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Abstract. Recent results using inverse scattering techniques interpret every solution ϕ(x, y) of the
sine-Gordon equation as a nonlinear superposition of solutions along the axes x = 0 and y = 0.
This has a well-known geometric interpretation, namely that every weakly regular surface of Gauss
curvature K = −1, in arc length asymptotic line parametrization, is uniquely determined by the values
ϕ(x, 0) and ϕ(0, y) of its coordinate angle along the axes. We introduce a generalized Weierstrass
representation of pseudospherical surfaces that depends only on these values, and we explicitely
construct the associated family of pseudospherical immersions corresponding to it.
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The Sine-Gordon Equation and Initial Value Problems

Let u: D ⊂ R
2 −→ R represent a differentiable function on some open, simply-

connected domain D. In [1] it had already been shown that every solution u(x, y)
of the sine-Gordon equation

uxy = sin u (1)

represents ‘some type of nonlinear superposition of solutions u1(x, 0) and u2(0, y)’,
that is, travelling along different characteristics. The purpose of this report is to ob-
tain all smooth solutions u(x, y) by algebro-geometric methods which replace the
classical ones (such as direct integration, inverse scattering and numerical integra-
tion).

A differentiable solution ϕ(x, y) of (1) represents the Tchebychev angle (i.e.,
angle between arc length asymptotic coordinate lines) of a weakly regular pseudo-
spherical surface, measured at the point corresponding to (x, y). By weakly regular
surface we mean a parametrized surface whose partial velocity vector fields never
vanish, but are allowed to coincide at a set of points of measure zero. Obviously, at
those singularity points, the parametrization fails to be an immersion.

Thus, every smooth solution ϕ(x, y) of the Equation (1) corresponds to a weakly
regular pseudospherical surface. It is known that every such surface is completely
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determined by a pair of arbitrary smooth functions α(x) and β(y), such that α(x) =
ϕ(x, 0) and β(y) = ϕ(0, y). We view this pair of functions as a pseudospherical
analogue of the Weierstrass representation from minimal surfaces, and we call it
generalized Weierstrass representation of pseudospherical surfaces. We deduced
this representation by analogy to a method presented in [2]. Our representation
simply turned out to depend only on the initial values of the Tchebychev angle,
α(x) = ϕ(x, 0) and β(y) = ϕ(0, y).

The author of this report found this representation in 1998, while she was a
graduate student. At that time, she was not aware of some outstanding works like
[1, 3]. No previous paper contained a representation for pseudospherical surfaces
of type Weierstrass, and the holomorphic potential of [2] that inspired this approach
had only been studied for some harmonic maps (not for the Lorentz-harmonic maps,
like in our case).

However, after it was computed in the spirit of [2], this representation turned
out to be characterized by the initial conditions of a Goursat problem, so we would
now like to recall the following definition.

DEFINITION 1. A nonlinear hyperbolic system of equations is a system of partial
differential equations for functions U, V : D → R, where D := [0, x0] × [0, y0]:

Vx = f (U, V ), Uy = g(U, V ), (2)

with smooth given functions f, g: R
2 → R. We will call initial value problem for

a nonlinear hyperbolic system the problem consisting of equations in (2), together
with the initial conditions

U (x, 0) = U0(x), V (0, y) = V0(y), (3)

for (x, y) ∈ D. The functions U0: [0, x0] → R and V0: [0, y0] → R are also
assumed to be smooth.

PROPOSITION 1 (see [4]). The initial value problem for a nonlinear hyperbolic
system has a unique classical solution.

For details, see [4], Theorem 1 and its corollary.
Any nonlinear equation of hyperbolic type can be brought to the form (1), by

substitutions of type U = U (u, ux ), V = V (u, uy).
For the particular case of the sine-Gordon equation, one introduces the inde-

pendent variables U = u, V = ux which satisfy a system of the form (1), namely
Ux = V , Vy = sin U , with initial conditions (3).

We provide a method of obtaining solutions to such a problem, by solving a
simplified ODE system, followed by a loop group factorization.

Since many readers are not familiar with this type of computations, we provided
complete arguments for all of our techniques and results, while also striving for
brevity.
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Geometric Solutions to the Sine-Gordon Equation

We begin our study of surfaces with constant negative Gaussian curvature K = −1,
called pseudospherical surfaces, or K-surfaces. We recall that all such surfaces are
described by a sine-Gordon equation, with a corresponding Lax system. Let M be
the image of D = [0, x0] × [0, y0] through the differentiable map ψ : D → R

3,
where ψ represents a weakly regular asymptotic line parametrization (i.e., such
that the coordinate lines are asymptotic lines, and partial velocities never vanish, so
we can assume them to be unitary). An arc length asymptotic line parametrization
is also called Tchebychev parametrization.

Let ϕ represent the angle between the asymptotic lines. We will call it a Tcheby-
chev angle. Singularities of weakly regular surfaces occur at those values (x, y)
where this angle, ϕ(x, y) equals 0 or π . The first fundamental form is [5, 6]:

I = | dψ |2 = dx2 + 2 cos ϕ dx dy + dy2.

Let N define the normal vector field to the surface (or Gauss map). Remark that
the unit vector field N is orthogonal to ψx , ψy , ψxx , ψyy .

The following obvious result is due to Lie (around 1870) and is of crucial
importance (see also [5]):

THEOREM 1. Every pseudospherical surface has a one-parameter family of de-
formations preserving the second fundamental form

II = sin ϕ · dx dy,

the Gaussian curvature K = −1, and the angle ϕ between the asymptotic lines. The
deformation is generated by the transformation x �→ x∗ = λ−1x and y �→ y∗ = λy,
λ > 0. (Angle is preserved in the sense that ϕ∗(x∗, y∗) = ϕ(x(x∗), y(y∗)).)

We will refer to this simple change of coordinates as the Lie–Lorentz transforma-
tion. Lie–Lorentz transformations of a certain pseudospherical immersion represent
its associated family, denoted as ψλ: D → R

3. In order to define an orthonormal
frame on the surface, we consider the so-called curvature line coordinates, defined
by u1 = x + y, u2 = x − y. Partial velocities with respect to u1 and u2 are orthogo-
nal. This reparametrization diagonalizes both the first and the second fundamental
form. The eigenvectors of the shape operator are the orthonormal vectors e1 and e2,
called principal directions.

DEFINITION 2. For any (weakly regular) pseudospherical immersion ψ :
D → R

3, we identify the orthonormal standard frame F = {ψ, e1, e2, N } with
the SO(3)-valued function (e1, e2, N ) defined at every point of the surface.

We will generically call rotated frame Fθ the frame obtained by rotating the standard
frame F by the angle θ (x, y) around N , in the tangent plane.
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In particular for θ = ϕ/2, where ϕ(x, y) is the Tchebychev angle between the
asymptotic directions, the resulting frame is denoted U := Fϕ/2 and is called the
normalized frame associated with the standard frame F (see [7], p. 18). Expressed
in Tchebychev coordinates, the normalized frame U is oriented just like F , and
consists of ψ , ψx , a unit vector orthogonal to ψx , ψ�

x , and the unit normal N .
Finally, we will call extended normalized frame the normalized frame Uλ =

U(x, y, λ) corresponding to the immersion ψλ, obtained via Lie–Lorentz transfor-
mation of coordinates from the immersion ψ .

It is convenient to use 2 × 2 matrices instead of 3 × 3 ones. Therefore, we recall
the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4)

We identify the SO(3)-valued extended normalized frame Uλ with the SU(2)-
valued function U defined on the same domain D, with the initial condition
U(0, 0, λ) = I , via the spinor correspondences between ek (k = 1, 2, 3) and matri-
ces U · iσk · U−1. We have the following (see [1, 4, 5, 8]):

THEOREM 2. The extended normalized frame Uλ is a SU(2)-valued function of
λ > 0, which satisfies the Lax differential system

∂xUλ = Uλ · A, ∂yUλ = Uλ · B, (5)

where

A = i

2

(
ϕx −λ

−λ −ϕx

)
, B = i

2
λ−1

(
0 e−iϕ

eiϕ 0

)
(6)

The compatibility condition for the system is Ay −Bx − [A,B] = 0, which can be
rewritten as ϕxy = sin ϕ.

Conversely, given a smooth solution ϕ(x, y) of the sine-Gordon equation, there
exists a unique solution U(x, y, λ) of the Lax system. Moreover, this solution is real
analytic in λ.

Harmonic Maps and the Generalized Weierstrass Representation

For a complete characterization of harmonicity in the context of pseudospherical
surfaces, we recommend [9]. Let us remark that the wave equation uxy = 0 over the
xy-plane can be understood as harmonicity condition with respect to the Lorentz
metric dx · dy. A well-known fact is the following: if M is a weakly regular surface
with K < 0, then M , considered with its second fundamental form II as a metric,
represents a Lorentzian 2-manifold (M, II). The Gauss map N : (M, II) → S2 is
Lorentz-harmonic (i.e., Nxy = ρ · N , where ρ is a certain real-valued function) iff
the curvature K < 0 is constant.

It is also well known that if M = (D, ψ) is, as usual, a pseudospherical surface
given by a Tchebychev immersion ψ : D → R

3, then the frame U : D → SU(2)
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represents a lift of the Gauss map of N : D → S2, via the canonical projection
relative to the base point e3, namely π : SU(2) → S2 ∼= SU(2)/S1. From this
lifting, it follows (see, for example [5]) that the maps N and U are related by the
identification N ≡ U · iσ3 · U−1.

A very important result obtained by Sym [10] allows us to obtain the immersion
(up to a rigid motion), once we have the expression of the extended frame. This is
presented in several papers, (e.g. [12]):

THEOREM 3. Starting from a given solution ϕ(x, y) of the sine-Gordon equation,
let us consider the initial value problem of the Lax system with the initial condition
U(0, 0, λ) = U0. Let U(λ) be the solution to this initial value problem. Then U(λ)
represents the extended frame corresponding to the Tchebychev immersion ψλ =
d/ dtUλ · (Uλ)−1, where λ = et .

By this result, once we have the extended frame, we can reconstruct the surface.
Since the frame is just a lift U of the Gauss map N , we infer that we could reconstruct
everything starting from the Gauss map. However, there is a freedom in the frame
given by a gauge action. Namely, let us act on the extended normalized frame U
via a rotation matrix R. The result is called gauged frame Û .

Û = R(0, 0)−1 · U · R. (7)

It will be convenient for our purposes to fix a base point x0 ∈ D, e.g. x0 = (0, 0),
and impose U(x0, λ) = I . We will use this assumption from now on. Also note
that the orthonormal frame Fλ represents a gauged frame of the normalized frame
Uλ, via a rotation R of angle θ = −ϕ/2. We have the following consequence of
Theorem 3:

COROLLARY 1. If Fλ represents the orthonormal frame corresponding to the
associate family of immersions ψλ, then

ψλ = R−1

(
d

dt
Fλ(Fλ)−1

)
R,

where λ = et and R is the rotation of angle −ϕ(x, y)/2.

Let us introduce the Cartan connection ωλ := −(Uλ)−1 dUλ = A dx + B dy,
with A and B given by formula (6). That is,

ωλ = i

2

(
ϕx −λ

−λ −ϕx

)
dx + i

2
λ−1

(
0 e−iϕ

eiϕ 0

)
dy (8)

Obviously, ωλ represents a �su(2)-valued form, and then it decomposes into a
diagonal, respectively off-diagonal part as ωλ = ω0 + ω1, according to the Cartan
decomposition of su(2).

The following is a well-known result (see [12, 13]):
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PROPOSITION 2. There is a one-to-one correspondence between the space of
Lorentz-harmonic maps from D to S2 and the equivalence classes of admissible
connections, under the action of the gauge action introduced earlier. Moreover,
every admissible connection ω corresponds to its associated loop ωλ satisfying the
flatness condition

dωλ + ωλ ∧ ωλ = 0. (9)

Further, let ω0 = ω′
0 + ω′′

0 and ω1 = λ−1ω′
1 + λω′′

1 be the usual splittings into
(1, 0) and, respectively, (0, 1) forms, that is

ω′
0 = i

2

(
ϕx 0
0 −ϕx

)
dx, ω′′

0 = O, ω′
1 = i

2

(
0 e−iϕ

eiϕ 0

)
dy,

ω′′
1 = i

2

(
0 −1

−1 0

)
dx . (10)

In this context, we now introduce the twisted loop algebra of those Lau-
rent polynomials in λ with coefficients in su(2) that are fixed under the Ad(σ3)-
automorphism, that is,

�su(2)alg = {X : R∗ → su(2); X(−λ) = σ3 · X(λ) · σ3}.
It will be convenient to use a certain Banach completion of this algebra. For this
purpose, consider the Wiener algebra G that consists of all Laurent series of param-
eter λ with complex-valued coefficients, X (λ) = ∑

k∈Z
Xk · λk , with the property

that
∑

k∈Z
|Xk | < ∞. We define ‖X (λ)‖ = ∑

k∈Z
|Xk |. It is well known that this

Wiener algebra G is a Banach algebra relative to this norm, and it consists of con-
tinuous functions. For a matrix A(λ) ∈ su(2,G), whose entries are elements of G,
we consider the norm ‖A‖ = ∑

i, j=1,2 ‖Ai j‖, where Ai j denotes the (i, j)-entry of
A. It can be checked by a direct computation that ‖AB‖ � ‖A‖ · ‖B‖ and |I‖ = 1.

We denote by

�su(2) := (�su(2)alg, ‖ · ‖)

the completion of �su(2)alg with respect to this norm. Let us also introduce the
twisted loop group

�SU(2) := {g ∈ SU(2); σ3g(λ)σ3 = g(−λ)}.
It is well known that �SU(2) is a Banach Lie group with Lie algebra Lie �SU(2) =
�su(2). The twisting (Ad(σ3) invariance) condition on loop algebra �su(2)alg can
be replaced by the following characteristic property: in spinor representation, the
diagonal part is an even function λ, while the off-diagonal part is an odd function
of λ. In order to carry out the construction method of pseudospherical surfaces, we
introduce the following subalgebras of �su(2):

�+su(2) = {X (λ); X (λ) contains only nonnegative powers of λ} (11)
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�−su(2) = {X (λ); X (λ) contains only nonpositive powers of λ}, (12)

�−
∗ su(2) = {X (λ); X (∞) = 0}. (13)

The connected Banach loop groups whose Lie algebras are described by definitions
given earlier are denoted, respectively, �+SU(2), �−SU(2) and �−

∗ SU(2).
In order to obtain the generalized Weierstrass representation of pseudospher-

ical surfaces, we need to use the following adapted factorization (introduced in
[14]):

THEOREM 4 (splitting of Birkhoff type, for real parameter λ). Let �̃SU(2) be
the subset of �SU(2) whose elements, as maps defined on R+, admit an analytic
extension to C∗. It is easy to see that �̃SU(2) is a subgroup of �SU(2). Then the
multiplication map �̃−

∗ SU(2)×�̃+SU(2) → �̃SU(2) represents a diffeomorphism
onto the open and dense subset �̃−

∗ SU(2) ·�̃+SU(2), called the ‘big cell’. In partic-
ular, if g ∈ �̃SU(2) is contained in the big cell, then g has a unique decomposition
g = g−g+ where g− ∈ �̃−

∗ SU(2) and g+ ∈ �̃+SU(2). The analogous result holds
for the multiplication map �̃+

∗ SU(2) × �̃−SU(2) → �̃SU(2).

This represents a ‘linearized’ version of the classical Birkhoff loop group fac-
torization from [15] (where the splitting was introduced and proved for smooth
loops on the unit circle S1). Note that in [14], the aforementioned theorem was
formulated for SO(3, R), instead of SU(2). There it was shown that the ‘Birkhoff’
splitting works for λ on any straight line of the complex plane.

The first type of Birkhoff factorization, performed away from a singular set
S1 ⊂ D, allows us to split the extended moving frame Uλ: D → SU(2) into
two parts. Recall that the first factor of this splitting is of the form g− = I +
λ−1g−1 + λ−2g−2 + · · ·, while the second factor of the splitting is of the form
g+ = g0 + λg1 + λ2g2 + · · ·, respectively. Since the ‘big cell’ is open and Uλ:
D → SU(2) is continuous, the set

D̃1 = {(x, y); Uλ(x, y) belongs to the ‘big cell’}
is open. Note that (0, 0) ∈ D̃1. Let S1 = D − D̃1 denote the ‘singular’ set. We have
just shown that S1 is closed and (0, 0) is not an element of the set S1. Similarly, we
have S2 and D̃2 for the second splitting.

We can perform the two splittings on the extended frame Uλ, independently.
Let U = Uλ be the extended normalized moving frame of a pseudospherical

surface and let (x, y) ∈ D \ (S1 ∪ S2). Then, for some uniquely determined V+ ∈
�+SU(2), V− ∈ �−SU(2) and U− ∈ �−

∗ SU(2), U+ ∈ �+
∗ SU(2), U can be written

as

U = U+ · V− = U− · V+. (14)

Here U− is an element of the form U− = I + λ−1U−1 + λ−2U−2 + . . ., while V+
is an element of the form V+ = V0 + λV1 + λ2V2 + . . ., respectively. Analogous
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expressions can be written for U+ and V−, respectively. We will show that, starting
from data of type Weierstrass, called normalized potentials ηx and ηy , one can
obtain the factors U+ and U− as solutions of a simplified ODE system. These two
factors represent the genetic material necessary and sufficient to recreate the frame
and then the immersed surface via the Sym formula.

THEOREM 5. Let U = Uλ, U+ and U− be as above. Then the following systems
of differential equations are satisfied:

(U+)−1 · ∂xU+ = −λ · i

2
·
(

0 ei(ϕ(0,0)−ϕ(x,0))

e−i(ϕ(0,0)−ϕ(x,0)) 0

)
(15)

with initial condition U+(x = 0) = I
and

(U−)−1 · ∂yU− = λ−1 · i

2
·
(

0 e−iϕ(0,y)

eiϕ(0,y) 0

)
, (16)

with initial condition U−(y = 0) = I .
Moreover, U+ does not depend on y and U− does not depend on x.

In some other words, U+ and U− are solutions of some first-order systems of
differential equations in x and y, respectively.

Proof. We will prove the first statement. Proving the other statement is straight-
forward.

The first Birkhoff splitting implies U+ = U · V −1
− , which after differentiation

gives

dU+ = dU · V −1
− − U · V −1

− · dV− · V −1
− , (17)

U−1
+ dU+ = V−(U−1 dU)V −1

− − dV− · V −1
− . (18)

The last equality can also be written as

U−1
+ dU+ = V−(A dx + B dy)V −1

− − dV− · V −1
− . (19)

We will use the Lax equations. In the last equality, we compare the coefficient
of dy on the left-hand side with the coefficient of dy on the right-hand side. The
left-hand side clearly contains only positive powers of λ, while the coefficient of
dy on the right-hand side contains nonpositive powers of λ only. Thus, U+ depends
exclusively on x .

Let us now consider the coefficient of dx in the same equality. The left-hand
side contains only positive powers of λ, while the one on the right-hand side, due
to the λ-dependence of A, contains one term in λ and no terms in λk , with k > 1.
Next, we can restrict to a sufficiently small interval around (0, 0) on the line y = 0.
Let now V− = Ṽ0 + λ−1Ṽ1 + λ−2Ṽ2 + · · · = Ṽ0 · T−, with T− ∈ �−

∗ SU(2).
But since U−1

+ (x) · U ′
+(x) contains only positive powers of λ, we conclude that



INITIAL VALUE PROBLEMS OF THE SINE-GORDON EQUATION 265

U−1
+ (x) · U ′

+(x) dx = Ṽ0(x, 0) · ω′′
1 · Ṽ0(x, 0)−1, where ω′′

1 is the one from (10). Let
us now denote Ṽ0(x, 0) := V0. In order to determine the matrix V0, one needs to
compare the coefficients of the power λ0 in the same equality. As we pointed out,
the left-hand side has positive powers of λ only, while the x-part of right-hand side
only contains −V0 · β0 · V −1

0 − dV0 · V0
−1 as the only term that does not depend

on λ, where we denoted

β0 = ω′
0(x, 0) = i

2

(
ϕx (x, 0) 0

0 −ϕx (x, 0)

)
dx .

Thus, V0 is a solution to dV0 = −V0·β0. The solution V0 of the system must take into
account that U(0, 0, λ) = I . Thus, V0(x) = eθ (0)−θ (x), where θ (x) := i

2ϕ(x, 0)σ3.
Consequently, we obtain

(U+)−1U ′
+(x) = − i

2
λ · V0 ·

(
0 1
1 0

)
· V −1

0

= −λ · i

2
·
(

0 ei(ϕ(0,0)−ϕ(x,0))

e−i(ϕ(0,0)−ϕ(x,0)) 0

)
(20)

DEFINITION 3. We define the normalized potentials ηx and ηy via the following

(U+)−1 · U ′
+(x) dx := −λ · ηx , (21)

(U−)−1 · U ′
−(y) dy := −λ−1 · ηy, (22)

Clearly, they represent su(2)-valued forms in x and y, respectively. Using the
theorem we just proved, we obtain the form of the normalized x-potential ηx :

ηx = i

2

(
0 ei(ϕ(0,0)−ϕ(x,0))

e−i(ϕ(0,0)−ϕ(x,0)) 0

)
dx (23)

By a completely analogous reasoning (the second part of the proof we left to the
reader), we obtain the matrix W0 = I and then the expression of the normalized
y-potential:

ηy = − i

2

(
0 e−iϕ(0,y)

eiϕ(0,y) 0

)
dy (24)

Note that the normalized potentials ηx and ηy are completely determined by the
restrictions of ϕ to the axes of coordinates. Since ϕ(x, y) is invariant under Lie–
Lorentz transformations, these potentials correspond uniquely to each (weakly reg-
ular) associate family of surfaces with Gauss curvature −1.

Considering normalized potentials is actually equivalent to giving a Goursat
problem for the sine-Gordon hyperbolic system. In the next section, we will use the
loop group splitting techniques in order to solve this initial value problem, starting
from given normalized potentials.
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Gauging the Frame and Its Effect on Potentials

DEFINITION 4. Consider a normalized frame U . For a rotation of smooth angle
function θ (x, y) around e3, we call gauged frame the matrix

Û = R−1
0 · U · R,

where R0 := R(0, 0).

DEFINITION 5. We define the potentials of the gauged frame Û , η̂x and η̂y , by

(Û+)−1 · Û ′
+(x) dx := −λ · η̂x , (25)

(Û−)−1 · Û ′
−(y) dy := −λ−1 · η̂y, (26)

where

Û = Û+V̂− = Û−V̂+ (27)

represent the Birkhoff splittings of the gauged frame Û .

PROPOSITION 3. For a normalized frame U and its gauge-transformed Û , the
corresponding potentials satisfy the relations

η̂x = R−1
0 · ηx · R0, η̂y = R−1

0 · ηy · R0. (28)

Proof. A completely straightforward computation, based on easy matrix ma-
nipulations and the uniqueness of the splittings yield our formulae.

Now recall the explicit formulae (23) and (24) of the normalized potentials ηx

and ηy , respectively. The asymmetry in the expressions came from ‘normalizing’
the original orthonormal potential F , that is, rotating it by the angle (ϕ(x, y))/2.
In order to correct that, we have to gauge the frame appropriately, that is rotate it
‘back’ with the angle −(ϕ(x, y))/2, while making sure that the initial condition
U(0, 0, λ) = I is still satisfied.

PROPOSITION 4. By gauging the normalized extended frame U via the rotation
R of angle θ := −ϕ(x, y)/2, we obtain, modulo a constant rotation, the original
orthonormal frame Û = F = (e1, e2, N ) = F(x, y, 1) and its extension F(x, y, λ)
via coordinate transformation. The potentials that correspond to the frame F are

η̃x = R−1
0 · ηx · R0, η̃y = R−1

0 · ηy · R0. (29)

Proof. Based on the previous proposition, the proof is straightforward. Let us
consider the normalized frame U , whose gauge correspondent is Û = F . The po-
tentials are linked via the aforementioned formula, where R0 represent the specific
rotation of constant angle θ (0, 0) = −(ϕ(0, 0))/2.
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Consequently, we obtain the potentials corresponding to the orthonormal frame
F . Denoting ϕ0 := ϕ(0, 0), the potentials corresponding to the frame F are given
by

η̃x = i

2

(
0 e−i(ϕ(x,0)−ϕ0)

ei(ϕ(x,0)−ϕ0) 0

)
dx,

η̃y = − i

2

(
0 e−i(ϕ(0,y)−ϕ0)

ei(ϕ(0,y)−ϕ0) 0

)
dy. (30)

Remark the symmetry of the two potentials of the frame F . This is an advantage
over the potentials corresponding to the normalized frame U .

These symmetric, ‘denormalized’, potentials are of a simpler, more general form
that we can use for the unconstrained pair of type Weierstrass.

Note that at the origin x = y = 0, the two potentials equal iσ1/2 and −iσ1/2,
respectively.

Constructing Pseudospherical Surfaces from Given Potentials

We now introduce symmetric potentials ξ x and ξ y of a general form. We will show
that there is a one-to-one correspondence between these potentials and associated
families of pseudospherical immersions.

DEFINITION 6. Let α: Dx = {x | (x, 0) ∈ D} → R, β: Dy = {y | (0, y) ∈
D} → R be smooth functions, such that α(0) = β(0). Let

ξ x = i

2

(
0 e−i(α(x)−α(0))

ei(α(x)−α(0)) 0

)
dx,

ξ y = − i

2

(
0 e−i(β(y)−β(0))

ei(β(y)−β(0)) 0

)
dy. (31)

We call ξ x and ξ y symmetric potentials and we use the same terminology and
notations for their 3 × 3 correspondents.

We are now ready to prove the following theorem.

THEOREM 6. Let Û+(y, λ) ∈ �̃∗
−SO(3)P and Û−(x, λ) ∈ �̃∗

+SO(3)P be the
respective solutions of the following initial value problems:

(Û+)−1Û ′
+(x) dx = −λξ x ,

Û+(x = 0) = I,
(32)

(Û−)−1Û ′
−(y) dy = −λ−1ξ y,

Û−(y = 0) = I,
(33)

where ξ x and ξ y are given by (31). Consider the set

D̃ := {(x, y) ∈ Dx × Dy; Û−(y) · Û+(x) ∈ �̃∗
−SO(3)P · �̃∗

+SO(3)P}.
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In D̃, we perform the Birkhoff splitting

Û−1
− (y) · Û+(x) = V̂+(x, y) · V̂ −1

− (x, y), (34)

where V̂+ ∈ �̃∗
+SO(3)P and V̂− ∈ �̃∗

−SO(3)P

Let

Û := Û−V̂+ = Û+V̂− (35)

Then, Û represents the orthonormal frame F of an associated family of pseu-
dospherical surfaces in Tchebychev net, whose Tchebychev angle ϕ(x, y) verifies
the conditions ϕ(x, 0) = α(x) and ϕ(0, y) = β(y).

Proof. Proposition 1 shows the existence and uniqueness of a solution ϕ to the
initial value problem ϕxy = sin ϕ, ϕ(x, 0) = α(x), ϕ(0, y) = β(y). Let Û = F be
the orthonormal frame corresponding to the Tchebychev parametrization of angle
ϕ. Formulae (30) give the symmetric potentials η̃x and η̃y corresponding to this
frame F , as being identical with the symmetric potentials ξ x and ξ y assigned by
(31).

In order to obtain ϕ explicitly as a solution, we first integrate (uniquely) (25)
and (26), and obtain Û+ and Û+. Since ϕ(0, 0) = α(0) = β(0) is provided, so is
R0. We use Û− = R−1

0 U−R0 and Û+ = R−1
0 U+R0 to obtain U+ and U−. Next, the

Birkhoff splitting

U−1
− (y) · U+(x) = V+(x, y) · V −1

− (x, y), (36)

provides V+, V− uniquely. Hence, the normalized frame U = U− · V+ via formula
(27), is obtained in a unique way. We apply the Sym formula, and obtain the
associated family of immersions

ψλ = d

dt
Uλ(Uλ)−1, (37)

where λ = et . Finally, the map ϕ(x, y) represents the angle of this parametrization,
and can be written explicitly.

Remark 1. The K-Lab contains a numerical implementation of this algorithm.
Starting from two arbitrary potentials of the form (31) (i.e., pair of initial functions
α(x) and α(y)), it computes and models the corresponding family of associated
surfaces.

Note that factorizations are possible only in the ‘big cell’, which is an open
and dense subset of the domain. The K-lab algorithm contains an in-built numer-
ical method that ‘jumps’ the singularities once they are detected, and thus allows
construction and visualization of all regular patches.

COROLLARY 2. The correspondence between the pair of symmetric potentials,
and the family of associated pseudospherical surfaces of angle ϕ is a bijection.
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Proof. Let � be the map from the set of associated families of pseudospherical
surfaces in Tchebychev net into the set of all pairs of potentials of general form
(31). In essence, � maps the angle ϕ to the pair of potentials from (30), which in
particular are of the form (31).

On the other hand, we have a reverse procedure. Theorem 6 constructs a map
from any pair of potentials (31) to a certain family of immersions of angle ϕ, via
the frame Û . We will denote this map by �. The proof of Theorem 6 shows that
the map � is well defined.

The construction in Theorem 6 shows that � ◦ � = id, which is the same
with showing that every pair of potentials (31) is of the form (30), for a uniquely
determined angle ϕ that defines a family of pseudospherical immersions ψλ.

The uniqueness of the construction method from Theorem 6 also shows that
� ◦ � = id.

This completes the proof of the Corollary.

EXAMPLE (Amsler’s Surface). In Tchebychev net parametrization, this sur-
face corresponds to an angle ϕ(x, y) that is constant on both x- and y-axes. For some
well-known surfaces, like the pseudosphere, the Tchebychev angle ϕ(x, y) is easily
written as a trigonometric function of x and y. This is not the case for the Amsler
surface. On the other hand, we can rewrite the sine-Gordon equation in a very simple
form [13]: Let t := xy with (x, y) ∈ D = R

2. If we express ϕ(x, y) = h(xy), with
h: R → (0, π ) a differentiable function, then For Amsler surfaces, the sine-Gordon
equation is written as the second-order differential equation

th′′(t) + h′(t) = sin(h(t)).

A change of function w = eiψ transforms the aforementioned equation into the so-
called third Painleve equation. Sinceϕ(x, y) is smooth, a straightforward calculation
yields

ϕ(0, 0) = ϕ(x, 0) = ϕ(0, y) := ϕ0

for every pair (x, y) ∈ D. Amsler [11] showed that the solution ϕ(x, y) = h(xy)
oscillates near π when t > 0 and near 0 when t < 0. He also proved that the surface
has two cuspidal edges corresponding to ϕ = 0 and ϕ = π , respectively.

We note the two straight lines contained in the Amsler surface, corresponding
to x = 0 and y = 0. As an obvious consequence of the angle being constant along
the axes, the symmetric potentials (50) of the Amsler surface can be written as

η̃x = i

2

(
0 1
1 0

)
dx, η̃y = − i

2

(
0 1
1 0

)
dy. (38)

For an interactive visualization of Amsler surfaces obtained using the general-
ized Weierstrass representation (60, 61) and computational loop-group splittings,
see http://www.gang.umass.edu/gallery/k/kgallery0201.html.
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Mountain J. Math. 10(1) (1980), 439–458.

18. Dorfmeister, J. and Haak, G.: Meromorphic potentials and smooth surfaces of constant mean
curvature, Math. Z. 224 (1997), 603–640.

19. Lund, F.: Soliton and geometry, In: A. O. Barut (ed.), Proceedings of the NATO ASI on Nonlinear
Equations in Physics and Mathematics, Reidel, Dordrecht, 1978.

20. Toda, M.: Pseudospherical surfaces via moving frames and loop groups, PhD Dissertation, hard-
bound, University of Kansas, 2000, 114 pp.

21. Wu, H.: A simple way for determining the normalized potentials for harmonic maps, Ann. Global
Anal. Geom. 17 (1999), 189–199.


