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Introduction

Groups entered mathematics as transformation groups. From the works of Cayley
and Klein it became clear that any geometric theory studies the properties of ge-
ometric objects that are invariant under the respective transformation group. This
viewpoint culminated in the celebrated Erlangen program [Kl]. An important fea-
ture of each one of the classical geometries—affine, projective, Euclidean, spherical,
and hyperbolic—is that the respective transformation group is transitive on the un-
derlying space. Another feature of these examples is that the transformation groups
are linear algebraic and their action is regular. In this way algebraic homogeneous
spaces arise in geometry.

Another source for algebraic homogeneous spaces are varieties of geometric fig-
ures or tensors of certain type. Examples are provided by Grassmannians, flag vari-
eties, varieties of conics, of triangles, of matrices with fixed rank, etc. These homo-
geneous spaces are of great importance in algebraic geometry. They were explored
intensively, starting with the works of Chasles, Schubert, Zeuthen et al, which gave
rise to the enumerative geometry and intersection theory.

Homogeneous spaces play an important rôle in representation theory, since rep-
resentations of linear algebraic groups are often realized in spaces of sections or
cohomologies of line (or vector) bundles over homogeneous spaces. The geome-
try of a homogeneous space can be used to study representations of the respective
group, and conversely. Shining examples are the Borel–Weil–Bott theorem [Dem3]
and Demazure’s proof of the Weyl character formula [Dem1].

In the study of an algebraic homogeneous space G/H, it is often useful by stan-
dard reasons of algebraic geometry to pass to a G-equivariant completion or, more
generally, to an embedding, i.e., a G-variety X containing a dense open orbit iso-
morphic to G/H.

An example is provided by the following classical problem of enumerative al-
gebraic geometry: compute the number of plane conics tangent to 5 given ones.
Equivalently, one has to compute the intersection number of certain 5 divisors on the
space of conics PSL3/PSO3, which is an open orbit in P

5 = P(S2
C

3). To solve our
enumerative problem, we pass to a good compactification of PSL3/PSO3. Namely,
consider the closure X in P

5 × (P5)∗ of the graph of a rational map sending a conic
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to the dual one. Points of X are called complete conics. It happens that our 5 divisors
intersect the complement of the open orbit in X properly. Hence the sought number
is just the intersection number of the 5 divisors in X , which is easier to compute,
because X is compact.

Embeddings of homogeneous spaces arise naturally as orbit closures, when one
studies arbitrary actions of algebraic groups. Such questions as normality of the orbit
closure, the nature of singularities, adherence of orbits, the description of orbits in
the closure of a given orbit, etc, are of importance.

Embeddings of homogeneous spaces of reductive algebraic groups are the sub-
ject of this survey. The reductivity assumption is natural for two reasons. First, re-
ductive groups have a good structure and representation theory, and a deep theory
of embeddings can be developed under this restriction. Secondly, most applications
to algebraic geometry and representation theory deal with homogeneous spaces of
reductive groups. However, homogeneous spaces of non-reductive groups and their
embeddings are also considered. They arise naturally even in the study of reduc-
tive group actions as orbits of Borel and maximal unipotent subgroups and their
closures. (An example: Schubert varieties.)

The main topics of our survey are:

• The description of all embeddings of a given homogeneous space.
• The study of geometric properties of embeddings: affinity, (quasi)projectivity,

divisors and line bundles, intersection theory, singularities, etc.
• Application of homogeneous spaces and their embeddings to algebraic geometry,

invariant theory, and representation theory.
• Determination of a “good” class of homogeneous spaces, for which the above

problems have a good solution. Finding and studying natural invariants that dis-
tinguish this class.

Now we describe briefly the content of the survey.
In Chap. 1 we recall basic facts on algebraic homogeneous spaces and consider

basic classes of homogeneous spaces: affine, quasiaffine, projective. We give group-
theoretical conditions that distinguish these classes. Also bundles and fibrations over
a homogeneous space G/H are considered. In particular, we compute Pic(G/H).

In Chap. 2 we introduce and explore two important numerical invariants of
G/H—the complexity and the rank. The complexity of G/H is the codimension
of a general B-orbit in G/H, where B ⊆ G is a Borel subgroup. The rank of G/H
is the rank of the lattice Λ(G/H) of weights of rational B-eigenfunctions on G/H.
These invariants are of great importance in the theory of embeddings. Homogeneous
spaces of complexity ≤ 1 form a “good” class. It was noted by Howe [Ho] and
Panyushev [Pan7] that a number of invariant-theoretic problems admitting a nice
solution have a certain homogeneous space of complexity ≤ 1 in the background.

Complexity and rank may be defined for any action G : X . We prove some semi-
continuity results for complexity and rank of G-subvarieties in X . General methods
for computing complexity and rank of X were developed by Knop and Panyushev,
see [Kn1] and [Pan7, §§1–2]. We describe them in this chapter, paying special atten-
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tion to the case X = G/H. The formulæ for complexity and rank are given in terms
of the geometry of the cotangent bundle T ∗X and of the doubled action G : X ×X∗.

The general theory of embeddings developed by Luna and Vust [LV] is the
subject of Chap. 3. The basic idea of Luna and Vust is to patch all embeddings
X ←↩ G/H together in a huge prevariety and consider particular embeddings as
Noetherian separated open subsets determined by certain conditions. It appears, at
least for normal embeddings, that X is determined by the collection of closed G-
subvarieties Y ⊆ X , and each Y is determined by the collection of B-stable prime
divisors containing Y . This leads to a “combinatorial” description of embeddings,
which can be made really combinatorial in the case of complexity ≤ 1. In this case,
embeddings are classified by certain collections of convex polyhedral cones, as in
the theory of toric varieties [Ful2] (which is in fact a particular case of the Luna–
Vust theory). The geometry of embeddings is also reflected in these combinatorial
data, as in the toric case. In fact the Luna–Vust theory is developed here in more
generality as a theory of G-varieties in a given birational class (not necessarily con-
taining an open orbit).

G-invariant valuations of the function field of G/H correspond to G-stable di-
visors on embeddings of G/H. They play a fundamental rôle in the Luna–Vust
theory as a key ingredient of the combinatorial data used in the classification of
embeddings. In Chap. 4 we explore the structure of the set of invariant valuations,
following Knop [Kn3], [Kn5]. This set can be identified with a certain collection of
convex polyhedral cones patched together along their common face. This face con-
sists of central valuations—those that are zero on B-invariant functions. It is a solid
rational polyhedral cone in Λ(G/H)⊗Q and a fundamental domain of a crystallo-
graphic reflection group WG/H , which is called the little Weyl group of G/H. The
cone of central valuations and the little Weyl group are linked with the geometry of
the cotangent bundle.

Spaces of complexity 0 form the most remarkable subclass of homogeneous
spaces. Their embeddings are called spherical varieties. They are studied in Chap. 5.
Grassmannians, flag varieties, determinantal varieties, varieties of conics, of com-
plexes, and algebraic symmetric spaces are examples of spherical varieties. We
give several characterizations of spherical varieties from the viewpoint of algebraic
transformation groups, representation theory, and symplectic geometry. We con-
sider important classes of spherical varieties: symmetric spaces, reductive algebraic
monoids, horospherical varieties, toroidal and wonderful varieties. The Luna–Vust
theory is much more developed in the spherical case by Luna, Brion, Knop, et al.
We consider the structure of the Picard group of a spherical variety, the intersec-
tion theory with applications to enumerative geometry, the cohomology of coherent
sheaves, and a powerful technique of Frobenius splitting, which leads to deep con-
clusions on the geometry and cohomology of spherical varieties by reduction to pos-
itive characteristic. A classification of spherical homogeneous spaces and their em-
beddings, started by Krämer and Luna–Vust, respectively, was recently completed
in pure combinatorial terms (like the classification of semisimple Lie algebras).

The theory of embeddings of homogeneous spaces is relatively new and far from
being complete. This survey does not cover all developments and deeper interactions
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with other areas. Links for further reading may be found in the bibliography. We also
recommend the surveys [Kn2], [Bri6], [Bri13] on spherical varieties and [Pan7] on
complexity and rank in invariant theory. A short survey paper [Tim6] covers some
of the topics of this survey in a concise manner.

The reader is supposed to be familiar with basic concepts of commutative alge-
bra, algebraic geometry, algebraic groups, and invariant theory. Our basic sources in
these areas are [Ma], [Sha] and [Har2], [Hum] and [Sp3], [PV] and [MFK], respec-
tively. More special topics are covered by Appendices.

Structure of the Survey. The text is divided into chapters, chapters are subdivided
into sections, and sections are subdivided into subsections. A link 1.2 refers to Sub-
section (or Theorem, Lemma, Definition, etc) 2 of Section 1. We try to give proofs,
unless they are too long or technical.

Notation and Conventions. We work over an algebraically closed base field k. A
part of our results are valid over an arbitrary characteristic, but we impose the as-
sumption chark = 0 whenever it simplifies formulations and proofs. More precisely,
the characteristic is assumed to be zero in §§7 (most part of), 8–11, 22–23, 29, 30
(most part of), and subsections 4.3, 16.6, 17.2–17.5, 18.2–18.6, 25.3–25.5, 26.9–
26.10, 27.4–27.6, 28.3, A.2, E.3. On the other hand, we assume chark > 0 in §31,
unless otherwise specified. Let p denote the characteristic exponent of k (= chark,
or 1 if chark = 0).

Algebraic varieties are assumed to be Noetherian and separated (not necessarily
irreducible).

Algebraic groups are denoted by capital Latin letters, and their tangent Lie alge-
bras by the respective lowercase Gothic letters. We consider only linear algebraic
groups (although more general algebraic groups, e.g., Abelian varieties, are also of
great importance in algebraic geometry).

Topological terms refer to the Zariski topology, unless otherwise specified.
By a general point of an algebraic variety we mean a point in a certain dense

open subset (depending on the considered situation), in contrast with the generic
point, which is the dense schematic point of an irreducible algebraic variety.

Throughout the paper, G denotes a reductive connected linear algebraic group,
unless otherwise specified. We may always assume that G is of simply connected
type, i.e., a direct product of a torus and a simply connected semisimple group.
When we study the geometry of a given homogeneous space O and embeddings
of O, we often fix a base point o ∈ O and denote by H = Go its isotropy group, thus
identifying O with G/H (at least set-theoretically).

We use the following general notation.

General:

� denotes a union of pairwise disjoint sets.

⊆ denotes inclusion of sets, while ⊂ stands for strict inclusion (excluding equality).

� denotes inclusion of normal subgroups or ideals.

1 is the identity map of a set under consideration.
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N,Z,Q,R,C denote the sets of natural, integer, rational, real, and complex numbers,
respectively. The sub(super)script “+” or “−” distinguishes the respective subset of
non-negative (positive) or non-positive (negative) numbers, e.g., Z

+ = N, Z+ =
N�{0}.

Zm = Z/mZ is the group (or ring) of residues mod m.

Fpk is the Galois field of cardinality pk; Fp∞ denotes its algebraic closure.

Linear algebra:

A
n denotes the n-dimensional coordinate affine space.

e1, . . . ,en denote the standard basis of k
n.

x1, . . . ,xn are the standard coordinates on A
n or k

n.

A
 is the transpose of a matrix A.

Ln(k) is the algebra of n×n matrices over k.

GLn(k),SLn(k),On(k),SOn(k),Spn(k) are the classical matrix groups: of non-
degenerate, unimodular, orthogonal, unimodular orthogonal, and symplectic n× n
matrices over k, respectively.

L(V ) is the algebra of linear operators on a vector space V .

GL(V ),SL(V ),O(V ),SO(V ),Sp(V ) are the classical linear groups acting on V : gen-
eral linear, special linear, orthogonal, special orthogonal, and symplectic group, re-
spectively.

〈S〉 is the linear span of a subset S ⊆V .

V ∗ is the vector space dual to V .

Λ ∗ = Hom(Λ ,Z) is the lattice dual to a lattice Λ .

〈·, ·〉 denotes the pairing between V and V ∗ or Λ and Λ ∗.

S⊥ ⊆ V ∗ (or Λ∗) is the annihilator of a subset S ⊆ V (or Λ ) with respect to this
pairing.

P(V ) denotes the projective space of all 1-subspaces in V .

P(X) ⊆ P(V ) is the projectivization of a subset X ⊆V stable under homotheties.

[v] ∈ P(V ) is the point corresponding to a nonzero vector v ∈V .

Grk(V ) denotes the Grassmannian of k-dimensional subspaces in V .

Flk1,...,ks(V ) is the variety of partial flags in V with subspace dimensions k1, . . . ,ks.

Algebras and modules:

A× is the unit group of an algebra A.

QuotA is the field of quotients of A.

k[S] ⊆ A is the k-subalgebra generated by a subset S ⊆ A. In particular, the notation
k[x1, . . . ,xn] is used for the algebra of polynomials in the indeterminates x1, . . . ,xn.

k[[t]] is the k-algebra of formal power series in the indeterminate t.

k((t)) = Quotk[[t]] is the field of formal Laurent series in t.

(S) � A is the ideal generated by S.
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AS ⊆ M is the submodule of an A-module M generated by a subset S ⊆ M. This
notation is also used for additive subsemigroups (A = Z+) and convex cones in a
vector space over K = Q or R (A = K+).

AnnS ⊆ A is the annihilator of S ⊆ M in A.

S•M =
⊕∞

n=0 SnM is the symmetric algebra of a module (sheaf) M.
∧• M =

⊕∞
n=0

∧n M is the exterior algebra of M.

M(n) denotes the n-th member of the filtration of a filtered object (algebra, module,
sheaf) M.

grM denotes the graded object associated with a filtered object M.

Mn is the n-th homogeneous part of a graded object M.

Algebraic geometry:

Y denotes the closure of a subset Y in an algebraic variety X , unless otherwise
specified.

OX is the structure sheaf of X .

IY � OX is the ideal sheaf of a closed subvariety (subscheme) Y ⊂ X .

OX ,Y is the local ring of an irreducible subvariety (or a schematic point) Y ⊆ X .

mX ,Y � OX ,Y is the maximal ideal.

k[X ] is the algebra of regular functions on X .

I (Y ) � k[X ] is the ideal of functions on X vanishing on a closed subvariety (sub-
scheme) Y ⊆ X .

k(X) is the field of rational functions on an irreducible variety X .

ClX is the divisor class group of X .

PicX is the Picard group of X .

O(δ ) = OX(δ ) is the line bundle corresponding to a Cartier divisor δ on X or, more
generally, the reflexive sheaf corresponding to a Weil divisor δ .

div0 σ , div∞ σ , divσ = div0 σ − div∞ σ denote the divisor of zeroes, of poles, and
the full divisor of a rational section σ of a line bundle on X (e.g., σ ∈ k(X)), respec-
tively.

Xσ = {x ∈ X | σ(x) �= 0} is the non-vanishing locus of a section σ of a line bundle
on X (including the case σ ∈ k[X ]).
ϕ∗ denotes the pullback of functions, divisors, sheaves, etc, along a morphism ϕ :
X → Y .

ϕ∗ is the pushforward along ϕ (whenever it exists).

Riϕ∗F is the i-th higher direct image of a sheaf F on X .

Hi(X ,F ) denotes the i-th cohomology space of F . In particular, H0(X ,F ) is the
space of global sections of F .

X reg is the regular (smooth) locus of X .

TxX , T ∗
x X are the tangent, resp. cotangent, space to X at x ∈ X .
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dxϕ : TxX → Tϕ(x)Y is the differential of ϕ : X → Y at x ∈ X .

Ω •
X =

∧• Ω 1
X is the sheaf of differential forms on X .

ωX = Ω dimX
X is the canonical sheaf on X .

Groups, Lie algebras, and actions:

e is the unity element of a group G.

Z(G) denotes the center of G.

G′ = [G,G] is the commutator subgroup of G.

G0 is the unity component of an algebraic group G.

R(G) denotes the radical of G.

Ru(G) is the unipotent radical of G.

X(G) is the character group of G, i.e., the group of homomorphisms G→ k
× written

additively.

X∗(G) is the set of (multiplicative) one-parameter subgroups of G, i.e., homomor-
phisms k

× → G.

Ad = AdG : G → GL(g) is the adjoint representation of G.

G : M denotes an action of a group G on a set M. As a rule, it is a regular action of
an algebraic group on an algebraic variety.

Gx is the isotropy group (= stabilizer) in G of a point x ∈ M.

Gx is the G-orbit of x.

NG(S) = {g ∈ G | gS = S} is the normalizer of a subset S ⊆ M. In particular, this
notation is used for the normalizer of a subgroup.

ZG(S) = {g ∈ G | gx = x, ∀x ∈ S} is the centralizer of S (e.g., of a subgroup).

MG is the set of fixed elements under an action G : M.

M(G) is the set of all (nonzero) G-eigenvectors in a linear representation G : M.

Mχ = M(G)
χ ⊆ M is the subspace of G-eigenvectors of the weight χ ∈ X(G).

z(g) denotes the center of a Lie algebra g.

g′ = [g,g] is the commutator subalgebra.

ng(S) = {ξ ∈ g | ξ S ⊆ S} is the Lie algebra normalizer of a subspace S in a g-mod-
ule M. In particular, this notation is used for the normalizer of a Lie subalgebra.

zg(S) = {ξ ∈ g | ξ x = 0, ∀x ∈ S} is the Lie algebra centralizer of a subset S ⊆ M
(e.g., of a Lie subalgebra).

ξ x is the velocity vector of ξ ∈ g at x ∈ M, i.e., the image of ξ under the differential
of the orbit map G → Gx, g �→ gx, where G is an algebraic group and M is an
algebraic G-variety. In characteristic zero, gx := {ξ x | ξ ∈ g} = TxGx.

AutG M denotes the group of G–equivariant automorphisms of a G-set (variety, mod-
ule, algebra, . . . ) M.

HomG(M,N) is the space of G–equivariant homomorphisms of G-modules (or
sheaves) M → N.

Other notation is gradually introduced in the text, see the Notation Index.





Chapter 1
Algebraic Homogeneous Spaces

In this chapter, G denotes an arbitrary linear algebraic group (not supposed to be
either connected nor reductive), and H ⊆ G a closed subgroup. We begin in §1 with
the definition of an algebraic homogeneous space G/H as a geometric quotient, and
prove its quasiprojectivity. We also prove some elementary facts on tangent vectors
and G-equivariant automorphisms of G/H. In §2, we describe the structure of G-
fibrations over G/H and compute Pic(G/H). Some related representation theory
is discussed there: induction, multiplicities, the structure of k[G]. Basic classes of
homogeneous spaces are considered in §3. We prove that G/H is projective if and
only if H is parabolic, and consider criteria of affinity of G/H. Quasiaffine G/H
correspond to observable H, which may be defined by several equivalent conditions
(see Theorem 3.12).

1 Homogeneous Spaces

1.1 Basic Definitions.

Definition 1.1. An algebraic group action G : O is transitive if for any x,y ∈ O there
exists g ∈ G such that y = gx. In this situation, O is said to be a homogeneous space.

A pointed homogeneous space is a pair (O,o), where O is a homogeneous space
and o ∈ O. The natural map π : G → O, g �→ go, is called the orbit map.

A basic property of algebraic group actions is that each orbit is a locally closed
subvariety and hence a homogeneous space in the sense of Definition 1.1. Homoge-
neous spaces are always smooth and quasiprojective, by Sumihiro’s Theorem C.7.
The next definition provides a universal construction of algebraic homogeneous
spaces.

Definition 1.2. The (geometric) quotient of G modulo H is the space G/H equipped
with the quotient topology and a structure sheaf OG/H which is the direct image of
the sheaf OH

G of H-invariant (with respect to the H-action on G by right translations)
regular functions on G.

D.A. Timashev, Homogeneous Spaces and Equivariant Embeddings,
Encyclopaedia of Mathematical Sciences 138, DOI 10.1007/978-3-642-18399-7 1,
© Springer-Verlag Berlin Heidelberg 2011
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2 1 Algebraic Homogeneous Spaces

Theorem 1.3. (1) (G/H,OG/H) is a quasiprojective homogeneous algebraic vari-
ety.
(2) For any pointed homogeneous space (O,o) such that Go ⊇ H, the orbit map
π : G → O factors through π̄ : G/H → O.
(3) π̄ is an isomorphism if and only if Go = H and π is separable.

Proof. To prove (1), we use the following theorem of Chevalley [Hum, 11.2]:

There exists a rational G-module V and a 1-dimensional subspace L ⊆V such
that

H = NG(L) = {g ∈ G | gL = L},
h = ng(L) = {ξ ∈ g | ξL ⊆ L}.

Let x ∈ P(V ) correspond to L; then it follows that H = Gx and h = Kerdxπ , where
π : G → Gx is the orbit map. By a dimension argument, dxπ is surjective, whence π
is separable. Further, Gx is homogeneous, whence smooth, and π is smooth [Har2,
III.10.4], whence open [Har2, Ch. III, Ex. 9.1].

Let U ⊆ Gx be an open subset. We claim that each f ∈ k[π−1(U)]H is the pull-
back of some h∈ k[U ]. Indeed, consider the rational map ϕ = (π, f ) : G ��� Gx×A

1

and put Z = ϕ(G). The projection Z → Gx is separable and generically bijec-
tive, whence birational. Therefore f ∈ ϕ∗

k[Z] descends to h ∈ k(U), f = π∗h.
If h has the nonzero divisor of poles D ⊂ U , then f has the nonzero divisor of
poles π∗D ⊂ π−1(U), a contradiction. It follows that Gx 	 G/H is a geometric quo-
tient.

The universal property (2) is an obvious consequence of the definition. Moreover,
any morphism ϕ : G → Y constant on H-orbits factors through ϕ̄ : G/H → Y .

Finally, (3) follows from the separability of the quotient map G → G/H: π is
separable if and only if π̄ is so, and Go = H means that π̄ is bijective, whence
birational and, by equivariance and homogeneity, is an isomorphism. 
�

Remark 1.4. In (2), if Go = H and π is not separable, then π̄ is bijective purely
inseparable and finite [Hum, 4.3, 4.6]. The schematic fiber π−1(o) is then a non-
reduced group subscheme of G containing H as the reduced part. The homogeneous
space O is uniquely determined by this subscheme [DG, III, §3], [Jan, I, 5.6].

Remark 1.5. If H � G, then G/H is equipped with the structure of a linear algebraic
group with usual properties of the quotient group. Indeed, in the notation of Cheval-
ley’s theorem, we may replace V by

⊕
χ∈X(H)Vχ and consider the natural linear

action G : L(V ) by conjugation. The subspace E = ∏L(Vχ) of operators preserving
each Vχ is G-stable, and the image of G in GL(E) is isomorphic to G/H. See [Hum,
11.5] for details.

Definition 1.6. More generally, the geometric quotient of a G-variety X is defined as
an algebraic variety isomorphic (as a ringed space) to the orbit space X/G equipped
with the quotient topology and the structure sheaf OX/G which is the direct image
of the sheaf OG

X of G-invariant regular functions on X , see [PV, 4.2].
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In contrast with Theorem 1.3(1), the geometric quotient does not always exist in
general: a necessary condition, e.g., is that all G-orbits must be closed and, if X is
irreducible, they all must have the same dimension. However the geometric quotient
always exists for a sufficiently small G-stable open subset of X [PV, Th. 4.4]. This
quotient variety is a model of the field of invariant functions k(X)G (provided X
is irreducible). Such a model, considered up to birational equivalence, is called a
rational quotient of X by G [PV, 2.4].

1.2 Tangent Spaces and Automorphisms. Recall that the isotropy representation
for an action G : X at x ∈ X is the natural representation Gx : TxX by differentials of
translations. For a quotient, the isotropy representation has a simple description:

Proposition 1.7. TeHG/H 	 g/h as H-modules.

The isomorphism is given by the differential of the (separable) quotient map G →
G/H. The right-hand representation of H is the quotient of the adjoint representation
of H in g.

Now we describe the group AutG(G/H) of G-equivariant automorphisms of G/H.

Proposition 1.8. AutG(G/H) 	 NG(H)/H is an algebraic group acting on G/H
regularly and freely. The action NG(H)/H : G/H is induced by the action NG(H) : G
by right translations: (nH)(gH) = gn−1H, ∀g ∈ G, n ∈ NG(H).

Proof. The regularity of the action NG(H)/H : G/H is a consequence of the univer-
sal property of quotients. Clearly, this action is free. Conversely, if ϕ ∈ AutG(G/H),
then ϕ(eH) = nH, and n ∈ NG(H), because the ϕ-action preserves stabilizers. Fi-
nally, ϕ(gH) = gϕ(eH) = gnH, ∀g ∈ G. 
�

2 Fibrations, Bundles, and Representations

2.1 Homogeneous Bundles. The concept of associated bundle is fundamental in
topology. We consider its counterpart in algebraic geometry in a particular case.

Let Z be an H-variety. Then H acts on G×Z by h(g,z) = (gh−1,hz).

Definition 2.1. The quotient set G ∗H Z = (G×Z)/H, equipped with the quotient
topology and a structure sheaf which is the direct image of the sheaf of H-invariant
regular functions, becomes a ringed space. It is called the homogeneous fiber bundle
over G/H associated with Z.

The G-action on G×Z by left translations of the first factor commutes with the H-
action and induces a G-action on G ∗H Z. We denote by g ∗ z the image of (g,z) in
G ∗H Z and identify e ∗ z with z. The embedding Z ↪→ G ∗H Z, z �→ e ∗ z, solves the
universal problem for H-equivariant morphisms of Z into G-spaces.

The homogeneous bundle G∗H Z is G-equivariantly fibered over G/H with fibers
gZ, g ∈ G. The fiber map is g∗ z �→ gH. This explains the terminology.
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Theorem 2.2 ([B-B2], [PV, 4.8]). If Z is covered by H-stable quasiprojective open
subsets, then G∗H Z is an algebraic G-variety, and the fiber map G∗H Z → G/H is
locally trivial in étale topology.

The proof is based on the fact that the fibration G → G/H is locally trivial in étale
topology [Se1]. We shall always suppose that the assumption of the theorem is sat-
isfied when we consider homogeneous bundles. The assumption is satisfied, e.g., if
Z is quasiprojective, or normal and H is connected (by Sumihiro’s Theorem C.7). If
H is reductive and Z is affine, then G∗H Z 	 (G×Z)//H (see Appendix D) is affine.

The universal property of homogeneous bundles implies that any G-variety
mapped onto G/H is a homogeneous bundle over G/H. More precisely, a G-
equivariant map ϕ : X → G/H induces a bijective G-map G ∗H Z → X , where
Z = ϕ−1(eH). If ϕ is separable, then X 	 G ∗H Z. In particular, any G-subvariety
Y ⊆ G∗H Z is G-isomorphic to G∗H (Y ∩Z).

Since homogeneous bundles are locally trivial in étale topology, a number of
local properties such as smoothness, normality, rationality of singularities, etc, are
transferred from Z to G ∗H Z and back again. The next lemma indicates when a
homogeneous bundle is trivial.

Lemma 2.3. G ∗H Z 	 G/H × Z as G-varieties if the H-action on Z extends to a
G-action.

Proof. The isomorphism is given by g∗ z �→ (gH,gz). 
�

If the fiber is an H-module, then the homogeneous bundle is locally trivial in
Zariski topology. By the above, any G-vector bundle over G/H is G-isomorphic to
G ∗H M for some finite-dimensional rational H-module M. The respective sheaf of
sections L(M) is described in the following way.

Proposition 2.4. For any open subset U ⊆ G/H, we have H0(U,L(M)) 	
MorH(π−1(U),M), where π : G → G/H is the quotient map.

Proof. It is easy to see that the pullback of G ∗H M → G/H under π is a trivial
vector bundle G × M → G. Hence for each σ ∈ H0(U,L(M)) we have π∗σ ∈
Mor(π−1(U),M), and clearly π∗σ is H-equivariant. Conversely, any H-morphism
π−1(U) → M induces a section U → G∗H M by the universal property of the quo-
tient. 
�

If H : M is an infinite-dimensional rational module, we may define a quasicoherent
sheaf L(M) = LG/H(M) on G/H by the formula of Proposition 2.4 [Jan, I.5.8–5.9].
The functor LG/H(·) establishes an equivalence between the category of rational H-
modules and that of G-sheaves on G/H.

Any G-line bundle over G/H is G-isomorphic to G∗H kχ , where kχ = k with the
H-action via a character χ ∈X(H). This yields an isomorphism X(H) ∼→PicG(G/H),
χ �→ L(χ) = L(kχ). The kernel of the forgetful homomorphism PicG(G/H) →
Pic(G/H) consists of characters that correspond to different G-linearizations of the
trivial line bundle G/H ×k over G/H. If G is connected, then these characters are
exactly the restrictions to H of characters of G (see Lemma 2.3 and (C.1)).
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Consider a universal cover G̃ → G (see Appendix C). By H̃ denote the inverse
image of H in G̃; then G/H 	 G̃/H̃. Since any line bundle over G/H is G̃-lineariz-
able (Corollary C.5), we obtain the following theorem of Popov.

Theorem 2.5 ([Po2], [KKV, §3]). PicG(G/H) 	 X(H). If G is connected, then

PicG/H 	 X(H̃)/ResG̃
H̃

X(G̃).

Here ResG̃
H̃

denotes the restriction from G̃ to H̃.

Example 2.6. Let G be a connected reductive group, and let B ⊆ G be a Borel sub-
group. Then PicG/B is isomorphic to the weight lattice of the root system of G.

Let X be a G-variety, and Z ⊆ X an H-stable closed subvariety. By the universal
property, we have a G-equivariant map μ : G∗H Z → X , μ(g∗ z) = gz.

Proposition 2.7. If H is parabolic, then μ is proper and GZ is closed in X.

Proof. The map μ factors as μ : G∗H Z
ι

↪→ G∗H X 	 G/H ×X (Lemma 2.3)
π→ X ,

where ι is a closed embedding and π is a projection along a complete variety by
Theorem 3.3. 
�

Example 2.8. Let N ⊆ g be the set of nilpotent elements and let U = Ru(B), a max-
imal unipotent subgroup of G. Then the map G ∗B u → N is proper and birational,
see, e.g., [PV, 5.6] or [McG, 7.1]. This is a well-known Springer’s resolution of
singularities of N.

2.2 Induction and Restriction. Now we discuss some representation theory re-
lated to homogeneous spaces and to vector bundles over them.

We always deal with rational modules over algebraic groups (see Appendix C)
and often drop the word “rational”. As usual in representation theories, we may
define functors of induction and restriction on categories of rational modules. Let H
act on G by right translations, and let M be an H-module.

Definition 2.9. A G-module IndG
H M = MorH(G,M) 	 (k[G]⊗M)H is said to be

induced from H : M to G. It is a rational G-k[G/H]-module. By definition, we have
IndG

H M = H0(G/H,L(M)).
A G-module N considered as an H-module is denoted by ResG

H N.

Example 2.10. IndG
H k = k[G/H], where k is the trivial H-module. More generally,

IndG
H kχ = k[G](H)

−χ , ∀χ ∈ X(H).

Clearly, IndG
H is a left exact functor from the category of rational H-modules to

that of rational G-modules. The functor ResG
H is exact. We collect basic properties

of induction in the following

Theorem 2.11. (1) If M is a G-module, then IndG
H M 	 k[G/H]⊗M.

(2) (Frobenius reciprocity) For rational modules G : N, H : M, we have

HomG(N, IndG
H M) 	 HomH(ResG

H N,M).
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(3) For any H-module M, (IndG
H M)G 	 MH.

(4) If M,N are rational algebras, then (1) and (3) are isomorphisms of algebras,
and (2) holds for equivariant algebra homomorphisms.

Proof. (1) The isomorphism ι : MorH(G,M) ∼→ Mor(G/H,M) is given by
ι(m)(gH) = g ·m(g), ∀m ∈ MorH(G,M). The inverse mapping is μ �→ m, m(g) =
g−1μ(gH), ∀μ ∈ Mor(G/H,M).
(2) The isomorphism is given by the map Φ �→ ϕ , ∀Φ : N → MorH(G,M), where
ϕ : N → M is defined by ϕ(n) = Φ(n)(e), ∀n ∈ N. The inverse map ϕ �→ Φ is given
by Φ(n)(g) = ϕ(g−1n).
(3) Any G-invariant H-equivariant morphism G → M is constant, and its image lies
in MH . Alternatively, one may apply the Frobenius reciprocity to N = k.
(4) It is easy. 
�

Remark 2.12. The union of (1) and (3) yields the following assertion: if M is a G-
module, then (k[G/H]⊗ M)G 	 MH . This is often called the transfer principle,
because it allows transfer of information from k[G/H] to MH . For example, if G is
reductive, k[G/H] is finitely generated, and M = A is a finitely generated G-algebra,
then AH is finitely generated. Other applications are discussed in Appendix D. A
good treatment of induced modules and the transfer principle can be found in [Gr2].

2.3 Multiplicities. We are interested in the G-module structure of k[G/H] and of
global sections of line bundles over G/H.

For any two rational G-modules V,M (dimV < ∞), put

mV (M) = dimHomG(V,M),

the multiplicity of V in M. If V is simple and M completely reducible (e.g., G is
an algebraic torus or a reductive group in characteristic zero), then mV (M) is the
number of occurrences of V in a decomposition of M into simple summands.

For any G-variety X and a G-line bundle L → X , we abbreviate:

mV (X) = mV (k[X ]), mV (L ) = mV (H0(X ,L )).

Here is a particular case of Frobenius reciprocity:

Corollary 2.13. mV (G/H) = dim(V ∗)H, mV (L(χ)) = dim(V ∗)(H)
−χ .

Proof. We have H0(G/H,L(χ)) = IndG
H kχ , whence

HomG
(
V,H0(G/H,L(χ))

)
= HomH(V,kχ) = (V ∗)(H)

−χ .

The first equality follows by taking χ = 0. 
�

2.4 Regular Representation. A related problem is to describe the module struc-
ture of k[G] (=the so-called regular representation). Namely, G itself is acted on by
G×G via (g1,g2)g = g1gg−1

2 . Hence k[G] is a (G×G)-algebra.
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Every finite-dimensional G-module V generates a (G × G)-stable subspace
M(V ) ⊂ k[G] spanned by matrix entries fω ,v(g) = 〈ω ,gv〉 (v ∈ V , ω ∈ V ∗) of the
representation G → GL(V ). Clearly M(V ) is the image of a (G×G)-module homo-
morphism V ∗ ⊗V → k[G], ω ⊗ v �→ fω ,v, and M(V ) 	V ∗ ⊗V is a simple (G×G)-
module whenever V is simple.

Matrix entries behave well with respect to algebraic operations:

M(V )+M(V ′) = M(V ⊕V ′), M(V ) ·M(V ′) = M(V ⊗V ′). (2.1)

The inversion of G sends M(V ) to M(V ∗).

Proposition 2.14. k[G] =
⋃

M(V ), where V runs through all finite-dimensional G-
modules.

Proof. Take any finite-dimensional G-submodule V ⊂ k[G] with respect to the G-
action by right translations. We claim that V ⊆ M(V ). Indeed, let ω ∈V ∗ be defined
by 〈ω ,v〉 = v(e), ∀v ∈V ; then v(g) = fω ,v(g),∀v ∈V,g ∈ G. 
�

Theorem 2.15. Suppose that chark = 0 and G is reductive. Then there is a (G×G)-
module isomorphism

k[G] =
⊕

M(V ) 	
⊕

V ∗ ⊗V,

where V runs through all simple G-modules.

Proof. All the M(V ) 	 V ∗ ⊗V are pairwise non-isomorphic simple (G×G)-mod-
ules. By Proposition 2.14 and (2.1) they span the whole of k[G]. 
�

Remark 2.16. Corollary 2.13 can be derived from Theorem 2.15 by taking H-
(semi)invariants from the right.

2.5 Hecke Algebras. The dual object to the coordinate algebra of G provides a
version of the group algebra for algebraic groups.

Definition 2.17. The (algebraic) group algebra of G is A (G) = k[G]∗ equipped
with the multiplication law coming from the comultiplication in k[G].

For finite G we obtain the usual group algebra. Generally, A (G) can be described by
finite-dimensional approximations. The group algebra A (V ) of a finite-dimensional
G-module V is defined as the linear span of the image of G in L(V ). Note that A (V )
is the (G×G)-module dual to M(V ). We have A (V ) = L(V ) whenever V is simple.
Given a subquotient module V ′ of V , there are a canonical inclusion M(V ′)⊆ M(V )
and a canonical epimorphism A (V ) � A (V ′). Therefore the algebras A (V ) form
an inverse system over all V ordered by the relation of being a subquotient. It readily
follows from Proposition 2.14 that A (G) 	 lim←−A (V ). One deduces that A (G) is
a universal ambient algebra containing both G and Ug, the (restricted) enveloping
algebra of g [DG, II, §§6,7], [Jan, I, §7].

Definition 2.18. The algebra A (G/H) of all G-equivariant linear endomorphisms
of k[G/H] is called the Hecke algebra of G/H, or of (G,H).
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Remark 2.19. If chark = 0 and G is reductive, then A (V ) = ∏L(Vi) over all sim-
ple G-modules Vi occurring in V with positive multiplicity. Furthermore, A (G) =
∏L(Vi) and A (G/H) = ∏L(V H

i ) over all simple Vi by Theorem 2.15 and Schur’s
lemma.

Proposition 2.20 (E. B. Vinberg). If chark = 0 and H is reductive, then A (G/H)	
A (G)H×H. In particular, the above notation is compatible for H = {e}.

Proof. First consider the case H = {e}. The algebra A (V ) acts on A (V )∗ = M(V )
by right translations: a f (x) = f (xa), ∀a,x ∈ A (V ), f ∈ M(V ). These actions com-
mute with the G-action by left translations and merge together into a G-equivariant
linear A (G)-action on k[G].

Conversely, every G-equivariant linear map ϕ : k[G] → k[G] preserves all the
spaces M(V ). Indeed, it follows from the proof of Proposition 2.14 by applying the
inversion that W ⊆ M(W ∗) for any G-submodule W ⊂ k[G]. On the other hand,
for W = M(V ) one has M(W ) ⊆ M(V ∗ ⊕ · · · ⊕V ∗) = M(V ∗) whence, by apply-
ing the inversion, one easily deduces that W = M(W ∗) and ϕW ⊆ M((ϕW )∗) ⊆
M(W ∗) = W .

The restriction of ϕ to M(V ) is the right translation by some aV ∈ A (V ). These
aV give rise to a∈A (G) representing ϕ on k[G]. Hence the group algebra coincides
with the Hecke algebra of G.

In the general case, every linear G-endomorphism ϕ of k[G]H extends to a
unique a ∈ A (G)H×H , which annihilates the right-H-invariant complement of
k[G]H in k[G]. 
�

2.6 Weyl Modules. Now we discuss applications of homogeneous line bundles to
the representation theory of reductive groups. We start with fixing some notation
[Hum, Ch. IX–XI], [OV, Ch. 4].

Let G be a connected reductive group, B ⊆ G a Borel subgroup, U = Ru(B) a
maximal unipotent subgroup, and T ⊆ B a maximal torus. Recall the root decompo-
sition

g = t⊕
⊕

α∈Δ
g

α ,

where Δ = ΔG ⊂ X(T ) denotes the root system of G with respect to T and gα

denote the root subspaces. Let α∨ ∈ X∗(T ) denote the respective coroots and put
Δ∨ = {α∨ | α ∈ Δ}. The set of positive roots Δ+ consists of α such that gα span u.
Let Π = ΠG ⊆ Δ+ denote the base set of simple roots and Π∨ = {α∨ | α ∈ Π}. The
set of negative roots Δ− = Δ \Δ+ =−Δ+ consists of α such that gα span u−, the Lie
algebra of U− = Ru(B−), where B− is the opposite Borel subgroup of G intersecting
B in T . The choice of positive roots defines the dominant Weyl chamber

C = C(Δ+) = {λ ∈ X(T )⊗Q | 〈λ ,α∨〉 ≥ 0, ∀α ∈ Δ+}.

Let X+ = X(T )∩C denote the semigroup of dominant weights.
Let W = NG(T )/T be the Weyl group of G with respect to T . It contains root

reflections rα (α ∈ Δ ) acting on X(T ) as rα(λ ) = λ −〈λ ,α∨〉α and is generated by
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reflections corresponding to simple roots. Let wG denote the longest element of W ,
i.e., the unique element mapping positive roots to negative ones. Sometimes it is
convenient to denote elements of W and their representatives in NG(T ) by the same
letters.

Parabolic subgroups of G containing a given Borel subgroup B are usually called
standard. They are parameterized by subsets of simple roots I ⊆ Π . The Lie algebra
of the respective parabolic P = PI is

p = t⊕
⊕

α∈Δ+∪ΔI

g
α ,

where ΔI ⊆ Δ is the root subsystem spanned by I ⊆ Π . There is a unique Levi
decomposition P = Pu � L, where Pu = Ru(P) and L = LI ⊆ PI is a unique Levi
subgroup containing a given maximal torus T ⊆ B, sometimes called a standard
Levi subgroup of G by abuse of language. The root system of LI with respect to T
is ΔI . The opposite parabolic P− = P−

I ⊇ B− associated with I intersects PI in LI

and has the standard Levi decomposition P− = P−
u �L, where P−

u = Ru(P−).
Every G-module V contains a B-eigenvector v, by the Lie–Kolchin theorem. If

V is generated by v as a G-module, then v is called a highest vector of V . A highest
vector is unique up to proportionality and its weight λ ∈X(B) = X(T ) is the highest
weight of V , i.e., all other T -weights of V are obtained from λ by subtracting pos-
itive roots, whence λ ∈ X+ [Hum, 31.2]. Likewise, we use the term “lowest vector
(weight)” of V for (the weight of) a B−-eigenvector generating V as a G-module.
All other T -weights of V are obtained from the lowest one by adding positive roots.
In the above notation, the lowest weight of V is wGλ and a lowest vector is wGv.

In particular, any simple G-module V contains a unique, up to proportionality,
B-eigenvector (highest vector) of weight λ ∈ X+ (highest weight). Conversely, for
every λ ∈ X+ there is a unique, up to isomorphism, simple G-module V of highest
weight λ [Hum, 31.3–31.4]. Thus isomorphism classes of simple G-modules are
indexed by dominant weights. The highest weight of V ∗ is λ ∗ = −wGλ .

By Corollary 2.13,

mV (LG/B(μ)) = dim(V ∗)(B)
−μ =

{
1, μ = −λ ∗,

0, otherwise.

It follows that V ∗(λ ) = IndG
B k−λ contains a unique simple G-module (of highest

weight λ ∗) whenever λ ∈ X+, otherwise V ∗(λ ) = 0. The dual G-module V (λ ) =
VG(λ ) = (IndG

B k−λ )∗ is called a Weyl module [Jan, II.2].
Put mλ (M) = mV (λ)(M) for brevity.

Proposition 2.21. mλ (M) = dimM(B)
λ .

Proof. As G/B is a projective variety (Theorem 3.3), V (λ ) = H0(G/B,L(−λ ))∗ is
finite-dimensional. If dimM < ∞, then

HomG(V (λ ),M) 	 HomG(M∗,V ∗(λ )) 	 HomB(M∗,k−λ ) 	 M(B)
λ .
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However, any rational G-module M is a union of finite-dimensional submodules.

�

Thus V (λ ) can be characterized as the universal covering G-module of high-
est weight λ : the generating highest vector vλ ∈ V (λ ) is given by evaluation of
H0(G/B,L(−λ )) at eB.

By Corollary 2.13, we have

mλ (G/H) = dimV ∗(λ )H , mλ (LG/H(χ)) = dimV ∗(λ )(H)
−χ . (2.2)

In characteristic zero, complete reducibility yields:

Borel–Weil theorem. If chark = 0, then V (λ ) is a simple G-module of highest
weight λ and V ∗(λ) 	V (λ ∗).

Furthermore, Theorem 2.15 yields

k[G] 	
⊕

λ∈X+

V (λ ∗)⊗V (λ ). (2.3)

In arbitrary characteristic, Formula (2.3) is no longer true, but k[G] possesses a
“good” (G×G)-module filtration with factors V ∗(λ )⊗V ∗(λ ∗) [Don], [Jan, II.4.20].

Notice that all the dual Weyl modules are combined in a multigraded algebra

k[G/U ] =
⊕

λ∈X+

k[G](B)
λ =

⊕

λ∈X+

V ∗(λ ) (2.4)

called the covariant algebra of G. The covariant algebra is an example of a
multiplicity-free G-algebra, in the sense of the following

Definition 2.22. A G-module M is said to be multiplicity-free if mλ (M) ≤ 1, ∀λ ∈
X+.

The multiplication in the covariant algebra has a nice property:

Lemma 2.23. V ∗(λ ) ·V ∗(μ) = V ∗(λ + μ).

Proof. The inclusion “⊆” in the lemma is obvious since the V ∗(λ ) are the homoge-
neous components of k[G/U ] with respect to an algebra grading. In characteristic
zero, the reverse inclusion stems from the fact that the V ∗(λ ) are simple G-modules
and k[G/U ] is an integral domain. In positive characteristic it was proved by Ra-
manan and Ramanathan [Jan, II.14.20]. 
�

3 Classes of Homogeneous Spaces

3.1 Reductions. We answer the following question: when is a homogeneous space
O projective or (quasi)affine? First, we reduce the question to a property of the pair
(G,H), where H = Go is the stabilizer of a point o ∈ O.



3 Classes of Homogeneous Spaces 11

Lemma 3.1. O is projective, resp. (quasi)affine, if and only if G/H has this property.

Proof. We may assume that chark = p > 0. The natural map ϕ : G/H → O is finite
bijective purely inseparable (Remark 1.4). We deduce the assertions on projectivity
and affinity by [Har2, III, Ex. 4.2].

For quasiaffinity, we argue as follows. Without loss of generality, G may be as-
sumed connected. First note that k(G/H)ps ⊆ ϕ∗

k(O) for some s ≥ 0. Furthermore,
k[G/H]ps ⊆ ϕ∗

k[O] (If f ∈ k(O)\k[O], then ϕ∗ f has poles on G/H.) Assume that
O is an open subset of an affine variety Y . Let B be the integral closure of ϕ∗

k[Y ]
in k(G/H). Then B is finitely generated, and X = SpecB contains G/H as an open
subset. Conversely, if G/H is open in an affine variety X , then A = k[X ]∩ϕ∗

k(O)
is finite over k[X ]ps

. Hence A is finitely generated, and X = SpecA contains O as an
open subset. 
�

In the sequel, we may assume that O = G/H.

Lemma 3.2. If G ⊇ H ⊇ K and G/H, H/K are projective, resp. (quasi)affine, then
G/K is projective, resp. (quasi)affine.

Proof. The natural map ϕ : G/K → G/H transforms after a faithfully flat base
change G → G/H to the projection π : G/K ×G/H G 	 H/K × G → G. If H/K
is projective (resp. affine), then π is proper (resp. affine), whence ϕ is proper (resp.
affine). If in addition G/H is complete (resp. affine), then G/K is also complete
(resp. affine). Another proof for projective and affine cases relies on Theorems 3.3
and 3.9 below. In the quasiaffine case, the lemma follows from Theorem 3.12(4).


�

3.2 Projective Homogeneous Spaces.

Theorem 3.3. G/H is projective if and only if H is parabolic.

Proof. If G/H is projective, then a Borel subgroup B ⊆ G has a fixed point
gH ∈ G/H, by the Borel Fixed Point Theorem [Hum, 21.2]. Hence H ⊇ g−1Bg
is parabolic.

To prove the converse, consider a faithful representation G : V . The induced ac-
tion of G on the variety of complete flags in V has a closed orbit. Its stabilizer B
is solvable, and we may assume that B ⊆ H. By Lemma 3.1, G/B is complete, and
hence G/H is complete. 
�

3.3 Affine Homogeneous Spaces. A group-theoretical characterization of affine
homogeneous spaces is not known at the moment. We give several sufficient condi-
tions of affinity and a criterion for reductive G. The following easy lemma is well
known.

Lemma 3.4 ([Bor2, 4.10]). The orbits of a unipotent group G on an affine variety
X are closed, whence affine.
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Proof. For any x ∈ X , consider closed affine subvarieties Y = Gx ⊆ X and Z =
Y \Gx. Since I (Z) � k[Y ] is a G-submodule, the Lie–Kolchin theorem implies
∃ f ∈ I (Z)G, f �= 0. However f is a nonzero constant on Gx, whence on Y . Thus
Z = /0. 
�

Theorem 3.5. G/H is affine if G is solvable.

Proof. We may assume that G,H are connected. First suppose that G is unipotent.
Take a representation G : V such that ∃v ∈V : G[v]	 G/H. Then H normalizes 〈v〉.
But X(H) = 0, whence Gv = H and Gv 	 G/H. We conclude by Lemma 3.4.

In the general case, G = T �U and H = S�V , where U,V are unipotent radicals
and T,S are maximal tori of G,H. We have U ⊇V and may assume that T ⊇ S. It is
easy to see that G/H 	 T ∗S U/V = (T ×U/V )//S is affine. 
�

The following notion is often useful in the theory of homogeneous spaces.

Definition 3.6. We say that H is regularly embedded in G if Ru(H) ⊆ Ru(G).

For example, any subgroup of a solvable group is regularly embedded. The next
theorem generalizes Theorem 3.5.

Theorem 3.7. G/H is affine if H is regularly embedded in G.

Proof. As Ru(G) is normal in G, the quotient G/Ru(G) is affine. By Theorem 3.5,
Ru(G)/Ru(H) is affine. Thence by Lemma 3.2, G/Ru(H) is affine. By the Main
Theorem of GIT (see Appendix D), G/H = (G/Ru(H))//(H/Ru(H)) is affine, be-
cause H/Ru(H) is reductive. 
�

Weisfeiler proved [Wei] that any subgroup H of a connected group G is regularly
embedded in some parabolic subgroup P ⊆ G. (See also [Hum, 30.3].) Thus G/H is
a fibration with the projective base G/P and affine fiber P/H.

The following theorem is often called Matsushima’s criterion. It was proved
for k = C by Matsushima [Mat] and Onishchik [Oni1], and in the general case
by Richardson [Ri1].

Theorem 3.8. G/H is affine if H is reductive. If G is reductive, the converse is also
true.

Proof. If H is reductive, then by the Main Theorem of GIT, G/H 	 G//H is affine.
For a simple proof of the converse see [Lu2] (chark = 0) or [Ri1]. 
�

The lack of a group-theoretical criterion of affinity is partially compensated by a
cohomological criterion.

Theorem 3.9. G/H is affine if and only if IndG
H is exact.

Proof. Recall that IndG
H(M) = H0(G/H,L(M)), the sheaf L(M) is quasicoherent,

and the functor L(·) is exact. If G/H is affine, then by Serre’s criterion [Har2,
III.3.7] IndG

H is exact. For a proof of the converse, see [Gr2, §6]. 
�
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3.4 Quasiaffine Homogeneous Spaces. The class of quasiaffine homogeneous
spaces is of interest in invariant theory and representation theory. If G/H is quasi-
affine, then the subgroup H is called observable. Observable subgroups are exactly
the stabilizers of vectors in rational G-modules, since any quasiaffine G-variety can
be equivariantly embedded in a G-module [PV, 1.2].

Example 3.10. By Chevalley’s theorem, H is observable if X(H) = 0. In particular
a unipotent subgroup is observable.

Example 3.11 ([BHM]). If R(H) is nilpotent, then H is observable.

It is easy to see that an intersection of observable subgroups is again observ-
able. Therefore, for any H ⊆ G, there exists a smallest observable subgroup Ĥ ⊆ G
containing H. It is called the observable hull of H. Clearly, for any rational G-mod-
ule M we have MH = MĤ . This property illustrates the importance of observable
subgroups in invariant theory, see [PV, 3.7].

We give several characterizations of observable subgroups in the next theorem,
essentially due to Białynicki-Birula, Hochschild, and Mostow [BHM].

Theorem 3.12. The following conditions are equivalent:

(1) G/H is quasiaffine.
(2) G0/H0 is quasiaffine.
(3) Quotk[G/H] = k(G/H).
(4) Any finite-dimensional H-module is embedded as an H-submodule in a finite-

dimensional G-module.
(5) ∀χ ∈ X(H) : k[G]χ �= 0 =⇒ k[G]−χ �= 0. (In other words, the semigroup of

weights of H-eigenfunctions on G is actually a group.)

Proof. (1) =⇒ (3) is obvious.
(3) =⇒ (1) We have k[G/H] = k[G/Ĥ] =⇒ k(G/H) = k(G/Ĥ), whence H = Ĥ.
(1) ⇐⇒ (2) We may assume that G is connected. The map G/H0 → G/H is a Ga-
lois covering with the Galois group Γ = H/H0. If G/H is open in an affine va-
riety X , then G/H0 is open in Y = SpecA, where A is the integral closure of k[X ]
in k(G/H0). Conversely, if G/H0 is open in affine Y , then G/H is open in X =Y/Γ .
(1) =⇒ (5) For a nonzero g ∈ k[G]χ , consider its zero set Z ⊂ G. The quotient
morphism π : G → G/H maps Z onto a proper closed subset of G/H. Hence ∃ f ∈
k[G/H] : f |π(Z) = 0. By Nullstellensatz, π∗ f n = gh for some n ∈ N, h ∈ k[G]−χ .
(5) =⇒ (4) First note that a 1-dimensional H-module W = kχ can be embedded in
a G-module V if and only if k[G]χ �= 0. (Any function fω ,v, where v ∈W , ω ∈ V ∗,
belongs to k[G]χ .)

Now, for any finite-dimensional H-module W , consider the embedding W ↪→
Mor(H,W ) taking each w ∈W to the orbit morphism g �→ gw, g ∈ H. It is H-equiv-
ariant with respect to the H-action on Mor(H,W ) by right translations of an argu-
ment. The restriction of morphisms yields a surjection Mor(G,W ) → Mor(H,W ),
and we may choose a finite-dimensional H-submodule N ⊂ Mor(G,W ) mapped
onto W . Embed N into a finite-dimensional G-submodule M ⊂ Mor(G,W ) and put
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U = Ker(N → W ), m = dimU . Then
∧mU ↪→ ∧m M and W ⊗∧mU ↪→ ∧m+1 M.

By (5) and the above remark,
∧mU∗ is embedded in a G-module. We conclude by

noting that W 	 (W ⊗∧mU)⊗∧mU∗.
(4) =⇒ (1) By Chevalley’s theorem, H = G[v] for some vector v in a G-module V .
As an H-module, 〈v〉 	 kχ for some χ ∈ X(H). Then k−χ can be embedded in a
G-module, i.e., there exists a G-module W and w ∈W such that H acts on w via −χ .
It follows that Gv⊗w = H. 
�

Surprisingly, quasiaffine homogeneous spaces admit a group-theoretical charac-
terization. Recall that a quasiparabolic subgroup of a connected group is the stabi-
lizer of a highest vector in an irreducible representation.

Theorem 3.13 ([Sukh]). H ⊆ G is observable if and only if H0 is regularly embed-
ded in a quasiparabolic subgroup of G0.



Chapter 2
Complexity and Rank

We retain the general conventions of our survey. In particular, G denotes a reductive
connected linear algebraic group. We begin with local structure theorems, which
claim that a G-variety may be covered by affine open subsets stable under parabolic
subgroups of G, and describe the structure of these subsets. In §5, we define two nu-
merical invariants of a G-variety related to the action of a Borel subgroup of G: the
complexity and the rank. We reduce their computation to a general orbit on X (i.e.,
a homogeneous space) and prove some basic results including the semicontinuity
of complexity and rank with respect to G-subvarieties. We also introduce the notion
of the weight lattice and consider the connection of complexity with the growth of
multiplicities in coordinate algebras and spaces of sections of line bundles. The rela-
tion of complexity and modality of an action is considered in §6. In §7, we introduce
the class of horospherical varieties defined by the property that all isotropy groups
contain a maximal unipotent subgroup of G. The computation of complexity and
rank is fairly simple for them. On the other hand, any G-variety can be contracted
to a horospherical one of the same complexity and rank.

General formulæ for complexity and rank are obtained in §8 as a by-product
of the study of the cotangent action G : T ∗X and the doubled action G : X ×X∗.
These formulæ involve generic stabilizers of these actions. The particular case of a
homogeneous space X = G/H is considered in §9. In §10, we classify homogeneous
spaces of complexity and rank ≤ 1. An application to the problem of decomposing
tensor products of representations is considered in §11. Decomposition formulæ are
obtained from the description of the G-module structure of coordinate algebras on
double cones of small complexity.

4 Local Structure Theorems

4.1 Locally Linearizable Actions. Those algebraic group actions can be effec-
tively studied which are more or less reduced to linear or projective representations

D.A. Timashev, Homogeneous Spaces and Equivariant Embeddings,
Encyclopaedia of Mathematical Sciences 138, DOI 10.1007/978-3-642-18399-7 2,
© Springer-Verlag Berlin Heidelberg 2011
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and their restrictions to stable subvarieties in representation spaces. Therefore it is
natural to restrict our attention to the following class of actions.

Definition 4.1. A regular algebraic group action G : X (or a G-variety X) is locally
linearizable if X can be covered by G-stable quasiprojective open subsets Xi such
that G : Xi is the restriction of the projective representation of G in an ambient pro-
jective space.

Example 4.2 ([Po3]). Consider a rational projective curve X obtained from P
1 by

identifying 0,∞ ∈ P
1 in an ordinary double point (a Cartesian leaf). A k

×-action on
P

1 with the fixed points 0,∞ goes down to X . This action is not locally linearizable.
(Otherwise, there is a k

×-stable hyperplane section of X in an ambient P
n that does

not contain the double point. But there are no other k
×-fixed points on X .)

The reason why the action of Example 4.2 fails to be locally linearizable is non-
normality of X .

Example 4.3. If X is a G-stable subvariety of a normal G-variety (e.g., X is itself
normal) and G is connected, then G : X is locally linearizable by Sumihiro’s Theo-
rem C.7.

The normalization or the equivariant Chow lemma [Sum, Th. 2] reduce the study
of arbitrary algebraic group actions to locally linearizable ones. In the sequel, only
locally linearizable actions are considered unless otherwise specified.

4.2 Local Structure of an Action. Now let G be a connected reductive group. Fix
a Borel subgroup B⊆ G and a maximal torus T ⊆ B.

In order to describe the local structure of locally linearizable G-actions, we begin
with a helpful technical construction in characteristic zero due to Brion–Luna–Vust
and Grosshans.

Let V be a finite-dimensional G-module with a B−-eigenvector v, and let ω ∈
V ∗ be the dual B-eigenvector such that 〈v,ω〉 �= 0. Let P = G[ω ] = Pu � L be the
projective stabilizer of ω , where L ⊇ T is a Levi subgroup and Pu = Ru(P). Then
P− = G[v] = P−u �L is the opposite parabolic to P, where P−u = Ru(P−).

Put V̊ = V \ 〈ω〉⊥, F = 〈p−u ω〉⊥, and F̊ = F ∩V̊ .

Lemma 4.4 ([BLV], [Gr1]). In characteristic zero, the action P : V̊ gives rise to an
isomorphism

Pu× F̊ � P∗L F̊
∼→ V̊ .

Proof. Consider level hyperplanes Vc = {x ∈V | 〈x,ω〉= c}, Fc = F ∩Vc. We have

V̊ =
⊔

c�=0

Vc = k
×v+V0,

and similarly for F̊ . Note that F0 = 〈gω〉⊥ is P-stable. Affine hyperplanes Vc ⊂ V
and Vc/F0 ⊂V/F0 are P-stable. It suffices to show that the induced action Pu : Vc/F0

is transitive and free whenever c �= 0. But V0 = puv⊕F0, whence cv + F0 has the
dense Pu-orbit in Vc/F0 with the trivial stabilizer. It remains to note that all orbits of
a unipotent group on an affine variety are closed (Lemma 3.4). ��
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Corollary 4.5. P(V̊ ) = P(V )ω � P∗L P(F̊)� Pu× (F0⊗〈v〉∗).

Theorem 4.6 ([Kn3, 1.2], [BLV]). Let X be a G-variety, let L be a G-line bundle
on X whose power is generated by global sections, and let ω ∈ H0(X ,L )(B) be an
eigensection. Let P = G[ω ] be the projective stabilizer of ω , with a Levi decomposi-

tion P = Pu � L, Pu = Ru(P), L ⊇ T . Then the open subset X̊ = Xω is P-stable and
satisfies the following properties:

(1) The action Pu : X̊ is proper (i.e., the map Pu× X̊ → X̊ × X̊ , (g,x) �→ (gx,x) is
proper) and has a geometric quotient.

(2) There exists a T -stable closed subvariety Z ⊆ X̊ such that the natural map Pu×
Z → X̊ , (g,z) �→ gz, and the quotient map Z → X̊/Pu are finite and surjective.

(2)′ In characteristic zero, Z may be chosen to be L-stable and such that the action
P : X̊ gives rise to an isomorphism

Pu×Z � P∗L Z
∼→ X̊ .

Proof. We will assume that chark = 0. Replacing L by a power, we may choose a
finite-dimensional G-submodule M ⊆ H0(X ,L ) containing ω such that L is gen-
erated by sections from M. Put V = M∗ and consider the natural G-equivariant mor-
phism ϕ : X → P(V ) given by the sections in M. The pullback along ϕ reduces all
assertions to the case X = P(V ), where they stem from Corollary 4.5. The same
argument applies in positive characteristic, but Corollary 4.5 has to be replaced by
a weaker assertion, see [Kn3, 1.2]. ��

Theorem 4.7 ([Kn1, 2.3], [Kn3, §2], [BLV]). Let X be a locally linearizable ir-
reducible G-variety and let Y ⊆ X be a G-stable irreducible subvariety. Then
there exists a unique parabolic subgroup P = P(Y ) ⊇ B with a Levi decomposi-
tion P = Pu �L, Pu = Ru(P), L⊇ T , and a T -stable locally closed affine subvariety
Z ⊆ X such that:

(1) X̊ = PZ is an affine open subset of X satisfying the properties (1)–(2)′ from
Theorem 4.6.

(2) Y̊ = Y ∩ X̊ �= /0, and the kernel L0 of the natural action L = P/Pu : Y̊/Pu con-
tains L′.

(3) The quotient torus A = L/L0 acts on Y̊/Pu freely, so that Y̊/Pu � A×C, with A
acting on C trivially. In characteristic zero, Y ∩Z � A×C.

In particular, let P = P(X) be the smallest stabilizer of a B-stable divisor in X. Then
there exists a T -stable (L-stable if chark = 0) locally closed affine subset Z⊆X such
that X̊ = PZ is an open affine subset of X, the natural maps Pu×Z → X̊ , Z → X̊/Pu

are finite and surjective (are isomorphisms if chark = 0), and X̊/Pu � A×C, where
A = L/L0 is a quotient torus of L acting on C trivially.

Remark 4.8. In positive characteristic, L0 may be a non-reduced group subscheme
of L, cf. Remark 1.4.
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Proof. Replacing X by an open G-subvariety, we may assume that X is quasipro-
jective, Y is closed in X , and there is a very ample G-line bundle L on X . Then X
is G-equivariantly embedded in P(V ), where V ∗ ⊆ H0(X ,L ) is a certain finite-di-
mensional G-submodule.

Let X ,Y be the closures of X ,Y in P(V ). We can find an eigensection ω ∈
H0(X ,O(d))(B) that vanishes on X \X and on any given closed B-subvariety D⊂Y ,
but not on Y . (In characteristic zero, take a nonzero B-eigenform of some degree
d in the ideal of (X \X)∪D in the homogeneous coordinate ring of (X \X)∪Y ,
and extend it to X by complete reducibility of G-modules. In positive characteristic,
use Corollary D.2 instead of complete reducibility.) Now Theorem 4.6 yields (1) for
X̊ = Xω .

If we choose for D a (maybe reducible) B-stable divisor in Y whose stabilizer
P is the smallest possible one, then any (B∩ L)-stable divisor of Y̊/Pu is L-sta-
ble. It follows that each (B∩L)-semiinvariant function in k[Y̊ ]Pu is L-semiinvariant,
whence L′ acts on Y̊/Pu trivially. Taking D sufficiently large, we may replace Y̊ by
an open subset with the Pu-quotient L-isomorphic to A×C.

To complete the proof, note that P is uniquely determined by the conditions of
the theorem. Namely, P = P(Y ) equals the smallest stabilizer of a B-stable divisor
in Y . ��

Example 4.9. Let X = P(S2
k

n∗) be the space of quadrics in P
n−1, where chark �= 2.

Then G = GLn(k) acts on X by linear variable changes with the orbits O1, . . . ,On,
where Or is the set of quadrics of rank r, and O1 ⊂ ·· · ⊂ On = X . Choose the stan-
dard Borel subgroup B ⊆ G of upper-triangular matrices and the standard maximal
torus T ⊆ B of diagonal matrices.

(1) Put Y = O1, the unique closed G-orbit in X , which consists of double hyper-
planes. In the notation of Lemma 4.4 and Theorem 4.6, we have V = S2

k
n∗ � v = x2

1,
V ∗ = S2

k
n � ω = e2

1. Then P is a standard parabolic subgroup of matrices of the
form

L Pu

0...
0

L
⎫
⎬

⎭
n−1

︸ ︷︷ ︸
n−1

(We indicate the Levi decomposition of P in the figure.) V̊ is the set of quadratic
forms q = cx2

1 + · · · , c �= 0, puv = {a12x1x2 + · · ·+ a1nx1xn | ai j ∈ k}, and F is the
space of forms q = cx2

1 + q′(x2, . . . ,xn), where c ∈ k and q′ is a quadratic form in
x2, . . . ,xn.

Now X̊ is the set of quadrics given by an equation x2
1 + · · · = 0, Z consists of

quadrics with an equation x2
1 + q′(x2, . . . ,xn) = 0, and Y ∩Z = {[x2

1]}. Lemma 4.4
or Theorem 4.6 says that every quadratic form with nonzero coefficient at x2

1 can be
moved by Pu, i.e., by a linear change of x1, to a form containing no products x1x j,
j > 1. This is the first step in the Lagrange method of transforming a quadric to a
normal form.
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(2) More generally, put Y = Or. It is easy to see that P(Y ) is the group of matrices
of the form

r
︷ ︸︸ ︷

r

⎧
⎨

⎩

∗ ∗. . .0 ∗ ∗

0 ∗
Clearly, P(Y ) = G[ω ], where ω is the product of the first r upper-left corner minors

of the matrix of a quadratic form. Then X̊ is the set of quadrics, where ω does
not vanish, i.e., having non-degenerate intersection with all subspaces {xk = · · · =
xn = 0}, k ≤ r + 1. Further, Z consists of quadrics with an equation c1x2

1 + · · ·+
crx2

r + q′(xr+1, . . . ,xn) = 0, ci �= 0, and Y ∩Z = {[c1x2
1 + · · ·+ crx2

r ] | ci �= 0}. The
Levi subgroup L = (k×)r×GLn−r(k) acts on Y ∩Z via the first factor, and Y ∩Z =
(k×)r×{[x2

1 + · · ·+x2
r ]}. Theorems 4.6–4.7 say that each quadric with nonzero first

r upper-left corner minors transforms by a unitriangular linear variable change to the
form c1x2

1 + · · ·+crx2
r +q′(xr+1, . . . ,xn)—this is nothing else but the Gram–Schmidt

orthogonalization method.

4.3 Local Structure Theorem of Knop. A refined version of the local structure
theorem was proved by F. Knop in characteristic zero.

Let X be an irreducible normal G-variety. We call any formal k-linear combi-
nation of prime Cartier divisors on X a k-divisor. Let δ = a1D1 + · · ·+ asDs be a
B-stable k-divisor, and let P = P[D] be the stabilizer of its support D = D1∪·· ·∪Ds.
Replacing G by a finite cover, we may assume that the line bundles O(Di) are G-
linearized (Corollary C.5). Let ηi ∈H0(X ,O(Di))(B) be the sections of B-weights λi

such that divηi = Di, and set λδ = ∑aiλi. We say that δ is regular if 〈λδ ,α∨〉 �= 0
for any root α such that gα ⊆ pu. (For example, any effective B-stable Cartier divisor
is regular.)

Define a morphism ψδ : X \D→ g∗ by the formula

〈ψδ (x),ξ 〉= ∑ai
ξ ηi

ηi
(x), ∀ξ ∈ g.

Theorem 4.10 ([Kn5, 2.3]). The map ψδ is a P-equivariant fibration over the P-
orbit of λδ considered as a linear function on a maximal torus t ⊆ b and extended
to g by putting 〈λδ ,gα〉 = 0, ∀α . The stabilizer L = Pλδ

is the Levi subgroup of P

containing T . In particular, X \D� P∗L Z, where Z = ψ−1
δ (λδ ).

Other versions of the local structure theorem can be found in [BL] and in Sub-
sections 13.3, 15.3, 20.3, and 29.1.
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5 Complexity and Rank of G-varieties

5.1 Basic Definitions. As before, G is a connected reductive group with a fixed
Borel subgroup B, a maximal unipotent subgroup U = Ru(B), and a maximal torus
T ⊆ B. Let X be an irreducible G-variety.

Definition 5.1. The complexity cG(X) of the action G : X is the codimension of
a general B-orbit in X . By the lower semicontinuity of the function x �→ dimBx,
cG(X)=minx∈X codimBx. By the Rosenlicht theorem [PV, 2.3], cG(X)=tr.degk(X)B.

The weight lattice Λ(X) (resp. the weight semigroup Λ+(X)) is the set of weights
of all rational (regular) B-eigenfunctions on X . It is a sublattice in the character lat-
tice X(B) = X(T ) (a submonoid in the monoid X+ of dominant weights, respec-
tively).

The integer rG(X) = rkΛ(X) is called the rank of G : X .
We usually drop the subscript G in the notation of complexity and rank.

Remark 5.2. The reductivity of G is not used in the definition. In fact, we use the
notions of complexity and rank for a non-reductive group action, namely the B-ac-
tion on a B-stable subvariety in X , in 6.2. However, the properties of complexity and
rank, discussed below, rely on the reductivity assumption essentially.

Complexity, rank, and the weight lattice are birational invariants of an action. Re-
placing X by a G-birationally equivalent variety, we may always assume that X is
locally linearizable, normal, quasiprojective, or smooth, when required. These in-
variants are very important in studying the geometry of the action G : X and the
related representation and compactification theory. Here we examine the most basic
properties of complexity and rank.

Example 5.3. Let X be a projective homogeneous G-space. By the Bruhat decom-
position, U has a dense orbit in X (a big cell). Hence c(X) = r(X) = 0.

Example 5.4. Assume that G = T and let T0 be the kernel of the action T : X . Then
X contains an open T -stable subset X̊ = T/T0× Z [PV, 2.6, 7.2]. Hence c(X) =
dimZ = dimk(X)T , Λ (X) = X(T/T0), r(X) = dimT/T0.

Example 5.5. Let G act on X = G by left or right translations. Then c(X) =
dimG/B = dimU is the number of positive roots of G. By (2.4), Λ+(X) = X+.

It is easy to prove the following

Proposition 5.6. c(X)+ r(X) = minx∈X codimUx = tr.degk(X)U .

(Just apply Example 5.4 to the T -action on the rational quotient of X by U .)

5.2 Complexity and Rank of Subvarieties. Complexity and weight lattice (semi-
group) are monotonous by inclusion. More precisely, we have

Theorem 5.7 ([Kn7, 2.3]). For any closed irreducible G-subvariety Y ⊆ X, c(Y )≤
c(X), r(Y ) ≤ r(X), and the equalities hold if and only if Y = X. Furthermore,
Λ(Y )⊆ 1

qΛ (X) and, if X is affine, then Λ+(Y )⊆ 1
qΛ+(X), where q is a sufficiently

big power of p.
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The proof relies on a helpful lemma of Knop:

Lemma 5.8. Suppose that G : X is locally linearizable. Let Y ⊆ X be an irreducible
G-subvariety. Then

∀ f ∈ k(Y )(B) ∃ f̃ ∈ O
(B)
X ,Y ∃q = pn : f q = f̃ |Y .

Proof. We may assume that X is a closed G-subvariety in a projective space and Y
is closed in X . Let X̂ ,Ŷ be the cones over X ,Y . These cones are Ĝ = G×k

×-sta-
ble (k× acts by homotheties), and f is pulled back to k(Ŷ )(B̂), where B̂ = B×k

×.

By Lemma D.7, f = F1/F2, where Fi ∈ k[Ŷ ](B̂) are homogeneous B-semiinvariant

polynomials. By Corollary D.2, Fq
i = F̃i|Ŷ for some F̃i ∈ k[X̂ ](B̂), q = pn. Now f̃ =

F̃1/F̃2 is pulled down to a rational B-eigenfunction on X such that f̃ |Y = f q. ��

Proof of the theorem. Applying normalization, we may assume that G : X is locally
linearizable. Lemma 5.8 implies that qΛ (Y )⊆ Λ (X) and that k(Y )B is a purely in-
separable extension of the residue field of OB

X ,Y , whence the inequalities and the
inclusion of weight lattices. The inclusion of weight semigroups stems from Corol-
lary D.2.

Now suppose that c(Y ) = c(X) and r(Y ) = r(X). As in Lemma 5.8, we may
assume that X ,Y are closed G-subvarieties in a projective space and consider the
cones X̂ ,Ŷ over X ,Y . We have cĜ(X̂) = cG(X) and rĜ(X̂) = rG(X)+ 1, in view of
an exact sequence

0−→Λ(X)−→ Λ̂ (X̂)−→ X(k×) = Z−→ 0,

where Λ̂ is the weight lattice relative to B̂. Similar equalities hold for Ŷ .
By assumption and Proposition 5.6, tr.degk(Ŷ )U = tr.degk(X̂)U . But a rational

U-invariant function on an affine variety is the quotient of two U-invariant polyno-
mials (Lemma D.7), whence k[Ŷ ]U and k[X̂ ]U have the same transcendence degree.
By Lemma D.1, k[Ŷ ]U is a purely inseparable integral extension of k[X̂ ]U |Ŷ , whence
k[X̂ ]U restricts to Ŷ injectively. Therefore the ideal of Ŷ contains no nonzero U-in-
variants, and hence is zero. It follows that Ŷ = X̂ , whence Y = X . ��

On the other side, there is a general procedure of “enlarging” a variety which
preserves complexity, rank, and the weight lattice.

Definition 5.9. Let G,G0 be connected reductive groups. We say that a G-variety
X is obtained from a G0-variety X0 by parabolic induction if X = G ∗Q X0, where
Q⊆ G is a parabolic subgroup acting on X0 via an epimorphism Q � G0.

Proposition 5.10. cG(X) = cG0(X0), rG(X) = rG0(X0), Λ(X) = Λ (X0).

The proof is easy.
The weight lattice is actually an attribute of a general G- (and even B-) orbit.

Proposition 5.11 ([Kn7, 2.6]). Λ(X) = Λ (Gx) for all x in an open subset of X.
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Proof. Replacing X by its rational quotient by U , we reduce the problem to the case
G = B = T and apply Example 5.4. ��

Corollary 5.12. The function x �→ r(Gx) is lower semicontinuous on X.

Using Lemma 5.8, Arzhantsev proved the following

Proposition 5.13 ([Arzh, Pr. 1]). The function x �→ c(Gx) is lower semicontinuous
on X.

5.3 Weight Semigroup. In the affine case, the weight semigroup is a more subtle
invariant of an action than the weight lattice.

Proposition 5.14. For quasiaffine X, Λ (X) = ZΛ+(X).

Proof. We have k(X) = Quotk[X ]. By Lemma D.7, for any λ ∈ Λ(X) and any f ∈
k(X)(B)

λ , there exist fi ∈ k[X ](B)
λi

(i = 1,2) such that f = f1/ f2, whence λ = λ1−λ2,
λi ∈Λ+(X). ��

Proposition 5.15. For affine X, the semigroup Λ+(X) is finitely generated.

Proof. The semigroup Λ+(X) is the semigroup of weights for the T -weight decom-
position of k[X ]U , the latter algebra being finitely generated by Theorem D.5(1).

��

5.4 Complexity and Growth of Multiplicities. The complexity controls the growth
of multiplicities in the spaces of global sections of G-line bundles on X .

Theorem 5.16. (1) If X is affine and k[X ]G = k (e.g., X contains an open G-orbit),
then c(X) is the minimal integer c such that mnλ (X) = O(nc) for every dominant
weight λ .
(2) If X is projective, then c(X) is the minimal integer c such that mnλ (L ⊗n) =
O(nc) for any G-line bundle L on X and any dominant weight λ .
(3) The assertion (2), resp. (1), extends to an arbitrary, resp. quasiaffine, homoge-
neous space X.

Proof. First we prove that c = c(X) yields the above estimate for multiplicities.

(1) By Proposition 2.21, mλ (X) = dimk[X ]Uλ . Replacing X by X//U , we may as-
sume that G = B = T . Put

A =
⊕

n≥0

k[X ]nλ .

Then A� (k[X ]⊗k[t])T , where the indeterminate t has the T -weight−λ . The func-
tion field K = QuotA is purely transcendental of degree 1 over KB ⊆ k(X)B, whence
tr.degK ≤ c+1.

By the above, A is a finitely generated positively graded algebra of Krull di-
mension d ≤ c + 1. We conclude by a standard result of dimension theory that
dimAn = O(nd−1).
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(2) We have mnλ (L ⊗n) = dimH0(X ,L ⊗n)U
nλ . There exists a very ample G-line

bundle M such that the line bundle L ⊗M is also very ample, and for nonzero
σ ∈ H0(X ,M )U

μ , we have an inclusion

H0(X ,L ⊗n)U
nλ ↪→ H0(X ,(L ⊗M )⊗n)U

n(λ+μ)

provided by (· ⊗ σ n). Thus it suffices to consider very ample L . Consider the
respective projective embedding of X , and let X̂ be the affine cone over X . Then
Ĝ = G×k

× acts on X̂ (here k
× acts by homotheties), and mnλ (L ⊗n) = m(nλ ,n)(X̂)

(at least for n� 0). The assertion (1) applied to X̂ yields the desired estimate.
(3) For homogeneous X we use a different argument. Without loss of generality we
may assume that X = G/H. (Passing to the covering quotient space preserves the
complexity and may only increase multiplicities.) For any line bundle L = L(χ)
on G/H we have mλ (L ) = dimV ∗(λ )(H)

−χ by (2.2). The idea is to embed V ∗(λ )(H)
−χ

into the dual of a certain B-submodule of V (λ ) and to estimate the dimension of the
latter.

Let o = eH be the base point of G/H. We may assume that codimBo = c. If
c > 0, then there exists a minimal parabolic P1 ⊃ B which does not stabilize Bo,
whence codimP1o = c− 1. Proceeding in the same way, we construct a sequence
of minimal parabolics P1, . . . ,Pc ⊃ B such that Pc · · ·P1o = G/H. Hence Pc · · ·P1H is
dense in G and dimP1 · · ·Pc = dimB+ c.

Let W be the Weyl group of G and let si ∈W be the simple reflections cor-
responding to Pi. It follows that w = s1 · · ·sc is a reduced decomposition and
P1 · · ·Pc = Dw := BwB [Hum, §29], cf. Example 6.6. Therefore P1 · · ·Pc/B = Sw :=
Dw/B⊆ G/B is a Schubert subvariety of dimension c.

Denote by vλ ∈ V (λ) a highest vector. The B-submodule Vw(λ ) ⊆ V (λ ) gen-
erated by wvλ is called a Demazure module. One has Vw(λ ) = 〈P1 · · ·Pcvλ 〉 =
H0(Sw,LG/B(−λ ))∗ [Jan, 14.19].

A crucial observation is that the pairing between V ∗(λ) and V (λ ) yields an em-

bedding V ∗(λ )(H)
−χ ↪→Vw(λ )∗. Indeed, if ω ∈V ∗(λ )(H)

−χ vanishes on Vw(λ), then we
have: 〈ω ,P1 · · ·Pcvλ 〉 = 0 =⇒ 〈Gω ,vλ 〉 = 〈Pc · · ·P1ω ,vλ 〉 = 0 =⇒ 〈ω ,V (λ )〉 =
〈ω,Gvλ 〉= 0 =⇒ ω = 0.

Thus we have mλ (L )≤ dimVw(λ ). Hence mnλ (L ⊗n)≤ dimVw(nλ ). As Sw is a
projective variety of dimension c, the dimension of Vw(nλ )= H0(Sw,LG/B(−λ )⊗n)∗

grows as O(nc).

Now we prove that the estimate for multiplicities cannot be improved. Let
f1, . . . , fc be a transcendence base of k(X)B. Take a very ample line bundle L
on X . Replacing L by a power and using Lemma D.7 one finds B-eigensections

σ0, . . . ,σc ∈ H0(X ,L )(B)
λ (for some λ ∈ X+) such that fi = σi/σ0, i = 1, . . . ,c. The

σi are algebraically independent in the algebra

A =
⊕

n≥0

H0(X ,L ⊗n)U
nλ ,
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whence

mnλ (L ⊗n) = dimAn ≥
(

n+ c
c

)

∼ nc.

If X is quasiaffine, then one may take L = OX . ��

Example 5.17. In the settings of Example 5.5, c(G) is the number of positive roots
and mnλ (G) = dimV ∗(nλ ) is a polynomial in n of degree ≤ c(G), with equality for
general λ , by the Weyl dimension formula [Bou2, Ch. VIII, §9, n◦2].

A stronger result can be proved for homogeneous spaces. Fix an arbitrary norm
| · | on X(B)⊗R.

Theorem 5.18 ([Tim5]). The complexity c(O) of a homogeneous space O is the
minimal integer c such that mλ (L ) = O(|λ |c) over all λ ∈ X+ and all G-line bun-
dles L over O. This estimate is uniform over all homogeneous G-spaces O with
c(O) = c. For quasiaffine O it suffices to consider only mλ (O) (i.e., trivial L ).

The proof is based on the same ideas as in Theorem 5.16(3).

Remark 5.19. For G-varieties of complexity ≤ 1, more precise results on multiplic-
ities are obtained, see Theorem 25.1, Proposition 16.2, and Corollary 16.3.

6 Complexity and Modality

6.1 Modality of an Action. The notion of modality was introduced in the works
of Arnold on the theory of singularities. The modality of an action is the maximal
number of parameters in a continuous family of orbits. More precisely:

Definition 6.1. Let H : X be an algebraic group action. If X is irreducible, then the
integer

dH(X) = min
x∈X

codimX Hx = tr.degk(X)H

is called the generic modality of the action. The modality of H : X is the number
modH X = maxY⊆X dH(Y ), where Y runs through H-stable irreducible subvarieties
of X .

Note that c(X) = dB(X).
It may happen that the modality is greater than the generic modality of an action.

For example, the natural action GLn(k) : Ln(k) by left multiplication has an open
orbit, whereas its modality equals [n2/4]. Indeed, Ln(k) is covered by finitely many
locally closed GLn(k)-stable subsets Yi1,...,ik , where Yi1,...,ik is the set of matrices of
rank k with linearly independent columns i1, . . . , ik. An orbit in Yi1,...,ik depends on
k(n− k) parameters, which are the coefficients of linear expressions of the remain-
ing n− k columns by the columns i1, . . . , ik. The maximal number of parameters is
obtained for k = [n/2].
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Replacing GLn(k) by the group B of non-degenerate upper-triangular matrices
and Ln(k) by the space B of all upper-triangular matrices shows that the same thing
may happen for a solvable group action. The action B : B has an open orbit, but
infinitely many orbits in its complement.

6.2 Complexity and B-modality. Remarkably, for an irreducible G-variety X and
the restricted action B : X , the modality equals the generic modality (=the complex-
ity) of the action. This result was obtained by Vinberg [Vin1] with the aid of Popov’s
technique of contracting to a horospherical variety (cf. 7.3). We present a proof due
to Knop [Kn7], who developed some earlier ideas of Matsuki. A basic tool is an
action of a certain monoid on the set of B-stable subvarieties.

Let W be the Weyl group of G. By the Bruhat decomposition, the only irreducible
closed (B×B)-stable subvarieties in G are the closures of the Bruhat double cosets
Dw = BwB, w ∈W . (Here B×B acts on G by left/right multiplication.)

Definition 6.2 ([Kn7, §2], [RS1]). The Richardson–Springer monoid (RS-monoid)
of G is the set of all Dw, w ∈ W , with the multiplication as of subsets in G.
Equivalently, the RS-monoid is the set W with a new multiplication ∗ defined by
Dv∗w = DvDw. We denote the set W equipped with this product by W ∗.

Clearly, W ∗ is an associative monoid with the unity e. It is easy to describe W ∗

by generators and relations. Namely, W is defined by generators s1, . . . ,sl (simple
reflections) and relations s2

i = e and

sis jsi · · ·
︸ ︷︷ ︸
ni j terms

= s jsis j · · ·
︸ ︷︷ ︸
ni j terms

(braid relations),

where (ni j) is the Coxeter matrix of W . The monoid W ∗ has the same generators
and relations s2

i = si and braid relations. If w = si1 · · ·sin is a reduced decomposition
of w ∈W , then w = si1 ∗ · · · ∗ sin in W ∗. All these assertions follow from standard
facts on multiplication of Bruhat double cosets in G [Hum, §29].

Let B(X) be the set of all closed irreducible B-stable subvarieties in X . The RS-
monoid acts on B(X) in a natural way: for any Z ∈B(X), w ∈W , the set w∗Z :=
DwZ is B-stable, irreducible, and closed as the image of Dw ∗B Z under the proper
morphism G∗B X � G/B×X → X .

Proposition 6.3. c(w∗Z)≥ c(Z), r(w∗Z)≥ r(Z) for any Z ∈B(X).

Here we use the notions of complexity and rank for B-varieties, see Remark 5.2.

Proof. It suffices to consider the case of a simple reflection w = si. In this case,
Dw = Pi is the respective minimal parabolic subgroup of G. If Z is Pi-stable, there is
nothing to prove. Otherwise, the map Pi ∗B Z→ PiZ is generically finite, and we may
replace si ∗Z by Pi ∗B Z and, further, by an open subset BsiB∗B Z = B∗Bi siZ, where
Bi = B∩ siBs−1

i . Therefore the complexity (rank) of si ∗ Z equals the complexity
(resp. rank) of siZ with respect to the Bi-action or of Z with respect to the action of
s−1

i Bsi∩B. The assertion follows. ��
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Theorem 6.4 ([Kn7, 2.3, 2.4]). For any B-stable irreducible subvariety Y ⊆ X, we
have c(Y ) ≤ c(X), r(Y ) ≤ r(X). In particular, modH(X) = dH(X), where H = B
or U.

Proof. Follows from Proposition 6.3, Theorem 5.7, and Proposition 5.6. ��

G-varieties of complexity zero (i.e., having a dense B-orbit) are called spherical.
They are discussed in Chap. 5.

Corollary 6.5 ([Vin1], [Bri1]). Every spherical variety contains finitely many B-or-
bits.

6.3 Adherence of B-orbits. In the spherical case, elements of B(X) are just B-or-
bit closures. The set of all B-orbits on a spherical variety, identified with B(X), is an
interesting combinatorial object. It is finite and partially ordered by the adherence
relation  (= inclusion of orbit closures). This partial order is compatible with the
action of the RS-monoid and with the dimension function in the following sense:

(1) O si ∗O;
(2) O1  O2 =⇒ si ∗O1  si ∗O2;
(3) O1 ≺ O2 =⇒ dimO1 < dimO2;
(4) O≺ si ∗O =⇒ dim(si ∗O) = dimO+1;
(5) (One step property) (si ∗O) = Wi ∗O , where Wi = {e,si} is a minimal stan-

dard Coxeter subgroup in W , and O = {O′ ∈ B(X) | O′  O} is the set of
orbits in the closure of O.

This compatibility imposes strong restrictions on the adherence of B-orbits on a
spherical homogeneous space X = G/H. By (5), it suffices to know the closures of
the minimal orbits, i.e., of O ∈B(G/H) such that O �= w∗O′, ∀O′ �= O, w ∈W ∗. If
all minimal orbits have the same dimension then they are closed.

Example 6.6. For H = B, the B-orbits are the Schubert cells B(wo)⊂ G/B, w ∈W ,
o = eB, and their closures are the Schubert subvarieties Sw = Dw/B in G/B. By
standard facts on the multiplication of Bruhat double cosets, Bo = {o} is the unique
minimal B-orbit. Whence

Sw = si1 ∗ · · · ∗ sin ∗Bo (w = si1 · · ·sin is a reduced decomposition)

= Wi1 ∗ · · · ∗Win ∗Bo = Pi1 · · ·Pin o = (B�Bsi1 B) · · ·(B�BsinB)o =

=
⊔

Bsj1 · · ·s jk Bo =
⊔

v=s j1 ···s jk

B(vo)

over all subsequences ( j1, . . . , jk) of (i1, . . . , in). This is a well-known description of
the Bruhat order on W .

Example 6.7. If G/H is a symmetric space, i.e., H is a fixed point set of an involu-
tion, up to connected components, then G/H is spherical (Theorem 26.14) and all
minimal B-orbits have the same dimension [RS1]. A complete description of B-or-
bits, of the W ∗-action, and of the adherence relation is obtained in [RS1] (cf. Propo-
sition 26.20).
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Example 6.8. For H = TU ′, the space G/H is spherical, but the minimal B-orbits
have different dimensions. However, the adherence of B-orbits is completely deter-
mined by the W ∗-action with the aid of properties (1)–(5). The set B(G/H), the
W ∗-action, and the adherence relation are described in [Tim1].

Conjecture ([Tim1]). For any spherical homogeneous space O, there is a unique
partial order on B(O) satisfying (1)–(5).

6.4 Complexity and G-modality. By Theorem 6.4, the complexity of a G-variety
equals the maximal number of parameters determining a continuous family of B-or-
bits in X . Generally, continuous families of G-orbits depend on a lesser number of
parameters. However, a result of Akhiezer shows that the complexity of a G-action
is the maximal modality in the class of all actions birationally G-isomorphic to the
given one.

Theorem 6.9 ([Akh3]). There exists a G-variety X ′ birationally G-isomorphic to X
such that modG X ′ = c(X).

Proof. Let f1, . . . , fc be a transcendence base of k(X)B/k. We may replace X by
a birationally G-isomorphic normal projective variety. Consider an ample G-line
bundle L on X . Replacing L by a power, we may find a section σ0 ∈H0(X ,L )(B)

such that divσ0 ≥ div∞ fi for ∀i. Put σi = fiσ0 ∈ H0(X ,L )(B).
Take a G-module M generated by a highest vector m0 and such that there is a

homomorphism ψi : M → H0(X ,L ), ψi(m0) = σi. (E.g., M = V (λ0), where λ0 is
the common B-weight of all σi.) Let m0, . . . ,mn be a basis in M consisting of T -
eigenvectors with the weights λ0, . . . ,λn. Let E = 〈e0, . . . ,ec〉 be a trivial G-module
of dimension c + 1. A homomorphism ψ : E ⊗M → H0(X ,L ), ei⊗m �→ ψi(m),
gives rise to a rational G-equivariant map ϕ : X ��� P((E ⊗M)∗). In projective
coordinates,

ψ(x) = [ · · · : ψi(m j)(x) : · · · ].

Take a one-parameter subgroup γ ∈ X∗(T ) such that 〈α,γ〉> 0 for each positive
root α . If there exists σi(x) �= 0, then

ψ(γ(t)x) = [ · · · : t−〈λ j ,γ〉ψi(mj)(x) : · · · ]
= [ · · · : t〈λ0−λ j ,γ〉ψi(m j)(x) : · · · ]−→ [σ0(x) : · · · : σc(x) : 0 : · · · : 0]

as t → 0, because λ0−λ j is a positive linear combination of positive roots for every
j > 0. Thus

lim
t→0

γ(t)ψ(x) =
(
[σ0(x) : · · · : σc(x)], [m∗0]

)
∈ P(E∗)×P(M∗) ↪→ P((E⊗M)∗)

(the Segre embedding), where m∗0, . . . ,m
∗
n is the dual basis of M∗.

Let X ′ ⊆ X ×P((E⊗M)∗) be the closure of the graph of ϕ . By the above, Y =
X ′ ∩ (X×P(E∗)×P(M∗)) contains points of the form

y0 = lim
t→0

γ(t)(x,ψ(x)) =
(
lim
t→0

γ(t)x, [σ0(x) : · · · : σc(x)], [m∗0]
)
.
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The G-invariant projection Y → P(E∗) maps y0 to [σ0(x) : · · · : σc(x)], and hence
is dominant, because fi = σi/σ0 are algebraically independent in k(X). Thence the
generic modality of any component of Y dominating P(E∗) is greater than or equal
to c. ��

Corollary 6.10 ([Akh2]). A homogeneous space O is spherical if and only if any
G-variety X with an open orbit isomorphic to O has finitely many G-orbits.

7 Horospherical Varieties

7.1 Horospherical Subgroups and Varieties. There is a nice class of G-varieties,
which is easily accessible for study from the viewpoint of the local structure, com-
plexity, and rank.

Definition 7.1. A subgroup S ⊆ G is horospherical if S contains a maximal unipo-
tent subgroup of G. A G-variety X is called horospherical if the stabilizer of any
point in X is horospherical. In other words, X = GXU .

Remark 7.2. In the definition, it suffices to require that the stabilizer of a general
point is horospherical. Indeed, this implies that GXU is dense in X . On the other
hand, XU is B-stable, whence GXU is closed by Proposition 2.7.

Example 7.3. Consider a Lobachevsky space Ln in the hyperbolic realization, i.e., Ln

is the upper pole of a hyperboloid {x ∈R
n+1 | (x,x) = 1} in an (n+1)-dimensional

pseudo-Euclidean space R
n+1 of signature (1,n) [AVS, 1.5]. Recall that a horo-

sphere in Ln is a hypersurface perpendicular to a pencil of parallel lines. These lines
intersect the absolute ∂ Ln ⊆ RP

n in a point [v] called the center of the horosphere,
where v ∈ R

n+1 is an isotropic vector such that the horosphere consists of x ∈ Ln

with (x,v) = 1 [AVS, 2.2]. The group (IsomLn)0 = O0
1,n acts transitively on the set

of horospheres in Ln. Fix a horosphere Hn−1 ⊂ Ln and let [e1] ∈ ∂Ln be its center.
The stabilizer P of [e1] is a parabolic subgroup of O0

1,n. Take a line �⊂ Ln orthogonal

to Hn−1. It intersects ∂ Ln in two points [e1], [en+1], so that (e1,en+1) = 1. The group
P contains a one-parameter subgroup A acting in 〈e1,en+1〉 by hyperbolic rotations
and trivially on 〈e1,en+1〉⊥ = 〈e2, . . . ,en〉 (we choose an orthonormal basis of the
complement). Then A acts on � by translations and the complementary subgroup
S = P′ is the stabilizer of Hn−1. In the matrix form (in the basis e1, . . . ,en+1),

S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 u"C u"u
0... C u
0
0 0 · · · 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

C ∈ SOn−1, u ∈ R
n−1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Recall that Hn−1 carries a Euclidean geometry [AVS, Th. 2.3], and S=(IsomHn−1)0,
where Ru(S) acts by translations and a Levi subgroup of S by rotations with an ori-
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gin fixed. Clearly, S(C) is a horospherical subgroup of SO1,n(C), which explains
the terminology.

For any parabolic P⊆ G, let P = Pu �L be a Levi decomposition, and L0 be any
intermediate subgroup between L and L′. Then a subgroup S = Pu �L0 is horospher-
ical. Conversely:

Lemma 7.4 ([Kn1, 2.1]). Let S⊆ G be a horospherical subgroup. Then P = NG(S)
is parabolic, and for a Levi decomposition P = Pu � L we have S = Pu � L0, where
L′ ⊆ L0 ⊆ L.

Proof. Embed S regularly in a parabolic P ⊆ G. Since S is horospherical, Ru(S) =
Pu, and S/Pu contains a maximal unipotent subgroup of P/Pu � L, whence S/Pu �
L0 ⊇ L′. Now it is clear that S = Pu � L0 and P = NG(S), because P normalizes S
and NG(S) normalizes Ru(S). ��

Definition 7.5. A standard reductive subgroup is a subgroup L0 ⊆ G such that L′ ⊆
L0 ⊆ L, where L⊇ T is the standard Levi subgroup in a standard parabolic P⊇ B.

By Lemma 7.4 conjugacy classes of horospherical subgroups are in bijection with
standard reductive subgroups in G.

In the sequel, assume that chark = 0 for simplicity.
Horospherical varieties can be characterized in terms of the properties of multi-

plication in the algebra of regular functions. For any G-module M and any λ ∈ X+,
let M(λ ) denote the isotypic component of type λ in M.

Proposition 7.6. A quasiaffine G-variety X is horospherical if and only if k[X ](λ ) ·
k[X ](μ) ⊆ k[X ](λ+μ), ∀λ ,μ ∈Λ+(X).

The implication “if” stems from [Po5, Pr. 8(3)] while “only if” is deduced from the
inclusion k[X ]⊆ k[G/U ]⊗k[XU ] given by the natural surjective map G/U×XU →
X and from Lemma 2.23. See also Theorem 21.10.

The local structure of a horospherical action is simple.

Proposition 7.7 ([Kn1, 2.2]). An irreducible horospherical G-variety X contains
an open G-stable subset X̊ � G/S×C, where S ⊆ G is horospherical and G : C is
trivial.

Proof. By a theorem of Richardson [PV, Th. 7.1], Levi subgroups of stabilizers of
general points on X are conjugate, and unipotent radicals of stabilizers form a con-
tinuous family of subgroups in G. Now it is clear from Lemma 7.4 that a horospher-
ical subgroup cannot be deformed outside its conjugacy class, whence stabilizers of
general points are all conjugate to a certain S⊆G. Replacing X by an open G-stable
subset yields X �G∗P XS, where P = NG(S) [PV, 2.8]. But P acts on XS via a torus
P/S, and hence XS is locally P-isomorphic to P/S×C, where P acts on C trivially
[PV, 2.6]. ��
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7.2 Horospherical Type. To any irreducible G-variety X , one can relate a certain
horospherical subgroup of G. Recall that, by Theorem 4.7, X contains an open affine
subset X̊ � Pu×A×C, where Pu is the unipotent radical of a parabolic subgroup
P = P(X), which is the normalizer of a general B-orbit in X , and A = L/L0 is a
quotient torus of a Levi subgroup L ⊆ P. Then S(X) = Pu �L0 is the normalizer of
a general U-orbit in X .

Definition 7.8. The horospherical type of X is, up to conjugation, the opposite horo-
spherical subgroup S = S(X)− = P−u �L0, where P−u is the unipotent radical of the
opposite parabolic subgroup P− intersecting P in L.

Example 7.9. The horospherical type of a horospherical homogeneous space G/S
is S, because G contains an open “big cell” Pu×L×P−u , where P− = NG(S) = P−u �
L. For general horospherical varieties, the horospherical type is (the conjugation
class of) the stabilizer of general position (Proposition 7.7).

Complexity, rank and weight lattice can be read off the horospherical type.
Namely, it follows from Theorem 4.7 that c(X) = dimX − dimG + dimS, Λ (X) =
X(A), r(X) = dimA, where A = P−/S.

7.3 Horospherical Contraction. Every G-action degenerates to a horospherical
one of the same type. A construction of such degeneration, called the horospherical
contraction, was suggested by Popov [Po5]. We review the horospherical contrac-
tion in characteristic zero, referring to [Gr2, §15] for arbitrary characteristic.

First consider an affine G-variety X . Choose a one-parameter subgroup γ ∈
X∗(T ) such that 〈γ,λ 〉 ≥ 0 for any λ ∈ X+ and 〈γ,α〉 > 0 for any α ∈ Δ+. Then
k[X ](n) =

⊕
〈γ ,λ 〉≤n k[X ](λ) is a G-stable filtration of k[X ]. The algebra grk[X ] is

finitely generated and has no nilpotents. It is easy to see using Proposition 7.6
that X0 = Specgrk[X ] is a horospherical variety of the same type as X . Moreover,
k[X0]U � k[X ]U and k[X0]� k[X ] as G-modules. (Note that S(X) may be described
as the common stabilizer of all f ∈ k[X ](B).)

Furthermore, X0 may be described as the zero-fiber of a flat family over A
1 with

a general fiber X . Namely, put R =
⊕∞

n=0 k[X ](n)tn ⊆ k[X ][t] and E = SpecR. The
natural morphism δ : E → A

1 is flat and (G×k
×)-equivariant, where G acts on A

1

trivially and k
× acts by homotheties. Now δ−1(t)� X , ∀t �= 0, and δ−1(0)� X0.

If X is an arbitrary G-variety, then we may replace it by a birationally G-iso-
morphic projective variety, build an affine cone X̂ over X , and perform the above
construction for X̂ . Passing again to a projectivization and taking a sufficiently small
open G-stable subset, we obtain

Proposition 7.10 ([Kn1, 2.7]). There exists a smooth (G× k
×)-variety E and a

smooth (G× k
×)-morphism δ : E → A

1 such that Xt := δ−1(t) is G-isomorphic
to an open smooth G-stable subset of X for any t �= 0, and X0 is a smooth horo-
spherical variety of the same type as X.
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8 Geometry of Cotangent Bundles

To a smooth G-variety X , we relate a Hamiltonian G-action on the cotangent bundle
T ∗X equipped with a natural symplectic structure. Remarkably, the invariants of G :
X introduced in §5 are closely related to the symplectic geometry of T ∗X and to the
respective moment map. In particular, one obtains effective formulæ for complexity
and rank involving symplectic invariants of G : T ∗X . This theory was developed by
F. Knop in [Kn1]. To the end of this chapter, we assume that chark = 0.

8.1 Symplectic Structure. Let X be a smooth irreducible variety. A standard sym-
plectic structure on T ∗X [AG, Ch. 2, 2.1] is given by a 2-form ω = dq∧dp = ∑dqi∧
dpi, where q = (q1, . . . ,qn) is a tuple of local coordinates on X , and p = (p1, . . . , pn)
is an impulse, i.e., tuple of dual coordinates in a cotangent space. In a coordinate-
free form, ω = −d�, where a 1-form � on T ∗X is given by 〈�(α),ν〉= 〈α,dπ(ν)〉,
∀ν ∈ Tα T ∗X , and π = πX : T ∗X → X is the canonical projection.

This symplectic structure defines the Poisson bracket of functions on T ∗X . An-
other way to define this Poisson structure is to consider the sheaf DX of differential

operators on X . There is an increasing filtration DX =
⋃

D
(m)
X by the order of a

differential operator and the isomorphism grDX � S•TX = π∗OT ∗X given by the
symbol map, where TX is the sheaf of vector fields on X . Since grDX is commuta-
tive, the commutator in DX induces the Poisson bracket on OT ∗X by the rule

{∂1 mod D
(m−1)
X ,∂2 mod D

(n−1)
X }= [∂1,∂2] mod D

(m+n−2)
X , ∀∂1 ∈D

(m)
X , ∂2 ∈D

(n)
X .

8.2 Moment Map. If X is a G-variety, then the symplectic structure on T ∗X is
G-invariant and, for every ξ ∈ g, the velocity field of ξ on T ∗X has a Hamiltonian
Hξ = ξ∗, the respective velocity field on X considered as a linear function on T ∗X
[AG, Ch. 3, 3.1], [Vin3, II.2.1]. Furthermore, the action G : T ∗X is Hamiltonian,
i.e., the map ξ �→ Hξ is a homomorphism of g to the Poisson algebra of functions
on T ∗X [AG, Ch. 3, 3.1], [Vin3, II.2.1]. The dual morphism Φ = ΦX : T ∗X → g∗,

〈Φ(α),ξ 〉= Hξ (α) = 〈α,ξx〉, ∀α ∈ T ∗x X , ξ ∈ g,

is called the moment map. By MX ⊆ g∗ we denote the closure of its image. Also set
LX = MX//G.

The moment map is G-equivariant [AG, Ch. 3, 3.1], [Vin3, II.2.3]. Clearly
〈dα Φ(ν),ξ 〉 = ω(ξ α ,ν), ∀ν ∈ TαT ∗X , ξ ∈ g. It follows that Kerdα Φ = (gα)∠,
Imdα Φ = (gα)⊥, where ∠ and ⊥ denote the skew-orthocomplement and the annihi-
lator in g∗, respectively.

Example 8.1. If X = G/H, then T ∗X = G∗H h⊥ and Φ(g∗α) = gα , ∀g∈G, α ∈ h⊥.
Thus MG/H = Gh⊥. In the general case, for all x ∈ X , the moment map restricted to
T ∗X |Gx factors as Φ : T ∗X |Gx � T ∗Gx→MGx ⊆MX . We shall see below that, for
general x, MGx = MX . All maps T ∗Gx→MX patch together in the localized moment
map, see 8.3.
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The cohomomorphism Φ∗ exists in two versions—a commutative and a non-
commutative one. Let Ug denote the universal enveloping algebra of g, and let D(X)
be the algebra of differential operators on X . The action G : X induces a homomor-
phism Φ∗ = Φ∗

X : Ug→D(X) mapping each ξ ∈ g to a 1-order differential operator
ξ∗ on X . The map Φ∗ is a homomorphism of filtered algebras, and the associated
graded map

grΦ∗ : grUg� S•g = k[g∗]−→ grD(X)⊆ k[T ∗X ], ξ �→ Hξ ,

is the commutative version of the cohomomorphism. The isomorphism grUg� S•g
is provided by the Poincaré–Birkhoff–Witt theorem, and the embedding grD(X)⊆
k[T ∗X ] is the symbol map.

There is a natural symplectic structure on each coadjoint orbit Gβ ⊂ g∗ given by
the Kirillov form ω(ξ β ,ηβ ) = 〈[ξ ,η ],β 〉, ∀ξ ,η ∈ g [AG, Ch. 2, 2.4]. The Poisson
brackets on G-orbits merge together into a Poisson bracket on k[g∗] � S•g, which
can be defined on generators by {ξ ,η}= [ξ ,η], ∀ξ ,η ∈ g [Vin3, II.1.5]. The map
grΦ∗ is a homomorphism of Poisson algebras, i.e., it respects Poisson brackets.

8.3 Localization. On the sheaf level, we have the homomorphisms Φ∗ : OX⊗g→
TX , OX ⊗Ug→ DX . Let GX = Φ∗(OX ⊗g) denote the action sheaf (generated by
velocity fields), let FX be the OX -subalgebra in S•TX generated by GX , and let
UX = Φ∗(OX ⊗Ug). Clearly,

T gX := SpecOX
FX = Im(π×Φ)⊆ X×g

∗.

The moment map factors as

Φ : T ∗X −→ T gX
Φ−→ g

∗.

The (non-empty) fibers of π ×Φ are affine translates of the conormal spaces to G-
orbits. General fibers of T gX → X are the cotangent spaces g⊥x = T ∗x Gx to general
orbits. The morphism Φ is called the localized moment map [Kn6, §2].

Example 8.2. If X is a smooth completion of a homogeneous space O = G/H, then
TgX ⊃ T ∗O and Φ is a proper map extending Φ : T ∗O→ g∗. Thus one compactifies
the moment map of a homogeneous cotangent bundle.

Definition 8.3. A smooth G-variety X is called pseudo-free if GX is locally free or
T gX is a vector bundle over X . In other words, the rational map X ��� Grk(g) �
Grn−k(g∗), x �→ [gx] �→ [g⊥x ] (n = dimg, k = dimGx for x ∈ X in general position)
extends to X , i.e., generic isotropy subalgebras degenerate at the boundary to spe-
cific limits.

Example 8.4. For trivial reasons, X is pseudo-free if the action G : X is generically
free. Also, X is pseudo-free if all G-orbits in X have the same dimension: in this
case T gX =

⊔
Gx⊆X T ∗Gx [Kn6, 2.3].
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It is instructive to note that every G-variety X has a pseudo-free resolution of
singularities X̌ → X : just consider the closure of the graph of X ��� Grk(g) and take
for X̌ an equivariant desingularization of this closure.

It is easy to see that grΦ∗ behaves well on the sheaf level on pseudo-free vari-
eties.

Proposition 8.5 ([Kn6, 2.6]). If X is pseudo-free, then the filtrations on UX induced
from Ug and DX coincide, and grΦ∗ : OX ⊗S•g→ S•TX is surjective onto grUX =
FX � S•GX .

8.4 Logarithmic Version. Sometimes it is useful to replace the usual cotangent
bundle by its logarithmic version [Dan, §15], [Oda, 3.1]. Let D⊂X be a divisor with
normal crossings (which means that the components of D are smooth and intersect
transversally). The sheaf Ω 1

X (logD) of differential 1-forms with at most logarithmic
poles along D is locally generated by d f / f with f invertible outside D. It contains
Ω 1

X and is locally free. The respective vector bundle T ∗X(logD) is said to be the
logarithmic cotangent bundle. The dual vector bundle T X(− logD), called the log-
arithmic tangent bundle, corresponds to the subsheaf TX (− logD) ⊂ TX of vector
fields preserving the ideal sheaf ID � OX .

If D is G-stable, then the velocity fields of G on X are tangent to D, i.e., GX ⊆
TX (− logD). By duality, we obtain the logarithmic moment map Φ : T ∗X(logD)→
T gX → g∗ extending the usual one on T ∗(X \D).

8.5 Image of the Moment Map. We are going to describe the structure of MX .
We do it first for horospherical varieties. Then we contract any G-variety to a horo-
spherical one and show that this contraction does not change MX .

Remark 8.6. We assume that X is smooth in order to use the notions of symplectic
geometry. However, the moment map may be defined for any G-variety X . As the
definition is local and MX is a G-birational invariant of X , we may always pass to a
smooth open subset of X , and conversely to a (maybe singular) G-embedding of a
smooth G-variety.

Let X be a horospherical variety of type S. It is clear from Proposition 7.7 that
MX = MG/S. The moment map factors as

ΦG/S : G∗S s
⊥ πA−→ G∗P− s

⊥ ϕ−→ g
∗,

where P− = NG(S), and πA is the quotient map modulo A = P−/S. By Proposi-
tion 2.7, the map ϕ is proper, whence MG/S = Gs⊥. Let us identify g∗ with g via a
non-degenerate G-invariant inner product on g given by (ξ ,η) = trξ η , where we
assume that G ⊆ GLn(k), g ⊆ gln(k). Then s⊥ is identified with a⊕ p−u and is re-
tracted onto a by a certain one-parameter subgroup of Z(L). It follows that a � a∗

intersects all closed G-orbits in MG/S, and LG/S = πG(a∗), where πG : g∗ → g∗//G
is the quotient map.

Finally, general fibers of ϕ are finite. Indeed, it suffices to find at least one finite
fiber. But ϕ−1(Gp−u ) = G ∗P− p−u maps onto Gp−u with finite general fibers by a
theorem of Richardson [McG, 5.1].
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We sum up in

Theorem 8.7. For any horospherical G-variety X of type S, the natural map G ∗P−

s⊥ →MX = Gs⊥ is generically finite, proper and surjective, and LX = πG(a∗).

We have already seen that horospherical varieties, their cotangent bundles and
moment maps are easily accessible for study. A deep result of Knop says that the
closure of the image of the moment map depends only on the horospherical type.

Theorem 8.8 ([Kn1, 5.4]). Assume that X is a G-variety of horospherical type S.
Then MX = MG/S.

In the physical language, the idea of the proof is to apply quantum technique to
classical theory. We study the homomorphism Φ∗

X : Ug→ D(X) and show that its
kernel JX � Ug depends only on the horospherical type. Then we deduce that
JX = KergrΦ∗

X = I (MX ) � k[g∗] depends only on the type of X , which is the
desired assertion. We retain the notation of Proposition 7.10.

Lemma 8.9. JX = JX0 = JG/S.

In the affine case, lemma stems from a G-module isomorphism k[X ] � k[X0]. In-
deed, Φ∗

X depends only on the G-module structure of k[X ]. The general case is de-
duced from the affine one by the technique of affine cones and some additional
arguments [Kn1, 5.1].

Put MX = ImΦ∗
X ⊆D(X). By the previous lemma, MX �MX0 �MG/S.

Lemma 8.10. grMG/S is a finite k[g∗]-module.

Proof. By Proposition 1.8, A = P−/S acts on G/S by G-automorphisms. Therefore
MG/S ⊆D(G/S)A and grMG/S ⊆ k[T ∗G/S]A = k[G∗P− s⊥], the latter being a finite
k[g∗]-module by Theorem 8.7. ��

The restriction maps ME
∼→MXt agree with Φ∗ and do not raise the order of a

differential operator. We identify ME and MXt via this isomorphism and denote by
ordE ∂ (ordXt ∂ ) the order of a differential operator ∂ on E (resp. on Xt ).

Theorem 8.8 follows from

Lemma 8.11. On MX �ME �MX0 , ordX ∂ = ordE ∂ = ordX0 ∂ for any ∂ .

Proof. The first equality is clear, because an open subset of E is G-isomorphic to
X ×k

×. It follows from Lemma 8.10 that the orders of a given differential operator
on E and on X0 do not differ very much. Indeed, choose ∂1, . . . ,∂s ∈MX0 = MG/S
representing generators of grMX0 = grMG/S over k[g∗]. Put di = ordX0 ∂i and

d = maxi ordE ∂i. If ordX0 ∂ = n, then ∂ = ∑ui∂i for some ui ∈ U(n−di)g, and hence
ordE ∂ ≤ n+d.

However, if ordX0 ∂ < ordE ∂ , then ordX0 ∂ d+1 < ordE ∂ d+1−d, a contradiction.
��

Remark 8.12. For an alternative proof of Theorem 8.8 in the quasiaffine case, which
does not use “quantization”, see Remark 23.4.
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The explicit description of MX in terms of the horospherical type allows invariant-
theoretic properties of the action G : MX to be examined.

In the above notation, put M = ZG(a) ⊇ L. Every G-orbit in MX is of the form
Gξ , ξ ∈ s⊥ = a⊕p−u . Consider the Jordan decomposition ξ = ξs +ξn, where ξs is
semisimple and ξn is nilpotent. The (unique) closed orbit in Gξ is Gξs. Moving ξ
by P−u , we may assume that ξs ∈ a. If ξ is a general point, then Gξs = M, zg(ξs) = m,
thence ξn ∈m∩p−u .

The concept of a general point can be specified as follows: consider the principal
open stratum apr ⊆ a obtained by removing all proper intersections with kernels of
roots and with W -translates of a. Then Gξ = M, ∀ξ ∈ apr, and G-orbits intersect apr

in orbits of a finite group W (a) = NG(a)/M acting freely on apr. Furthermore,

Mpr
X := π−1

G πG(apr)� G∗NG(a) (apr +M), where M = NG(a)(m∩p
−
u )

is a nilpotent cone in m.

Definition 8.13. The Hamiltonian action G : T ∗X is said to be symplectically stable
if the action G : MX is stable, i.e., general G-orbits in MX are closed. By the above
discussion, symplectic stability is equivalent to M = L.

This class of actions is wide enough.

Proposition 8.14. If X is quasiaffine, then T ∗X is symplectically stable.

Proof. The horospherical contraction X0 and a typical orbit G/S therein are quasi-
affine, too. If M ⊃ L, then there is a root α with respect to the maximal torus T ⊆ L
such that α|a = 0 and gα ⊆ pu. Then [gα ,g−α ]⊆ l0. Let sα = gα ⊕ [gα ,g−α ]⊕g−α

be the corresponding sl2-subalgebra of g. Then sα ∩ s = [gα ,g−α ]⊕g−α is a Borel
subalgebra in sα , and an orbit in G/S of the respective subgroup Sα ⊆ G is isomor-
phic to P

1, a contradiction with quasiaffinity. ��

Remark 8.15. A symplectically stable action is stable, i.e., general orbits of G : T ∗X
are closed. Indeed, Φ is smooth along Φ−1(ξ ) for general ξ ∈MX , whence (gα)∠ =
Kerdα Φ = Tα Φ−1(ξ ) have one and the same dimension dimT ∗X −dimMX for all
α ∈Φ−1(ξ ). It follows that all orbits over Gξ are closed in Φ−1(Gξ ).

8.6 Corank and Defect. The Hamiltonian G-action on T ∗X provides two impor-
tant invariants:

Definition 8.16. The defect defT ∗X is the defect of the symplectic form restricted
to a general G-orbit.

The corank corkT ∗X is the rank of the symplectic form on the skew-orthogonal
complement to the tangent space of a general G-orbit.

In other words,

defT ∗X = dim(gα)∠∩gα,

corkT ∗X = dim(gα)∠/(gα)∠∩gα

for general α ∈ T ∗X .
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The cohomomorphism grΦ∗ maps k[g∗]G onto a Poisson-commutative subal-
gebra AX ⊆ k[T ∗X ]G isomorphic to k[LX ]. Skew gradients of functions in AX

commute, are G-stable, and both skew-orthogonal and tangent to G-orbits. In-
deed, for any f ∈ AX , α ∈ T ∗X , d f is zero on gα (since f is G-invariant) and
on (gα)∠ = Kerdα Φ (because f is pulled back under Φ).

Those skew gradients generate a flow of G-automorphisms preserving G-orbits
on T ∗X , which is called G-invariant collective motion. The restriction of this flow
to Gα is a connected Abelian subgroup (in fact, a torus for general α , see §23)
Aα ⊆ AutG(Gα) with the Lie algebra aα ⊆ ng(gα)/gα .

For general α , Φ−1Φ(Gα) are level varieties for AX , because G-invariant regu-
lar functions separate general G-orbits in MX ⊆ g∗. It follows that

KerdαAX = Tα Φ−1Φ(Gα) = (gα)+(gα)∠, and

aα = (gα)∠∩ (gα) = Tα(Gα ∩Φ−1Φ(α))� gΦ(α)/gα .

In particular, gΦ(α) ⊃ gα ⊃ g′Φ(α).
The defect of G : T ∗X is the dimension of the invariant collective motion:

defT ∗X = dimaα for general α ∈ T ∗X .

8.7 Cotangent Bundle and Geometry of an Action. The next theorem links the
geometry of X and the symplectic geometry of T ∗X .

Theorem 8.17 ([Kn1, 7.1]). Put n = dimX, c = c(X), r = r(X). Then dimMX =
2n−2c− r, defT ∗X = dG(MX ) = r, dG(T ∗X) = 2c+ r, corkT ∗X = 2c.

Proof. In the notation of Definition 7.8, we have a decomposition g = pu⊕ l0⊕a⊕
p−u , where s = l0⊕ p−u is (the Lie algebra of) the horospherical type of X , and s⊥

is identified with a⊕p−u via g � g∗. By Theorem 4.7, dimpu = dimp−u = n− c− r
whence, by Theorems 8.7–8.8, dimMX = dimG/P−+dims⊥ = dimpu +dimp−u +
dima = 2n−2c− r, and dG(MX ) = dimLX = dima = r. For general α ∈ T ∗X , we
have dG(T ∗X) = codimGα = dim(gα)∠ = dimΦ−1Φ(α) = 2n−dimMX = 2c+r,
and defT ∗X = dimGα ∩Φ−1Φ(α) = dimGΦ(α)/Gα = dimGα − dimGΦ(α) =
dimMX−dimGΦ(α) = dG(MX ) = r. Finally, corkT ∗X = dG(T ∗X)−defT ∗X = 2c.

��

Another application of the horospherical contraction and of the moment map is
the existence of the stabilizer of general position for the G-action in a cotangent
bundle.

Theorem 8.18 ([Kn1, §8]). Stabilizers in G of general points in T ∗X are conju-
gate to a stabilizer of the open orbit of M∩ S in m∩ p−u , in the above notation. In
the symplectically stable (e.g., quasiaffine) case, generic stabilizers of G : T ∗X are
conjugate to L0.

Proof. We prove the first assertion for horospherical X . The general case is derived
form the horospherical one with the aid of the horospherical contraction using The-
orem 8.8 and the invariant collective motion, see [Kn1, 8.1], or Remark 23.8 for the
symplectically stable case.
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We may assume that X = G/S. A generic stabilizer of G : T ∗G/S equals a generic
stabilizer of S : s⊥ = a⊕p−u . Take a general point ξ ∈ s⊥ and let ξ = ξs +ξn be the
Jordan decomposition. Moving ξ by P−u , we may assume that ξs is a general point
in a. Then Sξs = M∩S, ξn ∈m∩p−u , and Sξ = (M∩S)ξn is the stabilizer of a general
point in m∩ p−u . But M∩ S has the same orbits in m∩ p−u as a parabolic subgroup
M ∩P− ⊆ M, because these two groups differ by a central torus in M. By [McG,
Th. 5.1], M∩P− has an open orbit in the Lie algebra of its unipotent radical m∩p−u ,
which proves the first assertion of the theorem.

If X is symplectically stable, then M = L, whence the second assertion. ��

The last two theorems reduce the computation of complexity and rank to study-
ing generic orbits and stabilizers of a reductive group. Namely, it suffices to know
generic G-modalities of T ∗X and MX . We have a formula

2c(X)+ r(X) = dG(T ∗X) = 2dimX−dimG+dimG∗, (8.1)

where G∗ is the stabilizer of general position for G : T ∗X . For quasiaffine X ,

r(X) = rkG− rkG∗. (8.2)

Furthermore, Λ (X) is the group of characters of T vanishing on T ∩G∗, where G∗ is
a certain standard reductive subgroup in the conjugacy class of generic stabilizers.
For homogeneous spaces, everything is reduced even to representations of reductive
groups, see §9.

Remark 8.19. While for computing complexity and rank of a quasiaffine G-variety it
suffices to know the isomorphism class of G∗, in order to compute the weight lattice
one has to determine G∗ as a standard reductive subgroup of G. Caution is required
here, because there may exist different conjugate standard reductive subgroups in G,
cf. Example 9.3.

8.8 Doubled Actions. Now we explain another approach to computing complexity
and rank based on the theory of doubled actions [Pan1], [Pan7, Ch. 1]. This approach
is parallel to Knop’s one and coincides with the latter in the case of G-modules.

Let θ be a Weyl involution of G relative to T , i.e., an involution of G acting on T
as an inversion. Then θ(P) = P− for any parabolic P⊇ B.

Example 8.20. If G = GLn(k), or SLn(k), and T is the standard diagonal torus, then
we may put θ (g) = (g")−1.

Definition 8.21. The dual G-variety X∗ is a copy of X equipped with a twisted G-
action: gx∗ = (θ (g)x)∗, where x �→ x∗ is a fixed isomorphism X

∼→ X∗.
The diagonal action G : X×X∗ is called the doubled action with respect to G : X .

Remark 8.22. If V is a G-module, then V ∗ is the dual G-module with a fixed linear
Gθ -isomorphism V

∼→V ∗. Similarly, P(V )∗ � P(V ∗). If X ⊆ P(V ) is a quasiprojec-
tive G-variety, then X∗ ⊆ P(V ∗).
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Remark 8.23. For a G-module V , the doubled G-variety V ⊕V ∗ is nothing else but
the cotangent bundle T ∗V .

The following theorems, due to Panyushev, are parallel to Theorems 8.18 and 8.17.

Theorem 8.24. Stabilizers in G of general points in X ×X∗ are conjugate to L0.

Theorem 8.25. Let G∗ be the stabilizer of general position for G : X×X∗. Then

2c(X)+ r(X) = dG(X×X∗) = 2dimX−dimG+dimG∗, (8.3)

r(X) = rkG− rkG∗, (8.4)

and Λ(X) is the group of characters of T which vanish on T ∩G∗, under appropriate
choice of G∗ as a standard reductive subgroup of G.

Proofs. Consider an open embedding Pu×Z ↪→ X from Theorem 4.7. Then P−u ×
Z∗ ↪→ X∗, where Z∗ is the dual L-variety to Z. One deduces [Pan7, 1.2.2] that
G(Z×Z∗) = X×X∗ and the stabilizers in G of general points in Z×Z∗ are contained
in L and hence equal to L0. This proves Theorem 8.24. Theorem 8.25 follows from
Theorem 8.24 and the equalities dimG/L0 = 2dimPu +dimA = 2dimX−2c(X)−
r(X). ��

Example 8.26. If X = G/P is a projective homogeneous space, then X∗ = G/P− and
the stabilizer of general position for G : X×X∗ equals P∩P− = L.

We have a nice invariant-theoretic property of doubled actions on affine varieties.

Theorem 8.27 ([Pan6, 1.6], [Pan7, 1.3.13]). If X is affine, then general G-orbits on
X×X∗ are closed.

For a G-module V , a stabilizer of general position for the doubled G-module
(or the cotangent bundle) V ⊕V ∗ can be found by an effective recursive algorithm
relying on the Brion–Luna–Vust construction (see 4.2).

Retain the notation of Lemma 4.4. The orbit G(v + ω) is closed in V ⊕V ∗

(which is easy to prove, e.g., using Luna’s criterion [PV, 6.11]) and a subspace
N = F0⊕F∗0 ⊕〈v+ω〉 is a slice module at v+ω , i.e., complementary to g(v+ω) =
puv⊕p−u ω⊕〈v−ω〉 and stable under Gv+ω ⊂ L. Since LN is dense in F⊕F∗, the
étale slice theory [Lu2], [PV, §6] implies that G(F ⊕F∗) is dense in V ⊕V ∗ and a
stabilizer of general position for G : V ⊕V ∗ equals that for L : F⊕F∗.

Replacing G : V by L : F , we apply the Brion–Luna–Vust construction again, and
so on. We obtain a descending sequence of Levi subgroups Li ⊆ G and Li-submod-
ules Fi ⊆ V . As the semisimple rank of Li decreases, the sequence terminates and,
on the final s-th step, L′s acts on Fs trivially. Then G∗ is just the kernel of Ls : Fs.

Example 8.28. Let G = Spin10(k) and V = V (ω4) be one of its half-spinor rep-
resentations. Here and below ωi denote the fundamental weights. In the nota-
tion of [OV], the positive roots of G are εi − ε j , εi + ε j , the simple roots are
αi = εi − εi+1, α5 = ε4 + ε5, where 1 ≤ i < j ≤ 5 and ±ε1, . . . ,±ε5 are the T -
weights of the tautological representation V (ω1) of SO10(k). The weights of V are
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(±ε1±·· ·±ε5)/2, where the number of minuses is odd, ω4 = (ε1 + · · ·+ε4−ε5)/2,
ω∗4 = ω5 = (ε1 + · · ·+ ε5)/2, and ωi = ε1 + · · ·+ εi for i = 1,2,3.

Take a highest vector v∗1 ∈ V ∗ and let P1 ⊂ G be the stabilizer of [v∗1]. Its Levi
subgroup L1 has α1, . . . ,α4 as simple roots. The weights of (p−1 )uv∗1 are of the form
(±ε1±·· ·± ε5)/2 with 2 minuses, and the weights of F1 = ((p−1 )uv∗1)

⊥ have 1 or 5
minuses. Clearly, L1 is of type A4, and F1 is the direct sum of a 1-dimensional L1-
submodule of the weight (−ε1−·· ·− ε5)/2 and of a 5-dimensional L1-submodule
with highest weight (ε1 + · · ·+ ε4− ε5)/2.

Take a highest vector v∗2 in the 5-dimensional summand of F∗1 with highest weight
(ε1− ε2− ·· · − ε5)/2, and let P2 ⊂ L1 be the stabilizer of [v∗2]. The second Levi
subgroup L2 ⊂ P2 has α2,α3,α4 as simple roots, the weights of (p−2 )uv∗2 are (−ε1±
ε2±·· ·± ε5)/2 with exactly 1 plus, and F2 = ((p−2 )uv∗2)

⊥ has the weights (−ε1 +
ε2 + · · ·+ ε5)/2, (−ε1− ε2−·· ·− ε5)/2.

It is easy to see that L′2 is exactly the kernel of L2 : F2. Thus our algorithm termi-
nates, and we obtain G∗ = L′2 � SL4, Λ (V ) = X(T/T ∩L′2) = 〈ω1,ω5〉, r(V ) = 2,
and c(V ) = 0. Moreover, k[V ]1 = V ∗ = V (ω5) and k[V ]2 = S2V (ω5) = V (2ω5)⊕
V (ω1), whence Λ+(V ) = 〈ω1,ω5〉.

9 Complexity and Rank of Homogeneous Spaces

9.1 General Formulæ. We apply the methods developed in §8 to computing com-
plexity and rank of homogeneous spaces.

The cotangent bundle of G/H is identified with G ∗H h⊥, where h⊥ � (g/h)∗ is
the annihilator of h in g∗. The representation H : h⊥ is the coisotropy representa-
tion at eH ∈ G/H. If we identify g with g∗ via a non-degenerate G-invariant inner
product on g as in 8.5, then h⊥ is just the orthogonal complement of h.

If H is reductive, then g = h⊕h⊥ as H-modules. In particular, the isotropy and
coisotropy representations are isomorphic.

The following theorem is a reformulation of Theorems 8.17–8.18 for homoge-
neous spaces.

Theorem 9.1. Generic stabilizers of the coisotropy representation are all conjugate
to a certain subgroup H∗ ⊆ H. For the complexity and rank of G/H, we have the
equations:

2c(G/H)+ r(G/H) = dH(h⊥) = dimh
⊥−dimH +dimH∗ (9.1)

= dimG−2dimH +dimH∗,

r(G/H) = dimGα −dimHα , (9.2)

2c(G/H) = dimGα−2dimHα , (9.3)

where α ∈ h⊥ is a general point considered as an element of g∗. If H is observable
(e.g., reductive), then H∗= L0 is the Levi subgroup of the horospherical type of G/H,
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r(G/H) = rkG− rkH∗, (9.4)

and Λ(G/H) is the group of characters of T vanishing on T ∩H∗.

Proof. Generic modalities and stabilizers of the actions G : T ∗G/H and H : h⊥ co-
incide. This implies all assertions except (9.2), (9.3). We have Φ(e ∗α) = α and
Ge∗α = Hα , whence the r.h.s. of (9.2) is the dimension of the invariant collective
motion, which yields (9.2). Subtracting (9.2) from (9.1) yields (9.3). ��

Formulæ (9.1), (9.4) are most helpful, especially for reductive H, because stabi-
lizers of general position for reductive group representations are known, e.g., from
Elashvili’s tables [Ela1], [Ela2].

Example 9.2. Let G = Sp2n(k), n ≥ 2, and H = Sp2n−2(k) be the stabilizer of a
general pair of vectors in a symplectic space, say e1,e2n ∈ k

2n, where a (standard)
symplectic form on k

2n is ω = ∑n
i=1 xi∧x2n+1−i. Then the adjoint representations are

g � S2
k

2n, h � S2
k

2n−2, and g � S2
k

2⊕ (k2⊗k
2n−2)⊕S2

k
2n−2 as an H-module,

where k
2 = 〈e1,e2n〉 and k

2n−2 = 〈e2, . . . ,e2n−1〉. Hence the coisotropy representa-
tion of H equals k

2n−2⊕k
2n−2⊕k

3, where k
2n−2 is the tautological and k

3 a trivial
representation of H.

Clearly, H∗ = Sp2n−4(k) is the stabilizer of e2,e2n−1 ∈ k
2n−2. It is a standard

reductive subgroup of G with respect to the choice of the standard Borel sub-
group of upper-triangular matrices B ⊂ G and the standard diagonal torus T =
{t = diag(t1, . . . , tn, t−1

n , . . . , t−1
1 )} ⊂ B. There are no other standard reductive sub-

groups in G conjugate to H∗. It follows that r(G/H) = 2 and 2c(G/H)+ r(G/H) =
2(2n− 2)+ 3− (n− 1)(2n− 1)+ (n− 2)(2n− 3) = 4, whence c(G/H) = 1. Fur-
thermore, Λ(G/H) = X(T/T ∩H∗) = 〈ω1,ω2〉, where ωi(t) = t1 · · · ti denote the
fundamental weights of G with respect to the standard Borel subgroup .

Example 9.3. Let G = SLn(k), H = GLn−1(k). We may assume that H normalizes
the subspaces 〈e1〉 � (kdet)∗, 〈e2, . . . ,en〉 � k

n−1 of k
n. It is easy to see that h⊥ �

(kdet⊗ k
n−1)⊕ (kdet)∗ ⊗ (kn−1)∗ as an H-module. Here H∗ = {diag(s,C,s) | C ∈

GLn−2(k), s2 = 1/detC} is the common stabilizer of x1⊗ en ∈ kdet ⊗ k
n−1 and

e1⊗xn ∈ (kdet)∗⊗(kn−1)∗. Therefore r(G/H) = 1, and 2c(G/H)+r(G/H) = 2(n−
1)− (n−1)2 +(n−2)2 = 1, whence c(G/H) = 0.

However, there are three different standard reductive subgroups in G conjugate
to H∗, which are obtained by permuting the diagonal blocks. To choose the right one,
note that G/H is embedded in g as the orbit of ξ = diag(n−1,−1, . . . ,−1), whence
g∗ ↪→ k[G/H]. It follows that Λ (G/H) � ω1 + ωn−1, the highest root of g. Here
ωi(t) = t1 · · · ti denote the fundamental weights of the standard diagonal torus T =
{t = diag(t1, . . . , tn) | t1 · · · tn = 1}⊂G with respect to the standard Borel subgroup of
upper-triangular matrices B⊂G. Since ω1 +ωn−1 must vanish on T ∩H∗, the above
choice of H∗ among conjugate standard reductive subgroups is the only possible
one, and Λ(G/H) = X(T/T ∩H∗) = 〈ω1 +ωn−1〉.



9 Complexity and Rank of Homogeneous Spaces 41

9.2 Reduction to Representations. Theorem 9.1 reduces the computation of com-
plexity and rank of affine homogeneous spaces to finding stabilizers of general po-
sition for reductive group representations. The next theorem does the same thing for
arbitrary homogeneous spaces.

Consider a regular embedding H ⊆Q in a parabolic subgroup Q⊆G. Let K ⊆M
be Levi subgroups and let Hu ⊆ Qu be the unipotent radicals of H and Q. Clearly,
K acts on Qu/Hu by conjugations, and this action is isomorphic to a linear action
K : qu/hu [Mon].

We may assume that M⊇ T and B⊆Q−. Then B(M) = B∩M is a Borel subgroup
in M. We may assume that eK ∈M/K is a general point, i.e., M∗ = K ∩ θ(K) is a
stabilizer of general position for M : M/K× (M/K)∗, and B(M∗) = B(M)∩K is a
stabilizer of general position for B(M) : M/K. By Theorem 8.24, M∗ and B(M∗) are
normalized by T , and B(M∗)0 is a Borel subgroup in M0

∗ . M∗ may be non-connected,
but it is a direct product of M0

∗ and a finite subgroup of T . The notions of complexity,
rank and weight lattice generalize to M∗-actions immediately.

Theorem 9.4 ([Pan4, 1.2], [Pan7, 2.5.20]). With the above choice of H, Q, and K
among conjugates,

cG(G/H) = cM(M/K)+ cM∗(Qu/Hu), (9.5)

rG(G/H) = rM(M/K)+ rM∗(Qu/Hu), (9.6)

and there is a canonical exact sequence of weight lattices

0−→ΛM(M/K)−→ΛG(G/H)−→ΛM∗(Qu/Hu)−→ 0. (9.7)

Proof. As B⊆ Q−, the B- and even U-orbit of eQ is open in G/Q. Hence codimen-
sions of general orbits and weight lattices for the actions B : G/H � G∗Q Q/H and
B∩Q = B(M) : Q/H are equal. Further, Q/H � M ∗K Qu/Hu. It follows with our
choice of K that the codimension of a general B(M)-orbit in M/K is the sum of
the codimension of a general B(M)-orbit in M/K and of a general B(M∗)-orbit in
Qu/Hu, whence (9.5).

Furthermore, stabilizers of general position of the actions B : G/H, B(M) : Q/H,
B(M∗) : Qu/Hu are all equal to B(L0) = B∩L0, where L0 is the standard Levi sub-
group of the horospherical type of G/H. The equalities Λ (G/H) = Λ (B/B(L0)),
Λ(M/K) = Λ (B(M)/B(M∗)), Λ (Qu/Hu) = Λ (B(M∗)/B(L0)) imply (9.7) and (9.6).

��

Thus the computation of complexity and rank of G/H is performed in two steps:

(1) Compute the group M∗ ⊆ K, which is by Theorem 8.18 a stabilizer of general
position for the coisotropy representation K : k⊥ (the orthocomplement in m).
This can be done using, e.g., Elashvili’s tables.

(2) Compute the stabilizer of general position for M∗ : qu/hu⊕(qu/hu)∗ using, e.g.,
an algorithm at the end of 8.8.

Complexity and rank are read off these stabilizers.
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Example 9.5. Let G = Sp2n(k), n ≥ 3, and H be the stabilizer of a general triple
of vectors in a symplectic space, say e1,e2n−1,e2n ∈ k

2n, in the notation of Exam-
ple 9.2. We choose K = Sp2n−4(k), the stabilizer of e1,e2,e2n−1,e2n ∈ k

2n, for a
Levi subgroup of H. The unipotent radical of h is

hu =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0
0 0

0 0
0... v
0

0 0

0 w
0 0

−v"Ω
0 · · · 0

0 0
0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

v ∈ k
2n−4, w ∈ k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where Ω is the matrix of the symplectic form on k
2n−4 = 〈e3, . . . ,e2n−2〉. For Q we

take the stabilizer of a flag 〈e2n〉 ⊂ 〈e2n−1,e2n〉 ⊂ k
2n. Then

M =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t1 0
0 t2

0 0

0 C 0

0 0 t−1
2 0
0 t−1

1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t1, t2 ∈ k
×, C ∈ Sp2n−4(k)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

and

qu =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0
x 0

0 0

u v 0 0

y w
z y

−v"Ω
−u"Ω

0 0
−x 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x,y,z,w ∈ k, u,v ∈ k
2n−4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Clearly, M/K � (k×)2, and M∗ = K = Sp2n−4(k) acts on qu by left multiplication
of u,v ∈ k

2n−4 by C ∈ Sp2n−4(k). It follows that qu/hu = k
2n−4⊕k

3, a sum of the
tautological and a trivial Sp2n−4(k)-module.

We deduce that c(M/K) = 0, r(M/K) = 2, and Λ (M/K) = 〈ω1,ω2〉. A generic
stabilizer of M∗ : qu/hu ⊕ (qu/hu)∗ equals Sp2n−6(k) (=the stabilizer of e1, e2,
e3, e2n−2, e2n−1, e2n), whence Λ (qu/hu) = 〈ω3〉, where ω3 is the first fundamen-
tal weight of Sp2n−4(k) or, equivalently, the restriction to the diagonal torus in
Sp2n−4(k) of the third fundamental weight ω3 of Sp2n(k). It follows that r(qu/hu) =
1, 2c(qu/hu) + r(qu/hu) = 2(2n− 4 + 3)− (n−2)(2n−3) + (n−3)(2n−5) = 7,
hence c(qu/hu) = 3. We conclude that c(G/H) = r(G/H) = 3, and Λ (G/H) =
〈ω1,ω2,ω3〉.
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10 Spaces of Small Rank and Complexity

The term “complexity” is justified by the fact that homogeneous spaces of small
complexity are more accessible for study. In particular, a good compactification
theory can be developed for homogeneous spaces of complexity ≤ 1, see Chap. 3.
On the other hand, rank and complexity are not completely independent invariants
of a homogeneous space. In this section, we discuss the interactions between rank
and complexity, paying special attention to homogeneous spaces of small rank and
complexity.

10.1 Spaces of Rank≤ 1. We begin with a simple (and valid in any characteristic)
proposition.

Proposition 10.1. r(G/H) = 0 if and only if H is parabolic, i.e., G/H is projective.

Proof. The “only if” implication follows from the Bruhat decomposition, cf. Exam-
ple 5.3. Conversely, if r(G/H) = 0, then H contains a maximal torus of G. Replacing
H by a conjugate, we may assume that H ⊇ T and B∩H has the minimal possible
dimension. We claim that H ⊇ B−. Otherwise, there is a simple root α such that
h �⊇ g−α . Let Pα = Nα �Lα be the respective minimal parabolic subgroup with the
Levi decomposition such that Lα ⊇ T . Then B = Nα �Bα , where Bα = B∩Lα is a
Borel subgroup in Lα , and (H ∩Lα)0 = Bα or T . In both cases, we may replace Bα
by a conjugate Borel subgroup B̃α in Lα so that dimH∩ B̃α < dimH∩Bα . Then for
B̃ = B̃α Nα we have dimH ∩ B̃ < dimH ∩B, a contradiction. ��

In particular, homogeneous spaces of rank zero have complexity zero. This can be
generalized to the following general inequality between complexity and rank.

Theorem 10.2 ([Pan1, 2.7], [Pan7, 2.2.10]). 2c(G/H) ≤ CoxG · r(G/H), where
CoxG is the maximum of the Coxeter numbers of simple components of G.

Observe that if G is a simple group and H = {e}, then the inequality becomes an
equality, since c(G) = dimU , r(G) = rkG, and CoxG = 2dimU/ rkG. This inequal-
ity is rather rough, and various examples create an impression that the majority of
homogeneous spaces have either small complexity or large rank. In particular, Pa-
nyushev proved that r(G/H) = 1 implies c(G/H)≤ 1.

Proposition 10.3 ([Pan5]). If r(G/H) = 1, then either c(G/H) = 0, or G/H is ob-
tained from a homogeneous SL2(k)-space with finite stabilizer by parabolic induc-
tion, whence c(G/H) = 1.

Spherical homogeneous spaces of rank 1 where classified by Akhiezer [Akh1] and
Brion [Bri5], see Proposition 30.17 and Table 30.1. The above proposition says
that, besides the spherical case, there is only one essentially new example of rank 1,
namely SL2(k) acting on itself by left multiplications. (Factorizing by a finite group
preserves complexity and rank.) The proof (and the classification) is based on The-
orem 9.4. Homogeneous spaces of rank 1 are also characterized in terms of equiv-
ariant completions, see Proposition 30.17 and Remark 30.18.
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10.2 Spaces of Complexity ≤ 1. Homogeneous spaces of small complexity are
much more numerous. Here we discuss classification results in the case where H
is reductive, i.e., G/H is affine. See §30 for a conceptual approach to classifying
arbitrary spherical homogeneous spaces. For simple G, affine homogeneous spaces
of complexity 0 were classified by Krämer [Krä] and of complexity 1 by Panyushev
[Pan2], [Pan7, Ch. 3]. A complete classification of spherical affine homogeneous
spaces was obtained by Mikityuk [Mik] and Brion [Bri2], with a final stroke put by
Yakimova [Yak1]. We exhibit their results in Tables 10.1–10.3, see also Table 26.3.
Classification of affine homogeneous spaces of complexity 1 was completed by
Arzhantsev and Chuvashova [AC]. Since the computation of complexity and rank
of a given homogeneous space represents no difficulties by Theorems 9.1–9.4, the
main problem of classification is to “cut off infinity”.

Clearly, complexity and rank of G/H do not change if we replace G by a finite
cover and/or H by a subgroup of finite index. Thus complexity and rank depend
only on the local isomorphism class of G/H, i.e., on the pair (g,h). Therefore we
may assume that H is connected.

If G is not semisimple, then it decomposes into an almost direct product G =
G′ · Z, where G′ is its (semisimple) commutator subgroup and Z is the connected
center of G. It is easy to see that the complexities of G/H, G/HZ, and G′/(HZ∩G′)
are equal. Therefore it suffices to solve the classification problem for semisimple G.

An initial arithmetical restriction on a subgroup H ⊆ G such that c(G/H)≤ c is
that

dimH ≥ dimU − c. (10.1)

A more subtle restriction is based on the notion of d-decomposition [Pan2]. A
triple of reductive groups (L,L1,L2) is called a d-decomposition if dL1×L2(L) = d,
where L1× L2 acts on L by left and right multiplications. Clearly, (L,L1,L2) re-
mains a d-decomposition if one permutes L1,L2 or replaces them by conjugates.
Also, dL1(L/L2) = dL2(L/L1) = d. By [Lu1], general orbits of each one of the ac-
tions L1× L2 : L, L1 : L/L2, L2 : L/L1 are closed. In particular, 0-decompositions
are indeed decompositions: L = L1 ·L2. They were classified by Onishchik [Oni2].
Some special kinds of 1-decompositions of classical groups occurring in the clas-
sification of homogeneous spaces of complexity 1 (see below) were described by
Panyushev [Pan2].

Let H ⊆ F be reductive subgroups of G, and let F∗ be the stabilizer of general
position for the coisotropy representation F : f⊥. We may assume that o = eF is a
general point for the B-action on G/F , so that dimBo is maximal and B0

o is a Borel
subgroup in F0

∗ . We have immediately:

Proposition 10.4.

cG(G/H) = cG(G/F)+ cF∗(F/H)≥ cG(G/F)+dF∗(F/H).

In particular, if c(G/H)≤ c, then (F,F∗,H) is a d-decomposition for some d ≤ c.
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The latter assertion is the keystone in a method of classifying affine spherical homo-
geneous spaces of simple groups suggested by Mikityuk and extended by Panyushev
to the case of complexity one. Let us explain its core.

Let G be a simple algebraic group. Maximal connected reductive subgroups F ⊂
G are known due to Dynkin [GOV, Ch. 6, §3]. We choose among them those with
c(G/F)≤ 1 and search for reductive H ⊂ F such that still c(G/H)≤ 1.

If G is exceptional, then either c(G/F) = 0 or c(G/F) ≥ 2. For spherical F ,
sorting out those H ⊂ F which satisfy (10.1) gives only 4 new subgroups with
c(G/H)≤ 1 (Nos. 11 of Table 10.1 and 15–17 of Table 10.2).

If G is classical, then inequality (10.1) gives a finite list of subgroups. Again
c(G/F) �= 1 with only one exception G = Sp4(k), F = SL2(k) embedded in Sp4(k)
by a 4-dimensional irreducible representation (No. 8 of Table 10.2). Here (10.1)
becomes an equality, and F cannot be reduced. Sorting out H ⊂ F with c(G/H)≤ 1
is based on (10.1) and on the fact that (F,F∗,H) is a decomposition or 1-decompo-
sition. Here we find 22 new subgroups (Nos. 1–9 of Table 10.1 and 1–7, 9–14 of
Table 10.2).

If G/H is a symmetric space, i.e., H = (Gθ )0, where θ is an involutive automor-
phism of G, then c(G/H) = 0 (Theorem 26.14). Symmetric spaces are considered
in §26 and classified in Table 26.3.

Up to a local isomorphism, all non-symmetric affine homogeneous spaces of
simple groups with complexity 0 are listed in Table 10.1 and those of complexity 1
in Table 10.2. In the tables, we use the following notation.

We assume that G is a simply connected group covering the one in the col-
umn “G” and H ⊂ G is connected and maps onto the one in the column “H”.

Fundamental weights of simple groups are numbered as in [OV]. By ωi we de-
note fundamental weights of G, by ω ′i ,ω ′′i , . . . those of simple components of H,
and by εi basic characters of the central torus of H. We drop an index for a group of
rank 1.

The column “H ↪→ G” describes the embedding in terms of the restriction to
H of the minimal representation of G (the tautological representation for classical
groups). We use the multiplicative notation for representations: irreducible represen-
tations are indicated by their highest weights expressed in basic weights multiplica-
tively (i.e., products instead of sums, powers instead of multiples, 1 for the trivial
one-dimensional representation, etc), and “+” stands for the sum of representations.

The rank of G/H is indicated in the column “r(G/H)”, and the column
“Λ+(G/H)” contains a minimal system of generators of the weight semigroup (ex-
cept for No. 2 of Table 10.1, where all elements of the weight semigroup are given).

Now we describe spherical affine homogeneous spaces of semisimple groups.
We say that G/H is decomposable if, up to a local isomorphism, G = G1×G2,

H = H1×H2, and Hi ⊆ Gi, i = 1,2. Clearly, G/H = G1/H1×G2/H2 is spherical if
and only if Gi/Hi are spherical. Thus it suffices to classify indecomposable spherical
spaces.

Let H ⊆G be a reductive subgroup. We say that G/H is strictly indecomposable
if G/H ′ is still indecomposable. All strictly indecomposable spherical affine ho-
mogeneous spaces of semisimple (non-simple) groups are listed in Table 10.3. The



46 2 Complexity and Rank

Table 10.1 Spherical affine homogeneous spaces of simple groups

No. G H H ↪→ G r(G/H) Λ+(G/H)
1 SLn SLm×SLn−m ω ′1 +ω ′′1 m+1 ω1 +ωn−1, . . . ,ωm−1 +ωn−m+1,

(m < n/2) ωm,ωn−m

2 SL2n+1 Sp2n×k
× ω ′1ε +ε−2n 2n−1 ∑kiωi

∑
i odd

(2n+1− i)ki = ∑
i even

iki

3 SL2n+1 Sp2n ω ′1 +1 2n ω1, . . . ,ω2n

4 Sp2n Sp2n−2×k
× ω ′1 +ε + ε−1 2 2ω1,ω2

5 SO2n+1 GLn ω ′1ε +ω ′n−1ε−1 +1 n ω1, . . . ,ωn−1,2ωn

6 SO4n+2 SL2n+1 ω ′1 +ω ′2n n+1 ω2,ω4, . . . ,ω2n,ω2n+1

7 SO10 Spin7×SO2 ω ′3 +ε + ε−1 4 2ω1,ω2,ω4 +ω5
ω1 +2ω4,ω1 +2ω5

8 SO9 Spin7 ω ′3 +1 2 ω1,ω4

9 SO8 G2 ω ′1 +1 3 ω1,ω3,ω4

10 SO7 G2 ω ′1 1 ω3

11 E6 D5 ω ′1 +ω ′5 +1 3 ω1,ω5,ω6

12 G2 A2 ω ′1 +ω ′2 +1 1 ω1

column “H ↪→ G” describes the embedding in the following way. White vertices of
a diagram denote simple factors of G and black vertices denote factors of H. (Some
factors may vanish for small n.) If a factor Hj of H projects non-trivially to a factor
Gi of G, then the respective vertices are joined by an edge. The product of those
Hj which project to Gi is a spherical subgroup in Gi, and its embedding in Gi is
described in Table 10.1. It follows from Tables 10.1, 10.3 that dimZ(H)≤ 1 for all
strictly indecomposable spherical homogeneous spaces G/H.

Now assume that G/H is indecomposable, but not strictly. Then, up to a local
isomorphism, G = G1×·· ·×Gs and H ′= H ′

1×·· ·×H ′
s, where Hi are the projections

of H to Gi, and Gi/Hi are strictly indecomposable. Furthermore, Hi = H ′
i Zi, where

Zi is a one-dimensional central torus, and H = H ′Z, where Z ⊂ Z1× ·· ·× Zs is a
subtorus. Since G/H is indecomposable, Z cannot be decomposed as Z′ ×Z′′, where
Z′,Z′′ are the projections of Z to the products of two disjoint sets of factors Zi.

If Gi/Hi is spherical and Bi ⊂ Gi is a Borel subgroup such that dimBi ∩Hi is
minimal, then gi = bi +h′i if Gi/H ′

i is spherical, or gi = (bi +h′i)⊕ zi otherwise. It
follows that G/H is spherical if and only if all Gi/Hi are spherical and Z projects
onto the product of those Zi for which Gi/H ′

i is not spherical. This completes the
classification.

11 Double Cones

The theory of complexity and rank can be applied to a fundamental problem of
representation theory: decompose a tensor product of two simple G-modules into
irreducibles. The idea is to realize this tensor product as a G-submodule in the co-
ordinate algebra of a certain affine G-variety—a double cone—and to compute the
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Table 10.2 Affine homogeneous spaces of simple groups with complexity 1

No. G H H ↪→ G r(G/H) Λ+(G/H)
1 SL2n SLn×SLn ω ′1 +ω ′′1 n ω1 +ω2n−1, . . . ,ωn−1 +ωn+1,ωn

2 SLn SLn−2× (k×)2 ω ′1ε1ε2 + ε2−n
1 +ε2−n

2 3 ω1 +ωn−1,ω2 +ωn−2

(n≥ 3) (n > 3) 2ω1 +ωn−2,ω2 +2ωn−1

2 ω1 +ω2,3ω1,3ω2

(n = 3)
3 SLn SLn−2×k

× ω ′1ε + εd1 + εd2 4
(n≥ 5) d1 �= d2

d1 +d2 = 2−n
4 SL6 Sp4×SL2×k

× ω ′1ε +ω ′′ε−2 5
5 Sp2n Sp2n−2 ω ′1 +2 2 ω1,ω2

6 Sp2n Sp2n−4×SL2×SL2 ω ′1 +ω ′′+ω ′′′ 3 ω1 +ω3,ω2,ω4

(n≥ 3) (n > 3)
2 ω1 +ω3,ω2

(n = 3)
7 Sp2n SLn ω ′1 +ω ′n−1 n 2ω1, . . . ,2ωn−1,ωn

8 Sp4 SL2 ω ′3 2 4ω1,3ω2

4ω1 +2ω2,6ω1 +3ω2

9 SOn SOn−2 ω ′1 +2 2 ω1,ω2

(n≥ 4)
10 SO2n+1 SLn ω ′1 +ω ′n−1 +1 n ω1, . . . ,ωn

11 SO4n SL2n ω ′1 +ω ′2n−1 n ω2,ω4, . . . ,ω2n

(n≥ 2)
12 SO11 Spin7×SO3 ω ′3 +ω ′′2 5 2ω1,2ω2,ω3,ω4

ω1 +2ω5,ω2 +2ω5

ω1 +ω2 +2ω5

13 SO10 Spin7 ω ′3 +2 4 ω1,ω2,ω4,ω5

14 SO9 G2×SO2 ω ′1 + ε + ε−1 4
15 E6 B4×k

× (ω ′1 +1)ε2 +ω ′4ε−1 +ε−4 5
16 E7 E6 ω ′1 +ω ′5 +2 3 ω1,ω2,ω6

17 F4 D4 ω ′1 +ω ′3 +ω ′4 +2 2 ω1,ω2

algebra of U-invariants on a double cone, which yields the G-module structure of the
whole coordinate algebra. In cases of small complexity, the algebra of U-invariants
can be effectively computed.

11.1 HV-cones and Double Cones. We may and will assume that G is a simply
connected semisimple group. Recall that we work in characteristic zero.

Definition 11.1. Let λ ∈X+ be a dominant weight and let vλ∗ ∈V (λ ∗) be a highest
vector. A cone C(λ ) = Gvλ∗ ⊆ V (λ ∗) is called the cone of highest vectors (HV-
cone). Clearly, C(λ ) = Gv−λ , where v−λ ∈V (λ ∗) is a lowest vector.

The projectivization of C(λ ) is a projective homogeneous space G/P(λ ∗) �
G/P(λ )−, where P(λ ) denotes the stabilizer of [vλ ] ∈ P(V (λ )).

The following assertions on HV-cones are well known [VP, §2], cf. §28.

Proposition 11.2. (1) C(λ ) = Gv−λ ∪{0} is a normal conical variety in V (λ ∗).
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Table 10.3 Spherical affine homogeneous spaces of semisimple groups

No. H ↪→ G No. H ↪→ G

1 � �

� �

�
��

SLn

SLn

SLn+1

k
× 2 � �

� �

�
��

Sp2n

Sp2n−4

Sp4

Sp4

3 � � �

� �

GLn−2 SL2 Sp2m−2

SLn Sp2m

�
�

�
�

�
�

�
�

4 �

� �

SOn

SOn SOn+1

�
�

�
�

5 � � �

� �

SLn−2 SL2 Sp2m−2

SLn Sp2m

�
�

�
�

�
�

�
� (n≥ 5)

6 � � �

� � �

�

Sp2n−2 Sp2m−2 Sp2l−2

Sp2n Sp2m Sp2l

Sp2����
����

7 � � �

� �

Sp2n−2 Sp2 Sp2m−2

Sp2n Sp2m

�
�

�
�

�
�

�
�

8 � � �

� �

Sp2n−2 Sp2 Sp2m−2

Sp2n Sp2m

�
�

�
�

�
�

�
�

�

�

Sp2

Sp4

�
�

�
�

9
�

� �

H

H H

�
�

�
� (H is any simple group)

(2) k[C(λ )]n �V (nλ ) as a G-module.
(3) C(λ ) is factorial if and only if λ is a fundamental weight.

Proof. As G[v−λ ] is closed, Gv−λ is the punctured cone over G[v−λ ], whence the
equality in (1). Lemma 2.23 implies (2), since k[C(λ )] ⊆ k[G/U ] is generated by
V ∗(λ ∗) � V (λ ). It follows that k[C(λ )] =

⊕
n≥0 H0(G/P(λ )−,L(λ )⊗n) is inte-

grally closed. We have

ClC(λ ) = Pic(G/Gv−λ ) = X(Gv−λ ) = X(P(λ )−)/〈λ 〉,

whence (3). ��

Remark 11.3. Proposition 11.2 extends to arbitrary characteristic if one replaces
V (nλ ) by V ∗(nλ ∗) in (2).

Definition 11.4. A variety Z(λ ,μ) = C(λ )×C(μ) is said to be a double cone.

The group Ĝ = G× (k×)2 acts on Z(λ ,μ) in a natural way, where the factors k
×

act by homotheties. Thus k[Z(λ ,μ)] is bigraded and

k[Z(λ ,μ)]n,m = V (nλ )⊗V (mμ).

The algebra k[Z(λ ,μ)]U is finitely generated (Theorem D.5(1)) and (X+×Z
2
+)-

graded, and it is clear from the above that the knowledge of its (polyhomogeneous)
generators and syzygies provides immediately a series of decomposition rules for
V (nλ )⊗V (mμ). Namely, the highest vectors of irreducible summands in V (nλ )⊗
V (mμ) are (linearly independent) products of generators of total bidegree (n,m).
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11.2 Complexity and Rank. The smaller is the Ĝ-complexity of Z(λ ,μ), the sim-
pler is the structure of k[Z(λ ,μ)]U . Say, if Z(λ ,μ) is Ĝ-spherical, then Z(λ ,μ)//U
is a toric T̂ -variety, where T̂ = T × (k×)2. Hence k[Z(λ ,μ)]U is the semigroup al-
gebra of the weight semigroup of Z(λ ,μ) (cf. Example 15.8). If in addition Z(λ ,μ)
is factorial, then Z(λ ,μ)//U is a factorial toric variety, and hence k[Z(λ ,μ)]U is
freely generated by T̂ -eigenfunctions of linearly independent weights. This yields a
very simple decomposition rule, see 11.4.

Therefore it is important to have a transparent method for computing complex-
ity and rank of double cones. By the theory of doubled actions (8.8), the problem
reduces to computing the stabilizer of general position for the doubling Z×Z∗ of a
double cone Z = Z(λ ,μ). This was done by Panyushev in [Pan3], see also [Pan7,
Ch. 6]. Here are his results.

Let L(λ ) be the Levi subgroup of P(λ ) containing T . The character λ extends
to L(λ ). Put G(λ ) = Kerλ ⊂ L(λ ). Denote by G(λ ,μ) the stabilizer of general
position for G(λ ) : G/G(μ) and by L(λ ,μ) the stabilizer of general position for
L(λ ) : G/L(μ). Recall from [Lu1] that general orbits of both these actions are
closed, and hence the codimension of a general orbit equals the dimension of a
categorical quotient:

dimG(λ )\\G//G(μ) = dimG+dimG(λ ,μ)−dimG(λ )−dimG(μ), (11.1)

dimL(λ )\\G//L(μ) = dimG+dimL(λ ,μ)−dimL(λ)−dimL(μ), (11.2)

where L1\\L//L2 denotes the categorical quotient of the action L1×L2 : L by left
and right multiplication. Also put

P(Z) = P(C(λ ))×P(C(μ))� G/P(λ )−×G/P(μ)−.

Theorem 11.5. (1) The stabilizers of general position for the doubled actions G :
Z×Z∗, G : P(Z)×P(Z∗), Ĝ : Z×Z∗ are equal to G(λ ,μ), L(λ ,μ) and Ĝ(λ ,μ) =
{(g,λ (g),μ(g)) | g ∈ L(λ ,μ)}, respectively.
(2) Put V (λ ,μ) = p(λ )u∩p(μ)u. Then G(λ ,μ) and L(λ ,μ) are equal to the stabi-
lizers of general position for the doubled actions G(λ )∩G(μ) : V (λ ,μ)⊕V (λ ,μ)∗,
L(λ )∩L(μ) : V (λ ,μ)⊕V (λ ,μ)∗, respectively.

The proof of (1) uses the following

Lemma 11.6. The stabilizers of general position for the doubled actions G : C(λ )×
C(λ ∗), G : P(C(λ ))×P(C(λ ∗)), G×k

× : C(λ )×C(λ ∗) (where k
× acts on C(λ ) by

homotheties) are equal to G(λ ), L(λ ) and Ĝ(λ ) = {(g,λ (g)) | g ∈ L(λ )}, respec-
tively.

Proof. Observe that both z = (v−λ ,vλ ) ∈C(λ )×C(λ ∗) and [z] ∈ P(V (λ ∗)⊕V (λ ))
have stabilizer G(λ ) in G, whence codimGz = 1, and G〈z〉 = C(λ )×C(λ ∗). It
follows that G(λ ) is the stabilizer of general position in G. Other assertions are
proved similarly (cf. Example 8.26). ��

Proof of Theorem 11.5. (1) We have Z×Z∗ = (C(λ )×C(λ ∗))× (C(μ)×C(μ∗)),
and similarly for P(Z)×P(Z∗). The stabilizer of general position for any diagonal
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action L : X1×X2 can be computed in two steps: first find the stabilizers of general
position Li for the actions L : Xi, i = 1,2, and then find the stabilizer of general
position for L1 : L/L2. It remains to apply Lemma 11.6 for L = G or Ĝ and X1 =
C(λ )×C(λ ∗) or P(C(λ ))×P(C(λ ∗)), X2 =C(μ)×C(μ∗) or P(C(μ))×P(C(μ∗)).
(2) One can prove (2) using Luna’s slice theorem [Lu2], [PV, Th. 6.1], if one
observes that the L(λ )-orbit of eL(μ) ∈ G/L(μ) and the G(λ )-orbit of eG(μ) ∈
G/G(μ) are closed, and computes the slice module. However, the proof also stems
from the theory of doubled actions. It suffices to prove that the actions B : Z (or
B : P(Z)) and B∩G(λ )∩G(μ) : V (λ ,μ) (resp. B∩L(λ )∩L(μ) : V (λ ,μ)) have the
same stabilizers of general position. (These are Borel subgroups in the generic sta-
bilizers of double actions.) For computing these stabilizers, we apply the algorithm
at the end of 8.8.

We have Z ⊆ V = V (λ ∗)⊕V (μ∗). Take a B-eigenvector ω = (vλ ,0) ∈ V ∗ and
put Z̊ = Zω . By Lemma 4.4, Z̊ � P(λ )u×Z′, where Z′ � k

×v−λ ×C(μ) as an L(λ )-
variety. Now take ω ′ = (0,vμ) and put Z̊′ = Z′ω ′ . Then Z̊′ � [L(λ )∩P(μ)u]×Z′′,
where Z′′ = k

×v−λ ×k
×v−μ ×V (λ ,μ) as an L(λ )∩L(μ)-variety. This proves our

claim on stabilizers of general position. ��

We shall denote by c,r,Λ (resp. ĉ, r̂,Λ̂ ) the complexity, rank and the weight lat-
tice of a G- (resp. Ĝ-) action. Since maximal unipotent subgroups of G and Ĝ coin-
cide, it follows from Proposition 5.6 that

c(Z)+ r(Z) = ĉ(Z)+ r̂(Z). (11.3)

It is also clear that ĉ(Z)≤ c(Z)≤ ĉ(Z)+2. Since an open subset Gv−λ ×Gv−μ ⊂ Z

is a G-equivariant principal (k×)2-bundle over P(Z), and Λ̂ (Z) ⊆ X(Ĝ) = X(G)⊕
Z

2 projects onto Z
2 with the kernel Λ (P(Z)), we have

ĉ(Z) = c(P(Z)), (11.4)

r̂(Z) = r(P(Z))+2. (11.5)

Theorem 11.5, together with Theorem 8.25, yields

Theorem 11.7. The following formulæ are valid:

2c(Z)+ r(Z) = 2+dimG(λ )\\G//G(μ), r(Z) = rkG− rkG(λ ,μ),

2ĉ(Z)+ r̂(Z) = 2+dimL(λ )\\G//L(μ), r̂(Z) = rk Ĝ− rk Ĝ(λ ,μ).

For the proof, just note that dimC(λ ) = (dimG− dimG(λ) + 1)/2 = (dim Ĝ−
dimL(λ ))/2 and recall (11.1)–(11.2).

Corollary 11.8. The numbers c,r, ĉ, r̂ do not change if one transposes λ and μ or
replaces λ (or μ) by the dual weight λ ∗ (resp. μ∗).

Indeed, the doubled G-variety Z×Z∗ and the generic stabilizers G(λ ,μ), L(λ ,μ)
do not change.



11 Double Cones 51

Corollary 11.9. For μ = λ or λ ∗,

c(Z) = c(G/G(λ ))+1, r(Z) = r(G/G(λ )),
ĉ(Z) = c(G/L(λ )), r̂(Z) = r(G/L(λ ))+2.

Proof. We may assume that μ = λ ∗. It follows from (the proof of) Lemma 11.5
that a general orbit of G : Z has codimension 1 and is isomorphic to G/G(λ ), and
G : P(Z) has an open orbit isomorphic to G/L(λ ). Now apply (11.4)–(11.5). ��

11.3 Factorial Double Cones of Complexity ≤ 1. Now we restrict our attention
to factorial double cones. By Proposition 11.2(3), Z(λ ,μ) is factorial if and only
if λ ,μ are fundamental weights. We shall write C(i), Z(i, j), P(i), . . . instead of
C(ωi), Z(ωi,ω j), P(ωi), . . . . For all simple groups G and all pairs of fundamental
weights ωi,ω j, complexities and ranks of Z(i, j) with respect to the G- and Ĝ-ac-
tions were computed in [Pan3]. All pairs of fundamental weights (ωi,ω j) such that
ĉ(Z(i, j)) = 0,1 are listed, up to the transposition of i, j and an automorphism of
the Dynkin diagram, in Tables 11.1–11.2. Fundamental weights are numbered as
in [OV].

Suppose that k[Z(i, j)]U is minimally generated by bihomogeneous eigenfunc-
tions f1, . . . , fr of weights λ1, . . . ,λr and bidegrees (n1,m1), . . . ,(nr,mr). We may
assume that f1, f2 have the weights ωi,ω j and bidegrees (1,0), (0,1). The weights
of other generators and their bidegrees are indicated in the columns “Weights” and
“Degrees”, respectively. Here we assume that ωk = 0 whenever k �= 1, . . . , rkG.

We already noted in 11.2 that, if ĉ(Z(i, j))= 0, then f1, . . . , fr are algebraically in-
dependent and (λ1,n1,m1), . . . ,(λr,nr,mr) are linearly independent. If ĉ(Z(i, j)) =
1, then Z(i, j)//U is a hypersurface [Pan3, 6.5] and the (unique) syzygy between
f1, . . . , fr is of the form P+Q+R = 0, where P,Q,R are all monomials in f1, . . . , fr

of the same weight λ0 and bidegree (n0,m0) indicated in the column “Syzygy” of
Table 11.2.

It follows from the classification that, if i = j, then ĉ(Z(i, j)) = 0 and mk = nk = 1
for k = 3, . . . ,r. Hence T̂ -eigenspaces in k[Z(i, i)]U are one-dimensional, and the
involution transposing the factors of Z(i, i) = C(i)×C(i) multiplies each T̂ -eigen-
function f of bidegree (n,n) by p( f ) =±1. We call p( f ) the parity of f . The parities
of generators are given in the column “Parity” of Table 11.1. If f = f k1

1 · · · f kr
r (k1 =

k2), then p( f ) = p(k3, . . . ,kr) := p( f3)k3 · · · p( fr)kr .

Table 11.1 Spherical double cones (factorial case)

G Pair Weights Degrees Parity
Al (ωi,ω j) ωi−k +ω j+k (1,1) (−1)k

i≤ j k = 1, . . . ,min(i, l +1− j) for i = j
Bl (ω1,ω1) 0,ω2 (1,1) 1,−1

(ω1,ω j) ω j−1,ω j+1 (1,1)
2≤ j ≤ l−2 ω j (2,1)
(ω1,ωl−1) ωl−2,2ωl (1,1)

ωl−1 (2,1)
(ω1,ωl) ωl (1,1)

ωl−1 (1,2)
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Table 11.1 (continued)

G Pair Weights Degrees Parity
(ωl ,ωl) ωk (1,1) (−1)k(k+1)/2

k = 0, . . . , l−1
Cl (ω1,ω1) 0,ω2 (1,1) −1

(ω1,ω j) ω j−1,ω j+1 (1,1)
2≤ j ≤ l−1 ω j (2,1)

(ω1,ωl) ωl−1 (1,1)
ωl (2,1)

(ωl ,ωl) 2ωk (1,1) (−1)l−k

k = 0, . . . , l−1
Dl (ω1,ω1) 0,ω2 (1,1) 1,−1

(ω1,ω j) ω j−1,ω j+1 (1,1)
2≤ j ≤ l−3 ω j (2,1)
(ω1,ωl−2) ωl−3,ωl−1 +ωl (1,1)

ωl−2 (2,1)
(ω1,ωl−1) ωl (1,1)
(ωl ,ωl) ωl−2k (1,1) (−1)k

1≤ k ≤ l/2
(ωl−1,ωl) ωl−2k−1 (1,1)

1≤ k ≤ (l−1)/2
(ω2,ωl−1) ωl−1,ω1 +ωl (1,1)

ωl−2 (1,2)
Dl (ω3,ωl−1) ω1 +ωl−1,ω2 +ωl ,ωl (1,1)

l ≥ 6 ωl−3,ω1 +ωl−2 (1,2)
ω2 +ωl−2 (2,2)

D5 (ω3,ω4) ω1 +ω4,ω2 +ω5,ω5 (1,1)
ω2,ω1 +ω3 (1,2)

E6 (ω1,ω1) ω2,ω5 (1,1) −1,1
(ω1,ω2) ω1 +ω5,ω3,ω6 (1,1)

ω2 +ω5,ω4 (2,1)
(ω1,ω4) ω2,ω5,ω5 +ω6 (1,1)

ω3,ω6 (2,1)
(ω1,ω5) 0,ω6 (1,1)
(ω1,ω6) ω1,ω4 (1,1)

ω2 (2,1)
E7 (ω1,ω1) 0,ω2,ω6 (1,1) −1,−1,1

(ω1,ω6) ω1,ω7 (1,1)
ω2 (2,1)

(ω1,ω7) ω2,ω5,ω6 (1,1)
ω3,ω7 (2,1)

ω4 (2,2)

11.4 Applications to Representation Theory. For spherical Z(i, j), the algebra
k[Z(i, j)]U was computed by Littelmann [Lit]. He observed that a simple structure
of k[Z(i, j)]U leads to the following decomposition rules:

Tensor products.

V (nωi)⊗V (mω j) =
⊕

k1(n1,m1)+···+kr(nr ,mr)=(n,m)

V (k1λ1 + · · ·+ krλr).
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Table 11.2 Double cones of complexity one (factorial case)

G Pair Weights Degrees Syzygy
Bl (ω2,ωl) ω1 +ωl ,ωl (1,1) ω1 +ωl−1 +ωl

l ≥ 4 ωl−2,ωl−1,ω1 +ωl−1 (1,2) (2,3)
ω1 +ωl−1 (2,2)

B3 (ω2,ω3) ω1 +ω3,ω3 (1,1) ω1 +ω2 +ω3
ω1,ω2,ω1 +ω2 (1,2) (2,3)

Cl (ω2,ωl) ωl−2,ω1 +ωl−1 (1,1) 2ω1 +2ωl−1 +ωl
l ≥ 4 ω1 +ωl−1,2ω1 +ωl ,ωl (2,1) (4,3)

2ωl−1 (2,2)
C3 (ω2,ω3) ω1,ω1 +ω2 (1,1) 2ω1 +2ω2 +ω3

2ω1 +ω3,ω3 (2,1) (4,3)
2ω2 (2,2)

D6 (ω4,ω5) ω2 +ω5,ω5,ω1 +ω6,ω3 +ω6 (1,1) ω2 +ω4 +ω5
ω4,ω2 +ω4,ω2,ω1 +ω3 (1,2) (2,3)

E7 (ω1,ω2) ω1,ω1 +ω6,ω3,ω7 (1,1) ω1 +ω2 +ω6
ω2 +ω6,ω2,ω5,ω6 (2,1) (3,2)

Symmetric and exterior squares.

S2V (nωi) =
⊕

k1+k3+···+kr=n
p(k3,...,kr)=1

V (2k1ωi + k3λ3 + · · ·+ krλr),

∧2 V (nωi) =
⊕

k1+k3+···+kr=n
p(k3,...,kr)=−1

V (2k1ωi + k3λ3 + · · ·+ krλr).

Restriction.

ResG
L(i)VG(mω j) =

⊕

k2m2+···+krmr=m

VL(i)(k2(λ2−n2ωi)+ · · ·+ kr(λr−nrωi)).

Proofs. The first two rules stem immediately from the above discussion. Indeed,
highest vectors in k[Z(i, j)]Un,m = V (nωi)⊗V (mω j) are proportional to monomi-

als f = f k1
1 · · · f kr

r with k1(n1,m1)+ · · ·+ kr(nr,mr) = (n,m). The transposition of
the factors of Z(i, i) transposes the factors of k[Z(i, i)]Un,n = V (nωi)⊗2, and f is
(skew)symmetric if and only if p( f ) = 1 (resp. −1).

To prove the restriction rule, observe that Z(i, i) f1 = C(i) f1 ×C( j) = P(i) ∗L(i)
(k×v−ωi × C( j)) = P(i)u × k

×v−ωi × C( j). Hence k[Z(i, j)]Uf1 � k[k×v−ωi ×
C( j)]U∩L(i) � k[ f1, f−1

1 ]⊗ k[C( j)]U∩L(i), and f2, . . . , fr restrict to a free system of
generators f̄l(y) = fl(v−ωi ,y) of k[C( j)]U∩L(i). It remains to remark that k[C( j)]m �
VG(mω j), U ∩L(i) is a maximal unipotent subgroup of L(i), and f̄l have T -eigen-
weights λl−nlωi:

t f̄l(y) = fl(v−ωi , t
−1y) = ωi(t)−nl fl(t−1v−ωi , t

−1y) = λl(t)ωi(t)−nl f̄l(y).

��
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For the cases ĉ(Z(i, j)) = 1, the algebra k[Z(i, j)]U was computed in [Pan7, 6.5].
A decomposition rule for tensor products is of the form:

V (nωi)⊗V (mω j) =
⊕

k1(n1,m1)+···+kr(nr,mr)=(n,m)

V (k1λ1 + · · ·+ krλr)

−
⊕

l1(n1,m1)+···+lr(nr ,mr)=(n−n0,m−m0)

V (λ0 + l1λ1 + · · ·+ lrλr).

(Here “−” is an operation in the Grothendieck group of G-modules.)

Example 11.10. Suppose that G = SLd(k). Consider a double cone Z(1,1). We have
L(1) = GLd−1(k), G(1) = SLd−1(k), V (1,1) = (kd−1⊗kdet)∗, and L(1,1) consists
of matrices of the form

t 0
0 t 0
0 ∗ (t ∈ k

×).

Its subgroup G(1,1) is defined by t = 1. Hence r = 2, r̂ = 3, c = 1, ĉ = 0, and

Λ (Z(1,1)) = 〈ε1,ε2〉= 〈ω1,ω2〉,
Λ (P(Z(1,1))) = 〈ε2− ε1〉= 〈ω2−2ω1〉,

Λ̂ (Z(1,1)) = Λ (P(Z(1,1)))+ 〈(ω1,1,0),(ω1,0,1)〉
= 〈(ω2,1,1),(ω1,1,0),(ω1,0,1)〉.

(Here εi is the T -weight of ei ∈ k
d , ωi = ε1 + · · ·+ εi.)

Since V (ω1)⊗2 = (kd)⊗2 = S2
k

d ⊕ ∧2
k

d = V (2ω1) ⊕ V (ω2), the algebra
k[Z(1,1)]U contains eigenfunctions of the weights (ω1,1,0),(ω1,0,1),(ω2,1,1),
and a function of the weight (ω2,1,1) has parity −1. Clearly, these three func-
tions are algebraically independent (because their weights are linearly indepen-
dent) and compose a part of a minimal generating system of k[Z(1,1)]U . Since
dimZ(1,1)//U = 3, they generate k[Z(1,1)]U .

As a corollary, we obtain decomposition formulæ:

V (nω1)⊗V (mω1) =
⊕

0≤k≤min(n,m)

V ((n+m−2k)ω1 + kω2),

S2V (nω1) =
⊕

0≤k≤n/2

V ((2n−4k)ω1 +2kω2),

∧2 V (nω1) =
⊕

0≤k<n/2

V ((2n−4k−2)ω1 +(2k +1)ω2).

For d = 2, these are Clebsch–Gordan formulæ.
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11.5 Spherical Double Cones. All Ĝ-spherical double cones Z = Z(λ ,μ) were
classified by Stembridge [Ste]. By (11.4), ĉ(Z) depends only on the parabolics
P(λ ),P(μ), i.e., on the supports of λ ,μ with respect to fundamental weights. (The
support of λ is the set of fundamental weights occurring in the decomposition of
λ with nonzero coefficients). When the support of λ is reduced, P(λ ) increases,
whence ĉ(Z) may only decrease. Therefore it suffices to find all pairs of maximal
possible supports such that ĉ(Z) = 0 for all simple groups.

The case of one-element supports, i.e., where λ ,μ are multiples of fundamental
weights, is already covered by Table 11.1. All remaining pairs of maximal supports,
up to the transposition and an automorphism of the Dynkin diagram, are listed in
Table 11.3. Fundamental weights of simple groups are numbered as in [OV].

Note that Z(λ ,μ) is spherical if and only if V (nλ )⊗V (mμ) is multiplicity-free
for all n,m (see §25).

Table 11.3 Spherical double cones (non-factorial case)

G Al Dl E6

λ ω1 ω2 ωi ωi ω1 ωl ωl ωl ωl ω1

μ ω1, . . . ,ωl ωi,ω j ω1,ω j ω j,ω j+1 ωi,ωl ω1,ωl−1 ω1,ωl ωl−1,ωl ω1,ω2 ω1,ω5





Chapter 3
General Theory of Embeddings

Equivariant embeddings of homogeneous spaces are one of the main topics of this
survey. The general theory of them was developed by D. Luna and Th. Vust in a
fundamental paper [LV]. However it was noticed in [Tim2] that the whole theory
admits a natural exposition in a more general framework, which is discussed in this
chapter. The generically transitive case differs from the general one by the existence
of a smallest G-variety of a given birational type, namely, a homogeneous space.

In §12 we discuss the general approach of Luna and Vust based on patching all
G-varieties of a given birational class together in one huge prevariety and studying
particular G-varieties as open subsets in it. An important notion of a B-chart arising
in such a local study is considered in §13. A B-chart is a B-stable affine open subset
of a G-variety, and any normal G-variety is covered by (finitely many) G-translates
of B-charts. B-charts and their “admissible” collections corresponding to coverings
of G-varieties are described in terms of colored data composed of B-stable divisors
and G-invariant valuations of a given function field. This leads to a “combinatorial”
description of normal G-varieties in terms of colored data, obtained in §14. In the
cases of complexity ≤ 1, considered in §§15–16, this description is indeed combi-
natorial, namely, in terms of polyhedral cones, their faces, fans, and other objects of
combinatorial convex geometry.

Divisors on G-varieties are studied in §17. We give criteria for a divisor to be
Cartier, finitely generated and ample, and we describe global sections in terms of
colored data. Aspects of the intersection theory on a G-variety are discussed in §18,
including the rôle of B-stable cycles and a formula for the degree of an ample divisor.

12 The Luna–Vust Theory

12.1 Equivariant Classification of G-varieties. The fundamental problem of clas-
sifying algebraic varieties has an equivariant analogue: to describe up to a G-iso-
morphism all irreducible varieties equipped with an action of a connected algebraic
group G. A birational classification of G-varieties (with a given field of G-invariant

D.A. Timashev, Homogeneous Spaces and Equivariant Embeddings,
Encyclopaedia of Mathematical Sciences 138, DOI 10.1007/978-3-642-18399-7 3,
© Springer-Verlag Berlin Heidelberg 2011
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58 3 General Theory of Embeddings

functions) may be obtained in terms of Galois cohomology [PV, §2]. The second,
“biregular”, part of the problem may be formulated as follows: to describe all G-ac-
tions in a given birational class. More precisely, let K be a fixed function field (i.e.,
a finitely generated extension of k), and let G act on K birationally. In other words,
K is the function field on some irreducible G-variety X . We say that K is a G-field
and X is a G-model of K. The problem is to classify all G-models of K in terms
involving certain invariants of K itself (such as valuations etc).

Remark 12.1. If KG = k or, equivalently, the G-action on each G-model of K is
generically transitive, then there is a minimal G-model O, which is embedded as a
dense orbit in any other G-model of K. The homogeneous space O determines and
is determined by K completely. So the problem may be thought of as classifying all
G-equivariant embeddings of O in terms of invariants of O itself.

A general approach to this problem was introduced by Luna and Vust [LV]. They
considered only embeddings of homogeneous spaces. We will follow [Tim2] in our
more general point of view.

12.2 Universal Model. All models of K may be glued together into one huge
scheme X = X(K). By definition, points of X are local rings that are localizations of
finitely generated k-algebras with quotient field K. Any model X of K (i.e., a variety
with k(X) = K) may be considered as a subset of X, and such subsets define a base
of the Zariski topology on X. The structure sheaves OX are patched together in a
structure sheaf OX. A local ring OX,Y of Y ∈ X in the sense of this sheaf is exactly
the ring defining Y as a point of X.

The scheme X is irreducible, but neither Noetherian nor separated. It can be
considered as a prevariety if we consider only closed points x ∈X (i.e., such that the
residue field k(x) = Ox/mx of the respective local ring Ox = OX,x equals k). Non-
closed schematic points are identified with closed irreducible subvarieties Y ⊆ X.

We distinguish in X open subsets X
reg, X

norm, . . . of smooth, normal, . . . points.
From this point of view, a model of K is nothing but a Noetherian separated open

subset X ⊆ X.
The birational G-action on K permutes local subrings of K, which yields an ac-

tion G : X. However this is not an action in the category of schemes or prevarieties.
But the action map α : G×X→X is rational and induces an embedding of function
fields α∗ : K = k(X) ↪→ k(G×X) = k(G) ·K. (Here k(G) ·K = Quot(k(G)⊗k K) is
a free composite of fields.) It is obvious that G acts on a G-stable open subset X ⊆X

regularly if and only if α∗(OX ,x)⊆OG×X ,e×x, ∀x ∈ X .
Denote by XG the set of those x ∈X whose local rings OX,x are mapped by α∗ to

OG×X,e×x.

Proposition 12.2. XG is the largest open subset of X on which G acts regularly.

Proof. We have only to prove that XG is open. In other words, if OX,x ↪→OG×X,e×x

for x = x0, then the same thing holds in a neighborhood of x0. Let X = SpecA be
an affine neighborhood of x0, where A = k[ f1, . . . , fs] is a finitely generated algebra
with quotient field K. Then OX,x is a localization of A at the maximal ideal of x0. By
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assumption, α∗( fi) are defined in a neighborhood E of e×x0 (one and the same for
i = 1, . . . ,s), and hence α restricts to a regular map E → X . The set of all x ∈ X such
that e× x ∈ E is a neighborhood of x0. In this neighborhood, we have α(e× x) = x,
because this holds generically on X. This yields the assertion. 	


Observe that g acts on K by derivations (along velocity fields on XG or on any
other G-model).

Proposition 12.3 ([LV, 1.4]). In characteristic zero, x ∈ XG if and only if Ox is
g-stable.

In particular, if A⊂ K is a g-stable finitely generated subalgebra, then any localiza-
tion of A is g-stable and consequently X = SpecA⊆ XG.

Example 12.4. Let G = k act on A
1 by translations. This yields a birational action

G : K = k(t), so that α∗(t) = u+t (u is a coordinate on G). A cuspidal curve X ⊂A
2

(the Neile parabola) defined by the equation y2 = x3 becomes a model of K if we
put t = y/x. The local ring of the singular point x0 = (0,0) ∈ X consists of rational
functions in x = t2, y = t3 whose denominators have nonzero constant term. But
α∗(tk) = uk +kuk−1t + · · · is not defined at 0×x0 ∈G×X (at least when chark does
not divide k), because t is not defined at x0. Therefore x0 /∈ XG. All other points of
X are in XG, because they are identified via the normalization map t �→ (t2, t3) with
the respective points of A

1, where G acts regularly.
The standard basic vector ξ ∈ g = k acts on K as d/dt, and ξ (tk) = ktk−1 ∈Ox0 if

k > 2. But ξ x = 2t /∈Ox0 if chark = 2, in accordance with Proposition 12.3. However
in characteristic 2, the algebra k[X ] = k[x,y] is g-stable and Proposition 12.3 is not
applicable.

Example 12.5. Another example of this kind is the birational action of G = k
n by

translations on a blow-up X of A
n at 0. All points in the complement to the ex-

ceptional divisor are in XG, since they come from A
n, where G acts regularly. In a

neighborhood of a point x0 on the exceptional divisor, X is defined by local equa-
tions xi = x1yi (1 < i ≤ n) in A

n×A
n−1. We have α∗(xi) = xi + ui, where ui are

coordinates on G, and α∗(yi) = (xi + ui)/(x1 + u1) = (x1yi + ui)/(x1 + u1) are not
defined at 0× x0. Hence x0 /∈ XG. On the other hand, the standard basic vectors
ξ1, . . . ,ξn of g = k

n act on K = k(x1, . . . ,xn) as ∂/∂ x1, . . . ,∂/∂ xn, and

ξiy j =

⎧
⎪⎨

⎪⎩

1/x1, i = j > 1,

−y j/x1, i = 1 < j,

0, otherwise,

so that not all ξiy j are in Ox0 .

These two examples are typical in a sense that one obtains “bad” birational actions
if one blows up or contracts G-nonstable subvarieties in a variety with a “good”
(regular) action.

By Proposition 12.2, a G-model of K is nothing but a G-stable Noetherian sepa-
rated open subset of XG. The next theorem gives a method of constructing G-models
as “G-spans”, which we use in §13.
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Theorem 12.6 ([LV, 1.5]). Assume that X̊ is an open subset in XG. Then X = GX̊ is
Noetherian (separated) if and only if X̊ is Noetherian (separated).

Proof. If X̊ is Noetherian, then G× X̊ is Noetherian, and X = α(G× X̊) is Noethe-
rian, too. If X is not separated, then the diagonal diagX is not closed in X ×X , and
the non-empty G-stable subset diagX \ diagX contains an orbit O. Clearly, O in-
tersects the two open subsets X̊ ×X and X × X̊ of X ×X . Since O is irreducible,

O∩ (X̊ ×X)∩ (X × X̊) = O∩ (X̊ × X̊)⊆ diag X̊ \diag X̊ is non-empty, whence X̊ is
not separated.

The converse implications are obvious. 	


Example 12.7. Let G = k
× act on A

1 by homotheties. Here K = k(t) and a gen-
erator ξ of g = k acts on K as t(d/dt). Put x = t/(1 + t)2, y = t/(1 + t)3. Then
t �→ (x,y) is a birational map of A

1 to the Cartesian leaf X̊ ⊂ A
2 defined by the

equation x3 = xy− y2. This map provides a biregular isomorphism of A
1 \ {0,−1}

onto X̊ \{x0}, where x0 = (0,0) is the singular point of X̊ . Therefore X̊ \{x0} ⊆XG.
One can verify by direct computation that α∗(x),α∗(y) ∈ O1×x0 , whence x0 ∈ XG.
In characteristic zero, the situation is simpler, because ξ x = 2y−x, ξ y = y−3x2 im-
ply that the algebra A = k[x,y] is g-stable, and hence X̊ = SpecA⊂XG. Put X = GX̊ .
Then G acts on X with 2 orbits X \{x0} and {x0} (an ordinary double point), cf. Ex-
ample 4.2.

12.3 Germs of Subvarieties. In the study of the local geometry of a variety X in a
neighborhood of an (irreducible) subvariety Y , we may replace X by any open subset
intersecting Y , thus arriving at the notion of a germ of a variety in (a neighborhood
of) a subvariety. If X is a model of K, then a germ of X in Y is essentially the local
ring OX ,Y or the respective schematic point of X.

Definition 12.8. A G-germ (of K) is a G-fixed schematic point of XG (or a G-stable
irreducible subvariety of XG). The set of all G-germs is denoted by GX; a similar
notation GX is used for an arbitrary open subset X ⊆ XG. A G-model X such that
a given G-germ is contained in GX (i.e., intersects X in a G-stable subvariety Y ) is
called a geometric realization or a model of the G-germ.

Every G-germ admits a geometric realization: just take an affine neighborhood X̊ ⊆
XG of the germ and put X = GX̊ . If X ⊆ XG is G-stable, then X and GX determine
each other. The Zariski topology is induced on GX, with GX the open subsets. It is
straightforward [LV, 6.1] that X is Noetherian if and only if GX is Noetherian.

Remark 12.9. In characteristic zero, a germ of X in Y is a G-germ if and only if its
local ring OX ,Y is G- and g-stable (cf. Proposition 12.3).

Germs of normal G-models in G-stable prime divisors play an important rôle in
the Luna–Vust theory. They are identified with the respective G-invariant valuations
of K, called G-valuations, see Definition 19.1 and Proposition 19.8. The set V =
V (K) of all G-valuations of K/k is studied in Chap. 4, see also §§13–16 below.

Definition 12.10. The support SY of a G-germ Y is the set of v ∈ V such that the
valuation ring Ov dominates OX,Y (i.e., v has center Y in any geometric realization).
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The support of a G-germ is non-empty: e.g., if X ⊇ Y is an arbitrary geometric
realization of the G-germ, and v is the valuation corresponding to a component of
the exceptional divisor in the normalized blow-up of X along Y , then v ∈SY .

12.4 Morphisms, Separation, and Properness. Here is a version of the valuative
criterion of separation.

Theorem 12.11. A G-stable open subset X ⊆ XG is separated if and only if the
supports of all its G-germs are disjoint.

Proof. The closure diagX of the diagonal diagX ⊆ X ×X is a G-model of K. The
projections of X×X to the factors induce birational regular G-maps πi : diagX → X
(i = 1,2). If X is not separated and Y ⊆ diagX \diagX is a G-orbit, then the orbits
Yi = πi(Y ) are distinct for i = 1,2. But SY1 ∩SY2 ⊇SY = /0, a contradiction.

The converse implication follows from the valuative criterion of separation (Ap-
pendix B). 	


Assume that K′ ⊆ K is a subfield containing k. We have a natural dominant ra-
tional map ϕ : X ��� X

′ = X(K′). If X ⊆ X, X ′ ⊆ X
′ are models of K,K′, then

ϕ : X → X ′ is regular if and only if for any x ∈ X there exists an x′ ∈ X ′ such that Ox

dominates Ox′ . This x′ is necessarily unique (because X ′ is separated), and x′= ϕ(x).
Now assume that K′ is a G-subfield of K. Suppose that X and X ′ are G-models

of K and K′.

Proposition 12.12. The natural rational map ϕ : X → X ′ is regular if and only if for
any G-germ Y ∈ GX there exists a (necessarily unique) G-germ Y ′ ∈ GX ′ such that
OX ,Y dominates OX ′,Y ′ .

Proof. If OX ,Y dominates OX ′,Y ′ , then there exist finitely generated subalgebras A⊇
A′ such that OX ,Y and OX ′,Y ′ are their respective localizations. Localizing A′ and A
sufficiently, we may assume that X̊ = SpecA and X̊ ′ = SpecA′ are open subsets of
X and X ′ intersecting Y and Y ′, respectively. The regular map X̊ → X̊ ′ extends to the
regular map GX̊ → GX̊ ′. Since Y ⊆ X is arbitrary, these maps paste together in the
regular map X → X ′.

The converse implication is obvious: just put Y ′ = ϕ(Y ). 	


The restriction of a G-valuation of K to K′ is a G-valuation, and any G-valuation
of K′ can be extended to a G-valuation of K (Corollary 19.6). Thus the restriction
map ϕ∗ : V (K)→ V (K′) is well defined and surjective. If ϕ : X → X ′ is a regular
map, then ϕ∗(SY )⊆SY ′ for any G-germ Y ⊆ X and Y ′ = ϕ(Y ).

Here is a version of the valuative criterion of properness.

Theorem 12.13. A morphism ϕ : X → X ′ is proper if and only if

⋃

Y⊆X

SY = ϕ−1
∗

(
⋃

Y ′⊆X ′
SY ′

)

.
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Proof. The implication “only if” follows from the valuative criterion of properness
(Appendix B). Normalization reduces the proof of the implication “if” to the case
of locally linearizable actions.

To prove the implication in this case, we extend ϕ to a proper G-morphism ϕ :
X → X ′ such that X ⊆ X is an open subset as follows. There exist G-equivariant
completions X ,X ′ of X ,X ′ [Sum, Th. 3]. Replace X by the closure of the graph of
the rational map X ��� X ′. This yields a proper morphism ϕ : X → X ′ extending ϕ .
Then replace X by ϕ−1(X ′).

Now if ϕ is not proper, then there exists a G-orbit Y0 ⊆ X \X . Since X is sepa-
rated, SY0 ∩SY = /0, ∀Y ⊆ X , but ϕ∗(SY0) ⊆SY ′ , where Y ′ = ϕ(Y0) ⊆ X ′, a con-
tradiction. 	

Corollary 12.14. X is complete if and only if

⋃
Y⊆X SY = V (i.e., each G-valuation

has center on X).

13 B-charts

13.1 B-charts and Colored Equipment. From now on, G is assumed to be reduc-
tive of simply connected type and all G-models to be normal, i.e., to lie in X

norm
G .

We have seen in §12 that a G-model X is given by a Noetherian set GX of G-germs
whose supports are disjoint. The Noether property means that X is covered by G-
spans of finitely many “simple”, e.g., affine, open subsets X̊ ⊆X . An important class
of such “local charts” is introduced in

Definition 13.1. A B-chart of X is a B-stable affine open subset of X . Generally, a
B-chart is a B-stable affine open subset X̊ ⊂ X

norm
G .

It follows from the local structure theorem (Theorem 4.7) that any G-germ Y ∈
GX admits a B-chart X̊ ⊆ X intersecting Y . Therefore X is covered by finitely many
B-charts and their translates. Thus it is important to obtain a compact description for
B-charts. We describe their coordinate algebras in terms of their B-stable divisors.

Definition 13.2. Denote by D = D(K) the set of prime divisors on X that are not
G-stable. The valuation corresponding to a divisor D ∈ D is denoted by vD. Prime
divisors that are B-stable but not G-stable, i.e., elements of DB, are called colors.

Let KB ⊆ K be the subalgebra of rational functions with B-stable divisor of poles
on X .

Remark 13.3. The sets D , DB and KB do not depend on the choice of a G-model X .
Indeed, a non-G-stable prime divisor on X

norm
G intersects any G-model X ⊆ X

norm
G ,

and KB consists of rational functions defined on X
norm
G everywhere outside a B-stable

divisor.

Since KB ⊇ k[X̊ ] for any B-chart X̊ , it follows that QuotKB = K.
The pair (V ,DB) is said to be the colored equipment (of K). It is in terms of

colored equipment that B-charts, G-germs and G-models are described, as we shall
see below.
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Remark 13.4. In the case K = k(O) and O = G/H, DB may be computed as fol-
lows. Each D ∈D determines a G-line bundle L(χ) = L(kχ) over O and a section

η ∈ H0(O,L(χ)) = k[G](H)
−χ defined uniquely up to multiplication by an invertible

function on O, i.e., by a scalar multiple of a character of G [KKV, 1.2]. The sec-
tion η may be regarded as an equation for the preimage of D under the orbit map
G → O. Since D is prime, η is indecomposable in the multiplicative semigroup
k[G](H)/k

×X(G).
Each f ∈k(O) decomposes as f = ηdηd1

1 · · ·ηds
s μ , where μ∈X(G), d,d1, . . . ,ds∈

Z and η ,η1, . . . ,ηs ∈ k[G](H) are pairwise coprime indecomposables. Then vD( f ) =
d.

Finally, D is a color if and only if η is a (B×H)-eigenfunction. Therefore DB is
in bijection with the set of generators of k[G](B×H)/k

×X(G).

The “dual” object is the multiplicative group K(B) of rational B-eigenfunctions.
There is an exact sequence

1−→ (KB)× −→ K(B) −→Λ −→ 0, (13.1)

where Λ = Λ (K) is the weight lattice (of any G-model) of K.
In the sequel, we frequently use Knop’s approximation Lemma 19.12, which

is crucial for reducing various questions to B-eigenfunctions. In particular, it im-
plies that G-valuations are determined uniquely by their restriction to K(B) (Corol-
lary 19.13).

13.2 Colored Data. Let X̊ be a B-chart. Then A = k[X̊ ] is an integrally closed
finitely generated algebra; in particular, it is a Krull ring. (See [Ma, §12] for the
definition and properties of Krull rings.) Therefore

A =
⋂

OX̊ ,D (over all prime divisors D⊂ X̊) =
⋂

w∈W

Ow∩
⋂

D∈R̃

OvD ,

where Ov is the valuation ring of v, W ⊆ V , R ⊆ DB, and R̃ = R 
 (D \DB).
Here the G-valuations w ∈W are determined up to a rational multiple, and we shall
ignore this indeterminacy, thus passing to a “projectivization” of V . In particular,
we may assume that the group of values of every w ∈W is exactly Z⊂Q.

The pair (W ,R) is said to be the colored data of X̊ . A B-chart is uniquely de-
termined by its colored data. Taking another B-chart changes W and R by finitely
many elements. Hence all possible W 
R lie in a certain distinguished class CD
of equivalent subsets of V 
DB with respect to the equivalence relation “differ by
finitely many elements”.

Conversely, if W ⊆ V , R ⊆DB, and W 
R ∈ CD, then

A = A (W ,R) =
⋂

w∈W

Ow∩
⋂

D∈R̃

OvD (13.2)
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is a Krull ring. Indeed, for each f ∈ K almost all (i.e., all but finitely many) valu-
ations from W 
R vanish on f , since it is true for colored data of B-charts, and
hence for any subset in the class CD.

Example 13.5. KB = A ( /0, /0).

Remark 13.6. Here and below, we identify prime divisors and respective valuations.
To emphasize that valuations (divisors) and functions are thought of as “dual” to
each other, we write 〈V0, f 〉 ≥ 0 for V0 ⊆ V 
D if v( f ) ≥ 0, ∀v ∈ V0 (v = vD for
D ∈D), and so on.

Proposition 13.7. (1) All valuations from R̃ are essential for A (i.e., cannot be
removed from the r.h.s. of (13.2)).
(2) A valuation w ∈W is essential for A if and only if

∃ f ∈ K(B) : 〈W 
R \{w}, f 〉 ≥ 0, w( f ) < 0. (W)

Proof. (1) Let X be a smooth G-model of K. Consider the G-line bundle L =
OX (D), where D ∈ R̃, and let η ∈ H0(X ,L ) be a section with divη = D. Put f =
gη/η , where g ∈ G, gD = D. Then vD( f ) =−1, 〈R̃ \{D}, f 〉 ≥ 0, and 〈W , f 〉= 0
by Corollary 19.7. Thus vD is essential for A .
(2) Assume that w ∈ W is essential for A ; then ∃ f ∈ K : 〈W 
 R̃ \ {w}, f 〉 ≥ 0,
w( f ) < 0. Applying Lemma 19.12, we replace f by a B-eigenfunction and ob-
tain (W). The converse implication is obvious. 	


Theorem 13.8. (1) QuotA = K if and only if

∀V0 ⊆W 
R, V0 finite, ∃ f ∈ K(B) : 〈W 
R, f 〉 ≥ 0, 〈V0, f 〉> 0. (C)

(2) A is finitely generated if and only if

A U = k
[

f ∈ K(B) ∣∣ 〈W 
R, f 〉 ≥ 0
]

is finitely generated. (F)

(3) Under the equivalent conditions of (1)–(2), X̊ = SpecA is a B-chart.

Proof. (1) Assume that QuotA = K. We may assume that V0 = {v}; then there
exists f ∈ A ⊆ KB such that v( f ) > 0. Applying Lemma 19.12, we replace f by
an element of A (B) and obtain (C). Conversely, assume that (C) is true and h ∈ KB.
Then we take V0 = {v ∈ W 
R | v(h) < 0} and, multiplying h by f n for n � 0
(killing the poles), we fall into A . Hence KB⊆QuotA , and this yields K = QuotA .
(2) Let X be a smooth G-model of K. Take an effective divisor on X with support
{D ⊂ X | vD ∈ V \W } 
 (DB \R) and consider the corresponding section η ∈
H0(X ,L )(B) of the G-line bundle L . Consider an algebra R =

⊕
n≥0 Rn, where

Rn = {σ ∈ H0(X ,L ⊗n) | σ/ηn ∈A }.

Then A =
⋃

η−nRn ⊆ QuotR. Since every G-valuation of K can be extended to a
G-valuation of QuotR (Corollary 19.6), we see that
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Rn = {σ ∈ H0(X ,L ⊗n) | ∀w ∈W : w(σ)≥ nw(η)}

is G-stable.
Though A is not a G-algebra, it is very close to being a G-algebra, so that Theo-

rem D.5(1) extends to this case. Replacing K with K∩QuotR, we may assume that
QuotA = K.

If A is finitely generated, then it is easy to construct a finitely generated graded
G-subalgebra S⊆R such that η ∈ S1 and A =

⋃
η−nSn. By Theorem D.5(1), SU and

also A U =
⋃

η−nSU
n are finitely generated.

Conversely, if A U is finitely generated, then we construct a finitely generated
integrally closed graded G-subalgebra S⊆ R such that η ∈ S1, QuotS = QuotR, and
A U =

⋃
η−nSU

n . Then A ′ :=
⋃

η−nSn = A (W ′,R) (for some W ⊆ W ′ ⊆ V ) is
finitely generated, and (A ′)U = A U . However for any f ∈A and w′ ∈W ′ we have
w′( f ) ≥ 0 (since otherwise f could be replaced with an element of A (B) \ (A ′)(B)

by Lemma 19.12, a contradiction). We conclude that A = A ′.
(3) In characteristic zero, just note that A is g-stable, because all Ov (v ∈W 
 R̃)
are. In general, since A is finitely generated, it follows that A = k[η−nM] for
a finite-dimensional G-submodule M � ηn in some Rn. Let X ′ be the closure of
the image of the natural rational map X ��� P(M∗). Then X ′ is a G-model and
X̊ = SpecA ⊆ X ′. 	

Corollary 13.9. A pair (W ,R) from CD is the colored data of a B-chart if and only
if conditions (C),(F),(W) are satisfied.

Note that elements of DB \R are exactly the irreducible components of X \ X̊ ,
where X = GX̊ . A B-chart is G-stable if and only if R = DB.

Corollary 13.10. Affine normal G-models are in bijection with colored data (W ,DB)
satisfying (C),(F),(W).

Remark 13.11. In this section, we never use an a priori assumption that G-invariant
valuations from W are geometric, cf. Remark 19.3.

13.3 Local Structure. The local structure of B-charts is well understood.
The subgroup P = NG(X̊) is a parabolic containing B. We have P = P[DB \R] =

⋂
D∈DB\R P[D], where P[D] is the stabilizer of D. In the case K = k(G/H), if η ∈

k[G](B×H)
λ ,χ is an equation of D, then P[D] = P(λ ) is the parabolic associated with λ .

Let P = Pu �L be the Levi decomposition (L⊇ T ).
In §17, we prove that the divisor X \ X̊ is ample on X = GX̊ (Corollary 17.20).

Now Theorem 4.6 implies the following

Proposition 13.12 ([Tim3]).

(1) The action Pu : X̊ is proper and has a geometric quotient X̊/Pu = Speck[X̊ ]Pu .
(2) There exists a T -stable closed affine subvariety Z ⊆ X̊ such that X̊ = PZ and the

natural maps Pu×Z → X̊ , Z → X̊/Pu are finite and surjective.
(2)′ In characteristic zero, Z is L-stable, and the P-action on X̊ induces an isomor-

phism
Pu×Z � P∗L Z

∼→ X̊ .
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14 Classification of G-models

14.1 G-germs. We begin with a description of G-germs in terms of colored data.
Consider a G-germ Y ∈ GX

norm. Let VY ⊆ V , DY ⊆D be the subsets correspond-
ing to all prime divisors on X

norm
G containing Y . The pair (VY ,DB

Y ) is said to be the
colored data of the G-germ.

If the G-germ intersects a B-chart X̊ , then Y̊ = Y ∩ X̊ is the center of any v ∈SY ,
i.e., v|k[X̊ ] ≥ 0, and the ideal I (Y̊ ) � k[X̊ ] is given by v > 0. Conversely, if a G-val-

uation v ∈ V is non-negative on k[X̊ ], then it determines a G-germ intersecting X̊ .
If (W ,R) is the colored data of X̊ , then VY ⊆W , DB

Y ⊆R.

Proposition 14.1 ([Kn3, 3.8]).

(1) A G-germ is uniquely determined by its colored data.
(2) A G-valuation v is in SY if and only if

∀ f ∈ K(B) : 〈VY 
DB
Y , f 〉 ≥ 0 =⇒ v( f )≥ 0,

and if > occurs in the l.h.s., then v( f ) > 0.
(S)

Proof. Choose a geometric realization X ⊇ Y and a B-chart X̊ ⊆ X intersecting Y .
Let mX ,Y denote the maximal ideal in OX ,Y .

(2) Observe that for f ∈ K(B) we have f ∈ O
(B)
X ,Y ⇐⇒ 〈VY 
DB

Y , f 〉 ≥ 0 and f ∈
m

(B)
X ,Y if and only if one of these inequalities is strict.
If Ov dominates OX ,Y , then (S) is satisfied. Conversely, if there exists f ∈ OX ,Y

such that v( f ) < 0, then, applying Lemma 19.12, we replace f by a B-eigenfunction
and see that (S) fails. Therefore Ov ⊇ OX ,Y ⊇ k[X̊ ] and v has center Y ′ ⊇ Y on X .
If Y ′ = Y , then for all v′ ∈ SY there is f ∈ mX ,Y such that v′( f ) > 0, v( f ) = 0.
Replacing f by a B-eigenfunction again, we obtain a contradiction with (S). Thus
Ov dominates OX ,Y .
(1) Since k[X̊ ]⊆A = A (VY ,DB

Y )⊆OX ,Y , the local ring OX ,Y is the localization of
A in the ideal IY = A ∩mX ,Y . Take any v ∈SY ; then IY is defined in A by v > 0.
But SY is determined by (VY ,DB

Y ). 	


Now we describe G-germs in a given B-chart X̊ = SpecA , A = A (W ,R).

Theorem 14.2. (1) v ∈ V has a center on X̊ if and only if

∀ f ∈ K(B) : 〈W 
R, f 〉 ≥ 0 =⇒ v( f )≥ 0. (V)

(2) Assume that v ∈SY . A G-valuation w ∈W belongs to VY if and only if

∀ f ∈ K(B) : 〈W 
R, f 〉 ≥ 0, v( f ) = 0 =⇒ w( f ) = 0. (V′)

Similarly, D ∈R belongs to DB
Y if and only if

∀ f ∈ K(B) : 〈W 
R, f 〉 ≥ 0,v( f ) = 0 =⇒ vD( f ) = 0. (D′)
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Proof. (1) v has a center if and only if v|A ≥ 0. This clearly implies (V). On the
other hand, if f ∈ A , v( f ) < 0, then, applying Lemma 19.12, we replace f by an
element of A (B) and see that (V) is false.
(2) Assume that w ∈ W (or D ∈ R) belongs to VY (or DB

Y ); then every function
f ∈A not vanishing on Y̊ (i.e., v( f ) = 0) does not vanish on the respective B-stable
divisor of X̊ as well (i.e., w( f ) = 0 or vD( f ) = 0). For f ∈ A (B), we obtain (V′)
(or (D′)).

Conversely, assume that w /∈ VY (or D /∈DB
Y ); then there exists f ∈A vanishing

on the respective B-stable divisor of X̊ (i.e., w( f ) > 0 or vD( f ) > 0) but not on Y̊
(i.e., v( f ) = 0). Applying Lemma 19.12, we replace f by an element of A (B) and
see that (V′) (or (D′)) is false. 	


14.2 G-models. Summing up, we can construct every normal G-model in the fol-
lowing way:

(1) Take a finite collection of colored data (Wi,Ri) in CD satisfying (C),(F). De-
crease Wi if necessary so as to satisfy (W). These colored data determine finitely
many B-charts X̊i.

(2) Compute from (Wi,Ri) via conditions (V),(V′),(D′) the collection of colored
data (VY ,DB

Y ) of G-germs Y intersecting X̊i.
(3) Compute the supports SY from (VY ,DB

Y ) using (S).

The G-models Xi = GX̊i may be glued together in a G-model X if and only if the
supports SY obtained at Step (3) are disjoint (Theorem 12.11). The collection GX of
G-germs is given by Step (2) as the collection of their colored data, which is called
the colored data of X .

Remark 14.3. We notice in addition that the collection of covering B-charts X̊i is
of course not uniquely determined. Furthermore, one G-germ may have a lot of
different B-charts. For example, in the notation of Theorem 14.2, we may consider
a principal open subset X̊f = {x | f (x) = 0} in X̊ , where f ∈A (B), v( f ) = 0 (to avoid
cutting Y̊ off), i.e., pass from A to a localization A f . This corresponds to removing
from (W \VY )
 (R \DB

Y ) a finite set W0
R0 of those valuations that are positive
on f . By (V′) and (D′), this set may contain any finite number of elements from
(W \ VY )
 (R \DB

Y ). In particular, if (W \ VY )
 (R \DB
Y ) is finite, then there

exists a minimal B-chart X̊Y with W = VY , R = DB
Y .

Parabolic induction does not change K(B) and V , while DB is extended by finitely
many colors, whose valuations vanish on KB, see Proposition 20.13. The G-germs
of an induced variety are induced from those of the original variety, and it is easy to
prove the following result:

Proposition 14.4. Parabolic induction does not change the colored data of a G-
model.
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15 Case of Complexity 0

A practical use of the theory developed in the preceding sections depends on
whether the colored equipment of a G-field is accessible for computation and opera-
tion or not. It was noted already in [LV] that there is no hope to obtain a transparent
classification of G-models from the general description in §14 (maybe excepting
particular examples) if the complexity is > 1. On the other hand, if the complexity
is ≤ 1, then an explicit solution to the classification problem is obtained. An appro-
priate language to operate with the colored equipment is that of convex polyhedral
geometry.

15.1 Combinatorial Description of Spherical Varieties. We shall write c(K),
r(K) for the complexity, resp. rank, of (any G-model of) K. If c(K) = 0, then any
G-model contains an open B-orbit, hence an open G-orbit O. Homogeneous spaces
of complexity zero (=spherical spaces) and their embeddings are studied in details
in Chap. 5. Here we classify the normal embeddings of a given spherical homoge-
neous space in the framework of the Luna–Vust theory. This classification was first
obtained by Luna and Vust [LV, 8.10]. For a modern self-contained exposition, see
[Kn2], [Bri13, §3].

Let O be a spherical homogeneous space with the base point o ∈ O, H = Go,
and K = k(O). Since KB = k, it follows from Corollary 19.13 and the exact se-
quence (13.1) that G-valuations are identified by restriction to K(B) with Q-linear
functionals on the lattice Λ = Λ (O). The set V is a convex solid polyhedral cone in
E = Hom(Λ ,Q) (Theorem 21.1), which is cosimplicial in characteristic zero (The-
orem 22.13). The set DB consists of irreducible components of the complement to
the dense B-orbit in O, and hence is finite. The restriction to K(B) yields a map
κ : DB → E , which is in general not injective.

Remark 15.1. If O = G/H, DB = {D1, . . . ,Ds}, and η1, . . . ,ηs ∈ k[G](B×H) are the
respective indecomposable elements of biweights (λ1,χ1), . . . ,(λs,χs), then (λi,χi)
are linearly independent. (Otherwise, there is a linear dependence ∑di(λi,χi) = 0,
and f = ηd1

1 · · ·ηds
s is a non-constant B-invariant rational function on O.) If f =

ηd1
1 · · ·ηds

s ∈ K(B)
λ , then ∑diλi = λ , ∑diχi = 0, and 〈κ(Di),λ 〉= vDi( f ) = di.

Definition 15.2. The space E equipped with the cone V ⊆ E and with the map
κ : DB → E is the colored space (of O).

Now we consider the structure of colored data and reorganize them in a more
convenient way. The proofs are straightforward, as soon as we interpret B-eigen-
functions as linear functionals on E .

The class CD consists of finite sets.
Condition (C) means that W ∪ κ(R) generates a strictly convex cone C =

C (W ,R) in E and κ(R) � 0.
Condition (W) means that the elements of W are exactly the generators of those

edges of C that do not intersect κ(R).
Condition (F) holds automatically: A U is the semigroup algebra of Λ ∩C ∨,

where C ∨ = {λ ∈ E ∗ | 〈C ,λ 〉 ≥ 0} is the dual cone to C . Since C ∨ is finitely
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generated, the semigroup Λ ∩C ∨ is finitely generated by Gordan’s lemma [Ful2,
1.2, Pr. 1].

Condition (V) means that v ∈ C .
Conditions (V′) and (D′) say that VY and DB

Y consist of those elements of W 
R
which lie in the face CY = C (VY ,DB

Y )⊆ C containing v in its (relative) interior.
Condition (S) means that v ∈ V ∩ intCY , where int denotes the relative interior.
Observe that every G-germ Y has a minimal B-chart X̊Y with C = CY , R = DB

Y
(Remark 14.3). It suffices to consider only such charts.

Definition 15.3. A colored cone in E is a pair (C ,R), where R ⊆ DB, κ(R) �
0, and C is a strictly convex cone generated by κ(R) and finitely many vectors
from V .

A colored cone (C ,R) is supported if intC ∩V = /0.
A face of (C ,R) is a colored cone (C ′,R ′), where C ′ is a face of C and R ′ =

R ∩κ
−1(C ′).

A colored fan is a finite set of supported colored cones which is closed under
passing to a supported face and such that different cones intersect in faces inside V .

Theorem 15.4. (1) B-charts are in bijection with colored cones in E .
(2) G-germs are in bijection with supported colored cones.
(3) Normal G-models are in bijection with colored fans.
(4) Every G-model X contains finitely many G-orbits. If Y1,Y2 ⊆ X are two G-orbits,
then Y1 � Y2 if and only if (CY2 ,D

B
Y2

) is a face of (CY1 ,D
B
Y1

).

Corollary 15.5. Affine normal G-models are in bijection with colored cones of the
form (C ,DB).

Corollary 15.6. O is (quasi)affine if and only if κ(DB) can be separated from V by
a hyperplane (resp. does not contain 0 and spans a strictly convex cone).

Corollary 15.7. A G-model is complete if and only if its colored fan covers the
whole of V .

Example 15.8 (Toric varieties). Suppose that G = B = T is a torus. We may as-
sume that O = T , H = {e}. Here V = E (Example 20.2) and there are no colors.
Hence embeddings of T are in bijection with fans in E , where a fan is a finite set of
strictly convex polyhedral cones which is closed under passing to a face and such
that different cones intersect in faces. Every embedding X of T contains finitely
many T -orbits, which correspond to cones in the fan. For any orbit Y ⊆ X , the union
XY of all orbits containing Y in their closures is the minimal T -chart of Y determined
by CY . We have k[XY ] = k[X(T )∩C ∨

Y ] ⊆ k[T ]. X is complete if and only if its fan
is the subdivision of the whole E .

Equivariant embeddings of a torus are called toric varieties. Due to their nice
combinatorial description, toric varieties are a good testing site for various concepts
and problems of algebraic geometry. Their theory is well developed, see [Dan],
[Oda], [Ful2].

Other examples of spherical varieties are considered in Chap. 5.



70 3 General Theory of Embeddings

15.2 Functoriality. Now we discuss the functoriality of colored data.
Let ϕ : O → O be a G-morphism of homogeneous spaces. Denote K = k(O)

and by (E ,V ,D
B
,κ) the colored space of O. The map ϕ induces an embedding

ϕ∗ : K ↪→ K and a linear map ϕ∗ : E � E . We have ϕ∗(V ) = V . If DB
ϕ is the

set of colors in O mapping dominantly to O, then there is a canonical surjection

ϕ∗ : DB \DB
ϕ � D

B
such that κϕ∗ = ϕ∗κ.

Definition 15.9. A colored cone (C ,R) in E dominates a colored cone (C ,R) in
E if ϕ∗(intC ) ⊆ intC and ϕ∗(R \DB

ϕ ) ⊆ R. A colored fan F in E dominates a

colored fan F in E if each cone from F dominates a cone from F .
The support of F is SuppF =

⋃
(C ,R)∈F C ∩ V . (Observe that {C ∩ V |

(C ,R) ∈F} is a polyhedral subdivision of SuppF .)

The next theorem is deduced from the results of 12.4.

Theorem 15.10 ([Kn2, 5.1–5.2]). Let X ,X be the embeddings of O,O determined
by fans F ,F . Then ϕ extends to a morphism X →X if and only if F dominates F .
Furthermore, ϕ : X → X is proper if and only if SuppF = ϕ−1

∗ (SuppF )∩V .

Proof. If OX ,Y dominates OX ,Y , then clearly ϕ∗(DB
Y \DB

ϕ )⊆D
B
Y and ϕ∗(SY )⊆SY

or, equivalently, (CY ,DB
Y ) dominates (CY ,D

B
Y ). Conversely, if (CY ,DB

Y ) dominates

(CY ,D
B
Y ) for some Y ⊆ X , Y ⊆ X , then A = A (VY ,DB

Y )⊇A = A (V Y ,D
B
Y ) (this

is verified using Lemma 19.12) and IY = IY ∩A , where IY = A ∩mX ,Y is defined in
A by v > 0, ∀v ∈SY . Hence OX ,Y dominates OX ,Y . Thus the first assertion follows
by Proposition 12.12.

A criterion of properness is a reformulation of Theorem 12.13. 	


Overgroups of H can be classified in terms of the colored space.

Definition 15.11. A colored subspace of E is a pair (E0,R0), where R0 ⊆DB and
E0 ⊆ E is a subspace generated as a cone by κ(R0) and some vectors from V .

For example, (Eϕ ,DB
ϕ ) is a colored subspace, where Eϕ = Kerϕ∗ [Bri13, 3.4].

Theorem 15.12 ([Kn2, 5.4]). The correspondence H �→ (Eϕ ,DB
ϕ ) is an order-

preserving bijection between overgroups of H with H/H connected and colored
subspaces of E .

Example 15.13. If H = B, then E = V = 0 and DB is the set of Schubert divisors
on G/B, which are in bijection with the simple roots. Hence an overgroup of B is
determined by a subset of simple roots—a well-known classification of parabolics,
cf. 2.6.

More generally, parabolic overgroups P ⊇ H are in bijection with subsets R0 ⊆
DB such that κ(R0) ∪ V generates E as a cone. Indeed, P is parabolic ⇐⇒
r(G/P) = 0 ⇐⇒ E (G/P) = 0 ⇐⇒ Eϕ = E .
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One may consider generalized colored fans, dropping the assumption that col-
ored cones are strictly convex and their colors do not map to 0. (These are exactly
the preimages of usual colored fans in quotients by colored subspaces.) Then there
is a bijection between dominant separable G-maps O→ X to normal G-varieties and
generalized colored fans [Kn2, 5.5].

15.3 Orbits and Local Geometry. Now we derive some properties of G-orbits
(due to Brion) and the local geometry of a spherical embedding.

Proposition 15.14. Suppose that X is an embedding of O and Y ⊆ X an irreducible
G-subvariety. Then c(Y ) = 0, r(Y ) = r(X)−dimCY = codimCY , and Λ(Y ) = C ⊥

Y ∩
Λ(X) up to p-torsion.

Proof. By Theorem 5.7, Y is spherical. By Lemma 5.8, for any f ∈ k(Y )(B) there is
f̃ ∈ k(X)(B) such that f̃ |Y = f q, where q is a sufficiently big power of p. It remains
to note that f̃ is defined and nonzero on Y if and only if 〈VY ∩DB

Y , f̃ 〉 = 0, i.e., the
B-eigenweight of f̃ lies in C⊥

Y . 	


In this section we deal with normal spherical varieties. The following result con-
cerns orbits in non-normal spherical varieties.

Proposition 15.15. Let X be a locally linearizable spherical G-variety. Then the
normalization map X̃ → X is bijective on the sets of G-orbits.

Proof. Standard arguments reduce the claim to the case where X is affine. The G-
orbits Y ⊆ X are in bijection with the G-stable prime ideals I = I (Y ) � k[X ].

Note that I is uniquely determined by IU � k[X ]U . Indeed, if I ⊇ J � k[X ] is
another G-stable prime ideal, then we choose nonzero f ∈ (J/I∩ J)U � (k[X ]/I)U

and lift a certain power f q (q = pn) to JU \ IU by Lemma D.1, thus proving that
IU ⊇ JU .

Hence G-orbits in X are in bijection with certain T -stable prime ideals in k[X ]U

or with certain T -orbits in a toric variety X//U . By Lemma D.6, X̃//U is the nor-
malization of X//U . This reduces the claim to the case G = T .

In this case k[X ] = k[Λ+(X)] is a semigroup algebra. It is easy to prove that every
T -stable prime ideal in k[X ] is spanned by the weights in Λ+(X)∩ (C \C ′), where
C is the cone spanned by Λ+(X) and C ′ is a face of C . But Λ+(X̃) = ZΛ+(X)∩C
spans the same cone C , whence the claim. 	


Remark 15.16. The proposition is false for non locally linearizable actions, as Ex-
ample 4.2 shows.

The local structure of B-charts is given by Proposition 13.12. For a minimal B-
chart X̊Y , the description can be refined.

Let P = P[DB \DB
Y ] and P = Pu � L be its Levi decomposition (L ⊇ T ). Theo-

rem 4.7 yields

Theorem 15.17. There is a T -stable closed subvariety Z ⊆ X̊Y such that:

(1) The natural maps Pu×Z → X̊Y and Z → X̊/Pu are finite and surjective.
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(2) Put Y̊ = Y ∩ X̊Y . Then Y̊/Pu � L/L0, where L0 ⊇ L′.
(3) In characteristic zero, Z is L-stable, X̊Y � P ∗L Z � Pu×Z, Y ∩Z � L/L0, and

there exists an L0-stable subvariety Z0 ⊆ Z transversal to Y ∩Z at a fixed point z
and such that Z � L∗L0 Z0. The varieties Z and Z0 are affine and spherical, and
r(Z) = r(O), r(Z0) = dimCY .

The isomorphism Z � L ∗L0 Z0 stems, e.g., from Luna’s slice theorem [Lu2], [PV,
Th. 6.1], or is proved directly: since L/L0 is a torus, k[Y ∩Z] can be lifted to k[Z] as
an L-stable subalgebra, whence an equivariant retraction Z → Y ∩Z � L/L0 with a
fiber Z0.

Corollary 15.18. dimY = codimCY +dimPu

Remark 15.19. In characteristic zero, there is a bijection f ↔ f |Z between B-eigen-
functions on X and (B∩L)-eigenfunctions on Z, which preserve the order along a
divisor. Hence CY = CY∩Z and DB

Y ⊇DB
Y∩Z . However some colors on X may become

L-stable divisors on Z (“a discoloration”).

Theorem 15.20. In characteristic zero, all irreducible G-subvarieties Y ⊆ X are
normal and have rational singularities (in particular, they are Cohen–Macaulay).

Proof. By the local structure theorem, we may assume that X is affine. Then X//U
is an affine toric variety and Y//U a T -stable subvariety. It is well known [Ful2,
3.1, 3.5] that Y//U is a normal toric variety and has rational singularities. By Theo-
rem D.5(3), the same is true for Y . 	


A spherical embedding defined by a fan whose colored cones have no colors
is called toroidal. In particular, toric varieties are toroidal. Conversely, the local
structure theorem readily implies that toroidal varieties are “locally toric” (The-
orem 29.1). This is the reason for most nice geometric properties which distin-
guish toroidal varieties among arbitrary spherical varieties. Toroidal varieties are
discussed in §29.

16 Case of Complexity 1

16.1 Generically Transitive and One-parametric Cases. Here we obtain the clas-
sification of normal G-models in the case c(K) = 1. This case splits in two subcases:

(1) Generically transitive case: dG(K) = 0. Here any G-model contains a dense
G-orbit O of complexity 1.

(2) One-parametric case: dG(K) = 1. Here general G-orbits in any G-model are
spherical and form a one-parameter family. (In fact, all G-orbits are spherical
by Proposition 5.13.)

We are interested mainly in the generically transitive case. However the one-
parametric case might be of interest, e.g., in studying deformations of spherical
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homogeneous spaces and their embeddings. There are differences between these
two cases (e.g., in the description of colors), but the description of G-models is
uniform [Tim2].

16.2 Hyperspace. First we describe the colored equipment.
Since c(K) = 1, there is a (unique) non-singular projective curve C such that

KB = k(C). General B-orbits on a G-model of K are parameterized by an open
subset of C. In the generically transitive case, K ⊆ k(G) is unirational, because G
is a rational variety, which is proved by considering the “big cell” in G. Whence
C = P

1 by the Lüroth theorem.

Definition 16.1. For any x ∈C consider the half-space Ex,+ = Q+×E . The hyper-
space (of K) is the union Ĕ of all Ex,+ glued together along their common boundary
hyperplane E , called the center of Ĕ . More formally,

Ĕ =
⊔

x∈C

{x}×Ex,+

/

∼

where (x,h, �)∼ (x′,h′, �′) if and only if x = x′, h = h′, � = �′ or h = h′ = 0, � = �′.

Since Λ is a free Abelian group, the exact sequence (13.1) splits. Fix a splitting
f : Λ → K(B), λ �→ fλ .

If v is a geometric valuation of K, then v|K(B) is determined by a triple (x,h, �),
where x∈C, h∈Q+ satisfy v|KB = hvx and � = v|f(Λ) ∈ E = Hom(Λ ,Q). Therefore

v|K(B) ∈ Ĕ . Thus V is embedded in Ĕ , and we have a map κ : DB → Ĕ (restriction
to K(B)). We say that (Ĕ ,V ,DB,κ) is the colored hyperspace. The valuation v and
the respective divisor are called central if v|K(B) ∈ E .

By Theorems 20.3, 21.1, and Corollary 22.14, Vx = V ∩Ex,+ is a convex solid
polyhedral cone in Ex,+, simplicial in characteristic 0, and Z = V ∩E is a convex
solid cone in E .

By Corollary 20.5, the set DB
x = DB ∩κ

−1(Ex,+) is finite for each x ∈ C. In
particular, the set of central colors is finite.

For an arbitrary G-model X , consider the rational B-quotient map π : X ��� C
separating general B-orbits. Thus general B-orbits determine a one-parameter family
of B-stable prime divisors on X parameterized by an open subset C̊⊆C. Decreasing
C̊ if necessary, we may assume that these divisors Dx = π∗(x) are pullbacks of points
x ∈ C̊ and do not occur in div fλ (λ ∈Λ ). Then κ(Dx) = εx := (1,0)∈ Ex,+. Clearly,
{Dx | x ∈ C̊} ∈ CD.

In the generically transitive case, π : O ��� P
1 is determined by a one-dimen-

sional linear system of colors. In other words, there is a G-line bundle L on O and
a two-dimensional subspace M of B-eigensections of L which defines this linear
system. Elements of M are homogeneous coordinates on P

1 = P(M∗). If O = G/H,

then L = L(χ0) and M = k[G](B×H)
(λ0,−χ0) for some λ0 ∈ X+, χ0 ∈ X(H). Except

for finitely many lines, M consists of indecomposable elements corresponding to
generic colors.
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Indecomposable elements of M and the respective colors are called regular. A
regular color Dx = π∗(x) is represented in Ĕ by a vector (1, �) ∈ Ex,+, and � = 0 for
all but finitely many x.

In addition, there is a finite set of one-dimensional subspaces k[G](B×H)
(λi,−χi)

, i =
1, . . . ,s, consisting of indecomposable elements that correspond to other colors. If
ηi ∈ k[G](B×H)

(λi,−χi)
divides some η ∈ k[G](B×H)

(λ0,−χ0)
, then Di = divηi is represented in Ĕ

by (hi, �i) ∈ Ex,+, where divη = π∗(x) and hi is the multiplicity of ηi in η (or of Di

in π∗(x)). Such ηi and Di are called subregular. Other ηi are called central (since
Di are central).

The above description of colors allows the computation of multiplicities in the
spaces of global sections of G-line bundles on O = G/H.

Proposition 16.2 ([Tim5, §3]). For any χ ∈ X(H) and λ ∈ X+, let k0 be the max-
imal integer such that (λ ,−χ) = ∑s

i=0 ki(λi,−χi) + (μ,−μ), where ki ≥ 0 and
μ ∈ X(G). Then mλ (L(χ)) = k0 +1.

Proof. Every η ∈ H0(O,L(χ))(B)
λ = k[G](B×H)

(λ ,−χ) decomposes uniquely as

η = σ1 · · ·σk0 ηk1
1 · · ·η

ks
s μ−1,

where σ j ∈ k[G](B×H)
(λ0,−χ0)

. Therefore dimk[G](B×H)
(λ ,−χ) = dimk[G](B×H)

(k0λ0,−k0χ0), and

k[G](B×H)
(k0λ0,−k0χ0) = Sk0k[G](B×H)

(λ0,−χ0)

has dimension k0 +1. 	


Corollary 16.3 ([Pan2, 1.2]). If X(H) = 0, then mλ (O) = k0 + 1, where k0 =
max{k | λ − kλ0 ∈Λ+(O)}.

In the one-parametric case, generic B-stable prime divisors are G-stable, whence
εx ∈ Vx for x ∈ C̊.

Lemma 16.4. In the one-parametric case, all colors are central.

Proof. If D is a non-central color, then vD( f ) > 0 for some f ∈ KB = KG. Hence D
is G-stable, a contradiction. 	


Remark 16.5. Since a splitting f : Λ → K(B) is not uniquely defined, the maps V ↪→
Ĕ , κ : DB→ Ĕ are not canonical. But the change of splitting is easily controlled. If f′

is another splitting, then passing from f to f′ produces a shift of each Ex,+: h′ = h and
�′ = �+ h�x, where 〈�x,λ〉 = vx(f′λ /fλ ). The shifting vectors �x ∈ Λ ∗ ⊂ E have the
property that ∑x∈C〈�x,λ 〉x is a principal divisor on C for each λ ∈ Λ ; in particular,
∑x∈C �x = 0. Conversely, any collection of integral shifting vectors �x ∈ Λ∗ such
that ∑x∈C〈�x,λ 〉x is a principal divisor for each λ defines a change of splitting. For
C = P

1, it suffices to have ∑�x = 0.

Now we describe the dual object to the hyperspace.
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Definition 16.6. A linear functional on the hyperspace is a function ϕ on Ĕ such
that ϕx = ϕ |Ex,+ is a Q-linear functional for any x ∈ C and ∑x∈C〈εx,ϕx〉 = 0. A
linear functional ϕ is admissible if N ∑x∈C〈εx,ϕx〉x is a principal divisor on C for
some N ∈ N. Denote by Ĕ ∗ the space of linear functionals and by Ĕ ∗ad the subspace
of admissible functionals on Ĕ . The set Kerϕ =

⋃
x∈C Kerϕx is called the kernel of

ϕ ∈ Ĕ ∗.

If C = P
1, then any linear functional is admissible. Any f = f0fλ ∈K(B), f0 ∈KB,

λ ∈Λ , determines an admissible linear functional ϕ by means of 〈q,ϕx〉= hvx( f0)+
〈�,λ 〉, ∀q = (h, �)∈ Ex,+, and f is determined by ϕ uniquely up to a scalar multiple.
Conversely, a multiple of any admissible functional is determined by a B-eigenfunc-
tion.

Any collection of linear functionals ϕx on Ex,+ whose restrictions to E coincide
can be deformed to an admissible functional by a “small variation”.

Lemma 16.7. Let ϕx be linear functionals on Ex,+ such that ϕx|E does not depend
on x ∈ C, 〈εx,ϕx〉 = 0 for all but finitely many x, and ∑〈εx,ϕx〉 < 0. Then for any
finite subset C0 ⊂C and any ε > 0 there exists ψ ∈ Ĕ ∗ad such that ψx ≥ ϕx on Ex,+
for all x ∈C with the equality for x ∈C0 (in particular, ψ |E = ϕx|E ) and |〈εx,ψx〉−
〈εx,ϕx〉|< ε .

Proof. The divisor −N ∑〈εx,ϕx〉x is very ample on C for N sufficiently large. Mov-
ing the respective hyperplane section of C, we obtain an equivalent very ample
divisor of the form ∑nxx, where nx ∈ {0,1} and nx = 0 whenever x ∈ C0. Then
the divisor ∑(N〈εx,ϕx〉+ nx)x is principal, and ψ ∈ Ĕ ∗ad defined by ψ |E = ϕx|E ,
〈εx,ψx〉= 〈εx,ϕx〉+nx/N, is the desired admissible functional. 	


16.3 Hypercones. For reorganizing colored data in a way similar to the spherical
case, we need some notions from the geometry of the hyperspace.

Definition 16.8. A cone in Ĕ is a cone in some Ex,+.
A hypercone in Ĕ is a union C =

⋃
x∈C Cx of finitely generated convex cones

Cx = C ∩Ex,+ such that

(1) Cx = K +Q+εx for all but finitely many x, where K = C ∩E .
(2) Either (A) ∃x ∈C : Cx = K ,

or (B) /0 = B := ∑Bx ⊆K , where εx +Bx = Cx∩ (εx +E ).

The hypercone is strictly convex if all Cx are so and B � 0.

Remark 16.9. The Minkowski sum ∑Bx of infinitely many polyhedral domains Bx

is defined as the set of all sums ∑bx, bx ∈Bx, that make sense, i.e., bx = 0 for all
but finitely many x. In particular, for a hypercone of type A, there exists x ∈C such
that Bx = /0, whence B = /0.

Definition 16.10. Suppose that Q ⊆ Ĕ differs from {εx | x ∈ C̊} by finitely many
elements. Let εx +Px be the convex hull of the intersection points of εx +E with
the rays Q+q, q ∈Q. We say that the hypercone C = C (Q), where Cx are generated
by Q∩Ex,+ and by P := ∑Px, is generated by Q.
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Fig. 16.1 Hypercones
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Remark 16.11. We have Bx = Px +K and B = P +K .

Definition 16.12. For a hypercone C of type B, we define its interior intC =
⋃

x∈C intCx∪ intK .
A face of a hypercone C is a face C ′ of some Cx such that C ′ ∩B = /0.
A hyperface of C is a hypercone C ′ = C ∩Kerϕ , where ϕ ∈ Ĕ ∗, 〈C ,ϕ〉 ≥ 0.

Such ϕ is called a supporting functional of the hyperface C ′. The hyperface C ′ is
admissible if ϕ is admissible.

A hypercone is admissible if all supporting functionals of the hyperfaces of
type B are admissible.

Remark 16.13. A hyperface C ′ ⊆ C is of type B if and only if C ′ ∩B = /0. Indeed,
〈εx +Bx,ϕx〉 ≥ 0 (∀x ∈C) and C ′

x ⊆ E (∀x ∈C) ⇐⇒ 〈εx +Bx,ϕx〉 � 0 (∀x ∈C)
⇐⇒ ∑〈εx +Bx,ϕx〉= ∑〈εx,ϕx〉+∑〈Bx,ϕx〉= 〈B,ϕ〉 � 0.

Remark 16.14. If C = P
1, then every hypercone is admissible.

Properties of hypercones are similar to properties of convex polyhedral cones.
Let C be a hypercone. There is a separation property:

Lemma 16.15. (1) q /∈ C =⇒ ∃ϕ ∈ Ĕ ∗ : 〈C ,ϕ〉 ≥ 0, 〈q,ϕ〉< 0.
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(2) If C is strictly convex, then one may assume that ϕ ∈ Ĕ ∗ad and 〈Cx \{0},ϕx〉> 0
for any given finite set of x ∈C.

Proof. (1) If q ∈ Ey,+, then we construct a collection of functionals ϕx on Ex,+
such that ϕx|E = ϕy|E , 〈q,ϕy〉 < 0, 〈Cx,ϕx〉 ≥ 0 for all x ∈ C and the equality
is reached on Cx \K whenever Cx = K . If C is of type A, then we decrease
ϕx for x ∈ C such that Cx = K and obtain ∑〈εx,ϕx〉 ≤ 0. If C is of type B,
then ∑〈εx + Bx,ϕx〉 = ∑〈εx,ϕx〉+ 〈B,ϕy〉 ≥ 0 and the equality is reached. But
〈B,ϕy〉 ≥ 0 =⇒ ∑〈εx,ϕx〉 ≤ 0. It remains to modify ϕx by a small variation
(Lemma 16.7) if necessary.
(2) In the proof of (1), we may assume that 〈K \ {0},ϕy〉 > 0. If C is of type A,
then we decrease ϕx for x ∈C such that Cx = K and obtain ∑〈εx,ϕx〉< 0. If C is of
type B, then 〈B,ϕy〉> 0 =⇒ ∑〈εx,ϕx〉 < 0. Now we may increase finitely many
ϕx to have 〈Cx \{0},ϕx〉> 0. 	


This implies a dual characterization of a hypercone:

Lemma 16.16. For a (strictly convex) hypercone C = C (Q), q ∈ C if and only if
〈Q,ϕ〉 ≥ 0 =⇒ 〈q,ϕ〉 ≥ 0, ∀ϕ ∈ Ĕ ∗ (∀ϕ ∈ Ĕ ∗ad).

Proof. 〈Q,ϕ〉 ≥ 0 =⇒ ∀x ∈C : 〈εx +Px,ϕx〉 ≥ 0 =⇒ 〈P,ϕ〉 ≥ 0 =⇒ 〈C ,ϕ〉 ≥
0. Lemma 16.15 completes the proof. 	


For any v ∈ C , there is a unique face or hyperface of type B containing v in its
interior.

Lemma 16.17. The face or (admissible) hyperface C ′ ⊆ C such that v ∈ intC ′ is
the intersection of (admissible) hyperfaces of C containing v.

Proof. If 〈C ,ϕ〉 ≥ 0 and 〈v,ϕ〉 = 0, then 〈C ′,ϕ〉 = 0. (If C ′ is a hyperface, then
〈K ′,ϕ〉 = 0 =⇒ 〈εx +B′

x,ϕx〉 = 0 =⇒ 〈C ′
x ,ϕx〉 = 0 for all x ∈C.) Conversely,

if C ′ ⊆ Cy is a face and q ∈ C \C ′, then we construct an (admissible) functional ϕ
such that 〈C ,ϕ〉 ≥ 0, 〈C ′,ϕ〉= 0, 〈q,ϕ〉> 0 as follows. Take ϕy on Ey,+ such that
〈Cy,ϕy〉 ≥ 0 and C ′ = Kerϕy∩C . We may include ϕy in a collection of functionals
ϕx on Ex,+ such that ϕx|E = ϕy|E , 〈Cx,ϕx〉 ≥ 0 and the equality is reached on Cx\K
whenever Cx = K . (To this end, we have to decrease ϕy in case C ′ ⊆K = Cy.)
As in the proof of Lemma 16.15(2), we may assume that ∑〈εx,ϕx〉 < 0: if C is of
type A, then we decrease ϕx for x∈C such that Cx = K ; otherwise C ′ ∩B = /0 =⇒
〈B,ϕy〉> 0 =⇒ ∑〈εx,ϕx〉< 0. Then we increase some ϕx to obtain 〈q,ϕ〉> 0 and
apply Lemma 16.7. 	


16.4 Colored Data. Now let (W ,R) be colored data from CD and consider the
hypercone C = C (W ,R) generated by W ∪κ(R).

Condition (C) means that C is strictly convex and κ(R) � 0 (Lemma 16.15(2)).
We assume it in the sequel.

Condition (W) means that the elements of W are exactly the generators of those
edges of C that do not intersect κ(R). (Indeed, (W) ⇐⇒ w /∈ C (W \{w},R) by
Lemma 16.16.)
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Condition (F) means that C is admissible. (This is non-trivial, see [Tim2,
Pr. 4.1].)

Condition (V) means that v ∈ C (Lemma 16.16).
Conditions (V′) and (D′) say that VY and DB

Y consist of those elements of W and
R which lie in the face or hyperface (of type B) CY = C (VY ,DB

Y ) ⊆ C such that
v ∈ intCY (Lemma 16.17).

Condition (S) says that v ∈ V ∩ intCY (Lemma 16.17).

Definition 16.18. A colored hypercone is a pair (C ,R), where R ⊆DB, κ(R) � 0,
and C is a strictly convex hypercone generated by κ(R) and W ⊆ V .

A colored hypercone (C ,R) (of type B) is supported if intC ∩V = /0.
A (hyper)face of (C ,R) is a colored (hyper)cone (C ′,R ′), where C ′ is a (hy-

per)face of C and R ′ = R∩κ
−1(C ′).

A colored hyperfan is a set of supported colored cones and hypercones of type B
whose interiors are disjoint inside V and which is obtained as the set of all supported
(hyper)faces of finitely many admissible colored hypercones.

The next theorem follows from the above discussion and the results of 14.2.

Theorem 16.19. (1) B-charts are in bijection with admissible colored hypercones
in Ĕ .
(2) G-germs are in bijection with supported colored cones and admissible supported
colored hypercones of type B. If Y1,Y2 ⊆ X are irreducible G-subvarieties in a G-
model, then Y1 ⊆Y2 if and only if (CY2 ,D

B
Y2

) is a (hyper)face of (CY1 ,D
B
Y1

).
(3) Normal G-models are in bijection with colored hyperfans.

Corollaries 15.5–15.7 are easily generalized to the case of complexity 1.

Remark 16.20. Let X̊ be a B-chart defined by a colored hypercone (C ,R). Then
k[X̊ ]B = k if and only if C is of type B: if f ∈ k[X̊ ]B, then the respective ϕ ∈ Ĕ ∗ad
must be zero on E and non-negative on C . Thus we have two types of B-charts:

(A) k[X̊ ]B = k, or C is of type A.
(B) k[X̊ ]B = k, or C is of type B.

There are two types of G-germs:

(A) C (VY ,DB
Y ) is a colored cone.

(B) C (VY ,DB
Y ) is a colored hypercone.

A G-germ is of type A if and only if VY ,DB
Y are finite, and of type B if and only if it

has a minimal B-chart.

Example 16.21. Suppose that G = B = T is a torus. We may assume (after factoring
out by the kernel of the action) that the stabilizer of general position for any T -model
is trivial. The birational type of the action is trivial, i.e., any T -model is birationally
isomorphic to T ×C, cf. Example 5.4. It follows that E = Hom(X(T ),Q), V = Ĕ ,
DB = DB(T ) = /0, cf. Example 20.2.

A T -model is given by a set of cones and admissible hypercones of type B with
disjoint interiors which consists of all faces and hyperfaces of type B of finitely
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many admissible hypercones. (The word “colored” is needless here, since there are
no colors.) A T -chart X̊ is of type A (type B) if and only if X̊//T ⊂ C is an open
subset (X̊//T is a point).

If all germs of a T -model X are of type A, then all T -charts of X are of type (A)
and the quotient morphisms of the T -charts may be glued together into a regular map
π : X →C separating T -orbits of general position. Such T -models were classified by
Mumford in [KKMS, Ch. IV] in the framework of the theory of toroidal embeddings
(for this theory see [KKMS, Ch. II]). The hyperfan of X is a union of fans Fx in Ex,+
having common central part F = {C ∈Fx | C ⊆ E } and such that Fx is a cylinder
over F for x = x1, . . . ,xs (finitely many exceptional points).

It is proved in [KKMS, Ch. IV] that C is covered by open neighborhoods Ci

of xi such that π−1(Ci) � Ci×A1 Xi, where νi : Ci → A
1 are étale maps such that

ν−1
i (0) = {xi} and Xi are toric (T ×k

×)-varieties with fans Fxi mapping k
×-equiv-

ariantly onto A
1.

Torus actions of complexity one were studied and classified in [Tim7].

Remark 16.22. The admissibility of a hypercone is essential for condition (F) as the
following example [Kn4] shows.

Let C be a smooth projective curve of genus g > 0 and let δi = ∑nixx, i = 1,2, be
divisors on C having infinite order in PicC and such that degδ1 = 0, degδ2 ≥ g. Put
Li = OC(δi).

The total space X of L ∗
1 ⊕L ∗

2 is a T = (k×)2-model, where the factors k
× act

on L ∗
i by homotheties. There are the following T -germs in X : the divisors Di, Dx

(i = 1,2, x ∈ C), where Di is the total space of L ∗
j , {i, j} = {1,2}, and Dx is the

fiber of X →C over {x}; Yix = Di∩Dx; C = D1∩D2; {x}= D1∩D2∩Dx.
Let fi be a rational section of Li such that div fi = δi. Then Λ (X) is generated by

the T -weights ω1,ω2 of f1, f2. If wi,wx are the T -valuations corresponding to Di,Dx,
then w1 = (0,1,0), w2 = (0,0,1), wx = (1,n1x,n2x) in the basis εx,ω∨1 ,ω∨2 , where
ω∨i are the dual coweights to ωi.

The algebra k[X ] is bigraded by the T -action: k[X ]m,n = H0(C,L ⊗m
1 ⊗L ⊗n

2 ) = 0
if and only if either m≥ 0 and n > 0 or m = n = 0. Hence Λ+(X) is not finitely gen-
erated, neither is k[X ]. The reason is that k[X ] is defined by a non-admissible hy-
percone C =

⋃
C{x}. Indeed, a hyperface C ′ =

⋃
CY2x is defined by an inadmissible

supporting functional ϕ ∈ Ĕ ∗ such that 〈ω∨1 ,ϕ〉 = 1, 〈ω∨2 ,ϕ〉 = 0, 〈εx,ϕ〉 = −n1x,
and no multiple of −δ1 = ∑〈εx,ϕ〉x is a principal divisor. See Fig. 16.2.
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16.5 Examples.

Example 16.23 (SL2-embeddings). Suppose that G = SL2(k), H = {e}. Then O =
SL2 has complexity one. Embeddings of O were described in [LV, §9].

The elements of G are matrices

g =
(

g11 g12

g21 g22

)

, g11g22−g21g12 = 1,

and B consists of upper-triangular matrices (g21 = 0). Let ω be the fundamental
weight: ω(g) = g11 for g ∈ B.

All colors in O are regular. Their equations are the nonzero elements of the two-

dimensional subspace M = k[G](B)
ω generated by η1(g) = g21, η2(g) = g22. Let ηx =

c1η1 + c2η2 be an equation of x ∈ P
1 = P(M∗).

The field KB = k(P1) consists of rational functions in η1,η2 of degree 0.
The group Λ equals X(B) = 〈ω〉 � Z. We may take fω = η∞, where ∞ ∈ P

1 is a
certain fixed point.

The set of G-valuations is computed by the method of formal curves (§24).
First we determine G-valuations corresponding to divisors with a dense orbit. Up
to a multiple, any such valuation is defined by the formula vx(t)( f ) = ordt f (gx(t)),
where x(t) ∈ SL2(k((t))) and g is the generic k(SL2)-point of SL2. By the Iwasawa
decomposition (see 24.2), we may even assume that

x(t) =
(

tm u(t)
0 t−m

)

, u(t) ∈ k((t)), ordt u(t) = n≤−m.

The number

d = vx(t)(ηx) = ordt
(
(c1tm + c2u(t))g21 + c2t−mg22

)

is constant along P
1 except for one x, where it jumps, so that vx(t) = (h, �) ∈ Vx. The

following cases are possible:

m≤ n =⇒
{

d = m, ordt(c1tm + c2u(t)) = m

d ∈ (m,−m], ordt(c1tm + c2u(t)) > m
=⇒

{
h ∈ (0,−2m]
� = m (or m+h)

m > n =⇒
{

d = n, c2 = 0

d = m, c2 = 0
=⇒

{
h = m−n

� = n (or n+h)

(Here � = vx(t)(fω) increases by h if the jump occurs at x = ∞.)
In both cases, we obtain the subset in Ex,+ defined by the inequalities h > 0,

2�+h≤ 0 (or 2�−h≤ 0 if x = ∞). Thus Vx is defined by 2�+h≤ 0 (or 2�−h≤ 0)
by §24. The colored equipment is represented in Fig. 16.3. (Elements of Λ ∗×Z+ ⊂
Ex,+ are marked by dots.)

G-germs are given by colored cones or hypercones of type B hatched vertically
in Fig. 16.4; their colors are marked by bold dots. The notation for G-germs is taken
from [LV, §9]. Up to a “coordinate transform” (Remark 16.5), we may assume that
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Fig. 16.4 G-germs of SL2-embeddings
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for germs of types C,AB,B+ the colored cone lies in Ex,+, x = ∞, and for germs
of types Al ,B−,B0, xi = ∞. Moreover, for the hypercone to be strictly convex, we
must have ∑�i <−1 for Al , l ≥ 1, and �1 >−1 for B− and B0.

Affine SL2-embeddings correspond to minimal B-charts of G-germs of type B0.
They were first classified by Popov [Po1]. Embeddings of SL2/H, where H is finite,
were classified in [M-J1]. Embeddings of G/H, where G has semisimple rank 1 and
H is finite, were classified in [Tim2, §5]. These results hold in characteristic zero.

Example 16.24 (ordered triangles). Suppose that G = SL3(k) and H = T is the
diagonal torus. Then O = G/H is the space of ordered triangles on a projective
plane. The standard Borel subgroup B consists of upper-triangular matrices g = (gi j)
with detg = 1 and gi j = 0 for i > j. As usual, εi(g) = gii are the tautological
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weights of T , ω1 = ε1, ω2 = ε1 + ε2 are the fundamental weights, and α1 = ε1− ε2,
α2 = ε2−ε3 are the simple roots. Denote by ω∨i the fundamental coweights, and let
ρ = ω1 +ω2 = α1 +α2.

The subregular colors Di, D̃i are defined by the (B×H)-eigenfunctions ηi(g) =
g3i, η̃i(g) =

∣
∣
∣

g2 j g2k
g3 j g3k

∣
∣
∣ of biweights (ω2,εi), (ω1,−εi). D̃i consists of triangles whose

i-th side contains the B-fixed point in P
2, and Di consists of triangles whose i-th

vertex lies on the B-fixed line.
The functions ηiη̃i generate the two-dimensional subspace M = k[G](B×H)

(ρ ,0) ,

η1η̃1 + η2η̃2 + η3η̃3 = 0. Let xi ∈ P
1 = P(M∗) be the points corresponding to

ηiη̃i. The regular colors Dx, x = x1,x2,x3, are defined by equations ηx = c1η1η̃1 +
c2η2η̃2 + c3η3η̃3.

The group Λ = 〈α1,α2〉 is the root lattice, fα1 = η̃1η̃2η̃3/η∞, fα2 = η1η2η3/η∞,
where ∞ ∈ P

1 is a certain fixed point.
By 24.2, any G-valuation corresponding to a divisor with dense G-orbit is pro-

portional to vx(t), where

x(t) =

⎛

⎝
1 tm u(t)
0 1 tn

0 0 1

⎞

⎠ ,

and we may assume that m,n,r = ordt u(t)≤ 0. Computing the values vx(t)(ηx) as in
Example 16.23, one finds that the set of G-valuations v = (h, �)∈ Ex,+ corresponding
to divisors with dense G-orbit is determined by the inequalities a1,a2 ≤ 0 ≤ h (if
x = xi) or a1,a2 ≤ −2h ≤ 0 (if x = ∞) or a1,a2 ≤ −h ≤ 0 (otherwise), and h =
0 =⇒ a1 or a2 = 0, where � = a1ω∨1 +a2ω∨2 . Hence Vx is determined by the same
inequalities without any restrictions for h = 0.

The colored equipment is represented in Fig. 16.5. (The intersections of V with
the hyperplane sections E = {h = 0} and {h = 1} of Ex,+ are hatched horizontally.)

The space of ordered triangles has three natural completions: (P2)3, (P2∗)3, and

X =
{
(p1, p2, p3, l1, l2, l3)

∣
∣ p j ∈ P

2, li ∈ P
2∗, p j ∈ li whenever i = j

}
.

If zk j are the homogeneous coordinates of p j in P
2, and yik are the dual coordinates

of li in P
2∗, then X is determined by 6 equations (y ·z)i j = 0 (i = j) in (P2)3×(P2∗)3.

One verifies that the Jacobian matrix is non-degenerate everywhere on X \Y , where
Y ⊂ X is given by the equations p1 = p2 = p3, l1 = l2 = l3, and codimX Y = 3.
Thence, by Serre’s normality criterion, X is a normal complete intersection, smooth
outside Y . It contains the following G-subvarieties of degenerate triangles:

Wi: p j = pk and l j = lk, {i, j,k}= {1,2,3}. (A divisor.)
W̃ : p1, p2, p3 are collinear and l1 = l2 = l3. (The proper pullback of the divisor
{detz = 0} in (P2)3.)

W : p1 = p2 = p3 and l1, l2, l3 pass through this point. (The proper pullback of the
divisor {dety = 0} in (P2∗)3.)

Ỹi: p j = pk and l1 = l2 = l3 (codim = 2).
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Fig. 16.5
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Yi: l j = lk and p1 = p2 = p3 (codim = 2).
Y : p1 = p2 = p3 and l1 = l2 = l3 (codim = 3).

Note that ηi and η̃i may be regarded as certain homogeneous coordinates in the
i-th copy of P

2, resp. P
2∗, restricted to O:

⎧
⎪⎨

⎪⎩

ηi = z3i,

η̃i =
∣
∣
∣
∣
z2 j z2k

z3 j z3k

∣
∣
∣
∣ ,

or dually,

⎧
⎪⎨

⎪⎩

ηi =
∣
∣
∣
∣
y j1 y j2

yk1 yk2

∣
∣
∣
∣ ,

η̃i = yi1,

and η∞ is a 3-form in the matrix entries of y or z. Then

fα1 =
η̃1(y)η̃2(y)η̃3(y)

η∞(y)
=

η̃1(z)η̃2(z)η̃3(z)
η∞(z)detz

fα2 =
η1(y)η2(y)η3(y)

η∞(y)dety
=

η1(z)η2(z)η3(z)
η∞(z)

One easily deduces that fα1 ,ηx (∀x ∈ C) are regular and do not vanish along W ,
fα2 ,ηx along W̃ , and fα1 (resp. fα2 ) has the first order pole along W̃ (resp. W ). Hence
the G-valuations of W,W̃ ,Wi are −ω∨2 ,−ω∨1 ,εxi .

Since X is complete and contains the minimal G-germ Y (the closed orbit), we
have X = GX̊ , where X̊ is the minimal B-chart of Y determined by the colored hy-
percone (CY ,DB

Y ) of type B such that CY ⊇ V and VY = {−ω∨1 ,−ω∨2 ,εx1 ,εx2 ,εx3}.
It is easy to see from Fig. 16.5 that there exists a unique such hypercone (indicated
by vertical hatching) and DB

Y = {Dx | x = x1,x2,x3}. The (hyper)faces correspond-
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ing to various G-germs of X (including Y ) are indicated in Fig. 16.5 by the same
letters.

A similar argument shows that (P2)3 is defined by the colored hypercone (C ,
{D̃i,Dx | i = 1,2,3, x = x1,x2,x3}) and (P2∗)3 by (C ∗,{Di,Dx | i = 1,2,3, x =
x1,x2,x3}).

The space SL3(k)/NG(T ) of unordered triangles and its completion is studied
in [Tim3, §9]. The resolution of singularities of X was studied already by Schubert
with applications to enumerative geometry, see [CF], [Tim3, §9], and §18.

16.6 Local Properties. We say that a normal G-model X is of type A if it contains
no G-germs of type B, i.e., any G-orbit in X is contained in finitely many B-stable
prime divisors. For any X , there is a proper birational morphism ν : X̌ → X such
that X̌ is of type A.

In characteristic zero, singularities of G-models of type A are good.

Theorem 16.25. If X is of type A, then all irreducible G-subvarieties Y ⊆ X are
normal and have rational singularities.

Proof. By the local structure theorem, we may assume that X is affine and of type A,
i.e., k[X ]B = k. Passing to the categorical quotient by U , we may assume that G =
B = T . In the notation of Example 16.21, we may replace X by Xi and assume that
X is an affine toric (T ×k

×)-variety such that X//T � A
1 (k×-equivariantly). Then

each T -stable irreducible closed subvariety of X is either (T ×k
×)-stable or lying in

the fiber of the quotient map X → k over a nonzero point, which is a toric T -variety.
Thus the question is reduced to the case of toric varieties. 	


17 Divisors

The study of divisors on normal G-models goes back to M. Brion [Bri4] in the
spherical case and was extended to arbitrary complexity in [Tim3].

17.1 Reduction to B-stable Divisors. In the study of divisors on a normal G-
model X , we may restrict our attention to B-stable ones, by the following result.

Proposition 17.1. Let a connected solvable algebraic group B act on a normal va-
riety X. Then any Weil divisor on X is rationally equivalent to a B-stable one.

Proof. Replacing X by X reg, we may assume that X is smooth. Then any Weil di-
visor δ on X is Cartier. Furthermore, δ is the difference of two effective divisors.
Therefore we may assume that δ is effective. The line bundle O(δ ) is B-linearizable
by Theorem C.4, and the B-module H0(X ,O(δ )) contains a nonzero B-eigensec-
tion σ . The divisor divσ is B-stable and equivalent to δ . 	


Remark 17.2. The proposition is true for any algebraic cycle, see Theorem 18.1.
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17.2 Cartier Divisors. Our first aim is to describe Cartier divisors. For simplicity,
assume that chark = 0.

For any Cartier divisor δ on X , we shall always equip the respective line bundle
O(δ ) with a G-linearization assuming that G is of simply connected type (see Ap-
pendix C). Recall that δ is said to be globally generated if the sheaf of sections of
O(δ ) is generated by global sections.

Lemma 17.3 ([Kn5, 2.2]). Any prime divisor D⊂ X that does not contain a G-orbit
of X is globally generated Cartier.

Proof. Let ι : X reg ↪→ X be the inclusion of the subset of smooth points. Then D∩
X reg is Cartier on X reg, and D∩X reg = divη for some η ∈ H0(X reg,O(D∩X reg)).
As X is normal, O(D) = ι∗O(D∩X reg) is a trivial line bundle on X \D. As G acts
on O(D), the set of points where O(D) is not invertible is G-stable and contained
in D, and hence empty. Therefore O(D) is a line bundle on X .

If we regard η as an element of H0(X ,O(D)), then D = divη , because the equal-
ity holds on X reg and codimX (X \X reg) > 1. Furthermore, O(D) is generated by gη ,
g ∈ G, because the set of their common zeroes is

⋂
g∈G gD = /0. The assertion fol-

lows. 	


The following criterion says that a divisor is Cartier if and only if it is determined
by a local equation in a neighborhood of a general point of each G-subvariety.

Theorem 17.4. Suppose that δ is a Weil divisor on X. Then δ is Cartier if and only
if for any irreducible G-subvariety Y ⊆ X there exists fY ∈ K such that each prime
divisor D ⊇ Y occurs in δ with multiplicity vD( fY ). If δ is B-stable, then one may
choose fY ∈ K(B).

Proof. Suppose that δ is locally principal in general points of G-subvarieties. Take
any G-orbit Y ⊆ X . Replacing δ by δ −div fY , we may assume that no component
of δ contains Y . Take an affine open chart X̊ ⊆ X intersecting Y , but not intersecting
any component of δ . By Lemma 17.3, δ is Cartier on GX̊ , whence on X .

Now suppose that δ is Cartier, and let Y ⊆ X be an irreducible G-subvariety.
By Sumihiro’s Theorem C.7, there is an open G-stable quasiprojective subvariety
X0⊆X intersecting Y . The restriction of δ to X0 may be represented as the difference
of two globally generated divisors, and hence we may replace X by X0 and assume
that δ is globally generated.

It follows that the annihilator of Y in H0(X ,O(δ )) is a proper G-submodule,
whence there is a section σ ∈ H0(X ,O(δ )) such that σ |Y = 0. In fact, we may
assume that σ is a B-eigensection. Therefore δ is principal on the open subset Xσ
intersecting Y , and we may take for fY the equation of δ on Xσ . 	


Remark 17.5. The theorem extends to characteristic p > 0, except that for a B-sta-
ble Cartier divisor δ one can guarantee the existence of local equations fY ∈ K(B)

not for δ itself, but for qδ , where q is a power of p. To prove the existence of an
eigensection σ ∈ H0(X ,O(qδ ))(B), σ |Y = 0, one uses Corollary D.2.
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By Theorem 17.4, a B-stable Cartier divisor on X is determined by the following
data:

(1) a collection of rational B-eigenfunctions fY given for each G-germ Y ∈ GX and
such that w( fY1) = w( fY2), vD( fY1) = vD( fY2), ∀w ∈ VY1 ∩VY2 , D ∈DB

Y1
∩DB

Y2
;

(2) a collection of integers mD, D ∈ DB \⋃Y⊆X DB
Y , only finitely many of them

being nonzero (mD is the multiplicity of D in the divisor).

Remark 17.6. It suffices to specify the local equations fY only for closed G-orbits
Y ⊆ X : if a G-subvariety Y ⊆ X contains a closed orbit Y0, then we may put fY = fY0 .

When a Cartier divisor is replaced by a rationally equivalent one, the local equa-
tions fY are replaced by fY f for some f ∈K(B), and mD are replaced by mD +vD( f ).

17.3 Case of Complexity ≤ 1. In this case, the data (1)–(2) are retranslated into
the language of convex geometry.

Consider first the spherical case. Each fY defines a function ψY on the cone CY ,
which is the restriction of a linear functional λY ∈Λ . We may assume that fY1 = fY2

if CY1 is a face of CY2 , whence ψY1 = ψY2 |CY1
. In particular, ψY paste together in a

piecewise linear function on
⋃

Y⊆X (CY ∩V ). A collection ψ = (ψY ) of functions
ψY on CY with the above properties is called an integral piecewise linear function
on the colored fan F of X .

Note that generally ψ does not define a function on
⋃

C∈F C , as the following
example shows.

Example 17.7 ([Pau3]). Let G = SL3(k), H = SL2(k) = the common stabilizer of
e1 ∈ k

3, x1 ∈ (k3)∗. Then O = G/H is defined in k
3⊕(k3)∗ by an equation 〈v,v∗〉=

1. The colors D1,D2 ∈ DB are defined by the restrictions η1,η2 of linear B-eigen-
functions on k

3⊕ (k3)∗ of B-weights ω1,ω2. Here η1,η2 ∈ K(B) and Λ = 〈ω1,ω2〉,
whence κ(Di) = α∨i .

A one-dimensional torus acting on the summands of k
3⊕ (k3)∗ by the weights

±1 commutes with G and preserves O. The respective grading of k[O] determines
two G-valuations v±( f ) = ±deg f∓, where f± is the highest/lowest degree term of
f ∈ k[O]. Since degηi = (−1)i−1, we have v± =±α∨1 ∓α∨2 . It follows easily from
Corollary 15.6 that the colored space looks as in Fig. 17.1.

Fig. 17.1

� D2

� D1

C0
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C2
V
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Take a fan F determined by the cones C0,C1,C2 in the figure. Since C1∩C2 is a
solid cone, a piecewise linear function on F defines a function on C0∪C1∪C2 = E
if and only if it is linear.

Let PL(F ) be the group of all integral piecewise linear functions on F , and let
L(F ) be its subgroup of linear functions ψ = (λ |CY ), λ ∈Λ .

The above discussion yields the following exact sequences:

0−→ Z

(

DB \
⋃

Y⊆X

DB
Y

)

−→ CaDiv(X)B −→ PL(F )−→ 0, (17.1)

Λ ∩F⊥ −→ PrDiv(X)B −→ L(F )−→ 0, (17.2)

where CaDiv(·) and PrDiv(·) denote the groups of Cartier and principal divisors,
respectively, and F⊥ is the annihilator of the union of all cones in F .

Theorem 17.8 ([Bri4, 3.1]). For spherical X there is an exact sequence

Λ ∩F⊥ −→ Z

(

DB \
⋃

Y⊆X

DB
Y

)

−→ PicX −→ PL(F )/L(F )−→ 0.

If X contains a complete G-orbit, then PicX is free Abelian of finite rank.

Proof. The exact sequence is a consequence of (17.1)–(17.2). If Y ⊆X is a complete
G-orbit, then F⊥ ⊆ C⊥

Y = 0 by Propositions 15.14 and 10.1. Then it is easy to see
that PL(F )/L(F ) has finite rank and no torsion, whence the second assertion. 	


A G-variety X having only one closed orbit Y ⊆ X is called simple. If X is spher-
ical and simple, then its fan consists of all supported colored faces of (CY ,DB

Y ).

Corollary 17.9. If X is spherical and simple with the closed orbit Y ⊆ X, then there
is an exact sequence

Λ ∩C ⊥
Y −→ Z(DB \DB

Y )−→ PicX −→ 0.

Corollary 17.10. If X is spherical and simple and the closed orbit Y ⊆ X is com-
plete, then PicX = Z(DB \DB

Y ) is free Abelian with basis DB \DB
Y .

Example 17.11. If X = G/P is a generalized flag variety, then PicX is freely gener-
ated by the Schubert divisors Dα = B(wGrα o), α ∈Π \ I, where I ⊆Π is the set of
simple roots defining the parabolic P = PI ⊇ B and rα ∈W is the reflection along α .

Example 17.12 ([Bri4]). Let G = SL3(k), H = NG(SO3(k)) = SO3(k)×Z3, where
Z3 = Z(SL3(k)). Then O = G/H is the space of conics in P

2. The coisotropy rep-
resentation is the natural representation of SO3(k) in traceless symmetric matrices,
whence

H∗ =

⎧
⎨

⎩

⎛

⎝
±1 0 0
0 ±1 0
0 0 ±1

⎞

⎠

⎫
⎬

⎭
×Z3
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and Λ(O) = 〈2α1,2α2〉, where αi are simple roots of SL3(k). By Example 4.9(2)
or (9.1), O is spherical.

We may consider O as the projectivization of the open subset of non-degenerate
quadratic forms in S2(k3)∗. The two (B×H)-eigenfunctions

η1(q) = q11, η2(q) =
∣
∣
∣
∣
q11 q12

q21 q22

∣
∣
∣
∣

(
q ∈ S2(k3)∗

)

of biweights (2ωi, iε) (i = 1,2), where ωi are the fundamental weights of G and ε is
the weight of Z3 in k

3, define the two colors D1,D2. They impose the conditions that
a conic passes through the B-fixed point, resp. is tangent to the B-fixed line. Since
f2α1 = η2

1 /η2, f2α2 = η2
2 /η1 ∈ K(B), and their weights 2α1,2α2 generate Λ , there

are no other colors. (Indeed, if η ∈ k[G](B×H)
(λ ,χ) , then either χ = 0, λ ∈Λ , or χ = iε ,

λ − 2ωi ∈ Λ , hence η is proportional to the product of η1,η2 and their inverses.)
Furthermore, Λ ∗ = 〈ω∨1 /2,ω∨2 /2〉, where ω∨i denote the fundamental coweights,
and κ(Di) = α∨i /2.

The complement to O in (P5)∗ = P(S2(k3)∗) is a G-stable prime divisor {detq =
0}, and the respective G-valuation is −ω∨2 /2 ∈ E , because in homogeneous coor-
dinates f2α1(q) = η1(q)2/η2(q), f2α2(q) = η2(q)2/η1(q)detq. The unique closed
orbit Y = {rkq = 1} has the colored data VY = {−ω∨2 /2}, DB

Y = {D2}.
Similarly, we embed O in P

5 = P(S2
k

3) by the map q �→ q∨ (=the adjoint matrix
of q) sending a conic to the dual one. Here the unique closed orbit Y∨ = {rkq∨ = 1}
has the colored data VY∨ = {−ω∨1 /2}, DB

Y∨ = {D1}.
Since P

5,(P5)∗ are complete, the cones CY and CY∨ contain V , whence V is gen-
erated by −ω∨1 /2,−ω∨2 /2. The colored equipment of O is represented in Fig. 17.2.

Fig. 17.2
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	D2
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	D1

The closure X of the diagonal embedding O ↪→ P
5× (P5)∗ is called the space

of complete conics. It is determined in P
5× (P5)∗ by the equation “q ·q∨ is a scalar

matrix”, and this implies by direct computations that X is smooth. The unique closed
orbit Y̌ ⊆ X has the colored data VY̌ = {−ω∨1 /2,−ω∨2 /2}, DB

Y̌
= /0.

By Corollary 17.10, PicP
5 � Pic(P5)∗ � Z are freely generated by D2, resp. D1,

and PicX � Z
2 is freely generated by D1,D2.
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Remark 17.13. In fact, the space of smooth conics is a symmetric variety and the
space of complete conics is its “wonderful completion”, see §§26, 30.

In the case of complexity 1, the description of Cartier divisors is similar, but one
should speak not only of cones, but also of hypercones CY , and of admissible func-
tionals λY which are integral on Λ ∗ and such that ∑〈εx,λY 〉x is a principal divisor
on C.

In particular, if X is simple, then PicX is generated by DB \DB
Y (in fact, by a

finite subset), where Y ⊆ X is the closed orbit, and if Y is complete of type B, then
PicX is free Abelian with finite basis DB \DB

Y .

Example 17.14. If X is the space of complete triangles of Example 16.24, then
PicX = 〈Di, D̃i | i = 1,2,3〉 � Z

6.

17.4 Global Sections of Line Bundles. In characteristic zero, the G-module struc-
ture of the space of global sections of a Cartier divisor is determined by the set of
B-eigensections. For any Cartier divisor δ let ηδ denote a rational section of O(δ )
such that divηδ = δ . (It is defined uniquely up to multiplication by an invertible
function.) If δ is B-stable, then ηδ is B-semiinvariant, and H0(X ,O(δ ))(B) = { f ηδ |
f ∈K(B), div f +δ ≥ 0}. The B-weight of σ = f ηδ ∈H0(X ,O(δ ))(B) equals λ +λδ ,
where λ is the B-weight of f and λδ is the B-weight of ηδ . The multiplicity of
V (λ +λδ ) in H0(X ,O(δ )) equals

mλ (δ ) = dim{ f ∈ KB | div f +div fλ +δ ≥ 0}. (17.3)

The weight λδ is defined up to a character of G and may be determined as follows.
Consider a general G-orbit Y ⊆ X and let δ̃ be the pullback on G of δ ∩Y . As G is
a factorial variety, δ̃ is defined by an equation F ∈ k(G)(B). Then λδ is the weight
of F .

In the case c(X)≤ 1, the description of H0(X ,O(δ )) is given in the language of
convex geometry.

If c(X) = 0, then the set of highest weights of H0(X ,O(δ )) is λδ +P(δ )∩Λ ,
where

P(δ ) =

{

λ ∈
⋂

Y⊆X

(−λY +C ∨
Y )

∣
∣
∣
∣
∣
∀D ∈DB \

⋃

Y⊆X

DB
Y : 〈λ ,κ(D)〉+mD ≥ 0

}

,

(17.4)

and all highest weights occur with multiplicity 1.

Example 17.15. In the notation of Example 17.11, a Schubert divisor Dαi ⊆ G/PI ,
αi ∈ Π \ I, is defined by an equation 〈v∗,gv〉 = 0, v∗ ∈ V (ω∗i )(B), v ∈ V (ωi)(PI).
Hence λDαi

= ω∗i . For δ = ∑aiDαi , we have O(δ ) = L(−∑aiωi), λδ = ∑aiω∗i ,

P(δ ) = {0}, and H0(G/PI ,O(δ )) = V (∑aiω∗i ) (the Borel–Weil theorem, cf. 2.6).

Example 17.16. Consider X = P
d−1× (Pd−1)∗ as a simple projective embedding of

a symmetric space O = SLd/S(L1×Ld−1), where S(L1×Ld−1) denotes the group
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of unimodular block-diagonal matrices with blocks of size 1 and d− 1. Then Y =
X \O is a homogeneous divisor consisting of all pairs (x,y) such that the point x
lies in the hyperplane y. It is defined by an equation ∑xiyi = 0, where x1, . . . ,xd

(y1, . . . ,yd) are projective coordinates on P
d−1 (resp. (Pd−1)∗). The two colors D,D′

are defined by B-eigenfunctions y1,xd of biweights (ω1,(d−1)ε), (ωd−1,(1−d)ε),
respectively, where ε generates X(S(L1×Ld−1)). One has Λ = 〈ω1 + ωd−1〉 � Z,
fω1+ωd−1(x,y) = xdy1/∑xiyi. It follows easily that E �Q⊃ V = CY = Q−, κ(D) =
κ(D′) = 1.

By Corollary 17.10, Pic(X) = ZD⊕ZD′, and for δ = mD + nD′ we have λδ =
mω1 + nωd−1, P(δ ) = {λ = −k(ω1 + ωd−1) | k,m− k,n− k ≥ 0}. On the other
hand, O(δ ) = O

Pd−1(n)⊗O(Pd−1)∗(m), whence H0(X ,O(δ )) = Sm
k

d ⊗Sn(kd)∗ =
V (mω1)⊗V (nωd−1). We obtain a decomposition formula

V (mω1)⊗V (nωd−1) =
⊕

0≤k≤min(m,n)

V ((m− k)ω1 +(n− k)ωd−1).

For other applications to computing tensor product decompositions, including Pieri
formulæ, see [Bri4, 2.5], cf. 11.4.

Now assume that c(X) = 1. Let C be a smooth projective curve with k(C) = KB.
Put δ = ∑mDD (D runs through all B-stable prime divisors on X) and κ(D) =
(hD, �D) ∈ ExD,+, xD ∈C.

Definition 17.17. A pseudodivisor on C is a formal linear combination μ = ∑x∈C mx ·
x, where mx ∈ R∪{±∞}, and all but finitely many mx are 0. Put H0(C,μ) = { f ∈
k(C) | div f + μ ≥ 0}. (Here we assume that c+(±∞) =±∞ for any c ∈ R.)

If all mx = −∞, then H0(C,μ) is just the space of global sections of the divisor
[μ ] = ∑[mx] · x on C \{x | mx = +∞}, otherwise H0(C,μ) = 0.

Consider the pseudodivisor

μ = μ(δ ,λ ) = ∑
x∈C

(

min
xD=x

〈λ , �D〉+mD

hD

)

x.

(

Here we assume that
c
0

=

{
+∞, c≥ 0,

−∞, c < 0.

)

Since div f = ∑hDvxD( f ) · D, ∀ f ∈ KB , and div fλ = ∑〈λ , �D〉 · D, it follows
from (17.3) that mλ (δ ) = h0(δ ,λ ) := dimH0(C,μ).

We have h0(δ ,λ ) = 0 outside the polyhedral domain

P(δ ) = {λ | 〈λ , �D〉 ≥ −mD for all D such that hD = 0} ⊆Λ ⊗R.

If there is x ∈ C such that xD = x for all D with hD > 0, then h0(δ ,λ ) = ∞, ∀λ ∈
P(δ ), because in this case h0(δ ,λ ) is the dimension of the space of sections of a
divisor on an affine curve. Otherwise, by the Riemann–Roch theorem,
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h0(δ ,λ ) = deg[μ ]−g+1+h1(δ ,λ )

= A(δ ,λ )−σ(δ ,λ )−g+1+h1(δ ,λ),

where g is the genus of C, h1(δ ,λ ) = dimH1(C, [μ ]),

A(δ ,λ ) = ∑
x∈C

(

min
xD=x

〈λ , �D〉+mD

hD

)

is a piecewise affine concave function of λ , and σ(δ ,λ ) is bounded non-negative
for all δ ,λ . Furthermore, as h0(δ ,λ ) ≤ deg[μ ] + 1 whenever deg[μ ] ≥ 0 [Har2,
Ex. IV.1.5], we have h1(δ ,λ )≤ g if A(δ ,λ )≥ σ(δ ,λ ). Note also that A(nδ ,nλ ) =
nA(δ ,λ ).

It follows that h0(δ ,λ ) = 0 if A(δ ,λ ) < 0, and h0(δ ,λ ) differs from A(δ ,λ )
by a globally bounded function whenever A(δ ,λ ) ≥ 0, λ ∈P(δ ). This gives the
asymptotic behavior of h0(δ ,λ ) as (δ ,λ )→ ∞ in a fixed direction.

17.5 Ample Divisors. Now we give criteria for a Cartier divisor to be globally
generated and ample.

Theorem 17.18. Suppose that δ is a Cartier divisor on X determined by the data
{ fY}, {mD}.
(1) δ is globally generated if and only if local equations fY can be chosen in such
a way that for any irreducible G-subvariety Y ⊆ X the following two conditions are
satisfied:

(a) For any other irreducible G-subvariety Y ′ ⊆ X and each B-stable prime divisor
D⊇ Y ′, vD( fY )≤ vD( fY ′).

(b) ∀D ∈DB \⋃Y ′⊆X DB
Y ′ : vD( fY )≤ mD.

(2) δ is ample if and only if, after replacing δ by a certain multiple, local equations
fY can be chosen in such a way that, for any irreducible G-subvariety Y ⊆ X, there
exists a B-chart X̊ of Y such that (a) and (b) are satisfied and

(c) the inequalities therein are strict if and only if D∩ X̊ = /0.

Proof. (1) δ is globally generated if and only if for any irreducible G-subvariety
Y ⊆ X , there is η ∈ H0(X ,O(δ )) such that η |Y = 0. We may assume η to be a B-
eigensection. This means that there exists f ∈ K(B) such that div f + δ ≥ 0, and no
D ⊇ Y occurs in div f + δ with positive multiplicity. Replacing fY by f−1 yields
the conditions (a)–(b). Conversely, if (a)–(b) hold then f = f−1

Y yields the desired
global section.
(2) Suppose that δ is ample. Replacing δ by a multiple, we may assume that δ
is very ample. Consider the G-equivariant projective embedding X ↪→ P(M∗) de-
fined by a certain finite-dimensional G-submodule M ⊆ H0(X ,O(δ )). Take an ir-
reducible G-subvariety Y ⊆ X . There exists a homogeneous B-eigenpolynomial in
homogeneous coordinates on P(M∗) (i.e., a section in H0(X ,O(δ )⊗N)(B)) that van-
ishes on X \X but not on Y . Replacing δ by Nδ , we may assume that there exists
η ∈ H0(X ,O(δ ))(B) such that η|X\X = 0, η |Y = 0. Then X̊ = Xη is a B-chart of Y ,
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and there exists f ∈ K(B) such that div f + δ = divη ≥ 0. It remains to replace fY
by f−1.

Conversely, assume that the conditions (a)–(c) hold. For any irreducible G-subva-
riety Y ⊆ X , there is a section η ∈ H0(X ,O(δ ))(B) determined by f−1

Y , and X̊ = Xη
is a B-chart of Y . We may pick finitely many B-charts X̊i of this kind in such a way
that GX̊i cover X . Let ηi ∈ H0(X ,O(δ ))(B) be the respective global sections. Then

k[X̊i] =
⋃

n≥0

η−n
i H0(X ,O(δ )⊗n) = k

[
σi1

ηni
i

, . . . ,
σi,si

ηni
i

]

for some ni,si ∈ N, σi j ∈ H0(X ,O(δ )⊗ni). Replacing δ by a multiple, we may as-
sume that ni = 1.

Take the finite-dimensional G-submodule M⊆H0(X ,O(δ )) generated by ηi,σi j,
∀i, j. The respective rational map X ��� P(M∗) is G-equivariant and defined on X̊i,
hence everywhere. Moreover, ϕ−1(P(M∗)ηi) = X̊i and ϕ|X̊i

is a closed embedding
in P(M∗)ηi . Therefore ϕ is a locally closed embedding and δ is very ample. 	


Remark 17.19. If X is complete and δ is very ample, then the conditions (a)–(c)
hold for δ itself.

Corollary 17.20. If X̊ is a B-chart and X = GX̊, then a divisor ∑D⊆X\X̊ mDD is glob-
ally generated (ample) whenever all mD ≥ 0 (mD > 0). In particular, X is quasipro-
jective.

Remark 17.21. Theorem 17.18 extends to characteristic p > 0 if one reformulates
(1) as a criterion for a certain multiple qδ to be globally generated, where q is a
power of p, in terms of the data defining qδ . Another way to extend the theorem to
positive characteristic is to waive B-stability and B-semiinvariance. Corollary 17.20
still holds in positive characteristic.

Corollary 17.22. If X is spherical and simple and Y ⊆ X is the closed G-orbit, then
globally generated (ample) divisor classes in PicX are those δ = ∑D∈DB\DB

Y
mDD

with mD ≥ 0 (mD > 0). In particular, any simple G-variety is quasiprojective. (This
also stems from Sumihiro’s Theorem C.7.)

In the case of complexity ≤ 1, conditions (a)–(b) mean that λY ≤ ψY ′ on CY ′

and 〈λY ,κ(D)〉 ≤ mD, and (c) means that the inequalities therein are strict exactly
outside C = C (W ,R) and R.

The description of globally generated and ample divisors on spherical X in terms
of piecewise linear functions is more transparent if X is complete (or all closed G-
orbits Y ⊆ X are complete). Then maximal cones CY ∈ F are solid, and λY are
determined by ψY .

Definition 17.23. A function ψ ∈ PL(F ) is (strictly) convex if λY ≤ ψY ′ on CY ′

(resp. λY < ψY ′ on CY ′ \CY ) for any two maximal cones CY ,CY ′ ∈F .
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Corollary 17.24. If X is complete (or all closed G-orbits in X are complete) and
spherical, then δ is globally generated (ample) if and only if ψ is (strictly) convex
on F and 〈λY ,κ(D)〉 ≤ mD (resp. < mD) for any closed G-orbit Y ⊆ X and any
D ∈DB \⋃Y ′⊆X DB

Y ′ .

Proof. It suffices to note that Y has a unique B-chart X̊Y given by the colored cone
(CY ,DB

Y ), and conditions (a)–(c) are satisfied for δ if and only if they are satisfied
for a multiple of δ . 	


Corollary 17.25. On a complete spherical variety, every ample divisor is globally
generated.

The above results extend to the case of complexity 1, if all closed G-orbits in X
are complete and of type B.

Remark 17.26. It follows from the proof of Theorem 17.18(2) that δ is very ample if
k[X̊i] is generated by η−1

i H0(X ,O(δ )) for each i. This is reduced to the equality on

B-semiinvariants: k[X̊i](B) =
⋃

η−n
i R(B)

n =
⋃

η−n
i S(B)

n for R =
⊕

n≥0 H0(X ,O(δ )⊗n),
S =

⊕
n≥0

[
H0(X ,O(δ ))

]n
; and can be effectively verified in some cases. For ex-

ample, if X is complete and spherical, then it suffices to verify that for each closed
G-orbit Y ⊆ X the polyhedral domain λY + P(δ ) contains the generators of the
semigroup C ∨

Y ∩Λ . Using this observation, it is easy to show that on a complete
smooth toric variety every ample divisor is very ample (Demazure [Oda, Cor. 2.15]).

Example 17.27. On a generalized flag variety X = G/P, globally generated (ample)
divisors are distinguished in the set of all B-stable divisors δ = ∑aiDαi by the con-
ditions ai ≥ 0 (resp. ai > 0), in the notation of Example 17.11. Every ample divisor
is very ample.

Example 17.28. The variety X defined by the colored fan F from Example 17.7
is complete, but not projective. Indeed, since C1 ∩C2 is a solid cone (Fig. 17.1), a
convex piecewise linear function on F is forced to be linear on C1 ∪C2, whence
globally on E . Hence there are no non-principal globally generated divisors on X .

Remark 17.29. If a fan F in a two dimensional colored space has no colors, then the
interiors of all cones in F are disjoint and there exists a strictly convex piecewise
linear function on F . Therefore all toroidal spherical varieties (in particular, all toric
varieties) of rank 2 are quasiprojective. However, one can construct a complete, but
not projective, toric variety of rank 3 [Ful2, p. 71].

Example 17.30. The same reasoning as in Example 17.28 shows that an SL2-embed-
ding X containing at least two G-germs of types B−, B0 (Fig. 16.4) is not quasipro-
jective. (Here r(X) = 1, dimX = 3.) On the other hand, if X contains at most one
G-germ of type B− or B0, then it is easy to construct a strictly convex piecewise
linear function on the hyperfan of X , whence X is quasiprojective. (For smooth X ,
this was proved in [M-J2, 6.4].)
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18 Intersection Theory

Our basic reference in intersection theory is [Ful1].

18.1 Reduction to B-stable Cycles. We begin our study of algebraic cycles on
G-models with the following general result reducing everything to B-stable cycles.

Theorem 18.1 ([FMSS]). Let a connected solvable algebraic group B act on a va-
riety X. Then the Chow group Ad(X) is generated by the B-stable d-cycles with the
relations [div f ] = 0, where f is a rational B-eigenfunction on an irreducible closed
B-stable (d +1)-subvariety of X. Here [z] ∈ A∗(X) denotes the class of a cycle z.

Proof. Using the normalization of X , equivariant completion [Sum, Th. 3], and the
equivariant Chow lemma [Sum, Th. 2], one reduces the assertion to the case of nor-
mal projective X by induction on dimX with the help of the standard technique of
exact sequences [FMSS, §2]. The projective case was handled by Hirschowitz [Hir],
Vust [M-J2, 6.1], and Brion [Bri10, 1.3]. The idea is to consider the B-action on the
Chow variety Z containing a given effective d-cycle z. Applying the Borel fixed
point theorem, we find a B-stable cycle z0 ∈ Bz. An easy induction on dimB shows
that z0 can be connected with z by a sequence of rational curves, whence z0 is ra-
tionally equivalent to z. The assertion on relations is proved by a similar technique,
see [Bri10, 1.3] for details. 	


This theorem clarifies almost nothing in the structure of Chow groups of general G-
varieties, because the set of B-stable cycles is almost as vast as the set of all cycles;
however it is very useful for G-varieties of complexity ≤ 1.

Assume that X is a unirational G-variety of complexity ≤ 1 or a B-stable subva-
riety in it. (The assumption of unirationality is needless in the spherical case, since
X has an open B-orbit. If c(X) = 1, then unirationality means that k(X)B � k(P1).)

Corollary 18.2. A∗(X) is finitely generated. If U : X has finitely many orbits, then
A∗(X) is freely generated by U-orbit closures.

Proof. If c(X) = 0, then B : X has finitely many orbits, whence A∗(X) is generated
by B-orbit closures. If c(X) = 1, then, by Theorem 5.7, each irreducible B-stable
subvariety Y ⊆ X is either a B-orbit closure or the closure of a one-parameter family
of B-orbits. In the second case, Y is one of finitely many irreducible components
of Xk = {x ∈ X | dimBx ≤ k}, 0 ≤ k < dimX , and it follows from Lemma 5.8 that
an open B-stable subset Y̊ ⊆ Y admits a geometric quotient Y̊/B which is a smooth
rational curve. Hence all B-orbits in Y̊ are rationally equivalent and each B-orbit,
except finitely many of them, lies in one of Y̊ . Therefore A∗(X) is generated by
finitely many B-orbit closures and irreducible components of Xk. 	


Corollary 18.3. If X is complete, then:

(1) The cone of effective cycles A+
d (X)Q ⊆ Ad(X)⊗Q is a polyhedral cone gener-

ated by the classes of rational subvarieties.
(2) Algebraic equivalence coincides with rational equivalence of cycles on X.
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Proof. (1) Similar to the proofs of Theorem 18.1 and Corollary 18.2.
(2) The group of cycles algebraically equivalent to 0 modulo rational equivalence
is divisible [Ful1, Ex. 19.1.2]. 	


Corollary 18.4. If X is smooth and complete (projective if c(X) = 1), then the cy-
cle map A∗(X)→ H∗(X) is an isomorphism of free Abelian groups of finite rank.
(Here k = C, but one may also consider étale homology and Chow groups with
corresponding coefficients for arbitrary k.)

Proof. If c(X) = 0, then it is easy to deduce from Theorem 18.1 that the Künneth
map A∗(X)⊗A∗(Y )→ A∗(X ×Y ) is an isomorphism for any Y , and the assertion
follows from the fact that z = ∑(ui · z)vi, ∀z ∈ A∗(X), where ∑ui⊗ vi is the class of
the diagonal in X ×X [FMSS, §3]. If X is projective, then one uses the Białynicki-
Birula decomposition [B-B1]: X is covered by finitely many B-stable locally closed
strata Xi, where each Xi is a vector bundle over a connected component XT

i of XT ,
and either XT

i = pt or XT
i = P

1. This yields a cellular decomposition of X , and we
conclude by [Ful1, Ex. 19.1.11]. 	


Remark 18.5. The corollaries extend to an arbitrary variety X with an action of a
connected solvable group B having finitely many orbits.

Remark 18.6. If X is not unirational, then Corollaries 18.2, 18.3(1) remain valid
after replacing A∗(X) by the group B∗(X) of cycles modulo algebraic equivalence.

Example 18.7. If X is a generalized flag variety or a Schubert subvariety, then
A∗(X)� H∗(X) is freely generated by Schubert subvarieties in X .

Now we discuss intersection theory on varieties of complexity≤ 1. To the end of
this section, we assume that chark = 0.

18.2 Intersection of Divisors. Let X be a projective normal G-model of complex-
ity ≤ 1. A method for computing intersection numbers of Cartier divisors on X was
introduced by Brion [Bri4, §4] in the spherical case and generalized in [Tim3, §8]
to the case of complexity 1.

Put dimX = d, c(X) = c (= 0,1), r(X) = r.
The Néron–Severi group NS(X) of Cartier divisors modulo algebraic equivalence

is finitely generated, and the intersection form is a d-linear form on the finite-dimen-
sional vector space NS(X)⊗Q. This form is reconstructed via polarization from the
form δ �→ degX δ d on NS(X)⊗Q of degree d. Moreover, each Cartier divisor on X
is a difference of two ample divisors, whence ample divisors form an open solid
convex cone in NS(X)⊗Q, and the intersection form is determined by values of
degδ d for ample δ .

Retain the notation of 17.5. Also put A(δ ,λ ) ≡ 1, ∀λ ∈ E ∗, if c = 0, and
P+(δ ) = {λ ∈P(δ ) | A(δ ,λ )≥ 0}.

Theorem 18.8. Suppose that δ is an ample B-stable divisor on X. Then
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d = c+ r + |Δ∨+ \ (Λ +Zλδ )⊥|, and (18.1)

degδ d = d!
∫

λδ +P+(δ )

A(δ ,λ −λδ ) ∏
α∨∈Δ∨+\(Λ+Zλδ )⊥

〈λ ,α∨〉
〈ρ,α∨〉 dλ , (18.2)

where ρ = ρG is half the sum of positive roots of G and the Lebesgue measure on
Λ ⊗R is normalized so that a fundamental parallelepiped of Λ has volume 1.

Proof. Two cases are to be considered: c = 0 and c = 1. We have

dimH0(X ,O(δ )⊗n) = ∑
λ∈nλδ +nP(δ)∩Λ

dimV (λ ) ·mλ−nλδ
(nδ )

= ∑
λ∈λδ +P(δ )∩ 1

n Λ

dimV (nλ ) ·mn(λ−λδ )(nδ )

= ∑
λ∈λδ +P+(δ)∩ 1

n Λ
∏

α∨∈Δ∨+

(

1+n
〈λ ,α∨〉
〈ρ,α∨〉

)

if c = 0,

or ∑
λ∈λδ +P+(δ)∩ 1

n Λ
∏

α∨∈Δ∨+

(

1+n
〈λ ,α∨〉
〈ρ,α∨〉

)
[
nA(δ ,λ −λδ )

−σ(nδ ,n(λ −λδ ))−g+1+h1(nδ ,n(λ −λδ ))
]

if c = 1, using the Weyl dimension formula for dimV (λ ) [Bou2, Ch. VIII, §9, n◦2].
In both cases,

dimH0(X ,O(δ )⊗n)∼ nc+r
∫

λδ +P+(δ )

A(δ ,λ −λδ ) ∏
α∨∈Δ∨+\(λδ +P+(δ))⊥

n
〈λ ,α∨〉
〈ρ,α∨〉 dλ .

On the other hand, the Euler characteristic χ(O(δ )⊗n) = deg(δ d)nd/d!+ · · · equals
dimH0(X ,O(δ )⊗n) for n � 0. It remains to note that P+(δ ) generates Λ ⊗R,
because each rational B-eigenfunction on X is a quotient of two B-eigensections of
some O(δ )⊗n. Therefore (λδ +P+(δ ))⊥ = (Λ +Zλδ )⊥. 	


Remark 18.9. Formula (18.1) may be proved using the local structure theorem (The-
orem 4.7).

Remark 18.10. Formula (18.2) is valid for globally generated δ , because globally
generated divisor classes lie on the boundary of the cone of ample divisors in
NS(X)⊗Q and the r.h.s. of (18.2) depends continuously on δ .

Remark 18.11. The integral in the theorem can be easily computed using a simplicial
subdivision of the polyhedral domain P+(δ ) and Brion’s integration formula [Bri4,
4.2, Rem. (ii)]:

Suppose that F is a homogeneous polynomial of degree n on R
r, and [a0, . . . ,ar]

is a simplex with vertices ai ∈ R
r. Then
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∫

[a0,...,ar]

F(λ )dλ =
r!vol[a0, . . . ,ar]
(n+1) · · ·(n+ r)

ΠrF(a0, . . . ,ar),

where

ΠrF(a0, . . . ,ar) =
1
n! ∑

n0+···+nr=n

∂ nF(a0t0 + · · ·+artr)
∂ tn0

0 · · ·∂ tnr
r

.

Example 18.12. For toric X , d = r, c = 0, and degδ r = r!volP(δ ) [Dan, 11.12.2],
[Ful2, 5.3].

Example 18.13. If X = G/PI is a generalized flag variety, then each ample divisor
δ defines an embedding X ↪→ P(V (λ )), λ = λ ∗δ , and the degree of this embedding
equals

|Δ+ \ (ΔI)+|! ∏
α∈Δ+\(ΔI)+

〈λ ,α∨〉
〈ρ,α∨〉 .

In particular, the degree of the Plücker embedding Grm(kn) ↪→ P(
∧m

k
n) equals

[m(n−m)]!
1! · · ·(m−1)!

(n−m)! · · ·(n−1)!

(Schubert [Sch2]).

Example 18.14. Consider the space X of complete conics of Example 17.12. Here
d = 5, c = 0, r = 2. If δ = a1D1 + a2D2 is an ample divisor, then λδ = 2a1ω1 +
2a2ω2. Writing λ = −2x1α1 − 2x2α2, we have dλ = dx1 dx2, and P(δ ) = {λ |
x1,x2 ≥ 0, 2x1 ≤ x2 + a1, 2x2 ≤ x1 + a2} is a quadrangle with the set of vertices
{0,−a1α1,−a2α2,−λδ}.

We have λδ +λ = (2a1−4x1 +2x2)ω1 +(2a2−4x2 +2x1)ω2, and

degδ 5 = 5!
∫

P(δ)

(2a1−4x1+2x2)(2a2−4x2+2x1)(2a1+2a2−2x1−2x2)
2 dx1 dx2

= a5
1 +10a4

1a2 +40a3
1a2

2 +40a2
1a3

2 +10a1a4
2 +a5

2.

Polarizing this 5-form in a1,a2, we obtain the intersection form on NS(X) =
〈D1,D2〉: degD5

1 = degD5
2 = 1, degD4

1D2 = degD1D4
2 = 2, degD3

1D2
2 = degD2

1D3
2 =

4 (Chasles [Cha]).
This result can be applied to solving various enumerative problems in the space

O of plane conics. For example, let us find the number of conics tangent to 5 given
conics in general position. The set of conics tangent to a given one is a prime divisor
D⊂ O. It is easy to see that (the closure of) D intersects all G-orbits in X properly.
By Kleiman’s transversality theorem (see [Har2, III.10.8] and 18.5) five general
translates giD (gi ∈G, i = 1, . . . ,5) are transversal and intersect only inside O. Thus
the number we are looking for equals degX D5.
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Using local coordinates, one sees that the degree of (the closure of) D in P
5 or

(P5)∗ equals 6. (Take, e.g., a parabola {y = x2}. A conic {q(x,y) = 0} is tangent

to this parabola if and only if q(x,x2) = 0 and

∣
∣
∣
∣

2x ∂q
∂x (x,x2)

−1 ∂q
∂y (x,x2)

∣
∣
∣
∣ = 0 for some x. The

resultant of these two polynomials has degree 7 in the coefficients of q. Cancelling
it by the coefficient at y2, we obtain the equation of D of degree 6.) Since deg

P5 D1 =
deg(P5)∗ D2 = 1 and deg

P5 D2 = deg(P5)∗ D1 = 2, one has D∼ 2D1 +2D2 (on X) and

degX D5 = 25(1+10+40+40+10+1) = 3264.

Spaces of conics and of quadrics in higher dimensions were studied intensively
from the origin of enumerative geometry [Cha], [Sch1], [Sch3]. For a modern ap-
proach, see [Sem1], [Sem2], [Tyr], [CGMP], [Bri4].

Example 18.15. Let X be a completion of the space O of ordered triangles from
Example 16.24 with d = 6, c = 1, r = 2. Consider an ample divisor δ = a1D̃+a2D,
where D = D1 +D2 +D3 imposes the condition that one of the vertices of a triangle
lies on the B-stable line in P

2 and D̃ = D̃1 + D̃2 + D̃3 imposes the condition that a
triangle passes through the B-fixed point.

Writing λ = −x1α1− x2α2, we have dλ = dx1 dx2, P(δ ) = {λ | x1,x2 ≥ 0},
λδ = 3a1ω1 +3a2ω2, and

A(δ ,λ ) =

⎧
⎪⎨

⎪⎩

A0(λ ) = x1 + x2, xi ≤ ai,

A1(λ ) = 3a1−2x1 + x2, 0≤ x1−a1 ≥ x2−a2,

A2(λ ) = 3a2−2x2 + x1, 0≤ x2−a2 ≥ x1−a1.

It follows that P+(δ ) = {λ | x1,x2 ≥ 0; 2x1 ≤ x2 +3a1; 2x2 ≤ x1 +3a2 }= P0∪
P1∪P2, where Pi are quadrangles with vertices

{0,−a1α1,−a1α1−a2α2,−a2α2},
{−a1α1,− 3a1

2 α1,−λδ ,−a1α1−a2α2},
{−a2α2,− 3a2

2 α2,−λδ ,−a1α1−a2α2},

and A(δ ,λ ) = Ai(λ ) on Pi. We have λδ +λ = (3a1−2x1 + x2)ω1 +(3a2−2x2 +
x1)ω2, and

degδ 6 = 6!
(∫

P0

(x1 + x2) · (3a1−2x1+x2)(3a2−2x2+x1)(3a1+3a2−x1−x2)
2 dx1 dx2

+
∫

P1

(3a1−2x1 + x2) · (3a1−2x1+x2)(3a2−2x2+x1)(3a1+3a2−x1−x2)
2 dx1 dx2

+
∫

P2

(3a2−2x2 + x1) · (3a1−2x1+x2)(3a2−2x2+x1)(3a1+3a2−x1−x2)
2 dx1 dx2

)

= 90a6
1 +1080a5

1a2 +4320a4
1a2

2 +6840a3
1a3

2 +4320a2
1a4

2 +1080a1a5
2 +90a6

2.

It follows that degD6 = deg D̃6 = 90, degD5D̃ = degDD̃5 = 180, degD4D̃2 =
degD2D̃4 = 288, degD3D̃3 = 342.
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Since X has finitely many orbits and D, D̃ intersect all of them properly, it fol-
lows from Kleiman’s transversality theorem that any 6 general translates δi of D, D̃
are transversal and intersect only inside O. Thus the number of common points of
δi in O equals degX (δ1 · · ·δ6). Dividing it by 6 (=the number of ordered triangles
corresponding to a given unordered triangle), we obtain the number of triangles
satisfying 6 conditions imposed by δi. For example, there are deg(D3D̃3)/6 = 57
triangles passing through 3 given points in general position whose vertices lie on 3
given general lines.

Theorem 18.8 was applied in [Tim3, §10] to computing the degree of a closed
3-dimensional orbit in any SL2-module.

Brion [Bri9, 4.1] proved a formula similar to (18.2) for the multiplicity of a spher-
ical variety along an orbit in it and deduced a criterion of smoothness for spherical
varieties [Bri9, 4.2].

18.3 Divisors and Curves. For any complete variety X , there is a canonical pairing
PicX ×A1(X)→ Z given by the degree of a line bundle restricted to a curve in X
(and pulled back to its normalization). The following theorem is essentially due to
Brion [Bri10], [Bri12].

Theorem 18.16. (1) If X is a complete unirational G-model of complexity≤ 1, then
PicX ↪→ A1(X)∗ = Hom(A1(X),Z) via the canonical pairing.
(2) If X is complete, normal and spherical, then PicX

∼→ A1(X)∗.
(3) If in addition X contains a unique closed G-orbit Y , then A1(X) is torsion-free,
and the basis of A1(X) dual to the basis DB \DB

Y of PicX consists of (classes of)
irreducible B-stable curves. Moreover, these basic curves generate the semigroup
A+

1 (X) of effective 1-cycles.

Proof. Using the equivariant Chow lemma [Sum, Th. 2] and resolution of singular-
ities, we construct a proper birational G-morphism ϕ : X̌ → X , where X̌ is a smooth
projective G-variety. In the commutative diagram

PicX −−−−→ A1(X)∗
⏐
⏐
*

⏐
⏐
*

Pic X̌ −−−−→ A1(X̌)∗

the vertical arrows are injections, and the bottom arrow is an isomorphism by Corol-
lary 18.4 and by Poincaré duality, whence (1). Assertions (2), (3) are proved in
[Bri12, §3] using the description of B-stable curves and their equivalences on spher-
ical varieties obtained in [Bri10], [Bri12]. 	


Remark 18.17 ([Bri10, 1.6, 2.1]). On a spherical G-model X , any line bundle L is
B-linearized and any B-stable curve C is the closure of a 1-dimensional B-orbit. Let
∞ be a B-fixed point in the normalization P

1 of C and let 0 ∈ A
1 = P

1 \ {∞} be
another T -fixed point. Then T acts on A

1 \ {0} via a character χ = 0. Let x,y ∈C
be the images of 0,∞ under the normalization map ν : P

1 →C, and let χx,χy be the
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weights of the T -action on Lx,Ly. Then χx− χy is a multiple of χ , and 〈L ,C〉 =
degν∗L |C = (χx− χy)/χ .

Example 18.18. For a generalized flag variety X = G/PI , PicX is freely generated
by Schubert divisors Dαi = B(wGsio), and A1(X) is freely generated by Schubert
curves Cαi = B(sio)� Pαi/B� P

1. We have O(Dαi) = G∗PI k−ωi and O(Dαi)|Cα j
=

Pα j ∗B k−ωi = O(1) if i = j and O(0) if i = j. Here the T -fixed points are s jo,o,
χ = α j, and 〈Dαi ,Cα j〉= (χs jo−χo)/χ = (−s jωi +ωi)/α j = δi j. Hence the above
bases of PicX and A1(X) are dual to each other.

Projective unirational normal varieties of complexity ≤ 1 are well-behaved from
the viewpoint of the Mori theory (see Appendix A.2).

Theorem 18.19 ([Bri10], [BKn]). Suppose that X is a projective unirational G-
model of complexity ≤ 1. Then the Mori cone NE(X) is finitely generated by ra-
tional B-stable curves and all faces of NE(X) are contractible. If X is Q-factorial,
then each contraction of an extremal ray of NE(X) which is an isomorphism in
codimension 1 can be flipped, and every sequence of directed flips terminates.

18.4 Chow Rings. Explicit computations of Chow rings for some smooth comple-
tions of classical homogeneous spaces were carried on by several authors. Schubert,
Pieri, Giambelli, A. Borel, Kostant, Bernstein–Gelfand–Gelfand, Demazure, Laksh-
mibai–Musili–Seshadri et al contributed to computing Chow (or cohomology) rings
of generalized flag varieties.

Here and below we put Ak(X) = Ad−k(X), d = dimX .
Without loss of generality, assume that G is semisimple simply connected. Let

X = X(B) be the weight lattice of G. Every λ ∈ X defines an induced line bundle
L(−λ ) = G∗B k−λ on G/B, and this gives rise to an isomorphism X

∼→ PicG/B�
A1(G/B). Put S = S•(X⊗Q).

Theorem 18.20. (1) [Bor1], [Dem2] A∗(G/B)⊗Q� S/SSW
+ , where SW

+ � SW is the
ideal of W-invariants without constant term.
(2) [BGG, 5.5] If I ⊆Π , then A∗(G/PI)⊗Q embeds in A∗(G/B)⊗Q as SWI /SWI SW

+ ,
where WI ⊆W is the standard Coxeter subgroup generated by rα , α ∈ I.

Bernstein–Gelfand–Gelfand [BGG] and Demazure [Dem2] used divided differ-
ence operators to introduce certain functionals Dw on S which represent Schubert
cells Sw (w ∈W ) via the Poincaré duality. They also found the basis of S/SSW

+ dual
to Dw.

Chow rings of toric varieties were computed by Jurkiewicz and Danilov, cf. [Dan,
§10], [Ful2, 5.2]. Namely, if X is a smooth complete toric variety, then A∗(X) =
S∗(PicX)/I, where the ideal I is generated by monomials [D1] · · · [Dk] such that Di

are T -stable prime divisors and D1∩·· ·∩Dk = /0.
The above examples are spherical (see also 27.5, 29.5). In the case of complex-

ity 1, Chow rings of complete SL2-embeddings (cf. Example 16.23) were computed
in [M-J2]. The space of complete triangles, which is a desingularization of the space
X of Example 16.24, was studied in [CF], and, in particular, its Chow ring was de-
termined there.
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18.5 Halphen Ring. Many enumerative problems arise on non-complete homo-
geneous spaces. Given a homogeneous space O = G/H, typically a space of ge-
ometric figures or tensors of certain type, one looks for the number of points sat-
isfying a number of conditions in general position. The set of points satisfying a
given condition is a closed subvariety Z ⊂ O, and the configuration of conditions
Z1, . . . ,Zs ⊂ O is put in general position by replacing Zi with their translates giZi,
where (g1, . . . ,gs) ∈ G× ·· · ×G is a general s-tuple. By Kleiman’s transversal-
ity theorem [Kle], [Har2, III.10.8], the cycles g1Z1, . . . ,gsZs intersect transver-
sally in smooth subvarieties of codimension ∑codimZi, i.e., g1Z1 ∩ ·· · ∩ gsZs is
empty if ∑codimZi > dimO and finite if ∑codimZi = dimO, and the cardinality
|g1Z1 ∩ ·· · ∩ gsZs| is stable for general (g1, . . . ,gs). Thus the natural intersection
ring for the enumerative geometry of O is provided by the following

Definition 18.21 ([CP2]). The intersection number of irreducible subvarieties
Z1, . . . ,Zs whose codimensions sum up to dimO is (Z1 · · ·Zs)O = |g1Z1∩·· ·∩gsZs|
for all (g1, . . . ,gs) in a dense open subset of G×·· ·×G.

This defines a pairing between groups of cycles in O of complementary dimen-
sions. The group of conditions C∗(O) is the quotient of the group of all cycles mod-
ulo the kernel of this pairing. Write [[Z]] for the image in C∗(O) of a cycle Z.

Theorem 18.22 ([CP2, 6.3]). If O is spherical, then C∗(O) is a graded ring with
respect to the intersection product [[Z]] · [[Z′]] = [[gZ ∩ g′Z′]], where (g,g′) ∈ G×G
is a general pair. Furthermore, C∗(O) = lim−→A∗(X) over all smooth complete G-em-
beddings X ←↩ O.

Proof. The proof goes in several steps.

(1) For any subvariety Z ⊂O and any smooth complete G-embedding X ←↩ O, there
is a smooth complete G-embedding X ′ ←↩ O dominating X such that Z intersects
all G-orbits in X ′ properly. First, one constructs a smooth toroidal embedding X ′

dominating X . Then each G-orbit on X ′ is a transversal intersection of G-stable
prime divisors (Theorem 29.2), and one applies a general result [CP2, 4.7] that a
cycle on a complete smooth variety can be put in regular position with respect to a
regular configuration of hypersurfaces by blowing up several intersections of pairs
of these hypersurfaces.
(2) If the closures of Z,Z′ ⊂ O intersect all G-orbits in X \ O properly, then
[gZ∩g′Z′] = [Z]·[Z′] in A∗(X) for general g,g′ ∈G. Indeed, we may apply Kleiman’s
transversality theorem to intersections of Z,Z′ with each of finitely many G-orbits
in X and deduce that gZ and g′Z′ intersect properly with each other and gZ ∩ g′Z′

intersects X \O properly.
(3) For any z ∈ A∗(X), use the Chow moving lemma to represent z as z = ∑mi[Zi],
where Zi ⊂ O are closed subvarieties. For any subvariety Z′ ⊂ O of complementary
dimension, we may assume by (1) that Zi,Z′ intersect all orbits in X \O properly
and deduce from (2) that ([[Z′]] ·∑mi[[Zi]])O = degX ([Z′] ·z) depends only on z. Thus
we have a well-defined map A∗(X)→C∗(O), z �→ ∑mi[[Zi]].
(4) This map gives rise to a homomorphism lim−→A∗(X)→C∗(O) by (2). Its surjec-
tivity is obvious, and injectivity follows from the Poincaré duality on X . 	
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The ring of conditions C∗(O) is also called the Halphen ring of O in honor
of G.-H. Halphen, who used it implicitly in the enumerative geometry of conics,
see [CX]. If O is a torus, then C∗(O) is McMullen’s polytope algebra [FS], [PK],
[Bri11, 3.3]. The Halphen ring of the space of plane conics was computed in [CX].

18.6 Generalization of the Bézout Theorem. Theorem 18.22 reflects an idea ex-
ploited already by classical geometers that in solving enumerative problems on O
one has to consider an appropriate completion X ←↩ O with finitely many orbits such
that all “conditions” Zi under consideration intersect all orbits in X \O properly.
(Such a completion always exists in the spherical case.) If ∑codimZi = dimO, then,
for general gi, all intersection points of

⋂
giZi lie in O, and the intersection number

equals degX ∏[Zi]. Applications of this idea can be found in Examples 18.14, 18.15.
Generalizing these examples, we describe a method for computing the intersec-

tion number of d divisors on a spherical homogeneous space O of dimension d in
characteristic 0. Let δ be an effective divisor on O. Replacing δ by a G-translate,
we may assume that δ contains no colors. Let h∈K be an equation of δ on the open
B-orbit in O, which is a factorial variety.

Definition 18.23. The Newton polytope of δ is the set

N (δ ) = {λ ∈ E ∗ | ∀v ∈ V : 〈v,λ 〉 ≥ v(h), ∀D ∈DB : 〈κ(D),λ 〉 ≥ vD(h)}

Remark 18.24. We see below that N (δ ) is indeed a convex polytope in E ∗.

Example 18.25. If G = O = T is a torus, then DB = /0, h = ∑ciλi, ci ∈ k
×, λi ∈X(T ),

and v(h) = min〈v,−λi〉 (cf. Example 20.2). Thus N (δ ) = −conv{λ1, . . . ,λs} is a
usual Newton polytope.

Example 18.26. More generally, suppose that O is quasiaffine and δ = divh is prin-
cipal. We have h = h1 + · · ·+ hs, hi ∈ k[O](λi), and v(h) = min〈v,λi〉, ∀v ∈ V (see
Remark 19.11 and 21.1). Also vD(h) = 0, ∀D ∈ κ(DB), since δ contains no colors.
Hence N (δ ) = (conv{λ1, . . . ,λs}+V ∨)∩ (Q+κ(DB))∨.

For any embedding X ←↩ O, we have divh = δ − δX on X , where δX =
−∑i vi(h)Vi−∑D∈DB vD(h)D is a B-stable divisor and Vi are G-stable prime divi-
sors on X with valuations vi ∈ V .

Theorem 18.27. N (δ ) =
⋂

X←↩O P(δX ). If X is complete and δ intersects all G-
orbits in X properly, then N (δ ) = P(δX ).

Proof. The first assertion is obvious from (17.4), since every G-valuation corre-
sponds to a divisor on some embedding of X . Suppose that X is complete and δ
intersects all orbits properly. Consider a G-linearized line bundle L = O(δ ) �
O(δX ). Take any λ ∈ P(δX ) and choose n ∈ N such that there exists a nonzero

section η ∈ H0(X ,L ⊗n)(B)
nλ+nλδX

; then η = cfnλ σ n
X = cfnλ σ n/hn, where c ∈ k

×,

divσX = δX , divσ = δ . Take any v ∈ V . The subdivision of the colored fan of X
by the ray Q+v corresponds to a proper birational G-morphism ν : X̌ → X contract-
ing the divisor D ⊂ X̌ with vD = v to the center Y ⊂ X of v. Since δ intersects Y
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properly, D does not occur in the pullback of δ to X̌ , whence vD(ν∗σ) = 0 and
vD(ν∗η) = v(fnλ /hn)≥ 0 =⇒ 〈v,λ 〉 ≥ vD(h) =⇒ P(δX )⊆N (δ ). 	


Corollary 18.28 ([Bri11, 4.2]). For any effective divisor δ on O containing no col-
ors,

(δ d)O = d!
∫

λδ +N (δ )

∏
α∨∈Δ∨+\(Λ+Zλδ )⊥

〈λ ,α∨〉
〈ρ,α∨〉 dλ , (18.3)

where λδ =−∑D∈DB vD(h)λD

Proof. Follows from Theorems 18.22, 18.27, and 18.8. 	


Remark 18.29. In the toric case, (18.3) transforms to (δ d)O = d!volN (δ ). Polariz-
ing this formula, we obtain a theorem of Bernstein [Ber] and Kouchnirenko [Kou]:
for any effective divisors δ1, . . . ,δd on O, the intersection number (δ1 · · ·δd)O is
d! times the mixed volume of N (δ1), . . . ,N (δd). In the general case, we have a
“mixed integral” instead [Bri11, 4.2].

Corollary 18.28 may be considered as a generalization of the classical Bézout theo-
rem.

Example 18.30. Consider O = G as a homogeneous space under the (G×G)-action
by left/right multiplication. Here we do not assume that G is of simply connected
type. Choose a Borel subgroup B− × B ⊆ G×G and a maximal torus T × T ⊆
B− ×B. We have Λ (G) = {(−λ ,λ ) | λ ∈ X(T )} � X(T ), the colors are B−rαB
(α ∈ Π ), κ(DB−×B) = Π∨, and V = C(Δ∨−) is the antidominant Weyl chamber,
see 27.2. Let δ be an effective divisor on G. In computing the intersection number,
there is no essential loss of generality to assume that δ = divh for some h ∈ k[G],
because a finite cover of G is a factorial variety. Consider the isotypic decomposition
h = h1 + · · ·+hs, hi ∈ k[G](λi) = M(V (λi)). By Example 18.26,

N (δ ) = (conv{λ1, . . . ,λs}−Q+Π)∩ (Q+Π∨)∨ = convW{λ1, . . . ,λs}∩C

is the dominant part of the weight polytope of V = V (λ1)⊕·· ·⊕V (λs). The posi-
tive roots of G×G with respect to the chosen Borel subgroup B−×B are (−α,0),
(0,α) (α ∈ Δ+), and half the sum of positive roots equals (−ρ,ρ). Formula (18.3)
transforms into

(δ d)G = d!
∫

N (δ )

∏
α∨∈Δ∨+

〈λ ,α∨〉2
〈ρ,α∨〉2 dλ , (18.4)

where d = dimG. This formula was first obtained by Kazarnovskii, who used a
different method based on the moment map [Kaz].





Chapter 4
Invariant Valuations

This chapter plays a significant, but auxiliary, rôle in the general context of our
survey. We investigate the set of G-invariant valuations of the function field of a G-
variety. We have seen in Chap. 3 that G-valuations are of importance in the embed-
ding theory, because they provide a material for constructing combinatorial objects
(colored data) that describe equivariant embeddings.

Remarkably, a G-valuation of a given G-field is uniquely determined by its re-
striction to the multiplicative group of B-eigenfunctions, the latter being a direct
product of the weight lattice and of the multiplicative group of B-invariant func-
tions. Thus a G-valuation is essentially a pair composed by a linear functional on
the weight lattice and by a valuation of the field of B-invariants. Under these identifi-
cations, we prove in §20 that the set of G-valuations is a union of convex polyhedral
cones in certain half-spaces.

The common face of these valuation cones is formed by those valuations, called
central, that vanish on B-invariant functions. The central valuation cone controls
the situation “over the field of B-invariant functions”. For instance, its linear part
determines the unity component of the group of G-automorphisms acting identically
on B-invariants.

This cone has another remarkable property: it is a fundamental chamber of a
crystallographic reflection group called the little Weyl group of a G-variety. This
group is defined in §22 as the Galois group of a certain symplectic covering of the
cotangent bundle constructed in terms of the moment map. The little Weyl group
is linked with the central valuation cone via the invariant collective motion on the
cotangent variety, which is studied in §23.

For practical applications, we must be able to compute the set of G-valuations.
For central valuations, it suffices to know the little Weyl group. In §24 we de-
scribe the “method of formal curves” for computing G-valuations on a homoge-
neous space. Informally, one computes the order of functions at infinity along a
formal curve approaching a boundary G-divisor.

Most of the results of this chapter are due to D. Luna and Th. Vust, M. Brion,
F. Pauer, and F. Knop. We follow [LV], [Kn3], [Kn5] in our exposition.

D.A. Timashev, Homogeneous Spaces and Equivariant Embeddings,
Encyclopaedia of Mathematical Sciences 138, DOI 10.1007/978-3-642-18399-7 4,
© Springer-Verlag Berlin Heidelberg 2011
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19 G-valuations

An algebraic counterpart of a prime divisor on an algebraic variety is the respective
valuation of the field of rational functions. Valuations obtained in this way are called
geometric (see Appendix B). We consider invariant geometric valuations.

19.1 Basic Properties. Let G be a connected algebraic group and let K be a G-
field, i.e., the function field of an irreducible G-variety.

Definition 19.1. A G-valuation is a G-invariant geometric valuation of K/k. The
set of G-valuations is denoted by V = V (K).

The following approximation result is due to Sumihiro.

Proposition 19.2 ([Sum, §4]). For any geometric valuation v of K there exists a
G-valuation v such that for any f ∈ K one has v( f ) = v(g f ) for general g ∈ G. If
A⊂ K is a rational G-algebra, then for any f ∈ A one has v( f ) = ming∈G v(g f ).

Proof. We may assume that v = vD for a prime divisor D on a model X of K. Then
v′ = vG×D is a geometric valuation of k(G×X). It is clear that for any f ∈ k(G×X)
one has v′( f ) = v( f (g, ·)) for general g ∈ G. The rational action G : X induces an
embedding k(X) ↪→ k(G×X). It is easy to see using Proposition B.8(1) that v =
v′|k(X) is the desired G-valuation.

To prove the second assertion, observe that A(d) = { f ∈ A | v( f )≥ d} is a filtra-
tion of A by linear subspaces, G f is an algebraic variety and G f ∩A(d) is a closed
subvariety in G f , ∀d ∈Q. 	


Remark 19.3. If v is non-geometric, then there still exists a G-invariant valuation v
satisfying the above properties, but v may be no longer geometric. It is constructed
in the same way as above, where v′ is now defined by the formula v′( f ) = v( f (g, ·))
(for general g ∈G). The results of this section can be extended to the non-geometric
case with appropriate modifications.

Remark 19.4. If X is a G-model of K and v has center Y ⊆ X , then v has center GY .

Example 19.5. Let G = k act rationally on the blow-up X of A
2 at 0 by translations

along a fixed axis. In coordinates, u(x,y) = (x + u,y), ∀u ∈ G, (x,y) ∈ A
2. The

valuation v of k(X) corresponding to the exceptional divisor is given on k[A2] =
k[x,y] by the order of a polynomial in x,y (i.e., the lowest degree of a homogeneous
term) and has center 0 on A

2. But v( f ) = minu v( f (x + u,y)) is the order of f in y,
so that v = vD, where D = {y = 0} is (the proper pullback of) the x-axis.

Together with Proposition B.8, Sumihiro’s approximation immediately implies

Corollary 19.6. Let K′ ⊆ K be a G-subfield. The restriction of a G-valuation of K
to K′ is a G-valuation, and any G-valuation of K′ can be extended to a G-valuation
of K.

The next corollary is useful in applications.
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Corollary 19.7. Let X be a G-model of K and let L be a G-line bundle on X. Then
for any v ∈ V , any σ ,η ∈ H0(X ,L ), η �= 0, and any g ∈ G one has v(σ/η) =
v(gσ/η).

Proof. Consider a rational G-algebra R =
⊕

n≥0 H0(X ,L ⊗n). Then QuotR = K′(η)
is a (purely transcendental) extension of a G-subfield K′ ⊆K (consisting of functions
representable as ratio of sections of some L ⊗n). Now apply Corollary 19.6 to extend
v to R and conclude by v(σ/η) = v(σ)− v(η) = v(gσ)− v(η) = v(gσ/η). 	


A natural geometric characterization of G-valuations is given by

Proposition 19.8. Any G-valuation is proportional to vD for a G-stable prime divi-
sor D on a normal G-model X of K.

Proof. Let v ∈ V and choose f1, . . . , fs ∈ Ov whose residues generate k(v). Take
a normal projective G-model X of K and a G-line bundle L on X such that fi =
σi/σ0 for some σ0, . . . ,σs ∈ H0(X ,L ). Let M ⊆ H0(X ,L ) be the G-submodule
generated by σ0, . . . ,σs. The respective rational map ϕ : X ��� P(M∗) is G-equiv-
ariant. Replacing X by the normalized closure of the graph of ϕ , we may assume that
ϕ is a G-morphism. Corollary 19.7 implies v(M/σ0) ≥ 0, whence the center Y ⊆
X ′ = ϕ(X) of v|k(X ′) intersects an affine chart X ′σ0

, and f1, . . . , fs ∈OX ′,Y . Therefore,
if D is the center of v on X , then f1, . . . , fs ∈ OX ,D, whence D is a divisor. 	


Here is a relative version of this proposition.

Proposition 19.9. Suppose that a G-valuation v has the center Y on a G-model X
of K. Then there exists a normal G-model X ′ and a projective morphism ϕ : X ′ → X
such that the center of v on X ′ is a divisor D′ and ϕ(D′) = Y .

Proof. Take any projective G-model X ′ such that the center of v is a divisor D′ ⊂ X ′.
The rational map ϕ : X ′ ��� X is defined on an open subset intersecting D′, and
ϕ(D′) = Y . Now we replace X ′ by the normalized closure X̃ of the graph of ϕ in
X ′ ×X . Since X̃ projects onto X ′ isomorphically over the domain of definition of ϕ ,
we can lift D′ to X̃ . 	


19.2 Case of a Reductive Group. From now on, G is a connected reductive group.

Lemma 19.10. If A⊂ K is a rational G-algebra, then for any v ∈ V , f ∈ A one has
v( f ) = min f̃∈(Mq)(B) v( f̃ )/q, where M ⊂ A is a G-submodule generated by f , and q
is a sufficiently big power of p.

Proof. As M is generated by f , we have v(M)≥ v( f ), whence v((Mq)(B))≥ qv( f ).
To prove that the equality is reached, in characteristic zero ( =⇒ q = 1) it suffices
to note that M is generated by M(B) =⇒ v( f )∈ v(M)≥minv(M(B)). In the general
case, this is not true, and one has to consider powers of M. We organize them in a
graded G-algebra R =

⊕
n≥0 Mn and consider a graded G-stable ideal I =

⊕
In � R,

In = {h ∈Mn | v(h) > nv( f )}.
As M �⊆ I, there exists r ∈M such that 0 �= r mod I ∈ (R/I)(B). By Lemma D.1,

(R/I)U is a purely inseparable finite extension of RU/IU . Hence there exists h ∈ Iq

such that f̃ = rq +h ∈ R(B)
q , and v( f̃ ) = v(rq) = qv( f ). 	
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Remark 19.11. In characteristic zero or for G = T Lemma 19.10 yields v( f ) =
minλ∈X+ v( f(λ )), where f(λ ) is the projection of f to the isotypic component A(λ)
of A.

Recall from 13.1 that D denotes the set of non-G-stable prime divisors on (any)
G-model of K and KB ⊆ K is the subalgebra of rational functions with B-stable
divisor of poles.

The following approximation lemma of Knop [Kn3, 3.5] allows us to simplify
the study of G-valuations by restricting to B-eigenfunctions.

Lemma 19.12. For any G-valuation v ∈ V and any rational function f ∈ KB there
exists a rational B-eigenfunction f̃ ∈ K(B) such that:

⎧
⎪⎨

⎪⎩

v( f̃ ) = v( f q),
w( f̃ )≥ w( f q), ∀w ∈ V ,

vD( f̃ )≥ vD( f q), ∀D ∈DB,

where q is a sufficiently big power of p.

Proof. Let X be a normal G-model and δ = div∞ f , the divisor of poles on X .
Then σ = f ηδ ∈ H0(X ,O(δ )), where ηδ is the canonical section of O(δ ). Ex-
tend all G-valuations to R =

⊕
n≥0 H0(X ,O(nδ )) and consider a G-submodule M ⊆

H0(X ,O(δ )) generated by σ . For any B-eigensection σ̃ ∈ (Mq)(B), put f̃ = σ̃/ηq
δ .

Then vD( f̃ ) ≥ qvD( f ), w( f̃ ) ≥ qw( f ), and v( f̃ ) = qv( f ) for some σ̃ ∈ (Mq)(B) by
Lemma 19.10. 	


Corollary 19.13. G-valuations are determined uniquely by their restriction to K(B).

Proof. As QuotKB = K, two distinct v,w ∈ V differ on some f ∈ KB, say v( f ) <

w( f ). Lemma 19.12 yields v( f̃ ) < w( f̃ ) for some f̃ ∈ K(B). 	


20 Valuation Cones

We have seen in 19.2 that G-valuations of K are determined by their restriction
to K(B). In this section, we give a geometric qualitative description of V in terms of
this restriction. The results of this section go back to Brion and Pauer [BPa] in the
spherical case and are due to Knop [Kn3] in full generality.

20.1 Hyperspace. Let v be a geometric valuation of KB. Factoring the exact se-
quence (13.1) by O×v yields an exact sequence of lattices

0−→ Zv −→Λv −→ Λ −→ 0, (20.1)

where Zv � Z or 0 is the value group of v. Passing to the dual Q-vector spaces, we
obtain
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0 ←− Qv ←− Ev ←− E ←− 0
|⋃ |⋃ ‖

0 ←− Qv,+ ←− Ev,+ ←− E ←− 0,
(20.2)

where Qv = Q and Ev,+ is the preimage of the positive ray Qv,+ for v �= 0, and
Q0 = Q0,+ = 0, E0,+ = E0 = E .

Definition 20.1. The hyperspace (of K) is the union Ĕ =
⋃

v Ev,+, where v runs over
all geometric valuations of KB considered up to proportionality. More precisely,
Ĕ = E in the spherical case and, if c(K) > 0, then Ĕ is the union of half-spaces Ev,+
(over all v �= 0) glued together along their common boundary hyperplane E , called
the center of Ĕ .

Since Λ is a free Abelian group, the exact sequence (13.1) splits. Any splitting of
(13.1) gives rise to simultaneous splittings of (20.1), (20.2), ∀v. From time to time,
we will fix such a splitting f : Λ → K(B), λ �→ fλ .

If v is a geometric valuation of K dominating v, then v|K(B) factors to a linear
functional on Λv non-negative on Zv,+, i.e., an element of Ev,+. Therefore V ↪→
Ĕ , and there is a restriction map κ : DB → Ĕ , which is in general not injective.
Put Vv = V ∩Ev,+ and DB

v = κ
−1(Ev,+). We say that (Ĕ ,V ,DB,κ) is the colored

hyperspace.
Our aim is to describe Vv.

Example 20.2. Assume that G = B = T is a torus. Since every T -action has trivial
birational type, there exists a T -model X = T/T0×C, where T0 = Ker(T : K) and
C = X/T . We have Λ = X(T/T0), KT = k(C), KT = KT [Λ ]. By Remark 19.11,
there is only one way to extend v ∈ Ĕ to a T -valuation of K: put v( f ) = minλ v( fλ ),
∀ f = ∑ fλ ∈ KT , fλ ∈ K(T )

λ , λ ∈Λ .
To prove the multiplicative property, for any f = ∑ fλ , g = ∑gλ ∈ KT , choose

γ ∈ E such that min〈γ ,λ 〉 and min〈γ,μ〉 over all λ with v( fλ ) = min, resp. μ
with v(gμ) = min, are reached at only one point λ = λ0, resp. μ = μ0. Then
f g = ∑ fλ gμ = fλ0

gμ0 + ∑(λ ,μ)�=(λ0,μ0) fλ gμ , and for any term of the second sum
we have either v( fλ gμ) > v( fλ0

gμ0) or 〈γ,λ + μ〉 > 〈γ,λ0 + μ0〉. It follows that
v( f g) = v( fλ0

gμ0) = v( fλ0
)+ v(gμ0) = v( f )+ v(g). Other properties of a valuation

are obvious.
Finally, let v = v|KT and consider a short exact subsequence of (13.1):

1−→ KT
0 −→ K(T )

0 −→Λ0 −→ 0, (20.3)

where K(T )
0 is the kernel of v : K(T ) → Q, KT

0 = O×v , and Λ0 ⊆ Λ . Note that any
element of K can be written as f = f1/ f2, fi ∈ KT , v( f2) = 0. It follows that k(v)
is the fraction field of KT ∩Ov/KT ∩mv � k(v)[Λ0] =⇒ tr.degK− tr.degk(v) =
tr.degKT + rkΛ − tr.degk(v)− rkΛ0 = rk(KT )×/KT

0 + rkΛ/Λ0 = rkK(T )/K(T )
0 ≤

1. Hence v is geometric by Proposition B.7.
We conclude that V = Ĕ . By the way, we proved that every T -invariant valuation

of K is geometric provided that its restriction to KT is geometric.



110 4 Invariant Valuations

20.2 Main Theorem. The main result of this section is

Theorem 20.3. For any geometric valuation v of KB, Vv is a finitely generated solid
convex cone in Ev,+.

We prove it in several steps.

Lemma 20.4. For any G-model X, there are only finitely many B-stable prime divi-
sors D⊂ X such that vD maps to Ev,+.

Proof. Take a sufficiently small B-chart X̊ ⊆ X such that a geometric quotient π :
X̊ → X̊/B exists. Now if vD maps to Ev,+, then either D is an irreducible component
of X \ X̊ or D = π−1(D0), where D0 is the center of v on X̊/B. 	


Corollary 20.5. DB
v is finite.

20.3 A Good G-model. In the study of G-valuations, it is helpful to consider their
centers on a sufficiently good projective G-model.

Lemma 20.6. Let P be the common stabilizer of all colors, with a Levi decompo-
sition P = Pu � L, L ⊇ T . There exists a projective normal G-model X, a P-stable
open subset X̊ ⊆ X, and a T -stable closed subvariety Z ⊆ X̊ such that:

(1) The action Pu : X̊ is proper and has a geometric quotient.
(2) X̊ = PZ and the natural maps Pu×Z → X̊ , Z → X̊/Pu are finite and surjective.

(2)′ In characteristic zero, Z is L-stable, and

Pu×Z � P∗L Z
∼→ X̊ .

(3) The L′-action on X̊/Pu is trivial.
(4) Every G-subvariety Y ⊂ X intersects X̊ , hence Z.
(5) If Y is the center of v ∈ Vv, then DB

Y = /0, VY ⊂ Ev,+.

Proof. Take any projective G-model X and choose an ample G-line bundle L and
an eigensection σ ∈ H0(X ,L )(B) vanishing on sufficiently many colors such that
G[σ ] = P. Put M = 〈Gσ〉 and take a B−-eigenvector u ∈M∗, 〈σ ,u〉 �= 0, G[u] = P−,
so that G[u]⊆ P(M∗) is the unique closed orbit.

There is a natural rational G-map ϕ : X ��� P(M∗). Replacing X by the normal-
ized closure of its graph in X×P(M∗) makes ϕ regular. Put X̊ = Xσ = ϕ−1(P(M∗)σ ).
Then (1), (2), (2)′ follow from the local structure of P(M∗)σ (Corollary 4.5). Every
(B∩L)-stable divisor on X̊/Pu is L-stable, whence (3). Every closed G-orbit in X
maps onto G[u], and hence intersects X̊ , which yields (4).

To prove (5), we modify the construction of X . First, we may choose σ vanishing
on all D ∈ DB

v . Next, consider an affine model C0 of KB such that v has the center
D0 ⊆C0 which is either a prime divisor or the whole C0. Let k[C0] = k[ f1, . . . , fs].
We may choose L and σ so that fi = σi/σ , σ1, . . . ,σs ∈ H0(X ,L )(B). Let M′ ⊆
H0(X ,L ) be the G-submodule generated by σ ,σ1, . . . ,σs.

As above, we may assume that the natural rational map ϕ ′ : X ��� P(M′∗) is
regular. Put X ′ = ϕ ′(X). Consider the composed map π : X̊ → X̊ ′ = X ′σ → C0. By
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Corollary 19.7, v(M′/σ)≥ 0, whence the center Y ′= ϕ ′(Y )⊆X ′ of v|k(X ′) intersects

the B-chart X̊ ′. Hence Y̊ = Y ∩ X̊ is non-empty and π(Y̊ )⊇ D0. It follows that VY 

DB

Y maps to Ev,+. But any D ∈DB
v is contained in X \ X̊ , thence D �⊇ Y , and we are

done. 	


20.4 Criterion of Geometricity.

Proposition 20.7. A G-invariant valuation of K is geometric if and only if its re-
striction to KB is geometric.

It suffices to prove the implication “if”, because the reverse implication stems from
Proposition B.8(1).

First proof [Kn3, 3.9, 4.4]. Let v be a nonzero valuation of K such that v|KB is ge-
ometric. Take a projective G-model X as in Lemma 20.6. Then v has the center
Y ⊂ X and Y̊ = Y ∩ X̊ �= /0. By Lemma 20.6(3), k(X̊/Pu) = KU and Y̊/Pu is the
center of v|KU .

Since KU is a T -field and (KU )T = KB, it follows from Example 20.2 that v|KU

is geometric. Now by Proposition 19.9 there exists a projective birational L-mor-
phism Z′ → X̊/Pu such that the center of v|KU on Z′ is a divisor D′ ⊂ Z′. Consider a
Cartesian square

X̊ ′ −−−−→ X̊
⏐
⏐



⏐
⏐



Z′ −−−−→ X̊/Pu,

where horizontal arrows are birational projective P-morphisms, and vertical arrows
are Pu-quotient maps. Therefore v has a center D⊂ X̊ ′, which is P-stable and maps
onto D′, whence D is the pullback of D′, i.e., a divisor. This means that v is geomet-
ric. 	


Second proof. Here we use the embedding theory of Chap. 3. Assume that v = v|KB .
It is easy to construct an affine model C0 of KB containing a principal prime divisor
D0 = div(t) such that either D0 is the center of v, or v = 0, t = 1, D0 = /0, and
C̊ = C0 \D0 = X̊/B for a (sufficiently small) B-chart X̊ .

If R is the set of all B-stable prime divisors in X̊ (= preimages of prime divisors
in C̊), then {v}
R ∈ CD defines colored data, and we may consider the respective
Krull algebra A = A (v,R) (cf. 13.2). Recall that we need not assume a priori that
v is geometric (Remark 13.11). Clearly, A U = k

[
f ∈ K(B)

∣
∣ 〈v, f 〉,〈R, f 〉 ≥ 0

]
⊆

k[C̊]⊗ k[Λ ] is a subalgebra determined by v( f ) ≥ 0, whence A U = k[C0]
[
tdfλ

∣
∣

(d,λ ) ∈Λv, 〈v,(d,λ )〉 ≥ 0
]
.

The generating set of A U over k[C0] forms a finitely generated semigroup in Λv
consisting of lattice points in the half-space {v ≥ 0}, whence condition (F) holds
for A .

To prove (C), we take f = tdfλ such that 〈v,(d,λ )〉 > 0 and multiply f by f0 ∈
k[C0] vanishing on sufficiently many divisors in R.

Conversely, taking f = tdfλ such that 〈v,(d,λ )〉< 0 proves (W) for v.
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By Corollary 13.9, X0 = SpecA is a B-chart and v is the valuation of a G-stable
divisor intersecting X0. 	


20.5 Proof of the Main Theorem.

Remark 20.8. It is often helpful to assume that K = QuotR, where R is a rational
G-algebra. For instance, R = k[X ], where X is a (quasi)affine G-model of K (if any
exists). The general case is reduced to this special one by considering a projectively
normal G-model X and taking the affine cone X̂ over X . Then K̂ = k(X̂) is a Ĝ-field,
where Ĝ = G× k

× with k
× acting by homotheties. Let us denote various objects

related to K̂ in the same way as for K, but equipped with a hat. We have short exact
sequences

1 −→ (KB)× −→ K(B) −→ Λ −→ 0
‖ |⋂ �

1 −→ (K̂B̂)× −→ K̂(B̂) −→ Λ̂ −→ 0

and dual sequences

0 ←− Qv,+ ←− Ev,+ ←− E ←− 0
‖ ↑↑ ↑↑

0 ←− Qv,+ ←− Êv,+ ←− Ê ←− 0.

The set of colors D̂ B̂ is identified with DB. The grading of k[X̂ ] determines two
G-valuations±v0 ∈ Ê , which generate Ker(Ê → E ). By Corollary 19.6, V̂v surjects
onto Vv and is even the preimage of Vv by Proposition 20.11 below.

Definition 20.9. Let f1, . . . , fs ∈ R(B) and f �= f1 · · · fs be any B-eigenvector in
〈G f1〉 · · · 〈G fs〉. Then f / f1 · · · fs is called a tail vector of R and its weight is called
a tail weight or just a tail. Note that tails are negative linear combinations of simple
roots. In characteristic zero tails are the nonzero differences μ −λ1−·· ·−λs over
all highest weights μ of simple G-modules occurring in the isotypic decomposition
of R(λ1) · · ·R(λs), λ1, . . . ,λs ∈Λ+.

Remark 20.10. Knop conjectured that tails of an affine G-variety span a finitely gen-
erated semigroup. This conjecture was proved in characteristic zero by Alexeev and
Brion [AB3, Pr. 2.13], see Corollary E.15.

Now we proceed in proving Theorem 20.3.

Proposition 20.11. Vv is a convex cone in Ev,+.

First proof. We may assume that K = QuotR, where R is a rational G-algebra. The
general case is reduced to this one by considering the affine cone over a projectively
normal G-model as above. Then we prove for every v ∈ Ĕ that v ∈ V if and only if

v is non-negative on all tail vectors of R. (T)

Clearly, this condition is necessary, since v(〈G f1〉 · · · 〈G fs〉) ≥ v( f1 · · · fs), ∀v ∈ V ,
f1, . . . , fs ∈ R.
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Conversely, assume that (T) is satisfied. It can be generalized as follows: let f be
any B-eigenvector in ∑i〈G fi1〉 · · · 〈G fis〉, fi j ∈ R(B); then v( f )≥mini{v( fi1)+ · · ·+
v( fis)}. Indeed, if f = ∑ fi, where fi ∈ 〈G fi1〉 · · · 〈G fis〉 are B-eigenvectors of the
same weight, then v( f )≥minv( fi)≥min{v( fi1)+ · · ·+v( fis)} by (T). The general
case is reduced to this one, because a certain power f q belongs to the image of
Sq(

⊕〈G fi1〉 · · · 〈G fis〉)(B) by Corollary D.2.
Consider a rational B-algebra A = k[g f /h | g ∈G, f ,h ∈ R(B), v( f /h)≥ 0 ]. The

ideal I = (g f /h | v( f /h) > 0) � A is proper. Indeed, each f ∈ I(B) is a linear com-
bination of (gi1 fi1/h1) · · ·(gis fis/hs), where v( fi j/h j)≥ 0 and > occurs for every i.
By the above, v( f h1 · · ·hs) ≥ min{v( fi1)+ · · ·+ v( fis)} > v(h1)+ · · ·+ v(hs) =⇒
v( f ) > 0, whence v > 0 on I(B).

Take any valuation v′ non-negative on A and positive on I, extend it to K, and take
the approximating G-valuation v (Proposition 19.2). For any f ∈R(B), g∈G we have
v′(g f )≥ v′( f ) =⇒ v( f ) = v′( f ). Now for any f ,h ∈ R(B) we have: v( f /h)≥ 0 (>
0) =⇒ f /h ∈ A (∈ I) =⇒ v( f /h)≥ 0 (> 0). It follows that DVR’s of v and v on
KB coincide, and hence v ∈ Vv provided that v ∈ Ev, and v,v determine proportional
linear functionals on Λv. Thus v ∈ V . 	


Second proof. This proof relies on the embedding theory. Let v1,v2 ∈ Vv be two
non-proportional vectors. It suffices to prove that c1v1 + c2v2 ∈ Vv, ∀c1,c2 ∈ Z+.

Take an affine model C0 of KB as in the second proof of Proposition 20.7 and
consider the algebra A = A (v1,v2,R). Then A U ⊆ k[C̊]⊗k[Λ ] is distinguished
by inequalities vi( f ) ≥ 0, whence A U = k[C0]

[
tdfλ

∣
∣ (d,λ ) ∈ Λv, 〈vi,(d,λ )〉 ≥

0, i = 1,2
]
.

The generating set of A U over k[C0] forms a finitely generated semigroup of
lattice points in the dihedral cone {v1,v2≥ 0}⊆Λv⊗Q, whence condition (F) holds
for A . Conditions (C), (W) are verified in the same way as in Proposition 20.7 by
taking f = tdfλ with 〈vi,(d,λ )〉,〈v j,(d,λ )〉 > 0 or 〈vi,(d,λ )〉 < 0 ≤ 〈v j,(d,λ )〉,
respectively, {i, j}= {1,2}. Thus by Corollary 13.9, X0 = SpecA is a B-chart and
vi correspond to G-stable divisors Di ⊂ X = GX0 intersecting X0.

We blow up the ideal sheaf O(−nc2D1)+O(−nc1D2), n� 0, and prove that the
exceptional divisor corresponds to c1v1 + c2v2.

The local structure of X0 provided by Proposition 13.12 allows us to replace X0 by
X0/Pu and assume that G = T and X = X0 is an affine T -model of K. We may choose
fi = tdifλi

such that vi( f j) = nδi j, n� 0. The above ideal sheaf is represented by a
proper ideal I = ( f c2

1 , f c1
2 ) � A . (Indeed, it is easy to see that v1 + v2 > 0 on I(T ).)

The blow-up of I is given in X ×P
1 by the equation [ f c2

1 : f c1
2 ] = [t1 : t2], where

ti are homogeneous coordinates on P
1. The exceptional divisor is given in the open

subset {t2 �= 0} by the equation f2 = 0. Let v0 be the respective valuation. Up to
a power, any f ∈ A (T ) is represented as f = f0 f k1

1 f k2
2 , where vi( f0) = 0 and ki

...c j

whenever {i, j} = {1,2}. Then v0( f ) = v0( f0(t1/t2)k1/c2 f (c1k1+c2k2)/c2
2 ) ∼ c1k1 +

c2k2. It follows that v0 ∼ c1v1 + c2v2. 	


Proposition 20.12. The cone Vv is finitely generated.
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Proof. Take a projective G-model X as in Lemma 20.6. Then any v ∈ Vv has the
center Y on X and, by Lemma 20.6(5), DB

Y = /0, VY ⊂ Vv. Condition (S) yields

∀λ ∈ Λv : 〈VY ,λ 〉 ≥ 0 =⇒ 〈v,λ 〉 ≥ 0.

Hence v ∈Q+VY . It remains to note that
⋃

Y VY is finite by Lemma 20.4. 	


Proof of Theorem 20.3. Due to Propositions 20.11–20.12 and Theorem 21.1, it re-
mains to prove that any geometric valuation v �= 0 of KB extends to a G-valuation
of K. For this, we modify the first proof of Proposition 20.11.

Namely, in the definition of A we replace v by v and assume that f /h ∈ KB. The
respective ideal I � A is still proper. For otherwise, 1 is a linear combination of
(gi1 fi1/h1) · · ·(gis fis/hs), where v( fi j/hj) ≥ 0 and > occurs for each i. But the T -
weights of all T -eigenvectors in 〈G fi j〉 except fi j are obtained from the weight of fi j

(=the weight of h j) by subtracting simple roots. Hence we may assume that gi j = e,
and 1 is a linear combination of ri = ( fi1/h1) · · ·( fis/hs), v(ri) > 0, a contradiction.

Now reproducing the arguments of that proof yields a G-valuation v such that
v|KB = v. 	


20.6 Parabolic Induction. This procedure, which is helpful in various reduction
arguments, keeps the colored hyperspace “almost” unchanged. Suppose that K is
obtained from a G0-field K0 by parabolic induction G ⊇ Q � G0, i.e., a G-model
X of K is obtained from a G0-model X0 of K0 by this procedure. There is a natural
projection π : X = G∗Q X0→G/Q. We may assume that Q⊇ B−. Then the colors of
G/Q are the Schubert divisors Dα = B(rα o) (α ∈Π , rα /∈Q). Let us denote various
objects related to K0 in the same way as for K, but with a subscript 0.

Proposition 20.13. There are natural identifications Ĕ = Ĕ0, V = V0, and DB =
DB0

0 
 π−1(DB(G/Q)) such that κ = κ0 on DB0
0 and κ(π−1(Dα)) ∈ E is the re-

striction of α∨ to Λ .

Proof. Since π−1(Bo)�Q−u×X0, the restriction to the fiber identifies K(B) with K(B0)
0 .

Therefore, the hyperspaces are identified and the set of colors is extended by the
pullbacks of the Schubert divisors.

The restriction of G-valuations from K to KQ−u � K0 yields V ⊆ V0. Conversely,
each v ∈ V0 corresponds to a G0-stable divisor D on a suitably chosen G0-model X0

(Proposition 19.8). The same vector in the hyperspace corresponds to G ∗Q D ⊂ X .
Thus V = V0.

Similar arguments show that κ = κ0 on DB0
0 .

Finally, π−1(Dα) is transversal to the subvariety Xα = Lα ∗B−α
X0 ⊆ X along rα ∗

X0, where Lα is the Levi subgroup of Pα and B−α = B− ∩ Lα acts on X0 via T .
The variety Xα is horospherical with respect to Lα and intersects general B-orbits
of X . We easily deduce that general B-orbit closures in X intersect π−1(Dα) and
the intersections cover a dense subset Brα ∗ X0. Hence all f ∈ KB have order 0
along π−1(Dα). To determine κ(π−1(Dα)), it suffices to consider the restriction of
K(B) to a general Lα -orbit in Xα , cf. 28.1. 	
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21 Central Valuations

21.1 Central Valuation Cone. G-valuations of K that vanish on (KB)× are called
central. They play a distinguished rôle among all G-valuations. By (13.1) a central
valuation restricted to K(B) factors through a linear functional on Λ . Thus central
valuations form a subset Z ⊆ E = Hom(Λ ,Q).

If G is linearly reductive (i.e., chark = 0 or G = T ) and K = QuotR for a rational
G-algebra R with the isotypic decomposition R =

⊕
λ∈Λ R(λ ), then any v ∈ Z is

constant on each isotypic component R(λ) (otherwise there would exist two eigen-

vectors f1, f2 ∈R(B) of the same weight λ with v( f1) �= v( f2)) and v|R(λ )\{0}= 〈v,λ 〉,
∀λ ∈Λ .

Theorem 21.1. Z = V ∩E is a solid convex polyhedral cone in E containing the
image of the antidominant Weyl chamber.

Proof. By Remark 20.8, we reduce the question to the case K = QuotR, where R
is a rational G-algebra. Condition (T) defining the subset V ⊆ Ĕ transforms under
restriction to E to the following one: v ∈Z if and only if

v is non-negative on all tails of R. (T0)

Since tails are negative linear combinations of simple roots, we see that (T0) de-
termines a convex cone containing the image of the antidominant Weyl chamber,
whence a solid cone. We conclude by Proposition 20.12. 	


Example 21.2. Let G act on itself by right translations and K = k(G). Here Λ =
X(T ). Recall from Proposition 2.14 that k[G] is the union of subspaces M(V ) of
matrix entries over all G-modules V .

In characteristic zero, M(V (λ )) = k[G](λ ) are the isotypic components of k[G]
and M(V (λ )) ·M(V (μ)) =

⊕
M(V (ν)) over all simple submodules V (ν) occurring

in V (λ )⊗V (μ), by Formula (2.1). Generally, each B-eigenvector v∈V (B) gives rise
to B-eigenvectors fω ,v ∈M(V )(B), ω ∈V ∗, of the same weight.

If v = vλ ∈ V is a highest vector of regular highest weight λ , then V con-
tains T -eigenvectors vλ−α of weights λ − α for all simple roots α , and w =
vλ ⊗ vλ−α − vλ−α ⊗ vλ are B-eigenvectors of weights 2λ −α in V ⊗V . We get
tail vectors fω⊗ω ,w/ f 2

ω,v of weights −α . It follows that all −α occur among tails
of k[G], whence Z is the antidominant Weyl chamber.

In characteristic zero, much more precise information on the structure of Z can
be obtained, as given in Theorem 22.13.

A special case of Theorem 5.7 distinguishes central and non-central G-valuations
in terms of the complexity and rank of respective G-stable divisors.

Proposition 21.3. A G-valuation v �= 0 is central if and only if c(k(v)) = c(K),
r(k(v)) = r(K)− 1, and non-central if and only if c(k(v)) = c(K)− 1, r(k(v)) =
r(K).
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Proof. Let Y ⊂ X be a G-stable divisor on a G-model of K corresponding to v.
By Lemma 5.8, k(v)U = k(Y )U is a purely inseparable extension of the residue
field k(v|KU ) of OU

X ,Y , and similarly for k(v)B. Thus by Proposition 5.6, c(k(v))+
r(k(v)) = tr.degk(v)U = tr.degKU−1 = c(K)+r(K)−1, and c(k(v)) = c(K) ⇐⇒
k(v|KB) = KB ⇐⇒ v ∈Z . 	


21.2 Central Automorphisms. Now we explain the geometric meaning of the lin-
ear part of the central valuation cone.

Definition 21.4. A G-automorphism of K acting trivially on KB is called central.
Denote by CAutK = Ker(AutG K : KB) the group of central automorphisms.

Theorem 21.5 ([Kn3, 8.1–8.2]). There exists the largest connected algebraic sub-
group S⊆ CAutK. It has the following properties:

(1) S acts on V ,DB,GX
norm trivially.

(2) S acts on every normal G-model of K regularly.
(3) There is a canonical embedding S ↪→ A = Hom(Λ ,k×) via the action S : K(B),

so that Hom(X(S),Q)⊆Z ∩−Z .
(4) There exists a G-subfield K′ ⊆ K with (K′)U = KU and with the same col-

ored hyperspace as for K such that K is purely inseparable over K′ and
Hom(X(S′),Q) = Z ∩−Z for the largest connected algebraic subgroup S′ ⊆
CAutK′.

Proof. Let S ⊆ CAutK be any connected algebraic subgroup. Suppose first that
K = QuotR, where R is a rational (G×S)-subalgebra. Without loss of generality, we
may assume in the reasoning below that R = k[X ], where X is a normal (quasi)affine
G-model of K acted on by S.

If f ∈ R(B), then s f ∈ R(B) has the same weight, ∀s∈ S, whence s f / f ∈KB ⊆KS.
Hence sdiv f −div f is S-stable. (The divisors are considered on a normal comple-
tion of X .) But, on the other hand, this divisor has no S-stable components. Hence it
is zero, and s f ∈ k

× f . Therefore R(B) ⊆ R(S) =⇒ K(B) ⊆ K(S).
This yields a homomorphism S → A. Let S0 be its connected kernel. Then S0

acts on RU trivially. As S0 commutes with G, it acts on R trivially. (In positive
characteristic, this stems from Lemma D.4.) Hence S0 = {e} and S is a torus. Then
every s ∈ S, s �= e, acts non-trivially on K(B): just take a (G-stable) eigenspace of s
in R of eigenvalue �= 1 and choose a B-eigenvector there. Thus S ↪→ A.

Since S-action multiplies B-eigenfunctions by scalars and G-valuations are de-
termined by their restriction to K(B), the action S : V is trivial. As any D ∈ DB is
a component of div f , where f ∈ K(B) ⊆ K(S), S fixes all colors. Then S fixes all
G-germs by Proposition 14.1, whence (1). Assertion (2) stems from (1).

Each one-parameter subgroup γ ∈ X∗(S) defines a G-stable grading of R, which
gives rise to a central valuation (the order of the lowest homogeneous term) repre-

sented by γ: fλ �→ 〈γ,λ 〉, ∀ fλ ∈ R(B)
λ . This finally yields (3).

Furthermore, any τ ∈ CAutK commutes with γ . Indeed, we have two gradings
of R defined by γ ,τγτ−1. They coincide on R(B), and hence on the G-subalgebra of
R generated by RU , and therefore on R. (The last implication is easily deduced from
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Lemma D.4.) Therefore any two subtori S1,S2 ⊆ CAutK commute, and the natu-
ral homomorphism S1×S2 → CAutK provides a larger subtorus. Since the dimen-
sions of subtori are restricted from above by dim(Z ∩−Z ), there exists a largest
subtorus.

We prove (4) in characteristic zero referring to [Kn3, 8.2] for chark > 0. Ev-
ery lattice vector γ ∈ Z ∩−Z defines a G-stable grading of R such that R(λ)
are homogeneous of degree 〈γ,λ 〉. Since γ vanishes on tails, this grading respects
multiplication and defines a 1-subtorus of central automorphisms. These 1-subtori
generate a subtorus S ⊆ A which is the connected common kernel of all tails, and
Hom(X(S),Q) = Z ∩−Z .

Finally, the general case is reduced to the above by taking a projectively normal
G-model X acted on by S and considering the affine cone X̂ over X . By Remark 20.8,
Z = Ẑ /Qv0, and S = Ŝ/k

×, where the central valuation v0 of K̂ is defined by a
1-subtorus k

× ⊆ Ŝ acting on X̂ by homotheties. So all assertions on Ŝ transfer to S.
	


In the generically transitive case, we can say more.

Proposition 21.6 ([Kn3, 8.3]). If K = k(G/H), then CAutK is a diagonalizable
group extended by a finite p-group and dimCAutK = dim(Z ∩−Z ).

Proof. Since AutG K = AutG(G/H)= NG(H)/H is an algebraic group, CAutK is an
algebraic group as well. Central automorphisms preserve general B-orbits in G/H,
whence there exist finitely many general points x1, . . . ,xs ∈G/H such that CAutK ↪→
AutB Bx1× ·· ·×AutB Bxs. The latter group is a subquotient of B× ·· ·×B, which
explains the structure of CAutK in view of Theorem 21.5(3). By Theorem 21.5(4),
there exists a purely inseparable G-map G/H � O such that dimCAutO = dim(Z ∩
−Z ). But every G-automorphism of O lifts to G/H, because it is determined by the
image no of the base point o ∈ O with stabilizer Go = H and n ∈ NG(H). Hence
dimCAutK is the same. 	


Remark 21.7. Suppose that chark = 0. If G/H is quasiaffine, then CAut(G/H)
is canonically embedded in A as the common kernel of all tails of k[G/H] and
acts on each k[G/H](λ) by the character λ ∈ Λ+(G/H). (Otherwise CAut(G/H)

would act on some k[G/H](B)
λ with several distinct eigenweights, whence the action

CAut(G/H) : k(G/H)B would be non-trivial.) For general G/H, CAut(G/H) acts

on each k(G/H)(B)
λ by homotheties and lies in the center of AutG(G/H). (This is

reduced to the quasiaffine case as in the proof of Theorem 21.5.)

Example 21.8. In Example 21.2, AutG G = G (acting by left translations) and
CAutG = Ker(G : G/B) = Z(G).

Example 21.9. If the orbit map G → O is not separable, then dimCAutO may be
smaller than “the proper value”. For instance, let chark = 2, G = SL2, X = P(sl2).
Then X has an open orbit O with stabilizer U . By Theorem 21.5(2), the central torus
S embeds in AutG X , but the latter group is trivial. Indeed, each G-automorphism
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of X lifts to an intertwining operator of AdSL2, but it is easy to see that such an
operator has to be scalar. However k(G/U)B = k =⇒ CAut(G/U) = AutG(G/U) =
T =⇒ dim(Z ∩−Z ) = 1; cf. Theorem 21.10.

21.3 Valuative Characterization of Horospherical Varieties. We have seen in
§7 that horospherical G-varieties play an important rôle in studying general G-va-
rieties. Apparently they can be characterized in terms of central valuation cones.

Theorem 21.10. A G-variety X is horospherical if and only if Z (X) = E (X).

First proof (chark = 0) [Po5, §4], [Vin1, §5]. This proof goes back to Popov, who
however considered tails of coordinate algebras instead of central valuations; cf. Pro-
position 7.6. The generically transitive case is due to Pauer [Pau4].

By Remark 20.8, we may assume X to be (quasi)affine. By (T0), Z = E if
and only if R = k[X ] has no tails. However one proves that a rational G-algebra

R has no tails if and only if R � (k[G/U−]⊗RU )T =
⊕

λ∈X+ k[G/U−](λ )⊗R(B)
λ .

Here T = AutG(G/U−) acts on G/U− by right translations, so that isotypic com-
ponents k[G/U−](λ) are at the same time T -eigenspaces of weight −λ (cf. (2.4)),

and the isomorphism is given by gfλ ⊗ fλ �→ g fλ , ∀g ∈ G, fλ ∈ R(B)
λ , where fλ ∈

k[G/U−](B)
λ , fλ (e) = 1. In our situation, this implies that X = (G//U−×X//U)//T

is horospherical.
Conversely, if R has tails, then tails do not vanish under restriction of the iso-

typic decomposition of R(λ) ·R(μ) to general G-orbits. But the coordinate algebra
of a horospherical homogeneous space has no tails since isotypic components of
k[G/U−] are T -eigenspaces. Hence X is not horospherical. 	


Second proof [Kn3, 8.5]. If Z = E , then by Theorem 21.5(4) we may assume that
S = A and the geometric quotient X/S exists. Then r(X/S) = 0 and, by Propositions
5.11 and 10.1, orbits of G : X/S are projective homogeneous spaces.

Let x ∈ X and x �→ x̄ ∈ X/S. We may assume that Gx̄ ⊇U . Then U preserves Sx,
and we have the orbit map U → Ux ⊆ Sx. As U is an affine space (with no non-
constant invertible polynomials) and Sx is a torus (whose coordinate algebra is gen-
erated by invertibles), this map is constant, whence Ux = {x}. Thus X is horospher-
ical.

Conversely, for horospherical X put Z = XU− and consider the natural proper map
X ′ := G∗B− Z � X . There are natural maps E (X ′) � E (X), Z (X ′)→Z (X). Con-
sider the action T : Z. By Proposition 20.13 and Example 20.2, Z (X ′) = Z (Z) =
E (Z) = E (X ′), whence Z (X) = E (X). 	


21.4 G-valuations of a Central Divisor. We conclude this section with the de-
scription of G-valuations for the residue field of a central valuation.

Proposition 21.11 ([Kn3, 7.4]). Let X be a smooth G-model of K, let D⊂ X be a G-
stable prime divisor with vD ∈Z , and let X ′ be the normal bundle of X along Dreg.
Then:
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(1) Ĕ (X ′) = Ĕ and V (X ′) = V +QvD;
(2) Ĕ (D) = Ĕ /QvD and V (D) is the image of V .

Proof. As usual, we may assume that K = QuotR, where R is a rational G-algebra.
Then K′ := k(X ′) = QuotgrR, where grR is the graded algebra associated with the
filtration R(d) = { f ∈ R | vD( f )≥ d} of R. Since vD is central, it is constant on each
B-eigenspace of RU , whence RU � gr(RU ). But (grR)U is a purely inseparable finite
extension of gr(RU ) by Corollary D.3, and hence (K′)U ⊇KU is a purely inseparable
field extension. This implies that Ĕ (X ′) = Ĕ .

The G-invariant grading of grR is defined by a central 1-torus acting on V (X ′)
trivially by Theorem 21.5(1). Hence it agrees with all G-valuations. Thus v∈ V (X ′)
if and only if v is non-negative at all tail vectors of the form f̄0/ f̄1 · · · f̄s, where f̄i ∈
(grR)(B) are homogeneous elements represented by fi ∈ R, and vD( f0) = vD( f1)+
· · ·+ vD( fs). Replacing f̄i by suitable powers, we may assume that fi ∈ R(B). Thus
V (X ′) is the set of all v∈ Ĕ non-negative on tail vectors of R annihilated by vD, i.e.,
V (X ′) = V +QvD.

By Lemma 5.8, k(D)U is a purely inseparable extension of k(vD|KU ), and k(D)B

of KB. Hence Ĕ (D) = Ĕ /QvD. Since X ′ retracts onto D, V (D) = V (X ′)/QvD by
Corollary 19.6. 	


22 Little Weyl Group

In Subsection 8.7 we found that important invariants of a G-variety X , such as com-
plexity, rank, and weight lattice, which play an essential rôle in the embedding the-
ory, are closely related to the geometry of the cotangent bundle T ∗X . Knop devel-
oped these observations further [Kn1], [Kn5] and described the cone of (central)
G-valuations as a fundamental chamber for the Galois group of a certain Galois
covering of T ∗X , called the little Weyl group of X . As this approach requires an
infinitesimal technique, we assume that chark = 0 in this and the next section. We
retain the notation and conventions of §8.

22.1 Normalized Moment Map. The Galois covering of T ∗X is defined in terms
of the moment map. A disadvantage of the moment map Φ is that its image MX

can be non-normal, and general fibers can be reducible. A remedy is to consider
the “Stein factorization” of Φ . Let M̃X be the spectrum of the integral closure of
k[MX ] (embedded via Φ∗) in k(T ∗X). We may assume that X is smooth, whence
T ∗X is smooth and normal, and therefore k[M̃X ] ⊆ k[T ∗X ]. It is easy to see that
k(M̃X ) is algebraically closed in k(T ∗X). Thus Φ decomposes into the product of a
finite morphism ϕ : M̃X →MX and the normalized moment map Φ̃ : T ∗X → M̃X with
irreducible general fibers. Set L̃X = M̃X//G. We have the quotient map π̃G : M̃X → L̃X

and the natural finite morphism ϕ//G : L̃X → LX .
The following result illustrates the rôle of the normalized moment map in equiv-

ariant symplectic geometry.
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Proposition 22.1. The fields k(M̃X ) and k(T ∗X)G are the mutual centralizers of
each other in k(T ∗X) with respect to the Poisson bracket, and k(L̃X ) is the Poisson
center of both k(M̃X ) and k(T ∗X)G.

Proof. The field k(MX ) is generated by Hamiltonians Hξ = Φ∗ξ , ξ ∈ g. Hence
f ∈ k(T ∗X) Poisson-commutes with k(MX ) if and only if {Hξ , f}= ξ f = 0, ∀ξ ∈ g,

i.e., f is G-invariant. But then f also commutes with k(M̃X ). Indeed, let μh be the
minimal polynomial of h ∈ k(M̃X ) over k(MX ). Then { f ,μh(h)} = μ ′h(h){ f ,h} =
0 =⇒ { f ,h}= 0. Therefore k(T ∗X)G is the centralizer of k(MX ) and k(M̃X ).

Conversely, as general orbits are separated by invariant functions, gα is the
common kernel of dα f , f ∈ k(T ∗X)G, for general α ∈ T ∗X . Hence KerdαΦ̃ =
Kerdα Φ = (gα)∠ is generated by skew gradients of f ∈ k(T ∗X)G. It follows that
h ∈ k(T ∗X) commutes with k(T ∗X)G if and only if dh vanishes on Kerdα Φ̃ =
Tα Φ̃−1Φ̃(α), and this holds if and only if h is constant on Φ̃−1Φ̃(α), because gen-
eral fibers Φ̃−1Φ̃(α) are irreducible. Therefore k(M̃X ) is the centralizer of k(T ∗X)G.

Finally, k(L̃X ) = k(M̃X )G = k(M̃X )∩k(T ∗X)G, since quotient maps πG and π̃G

separate general orbits. 	


22.2 Conormal Bundle to General U-orbits. Recall the local structure of an open
subset of X provided by Theorem 4.7: X̊ � Pu×Z, where P = P(X) = Pu �L is the
associated parabolic, and the Levi subgroup L acts on Z with kernel L0 ⊇ L′, so that
Z � A×C, A = L/L0.

General U-orbits on X coincide with general Pu-orbits and are of the form Pu×
{z}, z ∈ Z. General B-orbits coincide with general P-orbits and are of the form
Pu×A×{x}, x ∈C. We have TxX = pux⊕ax⊕TxC, ∀x ∈C.

General U- and B-orbits on X form two foliations. Consider the respective conor-
mal bundles U ⊇ B. They are P-vector bundles defined, e.g., over X̊ . It follows
from the local structure that U � Pu×T ∗Z � Pu×A×a∗ ×T ∗C and B � Pu×A×
T ∗C over X̊ . We have (U /B)(x) = (ux)⊥/(bx)⊥ = (bx/ux)∗ � (b/u+ bx)∗ ⊆ t∗.
For x∈ Z we have bx = b∩ l0, whence U /B(x)� a∗. As AdPu acts on b/u trivially,
there is a canonical isomorphism U /B(x)� a∗, ∀x ∈ X̊ . Therefore U /B � a∗× X̊
is a trivial bundle over X̊ , and we have a canonical projection π : U → a∗, which is
nothing else but the moment map for the B-action.

The bundle U /B can be lifted (non-canonically) to U over X̊ . Namely consider
yet another foliation {g(PuC) | g ∈ P} and let A be the respective conormal bundle.
By the local structure, A � Pu×A×a∗ ×C over X̊ , and U = A ⊕B.

The isomorphism σ : a∗ →A (x), x ∈C, defined by the formula

σ(λ ) =

{
λ on ax� a

0 on pux⊕TxC

provides a section for π . It depends on the choice of x and even more—we may
replace C by any subvariety in X̊L0 = PL0

u ×A×C intersecting all P-orbits transver-
sally so that x may be any point in X̊ with Px = L0 and TxC may be any L0-stable
complement to px in TxX .
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Recall that a embeds in l as the orthocomplement to l0.

Lemma 22.2. There is a commutative square

U
Φ−−−−→ a⊕pu ⊆ g� g∗

⏐
⏐

π

⏐
⏐

projection

a∗
∼−−−−→ a.

Proof. Take α ∈ U (x), x ∈ X̊ . Since all maps are P-equivariant, we may assume
that x ∈ C, which implies that U (x) � (ax)∗ ⊕ T ∗x C and α = σ(λ ) + β for some
λ = π(α) ∈ a∗, β ∈ T ∗x C = B(x). Hence 〈α,ξ x〉= 〈λ ,ξ 〉, ∀ξ ∈ p =⇒ Φ(α) = λ
mod p⊥ = pu. 	


Corollary 22.3. There is a commutative square

U
Φ−−−−→ MX

⏐
⏐

π

⏐
⏐

πG

a∗
πG−−−−→ LX = πG(a∗).

Lemma 22.4. There exists a unique morphism ψ : a∗ → L̃X making the following
square commutative:

U
Φ̃−−−−→ M̃X

⏐
⏐

π

⏐
⏐

π̃G

a∗
ψ−−−−→ L̃X .

Proof. The uniqueness is evident. Take ψ = π̃GΦ̃σ . The maps ψπ and π̃GΦ̃ coin-
cide on σ(a∗), and by Corollary 22.3 they map each α ∈ U to one and the same
fiber of ϕ//G. Thus for every λ ∈ a∗ the irreducible subvariety π−1(λ) � B is
mapped by π̃GΦ̃ to the (finite) fiber of ϕ//G through ψ(λ ), whence to ψ(λ ). 	


22.3 Little Weyl Group. The normalization of LX = πG(a∗) equals a∗/W (a∗),
where W (a∗) = NW (a∗)/ZW (a∗) is the Weyl group of a⊆ g. By Lemma 22.4, there
is a sequence of dominant finite maps of normal varieties a∗ → L̃X → a∗/W (a∗). It
follows from the Galois theory that L̃X � a∗/WX for a certain subgroup WX ⊆W (a∗)
and the left arrow is the quotient map.

Definition 22.5. The group WX is called the little Weyl group of X . It is a subquotient
of W .

Remark 22.6. WX may be a proper subgroup of W (a∗), see Example 25.9.

By construction, M̃X , L̃X , and WX are G-birational invariants of X . They are re-
lated to other invariants such as the horospherical type S.
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Proposition 22.7 ([Kn1, 6.4], [Kn6, 7.3]). M̃G/S = M̃X×L̃X
a∗ and M̃X = M̃G/S/WX .

As well as MX , M̃X and WX are determined by a general G-orbit [Kn1, 6.5.4]. For
functorial properties of the normalized moment map and the little Weyl group, see
[Kn1, 6.5]. For geometric properties of the morphisms T ∗X → M̃X , M̃X → L̃X , and
T ∗X → L̃X , see [Kn1, 7.4, 7.3, 6.6], [Kn6, §§5,7,9]. M̃X has rational singularities
[Kn6, 4.3].

Remark 22.8. A non-commutative version of this theory was developed in [Kn6].
Here functions on T ∗X are replaced by differential operators on X and k[g∗] by Ug.
The analogue of k[M̃X ] consists of completely regular differential operators gener-
ated by velocity fields locally on X and “at infinity”. Invariant completely regular
operators form a polynomial ring, which coincides with the center of D(X)G when-
ever X is affine. This ring is isomorphic to k[ρ + a∗]WX (“Harish-Chandra isomor-
phism”), where ρ is half the sum of positive roots and WX is naturally embedded in
NW (ρ +a∗) being thus a subgroup, not only a subquotient, of W .

Example 22.9. Take X = G itself, with G acting by left translations. Here T ∗G�G×
g∗, and the moment map Φ is just the coadjoint action map with irreducible fibers
isomorphic to G. We have A = T , and σ : t∗ � t ↪→ b � u⊥ = U (e) is the natural
inclusion. Therefore M̃G = MG = g∗, L̃G = LG = g∗//G� t∗/W , and WG = W .

Example 22.10. Let X = G/T , where G is semisimple. Here T ∗X � G∗T (u+u−),
A = AdG T , MX = g∗. The subspace e+gf ⊂ u+u−, where e∈ u, f∈ u−, h∈ t form
a principal sl2-triple, is a cross-section for the fibers of πGΦ : T ∗X → g∗//G. Indeed,
πG : e+gf

∼→ g∗//G [McG, 4.2]. Hence π̃GΦ̃(e+gf) is a cross-section for the fibers
of the finite map ϕ//G. It follows that L̃G/T = LG/T , and hence M̃G/T = MG/T and
WG/T = W .

Example 22.11. Consider a horospherical homogeneous space X = G/S. We have
seen in Theorem 8.7 that the moment map factors as Φ = ϕπA, where ϕ : G ∗P−

s⊥ � MG/S is generically finite proper and πA : G ∗S s⊥ → G ∗P− s⊥ is the A-quo-

tient map. It immediately follows that M̃G/S = Speck[G∗P− s⊥] and the natural map

G∗P− s⊥→ M̃G/S is a resolution of singularities. The natural morphisms G∗P− s⊥→
G ∗P− a∗ = G/P− × a∗ → a∗ and π̃G : M̃G/S → L̃G/S are rational G-quotient maps.
Indeed, P− acts on each fiber λ +p−u of s⊥→ a∗ generically transitively [McG, 5.5],
and fibers of π̃G have a dense orbit, because fibers of πG : MG/S → LG/S do. Passing

to rational quotients, we see that a∗ → L̃G/S is birational, whence an isomorphism.
Thus WG/S = {e}.

The last example has a converse.

Proposition 22.12. X is horospherical if and only if WX = {e}.

Proof. A horospherical variety of type S is birationally G-isomorphic to G/S×C
by Proposition 7.7. Therefore it suffices to consider X = G/S, but then WX = {e} by
Example 22.11.
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Conversely, suppose that WX = {e} and consider the morphism Ψ = π̃GΦ̃ :
T ∗X → L̃X = a∗. Then Ψ∗ embeds a into the space of fiberwise linear G-invari-
ant functions on T ∗X , which restrict to linear functions on σ(a∗)� a∗.

Geometrically, Ψ ∗a is an Abelian subalgebra of G-invariant vector fields on X
tangent to G-orbits. Furthermore, Ψ ∗a = π∗a = 0 on B by Lemma 22.4, and hence
Ψ ∗a is tangent to general P-orbits. It follows that Ψ ∗a restricts to Px, x ∈C, as an
Abelian subalgebra in the algebra (p/px)Px = a⊕ p

L0
u of P-invariant vector fields

on Px, and Ψ ∗ξ (x) = ξ x mod p
L0
u x, ∀ξ ∈ a, whence Ψ ∗a projects onto a. Since

zg(a)∩ p
L0
u = pL

u = 0, Ψ ∗a is conjugated to a by a unique gx ∈ PL0
u . Moving each

x ∈C by gx, we may assume that Ψ ∗ξ (x) = ξx, ∀ξ ∈ a, x ∈C (or ∀x ∈ Z = AC).
Therefore velocity fields of A : Z extend to G-invariant vector fields on X . These

vector fields can be integrated to an A-action on X by central automorphisms, which
restricts to the natural A-action on X̊ = P ∗L Z provided by A : Z. (The induced
action A : T ∗X integrates the invariant collective motion, cf. §23.) We conclude by
Theorems 21.5–21.10 that X is horospherical. 	


22.4 Relation to Valuation Cones. Here comes the main result linking the little
Weyl group with equivariant embeddings.

Theorem 22.13 ([Kn5, 7.4]). The little Weyl group WX acts on a∗ as a crystallo-
graphic reflection group preserving the lattice Λ (X), and the central valuation cone
Z (X) is a fundamental chamber of WX in E = Hom(Λ (X),Q).

The proof relies on the integration of the invariant collective motion in T ∗X and
the study of the asymptotic behavior of its projection to X , see §23. The description
of Z = Z (X) as a fundamental chamber of a crystallographic reflection group
was first obtained by Brion [Bri8] in the spherical case and generalized to arbitrary
complexity in [Kn3, §9]. In particular, Z is a cosimplicial cone.

From this theorem, Knop derived the geometric shape of all valuation cones.

Corollary 22.14 ([Kn3, §9]). The cones Vv are cosimplicial.

In proving Theorem 22.13, we shall use its formal consequence:

Lemma 22.15. WX acts trivially on Z ∩−Z .

Proof. By Theorem 21.5, there exists a torus E of central automorphisms such that
e = (Z ∩−Z )⊗k with respect to the canonical embedding e ↪→ a = E ⊗k. Con-
sider the action G+ = G×E : X and indicate all objects related to this action by
the superscript “+”. In particular, A+ � A is the quotient of A×E modulo the an-
tidiagonal copy of E, and X(A+) ⊂ X(A)⊕X(E) is the graph of the restriction
homomorphism X(A)→ X(E).

Obviously, Φ = τΦ+, where τ : (g+)∗ → g∗ is the canonical projection. It follows
that Φ̃ = τ̃Φ̃+ for a certain morphism τ̃ : M̃+

X → M̃X . The subalgebra k[M̃X ] is
integrally closed in k[M̃+

X ], whence k[L̃X ] is integrally closed in k[L̃+
X ]. On the other

hand, we have a commutative square
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(a+)∗ τ−−−−→
∼

a∗

⏐
⏐

ψ+

⏐
⏐

ψ

L̃+
X

τ̃//G−−−−→ L̃X ,

where ψ ,ψ+, and hence τ̃//G are finite morphisms. Hence L̃+
X � L̃X and W+

X = WX .
It follows that WX preserves (a+)∗ ⊂ a∗⊕e∗ and acts trivially on the second sum-

mand e∗ � (a+)∗/(a+)∗∩a∗ � a∗/(a+)∗∩a∗. Thus WX acts trivially on e embedded
in a. 	


23 Invariant Collective Motion

The skew gradients of functions in k[LX ] (or k[L̃X ]) pulled back to T ∗X generate an
Abelian flow of G-automorphisms preserving G-orbits, which is called the invariant
collective motion, see 8.6. Restricted to a general orbit Gα ⊂ T ∗X , the invariant
collective motion gives rise to a connected Abelian subgroup Aα = (GΦ(α)/Gα)0 ⊆
AutG Gα . It turns out that Aα � A. However, in general, this isomorphism cannot
be made canonical in order to produce an A-action on (an open subset of) T ∗X in-
tegrating the invariant collective motion. This obstruction is overcome by unfolding
the cotangent variety by means of a Galois covering with Galois group WX . This
construction is due to Knop [Kn5].

23.1 Polarized Cotangent Bundle.

Definition 23.1. The fiber product T̂ X = T ∗X ×L̃X
a∗ is called the polarized cotan-

gent bundle of X . Since general fibers of T ∗X → L̃X are irreducible, T̂ X is irre-
ducible. Actually T̂ X is an irreducible component of T ∗X×LX a∗, WX is its stabilizer
in W (a∗) acting on the set of components, and T̂ X → T ∗X = T̂ X/WX is a rational
Galois cover.

Consider the principal stratum apr ⊆ a∗ obtained by removing all proper inter-
sections with kernels of coroots and with W -translates of a∗ in t∗. The group W (a∗)
acts on apr freely. Put Lpr

X = πG(apr) = apr/W (a∗), the quotient map being an étale
finite Galois covering. The preimages of Lpr

X in various varieties under consideration
will be called principal strata and denoted by the superscript “pr”.

In particular, T̂ prX ⊆ T̂ X is a smooth open subvariety (provided that X is smooth)
and the projection T̂ prX � T prX ⊆ T ∗X is an étale finite quotient map by WX . The
G-invariant symplectic structure on T ∗X is pulled back to T̂ prX so that T̂ prX →
T ∗X →MX is the moment map.

The invariant collective motion on T̂ prX is generated by the skew gradients of
Poisson-commuting functions from π∗a, where π : T̂ prX → a∗ is the other projec-
tion. These skew gradients constitute a commutative r-dimensional subalgebra of
Hamiltonian vector fields (r = r(X) = dima). Our aim is to show that these vec-
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tor fields are the velocity fields of a symplectic A-action so that π is the respective
moment map [AG, Ch. 3, 3.1], [Vin3, II.2.3].

Remark 23.2. In particular, it will follow that the WX -action on a lifts to A, so that
T̂ prX comes equipped with the Hamiltonian G× (WX �A)-action.

23.2 Integration of Invariant Collective Motion. Following [Kn5], we shall re-
strict our considerations to the symplectically stable case (Definition 8.13) for tech-
nical reasons.

Proposition 23.3. G : T ∗X is symplectically stable if and only if T ∗X = GU .

Proof. Take x ∈C, α ∈ U pr(x) � T prZ. By Lemma 22.2, we have Φ(α) ∈ (apr +
pu)L0 = apr + p

L0
u , i.e., Φ(α) ∈ ξ + p

L0
u for some ξ ∈ apr. Since zg(ξ ) = m and

m∩ p
L0
u = pL

u = 0, we have [pL0
u ,ξ ] = p

L0
u =⇒ ξ + p

L0
u = (PL0

u )ξ by Lemma 3.4.
Therefore

Φ(U pr) = P(apr +p
L0
u ) = Pa

pr, (23.1)

whence

Φ(GU pr) = Ga
pr. (23.2)

Hence density of GU implies symplectic stability. Conversely, in the symplectically
stable case P−u α is transversal to U for general α ∈U . Indeed, we may assume that
Φ(α) ∈ apr, but then [p−u ,Φ(α)] = p−u is transversal to Φ(U ) = a+pu. Therefore
dimP−u U = dimPu +dimU = dimT ∗X . 	


Remark 23.4. Similar arguments prove Theorem 8.8 in the case M = L, e.g., for
quasiaffine X . Indeed, P−u α is transversal to U whenever Φ(α)∈ apr, whence P−u U

is dense in T ∗X and MX = Φ(GU ) = Ga = G(a+pu), because Papr = apr +pu.

Suppose that the action G : T ∗X is symplectically stable. We have observed in 8.5
that Mpr

X � G ∗NG(a) apr. Then M̃pr
X � Mpr

X ×LX L̃X � G ∗NX apr, where NX ⊆ NG(a)
is the extension of WX by ZG(a) = L. Hence T prX � G ∗NX Σ has a structure of a
homogeneous bundle over G/NX . Fibers of this bundle are called cross-sections.
They are smooth and irreducible, because general fibers of Φ̃ are irreducible. We
may choose a canonical NX -stable cross-section Σ , namely the unique cross-section
in Φ−1(apr) intersecting U .

Remark 23.5. In fact, U ∩Σ is dense in Σ . Indeed, Σ ∩T ∗X̊ ⊆U .

Lemma 23.6. The kernel of NX : Σ is L0.

Proof. By (23.1), Φ(U pr) = apr +pu� P∗L apr � Pu×apr. Hence U pr = P∗L (U ∩
Σ) � Pu× (U ∩Σ). On the other hand, U |X̊ = P ∗L U |Z � Pu×U |Z , and all the
stabilizers of L : U |Z � T ∗Z are equal to L0. It follows that generic stabilizers of
L : Σ are P-conjugate to L0, and hence coincide with L0. 	
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Corollary 23.7. WX acts on A = L/L0, i.e., preserves the character lattice X(A) =
Λ(X)⊂ a∗.

Remark 23.8. The lemma implies Theorem 8.18 in the symplectically stable case.
This observation was made in [Kn5, §4].

Lemma 23.9. The A-action integrates the invariant collective motion on Σ .

Proof. The skew gradient of Φ∗ f ( f ∈ k(MX )) at α ∈ T ∗X equals (dΦ(α) f ) ·α ,
where dΦ(α) f is considered as an element of g∗∗ = g up to a shift from (TΦ(α)MX )⊥.
Indeed, the skew gradient of a function is determined by its differential at a point,
and for linear functions f ∈ g the assertion holds by the definition of Φ .

If α ∈ Σ , then TΦ(α)MX = a+[g,Φ(α)] = a⊕ pu⊕ p−u , (TΦ(α)MX )⊥ = l0. The
differentials dΦ(α) f of f ∈ k[Lpr

X ] generate the conormal space of G ·Φ(α) in MX

at Φ(α), i.e., [g,Φ(α)]⊥/(TΦ(α)MX )⊥ = l/l0 = a. Thus the invariant collective mo-
tion at α is aα = lα = aα . 	


Translation by G permutes cross-sections transitively and extends the A-action
to each cross-section. These actions integrate the invariant collective motion but, in
general, they do not globalize to a regular A-action on the whole cotangent bundle,
due to non-trivial monodromy.

However, unfold T prX to T̂ prX = T prX ×L̃X
apr � G ∗L Σ̂ , where Σ̂ = {α̂ =

(α,Φ(α)) | α ∈ Σ}. We retain the name “cross-sections” for the fibers of this ho-
mogeneous bundle, which are isomorphic to the cross-sections in T prX . Now there
is a natural A-action on T̂ prX provided by A : Σ̂ � Σ , which integrates the invariant
collective motion on T̂ prX . The WX -action on T̂ prX is induced from the NX -action
on G× Σ̂ given by n(g, α̂) = (gn−1,nα̂), ∀n ∈ NX , g ∈ G, α̂ ∈ Σ̂ . We sum up in the
following

Theorem 23.10 ([Kn5, 4.1–4.2]). There is a Hamiltonian G× (WX � A)-action on
T̂ prX with the moment map Φ×π : T̂ prX → g∗ ⊕a∗.

Proof. It remains only to explain why π is the moment map for the A-action. Take
any α̂ ∈ Σ̂ over α ∈ Σ . By (the proof of) Lemma 23.9, for any ξ ∈ a there exists
f ∈ k[Lpr

X ] such that dΦ(α) f = ξ mod l0. The skew gradient of π∗ξ at α̂ is pulled
back from that of Φ∗ f at α , i.e., from ξ α , hence it equals ξ α̂ . We conclude by
G-equivariance. 	


23.3 Flats and Their Closures. In particular, the orbit of the invariant collective
motion through α̂ ∈ T̂ prX over α ∈ T prX is Aα̂ = GΦ(α)α̂ � GΦ(α)/Gα . For the
purposes of the embedding theory it is important to study the projections of these
orbits to X and their boundaries.

Definition 23.11. A flat in X is Fα = πX (Aα̂) = GΦ(α)x, where α ∈ T pr
x X , α̂ ∈ T̂ prX

lies over α , and πX : T ∗X → X is the canonical projection. The composed map
A→ Aα̂ → Fα is called the polarization of the flat.
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For general α the polarization map is an isomorphism: indeed, without loss of
generality assume that α ∈ Σ ∩T ∗x X̊ , whence GΦ(α) = L and GΦ(α)∩Gx = Gα = L0,
which implies Fα � A. Generic flats are nothing else but G-translates of L- (or A-)
orbits in Z, under appropriate choice of Z. Namely, by Lemma 22.2, there is a com-
mutative diagram

X̊×a∗ �A
Φ−−−−→ a⊕pu

⏐
⏐

π

⏐
⏐



a∗
∼−−−−→ a.

(23.3)

For any λ ∈ apr we have λ +pu = P ·λ � P/L, and hence X̊ � P∗L Zλ , where Zλ �
πX (Φ−1(λ )∩A ). Clearly, all L-orbits in Z = Zλ are flats. On the other hand, for
any α ∈ Σ ∩T ∗x X̊ it is easy to construct a subvariety C ⊂ X̊L0 through x intersecting
all P-orbits transversally such that α = 0 on TxC, whence x ∈ ZΦ(α).

The rigidity of torus actions implies that the closures of generic flats are isomor-
phic.

Proposition 23.12 ([Kn5, §6]). The closures Fα for general α ∈ T prX are A-iso-
morphic toric varieties, and the WX -action on A� Fα extends to Fα .

Proof. We explain the affine case, the general case being reduced to this one by
standard techniques of invariant quasiprojective open coverings and affine cones.
Generic flats are G-translates of generic L-orbits in πX (Σ). We may assume that X
is embedded into a G-module. Since πX (Σ) is NX -stable, the set of eigenweights of
A = L/L0 in the L-submodule spanned by πX (Σ) is WX -stable. For general α ∈ Σ ,
k[Fα ] is just the semigroup algebra generated by these eigenweights. 	


The following result is crucial for interdependence between flats and central val-
uations. It partially describes the boundary of a generic flat.

Proposition 23.13 ([Kn5, 7.3]). Let D⊂ X be a G-stable divisor with v = vD ∈Z .
The closure Fα of a generic flat contains A-stable prime divisors Dwv ⊆ D, w ∈
WX , which correspond to wv regarded as A-valuations of k(A). Furthermore, Fα is
generically smooth along Dwv.

Proof. Without loss of generality we may assume that α ∈ Σ . The WX -action on Fα
is given by w : Fα → Fnα → Fα , where the left arrow is the translation by n ∈ NX

representing w ∈WX and the right arrow is the unique A-isomorphism mapping nα
back to α . Since D is NX -stable, it suffices to prove the assertion for w = e.

Shrinking X̊ if necessary, we find a B-chart X0 intersecting D such that X̊ =
X0 \D.

Lemma 23.14. The morphism X̊×a∗ → a+pu in (23.3) extends to X0×a∗.

Proof. Trivializing sections of A � X̊ × a∗ corresponding to λ ∈ Λ are dfλ /fλ ,
where fλ are B-eigenfunctions on X̊ which are constant on PuC. These sections ex-
tend to sections of T ∗X(logD) over X0, which trivialize the subbundle A (logD) =
A ⊆ T ∗X0(logD), because any linear combination of dfλ /fλ maps to the same
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combination of −λ mod pu under the logarithmic moment map. The moment map
of T ∗X(logD) restricted to A (logD) provides the desired extension. 	


Consequently X0 � P∗L Z0, Z0 = ZΦ(α), and Fα = Ax is a general A-orbit in Z0.
The proposition stems from

Lemma 23.15. After possible shrinking of X0, Z0 � F ×C, where F = Ax is the
closure of a general A-orbit in Z0.

Proof. Since v is central and by Lemma 5.8, the restriction of functions identifies
k(D)B � k(Z0 ∩D)A with k(X)B � k(Z0)A � k(C). Hence removing zeroes/poles
of a B-invariant function preserves non-empty intersection with D. In particular, we
may assume that k(Z0 ∩D)A = Quotk[Z0 ∩D]A and k[Z0 ∩D]A � k[Z0]A � k[C]
by shrinking X0. We have k[Z] = k[ fλ | λ ∈Λ ]⊗k[C] and k[Z0]⊆ k[ fλ | λ ∈Λ0 ]⊗
k[C], where Λ0 is the weight semigroup of Z0. There exist hλ ∈ k[C] such that hλ fλ ∈
k[Z0]. Shrinking X0, we may assume that fλ ∈ k[Z0], ∀λ ∈Λ0 (because Λ0 is finitely
generated). Hence Z0 � F×C, where F = Speck[Λ0]. 	


23.4 Non-symplectically Stable Case. Now we explain how to deal with non-
symplectically stable case.

We may assume X to be quasiprojective. By X̂ denote the cone over X without
the origin. In the notation of Remark 20.8, the Ĝ-action on T ∗X̂ is symplectically
stable by Proposition 8.14.

The quotient space T ∗X̂/k
× is a vector bundle over X containing T ∗X as a

subbundle, the quotient bundle being the trivial line bundle. The moment map for
Ĝ : T ∗X̂ factors through T ∗X̂/k

×, so that there is a commutative diagram

T ∗X̂⏐



T ∗X ⊂ T ∗X̂/k
× ϒ−→ k⏐

⏐

Φ

⏐
⏐

Φ̂ ‖

MX ⊂ MX̂ −→ k.

Here ϒ is induced by the evaluation at the Euler vector field in X̂ , i.e., by the moment
map for the k

×-action, and the lower right arrow is the projection of MX̂ ⊆ ĝ∗ =
g∗ ⊕k to k. T ∗X and MX are the zero-fibers of the respective maps to k. Also, we
have a∗ = â∗ ∩ g∗. The morphism Φ̂ factors through M̃X̂ , hence Φ factors through
the zero-fiber M′

X of M̃X̂ → k. Since M′
X → MX is finite, there is a commutative

diagram
T ∗X ⊂ T ∗X̂/k

×
⏐
⏐

Φ̃

⏐
⏐



M̃X −→ M′
X ⊂ M̃X̂ .

Passing to quotients, we obtain



23 Invariant Collective Motion 129

a∗ ⊂ â∗⏐



⏐



L̃X −→ L̃X̂ ,

whence WX ⊆WX̂ . Actually these groups coincide by Theorem 22.13. By Corol-
lary 23.7, WX̂ preserves Λ(X̂), whence WX preserves Λ(X) = Λ (X̂)∩a∗.

Instead of flats, one considers twisted flats defined as projectivizations of usual
flats in X̂ . The above results on flats and their closures in X̂ descend to twisted
flats in X . If T ∗X is symplectically stable, then T prX ⊂ T prX̂/k

×, and flats are a
particular case of twisted flats.

Example 23.16. Let G = SL2 and X̂ ⊂ V (3) = k[x,y]3 be the variety of (nonzero)
degenerate binary cubic forms (in the variables x,y). Essentially Ĝ = GL2. The

form v = xy2 has the open orbit Ô ⊂ X̂ and the stabilizer Ĥ =
{(

t2 0
0 t−1

)
| t ∈ k

×
}

in Ĝ. Passing to projectivizations, we obtain a hypersurface X ⊂ P(V (3)) with the

open orbit O = G[v], and G[v] =: H =
{(

t 0
0 t−1

)
| t ∈ k

×
}

. The flats through [v] are

the orbits of the stabilizers in G of non-degenerate matrices from h⊥ =
{(

0 ∗
∗ 0

)}
,

i.e., the orbits of L =
{(

a b
b a

)
| a2−b2 = 1

}
and of all H-conjugates of L. How-

ever the twisted flats are the orbits of the stabilizers in G of matrices from ĥ⊥ =
{( c ∗
∗ 2c) | c ∈ k} with non-degenerate projection to sl2, i.e., the orbits of arbitrary

1-tori in G.
The boundary of the open orbit is a single orbit X \O = G[v0], v0 = y3, with the

stabilizer Gv0 = B. Put Y = P(〈v0,v〉), a B-stable subspace in X . The natural bijective
morphism X̃ = G ∗B Y → X is a desingularization. The closures of generic twisted
flats are isomorphic to P

1 and intersect the boundary divisor D = X̃ \O transversally
in two points permuted by the (little) Weyl group. Indeed, it suffices to verify it for
general T -orbits in O, which is easy.

Remark 23.17. The fibers T cX = ϒ−1(c), c ∈ k \ {0}, are called twisted cotangent
bundles [BoB, §2]. They carry a structure of affine bundles over X associated with
the vector bundle T ∗X . Thus each T cX has a natural symplectic structure. (This is a
particular case of symplectic reduction [AG, Ch. 3, 3.2] for the k

×-action on T ∗X̂ .)
The action G : T cX is Hamiltonian and symplectically stable: the moment map Φc

is the composition of Φ̂ and the projection ĝ∗ → g∗, so that ImΦc is identified with
the fiber of MX̂ → k over c, and the symplectic stability stems from that of T ∗X̂ .

The whole theory can be developed for arbitrary G-varieties replacing the usual
cotangent bundle by its twisted analogue [Kn5, §9]. If X is quasiaffine, i.e., embed-
ded in a G-module V , then X ⊂ P(V ⊕k), X̂ � X×k

×, and T cX � T ∗X . Therefore
in the quasiaffine case the classical theory is included in the twisted one.

23.5 Proof of Theorem 22.13. We already know from the above that WX preserves
Λ(X) and acts on E . Let W #

X ⊂ GL(E ) be the subgroup generated by reflections at
the walls of Z . The first step is to show that W #

X ⊆WX .
Choose a wall of Z and a vector v in its interior. We may assume that v = vD

for a certain G-stable prime divisor D ⊂ X . Consider the normal bundle X ′ of X
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along D. By Proposition 21.11(1), the central valuation cone of X ′ is a half-space
Z ′ = Z +Qv. By Theorem 21.10, X ′ is not horospherical, whence WX ′ �= {e} by
Proposition 22.12. By Lemma 22.15, WX ′ acts trivially on Z ′ ∩−Z ′, whence WX ′

is generated by the reflection at the chosen face of Z .
On the other hand, X ′ is deformed to X , i.e., it is the zero-fiber of the (G×

k
×)-equivariant flat family E → A

1 with the other fibers isomorphic to X [Ful1,
5.1]. Since E \X ′ � X ×k

× and the moment map of T ∗(E \X ′) factors through the
projection onto T ∗X , we have M̃X = M̃E . There is a commutative diagram

T ∗X ′ ← T ∗E|X ′ ⊂ T ∗E
↓ ↓

MX ′ ⊆ ME = MX .

As M̃E →ME is finite and k[M̃X ′ ] is integrally closed in k[T ∗E|X ′ ], there is a finite
morphism M̃X ′ → M̃E , whence a∗ → L̃X ′ → L̃E = L̃X . Thus WX ′ ⊆WE = WX .

At this point we may reduce the problem to the symplectically stable case, be-
cause Ẑ = Z (X̂) is the preimage of Z and W #

X̂
= W #

X ⊆WX ⊆WX̂ .

It follows that W #
X is a finite crystallographic reflection group and Z is a union

of some fundamental chambers of W #
X . To conclude the proof, it remains to show

that different vectors v1,v2 ∈Z cannot be WX -equivalent.
Assume the converse, i.e., v2 = wv1, w ∈WX . Without loss of generality X con-

tains two G-stable prime divisors D1,D2 corresponding to v1,v2. (Replace X by
the normalized closure of the graph of the birational map X1 ��� X2, where Xi is a
complete G-model of K having a divisor with valuation vi.) Removing D1∩D2, we
may assume that D1,D2 are disjoint. By Proposition 23.13, the closure of a generic
(twisted) flat contains two A-stable prime divisors Dv1 ,Dv2 both lying in D1 and
in D2, a contradiction. 	


23.6 Sources. Proposition 23.13, together with Theorem 22.13, leads to a descrip-
tion of the whole boundary of a generic flat (to a certain extent). We no longer
assume that X is smooth.

Definition 23.18. A source Y ⊂ X is the center of a central valuation.

Proposition 23.19 ([Kn5, 7.6]). Let Fα ⊆ X be a generic (twisted) flat. A vector
v ∈ E , regarded as an A-valuation of k(Fα), has a center Fv in Fα if and only if the
unique v′ ∈WX v∩Z has a center Y ⊆ X. Furthermore, Fv ⊆ Y and Y is uniquely
determined by Fv.

Proof. Since WX acts on Fα , we may assume that v = v′. Take a G-equivariant
completion X ⊇ X [Sum, Th. 3] and construct a proper birational G-morphism
ϕ : X ′ → X such that X ′ contains a divisor D with vD = v (Proposition 19.9). By
Proposition 23.13, the center of v on the closure F ′α of Fα in X ′ is a divisor Dv ⊆D.
Hence ϕ(Dv) ⊆ ϕ(D) is the center of v on the closure Fα of Fα in X . It intersects
Fα (exactly in Fv) if and only if ϕ(D) intersects X (in Y ).
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Suppose that Fw = Fv, but w′ ∈WX w∩Z has center Y ′ �⊆ Y on X . Then w′ has
center Y ′ \Y on X \Y , whence w has center on Fα \Y , a contradiction with Fw ⊆Y .

	


Remark 23.20. A-valuations of k(Fα) are determined by one-parameter subgroups
of A, see Example 24.8. The open orbit in Fv can be reached from Fα by taking
the limits of trajectories of the respective one-parameter subgroup. Thus Proposi-
tion 23.19 gives a full picture of the asymptotic behavior of the invariant collective
motion.

Corollary 23.21. There are finitely many sources in a G-variety, and the closure of
a generic (twisted) flat intersects all of them.

Corollary 23.22. Suppose that an affine G-variety X contains a proper source; then
k[X ] has a G-invariant non-negative grading induced by a certain central one-
parameter subgroup.

Proof. Corollary 23.21 and the assumptions imply that Fα �= Fα is an affine toric
variety acted on by WX . Its normalization is determined by a strictly convex WX -
stable cone C ⊂ E (Example 15.8). Clearly, intC contains a WX -invariant vector
v �= 0. Hence v ∈ Z ∩−Z defines a central one-parameter subgroup γ acting on
X by Theorem 21.5, whence a G-invariant grading of k[X ]. Generic γ-orbits in X
are contained in generic flats and non-closed therein, because γ contracts Fα to the
unique closed orbit in Fα . Hence the grading is non-negative. 	


See [Kn5, §§8–9] and 29.6 for a deeper analysis of sources, flats, and their clo-
sures.

23.7 Root System of a G-variety. To any G-variety X one can relate a root system
in Λ(X), which is a birational invariant of the G-action. Namely, let Πmin

X ⊂ Λ (X)
be the set of indivisible vectors generating the rays of the simplicial cone−Z (X)∨.
It is easy to deduce from Theorem 22.13 that Δ min

X = WX Πmin
X is a root system

with base Π min
X and the Weyl group WX , called the minimal root system of X . It

is a generalization of the (reduced) root system of a symmetric variety (see §26
and 30.3). The minimal root system was defined by Brion [Bri8] for a spherical
variety and by Knop [Kn8] in the general case.

Remark 23.23. There are several natural root systems related to G : X which gen-
erate one and the same Weyl group WX [Kn8, 6.2, 6.4, 7.5]; Δ min

X is the “minimal”
one.

Example 23.24. If X = G comes equipped with the G-action by left translations and
G′ is adjoint, then Δ min

X = ΔG by Example 21.2. If G′ is not adjoint, then Δ min
X may

differ from ΔG: this happens if and only if some roots in ΔG are divisible in X(T ).
For simple G, Δ min

G = ΔG unless G = Sp2n(k); in the latter case ΔG,Δ min
G are of types

Cn,Bn, respectively.

An important result of Knop establishes a relation between the minimal root
system and central automorphisms.
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Theorem 23.25 ([Kn8, 6.4]). A diagonalizable group SX =
⋂

α∈Δmin
X

Kerα ⊆ A is
canonically embedded in CAutX.

Note that S0
X is the largest connected algebraic subgroup of CAutX by Theo-

rem 21.5(3), but Theorem 23.25 is much more subtle.

Synopsis of a proof. Standard reductions allow us to assume that X is quasiaffine. It
is clear that SX ⊆ AWX . The action A : T̂ prX descends to AWX : T prX .

The most delicate part of the proof is to show that the action of SX extends to T ∗X
in codimension one. Knop shows that the A-actions on the orbits of the invariant
collective motion patch together in an action on T ∗X of a smooth group scheme
S over L̃X with connected fibers, and AWX ⊂ S (k(L̃X )). Furthermore, s ∈ AWX

induces a rational section of S → L̃X which is defined in codimension one whenever
α(s) = 1, ∀α ∈ Δ min

X , whence the claim.
Now SX acts on an open subset R ⊆ T ∗X whose complement has codimension

≥ 2, and this action commutes with G and with homotheties on the fibers. Hence
SX acts by G-automorphisms on P(R) ⊆ P(T ∗X). Since X is quasiaffine, and gen-
eral fibers of P(R)→ X have no non-constant regular functions, we deduce that SX

permutes the fibers. This yields a birational action SX : X commuting with G and
preserving generic flats. The description of generic flats shows that SX preserves
P-orbits in X̊ , whence SX ↪→ CAutX . 	


24 Formal Curves

In the previous sections of this chapter we examined G-valuations on arbitrary G-
varieties. However our main interest is in homogeneous varieties. In this section we
take a closer look at V = V (O), where O is a homogeneous space.

Namely we describe the subset V 1 ⊆ V consisting of G-valuations v such that
k(v)G = k. In geometric terms, if v is proportional to vD for a G-stable divisor D on
a G-embedding X ←↩ O, then v ∈ V 1 if and only if D contains a dense G-orbit.

The subset V 1 is big enough. For instance, if c(O) = 0, then V 1 = V and, if
c(O) = 1, then V 1 ⊇ V \Z , because in this case c(k(v)) = 0 by Proposition 21.3.
In general, any G-valuation can be approximated by v ∈ V 1 in a sense [LV, 4.11].

24.1 Valuations via Germs of Curves. In [LV] Luna and Vust suggested comput-
ing v( f ), v ∈ V 1, f ∈ K = k(O), by restricting f to a (formal) curve in O approach-
ing D, in the above notation. More precisely, take a smooth curve Θ ⊆ X meeting D
transversally in x0, Gx0 = D. It is clear that vD( f ) equals the order of f |gΘ at gx0 for
general g ∈ G. More generally, take a germ of a curve χ : Θ ��� O that converges
to x0 in X , i.e., χ extends regularly to the base point θ0 ∈Θ and χ(θ0) = x0, see
Appendix A.3. Then

vD( f ) · 〈D,Θ〉x0 = vχ,θ0( f ) := vθ0(χ∗(g f )) for general g ∈ G, (24.1)

where 〈D,Θ〉x0 is the local intersection number [Ful1, Ch. 7].
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Theorem 24.1. For any germ of a curve (χ : Θ ��� O, θ0 ∈ Θ), Formula (24.1)
defines a G-valuation vχ ,θ0 ∈ V 1, and every v ∈ V 1 is proportional to some vχ ,θ0 .
Furthermore, if X ⊇ O is a G-model of K and Y ⊆ X the center of v, then the germ
converges in X to x0 ∈ Y such that Gx0 = Y .

Proof. The G-action yields a rational dominant map α : G×Θ ��� O, (g,θ) �→
gχ(θ). By construction, vχ,θ0 is the restriction of vG×{θ0} ∈ V 1(G×Θ ) to K,
whence v = vχ,θ0 ∈ V 1. If v has the center Y on X , then α : G×Θ ��� X is reg-
ular along G×{θ0} and α(G×{θ0}) = Y , whence χ converges to x0 = α(e,θ0) in
the dense G-orbit of Y . 	


24.2 Valuations via Formal Curves. For computations, it is more practical to
adopt a more algebraic point of view, namely to replace germs of curves by germs
of formal curves, i.e., by k((t))-points of O, see Appendix A.3.

Any germ of a curve (χ :Θ ��� O, θ0 ∈Θ) defines a formal germ x(t)∈O(k((t)))
if we replace Θ by the formal neighborhood of θ0. We have

vχ,θ0( f ) = vx(t)( f ) := ordt f (gx(t)) for generic g, (24.2)

where “generic” means a sufficiently general point of G (depending on f ∈ K) or
the generic k(G)-point of G (Example A.10).

The counterpart of Theorem 24.1 is

Theorem 24.2. For any x(t) ∈ O(k((t))), Formula (24.2) defines a G-valuation
vx(t) ∈ V 1, and every v ∈ V 1 is proportional to some vx(t). Furthermore, if X ⊇O is

a G-model of K and Y ⊆ X the center of v, then x(t) ∈ X(k[[t]]) and Y = Gx(0).

To prove this theorem it suffices to show that vx(t) = vχ,θ0 for a certain germ of a
curve (χ,θ0). This stems from the two subsequent lemmas.

Lemma 24.3 ([LV, 4.4]). ∀g(t) ∈ G(k[[t]]), x(t) ∈ O(k((t))) : vg(t)x(t) = vx(t).

Proof. The G-action on x(t) yields k(O) ↪→ k(G)((t)), so that vx(t) coincides with
ordt with respect to this inclusion. The lemma stems from the fact that G(k[[t]]) acts
on k(G)((t)) “by right translations” preserving ordt . 	


Lemma 24.4 ([LV, 4.5]). Every germ of a formal curve in O is G(k[[t]])-equivalent
to a formal germ induced by a germ of a curve.

Proof. Since O is homogeneous, G(k[[t]])-orbits are open in O(k((t))) in t-adic
topology. Now the lemma stems from Theorem A.16. 	


Germs of formal curves in O are more accessible if they come from formal germs
in G. Luckily, in characteristic zero this is “almost” always the case. From now on
suppose that chark = 0.

Proposition 24.5 ([LV, 4.3]). For any x(t) ∈ O(k((t))) there exists n ∈ N such that
x(tn) = g(t) ·o for some g(t) ∈ G(k((t))).
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Proof. Consider the algebraic closure k((t)) of k((t)). The set O(k((t))) is equipped
with a structure of an algebraic variety over k((t)) with the transitive G(k((t)))-ac-
tion. However k((t)) =

⋃∞
n=1 k(( n

√
t)), whence x(t) = g( n

√
t) · o for some g( n

√
t) ∈

G(k(( n
√

t))). 	


Note that vx(tn) = n · vx(t). Thus we may describe V 1 in terms of germs of formal
curves in G, i.e., points of G(k((t))), considered up to left translations by G(k[[t]])
and right translations by H(k((t))). There is a useful structural result shrinking the
set of formal germs under consideration:

Iwasawa decomposition [IM]. G(k((t)))= G(k[[t]])·X∗(T )·U(k((t))), where X∗(T )
is regarded as a subset of T (k((t))).

Corollary 24.6. Every v ∈ V 1 is proportional to (the restriction of) vg(t), g(t) ∈
X∗(T ) ·U(k((t))).

Let us mention a related useful result on the structure of G(k((t))):

Cartan decomposition [IM]. G(k((t))) = G(k[[t]]) ·X∗(T ) ·G(k[[t]]).

Example 24.7. Suppose that O = G/S is horospherical. We may assume that S ⊇
U ; then NG(S) ⊇ B and A := AutG O � NG(S)/S = T/T ∩ S is a torus. Since O is
spherical, V = V 1. Due to the Iwasawa decomposition, every v ∈ V is proportional
to some vγ , γ ∈ X∗(T ). Let γ be the image of γ−1 in X∗(A). By definition, vγ( f ) =
ordt=0 f (gγ(t)o) = ordt=0 f (γ(t) ·go) is the order of f along generic trajectories of
γ as t → 0. In particular, V = X∗(A)⊗Q, cf. Theorem 21.10.

Example 24.8. Specifically, let O = G = T be a torus. Every T -valuation of k(T ) is
proportional to vγ , γ ∈ X∗(T ), where vγ is the order of a function restricted to sγ(t)
as t → 0 for general s ∈ T . By Theorem 24.1, vγ has a center Y on a toric variety
X ⊇ T if and only if γ(0) := limt→0 γ(t) exists and belongs to the dense T -orbit
in Y . Thus the lattice points in VY are exactly the one-parameter subgroups of T
converging to a point in the dense T -orbit of Y . This is the classical description of
the fan of a toric variety [Oda, Pr. 1.6(v)], [Ful2, 2.3].

Example 24.9. Let O = G be acted on by G×G via left/right multiplication. By
the Bruhat decomposition, it is a spherical homogeneous space. Due to the Car-
tan decomposition, every v ∈ V is proportional to vγ , γ ∈ X∗(T ). Conjugating
by NG(T ), we may assume that γ is antidominant. Choose a Borel subgroup
B−×B⊆G×G. The weight lattice Λ (G) is identified with X(T ) and for λ ∈X+ the
respective (B− ×B)-eigenfunction is fλ (g) = 〈v−λ ,gvλ 〉, where vλ ∈ V , v−λ ∈ V ∗

are highest, resp. lowest, vectors in a simple G-module V of highest weight λ
and its dual, see 27.2. Then vγ (fλ ) = ordt fλ (g1γ(t)g2) (for general g1,g2 ∈ G)
= ordt〈g−1

1 v−λ ,γ(t)g2vλ 〉 = 〈γ,λ 〉. Hence V is the antidominant Weyl chamber
in X∗(T )⊗Q, cf. 27.2.

Some other examples can be found in 16.5.



Chapter 5
Spherical Varieties

Although the theory developed in the previous chapters applies to arbitrary homo-
geneous spaces of reductive groups, and even to more general group actions, it ac-
quires its most complete and elegant form for spherical homogeneous spaces and
their equivariant embeddings, called spherical varieties. A justification of the fact
that spherical homogeneous spaces are a significant mathematical object is that they
arise naturally in various fields, such as embedding theory, representation theory,
symplectic geometry, etc. In §25 we collect various characterizations of spherical
spaces, the most important being: the existence of an open B-orbit, the “multiplicity-
free” property for spaces of global sections of line bundles, commutativity of invari-
ant differential operators and of invariant functions on the cotangent bundle with
respect to the Poisson bracket.

Then we examine the most interesting classes of spherical homogeneous spaces
and spherical varieties in more detail. Algebraic symmetric spaces are considered
in §26. We develop the structure theory and classification of symmetric spaces, com-
pute the colored data required for the description of their equivariant embeddings,
and study B-orbits and (co)isotropy representation. §27 is devoted to (G×G)-equiv-
ariant embeddings of a reductive group G. A particular interest in this class is ex-
plained, for example, by an observation that linear algebraic monoids are nothing
else but affine equivariant group embeddings. Horospherical varieties of complex-
ity 0 are classified and studied in §28.

The geometric structure of toroidal varieties, considered in §29, is the best un-
derstood among all spherical varieties, since toroidal varieties are “locally toric”.
They can be defined by several equivalent properties: their fans are “colorless”,
they are spherical and pseudo-free, and the action sheaf on a toroidal variety is
the log-tangent sheaf with respect to a G-stable divisor with normal crossings. An
important property of toroidal varieties is that they are rigid as G-varieties. The so-
called wonderful varieties are the most remarkable subclass of toroidal varieties.
They are canonical completions with nice geometric properties of (certain) spher-
ical homogeneous spaces. The theory of wonderful varieties is developed in §30.
Applications include computation of the canonical divisor of a spherical variety and
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Luna’s conceptual approach to the classification of spherical subgroups through the
classification of wonderful varieties.

The concluding §31 is devoted to Frobenius splitting, a technique for proving
geometric and algebraic properties (normality, rationality of singularities, cohomol-
ogy vanishing, etc) in positive characteristic. However, this technique can be applied
to zero characteristic using reduction mod p provided that reduced varieties are
Frobenius split. This works for spherical varieties. As a consequence, one obtains
the vanishing of higher cohomology of ample or numerically effective line bundles
on complete spherical varieties, normality and rationality of singularities for G-sta-
ble subvarieties, etc. Some of these results can be proved by other methods, but
Frobenius splitting provides a simple uniform approach.

25 Various Characterizations of Sphericity

25.1 Spherical Spaces. Spherical homogeneous spaces can be considered from
diverse viewpoints: orbits and equivariant embeddings, representation theory and
multiplicities, symplectic geometry, harmonic analysis, etc. The definition and some
other implicit characterizations of this remarkable class of homogeneous spaces are
already scattered in the text above. In this section, we review these issues and in-
troduce other important properties of homogeneous spaces which are equivalent or
closely related to sphericity.

As usual, G is a connected reductive group, O denotes a homogeneous G-space
with the base point o, and H = Go.

Definition–Theorem. A spherical homogeneous space O (resp. a spherical sub-
group H ⊆G, a spherical subalgebra h⊆ g, a spherical pair (G,H) or (g,h)) can be
defined by any one of the following equivalent properties:

(S1) k(O)B = k.
(S2) B has an open orbit in O.
(S3) H has an open orbit in G/B.
(S4) (chark = 0) ∃g ∈ G : b+(Adg)h = g.
(S5) (chark = 0) There exists a Borel subalgebra b̃⊆ g such that h+ b̃ = g.
(S6) H acts on G/B with finitely many orbits.
(S7) For any G-variety X and any x ∈ XH, Gx contains finitely many G-orbits.
(S8) For any G-variety X and any x ∈ XH, Gx contains finitely many B-orbits.

The term “spherical homogeneous space” is traced back to Brion, Luna, and Vust
[BLV], and “spherical subgroup” to Krämer [Krä], though the notions themselves
appeared much earlier.

Proof. (S1)⇐⇒ (S2) B-invariant functions separate general B-orbits [PV, 2.3].
(S2)⇐⇒ (S3) Both conditions are equivalent to requiring that B×H : G has an
open orbit, where B acts by left and H by right translations, or vice versa.
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(S4) and (S5) are just reformulations of (S2) and (S3) in terms of tangent spaces.
Note that in positive characteristic (S4) and (S5) are stronger than (S2) and (S3),
because the orbit map onto the open B- or H-orbit may be inseparable.
(S2) =⇒ (S8) Gx satisfies (S2), too, and we conclude by Corollary 6.5.
(S8) =⇒ (S7) Obvious.
(S7) =⇒ (S2) Stems from Corollary 6.10.
(S8) =⇒ (S6) B acts on G/H with finitely many orbits, which are in bijection with
(B×H)-orbits on G and with H-orbits on G/B.
(S6) =⇒ (S3) Obvious. ��
In particular, spherical spaces are characterized in the framework of embedding the-
ory as those having finitely many orbits in the boundary of any equivariant embed-
ding. The embedding theory of spherical spaces is considered in §15.

25.2 “Multiplicity-free” Property. Another important characterization of spheri-
cal spaces is in terms of representation theory, due to Kimelfeld and Vinberg [VK].
Recall from 2.6 that the multiplicity of a highest weight λ in a G-module M is

mλ (M) = dimHomG(V (λ ),M) = dimM(B)
λ .

In characteristic zero, mλ (M) is the multiplicity of the simple G-module V (λ ) in
the decomposition of M. In positive characteristic, V (λ) denotes the respective
Weyl module. The module M is said to be multiplicity-free if all multiplicities in
M are ≤ 1.

Theorem 25.1. O is spherical if and only if the following equivalent conditions
hold:

(MF1) P(V ∗(λ ))H is finite for all λ ∈ X+.

(MF2) ∀λ ∈ X+, χ ∈ X(H) : dimV ∗(λ )(H)
χ ≤ 1.

(MF3) For any G-line bundle L on O, H0(O,L ) is multiplicity-free.

If O is quasiaffine, then the last two conditions can be weakened to

(MF4) ∀λ ∈ X+ : dimV ∗(λ )H ≤ 1.
(MF5) k[O] is multiplicity-free.

The spaces satisfying these conditions are called multiplicity-free.

Proof. (S1)⇐⇒ (MF3) If mλ (L ) ≥ 2, then there exist two non-proportional sec-

tions σ0,σ1 ∈ H0(O,L )(B)
λ . Their ratio f = σ1/σ0 is a non-constant B-invariant

function. Conversely, any f ∈ k(O)B can be represented in this way: the G-line bun-
dle L together with the canonical B-eigensection σ0 is defined by a sufficiently big
multiple of div∞ f (cf. Corollary C.6).

Finally, if O is quasiaffine, then we may take for L the trivial bundle: for σ0 take
a sufficiently big power of any B-eigenfunction in I (D) � k[O], where D ⊂ O is
the support of div∞ f . Hence (S1)⇐⇒ (MF5).

(MF1)⇐⇒ (MF2) Stems from P(V ∗(λ ))H = P

(
V ∗(λ )(H)

)
=
⊔

χ P

(
V ∗(λ )(H)

χ

)

(a finite disjoint union).
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(MF2)⇐⇒ (MF3) If O = G/H is a quotient space, then this is the Frobenius reci-
procity (2.2). Generally, there is a bijective purely inseparable morphism G/H →O
(Remark 1.4), and O is spherical if and only if G/H is so. But we have already seen
that the sphericity is equivalent to (MF3).
(MF4)⇐⇒ (MF5) is proved in the same way. ��
25.3 Weakly Symmetric Spaces and Gelfand Pairs. The “multiplicity-free” prop-
erty leads to an interpretation of sphericity in terms of automorphisms and group al-
gebras associated with G. Since the complete reducibility of rational representations
is essential here, we assume that chark = 0 up to the end of this section.

Recall from 2.5 the algebraic versions of the group algebra A (G) and the Hecke
algebra A (O).

Theorem 25.2 ([AV], [Vin3]). An affine homogeneous space O is spherical if and
only if any of the following four equivalent conditions is satisfied:

(GP1) A (O) = A (G)H×H is commutative.
(GP2) A (V )H×H is commutative for all G-modules V .
(WS1) (Selberg condition) The G-action on O extends to a cyclic extension Ĝ =

〈G,s〉 of G so that (sx,sy) is G-equivalent to (y,x) for general x,y ∈ O.
(WS2) (Gelfand condition) There exists θ ∈ AutG such that θ (H) = H and θ(g) ∈

Hg−1H for general g ∈ G.

The condition (GP1) is an algebraization of a similar commutativity condition for
the group algebra of a Lie group, see [Gel], [Vin3, I.2], and 25.5. The condition
(WS2) appeared in [Gel], and (WS1) was first introduced by Selberg in the seminal
paper on the trace formula [Sel], and by Akhiezer and Vinberg [AV] in the con-
text of algebraic geometry. The spaces satisfying (WS1)–(WS2) are called weakly
symmetric and (G,H) is said to be a Gelfand pair if (GP1)–(GP2) hold.

Proof. (MF5)⇐⇒ (GP1) Stems from Schur’s lemma.
(GP1)⇐⇒ (GP2) Obvious.
(MF5) =⇒ (WS1) There exists a Weyl involution θ ∈ AutG, θ(H) = H [AV].
There is a conceptual argument for symmetric spaces and in general a case-by-case
verification using the classification from 10.2. Define s ∈ AutO by s(go) = θ(g)o
and Ĝ = G � 〈s〉 by sgs−1 = θ(g). The G-action on O×O is extended to Ĝ by
s(x,y) = (sy,sx).

Consider the (G×G)-isotypic decomposition

k[O×O] =
⊕

λ ,μ∈Λ+(O)

k[O×O](λ ,μ),

where k[O×O](λ ,μ) = k[O](λ)⊗k[O](μ) �V (λ )⊗V (μ).

Clearly, s twists the G-action by θ , and hence maps k[O×O](λ ,μ) to k[O×O](μ∗,λ ∗)
and preserves each summand of

k[O×O]G =
⊕

λ∈Λ+(O)

k[O×O]G(λ ,λ ∗).
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A Ĝ-invariant inner product ( f1, f2) �→ ( f1 f2)� on k[O] is non-degenerate. (Oth-
erwise its kernel would be a non-trivial Ĝ-stable ideal in k[O].) Hence it induces a
nonzero pairing between simple G-modules k[O](λ∗) and k[O](λ), whence by dual-

ity a Ĝ-invariant function in k[O×O](λ ,λ ∗), which spans k[O×O]G(λ ,λ∗). It follows

that s acts trivially on k[O×O]G.
But general G-orbits in O×O are closed (Theorem 8.27), whence s preserves

general orbits, which is exactly the Selberg condition.
(WS1) =⇒ (WS2) Multiplying s by g ∈ G preserves the Selberg condition. Also,
if (sx,sy) ∼ (y,x), then the same is true for any G-equivalent pair. Hence, without
loss of generality, so = o = x. Define θ ∈ AutG by θ(g) = sgs−1; then (so,sgo) =
(o,θ(g)o)∼ (go,o) for general g ∈G. Hence g′go = o, g′o = θ(g)o, i.e., g′g = h ∈
H, θ(g) = g′h′ = hg−1h′ for some h′ ∈ H.
(WS2) =⇒ (WS1) Since θ (H) = H, there is a well-defined automorphism s ∈
AutO, s(go) = θ (g)o. Put Ĝ = G � 〈s〉, sgs−1 = θ (g). The Selberg condition is
verified by reversing the previous arguments.
(WS2) =⇒ (GP1) Both θ and the inversion map g �→ g−1 on G give rise to au-
tomorphisms of k[G] preserving k[G]H×H , whose restrictions to k[G]H×H coincide.
By the complete reducibility of (H×H)-modules, A (G)H×H � (k[G]H×H)∗. Hence
the antiautomorphism of A (G)H×H induced by the inversion coincides with the au-
tomorphism induced by θ . Therefore A (G)H×H is commutative. ��

Remark 25.3. Already in the quasiaffine case the classes of weakly symmetric and
spherical spaces are not contained in each other [Zor].

25.4 Commutativity. Now we characterize sphericity in terms of symplectic ge-
ometry.

Recall from 8.2 that the action G : T ∗O is Hamiltonian with respect to the nat-
ural symplectic structure. Thus we have a G-invariant Poisson bracket of functions
on T ∗O. Homogeneous functions on T ∗O are locally the symbols of differential op-
erators on O, and the Poisson bracket is induced by the commutator of differential
operators.

The functions pulled back under the moment map Φ : T ∗O → g∗ are called
collective. They Poisson-commute with G-invariant functions on T ∗O (Proposi-
tion 22.1).

Theorem 25.4. O is spherical if and only if the following equivalent conditions
hold:

(WC1) General orbits of G : T ∗O are coisotropic, i.e., gα ⊇ (gα)∠ for general
α ∈ T ∗O.

(WC2) k(T ∗O)G is commutative with respect to the Poisson bracket.
(CI) There exists a complete system of collective functions in involution on T ∗O.

If O is affine, then these conditions are equivalent to

(Com) D(O)G is commutative.
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The theorem goes back to Guillemin, Sternberg [GS], and Mikityuk [Mik]. The
spaces satisfying (WC1)–(WC2) are called weakly commutative and those satisfying
(Com) are said to be commutative.

Proof. (S2)⇐⇒ (WC1) By Theorem 8.17, corkT ∗O = 2c(O) is zero if and only if
O is spherical, and this means exactly that general orbits are coisotropic.
(WC1)⇐⇒ (WC2) Skew gradients of f ∈ k(T ∗O)G at a point α of general position
span (gα)∠. All G-invariant functions Poisson-commute if and only if their skew
gradients are skew-orthogonal to each other, i.e., if and only if (gα)∠ is isotropic.
(GP1)⇐⇒ (Com) If O is quasiaffine, then D(O) acts faithfully on k[O] by linear
endomorphisms. Hence D(O)G is a subalgebra in A (O). It remains to utilize the
approximation of linear endomorphisms by differential operators.

Lemma 25.5. Let X be a smooth affine G-variety.

(1) For any linear operator ϕ : k[X ] → k[X ] and any finite-dimensional subspace
M ⊂ k[X ] there exists ∂ ∈D(X) such that ∂ |M = ϕ|M.

(2) If ϕ is G-equivariant, then one may assume that ∂ ∈D(X)G.
(3) Put I = AnnM � D(X); then ∀ f ∈ k[X ] : I f = 0 =⇒ f ∈M.

We conclude by Lemma 25.5(2) that A (O) is commutative if and only if D(O)G

is so.

Proof of Lemma 25.5. (1) We deduce it from (3). Choose a basis f1, . . . , fn of M.
It suffices to construct ∂ ∈ D(X) such that ∂ fi = 0, ∀i < n, ∂ fn = 1. By (3) there
exists ∂ ′ ∈ Ann( f1, . . . , fn−1), ∂ ′ fn �= 0. As k[X ] is a simple D(X)-module [MRo,
15.3.8] we may find ∂ ′′ ∈D(X), ∂ ′′(∂ ′ fn) = 1 and put ∂ = ∂ ′′∂ ′.
(2) Without loss of generality, M is G-stable. Assertion (1) yields an epimorphism
of G-k[X ]-modules D(X) � Hom(M,k[X ]) given by restriction to M. But taking
G-invariants is an exact functor.
(3) The assertion is trivial for M = 0 and we proceed by induction on dimM. In the
above notation, put I ′ = Ann( f1, . . . , fn−1). For any ∂ ,∂ ′ ∈I ′ we have (∂ fn)∂ ′ −
(∂ ′ fn)∂ ∈I , whence

(∂ fn)(∂ ′ f ) = (∂ ′ fn)(∂ f ). (25.1)

Taking ∂ ′ = ξ ∂ , ξ ∈H0(X ,TX ), yields ξ (∂ f /∂ fn) = 0 =⇒ ∂ f /∂ fn = c∂ = const.
Substituting this in (25.1) yields c∂ ′ = c∂ = c (independent of ∂ ). Thus ∂ ( f −c fn) =
0 =⇒ f − c fn ∈ 〈 f1, . . . , fn−1〉 =⇒ f ∈M. ��

(Com) =⇒ (WC2) If O is affine, then grD(O) = k[T ∗O]. By complete reducibil-
ity, k[T ∗O]G = grD(O)G is Poisson-commutative. But general G-orbits in T ∗O are
closed (Remark 8.15), whence k(T ∗O)G = Quotk[T ∗O]G is Poisson-commutative
as well.
(CI)⇐⇒ (S2) This equivalence is due to Mikityuk [Mik] (for affine O).

A complete system of Poisson-commuting functions on MO can be constructed
by the method of argument shift [MF1]: choose a regular semisimple element ξ ∈ g∗

and consider the derivatives ∂ n
ξ f of all f ∈ k[g∗]G. (Here ∂ξ denotes the derivative in
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direction ξ .) The functions ∂ n
ξ f Poisson-commute and produce a complete involu-

tive system on Gx⊂ g∗ for general ξ whenever indgx = indg, where indh = dH(h∗)
[Bol]. In the symplectically stable case, general points x ∈ MO are semisimple and
indgx = indg = rkg. Generally, the equality indgx = indg for all x ∈ g∗ was con-
jectured by Elashvili. It is easily reduced to the case of simple g and nilpotent x.
Elashvili’s conjecture was proved by Yakimova for classical g [Yak3] and verified
by de Graaf for exceptional g using computer calculations [Gra]. Recently a general
proof (almost avoiding case-by-case considerations) was given by Charbonnel and
Moreau [CM].

Since symplectic leaves of the Poisson structure on MO are G-orbits, there are
(dG(MO)+dimMO)/2 = dimO− c(O) independent Poisson-commuting collective
functions. Thus a complete involutive system of collective functions exists if and
only if c(O) = 0. ��

Since T ∗O = G ∗H h⊥, weak commutativity is readily reformulated in terms of
the coadjoint representation [Mik], [Pan1], [Vin3, II.4.1].

Theorem 25.6. (G,H) is a spherical pair if and only if general points α ∈ h⊥ satisfy
any of the equivalent conditions:

(Ad1) dimGα = 2dimHα .
(Ad2) Hα is a Lagrangian subvariety in Gα with respect to the Kirillov form.
(Ad3) (Richardson condition) gα ∩h⊥ = hα .

The Richardson condition means that Gα ∩ h⊥ is a finite union of open H-orbits
[PV, 1.5].

Proof. (WC1)⇐⇒ (Ad1) Recall that the moment map Φ : G∗H h⊥ → g∗ is defined
via replacing the ∗-action by the coadjoint action (Example 8.1). We have

dG(T ∗O) = dimO−dimHα and

defT ∗O = dimGΦ(e∗α)/Ge∗α = dimGα/Hα .

Hence

corkT ∗O = dG(T ∗O)−defT ∗O = dimGα−2dimHα .

(Ad1)⇐⇒ (Ad2) The Kirillov form vanishes on hα .
(Ad2)⇐⇒ (Ad3) Stems from (gα)∩h⊥ = (hα)∠, the skew-orthocomplement with
respect to the Kirillov form. ��

Invariant functions on cotangent bundles of spherical homogeneous spaces have
a nice structure.

Proposition 25.7 ([Kn1, 7.2]). If O = G/H is spherical, then k[T ∗O]G � k[L̃O] �
k[a∗]WO is a polynomial algebra; there are similar isomorphisms for fields of ratio-
nal functions.
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Proof. By Proposition 22.1 and (WC2), k(T ∗O)G � k(L̃O) � k(a∗)WO . By Lem-
ma 22.4, π̃GΦ̃ : T ∗O → L̃O is a surjective morphism of normal varieties. There-
fore any f ∈ k(T ∗O)G having poles on L̃O must have poles on T ∗O, whence
k[T ∗O]G = k[L̃O]. The latter algebra is polynomial for WO is generated by reflec-
tions (Theorem 22.13). ��

In other words, invariants of the coisotropy representation form a polynomial alge-
bra k[h⊥]H � k[a∗]WG/H for any spherical pair (G,H).

Remark 25.8. A similar assertion in the non-commutative setup was proved in [Kn6].
Namely, all invariant differential operators on a spherical space O are completely
regular, whence D(O)G is a polynomial ring isomorphic to k[ρ + a∗]WO (see Re-
mark 22.8). In particular, every spherical homogeneous space is commutative.

Example 25.9 ([BPa, Ex. 4.3.3]). Let G = Sp4, H = k
××Sp2 ⊂ Sp2×Sp2 ⊂G. The

coisotropy representation of H is h⊥ = k
1⊕(k1)∗⊕k

2⊕(k2)∗, where k
1,k2 are the

trivial and the tautological Sp2-module acted on by k
× via the characters 2ε,ε , re-

spectively, where X(k×) = 〈ε〉. In the notation of Theorem 9.1, H∗ = Z(G), whence
A = AdG T . The algebra k[L̃O]� k[h⊥]H is freely generated by two quadratic invari-
ants ab, 〈x,y〉, where (a,b,x,y)∈ h⊥. Hence WO � Z2

2 is a subgroup of W generated
by the reflections along two orthogonal roots. This example shows that generally
WX �= W (a∗).

25.5 Generalizations. In our considerations G was always assumed to be reduc-
tive. However some of the concepts introduced above are reasonable even for non-
reductive G assuming H be reductive instead. Some of the above results remain
valid:

(1) If O = G/H is weakly symmetric, then (G,H) is a Gelfand pair.
(2) O is commutative if and only if (G,H) is a Gelfand pair.
(3) A commutative space O is weakly commutative provided that k[h⊥]H separates

general H-orbits in h⊥.

The above proofs work in this case: O is affine, the functor (·)G is exact on global
sections of G-sheaves on O since (·)H is exact on rational H-modules, and orbit
separation in (3) guarantees k(T ∗O)G = Quotk[T ∗O]G. The converse implication
in (1) fails, the simplest counterexample being:

Example 25.10 ([Lau]). Put H = Sp2n(k), G = H �N, where N = expn is a unipo-
tent group associated with the Heisenberg type Lie algebra n = (k2n ⊕ k

2n)⊕ k
3,

the commutator in n being defined by the identification
∧2(k2n⊕k

2n)Sp2n(k) � k
3 =

z(n). Then (G,H) is a Gelfand pair, but O is not weakly symmetric.

Also, the implication (3) fails if the orbit separation is violated. The reason is that
there may be too few invariant differential operators. For instance, in the previous
example, replace H by k

× acting on k
2n via a character χ �= 0 and on k

3 via 2χ .
Then O is not weakly commutative while D(O)G = k.



25 Various Characterizations of Sphericity 143

The classes of weakly symmetric and (weakly) commutative homogeneous spaces
were first introduced and examined in Riemannian geometry and harmonic analysis,
see the survey [Vin3]. We shall review the analytic viewpoint now.

Quitting a somewhat restrictive framework of algebraic varieties, one may con-
sider the above properties of homogeneous spaces in the category of Lie group ac-
tions, making appropriate modifications in formulations. For instance, instead of
regular or rational functions one considers arbitrary analytic or differentiable func-
tions. Some of these properties receive a new interpretation in terms of differential
geometry, e.g., (CI) means that invariant Hamiltonian dynamic systems on T ∗O are
completely integrable in the class of Noether integrals [MF2], [Mik].

The situation where H is a compact subgroup of a real Lie group G, i.e., O = G/H
is a Riemannian homogeneous space, has attracted the main attention of researchers.
Most of the above results were originally obtained in this setting.

The properties (MF4), (MF5) are naturally reformulated here in the category of
unitary representations of G replacing k[O] by L2(O). In (GP1) one considers the
algebra A (G) of complex measures with compact support on G. The conditions
(WS1), (WS2) are formulated for all (not only general) points (which is equivalent
for compact H); there is also an infinitesimal characterization of weak symmetry
[Vin3, I.1.2].

There are the following implications:

weakly symmetric space

⇓
Gelfand pair

�
multiplicity-free space

�
commutative space

�
weakly commutative space

The implication (WS2) =⇒ (GP1) is due to Gelfand [Gel] and (GP1) ⇐⇒ (MF5)
was proved in [BGGN]. The equivalence (GP1) ⇐⇒ (Com) is due to Helgason
[Hel2, Ch. IV, B13] and Thomas [Tho], for a proof see [Vin3, I.2.5]. The impli-
cation (Com) =⇒ (WC2) is easy [Vin3, I.4.2] and the converse was proved by Ryb-
nikov [Ryb].

A classification of commutative Riemannian homogeneous spaces was obtained
by Yakimova [Yak1], [Yak2] using partial results of Vinberg [Vin4] and the classi-
fication of affine spherical spaces from 10.2.

An algebraic homogeneous space O = G/H over k = C may be considered as
a homogeneous manifold in the category of complex or real Lie group actions. At
the same time, if (G,H) is defined over R, then O has a real form O(R) contain-
ing G(R)/H(R) as an open orbit (in classical topology). Thus G/H may be re-
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garded as the complexification of G(R)/H(R), a homogeneous space of a real Lie
group G(R).

It is easy to see that G/H is commutative (resp. weakly commutative, multiplicity-
free, weakly symmetric, satisfies (GP1), (CI)) if and only if G(R)/H(R) is so. In
other words, the above listed properties are stable under complexification and pass-
ing to a real form.

This observation leads to the following criterion of sphericity, which is a “real
form” of Theorem 25.4.

By Chevalley’s theorem, there exists a projective embedding O⊆ P(V ) for some
G-module V . Assume that G is reductive and K ⊂G is a compact real form. Then V
can be endowed with a K-invariant Hermitian inner product (·|·), which induces a
Kählerian metric on P(V ) and on O (the Fubini–Study metric). The imaginary part
of this metric is a real symplectic form. The action K : P(V ) is Hamiltonian, the
moment map Φ : P(V )→ k∗ being defined by the formula

〈
Φ([v]),ξ

〉
=

1
2i
· (ξ v|v)

(v|v) , ∀v ∈V, ξ ∈ k.

Theorem 25.11 ([Bri3], [HW], [Akh4, §13]). O is spherical if and only if general
K-orbits in O are coisotropic with respect to the Fubini–Study form or, equivalently,
the algebra C∞(O)K of smooth K-invariant functions on O is Poisson-commutative.

Proof. First note that general K-orbits in O are coisotropic if and only if

dK(O) = defO = rkK− rkK∗, (25.2)

where K∗ is the stabilizer of general position for K : O [Vin3, II.3.1, 2.6]. The con-
dition (25.2) does not depend on the symplectic structure.

If O is affine, then the assertion can be directly reduced to Theorem 25.4 by
complexification. Without loss of generality K ∩H is a compact real form of H.
Using the Cartan decompositions G = K · expik, H = (K ∩H) · expi(k∩ h), one
obtains a K-diffeomorphism

O� K ∗K∩H ik/i(k∩h)� T ∗(K/K∩H)

(see, e.g., [Kob, 2.7]). Complexifying the r.h.s. we obtain T ∗O.
In the general case, it is more convenient to apply the theory of doubled ac-

tions (see 8.8).
There exists a Weyl involution θ of G commuting with the Hermitian conjugation

g �→ g∗. The mapping g �→ g := θ(g∗)−1 is a complex conjugation on G defining a
split real form G(R). There exists a G(R)-stable real form V (R)⊂V such that (·|·)
takes real values on V (R). The complex conjugation on V , P(V ), or G is defined by
conjugating the coordinates or matrix entries with respect to an orthonormal basis
in V (R).

It follows that the complex conjugate variety O is naturally embedded in P(V )
as a G-orbit. Complexifying the action K : O we obtain the diagonal action G :
O×O, g(x,y) = (gx,θ(g)y), ∀g ∈ G, x,y ∈ O. This action differs slightly from
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the doubled action, but Theorems 8.24–8.25 remain valid, together with the proofs.
Now it follows from (8.3)–(8.4) that O is spherical if and only if

dG(O×O) = rkG− rkG∗,

where G∗ = K∗(C) is the stabilizer of general position for G : O×O. The latter
condition coincides with (25.2). ��

26 Symmetric Spaces

26.1 Algebraic Symmetric Spaces. The concept of a Riemannian symmetric
space was introduced by É. Cartan [Car1], [Car2]. A (globally) symmetric space
is defined as a connected Riemannian manifold O such that for any x ∈ O there ex-
ists an isometry sx of O inverting the geodesics passing through x. Symmetric spaces
form a very important class of Riemannian spaces including all classical geometries.
The theory of Riemannian symmetric spaces is well developed, see [Hel1].

In particular, it is easy to see that a symmetric space O is homogeneous with
respect to the unity component G of the full isometry group, so that O = G/H,
where H = Go is the stabilizer of a fixed base point. The geodesic symmetry s = so

is an involutive automorphism of O normalizing G. It defines an involution θ ∈
AutG by θ(g) = sgs−1. From the definition of a geodesic symmetry one deduces
that (Gθ )0 ⊆ H ⊆ Gθ . Furthermore, reducing G to a smaller transitive isometry
group if necessary, one may assume that g is a reductive Lie algebra. This leads
to the following algebraic definition of a symmetric space, which we accept in our
treatment.

Definition 26.1. An (algebraic) symmetric space is a homogeneous algebraic vari-
ety O = G/H, where G is a connected reductive group equipped with a non-identical
involution θ ∈ AutG, and (Gθ )0 ⊆ H ⊆ Gθ .

Riemannian symmetric spaces are locally isomorphic to real forms (with compact
isotropy subgroups) of algebraic symmetric spaces over C.

It is reasonable to impose a restriction chark �= 2 on the ground field.

Remark 26.2. If G is semisimple simply connected, then Gθ is connected [St, 8.2],
whence H = Gθ . On the other hand, if G is adjoint, then Gθ = NG(H) [Vu2, 2.2].

The differential of θ , denoted by the same letter by abuse of notation, induces a
Z2-grading

g = h⊕m, (26.1)

where h,m are the (±1)-eigenspaces of θ .
The subgroup H is reductive [St, §8], and hence O is an affine algebraic variety.

More specifically, consider a morphism τ : G→G, τ(g) = θ (g)g−1. Observe that τ
is the orbit map at e for the G-action on G by twisted conjugation: g◦x = θ (g)xg−1.
It is not hard to prove the following result.
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Proposition 26.3 ([Sp1, 2.2]). τ(G)� G/Gθ is a connected component of {x ∈ G |
θ(x) = x−1}.

Example 26.4. Let G = GLn(k) and let θ be defined by θ(x) = (x�)−1. Then Gθ =
On(k) and τ(G) = {x ∈ G | θ (x) = x−1} is the set of non-degenerate symmetric
matrices, which is isomorphic to GLn(k)/On(k).

However, if θ is an inner involution, i.e., the conjugation by a matrix of order 2,
then the set of matrices x such that θ (x) = x−1 is disconnected. The connected
components are determined by the collection of eigenvalues of x, which are ±1.

26.2 θ -stable Tori. The local and global structure of symmetric spaces is exam-
ined in [KoR], [Hel1] (transcendental methods), [Vu1], [Vu2] (chark = 0), [Ri2],
[Sp1]. We follow these sources in our exposition. The starting point is an analysis
of θ -stable tori.

Lemma 26.5. Every Borel subgroup B⊆ G contains a θ -stable maximal torus T .

Proof. The group B∩θ(B) is connected, solvable, and θ -stable. By [St, 7.6] it con-
tains a θ -stable maximal torus T , which is a maximal torus in G, too. ��

Corollary 26.6. Every θ -stable torus S ⊆ G is contained in a θ -stable maximal
torus T .

Proof. Take for T any θ -stable maximal torus in ZG(S). ��

A θ -stable torus T decomposes into an almost direct product T = T0 ·T1, where
T0 ⊆ H and T1 is θ -split, which means that θ acts on T1 as the inversion.

Let Δ denote the root system of G with respect to T and gα ⊂ g the root subspace
corresponding to α ∈ Δ . One may choose root vectors eα ∈ gα in such a way that
eα ,e−α ,hα = [eα ,e−α ] form an sl2-triple for all α ∈ Δ . Clearly, θ acts on X(T )
leaving Δ stable. Choosing eα in a compatible way allows us to subdivide all roots
into complex, real, and imaginary (compact or non-compact) ones, according to
Table 26.1.

Table 26.1 Root types with respect to an involution

α complex real imaginary
compact non-compact

θ(α) �=±α −α α α
θ(eα ) eθ(α) e−α eα −eα

We fix an inner product on X(T )⊗Q invariant under the Weyl group W =
NG(T )/T and θ . Then X(T )⊗Q is identified with X∗(T )⊗Q and with the or-
thogonal sum of X(T0)⊗Q and X(T1)⊗Q. The coroots α∨ ∈ Δ∨ (for α ∈ Δ ) are
identified with 2α/(α,α). Let 〈α|β〉= 〈α∨,β 〉= 2(α,β )/(α,α) denote the Cartan
pairing on X(T ) and let rα(β) = β −〈α |β 〉α be the reflection of β along α .

Two opposite classes of θ -stable maximal tori are of particular importance in the
theory of symmetric spaces.
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26.3 Maximal θ -fixed Tori.

Lemma 26.7. If dimT0 is maximal possible, then T0 is a maximal torus in H and
ZG(T0) = T . Moreover, T is contained in a θ -stable Borel subgroup B ⊆ G such
that (Bθ )0 is a Borel subgroup in H.

Proof. If ZG(T0) �= T , then the commutator subgroup ZG(T0)′ and (ZG(T0)′)θ have
positive dimension. Hence T0 can be extended by a subtorus in (ZG(T0)′)θ , a contra-
diction. Now choose a Borel subgroup of H containing T0 and extend it to a Borel
subgroup B of G. Then B⊇ T . If B were not θ -stable, then there would exist a root
α ∈ Δ+ such that θ(α) ∈ Δ−. Then e±α + θ (e±α) are opposite root vectors in h

outside the Borel subalgebra bθ , a contradiction. ��

In particular, if T0 is maximal, then there are no real roots, and θ preserves the set
Δ+ of positive roots (with respect to B) and induces a diagram involution θ of the
set Π ⊆ Δ+ of simple roots. If G is of simply connected type, then θ extends to an
automorphism of G so that θ = θ ·θ0, where θ0 is an inner automorphism defined
by an element of T0.

Consider the set Δ = {α = α|T0 | α ∈ Δ} ⊂ X(T0). Clearly, Δ consists of the
roots of H with respect to T0 and the nonzero weights of T0 : m. The restrictions
of complex roots belong to both subsets, the eigenvectors being eα + θ (eα) ∈ h,
eα −θ(eα) ∈ m, whereas (non-)compact roots restrict to roots of H (resp. weights
of m).

Lemma 26.8. Δ is a (possibly non-reduced) root system with base Π = {α | α ∈
Π}. The simple roots of H and the (nonzero) lowest weights of H : m form an affine
simple root system Π̃ , i.e., 〈α|β〉 ∈ Z− for distinct α,β ∈ Π̃ .

Proof. Note that the restriction of α ∈ Δ to T0 is the orthogonal projection to
X(T0)⊗Q, so that α = (α +θ (α))/2. If α is complex, then 〈α|θ(α)〉 = 0 or −1
(otherwise α−θ (α) would be a real root), In the second case, 2α = α +θ (α) is a
non-compact root with a root vector eα+θ(α) = [eα ,θ(eα)].

A direct computation shows that 〈α|β 〉 ∈ Z, ∀α,β ∈ Δ , and the reflections rα
preserve Δ , see Table 26.2. Hence Δ is a root system. The subset Π is linearly

Table 26.2 Cartan numbers and reflections for restricted roots

Case 〈α |β〉 rα (β)
α = θ(α) 〈α |β〉 rα (β)

〈α |θ(α)〉= 0 〈α|β 〉+ 〈θ(α)|β〉 rα rθ (α)(β )
〈α |θ(α)〉=−1 2〈α|β 〉+2〈θ(α)|β 〉 r2α (β ) = rα+θ(α)(β)

independent. (Otherwise there would be a linear dependence between 2α = α +
θ(α), where α,θ(α)∈Π , i.e., between roots in Π .) Restricting to T0 the expression
of α ∈ Δ as a linear combination of Π with integer coefficients of the same sign
yields a similar expression of α in terms of Π . Thus Π is a base of Δ .
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Note that α = β if and only if α = β or θ(α) = β . (Otherwise α−β or θ(α)−β
would be a real root, depending on whether 〈α|β 〉> 0 or 〈θ (α)|β 〉> 0.) Therefore
the nonzero weights occur in m with multiplicity 1.

To prove the second assertion, it suffices to consider the Cartan numbers 〈α|β 〉
of lowest weights of m. The assumption 〈α|β 〉 > 0 yields without loss of gener-
ality 〈α|β 〉 > 0, whence γ = α − β ∈ Δ , eα = [eβ ,eγ ]. If β is non-compact, then
[eβ ,eγ +θ(eγ)] = eα −θ(eα). If β is complex, then γ is also complex. (This is clear

if α is non-compact; otherwise (γ,γ)= min{(α,α),(β ,β )}<min{(α ,α),(β ,β )}=
(γ,γ).) Then β +θ(γ),θ (β )+ γ /∈ Δ , whence [eβ −θ (eβ ),eγ +θ (eγ)] = eα−θ(eα).
In both cases, either β or α is not a lowest weight, a contradiction. ��

Remark 26.9. If some of the Cartan numbers of Δ vanish in k, then the previous
argument concerning lowest weights does not work. The assertion on Π̃ is true only
if one interprets lowest weights in the combinatorial sense as those weights of m

which cannot be obtained from other weights by adding simple roots of H. However
this happens only for G = G2 (if chark = 3), where the unique (up to conjugation)
involution is easy to describe by hand.

In a usual way, the system Π̃ together with the respective Cartan numbers is
encoded by an (affine) Dynkin diagram. Marking the nodes corresponding to the
simple roots of H by black, and those corresponding to the lowest weights of m by
white, one obtains the so-called Kac diagram of the involution θ , or of the symmet-
ric space O. From the Kac diagram one easily recovers h and (at least in character-
istic zero) the (co)isotropy representation H0 : m.

Example 26.10. Let H be diagonally embedded in G = H ×H, where θ permutes
the factors. Here the Kac diagram is the affine Dynkin diagram of H with the white
nodes corresponding to the lowest roots, e.g.:

� �. . .

�

��� ���
� � � � �<

26.4 Maximal θ -split Tori. Now consider an opposite class of θ -stable maximal
tori.

Lemma 26.11. There exist non-trivial θ -split tori.

Proof. In the converse case θ acts identically on every θ -stable torus. Lemma 26.5
implies that all Borel subgroups are θ -stable. Then all maximal tori are θ -stable and
even pointwise fixed, whence θ is identical. ��

Lemma 26.12. If T1 is a maximal θ -split torus, then L = ZG(T1) decomposes into
an almost direct product L = L0 ·T1, where L0 = L∩H.

Proof. Clearly, L and the commutator subgroup L′ are θ -stable. If L′ �⊆ H, then T1

could be extended by a non-trivial θ -split torus in L′ by Lemma 26.11, a contradic-
tion. The assertion follows from L′ ⊆ H. ��

Corollary 26.13. Every maximal torus T ⊇ T1 is θ -stable.
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Choose a general one-parameter subgroup γ ∈X∗(T1) and consider the associated
parabolic subgroup P = P(γ) with the Lie algebra p = t⊕⊕〈α ,γ〉≥0 gα . Clearly, L⊆
P is a Levi subgroup and pu =

⊕
〈α,γ〉>0 gα . Note that θ(P) = P− (since 〈θ (α),γ〉=

−〈α,γ〉, ∀α ∈ Δ ). In fact, all minimal parabolics having this property are obtained
as above [Vu1, 1.2]. It follows that h is spanned by l0 and eα +θ(eα) over all α ∈ Δ
such that 〈α,γ〉> 0. This yields:

Iwasawa decomposition. g = h⊕ t1⊕pu.

As a consequence, we obtain

Theorem 26.14. Symmetric spaces are spherical.

Indeed, choosing a Borel subgroup B ⊆ P, B ⊇ T yields (S5). There are many
other ways to verify this fact. For instance, it is easy to verify the Richardson con-
dition (Ad3): for any ξ ∈ m � h⊥ one has [g,ξ ]∩m = [h,ξ ], because [m,ξ ] ⊆ h.
One can also check the Gelfand condition (WS2) for elements in a dense subset
τ(G)H ⊆G: g = xh, x ∈ τ(G), h∈H =⇒ θ (g) = x−1h = hg−1h. The multiplicity-
free property (for compact Riemannian symmetric spaces and unitary representa-
tions) was established already by É. Cartan [Car3, n◦17].

The Iwasawa decomposition clarifies the local structure of a symmetric space.
Namely, O contains a dense orbit P ·o� P/L0 � Pu×A, where A = T/T ∩H is the
quotient of T1 by an elementary Abelian 2-group T1 ∩H. We have a � t1, Λ(O) =
X(A), r(O) = dima. The notation here agrees with Theorem 4.7 and Subsection 7.2.

Lemma 26.15. All maximal θ -split tori are H0-conjugate.

Proof. In the above notation, PH is open in G, whence the H0-orbit of P is open
in G/P. Since P coincides with the normalizer of the open B-orbit in O, all such
parabolics are G-conjugate and therefore H0-conjugate. Hence the Levi subgroups
L = P∩θ(P) and finally the maximal θ -split tori T1 = (Z(L)0)1 are H0-conjugate.

��

If T1 is maximal, then every imaginary root is compact and θ maps positive
complex or real roots to negative ones. Compact (simple) roots form (the base of)
the root system of L.

The endomorphism ι =−wLθ of X(T ) preserves Δ+ and induces a diagram invo-
lution of the set Π of simple roots. (Here wL is the longest element in the Weyl group
of L.) Since wGwLθ preserves Δ+ and differs from θ by an inner automorphism, it
coincides with the diagram automorphism θ , whence ι(λ ) = θ(λ )∗, ∀λ ∈ X(T ).

Consider the set ΔO ⊂ X(T1) and the subset ΠO ⊂ ΔO consisting of the restric-
tions α = α|T1 of complex and real roots α ∈ Δ (resp. α ∈Π ) to T1.

Lemma 26.16. ΔO is a (possibly non-reduced) root system with base ΠO, called the
(little) root system of the symmetric space O.

Proof. The proof is similar to that of Lemma 26.8. The restriction of α ∈ Δ to T1 is
identified with the orthogonal projection to X(T1)⊗Q given by α = (α−θ(α))/2.
We have α + θ (α) /∈ Δ , ∀α ∈ Δ . (Otherwise α + θ (α) would be a non-compact
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root.) The involution ι coincides with −θ modulo the root lattice of L. One easily
deduces that α = β if and only if α = β or ι(α) = β , ∀α,β ∈ Π , and that ΠO is
linearly independent. Taking these remarks into account, the proof repeats that of
Lemma 26.8 with θ replaced by −θ . ��

The Dynkin diagram of Π with the “compact” nodes marked by black and the
remaining nodes by white, where the white nodes transposed by ι are joined by
two-headed arrows, is called the Satake diagram of the involution θ , or of the sym-
metric space O. The Satake diagram encodes the embedding of h into g. Besides, it
contains information on the weight lattice (semigroup) of the symmetric space (see
Propositions 26.22, 26.24).

Example 26.17. The Satake diagram of the symmetric space O = H×H/diagH of
Example 26.10 consists of two Dynkin diagrams of H, so that all nodes are white
and each node of the first diagram is joined with the respective node of the second
diagram, e.g.:

�

�

�

�

. . .

. . .
�� �� �

�

�

�

�

�

�

�

<

<
�� �� �� ��

26.5 Classification. The classification of symmetric spaces goes back to Cartan.
To describe it, first note that θ preserves the connected center and either preserves
or transposes the simple factors of G. Hence every symmetric space is locally iso-
morphic to a product of a torus Z/Z∩H, of symmetric spaces H×H/diagH with
H simple, and of symmetric spaces of simple groups.

Thus the classification reduces to simple G. It can be obtained using either Kac
diagrams [Hel1, X.5], [GOV, Ch. 3, §3] or Satake diagrams [Sp2], [GOV, Ch. 4,
§4]. For simple G both Kac and Satake diagrams are connected.

Further analysis shows that the underlying affine Dynkin diagram for the Kac
diagram of θ depends only on the diagram involution θ . This diagram is easily
recovered from the Dynkin diagram of Π and from θ using Table 26.2. Since the
weight system of T0 : m is symmetric, for each “white” root α ∈ Π̃ there exists a
“white” root α0 and “black” roots α1, . . . ,αr such that−α = α0 +α1 + · · ·+αr. As
Π̃ is bound by a unique linear dependence, the coefficients being positive integers,
there exists either a unique “white” root, with the coefficient 1 or 2, or exactly two
“white” roots, with the coefficients 1. The first possibility occurs exactly for outer
involutions, because in this case the weight system contains the zero weight, while
the other two possibilities correspond to inner involutions. Using these observations,
it is easy to write down all possible Kac diagrams, see Table 26.3.

On the other hand, all a priori possible Satake diagrams can also be classified.
One verifies that a Satake diagram cannot be one of the following:

� � � �< � �< � �<

� �� � �>.. . � � � �<.. . � � � �<

� �� �. . .
�

�

� � �

�

� �

� � � �

�

� � � � � � �

�

� �
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In the first seven cases, the sum of all simple roots would be a complex root α such
that α + θ(α) ∈ Δ is a non-compact root, a contradiction. In the remaining four
cases, θ would be an inner involution represented by an element s ∈ S = ZG(L0)0.
The group S is a simple SL2-subgroup corresponding to the highest root δ ∈ Δ and
T1 is a maximal torus in S. Replacing T1 by another maximal torus containing s, one
obtains δ (s) = −1. However the unique α ∈ Π such that α(s) = −1 occurs in the
decomposition of δ with coefficient 2, a contradiction.

By a fragment of a Satake diagram we mean an ι-stable subdiagram such that no
one of its nodes is joined with a black node outside the fragment. A fragment is the
Satake diagram of a Levi subgroup in G. It follows that a Satake diagram cannot
contain the above listed fragments. Also, if a Satake diagram contains a fragment
� �. . . of length > 1, then there are no other black nodes and ι is non-trivial.
Having this in mind, it is easy to write down all possible Satake diagrams, see Ta-
ble 26.3.

Both Kac and Satake diagrams uniquely determine the involution θ , up to conju-
gation. All a priori possible diagrams are realized for simply connected G. It follows
that symmetric spaces of simple groups are classified, up to a local isomorphism, by
Kac or Satake diagrams.

The classification is presented in Table 26.3. S(Lm×Ln−m) in the column “H”
denotes the group of unimodular block-diagonal matrices with blocks of size m and
n−m. The column “θ” describes the involution for classical G in matrix terms. Here

In,m =
(
−Em 0

0 En−m

)

, Kn,m =
(

In,m 0
0 In,m

)

, and Ωn =
(

0 En

−En 0

)

is the matrix of a standard symplectic form fixed by Sp2n(k), where Ek is the unit
k× k matrix.

Example 26.18. Let us describe the symmetric spaces of G = SLn(k). Take the stan-
dard Borel subgroup of upper-triangular matrices B ⊂ G and the standard diagonal
torus T ⊂ B. By ε1, . . . ,εn denote the weights of the tautological representation in k

n

(i.e., the diagonal entries of T ).
If θ is inner, then Δ = Δ and the Dynkin diagram of Π̃ is the following one:

� �. . .

�

11

1

The coefficients of the unique linear dependence on Π̃ are indicated at the diagram.
It follows that there are exactly two white nodes in the Kac diagram. The involution
ι is non-trivial, whence there is at most one black fragment in the Satake diagram,
which is located in the middle. Thus we obtain No. 1 of Table 26.3.

The involution θ is the conjugation by an element of order 2 in GLn(k). In a
certain basis, θ(g) = In,m ·g · In,m. Then T0 = T , H = S(Lm×Ln−m) is embedded in
G by the two diagonal blocks, the simple roots being εi−εi+1, 1≤ i < n, i �= m, and
m = k

m⊗(kn−m)∗⊕(km)∗⊗k
n−m is embedded in g by the two antidiagonal blocks,

the lowest weights of the summands being εm− εm+1, εn− ε1, in accordance with
the Kac diagram.
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Table 26.3 Symmetric spaces of simple groups
No. G H θ Kac diagram Satake diagram ΔG/H

1 SLn S(Lm ×Ln−m) g �→ In,mgIn,m
�

�

�� ��. . . . . .
m

��� � ��. . .. . . . . .�� ��
m BCm

(m≤ n/2) � � (n = 2) �� �. . . . . .�� (m = n/2) Cn/2

2 SL2n Sp2n g �→Ωn(g�)−1Ω�
n

�

�

�

� �<.. .
��� � �. . . An−1

3 SLn SOn g �→ (g�)−1
�

�

�

� �<.. .
(n even) � �. . . An−1

� � � �>> .. . (n odd)
� �> (n = 3)

4 Sp2n Sp2m ×Sp2(n−m) g �→ Kn,mgKn,m
� � � � � � �<> .. . . . .

m
� � � � � � �<.. . . . .

2m BCm

(m≤ n/2) � � � �<.. . (m = n/2) Cn/2

5 Sp2n GLn g �→ I2n,ngI2n,n
� � � �<> .. . � � �<.. . Cn

6 SOn SOm ×SOn−m g �→ In,mgIn,m

�

�

�

� �� � �>.. . . . .
m/2 or (n−m)/2 � �� � �>.. . Bm

(m≤ n/2) (n odd) (n odd)

�

�

�

� �>.. .
(n odd, m = 2)

� �

� �

� �

� � �. . . . . .
m/2

� �

�

�

� �. . . . . .
m Bm

(n even) (n even)

� � �� � �� >< .. . . . .
(m+1)/2

� �

�

�

. . . �	 Bn/2−1

(n even) (n even, m = n/2−1)

� �

� �

� �

. . .
(n even, m = 2)

� �

�

�

. . .
(n even, m = n/2) Dn/2

7 SO2n GLn g �→ΩngΩ�
n

� �

� �

� �

. . . � � ���

�

�

. . . �	(n odd) BC[n/2]

� ���

�

�

. . .
(n even) Cn/2

8 E6 A5 ×A1

� � � � �

�

�

� � � � �

�


� �
F4

9 E6 D5 ×k
×

� � � � �

�

�

� � � � �

�


�
BC2

10 E6 C4
� � � � �<

� � � � �

� E6

11 E6 F4
� � � � �<

� � � � �

� A2

12 E7 A7

� � � � � � �

�

� � � � � �

� E7

13 E7 D6 ×A1

� � � � � � �

�

� � � � � �

� F4

14 E7 E6 ×k
×

� � � � � � �

�

� � � � � �

� C3

15 E8 D8

� � � � � � � �

�

� � � � � � �

� E8

16 E8 E7 ×A1

� � � � � � � �

�

� � � � � � �

� F4

17 F4 B4
� � � � �< � � � �< BC1

18 F4 C3 ×A1
� � � � �< � � � �< F4

19 G2 A1 ×A1
� � �< � �< G2

In another basis, θ(g) = Jn,m ·g · Jn,m, where



26 Symmetric Spaces 153

Jn,m =

m
︷ ︸︸ ︷

0
0 1

. .
.

1 0

}

m

1 0. . .0 1

m

⎧
⎨

⎩

0 1
. .

.
1 0

0
︸ ︷︷ ︸

m

Now T1 = {t = diag(t1, . . . , tm,1, . . . ,1, t−1
m , . . . , t−1

1 )} is a maximal θ -split torus and
the (compact) imaginary roots are εi − ε j, m < i �= j ≤ n−m, in accordance with
the Satake diagram. The little root system ΔO consists of the nonzero restrictions
ε i−ε j, 1≤ i, j ≤ n, i.e., of ±ε i±ε j, ±2ε i, and ±ε i unless m = n/2, 1≤ i �= j ≤m.
Thus ΔO is of type BCm or Cn/2.

If θ is outer, then θ (εi) =−εn+1−i and T θ = {t = diag(t1, t2, . . . , t−1
2 , t−1

1 )}. Re-
stricting the roots to this subtorus, we see that Δ consists of±ε ′i ±ε ′j,±2ε ′i , and±ε ′i
for odd n, where ε ′i are the restrictions of εi, 1≤ i≤ n/2. The Dynkin diagram of Π̃
has one of the following forms:

� � � �>> .. .
1 2 2 2

�

�

�

� �<.. .

1

1 2 2 1

depending on whether n is odd or even. Therefore the Kac diagram has a unique
white node, namely an extreme one.

The involution ι is trivial, whence either all nodes of the Satake diagram are
white or the black nodes are isolated from each other and alternate with the white
ones, the extreme nodes being black. (Otherwise, there would exist an inadmissible
fragment � �.) Thus we obtain Nos. 2–3 of Table 26.3.

Any outer involution has the form θ (g) = (g∗)−1, where ∗ denotes the conju-
gation with respect to a non-degenerate (skew-)symmetric bilinear form on k

n. In
the symmetric case, choosing an orthonormal basis yields θ(g) = (g�)−1, whence
T1 = T is a maximal θ -split torus and ΔO = Δ . In a hyperbolic basis, θ(g) = (g†)−1,
where † denotes the transposition with respect to the secondary diagonal. Then T0 =
T θ is a maximal torus in H = SOn(k). The roots of H are±ε ′i ±ε ′j, 1≤ i �= j≤ n/2,
and ±ε ′i for odd n. The space m consists of traceless symmetric matrices, and the
lowest weight is −2ε ′1.

In the skew-symmetric case, choosing an appropriately ordered symplectic basis
yields θ(g) = In,n/2(g†)−1In,n/2. Here T0 is a maximal torus in H = Spn(k) and
T1 = {t = diag(t1, t2, . . . , t2, t1) | t1 · · ·tn/2 = 1} is a maximal θ -split torus. The roots
of H are±ε ′i ±ε ′j,±2ε ′i , 1≤ i �= j≤ n/2, and the lowest weight of m is−ε ′1−ε ′2. The
compact roots are εi−εn+1−i (1≤ i≤ n), and ΔO consists of ε i−ε j, 1≤ i �= j≤ n/2,
thus having the type An/2−1.

From now on we assume that T1 is a maximal θ -split torus.
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26.6 Weyl Group. Consider the Weyl group WO of the little root system ΔO.

Proposition 26.19. WO � NH0(T1)/ZH0(T1)� NG(T1)/ZG(T1).

Proof. First we prove that each element of WO is induced by an element of NH0(T1).
It suffices to consider a root reflection rα . Let T α

1 ⊆ T1 be the connected kernel of α .
Replacing G by ZG(T α

1 ) we may assume that WO = {e,rα}. The same argument as
in Lemma 26.15 shows that P− = θ (P) = hPh−1 for some h ∈ H0. It follows that
h ∈ NH0(L) = NH0(T1) acts on X(T1) as rα .

On the other hand, NG(T1) acts on T1 as a subgroup of the “big” Weyl group
W = NG(T )/T . Indeed, any g ∈ NG(T1) normalizes L = ZG(T1) and may be re-
placed by another element in gL normalizing T . Since the Weyl chambers of WO in
X(T1)⊗Q are the intersections of Weyl chambers of W with X(T1)⊗Q, the orbits
of NG(T1)/ZG(T1) intersect them in single points. Thus NG(T1)/ZG(T1) cannot be
bigger than WO. This concludes the proof. ��

26.7 B-orbits. Since O is spherical, there are finitely many B-orbits in O (Corol-
lary 6.5). Their structure plays an important rôle in some geometric problems and,
for k = C, in the representation theory of the real reductive Lie group G(R) acting
on the Riemannian symmetric space O(R), the non-compact real form of O [Vog].
The classification and the adherence relation for B-orbits were described in [Sp1],
[RS1], [RS2] (cf. Example 6.7). We explain the basic classification result under the
assumption H = Gθ . This is not an essential restriction [RS2, 1.1(b)].

By Proposition 26.3, O is identified with τ(G), where G (and B) acts by twisted
conjugation.

Proposition 26.20. The (twisted) B-orbits in τ(G) � O intersect NG(T ) in T -or-
bits. Thus B(O) is in bijective correspondence with the set of twisted T -orbits in
NG(T )∩ τ(G).

Proof. Consider a B-orbit Bgo⊆ O. By Lemma 26.5, replacing g by bg, b ∈ B, one
may assume that g−1T g is a θ -stable maximal torus in g−1Bg. This holds if and only
if τ(g)∈NG(T ). One the other hand, taking another point g′o∈Bgo, g′ = bgh, b∈B,
h ∈ H, we have τ(g′) = θ(b)τ(g)b−1 ∈ NG(T ) if and only if τ(g′) = θ (t)τ(g)t−1,
where b = tu, t ∈ T , u ∈ U , by standard properties of the Bruhat decomposition
[Hum, 28.4]. ��

There is a natural map B(O)→W , Bgo �→w, where θ(B)wB is the unique Bruhat
double coset containing the respective B-orbit τ(BgH). By Proposition 26.20,
τ(BgH)∩NG(T ) ⊆ wT . This map plays an important rôle in the study of B-or-
bits [RS1], [RS2]. Its image is contained in the set of twisted involutions {w ∈W |
θ(w) = w−1}, but in general is neither injective nor surjective onto this set.

Example 26.21. Let G = GLn(k), θ (g) = (g�)−1, H = On(k). Then τ(G) is the
set of non-degenerate symmetric matrices, viewed as quadratic forms on k

n. The
group B of upper-triangular matrices acts on τ(G) by base changes preserving the
standard flag in k

n. It is an easy exercise in linear algebra that, for any inner product
on k

n, one can choose a basis e1, . . . ,en compatible with a given flag and having
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the property that for any i there is a unique j such that (ei,e j) = 1 and (ei,ek) = 0,
∀k �= j. The matrix of the quadratic form in this basis is the permutation matrix of
the involution transposing i and j. It lies in NG(T ) (where T is the diagonal torus)
and is uniquely determined by the B-orbit of the quadratic form. Thus B(O) is in
bijection with the set of involutions in W = Sn.

26.8 Colored Equipment. Now we describe the colored equipment of a symmet-
ric space, according to [Vu2].

The weight lattice of a symmetric space is read off the Satake diagram, at least
up to a finite extension. Let Z = Z(G)0 and ωi be the fundamental weights corre-
sponding to the simple roots αi ∈Π .

Proposition 26.22. If G is of simply connected type, then

Λ(O) = X(Z/Z∩H)⊕
〈

ω̂ j, ωk +ωι(k)
∣
∣ j,k

〉
, (26.2)

where j,k run over all ι-fixed, resp. ι-unstable, white nodes of the Satake diagram,
and ω̂ j = ω j or 2ω j, depending on whether the j-th node is adjacent to a black one
or not. In the general case, Λ (O) is a sublattice of finite index in the r.h.s. of (26.2).

Remark 26.23. The weight lattice Λ(O) = X(T/T ∩H) = X(T1/T1∩H) injects into
X(T1) via restriction of characters from T to T1. The space E = Hom(Λ (O),Q) is
then identified with X∗(T1)⊗Q. The second direct summand in the r.h.s. of (26.2)
is nothing else but the doubled weight lattice 2(ZΔ∨

O)∗ of the little root system ΔO.
Indeed, ω̂ j/2 and (ωk + ωι(k))/2 restrict to the fundamental weights dual to the
simple coroots α∨

j = α∨
j −θ(α∨

j ) or α∨
j and α∨

k = α∨
k −θ (α∨

k ).

Proof. Without loss of generality we may assume that G is semisimple simply con-
nected, whence H = Gθ . The sublattice Λ (O) ⊆ X(T ) consisting of the weights
vanishing on T θ , i.e., of μ − θ(μ), μ ∈ X(T ), is contained in X(T/T0) = {λ ∈
X(T ) | θ(λ ) = −λ} = 〈ω j, ωk + ωι(k) | j,k〉. The latter lattice injects into X(T1)
so that Λ(O) is identified with 2X(T1). It remains to prove that X(T1) = (ZΔ∨

O)∗ or,
equivalently, that X∗(T1) = ZΔ∨

O is the coroot lattice of the little root system.
We have X∗(T ) = ZΔ∨ and X∗(T1) = ZΔ∨ ∩E ⊇ ZΔ∨

O . The alcoves (= funda-
mental polyhedra, see [Bou1, Ch. VI, §2, n◦1]) of the affine Weyl group Waff(ΔO)
are the intersections of E with alcoves of Waff(ΔO). Hence each alcove of Waff(ΔO)
contains a unique point from X∗(T1). It follows that X∗(T1) coincides with ZΔ∨

O .
��

Let C = C(Δ+) denote the dominant Weyl chamber of a root system Δ (with
respect to a chosen subset of positive roots Δ+). The weight semigroup Λ+(O) is
contained both in Λ (O) and in C. Note that C∩E = C(Δ+

O ).

Proposition 26.24. Λ+(O) = Λ (O)∩C(Δ+
O ).

Proof. Since Λ+(O) is the semigroup of all lattice points in a cone (see 15.1), it
suffices to prove that Q+Λ+(O) = C(Δ+

O ). Take any dominant λ ∈Λ (O). We prove
that 2λ ∈Λ+(O).
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First note that λ =−θ (λ ) is orthogonal to compact roots, whence λ is extended
to P and V ∗(λ ) = IndG

P k−λ . Consider another dual Weyl module obtained by twist-
ing the G-action by θ : V ∗(λ )θ = IndG

θ(P) k−θ(λ ) � V ∗(λ ∗). We have the canonical

H-equivariant linear isomorphism ω : V ∗(λ )θ ∼→V ∗(λ ). (If the dual Weyl modules
are realized in k[G] as in Example 2.10, then ω is just the restriction of θ acting
on k[G].) In other words, ω ∈ (V ∗(λ )⊗V (λ ∗))H . Note that ω maps a T -eigenvec-
tor of weight μ to an eigenvector of weight θ(μ). Hence

ω = v−λ ⊗ v′−λ + ∑
μ �=λ

vθ(μ)⊗ v′−μ , (26.3)

where vχ ,v′χ denote basic eigenvectors of weight χ in V ∗(λ) and V (λ ∗), respec-
tively. Applying the homomorphisms V (λ ∗) → V ∗(λ ), v′−λ �→ v−λ , and V ∗(λ )⊗
V ∗(λ )→V ∗(2λ ) (induced by multiplication in k[G]), we obtain a nonzero element
ω ∈V ∗(2λ )H , whence 2λ ∈Λ+(O) by (2.2). ��

Now we are ready to describe the colors and G-valuations of a symmetric space.

Theorem 26.25. The colors of a symmetric space O are represented by the vectors
from 1

2 Π∨
O ⊂ E (where Π∨

O is the base of Δ∨
O ⊂ X∗(T1)). The valuation cone V is

the antidominant Weyl chamber of Δ∨
O in E .

Corollary 26.26. WO is the little Weyl group of O in the sense of 22.3.

Proof. Without loss of generality G is assumed to be of simply connected type.

In the notation of Remarks 13.4 and 15.1, each f ∈ k[O](B)
λ is represented as f =

ηd1
1 · · ·ηds

s , where the ηi are equations of the colors Di ∈ DB, di ∈ Z+, and λ =
∑diλi, ∑diχi = 0, where (λi,χi) are the biweights of ηi.

In the notation of Proposition 26.22, if λ = ω̂ j or ωk + ωι(k), then f = η j, or
η ′

jη ′′
j , or ηk, or η ′

kη ′′
k , where the biweights of η j,η ′

j,η ′′
j ,ηk,η ′

k,η
′′
k are (ω̂ j,0),

(ω j,χ j), (ω j,−χ j), (ωk + ωι(k),0), (ωk,χk), (ωι(k),−χk), respectively, for some
nonzero χ j,χk ∈ X(H). In particular, the respective colors Dj,D′

j,D
′′
j ,Dk,D′

k,D
′′
k

are pairwise distinct, and all colors occur among them since these f ’s span the mul-
tiplicative semigroup k[O](B)/k[O]× by Proposition 26.24 and Remark 26.23. The
assertion on colors stems now from Remarks 15.1 and 26.23.

Now we treat G-valuations. Take any v = vD ∈ V , where D is a G-stable prime
divisor on a G-model X of k(O). It follows from the local structure theorem that
F = T1o is an NH(T1)-stable subvariety of X intersecting D in the union of T1-sta-
ble prime divisors Dwv, w ∈WO, that correspond to wv regarded as T1-valuations
of k(T1o) (cf. Proposition 23.13). By Theorem 21.1 V contains the antidominant
Weyl chamber. It remains to show as in the proof of Theorem 22.13 that different
vectors from V cannot be WO-equivalent. ��

The proof of Theorem 26.25 shows that the map κ : DB → E may be non-
injective if H is not semisimple. There is a more precise description of colors in
the spirit of Proposition 26.20 [Sp1, 5.4], [CS, §4].
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It suffices to consider simple G. Assume first that H is connected. For any
α∨ ∈ Π∨

O there exist either a unique or exactly two colors mapping to α∨/2.
They correspond to the twisted T -orbits in τ(G)∩ rαT (for real α) or in τ(G)∩(
rθ(α)rα T ∪ rθ(ι(α))rι(α)T

)
(for complex α).

If H is semisimple, then such an orbit (and the respective color Dα ) is always
unique. In particular, ι(α) = α or ι(α) =−θ(α)⊥ α .

If H is not semisimple (Hermitian case), then inspection of Table 26.3 shows that
dimZ(H) = 1 and ΔO is of type BCn or Cn. The color mapped to α∨/2 is unique
except for the case where α∨ is the short simple coroot.

In the latter case, if α is complex, then τ(G)∩rθ(α)rαT and τ(G)∩rθ(ι(α))rι(α)T
are the twisted T -orbits corresponding to the two colors Dα ,Dι(α) mapped to α∨/2.
Here ΔO = BCn and c(G/H ′) = 0.

If α is real, then τ(G)∩ rαT consists of two twisted T -orbits corresponding to
the two colors D±

α mapped to α∨/2 and swapped by AutG O � Z2. Here ΔO = Cn

and c(G/H ′) = 1.
For disconnected H the divisors D±

α ∈ DB(G/H0) patch together into a single
divisor Dα ∈DB(G/H).

26.9 Coisotropy Representation. The (co)isotropy representation H : m has nice
invariant-theoretic properties in characteristic zero. They were examined by Kostant
and Rallis [KoR]. From now on assume that chark = 0.

Semisimple elements in m are exactly those having closed H-orbits, and the
unique closed H-orbit in Hξ (ξ ∈m) is Hξs. General elements of m are semisimple.
One may deduce it from the fact that T ∗O is symplectically stable (Proposition 8.14)
or prove directly: g = l⊕ [g, t1] =⇒ m = t1⊕ [h, t1] =⇒ m = Ht1. This argument
also shows that H-invariant functions on m are uniquely determined by their restric-
tions to t1. A more precise result was obtained by Kostant and Rallis.

Proposition 26.27 ([KoR]). Every semisimple H-orbit in m intersects t1 in a WO-
orbit. Restriction of functions yields an isomorphism k[m]H � k[t1]WO.

Proof. Every semisimple element ξ ∈ m is contained in the Lie algebra of a
maximal θ -split torus. Hence by Lemma 26.15, ξ ′ = (Adh)ξ ∈ t1 for some h ∈
H. If ξ ∈ t1, then T1,h−1T1h are two maximal θ -split tori in ZG(ξ ). Again by
Lemma 26.15, zT1z−1 = h−1T1h for some z ∈ ZG(ξ )∩H, whence h′ = hz ∈ NH(t1),
ξ ′ = (Adh′)ξ ∈WOξ .

The second assertion is a particular case of Proposition 25.7. It suffices to ob-
serve that the surjective birational morphism m//H → t1/WO of two normal affine
varieties has to be an isomorphism. ��

Global analogues of these results for the H-action on O (in any characteristic)
were obtained by Richardson [Ri2].

26.10 Flats. It is not incidental that the description of the valuation cone of a sym-
metric space was obtained by the same reasoning as in 23.5.

Proposition 26.28 ([Kn5, §6]). Flats in O are exactly the G-translates of T1 ·o.
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Proof. It suffices to consider flats Fα , α ∈ T pr
o O. We have T ∗O = G∗H m, α = e∗ξ ,

ξ = Φ(α) ∈mpr. By Proposition 26.27, ξ ∈ (Adh)tpr
1 , h ∈H0. It follows that Gξ =

hLh−1, whence Fα = hLo = hT1o. ��

The WO-action on the flat T1 ·o comes from NH(T1).
In the case k = C, flats in O are (G-translates of) the complexifications of max-

imal totally geodesic flat submanifolds in a Riemannian symmetric space O(R)
which is a real form of O [Hel1].

27 Algebraic Monoids and Group Embeddings

27.1 Algebraic Monoids. Similarly to algebraic groups, defined by superposing
the concepts of an abstract group and an algebraic variety, it is quite natural to
consider algebraic semigroups, i.e., algebraic varieties equipped with an associative
multiplication law which is a regular map.

Example 27.1. All linear operators on a finite-dimensional vector space V form an
algebraic semigroup L(V ) � Ln(k) (n = dimV ). The operators (matrices) of rank

≤ r form a closed subsemigroup L(r)(V ) (L(r)
n (k)), a particular example of a deter-

minantal variety.

However the category of all algebraic semigroups is immense. (For instance,
every algebraic variety X turns into an algebraic semigroup being equipped with
the “zero” multiplication X ×X → {0}, where 0 ∈ X is a fixed element.) In order
to make the theory really substantive, one has to restrict the attention to algebraic
semigroups not too far from algebraic groups.

Definition 27.2. An algebraic monoid is an algebraic semigroup with unit, i.e., an
algebraic variety X equipped with a morphism μ : X ×X → X , μ(x,y) =: x · y (the
multiplication law), and with a distinguished unity element e∈X such that (x ·y) ·z =
x · (y · z), e · x = x · e = x, ∀x,y,z ∈ X .

Let G = G(X) denote the group of invertible elements in X . The following ele-
mentary result can be found, e.g., in [Rit1, §2].

Proposition 27.3. G is open in X.

Proof. Since the left translation x �→ g · x by an element g ∈ G is an automorphism
of X , it suffices to prove that G contains an open subset of an irreducible component
of X . Without loss of generality we may assume that X is irreducible. Let p1, p2

be the two projections of μ−1(e) ⊂ X ×X to X . By the fiber dimension theorem,
every component of μ−1(e) has dimension ≥ dimX , and p−1

i (e) = (e,e). Hence pi

are dominant maps and G = p1(μ−1(e))∩ p2(μ−1(e)) is a dense constructible set
containing an open subset of X . ��

Corollary 27.4. G is an algebraic group.
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Those irreducible components of X which do not intersect G do not “feel the
presence” of G and their behavior is beyond control. Therefore it is reasonable to
restrict oneself to algebraic monoids X such that G = G(X) is dense in X . In this
case, left translations by G permute the components of X transitively, and many
questions are reduced to the case where X is irreducible.

Monoids of this kind form an interesting category of algebraic structures closely
related to algebraic groups (e.g., they arise as the closures of linear algebraic groups
in the spaces of linear operators). The theory of algebraic monoids was created in
major part during the last 30 years by M. S. Putcha, L. E. Renner, E. B. Vinberg,
A. Rittatore, et al. The interested reader may consult a detailed survey [Ren3] of
the theory from the origin up to the latest developments. In this section, we discuss
algebraic monoids from the viewpoint of equivariant embeddings. A link between
these two theories is provided by the following result.

Theorem 27.5 ([Rit1, §2]).

(1) Any algebraic monoid X is a (G×G)-equivariant embedding of G = G(X),
where the factors of G×G act by left/right multiplication, having a unique
closed (G×G)-orbit.

(2) Conversely, any affine (G×G)-equivariant embedding X ←↩ G carries a struc-
ture of algebraic monoid with G(X) = G.

Proof. (1) One has only to prove the uniqueness of a closed orbit Y ⊆ X . Note
that X ·Y ·X = G ·Y ·G = Y , i.e., Y is a (two-sided) ideal in X . For any other ideal
Y ′ ⊆ X we have Y ·Y ′ ⊆Y =⇒ Y = Y ·Y ′ ⊆Y ′. Thus Y is the smallest ideal, called
the kernel of X .
(2) The actions of the left and right copy of G×G on X define coactions k[X ] →
k[G]⊗k[X ] and k[X ] → k[X ]⊗k[G], which are the restrictions to k[X ] ⊆ k[G] of
the comultiplication k[G]→ k[G]⊗k[G]. Hence the image of k[X ] lies in (k[G]⊗
k[X ])∩ (k[X ]⊗k[G]) = k[X ]⊗k[X ], and we have a comultiplication in k[X ]. Now
G is open in X = G and consists of invertibles. For any invertible x ∈ X , we have
xG∩G �= /0, and hence x ∈ G. ��

Remark 27.6. Assertion (2) was first proved for reductive G by Vinberg [Vin2] in a
different way.

Among general algebraic groups, affine (= linear) ones occupy a privileged po-
sition due to their most rich and interesting structure. The same holds for algebraic
monoids. We provide two results confirming this observation.

Theorem 27.7 ([Mum, §4]). Complete irreducible algebraic monoids are just Abe-
lian varieties.

Theorem 27.8 ([Rit3]). An algebraic monoid X is affine provided that G(X) is
affine.

This theorem was proved by Renner [Ren1] for quasiaffine X using some struc-
ture theory, and Rittatore [Rit3] reduced the general case to the quasiaffine one by
considering total spaces of certain line bundles over X .
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A theorem of Barsotti [Bar] and Rosenlicht [Ros] says that every connected al-
gebraic group G has a unique affine normal connected subgroup Gaff such that the
quotient group Gab = G/Gaff is an Abelian variety. An analogous structure result
for algebraic monoids was obtained by Brion and Rittatore [BR]: for any normal
irreducible algebraic monoid X the quotient map G = G(X)→Gab extends to a ho-
momorphism of algebraic monoids X → Gab, whose fiber at unity Xaff = Gaff is an
affine algebraic monoid.

Theorem 27.9. Any affine algebraic monoid X admits a closed homomorphic em-
bedding X ↪→ L(V ). Furthermore, G(X) = X ∩GL(V ).

The proof is essentially the same as that of a similar result for algebraic groups
[Hum, 8.6]. Thus the adjectives “affine” and “linear” are synonyms for algebraic
monoids, in the same way as for algebraic groups.

In the notation of Theorem 27.9, the space of matrix entries M(V ) generates
k[X ] ⊆ k[G]. Generally, k[X ] ⊃ M(V ) if and only if the representation G : V is ex-
tendible to X . It follows from Theorem 27.9 and (2.1) that

k[X ] =
⋃

M(V ) (27.1)

over all G-modules V that are X-modules (cf. Proposition 2.14).

Example 27.10. By Theorem 27.5(2), every affine toric variety X carries a natural
structure of algebraic monoid extending the multiplication in the open torus T . By
Theorem 27.9, X is the closure of T in L(V ) for some faithful representation T : V ,
i.e., a closed submonoid in the monoid of all diagonal matrices in some Ln(k). The
coordinate algebra k[X ] is the semigroup algebra of the semigroup Σ ⊆ X(T ) con-
sisting of all characters T → k

× extendible to X . Conversely, every finitely generated
semigroup Σ # 0 such that ZΣ = X(T ) defines a toric monoid X ⊇ T .

27.2 Reductive Monoids. The classification and structure theory for algebraic
monoids is most well developed in the case where the group of invertibles is re-
ductive.

Definition 27.11. An irreducible algebraic monoid X is called reductive if G =
G(X) is a reductive group.

In the sequel we consider only reductive monoids, thus returning to the general con-
vention of our survey that G is a connected reductive group. By Theorems 27.5
and 27.8, reductive monoids are nothing else but (G×G)-equivariant affine embed-
dings of G. They were classified by Vinberg [Vin2] in characteristic zero. Rittatore
[Rit1] extended this classification to arbitrary characteristic using the embedding
theory of spherical homogeneous spaces.

Considered as a homogeneous space under G×G acting by left/right multiplica-
tion, G is a symmetric space (Example 26.10). All θ -stable maximal tori of G×G
are of the form T ×T , where T is a maximal torus in G. The maximal θ -split tori are
(T ×T )1 = {(t−1, t) | t ∈ T}. Choose a Borel subgroup B⊇ T of G. Then B−×B is a
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Borel subgroup in G×G containing T ×T and θ(B−×B) = B×B− is the opposite
Borel subgroup.

The weight lattice Λ = X(T ×T/diagT ) = {(−λ ,λ ) | λ ∈ X(T )} is identified
with X(T ) and the little root system with 1

2 Δ . The eigenfunctions fλ ∈ k(G)(B
−×B)

(λ ∈ X(T )) are defined on the “big” open cell U− × T ×U ⊆ G by the formula
fλ (u−tu) = λ(t). For λ ∈ X+ they are matrix entries: fλ (g) = 〈v−λ ,gvλ 〉, where
vλ ∈V , v−λ ∈V ∗ are B±-eigenvectors of weights ±λ .

By Theorem 26.25, the valuation cone V is identified with the antidominant
Weyl chamber in X∗(T )⊗Q (cf. Example 24.9) and the colors are represented by
the simple coroots α∨

1 , . . . ,α∨
l ∈Π∨. In fact, the respective colors are Di = B−rαiB.

Indeed, the equation of Di in k[G̃] is fωi , where ωi denote the fundamental weights.
By Example 24.9, every (G×G)-valuation is proportional to v = vγ , where γ ∈

X∗(T ) is antidominant, and v(fλ ) = 〈γ,λ 〉, ∀λ ∈ X+, whence v is identified with γ
(as a vector in the valuation cone).

Now Corollary 15.5 yields

Theorem 27.12. Normal reductive monoids X are in bijection with strictly convex
cones C = C (X) ⊂ X∗(T )⊗Q generated by all simple coroots and finitely many
antidominant vectors.

Remark 27.13. The normality assumption is not so restrictive, because the multipli-
cation on X lifts to its normalization X̃ turning it into a monoid with the same group
of invertibles.

Corollary 27.14. There are no non-trivial monoids with semisimple group of invert-
ibles.

Corollary 27.15 ([Put], [Rit1, Pr. 9]). Every normal reductive monoid has the
structure X = (X0×G1)/Z, where X0 is a monoid with zero, and Z is a finite central
subgroup in G(X0)×G1 not intersecting the factors.

Proof. Identify X(T )⊗Q with E = X∗(T )⊗Q via a W -invariant inner product.
Consider an orthogonal decomposition E = E0 ⊕ E1, where E0 = 〈C ∩V 〉, E1 =
(C ∩V )⊥. It is easy to see that each root is contained in one of the Ei. Then G =
G0 ·G1 = (G0×G1)/Z, where Gi are the connected normal subgroups with X∗(T ∩
Gi) = Ei∩X∗(T ). Take a reductive monoid X0 ⊇G0 defined by C0 = C ∩E0. Since
intC0 intersects V (G0) = V ∩E0, the kernel of X0 is a complete variety, and hence
a single point 0, the zero element with respect to the multiplication on X0. Now X
coincides with (X0×G1)/Z, because both monoids have the same colored data. ��

This classification can be made more transparent via coordinate algebras and
representations. Recall from 15.1 that k[X ]U

−×U = k[C ∨∩X(T )]. The algebra k[X ]
itself is given by (27.1). It remains to determine which representations of G extend
to X .

Proposition 27.16. The following conditions are equivalent:

(1) The representation G : V is extendible to X.
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(2) The highest weights of the simple factors of V are in C ∨.
(3) All dominant T -weights of V are in C ∨.

Proof. (1) =⇒ (2) Choose a G-stable filtration of V with simple factors and con-
sider the associated graded G-module grV . If G : V extends to X , then grV is an X-
module. Hence fλ ∈ k[X ] whenever λ is a highest weight of a simple factor of grV .
(2)⇐⇒ (3) All T -weights of V are obtained from the highest weights of simple
factors by subtracting positive roots. The structure of C implies that all dominant
vectors obtained this way from λ ∈ C ∨ belong to C ∨.
(3) =⇒ (1) It follows from Example 24.9 that T ⊆ X intersects all (G×G)-orbits,
cf. Proposition 27.18 below. Thus it suffices to prove that G : V extends to T . Choose
a closed embedding X ↪→ L(V0) such that the dominant T -weights of V0 generate
C ∨ ∩X(T ). Then, clearly, k[T ] = k[WC ∨ ∩X(T )]. Since all T -weights of V are
in WC ∨, they are well defined on T . ��

Corollary 27.17. If X ⊆ L(V ) is a closed submonoid, then C ∨ = K (V )∩C, where
K (V ) denotes the convex cone spanned by the T -weights of V .

Proof. The proposition implies that C ∨ ⊇ K (V ) ∩ C. On the other hand, all
(T ×T )-weights of k[X ] are of the form (−λ ,μ), λ ,μ ∈ K (V ), whence C ∨ ⊆
K (V ). ��

In characteristic zero, Proposition 27.16 together with (27.1) yields

k[X ] =
⊕

λ∈C ∨∩X(T )

M(V (λ )) (27.2)

(cf. Theorem 2.15 and (2.3)). In positive characteristic, k[X ] has a “good” filtration
with factors V ∗(λ )⊗V ∗(λ ∗) [Do], [Rit2, §4], [Ren3, Cor. 9.9].

27.3 Orbits. The embedding theory provides a combinatorial encoding for (G×G)-
orbits in X , which reflects the adherence relation. This description can be made more
explicit using the following

Proposition 27.18. Suppose that X ←↩ G is an equivariant normal embedding. Then
F = T intersects each (G×G)-orbit Y ⊂ X in finitely many T -orbits permuted tran-
sitively by W. Exactly one of these orbits FY ⊆ F ∩Y satisfies intCFY ∩V �= /0; then
CFY =

⋃
w(CY ∩V ) over all w ∈W such that w(FY ) = FY .

Remark 27.19. Since T is a flat of G (Proposition 26.28), some of the assertions stem
from the results of §23. However, the proposition here is more precise. In particular,
it completely determines the fan of F .

Proof. Take any v ∈ SY ; then v = vγ , γ ∈ X∗(T )∩V , and ∃ limt→0 γ(t) = γ(0) ∈
Y . The associated parabolic subgroup P = P(γ) contains B−. Consider the Levi
decomposition P = Pu �L, L⊇ T . One verifies that (G×G)γ(0) ⊇ (P−u ×Pu) ·diagL.

It easily follows that (B−×B)γ(0) = Y̊ is the open (B−×B)-orbit in Y and FY :=
T γ(0) = Y̊ diagT is the unique T -orbit in F intersecting Y̊ .
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In view of Example 24.8, this implies intCFY ⊇ (intCY )∩V . On the other hand,
each T -orbit in F ∩Y is accessed by a one-parameter subgroup γ ∈ X∗(T ), γ(0) ∈
Y . Taking w ∈ W such that wγ ∈ V yields w(T γ(0)) = FY . All assertions of the
proposition are deduced from these observations. ��

Now suppose that X ⊆ L(V ) is a closed normal submonoid and denote K =
K (V ).

Theorem 27.20. The (G×G)-orbits in X are in bijection with the faces of K whose
interiors intersect C. The orbit Y corresponding to a face F is represented by the T -
equivariant projector eF of V onto the sum of T -eigenspaces of weights in F . The
cone CY is dual to the barrier cone K ∩C−F ∩C of K ∩C at the face F ∩C,
and DB

Y consists of the simple coroots orthogonal to F .

Proof. A complete set of T -orbit representatives in F = T is formed by the limits
of one-parameter subgroups, i.e., by the eF over all faces F of K . The respective
cones in the fan of F are the dual faces F ∗ = K ∨ ∩F⊥ of K ∨ = W (C ∩V ).
By Proposition 27.18, the orbits Y are bijectively represented by those eF which
satisfy intF ∗ ∩V �= /0. This happens if and only if F ∗ lies on a face of C of the
same dimension (namely on CY ) or, equivalently, F contains a face of C ∨ = K ∩C
of the same dimension (namely C ∗

Y = F ∩C), i.e., intF ∩C �= /0. The assertion on
(CY ,DY ) stems from the description of a dual face. ��

Example 27.21. Let G = GLn(k) and X = Ln(k). For B and T take the standard
Borel subgroup of upper-triangular matrices and diagonal torus, respectively. We
have X(T ) = 〈ε1, . . . ,εn〉, where the εi are the diagonal matrix entries of T . We
identify X(T ) with X∗(T ) via the inner product such that the εi form an orthonormal
basis. Let (k1, . . . ,kn) denote the coordinates on X(T )⊗Q with respect to this basis.
The Weyl group W = Sn permutes them.

The weights λi = ε1 + · · ·+εi span X(T ) and fλi
∈ k[X ] are the upper-left corner

i-minors of a matrix. Put Di = {x ∈ X | fλi
(x) = 0}. Then DB = {D1, . . . ,Dn−1},

Di are represented by αi = εi − εi+1, ∀i < n, and Dn is the unique G-stable prime
divisor, vDn = εn.

Therefore C = {k1 +· · ·+ki ≥ 0, i = 1, . . . ,n} is the cone spanned by εi− εi+1,εn,
and C ∨ = {k1 ≥ ·· · ≥ kn ≥ 0} is spanned by λi. The lattice vectors of C ∨ are ex-
actly the dominant weights of polynomial representations (cf. Proposition 27.16).
The lattice vectors of K = WC ∨ = {k1, . . . ,kn ≥ 0} are all polynomial weights
of T .

The (G×G)-orbits in X are Yr = {x∈X | rkx = r}. Clearly, DB
Yr

= {Di | r < i < n}
and CYr is a face of C cut off by the equations k1 = · · ·= kr = 0. The dual face C ∗

Yr
of C ∨ is the dominant part of the face Fr = {ki ≥ 0 = k j | i ≤ r < j} ⊆ K , and
all faces of K whose interiors intersect C = {k1 ≥ ·· · ≥ kn} are obtained this way.
Clearly, the respective projectors eFr = diag(1, . . . ,1,0, . . . ,0) are the (G×G)-orbit
representatives, and the representatives of all T -orbits in T are obtained from eFr

by the W -action.
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27.4 Normality and Smoothness. In characteristic zero, it is possible to classify
(to a certain extent) arbitrary (not necessarily normal) reductive monoids [Vin2]
via their coordinate algebras similarly to (27.2). The question is to describe finitely
generated (G×G)-stable subalgebras of k[G] with the quotient field k(G). They are
of the form

k[X ] =
⊕

λ∈Σ
M(V (λ )), (27.3)

where Σ is a finitely generated subsemigroup of X+ such that ZΣ = X(T ) and
the r.h.s. of (27.3) remains closed under multiplication, i.e., all highest weights of
V (λ )⊗V (μ) belong to Σ whenever λ ,μ ∈ Σ . Such a semigroup Σ is called perfect.

Definition 27.22. We say that λ1, . . . ,λm G-generate Σ if Σ consists of all highest
weights of G-modules V (λ1)⊗k1 ⊗ ·· · ⊗V (λm)⊗km , k1, . . . ,km ∈ Z+. (In particular
any generating set G-generates Σ .) All weights in Σ are of the form ∑kiλi−∑ l jα j,
ki, l j ∈ Z+.

Example 27.23. In Example 27.21, Σ = C ∨ ∩X(T ) is generated by λ1, . . . ,λn and
G-generated by λ1.

It is easy to see that X ↪→ L(V ) if and only if the highest weights λ1, . . . ,λm of
the simple summands of V G-generate Σ . The highest weight theory implies that
K = K (V ) is the W -span of

K ∩C = (Q+{λ1, . . . ,λm,−α1, . . . ,−αl})∩C. (27.4)

Theorem 27.20 generalizes to this context.
By Theorem D.5(3), X is normal if and only if k[X ]U

−×U = k[Σ ] is integrally
closed, i.e., if and only if Σ is the semigroup of all lattice vectors in a polyhedral
cone. In general, taking the integral closure yields

Q+Σ = C ∨ = K ∩C,

where C is the cone associated with the normalization of X . Indeed, the inclusion
Q+Σ ⊆K ∩C stems from the structure of Σ , K ∩C⊆C ∨ stems from the structure
of C , and Q+Σ = C ∨ is due to Lemma D.6. Here is a representation-theoretic inter-
pretation: a multiple of each dominant vector in K eventually occurs as a highest
weight in a tensor power of V , see [Tim4, §2] for a direct proof.

Given G : V , the above normality condition for X ⊆ L(V ) is generally not easy
to verify, because the reconstruction of Σ from {λ1, . . . ,λm} requires decomposing
tensor products of arbitrary G-modules. Of course, there is no problem if λi already
generate K ∩X+—a sufficient condition for normality. Here is an effective neces-
sary condition:

Proposition 27.24 ([Ren2], [Ren3, Th. 5.4(b)]). If X is normal, then F = T is nor-
mal, i.e., the T -weights of V generate K ∩X(T ).

Proof. We can increase V by adding new highest weights λi so that λ1, . . . ,λm

will generate Σ = K ∩X+. (This operation does not change X and F .) Then
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W{λ1, . . . ,λm} generates K ∩X(T ), i.e., k[F ] = k[K ∩X(T )] is integrally closed.
��

If V = V (λ ) is irreducible, then the center of G acts by homotheties, whence
G = k

× ·G0, where G0 is semisimple, X(T )⊆Z⊕X(T ∩G0) is a cofinite sublattice,
and λ = (1,λ0). De Concini showed that K (V (λ ))∩X+ is G-generated by the
T -dominant weights of V (λ ) [Con]. However Σ contains no T -weights of V (λ )
except λ . It follows that X is normal if and only if λ0 is a minuscule weight for G0

[Con], [Tim4, §12].
It turns out that Example 27.21 is essentially the unique non-trivial example of a

smooth reductive monoid.

Theorem 27.25 (cf. [Ren2], [Tim4, §11]). Smooth reductive monoids are of the
form X = (G0×Ln1(k)×·· ·×Lns(k))/Z, where Z ⊂G0×GLn1(k)×·· ·×GLns is
a finite central subgroup not intersecting GLn1(k)×·· ·×GLns(k).

Proof. By Corollary 27.15, X = G0 ∗Z X0, where X0 has the zero element. Thus
it suffices to consider monoids with zero. We explain how to handle this case in
characteristic zero.

Assume that X ⊆ L(V ). There exists a coweight γ ∈ intC ∩V , γ ⊥ Δ . It defines
a one-parameter subgroup γ(t) ∈ Z(G) contracting V to 0 (as t → 0). The algebra
A = A (V ) spanned by X in L(V ) is semisimple, i.e., a product of matrix algebras,
and T0X is an ideal in A . As X is smooth and the multiplication by γ(t) contracts X
to 0, the equivariant projection X → T0X is an isomorphism. ��

27.5 Group Embeddings. We conclude this section with a discussion of arbitrary
(not necessarily affine) equivariant embeddings of G. For simplicity, we assume that
chark = 0.

In the same way as a faithful linear representation G : V defines a reductive
monoid G ⊆ L(V ), a faithful projective representation G : P(V ) (arising from a
linear representation of a finite cover of G in V ) defines a projective completion
X = G ⊆ P(L(V )). These group completions are studied in [Tim4]. There are two
main tools to reduce their study to reductive monoids.

First, the cone X̂ ⊆ L(V ) over X is a reductive monoid whose group of invertibles
Ĝ is the extension of G by homotheties. Conversely, any such monoid gives rise to
a projective completion. This allows the transfer of some of the above results to
projective group completions. For instance, Theorem 27.20 transfers verbatim if we
only replace the weight cone K (V ) by the weight polytope P = P(V ) (= the
convex hull of the T -weights of V ), see [Tim4, §9] for details.

Another approach, suitable for local study, is to use the local structure theorem.
By the above, closed (G×G)-orbits Y ⊂ X correspond to the dominant vertices
λ ∈ P , and the representatives are y = [vλ ⊗ v−λ ], where vλ ∈ V , v−λ ∈ V ∗ are
B±-eigenvectors of weights ±λ , 〈vλ ,v−λ 〉 �= 0. Consider the parabolic P = P(λ )
and its Levi decomposition P = Pu � L, L ⊇ T . Then V0 = 〈v−λ 〉⊥ is an L-stable
complement to 〈vλ 〉 in V . Put X̊ = Xfλ .

Lemma 27.26. X̊ � P−u ×Z×Pu, where Z � L⊆ L(V0⊗k−λ ) is a reductive monoid
with the zero element y.
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Proof. Applying Corollary 4.5 to the projectivization of G×G : L(V ) = V ⊗V ∗

and intersecting with X , we obtain a neighborhood of the desired structure with
Z = X ∩P

(
k
×(vλ ⊗ v−λ )+E0

)
, where

E0 =
(
(g×g)(v−λ ⊗ vλ )

)⊥ = (gv−λ ⊗ vλ + v−λ ⊗gvλ )⊥ ⊇V0⊗V ∗
0 = L(V0).

Hence Z = L⊆ P
(
k
×(vλ ⊗ v−λ )⊕L(V0)

)
� L(V0⊗k−λ ). ��

The monoids Z are transversal slices to the closed orbits in X . They can be used
to study the local geometry of X . For instance, one can derive criteria for normality
and smoothness [Tim4, §§10,11].

Example 27.27. Take G = Sp4(k), with the simple roots α1 = ε1−ε2, α2 = 2ε2, and
the fundamental weights ω1 = ε1, ω2 = ε1 + ε2, ±εi being the weights of the tauto-
logical representation Sp4(k) : k

4. Let λ1 = 3ω1, λ2 = 2ω2 be the highest weights of
the simple summands of V . The weight polytope P is depicted in Fig. 27.1(a), the
highest weights are indicated by bold dots. There are two closed orbits Y1,Y2 ⊂ X .

Fig. 27.1 A projective completion of Sp4(k)
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(c) Slice semigroups

The respective Levi subgroups are L1 = SL2(k)× k
× and L2 = GL2(k), with the

simple roots α2 and α1, respectively.
Consider the slice monoids Zi for Yi. The weight semigroups of Fi = T (the clo-

sure in Zi) are plotted by dots in Fig. 27.1(c), the bold dots corresponding to the
weight semigroups Σi of Zi. (They are easily computed using the Clebsch–Gordan
formula.) We can now see that Fi are normal, but Zi are not, i.e., X is non-normal
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along Y1,Y2. However, if we increase V by adding two highest weights λ3 = 2ω1,
λ4 = ω1 +ω2, then X becomes normal. Its colored fan is depicted in Fig. 27.1(b).

The projective completions of adjoint simple groups in projective linear operators
on fundamental and adjoint representation spaces were studied in detail in [Tim4,
§12]. In particular, the orbital decomposition was described, and normal and smooth
completions were identified.

Example 27.28. Suppose that G = SO2l+1(k) and V = V (ωi) is a fundamental rep-
resentation. We have a unique closed orbit Y ⊂ X . If i < l, then L �� GLn1(k)×
·· ·×GLns(k). Hence Z and X are singular. But for i = l (the spinor representation),
L � GLl(k) and V (ωl)⊗k−ωl is L-isomorphic to

∧•
k

l . It follows that Z � Ll(k),
whence X is smooth.

Example 27.29. Suppose that all vertices of P are regular weights. Then the slice
monoids Z are toric and their weight semigroups Σ are generated by the weights
μ−λ , where μ runs over all T -weights of V . The variety X is toroidal, and normal
(smooth) if and only if each Σ consists of all lattice vectors in the barrier cone of P
at λ (resp. Σ is generated by linearly independent weights).

In particular, if V = V (λ ) is a simple module of regular highest weight, then Σ =
Z+(−Π), whence X is smooth. This is a particular case of a wonderful completion,
see §30.

A interesting model for the wonderful completion of G in terms of Hilbert
schemes was proposed by Brion [Bri17]. Namely, given a generalized flag variety
M = G/Q, he proves that the closure X = (G×G)[diagM] in the Hilbert scheme
(or the Chow variety) of M ×M is isomorphic to the wonderful completion. If
G = (AutM)0 (e.g., if Q = B), then X is an irreducible component of the Hilbert
scheme (the Chow variety). All fibers of the universal family over X are reduced
and Cohen–Macaulay (even Gorenstein if Q = B).

Toroidal and wonderful group completions were studied intensively in the frame-
work of the general theory of toroidal and wonderful varieties (see §29–§30) and on
their own. De Concini and Procesi [CP3] and Strickland [Str2] computed ordinary
and equivariant rational cohomology of smooth toroidal completions over k = C

(see also [BCP], [LP]). Brion [Bri14] carried out a purely algebraic treatment of
these results replacing cohomology by (equivariant) Chow rings.

The basis of the Chow ring A(X) of a smooth toroidal completion X = G is
given by the closures of the Białynicki-Birula cells [B-B1], which are isomorphic
to affine spaces and intersect (G×G)-orbits in (B−×B)-orbits [BL, 2.3]. The lat-
ter were described in [Bri14, 2.1]. The (B−×B)-orbit closures in X are smooth in
codimension 1, but singular in codimension 2 (apart from trivial exceptions arising
from G = PSL2(k)) [Bri14, §2]. For wonderful X , the Białynicki-Birula cells are de-
scribed in [Bri14, 3.3], and the closures of the cells intersecting G (= the closures in
X of (B−×B)-orbits in G) are normal and Cohen–Macaulay [BPo]. The geometry
of (B−×B)-orbit closures in X was studied in [Sp4], [Ka].

The class of reductive group embeddings is not closed under degenerations.
Alexeev and Brion [AB1], [AB2] introduced a more general class of (stable) re-
ductive varieties closed under flat degenerations with irreducible (resp. reduced)
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fibers. Affine (stable) reductive varieties may be defined as normal affine spherical
(G×G)-varieties X such that Λ (X) = Λ(G)∩S for some subspace S ⊆Λ (G)⊗Q

(resp. as seminormal connected unions of reductive varieties); projective (stable) re-
ductive varieties are the projectivizations of affine ones. Affine reductive varieties
provide examples of algebraic semigroups without unit.

Alexeev and Brion gave a combinatorial classification and described the orbital
decomposition for stable reductive varieties in the spirit of Theorems 27.12, 27.20.
They constructed moduli spaces for affine stable reductive varieties embedded in
a (G×G)-module and for stable reductive pairs, i.e., projective stable reductive
varieties with a distinguished effective ample divisor containing no (G×G)-orbit.

27.6 Enveloping and Asymptotic Semigroups. An interesting family of reduc-
tive varieties was introduced by Vinberg [Vin2]. Consider the group Ĝ = (G×T )/Z,
where Z = {(t−1, t) | t ∈ Z(G)}. The cone C ⊂ E (Ĝ) spanned by (the projections to
E of) (α∨

i ,0) and (−ω∨
j ,ω∨

j ), where ω∨
j are the fundamental coweights, defines a

normal reductive monoid EnvG, called the enveloping semigroup of G, with group
of invertibles Ĝ. The projection E (Ĝ) → E (T/Z(G)) maps C onto C. Hence by
Theorem 15.10 we have an equivariant map πG : EnvG→ A

l , where G×G acts on
A

l trivially and T acts with the weights −α1, . . . ,−αl .
The algebra k[EnvG] =

⊕
χ∈λ+Z+Π M(V (λ ))⊗kχ is a free module over k[Al ] =

k[Z+Π ] and k[EnvG]U
−×U = k[X+]⊗k[Z+Π ], i.e., all schematic fibers of πG have

the same algebra of (U−×U)-invariants k[X+]. Hence πG is flat and all its fibers are
reduced and irreducible by Theorem D.5(1), i.e., EnvG is the total space of a family
of reductive varieties, in the sense of Appendix E.3. (In fact, A

l = (EnvG)//(G×G)
and πG is the categorical quotient map.)

It is easy to see that the fibers of πG over points with nonzero coordinates are iso-
morphic to G. Degenerate fibers are obtained from G by a deformation of the mul-
tiplication law in k[G]. In particular, the “most degenerate” fiber AsG := π−1

G (0),
called the asymptotic semigroup of G, is just the horospherical contraction of G
(see 7.3). In a sense, the asymptotic semigroup reflects the behavior of G at infinity.

The enveloping semigroup is used in [AB1, 7.5] to construct families of affine re-
ductive varieties with given general fiber X : EnvX = (EnvG×X)//G, where G acts
as {e}× diagG×{e} ⊂ G×G×G×G, so that k[EnvX ] =

⊕
χ∈λ+Z+Π k[X ](λ)⊗

kχ ⊆ k[X ×T ]. The map πG induces a flat morphism πX : EnvX →A
l with reduced

and irreducible fibers.
It was proved in [AB1, 7.6] that πX is a locally universal family of reductive

varieties with general fiber X , i.e., every flat family of affine reductive varieties with
reduced fibers over an irreducible base is locally a pullback of πX . The universal
property for enveloping semigroups was already noticed in [Vin2].

Example 27.30. Let us describe the enveloping and asymptotic semigroups of G =
SLn(k) for small n, using the notation of Example 27.21. Here Λ+(EnvG) is gener-
ated by (ωi,ωi), (0,αi), i = 1, . . . ,n−1. Recall that ωi = ε1 + · · ·+ εi is the highest
weight of

∧i
k

n. Thus EnvSLn(k) is the closure in L(V ) of the image of SLn(k)×T
acting on V =

∧•
k

n⊕k
n−1, where SLn(k) acts on

∧•
k

n in a natural way, and T
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acts on
∧k

k
n by the weight ε1 + · · ·+ εk and on k

n−1 by the weights εi − εi+1. In
other words, the image of SLn(k)×T consists of tuples of the form

(t1g, . . . , t1 · · ·tk
∧k g, . . . , t1/t2, . . . , tn−1/tn),

where g∈ SLn(k), t = diag(t1, . . . , tn)∈ T (t1 · · ·tn = 1). It follows that EnvSL2(k) =
{(a,z) | a ∈ L2(k), z ∈ k, deta = z} � L2(k) and AsSL2(k) is the subsemigroup of
degenerate matrices. Under the identification

∧2
k

3 � (k3)∗ � k
3,

EnvSL3(k) =
{
(a1,a2,z1,z2)

∣
∣ ai ∈ L3(k), zi ∈ k,

∧2 ai = zia j (i �= j), a�1 a2 = a1a�2 = z1z2e
}

and AsSL3(k) =
{
(a1,a2)

∣
∣ ai ∈ L3(k), rkai ≤ 1, a�1 a2 = a1a�2 = 0

}
.

28 S-varieties

28.1 General S-varieties. Horospherical varieties of complexity 0 form another
class of spherical varieties whose structure and embedding theory is understood
better than in the general case.

Definition 28.1. An S-variety is an equivariant embedding of a horospherical ho-
mogeneous space O = G/S.

This terminology is due to Popov and Vinberg [VP], though they considered only
the affine case. General S-varieties were studied by Pauer [Pau1], [Pau2] in the case
where S is a maximal unipotent subgroup of G.

S-varieties are spherical. We shall examine them from the viewpoint of the Luna–
Vust theory. In order to apply it, we have to describe the colored space E = E (O).

It is convenient to assume that S ⊇U−; then S = P−u �L0 for a certain parabolic
P⊇B with the Levi subgroup L⊇ L0 ⊇ L′ and the unipotent radical Pu (Lemma 7.4).
We may assume that L⊇ T . Put T0 = T ∩L0.

We have Λ (O) = X(A), where A = P−/S � L/L0 � T/T0. By Theorem 21.10,
V (O) = E . The space E = X∗(A)⊗Q may be identified with the orthocomplement
of X∗(T0)⊗Q in X∗(T )⊗Q. It follows from the Bruhat decomposition that the
colors on O are of the form Dα = Brα o, α ∈ Π \Π0, where Π0 ⊆ Π is the simple
root set of L. An argument similar to that in 27.2 shows that Dα maps to α∨, the
image of α∨ under the projection X∗(T )→ X∗(A).

Theorem 15.4(3) says that normal S-varieties are classified by colored fans in E ,
each fan consisting of finitely many colored cones (Ci,Ri), so that the cones Ci

form a polyhedral fan in E , Ri ⊆ DB, and each Ci \ {0} contains all α∨ such that
Dα ∈Ri. The colored cones in a fan correspond to the G-orbits Yi in the respective
S-variety X , and X is covered by simple open S-subvarieties Xi = {x ∈ X |Gx⊇Yi}.

The following result “globalizing” Theorem 15.17 is a nice example of how the
combinatorial embedding theory of §15 helps to clarify the geometric structure of



170 5 Spherical Varieties

S-varieties. For any G-orbit Y ⊆ X let P(Y ) = P[DB \DB
Y ] be the normalizer of the

open B-orbit in Y and let S(Y )⊆ P(Y ) be the normalizer of general U-orbits, so that
S(Y )− is the stabilizer of G : Y (see 7.2). The Levi subgroup L(Y )⊆P(Y ) containing
T has the simple root set Π0 ∪{α ∈ Π | Dα ∈ DB

Y }, and S(Y ) = P(Y )u � L(Y )0,
where the Levi subgroup L(Y )0 is intermediate between L(Y ) and L(Y )′ and is in
fact the common kernel of all characters in Λ (Y ) = X(A)∩C⊥

Y .

Theorem 28.2 (cf. [Pau1, 5.4]). Let X be a simple normal S-variety with the unique
closed G-orbit Y ⊆ X.

(1) There exists a P(Y )−-stable affine closed subvariety Z ⊆ X such that P(Y )−u acts
on Z trivially and X � G∗P(Y )− Z.

(2) There exists an S(Y )−-stable closed subvariety Z0 ⊆ Z with a fixed point such
that Z � P(Y )− ∗S(Y )− Z0 � L(Y )∗L(Y )0

Z0 and X � G∗S(Y )− Z0.
(3) The varieties Z and Z0 are equivariant affine embeddings of L(Y )/L(Y )∩S and

L(Y )0/L(Y )0∩S whose weight lattices are X(A) and X(A)/X(A)∩C⊥
Y , colored

spaces are E and E0 := 〈CY 〉, and colored cones coincide with (CY ,DB
Y ).

Proof. The idea of the proof is to construct normal affine S-varieties Z and Z0 with
the colored data as in (3) and then to verify that the colored data of L(Y ) ∗L(Y )0

Z0

coincide with those of Z and the colored data of G ∗P(Y )− Z with those of X . In
each case both varieties under consideration are simple normal embeddings of one
and the same homogeneous space. The restriction of B-eigenfunctions to the fiber
of each homogeneous bundle above preserves the orders along B-stable divisors. It
follows that the colored cones of both varieties coincide with the colored cone of the
fiber, whence the varieties are isomorphic. Note that Z0 contains a fixed point since
it is determined by a colored cone of full dimension. ��

28.2 Affine Case. The theorem shows that the local geometry of (normal) S-vari-
eties is completely reduced to the affine case (even to affine S-varieties with a fixed
point). Affine S-varieties were studied in [VP] in characteristic 0 and in [Gr2, §17]
in arbitrary characteristic.

First note that O is quasiaffine if and only if all α∨ are nonzero (whenever α ∈
Π \Π0) and generate a strictly convex cone in E (Corollary 15.6). This holds if and
only if there exists a dominant weight λ such that 〈λ ,Π∨ \Π∨

0 〉 > 0 and λ |T0 = 1,
i.e, if and only if S is regularly embedded in the stabilizer of a lowest vector of
weight −λ (cf. Theorem 3.13).

Theorem 28.3. Let X be the normal affine S-variety determined by a colored cone
(C ,DB). Then

k[X ]�
⊕

λ∈X(A)∩C∨
V ∗(λ ∗)⊆ k[G/S] =

⊕

λ∈X(A)∩C

V ∗(λ ∗).

Here V ∗(λ ∗) is identified with k[G](B
−)

−λ via right translation by wG on G. If the

semigroup X(A)∩C ∨ is generated by dominant weights λ1, . . . ,λm, then X � Gv⊆
V (λ ∗1 )⊕ ·· ·⊕V (λ ∗m), where v = v−λ1

+ · · ·+ v−λm is the sum of respective lowest
vectors.
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Proof. Observe that R =
⊕

λ∈X(A)∩C∨V ∗(λ ∗) is the largest subalgebra of k[G/S]
with the given algebra of U-invariants RU = k[X ]U � k[X(A)∩C ∨]. Hence R ⊇
k[X ] ⊇ 〈G ·RU〉, and the extension is integral by Lemma D.4. Now R = k[X ] since
k[X ] is integrally closed.

It is easy to see that Gv is an affine embedding of O such that k[Gv] is generated
by V ∗(λ ∗1 )⊕·· ·⊕V ∗(λ ∗m)⊂ k[O]. By Lemma 2.23, k[Gv] = R. ��

Every (even non-normal) affine S-variety with the open orbit O is realized in
a G-module V as X = Gv, v ∈ V S. We may assume that V = 〈Gv〉 and decom-
pose v = v−λ1

+ · · ·+v−λm , where v−λi
are B−-eigenvectors of certain antidominant

weights −λi.
In characteristic zero, V �V (λ ∗1 )⊕·· ·⊕V (λ ∗m) and the same arguments as in the

proof of Theorem 28.3 show that k[X ] =
⊕

λ∈Σ V ∗(λ ∗), where Σ is the semigroup
generated by λ1, . . . ,λm, and the dual Weyl modules V ∗(λ ∗)�V (λ ) are the (simple)
G-isotypic components of k[X ]. It is easy to see that Gv�O if and only if λ1, . . . ,λm

span X(A). Thus we obtain the following

Proposition 28.4 ([VP, 3.1, 3.4]). In characteristic zero, affine S-varieties X with
the open orbit O bijectively correspond to finitely generated semigroups Σ of dom-
inant weights spanning X(A), via Σ = Λ+(X). The variety X is normal if and only
if the semigroup Σ is saturated, i.e., Σ = Q+Σ ∩X(A). Moreover, the saturation
Σ̃ = Q+Σ ∩X(A) of Σ corresponds to the normalization X̃ of X.

G-orbits in an affine S-variety X = Gv⊆V have a transparent description “dual”
to that in Theorem 15.4(4).

Proposition 28.5 ([VP, Th. 8]). The orbits in X are in bijection with the faces of
C ∨ = Q+λ1 + · · ·+Q+λm. The orbit corresponding to a face F is represented by
vF = ∑λi∈F v−λi

. The adherence of orbits agrees with the inclusion of faces.

Proof. We have X = GT v since T v is B−-stable (Proposition 2.7). The T -orbits
in T v are represented by vF over all faces F ⊆ C ∨, and the adherence of orbits
agrees with the inclusion of faces. On the other hand, it is easy to see that the U−-
fixed point set in each G-orbit of X is a T -orbit. Hence distinct vF represent distinct
G-orbits. ��

In characteristic zero, one can describe the defining equations of X in V . Let
c = ∑ξiξ ∗i ∈Ug be the Casimir element with respect to a G-invariant inner product
on g, ξi and ξ ∗i being mutually dual bases. It is well known that c acts on V (λ ∗)
by a scalar c(λ ) = (λ + 2ρ,λ). Note that c(λ ) depends on λ monotonously with
respect to the partial order induced by positive roots: if λ = μ + ∑kiαi, ki ≥ 0,
then c(λ ) = c(μ)+∑ki

(
(λ +2ρ,αi)+(αi,μ)

)
≥ c(μ), and the inequality is strict,

except for λ = μ . The following result is due to Kostant:

Proposition 28.6 ([LT]). If chark = 0 and λ1, . . . ,λm are linearly independent, then
I (X) � k[V ] is generated by the relations

c(xi⊗ x j) = (λi +λ j +2ρ,λi +λ j)(xi⊗ x j), i, j = 1, . . . ,m,
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where xk denotes the projection of x ∈V to V (λ ∗k ).

Remark 28.7. There is a characteristic-free version of this result, due to Kempf and
Ramanathan [KeR], asserting that I (X) is generated by quadratic relations, see
also [BKu, Ex. 3.5.E(1)].

Proof. The algebra k[V ] =
⊕

k1,...,km
Sk1V (λ1)⊗·· ·⊗SkmV (λm) is multigraded and

I (X) is a multihomogeneous ideal. The structure of k[X ] implies that each homo-
geneous component I (X)k1,...,km is the kernel of the natural map Sk1V (λ1)⊗·· ·⊗
SkmV (λm)→V (k1λ1 + · · ·+ kmλm).

Consider a series of linear endomorphisms π = c− c(∑kiλi)1 of the subspaces
Sk1,...,kmV = Sk1V (λ ∗1 )⊗·· ·⊗SkmV (λ ∗m)⊂ S•V . Note that Kerπ �V (∑kiλ ∗i ) is the
highest irreducible component of Sk1,...,kmV , annihilated by I (X)k1,...,km , and Imπ �
I (X)∗k1,...,km

is the complementary G-module.

It follows that I (X) is spanned by the coordinate functions of all π(xk1
1 · · ·xkm

m ).
An easy calculation shows that

π(xk1
1 · · ·x

km
m ) = ∑

i

ki(ki−1)
2

π(x2
i )x

k1
1 · · ·x

ki−2
i · · ·xkm

m

+ ∑
i< j

kik jπ(xix j)x
k1
1 · · ·x

ki−1
i · · ·xk j−1

j · · ·xkm
m .

Thus I (X) is generated by the relations π(xix j) = 0, i, j = 1, . . . ,m. ��
If the generators of Λ+(X) are not linearly independent, one has to extend the

defining equations of X by those arising from the linear dependencies between
the λi, see [Sm-E].

Proposition 17.1 allows the divisor class group of a normal affine S-variety X
to be computed. Every Weil divisor is rationally equivalent to a B-stable one δ =
∑mα Dα + ∑miYi, where Yi are the G-stable prime divisors corresponding to the
generators vi of the rays of C containing no colors. The divisor δ is principal if and
only if mα = 〈λ ,α∨〉 and mi = 〈λ ,vi〉 for a certain λ ∈ X(A). This yields a finite
presentation for ClX . In particular, we have

Proposition 28.8. A normal affine S-variety X is factorial if and only if Λ+(X) is
generated by weights λ1, . . . ,λs,±λs+1, . . . ,±λr (s ≤ r), where the λi are linearly
independent and the projection X(T ) → X(T ∩G′) maps them to distinct funda-
mental weights or to 0.

For semisimple G, we conclude that factorial S-varieties are those corresponding to
weight semigroups Σ generated by some of the fundamental weights [VP, Th. 11].

The simplest class of affine S-varieties is formed by HV-varieties, i.e., cones of
highest (or lowest) vectors X = Gv−λ , v−λ ∈ V (λ ∗)(B−), see 11.1. Particular ex-
amples are quadratic cones or Grassmann cones of decomposable polyvectors. The
above results on affine S-varieties imply Proposition 11.2, which describes basic
properties of HV-varieties. It follows from Proposition 28.6 that an HV-cone is de-
fined by quadratic equations in the ambient simple G-module. For a Grassmann
cone we recover the Plücker relations between the coordinates of a polyvector.
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28.3 Smoothness. Now we describe smooth S-varieties in characteristic zero. By
Theorem 28.2, the problem is reduced to affine S-varieties with a fixed point, which
are nothing else but G-modules with a dense orbit of a U-fixed vector.

Lemma 28.9. If a G-module V is an S-variety, then V = V0⊕V1⊕·· ·⊕Vs so that
Z = Z(G)0 acts on V0 with linearly independent weights of multiplicity 1 and each
Vi (i > 0) is a simple submodule acted on non-trivially by a unique simple factor
Gi ⊆ G, Gi � SL(Vi) or Sp(Vi).

Proof. Since Z has a dense orbit in V0 = V G′ , it acts with linearly independent
weights of multiplicity 1. If Gi acts non-trivially on two simple submodules Vi,Vj,

and vi ∈V (B)
i , v j ∈V (B−)

j , then the stabilizer of vi +v j is not horospherical, i.e., V is
not an S-variety. Therefore we may assume that V is irreducible and each simple
factor of G acts non-trivially.

Then G acts transitively on P(V ), which implies that G′ � SL(V ) or Sp(V )
[Oni2]. Indeed, we have V = bv−λ , where v−λ ∈ V is a lowest vector. Hence there
exists a unique root δ such that eδ v−λ = vλ∗ is a highest vector. One easily de-
duces that the root system of G is indecomposable and δ is the highest root, so that
δ = λ +λ ∗ is the sum of two dominant weights, whence the assertion. ��

The colored data of such a G-module V are easy to write down. Namely Π \Π0 =
{α1, . . . ,αs}, where αi are the first simple roots in some components of Π having the
type Al or Cl . The weight lattice X(A) is spanned by linearly independent weights
λ1, . . . ,λr, where λ1, . . . ,λs are the highest weights of V ∗

i , which project to the funda-
mental weights ωi corresponding to αi, and λs+1, . . . ,λr are the weights of V ∗

0 , which
are orthogonal to Π . The cone C is spanned by the basis α∨

1 , . . . ,α∨
s ,vs+1, . . . ,vr of

X∗(A) dual to λ1, . . . ,λr. Using Theorem 28.2 we derive the description of colored
data of arbitrary smooth S-varieties:

Theorem 28.10 (cf. [Pau2, 3.5]). An S-variety X is smooth if and only if all colored
cones (CY ,DB

Y ) in the colored fan of X satisfy the following properties:

(1) CY is generated by a part of a basis of X∗(A), and all α∨ such that Dα ∈ DB
Y

are among the generators.
(2) The simple roots α such that Dα ∈DB

Y are isolated from each other in the Dynkin
diagram of G, and each α is connected with at most one component Πα of Π0;
moreover, {α}∪Πα has the type Al or Cl , α being the first simple root therein.

The condition (1) is equivalent to the local factoriality of X .

29 Toroidal Embeddings

In this section we assume that chark = 0.
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29.1 Toroidal Versus Toric Varieties. Recall that a G-equivariant normal embed-
ding X of a spherical homogeneous space O = G/H is said to be toroidal if DB

Y = /0
for each G-orbit Y ⊆ X . Toroidal embeddings are defined by fans in V , and G-mor-
phisms between them correspond to subdivisions of these fans in the same way as
in toric geometry [Ful2]. There is a more direct relation between toroidal and toric
varieties. Put P = P(O), with the Levi decomposition P = Pu �L and other notation
from 4.2 and 7.2.

Theorem 29.1 ([BPa, 3.4], [Bri13, 2.4]). A toroidal embedding X ←↩ O is covered
by G-translates of an open P-stable subset

X̊ = X \
⋃

D∈DB

D� P∗L Z � Pu×Z,

where Z is a locally closed L-stable subvariety pointwise fixed by L0. The variety Z
is a toric embedding of A = L/L0 defined by the same fan as X, and the G-orbits in
X intersect Z in A-orbits.

Proof. The problem is easily reduced to the case where X contains a unique
closed orbit Y with CY = V , DB

Y = /0. Such toroidal embeddings, called stan-
dard, are discussed in 30.1. Indeed, consider another spherical homogeneous space
O = G/NG(H). Then V = V (O) = V /(V ∩−V ) is strictly convex, whence there
exists a standard embedding X ←↩ O. The canonical map ϕ : O → O extends to
X → X by Theorem 15.10. We have P(O) = P, and X̊ ,Z are the preimages of the
respective subvarieties defined for X .

For standard X one applies the local structure theorem in a neighborhood of Y :
by Theorem 15.17, X̊ = X̊Y � P∗L Z, where Z is toric since Z∩O is a single A-orbit.

The G-stable divisors in X intersect X̊ in the P-stable divisors and Z in the A-
stable divisors. Each G-(A-)orbit in X (in Z) meets X̊ and is an intersection of G-
(A-)stable divisors, whence the assertion on orbits. The assertion on fans is easy,
cf. Remark 15.19. ��

It follows that toroidal varieties are locally toric. They inherit many nice geo-
metric properties from toric varieties. On the other hand, each spherical variety is
the image of a toroidal one by a proper birational equivariant map: to obtain this
toroidal covering variety, just remove all colors from the fan. This universality of
toroidal varieties can be used to derive some properties of spherical varieties from
the toroidal case.

29.2 Smooth Toroidal Varieties. A toroidal variety is smooth if and only if all
cones of its fan are simplicial and generated by a part of a basis of Λ (O)∗: for toric
varieties this is deduced from the description of the coordinate algebra [Ful2, 2.1]
(cf. Example 15.8) and the general case follows by Theorem 29.1. For a singular
toroidal variety one may construct an equivariant desingularization by subdividing
its fan, cf. [Ful2, 2.6].

Every (smooth) toroidal variety admits an equivariant (smooth) completion,
which is defined by adding new cones to the fan in order to cover all of V (O).
Smooth complete toroidal varieties have other interesting characterizations.
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Theorem 29.2 ([BiB]). For a smooth G-variety X consider the following condi-
tions:

(1) X is toroidal.
(2) There is a dense open orbit O⊆ X such that ∂X = X \O is a divisor with normal

crossings, each orbit Gx ⊂ X is locally the intersection of several components
of ∂X, and Gx has a dense orbit in TxX/gx.

(3) There is a G-stable divisor D ⊂ X with normal crossings such that GX =
TX (− logD).

(4) X is spherical and pseudo-free.

Then (4) =⇒ (1) =⇒ (2)⇐⇒ (3). If X is complete or spherical, then all conditions
are equivalent.

G-varieties satisfying the condition (2), resp. (3), are known as regular in the sense
of Bifet–de Concini–Procesi [BCP], resp. of Ginzburg [Gin].

Proof. (1) =⇒ (2)&(3) Theorem 29.1 reduces the problem to smooth toric va-
rieties. The latter are covered by invariant affine open charts of the form X =
A

m × (A1 \0)n−m, where (k×)n acts in the natural way, so that D = ∂X is the
union of coordinate hyperplanes {xi = 0}, X is isomorphic to the normal bundle
of the closed orbit, and TX (− logD) is a free sheaf spanned by velocity fields
x1∂1, . . . ,xn∂n (∂i := ∂/∂xi).
(2)⇐⇒ (3) First observe that O = X \D is a single G-orbit if and only if GX\D =
TX\D. Now consider a neighborhood of any x ∈ D. Due to local nature of the
conditions (2) and (3), we may assume that all components D1, . . . ,Dk of D con-
tain x. Choose local parameters x1, . . . ,xn at x such that Di are locally defined by the
equations xi = 0. Let ∂1, . . . ,∂n denote the vector fields dual to dx1, . . . ,dxn. Then
TX (− logD) is locally generated by x1∂1, . . . ,xk∂k,∂k+1, . . . ,∂n.

Let Y = D1 ∩ ·· · ∩Dk and π : N = SpecS•(IY /I 2
Y ) → Y be the normal bun-

dle. There is a natural embedding π∗TX (− logD)|Y ↪→ TN : each vector field in
TX (− logD) preserves IY , whence induces a derivation of S•(IY /I 2

Y ). The im-
age of π∗TX (− logD)|Y is TN(− log

⋃
Ni), where Ni are the normal bundles to Y

in Di. Indeed, x̄i = xi mod I 2
Y (i≤ k), x̄ j = π∗x j|Y ( j > k) are local parameters on N

and xi∂i,∂ j induce the derivations x̄i∂̄i, ∂̄ j. Note that N =
⊕

Li, where Li =
⋂

j �=i Nj

are G-stable line subbundles. Hence the Gx-action on TxX/TxY = N(x) =
⊕

Li(x) is
diagonalizable.

Condition (2) implies that Gx is open in Y and the weights of Gx : Li(x) are lin-
early independent. This yields velocity fields x̄i∂̄i on N(x) and in transversal direc-
tions, which locally generate TN(− log

⋃
Ni). Therefore TX (− logD)|Y is generated

by velocity fields. By Nakayama’s lemma, TX (− logD) = GX in a neighborhood
of x.

Conversely, (3) implies that GY = TY and GN = TN(− log
⋃

Ni). Hence Gx is
open in Y and N|Gx = G∗Gx TxX/gx has an open G-orbit. Thus TxX/gx contains an
open Gx-orbit.
(2)&(3) =⇒ (4) Since TX (− log∂ X) is locally free, the implication is trivial pro-
vided that X is spherical. It remains to prove that X is spherical if it is complete.
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A closed orbit Y ⊆ X intersects a B-chart X̊ � P ∗L Z, where L ⊆ P = P(Y ) is
the Levi subgroup and Z is an L-stable affine subvariety intersecting Y in a single
point z. Since the maximal torus T ⊆ L ⊆ Gz = P− acts on TzZ � TzX/gz with
linearly independent weights, Z � TzZ contains an open T -orbit, whence X̊ has an
open B-orbit.
(4) =⇒ (1) There is a morphism X →Grk(g), x �→ [hx], extending the map x �→ [gx]
on O. If X is not toroidal, then there exists a G-orbit Y ⊂ X contained in a color
D ⊂ X . Then we have b + hgy = b + (Adg)hy �= g, ∀y ∈ Y, g ∈ G, i.e., hy is not
spherical.

To obtain a contradiction, it suffices to prove that all hx are spherical subalge-
bras. Passing to a toroidal variety mapping onto X , one may assume that X itself is
toroidal. Consider the normal bundle N to Y = Gx. Since GN = π∗GX |Y , hx is the
stabilizer subalgebra of general position for G : N. But N is spherical, because the
minimal B-chart X̊ of Y is P-isomorphic to N|Y∩X̊ . ��
29.3 Cohomology Vanishing. Toric varieties and generalized flag varieties form
two “extreme” classes of toroidal varieties. A number of geometric and cohomo-
logical results generalize from these particular cases to general toroidal varieties.
A powerful vanishing theorem was proved by Bien and Brion (1991) under some
restrictions and refined by Knop (1992).

Theorem 29.3. If X is a smooth complete toroidal variety, then

Hi (X ,S•TX (− log∂ X)) = 0, ∀i > 0.

For flag varieties, this result is due to Elkik (vanishing of higher cohomology of the
tangent sheaf was proved already by Bott in 1957). In fact, Bien and Brion proved a
twisted version of Theorem 29.3 [BiB, 3.2]: Hi(X ,L ⊗S•TX (− log∂X)) = 0 for all
i > 0 and any globally generated line bundle L on X , under a technical condition
that the stabilizer H of O is parabolic in a reductive subgroup of G. (Generally,
higher cohomology of globally generated line bundles vanishes on every complete
spherical variety, see Corollary 31.7.)

In view of Theorem 29.2, Theorem 29.3 stems from a more general vanishing
result of Knop:

Theorem 29.4 ([Kn6, 4.1]). If X is a pseudo-free smooth equivariant completion of

a homogeneous space O, then Hi(X ,U
(m)

X ) = Hi(X ,SmGX ) = 0, ∀i > 0, m≥ 0.

Synopsis of a proof. The assertions on UX are reduced to those on S•GX = grUX .
Since πX : T gX → X is an affine morphism, the Leray spectral sequence re-
duces the question to proving Hi (T gX ,OTgX ) = 0. The localized moment map
Φ : T gX →MX factors through Φ̃ : T gX → M̃X . As M̃X is affine, Hi (T gX ,OTgX ) =
H0
(
M̃X ,RiΦ̃∗OT gX

)
, and it remains to prove that RiΦ̃∗OTgX = 0. Here one applies

to Φ̃ a version of Kollár’s vanishing theorem [Kn6, 4.2]:

If Y is smooth, Z has rational singularities, and ϕ :Y → Z is a proper morphism
with connected general fibers F , which satisfy Hi(F,OF) = 0, ∀i > 0, then
Riϕ∗OY = 0 for all i > 0.
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It remains to verify the conditions. The morphism Φ̃ is proper by Example 8.2. The
variety M̃X has rational singularities by [Kn6, 4.3]. To show vanishing of the higher
cohomology of OF , it suffices to prove that F is unirational [Se2]. Here one may
assume that X = O, Φ̃ : T ∗O→ M̃O. Unirationality of the fibers of the moment map
is the heart of the proof [Kn6, §5]. ��

There is a relative version of Theorem 29.4 asserting that Riψ∗U
(m)

X = Riψ∗SmGX =
0, ∀i > 0, for a proper G-invariant morphism ψ : X → Y separating general orbits,
where X is smooth pseudo-free and Y has rational singularities.

29.4 Rigidity. The vanishing theorems of Bien–Brion and Knop have a number
of important consequences. For instance, on a pseudo-free smooth completion X
of O the symbol map grH0(X ,UX ) → k[TgX ] is surjective. In the toroidal case,
H1(X ,TX (− log∂X)) = 0 implies that the pair (X ,∂X) is locally rigid, by the de-
formation theory of Kodaira–Spencer [Ser]. Using this observation, Alexeev and
Brion proved Luna’s conjecture on rigidity of spherical subgroups.

Theorem 29.5 ([AB3, §3]). For any (irreducible) G-variety with spherical (gen-
eral) orbits, the stabilizers of points in general position are conjugate.

Proof. Let X be a G-variety with spherical orbits. Passing to an open subset, we
may assume that X is smooth quasiprojective and there exists a smooth G-invariant
morphism π : X → Z whose fibers contain dense orbits. Regarding X as a fam-
ily of spherical G-orbit closures, we may replace X by a birationally isomorphic
family of smooth projective toroidal varieties.

Indeed, there is a locally closed G-embedding of X into P(V ), and therefore into
P(V )×Z, for some G-module V . Replacing X by its closure and taking a pseudo-
free desingularization, we may assume that X is pseudo-free and π is a projective
morphism. By Theorem 29.2, the fibers of π are smooth projective toroidal varieties.
Shrinking Z if necessary, we obtain that the G-orbits of non-maximal dimension in
X form a divisor with normal crossings ∂X = D1 ∪ ·· · ∪Dk whose components
Di are smooth over Z.

Morally, an equivariant version of Kodaira–Spencer theory should imply that
all fibers of π are G-isomorphic, which should complete the proof. An alternative
argument uses nested Hilbert schemes (see Appendix E.2).

Let X be any fiber of π , with ∂ X = D1 ∪ ·· · ∪Dk, Di = Di ∩ X . Applying a
suitable Veronese map, we satisfy a technical condition that the restriction map
V ∗ → H0(X ,O(1)) is surjective.

The nested Hilbert scheme Hilb parameterizes tuples (Y,Y1, . . . ,Yk) of projective
subvarieties Yi ⊆ Y ⊆ P(V ) having the same Hilbert polynomials as X ,D1, . . . ,Dk.
The varieties X ,D1, . . . ,Dk are obtained as the pullbacks under Z → Hilb of the
universal families Y ,Y1, . . . ,Yk → Hilb. The groups GL(V ) and G act on Hilb in a
natural way, so that HilbG parameterizes tuples of G-subvarieties. Since the central-
izer GL(V )G of G maps G-subvarieties to G-isomorphic ones, it suffices to prove
that the GL(V )G-orbit of (X ,D1, . . . ,Dk) is open in HilbG.

This is done by considering tangent spaces. Let NZ ,NZi/Z denote the normal
bundles to Z in P(V ), resp. to Zi in Z. By Proposition E.7, T(X ,D1,...,Dk)Hilb =
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H0(X ,N ), where N ⊂NX ⊕ND1 ⊕·· ·⊕NDk is formed by tuples (ξ ,ξ1, . . . ,ξk)
of normal vector fields such that ξ |Di = ξi mod NDi/X , i = 1, . . . ,k. (These vector
fields define infinitesimal deformations of X ,D1, . . . ,Dk, so that the deformation of
Di is determined by the deformation of X modulo a deformation inside X .) There
are exact sequences

0−→TX (− log∂X)−→TP(V )|X −→N −→ 0,

0−→ OX −→V ⊗OX (1)−→TP(V )|X −→ 0.

Taking cohomology yields

H0 (X ,TP(V )
)
−→ T(X ,D1,...,Dk)Hilb−→ H1(X ,TX (− log∂ X)) = 0,

V ⊗H0(X ,O(1))−→ H0 (X ,TP(V )
)
−→ H1(X ,OX ) = 0.

(The first cohomologies vanish by Theorem 29.3 and [Se2], since X is a smooth
projective rational variety.) Hence the differential of the orbit map

gl(V )�V ⊗V ∗ −→V ⊗H0(X ,O(1))−→ H0 (X ,TP(V )
)
−→ T(X ,D1,...,Dk)Hilb

is surjective. By linear reductivity of G, the composite map

gl(V )G −→ T(X ,D1,...,Dk)(HilbG)⊆
(
T(X ,D1,...,Dk)Hilb

)G

is surjective as well. Hence (X ,D1, . . . ,Dk) is a smooth point of HilbG and the orbit
GL(V )G(X ,D1, . . . ,Dk) is open. ��

29.5 Chow Rings. Cohomology rings of smooth complete toroidal varieties (over
k = C) were computed by Bifet–de Concini–Procesi [BCP], see also [LP] for
toroidal completions of symmetric spaces. By Corollary 18.4, cohomology coin-
cides with the Chow ring in this situation. The most powerful approach is through
equivariant cohomology or the equivariant intersection theory of Edidin–Graham,
see [Bri15]. In particular, Chow (or cohomology) rings of smooth (complete) toric
varieties and flag varieties are easily computed in this way [BCP, I.4], [Bri11, 2, 3],
[Bri15], cf. 18.4.

29.6 Closures of Flats. The local structure of toroidal varieties can be refined in
order to obtain a full description for the closures of generic flats.

Proposition 29.6 ([Kn5, 8.3]). The closure of a generic twisted flat in a toroidal
variety X is a normal toric variety whose fan is the WX -span of the fan of X.

Proof. It suffices to choose the toric slice Z in Theorem 29.1 in such a way that the
open A-orbit in Z is a generic (twisted) flat Fα . Then Z = Fα (the closure in X), so
that Theorem 29.1 and Proposition 23.19 imply the claim.

If X is smooth and T ∗X is symplectically stable, then the conormal bundle
to general U-orbits extends to a trivial subbundle X̊ × a∗ ↪→ T ∗X̊(log∂X), the
trivializing sections being dfλ /fλ , λ ∈ Λ . The logarithmic moment map restricts
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to Φ : X̊ × a∗ → a⊕ pu, cf. Lemma 23.14. It follows that X̊ � P ∗L Z, where
Z = πX Φ−1(λ), λ ∈ apr, and Fα is the open L-orbit in Z for any α ∈Φ−1(λ )∩T ∗O.

If X is singular, then it admits a toroidal resolution of singularities ν : X ′ → X .
Then X̊ ′ := ν−1(X̊) = X ′ \⋃D∈DB D� P∗L Z′ and Z′ ⊇ Fα . The map Φ : X̊ ′ ×a∗ →
a⊕pu descends to X̊ , because k[X̊ ′] = k[X̊ ]. Thus one may put Z = ν(Z′).

If T ∗X is not symplectically stable, then passing to affine cones and back to
projectivizations yields Z such that the open L-orbit in Z is a twisted flat. ��

Example 29.7. If X is a toroidal (G×G)-embedding of G, then T is a flat and F = T
is a toric variety whose fan is the W -span of the fan of X (in the antidominant Weyl
chamber), cf. Proposition 27.18. For instance, if X = G ⊆ P(L(V )) for a faithful
projective representation G : P(V ) with regular highest weights, then the fan of F is
formed by the duals to the barrier cones of the weight polytope P(V ), and the fan
of X is its antidominant part (see 27.3).

Example 29.8. Consider the variety of complete conics X ⊂ P(S2(k3)∗)×P(S2
k

3)
from Example 17.12. The set F = {([q], [q∨]) | q diagonal, detq �= 0} is a flat. Using
the Segre embedding P(S2(k3)∗)×P(S2

k
3) ↪→ P(S2(k3)∗ ⊗ S2

k
3) and observing

that the T -weights occurring in the weight decomposition of q⊗ q∨ are 2(εi− ε j),
we conclude that the fan of F is the set of all Weyl chambers of G = SL3(k) together
with their faces, while the fan of X consists of the antidominant Weyl chamber and
its faces.

30 Wonderful Varieties

30.1 Standard Completions. In the study of a homogeneous space O it is useful
to consider its equivariant completions. The reason is that properties of O and of
related objects (subvarieties and their intersection, functions, line bundles and their
sections, etc) often become apparent “at infinity”, and equivariant completions of O
take into account the points at infinity. Also, complete varieties behave better than
non-complete ones from various points of view (e.g., in intersection theory).

Among all equivariant completions of a spherical homogeneous space O one dis-
tinguishes two opposite classes. Toroidal completions have nice geometry (see §29)
and a universal property: each equivariant completion of O is dominated by a
toroidal one. On the other hand, simple completions of O (i.e., those having a unique
closed orbit) are the most “economical” ones: their boundaries are “small”. Simple
completions exist if and only if the valuation cone V is strictly convex.

These two classes intersect in a unique element, called the standard completion.

Definition 30.1. A spherical subgroup H ⊆ G is called sober if NG(H)/H is finite
or, equivalently, if V (G/H) is strictly convex.

The standard embedding of O = G/H is the unique toroidal simple complete G-
embedding X ←↩ O, defined by the colored cone (V , /0), provided that H is sober. A
smooth standard embedding is called wonderful.
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The standard embedding has a universal property: for any toroidal completion X ′ ←↩
O and any simple completion X ′′ ←↩ O, there exist unique proper birational G-mor-
phisms X ′ → X → X ′′ extending the identity map on O.

Wonderful embeddings were first introduced by de Concini and Procesi [CP1] for
symmetric spaces. Their remarkable properties were studied by many researchers
(see below) mainly in characteristic zero, though some results in special cases, e.g.,
for symmetric spaces [CS], are obtained in arbitrary characteristic. For simplicity,
we assume that chark = 0 from now on.

Every spherical subgroup H ⊆ G is contained in the smallest sober overgroup
H ·NG(H)0 normalizing H. This stems, e.g., from the following useful lemma.

Lemma 30.2. If H ⊆ G is a spherical subgroup, then NG(H) = NG(H) for any in-
termediate subgroup H between H and NG(H).

Proof. As NG(H)/H is Abelian, we have NG(H)⊆ NG(H). In particular, NG(H) =
NG(H0). To prove the converse inclusion, we may assume without loss of generality
that H is connected and b+h = g. Then the right multiplication by NG(H) preserves
BH = BH, the unique open (B×H)-orbit in G. Hence the NG(H)-action on k(G)
by right translations of an argument preserves k[G](B×H) (= the set of regular func-
tions on G invertible on BH). Since this action commutes with the G-action by left
translations, it preserves k[G](H), whence k(G/H), too. Hence NG(H) acts on G/H
by G-automorphisms, i.e., is contained in NG(H). ��

Now let H ⊆ G be a sober subgroup and X be the standard embedding of O =
G/H. The local structure theorem reveals the orbit structure and local geometry
of X : by Theorem 29.1 there are an affine open chart X̊ = X \⋃D∈DB D and a closed
subvariety Z ⊂ X̊ such that X̊ is stable under P = P(O), the Levi subgroup L ⊂ P
leaves Z stable and acts on it via the quotient torus A = L/L0, X̊ � P∗L Z � Pu×Z,
and each G-orbit of X intersects Z in an A-orbit. Actually X̊ is the unique B-chart of
X intersecting all G-orbits.

The affine toric variety Z is defined by the cone V , so that k[Z] = k[V ∨ ∩Λ ],
where Λ = Λ (O) = X(A). The orbits (of A : Z or of G : X) are in an order-reversing
bijection with the faces of V , and each orbit closure is the intersection of invariant
divisors containing the orbit. If V is generated by a basis of Λ ∗, then Z � A

r with
the natural action of A � (k×)r; the eigenweight set for A : Z is Πmin

O . Generally,
since V is simplicial (Theorem 22.13), one deduces that Z �A

r/Γ with the natural
action of A � (k×)r/Γ , where Γ � Λ ∗/N is the common kernel of all λ ∈ Λ in
(k×)r = N⊗k

×, the sublattice N ⊆Λ ∗ being spanned by the indivisible generators
of the rays of V .

In particular, X is smooth if and only if V is generated by a basis of Λ∗, i.e., if
and only if Λ = ZΔ min

O . It is a delicate problem to characterize the (sober) spherical
subgroups H ⊆ G such that the standard embedding X ←↩ O = G/H is smooth.

Note that NG(H)/H = AutG O acts on a finite set DB.

Definition 30.3. A spherical subgroup H ⊆ G is called very sober if NG(H)/H acts
on DB effectively. (In particular, H is sober, because (NG(H)/H)0 leaves DB point-
wise fixed.) The very sober hull of H is the kernel H of NG(H) : DB. An alternative
terminology is: spherically closed subgroup, spherical closure.
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Remark 30.4. It is easy to deduce from Lemma 30.2 that H is the smallest very sober
subgroup of G containing H as a normal subgroup. The colored space E = E (G/H)
is identified with E /(V ∩−V ), the valuation cone is V = V /(V ∩−V ), and the

set of colors D
B

is identified with DB via pullback.
Observe that H is the kernel of NG(H) : X(H) [Kn8, 7.4]. Indeed, (a multiple of)

each B-stable divisor δ on O is defined by an equation η ∈ k(G)(B×H)
(λ ,χ) , and each

χ ∈ X(H) arises in this way (because every G-line bundle LG/H(χ) has a rational

B-eigensection). The right multiplication by n ∈ NG(H) maps η to η ′ ∈ k(G)(B×H)
(λ ,χ ′) ,

the equation of δ ′ = n(δ ), where χ ′(h) = χ(n−1hn). Since k(O)B = k, we have
χ ′ = χ ⇐⇒ η ′/η = const ⇐⇒ δ ′ = δ .

In particular, H ⊇ ZG(H).

Theorem 30.5 ([Kn8, 7.6, 7.2]). If H is very sober, then the standard embedding
X ←↩ G/H is smooth. In particular, X is smooth if NG(H) = H.

Remark 30.6. If all simple factors of G are isomorphic to PSLni , then very soberness
is also a necessary condition for X be smooth [Lu6, 7.1]. This is not true in general:
Sn−1 = SOn/SOn−1 and SL4/Sp4 are symmetric spaces of rank 1, and hence their
standard embeddings are smooth (Proposition 30.18), while SOn−1 = S(O1×On−1),
Sp4 = Sp4 ·Z(SL4).

Proof. By Theorem 23.25, SO =
⋂

α∈Δ min
O

Kerα ↪→ AutG O = NG(H)/H. It suffices

to show that SO fixes all colors; then SO = {e}, i.e., Δ min
O spans Λ .

Take any D ∈ DB. Replacing D by a multiple, we may assume that O(D) is
G-linearized. Consider the total space Ô = Ĝ/Ĥ of O(−D)×, where Ĝ = G×k

×,
cf. Remark 20.8. Using the notation of Remark 20.8, we have

0−→Λ −→ Λ̂ −→ Z−→ 0,

V = V̂ /(V̂ ∩−V̂ ), and Δ min
Ô

= Δ min
O . Therefore SO = SÔ/k

×.

However the pullback D̂ ⊂ Ô of D is principal. Since SÔ multiplies the equation

of D̂ by scalars, it leaves D̂ stable, whence SO leaves D stable. ��

30.2 Demazure Embedding. If NG(H) = H, then O � G[h], the orbit of h in
Grk(g), k = dimh. The closure X(h) = G[h] ⊆ Grk(g) is called the Demazure em-
bedding.

Proposition 30.7 ([Los1]). If NG(H) = H, then X(h) is the wonderful embedding
of O.

Proof. The standard embedding X ←↩ O is wonderful by Theorem 30.5. Brion
proved that X is the normalization of X(h) [Bri8, 1.4]. Finally, Losev proved that the
normalization map X → X(h) is an isomorphism [Los1]. We give a proof of Brion’s
result referring to [Los1] for the rest.

The decomposition g = pu ⊕ a⊕ h yields h = l0 ⊕ 〈e−α + ξα | α ∈ Δ+ \Δ+
L 〉,

where ξα ∈ pu⊕a is the projection of −e−α along h. Hence
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ĥ = l̂0∧
∧

α∈Δ+\Δ+
L

(e−α +ξα) = ŝ+ terms of higher T -weights,

where q̂ ∈ ∧• g denotes a generator of [q] ∈ Gr(g), s = l0⊕p−u , and the weights of
other terms differ from that of ŝ by ∑(αi +βi), αi,βi ∈ Δ+ \Δ+

L or βi = 0.
Let Z(h) be the closure of T [h] in the affine chart defined by non-vanishing of

the covector dual to ŝ. It is an affine toric variety with the fixed point [s]. Thus
Y = G[s] ⊂ X(h) is a closed orbit. The local structure theorem in a neighborhood
of [s] provides a B-chart X̊(h) ⊂ X(h), X̊(h) � Pu ×Z(h). Note that for any [q] ∈
Z(h) \ T [h] the subalgebra q is transversal to pu ⊕ a while ng(q)∩ a �= 0, whence
dimG[q] > dimH. It follows that X̊(h) intersects no colors, i.e., X(h) is toroidal in a
neighborhood of Y .

On the other hand, every smooth toroidal embedding of O maps to X(h) by The-
orem 29.2. It follows that the normalization of X(h) is simple, and hence wonderful.

��

If NG(H) �= H, then X(h) is the wonderful embedding of G/NG(H).

30.3 Case of a Symmetric Space. Let G be an adjoint semisimple group and let
H = Gθ be a symmetric subgroup. Here NG(H) = H. We have Λ (O) = X(T/T θ ) =
{μ − θ(μ) | μ ∈ X(T )}, where T is a θ -stable maximal torus such that T1 is a
maximal θ -split torus. Hence Λ (O) is the root lattice of 2ΔO. Since V (O) is the
antidominant Weyl chamber of Δ∨

O in Λ (O)∗ ⊗Q (by Theorem 26.25), Δ min
O is the

reduced root system associated with 2ΔO. It follows that the standard completion X
is smooth in this case.

Wonderful completions of symmetric spaces were studied in [CP1], [CS]. In par-
ticular, a geometric realization for a wonderful completion as an embedded pro-
jective variety was constructed. Take any λ ∈ Λ (G̃/G̃θ )∩ intC(Δ+

O ). There ex-
ists a unique (up to proportionality) nonzero G̃θ -fixed vector v′ ∈ V ∗(λ ). Then
X ′ = G[v′]⊆ P(V ∗(λ )) is the wonderful embedding of G[v′]� O.

Indeed, a natural closed embedding P(V ∗(λ )) ↪→ P(V ∗(2λ )) (given by the mul-
tiplication V ∗(λ )⊗V ∗(λ )→V ∗(2λ ) in k[G̃]) identifies X ′ with X ′′ = G[v′′], where
v′′ ∈ V ∗(2λ ) is a unique G̃θ -fixed vector. As X ′′ is a simple projective embedding
of G[v′′], the natural map O→G[v′′] extends to X → X ′′. On the other hand, the ho-
momorphism V ∗(λ )⊗V ∗(λ )→V ∗(2λ ) maps ω to v′′, where ω is defined by (26.3).
Let Z′′ be the closure of T [v′′] in the affine chart of P(V ∗(2λ )) defined by non-
vanishing of the highest covector of weight 2λ . From (26.3) it is easy to deduce
that Z′′ � A

r is acted on by T via the eigenweight set Πmin
O and the closed orbit

G[v−2λ ] is transversal to Z′′ at [v−2λ ]. Hence Z
∼→ Z′′, X̊

∼→ PZ′′ � Pu × Z′′, and
finally X

∼→ X ′′ � X ′. (A similar reasoning shows X � G[ω ]. A slight refinement
carries over the construction to positive characteristic [CS].)

Another model for the wonderful completion is the Demazure embedding. First
note that h = l0⊕〈eα + eθ(α) | α ∈ Δ+ \Δ+

L 〉. Arguing as in the proof of Propo-

sition 30.7, we see that Z(h) = T [h] � A
r is acted on by T with the eigenweights

α−θ(α), α ∈Π \ΔL, and Y = G[s] is transversal to Z(h) at [s]. This yields CY = V .
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Now the Luna–Vust theory together with the description of the colored data for sym-
metric spaces implies that X(h) is wonderful [CP1]. The varieties X(h) were first
considered by Demazure in the case, where G = PSLn(k) and H is the projective
orthogonal or symplectic group [Dem4].

30.4 Canonical Class. Using the Demazure embedding, Brion computed the canon-
ical class of any spherical variety.

Proposition 30.8 ([Bri8, 1.6]). Suppose that X is a spherical variety with the open
orbit O� G/H. Consider the G-morphism ϕ : O→ Grk(g), ϕ(o) = [h], k = dimH.
Then a canonical divisor of X is

KX =−∑
i

Di−ϕ∗H =−∑
i

Di− ∑
D∈DB

mDD,

where Di runs over all G-stable prime divisors in X, H is a hyperplane section of
X(h) in P(

∧k
g), and mD ∈ N.

Explicit formulæ for mD are given in [Bri12, 4.2], [Lu5, 3.6]. In the notation
of 30.10, mD = 1 unless D = Dα ∈Db, in which case mD = 2〈ρG−ρL,α∨〉 ≥ 2.

Proof. Removing all G-orbits of codimension > 1, we may assume that X is smooth
and toroidal. Then by Theorem 29.2, ϕ extends to X , and we have an exact sequence

0−→ ϕ∗E −→OX ⊗g−→TX (− log∂ X)−→ 0,

where E is the tautological vector bundle on Grk(g). Taking the top exterior powers
yields ωX ⊗OX (∂X)�∧k ϕ∗E = OX (−ϕ∗H ), whence the first expression for KX .
If H is defined by a covector in (

∧k
g∗)(B) dual to ŝ, then X̊(h) = X(h)\H inter-

sects all G-orbits in open B-orbits, and hence ϕ∗H = ∑mDD with mD > 0 for all
D ∈DB. ��
Using the characterization of ample divisors on complete spherical varieties (Corol-
lary 17.24), one deduces that certain wonderful embeddings (e.g., flag varieties,
most wonderful completions of symmetric spaces, primitive wonderful varieties of
rank 1, see 30.8) are Fano varieties (i.e., the anticanonical divisor is ample).

30.5 Cox Ring. In the study of projective varieties it is very helpful to use homo-
geneous coordinates. Polynomials in homogeneous coordinates are not functions,
but sections of a very ample line bundle and its powers. Instead of taking one line
bundle, one may consider all line bundles and their sections. Thus one arrives at
the notion of a total coordinate ring or a Cox ring of an algebraic variety [BH]. For
simplicity, we define it under some technical restrictions.

Definition 30.9. Suppose that X is a locally factorial irreducible algebraic variety
such that PicX is free and finitely generated. The Cox sheaf of X is a sheaf of
graded OX -algebras RX =

⊕
δ OX (δ ), where δ runs over a subgroup of CaDivX

mapped isomorphically onto PicX . The multiplication in RX is given by choosing
compatible identifications O(δ )⊗O(δ ′)�O(δ +δ ′), which is possible since PicX
is free. The Cox ring of X is R(X) = H0(X ,RX ) =

⊕
δ H0(X ,O(δ )).
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RX and R(X) do not depend (up to isomorphism) on the lifting PicX ↪→ CaDivX .
The ring R(X) was first introduced by Cox for smooth complete toric X , in which
case R(X) is a polynomial algebra [Cox].

Example 30.10. For X = P(V ) one has R(X) = k[V ].

Put X̊ = SpecOX
RX . It is a quasiaffine variety [BH, Pr. 3.10] and a principal

TX -bundle over X , where TX = Hom(PicX ,k×) is the Néron–Severi torus. If R(X)
is finitely generated, then X = SpecR(X) is a factorial affine variety containing
X̊ as an open subset with the complement of codimension > 1 [BH]. Indeed, X̊ is
covered by affine open subsets X̊η �Xη , where η ∈H0(X ,O(δ )), k[X̊ ] = k[X ],
and each TX -stable divisor on X is pulled back from a divisor on X , and hence is
principal.

The Cox ring of a wonderful variety was investigated by Brion in [Bri18]. Here
we describe his results.

Let X ←↩ O = G/H be a wonderful embedding, where G may and will be as-
sumed semisimple and simply connected. By Corollary 17.10, PicX is freely gen-
erated by the classes of colors D ∈ DB. The canonical B-eigensection ηD of O(D)
with divηD = D may be regarded as a function in k[G](B×H) (= the equation of the
preimage of D in G) of eigenweight λ̂D = (λD,χD), so that λD is the eigenweight of
the section and OG/H(D) � L(−χD), cf. Remark 13.4. The biweights λ̂D are lin-
early independent by Remark 15.1. Consider also the canonical G-invariant sections
η1, . . . ,ηr corresponding to the components D1, . . . ,Dr of X \O.

Proposition 30.11. (1) R(X)U = k[η1, . . . ,ηr,ηD | D ∈ DB] and R(X)G = k[η1,
. . . ,ηr] are polynomial algebras.
(2) R(X) is a free module over R(X)G and a finitely generated algebra.
(3) The categorical quotient map πG : X → X //G � A

r is flat with reduced and
normal fibers.

Proof. (1) stems from the fact that the divisor of each (B× TX )-eigensection in
R(X)U is uniquely expressed as a non-negative integral linear combination of
D1, . . . ,Dr,D ∈ DB. Since R(X)U is free over R(X)G, this implies (2) in view of
Theorem D.5(1). By (2), πG is flat, and all fibers have one and the same algebra of
U-invariants isomorphic to k[ηD | D ∈DB], which yields (3) by Theorem D.5. ��

Let H0 denote the common kernel of all characters in X(H). Then TO = H/H0 is
a diagonalizable group with X(TO) = X(H). There is a commutative diagram

PicO ←−−−− PicX −−−−→ PicY
∥
∥
∥

∥
∥
∥

∥
∥
∥

X(TO) ←−−−− ZDB −−−−→ X(P)

χD ←−−−− D −−−−→ λD,

(30.1)

where Y ⊆ X is the closed G-orbit and P = P(O). The left arrows are surjective, with
kernels consisting of ∑mDD such that ∑mDD = div fλ on O for some λ ∈ Λ(O) =
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ZΠ min
O , i.e., mD = 〈D,λ 〉. In particular, TO ↪→ TX � (k×)D

B
, h �→ (χD(h))D∈DB . A

homomorphism T → TX , t �→ (λD(t))D∈DB , induces an isomorphism A = T/T0
∼→

TX/TO. Indeed, X(TX/TO) consists of the elements ∑〈D,λ 〉D, which are mapped
bijectively to ∑〈D,λ 〉λD = λ ∈Λ (O) = X(A).

The group G×T acts on X via the above homomorphism T → TX . The preimage
Ô ⊆ X̊ of O ⊆ X is a single (G× TX )- or (G× T )-orbit consisting of G-orbits
isomorphic to G/H0 and transitively permuted by TX , so that Ô � TX ∗TO G/H0 �
T ∗T0 G/H0. It follows that

k[Ô]�
⊕

χ=∑mDχD
λ=∑mDλD

mD∈Z

k[G/H0]
(H)
χ ⊗kλ−1 =

=
⊕

λ∈Λ+(G/H0)=∑Z+λD
μ∈λ+Λ(G/H)

k[G/H0](λ)⊗kμ−1 ⊆ k[G/H0×T ].

Note that Di ∼ ∑〈D,λi〉D, where λi ∈ Π min
X , 〈vDi ,λi〉 = −1, whence ηD,ηi ∈

k[X ]⊆ k[Ô] are (B×T )-eigenfunctions of biweights (λD,λD) and (0,λi), respec-
tively. Since they generate k[X ]U , we deduce the following

Theorem 30.12. (1) R(X)� ⊕

λ∈Λ+(G/H0)
μ∈λ+Z+Π min

X

k[G/H0](λ )⊗kμ−1.

(2) πG is also the categorical quotient map for the action Ĝ = G×TO : X .
(3) πG : X →A

r is a TX -equivariant flat family of affine spherical Ĝ-varieties with
categorical quotient by U isomorphic to A

|DB|, where B̂ = B×TO and T̂ = T ×TO

act by weights −λ̂D.
(4) General fibers of πG are isomorphic to G//H0 and π−1

G (0) is the horospherical
contraction of G//H0.

Proof. (1) follows by choosing in k[Ô] those isotypic components which correspond
to (B×T )-eigenweights of R(X)U . Assertions (2) and (3) are easily derived from
the structure of R(X)U . To deduce (4) from (1), observe that V (G/H0) is the preim-
age of V (X), whence Π min

G/H0
is proportional to Π min

X and, by (T0),−Πmin
G/H0

generates
the cone spanned by tails of G//H0. ��

Example 30.13. If O = G/Z(G) is the adjoint group of G considered as a symmetric
space (Example 26.10), then X = EnvG is the enveloping semigroup.

Generators and relations for R(X) are described in [Bri18, 3.3].
The Cox sheaf and ring may be defined in a more general setup than above

[EKW], [Hau]. Namely let X be any normal variety such that ClX is finitely gener-
ated. The Cox sheaf RX and the Cox ring R(X) are defined by the formulæ of Defi-
nition 30.9, where δ runs over a set of representatives for the divisor classes in ClX ,
and OX (δ ) is the corresponding reflexive sheaf. If ClX is free or k[X ]× = k

×, then
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one may choose multiplication maps O(δ )⊗O(δ ′)→O(δ +δ ′) (which are isomor-
phisms over X reg) making RX into a sheaf of graded commutative associative OX -
algebras in a canonical way independent on the choice of representatives of divisor
classes, so that R(X) is indeed a ring. Note that RX = ι∗RX reg , where ι : X reg ↪→ X
and R(X) = R(X reg). Here X reg may be replaced by any other open subset of X with
the complement of codimension > 1. So (at least for a free divisor class group) the
concepts of Cox sheaf and Cox ring in general can be reduced to Definition 30.9. An
equivariant version of these concepts is obtained by replacing Cl(X) with the group
ClG(X) of G-linearized divisor classes (i.e., isomorphism classes of G-linearized
reflexive sheaves of rank 1) on a G-variety X . (If ClG(X) has torsion, then one has
to require that there are no non-constant G-invariant invertible functions on X .)

If RX is a sheaf of finitely generated OX -algebras (which holds, e.g., whenever
X is Q-factorial or R(X) is finitely generated), then X̊ = SpecOX

RX is a quasi-
affine normal variety equipped with a natural action of a (possibly disconnected)
diagonalizable group TX such that X(TX ) = Cl(X) (or ClG(X)), and the natural map
X̊ → X is a good quotient for the TX -action. If R(X) is finitely generated, then
X = SpecR(X) is a normal affine variety containing X̊ as an open subset with
complement of codimension > 1.

Cox rings of arbitrary spherical varieties were computed by Brion in [Bri18, §4].
Let X be a spherical variety with the open orbit O � G/H, where G may and will
be assumed to be of simply connected type. For simplicity, we impose a (not very
restrictive) condition k[X ]× = k

×.
Note that R(X) = R(X ′), where X ′ ⊆ X is a smooth open subset obtained by

removing all G-orbits of codimension > 1. Therefore X may be assumed smooth
and toroidal whenever necessary.

As in the wonderful case, we use the notation ηD and η1, . . . ,ηk for the canonical
sections corresponding to the colors D and the G-stable prime divisors D1, . . . ,Dk,
respectively. Since G′ is simply connected semisimple, RX admits a unique G′-lin-
earization, so that ηD are (B∩G′)-semiinvariant of eigenweights λD and η j are
G′-invariant.

Proposition 30.11 extends to the general spherical case, except that G is replaced
by G′.

Let X denote the wonderful embedding of O = G/H. Various objects related to
X (divisors, sections, . . . ) will be denoted in the same way as for X , but equipped
with a bar. The natural rational map ϕ : X ��� X (which is regular if and only if X
is toroidal) gives rise to a homomorphism ϕ∗ : R(X)→R(X). It is easy to see that

ϕ∗ηD = ηD, where D = ϕ−1(D), and ϕ∗η i = ∏ j η
〈vD j ,−λi〉
j .

Theorem 30.14 ([Bri18, 4.3]). R(X)�R(X)⊗R(X)G′ R(X)G′ . In geometric terms,

X �X ×X //G′ X //G′.

A G-linearization of RX may not exist and even if it exists, it may be not unique.
In order to take into account the G-action, it is more convenient to use the G-equiv-
ariant version of the Cox sheaf and ring. The above results generalize to this setup:
O(D) and O(D j) are equipped with canonical G-linearizations so that ηD and η j
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are Z(G)0-invariant, R(X)U is freely generated by ηD,η j as a k[Z(G)0]-algebra,
and Theorem 30.14 extends with G′ replaced by G, see [Bri18, §4].

30.6 Wonderful Varieties. Wonderful embeddings can be characterized intrinsi-
cally by the configuration of G-orbits.

Theorem 30.15 ([Lu4]). A smooth complete G-variety X is a wonderful embedding
of a spherical homogeneous space if and only if it satisfies the following conditions:

(1) X contains a dense open orbit O.
(2) X \O is a divisor with normal crossings, i.e., its components D1, . . . ,Dr are

smooth and intersect transversally.
(3) For each tuple 1 ≤ i1 < · · · < ik ≤ r, the set Di1 ∩ ·· · ∩Dik \

⋃
i�=i1,...,ik Di is a

single G-orbit. (In particular, it is non-empty.)

G-varieties satisfying the conditions of the theorem are called wonderful varieties.

Sketch of a proof. Wonderful embeddings obviously satisfy the conditions (1)–(3),
as a particular case of Theorem 29.2: the toric slice Z �A

r is transversal to all orbits
and the G-stable prime divisors intersect it in the coordinate hyperplanes.

To prove the converse, consider the local structure of X in a neighborhood of the
closed orbit Y which is provided by an embedding of X into a projective space. Let
P = Pu �L be a Levi decomposition of P = P(Y ). There is a B-chart X̊ � Pu×Z such
that Z is a smooth L-stable locally closed subvariety intersecting Y transversally at
the unique P−-fixed point z. It is easy to see that a general dominant one-parameter
subgroup γ ∈ X∗(Z(L)) contracts X̊ to z. Hence Z is L-isomorphic to TzZ.

Consider the wonderful subvarieties Xi =
⋂

j �=i D j and let λi be the T -weights
of Tz(Z∩Xi), i = 1, . . . ,r. Since TzZ =

⊕
Tz(Z∩Xi), it suffices to prove that λ1, . . . ,λr

are linearly independent.
The latter is reduced to the cases r = 1 or 2. Indeed, if we already know that Xi and

Xi j =
⋂

k �=i, j Dk are wonderful embeddings of spherical spaces, then Π min
Xi

= {λi}
and Π min

Xi j
= {λi,λ j}. Thus the λi are positive linear combinations of positive roots

located at obtuse angles to each other. This implies the linear independence.
The case r = 1 stems from Proposition 30.17.
The case r = 2 can be reduced to G = SL2. Indeed, assuming that λ1,λ2 are

proportional, we see that c(X) = r(X) = 1. By Proposition 10.3, O is obtained from
a 3-dimensional homogeneous SL2-space by parabolic induction. Let us describe
the colored hypercone (CY ,DB

Y ).
Since TzZ is contracted to 0 by γ , we have Λ (X) = Zλ and λi = hiλ , where

〈λ ,γ〉> 0 and h1,h2 are coprime positive integers. Without loss of generality �1h1−
�2h2 = 1 for some �1, �2 ∈N. Consider Tz(Z∩Xi) as coordinate axes in TzZ � Z and
extend the respective coordinates to f1, f2 ∈ k(X)(B). Then we may put fλ = f �2

2 / f �1
1 ,

and k(X)B = k( f h1
2 / f h2

1 ). We have the following picture for (CY ,DB
Y ) ( f h1

2 / f h2
1 is

regarded as an affine coordinate on P
1, colors in DB

Y are marked by bold dots, and
the rays corresponding to the G-stable divisors X1,X2 are marked, too):
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0
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��
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��
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1 \{0,∞}

�1

By Corollary 12.14, CY ⊇ V . Since DB
Y does not contain central colors, Proposi-

tions 20.13 and 14.4 imply that X is induced from a wonderful SL2-variety. However
it is easy to see (e.g., from the classification in [Tim2, §5]) that there exist no SL2-
germs with the colored data as above. (Luna uses different arguments in [Lu4].) ��

Wonderful varieties play a distinguished rôle in the study of spherical homoge-
neous spaces, because they are the canonical completions of these spaces having
nice geometric properties. To a certain extent this rôle is analogous to that of (gen-
eralized) flag varieties in the theory of reductive groups. For symmetric spaces this
was already observed by de Concini and Procesi [CP1]. For general spherical spaces
this principle was developed by Brion, Knop, Luna, et al [BPa], [Bri8], [Kn8], [Lu3],
[Lu5], [Lu6].

30.7 How to Classify Spherical Subgroups. In particular, wonderful varieties are
applied to classification of spherical subgroups. The strategy, proposed by Luna, is
to reduce the classification to very sober subgroups, which are stabilizers of general
position for wonderful varieties, and then to classify the wonderful varieties.

By Theorem 29.5, there are no continuous families of non-conjugate spherical
subgroups, and even more:

Proposition 30.16 ([AB3, Cor. 3.2]). There are finitely many conjugacy classes of
sober spherical subgroups H ⊆ G.

Proof. Sober spherical subalgebras of dimension k form a locally closed G-sub-
variety in Grk(g). Indeed, the set of spherical subalgebras is open in the variety
of k-dimensional Lie subalgebras, and sober subalgebras are those having orbits
of maximal dimension. Theorem 29.5 implies that this variety is a finite union of
locally closed strata such that all orbits in each stratum have the same stabilizer.
But the isotropy subalgebras are nothing else but the points of the strata. Hence
each stratum is a single orbit, i.e., there are finitely many sober subalgebras, up
to conjugation. As for subgroups, there are finitely many ways to extend H0 by a
(finite) subgroup in NG(H0)/H0. ��

Note that finiteness fails for non-sober spherical subgroups: H can be extended by
countably many diagonalizable subgroups in NG(H)/H.

These results create evidence that spherical subgroups should be classified by
some discrete invariants. Such invariants were suggested by Luna, under the names
of spherical systems and spherical homogeneous data (Definition 30.21). They are
defined in terms of roots and weights of G and wonderful G-varieties of rank 1.
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30.8 Spherical Spaces of Rank 1. For spherical homogeneous spaces of rank 1,
standard embeddings are always smooth. Indeed, they are normal G-varieties con-
sisting of two G-orbits—a dense one and another of codimension 1. Furthermore,
spherical homogeneous spaces of rank 1 are characterized by existence of a com-
pletion by homogeneous divisors.

Proposition 30.17 ([Akh1], [Bri5]). The following conditions are equivalent:

(1) O = G/H is a spherical homogeneous space of rank 1.
(2) There exists a smooth complete embedding X ←↩ O such that X \O is a union of

G-orbits of codimension 1.

Moreover, if O is horospherical, then X \O consists of two orbits and X � G∗Q P
1,

where Q⊆G is a parabolic acting on P
1 via a character. Otherwise X \O is a single

orbit and X is a wonderful embedding of O.

Proof. The implication (1) =⇒ (2) and the properties of X easily stem from the
Luna–Vust theory: the colored space E is a line, whence there exists a unique
smooth complete toroidal embedding X , which is obtained by adding two homo-
geneous divisors (corresponding to the two rays of E ) if V = E and is wonderful if
V is a ray.

To prove (2) =⇒ (1), we consider the local structure of X in a neighborhood of a
closed orbit Y . Let P = Pu �L be a Levi decomposition of P = P(Y ). There is a B-
chart X̊ �Pu×Z such that Z is an L-stable affine curve intersecting Y transversally at
the unique P−-fixed point. Note that T ⊆ L cannot fix Z pointwise for otherwise OT

would be infinite, which is impossible. Hence T : Z has an open orbit, whence (1).
��

Remark 30.18. A similar reasoning proves an embedding characterization of arbi-
trary rank 1 spaces, due to Panyushev [Pan5]: r(O) = 1 if and only if there exists a
complete embedding X ←↩ O such that X \O is a divisor consisting of closed G-or-
bits. Here Z is an affine L-stable subvariety with a pointwise L-fixed divisor Z \O
(provided that Y is a general closed orbit), which readily implies that general or-
bits of L : Z are one-dimensional, whence r(X) = r(Z) = 1. On the other hand, it is
easy to construct a desired embedding X for a homogeneous space O parabolically
induced from SL2 modulo a finite subgroup, cf. Proposition 10.3.

Spherical homogeneous spaces G/H of rank 1 were classified by Akhiezer
[Akh1] and Brion [Bri5]. It is easy to derive the classification from a regular em-
bedding of H into a parabolic Q ⊆ G. In the notation of Theorem 9.4 we have an
alternative: either r(M/K) = 1, rM∗(Qu/Hu) = 0, or vice versa.

In the first case Hu = Qu, i.e., G/H is parabolically induced from an affine spher-
ical homogeneous rank 1 space M/K. Except for the trivial case M/K � k

× (where
H is horospherical), K is sober in M and H in G.

In the second case M = K = M∗, and Qu/Hu � qu/hu is an M-module such that
(qu/hu) \ {0} is a single M-orbit. Indeed, k[qu/hu]U(M) is generated by one B(M)-
eigenfunction, namely a highest covector in (qu/hu)∗, whence qu/hu is an HV-cone.
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Therefore M acts on qu/hu � k
n as GLn(k) or k

× ·Spn(k) and the highest weight of
qu/hu is a negative simple root.

We deduce that every spherical homogeneous space of rank 1 is either horo-
spherical or parabolically induced from a primitive rank 1 space O = G/H with G
semisimple and H sober. Primitive spaces are of the two types:

(1) H is reductive.
(2) H is regularly embedded in a maximal parabolic Q ⊆ G which shares a Levi

subgroup M with H and qu/hu is a simple M-module of type GLn(k) : k
n or

k
× ·Spn(k) : k

n generated by a simple root vector.

Primitive spherical homogeneous spaces of rank 1 are listed in Table 30.1. Those
of the first type are easy to classify, e.g., by inspection of Tables 10.1, 10.3,
and 26.3. We indicate the embedding H ↪→G by referring to Table 26.3 (10.1) in the
(non-)symmetric case. Primitive spaces of the second type are classified by choos-
ing a Dynkin diagram and its node corresponding to a short simple root α which is
adjacent to an extreme node of the remaining diagram, the latter being of type Al

or Cl . The diagrams are presented in the column “H ↪→ G”, with the white node
corresponding to α .

The wonderful embeddings of spherical homogeneous space of rank 1 are
parabolically induced from those of primitive spaces. The latter are easy to describe.
For type 1 the construction of 30.3 works whenever NG(H) = H: the wonderful

embedding of G/H is realized as X = G[v] ⊆ P(V (λ )), where v ∈ V (λ )(H̃), λ ∈
Λ+(G̃/H̃0), and H̃ is the preimage of H in G̃. If NG(H) �= H and λ spans Λ+(G/H),
then X is the projective closure of Gv in P(V (λ )⊕k). The simple minimal root of
X is the generator of Λ+(G/H).

For type 2 the wonderful embedding is X = G∗Q P(Qu/Hu⊕k). Indeed, Qu acts
on the M-module Qu/Hu by affine translations, whence the projective closure of
Qu/Hu consists of two Q-orbits—the affine part and the hyperplane at infinity. Here
Π min

X = {wMα}.
Simple minimal roots of arbitrary wonderful G-varieties of rank 1 are called

spherical roots of G. They are non-negative linear combinations of ΠG. Let ΣG

denote the set of all spherical roots. It is a finite set, which is easy to find from the
classification of wonderful varieties of rank 1.

Spherical roots of reductive groups of simply connected type are listed in Ta-
ble 30.2. Namely, λ ∈ ΣG if and only if it is a spherical root of a simple factor, or
a product of two simple factors, indicated in the first column of the table. For each
spherical root λ , we indicate the Dynkin diagram of the simple roots occurring in the
decomposition of λ with positive coefficients. The numbering of the simple roots
αi is according to [OV], and αi,α ′

j denote simple roots of different simple factors.
For arbitrary G, ΣG is obtained from ΣG̃ by removing the spherical roots that are not
in the weight lattice of G. Note that if λ ,μ ∈ ΣG are proportional, then λ = 2μ or
μ = 2λ , and also if λ ∈ ΣG \ZΔG, then 2λ ∈ ΣG∩ZΔG.

More generally, two-orbit complete (normal) G-varieties were classified by Cupit-
Foutou [C-F1] and Smirnov [Sm-A]. All of them are spherical.

Wonderful varieties of rank 2 were classified by Wasserman [Wa].



30 Wonderful Varieties 191

Table 30.1 Wonderful varieties of rank 1
No. G H H ↪→ G Π min

G/H Wonderful embedding

X = {(x : t) | detx = t2}
1 SL2×SL2 SL2 diagonal ω +ω ′ ⊂ P(L2⊕k)
2 PSL2×PSL2 PSL2 2ω +2ω ′

P(L2)
3 SLn S(L1×Ln−1) symmetric No. 1 ω1 +ωn−1 P

n−1× (Pn−1)∗
�� �. . .

4 PSL2 PO2 symmetric No. 3 4ω P(sl2)
5 Sp2n Sp2×Sp2n−2 symmetric No. 4 ω2 Gr2(k2n)
6 Sp2n B(Sp2)×Sp2n−2

� � � �<.. . ω2 Fl1,2(k2n)
X = {(x : t) | (x,x) = t2}

7 SOn SOn−1 symmetric ω1 ⊂ P
n

8 SOn S(O1×On−1) No. 6 2ω1 P
n−1

X = {(V1,V2) |V1 ⊂V⊥
1 }

9 SO2n+1 GLn �∧2
k

n � � �>.. . ω1 ⊂ Fln,2n(k2n+1)
X = {(x : t) | (x,x) = t2}

10 Spin7 G2 non-symmetric ω3 ⊂ P(V (ω3)⊕k)
11 SO7 G2 No. 10 2ω3 P(V (ω3))
12 F4 B4 symmetric No. 17 ω1

X = {(x : t) | (x,x) = t2}
13 G2 SL3 non-symmetric ω1 ⊂ P(V (ω1)⊕k)
14 G2 N(SL3) No. 12 2ω1 P(V (ω1))
15 G2 GL2 � (k⊕k

2)⊗∧2
k

2 � �< ω2−ω1

30.9 Localization of Wonderful Varieties. For arbitrary wonderful varieties, many
questions can be reduced to the case of rank ≤ 2 via the procedure of localization
[Lu5], [Lu6, 3.2].

Given a wonderful variety X with the open G-orbit O, there is a bijection Di ↔ λi

(i = 1, . . . ,r) between the component set of ∂ X and Πmin
X . Namely λi is orthogonal

to the facet of V complementary to the ray which corresponds to Di. Also, λi is the
T -weight of TzX/TzDi at the unique B−-fixed point z.

For any subset Σ ⊂ Π min
X , put XΣ =

⋂
λi /∈Σ Di, the localization of X at Σ . It is a

wonderful variety with Π min
XΣ = Σ , and all colors in DB(XΣ ) are obtained as irre-

ducible components of D∩XΣ , D ∈DB. (To see the latter, observe that every color
on XΣ is contained in the zeroes of a B-eigenform in projective coordinates, which
extends to X by complete reducibility of G-modules.) In particular, the wonderful
subvarieties Xi,Xi j of ranks 1,2 considered in the proof of Theorem 30.15 are the
localizations of X at {λi}, {λi,λ j}, respectively.

Another kind of localization is defined by choosing a subset I ⊂ Π . Let PI be
the respective standard parabolic in G, with the standard Levi subgroup LI , and TI =
Z(LI)0. Denote by ZI , X̊ I ,XI the sets of TI-fixed points in Z, X̊ , and XI := PIX̊ = LIX̊ ,
respectively.

Lemma 30.19. (1) The contraction by a general dominant one-parameter subgroup
γ ∈ X∗(TI) gives a PI-equivariant retraction πI : XI → XI, πI(x) = limt→0 γ(t)x
(where PI is assumed to act on XI via its quotient LI modulo (PI)u).
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Table 30.2 Spherical roots

G ΣG

Al αi + · · ·+α j (A j−i+1, i≤ j), 2αi (A1),
αi +α j (A1×A1, i≤ j−2), (α1 +α3)/2 (A1×A1, l = 3),

αi−1 +2αi +αi+1 (D3, 1 < i < l), (α1 +2α2 +α3)/2 (D3, l = 3)
αi + · · ·+α j (A j−i+1, i≤ j < l), αl (A1), 2αi (A1),

αi +α j (A1×A1, i≤ j−2), (α1 +α3)/2 (A1×A1, l = 3,4),
Bl αi−1 +2αi +αi+1 (D3, 1 < i < l−1), (α1 +2α2 +α3)/2 (D3, l = 4),

αi + · · ·+αl (Bl−i+1, i < l), 2αi + · · ·+2αl (Bl−i+1, i < l),
αl−2 +2αl−1 +3αl (B3), (α1 +2α2 +3α3)/2 (B3, l = 3)

αi + · · ·+α j (A j−i+1, i≤ j < l), αl (A1), 2αi (A1),
Cl αi +α j (A1×A1, i≤ j−2), αi−1 +2αi +αi+1 (D3, 1 < i < l−1),

αi +2αi+1 + · · ·+2αl−1 +αl (Cl−i+1, i < l), 2αl−1 +2αl (C2)
αi1 + · · ·+ αik (Ak, k ≥ 1), 2αi (A1), αi +α j (A1×A1),

2αi1 +αi2 +αi3 (D3), (2αi1 +αi2 +αi3)/2 (D3, l = 4),
Dl 2αi + · · ·+2αl−2 +αl−1 +αl (Dl−i+1, i < l−1),

αi + · · ·+αl−2 +(αl−1 +αl)/2 (Dl−i+1, i < l−1), (αl−1 +αl)/2 (A1×A1),
(α1 +α3)/2 (A1×A1, l = 4), (α1 +α4)/2 (A1×A1, l = 4)

El αi1 + · · ·+ αik (Ak, k ≥ 1), 2αi (A1), αi +α j (A1×A1),
2αi1 + · · ·+2αik−2 +αik−1 +αik (Dk, k ≥ 3)

αi (A1), 2αi (A1), αi +α j (A1×A1, i≤ j−2), αi +αi+1 (A2, i �= 2),
F4 α2 +α3 (C2), 2α2 +2α3 (C2), α1 +2α2 +α3 (C3),

α2 +α3 +α4 (B3), 2α2 +2α3 +2α4 (B3), 3α2 +2α3 +α4 (B3),
2α1 +3α2 +2α3 +α4 (F4)

G2 αi (A1), 2αi (A1), α1 +α2 (G2), 2α1 +α2 (G2), 4α1 +2α2 (G2)
Xl ×Ym αi +α ′

j (A1×A1), (αl +α ′
m)/2 (A1×A1, X = Y = C, l,m≥ 1)

(2) XI is a wonderful LI-variety with P(XI) = P∩LI, Π min
XI = Π min

X ∩ 〈I〉, and the
colors of XI are in bijection, given by the pullback along πI , with the PI-unstable
colors of X.
(3) X̊ I � (Pu∩LI)×ZI is the (B∩LI)-chart of XI intersecting all orbits.
(4) (P−I )u fixes XI pointwise.

Proof. It is obvious that γ(t) contracts X̊ � Pu×Z onto X̊ I � (Pu ∩LI)×ZI , while
the conjugation by γ(t) contracts PI to LI , as t →∞. Hence πI extends to a retraction
of XI onto XI = LIX̊ I , and π−1

I (X̊ I) = X̊ since XI \ X̊ is closed and γ-stable. Thus
the PI-unstable colors on X intersect XI and are the pullbacks of the colors on XI .

Since (P−I )u-orbits are connected, it suffices to prove in (4) that (P−I )ux∩ X̊ =
{x}, ∀x ∈ X̊ I . If gx ∈ X̊ for some g ∈ (P−I )u, then γ(t)gx = γ(t)gγ(t)−1x → x as
t → ∞, whence gx = x, because γ(t) contracts X̊ to X̊ I as t → 0.

Now (4) implies that XI is closed in X , whence complete: otherwise XI \ XI

would contain a B−-fixed point distinct from z. The structure of X̊ I readily implies
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the remaining assertions on XI in (2): both G- and B-orbits intersect X̊ I in the orbits
of (Pu∩LI)T , and Π min

X ∩〈I〉 is the set of T -weights of ZI . ��

The wonderful variety XI is called the localization of X at I. It is easy to see that
XI ⊆ XΣ = GXI , where Σ = Π min

X ∩〈I〉. If I ⊇ΠL, then XΣ = G∗P−I
XI .

It is helpful to extend localization to an arbitrary spherical homogeneous space
O = G/H using an arbitrary complete toroidal embedding X ←↩ O instead of the
wonderful one. For any components D1, . . . ,Ds of ∂ X , the intersection X ′ = D1 ∩
·· · ∩Ds is either empty or a complete toroidal embedding of the G-orbit O′ ⊆ X
corresponding to the minimal cone C ′ in the fan of X containing vD1 , . . . ,vDs . If
X is smooth, then X ′ is smooth, too. If X ′ contains a unique closed G-orbit Y or,
equivalently, C ′ is a face of a unique maximal cone CY in the fan of X , then X ′ is
the standard embedding of O′. We have Πmin

X ′ = Σ := Π min
X ∩ (V ′)⊥, where V ′ is

the minimal face of V = V (O) containing C ′. For wonderful X we have X ′ = XΣ .
In particular, if C ′ is a solid subcone in the facet of V orthogonal to λ ∈Πmin

O , then
X ′ is a wonderful variety of rank 1 with Πmin

X ′ = {λ}, whence Π min
O ⊆ ΣG.

Also for any I ⊂ Π such that Λ (O) �⊂ 〈I〉 one can find X ←↩ O and a general
dominant one-parameter subgroup γ ∈X∗(TI) such that the image of−γ is contained
in a unique solid cone CY in the fan of X . (It suffices to take care lest the image
of 〈I〉⊥ in E (O) should lie in a hyperplane which separates two neighboring solid
cones in the fan.) Starting with X̊ = X̊Y , one defines XI as above and generalizes
Lemma 30.19, except that in (2) one may only assert that XI is standard, but it may
be no longer wonderful (i.e., be singular if X is so). If Λ (O) ⊂ 〈I〉, then XI can be
defined for any toroidal embedding X ←↩ O using X̊ = X \⋃D∈DB D. Lemma 30.19
extends to this setup except that XI is wonderful (resp. standard, complete, smooth)
if and only if X is so.

30.10 Types of Simple Roots and Colors. In particular, the localization of a com-
plete toroidal variety X at a single root α ∈Π yields a smooth complete subvariety
Xα of rank ≤ 1 acted on by Sα = L′α � SL2(k) or PSL2(k). The classification of
complete varieties of rank ≤ 1, together with Lemma 30.19, allows all simple roots
to be subdivided into four types:

(p) α ∈ΠL. Here Xα is a point and Pα leaves all colors stable.
(b) α /∈ Q+Π min

O ∪ΠL. If Xα is wonderful, then r(Xα) = 0 whence Xα = Sα/B∩
Sα � P

1; otherwise r(Xα) = 1 and Xα � Sα ∗B∩Sα P
1, where B∩Sα acts on P

1

via a character. There is a unique Pα -unstable color Dα = π−1
α (o) or π−1

α (e∗ P1).
(a) α ∈Π min

O . Here r(Xα) = 1 and Xα � P
1×P

1. There are two Pα -unstable colors

D+
α = π−1

α (P1×{o}) and D−
α = π−1

α ({o}×P1).
(a′) 2α ∈ Π min

O . Here r(Xα) = 1 and Xα � P
2 = P(sα). There is a unique Pα -un-

stable color Dα = π−1
α (P(b∩ sα)).

The type of a color D∈DB is defined as the type of α ∈Π such that Pα moves D.
Using Lemma 30.20 below, the localization at {α,β} ⊆Π , and the classification of
wonderful varieties of rank ≤ 1, one verifies that, as a rule, each D ∈ DB is moved
by a unique Pα , with the following exceptions: Dα = Dβ if and only if α,β are
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pairwise orthogonal simple roots of type b such that α + β ∈ Πmin
O � 2Π min

O ; two
sets {D±

α } and {D±
β } may intersect in one color for distinct α,β of type a. (In fact,

D = D′ for D ∈ {D±
α }, D′ ∈ {D±

β } if and only if κ(D) = κ(D′), by axiom (A1) in
Definition 30.21.) In particular, each color belongs to exactly one type. We obtain
disjoint partitions Π = Π a�Πa′ �Π b�Π p, DB = Da�Da′ �Db according to the
types of simple roots and colors.

Lemma 30.20. For any λ ∈Λ(O) we have

〈D+
α ,λ 〉+ 〈D−

α ,λ 〉= 〈α∨,λ 〉, ∀α ∈Πa,

〈Dα ,λ 〉= 〈α∨
2 ,λ 〉, ∀α ∈Πa′ ,

〈Dα ,λ 〉= 〈α∨,λ 〉, ∀α ∈Πb.

Proof. We use the localization at α of a smooth complete toroidal embedding X ←↩
O. Let Y α � Sα/(B− ∩ Sα) � P

1 be a closed Sα -orbit in Xα . Namely Y α is the
diagonal of Xα � P

1 ×P
1 in type a, a conic in Xα � P

2 in type a′, and a section
of Xα → P

1 in type b. Put δλ = ∑D∈DB〈D,λ 〉D. From the description of Pα -stable
and unstable colors, we readily derive 〈Y α ,δλ 〉 = 〈D+

α ,λ 〉+ 〈D−
α ,λ 〉, 2〈Dα ,λ 〉, or

〈Dα ,λ 〉, depending on the type of α .
On the other hand, δλ ∼ −∑〈vi,λ 〉Di, where Di runs over all G-stable prime

divisors in X and vi ∈ V is the corresponding G-valuation. Since O(Di)|Di is the
normal bundle to Di, the fiber of O(Di) at the B−-fixed point z ∈ Y α is TzX/TzDi

for each Di ⊇ Y α . Note that the T -weights λi of these fibers form the basis of −C ∨
Y

dual to the basis of −CY formed by the −vi, where Y = Gz is the closed G-orbit in
X containing Y α . Hence O(δλ )|Y α = L(−∑Di⊇Y 〈vi,λ 〉λi) = L(λ ) and 〈Y α ,δλ 〉=
degL(λ ) = 〈α∨,λ 〉. The lemma follows. ��

30.11 Combinatorial Classification of Spherical Subgroups and Wonderful Va-
rieties. These results show that Da′ ,Db as abstract sets and their representation
in E (O) are determined by Π p and Πmin

O . The colors of type a, together with
the weight lattice, the parabolic P, and the simple minimal roots, form a collec-
tion of combinatorial invariants supposed to identify O up to isomorphism. Namely
(Λ(O),Π p,Π min

O ,Da) is a homogeneous spherical datum in the sense of the follow-
ing

Definition 30.21 ([Lu6, §2]). A homogeneous spherical datum is a collection
(Λ ,Π p,Σ ,Da), where Λ is a sublattice in X(T ), Π p ⊆ ΠG, Σ ⊆ ΣG ∩Λ is a lin-
early independent set consisting of indivisible vectors in Λ , and Da is a finite set
equipped with a map κ : Da →Λ ∗, which satisfies the following axioms:

(A1) 〈κ(D),λ 〉 ≤ 1, ∀D ∈ Da, λ ∈ Σ , and the equality is reached if and only if
λ = α ∈ Σ ∩Π and D = D±

α , where D+
α ,D−

α ∈ Da are two distinct elements
depending on α .

(A2) κ(D+
α )+κ(D−

α ) = α∨ on Λ for any α ∈ Σ ∩Π .
(A3) Da = {D±

α | α ∈ Σ ∩Π}
(Σ1) If α ∈Π ∩ 1

2 Σ , then 〈α∨,Λ〉 ⊆ 2Z and 〈α∨,Σ \{2α}〉 ≤ 0.
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(Σ2) If α,β ∈Π , α ⊥ β , and α +β ∈ Σ �2Σ , then α∨ = β∨ on Λ .
(S) 〈α∨,Λ 〉= 0, ∀α ∈ Π p, and the pair (λ ,Π p) comes from a wonderful variety

of rank 1 for any λ ∈ Σ .

A spherical system is a triple (Π p,Σ ,Da) satisfying the above axioms with Λ = ZΣ .

The homogeneous spherical datum of the open orbit in a wonderful variety
amounts to its spherical system. It is easy to see that there are finitely many spheri-
cal systems for given G. There is a transparent graphical representation of spherical
systems by spherical diagrams [Lu6, 4.1], [BraL, 1.2.4], which are obtained from
the Dynkin diagram of G by adding some supplementary data describing types of
simple roots, colors, and spherical roots.

For the homogeneous spherical datum of O, most of the axioms (A1)–(A3),
(Σ1)–(Σ2), (S) are verified using the above results together with some additional
general arguments. For instance, the inequality in (Σ1) stems from the fact that
Σ = Π min

O is a base of a root system Δ min
O . On the other hand, each axiom involves at

most two simple or spherical roots, like the axioms of classical root systems. Thus
the localizations at one or two simple or spherical roots reduce the verification to
wonderful varieties of rank ≤ 2.

Actually the list of axioms was obtained by inspecting the classification of
wonderful varieties of rank ≤ 2, which leads to the following conclusion: spher-
ical systems (homogeneous data) with |Σ | ≤ 2 bijectively correspond to wonder-
ful varieties of rank ≤ 2 (resp. to spherical homogeneous spaces O = G/H with
r(G/NG(H))≤ 2). It is tempting to extend this combinatorial classification to arbi-
trary wonderful varieties and spherical spaces. Now this program is fulfilled after a
decade of joint efforts of several researchers.

Theorem 30.22. For any connected reductive group G, there are natural bijections:
{

spherical homogeneous
G-spaces

}

←→
{

homogeneous spherical
data for G

}

(30.2)

{wonderful G-varieties}←→ {spherical systems for G} (30.3)

Example 30.23. Solvable spherical subgroups or, more precisely, spherical sub-
groups contained in a Borel subgroup of G were classified by Luna [Lu3]. Spherical
data arising here satisfy Σ = Πa, Πa′ = Π p = /0, D−

α �= D±
β , and 〈κ(D+

α ),β 〉< 0 =⇒
〈κ(D+

β ),α〉= 0 (∀α ,β ∈Π a, α �= β ).
Indeed, by Example 15.13 a spherical subgroup H ⊂ G is contained in a Borel

subgroup if and only if there exists a subset R0 ⊂DB such that V ∪κ(R0) generates
E as a cone and P[DB \R0] = B. This means that R0 ⊂ Da contains a unique
element, say D+

α , from each pair D±
α , Σ = Π a (because 〈V ∪κ(R0),Σ \Πa〉 ≤

0 by (A1)), and Π a′ = Π p = /0. Since DB \R0 consists of the preimages of the
Schubert divisors, each of these divisors is moved by a unique minimal parabolic,
whence the condition on D−

α . The condition on pairings holds, because otherwise
〈V ∪κ(R0),α +β 〉 ≤ 0 by (A1), a contradiction.

An explicit description of connected solvable spherical subgroups was recently
obtained by Avdeev [Avd].
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30.12 Proof of the Classification Theorem.

Stage 1. We may assume that G is of simply connected type. The bijection (30.2) was
proved by Luna provided that G/Z(G) satisfies (30.3) [Lu6, §7]. The basic idea is to
replace O = G/H by O = G/H. This passage preserves the types of simple roots and
colors, and Πmin

O
is obtained from Πmin

O by a dilation: some λ ∈ Π min
O \ (Π � 2Π)

are replaced by 2λ . It is not hard to prove that spherical subgroups H with fixed very
sober hull H bijectively correspond to homogeneous spherical data (Λ ,Π p,Σ ,Da)
such that (Π p,Πmin

O
,Da) is the spherical system of O, Λ ⊃Π min

O
, and Σ is obtained

from Π min
O

by replacing λ ∈ Π min
O

\ (Π � 2Π) with λ/2 whenever λ/2 ∈ Λ [Lu6,
§6].

Indeed, let H0 denote the common kernel of all characters in X(H). In the no-
tation of 30.5, TO = H/H0 is a diagonalizable group with X(TO) = X(H) and
H0 ⊆ H ⊆ H. (Note that H0 itself may be not spherical and even if it is spheri-
cal, it may happen that H0 �= H. Examples are: G = SL2(k), H = T , H0 = {e}, and
H = N(T ), H0 = T , respectively.) So the problem is to classify intermediate spher-
ical subgroups between H0 and H with very sober hull H. Intermediate subgroups
H bijectively correspond to sublattices X(H/H) ⊆ X(TO). It remains to determine
which of them are spherical and have very sober hull H.

We shall use the notation of 30.5. The equations ηD ∈ k[G](B×H) of colors D⊂O
can be chosen Z(G)0-invariant, so that λD,χD vanish on Z(G)0. There is an equiv-
ariant version of the commutative diagram (30.1):

PicG O ←−−−− PicG X −−−−→ PicG Y
∥
∥
∥

∥
∥
∥

∥
∥
∥

X(TO) ←−−−− ZD
B⊕X(G) −−−−→ X(P)

χD + μ ←−−−− (D,μ) −−−−→ λD−μ,

where D
B

is the set of colors of O and X ←↩ O is the wonderful embedding with the
closed G-orbit Y . The weights λD are easy to determine.

Lemma 30.24 ([Fo]). For any color D of a spherical homogeneous space O = G/H
one has

λD =

⎧
⎪⎨

⎪⎩

∑D=D±αi
ωi, D ∈Da,

2ωi, D = Dαi ∈Da′ ,

∑D=Dαi
ωi (≤ 2 summands), D ∈Db,

where ωi ∈ X+ denote the fundamental weights corresponding to the simple roots
αi ∈Π .

Proof. Clearly, λD is a positive linear combination of the ωi such that Pαi moves D.
In order to determine the coefficient at ωi, it suffices to localize at αi and consider
the respective spherical SL2-variety Xαi . ��
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The subgroup H is not spherical if and only if there exists an eigenspace

k[G](B×H)
(λ ,χ) of dimension > 1. Since H acts on X(H) via a finite quotient group,

we may multiply this eigenspace by (B×H)-eigenfunctions whose H-weights run
over the H-orbit of χ (except χ itself) and thus assume that χ is H-invariant, i.e.,

H acts on k[G](B×H)
(λ ,χ) by right translations of an argument. Taking an H-eigenbasis

of k[G](B×H)
(λ ,χ) , we obtain at least two (B×H)-eigenfunctions of distinct eigenweights

(λ ,χi) (i = 1,2) such that χi|H = χ . This means that the preimage Λ̂ of X(H/H) in
PicG(X) maps to X(B) non-injectively. Note that the image of Λ̂ is nothing else but
the weight lattice Λ = Λ (O).

Thus H is spherical if and only if Λ̂ injects into X(B). In other words, for each
λ ∈Λ there must be a unique presentation λ = ∑mDλD−μ such that ∑mDχD +μ ∈
X(H/H)). This allows a map κ : D

B → Λ∗ to be defined such that 〈κ(D),λ 〉 =
mD. This map is well defined on colors of types a′,b for any H, because mDα =
〈α∨/2,λ 〉 or 〈α∨,λ 〉 for α ∈Πa′ or Π b, respectively, by Lemma 30.24, and so the
existence of κ is essential only for colors of type a. Clearly, κ is compatible with
the respective map for the spherical system of O. Also by Lemma 30.24 the axioms
(A2), (Σ1)–(Σ2), (S) hold. The group X(H/H) is recovered from Λ ,κ as the set of
all χ = ∑〈κ(D),λ 〉χD−λ |Z(G)0 with λ ∈Λ .

Now Σ = Π min
O is obtained from Πmin

O
by replacing spherical roots with propor-

tional indivisible vectors in Λ . The map O → O may patch some colors together,
namely D±

α ⊂ O map onto Dα ⊂ O whenever α ∈ Π ∩Πmin
O , 2α ∈ Πmin

O
. So H is

the very sober hull of H if and only if α /∈ Λ whenever 2α ∈ Πmin
O

. We conclude

that spherical subgroups with very sober hull H bijectively correspond to homo-
geneous spherical data such that Σ is proportional to Π min

O
and α /∈ Σ whenever

2α ∈ 2Π ∩Πmin
O

, which is our claim.

If (30.3) holds for the adjoint group of G, then Π min
O

coincides with the set Σ
obtained from Σ = Πmin

O by the “maximal possible” dilation: every λ ∈ Σ \ (Π �
2Π) such that 2λ ∈ ΣG and (2λ ,Π p) corresponds to a wonderful variety of rank 1 is
replaced by 2λ . The spherical system (Π p,Σ ,Da) is said to be the spherical closure
of (Π p,Σ ,Da). Indeed, by (30.3) this spherical closure corresponds to a certain very
sober subgroup H ⊆ G. By the above, the spherical system of O corresponds to a
certain subgroup with very sober hull H. Again by (30.3), this subgroup is conjugate
to H, and hence coincides with H. It follows that the spherical homogeneous datum
of O determines the spherical system of O in a pure combinatorial way. Conversely,
this spherical system together with Λ ,κ determines O and O by the above, which
proves (30.2).

Stage 2. The proof of (30.3) for adjoint G is much more difficult. Luna proposed
the following strategy. The first stage is to prove that certain geometric operations
on wonderful varieties (localization, parabolic induction, direct product, etc) are ex-
pressed in a pure combinatorial language of spherical systems. Every spherical sys-
tem is obtained by these combinatorial operations from a list of primitive systems.



198 5 Spherical Varieties

The next stage is to classify primitive spherical systems. And finally, for primitive
systems, the existence and uniqueness of a geometric realization is proved case by
case. This strategy was implemented by Luna in the case where all simple factors of
G are of type A [Lu6]. Later on, this approach was extended by Bravi and Pezzini
to the groups with the simple factors of types A and D [Bra1], [BraP1] or A and C
(with some technical restrictions) [Pez]. In [Bra2] Bravi settled the case of arbitrary
G with simply laced Dynkin diagram, and the case F4 was considered in [BraL]. Re-
cently the reduction to primitive spherical systems was justified in [BraP2] for any
G and the complete list of primitive spherical systems was given in [Bra3]. Using
this list, the case of G with classical factors was settled in [BraP2].

On the other hand, the uniqueness of a geometric realization was proved by Losev
by a general argument [Los2]. It remained to prove the existence. A new conceptual
approach was suggested by Cupit-Foutou, who completed the proof of the theorem
in [C-F2]. We give an outline of her proof.

Instead of assuming that G is adjoint, it is more convenient to suppose that G
is semisimple simply connected. An idea of how to reconstruct a wonderful G-
variety X from its spherical system is inspired by Brion’s description of the Cox
ring R(X), see 30.5. By Theorem 30.12(3), X = SpecR(X) is the total space
of a flat family πG of Ĝ-varieties with categorical quotient by U isomorphic to
A

d , d = |DB|, where T̂ acts by weights −λ̂D, D ∈ DB. Hence πG : X → A
r is

the pullback of the universal family X univ → HilbĜ
Ad along a T -equivariant map

A
r → HilbĜ

Ad (see Appendix E.3). It turns out that HilbĜ
Ad � A

r as T -varieties if the
spherical system of X is spherically closed (i.e., coincides with its spherical clo-

sure), see below. Moreover, the T -orbit in HilbĜ
Ad of a typical fiber G//H0 of πG

is open by Theorem E.14(3), since −Πmin
X , −Πmin

G/H0
, and the tails of G//H0 gener-

ate one and the same cone. Therefore A
r is mapped to HilbĜ

Ad dominantly, whence
isomorphically. Thus X � X univ depends (as a spherical (G× TX )-variety) only
on the spherical system of X (see below). Now X̊ is obtained from X by remov-
ing all (G×TX )-orbits contained in colors. Indeed, removing these orbits yields the
regularity locus of the rational map X ��� X . This open set X ′ cannot be larger
than X̊ , because X̊ → X is an affine morphism, whence codim(X ′ \ X̊ ) = 1,
while codim(X \X̊ ) > 1. Finally, X = X̊ /TX .

This argument also suggests a way to construct a wonderful variety from any
given spherically closed spherical system (Π p,Σ ,Da). Let D = Da �Da′ �Db

denote the set of colors of the spherical system obtained by adding to Da the
elements Dα , α ∈ Π a′ �Π b, with identifications as in 30.10. Consider a torus
TX = (k×)D and a subgroup TO ⊆ TX defined by equations ∏D∈D t〈κ(D),λ〉

D = 1,
∀λ ∈ Σ . (This notation is used for consistency, though there are no X and O at
the moment.) Let εD(t) = tD denote the basic characters of TX and χD = εD|TO . De-
fine the weights λD by the formulæ of Lemma 30.24. Note that ∑〈κ(D),λ 〉λD = λ ,
∀λ ∈ Σ , and the biweights λ̂D = (λD,χD) are linearly independent. We shall freely
use other notation from 30.5.
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Consider the invariant Hilbert scheme HilbĜ
λ̂

parameterizing affine Ĝ-varieties

Z with Z//U � A
d , d = |D |, where T̂ acts by weights −λ̂D, D ∈ D . The iso-

morphism Z//U
∼→ A

d gives rise to a unique Ĝ-equivariant closed embedding

Z ↪→ V =
⊕

V (λ̂ ∗D). It follows that HilbĜ
λ̂

is an open subset of the invariant Hilbert

scheme HilbĜ
m(V ) parameterizing affine spherical Ĝ-subvarieties of V with rank

semigroup Λ̂+ = ∑Z+λ̂D which are not contained in any proper Ĝ-submodule of V .
(Here m is the indicator function of Λ̂+.)

The T̂ -action on HilbĜ
λ̂

, which is induced by T̂ : V , where T̂ acts on V (λ̂ ∗D) by

weight −λ̂D, contracts HilbĜ
λ̂

to the unique T̂ -fixed point corresponding to an S-va-

riety Z0 = Ĝv, where v = ∑v−λ̂D
is the sum of lowest vectors, see Theorems E.14

and 28.3.
The tangent space and the obstruction space of HilbĜ

λ̂
at [Z0] are given by Propo-

sition E.11. It turns out that T[Z0]HilbĜ
λ̂
�A

r, r = |Σ |, where T acts with eigenweight

set −Σ and T 2(Z0)Ĝ = 0. The proof involves computation of cohomologies of non-
reductive groups and Lie algebras; this is the most technical part of [C-F2]. It then

follows that HilbĜ
λ̂
� A

r.

Let πG : X ⊆V ×A
r → A

r be the universal family. The TO-action on V extends
to TX by letting it act on each V (λ̂ ∗D) by weight −εD, and πG is clearly TX -equivari-
ant.

Lemma 30.25. (1) X is a factorial affine spherical (G× TX )-variety defined by
a supported colored cone (C ,D̂), where C = (Q+Λ+(X ))∨ and D̂ is the set of
colors of X , which is identified with D . The spherical roots and the types of simple
roots and colors for X are the same as for the given spherical system.
(2) The algebra k[X ]U (resp. the semigroup Λ+(X )) is freely generated by the re-
strictions of linear (B×TX )-eigenfunctions on V (resp. by their biweights (λD,εD))
and by the coordinate functions on A

r (resp. by their biweights (0,∑〈κ(D),λ 〉εD),
λ ∈ Σ ).
(3) These functions are the equations of the colors and of the (G× TX )-stable di-
visors on X , respectively, or, equivalently, these divisors are mapped by κ to the
basis dual to the basis of Λ+(X).

Proof. X is spherical, because the fibers of πG are spherical Ĝ-varieties and general
fibers are transitively permuted by TX . The description of the colored data of X
stems from the results of 15.1 observing that X contains a fixed point 0, whose
colored cone is solid by Proposition 15.14. The assertion (2) immediately follows
from the definition of the invariant Hilbert scheme and the universal family.

By Theorem E.14(3), the tails of X or, equivalently, of a general fiber Z of πG

span a free semigroup with basis −Σ , whence, by (T0), Πmin
X is proportional to Σ .

But it is easy to check that Λ(X )∩X(T ) = ZΣ , whence Σ consists of indivisible
vectors in Λ(X ), i.e., Π min

X = Σ .
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It follows from (2) that the simple roots α of type p for X are those satisfying
〈α∨,λD〉 = 0, ∀D ∈ D , i.e., α ∈ Π p. Hence the types of simple roots with respect
to X are the same as for our spherical system. In particular, D̂a′ and D̂b are in
bijection with Da′ and Db, respectively. Moreover, it stems from the definition of
λD that for any D ∈ Da′ �Db the respective color D̂ ∈ D̂a′ � D̂b is mapped by
κ to the vector of the dual basis corresponding to the vector (λD,εD) in the basis
of Λ+(X ).

As for colors of type a, we use an observation of R. Camus: for any α ∈ Πa,
at least one of the two Pα -unstable colors D̂±

α ∈ D̂a is mapped to an edge of C .
(Otherwise−α is non-negative on C , because it is non-negative on V (X )∪κ(D̂ \
{D̂±

α }) by Lemma 30.20 and axiom (A1), whence −α ∈ Z+Λ+(X ) is dominant,
a contradiction.) Since κ(D̂+

α )+κ(D̂−
α ) = α∨ takes the value 1 on (λD±α

,εD±α
) and

vanishes on the other vectors in the basis of Λ+(X), we deduce that κ(D̂±
α ) are the

vectors of the dual basis corresponding to (λD±α
,εD±α

).

Thus D̂ is in bijection with D preserving types of colors, and the colors of X are
represented by the vectors of the dual basis of Λ(X )∗ corresponding to the vectors
(λD,εD) (D ∈D) in the basis of Λ+(X ). Clearly, the remaining vectors in the dual
basis (which spans C ) correspond to the (G× TX )-stable divisors, whence X is
factorial. This completes the proof of (1) and (3). ��

Let X̊ ⊆ X be an open subset obtained by removing all (G×TX )-orbits con-
tained in a color. Alternatively, X̊ can be described as the set of points having
non-zero projection to each V (λ̂ ∗D) or the union of open Ĝ-orbits in the fibers of πG.
It is a smooth simple toroidal (G×TX )-variety defined by the face C ′ ⊆ C spanned
by the edges orthogonal to (λD,εD) (D ∈ D). Now X̊ ⊆ ∏(V (λ̂ ∗D)\{0})×A

r ad-
mits a geometric quotient X = X̊ /TX by a free TX -action, which is a smooth simple
toroidal G-variety. It is easy to see that X is complete (because C ′ maps onto V (X)),
whence wonderful, and the spherical system of X coincides with (Π p,Σ ,Da).

If (Π p,Σ ,Da) is not spherically closed, then one may consider its spherical clo-
sure (Π p,Σ ,Da) and construct the respective wonderful embedding X ←↩ O = G/H.
A subgroup H ⊂H such that O = G/H has a wonderful embedding X with spherical
system (Π p,Σ ,Da) was constructed at Stage 1.

In fact, it is proved in [C-F2] that HilbĜ
λ̂

is an r-dimensional vector space on

which T acts with eigenweight set−Σ , for any spherical system (Π p,Σ ,Da). Argu-
ing as above, we see that the Cox family πG : X = SpecR(X)→A

r is pulled back

from X univ along a unique T -equivariant finite map A
r →HilbĜ

λ̂
, and therefore X is

uniquely determined by (Π p,Σ ,Da). This concludes the proof of Theorem 30.22.
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31 Frobenius Splitting

Frobenius splitting is a powerful tool of modern algebraic geometry which allows
various geometric and cohomological results to be proved by reduction to positive
characteristic. This notion was introduced by Mehta and Ramanathan [MRa] in their
study of Schubert varieties.

31.1 Basic Properties. Let X be an algebraic variety over an algebraically closed
field k of characteristic p > 0. The Frobenius endomorphism f �→ f p of OX gives
rise to the Frobenius morphism F : X1/p → X , where X1/p = X as ringed spaces but
the k-algebra structure on OX1/p is defined as c ∗ f = cp f , ∀c ∈ k. (We emphasize
here that F acts identically on points, but non-trivially on functions.)

If X is a subvariety in A
n or P

n, then X1/p is, too. The defining equations of X1/p

are obtained from those of X by replacing all coefficients with their p-th roots. The
Frobenius morphism F is given by raising all coordinates to the power p.

The Frobenius endomorphism may be regarded as an injection of OX -modules
OX ↪→ F∗OX1/p , where F∗OX1/p = OX is endowed with another OX -module struc-
ture: f ∗h = f ph for any local sections f of OX and h of F∗OX1/p .

Definition 31.1. The variety X is said to be Frobenius split if the Frobenius ho-
momorphism has an OX -linear left inverse σ : F∗OX1/p → OX , called a Frobenius
splitting. In other words, σ is a Zp-linear endomorphism of OX such that σ(1) = 1
and σ( f ph) = f σ(h).

For any closed subvariety Y ⊂ X one has σ(IY )⊇IY , because IY ⊇I p
Y . The

splitting σ is compatible with Y if σ(IY ) = IY . Clearly, a compatible splitting
induces a splitting of Y .

More generally, let δ be an effective Cartier divisor on X , with the canonical sec-
tion ηδ ∈ H0(X ,O(δ )), divηδ = δ . We say that X is Frobenius split relative to δ if
there exists an OX -module homomorphism, called a δ -splitting, σδ : F∗OX1/p(δ )→
OX such that σ(h) = σδ (hηδ ) is a Frobenius splitting or, equivalently, σδ (ηδ ) = 1
and σδ ( f pη) = f σδ (η) for any local section η of O(δ ). The δ -splitting σδ is com-
patible with Y if the support of δ contains no component of Y (i.e., δ restricts to a
divisor on Y ) and σ is compatible with Y . Then σδ induces a (δ ∩Y )-splitting of Y .

For a systematic treatment of Frobenius splitting and its applications, we refer to
a monograph of Brion and Kumar [BKu]. Here we recall some of its most important
properties.

Clearly, a Frobenius splitting of X (compatible with Y , relative to δ ) restricts to a
splitting of every open subvariety U ⊂ X (compatible with Y ∩U , relative to δ ∩U).
Conversely, if X is normal and codim(X \U) > 1, then any splitting of U extends
to X . In applications it is often helpful to consider U = X reg.

If ϕ : X → Z is a morphism such that ϕ∗OX = OZ , then a Frobenius splitting of
X descends to a splitting of Z. If the splitting of X is compatible with Y ⊂ X , then
the splitting of Z is compatible with ϕ(Y ). For instance, one obtains a splitting of a
normal variety X from that of a desingularization of X (if any exists).
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It is not hard to prove that Frobenius split varieties are weakly normal, i.e., every
bijective finite birational map onto a Frobenius split variety has to be an isomor-
phism [BKu, 1.2.5].

Proposition 31.2. (1) Suppose that X is a Frobenius split projective variety; then
Hi(X ,L ) = 0 for any ample line bundle L on X and all i > 0.
(2) If Y ⊂ X is a compatibly split subvariety, then the restriction map H0(X ,L )→
H0(Y,L ) is surjective.
(3) If the splittings above are relative to an ample divisor δ , then the assertions of
(1)–(2) hold for any numerically effective (e.g., globally generated) line bundle, i.e.,
L such that 〈L ,C〉 ≥ 0 for any closed curve C ⊆ X.
(4) There are relative versions of assertions (1)–(3) for a proper morphism ϕ : X →
Z stating that Riϕ∗L = 0 and ϕ∗L → ϕ∗(ι∗ι∗L ) is surjective under the same
assumptions, with ι : Y ↪→ X.

Proof. The idea is to embed the cohomology of L as a direct summand in the co-
homology of a sufficiently big power of L . Namely the canonical homomorphism
L → F∗F∗L = L ⊗OX F∗OX1/p has a left inverse 1⊗σ , whence L is a direct
summand in F∗F∗L . Taking the cohomology yields a split injection

Hi(X ,L ) ↪→ Hi(X ,F∗F
∗L )� Hi(X1/p,F∗L )� Hi(X ,L ⊗p), ∀i≥ 0.

(The right isomorphism is only Zp-linear.) Iterating this procedure yields a split

Zp-linear injection Hi(X ,L ) ↪→ Hi(X ,L ⊗pk
) compatible with the restriction to Y .

Thus the assertions (1) and (2) are reduced to the case of the line bundle L ⊗pk
,

k & 0, where the Serre theorem applies [Har2, III.5.3].
Similar reasoning applies to (3) making use of a split injection Hi(X ,L ) ↪→

Hi(X ,L ⊗p⊗O(δ )) together with ampleness of L ⊗p⊗O(δ ). The relative asser-
tions are proved by the same arguments. ��

Among other cohomology vanishing results for Frobenius split varieties we men-
tion the extension of the Kodaira vanishing theorem [BKu, 1.2.10(i)]: if X is smooth
projective and Frobenius split, then Hi(X ,L ⊗ωX ) = 0 for ample L and i > 0.

31.2 Splitting via Differential Forms. Now we reformulate the notion of Frobe-
nius splitting for smooth varieties in terms of differential forms.

The de Rham derivation of Ω•
X may be considered as an OX -linear derivation

of F∗Ω •
X1/p . Let H k

X denote the respective cohomology sheaves. It is easy to check

that f �→ [ f p−1d f ] is a k-derivation of OX taking values in H 1
X (where [ · ] denotes

the de Rham cohomology class). By the universal property of Kähler differentials,
it induces a homomorphism of graded OX -algebras

c : Ω •
X →H •

X , c( f0 d f1∧·· ·∧d fk) = [ f p
0 ( f1 · · · fk)p−1d f1∧·· ·∧d fk],

called the Cartier operator. Cartier proved that c is an isomorphism for smooth X .
(Using local coordinates, the proof is reduced to the case X = A

n, where the verifi-
cation is straightforward [BKu, 1.3.4].)
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Now suppose that X is smooth. Then we have the trace map

τ : F∗ωX1/p → ωX , τ(ω) = c−1[ω ].

In local coordinates x1, . . . ,xn, the trace map can be characterized as the unique OX -
linear map taking (x1 · · ·xn)p−1dx1∧ ·· ·∧dxn �→ dx1∧ ·· ·∧dxn and xk1

1 · · ·xkn
n dx1 ∧

·· ·∧dxn �→ 0 unless k1 ≡ ·· · ≡ kn ≡ p−1 (mod p).
Using the trace map, it is easy to establish an isomorphism

H om(F∗OX1/p ,OX)� F∗ω1−p
X1/p , σ ↔ σ̂ ,

such that σ(h)ω = τ(hω⊗p⊗ σ̂) for any local sections h of F∗OX1/p and ω of ωX .
Similarly, for any divisor δ on X we have

H om(F∗OX1/p(δ ),OX)� F∗ω1−p
X1/p(−δ ).

This leads to the following conclusion.

Proposition 31.3 ([BKu, 1.3.8, 1.4.10]). Suppose that X is smooth and irreducible.
Then σ ∈ Hom(F∗OX1/p ,OX ) is a splitting of X if and only if the Taylor expansion
of σ̂ at some (hence any) x ∈ X has the form

(
(x1 · · ·xn)p−1 +∑ck1,...,kn xk1

1 · · ·x
kn
n

)
(∂1∧·· ·∧∂n)⊗(p−1),

where the sum is taken over all multiindices (k1, . . . ,kn) such that ∃ki �≡ p− 1
(mod p). (Here xi denote local coordinates and ∂i the vector fields dual to dxi.)
If X is complete, then it suffices to have

σ̂ = ((x1 · · ·xn)p−1 + · · ·)(∂1∧·· ·∧∂n)⊗(p−1).

The splitting σ is relative to any effective divisor δ ≤ div σ̂ .

By abuse of language, we shall say that σ̂ splits X if σ does. Also, X is said
to be split by a (p− 1)-th power if α⊗(p−1) splits X for some α ∈ H0(X ,ω−1

X ).
This splitting is compatible with the zero set of α . For instance, a smooth complete
variety X is split by the (p−1)-th power of α if the divisor of α in a neighborhood of
some x ∈ X is a union of n = dimX smooth prime divisors intersecting transversally
at x.

Example 31.4. Every smooth toric variety X is Frobenius split by a (p−1)-th power
compatibly with ∂X . For complete X , this stems from the structure of its canonical
divisor, given by Proposition 30.8 (which extends to positive characteristic in the
toric case). The general case follows by passing to a smooth toric completion. Now
toric resolution of singularities readily implies that all normal toric varieties are
Frobenius split compatibly with their invariant subvarieties.

Example 31.5 ([Ram], [BKu, Ch. 2–3]). Generalized flag varieties are Frobenius
split by a (p− 1)-th power. For X = G/B, ω−1

X = L(−2ρ) and the splitting is
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provided by α = fρ · f−ρ ∈ V ∗(2ρ), where f±ρ ∈ V ∗(ρ) are T -weight vectors of
weights ±ρ .

Moreover, this splitting is compatible with all Schubert subvarieties Sw = B(wo)⊂
X , w∈W . Using the weak normality of Sw and the Bott–Samelson resolution of sin-
gularities

ϕ : Š = Šα1,...,αl := Pα1 ∗B · · · ∗B Pαl /B→ Sw,

w = rα1 · · ·rαl , αi ∈Π , l = dimSw,

with connected fibers and Riϕ∗OŠ = 0, ∀i > 0, one deduces that Sw are normal
(Demazure, Seshadri) and have rational resolution of singularities (Andersen, Ra-
manathan). These properties descend to Schubert subvarieties in G/P, ∀P⊃ B.

Splitting by a (p−1)-th power has further important consequences. For instance,
the Grauert–Riemenschneider theorem extends to this situation, due to Mehta–van
der Kallen [MK]:

If ϕ : X →Y is a proper birational morphism, X is smooth and split by α⊗(p−1)

such that ϕ is an isomorphism on Xα , then Riϕ∗ωX = 0, ∀i > 0.

31.3 Extension to Characteristic Zero. Although the concept of Frobenius split-
ting is defined in characteristic p > 0, it successfully applies to algebraic varieties
in characteristic zero via reduction mod p.

Namely let X be an algebraic variety over an algebraically closed field k of char-
acteristic 0. One can find a finitely generated subring R ⊂ k such that X is defined
over R, i.e., is obtained from an R-scheme X by extension of scalars. One may
assume that X is flat over R, after replacing R by a localization. For any maxi-
mal ideal p � R we have R/p � Fpk . The variety Xp obtained from the fiber Xp

of X → SpecR over p by an extension of scalars Fpk → Fp∞ is called a reduction
mod p of X and sometimes denoted simply by Xp (by abuse of notation).

Reductions mod p exist and share geometric properties of X (affinity, projec-
tivity, completeness, smoothness, normality, rational resolution of singularities, etc)
for all sufficiently large p. Conversely, a local geometric property of open type (e.g.,
smoothness, normality, rational resolution of singularities) holds for X if it holds for
Xp whenever p & 0. Replacing R by an appropriate localization, one may always
assume that a given finite collection of algebraic and geometric objects on X (subva-
rieties, line bundles, coherent sheaves, morphisms, etc) is defined over R, and hence
specializes to Xp for p& 0; coherent sheaves may be supposed to be flat over R.

Cohomological applications of reduction mod p are based on the semicontinuity
theorem [Har2, III.12.8], which may be reformulated in our setup as follows:

If X is complete and F is a coherent sheaf on X , then dimHi(X ,F ) =
dimHi(Xp,Fp) for all p& 0.

This implies, for instance, that the assertions of Proposition 31.2 hold in character-
istic zero provided that Xp are Frobenius split for p & 0. This is the case, e.g., for
Fano varieties. Another case, which is important in the scope of this chapter, are
spherical varieties.
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31.4 Spherical Case.

Theorem 31.6 ([BI]). If X is a spherical G-variety in characteristic 0, then Xp is
Frobenius split by a (p−1)-th power compatibly with all G-subvarieties and rela-
tive to any given B-stable effective divisor, for p& 0.

Proof. Using an equivariant completion of X and a toroidal desingularization of this
completion, we may assume that X is smooth, complete, and toroidal. Consider the
natural morphism ϕ : X → X(h), where h is a generic isotropy subalgebra for G : X .
By Proposition 30.8, ω−1

X = O(∂ X + ϕ∗H ), where H is a hyperplane section
of X(h).

The restriction of O(∂ X) to a closed G-orbit Y ⊂ X is the top exterior power of
the normal bundle to Y , whence ω−1

Y = ω−1
X |Y ⊗O(−∂ X)|Y = O(ϕ∗H )|Y . Since

Y is a generalized flag variety, Yp is split by the (p− 1)-th power of (the reduction
mod p of) some αY ∈H0(Y,ω−1

Y ). The G-module H0(Y,ω−1
Y ) being irreducible and

O(ϕ∗H ) globally generated, the restriction map H0(X ,O(ϕ∗H )) → H0(Y,ω−1
Y )

is surjective and αY extends to α0 ∈ H0(X ,O(ϕ∗H )).
We have ∂X = D1 ∪ ·· · ∪Dk, where Di runs over all G-stable prime divisors

of Y . It is easy to see from Proposition 31.3 that α = α0⊗α1⊗ ·· ·⊗αk provides
a splitting for Xp, where αi ∈ H0(X ,O(Di)), divαi = Di. Moreover, this splitting is
compatible with all (Di)p and therefore with all G-subvarieties in Xp, because the
latter are unions of transversal intersections of some (Di)p.

Finally, for any B-stable effective divisor δ we have δ ≤ (1− p)KX for p & 0,
by Proposition 30.8. Hence the splitting is relative to δp by Proposition 31.3. ��

It is worth noting that not all spherical varieties in positive characteristic are Frobe-
nius split. Counterexamples are provided by some complete homogeneous spaces
with non-reduced isotropy group subschemes [La].

Frobenius splitting of spherical varieties provides short and conceptual proofs
for a number of important geometric and cohomological properties. In particular,
Theorem 15.20 can be deduced in the following way.

Consider a resolution of singularities ψ : X ′ → X , where X ′ is toroidal and
quasiprojective. Choose an ample B-stable effective divisor δ on X ′; then X ′

p is split
relative to δp for p & 0. By semicontinuity and Proposition 31.2(4) applied to the
trivial line bundle over X ′

p, Riψ∗OX ′ = 0 for i > 0, whence X has rational singulari-
ties. By the same reason, OX = ψ∗OX ′ surjects onto ψ∗OY ′ for any irreducible closed
G-subvariety Y ′ ⊂ X ′, whence ψ∗OY ′ = OY for Y = ψ(Y ′). Since Y ′ is smooth, Y is
normal and has rational singularities by the above.

For any line bundle L on X denote L ′ = ψ∗L . The Leray spectral sequence

Hi+ j(X ′,L ′)⇐= Hi(X ,R jψ∗L
′) = Hi(X ,L ⊗R jψ∗OX ′)

degenerates to Hi(X ′,L ′) = Hi(X ,L ), ∀i ≥ 0. The same holds for direct images
instead of cohomology. Together with Proposition 31.2, applied to X ′

p and L ′
p, this

proves the following
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Corollary 31.7. Suppose that chark = 0. If X is a complete spherical G-variety,
Y ⊂ X a G-subvariety, and L a numerically effective line bundle on X, then
Hi(X ,L ) = 0, ∀i > 0, and the restriction map H0(X ,L ) → H0(Y,L ) is surjec-
tive. More generally, if X is spherical and ϕ : X → Z is a proper morphism, then
Riϕ∗L = 0, ∀i > 0, and ϕ∗L → ϕ∗(ι∗ι∗L ) is surjective, where ι : Y ↪→ X is a
closed G-embedding.

See [Bri7], [Bri12] for other proofs.
More precise results on Frobenius splitting of spherical varieties and their subva-

rieties (usually G- or B-orbit closures) are obtained in special cases.
As noted above, generalized flag varieties are Frobenius split compatibly with

their Schubert subvarieties, and the latter have rational resolution of singularities in
positive, hence any (by semicontinuity), characteristic.

Equivariant normal embeddings of G (see §27) are Frobenius split compatibly
with their (G×G)-subvarieties, in all positive characteristics. For wonderful com-
pletions of adjoint semisimple groups, this was established by Strickland [Str1]. The
general case is due to Rittatore [Rit2], see also [BKu, Ch. 6]. This implies that nor-
mal reductive group embeddings have rational resolution of singularities (in particu-
lar, they are Cohen–Macaulay) and that the coordinate algebras of normal reductive
monoids have “good” filtration [Rit2, §4], [BKu, 6.2.13].

Brion and Polo proved that the closures of the Bruhat double cosets in wonder-
ful completions of adjoint semisimple groups (called large Schubert varieties) are
compatibly split and deduced that they are normal and Cohen–Macaulay [BPo].

De Concini and Springer proved that wonderful embeddings of symmetric spaces
for adjoint G are Frobenius split compatibly with their G-subvarieties in odd char-
acteristics [CS, 5.9]. However this splitting is not always compatible with B-orbit
closures; in fact, the latter may be neither normal nor Cohen–Macaulay [Bri16].

See [Bri16] for a detailed study of B-orbits in spherical varieties and their clo-
sures. This is an area of active current research, with many open questions.



Appendices

A Algebraic Geometry

Here we collect several issues which are not covered by our standard sources in
algebraic geometry.

A.1 Rational Singularities.

Definition A.1. A resolution of singularities or desingularization of a variety X is a
proper birational morphism ϕ : X ′ → X , where X ′ is smooth.

The existence of a desingularization is very important. In characteristic zero it was
proved by Hironaka in 1960’s. One can even construct a resolution of singularities in
a canonical way, which commutes with open embeddings [BM]. In particular, there
exists an equivariant resolution of singularities. In positive characteristic, the exis-
tence of a desingularization is known in dimension ≤ 3 (Abhyankar, 1950–60’s).

The following definition is due to Kempf [KKMS, Ch. I, §3].

Definition A.2. A resolution of singularities ϕ : X ′ → X is said to be rational if the
following two conditions are satisfied:

(1) ϕ∗OX ′ = OX , Riϕ∗OX ′ = 0, ∀i > 0;
(2) Riϕ∗ωX ′ = 0, ∀i > 0.

Varieties having a rational desingularization are normal and Cohen–Macaulay (with
dualizing sheaf ϕ∗ωX ′) [KKMS, Ch. I, §3], [BKu, 3.4.2].

In characteristic zero, (2) always holds by the Grauert–Riemenschneider theo-
rem [GR]. Moreover, the rationality property does not depend on a chosen resolution
of singularities. Indeed, given two desingularizations ϕ ′ : X ′ → X and ϕ ′′ : X ′′ → X ,
one can construct a desingularization ϕ : X̌ → X dominating them both, i.e., such
that there is a commutative diagram of proper birational maps

D.A. Timashev, Homogeneous Spaces and Equivariant Embeddings,
Encyclopaedia of Mathematical Sciences 138, DOI 10.1007/978-3-642-18399-7,
© Springer-Verlag Berlin Heidelberg 2011
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X

X̌

X ′′X ′

�
���

�
���

�
���

�
���

ϕ ′′ϕ ′

ψ ′′ψ ′

�

ϕ

(One may take for X̌ a desingularization of the closure in X ′ × X ′′ of the graph
of the birational map X ′ ��� X ′′.) Now the local duality theorem [Har1, VII.3.3]
yields a spectral sequence Ri+ jψ ′

∗H om(F ,ωX̌) ⇐= E xti(R jψ ′
∗F ,ωX ′) for any

locally free sheaf F on X̌ . For F = ωX̌ , this spectral sequence degenerates by (2)
to Riψ ′

∗OX̌ = E xti(ψ ′
∗ωX̌ ,ωX ′), and ψ ′

∗ωX̌ = ωX ′ implies that ψ ′ is a rational
resolution (although there is nothing to resolve). Hence the Leray spectral se-
quence Ri+ jϕ∗OX̌ ⇐= Riϕ ′∗R jψ ′

∗OX̌ degenerates to Riϕ∗OX̌ = Riϕ ′∗OX ′ ; similarly
for ϕ ′′,ψ ′′ instead of ϕ ′,ψ ′. Thus the resolutions ϕ,ϕ ′,ϕ ′′ are rational or not simul-
taneously. This leads to the following

Definition A.3. A variety X in characteristic zero has rational singularities if some,
and hence any, desingularization of X is rational.

The notion of rational singularities is local, so that one may speak about rational
singularity at a point.

Theorem A.4 ([Elk, Th. 4]). Rationality of singularities is an open property, i.e.,
for any flat family ϕ : X → Y (see Appendix E) the set of x ∈ X such that the fiber
Xy = ϕ−1(y) over y = ϕ(x) has rational singularity at x is open in X.

Theorem A.5 ([Elk, Th. 5]). If ϕ : X →Y is a flat family whose base Y and all fibers
Xy have rational singularities, then X has rational singularities, too. In particular,
rationality of singularities is preserved by products.

Theorem A.6 ([Bout]). The categorical quotient X//G of any affine variety X mod-
ulo a reductive group G (or a good quotient of any G-variety, see Appendix D) has
rational singularities whenever X has rational singularities.

A.2 Mori Theory. One of the ultimate goals of algebraic geometry is to classify
algebraic varieties. Applying the Chow lemma, completion, and desingularization,
we reduce the problem in a sense to irreducible smooth projective varieties. The first
stage is to classify them up to birational equivalence. The second stage is to classify
varieties in a given birational class up to isomorphism. Here the strategy is to find
a good model (one or more) in each birational class and explain how to obtain all
other models from good ones.

For curves, the second stage is trivial: there is a unique smooth projective curve in
each birational class. The first stage is performed by fixing a discrete invariant—the
genus of a smooth projective curve—and constructing the moduli space of curves
with given genus [MFK, Ch. 5–7], [PV, 4.6]. For surfaces, the classification in a
given birational class was performed by classics of the Italian school of algebraic
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geometry. The classification of birational classes proceeds again by constructing
moduli spaces with fixed discrete invariants, see [IS]. A program of classification
of higher dimensional varieties extending the cases of dimension ≤ 2 was proposed
by S. Mori. We overview it here. Our basic sources in the Mori theory are [KMM]
and [M].

We assume that chark = 0. Given a smooth projective model X of a fixed function
field K/k, one can obtain plenty of other models by blowing up various closed
subvarieties or subschemes in X . Thus it is natural to hope that X can be obtained
by this process from some “most economical” model, which in its turn is obtained
from X by an inverse process of “blowing down”, i.e., by a proper birational map.

For surfaces, the blowing down contracts (−1)-curves (i.e., smooth rational
curves with self-intersection −1) to points. This contraction reduces rkPicX , and
finally one obtains a surface having no (−1)-curves. This is the case, e.g., if the
canonical class KX is numerically effective. In the latter case, the resulting “min-
imal” surface is unique in the given birational class; otherwise it is P

2 or a ruled
surface, and there are infinitely many non-isomorphic ruled surfaces in the given
birational class, which are obtained from each other by so-called elementary trans-
formations.

In arbitrary dimension, we say that X is a minimal model if a canonical divisor
KX is numerically effective. Otherwise it appears that there exists a very special
surjective morphism ϕ : X → Y with connected fibers (contraction of an extremal
ray, see below). If ϕ is not birational, then X is called a Mori fiber space. The
structure of Mori fiber spaces is well understood, and they can serve as good models
of K. If ϕ is birational, then we replace X by Y and continue the process.

However, unlike the 2-dimensional case, this program, called the minimal model
program, encounters several obstacles. First, even if X were smooth, Y may have
singularities. Thus, one has to allow “good” singularities.

Definition A.7. X has terminal (canonical) singularities if it is normal, Q-Goren-
stein (i.e., a multiple of KX is Cartier), and admits a resolution of singularities ν :
X̌ → X such that KX̌ −ν∗KX is equivalent in Pic(X)⊗Q to a sum of all exceptional
divisors (contracted by ν) with coefficients in Q

+ (Q+, respectively).

Terminal singularities are rational.
There is a natural pairing PicX×A1(X)→Z given by the degree of a line bundle

restricted to a curve in X and pulled back to its normalization. It gives rise to a
duality between the quotient spaces N1(X) and N1(X) of Pic(X)⊗R and A1(X)⊗R,
respectively, modulo the kernels of the pairing. Let NE(X) ⊂ N1(X) be the closed
cone generated by effective 1-cycles, called the Mori cone. It is a strictly convex,
because each ample divisor is positive on NE(X) \ {0} by Kleiman’s ampleness
criterion [KMM, 0-1-2].

Cone Theorem. Suppose that X has terminal singularities. Then the set of extremal
rays of NE(X) contained in the open half-space {〈KX , ·〉 < 0} is discrete. Further-
more, these rays are generated by irreducible curves Cj and the limit rays may lie
only on the boundary hyperplane K⊥

X .
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If ϕ : X →Y is a morphism onto another normal projective variety, then the set of
curves contracted by ϕ generates an extremal set (“face”) F ⊆ NE(X) (as a closed
cone). Indeed, if δ is an ample divisor on Y , then a curve C ⊂ X is contracted if and
only if 〈ϕ∗δ ,C〉= 0, otherwise 〈ϕ∗δ ,C〉> 0. Also, for any δ ′ ∈CaDivX positive on
F \{0}, δ ′+nϕ∗δ is ample for n� 0 by Kleiman’s criterion, whence 〈δ ′,γ〉 ≥ 0 for
any γ ∈ NE(X)∩ (ϕ∗δ )⊥, which implies F = NE(X)∩ (ϕ∗δ )⊥. By Zariski’s Main
Theorem, ϕ is characterized by F provided that it has connected fibers; in this case
ϕ is called the contraction of F . In general, not every face of NE(X) is contractible.

Contraction Theorem. If X has terminal singularities and δ is a numerically ef-
fective Cartier divisor such that KX is negative on F = NE(X)∩ δ⊥ (excluding 0),
then F is contractible.

Note that, by the Cone Theorem, F is a true face generated by finitely many extremal
rays. By Kleiman’s criterion, −KX is ample relative to the contraction morphism
ϕ : X → Y . Also, ϕ∗PicY

∼→ F⊥ ⊆ PicX and N1(Y )� N1(X)/〈F〉.
In particular, extremal rays spanned by curves having negative pairing with KX

are contractible. Suppose that X is also Q-factorial. Then contractions of extremal
rays are divided into three types:

(1) ϕ is not birational. Then X is called a Mori fiber space. General fibers of ϕ are
Q-Fano varieties with terminal singularities, X is uniruled, and Y is Q-factorial.

(2) ϕ is birational and its exceptional locus D has codimension 1 in X . Then D is a
uniruled prime divisor and Y is Q-factorial with terminal singularities.

(3) ϕ is an isomorphism in codimension 1. Here Y may have “bad” singularities.

The existence of contractions of the third type is the second obstacle for the mini-
mal model program. In this case, one proceeds by replacing X not with Y but with
another model X+ called a flip of X .

Definition A.8. Suppose that ϕ : X →Y is a contraction of an extremal ray which is
an isomorphism in codimension 1. A flip of (X ,ϕ) is a pair (X+,ϕ+), where X+ is
a normal projective variety and ϕ+ : X+ → Y is a birational morphism which is an
isomorphism in codimension 1 and KX+ is ample relative to ϕ+.

A flip exists if and only if R =
⊕

n≥0ϕ∗O(nKX ) is a sheaf of finitely generated OY -
algebras, and in this case X+ = ProjOY

R. The variety X+ is also Q-factorial with
terminal singularities, and Pic(X+)⊗Q = (ϕ+)∗Pic(Y )⊗Q⊕〈KX+〉.

The main problems are the existence of flips and termination of sequences of
directed flips

(X ,ϕ) � (X+,ϕ+) � (X+,ψ) � (X++,ψ+) � . . . .

The existence of flips was proved by Hacon and McKernan [HM] by induction on
dimension in the minimal model program; see also a recent preprint [CL], where the
existence of flips (together with other main theorems of the Mori theory) is derived
from finite generation of canonical rings. The termination of flips was proved in
dimension ≤ 4 and in some other cases, but is still conjectural in general.
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If the flip conjecture is true, then the minimal model program works well, and
every birational class contains either a Mori fiber space or a minimal model. There
may be several (presumably finitely many) minimal models in a given birational
class; they are pairwise isomorphic in codimension 1 and connected with each other
by sequences of birational transformations called flops, which are closely related to
flips. As for Mori fiber spaces, birational maps between them are decomposed into a
sequence of elementary transformations called links (the Sarkisov program). There
are also logarithmic and relative versions of the Mori program.

A.3 Schematic Points. Given a k-scheme X , it is often instructive to consider the
respective representable functor associating with any k-scheme S the set X(S) of
k-morphisms S → X , called S-points of X . If S = SpecA is affine, then S-points are
called A-points and the notation X(A) := X(S) is used.

Example A.9. If X ⊆ A
n is an (embedded) affine scheme of finite type, then an A-

point of X is given by an algebra homomorphism

k[X ] = k[t1, . . . , tn]/I (X)→ A,

i.e., by an n-tuple x = (x1, . . . ,xn) ∈ An satisfying the defining equations of X .

We require a closer look at this notion in case where X is an algebraic variety over
k and A is a local k-algebra with the maximal ideal m. Given χ ∈ X(A), the closed
point of SpecA is mapped by χ to the generic point of an irreducible subvariety Y ⊆
X called the center of χ . If X̊ ⊆ X is an affine chart meeting Y , then χ ∈ X̊(A). Thus
X(A) =

⋃
X̊(A) over all affine open subsets X̊ ⊆ X . From the algebraic viewpoint,

an A-point of X is given by an irreducible subvariety Y ⊆ X and a local algebra
homomorphism OX ,Y → A, mX ,Y → m, or by a homomorphism k[X̊ ] → A, where
X̊ ⊆ X is an affine chart (intersecting Y ).

Example A.10. The generic point of an irreducible variety X over k(X) has the cen-
ter X , and OX ,X → k(X) is the identity map. Informally, the coordinates of the
generic point are indeterminates bound only by relations that hold identically on X .

Example A.11. If v is a valuation of k(X) with center Y ⊆ X , then the inclusion
OX ,Y ⊆Ov yields an Ov-point of X with center Y .

Example A.12. Any A-point of a quasiprojective scheme X ⊆ P
n is at the same time

an A-point of X ∩A
n for a certain affine chart A

n ⊆ P
n. In view of Example A.9,

A-points of X are identified with tuples x = (x0 : · · · : xn), xi ∈ A, considered up to
proportionality, satisfying the defining equations of X , and such that at least one xi

is invertible.

It is quite common in algebraic geometry to consider the case where A is a field.
For applications in §24, we consider points over the function field of an algebraic
curve or its formal analogue.

Definition A.13. A germ of a curve in X is a pair (χ,θ0), where χ ∈ X(k(Θ )), Θ is
a smooth projective curve, and θ0 ∈Θ . In other words, a germ of a curve is given
by a rational map from a curve to X and a fixed base point on the curve.
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The germ is said to be convergent if χ ∈ X(OΘ ,θ0), i.e., the rational map χ :
Θ ��� X is regular at θ0. The point x0 = χ(θ0) is the limit of the germ.

There is a formal analytic analogue of this notion.

Definition A.14. A germ of a formal curve (or simply a formal germ) in X is a
k((t))-point of X . A k[[t]]-point is called a convergent formal germ, and its center
x0 ∈ X is the limit of the formal germ.

It is natural to think of a formal germ as a “parameterized formal analytic curve”
x(t) in X . In local coordinates, x(t) is a tuple of Laurent series satisfying the defining
equations. If x(t) converges, then its coordinates are power series, and their constant
terms are the coordinates of the limit x0 =: x(0) = limt→0 x(t).

With any germ of a curve (θ0 ∈Θ ��� X) one can associate a formal germ via
the inclusions OΘ ,θ0 ⊂ ÔΘ ,θ0 � k[[t]], k(Θ) ⊂ k((t)), depending on the choice of a

formal uniformizing parameter t ∈ ÔΘ ,θ0 . (Here Ô denotes the completion of a local
ring O .)

Proposition A.15. In characteristic zero, a formal germ is induced by a germ of a
curve if and only if its center has dimension ≤ 1.

Proof. The “only if” direction and the case where the center is a point, are clear.
Suppose that the center of a formal germ is a curve C ⊆ X . Then k(C) ↪→ k((t)).
Choose any f ∈ k(C), ordt f = k > 0, and consider s∈ k[[t]], sk = f . Then k(C)(s) =
k(Θ) is a function field of a smooth projective curve Θ , and k(Θ)∩k[[t]] = OΘ ,θ0

for a certain θ0 ∈Θ , so that ÔΘ ,θ0 = k[[s]] = k[[t]]. ��

There is a t-adic topology on X(k((t))) thinner than the Zariski topology. For
X = A

n, a basic t-adic neighborhood of x(t) = (x1(t), . . . ,xn(t)) consists of all y(t) =
(y1(t), . . . ,yn(t)) such that ordt(yi(t)− xi(t)) ≥ N, ∀i = 1, . . . ,n, where N ∈ N. The
t-adic topology on arbitrary varieties is induced from that on affine spaces using
affine charts.

An important approximation result is due to Artin:

Theorem A.16 ([Art, Th. 1.10]). The set of formal germs induced by germs of
curves is dense in X(k((t))) with respect to the t-adic topology.

B Geometric Valuations

Let K be a function field, i.e., a finitely generated field extension of k. By a valua-
tion v of K we always mean a discrete Q-valued valuation of K/k, i.e., assume the
following properties:

(1) v : K× →Q, v(0) = ∞;
(2) v(K×)� Z or {0};
(3) v(k×) = 0;
(4) v( f g) = v( f )+ v(g);
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(5) v( f +g)≥min(v( f ),v(g)).

Remark B.1. If v is defined only on a k-algebra A with QuotA = K, then it is ex-
tended to K in a unique way by putting v( f /g) = v( f )− v(g), f ,g ∈ A.

Our main source in the valuation theory is [ZS, Ch. 6, App. 2].

Definition B.2. A valuation v is called geometric if there exists a normal (pre)variety
X with k(X) = K (a model of K) and a prime divisor D ⊂ X such that v( f ) =
c · vD( f ), ∀ f ∈ K, for some c ∈Q+. Here vD( f ) is the order of f along D.

To any valuation corresponds a (discrete) valuation ring (DVR) Ov = { f ∈ K |
v( f ) ≥ 0}, which is a local ring with the maximal ideal mv = { f ∈ K | v( f ) > 0}
and quotient field K. The residue field of v is k(v) = Ov/mv.

Example B.3. If v �= 0 is geometric, then Ov = OX ,D, k(v) = k(D).

Properties. (1) Ov is a maximal subring of K.
(2) Ov determines v up to proportionality.

Definition B.4. Let X be a model of K. A closed irreducible subvariety Y ⊆ X is a
center of v on X if Ov dominates OX ,Y (i.e., Ov ⊇ OX ,Y , mv ⊇ mX ,Y , which implies
that k(v)⊇ k(Y )).

Example B.5. A prime divisor D ⊂ X is a center of the respective geometric valua-
tion.

If ϕ : X → X ′ is a dominant morphism and v has a center Y ⊆ X , then the restriction
v′ of v to K′ = k(X ′) has a center Y ′ = ϕ(Y )⊆ X ′.

Valuative criterion of separation. X is separated if and only if any (geometric)
valuation has at most one center on X.

Valuative criterion of properness. The map ϕ : X → X ′ is proper if and only if any
(geometric) valuation of K has the center on X provided that its restriction to K′ has
a center on X ′.

Valuative criterion of completeness. X is complete if and only if any (geometric)
valuation has a center on X.

Proposition B.6. If X is affine, then v has the center Y ⊆ X if and only if v|k[X ] ≥ 0,
and then I (Y ) = k[X ]∩mv.

Proposition B.7. A valuation v �= 0 is geometric if and only if tr.degk(v) =
tr.degK−1.

Proof. Assume that tr.degK = n and that the residues of f1, . . . , fn−1 ∈ Ov form a
transcendence base of k(v)/k. Take a nonzero fn ∈ mv; then f1, . . . , fn are easily
seen to be a transcendence base of K/k. Consider an affine variety X such that k[X ]
is the integral closure of k[ f1, . . . , fn] in K. It is easy to show that v|k[X ] ≥ 0, whence
v has the center D⊂ X and f1, . . . , fn−1 ∈ k[D] are algebraically independent. Hence
D is a prime divisor, and Ov = OX ,D implies v = vD up to a multiple. The converse
implication is obvious. ��
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Proposition B.8. Let k⊆ K′ ⊆ K be a subfield.

(1) If v is a geometric valuation of K, then v′ = v|K′ is geometric.
(2) Any geometric valuation v′ of K′ extends to a geometric valuation v of K.

Proof. (1) Take f1, . . . , fk ∈ Ov whose residues form a transcendence base of
k(v)/k(v′). They are algebraically independent over K′ (otherwise one can take an
algebraic dependence of f1, . . . , fk over Ov′ with at least one coefficient not in mv′ ,
and pass to residues obtaining a contradiction). Hence tr.degk(v′) = tr.degk(v)−
tr.deg

k(v′) k(v) ≥ tr.degK − 1− tr.degK′ K = tr.degK′ − 1, and we conclude by
Proposition B.7.
(2) Take a complete normal variety X ′ with a prime divisor D′ ⊂ X ′ such that v′ is
proportional to vD′ . We may construct a complete normal variety X with k(X) = K
mapping onto X ′: take any complete model X of K and replace it by the normaliza-
tion of the closure in X ×X ′ of the graph of the rational map X ��� X ′. Let D ⊂ X
be a component of the preimage of D′ mapping onto D′. Then we may take v = vD

up to a multiple. ��

C Rational Modules and Linearization

Rational modules are representations of algebraic groups compatible with the struc-
ture of an algebraic variety.

Definition C.1. Let G be a linear algebraic group. A finite-dimensional G-module
M is called rational if the representation map R : G → GL(M) is a homomorphism
of algebraic groups. The terminology is explained by observing that for G⊆GLn(k)
the matrix entries of R(g) are rational functions in the matrix entries of g ∈ G (the
denominator being a power of detg). Generally, a rational G-module is a union of
finite-dimensional rational submodules.

A G-algebra A is said to be rational if it is a rational G-module and G acts on A
by algebra automorphisms.

If a rational G-module M is at the same time an A-module and g(am) = (ga)(gm),
∀g ∈ G,a ∈ A,m ∈M, then M is called a rational G-A-module.

Let Mor(X ,M) denote the set of all morphisms of an algebraic variety X to a vec-
tor space M. (If dimM =∞, then a morphism X →M is by definition a morphism to a
finite-dimensional subspace of M.) It is a free k[X ]-module: Mor(X ,M)� k[X ]⊗M.
If X is a G-variety and M is a rational G-module, then Mor(X ,M) is a rational G-
k[X ]-module.

The k[X ]G-submodule MorG(X ,M)� (k[X ]⊗M)G of equivariant morphisms is
called the module of covariants on X with values in M. If G is reductive, X is affine,
and dimM < ∞, then MorG(X ,M) is finite over k[X ]G [PV, 3.12].

More generally, rational G-modules are formed by global sections of sheaves on
G-varieties.
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Let X be a G-variety, let α and πX : G×X → X be the action morphism and the
projection, and let F be a quasicoherent sheaf on X .

Definition C.2. A G-linearization of F is an isomorphism α̂ : π∗XF
∼→α∗F induc-

ing a G-action on the set of local sections of F via isomorphisms α̂ |g×X : F (U) ∼→
F (gU) over all g ∈ G, U open in X .

A G-sheaf is a quasicoherent sheaf equipped with a G-linearization.

Theorem C.3 ([Kem2]). Given a G-variety X and a G-sheaf F on X, k[X ] is a
rational G-algebra and Hi(X ,F ) are rational G-k[X ]-modules.

If F is the sheaf of sections of a vector bundle F → X , then a G-linearization of
F is given by a fiberwise linear action G : F compatible with the projection onto X .

By abuse of language we often make no terminological difference between vector
bundles and the respective locally free sheaves of sections since they determine each
other.

An important problem is to construct G-linearizations for line bundles on G-vari-
eties. A treatment of this problem goes back to Mumford. Here we follow [KKLV].

Assume that G is connected.

Theorem C.4 ([KKLV, 2.4]). If G is factorial, i.e., PicG = 0, then any line bundle
L on a normal G-variety X is G-linearizable.

We say that an algebraic group G̃ is a universal cover of G if G̃/Ru(G̃) is a
product of a torus and a simply connected semisimple group, and there is an epi-
morphism G̃ → G with finite kernel. Every connected group has a universal cover:
it is well known for reductive groups [Hum, §§32,33], [Sp3, Ch. 12], and generally
we may put G̃ = G×Gred G̃red, where Gred = G/Ru(G). By [Po2] or [KKLV, §4],
Pic G̃ = 0 and PicG is finite.

Corollary C.5. Any line bundle L on X is G̃-linearizable.

Corollary C.6. A certain power L ⊗d of L is G-linearizable.

For d one may take the degree of a universal covering or the order of PicG [KKLV,
2.4].

Let PicG(X) denote the group of G-linearized invertible sheaves, up to a G-equiv-
ariant isomorphism. The kernel of the natural homomorphism PicG(X) → Pic(X)
(forgetting G-linearization) consists of all G-linearizations of the trivial line bundle
X × k → X . A G-linearization of the trivial bundle, i.e., a fiberwise linear G-ac-
tion on X ×k is given by multiplication by an algebraic cocycle c : G×X → k

×,
c(g1g2,x) = c(g1,g2x)c(g2,x), ∀g1,g2 ∈ G, x ∈ X . For connected G and irreducible
X we have c(g,x) = χ(g)h(x), because an invertible function on a product of two
irreducible varieties is a product of invertible functions on factors [KKV, 1.1]. Now
it is easy to deduce from the cocycle property that h(x) ≡ 1 and χ ∈ X(G). Thus
any two G-linearizations of a given line bundle differ by a character of G, and for
factorial G and normal irreducible X we have an exact sequence
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X(G) −−−−→ PicG(X) −−−−→ Pic(X) −−−−→ 0. (C.1)

The existence of a G-linearization has fundamental consequences in the local
description of G-varieties, due to Sumihiro:

Theorem C.7 ([Sum], [KKLV, §1]). Let G be a connected group acting on a nor-
mal variety X. Then any point x ∈ X has an open G-stable neighborhood U which
admits a locally closed G-equivariant embedding U ↪→ P(V ) for some G-module V .

Proof. Take an affine neighborhood U0 � x. The complement D = X \U0 may sup-
port no effective Cartier divisor. If however we remove

⋂
g∈G gD from X , then

any effective Weil divisor with support D becomes base point free, hence Cartier
(cf. Lemma 17.3).

Let L denote the respective line bundle. Take σ0 ∈H0(X ,L ) such that U0 = Xσ0 .
Then

k[U0] =
⋃

d≥0

H0(X ,L ⊗d)/σd
0 = k

[
σ1

σd1
0

, . . . ,
σm

σdm
0

]

for some σi ∈ H0(X ,L ⊗di), di ∈ N. Replacing L by a power, we may assume it
to be a G-bundle and all di = 1. Include σ0, . . . ,σm in a finite-dimensional G-sub-
module M ⊆H0(X ,L ). The induced rational map X ��� P(V ), V = M∗, is a locally
closed embedding on U = GU0. ��

Remark C.8. If X is itself quasiprojective, then one may take U = X . Indeed, a cer-
tain power of an ample line bundle on X is G-linearizable, and we can find a finite-
dimensional G-stable space of sections inducing a projective embedding of X .

D Invariant Theory

Let G be a linear algebraic group and A be a rational G-algebra. The subject of alge-
braic invariant theory is the structure of the subalgebra AG of G-invariant elements.

A geometric view on the subject is to consider an affine G-variety X = SpecA,
provided that A is finitely generated. (Note that each rational G-algebra is a union
of finitely generated G-stable subalgebras.) If AG is finitely generated too, then one
may consider X//G := SpecAG and the natural dominant morphism π = πG : X →
X//G. The variety X//G, considered together with π , is called the categorical quo-
tient of G : X , because it is the universal object in the category of G-invariant mor-
phisms from X to affine varieties. This means that every morphism ϕ : X →Y (with
affine Y ) which is constant on G-orbits fits into a unique commutative triangle:

X//G

X

�

������

					
 Y

ϕ

ϕ
π
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In particular, if Z is an affine G-variety and ψ : X → Z is a G-equivariant mor-
phism, then we have a commutative square

X
ψ−−−−→ Z

⏐
⏐
�

⏐
⏐
�

X//G
ψ//G−−−−→ Z//G.

(Here Y = Z//G, ϕ = πGψ .)
Geometric properties of X//G and πG translate into algebraic properties of AG

and of its embedding into A, and vice versa. The case of reductive G is considered
by Geometric Invariant Theory (GIT). We collect basic results on invariants and
quotients of affine varieties by reductive groups in the following theorem.

Main Theorem of GIT. Let G be a reductive group and let A be a rational G-alge-
bra.

(1) If A is finitely generated, then so is AG.

Under this assumption, put X = SpecA. Then π : X → X//G is well defined and has
the following properties:

(2) π is surjective and maps closed G-stable subsets of X to closed subsets of X//G.
(3) X//G carries the quotient topology with respect to π , and OX//G = π∗OG

X .
(4) If Z1,Z2 ⊂ X are disjoint closed G-stable subsets, then π(Z1)∩π(Z2) = /0. In

particular, each fiber of π contains a unique closed orbit.

Thus X//G may be regarded as the “variety of closed orbits” for G : X . It is not
hard to show that πG : X → X//G is the categorical quotient in the category of all
algebraic varieties.

Finite generation of G-invariants goes back to Hilbert and Weyl (in characteristic
zero), the general case is due to Nagata and Haboush. Other assertions are due to
Mumford.

If G is linearly reductive, i.e., all rational G-modules are completely reducible
(e.g., chark = 0 or G is a torus), then the proof is considerably simplified [PV, 3.4,
4.4] by using the G-AG-module decomposition A = AG⊕AG, where AG is the sum
of all nontrivial irreducible G-submodules. The respective projection

A �→ AG, f �→ f �,

is known as the Reynolds operator. For finite G and chark = 0, it is just the group
averaging:

f � =
1
|G| ∑g∈G

g f , ∀ f ∈ A.

For a complex reductive group G, the Reynolds operator may be defined by averag-
ing over a compact real form of G.

The proof in positive characteristic may be found in [MFK, App. 1A, 1C].
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The Main Theorem of GIT is a base for other constructions of quotients for re-
ductive group actions. A localized version of categorical quotient was introduced
by Seshadri: a good quotient of a G-variety X (where G is reductive) is a variety
Y together with a dominant affine morphism π : X → Y such that π∗OG

X = OY . If a
good quotient exists, then it is unique and is the categorical quotient in the category
of algebraic varieties. Mumford proved that any projective G-variety X contains an
open subset X ss (semistable locus) admitting a good quotient X ss//G � Projk[X̂ ]G,
where X̂ is the affine cone over X [MFK, §1.4], [PV, Th. 4.16].

For non-reductive groups the situation is not so nice—even finite generation
of invariants fails due to famous Nagata’s counterexample [Nag] and results of
Popov [Po4]. However for subgroups of reductive groups acting on algebras or affine
varieties, there are positive results on finite generation and the structure of invariant
algebras and categorical quotients.

Lemma D.1. Let G be a reductive group, H ⊆G an algebraic subgroup, A a rational
G-algebra, and I � A a G-stable ideal. Then (A/I)H is a purely inseparable integral
extension of AH/IH .

The lemma is obvious for chark = 0, since A/I lifts to a G-submodule of A, whence
(A/I)H = AH/IH . The proof for H = G may be found in [MFK, Lemma A.1.2] and
the general case follows by the transfer principle (Remark 2.12).

Corollary D.2. Let M be a G-module and let N ⊂ M be a G-submodule. For any
m ∈ (M/N)(H) there exist q = pn and m ∈ (SqM)(H) such that m �→mq ∈ Sq(M/N).

Proof. Just apply Lemma D.1 to A = S•M, I = AN, replacing H by the common
kernel H0 of all χ ∈ X(H), and use the fact that H/H0 is diagonalizable. ��

Corollary D.3. If A carries a G-stable filtration, then (grA)H is a purely insepara-
ble extension of gr(AH).

Proof. Each homogeneous component of grA has the form M/N, where M,N are
two successive members of the filtration. It remains to apply Corollary D.2 to M
and N. ��

The most important case is H =U , a maximal unipotent subgroup in G. U-invari-
ants of rational G-algebras were studied by Hadzhiev, Vust, Popov (in characteristic
zero), Donkin, Grosshans (in arbitrary characteristic), et al. We refer to [Gr2] for
systematic exposition of the theory.

Lemma D.4 ([Gr2, 14.3]). A rational G-algebra A is integral over its subalgebra
〈G ·AU〉.

The proof relies on Lemma D.1. In characteristic zero, Lemma D.4 is trivial, since
A = 〈G ·AU〉 by complete reducibility of G-modules and highest weight theory.

The fundamental importance of U-invariants is explained by the fact that A and
AU share a number of properties.

Theorem D.5. Let G be a connected reductive group.
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(1) A rational G-algebra A is finitely generated (resp. has no nilpotents, is an inte-
gral domain) if and only if AU is so.

(2) In particular, for any affine G-variety X, the categorical quotient πU : X →X//U
is well defined.

(3) In characteristic zero, X is normal (has rational singularities) if and only if
X//U is so.

In characteristic zero, finite generation of U-invariants is due to Hadzhiev; other
assertions were partially proved by Brion (nilpotents and zero divisors), Vust (nor-
mality), Kraft (rationality of singularities), and by Popov in full generality [Po5].
The theorem was extended to arbitrary characteristic by Grosshans. We shall give
an outline of the proof scattered in [Gr2].

Finite generation of AU � (k[G/U ]⊗A)G (see Remark 2.12) stems from that
of A and of k[G/U ]. The latter is proved by a representation-theoretic argument
(Lemma 2.23) or by providing an explicit embedding of G/U into a G-module,
with the boundary of codimension ≥ 2 [Gr2, 5.6] (cf. Theorem 28.3).

The other assertions are proved using horospherical contraction (cf. 7.3).
The algebra A is endowed with a G-stable increasing filtration A(n) such that grA

has an integral extension S = (k[G/U−]⊗AU)T and AU � gr(AU ) = (grA)U � SU ,
where T acts on G/U− by right translations. In characteristic zero this filtration is
described in 7.3 (for A = k[X ]) and the general case is considered in [Gr2, §15].

Now finite generation of AU implies that of S, and hence of grA (both are finite
modules over 〈G · SU 〉), and finally of A by a standard argument. Moreover, the
algebra R =

⊕∞
n=0 A(n)tn ⊆ A[t] is finitely generated, too (because RU � AU [t]) [Gr2,

16.5].
The remaining assertions may be proved for finitely generated A and X = SpecA.

As in 7.3, put E = SpecR and consider the natural (G×k
×)-morphism δ : E → A

1

with the zero fiber X0 = Spec(grA) and other fibers isomorphic to X . Note that k
×

contracts E to X0 (i.e., ∀x ∈ E ∃ limt→0 t · x ∈ X0), because the grading on R is non-
negative.

Since δ is flat, the set of x ∈ E such that the schematic fiber δ−1(δ (x)) has
a given local property of open type (e.g., is reduced, irreducible, normal, or has
rational singularity) at x is open in E. The complementary closed subset of E is k

×-
stable, and hence it intersects X0 whenever it is non-empty. It follows that X has the
property of open type whenever X0 has this property.

If an affine k-scheme Z of finite type is reduced (resp. irreducible or normal),
then so is Z//H for any algebraic group H acting on Z. (Only normality requires
some explanation.) In particular, these properties are inherited by X//U from X .

Conversely, if X//U has one of these properties, then SpecS = (G//U− ×
X//U)//T and X0 have it, too. (For normality, we use the isomorphism S � grA
in characteristic zero.) By the above, X has this property. More elementary (and
lengthy) arguments are given in [Gr2, §18].

The same reasoning works for rational singularities in characteristic zero, us-
ing the facts that G//U has rational singularities [Kem1], [BKu, 3.4.7] and that
rational singularities are preserved by products (Theorem A.5) and categorical quo-
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tients modulo reductive groups (Theorem A.6), which guarantees that X//U =
(G//U ×X)//G has rational singularities provided that so has X .

Lemma D.6 (M. Brion). If X is an affine irreducible G-variety and X̃ is its normal-
ization, then X̃//U is the normalization of X//U.

Proof. Put R = k[X ], S = k[X̃ ]. The conductor (R : S) := { f ∈ R | f S ⊆ R} is a
G-stable ideal both in R and S. Since QuotR = QuotS and S is finite over R, we
have (R : S) �= 0. Then 0 �= (R : S)U ⊆ (RU : SU ). For any nonzero f ∈ (RU : SU ),
SU � f SU ⊆ RU is a finite RU -module and SU ⊆ QuotRU , whence the claim. ��

We conclude this section by a simple lemma on semiinvariants.

Lemma D.7 (cf. [PV, Th. 3.3]). Let G be a connected solvable algebraic group, let
A be a rational G-algebra without zero divisors, and let K = QuotA. Then for every
f ∈ K(G) there exist f1, f2 ∈ A(G) such that f = f1/ f2.

Proof. We have f = p1/p2, pi ∈ A. By the Lie–Kolchin theorem, there exists a
nonzero linear combination f2 =∑c j(g j p2)∈ A(G), c j ∈ k, gj ∈G. Then f = f1/ f2,
where fi = ∑c j(gj pi) ∈ A(G). ��

E Hilbert Schemes

One of important problems in algebraic geometry and its applications is to classify
algebraic or geometric objects of a certain type with fixed discrete invariants. It
is natural to expect that the remaining “continuous” parameters (moduli) are given
by coordinates on a certain algebraic variety, called a moduli space, whose points
parameterize the objects of our class. A stronger version of a moduli space (fine
moduli space) is obtained by considering a certain class of “continuous” families of
our objects parameterized by points of varieties or schemes, which is closed under
base change, and defining the moduli space as the scheme which represents the
contravariant functor associating with a scheme S the set of all families over the
base S. In other words, every family is obtained from the universal family over the
moduli space by a unique base change.

In particular, it is quite common to consider flat families of schemes, i.e., flat
morphisms of finite type π : X → S, where X ,S are Noetherian k-schemes. It is
well known that many discrete invariants of schemes do not vary in flat families. In
this context, various versions of Hilbert schemes are defined.

E.1 Classical Case. The classical Grothendieck’s Hilbert scheme parameterizes
projective subschemes of a projective space P(V ) with a fixed Hilbert polynomial.

Definition E.1. The Hilbert scheme HilbΦ (P(V )) is the scheme representing a func-
tor which associates with each scheme S the set of flat families π : X → S such
that X ⊆ P(V )× S is a closed subscheme, π is the natural projection, and all
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fibers Xs = π−1(s) have Hilbert polynomial Φ . More directly, there exists a uni-
versal flat family X univ →HilbΦ (P(V )) of the above type such that every flat fam-
ily is obtained from the universal one by the pullback along a unique morphism
S → HilbΦ(P(V )), so that X = X univ×HilbΦ (P(V )) S.

Theorem E.2 ([Gro], [Ser, 4.3.4]). HilbΦ(P(V )) exists and is a projective scheme.

Clearly, the Hilbert scheme is uniquely defined being an object representing a func-
tor. Geometric properties of the Hilbert scheme and the universal family are derived
from the properties of this representable “functor of points”, cf. Appendix A.3. For
instance, all fibers of the universal family over closed points are pairwise distinct
subschemes of P(V ) and all closed subschemes with Hilbert polynomial Φ occur as
fibers (because every such subscheme X may be considered as a family over a single
point, and hence is induced by a unique map of the point to HilbΦ(P(V ))). Another
manifestation of this principle is a computation of the tangent space to the Hilbert
scheme.

Proposition E.3 ([Gro]). The tangent space to HilbΦ (P(V )) at the closed point [X ]
corresponding to a subscheme X ⊆ P(V ) is

T[X ]HilbΦ(P(V )) = H0(X ,NX/P(V )),

where NX/Y = H omOX (IX/I 2
X ,OX ) is the normal sheaf of a closed subscheme X

in a scheme Y .

This proposition easily stems from the interpretation of tangent vectors as mor-
phisms S = Speck[t]/(t2) → HilbΦ (P(V )) mapping the closed point to [X ], or,
equivalently, as flat families X → S with special fiber X , see [Har3, §2] for de-
tails.

A more subtle question is the smoothness of the Hilbert scheme at a closed point.
The tangent space at [X ] classifies infinitesimal first order deformations of X , so
the problem may be reformulated as whether every infinitesimal deformation is ex-
tendible to a local deformation. Obstructions to such extensions lie in the cohomol-
ogy of the so-called higher tangent sheaves of Lichtenbaum and Schlessinger.

To define these sheaves, consider first the affine case. Let X be an affine k-scheme
of finite type. Consider a closed embedding in a vector space X ⊆ V and put I =
I (X) � k[V ] = R. Choose a short exact sequence of R-modules

0 −−−−→ Q −−−−→ F
q−−−−→ I −−−−→ 0,

where F is finite and free, and consider the submodule K ⊆Q spanned by the Koszul
syzygies q( f )g− q(g) f , f ,g ∈ F . Tensoring by A = k[X ] � R/I yields an exact
sequence

Q/K −−−−→ F/IF −−−−→ I/I2 −−−−→ 0.

Recall the second exact sequence for Kähler differentials:

I/I2 −−−−→ ΩR/k⊗R A −−−−→ ΩA/k −−−−→ 0.
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Now define the cotangent complex

. . . −−−−→ 0 −−−−→ L2 −−−−→ L1 −−−−→ L0 −−−−→ 0 −−−−→ . . .

of X as follows: L2 = Q/K, L1 = F/IF , L0 = ΩR/k ⊗R A, with obvious differ-
entials. The i-th tangent module T i(X) is the i-th cohomology of the dual com-
plex HomA(L•,A). Clearly, T 0(X) = HomA(ΩA/k,A) = H0(X ,TX ) and T 1,2(X)
are the cokernels of the maps HomR(ΩR/k,A) = H0(X ,TV ) → H0(X ,NX/V ) =
HomA(I/I2,A) and HomA(F/IF,A) → HomA(Q/K,A), respectively. The functors
T i do not depend on the choice of V and F and commute with localization. Thus one
can globalize them and define the i-th tangent sheaf T i

X on an arbitrary scheme X ,
see [Har3, §3] for details. Note that T 0

X = TX .
The following result explains when an infinitesimal deformation of X can be

extended to a thicker infinitesimal deformation.

Proposition E.4 ([Har3, 10.2]). Let O be a finite-dimensional local k-algebra and
let O ′ be a quotient of O modulo a one-dimensional ideal. Denote by S,S′ the spec-
tra of O,O ′ and suppose that there is a flat family X ′ → S′ with special fiber X.
There are three successive obstructions for the existence of an extension of X ′ to
X → S⊃ S′, lying in H0(X ,T 2

X ), H1(X ,T 1
X ), and H2(X ,T 0

X ). This means that one
can construct an element in the first space (depending on S,S′) which has to be zero
in order that an extension may exist and, if this first obstruction vanishes, then one
can construct an element in the second space which has to be zero, and so on.

Corollary E.5 ([Har3, 6.3, 10.4]). If H0(X ,T 2
X ) = H1(X ,NX/P(V )) = 0, then

HilbΦ(P(V )) is smooth at [X ].

Proof. A morphism of a punctual scheme S′ → HilbΦ(P(V )) mapping the closed
point to [X ] corresponds to a flat closed subfamily P(V )× S′ ⊇ X ′ → S′ with
special fiber X . By Proposition E.4, the unique obstruction for the existence of
local extensions (on affine charts) of X ′ to any larger punctual scheme S (such
that I (S′) � k[S] is one–dimensional) lies in H0(X ,T 2

X ). Hence X ′ can be ex-
tended locally and, moreover, these extensions can be performed inside P(V )× S
by the infinitesimal lifting property [Har3, Exs. 4.7, 10.1], since P(V ) is smooth.
The obstruction for gluing these local deformations together lies in H1(X ,NX/P(V ))
[Har3, 6.2(b)]. Hence X ′ → S′ can be extended globally to a flat closed subfam-
ily P(V )× S ⊇ X → S, i.e., the morphism S′ → HilbΦ (P(V )) can be extended
to S. Now the converse of the infinitesimal lifting property [Har3, 4.6] implies that
HilbΦ(P(V )) is smooth at [X ]. ��

Now we discuss some other versions of Hilbert schemes which are important for
this survey.

E.2 Nested Hilbert Scheme. The first one is nested (or flag) Hilbert scheme pa-
rameterizing tuples of closed subschemes in P(V ) with fixed Hilbert polynomials
and inclusion relations [Ser, 4.5].
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Definition E.6. The nested Hilbert scheme HilbΦ1,...,Φk(P(V )) is the scheme repre-
senting a functor which associates with each scheme S the set of k-tuples of flat
families Xi → S (i = 1, . . . ,k) such that Xi ⊆ P(V )×S are closed subschemes with
prescribed inclusion relations between them and all fibers of Xi → S have Hilbert
polynomial Φi.

It is easy to see that HilbΦ1,...,Φk(P(V )) is a closed subscheme in the product
HilbΦ1(P(V ))×·· ·×HilbΦk(P(V )). Similarly to Proposition E.3, one proves

Proposition E.7 ([Ser, Pr. 4.5.3]).

T(X1,...,Xk)HilbΦ1,...,Φk(P(V )) = H0(P(V ),N ),

where N ⊆ NX1/P(V )⊕ ·· · ⊕NXk/P(V ) is formed by tuples (ξ1, . . . ,ξk) of normal
vector fields such that ξi|Xj = ξ j mod NXj/Xi

whenever Xi ⊇ Xj.

E.3 Invariant Hilbert Schemes. There are several equivariant versions of Hilbert
schemes. From now on, we assume that chark = 0. Let G be a connected reductive
group or, more generally, a product of such a group and a finite Abelian group.
For such groups, the highest weight theory works well. Fix a multiplicity function
m : X+ → Z+, λ �→ mλ .

Definition E.8. The invariant Hilbert scheme HilbG
m(V ) is the scheme representing a

functor which associates with each scheme S the set of flat families X → S of affine
G-subschemes of a G-module V such that X ⊆V ×S is a closed G-subscheme and
all fibers Xs satisfy mλ (Xs) = mλ , ∀λ ∈ X+.

Theorem E.9. HilbG
m(V ) exists and is a quasiprojective scheme.

This theorem was proved by Haiman–Sturmfels [HS] for diagonalizable G (in which
case the assumption chark = 0 can be waived) and by Alexeev–Brion [AB3] in
general. In fact, the general case can be deduced from the diagonalizable one as
follows. First, observe that for any flat family π : X → S of affine G-schemes, i.e., a
flat affine G-invariant morphism of finite type, the G-isotypic components of π∗OX

have the following structure: (π∗OX )(λ ) � (π∗OU
X )λ ⊗V (λ ), where the T -isotypic

components (π∗OU
X )λ ⊆ π∗OU

X are locally free sheaves of rank mλ . Hence the good
quotient X //U = SpecOS

π∗OU
X is a flat family of affine T -schemes over S. Now it

is not hard to prove that HilbG
m(V ) is realized as a closed subscheme of HilbT

m(V//U),
the scheme parameterizing affine T -subschemes of V//U (embedded in some T -
module), see [AB3, 1.2] for details.

Remark E.10. The classical Hilbert scheme is a particular case of invariant Hilbert
scheme for G = k

× acting on V by homotheties [HS, 4.1].

Here is an analogue of Propositions E.3 and E.4.

Proposition E.11 ([AB3, Pr. 1.13], [C-F2, 3.5]). The tangent space to the invariant
Hilbert scheme is

T[X ]HilbG
m(V ) = H0(X ,NX/V )G = HomG,A(I/I2,A),
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where I = I (X) � k[V ] = R and A = k[X ] = R/I. The obstruction space at [X ]
is T 2(X)G.

There is yet another version of invariant Hilbert scheme parameterizing affine
G-schemes with fixed algebra of U-invariants.

Definition E.12. Let Y be an affine T -scheme with finite multiplicity function m.
The invariant Hilbert scheme HilbG

Y is the scheme representing a functor which
associates with each scheme S the set of flat families X → S of affine G-schemes
together with T -equivariant isomorphisms X //U

∼→ Y ×S.

Theorem E.13 ([AB3, Th. 1.12]). HilbG
Y exists and is an affine scheme of finite type.

To prove the theorem, consider an open subscheme HilbG
m(V )0 ⊆ HilbG

m(V ) repre-
senting those families X ⊆ V ×S for which π∗OU

X is generated by π∗(V ∗)U |X as
an OS-algebra. Put VU =V/〈Uv−v | v∈V 〉= SpecS•(V ∗)U . There is a natural mor-
phism HilbG

m(V )0 →HilbT
m(VU ) associating with each X ⊆V its categorical quotient

X//U canonically embedded in VU . We may choose V in such a way that Y admits
a T -equivariant closed embedding in VU . Then it is easy to see that the schematic
fiber of the above morphism over [Y ] is the desired HilbG

Y .
In an important particular case, where Y = VU is a multiplicity-free T -module

with linearly independent weights, HilbG
Y = HilbG

m(V )0, where mλ = 1 or 0, depend-
ing on whether λ ∈Λ+(Y ) or not.

The coordinate algebra k[HilbG
Y ] can be explicitly described. Consider a horo-

spherical variety X0 = (G//U− ×Y )//T , the unique one with X0//U � Y . For any
closed point [X ] ∈ HilbG

Y , there is a canonical G-module isomorphism k[X ]� k[X0]
extending k[X ]U � k[Y ]� k[X0]U . Thus [X ] is determined by a G-equivariant mul-
tiplication law on k[X0] �

⊕
λ∈Λ+(Y )V (λ )⊗ k[Y ]λ extending the multiplication

in k[Y ], i.e., by a collection of linear maps

mν
λμ ∈Mν

λμ := HomG(V (λ )⊗V (μ),V (ν))⊗Hom(k[Y ]λ ⊗k[Y ]μ ,k[Y ]ν)

satisfying commutativity and associativity conditions. These mν
λμ may be viewed as

morphisms HilbG
Y → Mν

λμ , and their matrix entries are regular functions on HilbG
Y .

Note that mν
λμ([X ]) �= 0 if and only if ν−λ −μ is a tail of k[X ].

There is a T -action on HilbG
Y by shifting the isomorphisms X//U

∼→ Y via the
T -action on Y . This action can be described in terms of the isotypic decomposition
V = V(λ1)⊕·· ·⊕V(λd). Namely, define a new T -action on V so that V(λi) become T -
eigenspaces of weights wGλi. This action induces the action on HilbG

m(V ) ⊇ HilbG
Y

coinciding with the one defined above. Under this action, the matrix entries of mν
λμ

have T -eigenweight λ +μ−ν .

Theorem E.14 ([AB3, 2.4]).

(1) The T -action contracts HilbG
Y to [X0].

(2) k[HilbG
Y ] is generated by the matrix entries of all mν

λμ .
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(3) For any closed point [X ] ∈ HilbG
Y , the coordinate algebra of its T -orbit closure

is k[T [X ]] = k[Ξ(X)], where the semigroup Ξ (X) is generated by the T -weights
opposite to the tails of k[X ].

Proof. Since the T -action on Y � X0//U lifts G-equivariantly to X0, [X0] is a T -fixed
point. We claim that the differentials of the matrix entries of mν

λμ generate T ∗
[X ]HilbG

Y

for any X . Indeed, otherwise they would vanish on a certain nonzero tangent vector,
which would imply that the family X → S over S = Speck[t]/(t2) pulled back along
the respective map S → HilbG

Y would have the same multiplication law in k[X ] as
the trivial family X × S, i.e., X � X × S would correspond to a map S → {[X ]}, a
contradiction. Hence the T -eigenweights of T[X0]HilbG

Y are tails, and therefore neg-
ative integer combinations of positive roots. By the graded Nakayama lemma, the
matrix entries of mν

λμ generate the maximal ideal I ([X0]) � k[HilbG
Y ] and the alge-

bra k[HilbG
Y ]. This implies all other claims. ��

Corollary E.15. The tails of any affine G-variety span a finitely generated semi-
group.

Proof. Since tails are preserved under restriction to general G-orbits, the question
is reduced to G-orbit closures, which have finite multiplicity function by (2.2). Now
the claim stems from Theorem E.14(3). ��
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Université J. Fourier, Grenoble, Oct. 1998.

[Ful1] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), vol. 2, Springer-Verlag,
Berlin–Heidelberg–New York–Tokyo, 1984.

[Ful2] W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton, 1993.
[FMSS] W. Fulton, R. MacPherson, F. Sottile, B. Sturmfels, Intersection theory on spherical

varieties, J. Algebraic Geom. 4 (1995), no. 1, 181–193.
[FS] W. Fulton, B. Sturmfels, Intersection theory on toric varieties, Topology 36 (1997),

no. 2, 335–353.
[Gel] I. M. Gelfand, Spherical functions on symmetric Riemannian spaces, Amer. Math.

Soc. Transl. 37 (1964), 39–43. Russian original: I. M. Gel�fand, Sferiqeskie
funkcii na simmetriqeskih rimanovyh prostranstvah, Dokl. AN SSSR
70 (1950), 5–8.

[Gin] V. Ginzburg, Admissible modules on a symmetric space, Astérisque 173–174 (1989),
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[Kn3] F. Knop, Über Bewertungen, welche unter einer reductiven Gruppe invariant sind, Math.
Ann. 295 (1993), no. 2, 333–363.
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[Mat] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya
Math. J. 16 (1960), 205–218.

[MRo] J. C. McConnell, J. C. Robson, Noncommutative Noetherian rings, Graduate Studies in
Math., vol. 30, AMS, Providence, 2001.

[McG] W. M. McGovern, The adjoint representation and the adjoint action, Invariant theory and
algebraic transformation groups II (R. V. Gamkrelidze, V. L. Popov, eds.), Encyclopædia
Math. Sci., vol. 131, pp. 159–238, Springer, Berlin, 2002.

[MK] V. B. Mehta, W. van der Kallen, On a Grauert–Riemenschneider vanishing theorem for
Frobenius split varieties in characteristic p, Invent. Math. 108 (1992), no. 1, 11–13.

[MRa] V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schu-
bert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40.

[Mik] I. V. Mikityuk, On the integrability of invariant Hamiltonian systems with homogeneous
configuration spaces, Math. USSR-Sb. 57 (1987), no. 2, 527–546. Russian original:
I. V. Mikit�k, Ob integriruemosti invariantnyh gamil�tonovyh sis-
tem s odnorodnymi konfiguracionnymi prostranstvami, Mat. sb. 129
(1986), � 4, 514–534.

[MF1] A. S. Mishchenko, A. T. Fomenko, Euler equations on finite-dimensional Lie groups,
Math. USSR-Izv. 12 (1978), no. 2, 371–389. Russian original: A. S. Miwenko,
A. T. Fomenko, Uravneni� ��ilera na koneqnomernyh gruppah Li, Izv.
AN SSSR, ser. mat. 42 (1978), � 2, 396–415.

[MF2] A. S. Mishchenko, A. T. Fomenko, Generalized Liouville method of integration of
Hamiltonian systems, Funct. Anal. Appl. 12 (1978), no. 2, 113–121. Russian origi-
nal: A. S. Miwenko, A. T. Fomenko, Obobwënny�i metod Liuvill� inte-
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isotropy representation 3
Iwasawa decomposition 134, 149

K

k-divisor 19
Kac diagram 148
kernel of a monoid 159
Kirillov form 32

L

Lagrange method 18
linear functional 75

admissible 75
kernel of 75
supporting 76

linearly reductive group 217
little

root system 149
Weyl group 121

localization of a wonderful variety 191, 193
locally linearizable

action 16
variety 16

logarithmic
cotangent bundle 33
tangent bundle 33

longest element 9
lowest

vector 9
weight 9
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M

Main Theorem of GIT 217
matrix entries 7

space of 7
Matsushima’s criterion 12
minimal

model 209
program 209

root system 131
modality 24

generic 24
model 58, 213

of a G-germ 60
module of covariants 214
moduli 220

space 220
fine 220

moment map 31
localized 32
logarithmic 33
normalized 119

Mori
cone 209
fiber space 209, 210

multiplicity 6
function 223

multiplicity-free
module 10
space 137

N

negative roots 8
Néron–Severi

group 95
torus 184

Newton polytope 102
numerically effective line bundle 202

O

observable
hull 13
subgroup 13

obstruction 222
orbit map 1

P

parabolic induction 21
parity 51
perfect semigroup 164
polarized cotangent bundle 124

positive roots 8
principal stratum 124
proper action 17
pseudo-free variety 32
pseudodivisor 90

Q

quasiparabolic subgroup 14
quotient 1

categorical 216
geometric 2
good 218
rational 3

R

rank xvi, 20
rational

G-A-module 214
G-algebra 214
G-module 214
singularity 208

real root 146
reduction mod p 204
reductive variety 167

stable 167
regular

B-eigensection 74
color 74
k-divisor 19
representation 6
variety 175

regularly embedded subgroup 12
residue field 213
resolution of singularities 207

Bott–Samelson 204
rational 207
Springer 5

restriction functor 5
Reynolds operator 217
Richardson condition 141
Richardson–Springer (RS-)monoid 25
root

decomposition 8
subspace 8

S

S-point 211
S-variety 169
Satake diagram 150
Schubert

cell 26
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variety 26
large 206

Selberg condition 138
simple

roots 8
variety 87

singularity
canonical 209
rational 208
terminal 209

sober subgroup 179
source 130
spherical

closure
of a spherical system 197
of a subgroup 180

diagram 195
homogeneous space 136
pair 136
roots 190
subalgebra 136
subgroup 136
system 195

primitive 197
variety 26

spherically closed
spherical system 198
subgroup 180

splitting by a (p−1)-th power 203
standard

embedding 179
Levi subgroup 9
parabolic subgroup 9
reductive subgroup 29

subregular
B-eigensection 74
color 74

support
of a fan 70
of a G-germ 60
of a weight 55

symmetric space 145
Hermitian 157

symplectically stable action 35

T

t-adic topology 212
tail 112

vector 112
weight 112

theorem of
Borel–Weil 10
Chevalley 2

toric variety 69
toroidal

embedding 174
variety 174

trace map 203
transfer principle 6
transitive action 1
twisted

conjugation 145
cotangent bundle 129
involution 154

type
of a color 194
of a simple root 193

U

universal cover 215

V

valuation 212
geometric 213
ring 213

discrete 213
valuative criterion

of completeness 213
of properness 213
of separation 213

velocity vector xxi
very sober

hull 180
subgroup 180

W

weakly
commutative space 140
normal variety 202
symmetric space 138

weight
lattice 20
semigroup 20

Weyl
involution 37
module 9

wonderful
embedding 179
variety 187

Z

Zariski topology 58





Notation Index

Symbols

�, Reynolds operator 217
∗, multiplication/action of W ∗ 25
�, adherence of orbits 26
〈· | ·〉, Cartan pairing 146
[ · ], de Rham cohomology class 202
∠, skew-orthogonal complement 31
α∨, coroot 8
α , restricted root 147, 149
α∨, restricted coroot 169
αi ∈Π , simple root 155, 196
Δ = ΔG, root system 8
Δ∨, coroot system 8
Δ+ ⊂ Δ , set of positive roots 8
Δ− ⊂ Δ , set of negative roots 8
Δ , restricted root system 147
ΔI ⊆ Δ , standard root subsystem 9
ΔO, little root system 149
Δmin

X , minimal root system 131
εx ∈ Ex,+, vector 73
ηδ , canonical section of O(δ ) 89
θ ∈ AutG, involution 145
θ , diagram involution 147
ι , diagram involution 149
κ, restriction map 68, 73, 109
Λ = Λ(X) = Λ (K), weight lattice 20, 63,

194
Λ+(X), weight semigroup 20
Λ̂ , weight lattice of a Ĝ-action 50, 112
Λv, lattice 108
λ ∗ =−wGλ , dual weight 9
λδ , weight of a divisor 19, 89, 184
λ̂D, extended weight of a color 184
λY ∈Λ , weight of fY 86

μ(δ ,λ ), pseudodivisor 90
Ξ(X), semigroup of tails 225
ξ∗, velocity field 31
ξn, nilpotent part of ξ ∈ g 35
ξs, semisimple part of ξ ∈ g 35
Π = ΠG ⊆ Δ+, set of simple roots 8
Π∨ ⊆ Δ∨+, set of simple coroots 8
Π ⊂ Δ , set of simple roots 147
Π0 ⊆Π , subset 169
ΠO ⊂ ΔO, set of simple roots 149
Π∨

O ⊂ Δ∨O , set of simple coroots 156
Πmin

X ⊂ Δmin
X , set of simple roots 131

Πa ⊆Π , set of simple roots of type a 194
Πa′ ⊆Π , set of simple roots of type a′ 194
Πb ⊆Π , set of simple roots of type b 194
Π p ⊆Π , set of simple roots of type p 194
Π̃ , affine simple root system 147
π , moment map for A-action 120, 124
π = πX , projection 31
πG, quotient map 216
π̃G, quotient map 119
πI , retraction 191
ρ = ρG, half the sum of positive roots 96
Σ , cross-section 125
Σ , weight semigroup 164
Σ ⊂ ΣG, subset of spherical roots 191, 194
Σ ⊂ ΣG, set of spherical roots for the spherical

closure 197
ΣG, set of spherical roots 190
Σ̂ , cross-section 126
σ , Frobenius splitting 201
σ , section 120
σδ , δ -splitting 201
σ(δ ,λ ) 91
σ̂ , splitting form 203
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τ : G→ G, orbit map 145
τ , trace map 203
ϒ , moment map for k

×-action 128
Φ = ΦX , moment map 31, 33
Φ∗ = Φ∗

X , dual homomorphism 32
Φc, moment map 129
Φ , localized moment map 32
Φ̃ , normalized moment map 119
ϕ : M̃X →MX , finite map 119
ϕ+, flip of ϕ 210
χD, character of a color 184
ψ , integral piecewise linear function 86
ψY , linear function on CY 86
ψ//G, map of quotients 217
Ω 1

X (logD), sheaf of 1-forms with logarithmic
poles 33

ω , symplectic form 31
ωi, fundamental weight 45, 155, 196
ω∨

i , fundamental coweight 168

A

A = L/L0, torus 17
A , conormal bundle 120
A(δ ,λ ), concave function 91, 95
AG, complement to AG 217
A (G), group algebra 7
A (G/H), Hecke algebra 7
apr ⊆ a, principal open stratum 35
A (V ), group algebra of a module 7
A = A (W ,R), algebra 63
A∗(X), Chow ring 100
A∗(X), rational Chow group 94
AsG, asymptotic semigroup 168

B

B⊆ G, Borel subgroup 5
B− ⊆ G, opposite Borel subgroup 8
B̂⊆ Ĝ, Borel subgroup 112, 185
B, conormal bundle to general B-orbits 120
B = ∑Bx, polyhedral domain 75
B(X), set of B-subvarieties 25
Bx ⊆ E , polyhedral domain 75
B∗(X), algebraic Chow group 95

C

C, smooth projective curve 73
C, variety 17
C = C(Δ+), dominant Weyl chamber 8
c, Cartier operator 202
c ∈ Ug, Casimir element 171
C(λ )⊆V (λ ∗), HV-cone 47

C∗(O), ring of conditions 101
C (Q), hypercone generated by Q 75
C = C (W ,R), (hyper)cone 68, 77
C ∨, dual cone 68
Cx = C ∩Ex,+, cone 75
c(X) = cG(X), complexity 20
CY = C (VY ,DB

Y ), (hyper)cone 69, 78
ĉ(Z), complexity of a Ĝ-action 50
CaDiv(X), group of Cartier divisors 87
CAutK, group of central automorphisms

116
CD, class of colored data 63
ClG(X), equivariant divisor class group 186
cork, corank 35

D

D = D(K), set of non-G-stable divisors 62
D̂ = D(K̂), set of non-Ĝ-stable divisors 112
Dα , color of type a′ or b 114, 157, 169, 193
D±
α , colors of type a 157, 193, 194

∂ξ , directional derivative 140
Da ⊆DB, set of colors of type a 194
Da′ ⊆DB, set of colors of type a′ 194
DB, set of colors 62
Db ⊆DB, set of colors of type b 194
DB

ϕ ⊆DB, subset 70
DB

v , set of colors over v 109
DB

Y ⊆DB, subset defined by a G-germ 66
dH(X), generic modality 24
Di, component of ∂X 175, 183, 187, 191
Di ⊂ G, color 161
Dw ⊆ G, closure of a Bruhat coset 25
D(X), algebra of differential operators 32
DX , sheaf of differential operators 31
Dx, B-stable prime divisor 73, 74
∂X , boundary divisor 175
DY ⊆D , subset defined by a G-germ 66
def, defect 35
diagX ⊂ X ×X , diagonal 60

E

E = Hom(Λ ,Q), vector space 68, 109
Ê , vector space 112
eα , root vector 146
Eϕ ⊆ E , subspace 70
Ĕ , hyperspace 73, 109
Ĕ ∗, set of linear functionals on Ĕ 75
Ĕ ∗

ad, set of admissible linear functionals 75
Ev = Hom(Λv,Q), vector space 109
Ev,+, half-space 109

Êv,+, half-space 112
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Ex,+, half-space 73
EnvG, enveloping semigroup 168

F

F , Frobenius morphism 201
F , colored fan 70, 86
Fα , flat 126
fλ , eigenfunction 109
fω,v, matrix entry 7
FX ⊆ S•TX , subalgebra generated by GX 32
fY , local equation of a Cartier divisor 85

G

Ĝ, extension of G 48, 112, 138, 168, 185
G̃, universal cover 215
gα , root subspace 8
G(λ )⊆ L(λ ), subgroup 49
G(λ ,μ)⊆ G(λ )∩G(μ), subgroup 49
Ĝ(λ ,μ)⊆ Ĝ, subgroup 49
G/H, quotient space 1
G∗H Z, homogeneous bundle 3
G(X), unit group of a monoid 158
GX , action sheaf 32
g∗ z, point in a homogeneous bundle 3

H

Ĥ, observable hull 13
H, very sober hull 180
H0 ⊆ H, common kernel of characters 184
hα = [eα ,e−α ] 146
h0(δ ,λ ) 90
h1(δ ,λ ) 91
Hξ , Hamiltonian 31
H∗(X), homology group 95
H k

X , de Rham cohomology sheaf 202
HilbΦ (P(V )), Hilbert scheme 220
HilbΦ1,...,Φk (P(V )), nested Hilbert scheme

223
HilbG

m(V ), invariant Hilbert scheme 223
HilbG

m(V )0 ⊆ HilbG
m(V ), open subscheme

224
HilbG

Y , invariant Hilbert scheme 224

I

I ⊂Π , subset of simple roots 191
ind, index of a Lie algebra 141
IndG

H M, induced module 5
int, interior of a (hyper)cone 69, 76

K

K, G-field 58
K̂ = k(X̂), Ĝ-field 112
K = C ∩E , cone 75
kχ , 1-dimensional module 4
KB ⊆ K, subalgebra 62
K = K (V ), weight cone 162
k(v), residue field 213
KX , canonical divisor 183, 209
k(x), residue field of Ox 58

L

L⊆ P, Levi subgroup 9
L0 ⊆ L, subgroup 17
L(λ )⊆ P(λ ), Levi subgroup 49
L(λ ,μ)⊆ L(λ )∩L(μ), subgroup 49
L(χ), G-line bundle 4
L(F ), group of integral linear functions 87
LI ⊇ T , standard Levi subgroup 9
L(M) = LG/H(M), associated sheaf 4

L(r)
n (k) ⊆ Ln(k), semigroup of matrices of

rank ≤ r 158
L(r)(V ) ⊆ L(V ), semigroup of operators of

rank ≤ r 158
LX = MX//G, quotient variety 31
Lpr

X ⊆ LX , principal stratum 124
L̃X = M̃X//G, quotient variety 119
L(Y )⊆ P(Y ), Levi subgroup 170
L(Y )0 ⊆ L(Y ), subgroup 170

M

M = ZG(a) 35
m⊂ g, (−1)-eigenspace of θ 145
m : λ �→ mλ , multiplicity function 223
M(λ ), isotypic component 29
mλ (δ ), multiplicity 89
mλ (M), multiplicity 9
mν
λμ , multiplication law 224

mD, multiplicity of a divisor 86
M(V ), space of matrix entries 7
mv � Ov, maximal ideal 213
mV (L ), multiplicity 6
mV (M), multiplicity 6
mV (X), multiplicity 6
MX , closure of ImΦ 31
mx � Ox, maximal ideal 58
Mpr

X ⊆MX , principal stratum 35
M̃X , closure of Im Φ̃ 119
M̃pr

X ⊆ M̃X , principal stratum 125
modH X , modality 24
Mor(X ,M), module of morphisms 214
MorG(X ,M), module of covariants 214
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N

N (δ ), Newton polytope 102
NX ⊆ NG(a), subgroup 125
N1(X) 209
N1(X) 209
NX/Y , normal sheaf 221
NE(X), Mori cone 209
NS(X), Néron–Severi group 95

O

O, homogeneous space 1
o, base point 1
O = G/H 186
Ô , completion of a local ring 212
Ov, DVR 213
Ox, local ring of a point 58

P

P = P(X), associated parabolic 17
P−, opposite parabolic 9
P = ∑Px, polytope 75
P(δ ), polyhedral domain 89, 90
P+(δ ), polyhedral domain 95
P(λ )⊆ G, parabolic subgroup 47
P[D], stabilizer of a B-stable divisor 19
p( f ), parity 51
PI ⊇ B, standard parabolic 9
Pi ⊃ B, minimal parabolic 25
p(k3, . . . ,kr), parity 51
Pu = Ru(P), unipotent radical of P 9
P−u = Ru(P−), unipotent radical of P− 9
P = P(V ), weight polytope 165
Px ⊆ E , polytope 75
PicG(X), equivariant Picard group 215
PL(F ), group of piecewise linear functions

87
PrDiv(X), group of principal divisors 87

Q

q̂, polyvector 182
q∨, adjoint matrix 88
Qv = Hom(Zv,Q), vector space 109
Qv,+, ray 109

R

R ⊆DB, subset 63
R̃ ⊆D , subset 63
rα , root reflection 8
R(X), Cox ring 183, 185

RX , Cox sheaf 183, 185
r(X) = rG(X), rank 20
r̂(Z), rank of a Ĝ-action 50
ResG

H M, restricted module 5

S

S = S(X)−, horospherical type 30
Sα ⊆ G, SL2-subgroup 35, 193
sα ⊆ g, sl2-subalgebra 35
si ∈W , simple reflection 25
S(Lm×Ln−m)⊂ GLn, subgroup 151
Sw, Schubert variety 26
S(X), normalizer of general U-orbits 30
SX ⊆ A, subgroup 132
SY , support of a G-germ 60
SuppF , support of a fan 70

T

T ⊆ B, maximal torus 8
T0 = T ∩L0, subtorus 169
T0, θ -fixed part of T 146
T1, θ -split part of T 146
T̂ ⊆ Ĝ, maximal torus 49, 185
TI = Z(LI)0, central torus 191
TO = H/H0, diagonalizable group 184
TX , Néron–Severi torus 184
TX , sheaf of vector fields 31
T ∗X , cotangent bundle 31
T prX ⊆ T ∗X , principal stratum 124
T̂ X , polarized cotangent bundle 124
T̂ prX ⊆ T̂ X , principal stratum 124
T cX , twisted cotangent bundle 129
T ∗X(logD), logarithmic cotangent bundle

33
T X(− logD), logarithmic tangent bundle 33
TX (− logD) ⊆ TX , subsheaf preserving ID

33
T gX 32
T i(X), higher tangent module 222
T i

X , higher tangent sheaf 222

U

U ⊂ B, maximal unipotent subgroup 5
U− ⊂ B−, opposite maximal unipotent

subgroup 8
U , conormal bundle to general U-orbits 120
U pr ⊆U , principal stratum 125
Ug, universal enveloping algebra 7, 32
UX ⊆DX , subalgebra generated by GX 32
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V

V = V (K), set of G-valuations 106
V̂ = V (K̂), set of Ĝ-valuations 112
v, geometric valuation of KB 108
V 1 ⊆ V , subset 132
V (λ ) = VG(λ ), Weyl module 9
V ∗(λ ), dual Weyl module 9
V (λ ,μ), L(λ )∩L(μ)-module 49
Vw(λ ), Demazure module 23
vλ ∈V (λ ), highest vector 10
v−λ ∈V (λ ∗), lowest vector 47
vχ,θ0 , G-valuation 132
vD, order along a divisor 213
Vv, valuation cone 109
Vx, valuation cone 73
vx(t), G-valuation 133
VY ⊆ V , subset defined by a G-germ 66

W

W ⊆ V , subset 63
W , Weyl group 8
W ∗, RS-monoid 25
W (a∗), Weyl group of a 121
wG, longest element in W 9
Wi, Weyl group of Pi 26
WX , little Weyl group 121, 154

X

X = X(K), universal model 58
X = SpecR(X) 184, 186
[X ], point of the Hilbert scheme 221
X∗, dual variety 37
X , wonderful embedding of O 186
X̂ , cone over X 112
X+, flip of X 210

X+, semigroup of dominant weights 8
X0, horospherical contraction 30, 219, 224
XΣ , localization of a wonderful variety 191
X/G, geometric quotient 2
X//G, categorical quotient 216
XG, universal G-model 58
GX , set of G-germs of X 60
GX, set of G-germs 60
X(h), Demazure embedding 181
XI = XI

TI , localization of a wonderful variety
191

XI = PIX̊ 191
X̊ , B-chart 17, 62
X̊ = SpecOX

RX 184, 186

X̊ I = X̊TI 191
X̊Y , minimal B-chart 67
Xp, reduction mod p 204
X1/p, Frobenius twisted variety 201
X

norm ⊆ X, normal locus 58
X

reg ⊆ X, smooth locus 58
X(S), set of S-points 211
Xs, fiber 221
X univ, universal family 221

Z

Z ⊆ X̊ , subvariety 17
Z = Z (K), central valuation cone 115
z, B−-fixed point 176, 187, 191
[[Z]] ∈C∗(O), image of a cycle 101
[z], class of a cycle 94
Zλ ⊆ X̊ , subvariety 127
Z = Z(λ ,μ), double cone 48
Z(h)⊂ X(h), subvariety 182
ZI = ZTI 191
Zv, value group 108
(Z1 · · ·Zs)O, intersection number 101
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