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Introduction

Introduction

The variational bicomplex is a double complex of differential forms on the
infinite jet bundle of a fibered manifold (or on the infinite extended jet
bundle of a manifold).

The variational bicomplex plays the same ubiquitous role in . . .
the geometry of the infinite jet bundle of a triple (E ,M, π) that
the de Rham complex plays in the geometry of a single manifold
M. - Ian Anderson

Some mathematicians involved in its development: W. M. Tulczyjew, A.
M. Vinogradov, T. Tsujishita, P. J. Olver, I. M. Anderson.

The first main application of the variational bicomplex is to provide a
natural geometric context for the calculus of variations. However,
applications extend to the general theory of conservation laws for PDE,
characteristic classes, Gelfand-Fuks cohomology and more things I don’t
know anything about.
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The Variational Bicomplex!!!
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Preliminaries Notation

Notation

π : M → X will be a fiber bundle or more generally a fibered manifold.

For purely local considerations, we may assume M = X × U where
X = Rp with coordinates x = (x1, . . . , xp) (independent variables)
U = Rq with coordinates u = (u1, . . . ,uq) (dependent variables)

When there are only a few independent or dependent variables, we’ll use t
or x, y, z and u, v instead of the above.

Multi-index notation will be used for partial derivatives. If J = (j1, . . . , jk),
1 ≤ jν ≤ p, we write |J| = k and

uαJ = uαj1···jk =
∂kuα

∂xj1 · · · ∂xjk

Unless noted otherwise, multi-indices will be symmetric, i.e. J1 = J2 if one
is a reordering of the other. This reflects equality of mixed partials.
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Preliminaries Jet Bundles

Finite Order Jet Bundles

Figure: 1st order contact

Let x ∈ X ,
declare two sections s1 and s2 to have nth

order contact at x if all partial derivatives
up to order n of s1 and s2 agree at x .
This is an equivalence relation on sections.

Denote by jns|x the equivalence class of
s: the n-jet of s at x. The n-jets constitute
a bundle over M, the jet bundle Jn(M).
The jet jns is a section of this bundle.

Adapted local coordinates (x , u) on M induce local coordinates
(x,u, . . . ,uαJ , . . .) = (x,u(n)) on Jn(M), |J| ≤ n.
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Preliminaries Jet Bundles

Example

Coordinates (x , y , u) on the bundle R2 × R→ R2 induce coordinates
(x , y , u(2)) = (x , y , u, ux , uy , uxx , uxy , uyy ) on J2(R2 × R).

Specifying a section s of R2 × R→ R2 is tantamount to specifying a
function f : R2 → R:

s(x , y) = (x , y , f (x , y))

The jet of this section is obtained by differentiating f :

j2s|(x0,y0) =

(
x , y , f ,

∂f

∂x
,
∂f

∂y
,
∂2f

∂x2

∂f

∂y∂x
,
∂2f

∂y 2

) ∣∣∣∣
(x0,y0)
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Variational Calculus The Fundamental Problem

Variational Calculus

Consider X × U → X where X = Rp, U = Rq.

Let R be a connected region in X with smooth boundary.

Let L(x,u(n)) be a function on Jn(X × U), defined on R. Call this
function the Lagrangian.

Fundamental problem of variational calculus
Find the extrema of the functional

L[u] =

∫
R

L(x , u(n))dx

over some class of functions u = f (x).
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Variational Calculus The Fundamental Problem

Example (Minimizing Arclength)

Take X = R (with coordinate t) and U = R2 (with coordinates u, v).

Let R = [a, b].

The Lagrangian L(t, u, v , ut , vt) defines the arclength functional:

L[u, v ] =

∫ b

a

√
(ut)2 + (vt)2dt

We search for extrema of L over functions (u(t), v(t)) with fixed
endpoints.

One expects that a minimum will be a straight line connecting the fixed
endpoints. We’ll return to this example shortly.



Variational Calculus The Fundamental Problem

Example (Minimizing Arclength)

Take X = R (with coordinate t) and U = R2 (with coordinates u, v).

Let R = [a, b].

The Lagrangian L(t, u, v , ut , vt) defines the arclength functional:

L[u, v ] =

∫ b

a

√
(ut)2 + (vt)2dt

We search for extrema of L over functions (u(t), v(t)) with fixed
endpoints.

One expects that a minimum will be a straight line connecting the fixed
endpoints. We’ll return to this example shortly.



Variational Calculus The Fundamental Problem

Example (Minimizing Arclength)

Take X = R (with coordinate t) and U = R2 (with coordinates u, v).

Let R = [a, b].

The Lagrangian L(t, u, v , ut , vt) defines the arclength functional:

L[u, v ] =

∫ b

a

√
(ut)2 + (vt)2dt

We search for extrema of L over functions (u(t), v(t)) with fixed
endpoints.

One expects that a minimum will be a straight line connecting the fixed
endpoints. We’ll return to this example shortly.



Variational Calculus The Fundamental Problem

Total Derivatives

Given F (x , u(n)) one can “pretend” u is a function of x and take a partial
derivative w.r.t. x j . The result is the total derivative Dx j F or DjF :

DjF =
∂F

∂xj
+
∑
α,J

uαJ j
∂F

∂uαJ
where uαJ j =

∂uαJ
∂x j

.

We adapt multi-index notation to D via

DJ = Dj1 · · ·Djk and (−D)J = (−1)|J|DJ

Example. With coordinates u and x , y

Dx(x2 + u2
y ) = 2x + 2uy uyx

NOTE: Dj raises the order of F by 1.
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Variational Calculus Euler-Lagrange Equations

Euler-Lagrange Equations
To find extrema perform a variation of u: let uε be a family of functions
which agree outside a compact K ⊂ R. If u0 = u is an extremal, then
dL[uε]

dε

∣∣∣∣
ε=0

= 0.

Consequently,

0 =
dL[uε]

dε

∣∣∣∣
ε=0

=

∫
R

{∑
α

∑
J

∂L

∂uαJ
DJvα

}
dx , where vα =

duαε
dε

∣∣∣∣
ε=0

Because of agreement outside K , integrate by parts and the boundary
term is zero:

∫
R

∂L
∂uα

J
DJvαdx =

∫
R(−D)J

(
∂L
∂uα

J

)
vαdx .

Thus 0 =

∫
R

{∑
α

∑
J

(−D)J
∂L

∂uαJ
vα
}

dx

Each vα is (essentially) arbitrary, so an extremum u must satisfy the

Euler-Lagrange equations EαL =
∑

J

(−D)J
∂L

∂uαJ
= 0
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Variational Calculus Euler-Lagrange Equations

Example (Minimizing Arclength Revisited)
Recall that we seek extrema of L[u, v ] =

∫ b
a

√
(ut)2 + (vt)2dt.

The Euler-Lagrange equations are

(−D)t
∂L

∂ut
= 0 and (−D)t

∂L

∂vt
= 0.

We look at the first equation (the second follows by symmetry):

(−D)t
∂L

∂ut
= −Dt

[
ut(u2

t + v 2
t )−1/2

]
= −utt

[
(u2

t + v 2
t )−1/2 − u2

t (u2
t + v 2

t )−3/2

]
=

−utt

(u2
t + v 2

t )1/2

[
1− u2

t

u2
t + v 2

t

]
Thus the Euler-Lagrange equations are satisfied iff

(utt = 0 or vt = 0) and (vtt = 0 or ut = 0)
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The Variational Bicomplex Differential Forms and Infinite Order Jet Bundles

Differential Forms on Finite Order Jet Bundles
A basic differential k-form on Jn(M) has a local coordinate expression

F(x,u(n))dxi1 ∧ · · · ∧ dxia ∧ duα1
J1
∧ · · · ∧ duαb

Jb
where a + b = k .

A general k-form is a sum of such terms.

Important are the basic contact one-forms, for |J| ≤ n − 1 given by

θαJ = duαJ −
∑

j

uαJ jdxj

Example. With coordinates x , y and u

θx = dux − uxxdx − uxy dy

Let u = f (x , y) (i.e. pull back by the section s(x) = (x , y , f (x , y))), then

(j2s)∗θx = d

(
∂f

∂x

)
− ∂2f

∂x2
dx − ∂2f

∂x∂y
dy = 0
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The Variational Bicomplex Differential Forms and Infinite Order Jet Bundles

Infinite Order Jet Bundles
Since nth order contact =⇒ kth order contact for k ≤ n, there are
natural projections

πn
k : Jn(M)→ Jk(M).

These projections are truncation in local coordinates.

Thus we have an inverse system

J0(M) J1(M)
π1

0oo J2(M)
π2

1oo · · ·
π3

2oo

We define the infinite jet bundle J∞(M) = lim←− Jn(M).

Local coordinates are ∞-tuples (x,u, . . . ,uαJ , . . .) = (x,u(∞)).

Smooth functions on J∞(M) factor through some finite order Jn(M):

F : J∞ → R =⇒ F = f ◦ π∞n for some smooth f : Jn → R

Write F[x,u] for a function on J∞(M).
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Differential Forms on Infinite Order Jet Bundles

The pullback by the projection πn
k : Jn(M)→ Jk(M) gives a mapping

(πn
k)∗ : Ω∗(Jk(M))→ Ω∗(Jn(M))

Thus we have a direct system

Ω∗(J0(M))
(π1

0)∗
// Ω∗(J1(M))

(π2
1)∗

// Ω∗(J2(M))
(π3

2)∗
// · · ·

We define the algebra of differential forms on J∞(M) to be the limit

Ω∗(J∞(M)) = lim−→Ω∗(Jn(M))

Every form ω ∈ Ω∗(J∞(M)) is the pullback of some ωn ∈ Ω∗(Jn(M)):
ω = (π∞n )∗ωn.

ω may be interpreted as a form on some Jn(M) of arbitrary finite order.
→ From now on we write Jn or J∞ instead of Jn(M) or J∞(M).
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The Variational Bicomplex The Bigrading on Ω∗J∞

The Bigrading on Ω∗(J∞)
We can define basic contact forms in Ω1(J∞) without restriction on |J|:

θαJ = duαJ −
∑

j

uαJ jdxj

An arbitrary form in Ωk(J∞) is a linear combination of the new basic
k-forms

F [x , u]dx i1 ∧ · · · ∧ dx ir ∧ θα1
J1
∧ · · · ∧ θαs

Js
(?)

where r + s = k .

Now, fix r , s. Define the space Ωr,s(J∞) of forms of type (r , s) to be all
linear combinations of expressions of the form (?).

“All forms which are a sum of wedges of r dx j ’s and s θαJ ’s”

Ω∗(J∞) is a direct sum (the bigrading on Ω∗(J∞)):

Ω∗(J∞) =
⊕
r ,s

Ωr ,s(J∞)
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Example (rewriting a form in terms of the bigrading)

Consider R2 × R2 → R2 with coordinates x , y and u1, u2. We choose a
form on J∞(R2 × R2), and write it in terms of the bigrading:

dx ∧ du1
x ∧ du2 = dx ∧ (θ1

x + u1
xxdx + u1

xy dy) ∧ (θ2 + u2
xdx + u2

y dy)

= dx ∧ θ1
x ∧ θ2 + u2

y dx ∧ θ1
x ∧ dy + u1

xy dx ∧ dy ∧ θ2

Thus dx ∧ du1
x ∧ du2 ∈ Ω1,2 ⊕ Ω2,1 since

dx ∧ θ1
x ∧ θ2 ∈ Ω1,2

and
u2
y dx ∧ θ1

x ∧ dy and u1
xy dx ∧ dy ∧ θ2 ∈ Ω2,1
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xdx + u2

y dy)

= dx ∧ θ1
x ∧ θ2 + u2

y dx ∧ θ1
x ∧ dy + u1

xy dx ∧ dy ∧ θ2

Thus dx ∧ du1
x ∧ du2 ∈ Ω1,2 ⊕ Ω2,1 since

dx ∧ θ1
x ∧ θ2 ∈ Ω1,2

and
u2
y dx ∧ θ1

x ∧ dy and u1
xy dx ∧ dy ∧ θ2 ∈ Ω2,1
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Splitting of the Exterior Derivative
Let F [x , u] be a function on J∞. The exterior derivative is defined as
usual:

dF =
∑

j

∂F

∂x j
dx j +

∑
α

∑
J

∂F

∂uαJ
duαJ

We can write dF using contact forms and the total derivative:

dF =
∑

j

∂F

∂x j
dx j +

∑
α

∑
J

∂F

∂uαJ
duαJ

=
∑

j

(
∂F

∂x j
+
∑
α

∑
J

uαJ j

∂F

∂uαJ

)
dx j +

∑
α

∑
J

∂F

∂uαJ
θαJ

=
∑

j

DjF dx j +
∑
α

∑
J

∂F

∂uαJ
θαJ

Define

dHF =
∑

j

DjF dx j and dVF =
∑
α

∑
J

∂F

∂uαJ
θαJ
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Splitting of the Exterior Derivative, Continued
Starting with F ∈ Ω0,0 we found dF = dHF + dV F , where

dHF ∈ Ω1,0 and dV F ∈ Ω0,1.

In general, for ω ∈ Ωr ,s , there is a splitting dω = dHω + dVω, where

dHω ∈ Ωr+1,s and dVω ∈ Ωr ,s+1.

Example. Consider θαJ ∈ Ω0,1. Then dHθ
α
J = −

∑
j θ
α
J j ∧ dx j and

dV θ
α
J = 0. To see this, compute:

dθαJ = d

(
duαJ −

∑
j

uαJ jdx j

)
= −

∑
j

duαJ j ∧ dx j

= −
∑

j

θαJ j ∧ dx j +
∑
i ,j

uαJ j idx i ∧ dx j

= −
∑

j

θαJ j ∧ dx j
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The Variational Bicomplex Building the Bicomplex

Building the Bicomplex
By virtue of d2 = 0 we have d2

H = 0, d2
V = 0 and dHdV = −dVdH.

Thus
for fixed s

Ω0,s
dH // Ω1,s

dH // Ω2,s
dH // · · · dH // Ωn,s

is a complex, and for fixed r

Ωr ,0
dV // Ωr ,1

dV // Ωr ,2
dV // · · ·

is a complex. In summary we have a bicomplex of differential forms:

...
... · · · ...

...

Ω0,1
dH //

dV

OO

Ω1,1
dH //

dV

OO

· · · dH // Ωp−1,1
dH //

dV

OO

Ωp,1

dV

OO

Ω0,0
dH //

dV

OO

Ω1,0
dH //

dV

OO

· · · dH // Ωp−1,0
dH //

dV

OO

Ωp,0

dV

OO
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Building the Bicomplex, Continued
Let’s take a closer look at the bottom right edge of the bicomplex.

· · · dH // Ωp,1

· · · dH // Ωp,0

dV

OO

Each element of Ωp,0 has the form L[x , u]dx1 ∧ · · · ∧ dxp = L dx and so
can be interpreted as the Lagrangian for a variational problem.

Let’s try to interpret dV of our Lagrangian:

dV (L[x , u]dx1 ∧ · · · ∧ dxp) =
∑
α,J

∂L

∂uαJ
θαJ ∧ dx1 ∧ · · · ∧ dxp

Notice the similarity with the variational derivative:

dV (Ldx) =
∑
α,J

∂L

∂uαJ
θαJ ∧ dx ↔ dL[uε]

dε

∣∣∣∣
ε=0

=

∫
R

{∑
α,J

∂L

∂uαJ
DJvα

}
dx
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Integration by Parts
To arrive at the Euler-Lagrange equations, we need to “integrate by parts”
via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of dH: Ωp−1,1 → Ωp,1.

To see this, let ηj = dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxp and compute

dH(P[x , u]θαJ ∧ ηj)

=

(∑
i

DiPdx i

)
∧ θαJ ∧ ηj + P ∧

(
−
∑

i

θαJ i ∧ dx i

)
∧ ηj

= DjP dx j ∧ θαJ ∧ ηj − PθαJ j ∧ dx j ∧ ηj

= (−1)j

[
DjP θαJ ∧ dx + P θαJ j ∧ dx

]
Setting dH(P θαJ ∧ ηj) = 0 allows for

“pulling derivatives off of θαJ and putting them on P (with minuses)”.

We’ll save the second way for another talk.
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The Euler Operator
Using ≡ for equivalence modulo Im dH , we find

dV (Ldx) =
∑
α,J

∂L

∂uαJ
θαJ ∧ dx

≡
∑
α,J

(−D)J
∂L

∂uαJ
θα ∧ dx

=
∑
α

Eα(L) θα ∧ dx

The Euler-Lagrange equations are lurking in our bicomplex (Ωr ,s , dH , dV ).

Define F1 = Ωn,1/ Im dH and π the projection π : Ωn,1 → F1. F1 is called
the space of source forms. We can then say that

π(dV (Ldx)) ≡
∑
α

Eα(L) θα ∧ dx

We write π ◦ dV = E and call E the Euler operator.
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Building the Bicomplex, Continued
We build F1 and the Euler operator E into our bicomplex:

...

· · · dH // Ωp,1 π //

dV

OO

F1

· · · dH // Ωp,0

dV

OO

E

<<zzzzzzzz

In analogy with F1, define F s = Ωp,s/ Im dH , a space which will allow us
to perform “higher order integration by parts”.

Use dV to define δV : F s → F s+1 by mapping equivalence representatives:

δV (ω + Im dH) = dVω + Im dH

Since dV dH = −dHdV , δV is well-defined, and since d2
V = 0, δ2

V = 0.
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Building the Bicomplex, almost done

We can now incorporate F s and δV into our bicomplex:

...
...

...
...

...

Ω0,2
dH //

dV

OO

Ω1,2
dH //

dV

OO

. . . dH // Ωp−1,2
dH //

dV

OO

Ωp,2

dV

OO

// F2

δV

OO

Ω0,1
dH //

dV

OO
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The edge of this bicomplex is of particular interest, and is called the
Euler-Lagrange complex.
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The Variational Bicomplex The Euler-Lagrange Complex

The Euler-Lagrange Complex

Theorem. The cohomology of the Euler-Lagrange complex is equal to the
de Rham cohomology of M. In particular, if M = Rp × Rq, the
Euler-Lagrange complex is exact.

Let’s examine an easy consequence: suppose that L is such that the
Euler-Lagrange equations are automatically satisfied. Thus E (L dx) = 0.
By exactness, this means that L dx = dHω for some ω ∈ Ωn−1,0.

Using the notation ηj as before, compute

dH(P[x , u] ηj) =
∑

i

DiP dx i ∧ ηj = (−1)j−1DjP dx

A general ω ∈ Ωp−1,0 has the form
∑

j Pj [x , u]ηj , so

dV (L dx) = 0 ⇐⇒ dHω = Ldx ⇐⇒ L =
∑

j

(−1)j−1DjPjdx

Thus L is a null Lagrangian if and only if L =
∑

j Dj

(
(−1)j−1Pj

)
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