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5 1 .  Introduction. 
It is the object of this paper to treat in a general and systematic manner 

the existence theorems for systems of partial differential equations of first 
order (Part I), and to study their characteristic surfaces (Part 11). Our work 
includes in particular a detailed treatment of the systems of invariantive 
type and is so developed as to bring into relationship the methods used 
in a series of previous papers by one of uss and a most interesting paper 
by Cartan3 on this same subject. 

Received, June 1, 1932. 
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The work in Par t  I1 is an extension of the treatment of characteristic 
surfaces in a series of notes in the Boceedings of the National Acaden~y 
of ,Sciences4 and is believed to be the first adequate general treatment of 
this problem. The method used in proving the existence theorems is 
patterned after Riquier's5 theory of orthonomic systems. This has neces- 
sitated the developinent of a theory of sets of monomials which will apply 
to a system of differential equations, part of which hold only over a sub- 
space; this theory contains as a special case the theory presented by ,Janet.' 

Throughout the paper illustrative examples have been given in fine print. 
Jn particular we have given for the first time a detailed study of the 
characteristic surfaces and the associated existence theorems for Einstein's 
gravitational equations in free space.' 

GENERALEXISTENCETHEOREMS. 
2. Regular Systems of Differential Equations. 

Consider a system of L partial differential equations, linear and of the 
first oi.der in l u  dependent variables r,, . . . , v,,and n independent variables 
5',  . . . , %I1, namely 

a vIc(8.1) 2
211 

2
n 

a? ----+ s = o ( i =  1 , .  . ., L).
l i= l  Zk  axff 

The coefficients ccSi and ci are functions of xa and v,. I t  is assunled also 
that the left members of (2.1) are linearly independent in the derivatives 
of the dependent variables 211~. 

Let us suppose that there are L, 5L equations (2.1) which are in- 
dependent in the derivatives avk/axl and, as the integer L, is conceivably 
52 (1930), pp. 225-250. Inoariantive systems of pat$ia2 diferentia2 equations, Ann. of 
Nnth. (2), 31 (1930), pp. 687-713. Space strucfuv-e as a boundavy value problem. Ann. 
of Matl~. (a), 31 (1930), pp. 714-726. In  order to  shorten the work references will be 
made to the above papers frequently. The designation M., Jour., Ann. (1),Ann. (2) res- 
pectively will be used when reference is made t o  the above papers. 

lie Cartan, Stir la tACorie des systdmes en involution et ses applications iL In Relativitl. 
null. Sc. Math., 59 (1931), pp. 88-118. 

T.Y. Thomas, On the CTnijed Field Theory, Proc. Nat. Acad. Sciences; 16 (1930), 
Notes I and 11, pp. 761-766, 830-835; 17 (1931), Notes 111-F?, pp. 48-58, 111-119, 199-210, 
325-329. These will be referred to as Proc. Note I, etc. 

Riquier, Les systdmes dlCquatiolzs aux dCrivdes partielles, (1910). 
Maurice Janet, Sur les syetdmes dlCquntions aux dCivden partielles, Journ. de Math. (€9, 

3 (1920), pp. 65-144. 
The differential equations defining the 3-dimensional characteristic surfaces for Einstein's 

qravitational equations have been given by T. Levi-Civita, Caratteristiche e bicar.attet.ietiche 
delle equazioni grnvitcizionali di Einstein, Rend. Accad. Lincei, (6), 11 (1930), pp, 1-11 : 

ibid. pp. 113-121. 
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dependent on the coordinate system ( x ) ,  let us suppose that  coordinates f l  
have been selected for which L1 will have its maximum value. We can 
then divide our equations into two sets: a set 8, consisting of L, equations 
which can be solved for Ll of the derivatives ack/axl and a set S, from 
which these derivatives can be eliminated. Now suppose that the set of 
equations 8, is independent in L, of the derivatives avk/i3xz and in fact 
that coordinates xa are selected so that  Le has its maximum possible 
value, under the restriction that the above integer L1 is unchanged. This 
makes it possible to divide the set S, into two sets: 8: and 82 such 
that s:, consisting of L, equations, can be solved for L, of the derivatives 
avklaxe and such that  these latter derivatives can be eliminated entirely 
from the set 8:. Proceeding in this way we arrive a t  a coordinate system 
(which is obviously one of an infinity of such cotirdinate systems) for 
which our system of equations (2.1) can be put into the form 

where bLp = O if n < B .  A system of coordinates xu with respect to 
which (2.1) can be put into the form (2.2) in which the integers Lp are 
characterized by the above mentioiled property, is said to be non-singzcln?.; 
otherwise the coordinate system is said to be ~in.c/?rln?~. 

If (2.1) is written in the form 

where b$,q = 0 if a<,8, with respect to a singular coordinate system, 
then J,< L, or if Ji =Li for i = 1, . . ., r then J&l< L,+I. Obviously 
the inequality 1. 5 n - 1 is here satisfied. 

Now asslinie a non-singular choice of independent variables x" and make 
the transformation 

-
(2.3) xu  = zd+m:ccr, 

where the m: are constants. If the dependent variables v, transform as 
sca2ars the law of transformation of their derivatives is given by 

and hence equations (2.2) become 
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For a fixed value L( belonging to the set 1, . . ., 92 -1 assume that =0 
except when o = a .  Then if the constants m: are sufficiently small 
equations (2.4) for (B = cr must be linearly independent with respect to 
the derivatives a 'uk/asn. For  the above choice of the constants m; the 
coefficients of the derivatives a vk/ a zr for y = 1 ,  . . . , a -1, in the 
equations (2.4) will be equal to the coefficients of the corresponding 
derivatives a i:k/azr in the system (2.2). Hence the set of forms, 

W 


Z m: b & ?  @ > a ,  a not summed), 
k=l 

will be linearly dependent on the forms 

(a  not summed), 

since otherwise the origiiial choice of variables x" would be singular contrary 
to hypothesis. Or 

14a 

(2.5) mz b$! = 1;; (byka+ mz b&) ((B> Y and a not summed). Jz 
Now take nzaB =m, and m; =0 otherwise. Then (2.5) gives 

La 

m bfkg (bEct-km b$cn) ((B >a, a and B not summed). =Jz 
Hence, if me let 112 approach zero, we have 

> a ,  i =  1, . . a 

(2.6) u ,  /Inot sumined 
j =  1 

where 

More generally, take rn; = nz for a single index y 2 (B and rn; = 0 
otherwise. Then (2.5) gives 

m b:kp = 
La 

1;; +m bTk"xa) 9 
j - 1  

and this becomes 

when nt is allowed to approach zero. 
I t  is clear that 

L I Z  L, 2 L , . . . 2  L n ,  

otherwise a transformation of the independent variables z", producing 
merely a permutation of the indices of these variables, would show that, 
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the original choice of the variables za was singular, contrary to hypo-
thesis. 

Now suppose that equations (2.2) for b =1can be solved for tlie derivatives 

or in other words the matrix of the quantities where j ,  k = 1 ,  . ., L, , 
is non-singular. Put  a = 1, B = 2 in (2.6) and consider the matrix of 
the quantities 1 b 2  appearing in these equations. If this matrix is of rank R ,  
then L25 R;  this follows from a theorem in Algebras and the fact that 
the matrix of the quantities b& is of rank L,. Hence R = L$ since R 
can obviously not be greater than L,. It then follows from a second 
theorem in Algebras and (2.6) that the matrix of the quantities b& for 
i = 1,  . . ., L, and k = 1 ,  . ., L, is of rank L,. Hence equations (2.2) 
for b =2 can be solved for the derivatives 

after a suitable choice of the indices of the dependent variables uk has 
been made. By a continuation of this process it is evident that, if me 
change the notation for the independent variables vk in accordance with 
the following scheme: 

. . . Vi0 - ELlt-l Vtc, 

Vil - ~ ) L I + l ,  ULI, 

. . . . . . . . 

equations (2.2) can be written 

(2.8) -
a Ujk 

= Z ( : c ,  C)%++,a xa aXP 

where 

(2.9) 

10n Ln 
-

See, for example, Dickson: M o d e r n  Algebl-aic Theol-ies. p. 51. 
Dickson, loc. cit., p. 51. 
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and B 2- a,B >q. The coefficients (x, v )  in (2.8) depend upon the quantities 
x and vrs, and the + denotes terms containing no derivatives of the Q,; 

in the sequel the + will be used to denote terms of lower order than 
those written down explicitly. A system of the form (2.8) will be said to 
be regular.10 

Addition of corresponding menibers of (2.9) gives 

5 3. Extension to Tensor Differential Equations. 
The sesults of 5 2 can be extended to systems of equations the left 

members of which are linear in the first derivatives of the components of 
a tensor T. Thus consider 

where the coefficients D are functions of the independent variables cc" and 
the unknowns T; t,he same is true of the + terms. 

With respect to a non-singular coordinate system (defined as  in 5 2) 
equations (3.1) can be written 

where D = 0 if a <B .  Under the transformation (2.3) the derivatives of 
the components of the tensor T transform according to the equations 

111 the coordinate system (Z) equations (3.2) therefore take the form 

=with Ba:'.dtp0 if cr <B .  Letting a be a l~articular number of the set 
1, . . ., 12 - I and assuming that mZ, =0 if a # z, we obtain by an argument 
analogous to that employed in 5 2 that 

La 

a c . .  .rlu *a -c. ..da a -c...da 

!3.4) rn, Dia. b p  = ,z (Dja.. . ba mu Djo.. .be) ( I>a, a not summed) 
J=1 

-.. 

Without the restrictioi~ $ 2 a ,  the system (2.8) is called regular and immediate 
hy Meray and Riquier Sur la coiavergence des d%veloppen&ents des intigrazes ordinaires, 
.\nil. Ec. Norm. Sup., (3), 7, (1890), p. 44. 
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as a result of the assumption that the original coordinate system (5) is 
non-singular. Then putting m; =m for a single y 2 I!? arid rn; =0 other-
wise, we obtain, on allowing m to approach zero, that 

If all the components T:'.:;~are independent they can be represented 
by ck and the system (3.2) together with (3.5) can be written 

where bgB=0 if n < B .  Suppose, howevel., that the components T;!::;? 
satisfy linear relations of the form 

wliere the indices k . . . I ,  nt . . . n are obtainable from 2) . . q ,  1. . s by 
peimutations. If, in this case, uk is used to denote the independent com-
ponents T,?.::iqwhen account is taken of (3.8), equations (3.6) and (3.7) 
will likewise apply. On the basis of the discussion in 5 2 the system (3.2) 
can then be replaced by a system of equations in the regular form (2.8). 

94. Application to Invariantive Systems. Affine and Metric Cases. 
Consider a system of partial, differential equations of the form 

where the T ' s  are the components of an absolute or relative tensor in- 
variant of weight W and the r& are compo?ents of affine connection. 
The equations (4.1) will be assumed linear in the second derivatives of 
the and as  indicated, to depend on the and their first derivatives. 
Along with this system consider 

where the T's are now tensor invariants linear in the third derivatives 
of the components of the fundamental metric tensor a11t1depending on 
the componentsgag themselves together with their first n11d second derivatives. 
In  particular (4.1) or (4.2) may consist of a single equation or of several 
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equations in which the left members are scalar invariants." The system (4.1) 
is completely equivalelit to one of the form 

21E?'&E ( A )-a A;,& + Y  = o ,  
axE 

where the left menibers are again components of a tensor or scalar in- 
variant. The system is linear in first derivatives of the components diyd 
of the first nor~nal tensor and the coefficients are functions of A;ycl'. 
Similarly (4 .2 )  can be replaced by a. system of the form 

linear in the first derivatives of the components gorp, of the first metric 
normal tensor with coefficients which are functions of gorp, and the 
components gorp of the fundamental metric tensor. In  the system (4.3) 
the Y terms depend on the components A;,$ and I';,,; in (4.4) the Y terms 
depend on gap, gap, ) ,&  and I';,where the components r,&denote the 
Christoffel symbols for this latter case. In addit,ion to the conditions (4.3) 
on the derivatives of the components @),there exists a system of identical 
relations 

a A i k  a A,, 
axor - 2TF+' 

in which the summation C denotes a linear form in the derivatives 
8 d;yd.laxE with constant coefficients. Equations (4.5) express the con-
ditions that the quantities A,& should be components of a normal tensor.le 

We suppose (4.3) to consist of AT independent equations; certain of 

T.Y.Thomas and A.D. Michal, Diferential invaviants of afjnely connected nranifoldu; 
Ann. of Math., (2) ,  28 (1927), p. 196;  also ibjd., 28 (1927), p. 631. 

IZ In the former treatment: loc. cit. Jour. 1). 246, the inequality q 2 k is  established 
and used in place of the inequality v 2 n appearing in (4.5). To establish this latter 
inequality we proceed 8s follows: The system (6.2) Jour. can be written 

where n = p +1; k >or > J¶ ; j 5 k . The componeilt .4!k8 f o ~  particular values of the 
indices j,k ,  n ,  ,9 belongs to the group Gp-,; since or 2 p+ 1 the first derivative on the 
right of thi.; particular equation (a) is not the left member of any equation (a). In the 
previous paper i t  is shown that  A:!, and contribute components to  the groupsA & ~ ~  
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these equations may, however, be dependent on the remaining equations 
of the system (4.3) in consequence of the identities (4.5). These dependent 
equations which we will assume to be M in number thus possess the 
property that they are satisfied in consequence of (4.5) and the remaining 
N-1l.i equations of the system (4.3). If the it1 dependent equations are 
excluded, the remainder together with the system of identities (4.5) call 
be put in the form 

on the basis of the theory of 3 3. The notation. .4$ is used in place 
of Aik to denote a different grouping of the independent components A;yd 
from that used in (4.5). Together with the system (4.6) we consider the 
set of equations13 

m = 1, . . , n  -1 
a Y l n ~  -- a YPP 1 =.1 ) . . . 

(4.7) axli - a xr - + + Y Y-

which define the components A; in terms of the indepeildent components Tint 

of the affine connection T .  Since the inequalities q <Y 2 a! and q <r >- k 
are satisfied by the indices of the derivatives in (4.6) and (4.7) respectively, 
the system composed of (4.6) and (4.7) is regular. 

-

Gp,  Gp-l, Gj-l where j5 ,p. Since k exceeds each of the numbers p .  p - 1 ,  and 
, j -1  the derivatives with respect to xk which appear on the right of any particular 
equation (a) cannot appear on the left of any equation (a). From the form of the p th  
and the qth equations, Jour. p. 246, i t  is seen tha t  the elimination of the derivative 
8  A i k , / 8 x J  where j5 p from the right of a particular equation (a) cannot bring in any 
derivatives for which r < a  in (4.5). In order to eliminate the last derivative we must 
use an equation of the form 

where j<$. To eliminate the derivative on the left of the particular equatio~l (b) from 
the right of the corresponding equation (a) we multiply (b) by a factor and add to (a). 
From the form of (b) i t  is seen this could not bring any derivatives into the right of (a) 
for which r < a  in (4.5). 

A similar discussion can be made for the system Jour. (6.7). The details will be 
omitted when we come to the analogous discussion in the treatment of the system (4.4). 

In case n = 2 equations (4.5) and Jour. (6.7), i. e. the following equations (4.8), are 
satisfied identically, loc.  c i t .  .Tour., 1). 235. 

' V o c .  c i t .  Ann. (2), p. 715. 
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A corresponding discussion can be made for the systeb (4.4). In  place 
of the set of identities (4.5) we now have a system of the for111 

/ m  = 1 ,  ., 71-21 
a BiIn -p?k++ / = 1 ,  . . . ,B,,--= 

k = 1 ,  . . .a &  axy ( , m 1 
\ q < l . z k  1 

which expresses tlie condition that the quantities BI,,,constitute the com-
ponents of the second extension of a fundamental metric tensor. The 
remarks made in connection with the independence of the equations (4.3) 
and (4.5) apply equally well to the systems (4.4)and (4.8). The N- M 
independent equations of the system (4.4) together with the equations (4.8) 
can be put in the forin 

1 

notation ~i~~being used to deilote a regrouping of the componeilts BL,,,. 
Equations (4.7) likewise pertain to the present discussion provided that 
the 2 ~ ; ~in the right members of these equations be replaced by the 
corresponding term 2 ~ ; ~in the components B& of the second ex tens io~ 
of the fundamental metric tensor, i. e. 

l m =  I ,  . . . , n-1\ 

/ 

where the coefficierits of the quantities B& are rational functions of the 
components ,yap. \lie must now add 

as the expression of tlie conditions that the Tiy be Christoffel symbols 
with respect to the componeiits //up of some fundamental metric tensor. 
Then, obviously, the equations (4.9), (4.10) and (4.11) comprise a regular 
systeni. 

5 5. Application to Invariantive Systems. Vector Case. 
There is a certain a~lalogy between the local coordinates which can be 

introduced into a space of distant paralleli~rn'~ and the normal coordinates 
of an afflnely connected space: Differentiation of the components of a tensor 
or set of scalar invariants and evaluation a t  tile origin of a system of 
local coordinates gives rise to a set of absolute scalar invariant,^. This 

loc. cit.  Proc. Sote  I. 
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was treated in a paper by one of us" with particular reference to the 
case of four dimensions but the theory can be extended immediately to the 
11 dimensional case. Now consider n system of equations of the form 

where the left nienibers are components of a tensor invariant or a set of 
scalar invariants linear in the second derivatives of the fundamental 
vectors 1~: and depending also on first derivatives and the vectors tliem-
selves. By a replacement theorem aiialogous to that for normal coordinates 
the system (5.1) is seen to be equivalent to one of the form 

where the summation denotes a linear expression in the derivatives of the 
invariants h;,, with coefficients which are fuiictions of the components 1$,1; 
and ht ;  the Y terms depend on the I$,,. In addition there is the set of 
equations 
(5.3) l~j,k,l+h;,l,j+ ~ L f , ~ , l i= 2 ~llbt,j~zEz+h2nt,l I$'ii+ hftt,/cJ~:tjl 

wliich expresses the condition that the set of quantities lzj,k be the illvariaiits 
arising from s set of fundamental vectors I&. As in 8 4 we will suppose 
that the dependent equations of the system composed of (5.2) and (5.3) 
have been excluded and the unknowns 1$,k have been replaced by an 
independent set Kl,.I5 By the theory of 5 2 the combined system (5.2) 
and (5.3) can be put into the form 

aKi% a d +,
(5.4) -=2 (IL, I&) -a xa 9 xr 

where K ; ~denotes a regrouping of tlie iiidependciit components KZ,,~.The 
combination of (5.4) and the equat'1011s 

I5The rule for separating the independent components h;,t into groups, which is given 
in Proc. Note 111 for the four dimensio~lalcase, can be extended immediately to the came 
of n dimensions. Rule: The grozq G ,  ( t ~ t=0 ,  1 ,  ..., n - 2)  for the cotnpone?ats h;> is 
coirtposed of all components that can be formed from h;,r by taking k =m i l  and 
i ,  j = 1 ,  .. , n subject to the condition j>m +1. There are K, = nz- n m - 11 com-
ponents KI, in each group G,. 
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which define the set of invariants hj,,, in terms of the components of the 
fundamental vectors I& obviously constitute a regular system. 

The fo1:dwing example illustrates the above theory by showing how the differential 
equations for an unrestricted space of distant parallelism can be put  illto the regular form. 
In four dimensions the set of invariants hi,?; h : , ~ ;h:,a; h:.l; IL8.l; hi.1 are independent, 
i, e. not connected by a linear relation; when the system of identities (5.3) is referred to 
these invariants and their derivatives, the matrix of the coefficients of the derivatives is 
t , h ~ texhibited in the adjacent table in which 

in the contravariant components k?.  Rows in this table correspond to ecluatioii (5.3) for 
which the indices j,k, 1 have the values indicated a t  the left. Each element in the table 
is the coefficient of the derivative a t  the top of the column in which the element appears. 
The matrix formed by the elements of the first six columns of the table is of rank three. 
If a and ct b - pa do not vanish the system (5.3) can be put  into the form 

m = l , 2  

-- 2R (hi) ;aK+ + Z ' R  (SK' 1 = 1, ..., K m  a za x u = 1  ,..., m 
where R (A;)  denotes a rational function of the quantities 1;; and where Kt1 is composetl 
of h:.a and hi.2 and the group K I ~is composed of [See, Proc. Note I11 (2.3).] The 
system composed of (5a) and (5.5) is regular since we have solved (5.3) for the maximum 
number of derivatives with respect to X I ,  namely 12. 

It will be proved in 9 8 that this latter system is completely integrable and hence by 
a proper assignment of arbitrary functions in accordance with the general existence theorems 
of 9 6, this systein of equations will completely determine the quantities J I ; , ~as the scalar 
invariants arising from a fundamental set  of vectors h',. 

5 6. General Existence Theorems. 
We shall now impose on the system (2.1) the following two fundamental 

restrictions. 
CONDITIONI. T h e  coefjcient.9 cc,Uk cclncl ri in (2.1) [we unalytic fz~nctmns ~ I L  

the neiglzborhood of some set of valztes zE= qZ and vk = (vk), of t h e i ~  
argztments. 

CONDITION11. The  regzclar system (2.8) i s  completely integrable. 
The first condition carries with it the consequence that the coefficients 

(z, v)  and the Y terms in (2.8) are analytic functions in the neighborhood 
of some these being values in the neighborhood set of values p2 and ( ~ ~ k ) ~ ,  
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of qi and (vk),. A system of equations will be said to be completely 
integrable if the integrability conditions resulting from one differentiation 
of the system are satisfied identically in the parametric derivatives.16 It 
follows from the work of Meray and Riquier" that if Conditions I and IT 
are satisfied, the system (2.1) has a unique solution, given by a set of 
convergent power series expansions, corresponding to the arbitrary assign-
ment of analytic data predicted by the form of the left niembers of the 
system (2.8). 

EXISTENCETHEOREM.Sitppose that (2.1) i s  a system such that  Conditions I 
and TI are satisfiecl. Le t  

Yik ( ~ " 7  . ., xn) ( i  = 1, wk), 

where k # n be a n  arbitrary fihnction o f  the variables &ckfl, . .,zJLanalytic 
in the neighborhood o f  xi =pi o f  their arqzrments, such that  yik (13)  = (vik), 
for  all vnlues o f  the indices for  zohich the Yik are dejned.  Then  there 
exisis one and only one solution, Vik(x), o f  (2.1), each function vik(~)being 
analytic in the neighborhood of  the set o f  values xi =pi, (1) such that  
v in (p )  = (vin), for  i = 1, a ,  

and (2) such that  

With regard to the system (4.3) we shall set up the conditions 
CONDITIONIA. The  coej$dents T(A) and the + terms in (4.3) are analytic 

Jiinctions in the nei,qhborhood o f  some set o f  values (Aim), of their arguments. 
CONDITIONITA. The  re,qwlar system composed of (4.6) and (4.7) i s  completely 

integrable. 
Condition I carries with it the consequence that the coefficients and 

the Y terms in (4.6) will be analytic functions in the neighborhood of 
some set of values (A;,),, this being some set of values in the neighbor-
hood of the set of values (At,),. 

EXISTENCETHEOREM.&ppose that (4.3) i s  such that the co?zciitions TA 
and 11.4 are satisfied. Let  

Yik(LCk+l, ' ' ' , xn), i = 1 ,  . . .  
where the indices i , k have the same range o f  val~tesas the indices of the 
components A; (k # n), a.nd 

I C  The usual definition of a principle derivative is understood here, namely one which 
can be obtained by differentiation of a left member of the system, or one of the left 
lnenlbers themselves. 811 otlier derivatives are parametric. 

Neray and Riquier, loc. cit.. (1890). 
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dcwote fitnctions o f  the variables &+I, . . . ,xn anoalytic in the nei,gliborliood 
of the set o f  valzws r2 =pi o f  tlzeir ar.guments, SZLCILthat  yik (11)= (A;),, 
joy all valztes o f  the ilzdices i and h. Jbr zohiclt the yik are defined. Then 
there mis ts  onrJ and only O ~ Paff ine con?zection zcn'tlz components T$.(= r;) 
in a s g s t ~ m  of  cob'rdinates x", each fibnetion ~ $ ( L c )  being analytic in the 
neighbof.l~ood of  the set o f  raktes xi= p i ,  f u l & .  constihctes a set of integrals 
of the system o f  equations (4.3) and ~ i~ l i i ch  	 =i s  ( 1 )  such that A ; , ( ~ )  (A&), 
find (2 )  s~cc l~that 

The corresponding conditions and existence tlieorerns for the system 
(4.4) can be stated immediately. 

COXDITIONJG. The  coefjcients T (9,  B) and flte Y ferms in (4.4) are 
analytic fzszctimzs in tlre neighbo?.lrood o f  some set of wakbes ( B &  and 
(gap)g= (,4~a)g o f  tlwir a~.,c/wzents, tthe detel-minant (gap), being ci-ifevent 
from zero. 

CONDITION11~. Tlze regzila?. system of eqelatiolzs (4.9), (4.10) and (4.1 1 )  
is completely integrable. 

As a consequence of Condition Ict the coefficients and the Y terms in 
(4.9) 	will be analytic functions in the neigliborhood of some set of values 

and (B;,), lying in the neighborhood of the values and( ~ ~ p ) ,  
(Bt,), respectively, such that  = (,gpor)pand also such that the deter- 
minant / 1 does not vanish. 

EXISTENCE Sicppose fllat (4.4) i s  .sricli tlmt Conditions IGand 1 1 ~THEOREM. 
ccre satisjed. Let  

1~i2el.e tlte indices i , k lzaee the sawe 9 .an .9~~ o f  nalzies as the indices o f  the 
components ~ i * k(k =i=n.) and 



PARTIAL DIFFERENTIAL EQUATIONS. 15 

tlenote fzlnctions o f  tlre zrarinbles nJi tl, . xtLmzalytic in the nei.qhbo?.liooc! a .  

oj' the set o f  valzres x Z  =p' of tlrP'It. a ~ , , y z ~ w ~ e n t ~ .  that  yil, (11) =s / ( c ' ~  (B?& 
for  all ivlltes oj' the i n d i c ~  , f i r  zchicli tlre y,k nre tlejined. Tlren t1ro.c 
w i s t s  onc, anf l  only one, fitndnfnental metric tensor zcitll c.o~npone~zts 
,qag (= g@,) in n systenz o f  coiirdinates x" ccrrli fic?zction. gap (z) hein9 analytic 
i n  tlie neighborlzoo~Z o f  the point xff=pM ?chich ronstitzttes a set o f  inte.yrals 
o f  the system (4.4) ant1 rc1ric.h ( I )  i s  slrclt t11crt g,p ( 1 1 )  = and 
B: ( p j  = (B:,), and (2 )  sztcli that  

B* 
t o  
-- YZO( X I ,  . xTt) Ylc, = VJm( x ' ,  . a ,  T")a ,  

[i= 1 ,  ..., B ~ J  11 = I ,  Y O ]a * . ,  

On the basis of the discussion in 5 5 ,  the con*esponding existence 
theorem for spaces of distant parallelism can be stated. 

CONDITION1 ~ .Tile coefficients ( h i ,  h:,lC) and the SL terms in the system 
(5.2)  alv aaslyticjirnctions inneighborhood o j  some set values (l~j,xi,,  [=: (li?x,j)q] 

and ( 1 ~ : ~ ) ~thAr  cll-,q?rnzents, s~rch tllcct tihe detrrrninrrnt ( 1 )o f  does 
not vanish. 

CONDITIONIIH. T h e  regulnl, system conzposed of (5.4) nnd (5.5) ;IS corn-
pI~te ly  infe.qrable. 

Condition IHimplies that the coefficients ( l zk ,  K&) and the Sr terms irL 
the system (5.4) are analytic functions in the neighborhood some set ol' 
values (hk), and (~r*,),in the neighborhood of the values (I&), and (lt;,k), sucll 
that the determinant 1 does not vanish. 

EXISTENCE Suppose that  (,5.2) i s  .nicll 111 nwtlTHEOREM. thnt conditions 
ITrr arc satisjed. Let 

0 2  W L  2 17-11 
'$J~nt(l""+',. . . . z"). 

[ l  = I ,  . . . ,  ~ $ 1 '  
where 2 ,  m 1jar.e thp samP mn,qe o f  z~nitces as tlre indices of the c~o~?tponmts 
K& ( m  + n) .  rind - -

d ~ w t efunctions o f  the variables xmT1, . . . , xqLor x f f ,  . ., ns flrc ens? 

rnccy be, n?zalyfic. i r ~  the neighborhood of  the set o f  vctlttes zff=1)" oj' f l~e i ) .  
arguments such tlzat yl, ( p )  = ( K & ) ~and ( p )  = (hk),  for  all values 
of the indices for rchiclz the functions ylnL and  +iff are defined. Then  there 
exists one and only one set o f  firntlamental vectors 11:~c./tlz conz~ to~~e~z i s  I ~t 
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a system of  cob'?-rlinates xs"each function h', ( x )  being analytic in the neigh-
bnrlzood o f  the set o f  values x" =pa u;hich constitutes a set of ilzte.qrals o f  
the system (5.2) and which i s  ( 1 )  such that  KG ( p )= (KC), and ( 2 )  sztch that 

h', = (F", . . .,x") K& = (x"+', . . ., xn)?is" Y z ~  
i = 1 , .  . ., 9% 1! = 1 ,  . . . , Kz  
a = 2 ,  . . . , n  m = l , . . . , n - 1  . 

1 = . . . , x"-l =Pa-1 . . . ,x* =P" I 
5 7 .  Functional Systems. 

Consider a system of partial differential equations of the form 

where the T ' s  are components of a tensor invariant of the type discussed 
in g 4, depending on the components r;y and their first derivatives. Along 
with this consider the invariantive system 

where the components T depend on the fundamental metric tensor gap and 
their first and second derivatives. By the replacement theorem equations (7.1) 
can be written in terms of the independent components Al, of the affine 
normal tensor. Hence (7.1) takes the form 

Assume that the equations (7.3) are independent and iZ'in number; dependent 
equations are to be discarded from the system. 

IIII$. Equations (7.3) are ,cl~ch tha f  ( 1 )  t1~el.e exists (L 

(A,), of these equations and ( 2 )  tlbe compoizents T(Al,j of tliese eq~cntions 
crre analytic fitnctions in the neighbo~hood o f  the set of values ( A z ~ ) , .  

By covariant differentiation of (7.3) we obtain s system of the type 
considered in 5 4 ,  namely 

(7-4) 
a T aAl, +, 

CONDITION soltrtion 

--= a a xn 

where the Y indicates a bilinear form in the components T and riy. 
Applying the results of 5 4, the system (7.4) together with the identities 
(4.5) can be replaced by equations of the form 
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where the A& represent independent components A ~ M .Corresponding to 
the previous Condition I* we now impose the following 

CONDITIONI:. The coefJicients (A*)  and the Y terms in (7.5) are analytic 
ficnctiogzs in the net9hbmhood of the set of values (Az,),. 

Assuming that (7.5) and (4.7) are completely integrable, these equations 
can be integrated in accordance with the general existence theorem stated 
in 5 6. In order to see that the functions A& which are formed from the 
integrals rQy(x)  of the system (7.5) by the process of calculating the com- 
ponents of the first normal tensor, satisfy (7.1) or the equivalent system (7.3) 
we make use of Condition 1112. The functions A ~ ( x )are analytic in the 
neighborhood of xi =pi and hence, by Condition I I I ~ ,the components T ( A )  
are analytic, as functions of the xi, in the neighborhood of the same point. 
Thus the components T admit power series expansions about the point xi =pi, 
the constant terms of which vanish by Condition 1112. On account of 
equations (7.4) the remainder of the coefficients in these expansions must 
vanish likewise, and hence the components T are identically zero as functions 
of the co6rdinates xi. 

In an analogous manner the system (7.2) can be replaced by equations 
of the form 
(7.6) 	 T (gab; Blm) = 0, 

where the Bz, are the independent components of the first metric normal 
tensor .gap,YS. 

CONDITION111;. There exists a solution (gaB)p = (gpn)p and ( B ~ m ) pof 
equations (7.6) sucli that ( 1 )  the determinant 1 (gag), 1 does not vanish and 
(2) the components T are analytic functions i n  the neighborhood of tile 
values (gap), and 	(Blm),. 

By covariant dserentiation of (7.6) we obtain 

where the + denotes a bilinear form in the components T and the 
Christoffel symbols rFy,and a linear form in the first derivatives of the 
components gap with coefficients which are functions of the gag and Br,,,. 
Following the method of 8 4 the system (7.7) is combined wit,h the 
identities (4.8) to give a system of the form (4.9). 



18 T. Y. THOMAS AND E.W. TITT. 

CONDITIONI;. T h e  coefJicients ( g ,  B*) and the + terms in (4.9) are 
analytic functions in the neighborhood of the set of values (gag)p and (Btm), 

o f  Condition 111;. 
Furthermore it can be shown that the integrals gap(x)  of the system (4.9) 

are satisfied. I I I~and 1: actually satisfy equations (7.6) in case Conditions 
On the basis of the results of 5 5 an analogous treatment can be given 
for the invariantive system 

As an example illustrating the theory consider Einstein's gravitational equations for 
free space 
(7 a1 Rap = 0 

which express the fact that the contracted curvature tensor is equal to zero. In a previous 
paper by T. Y. Thomas, On the Ecistelzce of Inte.qrals of Einstein's Gravitational Equations 
for free space and their Extension to n-variables, Proc. Nat. Acad. Sci., 15, (1929), p. 906, 
the problem of the existence of integrals for the system of equations (7a) has been treated 
when the components of the fundamental metric tensor gap have the initial values +$. 
In the present section we shall consider the problem in four dimensions without restricting 
the initial values of the components gap; the coordinates xi are to be arbitrary. The work 
of putting the system (7a) in regular form will be carried out in detail. 

The system (7a) is completely equivalent to one of the form 

which corresponds to the system (7.6), and by covariant differentiation, we obtain 

YS 
9 gap, 76, a = 

The system of identities which furnish the conditions that the g 
aP, a/d' 

be the components 

of the first metric normal tensor formed from some fundamental tensor with components gad 
are of the form 

- 1 
(7 d) gap, yd', a --

2 [gap, y8, a +  gae, yd', p +  eqap, ad, yl.'$ gap, ye, d1 ' 

We shall write out in detail the solved form of these equations since it  will be needeC 
in the following work. 

Let us adopt the following more convenient notation 
a = gl1, p = gas, y = 9'8 , 6 = g", 
a = gle, b = g", c = g14, d = gas, e = gZ4, f = g": 

with the understanding that gab is symmetric in a and p ;  also 
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where the components ua constitute the group Go,va constitute GI and wa constitute Gz 
according to the rule for grouping independent components given in a former paper 
loc. cit., Jour. p. 248. Then the system (7d) takes the form 

avl avs  a s-- +all.++l(1) 	 a x 1  - axa  
avs - au4 au2 + + >

(2) 	 --A ---a a x %  a 9  

(3) 	
avt - au1 

au2++,-a x 1  - a x a  ax2 
--av4 aul aua ++,

(4) 	 ax1  - Z I F - Z F  
a s  sue a u a + + ,

(5)  	 ax1 - 3e$-am. 
av,  - au5 1 aul 1 aus

(6) 	 ax1  - a x a  2 ax8  2 ax4  t+ ,  
E?. ava I a v  1 av ,

(7) 	 a x 1  axY a axn  2 ax4  
av8 av5  av4

(8) 	 =a a x a-+=++, 
awl aul 1 au5 1 au,

19) 	 -ax1  - ax' 2 ax2  2 a x 4  ++, 
a w s - a z c 4  au5 

(10) 	 am'--m-rn + + I  

awa sue a u 5 + + >
(11) 	 a ax8  a x 4  

aw4 - av2 2 a w  2 a v  
(12) 	 -- -+-2---B++ a ax4  3 axa  3 a x e  

-aw5 -
-
a v j  --2 -awl  --4 -ave  

(13) 	 a x 1 - a x '  3 ax4  3 a x 4  ++, 
awe aw8 a w e + + ,

(14) 	 a x 1  -a~cs-m 

(15) 	 -awl 3 a v 4  3 a v a  l a v ,  ++- ---+a x P  - 4 a z 8  4 ax4  2 a x $  
a w s - a s  4 a v 6  2 a w 1

(16) 	 a x e  - ax4  3 a x s  3 a x a  ++ I 

aws - 2 ate 2 a v& + - " + +(17) 	 axa  - ax8  3 ax4  3 a~ 
a w , - a v l  av7 -(18) 	 a x 2  - ax4  ax8  ++, 
--aw5 a ~ ,  a v 7 + + ,

(19) 	 a x a  - XF-TF 
aloe - aw5 aw4 

(20) 	 &x - az '+p++.  
It is to be noticed that the ranges of indices and the inequalities given for (4.8) hold for 
the above system of equations. 
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Table I. 

There are 40 equations in the system (7 c), but not all of these equations are independent. 
I n  fact, if we multiply through by galg~6and sum on the indices a ,  ,9, y ,  6 we find 

where XaB, has been used to denote the left member of (7c). I n  Table I the matrix of 
the coefficients of the terms containing the quantities XaBl in (7e) is exhibited; provided 

g" is not zero we see that  the system (7e) can be solved for the quantities XIPI. Hence 
the four equations 

x1p1 = 0 
will be omitted from the system (7c). 

Table 11. 

If we write equations (7c) in the form 


for a fixed value of a the matrix of the coefficients of the derivatives agag, y b / a x E  is 

exhibited in Table II; in this table the indices a ,  p give the row, and any element is the 
coefficient of the derivative of the unknown a t  the top of the column in which i t  appears 
When a = 1 only the first six rows are to be considered, and this set of equations can 
be solved for the derivatives a u /ax1 provided a is not zero. When a = 2 ,  3 ,  4 i t  will be 
possible to  solve the correspon&ng sets of equations taken from (70) for the derivatives 
a u,/a x c  and a v,/a xE where a = 1, . . . , 6 n d  z = 1,2, 3, 4 provided the determinant 
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formed from the first ten columns of Table 11 does 
not vanish. Expanding this determinant in terms 
of fourth order minors formed from rows 3, 5, 6, 
10  we see that i t  can be factored into aa(a p - aa) 
and a sixth order determinant indicated in Table 111, 
no regard being paid to algebraic sign. 

When use is made of Laplace's expansion in 
terms of third order minors i t  is found that the 
determinant of Table III can be written 

Table 111. 

Hence if the quantity 

does not vanish the system of equations (7c), excluding the dependent equations Xlg,= O 
can be written in the form 

where a,  y =  1,..., 6 ;  I =  1, ..., 8; d'= 1,  ...,4 ;  e =5, ...,8. Equations (1) to (14) 
can be used to eliminate their left members from the right hand members of (7f) and from 
the resulting equations eliminate the left members of (7g), (7h), (79. Thus (7f) is replaced 
by a system (F)having no derivatives of g with respect to x1on the right and also 

aB,Yd' 
no left members of the systems (7g), (7h), (79.  Equations (15) to (20) can be used to 
eliminate their left members from the right members of ( F )and (7 g); then use equations (7h) 
and (7i) to eliminate their left members from the resulting equations. Thus (F)and (7g) 
are replaced by systems (9) and (G) respectively such that the system composed of (q), 
(G), (7h), (7i) is solved for its left members and contains no left members of equations (1) 
to (20) on the right. Hence the systems (q), (G), (7h), (7i) can be used to eliminate 
their left members from the right hand sides of equations (1) to (20) and we have the 
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combined system (7c) and (7d) solved for as many derivatives as there are independent 
equations in the system. Furthermore adopting the notation 

BA U I ,  US, UII)  ~ 4 ) U B )  ~ 1 ,Va, usl 214; 

B f : N W 1 l  WI, W I I ,  W1, W6) U'B; 

B:: Nus, v,,, v,, V8 

the combined system (7c) and (7d) can be replaced by one of the form 

where B: =4,  Bz*=6 ,  B1= 10. I t  is also evident from the method used in eliminating 
the left members from the right hand sides of the two systems that the inequality r a 

is satisfied and hence the system composed of (4.10), (4.11) and (7j) is regular. 

§ 8. Identities. Conditions f o r  Complete  Integrabil i ty.  

A system of partial differential equations of the form (2.1) can be replaced 
by a system of the form 

a vik a vpqx.t k J -. = -7-F$JP'--++ = 0 ,(8.1) a X J  a xr 

provided the coordinate system is non-singular. The index r is subject to 
the conditions q <r 2j. I t  must therefore be possible to put equations (2.1) 
in the form. 

where L =C kwk and the matrix of the quantities bkW (x ,v) is non-singular, 
i. e. the Za are identically equal to the left members of (2.1). If the system 
(8.1) is completely integrable the set of equations 

must be satisfied identically when the left members are expressed in terms 
of the parametric derivatives determined by (8.1), i. e. there must exist 

I?. 

.- -
equations18of the type 

a x i k j  a X i k z  IKJB a XIKJ,,,ax8 a x j  
1 -- 0,  

where I,J,K have the same range as i,j ,  k and B >K,  these equations 
being satisfied identically in consequence of (8.1). The quantities M are 
functions of xa and v k .  

l8 C (k,  2) is used to denote the number of combinations without repetitions of k things 
taken 2 a t  a time. 
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Conversely suppose that there are A independent equations of the form 

old azff- 0116 --a &  
which are satisfied identically in consequence of Zct=0 ;  the rank of the 
matrix of the quantities A ( % ,  v) therefore has its maximum value A. If we 
make use of the relations 

2, = bik j  X i k  j ,  

the equations (8.5) can be written 

l a i k j  e a X i k j
6  b a  dd--- f C X i k j  -- 0.

ad 

The indices c, d run from 1to n and the system (8.6) possesses the property 
that it is satisfied in consequence of Z, = 0 ,  i. e. X i k j  = 0. Since the 
matrix of the quantities b i k j d 2  is non-singular the equations in (8.6) are 
independent in the derivatives a X i k j /  a xE. If the equations (8.6) are to be 
satisfied identically in consequence of X i k j  = 0 the coefficients of the 
second derivatives of the unknowns vik  must vanish identically. The 
system (8.6) can be written 

a d i k j  aaVik ctd i k j
(8.7) A, b e  a z j  --A, b, Fzyk"j'd$ a a v p ,  +* = 0 .

a x r a d  

Since r >q and j 2 k ,  i t  is evident from the form of (8.7) that 

(8.8) A : d b $ j d i + &  d beikl ddj 5 0,  

where 1 5j 2 k .  Consequently the equations (8.6) can be written 

where I <j 2 k and B >k .  Buppose that the matrix of quantities 
Adb? dk is singular; i t  follows that (8.9) can be replaced by a system 
which contains a t  least one equation of the form 

By differentiation of the system (8.1) we obtain 

By the method used in a former paper,19 equations (8.11) can be replaced 
by a system of the form 

l9 loc. cit., Jour. p. 246. 
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where the indices i, k ,j, B have the same range as in (8.11). I t  is to be 
noticed that throughout this process the equations obtained by differentiation 
of (8.1) with respect to d where 2 5 k are not needed. Furthermore 
relations of the form 

must be satisfied where the matrix of the quantities D is non-singular. 
Hence (8.10) can be written 

IKJB(8.13) ivikjpDw Y I K J B  +2x = 0. 

However from the form of (8.12) it is clear that the equation (8.13) 
is not identically zero in consequence of X = 0 unless the coefficient 
ivikjpD Z : ~  is identically zero. This implies that the quantities N are 
all zero and hence that the equations (8.6) are not all independent. There-
fore the matrix of the quantities A,

rid 
ba

i k j  6; in (8.8) must have a non-
vanishing determinant from which it follows that (8.3) are satisfied in 
consequence of Xiv = 0 and a Xikjl a xB(B >k ) ,  i. e. the system (8.1) is 
completely integrable. 

Hence a necessary and sufficient condition for complete integrability of 
(8.1) is that there exist independent identities of the type (8.5) equal in 
number to the number of integrability conditions of (8.1). That there 
cannot exist more than A independent identities of the type (8.5) follows 
from the form of (8.9). The existence of A', (A1> A ) ,  independent iden- 
tities of the type (8.5) would lead to A' independent identities (8.6). Since 
there are only A distinct left members of (8.3), i t  follows that (8.9), which 
is equivalent to (8.61, could be replaced by a system containing a t  least 
one equation of the form (8.10). The above argument shows that the 
quantities N must be identically zero, i. e. equations (8.6) or in other 
words (8.5) mould not be independent. 

As an application of the theory of this section consider the  system of equations 5 (a) 
together with a system of the type (5.5), i. e. 

The above system 8 (a) can be solved for 

ah: ah:, ah: ah: ah: ah: 
a x 1  a x 1  a x 9  7 a x 1  a z 2  I a x 8  
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from which i t  follows tha t  there are 16  integrability conditions arising from 8 (a) alone. 
By differentiating the equations 8 (a) with respect to xY and permuting the indices a,,4, jf 

cyclically and adding the  three equations thus obtained, we arrive a t  the system (5.3), i. e. 

8 (b) h; ,r , r+h: , r , j+h: .g ,x-2[&, j  h;r+h6,rh~~k+hL,rhYj]= 0 ,  

where the indices j, k ,  1 have the sets of values 1 , 2 , 3 ;  1 , 2 , 4 ;  1 , 3 , 4 ;  2 ,3 ,4 .  Equations 8(b) 
form a set of 16 equations of the type (8.5) which are satisfied identically in consequence 
of 5 (a); in fact 5 (a) is  but a different form of 8 (b). From 5 (a) we  see tha t  there will 
be four more integrability conditions or 20 in all for the combined system 5 (a) and 8 (R). 
Denote the left members of 8 (b) by and consider the four equations 

where the comma denotes absolute differentiation. It can be shown that  equations 8 (c) 
are satisfied identically in consequence of 8 (a) and 5 (a). Hence the system of identities 
8 (c) and 8 (b) numbering 20 in all, insures the complete integrability of 8 (a) and 5 (a). 

When the system of field equations 
A* hj,k = 0 ,  

Lsee Proc. Note III].is combined with the system 5 (a), a regular system (3.3) Proc. Note U[I 
is obtained [that (3.3) is regular follows from the fact that  all derivatives with respect 
to x' appear on the left]. The 8 integrability conditions arising from (3.3) Proc. Note III 
taken together with the 16  conditions arising from 8 (a) make 24 in all. The corresponding 
set of 24 independent identities involving derivatives of the left members of the system 
is made up of equations 8 (c), 8 (b), and the equations (3.4) Proc. Note II,the latter stating 
tha t  the divergence of the left members of the field equations vanishes identically. 

6 9. A Sufficient.  Condit ion f o r  Comple t e  In tegrabi l i ty .  
To find a set of identities (8.5) which will insure complete integrability 

requires considerable work in the case of certain systems of differential 
equations. This difficulty can be met in some measure a t  least by use of 
a sufficient condition for complete integrability given by one of us in 
a former treatment;" this condition for complete integrability can be 
applied with facility to a large class of invariantive systems and in 
particular to the type of invariantive system which serves as field equations 
in the theory of relativity. In this section we shall consider this method 
of establishing complete integrability from the standpoint of the present paper. 

In 5 7 it was noted that a certain number M of the equations (7.4) may 
be linearly dependent on the remainder of (7.4) in consequence of the 
equations of the system (4.5). Let us express this dependence as follows 

( M  equations). 

From the theory of 5 3 it follows that a coordinate system can be found 
in which (9.1) can be put in regular form, i. e. can be written 

20 ZOC. c i t .  Ann. (I), p. 690 et. seq. 
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where iM =Cki&. From the fact that (9.2) is regular i t  follows that 
all derivatives of order r of the left members of (9.2) vanish in consequence 
of the vanishing of the components T, all derivatives of components T of 
orders 1 to r inclusive, and the remainder of the derivatives of the com-
ponents T of order r +  1.'l Now set up the following condition with 
reference to the numbers A: which arise in the system (7.5).22 

CONDITION are ndch thatI V ~ .  The nztmbers A: 

Since A: is equal to 
n-2
2Ai, i t  follows that  9: =N when use is made 

0 0 

of Condition I V ~ .A comparison with the set of conditions given previouslya4 
and the related discussion, shows that if Conditions I:, III;, I V ~are satis- 
fied, the combined system (7.5) and (4.7) will be completely integrable. 

Conditions similar to 1VZ can be applied to invariantive systems of the 
metric and vector types. 

As an illustration of the use of this method the reader is referred to 
a proof that the system of equations (7j) together with (4.10) and (4.11) 
is completely integrable, loc. cit. Ann. (I), p. 713; also Ann. (2) p. 725. This 
enables us to state the following 

EXISTENCETHEOREM.Let 

and 

2 L  Cf. 10c. cit., Jour. p. 246. 
221tis immaterial whether or not the coordinate system (x) to which the system (9.2) 

is referred is identical with the coordinate system (x) to which (4.6) is referred. 
23It may be noted that  M,-1 = 0 follows from A:-I =A,-I -Ma-1 since A,,-I = 0 

and the  Ar and Mi are zero or positive. 
24 1oc. ci t . ,  Ann. (I), p. 690. If Conditions I:, 1112, IVf are satisfied, i t  follows that  

Conditions I-V in Ann. (1) are likewise satisfied; Condition I, Ann. (1) is equivalent to  
Condition LUX; Condition 11, Ann. (1) follows from the fact tha t  (9.2) is regular; Con-
dition 111 and fir,Ann. (1) follow from Condition I V I ;  Condition V, Ann. (1) is equivalent 
to Condition Id.  
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denote functions o f  the variables xm+l, . . . , x4 analytic in the neighborhood 
of  xi = pi such t7aat yt, ( p )  = (B&)~ for m = 1 ,  2 .  T h e  consfants 
(gag)p= (gga)p and (BI*,), where m = 1,  2, 4 are to be chosen (1) such that 
they satiyfy equations (7 b), (2) such that the determinant 1 (gag), 1 does not 
vanish, and (3) such that quanf i ty  (21) does not vanish. T h e n  there exists 
one and only one fundamental metric tensor wi th  components g (= gpa) 
e m h  function gag (x) being analytic in the neighborhood of xi =pa ,  which 
constitutes a set o f  integrals of the system (7 b) and which is  (1) such that 

a ,gag (p) = and B I * ~  (p) = (B;),, where 1 = 1 ,  . . 10 and (2) sztch tlzaf 

5 10. Existence Theorems in Normal Coardinates. 
It is not possible to choose a priori some of the components r,&arbi-

trarily as functions of a part of the variables independently of the arbitrary 
functions corresponding to the components A& and at  the same time to 
characterize the coordinates as normal coordinates yi. However the dis- 
cussion of this problem will utilize many former results. Let i t  suffice to 
say that in constructing the power series expansions for the components A& 
by the use of equations (4.6) that the initial conditions 0 a t  yi = 0 
are to be imposed, also that the derivatives aI''klax2 at  y = 0 be equal 
to A~M(O) and that the higher derivatives are to be determined by equations 
of the type M(2.10).86 If the system composed of (4.6) and (4.7) is com- 
pletely integrable the power series expansions for the A& and for the 
components ripwill be determined uniquely for a suitable assignment of 
arbitrary data. The r series 

(10.1) r:, = ( ~ h ~ , ) ,J+ . . . 
will be shown to converge in 8 11. 
EXISTENCE Let  (4.6) be which satis& Cm-THEOREM. a regular system 

ditions IAand IIA. Also let 

yik (yk+', . * yn) [ o k f  n - l ]2 = 1  . . . , A :  

where the indices i, k have the same range of values as the indices o f  the 
components A; (k # n ) ,  denote a ficnction of the variables yk+', . . ., yn 
analytic in the neighborhood of yi = 0 such that yik(0) = (A;),, for all 

26 Cf. Jour. p. 246. 
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calztes of the indices Jor which the Y i k  are defined. TJzen there exists one, 
nnd only one, set o f  components I'ip (= T,&) o f  a f j n e  connection given by 
the convwgent power series ( lO. l ) ,  zuhich constitute a set o f  integrals o f  the 
systern (4.6) and which i s  ( I )  szcch tlzat ~ i * ,(0) = (A&),where i = 1 ,  . . ., An* 
and (2) such that 

Similarly for the metric case equations (4.9) are to be used in calculating 
the coefficients of t,he power series expansions of the components BI*,. 
Throughout this process the initial values g,p(O) = gp.(O) = (gap); and 
a g l l j / a  yY =0 a t  =0 are to be imposed; also let a'gopla y~ a y 8 a t  y =0 
be equal to (gap,  ys)o and determine the higher derivatives by equations of 
the type M(2.16). If the system composed of equations (4.9), (4.7),and 
(4.10) is completely integrable a unique power series 

is determined and this will be shown to converge in 5 11. 
EXISTENCE Le t  (4.9) be regzclar system zuhich satisfies Con- THEOREM. a 

ditions IGand 11~.Abo lpf 

zohwe the indzces 1 ,  k huce the sume range o f  ~ a l u e s  as fhe indices o f  tlze 
components B&(k  $1 n ), denote a function of the variables yh+l, . . .,yn analytic 
in the neiighborhood of y2 -- 0 suclz that  y,k ( 0 )  = (B$)ofor all valtles o f  
the indices fo r  whicn the yzk are defined. T h e n  there exists one, and only 
one set o f  components gap (= gga) of a fundamental  metric tenso?; given by 
tlze convergent power series (10.2) which constitutes a set of integrals of the 
system o f  equatzons (4.9) and which i s  ( 1 )  such that  B,*,(O) = (B,*,),-,tulzere 
I = 1 .  . . ., B: and ( 2 )  such tlzat 

For  spaces of distant parallelism a corresponding existence theorem can 
be stated where the integrals hh (z) will constitute a set of fundamental 
vectors in a system of local coordinates ei. In calculating the coefficients of 
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the power series expansions for the invariants hj,k with t,he aid of equations 
(5.4) the limited conditions hb;= dj a t z" 0 and ahbl/azk= ( h $ ,  a t  
zi= 0 are to be imposed; the higher derivatives of the components Izij i  are 
to be determined by equations of the type Proc. Note I1 (4.2). If the system 
of equations composed of (5.4) and (5.5) is completely integrable, the power 
series expansions for the invariants l$,k and also the h[jl series of the form 

will be unique; the convergence of this latter series will be proved in 5 11. 
EXISTENCETHEOREM.Let (5.4) be a re,gular system which satisjes Con-

ditions I H  and IIH. Also let 

The extension to functional systems can be made in accordance with the 
discussion in 5 7.  

where the indicm 1, m have the same range of .~;aluesas the indices of !lie 
components K; ( m  + n), denote a function of the variables em+ '. . a ,  zgl 
analytic in the neighborhood of za =0 ,  such that yl, (0)= (K&)oJOT all 
values of the indices for which the yln5 are d~j.fi?zed.Then there exists one, 
and only one, set of components 12;,! of the fundanzental 2-ecto~sgiven by the 
convergent power series (10.3) which constitute a set of int~gralsof the 
system (5.4) and which is (1)such that K$ (0)= ( K $ ) o  ~ c h ~ . ei = 1. . . ., K,: 
nnd (2) sl~chthat 

g 11. Convergence Proofs. 

Kl;: = ylo (zl,  . . .,zn) 
[ i= 1 ,  . . . ,  KO*] 

The equations (4.6) of the present theory have exactly the same form as 
the system of equations (2.7) Ann. (I) except that in (4.6) there may be 
a group of unknowns having derivatives with respect to (n -1)  of the y's 
appearing in the left members of the system, which was not the case in 
the former treatment. It is easily seen however that this greater generality 
will necessitate no change in the convergence proof of the r series. Hence 
the reader is referred to the former treatment for a. proof of the con-
vergence of the series (10.1). Similar remarks apply to convergence of the 
expansions (10.2) but the convergence of the series (10.3) remains to be 
demoxtrated. 

K* -tn - ylm (zm+l. . . . , zrL) 
m =  1, . . . ,  n - 1  

[i = 

1, , K,* 
0 , .  . ., ~ n & =0 
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Consider the system of partial differential equations. 

in which ah, b, and p are positive constants for which more exact values 
will be fixed later. The positive constants D and W are to be chosen 
so that 

where a and b are the least of the ah and bm respectively. The indices 
p, q ,  I, m in (11.1) assume all possible values as indices of the independent 
components K& and all other indices have values from 1 to n.  All 
summations in (11.1) represent the sum of all terms obtainable from the 
representative term by giving different values to the indices involved. The 
quantity s in (1l.la) is a positive constant less than unity and is to be 
considered as the sum of a positive constants v l  + .$v,. The integer a 

in the sum v l +  f ~a for a particular equation (1l.la) in which the 
values of the indices in its left member are equal to the corresponding 
indices in the left member of some equation (5.4), is to be equal to the 
number of different derivatives a lax" in the right member of the 
said equation of the system (5.4). The integer a for an equation (1l.la) 
which does not correspond to an equation of (5.4) can be taken to have 
the value unity. The function F(2) in (1l.la) is defined by the equation 

where the positive constants 9 and ak are to be chosen so that the 
expression 

is dominant for each derivative 8 yzm18 zh (h>m) of the K: functions 
y l m  (I = 1, . . . , Kz). Finally 

where 2 denotes a summation over all possible values of the indices 
p, q,  i, j. The positive constant Q is to be chosen later. Equations (11.1) 
constitute a completely integrable system of total differential equations. 
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Hence according to the well known theorem for the existence of solutions 
of systems of total differential equations, there exists a unique solution 
~ 1 * ,(z), $jj(z) of the system (11.1) such that these integrals assume an 
arbitrary set of initial values (R&)~ and (Q;)~. We shall choose the initial 
values so that the inequalities 
(11.4) (@;)o 2$ 
and 
(11.5) ( R f lo 2 1 W & ) o  1 

are satisfied, where ($j;), 7Q: (0) and ( J P ~ ) ,  =SPh(0). A11 derivatives 
at  zi = 0 of the integrals Rt, and @$ are then positive since any derivative 
of one of the sets of terms in the right member of (11.1) evaluated at 
ai = 0 is a polynomial composed entirely of positive terms." In  con-
sequence of the dominant property of the function F(z) and the first 
inequality of (11.2) it follows from (1l.la) t'hat 

where h , ,  . . ., h, > rn and the notation R&,hl...h8 denotes the ordinary 
derivative of the function R&. 

Since the right members of the equations (1l.la) are all equal, the equations 

are satisfied for all values of the indices involved. I t  is therefore possible 
to write those equations of (1l.la) which have left members with indices 
corresponding to the indices of some left member of (5.4) in the form 

where the quantity v assumes values vl t,o va SO that the first summation 
in these equations denotes a sum of or terms in which the derivatives are 
taken to correspond to derivatives in the first summation in the right 
member of the corresponding equation (5.4). The reader is referred to 
the former discussion for the proof of the followingz7 

26 Meray and Riquier, loc. cit. p. 48. 

27 loc. cit. Ann. (I),p. 698. 
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LEMMA.Given.any two positive constants P and Q i t  is possible to assign 
values, each of which z i  greater than P to the constants al . . . . an and 
bo, . bn such that each of tlze coefjcients a ,  

of the dwivatives in the right member of (11.7) will be greater than Q. 
Choose the positive constants P, Q and s so that the expression 

dominates each derivative 8 ylmIaz'L (h >m) of the K,: functions ylm 

(1 = 1 ,  K,*) and so that 

dominates each of the coefficients (hh, K&) in (5.4) and also the terms 
in (5.4) containing no derivatives. Then choose the positive constants 
(4,. ., an and boy . . ., b, so that each is greater than P and so that the 
coefficients (11.8) are each greater than Q; also choose the positive 
constant e 2 r. Then the coefficients of the derivatives in the right 
members of the equations (11.7) will dominate the corresponding coefficients 
in equations (5.4). If the positive constant p is chosen such that p 2B Q I a  

then the quantities p E  @(R*,@) will dominate the terms in the right 
bm 


members of (5.4) containing no derivatives; the quantity a is used to 
denote the least of the a's and B the greatest of b's. ~ e n c ei t  follows 
from (11.6) and (11.7) that 

(11.9) (0) 2 K & / ~ ,I (0) I ,  

where hl 2m. If the indices i, j ,  k in (1l.lb) determine an independent 
compo~lent hj,k, then we have from (11.2), (11.5), and the fact that all 
components Q;4 appear in the right member of each equation (11.1 bj  that 

The inequality holds also for values of the indices i,j ,  k which determine 
a dependent component hj,k since, in that case, hj,k is merely the negative 
of an independent component. In order to extend (11.10) to higher 
derivatives we shall assume the inequalities 



33 PARTIAL DIFFERENTIAL EQUATIONS. 


for s <r (r  2 2). In calculating derivatives of second or higher order of 
the components K ; ~from equations (5.4), we use a process of differentiating 
equations (5.4) and eliminating derivatives from the right members of the 
resulting equations, which also appear on the left of equations (5.4) or the 
equations obtained by differentiating (5.4). Due to the form of the left 
members of (5.4) this elimination merely involves the substitution for 
a light hand derivative of its equivalent from some other equation2s and 
hence it is easily seen by comparing the two systenls of equations, one 
arising from (5.4) and the other from (ll .?),  that the inequalities 

hold where s = 1 ,  . . , r ;  kl 2m ;  and hi, for i >  1, is arbitrary. Com-
bining (11.12) and (11.6) i t  follows that (11.12) is satisfied for all values 
of the indices involved. Now differentiate equations (5.5) (r- 1) times and 
evaluate a t  the point zi= 0 ;  we obtain a system of the form 

If we compare these equations with the equations which can be obtained 
by differentiating (1l.lb) i t  is seen, due to the inequalities (11.2), (11.4j, 
(11.5), (11.11) and (11.12), that  

for all values of the indices involved, or interchanging indices 

where pql . . qr represents any permutation of the indices j k ,  . . . li,.. Add 
together the ( i . + 1) inequalities obtained from (1 1.14) by allowing the 
indices p g ,  . . to assume the cyclical permutations of jk,, . . ., k,.. The 
inequalities 

(11.15) (?.+l)@jikl. kr(0) 2 k,(O)]// ( ~ + l ) h ~ , ~ , . . k , ( O ) - S [ h ~ , i c , .  

result and hence (11.11) holds for s = r since the summation S in the 
right member of (11.15) vanishes." This recurrence process enables one 
to say that (11.1 1) and (1 1.12) are satisfied for s = 1 ,  2 ,  . . . Hence the 
power series expansions for the functions 9;dominate the corresponding hij 
series with the result that the latter converge. 

28 loc. cit. Jour. (6.5). 

29 1 0 ~ .r i f .  Proc. Note I (4.9). 
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5 12. Definitions of Characteristic Surfaces. 
The point of departure in our study of characteristic surfaces will be 

the Existence Theorem in 5 6 for the system (2.1). The regular form (2.8)) 
which is equivalent to (2.1), shows that if the quantities yio and ayio/ax1 
are assigned over the surface x1 =p1 and the remaining functions yik are 
assigned as indicated in the statement of the existence theorem, the 
solution 'Uik(x) is uniquely determined over x1=p'. In  a similar manner 
if the functions 

are assigned over the n -a dimensional surface x1 = pl, . . ., xu = pf f  
and the remaining functions yilc are assigned as indicated in the statement 
of the existence theorem, the solution vik(x) is uniquely determined over 
x' =p',  . . ., xa =pa. These remarks apply equally well to a system of 
the invariantive type. 

Let  vk (x) denote a solution of (2.1) and consider the system of equations 

( i  = 1 ,  .,L), 

where a,*," and c,* are functions of the variables z', . .,xn obtained by sub- 
stituting the integral vk (x)into the quantities nYk (x, v) and ci (x, v) respect- 
ively. A surface Cn-1having x1 = 0 as its equation will be called a n  n -1 
dimazsional characte~istic sl t~fnce for an integral vk (x) of the system (2.1) 
zf i t  i s  inzpossible to Jind a coordinate system (Z)  de8ned by the trans-
fornzatiorl 
(12.3) = ~ 1 , =f~ ( ~ 1 ,. . ., z n )  (i= 2,  ., n) 

suclz that (12.2) can be solced for L1derivatives o f  the set 8 vklaZ' at a point P 
on  the surface I?,-,.If the coefficients a$ are functions of xu alone, the 
characteristic surfaces Cn-Iare determined independently of the integrals vk .  

An analogous definition and remark applies to the tensor equations (3.1); 
the same is true of the invariantive systems composed (a) of the equations 
(4.3)) (4.5) and (4.7) for the affine case, (b) of the equations (4.4), (4.8), 
(4.10) and (4.11) for the metric case, and (c) of the equations (5.2), (5.3j 
and (5.5) for the vector case. It is to be noted, however, that under 
case (a) the equations (4.3) and (4.5), under case (b) the equations (4.4) 
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and (4.8), and under case (c) the equations (5.2) and (5.3) are alone of 
significance in the determination of the characteristic surfaces.30 

It follows that if the data is assigned over a characteristic surface Cn-I 
of the system (2.1) or (3.1) the general existence theorem will fail to apply. 

If the equation of a characteristic surface Cn-1 of the system (2.1) has 
the general form 0 (x', . . ., xn) = 0 we can, by a transformation of 
co~rd ina t e s~ '  

- -. 
(12.4) X I  = . . .,zn), It.$ = (i = 2, - . -,92) 
reduce the equation of C,-1 to the form 2' = O with respect to the (Z)co 
Ordinate system. In  this latter system of coijrdinates 2" the equations (2.1) 
become 

(12.5) (i = 1, . ., L),
, 9 = l  k=l 

where 
- a ZB 

-(12.6) ,Bzk = zk a xa . 
The fact that Z'= 0 is a characteristic surface implies that 

over Z1=0 ,  where the quantities Wi are the determinants of order Llin 
the matrix 

in which the iT$; are obtained from the quantities azy by the transformation 
(12.6). The property (12.7) will persist under coordinate transformations. 
In fact we have 

-
1 -(12.9) Uik - a" 

30 Several definitions of a characteristic surface of a systein of equations have appeared 
in the literature. Cf. Cartan, loc. cif.,  (3) ; also N. M. Gunther, On fhe theo, y of cl~nructeristicc 
of sy.utenzs of equations raithpartial  devivatices. St. Petersburg (1913). The above definition 
has the advantage that i t  applies to invariantive systems as nrell as systems in which the 
unknowns are scalars. 

3'  The statement that equations (12.4) define a transformation of coordinates iinplies that 
the lacobian determinant of these equations does not vanish identically, i. e. that 8 @/as1 
is not identically zero. If such were the case we could, by a relettering of the vhriablcs (x), 
cause the derivative a @/ax1to be dilferent from zero; then the system (2.1) or (3.1) coultl 
be referred to the new .;et of variabies. 
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since the a$ transform as the components of a contravariant vector in 
the index a and the derivatives QJ, of the function QJ are the components 
of a covariant vector. Hence the corresponding terms in (12.8) and the 
transformed matrix 

a"" QJ 
11 a . a;",; QJ, 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 
a i r  QJa . . C i , ~ t ~*" (Da 

are equal a t  any point P in space; the determinants TVi (i = 1, . . ., r) in 
the transformed matrix (12.10) therefore vanish over QJ = 0 .  

Conversely suppose we have a surface @ =0 such that W,=0, . . , I fj =0 
over QJ = 0 .  Make the transformation (12.4). Then because W,= 0 ,  . . ., 
W,=0 over Z1= 0 ,  i t  is impossible to solve the system (12.5) for L, 
derivatives a v k l a  Z1. Under transformations of the type (12.3) namely 

we have from (12.6) that ailk= i i j k ;  hence no coordinate system (Z)can 
be found in which the system (2.1) can be solved for L1 derivatives i;i vda i?' 
a t  a point P on 2' = 0,  i. e. QJ = 0 is an (n -1)-dimensional charac- 
teristic surface C,,-l. In other words a necessary and st1 fjcient condition 
for the surface QJ = 0 to be a n  (n -1)-dimensional charact~ristic surface Cn-l 
for a n  integral vk(x) of the system (2.1) is that all the determinunts 
l.trZ(i = 1, . ., r) of order L1 that can be formed from the matrix (12.10) 
z9anish ocer QJ = 0 .  

The above discussion concerning the system (2.1) and its characteristic 
surface Cn-1 is likewise applicable to the equations (5.2) and (5.3) of the 
vector invariantive system composed of (5.2), (5.3) and (5.5) and in fact 
a corresponding necessary and sufficient condition for the surface QJ = 0 
to be a characteristic surface Cn-l of the vector invariantive system (5.2), 
(5.3) and (5.5) can be stated. It is obvious that  the quantities Wi whose 
vanishing constitutes the condition for the surface QJ = 0 to be a charac- 
teristic surface C,,-1 of the systeni (2.1) are differential parameters since 
in fact each of the elements of the matrix (12.10) is a differential para- 
meter; an analogous remark applies to the vector invariantive system.3e 

32The observation of this fact is facilitated by noting that (5.2) has the particular form 

+ * = o  
in which the coefficients (h:,,) h? are linear and homogeneous in the components h? and 
the index a is to be summed as indicated; hence the coefficients (I&:,,) h? have the contravariant 
vector transformation in the index a and so correspond exactly to the coefficients nz in (2.1). 
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d .surface Cn-rrJ~az;ingz1= 0 ,  . . . , z" = 0 as its egztatious tcill be called 
an (n-a)-dimensional characteristic surfuce of type ,6 where r3 = 1 ,  ., u 
for an intqgral vk of the systewz (2.1) if it  is impossible to fiut'l n coiirdixnte 
system (2) defined by the tran.yformation 

(12.12) xi=zi ( i= 1 ,  ..., a ) ;  x j =  f j ( Z 1 ,  ..., Zn) ( + j =  u $ l ,  . . .?71) 

such that (12.2) can be solved for 
a c/;

L, derivatives: --a s1 

a I ' ~
L p 1  derivatives : xp-, 

a vk
Lp derivatives: ---a ZP 

but possible to find a coordinate system ( Z )  clefined by the aboce transformation 
sucl~ that (12.2) can be solved for 

a ck
L, derivatives: -a z1 

a vk
Lp-1 derivatives: a ZP-I 


at a point P on tlze surface Cn-a. 

The characteristic surfaces (7fL-a of the tensor equations (3.1) can be 

defined in a similar manner by replacing the above derivatives by the 
derivatives 

a T a Ta,
. " ,  

and the equations (12.2) by the corresponding system determined by (3.1). 
When the data is assigned over an (n- a)-dimensional characteristic 
surface Cn-a the general existence theorem for the system (2.1) or (3.1) 
will fail to apply. Analogous definiti~ns and remarks are to be understood 
to apply to the affine, metric and vector invariantive systems. 

Now consider the matrix 
a: aTzt a?: . . a,,, 

(12.13) I(:1 : :)---(:1 :a;: . . . *a
I .  a;,: a g  . .  aLw 

which for brevity will be denoted by llagll. W e  observe that the matrix 
liapil is composed of the a matrices in the parentheses in (12.13); the 
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first of these matrices in parenthesis will be referred to as the j r s t  sub- 
matrix of (12.13), the second as the second sub-matrix, etc. Let us denote 
by 3'~any determinant of (12.13) of order 

where b = 1 ,  . ., a that can be formed by selecting L, columns of the 
first sub-matrix, L2 columns of the second sub-matrix, ., Lp columns of 
the bth sub-matrix of (12.13); particular determinants Z'p will be denoted 
by ZP,, SF,,etc. The condition that the equations x1 = 0 ,  . . . , x" -- 0 
shall define an (n -a)-dimensional characteristic surface CG-a of type ,8 
for the system (2.1) is that there exists a determinant 5p-1  which does 
not vanish but that all determinants Zp shall vanish over this surface. 
More generally a necessary and slifjn'ent condition that ai= 0 where 
i = 1, . a ,  a should deJine an  (n -a)-dimensional characteristic surface 

I


C,,-a of type b is that there exists a determinant zp -1  in the matrix 
Ijai7 which does not vanish where @$ denotes the partial derivatives of 

(p = , I ,  . ., a) while all determinants Z',!z in this matrix vanish over the 
surface 0 .  This extends the previous condition for 1 . ~-1dimensional 
characteristic surfaces; an analogous condition can evidently be stated for 
the vector invariantive system composed of (5.2), (5.3), and (5.5). 

Let us now consider an affine invariantive system (4.3), (4.5) and (4.7) 
or a metric invariantive system (4.4), (4.8), (4.10) and (4.11); let us in fact 
represent either the equations (4.3) and (4.5) or the equations (4.4) and 
(4.8) by writing 

where the coefficients I are functions of the components A&,$ in the affine 
case and functions of the components gap and Yap,y,9 in the metric case; 
the quantities J b  where b = 1 ,  . ., Q are independent A&$ or gap,y$ 

in the affine or metric cases r e~pec t ive ly .~~  
If z1= 0 ,  . . . , xa = 0 is an n -a dimensional characteristic sur-

face Cn-a of type ,8 where b = 1, . . ., a of an affine or metric invariantive 
system, this implies that the determinants E,g of order Ap in the matrix 

For the values of & in the affine and metric case, see loc. cit . ,  (11) p. 202 and p. 660. 
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iu which W represents the number of equations (12.14), vanish over the 
surface x1 = 0 ,  . . ., xa = 0 for an integral of the system (12.14) but 
that there exists a determinant Z p 1  which does not vanish over this 
surface. Now let U l ,  . . ., Um denote a set of irreducible factors of the 
determinants Ep in (12.15) such that the vanishing of the U l ,  . . ., Um 
implies the vanishing of all determinants Sp. Make an arbitrary trans-
formation of coordinates: xi = Oi (2)and replace each coniponent appearing 
in the U k  by its value in accordance with the tensor law of transformation. 
Thus the components A;,$, gap,  gap l y s  will be replaced by expressions 
which are linear and homogeneous in yap and Tap,,$ respectively 
and rational in the derivatives 8Oi/aZk  of the coordinate t ransformat io~~.~~ 
Hence we shall have 

-a aol a mn
Affine case : U k  (.A,&,d) = 4 j l L  dpld;=,. . . , -- y G ) ,  

ax 

a O t

Metric case : L$L(gap ;  gap. ,$) = 4 j k  p a p  i Tap,yb; azl' 

I t  is obvious from their method of formations that the functions 4 j k  are 
differential parameters. If the LTk vanish over the surface x1=0 ,  . . . ,xa =0 ,  
the parameters z l r ,  will vanish over the surface O L= 0 ,  . ., rDa = 0 
and conversely. Hence, a necessary and szgjcient condition that the eqziations 
( D l  = 0 ,  . . a ,  Oa = 0 d ~ J n e  an  n- or dimensional characteristic surface 
of type B for a n  integral rFr or gap of an  a f j n e  or metric invccriantive 
system respectively, is that ( 1 )  there exists n diferentinl parameter ZZj corres-
ponding to a determinant q - 1  in the matrix (12.15) 1~3lziclb does not vanish 
over 0' = 0 ,  - , ., rDa = 0 and (2)  that all the d i f~rent in l  parameters 4iL 
vanislb over the above surface. I t  should be observed that in stating the 
above condition we suppose that the jacobian determinant of the functions 
01,. ., rDn occurring in the differential parameters { P k ,  does not vanish 
over the surface ( D l  = 0 ,  . . ., (Da = 0 ;  also it can be supposed that 
the functions O z ,  etc. with which we are concerned in the above necessary 
and sufficient condition are referred to coordinates ( x )  instead of the co-
ordinates (Z )  as originally considered. 

g 13. Differential E q u a t i o n s  o f  the Character is t ic  Surfaces .  
The conditions obtained by equating to zero the differential parameters 

Ep formed from the matrix / I  a:;@; 1 1 ,  namely 

34 The denominators of these rational expressions in the derivatives 8O i / aZk will be 
the jacobian determinant of the above coordinate transformation and hence will not vanish 
identically. 
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over 0' = 0 ,  . . ., CPa = 0 constitute a system of first order partial differ- 
ential equations for the determination of the a independent functions @j.  When 
the functions CPj  are so determined, the equations 0' =0 ,  . ., CPa = 0 
define an n-or dimensional characteristic surface CtL-, of type rB for the 
integrals vk(x)  of the system (2.1) provided that there exists an expression 
I


zp-I which does not vanish over the above surface. Analogous remarks 
apply to the case of the vector invariantive system composed of (5.2), 
(5.3), and (5.5). Similarly the equations of type 

over CP1 = 0, . ., CPa = 0 determine the n -or dimensional character- 
istic surfaces Cn-, of type ,d of the affine and metric invariantive systems; 
in case the above equations (13.2) do not possess the required solution, 
the surfaces C,t-, will fail to exist. 

The above characteristic surfaces C,t-rrwill have a unique determination 
in space if and only if the coefficients nyk in (2.1) or the coefficients Ifcin 
(12.13) are independent of the integrals of the corresponding systems. 

If the functions CPj(x) satisfy the partial differential equations (13.1) 
over the entire x-space, then the equations 

in which the c's are arbitrary constants within suitable limits, define 
a family of characteristic surfaces Cn-, of type ,d. A similar remark can 
be made for the equations (13.2). 

g 14. Sets of Monomials. 
The theory of monomials here presented contains as a special case the 

theory given by Janet6 in an exposition of Riquier's work. Only proper- 
ties of monomials will be considered which are essential in the discussion 
of existence theorems yet to be treated. 

By a monomial is meant the product x: . . x: in which the exponents 
al, . . ., an are positive integers or zero.3b As the basis of the following 
discussion we shall consider a finite set (M) of monomials; the monomials 
of (M)  will be supposed to be distinct. Any particular monomial of the 
set (M)  will be denoted by M, M, etc. and an analogous notation will 
be used for the mononlials of other sets which will be introduced in the 
following discussion. 

35 Throughout this section and also throughout $8 15-18 the notation x, , .. . ,x,,in-
volving subscripts will be used for the coordinates. 
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The above set ( M )  will be divided into two mutually exclusive sets 
(L) and (K). The following definitions apply to the sets (L) and (K) 
respectively.

-1 

(a) Mtcltiple. The monomial Z: xyl . . .x? is a multiple of E :x!' . 28; if 

none of the differences 
(14.1) 	 (al-bl), (an-b , )a * . ,  

is negative. 
(b) Multiplier. The variable xl is a multiplier of if the degree of x1 

in Z is equal to the maximum of the degrees of xl in monomials of (2M). 
Similarly xi (i= 2 ,  . . .,n) is a multiplier of 

if si is equal to the maximum of all degrees of the variable xi in all 
monomials of ( M )  having degrees in x,-, . . .,xi-1 equal respectively to 
the particular values a,, . . ., oi-1 in L. 

( c )  Nan-multiplier. If xi is not a multiplier of a monomial Z it will be 
called a non-multiplier of Z. 

-1 

Let a have any one of the values 0,1, . ., n- 1 ;  when the value of 

a has been selected it will be held fixed throughout the discussion of this 
section. 
(a) ~Mzcltiple with reqect to a .  The monomial K: xp - x? is a multiple 

with respect to a of K:x: . xbnif the first a of the differences (14.1)
? 

are zero and none of the remaining is negative. 
(b) Multiplier witlz respect to a .  The variable xi (i = a +1 ,  . n;  a 2 1)a ,  

is a multiplier with respect to a of 

K:  x I 1  . . . 
Xi- 1 

x7 . . . X>' i-1 

if zi is equal to the maximum of all degrees of the variable xi in all 
monomials of (111)having degrees in x l ,- . . ., xi-1 equal respectively 
to the particular values z l ,  . . .,~ i - ~  If 0, the multipliers in K. a = 

of K are determined as though this monomial were a monomial z. 
(c) Non-multiplier witlz respect to a .  If xi ( i  = a +1, . ., r,) is not a 

multiplier of a monomial K it will be called a non-multiplier of K. 
(d) 	Varinblesx, ,. . .,X U .  The variables xl ,. . . ,xu will be neither multipliers 

nor non-multipliers with respect to a of any monomial K. 
For brevity in the following discussion the above phrase "with respect 

to a" will be omitted since it is to be understood that the value of a, 

when once selected is to be held fixed throughout this section. It should 
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be noted that if a =0, the above definitions regarding the set (K) become 
identical with the corresponding definitions for the set (L) ,  

The following example will serve to  illustrate the above definitions. Let a = 2. 

-1 


IVe shall now define n S1 different sets of monomials (N,), (N,) ,...,(N , ) ,  
(Nk) which together will comprise a set (N) of monomials. The  set ( N )  
will be m i d  to be complementary to t l ~ e  set ($1).Corresponding to the 
previous notation we will denote a monomial of (N)  by #, 8,etc., 
a monomial of (N,) will be denoted by g,,Fl, etc. etc. 

(a) Tlze set (Nl) is composed of all monomials 4where B is a positive 
integer or zero which is less than the maximum of the exponents of XI 

in (M) and which does not appear among the exponents of xl in (M). 
(b) T h e  set (Ni) where i = 2, .,n is composed of all monon~ials that 

can be formed from 
. . . - 1  Bxi-1 xi 

by taking G I ,  . . , 6i-I as  any system of exponents of x,, . xi-1a ,  

respectively of a nionomial of (M) and B as a positive integer or zero 
such that (1) B is less than the maximum exponent of xi of monomials 
of (M) of the form 

x: . . . x'+ . . . 
2-1 


and (2) B does not appear among the exponents of xi in these monomials 
of ( M ) .  

(c) The  set (Nk). Consider a monomial E: x: . . x? which would have 
a t  least one of the variables x,,. ., x g  as a multiplier if all of the 
monomials of (M) were assumed to belong to the set (L). Let 
x,, , . x, where vi <= a and a = 1, . . ., n -1 be the hypothetical a ,  

multipliers of this monomial K and form the r (5a) monomials 

The totality of these latter monomials constitutes the set (Nk). For  
a = 0, the set (Nk) is not defined. 
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(d) ,Wz~ltipliers of gl.The variables x2,. . ., xn are multipliers for any 
monomial Nl. 

(e) ,l.lzltiyliers of zuhwe i =2 ,  ...,n. The multipliers of a monomial i% 
having the quantities 6, . . 6i-1 as exponents of the variables X I ,  .,xi-I 
respectively are ( 1 )  the variables x ~ + I ,. . ., x, and (2) those variables 
of the set x,, . . .,ri-I which would be multipliers of a monomial of (31) 
of the form 

Z: . . . Xp'-' . . . 
1-1 


if all the monomials of (M) were considered to belong to the set (L). 
if) JZultipliers of Sk. The multipliers of any monomial 

are the multipliers of the corresponding monolnial K: cc? . . ~t': when 
all moi~omials of (M) are considered to belong to the set (L) with 
the exception of xvl , . . .,xvi-;. 

Let us find the camplemelitary set to the set (M) treated in the above example. 

Complementary sets 

(XI) 1 

I 

The class (B)of n monomial M is the set of all monorniuls z~~hichcurt 
be obtained by forrnin.9 the product of M and a n  arbi tra~y monomial in its 
multipliers. I t  is to be observed that the class ((@)as so defined, contains 
the monomial M in case M possesses a multiplier and that in this case 
the class (a)is composed of infinitely many monomials. I f  M possesses 
no multipliers i t  will be assumed that (@) consists of the single mono-
mial M. Analogous definitions and remarks apply to the classes (%) where 
i = 1, . . . ,n and (gk)corresponding to a monomial and Nk respectively. 
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We will say that a (%,) (%k)  arises frommonomial of the class (a),or 
the monomial M, fi or hTk as basis. TO designate a particular monomial 
of the class (%) we will use the symbol $$I,The set of all classes (a)etc. 
will be denoted by (Dl);similarly the set of all classes ('32,) and ('JZk) will 
be denoted by (%). 

THEOREM A?Lnrhi tr~iry  monon~ial  P if^ x l ,  . ., x,,belongs to one and I. 
only one class (%2) OY (%). 

In proving this theorem we shall assume a $1 0 ;  this is always permissable 
since by a change of notation a set ( M )  for which a = 0 can be replaced 
by a set (&) for which the set (2) In case n =is vacuous. 1 the theorem 
follows immediately: all monomials in (M) then belong to the set (L) and 
any monomial P, i. e. x f  either belongs to ( M )  or (N)or is a multiple 
of where b(20) is the highest power of x ,  in ( M ) .  Hence we shall 
assume the theorem for n-1 variables and prove i t  for n variables 
(n2 2). Let el <e2< . . <em be the exponents of xl in ( M )  and denote 
by 1(21) the degree of xl in P. The induction proof will be divided 
into the following cases. 

Case 1. I i s  less f J ~ a n  em and d i f e ren t  f rom ei ( i <  m).  For this case 
P cannot belong to a class (5) since x1 is a multiplier only for those 
monomials of ( L )  for which the degree in x1 is en&;P cannot belong to 
a class (Iff) since xl is not a nlultiplier of any monomial K;P cannot 
belong to a class ( ( n l c )  since xl is a multiplier only for those monomials 
of the set (NK)for which the degree in x, is em; likewise P cannot belong 
to a class (Bi)where i = 2, . . ., n. Finally i t  is evident that P belongs 
to one and only one class ($XI). 

Case 2. I i s  equal to eh for  h < m. Here P can obviously arise only 
from some monomial M A  or H A  in (M) or (N) respectively for which xl 
has the exponent I. Dividing a monomial M A  or NAby x! let us denote 
the resulting monomial in the variables x2, . . ., x, by M * ~or re-
spectively. The monomials L * ~ and K*A belong to the sets ( L * ~ )and 
( K * ~ )of ( M * ~ )for which a* = a - 1 will be assumed. If a* = 0,  
( M * ~ )will be considered as a set (M) for which (k)is vacuous in 
accordance with the previous procedure; however the designations Z*'. 
and K * ~will continue to be employed as indicative of the origin of these 
monomials from monomials zi and K A  respectively. Then observe that 
the monomials #*A are complementary to the monomials of the set ( M * ~ ) ;  
also that the multipliers of a monomial M * ~in the set (M*l) are the 
same as the multipliers of the corresponding monomial d?" in (M); like-
wise that the multipliers of a monomial N*<n the set (N*l )  are the 
same as the multipliers of the corresponding monomial N q n  the set (N). 
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Now the monomial P ix ;  in the variables x,, ., x, arises from one and 
only one monomial M * ~  or @*l as basis since the above theorem is 
assumed for 7%- 1 variables; hence P arises from the corresponding 
monomial ~ b 2\.'Lras basis, i. e. P belongs to the class ( a R )  or 
If P belongs to a class (ai)or (@) the monomial PIX; belongs to the 
corresponding class (@I*"or ((cR*l) respectively; hence if P belonged to 
more than one class (@IR) or ( a A )  the monomial would belong to 
more than one class or (%*" contrary to hypothesis. 

Case 3. I i s  epzral to or greater than em. In  this case the monomial 
Y can arise only from a monomial M or il' in which the exponent of x, 
is em or em+l .  Just  as in Case 2 let us consider the sets (M*em) and 
(N*em) obtained by dividing the monomials Me" and pmby x;~nrespectively. 
Then observe that the multipliers of the monomial in the setM * ~ ~  
(M*em)are the same as those for the corresponding monomial Memin (M) 
with the exception of x, if Memis a monomial z e m ;  for the monomial Kern 
the variable x, does not occur as a multiplier. Also the monomials N*e8n 
are complementary to the monomials of the set (M*em); the multipliers of 
a monoinial i2'*em in the set (N*em) are the same as those for the correspond- 
ing Nemin the set (N) with the exception of XI. Now the monomial 
PIX! arises from one and only one monomial M*~?" or p*em as basis since 
the theorem is assumed for ?a-1 variables. If Pi4 arises from a mo-
nomial Z*em or Ntem,the lnonomial P can arise from the corresponding 
monomial Emor 82.If the monomial arises from a monomial K * ~ ~  
P arises from the corresponding Kernif I = em and from the moiiomial 
82'' as basis if I > em; if PIX! arises from a monomial 3gem,the 
monomial P arises from the corresponding monomial N> if I = em and 
from the monomial 32" as basis if I > em. Conversely suppose P be-
longs to any two of the classes (Bem), (%>), (Rem), ('%2), (%>+') with the 

-e +1exception of two classes (Rem), (@;), (%g ) of the monomials Kern,a>, 
and N2" respectively where 32 and gz+lcorrespond to the monomial 
Pm,then PIX; belongs to two classes and (a*""), contrary to 
hypothesis. It is easily seen that P cannot belong to two of the excluded 
classes (Pm) ,  (B2)and (82"). 

T l ~ eset (M) i s  said to be complete if a n y  monomial P which i s  a n z z ~ l t i ~ ~ l e  
of a t  least one monomial o f  the set ( M ) bdongs to tlze class (Dl). I t  follows 
from Theorem I that the multiples of a complete set (M) are separated 
into a finite number of mutually exclusive classes, namely the classes (a);
monomials which are not multiples of any M are likewise separated into 
a finite number of mutually exclusive classes, i. e. the classes (%). 
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The  set ( M )  i s  said to be stf.ongly complete if n n y  monomznl P which i s  a 
multiple of at  least one monomial of the set (L) belongs to the class (2) 
and a n y  nzonomial Q whic l~  i s  a mziltiple of at  least one nlononzial o f  the 
set ( K )  belon,gs to the class (Dl)." A set which is strongly complete is 
also complete; the definition of strong completeness is introduced since 
Theorem I1 below gives a convenient test for strong completeness while 
me do not have such a test for completeness. 

THEOREM11. A necessary and sufficient condition that  n set (41) be 
stl-ongly complete i s  that the product o f  a n y  monomial L by one o f  i ts  non- 
mt~ltipliers belongs to the class (2) and tlze prodzict o f  a n y  K by one o f  its 

on-multipliers belongs to the class (Dl). 
The necessity of the condition in the theorem follows immediately. The 

~ r o d u c t  of any monomial Z by one of its non-multipliers is a multiple 
of Z and lience belongs to the class (2).  Likewise the product of any 
monomial K by one of its non-multipliers is a multiple of K and hence 
belongs to the class (Dl). 

Let us prove the sufficiency condition for the case n = 1 ;  this implies 
n =0. Suppose that el <e, < . . . <em are the exponents of xl in the 
set (L) and dl <d, < . <d, are the exponents of 2, in the set ( K ) .  
Then the class (Dl) consists of the monomials 

where a is the maximum exponent in ( M ) .  But the monomials 

belong to the class (2)by hypothesis. Hence el+l =e,, .. . , em-1+l =e,, 
and the exponents e, , em are consecutive integers. Suppose em # a ,a ,  

then q is a non-multiplier for x p  and so xFilbelongs to the class ( 2 )  
by hypothesis. However upon examining (14.2) we find that if em # a the 
monomial xptl could only belong to the class (R) or (Illl) and we have 
a contradiction. Hence em = a .  By hypothesis x?" then belongs to 
a, class (%) so that d,  $1 =el and d l ,  . . .,d,  are also consecutive integers. 
A set of monomials of this type is easily seen to be strongly complete. 

In order to prove the sufficiency condition for n > l  we assume that  
every product of an by any one of its non-multipliers belongs to the 
class ( 2 )  and that every product of a K by any one of its non-multipliers 
belongs to the class (Dl);  then we show that (1) the product of every 
monomial L by an arbitrary monomial in 2,, ,,X,L belongs to the 

36 When cr = 0, this definition introduces a distinction between the sets (L) and (Ii). 
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class (I)and (2) the product of every monomial K by an arbitrary monomial 
in x,+,, .'. .,x ,  belongs to the class (81). Let us assume the theorem 
for n-1 variables and prove i t  for n variables. 

Again denote by he quotient of M A  by xi. The monomials L * ~  
and K * ~  will belong to the sets ( L * ~ )and ( K * ~ )  with a* = a-1 for 
a 2 1 and a *  = 0 for cr =0 .  Then those variables x2, .,xn which 
are multipliers or non-multipliers for M'. in the set ( J I )  are precisely the 
multipliers or non-multipliers respectively for ~ * " n  ($I*"). Hence the 
product of any monomial the class arising from i?*ll in the set 
and 4 belongs to the class (GI). Similarly the product of any monomial @*A 
of the class arising from K*R in the set (M*'.) and x$ belongs to the 
class (BA).By assumption the product of every ZAby one of its non- 
multipliers selected from x,, . . . ,~c,,belongs to the class (2); this product 
xg ELis of degree 1 in x, and hence must belong to a class (EL), i. e. 
the class arising from a monomial zAin (A?).Hence 

where p is a monomial in multipliers of L=""n the set (&I"9). That is 
(1) the product of a monomial E*Qy a non-multiplier of ~*"n  the 
set (M*" belongs to the class ( F A )  of a monomial L"*R in (M*". 
Similarly the product of KR by one of its non-multipliers xg belongs by 
assumption to the class (E". Hence 

where p is s monomial in multipliers of E*"11 the set (iM*A). That is 
(2) the product of a monomial K * ~  by a non-multiplier of K * ~in the set 
(M*~)  belongs to the class (@PA) of a monomial %*"n (M*~).  By 
assumption for n- 1 variables i t  follows therefore that the set (M*" is 
complete on account of statements (1) and (2). Hence we have the strongly 
product of a monomial E*Qy an arbitrary monomial in x,, . . . ,z, belongs 
to the class (I*A); that the product of a monomial K*ll, with cc =0 ,  by 
an arbitrary monomial x,, . ., x,, belongs to the class (%R*A); that the 
product of a monomial 8*'.with a 2 1 by an arbitrary monomial in 
x,+I, . ., xn belongs also to the class (%R*R). Thus we have proved 
that for a 2 1 a multiple of a monomial K belongs to the class (%R), that 
the product of a monomial K,with a = 0,  by an arbitrary monomial in 
x,, .,x, belongs to the class (m), and that the product of a monomial L 
by an arbitrary monomial in xi, . . ,x,, belongs to the class (2). It remains 
to prove that the products of a monomial Z and a monomial K, with 
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a = 0 ,  by an arbitrary monomial of degree e(21) in x1 belong to the 
class (2) and the class (Zm) respectively. 

Now assume that the product of a monomial by an arbitrary mononlial 
of degree Q (20) in XI belongs to the class (8) and let us seek to prove 
the property for e +  1 .  By this hypothesis the product of a monomial 
by an arbitrary nlonomial of degree e + l  in z1 can be considered as the 
product of x, aiid a particular monomial 3. If the degree of 3 is less 
than em the monomial belongs to a class arising from a monomial for 
which x1 is not a multiplier; z1 is therefore a t  most of degree em in x,. 
Hence 2, is the product of XI and a monomial in x,, . . ., x,. But 
x, belongs to the class (8) by hypothesis since xl - is a non-multiplier 
of L. Hence XI is the product of a monomial and a nlonomial in 
x2, , x By the above paragraph the monomial x, 5 therefore belongs 
to the class (52). If the degree of 5 is equal to or greater than em the 
monomial belongs to the class @) arising from a monomial for which 
z, is a multiplier and hence x,5 belongs to the same class (&. In other 
words we have proved that the product of a monomial Zby an arbitrary 
monomial belongs to a class (5). The argument used here can be applied 
without modification to show that the product of a monomial K,with 
a! = 0 ,  by an arbitrary monomial belongs to the class (1132) and the 
theorem is proved. 

Upon examin~t ion of the set (M) in the above example, one finds tha t  the monomial 
z3y 3 z 2  does not belong to any class (a)and hence the set ( M )  is not complete. 

The following example exhibits a set (M) with a = 1 which is complete but not 
strongly complete. 

Monomials Multipliers Non-multipliers 
x2 gZ Z X Y Z . . 
x2 y z 2 . 2 Y 

.X Y Z Z X Y 

( K ) x y 2  I . Y Z I . .  
I t  is evident by inspection that  the above set ( M )  is complete. The requirement that 
the product of L by a non-multiplier belong to (2) would mean that the monomial x y2z 
would belong to the class (8); however the monomial x y 2 z  belongs to the class (R). 

T h e  set ( M )  toill be said to be normal i f_no monomial K wJzen considered 
ns a n  z,i s  a multiple of a n y  monomial L in the set (L) .  In the appli- 
cations of the theory of monomials we shall have occasion to deal with 
normal sets (M). 

We are now going to give a procedure for obtaining a strongly complete 
set (Mv) from an arbitrary normal set (MI) such that the multiples of 
the monomials of (Mv) and (MI) are identical. Those products of 
a monomial Z,by one of its non-multipliers which do not belong to the 
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class (2,) will be added to the set (L,) to form the set (M,). On account 
of the fact that  (MI )is normal the set (M,) will be composed of distinct 
monomials, etc. We must show that  after a finite number of such operations A 
we will arrive a t  a set (M,) after which no new monomials will be added 
by this process. Then form the product of a monomial K , ~with one of 
its non-multipliem:and if this product does not belong to the class (Zmr) add 
the monomial to ( K , )to form (M,+I). Let this operation be denoted by B. 

Consider the numiers all ., bn equal respectively to the maximum 
exponents of the corresponding variables x,, . . ., X n  in the set (MI) .  The 
operation A cannot add a monomial P: xyl . . . x: with zp >op for any value 
of B (= 1, . . .,n). For  suppose such were the case; let xl, be the variable 
X I ,  . . ., x, for which zy = by+ 1; then we have 

-
p -- T y  L~-- xF . . .X ~ r - i x ~ r + l .. .,

Y-1 Y 

where xy is a non-multiplier of El. But xy is not a non-multiplier of 
since the exponent of xy in & is equal to the maximum of the exponents 
of xy in (MI) .  Since there are only a finite number of monomials P with 
zi 2 bi (i= 1 ,  . ., n) we must after a finite number of operations A arrive 
a t  a set @Ir) after which the operations A will cease to add new monomials. 
Similar remarks apply to the operation B. 

Now consider the set (Mr) formed from (&) by operations A,  the set (Mr) 
being such that no new monomials can be added by further operations A. 
It is evident that  the set (Mu)is normal. Let us show that the property 
of normality is likewise preserved when we make an operation B upon the 
set (MIL). Suppose that the monomial 

-
x;"l . . . xabl. . . ~2Kp: 

possesses the non-multiplier x, and that the monomial 
-
Kp+l: x:l . . . X:. . . x: 

is added to the set (Mr) by the operation B. Let us assume that %+I 
is a multiple of a monomial L, when Rr+lis considered as belonging to 
the set (Lp ) , i. e. that the set (Mr+l) is not normal. Hence we have 

If b l <  a, i t  follows that X I  is a non-multiplier for zr. Since operation A 
can add no new- monomials to the set (Lp )the monomial xl zpmust belong 
to the class (z , )with the basis 

--
XblS.l cn . . . xc,,Lp: 1 x2 12 
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If- 11, f l <  n,, we repeat the process until me have finally that the monomial 
Ku+l is a multiple of 

i p :  T"l /Z, . . . T$ ( d j < a j ; j = 2 , . . . , n )  . 
Then repeat the process for the variables x2 ,  . . .,x6 each time comparing 
the monomial in question of the set (L,)with monomial K, t,o determine 
whether or not the variable x2, . .,XU in question is a multiplier. By 
repetition we have finally that the monomial z,,+.lis multiple of 

Let x, be the first of the variables x,,~, . . .,x, such that (1) e,< CL, and 
(2) X, is a non-multiplier for ip.Then x, i,,belongs to the class (&) 
with basis 

. xu1 . . . xan x e ~ + l  . . . x e ~ + l  . . . xS3,i , u .  I G 0-1 .r T ~ + l  ,, ( ~ t s a i ;i = z + l , . . . , n )  . 
A continuation of this process will show that gpibelongs to the class 
of the monomial L: : T:~ . .x? . . . , where each of the variables x, of 
the set xO+~,  . ., T,,  is either a multiplier for L,: or else appears in L; 
with the exponent a?,. Thus we have a contradiction is notand I < ~ ~ - ~  
added by operation B. 

If a monomial K ~ + ~is added by operation B then repeat operation A on 
the set (lip+l) until no new monomials are added by further operations; 
then repeat operation B once, etc., until finally we arrive a t  a strongly 
complete set (&Iv). Since operations A and B add only multiples of mono-
mials L and K to the sets (L) and (K) respectively in tlie process of 
forming ( , I f v ) ,  it is evident that the multiples of the monomials of ( M I )  
and (ll.l,,)are identical. 

The set (Af) treated in the above example is normal. If one adds tlie mononlials x3y3z?, 
c3y2z' x3yz2 to the set (L1)to form the set (L , )  and then adds the monomial x y z  to 
the set (h',)to form the set  (Ii,)i t  is seen that  the resulting set satisfies the condition 
of Theorem I1 and hence (Ma)is complete. 

fifonomials / Multipliers 

x 3  y3  z2 1 x y z 
r J  11' z2 ' x . z 

I . Y e 
x3 ?/ z2 I x . Z 1 

(I , , )  xz y '  z2 2 . .i .1 .T~ ?i2 

r' 11 z' r :;: 
c y z Z 1  . y z  1 x * . 

-- -- - -- ----A 

x3 . . Z . . .  
(I<,) x ;y 2 . . . . . Z 

Y . . .  
1 

. . Z 
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A monomial xyl . x2 is said to be of higlzer or lozoer rank than 

a different monomial x;l 2;; according as the first of the differences 
(14.1) which is not zero is positive or negative. 

THEOREM The prodz~ct of any monomial of a complete set by one of 111. 
its nnm-multiplie~s is eqztal to the prodzcct of a monomial of the complete set 
of higher rank, by mzcltipliws of the latter. 

By definition the product of a monomial M of a complete set (M) by 
one of its non-multipliers is the product of another monomial M of the 
set (M) by certain multipliers of the latter. We must show that is of 
higher rank than M. Consider a monomial 2:x? . . . LZ: and let x, be 
ehe non-multiplier in question. In  order that xl M be a multiple of g: 
cc,l 

b 
. . x> we must have a, +1 2 bl . If i@ =z, with a )1 ,  XI would 

not be a multiplier for K; the degree of K in xl in that case could not be 
raised to al +-1 by-multiplication by multipliers of K. Hence a, +1 = b l .  
Similarly if M = or if M =  i??, with a =0?and if b, were less than 
al $ 1  then z1would not be a multiplier of or since x, is a multiplier 
only for monomials of the set ( M )  which contain the highest power of XI. 
If XG is the non-multiplier of M it  follows in exactly the same manner that 

a, 2 b l ,  a2 2 b,, a ~ + l  2 bG.. . a ,  

By repetition of the above argument 

the monomial M is therefore of higher rank than M. 

§ 15. General Existence Theorem. 
For  the purpose of ordering a system of partial differential equations 

of the form 

we shall assign to each independent variable and to each unknomil s 
successive cotes which as is well known are represented by zero, positive 
and negative integer^.^' The qth cote of an arbitrary derivative of ui is 
then obtained by adding the qt,h cote of the unknown ui and the qth cotes 
of all variables of differentiation, distinct or not. If the cotes of a deri-
vative z, namely C,, . . .,Cs are not all equal to the cotes of a derivative z*, 
namely C;", . . ., c,* then z will be said to precede or follow z*, or to be 
of lower or higher rank than z*, according as the first of the differences 

"Cotes were introduced and used systemntically by Riquier, loc. cit., (5): p. 201. 
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which is not zero, is negative or positive. The order which is thereby 
established among the derivatives appearing in (15.1) by the first s cotes 
is therefore not effected by assigning additional cotes. If the order of all 
derivatives of the unknowns ul, . .,ur with respect to variables xl,. .,Xn 

is not uniquely established by the assignment of the above s cotes ordering 
the derivatives appearing in (15.1),we can accomplish this by the assignment 
of additional cotes. For example, if we assign the n+ 1 additional cotJes 

all derivatives are uniquely ordered. Thus, if two derivatives Diu, and 
Dj 7k have exactly the same set of s + 12 + 1 cotes, the equality of the 
(s+1)st cotes implies that  the functions t i ,  and ur are identical and from 
the equality of the remaining cotes the derivatives are identical. 

Let  us say that the totality of derivatives of the unknowns u,,. ., t iq .  

of first cote C constitutes the class C as a matter of convenient terminology. 
I t  will be assumed that the above system (15.1) satisfies the following 

conditions: 
(A) The equations (l5.1), the unknown functions u,, .... ~ c ,and the in- 

dependent variables XI,..., xn are finite in number. 
(B) The equations (15.1) are composed of two systems of equations, 

(1)  the system R which holds throughout the region D: Ixi 1 <ci where 
the c's are constants and (2) the system S which holds throughout the 
subspace B: x1= 0 ,  ...,xu = 0 of the region D. 

(C) The equations R are solved for certai- derivatives of the unknowns u 
and the functions F which constitute the right members of these equations 
depend on the independent variables xl,...,xn, the unknowns zr, , . . . , zt, 

and the derivatives of the ~nknowns .~ '  
(D) The equations S are solved for certain derivatives which are not 

left members of R and the functions F which constitute the right members 
of these equations depend on the independent variables xu+l, ., xn and 
the derivatives of the unknowns which are not left members of R or 8. 

(Ej The functions F which constitute the right members of the system 
(15.1) are analytic functions in the neighborhood of the values 

35The term derivative is to  be interpreted ss including the unknowns 14 themselves. 
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of their arguments. 
(F)Cotes, s in number, are assigned to the unknowns zll,  . . .,u, and 

the independent variables XI,  . . ., x,, such that (1) the first cote of each 
variable (x) is unity and (2) the derivatives of the functions ( u )  are uniquely 
ordered. 

(G) The order established by the above assignment of cotes is such that  
any derivative z in the right member of an equation of the system B except 
those for which the derivative a F l a  z vanishes throughout the subspace 59, 
precedes the derivative in the left member of the equation; also any 
derivative in the right member of an equation of the system S, precedes 
the corresponding left member. 

( H )  In any equation of the system B the class of the derivatives in the 
right member does not exceed the class of the derivative in the left member 
of the equation. 

It is to be noted that if a derivative z precedes a derivative z*, that  
az/  a xu will precede az* / axu; likewise z will precede z* if z is of lower 
class than z*. All derivatives of a particular unknown ui in the class C 
will moreover be of the same order. 

Let us now associate with the derivatives of the unknown t(i which 
appear in the left members of the system (15.1),the set (Mi)of monomials 
2:' . . . x: corresponding to these derivatives; the set (Li) of (Mi)will be 
composed of those monomials which correspond to derivatives of ui in 
the left members of the system R and the set (Ki)of (Mi)will be com-
posed of monomials corresponding to derivatives of ui in the left members 
of the equations of the system S. 

(I) The set (Mi) of monomials is strongly complete. 
A systenz of equations (15.1)will be said to be normal z . the above con- 

ditions A, . . . ,I are satisfied. 
By differentiation of an equation of a normal system (15.1) we obtain 

an equation which satisfies conditions G and H. Let z* denote the 
derivative in the left member of an equation R or S and let z be a derivative 
in the right member of the same equation such that  z precedes the 
derivative z*. By differentiation of this equation we obtain 

where the derivatives z and az lax t  in the right member precede the 
derivative in the left member. Suppose now that  z follows z* for an 
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equation of the system R;this implies that a FI ae =0 througliout the sub- 
space %. Hence 

a F' aF- = 0 throughout DL),a 2' a z 

where the derivative 8zlaxi has been denoted by z'. In other mords'the 
equation (15.3) satisfies properties G and H. Hence G and H will be 
satisfied by the system of equations which result from a normal system (15.1) 
by the addition of a finite number of equations obtained from (15.1) by 
partial differentiation. 

Differentiating the equations of the system (15.1) with respect to 
multipliers (x)  of the corresponding monomials, each principle derivative 
of an unknown u,,. . ., 21, will be obtained as the left member of one and 
only one of the resulting equations; this follows from the characteristic 
property of a complete system of monomials. Equations so formed by 
differentiation of an equation of the system R are to be added to R and 
those formed by differentiation of an equation of S are to be added to S. 
Thus we arrive at a system of equations consisting (1) of the system R 
and all equations which were added to R and (2) of the system S and 
all equations which were added to the system S; we shall refer to these 
as the systems R and S" respectively. It is evident that a derivative z 
cannot appear both in the left and right member of an equation of R or j .  
Now consider the system E composed of all equations of 3 and S" whose 
left members belong to classes C of serial number not exceeding N; we 
shall refer to a particular equation of the system E by El, E,, etc. 
Let z* be the derivative of lowest rank which appears in the right member 
of an equation El of the system 2 and in the left member of an equation E, 
of %; using the equation E, we eliminate the derivative z* from the right 
member of El. Similarly if the derivative z* appears in the right member 
of an equation ES of the system 8 and also in the left member of an 
equation E4 of 2 or #, the equation E4 is to be used to eliminate z* 
from the right member of E,. By repetition of this process we finally 
reach a system €5 equivalent to the system E and such that & involves 
only parametric derivatives in its right members; more precisely if we 
denote by and € 5 ~the equations of €5 corresponding to R and fi re-
spectively, then the right members of @B depend only on parametric 
derivatives of the system R and the right members of € 5 , ~  depend only 
on parametric derivatives of the system (15.1). The fact that we can 
limit our considerations to the system E in the process of forming the 
system €5 is a consequence of the above result that properties O and H 
are preserved under differentiation. It is easily seen that conditions 
analogous to A,  . ..,H are satisfied by the system €5. 
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We are looking for power series of the type 

which mill satisfy (15.1). Let us first, however, consider the problem of 
determining a solution zt,, . . ., u, of the system (15.1) such that each 
equation of (15.1) is satisfied when we equate to zero the non-multipliers 
(x) of the corresponding monomial. For brevity the system (15.1) so 
modified will be referred to as the system U*. I t  is evident that the 
equations of the above system @, evaluated at  xg = 0,  can be arranged 
in the increasing order of the principle derivatives in their left members 
and such that any eqnation will involve in its right member only para-
metric derivatives of the system (15.1). Allowing the number N to increase 
without limit we therefore see that for a given assignment of the initial 
values of the parametric derivatives, the power series (15.4), i. e. the 
formal solution w , ,  . ., u, of the system U* will be uniquely determined. 
But all parametric derivatives of (15.1) at  xg = 0 are uniquely deter-
mined if the derivatives of each unknown ui corresponding to monomials 
of the complementary set ( K ) ,are assigned as arbitrary functions of the 
multipliers (x) of the associated monomials, these functions being analytic 
in the neighborhood of the values xg = 0 of their arguments. The 
functions thus associated with an unknown ui will be called (following 
Riquier) the initial determination of the unknown ui; the sum of the 
initial determinations of an unknown t1i will be denoted by yi. Hence the 
formal power series solution (15.4) of the system U* is uniquely deter-
mined by the assignment of the initial determinations; the convergence of 
these series will be proved in 5 17." 

Let us now adopt the notation 

for an equation of the system (15.1); here Dizt denotes the derivative in 
the left member of the equation (15.1) in question. According as the 
expression 2, corresponds to an equation of the system IZ or the system 8, 
it will be denoted by or respectively. We shall speak of the de-
rivative Dit6 as the first term of the corresponding expression g.  For 
convenience in terminology we will speak of the cotes, the rank and the 
class of the first term of an expression as the cotes, the rank, and the 
class respectively of the expression itself; an analogous terminology 

39 While the condition of strong completeness is imposed by condition I it  may be ob-
served that the less restrictive condition of completeness of the sets (Mi) is sufficient for 
the determination of these power series. 
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will be applied to an expression obtained from Zi by differentiation. 
Likewise the nlultipliers and non-multipliers ( x )  of the monomial cor-
responding t o  the first term of an expression will be referred to as the 
multipliers and non-multipliers ( x )  of the expression % itself. We shall 
also denote by & either the expression 5 or an expression resulting by 
differentiation of Zi with respect to its multipliers; more particularly 3~ 
will be denoted by '%i or Bi according as i was obtained from an ex-
pression Ri or & respectively. 

The derivative of the first term of an expression &I with respect to a 
non-multiplier- xr, of is identical with the first term of some expression 
'illaby condition I. Furthermore the difference 

where the derivative of & denotes the result of differentiating the ex-
pression %, considered as a function of the independent variables (x )  alone, 
is such that (1) the derivative a @la(Du)  vanishes throughout the sub-
space % for any derivative D u  in @ which is of higher rank than the 
first term of d R , / d x b  and (2) the class of any derivative D u  in (D is a t  
most equal to that of the first term of d R l / d r b .  Similarly, if cc, is a non-
multiplier of g,, the expression 

where the first terms of d s l / d z ,  and 3, are identical, is such that any 
derivative Du in 4' precedes the first term of the expression d G l d x c .  

Now use the equations C?R to eliminate all principle derivatives of the 
system R from the function @ ill (15.6); also use the combined system @ to 
eliminate all principle derivatives of (15.1) from the function W in (15.7). 
Suppose that 

@ ( D u ,2)-+ @* (Du ,  x ) ,  W(Dtc, x)  -t 4 ' * ( D u ,  x )  

as the result of this elimination. The  normal system (15.1) will be said to 
be completely iutegrable i f  all functions @* and W* which can be constructed 
f rom dhe equations of the system (15.1), vanish identically. 

In the following section it will be shown that a completely integrable 
normal system (15.1) is satisfied by the power series solution (15.4) of the 
system U*. 

EXISTENCETHEOREM.A conzpletely intqgrable normal system (15.1) is 
satisfied by a zcniqz~e set o f  analytic functions u l ,  . . , u, determined by the 
assignment o f  the initial determinations predicted by the form o f  the lef t  
members of the system. 
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5 16. Equivalence of the Solutions of a Completely Integrable 
Normal System and its Associated System U*. 

TVe now consider the problem of showing that the power series solution 
(15.4) of the system U* satisfies the normal system (15.1) provided that 
this latter system is completely integrable. 

Corresponding to an equation 8i =0 or Gj =0 we have identities of 
the form 
(16.1) (a) D ~ u - - % , + ~ ( D ~ & , x ) ,  (b) D j t & - - G j + 3 ( ~ t l , ~ )  

derivable by differentiation of (15.5), where the functions 8 in (16.la) and 
(16.lb) have properties regarding the derivatives D u  analogous to those 
stated in connection with equations (15.6) and (15.7) respectively. Hence 
equations of the type (16.1 a) can be used to eliminate principle derivatives 
D u  of the system R which occur in tJhe functions 8 in these equations; 
the infinite system so obtained as a result of this elimination furnishes 
equations which can be used in turn to eliminate principle derivatives D u  
of the system R from the functions @ in equations of the type (15.6). The 
equation (15.6) thereby becomes 

where (a) the derivatives DZLin 6 are parametric for the system R, (b) 
the class of an expression '% in 6 is a t  most equal to the class of d R 1 / d z b  
and (c) any expression % in 6 which does not precede d&/dxb  is such 
that the derivative a 6 1 8 % vanishes throughout the subspace TI. Similarly 
from (15.7) we have 

a'-- & = W(%, (5, D a ,  x),
d xc 

where (d) the derivatives D u  in @ are parametric for the system (15.1) 
and (e) any expression '% or 8 in !b precedes d & l d ~ ~ .  

If (15.1) is completely integrable the functions 6 and !b must be such 
that they vanish in consequence of the vanishing of the expressions 
and 8 appearing in these functions; this follows as a result of the way 
in which the above functions @* and W* were obtained. 

Now consider the system of equations composed of all equations of the 
type (16.2) and (16.3) which can be formed from (15.1) and into these 
equations substitute the solution zc,, . . ., u, of the sj~stem U*. The 
resulting system 
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will be regarded as a system of equations for the determination of the 
unknowns Z," where z"denotes the result of substituting the solution 
zl, , ., z(, of the systeni U" in the expression z;i t  will furthermore be 

-* understood that the variables xl=.. . -- x, = 0 in an expression Si. 
In any equation (16.4) the first, second and third terms indicated result 
respectively from the first, second and third terms of the corresponding 
equation (16.2) or (16.3). TVe shall show in the following that (16.4) is 
a normal system, i. e. that these equations satisfy the above conditions A, . . .,I 
provided that we consider those equations (16.4) which contain a derivative 
a ~ : l a x j in their left member as  the system R and the remaining 
equations (16.4) as  the system S of condition B. 

The monomials of the set (Mi) corresponding to the derivatives of an 
unknown which appear in the left members of (16.4) all belong to 
the set (Li).I t  can be shown that any set (31)of monomials of this 
t,ype in which each monomial consists of a single variable xg, is strongly 
complete.40 Since each monomial of the set (Mi) for an unknown Si" 
belongs to the set (Ki) and 'furthermore since each of these monomials 
consists of one of the variables x,+l, . .,x,, i t  follows that the set (Mi) 
can be considered as a set (31) in the n-a  variables x,+l, . - ,xn where 
all monomials of (M) belong to the set (L); hence (Mi) is strongly com- 
plete by the above argument. The condition I is therefore satisfied by 
the system (16.4). 

Le t  us assign the cotes for the system (16.4) in the following manner: 
(a) The variables xg will be given the 	same set of s cotes as in the normal 

system (15.1). 
(bj The unknowns Z,* will be given the same set of s cotes as in the 

system (15.1). 
(y) The variables zg will each be given an (s+l)st  cote of zero. 
(6) Suppose that 	the expressions 5 which have derivat'ives of the same 

unknown 2 ~ j as their first terms, are denoted by go',z0', when 
arranged in the order of decreasing rank of the monomials corresponding 
to their first terms. The unknown z*" will be given an (s+l)st  cote 
equal to the integer i. 

The first s cotes of the derivative Dk %* in the right member of an 
equation (16.4) will be identical with the first s cotes of the derivative 
in the left member of this equation; however the (s+l)st cote of Dk %* 
will be less than the (s+l)st cote of the derivative in the left member 
in consequence of the above conditions (y) and (6) and Theorem 111of $ 14. 
Hence Dk g* precedes the derivative in the left member of (16.4). Also 

40 cf. Janet, loc. cit., (6), p. 85. 
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the derivatives DZ* in the function II of (16.4)either precede the derivative 
in the left member of this equation or are such that the derivative a ZZla (DZ'**) 
vanishes over the subspace 9; these results follow in consequence of the 
above statements (c) and (e) made in connection with equations (16.2) 
and (16.3) respectively. Hence the system (16.4)satisfies condition G. 

Consider those equations (16.4)which involve a derivative of an &* in 
their left members; any derivative of an unknown Z,* appearing in the 
right member of one of these equations will have class a t  most equal to 
the class of the corresponding left member in consequence of statement (b) 
under equation (16.2). Condition H is therefore satisfied by (16.4). 

To see that equations (16.4) are actually solved for the derivatives 
a Zt l  a xj appearing in the left members of these equations we have merely 
to note that xj is a non-multiplier of the mononlial corresponding to the 
first term of % while derivatives in the right members of these equations 
involve only differentiations with respect to multipliers (x) of the cor-
responding monomials; hence no derivative occurring in the right member 
of an equation (16.4)can appear on the left of any equation (16.4) and 
conversely. Hence conditions C and D are satisfied by (16.4). 

If the s+ 1 sets of cotes given by conditions a,18, y, 6 do not uniquely 
order all derivatives of Z:, the ordering can be made unique by the 
assignment of additional cotes in accordance with the discussion in 5 15. 
Condition F can therefore be considered to be satisfied by (16.4). The 
remaining conditions A,  B, E are obviously satisfied by (16.4)on account 
of the method of formation of these equations. 

Consider the system V* obtained from (16.4) by equating to zero in 
each equation the non-multipliers (x) of the monomial corresponding to 
the left member of the equation. Hence by the theory of 5 15 there 
exist a power series solution Z? of the system V* which is uniquely de- 
termined by the initial determinations in the sense of 5 15. In the 
functions g? of the solution Zi* so obtained let us put x1= ---- xa =0. 
I t  then follows from the form of (16.4) that the solution 2: as so modi- 
fied also satisfies the system (16.4) and hence is to be regarded as the 
solution of (16.4)as above considered; hereafter by the solution 2: of 
the system (16.4) this latter solution will be understood. 

Now consider the set (Mi) of monomials correspondillg to an uilknown 
R?; all monomials xp, ., x, of this set (Mi) then belong to the set 
(Li). The set complementary to (ii) consists of one monomial 3,:l with 
multipliers consisting (1) of the variables x,+l, . ., xn and (2) of those 
variables XI, ., x,-I which do not belong to the set x,, . . ., xq-~. 
Hence the initial determination of each R: will be a function 8 of the 
multipliers (x) of the corresponding expression Ri in the normal system 
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( 1 5 )  Similarly the initial determination of each function S? will be 
a function ?b of the multipliers (x) of the corresponding expression & in 
(15.1). 


W e  wish to prove that  the expressions Zi reduce identically to zero 
when the unknowns 111, ., t ~ rin are replaced by the solution ul , . . ., ttr 

of the system U*.  To prove this we observe (1) that when the non-
multipliers (x) of ~i are equated to zero, the expression R: = 0 and 
when the variables X I ,  . ., X~ together with the non-multipliers (x)-

of & are equated to zero, the expression S? = 0, (2) when the non-
multipliers (x) of 2 i  are equated to zero, the function Z h e d u c e s  to its 
initial determination and (3) that the analytic functions Z? = 0 satisfy 
(16.4) and the initial determinations of this solution of (16.4)vanish identi- 
cally. This proves the above statement and shows that  the solution 
211, Zdr of the system U" satisfies (15.1).a ,  

3 17. Convergence Proof. 
Denote by b and B the minimum and maximum values of the classes 

of the derivatives appearing in the left members of the equations of the 
system U*. Call the totality of equations of the system U* whose left 
members are in the class b, the system T b .  The system Tbtl will be 
composed of all equations with principle derivatives of the class b+ 1 in 
their left members; if such an equation is lacking in tG system U* i t  
can be obtained by differentiating a suitable equation of U*. Continuing 
in this way we obtain the sequence of systems 

The equations of this sequence fall into two component systems, namely 
(1) the system composed of R* and those equations obtainable by differ-
entiation of the system R* and (2) the system S* and those equations 
resulting by differentiation of S * ;  the first of these component systems 
will be referred to as the extended systenz R* and second as tlze extended 
system S*. It is evident that any equation of the system TB+~is linear 
in derivatives of class B+1. By the method of elimination used in 
forming the system Lf in 5 15, the systems Tb, ., TB+~can be replaced 
by equivalent systems T:, -, T;+I which evidently determine uniquely 
the principle derivatives of (15.1) a t  xp = 0 in classes b to B +1 in-
clusive when the initial determinations are assigned. 

Consider the transformation 

CG1...'Xn 


tti = ~ + ~ iC p - - - Xy1+ . . . 
a,! a,,! x? 
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of the unknowns ul, . . ., ti, in which the summation 2 is limited to 
those Gal.. .an which give a t  xp =0 the values of those principle derivatives 
of the unknown zti in classes b to B inclusive. Substituting (17.1) into 
the system (15.1), this latter system goes over into 

-
an analogous system 

involving the corresponding derivatives of C,,. . ., zr, in its left members. 
On account of the form of (17.1) it is easily seen (1) that the principle 
derivatives of the unknowns GI,  ., Ur in classes 7, to B inclusive must 
be equal to zero at xp =0 and (2) that the initial determinations of the 

-
unknowns GI, . . ., ur vanish identically. It can therefore be assumed 
without loss of generality that the system (15.1) satisfies the following 
condition. 

( J )  The principle derivatives of u,, . . ., zi, in classes 7, to B inclusive 
vanish a t  	xp =0 and the initial determinations vanish identically. 

Let us now write the system $+I in the form 

(17.2) 	 Di 210 = 2picrjp Dj up $qio; 

we 	observe that this system has the following properties 
(a) The 	derivatives Dizi, in the left members of (17.2) are all in the 

class B+ 1.  
(b) All principle derivatives of the system U" in classes C where C>  B+1 

are determined once and only once by differentiation of the left 
members of (17.2). 

(c) The right member of an equation (17.2) is linear in derivatives Dj up of 
class B+ 1 ;  the coefficients p and the q terms may contain derivatives 
of class not exceeding B. 

(d) Any derivative Djup in the right member of an equation of R* of 
(17.2) which follows the derivative Diuo in the left member of the 
equation, has a coefficient p which vanishes throughout the domain B. 

(e) The coefficients p and the q terms in the right member of any equation 
(17.2) are analytic functions in the neighborhood of the values 

(17.3) x = O ,  D u = O ,  . . .  
of their arguments. 

We shall show that  when the principle derivatives of u,, . . ., 11,. and 
the initial determinations are assigned for the normal system (15.1) in 
accordance with condition J, that the unique power series determinations 
of the ul ,  . . ., t ~ , .by the system U*, converge. It will then follow that 
the series for the 261, . . ., 14, as determined by the system U* without 
the condition J, will converge, since these latter series for u,,. . ., I( , .  are 
related to the above convergent series by an equation of the form (17.1). 

The above convergence proof will depend on two lemmas which we 
will now proceed to state. Let us associate with the unknowns 211, ..., 11,- the 
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positive constants 5,, a ,  5, and with the variables z, , . .,z,, the positive 
constants 8, , ., S, such that Si >1 .  Then corresponding to a derivative 

we can construct the quantity 
(17.4) s i q  . . . s?. 
Let us likewise choose ~"ositive constants A$ where a, , ~ t= 1 ,  . . ., .?., 

such that 

2 If<1 .  
p=1 

We then have the following4' 
LEMMAI. A set o f  positive constants 5, where (5  >1)  can be selected 

so that the ratio o f  a n y  quantity (17.4) corresponding to a derivative of  
class C, to tlze qzbantity (17.4) corresponding to a deriuatire of lo?ca. rank 
of the class C, i s  gveater tlzan a given positive n~cnzberQ .  

LEMMAIT. The  determinant 
Is$-$ 1 

i s  positive and the cofactors of mder r -1 are all positive or zero. 
Let HiGpbe the number of the derivatives of the unknown up of class 

B +1 which appear in the right of an equation with left member Di 2co. 

Also let Piojp be the absolute values of the constant terms of the power 
series expansions of piojp, about the values (17.3). Denote the largest of 
the numbers 

Hi6pl A$ 

by Q. Taking the class C in Lemma I to be the class B +1we can then 
choose positive constants 5 ,  F in accordance with this lemma so that 

where Di z(, is of higher rank than Dj Z L , ~ .  Evidently the ratio (17.5) is 
valid also for a derivative Dj up in the right member of an equation (17.2) 
which follows the corresponding left member on account of the above 
property (d). Now let CS be an upper bound to the absolute values of the 
terms of the expansions of p ,  q about the values (17.3). Then choose v Z  

"Janet,  loc. cit., (6) ,  p. 144 and p. 141. In  the proof of Lemma I use is made of the 
fact that without changing the ordering of the derivatives effected by an assignment of 
cotes, i t  is possible to replace the given set of cotes by a set compo~ed entirely of 
positive integers. Cf. Riquier, loc. cit. (5) p. 253. 
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numbers ~ g ,positive or zero, where o, p = 1, . . . , 1' SO as  to satisfy the 
conditions 

for all combinations of the indices such that Dj up is a derivative of class 
B+ 1 in the right member of an equation (17.2) of which Di z t G  is the 
left member. Finally choose the Y positive constants 11, so that 

where Di zt, is any principle derivative of class B + 1.  
Consider the system 

1, 5 . . . 5,:z i l  

(17.8) Di I _  (r 0 - 1  

1-z  

which has the same form as the system (17.2). Let 

F,x,+ +Enx ,+ZDY
z = 1 e 

where the summation C D  I' denotes the sum of all derivatives cor-
responding to derivatives Dzi of class not exceeding B,  and e is a sinall 
positive number such that the function 

G
(17.9) 

C x  +FI'1 --------------

e 
dominates the coefficients p and the terms p. in an equation of (17.2). 
Since ti>1 the function GI1-z has the same dominating properties. 
Hence the terms qi, in equations (17.2) are dominated by the corresponding 
terms in (17.8) in consequence of the inequalities (17.7). If GI+ O2 2 G 
and Q1 exceeds the absolute value of the constant Piojp then 

dominates the Corresponding to a illfunction Pioj,u* coefficient 1 ) i ~ j , ~  t , l ~ ~  
system (17.2) put 

t tL 5 $ 4  . . . k i l t  
G G - 1  *11. ., Q2 = ---------, 

H.  5 . . . :"I'E.'I 
IG!l ,u - 1  - YL 

then it follows that  the p's in (17.2) are dominated by the corresponding 
coefficients in (17.8) when use is made of (17.5) and (17.6). 

Let us put -

J7 - -
0 Lo Y G  
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and regard the quantities Yo as functions of the single variable y where 

Denoting the ith derivative of where i = i13. . . . + i,,by F!' we have 

Tlie quantity z becomes a function 7 depending on the variable y and 
derivatives of % of order not exceeding h a ,  where h, =B- Ca, C, being 
the first cote of UG. Equations (17 .8)  then become 

Let us seek to find a solution F, (y )  of this system, satisfying the initial 
conditions - -

- ( I )(17.11) y = O ,  I T , = O ,  Y, = O , - . . ,  y:~)= 0 

((r = 1 , * -,Y). 
Since 7 is equal to zero for the initial values of its arguments, the 
equations (17 .10)  can be solved for the derivatives r?'" on account of 
Lemma 11. We thus obtain a system of ordinary equations of the form 

valid in the neighborhood of the above values (17 .11);  this system has 
a unique analytic solution Y , ( y )  satisfying the initial conditions. Further-
more the coefficients of the power series expansions of the solution F6 of 
(17.12) about the value y = 0,  are either positive or zero. The first h,+ 1 
terms of this series are zero in consequence of (17 .11);  the coefficients 
of all other terms in these series are positive. Let us write the equations 
(17.10) in the form 

C 


(17.13) - T Y ,  + ~ ( $ + z E ~ ) ~ ~ ~ ) + v ~ .F:hG+l)-- -(h&l) 
p= 1 

The initial values of the derivatives ?Jhc+" satisfy the equations 

from Lemma I1 and the fact that the v ,  are all positive the quantities
- (h 1[ Y , " + ' ] ,  determined by (17 .14)  are all positive. Differentiating the 

equations (17 .13)  and evaluating a t  y =0 ,  we see likewise that the quan- 
tities [?:hd2'lo are all positive, etc. It follows that the coefficients of 
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the power series expansioiis of the corresponding solution ITg(x)of the 
system (17.8) are all positive or zero and hence these expansions dominate 
the corresponding expansions determined by the equations (17.2) or the 
system Ti*. 

5 18. Reduction to Normal Form. 

In consequence of condition I of 5 15, the derivatives for which the 
system S is solved in accordance with condition D,are parametric for the 
system R. Hence the condit,ion D can be replaced by the somewhat 
stronger condition. 

(D*). The system X is solved for certain derivatives which are paralnetric 
for the system R and the functions P which constitute the right members 
of these equations depend the independent variables xoc+~,on . . .. TI , and 
derivatives which are not left members of the system R. 

Conversely suppose that the conditions A,  B, C, D*, E,F ,  G ,  H are 
satisfied by a system of equations (15.1). By the conditioil D* the set 
(Mi) of monomials associated with unknown uz as in 5 15 will be normal. 
Making use of the process developed in 5 14 we can therefore form 
a strongly complete set (M?) of monomials having the same multiples as 
the set (Mz). By differentiation of the equations of (15.1) which involve 
in their left members derivatives of zc,, we can deduce a system of 
equations whose left members will be in one to one reciprocal correspon- 
dence with the monomials of the strongly complete set (MI*). This process 
is iiow to be repeated for the derivatives of the functions u 2 , a . - . 1 1 ~in 
turn which appear in the left members of (15.1). Equations so formed 
by differentiation of an equation of the system R are to be added to K 
and those formed by differentiation of an equation of S are to be added 
to S.  In this manner we arrive a t  a system of equations which can be 
solved for the derivatives in their left members by the application of the 
process of elimination used in 5 15 in the derivatio~l of the system E; we 
shall refer to the solved form of these equations as the e.ztcnded system (15.1). 
Prom the discussion in 5 15 i t  is obvious that the extended system (15.1) 
satisfies conditions A, . . .. H and the condition I is satisfied on account 
of the method of formation of these equations. Hence the extended 
system (15.1) is normal. 

3 19. Applications of the General Existence Theorem. 

We saw in 5 12 that the general existence theorems of 5 6 failed to  
apply when we attempted to take a characteristic surface Cn-r as an 
(n-a)-dimensional surface bearing a portion of the arbitrary dat:: of 
the problem. The existence theoretic problem connected with the 
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characteristic surface Cn-, defined by the equations x' =0, . .  ., x" - O 
for the case of the system (2.1) is the problem of determining a solution 
UI;  (3:) of this system such that 

over the surface Cn-u. The theory of normal systems of 5 15 has immediate 
application to this problem. Let  11s suppose that the combined system 
(2.1) and (19.1) can be put into a completely integrable normal form 
(15.1) where equations (2.1) give rise to the system R and equations (19.1) 
give rise to the system S. The solution 2.k (x) so obtained will then 
satisfy the system (19.1) throughout the subspace 9, i. e. the surface 
x' =0. . .  .,2" = 0 with the result that  this latter surface is an (11-a)-
dimensional characteristic surface Cn-, of type ,8 for the solution 2.k (z), 
provided that there exists a determinant Sp-I (x, v) which does not vanish 
over this surface. I n  accordance with the remarks of 5 12 the above 
theory applies equally well to a vector invariantive system. The invariantive 
systems composed of (4.3), (4.5), (4.7) for the affine case and (4.4), (4.8), 
(4.10), (4.11) for the metric case permit an analogous treatment nrllen the 
equations (19.1) are replaced by the systems 

(a) Affine case : U,(A;ys) = 0 ,  

(b) Metric case: U, (yap;gu;3,yd)= o- .. 
respectively. 

In  the practical application of this theory to systems of equations the 
work is usually facilitated by use of a particular assignment of cotes 
which is ,said to put the derivatives into canonical olxler and which orders 
a11 derivatives uniquely. TTTe have illustrated this assignnient of rotes by 
the accompanying scheme. The ordering of 

derivatives by the canonical assignment of cotes amounts to arranging the 
derivatives first according to increasing order; those derivat,ives of the 
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same order are arranged according to the number of differentiations with 
respect to xl; those derivatives of the same order and having the same 
number of differentiations with regard to x' are arranged according to the 
number of differentiations with regard to xe; etc. Finally those derivatives 
corresponding to the same monomial are ordered according to the index k 
of the unknown UI; by the (72 + 2)nd cote. 

As an  illustration of the application of the theory of normal systems \ire can consider 
the treatment of the above mentioned problem for the case of the system r ~ ffield equations 
in Proc. Note V. It is easily seen that the set of monomials corresponding to the derivatives 
of any one of the unknowns appearing in the left members of the system composed of 
equations (4.1), (4.2), (4.3), (6.1), (5.3) in Proc. Note V is strongly complete and in fact 
tha t  thin system is normal, and tha t  the derivatives can be put in canonical order; the 
complete integrability of this system can be shown by the method of 5 20. The con-
vergence proof given in § 17 supplies the proof omitted in the former treatment. 

In the discussion of the example in 5 7 we found tha t  if g" = 0 a t  the initial point 
R" = 0 ,  the existence theorem did not a p p l ~ .  In view of the general theory presented 
in 8 12, 8 1 3  let  us now see whether g" = 0 over x1 = 0 will define x' = 0 as 
a characteristic surface Ca. In  other words in the notation of 7, if u = 0 is it possible 
to solve the combined system (1)-(20) and (7c) for L, (= 20) derivatives agap, yB/axl:J 
Consider the matrix of the coefficients of the derivatives of u,, . . . , 146 with respect to X I  

in the combined system (1)-(20) and (7 c); since all sixth order determinants in this matrix 
contain u as a factor, i t  is impossible to solve the system (1)-(20) and (7 c) for 20 (= L,) 
derivatives of independent components g UP,  l.8 

with respect to  rl. Hence a surface @ = 0 
such that  

over = 0 for sonic integral g , ~ ( x )  n ~ u s t  be a characteristic surface for the system (7c). 
Let us assume rc = 0 over x1 = 0 and 

a t  the point xi = 0 on t,his surface. -1s a consequellce of these assumptions me have 

a t  xi = 0. The determinant of the columns 5 ,  (;, i,8 in Table I is 

Hence we shall drop the equations 

from the system (7c), thus making rows 5-10 in Table I1 the coefficients of the derivativeh 
in the equations Xupl = 0 which remain in (7 c). In Table 11 the determinant 

formed from rows 5 , 6 ,7,8 ,  9 , 1 0  and columns 1 , 2 , 3 , 4 , 1 1 , 1 2  is equal to 4n2(a2y-2abd+V$) 
disregarding algebraic sign: hereafter a similar notation for determinants mill he used 
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without further explanation. Hence let us solve the remaining equations Xagl = 0 for 
the derivatives of the unknown ul , 242, us ,u 4 ,  Va, Ve with respect to xl. The determinant 
in Table 11, 

I 1 2 3 4 5 6 7 8 9 1 0  

11 2 3 4 7 8 9 10 11 12  


disregarding sign; for expanding in terms of second order minors in rows 5, 6 the above 
determinant reduces to  the product of 4 a s  and the eighth order determinant which was 
encountered in 5 7. Hence we can solve equations XaSE= 0 where E = 2, 3, 4 for 
darivatives of the unknowns ul  ,us,  ua ,u,, vl , v2, v8,  r , ,  vs , 'tie with respect to xs. Hence 
we have the following systems of equations 

""Iax4 = Z m + Z w + Z x + + .a wa IL a v  

where i =1,2, 3, 4; j=5, 6 ;  k =1,. . ., 6. The derivatives in the right members of 
each of the above systems (19 a)-(19 d) involve unknowns not appearing in the left members 
of that  system. 

In accordance with the above theory let us now solve the combined systems (19a)-(19~1) 
and (1)-(20) for derivatives in such a manner tha t  the resulting system will satisfy the 
conditions for a normal system. Eliminate the left members of equations (1)-(4) and 
(7)-(14) from the right members of (19 a) and use (19b), (19c) and (19 d) to eliminate their 
left members from the right of the resulting system; denote the system which results by 8 .  
Then use equations (15)-(20) to eliminate their left members from the right of (19b) and %. 
The equation (15) contains the left member a v e / a e 2  of an equation (19b) in its right member. 
However the determinant 

1 1 2 3 4 5 6 7  8 
11 2 3 4 7 8 9 10 11 15 

in Table II vanishes identically and hence the derivative azu1/ax2 does not appear on the 
right of the equation (19b) having av , /axa  for i ts  left member; hence the equation (19b) 
in question can be used to  eliminate its left member from the remaining equations (19b) 
and %. Thus we can eliminate the left members of (19c) and (19d) from the right of 
(19b) and 8 giving the systems B and A respectively. Then use A ,  B, (19c), (19d) to 
eliminate their left members from the right of equations (1)-(4) and (7)-(20) and we have 
the combined system consisting of (1)-(4), (7)-(20) and (19a)-(19d), in solved form. 
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respectively. Then (5') and (6') call be used to eliminate their left meulbers from the 
solved form of (1)-(4), (7)-(20) and (19a)-(19d). The resulting equations will be denoted 
by (1')-(4'), (7')-(20') and (19a')-(19d') respectively. Thus we have for t,hese equations 

(19a') 

(19 b') 

(19 c') 

a ul,...,PC, -
(19 (1') a z 4  {vl. ...;%) - . . a :  

Vl, -..,v4 a ( u s ,  + acu7,us) + ...! 
( ~ ~ ) - ( 1 4 ~ )  a a 

W , .  "' ?  If'e 

Together with ahove systern we must consider the equations 
1' =1;. . ., 4 

a s u p  -(19 i) 
azr  Sea I'& +Sija 

a lft,,, a,.,<,
(19 j) aza - aX" +* 

a = I  , ...,v8 

where the notatiou 
yto-r;,, 
yll -r;*, rA, 
jj12 w r;8I I ri3,-r:4, ri4, r&, rA 

is used (see $ 4). In addition, differentiating the condition y "  = O with respect to 2, 
x3,x4,we have 

a9 I 1  
- la 16 

t 19k) ---,r)y-!I 1';). = 0 (Y = 2,  3 , 4 ) ;azr  
also differentiating 8 second time, we have 

If we expand the equations (191) and then eliminate tlie left members of (19j), we find 
that thwe six equations can be solved to obtaiu 
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where the 2 denotes a linear form ill parametric derivatives o f  (19 j), and 1. 2 P for 
any equation o f  this  system. 

Let  us  now assign canonical cotes hi the  following manner: 

In  addition we  shall take all six cotes o f  the gap t o  be zero and the  first five cotes ot 

the as zero; the sixth cote o f  the  f"9 occurring i n  the le f t  members o f  ( 19m)  will be 
taken t o  be I and the sixth cote o f  all other 1"s will be given the value zero. 

W i t h  the  above assignment o f  cotes i t  is seen that the  equations (1')-(20'), (19a')-(19d1), 
( 1 9 i )  and (191) constitute the  system R and (19m)  the system S o f  a nonnal system. 
T h e  arbitrary data predicted b y  the form o f  the l e f t  members o f  this normal system can 
be represented by  the following scheme 

265 UG - J ( x l ,  x3,  59 for x2  = 0 ,  

m,t.6 - K ( x 2 ,  x3, x4) for x 1  = 0 ,  

W I ,  a * . ,  wg - L ( x J ,  x l )  for ti= x2 = 0 ,  
(1911) rl: - P ( x ~ ,x ~ ,x ~ ,x ~ ) ,  

l';?,I $  - Q ( x 2 , 5 ' ,  J I )  = O ,  

, l - R ( z 3 , s 3  for x1 = x i  = 0 ,  

rh, ri4, IG , riA- s (x4 )  for xi = = X J  = 0 ,  

where i = 1 ,  . . . . 4 ;  j = 2 ,  3 ,  4 .  T h e  remaining unknowns, namely 

can take  on arbitrary values at the point x' = 0 .  That  the  system in  question is com-
pletely integrable will be proved i n  $ 20 and hence we  can state the  following 

EXISTENCETHEOREM:Let the arbitrary functions represented by  (1911) and the arbi- 
t rary  constants (190) be assigned subject to the condition that the init ial  values at 
xi = 0 are such that (1)  they satisfy equations (7 b ) ,  (2)  the determinant 1 @,B)o / does not 
vanish, (3)  the inequalities (19.4) are satisfied, (4)  the quanti ty (g l l )o  i s  equal to zero, 
and (5) the equations ( 1 9 k )  are satisjed. Then them ezists one, and only one, set o f  
functions g011( x )  = gp,(x) analytic in the neighborl~ood o f  x' = 0 which gives rise to 
the given j'unctions indicated by (19 n) (1nd the given initial values o f  the constants (190).  
and which constitutes a set o f  integrals o f  eqztations ( 7 b )  for  roltich the sicrface x' = 0 
is a characte~istic surface. 

I t  can be observed that the  inequalities (19.4) impose no restriction on the integrals 
! laB(z) since a coordinate system can always be selected i n  which the  equation o f  the 
characteristic surface C8 is x 1  = 0 and the  inequalities (19.4) are satisfied. T h e  above 
existence theorem mill give all the  characteristic surfaces Ca. since i f  the  equation (19.3) 
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is not satisfied over - O we will be able to  find a coordinate system in which the 
qystem (7c) ,  (7d) ,  (19i) and (191) can be put in regular form a t  some point P on (D =0 .  

If a surface = x2 = 0 ib to  be a two dimensional characteristic surface C,, either 
one or both of the quantities glL and gI1 gZ2-gle 912 must vanish over x 1  = x2 = 0 .  If 
this were not the case we could find a coordinate system by a transformation of the type 
(19.12) for n = 2 in which the quantity (21) in 5 7 would not be zero a t  some point P 
on = .c2 = 0 ,  and hence the system could be put in regular form in the neighbor-
hood of the point P. Let us divide the discussion into four different cases. 

Case I. a =0  for x 1  =x' =0 ;  u,d -aB* 0  at xi =0 .  
CaseII. n = B = O  for x ' = x B = O ;  a * O  at xi=O. 
In these cases i t  is evident tha t  an existence theorem could be stated which would 

he of the same form as the existence theorem for the three dimensional characteristic 
surface Cs except that  there would be additional arbitrariness in the arbitrary data 
corresponding to  the functions TU The surface x 1=x2= 0 is a two dimensionalBr ' 
characteristic surface Ca of type 1. 

CaseLU. a l S - a 2 = 0  for x l = x l d = O ;  n * O  at x i = O .  In  this case i t  is easily 
seen that a coordinate transformation of the type (12.12) can be made so tha t  the deter- 
minant 

does not vanish a t  some point P on x 1=x" 0 .  Since a t  the point P the determinant 
formed from Table 11, 

disregarding sign, i t  is easily seen that the system can be put into regular form a t  the 
point P on Z1=22 =0 and hence the surface a' =x2= 0 is not a characteristic sur-
face C2.  

CaseIV. a = n , d - a Y = O  f o r x 1 = x 2 = 0 ;  , 4 f O a t x ' = O .  Evidentlythesurface 
.cl =x2=0 is a characteristic surface C2 for Case N but the detailed treatment of the 
corresponding existence theorem will be omitted. 

Case V. n =,d = a =0  for x 1  =x2=0 .  From the form of Table I1 and the equations 
11)-(20) i t  is seen that  for this case i t  is impossible to solve for either of the derivatives 
a u,/a x 1  and a ullax2 and hence the system cannot be replaced by a normal system having 
arbitrary data of the form that  occurs in Cases I and 11. 

W e  shall consider in detail the existence theorem for Case V. Let us suppose that 

a t  xi =0 ;  these conditions can always be obtained by a transformation of the allowed 
type (12.12). Then from 

(19,) Table,: - 1 6 b 2 ( c d - b e ) ,  over x ' = x 2 = 0 ,1 ;  : I =  

1 2 3 4 5 6  7
(19s)  Table II: ( ' l o /  = 3 2 b 5 e ( c d - b e ) ' .  

3 4 5 8 9 10 15 16 17 18 
over xi  =x2=0 
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no regard being paid to algebraic sign in (19r) and (19s). From (19p) i t  follows that  
the above three determinants do not vanish a t  xi= 0 .  Since the determinant ( l9q)  does 
not vanish, we can drop equations 

x281 = 0 ,  x241 = 0 ,  &sl = 0 ,  x841= 0 

from the system (7c). W e  can solve the remaining equations Xual =0 for the derivatives 
of the unknowns u s ,  u8 , u 4 ,  us  v8, PUJ with respect to x l ,  since the determinant (19r) does 
not vanish a t  xi =0 .  Since the  determinant (19s) does not vanish a t  xf=0,  we can 
solve the remaining equations (7 c) for derivatives of the unknowns 148, u4 ,  u s ,  un ,vs , v4, 
x l ,  . . .,w4 with respect to x2 ,  x3,  x4. Arranging the equations so obtained in a form 
corresponding to (19a)-(19d), we (19,9), (19y), shall denote them for the moment by ( 1 9 ~ ) ~  
(196) respectively. By a process similar to tha t  used above the equations (19~)-(196) 
can be combined with the equations (I), (2), (4)-(lo), (12)-(15), (19), (20) so as to obtain 
a system completely solved for the derivatives in the left members of the above equations 
(19a)-(20), where equation (15) is written 

It is to be noticed tha t  the equation (191) having awl/axa for left member does not contain 
a v e / a x a  on the right and hence the above elimination is possible. 

Now consider the equations 

Consider also the following equations selected from (19 a)-(19 y )  
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The t e r m  with coefficients which vanish over x1= xy= 0 have not been written tlown 
in these equations. Hence equation (3) can be written 

Then making use of the solved form of equations (19a)-(19 d') and (I), (2), (4)-(lo), 
(12)-(15), (19), (20) we can put  the above equations (18), (I?), (16), ( l l) ,  (19t) in the 
following form 

a v, b e f c d  av8 azos
(16') 7= 1 a x  T ) m + ~ w +a . e . ;  

These equations can be used to eliminate their left members from the right of the above 
solved form of the remaining equations (19a)-(20) and we can write the equations so 
obtained in the form: 

where again the terms with coefficients which vanish over xt=za=0 have not been 
written down. 

Over the surface x1=sa= 0 ,  we have 

(19 u) .(/I1 ,g l Y  = g*2 ,0 
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by hypothesis; hence 
a .91uz'. -. -gaGr;E -Y G 2 J ~ F 1- 0 ,  (,u, v =:~= 1 , 2 :  a - 3,  4; ," s ,,)

( 1 9 ~ )  <lo -8 :re 

over x' = xz= 0 .  Also over a'= x' = 0, nrc have 

Now eliminate the left niembers of (19 j) from the above system (19w); the system resultillg 
from (19w) with the exception of that equation which results from the last set of equations 
(19w) where o = 8= 3 ,  can be solved so as to obtain 

(19x1 a x 4  --: 2 c g )  rr. 21,(g)w.+ ( i = = = l ,  

when account is takeu of (1Yp); in these equations the (g) denotes a rational expression 
in the components g,! and the last terms are quadratic in the r&. Elimination of the 
left members of (19x) from the equation corresponding to o = 8= 3 which was above 
excluded, gives 
( 1 9 ~ )  206 r f ,= 2(8) 
in consequence of which (19 x)  becomes 

Differentiating (19y) with respect to x3, x4 and eliminating the left members of (19i), 
(19j), and (192) from the resulting equations, we obtain 

where the right member is a rational expressioll in the quantities indicated. 
Cotes will be assigned to the independent variables z, the unknowns u, , . . . we, the 

.gap and the rtUas in the above treatment of the 3-dimensional characteristic surface Cs 
with the exception of the sixth cotes of the unknowns for which we shall make the 
following assignments. 

1 --II d a ,  U4 1 us 
" u. 

I 
v . , u . , 4  I 

1 W l ,  . - - , w 4  1 

' 8-- : 
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The equation (19ut)which contains the derivative a ue/a x1 in its left member when 
written more explicitly, is of the form: 

Hence using this equation and equations (3'),  (16'), (15') we can construct two integrability 
conditions of the form 

The condition tha t  we be able to solve for the derivative a'2ve/ax2ax3is  tha t  3 (be - cd)/2ba 
be different from zero. 

The system R composed of (19a1)-(19d1),(1')-(20J), (19i), (19j), (19B) and the system S 
composed of (19z), (19A) constitute a normal system which will be shown to be completely 
integrable in 5 20. The strongly complete set  of monomials for the ullknown ul is s i x 3  
and for va is  x1  and xe x3; all other sets of monomials consist of a single variable. The 
calculation of the complementary sets and their multipliers shows that  the data involving 
arbitrary functions can be represented by the following scheme: 

~1 , W I  - P ( x 2 , x 3 , x 4 )  for xi = 0 ,  
a ~ ~ / a ~ l , u ~  for x3 =- J Q ( x ~ , x ~ , x ~ )  0 ,  
zc,,v8,ws - R ( x 3 , x 4 )  f o r x l = x a = O .  

~ V ~ / ~ X ~ , V ~ , V ,  f o r x 1 = x 3 = 0 ,- J s ( x 2 , x 4 )  

vtl N T (x4)  for x1  = xa = x3 = 0 ,
(19C) r:, - K ( x l )  ...,23 


FA ,  I% N L ( % ~ , x ~ , x ' )  =
for X 1  0 ,  
~ i ~ , ~ a ' ~ , f / ~  f o r x l = a e = O ,- M ( x ~ , x ~ )  

r:4,r14,ri4,ri4 iv for x 1  = xe =x3 = o 1  
(i = 1 , 2 , 3 , 4 ;  j = 3 , 4 ) .

The unknowns 
7 k .k Ik


(19D) us,  u 4 , ~ 6 ,  W I ,  ~ t ,  4 ~ o , Z s s , I s r , I , r ,, ~ I I ,. . . . g uV Z ,  va, ~ 4 ,  W I ,  ~ , ( k =  1, 2) 

can take on arbitrary values a t  the point x' =0 .  
EXISTENCE Let the arbitrary functions represented by(19C) and the arbitrary THEOREM: 

constants (19D) be assigned subject to the condition that the initial values at x'= 0 are 
such that (1) they satisfy equations (7b), (2) the determinant 1 (gag)o1 does no2 vanish, 
(3) the inequalities (19p) are satisjied, (4) the equations (19u), (19v) and (19y) are satisried. 
Then there exists one, and only one, set of functions gap(x)  = gpa ( x )  analytic in  the 
neighborhood of x' =0 which gives rise to the given functions indicated by (19C) and 
the given initial values (19D), and which constitutes a set of integrals of equations (7b) 
for which the surface x1 = xS= 0 is a characteristic surface Ce. 

It should be observed that  for an arbitrary integral gab (x)  of the field equations (7b), 
a characteristic surface of the type specified by the above existence theorem will not exist; 
characteristic surfaces of this type will only exist for special integrals of the equations (7b). 

An analogous treatment could evidently be made for the characteristic curves Cl. W e  
will however not consider the further treatment of these curves as we believe tha t  the 
above discussion sufficiently illustrates the procedure to be adopted. 
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5 20. Criterium of Complete Integrability. 
The method of establishing complete integrability which was discussed in 

9 9 can be extended to the normal systems which were applied to the treat- 
ment of the characteristic surface problem for an invariantive system of 
partial differential equations. In describing this extension let us consider 
in particular the affine invariantive case for which we have the equations 
(4.3), (4.5), (4.7) and in addition a system of the type (19.2a). The process 
of forming the normal system may necessitate the addition of equations 
obtained by differentiation of the above system; the normal system being 
thus formed, the construction of its conditions of integrability will necessi- 
tate further differentiations. Let us silppose that the construction of the 
above normal system and its conditions of integrability involves D l ,  D,, 
D,, D4 differentiations of the systems (4.3), (4.5), (4.7\, (19.2a) respect- 
ively. Now assume that an upper bound L to the number of conditions 
on the derivatives of the unknowns in the normal system which are im-
posed by (4.31, (19.2a), and those conditions obtained by D, differentiations 
of (4.3) and by D4 differentiations of (19.2a), is established in some manner. 
Let us also assume that the integrability conditions taken a t  the point 
x' = 0 involve M derivatives, parametric for the normal system. Then 
if it is known that for an unrestricted affine space there are L+M de-
rivatives of the sort appearing in the integrability conditions which can 
have arbitrary values at  a point P of space, the ilormal system must be 
completely integrable. If this were not the case there would be less than 
M arbitrary derivatives at  the point xi = 0 taking account of the original 
equations (4.3), (4.5), (4.7), (19.2a) and those conditions obtained from 
them by the above differentiations D ,  and hence there would be less t)han 
L+M arbitrary derivatives for an unrestricted space, contrary to hypo- 
thesis. Analogous remarks apply to the cases of the metric and vector 
invariantive systems. 

Consider for example the normal system which arose in S 19 in the treatment of the 

characteristic surface C, of the invariantive system (7b). I t  can be seen from the form 

of the arbitrary data (19n) and (190) that the integrability conditions of the normal 

system (1')-(20f), (19a')-(19df), (19i), (19 j), and (19m) involve 


K(4,2).  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . or 10 derivatives gp,, 
4 E ( 4 , 2 ) . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 .. lfln, 

4 ~ ( 4 ~ 1 )  4-7 K ( ~ , I )  +11 ~ ( 2 , 1 )+15 ~ ( l , l ) .  .. ,. 74 .. a ylm/a x ~ ,  
(20.1) 4 ~ ( 4 , 2 )  +7K (3,2) +11~ ( 2 , 2 ) +  15 K(I,z). .. ,, 130 .. a=y,n,/ax!1ax7'. 

K(4,2)K(4,2)-4K(4,3) . . . . . . . . . . . . . . . . . .  ,, 20 .. BJ,, 

4K(3,1)+6K(.L,l) . . . . . . . . . . . . . . . . . . . . . . . .  ,, 24 .. aB,,/a#, 

4K(3,2)+6K(2,'2) . . . . . . . . . . . . . . . . . . . . . . . .  ., 42 , a * B ~ ~ / a x ~ a x ~ '  


or a total of 340 parametric derivatives at the point 3ci =0;  this number 340 is therefore 

the number M in the above discussion. At a point P of an unrestricted space there are 
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K(4 ,2 )  . . . . . . . . . . . . . . . . . . . . . . . or 10 components g P , ,  


4 ~ ( 4 , 2 ). . . . . . . . . . . . . . . . . . . . . . . . .  40 .. rLpl 

4 K ( 4 , 3 )  . . . . . . . . . . . . . . . . . . . . . . .  80 r b p y ,  


(20.2) 	 4 K (4,4) . . . . . . . . . . . . . . . . . . . . . . .  ., 140 .. l'Apy8, 

K(4 ,2 )  K ( 4 , 2 ) - 4 K ( 4 , 3 )  . . . . . . . . .  20 .. $'a/?, yd', 

K ( 4 1 2 )  K ( 4 , 3 ) - 4 K ( 4 1 4 )  . . . . . . .  ,, 60 ,, gu@, y8e, 


X ( 4 , 2 ) K ( 4 , 4 ) - 4 K ( 4 , 5 ). . . . . . .  . , I 2 6  , gap,y8el.c 


or a total of 476 components which can take on arbitrary values. When the quantities 
of the type (20.1) are known at  the point xi= the components (20.2) are determined 
at  x4 = 0 ;  conversely when the quantities of the type (20.2) are known at  x' = 0 ,  the 
quantities of the type (20.1) are determined at  this point. Hence it follows that there 
are 476 quantities of the type (20.1) which can take on arbitrary values a t  a point in 
the unrestricted space.43 The maximum number of conditions that can be obtained from 
the system (7b) by a single differentiation is 36 and by two differentiations is 84, account 
being taken of the identities (712). By two differentiations of gll = 0 over x' = 0 ,  we 
obtain 6 conditions and by three differentiations, we obtain 10 conditions. Hence the 
upper bound L is 36 +84 +6 + 10 or 136 and the number L +M is equal to 136 +340 
or 476 which was shown above to be equal to the number of arbitrary derivatives of the 
type (20.1) at  a point of the unrestricted space. I t  follows therefore that the normal 
system composed of (1')-(2O1), (19a1)-(19d1), (19i), (19j) and (19m) is completely inte-
grable. 
d similar argument applies in the case of the existence theorems mentioned in connection 

with Cases I and I1 in 5 19. The condition g t l=0 over x1=0 is simply replaced by 
the condition g" =0 over x 1=xP=0 in Case 1 and by gll =g9' =O over x1=X' =0 
in Case 11. Obvious changes in the above numbers would then result. 

In the normal system treated under Case V the above argument must be modified to 
a larger extent since second derivatives appear in the system. The integrability conditions 
a t  x4=0 when expressed in terms of parametric derivatives will involve the following 

K(4,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . or 10 derivatives gP,,. 
411(4,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,. 40 .. J / ~ , ,  

U ( 4 , l )f 8K(3,1)+10K(2,1)+12K(l,l) 72 a ~ ~ ~ ~ a $ ,... ,, 	 ,, 

or a total of 927 =M parametric derivatives. To the 476 components in (20.2) which can 
have arbitrary values a t  a point P of space, we must add the 

42 loc. cit. Ann. (I) ,  p. 720. 

43 ZOC. cit. Ann. ( I ) ,  p. 690. 
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which makes a total of 1260 components; hence there are 1260 derivatives of the type (20.3) 
which can take on arbitrary values a t  a point P of the unrestricted space. The maximum 
number of conditions imposed by the equations (7b) is 3 6 + 8 4 f  160 or 280 since now 
three differentiations are allowed. From the equations g" =gl" g2?=0 over a'=a" 
=0 we obtain a maxinium of 8 +12+15+1 8  or 53  conditions. Hence L =280 +53 or 
333 and L +M is equal to the above number 1260. The system is therefore completely 
integrable. 

8 2 1. A Geometrical Interpretation. 
Consider the problem treated in 5 19, namely that of determining 

a solution vk (x) of the system (2.1) such that the surface x' =.. =xU 
= 0 is a characteristic surface Ca-U for the integral vk (2). Let us suppose 
that the combined system (2.1) and (19.1) has been put into a completely 
integrable normal form with the canonical assignment of cotes. 

Let us first consider the case of an (n -1)-dimensional characteristic 
surface &-I. Suppose that some one of the functions belonging to the 
arbitrary data, let us say t,b(x), is defined over a surface xal = = . =xav 
= 0 where none of the ni are equal to 1. Since the assignment of cotes 
is canonical we can coufine ourselves to differentiations with respect to 
x" x3, . . . , xn in determining the power series expansions of the integrals 
vk (x) over the surface x' = 0.  Moreover if we differentiate with respect 
to x1 all equations of the system for which this differentiation is possible, 
we can thereafter confine ourselves to differentiations with respect to 
x2,. . . . x" so as  to determine over the surface x' = 0 ,  all first derivatives 
of the integrals uk (x). Now take the function q ( x )  of the form 

where the functions qi (x) are independent of z' and p -2 is equal to 
the maximum order of any derivative appearing in the normal system. 
From what we have just said regarding the determination of the integrals 
l;k (5)and their first derivatives over the surface x1= 0 i t  is clear that 
the values of these quantities over x1 = 0 will be independent of the 
choice of the above functions q p ,  qp+l,. . . .  Thus there exists an infinite 
number of sets of different integrals ck (x)such that each set of integrals 
and their first derivatives assume the same values over the characteristic 
surface x1 = 0 .  

In particular the above discussion applies when the function q (x) is defined 
over the entire x-space; if, however, ?b(x) is defined only over a subspace 
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then the completely arbitrary functions, i, e, those functions defined over 
the entire x-space, which are part of the arbitrary data, mill be the same 
for each of the above sets of integrals vk (x). Under this latter condition, 
i. e. the definite assignment of data defined over the entire x-space, the 
values of the vk (x) and their first derivatives over the surface x1 = 0 
will uniquely determine a solution vk (x) if this surface is not a characteristic 
surface. 

If the arbitrary data of a normal system obtained in connect,ion mith 
an n -a dimensional characteristic surface problem contains a function 
which is defined over a surface xbl = . . . - x r = O ,-

8 where y 2  or and a t  
least one of the indices bi >a ,  then we can have an infinite number of sets 
of integrals vk (x)such that each set of integrals and their first derivatives 
assume the same values over the characteristic surface x i  =. . . =xu =0. 
In particular the arbitrary data defined over the entire x-space and all 
surfaces of dimensionality greater than n -a, may be the same for each 
of the above sets of integrals vk (x). Under these conditions the integrals 
vk (x) would be determined uniquely if the surface x1 = . . . -- zn= 0 
were not a characteristic surface. Analogous remarks apply to the in-
sariantive systems. 

The examples of j3 19 will serve to illustrate the above remarks. In the case of the 
(n  -1)-dimensional characteristic surface defined by equations (19.3) the arbitrary data 
(19n) contains a function J ( x 1 x 3 x 4 )defined over x 2=0 so that the above interpretation 
is possible. The existence theorems mentioned in Case I and Case I1 will however not 
permit the corresponding interpretation for the (n - 2)-dimensional characteristic surface. 
For Case V we have an arbitrary function S (x2 ,r 4 )  defined over x' = x3 = 0 so tha t  
the interpretation applies. 




