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Abstract

Given a Lie group action G we show, using the method of equivariant moving frames,
that the local cohomology of the invariant Euler—-Lagrange complex is isomorphic to
the Lie algebra cohomology of G.

1 Introduction

The wariational bicomplex is a double complex of differential forms defined on the
infinite extended jet bundle J°°(M,p) of p-dimensional submanifolds of a manifold
M. Tt provides a natural and general differential geometric framework for variational
calculus. The modern form of the theory originates from Vinogradov’s, [33, 34, 35], and
Tulczyjew’s, [32], work. The later contributions of Anderson, [1, 2], have demonstrated
the power and efficacy of the bicomplex formalism for both local and global problems
in the calculus of variations. The variational bicomplex is an important theoretical
tool for studying the geometry of differential equations, [31]. It is used to compute
geometric and topological quantities of interest, including characteristic cohomology,
8, 9], characteristic classes, [1], Helmholtz conditions, [1], conservation laws, [3, 4], and
null Lagrangians, [23].

Of particular interest is the complex associated with the edge of the augmented vari-
ational bicomplex. The Euler operator or variational derivative is intrinsically defined
as the corner map of this edge complex and for this reason it is called the Fuler—
Lagrange complex. This complex provides tools for studying many problems in the
calculus of variations. In the presence of a Lie group action it is natural to investigate
invariant problems in the calculus of variations; to this end it is useful to study the
G-invariant variational bicomplex and its cohomology, [1, 2, 5, 6, 20]. For Lie groups
acting projectably on fiber bundles, Anderson and Pohjanpelto have shown that the
local cohomology of the G-invariant Euler-Lagrange complex is isomorphic to the Lie
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algebra cohomology of G, [5]. An important feature of their proof is that it is construc-
tive and readily lends itself to studying particular examples. Recently, Itskov, [16, 17],
proved, using arguments from C-spectral theory, that the isomorphism still holds for
non-projectable group actions. A drawback of Itskov’s proof is that it is difficult to
apply in particular examples. One purpose of this paper is to give a simplified and
constructive proof of his theorem which can easily be applied to particular problems.
The construction of the isomorphism is completely algorithmic and can in principle be
implemented in symbolic software packages such as MATHEMATICA or MAPLE.

The proofs found in this paper are natural extensions of the original proofs invented
by Anderson and Pohjanpelto, [1, 2, 5]. A novel feature is the incorporation of the
equivariant moving frame method developed by Fels and Olver, [13, 14], into the con-
structions. For a general finite-dimensional transformation group G, a moving frame
is defined as an equivariant map from an open subset of the jet space of submani-
folds to the Lie group GG. Once a moving frame is established, it provides a canonical
mechanism, called invariantization, of associating an invariant differential jet form to
an arbitrary differential jet form. The G-invariant variational complex is obtained in
essence by applying invariantization to the free variational bicomplex. The theoretical
foundations of this construction appear in the work of Kogan and Olver, [19, 20], where
the authors establish a general formula relating invariant variational problems to their
invariant Euler—Lagrange equations. For non-projectable group actions, a key observa-
tion is that the resulting invariant complex relies on three differentials with nonstandard
commutation relations (and so is no longer a bicomplex in the usual form).

The structure of the paper is as follows. In Section 2 we recall some standard facts
about the free variational bicomplex and its cohomology. Sections 3 and 4 contain an
overview of the moving frame construction and the invariantization of the free vari-
ational bicomplex. The main results of the paper appear in Sections 5 and 6. By
introducing an invariant connection on the invariant horizontal total differential oper-
ators we show that the interior rows of the invariant variational bicomplex are locally
exact. From this it follows that the cohomology of the invariant Euler-Lagrange com-
plex H*(Eg) is locally isomorphic to the de Rham cohomology H*(Q2f) of invariant
differential forms on J*°(M,p). The moving frame associated to the group action G
gives an immediate local isomorphism between the Lie algebra cohomology H *Xg*) and
the de Rham cohomology H*(£2f,) from which we conclude that H*(g*) ~ H*(£g). The
theory is illustrated by three examples in Section 8: the actions of the special Fuclidean
and special affine groups on curves in the plane and the action of the special Euclidean
group on surfaces.

2 The Variational Bicomplex

We begin with a brief review of the variational bicomplex. We refer the reader to
[1, 2, 18, 31] for a detailed exposition. Basic results on jet bundles, contact forms, et
cetera can be found in [23, 24, 35, 36].

Let M be a smooth m-dimensional manifold. We denote by J" = J"(M,p) the
n-th order extended jet bundle of equivalence classes of p-dimensional submanifolds
S C M under the equivalence relation of n-th order contact, where 0 < p < m. The
infinite jet bundle J*° = J°°(M, p) is defined as the inverse limit of the finite order jet
bundles under the standard projections 72*+1: J*+l — Jn_ Differential functions and



differential forms on J™ will be identified with their pull-backs to the appropriate open
subset, of J*°.

Locally we can identify M ~ X x U with the cartesian product of the submanifolds
X and U with local coordinates = (x!,...,2P) and u = (u', ..., u9) respectively. The
coordinates on X are considered as independent variables while the coordinates on U
are considered as dependent variables. This induces local coordinates z(°°) = (z, u(oo))
on J*®, where u(®) denotes the collection of derivatives ug, a=1,...,q, #J > 0, of
arbitrary order. Here J = (ji,...,Jk), with 1 < j, < p, is a symmetric multi-index
of order k = #J. Coordinates 2™ = (z,u(™) on the jet bundle J" are obtained by
truncating 2(>) at order n.

Definition 2.1. A differential form 6 on J* is called a contact form if it is annihilated
by all submanifold jets, that is, 6|;..s = 0 for every p-dimensional submanifold S C M.

The subbundle of the cotangent bundle T*J> spanned by the contact one-forms is
called the contact or vertical subbundle and denoted by C(°). In the local coordinates
(z,u(>), every contact one-form is a linear combination of the basic contact one-forms

p
§=du§—> ufde’,  a=1,...,q,  #J>0. (2.1)
=1

On the other hand, the one-forms
da’, i=1,...,p, (2.2)

span the horizontal subbundle, denoted by H*. This induces a local splitting 7" J>® =
H* @ C(*) of the cotangent bundle. Note that this splitting depends of course on
the chosen coordinates. Any one-form €2 on J*° can be uniquely decomposed into
horizontal and vertical components, Q = 7y () 4+ m/(£2), where mg: T*J* — H* and
my: T*J° — C(*) are the induced horizontal and vertical (or contact) projections.

The splitting of T*J* induces a bigrading of the differential forms on J*°. The
space of differential forms of horizontal degree r and vertical degree s is denoted by
Q"% = Q"*(J*°). Then

(o)
Q) =" = P . (2.3)
r,s=0

Under the bigrading (2.3), the differential d on J* splits into horizontal and vertical
components, d = dy + dy, where dy increases horizontal degree and dy increases
vertical degree. Closure, d> = dod = 0, implies

d% =0, dgody +dy ody =0, d% = 0. (2.4)

The horizontal differential of a differential function F' is the horizontal one-form

p

i 0 Eq E o« 0
dgF = g (D;F)dzx', where D; = 7 + Uj; o’ (2.5)
i=1 a=1 J

denotes the usual total derivative with respect to z*. The wertical differential of a
differential function F' is the contact one-form

I OF
dyF = z_:l zj: 87@93. (2.6)
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To obtain the full variational bicomplex we append to each row a certain quotient
space of the differential forms of maximal horizontal degree. Define the quotient and
standard quotient projections’

FS=QPS [dg(QP1%), 1P s FS s> 1.

The spaces F* are called the spaces of type s functional forms on J*°. The quotient
projection plays the role of an integration by parts operator and is essential to the
derivation of the Euler-Lagrange equations using the variational bicomplex formalism.
By virtue of (2.4), the composition

oy =mody (2.7a)
is a boundary operator from F* to F**1. Finally the Euler operator is defined as
E=nody: Q" — FL. (2.7b)

Definition 2.2. The (augmented) variational bicomplex is the double complex (€2**,
dp, dy) of differential forms on the infinite jet bundle J*°:

dy dy dy dy oy
0 90,3 du 91,3 dL) c. d*H> Qp—l,?) du Qp,3 T f3 0
dy dy dy dy oy
0 00,2 du Q.2 dL) .. d4H> Qpr—12 du Qr2 —— 72 0
dy dy dy dy Sy
0 Qo1 du QLl L . d*fﬂ Qr-1.1 du ol " rl 0
dy dy dy dy %
0 R Q0.0 du QLo dL) . d4H> Qpr-1.0 dL) Qp.0

The following theorems summarize the local theory of the variational bicomplex.

Theorem 2.3. For each »r =0,1,2,...,p, the vertical complex

OHQTXMQ’WO dv Qr,l dv QT,Q dv

is locally exact. Here Q' is the space of r forms over X and n§: J* — X is the pro-

jection onto the space of independent variables induced by a choice of local coordinates
M ~ X x U on the manifold M.

The proof is similar to the proof of the Poincaré lemma for the de Rham complex,
[7, 23].

IThis is one of two equivalent approaches. Alternatively the interior Fuler operators I: QP° — QP° may

be introduced and the images I(€27®) used instead of the spaces F*. Both viewpoints will be used in the
sequel.



Theorem 2.4. For each s > 1, the augmented horizontal complex

dpr dyg T

Ql,s e Qp:s Fs 0

dg

0 QO,s
is locally exact.

One method of proof consists of verifying that

k-1
1 #J +1 y
h"¥(w) = — Dj[0% N F,7 (w; 2.
R L (28)

where w; = D; _| w denotes the interior product of w with D;, and

k—t1
Flwy=Y (#I;J#J>(_D)J (aaa Jw), (2.9)

u
#J=0 I1,J

are the interior Euler operators, are local horizontal homotopy operators, [1].

Theorem 2.5. The Euler-Lagrange complex £*(J>)

dy dy dy % %

0—— R —— Q00 Qro L 71 F2

Ql,O
is locally exact.

This result may be established using Theorems 2.3 and 2.4 and homological alge-
bra arguments. Alternatively, one may construct explicit homotopy operators, [1, 23].
There is also a global version of Theorem 2.5, giving an isomorphism of the cohomology
of £*(J*°) with the de Rham cohomology of J*, [1].

3 Moving Frames

There are now a wide variety of papers on the theory of equivariant moving frames,
[13, 14, 20, 27]. In this section we recall the results relevant to our problem.

Let G be an r-dimensional Lie group acting smoothly on a manifold M. Without
significant loss of generality, we assume that G acts locally effectively on subsets, [25].
Let G denote the n-th order prolonged action of G on the jet bundle J". Following
Cartan, [11, 12, 30], we denote the image of an n-jet (™) under the prolonged group
action by the corresponding capital letter Z( = ¢ . 2(") ¢ ¢ G The regular
subset V™ C J" is the open subset where G(™) acts locally freely and regularly. Thus
the orbits of points in V" under the prolonged action are of dimension r = dim G. In
[20] it is shown that if the action of G is locally effective on all open subsets of M, then
V" is nonempty and dense for n sufficiently large.

Definition 3.1. An n-th order (right-equivariant) moving frame is a map pM: Jr — @
which is (locally) G-equivariant, i.e.,

p™ (g™ . 2y = p) (M) . =1, 2 e g, g€ G,

with respect to the prolonged action of G () on J™, and the right multiplication action of
G on itself. Given a sequence of moving frames p(™ consistent with the jet projections
one obtains the (infinite order) moving frame p = pl®): J® — G as the projective
limit.



The fundamental existence theorem for moving frames is as follows, [14].

Theorem 3.2. If G acts on M, then an n-th order moving frame exists in a neighbor-
hood of (™ e J™ if and only if 2(™) € V™ is a regular jet.

In applications, the construction of a moving frame is based on Cartan’s method of
normalization, [10, 14], which requires the choice of a (local) cross-section K™ C V™ to
the group orbits. For expository purposes, we assume that X" is a global cross-section,
which may require shrinking the domain V" C J" of regular jets.

Theorem 3.3. Let G act freely and regularly on V" C J"™. Let K™ C V" be a cross-
section to the group orbits. For z(™ e V" let g = p(™(2(") be the unique group
element whose prolongation maps z(™ to the cross-section: ¢ - 2" e K", Then
p(”): J" — G is a right equivariant moving frame for the group action.

The derivation of a moving frame involves three steps:

1. Compute the explicit local coordinate formulas for the prolonged group transfor-
mations

w™(g,2M) = 20 = g™ . (), (3.1)

2. Choose (typically) a coordinate cross-section K™ = {z; = ¢1,..., 2, = ¢, } obtained
by setting r = dim G of the components of z(") = (x, u(”)) equal to constants.

3. Using the labeling wy, ..., w, for the components of the transformed cross-section,
solve the normalization equations

U)l(g,Z(n)) = wr(g7z(n)) = Cp, (32)
for the group parameters g = (g1,...,g,) in terms of the coordinates z(").

Theorem 3.4. If g = p(™(2(") is the moving frame solution to the normalization
equations (3.2), then the components of

I (7)) = ™) (p() (2 () 2 (M)

form a complete system of differential invariants on the open subset of J” where the
moving frame is defined.

Note that the r invariants
I = w1 (p™ (z™), 2V = ¢; e I = w(p™ (M), (") = ¢, (3.3)

defining the cross-section (3.2) are constant. Those invariants are known as the phantom
mvariants.

Example 3.5. We consider the action of the Euclidean group SFE(2) on planar curves:
X =xcos¢ —using + a, U==xsin¢+ucos¢+ b, o,a,beR. (3.4)
The prolonged action

u$$
(cos ¢ — uy sin @)’

_ sing + ug cos ¢

OS¢ — Uy sing’

Uxx = Uxxx =",
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is computed through implicit differentiation. A well known moving frame for this group
action, [13, 14, 15, 19, 20, 27|, follows from the cross-section normalization

X=0, U=0, Ux=0.

Solving for the group parameters g = (¢, a,b) leads to the right-equivariant? moving
frame

¢:_t3«n_1um, a:_m b:m (3.5)

VIt u2 VIt u2
The fundamental normalized differential invariants for the moving frame (3.5) are
X—H=0, U—1Iy=0, Ux— 11 =0,
Uy

(1+u2)3/2’

and so on. Here ks = Dyk and kg = (Dg)*k where Dy = (1 + ui)*l/zD;p is the
FEuclidean arc length derivative.

Uxxr—Ila=kKk= Uxxx I3 = ks, Uxxxx — 4 = kgs + 3K°,

It is useful to adopt the viewpoint that a moving frame is a section of a certain
bundle over J", called the lifted bundle.

Definition 3.6. The n-th lifted bundle consists of the bundle n™: B" = J*" x G — J",
with the lifted prolonged group action

q- (z("),h) — (g(n) . z("),h ) g—l), geqG, (z(”),h) c B".

Taking the projective limit of the B", we obtain the lifted bundle 7: B® = J*° x G —
J>.
The components of the evaluation map (3.1) provide a complete system of lifted

differential invariants on B™. In the projective limit, we write w = w(®): B> — Jo°.
This endows B> with a groupoid structure, [21, 22, 30],

An infinite order moving frame p: J*° — G serves to define a local G-equivariant section
o: J® — B>
a(2) = (29, p(=1>)). (3.6)
Let * denote the space of differential forms on B°°, which are called lifted differ-
ential forms. A coframe for Q* consists of the horizontal and contact one-forms (2.1),
(2.2), and the Maurer-Cartan forms u!,...,u" on G. To simplify notation, we iden-
tify a form on either J* or G and its pull-back to B* under the standard Cartesian
projections. The Cartesian product structure B> = J*° x G induces a bigrading on
Q= @kﬂlﬁk’l, where Q%! denotes the space of forms which consist of combinations of
wedge products of k jet components (either dz’ or %) and | Maurer—Cartan forms u*.
Let ﬁ’f] = @kﬁk’o denote the space of pure jet forms on B>. A jet form may depend
on group parameters, but does not contain Maurer—Cartan forms. Let 7;: Q- ﬁf}
denote the jet projection, obtained by equating all Maurer—Cartan forms to zero.

2This moving frame is only locally equivariant, since there remains an ambiguity of 7 in the prescription
of the rotation angle. We ignore this technical point here and refer to [26] for a detailed discussion.



4 The Invariant Variational Bicomplex

The theory of moving frames provides a process for invariantizing an arbitrary differ-
ential jet form. The bigrading of the variational bicomplex may be invariantized to
produce a new bigrading and corresponding splitting of the differential, comprising the
invariant variational bicomplex of Kogan and Olver, [19, 20]. For projectable group
actions this new structure agrees with the old. For non-projectable actions, the new bi-
grading is different and the differential splits into three components, giving the invariant
variational bicomplex the structure of a “quasi-tricomplex” and not a bicomplex proper.
We remark that, although Kogan and Olver consider arbitrary differential forms, only
the actually invariant forms in the invariant variational bicomplex are needed for the
present considerations, so our definition of invariant variational bicomplex differs from
that of [19, 20].

Definition 4.1. A locally defined differential form €2 € Q* is said to be G-invariant if
(N Q=Q, VgeG.
The collection of G-invariant differential forms is denoted by €.

Definition 4.2. The invariantization of a differential form € on J* is the invariant
differential form

Q) =0" (m7(w*Q)) .
Lemma 4.3. The invariantization map ¢ defines a projection, 1> = ¢, from the space

of differential forms £* onto the space of invariant differential forms Q.

In terms of the local coordinates z(°) = (z,u(*)), define the invariant horizontal
one-forms ‘ ‘
w' = (dx"), i=1,...,p (4.1)

and the fundamental invariant contact forms
99 = 1(09), a=1,...,q, #J > 0. (4.2)

It is important to note that if the group action is non-projectable, then the invariant
horizontal one-forms (4.1) are not purely horizontal forms. If we decompose them into
horizontal and contact components

w' = W'+ 7, where W' =1g(@), 7' =ny(xh), (4.3)

their horizontal components w’ € 210 are the usual contact invariant horizontal forms,
[14]. The invariant contact forms (4.2) are in all cases genuine contact forms and form
a basis for the full contact ideal.

Example 4.4. Consider again the planar Euclidean group SFE(2) of Example 3.5. To
obtain the invariant horizontal form (4.1), apply the invariantization map to dx:

t(dz) = o*(mj(w*dx))

0*(7TJ(cos¢dx —sin ¢ du — (msin¢+ucos¢)d¢+da))
0" (cos ¢ dx — sin ¢ du,)

0" ((cos ¢ — uy sin ¢p)dz — (sin ¢)6),
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where 0 = du — uzdx is the usual zero order basic contact form. Pulling back via the
moving frame (3.5) leads to the invariant horizontal one-form

w:w—l—n:\/l%—u%dx—i-LG,
V1+u2

which is a sum of the contact-invariant arc length form w = ds = /1 + u2dzx along
with a contact correction term n = u,(1+u2)~'/24. The invariantization of the contact
forms yields

2 _
9= 0 91 — (1 +u2)by — ugy,0

V1t u2 ' (1+u2)? 7
9y — (14 u2)%0,0 — 3ugtpr (1 4+ u2)0, + (3u2u2, — up(1 + u2)uge )0
a+u)” |

and so on.

Theorem 4.5. The invariant horizontal and contact one-forms (4.1), (4.2) form an
invariant coframe on the domain of definition V*° C J* of the moving frame.

By virtue of Theorem 4.5, proved in [14], any one-form can be uniquely decomposed
into a linear combination of invariant horizontal and invariant contact one-forms. These
two components are called the invariant horizontal and invariant vertical components
of the forms. In this manner, the invariant coframe (4.1), (4.2) is used to bigrade the
space of differential forms on J°°:

QF — @ ﬁr,s’

T8

where ™% is the space of forms of invariant horizontal degree r and invariant vertical
degree s.
Let
Trst £ — Q77 Trst 2 — Qs (4.4)

denote, respectively, projection of arbitrary differential forms onto the ordinary and
the invariant (r, s)-bigrade. Because of (4.3), horizontal and invariant horizontal forms
differ only by contact forms, so the restrictions of the projections (4.4)

Trs: Qs — Qs Trs: Q7% — Qs (4.5)

are mutually inverse.
Invariantization defines a map

L Q78— Qgs c Qs

that takes an ordinary form of bigrade (7, s) and produces an invariant form of invariant
bigrade (7, s). In general this map does not commute with the exterior derivative:

du(Q) # 1(dQQ).

Computation of the correction terms for this lack of commutativity is central to the
construction of the invariant variational bicomplex.



Before discussing these correction terms, we briefly recall notation for infinitesimal
generators and their prolongations. A Lie algebra element v € g generates a vector
field v (an infinitesimal generator) on M through the usual process:

v=—| (exp(ev)-2). (4.6)
de e=0
Due to the local effectiveness of the action of G, the Lie algebra g may be identified
with the Lie algebra of infinitesimal generators on M. Thus we drop the notational
distinction between v and v. Given a basis vi,...,v, for g there is a corresponding
Lie algebra of infinitesimal generators on M with generators

p q
0 0
Vi _;gﬁ’i(m’u)ﬁxi+;¢K’a(m’u)8u°" k=1,...,r. (4.7)

The expressions for the infinitesimal generators of the prolonged group action G

q n
0
V,&n) =ve+ Z Z ¢i,a($7u(n))%a k=1...,r1,
J

a=1#J>1

are given by the standard recursive formula, [23],
. p
673, = Dl o =Y Dibui - ul,.
i=1

The infinite prolongation v(®) may be found in a similar fashion.
The following lemma, called the recurrence formula, exhibits the correction terms
we seek. A proof may be found in [20].

Lemma 4.6. Let p!,...,u" € g* be the Maurer—Cartan forms dual to vi,...,v, € g.
If Q is any differential form on J*,

du(Q) = o(dQ) + ) v A L ) ()] (4.8)

k=1

where v* = p*(u”) are the pull-backs of the Maurer—Cartan forms p” via the moving
frame p: J*° — G and Evf;’") () is the Lie derivative of Q with respect to V,(fo).
Remark 4.7. An important observation is that the differential forms v',..., 7" can
be determined directly from the recurrence formula (4.8). Indeed, for the r phantom
invariants (3.3), the left-hand side of (4.8) is identically zero, and those r equations can
be used to solve for the r unknown differential forms . The solution to the system of
equations is guaranteed by our regularity assumptions on the group action.

With the observation that for Q € Q"% dQ € Q"¢ @ Q™! and v*(Q) € Q" @
QL5 it follows from (4.8) that

dL(Q) e ﬁg+1,s & ﬁgerl @ ﬁréfl,s+2 - ﬁr—i—l,s ® ﬁr,s—i—l ® ﬁr—1,3+27
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with the convention that QLs = 0, s > 0. In fact, since any (possibly non-invariant)
Q) € Q7% is a linear combination with function coefficients of invariant forms of invariant
bigrade (r, s), dQ2 decomposes similarly:

dQ) = dy 2 + dyQ + dy$,
A € 5. dpQ e QL 40 e Qb2

This gives the invariant bigraded forms the structure of a quasi-tricomplex:

2, =0, d} =0,

4.9
dydy + dydy =0, dydw + dwdy =0,  ds + dydyy + dydy = 0. (4.9)

If the action is projectable, Lie differentiation by infinitesimal generators will preserve
the ordinary bigrading, resulting in dyy = 0 and reducing the above “quasi-tricomplex”
structure to an ordinary bicomplex (2.4) in dy and dy.

We now introduce the invariant variational bicomplex and the invariant Euler—
Lagrange complex. For s > 1, define the spaces of G-invariant source forms and the
quotient projections

Foo= Q0% dy (%) and 7 QB — FE. (4.10)

Let E=7o dy: ﬁ%’o — ]?é and define dy = Tody: .7?5 .7:3+1 where the latter map
is understood to act on equivalence class representatives. As in the ordinary case, this
action is well defined by the anticommutativity of dy and dy. That dy is a boundary
operator follows from the implication of the relations (4.9), as d%Q = —dpdySQ for
of maximum invariant horizontal degree.

Definition 4.8. The (augmented) invariant variational bicomplex is the quasi-tricom-
plex

(5", {dn, dy, dw}).
to which we add the vertical complex (.7::5, dy) as in Definition 2.2.

Remark 4.9. As mentioned earlier, our definition of the invariant variational bicom-
plex differs from the original definition of Kogan and Olver, [19, 20], in that we consider
only invariant forms.

Following the example of the ordinary variational bicomplex, an edge complex, called
the invariant Fuler—Lagrange complex, may be constructed for the invariant variational
bicomplex.

Definition 4.10. The invariant Fuler—Lagrange complex is the edge complex

~ S
p0 _F 1_% 2
Q¢ Fa »Fé

~ dn  ~ dy dy
0—R— Q" ——qp’

Using the equivariant movmg frame method, the explicit expression for the invariant
Euler—Lagrange operator E: Qp ;= FG, was discovered by Kogan and Olver, [20].

11



5 Local Exactness of the Interior Rows of the
Invariant Variational Bicomplex

In this section the local exactness of the interior rows of the invariant variational bicom-
plex is established. Following [5], a connection satisfying certain invariance properties
is introduced and used to construct invariant homotopy operators for these rows. We
begin with two simple lemmas.

Lemma 5.1. If Q € ﬁgs is an invariant differential form, then its projection Q =

mrs(£2) € Q™* is contact invariant and for all v € g
L, () € Qr-Lstl where Q- bsth =, (5.1)

Conversely, if {2 € 2"° is a contact invariant differential form which satisfies (5.1), then
0 =7, 4(Q) € Q" is invariant.

Proof. By linearity, we can assume without loss of generality that
Q=TI A AT AIGE A AT,
where I(2(™) is an invariant differential function. Then
Q= mps(Q) = I A Aw™ AN A, (5.2)

where w' is the horizontal contact invariant component of @’. The form (5.2) is clearly
contact invariant and for all infinitesimal generators v € g the Lie derivative L () (€2)
is in "~ 1L5*t1 For the second part of the lemma, if Q € Q™ is a differential form
satisfying (5.1), then € must be an invariant linear combination of contact invariant
differential forms of the form (5.2) and the conclusion immediately follows. O

Lemma 5.2. The horizontal and invariant horizontal differentials satisfy the relations
Tpr41,s © dy =dg o Tr,s5 %T—f—l,s odyg =dy o %r,&
for any 0 <r < pand s > 0.

The proof of this lemma follows from the previous lemma and equation (4.3). We
refer the reader to [20] for more details on the horizontal differential and invariant
horizontal differential.

In preparation for our next lemma, we now discuss the notion of a horizontal con-
nection on tensor fields of J°°. Recall that a total vector field on J* is one which is
annihilated by any contact form. The space of total vector fields forms a subbundle H
of T'J*. In the local coordinate system M =~ X x U, the total differential operators
Dy,...,D, in (2.5) form a basis of total vector fields. The subbundle consisting of
vector fields which are annihilated by dn§: T'J*> — T'X is called the bundle of vertical
vector fields and is denoted by V. The tangent bundle T'J*° decomposes into the direct
sum

TJ*=HaV,
and we can define the projections
Tot: X(J*°) — I'(J*, H) and Vert: X(J°°) — I'(J*,V)

of a vector field onto its horizontal and vertical components. Recall the notation X for
the collection of vector fields on J* and I' for sections of H or V over J*.
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Definition 5.3. A horizontal connection on the bundle H of total vector fields is an
R—bilif{lear map which assigns to a pair of total vector fields X and Y a total vector
field VxY satisfying

a) ﬁfXY = f@xY,
b) Vx(fY) = X(N)Y + [VxY,
where f is any smooth differential function.

Definition 5.4. The connection V is said to be torsion-free if
VxY - Vy X = [X,Y].
Definition 5.5. The connection V is G-invariant if
Ly (VxY) = 6(LV(C,O)X)Y +Vx(LyY) (5.3)

for all infinitesimal generators v € g and total vector fields X,Y € H. Note that the
right-hand side of (5.3) is well-defined since £ ()X and £, (=Y are total vector fields.

Remark 5.6. Invariant, torsion-free horizontal connections on H can be constructed for
any group action admitting p functionally independent differential invariants I*(x, u("o)),
i=1,...,p. Let {R1,...,Rp} be the basis for the distribution of total vector fields
dual to the basis of invariant horizontal forms {dyI",...dyIP}. As the forms dy I’ are
dp-closed and G-invariant, the vector fields R; commute among themselves and with
the elements of g, that is

[Ri,Rj] =0, and  [v(®) R;] =0,

for all 7,7 and v € g. Define ¥V to be the unique horizontal connection on horizontal
vector fields satisfying

Ver,Rj=0, forall 1<i,j<p.
Then this connection is torsion-free and G-invariant.

In the case that the action of G is projectable, the connection v may be used to
define an invariant horizontal connection V on the full tangent bundle of J>° (i.e. an
R-bilinear map which assigns to each total vector field X € I'(J°°H) and each arbitrary
vector field Z € X(J*) a vector field VxZ € X(J°) such that properties a) and b) of
Definition 5.3 and (5.3) hold). Such a connection is defined by

VxZ = VxTot Z + Vert [X, Vert Z]. (5.4)

For non-projectable actions, the connection V defined by (5.4) may not be fully in-

variant but instead satisfies a condition of invariance up to addition of a total vector
field:

L, (VxZ) = V(£ (oo)X)Z + Vx (L) Z) + Tot L, () (Vert[X, VertZ]). (5.5)

Property (5.5) of the connection V together with the observation that the covariant
derivative V; = Vg, preserves the ordinary bigrading serve to prove the following
lemma.

13



Lemma 5.7. Let Q € ﬁgs be an invariant differential form, and let Q = ﬂr,s(ﬁ)
denote its projection onto the (r,s) bigrade. If V is a connection on J* satisfying the
invariance property (5.5), then for all v € g

L) (Vi) = Vi(L,0) () € QT_I’S—H, 1=1,...,p.

This means that V; Q is a contact invariant differential form which is a sum of terms
of the form (5.2).

We will also need that the horizontal differential of Q € QF is given by

k+1
da(Q)(X1, . X)) = D (D)™ (Vi x, (X1, Xiy o, X)), (5.6)
i=1
where X7,..., Xj41 are arbitrary vector fields on J*°, [5]. We now prove the main

result of this section.

Theorem 5.8. Let G be a Lie group acting effectively on subsets of a manifold M.
Then for each s > 1, the augmented horizontal complex

dr dr

~ d ~ ~ =~
0——Qy —> Qg O T Fr——0  (57)

is locally exact.

Proof. The regularity assumption on the action of G guarantees the existence of a
moving frame, which is used to obtain p pairwise commuting invariant total differential
operators Ry,...,Rp. A connection V satisfying the invariance property (5.5) is then
constructed as in Remark 5.6 and (5.4).

The remaining part of the proof consists of adapting the construction of the invariant
horizontal homotopy operators appearing in~[1, Chapter 5]. We begin by constructing
the invariant interior Fuler operator Iv: Q%S — Qgs. Let Q € Q%’S and denote
by Q = ijs(fl) its projection onto QP. Working with the basis of invariant total
differential operators Ry, ..., Rp, let u§ = Rj(u®) denote the corresponding derivatives
of u®, and let 0/0u§ denote the vertical vector fields dual to R;(#*). We can then

write

Q=LY RN (0 0) = LS R AP, 6

J a=1 J a=1

where the Fj{ ., are the interior Euler operators (2.9) expressed in the basis R1,...,Rp;
symbolically this is achieved by replacing the total differential operators D; with R ;
and the vector fields 9/0u$ by 0/0u5 . Since the zero order invariant contact forms 9
are linear combinations of the zero order contact forms 0% we can rewrite (5.8) as

Q= ZJ: ZlRJ(ﬁ“ N ER o (9)),

where the new differential forms F}% () are certain linear combinations of the differ-

ential forms Fj{ o(€). Next the total differential operators R; are replaced by the total
covariant derivatives V; to obtain

Q=>"Y " V,(0" ANFY Q). (5.9)

J a=1
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We refer the reader to [1, Chapter 5] for the explicit expressions ﬁé +(£2). By equality
(5.6) we can write
Q= Iv(Q) + du(hg’ (),

where .
1 -
Iv(Q)) == 9 A Fy (),
(@) = 3% A Fea()

(5.10)
1

W) =2 Y VAR 1 [0 A FEL(Q)]):
J a=1

By a theorem of Anderson, [1, Proposition 5.55], the operator Iy is independent of the
connection V, that is, Iy is equal to the usual interior Euler operator I.

Taking the Lie derivative of (5.9) with respect to an arbitrary infinitesimal generator
v € g we conclude that the differential forms ﬁ‘vl .(Q) € Q™71 are contact invariant

and that L',V(oo)(}?’é’a(ﬁ)) are in Q"~1%. From Lemmas 5.1, 5.2 and 5.7 it follows that

Q= 7p s 0 mps(Q) = I(Q) + dyy (W (2)),

where e N B N
IQ) =Tpsoloms(Q), MG’ =Tp1,50h%" omps(Q),

are invariant differential forms. By the definition of the invariant interior Euler—
Lagrange operator I we see that its kernel

ker [ =7y, o ker I = 7, o (du 1) = dp 2,

is equal to the space of dy-exact (p,s) invariant differential forms, s > 1. Also since
the image of ©P* under I is isomorphic to F*, [1], it follows from Lemma 5.2 that

I(Q%°) ~ F¢.

This shows that the invariant horizontal subcomplex

~ d ~ P~ ~
R Ve 0, s>1,

is exact.
The invariant horizontal homotopy operators

O S ane, 1<r<pot,

are similarly defined:
Er,s o~ Bos
v — Tr—1,s9 Ny OTrs

where the horizontal homotopy operators hgs are constructed recursively as in [1, The-
orem 5.56]. O
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6 The Local Cohomology of the Invariant Euler—
Lagrange Complex

The purpose of this section is to establish an isomorphism between the invariant de
Rham cohomology of J* and the local cohomology of the invariant Euler—-Lagrange
complex. This isomorphism will be used in conjunction with the results of Section 7
to produce explicit examples of cohomology classes in the invariant Euler—Lagrange
complex. Section 8 will be devoted to these examples.

Although the “snaking” arguments to follow are somewhat standard in appearance
we include some details due to the appearance of the anomalous dyy, operator. Recall
the projections 7"° and 7 from (4.5) and (4.10).

Lemma 6.1. Let v € Qf, be d-closed. If » < p and 7, 9(y) = 0 or if » = p+ s and
(T omps)(y) =0, then ~ is d-exact.

Proof. For r < p, write v = 1 + v + -+ - + 7, where ; € ﬁg” Since v is d-closed
these forms satisfy

dny1 =0,

dyy2 + dyy1 =0,

dyyi + dyvyi—1 + dwyi—2 =0, i=3,...,r
dyyr + dwyr-1 = 0.

(6.1)

The exactness of the interior rows (5.7), combined with the equations (6.1) implies that
there exist invariant differential forms p; € QTG_Z_I’Z such that

drpr = 1,

dyp2 + dyp1 = 72,

dnp; + dypi—1 + dywpi—2 = Vi, i=3,...,r—1,
dypr—1+dwpr—2 = Y.

From (6.2) it follows that

dlpr+p2+p3+---+pr—1) =17,

which proves that v is d-exact. For r = p + s, the proof is similar except that now the
condition (To7ps)(y) = 0 implies, by the exactness of the rows (5.7), that the invariant
type (p, s) component of v is dy-exact. O

Theorem 6.2. The cohomology of the invariant Euler-Lagrange complex gg‘;

dw E _~ % ~5 O

d d ~
0 H DEEEY H ! !p’o 1 1
G G G

0,0 oL,
0 R Q. Q.
is locally isomorphic to the invariant de Rham cohomology of J.
Proof. Since the projection map 7, s: Q5 — ﬁgs satisfies
Tr41,0 0 d = dy 0 Ty, for r<p-1,
mompiod= Eo%p,g,

TOTpst10d =0y 0T Oy, for s>1,
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the map ¥: Qf, — gg defined, for w € Qg,, by
B(w) = Tro(w) for r < p, (6.3)
momps(w) ifr=p+sands>1, '

is a cochain map. The induced map in cohomology will be denoted by ¥*: H*(Qf) —
H*(EL). The map ¥* is proved to be an isomorphism in cohomology by constructing
the inverse map ®: H*(E5L) — H*(Q25). To define ® we consider separately the two

pieces of the complex £, beginning with the horizontal edge

dy 0 dn  dn

0.0 oL cp0 E =
0——R— Q% Qb Qv Fh
Let [w] € H’”(ENE*;) for » < p and define wyp = w € ﬁgo. Using Theorem 5.8 and the
differential relations (4.9) it is straightforward to find inductively w; € €, " such that

dpwi = —dywy, dpw; = —dyw;_1 — dyww;_2, 2<1<r. (6.4)

Let
B=wy+w +ws+-+wr EQE. (6.5)

The claim is that § is d-closed. The expression for df telescopes using the relations
(6.4):

s
dB = (dy + dy + dy)w; = dyw, + dywr_1,
i=0

where we have used the fact that dyyw, = 0. Using (4.9), one can verify that dy (dyw, +
dywr—1) = 0. Since dyw, + dyyw,—1 € Q%Hl, by injectivity of dy : Q%TH — Qélr“ it
follows that dg = dyw, + dyyw,_1 = 0.

The cohomology class [§] € H"(£2¢;) is independent of the choices taken for the w;.
Indeed, any other w; defined as in (6.4) must satisfy

wo = wo + dyap,
W1 = w1 + dyay + dyag,
Wi = w; + dyoy + dyoi—1 + dyyoy_o, 2<i<r—1,

Wr = wp + dyay—1 + dyar_2,
where «; € ﬁgﬁi*l’i. Hence, defining 3 as in (6.5) we obtain
B=p0+d(ag+ao1 4+ ar1).

Thus the map ® may be defined by ®([w]) = [3].

It now follows that ¥* and ® are mutually inverse. First observe that for [w] €
H’”(QBO), we have U* o ®([w]) = ¥*([f]) = [w]. Next, let a € Qf, be a d-closed
form and let ag = 7"%(«). Since da = 0 it follows that dyag = 0, hence we may
define inductively, starting with ag € Q°, a § € Qf as in (6.5). Then ® o U*([a]) =
®(ag]) = [B]. Since 7, 0(a) = Tr0(8) = o, the difference 8 — a satisfies the hypotheses
of Lemma 6.1 and is thus d-exact. Hence [(] = [a].
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The case r = p+ s, s > 1, corresponding to the second piece of the complex,

by |~y Oy =5 By

F F2 Fe

is dealt with very similarly. The condition dywy = 0 for wy € .7?5 implies that there

is some wq € ﬁ"é_l.’sﬂ such that dywi = —dywp. Setting 8 = wo + w1 + -+ - + wp,
where w; € Q’é—z’sﬂ is defined inductively via the relation dyw; = —dyyw;_o — dyw;_1,
1=2,...,p, we obtain the inverse ® to ¥* just as in the previous argument. O

7 Lie Algebra Cohomology

Definition 7.1. Let G be a connected r-dimensional Lie group with Lie algebra g. The
Lie algebra cohomology H*(g) is the de Rham cohomology of the complex of invariant
differential forms on G.

We remark that the de Rham complex of invariant differential forms on G and the
complex (A"(g), d) of alternating multilinear functionals on g with

do(Xo, ... X;) = > (=) Ha([Xs, X;], Xo o, Xiv oo Koo, X,
1<j
appearing in many references, are isomorphic.

We now construct a local isomorphism between the G-invariant de Rham complex
on M and the Lie algebra cohomology for g. The construction of this isomorphism
roughly follows [5], with the added computational and conceptual advantage of moving
frames.

Theorem 7.2. If 2o € M is a regular point of the group action G, then there is a
neighborhood U C M of zy such that H*(QF(U)) ~ H*(g).

Proof. By Theorem 3.2 there is a neighborhood V of zy and a moving frame p: V — G
corresponding to a cross-section K C V. Restrict to a neighborhood & C V so that
there is a strong deformation retract H(z,t) of XNU to zp and such that the expression

p(2)7t - H(p(2) - 2,1) (7.1)

is defined for all z € Y. This can be done for instance by introducing flat local coor-
dinates on M which identify a neighborhood U C V of zy with Gg x I, where Gj is a
suitable neighborhood of the identity in G, [14]. The map (7.1) defines an equivariant
strong deformation retract of U onto the group orbit O of zg in &. Thus the invariant
de Rham cohomology of the neighborhood U is isomorphic to that of its submanifold
O: H (Qu(U)) ~ H*(2(0)).
Now, let u!,...,u", be a basis of Maurer-Cartan forms for G' and let v = p*(u!),
.., V" = p*(u") be the pull-backs of the Maurer—Cartan forms via the moving frame.
The forms v are invariant one-forms on M whose restrictions v*|p form an invariant
coframe on O and hence generate the invariant de Rham complex on O. Furthermore,
since pullback commutes with d, the structure equations for the forms v* are the same
as the Maurer—Cartan structure equations. Hence the moving frame pullback provides
an isomorphism of the complex of invariant differential forms on G and the invariant
de Rham complex on O, which is in turn isomorphic to the invariant de Rham complex
on U. 0
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Under our regularity assumption that G acts effectively on subsets, the prolonged
transformation group will act locally freely on an open subset of J™ for n sufficiently
large, [14]. Then the following corollary is a direct consequence of Theorem 7.2.

Corollary 7.3. Let G be a Lie group acting on M. Suppose that z(°) € J* is a regular
jet of the prolonged group action G(°). Then there is a neighborhood U>® C V> C J*®
of 2(®) such that

H*(Qe(U™)) ~ H*(g").

Combining Corollary 7.3 and Theorem 6.2, we obtain the main result of the paper.

Theorem 7.4. Let G be a Lie group acting on M. Suppose that z(>) € J* is a regular
point of the prolonged action G(°). Then there is a neighborhood U C V*® C J* of
2(>) such that B

H*(EX(U™)) ~ H"(g").

To proceed further we extend the definition of the non-invariant boundary operators
(2.7) to allow arbitrary p + s forms. Given a differential form Q € QP with s > 0,
the extended boundary operator is

Q) =mompsody(Q) =momy,od(f2). (7.2)

A property of the extended boundary operator ¢y, is that it annihilates all components
in  which are not of maximal horizontal degree. The introduction of the extended
boundary operator (7.2) first appeared in [20] and was used to define the extended Euler
derivative.

Lemma 7.5. Let Q, ¥ € QP If 7, (Q) = mp s(¥) then &7 (Q) = 63 (V).
Lemma 7.6. Let Q € Q%° and Q = 7, 4(Q) € QP*, then
5(9) = mpssn 0 ou(D).
Proof. By Lemma 7.5
55(Q) = 05(Q) = 7o mp a1 0 d(Q) = 7 0 My ey 1 (dpQ + dyQ + d Q).

The first and third terms in the last equality vanish since dHQ =0 as Q is of maximal
invariant horizontal degree and dyy$2 € QP~ 152 which implies that Tp, sr1(dpQ) = 0.
Thus we are left with

01 () = Tpsr1 0 7 0 dy(Q) = mps41 0 I(Q).
OJ

Theorem 7.4 combined with Lemma 7.6 gives a cohomological condition for the
solution to the invariant inverse problem of variational calculus.

Corollary 7.7. Let U™ be as in Theorem 7.4 and suppose that H?™!(g*) = 0. Then
every G-invariant source form on U*° which is the Euler-Lagrange form of some La-
grangian is the Euler-Lagrange form of a G-invariant Lagrangian.
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8 Examples

In this section we consider the geometry of Euclidean and equi-affine curves in the plane
and Euclidean surfaces in R? to illustrate the Theorems discussed in Sections 6 and 7.

Example 8.1. In this example we consider our running example of the Euclidean group
SE(2). The Maurer—Cartan structure equations for this group are

dp' =P A, dpt = —pt Apt, dpt =0,
where
pl = da + bd, p? = db— ado, ud = do. (8.1)

It follows that the non-trivial® cohomology classes of H*(se*(2)) are
[ P 17 R 1TV e T (8:2)
Taking the pull-backs of the Maurer-Cartan forms (8.1) by the moving frame (3.5)
leads to the invariant one-forms
1 dx + uzdu 9 Ugdx —du 3 duyg

— , v = , v = — .
(1+u2)1/? (1+u2)1/? 1+ 2

The pull-backs of the cohomology classes (8.2) give the invariant de Rham cohomology
classes
(koo + 4], [co A9, [co A DA D). (8.3)

Applying the map (6.3) to the cohomology classes (8.3) we find that the non-trivial
cohomology classes of the invariant Euler—-Lagrange complex are

[keo], [z A Y], [co A O A D). (8.4)

We now compare this result to those of [6]. Instead of considering a regular curve
C' as the graph of a function u(z), a curve C' may be specified parametrically

c: R — R?, t— (z(t),u(t)).
Such a curve corresponds to a section of the trivial bundle
E:RxR? SR, (t,x,u) — t.
The natural group action to consider is the infinite-dimensional Lie pseudo-group
G = Diff(R)* x SE(2) (8.5)

acting on F by
(1% R7 b) : (ta Z) = (w(t)a Rz + b)7

where 1) is a local diffeomorphism of R with ¢/(t) > 0, R € SO(2) and b € R?. The
cohomology classes of the Euler-Lagrange complex invariant under the projectable
action (8.5) have been computed in [6]. In total four non-trivial cohomology classes

3We neglect the trivial cohomology class from our considerations.
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were found. The three cohomology classes originating from the cohomology of SE(2)
are

) =] = [y

[0] =[(t4dx — zdu) A dt],

dt],

(B3] =w A {kdz A du + w?dz A di — #i(de A du+ du A di) 4 2du A di) ],

(j;.2 + u2)5/2 (
where w = V&2 + 42 dt is the arc length. Assuming x = x(t) and u = u(x(t)), we have

the equality
(j10)* (V1 +u2dr) = Vi +u2dt = w,

for the arc length. Since the restriction of the contact forms ¥;|; . = 0 to a curve c is
always zero we have the equality

[(2¢)"weo] = [A].

On the other hand the cohomology classes [w A 9] and [w A ¥ A ¥4] in (8.4) are not
equivalent to [d], [5] via the pull-back of a parametrized curve.

Example 8.2. A more substantial example is provided by the geometry of equi-affine
planar curves, [15]. The equi-affine group SA(2) = SL(2) x R? acts on M = R? as
area-preserving affine transformation

g (z,u) = (X,U) = (ax + fu+ a,yx + du + b), ad — By =1.

The coordinate cross-section X = U = Ux =0, Uxx = 1, Uxxx = 0, leads to the
classical equi-affine moving frame, [13, 20],

2
0 T(UpUpgr — BUZ,) — Ulgry - TUy — U
- 5/3 ) - 1/3
9 .
o= 3uzx — Uz Uggy 5= 1 ﬂ _ Uzzz v = Uy
- 5/3 ’ T 1/30 ., 5/3° - 1/3°

The fundamental differential invariant is the equi-affine curvature

Uz Uzrer — 5u2

XX
8/3
3Uz/m

R = L(ULU.TLL‘I) -

The corresponding invariant horizontal form is

u
w = u(dr) = ugd de + —57 0,
Sty
while the invariant contact forms are
RRYER 1= 5/3 ’
TT Uxx
0 0 2 9 0 2 .0 ALY
UgaUgax — UgzaVs 3uacx par — OUzaUpzaOpr + UprrVr — RlUgx Ugxx
vz = 2 ’ VU3 = 10/3 ’
Uzg SUzs
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and so on. A basis of Maurer—Cartan forms for SA(2) is given by

pt = da+ (Bb — da)da + (ya — ab)dB,  u* =db+ (Bb— a)dy + (ya — ab)ds,

ud = dda — ~dp, pt = adp — Bda, u’ = ddy — ~dé,
(8.7)
where dda + add — Bdy — vdB = 0. The corresponding Maurer—Cartan structure
equations are

dp' = pt ApP P apt, dp? =0 At AP

8.8
dp? = pt A, dpt =20 At dp =200 AP (82)

From (8.8) we conclude that the non-trivial Lie algebra cohomology classes are
wAp®), WP At Ap], et A AR At A ) (8.9)

Taking the pull-back of the Maurer—Cartan forms (8.7) by the moving frame (8.6) we
obtain the invariant one-forms

pr(ph) =—w,  pf(p?) = -1,

Hw+193

p*(u?) = ?, Pt === P =—(@+d)

Thus the pull-back of the cohomology classes (8.9) gives the three invariant de Rham
cohomology classes

[’w/\l?], [191/\192/\1934‘:‘@@/\191/\192+’W/\192A793], [’w/\ﬁ/\ﬁl/\ﬁg/\ﬁg]. (8.10)

The cohomology classes of the invariant Euler—Lagrange complex are obtained by ap-
plying the map (6.3) to (8.10). Consequently, the non-trivial SA(2)-invariant local
Euler-Lagrange cohomology groups for equi-affine planar curves are

[ A D, (ko A9 A Dy + A dg A ds), [w A DAY A A V3.

Example 8.3. As a final example we consider the action of SE(3) = SO(3) x R? on
surfaces in R? (with coordinates (x,%,u)) given by the infinitesimal generators

vi =20y — Y0y, V2 =y0, —uly, V3 =1uly — 20y, V4=0,, V5=0y, V=0,
Let u!,...u% be a basis of Maurer-Cartan forms dual to (the Lie algebra basis corre-
sponding to) the infinitesimal generators. The corresponding structure equations are
4 1,5 35,6

=~ A+ P A,
dp’ = pt At — P Apb dp® =P AP — P At

dp' = P Ayt dp? = —pt A, dp? =t Ap?, dp

A straightforward computation using MAPLE shows that the non-trivial Lie algebra
cohomology classes are

W AP Al AR AR, T AR AR At A A ). (8.11)

Unlike the previous examples an explicit formula for the the moving frame is not given
here, but instead the cross-section

X =0, Y =0, U=0, Ux =0, Uy =0, Uxy =0,
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and the recurrence relation (4.8) are used to express the moving frame pull-backs
v, ..., 0 of the Maurer—Cartan forms in terms of known invariants. The computa-

tions hold for non-umbilic points, i.e. k' # k2, and yield

/i’l2w1 + Ii?lw2 + Y12

A ; i ’ V2 = —i2? — 9y,
K2 — K
v = klw! + 94, v = —w!, V= —w?, a—
where
1 2 1 2
K= t(Ugg), kS = t(Uyy), w = (dx), w” = 1(dy),
Y5 =1(0y), dyr' = fiflwl + /if2w2.

Here k! and x? are the principal curvatures of the surface and nfl, /ifQ denote their
invariant derivatives. These computations illustrate the ability to compute intrinsi-
cally, i.e. without coordinate expressions for the moving frame, normalized invariants,
or pulled-back Maurer—Cartan forms. See [28] for more details. It follows that the
pull-back of the Lie algebra cohomology classes (8.11) by the moving frame gives the
invariant de Rham cohomology classes

1
[21 ( — /i12/£2w1 AN AY — /i21/£1w1 A2 ADg + I€12w1 A A Dy
K% — K ) ) )
+ Ii?lw2 AN NGy + k2wt Aw? A P9 — K22 A aWANCAD

—|—/{1w1/\192/\7912+191/\192/\1912>},

[ Aw® A9 and (@l A@? AP A9 ADs A ).

Applying the map (6.3) gives the corresponding invariant Euler-Lagrange cohomology
classes

—&12%2w1 Aw? AY — nzlfilwl A w2 A Oy + kK2l A w? A D12

)

2 _ ol
[ A@® A9 and (@l A@E AP A9 ADs A ).

9 Conclusion

Using the method of moving frames we have been able to extend the results of [5] to
non-projectable group actions. Note that we recover the results of Anderson and Poh-
janpelto if the group action is projectable. Indeed, for such group action the differential
dyy is identically zero, the projection maps (4.5) are equal to the identity map, and the
invariant bigrading is equal to the noninvariant bigrading.

The examples considered in this paper were relatively simple. As illustrated in
the third example, the computation of the Euler-Lagrange cohomology classes may
be done without explicit knowledge of the moving frame and Maurer—Cartan forms.
Applications of our results to the geometry of higher dimensional submanifolds is of
interest. In view of Olver and Pohjanpelto’s new moving frame theory for Lie pseudo-
groups, [29, 30], our results may also be seen to extend to infinite-dimensional Lie
pseudo-group actions.
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