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Preface 

In the following pages* we have given an introductory account of 
the subject of tensor analysis and differential geometry. I t  is hoped 
that this volume will be suitable for a one-semester course at the grad- 
uate level, for students of pure mathematics as well as for those students 
whose primary interest is in the study of certain aspects of applied 
mathematics including the theory of relativity, fluid mechanics, elasticity, 
and plasticity theory. 

T. Y .  THOMAS 

Los Angeles, California 
September, 1960 

* Prepared under Contract Nonr-908(09), Indiana University, NR 041 037. 
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1. Coordinate Manifolds 

Consider the set of all ordered sets of n real numbers (xl,. . . ,x") 
where n is any positive integer. This set will be called the arithmetic 
space of n dimensions. We can refer to the individual sets (xl, . . . ,x") 
as the points of this space and to the real numbers xl,. . . ,x" which 
enter into the representation of any point (xl,. . .,x") as the 
coordinates of the point. 

Suppose that a set of geometrical points P (undefined objects 
in the usual mathematical terminology) can be put into (1,l) 
correspondence with the points of the arithmetic space of n dimen- 
sions. This correspondence P t) (xl, . . . ,x") is called a coordinate 
system, more fully a coordinate system covering the set of geomet- 
rical points. If P t) (yl, . . . ,y") is another correspondence or 
coordinate system for the same set of geometrical points P we 
can write 

(XI, . . . , x") t-) P t) ( yl, . . . , y"). 

The (1,l) correspondence (xl,. . . ,x") t) (yl,. . . ,y") thus estab- 
lished between the points of the arithmetic space of n dimensions 
is called a coordinate transformation. It can also be expressed by 
writing 

(1.1) y i  = fi(x1,. . . , x " ) ;  x i  = Iy(y1, .  . .,y"), 
where i = 1,. . . ,n and the f and C$ are functions of the coordinates 
xl,. . . ,x" and yl, . . . ,y" respectively. Since the correspondence 
(xl,. . .x") tt (yl,. . .,y") is (1,l)  it is clear that the first set of 
equations ( 1.1) has a unique solution which is given by the second 
set of these equations and conversely the second set of equations 
has a unique solution given by the first set of the equations. The 
correspondence (XI,. . . ,x") t+ (yl, . . . ,y") can also be interpreted 
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2 1. COORDINATE MANIFOLDS 

as a permutation or displacement of the arithmetic space of n 
dimensions into itself. However an interpretation of this character 
must be abandoned in favor of the strict concept of the coordinate 
transformation when we deal with point sets which cannot be 
covered by a single coordinate system. 

A function of one or more variables which is continuous and all 
of whose derivatives exist and are continuous to derivatives of 
order u inclusive is frequently called a function of class C". In  
particular a continuous function is said to be of class Co and a 
function possessing continuous derivatives of all orders is of class C". 
To include the case of analytic functions we introduce the special 
symbol u = A and say that an analytic function is of class CA. 
If all the functions f in the first set of equations (1.1) are of class C" 
it is a well known result in analysis that the functions 4 appearing 
in the inverse relationships are likewise of class C". When the 
functions f ,  and hence the functions 4, are of class C" we say 
that the coordinate transformation defined by (1.1) is of class C". 

It can readily be observed that a coordinate transformation 
of class C" with u > 0 ,  which we interpret to include the analytic 
case u = A ,  is regular in the sense that the functional determinants 
Iay*/axkI and lax' /aykl are everywhere different from zero. In  
fact by differentiation of (1.1) we have 

where 89 is Kronecker's delta with S,? = 1 for i = j and Sf = 0 
for i # i. In  writing (1.2) we have employed the summation conven- 
tion in accordance with which a repeated index in a term is 
understood to be summed over the permissable values of this 
index; we shall continue to use the summation convention 
throughout this book. Taking the determinant of each member of 
the relation (1.2) we obtain 



1. COORDINATE MANIFOLDS 3 

Since neither of the determinants in (1.3) can be infinite a t  any 
point P by hypothesis, it follows from (1.3) that these deter- 
minants cannot vanish at  P, i.e. the transformation (1.1) is regular 
as above stated. 

The entity consisting of the underlying geometrical point set 
under consideration and the totality of coordinate systems related 
by transformations (1.1) of class C" covering this point set, is 
called a simple coordinate manifold of class C"; the integer n 
which gives the number of coordinates xl,. . . ,x" is called the 
dimensionality of the manifold. Any coordinate system involved 
in this definition of the simple coordinate manifold of class C" 
is said to be allowable. Now select any allowable coordinate system S 
for this manifold (assuming u # 0) and consider all allowable 
coordinate systems which are related to S by proper coordinate 
transformations (1. l), i.e. transformations (1.1) whose functional 
determinants are everywhere positive. The underlying geomet- 
rical point set together with these latter coordinate systems is an 
oriented simple coordinate manifold of class C". If we select one 
of the allowable coordinate systems of the original simple manifold, 
not appearing among the coordinate systems of this oriented 
simple manifold, it is clear that another oriented simple coordinate 
manifold of class C" will be determined by the process described. 
Thus there are two and in fact, as is easily seen, only two oriented 
simple coordinate manifolds of class C" determined by any given 
simple coordinate manifold of class C" (u # 0). One of these may 
be said to be positively oriented and the other negatively oriented. 

Consider any set of abstract elements a,b,c,. . . for which there 
is defined a law of composition, usually referred to as multiplica- 
tion, such that the composition or product ab of any ordered pair 
of elements a and b is an element c of the set. The set of elements 
in question is then said to form a group relative to this law of 
composition if the following three conditions are satisfied. First, 
a(bc) = (ab)c,  i.e. the associative law holds; second, there exists a n  
element i ,  called the uni t  element, such that a i  = i a  = a for a n  



4 1. COORDINATE MANIFOLDS 

arbitrary element a of the set: and third, to each element a there cor- 
responds a n  element a-l, called i ts  inverse, such that aa-l = a-la = i. 
In particular if the commutative law holds, i.e. ab = ba, the group 
is said to  be Abelian. Subgroups can be defined in an obvious 
manner. Various other group concepts might be considered here, 
e.g. isomorphic groups, conjugate and factor groups, etc., but their 
discussion is not necessary for our purpose. 

Now suppose that the elements a,b,c,. . . are the above coor- 
dinate transformations (1.1) of class C" relating the coordinates 
of allowable systems of a simple coordinate manifold of class C" 
and that the product of any two such elements is the resultant 
transformation which obviously belongs to the set under considera- 
tion. If the unit element i is taken to be the identity transforma- 
tion and the above element ,-l is defined as the transformation 
inverse to the coordinate transformation a ,  it is easily seen that the 
transformations (1.1) constitute a group. We may refer to this 
group as the group of the manifold. Similar remarks of course 
apply to the coordinate transformations which relate the allowable 
systems of the two oriented simple coordinate manifolds determined 
by any simple coordinate manifold of class C". 

A generalization of the above concept of the simple coordinate 
manifold is obtained by assuming that any point P of the un- 
derlying geometrical point set is contained in a neighborhood N 
(open set) the points of which can be placed in ( 1 , l )  correspondence 
with the points of an open set of the arithmetic space of n dimen- 
sions. The resulting correspondence P t) (xl, . . . ,x") defines 
a coordinate system for the neighborhood N .  Now consider another 
neighborhood N' and a coordinate system P tf (yl, . . , ,y") for this 
neighborhood. If the intersection N n N' is non-vacuous we can 
combine the correspondences P t) ( xl ,  . . . , x") and P tf ( yl, . . . , y") 
to obtain a coordinate transformation ( x l , .  . . ,x") t-+ ( yl, . . . , y") 
valid in the intersection of the neighborhoods N and N ' .  The entity 
consisting of the underIying geometrical point set together with 
the totality of allowable coordinate systems defined over its 
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neighborhoods is now called a coordinate manifold of n dimensions; 
coordinate transformations between the coordinates of allowable 
coordinate systems are said to be allowable. When the allowable 
coordinate systems are restricted by the requirement that the 
functions f and 9 in the equations ( l . l ) ,  which represent the 
allowable coordinate transformations, are of class C", we say that 
the manifold is a coordinate manifold of class C". It is commonly 
assumed that any ( 1 , I )  transformation ( 1 . 1 )  of class C" of the 
coordinates xl,. . .x"  of an allowable system x is allowable and 
leads to an allowable coordinate system y for the manifold of 
class C". Transformations ( l . l ) ,  relating the coordinates of two 
allowable systems x and y of a coordinate manifold of class C" 
(u # O), will be regular; the proof is identical with the above proof 
of the corresponding result for simple coordinate manifolds of 
class C". 

With the exception of the brief discussion of scalars in Sect. 2 
the nature of our work requires the differentiability of the functions 
f or 9 defining the coordinate transformations ( 1 . 1 ) .  Hence it 
will generally be assumed without special mention that the case 
u = 0 is excluded in any reference to a coordinate manifold of 
class C". It will also be assumed implicitly that the class of the 
manifold is such as to permit the operations of differentiation 
involved in the problem under consideration and with this un- 
derstanding the explicit designation of the class C" of the manifold 
will usually be omitted. 

Remark. An example of a geometrical point set which cannot be 
covered by a single coordinate system is furnished by a sphere in ordinary 
Euclidean metric space (defined in Sect. 12). Thus it is obvious that 
the extension of the simple coordinate manifold to the more general 
coordinate manifold, e.g. the coordinate manifold of class C", is necessary 
to meet the requirements of differential geometry. 



2. Scalars 

The quantity called a scalar is a point function f ( P )  defined 
over a specified set of points P. When the scalar f ( P )  is defined 
over the underlying point set of a coordinate manifold of class C" 
it is sometimes called a scalar field and it can be represented by 
suitable functions of the coordinates of the various allowable 
coordinate systems covering the manifold. Thus we have 
f (  P )  = +( xl,. . . , x n )  where + is a function of the coordinates xl,. . . , xn  
of points P in the x system. Similarly f ( P )  = $(X1,. . .,X") in the 
X system, etc. This gives relations such as 

$ ( X I , .  . . ,X.) = $( 21,. . . ,P), 

when x l , .  . . ,xn and 9, .  . .,X" are the coordinates of the same 
geometrical point P in the x and X systems. The above func- 
tions +(x)  and $ ( x )  are called the components of the scalar in the 
x and 3 systems respectively. 

The scalar f may be said to be of class C" if the functions 
giving its components in the various coordinate systems are of 
class C". In the case of an analytic coordinate manifold (coordinate 
manifold of class C A )  there is obviously no restriction on the class 
of the scalars which one may consider to be defined over the 
manifold. However for scalars of class C", defined over non- 
analytic coordinate manifolds of class C", we must have w # A 
and w < u in order that the class of the component functions + 
may be preserved under coordinate transformations. 
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3. Vectors and Tensors 

Let P be an arbitrary point of a coordinate manifold of class C" 
and suppose that, corresponding to each of the allowable coordinate 
systems containing P,  there is an ordered set of n numbers 
associated with this point. Thus if we denote the coordinate 
systems by x,  X, x,  etc., we have 

v1 ,v2 , .  . .,vn 
51,fi2,. . .,fin 

relative to the x system, 

relative to the X system, 

. .,in relative to the x system, 

.................................... 

..................................... 

We then think of an entity having vl, .  .. ,vn as components at  P 
relative to the x system; 9,. . .  ,fin as components a t  P relative 
to the X system; etc. This entity is called a vector at  the point P 
if its components relative to any two of the above coordinate 
systems, for example the x and X systems, satisfy relations of 
the form 

More fully this vector is called a contravariant vector. A slight 
modification of the above relations (3.1) leads to the concept of 
the covariant vector at the point P as the entity having components 
v1,v2, .  . .,v, at  P relative to the x system, etc., such that the 
components transform under coordinate transformations by the 
equations 

( 3 4  

7 



8 3. VECTORS AND TENSORS 

Now consider the equations 

(i = 1 , .  . . ,n), (3.3) 

expressing the relation between the components of the above 
contravariant vector in the X and coordinate systems. Combining 
(3.1) and (3.3) we have 

But these are precisely the equations relating the components of 
the vector in the x and systems according to our definition. The 
fact that no new relations are obtained by the above process of 
elimination is expressed by saying that the equations (3.1) have 
the transitive property. Similar remarks of course apply to the 
equations (3.2) for the transformation of the components of a 
covariant vector. 

If v and w are covariant and contravariant vectors respectively 
at  a point P of a coordinate manifold the algebraic combination 
v,w’ defines a scalar. This follows from the fact that the quantities 
v,w‘, 77’73, etc., have the same value at  P. Thus from (3.1) and (3.2) 
we obtain 

The scalar defined by v,wi is called the scalar product of the vectors 
v and w. 

A vector defined over a coordinate manifold is called a vector 
field. The class of the vector field is, by definition, the class of 
the functions giving the vector components in the various allowable 
coordinate systems of the manifold. Obvious limitations can be 
placed on the class of the vector field corresponding to the case 
of the scalar discussed in Sect. 2. Since all quantities including 
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scalars, vectors and tensors, which will enter into our considera- 
tions, will habitually be defined over a coordinate manifold or 
a t  least within a region (open set) of such a manifold the term 
jield will be applicable but will usually, for brevity, be omitted 
from the discussion. 

The definition of the tensor appears as a direct extension of the 
definition of a vector. Thus consider the following sets of 
quantities 

Ti:::;  

f'i:::i 

Ti:::;  

relative to the x system, 

relative to the X system, 

relative to the 2 system, 
- .  . 

................................ 

................................ 

defined in the various allowable coordinate systems of a coordinate 

take on values arbitrarily from the range 1,. . .,n. The entity 
having the above quantities as its components, relative to the 
coordinate systems indicated, is called a tensor provided the 
relations between any two sets of these components, e.g. the 
components Ti: : : ,  and Ti::: , ,  are of the form 

manifold of class C", where each of the indices i,. . . , j , k , .  . . ,m can 

. .  - .  . 

in the intersection of the neighborhoods covered by the x and X 
coordinates systems. The demonstration of the transitive property 
of the equations (3.1) and (3.2) can be extended immediately to 
the equations (3.4). 

The tensor defined above is sometimes referred to as a mixed 

In 
tensor to indicate the fact that both superscripts i , .  . . , j  and 
subscripts A,. . .,m appear in the symbol of its components. 
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. .  
particular a tensor having components T'...l is called a con- 
travariant tensor and one with components T k , , , , ,  is called a 
covariant tensor. The number of indices in the symbol for the 
components of a tensor is called the rank of the tensor. 

The following is a list of some of the simple algebraic operations 
that can be performed on tensors; all of these operations can be 
proved directly by recourse to the law of transformation (3.4) of 
the components of the tensor. 

(a) ADDITION 

. .  
If the components A;:::; and B:;;;: of two tensors A and B 

contain the same number of covariant and contravariant indices 
the corresponding components of these tensors can be added to 
produce the components of a single tensor. Thus 

are the components of a tensor c called the sum of the tensors A 
and B .  Similarly the difference between the corresponding compo- 
nents of the tensors A and B constitutes the components of a 
single tensor. 

(b) MULTIPLICATION 

. .  
If we multiply all the components Ad;:;l, of a tensor A by 

all the components Bt::::  of a tensor B,  not necessarily of the 
same rank as the tensor A ,  we obtain a set of quantities 

C,": . . j  p . . . q  
.m 1 . .  . s  

. .  
= A;:::,, 

which constitute the components of a new tensor. In particular 
a new tensor is obtained by multiplying the components of a 
given tensor by a scalar. 
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(c) CONTRACTION 

The components A:;::;': of a tensor can be used to define a 
set of quantities 

@. . .k - i i . .  . k  
q . . . v -  A$q. .r  

which possess tensor character. The components B;;;;: are said 
to be obtained from the components A$:::': by contracting the 
indices i and p .  Any index of the set ij.. .k  and any index of the 
set p q .  . , r  can be contracted in this manner to form the compo- 
nents of a new tensor. 

A tensor is said to be symmetric with respect to two con- 
travariant indices (superscripts) or with respect to two covariant 
indices (subscripts) which appear in the symbol of its components 
if the interchange of these indices leaves unaltered the values of 
all components of the tensor. It is skew-symmetric if the interchange 
of the indices changes the algebraic sign of all components of the 
tensor. One can readily verify that the symmetric or skew- 
symmetric properties of the components of a tensor persist under 
transformations of coordinates. A tensor which is symmetric or 
skew-symmetric with respect to all adjacent pairs of contravariant 
and covariant indices in the symbol of its components is spoken of 
simply as a symmetric or skew-symmetric tensor. 

Remark 1. It is an interesting observation that the quantities 8; 
defined above are the components of a mixed tensor. This follows in 
fact from the identical relations 

Remark 2. By a simple modification of the transformation equa- 
tions (3.4) one arrives at the definition of a relative tensor or tensor of 
weight IY where W is an arbitrary constant. The modified equations (3.4) 
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giving the transformation of the components of a relative tensor of 
weight W are 

where the quantity lax/a%l is the functional determinant or jacobian 
of the transformation relating the coordinates of the x and 3 systems. 
I t  is readily shown that the relations (3.5) enjoy the transitive property 
which is a basic requirement in the concept of a tensor. The terms 
mixed, contravariant, covariant, etc., carry over to tensors of arbitrary 
weight W as do also the above properties of addition, multiplication 
and contraction. Thus two tensors of the same kind, i.e. which have 
the same number of covariant and contravariant indices and the same 
weights, can be added to give a tensor of this kind. However when the 
product of two tensors of weights W and W' is formed the result is a 
tensor of weight W + W'. When one speaks of a tensor without explicit 
mention of its weight it is customary to understand a tensor of weight 
zero or absolute tensor, as it is sometimes called, unless it is clear that 
the tensor in question has weight W # 0 and the omission of the weight 
is merely for the purpose of brevity. 



4. A Special Skew-symmetric Tensor 

Iufl = 

u; u:, u’3 

u; u; u; = 2 & u;u;u;, 

u; u; u; 
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It is readily seen that  the above equations (4.1) can be extended 
to  give 

I.,”] ePqr = etrk ‘p” ”: u E r  ( 4 4  

where the p,q,r are free indices, i.e. these indices can be assigned 
values 1,2,3 at will. Thus both members of (4.2) reduce to  zero if 
two of the indices p,q,r have the same value; this is a direct con- 
sequence of the skew-symmetry of the etlR. On the other hand 
according as p,q,r is an  even or an  odd permutation of 1,2,3 the 
two members of (4.2) become Iu,”I or - Iuil respectively. Replac- 
ing the elements u,” in (4.2) by the corresponding coordinate 
derivatives ax’ la2 we now have 

(4.3) 

But this means that  the skew-symmetric quantities etlk are the 
components of a relative covariant tensor e of weight - 1  in the 
three dimensional coordinate manifold under consideration. 

It is an interesting observation that  the quantities e , l k  can also 
be regarded as the components of a contravariant tensor of weight 
+ 1 in the three dimensional coordinate manifold. Denoting the eLlk 
by the symbols calk in connection with this result we first show that  

Iufl ePqr = ezlk up u; ul,  (4.4) 

corresponding to  (4.2). Hence, identifying the a; with the deriv- 
atives axZ/axl, we obtain 

by which the result is established. 

Remark 1. By an obvious extension of the above definition of the 
quantities e , jk  we can define skew-symmetric quantities e, , .  , . k  or ei i .  ’ ,‘, 
involving n indices, which can be used to obtain equations similar to 
(4.2) and (4.4) for the expansion of a determinant of the 92-th order. 
From these equations it will follow, by the above procedure, that the 
e i j . . . k  or e i i . , . k  constitute the components of a skew-symmetric covariant 
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or contravariant tensor of weight - 1  or f l  respectively in an n 
dimensional coordinate manifold. 

In particular the quantities eup and eaB defined by 

I ell = 0; e12 = 1 ;  eZ1 = - 1 ;  eZ2 = 0, 

1 ;  e22 = 0, $1 = 0 ; 812 = 1 -  821 = - 

are the components of a skew-symmetric covariant tensor of weight - 1 
and a skew-symmetric contravariant tensor of weight + 1  in a two 
dimensional coordinate manifold. Between the components eUp and d* 
we have the relations 

eapeUy = s;. (4.6) 

Correspondingly we readily observe that the skew-symmetric compo- 
nents e,,k and eafk, which are defined in a three dimensional coordinate 
manifold, are such that 

e,,, e’pq = s,” sg - @s;. (4.7) 

Remark 2. Equations of the type (4.2) and (4.4) can be used to 
deduce several of the well known properties of determinants. By 
assigning equal values to two of the indices P,q,r in (4.2) we obtain the 
result that a determinant vanishes if two of its columns are identical; 
also by interchanging two of these indices it follows that the interchange 
of two columns of a determinant changes its algebraic sign. Similarly 
it follows from (4.4) that a determinant vanishes if two of its rows are 
identical and that the interchange of two rows produces a change of 
algebraic sign in the value of the determinant. 

These equations likewise permit an easy derivation of the well known 
theorem on the multiplication of two determinants of the n-th order. 
Thus, using the representative relations (4.2) and (4.4), we have 

/u;/ IbLl = (lu:lep,,)bf bi b j  = ellk ui ut bf bi bj. 

But, substituting c: for the combination ui  b% in the right member of 
this relation, we can write 

Iu;I Ibil = calk c; c~ c! = IciI. 
Expressed in words this shows that the product of the determinants 

and jbil is the determinant lcrl in which the element in the i th 
row and j th column is the sum of the products of the corresponding 
elements in the i th row of ]a;] and the jth column of lbfl. 



5. The Vector Product. Curl of a Vector 

The tensor e defined in Sect. 4 can be used in the definition of 
the well known vector prodztct of two vectors A and B in a coordinate 
manifold of three dimensions. According as the vectors A and B 
are covariant or contravariant vectors we define their vector 
product to be the vector C having components represented by 
one or the other of the following two sets of equations 

Cs = eiik Ai Bk; Ci = eEik Ai Bk. (5.1) 

As defined by the equations (5.1) the vector product of two absolute 
covariant vectors A and B is a relative contravariant vector C of 
weight + 1 while the vector product of two absolute contravariant 
vectors A and B is a relative covariant vector C of weight -1 

in the three dimensional coordinate manifold. 
An analogous application of the tensor e furnishes the definition 

of the curl of a vector V in a coordinate manifold of three dimensions. 
Thus if V is an absolute covariant vector whose components Vi (x )  
are differentiable functions of the coordinates x1,x2,x3 of the 
allowable coordinate systems covering the manifold we see imme- 
diately from the equations of transformation of the components 
of V that the quantities 

are the components 
Hence the quantities 

wi = 

of a covariant tensor of the second rank. 
Wi defined by 

are the components of a relative vector W of weight + 1 in the 
three dimensional manifold. The vector W defined by ( 5 . 2 )  is 
called the curl or rotation of the vector V.  

16 



6. Riemann Spaces 

The concept of distance does not enter into the preceding 
discussion. We now introduce this concept by the assumption that 
the distance ds  between two infinitely nearby points P and Q in 
a coordinate manifold of n dimensions is given by 

where the right member of this equation is a positive definite quad- 
ratic form in the coordinate differences dx% of the points P and Q;  the 
coefficients gzI can be taken to be symmetric in the indices i and i 
without loss of generality. A coordinate manifold of n dimensions 
over which such a quadratic differential form is defined is called 
an n dimensional R iemann  space. 

The use of (6.1) to determine distance involves the condition 
that the quadratic form in the right member of this equation is 
invariant under allowable coordinate transformations. But from 
this invariance one can immediately infer that the coefficients g,, 
are the components of a symmetric covariant tensor, i.e. 

as the result of an allowable coordinate transformation x t , X  in 
the manifold. The tensor having the quantities g,, as its components 
is called the fundamental metric tensov of the Riemann space. We 
shall say that the Riemann space is of class C" if the components gii 
are of class C" in the allowable coordinate systems covering the 
manifold. In the case of a Riemann space of class C" (w # A )  
it will be assumed that coordinate transformations x t+ X of 
class C" + l  are allowable since such transformations will preserve 

17 
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the class of the functions gii without being unnecessarily restricted; 
for an analytic Riemann space, i.e. a Riemann space of class C", 
it is required that the allowable coordinate transformations x t) 3 

be of class C A .  

Since the quadratic differential form (6.1) is positive definite 
by hypothesis it follows that the determinant g of its coefficients 
is positive, i.e. explicitly 

> 0. (6.3) 

By equating the determinants of the two members of the equations 
(6.2) and then extracting the square roots of both sides of the 
resulting equation we obtain 

provided the determinant lax/aZl  is positive. Now if the covering 
of the Riemann space by its allowable coordinate systems is such 
that the functional determinant or jacobian lax/a3j of every 
coordinate transformation is always positive the Riemann space 
will be said to be oriented (Sect. 1) .  Hence the quantity Vgappears  
as a relative scalar of weight 1 in the case of a n  oriented Riemann 
space. 

Use of the relation (6.4) permits us to replace the relative tensor 
e defined in Sect. 4 by an absolute tensor E.  For the special case 
of three dimensions this tensor E will have components E , ! ~  or &'fk 

defined as follows 
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Replacing the e’s by the corresponding E’S  in the equations (5.1) 
and ( 5 . 2 )  we now have 

Hence in an oriented Riemann space of three dimensions we can 
define the vector product of two absolute vectors A and B as 
the absolute vector C whose components are given by the first 
or second of the relations (6.5) according as the vectors A and B 
are covariant or contravariant respectively; also the curl or rota- 
tion of an absolute vector V can be defined as the absolute vector W 
with components W* given by (6.6). 

The fundamental metric tensor having the symmetric covariant 
components g,, can be represented by a symmetric contravariant 
tensor whose components g’7 are defined by the equations 

(6.7) 
cofactor of g,, in the det. !g I l /  

$7 = 
I& I 

To show that the symmetric quantities gL7 given by (6.7) in the 
allowable coordinate systems in the Riemann space are the 
components of a contravariant tensor let us first observe that 

g”g Em = 8;. (6.8) 

For definiteness in our demonstration let us suppose that the gij 
are the components of the metric tensor in an x coordinate system 
and let us consider the equations corresponding to (6.8), namely 

which involve the metric tensor components gEi and the quantities 
gz, in an 3F system. From (6.2) and (6.9) we immediately obtain 

(6.10) 
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Now multiply both members of (6.10) by the quantity 

and sum on all repeated indices in the usual manner. 
leads to the relations 

But this 

(6.11) 

and hence proves the contravariant character of the quantities g', 
defined by (6.7). 

By means of the covariant components g,, and the contravariant 
components gaT of the fundamental metric tensor we can modify 
the covariant or contravariant nature of a tensor by raising or 
lowering the indices in the symbol of its components. Thus the 
components T;k of a tensor T can be lowered or raised as  follows: 

Tmik = gim Tik ; TY = gmk Tik ; etc. 

Conversely we can pass from the above components T,, and Ti" 
to the original components Tjk by  this process of raising or lowering 
the indices in question. These various sets of components therefore 
appear as  the components of essentially the same tensor T .  

Remark 1. By means of the process of raising or lowering indices 
the scalar product of a covariant and a contravariant vector, defined in 
Sect. 3, can be extended to the case where both of the product vectors 
are covariant or contravariant in character. Thus1 the scalar product 
of the vectors A and B is the scalar g,, A Z  Ba or the scalar g'l A ,  B, 
according as A and B are contravariant or covariant vectors. 

Remark 2. In accordance with the relations (6.8) the sf can be 
interpreted as the result of raising one of the indices of the components 
g,j. Hence the Kronecker 6 appears as a mixed form, i.e. a tensor whose 
symbol involves both covariant and contravariant indices, of the 
fundamental metric tensor. 
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Remark 3. I t  is a well known algebraic result that a positive definite 
quadratic form can be reduced to the sum of the squares of its variables 
by a linear transformation. Hence at  any point P of a Riemann space 
the differential form (6.1) can be reduced to the sum of the squares 
of the quantities dxE as the result of an allowable transformation of the 
coordinates of the manifold. In other words it is always possible to 
choose a coordinate system relative to which the quantities g,, = S,, 
a t  an arbitrary point P. Moreover this can be accomplished by a proper 
coordinate transformation, i.e. a transformation whose functional 
determinant is positive. In fact if the transformation xt) 3 changing 
the values of the g,, to the values d,, at P is not proper then the g,, 
can be reduced to the values S,, at P by the proper transformation x t) y 
which is the resultant of the transformation xt+ f and the transforma- 
tion 3- y such that i1 = - y1, f k  = y k  for k = 2 , .  . .,n. Hence 
i t  i s  always posszble to select an allowable coordinate system relative to 
which the components g,, of the fundamental metric tensor have the values 
S,, at a n  arbitrary point P of a n  oriented Riemann space. 

Remark 4. Corresponding to the above quantities E , l k  and &'Ik we 
can define quantities 

in the case of an oriented Riemann space of two dimensions; as so. 
defined the E~~ and the are the components of an absolute skew- 
symmetric covariant tensor and an absolute skew-symmetric contra- 
variant tensor respectively. I t  is now readily seen that the relations 
(4.6) and (4.7) can be modified to read 

(6.12) 

In fact, choosing a coordinate system relative to which the components 
of the fundamental metric tensors are equal to the corresponding 
Kronecker deltas a t  a point P of the two and three dimensional oriented 
spaces, the two sets of relations (6.12) become (4.6) and (4.7) respectively 
a t  the point P ;  hence the validity of (6.12) in general follows from the 
fact that the members of these relations are individually the components 
of absolute tensors as implied by their indices. 

Other relations between the components of these tensors E are 

,aS = $" gpT E a r  ; 

&ijk - - g ia g jb g kc E a b c ;  

&ap = gaa  g p z  EaT, 

&i lk  = g a o g l b g k c @ c -  

(6.13) 

(6.14) 
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Both (6.13) and (6.14) can be proved by the argument used to establish 
the relations (6.12). Similarly we can show the validity of the relations 

F Eaa E ~ P  = gaDr (6.15) go, Eaa &'P = g"P; 

(6.16) 1 gd Pik &bqr = giq gkr - gir g k q ,  

g* Eajk Ebqr = g j 9  g k r  - gjr g k 9 ~  

which will have application in the following work. In this connection 
it should be noted that the strict invariance of (6.15) and (6.16) under 
coordinate transformations does not require that the Riemann space 
be oriented due to the manner in which the E ' S  are involved in these 
relations. 

In  the remainder of this section we shall comment briefly on 
the measurement of lengths, angles, volume, etc. which are possible 
in a Riemann space because of the metric structure. 

(a) LENGTH OF A VECTOR 

By definition the square of the length of a contravariant 
vector 6 is given by gZi 5' 67. Similarly the square of the length 
of a covariant vector 6 is gii ti ti. As so defined the length of a 
vector is a scalar which is obviously independent of the covariant 
or contravariant representation of the vector. 

(b) LENGTH OF A CURVE 

By a regular curve C in a Riemann space we shall understand 
a locus which is determined by equations of the form xi = +(t) 
in the various allowable coordinate systems where the functions 
+;(t) are differentiable and such tha t  

d# d# 
dt dt g,, ~ ~ > 0. (6.17) 

Since the form (6.1) is positive definite the inequality (6.17) is 
equivalent to  the condition that  not all of the derivatives of the 
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functions @(t)  will vanish for any value of the parameter t. The 
length s of a regular curve C in a Riemann space from the point A ,  
corresponding to the value t = to of the parameter, to the variable 
point P,  determined by an arbitrary value of the parameter t ,  
is by definition 

(6.18) 

Since the integrand in this equation is a scalar the length s will be 
independent of coordinate transformations in the Riemann space. 
Moreover the equation (6.18) can be regarded as defining a ( 1 , l )  

parameter transformation t t)s since the derivative dsldt cannot 
vanish on account of (6 .17) ;  hence the parameter s, which can 
thus be introduced, will represent the distance, measured along 
the curve C, of the variable point P from the above fixed point A .  
As defined by (6.18) the length of the curve C is easily seen to be 
independent of the parameterization. 

(c) ANGLE DETERMINED BY TWO DIRECTIONS. ORTHOGONALITY 

Let P be the components of a non-vanishing contravariant 
vector 5 ,  i.e. not all the quantities P are equal to zero, a t  a point P 
of a coordinate manifold of n dimensions. We then say that the 
set of vectors having the components k P ,  where k is an arbitrary 
positive constant determines a direction at P; for brevity we refer 
to this as the direction 5 .  The direction associated with the set 
of vectors with components - k p  is said to be opposite to the 
direction 5. 

The angle 8 determined by the directions 5 and 5 in a Riemann 
space is defined by the equation 

(6.19) 
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This formula has the required property that  the angle 8 remains 
unchanged if the vector E is replaced by  any of the vectors kE 
which are associated with the same direction as the vector E and 
a similar remark of course applies to the vector 5. Moreover if 
5" = - 5" so that  5 and 5' determine opposite directions the right 
member of (6.19) reduces to  - 1 and hence 8 is 180". The 
vectors or directions 6 and 5 are said to  be orthogonal or perpendic- 
ular if the right member of (6.19) is equal to  zero. 

In  particular if E and 5 are un i t  vectors, i.e. if the lengths of 
the vectors are equal to 1 ,  the above formula becomes 

cos e = gii ~ i .  (6.20) 

Remark 5. To show that it is legitimate to employ the formula (6.19) 
for the determination of the angle 8 we must prove that this formula 
is consistent with the requirement Jcos 81 < 1 where the bars denotes 
absolute value. Let us first suppose that the two vectors are propor- 
tional, i.e. that we can put = a p  where a is a positive or negative 
constant. Then (6.19) gives cos 8 = 1 for a positive and cos 8 : - 1 
for a negative; in the first case the angle determined by the directions 
6 and 5 is zero and in the second case it is equal to two right angles. 
Now assume that 6 and 5 are not proportional so that we cannot find 
constants ,u and v, not both zero, such that ,uEt + v? vanishes. Then 
make the substitution 7% = ,uEt + vr' in the quadratic form g,, qt 77 
which therefore becomes 

gt, 7' 7, = p2+(E,t) + 2,uv+(5,5) + v 2 + ( C 4 ,  

where 

(6.21) 

Since the 7' cannot all vanish for p, v not both equal to zero, it follows 
that 

I $ 4 E > E )  = g, P E , ,  

+ ( E L )  = g,, i? t-7,  

+(LO = g,, 5'" P .  

P u 2 + ( t 4  + 2,uv#(tL)  + v " ( 5 4  > 0, 

+ ( E L ) + ( L C )  - + " E L )  > 0, 

provided the real constants p, v do not both vanish; hence 
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since otherwise it would be possible to find real constants p,  v not 
both zero such that the left member of (6.21) would be equal to zero. 
Substitution of the above quadratic forms for the I,!I in this last inequality 
shows immediately that the absolute value of the right member of (6.19) 
is less than unity. 

(d) VOLUME OF A REGION 

The volume of a region R in a Riemann space is defined by 
the integral 

(6.22) 

where the integration is extended over the region R. As so defined 
the volume of R is independent of coordinate transformations, 
i.e. of the coordinate systems used to cover the region R. We 
shall not give a formal demonstration of this fact but will content 
ourselves with the observation that in the special case of a Euclidean 
metric space of three dimensions (defined in Sect. 12) referred to a 
system of rectangular Cartesian coordinates, with which one is 
primarily concerned in the physical applications, the relative 
scalar I/;= 1, and hence the above integral (6.22) reduces to the 
triple integral by which the volume of a region is expressed in 
books on elementary calculus. 

(e) GEODESIC CURVES 

Consider a regular curve C joining two points A and B of a 
Let the curve C have as its Riemann space of n dimensions. 

equations 

xi = rpfs), a < s < b, 

where s denotes the arc length measured from the fixed point A .  
Also consider a one parameter family of nearby curves which 
likewise join the points A and B and which have equations 

xi = * ( S , & ) ,  a < s < b, (6.23) 
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where the @ are continuous and differentiable functions of the two 
parameters s and E for values of s satisfying the above inequality 
and values of E in the neighborhood of E = 0. We assume that 
@(s, 0) = +(s), i.e. the curve of the family corresponding to  E = 0 
is the curve C. Also it follows that #'(a, E )  and @(b,  E )  are in- 
dependent of the parameter E since all curves of the family pass 
through the points A and B by hypothesis. 

The length of any curve of the family is given by 
b 

I ( & )  = ~ ~ ~ d s .  
a 

(6.24) 

If the first variation 61 = 0, the above curve C will be said to 
have a stationary length within the family of curves under consid- 
eration. A curve C will be called a geodesic if it has a stationary 
length within every family of curves (6.23). It can be shown that 
a geodesic curve C satisfies the system of differential equations 

where the functions r are defined by 

(6.25) 

(6.26) 

these functions are called Christoffel symbols and they will have 
an important application in the following work. 

Remark 6. To deduce the equations (6.25) let us first denote the 
expression under the radical in (6.24) by U for simplicity; then U = 1 
for E = 0 since the parameter s represents arc length along the curve C. 
To a first approximation the curve determined by a value of E (# 0) 
can be considered to be obtained by making a displacement of C such 
that the point of C, corresponding to the value s of the arc length, 
undergoes a displacement 

6 x i  = E p ( S ) ;  6 i - (E)  - - . 
a = O  
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The displacement 6xi vanishes a t  the end points A and B of the curve 
C. For the first variation of the length 1 defined by (6.24) we have 

or 

61 = $ d u d s ,  j 
since U = 1 for the curve C. Now 

Hence 

(6.27) 

(6.28) 

where we have put 

Substituting (6.28) into (6.27) and integrating by parts, we obtain 

when use is made of the fact that P(s )  vanishes a t  the end points A 
and B. Now the quantities P(s )  can evidently have arbitrary values 
for any value of the parameter s due to the generality permitted in the 
selection of the family of curves given by (6.23). Hence, putting 61 = 0,  
it follows that the bracket expression in the above relation (6.29) must 
vanish along C ;  this leads immediately to the equations (6.25). 

Among the totality of geodesic curves joining the points A 
and B in a Riemann space there will evidently be one possessing 
the least length of any geodesic joining these points; in particular, 
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if there is only one geodesic joining the points A and B,  this will 
be the curve of shortest length. For example, if our space is of 
the nature of the surface of a cylinder, curves such as C and C’ 
in Fig. 1 may be geodesics; in fact for this case there will be an 

infinity of geodesics determined by 
encircling the cylinder 0,1,2, .  . . times, 
the geodesic C being the curve of 
actual shortest length between the 
points A and B. There is an in- 
teresting property connected with 
any geodesic which can be stated 
roughly by saying that it represents 
the shortest curve between any two 
of its points provided these points 
are sufficiently close together. 

Along any integral curve of (6.25) 
the condition 

FIG. 1 ax; axi 
as as 

g,j ~~ =const. (6.30) 

is satisfied. To show this we have merely to differentiate the left 
member of (6.30) and then eliminate the second derivatives d2x i /ds2  
by means of (6.25); the expression so obtained then vanishes 
identically on account of (6.26). The constant in the right member 
of (6.30) must be positive since the form (6.1) is positive definite 
by hypothesis. For a geodesic curve C, where s denotes the arc 
length measured from a fixed point A of C, the right member of 
(6.30) is of course equal to unity. 



7. Affinely Connected Spaces 

To obtain the equations of transformation of the Christoffel 
symbols r ; k  let us first differentiate the relations (6.2) with respect 
to the coordinates xk; this gives 

aski agab ax. a x b  a X c  a z X a  a x b  ax. a v  
+gab-- f g a b = -  * (7.3) asi = a X c  a x k  axi axi as? a x k  asi 

__ _ _ _ _ . _ _ ~ ~  

Now if we combine the three equations (7.1),  (7.2) and (7 .3)  and 
take account of the symmetry of the second derivatives we are 
led to the following relations 

aP a z x b  - -  1 (ag,, aslk as”..) = g  
2 a5.k 8x1 as? a x w  a b - -  

Finally we multiply the two members of these latter equations by 
the corresponding members of the equations 

a x p  a s  
g l m  __ = g P q y .  

a x m  

equivalent to (6.11), and sum on 
equations are obtained, namely 

-,,, ax% a Z X 1  r,, -- = ~ 

a z m  a s  a x k  

29 

ax4 . 

repeated indices the desired 
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where the r ’ s  are given by (6.26) and the T’s by similar equations 
based on the components tr, of the metric tensor relative to the x 
coordinate system. 

From the above derivation it is evident that the equations (7.4) 

have the transitive property, i.e. if r : k  4 i=;k and F,’k + p;k 
by equations of the type (7.4) as the result of the successive 
coordinate transformations x +-+Z and f t + Z  then the elimination 
of the quantities ck between these two sets of equations will yield 
a set of equations of the type (7.4) relating the quantities r f k  

and f’:k relative to the x and 7 coordinate systems. Hence we can 
consider a coordinate manifold of n dimensions such that ( 1 )  a 
definite set of functions r z k  of the coordinates, not necessarily 
Christoffel symbols, is defined in each of the allowable coordinate 
systems of the manifold and ( 3 )  the functions r ; k  transform by 
the equations (7.4) under allowable transformations x -3 of the 
coordinates. The entity having the functions r ; k  as its components 
in the allowable coordinate systems of the manifold is called an 
affine connection and a manifold over which such an affine connec- 
tion is defined is called an affinely connected space of n dimensions. 
The affinely connected space will be said to be of class C‘ if the 
components r ; k  of the connection are of class c‘ in the allowable 
coordinate systems covering the manifold. It will be assumed 
specifically that in an affinely connected space of class C’ the 
allowable coordinate transformations are of class C‘+? for Y # A 
and that the allowable coordinate transformations are of class C A  
for an affinely connected space of class C A  (analytic affinely 
connected space) since these transformations preserve the class 
of the components r;k without being unduly restricted (cp. Sect. 6). 

In an affinely connected space one can consider the curves 
obtained as solutions of the system of differential equations (6.25). 
These curves, which constitute a generalization of the geodesics 
of a Riemann space, have been called paths and may be thought 
of as affording a means by which one can find his way about in a 
space with an affine connection. The body of theorems which 
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state properties of the paths as defined by a particular set of 
parameterized equations (6.25) is called the affine geometry of 
paths. As an example of an affine property we may mention the 
following result. If P i s  a n y  point of a n  affznely connected space 
there exists a domain D containing P such that a n y  two points P,  
and P, of D can be joined b y  one, and only  one, path C l y ing  in the 
domain  D. For a proof of this result the reader is referred to the 
original paper by J. H. C. Whitehead, Convex regions in the 
geometry of paths, Quart. Jour. of Math. 3 (1932), pp. 33 - 42. 



8. Normal Coordinates 

Consider the differential equations (6.25) which define the paths 
in an affinely connected space of class C A .  If we differentiate 
these equations successively we are lead to a sequence of equations 
which can be written in the following form 

d3XZ i dxi d X k  ax" 
as 3 as as as ' 

~ + r j k m - - -  = 0 

............................ 

............................ 

The coefficients r in these equations are given by the recurrence 
formula 

where M denotes the number of subscripts j k  . . .  st and the symbol P 
denotes the sum of the terms obtainable from the one inside the 
bracketts by permuting the set of subscripts cyclically. As so 
defined the above functions r have the property of being unchanged 
by any permutation of the subscripts. The parametric equations 
xi = +'(s) of a path C are determined by ( 6 . 2 5 )  and the above 
sequence of equations in conjunction with the initial conditions 

(8.1) 

In fact we have 

32 
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where the right members are convergent power series for suffi- 
ciently small values of s. A path C is therefore uniquely determined 
by the specification of a point P and a direction with components 
5‘“ at  P. Putting yi = F s  the above series becomes 

and this series will converge in a domain D defined Iy’( < a’, 
where the a’s are sufficiently small positive constants. Since the 
Jacobian determinant of the right members of (8.2) is equal to 1 
at  the point P, the equations (8.2) can be solved so as to obtain 

y* = x’ - pz  + A’ ( p ,  x - p ) ,  

where A’ is a multiple power series in x’ - p z  beginning with second 
order terms. Hence (8.2) defines a coordinate transformation to 
a system of coordinates y z  such that the equations y’ = Ps, where 
the 6’s are arbitrary constants, represent a path through the 
origin of the system, i.e. the point P ;  conversely any path through 
P can be represented in this way. The coordinates y’ are called 
normal coordinates. To any point Q with coordinates 4% in the 
domain D defined by ly’l < a’, a path can be drawn from the 
origin of the normal coordinate system. For example y z  = q’s 
are the equations of such a path and this path will lie entirely 
in the domain D;  as is easily seen there is one, and only one, such 
path through the origin and the point Q. 

The normal coordinates y* are determined uniquely by the x 

coordinate system and a point P,  this point being identified with 
the origin of the normal coordinate system. Let us now transform 
the coordinates x’ by an analytic transformation x t , X  and let 
US then define the normal coordinates j jL  which are determined by 
the Z coordinate system and the above point P. We seek the 
analytical relation between the coordinates y* and j j ’  of these two 
normal coordinate systems. Now by the transformation x - 3  

the equations X’ = #(s) of a path C determined by the initial 
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conditions (8.1) go over into the equations Xi = @(s) and the 
initial conditions (8 .1)  become 

where the f i i  are the coordinates of the point P relative to the X 
system; also 

p = f k ;  

Now yi = 9 s  and j? = ps are 
path C with reference to the y 

a: = (‘)p. 

respectively the equations of the 
and j j  normal coordinate systems. 

Hence if we multiply both members of the first set of equations 
(8.3) by the parameter s, we obtain 

along the path C .  But any point Q in a sufficiently small neigh- 
borhood of P is joined to P by a unique path; hence the relation 
(8.4) holds throughout the neighborhood of the point P and we 
have the following result. 

W h e n  the coordinates x‘ undergo a n  analytic transformation 
x W X  the normal coordinates y$  determined b y  the x coordinate 
system and a point P suffer a linear homogeneous transformation (8.4) 

with constant coefficients. Thus the normal coordinates y* are 
transformed like the components of a contravariant vector. They 
do not, however, define a vector in the narrow sense, but are the 
components of a “step” from the origin of the normal coordinates 
to the point having the coordinates y$. An arbitrary step determined 
by the points P and Q can be represented by the coordinates of 
the point Q in a normal coordinate system associated with the 
point P,  i.e. which has the point P as its origin. 

There is an alternative method of treating normal coordinates 
which is of some interest. Let us suppose that the components r ; k ( x )  

become Clfh(y) in the normal coordinate system, so that 
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( 8 . 5 )  

The equations of the paths in normal coordinates will then be 
given by 

Since the equations of a path through the origin are of the form 
y$ = Fs, it follows from (8.6) that 

p tk = 0 

all this path. 
we see that 

Multiplying these latter equations through by s2 

‘;k(y) yi y k  = ‘ 9  (8.7) 

and these equations must hold throughout the normal coordinate 
system since they are true along all paths through the origin; in 
other words the equations (8.7) are satisfied identically in the normal 
coordinate system. 

Equations (8 .7 )  can be used to define the normal coordinates y’. 
From (8.5) and (8.7) we obtain 

These differential equations uniquely determine a functional 
relation between the x i  and the yi when taken in conjunction with 
the initial conditions 

y i  = 0 when xi  = pi, 

In fact if we differentiate (8.8) repeatedly and substitute these 
initial conditions, we obtain the equations (8.2), in which the r’s 
have the values preciously determined. 
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To prove the relation (8.4) between the normal coordinates y i  
and p as the result of their definition by means of the differential 
equations (8.8) we first construct the equations of transformation 
between the components c,?k and e i t k  of the affine connection in 
these two normal coordinate systems, namely 

Multiplying each side of (8.9) by yiyk and summing on the indices j 
and k ,  we obtain 

(8.10) 

in consequence of the equations (8.7) with reference to the normal 
coordinates p. By the definition of the normal coordinates the 
relation between the yi and must be such as to satisfy the 
conditions 

where the constants a; are defined by (8.3). The fact that (8.4) 
constitutes the relation between the normal coordinates yi and p 
then follows by observing jirst that (8.4) satisfies (8.10) and the 
conditions (8.11) and second that (8.10) has a unique solution 
satisfying the conditions (8.11). 

T h e  equations (8.7) characterize the coordinates y i  as normal 
coordinates, i.e., if c i k  are the components of aff ine connection in a 
system of coordinates yi, assumed to have i ts  origin yi = 0 at some 
point P of the aff ine connected space, and if the equations (8.7) are 
satisfied identically, then the yi are normal coordinates. To see this 
let us determine the normal coordinate system 9 having its origin 
at the origin P of the y coordinate system. The normal coordinates 
yi will then be given as solutions of the system of differential 
equations 
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subject to  the initial conditions 

Hence yi = 9' since this satisfies the initial conditions and also the 
differential equations on account of (8.7); it follows tha t  the yz  
are  normal coordinates. 

Remark. Other equations besides (8.7) can be found which will 
characterize the normal coordinates y i  in the speciaI case of a Riemann 
space; this circumstance arises from the fact that, for a Riemann space, 
the components r i k  are Christoffel symbols based on the quantities gii. 
Hence equations (8.7) reduce immediately to the equations 

(8.12) 

where the #,f denote the components of the fundamental metric tensor 
in the normal coordinates yi. Now the relation (6.30), holding along 
any path of the space, implies the relation 

#ii 5i E f  = (#ij)o 5i Ei (8.13) 

along a path C, defined by yi = Eis, through the origin of the normal 
coordinate system, where the (#ii)o are the values of the components 

at  the origin of the normal coordinates; hence 

# i j  y i  y i  = (#..) ' 1  0 Yi Yi (8.14) 

in the system of normal coordinates yi. Differentiating (8.14) we 
obtain 

and these equations, when combined with (8.12), yield 

(8.15) 
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Now along the above path C we observe that 

in consequence of (8.15). Hence 

(8.16) 

since C is an arbitrary path through the origin of the normal coordinate 
system. The equations (8.16) characterize the coordinates y’ as normal 
coordinates. To prove this we have merely to differentiate (8.16) with 
respect to y k  and then multiply the resulting equations by y k  and y i  
in turn. We thus find the two following sets of equations 

(8.17) 

(8.18) 

But (8.17) and (8.18) imply (8.12) which characterize the y i  as normal 
coordinates. 

I t  can be shown that the coordinates yi are likewise characterized as  
normal coordinates b y  the equations (8.17). Observe that along the curve 
ya = 5% we have 

on account of (8.17). I t  readily follows from this result that (8.16) is 
satisfied in the y system and hence the y z  are normal coordinates. 
Carrespondingly the equations (8.18) characterize the y’ as normal 
coordinates. Thus, using (8.18), we have 

along the curve yi = t i s .  I t  follows that the bracket expression in this 
relation must vanish and hence 

in the y system. Differentiating this relation with respect to y k  and 
again making use of (8.18) we arrive a t  the identity (8.16) which proves 
the result. 



9. General Theory of Extension 
. .  

Let the relative tensor T of weight W have components Ta;;,'L(x) 
with reference to the coordinates xi  and the components t ; : : : k ( y )  
when referred to a system of normal coordinates yi which are 
determined by the x coordinate system and a point P a s  origin. 
We shall show that 

. .  

. .  at;:::: G'.'.'.L,, = (G) 0 1 

where the derivatives are evaluated at  the origin of normal 
coordinates, defines a set of functions Ti::  &(x)  of the coordinates 
x' which are the components of a relative tensor of weight W .  

Denote by 2:: : E ( j j )  the components of the tensor T with respect 
to the normal coordinates jj' defined in Sect. 8; then we have 

. .  

In view of (8.4) the derivatives in (9.2) are constants and hence 
. .  

at;:;;: ayp ap a y k  a y m  a y  ~ _ _  ____ sit. .q 
. v  = pY/aylw---- . . .  a p  a y 7  ayt ayi  ap . . * ap a p  * 

Evaluating at  the origin of normal coordinates we obtain 

. .  
which proves that the functions T;::  :',,, defined by (9.1) constitute 
the components of a relative tensor T ,  of weight W as above 
stated. This tensor is called the first extension or the first covariant 
derivative of the tensor T ;  the process of forming the first extension 
or first covariant derivative is referred to as covariant dif ferentiation. 
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By repeated covariant differentiation one obtains the second and 
high covariant derivatives. 

To construct the explixit formula involving the r's and their 
derivatives for the components of the tensor T I  let us first observe 
that 

from the well known process for the differentiation of a determinant. 
Hence, differentiating the equations 

with respect to yr, using (8.2) and (9.3), and evaluating at  the origin 
of normal coordinates, we obtain 

as the formula for the components of the tensor T I .  

In a similar manner we can show that the equations 

(9.5) 

define a set of functions T ; : : : , , p , , , q  of the coordinates X' which 
constitute the components of a relative tensor of weight W .  
This relative tensor will be called the rth extension of the relative 
tensor T provided the set p . .  .q contains r indices. From the 
definition by means of the equations (9.5) we see that the compo- 
nents TL:::, ,p. . .q are symmetric in the indices p . .  . q  added by 
the process of extension. Thus 

. .  
- 1 . .  .1 

T~'.'.'.k,p.. .q - T k .  . .m,u.  . . v ~  
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where u .  . .v  denotes any permutation of the indices 9. . .q. I n  
case Y = 1 this extension reverts to the covariant derivative 
previously considered. 

The formula for the components of the extension of the sum 
of two relative tensors of the same kind or the product of any two 
relative tensors is analogous to the formula for the differentiation 
of the sum or product of two functions; this follows directly from 
the definition of these components by means of (9.5).  

General formulae of extension can be calculated by the same 
process as that employed in the derivation of (9.4). The formula 
for the components .q of the rth extension of the tensor T 
of weight W # 0 involves the formulae for the first r extensions 
of T considered as a tensor of weight zero. We have 

. .  

(9.6) 
w i . . . f  

. .  
'A:; :I, = l a x / a ~  I f k . ,  .m* 

where 

p . . . q  ax. ax" a y  ayj iik. .... .im = T,. , . ~ a y k  . . . a y m  ax? * * * a x q .  
__ 

Differentiating (9.6) and evaluating at  the origin of normal 
coordinates, we obtain 

where 

and S( ) denotes the sum of the different terms obtainable from 
the one in parenthesis by forming arbitrary combinations of the 
subscripts p a . .  .bq which are distinct when account is taken of 
the symmetry in the added indices of differentiation. The expression 
for Ti : :  :k,,. , .s, where there are m indices in the set Y .  . . s, is given 
by the formula for the mth extension of a tensor of weight zero 

. .  
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having the components Ti.  k; these expressions do not in general 
constitute the components of a tensor for the case under considera- 
tion. The quantities A: .s have the values 

A,W = - wr;,, 
A: = - wr:rS + wr;, r:, + wzr:, r;,, 
.................................... 

.................................... 

in which the r:km, etc. are the functions of the r;k and their 
derivatives defined in Sect. 8. 

The formula for the components of any extension of a relative 
tensor T of weight W may be obtained by substituting the proper 
values of T~',','m,,...s and A:.., into (9.7). Thus we may write 

. .  

. .  . .  
T; : : : ; ,~  = T;;::;~~ - WT;::: , ,  r:,,, 

in place of the formula (9.4). In the following remarks we have 
given a few examples of formulae of covariant differentiation which 
are of frequent occurrence in the geometrical and physical applica- 
tions of this theory. 

Remark 1. As special formulae of covariant differentiation we have 

according as V is a covariant or a contravariant vector. Also 

The formula (9.9) gives the components of the second covariant 
derivative of a covariant vector v and is not, in general, identical with 
the second extension of V whose components are given by (9.10) for 
comparison. 
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If u is a covariant tensor of the second order the formula for the 
components of its covariant derivative is 

(9.11) 

In the case of a Riemann space for which the r ' s  are Christoffel symbols 
defined by (6.26) i t  follows readily from (9.11) that g ; j , k  = 0, i.e. the 
components of the covariant derivative of the fundamental metric tensor 
of a Riemann space are equal to zero. This fact can also be inferred by 
differentiating the identities (8.18) with respect to the coordinates yp 
and yq and then evaluating the resulting equations at  the origin of the 
normal coordinate system. By covariant differentiation of (6.8) and use 
of the condition &j,k = 0 we can immediately deduce the vanishing of 
the components of the covariant derivative of the contravariant form 
of the metric tensor. In  this connection we may also observe the 
vanishing of the components of the covariant derivative of the relative 
scalar defined by VFin an oriented Riemann space. 

Remark 2. If we contract the indices i and j in the second formula 
(9.8) we obtain the scalar quantity 

(9.12) 

This scalar is known as the divergence of the vector V .  By raising the 
index on the symbol of a covariant vector in a Riemann space the 
formula (9.12) can be applied to give the divergence of such a vector. 
Thus the divergence of a covariant vector V in a Riemann space is 
the scalar defined by 

(9.13) 

There is an interesting result which can be derived from (9.4) for 
the case where T is a contravariant vector of weight 1; denoting the 
components of this vector by W&,  we have 

Hence 

(9.14) 
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i.e. the sum of the partial derivatives appearing in the right member 
of (9.14) is a relative scalar of weight 1. It follows immediately from 
this result and the result in Remark 1 regarding the vanishing of the 
covariant derivative of the metric tensor and the covariant derivative 
of the relative scalar Vgof an oriented Riemann space that the quantity 

defines a relative scalar of weight 1 in the oriented space provided the 
V ,  are the components of a covariant vector. 

Remark 3. For the purpose of defining the normal coordinate system 
on which the above theory of covariant differentiation and extension 
of tensors is based we have assumed the analyticity of the components 
of affine connection r,"k and of the allowable coordinate transformations. 
I t  is now perhaps not without interest to observe that this strong 
condition of analyticity is unnecessary for the formal results of this 
section. In fact it is easily seen that the formulae which we have derived 
for the components of the covariant derivatives and extensions of a 
tensor T will possess the required tensorial character provided only 
that the operations of differentiation involved in the formulae can be 
carried out so that the components in question can be defined in the 
various allowable coordinate systems within the affinely connected 
space, Thus i t  is sufficient for the quantities Vt,? or V:? given by (9.8) 
to be the components of a tensor that the vector V be of class C1, i.e. 
that the components I/, or be continuous and have continuous first 
partial derivatives in the allowable coordinate systems, and that the 
affinely connected space be of class Co (see Sect. 7).  



10. Absolute Differentiation 

Let C be a parameterized curve defined by xi = &(s) in an 
affinely connected space and regular in the sense that the functions 
# ( s )  possess continuous derivatives which do not all vanish for 
any value of the parameter s (see Sect. 6). Let T be a tensor of 
weight W defined along C, i.e. specifically we regard the components 
Tf...;,L of T as functions of the parameter s of the curve C. We 
shall say that the curve C or the tensor T is of class C’ if the 
functions &(s) or the components TL.....’m(s) possess continuous 
derivatives with respect to s to the order Y inclusive in the allowable 
coordinate systems of the space and it will be assumed, without 
further mention, that the class of the curve C and the tensor T is 
such that we can perform the operations of differentiation involved 
in the following discussion. 

Now choose a point P on C and consider the normal coordinate 
system y which is determined by the point P,  i.e. P is the origin 
of the normal system, and the x coordinate system (assumed to 
contain the point P) .  Denote the components of T by t~...~.’m(s) 
in the y coordinate system. Then the equations 

. .  

(10. I )  

will define a set of functions DT~:;.?,JDs of the parameter s, 
relative to the x system, and these functions can be shown to be 
the components of a tensor of weight W under the allowable 
coordinate transformations of the space. In fact if we differentiate 
the equations (9.2), which give the relations between the compo- 
nents of the tensor T in the normal system y and the normal 
system j j ,  defined in Sect. 8, with respect to the parameter s and 
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then evaluate at  the origin in accordance with the equations (10. l ) ,  
we obtain 

. .  
The tensor of weight W having the quantities DTL;;,L /Ds as its 
components will be called the absolute derivative of the tensor T .  
By repeated application of this process of absolute differentiation 
we obtain the second absolute derivative, the third absolute deriv- 
ative, . . . with components which may be denoted by 

D D Ti:.:. D D DTi...j  -( Ds Ds 1; =[=( ' * * .  

The derivation of the formula for the components of the absolute 
derivative is analogous to the derivation of the relations (9.4), which 
give the components of the covariant derivative of a tensor, and 
consists in the differentiation of the transformation equations 
relating the components of the tensor T ,  relative to the x and y 
coordinate systems, with respect to the parameter s and then 
evaluating the equations obtained a t  the origin of the normal 
system. We thus deduce 

a dx' 
W TL; : r,, ~ 

Ds ds ds  

DT;.,::~, - dTi...i  . .  
k . . . m  ____ - 

+ (T:;::; r:, + . . . + T;:::: ri7) -, 
a s  1 

in which the derivatives dx'lds are obtained by differentiation of 
the parametric equations giving the curve C. 

Correspondingly the quantities D' T~:;.',,,/Ds' defined by 

(10.3) 
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can be shown to be the components of a relative tensor of weight W 
along the curve C ;  this tensor is called the r th  absolute extension 
of the tensor T and a general formula for its components can be 
constructed analogous to  the formula for the components of the 
r th  extension of the tensor T in Sect. 9. 

Remark. Vectors E defined along a parameterized curve C are 
said to be parallel with respect to the curve C if the absolute derivative 
of E vanishes along C. If 6 is a contravariant vector it follows from 
(10.2) that the condition for parallelism is 

(10.4) 

Now a solution p ( s )  of the differential equations (10.4) is uniquely 
determined by the initial conditions = 6; for s = so; accordingly 
the vector 6 having the solution functions p(s)  as its components along 
the curve C is said to be obtained from the initial vector to with compo- 
nents 6: by parallel displacement along C. 

The quantities dx*]ds are the components of a contravariant vector 
along the curve C; this vector is said to be tangent to C. Putting 
[* = dx"ds in (10.4) we now have 

(10.5) 

But these equations are identical with the equations which define the 
paths of an affinely connected space (see Sect. 7) .  Hence the tangent 
vectors are parallel with respect to the path. One may also express 
this result by saying that the paths of an affinely connected space can 
be generated by the continuous parallel displacement of a vector in 
its own direction. 



11. Differential Invariants 

In the further development of the theory of affinely connected 
spaces one is concerned with the determination of scalars and 
tensors whose components depend on the fundamental functions 
Ti, and their derivatives to a specified order. Such scalars or 
tensors are called affine differential invariants in the sense of the 
following definition. 

A tensor T will be called a n  aff ine differential invariant of order r 
if its  components 

are functions of the r ’ s  and their derivatives to the rth order, such 
that each component, retains its form as a function of the F’s and their 
derivatives under allowable coordinate transformations in the aff inely 
connected space. Replacing the tensor law of transformation 
involved in this definition by other equations of transformation 
possessing the required property of transitivity, we are led to the 
concept of differential invariants which generalize the affine tensor 
differential invariants. Thus the quantities r;k themselves are 
the components of a non-tensor differential invariant of order zero, 
i.e. the aff ine connection. 

In the case of the Riemann space we are concerned with inva- 
riants in the general sense of the affine differential invariants 
except that the components of the invariants in question depend 
on the g,, and their derivatives; if the components of the invariant in- 
volve derivatives of the g,, up to and including those of order r (> 0 ) ,  
the invariant will be called a metric differential invariant of ordcr Y .  

As an example of such an invariant we have the fundamental metric 
tensor with components ga7. Another example is furnished by the 
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quantities gii, defined by (6 .7) ,  which are the components of the 
contravariant form of the fundamental metric tensor. The 
Christoffel symbols given by (6.26) constitute the components of a 
non-tensor differential invariant of order 1, i.e. the affine connec- 
tion of this space. 

If we differentiate (8 .7)  twice and then evaluate at the origin 
of normal coordinates, we obtain 

c i k ( 0 )  O, (11.1) 

i.e. the components of affine connection cik in a system of normal 
coordinates vanish at the origin of the system. Hence the power 
series expansion for the components c k k  about the origin of normal 
coordinate takes the form 

in which the A’s are the derivatives of c i k  evaluated at  the 
origin, i.e. 

(11.3) 

The equations (11.3) can be taken to define the Ajkp.. .r as a 
set of functions of the coordinates xi of the origin P of the normal 
coordinate system corresponding to the definition of the extension 
of a tensor by means of normal coordinates (see Sect. 9).  The 
functions A ; k p , , , ,  so defined are the components of a tensor. To 
prove this we consider the transformation equations (8.9) in which 
the first derivatives are constants, and the second derivatives 
accordingly vanish, on account of the linearity of the relations (8.4). 
Repeated differentiation of (8.9), followed by evaluation at  the 
origin of normal coordinates, then gives 
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when use is made of the second set of equations (8 .3 ) ;  the tensor 
character of the quantities Afkp . . . ,  follows from (11.4). We call 
these tensors the affine normal tensors on account of their definition 
in terms of the components of affine connection in normal 
coordinates. 

The components of the affine normal tensors A are expressible 
in terms of the r i + k  and their derivatives; o n  this account these 
tensors become, b y  definition, tensor differential invariants of the 
a f f ine ly  connected space. If we differentiate the equations (8.5) 
and then substitute the values of the partial derivatives of the xi 
with respect to  the y ' s  at  the origin of normal coordinates, as 
computed from (8.2), we find 

It is evident that a continuation of this process, i.e. repeated 
differentiation of (8.5) followed by evaluation at the origin of 
normal coordinates, will determine the explicit formula for the 
components of any other affine normal tensor A .  

In  an analogous manner we can define an infinite set of tensor 
differential invariants, called metric normal tensors, whose compo- 
nents g i j , k . . . m  are given as functions of the coordinates xi by the 
equations 

(11.6) 

where #,(y) denotes the components of the fundamental metric 
tensor of a Riemann space in the system of normal coordinates 
as in the Remark in Sect. 8. The method of Sect. 9 can be applied 
to show that the quantities g 1 7 , k , . . m  defined by (11.6) enjoy the 
tensor law of transformation, namely 

ax. axe 
g t 7 , k . .  . m  = gab&. . . e  * * @ 1 

and also to deduce the explicit formula for these quantities. The 
first metric normal tensor having the components g l l , k  is identical 
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with the covariant derivative of the fundamental metric tensor 
and vanishes as we observed in the Remark 1 of Sect. 9. The 
formula for the components of the second metric normal tensor is 

agr i  ag,, ag ’ agar (11.7) 
a x k  am a x k  Im a x m  tm 

___ rr ___ rr -2 rm -~ rr 

+ grs ( r T k  r;m i- r& r ; k ) ,  

a x m  I k  

and is obtained by two fold differentiation of the tensor equations 
relating the components g,, and #,, and then evaluating at the 
origin of the normal coordinate system. By a continuation of this 
procedure we can evidently construct the explicit formula for the 
components of any metric normal tensor. 

Remark 1. The tensor differential invariant B whose components 
are given by 

(11.8) B! Ikm = A !  j k m  - A ?  Imk’ 

can be identified with the well known curvature tensor of an affinely 
connected or a Riemann space. Substituting the values of the A’s given 
by (11.5) into the equations (11.8) we obtain the explicit formula for 
the components of the tensor B in terms of the r , i k  and their first deriv- 
atives; thus we find that 

In the Riemann space this differential invariant admits a completely 
covariant form having the components 

(11.9) 

Remark 2. From the symmetry of the quantities r,i, in theindices j , k  
and from the definition of the affine normal tensors by the equations 
(11.3) it is seen that the components of any normal tensor A are 
symmetric in their first two subscripts and also in the remaining ones, i.e. 

A j k p . . . r  = ... r ;  A i k p . . . r =  A I k g . . . s ,  ( 1 1.10) 
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where 4. .  . s  denotes any permutation of the indices p . .  . r .  Another 
set of identities involving the components A ; k p . . . y  is obtained if we 
multiply both members of (11.2) by yi  y k ,  sum on the repeated indices j 
and k ,  and then take account of the relations (8.7). Thus we see that 

S ( A j k p . .  . y )  = O, (11.11) 

where S denotes the sum of the terms, not identical because of the 
symmetry relations ( l l . l O ) ,  which are obtainable by permutation of 
the indices j k p . .  .r  from the one in the parenthesis. 

I t  is seen immediately from the equations of definition (11.6) of 
the components of the metric normal tensors that we have 

gij .k  . . .  m = gj,,k ... m ;  g i j , k  ... m = gij,p . . . q ,  (11.12) 

where 6 . .  .q  denotes any permutation of the indices k . .  .m. To derive 
other identities satisfied by these components we have recourse to the 
equations (8.17). By repeated differentiation of (8.17), followed by 
evaluation at  the origin of the normal coordinate system, we find that 
in addition to (11.12) we have the identities 

S * ( g i j , k . .  . m )  = 0, ( 1 1.13) 

where S* denotes the sum of all the terms which can be formed from the 
one in the parenthesis by permuting the indices j k  . . . m cyclically. 

In particular let us observe that the above relations give 

A! Ikm = A i  kjmr * Aikm $- Aimj  f Akjk = 0, (1 1.14) 

and 

(1 1.15) 

as the identities satisfied by the components of the first affine normal 
tensor and the second metric normal tensor respectively. Corresponding 
to these identities there are the identities satisfied by the components 
of the curvature tensor B introduced in Remark 1, namely 

Bt ikm = - B j  Imk . Blkm + Bkmi + BLjk = 0, (11.16) 

and 
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The identity (11.16) can be verified by replacing the B ; k m  by the values 
given by (11.8) and then taking account of the identities (11.14). To 
verify (11.17) it will be helpful if one first deduces the relations 

B2,km = gzk,im - gjk,am (11.18) 

which can be obtained if we express the quantities B i k m  in terms of 
the g ,  and their first and second derivatives and then evaluate the 
equations (11.9) at  the origin of a system of normal coordinates. Sub- 
stitution of the values of the BIlkm given by (11.18) into (11.17) then 
leads to the verification of these identities. 

Remark 3. A complete set of identities of the components of a n  invariant 
i s  a set of identities furnishing all the algebraic conditions on these compo- 
nents ;  hence every identity satisfied by the components of the invariant 
can be deduced from the identities of the complete set by algebraic 
processes. For example, the components gij  of the fundamental metric 
tensor of a Riemann space satisfy the symmetry identities 

gii = gji. 

These relations constitute a complete set of identities of the components 
gii since a t  an arbitrary point P of the general Riemann space the compc 
nents gii are obviously subject only to the conditions (11.19). Similarly 
the identities 

( 1 1.19) 

r? = ri 
! k  kj 

are a complete set of identities of the components of affine connection 
of an affinely connected space. It can be shown that the identities 
(11.10) and (11.11) are a complete set of identities for the components 
A i k p , , . , ;  likewise a complete set of identities for the components 
&j,k ...m is furnished by the relations (11.12)-and (11.13). In particular 
the identities (11.14) and (11.15) are complete sets of identities for the 
components of the first affine normal tensor and the second metric 
normal tensor. Finally (11.16) and (11.17) give complete sets of iden- 
tities for the components of the curvature tensor of an affinely connected 
space and Riemann space respectively. 

For a proof of the above and other results on complete sets of 
identities and for a discussion of the various applications of the theory 
of differential invariants the reader is referred to the literature of this 
subject. 



12. Transformation Groups 

'We observed in Sect. 1 that the coordinate transformations of 
a simple coordinate manifold of class C" form a group whose 
elements, i.e. coordinate transformations, can be interpreted as (1,1) 

transformations of the arithmetic space of n dimensions into itself. 
By specializing this group, more precisely by limiting our attention 
to certain of its subgroups, we arrive at  various well known spaces, 
among these being the Euclidean metric space with which we shall 
be concerned in much of the following discussion in this book. 
In order to consider this problem in the proper perspective let us 
denote by G a set of (1,l) transformations of the arithmetic space 
of n dimensions into itself and let us write down the following 
axioms in which the undefined elements are points and Preferred 
coordinate systems. These axioms are : 

G,. Each preferred coordinate system is a (1,l) t rans format io~~  
of the points into the arithmetic space of n dimensions, 

G,. A n y  transformation of coordinates from one preferred coor- 
dinate system to another belongs to G ,  

G,. A n y  coordinate system obtained from a preferred coordinate 
system b y  a transformation belonging to G i s  preferred, 

G,. There exists at least one preferred coordinate system. 

Examining the consequences of the above axioms we see 
from G, that if P t)(xl,. . . ,x") and P t ) ( y l , .  . .,y") are two 
preferred coordinate systems there is a unique transformation 
f x l , .  . . , x n )  t ) ( y l , .  . . ,y") relating the coordinates of these systems; 
it follows from G, that this transformation belongs to the set G. 
Also if we select any preferred coordinate system, the existence 
of which is specified by G,, it follows from the axioms G,, G, and G, 
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that the preferred coordinate systems are those, and only those, 
obtainable from the selected system by transformations belonging 
to G. Finally it is easily seen that the set of transformations G 
constitutes a group. 

The underlying point set together with the set of preferred 
coordinate systems will be spoken of as a space. By the geometry 
of the space we mean the theory or body of theorems deducible 
from the above axioms G,, . . .G,. If the group G is the group of all 
( 1 , l )  transformations of class C" of the n dimensional arithmetic 
space into itself, the space is identical with the simple coordinate 
manifold of class C" discussed in Sect. 1. We now consider several 
groups G which lead to well known mathematical spaces. These 
groups are defined by their representative transformations as follows 

z k = a t x l + b ' ;  I la;l # 0, (aff ine group),  (12.1) 

X+ = a; X I  + b'; (orthogonal group),  (12.2) 

2 = a; x' + b'; aza+ 1 k  = pd,,; p > 0, (Euclidean group),  (12.3) 

a) a; = dlk,  

where there is a summation over the range 1 , .  . . ,n  on all repeated 
indices and the quantities dlk are the Kronecker symbols previously 
defined and denoted by S; in Sect. 1.  The coefficients p, b' and a; 
in the above equations are constants. In the case of the orthogonal 
and Euclidean groups we see from the conditions imposed on the 
constants a; by the relations (12.2) and (12.3) that the determinant 
IaiI must be different from zero; however it must be assumed 
explicitly that the determinant la31 does not vanish in the case 
of the affine group in order for (12.1) to represent a ( 1 , l )  coordinate 
transformation. 

If G is the affine group the resulting space is called the affine 
space of n dimensions. We obtain the Euclidean metric space or the 
Euclidean space of n dimensions according as G is the orthogonal 
group or the Euclidean group. The preferred coordinate systems 
for the affine space are called Cartesian coordinate systems; the 
preferred coordinate systems are called rectangular Cartesian 
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coordinate systems, or simply rectangular coordinate systems for 
brevity, in the Euclidean metric space and in the Euclidean space. 
By affine geometry we mean the theory of the affine space and by 
the Euclidean metric geometry and the Euclidean geometry we mean 
the theory of the Euclidean metric space and the Euclidean space 
respectively . 

As explained for the case of the simple coordinate manifold 
of class C" in Sect. 1 each of the above spaces will determine two 
oriented spaces for which the preferred coordinate systems are 
related by transformations whose functional determinants are 
positive. 'Thus an affine space determines two oriented aff ine spaces 
having preferred coordinate systems related by transformations 
(12.1) with iari > 0 ;  these restricted transformations (12.1) 

obviously determine a group which will be called the pvoper aff ine 
group. Correspondingly the preferred coordinate systems of an 
oriented Euclidean metric space and an oriented Euclidean space 
will be related by transformations of the proper orthogonal group 
and the proper Euclidean group defined by (12.2) and (12.3) respec- 
tively with Ia,"i > 0 ;  we observe in this connection that IaiI = 1 

from the second set of relations (12.2) and hence I u , " ~  = 1 if (12.2) 

is to represent a proper orthogonal transformation. 
The affine, Euclidean metric and Euclidean spaces, as well as 

the oriented spaces which they determine, are characterized 
essentially by the group G of coordinate transformations relating 
their preferred coordinate systems. Interpreting the transforma- 
tions of the group G as point transformations, rather than coordinate 
transformations in the strict sense, let us say that two configura- 
tions (sets of points) in the space are equivalent if one can be trans- 
formed into the other by a transformation of G. In particular 
equivalent configurations in an oriented Euclidean metric space 
are said to be congruent ; equivalent configurations are called similar 
in an oriented Euclidean space. Thus the ordinary concepts of 
congruence and similarity are given a precise meaning in terms 
of the transformations of a group. 



13. Euclidean Metric Space 

Let P,  and P, be two points in a Euclidean metric space and 
denote by xi and xi respectively the coordinates of these points 
in a preferred or rectangular coordinate system. Now consider the 
expression 

(xi - xi) ( x i  - x i ) ,  (13.1) 

where the index i is summed over the values 1,. . .,n. T h e  expres- 
sion (13.1) i s  a scalar function of the points P ,  and P,. To show 
this fact let xf and be the coordinates of P,  and P, in any other 
rectangular coordinate system. Then we have 

when we make the substitution (12.2). 

of relations (12.2) the above equations become 
But from the second set 

. .  
(z; - z;) (2; - 2:) = B j k ( X I  - x i )  (x ;  - xi) = (xf - xi) (xi - xi), 

which proves the scalar character of (13.1). T h e  scalar represented 
by  (13.1) defines the square of the distance between the points P ,  and P, 
in the Euclidean metric space. A similar determination of distance 
independently of the preferred coordinate systems is evidently 
not possible in the affine space nor in the Euclidean space due to 
the presence of the arbitrary constant p in the transformations 
(12.3) of the Euclidean group. 

Now select a particular rectangular coordinate system in the 
Euclidean metric space and let Y~ denote the coordinates of this 
system. Let us then transform the coordinates y$  by an arbitrary 
linear transformation 

YE = bf x’ + cc;  Ib;l # 0, (13.2) 
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where the bf and C’ are constants subject only to the condition that 
the determinant lb,”l does not vanish. The transformations (13.2) 

define a class of coordinate systems for the space which will be 
called Cartesian coordinate systems and which will include, in 
particular, the preferred or rectangular coordinate systems. 
Between any two such Cartesian systems, e.g. the x coordinate 
system defined by (13.2) and an X coordinate system defined in a 
similar manner, a transformation of the form (12.1) will hold. Thus 
the generality of the transformations between these Cartesian 
systems is the same as that of the transformations between the 
Cartesian coordinate systems of an affine space. But this does not 
mean that we have now passed from the Euclidean metric space 
to an affine space. For in the latter space the Cartesian coordinate 
systems are preferred while in the Euclidean metric space only a 
subset of the Cartesian systems, namely the rectangular coordinate 
systems, has the preferred status. However the introduction of 
the larger class of Cartesian coordinate systems in the Euclidean 
metric space will be useful on occasion and will, moreover, enable 
us to carry over, without modification, certain of the formal 
relations in the theory of the Riemann space (see Sect. 6) to the 
case of the Euclidean metric space. 

We shall now derive an expression which will give the distance 
between two points of a Euclidean metric space in terms of their 
Cartesian coordinates. For this purpose suppose that the two 
points PI and P, have the coordinates y4 and yk in a rectangular 
coordinate system and let xl and xi be the coordinates of these 
points in any one of the Cartesian systems which is related to this 
rectangular system by a transformation of the form (13.2).  Then 
the square of the distance between the points PI  and P, is given by 

k k  . .  
(yf - y ; )  ( y l  - y&)  = bf(xi - xi) b;(x: - x;) = g j k ( x ;  - xi) (x, - xz), 

where we have put 

(13.3) 
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We associate the symmetric set of constants g j k  defined by (13.3; 
with the x coordinate system involved in the transformation (13.2). 
Now it can readily be seen that if we replace the particular rectan- 
gular coordinate system y used in the above determination of the 
constants g j k  by any other rectangular coordinate system the above 
association between sets of constants gik and Cartesian coordinate 
systems will be unaltered. In other words the constants gjk have a 
unique determination in each of the Cartesian coordinate systems 
in the Euclidean metric space. Hence we can say without am- 
biguity that the square of the distance between two points is 
given by the expression 

(13.4) 

where x: and x i  are the coordinates of the points in a Cartesian 
coordinate system and the gik are the above constants associated 
with this system. 

To show that the g j k  are the components of a tensor under the 
affine group of transformations relating the Cartesian coordinate 
systems we consider the equation 

g,,(x[ - x i )  (x!  - x i )  = g p q ( X ?  - g) (2; - z;), (13.5) 

the members of which give the square of the distance between 
the points P,  and P,  relative to any two Cartesian coordinate 
systems. Since the coordinates xi are related to the coordinates Xi 
by equations of the form (12.1) we can eliminate the Zf and Zj 
from (13.5) and thus obtain 

(13.6) 

The tensor character of the g j k  under the affine group of trans- 
formations then follows from the fact that the bracket expressions 
in (13.6) must vanish since the values of the quantities ( x i  - x;) 

are arbitrary. 
There exists a 

symmetric covariant tensor G whose components g j k  are constants in 
We have now established the following result. 
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the Cartesian coordinate systems and have the special values a,, in 
the preferred or rectangular coordinate systems of a Euclidean metric 
space; moreover the square of the distance between a n y  two points 
P, and P, of the Euclidean metric space i s  given b y  the expression 
(13.4) in which xi and x i  are the coordinates of the points an a n y  
one of the Cartesian coordinate systems and the gik are the components 
of the tensor G relative to this system. 

It can readily be observed from the equations (13.3) that  a 
quadratic form, having the components gik as its coefficients, is 
positive definite. Hence the determinant must be positive and 
we can therefore define the components gik of a symmetric con- 
travariant tensor, which can be though of as  the contravariant form 
of the tensor G, by the equations ( 6 . 7 )  as  shown in Sect. 6. By 
means of the tensor G the indices in the symbol for the components 
of a tensor can now be raised or lowered, one can define the length 
of a vector and the angle determined by two directions, etc. exactly 
as in Sect. 6. Thus the tensor G plays a role analogous to  that  of 
the fundamental metric tensor of a Riemann space. 

Remark 1. One can adopt the viewpoint that a Riemann space 
reduces to a Euclidean metric space if there exists an allowable coordinate 
system Pt, (xl,. . . ,x") in the Riemann space such that (a) the system 
Pt, (x',. . .,xn) is a (1 , l )  correspondence between the points P of the 
Riemann space and the points (xl,. . .,xn) of the arithmetic space of 
n dimensions and (b) relative to the system Pt, (xl,. . . ,x") the compo- 
nents g,, of the fundamental metric tensor of the Riemann space have 
the values at?;  this implies in particular that the Riemann space is 
topologically equivalent to the arithmetic space of n dimensions. Such 
a coordinate system P t ,  (xl,. . .,xn) may be called preferred and from 
these preferred systems one can pass to the Cartesian coordinate systems 
as we have done in the above discussion of the Euclidean metric space. 

A Riemann space is said to be locally flat if an arbitrary point of 
the space is contained in some allowable coordinate system relative 
to which the values are assumed by the components of the fun- 
damental metric tensor. The well known condition for a Riemann 
space to be locally flat is the vanishing of its curvature tensor (defined 
in Remark 1 in Sect. 11) .  A discussion of these and other results on the 
reducibility of spaces can be found in certain of the references listed 
at  the end of this book. 
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Two geometrical entities of special interest and importance in 
the theory of the Euclidean metric space are the straight line and 
the plane which are defined by equations of the form 

xk = aL t + b', (equatzons of straight l ine),  (13.7) 

A ,  X ,  + B = 0, (equation of plane), (13.8) 

relative to any Cartesian coordinate system. In the equations (13.7),  

which involve t as a parameter, the ak are constants subject only 
to  the condition that they do not all vanish while the b" are 
completely arbitrary constants; likewise in (13.8) the A ,  and B 
are constants subject only to the condition that not all of the 
A's  are equal to zero. I t  is easily seen from the requirement 
that the equations (13.7) be invariant in form under affine 
transformations of the Cartesian coordinate systems that the 
quantities xa  - bk and hence the coefficients a7 are the components 
of contravariant vectors. Similarly the coefficients A ,  in the 
equation of the plane (13.8) can be interpreted as the components 
of a covariant vector A under affine transformations. Also it is 
easily seen that the vector A is perpendicular to the plane (13.8).  
In  fact if P, and P,  are two arbitrary distinct points in the plane 
(13.8) and if xi and xH are the coordinates of these points, then 
from (13.8) we have 

A,(%; - x i )  = 0. (13.9) 

But the coordinate differences xi - x' can evidently represent 
the components of an arbitrary contravariant vector in the plane 
(13.8).  The condition (13.9) can therefore be interpreted as express- 
ing the fact that the vector A is perpendicular to every vector in 
the plane (13.8) and hence, by definition, A is perpendicular to 
the plane. 

One can give a formal presentation, based on the equations 
(13.7) and (13.8), of the direction cosines of a straight line or the 
determination of the angle between a straight line and a plane, etc. ; 
in particular by considering the angles between the coordinate 
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axes, defined in an  obvious manner by means of the equations 
(13.7), it will follow that  the axes of any preferred coordinate 
system are mutually orthogonal, a fact which justifies the designa- 
tion of the preferred systems of the Euclidean metric space as 
vectangular coordinate systems. However we shall forego this discus- 
sion since these matters are treated adequately in books on elemen- 
tary analytic geometry and instead we shall consider in the following 
Remarks several geometrical problems whose solution depends 
essentially on the concept of invariance under affine transforma- 
tions. 

Remark 2. Let A and B be two contravariant vectors at a point 
P of a Euclidean metric space of three dimensions. These vectors 
determine a parallelogram and we shall now treat the problem of finding 

its area. Precisely we seek an expres- 
sion giving the area in terms of 
the conponents of the vectors A 
and B in any system of Cartesian 
coordinates. We begin by choosing 
a rectangular coordinate system 
such that the origin is at the point P ,  
the vector A falls along the positive 
x1 axis and the vector B lies in 
the x1,z2 plane (Fig. 2). Relative to 
this coordinate system the area of 
the parallelogram is equal to the 
product &- A1B2 where the + sign 
is to be taken if B2 is positive (as 
in Fig. 2), otherwise the - sign. 
Now under affine transformations 

(12.1) the quantities C, defined by (6.5) transform by the equations 
ci = c k  ai where the + sign is chosen if (12.1) is a proper transforma- 
tion otherwise the - sign. Hence $7 Ci C j  defines a scalar function S 
under arbitrary affine transformations (12.1). But in the above rectan- 
gular coordinate system the tensor components gii are equal to the 
corresponding Kronecker @ j  and the Ci have the values C, = C, = 0 
and C3 = ‘41B2. Hence the scalar S is equal to the square of the area 
of the parallelogram. Replacing the C; in the expression for S by the 
values given by (6.5) we find that the desired expression for the area of 
the parallelogram is given by 

x3  

FIG. 4 

k 

(Area)2 = F,,k E~~~ grn A’ A‘ Bk B*. 
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If we denote by d and B the magnitudes of the vectors A and B 
respectively and make use of the second set of identities (6.16) we find 
that the above equation gives the usual formula 

Area = dB cos 6 ,  

for the area of the parallelogram where 6 is the angle determined by the 
vectors A and B. 

Remark 3. Consider the absolute scal-ar 

(&ajk ui vi W k  ) >  

determined by three contravariant vectors U ,  V and W a t  a point P 
in a Euclidean metric space of three dimensions. What is the geometrical 
meaning of this scalar ? To answer this question we attempt to clarify 
the problem by a judicious choice of coordinate system. Thus let us 
select a rectangular coor- 
dinate system with origin 
a t  P such that the vector 
U falls along the positive xJ 
axis and the vector V lies 
in the xJ,x2plane (Fig. 3). 
Relative to this coordinate 
system we see that 

&i lk  ui vi W k  = u1 V 2  w3, 
Now to within algebraic 

sign U J V 2  is twice the area 
of the triangle determined 
by the vectors U and V 
and hence, also to within 
algebraic sign, U1V2W3 is 
six times the volume of 
the tetrehedron determined 

x3 

x' 
FIG. 3 

by the three vectors U ,  V and W. Hence in any system of Cartesian 
coordinates we have 

36 (Volume)2 = Ui Vi W k ) 2 .  

This equation likewise gives the volume of the tetrehedron determined 
by four arbitrary points P ,  Q,  R and S since we can take 

I/' = Xt - XI. 

where xi, x;, x i  and xi are the coordinates of P,  Q,  R and S respectively 
in any Cartesian coordinate system. 

uL = x' - xs. W L =  XI - X I  
2 1, 4 1, 
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Remark 4. Let us now consider the problem of finding the per- 
pendicular distance from an arbitrary point P in a three dimensional 
Euclidean metric space to a given plane (13.8) in this space. To determine 
this distance we choose a system of rectangular coordinates y' such 
that (a) the y1,y2 coordinate plane coincides with the plane (13.8) and 
(b) the point P lies on the positive y3 axis (Fig. 4). Hence if yb are 

the coordinates of P in this rectan- 
gular system the coordinate y i  will 
be equal to the required distance. 
Our problem is now reduced to the 
construction of a scalar function of 
the coordinates of P which is equal, 
to  within algebraic sign, to the coor- 
dinate yg in the above rectangular 
system. But such a scalar is readily 
seen to be given by 

Y2 

yl 

FIG. 4 

where the xh are the coordinates of P in the Cartesian coordinate system 
relative to which the equation (13.8) determines the plane under con- 
sideration. 

Remark 5. It is evident from the above discussion that invariance 
under coordinate transformations is a common property of the equations 
which define geometrical configurations and the magnitudes associated 
with them. If, however, we wish to express this fact as a principle 
of the Euclidean metric geometry it is well to bear in mind that the 
basic structure of the Euclidean metric space is determined by the class 
of preferred or rectangular coordinate systems rather than the larger 
class of Cartesian systems and that all rectangular coordinate systems 
appear on an equal footing in our conception of the Euclidean metric 
space. With these ideas before us we can make the following statement 
concerning the province of the Euclidean metric geometry. Euclidean 
metric geometry, as treated analytically by  means of rectangular coordinate 
systems, i s  the study of those configurations and their associated magnitudes 
which remain invariant under the group of orthogonal transformations. 
A similar principle can of course be stated for the affine and strict 
Euclidean geometries as well as for those other geometries which arise 
from various choices of the group G in the axiomatic characterization 
of the class of spaces discussed in Sect. 12. 



14. Homogeneous and Isotropic Tensors 

Roughly speaking a material medium, e.g. a fluid or a solid, 
is said to be homogeneous if its properties are independent of 
position and isotropic if they are independent of direction. These 
properties have their precise mathematical expression in the so- 
called homogeneous and isotropic tensors. By a homogeneous 
tensor in a Euclidean metric space is understood a tensor whose 
components are constants in any one of the preferred or rectangular 
coordinate systems commonly used as reference frames for the 
medium. An isotropic tensor in the Euclidean metric space is 
defined as a tensor such that its components, in any rectangular 
system, are unaltered in value by orthogonal transformations of 
coordinates. The homogeneous tensor poses no mathematical 
problem since the required condition, i.e. the condition of ho- 
mogeneity, can be satisfied by the direct assumption that the 
components of the tensor are constant in any rectangular system. 
Hence we need concern ourselves only with the problem of the 
isotropic tensor. In discussing this problem we shall limit our 
attention ( a )  to a space of three dimensions and ( p )  to a fourth 
order tensor C, whose components Ck', are symmetric in the two 
contravariant and also in the two covariant indices, since one is 
commonly concerned with a tensor of this type in the mechanics 
of a continuous medium. The method employed, however, can be 
applied to tensors of any order and several simple illustrations are 
given in the Remark at  the end of this section. 

We may express the components of the above tensor C in the 
completely covariant form CLjkm since there is no distinction 
between covariant and contravariant indices relative to a rectan- 
gular coordinate system, Now consider a one parameter family 
of proper orthogonal rotations (12.2),  e.g. transformations (12.2) 
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with bi = 0, such that (1) the coefficients a; are continuous and 
differentiable functions of a parameter t for 0 \< t \< to and (2) the 
condition a; = 6; for t = 0 is satisfied, i.e. the rotation (12.2) is 
the identity transformation for the initial value of the parameter. 
Under any transformation of this family the components C i l k m  

will transform by the equations 

(14.1) 

in which account is taken of the isotropic character of the tensor C, 
i.e. the invariance of the values of the components C , ] k m .  Now 
differentiate (14.1) with respect to t and then evaluate the resulting 
relations at  t = 0. Since the quantities c+, are independent of t 
we thus obtain 

C a l k m  o a t  + C z a k m  ma7 + C t j a m  W a k  + C t l k a  warn = 0, (14.2) 

where wal stands for the derivative of aJ( t )  at  t = 0. But if we 
differentiate the second set of relations (12.2) with respect to t and 
then evaluate a t  t = 0 we find that wtl + colt = 0, i e. the quantities 
w , ~  are skew-symmetric. Obviously the condition of skew-symmetry 
is the only restriction on the quantities w .  Hence there are exactly 
three independent quantities wZI and it is therefore possible to  
express them by writing 

WOE1 = erlk E k ,  (14.3) 

where the el lk  are the components of the skew-symmetric tensor 
defined in Sect. 4 and the tk are three arbitrary variables. Elim- 
inating the w,] from (14.2) by means of (14.3) the coefficients of 
the independent variables E k  in the resulting equations must be 
equal to zero. We thus find that the C t l k m  must satisfy the following 
conditions 

C a l k m  e m b  + C t a k m  elab + C t l a m  ekab + C ~ ] k a  emab = 0. (14.4) 

Let us now multiply (14.4) by ethc and sum on the repeated 
indices i and b ;  but this leads to the equations 

3 C t l k m  f C t k m l  + C i m i k  = C a a k m  6al + c w a m  d j k  + C m k  d i m ,  (14.5) 
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after application of the relations (4.7) and some relabeling of the 
free indices. To obtain more explicit information regarding the 
structure of the components c j j k ,  than is furnished by the above 
conditions let us first observe that (14.5) can be written in the 
following three equivalent forms 

(14.6) 

(14.7) 

(14.8) 

Actually the equations (14.6) are identical with (14.5) except for a 
slight rearrangement of terms in the left members while the equa- 
tions (14.7) and (14.8) are obtained from (14.6) by cyclic permuta- 
tion of the indices j,k,m. Adding corresponding members of these 
equations we now have 

Then, using (14.9) to eliminate the parenthesis expression in (14.6), 

we find that 

(14.10) 

It remains to express the partially contracted components of 
the tensor C which appear in the right members of (14.10) by 
expressions in the completely contracted components of this tensor. 
For this purpose let us put k = m and j = k in turn in the equa- 
tions (14.5) and in each case sum on the repeated indices. We thus 
obtain the following two sets of relations 

1 10 C i i k m  = 4 C a a k m  61, - C a a m i  ask - Caajkdrrn + 3 c t a a m  d1k 

+ 3 Ciaak &I - 2 cwuj d k m .  

C a a a l  =z csj~ = Caabb 8~7. (14.11) 
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Again, putting i = m in (14.5) and summing on the repeated indices, 
we are led to the equations 

or 

when we interchange the indices j and k .  But combining (14.12) 

and (14.13) we find immediately that C j - k  = C k a a l .  Hence (14.12) 

yields 

C j a a k  = Q Cbaab d j k .  (14.14) 

Making the substitutions (14.11) and (14.14) in the right members 
of (14.10) these equations can now be written in the form 

C i j k m  = 1 6 , j  d k m  + p ( d , k  dim f d , m  d j k ) ,  (14.15) 

where 

From the above equations for 1 and ,u we see that these 
quantities are scalars. But conversely a tensor C having compo- 
nents C I l k m  given by (14.15) in which 1 and ,u are scalars is an 
isotropic tensor. Hence we can state the following result. I f  the 
components C:m of a n  isotropic tensor C are symmetric in the indices i,j 
and aEso in the indices k , m  then 

(14.16) 

in a rectangular system, where the quantities 1 and ,u are scalar 
functions of the coordinates. 

It is immediately seen that if the tensor C is both homogeneous 
and isotropic the scalars i and ,u must be constants. In fact putting 
i = k ,  i = m and also i = j ,  k = m in (14.16) and summing on 
repeated indices we obtain 
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1 + 4 ,u = const. ; 3 1+ 2 ,u = const., 

since. the C’s are constant by hypothesis. But from these equations 
it follows that  1 and ,u are constants as stated. 

Remark. Consider the possibility of an isotropic vector V .  For 
such a vector we have 

Vi = V ,  a t  ( t )  ; V ,  0,; = 0 ; V ,  eaib = 0, (14.17) 

corresponding to the equations (14.1), (14.2) and (14.4) respectively. 
Multiplying the last set of equations (14.17) by ecjb and summing on the 
repeated index b we obtain 

V ,  e,,b ecfb = V,(6, 6,i - 6,j = V ,  6,j - Vj Sic = 0. (14.18) 

But if we put i = j in (14.18) and sum on the repeated index we find 
that Vi = 0. Hence there i s  n o  non-vanishing isotropic vector. 

As another illustration of the use of the above method let us seek 
to determine the structure of an isotropic tensor W of the second order. 
Then in place of (14.1), (14.2) and (14.4) we have 

respectively. Multiplying the third set of equations (14.19) by ebmk 
and summing on the repeated index k we are led to conditions of the form 

(14.20) 

Putting k = m in (14.20) and summing on the repeated index we obtain 

wij 8 k m  - w m j  6ik wki & - wkm 6ij = 0. 

or 
2 w, + wji = w, 6ij, 

2 wji -+ w,. = w, 6,j. 

(14.21) 

(14.22) 

But, combining (14.21) and (14.22), it follows that W,j = Wp and hence 
(14.21) reduces to 

wii = 1 6,j; 3, = 4 w,. (14.23) 

Hence a n y  isotropic tensor W of the second order will have components 
W,, given, in a rectangular coordinate system, b y  (14.23) in which il i s  
a scalar. 
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Let R be an oriented Riemann space of three dimensions 
and C a regular curve in R (see Sect. 6). We assume that C is 
defined parametrically by functions xi(s) where the xi are the 
coordinates of an allowable system in R and s denotes arc length 
along C. By differentia.tion of the equations which represent 
any allowable coordinate transformation x -2 in R it readily 
follows that the quantities 

dx”s) 2 ( s )  = ___ 
as ’ 

(15.1) 

which are defined along C as functions of the arc length s, are the 
components of a contravariant vector I .  Moreover it is immediately 
seen that I is a unit vector, i.e. 

g - .  v l i  If = 1. (15.2) 

The vector I is said to be tangent to the curve C. 

(see Sect. 10) it follows from (15.2) that 
By absolute differentiation with respect to the parameter s 

D I f  g.. 1”- = 0 ’’ Ds . (15.3) 

A vector perpendicular to the tangent vector l is said to be normal 
to the curve C.; hence it follows from (15.3) that the absolute 
derivative of I is normal to C. Now define a positive function K 

of s by writing 

= v= Ds Ds (15.4) 
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Then the vector 6 having the components 

p-  
K DS ’ 

is a unit vector normal to C, i.e. 

gaj P E’ == 1;  g.. $7 2 t i  = 0. 
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(15.5) 

(15.6) 

The vector E is called the principal normal and the scalar func- 
tion K is called the curvature of the curve C. 

Since 6 is a unit vector we have 

(15.7) 

corresponding to (15.3). 

second set of relations (15.6) we find that 
Also by absolute differentiation of the 

when use is made of (15.5) and the fact that E is a 
addition we observe that 

- K ,  (15.8) 

unit vector. In  

The first of these relations is obtained from (15.2) and (15.8) while 
the second set of the relations follows from (15.7) and the second 
condition (15.6). Hence the quantities in parenthesis in (15.9) are 
the components of a vector which is perpendicular to ;1 and 6. 
Corresponding to the above procedure we now define a unit vector C, 
perpendicular to il and 5 ,  by writing 

(15.10) 

The above quantity z and hence the components Ci defined by 
(15.10) are determined to within algebraic sign by the requirement 
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that 5 is a unit vector. To remove this ambiguity regarding 
algebraic sign we postulate that the vector triad A,E,[ has a positive 
orientation, i.e. that at any point P of the curve C we can find an 
allowable coordinate system S with origin at  P such that, if the 
coordinates of S are denoted by yi, the vectors A,E,[ have the 
directions of the positive y1,y2,y3 axes respectively. Relative to 
the system S it is seen immediately that gii = at the point P 
and also that 

&.. *lk 1” t i  [ k  = 1, (15.11) 

where the &,jk are the components of the skew-symmetric tensor E 

defined in Sect. 6. Hence (15.11) must be satisfied along C in any 
allowable system because of the invariant nature of this relation. 
Conversely it is readily observed that the condition (15.1 1 )  implies 
the positive orientation of the vector triad A,E,[ and hence (15.11) 
can be taken as the condition for the determination of the algebraic 
sign of the components Ci or of the scalar quantity z; as so 
determined z may be positive or negative. The unit vector 5,  
defined uniquely by (15.10) and (15.1 l ) ,  is called the binormal and 
the associated scalar t the torsion of the curve C. 

Using the fact that the components gii have the values dii at 
the origin of the above y coordinate system we observe that the 
relations 

are satisfied at the origin of this system and hence they are satisfied 
along the curve C in any allowable coordinate system. Each of 
the above three sets of relations (15.12) is obviously equivalent to 
the condition (15.11). Let us now take the absolute derivative of 
the two members of the first set of relations (15.12) to obtain 
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Then, eliminating the derivatives Dil'lDs and DplDs by the 
substitutions (15.5) and (15.10) the above equations are seen to  
reduce t o  

when use is made of the second set of equations (15.12). Combining 
(15.13) with the equations (15.5) and (15.10) we obtain the Frenet 
formulae for the curve C, namely 

D5" 
__ = t p - -K  2, 
Ds 

(15.14) 

Remark 1. An explicit formula for the torsion t is given by 

(15.15) 

To verify the equation (15.15) we have merely to eliminate the deriv- 
atives D f k / D s  in the right member by means of (15.10); the resulting 
equation is then seen to be satisfied identically in view of the skew- 
symmetry of the components &++ and the condition (15.11). 

Remark 2. In the special case for which the Riemann space R is 
a Euclidean metric space E of three dimensions, referred to its preferred 
or rectangular coordinate systems, there is no distinction between 
absolute and ordinary differentiation in the Frenet formulae (15.14) and 
hence these formulae reduce to 

NOW suppose that the curve C under consideration is a plane curve 
in the above Euclidean metric space E ,  i.e. the curve C lies in a plane 
(13.8). Then we must have 

A,? = 0; A , p  = 0. (15.17) 
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In fact the first equation (15.17) follows if we differentiate (13.8) with 
respect to the arc length s and then make the substitution (15.1); 
similarly we obtain the second equation (15.17) by differentiation of 
the first equation and use of the first equation (15.16) under the assump- 
tion that the curvature K is different from zero. But the quantities A i  
are the components of a vector A perpendicular to the plane (13.8) as 
observed in Sect. 13; also this vector A must be perpendicular to the 
vectors il and [ on account of (15.17). Hence the vectors 2,E,A form 
a set of three mutually perpendicular vectors at  points of the curve C. 
But the vectors A,[,( also form a mutually perpendicular set of vectors 
along C and hence, since there is no distinction between covariant and 
contravariant indices relative to rectangular coordinate systems, it is 
clear that Ai - Ti, i.e. the components of the vectors A and 5' are 
proportional. Hence [ is perpendicular to the plane containing the 
curve C and, since [ is a unit vector, it follows that its components 
must be constant along C. Hence from the last equation (15.16) we see 
that t = 0, i.e. the above assumption t # 0 is untenable. T h e  torsion 
of a plane curve i s  therefore equal to zero, and hence, f O 7  a plane curve, the 
Frenet formulae (15.16) reduce to 

(15.18) 

If we do not restrict ourselves to the use of rectangular or Cartesian 
coordinate systems in the space E we must obviously replace the 
ordinary derivatives by absolute derivatives in the relations (15.18), 
i.e. we must take 

(15.19) 

to secure the proper form of the Frenet formulae for the plane curve C. 



16. Surfaces in Space 

A set of points S in a three dimensional Riemann space R will 
be said to be a regular surjace if, neighboring an arbitrary point 
P of S ,  the points can be represented by equations of the form 

xi = d" (241, u", (16.1) 

where the xi are the coordinates of any allowable system in R and 
the @ are differentiable functions of the two parameters u1,u2 such 
that the functional matrix 

has rank 2 .  If the $ are of class C' as functions of the parameters 
u1,u2 we may say that the surface S is of class C'. One commonly 
refers to the parameters u1,u2 as the curvilinear coordinates of the 
surface. In the case of a regular surface S of class C' the system of 
curvilinear coordinates u1,u2 will be said to be allowable and ( 1 , l )  

transformations u ++a7 of class C' of the coordinates of the system u 
will result in an allowable coordinate system a7 for the surface S .  

Consider the quantities xi defined by 

(16.2) 

Under allowable coordinate transformations x t) Z these quantities 
are the components of two contravariant vectors in the space R 
and correspondingly under allowable coordinate transformations 
u t) 1Z the quantities are the components of three covariant vectors 
on the surface S. Now any vector tangent to a curve on the surface 
S is said to  be tangent to this surface. Hence the two space vectors 
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having the components x i  and x i  are tangent to the surface S 
since these vectors, by definition, are tangent to the u1 and u2 

coordinate curves respectively (see Sect. 15). Observe also that 
between the differentials dua of the surface coordinates and the 
corresponding differentials dxi  of the space coordinates we have 
the relations 

dxi = x L ~ u " ,  (i = 1,2,3; 0: = 1,2), (16.3) 

in which the quantities dua and dxi can be interpreted as the surface 
and space components of the same vector, e.g. a displacement on 
the surface S .  More generally it is evident that a surface vector 6 
having the components 6" will be related to the space components 6' 
of this vector by the equations 

= X: p, (i = 1,2,3; 0: = 1,2), (16.4) 

and that any such vector E ,  considered as a vector in the space R, 
will be tangent to the surface S. 

Let us now define a set of functions gmlr(u) of the coordinates 
u1,u2 of a regular surface S by writing 

(16.5) 

where the indices u,,9 have the range 1,2 and the indices i,j the 
range 1,2,3. This convention regarding indices will be adopted 
in the following discussion, i.e. it will be assumed that Greek indices 
have the range 1,2 and Latin indices the range 1,2,3; within their 
respective ranges the summation convention, in accordance with 
which the repetition of an index in any term implies a summation 
on this index, will apply both to Greek and Latin indices. We 
have, moreover, used the Greek and Latin indices as an aid in 
distinguishing between the quantities gEp  defined on the surface S 
by the equations (16.5) and the components gii of the fundamental 
metric tensor of the Riemann space R. 
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It is immediately seen from (16.5) that the quantities gap 
transform by the equations 

(16.6)  

under allowable transformations u ++ ii of the curvilinear coor- 
dinates. Hence the gap are the components of a symmetric covariant 
tensor over the surface S ;  moreover the components gap of this 
tensor will be the coefficients of a positive definite quadratic dif- 
ferential form 

ds2 = gap dUa d d .  (16.7)  

In fact from (16.5) we have 

(16.8) 

Since the matrix Ilaxi/auaj/ has rank 2 by hypothesis it follows 
that the parenthesis expressions in (16.8) can vanish if, and only if, 
the two differentials du" are equal to zero. Hence we see from 
(16.8) and the fact that the g b j  are the coefficients of a positive 
definite quadratic form (6 .1)  that  (a) the quadratic form (16.7) 

can vanish if, and only if, the dua are zero and (b) the form (16.7) 

will otherwise be positive, i.e. the quadratic form (16.7) is positive 
definite as stated. The quadratic differential form (16.7) is called 
the first fundamental form of the surface S .  The surface S ,  over 
which the element of distance ds  is given by (16.7),  is intrinsically 
a Riemann space of two dimensions having the coefficients gap 
of the quadratic form (16.7) as the components of its fundamental 
metric tensor. Determinations of the lengths of curves and vectors, 
the angle between two directions, etc. on the surface S ,  based on 
the metric of this surface, will be consistent with the corresponding 
space determinations in view of the relations (16.5) between the 
components of the metric tensors of the surface S and the space R. 

A vector 5 will be said to be normal to a surface at  a point P 
if it is perpendicular to every vector tangent to the surface at P. 
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Assume for the moment that the surface S is oriented, i.e. the 
allowable coordinate systems are related by transformations u ++zZ 

whose functional determinants are positive ; consequently the 
quantities E~~ defined in Remark 4, Sect. 6, will be the components 
of a skew-symmetric tensor of the second order. We now consider 
the problem of finding the components of a vector which will be 
normal to the oriented surface S .  Observe first of all that the 
condition of normality will be satisfied if 5 is perpendicular to two 
independent tangent vectors at points P of the surface. Now the 
above tangent vectors having the components xi and XI are 
independent since the matrix Ilxhl] has rank 2 by hypothesis. 
Hence the condition that the vector 6 be normal to the surface S 
is given by 

X i  ti = 0,  (16.9) 

in terms of the covariant components ti of 8 .  By the well known 
theorem for the solution of a system of linear homogeneous equa- 
tions (16.9) the components El, t2 and t3 are proportional to the 
following three determinants 

(16.10) 

To express the above result in invariant form we have merely 
to observe that the components of a vector v defined by either 
of the following two sets of relations 

(16.11) 

will be proportional to the quantities (16.10). Such a vector v will 
therefore be normal to the surface S. Moreover by choosing coor- 
dinate systems such that gaP = S,, and g,, = S,, at a point P of 
the surface it can readily be seen that each of the vectors v defined 
by (16.11) is a unit vector. Hence the vectors Y given b y  (16.11) will 
be un i t  normal vectors to the oriented surface S .  In any specific 
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problem one or  the other of the vectors Y defined by (16.11) should 
be chosen according t o  the direction which one may wish to  assign 
to  the unit normal to  the  surface. 

Remark 1. Since the matrix \ \xkl l  has rank 2 it follows from the 
implicit function theorem that two of the three equations (16.1) can be 
solved for the variables u1,u2; the solution functions can then be used 
to eliminate the variables u1,u2 from the- remaining equation (16.1). 
Hence the surface S can always be represented locally by an equation 
of the form 

f ( X I ,  x2, x3) = 0, (16.12) 

where f is a continuous and differentiable function of the space coor- 
dinates. Eliminating the coordinates xi from (16.12) by means of (16.1) 
the resulting equations must be satisfied identically in the independent 
variables u1 and u2;  hence we must have 

In other words the gradient of the function f i s  normal to the surface S .  
Corresponding to (16.11) we may now say that the components of the 
two unit vectors, normal to the surface S ,  are given by 

Remark 2. Denoting the contravariant components of the unit 
normal by pi we have 

. .  
gii x i  vl = 0, (16.13) 

as the condition for the vector v to be normal to the surface S.  We 
can now effect a formal combination of the equations (16.5) and (16.13) 
in the following manner. Put x i  = vi and define quantities Gii by 
writing 

GaD = g a s ;  G ~ P  = Gas = 0; Gas = 1. 

Then we shall have 

(1 6.14) 
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In fact if k = a, m = ,f? the relations (16.14) reduce to (16.5); if k = 3, 
m = ,f? or if k = a,  m = 3 the relations (16.14) are equivalent to (16.13); 
finally if k = m = 3 we see that (16.14) gives the condition for v to 
be a unit vector. 

From the above definition of the Gii we observe that the deter- 
minants jGii/ and Jgaal are equal in value. Hence lGii1 does not vanish. 
Taking the determinants of both members of (16.14) we see that the 
determinant ] x i \  must likewise be different from zero. Hence we can 
define quantities y i  and symmetric quantities Gzf such that 

' k  yi = "1; . G . . G k  = ah. (16.15) 

Using the relations (16.15) we can now deduce the following modifica- 
tions of the equations (16.14) by performing the indicated operations, 
namely 

I 

gin x i  = G,, yr, multiplying (16.14) by y,", (16.16) 

x i  = G,,fb y:, multiplying (16.16) by p, (16.17) 

Gik x: = gab y6, multiplying (16.17) by G". (16.18) 

Finally multiplying (16.18) by xf we obtain a set of relations which can 
be written 

gii = Gkm xi xk. (16.19) 

Expanding the right members of (16.19) these relations become 

gii = Gap xk x i  + G3p x i  x i  + Ga3 x t  x i  + G33 x i  xf. (16.20) 

But from the above conditions (16.15) defining the Gii we have 

Gall = f a  ; G% = Ga3 - - 0; G 3 3  = 1. 

Making these substitutions and also replacing the quantities xg by 
their values vi the equations (16.20) now yield 

xk xi = gif - ,,i vi* (16.21) 

The equations (16.21) are not only of interest in themselves but 
have certain useful applications. 



17. Mixed Surface and Space Tensors. 
Coordinate Extension and Absolute 

Differentiation 

Consider a tensor T such that (1) the tensor T is defined on 
a regular surface S in the Riemann space R and (2) the symbol 
for the components of T may involve both Greek and Latin indices 
(see Sect. 16). To avoid a multiplicity of indices in writing the 
components of such a mixed surface and space tensor let us select 
a tensor having the components Tig as a representative tensor 
satisfying the above requirements. Under a transformation u f-) 21 
of the surface coordinates and a transformation x t, X of the 
space coordinates the components T& will transform by the 
equations 

(17.1) 

I n  accordance with the transformation equations (17 .1)  the compo- 
nents T:g will be functions of the curvilinear or surface coordinates 
ua but will depend not only on the selection of the system of 
coordinates u" on the surface S but also on the system of coordinates 
xa selected in the Riemann space R. 

To define the coordinate extensions of the tensor T and to 
derive the explicit formulae for the components of any extension 
we shall employ a system of normal coordinates y b  in the space K 
and also a system of normal coordinates za on the surface S (see 
Sect. 8). Assuming that each normal system has its origin at  the 
same point P on the surface S the normal coordinates y L  and z" 

will be related to the underlying coordinates x' and u1 by the 
following equations 
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where and p. are the coordinates of the point P in the x and u 

coordinate systems respectively. Also the rii, are the Christoffel 
symbols based on the metric of the space R and correspondingly 
the Tiy are the Christoffel symbols determined by the metric on 
the surface S ;  the remaining coefficients r ; k , ,  . . . and I&, . . . 
which appear in (17.2) are determined as in Sect. 8. Under trans- 
formations x ++ Z and u ++ 21 of the space and surface coordinates 
the normal coordinates y' and P will transform by the linear 
homogeneous equations 

Now denote by tiD the components of the tensor T relative to 
the y , z  coordinate systems and by .f$ the components of this tensor 
relative to the y,z systems. Then 

(17.3) 

in which the t:Y and the & are regarded as functions of the surface 
coordinates P and fa  respectively. But the derivatives in (17.3) 
are constant. Hence if we differentiate the equations (17.3) 
repeatedly with respect to the variables 2'. . .Z6 and evaluate the 
resulting equations at  the common origin of the normal coordinate 
systems we obtain 
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where 

(17.5)  

and the left members of (17 .4)  are defined in an anologous manner. 
It follows from (17.4)  that the quantities Ttu,v1...5 determined by 
(17 .5)  are the components of a tensor on the surface S .  We call 
this tensor the rth extension of the tensor T provided there are Y 

indices in the set y . . . S.  In particular the first extension is also 
called the first covariant derivative of T ;  the process of covariant 
differentiation can be repeated to give the second and higher 
covariant derivatives of the tensor T .  

The formulae for the components of the above extensions are 
obtained by differentiation of the equations 

(17.6)  

followed by evaluation at  the point P.  Thus differentiating (17.6)  

with respect to the independent variables z y  we obtain 

Then, evaluating (17 .7)  at  the point P and making use of the 
relations ( 1 7 4 ,  we find that 

where the quantities xy are given by (16 .2) .  It is evident that the 
formulae for the covariant derivative and, more generally, for the 
extensions of any tensor T can be found by this process. 

Now suppose that the tensor T is defined only along a curve C 
on the surface S. Assuming that C is determined by equations 
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u" = u"(t) where the functions zt"(t) are differentiable and such that 

i.e. that the curve C is regular (cp. Sect. 6), let us differentiate 
the relations (17 .3)  repeated with respect to the parameter t and 
then evaluate a t  the point P. But this gives 

orrfD - D~T;" a u P  a u v  axi 
Dtr Dtr a+ aG0 a x k '  

(17 .9)  ~- __________ - 

where 

Hence the quantities defined by (17 .10)  along C are the components 
of a tensor in accordance with the equations (17 .9) .  We call this 
tensor the rth absolute extension of the tensor T .  The first absolute 
extension may conveniently be referred to as the first absolute 
derivative. A repetition of this process of absolute differentiation 
leads to second and higher order absolute derivatives which are, 
of course, not in general equal to the corresponding second and 
higher absolute extensions. The process of obtaining the formulae 
for these absolute derivatives and absolute extensions is analogous 
to the process by which we derive the formulae for the covariant 
derivatives and extensions of the tensor T .  Thus, differentiating 
(17.6)  with respect to the parameter t and evaluating at the point P 
on the curve C we obtain 

~ _ __  
OV dt 

(17.11)  

aUY I D T f p  dT& auv 
- - T : ~  r:,, ~ - T:, s' 

m aur 
at 

Dt at at 

+- T$ r6, x, -, 

for the components of the first absolute derivative of the tensor T .  
In this connection it may be observed that the components of the 



17. MIXED SURFACE AND SPACE TENSORS 85 

absolute derivative are  obtained from the components of the 
covariant derivative, given by ( 1 7 4 ,  by multiplication by the  
derivatives duyldt of the functions zd'(t) defining the  curve C. 

Remark 1. The above surface covariant derivative of a tensor T ,  
defined on a regular surface S, whose symbol involves only Greek 
indices is identical with the covariant derivative of T considered as a 
tensor in a two dimensional Riemann space having the metric of the 
surface S ;  moreover the absolute derivative of such a tensor T ,  along 
a regular curve C on S ,  is given by 

where T;:::: and T;:::dqs are the components of the tensor T and its 
covariant derivative respectively and the duEldt are the derivatives of 
the functions u E ( t )  defining the curve C. In the other extreme case 
where the components of T are functions of the space coordinates xi 
and the symbol of the components involves only Latin indices the 
surface covariant derivative has components 

Ti: : :',,, = Ti:  : :k,r x:, (17.12) 

where Ti.':.: denotes the components of T and Tk,',',L,, are the compo- 
nents of the spatial covariant derivative of T considered as a tensor 
in the Riemann space R. 

. .  

. .  . .  

Correspondingly we have 

(17.13) 

for the components of the absolute derivative of T along a regular 
curve C on S. 

Since the components of the spatial covariant and absolute deriv- 
atives of the metric tensor of the space R are equal to zero it follows 
from (17.12) and (17.13) that the components of the corresponding 
surface derivatives of this tensor must likewise vanish. A similar remark 
can be made concerning the covariant and absolute derivatives of the 
skew-symmetric tensor whose components are the quantities &ijk  or E~~~ 

in an oriented Riemann space R. 

Remark 2. Let S be a regular oriented surface in a Riemann space R 
and C a regular curve on S .  We assume that C is defined by equations 
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u" = u" (s )  where s denotes arc length along C. Corresponding to the 
results in Sect. 15 we now have the equations 

The first of the equations (17.14) defines the components Aa of a vector 
1 tangent to C, the second equation expresses the fact that 1 is a unit 
vector and the third equation (17.14), which is obtained by absolute 
differentiation of the second equation (17.14), states that the absolute 
derivative of A is perpendicular to the tangent vector A. Hence the 
absolute derivative of 1 is normal to the curve C. We can therefore 
define a unit vector p, normal to C, by writing 

(17.15) 

where CT is a scalar along the curve C and the second of these relations, 
which is analogous to the condition (15.11), determines the direction of 
the vector p and hence the algebraic sign of the normalizing scalar CT. 

The vector p is the u n i t  normal to the curve C and the scalar CT is called 
the geodesic curvature of C .  

We readily observe that the second equation (17.15) is equivalent 
to either of the following two sets of relations 

1" = goy &aPpY; p" = - &"B Ay. (17.16) 

By absolute differentiation of the second set of relations (17.16) along 
C and application of the first set of these relations it now follows that 

Combining this result with the first set of equations (17.15) we obtain 
the following relations which are analogous to the Frenet formulae 
derived in Sect. 15, namely 

(17.17) 



18. Formulae of Gauss and Weingarten 

It follows from the relations ( 1 6 4 ,  by covariant differentia- 
tion, that 

(18.1) 

where the quantities x: are given by (16.2). By cyclic permutation 
of the indices a,B,y in (18.1) we can also write 

. .  
gij X t  + g,j Xf x;,, = 0,  (18.2) 

g.. xi xi + g, x; x;,, = 0. (18.3) 
a? Y,B a 

But the quantities x:,, are symmetric in the indices a and j3 as can 
immediately be seen from the formula for these components. Hence 
if we add the left members of (18.2) and (18.3) and then subtract 
the left member of (18.1) from the resulting expression we 
obtain 

. .  
g,, Xi,, x; = 0. (18.4) 

Now for fixed values of the indices a,B the quantities x& are the 
components of a vector in the space and the relations (18.4) express 
the condition that this vector is normal. to the surface S. Hence 
we must have relations of the form 

xi,, = b,, vi, (18.5) 

where the b,, are the components of a symmetric tensor defined 
over the surface S and the va are the components of the unit normal 
vector to S. In fact if we multiply both members of (18.5) by 
g P l d  and sum on the repeated indices we obtain 

b a, = g . x i  ki a,, v'. 
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The relations (18.5) are the formulae of Gauss and the quantities 
b,, are commonly referred to as the coefficients of the second 
fundamental form of the surface S .  

Let us now apply the process of covariant differentiation to the 
equations 

(18.6) 

which express the condition that v is a unit vector normal to the 
surface S .  We thus obtain 

. .  . .  
g.. k l  vz vl = 1; g,, x i  v' = 0,  

. .  
gzl vz Vlb = 0 ,  (18.7) 

gti x;,, vi + gLi x; v!, = 0. (18.8) 

From the relations (18.7) it follows that the two space vectors 
having components vII and vt2 are perpendicular to the normal 
vector v. Hence these vectors must be tangent to the surface S. 
It must therefore be possible to express either set of components 
dl and as a linear combination of the quantities x; and d2 
since these quantities are the components of two independent 
vectors tangent to the surface. This gives relations of the form 

v,iG = [; xi. (18.9) 

Eliminating the quantities xi,S and v:, from (18.8) by the substitu- 
tions (18.5) and (18.9) and making use of the relations (16.5) we 
obtain the following equations 

b U S  =-g  au 5" 8' (18.10) 

By means of the equations (18.10) we can eliminate the quan- 
In fact if we multiply (18.10) tities [; from the relations (18.9). 

by g'' and sum on the repeated indices we find that 

[E = - g'" b,. (18.11) 

Hence, removing the quantities [f from (18.9) by the substitution 
(18.1 l),  we obtain the formulae of Weingarten, namely 

~, ioL  = - g" b,, x;. ( 18.12) 
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Remark. The components vi of the unit normal vector v are evidently 
constant over a plane in the Euclidean metric space E referred to one 
of its Cartesian coordinated systems. Hence v$ = 0 and from (18.12) 
we have 

gay b,, X: = 0. (1 8.13) 

Multiplying (18.13) by gii xf and making use of (16.5) it follows that 
ba, = 0. Conversely, if b,p = 0 over a surface S in the space E ,  referred 
to a Cartesian coordinate system, we shall have = 0 from (18.12). 
But this condition evidently implies that S is a plane. Hence a surface 
S as a plane in the Euclidean metric space E if, and only  if, i ts  second 
fundamental form vanishes identically. 



19. Gaussian and Mean Curvature of a Surface 

Two scalars K and Q can be defined over a regular surface S 
in a three dimensional Riemannian space R by the following 
equations 

K = - t E", &Y6 Bnflysr 

Q = 4 g", ba,, 

(19.1) 

(19.2) 

where the BaPyS are the components of the completely covariant 
form of the curvature tensor B (see Remark 1 in Sect. 11)  and the 
b,, are the coefficients of the second fundamental form of the 
surface S (see Sect. 18). The scalar K ,  which is an intrinsic differen- 
tial invariant of the surface S ,  is known as the total or Gaussian 
curvature and the scalar Q is the mean curvature of the surface. 

In this connection it may be observed that the components 
B,,, can be represented by writing 

Baays  = - K t a p  +. (19.3) 

In  fact if we expand the right member of (19.1) we have 

K = - ~ 1 2  ~ 1 2  B 1212, (19.4) 

on account of the skew-symmetric character of the quantities E~~ 

and BaPYe. Substituting the value of K given by (19.4) into (19.3) 
we see that this relation is satisfied when the indices u,/3,y,d have 
the values 1,2,1,2 respectively. Hence (19.3) must be satisfied 
for any selection of the indices u,b,y,d in view of the skew-symmetry 
of the components E , ~  and the components of the curvature tensor B. 
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20. Equations of Gauss and Codazzi 

To deduce other relations involving the components of the 
curvature tensor of the surface S and the coefficients of its second 
fundamental form let us consider the mixed surface and space 
tensor X with components x: defined by (16.2).  The components 
of the covariant derivative of this tensor are given by 

Transforming these relations to the normal coordinate systems y , z  
considered in Sect. 17, differentiating with respect to the surface 
coordinates zv and then evaluating at  the common origin of the 
normal systems, we obtain 

X Z & , ~ , ~  - - -A" aPv xi 0 + Ah,, xi xp" XI, (20.2) 

where x : , ~ , ~  and x : , ~ ,  are the components of the second covariant 
derivative and second extension of the tensor X and where A&, 
and A:,, are the components of the first normal tensors of the 
surface S and the space R respectively. Interchanging the indices 
p,y in (20.2) and subtracting it now follows that 

Xz,,D.v - xz,,!3,v - - - BZDr x: + Bk,, xi x; xi, (20.3) 

on account of the relation between the components of the first 
normal tensor A and the curvature tensor B (see Remark 1 in 
Sect. 11). 

By covariant differentiation of the relations ( 18.5) and applica- 
tion of (18.12) we also have 
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Hence, interchanging the indices 6,y in (20.4) and subtracting, we 
obtain 

Now one usually assumes that the surface S is immersed in a 
Euclidean metric space E so that the curvature tensor components 
Bim, in (20.3) are equal to zero. Making this restriction and equating 
the right members of (20.3) and (20.5) we have the following 
relations 

If we multiply these equations (a) by the quantities gtlvl and 
(b) by the quantities g,,xl, and in each case sum on the repeated 
indices we 'find that 

baD,y - bay,D = 0, (20.6) 

B n / l y ~  = baa b o y  - b a y  ~ D S ,  (20.7) 

when account is taken of the fact (1) that v is a unit vector, ( 2 )  that 
v is normal to the surface S ,  (3) that the quantities xl and xi 
are the components of spatial vectors tangent to S ,  and (4) that the 
coefficients gaD of the first fundamental form of the surface S are 
given by the equations (16.5). 

The relations (20.6) are known as the Codazzi equations and the 
relations (20.7) as the Gauss equations of a surface S immersed in 
the Euclidean metric space E.  



21. Principal Curvatures and Principal 
Directions 

Let C be a regular curve on a regular surface S in the three 
dimensional Euclidean metric space E.  Then the spatial compo- 
nents A’ and the surface components Am of the unit tangent vector A 
to C are related by the equations 

(21.1) 

where s denotes arc length along C (cp. Sect. 16). 
differentiation of the equations (21.1) we now have 

By absolute 

(21.2) 

Hence, making the substitution (18.5) and also eliminating the 
derivatives in (21.2) by means of (15.14), (17.14) and (17 .17 ) ,  

we obtain 

KP = @pi + (bola Aa Afi)vi, (21.3) 

where the pi are the spatial components of the tangent vector ,u 
to the surface. Multiplying (21.3) by gi$ and summing on repeated 
indices we have 

( g q  vi $ ) K  = bixP Aa 20. (21.4) 

Let us now assume that the curve C is the intersection of the 
surface S and a plane through the normal v at  an arbitrary point P 
of S .  The vector 5 will then be normal to the surface S at  P as is 
clear from the discussion in the Remark 2 of Sect. 15. Hence 
at P the unit vector must be identical with the unit normal 
vector v or E must have a direction opposite to that of v. The 
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coefficient of K in (21.4) will therefore have the value f 1 a t  
the point P and hence, a t  P,  this equation becomes 

K = bap 1” Ap. (21.5) 

The quantity in the right member of (21.5) is called the normal 
curvature of the surface S in the direction 1 a t  the point P. Denoting 
the normal curvature by K, we therefore have 

K~ = bap Aa 1p. (21.6) 

As so defined the normal curvature K, = f K at  the point P ;  
hence the normal curvature can have a positive or a negative 
value. 

The normal curvature K, a t  a point P of the surface S will 
have a statiolzary value, e.g. a relative maximum or minimum, for 
a specified direction 1 provided that 

baa La 6 1 p  = 0 ;  gap Aa 61D = 0. (21.7) 

In other words the unit vector 1 whose components occur in (21.7) 

will determine a stationary value of K, if the first equation (21.7) 

is satisfied for all variations 610 which satisfy the second equation 
(21.7). Obviously the first condition (21.7) can be replaced by 

(bag Aa - Kn gap 1.) 62’ = 0. (21.8) 

Now if ga,ila # 0 at  the point P,  which is always possible by a 
suitable choice of the coordinates ua, we can suppose that 6A2 is 
arbitrary and we can then determine the value of 611 by solution 
of the second equation (21.7). With this understanding let us 
choose the quantity K, in (21.8) so that the parenthesis expression 
in this equation vanishes for b = 1 ;  but then this expression 
must also vanish for = 2 since the variation 6A2 is arbitrary. 
Hence we shall have 

(baB - Kn gap)  A’ == 0. (21.9) 

If we multiply (21.9) by the components ,la of the unit vector 1 
and sum on the repeated indices we immediately obtain the equa- 
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tion (21.6); hence the quantity K, in (21.9) must be the normal 
curvature associated with the direction A. 

Now the determinant of the coefficients of the A* in (21.9) must 
vanish; this leads to an equation for the stationary values of K,, 

which can be written in the form 

(21.10) 

where b and g denote the determinants lbma1 and \gaol respectively. 
Also, combining the equations (19.3) and (20.7), we have 

K ~ c i ~  ~ y a  = bay bba - bas bby. (21.11) 

Hence if we choose the indices u,,3,y,b in (21.11) to have the values 
1,2,1,2 respectively and then replace the quantity E~~ in the resulting 
equation by the value given in Remark 4 of Sect. 6 we find 
that 

b 

g 
Kr-. (21.12) 

Making use of (19.2) and (21.12) the equation (21.10) can now 
be written 

The two solutions K, of the equation (21.13) are called the 
principal curvatures and the directions or unit vectors A associated 
with these solutions K, are called the principal directions of the 
surface S at  the point P.  Denoting the principal curvatures by 
K~ and K~ we therefore have 

K == K 1 K 2 ;  Q =  $ (  K1 + K 2 ) .  (21.14) 

Hence the Gaussian curvature K of a regular surface S in a Euclidean 
metric space of three dimensions i s  equal to the product of the principal 
curaatures and the mean  curvature Q i s  equal to one-half the sum 

of the principal curvatures. 
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Remark. Choose a system of coordinates ua such that gaa = BorB 
a t  a point P of the surface S. The condition that 2 is a unit vector 
a t  P is then given by 

(I,), + (I,), = 1. (2 1.15) 

Regarding the components A" of I as the coordinates of a rectangular 
system the equation (21.15) defines a unit circle. Denote the set of 
points comprising this circle by 2. Then any unit vector 2 determines 
a point p of the set 2 and conversely any point p of 2 determines a 
unit vector I .  Hence the normal curvature K, given by (21.6) can be 
thought of as a point function defined over the set Z and is, in fact, 
evidently a continuous function of the points p of this set. The func- 
tion K% will therefore assume its maximum value K ,  at some point p ,  
and its minimum value K, a t  some point p ,  of the set Z. These maximum 
and minimum values will be stationary values of the function K% and 
hence, as indicated, can be identified with the stationary values K~ and K, 

in the above discussion. 
One or the other of the following cases must now occur 

Case (u) 

Case (p) 

Case ( y )  

K, = 0, for all p c Z, 

K, = const. (# 0), over Z, 

K, # const., over 2. 

Corresponding to these cases the above maximum and minimum values 
of the function K, on the set 2 must be such that 

(a )  K 1 =  K z = o ;  (p) K 1 =  K2 # o ;  ( y )  K1> K,. 

In treating Case (a)  and Case (p)  it will be helpful to suppose that I a  
is represented by writing 2' = cos 8 and Iz = sin 8. Then we shall have 

baa Aa I@ = b,, cos2 0 + 2 b,, sin t3 cos 8 + b,, sin2 8. (21.16) 

Equating to zero the expression in the right member of (21.16) and 
dividing by cos2 8 we obtain 

b,, tan2 8 + 2 b,, tan 8 + b,, = 0, (21.17) 

under the condition of Case (a ) .  But it follows from (21.17) that  
b,, =, b,, = b,, = 0; in other words all quantities baa must vanish. 
A point P on the surface S a t  which all components baa are equal to 
zero may be called a flat point and at such a point the normal curvature 
is zero for every direction A. From the result in the Remark in Sect. 18 
we see that a plane i s  the only  surface composed entirely of flat points. 
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Turning next to Case (6) it foIIows from (21.6) and (21.16) that 

b,, cos2 8 + 2 b,, sin 8 cos 8 + b,, sin2 8 = const. (21.18) 

Since (12.18) is an identity in 8 it can be differentiated with respect 
to 8;  this gives a condition which can be written in the form 

b,, tan2 8 + (bll - b,,) tan 8 - b,, = 0. 

Hence we must have b,, = 0 and b,, = b,,. Putting b,, and b,, equal 
to k we now see that 

b = k gaD, ( k  # O),  (21.19) 

at the point P ;  evidently the proportionality factor k in this relation 
must be different from zero since otherwise the condition of Case (a) 
would be satisfied. A point P a t  which the condition (21.19) holds is 
called an umbilical point.  I t  is interesting to observe in this connection 
that if we multiply (21.19) by gafi and sum on the repeated indices we 
find that k = Q on account of (19.2). Hence the condition (21.19) can 
be replaced by 

baD = Q gas ; Q # 0. (21.20) 

Let us now substitute the values of the quantities baD given by 
(21.20) into the equations (20.6) under the assumption that the condition 
(21.20) holds at  every point of a surface S in the Euclidean metric space. 
This gives us the relations 

gaaQ,y - gayQ,p = 0. (21.21) 

Then multiplying (21.21) by gap and summing on the repeated indices 
we find that Q,a = 0. Hence the mean curvature Q is constant over the 
surface S. Now eliminate the quantities baD between (18.12) and (21.20). 
We thus obtain 

v;a + Q x i  = (d  + szxi),, = 0, (21.22) 

over S. Integrating (21.22) we have 

yi = - Q(xi  - a;),  (21.23) 

Substituting the values of where the ai are constants of integration. 
the v8 into the equation 

gij v i d  = 1, 
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which expresses the condition that v is a unit vector in the Euclidean 
metric space referred to a system of Cartesian coordinates, we now 
find that 

g, j (x i  - a;) ( x i  - ai) = b2, (2 1.24) 

where b2 = 1/Q2. But (21.24) is, by definition, the equation of a sphere 
of radius b and center at  the point with coordinates ai in the Euclidean 
metric space. Hence a sphere i s  the only surface, composed entirely of 
umbilical points,  in the Euclidean metric space E. 

Under the condition of Case ( y )  we have K,  > K~ where K, and K~ 

are the maximum and minimum values respectively of the function K, 

on the set 2. Denoting by I ,  and I 2  the directions or unit vectors I 
associated with the values K, and K~ and by 1: and I; the components 
of these vectors, the following relations must be satisfied, namely 

(hap - K1 g,,) I! = 0, (21.25) 

(b,, - K2 s,,) = 0. (21.26) 

Multiplying (21.25) by I; and (21.26) by I:  and then subtracting the 
resulting equations we obtain 

( K 1  - Kz)g,D 1; If = 0. (21.27) 

But, since the values K, and K~ are distinct, it follows from (21.27) that 

g,, 1: np = 0. (21.28) 

The condition (21.28) implies that the principal directions I ,  and 1, 
are perpendicular. Moreover the directions I ,  and I 2  are the only 
principal directions a t  the point P. This follows from the fact that 
the equation (21.13) has at  most two solutions which must be given 
by the above maximum and minimum values K1-and K~ of the func- 
tion K,; hence any other principal direction 1 would have to be 
perpendicular to one of the mutually perpendicular directions I ,  or I ,  
in consequence of an equation of the form (21.27) in which the values 
K, and K~ are distinct. 

A curve C on the surface S such tha t  a t  each point of C the 
unit tangent vector can be identified with the vector I giving 
one of the principal directions is called a line of curvature of the 
surface. Hence in general, i.e. when Case ( y )  of the above Remark 
applies, there can be a t  most two families of lines of curvature 
on the surface S and these families will be orthogonal. 



22. Asymptotic Lines 

A regular curve C on the surface S is called an asymptotic line 
if the equation 

bap LU 1fl = 0, (22.1) 

is satisfied along C, where the bas are the coefficients of the second 
fundamental form of the surface and the 1" are the components 
of the unit tangent vector 1 to C. Now along an asymptotic line L 
the equation (21.3) reduces to 

KF = upi. (22.2) 

Hence the components of the vectors 5 and p are proportional; 
but this implies that ti = i pi since and p are unit vectors; 
hence K = * u, i.e. the curvature K and the geodesic curvature u 
of an asymptotic line are equal in magnitude. The principal normal 
E is therefore tangent to the surface S and hence the binormal C 
must be normal to S along an asymptotic line L.  

Remark. As observed above we must have 

Ti= f v i ,  (22.3) 

along an asymptotic line L,  where 5 is the binormal to L and v is the 
unit normal vector to the surface. By absolute differentiation of (22.3) 
with respect to the arc length s along L and use of the relations (15.14) 
we obtain 

(22.4) 

Continuing we deduce the following two sets of relations, namely 

(22.5) 

(22.6) 
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The equation (22.5) is obtained from (22.4) by an obvious formal opera- 
tion plus the fact that 5 is a unit vector. Elimination of the quantities 
v , ~  in (22.5) by means of the relations (18.12) and use of the equations 
(16.5) for the components gap leads immediately to the equation (22.6). 

When we multiply both members of the equations (21.11) by e6 20 A y  

and sum on repeated indices we find that 

i 

(pa &,p ~~6 AD Ay) K = pa bay bps A@ A?, (22.7) 

when account is taken of the condition (22.1) along the asymptotic line. 
But one can readily observe that the expression in parenthesis in the 
left member of (22.7) is equal to - 1. Hence when we subtract cor- 
responding members of the equations (22.6) and (22.7) we are led to 
the following simple equation due to Enneper, namely 

I- 

t = & l / - K K ,  

by which the torsion t of an asymptotic line is related to the Gaussian 
curvature K of the surface. 



23. Orthogonal Ennuples and Normal 
Congruences 

Let A(2) and be a set of three mutually perpendicular 
unit vectors in a Riemann space R of three dimensions. Such a 
set of vectors will be referred to as an orthogonal ennuple. Rep- 
resenting the vectors of an orthogonal ennuple by their con- 
travariant components &), A:2) and A:3) we must therefore have 

g,, A;,) = %' (23.1) 

where the g,, are the components of the fundamental metric tensor 
of R. If = g&) are the covariant components of the vector 
A,,) it follows readily from (23.1) that 

gz7 = 4 P ) l i  4 0 )  4 P ) l  = " 9  (23.2) 

where the index 9 is summed over the values 1,2,3. Also, cor- 
responding to the first equation (23.2), one can easily show that 
the components gzl of the contravariant form of the metric tensor 
of the space R are given by 

g'j = A* ( P )  21 (PI' (23.3) 

Either set of equations (23.2), or the set of equations (23.3), is 
equivalent to the equations (23.1) which express the conditions 
that the vectors A,,) are unit vectors and mutually perpendicular 
in the space R. 

A vector field A defined in the Riemann space R will determine 
a congruence of curves in R as solutions of the system of differential 
equations 

dx i  
dt 
__ = Ayx). (23.4) 
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Evidently the space R will be covered completeIy by the curves 
of this congruence and there will be one, and only one, curve of 
the congruence passing through any given point P of R. The 
congruence will be said to be normal provided there exists a family 
of surfaces 

f ( x 1 , x 2 , x 3 )  = const., (23.5) 

which have the curves of the congruence as their orthogonal 
trajectories. We shall now investigate the condition under which 
one of the vectors A,,) of the above orthogonal ennuple will 
determine a normal congruence. 

For definiteness let us consider the congruence C, determined 
by the vector &). Now it was observed in Remark 1 of Sect. 16 
that the derivatives af /axi  are the components of a covariant 
vector perpendicular to a surface (23.5). If the family of surfaces 
(23.5) has the curves of the congruence C, as its orthogonal trajec- 
tories the vectors A(1) and Aca, at  any point P of R must therefore 
be tangent to the surface (23.5) which passes through the point P. 
Hence we must have 

(23.6) 

as the condition for the congruence C, to be normal. In other 
words the function f ( x )  which determines the family of surfaces 
(23.5) having the curves of the congruence C, as its orthogonal 
trajectories must be given as a solution of the system of differential 
equations (23.6). 

The differential equations (23.6) will admit a solution f ( x )  
determining the required family of surfaces (23.5) if, and only if, 
the equations (23.6) form a complete system and the condition for 
these equations to be complete is that the quantities (Xq,Xr)f  
defined by 

(Xq, Xr)f  = x,  X A f )  - xr & ( / )  (23.7) 
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are expressible linearly and homogeneously for q , ~  = 1,2 in terms 
of the quantities X,( f )  and X 2 ( f ) .  Now 

These expressions for the scalar quantities X,X,( f )  are evidently 
invariant under coordinate transformations in the space R. Hence 
if we transform (23.8) to a system of normal coordinates (see Sect. 9) 
and evaluate at the origin of the normal system we obtain 

(23.9) 

where the f,ii and A{,),i are the components of the second extension 
of the scalar function f and the covariant derivative of the vector 
A,,) respectively; the quantities f , i  in the above equations (23.9) 
are the coordinate derivatives afjaxf of the function f .  Hence 
(23.7) becomes 

(23.10) 

In  the further investigation of the equations (23.10) it will be 
helpful to consider the following two sets of relations, namely 

(23.11) 

(23.12) 

The quantities yPqr are scalars and are defined by (23.11) in terms 
of the vectors A,,) and their covariant derivatives. The relations 
(23.12) express the components of the covariant derivatives of the 
vectors in terms of the vectors A,,) and the scalars yPqr; these 
equations are readily obtained by solving (23.11) for the compo- 
nents of the covariant derivatives of the vectors A(,). Actually the 
quantities ypq, are not algebraically independent but must satisfy 
the set of relations 
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In  fact if we differentiate the equations (23.1) covariantly we 
obtain a set of equations which can be written in the form 

Multiplying these equations by A[,) and summing on the repeated 
index j we are led to  the equations (23.13). 

Eliminating the components A;,),$ and Atq),$ by substitutions 
of the type (23.12) and making use of the equations (23.1) as well 
as the identities (23.13) we find that  the equations (23.10) become 

( X q ,  Xr ) f  = (Ymrq -7mv)Xndf )  + ( ~ 3 r q  -~~3qr )X3( f ) ,  (23.14) 

where the indices m,q,r have the values 1,2 and there is a summation 
on the repeated index m over these values. 

Since the determinant 1A2p,/ does not vanish, e.g. i t  follows 
that lA;p)l # 0 from (23.1), the expressions X l ( f ) ,  X,( f )  and X 3 ( f )  
must be linearly independent. Hence the system of differential 
equations (23.6) will be complete if, and only if, the coefficients 
of X 3 ( f )  in the right member of (23.14) are equal t o  zero. Bu t  
since the indices Y and q in (23.14) are restricted to  the values 1,2 
the vanishing of these coefficients produces the single relation 

7 3 1 2  =I 7321. (23.15) 

In  other words a necessary and sufficient condition for the congruence 
C, to be normal i s  that the condition (23.15) be satisfied. 

Remark 1. The above discussion is evidently applicable to a Riemann 
space of any dimensionality n 3 2 and, for such a space, one is led 
to a set of equations corresponding to (23.15), namely 

Ynqr = Ynrq (g,r = 1,. . . ,n - I),  

as the conditions for the normality of the congruence Cn determined 
by the vector A(,,) of the set of n mutually orthogonal unit vectors A p ) .  
In the special case n = 2 the above condition is automatically satisfied 
corresponding to the fact that the curves of the congruence determined 
by either vector of the orthogonal ennuple have the curves of the 
congruence determined by the other vector of the ennuple as their 
orthogonal trajectories. 
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To treat the two dimensional problem specifically let 1 be a vector 
field in a Riemann space R of two dimensions and denote by C the 
congruence of curves in R which are determined by solution of the 
differential equations (23.4). Assuming R to be oriented we can define 
a vector 5 having the covariant components t, = ~~j Af  and hence 

ti l i  = Eij  2 1i = 0, 

i.e. the vectors 5 and 1 are perpendicular. Hence a congruence of 
curves, orthogonal to the above congruence C, will be determined as a 
solution of the differential equations 

dxi  
dt 
- = P ( X ) .  

This geometrical result is obviously independent of the orientation of 
the space R which was assumed merely for convenience in defining the 
vector 5. Hence a n y  congruence of curves in a two dimensional Riemann 
space will admit a n  orthogonal congruence. 

Remark 2. Let 1(x) denote a vector field in a three dimensional 
Riemann space R and consider the congruence C determined by ;1 as 
a solution of the differential equations (23.4). As in the above Remark 1 
we shall assume that R is oriented for convenience in defining certain 
vectors, associated with the vector 1, but it will be evident that the 
final geometrical results will be independent of the orientation of the 
space. We shall now derive the explicit conditions for C to be a normal 
congruence. 

If (23.5) is a family of surfaces having the curves of the congruence C 
as its normal trajectories we must have 

(23.16) 

where 4 is a scalar function in R. By covariant differentiation of (23.16) 
we obtain 

f . ik = 4 , k  17 + $&,k, (23.17) 

where the components f , l k  are symmetric in the indices j,k and the 
other quantities 4 , k  and 11,k  are the components of covariant derivatives 
as indicated. Multiplying (23.17) by the quantities etlk and summing 
on repeated indices we find that 

e'lk & &,k = 0, (23.18) 
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in which the eijk are the components of the skew-symmetric tensor 
defined in Sect. 4. Hence (23.18) i s  a necessary condition for the con- 
gruence C to be normal.  

Now define a set of three unit vectors A($) in R as follows 

(23.19) 

(23.20) 

where the srik are the components of the skew-symmetric tensor in- 
troduced in Sect. 6. As so defined the vectors &) and ;I(y) are immediately 
seen to be unit vectors and it follows readily by recourse to the equa- 
tions (6.16) that  A(l) is also a unit vector. Moreover the vectors A ( 2 )  
and A ( 3 )  are perpendicular on account of the condition (23.18) while 
the vector and A(3)  by construc- 
tion. Hence the vectors &), A ( 2 )  and form an orthogonal ennuple 
in the space R. 

Since the given vector 1 and the unit vector A,,, defined by (23.19) 
determine the same congruence C it follows that C will be a normal 
congruence if, and only if, the condition (23.15) is satisfied where the 
quantities y are constructed from the orthogonal ennuple defined 
by (23.19), (23.20) and (23.21). But, using the expression (23.19) for 
the components of and taking account of the fact that the vectors 
i l (pl  are mutually Perpendicular, we see that the condition (23.15) 
becomes 

is perpendicular to the vectors 

AS,? q l )  ;”($ = 4J q 2 )  A;l). (23.22) 

Now substitute the expressions for ATz) and ATl) given by (23.20) and 
(23.21) into the relation (23.22). Cancelling certain common factors 
from the terms of the resulting equation, as is evidently permissible, 
we obtain an equation which can be written 

&,?(gab EaZr Elrnn A$,q Am,% 1, = &,,(gab galk F b p g )  Ezmn &,q Am,% 1,. (23.23) 

Next, replacing the parenthesis expressions in (23.23) by the expressions 
given by the identities (6.16), we find that the equation (23.23) can be 
put into the following form 

(Ezmn H,, Hmn) Hpq glfi 24 = 0, (23.24) 
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in which the H’s are the skew-symmetric quantities defined by 

H. .  - I . - 4,. 
t 7  - 1 2 7  

But the parenthesis expressions in (23.24) are readily seen to vanish 
by taking the index = 1,2,3 in turn and performing the indicated 
summations. Hence (23.15) is satisfied and we have proved the following 
result. T h e  congruence of curves determined by a vector field 1 in a three 
dimensional Riemann space will be normal, i.e. there mill exist a one 
parameter family  of surfaces (23.5) having the curves of the congruence 
as their orthogonal trajectories if, and only if, the condition (23.18) i s  
satisfied. 



24. Families of Parallel Surfaces 

Consider a regular surface S in a three dimensional Euclidean 
metric space E referred to a system of rectangular coordinates xi 
and erect the normals N to the surface S as shown in Fig. 5 .  Denote 

FIG. 5 

.by s the surface obtained by 
laying off equal distances B 

along the normals N in the 
direction of the unit normal 
to S. Such a surface s is said 
to be parallel to the surface S.  
The surface s is determined 
by equations of the form 

Xi = xi + b y i ,  (24.1) 

where xi and Xi are the coor- 
dinates of corresponding points 
P and of the surfaces S and 
3, i.e. points lying on the 
same normal N (see Fig. 5 ) ;  

it is to be understood that xi 
and v i  are functions of the 
curvilinear coordinates ua of 
the point. P, i.e. the xi are 

given by the equations (16.1) defining the surface S and the v i  

by one of the two sets of equations (16.11). Since the surface S 
is regular by hypothesis the surface s will evidently be regular 
for sufficiently small values of the constant B in (24.1). We shall 
assume in the following discussion that the value of B does not 
exceed the limit beyond which the surface S will fail to be 
regular. 
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Denoting by v, the covariant components of the unit normal 
to S at  the point P we have 

2; v, = x i  v, + u v b  v,, (24.2) 

when we replace the 2; by the values obtained by differentiating 
the equations (24.1) with respect to the curvilinear coordinates u". 

But the first term in the right member of (24.2) vanishes since 
the vectors having the components xl  and x i  are tangent to the 
surface S and the second term also vanishes since v is a unit vector. 
Hence we must have the following two sets of relations 

2; vz = 0; 2; p = 0, (24.3) 

where the i ,  are the components of the unit normal a t  P .  Now 
since s is regular the matrix lli?;;il will have rank 2. Hence the 
components v, and I ,  must have the same values to within a 
factor of multiplication as a consequence of the equations (24.3); 

but this implies that i, must be equal to v, to within algebraic 
sign since v and i are unit vectors. Finally if we assume the i ,  
to be continuous functions of the distance u in the equations (24.1) 

we obtain the exact equality of the components of the unit normal 
vectors v and i at  the points P and P respectively. 

It is clear from the above discussion that the normal line L 
to S at the point P is also normal to the surface 3 at  the point P .  
Hence one can reach the surface S by moving equal distances 
from the surface along the normal lines L ,  i.e. the surface S 
is also parallel to the surface 3. If S(u)  denotes the one parameter 
family of surfaces obtained by varying the distance u in the equa- 
tions (24.1) it is now evident that any two surfaces of this family 
must be mutually parallel and in this sense we can speak of S(u) 
as a family of parallel surfaces without further qualification. 

To determine an expression for the components gap of the 
fundamental metric tensor of the above surface s in terms of the 
basic invariants of the surface S let us begin with the relation 

(24.4) 
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by which the components gas are defined (see Sect. 16). For 
definiteness let us think of the quantities gaa in the left member of 
(24.4) as associated with the point P of the surface s. Then, 
expanding the right member of (24.4) it is easily seen that the 
resulting equation can be written in the form 

go,, = ga, - 2 abap + v:,, (24.5) 

where gap and ba, are the coefficients of the first and second fun- 
damental forms of the surface S at  the point P. Making use of the 
equations (18.12) we now have 

(24.6) 

Also if we multiply both members of the equation (21.11) by gas, 
sum on the repeated indices, and make use of the second set of 
identities (6.15) we find that 

bat bp: gF' = 2 0 baa - K g a p ,  (24.7) 

where K and Q are the Gaussian and mean curvatures of the 
surface S at the point P. Taking account of (24.6) and (24.7) 

the equations (24.5) can now be written 

ga,= ( 1 - a z K ) g a p - 2 a ( l - a 0 ) b a p .  (24.8) 

T h e  relations (24.8) give the components gap at the point P of the 
surface in terms of the Gaussian curvature K ,  the mean curvature Q, 

and the coefficients of the first and second fundamental forms, i.e. the 
quantities gap and bap respectively, at the point P of the surface S .  

By second covariant differentiation of (24.1) and use of the 
equations (18.5) we have 

- .  
ba, 1% = ba, vi + (24.9) 

But vi = .iti as observed above and hence when we multiply the 
two members of (24.9) by vi and sum on the repeated index i 
we obtain 

. .  . .  
Ea, = bap f U V ~  vb,, = bap - av;, v:,. (24.10) 
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We now modify the right members of (24.10) by use of the equa- 
tions (24.6) and (24.7) corresponding to our previous treatment 
of the equations (24.5). Hence we obtain 

6 a p  = ( 1  - 2 of2) bap + oKg,p (24.11) 

as  the equations for the determination of the coefficients 6,, of the 
second fundamental form of the surface s at the point P .  

We now prove the following result. T h e  determinants lgap\ and 
IbaapI at the point P of the surface are given b y  

lgasl = ( 1  + 02K - 2 2Q2 lgasl? 

J6a.ol = ( 1  + a2K - 2 ~ f 2 )  Ib.81. 

(24.12) 

(24.13) 

To prove this result we first set up the equations 

/gap 1 = 8 Pfi eflv g a p  gpV ; / h a p  I = 3 e*fi ,flu 6 ,  hpy (24.14) 

for the determinants in question. For convenience in carrying out 
the required operations let us now write the equations (24.8) and 
(24.11) as 

gap = $gap + qbap, (24.15) 

6ap = ba4 + s gap, (24.16) 

where 
f i  = 1 --‘K; q=-2z( l -oO.n) ,  1 
r = 1 -22O.n; s = OK. I 

Then, substituting (24.15) and (24.16) into (24.14) we obtain 

Jga~l = P 2  J g a j ]  +PqPpePVgapbpv + q2 JbapJ, 

/bl = r2 lbasl + rSeapepvgapbpv + s 2  jg,pl. 

(24.17) 

(24.18) 

In  order to simplify the right members of (24.17) and (24.18) 

let us observe that 

ec*p epv gap = /gysI g p y ,  (24.19) 

which follow immediately from the equations (6.7) defining the 
contravariant components gp”. Now, multiplying both members 
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of (24.19) by b,, and summing on the repeated indices, we 
obtain 

ea’ epv gap bPy = lg,a 1 gpv bPy = 2 lg$ I Q, (24.20) 

where Q is the mean curvature of the surface S at the point P. 
Making the substitution (24.20) and also using the relation (21.12) 
we find that 

l i a a l = ( P 2 + 2 P q Q + q z K )  lg=fiIp (24.2 1 )  

/6apl  = ( r 2  K + 2 7 s  Q + s2) IgaaI. (24.22) 

Finally substituting the above expressions for P,q,r and s into 
(24.21) and (24.22) and again making use of the relation (21.12) 

we are led to the equations (24.12) and (24.13). 
If we divide corresponding members of the equations (24.12) 

and (24.13) and then take account of the relation (21.12) we obtain 
the following result. T h e  Gaussian curvature R at the point P of 
the surface s i s  given b y  the equation 

K 
l + a z K - 2 2 K  

R =  (24.23) 

To deduce an expression for the quantities pa we begin with the 

(24.24) 

which are equivalent to the above relations (24.19). Replacing E a p  

and 9’’ in (24.24) by the values 

equations 
g a p  = gar g b  g,,, 

and then making the substitutions (24.8) and (24.12) we imme- 
diately obtain the following result. T h e  contravariant components 
g[xp of the fundamental metric tensor of the surface at the point P 
are given b y  

, (24.25) 
( 1  - o2K) gap - 2 (T ( 1 - OQ) bPv &av gap = 

( 1  - 2 (TQ + o2K)2 
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in which the quantities in the right members have their previous 
significance. 

Finally we seek the corresponding determination of the mean 
curvature 

- 
Q = 4 gub 6afi (24.26) 

of the surface 3. Substituting the expressions (24.11) and (24.25) 

for 6ap and pp respectively the right member of (24.26) becomes 

1 ( 1  -o'K) ( 1  -22Q)Q + ( 1  -o'K)oK 
(1 - 2 oQ + o ' K ) ~  

(24.27) 1 o ( 1  - oQ) ( 1  - 2 CTQ) bab bpv EW &BV 

( 1  - 2 OQ + a2K)' 
- 

I O' ( 1  - 052) K bab g,,, cap - ~- 
( 1  - 2 a52 + a2K)' 

But one can show that 

bag be" eaP &By = 2 K ;  bap gpv &pV = 2 Q. (24.28) 

In fact the first equation (24.28) follows readily from (21.11) and 
the second is a slight modification of (24.20). Making the substitu- 
tions (24.28) in (24.27) and combining the terms in this expression 
we are led to the result that the mean curvature a of the surface 3 
at the point P i s  given by the equation 

- Q-OK 
Q =  1 - 2 2 Q  + 0 2 K '  

in terms of the mean curvature Q and the Gaussian curvature K at 
the point P of the surface S .  



25. Developable Surfaces. Minimal Surfaces 

In  this section we shall comment briefly on two well known 
types of regular surfaces S in the Euclidean metric space E of 
three dimensions. One of these is the developable surface which is 
characterized geometrically by the condition that it can be rolled, 
without stretching or tearing, upon a plane. This implies that the 
developable surface is intrinsically flat, i.e. that its curvature 
tensor vanishes (see Remark 1 in Sect. 13). I t  can be shown in 
fact that a surface S i s  a developable surface if, and only  i f ,  i t s  
Gaussian curvature K i s  equal to zero. 

Special developable surfaces are ( a )  the plane, ( p )  the cone and 
( y )  the cylinder which can be considered as a cone whose vertex 
is a t  infinity. More generally it can be shown that a developable 
surface is a tangent developable, i.e. the locus of the tangents of a 
regular curve C in the Euclidean metric space E ;  the curve C 
is called the edge of regression of the tangent developable. 

Another type of surface to which we wish to call special atten- 
tion is the min imal  surface which may be defined as a surface 
whose mean curvature L? is equal to zero at  each point. A t  a n  
arbitrary point P of a min imal  surface S ,  not a plane, the Gaussian 
curvature K must  be negative. In  fact we must have K~ + K~ = 0 

over a minimal surface S from the second equation (21.14) where 
K~ and K~ are the principal curvatures of S ;  hence neither K~ or K~ 

can be equal to zero since otherwise we would have K~ = K~ = 0 

and it would follow that the coefficients b,, of the second fun- 
damental form vanish over S (see Remark in Sect. 21); but the 
vanishing of the coefficients b,, means that S is a plane (see 
Remark in Sect. 18) contrary to hypothesis. Hence K = - K; < 0 

from the first equation (21.14). 
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Minimal surfaces arise in the existence theoretic problem of 
finding a connected surface of minimum area bounded by a given 
simple closed curve in the space E.  This problem, known as the 
problem of Plateau, has attracted the attention of a number of 
distinguished mathematicians. It was finally solved by J. Douglas, 
Solution of the problem of Plateau, Trans. Am. Math. SOC. 33 (1931), 
pp. 263-321. 

For a detailed treatment of the geometry of the above and 
other surfaces of special type the reader is referred to the standard 
texts on differential geometry. 
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