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§ 1. Introduction.

It is the object of this paper to treat in a general and systematic manner
the existence theorems for systems of partial differential equations of first
order (Part I), and to study their characteristic surfaces (Part IT). Our work
includes in particular a detailed treatment of the systems of invariantive
type and is so developed as to bring into relationship the methods used
in a series of previous papers by one of us® and a most interesting paper
by Cartan® on this same subject.

! Received, June 1, 1932.
2T.Y. Thomas, Determination of affine and metric spaces by their differential invariants.
Math. Ann., 101 (1929), pp. 713-728. The existence theorems in the problem of the determin-
ation of affine and metric spaces by their differential invariants. Amer. Jour. Math.,
1
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The work in Part IT is an extension of the treatment of characteristic
surfaces in a series of notes in the Proceedings of the National Academy
of Sciences* and is believed to be the first adequate general treatment of
this problem. The method used in proving the existence theorems is
patterned after Riquier’s® theory of orthonomic systems. This has neces-
sitated the development of a theory of sets of monomials which will apply
to a system of differential equations, part of which hold only over a sub-
space; this theory contains as a special case the theory presented by Janet.®

Throughout the paper illustrative examples have been given in fine print.
In particular we have given for the first time a detailed study of the
characteristic surfaces and the associated existence theorems for Einstein’s
gravitational equations in free space.’

Part 1.
GENERAL EXISTENCE THEOREMS.
§ 2. Regular Systems of Differential Equations.

Consider a system of L partial differential equations, linear and of the
first order in «w dependent variables v, - - -, v, and » independent variables
x', -+ -, 2™ namely

W

@1) > el G=1,---, ).

=1 d=) R da”

The coefficients af, and ¢, are functions of x* and v,. It is assumed also
that the left members of (2.1) are linearly independent in the derivatives
of the dependent variables vj.

Let us suppose that there are L, < L equations (2.1) which are in-
dependent in the derivatives dvi/0x' and, as the integer L, is conceivably

52 (1930), pp.225-250. Invariantive systems of partial differential equations, Ann. of
Math. (2), 31 (1930), pp. 687-713. Space structure as a boundary value problem. Ann.
of Math. (2), 31 (1930), pp. 714-726. In order to shorten the work references will be
made to the above papers frequently. The designation M., Jour., Ann. (1), Ann. (2) res-
pectively will be used when reference is made to the above papers.

3 Klie Cartan, Sur la théorie des systémes en involution et ses applications d la Relativité.
Bull. Sc. Math., 59 (1931), pp. 88-118.

4 T.Y. Thomas, On the Unified Field Theory, Proc. Nat. Acad. Sciences; 16 (1930),
Notes I and II, pp. 761-766, 830-835; 17 (1931), Notes II[-VI, pp. 48-58, 111-119, 199-210,
325-329. These will be referred to as Proc. Note I, etc.

5 Riquier, Les systémes d’équations aux dérivées partielles, (1910).

¢ Maurice Janet, Sur les systémes d’équations aux dérivées partielles, Journ. de Math. (8),
3 (1920), pp. 656-144.

" The differential equations defining the 3-dimensional characteristic surfaces for Einstein's
gravitational equations have been given by T. Levi-Civita, Caratteristiche e bicaratteristiche
delle equazioni gravitazionali di Einstein, Rend. Accad. Lincei, (6), 11 (1930), pp. 1-11;
ibid. pp. 113-121.
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dependent on the codrdinate system (x), let us suppose that codrdinates =*
have been selected for which L, will have its maximum value. We can
then divide our equations into two sets: a set S; consisting of L, equations
which can be solved for L, of the derivatives dvx/9x' and a set S; from
which these derivatives can be eliminated. Now suppose that the set of
equations S, is independent in L of the derivatives dwvx/92® and in fact
that coordinates z* are selected so that L, has its maximum possible
value, under the restriction that the above integer I, is unchanged. This
makes it possible to divide the set S; into two sets: S and Ss* such
that S5, consisting of L, equations, can be solved for Ly of the derivatives
dvx/0x® and such that these latter derivatives can be eliminated entirely
from the set S;. Proceeding in this way we arrive at a coordinate system
(which is obviously one of an infinity of such coérdinate systems) for
which our system of equations (2.1) can be put into the form

n
« Ove | ﬁ=1,"‘,")
(2.2) Zbikﬂ__axa +eg =0, (2'21,...,];#’

where bis = 0 if e<<B. A system of coordinates z* with respect to
which (2.1) can be put into the form (2.2) in which the integers Lg are
characterized by the above mentioned property, is said to be non-singular;
otherwise the codrdinate system is said to be singular.

If (2.1) is written in the form

N e vk =1,---,n
kglo;lbmﬂa—w;#*cm—oy (2-:1’“.,!7[3),

where bgg = 0 if «<<f, with respect to a singular codrdinate system,
then J,<< L, or if J;= L; for i=1, ..., r then Jr41<< L.y1. Obviously
the inequality » < m —1 is here satisfied.

Now assume a non-singular choice of independent variables 2 and make

the transformation
(2.3) x° = 2%+ mZaT,

where the m¢ are constants. If the dependent variables v, transform as
scalars the law of transformation of their derivatives is given by

ovp __ Owux s OUk
2% oge T M pze

and hence equations (2.2) become

0 Bk

n
(2.4) ,;1 gl (Vg -+ mE V) 5= + ;3 = O.
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For a fixed value « belonging to the set 1,--.,» —1 assume that mZ =0
except when ¢ = a«. Then if the constants mZ are sufficiently small
equations (2.4) for # = « must be linearly independent with respect to
the derivatives 8v,/02% For the above choice of the constants mZ the
coefficients of the derivatives dwi/dzr for y =1,...,a—1, in the
equations (2.4) will be equal to the coefficients of the corresponding
derivatives duvx/0x7 in the system (2.2). Hence the set of forms,

2 mg bes : ;’Z (8>ea, & not summed),

k=1
will be linearly dependent on the forms

vk
2 (Ot MG b3) Yol (e not summed),

since otherwise the original choice of variables x* would be singular contrary
to hypothesis. Or

(25)  mibg, = 2 A58 (Wt mebs,)  (>a and e not summed).

Now take mg = m, and m¢ = 0 otherwise. Then (2.5) gives
La
mbf.’kﬂ ; lzg e mbh,) (B>e, ¢ and A not summed).

Hence, if we let m approach zero, we have

La ~ ) —
B « e ﬂ/“’z—ly""Lﬂ)
(2.6) bikg —J;: A bjke ( «, 8 not summed |’

where

i [1%‘;%]
= lim .
Uﬂ m—>o0L M
More generally, take m$ = m for a single index y = 8 and ml =0
otherwise. Then (2.5) gives

m I),kp = 2 }’Jﬂ (bﬂm—}-m bﬂw)’
and this becomes

La
(2.7 Yoy = }_,‘1 233 bjia (r =2 8>u),
‘}=

when m is allowed to approach zero.

It is clear that
Lz Ly =2 Ly -+ = La,

otherwise a transformation of the independent variables 2%, producing
merely a permutation of the indices of these variables, would show that
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the original choice of the variables z* was singular, contrary to hypo-
thesis.
Now suppose that equations (2.2) for 8=1 can be solved for the derivatives

31); 81)2 ale

or in other words the matrix of the quantities b}kl, where j, k=1, ---, L,
is non-singular. Put « =1, # =2 in (2.6) and consider the matrix of
the quantities A} appearing in these equations. If this matrix is of rank R,
then L, < R; this follows from a theorem in Algebra® and the fact that
the matrix of the quantities bie is of rank L;. Hence R = L, since R
can obviously not be greater than L,. It then follows from a second
theorem in Algebra® and (2.6) that the matrix of the quantities b for
i=1,.---,Ly and k=1,..., L, is of rank L,. Hence equations (2.2)
for 8 = 2 can be solved for the derivatives

avl aUL’
a3’ 7 ot
after a suitable choice of the indices of the dependent variables vx has
been made. By a continuation of this process it is evident that, if we
change the notation for the independent variables vx in accordance with

the following scheme:

Vio o~ le+ly ey Vwy
Uit ~ vL,-{-ly tt le’
Vin—1°7% an+1, C oty an-l’
Vin ~ Uy, ct UL"’
equations (2.2) can be written
k=1 N
0 Vik ov . ’ !
2.8 _ = @, v 2 2 i =1 ., Wk
(2.8) o =2 (1, 0) S ¥, yoe e
a=1,.-,k
where
we = w — L,
0, - L] - Lz,
wy = Ly — Ls,
(2.9) e e e e

8 See, for example, Dickson: Modern Algebraic Theories, p. 51.
9 Dickson, loc. cit., p. 51.
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and 8 X «, 8>¢. The coefficients (z, v) in (2.8) depend upon the quantities
z and vrs, and the ¥ denotes terms containing no derivatives of the uys;
in the sequel the ¥ will be used to denote terms of lower order than
those written down explicitly. A system of the form (2.8) will be said to
be regular.®

Addition of corresponding members of (2.9) gives

w = wy+w + - 4 wn.

§ 3. Extension to Tensor Differential Equations.

The results of § 2 can be extended to systems of equations the left
members of which are linear in the first derivatives of the components of
a tensor 7'. Thus consider

3.1) e aTL ! 1x =0 =1 L
. w--q —_Bx“ — ) 1 = PN y

where the coefficients D are functions of the independent variables x® and
the unknowns 7'; the same is true of the ¥ terms.

With respect to a non-singular coordinate system (defined as in § 2)
equations (3.1) can be written

(3.2) Dy s

81 =1, )
L px = (=)

where D =0 if «<<#8. Under the transformation (2.3) the derivatives of
the components of the tensor 7' transform according to the equations

aThy 8 Te (6,,+ )aa? 8z 9ar 0 e
dxz*  8zC dar 9x° 9z® axl’

In the coordinate system (x) equations (3.2) therefore take the form

« 0
(3.3) (D s+ mg Dl b,e) L

+¥=0
with D b,g =0 if e<<B. Letting « be a particular number of the set
L, -+, »—1 and assuming that m? = 0 if @ # 7, we obtain by an argument
analogous to that employed in § 2 that

Ly

(3.4) mg Diy. "5 = 2 58 (Dbas %+ mé D %) (B>e, @ not summed)
J=

"WWithout the restriction #= «, the system (2.8) is called regular and immediate
by Méray and Riquier Sur la convergence des développements des intégrales ordinaires,
Amn. Ec. Norm. Sup., (3), 7, (1890), p. 44.
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as a result of the assumption that the original coordinate system (z) is
non-singular. Then putting m = m for a single y = # and m¢= 0 other-
wise, we obtain, on allowing m to approach zero, that

(3.5) Dip. s = 2 4 Dip.lga (r=z8>a).

If all the components 77..;' are independent they can be represented
by vx and the system (3.2) together with (3.5) can be written

ov ﬂ:l,...,n
36) 2 b g + i3 = 0 (z'= 1, L,?z)’
3.7 bikp = 21;;,'/; bjka (rz8>ea),
J

where bixg = 0 if «<C8. Suppose, however, that the components 77}
satisfy linear relations of the form

(3.8) 2Tl = o,

where the indices k-.-1, m ---n are obtainable from p---¢, »-.-s by
permutations. If, in this case, vy is used to denote the independent com-
ponents TF..;7 when account is taken of (3.8), equations (3.6) and (3.7)
will likewise apply. On the basis of the discussion in § 2 the system (3.2)
can then be replaced by a system of equations in the regular form (2.8).

§4. Application to Invariantive Systems. Affine and Metric Cases.
Consider a system of partial, differential equations of the form

ar It
1) I"t ap . af —_
@D T}, 3 ( b ar s 0a’ o

where the 7”s are the components of an absolute or relative tensor in-
variant of weight W and the Iz are components of affine connection.
The equations (4.1) will be assumed linear in the second derivatives of
the I'eg and as indicated, to depend on the I'es and their first derivatives.
Along with this system consider

0Jep 9® Jup 8° gup
5 7 d~ el — 07
axr dx? ox oxr aa? dx

62 1 o

where the 7’s are now tensor invariants linear in the third derivatives
of the components ges of the fundamental metric tensor and depending on
the components ges themselves together with their first and second derivatives.
In particular (4.1) or (4.2) may consist of a single equation or of several
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equations in which the left members are scalar invariants.'* The system (4.1)
is completely equivalent to one of the form

(4.3) 3 e (g 200 ”"’ + ¥ =

where the left members are again components of a temsor or scalar in-
variant. The system is linear in first derivatives of the components A:;‘y,;

of the first normal tensor and the coefficients are functions of A;,,J.
Similarly (4.2) can be replaced by a system of the form

.qaﬂ, yd + ¥ =

(4.4) 2 T Py e (Qaﬂa Yap, yd‘)
linear in the first derivatives of the components g, g,y 0f the first metric
normal tensor with coefficients which are functions of 9ap,yo and the
components g,z of the fundamental metric tensor. In the system (4.3)

the ¥ terms depend on the components Ay, and I'g,; in (4.4) the ¥ terms
depend On gos, gup ys and I, where the components Ig, denote the
Christoffel symbols for this latter case. In addition to the conditions (4.3)
on the derivatives of the components A;;,J there exists a system of identical
relations

k=1,---, n—2

2 A - Bqu 7 1, -, A
(4.5) 3 2° -—2 +x a= 1, k
I<re

in which the summation > denotes a linear form in the derivatives
BAgﬁ/ 82" with constant coefficients. Equations (4.5) express the con-

ditions that the quantities A;,,J should be components of a normal tensor.!2
We suppose (4.3) to consist of N independent equations; certain of

1T, Y.Thomas and A.D.Michal, Differential invariants of affinely connected manifolds;
Ann. of Math., (2), 28 (1927), p. 196; also ibid., (2), 28 (1927), p. 631.

12 In the former treatment, loc. cit. Jour. p. 246, the inequality q <k is established
and used in place of the inequality » > e appearing in (4.5). To establish this latter
inequality we proceed as follows: The system (6.2) Jour. can be written

0djue _ 0Ajg 2 0Ajpy 1 DAy 1 0dle 1 04
8 af 9 x* 3 pa* 3 3aF 3 9a 3 84/
where ¢« = u+1; k>>e>g; j <k. The component A;:kﬂ for particular values of the
indices j, k, e, 8 belongs to the group Gﬁ—ﬁ since ¢ > 8+ 1 the first derivative on the

right of this particular equation (a) is not the left member of any equation (a). In the
previous paper it is shown that A}p“ and A:x,sj contribute components to the groups

(a)
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these equations may, however, be dependent on the remaining equations
of the system (4.3) in consequence of the identities (4.5). These dependent
equations which we will assume to be M in number thus possess the
property that they are satisfied in consequence of (4.5) and the remaining
N— M equations of the system (4.3). If the M dependent equations are
excluded, the remainder together with the system of identities (4.5) can
be put in the form

. . T =1, .- A’t
8Aik o * Bqu kzl, y N
(+6) PP i kS AV o [
<rze

on the basis of the theory of § 3. The notation. A% is used in place
of 4, to denote a different grouping of the independent components Ag;,,;
from that used in (4.5). Together with the system (4.6) we consider the
set of equations'®

m:l,...,n-—-—]
arl" B}’ l :1 DRI ;/
(4.7) Bx’: = 8:,? +2A;q+27uvi’m % :1:i,;:
g<r>k

which define the components 4 in terms of the independent components yn,
of the affine connection I. Since the inequalities ¢<<» =~ e¢ and ¢ <<r >k
are satisfied by the indices of the derivatives in (4.6) and (4.7) respectively,
the system composed of (4.6) and (4.7) is regular.

Gy Gﬁ—l’ G —1 where j < u. Since k exceeds each of the numbers u,8—1, and
j—1 the derivatives with respect to x* which appear on the right of any particular
equation (a) cannot appear on the left of any equation (a). From the form of the pth
and the qth equations, Jour. p. 246, it is seen that the elimination of the derivative
0 A%, /0o’ where j < pu from the right of a particular equation (a) cannot bring in any
derivatives for which r< e« in (4.5). In order to eliminate the last derivative we must
use an equation of the form

(b DA _

390) = ...,

where j<g. To eliminate the derivative on the left of the particular equation (b) from
the right of the corresponding equation (a) we multiply (b) by a factor and add to (a).
From the form of (b) it is seen this could not bring any derivatives into the right of (a)
for which »<e« in (4.5).

A similar discussion can be made for the system Jour. (6.7). The details will be
omitted when we come to the analogous discussion in the treatment of the system (4.4).

In case n = 2 equations (4.5) and Jour. (6.7), i. e. the following equations (4.8), are
satisfied identically, loc. ci¢. Jour., p. 235.

3 Joc. cit. Ann. (2), p. 715.
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A corresponding discussion can be made for the system (4.4). In place
of the set of identities (4.5) we now have a system of the form
m=1,.-..,n—2

thn 3qu { =1,"’, Bm,
(4.8) =250+ 2,
g<<r=k

which expresses the condition that the quantities B;,, constitute the com-
ponents of the second extension of a fundamental metric tensor. The
remarks made in connection with the independence of the equations (4.3)
and (4.5) apply equally well to the systems (4.4) and (4.8). The N —M
independent equations of the system (4.4) together with the equations (4.8)
can be put in the form

I =1,---, Bm

a.B[m * aqu m=1,"‘, n
(4.9) =29, B 24 ¥ c—1 . m |
g<r=e

notation Bj,, being used to denote a regrouping of the components Bi,.
Equations (4.7) likewise pertain to the present discussion provided that
the 3 Ay, in the right members of these equations be replaced by the
corresponding term 3 By, in the components By, of the second extension
of the fundamental metric tensor, i. e.

/m=1,.--,n—1
0¥im oy =17
(4.10) azk' — 8,11‘:1 —I—Z('V)B;’fl—'_zruv}’pq (L __1 _.,m“' )
q<<r >Iu

where the coefficients of the quantities Bj, are rational functions of the
components ges. We must now add

(4.11) 09ap.

o = 9 Tay+ gao Ty

as the expression of the conditions that the Fg,, be Christoffel symbols
with respect to the components g3 of some fundamental metric tensor.
Then, obviously, the equations (4.9), (4.10) and (4.11) comprise a regular
system.

§ 5. Application to Invariantive Systems. Vector Case.

There is a certain analogy between the local codrdinates which can be
introduced into a space of distant parallelism'* and the normal coordinates
of an affinely connected space: Differentiation of the components of a tensor
or set of scalar invariants and evaluation at the origin of a system of
local coordinates gives rise to a set of absolute scalar invariants. This

"loc. cit. Proc. Note I.
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was treated in a paper by one of us'* with particular reference to the
case of four dimensions but the theory can be extended immediately to the
n dimensional case. Now consider a system of equations of the form

voe[,i Ohe  0%he
(5.1) T;!fd“..;? (h:c; YL W) = 0,
where the left members are components of a tensor invariant or a set of
scalar invariants linear in the second derivatives of the fundamental
vectors %, and depending also on first derivatives and the vectors them-
selves. By a replacement theorem analogous to that for normal codrdinates
the system (5.1) is seen to be equivalent to one of the form

] h;:‘k

(6.2) 2 (hes B x) T

+¥:O,

where the summation denotes a linear expression in the derivatives of the
invariants &j,x with coefficients which are functions of the components 7j, 1
and he; the % terms depend on the %jx. In addition there is the set of
equations

(5.3) Rgea R R = 2 Ui, By Wy T oo 1)

which expresses the condition that the set of quantities j be the invariants
arising from a set of fundamental vectors %e. As in § 4 we will suppose
that the dependent equations of the system composed of (5.2) and (5.3)
have been excluded and the unknowns ;i have been replaced by an
independent set Ki,.'* By the theory of § 2 the combined system (5.2)
and (5.3) can be put into the form

* S =t
(5.4) agf;;” — 3G, &) a;if}’ +x |2y

g<rzZea

where Ki,, denotes a regrouping of the independent components Ky,. The
combination of (5.4) and the equations

9 hie ok i gk ;=?’m’n 1
(5.5) = _+2k;,k hé hﬁ =1, €c—
aaf oz* i=1,---,n

» The rule for separating the independent components h;k into groups, which is given
in Proc. Note III for the four dimensional case, can be extended immediately to the case
of n dimensions. Rule: The group Gm(m=0,1,...,n—2) for the components hix is
composed of all components that can be formed from hjx by taking k=m+1 and
i,J=1,.v.,n subject to the condition j>>m-+1. There are Km=n*—nm—n com-
ponents Kin in each group Gwm.
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which define the set of invariants Bix in terms of the components of the
fundamental vectors ke obviously constitute a regular system.

The foliowing example illustrates the above theory by showing how the differential
equations for an unrestricted space of distant parallelism can be put into the regular form.
In four dimensions the set of invariants ha.s; Aiz; his; hui; hes; hia are independent,
i. e. not connected by a linear relation; when the system of identities (5.3) is referred to
these invariants and their derivatives, the matrix of the coefficients of the derivatives is
that exhibited in the adjacent table in which

a.—_—h:, ﬁ:h;, y:h;, d‘:.hi, azh?, b= h

ik Ohas | Ohis | Ohis | Ohsy | Ohby | Ohis | Ohis
b 0t 0x! 0! Oax! 0x! 0t 0x?

1,2,3|| —e —y 8

1,2,4 —a —d

1,3,4 —e —d y —a
2,3,4|| —d Y —8 —b

in the contravariant components i‘. Rows in this table correspond to equation (5.3) for
which the indices j, k, I have the values indicated at the left. Each element in the table
is the coefficient of the derivative at the top of the column in which the element appears.
The matrix formed by the elements of the first six columns of the table is of rank three.
If « and «b — Ba do not vanish the system (5.3) can be put into the form

m= 1,2
5 (@) K — ZR(":') 0Ky +2R(hf;)K2 1 =1,.--, Kn
ox* ox” ¢ — 1 e m

where R(Iz-;} denotes a rational function of the quantities he and where Ku is composed
of hssand Xi» and the group K is composed of his. [See, Proc. Note III (2.3).] The
system composed of (5a) and (5.5) is regular since we have solved (5.3) for the maximum
number of derivatives with respect to z', namely 12.

It will be proved in § 8 that this latter system is completely integrable and hence by
a proper assignment of arbitrary functions in accordance with the general existence theorems
of § 6, this system of equations will completely determine the quantities /jx as the scalar
invariants arising from a fundamental set of vectors A,.

§ 6. General Existence Theorems.

We shall now impose on the system (2.1) the following two fundamental
restrictions.

ConpiTION 1. The coefficients afj, and c; in (2.1) are analytic functions in
the neighborhood of some set of values x* = ¢' and vi = (vk)q of their
arguments.

ConpiTioN II.  The regular system (2.8) is completely integrable.

The first condition carries with it the consequence that the coefficients
(z, v) and the ¥ terms in (2.8) are analytic functions in the neighborhood
of some set of values p* and (vi)p, these being values in the neighborhood
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of ¢' and (vk)q. A system of equations will be said to be completely
integrable if the integrability conditions resulting from one differentiation
of the system are satisfied identically in the parametric derivatives.!® It
follows from the work of Meray and Riquier'” that if Conditions I and IT
are satisfied, the system (2.1) has a unique solution, given by a set of
convergent power series expansions, corresponding to the arbitrary assign-
ment of analytic data predicted by the form of the left members of the
system (2.8).
EXISTENCE THEOREM. Suppose that (2.1) is a system such that Conditions 1
and 11 are satisfied. Let
fpik(mk+l7""xn)7 (i=1,"',Wk),

where k+ n be an arbitrary function of the variables 211, - .. z* analytic
in the neighborhood of x* = p* of their arquments, such that ¢ux(p) = (vir)p
Jor all values of the indices for which the ¢y are defined. Then there
exists one and only one solution, vic(x), of (2.1), each function vi(x) being
analytic in the neighborhood of the set of values x* = p', (1) such that
vin(p) = (Win)p Sfor i =1, ..., wy and (2) such that

v,'o(xl, ce, ) = 9’1'0(‘%17 sy ) l vik(wk—H""’xn) = Qik (xk+17""x")
(1‘:1’...’100) [ i=1,"',10k ]
| xl=p‘,...,xk=pk'

With regard to the system (4.3) we shall set up the conditions

ConpITION Is.  The coefficients T(A) and the ¥ terms in (4.3) are analytic
Junctions in the meighborhood of some set of values (Aim)q of their arguments.

CoNDITION ITa. The reqular system composed of (4.6) and (4.7) ds completely
integrable.

Condition I carries with it the consequence that the coefficients and
the * terms in (4.6) will be analytic functions in the neighborhood of
some set of values (A7), this being some set of values in the neighbor-
hood of the set of values (Aim)q.

EXISTENCE THEOREM. Quppose that (4.3) is such that the conditions Ta
and Ila are satisfied. Let )

?ik(x’H_l’ ""a’m)’ [?ii"é’n, Al% ’
where the indices i, k have the same range of values as the indices of the
components A% (k + n), and

'® The usual definition of a principle derivative is understood here, namely one which
can be obtained by differentiation of a left member of the system, or one of the left

members themselves. All other derivatives are parametric.
7 Meray and Riquier, loc. cit., (1890).
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) L k=0,--',n—l]
denote functions of the variables 1, . .., x™ analytic in the meighborhood
of the set of values &' = p* of their arquments, such that ¢ (p) = (Aik)p
Jor all values of the indices i and k for which the ¢u are defined. Then
there exists one and only one affine connection with components 1"‘5‘;, (= I‘;:g)
in a system of coordinates x°, each function Tsy(x) being analytic in the
netghborhood of the set of values o = pt, which constitutes a set of integrals
of the system of equations (4.3) and which s (1) such that A (p) = (Ai)p
and (2) such that

A;"& = qz,-o(:cl, ceey, .’L'n) Y — pr(‘ﬂ) e, M)
[=1,---, 4] L=1,--,7l
A;!;C = @i (wk+1’ tt ity wn) Yim = wlm (xm—i-l’ A :L.n)
k :1,"',72—1 7n=1’...’n——1
[5 = 1,.--, Ak ] I:l =1,--,7, }
:z:‘_—::p"...’wk::pk wl=191’,,,’xm=pm

The corresponding conditions and existence theorems for the system
(4.4) can be stated immediately.

ConpiTiON Ig. The coefficients T (g, B) and the ¥ terms in (4.4) are
analytic functions in the neighborhood of some set of values (Bim)g and
(gap)g = (gpe)g of their arguments, the determinant |(gap)y| being different
from zero.

ConpITION Ilg.  The regular system of equations (4.9), (4.10) and (4.11)
is completely integrable.

As a consequence of Condition Ig the coefficients and the ¥ terms in
(4.9) will be analytic functions in the neighborhood of some set of values
(gep)p and (Bim)p lying in the neighborhood of the values (gag), and
(Bim), respectively, such that (geg)p = (gg«)p and also such that the deter-
minant |(geg)p| does not vanish.

EXISTENCE THEOREM. Suppose that (4.4) is such that Conditions Ig and Ilg
are satisfied. Let

?ik(xk—Hy ) mn), [?ill‘:,;-.of, B%ck]’

where the indices i, k have the same ranges of values as the indices of the
components B (k + n) and

k=0, .-, n—1
Do (T, oo g0 [ ’ ’ }
q/lk( ’ ’ ) i=1, r, i
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denote functions of the variables 2, ... x* analytic in the neighborhood
of the set of values x* = p' of their arquments, such that ¢a.(p) = (B}';c),,
Jor all values of the indices jfor which the gz are defined. Then there
exists one, and only one, fundamental metric tensor with components
gep (= gpa) in a system of cobrdinates x® each function geg (x) being analytic
in the neighborhood of the point x® = p® which constitutes a set of integrals
of the system (4.4) and which (1) ds such that geg(p) = (gap)p and
B (p) = (Bi)p and (2) such that

Bz’() - ‘PiO(x ’ ”*.k’ x") Yo = ’/’lo(ﬂcl, ) ")
=1, Bl | l=1,--, 70

X ;
Bik = @ik (xk—H, ct xn) : Yim — wlm (xm-’_ly ity xn)

Ek=1,....,n—1 : m=1,.---,n—1
i =1,.--, B | i =1, 7m .
pl =— pl, ---,Z‘k ___pk ’ 2l = ])1, e, am ‘__pm

On the basis of the discussion in § 5, the corresponding existence
theorem for spaces of distant paral}elism can be stated.

CoNpITION In.  The coefficients (he, hjx) and the % terms in the system
(5.2) are analytic functions in neighborhood of some set values (b, % g [= — (i, )]
and (ha)q of their arguments, such that the determinant [(lm)q? does
not vanish.

ConDITION ITy.  The reqular system composed of (5.4) and (5.5) is com-
pletely integrable. ]

Condition Iy implies that the coefficients (k&, Kiy) and the ¥ terms in
the system (5.4) are analytic functions in the neighborhood some set of
values (he)p and (Kim)p in the neighborhood of the values (hfz),, and (%, k), such
that the determinant |(h«),| does not vanish.

EXISTENCE THEOREM. Suppose that (5.2) is such that conditions Ty and
g are satisfied. Let

|

[Oém_ﬁ_n—l]
Il =1, ..., Kn

where 1, m have the same range of values as the indices of the components
%
Kim (m ¥ n), and

Pim (a,m—i-l, cee 9:‘"),

o« — 1, -+, m i

Vi (%, -+, " [ . 7 g

yza( ’ ’ ) i =1, e, mi

denote functions of the variables ™%, .., 2 or x%, .., 2" as the case

may be, analytic in the nezghborhood of the set of wlucs a® = p® of their
arguments such that o (p) = (Kim)p and Wie (p) = (ka)p Jor all values
of the indices for which the functions gum and Wi« are defined. Then there
exists one and only ome set of fundamental vectors with components le in



16 T. Y. THOMAS AND E. W. TITT.

a system of coordinates x* each fumction R (%) being analytic in the neigh-
borhood of the set of values x* = p* which constitutes a set of integrals of
the system (5.2) and which s (1) such that K, (p) = (Kz;':)p and (2) such that

B o= Yu (2, -+ -, %) K = gn(a, -+, a"
i=1,--n =1, K
hfx = wia({ta?”’, x") Kltn == ‘le(xm—H’ ---,:l:")
L i=1,--m J [ l=1,.--, K} ]
a=2,...,n m=1,.-..,n—1 |.
1=p1’._.’xa-—1=pa—lh ! =pl’...,xm = p™

§ 7. Functional Systems.
Consider a system of partial differential equations of the form
ol
(1.1) TS § (1“;‘,,; 8_"!_) =0,
where the 7”s are components of a tensor invariant of the type discussed

in § 4, depending on the components 1“,3‘,, and their first derivatives. Along
with this consider the invariantive system

29, d*g, )
Moo v L af —
(7'2) Te~--d‘ (.%:ﬂ’ s ) ax,,amd\ 07
where the components 7' depend on the fundamental metric tensor g«s and
their first and second derivatives. By the replacement theorem equations (7.1)
can be written in terms of the independent components Ay, of the affine
normal tensor. Hence (7.1) takes the form

(7.3) T (Aim) = 0.

Assume that the equations (7.3) are independent and N in number; dependent
equations are to be discarded from the system.

ConprtioN IITX. Equations (1.3) are such that (1) there exists a solution
(Aim)p of these equations and (2) the components T (Aim) of these equations
are analytic functions in the neighborhood of the set of values (Aim)p.

By covariant differentiation of (7.3) we obtain a system of the type
considered in § 4, namely

(7.4)

9 Ay, 0x”

where the ¥ indicates a bilinear form in the components 7' and I,.
Applying the results of § 4, the system (7.4) together with the identities
(4.5) can be replaced by equations of the form

:_—_AVA’
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. i =1, -, 4k

9 An w 045 k=1,--,n

(7.5) 8.’1,‘“ _Z(A) 6x/r +¥7 a=1’. .,k
<rze

where the A}, represent independent components Aj;d Corresponding to
the previous Condition I we now impose the following

ConpITION I3. The coefficients (4*) and the ¥ terms in (1.5) are analytic
JSunctions in the meighborhood of the set of values (Aim)p-

Assuming that (7.5) and (4.7) are completely integrable, these equations
can be integrated in accordance with the general existence theorem stated
in § 6. In order to see that the functions 4;, which are formed from the
integrals FE‘,,(x) of the system (7.5) by the process of calculating the com-
ponents of the first normal tensor, satisfy (7.1) or the equivalent system (7.3)
we make use of Condition III{. The functions Az, (x) are analytic in the
neighborhood of z¢ = p* and hence, by Condition ITI}, the components 7'(4)
are analytic, as functions of the z*, in the neighborhood of the same point.
Thus the components 7" admit power series expansions about the point x* = p?,
the constant terms of which vanish by Condition IIIy. On account of
equations (7.4) the remainder of the coefficients in these expansions must
vanish likewise, and hence the components 7 are identically zero as functions
of the codrdinates xf.

In an analogous manner the system (7.2) can be replaced by equations
of the form
(1.6) T (gug; Bim) = 0,

where the B, are the independent components of the first metric normal
tensor gog ,g-

CoNbITioN IT1g. There exists a solution (gug)p = (gpa)p and (Bim)p of
equations (1.6) such that (1) the determinant |(geg)p| does mot vanish and
(2) the components T are analytic functions in the meighborhood of the
values (gep)p and (Bim)p.

By covariant differentiation of (7.6) we obtain

6 T 8.Blm
aBlm 8:17“

(1.7 = ¥

where the ¥ denotes a bilinear form in the components 7 and the
Christoffel symbols I's,, and a linear form in the first derivatives of the
components ge«s With coefficients which are functions of the g and Bn.
Following the method of § 4 the system (7.7) is combined with the
identities (4.8) to give a system of the form (4.9).
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ConDITION I§. The coefficients (g, B*) and the X terms in (4.9) are
analytic functions in the neighborhood of the set of values (gug)p and (Bim)yp
of Condition II1§.

Furthermore it can be shown that the integrals geg(x) of the system (4.9)
actually satisfy equations (7.6) in case Conditions I§ and ITI§ are satisfied.
On the basis of the results of § 5 an analogous treatment can be given
for the invariantive system ‘

. z
Tf...;(h:,; g—a’;;) = 0.

As an example illustrating the theory consider Einstein’s gravitational equations for
free space

(79) R“ﬂ =0

which express the fact that the contracted curvature tensor is equal to zero. In a previous
paper by T.Y.Thomas, On the Existence of Integrals of Einstein’s Gravitational Equations
for free space and their Extension to n-variables, Proc. Nat. Acad. Sci., 15, (1929), p. 906,
the problem of the existence of integrals for the system of equations (7a) has been treated
when the components of the fundamental metric tensor g, have the initial values +dg.
In the present section we shall consider the problem in four dimensions without restricting
the initial values of the components 9og; the codrdinates «* are to be arbitrary. The work
of putting the system (7a) in regular form will be carried out in detail.
The system (7a) is completely equivalent to one of the form

d
@ 7 Jop,yd = 0
which corresponds to the system (7.6), and by covariant differentiation, we obtain
d
7 4 = 0.
) 9" gup,yde = O
The system of identities which furnish the conditions that the g, 8, 73 be the components

of the first metric normal tensor formed from some fundamental tensor with components g, 2
are of the form

1
(7 d) g“ﬂ’ 7"\’ & = _2_ [ysﬁ) yd.’ “+ g“s7 yd\) ﬂ+ gaﬁ’ Ed; 7+ y“ﬂ? ye’ d\] )

We shall write out in detail the solved form of these equations since it will be needed
in the following work.
Let us adopt the following more convenient notation

o« = g", s = g% Yy = g%, d = g%,
a = g, b = g%, ¢ = g4, d = g*, e = g™, f = g%
with the understanding that g“ﬁ is symmetric in o and 8; also
U1 = G132, Vi — Gaass, W1 — G824,
Us — Gy, Vs = fhra,ss, Wy — Gra88,
Us — G11y34, Vs — Gisyas, Wy = G1syue,
Uy = Gr1,88, V4 = G14y33, We = Gassss,
Us — G11,84, Vs — G13y44, Ws = Ga8y44;
Ue — GJi1ye4, Ve — 1384, - We — Gssyas .
V1 = G4,

Vg = G4,
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where the components u® constitute the group Gy, ve constitute G, and wq constitute Q.
according to the rule for grouping independent components given in a former paper
loc. cit., Jour. p. 248. Then the system (7d) takes the form

» I = 24 B
) LY
-
. R
® Do =B Dw
® R R R ARl
@ o = ey ety e
® Do = Doy Iy,
® B = o o 3 e HR
bty
(1) Doy =T Du 1,

Qus _ 0vy 4 Ove 2 O
6 T2 — e 392 3oz TH

0wy 0vs 2 0w 2 0ve

D P2t~ B2 T3 0w 3 0w T X
18) L
@) b5 = da e T
@0) L L Y

It is to be noticed that the ranges of indices and the inequalities giver for (4.8) hold for
the above system of equations.
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€ Xin | X | X | X | Xan | Xoar | Xoar | Ko | Xoar | Xuar

1 « —B8 | —2d| —2e| —y | —2f| —©

2 2e 2a 2b 2¢

3 2a 2a 2b 2¢

4 2a 2a 2b 2¢
Table I.

There are 40 equations in the system (7c), but not all of these equations are independent.
In fact, if we multiply through by g%8 g?’d‘ and sum on the indices «, 8, ¥, d we find

(Te) 2g°‘prp = 9% X, g6,
where X, . has been used to denote the left member of (7c). In Table I the matrix of

the coefficients of the terms containing the quantities Xaﬂl in (7e) is exhibited; provided

g't is not zero we see that the system (7e) can be solved for the quantities Xlﬁl‘ Hence
the four equations

Xipm =0
will be omitted from the system (7c).

1 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o, B Uy | Uy |[Us |[Ug |Us [Us | V1 | Va | Vs | V| Vs | Vo | V7| Vs | W1 |Wa | Ws|Ws|Ws| We
1 2,2 | e b4 2b|2¢ 2f| &
2l 2,3 o —d—_b—_a —2ci—e —2¢ _:f d
3l 2,4 o —al—c —d|—e| 2b y |—f
4 3,3 [ B8 |2a 2¢ 2e d
5/ 3,4 [ 2a | B —b| —c|—d|—e|—f
6 4,4 « 2a B 2b 2d| r
711,10 8 |2d|2¢| y |2f| ¢ T
8 1,2 |—a|—b|—¢ y |—dj—e| J| 2f
9 1,3 —a —bl—c¢ —d| B 2e |—f| &
100 1,4 —a —b|—c¢ B |—e—2d —2d| y —_]

Table II.

If we write equations (7¢) in the form

o9
d_"eByd _
v 9zt ¥

for a fixed value of & the matrix of the coefficients of the derivatives 0 Iop yd/ 0 is

exhibited in Table II; in this table the indices «, 8 give the row, and any element is the
coefficient of the derivative of the unknown at the top of the column in which it appears
When € = 1 only the first six rows are to be considered, and this set of equations can
be solved for the derivatives 0 ug/0x' provided « is not zero. When ¢ = 2, 3, 4 it will be
possible to solve the corresponding sets of equations taken from (7c) for the derivatives
0ug/0x® and dv,/0x® where 6 =1, ..., 6 and T = 1, 2, 3, 4 provided the determinant
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formed from the first ten columns of Table IT does

—a | — 2
not vanish. Expanding this determinant in terms * i ¢
of fourth order minors formed from rows 3, 5, 6, e —V 2b
10 we see that it can be factored into e?(epg — a?) —8|l—y 2d

and a sixth order determinant indicated in Table III, |
no regard being paid to algebraic sign.
When use is made of Laplace’s expansion in b —a| B | —d
terms of third order minors it is found that the
determinant of Table IIT can be written

Table III.

Hence if the quantity
g g gv 3
gt g0 g

(21) 2(g")? Z'n
LU

does not vanish the system of equations (7¢), excluding the dependent equations le =0
can be written in the form

an S 2SS 1k,
Ouy
Era
ovg
Er
0ug,
Erd
0vg
Era
Oug
Era
dvg
ot

(7g)

ov dw

“ D duw
@) =3 5o+ @) 5L+ X,

gy = S o hLS ‘S0 Sl 4 X,

where ¢,y =1,...,6; =1,...,8; d=1,...,4; e=25,...,8 Equations (1) to (14)
can be used to eliminate their left members from the right hand members of (7f) and from
the resulting equations eliminate the left members of (7g), (7h), (7i). Thus (7£) is replaced
by a system (F') having no derivatives of 9y B, yd with respect to x! on the right and also

no left members of the systems (7g), (7h), (7i). Equations (15) to (20) can be used to
eliminate their left members from the right members of (#') and (7 g); then use equations (7h)
and (7i) to eliminate their left members from the resulting equations. Thus (¥) and (7g)
are replaced by systems (@) and (G) respectively such that the system composed of (¢p),
(@), (Th), (7i) is solved for its left members and contains no left members of equations (1)
to (20) on the right. Hence the systems (¢), (@), (7Th), (7i) can be used to eliminate
their left members from the right hand sides of equations (1) to (20) and we have the
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combined system (7c) and (7d) solved for as many derivatives as there are independent
equations in the system. Furthermore adopting the notation

*

Bu ~ uy, us, Us, Uy, Us, Ug, Vi, Vs, Vs, Vs
*

Bis o wy, ws, ws, ws, ws, we;
*

Bu ~ Vs, Ve, V7, Us

the combined system (7¢) and (7d) can be replaced by one of the form

m=1,2,4
i) BB"” 2<)3£;’:’+¥, (?:1 B.,.)

’

where Bf =4, B =6, Bf = 10. It is also evident from the method used in eliminating
the left members from the right hand sides of the two systems that the inequality » = e
is satisfied and hence the system composed of (4.10), (4.11) and (7j) is regular.

§ 8. Identities. Conditions for Complete Integrability.

A system of partial differential equations of the form (2.1) can be replaced
by a system of the form

k=1,..

(8.1) XikjE 0 vk ___Ft%qr 8qu + ¥ = 0, (z =1,..., wk)
dx/ .

J = ], -, k
provided the coordinate system is non—singular. The index r is subject to
the conditions ¢ <<r = j. It must therefore be possible to put equations (2.1)
in the form

0 Vi

(8.2) Ty = b 8:;’ bszFgr x" +%=0, (@=1,---, L),
where L = > kwy and the matrix of the quantities b2 (x, v) is non-singular,
i. e. the Z, are identically equal to the left members of (2.1). If the system
(8.1) is completely integrable the set of equations

0 Xy  0Xim l,jék)
(8.3) dxt axd 0 (l<J
must be satisfied identically when the left members are expressed in terms
of the parametric derivatives determined by (8.1), i. e. there must exist

n
A =k2;wk0(k, 2)
equations!® of the type
0 Xy 0 Xim 1xB 0 X1ks
(84) dat oo T Mw — =0,
where I, J, K have the same range as ¢, j, k¥ and B> K, these equations

being satisfied identically in consequence of (8.1). The quantities M are
functions of x* and wvx.

18 ' (k, 2) is used to denote the number of combinations without repetitions of % things
taken 2 at a time.
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Conversely suppose that there are A independent equations of the form
Yy ¢ =1 , A
(8.5) Ag aw;‘——o ea=1,---, L
d =1 st M
which are satisfied identically in consequence of Z, = 0; the rank of the
matrix of the quantities Z(xz, v) therefore has its maximum value 4. If we
make use of the relations

= Xirj,
the equations (8.5) can be written

(8.6) A B aé% +3 Xuj = 0.

The indices ¢, d run from 1 to » and the system (8.6) possesses the property
that it is satisfied in consequence of Z» = 0, i. e. Xi; = 0. Since the
matrix of the quantities bk 8% is non-singular the equations in (8.6) are
independent in the derivatives 8 Xu;/d«% If the equations (8.6) are to be
satisfied identically in consequence of Xu; = O the coefficients of the
second derivatives of the unknowns vy must vanish identically. The
system (8.6) can be written

8T A o5 TV geayikipparge Ot |y

dx) 0x° dxrox’°
Since r>¢q and j < k, it is evident from the form of (8.7) that
(8.8) 0 bl g4 4+ A 6] = 0,

where [ < j < k. Consequently the equations (8.6) can be written
B9 Aoy (Pn 2du) | oy g S 4 Sy o,

ox’

where l\ 7 <k and #>Fk. Suppose that the matrix of quantities
A2 459 8%, is singular; it follows that (8.9) can be replaced by a system
which contains at least one equation of the form

(8.10) Nikfﬂﬂgx%’;+ Sx—o0 B>K).
By differentiation of the system (8.1) we obtain

0 Xij vk per 8 Upg . q<r gj)
(8.11) vaF = daloaf T Garpgp T =0 (ﬁ>k >l

By the method used in a former paper,’® equations (8.11) can be replaced
by a system of the form

9 70c. cit., Jour. p. 246.
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aﬁv, a v, r,s>
(8.12) Yirjp = W;‘J—Eﬁcﬂ? 3 r;qxs +* = (ﬂ>,k Z,?)’

where the indices z, k,j, 8 have the same range as in (8.11). Itis to be
noticed that throughout this process the equations obtained by differentiation
of (8.1) with respect to z! where ! < k are not needed. Furthermore
relations of the form
0 Xixj
oxf

IKJB
= YirsB

must be satisfied where the matrix of the quantities D is non-singular.
Hence (8.10) can be written

(8.13) N™® Dies® Yirss+2X = 0.

However from the form of (8.12) it is clear that the equation (8.13)
is not identically zero in consequence of X = O unless the coefficient
NP D,IIQ,KJB is identically zero. This implies that the quantities NV are
all zero and hence that the equations (8.6) are not all independent. There-
fore the matrix of the quantities 45° 529 6, in (8.8) must have a non-
vanishing determinant from which it follows that (8.3) are satisfied in
consequence of Xy = O and 0 Xu;/02f (8>k), i. e. the system (8.1) is
completely integrable.

Hence a necessary and sufficient condition for complete integrability of
(8.1) is that there exist independent identities of the type (8.5) equal in
number to the number of integrability conditions of (8.1). That there
cannot exist more than A independent identities of the type (8.5) follows
from the form of (8.9). The existence of A’, (4’ > 4), independent iden-
tities of the type (8.5) would lead to 4’ independent identities (8.6). Since
there are only A distinct left members of (8.3), it follows that (8.9), which
is equivalent to (8.6), could be replaced by a system containing at least
one equation of the form (8.10). The above argument shows that the
quantities N must be identically zero, i. e. equations (8.6) or in other
words (8.5) would not be independent.

As an application of the theory of this section consider the system of equations 5 (a)
together with a system of the type (5.5), i. e.
e = 23,4
hp——o (ﬂ=17"')“—1)'

1i=1,23,4

ke  Ohy
0xh 0 x*

8 (a)

The above system 8 (a) can be solved for

Ohs Ohy Ohs Ohs Ohi Oh:



PARTIAL DIFFERENTIAL EQUATIONS. 25

from which it follows that there are 16 integrability conditions arising from 8 (a) alone.
By differentiating the equations 8 (a) with respect to ¥ and permuting the indices «, 8, 7
cyclically and adding the three equations thus obtained, we arrive at the system (5.3), i. e.

8 (b) Biki+ hbos s+ By — 2 [k s B i+ Bt Bk + i & Big] = 0,

where the indices j, k, I have the sets of values 1,2, 3; 1,2, 4; 1,3, 4; 2, 3,4. Equations 8(b)
form a set of 16 equations of the type (8.5) which are satisfied identically in consequence
of 5(a); in fact 5 (a) is but a different form of 8 (b). From 5 (a) we see that there will
be four more integrability conditions or 20 in all for the combined system 5 (a) and 8 (a).
Denote the left members of 8 (b) by X;u and consider the four equations

8 (c) Xna,4+Xux,a +X1u,x+Xm,1 = 0,

where the comma denotes absolute differentiation. It can be shown that equations 8 (c)
are satisfied identically in consequence of 8 (a) and 5 (a). Hence the system of identities
8 (¢) and 8 (b) numbering 20 in all, insures the complete integrability of 8 (a) and 5 (a).
When the system of field equations
Ahi =0,

|see Proc. Note IIT], is combined with the system 5 (a), a regular system (8.3) Proc. Note III
is obtained [that (3.3) is regular follows from the fact that all derivatives with respect
to x! appear on the left]. The 8 integrability conditions arising from (3.3) Proc. Note III
taken together with the 16 conditions arising from 8 (a) make 24 in all. The corresponding
set of 24 independent identities involving derivatives of the left members of the system
is made up of equations 8 (c), 8 (b), and the equations (3.4) Proc. Note II, the latter stating
that the divergence of the left members of the field equations vanishes identically.

§ 9. A Sufficient Condition for Complete Integrability.

To find a set of identities (8.5) which will insure complete integrability
requires considerable work in the case of certain systems of differential
equations. This difficulty can be met in some measure at least by use of
a sufficient condition for complete integrability given by one of us in
a former treatment;*® this condition for complete integrability can be
applied with facility to a large class of invariantive systems and in
particular to the type of invariantive system which serves as field equations
in the theory of relativity. In this section we shall consider this method
of establishing complete integrability from the standpoint of the present paper.

In § 7 it was noted that a certain number M of the equations (7.4) may
be linearly dependent on the remainder of (7.4) in consequence of the
equations of the system (4.5). Let us express this dependence as follows

9.1 Z(A) +¥ =0 (M equations).

From the theory of § 3 it follows that a coordinate system can be found
in which (9.1) can be put in regular form, i. e. can be written

]oc. cit. Ann. (1), p. 690 et. seq.
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aT k:l’...’rn
9.2) "‘ _Z(A)—+4 e =1,--,k |,
i =1,---, My

where M = 'k M. From the fact that (9.2) is regular it follows that
all derivatives of order » of the left members of (9.2) vanish in consequence
of the vanishing of the components 7', all derivatives of components 7' of
orders 1 to r inclusive, and the remainder of the derivatives of the com-
ponents 7' of order r-+1.** Now set up the following condition with
reference to the numbers A; which arise in the system (7.5).%

ConprTioN IVX. The numbers Af are such that

n
Ay = 4o— N+ D M.,
1

A = 4i— M; G=1,---,mn—1),
My, =0, M,=032
n—2

Since ZAz is equal to EAz, it follows that 4, = N when use is made

of Condltlon IVX. A comparison with the set of conditions given previously®
and the related discussion, skows that if Conditions IX, IIIX, IVX are satis-
fied, the combined system (7.5) and (4.7) will be completely integrable.
Conditions similar to IVX can be applied to invariantive systems of the
metric and vector types.
As an illustration of the use of this method the reader is referred to
a proof that the system of equations (7j) together with (4.10) and (4.11)
is completely integrable, loc. ¢i¢. Ann. (1), p. 713; also Ann. (2) p. 725. This
enables us to state the following
EXISTENCE THEOREM. Let
1,2 ]
=1,.---, Bn
0,1, 2, 3]

Pim (xm-}—l’ ) x4)
L rm

f——
~ 3
I

and

Yim (mm+1’ ) x4)

~s
('

2L Cf. loc. cit., Jour. p. 246.

2Tt is immaterial whether or not the codrdinate system (x) to which the system (9.2)
is referred is identical with the codrdinate system (x) to which (4.6) is referred.

Tt may be noted that M,_; = 0 follows from An; = Au—1 — Mu— since An—1 =0
and the 4 and M; are zero or positive.

]oc. cit., Ann. (1), p.690. If Conditions I¥, IIT}, IV} are satisfied, it follows that
Conditions I-V in Ann. (1) are likewise satisfied; Condition I, Ann. (1) is equivalent to
Condition IIT}; Condition IT, Ann. (1) follows from the fact that (9.2) is regular; Con-
dition IIT and IV, Ann. (1) follow from Condition IV}; Condition V, Ann. (1) is equivalent
to Condition I¥.
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denote functions of the variables x™t1, - .. x* analytic in the neighborhood
of & = pt such that gum(p) = (Bim)p for m = 1,2. The constants
(9eg)p = (9ga)p and (Biwm)p where m =1, 2, 4 are to be chosen (1) such that
they satisfy equations (1), (2) such that the determinant |(gep)p| does mot
vanish, and (3) such that quantity (21) does not vanish. Then there exists
one and only ome fundamental metric tensor with components geg (= 9pa)
each function gop(x) being amalytic in the meighborhood of x* = p', which
constitutes a set of integrals of the system (1b) and which is (1) such that

908 (p) = (gap)p and Bis(p) = (Bif)p, wherel =1, - - -, 10 and (2) such that
Yio = 'l’lo(xl, ] x‘) ):lm = Yum (xm+1’ Tty x.t) B;;n = ?l’m(wm-'-ly Y wi)
[tl=1, 2, 3, 4] m=1,2,3 =1,2
I =1, -, ¥m ! =1,---, Bn
x1=pl’...,xm=pm x1=p1,...,wm=pm

§ 10. Existence Theorems in Normal Codrdinates.

It is not possible to choose a priori some of the components I‘ﬁy arbi-
trarily as functions of a part of the variables independently of the arbitrary
functions corresponding to the components A;, and at the same time to
characterize the codrdinates as normal codrdinates y¢. However the dis-
cussion of this problem will utilize many former results. Let it suffice to
say that in constructing the power series expansions for the components Afm
by the use of equations (4.6) that the initial condltlons Tﬂ,, =0 at y 0
are to be imposed, also that the derivatives 81};‘/ da at y' =0 be equal
to Aﬂd (0) and that the higher derivatives are to be determined by equations
of the type M (2.10).2® If the system composed of (4.6) and (4.7) is com-
pletely integrable the power series expansions for the Al and for the
components T::‘a will be determined uniquely for a suitable assignment of
arbitrary data. The I series

(10.1) Iig = ey’ + -

will be shown to converge in § 11.
ExISTENCE THEOREM. Let (4.6) be a regular system which satisfies Con-
ditions In and IIa. Also let
0<k<n—1
?ik(yk+l7"'7yn) [ =r=n ]7

. *
1=1,...,

where the indices ¢, k have the same range of values as the indices of the
components Ay (k4 n), denote a function of the variables yery, eyt
analytic in the meighborhood of y* = O such that ¢ (0) = (4%)e for all

% Cf. Jour. p. 246.
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values of the indices for which the gix are defined. Then there exists ome,
and only one, set of components T'ag (= T'ga) of affine conmection given by
the convergent power series (10.1), which constitute a set of integrals of the
system (4.6) and which is (1) such that Am(0) = (A#)o wherei =1, - - -, An
and (2) such that

dio = gy, -, ¥ A = gac @, -, y")
=1, 45] k=1,--,n—1

i =1, Ax .

1=10,---, =0

Similarly for the metric case equations (4.9) are to be used in calculating
the coefficients of the power series expansions of the components Biy.
Throughout this process the initial values gos(0) = gga(0) = (gep)o and
8 gup/dy” = 0 at y' = 0 are to be imposed; also let 629.,,9/6 y oy’ aty' =0
be equal to (g.s ya)o and determine the higher derivatives by equations of
the type M(2.16). If the system composed of equations (4.9), (4.7), and
(4.10) is completely integrable a unique power series

1
(10.2) Jep = Jup (O) + ﬁgaﬂ, yd‘(O) .7/7 yJ+ te

is determined and this will be shown to converge in § 11.
ExiSTENCE THEOREM. Let (4.9) be a reqular system which satisfies Con-
ditions 1g and 11g. Also let
| 0<kLn— 1]
. k+1 .. 0 = =
%k(yT, 7!/) [Z‘———-l,,B;: ’

where the indices 7, k have the same range of values as the indices of the
components Bik(k + n), denote a function of the variables y*+1, - ., y* analytic
wn the meighborhood of y* = 0 such that ¢ (0) = (BH)o Jor all values of
the indices for whicn the i are defined. Then there exists one, and only
one set of components gep (= gpe) of @ fundamental metric tensor, given by
the convergent power series (10.2) which comstitutes a set of integrals of the
system of equations (4.9) and which is (1) such that By (0) = (Bin)o where
i=1,---, By and (2) such that

B = gu(y", -+, 4" Bk = g (FH, -,y
=1, By k=1--,n—1
i = 1 . Bf
1_— 0, . yk=

For spaces of distant parallelism a corresponding existence theorem can
be stated where the integrals A (x) will constitute a set of fundamental
vectors in a system of local codrdinates z¢. In calculating the coefficients of
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the power series expansions for the mvarlants hJ,k with the ald of equations
(5 4) the limited conditions k{;= 6} at 2/ = 0 and 8hj;/82" = (Ao at

= 0 are to be imposed; the higher derivatives of the components Aj; are
to be determined by equations of the type Proc. Note IT (4.2). If the system
of equations composed of (5.4) and (5.5) is completely integrable, the power
series expansions for the invariants Ajx and also the %fj series of the form

(103) M= O K )"+ -

will be unique; the convergence of this latter series will be proved in § 11.
ExisTENCE THEOREM. Let (5.4) be a regular system which satisfies Con-

ditions Iy and ITu. Also let
m=0,.---,n—1

where the indices I, m have the same range of values as the indices of the
components Kim (m + n), denote a Sunction of the variables 2™t ... 2"
analytic in the neighborhood of 2* = 0, such that gim (0) = (Klm) Jor all
values of the indices for which the gim are defined. Then there exists one,
and only one, set of components hij of the fundamental vectors given by the
convergent power series (10.3) which constitute a set of integrals of the
system (5.4) and which is (1) such that Kin (0) = (Kin)o wherei =1, ---, K}
and (2) such that

Kis = on (e, -, 2 Kim = @im (2741, - .., 2")
=1, -, K] m=1, -, n—1
i=1 -, Knm
5 Zl=0,...’z'm=0

The extension to functional systems can be made in accordance with the
discussion in § 7.

§ 11. Convergence Proofs.

The equations (4.6) of the present theory have exactly the same form as
the system of equations (2.7) Ann. (I) except that in (4.6) there may be
a group of unknowns having derivatives with respect to (n — 1) of the y’s
appearing in the left members of the system, which was not the case in
the former treatment. It is easily seen however that this greater generality
will necessitate no change in the convergence proof of the I' series. Hence
the reader is referred to the former treatment for a proof of the con-
vergence of the series (10.1). Similar remarks apply to convergence of the
expansions (10.2) but the convergence of the series (10.3) remains to be
demornstrated.
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Consider the system of partial differential equations.

bm 3R O (8%, §)
(11.1a) o og- = DF@+ T 6 (% 5
(11.1b) L 09 _ W by R, 95 9
. ar 9k - q Otpg Yd Yf

in which an, b, and p are positive constants for which more exact values
will be fixed later. The positive constants D and W are to be chasen
so that

bm 2

(11.2) Dga—h, W= 5

where a and b are the least of the an and b, respectively. The indices
»,¢,!, m in (11.1) assume all possible values as indices of the independent
components K, and all other indices have values from 1 to n. Al
summations in (11.1) represent the sum of all terms obtainable from the
representative term by giving different values to the indices involved. The
quantity ¢ in (11.1a) is a positive constant less than unity and is to be
considered as the sum of « positive constants »1-+- - -+ »,. The integer o
in the sum »,+4-...4», for a particular equation (11.1a) in which the
values of the indices in its left member are equal to the corresponding
indices in the left member of some equation (5.4), is to be equal to the
number of different derivatives & Kp,/02” in the right member of the
said equation of the system (5.4). The integer « for an equation (11.1a)
which does not correspond to an equation of (5.4) can be taken to have
the value unity. The function F'(¢) in (11.1a) is defined by the equation

2
F) = 1———2akz" ’

where the positive constants 2 and ax are to be chosen so that the
expression

(11.3) 2

1—app P —. .. —ay2®

is dominant for each derivative 8 gun/d2* (h>m) of the K, functions
om(@=1,..., Ks). Finally

1 . .
0 (8, 9 = {1—2% [R;:q—(ﬁzq)ol—2?[@—(@3-)01}

where > denotes a summation over all possible values of the indices
P, q,%, 5. The positive constant ¢ is to be chosen later. Equations (11.1)
constitute a completely integrable system of total differential equations.

-1
’
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Hence according to the well known theorem for the existence of solutions
of systems of total differential equations, there exists a unique solution
Rumi (2), D;(2) of the system (11.1) such that these integrals assume an
arbitrary set of initial values (R7)o and (9)e. We shall choose the initial
values so that the inequalities

(11.4) ©h0 = ¢
and
(11.5) (K)o = | (Kim)o|

are satisfied, where (%), = 9’ (0) and (K)o = K7 (0).  All derivatives
at 2 = 0 of the integrals &, and {) ; are then positive since any derivative
of one of the sets of terms in the right member of (11.1) evaluated at
# = 0 1is a polynomial composed entirely of positive terms.** In con-
sequence of the dominant property of the function F'(z) and the first
inequality of (11.2) it follows from (11.1a) that

* 0% pim |
(11.6) Kimm,...n, (0) = Ty (0) \,
where ki, -+, hy>m and the notation Rimp,..., denotes the ordinary

derivative of the function Ri,.
Since the right members of the equations (11.1a) are all equal, the equations

b 0%im by 08y
an 9z ay 02

are satisfied for all values of the indices involved. It is therefore possible
to write those equations of (11.1a) which have left members with indices
corresponding to the indices of some left member of (5.4) in the form
* *
e — S b o, )i
(11.7) ¢

+DF() [1—39(.9* ©)1+M —0(®*, D),

where the quantity » assumes values »; to », so that the first summation
in these equations denotes a sum of «terms in which the derivatives are
taken to correspond to derivatives in the first summation in the right
member of the corresponding equation (5.4). The reader is referred to
the former discussion for the proof of the following®

2 Meray and Riquier, loc. cit. p. 48.
2 loe. cit. Ann. (1), p. 698.
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LEMMA. Given-any two positive constants P and Q it is possible to assign
values, each of which is greater than P to the constants ay, - - -, an and
bo, - - -, bn such that each of the coefficients

of the derivatives in the right member of (11.7) will be greater than Q.
Choose the positive constants P, @ and » so that the expression

QUL —P(H+ ... 4 zm)

dominates each derivative aq:lm/azh (h>m) of the K, functions Pim
l=1,---, Kn) and so that

QL—Z PIRS— (o] — - [ — (®h])

dominates each of the coefficients (hk, Ki) in (5.4) and also the terms
in (5.4) containing no derivatives. Then choose the positive constants
@y, -+, an and by, ---, by so that each is greater than P and so that the
coefficients (11.8) are each greater than @; also choose the positive
constant ¢ < r. Then the coefficients of the derivatives in the right
members of the equations (11.7) will dominate the corresponding coefficients

in equations (5.4). If the positive constant » is chosen such that w > BQ/a

then the quantities ,w—b% O(8*, o) will dominate the terms in the right
m

members of (5.4) containing no derivatives; the quantity « is used to
denote the least of the a’s and B the greatest of b’s. Hence it follows
from (11.6) and (11.7) that

(11.9) Rz‘(m/hl (O) _2_ IKI’;L/h, (O)ly
where s, < m. If the indices ¢, j, k¥ in (11.1b) determine an independent

component k,’:,k, then we have from (11.2), (11.5), and the fact that all
components &, appear in the right member of each equation (11.1b) that

(11.10) Dinc(0) = | (B x)o -

The inequality holds also for values of the indices ¢, j, ¥ which determine
a dependent component A since, in that case, Ajj is merely the negative
of an independent component. In order to extend (11.10) to higher
derivatives we shall assume the inequalities

(11.11) Doy, 0) = |Hjk, 1, (0)]
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for s<<r (r = 2). In calculating derivatives of second or higher order of
the components Ky, from equations (5.4), we use a process of differentiating
equations (5.4) and eliminating derivatives from the right members of the
resulting equations, which also appear on the left of equations (5.4) or the
equations obtained by differentiating (5.4). Due to the form of the left
members of (5.4) this elimination merely involves the substitution for
a right hand derivative of its equivalent from some other equation®® and
hence it is easily seen by comparing the two systems of equations, one
arising from (5.4) and the other from (11.7), that the inequalities

(11.12) S, -n,0) = | Kimpn, ..., (0)]

hold where s=1,-..,r; ky < m; and A;, for ¢>1, is arbitrary. Com-
bining (11.12) and (11.6) it follows that (11.12) is satisfied for all values
of the indices involved. Now differentiate equations (5.5) (» —1) times and
evaluate at the point z£f = 0; we obtain a system of the form

h;:,k,u-k. _h;;:vjkz...k,_ = 2h},kl,k2-.-k,+ X,

r

If we compare these equations with the equations which can be obtained
by differentiating (11.1b) it is seen, due to the inequalities (11.2), (11.4),
(11.5), (11.11) and (11.12), that

(11.13) @3:751“"% 0) = | h},kl...kr 0) — It;;l,jlcg...kr )]
for all values of the indices involved, or interchanging indices
(11.14) Bkt (0) = | Bt ..te, (0) — Py, -y, (0)

where w1, - - - 7, represents any permutation of the indices jk; - -- k.. Add
together the (- 1) inequalities obtained from (11.14) by allowing the
indices g7, - - - 7 to assume the cyclical permutations of j#%,, ---, k. The
inequalities

(11.15) (r+ 1) ik, 0) = | ¢ +1) B,k ke, (0) — S[Hfrr ..., 0]

result and hence (11.11) holds for s = r since the summation S in the
right member of (11.15) vanishes.*® This recurrence process enables one
to say that (11.11) and (11.12) are satisfied for s=1,2,.... Hence the
power series expansions for the functions ) dominate the corresponding A{;
series with the result that the latter converge.

28 loc. cit. Jour. (6.5).
Boc. cit. Proc. Note I (4.9).
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Part 1L
THEORY OF CHARACTERISTIC SURFACES.

§ 12. Definitions of Characteristic Surfaces.

The point of departure in our study of characteristic surfaces will be
the Existence Theorem in § 6 for the system (2.1). The regular form (2.8),
which is equivalent to (2.1), shows that if the quantities ¢, and 3 ¢,/2 2"
are assigned over the surface 2' = p' and the remaining functions g are
assigned as indicated in the statement of the existence theorem, the
solution vi(x) is uniquely determined over z' = p'. In a similar manner
if the functions

0 @; 0 @;
(12.1) Pik, B‘Zi"fl’ A} BZZ‘ (k = 0} R a—l)

are assigned over the » — « dimensional surface x! = p', ..., 2% = p°
and the remaining functions g are assigned as indicated in the statement
of the existence theorem, the solution vgx(x) is uniquely determined over
xt = p', ..., 2* = p*. These remarks apply equally well to a system of
the invariantive type.

Let v (x) denote a solution of (2.1) and consider the system of equations

n w
(12.2) 2 2@ ::’; ter(@) =0 G=1,-., ),

where a}* and c} are functions of the variables «', - - -, 2™ obtained by sub-
stituting the integral v, () into the quantities af, (z, v) and ¢, (x, v) respect-
ively. A surface Cn—1 having x' = 0 as its equation will be called an m —1
dimensional characteristic surface for an integral vk (x) of the system (2.1)
if it is impossible to find a coordinate system (x) defined by the trams-
Jormation

(12.3) zt =z, xi:fi(ily"’:in) (i=2,.--,m)

such that (12.2) can be solved for Ly derivatives of the set 9v*/9z* at a point P
on the surface C,_,. If the coefficients af, are functions of z° alone, the
characteristic surfaces C,— are determined independently of the integrals v.
An analogous definition and remark applies to the tensor equations (3.1);
the same is true of the invariantive systems composed (a) of the equations
(4.3), (4.5) and (4.7) for the affine case, (b) of the equations (4.4), (4.8),
(4.10) and (4.11) for the metric case, and (c¢) of the equations (5.2), (5.3)
and (5.5) for the vector case. It is to be noted, however, that under
case (a) the equations (4.3) and (4.5), under case (b) the equations (4.4)
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and (4.8), and under case (c) the equations (5.2) and (5.3) are alone of
significance in the determination of the characteristic surfaces.®
It follows that if the data is assigned over a characteristic surface C,—;
of the system (2.1) or (3.1) the general existence theorem will fail to apply.
If the equation of a characteristic surface C,—; of the system (2.1) has
the general form @ (z',--.,2") = 0 we can, by a transformation of
codrdinates®!
(12.4) = 0@ -, 2", zt=2at G=2,---,m)

reduce the equation of C;—; to the form z'= 0 with respect to the (z) co
ordinate system. In this latter system of codrdinates z* the equations (2.1)
become

n o w
—g 0 — . :
(12.5) ﬁ%kgl afka—i%'l_ci: 0, (Z:‘l’ ooy L),
where ,
_ ox!
(12.6) agt = agk axa .

The fact that ' = 0 is a characteristic surface implies that
(12.7) Wy=0, -, W = 0

over z' = 0, where the quantities W; are the determinants of order L, in
the matrix

—x%1 —%1
an Q1w
a8 e ,
—%]1 —%1
ary - OLw

in which the a7 are obtained from the quantities aj by the transformation
(12.6). The property (12.7) will persist under coordinate transformations.
In fact we have

(12.9) ay = ag, @,

30 Several definitions of a characteristic surface of a system of equations have appeared
in the literature. Cf. Cartan, loc. cit., (8); also N. M. Giinther, On the theo.y of characteristics
of systems of equations with partial derivatives. St.Petersburg (1913). The above definition
has the advantage that it applies to invariantive systems as well as systems in which the
unknowns are scalars.

3! The statement that equations (12.4) define a transformation of codrdinates implies that
the jacobian determinant of these equations does not vanish identically, i.e. that 0 @/0x!
is not identically zero. If such were the case we could, by a relettering of the variables (x),
cause the derivative 0 @/0X" to be different from zero; then the system (2.1) or (3.1) could
be referred to the new set of variables.
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since the af transform as the components of a contravariant vector in
the index « and the derivatives @. of the function @ are the components
of a covariant vector. Hence the corresponding terms in (12.8) and the
transformed matrix

aﬁu (Da o a;’;ff a)a
(12.10)
ajyy®, --- arto®,

are equal at any point P in space; the determinants W; (s =1, ..., 7) in
the transformed matrix (12.10) therefore vanish over @ = 0.

Conversely suppose we have a surface @ = 0 such that W, =0,-.-,W,=0
over ® = (. Make the transformation (12.4). Then because W; =0, - - -,
W, =0 over z' = 0, it is impossible to solve the system (12.5) for L,

derivatives 0 vx/0z'. Under transformations of the type (12.3) namely
(12.11) B =3, F =G, (=2,-,m)

we have from (12.6) that a}, = a}; hence no codrdinate system (z) can
be found in which the system (2 1) can be solved for L, derivatives o vx/9 !
at a point P on 2! =0, i.e. ® =0 is an (n —1)-dimensional charac-
teristic surface C,—;. In other words a necessary and sufficient condition
Jor the surface ® = 0 to be an (n — 1)-dimensional characteristic surface Cp—1
Jor an integral vi(x) of the system (2.1) is that all the determinants
Wi(@=1,---,7) of order L, that can be formed from the matrix (12.10)
vanish over ® = 0,

The above discussion concerning the system (2.1) and its characteristic
surface Cn—; is likewise applicable to the equations (5.2) and (5.3) of the
vector invariantive system composed of (5.2), (5.3) and (5.5) and in fact
a corresponding necessary and sufficient condition for the surface @ = 0
to be a characteristic surface C,—; of the vector invariantive system (5.2),
(5.3) and (5.5) can be stated. It is obvious that the quantities W; whose
vanishing constitutes the condition for the surface @® = 0 to be a charac-
teristic surface C,—; of the system (2.1) are differential parameters since
in fact each of the elements of the matrix (12.10) is a differential para-
meter; an analogous remark applies to the vector invariantive system.®?

32The observation of this fact is facilitated by noting that (5.2) has the particular form
IRV KL S,

in which the coefficients (Af,.) ki are linear and homogeneous in the components I and
the index e is to be summed as indicated; hence the coefficients (A%,r) h;" have the contravariant
vector transformation in the index « and so correspond exactly to the coefficients g in (2.1).
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A surface Ch—e having ' =0, - -+, &% = 0 as its equations will be called
an (n— a)-dimensional characteristic surface of type 8 where 8 =1, ..., «
Sor an integral vk of the system (2.1) if it is impossible to find a codrdinate
system (x) defined by the transformation

(12.12) z*=z' (=1, ..., a); szfj @'y 2™ (=ea+1,--,n)
such that (12.2) can be solved for

. . R ok
L; derivatives: ¥
L derivatives: A
s—1 derivatives: FYTE
o . ovk
rivat. : =
Lg derivatives Y

but possible to find a cobrdinate system (x) defined by the above transformation
such that (12.2) can be solved for

. . . 0 vk

L, derivatives: ¥

.. 0 vk
Ls— derivatives: 3B

at a point P on the surface Cp—a.

The characteristic surfaces C,—« of the tensor equations (3.1) can be
defined in a similar manner by replacing the above derivatives by the
derivatives

T 8T
oz’’’ oz

and the equations (12.2) by the corresponding system determined by (3.1).
When the data is assigned over an (n — «)-dimensional characteristic
surface C,—q the general existence theorem for the system (2.1) or (3.1)
will fail to apply. Analogous definitions and remarks are to be understood
to apply to the affine, metric and vector invariantive systems.

Now consider the matrix

ko ke,
au “uo Ay o0 Oy
(12.13) '
ko
l aLl aLw Ary°* OLaw

which for brevity will be denoted by ||a}*||. We observe that the matrix
||ake|| is composed of the e matrices in the parentheses in (12.13); the
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first of these matrices in parenthesis will be referred to as the first sub-
matriz of (12.13), the second as the second sub-matrix, etc. Let us denote
by Zp any determinant of (12.13) of order

23
Ay = 2 Li,
1=1
where 8 = 1, ..., « that can be formed by selecting L, columns of the
first sub-matrix, L, columns of the second sub-matrix, - --, Lg columns of

the Bth sub-matrix of (12.13); particular determinants = will be denoted
by Zg, Eg,, etc. The condition that the equations 2' = 0,...,2%*= 0
shall define an (n — «)-dimensional characteristic surface Ch—« of type 8
for the system (2.1) is that there exists a determinant Zg; which does
not vanish but that all determinants = shall vanish over this surface.
More generally a mecessary and sufficient condition that @ = 0 where
i =1,.-., « should define an (n — a)-dimensional characteristic surface
Cu-o of type B is that there exists a determinant Zg—y in the matrix
llaix’ @G| which does mot vanish where @ denotes the partial derivatives of
O+ (w=1, .-, «) while all determinants Eg in this matrix vanish over the
surface @ = 0. This extends the previous condition for 2 —1 dimensional
characteristic surfaces; an analogous condition can evidently be stated for
the vector invariantive system composed of (5.2), (5.3), and (5.5).

Let us now consider an affine invariantive system (4.3), (4.5) and (4.7)
or a metric invariantive system (4.4), (4.8), (4.10) and (4.11); let us in fact
represent either the equations (4.3) and (4.5) or the equations (4.4) and
(4.8) by writing

< f: 0 J,
12.14 E a b | —
( ) a=1b=1Ib° ox® ¥ 0,

where the coefficients 7 are functions of the components A;,,d in the affine
case and functions of the components g,z and g.s ,¢ in the metric case;
the quantities J, where b = 1, ..., Q are independent A/‘;'},‘; O gop, yo
in the affine or metric cases respectively.®®

If 21 = 0,--.,2* = 0 is an n— o dimensional characteristic sur-
face Ch—q of type 8 where 8 =1, .-, @ of an affine or metric invariantive
system, this implies that the determinants Zg of order s in the matrix

Ih ...]}21 If - It
219 o))
Lw- - Tow Ly Igw/’ |

33 For the values of @ in the affine and metric case, see loc. cit., (11) p. 202 and p. 660.
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in which W represents the number of equations (12.14), vanish over the
surface ' = 0, ---, x* = 0 for an integral of the system (12.14) but
that there exists a determinant =g, which does not vanish over this
surface. Now let U, ---, U, denote a set of irreducible factors of the
determinants =3 in (12.15) such that the vanishing of the U,, ..., Un
implies the vanishing of all determinants S3. Make an arbitrary trans-
formation of codrdinates: xf = @ (x) and replace each component appearing
in the Uy by its value in accordance with the tensor law of transformation.
Thus the components A;,,d», Japs Jap,ye Will be replaced by expressions
which are linear and homogeneous in Agydn, Jap a0d gog ¢ Trespectively

and rational in the derivatives 9 @/dx* of the coordinate transformation.®*
Hence we shall have

— o D! o Q"
Affine case: Ux(dgyg) = Wi (A,;‘,,;; 27 T 5")’

. — = oot 3 O"
Metric case: Uk(gag; gaﬂ,yd‘) = (9¢ﬂa Gap, yd; 321 T o )

It is obvious from their method of formations that the functions ¥ are
differential parameters. If the Uy vanish over the surface ' =0, --., 2* =0,
the parameters &y will vanish over the surface @' = 0, ..., @* = 0
and conversely. Hence, a necessary and sufficient condition that the equations
Q! =0, ..., @* = 0 define an n— « dimensional characteristic surface
of type B for an integral T's, or geg of an affine or metric invariantive
system respectively, is that (1) there exists a differential parameter ¥ corres-
ponding to a determinant Sy in the matriz (12.15) which does mot vanish
over @' = 0, -.., @* = 0 and (2) that all the differential parameters ¥y
vanish over the above surface. It should be observed that in stating the
above condition we suppose that the jacobian determinant of the functions
@', ..., @ occurring in the differential parameters ¥y, does not vanish
over the surface ®' = 0, ..., ®* = 0; also it can be supposed that
the functions @, etc. with which we are concerned in the above necessary
and sufficient condition are referred to coordinates (x) instead of the co-
ordinates (z) as originally considered.

§ 13. Differential Equations of the Characteristic Surfaces.

The conditions obtained by equating to zero the differential parameters
= formed from the matrix || af @% ||, namely

34The denominators of these rational expressions in the derivatives 0 @'/9x* will be
the jacobian determinant of the above coordinate transformation and hence will not vanish
identically.
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(13.1) 3 =0,---, 5, =0
over @' = 0, ..., @* = 0 constitute a system of first order partial differ-

ential equations for the determination of the « independent functions @J/. When
the functions @/ are so determined, the equations @' =0, ..., @* = 0
define an n— e dimensional characteristic surface Ch—« of type 8 for the
integrals vx(x) of the system (2.1) provided that there exists an expression
Zs—1 which does not vanish over the above surface. Analogous remarks
apply to the case of the vector invariantive system composed of (5.2),
(5.3), and (5.5). Similarly the equations of type

(13.2) W, =0, -, Wy, =0

over @' = 0, ..., @* = (O determine the n—a dimensional character-
istic surfaces Ch—a of type 8 of the affine and metric invariantive systems;
in case the above equations (13.2) do not possess the required solution,
the surfaces C,— will fail to exist.

The above characteristic surfaces C,—. will have a unique determination
in space if and only if the coefficients as in (2.1) or the coefficients Iy in
(12.13) are independent of the integrals of the corresponding systems.

If the functions ®@J(x) satisfy the partial differential equations (13.1)
over the entire x-space, then the equations

! =cl, ceey QP — *

in which the c¢’s are arbitrary constants within suitable limits, define
a family of characteristic surfaces Cn—o of type 8. A similar remark can
be made for the equations (13.2).

§ 14. Sets of Monomials.

The theory of monomials here presented contains as a special case the
theory given by Janet® in an exposition of Riquier's work. Only proper-
ties of monomials will be considered which are essential in the discussion
of existence theorems yet to be treated.

By a monomial is meant the product z{* - - - z,» in which the exponents
as, ---, an are positive integers or zero.’® As the basis of the following
discussion we shall consider a finite set (M) of monomials; the monomials
of (M) will be supposed to be distinct. Any particular monomial of the
set (M) will be denoted by M, M, etc. and an analogous notation will
be used for the monomials of other sets which will be introduced in the
following discussion.

35 Throughout this section and also throughout §§ 15-18 the notation ;, ..., x. in-
volving subscripts will be used for the codrdinates.
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The above set (M) will be divided into two mutually exclusive sets
(L) and (K). The following definitions apply to the sets (Z) and (X)

respectively.

(a) Multiple. The monomial L : xp x;“ is a multiple of L: xi" < xﬁ" if
none of the differences
(14.1) (al—bl), sy (an—bn)

is negative.

(b) Multiplier. The variable z; is a multiplier of L if the degree of x;
in L is equal to the maximum of the degrees of 2, in monomials of (M).
Similarly z; ¢ = 2, - - -, n) is a multiplier of

3 S (] a,
. 1... i—1 LI i
L: =z o x; x,

if o; is equal to the maximum of all degrees of the variable x; in all
monomials of (M) having degrees in z;, - - -, 2i—1 equal respectively to
the particular values oy, - -, 6;—; in L.

(¢) Non-multiplier. If z; is not a multiplier of a monomial L it will be
called a non-multiplier of L.

THE SET (K)

Let o have any one of the values 0,1, ..., —1; when the value of
o has been selected it will be held fixed throughout the discussion of this
section.
(a) Multiple with respect to @. The monomial K: zft -+ e is a multiple

with respect to « of K: x';‘ e x:’;' if the first « of the differences (14.1)
are zero and none of the remaining is negative.
(b) Multiplier with respect to . The variable z; ¢ = e¢+41,---,n; « > 1)
is a multiplier with respect to « of
IE; x:l...x:;‘_‘ll a;:‘...$:;"
if z; is equal to the maximum of all degrees of the variable ; in all
monomials of (M) having degrees in x,, ---, zi—1 equal respectively
to the particular values #;, ---, 7~ in K. If « =0, the multipliers
of K are determined as though this monomial were a monomial L.

(¢) Non-multiplier with respect to e. If z;j(i=ea-+1, ..., ) is not a
multiplier of a monomial X it will be called a non-multiplier of X.
(d) Variables ;, -+, %e. The variables x;, ---, 2« will be neither multipliers

nor non-multipliers with respect to « of any monomial K.

For brevity in the following discussion the above phrase ‘with respect
to «” will be omitted since it is to be understood that the value of «,
when once selected is to be held fixed throughout this section. It should
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be noted that if ¢ =0, the above definitions regarding the set (X) become
identical with the corresponding definitions for the set (L).

The following example will serve to illustrate the above definitions. Let &« = 2.

Monomials Multipliers Non-multipliers
x? yd 22 Yy z x
(L) x* y* 2? .z x y
x? y 2? z x Yy
x y 2 y z x
x3 .oz
® 5, e L

We shall now define n -+1 different sets of monomials (N;), (Nz), -+ -, (Va),
(Nx) which together will comprise a set () of monomials. The set (N)
will be said to be complementary to the set (M). Corresponding to the
previous notation we will denote a monomial of (V) by N, N, etc.,
a monomial of (V,) will be denoted by N,, N;, etc. etc.

THE SET (N)

(a) The set (N,) is composed of all monomials xf where 8 is a positive
integer or zero which is less than the maximum of the exponents of x;
in (M) and which does not appear among the exponents of x; in (M).

(b) The set (N;) where : =2, ..., n is composed of all monomials that
can be formed from

0, Si1 .8
Zyt 2w
by taking ¢, ---, 0, as any system of exponents of x,---, xi

respectively of a monomial of (M) and 8 as a positive integer or zero
such that (1) 8 is less than the maximum exponent of x; of monomials
of (M) of the form

61 LY 6’_1 e o o
z, T

and (2) 8 does not appear among the exponents of z; in these monomials
of (M).

(c) The set (Nx). Consider a monomial K: @yt -+ - a,» which would have
at least one of the variables z, ---, z« as a multiplier if all of the
monomials of (M) were assumed to belong to the set (L). Let
Xy, -+, , where », < e« and ¢ =1, ..., n—1 be the hypothetical
multipliers of this monomial K and form the » (< «) monomials

x‘:l...xt:':s—l_l...x:" (i=1,"~,7‘).
The totality of these latter monomials constitutes the set (V). For
« = 0, the set (V) is not defined.
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(d) Multipliers of N,. The variables s, ---, 2, are multipliers for any
monomial . B

(e) Multipliers of N; where =2, ---, n. The multipliers of a monomial N;
having the quantities o, --- 0;_; as exponents of the variables z;, -, xi—1
respectively are (1) the variables xit1, ---, » and (2) those variables
of the set x;, - - -, x;—; which would be multipliers of a monomial of (M)
of the form

o1

Oi—1 P
Ty

. x‘i—l

if all the monomials of (M) were considered to belong to the set (L).
{(f) Multipliers of Ni. The multipliers of any monomial

Ne: gt - a;z:"+l ez

are the multipliers of the corresponding monomial K: 7' - - - 2" when
all monomials of (M) are considered to belong to the set (L) with
the exception of zy , -+, 2y, ,.

Let us find the complementary set to the set (M) treated in the above example.

Complementary sets | Multipliers
(N 1 - Yy 2
(N2) z o

x . .oz

z Yy z Y

$2 y3 z Yy

wZ ya Y
(N3) x? y? 2z .

1‘2 y2

2y z

x? y

xt T y z
(Nx) x y -y oz

x y -y

The class (M) of a monomial M is the-set of all monomials which can
be obtained by forming the product of M and an arbitrary monomial in its
multipliers. It is to be observed that the class (M) as so defined, contains
the monomial M in case M possesses a multiplier and that in_this case
the class (IR) is composed of infinitely many monomials. If M possesses
no multipliers it will be assumed that (M) comsists of the single mono-
mial M. Analogous definitions and remarks apply to the classes (9;) where
i=1,.--,n and (Ry) corresponding to a monomial N; and Nk respectively.
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We will say that a monomial of the class (M), (N;) or (Nx) arises from
the monomial M, N; or Ny as basis. To designate a particular monomial
of the class (M) we will use the symbol M, etc. The set of all classes ()
will be denoted by (I); similarly the set of all classes (%) and (%) will
be denoted by ().

THEOREM 1.  An arbitrary monomial P in z,, - - -, x, belongs to one and
only one class (M) or (N).

In proving this theorem we shall assume « 4 0; this is always permissable
since by a change of notation a set (M) for which « = 0 can be replaced
by a set (M) for which the set (K) is vacuous. In case n = 1 the theorem
follows immediately: all monomials in (M) then belong to the set (L) and
any monomial P, i.e. x2 either belongs to (M) or (N) or is a multiple
of 22 where b(= 0) is the highest power of x, in (M). Hence we shall
assume the theorem for n—1 variables and prove it for » variables
(n=>2). Lete <<ep<<---<en be the exponents of z; in (M) and denote
by A(= 1) the degree of x; in P. The induction proof will be divided
into the following cases.

Case 1. A s less than em and different from e; (<< m). For this case
P cannot belong to a class (2) since x; is a multiplier only for those
monomials of (L) for which the degree in x; is en; P cannot belong to
a class (®) since z; is not a multiplier of any monomial K; P cannot
belong to a class (Ny) since z, is a multiplier only for those monomials
of the set (k) for which the degree in z; is en; likewise P cannot belong
to a class (N;) where : =2, ---, n. Finally it is evident that P belongs
to one and only one class (%,).

Case 2. A is equal to en for h < m. Here P can obviously arise only
from some monomial M* or N* in (M) or () respectively for which z,
has the exponent . Dividing a monomial M* or N* by 2? let us denote
the resulting monomial in the variables xy, ---, 2, by M** or N*4 re-
spectively. The monomials L** and K*! belong to the sets (L*4) and
(K**) of (M**) for which e* = e—1 will be assumed. If «* = 0,
(M**) will be considered as a set (M) for which (K) is vacuous in
accordance with the previous procedure; however the designations L**
and K*! will continue to be employed as indicative of the origin of these

monomials from monomials Z* and K* respectively. Then observe that
the monomials N** are complementary to the monomials of the set (M*4);
also that the multipliers of a monomial M** in the set (M*4) are the
same as the multipliers of the corresponding monomial M* in (M); like-
wise that the multipliers of a monomial N** in the set (N*) are the
same as the multipliers of the corresponding monomial N* in the set ().
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Now the monomial P/z in the variables z, ---, x, arises from one and

only one monomial M** or N** as basis since the above theorem is
assumed for n—1 variables; hence P arises from the corresponding
monomial M* or N* as basis, i. e. P belongs to the class (D) or (N4).
If P belongs to a class (M%) or (R*) the monomial P/x} belongs to the
corresponding class (IM*4) or (N**) respectively; hence if P belonged to
more than one class (DY) or (N the monomial P/z* would belong to
more than one class (M*4) or (N*4) contrary to hypothesu

Case 3. A is equal to or greater tham em. In this case the monomial
P can arise only from a monomial M or N in which the exponent of x,
is em or em--1. Just as in Case 2 let us consider the sets (M**) and
(N*°") obtained by dividing the monomials M** and N°** by % respectively.
Then observe that the multipliers of the monomial M** in the set
(M**) are the same as those for the conespondmg monomial M° in (M)
with the exception of x, if M°*" is a monomial L°® = for the monomial K
the variable x; does not occur as a multiplier. Also the monomials N **»
are complementary to the monomials of the set (M*°"); the multipliers of
a monomial N**» in the set (N*°) are the same as those for the correspond-
ing N°» in the set (N) with the exception of z,. Now the monomial
P/2* arises from one and only one monomial M** or N* as basis since
the theorem is assumed for n—1 variables. If P/x* arises from a mo-
nomial L** or N;‘e"', the monomial P can arise from the corresponding
monomial L*~ or Ni*. If P/} arises from a monomial K**» the monomial
P arises from the corresponding K° if A = e, and from the monomial
N »1 as basis if 4> en; if P/z} arises from a monomial Nx™, the
monomial P arises from the corresponding monomial N;;_: if A = e, and
from the monomial JV;;‘“ as basis if 4 > e,. Conversely suppose P be-
longs to any two of the classes (), (), (8°), (Ri=), (M) with the
exception of two classes (&), (Rir), (R™") of the monomials K™, Nir,
and N respectively where N» and N:'' correspond to the monomial
K=, then P/x} belongs to two classes (IM*) and (W***), contrary to
hypothesis. It is easily seen that P cannot belong to two of the excluded
classes (&™), (R%) and (R&™).

The set (M) is said to be complete if any monomial P which is a multiple
of at least one monomial of the set (M) belongs to the class (). It follows
from Theorem I that the multiples of a complete set (M) are separated
into a finite number of mutually exclusive classes, namely the classes (I);
monomials which are not multiples of any M are likewise separated into
a finite number of mutually exclusive classes, i. e. the classes ().
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The set (M) is said to be strongly complete if any monomial P which is a
multiple of at least ome monomial of the set (L) belongs to the class (L)
and any monomial Q which is a multiple of at least one monomial of the
set (K) belongs to the class (MM).*® A set which is strongly complete is
also complete; the definition of strong completeness is introduced since
Theorem II below gives a convenient test for strong completeness while
we do not have such a test for completeness.

THEOREM II. A mnecessary and sufficient condition that a set (M) be
strongly complete is that the product of any monomial L by one of its non-
muldtipliers belongs to the class () and the product of any K by one of its
non-multipliers belongs to the class ().

The necessity of the condition in the theorem follows immediately. The
product of any monomial L by one of its non-multipliers is a multiple
of L and lence belongs to the class (8). Likewise the product of any
monomial K by one of its non-multipliers is a multiple of K and hence
belongs to the class (IN).

Let us prove the sufficiency condition for the case n = 1; this implies
« = 0. Suppose that ¢, <le;<C--- <en are the exponents of x; in the
set (L) and d;<<dy<< --- <dy are the exponents of z, in the set (K).
Then the class () consists of the monomials

d d,. e e,. a+1 a+2
(14.2) wll, R ALK xll, ceey, xl"', X X,

where o is the maximum exponent in (). But the monomials

it gt
belong to the class (®) by hypothesis. Hence e,+1=¢e, -, em—1+1=c¢en
and the exponents e, ---, es are consecutive integers. Suppose en ¥ a,
then z, is a non-multiplier for z; and so xf"‘*‘l belongs to the class ()
by hypothesis. However upon examining (14.2) we find that if e, F a the

monomial xf"‘“ could only belong to the class () or (R;) and we have

a contradiction. Hence e, = a. By hypothesis x‘fﬂ“ then belongs to
a class (M) so that d,-+1 =¢ and dy, ---, d, are also consecutive integers.
A set of monomials of this type is easily seen to be strongly complete.

In order to prove the sufficiency condition for » >1 we assume that
every product of an L by any one of its non-multipliers belongs to the
class () and that every product of a K by any one of its non-multipliers
belongs to the class (M); then we show that (1) the product of every
monomial L by an arbitrary monomial in =z, ---, x, belongs to the

3 When « = 0, this definition introduces a distinction between the sets (L) and (X).
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class (2) and (2) the product of every monomial X by an arbitrary monomial
in xeq1, -+, xn belongs to the class (M). Let us assume the theorem
for n»—1 variables and prove it for » variables. -
Again denote by M** the quotient of M* by z*. The monomials L**
and K** will belong to the sets (L*#) and (K*) with e* = a—1 for
a>1 and «* =0 for « = 0. Then those variables x,, - - -, , Which
are multipliers or non-multipliers for M* in the set (M) are precisely the
multipliers or non-multipliers respectively for M** in (M*}). Hence the
product of any monomial 2** of the class arising from L*2 in the set (M_*l)
and z} belongs to the class (2%). Similarly the product of any monomial f*

of the class arising from K*! in the set (M**) and ! belongs to the

class (R*). By assumption the product of every L* by one of its non-
multipliers selected from as, - - -, x, belongs to the class (8); this product
xg L* is of degree 4 in z and hence must belong to a class (84), i.e.
the class arising from a monomial Z* in (M). Hence

wfxp L — le'pf**,

where p is a monomial in multipliers of L** in the set (M*}). That is
(1) the product of a monomial Z** by a non-multiplier of L** in the
set (M*}) belongs to the class (2*%) of a monomial L*2 in (JM*).
Similarly the product of K4 by one of its non-multipliers xg belongs by
assumption to the class (im") Hence
x{. xﬂf*l — x{pﬂ*",

where p is a monomial in multipliers of M** in the set (M*}). That is
(2) the product of a monomial K*4 by a non-multiplier of K*4 in the set
(M*%) belongs to the class (M*4) of a monomial M** in (M*)). By
assumption for »—1 variables it follows therefore that the set (M*}) is
complete on account of statements (1) and (2). Hence we have the strongly
product of a monomial L** by an arbitrary monomial in as, - - -, x, belongs
to the class (2*%); that the product of a monomial K*4, with « = 0, by
an arbitrary monomial zs, - .-, x, belongs to the class (IR*4); that the
product of a monomial K*! with ¢ > 1 by an arbitrary monomial in
Zat1, -+, xn belongs also to the class (I*4). Thus we have proved
that for « > 1 a multiple of a monomial K belongs to the class (), that
the product of a monomial K, with « = 0, by an arbitrary monomial in
Zs, -+ -, Xn belongs to the class (), and that the product of a monomial L
by an arbitrary monomial in x;, - - -, 5 belongs to the class (8). It remains
to prove that the products of a monomial L and a monomial K, with
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e = 0, by an arbitrary monomial of degree ¢ (= 1) in x; belong to the
class () and the class (M) respectively.

Now assume that the product of a monomial L by an arbitrary monomial
of degree ¢ (= 0) in a; belongs to the class () and let us seek to prove
the property for ¢4-1. By this hypothesis the product of a monomial L
by an arbitrary monomial of degree ¢+41 in x; can be considered as the
product of x; and a particular monomial €. If the degree of [ is_less
than e, the monomial € belongs to a class arising from a monomial T for
which x; is not a multiplier; x, L _is therefore at most of degree ey in x,.
Hence z; £ is the product of x; L and a monomial in s, - - -, 24. But
x; L belongs to the class (8) by hypothesis since T is a non-multiplier

of L. Hence z; L is the product of a monomial L and a monomial in
Xs, -+, Zn. By the above paragraph the monomial x, € therefore belongs
to the class (8). If the degree of € is equal to or greater than e, the
monomial ¥ belongs to the class (8 arising from a monomial L for which
2, is a multiplier and hence x; & belongs to the same class (8. In other
words we have proved that the product of a monomial L by an arbitrary
monomial belongs to a class (8). The argument used here can be applied
without modification to show that the product of a monomial K, with
a = 0, by an arbitrary monomial belongs to the class (IR) and the
theorem is proved.

Upon examination of the set (M) in the above example, one finds that the monomial
x® 43 22 does not belong to any class (JR) and hence the set (M) is not complete.
The following example exhibits a set (M) with ¢« =1 which is complete but not
strongly complete.
Monomials Multipliers | Non-multipliers

x? y? 2 x y =z
& xr y 2z x -z .y
T Yy =z ..oz x y
K) = g cyoz |

It is evident by inspection that the above set (M) is complete. The requirement that
the product of L by a non-multiplier belong to () would mean that the monomial x y? 2z
would belong to the class (8); however the monomial x 2z belongs to the class ().

The set (M) will be said to be mormal if mo monomial K when considered
as an L, is a multiple of any monomial L in the set (L). In the appli-
cations of the theory of monomials we shall have occasion to deal with
normal sets (M).

We are now going to give a procedure for obtaining a strongly complete
set (M,) from an arbitrary normal set (M;) such that the multiples of
the monomials of (M,) and (A;) are identical. Those products of
a monomial L, by one of its non-multipliers which do not belong to the
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class (2,) will be added to the set (L,) to form the set (3;). On account
of the fact that (M;) is normal the set (M;) will be composed of distinct
monomials, etc. We must show that after a finite number of such operations 4
we will arrive at a set (M) after which no new monomials will be added
by this process. Then form the product of a monomial K, with one of
its non-multipliers and if this product does not belong to the class (M) add
the monomial to (Kg) to form (M,11). Let this operation be denoted by B.

Consider the numiers oy, -.-, o, equal respectively to the maximum
exponents of the corresponding variables x,, - - -, z, in the set (3;). The
operation 4 cannot add a monomial P: «7* . .. zf* with 3> g3 for any value
of 8(=1,.--,n). For suppose such were the case; let x, be the variable
&y, - - -, n for which z, = 0,4 1; then we have

P = 2y L, = xfl...x’}")_'_—llxgr+l..,’

where z, is a non-multiplier of L,. But xy is not a non-multiplier of L,
since the exponent of x, in I, is equal to the maximum of the exponents
of x, in (M,). Since there are only a finite number of monomials P with
;<0 (i =1,--.,n) we must after a finite number of operations 4 arrive
at a set (M) after which the operations 4 will cease to add new monomials.
Similar remarks apply to the operation B.

Now consider the set (M) formed from (3,) by operations 4, the set (M)
being such that no new monomials can be added by further operations 4.
It is evident that the set (My) is normal. Let us show that the property
of normality is likewise preserved when we make an operation B upon the
set (M,). Suppose that the monomial

K.« 28 ... 7% 1, . %
KM' x; xg x,

possesses the non-multiplier xs and that the monomial

Q. a, a
. O I
Kuyr: x; x, x,

is added to the set (M) by the operation B. Let us assume that Kuia
is a multiple of a monomial L, when K, is considered as belonging to
the set (L), i. e. that the set (My+1) is not normal. Hence we have

Z,, = x’;‘ e oci" b =< a).

If b,<a, it follows that x; is a non-multiplier for I—;,l. Since operation 4
can add no new monomials to the set (Ly) the monomial z, L, must belong
to the class (¥,) with the basis

<

E. e Wt <a
Wi XX, ) G<h<a ).
=2, n
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If b,+1<a;, we repeat the process until we have finally that the monomial
Ky+1 is a multiple of :

Ly: ali gl ... g G<La; 1=2,---,m).

1 "2 n

Then repeat the process for the variables x,, - - ., x5 each time comparing
the monomial in question of the set (L,) with monomial IEH to determine
whether or not the variable x,.--, 26 in question is a multiplier. By
repetition we have finally that the monomial K, is multiple of

en ( 6= a )
j - 6+1: . '
Let x: be the first of the variables w1, - - -, 2, such that (1) e;<Car and
(2) zr is a non-multiplier for f;,,,. Then z, Ji‘u belongs to the class (53“)
with basis

N a I €41 e+l s S, .y —
LM: xll 161,66:1 _”x‘r‘r xf‘l—.ij-ll...x7: (Siéaiy z_r-}-],...,n).

[ Yo % gl L
Ly: =x Z;% L x,

A continuation of this process will show that I?,H.l belongs to the class

of the monomial Ly: aft-..%..., where each of the variables x, of

the set Zgt1, - - -, 2n is either a multiplier for L; or else appears in L;'Z
with the exponent a,. Thus we have a contradiction and K41 is not
added by operation B.

If a monomial I?,,Jrl is added by operation B then repeat operation 4 on
the set (My+1) until no new monomials are added by further operations;
then repeat operation B once, etc., until finally we arrive at a strongly
complete set (). Since operations A and B add only multiples of mono-
mials L and K to the sets (L) and (K) respectively in the process of
forming (), it is evident that the multiples of the monomials of (34)
and (M) are identical.

The set (M) treated in the above example is normal. If one adds the monomials x3y32?
2?y?2? xdyz? to the set (L,) to form the set (L.) and then adds the monomial zyz to

the set (K;) to form the set (XK;) it is seen that the resulting set satisfies the condition
of Theorem IT and hence (M;) is complete.

Monomials | Multipliers | Non-Multipliers

x® Yt 2t x y z
3 g2 g2
x* oy oz x z y
2y 22 x z -y
(Ly) o2 y* 2? .y oz x -
xt oy 2 z x Yy
z x y
2z x -
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A monomial z' ... is said to be of higher or lower rank than

a different monomial ac;" xf;‘ according as the first of the differences
(14.1) which is not zero is positive or negative.

THEOREM III.  The product of any momomial of a complete set by ome of
its mon-multipliers is equal to the product of a monomial of the complete set
of higher rank, by multipliers of the latter.

By definition the product of a monomial M of a complete set (M) by
one of its non-multipliers is the product of another monomial M of the
set (M) by certain multipliers of the latter. We must show that M is of

a,

higher rank than M. Consider a monomial M: x, . x,* and let x; be

the non-multiplier in question. In order that x; M be a multiple of M:

xi’ xb we must have a,+1>b,. If M=K, with « > 1, 2, would

not be a multiplier for K the degree of K in z; in _that case could not be
raised to a, +1 by multiplication by multipliers of K. Hence a+1=1"0.
Similarly if M = L or if M = K, with « = 0, and if b, were less than
a,+1 then 2, would not be a multiplier of L or K since z, is a multiplier
only for monomials of the set (3/) which contain the highest power of ;.
If 25 is the non-multiplier of M it follows in exactly the same manner that

ay = by, ag = by, o+, a6+1 = b
By repetition of the above argument
a = bl’ sy, ao._.i_l J— bo_;

the monomial M is therefore of higher rank than M.

§ 15. General Existence Theorem.
For the purpose of ordering a system of partial differential equations

of the form s
- g du

(10.1) W =S F(:;c’ u; W; )

we shall assign to each independent variable and to each unknown s
successive cotes which as is well known are represented by zero, positive
and negative integers.’” The gth cote of an arbitrary derivative of w; is
then obtained by adding the gth cote of the unknown u; and the gth cotes
of all variables of differentiation, distinct or not. If the cotes of a deri-
vative z, namely C, - - -, Cs are not all equal to the cotes of a derivative z*,
namely Cy, ---, C; then z will be said to precede or follow z*, or to be
of lower or higher rank than z*, according as the first of the differences

C—Cfy -, Cs—C5

%7 Cotes were introduced and used systematically by Riquier, loc. cit., (5), p. 201.
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which is not zero, is negative or positive. The order which is thereby
established among the derivatives appearing in (15.1) by the first s cotes
is therefore not effected by assigning additional cotes. If the order of all
derivatives of the unknowns u,, - - -, u, with respect to variables xy, - - -, »
is not uniquely established by the assignment of the above s cotes ordering
the derivatives appearing in (15.1), we can accomplish this by the assignment
of additional cotes. For example, if we assign the n-} 1 additional cotes

X1 Xg +++ Apn U U <+ Uy

s+1 0 0 o1 2 ... r
s+2 10 ..-.Q0O0 --- 0
s+3 01 000 --- 0
s+n4+1{0 0 ... 1.0 0 --- 0

all derivatives are uniquely ordered. Thus, if two derivatives D;us and
Djur have exactly the same set of s+ n-+1 cotes, the equality of the
(s+ 1)st cotes implies that the functions u, and u, are identical and from
the equality of the remaining cotes the derivatives are identical.

Let us say that the tofality of derivatives of the unknowns u,, -- -, u,
of first cote C' constitutes the class C as a matter of convenient terminology.

It will be assumed that the above system (15.1) satisfies the foilowing
conditions:

(4) The equations (15.1), the unknown functions u,, - - -, %, and the in-
dependent variables «,, - - ., 2, are finite in number.

(B) The equations (15.1) are composed of two systems of equations,
(1) the system R which holds throughout the region D: |z;|<<c¢; where
the ¢’s are constants and (2) the system § which holds throughout the
subspace D: 2! =0, -- -, 2* = 0 of the region D.

(C) The equations R are solved for certai~ derivatives of the unknowns w
and the functions F' which constitute the right members of these equations
depend on the independent variables x, - - -, 2», the unknowns w,, - - -, u,
and the derivatives of the unknowns.3®

(D) The equations S are solved for certain derivatives which are not
left members of B and the functions 7' which constitute the right members
of these equations depend on the independent variables xe41, - - -, zn and
the derivatives of the unknowns which are not left members of B or S.

(E) The functions F' which constitute the right members of the system
(15.1) are analytic functions in the neighborhood of the values

33The term derivative is to be interpreted as including the unknowns » themselves.
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ou ou
(15.2) xr = O, u = (u,)o, "a-;' = (_6_-’;)0,

of their arguments.

(£ Cotes, s in number, are assigned to the unknowns u,, ---, u, and
the independent variables x, - - -, 2, such that (1) the first cote of each
variable (z) is unity and (2) the derivatives of the functions (») are uniquely
ordered.

(@) The order established by the above assignment of cotes is such that
any derivative 2z in the right member of an equation of the system R except
those for which the derivative 8 F/9 z vanishes throughout the subspace D,
precedes the derivative in the left member of the equation; also any
derivative in the right member of an equation of the system .S, precedes
the corresponding left member.

(H) In any equation of the system R the class of the derivatives in the
right member does not exceed the class of the derivative in the left member
of the equation.

It is to be noted that if a derivative z precedes a derivative z*, that
02z/0x° will precede 9z*/0x°; likewise 2 will precede z* if z is of lower
class than z*. All derivatives of a particular unknown u; in the class C'
will moreover be of the same order.

Let us now associate with the derivatives of the unknown u; which
appear in the left members of the system (15.1), the set (3;) of monomials
@yt -+ - 2 corresponding to these derivatives; the set (L;) of (M) will be
composed of those monomials which correspond to derivatives of u; in
the left members of the system R and the set (K;) of (M;) will be com-
posed of monomials corresponding to derivatives of u; in the left members
of the equations of the system S.

(I) The set (M) of monomials is strongly complete.

4 system of equations (156.1) will be said to be normal if the above con-
ditions A, ---, I are satisfied.

By differentiation of an equation of a normal system (15.1) we obtain
an equation which satisfies conditions G and H. Let z* denote the
derivative in the left member of an equation R or S and let z be a derivative
in the right member of the same equation such that z precedes the
derivative z*. By differentiation of this equation we obtain

az* 8F_|_ oF 9z
axt ~  8at 9z oxt

(15.3) 4= F'

I

where the derivatives z and 8z/62* in the right member precede the
derivative in the left member. Suppose now that z follows 2z* for an
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equation of the system R; this implies that 3 #/8z = 0 throughout the sub-
space . Hence /
681:: = —%;— = 0 throughout ®,

where the derivative 9z/9xf has been denoted by 2. In other words the
equation (15.3) satisfies properties G and H. Hence G and H will be
satisfied by the system of equations which result from a normal system (15.1)
by the addition of a finite number of equations obtained from (15.1) by
partial differentiation.

Differentiating the equations of the system (15.1) with respect to
multipliers (z) of the corresponding monomials, each principle derivative
of an unknown u,, - - -, %, will be obtained as the left member of one and
only one of the resulting equations; this follows from the characteristic
property of a complete system of monomials. Equations so formed by
differentiation of an equation of the system R are to be added to B and
those formed by differentiation of an equation of S are to be added to S.
Thus we arrive at a system of equations consisting (1) of the system R
and all equations which were added to R and (2) of the system S and
all equations which were added to the system S; we shall refer to these
as the systems R and § respectively. It is evident that a derivative z
cannot appear both in the left and right member of an equation of R or S.
Now consider the system E composed of all equations of B and § whose
left members belong to classes C of serial number not exceeding N; we
shall refer to a particular equation of the system £ by E,, E;, etc.
Let z* be the derivative of lowest rank which appears in the right member
of an equation E; of the system R and in the left member of an equation F
of R; using the equation E; we eliminate the derivative z* from the right
member of E;, Similarly if the derivative z* appears in the right member
of an equation E; of the system S and also in the left member of an
equation E, of B or §, the equation E, is to be used to eliminate z*
from the right member of E;. By repetition of this process we finally
reach a system € equivalent to the system E and such that € involves
only parametric derivatives in its right members; more precisely if we
denote by €z and €s the equations of € corresponding to B and S re-
spectively, then the right members of €r depend only on parametric
derivatives of the system R and the right members of €s depend only
on parametric derivatives of the system (15.1). The fact that we can
limit our considerations to the system E in the process of forming the
system € is a consequence of the above result that properties G and H
are preserved under differentiation. It is easily seen that conditions
analogous to 4, - .., H are satisfied by the system €.
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We are looking for power series of the type

© B, ..
(15.4) w = > — "

a=0 al!"‘an!

n a.

a,
1...
wl n

which will satisfy (15.1). Let us first, however, consider the problem of
determining a solution 1w, ---, u, of the system (15.1) such that each
equation of (15.1) is satisfied when we equate to zero the non-multipliers
(z) of the corresponding monomial. For brevity the system (15.1) so
modified will be referred to as the system U*. It is evident that the
equations of the above system €, evaluated at xg =— 0, can be arranged
in the increasing order of the principle derivatives in their left members
and such that any equation will involve in its right member only para-
metric derivatives of the system (15.1). Allowing the number N to increase
without limit we therefore see that for a given assignment of the initial
values of the parametric derivatives, the power series (15.4), i. e. the
formal solution u,, --., u, of the system U* will be uniquely determined.
But all parametric derivatives of (15.1) at xg = 0 are uniquely deter-
mined if the derivatives of each unknown u; corresponding to monomials
of the complementary set (I;), are assigned as arbitrary functions of the
multipliers (x) of the associated monomials, these functions being analytic
in the neighborhood of the values xz = O of their arguments. The
functions thus associated with an unknown wu; will be called (following
Riquier) the initial determination of the unknown wu;; the sum of the
initial determinations of an unknown wu; will be denoted by ¢;. Hence the
formal power series solution (15.4) of the system U* is uniquely deter-
mined by the assignment of the initial determinations; the convergence of
these series will be proved in § 17.%°
Let us now adopt the notation

(15.5) Z; = Diu—F = 0

for an equation of the system (15.1); here D;u denotes the derivative in
the left member of the equation (15.1) in question. According as the
expression Z; corresponds to an equation of the system R or the system S,
it will be denoted by R; or S; respectively. We shall speak of the de-
rivative D;u as the first term of the corresponding expression Z;. For
convenience in terminology we will speak of the cotes, the rank and the
class of the first term of an expression Z; as the cotes, the rank, and the
class respectively of the expression Z; itself; an analogous terminology

39 While the condition of strong completeness is imposed by condition I it may be ob-
served that the less restrictive condition of completeness of the sets (M) is sufficient for
the determination of these power series.
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will be applied to an expression obtained from Z; by differentiation.
Likewise the multipliers and non-multipliers (z) of the monomial cor-
responding to the first term of an expression Z; will be referred to as the
multipliers and non-multipliers (x) of the expression Z; itself. We shall
also denote by gi_either the expression Z; or an expression resulting by
differentiation of Z; with respect to its multipliers; more particularly B
will be denoted by R; or &; according as 3; was obtained from an ex-
pression R; or S; respectively.

The derivative of the first term of an expression R, with respect to a
non-multiplier x; of R, is identical with the first term of some expression
R, by condition 7. Furthermore the difference
dR,
d:l)b
where the derivative of R, denotes the result of differentiating the ex-
pression R, considered as a function of the independent variables (z) alone,
is such that (1) the derivative 8 @/6(Du) vanishes throughout the sub-
space D for any derivative Du in @ which is of higher rank than the
first term of d R,/dx and (2) the class of any derivative Du in @ is at
most equal to that of the first term of d R,/dx. Similarly, if x is a non-
multiplier of S;, the expression
a8
dxc
where the first terms of d.S,/dz. and 3, are identical, is such that any
derivative Du in & precedes the first term of the expression d8,/dzx..

Now use the equations €z to eliminate all principle derivatives of the
system R from the function @ in (15.6); also use the combined system € to
eliminate all principle derivatives of (15.1) from the function % in (15.7).
Suppose that

@(Du, x) > ®*(Du, x), W(Du, ) > ¥*(Du, x)

(15.6) —Ry, = © (Du, 2),

(15.7) _.-\Q__)z = lIf(Du, (E),

as the result of this elimination. 7The normal system (15.1) will be said to
be completely integrable if all functions @* and ¥* which can be constructed
Jrom the equations of the system (15.1), vanish identically.

In the following section it will be shown that a completely integrable
normal system (15.1) is satisfied by the power series solution (15.4) of the
system U*.

EXISTENCE THEOREM. A completely integrable mormal system (15.1) ds
satisfied by a unique set of analytic functions uy, - - -, u, determined by the
assignment of the initial determinations predicted by the form of the left
members of the system.
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§ 16. Equivalence of the Solutions of a Completely Integrable
Normal System and its Associated System U*.

We now consider the problem of showing that the power series solution
(15.4) of the system U* satisfies the normal system (15.1) provided that
this latter system is completely integrable.

Corresponding to an equation R; = 0 or &; = 0 we have identities of
the form

(16.1) (@) Diu = R+ FDu, 2), (d) Dju = &+ FDu, 2)

derivable by differentiation of (15.5), where the functions g in (16.1a) and
(16.1b) have properties regarding the derivatives Du analogous to those
stated in connection with equations (15.6) and (15.7) respectively. Hence
equations of the type (16.1a) can be used to eliminate principle derivatives
Du of the system R which occur in the functions § in these equations;
the infinite system so obtained as a result of this elimination furnishes
equations which can be used in turn to eliminate principle derivatives Du
of the system R from the functions @ in equations of the type (15.6). The
equation (15.6) thereby becomes

d R,

dz '—'5—}—‘2 = d)(ﬁy Du, z),

(16.2)

where (a) the derivatives Du in @ are parametric for the system R, (b)
the class of an expression R i in @ is at most equal to the class of d By/d s
and (c) any expression R in @ which does not precede dR;/dxs is such
that the derivative 9 @/d R vanishes throughout the subspace ®. Similarly
from (15.7) we have

(16.3) 5,

dx,

3, = ¥R, &, Du, 2),

where (d) the derivatives Du in 4’ _are parametric for the system (15.1)
and (e) any expression R or & in & precedes dS/dzc. _

If (15.1) is completely integrable the functions @ and ¥ must be such
that they vanish in consequence of the vanishing of the expressions R
and & appearing in these functions; this follows as a result of the way
in which the above functions @* and &#* were obtained.

Now consider the system of equations composed of all equations of the
type (16.2) and (16.3) which can be formed from (15.1) and into these
equations substitute the solution w,,---,u, of the system U*. The
resulting system
07

(16.4) oa

= D Z"+0(DZ* )
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will be reg_arded as a system of equations for the determination of the
unknowns Z;" where Z;* denotes the result of substituting the solution
Uy, -+, tp of the system U* in the expression Z;; it will furthermore be
understood that the variables @, = ... = x¢ = 0 in an expression S;".
In any equation (16.4) the first, second and third terms indicated result
respectively from the first, second and third terms of the corresponding
equation (16.2) or (16.3). We shall show in the following that (16.4) is
a normal system, i.e. that these equations satisfy the above conditions 4, ..., I
provided that we consider those equations (16.4) which contain a derivative
dR;/dx; in their left member as the system R and the remaining
equations (16.4) as the system S of condition B.

The monomials of the set (4;) corresponding to the derivatives of an
unknown R;* which appear in the left members of (16.4) all belong to
the set (L;). It can be shown that any set (M) of monomials of this
type in which each monomial consists of a single variable xg, is stlongly
complete.®® Since each monomial of the set (M;) for an unknown S;*
belongs to the set (K;) and furthermore since each of these monomials
consists of one of the variables xu41, - - -, 2, it follows that the set (Af;)
can be considered as a set (M) in the n— « variables x¢;1, - - -, 2, Where
all monomials of (M) belong to the set (L); hence (M) is strongly com-
plete by the above argument. The condition I is therefore satisfied by
the system (16.4).

Let us assign the cotes for the system (16.4) in the following manner:

() The variables xg will be given the same set of s cotes as in the normal
system (15.1). B

(8) The unknowns Z;* will be given the same set of s cotes as Z; in the
system (15.1).

(v) The variables g will each be given an (s-1)st cote of zero.

(0) Suppose that the expressions Z; which have derlvatlves of the same
unknown wu; as their first terms, are denoted by z9 Z -+ when
arranged in the order of decreasing rank of the monomlals conesponding
to their first terms. The unknown Z*“ will be given an (s-1)st cote
equal to the integer <.

The first s cotes of the derivative DxZ" in the right member of an
equation (16.4) will be identical with the first s cotes of the derivative
in the left member of this equation; however the (s-41)st cote of Dk Z*
will be less than the (sJ1)st cote of the derivative in the left member
in consequence of the above conditions (y) and () and Theorem IIT of § 14.
Hence Dy Z;* precedes the derivative in the left member of (16.4). Also

40 ¢f, Janet, loc. cit., (6), p. 85.
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the derivatives D Z* in the function 7 of (16.4) either precede the derivative
in the left member of this equation or are such that the derivative 2 17/ (D Z*)
vanishes over the subspace ®; these results follow in consequence of the
above statements (c¢) and (e) made in connection with equations (16.2)
and (16.3) respectively. Hence the system (16.4) satisfies condition G.

Consider those equations (16.4) which involve a derivative of an R in
their left members; any derivative of an unknown Z;* appearing in the
right member of one of these equations will have class at most equal to
the class of the corresponding left member in consequence of statement (b)
under equation (16.2). Condition H is therefore satisfied by (16.4).

To see that equations (16.4) are actually solved for the derivatives
8Z:{/0x; appearing in the left members of these equations we have merely
to note that z; is a non-multiplier of the monomial corresponding to the
first term of Z; while derivatives in the right members of these equations
involve only differentiations with respect to multipliers (x) of the cor-
responding monomials; hence no derivative occurring in the right member
of an equation (16.4) can appear on the left of any equation (16.4) and
conversely. Hence conditions C' and D are satisfied by (16.4).

If the s+ 1 sets of cotes glven by conditions «, 8, 7,  do not uniquely
order all derivatives of Z;, the ordering can be made unique by the
assignment of additional cotes in accordance with the discussion in § 15.
Condition F' can therefore be considered to be satisfied by (16.4). The
remaining conditions 4, B, E are obviously satisfied by (16.4) on account
of the method of formation of these equations.

Consider the system V* obtained from (16.4) by equating to zero in
each equation the non-multipliers (x) of the monomial corresponding to
the left member of the equation. Hence by the theory of § 15 there
exist a power series solution Z; of the system V* which is uniquely de-
termined by the initial determinations in the sense of § 15. In the
functions S;* of the solution Z; so obtained let us put 2, = - == x¢ = 0.
It then follows from the form of (16.4) that the solution Z; as so modi-
fied also satisfies the system (16.4) and hence is to be regarded as the
solution of (16.4) as above considered; hereafter by the solution Z; of
the system (16.4) this latter solution will be understood.

Now consider the set (M,) of monomials corresponding to an unknown
R}; all monomials xp, ---, ¥, of this set (M;) then belong to the set
(Li). The set complementary to (M;) consists of one monomial' N,:! with
multipliers consisting (1) of the variables x441, -+, z» and (2) of those
variables x, ---, g1 Wwhich do not belong to the set z,, ---, 24-1.
Hence the initial determination of each R; will be a function 6 of the
multipliers (x) of the corresponding expression R; in the normal system
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(15.1). Similarly the initial determination of each function S7 will be
a function ¥ of the multipliers (x) of the corresponding expression S; in
(15.1).

We wish to prove that the expressions Z; reduce identically to zero
when the unknowns wu,, ---, u, in Z; are replaced by the solution u,, ---, wu,
of the system U*. To prove this we observe (1) that when the non-
multipliers (z) of R; are equated to zero, the expression R; = 0 and
when the variables z;, ..., x« together with the non-multipliers (x)
of S; are equated to zero, the expression S = 0, (2) when the non-
multipliers (z) of Z; are equated to zero, the function Zi*_reduces to its
initial determination and (3) that the analytic functions Z; = 0 satisfy
(16.4) and the initial determinations of this solution of (16.4) vanish identi-
cally., This proves the above statement and shows that the solution
wy, - -+, ty of the system U* satisfies (15.1).

§ 17. Convergence Proof.

Denote by b and B the minimum and maximum values of the classes
of the derivatives appearing in the left members of the equations of the
system U*. Call the totality of equations of the system U* whose left
members are in the class b, the system 7,. The system 7%y; will be
composed of all equations with principle derivatives of the class b+ 1 in
their left members; if such an equation is lacking in the system U* it
can be obtained by differentiating a suitable equation of U*. Continuing
in this way we obtain the sequence of systems

To, Tot1, -++, T, TBt1, -+

The equations of this sequence fall into two component systems, namely
(1) the system composed of B* and those equations obtainable by differ-
entiation of the system R* and (2) the system S* and those equations
resulting by differentiation of S*; the first of these component systems
will be referred to as the extended system R* and second as the extended
system S*. It is evident that any equation of the system 7'p4; is linear
in derivatives of class B-}1. By the method of elimination used in
forming the system € in § 15, the systems 7%, --., Ts+1 can be replaced
by equivalent systems 7%, ---, Th+s which evidently determine uniquely
the principle derivatives of (15.1) at 2z = 0 in classes b to B+41 in-
clusive when the initial determinations are assigned.
Consider the transformation
a’n

Ca....
(17-1) U; — E‘!—(}’r}- 2_&_'“_'_
TEE

- ap!

a’l .. .a’n
931 a’n
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of the unknowns u;, ---, u, in which the summation » is limited to

those Cu,...q, Which give at xg = O the values of those principle derivatives

of the unknown u; in classes 0 to B inclusive. Substituting (17.1) into
the system (15.1), this latter system goes over into an analogous system
involving the corresponding derivatives of u, ---, u, in its left members.

On account of the form of (17.1) it is easily seen (1) that the principle

derivatives of the unknowns wuy, ---, u, in classes b to B inclusive must

be equal to zero at xg = 0 and (2) that the initial determinations of the
unknowns w;, ---, u, vanish identically. It can therefore be assumed
without loss of generality that the system (15.1) satisfies the following
condition.

(/) The principle derivatives of u,, -.-, u, in classes b to B inclusive
vanish at 2z = 0 and the initial determinations vanish identically.

Let us now write the system 75.; in the form

(17.2) Dius = Zpiaj,ul)j Uy + Gio;

we observe that this system has the following properties

(a) The derivatives D;us in the left members of (17.2) are all in the
class B+1.

(b) All principle derivatives of the system U* in classes C' where C> B+ 1
are determined once and only once by differentiation of the left
members of (17.2).

(c) The right member of an equation (17.2) is linear in derivatives Dju, of
class B+ 1; the coefficients » and the ¢ terms may contain derivatives
of class not exceeding B.

(d) Any derivative Dju, in the right member of an equation of R* of
(17.2) which follows the derivative D;us in the left member of the
equation, has a coefficient p which vanishes throughout the domain .

(e) The coefficients p and the ¢ terms in the right member of any equation
(17.2) are analytic functions in the neighborhood of the values

(17.3) z=0, Du=20, --.
of their arguments.
We shall show that when the principle derivatives of wu;, ---, . and

the initial determinations are assigned for the normal system (15.1) in
accordance with condition J, that the unique power series determinations
of the u;, ---, u, by the system U*, converge. It will then follow that
the series for the u;, ---, u, as determined by the system U* without
the condition J, will converge, since these latter series for u,, ---, u, are
related to the above convergent series by an equation of the form (17.1).

The above convergence proof will depend on two lemmas which we
will now proceed to state. Let us associate with the unknowns wu,, -- -, u, the
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positive constants {,, ---, {, and with the variables z,, - - -, 2, the positive
constants &, ---, & such that &>>1. Then corresponding to a derivative

aa.l-f-...-{-a,n wi
a a,
ox' -+ 0%,

we can construct the quantity
(17.4) CE B,

Let us likewise choose 7* positive constants A5 where o, u =1, ..., r
) b ) )

such that
”
Z' <1,
n=1

We then have the following*!

LEMMA I. A set of positive constants §, & where (§ >1) can be selected
so that the ratio of any quantity (171.4) corresponding to a derivative of
class C, to the quantity (17.4) corresponding to a derivative of lower rank
of the class C, is greater than a given positive number Q.

Lemma II.  The determinant

|06 — 2a|

18 positive and the cofactors of order r —1 are all positive or zero.

Let His. be the number of the derivatives of the unknown wu, of class
B-+1 which appear in the right of an equation with left member Dj;us.
Also let Pigjn be the absolute values of the constant terms of the power
series expansions of pigj., about the values (17.3). Denote the largest of
the numbers

})io'j,u Hio'll/ )-"a‘
by Q. Taking the class C in Lemma I to be the class B+ 1 we can then
choose positive constants {, & in accordance with this lemma so that
AR
H. L Ei...gh

iopu Su "1 “n

(17.5)

where D;us is of higher rank than Djwu,. Evidently the ratio (17.5) is
valid also for a derivative Djw, in the right member of an equation (17.2)
which follows the corresponding left member on account of the above
property (d). Now let @ be an upper bound to the absolute values of the
terms of the expansions of p, ¢ about the values (17.3). Then choose »*

41 Janet, loc. cit., (6), p. 144 and p. 141. In the proof of Lemma I use is made of the
fact that without changing the ordering of the derivatives effected by an assignment of
cotes, it is possible to replace the given set of cotes by a set composed entirely of
positive integers. Cf. Riquier, loc. cit. (5) p. 253.




PARTIAL DIFFERENTIAL EQUATIONS. 63

numbers %, positive or zero, where o, ¢ =1, ..., so as to satisfy the
conditions ) )

Ardgr L EN .. ™

[ [ ¢ 1 n 2 G

17.6 . - e
( ) Hiop §# E:I . E:{» =

for all combinations of the indices such that Djw, is a derivative of class
B+1 in the right member of an equation (17.2) of which D;us is the
left member. Finally choose the r positive constants »; so that

(17.7) v G & ER G,

where D;us is any principle derivative of class B+1.
Consider the system

o e RE g
(17.8) Dilqzzﬂm( 1—e - ?/F Ei"Dj Y+ 1—z

which has the same form as the system (17.2). Let

r — St - +§n$n+2DY
Q )
where the summation > DY denotes the sum of all derivatives cor-
responding to derivatives Du of class not exceeding B, and ¢ is a small
positive number such that the function

(17.9)

G
{— 2x+2DY
0

dominates the coefficients » and the terms ¢ in an equation of (17.2).
Since &>>1 the function (/1 —+¢ has the same dominating properties.
Hence the terms ¢is in equations (17.2) are dominated by the corresponding
terms in (17.8) in consequence of the inequalities (17.7). If G4+ G: = G
and G, exceeds the absolute value of the constant Pigy,. then

G+ G

1—=

— Gs

dominates the function pigy. Corresponding to a coefficient pigjy in the
system (17.2) put

u i 1, M et L b
G, = lo’ §0,§1‘ -Enl G, = 60‘ gagll gnl .
N A N A T R

iou Su "1 “n w0 Su =1 n

then it follows that the p’s in (17.2) are dominated by the corresponding
coefficients in (17.8) when use is made of (17.5) and (17.6).
Let us put

yo' = Calc
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and regard the quantities Y, as functions of the single variable y where

Yy = o+ o+ Ean.

Denoting the ¢th derivative of ¥ where i = 4,4 - - - 44, by Y we have
;o PO 3 b
‘Dilo' - I; CJ-E: 5;

The quantity = becomes a function 7 depending on the variable y and
derivatives of Y, of order not exceeding ks, where hs = B— ¢q, ¢ being
the first cote of us. Equations (17.8) then become

7 2] V]
Fhgtd _ ‘ot ) 5y, 1) Vg
(17.10) g El( T ) T+ =
Let us seek to find a solution Ys(y) of this system, satisfying the initial
conditions _
(17.11) y=0, Yo=0, Y =0,...,7% =0

[

Since = is equal to zero for the initial values of its arguments, the
equations (17.10) can be solved for the derivatives Yg"’“) on account of
Lemma II. We thus obtain a system of ordinary equations of the form

(17.12) Y8 = o[y, ¥, ¥°, ..., Y%

valid in the neighborhood of the above values (17.11); this system has
a unique analytic solution Y5(y) satisfying the initial conditions. Further-
more the coefficients of the power series expansions of the solution ¥ of
(17.12) about the value y = 0, are either positive or zero. The first 2s+ 1
terms of this series are zero in consequence of (17.11); the coefficients
of all other terms in these series are positive. Let us write the equations
(17.10) in the form

(17.13) TP =TT X Gl T T
p=1

JhotD
YO’

The initial values of the derivatives satisfy the equations

7
(17.14) [Y;"ﬁ”]o—glzg[ff;huﬂqo — w,;

from Lemma II and the fact that the »; are all positive the quantities
[If"(,h“Jr”]0 determined by (17.14) are all positive. Differentiating the
equations (17.13) and evaluating at y = 0, we see likewise that the quan-
tities [Yf,h"'+ 2’]0 are all positive, etc. It follows that the coefficients of
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the power series expansions of the corresponding solution Ys(x) of the
system (17.8) are all positive or zero and hence these expansions dominate
the corresponding expansions determined by the equations (17.2) or the
system U*.

§ 18. Reduction to Normal Form.

In consequence of condition 7 of § 15, the derivatives for which the
system S is solved in accordance with condition D, are parametric for the
system R. Hence the condition D can be replaced by the somewhat
stronger condition.

(D*). The system S is solved for certain derivatives which are parametric
for the system R and the functions F' which constitute the right members
of these equations depend on the independent variables xetq, -- -, 2, and
derivatives which are not left members of the system E.

Conversely suppose that the conditions 4, B, C, D*, E, F', G, H are
satisfied by a system of equations (15.1). By the condition D* the set
(M;) of monomials associated with unknown u; as in § 15 will be normal.
Making use of the process developed in § 14 we can therefore form
a strongly complete set (M;*) of monomials having the same multiples as
the set (M;). By differentiation of the equations of (15.1) which involve
in their left members derivatives of u,, we can deduce a system of
equations whose left members will be in one to one reciprocal correspon-
dence with the monomials of the strongly complete set (M;*). This process
is now to be repeated for the derivatives of the functions us, - - -, w in
turn which appear in the left members of (15.1). Equations so formed
by differentiation of an equation of the system R are to be added to E
and those formed by differentiation of an equation of S are to be added
to §. In this manner we arrive at a system of equations which can be
solved for the derivatives in their left members by the application of the
process of elimination used in § 15 in the derivation of the system €; we
shall refer to the solved form of these equations as the extended system (15.1).
From the discussion in § 15 it is obvious that the extended system (15.1)
satisfies conditions A, -.-, H and the condition I is satisfied on account
of the method of formation of these equations. Hence the extended
system (15.1) is normal.

§ 19. Applications of the General Existence Theorem.

We saw in § 12 that the general existence theorems of § 6 failed to
apply when we attempted to take a characteristic surface Cu—. as an
(n— a)-dimensional surface bearing a portion of the arbitrary data of
the problem. The existence theoretic problem connected with the
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characteristic surface Cy,— defined by the equations ' =0, ---, * =0
for the case of the system (2.1) is the problem of determining a solution
vx () of this system such that

(19.1) (@, v) =0, .-, 5, (x,v) =0

over the surface C,—¢. The theory of normal systems of § 15 has immediate
application to this problem. Let us suppose that the combined system
(2.1) and (19.1) can be put into a completely integrable normal form
(15.1) where equations (2.1) give rise to the system R and equations (19.1)
give rise to the system S. The solution wvx(x) so obtained will then
satisfy the system (19.1) throughout the subspace D, i.e. the surface
' =0, ..., 2% = 0 with the result that this latter surface is an (n—e)-
dimensional characteristic surface Ch,—« of type 8 for the solution w(x),
provided that there exists a determinant = i (x, v) which does not vanish
over this surface. In accordance with the remarks of § 12 the above
theory applies equally well to a vector invariantive system. The invariantive
systems composed of (4.3), (4.5), (4.7) for the affine case and (4.4), (4.8),
(4.10), (4.11) for the metric case permit an analogous treatment when the
equations (19.1) are replaced by the systems

(a) Affine case: U, (4gyg) = 0,

(19.2) .
(b) Metric case: U, (gup; Gup,ys) = O
respectively.

In the practical application of this theory to systems of equations the
work is usually facilitated by use of a particular assignment of cotes
which is said to put the derivatives into canonical order and which orders
all derivatives uniquely. We have illustrated this assignment of cotes by

the accompanying scheme. The ordering of

xl w2 Ve xn—l a«;ﬂ/ vl U2 cee Ve

1 1 1 1 1 0 0 -0
2 1 0 0 0 0 O -0
3 01 0 0O 0 0 -0
n 0O 0 --- 1 O 00 --- 0
n+1 10 0 --- 0 1 0 0 --- 0
n+2 0 0 --- 0 01 2 ... w

derivatives by the canonical assignment of cotes amounts to arranging the
derivatives first according to increasing order; those derivatives of the
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same order are arranged according to the number of differentiations with
respect to x'; those derivatives of the same order and having the same
number of differentiations with regard to ' are arranged according to the
number of differentiations with regard to x*; etc. Finally those derivatives
corresponding to the same monomial are ordered according to the index k
of the unknown v, by the (n- 2)nd cote.

As an illustration of the application of the theory of normal systems we can consider
the treatment of the above mentioned problem for the case of the system of field equations
in Proc. Note V. It is easily seen that the set of monomials corresponding to the derivatives
of any one of the unknowns appearing in the left members of the system composed of
equations (4.1), (4.2), (4.3), (5.1), (5.83) in Proc. Note V is strongly complete and in fact
that this system is normal, and that the derivatives can be put in canonical order; the
complete integrability of this system can be shown by the method of § 20. The con-
vergence proof given in § 17 supplies the proof omitted in the former treatment.

In the discussion of the example in § 7 we found that if g'! = 0 at the initial point
' = 0, the existence theorem did not apply. In view of the general theory presented
in § 12, § 13 let us now see whether g'' = 0 over ! = 0 will define ' = 0 as
a characteristic surface C;. In other words in the notation of § 7, if « = 0 is it possible
to solve the combined system (1)-(20) and (7¢) for L, (= 20) derivatives 0 9ep, yd\/aw’?
Consider the matrix of the coefficients of the derivatives of u,, ..., s with respect to «x!
in the combined system (1)-(20) and (7c); since all sixth order determinants in this matrix
contain « as a factor, it is impossible to solve the system (1)-(20) and (7 c) for 20 (= L,)
derivatives of independent components g, 8,70 with respect to x!. Hence a surface @ = 0
such that

: 300 00
(19.3) 22" 32F 0
over ® = 0 for some integral gaﬂ(w) must be a characteristic surface for the system (7c).

Let us assume @ == 0 over x! = 0 and

e a b
¢ al |
(19.4) '4:0, la B8 d]+0
a B !b d v

at the point «f = 0 on this surface. As a consequence of these assumptions we have
a*0, a’y —2abd4 023 0
at ¥ = 0. The determinant of the columns 5, 6, 7, 8 in Table I is
8a(a*y —2abd+ b28).
Hence we shall drop the equations
Xosy = 0, Xosy = 0, Xow = 0, Xssn = 0
from the system (7c), thus making rows 5-10 in Table II the coefficients of the derivatives
in the equations Xaﬁl = 0 which remain in (7¢). In Table IT the determinant

5 6 7 8 9 10|
1 2 3 4 11 12

formed from rows 3, 6, 7, 8,9, 10 and columns 1, 2, 3, 4, 11, 12 is equal to 4a®(a*y—2abd+1%8)
disregarding algebraic sign; hereafter a similar notation for determinants will be used
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without further explanation. Hence let us solve the remaining equations X, 4, = 0 for
the derivatives of the unknown wu,, us, %3, %4, vs, vs With respect to z!. The determinant
in Table II,

12345678910;_

o«
2

« a b
d

12 3 47 89 10 11 12 @ £ od
b d
disregarding sign; for expanding in terms of second order minors in rows 5, 6 the above
determinant reduces to the product of 4a® and the eighth order determinant which was
encountered in § 7. Hence we can solve equations X,5. = O where ¢ = 2, 3,4 for
derivatives of the unknowns w,, %y, s, Us, Vs, V1, s, ¥, Us, v With respect to x€. Hence
we have the following systems of equations

D
8 1

(199) ai, S Bt LA S o L i 3
Ox!

Ow
0x?
(19b) 8'”‘} z awz 2 81:2 2 aa.z +¥’

8u4
0a3
19¢) M’ > ou 8:1:3 + 30 y3 LA S LA w + X,

4
(194) o } pIRLANE SR DR N 3

where 1 =1,2,8,4; j=5,6; k=1,...,6. The derivatives in the right members of
each of the above systems (19a)—(19d) involve unknowns not appearing in the left members
of that system.

In accordance with the above theory let us now solve the combined systems (19a)-(194d)
and (1)-(20) for derivatives in such a manner that the resulting system will satisfy the
conditions for a normal system. Eliminate the left members of equations (1)-(4) and
(7)-(14) from the right members of (19a) and use (19b), (19¢) and (19d) to eliminate their
left members from the right of the resulting system; denote the system which results by 2.
Then use equations (15)-(20) to eliminate their left members from the right of (19b) and .
The equation (15) contains the left member dve/0x? of an equation (19b) in its right member.

However the determinant
1 2 3 45 6 7 8 9 10

1 2 3 4 789 10 11 15

in Table II vanishes identically and hence the derivative 0w;/0x® does not appear on the
right of the equation (19b) having Ove/0x? for its left member; hence the equation (19b)
in question can be used to eliminate its left member from the remaining equations (19b)
and A. Thus we can eliminate the left members of (19¢) and (19d) from the right of
(19b) and U giving the systems B and A respectively. Then use 4, B, (19¢), (194d) to
eliminate their left members from the right of equations (1)-(4) and (7)—(20) and we have
the combined system consisting of (1)-(4), (7)-(20) and (19a)~(19d), in solved form.
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Let us now consider the problem of introducing equations (5) and (6) into the above
system so that equations (1)-(20) and (19a)-(19d) will be in solved form. From Table II
it can be seen that the system (7c) contains the two equations

0vs Ous 0vq 0w. 0wy 0w, Ows Ows
L L PR r i i P P P
(19¢) v ou 0v, ow 0w, 0w,
5 __ 6 — 8 _ _3_*. 5 _ (]
2a axt . "9 o 2b8x‘ 2d dux! yam‘_}”"

Consider the form of the corresponding equations in the system A. From the form of
equations (10)—(14) it is seen that only the first two terms on the right of each equation (19e)
can give rise to derivatives with respect to 2! and 2. Hence making use of (7) and (8)

the equations (19¢) become
ava

Ve 8 Us

s Bt = T e P T
o, 0¥s __aaug__p 61)5_'_
0 ox T da! oxr 'V

where the dots in these and following equations denote derivatives with respect to x* and x*
and terms of lower order; when however, one or more derivatives with respect to x® are
written down explicitly the dots will denote only derivatives with respect to x* and terms
of lower order. Since the determinants

1 2 8456 7 8 9 IOI 1 23 45 6 7 8 9 10|

1 2 3 47 8 9 10 11 5} 12 3 4789 10 6 12
in Table II contain « as a factor and since moreover the determinants

1 23 45 6 7 8 9 10 1 23 456 17 8 9 10

1 2 3 47 89 10 11 61} 1 2 3 47 8 9 10 5 12

in Table II vanish identically, there are two equations of the system (19b) of the form

ovs 0ug 0 (vr, Vs, Wy, + -+ -, We)
(19g) dxt “Vam T + da? ¥
g
0ve __ Ous 8 (v1, Vs, Wi, -+ -, We)
Pxr +aV6ac’+ ox? ¥,

where the blank indicates that the corresponding derivative does not enter; and the notation
employed in the second term of each of these equations as well as in certain of the
following equations, denotes a linear sum of the derivatives of the indicated unknowns;
here likewise V represents a rational function of the 9op although not necessarily the same
function in the two equations (19g). Hence if we make use of equations (15)-(20) and
the equations (19g), the equations (19f) can be put in the form

Bve . 3u5 6u5 6 (07, ’vg)

20 = —egu TtV g T g RER
(19b) ov 0 u, 0 (us, us) 0 (v, vs)
5 __ — 8 549 We, 7y Us e
2a ot "o +eV Ot + ox? +
Then equations (19h) can be used to put equations (5) and (6) in form
. Ous __ Oue 0 (vs, vs)
o) B = (2% PP + 5ot + ...,
. Ous Ous 0 (v1, vs)
(6" ox® «V dx! + Oux? e
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respectively. Then (5') and (6') can be used to eliminate their left members from the
solved form of (1)-(4), (7)-(20) and (19a)-(19d). The resulting equations will be denoted
by (1)—(4"), (7")-(20’) and (19a')-(19d’) respectively. Thus we have for these equations

0 (v ) Ts)

, K u,,n-,u,} 0 (us, ue)
(192) W{ vs,v6 | 0x! R RN
, 0 Upy oovy el 7 a(us,ue) 3(%,%)
(19v") 0x? {v,, . ve} = ox! + 02 T
, 0 Ju, ,u‘} _
(19¢)) dx® {v. N
, B L YRR Y
(19‘1) Bm‘ {”l? ] 1)6}
, ' Vyy ovey Vs
1)-¢") } 0 ’ _ 0 (us, us) | 0 (1, vs)
a)-(4) L A A T
1y 000, We
0 0 0
(15)-@0) ooy} = ay D) OCn W)
Together with above system we must consider the equations
ag“/} . . y =1,..-,4
(19i) S | @ f=1,-.-,4
dxt e By T Ipo "oy ’ R !
) ) = Oy M} 3
. ;_,ﬁ’i_-—— }’w =1,.:4,7
(]9]) _—a_wa —_ aw,. +¥ o = ,”.”; 3
r>a
where the notation )
710'\’['1‘1,

Yu er‘:, F;':,

Yo F;s, Fz‘a, rals,

ywe> Ty, Tai, Tas, Tas
is used (see §4). In addition, differentiating the condition g'! = 0 with respect to «?,
23, z', we have

. 39“ . 16 1 16 s1
(19k) b = Y Igp—g L'y =10 r=2,8,4);
also differentiating a second time, we have
& ar,.
19D 29—t x=0 y<d;7,d=2,3,4).
6=2 a0

If we expand the equations (191) and then eliminate the left members of (19j), we find
that these six equations can be solved to obtain

aI'zlz - 07w =
0 x& 2 ax,-+¥ (e - 21 31 4)1
81’,’. _— By,q ¢

‘19 m) awe' 2 81‘:’,,—_*-* (€ - 6’ 4)7

ol N Oy
o 2’ 0" ¥

oxt
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where the 2 denotes a linear form in parametric derivatives of (19j), and » = e for
any equation of this system.
Let us now assign canonical cotes in the following manner:

[ ' i
Ecote A :‘:” ::: ufi’.f%wuivh vsi
N R i | —
c1 01111 0 ([
2 :1:010 0 0 0 0
3.0 (110700 0 0 0
470,01 i 0 0 o o
51000 1 0 0 0
6,00 0 03 & 2 1
i i ! !

In addition we shall take all six cotes of the Jop t0 be zero and the first five cotes of
the I';r as zero; the sixth cote of the I”s occurring in the left members of (19 m) will be
taken to be 1 and the sixth cote of all other I"s will be given the value zero.

With the above assignment of cotes it is seen that the equations (1')—(20'), (19a’)-(194d’),
(191) and (19j) constitute the system R and (19m) the system S of a normal system.
The arbitrary data predicted by the form of the left members of this normal system can
be represented by the following scheme

us, Us ~ J (xY, 28 2t for x? = 0,
v, Us ~ K, 3 x*') for ' = 0,
Wy, oeey Wh ~ L% x) for ' = «? = 0,
19n) r4 ~ P(z\, 2, 25 a),
I '1‘:, % ~ Q@ 2t ah) for w! = 0,
rlla, sza, I's ~ R(x3 x') for @' = a* = 0,
e r“’ I"‘h Iy ~ S (%) for x! = a? = x* = 0,

where ¢ = 1, ..., 4; j = 2, 3, 4. The remaining unknowns, namely
(190) Uy, ooy Uty Vi, »+-, Vg, Iy, Tus, I, gir, voey G4

can take on arbitrary values at the point = = 0. That the system in question is com-
pletely integrable will be proved in § 20 and hence we can state the following

Ex1sTENCE THEOREM: Let the arbitrary functions represented by (19n) and the arbi-
trary constants (190) be assigned subject to the condition that the initial values at
' = 0 are such that (1) they satisfy equations (1b), (2) the determinant l(ga )o | does not
vanish, (3) the inequalities (19.4) are satisfied, (4) the quantity (g'"), is equal to zero,
and (5) the equations (19k) are satisfied. Then there exists one, and only one, set of
JSunctions Jop (@) = gz, (x) analytic in the neighborhood of x' = 0 which gives rise to
the given functions indicated by (19n) and the given initial values of the constants (190),
and which constitutes a set of integrals of equations (1b) for which the surface x' = 0
i8 a characteristic surface.

It can be observed that the inequalities (19.4) impose no restriction on the integrals
Jop (x) since a cooérdinate system can always be selected in which the equation of the
cha,racbenstlc surface Cs is ! = 0 and the inequalities (19.4) are satisfied. The above
existence theorem will give all the characteristic surfaces Cj, since if the equation (19.3)
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is not satisfied over @ == 0 we will be able to find a coordinate system in which the
system (7c¢), (7d), (19i) and (19)) can be put in regular form at some point P on @ = (.

If a surface 2! = x> = 0 is to be a two dimensional characteristic surface C,, either
one or both of the quantities g'! and g'' ¢g**-¢'? 9'* must vanish over ! = x* = 0. If
this were not the case we could find a coérdinate system by a transformation of the type
(19.12) for @« = 2 in which the quantity (21) in § 7 would not be zero at some point P
on x! = x? = 0, and hence the system could be put in regular form in the neighbor-
hood of the point P. Let us divide the discussion into four different cases.

Casel. «a =0 for x'=o*=0; ¢f—a>+0 at & =0.

Casell. e =8=0 for x'=2a*=0; a ¥ 0 at & =0.

In these cases it is evident that an existence theorem could be stated which would
be of the same form as the existence theorem for the three dimensional characteristic
surface C; except that there would be additional arbitrariness in the arbitrary data
corresponding to the functions I's,. The surface x!==a?= 0 is a two dimensional
characteristic surface C; of type 1.

CaseIII. e —a*=0 for x' =ua*=0; ¢ £ 0 at ' = 0. In this case it is easily
seen that a codrdinate transformation of the type (12.12) can be made so that the deter-
minant
_Gi—ap

o

>l Rl
EAA-SEN
Rl aul ol

does not vanish at some point P on x'=a? = 0. Since at the point P the determinant
formed from Table IT,

1 2 3 45 6 78 9 10

R —_—n h)Y
1238456789 15 ted—ab

disregarding sign, it is easily seen that the system can be put into regular form at the
point P on x'=2%>=0 and hence the surface x!==a?= 0 is not a characteristic sur-
face Cy.

CaseIV. e=af—a*=0 for x'=a*=0; 8+ 0 at «* = 0. Evidently the surface
x!' = ax? =0 is a characteristic surface C, for Case IV but the detailed treatment of the
corresponding existence theorem will be omitted.

Case V. ¢ —=8=0a =0 for x' = 2> = 0. From the form of Table II and the equations
(1)-(20) it is seen that for this case it is impossible to solve for either of the derivatives
Ou,/0x' and 0u,/0x* and hence the system cannot be replaced by a normal system having
arbitrary data of the form that occurs in Cases I and II.

We shall consider in detail the existence theorem for Case V. Let us suppose that

(19p) b0, ¢c+0, d%0, e+0, cd—be+0,

at o = 0; these conditions can always be obtained by a transformation of the allowed
type (12.12). Then from

. 1 2 3 4 —_— 2 —_— pl — 2 —
(19q) Table I: 6 7 8 9‘ = —16b%*(cd—be), over x'=ux*=20,
St 6 7.8 9 100 ., _ o e
(197) Table II: 293 45 9 17' = 8bt(cd—be), over xt=a?=0,
. /123 45 6 7T 8 9 10| 5 Y
(19s) Table II: 3 45 8 9 10 15 16 17 18 — 32b% (cd—be)?,

over ' =a? =10
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no regard being paid to algebraic sign in (19r) and (19s). From (19p) it follows that
the above three determinants do not vanish at o =0. Since the determinant (19¢) does
not vanish, we can drop equations

Xosn = 0, Xou =0, Xsn = 0, Xsan = 0

from the system (7c). We can solve the remaining equations Xaﬂl =0 for the derivatives
of the unknowns us, us, Us, us, Vs, ws With respect to x!, since the determinant (19r) does
not vanish at «f = 0. Since the determinant (19s) does not vanish at 2 =0, we can
solve the remaining equations (7c) for derivatives of the unknowns us, us, s, vs, vs, ¥4,
Wy, -+, w, With respect to x?, x3, x*. Arranging the equations so obtained in a form
corresponding to (19a)-(19d), we shall denote them for the moment by (19¢), (198), (197),
(19d) respectively. By a process similar to that used above the equations (19«)-(19d)
can be combined with the equations (1), (2), (4)-(10), (12)-(15), (19), (20) so as to obtain
a system completely solved for the derivatives in the left members of the above equations
(19)-(20), where equation (15) is written

Ove dw, 3 0v, , 3 0us
[ A N T

It is to be noticed that the equation (198) having 0w,/0x? for left member does not contain
0ve/0x® on the right and hence the above elimination is possible.
Now consider the equations

(15)

Qus _  0vy , Ouy
@ e - o Tom T
Qug __ Ows , Qus
(11) awa - awl + ax‘ +¥7
O0ve __ 80w, 10w , 8 8vy
(16) 0x® ~ 4 0x* 2 0x% ' 4 Ox! ¥
Ovs _ Owy, 2 0wy , 2 0ve
an 9% 0a* 3 8a:‘+—3— dat ¥
v, _ 0w, 0w
(18) 9x3 = 0a? + dat ¥
Consider also the following equations selected from (19 «)-(19y)
Bv _ _ y 0w c 0w fOuw  J 0w
dx! = 2b 0x! b 0xt b 0x! 2b Ox! ’
Ows 4 0ws 7y Ows
oxt T b 0x' 2b 9a! ¥
0w e 0w 0w,
6:1:; =% 8:1:: v Bw: ¥
aw, _ i au’b awﬁ
dx* ~ b W-I-V 0ax® ¥,
dw, _ ¢ Ows 0w,
9z* ~ b 0x° +v 0x? +¥
Ous _ _i 0 us _ (cty —2bcf+b%d) i“i_l_ 0 (v1, vs, Ve, V1, Vs, Ws, We) +x
0x e 0x? 2b%e x? 0 x? !
g;: — 9, v, ve,a 1:; Vg, Ws, We) +X,
Qw, _ ¢ 0vs , d 0vi e 0w | Jf Ows =
8z 2b 9a° %Ba:‘-l-?b 8ws+2b 9zt ¥ =23
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The terms with coefficients which vanish over ' = x* = 0 have not been written down
in these equations. Hence equation (3) can be written

Ouy _ cd Bus | c(ety —2bef+02d) Oug

0 (v1, Vs, Ve, V1, Vs, Ws, We)

19t) P2t~ be 0a° + 2b%e duxt + 0a?
+ o n 0 (4, e, 1, Vs, Vs, V1, Vs, Ws, W) +.
Er 03 e

Then making use of the solved form of equations (19e)-(194) and (1), (2), (4)-(10),
(12)-(15), (19), (20) we can put the above equations (18), (17), (16), (11), (19t) in the
following form

81)1 - C 81/3 6W5
U8) 5 = ~ T s tVom T
; 81)5 — d a’vs BW5
1) 5 = " T3 TVt
vy 806 . be+cd 61]3 8w5
(16" 0x3 ( 2 b2 ) 8.1:3 ax" +-
n Ots O (ve, ws, we)
(A1) g% = SR 4
Ous _ c(cty—2bcf+bd) Duy + 0 (vy, vs, v1, V) +( )M
@) ox 2b%(be — cd) 0 x? 0 x? be—cd 0a®
+ 0 (us, v1, Vs, ws, We) 4.
0x®

These equations can be used to eliminate their left members from the right of the above
solved form of the remaining equations (19«)-(20) and we can write the equations so
obtained in the form:

0 (uy, ug, vy, Vs, V1, Vs)

’ um’“s,“cyus — .
Qo) ir{ ] = v Pt
Ug, Uyq, Up
" P 0 (uy, g, vy, Vs, V7, V)
(lgﬂ) 8 .{v,, Vg, ’04} (l, 6’61:”2 8y 77y 78 +"‘7
Wiy oee, Wy
a Us, Usy Us
(19}”) 'B—x?{v,, Vg, V4 = ...,
Wy, oo, Wy
a Us, Ue¢, Us
(194") G U Ve v = e
Wy, oo, Wy
a @) V1, ¥ V
(4,)_(10,) 311 Vo ee, Vg, Wyy = 3(%,1«,;;2%, V1, Vs) +.
(12)-(14") Ws, Wy, Ws, We
0o ¢c 0vs d 0w e dug
! = e ae T T A — o0 .
(15 P2t b 0xr b 0x b a7

(19,)1 (20') aa 3 {u‘r,, w“} == ...,

where again the terms with coefficients which vanish over x'= 2 =0 have not been
written down.
Over the surface x! = 22 = 0, we have

(19uw) g" = g = g2 =
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by hypothesis; hence
i y ,
(19v) e = T ey e = 0 (e, v =12 e =34 ws)

over x' =a*==0. Also over x'=ax*=10, we have

B e 3 e
g =% 4 gu 8
g P g dad

8 ae 9l
1 Bt + G 24 —
Y oxd TV Tl

orh . or
dad LY
(esd; &,0=3,4).
Now eliminate the left members of (19j) from the above system (19w); the system resulting

from (19w) with the exception of that equation which results from the last set of equations
(19w) where & = d' = 3, can be solved so as to obtain

Ty . .
w . @uet S 11 (=12 e=3,4),

W~ @t Z@rr G=1,2),
0xt
when account is taken of (19p); in these equations the (g) denotes a rational expression
in the components g, and the last terms are quadratic in the I'§,. Elimination of the
left members of (19x) from the equation corresponding to & = J'= 3 which was above
excluded, gives
(19y) we = 2 (P IT,
in consequence of which (19x) becomes

Ty . 0l Y . 8L
wy e Fgrr, I Sgrr, L= S@rr

i=1,2; ¢=3,4).

Differentiating (19y) with respect to a3, x* and eliminating the left members of (19i),
(19j), and (19z) from the resulting equations, we obtain

= X,

.(/13

+y

== (Pus+ 2 (9T (i=1,92),

(194A) %g:— = [yﬂy; Vimy _%_}a';_q_; 9/4;/,01-] (e=28,4; r=¢),
where the right member is a rational expression in the quantities indicated.

Cotes will be assigned to the independent variables a, the unknowns %, ---, we, the
Jop and the y,, as in the above treatment of the 3-dimensional characteristic surface Cs
with the exception of the sixth cotes of the unknowns for which we shall make the
following assignments.

Us, Usy Us
unknowns v vy, Ws, We , v | Vs, Vs, Vs
Wyy o v, We

|
cotes 0 8 l
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The equation (19«¢’) which contains the derivative 0u,/0x! in its left member when
written more explicitly, is of the form:

Ous _ c(cty—2bcf+b%d) 8u.,+ 0 (us, v1, Vs, 1, V) +
ox' 2b2(be —cd) 0! 0 ac?

Hence using this equation and equations (8'), (16'), (15') we can construct two integrability
conditions of the form

0% u, 0% uq 0% (uy, - - -, we) M=v
0x'0x® =V 0x'0x? + dat o x” ¥ < =4, 1f,u—1)’
(19B) e,d+1
D2 vs . 0% (uy, -+, We) +x <
0 0x® 5 ggd ! e=d
F=4, ife=2

The condition that we be able to solve for the derivative 92 vs/0 22 8 2° is that 3 (be — cd)/2b?
be different from zero.

The system R composed of (19¢’)-(194"), (1)-(20"), (19%), (195), (19B) and the system S
composed of (19z), (19A) constitute a normal system which will be shown to be completely
integrable in § 20. The strongly complete set of monomials for the unknown u, is x'x?
and for vs is x! and a?x3; all other sets of monomials consist of a single variable. The
calculation of the complementary sets and their multipliers shows that the data involving
arbitrary functions can be represented by the following scheme:

Uy, V1 ~ P(x? «®, %) for a! =
0u,/0x!, ug ~ Q! x?, %) for x® = 0,
Us, Vs, Ws ~ R(x?, =¥ for ! = a® = 0,
0vs[0x?, v, v ~o 8 (x?, x) for ! = a3 = 0,
190) ve‘ ~ T(xt) for ! = x? = a3 = 0,
1A NK(x‘,...’w‘)
M, i ~ L (x?, 2%, x¥) for x! = 0,
iy, Fas, Ty ~ M (23, x*) for x! = x* = 0,
rl“y[‘;lyrglyrzlmN(w‘) for 2! = a® = 2% = 0,
t=1234; j=384).
The unknowns
(19D) Us, Ug, Us, Vs, Vs, Va, Wy, Wa, Wy, We, o, I'ss, I'ss, ['ds, gurs + -+, Gus *k=1,2)

can take on arbitrary values at the point «f = 0.

Ex1STENCE THEOREM: Let the arbitrary functions represented by (19C) and the arbitrary
constants (19D) be assigned subject to the condition that the initial values at o* = 0 are
such that (1) they satisfy equations (1b), (2) the determinant I(gaﬂ)ol does mol vanish,
(8) the inequalities (19p) are satisfied, (4) the equations (19u), (19v) and (19y) are satisfied.
Then there exists one, and only one, set of functions 9o (@) = 9pa (x) analytic in the
neighborhood of x'= 0 which gives rise to the given funr'twns indicated by (19C) and
the given initial values (19D), and which constitutes a set of integrals of equations (7b)
Jor which the surface x' = x* =0 is a characteristic surface C,.

It should be observed that for an arbitrary integral g,g (x) of the field equations (7b),
a characteristic surface of the type specified by the above existence theorem will not exist;
characteristic surfaces of this type will only exist for special integrals of the equations (7b).

An analogous treatment could evidently be made for the characteristic curves C;. We
will however not consider the further treatment of these curves as we believe that the
above discussion sufficiently illustrates the procedure to be adopted.




PARTIAL DIFFERENTIAL EQUATIONS. 7

§ 20. Criterium of Complete Integrability.

The method of establishing complete integrability which was discussed in
§ 9 can be extended to the normal systems which were applied to the treat-
ment of the characteristic surface problem for an invariantive system of
partial differential equations. In describing this extension let us consider
in particular the affine invariantive case for which we have the equations
(4.3), (4.5), (4.7) and in addition a system of the type (19.2a). The process
of forming the normal system may necessitate the addition of equations
obtained by differentiation of the above system; the normal system being
thus formed, the construction of its conditions of integrability will necessi-
tate further differentiations. Let us suppose that the construction of the
above normal system and its conditions of integrability involves D, Ds,
Ds, D, differentiations of the systems (4.3), (4.5), (4.7), (19.2a) respect-
ively. Now assume that an upper bound L to the number of conditions
on the derivatives of the unknowns in the normal system which are im-
posed by (4.3), (19.2a), and those conditions obtained by D, differentiations
of (4.3) and by D, differentiations of (19.2a), is established in some manner.
Let us also assume that the integrability conditions taken at the point
z' = 0 involve M derivatives, parametric for the normal system. Then
if it is known that for an unrestricted affine space there are L-}+M de-
rivatives of the sort appearing in the integrability conditions which can
have arbitrary values at a point P of space, the normal system must be
completely integrable. If this were not the case there would be less than
M arbitrary derivatives at the point zf = 0 taking account of the original
equations (4.3), (4.5), (4.7), (19.2a) and those conditions obtained from
them by the above differentiations D, and hence there would be less than
L+ M arbitrary derivatives for an unrestricted space, contrary to hypo-
thesis. Analogous remarks apply to the cases of the metric and vector
invariantive systems.

Consider for example the normal system which arose in § 19 in the treatment of the
characteristic surface C; of the invariantive system (7b). It can be seen from the form
of the arbitrary data (19n) and (190) that the integrability conditions of the normal
system (1')-(20"), (19a')-(194d’), (19i), (19j), and (19m) involve

KM,2) oo or 10 derivatives g s
AE(4,2) e . 40 Vim,
44 D+TKGN+11KEQD+1K1,1)... , 74 3 yinf0 2,
(201) 4K@2+7KG2)+11KQ@2)+15K1,2)... , 130 02 yum/ 0™ 0",
K42 K@42)-4K43) ...covvvvennn.. » 20 Bim,
AEBDH6KRI) o, . 24 0 Bin/0 2",
4KB2HF6K©22) oo, . 42 0* Bim/0 x™ 0

or a total of 340 parametric derivatives at the point af == 0; this number 340 is therefore
the number M in the above discussion. At a point P of an unrestricted space there are
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KM@2) ..covviiiiiiiiiinnn.. or 10 components g,,,
AEM2) oo . 40 Tog,
VY qCK: ) N . 80 Tagy,
(20.2) AE@A .o 2140 . Tap.g
K42 K42)-4K43) ....... . 2 - Jap, y0r
K42 K@4,3-4K@44) ....... . 60 , 9ep, yds,
K42 K(44)-4K@5) ....... . 126 9ep, yden

or a total of 476 components which can take on arbitrary values. When the quantities
of the type (20.1) are known at the point xf=— 0,2 the components (20.2) are determined
at «f = 0; conversely when the quantities of the type (20.2) are known at o' = 0, the
quantities of the type (20.1) are determined at this point. Hence it follows that there
are 476 quantities of the type (20.1) which can take on arbitrary values at a point in
the unrestricted space.** The maximum number of conditions that can be obtained from
the system (7b) by a single differentiation is 36 and by two differentiations is 84, account
being taken of the identities (7¢). By two differentiations of g!' = 0 over x' = 0, we
obtain 6 conditions and by three differentiations, we obtain 10 conditions. Hence the
upper bound L is 36 + 84 + 6 4 10 or 136 and the number L 4 M is equal to 136 + 340
or 476 which was shown above to be equal to the number of arbitrary derivatives of the
type (20.1) at a point of the unrestricted space. It follows therefore that the mormal
system composed of (1')-(20'), (19a’)-(194d’), (19i), (19j) and (19m) is completely inte-
grable.

A similar argument applies in the case of the existence theorems mentioned in connection
with Cases I and IT in §19. The condition g'' = 0 over x' =0 is simply replaced by
the condition g'' = 0 over ' =*=0 in Case 1 and by g!' = ¢*=0 over x'=a*=0
in Case II. Obvious changes in the above numbers would then result.

In the normal system treated under Case V the above argument must be modified to
a larger extent since second derivatives appear in the system. The integrability conditions
at o =0 when expressed in terms of parametric derivatives will involve the following

KM@,2) ..o or 10derivatives I

AE(A,2) oo . 40 Yimr
4K(4,1)+8K(3,1)+10K(2,1)+12K(1,1) ... , 72 0y, /92",
4K(4,2)+8K(3,2)+10K(2,2)+12K(1,2) ... , 130 0y, 0o 0",

(20.3) 4K(4,3)+8K(3,3)+10K(2,3)+12K(1,3) ... , 212 0’y 02" 92”02,
4K(4,4)+8K(3,4)+10K(24)+12K1,4) ... ., 822 a‘ym/a.z”ax’am"aw"
K4,2) K(4,2) —4K4,8) ..., . 20 B,
3K@1)+bKQ,D+2+KA,1) oo, 22 0 Bim /02",
3K(3,2)+5K(22)+KB1)+K21)+K(12) , 39 . 0’ Bin/ 02" 02",
3K33)+5K(23)+ K32 +K@2)+K13) , 60 , 0 Bim/02™02" 02"

or a total of 927 = M parametric derivatives. To the 476 components in (20.2) which can
have arbitrary values at a point P of space, we must add the

#2]oc. cit. Ann. (1), p. 720.
4 Joc. cit. Ann. (1), p. 690.
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AEK(45) oo or 244 components I’ éﬂyd‘s.

AKA6) « oo L33 . Tagyden.

K(4,2) K@,5)-4K(46) ....... e 2 22 s
1

which makes a total of 1260 components; hence there are 1260 derivatives of the type (20.3)
which can take on arbitrary values at a point P of the unrestricted space. The maximum
number of conditions imposed by the equations (7b) is 36+ 844 160 or 280 since now
three differentiations are allowed. From the equations g'' = g' = ¢** = 0 over z!=12a"
=( we obtain a maximum of 8 +12-+4 15+ 18 or 53 conditions. Hence L = 280453 or
333 and L+ M is equal to the above number 1260. The system is therefore completely
integrable.

§ 21. A Geometrical Interpretation.

Consider the problem treated in § 19, namely that of determining
a solution v (x) of the system (2.1) such that the surface &' = ... =a“
= (0 is a characteristic surface Cr—o for the integral vx (x). Let us suppose
that the combined system (2.1) and (19.1) has been put into a completely
integrable normal form with the canonical assignment of cotes.

Let us first consider the case of an (n — 1)-dimensional characteristic
surface C,—;. Suppose that some one of the functions belonging to the
arbitrary data, let us say ¥ (z), is defined over a surface 2™ = ... = 2™
= (0 where none of the a; are equal to 1. Since the assignment of cotes
is canonical we can confine ourselves to differentiations with respect to
x% 2%, - -, 2" in determining the power series expansions of the integrals
vk (x) over the surface ' = 0. Moreover if we differentiate with respect
to ! all equations of the system for which this differentiation is possible,
we can thereafter confine ourselves to differentiations with respect to
x% ..., 2" s0 as to determine over the surface x' = 0, all first derivatives
of the integrals vk (x). Now take the function ¥ (x) of the form

@) Yu (@) + @ Y @)+ - -,

where the functions v;(x) are independent of z' and w — 2 is equal to
the maximum order of any derivative appearing in the normal system.
From what we have just said regarding the determination of the integrals
vk (x) and their first derivatives over the surface z' = 0 it is clear that
the values of these quantities over z' = 0 will be independent of the
choice of the above functions ¥u, Yui1, ---. Thus there exists an infinite
number of sets of different integrals v; (z) such that each set of integrals
and their first derivatives assume the same values over the characteristic
surface z' = 0.

In particular the above discussion applies when the function ¥ () is defined
over the entire z-space; if, however, ¥ (x) is defined only over a subspace
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then the completely arbitrary functions, i.e. those functions defined over
the entire z-space, which are part of the arbitrary data, will be the same
for each of the above sets of integrals vx (). Under this latter condition,
i. e. the definite assignment of data defined over the entire z-space, the
values of the vy (z) and their first derivatives over the surface z' = 0
will uniquely determine a solution vk (x) if this surface is not a characteristic
surface.

If the arbitrary data of a normal system obtained in connection with
an n — « dimensional characteristic surface problem contains a function
which is defined over a surface z’t = ... = 27 = 0, where y = « and at
least one of the indices b; > «, then we can have an infinite number of sets
of integrals vx (z) such that each set of integrals and their first derivatives
assume the same values over the characteristic surface ' = ... = z%*=0.
In particular the arbitrary data defined over the entire z-space and all
surfaces of dimensionality greater than n — «, may be the same for each
of the above sets of integrals vk (x). Under these conditions the integrals
vk (x) would be determined uniquely if the surface 2' = .-+ = 2% = 0
were not a characteristic surface. Analogous remarks apply to the in-
variantive systems.

The examples of § 19 will serve to illustrate the above remarks. In the case of the
(n —1)-dimensional characteristic surface defined by equations (19.3) the arbitrary data
(197) contains a function J(x'ax3x%) defined over x? = 0 so that the above interpretation
is possible. The existence theorems mentioned in Case I and Case II will however not
permit the corresponding interpretation for the (n — 2)-dimensional characteristic surface.

For Case V we have an arbitrary function S (z? %) defined over x! = x® = 0 so that
the interpretation applies.
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