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Preface

In the following pages* we have given an introductory account of
the subject of tensor analysis and differential geometry. It is hoped
that this volume will be suitable for a one-semester course at the grad-
uate level, for students of pure mathematics as well as for those students
whose primary interest is in the study of certain aspects of applied
mathematics including the theory of relativity, fluid mechanics, elasticity,

and plasticity theory.
T. Y. THoMaAS

Los Angeles, California
September, 1960

* Prepared under Contract Nonr-908(09), Indiana University, NR 041 037.
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1. Coordinate Manifolds

Consider the set of all ordered sets of # real numbers (x1,. . .,x")
where #» is any positive integer. This set will be called the arithmetic
space of n dimensions. We can refer to the individual sets (x1,...,x"%)
as the points of this space and to the real numbers x!,...,x" which
enter into the representation of any point (x1,...,x") as the
coordinates of the point.

Suppose that a set of geometrical points P (undefined objects
in the usual mathematical terminology) can be put into (1,1)
correspendence with the points of the arithmetic space of # dimen-
sions. This correspondence P« (x,...,x") is called a coordinate
system, more fully a coordinate system covering the set of geomet-
rical points. If Pe>(yl,...,y") is another correspondence or
coordinate system for the same set of geometrical points P we
can write

(21,..,x") > P (y1,...,9").

The (1,1) correspondence (x1,...,x") <> (y%,...,¥") thus estab-
lished between the points of the arithmetic space of # dimensions
is called a coordinate transformation. It can also be expressed by
writing

yi=fi(x1,...,2"); x = ¢ (yL,. ...y, (L.1)
where 7 = 1,...,n and the f and ¢ are functions of the coordinates
x1,...,2" and yl,...,y" respectively. Since the correspondence
(x1,...x" > (y1,...,¥") is (1,1) it is clear that the first set of

equations (1.1) has a unique solution which is given by the second
set of these equations and conversely the second set of equations
has a unique solution given by the first set of the equations. The
correspondence (x1,...,%") <> (y1,...,y") can also be interpreted
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2 1. COORDINATE MANIFOLDS

as a permutation or displacement of the arithmetic space of »
dimensions into itself. However an interpretation of this character
must be abandoned in favor of the strict concept of the coordinate
transformation when we deal with point sets which cannot be
covered by a single coordinate system.

A function of one or more variables which is continuous and all
of whose derivatives exist and are continuous to derivatives of
order u inclusive is frequently called a function of class C*. In
particular a continuous function is said to be of class C° and a
function possessing continuous derivatives of all orders is of class C®.
To include the case of analytic functions we introduce the special
symbol # = A and say that an analytic function is of class C.
If all the functions f in the first set of equations (1.1) are of class C*
it is a well known result in analysis that the functions ¢ appearing
in the inverse relationships are likewise of class C*. When the
functions f, and hence the functions ¢, are of class C* we say
that the coordinate transformation defined by (1.1) is of class C*.

It can readily be observed that a coordinate transformation
of class C* with # > 0, which we interpret to include the analytic
case u = A, is regular in the sense that the functional determinants
|oy!/ox*| and |d8x°/@y*| are everywhere different from zero. In
fact by differentiation of (1.1) we have

oy’ 0xF i

where o) is Kromecker's delta with & = 1 for i = and ¢} = 0
fori s« j. In writing (1.2) we have employed the summation conven-
tion in accordance with which a repeated index in a term is
understood to be summed over the permissable values of this
index; we shall continue to use the summation convention
throughout this book. Taking the determinant of each member of
the relation (1.2) we obtain

o
oy’

oy’
dx* |

=1 (1.3)




1. COORDINATE MANIFOLDS 3

Since neither of the determinants in (1.3) can be infinite at any
point P by hypothesis, it follows from (1.3) that these deter-
minants cannot vanish at P, i.e. the transformation (1.1) is regular
as above stated.

The entity consisting of the underlying geometrical point set
under consideration and the totality of coordinate systems related
by transformations (1.1) of class C* covering this point set, is
called a simple coordinate manifold of class C*; the integer »
which gives the number of coordinates x1,...,x” is called the
dimensionality of the manifold. Any coordinate system involved
in this definition of the simple coordinate manifold of class C*
is said to be allowable. Now select any allowable coordinate system S
for this manifold (assuming # 3 0) and consider all allowable
coordinate systems which are related to S by proper coordinate
transformations (1.1), i.e. transformations (1.1) whose functional
determinants are everywhere positive. The underlying geomet-
rical point set together with these latter coordinate systems is an
oriented simple coordinate manifold of class C*. If we select one
of the allowable coordinate systems of the original simple manifold,
not appearing among the coordinate systems of this oriented
simple manifold, it is clear that another oriented simple coordinate
manifold of class C* will be determined by the process described.
Thus there are two and in fact, as is easily seen, only two oriented
simple coordinate manifolds of class C* determined by any given
simple coordinate manifold of class C* (# 7= 0). One of these may
be said to be positively oriented and the other negafively oriented.

Consider any set of abstract elements a,b,c,... for which there
is defined a law of composition, usually referred to as multiplica-
tion, such that the composition or product ab of any ordered pair
of elements a and & is an element ¢ of the set. The set of elements
in question is then said to form a group relative to this law of
composition if the following three conditions are satisfied. ZFirst,
a(bc) = (ab)c, i.e. the associative law holds; second, there exists an
element 1, called the unit element, such that ai = ia = a for an
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arbitrary element a of the set; and third, to each element a there cor-
responds an element a=1, called its inverse, such that aa=! = a—la = 1.
In particular if the commutative law holds, i.e. ab = ba, the group
is said to be Abelian. Subgroups can be defined in an obvious
manner. Various other group concepts might be considered here,
e.g. tsomorphic groups, conjugate and factor groups, etc., but their
discussion is not necessary for our purpose.

Now suppose that the elements a,b,c,... are the above coor-
dinate transformations (1.1) of class C* relating the coordinates
of allowable systems of a simple coordinate manifold of class C*
and that the product of any two such elements is the resultant
transformation which obviously belongs to the set under considera-
tion. If the unit element ¢ is taken to be the identity transforma-
tion and the above element ¢~! is defined as the transformation
inverse to the coordinate transformation a, it is easily seen that the
transtormations (1.1) constitute a group. We may refer to this
group as the group of the manifold. Similar remarks of course
apply to the coordinate transformations which relate the allowable
systems of the two oriented simple coordinate manifolds determined
by any simple coordinate manifold of class C*.

A generalization of the above concept of the simple coordinate
manifold is obtained by assuming that any point P of the un-
derlying geometrical point set is contained in a neighborhood N
(open set) the points of which can be placed in (1,1) correspondence
with the points of an open set of the arithmetic space of # dimen-
sions. The resulting correspondence P« (#1,...,2") defines
a coordinate system for the neighborhood N. Now consider another
neighborhood N’ and a coordinate system P« (y1,...,y") for this
neighborhood. If the intersection N n N’ is non-vacuous we can
combine the correspondences P« (x1,...,x") and P (y',...,9")
to obtain a coordinate transformation (x%,...,x")«>(y%,...,9")
valid in the intersection of the neighborhoods N and N’. The entity
consisting of the underlying geometrical point set together with
the totality of allowable coordinate systems defined over its
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neighborhoods is now called a coordinate manifold of n dimensions;
coordinate transformations between the coordinates of allowable
coordinate systems are said to be allowable. When the allowable
coordinate systems are restricted by the requirement that the
functions f and ¢ in the equations (1.1), which represent the
allowable coordinate transformations, are of class C¥ we say that
the manifold is a coordinate manifold of class C*. It is commonly
assumed that any (1,1) transformation (1.1) of class C* of the
coordinates a%,...x" of an allowable system x is allowable and
leads to an allowable coordinate system 4 for the manifold of
class C*. Transformations (1.1), relating the coordinates of two
allowable systems x and y of a coordinate manifold of class C*
(# # 0), will be regular; the proof is identical with the above proof
of the corresponding result for simple coordinate manifolds of
class C*

With the exception of the brief discussion of scalars in Sect. 2
the nature of our work requires the differentiability of the functions
f or ¢ defining the coordinate transformations (1.1). Hence it
will generally be assumed without special mention that the case
# = 0 is excluded in any reference to a coordinate manifold of
class C*. It will also be assumed implicitly that the class of the
manifold is such as to permit the operations of differentiation
involved in the problem under consideration and with this un-
derstanding the explicit designation of the class C* of the manifold
will usually be omitted.

Remark. An example of a geometrical point set which cannot be
covered by a single coordinate system is furnished by a sphere in ordinary
Euclidean metric space (defined in Sect. 12). Thus it is obvious that
the extension of the simple coordinate manifold to the more general
coordinate manifold, e.g. the coordinate manifold of class C¥, is necessary
to meet the requirements of differential geometry.



2. Scalars

The quantity called a scalar is a point function f(P) defined
over a specified set of points P. When the scalar f(P) is defined
over the underlying point set of a coordinate manifold of class C*
it is sometimes called a scalar field and it can be represented by
suitable functions of the coordinates of the various allowable
coordinate systems covering the manifold. Thus we have
f(P)y = ¢(x},...,x") where i is a function of the coordinates #1,. .. %"
of points P in the x system. Similarly f(P)= J(&,...,%") in the
% system, etc. This gives relations such as

YL xt) = P(A,. .., 7Y,

when «%,...,x* and Z#.,...,x" are the coordinates of the same
geometrical point P in the x and % systems. The above func-
tions ¢(x) and ¢(x) are called the components of the scalar in the
x and X systems respectively.

The scalar f may be said to be of class C*” if the functions
giving its components in the various coordinate systems are of
class C”. In the case of an analytic coordinate manifold (coordinate
manifold of class C4) there is obviously no restriction on the class
of the scalars which one may consider to be defined over the
manifold. However for scalars of class C*®, defined over non-
analytic coordinate manifolds of class C*¥ we must have w # 4
and w < # in order that the class of the component functions
may be preserved under coordinate transformations.



3. Vectors and Tensors

Let P be an arbitrary point of a coordinate manifold of class C*
and suppose that, corresponding to each of the allowable coordinate
systems containing P, there is an ordered set of # numbers
associated with this point. Thus if we denote the coordinate

systems by x, X, X, etc., we have

vlv?, . 0" relative to the x system,

7,92, .. .,0" relative to the X system,

71,92, .. 0" relative to the % system,
We then think of an emtity having v!,...,v" as components at P
relative to the x system; ?',...,9" as components at P relative

to the % system; etc. This entity is called a vector at the point P
if its components relative to any two of the above coordinate
systems, for example the x and % systems, satisfy relations of
the form

L i=1,...m) (3.1)

More fully this vector is called a contravariant vector. A slight
modification of the above relations {3.1) leads to the concept of
the covariant vector at the point P as the entity having components
v1,0,,...,0, at P relative to the x system, etc., such that the
components transform under coordinate transformations by the
equations

k
B, = vs %%, (G=1,....m). (3.2)
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Now consider the equations

0% .
a;k L G=1,...n), (3.3)

Sy

expressing the relation between the components of the above

contravariant vector in the % and & coordinate systems. Combining
(3.1) and (3.3) we have

5 ( axk> 0% _ <8x’ axk> 'v@
ox' | 0x* ozt ox o/
But these are precisely the equations relating the components of
the vector in the x and % systems according to our definition. The
fact that no new relations are obtained by the above process of
elimination is expressed by saying that the equations (3.1) have
the ransitive property. Similar remarks of course apply to the

equations (3.2) for the transformation of the components of a
covariant vector.

If v and w are covariant and contravariant vectors respectively
at a point P of a coordinate manifold the algebraic combination
v;w* defines a scalar. This follows from the fact that the quantities
vw’, 7@, etc., have the same value at P. Thus from (3.1) and (3.2)
we obtain

. oxk\(  ox ox* 0% ok .
T, = vy F w/ B = = VW A Wi d; = vpwt.

The scalar defined by v;w* is called the scalar ﬁ?oduct of the vectors
v and w.

A vector defined over a coordinate manifold is called a vector
field. The class of the vector field is, by definition, the class of
the functions giving the vector components in the various allowable
coordinate systems of the manifold. Obvious limitations can be
placed on the class of the vector field corresponding to the case
of the scalar discussed in Sect. 2. Since all quantities including
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scalars, vectors and tensors, which will enter into our considera-
tions, will habitually be defined over a coordinate manifold or
at least within a region (open set) of such a manifold the term
field will be applicable but will usually, for brevity, be omitted
from the discussion.

The definition of the fensor appears as a direct extension of the

definition of a vector. Thus consider the following sets of
quantities

T;jjjﬁ;, relative to the x system,
Ty, relative to the % system,
T;ij_‘_‘f., relative to the % system,

defined in the various allowable coordinate systems of a coordinate
manifold of class C¥ where each of the indices 4,...,7,k,...,m can
take on values arbitrarily from the range 1,...,n. The entity
having the above quantities as its components, relative to the
coordinate systems indicated, is called a tensor provided the
relations between any two sets of these components, e.g. the

components Ti7 and 7-",;,7,,, are of the form
b OX° ox® 0x' ox'

c,v_dﬁi.».ﬁ'a—‘xa‘---axb (3.4)

in the intersection of the neighborhoods covered by the x and %
coordinates systems. The demonstration of the transitive property
of the equations (3.1) and (3.2) can be extended immediately to
the equations (3.4).

The tensor defined above is sometimes referred to as a mixed
tensor to indicate the fact that both superscripts ¢,...,f and
subscripts %,...,m appear in the symbol of its components. In
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particular a tensor having components 777 is called a con-
fravariant tensor and one with components T, , is called a
covariant tensor. The number of indices in the symbol for the
components of a tensor is called the rank of the tensor.

The following is a list of some of the simple algebraic operations
that can be performed on tensors; all of these operations can be
proved directly by recourse to the law of transformation (3.4) of
the components of the tensor.

(a) AppITION

If the components Af7 and Bl of two tensors A and B
contain the same number of covariant and contravariant indices
the corresponding components of these tensors can be added to

produce the components of a single tensor. Thus
Cih=Ai 0+ Bih,

are the components of a tensor C called the sum of the tensors 4

and B. Similarly the difference between the corresponding compo-

nents of the tensors 4 and B constitutes the components of a

single tensor.

(b) MULTIPLICATION

If we multiply all the components AF 7 of a tensor 4 by
all the components B% 7 of a tensor B, not necessarily of the

same rank as the tensor 4, we obtain a set of quantities
i...fb...q .. D...
Ckl.v.mr...s = Aku.m sz

which constitute the components of a new tensor. In particular
a new tensor is obtained by multiplying the components of a
given tensor by a scalar.
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(c) CONTRACTION

The components A,f;'."'f of a tensor can be used to define a

set of quantities
ook ik
B’qr - At’q 7

which possess tensor character. The components B;",jj’f are said
to be obtained from the components A;; % by contracting the
indices 7 and p. Any index of the set 77...% and any index of the

set pg...r can be contracted in this manner to form the compo-
nents of a new tensor.

A tensor is said to be symmetric with respect to two con-
travariant indices (superscripts) or with respect to two covariant
indices (subscripts) which appear in the symbol of its components
if the interchange of these indices leaves unaltered the values of
all components of the tensor. It is skew-symmetric if the interchange
of the indices changes the algebraic sign of all components of the
tensor. One can readily verify that the symmetric or skew-
symmetric properties of the components of a tensor persist under
transformations of coordinates. A tensor which is symmetric or
skew-symmetric with respect to all adjacent pairs of contravariant
and covariant indices in the symbol of its components is spoken of
simply as a symmetric or skew-symmetric tensor.

Remark 1. It is an interesting observation that the quantities 8
defined above are the components of a mixed tensor. This follows in
fact from the identical relations

5 ox' ox* w 0% 9x*
T xR axi - F gam o
Remark 2. By a simple modification of the transformation equa-

tions {3.4) one arrives at the definition of a rélative tensor or tensor of
werght W where W is an arbitrary constant. The modified equations (3.4)
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giving the transformation of the components of a relative tensor of
weight W are

= ... _ L 0x°€ ax? ox ox!
Tk...mzIax/axlwn___d—a—x:;—...’a“j?—a—;...wy (35)
where the quantity |dx/d%| is the functional determinant or jacobian
of the transformation relating the coordinates of the x and % systems.
It is readily shown that the relations (3.5) enjoy the transitive property
which is a basic requirement in the concept of a tensor. The terms
mixed, contravariant, covariant, etc., carry over to tensors of arbitrary
weight W as do also the above properties of addition, multiplication
and contraction. Thus two tensors of the same kind, i.e. which have
the same number of covariant and contravariant indices and the same
weights, can be added to give a tensor of this kind. However when the
product of two tensors of weights W and W’ is formed the result is'a
tensor of weight W + W’. When one speaks of a tensor without explicit
mention of its weight it is customary to understand a tensor of weight
zero or absolute temsor, as it is sometimes called, unless it is clear that
the tensor in question has weight W £ 0 and the omission of the weight
is merely for the purpose of brevity.



4. A Special Skew-symmetric Tensor

We shall now consider a skew-symmetric tensor e which has
certain interesting formal properties. Since the case # = 3 is of
particular importance from the standpoint of the applications we
specifically treat this case for which the components of the tensor e
may be denoted by ¢;; and defined as follows:

(a) e =0 if two indices 1,7,k are the same;
(b) e =1 1if 1,5,k is an even permutation of 1,2,3;
(c) ey= —1 1if 4,5,k is an odd permutation of 1,2,3.

It will be shown that the above quantities ¢;;;, are of tensor character
under transformations of the allowable coordinate systems of a
three dimensional coordinate manifold of class C*.

As a first step in the proof of this result let us consider the
expansion of a third order determinant, namely

1 1 1
a; a, a;

g |2 2 2] __ ik

la,‘[ = |% as a;| =X + ajaja,
3 3 3
as a3 a;

where the summation X involves all terms which can be obtained
from the one written down explicitly by replacing 7,7,k by permuta-
tionts (without repetitions) of the numbers 1,2,3; also the -+ sign
is to be inserted before any term of this sum for which 7,7,k is an
even permutation of 1,2,3 while the — sign is to be used if 7,7,k
is an odd permutation. All this is now taken care of very conve-
niently by means of the quantities e;;;, defined above and use of
the summation convention. In fact we see immediately that we
can write

|ai] = e,;, @} ab ab. (4.1)

13



14 4. A SPECIAL SKEW-SYMMETRIC TENSOR

It is readily seen that the above equations (4.1) can be extended
to give

=e,, alal a’ (4.2)

!a;:le ik P g e

par

where the p,q,7 are free indices, i.e. these indices can be assigned
values 1,2,3 at will. Thus both members of (4.2) reduce to zero if
two of the indices $,4,7 have the same value; this is a direct con-
sequence of the skew-symmetry of the e;;. On the other hand
according as p,q,7 is an even or an odd permutation of 1,2,3 the
two members of (4.2) become |4} or — lai| respectively. Replac-
ing the elements 4 in (4.2) by the corresponding coordinate
derivatives 9x'/8%’ we now have

0x' 0x' ox*

o = |0%/0X| ™ eine 375 T G

(4.3)
But this means that the skew-symmetric quantities e;, are the
components of a relative covariant tensor e of weight —1 in the
three dimensional coordinate manifold under consideration.

It is an interesting observation that the quantities ¢, can also
be regarded as the components of a contravariant tensor of weight
-+ 1 in the three dimensional coordinate manifold. Denoting the ¢,;,
by the symbols ¢”* in connection with this result we first show that

|ai] e’ = € a? al a, (4.4)

corresponding to (4.2). Hence, identifying the a; with the deriv-
atives 9x'/dax!, we obtain

0x* 0% 0x’
ox' ox ox*’

ettr = |0x/0%| e (4.5)

by which the result is established.

Remark 1. By an obvious extension of the above definition of the
quantities ¢;, we can define skew-symmetric quantities e;. or el ok
involving # indices, which can be used to obtain equations similar to
(4.2) and (4.4) for the expansion of a determinant of the n-th order.
From these equations it will follow, by the above procedure, that the
€;;...x OF €% constitute the components of a skew-symmetric covariant
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or contravariant tensor of weight —1 or 41 respectively in an »
dimensional coordinate manifold.
In particular the quantities ¢,5 and ¢ defined by

e, = 0; e =1; ey = — 1; €y =0,
et = 0; er=1; e — —1, €2 =0,

are the components of a skew-symmetric covariant tensor of weight —1
and a skew-symmetric contravariant tensor of weight +1 in a two
dimensional coordinate manifold. Between the components ¢,; and e
we have the relations

e,pe"" = 0} (4.6)

Correspondingly we readily observe that the skew-symmetric compo-
nents e;;; and %, which are defined in a three dimensional coordinate
manifold, are such that

ey €77 = & 6] — 8} 0L, (4.7)

Remark 2. Equations of the type (4.2) and (4.4) can be used to
deduce several of the well known properties of determinants. By
assigning equal values to two of the indices p,¢,7 in (4.2) we obtain the
result that a determinant vanishes if two of its columns are identical;
also by interchanging two of these indices it follows that the interchange
of two columns of a determinant changes its algebraic sign. Similarly
it follows from (4.4) that a determinant vanishes if two of its rows are
identical and that the interchange of two rows produces a change of
algebraic sign in the value of the determinant.

These equations likewise permit an easy derivation of the well known
theorem on the multiplication of two determinants of the s#-th order.
Thus, using the representative relations (4.2) and (4.4), we have

(@] bh] = (|alle,,, B8 88 by = e, ) af ak b b B,

But, substituting ci,, for the combination af,; bf,, in the right member of
this relation, we can write

&3] [bm] = equ i ch s = ]

ijk

Expressed in words this shows that the product of the determinants

laj| and |bj| is the determinant |ci| in which the element in the ith
row and jth column is the sum of the products of the corresponding

elements in the ith row of || and the jth column of 161,



5. The Vector Product. Curl of a Vector

The tensor e defined in Sect. 4 can be used in the definition of
the well known vector product of two vectors 4 and B in a coordinate
manifold of three dimensions. According as the vectors 4 and B
are covariant or contravariant vectors we define their vector
product to be the vector C having components represented by
one or the other of the following two sets of equations

C' = e* 4; By; C:= e A’ B%, (5.1)
As defined by the equations (5.1) the vector product of two absolute
covariant vectors 4 and B is a relative contravariant vector C of
weight +- 1 while the vector product of two absolute contravariant
vectors A and B is a relative covariant vector C of weight —1
in the three dimensional coordinate manifold.

An analogous application of the tensor e furnishes the definition
of the curl of a vector V in a coordinate manifold of three dimensions.
Thus if V is an absolute covariant vector whose components V(%)
are differentiable functions of the coordinates x',x%,x® of the
allowable coordinate systems covering the manifold we see imme-
diately from the equations of transformation of the components
of V that the quantities

ov, aVs
oxk 0x
are the components of a covariant tensor of the second rank.
Hence the quantities W* defined by
Wi — % ik (gxlk] — %%’i) — % (5.2)
are the components of a relative vector W of weight + 1 in the

three dimensional manifold. The vector W defined by (5.2) is
called the curl or rotation of the vector V.

16



6. Riemann Spaces

The concept of distance does not enter into the preceding
discussion. We now introduce this concept by the assumption that
the distance ds between two infinitely nearby points P and @ in
a coordinate manifold of # dimensions is given by

ds? = gi;dx'dx, (6.1)

where the right member of this equation is a positive definite quad-
ratic form in the coordinate differences dx of the points P and Q ; the-
coefficients g,; can be taken to be symmetric in the indices ¢ and 5
without loss of generality. A coordinate manifold of # dimensions
over which such a quadratic differential form is defined is called
an n dimensional Riemann space.

The use of (6.1) to determine distance involves the condition
that the quadratic form in the right member of this equation is
invariant under allowable coordinate transformations. But from
this invariance one can immediately infer that the coefficients g,
are the components of a symmetric covariant tensor, i.e.

= o0x* dxb
§i(%) = ga(¥) a;- 5%, (6.2)

as the result of an allowable coordinate transformation x < % in
the manifold. The tensor having the quantities g; as its components
is called the fundamental metric tensor of the Riemann space. We
shall say that the Riemann space is of class C* if the components g;
are of class C* in the allowable coordinate systems covering the
manifold. In the case of a Riemann space of class C*® (w # A)
it will be assumed that coordinate transformations x«-» % of
class C¥*! are allowable since such transformations will preserve

17



18 6. RIEMANN SPACES

the class of the functions g; without being unnecessarily restricted;
for an analytic Riemann space, i.e. a Riemann space of class C4,

it is required that the allowable coordinate transformations x <» %
be of class C4.

Since the quadratic differential form (6.1) is positive definite
by hypothesis it follows that the determinant g of its coefficients
is positive, i.e. explicitly
i1 Bz - fin
821 822 .- 2

gnl gnZ L gnn

By equating the determinants of the two members of the equations
(6.2) and then extracting the square roots of both sides of the
resulting equation we obtain

Vg = oxjoz| g, (6.4)

provided the determinant |0x/0%| is positive. Now if the covering
of the Riemann space by its allowable coordinate systems is such
that the functional determinant or jacobian |0x/0%| of every
coordinate transformation is always positive the Riemann space
will be said to be oriented (Sect. 1). Hence the quantity VE appears
as a velative scalar of weight 1 tn the case of an oriented Riemann
space.

Use of the relation (6.4) permits us to replace the relative tensor
e defined in Sect. 4 by an absolute tensor ¢. For the special case
of three dimensions this tensor ¢ will have components ¢, or &7
defined as follows

ik

Ve

Eijr = Vg Cijk; gk =
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Replacing the ¢’s by the corresponding ¢’s in the equations (5.1)
and (5.2) we now have

Ci = ¢'* A; By; Ci = &z A" B*, (6.5)
: ax [0V oV OV
s R L

Hence in an oriented Riemann space of three dimensions we can
define the vector product of two absolute vectors 4 and B as
the absolute vector C whose components are given by the first
or second of the relations (6.5) according as the vectors A and B
are covariant or contravariant respectively; also the curl or rota-
tion of an absolute vector ¥ can be defined as the absolute vector W
with components W* given by (6.6).

The fundamental metric tensor having the symmetric covariant
components g;; can be represented byAa symmetric contravariant
tensor whose components g7 are defined by the equations

. _ cofactor of g; in the det. |g;]
g’ = y
gl
To show that the symmetric quantities g given by (6.7) in the

. (6.7)

allowable coordinate systems in the Riemann space are the
components of a contravariant tensor let us first observe that

¢ gin = 5. (6.8)

For definiteness in our demonstration let us suppose that the g;;
are the components of the metric tensor in an x coordinate system
and let us consider the equations corresponding to (6.8), namely

£ 8om =0}, (6.9)

which involve the metric tensor components §;; and the quantities
g7 in an % system. From (6.2) and (6.9) we immediately obtain

. 0x* 0%

i, 0% 0x
8" Eav % oam Om. (610)
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Now multiply both members of (6.10) by the quantity

ox™ 0z

a 94 X
g ox° 0x’

and sum on all repeated indices in the usual manner. But this
leads to the relations
. 0% 0%

e oz
A A (6.11)

and hence proves the contravariant character of the quantities g’
defined by (6.7).

By means of the covariant components g;; and the contravariant
components g7 of the fundamental metric tensor we can modify
the covariant or contravariant nature of a tensor by raising or
lowering the indices in the symbol of its components. Thus the
components T} of a tensor T can be lowered or raised as follows:

Tpir = 8im T T =g T, etc.
Conversely we can pass from the above components T, and T."
to the original components T, by this process of raising or lowering -
the indices in question. These various sets of components therefore
appear as the components of essentially the same tensor T.

Remark 1. By means of the process of raising or lowering indices
the scalar product of a covariant and a contravariant vector, defined in
Sect. 3, can be extended to the case where both of the product vectors
are covariant or contravariant in character. Thusi the scalar product
of the vectors 4 and B is the scalar g; A BY or the scalar g7 4, B;
according as 4 and B are contravariant or covariant vectors.

Remark 2. In accordance with the relations (6.8) the d; can be
interpreted as the result of raising one of the indices of the components
gij. Hence the Kronecker § appears as a mixed form, i.e. a tensor whose
symbol involves both covariant and contravariant indices, of the
fundamental metric tensor.
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Remark 3. Itisa well known algebraic result that a positive definite
quadratic form can be reduced to the sum of the squares of its variables
by a linear transformation. Hence at any point P of a Riemann space
the differential form (6.1} can be reduced to the sum of the squares
of the quantities dx’ as the result of an allowable transformation of the
coordinates of the manifold. In other words it is always possible to
choose a coordinate system relative to which the quantities g; = d;;
at an arbitrary point P. Moreover this can be accomplished by a proper
coordinate transformation, i.e. a transformation whose functional
determinant is positive. In fact if the transformation x«» % changing
the values of the g; to the values d;; at P 1s not proper then the g;;
can be reduced to the values d;; at P by the proper transformation x «» y
which is the resultant of the transformation x«-» % and the transforma-
tion <> vy such that #l= — y1, x* =+y* for k= 2,....m. Hence
it is always possible to select an allowable coordinate system relative to
which the components gi; of the fundamental metric tensor have the values
d; at an arbitrary point P of an oriented Riemann space.

Remark 4. Corresponding to the above quantities &;, and 7% we

can define quantities

. il
tap = JE lap; € :‘]S/Lg_,

in the case of an oriented Riemann space of two dimensions; as so
defined the e,5 and the & are the components of an absolute skew-
symmetric covariant tensor and an absolute skew-symmetric contra-
variant tensor respectively. It is now readily seen that the relations
(4.6) and (4.7) can be modified to read

£, 6% = &, g€t =8 o — &% 4. (6.12)

In fact, choosing a coordinate system relative to which the components
of the fundamental metric tensors are equal to the corresponding
Kronecker deltas at a point P of the two and three dimensional oriented
spaces, the two sets of relations (6.12) become (4.6) and (4.7) respectively
at the point P; hence the validity of (6.12) in general follows from the
fact that the members of these relations are individually the components
of absolute tensors as implied by their indices.
Other relations between the components of these tensors & are

e =g g e Eap = Gao Bpe (6.13)
gk == gia gib gke gy ; Eijk = Lia Gt Lre E°. (6.14)
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Both (6.13) and (6.14) can be proved by the argument used to establish
the relations (6.12). Similarly we can show the validity of the relations

Gor €7 € = gF, 8% Eon Exp = Gups {6.15)
Qab 8a1'k qur — giq gkr . gir gkq’ }

» (6.16)
£ Eajk Ebgr = Ejg Brr — 8ir ke

which will have application in the following work. In this connection
it should be noted that the strict invariance of (6.15) and (6.16) under
coordinate transformations does not require that the Riemann space
be oriented due to the manner in which the &'s are involved in these
relations.

In the remainder of this section we shall comment briefly on
the measurement of lengths, angles, volume, etc. which are possible
in a Riemann space because of the metric structure.

(a) LENGTH OF A VECTOR

By definition the square of the length of a contravariant
vector & is given by g; & &. Similarly the square of the length
of a covariant vector £ is g7 & &;. As so defined the length of a
vector is a scalar which is obviously independent of the covariant
or contravariant representation of the vector.

(b) LENGTH OF A CURVE

By a regular curve C in a Riemann space we shall understand

a locus which is determined by equations of the form x' = ¢'(¢)

in the various allowable coordinate systems where the functions
$(t) are differentiable and such that

d¢ d¢f

Since the form (6.1) is positive definite the inequality (6.17) is
equivalent to the condition that not all of the derivatives of the
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functions ¢(f) will vanish for any value of the parameter ¢£. The
length s of a regular curve C in a Riemann space from the point 4,
corresponding to the value £ = {; of the parameter, to the variable
point P, determined by an arbitrary value of the parameter ¢,
1s by definition

t

I dx* dx
S ZS l/g;;d—t“i‘t—‘ dt. (618)

Lo

Since the integrand in this equation is a scalar the length s will be
independent of coordinate transformations in the Riemann space.
Moreover the equation (6.18) can be regarded as defining a (1,1)
parameter transformation £ <»s since the derivative ds/d¢ cannot
vanish on account of {6.17); hence the parameter s, which can
thus be introduced, will represent the distance, measured along
the curve C, of the variable point P from the above fixed point 4.
As defined by (6.18) the length of the curve C is easily seen to be
independent of the parameterization.

(c) ANGLE DETERMINED BY TWO DIRECTIONS. ORTHOGONALITY

Let & be the components of a non-vanishing contravariant
vector ¢, i.e. not all the quantities & are equal to zero, at a point P
of a coordinate manifold of » dimensions. We then say that the
set of vectors having the components k&, where & is an arbitrary
positive constant determines a divection at P; for brevity we refer
to this as the direction &. The direction associated with the set
of vectors with components — k& is said to be opposite to the
direction &.

The angle 6 determined by the directions & and { in a Riemann
space is defined by the equation

&ij gy
Vew & & Vg 220

cos § =

(6.19)
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This formula has the required property that the angle 6 remains
unchanged if the vector £ is replaced by any of the vectors k¢
which are associated with the same direction as the vector & and
a similar remark of course applies to the vector {. Moreover if
& = — " so that £ and { determine opposite directions the right
member of (6.19) reduces to — 1 and hence 6 is + 180°. The
vectors or directions £ and ¢ are said to be orthogonal or perpendic-
ular if the right member of (6.19) is equal to zero.

In particular if £ and ¢ are unmit vectors, 1.e. if the lengths of
the vectors are equal to 1, the above formula becomes

cos ) = gi & 1. (6.20)

Remark 5. To show that it is legitimate to employ the formula (6.19)
for the determination of the angle 6 we must prove that this formula
is consistent with the requirement |cos §] <C' 1 where the bars denotes
absolute value. Let us first suppose that the two vectors are propor-
tional, i.e. that we can put & = a4’ where 4 is a positive or negative
constant. Then (6.19) gives cos § = 1 for a positive and cos§ = — 1
for @ negative; in the first case the angle determined by the directions
& and { is zero and in the second case it is equal to two right angles.
Now assume that £ and { are not proportional so that we cannot find
constants x4 and », not both zero, such that u&" + »{* vanishes. Then
make the substitution »* = u& + »{* in the quadratic form g;#'7/
which therefore becomes

gin' = p(E,8) 4 2pmp(£,L) + v3(C.0),
where
P(&.8) =g &,
P(&.L) = gii €L,
P(8.0) =g £ L.

Since the 7’ cannot all vanish for g, » not both equal to zero, it follows
that

HEB(E,8) + 2uv(&,0) + v3p(L,0) >0, (6.21)

provided the real constants u, » do not both vanish; hence

(EEB(L.C) — 26,0 >0,
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since otherwise it would be possible to find real constants u, v not
both zero such that the left member of (6.21) would be equal to zero.
Substitution of the above quadratic forms for the ¢ in this last inequality
shows immediately that the absolute value of the right member of (6.19)
is less than unity.

(d) VOLUME OF A REGION

The volume of a region R in a Riemann space is defined by
the integral

SS...Sngxldx%..dxm (6.22)

where the integration is extended over the region R. As so defined
the volume of R is independent of coordinate transformations,
i.e. of the coordinate systems used to cover the region R. We
shall not give a formal demonstration of this fact but will content
ourselves with the observation that in the special case of a Euclidean
metric space of three dimensions (defined in Sect. 12) referred to a
system of rectangular cartesian coordinates, with which one is
primarily concerned in the physical applications, the relative
scalar VE: 1, and hence the above integral (6.22) reduces to the
triple integral by which the volume of a region is expressed in
books on elementary calculus.

(e) GEODESIC CURVES

Consider a regular curve C joining two points 4 and B of a
Riemann space of # dimensions. Let the curve C have as its
equations

¥ =d¢s), a<s<h

where s denotes the arc length measured from the fixed point 4.
Also consider a one parameter family of nearby curves which
likewise join the points 4 and B and which have equations

2= offi(s,e), a<s<b, (6.23)
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where the i/ are continuous and differentiable functions of the two
parameters s and ¢ for values of s satisfying the above inequality
and values of ¢ in the neighborhood of ¢ = 0. We assume that
P(s, 0) = ¢'(s), i.e. the curve of the family corresponding to ¢ = 0
is the curve C. Also it follows that y*(a, &) and (b, ¢) are in-
dependent of the parameter ¢ since all curves of the family pass
through the points 4 and B by hypothesis.
The length of any curve of the family is given by

b
I/ % 0%
Le) =S gija—ta—t ds. (6.24)

If the first variation &/ = 0, the above curve C will be said to
have a stationary length within the family of curves under consid-
eration. A curve C will be called a geodesic if it has a stationary
length within every family of curves (6.23). It can be shown that
a geodesic curve C satisfies the system of differential equations

dxt ; dxl dat
a5t Tl e =0 (6:29)
where the functions [" are defined by
iy im[08mi | OBme Ok .
T = 1€ (W T ox oam)’ (6.26)

these functions are called Christoffel symbols and they will have
an important application in the following work.

Remark 6. To deduce the equations (6.25) let us first denote the
expression under the radical in (6.24) by U for simplicity; then U =1
for ¢ = 0 since the parameter s represents arc length along the curve C.
To a first approximation the curve determined by a value of £ (# 0)
can be considered to be obtained by making a displacement of C such
that the point of C, corresponding to the value s of the arc length,
undergoes a displacement

. ] . oxt
Ox' = gf(s); 5’=(a’;) o



8. RIEMANN SPACES 27

The displacement dx* vanishes at the end points A and B of the curve
C. For the first variation of the length [/ defined by (6.24) we have

b
ol =c¢ ﬂ = —(—S——U:ds,
de | _, 2VU

b

o=} j 8U ds, (6.27)

a

or

since U = 1 for the curve C. Now

aU  9g; ox* 9 9x” 9xt %y
%  oxt @ 8s 0 | 57 3s dgds
Hence
g . . dEi
oU = ea;i’;w o &+ Ze g vt ﬁ, (6.28)

where we have put

. ax’
vz = { — .
( 9s >e= 0

Substituting (6.28) into (6.27) and integrating by parts, we obtain

_ Vogij ;i & ol :
ol = S.H—z_ Fyn S (g,k\v )} &(s) ds, (6.29)

when use is made of the fact that &%(s) vanishes at the end points 4
and B. Now the quantities £i(s) can evidently have arbitrary values
for any value of the parameter s due to the generality permitted in the
selection of the family of curves given by (6.23). Hence, putting &/ = 0,
it follows that the bracket expression in the above relation (6.29) must
vanish along C; this leads immediately to the equations (6.25).

Among the totality of geodesic curves joining the points A
and B in a Riemann space there will evidently be one possessing
the least length of any geodesic joining these points; in particular,
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if there is only one geodesic joining the points A and B, this will
be the curve of shortest length. For example, if our space is of
the nature of the surface of a cylinder, curves such as C and C’
in Fig. 1 may be geodesics; in fact for this case there will be an
infinity of geodesics determined by
encircling the cylinder 0,1,2,... times,

/_\ the geodesic C being the curve of
v actual shortest length between the

points A and B. There is an in-
teresting property connected with
any geodesic which can be stated
roughly by saying that it represents
the shortest curve between any two
of its points provided these points
are sufficiently close together.

Along any integral curve of (6.25)
the condition

e 1 gii %% = const. (6.30)
is satisfied. To show this we have merely to differentiate the left
member of (6.30) and then eliminate the second derivatives d2x*/ds?
by means of (6.25); the expression so obtained then vanishes
identically on account of (6.26). The constant in the right member
of (6.30) must be positive since the form (6.1) is positive definite
by hypothesis. For a geodesic curve C, where s denotes the arc
length measured from a fixed point 4 of C, the right member of
(6.30) is of course equal to unity.
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To obtain the equations of transformation of the Christoffel
symbols 7, let us first differentiate the relations (6.2) with respect
to the coordinates x*; this gives

08i; 08w 0x° E ox° 02x* 0x° 0x* 0%’
0%t Ox° 0% o O0F | U3t oxw ow ' 5™ om oxtom

(7.1)

By cyclic permutation of the indices 7,7, 2 in (7.1) we obtain

0%ix _ Oga Ox* 0x® 0x° 0%2x*  Oxb ox®  0%x? 79
0%  ox 0% 0% on | S®Pmiow on | S®Pw dmam - )
0gri  Oga 0x* Ox° Ox° 02x* 0x® 0x* 0%xb

0 ox ox 0% 0w | SPgwmow o o owon )

Now if we combine the three equations (7.1), (7.2) and (7.3) and
take account of the symmetry of the second derivatives we are
led to the following relations

1 (ag,-,- +ag,-k agk,->_ ox 9t

or*  om = 8 5% 9% ot

ox ox
YL T AL 1S

0x?/ 0x* 0x Ox*

Finally we multiply the two members of these latter equations by
the corresponding members of the equations

L 0X7 ox

"ow & ow

equivalent to (6.11), and sum on repeated indices the desired
equations are obtained, namely

o _ 0 | g 0x 02

*oxm T 9w adxt | T * aw oxt’

29

(7.4)
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where the I''s are given by (6.26) and the I'’s by similar equations
based on the components g,; of the metric tensor relative to the %
coordinate system.

From the above derivation it is evident that the equations (7.4)
have the transitive property, ie. if I, — T and T — I
by equations of the type (7.4) as the result of the successive
coordinate transformations x «»% and ¥ <> X then the elimination
of the quantities I, between these two sets of equations will yield
a set of equations of the type (7.4) relating the quantities Iy
and T, relative to the x and * coordinate systems. Hence we can
consider a coordinate manifold of # dimensions such that (1) a
definite set of functions fk of the coordinates, not necessarily
Christoffel symbols, is defined in each of the allowable coordinate
systems of the manifold and (2) the functions ka transform by
the equations (7.4) under allowable transformations x «» % of the
coordinates. The entity having the functions I, as its components
in the allowable coordinate systems of the manifold is called an
affine connection and a manifold over which such an affine connec-
tion is defined is called an affinely connected space of n dimensions.
The affinely connected space will be said to be of class C” if the
components I ,"k of the connection are of class C” in the allowable
coordinate systems covering the manifold. It will be assumed
specifically that in an affinely connected space of class C” the
allowable coordinate transformations are of class C’+? for » #% A4
and that the allowable coordinate transformations are of class C#
for an affinely connected space of class C* (analytic affinely
connected space) since these transformations preserve the class

of the components I}, without being unduly restricted (cp. Sect. 6).

In an affinely connected space one can consider the curves
obtained as solutions of the system of differential equations (6.25).
These curves, which constitute a generalization of the geodesics
of a Riemann space, have been called paths and may be thought
of as affording a means by which one can find his way about in a
space with an affine connection. The body of theorems which
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state properties of the paths as defined by a particular set of
parameterized equations (6.25) is called the affine geometry of
paths. As an example of an affine property we may mention the
following result. If P is any point of an affinely connected space
there exists a domain D containing P such that any two points P,
and P, of D can be joined by one, and only one, path C lying in the
domain D. For a proof of this result the reader is referred to the
original paper by J. H. C. Whitehead, Convex regions in the
geometry of paths, Quart. Jour. of Math. 3 (1932), pp. 33 — 42.
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Consider the differential equations (6.25) which define the paths
in an affinely connected space of class C4. If we differentiate
these equations successively we are lead to a sequence of equations
which can be written in the following form

dsx’ i dxl dxt dxm
s T s e =0
dtx’ . dxl dx* dxm dx’

a5t Tl e s s as = O

The coefficients I" in these equations are given by the recurrence
formula

ar;k L8
oxt

1

F;.’k...st:_Pli

¢ a i a
M _Fak...srjt_‘---_ jk...ant’

where M denotes the number of subscripts j&. . .sf and the symbol P
denotes the sum of the terms obtainable from the one inside the
bracketts by permuting the set of subscripts cyclically. As so
defined the above functions I"have the property of being unchanged
by any permutation of the subscripts. The parametric equations
x' = ¢i(s) of a path C are determined by (6.25) and the above
sequence of equations in conjunction with the initial conditions

Xi= pi; i—’é:gi, for s=0. (8.1)

In fact we have

. ) ) 1 . 1 .
B(s) = p' + &5 o T (p) 8 & 52— T (p) § £ &7 — ..,

32
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where the right members are convergent power series for suffi-
ciently small values of s. A path C is therefore uniquely determined
by the specification of a point P and a direction with components
& at P. Putting y* = &'s the above series becomes

. ) . 1 X | R )
H=p Y =g @)y Y =g Lim @)y Yy — ... (8.2)

and this series will converge in a domain D defined |y'| < &,
where the a’s are sufficiently small positive constants. Since the
Jacobian determinant of the right members of (8.2) is equal to 1
at the point P, the equations (8.2) can be solved so as to obtain

Y=o — A (p,x—p),

where A’ is a multiple power series in x* — $' beginning with second
order terms. Hence (8.2) defines a coordinate transformation to
a system of coordinates y* such that the equations y* = &'s, where
the &'s are arbitrary constants, represent a path through the
origin of the system, i.e. the point P; conversely any path through
P can be represented in this way. The coordinates y* are called
normal coordinates. To any point Q with coordinates ¢* in the
domain D defined by |y| < @', a path can be drawn from the
origin of the normal coordinate system. For example y* = ¢'s
are the equations of such a path and this path will lie entirely
in the domain D; as is easily seen there is one, and only one, such
path through the origin and the point Q.

The normal coordinates y' are determined uniquely by the x
coordinate system and a point P, this point being identified with
the origin of the normal coordinate system. Let us now transform
the coordinates x* by an analytic transformation x «»% and let
us then define the normal coordinates 3* which are determined by
the % coordinate system and the above point P. We seek the
analytical relation between the coordinates ¥* and §° of these two
normal coordinate systems. Now by the transformation x <%
the equations x’ = ¢'(s) of a path C determined by the initial
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conditions (8.1) go over into the equations ' = ¢i(s) and the
initial conditions (8.1) become

=P dd}: = & for s =0,

where the $* are the coordinates of the point P relative to the %
system; also

. iz i oxt
& =a &*; A = (W)P . (8.3)
Now y* = &'s and §' = &s are respectively the equations of the
path C with reference to the ¥ and # normal coordinate systems.
Hence if we multiply both members of the first set of equations
(8.3) by the parameter s, we obtain

v = a, 7, (8.4)

along the path C. But any point @ in a sufficiently small neigh-
borhood of P is joined to P by a unique path; hence the relation
(8.4) holds throughout the neighborhood of the point P and we
have the following result.

When the coovdinates x* undergo an analytic transformation
X «>% the normal coordinates y' determined by the x coordinate
system and a point P suffer a linear homogeneous transformation (8.4)
with constant coeffictents. Thus the normal coordinates y* are
transformed like the components of a contravariant vector. They
do not, however, define a vector in the narrow sense, but are the
components of a “‘step”” from the origin of the normal coordinates
to the point having the coordinates ¥*. An arbitrary step determined
by the points P and Q can be represented by the coordinates of
the point @ in a normal coordinate system associated with the
point P, i.e. which has the point P as its origin.

There is an alternative method of treating normal coordinates
which is of some interest. Let us suppose that the components I;(x)
become C,-’},(y) in the normal coordinate system, so that
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N P 3 ; 0xe At

o “ayoy Ty oy o

The equations of the paths in normal coordinates will then be
given by
dy gy dy
dst " ""ds ds

0. (8.6)

Since the equations of a path through the origin are of the form
y* = &, it follows from (8.6) that

Clbi e =0

all this path. Multiplying these latter equations through by s?
we see that

Cin) ¥y y* =0, (8.7)

and these equations must hold throughout the normal coordinate
system since they are true along all paths through the origin; in
other words the equations (8.7) are satisfied identically in the normal
coordinate system.

Equations (8.7) can be used to define the normal coordinates y'.
From (8.5) and (8.7) we obtain

0%yt i Ox® 0x%\ .
ooy + 155 Sy =0 o
These differential equations uniquely: determine a functional

relation between the x* and the y* when taken in conjunction with
the initial conditions

yi=10 when xt = pi,

oxt

'a—yi = 5; when X = pi'

In fact if we differentiate (8.8) repeatedly and substitute these
initial conditions, we obtain the equations (8.2), in which the I"s
have the values preciously determined.
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To prove the relation (8.4) between the normal coordinates y*
and 7' as the result of their definition by means of the differential
equations (8.8) we first construct the equations of transformation
between the components Cj; and C}, of the affine connection in
these two normal coordinate systems, namely

o 0y 92y ; 9y Oy

*or ~ap oy T oy oy &)

Multiplying each side of (8.9) by y/y* and summing on the indices j
and %, we obtain

%y i 9y ay”) ok
<W+Cab'ﬁ§}-’7 ¥ y* =0, (8.10)

in consequence of the equations (8.7) with reference to the normal
coordinates y'. By the definition of the normal coordinates the
relation between the y* and 7° must be such as to satisfy the
conditions

Yy =0; = aj, when y' =0, (8.11)

where the constants a; are defined by (8.3). The fact that (8.4)
constitutes the relation between the normal coordinates y* and ¥
then follows by observing first that (8.4) satisfies (8.10) and the
conditions (8.11) and secomd that (8.10) has a unique solution
satisfying the conditions (8.11).

The equations (8.7) charactevize the coordinates y' as mormal
coordinates, i.e., if Cy are the components of affine connection in a
system of coordinates y', assumed to have its origin y* = 0 at some
point P of the affine connected space, and if the equations (8.7) are
satisfied identically, then the y' are normal coordinates. To see this
let us determine the normal coordinate system § having its origin
at the origin P of the y coordinate system. The normal coordinates
y¢ will then be given as solutions of the system of differential
equations
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subject to the initial conditions

ay’

55}—7. = 6;, when P = 0.

y' =0
Hence ¥ = 4 since this satisfies the initial conditions and also the
differential equations on account of (8.7); it follows that the 3
are normal coordinates.

Remark. Other equations besides (8.7) can be found which will
characterize the normal coordinates y* in the special case of a Riemann
space; this circumstance arises from the fact that, for a Riemann space,
the components [, are Christoffel symbols based on the quantities g;.
Hence equations (8.7) reduce immediately to the equations

Wi O\ o
(2 o oy Yy yE =0, (8.12)

where the i;; denote the components of the fundamental metric tensor
in the normal coordinates y.. Now the relation (6.30), holding along
any path of the space, implies the relation

i E 8 = (i) & Y (8.13)

along a path C, defined by y* = &'s, through the origin of the normal
coordinate system, where the (), are the values of the components
Yi; at the origin of the normal coordinates; hence

i 'y = (ig)o v ¥ (8.14)

in the system of normal coordinates 3. Differentiating (8.14) we
obtain

i . i .
3i}’7"k Vvt + 245y — 20l ¥ =0,

and these equations, when combined with (8.12), yield

i

ayr VY Y — (il = 0. (8.15)
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Now along the above path C we observe that
a i 7
75 Wi V' = Whado v'] = 0,
in consequence of (8.15). Hence

i v = (Yisdo ¥, (8.16)

since C is an arbitrary path through the origin of the normal coordinate
system. The equations (8.16) characterize the coordinates v' as normal
coordinates. To prove this we have merely to differentiate (8.16) with
respect to y* and then multiply the resulting equations by y* and
in turn. We thus find the two following sets of equations

o .

afki‘ yiyh =0, (8.17)
o ..

af': ¥yl = 0. (8.18)

But (8.17) and (8.18) imply (8.12) which characterize the y* as normal
coordinates.

It can be shown that the coordinates v are likewise characterized as
normal coordinates by the equations (8.17). Observe that along the curve
y? = &is we have

d . . o ..
7s Wi & — (i) &) = 6_;{%7 EE =0,

on account of (8.17). It readily follows from this result that (8.16) is
satisfied in the y system and hence the y' are normal coordinates.
Correspondingly the equations (8.18) characterize the y' as normal
coordinates. Thus, using (8.18), we have

d o o ay
S EE— o8] = e —o,

along the curve y¢ = £%. It follows that the bracket expression in this
relation must vanish and hence

i Yyl = ($is)o ¥ y!

in the y system. Differentiating this relation with respect to y* and
again making use of (8.18) we arrive at the identity (8.16) which proves
the result.



9. General Theory of Extension

Let the relative tensor T of weight W have components T 1(x)
with reference to the coordinates x* and the components 7 (y)

when referred to a system of normal coordinates y* which are
determined by the x coordinate system and a point P as origin.
We shall show that

(et
i...f o 't
Tk...m,r —( a_y, )01 (91)

where the derivatives are evaluated at the origin of normal
coordinates, defines a set of functions T/ (x) of the coordinates
x* which are the components of a relative tensor of weight W.
Denote by % ¥) the components of the tensor T with respect
to the normal coordinates y° defined in Sect. 8; then we have

ay? dy? dy*  oy™

v AR —w oge-f YO vy vy,
Tu. v =10y/09|" t..m By dy 9 95

(9.2)

In view of (8.4) the derivatives in (9.2) are constants and hence

Al w0t 097 397 Oyt 9ym By
a5~ IO TS Gy ey oy o

Evaluating at the origin of normal coordinates we obtain

— N T e 21 gxk m Dyt
Ti:t, = |oxjox|" T;:j:in,,% e %% e %i;—g%

which proves that the functions Ti , defined by (9.1) constitute
the components of a relative tensor T, of weight W as above
stated. This tensor is called the first extension or the first covariant
derivative of the tensor T; the process of forming the first extension
or first covariant derivative is referred to as covariant differentiation.
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By repeated covariant differentiation one obtains the second and
high covariant derivatives.

To construct the explixit formula involving the I”s and their
derivatives for the components of the tensor 7T, let us first observe
that

ox* oyt

w
W 0x/dy| ay 9y FIT

0l0x[ay”
T (9.3)
from the well known process for the differentiation of a determinant.
Hence, differentiating the equations

¢ Ox* ox* 9y’ oy’

4 P —
ti T = |3x3yW T 3 R v

with respect to ¥, using (8.2) and (9.3), and evaluating at the origin
of normal coordinates, we obtain

o Pe..d o o

T Tmy = aTT"ﬁ — T wlhy— ... — Ty 2T l
x (9.4)

+Tim Lot o+ T T —W T T, ,

as the formula for the components of the tensor 7.
In a similar manner we can show that the equations
o ot

Ty e 9.5
define a set of functions 7T s o of the coordinates x* which

constitute the components of a relative tensor of weight W.
This relative tensor will be called the rth extension of the relative
tensor T provided the set p...¢ contains 7 indices. From the
definition by means of the equations (9.5) we see that the compo-
nents 7T}, , are symmetric in the indices p...¢ added by
the process of extension. Thus

Ty iy e = T00

om0
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where #...v denotes any permutation of the indices ...¢. In
case 7 = 1 this extension reverts to the covariant derivative
previously considered.

The formula for the components of the extension of the sum
of two relative tensors of the same kind or the product of any two
relative tensors is analogous to the formula for the differentiation
of the sum or product of two functions; this follows directly from
the definition of these components by means of (9.5).

General formulae of extension can be calculated by the same
process as that employed in the derivation of (9.4). The formula

for the components T,f_‘jjf,,,p,, of the 7th extension of the tensor T

-4
of weight W =£ 0 involves the formulae for the first » extensions

of T considered as a tensor of weight zero. We have
b = 10x[3Y |7 £ (9.6)
where

p...q OX* ox® oy’ a9y’

t...f A oy .
fk...m‘ Tuv ayk ... aym axp e axq

Differentiating (9.6) and evaluating at the origin of normal
coordinates, we obtain

Ty paebg = T hpa g - SA) Tihy )+ o
+ S Tirhy) + 400 g Tah

i :( i ) S :[amlogjax/aylw},
et TGy L0y )y T ay ...9v o

and S( ) denotes the sum of the different terms obtainable from
the one in parenthesis by forming arbitrary combinations of the
subscripts pa...bg which are distinct when account is taken of
the symmetry in the added indices of differentiation. The expression
for T,fjjjf,,,,._.s, where there are 7 indices in the set 7. ..s, is given
by the formula for the mth extension of a tensor of weight zero



42 9. GENERAL THEORY OF EXTENSION

having the components T;:::}; these expressions do not in general
constitute the components of a tensor for the case under considera-
tion. The quantities 4, _ have the values

AY = —WT

ir?

A¥ = —WIi 4+ WIi.T'l + W2Ii T

irs js?

....................................

------------------------------------

in which the ,'k,,, etc. are the functions of the F,k and their
derivatives defined in Sect. 8.

The formula for the components of any extension of a relative
tensor T of weight W may be obtained by substituting the proper
values of sz'_j’;,,/,”_s and 47 . into (9.7). Thus we may write

L.
T,

— Tt
eomp Tk..

Ty — WTil I

ap’

in place of the formula (9.4). In the following remarks we have
given a few examples of formulae of covariant differentiation which
are of frequent occurrence in the geometrical and physical applica-
tions of this theory.

Remark 1. As special formulae of covariant differentiation we have

v, - . avi
a7 mlus Vi=gn

V= + VI, (9.8)

according as V is a covariant or a contravariant vector. Also

V.; o
Vi = ax k — Vi Tk — Vim Iy, (9.9)
a2V, Vi m oV, V m ”
V:’jk‘—'é}, axk_mrik —(a 7 I'l; + F,';')—er,','k. (9.10)

The formula (9.9) gives the components of the second covariant
derivative of a covariant vector ¥ and is not, in general, identical with
the second extension of ¥V whose components are given by (9.10) for
comparisor.
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If ¢ is a covariant tensor of the second order the formula for the
components of its covariant derivative is

903

é’x—E—UijZZ—U,'mI‘;Z. (911)

i,k =

In the case of a Riemann space for which the I'’s are Christoffel symbols
defined by (6.26) it follows readily from (9.11) that g;» = 0, i.e. the
components of the covariant derivative of the fundamental metric tensor
of a Riemann space are equal to zero. This fact can also be inferred by
differentiating the identities (8.18) with respect to the coordinates y?
and y7 and then evaluating the resulting equations at the origin of the
normal coordinate system. By covariant differentiation of (6.8) and use
of the condition g;;, = 0 we can immediately deduce the vanishing of
the components of the covariant derivative of the contravariant form
of the metric tensor. In this connection we may also observe the
vanishing of the components of the covariant derivative of the relative

scalar defined by VgT in an oriented Riemann space.

Remark 2. If we contract the indices ¢ and § in the second formula
(9.8) we obtain the scalar quantity

Vi= o 4+ V» T (9.12)
* T et
This scalar is known as the divergence of the vector V. By raising the
index on the symbol of a covariant vector in a Riemann space the
formula (9.12) can be applied to give the divergence of such a vector.
Thus the divergence of a covariant vector V in a Riemann space is
the scalar defined by

wgi . (9.13)

g y oV
G VY. = gl e _;
(61 V.)s = & Vi — g o

There is an interesting result which can be derived from (9.4) for
the case where T is a contravariant vector of weight 1; denoting the
components of this vector by W¢, we have

; oW
W = W

s1 ax7

+ W [y — Wi T,

Hence

W=, (9.14)
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i.e. the sum of the partial derivatives appearing in the right member
of (9.14) 1s a relative scalar of weight 1. It follows immediately from
this result and the result in Remark 1 regarding the vanishing of the
covariant derivative of the metric tensor and the covariant derivative

of the relative scalar VEof an oriented Riemann space that the quantity

— . — ) gg V)
Veeivij=(Jggi Vi), = V—axf—’

defines a relative scalar of weight 1 in the oriented space provided the
V; are the components of a covariant vector.

Remark 3. For the purpose of defining the normal coordinate system
on which the above theory of covariant differentiation and extension
of tensors is based we have assumed the analyticity of the components

of affine connection I, and of the allowable coordinate transformations.
It is now perhaps not without interest to observe that this strong
condition of analyticity is unnecessary for the formal results of this
section. In fact it is easily seen that the formulae which we have derived
for the components of the covariant derivatives and extensions of a
tensor T will possess the required tensorial character provided only
that the operations of differentiation involved in the formulae can be
carried out so that the components in question can be defined in the
various allowable coordinate systems within the affinely connected
space. Thus it is sufficient for the quantities V;; or V*; given by (9.8)
to be the components of a tensor that the vector V be of class C1, 1.e.
that the components V; or V* be continuous and have continuous first
partial derivatives in the allowable coordinate systems, and that the
affinely connected space be of class C° (see Sect. 7).



10. Absolute Differentiation

Let C be a parameterized curve defined by x* = ¢'(s) in an
affinely connected space and regular in the sense that the functions
#'(s) possess continuous derivatives which do not all vanish for
any value of the parameter s (see Sect. 6). Let T be a tensor of
weight W defined along C, i.e. specifically we regard the components
Ty 7 of T as functions of the parameter s of the curve C. We
shall say that the curve C or the tensor T is of class C” if the
functions ¢%s) or the components T;'jjfm(s) possess continuous
derivatives with respect to s to the order # inclusive in the allowable
coordinate systems of the space and it will be assumed, without
further mention, that the class of the curve C and the tensor T is
such that we can perform the operations of differentiation involved
in the following discussion.

Now choose a point P on C and consider the normal coordinate
system y which is determined by the point P, i.e. P is the origin
of the normal system, and the x coordinate system (assumed to
contain the point P). Denote the components of T by t};'jj_"m(s)
in the y coordinate system. Then the equations

: (10.1)

=0

DTyl _(dtil
Ds ~\ ds J,

will define a set of functions DT} 7,/Ds of the parameter s,
relative to the x system, and these functions can be shown to be
the components of a tensor of weight W under the allowable
coordinate transformations of the space. In fact if we differentiate
the equations (9.2), which give the relations between the compo-
nents of the tensor 7 in the normal system y and the normal
system %, defined in Sect. 8, with respect to the parameter s and

45
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then evaluate at the origin in accordance with the equations (10.1),
we obtain
DT:f DTy \w 020 oxn
u...v= =W “'MA______.__‘
Ds |9+/0%| Ds ox' ox
The tensor of weight W having the quantities DT: 1 /Ds as its
components will be called the absolute derivative of the tensor T.
By repeated application of this process of absolute differentiation

we obtain the second absolute derivative, the third absolute deriv-
ative, ... with components which may be denoted by

D (DTy\. D[ D(DTy:h).
Ds Ds ’ Ds | Ds Ds ’

The derivation of the formula for the components of the absolute
derivative is analogous to the derivation of the relations (9.4), which
give the components of the covariant derivative of a tensor, and
consists in the differentiation of the transformation equations
relating the components of the tensor T, relative to the x and y
coordinate systems, with respect to the parameter s and then
evaluating the equations obtained at the origin of the normal
system. We thus deduce

DTy ATV ioi e X7
DS - dS —WTk...mFar_d—s‘
.07 a ) a axr
- (Ta...m Fkr+ +Tk a[‘mr)% (102)
a...j i i e oy GX
+(Tk...mpar+---+Tk...mpar)?’

in which the derivatives dx’/ds are obtained by differentiation of
the parametric equations giving the curve C.
Correspondingly the quantities D’ T },/Ds’ defined by
DT <d' ti:::L)
¥

o 5 : (10.3)

=0
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can be shown to be the components of a relative tensor of weight W
along the curve C; this tensor is called the rth absolute extension
of the tensor T and a general formula for its components can be
constructed analogous to the formula for the components of the
rth extension of the tensor T in Sect. 9.

Remark. Vectors £ defined along a parameterized curve C are
said to be parallel with respect to the curve C if the absolute derivative
of & vanishes along C. If £ is a contravariant vector it follows from
(10.2) that the condition for parallelism is

D{-"' ag

5= 3+ 1;,54 =0. (10.4)

Now a solution &i(s) of the differential equations (10.4) is uniquely
determined by the initial conditions & = & for s = s3; accordingly
the vector £ having the solution functions £(s) as its components along
the curve C is said to be obtained from the initial vector &; with compo-
nents &, by parallel displacement along C.

The quantities dx'/ds are the components of a contravariant vector
along the curve C; this vector is said to be tangent to C. Putting
& = dx*/ds in (10.4) we now have

ax ; dxl dx*
T (109
But these equations are identical with the equations which define the
paths of an affinely connected space (see Sect. 7). Hence the tangent
vectors are parallel with respect to the path. One may also express
this result by saying that the paths of an affinely connected space can
be generated by the continuous parallel displacement of a vector in
its own direction.



11. Differential Invariants

In the further development of the theory of affinely connected
spaces one is concerned with the determination of scalars and
tensors whose components depend on the fundamental functions

I';; and their derivatives to a specified order. Such scalars or
tensors are called affine differential invariants in the sense of the
following definition.

A tensor T will be called an affine differential invariant of order v

if its components

ery oI
Poxt T 9xP ... 0x0

Tii::in(l“‘zc

are functions of the I'’s and their derivatives to the vth ovder, such
that each component retains its form as a function of the I'’s and their
derivatives under allowable coordinate transformations in the affinely
connected space. Replacing the tensor law of transformation
involved in this definition by other equations of transformation
possessing the required property of transitivity, we are led to the
concept of differential invariants which generalize the affine tensor
differential invariants. Thus the quantities I}, themselves are
the components of a non-tensor differential invariant of order zero,
1.e. the affine connection.

In the case of the Riemann space we are concerned with inva-
riants in the general sense of the affine differential invariants
except that the components of the invariants in question depend
on the g;; and their derivatives; if the components of the invariant in-
volve derivatives of the g;; up to and including those of order 7 (= 0},
the invariant will be called a metric differential invariant of order v.
As an example of such an invariant we have the fundamental metric
tensor with components g;. Another example is furnished by the
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quantities g¥, defined by (6.7), which are the components of the
contravariant form of the fundamental metric tensor. The
Christoffel symbols given by (6.26) constitute the components of a
non-tensor differential invariant of order 1, i.e. the affine connec-
tion of this space.

If we differentiate (8.7) twice and then evaluate at the origin
of normal coordinates, we obtain

Ciy(0) =0, : (11.1)

i.e. the components of affine connection C;k m a system of normal
coordinates vanish at the origin of the system. Hence the power
series expansion for the components Cj; about the origin of normal
coordinate takes the form

i i 1
C;;e:A;kpy”—Fz—!Ajk,,qyf’ yq+ e, (11.2)

in which the A’s are the derivatives of Cj; evaluated at the
origin, i.e.

; rC
A"k”"":(ﬁ)o' (11.3)

The equations (11.3) can be taken to define the Afk,,m, as a
set of functions of the coordinates x* of the origin P of the normal
coordinate system corresponding to the definition of the extension
of a tensor by means of normal coordinates (see Sect. 9). The
functions A;:kp...r so defined are the components of a tensor. To
prove this we consider the transformation equations (8.9) in which
the first derivatives are constants, and the second derivatives
accordingly vanish, on account of the linearity of the relations (8.4).
Repeated differentiation of (8.9), followed by evaluation at the
origin of normal coordinates, then gives

m ox i dx* 0xb 9x° o0x¢

5 -~ — C € TN =1 Mk m—p * e A, 11.4
AT “ee 9% 9x* oxP ox’ (11.4)
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when use is made of the second set of equations (8.3); the tensor
character of the quantities A;:kp._., follows from (11.4). We call
these tensors the affine normal tensors on account of their definition
in terms of the components of affine connection in normal
coordinates.

The components of the affine normal tensors 4 are expressible
in terms of the F,’k and their derivatives; on this account these
tensors become, by definition, temsor differential invariants of the
affinely connected space. 1f we differentiate the equations (8.5)
and then substitute the values of the partial derivatives of the &’
with respect to the y’s at the origin of normal coordinates, as
computed from (8.2), we find
oI,
ox™

It is evident that a continuation of this process, i.e. repeated

Ajpm = T — T Iy — Ty T, (11.5)

differentiation of (8.5) followed by evaluation at the origin of
normal coordinates, will determine the explicit formula for the
components of any other affine normal tensor A.

In an analogous manner we can define an infinite set of tensor
differential invariants, called metric normal tensors, whose compo-
nents g;,. .., are given as functions of the coordinates x* by the
equations

o i
gii,k...m:(m)o, (11.6)

where ;(y} denotes the components of the fundamental metric
tensor of a Riemann space in the system of normal coordinates
as in the Remark in Sect. 8. The method of Sect. 9 can be applied
to show that the quantities g;;, ., defined by (11.6) enjoy the
tensor law of transformation, namely

; ox* ox°

Eijk...m = gab,c...e-a-x_T e W’
and also to deduce the explicit formula for these quantities. The
first metric normal tensor having the components g, is identical



11. DIFFERENTIAL INVARIANTS 51

with the covariant derivative of the fundamental metric tensor
and vanishes as we observed in the Remark 1 of Sect. 9. The
formula for the components of the second metric normal tensor is

82 ij 4 r a i 14
8ijem — Tg;ﬂ" — & Fikm — &ir ijm _ﬁ ka
agrj r agzr 14 agri m agzr 4 (l 17)
T oxt Fim— ox* Fim — ox™ Fim — ox™ ot
+ &5 (Tt Tjm + Tim T),

and is obtained by two fold differentiation of the tensor equations
relating the components g; and i,; and then evaluating at the
origin of the normal coordinate system. By a continuation of this
procedure we can evidently construct the explicit formula for the
components of any metric normal tensor.

Remark 1. The tensor differential invariant B whose components
are given by
A

jmk?

jkm jhm

(11.8)

can be identified with the well known curvature tensor of an affinely
connected or a Riemann space. Substituting the values of the 4’s given
by (11.5) into the equations (11.8) we obtain the explicit formula for

the components of the tensor B in terms of the ka and their first deriv-
atives; thus we find that

ary, ari,
ox™ ox*

B;:km: +F:mrﬁe_rikrfm-

In the Riemann space this differential invariant admits a completely
covaniant form having the components

Bijtm = & B; (11.9)

km*

Remark 2. From the symmetry of the quantities I'; in the indices 7,k
and from the definition of the affine normal tensors by the equations
(11.3) it is seen that the components of any normal tensor 4 are
symmetric in their first two subscripts and also in the remaining ones, i.e.

i _ 4 . i YT
A = Ak;’p...rr A;'kp...r = Ajkq...s’

ho . .r (11.10)
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where ¢...s denotes any permutation of the indices p...r. Another

set of identities involving the components A,l-'ki,._., is obtained if we
multiply both members of (11.2) by 3/ ¥* sum on the repeated indices §
and %, and then take account of the relations (8.7). Thus we see that

S(Aep..) =0, (11.11)

where S denotes the sum of the terms, not identical because of the
symmetry relations (11.10), which are obtainable by permutation of
the indices jkp...7 from the one in the parenthesis.

It is seen immediately from the equations of definition (11.6) of
the components of the metric normal tensors that we have

Giik...om = Gjih..m’ Giik...m = Eijp...q (11.12)

where p...q denotes any permutation of the indices %...m. To derive
other identities satisfied by these components we have recourse to the
equations (8.17). By repeated differentiation of (8.17), followed by
evaluation at the origin of the normal coordinate system, we find that
in addition to (11.12) we have the identities

S*(gijp..m) =0, (11.13)

where S* denotes the sum of all the terms which can be formed from the
one in the parenthesis by permuting the indices j%...m cyclically.
In particular let us observe that the above relations give

A;.’km = Afkjm; Aj'km + A/ikmi + Ainik =0, (11-14)
and
8ijkm = i km = Eijmk,
(11.15)
Eijkm + ikmi + Gimjr = 0,

as the identities satisfied by the components of the first affine normal
tensor and the second metric normal tensor respectively. Corresponding
to these identities there are the identities satisfied by the components
of the curvature tensor B introduced in Remark 1, namely

— B¢

Bhw=—Bju B+ Bii+ Bhiy=0, (11.16)

kmj

and

Bijtm = — Bjitm = — Bijms,
(11.17)

Bijtm + Bitmi + Bimjr = 0.
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The identity (11.16) can be verified by replacing the Bfkm by the values
given by (11.8) and then taking account of the identities (11.14). To
verify (11.17) it will be helpful if one first deduces the relations

Bijtm = girjm — Gikim (11.18)

which can be obtained if we express the quantities Bj, in terms of
the g; and their first and second derivatives and then evaluate the
equations (11.9) at the origin of a system of normal coordinates. Sub-
stitution of the values of the By, given by (11.18) into (11.17) then
leads to the verification of these identities.

Remark 3. A complete set of identities of the components of an invariant
15 a set of identities furnishing all the algebraic conditions on these compo-
nents; hence every identity satisfied by the components of the invariant
can be deduced from the identities of the complete set by algebraic
processes. For example, the components g;; of the fundamental metric
tensor of a Riemann space satisfy the symmetry identities

8ij = 8- (].].].9)

These relations constitute a complete set of identities of the components
gij since at an arbitrary point P of the general Riemann space the compc
nents g;; are obviously subject only to the conditions (11.19). Similarly
the identities

i T
I, = I}

are a complete set of identities of the components of affine connection
of an affinely connected space. It can be shown that the identities
(11.10) and (11.11) are a complete set of identities for the components

Afkp_,_,; likewise a complete set of identities for the components
gijk...m 15 furnished by the relations (11.12)-and (11.13). In particular
the identities (11.14) and (11.15) are complete sets of identities for the
components of the first affine normal tensor and the second metric
normal tensor. Finally (11.16) and (11.17) give complete sets of iden-
tities for the components of the curvature tensor of an affinely connected
space and Riemann space respectively.

For a proof of the above and other results on complete sets of
identities and for a discussion of the various applications of the theory
of differential invariants the reader is referred to the literature of this
subject.



12. Transformation Groups

‘We observed in Sect. 1 that the coordinate transformations of
a simple coordinate manifold of class C* form a group whose
elements, i.e. coordinate transformations, can be interpreted as (1,1)
transformations of the arithmetic space of # dimensions into itself.
By specializing this group, more precisely by limiting our attention
to certain of its subgroups, we arrive at various well known spaces,
among these being the Euclidean metric space with which we shall
be concerned in much of the following discussion in this book.
In order to consider this problem in the proper perspective let us
denote by G a set of (1,1) transformations of the arithmetic space
of n dimensions into itself and let us write down the following
axioms in which the undefined elements are points and preferred
coordinate systems. These axioms are:

G,. Each preferred coordinate system 1s a (1,1) transformation
of the poitnts into the arithmetic space of n dimensions,

Gy Any transformation of coovdinates from one preferved coor-
dinate system to another belongs to G,

Gy, Any coovdinate system obtained from a preferved coordinate
system by a transformation belonging to G 1s preferrved,

G,. There exists at least one preferred coordinate system.

Examining the consequences of the above axioms we see
from G, that if P «s(x,...,4") and P «>(y%,...,y") are two
preferred coordinate systems there is a unique transformation
(x1,...,2") <>(yl,...,y") relating the coordinates of these systems;
it follows from G, that this transformation belongs to the set G.
Also if we select any preferred coordinate system, the existence
of which is specified by G,, it follows from the axioms G,, G, and G4
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that the preferred coordinate systems are those, and only those,
obtainable from the selected system by transformations belonging
to G. Finally it is easily seen that the set of transformations G
constitutes a group.

The underlying point set together with the set of preferred
coordinate systems will be spoken of as a space. By the geomeiry
of the space we mean the theory or body of theorems deducible
from the above axioms G,,...G,. If the group G is the group of all
(1,1) transformations of class C* of the » dimensional arithmetic
space into itself, the space is identical with the simple coordinate
manifold of class C* discussed in Sect. 1. We now consider several
groups G which lead to well known mathematical spaces. These
groups are defined by their representative transformations as follows
F=ax+ b |a] #0, (affine group), (12.1)

1
F=ad+b;, aa=27,, . (orthogonal group), (12.2)
F=ald+b; aa=pd; p>0, (Euclidean group), (12.3)

where there is a summation over the range 1,...,# on all repeated
indices and the Quantities d;; are the Kronecker symbols previously
defined and denoted by &, in Sect. 1. The coefficients p, b and 4}
in the above equations are constants. In the case of the orthogonal
and Euclidean groups we see from the conditions imposed on the
constants a; by the relations (12.2) and (12.3) that the determinant
|ai| must be different from zero; however it must be assumed
explicitly that the determinant |a}| does not vanish in the case
of the affine group in order for (12.1) to represent a (1,1) coordinate
transformation.

If G is the affine group the resulting space is called the affine
space of n dimensions. We obtain the Euclidean metric space or the
Euclidean space of n dimensions according as G is the orthogonal
group or the Euclidean group. The preferred coordinate systems
for the affine space are called cartesian coordinate systems; the
preferred coordinate systems are called rectangular cartesian
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coordinate systems, or simply rectangular coordinate systems for
brevity, in the Euclidean metric space and in the Euclidean space.
By affine geometry we mean the theory of the affine space and by
the Euclidean metric geometry and the Euclidean geometry we mean
the theory of the Euclidean metric space and the Euclidean space
respectively.

As explained for the case of the simple coordinate manifold
of class C* in Sect. 1 each of the above spaces will determine two
oriented spaces for which the preferred coordinate systems are
related by transformations whose functional determinants are
positive. Thus an affine space determines two oriented affine spaces
having preferred coordinate systems related by transformations
(12.1) with |aﬂ > 0; these restricted transformations (12.1)
obviously determine a group which will be called the proper affine
group. Correspondingly the preferred coordinate systems of an
oriented Euclidean wmetric space and an oriented Euclidean space
will be related by transformations of the proper orthogonal group
and the proper Euclidean group defined by (12.2) and (12.3) respec-
tively with |ai| > 0; we observe in this connection that |aj| = + 1
from the second set of relations (12.2) and hence |a}| = 1 if (12.2)
is to represent a proper orthogonal transformation.

The affine, Euclidean metric and Euclidean spaces, as well as
the oriented spaces which they determine, are characterized
essentially by the group G of coordinate transformations relating
their preferred coordinate systems. Interpreting the transforma-
tions of the group G as point transformations, rather than coordinate
transformations in the strict sense, let us say that two configura-
tions (sets of points) in the space are equivalent if one can be trans-
formed into the other by a transformation of . In particular
equivalent configurations in an oriented Euclidean metric space
are said to be congruent ; equivalent configurations are called similar
in an oriented Euclidean space. Thus the ordinary concepts of
congruence and similarity are given a precise meaning in terms
of the transformations of a group.



13. Euclidean Metric Space

Let P, and P, be two points in a Euclidean metric space and
denote by xi and #; respectively the coordinates of these points
in a preferred or rectangular coordinate system. Now consider the
expression

(% — x3) (3 — x3), (13.1)

where the index 7 is summed over the values 1,...,n. The expres-
ston (13.1) ts a scalar function of the points P, and P,. To show
this fact let #; and #s be the coordinates of P, and P, in any other
rectangular coordinate system. Then we have

(] — %) (£, — &) = @@, (x] — ) (3] — %),

when we make the substitution (12.2). But from the second set
of relations (12.2) the above equations become

(%) — &) (] — %) = 0,3 — xb) (%] — x3) = (% — x3) (%] — %3),

which proves the scalar character of (138.1). The scalar represented
by (13.1) defines the square of the distance between the points Py and P,
tn the Euclidean metric space. A similar determination of distance
independently of the preferred coordinate systems is evidently
not possible in the affine space nor in the Euclidean space due to
the presence of the arbitrary constant p in the transformations
(12.3) of the Euclidean group.

Now select a particular rectangular coordinate system in the
Euclidean metric space and let y* denote the coordinates of this
system. Let us then transform the coordinates ¥* by an arbitrary
linear transformation

y=bxd ;|5 #0, (13.2)
57
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where the b} and ¢* are constants subject only to the condition that
the determinant [b}| does not vanish. The transformations (13.2)
define a class of coordinate systems for the space which will be
called cartestan coordinate systems and which will include, in
particular, the preferred or rectangular coordinate systems.
Between any two such cartesian systems, e.g. the x coordinate
system defined by (13.2) and an % coordinate system defined in a
similar manner, a transformation of the form (12.1) will hold. Thus
the generality of the transformations between these cartesian
systems is the same as that of the transformations between the
cartesian coordinate systems of an affine space. But this does not
mean that we have now passed from the Euclidean metric space
to an affine space. For in the latter space the cartesian coordinate
systems are preferred while in the Euclidean metric space only a
subset of the cartesian systems, namely the rectangular coordinate
systems, has the preferred status. However the introduction of
the larger class of cartesian coordinate systems in the Euclidean
metric space will be useful on occasion and will, moreover, enable
us to carry over, without modification, certain of the formal
relations in the theory of the Riemann space (see Sect. 6) to the
case of the Euclidean metric space.

We shall now derive an expression which will give the distance
between two points of a Euclidean metric space in terms of their
cartesian coordinates. For this purpose suppose that the two
points P, and P, have the coordinates ¥} and y; in a rectangular
coordinate system and let x} and %3 be the coordinates of these
points in any one of the cartesian systems which is related to this
rectangular system by a transformation of the form (13.2). Then
the square of the distance between the points P; and P, is given by

(yi — ¥2) (yi — ¥a) = by(#) — %) By — x3) = gu(¥] — 2] (%] — x3),

where we have put

gy = bibi. (13.3)
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We associate the symmetric set of constants g, defined by (13.3)
with the x coordinate system involved in the transformation (13.2).
Now it can readily be seen that if we replace the particular rectan-
gular coordinate system y used in the above determination of the
constants g;, by any other rectangular coordinate system the above
association between sets of constants g; and cartesian coordinate
systems will be unaltered. In other words the constants g;, have a
unique determination in each of the cartesian coordinate systems
in the Euclidean metric space. Hence we can say without am-
biguity that the square of the distance between two points is
given by the expression

galx] — x§) (2} — x3), (13.4)
where x% and %, are the coordinates of the points in a cartesian
coordinate system and the g;, are the above constants associated
with this system. _

To show that the g;, are the components of a tensor under the
affine group of transformations relating the cartesian coordinate
systems we consider the equation

gir(] — %) (2] — x3) == &, (%) — %) (%] — %)), (13.5)
the members of which give the square of the distance between
the points P; and P, relative to any two cartesian coordinate
systems. Since the coordinates x° are related to the coordinates #°
by equations of the form (12.1) we can eliminate the # and #;
from (13.5) and thus obtain

(g — &, 4% @) (%] — x]) (xF —x§) = 0. (13.6)

The tensor character of the g;; under the affine group of trans-
formations then follows from the fact that the bracket expressions
in (13.6) must vanish since the values of the quantities (¥, — %5)
are arbitrary.

We have now established the following result. There exists a
symmetric covariant tensor G whose components g, are constants in
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the cartesian coordinate systems and have the special values 0 in
the preferved or vectangular coovdinate systems of a Euclidean metric
space,; moreover the square of the distance between awny two points
P, and P, of the Euclidean metric space is given by the expression
(13.4) in which ¥, and x} ave the coordinates of the points in any
one of the cartesian coordinate systems and the g;, ave the components
of the temsor G velative to this system.

It can readily be observed from the equations (13.3) that a
quadratic form, having the components g; as its coefficients, is
positive definite. Hence the determinant |g;| must be positive and
we can therefore define the components g”* of a symmetric con-
travariant tensor, which can be though of as the contravariant form
of the tensor G, by the equations (6.7) as shown in Sect. 6. By
means of the tensor G the indices in the symbol for the components
of a tensor can now be raised or lowered, one can define the length
of a vector and the angle determined by two directions, etc. exactly
as in Sect. 6. Thus the tensor G plays a role analogous to that of
the fundamental metric tensor of a Riemann space.

Remark 1. One can adopt the viewpoint that a Riemann space
reduces to a Euclidean metric space if there exists an allowable coordinate
system P+« (x1,...,x2") in the Riemann space such that (a) the system
P (x1,...,2" 15 a (1,1) correspondence between the points P of the
Riemann space and the points (x1,...,x*} of the arithmetic space of
» dimensions and (b) relative to the system P+« (x1,...,x*) the compo-
nents g;; of the fundamental metric tensor of the Riemann space have
the values d;;; this implies in particular that the Riemann space is
topologically equivalent to the arithmetic space of # dimensions. Such
a coordinate system P« (x,...,x") may be called preferred and from
these preferred systems one can pass to the cartesian coordinate systems
as we have done in the above discussion of the Euclidean metric space.

A Riemann space is said to be locally flat if an arbitrary point of
the space is contained in some allowable coordinate system relative
to which the values §;; are assumed by the components of the fun-
damental metric tensor. The well known condition for a Riemann
space to be locally flat is the vanishing of its curvature tensor (defined
in Remark 1 in Sect. 11). A discussion of these and other results on the
reducibility of spaces can be found in certain of the references listed
at the end of this book.
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Two geometrical entities of special interest and importance in
the theory of the Euclidean metric space are the straight line and
the plane which are defined by equations of the form

X =at+ b, (equations of straight line), (13.7)
A; ¥+ B =0, (equation of plane), (13.8)

relative to any cartesian coordinate system. In the equations (13.7),
which involve ¢ as a parameter, the a' are constants subject only
to the condition that they do not all vanish while the & are
completely arbitrary constants; likewise in (13.8) the A4; and B
are constants subject only to the condition that not all of the
A’s are equal to zero. It is easily seen from the requirement
that the equations (13.7) be invariant in form under affine
transformations of the cartesian coordinate systems that the
quantities x* — b' and hence the coefficients a’ are the components
of contravariant vectors. Similarly the coefficients 4; in the
equation of the plane (13.8) can be interpreted as the components
of a covariant vector A under affine transformations. Also it is
easily seen that the vector 4 is perpendicular to the plane (13.8).
In fact if P, and P, are two arbitrary distinct points in the plane
(13.8) and if ¥} and x} are the coordinates of these points, then
from (13.8) we have

A ¥ —x) = 0. (13.9)

But the coordinate differences ¥; — x° can evidently represent
the components of an arbitrary contravariant vector in the plane
(13.8). The condition (13.9) can therefore be interpreted as express-
ing the fact that the vector 4 is perpendicular to every vector in
the plane (13.8) and hence, by definition, A4 is perpendicular to
the plane.

One can give a formal presentation, based on the equations
(13.7) and (13.8), of the direction cosines of a straight line or the
determination of the angle between a straight line and a plane, etc.;
in particular by considering the angles between the coordinate
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axes, defined in an obvious manner by means of the equations
(13.7), it will follow that the axes of any preferred coordinate
system are mutually orthogonal, a fact which justifies the designa-
tion of the preferred systems of the Euclidean metric space as
rectangulay coordinate systems. However we shall forego this discus-
sion since these matters are treated adequately in books on elemen-
tary analytic geometry and instead we shall consider in the following
Remarks several geometrical problems whose solution depends
essentially on the concept of invariance under affine transforma-
tions.

Remark 2. Let A and B be two contravariant vectors at a point
P of a Euclidean metric space of three dimensions. These vectors
determine a parallelogram and we shall now treat the problem of finding
its area. Precisely we seek an expres-
3 sion giving the area in terms of
the conponents of the vectors A
and B in any system of cartesian
coordinates. We begin by choosing
a rectangular coordinate system
such that the origin is at the point P,
the vector 4 falls along the positive
x! axis and the vector B lies in
A A the x%,x2 plane (Fig. 2). Relative to
this coordinate system the area of
the parallelogram is equal to the
f product 4 A'B? where the 4 sign
Fig. 2 is to be taken if B?is positive (as
in Fig. 2), otherwise the — sign.
Now under affine transformations
(12.1) the quantities C; defined by (6.5) transform by the equations
C;= + Cral where the + sign is chosen if (12.1) i$ a proper transforma-
tion otherwise the — sign. Hence g C; C; defines a scalar function S
under arbitrary affine transformations (12.1). But in the above rectan-
gular coordinate system the tensor components g7 are equal to the
corresponding Kronecker 8 and the C; have the values C; = C, = 0
and C3 = A'B2. Hence the scalar S is equal to the square of the arca
of the parallelogram. Replacing the C; in the expression for S by the
values given by (6.5) we find that the desired expression for the area of
the parallelogram is given by

(Area)’-’ = ik Emrs gim Al A B* Bs.
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If we denote by 4 and B the magnitudes of the vectors A and B
respectively and make use of the second set of identities (6.16) we find
that the above equation gives the usual formula

Area == AB cos §,

for the area of the parallelogram where 0 is the angle determined by the
vectors 4 and B.

Remark 3. Consider the absolute scalar
(Ez‘jk Ui Vj Wk)2,

determined by three contravariant vectors U, V and W at a point P
in a Euclidean metric space of three dimensions. What is the geometrical
meaning of this scalar? To answer this question we attempt to clanfy
the problem by a judicious choice of coordinate system. Thus let us
select a rectangular coor-

dinate system with origin 2
at P such that the vector

U falls along the positive x?!

axis and the vector V lies

in the x1,x2 plane (Fig. 3). w

Relative to this coordinate

system we see that 2

Eijk Ui Vj Wk = Ut & W3,

Now to within algebraic
sign U2 is twice the area
of the triangle determined
by the vectors U and V
and hence, also to within *
algebraic sign, UV2W3 is . Fic. 3
six times the volume of
the tetrehedron determined
by the three vectors U, V and W. Hence in any system of cartesian
coordinates we have

36 (Volume)2 = (Eijk Ui Vi Wk>2'

This equation likewise gives the volume of the tetrehedron determined
by four arbitrary points P, , R and S since we can take

i i i . i i i
U'= x, — x3; V' = x5 — «i; W' = xy — 3,

where 1, x3, x3 and x§ are the coordinates of P, Q, R and S respectively
in any cartesian coordinate system.
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Remark 4. Let us now consider the problem of finding the per-
pendicular distance from an arbitrary point P in a three dimensional
Euclidean metric space to a given plane (13.8) in this space. To determine
this distance we choose a system of rectangular coordinates y* such
that (a) the y1,92 coordinate plane coincides with the plane (13.8) and
(b) the point P lies on the positive y® axis (Fig. 4). Hence if y; are

the coordinates of P in this rectan-
3 gular system the coordinate vy will
be equal to the required distance.
Our problem is now reduced to the
construction of a scalar function of
the coordinates of P which is equal,
y to within algebraic sign, to the coor-

~

dinate y§ in the above rectangular
system. But such a scalar is readily
i seen to be given by

a; X(l) —+ bt
Ve aia;

Fic. 4

’

where the xj are the coordinates of P in the cartesian coordinate system
relative to which the equation (13.8) determines the plane under con-
sideration.

Remark 5. It is evident from the above discussion that invariance
under coordinate transformations is a common property of the equations
which define geometrical configurations and the magnitudes associated
with them. If, however, we wish to express this fact as a principle
of the Euclidean metric geometry it is well to bear in mind that the
basic structure of the Euclidean metric space is determined by the class
of preferred or rectangular coordinate systems rather than the larger
class of cartesian systems and that all rectangular coordinate systems
appear on an equal footing in our conception of-the Euclidean metric
space. With these ideas before us we can make the following statement
concerning the province of the Euclidean metric geometry. FEuclidean
metric geometry, as treated analytically by means of rectangular coordinate
systems, is the study of those configurations and their assoctated magnitudes
which remain invariant under the group of orthogonal tramsformations.
A similar principle can of course be stated for the affine and strict
Euclidean geometries as well as for those other geometries which arise
from various choices of the group G in the axiomatic characterization
of the class of spaces discussed in Sect. 12.



14. Homogeneous and Isotropic Tensors

Roughly speaking a material medium, e.g. a fluid or a solid,
is said to be homogeneous if its properties are independent of
position and zsofropic if they are independent of direction. These
properties have their precise mathematical expression in the so-
called homogeneous and isotropic tensors. By a homogeneous
tensor in a Euclidean metric space is understood a tensor whose
components are constants in any one of the preferred or rectangular
coordinate systems commonly used as reference frames for the
medium. An isofropic temsor in the Euclidean metric space is
defined as a tensor such that its components, in any rectangular
system, are unaltered in value by orthogonal transformations of
coordinates. The homogeneous tensor poses no mathematical
problem since the required condition, i.e. the condition of ho-
mogeneity, can be satisfied by the direct assumption that the
components of the tensor are constant in any rectangular system.
Hence we need concern ourselves only with the problem of the
isotropic tensor. In discussing this problem we shall limit our
attention («) to a space of three dimensions and (8) to a fourth
order tensor C, whose components Cj,, are symmetric in the two
contravariant and also in the two covariant indices, since one is
commonly concerned with a tensor of this type in the mechanics
of a continuous medium. The method employed, however, can be
applied to tensors of any order and several simple illustrations are
given in the Remark at the end of this section.

We may express the components of the above tensor C in the
completely covariant form C,,, since there is no distinction
between covariant and contravariant indices relative to a rectan-
gular coordinate system. Now consider a one parameter family
of proper orthogonal rotations (12.2), e.g. transformations (12.2)

65
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with & = 0, such that (1) the coefficients @} are continuous and
differentiable functions of a parameter ¢ for 0 < ¢ < ¢, and (2) the
condition a;: = 6} for ¢ = 0 is satisfied, i.e. the rotation (12.2) is
the identity transformation for the initial value of the parameter.
Under any transformation of this family the components Cjj,,
will transform by the equations

Ciiom = Cogrs A1) aS(t) a}(t) @ (2), (14.1)

ijkm pars
in which account is taken of the isotropic character of the tensor C,
i.e. the invariance of the values of the components C;,,. Now
differentiate (14.1) with respect to £ and then evaluate the resulting
relations at ¢ = 0. Since the quantities C,j,, are independent of ¢

we thus obtain
Caikm Wai + Cinkm Wgaj + Ciinm Wak + Cijkn Wam = 0: (142)

where o,; stands for the derivative of aj(¢) at ¢ = 0. But if we
differentiate the second set of relations (12.2) with respect to ¢ and
then evaluate at # = 0 we find that w; + w; = 0, i.e. the quantities
w;; are skew-symmetric. Obviously the condition of skew-symmetry
is the only restriction on the quantities w. Hence there are exactly
three independent quantities w,; and it is therefore possible to
express them by writing

Wi = Eijk &, (14.3)

where the ¢;; are the components of the skew-symmetric tensor
defined in Sect. 4 and the & are three arbitrary variables. Elim-
inating the w;; from (14.2) by means of (14.3) the coefficients of
the independent variables & in the resulting equations must be
equal to zero. We thus find that the C;,, must satisfy the following
conditions

Coaiim €iab + Ciatm €jab + Cjam €rap + Cijra emar = 0. (14.4)

Let us now multiply (14.4) by ¢* and sum on the repeated
indices 7 and &; but this leads to the equations

3 Cijtm + Citmi + Cimit = Caatm 05 + Cigam Ojt + Ciaak Ojm, (14.5)
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after application of the relations (4.7) and some relabeling of the
free indices. To obtain more explicit information regarding the
structure of the components C,j,, than is furnished by the above
conditions let us first observe that (14.5) can be written in the
following three equivalent forms

2 Cijtm + (Cijpm + Citmi + Cimi)
(14.6)
= Caim0ij + Cizam O + Cizar Ojm.
2 Ciumi + (Citmi + Cimjn + Cijam) }
(14.7)
= Caamj Oit + Ciaaj Otm + Cizam Oit,
2 Cimit + (Cimir + Cijm + Cirmi)
(14.8)
= Caaik 6im + Ciaak 6mi + Ciaai 6mk-

Actually the equations (14.6) are identical with (14.5) except for a
slight rearrangement of terms in the left members while the equa-
tions (14.7) and (14.8) are obtained from (14.6) by cyclic permuta-
tion of the indices j,k,m. Adding corresponding members of these
equations we now have

5 (Cijtm + Catmi + Cimjr) = 2 (Ciazj Sm ~+ Ciaak Ojm + Ciaam Oja)
+ Caaim 6ij + Caaim Ot~ Caai a,-,,,.} (14.9)
Then, using (14.9) to eliminate the parenthesis expression in (14.6),
we find that
10 Cijim = 4 Caatm 0 — Caamj 6ip — CaginOim + 3 Cizam Oip

(14.10)
+ 3 Ciaak 61’m —2 Ciaai 61;,,,.

It remains to express the partially contracted components of
the tensor C which appear in the right members of (14.10) by
expressions in the completely contracted components of this tensor.
For this purpose let us put 2 = m and § = % in turn in the equa-
tions (14.5) and in each case sum on the repeated indices. We thus
obtain the following two sets of relations

Caaii = Cijaa = % Caatp 0;5. (14.11)
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Again, putting 7 = m in (14.5) and summing on the repeated indices,
we are led to the equations

2 Ciaek = Coaas Ot — Chraaj, {14.12)
or

2 Chaai = Craab Ot — Claar, (14.13)

when we interchange the indices § and k. But combining (14.12)
and (14.13) we find immediately that C,,; = Cia;. Hence (14.12)
yields

Ciaak = % Chaas Ojp. (14.14)

Making the substitutions (14.11) and (14.14) in the right members
of (14.10) these equations can now be written in the form

Cijtm = A 0ij Oem + 1(0ix Sjm + Oim Ojr), (14.15)
where
2 1
}u = E Ca,abb —"Tg Cbaabx

1 1
u = 1—0 Cbaab - 3—0 Caabb-

From the above equations for 4 and u we see that these
quantities are scalars. But conversely a tensor C having compo-
nents C,u, given by (14.15) in which A and p are scalars is an
isotropic tensor. Hence we can state the following result. If the
components Cil,, of an isotropic tensor C are symmetric in the indices 1,]
and also in the indices km then

Cii, = A6 8,,, + (8} &, + 6L d1), (14.16)

i a rectangular system, where the quantities A and p are scalar
functions of the coordinates.
It is immediately seen that if the tensor C is both homogeneous

and isotropic the scalars A and g must be constants. In fact putting
t =2~k 7=m and also 1 = §, £ = m in (14.16) and summing on
repeated indices we obtain
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A+ 4 u = const.; 31+ 2u=const.,

since the C’s are constant by hypothesis. But from these equations
it follows that A and u are constants as stated.

Remark. Consider the possibility of an isotropic vector V. For
such a vector we have

V,=V,al(); V,o

a “ai

=0; Ve =0, (14.17)
corresponding to the equations (14.1), (14.2) and (14.4) respectively.
Multiplying the last set of equations (14.17) by ¢* and summing on the
repeated index 5 we obtain

Vaeai et = Va(éac (Sij — (Saj (Szc) =T, (Sij — Vj 0ic = 0. (14.18)

But if we put ¢ = 7 in (14.18) and sum on the repeated index we find
that V; = 0. Hence there is no non-vanishing isotropic vector.

As another illustration of the use of the above method let us seek
to determine the structure of an isotropic tensor W of the second order.
Then in place of (14.1), (14.2) and (14.4) we have
W.=W,.aal; W0, + W,0,,=0;

(14.19)
Wai Cr + W euin =0,

respectively. Multiplying the third set of equations (14.19) by e'™*
and summing on the repeated index k we are led to conditions of the form

W,'f (Skm — ij (Sik + Wk; (Sjm — ka (Si;‘ =0. (1420)
Putting 2 = m in (14.20) and summing on the repeated index we obtain

2Wy+ Wi = Waa by, (14.21)
or
2 Wi+ Wi = Waa i (14.22)

But, combining (14.21) and (14.22), it follows that W;; = W;; and hence
(14.21) reduces to

Wij= 204 A=14%Wa. (14.23)

Hence any isotropic tensor W of the second order will have components
Wi given, in a rectangular coordinate system, by (14.23) in which 1 is
a scalar.



15. Curves in Space. Frenet Formulae

Let R be an oriented Riemann space of three dimensions
and C a regular curve in R (see Sect. 6). We assume that C is
defined parametrically by functions x*(s) where the x° are the
coordinates of an allowable system in R and s denotes arc length
along C. By differentiation of the equations which represent
any allowable coordinate transformation x «<># in R it readily
follows that the quantities

_ dx(s)

A (s) s

, (15.1)

which are defined along C as functions of the arc length s, are the
components of a contravariant vector 4. Moreover it is immediately
seen that A is a unit vector, i.e.

gi ANV =1. (15.2)

The vector A is said to be fangent to the curve C.

By absolute differentiation with respect to the parameter s
(see Sect. 10) it follows from (15.2) that

Dy

A vector perpendicular to the tangent vector 4 is said to be normal
to the curve C; hence it follows from (15.3) that the absolute
derivative of 4 is normal to C. Now define a positive function «

of s by writing
DX DWV
= |/eu s s (154)

70
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Then the vector £ having the components

.1 DX
& =— 55’ (15.5)
is a unit vector normal to C, i.e.
gi&E=1;, gili&=0. (15.6)

The vector £ is called the principal normal and the scalar func-
tion « is called the curvature of the curve C.
Since £ is a unit vector we have

D&
g gzﬁi —0, (15.7)

corresponding to (15.3). Also by absolute differentiation of the
second set of relations (15.6) we find that

D& Dxi .
gii”ﬁ:“‘giifs-f’=—~xg¢f£’c’=—x, (15.8)

when use is made of (15.5) and the fact that £ is a unit vector. In
addition we observe that

gii Ai(g’%—}—xlf>=0; giif“(%—kxlf):(). (15.9)
The first of these relations is obtained from (15.2) and (15.8) while
the second set of the relations follows from (15.7) and the second
condition (15.6). Hence the quantities in parenthesis in (15.9) are
the components of a vector which is perpendicular to 1 and &.
Corresponding to the above procedure we now define a unit vector ¢,
perpendicular to 4 and &, by writing

,_1(pg
C_?(Ds +K}_). (15.10)

The above quantity = and hence the components {* defined by
(15.10) are determined to within algebraic sign by the requirement
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that ¢ is a unit vector. To remove this ambiguity regarding
algebraic sign we postulate that the vector triad 2,&,¢ has a positive
orientation, i.e. that at any point P of the curve C we can find an
allowable coordinate system S with origin at P such that, if the
coordinates of S are denoted by j‘, the vectors 4,£,{ have the
directions of the positive y1,y2,93 axes respectively. Relative to
the system S it is seen immediately that g;; = §,; at the point P
and also that

Eijk }.'. 57. Ckz l, (15.11)

where the ¢, are the components of the skew-symmetric tensor ¢
defined in Sect. 6. Hence (15.11) must be satisfied along C in any
allowable system because of the invariant nature of this relation.
Conversely it is readily observed that the condition (15.11) implies
the positive orientation of the vector triad 4,£,¢ and hence (15.11)
can be taken as the condition for the determination of the algebraic
sign of the components ' or of the scalar quantity 7; as so
determined t may be positive or negative. The unit vector ¢,
defined uniquely by (15.10) and (15.11), is called the binormal and
the associated scalar 7 the torsion of the curve C.

Using the fact that the components g;; have the values d;; at
the origin of the above y coordinate system we observe that the
relations

Ck = Eijm gmk li 57; §k = — E&ijm gmk li C’;

W= gt £ } -

are satisfied at the origin of this system and hence they are satisfied
along the curve C in any allowable coordinate system. Each of
the above three sets of relations (15.12) is obviously equivalent to
the condition (15.11). Let us now take the absolute derivative of
the two members of the first set of relations (15.12) to obtain

D¢* D D¢§

5 e pmk ] L gmk 287857
Ds &im€™ g E + eijm g™ A Ds
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Then, eliminating the derivatives DA/Ds and D¢&/Ds by the
substitutions (15.5) and (15.10) the above equations are seen to

reduce to

%
%:rei,-mg'”k Al = — 1, (15.13)

when use is made of the second set of equations (15.12). Combining
(15.13) with the equations (15.5) and (15.10) we obtain the Frenet
formulae for the curve C, namely

DA )

Ds =« &,

DE _ .

=Tl — K, (15.14)
DCi_ ;

Ds =T

Remark 1. An explicit formula for the torsion 7 is given by

D&
=g A& ——. 15.15
T=gp A& Ds ( )
To verify the equation (15.15) we have merely to eliminate the deriv-
atives D&*/Ds in the right member by means of (15.10); the resulting
equation is then seen to be satisfied identically in view of the skew-
symmetry of the components ¢;; and the condition (15.11).

Remark 2. In the special case for which the Riemann space R is
a Euclidean metric space E of three dimensions, referred to its preferred
or rectangular coordinate systems, there is no distinction between
absolute and ordinary differentiation in the Frenet formulae {15.14) and
hence these formulae reduce to

ar d&

. ag
ds = K ;

e 8 — k¥ = 7€ (15.16)

Now suppose that the curve C under consideration is a plane curve
in the above Euclidean metric space E, i.e. the curve C lies in a plane
(13.8). Then we must have

Aili =0, A;E = 0. (15.17)
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In fact the first equation (15.17) follows if we differentiate (13.8) with
respect to the arc length s and then make the substitution (15.1);
similarly we obtain the second equation (15.17) by differentiation of
the first equation and use of the first equation (15.16) under the assump-
tion that the curvature « is different from zero. But the quantities A4;
are the components of a vector 4 perpendicular to the plane (13.8) as
observed in Sect. 13; also this vector 4 must be perpendicular to the
vectors A and & on account of (15.17). Hence the vectors 4,£,4 form
a set of three mutually perpendicular vectors at points of the curve C.
But the vectors 4,£,{ also form a mutually perpendicular set of vectors
along C and hence, since there is no distinction between covariant and
contravariant indices relative to rectangular coordinate systems, it is
clear that A;~ (% i.e. the components of the vectors 4 and { are
proportional. Hence { is perpendicular to the plane containing the
curve C and, since { is a unit vector, it follows that its components {*
must be constant along C. Hence from the last equation (15.16) we see
that T = 0, i.e. the above assumption 7 £ 0 is untenable. The forsion
of a plane curve is therefore equal to zevo, and hence, for a plane curve, the
Frenet formulae (15.16) reduce to

‘?; — ‘24: ST (15.18)

If we do not restrict ourselves to the use of rectangular or cartesian
coordinate systems in the space £ we must obviously replace the
ordinary derivatives by absolute derivatives in the relations (15.18),
i.e. we must take

D .. DE ;
Ds = «&; 7);_—;4, (15.19)

to secure the proper form of the Frenet formulae for the plane curve C.



16. Surfaces in Space

A set of points S in a three dimensional Riemann space R will
be said to be a regular surface if, neighboring an arbitrary point
P of S, the points can be represented by equations of the form

X = ¢ (1!, u?), (16.1)
where the x* are the coordinates of any allowable system in R and
the ¢* are differentiable functions of the two parameters #',%2 such
that the functional matrix

0¢! 042 93

0 04® 94°

ou® Ju® ou®
has rank 2. If the ¢’ are of class C* as functions of the parameters
u',u? we may say that the surface S is of class C’. One commonly
refers to the parameters ul,u? as the curvilinear coordinates of the
surface. In the case of a regular surface S of class C” the system of
curvilinear coordinates #,42 will be said to be allowable and (1,1)
transformations # <% of class C” of the coordinates of the system »
will result in an allowable coordinate system 4 for the surface S.

Consider the quantities x. defined by

i oxt
xa == aua ’

Under allowable coordinate transformations x «» % these quantities

(=123; a=12). (16.2)

are the components of two contravariant vectors in the space R
and correspondingly under allowable coordinate transformations
u <> 4 the quantities are the components of three covariant vectors
on the surface S. Now any vector tangent to a curve on the surface
S is said to be tangent to this surface. Hence the two space vectors
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having the components x} and % are tangent to the surface S
since these vectors, by definition, are tangent to the #! and #2
coordinate curves respectively (see Sect. 15). Observe also that
between the differentials du* of the surface coordinates and the
corresponding differentials dx* of the space coordinates we have
the relations

dv' = du*,  (=123; a=12), (16.3)

in which the quantities du* and dx* can be interpreted as the surface
and space components of the same vector, e.g. a displacement on
the surface S. More generally it is evident that a surface vector £
having the components &* will be related to the space components &’
of this vector by the equations

&= & (f=123; a=12), (16.4)

and that any such vector ¢, considered as a vector in the space R,
will be tangent to the surface S.

Let us now define a set of functions g,s(#) of the coordinates
u',u? of a regular surface S by writing

0x* 9x
gup (u) = gii(x)a_;a_z,p (16.5)

where the indices «,8 have the range 1,2 and the indices 7,7 the
range 1,2,3. This convention regarding indices will be adopted
in the following discussion, i.e. it will be assumed that Greek indices
have the range 1,2 and Latin indices the range 1,2,3; within their
respective ranges the summation convention, in accordance with
which the repetition of an index in any term implies a summation
on this index, will apply both to Greek and Latin indices. We
have, moreover, used the Greek and Latin indices as an aid in
distinguishing between the quantities g, defined on the surface S
by the equations (16.5) and the components g;; of the fundamental
metric tensor of the Riemann space R.
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It is immediately seen from (16.5) that the quantities g,
transform by the equations

_ ous ouf

gm:gaﬂgﬁ‘;—aﬁ; (16.6)

under allowable transformations # <> 4 of the curvilinear coor-
dinates. Hence the g,; are the components of a symmetric covariant
tensor over the surface S; moreover the components g,; of this
tensor will be the coefficients of a positive definite quadratic dif-
ferential form

ds? = gyp du> dub. (16.7)

In fact from (16.5) we have

Bap AU* AUF = g;; (gz—; du“) (% du”) . (16.8)
Since the matrix ||x*/0u*|| has rank 2 by hypothesis it follows
that the parenthesis expressions in (16.8) can vanish if, and only if,
the two differentials du* are equal to zero. Hence we see from
(16.8) and the fact that the g; are the coefficients of a positive
definite quadratic form (6.1) that (a) the quadratic form (16.7)
can vanish if, and only if, the du* are zero and (b) the form (16.7)
will otherwise be positive, i.e. the quadratic form (16.7) is positive
definite as stated. The quadratic differential form (16.7) is called
the first fundamental form of the surface S. The surface S, over
which the element of distance ds is givén by (16.7), is intrinsically
a Riemann space of two dimensions having the coefficients g,
of the quadratic form (16.7) as the components of its fundamental
metric tensor. Determinations of the lengths of curves and vectors,
the angle between two directions, etc. on the surface S, based on
the metric of this surface, will be consistent with the corresponding
space determinations in view of the relations (16.5) between the
components of the metric tensors of the surface S and the space R.

A vector £ will be said to be normal to a surface at a point P
if it is perpendicular to every vector tangent to the surface at P.
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Assume for the moment that the surface S is oriented, i.e. the
allowable coordinate systems are related by transformations % «-»#
whose functional determinants are positive; consequently the
quantities ¢,; defined in Remark 4, Sect. 6, will be the components
of a skew-symmetric tensor of the second order. We now consider
the problem of finding the components of a vector which will be
normal to the oriented surface S. Observe first of all that the
condition of normality will be satisfied if £ is perpendicular to two
independent tangent vectors at points P of the surface. Now the
above tangent vectors having the components x; and x; are
independent since the matrix ||xi|| has rank 2 by hypothesis.
Hence the condition that the vector & be normal to the surface S
is given by

x' £ =0, (16.9)

in terms of the covariant components &; of £. By the well known
theorem for the solution of a system of linear homogeneous equa-
tions (16.9) the components &, &, and &; are proportional to the
following three determinants

2 L3 2

x5 % x5 % X X5
; ; (16.10)

2 L3 3 .1 1,2

X5 X5 Xy %y | Xy Xy

To express the above result in invariant form we have merely
to observe that the components of a vector » defined by either
of the following two sets of relations

— 1 gaf f ok
v, =4 e ey xl xf, }

-
v, = —4el e ol x,

1

(16.11)

will be proportional to the quantities (16.10). Such a vector » will
therefore be normal to the surface S. Moreover by choosing coor-
dinate systems such that g,; = 6,5 and g; = d;; at a point P of
the surface it can readily be seen that each of the vectors » defined
by (16.11) is a unit vector. Hence the vectors v given by (16.11) will
be unit normal vectors to the oriented surface S. In any specific
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problem one or the other of the vectors » defined by (16.11) should
be chosen according to the direction which one may wish to assign
to the umt normal to the surface.

Remark 1. Since the matrix ||x;|| has rank 2 it follows from the
implicit function theorem that two of the three equations (16.1) can be
solved for the variables ul,42; the solution functions can then be used
to eliminate the variables #!,4% from the remaining equation (16.1).
Hence the surface S can always be represented locally by an equation
of the form

flx, 22,23 = 0, (16.12)

where f is a continuous and differentiable function of the space coor-
dinates. Eliminating the coordinates x* from (16.12) by means of (16.1)
the resulting equations must be satisfied identically in the independent
variables #! and #2; hence we must have

of
Py X = 0.

In other words the gradient of the function f is normal to the surface S.
Corresponding to (16.11) we may now say that the components of the
two unit vectors, normal to the surface S, are given by

of/ ox — of/oxt

. df of |/ . 8f of
gk 1 kT
I/g dox7 oxF g ox! ox*

Remark 2. Denoting the contravariant components of the unit
normal by »’ we have

gii xi vi — O, (16.13)

as the condition for the vector v to be normal to the surface S. We
can now effect a formal combination of the equations (16.5) and (16.13)

in the following manner. Put x5 = v and define quantities Gj; by
writing
Gup = 8us; Gy =Gz =0; Gy =1.
Then we shall have
(16.14)

(N R
8ij %k Xy = Gy
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In fact if # = @, m = B the relations (16.14) reduce to (16.5); if £ = 3,
m = forif £ = a, m = 3 the relations (16.14) are equivalent to (16.13);
finally if & = m = 3 we see that (16.14) gives the condition for » to
be a unit vector.

From the above definition of the G;; we observe that the deter-
minants {G;;| and |g.s| are equal in value. Hence |G;| does not vanish.
Taking the determinants of both members of (16.14) we see that the
determinant |xj| must likewise be different from zero. Hence we can

define quantities y; and symmetric quantities G¥ such that
xyi=10,  G,G* =4 (16.15)
Using the relations (16.15) we can now deduce the following modifica-

tions of the equations (16.14) by performing the indicated operations,
namely

g ¥ =G, v*, multiplying (16.14) by v7, (16.16)
x =G, g y", multiplying (16.16) by g%, (16.17)
G*xt = g%yl multiplying (16.17) by G*. (16.18)

Finally multiplying (16.18) by x; we obtain a set of relations which can
be written

g7 =G xi o, (16.19)
Expanding the right members of (16.19) these relations become
g7 = G x oy + G x% xf) + G*° &, &, 4 G* x} x. (16.20)
But from the above conditions (16.15) defining the G¥ we have

GH¥=g*, G¥=G*=0; G®=1.

Making these substitutions and also replacing the quantities X by
their values »* the equations (16.20) now yield

g ! xg = g7 — ¥, (16.21)

The equations (16.21) are not only of interest in themselves but
have certain useful applications.



17. Mixed Surface and Space Tensors.
Coordinate Extension and Absolute
Differentiation

Consider a tensor T such that (1) the tensor T is defined on
a regular surface S in the Riemann space R and (2} the symbol
for the components of T may involve both Greek and Latin indices
(see Sect. 16). To avoid a multiplicity of indices in writing the
components of such a mixed surface and space tensor let us select
a tensor having the components Ti; as a representative tensor
satisfying the above requirements. Under a transformation # «- %
of the surface coordinates and a transformation x «» % of the
space coordinates the components Ti, will transform by the
equations

; ou* ouf o0x*

T () = Tas () 557 75 g

(17.1)

In accordance with the transformation equations (17.1) the compo-
nents T, will be functions of the curvilinear or surface coordinates
u* but will depend not only on the selection of the system of
coordinates #* on the surface S but also on the system of coordinates
%' selected in the Riemann space R.

To define the coordinate extensions of the tensor T and to
derive the explicit formulae for the components of any extension
we shall employ a system of normal coordinates y* in the space R
and also a system of normal coordinates z* on the surface S (see
Sect. 8). Assuming that each normal system has its origin at the
same point P on the surface S the normal coordinates y* and 2*
will be related to the underlying coordinates x* and #* by the
following equations

81
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. A . 1 i . 1 1 i
=ty g L) Yy =g Lm )y ¥ y" —
(17.2)

1 1
Wt b — o TG, (p) 2 2 — o The () 2P 2 20—

where p° and p* are the coordinates of the point P in the x and #
coordinate systems respectively. Also the Fj‘; are the Christoffel
symbols based on the metric of the space R and correspondingly
the I'g, are the Christoffel symbols determined by the metric on
the surface S; the remaining coefficients F,-'}em,. .. and IT,...
which appear in (17.2) are determined as in Sect. 8. Under trans-
formations x <> ¥ and # <> @ of the space and surface coordinates
the normal coordinates ' and z* will transform by the linear

homogeneous equations
y—ay; a2
= Gk k —\ 3=
! axk p,

o - o ou*
z“:b,;z”; bz :<W>P

Now denote by i, the components of the tensor T relative to
the y,z coordinate systems and by #, the components of this tensor
relative to the §,Z systems. Then

g, g 0 07 0y
8 P 9 dyF

(17.3)

in which the #5, and the #,; are regarded as functions of the surface
coordinates z* and #* respectively. But the derivatives in (17.3)
are constant. Hence if we differentiate the equations (17.3)
repeatedly with respect to the variables 2”...Z° and evaluate the
resulting equations at the common origin of the normal coordinate
systems we obtain

out out 0%
a7 o 9xk’

sat)

Taﬂ,y...ﬁ(ﬂ) - T[iv,r/...{(u) (174)
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where

k a’tkv
Thn .t :(azn‘ ““—azc>0, (17.5)

and the left members of (17.4) are defined in an anologous manner.
It follows from (17.4) that the quantities T%

uvn. .
(17.5) are the components of a tensor on the surface S. We call

.+ determined by

this tensor the 7th extension of the tensor T provided there are 7
indices in the set y...4. In particular the first extension is also
called the first covariant derivative of T; the process of covariant
differentiation can be repeated to give the second and higher
covariant derivatives of the tensor 7.

The formulae for the components of the above extensions are
obtained by differentiation of the equations

¢ Ot 0w 0y"
* 0z 0zF Oxk’

tg = (17.6)

followed by evaluation at the point P. Thus differentiating (17.6)

with respect to the independent variables 2¥ we obtain

Otap _ oT,, du Qw dun 9yt . 0%ur dw Oy
927 ou" 07 02 07" 0x* W 557 0 9k

r 0wt 0% dy' r Ou* 0w 0% dx™ ouw
T T o 507 axt T 1 5m 3 axk 05 dw 07

Then, evaluating (17.7) at the point P and making use of the
relations (17.2), we find that

0T
ow

Ty = =~ Tup Loy — Tou Iy + Tap Diom 57, (17.8)
where the quantities x] are given by (16.2). It is evident that the
tormulae for the covariant derivative and, more generally, for the
extensions of any tensor T can be found by this process.

Now suppose that the tensor T is defined only along a curve C
on the surface S. Assuming that C is determined by equations
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u* = u*(t) where the functions #*(¢) are differentiable and such that

du* duf

S

i.e. that the curve C is regular (cp. Sect. 6), let us differentiate
the relations (17.3) repeated with respect to the parameter ¢ and
then evaluate at the point P. But this gives

D'Tip D’Tw ou* ow Ox

Dt~ D¢ 0u* 9if ox*’ (17.9)
where
r Tk L e r¥
D TW: drt, : DT _ dlaaﬂ ' (17.10)
Dt ar Jy Dt ar

Hence the quantities defined by (17.10) along C are the components
of a tensor in accordance with the equations (17.9). We call this
tensor the rth absolute extension of the tensor T. The first absolute
extension may conveniently be referred to as the first absolute
derivative. A repetition of this process of absolute differentiation
leads to second and higher order absolute derivatives which are,
of course, not in general equal to the corresponding second and
higher absolute extensions. The process of obtaining the formulae
for these absolute derivatives and absolute extensions is analogous
to the process by which we derive the formulae for the covariant
derivatives and extensions of the tensor T. Thus, differentiating
(17.6) with respect to the parameter ¢ and evaluatmg at the point P
on the curve C we obtain

DTy  dTy . du dw
Dt~ dt —Tu I g dt — Tau Iy~ dt
(17.11)
i m du”
+ T:ﬂ ka Xy 72—;

for the components of the first absolute derivative of the tensor T.
In this connection it may be observed that the components of the
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absolute derivative are obtained from the components of the
covariant derivative, given by (17.8), by multiplication by the
derivatives du’/dt of the functions #*(¢) defining the curve C.

Remark 1. The above surface covariant derivative of a tensor T,
defined on a regular surface S, whose symbol involves only Greek
indices is identical with the covariant derivative of T considered as a
tensor in a two dimensional Riemann space having the metric of the
surface S; moreover the absolute derivative of such a tensor T, along
a regular curve C on S, is given by

DTS qa.p
Dt y...0¢ di ’
where T3 § and 75 55 are the components of the tensor T and its

covarlant derlvatlve respectlvely and the du®/dt are the derivatives of
the functions #®(f) defining the curve C. In the other extreme case
where the components of T are functions of the space coordinates x*
and the symbol of the components involves only Latin indices the
surface covariant derivative has components

T; = T; mr :U (1712)
where Tﬁ’m denotes the components of T and Ti’m, are the compo-

nents of the spatial covariant derivative of T considered as a tensor
in the Riemann space R. Correspondingly we have

DTy i.j  du®

Dt - Tk...m,:x dt ’ (1713)
for the components of the absolute derivative of T along a regular
curve C on S.

Since the components of the spatial covariant and absolute deriv-
atives of the metric tensor of the space R are equal to zero it follows
from (17.12) and (17.13) that the components of the corresponding
surface derivatives of this tensor must likewise vanish. A similar remark
can be made concerning the covariant and absolute derivatives of the
skew-symmetric tensor whose components are the quantities g, or &7*
in an oriented Riemann space R.

Remark 2. Let S be a regular oriented surface in a Riemann space R
and C a regular curve on S. We assume that C is defined by equations
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u* = u*(s) where s denotes arc length along C. Corresponding to the
results in Sect. 15 we now have the equations

du* Dif
«_ - B — - «
M= BmRE=1 gk g

=0. (17.14)

The first of the equations (17.14) defines the components A* of a vector
A tangent to C, the second equation expresses the fact that 4 1s a unit
vector and the third equation (17.14), which is obtained by absolute
differentiation of the second equation (17.14), states that the absolute
derivative of A is perpendicular to the tangent vector A. Hence the
absolute derivative of A i1s normal to the curve C. We can therefore
define a unit vector u, normal to C, by writing

— o @y — 1 i
Dy = oM Eapp A* 14 , (17.15)

where ¢ is a scalar along the curve C and the second of these relations,
which is analogous to the condition (15.11), determines the direction of
the vector x4 and hence the algebraic sign of the normalizing scalar o.
The vector u is the unit normal to the curve C and the scalar o 1s called
the geodesic curvature of C.

We readily observe that the second equation (17.15) is equivalent
to either of the following two sets of relations

A= gy e 7 pr = — gy e A7. (17.16)

By absolute differentiation of the second set of relations (17.16) along
C and application of the first set of these relations it now follows that

Dy D
— g, h = — ogp Py = — oo,
DS gﬁ. € DS O'gﬁ) € lu O'l

Combining this result with the first set of equations (17.15) we obtain
the following relations which are analogous to the Frenet formulae
derived in Sect. 15, namely ‘

D> .. Dp* u
De = O Ds = oi%, (17.17)




18. Formulae of Gauss and Weingarten

It follows from the relations (16.5), by covariant differentia-
tion, that

g ¥y ¥+ gy %L A, =0, (18.1)

where the quantities x, are given by (16.2). By cyclic permutation
of the indices «,f,y in (18.1) we can also write

& X ¥+ gy 2 A, = 0, (18.2)
8ij Xy M g 2, %] 5 = 0. (18.3)

But the quantities x4 are symmetric in the indices « and f as can
immediately be seen from the formula for these components. Hence
if we add the left members of (18.2) and (18.3) and then subtract
the left member of (18.1) from the resulting expression we
obtain

8ij %o p xi, =0. (18.4)

Now for fixed values of the indices «,8 the quantities x4 are the
components of a vector in the space and the relations (18.4) express
the condition that this vector is normal to the surface S. Hence
we must have relations of the form

Xl =1y, (18.5)

where the b§,, are the components of a symmetric tensor defined
over the surface S and the »* are the components of the unit normal
vector to S. In fact if we multiply both members of (18.5) by
g;» and sum on the repeated indices we obtain

PR
balf =g Xup V.
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The relations (18.5) are the formulae of Gauss and the quantities
b,; are commonly referred to as the coefficients of the second
fundamental form of the surface S.

Let us now apply the process of covariant differentiation to the
equations
givv =1; g; %, v =0, (18.6)

which express the condition that » is a unit vector normal to the
surface S. We thus obtain

g: V' Vi =0, (18.7)
& %op ¥+ 8 %5 vy = 0. (18.8)

From the relations (18.7) it follows that the two space vectors
having components »,; and #', are perpendicular to the normal
vector ». Hence these vectors must be tangent to the surface S.
It must therefore be possible to express either set of components
v, and v’y as a linear combination of the quantities #; and 'y
since these quantities are the components of two independent
vectors tangent to the surface. This gives relations of the form

vfa =¢A xz (18.9)

Eliminating the quantities # ; and vfm from (18.8) by the substitu-
tions (18.5) and (18.9) and making use of the relations (16.5) we
obtain the following equations

Bay = — Lo L5 (18.10)

By means of the equations (18.10) we can eliminate the quan-
tities ¢ from the relations (18.9). In fact if we multiply (18.10)
by g and sum on the repeated indices we find that

0= —g"b,,. (18.11)
Hence, removing the quantities ¢, from (18.9) by the substitution
(18.11), we obtain the formulae of Weingarien, namely

'yi = — ﬂ?baﬂ x}f. (18'12)

N3
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Remark. The components »' of the unit normal vector » are evidently
constant over a plane in the Euclidean metric space E referred to one
of its cartesian coordinated systems. Hence ¥, = 0 and from (18.12)
we have

g7 by 5, =0. (18.13)

Multiplying (18.13) by g;; #. and making use of (16.5) it follows that
bys = 0. Conversely, if b5 = 0 over a surface S in the space E, referred
to a cartesian coordinate system, we shall have v, = 0 from (18.12).
But this condition evidently implies that S is a plane. Hence a surface
S ts a plane in the Euclidean metric space E if, and only if, its second
fundamental form vanishes identically.



19. Gaussian and Mean Curvature of a Surface

Two scalars K and 2 can be defined over a regular surface S
in a three dimensional Riemannian space R by the following
equations

K = —1e#¢” By, (19.1)
0=t ba, (19.2)

where the B,g,s are the components of the completely covariant
form of the curvature tensor B (see Remark 1 in Sect. 11) and the
by are the coefficients of the second fundamental form of the
surface S (see Sect. 18). The scalar K, which is an intrinsic differen-
tial invariant of the surface S, is known as the fotal or Gaussian
curvature and the scalar Q is the mean curvature of the surface.

In this connection it may be observed that the components
B,ss can be represented by writing

Baﬁyd =—K Eap Eys. (19.3)
In fact if we expand the right member of (19.1) we have
K = —¢'2¢12 By, (19.4)

on account of the skew-symmetric character of the quantities ¢
and B,;,s. Substituting the value of K given by (19.4) into (19.3)
we see that this relation is satisfied when the indices o,f,y,0 have
the values 1,2,1,2 respectively. Hence (19.3) must be satisfied
for any selection of the indices «,f,y,0 in view of the skew-symmetry
of the components ¢,; and the components of the curvature tensor B.
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20. Equations of Gauss and Codazzi

To deduce other relations involving the components of the
curvature tensor of the surface S and the coefficients of its second
fundamental form let us consider the mixed surface and space
tensor X with components x. defined by (16.2). The components
of the covariant derivative of this tensor are given by

i axoc i o ki m
xa,B:W—xaraB+xakaxﬂ- (20.1)

Transforming these relations to the normal coordinate systems v,z
considered in Sect. 17, differentiating with respect to the surface
coordinates 2¥ and then evaluating at the common origin of the
normal systems, we obtain

Wt
= Xapy T

Yasy Ay %o+ Ay 227 %, (20.2)
where x5, and x,,, are the components of the second covariant
derivative and second extension of the tensor X and where Ag,
and A}, are the components of the first normal tensors of the
surface S and the space R respectively. Interchanging the indices
B,y in (20.2) and subtracting it now follows that

i
x B,y

By

= aﬂy x; 2+ Bkm,x Xy X (20.3)

on account of the relation between the components of the first
normal tensor 4 and the curvature tensor B (see Remark 1 in
Sect. 11).

By covariant differentiation of the relations (18.5) and applica-

tion of (18.12) we also have

=b,,, v —b,, g7 b, % (20.4)
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Hence, interchanging the indices 8,y in (20.4) and subtracting, we
obtain

Xop,— X p = (bap, — by p) V' — 87 (b, by — bay o) %i (20.5)

Now one usually assumes that the surface S is immersed in a
Euclidean metric space E so that the curvature tensor components
B, in (20.3) are equal to zero. Making this restriction and equating

the right members of (20.3) and (20.5) we have the following
relations

(baﬁ,y - b“V’ﬂ) ’”i + [:B;ﬁr __go'r (baﬁ bar - bay baB)] Xi = 0.

If we multiply these equations (a) by the quantities g;» and
(b) by the quantities g;x5 and in each case sum on the repeated
indices we ‘find that

bag.y — bar,s = 0, (20.6)
Bugys = bas bgy —— by bps, (20.7)

when account is taken of the fact (1) that » is a unit vector, (2) that
v is normal to the surface S, (3) that the quantities x, and x4
are the components of spatial vectors tangent to S, and (4) that the
coefficients g,; of the first fundamental form of the surface S are
given by the equations (16.5).

The relations (20.6) are known as the Codazzi equations and the
relations (20.7) as the Gauss equations of a surface S immersed in
the Euclidean metric space E.



21. Principal Curvatures and Principal
Directions

Let C be a regular curve on a regular surface S in the three
dimensional Euclidean metric space E. Then the spatial compo-
nents 4’ and the surface components 4* of the unit tangent vector 1
to C are related by the equations

,_dx oxt dwr ;.

ERE T (1.1)
where s denotes arc length along C (cp. Sect. 16). By absolute
differentiation of the equations (21.1) we now have

Di_ , Dir

Ds = Y= ps TR B (21.2)

Hence, making the substitution (18.5) and also eliminating the
derivatives in (21.2) by means of (15.14), (17.14) and (17.17),
we obtain

«& = gut + (bap A* A%)v, (21.3)

where the u' are the spatial components of the tangent vector u
to the surface. Multiplying (21.3) by g;;»” and summing on repeated
indices we have

(g " &) = bap A A (21.4)

Let us now assume that the curve C is the intersection of the
surface S and a plane through the normal v at an arbitrary point P
of S. The vector & will then be normal to the surface S at P as is
clear from the discussion in the Remark 2 of Sect. 15. Hence
at P the unit vector & must be identical with the unit normal
vector v or & must have a direction opposite to that of ». The
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94 21. PRINCIPAL CURVATURES AND PRINCIPAL DIRECTIONS

coefficient of « in (21.4) will therefore have the value 4+ 1 at
the point P and hence, at P, this equation becomes

k= byg A% AP (21.5)

The quantity in the right member of (21.5) is called the normal
curvature of the surface S in the direction 1 at the point P. Denoting
the normal curvature by «, we therefore have

Kn == byp 2% AP (21.6)

As so defined the normal curvature «, = 4 « at the point P;
hence the normal curvature can have a positive or a negative
value.

The normal curvature «, at a point P of the surface S will
have a stationary value, e.g. a relative maximum or minimum, for
a specified direction A provided that

bup A% 04% = 0; Gag A% 04F = 0. (21.7)

In other words the unit vector 4 whose components occur in (21.7)
will determine a stationary value of «, if the first equation (21.7)
is satisfied for all variations dAf which satisfy the second equation
(21.7). Obviously the first condition (21.7) can be replaced by

(B 2% — ki g A%) 334 = 0. (21.8)

Now if g,A* 5= 0 at the point P, which is always possible by a
suitable choice of the coordinates #*, we can suppose that Jdi2 is
arbitrary and we can then determine the value of 64 by solution
of the second equation (21.7). With this understanding let us
choose the quantity «, in (21.8) so that the parenthesis expression
in this equation vanishes for f = 1; but then this expression
must also vanish for f = 2 since the variation §A% is arbitrary.
Hence we shall have

(bup — Kn gap) A¥ = 0. (21.9)

If we multiply (21.9) by the components i* of the unit vector 4
and sum on the repeated indices we immediately obtain the equa-
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tion (21.6); hence the quantity «, in (21.9) must be the normal
curvature associated with the direction 4.

Now the determinant of the coefficients of the 4% in (21.9) must
vanish; this leads to an equation for the stationary values of «,
which can be written in the form

Ky — gb baﬂxn+-2~:0, (21.10)

where b and g denote the determinants |b,| and |g,,| respectively.
Also, combining the equations (19.3) and (20.7), we have

K Eapf Eyo — bay bﬂa —_— baa bﬂy. (21.11)

Hence if we choose the indices «,8,y,6 in (21.11) to have the values
1,2,1,2 respectively and then replace the quantity ¢,, in the resulting
equation by the value given in Remark 4 of Sect. 6 we find
that '

b
K=2. (21.12)
g
Making use of (19.2) and (21.12) the equation (21.10) can now
be written

K2—28x, + K=0. (21.13)

The two solutions «, of the equation (21.13) are called the
principal curvatures and the directions or unit vectors 4 associated
with these solutions «, are called the principal directions of the
surface S at the point P. Denoting the principal curvatures by
k, and k, we therefore have

K = kx,; Q=1 (kg + xg). (21.14)

Hence the Gaussian curvature K of a regular surface S in a Euclidean
metric space of three dimensions is equal to the product of the principal
curvatures and the mean curvatuve £ is equal to one-half the sum
of the principal curvatures.
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Remark. Choose a system of coordinates #* such that g,z = dus
at a point P of the surface S. The condition that 4 is a unit vector
at P is then given by

(A2 4 (12)2 = 1. (21.15)

Regarding the components 4* of 1 as the coordinates of a rectangular
system the equation (21.15) defines a unit circle. Denote the set of
points comprising this circle by 2. Then any unit vector A determines
a point p of the set X and conversely any point p of 2" determines a
unit vector A. Hence the normal curvature «, given by (21.6) can be
thought of as a point function defined over the set 2’ and is, in fact,
evidently a continuous function of the points p of this set. The func-
tion k, will therefore assume its maximum value x; at some point p,
and its minimum value &, at some point p, of the set 2. These maximum
and minimum values will be stationary values of the function «, and
hence, as indicated, can be identified with the stationary values «; and «,
in the above discussion.
One or the other of the following cases must now occur

Case (o) kn =0, for all pc X,
Case (B) Ky = const. (F#£0), over X,
Case (y) Kn 7 COnst., over X.

Corresponding to these cases the above maximum and minimum values
of the function «, on the set 2’ must be such that

() Ky =kKy=0; (B) Ky= Ky F£O0; (y) k1> K.
In treating Case («) and Case (f) it will be helpful to suppose that A*
is represented by writing A! = cos # and A% = sin §. Then we shall have
bop A* AP = by cos20 + 2 by, sin 0 cos O -+ by, sin? 6. (21.16)

Equating to zero the expression in the right meémber of (21.16) and
dividing by cos?f we obtain

bostan?f 4+ 2 b, tan 0 + b, =0, (21.17)

under the condition of Case («). But it follows from (21.17) that
by = by = by = 0; in other words all quantities b,s must vanish.
A point P on the surface S at which all components b,s are equal to
zero may be called a flat point and at such a point the normal curvature
is zero for every direction 2. From the result in the Remark in Sect. 18
we see that a plane is the only surface composed entively of flat points.
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Turning next to Case () it follows from (21.6} and (21.16) that
byy €052 + 2 by, sin 6 cos 6 + by, sin? § = const. (21.18)

Since (12.18) is an identity in 6 it can be differentiated with respect
to 6; this gives a condition which can be written in the form

byatan? 0 & (by, — byy) tan f — by, = 0.

Hence we must have b;, = 0 and b,, = b,,. Putting b;; and by, equal
to £ we now see that

b=rkgy  (k£0), (21.19)

at the point P; evidently the proportionality factor % in this relation
must be different from zero since otherwise the condition of Case (a)
would be satisfied. A point P at which the condition (21.19) holds is
called an wmbilical point. 1t is interesting to observe in this connection
that if we multiply (21.19) by g*¥ and sum on the repeated indices we
find that 2 = £2 on account of (19.2). Hence the condition (21.19) can
be replaced by

botﬂ =0 8op s Q 75 0. (2120)

Let us now substitute the values of the quantities b5 given by
(21.20) into the equations (20.6) under the assumption that the condition
(21.20) holds at every point of a surface S in the Euclidean metric space.
This gives us the relations

as L,y — Gy 2.5 = 0. (21.21)

Then multiplying (21.21) by g** and summing on the repeated indices
we find that 2, = 0. Hence the mean curvature {2 is constant over the
surface S. Now eliminate the quantities b,z between (18.12) and (21.20).
We thus obtain

v, + Qxl = (v + Q%) , =0, (21.22)
over S. Integrating (21.22) we have
¥ = — Q(xt — a?), (21.23)

where the a' are constants of integration. Substituting the values of
the #* into the equation

gij vy =1,



98 21. PRINCIPAL CURVATURES AND PRINCIPAL DIRECTIONS

which expresses the condition that » is a unit vector in the Euclidean
metric space referred to a system of cartesian coordinates, we now
find that
gii(xt — @) (¥ — a') = b2, (21.24)
where b2 = 1/02. But (21.24) is, by definition, the equation of a sphere
of radius b and center at the point with coordinates &' in the Euclidean
metric space. Hence a sphere is the only surface, composed emtirely of
wmbilical points, in the Euclidean metric space E.
Under the condition of Case (y) we have x; > x, where «; and «,
are the maximum and minimum values respectively of the function «,
on the set 2. Denoting by 4, and A, the directions or unit vectors 4

associated with the values x, and x, and by 4] and 43 the components
of these vectors, the following relations must be satisfied, namely

(bap — 11 825) M1 = O, (21.25)
(Bap — K2 8ap) A2 = 0. (21.26)

Multiplying (21.25) by A3 and (21.26) by AT and then subtracting the
resulting equations we obtain

(k) — K3)€qp A5 A5 = 0. (21.27)
But, since the values «; and «, are distinct, it follows from (21.27) that
gup AT A5 =0. (21.28)

The condition (21.28) implies that the principal directions 4, and 4,
are perpendicular. Moreover the directions 4; and 4, are the only
principal directions at the point P. This follows from the fact that
the equation (21.13) has at most two solutions which must be given
by the above maximum and minimum values x; and «, of the func-
tion x,; hence any other principal direction 2 would have to be
perpendicular to one of the mutually perpendicular directions 4, or 4,
in consequence of an equation of the form (21.27) in which the values
x, and «, are distinct. )

A curve C on the surface S such that at each point of C the
unit tangent vector can be identified with the vector 4 giving
one of the principal directions is called a line of curvature of the
surface. Hence in general, i.e. when Case (y) of the above Remark
applies, there can be at most two families of lines of curvature
on the surface S and these families will be orthogonal.



22. Asymptotic Lines

A regular curve C on the surface S is called an asymptotic line
if the equation

bus 4% 28 = 0, (22.1)

is satisfied along C, where the b,4 are the coefficients of the second
fundamental form of the surface and the A* are the components
of the unit tangent vector 4 to C. Now along an asymptotic line L
the equation (21.3) reduces to

K& = ou. (22.2)

Hence the components of the vectors & and u are proportional;
but this implies that & = + u’ since & and g are unit vectors;
hence x = + o, i.e. the curvature x and the geodesic curvature o
of an asymptotic line are equal in magnitude. The principal normal
& is therefore tangent to the surface S and hence the binormal ¢
must be normal to S along an asymptotic line L.

Remark. As observed above we must have
H= 4 (22.3)

along an asymptotic line L, where { is the binormal to L and » is the
unit normal vector to the surface. By absolute differentiation of (22.3)
with respect to the arc length s along L and use of the relations (15.14)
we obtain

D

=k = (22.4)

Continuing we deduce the following two sets of relations, namely

12 = g v’ v, 1 A, (22.5)

T2 = g b byg A AP, (22.6)
99
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The equation (22.5) is obtained from (22.4) by an obvious formal opera-
tion plus the fact that & is a unit vector. Elimination of the quantities
v in (22.5) by means of the relations (18.12) and use of the equations
(16.5) for the components g,s leads immediately to the equation (22.6).

When we multiply both members of the equations (21.11) by g% 48 A»
and sum on repeated indices we find that

(8% eap &ys AP AY) K = g% by bps AP A7, {22.7)

when account is taken of the condition (22.1) along the asymptotic line.
But one can readily observe that the expression in parenthesis in the
left member of (22.7) is equal to — 1. Hence when we subtract cor-
responding members of the equations (22.6) and (22.7) we are led to
the following simple equation due to Enneper, namely

Tz——j:l/——K,

by which the torsion 7 of an asymptotic line is related to the Gaussian
curvature K of the surface.




23. Orthogonal Ennuples and Normal
Congruences

Let A4, A9 and A be a set of three mutually perpendicular
unit vectors in a Riemann space R of three dimensions. Such a
set of vectors will be referred to as an orthogonal ennuple. Rep-
resenting the vectors of an orthogonal ennuple by their con-
travariant components Ay, Ay and 1j; we must therefore have

8ii Mp) A = O

o (23.1)

where the g;; are the components of the fundamental metric tensor
of R. If Ay = g,¥, are the covariant components of the vector
A it follows readily from (23.1) that

8i = Ao bwis Ay A = O (23.2)

where the index p is summed over the values 1,2,3. Also, cor-
responding to the first equation (23.2), one can easily show that
the components g7 of the contravariant form of the metric tensor
of the space R are given by

gl =N, A, (23.3)

Either set of equations (23.2), or the set of equations (23.3), is
equivalent to the equations (23.1) which express the conditions
that the vectors 4, are unit vectors and mutually perpendicular
in the space R.

A vector field 4 defined in the Riemann space R will determine
a congruence of curves in R as solutions of the system of differential
equations

dx'
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Evidently the space R will be covered completely by the curves
of this congruence and there will be one, and only one, curve of
the congruence passing through any given point P of R. The
congruence will be said to be normal provided there exists a family
of surfaces

f(x1,22%,x3) = const., (23.5)

which have the curves of the congruence as their orthogonal
trajectories. We shall now investigate the condition under which
one of the vectors A; of the above orthogonal ennuple will
determine a normal congruence.

For definiteness let us consider the congruence C; determined
by the vector 4. Now it was observed in Remark 1 of Sect. 16
that the derivatives 9f/dx’ are the components of a covariant
vector perpendicular to a surface (23.5). If the family of surfaces
(23.5) has the curves of the congruence C, as its orthogonal trajec-
tories the vectors 4, and A, at any point P of R must therefore
be tangent to the surface (23.5) which passes through the point P.
Hence we must have

of

X, ()= A, =i =0 (r=12) (23.6)

as the condition for the congruence C,; to be normal. In other
words the function f(x) which determines the family of surfaces
(23.5) having the curves of the congruence C; as its orthogonal
trajectories must be given as a solution of the system of differential
equations (23.6).

The differential equations (23.6) will admit a solution f(x)
determining the required family of surfaces (23.5) if, and only if,
the equations (23.6) form a complete system and the condition for
these equations to be complete is that the quantities (X, X,)f
defined by

(Xq’ Xr)f = Xq Xr(f) — X, Xq(f) (23-7)
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are expressible linearly and homogeneously for ¢, = 1,2 in terms
of the quantities X(f) and X,(f). Now

2 . . A, of
X, X,(f) = mf? Aoy Ay + T;,)a—j, Ag)- (23.8)

These expressions for the scalar quantities X, X,(f) are evidently
invariant under coordinate transformations in the space R. Hence
if we transform (23.8) to a system of normal coordinates (see Sect. 9)
and evaluate at the origin of the normal system we obtain

Xq Xr (f) = f,i;' A:q) Azr) + A?r),i f,j qu): (239)

where the f,; and 4, are the components of the second extension
of the scalar function f and the covariant derivative of the vector
Ay respectively; the quantities f; in the above equations (23.9)
are the coordinate derivatives 0f/dx’ of the function f. Hence
(23.7) becomes

(XpX ) f = Kol s Ky — Kl Ay (23.10)

In the further investigation of the equations (23.10) it will be
helpful to consider the following two sets of relations, namely

Voar = Apyii Mgy Ao (23.11)

Aori = Voar Mgy Pniv (23.12)

The quantities y,,, are scalars and are defined by (23.11) in terms
of the vectors 1, and their covariant derivatives. The relations
(23.12) express the components of the covariant derivatives of the
vectors A, in terms of the vectors 4, and the scalars p,,; these
equations are readily obtained by solving (23.11) for the compo-
nents of the covariant derivatives of the vectors 4,. Actually the
quantities y,,, are not algebraically independent but must satisfy
the set of relations

Vogr = Vapr- (23.13)
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In fact if we differentiate the equations (23.1) covariantly we
obtain a set of equations which can be written in the form

i i
}'(ﬁ)i,i }'(4) + }'(q)i,i }'(P) =0.

Multiplying these equations by 4}, and summing on the repeated
index 7 we are led to the equations (23.13).

Eliminating the components },); and Af,;, by substitutions
of the type (23.12) and making use of the equations (23.1) as well
as the identities (23.13) we find that the equations (23.10) become

(Xo» X)f = mrg — Pma) Xl ) + (e — y30) Xalf),  (23.14)

where the indices m,q,7 have the values 1,2 and there is a summation
on the repeated index # over these values.

Since the determinant }A},)| does not vanish, e.g. it follows
that || # 0 from (23.1), the expressions X,(f), X,(f) and X,(f)
must be linearly independent. Hence the system of differential
equations (23.6) will be complete if, and only if, the coefficients
of X;(f) in the right member of (23.14) are equal to zero. But
since the indices » and ¢ in (23.14) are restricted to the values 1,2
the vanishing of these coefficients produces the single relation

Y312 = ¥Vs21- (23.15)

In other words a necessary and sufficient condition for the congruence
C, to be normal is that the condition (23.15) be satisfied.

Remark 1. The above discussion is evidently applicable to a Riemann
space of any dimensionality » 2> 2 and, for such a space, one is led
to a set of equations corresponding to (23.15), namely

Vngr = Ynrg (q,rzl,...,n— l),

as the conditions for the normality of the congruence C, determined
by the vector A, of the set of » mutually orthogonal unit vectors A,).
In the special case # = 2 the above condition is automatically satisfied
corresponding to the fact that the curves of the congruence determined
by either vector of the orthogonal ennuple have the curves of the
congruence determined by the other vector of the ennuple as their
orthogonal trajectories.
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To treat the two dimensional problem specifically let 4 be a vector
field in a Riemann space R of two dimensions and denote by C the
congruence of curves in R which are determined by solution of the
differential equations (23.4). Assuming R to be oriented we can define
a vector £ having the covariant components &; = g; A/ and hence

§i ” = &j }j }.i = 0,

le. the vectors £ and A are perpendicular. Hence a congruence of
curves, orthogonal to the above congruence C, will be determined as a
solution of the differential equations

ax 4

— = &(x).

= ()
This geometrical result is obviously independent of the orientation of
the space R which was assumed merely for convenience in defining the
vector £. Hence any congruence of curves in a two dimensional Riemann
space will admit an orthogonal congruence.

Remark 2. Let A(x) denote a vector field in a three dimensional
Riemann space R and consider the congruence C determined by 2 as
a solution of the differential equations (23.4). As in the above Remark 1
we shall assume that R is oriented for convenience in defining certain
vectors, associated with the vector A, but it will be evident that the
final geometrical results will be independent of the orientation of the
space. We shall now derive the explicit conditions for C to be a normal
congruence.

If (23.5) is a family of surfaces having the curves of the congruence C
as its normal trajectories we must have

of :
=1, (23.16)

where ¢ is a scalar function in R. By covariant differentiation of (23.16)
we obtain

fiw=bp ki + dlin, (23.17)

where the components f; are symmetric in the indices 7,k and the
other quantities ¢ ; and 4;; are the components of covariant derivatives
as indicated. Multiplying (23.17) by the quantities ¢* 1; and summing
on repeated indices we find that

% X A = 0, (23.18)
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in which the ¢* are the components of the skew-symmetric tensor
defined in Sect. 4. Hence (23.18) is a necessary condition for the con-
gruence C to be normal.

Now define a set of three unit vectors Ay in R as follows

li

Ay = W (23.19)

Kz = e i (23.20)
Vgab gamn Am,n sbuv lu,v *

Ay = & Ly A, (23.21)

where the &7 are the components of the skew-symmetric tensor in-
troduced in Sect. 6. As so defined the vectors i) and A, are immediately
seen to be unit vectors and it follows readily by recourse to the equa-
tions (6.16) that 1, is also a unit vector. Moreover the vectors A,
and A are perpendicular on account of the condition (23.18) while
the vector A, is perpendicular to the vectors A, and A, by construc-
tion. Hence the vectors A, 4y and A, form an orthogonal ennuple
in the space R.

Since the given vector 2 and the unit vector A, defined by (23.19)
determine the same congruence C it follows that C will be a normal
congruence if, and only if, the condition (23.15) is satisfied where the
quantities y are constructed from the orthogonal ennuple A, defined
by (23.19), (23.20) and (23.21). But, using the expression (23.19) for
the components of 44, and taking account of the fact that the vectors
Ap are mutually perpendicular, we see that the condition (23.15)
becomes

li,i lfl) /1(7'2) =4 1?2) /1(11)- (23.22)

Now substitute the expressions for Az and Ay given by (23.20) and
(23.21) into the relation (23.22). Cancelling certain common factors
from the terms of the resulting equation, as is evidently permissible,
we obtain an equation which can be written

i j(8ab €57 €9) & Dy ¢ Amn Ar = Aij(Gab €% €%P9) €™ Ap g Aomn Ap. (23.23)
Next, replacing the parenthesis expressions in (23.23) by the expressions
given by the identities (6.16), we find that the equation (23.23) can be

put into the following form

(6™ Hy; Hypw) Hpq g7 27 = 0, (23.24)
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in which the H’s are the skew-symmetric quantities defined by
Hij = Aij — i

But the parenthesis expressions in (23.24) are readily seen to vanish
by taking the index § = 1,2,3 in turn and performing the indicated
summations. Hence (23.15) is satisfied and we have proved the following
result. The congruence of curves determined by a vector field A in a three
dimensional Riemann space will be normal, i.e. there will exist a one
parameter family of surfaces (23.5) having the curves of the congruence
as their orthogonal trajectories if, and only if, the condition (23.18) 1s
satisfied.



24. Families of Parallel Surfaces

Consider a regular surface S in a three dimensional Euclidean

metric space E referred to a system of rectangular coordinates x*
and erect the normals N to the surface S as shown in Fig. 5. Denote

Ol

FiG. 5

by S the surface obtained by
laying off equal distances o
along the normals N in the
direction of the unit normal
to S. Such a surface S is said
to be parallel to the surface S.
The surface S is determined
by equations of the form

=+ ov, (24.1)

where x° and % are the coor-
dinates of corresponding points
P and P of the surfaces S and
S, i.e. points lying on the
same normal N ({see Fig. 5);
it is to be understood that x°
and » are functions of the
curvilinear coordinates #* of
the point P, ie. the %' are

given by the equations (16.1) defining the surface S and the »*
by one of the two sets of equations (16.11). Since the surface S
is regular by hypothesis the surface S will evidently be regular
for sufficiently small values of the constant o in (24.1). We shall
assume in the following discussion that the value of ¢ does not
exceed the limit beyond which the surface S will fail to be

regular.
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Denoting by »; the covariant components of the unit normal
to S at the point P we have

Ev, = 2, v, + ovi v, (24.2)

when we replace the %, by the values obtained by differentiating
the equations (24.1) with respect to the curvilinear coordinates #®.
But the first term in the right member of (24.2) vanishes since
the vectors having the components x} and xj are tangent to the
surface S and the second term also vanishes since » is a unit vector.
Hence we must have the following two sets of relations

Zy,=0; z v, =0, (24.3)

where the #; are the components of the unit normal at P. Now
since S is regular the matrix ||#%;]| will have rank 2. Hence the
components »; and #; must have the same values to within a
factor of multiplication as a consequence of the equations (24.3);
but this implies that #, must be equal to v, to within algebraic
sign since » and # are unit vectors. Finally if we assume the #
to be continuous functions of the distance o in the equations (24.1)
we obtain the exact equality of the components of the unit normal
vectors » and # at the points P and P respectively.

It is clear from the above discussion that the normal line L
to S at the point P is also normal to the surface S at the point P.
Hence one can reach the surface S by moving equal distances
from the surface S along the normal lines L, i.e. the surface S
is also parallel to the surface S. If S(o) denotes the one parameter
family of surfaces obtained by varying the distance ¢ in the equa-
tions (24.1) it is now evident that any two surfaces of this family
must be mutually parallel and in this sense we can speak of S(o)
as a family of parallel surfaces without further qualification.

To determine an expression for the components §,; of the
fundamental metric tensor of the above surface S in terms of the
basic invariants of the surface S let us begin with the relation

8 = %, 9?2, = (x}, + avfu) (%} + m/fﬁ), (24.4)
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by which the components 7., are defined (see Sect. 16). For
definiteness let us think of the quantities g,; in the left member of
(24.4) as associated with the point P of the surface S. Then,
expanding the right member of (24.4) it is easily seen that the
resulting equation can be written in the form

s = Bup — 20byy + azvfa vj'B, (24.5)

where g,; and b,; are the coefficients of the first and second fun-
damental forms of the surface S at the point P. Making use of the
equations (18.12) we now have

v vy =g b,, %5 8% by xL = b, by, g% (24.6)

fied

Also if we multiply both members of the equation (21.11) by g*,

sum on the repeated indices, and make use of the second set of
identities (6.15) we find that

bag bp; gﬂ = 20 baB —K 8ag, (247)

where K and £ are the Gaussian and mean curvatures of the
surface S at the point P. Taking account of (24.6) and (24.7)
the equations (24.5) can now be written

Gus = (1 — 02 K) gy — 20 (1 — 02) byy. (24.8)

The relations (24.8) give the components g, at the point P of the
surface S in terms of the Gaussian curvature K, the mean curvature Q,
and the coefficients of the fivst and second fundamental forms, i.e. the
quantities g,z and by, vespectively, at the point P of the surface S.

By second covariant differentiation of (24.1) and use of the
equations (18.5) we have ‘

by ¥ =b v + avfa’ﬁ. (24.9)

But » = # as observed above and hence when we multiply the
two members of (24.9) by » and sum on the repeated index ¢
we obtain

Eaﬂ =b,s + o' v,fz,ﬁ = b5 — a'vfa va. (24.10)
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We now modify the right members of (24.10) by use of the equa-
tions (24.6) and (24.7) corresponding to our previous treatment
of the equations (24.5). Hence we oblain

bop = (1 — 2 68) bap + 0K gas (24.11)

as the equations for the determination of the coefficients b,; of the
second fundamental form of the surface S at the point P.

We now prove the following result. The determinants |g,,| and
bos| at the point P of the surface S are given by

l8as] = (1 + 02K — 2 602)2 |g,p), (24.12)
bas] = (1 + 02K — 2 09) |byp). (24.13)

To prove this result we first set up the equations
|Gap| = § € € Gup Guvs  [bop| = B P bap by, (24.14)

for the determinants in question. For convenience in carrying out
the required operations let us now write the equations (24.8) and
(24.11) as

Zap = Pgas + Jbup, (24.15)
bap = 7 bap + S gup» (24.16)
where
p=1—0K; g=—20(1—0Q), |
r=1—20Q; s =oK.

Then, substituting (24.15) and (24.16) into (24.14) we obtain
[8a8] = P lgus| + P € € gup b + 2 |bag], (24.17)
1Bas| = 72 |bus| + 75 €% €5 gog by + 52 [gas]- (24.18)

In order to simplify the right members of (24.17) and (24.18)
let us observe that

et e gup = lgys| g, (24.19)

which follow immediately from the equations (6.7) defining the
contravariant components g#. Now, multiplying both members
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of (24.19) by b,, and summing on the repeated indices, we
obtain

e €% gup by = |gys| 8" by = 2 |g1e| 2, (24.20)

where £ is the mean curvature of the surface S at the point P.
Making the substitution (24.20) and also using the relation {21.12)
we find that

(8us| = (P + 2992+ §°K) Ig=s], (24.21)
bag| = (72 K + 275 Q + 52) |gas]. (24.22)

Finally substituting the above expressions for #,4,7 and s into
(24.21) and (24.22) and again making use of the relation (21.12)
we are led to the equations (24.12) and (24.13).

If we divide corresponding members of the equations (24.12)
and (24.13) and then take account of the relation (21.12) we obtain
the following result. The Gaussian curvature K at the point P of
the surface S is given by the equation

K

K= 1 oK 20K~

(24.23)

To deduce an expression for the quantities §** we begin with the
equations
g — gm g g, (24.24)

which are equivalent to the above relations (24.19). Replacing &*#
and &” in (24.24) by the values

eo i
M= /7; i = i
Viga Vigal
and then making the substitutions (24.8) and (24.12) we imme-
diately obtain the following result. The contravariant components

& of the fundamental metric tensor of the surface S at the point P
are given by

1—02K)g* —20 (1 —0Q) by, e e
(1 —20Q2 + o2K)?

g — . (24.25)
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. which the quantities in the vight members have their previous
significance.

Finally we seek the corresponding determination of the mean
curvature

Q =} g% bog (24.26)

of the surface S. Substituting the expressions (24.11) and (24.25)
for b,s and g** respectively the right member of (24.26) becomes

(1 —c2K)(1—202)Q2 + (1 —02K)0oK
(1—2080 + o%2K)?

0 (1 —0f2) (1 — 2 0Q) byp by, e &

(1 —2082 + 62K)? (24.27)
_ 03(1 —0f2) K bag g e & .
(1 —2002 + o2K)?
But one can show that A
bap buw e 65 = 2 K ; Dap Guv €% &P = 2 0, (24.28)

In fact the first equation (24.28) follows readily from {(21.11) and
the second is a slight modification of (24.20). Making the substitu-
tions (24.28) in (24.27) and combining the terms in this expression
we are led to the result that the mean curvature Q of the surface S
at the point P is given by the equation

Q2 —oK
1—200 + 02K’

g:

in teyms of the mean curvaturve Q and the Gaussian curvature K at
the point P of the surface S.



25. Developable Surfaces. Minimal Surfaces

In this section we shall comment briefly on two well known
types of regular surfaces S in the Euclidean metric space E of
three dimensions. One of these is the developable surface which is
characterized geometrically by the condition that it can be roiled,
without stretching or tearing, upon a plane. This implies that the
developable surface is tuirinsically flat, i.e. that its curvature
tensor vanishes (see Remark 1 in Sect. 13). It can be shown in
fact that a surface S is a developable surface if, and only if, its
Gaussian curvature K 1s equal to zero.

Special developable surfaces are () the plane, (f) the cone and
(y) the cylinder which can be considered as a cone whose vertex
is at infinity. More generally it can be shown that a developable
surface is a tangent developable, i.e. the locus of the tangents of a
regular curve C in the Euclidean metric space E; the curve C
is called the edge of regression of the tangent developable.

Another type of surface to which we wish to call special atten-
tion is the minimal surface which may be defined as a surface
whose mean curvature £ is equal to zero at each point. At an
arbitrary point P of a minimal surface S, not a plane, the Gaussian
curvature K must be negative. In fact we must have «; + «, = 0
over a minimal surface S from the second equation (21.14) where
«y and «, are the principal curvatures of S; hence neither «; or «,
can be equal to zero since otherwise we would have «; = «; = 0
and it would follow that the coefficients b,; of the second fun-
damental form vanish over S (see Remark in Sect. 21); but the
vanishing of the coefficients b,; means that S is a plane (see
Remark in Sect. 18) contrary to hypothesis. Hence K = — «} < 0
from the first equation (21.14).

114
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Minimal surfaces arise in the existence theoretic problem of
finding a connected surface of minimum area bounded by a given
simple closed curve in the space E. This problem, known as the
problem of Plateau, has attracted the attention of a number of
distinguished mathematicians. It was finally solved by J. Douglas,
Solution of the problem of Plateau, Trans. Am. Math. Soc. 33 (1931),
pp. 263-321.

For a detailed treatment of the geometry of the above and
other surfaces of special type the reader is referred to the standard
texts on differential geometry.
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