The Variational Bicomplex

Rob Thompson

University of Minnesota

April 2, 2009

Outline

[Introduction](#page-2-0)

[Preliminaries](#page-12-0) [Notation](#page-12-0)

[Jet Bundles](#page-17-0)

[Variational Calculus](#page-23-0)

[The Fundamental Problem](#page-23-0) [Euler-Lagrange Equations](#page-33-0)

[The Variational Bicomplex](#page-42-0)

[Differential Forms and Infinite Order Jet Bundles](#page-42-0) The Bigrading on $\Omega^* J^\infty$ [Building the Bicomplex](#page-67-0) [The Euler-Lagrange Complex](#page-89-0)

[Concluding Remarks](#page-93-0)

Introduction

The variational bicomplex is a double complex of differential forms on the infinite jet bundle of a fibered manifold (or on the infinite extended jet bundle of a manifold).

Introduction

The variational bicomplex is a double complex of differential forms on the infinite jet bundle of a fibered manifold (or on the infinite extended jet bundle of a manifold).

The variational bicomplex plays the same ubiquitous role in . . . the geometry of the infinite jet bundle of a triple (E, M, π) that the de Rham complex plays in the geometry of a single manifold M. **- Ian Anderson**

Introduction

The variational bicomplex is a double complex of differential forms on the infinite jet bundle of a fibered manifold (or on the infinite extended jet bundle of a manifold).

The variational bicomplex plays the same ubiquitous role in . . . the geometry of the infinite jet bundle of a triple (E, M, π) that the de Rham complex plays in the geometry of a single manifold M. **- Ian Anderson**

Some mathematicians involved in its development: W. M. Tulczyjew, A. M. Vinogradov, T. Tsujishita, P. J. Olver, I. M. Anderson.

Introduction

The variational bicomplex is a double complex of differential forms on the infinite jet bundle of a fibered manifold (or on the infinite extended jet bundle of a manifold).

The variational bicomplex plays the same ubiquitous role in . . . the geometry of the infinite jet bundle of a triple (E, M, π) that the de Rham complex plays in the geometry of a single manifold M. **- Ian Anderson**

Some mathematicians involved in its development: W. M. Tulczyjew, A. M. Vinogradov, T. Tsujishita, P. J. Olver, I. M. Anderson.

The first main application of the variational bicomplex is to provide a natural geometric context for the calculus of variations.

Introduction

The variational bicomplex is a double complex of differential forms on the infinite jet bundle of a fibered manifold (or on the infinite extended jet bundle of a manifold).

The variational bicomplex plays the same ubiquitous role in . . . the geometry of the infinite jet bundle of a triple (E, M, π) that the de Rham complex plays in the geometry of a single manifold M. **- Ian Anderson**

Some mathematicians involved in its development: W. M. Tulczyjew, A. M. Vinogradov, T. Tsujishita, P. J. Olver, I. M. Anderson.

The first main application of the variational bicomplex is to provide a natural geometric context for the calculus of variations. However, applications extend to the general theory of conservation laws for PDE, characteristic classes, Gelfand-Fuks cohomology and more things I don't know anything about.

The Variational Bicomplex!!!

The Variational Bicomplex!!!

Conservation Laws,

0

The Variational Bicomplex!!!

Conservation Laws, Lagrangians,

0

The Variational Bicomplex!!!

0

Conservation Laws, Lagrangians, Euler-Lagrange Eqns,

The Variational Bicomplex!!!

0

Conservation Laws, Lagrangians, Euler-Lagrange Eqns, Helmholtz Conds

 $\pi : M \to X$ will be a fiber bundle or more generally a fibered manifold.

 $\pi : M \to X$ will be a **fiber bundle** or more generally a fibered manifold.

For purely local considerations, we may assume $M = X \times U$ where $X=\mathbb{R}^p$ with coordinates $\mathbf{x}=(\mathbf{x}^1,\ldots,\mathbf{x}^p)$ (independent variables) $U = \mathbb{R}^q$ with coordinates $\mathbf{u} = (\mathbf{u}^1, \dots, \mathbf{u}^q)$ (dependent variables)

 $\pi : M \to X$ will be a **fiber bundle** or more generally a fibered manifold.

For purely local considerations, we may assume $M = X \times U$ where $X=\mathbb{R}^p$ with coordinates $\mathbf{x}=(\mathbf{x}^1,\ldots,\mathbf{x}^p)$ (independent variables) $U = \mathbb{R}^q$ with coordinates $\mathbf{u} = (\mathbf{u}^1, \dots, \mathbf{u}^q)$ (dependent variables)

When there are only a few independent or dependent variables, we'll use t or x, y, z and u, v instead of the above.

 $\pi : M \to X$ will be a **fiber bundle** or more generally a fibered manifold.

For purely local considerations, we may assume $M = X \times U$ where $X=\mathbb{R}^p$ with coordinates $\mathbf{x}=(\mathbf{x}^1,\ldots,\mathbf{x}^p)$ (independent variables) $U = \mathbb{R}^q$ with coordinates $\mathbf{u} = (\mathbf{u}^1, \dots, \mathbf{u}^q)$ (dependent variables)

When there are only a few independent or dependent variables, we'll use t or x, y, z and u, v instead of the above.

Multi-index notation will be used for partial derivatives. If $J = (j_1, \ldots, j_k)$, $1 \leq j_{\nu} \leq p$, we write $|J| = k$ and

$$
\mathbf{u}_{\mathbf{J}}^{\alpha} = \mathbf{u}_{\mathbf{j}_{1}\cdots\mathbf{j}_{k}}^{\alpha} = \frac{\partial^{k} \mathbf{u}^{\alpha}}{\partial \mathbf{x}^{\mathbf{j}_{1}}\cdots\partial \mathbf{x}^{\mathbf{j}_{k}}}
$$

 $\pi : M \to X$ will be a **fiber bundle** or more generally a fibered manifold.

For purely local considerations, we may assume $M = X \times U$ where $X=\mathbb{R}^p$ with coordinates $\mathbf{x}=(\mathbf{x}^1,\ldots,\mathbf{x}^p)$ (independent variables) $U = \mathbb{R}^q$ with coordinates $\mathbf{u} = (\mathbf{u}^1, \dots, \mathbf{u}^q)$ (dependent variables)

When there are only a few independent or dependent variables, we'll use t or x, y, z and u, v instead of the above.

Multi-index notation will be used for partial derivatives. If $J = (j_1, \ldots, j_k)$, $1 \le j_{\nu} \le p$, we write $|J| = k$ and

$$
\textbf{u}^{\alpha}_\textbf{j}=\textbf{u}^{\alpha}_{\textbf{j}_1\cdots \textbf{j}_k}=\frac{\partial^{\textbf{k}}\textbf{u}^{\alpha}}{\partial \textbf{x}^{\textbf{j}_1}\cdots \partial \textbf{x}^{\textbf{j}_k}}
$$

Unless noted otherwise, multi-indices will be symmetric, i.e. $J_1 = J_2$ if one is a reordering of the other. This reflects equality of mixed partials.

Finite Order Jet Bundles

Let $x \in X$,

declare two sections s_1 and s_2 to have $\;$ $\sf n^{th}$ order contact at x if all partial derivatives up to order *n* of s_1 and s_2 agree at x. This is an equivalence relation on sections.

Figure: 1^{st} order contact

Finite Order Jet Bundles

Let $x \in X$.

declare two sections s_1 and s_2 to have $\;$ $\sf n^{th}$ order contact at x if all partial derivatives up to order *n* of s_1 and s_2 agree at x. This is an equivalence relation on sections.

Denote by $\frac{1}{\ln s}$ the equivalence class of s: the **n-jet of s at x**. The *n*-jets constitute a bundle over M, the jet bundle $Jⁿ(M)$. The jet \mathbf{i}_n s is a section of this bundle.

Figure: 1^{st} order contact

Finite Order Jet Bundles

Let $x \in X$.

declare two sections s_1 and s_2 to have $\;$ $\sf n^{th}$ order contact at x if all partial derivatives up to order *n* of s_1 and s_2 agree at x. This is an equivalence relation on sections.

Denote by $\frac{1}{\ln s}$ the equivalence class of s: the **n-jet of s at x**. The *n*-jets constitute a bundle over M, the jet bundle $Jⁿ(M)$. The jet \mathbf{i}_n s is a section of this bundle.

Figure: 1^{st} order contact

Adapted local coordinates (x, u) on M induce **local coordinates** $(\mathsf{x}, \mathsf{u}, \ldots, \mathsf{u}_\mathsf{J}^\alpha, \ldots) = (\mathsf{x}, \mathsf{u}^{(\mathsf{n})}) \text{ on } \mathsf{J}^\mathsf{n}(\mathsf{M}), |\mathsf{J}| \leq n.$

Example

Coordinates (x,y,u) on the bundle $\mathbb{R}^2\times\mathbb{R}\to\mathbb{R}^2$ induce coordinates $(x,y,u^{(2)})=(x,y,u,u_x,u_y,u_{xx},u_{xy},u_{yy})$ on $J^2(\mathbb{R}^2\times\mathbb{R}).$

Example

Coordinates (x,y,u) on the bundle $\mathbb{R}^2\times\mathbb{R}\to\mathbb{R}^2$ induce coordinates $(x,y,u^{(2)})=(x,y,u,u_x,u_y,u_{xx},u_{xy},u_{yy})$ on $J^2(\mathbb{R}^2\times\mathbb{R}).$

Specifying a section s of $\mathbb{R}^2\times\mathbb{R}\to\mathbb{R}^2$ is tantamount to specifying a function $f:\mathbb{R}^2\to\mathbb{R}$:

 $s(x, y) = (x, y, f(x, y))$

Example

Coordinates (x,y,u) on the bundle $\mathbb{R}^2\times\mathbb{R}\to\mathbb{R}^2$ induce coordinates $(x,y,u^{(2)})=(x,y,u,u_x,u_y,u_{xx},u_{xy},u_{yy})$ on $J^2(\mathbb{R}^2\times\mathbb{R}).$

Specifying a section s of $\mathbb{R}^2\times\mathbb{R}\to\mathbb{R}^2$ is tantamount to specifying a function $f:\mathbb{R}^2\to\mathbb{R}$:

$$
s(x,y)=(x,y,f(x,y))
$$

The jet of this section is obtained by differentiating f :

$$
j_2s|_{(x_0,y_0)} = \left(x,y,f,\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial^2 f}{\partial x^2}\frac{\partial f}{\partial y \partial x},\frac{\partial^2 f}{\partial y^2}\right)\bigg|_{(x_0,y_0)}
$$

Variational Calculus

Consider $X \times U \rightarrow X$ where $X = \mathbb{R}^p$, $U = \mathbb{R}^q$.

Let R be a connected region in X with smooth boundary.

Variational Calculus

Consider $X \times U \rightarrow X$ where $X = \mathbb{R}^p$, $U = \mathbb{R}^q$.

Let R be a connected region in X with smooth boundary.

Let $\mathsf{L}(\mathsf{x},\mathsf{u}^{(\mathsf{n})})$ be a function on $J^n(X\times U)$, defined on $R.$ Call this function the **Lagrangian**.

Variational Calculus

Consider $X \times U \rightarrow X$ where $X = \mathbb{R}^p$, $U = \mathbb{R}^q$.

Let R be a connected region in X with smooth boundary.

Let $\mathsf{L}(\mathsf{x},\mathsf{u}^{(\mathsf{n})})$ be a function on $J^n(X\times U)$, defined on $R.$ Call this function the Lagrangian.

Fundamental problem of variational calculus Find the extrema of the functional

$$
\mathcal{L}[u] = \int_R L(x, u^{(n)}) dx
$$

over some class of functions $u = f(x)$.

Example (Minimizing Arclength)

Take $X=\mathbb{R}$ (with coordinate $t)$ and $\mathcal{U}=\mathbb{R}^2$ (with coordinates u,v).

Let $R = [a, b]$.

Example (Minimizing Arclength)

Take $X=\mathbb{R}$ (with coordinate $t)$ and $\mathcal{U}=\mathbb{R}^2$ (with coordinates u,v). Let $R = [a, b]$.

The Lagrangian $L(t, u, v, u_t, v_t)$ defines the arclength functional:

$$
\mathcal{L}[u,v] = \int_a^b \sqrt{(u_t)^2 + (v_t)^2} dt
$$

Example (Minimizing Arclength)

Take $X=\mathbb{R}$ (with coordinate $t)$ and $\mathcal{U}=\mathbb{R}^2$ (with coordinates u,v). Let $R = [a, b]$.

The Lagrangian $L(t, u, v, u_t, v_t)$ defines the arclength functional:

$$
\mathcal{L}[u,v] = \int_a^b \sqrt{(u_t)^2 + (v_t)^2} dt
$$

We search for extrema of $\mathcal L$ over functions $(u(t), v(t))$ with fixed endpoints.

One expects that a minimum will be a straight line connecting the fixed endpoints. We'll return to this example shortly.

Given $F(x, u^{(n)})$ one can "pretend" u is a function of x and take a partial derivative w.r.t. x^j . The result is the \bf{total} derivative $D_{x^j} F$ or $D_j F$:

$$
\mathbf{D}_{\mathbf{j}}\mathbf{F}=\frac{\partial \mathbf{F}}{\partial \mathbf{x}^{\mathbf{j}}}+\sum_{\alpha,\mathbf{J}}u_{\mathbf{J}\mathbf{j}}^{\alpha}\frac{\partial \mathbf{F}}{\partial u_{\mathbf{J}}^{\alpha}}\quad\text{ where }u_{\mathbf{J}\mathbf{j}}^{\alpha}=\frac{\partial u_{\mathbf{J}}^{\alpha}}{\partial x^{\mathbf{j}}}.
$$

Given $F(x, u^{(n)})$ one can "pretend" u is a function of x and take a partial derivative w.r.t. x^j . The result is the \bf{total} derivative $D_{x^j} F$ or $D_j F$:

$$
\mathbf{D}_{\mathbf{j}}\mathbf{F}=\frac{\partial \mathbf{F}}{\partial \mathbf{x}^{\mathbf{j}}}+\sum_{\alpha,\mathbf{J}}u_{\mathbf{J}\mathbf{j}}^{\alpha}\frac{\partial \mathbf{F}}{\partial u_{\mathbf{J}}^{\alpha}}\quad\text{ where }u_{\mathbf{J}\mathbf{j}}^{\alpha}=\frac{\partial u_{\mathbf{J}}^{\alpha}}{\partial x^{\mathbf{j}}}.
$$

We adapt multi-index notation to D via

$$
D_J = D_{j1} \cdots D_{j^k}
$$
 and $(-D)_J = (-1)^{|J|} D_J$

Given $F(x, u^{(n)})$ one can "pretend" u is a function of x and take a partial derivative w.r.t. x^j . The result is the \bf{total} derivative $D_{x^j} F$ or $D_j F$:

$$
\mathbf{D}_{\mathbf{j}}\mathbf{F}=\frac{\partial \mathbf{F}}{\partial \mathbf{x}^{\mathbf{j}}}+\sum_{\alpha,\mathbf{J}}u_{\mathbf{J}\mathbf{j}}^{\alpha}\frac{\partial \mathbf{F}}{\partial u_{\mathbf{J}}^{\alpha}}\quad\text{ where }u_{\mathbf{J}\mathbf{j}}^{\alpha}=\frac{\partial u_{\mathbf{J}}^{\alpha}}{\partial x^{\mathbf{j}}}.
$$

We adapt multi-index notation to D via

$$
D_J = D_{j1} \cdots D_{j^k}
$$
 and $(-D)_J = (-1)^{|J|} D_J$

Example. With coordinates u and x, y

$$
D_{x}(x^{2} + u_{y}^{2}) = 2x + 2u_{y}u_{yx}
$$

Given $F(x, u^{(n)})$ one can "pretend" u is a function of x and take a partial derivative w.r.t. x^j . The result is the \bf{total} derivative $D_{x^j} F$ or $D_j F$:

$$
\mathbf{D_j}\mathbf{F} = \frac{\partial \mathbf{F}}{\partial \mathbf{x}^j} + \sum_{\alpha,\mathbf{J}} \mathbf{u}_{\mathbf{J}j}^{\alpha} \frac{\partial \mathbf{F}}{\partial \mathbf{u}_\mathbf{J}^{\alpha}} \quad \text{ where } \mathbf{u}_{\mathbf{J}j}^{\alpha} = \frac{\partial \mathbf{u}_j^{\alpha}}{\partial \mathbf{x}^j}.
$$

We adapt multi-index notation to D via

$$
D_J = D_{j1} \cdots D_{jk}
$$
 and $(-D)_J = (-1)^{|J|} D_J$

Example. With coordinates u and x, y

$$
D_{x}(x^{2} + u_{y}^{2}) = 2x + 2u_{y}u_{yx}
$$

NOTE: D_i raises the order of F by 1.

Euler-Lagrange Equations

To find extrema perform a **variation of u**: let u_{ϵ} be a family of functions which agree outside a compact $K \subset R$. If $u_0 = u$ is an extremal, then

$$
\left.\frac{d\mathcal{L}[u_{\epsilon}]}{d\epsilon}\right|_{\epsilon=0}=0.
$$

Euler-Lagrange Equations

To find extrema perform a **variation of u**: let u_{ϵ} be a family of functions which agree outside a compact $K \subset R$. If $u_0 = u$ is an extremal, then $d\mathcal{L}[u_{\epsilon}]$ $d\epsilon$ $\Bigg|_{\epsilon=0}$ $= 0.$

Consequently,

$$
0 = \frac{d\mathcal{L}[u_{\epsilon}]}{d\epsilon}\bigg|_{\epsilon=0} = \int_{R} \bigg\{ \sum_{\alpha} \sum_{j} \frac{\partial L}{\partial u_{j}^{\alpha}} D_{j} v^{\alpha} \bigg\} dx, \quad \text{where } v^{\alpha} = \frac{d u_{\epsilon}^{\alpha}}{d\epsilon}\bigg|_{\epsilon=0}
$$

Euler-Lagrange Equations

To find extrema perform a **variation of u**: let u_{ϵ} be a family of functions which agree outside a compact $K \subset R$. If $u_0 = u$ is an extremal, then $d\mathcal{L}[u_{\epsilon}]$ $d\epsilon$ $\Bigg|_{\epsilon=0}$ $= 0.$

Consequently,

$$
0 = \frac{d\mathcal{L}[u_{\epsilon}]}{d\epsilon}\bigg|_{\epsilon=0} = \int_{R} \bigg\{ \sum_{\alpha} \sum_{J} \frac{\partial L}{\partial u_{J}^{\alpha}} D_{J} v^{\alpha} \bigg\} dx, \quad \text{ where } v^{\alpha} = \frac{d u_{\epsilon}^{\alpha}}{d\epsilon}\bigg|_{\epsilon=0}
$$

Because of agreement outside K , integrate by parts and the boundary term is zero: \int_R ∂L $\frac{\partial L}{\partial u_{j}^{\alpha}}D_{J}v^{\alpha}dx=\int_{R}(-D)_{J}(\frac{\partial L}{\partial u_{j}^{\alpha}})$ $\frac{\partial L}{\partial u_J^{\alpha}}$) v $^{\alpha}$ dx.
Euler-Lagrange Equations

To find extrema perform a **variation of u**: let u_{ϵ} be a family of functions which agree outside a compact $K \subset R$. If $u_0 = u$ is an extremal, then $d\mathcal{L}[u_{\epsilon}]$ $d\epsilon$ $\Bigg|_{\epsilon=0}$ $= 0.$

Consequently,

$$
0 = \frac{d\mathcal{L}[u_{\epsilon}]}{d\epsilon}\bigg|_{\epsilon=0} = \int_{R} \bigg\{ \sum_{\alpha} \sum_{J} \frac{\partial L}{\partial u_{J}^{\alpha}} D_{J} v^{\alpha} \bigg\} dx, \quad \text{where } v^{\alpha} = \frac{d u_{\epsilon}^{\alpha}}{d\epsilon}\bigg|_{\epsilon=0}
$$

Because of agreement outside K , integrate by parts and the boundary term is zero: \int_R ∂L $\frac{\partial L}{\partial u_{j}^{\alpha}}D_{J}v^{\alpha}dx=\int_{R}(-D)_{J}(\frac{\partial L}{\partial u_{j}^{\alpha}})$ $\frac{\partial L}{\partial u_J^{\alpha}}$) v $^{\alpha}$ dx.

Thus
$$
0 = \int_R \left\{ \sum_{\alpha} \sum_{J} (-D)_J \frac{\partial L}{\partial u_J^{\alpha}} v^{\alpha} \right\} dx
$$

Euler-Lagrange Equations

To find extrema perform a **variation of u**: let u_{ϵ} be a family of functions which agree outside a compact $K \subset R$. If $u_0 = u$ is an extremal, then $d\mathcal{L}[u_{\epsilon}]$ $d\epsilon$ $\Bigg|_{\epsilon=0}$ $= 0.$

Consequently,

$$
0 = \frac{d\mathcal{L}[u_{\epsilon}]}{d\epsilon}\bigg|_{\epsilon=0} = \int_{R} \bigg\{\sum_{\alpha} \sum_{J} \frac{\partial L}{\partial u_{J}^{\alpha}} D_{J} v^{\alpha}\bigg\} dx, \quad \text{ where } v^{\alpha} = \frac{d u_{\epsilon}^{\alpha}}{d\epsilon}\bigg|_{\epsilon=0}
$$

Because of agreement outside K , integrate by parts and the boundary term is zero: \int_R ∂L $\frac{\partial L}{\partial u_{j}^{\alpha}}D_{J}v^{\alpha}dx=\int_{R}(-D)_{J}(\frac{\partial L}{\partial u_{j}^{\alpha}})$ $\frac{\partial L}{\partial u_J^{\alpha}}$) v $^{\alpha}$ dx.

Thus
$$
0 = \int_R \left\{ \sum_{\alpha} \sum_{J} (-D)_J \frac{\partial L}{\partial u_J^{\alpha}} v^{\alpha} \right\} dx
$$

Each v^{α} is (essentially) arbitrary, so an extremum u must satisfy the

Euler-Lagrange equations
$$
E_{\alpha}L = \sum_{j} (-D)_{j} \frac{\partial L}{\partial u_{j}^{\alpha}} = 0
$$

Example (Minimizing Arclength Revisited) Recall that we seek extrema of $\mathcal{L}[u, v] = \int_a^b \sqrt{(u_t)^2 + (v_t)^2} dt$.

Example (Minimizing Arclength Revisited)

Recall that we seek extrema of $\mathcal{L}[u, v] = \int_a^b \sqrt{(u_t)^2 + (v_t)^2} dt$.

The Euler-Lagrange equations are

$$
(-D)_t \frac{\partial L}{\partial u_t} = 0 \quad \text{and} \quad (-D)_t \frac{\partial L}{\partial v_t} = 0.
$$

Example (Minimizing Arclength Revisited)

Recall that we seek extrema of $\mathcal{L}[u, v] = \int_a^b \sqrt{(u_t)^2 + (v_t)^2} dt$.

The Euler-Lagrange equations are

$$
(-D)_t \frac{\partial L}{\partial u_t} = 0 \quad \text{and} \quad (-D)_t \frac{\partial L}{\partial v_t} = 0.
$$

We look at the first equation (the second follows by symmetry):

$$
(-D)_t \frac{\partial L}{\partial u_t} = -D_t \left[u_t (u_t^2 + v_t^2)^{-1/2} \right]
$$

= $-u_{tt} \left[(u_t^2 + v_t^2)^{-1/2} - u_t^2 (u_t^2 + v_t^2)^{-3/2} \right]$
= $\frac{-u_{tt}}{(u_t^2 + v_t^2)^{1/2}} \left[1 - \frac{u_t^2}{u_t^2 + v_t^2} \right]$

Example (Minimizing Arclength Revisited)

Recall that we seek extrema of $\mathcal{L}[u, v] = \int_a^b \sqrt{(u_t)^2 + (v_t)^2} dt$.

The Euler-Lagrange equations are

$$
(-D)_t \frac{\partial L}{\partial u_t} = 0 \quad \text{and} \quad (-D)_t \frac{\partial L}{\partial v_t} = 0.
$$

We look at the first equation (the second follows by symmetry):

$$
(-D)_t \frac{\partial L}{\partial u_t} = -D_t \left[u_t (u_t^2 + v_t^2)^{-1/2} \right]
$$

= $-u_{tt} \left[(u_t^2 + v_t^2)^{-1/2} - u_t^2 (u_t^2 + v_t^2)^{-3/2} \right]$
= $\frac{-u_{tt}}{(u_t^2 + v_t^2)^{1/2}} \left[1 - \frac{u_t^2}{u_t^2 + v_t^2} \right]$

Thus the Euler-Lagrange equations are satisfied iff

$$
(u_{tt} = 0 \text{ or } v_t = 0) \text{ and } (v_{tt} = 0 \text{ or } u_t = 0)
$$

 $\mathsf{F}(\mathsf{x},\mathsf{u}^{(\mathsf{n})})\mathsf{d}\mathsf{x}^{\mathsf{i}_1}\wedge\cdots\wedge\mathsf{d}\mathsf{x}^{\mathsf{i}_\mathsf{a}}\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{1}}^{\alpha_1}\wedge\cdots\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{b}}^{\alpha_\mathsf{b}}\quad \text{ where } a+b=k.$

A general k-form is a sum of such terms.

 $\mathsf{F}(\mathsf{x},\mathsf{u}^{(\mathsf{n})})\mathsf{d}\mathsf{x}^{\mathsf{i}_1}\wedge\cdots\wedge\mathsf{d}\mathsf{x}^{\mathsf{i}_\mathsf{a}}\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{1}}^{\alpha_1}\wedge\cdots\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{b}}^{\alpha_\mathsf{b}}\quad \text{ where } a+b=k.$

A general k-form is a sum of such terms.

Important are the **basic contact one-forms**, for $|J| \le n - 1$ given by

$$
\theta_{\mathbf{J}}^{\alpha} = \mathbf{du}_{\mathbf{J}}^{\alpha} - \sum_{\mathbf{j}} \mathbf{u}_{\mathbf{J}\mathbf{j}}^{\alpha} \mathbf{dx}^{\mathbf{j}}
$$

 $\mathsf{F}(\mathsf{x},\mathsf{u}^{(\mathsf{n})})\mathsf{d}\mathsf{x}^{\mathsf{i}_1}\wedge\cdots\wedge\mathsf{d}\mathsf{x}^{\mathsf{i}_\mathsf{a}}\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{1}}^{\alpha_1}\wedge\cdots\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{b}}^{\alpha_\mathsf{b}}\quad \text{ where } a+b=k.$

A general k-form is a sum of such terms.

Important are the **basic contact one-forms**, for $|J| \le n - 1$ given by

$$
\theta_{\bf J}^\alpha = \textbf{du}_{\bf J}^\alpha - \sum_{\bf j} u_{\bf J \bf j}^\alpha \textbf{dx}^{\bf j}
$$

Example. With coordinates x, y and u

$$
\theta_x = du_x - u_{xx} dx - u_{xy} dy
$$

 $\mathsf{F}(\mathsf{x},\mathsf{u}^{(\mathsf{n})})\mathsf{d}\mathsf{x}^{\mathsf{i}_1}\wedge\cdots\wedge\mathsf{d}\mathsf{x}^{\mathsf{i}_\mathsf{a}}\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{1}}^{\alpha_1}\wedge\cdots\wedge\mathsf{d}\mathsf{u}_{\mathsf{J}_\mathsf{b}}^{\alpha_\mathsf{b}}\quad \text{ where } a+b=k.$

A general k-form is a sum of such terms.

Important are the **basic contact one-forms**, for $|J| \le n - 1$ given by

$$
\theta_{\mathbf{J}}^{\alpha} = \mathbf{d} \mathbf{u}_{\mathbf{J}}^{\alpha} - \sum_{\mathbf{j}} \mathbf{u}_{\mathbf{J} \mathbf{j}}^{\alpha} \mathbf{d} \mathbf{x}^{\mathbf{j}}
$$

Example. With coordinates x, y and u

$$
\theta_x = du_x - u_{xx} dx - u_{xy} dy
$$

Let $u = f(x, y)$ (i.e. pull back by the section $s(x) = (x, y, f(x, y))$), then

$$
(j_2s)^*\theta_x = d\left(\frac{\partial f}{\partial x}\right) - \frac{\partial^2 f}{\partial x^2}dx - \frac{\partial^2 f}{\partial x \partial y}dy = 0
$$

Since n^{th} order contact $\implies\,k^{th}$ order contact for $k\leq n,$ there are natural projections

$$
\pi_k^n: J^n(M) \to J^k(M).
$$

These projections are truncation in local coordinates.

Since n^{th} order contact $\implies\,k^{th}$ order contact for $k\leq n,$ there are natural projections

$$
\pi_k^n: J^n(M) \to J^k(M).
$$

These projections are truncation in local coordinates.

Thus we have an inverse system

$$
J^0(M) \leftarrow \stackrel{\pi_0^1}{\longrightarrow} J^1(M) \leftarrow \stackrel{\pi_1^2}{\longrightarrow} J^2(M) \leftarrow \stackrel{\pi_2^3}{\longrightarrow} \cdots
$$

We define the **infinite jet bundle J** ∞ (M) = <u>lim</u> **J**ⁿ(M).

Since n^{th} order contact $\implies\,k^{th}$ order contact for $k\leq n,$ there are natural projections

$$
\pi_k^n: J^n(M) \to J^k(M).
$$

These projections are truncation in local coordinates.

Thus we have an inverse system

$$
J^0(M) \leftarrow \stackrel{\pi_0^1}{\longrightarrow} J^1(M) \leftarrow \stackrel{\pi_1^2}{\longrightarrow} J^2(M) \leftarrow \stackrel{\pi_2^3}{\longrightarrow} \cdots
$$

We define the **infinite jet bundle J** ∞ (M) = <u>lim</u> **J**ⁿ(M).

Local coordinates are ∞ -tuples $(\mathsf{x}, \mathsf{u}, \ldots, \mathsf{u}_\mathsf{J}^\alpha, \ldots) = (\mathsf{x}, \mathsf{u}^{(\infty)})$.

Since n^{th} order contact $\implies\,k^{th}$ order contact for $k\leq n,$ there are natural projections

$$
\pi_k^n: J^n(M) \to J^k(M).
$$

These projections are truncation in local coordinates.

Thus we have an inverse system

$$
J^0(M) \leftarrow \stackrel{\pi_0^1}{\longrightarrow} J^1(M) \leftarrow \stackrel{\pi_1^2}{\longrightarrow} J^2(M) \leftarrow \stackrel{\pi_2^3}{\longrightarrow} \cdots
$$

We define the **infinite jet bundle J** ∞ (M) = <u>lim</u> **J**ⁿ(M).

Local coordinates are ∞ -tuples $(\mathsf{x}, \mathsf{u}, \ldots, \mathsf{u}_\mathsf{J}^\alpha, \ldots) = (\mathsf{x}, \mathsf{u}^{(\infty)})$.

Smooth functions on $J^\infty(M)$ factor through some finite order $J^n(M)$:

$$
F: J^{\infty} \to \mathbb{R} \implies F = f \circ \pi_n^{\infty} \text{ for some smooth } f: J^n \to \mathbb{R}
$$

Write $F[x, u]$ for a function on $J^{\infty}(M)$.

The pullback by the projection $\pi^n_k: J^n(M) \to J^k(M)$ gives a mapping

$$
(\pi_k^n)^*:\Omega^*(J^k(M))\to \Omega^*(J^n(M))
$$

The pullback by the projection $\pi^n_k: J^n(M) \to J^k(M)$ gives a mapping

$$
(\pi_k^n)^*:\Omega^*(J^k(M))\to \Omega^*(J^n(M))
$$

Thus we have a direct system

$$
\Omega^*(J^0(M)) \xrightarrow{(\pi_0^1)^*} \Omega^*(J^1(M)) \xrightarrow{(\pi_1^2)^*} \Omega^*(J^2(M)) \xrightarrow{(\pi_2^3)^*} \cdots
$$

The pullback by the projection $\pi^n_k: J^n(M) \to J^k(M)$ gives a mapping

$$
(\pi_k^n)^*:\Omega^*(J^k(M))\to \Omega^*(J^n(M))
$$

Thus we have a direct system

$$
\Omega^*(J^0(M)) \xrightarrow{(\pi_0^1)^*} \Omega^*(J^1(M)) \xrightarrow{(\pi_1^2)^*} \Omega^*(J^2(M)) \xrightarrow{(\pi_2^3)^*} \cdots
$$

We define the algebra of **differential forms on** $J^{\infty}(M)$ to be the limit

 $\Omega^*(J^\infty(M)) = \varinjlim \Omega^*(J^n(M))$

The pullback by the projection $\pi^n_k: J^n(M) \to J^k(M)$ gives a mapping

$$
(\pi_k^n)^*:\Omega^*(J^k(M))\to \Omega^*(J^n(M))
$$

Thus we have a direct system

$$
\Omega^*(J^0(M)) \xrightarrow{(\pi_0^1)^*} \Omega^*(J^1(M)) \xrightarrow{(\pi_1^2)^*} \Omega^*(J^2(M)) \xrightarrow{(\pi_2^3)^*} \cdots
$$

We define the algebra of **differential forms on** $J^{\infty}(M)$ to be the limit

$$
\Omega^*(J^\infty(M))=\varinjlim \Omega^*(J^n(M))
$$

Every form $\omega \in \Omega^*(J^\infty(M))$ is the pullback of some $\omega^n \in \Omega^*(J^n(M))$: $\omega = (\pi_n^{\infty})^* \omega^n$.

 ω may be interpreted as a form on some $J^n(M)$ of arbitrary finite order.

The pullback by the projection $\pi^n_k: J^n(M) \to J^k(M)$ gives a mapping

$$
(\pi_k^n)^*:\Omega^*(J^k(M))\to \Omega^*(J^n(M))
$$

Thus we have a direct system

$$
\Omega^*(J^0(M)) \xrightarrow{(\pi_0^1)^*} \Omega^*(J^1(M)) \xrightarrow{(\pi_1^2)^*} \Omega^*(J^2(M)) \xrightarrow{(\pi_2^3)^*} \cdots
$$

We define the algebra of **differential forms on** $J^{\infty}(M)$ to be the limit

$$
\Omega^*(J^\infty(M))=\varinjlim \Omega^*(J^n(M))
$$

Every form $\omega \in \Omega^*(J^\infty(M))$ is the pullback of some $\omega^n \in \Omega^*(J^n(M))$: $\omega = (\pi_n^{\infty})^* \omega^n$.

 ω may be interpreted as a form on some $J^n(M)$ of arbitrary finite order. \rightarrow From now on we write J^n or J^{∞} instead of $J^n(M)$ or $J^{\infty}(M)$.

We can define $\bm{{\sf basic\; context\; forms\; in\; $\Omega^1(J^\infty)$}}$ without restriction on $|J|$:

$$
\theta_{\mathbf{J}}^{\alpha}=\mathbf{du}_{\mathbf{J}}^{\alpha}-\sum_{\mathbf{j}}\mathbf{u}_{\mathbf{J}\mathbf{j}}^{\alpha}\mathbf{dx}^{\mathbf{j}}
$$

We can define $\bm{{\sf basic\; context\; forms\; in\; $\Omega^1(J^\infty)$}}$ without restriction on $|J|$:

$$
\theta_{\mathbf{J}}^{\alpha}=\mathbf{du}_{\mathbf{J}}^{\alpha}-\sum_{\mathbf{j}}\mathbf{u}_{\mathbf{J}\mathbf{j}}^{\alpha}\mathbf{dx}^{\mathbf{j}}
$$

An arbitrary form in $\Omega^k(J^\infty)$ is a linear combination of the new basic k-forms

$$
F[x, u]dx^{i_1}\wedge\cdots\wedge dx^{i_r}\wedge\theta_{j_1}^{\alpha_1}\wedge\cdots\wedge\theta_{j_s}^{\alpha_s} \qquad (*)
$$

where $r + s = k$.

We can define $\bm{{\sf basic\; context\; forms\; in\; $\Omega^1(J^\infty)$}}$ without restriction on $|J|$:

$$
\theta_{\mathsf{J}}^{\alpha} = \mathsf{du}_{\mathsf{J}}^{\alpha} - \sum_{\mathsf{j}} \mathsf{u}_{\mathsf{J}\mathsf{j}}^{\alpha} \mathsf{d} \mathsf{x}^{\mathsf{j}}
$$

An arbitrary form in $\Omega^k(J^\infty)$ is a linear combination of the new basic k-forms

$$
F[x, u]dx^{i_1}\wedge\cdots\wedge dx^{i_r}\wedge\theta_{j_1}^{\alpha_1}\wedge\cdots\wedge\theta_{j_s}^{\alpha_s} \qquad (*)
$$

where $r + s = k$.

Now, fix r, s. Define the space $\Omega^{r,s}(J^{\infty})$ of forms of type (r,s) to be all linear combinations of expressions of the form (\star) .

"All forms which are a sum of wedges of **r** dx^{j} 's and **s** θ_j^{α} 's"

We can define $\bm{{\sf basic\; context\; forms\; in\; $\Omega^1(J^\infty)$}}$ without restriction on $|J|$:

$$
\theta_{\mathsf{J}}^{\alpha} = \mathsf{du}_{\mathsf{J}}^{\alpha} - \sum_{\mathsf{j}} \mathsf{u}_{\mathsf{J}\, \mathsf{j}}^{\alpha} \mathsf{d} \mathsf{x}^{\mathsf{j}}
$$

An arbitrary form in $\Omega^k(J^\infty)$ is a linear combination of the new basic k-forms

$$
F[x, u]dx^{i_1}\wedge\cdots\wedge dx^{i_r}\wedge\theta_{j_1}^{\alpha_1}\wedge\cdots\wedge\theta_{j_s}^{\alpha_s} \qquad (*)
$$

where $r + s = k$.

Now, fix r, s. Define the space $\Omega^{r,s}(J^{\infty})$ of forms of type (r,s) to be all linear combinations of expressions of the form (\star) .

"All forms which are a sum of wedges of **r** dx^{j} 's and **s** θ_j^{α} 's" $\Omega^*(J^\infty)$ is a direct sum (the **bigrading** on $\Omega^*(J^\infty))$:

$$
\Omega^*(J^\infty)=\bigoplus_{r,s}\Omega^{r,s}(J^\infty)
$$

Example (rewriting a form in terms of the bigrading)

Consider $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ with coordinates x, y and u^1, u^2 . We choose a form on $J^{\infty}(\mathbb{R}^{2}\times\mathbb{R}^{2}),$ and write it in terms of the bigrading:

$$
dx \wedge du_x^1 \wedge du^2 = dx \wedge (\theta_x^1 + u_{xx}^1 dx + u_{xy}^1 dy) \wedge (\theta^2 + u_x^2 dx + u_y^2 dy)
$$

= $dx \wedge \theta_x^1 \wedge \theta^2 + u_y^2 dx \wedge \theta_x^1 \wedge dy + u_{xy}^1 dx \wedge dy \wedge \theta^2$

Example (rewriting a form in terms of the bigrading)

Consider $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ with coordinates x, y and u^1, u^2 . We choose a form on $J^{\infty}(\mathbb{R}^{2}\times\mathbb{R}^{2}),$ and write it in terms of the bigrading:

$$
dx \wedge du_x^1 \wedge du^2 = dx \wedge (\theta_x^1 + u_{xx}^1 dx + u_{xy}^1 dy) \wedge (\theta^2 + u_x^2 dx + u_y^2 dy)
$$

= $dx \wedge \theta_x^1 \wedge \theta^2 + u_y^2 dx \wedge \theta_x^1 \wedge dy + u_{xy}^1 dx \wedge dy \wedge \theta^2$

Thus $dx \wedge du_x^1 \wedge du^2 \in \Omega^{1,2} \oplus \Omega^{2,1}$ since

$$
dx \wedge \theta^1_x \wedge \theta^2 \in \Omega^{1,2}
$$

and

$$
u_y^2 dx \wedge \theta_x^1 \wedge dy \text{ and } u_{xy}^1 dx \wedge dy \wedge \theta^2 \in \Omega^{2,1}
$$

Splitting of the Exterior Derivative

Let $F[x, u]$ be a function on J^{∞} . The **exterior derivative** is defined as usual:

$$
dF = \sum_{j} \frac{\partial F}{\partial x^{j}} dx^{j} + \sum_{\alpha} \sum_{j} \frac{\partial F}{\partial u_{j}^{\alpha}} du_{j}^{\alpha}
$$

Splitting of the Exterior Derivative

Let $F[x, u]$ be a function on J^{∞} . The **exterior derivative** is defined as usual:

$$
dF = \sum_{j} \frac{\partial F}{\partial x^{j}} dx^{j} + \sum_{\alpha} \sum_{J} \frac{\partial F}{\partial u_{J}^{\alpha}} du_{J}^{\alpha}
$$

We can write dF using contact forms and the total derivative:

$$
dF = \sum_{j} \frac{\partial F}{\partial x^{j}} dx^{j} + \sum_{\alpha} \sum_{j} \frac{\partial F}{\partial u_{j}^{\alpha}} du_{j}^{\alpha}
$$

=
$$
\sum_{j} \left(\frac{\partial F}{\partial x^{j}} + \sum_{\alpha} \sum_{j} u_{j}^{\alpha} \frac{\partial F}{\partial u_{j}^{\alpha}} \right) dx^{j} + \sum_{\alpha} \sum_{j} \frac{\partial F}{\partial u_{j}^{\alpha}} \theta_{j}^{\alpha}
$$

=
$$
\sum_{j} D_{j} F dx^{j} + \sum_{\alpha} \sum_{j} \frac{\partial F}{\partial u_{j}^{\alpha}} \theta_{j}^{\alpha}
$$

Splitting of the Exterior Derivative

Let $F[x, u]$ be a function on J^{∞} . The **exterior derivative** is defined as usual:

$$
dF = \sum_{j} \frac{\partial F}{\partial x^{j}} dx^{j} + \sum_{\alpha} \sum_{J} \frac{\partial F}{\partial u_{J}^{\alpha}} du_{J}^{\alpha}
$$

We can write dF using contact forms and the total derivative:

$$
dF = \sum_{j} \frac{\partial F}{\partial x^{j}} dx^{j} + \sum_{\alpha} \sum_{J} \frac{\partial F}{\partial u_{J}^{\alpha}} du_{J}^{\alpha}
$$

=
$$
\sum_{j} \left(\frac{\partial F}{\partial x^{j}} + \sum_{\alpha} \sum_{J} u_{J}^{\alpha} \frac{\partial F}{\partial u_{J}^{\alpha}} \right) dx^{j} + \sum_{\alpha} \sum_{J} \frac{\partial F}{\partial u_{J}^{\alpha}} \theta_{J}^{\alpha}
$$

=
$$
\sum_{j} D_{j} F dx^{j} + \sum_{\alpha} \sum_{J} \frac{\partial F}{\partial u_{J}^{\alpha}} \theta_{J}^{\alpha}
$$

Define

$$
\mathbf{d}_{\mathsf{H}}\mathbf{F} = \sum_{j} D_{j}F \, dx^{j} \quad \text{and} \quad \mathbf{d}_{\mathsf{V}}\mathbf{F} = \sum_{\alpha} \sum_{j} \frac{\partial F}{\partial u_{j}^{\alpha}} \theta_{j}^{\alpha}
$$

 \sim $-$

Splitting of the Exterior Derivative, Continued Starting with $F\in \Omega^{0,0}$ we found $dF=d_{H}F+d_{V}F$, where

 $d_H F \in \Omega^{1,0}$ and $d_V F \in \Omega^{0,1}$.

Splitting of the Exterior Derivative, Continued Starting with $F\in \Omega^{0,0}$ we found $dF=d_{H}F+d_{V}F$, where $d_H F \in \Omega^{1,0}$ and $d_V F \in \Omega^{0,1}$.

In general, for $\omega \in \Omega^{r,s}$, there is a splitting $\mathbf{d}\omega = \mathbf{d_H}\omega + \mathbf{d_V}\omega$, where

$$
d_H\omega\in\Omega^{r+1,s}\quad\text{ and }\quad d_V\omega\in\Omega^{r,s+1}.
$$

Splitting of the Exterior Derivative, Continued Starting with $F\in \Omega^{0,0}$ we found $dF=d_{H}F+d_{V}F$, where $d_H F \in \Omega^{1,0}$ and $d_V F \in \Omega^{0,1}$.

In general, for $\omega \in \Omega^{r,s}$, there is a splitting $\mathbf{d}\omega = \mathbf{d_H}\omega + \mathbf{d_V}\omega$, where

$$
d_H \omega \in \Omega^{r+1,s}
$$
 and $d_V \omega \in \Omega^{r,s+1}$.

Example. Consider $\theta_J^\alpha\in\Omega^{0,1}$. Then $d_H\theta_J^\alpha=-\sum_j\theta_{Jj}^\alpha\wedge d\mathsf{x}^j$ and $d_V\theta_J^\alpha=0$. To see this, compute:

$$
d\theta_j^{\alpha} = d\left(du_j^{\alpha} - \sum_j u_{jj}^{\alpha} dx^j\right)
$$

=
$$
-\sum_j du_{j}^{\alpha} \wedge dx^j
$$

=
$$
-\sum_j \theta_{j}^{\alpha} \wedge dx^j + \sum_{i,j} u_{j,j}^{\alpha} dx^i \wedge dx^j
$$

=
$$
-\sum_j \theta_{j}^{\alpha} \wedge dx^j
$$

Building the Bicomplex By virtue of $d^2 = 0$ we have $d_H^2 = 0$, $d_V^2 = 0$ and $d_H d_V = -d_V d_H$.

Building the Bicomplex

By virtue of $d^2 = 0$ we have $d_H^2 = 0$, $d_V^2 = 0$ and $d_H d_V = -d_V d_H$. Thus for fixed s

$$
\Omega^{0,s} \xrightarrow{d_H} \Omega^{1,s} \xrightarrow{d_H} \Omega^{2,s} \xrightarrow{d_H} \cdots \xrightarrow{d_H} \Omega^{n,s}
$$

is a complex, and for fixed r

$$
\Omega^{r,0} \xrightarrow{d_V} \Omega^{r,1} \xrightarrow{d_V} \Omega^{r,2} \xrightarrow{d_V} \cdots
$$

is a complex.

Building the Bicomplex

By virtue of $d^2 = 0$ we have $d_H^2 = 0$, $d_V^2 = 0$ and $d_H d_V = -d_V d_H$. Thus for fixed s

$$
\Omega^{0,s} \xrightarrow{d_H} \Omega^{1,s} \xrightarrow{d_H} \Omega^{2,s} \xrightarrow{d_H} \cdots \xrightarrow{d_H} \Omega^{n,s}
$$

is a complex, and for fixed r

$$
\Omega^{r,0} \xrightarrow{d_V} \Omega^{r,1} \xrightarrow{d_V} \Omega^{r,2} \xrightarrow{d_V} \cdots
$$

is a complex. In summary we have a **bicomplex** of differential forms:

Building the Bicomplex, Continued

Let's take a closer look at the bottom right edge of the bicomplex.

Building the Bicomplex, Continued

Let's take a closer look at the bottom right edge of the bicomplex.

Each element of $\Omega^{p,0}$ has the form $L[x, u]dx^1 \wedge \cdots \wedge dx^p = L dx$ and so can be interpreted as the Lagrangian for a variational problem.
Let's take a closer look at the bottom right edge of the bicomplex.

Each element of $\Omega^{p,0}$ has the form $L[x, u]dx^1 \wedge \cdots \wedge dx^p = L dx$ and so can be interpreted as the Lagrangian for a variational problem.

Let's try to interpret d_V of our Lagrangian:

$$
d_V(L[x, u]dx^1 \wedge \cdots \wedge dx^p) = \sum_{\alpha, J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx^1 \wedge \cdots \wedge dx^p
$$

Let's take a closer look at the bottom right edge of the bicomplex.

Each element of $\Omega^{p,0}$ has the form $L[x, u]dx^1 \wedge \cdots \wedge dx^p = L dx$ and so can be interpreted as the Lagrangian for a variational problem.

Let's try to interpret d_V of our Lagrangian:

$$
d_V(L[x, u]dx^1 \wedge \cdots \wedge dx^p) = \sum_{\alpha, J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx^1 \wedge \cdots \wedge dx^p
$$

Notice the similarity with the variational derivative:

$$
d_V(Ldx) = \sum_{\alpha,J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx \quad \leftrightarrow \quad \frac{dL[u_{\epsilon}]}{d\epsilon}\bigg|_{\epsilon=0} = \int_R \bigg\{ \sum_{\alpha,J} \frac{\partial L}{\partial u_J^{\alpha}} D_J v^{\alpha} \bigg\} dx
$$

To arrive at the Euler-Lagrange equations, we need to "integrate by parts" via some operation on forms. This can be accomplished in two ways.

To arrive at the Euler-Lagrange equations, we need to "integrate by parts" via some operation on forms. This can be accomplished in two ways.

```
First way: quotient by the image of d<sub>H</sub>: \Omega^{p-1,1}\to\Omega^{p,1}.
```
To arrive at the Euler-Lagrange equations, we need to "integrate by parts" via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of d_H: $\Omega^{p-1,1}\to\Omega^{p,1}.$

To see this, let $\eta^j = dx^1 \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^p$ and compute $d_H(P[x,u]\theta_J^{\alpha}\wedge \eta^j)$ $=\left(\sum\right)$ i D_iP d $x^i\bigg)\wedge\theta^{\alpha}_J\wedge\eta^j+P\wedge\bigg(\,-\sum\,$ i $\theta_{J \, i}^{\alpha} \wedge \mathsf{d} \mathsf{x}^{i} \bigg) \wedge \eta^{j}$ $I=D_{j}P\,d{\sf x}^{j}\wedge\theta^{\alpha}_{J}\wedge\eta^{j}-P\theta^{\alpha}_{Jj}\wedge d{\sf x}^{j}\wedge\eta^{j}$ $= (-1)^{j} \left[D_{j} P \theta_{J}^{\alpha} \wedge dx + P \theta_{Jj}^{\alpha} \wedge dx \right]$

To arrive at the Euler-Lagrange equations, we need to "integrate by parts" via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of d_H: $\Omega^{p-1,1}\to\Omega^{p,1}.$

To see this, let $\eta^j = dx^1 \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^p$ and compute $d_H(P[x,u]\theta_J^{\alpha}\wedge \eta^j)$ $\mathcal{L} = \Big(\sum D_i P d x^i \Big) \wedge \theta_J^\alpha \wedge \eta^j + P \wedge \Big(-\sum \theta_{J\, i}^\alpha \wedge d x^i \Big) \wedge \eta^j$ i i $I=D_{j}P\,d{\sf x}^{j}\wedge\theta^{\alpha}_{J}\wedge\eta^{j}-P\theta^{\alpha}_{Jj}\wedge d{\sf x}^{j}\wedge\eta^{j}$ $= (-1)^{j} \left[D_{j} P \theta_{J}^{\alpha} \wedge dx + P \theta_{Jj}^{\alpha} \wedge dx \right]$

Setting $d_H(P \, \theta_J^\alpha \wedge \eta^j) = 0$ allows for

"pulling derivatives off of θ_J^{α} and putting them on P (with minuses)".

To arrive at the Euler-Lagrange equations, we need to "integrate by parts" via some operation on forms. This can be accomplished in two ways.

First way: quotient by the image of d_H: $\Omega^{p-1,1}\to\Omega^{p,1}.$

To see this, let $\eta^j = dx^1 \wedge \cdots \wedge dx^j \wedge \cdots \wedge dx^p$ and compute $d_H(P[x,u]\theta_J^{\alpha}\wedge \eta^j)$ $=\left(\sum\right)$ i D_iP d $x^i\bigg)\wedge\theta^{\alpha}_J\wedge\eta^j+P\wedge\bigg(\,-\sum\,$ i $\theta_{J \, i}^{\alpha} \wedge \mathsf{d} \mathsf{x}^{i} \bigg) \wedge \eta^{j}$ $I=D_{j}P\,d{\sf x}^{j}\wedge\theta^{\alpha}_{J}\wedge\eta^{j}-P\theta^{\alpha}_{Jj}\wedge d{\sf x}^{j}\wedge\eta^{j}$ $= (-1)^{j} \left[D_{j} P \theta_{J}^{\alpha} \wedge dx + P \theta_{Jj}^{\alpha} \wedge dx \right]$

Setting $d_H(P \, \theta_J^\alpha \wedge \eta^j) = 0$ allows for

"pulling derivatives off of θ_J^{α} and putting them on P (with minuses)". We'll save the **second way** for another talk.

Using \equiv for equivalence modulo Im d_H , we find

$$
d_V(Ldx) = \sum_{\alpha, J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx
$$

$$
\equiv \sum_{\alpha, J} (-D)_J \frac{\partial L}{\partial u_J^{\alpha}} \theta^{\alpha} \wedge dx
$$

$$
= \sum_{\alpha} E_{\alpha}(L) \theta^{\alpha} \wedge dx
$$

Using \equiv for equivalence modulo Im d_H , we find

$$
d_V(Ldx) = \sum_{\alpha, J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx
$$

$$
\equiv \sum_{\alpha, J} (-D)_J \frac{\partial L}{\partial u_J^{\alpha}} \theta^{\alpha} \wedge dx
$$

$$
= \sum_{\alpha} E_{\alpha}(L) \theta^{\alpha} \wedge dx
$$

The Euler-Lagrange equations are *lurking* in our bicomplex $(\Omega^{r,s}, d_H, d_V)$.

Using \equiv for equivalence modulo Im d_H , we find

$$
d_V(Ldx) = \sum_{\alpha, J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx
$$

$$
\equiv \sum_{\alpha, J} (-D)_J \frac{\partial L}{\partial u_J^{\alpha}} \theta^{\alpha} \wedge dx
$$

$$
= \sum_{\alpha} E_{\alpha}(L) \theta^{\alpha} \wedge dx
$$

The Euler-Lagrange equations are *lurking* in our bicomplex $(\Omega^{r,s}, d_H, d_V)$.

Define $\mathcal{F}^1=\Omega^{n,1}/$ Im d_H and π the projection $\pi:\Omega^{n,1}\to\mathcal{F}^1$. \mathcal{F}^1 is called the space of source forms.

Using \equiv for equivalence modulo Im d_H , we find

$$
d_V(Ldx) = \sum_{\alpha, J} \frac{\partial L}{\partial u_J^{\alpha}} \theta_J^{\alpha} \wedge dx
$$

$$
\equiv \sum_{\alpha, J} (-D)_J \frac{\partial L}{\partial u_J^{\alpha}} \theta^{\alpha} \wedge dx
$$

$$
= \sum_{\alpha} E_{\alpha}(L) \theta^{\alpha} \wedge dx
$$

The Euler-Lagrange equations are *lurking* in our bicomplex $(\Omega^{r,s}, d_H, d_V)$.

Define $\mathcal{F}^1=\Omega^{n,1}/$ Im d_H and π the projection $\pi:\Omega^{n,1}\to\mathcal{F}^1$. \mathcal{F}^1 is called the space of source forms. We can then say that

$$
\pi(d_V(Ldx))\equiv \sum_\alpha E_\alpha(L)\,\theta^\alpha\wedge dx
$$

We write $\pi \circ d_V = E$ and call E the **Euler operator**.

We build \mathcal{F}^1 and the Euler operator E into our bicomplex:

We build \mathcal{F}^1 and the Euler operator E into our bicomplex:

In analogy with \mathcal{F}^1 , define $\mathcal{F}^{\mathsf{s}} = \Omega^{\mathsf{p},\mathsf{s}}/\mathsf{I}$ m $d_{\mathsf{H}},$ a space which will allow us to perform "higher order integration by parts".

We build \mathcal{F}^1 and the Euler operator E into our bicomplex:

In analogy with \mathcal{F}^1 , define $\mathcal{F}^{\mathsf{s}} = \Omega^{\mathsf{p},\mathsf{s}}/\mathsf{I}$ m $d_{\mathsf{H}},$ a space which will allow us to perform "higher order integration by parts".

Use d_V to define $\delta_V:{\cal F}^s\to{\cal F}^{s+1}$ by mapping equivalence representatives:

$$
\delta_V(\omega + \text{Im } d_H) = d_V \omega + \text{Im } d_H
$$

We build \mathcal{F}^1 and the Euler operator E into our bicomplex:

In analogy with \mathcal{F}^1 , define $\mathcal{F}^{\mathsf{s}} = \Omega^{\mathsf{p},\mathsf{s}}/\mathsf{I}$ m $d_{\mathsf{H}},$ a space which will allow us to perform "higher order integration by parts".

Use d_V to define $\delta_V:{\cal F}^s\to{\cal F}^{s+1}$ by mapping equivalence representatives:

$$
\delta_V(\omega + \text{Im } d_H) = d_V \omega + \text{Im } d_H
$$

Since $d_V d_H = -d_H d_V$, δ_V is well-defined, and since $d_V^2 = 0$, $\delta_V^2 = 0$.

Building the Bicomplex, almost done

We can now incorporate \mathcal{F}^{s} and $\delta_{\mathcal{V}}$ into our bicomplex:

Apart from some minor ornamentation, this is the variational bicomplex.

Building the Bicomplex, almost done

We can now incorporate \mathcal{F}^{s} and $\delta_{\mathcal{V}}$ into our bicomplex:

Apart from some minor ornamentation, this is the variational bicomplex.

The edge of this bicomplex is of particular interest, and is called the Euler-Lagrange complex.

Theorem. The cohomology of the Euler-Lagrange complex is equal to the de Rham cohomology of M . In particular, if $M = \mathbb{R}^p \times \mathbb{R}^q$, the Euler-Lagrange complex is exact.

Theorem. The cohomology of the Euler-Lagrange complex is equal to the de Rham cohomology of M . In particular, if $M = \mathbb{R}^p \times \mathbb{R}^q$, the Euler-Lagrange complex is exact.

Let's examine an easy consequence: suppose that L is such that the Euler-Lagrange equations are automatically satisfied. Thus $E(L dx) = 0$. By exactness, this means that $L\,dx=d_H\omega$ for some $\omega\in\Omega^{n-1,0}.$

Theorem. The cohomology of the Euler-Lagrange complex is equal to the de Rham cohomology of M . In particular, if $M = \mathbb{R}^p \times \mathbb{R}^q$, the Euler-Lagrange complex is exact.

Let's examine an easy consequence: suppose that L is such that the Euler-Lagrange equations are automatically satisfied. Thus $E(L dx) = 0$. By exactness, this means that $L\,dx=d_H\omega$ for some $\omega\in\Omega^{n-1,0}.$

Using the notation η^j as before, compute

$$
d_H(P[x, u]\,\eta^j) = \sum_i D_i P \, dx^i \wedge \eta^j = (-1)^{j-1} D_j P \, dx
$$

Theorem. The cohomology of the Euler-Lagrange complex is equal to the de Rham cohomology of M . In particular, if $M = \mathbb{R}^p \times \mathbb{R}^q$, the Euler-Lagrange complex is exact.

Let's examine an easy consequence: suppose that L is such that the Euler-Lagrange equations are automatically satisfied. Thus $E(L dx) = 0$. By exactness, this means that $L\,dx=d_H\omega$ for some $\omega\in\Omega^{n-1,0}.$

Using the notation η^j as before, compute

$$
d_H(P[x, u]\,\eta^j) = \sum_i D_i P \,dx^i \wedge \eta^j = (-1)^{j-1} D_j P \,dx
$$

A general $\omega \in \Omega^{p-1,0}$ has the form $\sum_j P_j[\mathsf{x},\mathsf{u}]\eta^j$, so

$$
d_V(L dx) = 0 \iff d_H \omega = L dx \iff L = \sum_j (-1)^{j-1} D_j P_j dx
$$

Thus L is a null Lagrangian $\,$ if and only if $L=\sum_j D_j\Bigl((-1)^{j-1}P_j\Bigr)\,$

Concluding Remarks

Concluding Remarks