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The variational bicomplex is a double complex of differential forms on the
infinite jet bundle of a fibered manifold (or on the infinite extended jet
bundle of a manifold).

The variational bicomplex plays the same ubiquitous role in . . .
the geometry of the infinite jet bundle of a triple (E, M, ) that
the de Rham complex plays in the geometry of a single manifold
M. - lan Anderson

Some mathematicians involved in its development: W. M. Tulczyjew, A.
M. Vinogradov, T. Tsujishita, P. J. Olver, I. M. Anderson.

The first main application of the variational bicomplex is to provide a
natural geometric context for the calculus of variations. However,
applications extend to the general theory of conservation laws for PDE,
characteristic classes, Gelfand-Fuks cohomology and more things | don't
know anything about.
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d d d, d,
0 Q0.1 H QL1 Ho .. 28 Qp-1.1 H opl "> £l 0
dy dy dy dy %
dy du dy

0 R Q0.0 QL0 QpP-1,0 LU QPO

Conservation Laws, Lagrangians, Euler-Lagrange Eqns, Helmholtz Conds
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Preliminaries Notation

Notation

7 : M — X will be a fiber bundle or more generally a fibered manifold.

For purely local considerations, we may assume M = X x U where
X = RP with coordinates x = (x',...,xP) (independent variables)
U = R9 with coordinates u = (u',...,u9) (dependent variables)

When there are only a few independent or dependent variables, we'll use t
or x,y,z and u, v instead of the above.

Multi-index notation will be used for partial derivatives. If J = (ji,...,jk),
1 <, < p, we write |J| = k and

k, o
o0« Jcu
uj

—_ Ujljk - ale . axjk
Unless noted otherwise, multi-indices will be symmetric, i.e. J; = J if one
is a reordering of the other. This reflects equality of mixed partials.
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Preliminaries Jet Bundles

Finite Order Jet Bundles

Let x € X,

declare two sections s; and s, to have n?
order contact at x if all partial derivatives
up to order n of s; and s, agree at x.

This is an equivalence relation on sections.

h

Denote by j,s|x the equivalence class of /

s: the n-jet of s at x. The n-jets constitute Figure: 1%t order contact
a bundle over M, the jet bundle J"(M).
The jet jus is a section of this bundle.

Adapted local coordinates (x, u) on M induce local coordinates
(x,u,...,uf,...) = (x,u™) on J"(M), |J] < n.
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Preliminaries Jet Bundles

Coordinates (x, y, u) on the bundle R? x R — R? induce coordinates
(x,y,u?) = (x,y, u, uy, Uy, Usx, Uxy, Uyy) on J2(R?2 x R).

Specifying a section s of R?> x R — R? is tantamount to specifying a
function f : R? — R:

s(x,y) = (x,y,f(x,¥))

The jet of this section is obtained by differentiating f:

(00 0 O o
25((x0,00) = | X0 V> " Ox’ 8)/7 Ox2 aan’ 8}/2

(x0,%0)
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Variational Calculus

Consider X x U — X where X = RP, U = R9.
Let R be a connected region in X with smooth boundary.

Let L(x,u™) be a function on J"(X x U), defined on R. Call this
function the Lagrangian.

Fundamental problem of variational calculus
Find the extrema of the functional

E[u]:/RL(X, u(™)dx

over some class of functions u = f(x).
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Take X = R (with coordinate t) and U = R? (with coordinates u, v).
Let R = [a, b).

The Lagrangian L(t, u, v, u, v¢) defines the arclength functional:

Lo v] = /ab\/(ut)z—i-(vt)zdt

We search for extrema of £ over functions (u(t), v(t)) with fixed
endpoints.

One expects that a minimum will be a straight line connecting the fixed
endpoints. We'll return to this example shortly.
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Given F(x, u(”)) one can “pretend’ u is a function of x and take a partial
derivative w.r.t. x/. The result is the total derivative D,;F or D;F:
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o
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Variational Calculus The Fundamental Problem

Total Derivatives

Given F(x, u(”)) one can “pretend’ u is a function of x and take a partial
derivative w.r.t. x/. The result is the total derivative D,;F or D;F:

o
ouf

OF OF

We adapt multi-index notation to D via
Dy=Dj---Dy and (-D),=(-1)"D,
With coordinates u and x,y
Dy (x* + u)z,) = 2x + 2uy Uy,

NOTE: D; raises the order of F by 1.
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Euler-Lagrange Equations

To find extrema perform a variation of u: let u. be a family of functions
which agree outside a compact K C R. If ug = u is an extremal, then
dL[ue] .
= =0.
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Euler-Lagrange Equations
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Euler-Lagrange Equations

To find extrema perform a variation of u: let u. be a family of functions
which agree outside a compact K C R. If ug = u is an extremal, then

Consequently
dL[ue]
de
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de |._o
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To find extrema perform a variation of u: let u. be a family of functions
which agree outside a compact K C R. If ug = u is an extremal, then

=0.
e=0
Consequently,
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Euler-Lagrange Equations

To find extrema perform a variation of u: let u. be a family of functions
which agree outside a compact K C R. If ug = u is an extremal, then
=0.

e=0
Consequently,

B dL[u]
 de

0

L du®
:/ {ZZ aaD_jVa}dX, where v& = 2
e=0 R a  J au_/

ou® de

e=0
Because of agreement outside K, integrate by parts and the boundary

term is zero: [, aaTL?DJVOédX = fR(—D)J(aaTL?)v“dx.

Thus O:/R{ZQ:ZJ:(—D)J;L’L?va}dX

Each v® is (essentially) arbitrary, so an extremum u must satisfy the

L
Euler-Lagrange equations E, L = Z(—D)J% =0
J J
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Example (Minimizing Arclength Revisited)

Recall that we seek extrema of L[u, v] = fab V()2 + (v)2dt.
The Euler-Lagrange equations are

oL
ta_ut =

oL

t— =
8Vt

(—D) 0 and (—D) 0.
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Recall that we seek extrema of L[u,v] = fab V(ur)? + (v)?dt.

The Euler-Lagrange equations are
oL oL
to - — to - =
(9ut 8Vt

We look at the first equation (the second follows by symmetry):

(-D) 0 and (-D) 0.

oL _
(_D)taTlt = —D¢[ue(u? + v}) ]
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Variational Calculus Euler-Lagrange Equations

Recall that we seek extrema of L[u, v] = fab V(ue)? + (ve)?dt.

The Euler-Lagrange equations are
oL oL
to - — to - =
(9ut 8Vt

We look at the first equation (the second follows by symmetry):

(-D) 0 and (-D) 0.

oL _
(_D)taTlt = —D¢[ue(u? + v}) ]

S [(u? LR R+ vf)—ﬂ

_ — Ut B U?
@R
Thus the Euler-Lagrange equations are satisfied iff

(use =0 o0r v =0) and (v = 0 or uy = 0)
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Differential Forms on Finite Order Jet Bundles
A basic differential k-form on J"(M) has a local coordinate expression

F(x, u™)dx A - A dxi A duj! Ao Aduj®  where a+ b= k.
A general k-form is a sum of such terms.

Important are the basic contact one-forms, for |J| < n— 1 given by
= du§ — Z uJdeJ

Example.  With coordinates x, y and u
Ox = duy — Uxdx — uy, dy

Let u = f(x,y) (i.e. pull back by the section s(x) = (x,y,f(x,y))), then

2 2
- ex_d<8f) Pf O

ox) Ox2 X_axaydyzo
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Infinite Order Jet Bundles
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natural projections
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These projections are truncation in local coordinates.
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Infinite Order Jet Bundles

Since nth order contact = k" order contact for k < n, there are
natural projections

77 J" (M) — J5(M).
These projections are truncation in local coordinates.

Thus we have an inverse system

3

7T1 71"2 .
JO(I\/I) <9 Jl(M) <—1J2(M) -2 ...
We define the infinite jet bundle J*°(M) = lim J"(M).

Local coordinates are oo-tuples (x,u, ..., uf,...) = (x, u(‘x’)).
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Infinite Order Jet Bundles

Since nth order contact = k" order contact for k < n, there are
natural projections
7 JU(M) — J5(M).

These projections are truncation in local coordinates.

Thus we have an inverse system

3

My <" vy <" vy <
We define the infinite jet bundle J°°(M) = lim J"(M).
Local coordinates are oo-tuples (x,u, ..., uf,...) = (x, u(oo)).
Smooth functions on J*°(M) factor through some finite order J"(M):
F:J*°—-R = F=fom, for some smooth f : J7 — R

Write F[x, u] for a function on J*°(M).
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Differential Forms on Infinite Order Jet Bundles
The pullback by the projection 7} : J"(M) — JK(M) gives a mapping
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Differential Forms on Infinite Order Jet Bundles

The pullback by the projection 7 : J'(M) — JK(M) gives a mapping
(mf)" : Q(JK(M)) — Q*(J"(M))

Thus we have a direct system

(m0)" ()" (3"

Q*(S2(M)) Q*(JHM)) —> Q*(JA(M)) — - --
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Differential Forms on Infinite Order Jet Bundles
The pullback by the projection 7} : J"(M) — JK(M) gives a mapping
()" Q(JH(M)) — Q*(J"(M))

Thus we have a direct system

*( 10 (ﬂ—é)* x( (1 (ﬂ—%)* *( |2 (ﬂ—g)*
Q* (S (M) —=Q* (S (M) —=Q*(JS(M)) — -

We define the algebra of differential forms on J°°(M) to be the limit

Q*(J7*(M)) = lim *(J"(M))
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Differential Forms on Infinite Order Jet Bundles

The pullback by the projection 7! : J"(M) — JX(M) gives a mapping
(7)™ Q*(JH (M) — Q*(J"(M))

Thus we have a direct system

(m3)*

Q1 (S2(M)) <

%7 10 (ﬂ—é)* w1l (ﬂ—%)*
Q* (S (M) —=Q* (S (M)) —

We define the algebra of differential forms on J°°(M) to be the limit
Q*(J°(M)) = lim 2°(J"(M))

Every form w € Q*(J°°(M)) is the pullback of some w" € Q*(J"(M)):

w = (mP)*w".

w may be interpreted as a form on some J"(M) of arbitrary finite order.
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Differential Forms on Infinite Order Jet Bundles

The pullback by the projection 7! : J"(M) — JX(M) gives a mapping
(7)™ Q*(JH (M) — Q*(J"(M))

Thus we have a direct system

(m3)*

Q1 (S2(M)) <

(m5)"

(m3)*

Q*(JS2(M)) Q*(J1(M))

We define the algebra of differential forms on J°°(M) to be the limit
Q*(J°(M)) = lim 2°(J"(M))

Every form w € Q*(J°°(M)) is the pullback of some w" € Q*(J"(M)):
w = (mP)*w".

w may be interpreted as a form on some J"(M) of arbitrary finite order.
— From now on we write J” or J* instead of J"(M) or J°(M).
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linear combinations of expressions of the form (x).

“All forms which are a sum of wedges of r dx’'s and s 65's”
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The Bigrading on Q*(J™)

We can define basic contact forms in Q1(J>) without restriction on |J|:

0f = duf — Z ujyjdxj
i

An arbitrary form in QX(J>) is a linear combination of the new basic
k-forms

Fx, uldx™ A+ Adx” AGGEA - N6 (%)
where r + s = k.
Now, fix r,s. Define the space 2"*(J>°) of forms of type (r,s) to be all
linear combinations of expressions of the form (x).
“All forms which are a sum of wedges of r dx’'s and s 65's”
Q*(J°°) is a direct sum (the bigrading on Q*(J>)):
Q*(JOO) — @Qr,S(JOO)

r,s
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Example (rewriting a form in terms of the bigrading)

Consider R? x R? — R? with coordinates x, y and u!, u?>. We choose a
form on J°(R? x R?), and write it in terms of the bigrading:

1 2 _ 1,1 1 2 2 2
dx A duy A du” = dx A (0 + uedx + uy, dy) A (07 + ugdx + uydy)
= dx A0y AO% + uZdx A 0L A dy + updx A dy A6
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Consider R? x R? — R? with coordinates x, y and u!, u®>. We choose a
form on J°(R? x R?), and write it in terms of the bigrading:

dx A dul A du? = dx A (0 + ul dx + ul ydy) A (02+u2dx+u2dy)
= dx A0y AO% + uZdx A 0L A dy + updx A dy A6

Thus dx A dul A du? € QY2 © Q1 since
dx A O A 6% € QM2

and
2dx A 91 A dy and u ydx A dy A 9% € Q>1
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Splitting of the Exterior Derivative
Let F[x, u] be a function on J>°. The exterior derivative is defined as

usual:
Z—d“rzz duJ
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We can write dF using contact forms and the total derivative:
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The Variational Bicomplex The Bigrading on Q* J*°

Splitting of the Exterior Derivative
Let F[x, u] be a function on J>°. The exterior derivative is defined as

usual:
Z—d“rzz duJ

We can write dF using contact forms and the total derivative:
dF = ZadeurZZ—d a
z(w S S )+ XY g
= JZDdexj+;;8
Define

duF =) DjFdx and dVF:ZZg—F
a J

Jj
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Splitting of the Exterior Derivative, Continued
Starting with F € Q%0 we found dF = dyF + dyF, where

dyF € Q¥ and dyF € Q%L
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Splitting of the Exterior Derivative, Continued
Starting with F € Q%0 we found dF = dyF + dyF, where

dyF € QY% and  dyF € QL.
In general, for w € Q"°, there is a splitting dw = dyw + dyw, where

dpw € QH_LS and dyw € Qr’5+1.



The Variational Bicomplex  The Bigrading on Q* J>°
Splitting of the Exterior Derivative, Continued
Starting with F € Q%0 we found dF = dyF + dyF, where
dyF € QY and dyF € Q%
In general, for w € Q"°, there is a splitting dw = dyw + dyw, where
dyw € Q1% and  dyw € QL

Consider 5 € Q%'. Then dyfy = — 3", 65; A dx/ and
dy09 = 0. To see this, compute:

dog = d(duf} -y uyjdxf>
J
=— Z duf; A dx/
j

— —Zﬂﬁ‘j/\ dx? —|—Zu§“j,~dx" A dxd

J iJj
J



The Variational Bicomplex Building the Bicomplex

Building the Bicomplex
By virtue of d> = 0 we have d?, = 0, d> = 0 and dydy = —dydp.
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Building the Bicomplex

By virtue of d> = 0 we have d?, = 0, d> = 0 and dydy = —dydy. Thus
for fixed s

QO,s dn Ql,s dn QZ,s dr . dn Qs
is a complex, and for fixed r
Qr,O dv Qr,l dv Qr,2 dv

is a complex.



The Variational Bicomplex Building the Bicomplex

Building the Bicomplex
By virtue of d> = 0 we have d?, = 0, d> = 0 and dydy = —dydy. Thus
for fixed s

QO,s dn Ql,s dn QZ,s dr dn Qs

is a complex, and for fixed r

dy dv dy

Qr,2

Qr,O Qr,l

is a complex. In summary we have a bicomplex of differential forms:

d d d d
Qo1 _9H QL1 s N Qp-1.1 _9H Qpl

dvT dvT dvT dvT
d d d
Q0.0 _aH QLo . Qp—1,0 e QPO
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Building the Bicomplex, Continued
Let's take a closer look at the bottom right edge of the bicomplex.

d
N $ Qpal

dVT
dy

> Qp70
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Building the Bicomplex, Continued
Let's take a closer look at the bottom right edge of the bicomplex.

d
N $ Qpal

a|
d
. HH Qp70

Each element of QP has the form L[x, u]dx! A --- A dxP = L dx and so
can be interpreted as the Lagrangian for a variational problem.



The Variational Bicomplex Building the Bicomplex

Building the Bicomplex, Continued
Let's take a closer look at the bottom right edge of the bicomplex.

d
‘e *>H Qp,l

dVT
dy

.. > Qp,O
Each element of QPO has the form L[x, u]dx* A --- A dxP = Ldx and so
can be interpreted as the Lagrangian for a variational problem.
Let's try to interpret dy, of our Lagrangian:

L
0F Adxt A A dxP

dy(L dx A ANdXP) =) —
v(L[x, u]dx IxP) ajau(j
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Building the Bicomplex, Continued
Let's take a closer look at the bottom right edge of the bicomplex.

d
‘e *>H Qp,l

dVT
dy

- —> (PO

Each element of QPO has the form L[x, u]dx* A --- A dxP = Ldx and so
can be interpreted as the Lagrangian for a variational problem.

Let's try to interpret dy, of our Lagrangian:
oL
dy(Llx, uldx A AdxP) =D @93* AdxE A A dxP
a,J

Notice the similarity with the variational derivative:

dLluc] / { oL }
= Dv® 3dx
e=0 R az au.olé 7

€
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Integration by Parts
To arrive at the Euler-Lagrange equations, we need to “integrate by parts”
via some operation on forms. This can be accomplished in two ways.
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Integration by Parts
To arrive at the Euler-Lagrange equations, we need to “integrate by parts”
via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of dy: QP11 — QP.1
To see this, let 7/ = dx' A--- A J);J A --- A dxP and compute
du(Plx, u]65 A 1Y)
= <ZD,~de’> ANOG AT 4+ P A (—Zeﬁ,Adx’) A
= DiPdx! NOS A1 — POS; A dxd Ao

= (-1yY [DJP 05 A dx + P65, A dx}
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Integration by Parts
To arrive at the Euler-Lagrange equations, we need to “integrate by parts”
via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of dy: QP11 — QP.1
To see this, let 7/ = dx' A--- A J);J A --- A dxP and compute
du(Plx, u]65 A 1Y)

— <ZD,-de") ANOGAY +PA (—Z%“,-Adx") A1
= DiPdx! NOS A1 — POS; A dxd Ao
= (-1yY [DJPeﬁ“A dx + P05, A dx}

Setting dy(P 6% A 1Y) = 0 allows for

“pulling derivatives off of #5 and putting them on P (with minuses)”.
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Integration by Parts
To arrive at the Euler-Lagrange equations, we need to “integrate by parts”
via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of dy: QP11 — QP.1
To see this, let 7/ = dx' A--- A J);J A --- A dxP and compute
du(Plx, ul0 A1P)
- <ZD,-de") ANOFAD + P A (—Z%“,-Adx") N
= DiPdx! NOS A1 — POS; A dxd Ao
= (-1yY [DJPeﬁ“ Adx + PO, A dx}
Setting dy(P 6% A 1Y) = 0 allows for

“pulling derivatives off of #5 and putting them on P (with minuses)”.

We'll save the second way for another talk.
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The Euler Operator

Using = for equivalence modulo Im dy, we find

dy(Ldx) = ;Lej A dx
a,) Yy

_Z —eaAdx
= Z E.(L) 6% A dx
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The Euler Operator

Using = for equivalence modulo Im dy, we find

dy(Ldx) = ;Lej A dx
a,) Yy

_Z —9“/\dx
= Z E.(L) 6% A dx

The Euler-Lagrange equations are lurking in our bicomplex (Q"°, dy, dy/).
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The Euler Operator

Using = for equivalence modulo Im dy, we find

dy(Ldx) = ;Lej A dx
a,) Yy

_Z —9“/\dx
= Z E.(L) 6% A dx

The Euler-Lagrange equations are lurking in our bicomplex (Q"°, dy, dy/).

Define 71 = Q™! /Im dy and 7 the projection 7 : Q™! — F1. Flis called
the space of source forms.



The Variational Bicomplex Building the Bicomplex

The Euler Operator

Using = for equivalence modulo Im dy, we find

dy(Ldx) = ;Lej A dx
a,) Yy

—Z —9“/\dx
= Z E.(L) 6% A dx

The Euler-Lagrange equations are lurking in our bicomplex (Q"°, dy, dy/).

Define 71 = Q™! /Im dy and 7 the projection 7 : Q™! — F1. Flis called
the space of source forms. We can then say that

7(dy(Ldx)) ZE L) 0 A dx

We write m o dy = E and call E the Euler operator.
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Building the Bicomplex, Continued
We build F! and the Euler operator E into our bicomplex:
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Building the Bicomplex, Continued
We build F! and the Euler operator E into our bicomplex:

.

d
..*H>Qp,1L>fl

g

- > Qp,O

In analogy with F!, define 7° = QP*/Im dy, a space which will allow us
to perform “higher order integration by parts”.
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Building the Bicomplex, Continued
We build F! and the Euler operator E into our bicomplex:

.

d
..*H>Qp,1L>fl

g

- > Qp,O

In analogy with F!, define 7° = QP*/Im dy, a space which will allow us
to perform “higher order integration by parts”.

Use dy to define 6y : F5 — F°T1 by mapping equivalence representatives:

(5\/(&) + Im C/H) = de + Im dH



The Variational Bicomplex Building the Bicomplex

Building the Bicomplex, Continued
We build F! and the Euler operator E into our bicomplex:

.

d
..*H>Qp,1L>fl

g

- > Qp,O

In analogy with F!, define 7° = QP*/Im dy, a space which will allow us
to perform “higher order integration by parts”.

Use dy to define 6y : F5 — F°T1 by mapping equivalence representatives:

(5\/(&) + Im C/H) = de + Im dH

Since dydy = —dpdy, 6y is well-defined, and since d2v =0, 5%/ =0.
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Building the Bicomplex, almost done

We can now incorporate F° and Jy into our bicomplex:

dy dy dy dy ‘SVT
dy du dy du

QO,Q QI,Z . Qp—1,2 s Qp,2 > f2

dy dy dy dy 6VT
d d d, d

foL! H L.l Ho... 2o Qp-1,1 SH Qpl —> 1

dy dy dy dy %
dy dy dy

d
Qp-1,0 X5 p,0

Apart from some minor ornamentation, this is the variational bicomplex.



The Variational Bicomplex Building the Bicomplex

Building the Bicomplex, almost done

We can now incorporate F° and Jy into our bicomplex:

dy dy dy dy 5VT
dy du dy du

QO,Q QI,Z N Qp—1,2 s Qp,2 . f2

dv dy dy dy 5VT
d d d, d

foL! H L.l Ho... 2o Qp-1,1 SH Qpl —> 1

dy dy dy dy %
dy dy dy

00,0 QL0 Qp-1,0 g,d” QPO

Apart from some minor ornamentation, this is the variational bicomplex.

The edge of this bicomplex is of particular interest, and is called the
Euler-Lagrange complex.
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The Euler-Lagrange Complex

Theorem. The cohomology of the Euler-Lagrange complex is equal to the
de Rham cohomology of M. In particular, if M = RP x RY, the
Euler-Lagrange complex is exact.
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The Euler-Lagrange Complex

Theorem. The cohomology of the Euler-Lagrange complex is equal to the
de Rham cohomology of M. In particular, if M = RP x RY, the
Euler-Lagrange complex is exact.

Let's examine an easy consequence: suppose that L is such that the
Euler-Lagrange equations are automatically satisfied. Thus E(L dx) = 0.
By exactness, this means that L dx = dyw for some w € Q" 1.0,
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The Euler-Lagrange Complex

Theorem. The cohomology of the Euler-Lagrange complex is equal to the
de Rham cohomology of M. In particular, if M = RP x RY, the
Euler-Lagrange complex is exact.

Let's examine an easy consequence: suppose that L is such that the
Euler-Lagrange equations are automatically satisfied. Thus E(L dx) = 0.
By exactness, this means that L dx = dyw for some w € Q" 1.0,

Using the notation 7/ as before, compute

dn(Plx, ul 1) = > DiPdx Aif = (=11 D;P dx



The Variational Bicomplex The Euler-Lagrange Complex

The Euler-Lagrange Complex

Theorem. The cohomology of the Euler-Lagrange complex is equal to the
de Rham cohomology of M. In particular, if M = RP x RY, the
Euler-Lagrange complex is exact.

Let's examine an easy consequence: suppose that L is such that the
Euler-Lagrange equations are automatically satisfied. Thus E(L dx) = 0.
By exactness, this means that L dx = dyw for some w € Q" 1.0,

Using the notation 7/ as before, compute

dn(Plx, ul 1) = > DiPdx Aif = (=11 D;P dx

A general w € QP10 has the form Y. Pj[x, u]r/, so

dy(Ldx) =0 = dyw = Ldx < L= (~1)"'D;P;dx

Jj

Thus L is a null Lagrangian if and only if L =3, D; <(—1)f_1:c’j>
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