Let P, be a local pointed group on a G-algebra A and suppose
that Ng(P,) is a p-group. If P, is the defect of some pointed group G,
(for instance if P, is maximal) prove that for every subgroup H with
P < H <G, there exists a unique pointed group H, with defect P, .
[Hint: Use the Puig correspondence and show that for every H there
is a unique projective pointed group NH(P,Y)(; on the multiplicity alge-
bra S(7) ]

(21.5) Assume that G has a normal p-subgroup P . Prove that any
vertex of a simple kG-module contains P . [Hint: Let Q be a vertex of
a simple kG-module M and assume that Q@ < QP . In Endg(M), the

relative trace map tgp is zero because P acts trivially on M .|
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Notes on Section 21

The results of this section are standard.

§22 LIFTING IDEMPOTENTS WITH A REGULAR
GROUP ACTION

In this section we prove a version of the theorem on lifting idempotents
which involves a regular action of G on idempotents.

(22.1) THEOREM. Let A be a G-algebra and let I be an ideal of A
contained in J(A). Let A = A/I and denote by @ the image of an element
a € A in A. Assume that I is invariant under the action of G, so that
A is also a G-algebra. If there exists an idempotent € € A such that
Iy =1{(e) and 9e-e=0 forevery g € G—{1} (sothat 1z =3 . %€
is an orthogonal decomposition), then € lifts to an idempotent e of A
such that 14 =tY(e) and 9e-e =0 for every g € G — {1}.

Proof. Since I C J(A), the algebra A is complete in the I-adic
topology, that is, A & 1131 A/I™. Thus it suffices to prove the result when

I is nilpotent, since the idempotent e can then be constructed as a limit
of idempotents of A/I™ having the required property. Details are left
to the reader (Exercise 22.1). We assume now that I™ = 0 and argue
by induction on n. Thus e lifts to an idempotent of A/I"~! with the
required property, and since (I"~1)2 =0, we are left with the problem of
lifting the idempotent when the ideal has square equal to zero. Thus we
assume now that 12 =0.

Write e, = 9¢ for every g € G. By Theorem 3.1, we can lift the
orthogonal idempotents €, to orthogonal idempotents e, of A satisfying
> gec g =1a. Since 9ep) =€y, forall g,h € G, we have

Yen) = egh + agn for some agp € 1.

Since 14 = 914) = (>, en) = D pegh + 2 ptgh = la+ >, a9n, we
have

(22.2) Z agn =0 for every g € G .
heG
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Now egnk + aghx = Mer) = Yenk + ank) = egnk + agnk + Yany) and
therefore

(22.3) Yank) = aghk — Qg hk for all g,h, k€ G.
Since 9(ep)? = 9(e2) = Y(ep,) and since I? =0, we obtain
€ghlig.h + Gg h€gh = Gg.h for all g,h € G.

Multiplying this relation by e, on the left where = # gh, we obtain
exlg hegh = €z0g h , and multiplying this by e, on the right where gh # vy,
we get ezagney = 0. Thus for g,h,z,y € G, we have

_ €$CLg,h 1f €T # gh =Y,
(22.4) Calg,hCy = { 0 if z #gh#y.

Finally since 9ep)9er) = Yener) = 0 if h # k and since I? = 0, we

obtain egnpag i + agnegr = 0. Taking in particular k=1 and h = g 'z,

we get
(22.5) elg1 + Gy 4-1,69 =0 if g+# 2.

Now define

fo=¢€g+ Z Ay y—14Cy for all g € G.
y€G

Then f, =€, and moreover

Z fo= Z g + Z Z (y,y=1gCy

geqG geqG geG yel@

=1la+ Z(Z ay,y‘lg)ey =1a,

yeG geG

(22.6)

using 22.2. Now if g # h, we have

fgfh = E €gly y—1p€y T E :ay,y‘lgeyeh’

yeG yeG
using egep, =0 and I? = 0. Clearly the only non-zero term in the second

sum appears for y = h. Moreover the same holds for the first sum by 22.4.
Therefore

(227) fgfh = (egahJ + ah’hqgeh)eh =0
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by 22.5. It now follows from 22.6 and 22.7 that each f; is an idempotent,
because

fg:fg'lA:ngfh:fS-
heG
Thus we are left with the proof of the additional property we are looking
for, namely that G permutes the idempotents f; regularly. Using 22.3
and I? =0, we have

U fn) = (egn + agn) + Z(%y,y‘lh — ag,n)(egy + ag,y)
yeG

= qh+ E Ay - 1ghez +aqh § eqy fgh7

zeG yeG

as required. O

Exercises

(22.1) Complete the details of the beginning of the proof of Theorem 22.1
(namely the reduction to the case where I is nilpotent).

(22.2) Let A be a primitive G-algebra, let H be a normal subgroup
of G, and let B be a point of A” . Assume that A is projective relative
to H and that Ng(Hg) = H. Prove that there exists j € 8 such that
t%(j) =14 and 9%-j=0 forall g€ G—H (sothat 14 = >geicym Ui
an orthogonal decomposition). In particular prove that S has multiplicity
one. [Hint: Replace A by A to reduce to the case H = 1. Show that
the map A — A/J(A) remains surjective on G-fixed elements. Prove that
G acts regularly on the simple factors of A/J(A) and lift the information
to A.]

Notes on Section 22

The theorem of this section is due to Thévenaz [1983a]. For a more general
version involving a transitive action on idempotents, see Thévenaz [1983b].
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§23 PRIMITIVITY THEOREMS FOR p-GROUPS

The main theorem of this section is about primitive idempotents in a
P-algebra where P is a p-group. The result implies in particular the
Green indecomposability theorem.

(23.1) THEOREM. Let P be a p-group and let A be a P-algebra.
Let j be a primitive idempotent of AF such that j € Ag for some
subgroup @ of P . Then there exists a primitive idempotent i € A? such
that j = tQ() and 9% -i = 0 for every g € P — Q. In other words
J=2 4 eip/q % Is an orthogonal decomposition in A.

Proof. We use a series of reductions. First it suffices to solve the
problem in the P-algebra jAj which has unity element j. Thus we can
assume that j =14, so that A is a primitive P-algebra.

Next we can use induction on |P : @|. The result is trivial if @ = P,
so we assume ) < P. Let R be a maximal subgroup of P containing @ .
Since P is a p-group, R is a normal subgroup of P of index p. We claim
that it suffices to prove the result for P and R. Indeed if this is proved,
then there exists a primitive idempotent f of AT such that 14 = t5(f)
and 9f-f =0 forevery g€ P—R. Thus 14 = de[P/R] 9f is a primitive
decomposition in AT because R is a normal subgroup of P, and hence
each 9f is a primitive idempotent of AT . By assumption there exists
a € A9 such that ts (a) =14 and so

=Y Ah@)= > % (%).

g€[P/R] g€[P/R]

Therefore AT = de[P/R] A?Q . By Rosenberg’s lemma (Porposition 4.9),
the primitive idempotent f belongs to one of the ideals AIJ”Q, so that
g fe Ag. Replacing f by 9f (this does not change the primitive de-
composition 14 = de[P/R] 9f ), we can assume that f € Ag. Since
IR : Q] < |P : Q|, there exists by the induction hypothesis a primi-
tive idempotent i € A? such that f = tg(i) and % -3 = 0 for every
x € R— Q. Thus we obtain an orthogonal decomposition

la= ), = 3 ) = ) U

g€[P/R] ge[P/R] z€[R/Q) ye[P/Q]

proving the result. This establishes the claim above and reduces the prob-
lem to the case of a normal subgroup R of index p.



180 Chapter 4 . Further results on G-algebras

Now we consider the algebra AT which is a (P/R)-algebra, and
for which 14 is a primitive idempotent of (A®)P/® = AP such that
1a4 € (AP”)f/R . Tt suffices to prove the theorem for the (P/R)-algebra A% .
In other words we can assume that R = 1. Thus we are left with a
P-algebra which is primitive (1, is a primitive idempotent of A ) and
projective (14 € AY). Moreover P is cyclic of order p, but this will not
play any role.

We reduce modulo the Jacobson radical J(A), which is necessarily
invariant under the action of P, sothat A= A/J(A) is again a P-algebra
and the canonical homomorphism 7 : A — A is a homomorphism of
P-algebras. We show that the two properties of A which we need are
inherited by A. First the image under 7 of the relation 14 € AT shows
that A is projective. To show that A remains primitive, it suffices to

—P . —P . .
prove that AT — A is surjective, because then A is again a local

ring with residue field k. To show the surjectivity, let @ € a’. By
projectivity, there exists b € A such that tI'(b) =@. Lift b to b€ A and
let a=t"(b). Then a € AF and clearly 7(a) =a.

Assume that the result holds for the P-algebra A. Then there exists
a primitive idempotent 7 € A such that ¢1'(i) = 15 and %-i =0 for
1 # g € P. Thus there is a regular group action of P on orthogonal idem-
potents as in Theorem 22.1. By that theorem, there exists an idempotent
i € AP lifting 7 such that 14, = tf'(i) and % -i =0 for 1£g€ P.

Moreover 4 is primitive in A since 7 is primitive in A . This proves that
it suffices to establish the result for A.

We assume now that A is a semi-simple k-algebra endowed with an
action of P such that A is a P-algebra which is primitive and projective.
We have

A S x... xS,

where each S, is a simple k-algebra (1 <r < m) and we identify A with
this direct product. Let e, be the primitive idempotent of the centre Z(A)
of A corresponding to S, , that is, all components of e, are zero except
the r-th which is equal to 1g . As the group P acts via algebra auto-
morphisms, it necessarily stabilizes Z(A) and therefore it must permute
the central idempotents e,.. The sum of all idempotents in one orbit is
an idempotent f of A fixed under P. But as 14 is primitive in AP |
this idempotent f must be 14 and this proves that P acts transitively
on the idempotents e, , hence also on the simple factors S, . If H is the
stabilizer of e; , we obtain 14 = t£(e;) and %;-e; =0 for ge P— H.

This proves the theorem if H = 1, while if H = P, then A = 5] is
a simple k-algebra. Since P can be assumed to be cyclic of order p, this
reduces to the case of a simple k-algebra. But we are reduced to this case
even without this assumption on P, because S7 is an H-algebra which is
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primitive (14 =t (e1) is primitive in A” and so e is primitive in SH )
and projective (we have AT = AP hence A¥ = A and therefore
(S1)H = (S1)H). If the theorem is proved for the H-algebra S, then it
also holds for the P-algebra A by the argument above.

Thus we can now assume that S is a primitive projective P-algebra
which is simple as a k-algebra, so that S = Endg (V) for some k-vector
space V. We note that the assumption that k is algebraically closed is
used here in an essential way. From Example 10.8, the action of P on §
lifts to a group homomorphism P — S* where P is a central exten-
sion of P with central subgroup k*. By Proposition 21.3, the central
extension splits uniquely so that we obtain a unique group homomorphism
P — S* lifting the given action. In other words S carries a unique inte-
rior P-algebra structure inducing the given P-algebra structure. There-
fore V' becomes a module over the group algebra kP . The assumption
that S is primitive means that V' is an indecomposable kP-module and
the projectivity assumption means that V' is a projective kP-module by
Corollary 17.4. It follows now fom Proposition 21.1 that V' must be a free
kP-module of dimension one.

Let v be a free generator of V' over kP . Then theset {g-v | g € P}
is k-basis of V. Let i be the projection of V onto k-v with kernel
@g21 k-gv. Then i is a primitive idempotent of S (by Proposition 1.14)
and 9% is the projection onto k-gv. Thus 1g = dep 9% is an orthogonal
primitive decomposition of 1g, proving the theorem. O

Theorem 23.1 above has several consequences, some of them being just
other forms of the main result.

(23.2) COROLLARY. Let P be a p-group, let A be a P-algebra, let
P, be a pointed group on A and let @), be a defect of P, . Then for
every j € « there exists i € v such that j = tg(i) and % -i =0 for
every g€ P— Q.

Proof. This is an easy exercise which is left to the reader. O

(23.3) COROLLARY. Let N be a normal subgroup of G of index a
power of p. Let A be a G-algebra and let j be a primitive idempotent
of A® such that j € AY for some subgroup H of G containing N .
Then there exists a primitive idempotent i of AH such that j = t%(i)
and % -i=0 forevery g€ G—H .

Proof. Since G/N is a p-group, we can apply the theorem to the
(G/N)-algebra AN and to the subgroup Q = H/N . O
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Of course the main theorem is just the case N =1 in this corollary.
We use again this more general setting for the statement of the next result.

(23.4) PROPOSITION. Let N be a normal subgroup of G of index a
power of p and let H be a subgroup of G containing N . Let A be a
G-algebra and let i be a primitive idempotent of A” such that % -i=0
for every g € G — H . Then j =t% (i) is a primitive idempotent of A% .

Proof. Tt is clear that j =) 9€[G/H] 9% is an orthogonal decomposition
in A, sothat j is an idempotent of A® . We prove that j is primitive by
induction on |G : H|. If M is a maximal subgroup of G containing H ,
then f =t} (i) is primitive in AM by induction. Since G/N isa p-group,
the maximal subgroup M/N is normal in G/N and so M <G . This im-
plies that j =5 9elG/M] 9f is an orthogonal decomposition in AM | which
is primitive since each 9f is primitive. Let j = >\",jx be a primitive
decomposition of j in AY. Since j € A§,;, we have j\ =jrj € A,
and by Corollary 23.3, there exists a primitive idempotent iy € AM such
that jy =t (ix) = > geic/m %in is an orthogonal decomposition. Thus
we obtain two primitive decompositions of j in AM :

- T -y %

9€[G/M] A=1 ge[G/M]

For reasons of cardinality, it follows that m = 1. This means that j is
primitive in A% , as required. O

Recall that a subgroup H of G is called subnormal if there exists a
series of subgroups

H:H0<H1<...<Hr_1<HT:G

such that H; is a normal subgroup of H;;; for each ¢ < r —1. It is
well-known that any subgroup of a p-group is subnormal. As a corollary
of Proposition 23.4, we obtain Green’s indecomposability theorem (gener-
alized to the case of interior algebras).

(23.5) COROLLARY (Green’s indecomposability theorem). Let H be a
subnormal subgroup of G of index a power of p and let B be a primitive
interior H-algebra. Then the interior G-algebra Indg(B) is primitive. In
particular if P is a p-group and if B is a primitive interior (Q-algebra for
some subgroup @ of P, then Indg(B) is primitive.
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Proof. Let H = Hy < Hy < ... < H,_1 < H. = G be a series of
subgroups with H; < H;y; for each ¢. By induction it suffices to prove
the result for each successive quotient H;iq/H;. In other words we can
assume that H is normal in G'. The image of 1p under the canon-
ical embedding d% : B — Resg Indfl(B) is the primitive idempotent
i=1®1®1 of Ind%(B)¥ . By the construction of induced algebras,
we have lpgc(p) = > geicym % and %-i=0 forevery g€ G—H. By
Proposition 23.4 above, 1Indg(3) is a primitive idempotent of Indf[(B)G ,
as was to be shown. O

In particular, for OG-modules, we deduce the classical indecompos-
ability theorem of Green.

(23.6) COROLLARY. Let H be a subnormal subgroup of G of index a
power of p and let M be an indecomposable O H-module. Then Ind$ (M)
is an indecomposable OG-module. In particular if P is a p-group and if
M is an indecomposable OQ-module for some subgroup @ of P, then
Indg (M) is indecomposable.

Proof. We can apply the previous result to the interior H-algebra
B = Endp(M) and the interior G-algebra Ind$(B) 2 Ende(Ind$ (M)
(see Example 16.4). The indecomposability of a module is equivalent to
the primitivity of the corresponding interior algebra. O

Exercises
(23.1) Prove Corollary 23.2.

(23.2) Let M be an indecomposable OG-lattice with vertex @ and let P
be a Sylow p-subgroup containing @ . Show that the index |P : Q| divides
the dimension of M over O. [Hint: Reduce to the case of a p-group by
showing that every indecomposable summand of Resg(M ) has a vertex
contained in some conjugate of @ .]

Notes on Section 23

The Green indecomposability theorem appears in Green [1959]. The gen-
eralization 23.1 is due to Puig [1979], but the proof we have given is dif-
ferent. Yet another proof appears in Kiilshammer [1994]. The result of
Exercise 23.2 is due to Green [1959].
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§24 INVARIANT IDEMPOTENT DECOMPOSITIONS
FOR p-GROUPS

In this section, we express the main result of the previous section in a
different form, namely as an existence result for idempotent decompositions
which are invariant under the action of a p-group. In addition we prove a
uniqueness result for such decompositions.

Let P be a p-group, let A be a P-algebra, and let I be an or-
thogonal idempotent decomposition of 14 . The decomposition I is called
P-invariant if % € I for every i € I and z € P. In other words P acts
on the idempotents in the decomposition. If P; denotes the stabilizer of i,
the sum of all idempotents of the orbit of 4 is equal to tﬁj (i) . Thus we
obtain in  A” an orthogonal decomposition 14 = 2ic(P\]] t5 (i) , where
[P\I] denotes a set of representatives of the P-orbits in I. If in addition
each i is primitive in A" and belongs to a local point of AP (that is,
brp,(i) # 0), the P-invariant decomposition I will be called local. Since
a conjugate of a local point is local, it suffices to require that brp, (i) # 0
for some ¢ in each orbit.

The existence of P-invariant decompositions which are local is a spe-
cial feature of p-groups (Exercise 24.1). We prove now their existence and
main properties. We say that a decomposition I of 14 is a refinement of
a decomposition J of 14 if every j € J can be written j = Zielji for
some subset I; of I (and then I is the disjoint union of the subsets I;
for j € J). We also say that J can be refined to the decomposition I .

(24.1) THEOREM. Let P be a p-group and let A be a P-algebra.

(a) There exists a P-invariant local decomposition of 14 .

(b) For every P-invariant local decomposition of 14 and for every idem-
potent ¢ in this decomposition, the sum of all idempotents in the orbit
of i is a primitive idempotent of A" .

(c) Any P-invariant orthogonal decomposition of 14 can be refined to
a P-invariant local decomposition. In other words a P-invariant de-
composition is maximal (in cardinality) if and only if it is local.

(d) All P-invariant local decompositions of 14 are conjugate under the
group (AP)*.

Proof. (a) Let E be a primitive decomposition of 14 in AF. For
each e € F, choose a minimal subgroup @, such that e € Age (namely
a defect group of the point containing e). By Theorem 23.1, we ob-
tain a primitive idempotent i, € A% and an orthogonal decomposition
e=th (i) = > ze[p/qQ.] ‘e - Therefore

{Yic | ec E,xe[P/Qc]}
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is a P-invariant decomposition of 14 . By construction, i, belongs to
a source point of the point containing e, and in particular i, is local.
Therefore this is a P-invariant local decomposition.

(b) The sum of all idempotents in the orbit of i is equal to e = t{ (i)
where @ is the stabilizer of i. Since 4 is primitive in A? by definition
of a local decomposition, e is a primitive idempotent of A” by Proposi-
tion 23.4.

We prove (c) and (d) together by establishing the following state-
ment: if I is a given P-invariant local decomposition of 1,4, then any
P-invariant decomposition of 14 can be refined to a conjugate of I (by
an element of (AF)*). For the given local decomposition I, each idem-
potent e; =t (i) is primitive in A” by (b). Thus

E={e [ ic[P\I]}

is a primitive decomposition of 14 in A”. Let J be any P-invariant
decomposition of 14, and for each j € [P\J], let f; = tf;j (j), where
P; is the stabilizer of j. Since each f; belongs to A?, the orthogonal
decomposition

F={f;lieclP\J]}

in A" can be refined to a primitive decomposition of 14 in AP . By
Theorem 4.1, any two primitive decompositions of 14 are conjugate un-
der (AF)*. Thus replacing the given decomposition I by a conjugate,
we can assume that E is a refinement of F'. Thus each f; decom-
poses as an orthogonal sum of some of the primitive idempotents e; ,
namely f; = Zei e, € Here we have decomposed FE as a disjoint union
E=Ujepn B -

Now we claim that it suffices to prove the result when there is a single
orbit in the decomposition J . Indeed suppose that this is proved and, for
each f; € F', apply the result to the P-algebra f;Af;, the P-invariant
decomposition { % | « € [P/P;]} of f; (with one orbit), and the local
P-invariant decomposition I; , where ¢ € I; if and only if 7 appears in the
decomposition of f; (that is, ¢ = f;if; ). Note that the sum of the orbit
of i (namely t} (i)) belongs to E;, and that we have decomposed I as
the disjoint union of the subsets I; for j € [P\J]. Now, if the result holds
in f;Af;, there exists an invertible element u; € (f;Af;)F such that I;
is a refinement of the conjugate decomposition of f;

{u; %ju; | x € [P/P]}.

But the elements u; for j € [P\J] are orthogonal (because u; = fju;f;)

and clearly u=> je[p\J] U; is an invertible element of AP (with inverse
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Zj u;l ). The conjugations by u and by u; are equal on f;Af;. There-
fore the decomposition I (which is the union of all the decompositions I; )
is a refinement of the conjugate decomposition

whu™ = {u;u; | j € [P\J), = € [P/P}]).

This establishes the claim above.

From now on we assume that there is a single orbit in the decomposi-
tion J. Then F' is a singleton and f; = 14 . In particular the equation
1a = th;j (j) implies that the P-algebra A is projective relative to the
subgroup P;. Each primitive idempotent e; = tﬂ (i) of AT belongs to
a point «; with defect group P; and source point containing i, because
brp,(i) # 0 by assumption. On the other hand P,, is projective relative
to the subgroup P; since A is projective relative to P;. Therefore by
Proposition 18.5 and the fact that all defect groups are P-conjugate, we
have *P;, < P; for some x € P (depending on ¢). According to our
needs in some of the arguments below, we shall change the choice of the
orbit representatives [P\I], and this will have the effect of replacing P;
by some conjugate.

We proceed by induction on |P : P;|. There is nothing to prove when
P; = P (because J = {14} in that case), so suppose that P; < P. Let R
be a maximal subgroup of P containing P;. Since P is a p-group, R is
a normal subgroup of index p. Consider the idempotent g = tllﬁj (§) € AR

so that we have 14 = tg(g) . Choose a primitive decomposition H of g
in AR and let h € H. Since the idempotents { %*g |z € [P/R]} are
orthogonal, so are the idempotents { *h |z € [P/R]}, because we have
%h = ®h %y = %g°h . Therefore, by Proposition 23.4, t£(h) = e, is a prim-
itive idempotent of AP, for every h € H. Applying th to g we ob-
tain that E' = {e; | h € H} is a primitive decomposition of 14 in AP .
By Theorem 4.1, any two primitive decompositions of 14 are conjugate
under (AF)*. Thus replacing the given decomposition I by a conjugate,
we can assume that £/ = E . In other words H is in bijection with [P\I],
we can write h; for the element of H corresponding to i € [P\I], and
then t}g(}h) =€;.

Since a conjugate of F; is contained in P;, hence in R, we have
P, < R because R is a normal subgroup of P. For each ¢ € [P\I],
we set k; = t3 (i), so that we have e; = t;(k;). By Proposition 23.4
again, k; is a primitive idempotent of Af, and since R is a normal
subgroup, %k; is also a primitive idempotent of AR, for every z € P.
Thus { %; | z € [P/R]} is a primitive decomposition of e; in A®. On
the other hand { ®h; | z € [P/R]} is also a primitive decomposition of e;
in A" and we can view both decompositions as primitive decompositions
of the unity element of e;ARe;. By Theorem 4.1, they are conjugate by



824 . Invariant idempotent decompositions for p-groups 187

an element c¢; € (e;Afe;)*. Thus cihicfl = ?k; for some x € [P/R].
Changing the choice of the orbit representatives [P\I] (that is, replacing ¢
by %, hence k; by %k;), we can assume that c;h;c; L=k, for every
i€ [P\I].

Now the elements ¢; are orthogonal (because ¢; = e;c;e; ) and clearly
c = Zie[P\ )G 1s an invertible element of AR (whose inverse is equal
to ¢l = Zie[P\I] ci_1 ). Since the conjugations by ¢ and ¢; are equal
on e;Afe; , we have

cge ! = Z chic™t = Z k; and

i€[P\I] 1€[P\I]
th(cge™!) = Z th(k;) = Z e; =14.
i€[P\I] i€[P\I]

But since the idempotents {%g | € [P/R] } are orthogonal, it follows that

th(egtn(ge )= > > Heg)Uge )= > *egge™)

z€[P/R] ye[P/R] z€[P/R]

= tE(cge™) =14.

Thus b = tL(cg) is invertible with inverse b=! = t£(gc™!) (because
b='b =1, by a similar computation or because of Exercise 3.3). Now since
h; appears in a decomposition of g, it is orthogonal to *¢ for x ¢ R, and
we have

bhib™t= Y Y (ge™) = chic™ =k .

z€[P/R] y€[P/R]

This proves that one can conjugate by b € (AF)* instead of ¢ € (AF)*.
Thus replacing the given decomposition I by its conjugate under b, we
can assume that k; = h; for every i € [P\I], that is, ¢} (i) = h; .
We are now in the situation where we have an R-invariant decompo-
sition of g
% |yelr/P)

with a single orbit and a local R-invariant decomposition of g
(24.2) {%i|ie[P\]],y€[R/P]}

(for which the sum of one orbit is ¢4 (i) = h; ). These decompositions lie in
the R-algebra gAg with unity element g. Since |R: Pj| < |P : P;|, the
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induction hypothesis implies that there exists d € (gAfg)* such that the
decomposition 24.2 is a refinement of the conjugate decomposition of g

(24.3) {d¥jd™" | y e [R/P}]}.

This implies in fact that djd~! = 2ie[P\1] tii (1) for a suitable choice of
orbit representatives [P\I] (Exercise 24.3), but we do not need this explicit
statement. The argument used above when we replaced ¢ by b= tg(cg)
works again. Thus we can replace d € (gAfg)* by a=th(d) € (AT)*,
having inverse a=! = t£(d~!) (note that d = gdg). Indeed we have
aja”! = djd~' by an easy computation. Taking the union of the con-
jugates under P/R of both decompositions 24.2 and 24.3, we obtain that
the decomposition I is a refinement of the conjugate decomposition of 14

aJa™' ={a%a"' | € [P/P)]},

as required.

There is a slightly subtle point which remains to be checked. We have
made successive assumptions by replacing I by a suitable conjugate, but
we have not verified that each previous assumption remained unchanged
by the next conjugation. This is left as an exercise for the reader. O

Exercises

(24.1) Show that Theorem 24.1 only holds for p-groups by finding an
example of a G-algebra A in which there is no local G-invariant decom-
position of 14 .

(24.2) Let P be a p-group and let A be a primitive P-algebra. Show
that all P-invariant local decompositions of 14 are conjugate under the
multiplicative group 1+ J(AF).

(24.3) Prove the statement appearing just after 24.3 in the above proof,
namely that djd=! = YielP\I] t}]zj (i) for a suitable choice of orbit repre-
sentatives [P\I].

(24.4) Prove the statement appearing at the end of the above proof,
namely that each successive conjugation of I has not influenced the pre-
vious assumptions.
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(24.5) Let P be a p-group, let A be a P-algebra, and let I be a
P-invariant decomposition of 14 . Prove that the following statements
are equivalent.

(a) The number of orbits is maximal.

(b) i is primitive in AP for every i€ I.

(c) tp (i) is primitive in AP for every i e 1.

Notes on Section 24

Theorem 24.1 is due to Puig [1979]. A generalization appears as Lemma 8.9
in Puig [1988a], for groups having a normal Sylow p-subgroup.

§25 COVERING EXOMORPHISMS

We consider in this section G-algebra exomorphisms F : A — B which are
“essentially surjective” on all subalgebras of fixed elements. This condition
allows us to lift pointed groups from B to A and will be essential in some
applications for relating the defect theory in A with that of B. Finally
we prove an important theorem which gives a local characterization of such
exomorphisms.

First we work with -algebras. A homomorphism of O-algebras
f:A— B is called a covering homomorphism if the homomorphism

A-L BT BlJ(B)

is surjective, or equivalently if B = f(A)+J(B). Here ng : B — B/J(B)
is the canonical map onto the semi-simple quotient of B. In particular
any surjective homomorphism is a covering homomorphism.

(25.1) LEMMA. Let f : A — B be a covering homomorphism of

O-algebras.

(a) f is unitary.

(b) f(J(A) € J(B).

(¢c) f induces a surjective homomorphism f : A/J(A) — B/J(B) such
that fra=7pf.
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Proof. (a) Note first that a surjective homomorphism f: A — B is
necessarily unitary, because 1p — f(14) = f(a) for some a € A and so
1B — f(lA) = f(a-lA) = (13 — f(lA))f(lA) = (0 since f(lA) is an idem-
potent. Now if f is a covering homomorphism, then 7p f(14) = 15,5(p)
by the surjectivity of mp f. The two idempotents f(14) and 1p have
the same image in B/J(B) and are therefore conjugate, hence equal.

(b) Since g f : A — B/J(B) is surjective onto a semi-simple algebra,
the kernel contains J(A). This means that f(J(A)) C J(B).

(c) This follows immediately from (b). O

Let f: A — B be a covering homomorphism. The surjective ring
homomorphism 7p f induces an injective map Max(B/J(B)) — Max(A)
(via inverse images). But since the map Max(B/J(B)) — Max(B) in-
duced by 7p is always a bijection, we obtain an injective map

Max(B) — Max(4), m~ f(m).

In terms of points, using the canonical bijection between points and maxi-
mal ideals (Theorem 4.3), we obtain an injective map

ff:P(B) — P(A)

such that for 8 € P(B), the point a = f*(8) is characterized by the
property o € f~!'(mg), or in other words f(a) € mg. But for every
i € a, the idempotent 7pf(i) is primitive in B/J(B), because 7pf
is surjective (Theorem 3.2), and therefore f(i) is primitive in B (Theo-
rem 3.1). Thus f(a) consists of primitive idempotents, so that the relation
f(a) € mg is equivalent to the inclusion f(a) C 3. Also 7p f(a) = 3,
where 3 = 7g(B) € P(B/J(B)), but without passing to the semi-simple
quotient, the relation f(a) C 8 need not be an equality. Thus S is the
conjugacy closure of f(«).

If f: A/J(A) — B/J(B) denotes the surjective ring homomorphism
induced by f and if we let again o = f*(3), then we have f(@) = f3,
where @ = ma(a) € P(A/J(A)). If we write A/J(A) = [[,ep(a) S(@)

with S(a) simple, then Ker(f) = [][,c;S(a) for some subset I of P(A),

and f induces an isomorphism [oeray—1 S(a) = B/J(B). The set
P(A) — I is exactly the image of f*, while for every a € I, we have
7w f(a) = {0}, hence f(a) = {0}. If we map further onto multiplicity
algebras, then for every 8 € P(B), the surjection mg f : A — S(8) induces
an isomorphism fz : S(a) = S(B), where a = f*(8). In particular the
multiplicities mg and m, are equal. By Lemma 4.13, the image of B3B
in B/J(B) isequal to the minimal ideal isomorphic to S(3) , and similarly
for AaA. Since f(AaA) C BB and because of the isomorphism fgz , we
deduce that f(AaA) has the same image in B/J(B) as BSB . Therefore
f(AaA) + J(B) = BB + J(B) . We record these facts for later use.
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(25.2) LEMMA. Let f : A — B be a covering homomorphism of
O-algebras, let f*:P(B) — P(A) be the associated injective map, and
let oo € P(A). Then

fla)

{0} it a ¢ Im(f"),
fla)cp

if a= f*(p).

1Nl

In the latter case f induces an isomorphism fz : S(a) = S(B) (so that
in particular mq = mg ) and moreover f(AaA)+ J(B) = BSB+ J(B).

If f: A— B is a covering homomorphism such that Ker(f) C J(A),
then f is called a strict covering homomorphism. This corresponds to the
requirement that the map f: A/J(A) — B/J(B) be an isomorphism, or
equivalently, that the subset I above be empty. This in turn is equivalent
to the condition that the induced map f*:P(B) — P(A) is a bijection.

We now show that the existence of an induced map f* which preserves

multiplicities characterizes covering homomorphisms.

(25.3) PROPOSITION. Let f: A — B be a homomorphism of O-alge-

bras. The following conditions are equivalent.

(a) f is a covering homomorphism.

(b) There exists a map f* : P(B) — P(A) such that if € P(B) and
a= f*(B8), then f(a) C B and my, =mg.

Moreover f is strict if and only if f* is a bijection.

Proof. We have already seen that (a) implies (b). Assume conversely
that f* exists. Let 8 € P(B) and a = f*(8). In a primitive decom-
position of 1,4, choose one idempotent 7 € o and write all of the other
idempotents in « as conjugates of 7. Thus

1A:Zi“ +e,

uelU

where U is a finite set of invertible elements of A (of cardinality m,, ) and
e is the sum of all idempotents in the decomposition which do not belong
to «. As in the proof of Theorem 7.3, the elements u~liv for w,v € U
satisfy the orthogonality relations 7.4

i v Yiw — t~Yw ifu=w,
0 otherwise,
and span a subalgebra which is mapped onto the multiplicity algebra S(«) .
By assumption f(i*) € 8 for every v € U and so 7g f(i*) is a prim-
itive idempotent of S(f). Since the decomposition »_ .., mg f(i") is
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orthogonal and since by assumption |U| = m, = mg, we must have
> wer T8 f(i") = 1g() (otherwise 1g(g)y — > ,cp mp f(i*) is non-zero and
we obtain a decomposition of 1g(z) of size > mg ). It follows in particular
that mg f(14) = 1g(s) (and 75 f(e) = 0), and so 7g f(u) is invertible
in S(B). Therefore we have a primitive decomposition

Lsp) = Z(Wﬁ fiyyme

uelU

and, as above, the elements 7s f(u)"'mg f(i) 7 f(v) (where u,v € U)
span the whole matrix algebra S(5). This proves that 7g f is surjective.

This argument works for every point S € P(B) and we therefore
obtain a surjective map

(I] =) :A— ] S® =B/IB).

BEP(B) BEP(B)

This completes the proof that f is a covering homomorphism because this
map is the canonical map np f : A — B/J(B). The other assertion about
strict covering homomorphisms has already been proved. O

It happens in practice that one knows in advance that f is unitary.
In that case, one can ignore multiplicities and use the following character-
ization of covering homomorphisms.

(25.4) COROLLARY. Let f: A — B be a unitary homomorphism of

O-algebras. The following conditions are equivalent.

(a) f is a covering homomorphism.

(b) For every a € P(A — Ker(f)), there exists € P(B) such that
f(a) C B, and whenever two points a,a’ € P(A — Ker(f)) satisfy
f(a) €8 and f(a/) C B, then a=a'.

Moreover f is strict if and only if no point of A is contained in Ker(f) .

Proof. By Lemma 25.2, (a) implies (b). Assume conversely that (b)
holds. In a primitive decomposition of 1,4 , choose one idempotent i, € a
for each a € P(A) and write all of the other idempot