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A Vague Introduction

Suppose that we have a group of transformations G acting on a space M.
What kinds of objects on M do not change when transformed by G ?

Example.

M = R2 G = rotations around the origin

A function on M depending only on radial distance, G (x , y) = F (x2 + y 2),
will be invariant. Evaluating the function at (x , y) before rotating gives
the same result as evaluating after rotating: G (g · (x , y)) = G (x , y).

Are there other such functions? What other kinds of invariant objects can
we consider? How do we find them? What good are invariants anyway?

Moving frames are a clever invention for studying invariants and their
applications. The goal of this talk is to describe moving frames and their
use in answering the above questions.
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Preliminaries Groups and Actions

Examples of Lie Groups
We will be concerned only with Lie groups. These are groups which are
also endowed with a compatible manifold structure.

Examples.

(Rn,+)

GL(n,R) = invertible n × n matrices over R

SL(n,R) = n × n matrices over R with determinant 1

SO(n,R) = n × n orthogonal matrices over R

More Examples.

Take products, semi-direct products, etc.

SE (n) = SO(n) n Rn, the special euclidean group

Semi-direct product structure: (A, v) · (B,w) = (AB,Bv + w)

The above groups embed in GL(n,R): (A, v) 7→
(

A v
0 1

)
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Preliminaries Groups and Actions

Group Actions

What Lie groups do best is act on spaces. Our space M will be a
manifold, usually just an open subset of Rn.

Example.

SO(2) acts on R2 by rotation through an angle of ϕ:

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x
u

)
=

(
x cosϕ− u sinϕ
x sinϕ+ u cosϕ

)
Or more opaquely:

(x̃ , ũ) = (x cosϕ− u sinϕ, x sinϕ+ u cosϕ)

This is the action described in the introduction.

Our space will carry a product structure M = X × U with variables (x , u).
The x we treat as independent variable(s) and the u as dependent.
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Preliminaries Groups and Actions

Group Actions continued
Example. SE (2) acts on R2 by following the rotation with a translation:(

cosϕ − sinϕ
sinϕ cosϕ

)(
x
u

)
+

(
a
b

)
=

(
x cosϕ− u sinϕ+ a
x sinϕ+ u cosϕ+ b

)
The semi-direct product structure is more transparent here:

(A, v)(B,w) ·
(

x
u

)
= (A, v) ·

(
B

(
x
u

)
+ w

)
= AB

(
x
u

)
+ Aw + v

= (AB,Aw + v) ·
(

x
u

)

Notice that this group action is definitely not free. For example,(
1/2 −1/2
1/2 1/2

)(
1
1

)
+

(
1
0

)
=

(
1
1

)
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Preliminaries Groups and Actions

Group Actions continued more

Remember that a group action is free if the only group element that fixes
anything is the identity:

g · x = x =⇒ g = e

A group action is free iff its orbits have the same dimension as the group.

Figure: SO(2) orbits

The action of SO(2) on R2

from the introduction is free if we delete the
origin from R2. SO(2) is a 1-parameter group, and
the orbits (excepting the origin), have dimension 1.

The action SE (2) on R2

cannot be made free so simply. We will return to
the topic of freeing up group actions momentarily.

Is the action of SO(3) on R3 free?
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Preliminaries Groups and Actions

Group Actions continued more and more!
A possible problem with group actions we’d like to ignore is when orbits
get too close to one another.

Example.

Consider the action of R on the torus S1 × S1 given by

λ · (e iφ, e iθ) 7→ (e i(φ+aλ), e i(θ+bλ))

Figure: Getting dense?

The orbit of a point is a line looping
around the torus, and if a/b is not a rational
multiple of 2π, then this orbit will be dense.

A group action is regular
if each orbit has the same dimension
and every point has arbitrarily small neighborhoods
which intersect each orbit in a connected set.

A regular group action can’t have dense orbits.
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Moving Frames: first pass Motivation

Invariantizing a function: motivation.
Suppose G acts on M. A function I : M → R is called an invariant if

I (g · z) = I (z) for all g ∈ G and z ∈ M.

Geometrically, this means that I is constant on orbits.

Create invariant functions simply by choosing their value on each orbit!
Too good to be true!

Starting with any function F , choose
a cross-section K to the orbits and
define a new, invariant function ιF by

ιF (z) = F (w)

where w is the point on K intersecting
the orbit of z .

Such a cross-section exists whenever the action is free and regular.
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Moving Frames: first pass Construction

Constructing a Moving Frame Geometrically
Before we define moving frame, we’ll build one. Actually, we are almost
done building one already.

On the previous slide, we mapped z to the point
w on K intersecting the orbit of z . Since w and z
are on the same orbit, there is some group element
g with g · z = w . Thus we can define a map

ρ : M → G where ρ(z) = g .

This is a moving frame ! (with cross-section K for the action of G on M).

Notice the following extremely important property of the map ρ: if h ∈ G ,
then

ρ(h · z) = ρ(z)h−1.

This is called (right) equivariance.

Definition.

A (right) moving frame is a (right) equivariant map ρ : M → G .



Moving Frames: first pass Construction

Constructing a Moving Frame Geometrically
Before we define moving frame, we’ll build one. Actually, we are almost
done building one already.

On the previous slide, we mapped z to the point
w on K intersecting the orbit of z . Since w and z
are on the same orbit, there is some group element
g with g · z = w . Thus we can define a map

ρ : M → G where ρ(z) = g .

This is a moving frame ! (with cross-section K for the action of G on M).

Notice the following extremely important property of the map ρ: if h ∈ G ,
then

ρ(h · z) = ρ(z)h−1.

This is called (right) equivariance.

Definition.

A (right) moving frame is a (right) equivariant map ρ : M → G .



Moving Frames: first pass Construction

Constructing a Moving Frame for SO(2).
• Recall that the formula for the action of SO(2) on R2 is

(x̃ , ũ) = (x cosϕ− u sinϕ, x sinϕ+ u cosϕ).

• Choose a nice cross section, like K = {x = 0}.
• Given a point (x , u), we look for the ϕ such that (x̃ , ỹ) ∈ K, so we solve

x̃ = x cosϕ− u sinϕ = 0

for the group parameter ϕ. This gives the moving frame in parameter form

ρ(x , u) = ϕ = arctan(x/u).

• Since sinϕ = x/
√

x2 + u2 and cosϕ = u/
√

x2 + u2 we can also write
the moving frame in matrix form:

ρ(x , u) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
=

1√
x2 + u2

(
u −x
x u

)
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x̃ = x cosϕ− u sinϕ = 0

for the group parameter ϕ. This gives the moving frame in parameter form

ρ(x , u) = ϕ = arctan(x/u).

• Since sinϕ = x/
√

x2 + u2 and cosϕ = u/
√

x2 + u2 we can also write
the moving frame in matrix form:

ρ(x , u) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
=

1√
x2 + u2

(
u −x
x u

)



Moving Frames: first pass Construction

Constructing a Moving Frame for SO(2).
• Recall that the formula for the action of SO(2) on R2 is
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Moving Frames: first pass Construction

Constructing a Moving Frame for SO(2) continued.
Check right equivariance:

ρ(x cos θ − u sin θ, x sin θ + u cos θ) = arctan

(
x cos θ − u sin θ

x sin θ + u cos θ

)
= arctan

( x
u − tan θ

x
u tan θ + 1

)
= arctan(x/u)− θ

Similarly, for the matrix version of the moving frame

ρ(x̃ , ũ) =
1√

x2 + u2

(
x sin θ + u cos θ −(x cos θ − u sin θ)
x cos θ − u sin θ x sin θ + u cos θ

)
=

1√
x2 + u2

(
u −x
x u

)(
cos θ sin θ
− sin θ cos θ

)
Everything we’ve done for SO(2) works in general, so long as we are able
to choose a suitable cross-section to the orbits of the group action.
Theorem.
A moving frame exists iff the action of G on M is free and regular.
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Moving Frames: first pass Finding Invariants

Let’s Invariantize!
Remember the original motivation for constructing a moving frame: if we
map to the cross-section, then evaluate our function, the result is invariant.

Theorem. Let ρ be a moving frame and let F be a function on M. Then

ι(F )(z) = F (ρ(z) · z) is an invariant.

Proof.

ι(F )(g · z) = F (ρ(g · z)g · z)

= F (ρ(z)g−1g · z) (by equivariance)

= F (ρ(z) · z) = ι(F )(z).

Example. Take F (x , u) = u. Then

F (ρ(x , u) · (x , u)) = F (0,
√

x2 + u2) =
√

x2 + u2, radial distance!

This is a good initial answer to the question: how do we find invariants?
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Moving Frames: first pass Finding Invariants

What About Other Invariants?

We found that the radius function is invariant under rotation, so what?
Are there other invariants not so geometrically obvious? Clearly any
function of the radius will be an invariant, but are there any more? The
answer is deceptively simple.

Let I (x , u) be an invariant for SO(2). Then, by invariance,

I (x , u) = I (ρ(x , u) · (x , u)).

= I (0,
√

x2 + u2)

So any invariant is just a function of the fundamental invariant

ι(u) =
√

x2 + u2.

This simple and powerful idea is called the Replacement Theorem.
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More Preliminaries Prolongation and Freeness

Setting Group Actions Free
If a group action is not free, the process we’ve outlined doesn’t work.
The action of SE (2) on R2 is not free, and doesn’t have any invariants!

The way to get around this is to have the group act on a larger space. We
do this via a process called prolongation.

Let SE (2) act on R2 via

(x̃ , ũ) = (x cosϕ− u sinϕ+ a, x sinϕ+ u cosϕ+ b)

We prolong the action of SE (2) to R3 by adding a coordinate ux , and
letting SE (2) act on ux as it would on a derivative, i.e. ux 7→ ũx̃ . Now,

ũx̃ = ũx · xx̃ =
ũx

x̃x
=

sinϕ+ ux cosϕ

cosϕ− ux sinϕ

We have found the first prolongation of the action of SE (2):

(x̃ , ũ, ũx̃) = (x cosϕ− u sinϕ+ a, x sinϕ+ u cosϕ+ b,
sinϕ+ ux cosϕ

cosϕ− ux sinϕ
).



More Preliminaries Prolongation and Freeness

Setting Group Actions Free
If a group action is not free, the process we’ve outlined doesn’t work.
The action of SE (2) on R2 is not free, and doesn’t have any invariants!

The way to get around this is to have the group act on a larger space. We
do this via a process called prolongation.

Let SE (2) act on R2 via
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More Preliminaries Prolongation and Freeness

Setting Group Actions Free continued

The second prolongation is found similarly:

ũx̃ x̃ =

(
ũx

x̃x

)
x̃

=
1

x̃x

(
ũx

x̃x

)
x

=
uxx

(cosϕ− ux sinϕ)3
.

We have prolonged the action of SE (2) to a space with coordinates
(x , u, ux , uxx) called second order jet space J2(R2). The action is now free!

In general, we may prolong any group action on M to Jn(M) and we can
be pretty sure that eventually we will have a free action.

Theorem. With a mild hypothesis (effectiveness of the group action),
there is some n such that the prolonged action of G on Jn is free and
regular on a dense subset of Jn.
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ũx̃ x̃ =

(
ũx
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Moving Frames: second pass

A Moving Frame for SE (2)

• Recall the action of SE (2) on J2 sends (x , u, ux , uxx) to

(x cosϕ−u sinϕ+a, x sinϕ+u cosϕ+b,
sinϕ+ ux cosϕ

cosϕ− ux sinϕ
,

uxx

(cosϕ− ux sinϕ)3
)

• Choose a nice cross-section, like {x = 0, u = 0, and ux = 0}.
• Solve for the group parameters a, b, ϕ in the equations

x cosϕ− u sinϕ+ a = 0 x sinϕ+ u cosϕ+ b = 0

sinϕ+ ux cosϕ

cosϕ− ux sinϕ
= 0

• Arrive at the moving frame (in parameter form)

ϕ = − arctan ux a = − x + uux√
1 + u2

x

b =
xux − u√

1 + u2
x
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Moving Frames: second pass Differential Invariants

Differential Invariants for SE (2)

With moving frame in hand, we can invariantize a function on J2. The
result will be functions of (x , u, ux , uxx) which are invariant under the
prolonged transformations, called (second order) differential invariants.

ι(uxx) = ρ(x , u, ux , uxx) · uxx

=
uxx

(cosϕ− ux sinϕ)3
(ϕ = − arctan ux)

=
uxx

(1 + u2
x )3/2

.

You may recognize the curvature κ =
uxx

(1 + u2
x )3/2

.

(Insert geometric interpretation here.)
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Moving Frames: second pass Invariant Differential Operators

Generating More Differential Invariants

By a simple application of the Replacement Theorem, we conclude that
any second order differential invariant must be a function of ι(uxx).

The Replacement Theorem will guarantee that any n-th order differential
invariant will be a function of the fundamental differential invariants

I2 = ι(uxx) I3 = ι(uxxx) · · · In = ι(uxn)

We obtain higher order invariants by invariantizing higher order derivatives.
What happens if we differentiate fundamental invariants? Nothing good!

The derivative of an invariant might not be invariant. In order to generate
more differential invariants, we need to first invariantize our derivative
operator. This new operator may be used to generate new higher-order
differential invariants.

We illustrate these ideas with a simple example.
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Moving Frames: second pass Invariant Differential Operators

Invariantizing the Derivative Operator
Consider the following scaling action of (R+, ·) on R2: (x̃ , ũ) = (λx , u/λ).

The prolonged action is ũx̃ =
ux

λ2
, ũx̃ x̃ =

uxx

λ3
, etc.

Choosing the cross-section {x = 1} gives the moving frame λ = 1/x .

We have differential invariants

I = ι(u) = xu, I1 = ι(ux) = x2ux , I2 = ι(uxx) = x3uxx , etc .

As noted earlier, the derivatives

d

dx
(xu) = u + xux ,

d

dx
(x2ux) = 2xux + x2uxx , etc .

might not be invariant. For example,

ũ + x̃ ũx̃ =
1

λ
(u + xux).
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Moving Frames: second pass Invariant Differential Operators

Invariantizing the Derivative Operator
But, we can invariantize the operator

d

dx
just like a function

D =
d

dx̃

∣∣∣∣
λ=1/x

=
dx

dx̃

∣∣∣∣
λ=1/x

d

dx
= x

d

dx

to obtain a differential operator that preserves invariance.

For example,

D(xu) = xu + x2ux = I + I1, D(x2ux) = 2x2ux + x3uxx = 2I1 + I2

are invariant.

Curiously, a quantity of great interest is the difference between the
fundamental invariant Ik and the invariant derivative D(Ik−1). From the
above we see that

D(I )− I1 = I , D(I1)− I2 = 2I1, etc .

These recurrence relations illuminate the structure of the algebra of
differential invariants, and can be useful in applications (as we will see).
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An Example

Using Moving Frames to Solve an ODE

Consider the following ordinary differential equation:

xu2
x − 3uux + 9x2 = 0.

We’ll use moving frames to solve this equation.

1. Rewrite the equation in a form we like.
2. Find a symmetry of the equation and the corresponding moving frame.
3. Invariantize the equation using this moving frame and solve it.
4. Return to the original variables.

Step 1. Let x , u be functions of a new parameter s. Our ODE becomes:

x

(
us

xs

)2

− 3u

(
us

xs

)
+ 9x2 = 0.

We are free to choose the parametrization arbitrarily!
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An Example

Using Moving Frames to Solve an ODE

Step 2. Notice that R is a symmetry group of this equation with action

(s̃, x̃ , ũ) = (s, e2αx , e3αu).

Choosing the cross-section {x = 1} we get the moving frame

α = −1

2
log x .

Step 3. Write

J = ι(x) J1 = ι(xs) I = ι(u) I1 = ι(us).

Invariantizing the entire differential equation gives

ι

(
x

(
us

xs

)2

− 3u

(
us

xs

)
+ 9x2

)
= J

(
I1
J1

)2

− 3I

(
I1
J1

)
+ 9J2 = 0.
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An Example

Using Moving Frames to Solve an ODE
By our choice of cross-section, J = 1. Since we are free to choose our
parametrization, we may also let J1 = 1.

To clarify: J1 = ι(xs) =
xs

x
, so choose x(s) satisfying xs = x .

Our equation now becomes much simpler!

J

(
I1
J1

)2

− 3I

(
I1
J1

)
+ 9J2 = 0 =⇒ (I1)2 − 3I · I1 + 9 = 0

Before solving our equation, we must relate I1 and
dI

ds
. There are several

methods to find the recurrence relation

dI

ds
= I1 −

3

2
J1 · I = I1 −

3

2
· I (using J1 = 1)

Rewriting our equation again:(
dI

ds
+

3

2
I

)2

− 3I ·
(

dI

ds
+

3

2
I

)
+ 9 = 0
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An Example

Using Moving Frames to Solve an ODE
A little algebra and we have the separable equation(

dI

ds

)2

− 9

4
· I 2 + 9 = 0.

The general solution is

I = c0e3s/2 +
1

c0
e−3s/2 c0 a constant of integration.

Step 4. Recall that

I = ι(u) =
u

x3/2
and x = c1es .

Thus
u

x3/2
= c0

(
x

c1

)3/2

+
1

c0

(
x

c1

)−3/2

,

so

u = cx3 +
1

c
c =

c0

c
3/2
1

.
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An Example

Concluding Remarks

You’ve been lied to. No one would ever solve an ODE this way because
explicit computation of a moving frame is difficult. Instead, there are
clever ways to compute things using only the chosen cross-section and an
infinitesimal characterization of the group action. This story is even more
interesting, but necessarily more complicated.

To find the truth you should check my references.

Fels, M., and Olver, P.J., Moving Coframes II. Regularization and
theoretical foundations, Acta Appl. Math., 55 (1999), 127-208.

Mansfield, E., A Practical Guide to The Invariant Calculus,
http://www.kent.ac.uk/ims/personal/elm2/FrameBook2Jun09.pdf
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