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PREFACE

In october 2007, the “Abdus Salam” International Centre for Theoretical Physics
(ICTP) organized a school in mathematics at the Biblioteca Alexandrina in
Alexandria, Egypt. From the 3rd century B.C. until the 4th century A.C. Alexan-
dria was a centre for mathematics. Euclid, Diophante, Eratostene, Ptolemy, Hy-
patia were among those who made the fame of Alexandria and its antique library.
The choice of the Biblioteca Alexandria was symbolic. With the reconstruction
of the library it was natural that one also resumes the universal intellectual ex-
change of the antique library. The will of the director of the Biblioteca, Ismael
Seralgedin made that school possible.

The topic of the school was “Algebraic approach of differential equations”.
This special topic which is at the convergence of Algebra, Geometry and Analysis
was chosen to gather mathematicians of different disciplines in Egypt. This topic
arises from the pioneer work of E. Kolchin, L. Garding, B. Malgrange and was
formalized by the school of M. Sato in Japan. The techniques used are among the
most recent and modern techniques of mathematics. In these lectures we give an
elementary presentation of the subject. Applications are given and new areas of
research are also hinted. This book allows to understand developments of this. We
hope that this book which gathers most of the lectures given in Alexandria will
interest specialists and show how linear differential systems are studied nowadays.

I especially thank the secretaries Alessandra Bergamo and Mabilo Koutou of
the mathematics section of ICTP and Anna Triolo of the publications section of
ICTP for all the help they gave for the publication of this book.

Lé Dung Trang

Erratum

The school on “Algebraic Approach to Differential Equations” was organized
by Lé Ding Trang from the ICTP and Egyptian colleagues, Professor Darwish
Mohamed Abdalla from Alexandria University, Professor Fahmy Mohamed
from Al-Azhar University, Professor Yousif Mohamed from the American Uni-
versity in Cairo. Professor Ismail Idris from Ain Shams replaced Professor
Fahmy who had to leave during the conference. Special thanks are going to
Professor Mohamed Darwish for his dedication in organizing the school.
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D-MODULES IN DIMENSION 1

L. NARVAEZ MACARRO*

Departamento de Algebra € Instituto de Matemdticas (IMUS)
Universidad de Sevilla, P.O. Box 1160, 41080 Sevilla, Spain
* E-mail: narvaez@algebra.us.es

Introduction

These notes are issued from a course taught in the I.C.T.P. School on
Algebraic Approach to Differential Equations, held at Alexandria (Egypt)
from November 12 through November 24, 2007.

These notes are intended to guide the reader from the classical theory
of linear differential equations in one complex variable to the theory of D-
modules. In the first four sections we try to motivate the use of sheaves, in
very concrete terms, to state Cauchy theorem and to express the phenomena
of analytic continuation of solutions. We also study multivalued solutions
around singular points. In sections 5 and 6 we recall the classical result of
Fuchs, the index theorem of Komatsu-Malgrange and Malgrange’s homo-
logical characterization of regularity, which is a key point in understanding
regularity in higher dimension. Section 7 is extracted from the very nice pa-
per? of J. Briancon and Ph. Maisonobe. It contains the division tools on the
ring of (germs of) linear differential operators in one variable. They allow
us to prove “almost everything” on (complex analytic) D-module theory in
dimension 1 from the classical results. Section 8 tries to motivate the point
of view of higher solutions, a landmark in D-module theory. Sections 9 and
10 deal with holonomic D-modules and the general notion of regularity.
Both sections are technically based on the division tools and so they are
very specific for the one dimensional case, but they give a good flavor of
the general theory. Section 11 is written in collaboration with F. Gudiel
and it contains the local version of the Riemann-Hilbert correspondence in

*Partially supported by MTM2007-66929 and FEDER.



dimension 1 stated in the paper'® with some complements. In section 12
we sketch the theory of D-modules on a Riemann surface.

We would like to thank the organizers of the I.C.T.P. school, specially
M. Darwish who took care of all practical (and very important) details,
and Lé Dung Trang who conceived the school and took the heavy task of
editing the lecture notes.

1. Cauchy Theorem
Let U C C be an open set. A complex linear differential equation on U is

given by

d"y dy
n dz" + ta dz

where the a; and g are holomorphic functions on U and y is an unknown

+a'0y:gu (]-)

holomorphic function on U, which in case it exists is called a solution (on
U) of the equation (1). If the function a,, does not vanishes identically, we
say that equation (1) has order n.

When g = 01in (1), we call it an homogeneous complex linear differential
equation. In such a case, the solutions form a complex vector space, i.e.
-) the product of any constant and any solution is again a solution.
-) The sum of two solutions is again a solution.

Remark 1.1. A very basic (and obvious) remark is that a complex linear
differential equation on U as (1) determines, by restriction, a complex linear
differential equation on any open subset V C U and we may be interested
in searching its solutions, not only on the whole U, but on any open subset
VcU.

If a,(x) # 0 for all x € U, then equation (1) is equivalent (in the sense
that they have the same solutions) to
vy ., dy

dy
w+0n—1%+'“+aﬁa+aéy=9/, (2)
where aj = 2= and ¢’ = .
Equation (2) is still equivalent to a linear system of order 1

Y B,
dy

— =AY +B, Y=]"1: B=| :
dZ + ’ . ? . (3)



with By =---=B,_1 =0, B, =b and
o 1 0 - 0
0 0 1 0
A= : : : . :
o 0o o0 --- 1
~ah —af —ay -+ —d
Correspondences
Y1 = y
Yy = y» N
Yy . ) =Yy = Yl
Yn = y(nfl) Yn

establish a bijection between the solutions of (2) and the solutions of (3).
When b = 0 this bijection is an isomorphism of complex vector spaces.

The basic existence theorem for solutions of a linear system of type (3)
is the following result, which ca be found on almost any book of differential
equations (see for instance the book® n® 384).

Theorem 1.1. Let U C C be an open disc centered at the origin, A a
(n x n) matriz of holomorphic functions on U and B a n-column vector of
holomorphic functions on U. Let us call S the set of solutions of the system
% = AY + B. Then, the map

YeS—Y(0)eC”

is bijective. Moreover, when B = 0 the application above is an isomorphism
of complex vector spaces.

Corollary 1.1. Let U C C be an open disc centered at the origin and
let ag, ..., a, holomorphic functions on U with a,(z) # 0 for all z € U.
Then, for any holomorphic function g on U and any “initial conditions”

Vs - .-, Un—1 € C there is a unique holomorphic function y on U, which is
a solution of the linear differential equation
d"y dy
anc&—n—i—'-'-i-ala‘Faoy:ga

and such that



2. Sheaves of Holomorphic Functions

Theorem 1.1 can be rephrased in terms of sheaf theory and local systems,
which is in principle nothing but an enlargement of our mathematical lan-
guage. However, this enlargement becomes fundamental in order to under-
stand higher dimensional phenomena and the global behaviour of solutions
of differential equations. Let us start by introducing some provisional® def-
initions.

For each open set V' C C let us denote by O(V) the complex vector
space of holomorphic functions defined on V.

Definition 2.1. The sheaf of holomorphic functions on an open set U C C
is the data consisting of all the complex vector spaces O(V'), when V runs
into the set of open subsets of U. It will be denoted by Op, and for each
open set V. C U we will write Oy (V) := O(V). The following properties
clearly hold:

(a) If V/ C V C U are open sets and f € Oy(V), then f|y: € Oy (V).
(b) If V C U is an open set, {V; };er is an open covering of Vand f : V — C
is a function, we have: f € Oy(V) < flv, € Op(V;) forall el

Property (b) above means that for a function, being holomorphic is a
local property.

Definition 2.2. A subsheaf® of Oy is the data F consisting of a vector
subspace F(V) C Oy (V) for each open set V' C U satisfying the following
properties:

(a) If V! C V C U are open sets and f € F(V), then f|y. € F(V').
(b) If V. C U is an open set, {V;};cs is an open covering of V and f €
Ou(V), we have f € F(V) & fly, € F(V;) forall iel.

If the data F satisfies property (a) and not necessarily property (b), then
we say that it is a subpresheaf of Op. If F is a subpresheaf of Oy, we will
simply write F C Oy.

If F,F are subpresheaves of Oy, we say that F C F' if F(V) C F'(V)
for any open set V C U.

Let us note that if F C Oy is a subsheaf and U’ C U is an open subset,
then the data F|y, defined by F|y/ (V) = F(V) for any open set V C U’ is

2Later, we will need the general notion of sheaf, but in this section we only study the
sheaf of holomorphic functions and its subsheaves.
PHere, we only consider subsheaves of complex vector spaces.



a subsheaf of Oy, that we call the restriction of F to U’. Let us also note
that OU|U’ = OU/.

Exercise 2.1. (1) Let F be the data defined by
FV)={f:V—>C| f isa constant function} C Oy (V),

for each open set V' C U. Prove that F is a subpresheaf of Oy which is
not a subsheaf. (Hint: what happens with property (b) every time V is not
connected?)

(2) Prove that the data Cy defined by

Cuo(V)={f:V—=C| f isalocally constant function} C Oy (V),
for each open set V' C U, is a subsheaf of Q.

Exercise 2.2. Let U C C be an open set, ¥ C U a closed discrete set and
let us denote by j : U \ ¥ < U the inclusion.
(1) Let F be the data defined by

FWV)={f€0y(V) | f =0 on a neighborhood of any point p € X NV}.

Prove that ¥ is a subsheaf of Oy, which will be denoted by jiOy\x.
(2) Let F be the data defined by

F(V)={f €Cy(V)| f =0 on a neighborhood of any point p € N V}.
Prove that J is a subsheaf of Oy, which will be denoted by jiCpn\ x.

Exercise 2.3. Let F C Oy be a subpresheaf. Prove that:

(1) There is a unique subsheaf F* C Oy such that:

(a) FCFt.

(b) If " C Oy is a subsheaf with F C F’, then F* C F.
The sheaf 7 is called the associated sheaf to F.

(2) Prove that F is a subsheaf of Oy if and only if F = F*.
(3) Prove that (F|p+)" = F* |y for any open subset U’ C U.

Definition 2.3. An endomorphism of Oy, L : Oy — Oy, is the data
consisting of a family of C-linear maps L(V) : Oy(V) — Oy(V) such
that for any open subsets V/ € V C U and any f € Oy(V) we have
LV)(Hlvr =LV (flv).



Let us denote by End(Oy) the set of endomorphisms L : Oy — Oyp.
The definition of “composition” and “addition” inside End(Oy) is clear and
they define a non-commutative ring structure on End(Or ). Composition in
End(Oy) will be denoted by o or simply by juxtaposition, and addition
by the usual “4”. Moreover, we have an obvious ring homomorphism C —
End(Oy), and so End(Oy) is a non-commutative C-algebra.

If L: Oy — Op is an endomorphism and U’ C U is an open set, then
we define the restriction of L to U’ as the endomorphism L|y : Oyr — Oy
given by L|g/(V) = L(V) : Op/ (V) = Op(V) — Oy (V) = Oy (V) for any
open set V C U’. It is clear that the map

L € End(Oy) — L|yr € End(Oy-)
is a homomorphism of C-algebras.
Example 2.1. (a) The family of linear maps
feoy(Vv)— % € Oy(V), V CU open subset,
is an endomorphism of Oy that will be denoted by % : 0y — Op.
(b) If h € Oy(U), then the family of linear maps
feO0u(V)— (hlv)f € Ouy(V), V CU open subset,

is an endomorphism that will be denoted by h : Oy — Op.

(c) Example (b) gives rise to a ring homomorphism Oy (U) — End(Oy),
which is injective.

Exercise 2.4. Let {U,}icr be an open covering of U and L; € End(Qy,) for
each ¢ € I, such that L;|y,nu, = Lj|v,nu; for all 4, j € I. Prove that there
is a unique L € End(Oy) such that L|y, = L, for all i € I.

Remark 2.1. The above exercise indicates that, for a given open set
U c C, the family End(Oy),V C U open subset, satisfies the same for-
mal properties as subsheaves of Oy (see definition 2.2). In fact, Oy, sub-
sheaves of Oy, and {End(Oy),V C U open subset} all are examples of
“abstract sheaves” (of complex vector spaces or C-algebras) (see for in-
stance the book?). The family {End(Oy ),V C U open subset} is denoted
by End(OQy), and we write End(Oy)(V) = End(Oy) for any open subset
VcVuU.



Exercise 2.5. Let L : Oy — Oy be an endomorphism and let us consider
the data ker L defined by (ker L)(V) = ker L(V) C Oy (V) for each open
set V' C U. Prove that ker L is a subsheaf of Oy, that will be called the
kernel of L.

Exercise 2.6. (1) Describe the kernel of the endomorphism £ : O¢ — Oc.
(2) Prove that ker (z% +1:0¢ — OC) = 1Cc—_{0y-

Exercise 2.7. (1) Let L : Oy — Oy be an endomorphism and let us con-
sider the data img L defined by (img L)(V) = im L(V) C Oy (V) for each
open set V' C U. Prove that, in general, img L is not a subsheaf of Oy .
(Hint: Consider L = d% : Oc — Oc. Is the function z=! in (img L)(C*)?
Nevertheless, for each simply connected open set V' C C*, the function 2!
belongs to (img L)(V').)

(2) Let us consider the data im L defined by
(imL)(V)={g € Opy(V) | Vp € V,3W C V open neighborhood of p,
3f € Op(W) s.t. LW)(f) = glw},

for each open set V' C U. Prove that im L is a subsheaf of Oy, that will be
called the image of L. (Note that im L = (img L))

(3) Compute the image of the endomorphism - : O¢ — Oc.

Definition 2.4. A (holomorphic) linear differential operator of order < n
on U is an endomorphism L : Oy — Oy such that there are a; € Oy (U),
0 < i < n, such that for each open set V' C U and each f € Oy (V) we have

L) = @) S 4t @) 2 (aolv)

or equivalently, the equality L = anjz—"n + -+ ald% + ap holds in the ring
End(OU)

Obviously, if L : Oy — Oy is a linear differential operator of order < n
and U’ C U is an open subset, the restriction L|y is also a linear differential
operator of order < n.

Exercise 2.8. In the above definition, prove that the a; are unique.

Remark 2.2. In the above definition, the functions in (ker L)(V') are obvi-
ously the same as the solutions on V' of the homogeneous linear differential
equation

" d
an_y+...+a1_y

dz™ dz +aoy = 0.



In this way, ker L is an object which simultaneously encodes the solutions
of the above differential equation on each open subset of U.

Definition 2.5. A (holomorphic) linear differential operator on U is an
endomorphism L : Oy — Oy for which there is an open covering {U,}icr
of U and a family of non-negative integers {n; };cs such that the restriction
L|y, is a (holomorphic) linear differential operator of order < n; for each
1el.

The set of (holomorphic) linear differential operators on U will be de-
noted by D(U). It is clear that for V' C U C C open sets, the restriction
to V of any linear differential operator on U is also a linear differential
operator.

Exercise 2.9. (1) Prove that D(U) is a sub-C-algebra of End(Oy).

(2) Prove that if U is connected, then for any linear differential operator
L on U there exist an integer n > 0 such that L is of order < n. What
happens when U is not connected? Is any differential linear operator on U
of finite order?

(3) Let L : Oy — Oy be an endomorphism and assume that there is an
open covering {U; }ier such that L|y, is a (holomorphic) linear differential
operator on U; for each i € I. Prove that L is also a (holomorphic) linear
differential operator on U.

Remark 2.3. The family {D(V),V C U open subset}, as in remark 2.1,
satisfies the same formal properties as subsheaves of Oy (see definition 2.2).
It is the another instance of “abstract sheaf”, that will be denoted by Dy,
and which is an “abstract subsheaf” of End(Oy) (see the book?).

Definition 2.6. If ¥ C Oy is a subsheaf and p is a point of U, we define
the stalk of F at p, denoted by F,, as the quotient set M/ ~, where

M ={(V,f)| V CU is an open neighborhood of p, f € F(V)}

and ~ is the equivalence relation given by

V, f) ~ V', f) € 3w c V0V’ open neighb. of p s.t. flw = f'|w.

The stalk J, is a complex vector space under the operations:
AV ) =WVoAf), (Vi O+ )=V Vv, flvave + flvav).

If V .C U is an open subset and f € F(V), the equivalence class of (V, f) in
JFp will be called the germ of f at p, and will be denoted by f,,.




Remark 2.4. The stalk F, can be described as the inductive limit (or
colimit) of the system F(V') when V runs into the open neighborhoods of
p contained in U, ordered by the reverse inclusion.

Exercise 2.10. (1) Prove that in the case ¥ = Oy, the stalk Oy, is a C-

algebra and that the Taylor expansion centered at p defines an isomorphism
of C-algebras

~ —1d

Tp: Ouvp — Clz}, Tp(fp) = iz

—ildz

~

(p)z",

where C{z} is the C-algebra of convergent power series in one variable z
with complex coefficients.

(2) Prove that Oy, is a local ring, with maximal ideal my, = {£ €
Ouvp | £(p) = 0}, where {(p) = f(p) whenever £ = (V. f), f € Ou(V).

(3) Prove that Oy, is a discrete valuation ring (Cf. Atiyah-MacDonald’s
book! ch. 9), with valuation v, : Oy, — NU {+oc} defined by v,(£) = r
if § € my, — m;j’rpl, for any & # 0 and v,(0) = +o0. In other words, if
& = fp, then vp(€) is the vanishing order of f at p, i.e. vp(fp) = r with
f(q) = (¢ —p)"g(q) on a neighborhood of p, g holomorphic and g(p) # 0.

Exercise 2.11. Let ¥ C Oy be a subsheaf and p € U. Prove that the stalk
JF, can be considered as a vector subspace of Oy . Prove also that F = Oy
if and only if F, = Oy, for every p € U.

The following proposition is a version of the analytic continuation prin-
ciple.

Proposition 2.1. Let U C C be a connected open set. Then the linear map
f€0uU) — fp € Ouyp is injective for each point p € U.

Proof. Let us assume that f, = 0 and consider the set
W={qeU]| f;=0in0Opy,} CU.

It is clear that W is open and p € W # 0.

Let us prove that U — W is also open. If ¢ € U — W, then f; # 0 and
there is an open disc D C U centered at ¢ such that f|p # 0. If f(q) # 0,
then, for D small enough, f(q') # 0 for all ¢’ € D. If f(q) = 0, since zeros
of holomorphic functions (# 0) in one variable are isolated, we deduce that,
for D small enough, f(q’) # 0 for all ¢ € D — {q}. In any case we have
that, for D small enough, fiy # 0 for all ¢ € D — {q} andso D C U — W.
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Since U is connected, we deduce that W = U and f = 0. O

Corollary 2.1. Let U C C be a connected open set and V. C U a non-
empty open set. Then, the restriction map f € Oy(U) — flv € Op(V) is
injective.

Definition 2.7. Let L : Oy — Oy be an endomorphism and p € U. The
stalk of L at p, denoted by L, : Oy — Oy,p, is the linear map defined by

Ly(fy) = L (V1)) = WLV = (L)),
for every open neighborhood V' C U of p and every f € Oy (V).

Exercise 2.12. (1) If L,L’ : Oy — Op are endomorphisms, prove that
(L+L")p=Lp+ Ly, (LoL"), = Lyo Ly,

(2) If L : Oy — Oy is an endomorphism, L = 0 if and only if L, = 0 for
allpeU.

Exercise 2.13. In the situation of the above definition, prove that there are
canonical isomorphisms ker L, ~ (ker L) ,, im L, ~ (im L),.. Prove also that
L is injectif, i.e. ker L = 0 (resp. L is surjectif, i.e. im L = Oy ) if and only
if L, is injectif (resp. L, is surjectif) for all p € U.

Example 2.2. Let U C C be an open set and p € U. For simplicity, let us
assume that p = 0. Let us consider the linear differential operator on U,

dr d
+ a5+ ao,

L=a,—
“ dzm dz

with a; € Oy(U). Let us call t; € C{z} the Taylor expansion at 0 of a,.
Then, under the isomorphism of exercise 2.10, the stalk Ly : Oyo — Ouypo
is identified with the linear endomorphism of C{z} given by®

d"s

ds
eC th— + -+ t1— + tos € C{z}.
seC{z}— Ton Tt Ftos {z}
Exercise 2.14. Let U C C be a connected open set and V' C U a non-empty
open set. Prove that the restriction map Dy (U) — D(V) is injective.

°In definition 7.1, we will study the ring of this kind of linear endomorphisms of C{z}.
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3. Sheaf Version of Cauchy Theorem

Definition 3.1. (1) Let U C C be a connected open set and F C Oy a
subsheaf. We say that F is constant if for any p € U the map f € F(U) —
fp € Fp is an isomorphism.

(2) Let U C C be an open set and F C Oy a subsheaf. We say that F
is locally constant, or a local system, if there is an open covering of U,
U = JU;, by connected open sets, such that F|y, is constant for all 4.

Exercise 3.1. Let U C C be a connected open set. Prove that:
(1) Cy is constant subsheaf of Oy .

(2) If F C Oy is a constant subsheaf and U’ C U is a connected open set,
then the restriction F(U) — F(U’) is an isomorphism. Conclude that F|y-
is also a constant subsheaf of Q.

(3) Prove that any restriction of any locally constant subsheaf of Oy is
locally constant.

(4) Prove that a subsheaf F C Oy is locally constant if and only if there is
an open covering U = | J U; such that F|y, is locally constant for each i.

Exercise 3.2. (1) Prove that any constant subsheaf ¥ C Oy on a connected
open set U C C is determined by the complex vector subspace F(U) of
Oy (U). Namely, for any open set V C U, F(V) consists of functions which
locally are restrictions of functions in F(U).

(2) Reciprocally, given a vector subspace E C Oy (U), prove that there is a
unique constant subsheaf F C Oy such that F(U) = E.

Exercise 3.3. Let ¥ C Oy be a locally constant subsheaf. Prove that the
function p € U — dim¢ F,, is locally constant.

If U is connected and F C Oy is a locally constant subsheaf with 3,
finite dimensional vector space for some p € U, then dim¢ ¥y = dim¢ F, = r
for all ¢ € U and we call F a locally constant subsheaf (or a local system)
of (finite) rank 7.

The proof of the following proposition is a standard argument of general
Topology (see for instance prop. 1.2.1 in the paper??).

Proposition 3.1. Any locally constant subsheaf F C Oy on a simply con-
nected open set U C C is constant.



12

Definition 3.2. Let U C C be a connected open set and

mn

d d
L=a,—+---+a1— +ap: Oy — Op
dzm dz

a linear differential operator of order n, i.e. the function a,, does not vanish
identically on U. We say that p € U is a regular point of L if a,(p) # 0.
Otherwise, p will be called a singular point of L. The set of singular points
of L will be denoted by X(L).

The theorem 1.1 can be rephrased in the following way.

Theorem 3.1. Let U C C be a connected open set and L : Oy — Oy a
linear differential operator of order n. Then the following properties hold:

(1) The restriction (ker L) |y_xr) s a local system of rank n.
(2) The restriction Lly_sr) : Ouv—_s) — Ou_s(r) is surjective.

Moreover, for any singular point p € ¥(L), ker Ly, is a complex vector space
of dimension < n.

Proof. (1) Let us call L = (ker L) |y_syr), U® = U —=%(L) and let V C U°
be a non-empty open disc. From Cauchy theorem 1.1 we know that for any
non-empty open disc W C V' we have dim¢ L(W) = n. In particular, the
restriction L(V') — L(W) is an isomorphism and so L]y is a constant sheaf.

(2) Cauchy theorem 1.1 implies that for any non-empty open disc V C U,
the map L(V) : Oyo(V) — Opo(V) is surjective. Hence, for any p € UY the
map Ly : Opo , — Opo , is surjective.

For the last part, using proposition 2.1, it is clear that for any small
open disc V centered at a singular point p, the dimension of (ker L)(V')
is less or equal than the dimension of (ker L)(W), for any small open disc
W C V —%(L), but for a such W we know that dimc(ker L)(W) =n. DO

Corollary 3.1. Let U C C be a connected and simply connected open
set and L : Oy — Oy a linear differential operator of order n without
singular points. Then, L(U) : O(U) — O(U) is surjective, i.e. the non-
homogeneous equation L(y) = g has always a holomorphic solution on U
for any g € O(U).

Proof. The proof of this corollary needs to use a small (and motivating)
argument of sheaf cohomology (see for instance®). Let us consider the exact
sequence of sheaves
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0—=kerl — Op % Oy — 0

and the associated long exact sequence of cohomology (cf. loc. cit.)

0 — (ker L)(U) — 0u(U) 2% 04 (U) — HNU, ker L) — ---
From proposition 3.1 we know that ker L is a constant sheaf, ker L ~ C7},
and so H'(U,ker L) ~ H'(U,C"™) = 0 since U is simply connected. m|

4. Local Monodromy

The universal covering space of C* = C — {0}, with base point 1, can be
realized for instance by

q:(C,0) — (C*1), gqlw)= e2miw,

Base points can be moved inside the set of positive real numbers R} C C*
and inside the imaginary axis Ri C C without ambiguity, since both sets
are contractible.

The group of automorphisms of ¢ is infinite cyclic generated by the
automorphism M : w e C— w+1 € C.

For any open disk D centered at 0, we write D+ = ¢ 'D* and we
also choose ¢ : D* — D* as universal covering of D* with base points in
D* N (Ri) and D* N R* respectively. Let us denote by Dp the open disk
centered at 0 of radius R €]0, +o0].

Definition 4.1. A multivalued holomorphic function on D* is by definition
a holomorphic function on D*.

The set of multivalued holomorphic functions on D is denoted by AY.
It is clearly a conmmutative C-algebra without zero divisors. For 0 < R’ <
R < +oo we have restriction maps A} — A%, which are injective and
C-algebra homomorphisms.

Example 4.1. (1) The identity function w € C +— w € C is obviously an
element of AY_, which will be denoted by Logz. We will also denote by

(ooh)

Log z its restriction to any A% with R > 0.

(2) Given a fixed complex number «, the function w € C — e?™% ¢ C is
also an element of AY_, wich will be denoted by z%. We will also denote by
z® its restrictions to any A(IJ{.
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The map f € O(D3) — foq € A} is injective and so we can think
in O(D3) as a sub-C-algebra of A%. The automorphism M induces an
automorphism of C-algebras

T:9€ A% —T(g)=goM e A%,

called monodromy operator. It is clear that T commutes with restrictions
and that T'(g) = g for any g € O(D7p).

Exercise 4.1. Prove that any multivalued holomorphic function g € A(IJ{
which is “uniform”, i.e. T(g) = g, belongs to O(D7}) and so

O(Dy) ={g € A% | T(g9) = g}.

Definition 4.2. Let g be a multivalued holomorphic function on D* and
U C D* a simply connected open set. A determination of g on U is a
holomorphic function f on U which is obtained as f = goo, where o0 : U —
D*is a holomorphic section of q.

Let f = go o a fixed determination of g on U. Since ¢ : D* — D*isa
covering space, o must be a biholomorphic map between U and the open
set o(U). Any other holomorphic section of ¢ on U must be of the form
MF* oo and ¢7'U = | |,cp M*(o(U)). Hence, any determination of g on U
is of the form T*(g) o 0.

Definition 4.3. We say that a multivalued holomorphic function g on D*
is of finite determination if the vector space generated by T*(g), k € Z, is
finite dimensional.

Proposition 4.1. Let g be a multivalued holomorphic function on D*. The
following properties are equivalent:

(a) g is of finite determination.

(b) The vector space generated by the determinations of g on any simply
connected open set U C D* is finite dimensional.

(c) The vector space generated by the determinations of g on some simply
connected open set U C D* is finite dimensional.

Proof. The key point is that if we take any simply connected open set
U C D* and we fix a holomorphic section ¢ : U — D* of q, then o
must be a biholomorphic map between U and the open set o(U) C D*,
any other holomorphic section of ¢ on U must be of the form M* o ¢ and
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¢ 'U = ez M*(o(U)). So, if f = goo is a fixed determination of g on
U, then the map

T*(g) = T*(g)oo=goM* oo

is a bijection between the set {T%(g), k € Z} and the set of determinations
of g on U, which clearly preserves linear dependence. O

The set of all multivalued holomorphic function on D%, of finite deter-
mination is a sub-C-algebra of A%, stable by T, and will be denoted by Ag.
It is clear that the restriction map A% — A%, sends Ag into Ap:.

Example 4.2. (1) Since T(Logz) = 1 + Logz, Logz is a multivalued
holomorphic function of finite determination.

(2) Since T(z%) = e2™2% 2 is a multivalued holomorphic function of
finite determination.

Definition 4.4. Let V' C D% be a convex open neighborhood of R* N
D% and let vV C bTR be the unique connected component of ¢~'V which
intersects the imaginary axis of C. We say that a holomorphic function
f € O(V) extends to a multivalued holomorphic function on D7, if there is
a (unique) g € A% such that gl = f o gl In such a case we say that g is
the multivalued extension of f.

Let us note that in the above definition, f extends to the multivalued
holomorphic function g on D% if and only if f is a determination of g on

V.

Example 4.3. The restriction q|‘~/ VS Vs biholomorphic. The inverse
function f = (q|‘~,)71 V> Vcc extends, obviously by definition,
to a multivalued function on D%. In fact, its multivalued extension is the
identity function of /D\g. We have f(1) =0 and e2"/(2) = (qo f)(2) = 2 for
all z € V, and so dz = (2mi)e?™f (2 df = (27i)zdf and
1 [*d¢
f(z):% s VzeV,

where the integration path is taken inside the simply connected open set V.
The function f coincides with the usual logarithm “In” up to the scalar fac-
tor (27i)~1. This explains why we denote by “Logz” the identity function
on C considered as “multivalued function” on D7,.
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We have then injective maps
O(Dr) = O(Dj) <+ Ag = A <> O(V) (4)

where the last one associates to any multivalued holomorphic function g €
AY, its “main determination” on V, V(g) = go (q|‘~,)71. The compositions
O(Dgr) — O(V) and O(Dy3) — O(V) are nothing but the restriction maps.
For any radius R’ €]0, R] we have a commutative diagram

O(DR)—— O(Dj)—— A ARS ov) (5)

lrest. lrest. lrest. lrest. lrest.

O(DRr)——= O(D%, )C oq ApC A, C O(V N D%)

Exercise 4.2. (1) Prove that V(A%) is a subspace of O(V) stable under the

action of the derivative L. Conclude that A% has a natural structure of
left D(D3,)-module in such a way that V is D(D%)-linear. In particular,

A% is a left D(Dg)-module.
(2) Prove that the monodromy 7" : A% — A% is D(D%,)-linear.
(3) Prove that Ag is a sub-D(D%)-module of A%.

Proposition 4.2. In the situation of definition 4.4, for any holomorphic
function f € O(V), the following properties are equivalent:

(a) f extends to a multivalued holomorphic function g on D%, of finite
determination.
(b) There is a locally constant subsheaf F C Ops, of finite rank such that

feFv).

Proof. We can assume that f # 0.

(a) = (b): Let us call F C Op= the constant subsheaf determined by
R

the finite dimensional vector subspace E C %}; (ETR) generated by T*(g),
k € Z (see exercise 3.2).

For each open subset W C D%y, we define F(W) C Ops (W) as the
vector space of holomorphic functions h on W for which there is an open
covering W = (J W, such that hlw, o ¢q|,~1w, belongs to F(qg'W;) for all 4.
It is clear that F is a subsheaf of O Dy

Let U C D% be a simply connected open subset and let us choose a
simply connected open subset U° C D3 such that ¢(U°) = U. One has
¢ 'U = ez MH(U®) and ¢ : M*(U®) = U for all k € Z. For each open
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set W C U, let us call W0 = U° N ¢ 'W and so ¢ 'W = | |, ., MF(W?)
and ¢ : MF(WO%) 5= W for each k € Z. It is easy to see that for a holomor-
phic function h on W, the condition h o q|,-1y € f;"(q*W) is equivalent
to the condition h o g|yo € F(WO). In particular, one has that a holomor-
phic function i on W belongs to F(W) if and only if ko g|yo € F(WO).
Composition with ¢ gives rise to a commutative diagram

FU) —=F(U°)

stalkl letalk

Fow) ——> Fo

for each x € UY, where the horizontal arrows are isomorphism because
q : U? 5 U is biholomorphic and the right vertical arrow is an isomorphism
because J is a constant subsheaf of (‘_)/bvl*3 . We deduce that the map F(U) —
JFy is an isomorphism for each y € U, and so JF|y is a constant subsheaf of
Oy of finite rank. It is also clear that f € F(V).

(b) = (a): For each open set G C /D\g let us define ?(G) as the vector
space of holomorphic functions h on G for which there is an open covering
G = |, Gi, with ¢ : G; 5 ¢(G;), and functions h; € F(q(G;)) such that
h a: = hioq|g, for all i. It is clear that F is a subsheaf of Of’j*z and that

fi=foqly € F(V).

It is not difficult to see that the restriction of F to any open set G C /l-)TR
for which the restriction of ¢ gives a biholomorhic map between G and
q(G) is a locally constant subsheaf of Og of finite rank (the same one
as the rank of F). So, F is locally constant of finite rank too, and from
proposition 3.1 we deduce that F is constant of finite rank. In particular,
there is a (unique) g € ?(ETR) C A%, such that g[; = f and f extends to
the multivalued holomorphic function g¢. Finally, g is of finite determination
because T*(g) € F (bTR) for all k € Z and this space is finite dimeinsional. O

Let L be a linear differential operator on Dy of order n with (L) C {0}:

3

d
L=a, +--4+a1—+ag, a €O(DRr), an(z)#0Vz=#£0.

dzn dz
From Cauchy theorem (see 3.1) we know that (ker L)|ps is a locally con-
stant sheaf of rank n.

Proposition 4.3. Under the above hypothesis and with the notations of
definition 4.4, the following properties hold:
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(1) Any multivalued holomorphic function g € A% annihilated by L is of
finite determination and

{g€ AR | L(9) =0} = {g € Ar | L(g) = 0} =~ (ker L)(V)).
In particular dimc({g € Ar | L(g) = 0}) = n.
(2) The maps L: A% — A% and L : Ag — Ag are surjective.

Proof. (1) We have V({g € A% | L(g) = 0}) C (ker L)(V) and from

proposition 4.2, we know that (ker L)(V) C V(Agr). We conclude that
v
{g€ AR | L(9) =0} = {g € Ar | L(g) = 0} = (ker L)(V).
(2) For g € A%, we have £ (V(g)) = V(3(g)), ot § = S5l and

L(V(g)) = V(L(g)) with
Z = a, (62771'10)511 ce ao(eQTriw) —

—2mniw an

. n—1 T
(27i0) S o + b1 (w) fo=r + -+ + bo(w) € D(D5,).

Since X(L) = §, we deduce from corollary 3.1 that L : O(D*) — O(/D\g) is
surjective, and so L : A% — A, is surjective.

an

If ¢ € Ag, there is a non-vanishing polynomial P(X) such that
P(T)(g) = 0. We have proved that there is h € A% such that L(h) = g,
but L(P(T)(h)) = P(T)(g) = 0. We deduce from (1) that P(T)(h) € Agr
and h € Ag. So, L : Agr — Ag is surjective. O

Example 4.4. (1) For L = z% —a, we have {g € A% | L(g) = 0} = ().
(2) For L = zf—; + 4L we have {g € A% | L(g9) = 0} = (Log 2, 1).

Theorem 4.1. Any multivalued holomorphic function g € Agr of finite
determination can be expressed as a finite sum

o= 3 Gar(Loga),
aeC,k>0

where the ¢or € O(D}) are uniform functions. Moreover, the ¢q 1 are
uniquely determined if we impose that the difference a—a’ is not an integer
whenever ¢a k, Por ks # 0 for some k (this can be guaranteed for instance if
we restrict ourselves to the set of complex numbers a with —1 <R a < 0).

In fact we have a more precise statement. Let E C Apg be the finite
dimensional vector subspace generated by the T*(g), k € Z, let [[(X —
Aj)73 be the minimal polynomial of the action of T on g (the \; are the
eigenvalues of T|g with \; # A\ whenever j # 1), let d(g) be the degree of
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this polynomial, and let us choose complex numbers aj € C with > =
Aj. Then, there are unique ¢ € O(D*) such that

Tj*l

€= dixs(Log2)"
j k=0
Proof. The key point is that, for A = e2™* and k > 0, we have

(T — ) (2%(Log 2)* ZA() (Log z)*

and, for any polynomial P(X) € C[X],
P(T) (2*(Log 2)*) = P(\)2*(Log 2)* + cx—12*(Log 2)* 1 + -+ + co2®,
where the ¢; are complex numbers. As a consequence,
(T — A\ (2*(Log 2)*) = kI\F2*, (T — \)* (2*(Log 2)¥) = 0.
Let us start with uniqueness. Assume that g = 0. We proceed by induction

onr =73 (rj—1).If r =0, then 0 =g = >, $;02%, and taking P, =
H#l (X — Aj) we obtain

0=P(T ZPZ )($5,02%9) = Pi(M)r,02™

and so ¢; ¢ = 0, for each [.
Let us suppose that we have the uniqueness of the coefficients ¢; ;. every
time r < v and suppose that g = 0 with

Tj*l

g= Z Z ¢j12% (Log 2)*
i k=0

and »,(r; —1) = v + 1. Let us consider the polynomial P(X) = (X —
A1) L (X = Xg)™. We have

0=P(T)(g) =" =1, —1(r1 — 1)IA]' ™ 1H AL — Aj)T 2
J#1
and so ¢1,,—1 = 0. To conclude, we apply the induction hypothesis to
T1—2 rj—1
Z o152 (Log z) —I—Z Z b1z (Log 2)F.
j#1 k=0

Now, let us prove the existence of the ¢; . We proceed by induction on the
degree d(g) of the minimal polynomial of the action of T on g.
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If d(g) = 1 then there is a complex number A; # 0 such that (T' —
A1)(g) = 0. Consequently, T'(z~%1g) = z~* g and ¢1 o := 2z~ **¢ is uniform:
g = $1,02"".

Assume the result true for any multivalued function h € Ag with d(h) <
d.

Let g € Ar be a multivalued holomorphic function of finite determina-
tion with d(g) = d+ 1 and let P(X) = J[;(X —A;)" be the minimal poly-
nomial of the action of T' on g. We have d(g) = >_, rj = d+ 1. Let us write
Q(X) = [T, 11 (XA and P'(X) = P(X)/(X—A1) = (X—A1)" 1 Q(X).
From the first step of the induction, we know that there exists a ¢ € O(D%,)
such that P/(T)(g) = ¥z*.

We
have P'(T) (z*'(Log )"~ 1) = Q(T)(T — A1)~ (21 (Log 2)" 1) = (r1 —
DINTTIQ(A) 2 and so P'(T) (1., —12° (Log )1~ 1) = 121 with

%
(ri— DA T'Q()

We deduce that P'(T) (g — ¢1,r,—12* (Log )™ ~*) = 0 and we conclude by
applying the induction hypothesis to g — ¢1,,—12%* (Log 2)™ L. O

Dlr—1 =

Remark 4.1. In the course of the proof of the above theorem, we have also
proved that if E C Apg is the finite dimensional vector subspace generated
by the determinations of g and

T‘j*l
9= > 6js2"(Log2)*
i k=0

with ¢;, € O(D%) and ¢;,,—1 # 0 for all j, then each ¢;,,12% belongs
to E and it is an eigenvector of T'|g with respect to the eigenvalue A;.

Exercise 4.3. Prove that for any complex number A, the map T'— X\ : Ap —
Ap is surjective 9.

Remark 4.2. Let 7: C/Z — C be any section of the canonical projection
C — C/Z. The above theorem says that {z%(Log z)* | a € im7,k > 0} is a
basis of Ar as an O(D*)-module.

dActually T — A : .A% — .A% is also surjective, but the proof needs a cohomological
argument (cf. th. (4.1.2) in20).
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5. Fuchs Theory

In this section we study the behavior of a linear differential equation, or of
a linear differential operator, in the neighborhood of a singular point.

Definition 5.1. We say that a multivalued holomorphic function g € Agr
is regular, or of the Nilsson class (at 0), if in the expression

rj—1
g= Z Z ¢j.12% (Log 2)*,
k=0

J
the ¢, are meromorphic functions at 0.

It is clear that a g € Apg is regular at 0 if and only if its restriction to
some (or to any) Ag/, with 0 < R’ < R, is regular at 0

Let us denote by Mg the set of g € Ar which are regular (at 0). It is
clear that Ny is a sub-C-algebra of Ag.

Exercise 5.1. Prove that Nz is a sub-D(D)-module of Ag. Is Ny a sub-
D(D*)-module of ARr?.

Let L = ani—"n + e+ ald% + ag be a linear differential operator on
D = Dp, of order n (a,, # 0), and let us assume that 0 is the only singular
point of L.

Definition 5.2. We say that 0 is a reqular singular point of L if any g € Ar
such that L(g) = 0 is regular at 0.

Remark-Definition 5.1. It is clear that if D’ C D is an open disc centered
at 0 and L’ = L|p/, then 0 is a regular singular point of L if and only if
it is so of L’. In particular, if L is a linear differential operator on some
open neighborhood of 0, and 0 is a singular point of L, we say that 0 is
a regular singular point of L if it is so for the restriction of L to a small
enough open disc centered at 0. More generally, if L is a linear differential
operator on an open set U C C and p € U is a singular point of L, we say
that p is a regular singular point of L if 0 is a regular singular point of the
“translated” operator
mn
L’za;i—n—k-'-—ka’l%—kag

with a}.(z) = ax(z + p), which is defined on the open neighborhood of 0,
U={zeC|lz+peU}.
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For a function a € O(U) and a point p € U, let us write vp(a) for the
vanishing order of a at p. It only depends on the germ a, (see exercise 2.10).
If a;, = 0 then v,(0) = +o00.

Theorem 5.1. (Fuchs) Let U C C be an open set, L = ani—nn + -+
alé + ag a linear differential operator on U of order n > 1 and p € U a
singular point of L. Then, the following properties are equivalent:

(a) p is a regular singular point of L.
(b) max {k—vy(ar)} =n—wvp(an).

Proof. The proof of this theorem can be found in the book,® 15.3. O

6. Index of Differential Operators at Singular Points

Let U C C be a connected open set and L = a,L;Z—nn + -4 ald% +ag a
linear differential operator on U of order n. Cauchy theorem 1.1 tells us
that, for any non-singular point p € U of L (a,(p) # 0), the stalk at p of L,
Ly : Oyyp — Op,p, is a surjective map and dimc ker L, = n. On the other
hand, if p € (L), we have dimcker L, < n (see theorem 3.1), but what
about dimc coker L;,?

We have the following important result, known as Komatsu-Malgrange

index theorem. 117

Theorem 6.1. Under the above hypothesis, the following properties hold:

(1) dimc coker L, < co.
(2) x(Lp) = dimc ker L, — dim¢ coker L, = n — v, (ay).

The proof of the above theorem consists of a reduction to the case where
the differential operator is of the form L? = anjz—nn, where an easy compu-
tation shows that x(L9) = x () + x(an) = n — vp(as). The reduction is
based on the fact that L can be seen as a compact perturbation of L° on

convenable Banach spaces.

Let us write O = Oy, m = my,, for its maximal ideal and P = L,, :
O — 0. We know that Taylor development at p establishes an isomorphism
between O and the ring of convergent power series C{z}, which sends the
ideal m to the ideal (z) (see exercise 2.10). It is easy to see that, for any
integer k > 0, we have P (m”*k) C m* and so P is continuous for the m-adic

topology and induces a linear endomorphism P of the m-adic completion
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O of O, which is isomorphic to the (z)-adic completion of C{z}, i.e. to the
formal power series ring C|[z]].

The proof of the following theorem is much easier than the proof of
theorem 6.1 and can be found in the paper,'” prop. 1.3 and th. 1.4.

Theorem 6.2. In the above situation, the following properties hold:

(1) The vector spaces ker P and coker P are finite dimensional and

x(P) = dimg ker P — dimg coker P = Jmax {k—vp(ar)}.

(2) The induced map P = 6/(‘) — 6/(9 is always surjective and
dimg ker P = Jmax {k—vplar)} — (n —vp(an)).

Corollary 6.1. In the above situation, the following properties are equiv-
alent:

(1) p is a regular singular point of L.

(2) X(P) =0

(3) P is an isomorphism.

(4) ker P = 0.

(5) The canonical maps ker P — ker P and coker P — coker P are isomor-
phisms.

(6) dimc ker P = dim¢ ker P and dimg coker P = dim¢ coker P.

Proof. From the following commutative diagram

0 0) 0 0/0 —— 0
A
0 0) 0 0/0 —— 0

we obtain the exact sequence

0 — ker P — ker P — ker P % coker P — coker P — coker P(= 0) — 0
. (6)
and s0° x(P) — x(P) + x(P) = 0. From theorems 5.1, 6.1 and 6.2 we have
that (1) & (2) © (3) < (4). On the other hand, from equation (6) we
deduce that (4) < (5) and (6) = (4), and finally (5) = (6) is obvious. O

°In fact this is part of the proof of (b) in theorem 6.2.
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Remark 6.1. The above corollary shows that the finite dimensional vector
space kerl’:;, is a measure of the non-regularity (or the irregularity) of the
singular point p of L. This point of view is the first step of the notion of
irreqularity complezes of holonomic D-modules in higher dimension (see the

paper?!).

7. Division Tools

The material of this section is taken from the papers.!3

In this section we work over the ring of convergent power series in one
variable O = C{z}, that we can think as the ring of germs at 0 of holomor-
phic functions defined on a open neighborhood of the origin. Let us denote
by 9 : O — O the derivative with respect to z.

Definition 7.1. A C-linear endomorphism L : O — O will be called a
linear differential operator of O of order < n if there exist ag,...,a, € O
such that, for any g € O we have L(g) = a,0"(g9) + - - - + a19(g) + apg. In
such a case we will write, as usual, L = a, 0™ + --- + a10 + ag.

By example 2.2, linear differential operators of O are nothing but the
stalk at the origin of linear differential operators defined on an open neigh-
borhood of 0.

Let us denote by FD C End¢(0O) the set of linear differential operators
of order <n and D =J,,5, F"D C Endc(0). Let us note that the map

a€ 0 [g€0age 0] €Endc(0)

is an injective homomorphism of C-algebras and its image coincides with

FD. From now on, we will identify O = FOD. We also set F~1D = {0}.
For a P € D, with P # 0, let us write ord P for its order, i.e ord P = n

means that P € F"D but P ¢ F"~!D. For P = 0 we write ord) = —oo.

Exercise 7.1. Prove the following recursive description of the F"D:

F'D = {P € End¢(0) | [P,a] = Pa —aP = 0,Va € O},
F"1D = {P € Endc(0) | [P,a] € F"D,Va € O}.

Exercise 7.2. (see the notes®) Prove that:

(1) D is a non-commutative sub-C-algebra of Endc(O).

(2) (F™D)(F*D) C F"t*D (we say that the family {F"D},>¢ is a filtration
of the ring D, or that (D, F) is a filtered ring.)
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(3) The vector space @,>0F™D/F"~1D has a natural structure of ring (in
fact a C-algebra), that we will call the associated graded ring of the filtered
ring (D, F) and will be denoted by gry D.

(4) If P,Q € D and P,Q # 0, then PQ # 0 and ord PQ = ord P + ord Q.
(5) If P,Q € D, then ord(PQ — QP) < ord P+ ord@ — 1 and so gry D is
a commutative ring, and that it is isomorphic to the polynomial ring O[¢].

Exercise 7.3. Prove that the ring D is simple, i.e. it has not any non trivial
two-sided ideal.

Definition 7.2. If P € D is a non-zero operator with ord(P) = n, we
define its symbol as

o(P)=P+F"'De F"D/F"'D = gr’h D.
It is clear that if P,@Q € D are non-zero, then o(PQ) = o(P)o(Q).

Definition 7.3. Given a left ideal I C D, we define o(I) as the ideal of
grp D generated by o(P), for all P € I, P # 0.

Exercise 7.4. Prove that D is left and right noetherian.

Let P be a non-zero linear differential operator (of O) of order n > 0,
ie. P =31 a0k, with a; € O and a,, # 0. Let us write aj, = 3,2, a2’
and so

P = i ialkxlﬁk.

=0 1=0

We call the Newton diagram (or the support) of P the set
supp(P) = {(I,k) € N? | ay, # 0} C N2

Definition 7.4. In the above situation, we define the valuation of P as
v(P) = vo(ay) and the exponent of P as exp(P) = (v(P),ord P).

Exercise 7.5. Prove that if P,@Q € D, P,Q # 0, then exp(PQ) = exp(P) +
exp(Q).

Lemma 7.1 (Briangon-Maisonobe?). Let P € D, P # 0 and exp(P) =
(v,d). Then, for any A € D there are unique Q,R € D such that A =
QP + R with
ord(A) v—1
R= Z kaxlak +5,  with ord(S) < d.
k=d 1=0
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The proof of the above lemma is easy, and in fact it is a particular case
of the general division theorems in several variables (see the lectures by F.
Castro). Let us note that the condition on the remainder R is equivalent
to say that

supp(R) C N?\ (exp(P) + N?).

Let us denote by X the field of fractions of the ring O. Any element of K
can be written as a/z", with a € O and r > 0. We can think of elements of
X as the germs at 0 of meromorphic functions defined on a neighborhood
of 0 and with a pole eventually at 0. The derivative 9 : O — O extends
obviously to X.

Let Dy be the ring of linear differential operators of X, i.e. the subring
of End¢(X) with elements of the form

n
Z akak, ar € X.
k=0

The ring is filtered in the obvious way and for any P € Dy, P # 0, the
definition of its order ord(P) is clear.
The proof of following lemma is easy.

Lemma 7.2. Let P € Dy, P # 0. Then, for any A € Dy there are unique
Q, R € Dx such that A= QP + R with ord(R) < ord(P).

Corollary 7.1. Let P € D, P # 0. Then, for any A € D there are Q,R €
D and an integer r > 0 such that 2" A = QP + R with ord(R) < ord(P).

Definition 7.5. Let I C D be a non-zero left ideal. We define the set
Exp(I) = {exp(P) | P € I, P # 0}.
It is clear that Exp(I) is an ideal of N2, i.e. Exp(I) + N? C Exp([).
Given a non-zero left ideal I C D let us write
p =p(I) = min{ord(P) | P € I, P # 0},
and for each d > p,
ag = ag(l) =min{v(P) | P € I,P # 0,ord(P) = d}.
Since a, > a1 > - -+ we can define
g=q(I) =min{d > p | ag = ae, Ve > d}.
We also define
v(I) = min{v(P) | P € I,P # 0}.
It is clear that v(I) = ay(p)(1).
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Exercise 7.6. With the above notations, prove that

q

Exp(I) = U (o, d) + N?).

d=p

Definition 7.6. With the above notations, a set of elements Fj,
Fpy1,...,Fy € I with exp(Fy) = (aq,d) for p < d < g, is called a standard
basis, or a Grébner basis, of I.

If Fp,Fpi1,...,Fy is a Grobner basis of I, then p(I) = ord(F),) and
v(I) = v(Fy).

For any A € D, and by successive division (lemma 7.1) by the elements
Fy, Fy1,...,F, of I, we obtain a unique expression

A=QpF,+ -+ Qq1Fy—1 +QF; + R
with Qp,...,Q¢—1 € O, Q4 € D and

ord(A) ay,—1
R= Z Z rpxld® + S, with ord(S) < p,
k=p [=0

or in other words
supp(R) C N? \ Exp([).

In particular, A € I & R =0 and so any Grobner basis F,, Fpq1,. .., Fy of
I is a system of generators I.

Exercise 7.7. Prove that if F,, Fj,41,..., Fy is a Grobner basis of I, then
o(I) = (o(Fp),...,0(Fy)).

Example 7.1. Let I = D be the total left ideal. It is clear that I is
generated by 9,z. However, o(I) = o(D) = grpD is not generated by
0(0)=¢,0(2) = 2.

Given a left ideal I C D and a system of generators Pi,..., P, of I,
often we are interested in the module of syzygies (or relations) of the P;

SP) ={(Q1,...,Q) € D" | Zcm = 0}.

This module is a sub-D-module of D", and so it is finitely generated.
In general it is not clear how to exhibit a finite number of generators of
S(P), but the situation is simpler if the P; form a Grébuner basis of I.
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Let us keep the notations of definition 7.6, and let us assume that the
Fy satisfy the following property:

Fy = 2%9% + terms of lower order.

We say in that case that our Grobner basis is normalized.
For each d = p+1,...,q, there are unique Qf € O, =p,...,d— 1 such
that

OF 41 — 2% 17 Y, = QZFp +o QY Fyy.
We have then the following syzygies of (Fp, Fpi1, ..., Fy):

d—1 d
~—~ ~~
Rd = (QZ) Z+1, .. 7_8+ ngl,zadfl_ad,o, .. ,0)

ford=p+1,...,q.

We have the following result (see prop. 3 in?). It is a particular case of
a general result valid for Grébner bases in several variables and in various
settings (see the notes®).

Proposition 7.1. The module of syzygies of (Fp, Fpt1, ..., Fy) is generated
by Rp+1,-..,Rq.

Proposition 7.2. (Cf. prop. 8.8 in!? or lemme 10.3.1 in?") Let M be a
left D-module which is finitely generated as O-module. Then it is free (of
finite rank) as O-module.

Proof. We reproduce the proof of lemme 4 in.? Let B = {e1,...,e,} be a
minimal system of generators of M as O-module and let us write

p
Oe; =Y wijej, (v €0)Vi=1,...,p.
Jj=1

Let S be the module of syzygies of B:
S={u=(u1,...,up) € D? | Zuiei = 0}.

If B is not a basis, then S # 0 and we can define w = min{v(u) | u €
S,u # 0}, where v(u) = min{v(u;) | u; # 0}. By Nakayama’s lemma, the
set of classes B = {e1,...,€p} is a basis of the (O/m =)C-vector space
M/mM and so we have w > 0. Let u € S be a non-vanishing syzygy with
v(u) = v(uj,) = w. We have

P P P
Ozazuiei:---:ijej, with wWj zﬁ(uj)—f—Zuivij,
i=1 j=1

i=1



29

but v(d(uj,)) = v(uj,) — 1 and so v(wj,) = w — 1, which contradicts the
minimality of w. O

Proposition 7.3. Let I C D a non-zero left ideal with
q
Exp(1) = | J ((aa,d) + N?)
d=p
(see exercise 7.6), and Fy,,...,F, € I a Grébner basis of I. Then, the
following properties hold:

(1) For any A € I, there is an integer r > 0 such that x" A € DF),.
2) IZ@(vaFq)-

Proof. We reproduce the proof of prop. 5 in.? Part (1) is a starightforward
consequence of corollary 7.1. For part (2), let us consider the left D-module
M =I/D(F,, F,). For any A € I, there are unique elements Q, ..., Qq—1 €
0, Qq € D such that A = QpFp + -+ + Qq—1F;-1 + Q4F,, and so M is
generated as O-module by {Fp41,...,Fy—1}. But part (a) implies that M
is a torsion O-module, and so, from proposition 7.2, we deduce that M = @

Let us note that the ring D is the inductive limit II%im D(Dg).

—0

Example 7.2. Let us see some examples of left D-modules:
(1) O is a left D-module, since D is a subring of Endc(0O) and then any
P €D acts on any a € O by Pa = P(a).
(2) To any linear differential operator P € D we associate the left D-module
D/DP.
(3) The field X of fractions of O is a left D-module.
(4) The formal power series ring 0= C[[2]] is a left D-module. In fact the
action of any P € D on O is continuous for the m = (z)-adic topology.
(5) Since each A% is a left D(Dg)-module, A° := 1%1310 A% s a left D-
module, and the monodromy operator T : A% =5 A9 is D-linear.
(6) A:= zlaiglo Ag is a left sub-D-module of A°. The elements in A can be
written as finite sums

Z Pa,k2" (Log Z)k

ak
where the ¢, 1 are germs at 0 of holomorphic functions with a possibly

essential singularity at 0, i.e.

¢a)1g € Il{lLHOO(DR).
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(7) Prove that T : A = A induces an automorphism on A/O. Prove also
that for any A € C, the map T'— A : A — A is surjective (see exercise 4.3).
(8) N := }ngNR is a left sub-D-module of A. The elements in A/ can be

written as finite sums

Z ¢a, k2" (Log z)k

ak

where the ¢, 1 € K.
Let us denote by Mod(D) the abelian category of left D-modules.

Exercise 7.8. (1) Prove that the D-linear map P € D — P(1) € O is
surjective and its kernel is the left ideal generated by 0. In particular O ~
D/Do.

(2) Prove that the D-linear map P € D — P(271) € X is surjective and
its kernel is generated by z0 + 1. In particular X ~ D/D(z0 + 1).

(3) Prove that the D-linear map P € D — P(z~1) € /O is surjective and
its kernel is generated by z. In particular X/O ~ D/Dz.

(4) Let a € O be any non-zero element. Prove that O = Da and compute a
Grobner basis of the left ideal annyp a.

Definition 7.7. Let us denote by M%, M the left D-modules
MO = A°/0, M = AJO.

The following proposition is a straightforward consequence of Cauchy the-
orem and Komatsu-Malgrange index theorem.

Proposition 7.4. For any non-zero P € D, the following properties hold:

(1) ker(P : A° — A%) = ker(P : A — A) and dimc ker(P : A° — A%) =
ord(P).

(2) The maps P: A° — A° and P : A — A are surjective.

(3) The maps P : M® — M° and P : M — M are surjective.

(4) ker(P : M® — M%) = ker(P : M — M) and dimcker(P : M® —
M) = v(P).

Proof. Properties (1) and (2) are a simple translation of proposition 4.3.
Property (3) is a consequence of property (2). For property (4), let us
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consider the following commutative diagram:

0 V] A° MY — 0
S B
0 0 A° MO — 0.
From theorem 6.1 we know that x(P: O — O) = ord(P) — v(P), and from
(2) and (3) we deduce that dimc ker(P : M® — M%) = ... = ord(P) —

(ord(P)—v(P)) = v(P). A similar argument works for M instead of M°. O

For a left ideal I C D, let us denote E(I) = {f € A|Pf =0, VP € I}
and F(I) = {g € M|Pg =0, VP € I}. The following proposition is taken
from prop. 6 in,2 and gives a very precise information about the spaces of
solutions E(I) and F(I).

Proposition 7.5. Let I C D be a non-zero left ideal and Fp,...,Fy a
Grabner basis of I. Then the following properties hold:

(1) E(I) =ker(F, : A— A)(= E(DF})).

(2) F(I) =ker(F, : M — M)(= E(DF,)).

(8) dimc E(I) = p(I)(= p = ord(F})), dimc F(I) = v(I)(= v(Fy)).
(4) Pel< Pf=0,Vfe E() and Pg=0,Yg € F(I).

Proof. Property (1) is a consequence of proposition 7.3, (1) and the fact
that .4 has no O-torsion.

For property (2), we only need to prove that any ¢ € M annihilated by
F, is annihilated by Fy,, ..., F;. We can assume that our Grobner basis is
normalized. Then, the definition of the syzygies R4 (see proposition 7.1)
can be written in the following compact form:

0F, F, 0
8Ferl Fp+1 0
o =al o |+ : )
0F,—» Fy_» 0
0F,—1 Fya %17 %
with
Qngl 2%~ Qpt1 0 .0 0
Qg+2 in% ZOp+1=0pt2 ... () 0
A= : : : o : )
Q' Qi Qo Qg st
q q q

Q1 q .
D p+1 p+2 q—2 g—1
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which is a matrix with entries in O. If g =@ € ker(F, : M — M), a € A,
then Fy(a) = b € O and so, by evaluating the equation (7) at a we obtain

Fp(a) Fp(a) 0

p Fpi1(a) Fpi1(a) 0

e : =A : + :

Fy—2(a) Fy—2(a) 0
Fy-1(a) Fy-1(a) Z¥a-17%a)

and d%(Fi(a)) € O for i = p,...,q— 1. By Cauchy’s theorem we deduce
that Fi(a) € O fori=p,...,q—1and soa € F(I).

Property (3) is a consequence of (2) and proposition 7.4.

For the last property, let us call J C D the left ideal {P € D | Pf =0,Vf €
E(I),Pg =0,Yg € F(I)}. It is clear that I C J. Let A be any element in
J. By division, there are unique @,T,S € D such that A = QF, +T + S
with
ord(A) v—1
T= Z anxla’f, ord(S) < ¢ = ord(Fy)
k=q 1=0
and v = v(I) = v(Fy). So, R=T+ S € J and E(I) C E(DR), F(I) C
F(DR. In particular, by property (3) applied to the ideal DR, we have
ord(R) > p and v(R) > v and so T = 0. Consequently the classes 97,
0 <1< q¢—1, form a (finite) system of generators of the O-module J/I. On
the other hand, for any A € J there are @Q,U € D and an integer r > 0 such
that 2" A = QF, + U and ord(U) < ord(F,) = p (see corollary 7.1). We
deduce that U € J and E(I) C E(DU). Property (3) again shows that, if
U #0, ord(U) > dim¢ E(I) = p. So, U = 0 and J/I is a torsion O-module.
To conclude we apply proposition 7.2. O

Remark 7.1. Proposition 7.5 remains true if we replace A and M by A°
and A° respectively.

Corollary 7.2. Let I € I' C D be non-zero left ideals. The following
properties are equivalent:

(a) I=1T.
(b) E(I) = E(I') and F(I) = F(I).
(b) p(I) = p(I') and v(I) = v(I').
(¢) p(I) +v(I) = p(I') + v(I').
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Proof. The equivalence (a) < (b) comes from property (4) in proposition
7.5. The equivalence (b) < (c¢) < (d) comes from property (3) in proposition
7.5 and the obvious inclusions E(I') C E(I), F(I') C F(I). |

Corollary 7.3. For any non-zero left ideal I C D, we have lg(D/I) <
p(I) +v(I), and in particular the left D-module D/I is of finite length.

Exercise 7.9. Prove that for any non integer complex number «, the left
D-module D/D(z0 — «) is simple, i.e. the left ideal D(29 — «) is maximal.

Corollary 7.4. For any non-zero left ideal I C D, the left D-module D/I
is a torsion module.

Proof. Let us take A € D, A ¢ I, and consider the D-linear map & : P €
D+ ®(P) = PA € D/I. Since Dz D Dz2 D Dz? O --- is an infinite
strictly decreasing sequence of left ideals in D, we have 1g(D) = 400 and
the map ® cannot be injective. So, there is a P € D, P # 0, such that
PA=0. O

8. Generalized Solutions

If we start from a linear differential equation as (1), we may be interested
in searching its solutions, not only holomorphic functions, but possibly
distributions, hyperfunctions, etc.

In order to make sense the sentence “y is a solution” of (1) what we need
is that y is an element of certain space S, g is also an element of the same
space S, and it makes sense the action of any linear differential operator on
elements of S. Algebraically that corresponds to the fact that S is a (left)
D-module.

The solutions of the homogeneous equation associated with (1) in the
space S can be expressed simply as

ker(P:S —8)={yeS| Py=0}
where P = an% 4+t alé + ag. But it is clear that
yEker(P:S—8)—[Q €D/DP+ Qy € S) € Homp(D/DP,S) (8)

is an isomorphism of vector spaces, and then the solutions of the homoge-
neous equation can be expressed in some way in terms of the D-module
D/DP. On the other hand, the fact that the equation (1) has solutions for
any g € S exactly means that im(P : § - §) = S, ie. that P: S — S
is surjective. Algebraically, the obstruction to this surjectivity is measured
by the cokernel coker(P:S8 — S)=8/im(P:S8 — S).
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If instead of having one linear differential equation, we have a system

Puyr + -+ Poyr = 1

T (9)
Proiyi + -+ PorYr = gm

we can consider the left sub-D-module I C D" generated by P° =

(Pa,...,Py), 1 = 1,...,m, and we have as above an isomorphism (for
the solutions of the associated homogeneous system)

ker(P: 8" — 8™) ~ Homp(D"/I,S),

where P is the matrix of linear differential operators (P;;).

But if we are interested in the non-homogeneous system (9), it is not
reasonable to try to solve it for any choice of g1, ..., gm, since the existence
of a solution would imply that any time we have a syzygy Q1 P' + --- +
QmP™ =0, with Q; € D, then Q191 + - - - + Qmgm = 0. So, to measure the
obstruction to solve (9), we have to look not at coker(P : 8" — 8™), but
at

{(g1,- - gm) € S™ | ZQigizo,VQGS(P)}/imP, (10)

where

S(P)={QeD™| ZQiEi =0}

In fact, due to the noetherianity of D, S(P) is a finitely generated sub-
D-module of D™ and then the apparently infinite number of conditions

Z Qigi = 0,vQ € S(P) (11)

reduce to a finite number of them.

The question now is if it is possible to get an isomorphism of type (8)
for coker(P : § — §), in the one equation case, or for (10) in the general
case of a system of several equations with several unknowns.

The answer is YES and is given by Homological Algebra:

{g€S8™| ) Qigi=0,YQ € S(P)}/imP ~ Exth,(D"/I,8),  (12)

where the Ext’, (M, N) are complex vector spaces conveniently defined for
any left D-modules M, N and 7 > 0. For i = 0 we have

Ext} (M, N) = Homg (M, N)
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(see the book?®). In fact, the Ext (M, N) appear as the cohomology of
degree 7 of a certain complex of vector spaces

| R Homp (M, N) |

which can be calculated by taking a projective resolution of M or an injec-
tive resolution of N (see for instance ch. II in?? for a quick introduction to
this subject and for a list of references).

Example 8.1. Let us see some examples.

(1) If M = D, then it corresponds to the linear differential equation Oy = g.
Any element y € N is obviously a solution of the homogeneous equation,
and the the compatibility conditions (11) mean that the g must be zero and
the non-homogeneous equation must be actually homogenoeus, and then it
always has solutions (the zero solution). In this case, since D is free as left
D-module, we have
0
RHomp (D, N) =Homp(D,N)=---—-0—>N—-0— ---
and Ext), (D, N) = Homp (D, N) = N and Ext’, (D, N) = 0 for i # 0.

(2) It M = D/DP, to describe RHomp (M, N) we take the free resolution
of M

-1 5 0
0—-D—D—->M=D/DP -0,

1 5 0
Me=...-0—-D"5D>0—---

and
R Homqp (M, N) = Homp(M*, N) =
o Homop (-P,N) L
..—»O—>HOH1@('D,N) —)HomD(ﬂlN) -0 — ... =
0 1
--—>O—>N£>N—>O—>~--

In particular,

Homq (M, N) = Ext), (M, N) = h°R Homqp (M, N) = ker(P : N — N),

Exts, (M, N) = h'R Homp (M, N) = coker(P : N — N)

and Extly (M, N) = 0 for all i # 0, 1.
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(3) If N is an injective (see for instance the book?®) D-module, we can solve
any compatible system with unknowns in N and

R Homq (M, N) = Homq (M, N),
i.e. Extly (M, N) =0 for all i # 0.

Definition 8.1. If M is a finitely generated left D-module, we define its
higher holomorphic solutions as the complex of vector spaces

Sol M = RHomqp (M, O).

The proof of the following proposition is an interesting application of
the division tools in the ring D and gives a “natural” injective resolution
of the left D-module O.

Proposition 8.1. The following exact sequence of left ‘D-modules
0-0—-A—-M—=0

18 an injective resolution of O as a left D-module.

Proof. To prove that A is an injective D-module, we have to check that
for any left ideal I C D and any D-linear map ¢ : I — A there exists a
D-linear map @ : D — A such that $|; = ¢ (see any book of Homological
Algebra, for instance®®). Let us take a Grobner basis F, ..., F, of I. We
know from the proposition 7.3, (2) that I = D(F},, Fy). Let us write ¢(F},) =
Ip, ¢(Fy) = fq. Finding ¢ is the same as finding f = $(1), since §(P) =
Pp(1) for all P € D. On the other hand, the condition |; = ¢ exactly
means that F,f = fp, Fof = fq.

From proposition 7.3, (1) there exists an integer > 0 and an operator
Q € D such that 2" F, = QF), and so z" f; = Qf,. From proposition 7.4,
(2) there exists f € A such that F,f = f,. We have «"F,;f = QF,f =
Qfp = 2" fy, and since A has no O-torsion we deduce that F,f = f,.

Let us now prove the injectivity of M. Assume that I C D is a left
ideal and 9 : I — M is a D-linear map. Take a normalized Grébner basis
F,,...,F; of I and let us write ¢¥(Fy) = g4 = fa, d = p,...,q. From
proposition 7.4, there exists f € A such that F,f = f; (and so Fyg = g4
for g = f € M). The generating system of the syzygies of F,,..., F, 7.1
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gives rise to the relation (see (7) in the proof of proposition 7.5)

8Fp F, 0
8Fp+1 i 0
o =Al |
OF, Fy s 0
an,1 Fq,1 Zaq’liaqu
with A a matrix with entries in Q. By applying ¢ we find
99y 9p 0
Ogp+1 Ip+1 0
S Y R :
agq—Z gq—2 0
agq—l gq—l Zaq_l_ang
or
fp fp 0 hp
fp+1 fp+1 0 hp+1
— . = A . . :
fq72 fq72 0 hq,Q
qul qul Zaqiliaqfq hq,1
where hg € O ford=p,...,q— 1, and
fP_FPf fP_FPf hp
fp+1 - Fp+1f fp+1 - Fp+1f hp+1
— : = A : .
= . . +|
fq72 - Fq72f fq72 - Fq72f hq72
qul _qulf qul _qulf hq,1

By Cauchy theorem we deduce that f; — Fyf € O ford = p,...,q—1
a~nd so Fyg = gq for d = p,...,q — 1. The extension of ¥ is given by
Y:PeD— Pge M. O

Example 8.2. We can use the injective resolution of proposition 8.1 to
compute the higher holomorphic solutions of any left D-module M:

0 1
RHomp(M,0)="--- — 0 — Homp (M, A) — Homp (M, M) -0 — ---

Exercise 8.1. By taking the free resolutions in exercise 7.8 and the injective
resolution of O given in proposition 8.1, compute in two different ways
Sol M for: (1) M =0. (2) M =X. (3) M =X/0.
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Exercise 8.2. Let P = 0" + ap_10" ' + -+ a10 + ap € D and let us
consider the left D-module M = D/DP associated with the (germ of)
linear differential equation Py = g, where g € §. Let us also consider the
system of (germs of) linear differential equations (see (3))

Y1 0
Yo 0
P : =
Yn—1 0
Yn g
with
o -1 0 - 0 0 0
0 o0 -1- 0 0 0
P = : : : : : : :
o o 0 --- 0 -1 0
—ap —Q1 —G2 +* —Qp_3 —Gp_2 0 — Gp_1

and the associated D-module M’ = D™ /I, where [ is the left submodule of
D™ generated by

P = (9,-1,0,...,0,0,0)
pP? = (0,0,-1,...,0,0,0)
Bn_l = (070507' . '787_170)
En = (_aOa_ala_GQ;--~7_a'n—37_an—278_a'n—1)-

Prove that the map

n—1

(QO;-u,Qn—l) eM = Q)n/IH ZQial e M= D/'DP

i=0
is an isomorphism of left D-modules, and so

R Homqp (M, S) ~ RHomqp (M, S).

In the above exercise, the isomorphism M ~ M’ is the algebraic coun-
terpart of the classic reduction of an order n linear differential equation to
an order 1 system of linear differential equations described in section 1.
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9. Holonomic D-Modules

In this section, all D-modules considered will be left D-modules.

Definition 9.1. We say' that a D-module M is holonomic if it is finitely
generated and a torsion module, i.e. for all m € M there is P € D, P #£ 0,
such that Pm = 0.

It is clear that any submodule and any quotient of a holonomic D-
module is also holonomic, and that the direct sum of two holonomic D-
modules is again holonomic. In particular the category of holonomic D-
modules is abelian.

Let us denote by Hol(D) the (abelian) category of holonomic (left) D-
modules.

Example 9.1. Any D-module of type D/I, where I C D is a non-zero
ideal, is holonomic after corollary 7.4.

In fact we have the following result.

Proposition 9.1. Let M be a D-module. The following properties are
equivalent:

(a) M is holonomic.
(b) M is of finite length.
(¢) There is a non-zero ideal I C D such that M ~ D/I.

Proof. For (a) = (b) we proceed by induction on the number of generators
of M. If M = Dm; is cyclic, then I = annp(m) # 0 and M ~ D/I is of
finite length by corollary 7.3.

Assume that any holonomic D-module generated by n — 1 elements
is of finite length and take a holonomic D-module M = D(mq,...,my)
generated by n elements. By induction hypothesis M’ = D(ma,...,my,)
and M"” = M/M' = Dy are of finite length, and so M is also of finite
length.

The implication (b) = (c) follows from from a general result, which
assures that any left module of finite length over a simple ring R of infinite
length as left R-module is cyclic (cf. 5.7.3 in'®).

fHolonomic D-modules make sense in several variables, but their definition needs to work
with filtrations (see the notes®). The present definition only works in one variable.
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The implication (¢) = (a) is a consequence of corollary 7.4. m|

Theorem 9.1. Let M be a holonomic D-module. Then Sol M is a complex
of vector space with finite dimensional cohomology. More precisely:

dimc h° Sol M = dim¢ Homq (M, Q) < +o0,
dime k' Sol M = dimg¢ Extf, (M, O) < +o0, h'Sol M = 0 Vi # 0, 1.

Proof. From proposition 9.1, we know that M ~ D/I, where I C D is
a non-zero left ideal. On the other hand, Sol M can be computed as (see
example 8.2)
0 1
-+ — 0 — Homp (M, A) - Homp(M,M) -0 — -+ |
but Homp (M, A) ~ Homp (D/I, A) ~ E(I) and F(I) ~ Homop (M, M)
Homp (D/I, M). So, the theorem is a consequence of proposition 7.5. O

1

Remark 9.1. For a holonomic D-module it is relatively easy to give a
formula for

x(RHomq (M, 0)) = dime Homq (M, ) — dime Exth, (M, O)

in terms of two integers algebraically associated with M: the multiplicity
eg of the “null section” and the multiplicity e; of the “conormal of 0 in the
“characteristic variety” defined by means of filtrations and the theory of
Hilbert polynomials (cf. ch. V in®). When M = D/I, then eq = p(I) and
e1 =v(l)
X(RHomqp (D/I,0)) = dim¢ Homp (D/I,.A) — dime Homyp /D/I, M) =
dim¢ E(I) — dim¢ F(I) = p(I) — v(I).

10. Regular D-Modules

In this section, all D-modules considered will be left D-modules.
Definition 10.1. Let

P = Xn:akak = Xn:ialkmlak
k=0

k=0 =0
be a non-zero linear differential operator (of O) of order n > 0.
(1) We say that P is reqular if it satisfies property (b) of theorem 5.1, i.e.

max{k —vo(ar) | k=0,...,n} =n —vo(an).
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(2) We define the weight of P as
w(P) =max{k—1| (I,k) € supp(P)} = max{k — vo(ag) | k=0,...,n}.
(3) The initial form of P is the operator

in(P) = Z ax' O

k—l=w(P)
Let us note that P is regular if and only if w(P) = ord(P) — v(P).

Exercise 10.1. Prove that, if P;, P, € D are non-zero linear differential
operators, then:

(a) W(Plpg) = W(Pl) + W(PQ)

(b) in(Py Py) = in(Py) in(P).

(¢c) Prove that Py P, is regular if and only if P; and P, are regular.

Theorem 5.1 can be rephrased in the following way: Let L = anjz—"n +
et ap diz + agp be a linear differential operator of order n on an open disc
D = Dpg and let P = Ly € D be its stalk at the origin. The following
properties are equivalent:

(a) 0 is a regular singular point of L.
(b) P is regular.

Theorem 10.1. Let I C D be a non-zero left D-ideal. The following prop-
erties are equivalent:

(a) There is a regular element P € I, P # 0.

(b) All the elements of a Grébner basis of I are regular.
(c) BE(I) CN.

(d) F(I) c N/O.

(e) {ne®/O | Pp=0,YP eI} =0.

Proof. (SeeI1.3.1 in'?) The equivalence of the first three properties comes
from proposition 7.3, (1), exercise 10.1, proposition 7.5, (1) and theorem
5.1.

Let {Fp,...,F,;} be a Grobner basis of I. We know from proposition
7.5, (2) that F(I) = F(DF,).
(b) = (d): Let g = f € M be a class in F(I), i.e. F,f € O. We can find a
non singular operator P € D (v(P) = 0) such that PF,f = 0, and so, by
theorem 5.1 f € N and g € /0.
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(d) = (a): If f € A is annihilated by F,, then f € F(I) and so f € N.
Hence Fj is regular by theorem 5.1.

Since O /O has no O-torsion, we can follow the proof of proposition 7.5, (1)
to prove that

{(ne®/0| Pp=0,YP € I} = ker (F; :0/0 — 6/@) .
So, the equivalence (e) < (a) is a consequence of corollary 6.1. m|

Remark 10.1. Let us note that for any holonomic D-module M, the vec-
tor space Homqp (M, 6/(‘)) is finite dimensional. For that, it is enough to
consider the case where M = D/I with I C D a non-zero left ideal. In such
a case we have an isomorphism

Homyp (D/1,0/0) ~ {n € 0/O | Pp=0,YP € I},
but the last space is finite dimensional by theorem 6.2, (1).

Definition 10.2. (1) Let M be a holonomic D-module. We define its ir-
regularity as the number irr M := dim¢ Homo (M, 0/0) > 0.

(2) We say that a holonomic D-module M is regular if Homp (D /1, 0 /0) =
0, or equivalently, if irr M = 0.

Proposition 10.1. The D-module 6/(9 18 injective.

Proof. The proof follows the same lines as the proof of the injectivity of
A in proposition 8.1, since O/O has no O-torsion either and we can use
theorem 6.2, (2) instead of proposition 7.4, (2). O

The following theorem is a straightforward consequence of theorem 10.1
and proposition 10.1.

Theorem 10.2. Let M be a holonomic left D-module. The following prop-
erties are equivalent:

(a) M is regular.

(b) RHomq (M, 0/0) = 0.

(c) The map Homp (M, N) — Homxp (M, A) induced by the inclusion N' C
A is an isomorphism.

(d) The map Homp (M, N /OQ) — Homxp (M, A/O) induced by the inclusion
N/O C A/O is an isomorphism.
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The proof of the following proposition is also a straightforward conse-
quence of proposition 10.1.

Proposition 10.2. The irregularity irr is an additive function on exact
sequences of holonomic D-modules.

Corollary 10.1. Given a short exact sequence of holonomic D-modules
0—-M —-M—M'—D0,

M is reqular if and only if M’ and M" are reqular. In particular the category
of holonomic D-modules is abelian.

Let us denote by RegHol(D) the (abelian) category of regular holonomic
(left) D-modules.

Remark 10.2. The above results are the precursors of the irregularity
complezes along a hypersurface and the notion of regular holonomic module
in higher dimension (see the papers?®:2!).

Additional results and information about regular an irregular holonomic
D-modules in one variable can be found in the paper.?’

11. A Local Version of the Riemann-Hilbert
Correspondence in One Variable (in Collaboration with
F. Gudiel Rodriguez)

In this section we explain proposition I11.4.5 in'3 using the description of
simple objects in the category C instead of the more involved description
of indecomposable objects (see the master thesis?).

Definition 11.1. Let us call C° the category defined in the following way:

(1) The objets of C° are the diagrams (E, F,u,v) where E, F are complex
vector spaces and v : E — F and v : ' — FE are linear maps such that
Idg +vow and Idr + uwov are automorphisms.

(2) If O = (E, F,u,v), O' = (E', F',u/,v") are objets of €°, a morphism in
€Y from O to O’ is a pair (a,b) of linear maps a: E — E’, b: F — F’
such that ' ca=bou, v ob=aow.

We also call € the full subcategory of C° whose objects are those (E, F, u,v)
with dim¢ F, dim¢ F < +00.
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Definition 11.2. The functors Eq : Hol(D) — €, E : RegHol(D) — C are
defined on objects by

Eo(M) = (Homqp (M, A), Homp (M, M), U,, Vi),

E(M) = (Homp (M, N),Homs (M, N/0),U,, Vi)
and on morphisms in the obvious way.

Proposition 11.1. Functors Eg : Hol(D) — € and E : RegHol(D) — €
are eract.

Proof. The exactness of g follows from proposition 8.1. The exactness of
E comes from the fact that for a regular holonomic D-module, the canonical
inclusion E(M) < Eq(M) is an isomorphism (see theorem 10.2). m|

Exercise 11.1. (1) Prove that €Y is an abelian category. Which are the
monomorphisms and the epimorphisms in €7

(2) Prove that € is an abelian subcategory of C°. Prove that any object in
C has finite length.

(3) Prove that the simple objects in € are isomorphic to one of the following

Definition 11.3. We define an “universal” object U° in €° as U° =
(A, M,U,V) with U : A — M the projection map and V : M — A the

“variation” map defined as V' (f) = T'(f) — f. This object contains another
special object U = (N,N/0,U, V).

The object U° is enriched with a (left) D-module structure, since A
and M are left D-modules and U,V are D-linear. So, for any object O =
(E, F,u,v) in €, the abelian group Home (O, U°) carries a natural structure
of left D-module given by the following operation: for P € D and (a,b) €
Home (O,U°), P(a,b) is defined as (Pa, Pb) where

Pa:x € E (Pa)(x) :=P-a(x) € A,
Pb:ye Fw— (Pb)(y):=P- bly) € M.
In that way we define a contravariant left exact additive functor
Fo = Homeo (—,U°) : @ — Mod(D).
Since U is also enriched with a (left) D-module structure, we also have
another contravariant left exact additive functor

F = Homeo (—,U) : € — Mod(D)
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Exercise 11.2. Let O be a simple object in €. Prove that:
(1) There is an injection ¢ : O — U.
(2) For any injection ¢ : O — U, the left D-module FO is generated by ¢.

(3) Let ¢ : O — U be an injection and (F,F,U,V) = im¢ C U. Let us
define I = {P €D | Pf=0,Yf € E,Pg=0,Yg € F}. Prove that I is a
left maximal ideal of D and E(I) = E, F(I) = F.

(4) FO is a simple regular holonomic left D-module.

(Hint: Proceed following the three different types of simple objects in @)

Proposition 11.2. With the above notations, FO is a reqular holonomic
left D-module for any object O of €. Moreover, 1gFO <lgO.

Proof. The proof goes easily by induction on the length of the object O.
If O is simple, the result has been treated in exercise 11.2.

Assume that the proposition is true anytime that lgO < n and let
O be an object in € with 1gO = n. We can find a short exact sequence
0—-0 502 0" - 0inCwithlgO' =1 andlg0” = n—1. By applying
F we obtain a left exact sequence of left D-modules

0 —FO" 2, 70 . ro.

By induction hypothesis FO’ and FO” are regular holonomic with lgFO’ =
1, 1gFO” < n — 1, and so the image of Fi is also regular holonomic and
we conclude that FO is regular holonomic too (see corollary 10.1) with
IlgFO =1gFO" +1gFO’ < n. |

As a consequence of the above proposition, we can consider the con-
travariant left exact additive functor
F = Homeo (—,U) : € — RegHol(D).

Definition 11.4. For any regular holonomic D-module, we define the map
€1+ M — FEM = Homeo (EM,U) by &r(m) = (€1, (m), €, (m)) with
€, (m) 1 ¢ € Homop (M, N) — ¢(m) € N,
&2,(m) : ¢ € Homop (M, N/0O) — (m) € N/O.
Proposition 11.3. The correspondence which associates to any regular

holonomic D-module M the map Enr is a morphism of functors & : Id — FE.
Moreover, £py is ingective for any regular holonomic D-module M.
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Proof. The first part is clear. For the second part, we can restrict ourselves
to the case M = D/I, where I C D is a non-zero left ideal. In such a case,
EM is canonically isomorphic to O = (E(I), F(I),U,V) C U and the map
& can be seen as

PeD/Iw— (P:E(I)— N,P:F(I)— N/O) € FO.

The injectivity of £y is so a consequence of proposition 7.5, (4). O

Lemma 11.1. For any simple reqular holonomic D-module M, EM is a
simple object in C.

Proof. We can assume that M = D /I, with I C D a maximal left ideal and
so EM is isomorphic to O = (E(I), F(I),U,V). Let O' = (E,F,U,V) be a
simple sub-object of O and J ={P € D | Pf =0,Vf € E,Pg=0,Vg € F}.
We know from exercise 11.2, (3) that E(J) = E, F(J) =F.

It is clear that J is a proper ideal containing I, and so I = J. We
conclude that O = O’ and O is simple. O

Proposition 11.4. For any reqular holonomic D-module M the map &y :
M — FEM is an isomorphism.

Proof. We proceed by induction on the length of M. If M is simple, then
EM is simple by lemma 11.1 and FEM is simple by exercise 11.2, (4). So
the injection &y : M — FEM is an isomorphism.

Assume that &, is an isomorphism anytime that lg M < n and let M
be a regular holonomic D-module of length n. Let us consider a short exact
sequence of (regular holonomic left) D-modules 0 — M’ — M — M" — 0.
We have a commutative diagram

0 M’ M M 0
S T
0 FEM’ FEM —— FEM"”
and so &js is an isomorphism. O

Definition 11.5. For any object O = (FE,F,u,v) in €, we define the
map 70 : O — EFO = (Homp(FO,N),Homp(FO,N/O),U,,V.) by
0 = (18, 73) with
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75 ¢ € B 15(z) € Homp (FO,N),
75(2) : (a,b) € FO = Homeo (O,U) — a(x) € N,
73 1y € E— 14(y) € Homp (FO,N/0O),
73 (y) : (a,b) € FO = Homeo (O,U) — b(y) € N'/O.

Exercise 11.3. Prove that the correspondence which associates to any object
O of € the map 7o is a morphism of functors 7 : Id — EF.

Exercise 11.4. (1) Prove that for any objects O C O’ in € with O’/O simple,
the induced map FO’ — FO is surjective (Hint: Proceed following the three
different types of simple objects in € and use exercise 7.2, (7)).

(2) Conclude that the functor F : € — RegHol is exact.

Proposition 11.5. For any object O in C the map 7o : O — EFO is an
isomorphism.

Proof. Thanks to the exactness of F (and E), we can restrict ourselves to
the case where O is simple, as in the proof of proposition 11.4.

Assume that O is simple. Let ¢ : O < U be an injection, (E, F,U,V) =
imiCU,and I ={PeD|Pf=0,Vfe E Pg=0,Vge F} It is easy to
see that the map 7o can be seen as the inclusion

(E,F,U,V)— (E(I),F(I),U, V)

and so it is an isomorphism by exercise 11.2, (3). m|

Proposition 11.4 and 11.5 can be summarized in the following theorem.

Theorem 11.1. The functors
E : RegHol(D) — € and F:C — RegHol(D)
are quasi-inverse contravariant equivalences of categories.

Remark 11.1. (1) Since A and M are in fact left modules over the ring
D> of germs at 0 of infinite order linear differential operators (cf.?3:26),
we can consider Fy as a functor from € to Mod(D>°). One can prove that
A=D®Qp N, M = D® ®p N/O and that D>® ®@p F ~ Fy. Let us
call Hol(D®°) the full abelian subcategory® D> ®@p Hol(D) C Mod (D).

€0ne needs to use that the extension D «— D> is faithfully flat (cf. loc. cit.).
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The functor Eg can be also extended to Eq : Hol(D>*) — € and it is a
quasi-inverse of Fy : € — Hol(D).

(2) One can prove by elementary methods that the category € is equivalent
to the category of germs at 0 € C of perverse sheaves (cf.#142),

(1) and (2) are particular cases of the “full” Riemann-Hilbert correspon-
dence in higher dimension (cf. 3.3 in!? and the paper?!).

12. D-Modules on a Riemann Surface

In this section, we briefly sketch some basic facts of the theory of D-modules
on a Riemann surface. X will be a connected Riemann surface and O x will
denote its sheaf of holomorphic functions. It has the same properties as Oy
in definition 2.1.

We also define the notion of subsheaf of O x as in definition 2.2, and the
notion of endomorphism of O x as in definition 2.3.

We have a “generalized sheaf” in the sense that it is not a sheaf of
functions, but a sheaf of rings, given in the following way: for any open set
U C X we define

U-Comc((‘)x, Ox)(U) = Homc(OU, OU).

The data Homc(Ox,Ox) satisfies the formal properties of the sheaves of
holomorphic functions (see exercise 2.4). The reader can refer to the book?
for the general notion of sheaf.

We have an injective morphism of sheaves of rings Ox <—
J—Com(c(OX,OX).

To define the sheaf of (holomorphic linear) differential operators, we
have to adapt definition 2.4, because on a Riemann surface we do not have
global coordinates.

Definition 12.1. Let U C X an open set. A linear differential operator on
U is an endomorphism L : Oy — Oy which locally, on open sets U; with
local coordinate z; there are holomorphic functions ao, . . ., a, on U; (n may
depends on 7) such that

dn

The set of linear differential operators on U will be denoted by D x (U).

L

Ui:an _|_..._l’_a,0.

Exercise 12.1. Prove that the data Dx is a subsheaf of non-commutative
rings of Homc(Ox,O0x).
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The stalk of Dx at a point p € X, Dy, is isomorphic to the ring D (by
taking a local coordinate around p).

We have the filtration by the order at the level of sheaves FF¥Dx, k > 0.
The graded sheaf grp Dx is locally isomorphic to the sheaf of commutative
rings Ox[¢]. The the sheaf Dx has an important property: it is a coherent
sheaf of rings (cf. the paper®).

Definition 12.2. A left holonomic D x-module M is a left coherent D x-
module such that M, is a holonomic D x ,-module for each p € X.

Alternatively, holonomicity can be defined by using local good filtrations
at the sheaf level. In that way we define the characteristic variety ChM
which is an analytic conical closed subset of the cotangent space T* X, and a
coherent left D x-module is holonomic if and only if dim ChM = dim X = 1.

We can also define, for any left coherente D x-modules M, N, the sheaf of
complex vector spaces Homp, (M, N). We also define

8ol(M) = RHomp, (M, O0x),
in such a way that 8ol(M), = Sol(M,) for each point p € X.

Theorem 12.1. Let M be a (left) holonomic D x-module. Then Sol(M) is
a perverse sheaf, i.e
(1) h*8ol(M) = Extl, (M, 0x) =0 for all i # 0, 1.
(2) There is a closed discrete set ¥ C X (the singular locus of M) such
that:

a) h? 8ol(M)|x\s = Homp (M, Ox)|x\x is a locally constant sheaf of
finite rank.

b) B 8ol(M)|x\5 = Extp (M, Ox)[x\x = 0.

¢) h*8ol(M), = h*Sol(M,) are finite dimensional spaces for i = 0,1
and for each p € 3.

d) h® 8ol(M) has no section supported by X (this is clear because locally
we have h° 8ol(M) C Ox, and there are no holomorphic functions supported
by a discrete set).

The proof of the above theorem is a direct consequence of theorems 3.1
and 9.1. More details can be found, for instance, in the paper,?* where it
is given an elementary proof of the Riemann-Hilbert correspondence on a
Riemann surface.
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‘We develop some basic results on modules over the Weyl algebra including the
existence of the Bernstein polynomial and the relationship between logarithmic
modules and the so-called Logarithmic Comparison Theorem. We use computer
algebra system Macaulay 2 to explicitly compute some invariants arising in the
whole subject.

Keywords: Weyl algebra; Linear Differential Operator; Characteristic variety;
Holonomic module; Bernstein-Sato polynomial; Logarithmic derivation; Loga-
rithmic differential form; Logarithmic A,—module.

Introduction

These notes are an enlarged version of the lecture notes given at the School
on Algebraic Approach to Differential Equations that took place at Biblio-
theca Alexandrina (Alexandria, Egypt) from 12th to 24th November 2007.%
The school was organized by the Mathematics Section of the ICTP (The
Abdus Salam International Centre for Theoretical Physics, Trieste).

The content of these notes is the following. Section 1 is devoted to the
definition of the complex Weyl algebra, the ring of linear differential oper-
ators with polynomial coefficients, and the study of different filtrations on
the Weyl algebra and on left A,,—modules. The associated graded structures
will be used in Section 2 to define the characteristic variety, the dimension
and the multiplicity of a finitely generated A,,—module. In this section we
prove the Bernstein’s inequality and study the class of holonomic modules.

aPart of this material has been previously taught in the Aachen Summer School 2007
Algorithmic D-module theory that took place from 3rd to 7th September 2007, at the
Sollerhaus in Kleinwalsertal (Austria).
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One of the deepest result of this section, due to J. Bernstein, states that
the A,—module of rational functions, with poles along a hypersurface in
C", is holonomic. Following J. Bernstein we also introduce the Bernstein
polynomial (also known as Bernstein-Sato polynomial) associated with a
given polynomial f € C[z] := Clz1,...,xp].

In Section 3 we consider the class of logarithmic A,,—modules. These
modules are associated with a polynomial f € C[z] and are defined by using
differential operators of order 1 arising from the logarithmic derivations
with respect to f.

Some parts of the lectures were devoted to algorithmic questions and
explicit computations in the theory of finitely generated modules over the
Weyl algebra. These explicit computations are possible because the theory
of Groebner bases can be extended from the polynomial ring to the Weyl
algebra. We have added in an Appendix some basic results on the Division
Theorem for differential operators and the theory of Groebner bases in A,
and other rings of differential operators. Many of the used algorithms are
due to T. Oaku and N. Takayama3” and have been implemented in the
D-modules package for the Computer Algebra system Macaulay 2.2%

While giving the lectures and writing these notes we have supposed that
the students and the readers have some familiarity with basic notions in
Commutative Algebra and Algebraic Geometry. In particular they should
have a good elementary knowledge of the theory of commutative rings and
their modules, as contained for instance in the first three chapters of Atiyah-
Macdonald.* They should also know the basic definitions and results in
the theory of affine algebraic varieties at the level of the first chapter of
R. Hartshorne.?® This knowledge must include the Nullstellensatz and the
theory of Hilbert functions and polynomials.

1. The Weyl Algebra
1.1. Linear differential operators

For the sake of simplicity we are going to consider the complex field C as
base field. Nevertheless, in what follows many algebraic results also hold
for any base field K of characteristic zero.

Let n > 1 be an integer number and C[z] = Clz1, ..., z,] be the ring of
polynomials in n variables with complex coefficients.

Let Endc(C[z]) be the C-algebra of endomorphisms of the C-vector
space C[z]. As the product in this algebra is just the composition of endo-
morphisms then Endc(Clz]) is a noncommutative ring with unit.
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Let f € C[x] be a polynomial. The multiplication by f
Cla] 25 Cfa]

defined by ¢(g) = fg for all g € C[z], is an endomorphism.

The unit of the ring Endc(C[z]) is the identity map which coincides
with ¢1. We will denote ¢ just by 1 if no confusion is possible.

The partial derivative with respect to x;

Clz] 25 C[a]

is also an endomorphism. We will denote 9; instead of % fori=1,...,n.
So, for any f € C[z] we have 9;(f) = g—i.

Definition 1.1. Let n > 1 be an integer. The n-th complex Weyl alge-
bra, denoted by A, (C), is the subalgebra of End¢(Clz]) generated by the
endomorphisms

¢z17"'7¢zn;ala"'7an-

We will adopt the convention Ag(C) = C and we will simply write A,, =
A, (C).

Remark 1.1. An element in A,, is nothing but a finite linear combination,
with coefficients in C, of words in the generators ¢z, ,..., ¢z, ,01,...,0n.
Each of these words must be identified with the corresponding endomor-
phism built up by composing the generators appearing in the word.

For any f € C[z] we have

(00 ¢u)(f) = 0i(wif) = f+2:0i(f) = f + (¢, © i) (f)-

This means that the equality 9;0 ¢, = ¢, 09; +1 holds in End¢(Cl[z]) and
therefore in A,. In particular A,, is a noncommutative ring (for n > 1).
More generally, for any f,g € Clz] and 1 <4 < n we have

(0i 0 9g)(f) = 0i(gf) = 0i(g)f + g0i(f) = ba,(g)(f) + (dg 0 F;)(f)

That is: the equality 9; o ¢4 = ¢y © 0; + ¢g,(g) holds in Endc(C[z]) and
therefore in A,,. The last equality is known as Leibniz’s rule.

Exercise 1.1. Prove that the following equalities hold in A,:
0; 0 ¢z; = g, 0 0; for all 1 < i, j < n with i # j.

0;j00j =000 forall1 <i<j<n.

Gz, © Qu; = Pu; © Py, forall 1 <i < j <.
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Proposition 1.1. The map Clz] — A, defined by f — ¢y is an injective
morphism of rings (and of C-algebras).

Proof. The proof follows from the equalities

Grrg(h) = (f +9)h = fh+ gh = ¢5(h) + ¢g(h) = (¢7 + ¢g)(h)

and

Org(h) = (fg)h = f(gh) = ¢5(dg(h)) = (d5 0 dg)(h)
which hold for any f, g, h € Clx]. O

Notation 1.1. The notations above are not easy to use. Hence, we will
simply write z; instead of ¢,,. This identification is justified by Proposition
1.1. We will also write PQ instead of P o @ for the product in A,,.

For a = (ai,...,ay) € N* we will write 2% = z{* - - - 2% both for the
monomial in C[z] and the corresponding element in A,,. We will also write
9% = o7 --- 9% € A,. By convention we have ¥ = 1 and 99 = 1 for
1=1,...,n.

An element 0% € A, for a, f € N” is called a monomial in A,,.

Proposition 1.2.

(1) Let f € C[z] and B € N". The product 0P f in A, satisfies the equality

5= (D)oot
where o K B stands for o; < B; fori=1,...,n, (f) = ﬁla), and
Bl= Bl Bl
(2) If 3,7 € N then we have 9°(z7) = f3! (g) 7P where <g> =04

the relation B < v doesn’t hold.
(3) If a,, 3,3 € N"™ then we have

2298z 9P = gote gi+s’

!
CY a(2) (e

oL fB,0La’,07#0

Proof. (1) It follows from the case n = 1 and the distributivity of the
product with respect to the sum in A,. For n = 1 (writing ¢ and 9 instead
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of 1 and 0;) the formula
j
of=> oo "
k=0

can be proved by induction on j.

(2) The formula follows by induction on n. The case n = 1 can be proved
by induction on [;.

(3) It follows from (1) and (2). m|

Proposition 1.3. The set of monomials B = {z“0° | o, 3 € N"} is a basis
of the C-vector space A,,. Each nonzero element P in A, can be written in
an unique way as a finite sum

P = Zpagxaaﬁ
a,B

for some nonzero complex numbers pog. Moreover, P = ZB pp(2)0°P with
Pp(x) = 2o q Papr®.

Proof. It is enough to prove the first statement since the second statement
follows from it.

Any word in the generators x1, ..., Ty, 01,...,0, is a product of mono-
mials (see Remark 1.1). By Proposition 1.2 (3.) a product of monomials is
a linear combination with coefficients in C of elements in B. This proves
that B is a generating system for the vector space A,,. Let us prove now
that B is linearly independent. Let us consider

P = Z pagmo‘aﬁ
a non trivial linear combination of monomials in B. Let 3’ € N™ be the
smallest element, with respect to the lexicographical order,” appearing as
the exponent of & in P. We have that P(z?) = (BN, Paprz®™) because
if 3 is strictly smaller than £ in the lexicographic order then 97 (z") = 0.
Because of the choice of 3’ there exists & € N™ such that pag # 0 and then
P(xﬁ/) is nonzero. In particular the endomorphism P € A,, is nonzero. O

Remark 1.2. There exists a natural action of A, on the polynomial ring
C|[z] since each element P € A,, is an endomorphism of the C-vector space
C[x]. This natural action induces on Clz] a structure of left A,—module.

PGiven 3,3 € N we say that B’ is smaller than or equal to 3 with respect to the
lexicographic order if there exists 1 < ¢ < n — 1 such that ,8; = pBj for 1 < j < i and
Bir1 < Bitr
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Due to Proposition 1.3 the action of an element P =}, ps(r)9° € A,
on an element g € C[z] can be written as

)
P(g) = e Y
(9) gm( )3x11 T oub

and this justifies the name of Linear Differential Operators with polynomial
coefficients for the elements in A,.

In fact C[z] is finitely generated as A,-module. This can be proved just
by considering the map

Ap(O1,...,0n)

defined by ¢(g) =g =g+ An(d1,...,0,) where A, (01,...,0,) is the left
ideal generated by 01, ..., 0.

This map is a morphism of left A,,—modules and it is injective by Propo-
sition 1.3. Let’s see that ¢ is also surjective. Consider P € A,, and write it
as

P = Zpg(gc)aﬁ.
B
It is clear that ¢(po(x)) = ¢(P(1)) = P.

1.2. Order and total order
We will denote |3| =), 3; for each § € N".

Definition 1.2. For a nonzero operator

P= Zpagxo‘aﬂ = Zpg(a:)aﬁ € A,,
a,f3 B

the maximum of |3| for pg(x) # 0 is called the order of P. This nonnegative
integer is denoted by ord(P). The maximum of |a| 4 |5] for pas # 0 is
called the total order of P and it is denoted by ord”(P). We will write
ord(0) = ord”(0) = —c0.

Definition 1.3. The principal symbol of the operator
P = Zpagxo‘é)ﬁ = Zpg(x)aﬁ
B B

is the polynomial

oP)= > ps@)? €Clae, g =Clay,... .20, &,..., &)

|B|=ord(P)
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where &1, ...,&, are new variables. The principal total symbol of P is the
polynomial

o"(P)= > papz¢’ € Clx,¢l.
la+B]=ord™ (P)
Remark 1.3. Notice that o(P) € Clz,¢] is a homogeneous polynomial of
degree ord(P) in the ¢-variables while o7 (P) € Clx,¢] is a homogeneous
polynomial of degree ord” (P). In general we have o(P) # ¢ (P). In general
we do not have neither o(P+Q) = o(P)+0(Q) nor 6 (P+ Q) = o7 (P) +
o7 (Q). Nevertheless, we have the following Proposition.
Proposition 1.4. For P,Q € A, one has
(1) ord(PQ) = ord(P) + ord(Q) and o(PQ) = o(P)o(Q).
(2) ord® (PQ) = ord” (P) + ord” (Q) and o™ (PQ) = o (P)oT(Q).
(8) ord(PQ—QP) < ord(P)+ord(Q)—1 and ord" (PQ—QP) < ord” (P)+
ord”(Q) — 2.

(4) ord(P + Q) < max{ord(P),ord(Q)} (and similarly for ord™).
(5) Iford(P) = ord(Q) and o(P)+0(Q) # 0 then o(P+Q) = o(P)+0(Q)

(and similarly for ord” and o).

We are assuming —oo + k =k + (—00) = —oo for k € ZU {—o0}.

Proof. (1), (2) and (3) follow from Proposition 1.2. Parts (4) and (5) follow
from the very Definitions 1.2 and 1.3. O

From (1) in Proposition 1.4 we have:
Corollary 1.1. A, is an integral domain.

Definition 1.4. For each left (or right) ideal I C A, the graded ideal
associated with I is the ideal gr(I) of C[z,&] generated by the family of
principal symbols of elements in I

gr(l) = Clz,f{o(P) | P € I}.
The total graded ideal associated with I is the ideal gr?(I) of C[xz,£] gen-
erated by the family of principal total symbols of elements in I

gt (I) = Cla, }{o" (P)| P € I}.

Remark 1.4. If [ = A, P is the principal left ideal generated by an op-
erator P € A, then gr(I) is the principal ideal in C[z, {] generated by the
principal symbol o(P), so we have gr(A,P) = Clz,&]o(P). We have an
analogous result for gr’ (I).
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Proposition 1.5. Let I C A, be a left ideal and F(x,&) be a polynomial
in gr(I) (resp. gr(I)). If F(x,€) is homogeneous with respect to the &-
variables (resp. homogeneous) then it is the principal symbol o(P) (resp.
the total principal symbol a* (P)) for some P € I.

Proof. Both cases being analogous we will only write the proof for the first
one. Assume F € gr(I) is not zero. As gr(I) is generated by {c(P)|P € I}
there are Py,..., P, in I such that

F=> Ho(P)

for some polynomials H; € C[x, £]. Let’s denote by d (resp. d;) the &-degree
of F (resp. o(P;)). Then we can assume H; &-homogeneous of degree d —d;
(in particular H; = 0 if d < d;). Let’s denote by Q;(x,0) any element in
A,, such that 0(Q;) = H;. As

F =3 0(@Q)a(P)

is a nonzero £é~homogeneous polynomial of degree d then (see Proposition
1.4)

o (ZQiR‘) =Y 0(Qi)a(P)

i

and ), Q;P; is the wanted operator in I. O
Proposition 1.6. The ring A, is left and right Noetherian domain.

Proof. We will proof that any left ideal I C A,, is finitely generated. A
similar proof can be done for right ideals. We can assume I # (0). By
definition of gr”(I) there are polynomials o (P),...,0T(P.) with P; €
I generating gr’(I). Let us denote J the left ideal in A, generated by
Py,...,P.. We will prove that J = I. Assume there exists P € I\ J. We
can also assume P is of minimal total order. As o7 (P) € gr? (I) then there
are homogeneous polynomials Hy, ..., H, € C[z,£] such that

ol(P) =) Hio"(P).

We can also assume deg(H;) + ord” (P;) = ord” (P). Denote by Q; any
element in A,, with 07 (Q;) = H;. Then the operator

P'=P-) QP



60

has total order strictly smaller than ord” (P) and then P’ should be in .J.
This implies P € J which is a contradiction. This proves J = I. O

Remark 1.5. Replacing in the above proof gr’ by gr, o7 by o, ord” by
ord and homogeneous polynomials by £-homogeneous polynomials we get
another proof of Proposition 1.6.

Exercise 1.2. Prove that A,, is a simple ring.

Quick answer.- Let J be a nonzero two-sided ideal in A,,. Let P be a nonzero
element of minimal total order in J and write d = ord™ (P). If d = 0
then P € C and as P s nonzero we have J = A,,. Assume d > 0. Let
(o, B) € N?" be such that |a+ B| = d and the coefficient png of 0P in P
is monzero. Assume there is i such that 3; > 0.

Claim.- The operator Q = [z;,P] = x;P — Px; belongs to J and it is
Nnonzero.

Let us prove the claim. The first part follows because J is a two-sided ideal.
Let us write P = P’ + P" where P’ (resp. P") is the sum of the monomials
in P of total order equal to d (resp. less or equal to d —1). We can write

Y4

P'=>)" Pi(x,0)0

=0

where P; = Pj(x,0") doesn’t depend on 0;, Py # 0 and, moreover, all
monomials in P; have total order d — j. We also have £ < d and since
Bi > 0 we have £ > 0. From the equality Q = [x;, P'] + [z;, P"] and by
Proposition 1.4 we have ord” ([z;, P"]) < d — 2. Moreover, any monomial
in [xi, P;d)] = jP;0) " has total order less or equal than d—1 and (P9 ™"
18 not zero. That proves the claim.

The claim contradicts the minimality of d. Then (8 should be zero as long
as pap # 0 and |+ B| = d. Assume now there exists i with o; > 0 and
|a| = d. In a similar way, using Q" = [0;, P] we get a contradiction with the
minimality of d. So P should be a nonzero element in C and then J = A,,.

Remark 1.6. The only invertible elements in A,, are the nonzero constants
(i.e. the elements in C\ {0}), since if 1 = PQ for some P,Q € A, then
0 = ord” (1) = ord” (P) + ord” (Q) and this implies that both P, Q must be
nonzero elements in C.

Exercise 1.3. If ¢ : S — S’ is a ring morphism then ker(¢) is a two-sided
ideal in S.
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Corollary 1.2. Each ring morphism ¢ : A, — S (S a possibly noncom-
mutative ring) is injective.

1.3. Filtrations on A,
Let us denote

Fy(A,) ={P € A, |ord(P) < k}
and

Bip(A,) ={P € A, |ord" (P) < k}

for k € Z.
If no confusion arises we will simply write Fy, = Fj(4,) and By =
Bi(A,).

Proposition 1.7. The following properties hold:

(1) B = Fy, = {0} for k < —1.
(2) By C Fy, fO’I“k e 7.
(3) By C Bk+1; F, C Fk+1 fO?” keZ.
(4) BB, C Bk+g, F.Fy, C Fk+g fO?” k’,f € 7.
(5) An = Uy Br = Uy, Fr-
(6) 1€ By=C, 1€ Fy=Clz].
. . . . 2n+k
(7) Each By is a C-vector space with dimension ( i )
(8) Each Fy, is a free Clz]-module with rank <n —]: k)
Definition 1.5. The family (Fi)x (resp. (Bg)k) is called the order filtration
(resp. the total order filtration) on A,,.

1.4. The graded rings grP(A,) and gr¥(A,)

Exercise 1.4. Each quotient B]f fl

n+k—-1
2n—1 '

Quick answer.- The residue classes

is a C—vector space with dimension

2208 = 2°9% 4+ By,
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with |a+ /3| = k generate the quotient vector space By /Bjy—1 and, moreover,
they are linearly independent since a linear combination

Z /\aﬂmaaﬁ
la+B|=k

belongs to By if and only if all A, are 0.
Exercise 1.5. Each quotient Fy/Fj_1 is a free Clz]-module with rank
n+k-—1
n—1 ’
Quick answer.- The residue classes
98 = 9° + Fr_1

with || = k generate the quotient C[z]-module F}/Fy_; and, moreover,
they are linearly independent over Clz], since a Clz]-linear combination

> Ap(2)d”

|8l=k
belongs to Fj_; if and only if each Ag(z) is 0.

Proposition 1.8. The Abelian group

kEZ
F
F k
resp. gr (Ay) = @ )
< kEZ Fr

has a natural structure of commutative ring with unit.

Proof. We will write down the case of the total order filtration (By)g, the
other one being analogous. Let us consider, for k, ¢ € Z, the map
By By Biye
X —
Br-1  Bee1 Bk

Hke -
defined by
Mkf(P + Bk*la Q + Bffl) = PQ + Bk+g,1

for P € By, Q € By.
The map pge is well defined: PQ + Bpy¢—1 does not depend on the
chosen representatives P € By and Q € By.
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We will simply denote P = P+ By_1,Q = Q + By_; and P(Q instead
of pke(P, Q).

From Proposition 1.4 it follows that for P € By and Q € B, we have
PQ—QP € Byiy—1 (in fact in this case we also have PQ—QP € Bjy¢—o but
we do not need this stronger property here) and then PQ = QP. Moreover,
we also have P(Q R) = P(QR) = P(QR) = (PQ)R = (PQ) R = (P Q)R.

We define a map

1 grP(An) x grP(An) — gr”(4,)

by bilinearity:
WO P Qo= Pl
k ¢ k0

where P, € By and Q¢ € By for all k, /.

We will simply denote (3, P)(>°, Qe) instead of /(3 P, >, Qo).
The map g’ is well defined and defines a product on gr?(A4,). To this
end we can see that the binary operation defined by p’ is associative and
commutative (since the corresponding properties hold for the maps puge).
As i/ is defined by bilinearity it is distributive with respect to the sum.

Let us denote by 1 the residue class of 1 modulo B_; = {0}. It is clear
that T(Y", Px) = Y., Pr and then it is the unit of the commutative ring
grB(A,). m|

Remark 1.7. The family of Abelian groups (Bfil ) . (resp. (Ffil ) k) isa

grading on the ring gr®(A4,,) (resp. grf’(A,)).
Recall that we have denoted C[z,&] = Clz1,...,2n,&1,- -, &n].

Proposition 1.9. The graded ring grP(A,) is isomorphic to the polyno-
mial ring Clx, £] endowed with the grading defined by the degree of the poly-
nomaals.

Proof. Let us consider, for k € N, the isomorphism (of vector spaces)

Mk © Br/Br—1 — Clz, €]k

defined

Mk > papr®d® | +Bia | = > papa’
|a+B<k |a+3|=k
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Here Clz, ] denotes the C—vector space of homogeneous polynomials of
degree k. The family 7 yields by bilinearity a natural isomorphism

n:gr’ (An) — Cla, ¢
of graded rings. O

Remark 1.8. The polynomial ring C[z,&] can be also endowed with the
grading defined by the degree in &:

k
with
Clz, &gy = Y, Clale’.
|B|=Fk
We will call this grading the é—grading on Clz, ¢].

Proposition 1.10. The graded ring gr¥ (A,) is isomorphic to the polyno-
mial ring Clz, €] endowed with the £—grading.

Proof. Let us consider, for k € N, the isomorphism (of vector spaces)
Ny Fr/Fr—1 — Cla, &
defined by

M| Y pe@)d” | = > pa(a)e’

|BI<k |B|=k
Here Clz, €] (1) denotes the free C[x]-module of {-homogeneous polynomials
of degree k (see Remark 1.8). The family 7, yields by bilinearity a natural
isomorphism
i gt (An) — Cla,¢]

of graded rings (when considering the ¢-grading on Clz, ]). O

Remark 1.9. Notice that if P € B\ Bi_1 (resp. P € Fi\ Fi—1) then ng(P)
(resp. m}.(P)) is nothing but the principal total symbol (resp. the principal
symbol) of P: ng(P) = 0¥ (P) (resp. n},(P) = o(P)) (see Definition 1.3).

Notation 1.2. From now on, we will identify the graded rings gr®(A4,,)
and Clz, €] (endowed with the degree of the polynomials) (resp. gr’(4,,)
and Clz,&] (endowed with the £—degree)) by mean of the isomorphism 7

(resp. ).
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1.5. B—filtrations on A, -modules

From now on, all the A,,—modules (resp. ideals) will be left modules (resp.
left ideals) unless otherwise specified.

Definition 1.6. Let M be an A,-module. A B-filtration on M is a family
I' = (M) ken of finitely dimensional C—vector subspaces of M such that:

i) My C My for all k € N.
i) U My = M.
iii) By M, C MkJrg for all (/ﬂ,f)

That is not the more general definition of filtration on a module. There
exist filtrations indexed by Z instead of N but we will not need them here.
Nevertheless, if in these notes we write I' = (M) ez for a B-filtration on
M it is assumed to be My, = {0} for k < 0.

Remark 1.10.

(1) The total order filtration (Bg(A,))x is a B-filtration on the left A,,—
module A,,.
(2) Let us denote, for k € Z,

By(Clz]) = {f € Cla]| deg(f) < k}.

The family (By(C[x]))s is a Bfiltration on the left A,-module C|x].
(3) Let I C Ay, be an ideal and denote By (I) = By(A,) NI for k € Z. The
family (Bx(I)) is a B-filtration on I considered as a left A,—module
(see also Subsection 1.9).
(4) Let I C A, be an ideal and define

An Bk(An)—FI
Bp| — )= —"—
() -5

for k € N. The family (Bx(An/I)); is a B-filtration on the left A,,—
module A4,,/I. Tt will be called the induced B-filtration on A, /I (see
also Subsection 1.9).

1.6. F—filtrations on A, -modules

We can also define in a similar way as before Ffiltrations on A,,—modules.

Definition 1.7. An F-filtration on a A,-module M is a family I' =
(M) ken of finitely generated Clz]-submodules of M such that:

1) My, C Mg41 for all £ € N.



66

i) U, My = M.
iii) Fp,M, C MkJrg for all (/ﬂ,f)

As before, if in these notes we write I' = (M}, ) ez for an Ffiltration on
M it is assumed to be My, = {0} for k < 0.

Remark 1.11.

(1) The order filtration (Fj(Ay))x is an F—filtration on the left A,,—module
Ap.

(2) Let us denote, for k € Z, Fj,(Clz]) = Clz] for k > 0 and F}(C[z]) = 0.
The family (F(Clz]))s is an F-filtration on the left A,—module C[z].

(3) Let I C A, be an ideal and denote Fy(I) = Fi(A,) NI for k € Z. The
family (Fj(I))x is an F-filtration on I considered as a left A,,—module
(see also Subsection 1.9).

(4) Let I C A, be an ideal and denote

A\ Fe(A)+T
() - B

for k € Z. The family (Fj(A,/I)); is an F-filtration on the left A,—
module A, /I. It will be called the induced F-filtration on A, /I (see
also Subsection 1.9).

1.7. The I'-order and the I'-symbol map

Let T' = (Mg)r be a filtration® on an A,-module M. For each nonzero
m € M we call the T-order of m and we denote by ord" (m) the integer k
such that m € My \ My_1.

Let us denote

ok My — My/M;,_4

the canonical projection (which is a C-linear map). We have ok (m) =
m + My_1 for m € My,.

If T is an F-filtration then o} is also a morphism of C[z]-modules.

The map J,E is called the k-th '-symbol map associated with the filtra-
tion I'.

If M = A, and I" = (By)i is the total order filtration on A,, (also called
the B-filtration on A,,), the corresponding k-th symbol map will be also
denoted by O'kB .

€A filtration on an A,-module M is either a B-filtration or an F-filtration.
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If I' = (Fy)x is the order filtration on A, (also called the F-filtration
on A,), the corresponding k-th symbol map will be also denoted a,f .

Remark 1.12. We will use here the notations of Propositions 1.9 and 1.10.
If P e By, \ Br_1 (resp. PeF \Fk—l) then

(s © 0’ )(P) = o (P)

(resp. (), © of\(P) = o(P)).

1.8. Graded associated module

Let M be an A,—module and T' = (M},), a B-filtration (resp. F-filtration
) on M.

As each quotient My /Mj._; is an Abelian group (and a C—vector space)
the direct sum

My,
grl (M) := @ i
. Mi—1

is also an Abelian group (and a C—vector space).
For m € Mj, the class

My,
m-—+ Mg 1 €
k—1 M,

will be simply denoted by 77 if no confusion arises.
An element in gr'' (M) is a finite sum Y, Ty where each my, belongs to
M.

Proposition 1.11. Let M be an A,-module and T' = (My), be a B-
filtration (resp. F—filtration) on M. The Abelian group gr' (M) has a nat-
ural structure of grB(A,)-module (resp. grt'(A,)-module).

Proof. We will only treat the case of the Bfiltration the other one being
analogous.
Let us consider the map

v:grP(A,) x gt (M) — gt (M)
defined by bilinearity from the maps

By, M, Mie
X —
Bk,1 Mg,1 MkJréfl

Vg .

defined by

v (P, Mg) = Pymy.
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It is straightforward to show that the map v defines on gr!’ (M) a struc-
ture of gr(A,,)-module. m|

Definition 1.8. The graded module gr' (M) will be called the associated
graded module to the filtration I' = (M), on M.

1.9. Induced filtrations

Let us recall that a filtration on an A,-module M will be either a B-
filtration or an F-filtration on M.

Let M be an A,—module, N C M a submodule of M and T = (M), a
filtration on M. For each k € Z let us denote Ny, := MNN and (M/N)y, :=
(M + N)/N.

The following proposition is easy to prove.

Proposition 1.12.

(1) The family T" = (Ny)g 18 a filtration on N. It will be called the induced
filtration by T on N.

(2) The family T = ((M/N)g)y is a filtration on M/N. It will be called
the induced filtration by I" on M/N.

Let I be an ideal in A,,. Using the notations in Remark 1.10 the family
(Br(I))k (resp. (Br(An/I))g) is the induced B-filtration on I (resp. on
A, /I). We also have the analogous statement for the F-filtration (using
Remark 1.11).

Proposition 1.13. Let M be an A,—module, N C M a submodule of M
and I' = (My)r a filtration on M. Then there exists a canonical exact
sequence of graded modules

0— g (N) — g" (M) — g™ (M/N) = 0.

Proof. For each k € Z we have an exact sequence of C-vector spaces

0— Ny, — My — (M/N)—0

since (M/N) = W ~ MII‘:IF’]“N = %—: Then for each k € Z there exists a
canonical exact sequence of vector spaces
Ny, M, M + N
0—

— — — 0.
Nipv Mgy M1+ N O
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Corollary 1.3. Let I be an ideal in A,,. We have canonical isomorphisms

Proof. It follows from Proposition 1.13 applied to the canonical exact se-
quence

3

0—-1— A, — ya —0
where each term of the sequence is endowed with its corresponding B—
filtration or Ffiltration. O

By Corollary 1.3 there exists a canonical injective map gr?(I) —
grP(A,) which is a morphism of graded modules and then grf(I) can be
identified with a graded submodule of gr®(A4,,). This means that grf(I) is
a graded ideal ~modulo this identification— of the graded ring gr®(4,)).

Let us recall (see Proposition 1.9) that there exists a natural isomor-
phism of graded rings

0t gr? (Ay) — Cla,¢]
whose k-th homogeneous component
Nk : Bi/Br—1 — Clx, &y
is defined by

Mk > papr®d® | +Bia | = > papa’
|a+BI<k |a+3|=k

Here C[z,€]) denotes the C—vector space of homogeneous polynomials
of degree k.

Proposition 1.14. With the above notations, the ideal n(grP(I)) is the
homogeneous ideal of Clz,€&] generated by the family {oT (P)|P € I}.

We have an analogous result for grf’ (I) and the family {o(P)|P € I}
(using the notation of Proposition 1.10).

Recall that we have identified gr®(4,,) with C[z,&] (see Notation 1.2).
Let I be an ideal of A,, and let us denote M = A, /I and T = (By(M))x
the induced B-filtration on M (see Remark 1.10). By Corollary 1.3 gr™” (M)
is isomorphic as C[z, {]-module to
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Clz,¢]
grB(1)’

We have an analogous result for the Ffiltration.

1.10. Good filtrations

Proposition 1.15. Let M be an A,,—module and I' = (M), a B-filtration
on M. If gt"' (M) is a finitely generated C|x,&]-module then M is Noethe-

rian.

Proof. Since A, is a Noetherian ring it is enough to prove that M is
finitely generated. Assume 77, ..., 7, is a homogeneous generating system
of gr'' (M). Assume m; € M, for some k; € Z, i = 1,...,r. We will prove
that the set {mq,...,m,} generates M.

Let us denote M’ the submodule of M generated by the m;. We will prove
that any m € M is in fact in M’. We use induction on ord" (m) (see Subsec-
tion 1.7). There is nothing to prove if ord" < 0. Assume that any element
m’ € M such that ord"(m’) < k is in M’ for some integer k > 0. Let
m € M be such that ord" (m) = k + 1. Let us write

WZZﬂW

for some homogeneous polynomials f; € C[x,&] where deg(f;) = k+1—k;.
Let us write

m' =m— Zﬂ(x,a)mi

where P; = P;(z,0) is a differential operator satisfying o7 (P;) = f;. The
residue class of m’ modulo My is zero and then, by induction, m’ is in
M'. Then m € M’. O

Definition 1.9. Let M be an A,—module and I" = (M}), a B-filtration .
We say that I is a good filtration if gr' (M) is a finitely generated gr?(A4,,)—
module.

Exercise 1.6. Let I be an ideal of A,,. Prove that:

i) The induced B-filtration on I is a good filtration.
ii) The induced Biltration on A, /I is a good filtration.
iii) Any finitely generated A,—module M admits a good B—filtration.
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Both i) and ii) have direct proofs. Hint for iii): If mq,...,m, is a
generating system for M, define M} := Zj Bymy; for k € N. The family
(M) is a good B-filtration on M.

Proposition 1.16. Let M be an A, ~module and T’ = (My)y a B-filtration
on M. The following conditions are equivalent:

i) T is a good B-filtration on M.
it) There exists ko € N such that M1y = ByMjy, for all £ > 0 and for all
k> k.

Proof. ii) = i). It is enough to prove that gr' (M) is generated by
Mo ® My/My ® -+ & My, /My,—1 since each M, is a vector space of fi-
nite dimension. To see this, if m € M and k > kg then write k = kg + ¢
for i = k — ko > 0. Since My, = B; M}, we have

T
m = E ijj
j=1

where P; € B; and my,...,m, is a basis (or simply a finite generating
system) of the C—vector space My,. We can write

mAMy_1 =M=y Pymj+M_1 =Y (Pj+Bi1)(mj+My,—1) = Y Pym;.
j j j

i) = ii). Let M7, ..., M, be a homogeneous system of generators of gr' (M).
Suppose m; € My; \ My, 1 for j =1,...,r. Write ko := max{k;}. We will
prove by induction on ¢ that My, = BeM, for all £ > 0 and all k£ > k.
There is nothing to prove for ¢ = 0. Suppose the result is true for £ — 1 for
some ¢ > 0. Let us consider m € My, for k > ko. We can write

m=m+ Mgi¢_1 = ijm_j
J

for some homogeneous polynomial f; € C[z,&] of degree k + ¢ — k;. Let us
write

m' =m— ZPj(x, d)ym;

J

for some P; € By ¢, such that O'T(Pj) = f;. It is clear that m’ € My4¢—1
and by induction m’ € By_1 M. Since k — k; > 0 we also have By /i, =
BgBk_kj. Then
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m=m'+ ZPj(m,ﬁ)mj.
J
Since Pj(x,a) S BkJrg,kj = BgBk,kj then Pj(x,a)mj S BZkaijkj C
By M;,. O

Exercise 1.7. Let us define B;, = By, for k € Z. Prove that (B}, is a B
filtration on the A,,—module A,,. Prove that (Bj,)x is not a good filtration.
(Hint: For ¢ > 0 and k > 0 we have B;Bj, = B;Ba & B, = Baiyar).

Proposition 1.17. Let M be an A,-module; T' = (My), and TV = (M})x,
two B-filtrations on M. We have:

i) IfT' is a good B—filtration then there exists k1 € N such that
My, C Mllc—i-kl

for all k € N.
ii) If T and T are both good filtrations then there exists ko € N such that

! !
My, C My C My,

for all k € N.

Proof. Let us prove first that i) follows from ). So, let us assume %) is
proved. Then there exists ji € N such that M C M;, i and there exists
Jj2 € N such that M] C My, and both inclusions hold for all k. Let us
define k2 to be the maximum of j; and jo. This ko satisfies 4i).

Let us prove i). By Proposition 1.16 there exists kg > 0 such that My, =
ByMjy, for all £ > 0 and for all k > ko. As My, is a C—vector space of finite
dimension there exists k1 € N such that My, C M, ,’Cl. If k > k¢ we have

Mp, = My—po+ko = Br—roMro C Broko My, C Mi_p i, C Mipy, -
If 0 < k < ko then My, C My, C M}, C M},,.. O
Definition 1.10. Let M be an A,,—module and I" = (M), an Ffiltration.

We say that I is a good filtration if gr’ (M) is a finitely generated grf’(4,,)—
module.

Exercise 1.8. If I is an ideal of A,,, prove that:

i) The induced F-filtration on [ is a good filtration.
ii) The induced Ffiltration on A, /I is a good filtration.
iii) Any finitely generated A,—module M admits a good F—filtration.
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i) and ii) have direct proofs. Hint for iii). If mq,...,m, is a generating
system for M, define My := Zj Fym; for k € N. The family (My); is a
good F—filtration on M.

Remark 1.13. Propositions 1.15, 1.16 and 1.17 remain true if one replaces
B-iltrations by F—filtrations.

1.11. Rational functions

The ring C[z] has a natural structure of left A,-module (see Remark 1.2)
since each linear differential operator P = > pp()0° € A, acts on any
polynomial g € C[z] just by

§or+-+6n (g)

—— = € C[z].
Bx?l---é)xg" 2

P(g) =) pp(x)
Let us consider C(z) the fraction field of the domain C[z]. Elements in
C(z) are rational functions, that is, quotients % of polynomials g, f € Clz]
with f # 0.
For any of these rational functions % its partial derivative 81'(%) is noth-
ing but

9i(g)f — 99i(f)
I2
and then it is also a rational function. This can be extended to an action

of A,, on C(z) defining C(x) as a left A,,—module.
For any nonzero polynomial f = f(z) € C|x] the ring

Claly = {437 € C@)|g € Cla), m € N}

is a C[z]-module. In fact, Clz]; has also a natural structure of left A,-
module since 0;(+5) € Clzls for all g € Clz] and all m € N.

If f € C\ {0} then C[z]; is simply the ring C[z]. If f is not a constant,
then the elements in Clx]; are called rational functions with poles along
the affine hypersurface V(f) := {a € C"| f(a) = 0}.

If f € C[z] \ C then the C[z]-module C[z]; is not finitely generated.
Nevertheless, we have

Theorem 1.1 (J. Bernstein®). The A,-module Clz]; is finitely gener-
ated.
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This theorem was done by J. Bernstein.® It is deeply related to the
existence of the global Bernstein (or global Bernstein-Sato) polynomial as-
sociated with f. We will give a stronger version of this result in Theorem
2.7.

Bibliographical note

Most of the material of this Section appears in the already cited article
Bernstein® and in the books by J.E. Bjork” and by S.C. Coutinho.?!

2. Characteristic Variety. Holonomic A,,—Modules
2.1. Classical characteristic vectors

Let us consider a linear partial differential equation

P(a,0)(u) = | D pp(@)d” | (u) =0

BeN™

with polynomial coefficients pg(z) € Rlz] := Rlz1,...,zx].

A vector & € R™ is called characteristic for P at a point xy € R™ if
o(P)(x0,&) = 0. Here o(P) is the principal symbol of P (see Definition
1.3). The set of all such & is called the characteristic variety of the operator
P (or of the equation P(u) = v) at ¢ € R™ and is denoted by Char,, (P).

Notice that here, in contrast to some textbooks, the zero vector could
be characteristic. More generally, the classical characteristic variety of the
operator P is by definition the set

Char(P) = {(z0,%) € R" x R" | a(P)(w0,&0) = 0}.

Assume ord(P) > 1, then P is said to be elliptic at a point x¢ € R™ if
P has no nonzero characteristic vectors at xg (i.e. if Char,,(P) C {0}) and
it is said to be elliptic (on R™) if Char(P) C R™ x {0}.

The Laplace operator EZL:l 9?2 is elliptic on R™.

The characteristic variety of the wave operator P = 87 — Y1, 87 is
nothing but the hyperquadric defined in R™ x R™ by the equation &7 —
21;2 512 =0.

Characteristic vectors are important in the study of singularities of so-
lutions as can be seen in any classical book on Differential Equations.

To define the characteristic vectors for a Linear Partial Differential
System
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Pii(ui) +- -+ Pim(um) = v1
: : : : (1)

Pp(ur) + -+ Pom(um) = vg
is more involved and in general the naive approach of simply considering
the principal symbols of the equations turns out to be unsatisfactory (see
Example 2.1).

We will use graded ideals and Groebner bases for Linear Differential Op-
erators (see Appendix A and Subsection 2.2) to define and to compute the
characteristic variety of a system as in (1). Here ¢, m are nonzero integers,
P;; are Linear Differential Operators, u; are unknown and v; are given data
(e.g. functions, distributions, hyperfunctions, ...).

2.2. Characteristic variety

Let us assume that the operators P;; in the System (1) are in the Weyl alge-
bra A,, and remember we are assuming A,, to be defined over the complex
field C (see Subsection 1.1). With the System (1) we associate the quotient
A,,—module
A
An(Py, ..., P)

where P; = (Pi1, ..., Pin) € AT and A, (Py, ..., Pp) denotes the submodule
of A" generated by P, ..., P,.

Let us assume first that System (1) has only one unknown u = w1 so
that the associated A,—module is nothing but m.

If J C Clz,&] =Clxy, ..., 2, &1, - - -, &) is & polynomial ideal we denote
by Ve (J) (or simply by V(J)) the affine algebraic variety defined in C?" by
J, that is

Ve(J) = V(J) = {(a,b) € C*" | g(a,b) = 0, Yg(x,§) € J}.

Recall that for any (left) ideal I C A,, we denote by gr(I) the ideal of
Clx, €] generated by the family of principal symbols of elements in I (see
Definition 1.4).

Definition 2.1. Let I C A, be a left ideal. The characteristic variety of
the left A,—module A, /I is defined as

Char(A,,/I) = Ve(gr(I)).

Remark 2.1. If I = A, P is a principal ideal then the characteristic variety
of Ay, /I coincides with the classical characteristic variety of the operator
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P since in this case the graded ideal gr(I) C Clz,&] is generated by the
principal symbol o(P).

In general, if the ideal I C A, is generated by a family Pi,..., P,
the ideal grf(I) could be strictly bigger than the ideal generated by
o(Py),...,0(Py). One example is given just bellow.

Example 2.1. If [ = Ay(P, P) with Py = 2101 + 2202 and P, =
7102 + 2301 then gr(I) = (£1,&). This ideal strictly contains the ideal
(0(P1),0(Py)) = (w161 + x2&2, m1&2 + 2361).

The following Macaulay 2 script can be used to compute generators
of gr(I) by using the Macaulay 2 command charIdeal. We need the
D-modules.m2 package to this end (see Ref. 28).

The input command lines are il :;i2 : ... while the output ones are
04 =,05 =,... (a semicolon ; at the end of an input line prevents it from
being printed).

Input i1 defines the ring R as the polynomial ring in the variables z,y
with coefficients in Q (we are using © = x1, y = x2).

Input i2 loads the D-modules.m2 package. Input i3 defines W as the 27¢
Weyl algebra over the field Q (i.e. the algebra of linear differential operators
with polynomial coefficients in R).

Inputs i4 and i5 define the operators P; and P» as above and the (left)
ideal I in W generated by these two operators. In the Weyl algebra W the
expressions dx, dy stand for 01,0, respectively.

The Macaulay 2 expression charIdeal I computes a generating sys-
tem of the graded ideal gr(I). Notice the additional line of output labelled
with 06 : Output lines labelled with colons (:) provide information about
the type of output. In this case, the symbol QQ [x, y, dx, dy] denotes
the graded ring associated with the F—filtration on the Weyl algebra W (see
Subsection 1.4). In particular the expressions dx, dy, when considered in
the polynomial ring QQ [x, y, dx, dyl, stand for the commutative vari-
ables &1, €.

Output 06 = shows that gr(I) = (&1, &) C Qlx1, z2, &1, &2

Macaulay 2, version 1.2 with packages: Elimination,
IntegralClosure, LLLBases, PrimaryDecomposition, ReesAlgebra,
SchurRings, TangentCone

il : load "D-modules.m2";

i2 : R=QQ[x,y];

i3 : W=makeWA R;

i4 : Pl=xxdx+y*dy, P2=x*dy+y~2*dx



T

2
04 = (x*dx + yxdy, y dx + x*dy)

o4 : Sequence
i6 : I=ideal(P1,P2)

2
o5 = ideal (x*dx + yxdy, y dx + xxdy)

o5 : Ideal of W
i6 : charIdeal I
06 = ideal (dy, dx)

06 : Ideal of QQ[x, y, dx, dyl

Let us add some extra computation in Macaulay 2. The following script
gives a new insight into the previous ideal I.

Input i7: defines J as the (left) ideal in W generated by 0y, 0. The
output o7 : tells us that the (left) ideal J is considered in the ring W. Notice
the similarity of the lines 06 = and o7 = although the first output represents
an ideal in a polynomial ring and the second one an ideal in a Weyl algebra.

The string == stands for the binary operator testing equality of ideals.
The last part of the script proves the equality I = J in W giving a new
explanation for the equality gr(I) = (&1, &) C Clxy, z2, &1, &2

i7 : J=ideal(dx,dy)
o7 = ideal (dx, dy)
o7 : Ideal of W

i8 : J==I

08 = true

Remark 2.2. Let M be an A,,—module provided with an Ffiltration (resp.
a B-filtration) I' = (My)y. The annihilating ideal Anng,r(a,)(gr' (M)) is a
&-homogeneous ideal in grf'(4,,) (resp. a homogeneous ideal in gr®(A4,,)).
We will prove it for the F—filtration (the other case being analogous). To
this end, let us consider a nonzero element G = G(z,€) € grf' (A4,) = C[z, ]
(see Proposition 1.10) annihilating gr' (M). We can write G = >.; Gy as
sum of its {~homogeneous components G; € Clz,€](;) (see Remark 1.8).
Let P; be an element in F;(A,) such that o(P;) = P; + F;_1(4,) = Gj.

For each k¥ € N we have GMI‘;IZ = 0 and then (3 (P +
Fj,l(An))M]\ff1 = 0. Then for each j,k € N we have P;jM; C

M1 and therefore G; = Pj + F;j_1(A,) annihilates Ml\k/[: for all k.
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Then G; € Annng(An)(ng(M)) for each j. This proves that the ideal
Annng(An)(ng (M)) is &~homogeneous.

Proposition 2.1. Let M be a finitely generated A, —module provided with
two good F—filtrations I' = (My)r and I" = (M}.)) (see Subsection 1.10).
Then

VAnnger (4, (@17 (M) = \fAnnger (4, (g™ (M)).

Proof. Let’s write
J = Annger a, (" (M)
and
J = Annng(An)(ng,(M)).

By symmetry it is enough to prove the inclusion v.J € v/J'. By Remark 2.2,
the ideal J is homogeneous. Then also v/.J is homogeneous. Let G € v/J be
a £&~homogeneous element of {—degree v > 0. There exists an integer ¢ > 0
such that G* € J. Let P be an element in F,(A,,) such that o(P) = G. We
have P‘M;, C My, 4,1 and then, for all p € N we also have

14
pr M, C Mpgl,qu,p.

By Proposition 1.17 there exists k2 € N such that My_x, C M,’C C Mk,
for all k£ € N. In particular, for p = 2ks + 1 and for all £ € N we have

p(2k2+1)e]\/[]/C - P(2k2+l)éMk+k2 C M2kt 1)tvhhs—2ha—1 C M(12k2+1)£u+k—1'
This proves that o(P®2F2+D¢) = Gk241E apnihilates gr' (M) and then

GeJ. O

The following Proposition can be proven similarly to the previous one.

Proposition 2.2. Let M be a finitely generated A, —module provided with
two good B-filtrations I' = (My)r and IV = (M},)) (see Subsection 1.10).
Then

VAR (4, (@57 (M) = \[Aninger (5, (&7 (M)).

Definition 2.2. Let M be a finitely generated A,—module. The character-
istic variety of M is defined as

Char(M) = V(Annng(An)(ng(M)))
for a good F-filtration I' on M.
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By Proposition 2.1 the definition of Char(M) doesn’t depend on the
choice of the good F—filtration.

Remark 2.3. If M = A,,/I for some ideal I in A,, then by Corollary 1.3

we have

and then both Definitions 2.1 and 2.2 coincide.

2.3. Dimension of an A,—module

The Krull dimension of a Zariski closed subset Z in C™ (denoted by dim(Z))
is by definition? the maximum of the lengths m of decreasing chains

4 ;2 Z’ZO DD éz}n

of irreducible Zariski closed subsets in Z.

By Hilbert’s Nullstellensatz the Krull dimension of Z equals the Krull
dimension of the C-algebra C[x]/J if J C C[z] is any ideal verifying V(J) =
Z. The Krull dimension of a ring® is the maximum of the lengths of chains
of prime ideals in the ring (see e.g. [30, Chapter I, Proposition 1.7]). By
convention the Krull dimension of the empty set (and of the zero ring) is
—1.

Krull dimension can be calculated by using Groebner basis computa-
tions in polynomial rings (see e.g. [24, Section 15.10.2]). For example, in
Macaulay 2 the string dim I computes the dimension of the quotient ring
R/I if T is an ideal in the ambient polynomial ring R.

il : R=QQ[x,y,z];
12 @ £=x"2%y 2+x*z-y; g=x"2+y~2+z72;
i4 : I=ideal(f,g)

22 2 2 2
04 = ideal (x'y +x*¥z -y, x +y +2z)

o4 : Ideal of R
i5 : dim I

o6 =1

dSee e.g. [30, Ch.I, page 5]
®i.e. a commutative ring with unit
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In the previous script, output o5 tells us that the Krull dimension of
the quotient ring M is 1, the ideal I being generated by polynomials

f=22y*4+ 2z —yand g=22+1y>+ 22

Definition 2.3. Let M be a finitely generated A,—module. The dimension
of M (denoted dim(M)) is the Krull dimension of Char(M) the character-
istic variety of M.

Example 2.2. Assume I = A,P for some P € A,. Then if P is a
nonzero constant then A, /I = (0) and its dimension is —1. If P = 0
then Char(A,,/I) = Char(A,) = C" x C™ and then its dimension is 2n.
If Pe A, \C then o(P) € C[z,{] is a non-constant polynomial and the
Krull dimension of Char(A,/I) = Vc(o(P)) is 2n — 1. Thus, in this case,
dim(4,/I) =2n —1.

If T is an ideal in a Weyl algebra A,,, the Macaulay 2 command dim I
computes the dimension of the quotient module A,,/T.

The following Macaulay 2 script shows that the dimension of the As—
module A3 /I is 3, where I C Aj is the ideal generated by the two operators
P = 23ydxdy+dz and Q = ydydz — zy. We are using as usual x, , z instead
of 1,29, 23 and dx, dy, dz instead of 01, s, 03.

Input i3 defines W as the Weyl algebra over the polynomial ring in
the three variables x,y,z and with rational coefficients. Output o5 shows
that the dimension of W/I is 3. This last result is somehow unexpected
because the ideal I is defined by 2 elements in a Weyl algebra over three
variables.

il : load "D-modules.m2";

i2 : R=QQ[x,y,z];

i3 : W=makeWA R;

i4 : P=x"3*y*xdx*dy+dz,Q=y*dy*dz-z*y;
i5 : I = ideal (P,Q);

i6 : dim I

o6 =3

i7 : charIdeal I

3
o7 = ideal (dz, y, x dx)

o7 : Ideal of QQ[x, y, z, dx, dy, dz]
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Output o7 = gives a system of polynomials defining the characteristic
variety of the module W/I. From this computation it is clear that the Krull
dimension of this variety is 3.

2.4. Hilbert polynomsial

Let M be a finitely generated A,,—module provided with a B-filtration
I' = (My)g. Let us denote by

gHFng(M) :N— N
the Hilbert function! of the gr®(A,,)-module gr’ (M). By definition we have
. M,
9H Fgr(ar)(v) = dime (MV1>

for all v € N. Let us notice that by Definition 1.6 each M, (and hence each
quotient M, /M, _1) is a finite dimensional vector space.

Theorem 2.1 (Hilbert, Serre). With the notation above, there ezists
a unique polynomial gH Pyray(t) € Q[t] such that gH Fyrpy(v) =
gHPyray(v) for v € N, v big enough. Furthermore, the degree of
gH Pyr (ar)(t) equals d—1 where d = dim (V(Anngs (a,)(gr" (M)))). More-
over the degree of gH Pyr () (t) is less than or equal to 2n — 1.

Proof. See [44, Ch. VII, §12] or [30, Ch.1, Th. 7.5]. O

Definition 2.4. The polynomial gH Py,r(yp(t) € Q[t] is called the Hilbert
polynomial of the graded module gr® (M).

Remark 2.4. We will denote by
HFM,F :N— N
the map defined by

v

HFMI(Z/) = Z gHFng(M) (k)
k=0

for all v € N.
By induction on v and using the exact sequence

O—>Ml,_1—>Ml,—>]\?I4u — 0

v—1

it is easy to prove that H Fyr(v) = dime(M,).

fAlso called characteristic function in [44, Ch. VII, §12]
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If ¢ : Z — Z is any map, we denote by A¢ : Z — Z the map defined by
Ap(v) = o(v +1) — o(v).
By definition we have AH Fyr(v) = gH Fyer (ar) (v + 1).

Definition 2.5. A numerical polynomial is a polynomial Q(t) € Q[t] (in
one variable t) such that Q(v) € Z for all v € Z, v big enough.

Proposition 2.3.

i) If Q(t) € Q[t] is a numerical polynomial, then there are integers
Co,...,Cq such that

Lo

t =

a0 =3 o 1)

k=0
where

£\ -1t —k+1)

(+) ;

it) If ¢ : Z — Z is any map, and if there exists a numerical polynomial
Q(t) such that Ap(v) = Q(v) for v € N, v big enough, then there exists
a numerical polynomial R(t) such that ¢p(v) = R(v) for v € N, v big
enough. Moreover, if the leading term of Q(t) is aqt? then the leading
term of R(t) is Ja o1,

Proof. See [44, Ch. VII, §12] or [30, Ch.1, Proposition 7.3]. O

Corollary 2.1. Let M be a finitely generated A,—module provided with a
B-filtration I = (My). There exists a unique polynomial H Py 1 (t) € Qlt]
such that HFyr(v) = HPyr(v) for allv € N, v big enough. Moreover, the
degree of HPyy,p(t) equals the Krull dimension of Ve(Anngs (a,)(gr' (M)))
and hence it is less than or equal to 2n.

Proof. It follows from Theorem 2.1, Proposition 2.3 and the fact that
AHFyr(v) = gHFgron(v+1) for all v € N. m|

Definition 2.6. The polynomial HPyr(t) € Q[t] is called the Hilbert
polynomial of M with respect to the B—filtration I'.

Proposition 2.4. Let M be a finitely generated A, —module provided with
two good B-filtrations T = (My)r and IV = (M})r. Then the leading
terms of HPar(t) and H Py 1 (t) coincide. In particular deg(H Parr(t)) =
deg(HPM,p/ (t))
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Proof. Assume that
HPyr(t) = aqt? + ( lower terms in t)
and
HPypo(t) = alyt? + (lower terms in t)

with a4 and a), nonzero. By Proposition 1.17 there exists k2 € N such that
for all k € N we have My_g, C M] C Mpyyy,. Then for k big enough we
have

HPMI(/{J — kg) < HPM’F/(k) < HPMI(/{J + kQ)

Dividing by k¢ and taking the limit when k& — oo we get d = d’ and
aqg = al,. O

Definition 2.7. Let M be a finitely generated A,—module. The multiplic-
ity of M is e(M) = aq-d! where aqt? is the leading term of the polynomial
HPyr(t) for a (or any) good B-filtration I' on M. &

Remark 2.5. If M # (0) then the multiplicity e(M) is a strictly positive
integer. It follows from Proposition 2.3 and the fact that H Py r(k) € N for
k big enough.

An important result relating the dimension of a finitely generated A,,—
module and the degree of its Hilbert polynomial, with respect to any good
B-iltration, is the following

Theorem 2.2 (Th. 3.1., Bernstein®). Let M be a finitely generated
Ap-module provided with a good B-filtration T'. Then dim(M) =
deg(HP]w’p(t)).

Concerning the statement of this Theorem let us remark that while the
Hilbert polynomial H Py r(t) and the multiplicity e(M) are defined using
a good Bfiltration I of M, the dimension of M, dim(M), which is the
Krull dimension of the characteristic variety Char(M), is defined using a
good F-filtration on M.

To each good B-filtration I' = (My,)y on a finitely generated A,—module
M, we can also associate the algebraic variety defined in C?” by the homo-
geneous ideal Anng,s 4, (gr' (M)) of the graded ring gr (A,,) (see Propo-
sition 1.9).

€The notation e(M) appears in [6, Def. 1.1].
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Let us denote V(M) := V¢ (Anngs(a,)(gr" (M))) which is an homoge-
neous affine algebraic variety in the affine space C?".

By Proposition 2.2 the algebraic variety V(M) is independent of the
choice of the good B-filtration I" on M.

The variety V(M) can be different from the characteristic variety
Char(M). The following is an example of this situation. Let’s consider
P = 2} + 07 in the Weyl algebra A;(C) and define M = A“ilp. Then
the characteristic variety of M is the line £&; = 0 in the plane C? (with
coordinates 1, &) while V(M) is V(22 + &%) c C2.

Exercise 2.1.

i) Let I = A, P a proper principal ideal in A,,. Compute the dimension
dim(A,/I) and the multiplicity e(A, /I) (see Example 2.2).
ii) Prove that the dimension of the A,-module C[z] is n and that its
multiplicity is 1.
iii) Prove that e(4,) = 1.

Quick answer.- i) We have dim(A,/I) = dim(V(o(P))) = 2n — 1 (see
Example 2.2). The leading term of the Hilbert polynomial of the graded
grB(A,,)-module

grB (An)

F” ~ —
s /D = o)

is ﬁt%” where d = ord” (P). Here I stands for the induced B-
filtration on A, /I. Thus e(A,/I) = d.
ii) We have an isomorphism Clz] ~ m (see Remark 1.2). Tt
is easy to prove that the ideal gr®(A,(d1,...,0,)) C Clz,€] is gen-
erated by (&1,...,&,). The Hilbert polynomial of the graded module
Clx, &]/{&1y -, &) = Cla] is <t + 71; 1) and then e(C[z]) = 1.
iii) It follows from the fact that the Hilbert polynomial of the graded module
. (t+2n—1

~ orB
Clx, &) ~ gr®(A,) is < o — 1 )
Theorem 2.3. Let M be a finitely generated A,—module and N C M a
submodule. Then

i) dim(M) = max{dim(N), dim(M/N)}.

ii) If dim(N) = dim(M/N) then e(M) = e(N) + e(M/N).
1) dim(M) < 2n.
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Proof. Let us consider I' = (M), a good B-filtration on M and denote
by TV and T the induced B-filtrations on N and M/N respectively (see
Subsection 1.9). From the proof of Proposition 1.13 we have HFyr(k) =
HFEN (k) + HFyyn o (k) for all k € N. Then, for £ big enough, we have
HPM7p(k) = HPN)F/(k) + HPM/N,F” (k) and thus

HPMI(t) = HPN,F/(t) + HPM/NJW (t).

The last equality proves i) and ii). Part i) follows from the very definition
of dim (M) since the Krull dimension of any algebraic set in C?" is less than
or equal to 2n. O

2.5. Bernstein’s inequality

Theorem 2.4 (Bernstein’s inequality). Let M be a nonzero finitely
generated Ay -module. Then dim(M) > n.

Proof. [A. Joseph’s proof].
CrAM.- Let M be a finitely generated A,-module and let (M), be a
B-iltration with My # 0. Then the C-linear map

¢; + Bi—Homg(M;, Ma;)

defined by ¢;(P)(m) = Pm is injective for all ¢ > 0.

Let’s assume the claim. Let mq,...,my be a finite system of generators
of M and T' = (My)y, the good B-filtration defined by M}, = Zj Bim;. (see
Exercise 1.6). Then Mo = >, Cmy; # 0. From the claim we have

dlm(c(Bk) S dimc(Homc(Mk, Mgk)) = dlm(c(Mk) dim(c(Mgk).
For k a big enough integer we have

2n + k
k

and so 2deg(HPuy,r(t)) > 2n and dim(M) > n. Here HPpr(t) is the
Hilbert polynomial of M with respect to the B—filtration I'.

Let’s prove the claim by induction on i. For i = 0 we have By = C
and for A € C\ {0} the C-linear map ¢o(A) is nonzero since My # (0) (by
assumption). Assume ¢ > 0 and the claim proved for i — 1. Let P € B;
nonzero. Assume PM; = (0). Since M; # (0) then P is non-constant.
Therefore, either there exists j € {1,...,n} such that z; appears in at
least one monomial in P or there exists k € {1,...,n} such that 9, appears
in at least one monomial in P. In the first case we have [P, 9;] # 0 and in
the second one we have [P, zi] # 0.

> = dlmc(Bk)) S HPM,F(k)HPM,F(Qk)



86

By Proposition 1.4 we have that [P,0;] and [P, x| belong to B;_;.
Moreover

[P@] i— 1CP(9M1 1+8PMZ 1—(0)

and analogously [P, xy]M;—1 = (0). Then by induction hypothesis [P, 9]
and [P, zx] should be zero. Which is a contradiction. That proves the claint]

Exercise 2.2. Compute the dimension and the multiplicity of the quotient
Anfmodule m for each k = O7 I [ 1.

Quick answer.- Let’s write I = A, (Ok+1,.-.,0n) and M® = “I‘—:. It is
easy to prove (e.g. using Buchberger’s algorithm in A,,, see Appendix A and
Remark 4.11) that gr®(I},) = Clx, €] (€11, - - -, 2n). The Hilbert polynomial
of the graded quotient module

gr’(A,) N Clz, €]
gI’B(Ik) N (C[wv g](§k+17 s 7x7’b)

i t+n+k—1

n+k—-1
HP(t) of the A,-module 4= is (n+k), So, dim(M*)) = n+k and e(M*)) =
1.

) . Then the leading coeflicient of the Hilbert polynomial

2.6. Holonomic A,,—modules

Definition 2.8. A finitely generated A,—module M is said to be holonomic
if either M = (0) or dim(M) = n.

Remark 2.6. For P € A, \ C the quotient A, /A, P is holonomic if and
only if n =1 (see Example 2.2).

Example 2.3.

(1) Let I be a proper ideal in A; and P a nonzero element in I. Let us
write J = A1 P. Let us consider the exact sequence of finitely generated
Ai-modules

The quotient A;/J is holonomic (see Remark 2.6). By applying Theo-
rems 2.3 and 2.4 we get that Ay /I is holonomic. However, the ideal I is
not holonomic (considered as A;—module): otherwise, using the exact
sequence of A,—modules

0—1— A — A/I—0



one gets that A; is also holonomic and this is not true because dim A; =
2.

(2) Assume that M is a finitely generated A;—module, say M =
22:1 Aymy, for some mq,...,m, € M. Then M is the sum of modules
of type A1/I, where Iy = Anny, (my). From Theorem 2.3 we have that
M is holonomic if and only if all the I, are nonzero.

(3) The A,,—module C[z] = C[z1,...,x,] is isomorphic to m and
then it is holonomic (see Exercise 2.1).

Theorem 2.5.

(1) Let M be a finitely generated A,—module and N a submodule of M.
Then M is holonomic if and only if N and M/N are holonomic. If M
is holonomic then e(M) = e(N) + e(M/N).

(2) If Mg, £ =1,...,7 is a holonomic A,,—module then ), My is holonomic

and
s

e(®y_ 1 My) =Y e(My).
=1
Proof. (1) There is nothing to prove if N = (0) or N = M. Assume
N is a proper submodule of M and M # (0). From Theorem 2.3 we get
dim(M) = max{dim(N),dim(M/N)} and therefore if N and M /N are
holonomic then M is also holonomic.

From Theorem 2.4 we have dim(N) > n and dim(M/N) > n.

Assume M is holonomic. Then we have n = dim(M) = dim(N) =
dim(M/N). Again applying Theorem 2.3 we get e(M) = e(N) + e(M/N).

Part (2) follows from (1) by induction on 7. m|

Theorem 2.6. Let M be a holonomic A,,—module. Then we have:

(1) M is a torsion module, i.e. for each m € M there exists P € A,,
P #0, such that Pm = 0.

(2) M is an Artinian module of finite length. Moreover, the length of M is
less or equal than e(M).

Proof. (1) We can assume M # (0). Take m € M, m # 0. Let us consider
the morphism of A,—modules
o: A, — M

defined by ¢(P) = Pm. The image of ¢, Im(¢), is a nonzero A,-module
(since m € Im(¢) C M) and, moreover, it is holonomic (see Theorem 2.5).
Since A,, is non-holonomic the kernel ker(¢) is nonzero.
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(2) Let M = My D My D My D --- a decreasing chain of A,—
submodules of M. By Theorem 2.5 each M; is holonomic. If there exists
i such that M; = (0) then the chain is stationary. Assume the chain non-
stationary and that each M; is nonzero. From the exact sequence

00— MiJrl — Mi — Mi/MiJrl — 0

we get that e(M;) = e(M;t+1) + e(M;/M;11) (see Theorem 2.5). Then we
have e(M) = e(M,41) + > i_ge(M;/M;11) > r + 1, for each r > 0. This
is a contradiction. Moreover, the length of M should be less or equal than
e(M). m|

Remark 2.7. There are finitely generated A,-modules of finite length
—and even irreducible— which are non-holonomic.

An example of that —due to J.T. Stafford— is the following. Consider
M = As(C)/A2(C)P with P = 290102 — 02 + x1 + x2. We have that
dim(M) = 3 and then M is non-holonomic (see Example 2.2).

J. T. Stafford proved that M is irreducible as As—module [41, Th. 1.1].

Exercise 2.3. Prove that if a holonomic A,,—module has multiplicity 1 then
it is irreducible. Prove that C[z] is irreducible.

Quick answer.- Assume M is a holonomic A,—module with e(M) = 1 and
consider N C M a nonzero submodule of M. By Theorem 2.5 we have
1=e(M)=e(N)+e(M/N). Since the integer e(N) is strictly positive (see
Remark 2.5) we have e(N) = 1 and e(M/N) = 0. The last equality implies
M = N. So M is irreducible. The last part of the exercise follows since C|z]
is holonomic and e(C[z]) =1 (see Exercise 2.1).

Proposition 2.5 (Cor. 1.4, Bernstein®). Let M be an A,-module en-
dowed with a B-filtration T = (My) such that there are two rational num-
bers c1,co satisfying

. C1 .y . n—
dlmchSi'] +e(j+ 1)t

for j € N, j big enough. Then M is finitely generated. Moreover, it is
holonomic and e(M) < ¢;.

Proof. First of all we will prove that any nonzero finitely generated sub-
module N of M is holonomic and e¢(N) < ¢;. Since N is finitely generated
it admits a good B-filtration say I'y = (Ny)i. Consider the B-filtration
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IV = (M N N)g. By Proposition 1.17 there exists a positive integer  such
that N; C My, NN for all j. We have

dimg(N;) < dime (M) < %(j N N

and then the degree of the Hilbert polynomial of N with respect to I'y is
less than or equal to n. Applying 2.4 we get dim(/N) = n and then N is
holonomic. Moreover, from the previous inequality we also get e(IN) < ¢5.
We will prove now that M is finitely generated. If M is nonzero let us
consider a nonzero element m; € M. Denote My = A,mq. If M # M,
let us consider a nonzero ms € M \ M; and denote My = A,my + A,mao.
Assume we can construct an infinite increasing chain

MyCcMyCcMyC---CM;C---

of finitely generated submodules of M. From the first part of the proof
we deduce that each M; is holonomic and e(M;) < ¢;. We also have that
e(M;) > i for each 4, which is a contradiction. So there exists a finite
generating set mq,...,m, of M. |

2.7. C[z]s is holonomic

Let f be a nonzero polynomial in C|z].

Theorem 2.7 (§2, Bernstein®). The A, -module C[z]s is holonomic.

Proof. Put N = C[z]; and deg(f) =d > 0.
For each k € N define

Ni = {g/f* € N| deg(g) < (d+ Dk}.

Let’s prove first that the family I' = (N )y is a B-filtration on N.

It’s clear that N, C N, for k < /.

Assume g/f* € Nj. We have deg(x;g) = deg(g) +1 < (d+ 1k +1 <
(d+1)(k +1). That proves the inclusion x; Ny C Nj41. We also have

(9 _ 0ilg)f —kgdi(f)
o (F) - i
and deg(0;(g)f —kg0;(f)) < d+deg(g)—1 < d—1+(d+1)k < (d+1)(k+1).
That proves 9; Ny C Nypy1. Then B1 Ny C Njy1. Since By = (B1)" we have
ByNy C Nk+g.

We will now prove N = Uy Nj. To this end take g/ f k ¢ N and assume
deg(g) = m. We have
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9 _ g
fk - fk+7n
and deg(gf™) = m +dm < (d+ 1)(k + m). That proves g/f* € Ny 1x.
We have proved that (Nj)y is a B-filtration on N = C[z].
We will now prove that this filtration satisfies the hypothesis of Propo-
sition 2.5 for adequate cq, co.
The dimension of the C—vector space Ny is bounded by the number of
monomials z¢ in Clz] with degree |a| < (d + 1)k. This number is

((C” 1)’”“) = (4 1)+ p(R)

n

where p(t) is polynomial in ¢ with rational coefficients and degree less than
or equal to n — 1. Then there exists an integer number co > 0 such that

. d+ 1)k 1 d+1)"k" _
dime (V) < (( Uy *”) = L@y repe < TR oy
for & > 0. Then by Proposition 2.5 C[z]s is holonomic. O

Remark 2.8. From the above proof we can also deduce, applying Propo-
sition 2.5, that the multiplicity of C[z]s is bounded by (d+1)". This bound
is far to be sharp. See Exercise 2.4.

Exercise 2.4. Let us write f = x1. Prove that:

) Claly = 4,3,
) ATL’IIA (1/f) n(l’181—|—1 82,... O, )
iii) dim(C[z]s) = n, e(Clz]f) =2.

Answer.- Recall that the annihilating ideal Ann 4, (1/f) is by definition the
ideal {P € A,,| P(1/f) = 0}.
i) By definition we have that An% C Cl[z]¢. The equality

0 (%) _ (—ﬂ)lg

holds for any g € Cl[z] and any m € N. This equality proves that any
rational function of type ﬁ belongs to An% and then it proves the
1

equality Clz]; = A, 7.
ii) The inclusion A, (2101 +1,0a,...,0,) C Anna, (1/f) is obvious. Let
us consider an operator P = P(x,0) € A,, annihilating z—ll We can write

P=Q0:+ -+ Qn0pn+ P
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for some Q2,...,Qn, Pr € A, and P =), ag(x)0! for some ag(x) € Clx].
The operator P; annihilates z% since P also does.
We can write

P =Q(z101 + 1)+ S(2/,01) + r(x)

for some Q, S(2’,01) € Ay, r(z) € Clz] and S := S(a',01) = ;o b (2)OF
for some by (2') € C[z'] := Clza,. .., 2]

We have 0 = Pl(r—ll) = S(z%) + %‘T) Assuming that S is nonzero, let us
write d > 0 the degree of S with respect to 0;. The order of the pole of S(z%)
at z1 = 0 is d + 1 while %T) has a pole of order at most 1. This implies
that d = 0 which is a contradiction. Then we have S = 0 and r(z) = 0
since %T) = 0. This proves that P = Q202 + - - Q,0, + Q(x101 + 1) €
An($181 + 1, 82, ceey 8n)

iii) Let us denote I = A, (2101 + 1,02,...,0,) and let us write J C
Clx, €] the ideal generated by (11,2, .. .,&n). We have the inclusion J C
grf’(I) and then the inclusion V(gr? (1)) € V(J). The last affine algebraic
set has Krull dimension n. Then the Krull dimension of V(gr! (1)) is less
than or equal to n. So, dim(4,,/I) = dim(V(grf (I))) < n and then, from
Theorem 2.4, we get dim(A,, /1) = dim(Clz]f) = n.

Let us now compute the multiplicity of Clz];. We will prove first the
equality gr®(I) = J. It is easy to prove that each nonzero P € I can be
written as

P=Q20:+ -+ Qndy + Q2101 + 1)

with ord” (Q) = ord” (P) — 2 and ord” (Q;) = ord” (P) —1fori=2,...,n
(see, e.g. Theorem A.1).
Then, by Proposition 1.4, we have

n

oT(P) =Y "0"(Q)& + o (Q)u1&

=2

and then ¢ (P) € J. This proves the equality gr® (I) = J. The leading term
of the Hilbert polynomial gH Py.r(c[y f)(t) of the quotient graded module

Clz,¢]
J

~ gr' (Clz]y)

equals ﬁt”’l (here T denotes the induced B-filtration on A, /I ~

C[z]y). This proves that e(Clz]s) = 2.
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2.8. The Bernstein polynomsial

The Bernstein (or the Bernstein-Sato) polynomial associated with a given
polynomial f € C[z] has been introduced in its general form in Ref. 6 (and
independently by M. Sato in Ref. 38).

Let f be a nonzero polynomial in C[z]. Let s be a new variable and
C(s) the field of rational functions on s. We denote by A, (s) the Weyl
algebra over the field C(s) and A,[s] := A,, ®c Cls]. Denote by C(s)[x]s f*
the free C(s)[z] ;—module of rank 1 with basis the formal symbol f°. This
free module admits a natural structure of left A, (s)-module by defining

aif* =sf1o,(f)f°
for i =1,...,n (the action of C(s)[x] being the natural one).
Proposition 2.6 (§2, Bernstein®). The A, (s)-module C(s)[z]sf* s

holonomic.

Proof. Put N = C(s)[z];f* and deg(f) =d > 0.
For each k € N define

Ny = {g(;’,f) € N| deg(g) < (d+ 1)k} .
It can be proved, in a similar way to the proof of Proposition 2.7, that the
family T' = (Ng )y is a B-filtration on N.

We will now prove that this filtration satisfies the hypothesis of Propo-
sition 2.5 for adequate cq, co.

The dimension of the C(s)-vector space Ny is bounded by the number
of monomials z® in C(s)[z] with degree |a| < (d + 1)k. This number is

((d+1)k+n>

= %(d + 1)"k™ 4+ p(k)

n

where p(t) is a polynomial in ¢ with rational coefficients and degree less
than or equal to n — 1. Then there exists a integer co > 0 such that

. d+ 1)k 1
dim(y) (Vi) < <( N T)L +”) = —(d+1)"k" + p(k)
< WD e+ 1y

n!

for k € N, k big enough. Then by Proposition 2.5 the A, (s)-module N =
C(s)[z]f f° is holonomic. |



93

Theorem 2.8. Let f be a nonzero polynomial in Clz]. There exists a
nonzero polynomial b(s) € C[s| and a differential operator P(s) € A,[s]
such that the equality

P(s)ff* =0b(s)f*
holds in C(s)[x]sf*.

Proof. The module A, (s)f* is an A, (s)-submodule of C(s)[z]sf* and
then, by Proposition 2.6, it is holonomic and furthermore of finite length
(see Theorems 2.5 and 2.6). Then the descending sequence

An(8)f* 2 An(8)F£* 2+ 2 An()f5f* 2 -+
is stationary. Thus there exists £ € N such that
FUFS € Ap(s)firife.
So, there exists Q(s) € A,(s) such that ff* = Q(s)f*t'f*. Then f* =

Qs — O)ff*. Let b(s) € C[s] a nonzero polynomial such that P(s) :=
b(s)Q(s — £) € Ayp[s]. Thus we have b(s)f* = P(s)ff°. |

For a given nonzero polynomial f in C[z] the set of polynomials ¢(s) €
C[s] such that there exists an operator P(s) € A,[s] such that P(s)ff* =
¢(s)f* is an ideal in C[s]. We will denote this ideal by By.

Definition 2.9. Let f be a nonzero polynomial in C[z]. The monic gen-
erator of the ideal B is denoted by bs(s) and it is called the Bernstein
polynomial (or the Bernstein-Sato polynomial) of f.

The computation of bs(s) is difficult although there exists an algorithm
computing the Bernstein polynomial b¢(s) for a given polynomial f € Clx]
(see T. Oaku;®8 see also M. Noro®?).

A variant of this algorithm has been implemented in the D-modules
package for Macaulay 2. We can use this implementation to make some
experiments.

Macaulay 2, version 1.2 with packages: Elimination, IntegralClosure,
LLLBases, PrimaryDecomposition, ReesAlgebra, SchurRings, TangentCone

il : load "D-modules.m2"
i2 : R=QQ[x,y,z];

i3 : W=makeWA R;

i4 : f=x"2+y~2+z72;

i5 : globalBFunction f
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2
o6 =2s + 5s + 3

o5 : QQLs]

The previous command globalBFunction f computes the Bernstein
polynomial of the given polynomial £. We have to notice here that, in order
to simplify the output, Macaulay 2 clears the denominators of the Bern-
stein polynomial (and so, the output of globalBFunction is not necessarily
monic).

The previous script tells us that the Bernstein polynomial of % +x3+x3
is just the polynomial s2 + (5/2)s + 3/2.

Let us continue with the following computation
i6 : f=x"3+y~3+z"3;
i7 : globalBFunction f

5 4 3 2
o7 = 9s + 63s + 173s + 233s + 154s + 40

o7 : QQ[s]
i8 : factor o7
2

08 = (s +1) (s + 2)(3s + 4)(3s + 5)

The command factor factorizes the given polynomial. Let us make
some other experiments
i9 : g=x"2-y"3;
i10 : globalBFunction g

3 2
010 = 36s + 108s + 107s + 35

010 : QQ[s]

i1l : factor o013

o1l = (s + 1)(6s + 5)(6s + 7)
i12 @ f=x"2-y~3+1;

i13 : globalBFunction f

ol3 =s+1

013 : QQ[s]

The last two examples show that a little change on the expression of
the polynomial f can produce completely different Bernstein polynomials.
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The expansion of the polynomial g is very close to the one of f although
the corresponding Bernstein polynomials are very different.

For each polynomial f € R the Bernstein polynomial bs(s) depends on
the singularities of the hypersurface V(f) = {a € C"| f(a) = 0}. Bern-
stein polynomial is a very useful invariant in singularity theory. Two main
references in this topic are Malgrange3? and Kashiwara.3!

Bibliographical note

Most of the material of this Section appears in the articles Bernstein® and
Ehlers?® and in the books Bjérk” and Coutinho.?!

3. Logarithmic A,,—Modules

In this Section® unless otherwise stated, we will denote R = Clz] =
(C[Jil, cee ,a:n].

3.1. Logarithmic derivations

Let us denote by Derc(R) the R—module of C-derivations of the ring R. An
element § € Derc(R) can be written as
i=1
for some a;(x) € R. Moreover, Derc(R) is a free R—module of rank n the
set {01, ...,0n} being one of its bases. Elements in Derc(R) are also called
vector fields on C™ with polynomial coefficients.
If f € Risnot a constant we can define the notion of (global) logarithmic

derivation (or logarithmic vector field) with respect to the hypersurface
D=YV(f)={acC"| f(a) =0} C C", as follows:

Definition 3.1 (K. Saito3°). A vector field § = Y, a;(x)d; with coef-
ficients a;(x) € R is said to be logarithmic with respect to D if 6(f) € Rf.

The R-module of logarithmic vector fields (or logarithmic derivations)
with respect to D C C" is denoted by Derg(—log D). The R—module of
logarithmic vector fields with respect to D C C™ has been also denoted in

hPart of this Section follows the talk Computational methods for testing the range of
validity of the Logarithmic Comparison Theorem given by the author at the Workshop
Geometry and analysis on complex algebraic varieties held at RIMS, Kyoto University,
from 11th to 15th December 2006.



96

the literature as Derg(log D). The sign before log D in our notation will be
explained latter (see Remark 3.4).
For each polynomial g € R, we can also denote

Derg(—logg) = {6 = Zai(m)& € Derc(R) |0(g9) € Ryg}.

Exercise 3.1.

(1) Prove the equality Derr(—log gh) = Derr(—logg) N Derr(—logh) for
g,h € R.

(2) Prove that if f,g € R and V(f) = V(g) then Derr(—logf) =
Derr(—logg). (Hint: Use Nullstellensatz).

Exercise 3.1 justifies the notation Derg(—log D) for the R-module of
logarithmic vector fields with respect to the hypersurface D = V(f).

Exercise 3.2. Prove that Derr(—log D) is a Lie algebra (i.e. prove that it
is closed under the Lie bracket [—, —]).

Let us write f; = 9;(f) for i = 1,...,n. To each logarithmic derivation
d = ) ,ai(x)0; one can associate the syzygy (—%,al(az), .oyan(z)) of

the polynomials (f, f1,..., fn). This defines a map

€ : Derg(—log D) — Syzgr(f, f1,---, fn)
where Syzr(f, f1,--., fn) is the R—module of syzygies of (f, f1,..., fn)-

Exercise 3.3. Prove that the previous map € is an isomorphism of R-—
modules.

Remark 3.1. As R is a Noetherian ring then Syzr(f, f1,..., fn) and
Derp(—log D) are finitely generated R-modules.

Moreover, for each f € R one can compute, by using Groebner bases in
R, a system of generators of the syzygy module Syzgr(f, f1,..., fn) (and
then of the R-module Derg(—log D) by using the isomorphism €) (see
e.g. [1, Section 3.4]).

Let’s treat the case f = 22 — y3 in Macaulay 2. In the following script,
R denotes the polynomial ring with variables x, y and with coefficients if
the field of rational numbers (which is denoted as QQ in Macaulay 2).

Input i5 : computes a system of generators of the syzygy module of
(f, %, g_i)' Notice that output o5 : gives a submodule of the free module
w3 and that this submodule is generated by vectors in R?. Thus, these two

vectors also generate the R—module of syzygies of (f, %, g—i).
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Input i6 : computes a (1 x 2)—matrix which entries are the logarithmic
vector fields with respect to £ associate to each previously computed syzygy.
Input i7 : gives the ideal in the Weyl algebra W generated by these two
logarithmic vector fields.

Macaulay 2, version 1.2 with packages: Elimination,
IntegralClosure, LLLBases, PrimaryDecomposition, ReesAlgebra,
SchurRings, TangentCone

il : load "D-modules.m2";

i2 : R=QQ[x,y]l;

i3 : W=makeWA R;

i4 : f=x"2-y"3

3 2
od = -y +x

o4 : W
i6 : kernel matrix({{f,diff(x,f),diff(y,f)}})
o5 = image {3} | 6 0 |

{1} | -3x -3y2 |

{2} | -2y -2x |

3
o5 : W-module, submodule of W

i6 : matrix({{0,dx,dy}}) * gens o5
06 = | -3xdx-2ydy -3y2dx-2xdy

1 2
o6 : Matrix W <---W

i7 : ideal o6
2
o7 = ideal (- 3x*dx - 2y*dy, - 3y dx - 2xx*dy)

o7 : Ideal of W

Exercise 3.4. Prove that one has an exact sequence of R—modules

Dergr(—log D)

0 — fDerc(R) — Derg(—logD) — Derc(R)
where the morphism fDerc(R) — Derr(—log D) is an inclusion.

Exercise 3.5.

(1) Assume f = z; € R and D = V(z1) C C". Prove the equality
Derg(—log D) = Rz101 © ROy @ - - - © RO,
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(2) Assume f = xjz9---x, for some 1 < r < n, and D = V(f) C C™.
Prove the equality Derg(—log D) = Rx101 @ Rx202 @ -+ @ Rx,.0, @
ROpy1® -+ @ RO,.

To each nonzero polynomial f € C[z] we associate the quotient A,—
module defined as
Ay,

MosSf = "
A Der(—log f)
For example, if f = z1x5 -z, then

An
An(xlal,xgag, .. .,Jirar, 87,4_1, ey 8n)

Mlog f—

3.2. The ideal Anngi(%)

Let f be a nonzero polynomial in R. We denote

o(f)
f

For each § € Der(—log f), the operator ¢ + 5(f ) annihilates the rational

]/5e/1r(—logf) ={0+ |§ € Der(—log f)}.

function 7 We notice here that the operator 5 + f 8 has order 1 (see
Definition 1.2).

Reciprocally, if an operator P € A,, annihilates % and ord(P) = 1 then
we can write

P =n+ap(x)

for some polynomial ag(z) € R and some derivationn = Y . a;(z)d; (with
a;(z) in R for ¢ =1,...,n). Then, from P(1/f) =0 we get fao(x) = n(f).
So, n € Der(—log f) and P =n+ @

We denote by Ann(l)(l) (or simply Ann 1)(})) the left ideal in A,

generated by the operators of the form § + ]{[) for some § in Der(— log f).
That is:

1 __
Ann (?) = A, Der(—log f).
To each nonzero polynomial f € C[z] we have associated (see Subsection

3.1) the quotient A,,—module

An

Mosf . — "
Ay Der(—log f)
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Moreover, to the polynomial f € R we can also associate a new quotient
A,,—module:
An An

M]ng = — = .
A,Der(—log f) AnnM(1/f)

Both modules M98/ and M/ will be called the logarithmic A,—
modules associated with the polynomial f € R. These modules encode
information about the singularities of the hypersurface V(f) C C™ defined
by f € R.

Since Ann(l)(%) is included in the annihilating ideal Ann(%) we have
a natural surjective morphism of A,—modules

Mloef — An RN An
— Ann(M(1/f) Ann(1/f)

defined by

bf <P + Ann® G)) =P+ Ann(%).

The morphism ¢y is an isomorphism if and only

Ann® (%) = Ann (%)

(we say in this case that the annihilating ideal of 1/f is generated by op-
erators of order 1).

It is an open question to characterize the class of polynomials f € R
such that the Ann(1/f) is generated by operators of order 1.

Annihilating ideals can be computed using Groebner bases in A, (see
Oaku and Takayama®).

We will use Macaulay 2 to compute some examples.

The next script computes a system of generators for the annihilating
ideal Ann(1/f) C As for f = z}+z5. The computation gives two generators
for Ann(1/f), namely P = 52101 + 41205 + 20 and Q = 5x30; — 4230,. So,
the annihilating ideal of 1/ f is generated by operators of order 1 and then,
in this case, the morphism

A A
1 Zan (/) Ann(1/f)

is an isomorphism.
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In the next script the command RatAnn f computes a generating system
for the annihilating ideal Ann(1/f).

Macaulay 2, version 1.2 with packages: Elimination,
IntegralClosure, LLLBases, PrimaryDecomposition, ReesAlgebra,
SchurRings, TangentCone

il : load "D-modules.m2"

i2 : R=QQ[x,y];

i3 : W=makeWA R;

i4 : f=x"4+y"5

5 4
od =y +x

o4 : W
i5 : RatAnn f

4 3

o5 = ideal (5x*dx + 4y*dy + 20, by dx - 4x dy)

o5 : Ideal of W

We will change slightly the polynomial f just by adding the monomial
r175. So, we get a new polynomial g =z + x5 + z173.

We are going to use Macaulay 2 to compute, using the following script,
a system of generators of the rational function 1/g.

This computation is performed using the command Ann=RatAnn g. The
value of the string Ann is then a system of generators of the annihilating
ideal Ann(1/g).

In order to easily manage the output o7 we use the command toString
Ann. Output 08 gives a string representation of the previous system of
generators of the annihilating ideal Ann(1/g). This system does not have
to be minimal. The fourth generator has order 2. To prove that Ann(1/g)
is not generated by operators of order 1 we will compute generators of
AnnM(1/g). This is performed from input i9 until input i11.

The value of the name Ann1, in the next script, is then a system of gen-
erators of the ideal Ann(Y)(1/g). Then we compare the ideals Ann(M(1/g)
and Ann(1/g), by using the command Ann==Ann1. The corresponding out-
put being false means that the inclusion Ann™(1/g) C Ann(1/g) is strict
and then the morphism

A4
¢ A (1fg)  Ann(1/g)

¢

is not an isomorphism.
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i6 : g=f+x*y~4

4 5 4
06 = xky +y +x

o6 : W

i7 : Ann=RatAnn g;

i8 : toString Ann

08 = ideal (4*x"~2*dx+5xx*y*dx+3*x*y*dy+d*y 2xdy+16*x+20%y,

16%xxky " 2kdx+4*y " 3xdx+12%y "~ 3*dy-126*x*y*dx-4*x " 2xdy+5*x*y*dy-100*y ~2*dy+64%y~2-500+*y,
4xxxy~3*dx+5xy~4*dx-y 4*dy-4*x”~3*dy,

—64*x"2%y*dx"2+36%y " 3*xdx"2-96%x*ky " 2*dx*dy-32*y " 3kdx*dy-36*y~3*dy~2+500%x " 2*dx"2
+126%x*y*dx"2-36%x " 2*%dx*dy+720*x*y*dx*dy+100%y " 2kdx*dy+24*x " 2*dy " 2-29*x*y*dy "2

+260*y " 2%dy~2-368*x*y*dx-72xy " 2%dx-264*y " 2xdy+2425%x*dx+625%y*dx-105%x*dy
+1495%y*dy-192%y-300)

i9 : kernel matrix({{g,diff(x,g),diff(y,g)}})
09 = image {5} | -16x-20y -16y2-100x |

{4} | 4x2+bxy 4xy2+y3+25x2 |

{4} | 3xy+4y2 3y3-x2+20xy |

3
09 : W-module, submodule of W

i10 : matrix({{-1,dx,dy}}) * gens o9
010 = | 4x2dx+5xydx+3xydy+4y2dy+16x+20y 4xy2dx+y3dx+3y3dy+25x2dx-x2dy+20xydy+16y2+100x |

1 2
010 : Matrix W <--—- W

i1l : Annl=ideal 010

2 2 2 3 3 2 2
o1l = ideal (4x dx + bx*y*dx + 3xxy*dy + 4y dy, 4x*y dx + y dx + 3y dy + 256x dx - x dy + 20x*y*dy)

oll : Ideal of W
i12 : Ann==Annl

012 = false

Notice that the input i9 computes a generating system of the syzygy
module Syzgr(g, %, g—g) while the input 110 computes a generating system
of the ideal AnnM(1/g).

It is not easy to determine when the modules M'°8f and M5/ are
holonomic.

For any non constant polynomial f € C[zy, 2] both Ay-modules M'°2/
and M™&f are holonomic (see Calderén'!).

The Asz-modules M2 and M2 are not holonomic for f = (xz +
y)(z* + y° + zy*) (see [20, Example 6.4.]). Let us compute the dimension

of these two As—modules using Macaulay 2.
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il : load "D-modules.m2"
i2 : R=QQ[x,y,z]; W=makeWA R;
i3 @ f=(x*z+y)*(x"4+y 5+x*y~4)

24 5 5 6 5 4
03 =Xy zZ+X¥xyz+ X¥y +y +XZ+XYy

o3 : W

i4 : kernel matrix({{f,diff(x,f),diff(y,f),diff(z,f)}})

04 = image {7} | -76x-96y x -xz-19x-24y -2y2z-38y2-150x+120y
{6} | 16x2+20xy O 4x2+5xy 8xy2+2y3+30x2-25xy |
{6} | 12xy+16y2 O 3xy+4y2 6y3-2x2+25xy-20y2 |
{6} | -4xz-4yz -xz-y x22-X2 2y2z2-2y2z+5yz+2x+5y
4

04 : W-module, submodule of W
i5 : matrix({{0,dx,dy,dz}})* gens o4;

o5 = | 16x2dx+20xydx+12xydy+16y2dy-4xzdz-4yzdz -xzdz-ydz xz2dz+4x2dx+5xydx+3xydy+4y2dy-xzdz

2y2z2dz+8xy2dx+2y3dx+6y3dy-2y2zdz+30x2dx-25xydx-2x2dy+25xydy-20y2dy+5yzdz+2xdz+5ydz |

1 4
o5 : Matrix W <--—- W

i6 : Ilog=ideal o05;
i7 : toString o6

o7

matrix {{16*x"2xdx+20*x*xy*dx+12%x*xy*dy+16%y~2%dy—4*x*z*dz-4*y*z*dz, -x*z*dz-y*dz,
x*z" 2%dz+4%x " 2%dx+5kx*y*dx+3kx*y*dy+4*y " 2*xdy-x*z*dz,

2ky " 2%z 2%dz+8xxky T 2kdxX+2%y " Ikdx+6*y " 3kdy-2%y " 2%z*dz+30*x " 2+%dx-25* Xk ykdx-2*x " 2*dy
+25*x*xy*dy—-20*y " 2%dy+5*y*z*dz+2*x*dz+5*y*dz}}

i8 : dim Ilog

o8 = 4

In the previous script, input i4 : computes a generating system of the
syzygy module Syzgr(f, %, g—{/,%) and inputs i5 : to i7 : compute a
system of generators of the ideal AsDer(—log f), which is denoted here as
Ilog. Notice that W stands for the Weyl algebra As. As dim Ilog is 4 that

means that the Az—module

A
Mlogf _ 3
AsDer(—log f)

is not holonomic.

In the next script we will first compute a system of generators of the
ideal Ann™M)(1/f) for the same f = (zz + y)(z* + 3° + zy*). The value of
the string Ann1 is a generating system of the ideal Ann™(1/f).
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i9 : matrix({{-1,dx,dy,dz}})* gens o4

09 =
| 16x2dx+20xydx+12xydy+16y2dy-4xzdz-4yzdz+76x+96y -xzdz-ydz-x xz2dz+4x2dx+5xydx+3xydy+4y2dy-xzdz+xz+19x+24y

2y2z2dz+8xy2dx+2y3dx+6y3dy-2y2zdz+2y2z+30x2dx-26xydx-2x2dy+26xydy-20y2dy+5yzdz+38y2+2xdz+5ydz+150x-120y |

1 4
09 : Matrix W <-—- W

i10 : Anni=ideal 09;
i1l : dim Annil

oll =4

As the dimension of the ideal Ann1 is 4 then the As—module

N As
Mlogf —
Ann O (1]])

is not holonomic.

3.3. Logarithmic differential forms

For each ¢ € N, let us denote by Q% the R-module of differential ¢-forms
with coefficients in R and let us write QqR’ F=Rr®r Q% the R—module of
rational differential g—forms with poles along D = V(f).

Both Q% and Q3 ; are complexes of C—vector spaces once endowed with
the exterior derivative and in fact 2% is a subcomplex of QF, ;.

If D=Y(f)=V(g) then Q3 ; = Q% ; and this complex (endowed with
the exterior derivative) is called the complex of (global) rational differential
forms with respect to D and it is denoted by Q% (*D) (or simply Q°(xD)).

Remark 3.2. The natural map
Derc(R) x Q'(*D) — Ry

defined by (6 = >, ai(2)05,w = ), gidx;) — > a;9; € Ry is R-bilinear
and non-degenerate.

Definition 3.2 (K. Saito3?). A rational differential form w € Q9(xD)
18 said to be logarithmic with respect to D if w and dw have at most a
first-order pole along D.

The R—module of logarithmic g-forms with respect to D is denoted by
Q% (log D).

If f € Ris a reduced equation of D then w € Q9(xD) is logarithmic
with respect to D if and only if fw € Q% and fdw € Q;’{’Ll.
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Exercise 3.6. Prove that w € Q9(xD) is logarithmic with respect to D
if and only if fw € Qf and df ANw € QqRJrl. In particular, prove that
w =Y, Y%dx; € Qk(log D) (with b; € R) if and only if

bj

b;
f —ijER

7
for all 1 <i,7 <n. Here f; := g—i. Prove that % € Ql(log D).

Remark 3.3. We have a natural exact sequence
101
AL

1
1 1ot
0— Qr(log D) — =Qp — O (log D)

f

and the last quotient is a torsion R—module.

—0

0% (log D) is a sub-complex of Q%(xD). The corresponding inclusion,
which is a morphism of complexes of vector spaces, is denoted by

tp : Qx(log D) — Q% (xD).

Proposition 3.1. Q%(log D) is a finitely generated R-module for all q.

Proof. Recall that f € R is a reduced equation for the hypersurface D =
V(f) C C™. We have the inclusion

1
f
and %Q% is a free R—module with basis {%dajh Ao Ndg [1<ip <--- <
ig < n}. As R is a Noetherian ring, %Q% is a Noetherian module and its
submodules are finitely generated. O

0% (log D) C =Q%

If A is a commutative ring and M is an A-module, the dual of M is
M* := Homa(M, A). An A—module M is called reflexive if M ~ M*.

Exercise 3.7. Prove that the dual of Derc(R) is naturally isomorphic to Q.

Proposition 3.2. The R-modules Der g(—log D) and Q% (log D) are dual
to each other. Both modules are then reflezive.

Remark 3.4. Because of the result in Proposition 3.2, V. Goryunov and
D. Mond said (see [26, page 207]) that Kyoji Saito suggested, following the
conventions of algebro-geometric notation, that the module of logarithmic
derivations should have —log D in parentheses rather than log D.
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Proof. [of Proposition 3.2] We consider the R-bilinear map
(=, =) : Derg(—log D) x Qk(log D) — Ry
defined by

B bi g\ _ 2o aibs
<Xi:a181,zi:fdml>— o

This bilinear form is just the restriction of the one of Remark 3.2. First of
all, we will prove that if 6 = >, a;0; € Derg(—logD) and w =), %dmi €
Q'(log D) then {§,w) € R, i.e.

Z a;b; € Rf

Let us write ¢ = ), a;b;. Recall (see Exercise 3.6) that if w =
S, Ydr; € Q'(log D) then

fibj — fibi _

f

for all 4, 7. Let us write f;b; — f;b; = hy; f for some h;; € R. Then, for any
1=1,...,n,

fig=£iQ_agb;) = a;fibj = a;bif; = b:d(f) € Rf.
J J J

So we have
J-RgCRf

and V(f) € V(J)UV(g) where J = R(f1,..., fn) is the Jacobian ideal
associated with f.

We can write V(f) = V(J, f) UV(g, f). Recall that V(J, f) is the set
of singular points of the hypersurface V(f) and that it is a proper Zariski
closed subset of V(f). So any irreducible component of V(f) should be
included in V(g, f) C V(g). By Hilbert’s Nullstellensatz g € Rf.

There is a natural injective R-module morphism

Q'(log D) — (Derg(—log D))*
which associates to any logarithmic 1-form w the R-module morphism
¢, : Derg(—logD) — R

defined by ¢,,(d) = (§,w). We will prove that this natural injective mor-
phism is also surjective.
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Assume ¢ € (Derg(—log D))*. We will see that the rational form
e(f0:)
w = ———dx;
277

belongs to € Nk (log D) and, moreover, ¢ = ¢,,.
First of all, we will prove that w = )", @dmi belongs to Q% (log D).
By, Exercise 3.6 it is enough to prove that

fio(f95) = fip(f0i) € Rf

for all ¢,j. To this end, fip(f0;) — f0(f0:) = @(fif0;) — @(f;f0:) =
fo(fi0; — f;0:) € Rf.

By definition of w we have o(f0;) = ¢ (f0;) for all i. Moreover, for
d =>,a;0; € Derg(—log D) we have

Fod) = (f6) = aip(f8;) = aidu(f0i) = fou(0)
and then ¢(0) = ¢,,(9) for all § € Derr(—log D). That proves ¢ = ¢,, and,
moreover, the natural morphism
Q% (log D) — (Derg(—log D))*

is an isomorphism of R—modules.
We will prove in a similar way that the natural injective R-module
morphism

Derg(—log D) — (2% (log D))*
which associates to any logarithmic vector field  the R-module morphism
b5 : QR(log D) — R

defined by ¢s(w) = (J,w) is an isomorphism.
Assume ¢ € (2% (log D))*. We will see that the vector field

§= Z o(dz;)0;

belongs to Derg(—log D) and, moreover, ¢ = ¢5.
We have @(in) € R and then f(p(%) = @(df) € Rf. We also have

50) = X pldn) 5L = (3 2Law) = ptap € .

Let’s prove that ¢ = ¢5. By definition of 6 we have o(dz;) = ¢s(dx;).
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Assume w =}, % dx; € Q% (log D) for some g; € R. We have

fo(w) = o(fw) = s@(z gidz;) = Zgz‘so(dﬂci)

= Zgiqﬁ(g(dm) = ¢6(fw) = f¢6(w)
and then p(w) = ¢5(w). H

Recall that the complex of (global) logarithmic differential forms
0% (log D) is a sub-complex of Q%(xD) (both endowed with the exterior
derivative) and that we denoted by ¢p : Q}(log D) — Q%(xD) the corre-
sponding inclusion.

Definition 3.3 (Calderén et al.'? Granger et al.2”). The hypersur-
face D C C™ satisfies the Global Logarithmic Comparison Theorem if tp

is a quasi-isomorphism. In this case we will say that D satisfies GLCT or
that GLCT holds for D.

An open question is to characterize the class of hypersurfaces D =
V(f) € C™ such that D satisfies GLCT. This question is related to the
characterization of polynomials f € R such that Ann(1/f) is generated by
operators of order 1. These questions (and the extension of the previous
notions and results to the local analytic case) are treated in many classical
as well as many recent research papers. The interested reader can consult
the references 39, 17, 11, 12, 18, 19, 43, 13, 27, 2, 42.

Appendix A. Division Theorems and Groebner Bases in Rings
of Differential Operators

In this Appendix we first recall the definition of the rings of germs of linear
differential operators with holomorphic and formal coefficients. Then we
recall the main results on the division theorems and the theory of Groebner
bases in these rings of differential operators and in the Weyl algebra.

More rings of linear differential operators

Let C{z} = C{x1,...,zn} (resp. C[[z]] = C[[z1,...,xx]]) be the ring of
convergent power series (resp. of formal power series) in n variables with
complex coefficients. The ring C{x} can also be viewed as the ring of germs
of holomorphic functions at the origin in C".
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We will denote by D (resp. D) the ring of linear differential operators
with coefficients in C{z} (resp. C[[z]]).

By definition, any nonzero element P in D (resp. in ﬁ) can be written
in a unique way as a finite sum

P=> psx)d’
BENT

where pg(z) € C{z} (resp. C[[z]]) for all 3 € N and, as in the case of the
Weyl algebra, ° stands for af Lo P,

As any power series pg(z) can be written as

ps(@) = Y papa®

aeNn
with pos € C, then each element P € D, unlike in the case of the Weyl
algebra, can be written as a, possibly infinite, sum

P = Zpaga:aaﬁ
B

and we have a similar result for D.

Some notions in Section 1 can be easily extended from the Weyl alge-
bra to D and D. Among these notions we have the order ord(P) and the
principal symbol o(P) of an operator P in D or D (see Definitions 1.2 and
1.3).

The ring D is then filtered by the order of its elements. We will denote
this filtration by

(Fi(D))kez-

The associated graded ring grf’(D) is naturally isomorphic to the ring

C{z}le] = Clz}6r, - &nl

which is a polynomial ring with coefficients in C{z}. With any (left) ideal
I in D we can associate (see Definition 1.4) its graded ideal

gt” (D) = C{a}[¢] - {o(P), | P € I}

which is homogeneous with respect to the {—variables. We also have anal-
ogous results for D.

Alike A,, the ring D is left and right Noetherian. The proof of the
noetherianity of A, uses the total order in A, (see Proposition 1.6). By
Remark 1.5 we can also give a proof of the same result by using the order
in A,, instead of the total order. This last proof is also valid in D and in D.
For another proof of the noetherianity of A,, (also valid for D and 73) see
Remark 4.10.
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Division theorem in A,,

Definition A.1. A well ordering < on N” is said to be a monomial order
if it is compatible with the sum: @ < § implies a4y < g+~ for all v € N™.

Remark 4.5. For any monomial order < on N™ one has 0 = (0,...,0) < «
for all & € N™. Moreover, for a, 8 € N™ such that a; < 3; for all ¢ one has
« < . In other words, any monomial order refines the componentwise order
on N”.

We usually translate any order < on N™ to an order —also denoted by
<~ on the set of monomial {x®|a € N} just by writing 2% < 2 if and
only if o < 3.

Example 4.1. (1) The lezicographical or lexicographic order (denoted by
<lex) on N™ is defined as follows:

(a17'~'7an) <lex (ﬁlw"vﬁn)

if and only if the first nonzero component of

(al_ﬁlv-”;o‘n_ﬂn)

is negative. The well ordering <jx is a monomial order.
(2) Let < be a monomial order on N™. Let L : Q" — Q be a linear form
with non negative coefficients. The binary relation < defined on N” by:

' . L(a) < L(B)
o <p B if and only if { or L(a) = L(3) and a < 3

is a monomial order on N,

Let P = P(z,0) =3 5cnn ps(2)0P be a differential operator in A,,. The
operator P can be rewritten as

P = Zpagxaaﬁ
aB

just by considering the polynomial pg(x) as pg(x) = >, Pagr®, With pasg €
C.
The Newton diagram of P is the set

N(P) :={(a, 8) € N*" | pag # 0}.

Let us fix a monomial order < on N27.
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Definition A.2. We call privileged exponent® with respect to < of a
nonzero operator P —and we denote it by exp_(P)— the maximum
(o, B) € N?" | with respect to <, such that p,g # 0. In other words

exp_(P) = mjx./\/’(P).
We will simply write exp(P) if no confusion is possible.

Proposition 4.3. Let P,Q € A,,. We have:

1) exp(PQ) = exp(P) + exp(Q).

2) If exp(P) # exp(Q) then exp(P + Q) = max~{exp(P),exp(Q)}. More
generally, for any family P, ..., Py € A, such that exp(P;) # exp(P;) for
all i,j, i # j we have exp(}_, P;) = max{exp(P;)|i=1,...,m}.

With each m—tuple ((a!,3'),...,(a™, 3™)) of elements in N2 we as-

sociate a partition’
{A AL A™
of N?" in the following way. We set:
Al = (o, B) + N2»

A1 = ((aiJrl’ﬂiJrl) +N2n) \ (Al U ---UAi) ifi>1

A% = NP\ (Up, A,

The following theorem generalizes the division theorem for polynomials
in Clx] (see e.g. [22, p. 9] or [1, Th. 1.5.9]).

Theorem A.1 (Division in A,,). Let (Pi,...,Pn) be an m—tuple of
nonzero elements of A, and let {A° AY ... A™} be the partition of N?"
associated with (exp(P1),...,exp(Py,)). Then, for any P in A,,, there exists
a unique (m + 1)—tuple (Q1,...,Qm, R) of elements in A,,, such that:

(1) P=QiPi+ -+ QuPn+ R
(2) exp(P) +N(Q;) C AL i=1,...,m.
(3) N(R) C A°.

IThis notion generalizes the one of privileged exponent of a power series, due to H.
Hironaka. It was introduced in Lejeune and Teissier3? (see also Aroca et al.).

IThe word partition is used here in a broad sense, which means that an element of the
family may be empty.
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Proof. Let us prove uniqueness first. Assume that two (m + 1)—tuples,
(Q1,...,Qm,R) and (Q},...,Q.., R'), satisfy the conditions of the theo-
rem. We have:

YN (@Qi-Q)P+R-R =0 (1)

i=1
If Qi # Q! then exp((Q; — Q})P;) € A" If R # R’ then exp(R — R') € A°.
Since A% Al ... A™ is a partition of N?"  the equality (1) is only possible

if Q; = @ for any ¢ and if R = R’ (see Proposition 4.3). That proves the
uniqueness.

It is clear that it is enough to prove the existence for the monomials
0% € A,,. We will use induction on (a, 3). If 2%9° =1 (ie. if a = 3 =
(0,...,0)), then either exp(P;) # 0 € N?" for all i and in this case it is
enough to write 1 = >~ 0P; + 1, or there exists an integer j such that
exp(P;) = 0 € N?". In this case P; is a nonzero constant because 0 is the
first element in N?” with respect to the well ordering < and, moreover,
A% = (). Assume that j is minimal. We write

1= 0P+ (1/P)P; +0.
i#]
This proves the existence at the first step of the induction. Assume that
the result is proved for any (o, 3') strictly less than some (a, 3) # 0 € N7,
Let j € {0,1,...,m} be such that (o, 8) € AJ. If j = 0 we write

2?07 =Y 0P+ 20"
i=1
If j > 1let (v,6) = (o, B) — exp(P;) € N*".
We can write
1
1°9% = —270°P; + G
Gy

where ¢; is the coefficient of the privileged monomial of P; and all the
monomials in G; are smaller (with respect to <) than («, 3) (see Exercise
1.2). By the induction hypothesis there exists (Qf,...,Q",, R') satisfying
the conditions of the theorem for P = G . In particular we have:

xaaB:ZQPJr( 270 + Q)P + R
i#] K
This proves the result for («, 3). Thus, existence is proved for any P € A,,. O
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Remark 4.6. The linear differential operator @); in the theorem is called
the i—th quotient and R is called the remainder of the division of P by
(Py,...,Py). The remainder will be denoted by R(P; Py,..., Py).

Remark 4.7. It follows from the proof of Theorem A.1 that for any
division P = Q1P + -+ + QmPn + R as in the theorem we have

max{max;{exp_(Q:F;)},exp_(R)} = exp_ (P).

Groebner bases in A,,

The theory of Groebner bases in the polynomial ring C[z] (see Buch-
berger®1?) can be extended to the Weyl algebra A,, and also to the rings D
and D (see Castro'*!> and Briangon and Maisonobe®). The book M. Saito
et al.*? contains many applications of Groebner basis theory to the study
of modules over the Weyl algebra A,,.

Let us fix a monomial order < on N2". For each non zero ideal I of A,,
let Exp_(I) denote the set

{exp(P)|P € I\ {0}}.

If no confusion is possible we write Exp (/) instead of Exp_ (I). From Propo-
sition 4.3 we have: Exp(I) + N?" = Exp([).

Proposition 4.4. Let m > 0 be an integer and E C N™ such that E +
N"™ = E. Then there exists a finite subset F' C E such that

E = U (a +N™)
aEF

Proof. This is a version of Dickson’s lemma. The proof is by induction on
m. For m = 1 a (finite) family of generators of E is given by the smallest
element of E (for the usual ordering in N). Assume that m > 1 and that
the result is true for m — 1. Let £ C N be such that £ + N™ = E. We

can assume that E is non empty. Let a € E. For any « = 1,...,m and
7 =0,...,a; we consider the bijective mapping
¢i7j : Ni—1 % {]} x Nm—i — Nm—1

(617"'7ﬁi717j7ﬁi+17"'7ﬂm) = (ﬂl?"'7ﬁi717ﬁi+17"'7ﬁm)

and we denote

Eij = 6sg(B NN x {j} x N7,
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It is clear that E; ; + Nl = E; ; and by the induction hypothesis there is
a finite subset F; ; C E; ; generating E; ;. The finite set

F={a}{J U@ (Fiy)

2%

generates E. This proof is taken from Galligo.?> O

Remark 4.8. The previous proposition can be rephrased as follows:
Any monomial ideal in Clz] (Or more generally in a polynomial ring
Klz1,...,zy) with coefficients in a field K) is finitely generated. This is
a particular case of the Hilbert basis theorem.

In the same way, we can see that any increasing sequence (FEj)x of
subsets of N stable under the action of N is stationary. We shall often
use this property called the noetherian property for N™.

We can adapt the proof above to show that, given £ C N” as in Propo-
sition 4.4, we can find in any set of generators, a finite subset of generators
of E. This proves in particular that in any system of generators made of
monomials of a monomial ideal in the polynomial ring C[z], we can find a
finite subset of generators. This is Dickson’s lemma.

Definition A.3. Let I be a nonzero ideal of A,. We call any family
Py, ..., P, of elements in I such that

m

Exp_ (1) = | J(exp~(P) + N*")
i=1

a Groebner basis of I, relative to < (or a <—Groebner basis of I).

Remark 4.9. There always exists a Groebner basis of I by definition of
Exp(I) and by Proposition 4.4.

We have the following two corollaries of Theorem A.1.

Corollary A.1. Let I be a nonzero ideal of A, and let Py,..., P, be a
family of elements of I. The following conditions are equivalents:

1) Py,..., P, is a Groebner basis of I.

2) For any P in A,, we have: P € I if and only if R(P;Py,...,Py,) =0
(see Remark 4.6).

Corollary A.2. Let I be a nonzero (left) ideal of A,, and let Pi,..., Py,
be a Groebner basis of I. Then P, ..., Py, is a system of generators of I.
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Remark 4.10. Corollary A.2 proves in particular that A, is a left-
Noetherian ring (see also Proposition 1.6).

Remark 4.11. Assume the monomial order < satisfies the following prop-
erty: for any P € A,, we have exp_(P) = exp_(c(P)). Then, for any ideal
I in A, and any finite subset {Pi,..., P} C I, the family {Py,..., Py}
is a Groebner basis of I if and only if the family {o(P1),...,0(Pn)} is a
Groebner basis of grf’ (1) C Clz, £].

If L : Q" x Q* — Q is the linear form defined by
L(ai,...,an,b1,...,b,) =3, b; and < is any monomial order on N*" then
the monomial order <z, (see Example 4.1) satisfies the desired condition
exp_(P) = exp_(o(P)) for all P € A,,.

Buchberger’s algorithm in A,

Buchberger’s algorithm for polynomials (see Buchberger!?) can be easily
adapted to the Weyl algebra (see Briangon and Maisonobe® and Castro'*
(see also Saito et al.®9)).

Considering as input a monomial order < in N2" and a finite set F =
{P,..., Py} of differential operators in A,, one can compute a Groebner
basis, with respect to <, of the ideal I C A,, generated by F. So, one can
also compute a finite set of generators of the subset Exp_ (I) C N?.

The Division Theorem A.1 and the theory of Groebner bases can be
extended for vectors and for submodules of free modules A;, for any integer
r > 0 (see Castro'?).

Moreover, the Division Theorem and the Groebner basis notion can be
also considered, in a straightforward way, for right ideals (or more generally
for right submodules of a free module A).

Similarly to the commutative polynomial case, Groebner bases in A,, are
used to compute, in an explicit way, some invariants in A,,-module theory.

Most of the algorithms in this subject appears in Oaku and Takayama.?”
In particular, Groebner bases in A,, are used:
a) to compute a generating system of Syz4, (Pi, ..., Py), the A,—module

of syzygies of a given family Pi,..., Py, in a free module A7 (r > 1).
b) to solve the membership problem (i.e. to decide if a given vector P € A"
belongs to the submodule generated by P, ..., Pp,) and to decide if two
submodules of Al are equal.
¢) to compute the graded ideal and the total graded ideal associated with
a (left) ideal I in A,, (see Definition 1.4) and to compute the dimension
of a quotient module A, /1.
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d) to decide if a finitely presented A,—module is holonomic (i.e. to decide
it its characteristic variety has dimension n. See Definition 2.8).

e) to construct a finite free resolution of a given finitely presented A,—
module.

f) to decide if a finite complex of free A,,—modules is exact.

Many computer algebra systems can handle this kind of computations.
Among the most used should be mentioned Macaulay?® Risa/Asir3® and
Singular.?’

Remark 4.12 (Division theorem and Groebner bases in D and 73)
A Division Theorem (analogous to Theorem A.1) can be proved for ele-
ments in D or in D (see Briancon and Maisonobe® and Castro'#). This
is not straightforward from the Weyl algebra case because Definition A.2
of privileged exponent doesn’t work for general operators in D or in D.
Nevertheless, Groebner bases also exist for left (or right) ideals in D (and
n D) and the analogous of Corollaries A.1 and A.2 also hold in D and D.
This proves in particular that D and D are Noetherian rings. We will not
give here the details and refer the interested reader to the references above.

Bibliographical note

Most of the material of this Appendix appears in Castro,'%1® Briancon and
Maisonobe,® Saito et al.* and Castro and Granger.!®
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0. Introduction

In this paper we give a quick presentation of the characteristic variety of a
complex analytic linear holonomic differential system. The fact that we can
view a complex analytic linear holonomic differential system on a complex
manifold as a holonomic D x-module, allows us to present the characteristic
variety in an algebro-geometric way as we do here.

We do not define what is a sheaf; for this we refer to the famous book of
R. Godement.? We also do not define properly Dx-modules although one
can find in the lectures of F. Castro the definition of left modules on the
Weyl algebra of operators on C™ with polynomial coefficients which give a
local version of Dx-modules.

Also we consider categories, complexes in abelian categories, derived
functors and hypercohomologies' which are the natural language to be used
here. Of course, we cannot define all these notions. One should view these
notes as a provocation rather than a self-contained exposition. We hope
they will encourage the reader to learn more in the subject.

1. Whitney Conditions

In Ref. 19, §19 p. 540, H. Whitney introduced Whitney conditions. The gen-
eral idea is to find conditions for the attachment of a non singular analytic
space having an analytic closure along a non singular part of its bound-
ary which ensure that the closure is “locally topologically trivial” along
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the boundary, that is, locally topologically a product of the boundary by a
“transverse slice”. Whitney’s approach can be deemed to be based on the
fundamental fact, which he discovered, that any analytic set is, at each of its
points, “asymptotically a cone”. More precisely, given any closed complex
analytic subspace X € U C CV and a point of X which we may take as
the origin 0, given any sequence of non singular points z,, € X converging
to 0, we may consider the tangent spaces Tx ,, of X and the secant lines
0z,,. They respectively define points in the Grassmanian G(N,d) and the
projective space PNV ~! which are compact. Therefore, possibly after taking
a subsequence we may assume the limits 7" = lim,Tx 5, and ¢ = lim,, 0z,
exist, when x, tends to 0. Then we have ¢ C T, which ensures that X is
locally “cone-like” with respect to the “vertex” 0.

Whitney’s idea may have been that the topological triviality of the
closed analytic space X along a part ) would be ensured by the condition
that X should be “cone-like” along the “vertex” ), which is a way to ensure
that locally X is transversal to the boundaries of small tubes around Y. It
gives this:

Let X be a complex analytic subset of CV and ) be a complex analytic
subset of X. One says that X satisfies the Whitney condition along ) at
the point y € Y, if:

(1) the point y is non-singular in Y,

(2) for any sequence (z,,)nen of non-singular points of X which converges
to y such that the tangent spaces T, (X) have a limit 7' and, for any
sequence (yn)nen of points of ) which converges to y, such that the
lines y,x, have a limit ¢, we have £ C T

Examples. Consider the complex algebraic subset X' of C? defined by the
equation:

X?2-vZz?=0.

The line L = {X =Y = 0} is contained in X. The surface X satisfies
the Whitney condition along L at any point y € L \ {0}, but not at the
point {0}, because, for the sequence (0, y,,0) of non-singular points of X,
the limit of tangent spaces is the plane T = {Z = 0}, and for the points
(0,0, yy) the limit ¢ is the line {X = 0,Y = —Z} which is not contained in
T.

Consider the complex algebraic subset X' of C? defined by the equation
(see Fig. 2):

X?2-_v3-_Z2%v?2=o.
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x%yz%=0
Fig. 1.
x2v2:z%%0
,—"/
Fig. 2.

The surface X' satisfies Whitney condition along L = {X =Y = 0}
at any point y € L\ {0}, but not at {0}, because, one may consider the
sequence of non-singular points (0,22, 2,) of X and (0,0, z2,) of L as z,
tends to 0. The limit £ is the line which contains (0,0, 1), the limit T is the
plane orthogonal to (0,0, 1).

2. Stratifications

Let X be a complex analytic subset of CV. A partition S = (X4 )aea is a
stratification of X, if:

(1) The closure X, of X,, in X and X, \ X, are complex analytic subspaces
of X;

(2) The family (X,) is locally finite;

(3) Each X, is a complex analytic manifold;
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(4) 1If, for a pair (o, 3), we have X, N X5 # 0, then X, C Xz.

The subsets X, are called the strata of the stratification §. The condition
(4) is called the frontier condition (see e.g. Ref. 13, Définition (1.2.3)).

Examples. Consider the complex algebraic subset of C3 defined by the
equation:

X2 -v3-2%v?2=0.

One can consider this surface as a deformation of complex plane algebraic
curves parametrized by Z. The singular points of these curves are on the Z-
axis which if given by X =Y = 0. For Z = 0, one has a cusp X2 —Y?3 = 0.
For Z # 0, one has a strophoid with a singular point at the origin.

One has a stratification by considering the strata given by the non-
singular points, which are the points of the surface outside of the line X =
Y = 0 on the surface, and by the singular points which are the points of
the line X =Y =0.

Now consider the complex algebraic subset of C? defined by the equation
(see Fig. 3):

X?-Yv?7%=0.

x%yZ=0

Fig. 3.

It is a surface whose singular points lie on two lines L; = {X =Y = 0}
and Ly = {X = Z = 0}. We can define a partition of this surface by
considering Sy := XY, the subset of non-singular points of the surface, the
punctured line §; = L \ {0} and the line So = L.

This partition does not define a stratification, because it does not satisfy
the frontier condition. However, one can consider instead the partition given
by So, S1, the punctured line 8§ = L2 \ {0} and the origin {0}. This is a
stratification.
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More generally one can prove that, by choosing a “refinement” of a
partition satisfying (1), (2) and (3), one obtains the frontier condition (see
Ref. 19).

A complex analytic partition S = (X4 )aca of a complex analytic space
X is a partition of X which satisfies (1), (2) and (3) above.

Then, a complex analytic partition S’ = (X! )acar of X is finer than
the partition S = (X4 )aeca of X, if any stratum X, of S is the union of
strata of §’. One may quote a proposition of H. Whitney in the following
way:

Proposition 2.1. For any complex analytic partition S = (Xa)aca of
X, there is a finer complex analytic partition which satisfies the frontier
condition.

Remark also that there is a coarsest finer partition with connected strata;
this is obvious by taking the connected components of strata. In stratifica-
tion theory one often assumes that the strata are connected.

3. Constructible Sheaves

All the sheaves that we consider are sheaves of complex vector spaces.
First, let us define local systems.

Definition 3.1. Let A be a topological space. A sheaf F on A is called a
local system on A if it is locally isomorphic to a constant sheaf.

For instance, a constant sheaf is a local system. In fact, when A is an
arcwise connected space, a local system F on A defines a homomorphism
m1(A,a) %5 AutcF,. This homomorphism is defined in the following way:
let v be a loop at a; one can extend a section of F, by continuity along
v, since there is a neighbourhood of @ on which F is constant; because we
can cover the image of v by a finite number of open sets over which F is
constant we define a map of F, into itself determined by 7; one can show
that this map depends only on the homotopy class of v and is a complex
linear automorphism of F,.

The correspondence F — pr defines an equivalence of category between
the category of local systems on A and the category of representations of
the fundamental group 71 (A4, a) in finite dimensional vector spaces.
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Example: In the case A is the circle S!, the fundamental group (4, a)
is the group of relative integers Z. Local systems of rank one are given by
maps C — C given by z — 2¥, with k € Z.

Now, we have an important concept which, in some sense, generalises
complex analytic partitions:

Definition 3.2. A sheaf L over a complex analytic set X is constructible
if there is a complex analytic partition S = (X4)aca of X, such that the
restriction of L over each X, is a local system.

Examples: a) Let f : X — ) be a proper algebraic map between two
algebraic varieties, the sheaf on ) whose stalks are the k-th cohomology
H*(f~1(y),C) of the fibers f~!(y) of f is a constructible sheaf.

b) The cohomologies of the solutions RHomp (M, O) of a holonomic D-
module M over a complex space CV are constructible sheaves (Kashiwara’s
constructibility Theorem).

¢) Let Z be an algebraic subvariety of X and i : Z — X be the inclusion.
Let z € Z. The local cohomology (R*i')(C). ~ H% 5 (X N B.,C), where
B, is a good neighbourhood of z in X', defines a constructible sheaf on Z.

These examples are not easy to prove. The first and third ones are
difficult theorems on the topology of algebraic maps, the second one is a
basic theorem of the theory of D-modules, also difficult to prove.

4. Whitney Stratifications

Let S = (Xa)aca be a stratification of a complex analytic set X. We
say that S is a Whitney stratification of X if, for any pair (X, Xg) of
strata, such that X, C X g, the complex analytic set X 5 satisfies Whitney
condition along X, at any point of X,.

As we announced above, the interest for Whitney stratifications comes
from the fact that they imply local topological triviality. Namely, a theorem
of J. Mather'# and R. Thom!® gives:

Theorem 4.1. Let S = (X4)aca be a Whitney stratification of a complex
analytic subset X of CV. For any point x € X, there is an open neighbour-
hood U of x in CN such that X NU is homeomorphic to (XoNU) x (NoNU)
where Ny, is a slice of X at x in X by a transversal affine space in CN .

This theorem shows that locally on X, along any strata, the analytic
set is topologically a product.
A theorem of H. Whitney!® gives that:
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Theorem 4.2. Let S = (Xo)aca be a stratification of a complex analytic
set X. There is a stratification of X which is finer than S and is a Whitney
stratification for X.

As a consequence on a singular compact space one can observe only
finitely many different topological types of embedded germs of complex
spaces, while in general there are continua of different analytic types.

Examples. In the examples given before the stratification of:
X*-YZ*=0

given by the non-singular part X'\ Y of X, ¥\ {0} and {0} gives a Whitney
stratification of X which is finer than X'\ Y and Y.
We have the same for:

X2 Y3 -27?Y? =0.
For the example given by:
X2 Y273 =0,

a Whitney stratification is given by X'\ L1 U Lo, L1 \ {0}, L2\ {0} and {0}.

A theorem of B. Teissier shows that a Whitney stratification can be
characterized algebraically and is very useful to know if a stratification is
a Whitney stratification. In order to give this criterion, we need to define
Polar Varieties.

Let X be a complex analytic subset of CVV. Let x be a point of X. Assume
for simplicity that X is equidimensional at z. Consider affine projections of
X into CFt1 for 1 <k < dim,(X). Then, one can prove:

Theorem 4.3. There is a non-empty Zariski open set Q. in the space of
projections of CV into CF*1, such that for any p € §Q, there is an open
neighbourhood U, such that either the critical locus of the the restriction of
p to the non-singular part of X NU is empty or the closure of the critical
locus of the restriction of p to the non-singular part of X NU is reduced
and has dimension k at x and its multiplicity at x is an integer which is
independent of p € Q.

In the case where the critical locus of the restriction of p to the non-
singular part of X NU is not empty for p € ), the closure of the critical
locus in XNU is called “the” polar variety Py (X, z,p) of X at x of dimension
k, defined by p and the multiplicity m(Px (X, z,p)) is called the k-th polar
multiplicity of X' at the point x. For P (X, z,p) this is an abuse of language
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since only the “equisingularity type” of Py (X,z,p) is well-defined for p €
Q, but the theorem just stated shows that there is no abuse as far as the
multiplicity is concerned. When the critical locus of the restriction of p is
empty for p € Qy, we say that mg(X,z) = 0.

Then, the criterion of B. Teissier is the following (Ref. 17):

Theorem 4.4. Let X be a complex analytic set. Let S = (Xo)aca be a
stratification of X with connected strata. Suppose that for any pair (X, Xg)
such that Xo C Xg, the multiplicities m(P,(Xp),y) are constant for
y € Xa, for 1 < k < dimy(Xg), then, the stratification S is a Whitney
stratification. Conversely, any Whitney stratification with connected strata
has this property.

Beware that this theorem is true with stratifications: for instance the
frontier condition is important. One can consider the case of the surface
defined by:

X?-Yv?7%=0.

Examples. Let X be a surface, i.e. a complex analytic set of dimension 2.
If, z € X is a non-singular point, the 2-nd polar variety at x is A itself and,
by definition, its multiplicy is 1. At x the 1-st polar variety is empty, so
my = 0. If x € X is singular, again the 2-nd polar variety at = is X itself and
ma = my(X) > 1. For almost all singular points, except a finite number
locally, the 1-st polar curve is empty, so m1 = 0. So, a Whitney stratification
of X is given by the non-singular part X° of X, the nonsingular part of the
singular locus minus the points where the polar curve is not empty, the
points where the polar curve is not empty and finally the singular points
of the singular locus.
For the surface given by:

X2-Y3-272%v?2 =0

the stratification given by X'\ Y, Y\ {0} and {0} is a Whitney stratification.
A consequence of this theorem is the existence of a minimal Whitney
stratification refining a given one (see Ref. 17):

Theorem 4.5. Let X be a compler analytic set. Let S = (Xo)aca be a
complex analytic partition of X. Then there is a unique coarsest refinement
of S which is a Whitney stratification of X with connected strata.

If one takes as partition the non-singular part of X', the non-singular part
of the singular locus, and so on, one sees that every complex-analytic space
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has a unique “minimal” Whitney stratification in the sense that any other
Whitney stratification is a refinement of it.

5. Milnor Fibrations

Let f : U € CV — C be a complex analytic function defined on a neigh-
bourhood of the origin 0 in C"V such that the image f(0) of the origin 0 by
fisO.

One can prove:

Theorem 5.1. There is ¢g > 0, such that, for any € such that 0 < € < g9,
there is n(€) > 0, such that for any n such that 0 < n < n(e), the map

Yen BN f_l(S)n — Sy,

induced by f over the circle of radius n centered at the origin 0 in the
complex plane C, is a locally trivial smooth fibration.

See Ref. 16 for the case where f has an isolated critical point at 0 and
Ref. 5 for the general case. We call the fibration given by the theorem the
Milnor fibration of f at 0.

When f has a critical point at 0, the fibers of ¢, , have a non-trivial
homotopy. Since the “fiber” at 0, i.e., B.N f~1(0) is contractible by Ref. 16,
one usually calls vanishing cycles the cycles of a fiber of ¢, ,, i.e. the ele-
ments of the homology H.(B. N f~1(¢),C) for t € S,).

One calls neighbouring cycles the elements of the cohomology H*(B. N
f71(t),C). The theorem above shows that these definitions do not depend
on ¢t € S;. One can prove that it does not depend on ¢,7 chosen conve-
niently.'3

One may observe that the complex cohomology H*(B. N f~1(¢),C) is
the sheaf cohomology of B. N f~1(¢) with coefficients in the constant sheaf
C.

We also have on any analytic set a theorem similar to the one above
(see Ref. 9):

Theorem 5.2. Let f : X — C be a complex analytic function on a complex
analytic subset of CN. Suppose that 0 € X and f(0) = 0. There is €9 > 0,
such that, for any € such that 0 < & < €q, there is n(e) > 0, such that for
any n such that 0 < n < n(e), the map

Gey : BeNAN fﬁl(S)n — Sy,

induced by f over the circle of radius n centered at the origin 0 in the
complex plane C, is a locally trivial topological fibration.
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In particular, this theorem shows that the homology
H,(B- N XN f(t))
or the cohomology
H*B.NnXx N f1(t),0C)

does not depend on t € S,, and on €, 7 chosen appropriately.

6. Local Constructible Sheaves and Whitney Conditions

Since the constant sheaf C is a constructible sheaf, one may also consider the
neighbouring cycles of a constructible sheaf £ along the function f : X — C
as the sheaf cohomology H*(B. N X N f~1(¢), £).

Let p be a projection CV into C*¥+! which defines a k-th polar variety
Py (X, x,p) of X at a point « € X. Then, one has neighbourhood U and V
of z and p(z) in X and C*¥*!, such that p induces a map 7 : U — V. One
can show that w(Py (X, x,p) NU) is a complex analytic subset of V' and 7
induces a locally trivial topological fibration of 7= (V \ 7(Py(X,z,p) NU))
over V\ 7(Py(X,z,p) NU).

The sheaf (Rfr.)(Cy), whose fiber at y € V is the f-th cohomol-
ogy of m~1(y), is a constructible sheaf. The Euler characteristic yx (X, z)
of the general fiber of 7 is called the k-th vanishing Euler characteris-
tic of X at z. At z, one has dim,(X) Euler characteristics x(&X,z) :=
(1 (X, 2), - Xdima (X, T)).

For simplicity assume that X is equidimensional. Then, one has a char-
acterization of a Whitney stratification by a result of Lé and Teissier
(Ref. 13, Théoreme (5.3.1)) similar to the one of Teissier given above:

Theorem 6.1. Let X be an equidimensional complex analytic set. Let S =
(Xa)aca be a stratification of X. Suppose that, for any pair (Xo, Xg), such
that Xo C Xg, the Euler characteristics (x1(Xg,y), - - -, Xdim,x;(X3,9))
are constant for y € X, then, the stratification S is a Whitney stratifica-
tion.

7. Neighbouring Cycles

We saw in Section 5 shows that any analytic function on an open set defines
locally a locally trivial fibration on a circle S. The last theorem of Section
5 shows that this extends to functions on any complex analytic sets.

Let f : X — C be a complex analytic function on a complex analytic
subset of CV. On the fiber f~!(f(x)) of the function f through any point



129

z of X one can define a sheaf R¥(1;_4(,))(C), with R¥(¢s_4(,))(C)y =~
H*(F,,C) where F, is a fiber of the Milnor fibration defined above at y €
FH(F (@) by f.

This sheaf R*(¢;_ 4(,))(C) is a constructible sheaf on the fiber of f over
f(z). One calls it the sheaf of k-th neighbouring cycles of f at x.

Similarly, for any constructible sheaf £, one can define the sheaf of
neighbouring cycles R*(¢;_ y(2))(£) of f at z, where R¥(¢;_(1))(L), ~
H*(F,, L).

When f is defined on C"*! and has an isolated singular point at
z, the sheaf R*(¢;_f(;))(C) is non-zero when k = nor 0. In this case,
RO(4¢_(2))(C) is the constant sheaf on f~!(z) and R™(¢s_s,))(C) is a
sheaf whose value at x is C* and which is zero on a neighbourhood of x
outside {x}. In this special case, when n > 1, one also call R"(¢s_f(,)(C)
the sheaf of n-neighbouring cycles of f at x.

When the complex analytic space X is a Milnor space (see Ref. 10) and
the function f : X — C has isolated singularities, i.e. there is a Whitney
stratification of X', such that the restriction of f to the strata has maximal
rank except at isolated points, one can define the same type of sheaf over the
fiber above the image of a singularity. For instance, complete intersection
spaces, e.g., hypersurfaces, are Milnor spaces.

Because of the fibration theorem, neighbouring cycles and vanishing
cycles at a point y of f~1(f(z)) are endowed with the monodromy of the
fibration. We have the important theorem (see e.g. Ref. 8, Theorem I p. 89,
or Ref. 4):

Theorem 7.1. The monodromy automorphism of neighbouring (or van-
ishing) cycles is a quasi-unipotent automorphism, i.e. its eigenvalues are
roots of unity.

8. Constructible Complexes

Constructible sheaves over a complex analytic set X make a category where
objects are constructible sheaves over X', morphisms are morphisms of
sheaves. Unit morphisms are identities of constructible sheaves and the
composition is the composition of sheaf morphisms.

One can notice that, for each morphism of constructible sheaves over
X, one can define the kernel, the image and the cokernel of the morphism.

A complex of sheaves of complex vector spaces over X is a sequence
of morphisms (¢n)nez, say ¢n: E, — En11, such that, for every n € Z,
©n 0 Yn—1=0.
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Complexes of sheaves of complex vector spaces over X make a category
whose objects are complexes of sheaves of complex vector spaces over X
and morphisms from (p,)nez into (¥, )nez are families (hy,)nez of sheaf
morphisms such that, for any n € Z,

hn+1 O Pn = ¢n o hn-

In practice we are interested in bounded complexes (¢, )nez of sheaves
of complex vector spaces over X such that for all n € Z except a finite
number ¢, is the trivial morphism from the null-sheaf 0 into itself. These
complexes make also a full subcategory Db(X) of the preceding one. Now
let (¢n)nez € DP(X), since ¢, 0 @,_1 = 0, the image of ¢,,_1 is a subsheaf
of the kernel of ¢,. The quotient of the kernel sheaf of ¢, by the image
sheaf of ¢,,_1 is by definition the n-th cohomology of (¢¥n)nez.

We say that the complex (¢, )nez is constructible over X', if it is bounded
and, for any n € Z, the n-th cohomology of (¢, )nez is a constructible sheaf
over X.

Constructible complexes over make a full subcategory D%(X) of D*(X).

Given a constructible complex K over X', one can consider the hyperco-
homology H*(X, K) of K (see Ref. 1, Chap. XVII).

Using the notations of 7, one can consider the neighbouring cycles
RF¥(¢;_ () (K) of K along f at x, where

Rk(¢fff(z))(K)y = Hk(Fya K).

9. Vanishing Cycles

Let X be a complex analytic space and K a constructible complex over
X. Let = be a point of X and f : U — C be a complex analytic function
defined on an open neighbourhood U of x in X. We have defined the k-th
neighbouring cycles of K along f — f(z) at « as the sheaf Rk(@[}f_f(z))(K),
where RF(¢;_ (1)) (K)y =~ H*(F,, K), over the space f~'(f(z)).

It is convenient to define the sheaf R¥(1¢_ ;(,))(K) as the k-th cohomol-
ogy of a bounded complex R(¢_ ¢(;))(K). The definition of the complex
R(¢5_ f(2))(K) uses derived categories and is rather abstract. Then, there
is a natural morphism from the restriction K|f~!(f(z)) to R(¢y_ f(x))(K).
There is a natural triangle in the appropriate derived category:

Klf‘i(lf(x)) - R(Vs—p(2))(K)

AN 7
R(p— ¢(x))(K)
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The complex R(¢5_¢(5))(K) is called the complex of vanishing cycles of
K along f — f(x). The cohomology gives a long exact sequence:

— H* (K| (f(2))) = R¥ Wy () (K) = R*(d5_f(a)) (K)
— HFY(K[f (f(2) —

The sheaf Rk(qu, #(x))(K) is the sheaf of k-th vanishing cycles of K along
I

In special cases these sheaves are easy to interpret. Let X = C™t! and
f : C" — C be complex analytic function with an isolated critical point
at 0. Let U be an open neighbourhood of 0 in C"*! where f has the only
critical point 0. Let the complex K be the complex having one term in
degree 0 equal to the constant sheaf C over C"*! and the sheaf 0 in other
degrees. The results of J. Milnor in Ref. 16 show that:

C if k=0
R*(Wy_f(0))(KIU) = { 0if k # 0,n
CratOifk=nandOatxz#0

Therefore if n > 2, the complex R(¢s_ ¢(0))(K|U) is the complex with the
constant sheaf C|U in degree 0, the sheaf with one non-trivial stalk C* at
0 in degree n, and all morphisms are zero.

The complex R(¢s_f(0))(K|U) has only one term in degree n which is
the sheaf with one non-trivial stalk C* at 0, all the other terms in degree
# n being 0.

One can observe that in this special case of isolated critical point the
complex of vanishing cycles of the complex K|U along f consists of a sheaf
non-trivial in the degree equal to the dimension of f~1(0) which has only
one non-trivial stalk over the isolated critical point 0.

It can be proved that it is true for any space X satisfying the Milnor
condition (see Ref. 10, §5) for functions having isolated singularities in the
general sense of (Ref. 10, §1) and for any complex K x equal to the constant
sheaf Cx over X in degree 0 and to the trivial sheaf 0 in other degrees.

The support of a constructible sheaf £ on the complex analytic space
X is the complex analytic subspace ) closure of the set of points x where
Ly #0.

One says that a constructible complex K on CV satisfies the support
condition if the codimension of the support of its i-th cohomology H*(K) is
> i

The Verdier dual of a constructible complex K on C¥ is the derived
complex RHomc_ (K, Ccn). Beware that the Verdier dual of a complex on
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C¥ is not the complex of duals. On the other hand, there is also a notion of
duality for a constructible complex on a complex analytic space. However
in this general case the construction is not as “simple” as the Verdier dual.
The construction of the Verdier dual is usually difficult. Properties of the
Verdier dual can be found in Ref. 3. One can prove that the Verdier dual
of a constructible complex is also a constructible complex.

One says that the constructible complex K on C¥ satisfies the cosupport
condition, if the Verdier dual K of K satisfies the support condition.

A constructible complex K on CV is perverse, if it satisfies the sup-
port condition and the cosupport condition. We shall call perverse sheaf a
perverse constructible complex.

One can prove that more generally, if K is a perverse sheaf on CV, the
complex of vanishing cycles along a function f which has an isolated critical
point in the general sense of Ref. 10, §1 at O for all the restrictions of f to
the closures of the strata on which all the cohomologies H*(K) are locally
constant, in an open neighbourhood U of 0, consists in the degree equal
to the dimension n of f~1(0), i.e. for R™(¢s_ ¢(0))(K)|U, of a sheaf which
has only one non-trivial stalk over the isolated critical point 0 and 0 in the
other degrees:

R™(¢5- f(0)) (K)o = C*

R™ (¢ f(0))(K)y =0, for y # 0
One has the following result due to P. Deligne (see e.g. Ref. 11):

Theorem 9.1. Let K be a perverse sheaf on CV. Let x € CN. For almost
all affine functions £ of CN, the sheaf of vanishing cycles of K along £ in
an open neighbourhood of x is either zero or a complex which is zero in all
degrees except in degree equal to the dimension of N — 1, where it has a
non-trivial stalk only at x.

We can define:

Definition 9.1. Let K be a perverse sheaf on CN. The subvariety V(K) of
the cotangent bundle T*(CN) of CN is the characteristic variety of K if,
a point (x,€) € V(K) if and only if it belongs to the closure of the points
(y,1) for which there is a neighbourhood U where R* (¢y_;(,))(K)|U =0 for
k#n=N-=1and RN (¢,_y0,))(K)|U is a non-trivial skyscraper sheaf
with a non-zero fiber at y.
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10. Holonomic D-Modules

Let X a complex analytic manifold of complex dimension n. On X’ consider
the sheaf D of complex analytic differential operators. Notice that this sheaf
is filtered by the sheaves D(k) of differential operators of order < k.

We consider sheaves on & which are coherent left D-modules. We shall
call these sheaves simply D-modules.

For instance, if X is a Riemann surface, in this meeting L. Narvaez
considered D-modules over a complex analytic manifold of dimension 1.

Since the sheaf D itself is coherent, a D-module M is locally of finite
presentation, i.e. for any x € X', there is an open neighbourhood U, over
which one has an exact sequence:

(D)|U,” L (D|U,)? & MU, — 0.

One can notice that o((D(k)|U,)?) = M(k) defines a good filtration of M
(see the lectures of F. Castro).

The complex analytic space Specan ®y>0 (D(k)|Uy)/(D(k —1)|U,) cor-
responding to the commutative graded ring gr(D|U, )associated to the fil-
tration of D|U, by the D(k)|U, is the cotangent space of U,. The support
of the gr(D|U,)-module @59 M|U(k)/M|Uz(k — 1) is the characteristic
variety Ch(M|U,) of the D|U,-modules M|U,. One can show that this
definition does not depend on the local finite presentation of M.

We shall say that the D-module M is holonomic if the dimension of the
characteristic variety Ch(M) is equal to the dimension n of the manifold
X.

As it is done in Ref. 7, we obtain the following relation between the char-
acteristic variety of a holonomic D-module and the topology (see Proposi-
tion 10.6.5 of Ref. 7):

Theorem 10.1. Let M be a holonomic D-module on a complex analytic
manifold X. There is a Whilney stratification (Xq)aca of X, such that
the characterisitc variety of M is contained in the union of the conormal
bundles T)*(QX of the strata X, in X.

Recall that if S is a submanifold of X, the conormal T¢X of S in X is
the bundle of (s,¢) € T*X, such that £ is a linear form which vanishes on
T5(S). It can be seen that, when X is a manifold and S is submanifold, the
conormal bundle T¢X of S in X is a Lagrangean submanifold of 7*X.

In fact we can obtain a more precise result.
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As it is done for n = 1 in the lectures of L. Narvaez, we define the
analytic solutions of D-module M to be the complex RHomp (M, O). This
is the stable (derived) version of the “naive” definition Homp (M, O).

M. Kashiwara proved in Ref. 6 that:

Theorem 10.2. If the D-module M is holonomic, the analytic solutions
RHomp (M, O) of M is a constructible complex which satisfies the support
condition.

A theorem of Z. Mebkhout (see Ref. 15) shows that:

Theorem 10.3. The Verdier dual of the analytic solutions RHomp (M, O)
of the holonomic D-module M is the analytic solutions of a holonomic D-
module, dual of M.

It follows that:

Corollary 10.1. The analytic solutions RHomp (M, Q) of the holonomic
D-module M is a perverse sheaf.

From this result and the ones of the preceding section we can state a
result of D. T. Lé and Z. Mebkhout:'?

Theorem 10.4. The characteristic variety of an holonomic D-module M
is the characteristic variety of the perverse sheaf of its analytic solutions.
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1. Introduction

Classically a singular integral is an integral whose integrand reaches an
infinite value at one or more points in the domain of integration. Even so,
such integrals can converge as shown in the following example.

Example : Hilbert transform For f € L?(R), we would like to define the
1 _

integral — / M dy. Since y = 0 is a singular point for the integrand,
T JR )

we define instead

M@ =tim = [ LE=Y

=0T Jiyl>e Y

It can be shown that H[f] is well defined in L?*(R). In fact one gets an
automorphism of L?(R),

H: L*(R) — L*(R), H?*=—Id,
which is called the Hilbert transform.2’
In this lecture, we shall be interested in analytic functions defined by

integrals. One more example is provided by the Gauss hypergeometric func-
tions.

Y.
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Example : Gauss hypergeometric function We briefly discuss here
the Gauss hypergeometric functions (see also Le Dung Trang, M. Jambu,
M. Yoshida in this volume). For a € C we write as usual

_I'la+n) B
(a)n = T ala+1)---(a+n—-1), (a)g=1
(T" is the Gamma function). We consider for ¢ # 0, —1, -2, - -,
F(a,b;c;2) = Z (@n(0)n 2" (1)

= (c)nn!

which converges absolutely for z € C, |z| < 1. We have also, for ¢ > Rb >
0 and |z| < 1, the Euler’s formula :

F(a,b;c;z) = %/O 71— 1)o7 A — )T dt (2)

Indeed, since for [tz] < 1

o0

(1—t2)" Z

n=0

one has, for |z| < 1 (normal convergence)

F(b)F(C—b)/Ot (1-1) (1—2t)~*dt

1
_ n n+b—1 _ 4\c—b—1
E n' NG 7 z /0 t (1—1t) dt

n=0

and we recognize the Euler’s Beta function. Therefore, for ¢ > Rb >
0, |2 <1,

F(C) ! b—1 _ p\e—b—1 _ —a
7”[))”0_())/016 (1—£)°b=1(1 — 26)~dt

=~ (a), T(n+b)T(c—0b) ,
:Z(n)! (n+b)I'(c—b)

o I'(n+c)

o]
ZaL nn
= (@t

As a consequence of the Lebesgue dominated convergence theorem, we note
that the integral representation (2) allows to extend analytically F(a,b;c; z)
in z to |arg(1 — z)| < 7 (the cut plane C\|1, +o0]). This raises the following
questions :
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e what it the behaviour of F'(a,b;c;z) at z=17
e what it the behaviour of F'(a,b;c;z) at z =00 7

Here part of the answers comes from the fact that the Gauss hypergeo-
metric function F'(a, b; ¢; z) is solution of the following Gauss hypergeomet-
ric equation,

2

[z(l—z)%—k[c—(a—|—b+1)2}dilz—ab}f:0. (3)

Now (cf. L. Narvédez, this volume):

e From the Cauchy existence theorem for linear differential equa-
tions, any solution f of (3) extends analytically in z as a multival-
ued holomophic function on C\{0,1} (or on CP*\{0,1,00}).

e Actually equation (3) is an example of a linear differential equation
of Fuchsian type : the singular points 0, 1, co are regular singular
points (to see what happens at co, make the change of variable

z==).
This ensures that for any solution f of (3), one can write locally f
as a finite sum,

f)= > bar(X)X*(Log X)*,  ¢ar € C{X}.

acC,keN

1
(Here X stands for X = z, X = z — 1 and X = — respectively
z

depending on where we localize.)

Remark : to calculate the above decomposition at oo explicitely for the
Gauss hypergeometric function F'(a, b; ¢; 2) it is convenient to use its Mellin-
Barnes integral representation'® (see also M. Granger, this volume, for
Mellin integrals).

Roughly speaking, in this course we shall be mainly concerned by an-
alytic functions defined as Laplace transforms of solutions of linear dif-
ferential equations with regular singular points, for instance the following
function,

I(a,b;c; k) 2/ e **F(a,b;¢; 2) dz
0

where we integrate along a path on C\{1}. For such a function, we shall be
interested in the (Poincaré) asymptotics at infinity in k.



139

The paper is base on a course given at the ICTP “School on Algebraic
approach to differential equations”, Alexandria - Egypt, November 12-24,
2007. It aims at introducing the reader into a subject where analysis and
geometry are linked. It is written so as to be self-contained up to some
other courses given during the school and written in this volume.

The structure of the paper is as follows.

In section 2 we consider some gentle examples of analytic functions
defined as Laplace transforms in dimension 1 so as to introduce the reader
into the subject. In section 3 we concentrate on properties of integrals of
holomorphic differential forms along cycles so as to derive, in section 4
the asymptotics of Laplace-type integrals. Two appendices remind some
results in homology theory and some properties of analytic spaces which
are required in the paper.

2. Laplace-Type Integrals and Asymptotics: Some
Examples

2.1. A basic example

We start this section with the following Laplace-type integral

I(k):/Re_kfa

f(z)=2% o=dz

(4)

which defines a holomorphic function in £(k) > 0 (Lebesgue dominated
convergence theorem). We are interested in the asymptotics of I(k) when
|k| — 4o0.

2.1.1. First method

By a direct calculation, one gets

_s2? dS o ﬁ
(s = k'/22)

Of course, this exact result provides the asymptotics of I(k).

2.1.2. Second method

By symmetry, we reduce I(k) into a Laplace transform :
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Foo Foo dt T(1/2)
_ —kf _ —kt _
I(k) = 2/0 e o= /0 € 172~ T g1/2

(symmetry) (f =1

For the last equality, we have used the following formula:

[Foewre @08,

leN, Ra)>-1.

2.1.3. Third method : the stationary phase method

The first two methods rely on exact calculations. The third method develops

another viewpoint and prepares the reader for some generalisations.
First step : localisation We recall that were are interested in the asymp-

totics of I(k) when |k| — 400, R(k) > 0. When |k| > 1, we note that the
integrand z € R — e#7(2) has a support which is essentially concentrated
near z = (0 where df = 0, approaching the Dirac d-distribution, see Fig. 1.
This is why we localize near that point. This can be done in the following
way : we introduce a to > 0 and we note that f=1([0,t0]) = [—+/%0, v/0)-

) 1/2
L L

Fig. 1. (a) The graph of z € R — |e~*f(2)| for k = 100. (b) The map f.
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We thus write
I(k) = I(kv tO) + R(kv tO)

I(k,to) = / e o, Rk, to) = / e Mo
0<f<to f>to

We introduce also the following open sectorial neighbourdhood of in-
finity of aperture m — 26,

(6)

Sys ={keC, |kl >r |argk|<g—(5}7 r> 0, o<5<g. (7)
(see Fig. 2) so that,
VkeX,s, R(k)>|klsin(d) > rsin(d).
Therefore,
3C>0,3IM >0,Vk € S,5, |R(k, to)] < M.e CI¥ (8)
(C = C(to,d) = tosin(d)), and in particular (since for all N € N,
|k|Ne=ClEl — 0 when |k| — 400) :

C

VN €N, 3C >0,Vk € Sps, |R(k to)| < TiLEE (9)

Remark : In fact, (8) implies the following more precise result (use the
Stirling formula?!):

I'(N +2)

3C > 0,YN €N, Yk € 5, |R(k,to)] < CNHW

(10)

-

Fig. 2. The sectorial neighbourdhood of infinity 3, 5.
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Second step : reduction to an incomplete Laplace transform We
now concentrate on

Ivto) = [ e Moy Ty = [V, Vil
Ty
For k fixed, we notice that e */o € Q'(C), where Q!(C) is the space of
holomorphic differential 1-forms on C.

[ Recall : if 2 = 2 + iy and z = = — iy, (x,y) € R?, one introduces the
differential 1-forms dz = dx + idy and dz = dz — idy. If g € C1 (U, C) with
U C C an open set, then

_ %9, .99

dg = 8zdz+$d2'
Now
dg B @
g€ O) ag—O@dg—azdz

Cauchy-Riemann
and by definition,
weQ'U) e 3Ihe O), w=hdz.

We recall also that if U is a simply connected open subset of C, then every
closed differential 1-form is exact (Poincaré lemma). We note also that if
w € QY (U), then w is closed. ]

From the fact that e ¥ o € Q!(C), there exists ¢ € Q°(C) = O(C) such
that dp = e~ */o (we are just saying that e=*/(*) has a primitive ). Thus,

I(k,t :/ e*’cfaz/ d = /
(k- to) r ry T V(to)(p (11)

to to
Stokes formula

where (o) is the boundary of I'y,, that is the formal difference of two
points,

~(to) = [Vito] — [-V/to].
In other words (11) is just a pedantic way of writing:
I(k,to) = o(Vto) — ¢(=Vo). (12)

We note Dy, = D(ty,n) C C the open disc centred at to with radius
small enough so that 0 & Dy, (0 <7 < ty). We note also by S = 9Dy, its
boundary with its natural orientation, Fig. 3, and we consider for ¢t € Dy,:

Li(k.t) = p(V1).
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Fig. 3.

Obviously I1(k,t) € O(Dy,) NC°(Dy,) so that, by the Cauchy formula,

1
Vte Dy, Il(k,t):—/ PV5) g
St s—t

2
By the inverse function theorem, f realizes a biholomorphic mapping be-
tween a neighbourhood of v/tg and D;,. In other words, one can take f as
a coordinate : taking s = f(z) = 22

1 1
Vte Dy, Li(kt)= f{ o(2) 2zdz=%%}f’—fft

2w | 22—t

, we get

where we integrate along an oriented loop surrounding /%y and v/%, see Fig.
3.

This integral representation has the following consequence : since the path
of integration does not depend on ¢, we obtain: for ¢t € Dy,

d _ 1 edf
a1kt = 2i7r?§(f—t)2

d( 4 >: dp — edf
f=t) f-t (f—t)?

e fe(75) -

d 1 dy
VteDto, %Il(k7t):% ﬁ

We remark now that, as far as f can be chosen as a coordinate, one can

Also,

and by Stokes

Therefore

write:

do = df ¥
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where ¥ is a holomorphic 0-form, usually denoted as a quotient form

_do kO
df df’
which is the meromorphic function here
—kf(2)
e
U(z) = .
(2) 5
What we get is finally:
d 1 daf. v ekt
Vte Dy, —I(k,t)=— ¢ —— = z
€ Diay 21 (k1) 2i7rj{f—t 3o lr=tia=vE

Cauchy formula

What have been done for I (k,t) can be done as well for Ir(k,t) = p(—v/1),
t € Dy,, so that :

d d dy _kt/ o
Vit € Dy, (k1) =~ / :/ Ll =e — =
o 0= < A1) SD) 20y df i o @
(13)

which is nothing but writing

vie Dy, Lt —’“( L ! ) <
v T3, ) =€ -~ 5 T S = =
o dt 2t —2vi) Vi

To write I(k,to) as an incomplete Laplace transform, what remains to do
now is to notice that

lim I(k,t)=0

t>0,t—0

(see (12), we recall that ¢ € O(C)), so that I(k,tg) can we written as the
following incomplete Laplace transform :

t t
_ [ ke o I
Tt = [ e (/W) df|f_t>dt [lent

Final step From (14) one has

“+o0
I(k, to) = /O e_kt% (ks to) = F]Sf) Fret) (1)

where

+oo dt
r(k,tg) = — ekt —
(k. to) / =
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is an exponentially decreasing function in £ € X, : the reasoning is
quite similar to what have been done for R(k,to) (in fact here r(k,tg) =
—R(k,t0)) so that

C

VN € N, aC > 07 VEk e ZT’(S, |’f’(l€,t0)| < |]§|T+1 (16)

Finally, (6), (15), (9) and (16) imply :

r(1/2) C

VN eN IC>0,Vke X, 5 |I(k)- RVE | < P

2.2. Airy and the steepest-descent method in dimension 1

We turn to the Airy equation

oy = (17)

a’y
X =1/x, then X°—— + 2X4—X -Y =0).
By Fourier transformation, one easily obtains the following particular solu-
tion of (17),

Y P
Ai) / ) g (18)

:ﬂ .

known as the Airy function. Applying the Cauchy existence theorem for
linear differential equations, we know that Ai(x) extends as a holomorphic
function on C.

Our aim in this subsection is to analyse the asymptotic behaviour of
the Airy function when x — +o00. More precisely we shall demonstrate the
following result (see also Ref. 5 for an hyperasymptotic viewpoint):

Proposition 2.0.1. If ¥, 5 is the sectorial neighbourdhood of infinity de-
fined by (7), then

N
VN €N, 3C >0,Vk € X5, |2vmk/0e/3Ai(k*/3) —

n=0

) o C
o | = TN
3., (n+1/6)'(n+5/6)

where the a,, belong to C (explicitely, a,, = (_Z) 27l(n + 1)

).
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0,2+

0,34

0,4+

Fig. 4. Trace on the real of the Airy function.

2.2.1. Prepared form

We assume for the moment that = > 0. In (18) we first make the change of
variable

then we set
k=232 ¢(=uk"/5

We thus get :

k1/3

for k>0, Ai(k*?) = oF
o

[e0w, go=c-§ a9
o 3

where the path C is drawn on Fig. 5. It is easy to see that (19) is equivalent
to writing:
k.l/S

for k>0, Ai(k*3) = 5
7r

<3
[ e0d g0 =c-5 o)
C1

where the path Cy is drawn on Fig. 5. (By integration by part, first write
1 2
/ e ka(Q) = —/ e_kg(C)ic d¢ then check that this last integral is
c k (1-¢?)?
equal to the integral along C1).
2.2.2. Integrability and space of allowed paths of integration

We pause a moment. Let us consider the integral

(k) = / e k) q¢ = /R (e k9 q¢y = /R e ko) (s)ds  (21)
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6

Z{Ao)

Fig. 5. On the left the paths C and Cp. On the right the open set ¥z (Ag). On this
right picture, a, b and c are relative 1-cycles of C with respect to ¥ r(Ap), and d is a
relative 1-boundary. The relative 1-cycles a and b are homologous and thus represent the
same class in H1(C,3gr(Ap)). This 1-homology group is a free Z-module generated by
the classes of a and c.

where ¢ : s € R +— ¢(s) € C is assumed to be smooth-piecewise,
lims_, 400 |¢(s)] = 400 and with moderate variations (|¢(s)| has moder-
ate growth). (C and Cy are such paths).

To make this integral Z(k) absolutely convergent, we would like that
R(—kg(¢)) — —oo when ¢ — oo along the endless path of integration
c. This translates into the condition that R(k(3) — —oo at infinity along c.
We write this in another way. If

0 =arg(k) € S=R/27Z (22)
we introduce the following open subsets of S,

2
2 0 2 0
Ae,(s:jL;JO]g—l—?ﬂj—54—5,%4—%]’—5—5[, 0 > 0 small enough

2
T 2. O m 2m. 6

i 6 3 3
(23)
and the associated family of sectorial neighbourdhoods of infinity
ER(A975) = {C eC, |C| > R, arg(() S A975}, R > 0.
(24)

Yr(49) ={C€C, [(| > R, arg(() € A9}, R>0.
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Then, the integral Z(k) will be absolutely convergent if apart from a com-
pact set the (support of the) path ¢ belongs to ¥ r(Ag,s) for some R > 0
and § > 0.

To precise the space of such allowed paths ¢, we now introduce the
1-homology group of the pair (C, Xr(Ays)),

H1 ((C, ER(AQ,(;)) = H1 ((C, ZR(AQ,(;); Z)

(see Appendix A for some notions on homology theory, see also Fig. 5).
We see that Hy(C, X g(Ags)) = Z2. Also, if R > R, so that X/ (Ag,5) C
Y r(Ap,s) one has a natural isomorphism

RRR’ : H]_((C,ER/(AQ)(;)) — H]_(C,ER(A97§))

since the pairs (C, X/ (Ag,s)) and (C, X r(Ag,s)) are homotopic. This allows
to define the following 1-homology group by inverse limit:

H{%,é (C) = liin H,(C, ER(A915))

(“we make R — +00”) which is still a free Z-module of rank 2. Finally we
define the 1-homology group we have in mind by inductive limit

H{**(C) = lim H{"**(C) (25)
(“we make 6 — 0”), a free Z-module of rank 2 which deserves to be the
space of equivalent classes of our allowed paths of integration.
Note indeed that if ¢ and ¢’ are two endless paths (smooth-piecewise, with
moderate variations) which represent the same element in H;**(C), then
(by integrability and by Stokes since e*9(¢) d¢ € Q(C) is closed)

/e—kg@) dC:/ ~k9(O) g

2.2.3. The steepest-descent method

We return to our integral (20) and we recall that we assume k& > 0. From
what have been said previously, in (20) we can replace Cy by any other
path of integration (smooth-piecewise, with moderate variations) belong-
ing to the same class of homology [C1] € H{* (C).

This is that freedom that we are going to use in the following station-
ary phase method®!'3 known as the Riemann-Debye “steepest-descent” or
“saddle-point” method?®.

2Tt is amazing how Riemann introduced this method to obtain what is now known as
the Riemann-Siegel formula for the zeta function, see Ref. 4.



149

Fig. 6. The vector field V(S‘E(kg)), some steepest-descent curves of R(—kg) for k > 0,
and the path Cs.

In the homology class of C; we look for a path Cy (or a linear com-
bination of paths) which follows a level curve of (kg) : if kg(z) =
P(x,y) + iQ(x,y), such a curve is an integral curve of the vector field

8—(’995 — a—By. By the Cauchy-Riemann equalities, this vector field is also
Yy i

. OP oP .
the gradient field V(R(kg)) = %8334— 8_y8y whose (oriented) level curves

are the steepest-ascent curves of R(kg), or equivalently the steepest-descent
curves of ¥(—kg). See Fig. (6). Note that g has two critical points ¢ = +1
where dg = 0. These are nondegenerate saddle points (since g is holomor-
phic, g as well as $(g) and R(g) are harmonic functions and therefore they
satisfy the maximum principle : any critical point is necessarily a saddle
point).

Consequence : In the homology class [C1] € H{49 (C) of C4, we can choose
a path Cy (smooth-piecewise, with moderate variations) such that:

o (5 is a level curve of S(kg),
e the support of Cs (i.e., its image) contains the saddle point { = +1.

See Fig. (6). In practice to obtain Cy, one can consider the deformation of
C; under the flow ® of the gradient field R(kg) : if Cy : s € R— ¢(s) € C,
consider the homotopy map

h :RT xR —C, h(r,s):=®(1,C1(s)).

Write Cy : s € R — Cs(s) € C and assume that C3(0) = 1. Then for
k > 0 the map s € R — —k[g(C(s)) — g(1)] defines a real function with
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the following variations :

s | —00 0 400

—k[g(C(s)) = g9(1)] N

—0o0 —00
In (20) thus replacing Cy by Cs, one gets
k.l/B

Ai(R*) = =
™

[ et0dc g0 =c-5 (26)
Cy

and we note that the integral defines a holomorphic function in k& € ¥, 5
(3,5 is the sectorial neighbourdhood of infinity defined by (7)).
We are now in position to copy what we done in 2.1.

2.2.4. Localisation

In (26) we set ( =1+ z so as to be centred on the critical point:

1/3p—2k/3
Ai(k?3) = Z———
i 2im
for k € ¥,.5, (27)
3
I(k) = / eFF @ dz, flz) = 22— =
r 3

where I is the translated of Cs.
We now fix a tg > 0 and we note I'y, the restriction of I (precisely its
support) to f~1([0,t0]), see Fig. 7.

r

Zto
Mg fi

z(to

Fig. 7. The path I" and its restriction I't,. The path I' is mapped twice on RT, resp.
Tty twice on [0, to], by f.
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We write

I(k) = I(k,to) + R(k,to),  I(k,to) :/F e @) gz, (28)

to

Concerning R(k,to) one easily shows that
3C>0,3M >0,Yk € S5, |R(k,1o)| < M.e=CIH

and in particular

C
VNEN, E|C>O,Vk62ms, |R(l€,t0)| S WTH (29)
or more precisely
(N +2
30> 0, YN €N, Yk € g, |l 1) < VI EV D )

|k|N+1

This allows to concentrate on I(k,tg).

2.2.5. First method

We briefly mention this first method just for completeness. Since the origin
is a nondegenerate critical point for f, by the complex Morse lemma one
can find a local coordinate Z such that

flz)=2"
Explicitely,

1 5 1
=iZ+ -7 =iz — —Z*+ ... C{Z}.
e=iZ+ ¢ i 52+ eC{Z}

Therefore, for ¢y > 0 small enough,

Vio 2
I(k,to):/ e % h(2)dz,

Vio
1 5 4
hZ)=> hnZ" =i+ 32 T 2—723 +--- € C{Z}.

n>0
As we shall see later (see 2.2.8), to get the asymptotics of I(k,to) and I(k)
when |k| — 400 in ¥, 5 reduces in exchanging > and [ and in integrating

on R:

VT BT g
I(k) ~1 ? i3 k +
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Fig. 8. Trace on the real of L.

2.2.6. Second method : reduction to an incomplete Laplace transform

(1)

We have here in mind to represent I(k,tg) = / e *f() 4z as an incom-
Ty,
plete Laplace transform, that is in a way to make the change of variable

t = f(z). For doing that we may introduce the complex algebraic curve
L={(zt)€C?t=f(2)}

This is an analytic submanifold of C?, dim¢ £ = 1, see Fig. 8.

(z,t) € L
If one considers 7 : l then (£,71) is nothing but the graph of
zeC
f. If one considers instead
(Z,t) € ‘C\{(an)v(_27_4/3)} (Z,t) €L
ol : 1 Ty 1
t € C\{0,—-4/3} teC

then (£\{(0,0),(—2,—4/3)},m2|) is a 3-sheeted covering of C\{0,—-4/3}
which is the Riemann surface of the inverse function z(t), 0 and —4/3
being algebraic branch points of order 2. ((£,72) is the so-called ramified
Riemann surface).

However for our purpose we do not need such a global information, since
the support of I'y, is localized near z = 0.
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We thus introduce an open disc D = D(0,7), resp. an open ball B =
B(0,¢e) with 0 < € < 2, see Fig.7 and Fig. 8. We can choose 0 < 1 small
enough (n < %) so that:

e for any to € D* = D\{0}, the set BN f~1(ty) consists in two
distinct points 21 (tp) and 22(to).

e for t near tg, each of these two functions 21 (¢) and z5(¢) represents
a germ of holomorphic functions at to (this is a consequence of the
implicit function theorem since ¢y # 0 is not a critical value of f).

In other words, z1(t) (say) extends to a multivalued function z(t) € Op- 4,
with two determinations z1(¢) and z2(t) (cf. L. Narvdez, this volume).
It is not hard to calculate z(t) explicitely:

_ (1 L o w2 ., O
z(t)-(Gt 27t + >—|—t Z—|—72zt+

where the series expansions belong to C{t} with 4/3 for their radius of
convergence.

We now go back to I(k,to) as defined by (28), where we assume that
to > 0, to € D*. Making the change of variable z = z(¢) one has

N

I(k, to) = /r” R I dt,  J(t) = — 1

2(t)(2+ 2(t))

where the path f‘; drawn on Fig. 9 should be thought of as a path on
(E, 71'2).

\\]/(t) = #
pa 2,0@2+7(1)
/\/\/\(2(_é to 1

[

— Z()(2+2(D)

Fig. 9. The path f‘;.
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This reduces into
to
(ke to) = / eH (1) dt,
0

0o 31)
5 385 (
J(t) = bt =712 (z R it? + - )
n=0

24 3456

where the series expansion belongs to C{¢} with 4/3 for its radius of con-
vergence.

2.2.7. Third method : reduction to an incomplete Laplace transform
(2)
Rather than the previous method, we can repeat what has been done in

2.1.3. With the notations and hypotheses of the previous subsection, we
have

I(kﬂfo):/ efkfa, with  o=dz, f(z)=—-2"——
r

to

so that e %o € QY(B) and thus e /o is closed. Since B is simply con-
nected we deduce that e %o is exact : there exists p € Q°(B) = O(B)
such that dp = e */o. By Stokes,

Ihto)= [ do= / 0 (32)
Ty v(to)

where (to) is the boundary of I'y,,

Y(to) = [22(t0)] — [21(t0)]- (33)

For t near to we introduce a small circle S' of radius small enough
(S! € D*) which surrounds to and ¢ in the positive oriented way, Fig. 10.
To this circle S and to y(t) we associate §;y(t) = d2 — d; which consists
in the formal difference of the two closed paths drawn of Fig. 10, where 5
surrounds z2(to), z2(t), and §; surrounds z1(to), z1(t).
By Cauchy and taking f as a coordinate, one gets:

I(k t)—/ o= pdf_
e 2T s ot

This implies that (see 2.1.3):

d 1 / do 1 / df dy
—I(k,t) = — T T 5. T
AT N Tl NN e
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Fig. 10.

where the quotient form is the following meromorphic function:
dyo e—kf(2)
a2 +2)
By Cauchy, this means that

d dy o
S [ L] o

dt ) v(t) df|f t v(t) df|f t
Using the fact that

lim I(k,t)=0
t>0,t—0
one finally concludes that :
to
Ito) = [ awan, J0 = [ Tl (34)
0 ~@) Af

2.2.8. The asymptotics
We first analyse the asymptotics of I(k,to) for k € ¥, 5. From (31),

to 00
I(k,to) :/ ekt (Z bnt”‘l/2> dt
0 n=0

so that for any NV € N,

oo N +oo N
0

n=0 to n=0

to 00
+/ ekt Z bt™ 2 dt
0

n=N+1
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Using (5), this means that

I(k 1) — Zb n+1/2)

k77,+1/2
to N 400
}: bt/ e*%”*mdt—E:bn/‘ e Rt =1/2 gy
n=N+1 n=0 to
Making the change of variable ¢ = tgs one obtains:
I(n+1/2)
I(k,to) = Zb Tgntiz
+oo
Z b ¢ n+1/2/ —ktossn—l/Q ds — anton+l/2/ €_kt05tn_1/2 ds.
1

n=N+1 n=0

Since s"1/2 < gN+1/2 ip the integrals, it follows that for k € 3, 5,

(Z b, Wm) ( P<N+3/]2V)+3/2~

n+l/2
n=0 k n=0 toSlD(5)|k|)
(35)
Using (28) and (30), we can conclude for the asymptotics that:
3¢ >0,VN €N, Vk ey p, L1 1/2)
>0 €N, VEE Zrs, Z Ttz
I'(N +3/2)
N+3/2
<C || N+3/2 (36)

Note this result (36) is stronger than the usual Poincaré asymptotics (see
Malgrange?!).
With this result and (27) we get the proposition 2.0.1.

2.2.9. Remark 1 : geometric monodromy

Let us go back to the function J(¢) defined by (34), namely
o

HO= [ Tt O = [2(0] - (0,
oK

This function J(t) can be viewed as defining a germ of holomorphic func-
tions at to which extends to a multivalued function on D*. So we now think
of J as a germ in Op-« .
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Let A be the following loop in D*,
A:[0,1] — D*,  X:sst = toe? ™.

This loop A generates the first homotopy group 71 (D*,tg). We note T =
p(A) the associated monodromy operator, where

p T (D*,to) — AUtO(D*)—alg.(OD*7t0)
(cf. L. Narvdez, this volume). Then
T(J)=-J

because z1(t) and 25(t) are exchanged when ¢ follows the loop A, so that
~(to) is transformed into —~(to).
Thus J is of finite determination and one infers from the geometry that

T(Y2)) =1/,

that is t*/2.J is uniform.

Since we know by other means that J is a multivalued function with
moderate growth at 0, we deduce that J belongs to the Nilsson class at
t = 0 (cf. L. Narvédez, this volume). This implies that J(¢) is solution of a
holomorphic linear differential equation L(J) = 0, L € End¢c(Op) with a
regular singular point at 0. By inverse Laplace transformation, there is a
relationship between this linear differential equation and the Airy equation
(17) we started with. It can be shown that

L _1/2 151 3
J(t) = it™V2F <E’E’§’_Zt)

where F'(a,b;c; z) is the Gauss hypergeometric function.

2.2.10. Remark 2 : an example of local system
In 2.2.2 we introduced the family of homology groups
Fo=H{(C), 6eS=R/27Z,

each of them being a free Z-module of rank 2.
More generally, for any U C S, a connected open arc of length < 7, one
can defined

Ay=[)4sCS
0eU
and the group

F(U) = H{ (C) = 7°.



Fig. 11. Continous deformation of a relative 1-cycle a when 6 moves along S.

The data of all these groups (F(U)) with the obvious isomorphisms
pvu : FU) = F(V), VU

makes a sheaf® of groups F on the topological space S which is locally
constant (F is a local system). Note that F is not a constant sheaf, see Fig.
11.

2.2.11. Ezercise
3 4
One considers f(z) = — + T Note that z = 0 is a degenerate singular

point of order 2 for f, whereas z = —1 is a nondegenerate singular point,
see Fig. 12.
For k € ¥, 5 (for some r > 0 and 0 < § < 7/2) we define

+o00 “+100
Il(lc):/ e k) 4z, Ig(k):/ e k) 2.

— oo —100

Show that for k € 3, 5 :

PFor U C S, one constructs a section I' € F(U) by considering a covering (U;)ier of U
made of open connected arcs of length < 7 and a family (I';);es of elements of F(U;)
such that for all 4, j € I one has

pu;nu;,A; (Li) = pusnuy,u; (D).
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Fig. 12. The vector field V(R(kf)), and some steepest-descent curves of R(—kf) for

24

53
k>0andf(z):?+Z.

(1) (k) is asymptotic to

1 31 1
k/12, / == 4
e 27T(k1/2+12k3/2+ )

(2) I2(k) is asymptotic to
2mv3 1 328T(2/3) 1 91
Com3 1 EPTem) 1 91
9r'(2/3) k1/3 6 k2/3 8k
With the methods described in this subsection, we know that the
asymptotics of Iz(k) is governed by those of

to dz
I(k,to):/ e I(t) dt, J(t):/ — =t
0 S0 df

with ¢o > 0 small enough, and a convenient «(¢). With the notations of
2.2.9, show that T3(J) = J where T is the monodromy operator.

2.3. An example in higher dimension
2.3.1. Two division lemmas
We start with two lemmas (see Refs. 19 and 25).

Lemma 2.0.1 (Local division of forms). We assume that f is a C*
function on the open set U C R™ (resp. a holomorphic function onU C C™).
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Let w be a C™ differential p-form (resp. a holomorphic differential p-form,
we QP(U)) such that

df N\w=0

on U. If zo € U is not a critical point of f (df (z0) # 0) then there exists a
neighbourhood U,y C U of zo and a C*= differential (p — 1)-form ¥ on U,
(resp. a holomorphic differential (p — 1)-form, ¥ € QP~1(U,,)) such that

w=df NU.

Moreover, the restriction of ¥ to any hypersurface U,,Nf~1(t) is a uniquely
defined C*° (p — 1)-form (resp. holomorphic (p — 1)-form).
One usually notes U as a quotient form

w

df
which is called a Leray-Gelfand quotient form.

v

Proof. We just consider the case p = n so that w = g(z)dz1 A -+ Adz,.

e From the implicit function theorem, one can choose a local system of
coordinates s = (s1,- - ,$p) such that f = s; is a coordinate while w =
h(s)dsy A -+ A dsy,. Defining ¥ = h(s)dsa A --- A ds,, gives the result. To
make things explicit, there exists a C*® (resp. holomorphic) diffeomorphism
¢:5€(V,0) CR"— z € (Uy, 20) such that

¢* o f(s) = fog(s) =s1.
Meanwhile,
¢* 0 w(s) = (¢* o g(s)) det (dqb(s))dsl Ao A ds.
Defining
6" 0 W(s) = (6" 0 gls)) det (d(s))dsy -+ A ds
one gets
¢*ow:d(¢*of) A (¢*O\IJ) - (¢*odf) A ((b*o\I/) — ¢ o (df/\\I/).

e Assume that w = df AW = df A Us, then using the above local system of
coordinates one has ds; A (U1 — Wy) = 0 where f = s1, so that Uy — Uy =
dsy A (+++) and finally if o (U1 — W) = 0, where i, : U,, N f~1(t) — Uy, is
the canonical injection. O
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Lemma 2.0.2 (Global division of forms). With the notations of the
previous lemma, we assume that df Aw =0 on U and furthermore

VzeU, df(z) #0.
Then there exists a C*° (p — 1)-form ;u_f on U such that

w—df/\df

Moreover, the restriction of :_f to any hypersurface UN f=1(t) is a uniquely

defined C*° (p — 1)-form (resp. holomorphic (p — 1)-form,).

Proof. We recall that on a C*°-manifold (separated with countable basis),
every open covering has a C* partition of 1 subordinate to it. Lemma 2.0.2
is thus a consequence of Lemma 2.0.1.

Note that in the holomorphic case % isonly a C® (p—1)-form on U as a

rule. However its restriction to a level hypersurface U N f~!(t) is holomor-
phic thanks to its uniqueness and Lemma 2.0.1. O

2.3.2. An application

We consider here the integral
I(k):/ w, w=ekg

where z = (21, - ,2n), 0 = g(2)dz1 A -+ Adz, (R™ with its canonical
orientation). We assume that f € C*°(R",R) and g € C°(R™, R).

Assuming that the support of the differential form w does not meet the
singular locus of f (the set of critical points) and using Lemma 2.0.2, one
obtains :

L= lang = /(At)df)dt /R_kt</w<t>df>dt

(Fubini)
where 7(t) is level hypersurface f = ¢ (naturally oriented as the boundary
of f <t).
As a matter of fact, the above equality extends to the case where the support
of w meets some singular fibres f = ¢ since:

e the set of critical values of the smooth function f is a Lebesgue null set
(Sard’s theorem).
e each fibre f =t is a Lebesgue null set for the Lebesgue measure in R™.
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2.3.3. An example

By way of a simple example we consider for k > 0 (or even k € 3, ;5 for
some r >0 and 0 < 0 < 7/2),

I(k) = / e Mo, fla,2) =21 + 25, (a,b) € (2N*)?
RQ
and o = g(z1, 22)dz1 A dza, g € Clzy1, z2]. Writing

21,2’2 E Jp, q21Z2

with (p, ¢) € N?, it is straighforward (by Fubini) to calculate I(k),

1 qg+1 . .
_ @F(%)F(T) dp,q = 01if p or ¢ is odd
Ith) = Z Ar ab PR+t 7 64 = 0 otherwise (37)

p,q

Also from what precedes (since f is a positive function),

+oo -
I(k)z/o e FJ(t) dt, J(t):/(t)@

with (t) the closed curve y(t) = {(z1,22) € R?, f(z1,29) = t} and from
(37) by inverse Laplace transformation,

gpq p+1 Q+1 ptl gtl
46 B(—, te T
Z p.q CLb a b )

with B the Euler Beta function. See also M. Granger, this volume.

3. Integrals of Holomorphic Differential Forms along Cycles

We would like to extend the constructions seen in §2 to multidimensional
integrals defined in the complex field. Here we shall define and analyse the

functions
J(t) = / w
v(t)

e w is a holomorphic differential (n — 1)-form on U C C”,
e ~(t) is a (n — 1)-cycle on the level hypersurface f =t,
e f:U C C" — C is holomorphic.

where:

The notions of homology theory which are used in the sequel are recalled
in the appendix A, see also Refs. 12, 16 and 28.
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3.1. Integrals along cycles on fibres
3.1.1. Definition and first property

We assume here that f: C"* — C is a (non constant) holomorphic function
(f € O(C")) and that w € Q" 1(C") is a holomorphic differential (n — 1)-
form : w = Z g1(2)dz; where z = (21, ,2n), g1 € O(C™) and if
I|l=n—1

I= (i1, - ,i‘p‘) then dzr = dzi, N--- Ndz,.

We assume that to € C is not a critical value of f so that f~!(¢) is an
holomorphic submanifold of C" of dimension dime f~1(¢g) =n — 1.

Let y(to) € Zn_1(f1(to)) be a (n — 1)-cycle of f~1(tg).

Proposition 3.0.2. With the above hypotheses, the integral / w de-
v(to)
pends only on the homology class [y(to)] € Hu—1(f1(to)).

Proof. We first mention that /
v(to)
where i : f~1(tg) < C™ is the canonical injection.

w is a short way of writing / w
'L*’Y(tﬂ)

We have w= i*w where i*w € Q"1 (f~1(ty)) is a holomorphic
ixv(to) 7(to)
differential (n —1)-form on f~1(¢g). Since dim¢ f~1(tg) = n— 1, this means

that i*w is of maximal order, so that i*w is closed. We conclude with the
Corollary A.4.1. O

3.1.2. The Ehresmann fibration theorem

We would like to think of the integral / wwith [y(t)] € Ho—1(f71(t)) as a
()
continuous function of ¢. This requires to being able to deform continuously

~(to) to a nearby ~y(t) for ¢ near tg. This relies on some fibration theorems.
We first mention the following result, see Ref 12:

Theorem 3.1 (Ehresmann fibration theorem). If M and N are dif-
ferentiable (resp. C*°) manifolds and if f : M — N is a proper submersion,
then f is a locally trivial differentiable (resp. C*) fibration.

If M is a manifold with boundary OM, and if both f : M — N and
fl: OM — N are proper submersions, then both f and f| are locally trivial
differentiable (resp. C*°) fibrations.

So when f is a submersion (for any m € M, rank T,,f = dim N) and
proper (f~!(a compact) is compact), then for every to € N, there exist
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a neighbourhood U of ¢y and a differentiable (resp. C*°) diffeomorphism
@ : f71(U) - U x f~Y(ty) (a so-called local trivialization map) such that
the following diagram commutes:

£ 2 U % )

fIN / pra
U

(in other words, f is the projection of a differentiable (resp. C*°) fibre
bundle).
If M is a manifold with boundary OM, and if both f : M — N and
f|: @M — N are proper submersions, then the above diagram respects the
boundary and the interior M\OM of M.

We give also the following result'? :

Proposition 3.1.1. If f: M — N is a locally trivial differentiable (resp.
C®) fibration and if N is contractible, then this fibration is trivial.

For a given f € O(C™) the Ehresmann fibration theorem cannot be
applied directly since in general (when n > 2) such a map is not proper (just
think of f(z1,22) = 21 — 22) and furthermore f has as a rule a nonempty
set Sings C C" of critical points.

We now consider a zg ¢ Singy. We introduce the open ball B
B(zp,e) C C™ and the closed ball B whose boundary is 0B = {z
C", |z — z0|]| = ¢}. We introduce also the open disc D = D(tg,n) C
where tg = f(z0) and we note

am

X=Bnf YD), X=Bnf D).

We assume that X contains no critical point of f : this is true at least for
e > 0 small enough since zo ¢ Sing;.

Also we assume that f~1(to) and OB intersect transversally : apart from its
singular points, the locus f~1(¢9) can be seen as a C° submanifold of R?"
of real dimension 2(n — 1) while 9B can be considered as a C° submanifold
of R?" of real dimension 2n — 1. Then f~1(to) and OB cut transversally if

Vze fto)NOB, T.(f '(to)) + T.0B = R*.

It can be shown that this is true at least for € > 0 small enough. Now by
the implicit function theorem, f~!(¢) and B will intersect transversally
for any t € D provided that n > 0 is chosen small enough.
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With these hypotheses, one obtains that X = BN f~1(D) is a C> manifold
with boundary X = 0B N f~1(D). Applying the Ehresmann fibration
X
theorem to f| | one obtains:
D

Theorem 3.2. We note B = B(zp,e) C C" an open ball and D =
D(to,n) C C with to = f(z0). We note

X=Bnf YD), X=Bnf D)

and we assume thciy contains no critical point of f. Then € and n can be
X X

chosen so that f| | and f| ] are locally C* trivial fibrations.
D D

As a matter of fact, because D is contractible, we deduce from Propo-
X
sition 3.1.1 that the fibre bundle f| | is trivial : there exists a C*° diffeo-
D
morphism ® such that the following diagram commutes:

x ®pxx,

fIN\ S > Xe=Bnfli(t) (38)
D

3.1.3. Applications

We assume that the conditions of Theorem 3.2 are fulfilled. We start with
a given (n — 1)-cycle ~(to) of X,

= ani S Zn—l(th)

and with (38) we define for t € D :

an 1 - q 1((1);1)(7@0))

where we have written ®;*(.) = ®!(¢,.) and used the notations of A.3.
What we get is a (so called) “horizontal deformation” of y(to), that is v(to)
has been deformed continuously (in fact in a C* manner) into a (n—1)-cycle
~(t) of X;.
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Remark The C* diffeomorphim ®; ' : X;
phism of homology groups

o — X; gives rise to an isomor-

(I)t_l* : HQ(Xto) - Hq(Xt)7 Vq

and the disjoint union |_| H,(X;) of all these groups makes a local system

teD
on D which is a constant sheaf®.

Proposition 3.2.1. If w € Q"7 1(X) is a holomorphic differential (n — 1)-
form in X, and with the above notations and hypotheses, the integral J(t) =
/ w defines a C* function in D.

v(t)

Proof. By Proposition 3.0.2, the integral J(t) = / w depends only on
v(t)

the homology class [y(t)] € Hp—1(X:). In the homology class [y(to)] €

H,_1(Xy,) we choose a piecewise differentiable (n — 1)-cycle =, and we

note

V() =D ni®; (o) =Y nioi(t).

By construction, each (¢ — 1)-simplex o;(¢) is a C* function of ¢ and since

/ w= / oi(t) w
oi(t) Aa—1

one concludes with the dominated Lebesgue theorem. O

Proposition 3.2.2. With the above notations and hypotheses, the integral
J(t) = / w defines a holomorphic function in D.
v(t)

Proof. To be holomorphic is a local property. For tg € D we consider t € D
near to. We introduce a small oriented circle S' in D which surrounds t
and t in the natural way (cf. Fig. 10).

We construct a cycle 6,v(¢) € Z,(X\X;) in the following way: if

~y(t) = ngi’ St.A' = D

°Note F = |_| Hy(X¢). If U € D is an open neighbourhood of tg, then F(U) is the set
teD

of the sections v : t € U +— ~(t) € F defined as () = @;1*(7(&))) € Hy(X¢) where

~(to) is some given element of Hq(X¢).
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Vo) y(t)

Fig. 13. The cycles v(t) € Z,—1(X¢) and §:7(t) € Zn(X\X¢).

we define (with @ as in (38))
5t0'1' . Al ®An_1 —>X\Xt, 5,5 g; :<I>_1(Sl,a¢)
(A' @ A" is here the oriented product of A' and A"~1) and?

Sy(t) =D ni (8 03).

The reader may think of d;(t) as the union U ~v(s) € X\ Xy, see Fig. 13.

ses?t
In that way, one gets a homomorphism

5t . Hn—l(Xt) — Hn(X\Xt)

which is just a particular case of the so-called Leray coboundary or tube

operator’>!1?-25 | With this definition, we now gives a lemma:

Lemma 3.2.1. For ¢ near g,

O A

2T Sy Ft
Before to give the proof (from Ref. 1), it is worth noting that the integral
/(SV(t) dfﬁ;‘j only depends on the homology class [0,7(t)] € H,(X\X})
df Nw
f—t

because

€ Q"(X\Xy) is closed.

dNote that &; o; can be seen as an element of Cj, (X\X¢) in the sense of appendix A :
just consider for instance the map > 7_ Aje; € A™ — ()\oeo + (1= Xo)er, 2271 (Aj +
Ao

7)87'—1) € A x A"~1 whose inverse map is obvious.
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Proof. By Fubini one gets

1 df ANw 1 / ds
- = w
2T 5y (t) f —t 2T S1 ~(s) s—1t

We write this as

1 df ANw

2i7T 5,5’7(15) f —t

By the Cauchy formula (because / w does not depend on s) one obtains
y(t

1 d
Al = — 5 / w = / w.
ZimJsrs =ty Sy

By Proposition 3.2.1 we know that / w is a C*° function in ¢, so that by
v(t)

Taylor,

/ w—/ w = Cste.(s —t) + O([s — t|?)
v(s) 7(®)

where Cste is a constant complex number. Using this result in A5 then
making the radius of the circle S* tend to 0 one gets As = 0. O

This lemma proves Proposition 3.2.2: in the integral representation

J(t):#/ df Nw

2Z7T 5t’Y(t) f —t

the cycle d;7(t) does not depend on ¢ for ¢ near ¢y in D. Since the integrand
is holomorphic in ¢, one concludes with the dominated Lebesgue theorem.

3.2. The polynomial case

In this subsection we assume that f : C"™ — C is a (non constant) polyno-
mial function.
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3.2.1. A fibration theorem and consequences

In the polynomial case we have the following fibration theorem®3! :

Theorem 3.3. Assume that f : C" — C is a polynomial function. Then
there exists a finite set Atypy = {t1,--- ,tn} C C of “atypical values” such

C™\f~1(Atypy)
that the restriction map f| | is a locally C*° trivial fibration.

C\Atypy

Remark To make a link between Theorems 3.3 and 3.1, let us introduce a
compactification of f which can be defined as follows. If d = deg f, define
z
G(2,20,t) = zgf(z—o) —tzf = fU2) + 20f TN 2) 4+ 4 20O (2) -t
(zdf (£) is the projectivization of f by the new variable zo; we have noted
by f! the homogeneous part of degree I of f) and introduce the set

M ={((z: 20),t) €e P¢ x C, G(z,z20,t) =0}
where P¢ is the n-dimensional complex projective space. We consider the
embedding e : z = (z1,--- ,2,) €C" = (2 :1) = (21 --- 1 25 1 1) € PR
and the map £ : 2z € C" — (e(z)7 f(z)) € P¢ x C, so that M is the Zariski
closure of E(C™) in P¢ x C. We thus get a commutative diagram

cn E2 Y 5 ((z: 20),1)

fl lp

c Y cot
A compactification of f : C* — C is given by the proper map p: M — C
which is a locally trivial fibration except over a set of points, and this
translates to the fibration f (see Refs. 31 and 6.. One has to see M as a
Whitney stratified space — see B. Teissier, this volume — and instead of
Theorem 3.1 one has in fact to use the Thom-Mather first isotopy lemma).
Of course f(Sings) C Atyps. However, Atyps may contains other values
which come from a set Sing?® of singular points at infinity. This is related
to the fact that the hypersurface M C P¢ x C has a singular locus, namely
> x C where X is the following algebraic subset of the hyperplane at infinity
H*> = {$0 :0} C]P)E,

Y ={(z:20) € P}, gradf? = f4"! = 20 =0} c M. (39)

What have been done in §3.1.2 can be repeated. Theorem 3.3 implies
that the union |_| H, 1(f'(t),K) (K = Z or C) makes a local
teC\Atypy
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system of groups on C\Atyp; (a locally constant sheaf but not constant
one in general) and, for a given w € Q"~(C"), the mapping

Lo - [y(t)] € Huoa (f7H(1) — 0 (40)

defines a representation of this local system into the sheaf Oc\ gy, of
holomorphic functions on C\ Atypy :

Corollary 3.3.1. For w € Q" 1(C") we consider
1= [ o b€ Ha o)
(1)

as defining a germ of holomorphic functions at to € C\Atypy. Then J(t)
extends to a multivalued function on C\ Atypy.

Using the fibration Theorem 3.3 one can consider the continuous hor-
izontal deformation of a (n — 1)-cycle when ¢ follows a closed path A €
m1(C\Atypy,to). We thus have an action

M X € m(C\Atypy,to) — p(\) = Aut(Hn,l(ffl(to), K))

where the automorphism M ()) is the geometric monodromy associated
with the loop A. We can define also the action

p: 1 (C\Atypy, to) — AUto(c\Atypf)falg,(OC\Atypf7to)
and we see that analysing the action of the monodromy operator p(\) on

the germ J(t) = / w just reduces by the representation (40) in analysing
y(®)
the action of the geometric monodromy operator M(X) on [y(to)]:

o ( [Y(tO) w) - /M()\)[’Y(to)] - )

3.2.2. The finite rank case

We now assume that H,_1(Xy) = ZF for to € C\Atypy, so that

(Hn,l(ffl(t))) makes a local system of free Z-modules of rank
teC\ Atypy

pon C\Atypy.

This is always true when n = 1, but also for instance when the set of atypi-

cal values Atypy arises only from isolated critical points at finite distance (in

Clz]

particular Atypy = f(Singy)). In that case and for n > 2, u = dim¢ W
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is the total Milnor number ((0f) is the Jacobian ideal) and is the sum of

the Milnor numbers at each singular point (cf. Ref. 30), u = Z Lz,
zx€Singy

C{z—=z
Wy, = dime M In a more general case for n > 2, still assuming that

(0f)

f has only isolated singular points including those at infinity (for instance
(39) defines a finite set), then for any t € C\Atypy, Hp,—1(Xy) 2 ZF @ A
where p is the total Milnor number while A is some finitely generated
abelian group.” (We shall return to that point in §4).

Let us then define a basis B(to) = (v1(to), - ,7u(to)) of (n — 1)-
cycles whose classes generate H,,_1(f 1(tg)) as a free Z-module of rank
w. The continuous horizontal deformation of B(¢g) along a loop A €
m1(C\Atypy, to) provides another basis M () (B(to)) of Hy—1(f1(to)) :
the geometric monodromy operator M () is represented in the basis B(tg)
by an invertible matrix M (\) € GL,(Z).

With Atyps = {t1,--- ,tn}, the fundamental group 7 (C\Atypy,to) of
C\Atyps with respect to the base point ty is the free group generated by
the family of loops (A;)i1<i<n drawn on Fig. 14 : the loop A; follows a path
l; which goes from ty to some i; near t;, then A; turns around ¢; in the
positive oriented direction and finally goes back to ty following [/; in the
inverse way.

We return to J(t) = / w as in Corollary 3.3.1. By analytic continu-

y(t)
ations along the path l;, we can assume that ¢ty = ¢; and think of J(t) as
an element of (9/1_):*;0 where D, is a small disc centred on ¢;. From the fact
that H,,_1(f~'(to)) is a free Z-module of rank p, we know that the geomet-
ric monodromy operator M (\;) is the zero of a polynomial (for instance its

Fig. 14. The generators of the fundamental group w1 (C\Atypy,to).



172

characteristic polynomial, by Cayley-Hamilton). By (41) this translates into
the fact that J() is of finite determination at ¢; (The characteristic polyno-
mial P € Z[X] provides a relationship between the various determinations
I, p(Ni)( ), ooy p(A)H(J)). Then (cf. L. Narvéez, this volume):

Proposition 3.3.1. We assume that f : C" — C is a polynomial function
with Atypy = {t1,--- ,tn} for its set of atypical values. For to € C\Atypy
we assume that H,_1(X;) = Z* and we fix w € Q"7 1(C"). Then any
analytic continuations /;J near any t; of the germ J(t) = / w, [v(®)] €

v(t)
H,—1(f~1(t)) of analytic functions at t¢ is of finite determination at ¢; and

one can write locally [;J as a finite sum
L) = Y ¢au(t —t:)Log '(t —t;)
a€eC,leN
where the ¢, are uniform near ¢;.

Next we give a (consequence of a) result due to Nilsson?3:24 :

Theorem 3.4. We assume that w is a polynomial differential (n — 1)-
form. Then, with the notations and hypotheses of Proposition 3.3.1, for
each i =1,--- N, and for any sectorial neighbourhood ¥(t;;r,a,b) of t;,

Y(tisr,a,b)={te€C, 0<|t—t] <r, a<argt<b}

with v > 0 small enough, b — a < 27, there exist M € N and C' > 0 such
that

Vit e X(ti;r,a,b), |LJ(t)] < Clt—t;| M.

Proposition 3.3.1 and Theorem 3.4 imply that each [;J(t) belongs to the
Nilsson class (cf. L. Narvéez, this volume). Consequently:

Corollary 3.4.1. With the hypotheses of Proposition 3.3.1 and Theorem
3.4, the multivalued function J(t) is a solution of a linear differential equa-
tion with at most regular singular points at tq,--- ,ty.

3.2.3. Ezxamples

First example We consider f : (p,q) € C* — p* + V(q), V(q) € C[g]. In
classical mechanics, p is the momentum and V(g) stands for the potential
function. For a non-critical E (E= the energy) one has Hy(f~}(E)) = zZ™~!
where m is the degree of V.
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Fig. 15. The level manifold f~1(E) viewed as the Riemann surface of p = (E—V (¢))1/2
for V(q) = ¢® and E = 1. The homology classes of the 2 cycles 1 and 2 drawn generate
Hi(f~H(E)).

We now assume that V(q) = ¢> so that E = 0 is the sole critical value.
We are interested in the following “period integral”

where w is a polynomial differential 1-form (when w = pdg the period inte-
gral is the “action” in classical mechanics). One can thus apply Proposition
3.3.1 and Theorem 3.4.

We analyse the geometric monodromy; We consider for £y = 1 the basis
B(Eo) = ([’yl(E())], [’)/Q(E())]) of Hl(f_l(E)) as drawn on Flg 15. If /\0 is
the natural loop which generates 71 (C*, 1), then the associated geometric
monodromy operator M(\g) satisfies

M(No) = ([11(Eo)l; [r2(Eo)]) = ([v2(Eo)]; [v2(Eo) — 71 (Eo)])-

(Just see how the zeros of ¢ = E are exchanged). The geometric mon-
odromy operator M(\g) is thus represented in the basis B(Fy) by an invert-

ible matrix M (\g) = <(1) _11

is P(X) = X2~ X + 1. Thus, if J(F) is defined as a germ of holomorphic
functions at Eg, one has

p(A0)*(J) = p(ho)(J) +J = 0.
In particular p(A\o)®(J) = J so that J(E) reads:

J(E) =Y a,E"/

> € GLy(Z), whose characteristic polynomial

where n € N apart from a finite set of negative values. One can be more
precise: since the eigenvalues of M()\g) are X; = *7/6, X, = ¢=27/6
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one deduces that there exists Iy € Z such that

J(B) =Y Bt 43 pEit

1>l 1>l

(cf. L. Narvéez and M. Granger, this volume, see also Ref. 1). In fact i > 0
as we shall see in a moment (cf. Theorem 3.6), and the result extends when
w is a holomorphic 1-form.

Second example We now consider the so-called Broughton’s polynomial,®
f i (z1,22) € C? — z2(1 4+ 2z122). This polynomial has no critical point,
however its set of atypical values is Atyps = {0} : the level set f~1(0) is
the disjoint union of the two connected components locus, zo = 0 which
is isomorphic to C and {z1 = —1/z9, 22 € C*} which is isomorphic to C*,
while for ¢ # 0 the fibre f~1(¢) has only one connected component

fort #0, f7Ht) ={z1 = (t — 22)/23, 20 € C*} (42)

which is isomorphic to C*.

Using (39) we can remark that (21 : 22 : 20) = (1 : 0 : 0) is the sole
candidate for being a singular point a infinity (see Ref. 30).

From (42) we see that Hy(f~1(t)) 2 Z for t # 0. Indeed, Hy(f~1(t)) can
be generated for instance by the oriented cycle

V() ={z = (t = 22)/23, || = 1} (43)

As a consequence, the geometric monodromy operator M (Ag) associated
with the natural loop Ao which generates 1 (C*, 1) is the identity. Therefore,
if w is a polynomial 1-form, then J(t) = / w with [y(t)] € Hi(f~1(t))

y(t
is a holomorphic univalued function on C* and by Proposition 3.3.1 and

Theorem 3.4, there exists ng € Z such that J(t) = Z apt™. In fact

n>ng
J(t) = ant™

n>0
This result can be obtained by simple calculations by first observing that
for t # 0 the mapping

Uyt (21, 22) — (t_lzl,tzg)

defines a diffeomorphism from the level complex curve f~1(1) to the level
complex curve f~1(t). This means that, starting with a I-cycle v(to) on
a generic fibre f~1(ty), its horizontal deformation ~(t) will extend toward
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infinity in the 2; direction when ¢ — 0. Let us see how this geometric
information translates for J(t). One has

J(t):/ w:/ T,
v(t) (1)

In particular, using also (43),

for w = z1"2z53dz; then / w:t”*mfl/
(1) 7(1)

w= tn—m—l% (1 B 22) (22 - 2) sz

2m—n—+3
22

for w=z{"z4dzs then / w :t”_m+1/
v (1) v(1)

1— m
w = t’l’b*m‘l’l % ﬂ dZQ,

2m—n
)

thus the conclusion (f%_fff{”dzg =0ifn—-—m-—1 < 0 and
22

$ U-22)" oy =0ifn—m+1< 0).
2

3.3. Localisation near an isolated singularity
We assume in this subsection that f : (C™,0) — (C,0) represents a germ
of holomorphic functions at 0, f(0) = 0. We assume furthermore that 0 is

an isolated critical point for f.
The following theorem is due to Milnor,?? see also Ref. 12 :

Theorem 3.5 (Milnor). We note B = B(0,e) C C" the open ball and
D = D(0,n) C C the open disc. We set

X=Bnf YD), X=Bnf D), X;,=Bnf ).

Thﬂl for e > 0 small enough and for and 0 < n = n(e) K € the restrictions
X\ F10) X\f(0)

fll and f| ] are locally C*° trivial fibrations. Also :
D* D~

(1) The Milnor fibration does not depend of (g,m), in the sense that two
Milnor fibrations given by two allowed pairs (e1,m1) and (e2,m2) are
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equivalent : Xz, ny and X, n,y are diffeomorphic and the following
diagram commutes:

X(Elﬂh)\fil(o) — X(s2,n2)\f71(0)
e
Dy, — Dy,
(2) X is contractible.
(3) Forte€ D* and H,_1(X¢) = Z* for n > 2, Ho(X;) =2 ZF forn =1,
C{z}
(0f)
In the conditions of the theorem, X is called a Milnor ball while the
homology group H,,_1(X}) is called the vanishing homology group of the
singularity z = 0.
Thanks to this theorem 3.5, what have been done in the previous sec-
tions can be repeated for

J(t) = / L B0l H(x)

where p = dimg is the Milnor number at 0.

where w € Q"~1(X). More precisely one has the following properties, see
Malgrange,?? see also Refs. 1, 2 and 3.

Theorem 3.6. [fw € Q" 1(X) and J(t) = / w, [y(t)] € Ho—1(Xy),
y(t)
then J(t) viewed as a germ of holomophic function at to € D* extends as a

multivalued holomorphic function J € O/D\*_,:o and J is of finite determina-
tion at 0.

Also J belongs to the Nilsson class at 0. More precisely, for any sectorial
neighbourhood X(r,a,b) of 0,

X(r,a,b) ={te D, 0<|t| <r, a<argt<b} C D
with v > 0 small enough, b — a < 27, there exists C' > 0 such that
Vit e X(r,a,b), |J(t)] <C.

Moreover
t—>0,tlg§131(r,a,b) Tt =0
and
J(t) = > Gait*Log '(t),  Pau € C{t}.

acQ*t,1€[[0,n—1]]
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4. On the Asymptotics of Laplace-Type Integrals
We would like to analyse the asymptotics when |k| — +o0 of Laplace-type

integrals
I(k) z/e_kfa
r

where f € O(C™) and o € Q"(C™). What we have in mind is to generalise
the steepest-descent method discussed in §2.2 on the Airy example.

4.1. Allowed chains of integration

In a similar way to what we have done in §2.2, we first have to define a
space of allowed endless contours of integration running between valleys at
infinity where R(kf) — +oo.
We assume that

0 = arg(k) € 97
is fixed and we introduce the following half-planes: for any r > 0 we set
Sk =550)={teC,R(te) > R}, Sy =Sxr(0) ={tcC,R(te") <R}

(45)

For f € O(C™) we introduce the family ¥ = ¥U() of closed subsets A € C™
defined as follows :

A€V & VR>0, AN f1(Sz) is compact. (46)

This family ¥ obviously satisfies the properties (A.1) of §A.5. This means
that ¥ is a family of supports in C” in the sense of homology theory which
allows to define the chain-complex (O (C"),d,) of Z-modules and its as-
sociated homology groups

N4
v n q
H/(C") = —5/=m

Since for any ¢ = Z nio; € CY(C") one has [¢] € ¥ one deduces from (46)

that
R(kf(z)) = 400 when |z| — +oo, z € [c].

In particular |e=#/(*)| = ¢=®(kf(2)) is exponentially decreasing when ||z|| —
+00, z € [c]. Nevertheless, to make the integral

/ckfa_z / kfa_z / K@) 0% (o)
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absolutly convergent for some ¢ = Zniai IS C,‘f’ (C™), one needs also to

i
control the growth of the differential forms o (o). This why we restrict
ourself to the polynomial case in the following theorem, see Pham?26:27 :

Theorem 4.1. Assume that f € C[z] is a polynomial function on C™ and
that o is a polynomial differential n-form on C", o0 = gdz; A -+ N\ dz,,
g € C[z]. Then

(1) The integral / e "o along a n-cycle T € ZY(C") is well defined for
r
|k| > 0, arg(k) = 60 and depends only on the homology class [I'] €

(2) One has the following isomorphism

HY(C") = lim Hy(C", f~'(S%)), Vg
R>Ry

where the inverse limit is considered for R > Ry large enough

We say more about the item 2. of the Theorem 4.1. When f is a
polynomial function we know from Theorem 3.3 that there exists a finite

C™\f~!(Atypy)

set Atypy C C such that the restriction map f| | is a lo-
C\Atypy

cally C* trivial fibration. In particular, if Ry > , ax |t;| then for any
i CAtYpy

R’ > R > Ry, the pairs (C", f~1(S},)) and (C", f~1(S%)) are homotopy
equivalent so that

VR > R> Ry, Vg, Hy(C" f~1(SE)) = Hy(C", fH(SH)).

We detail that point. Because S}"O is contractible, there exists a C°°-
diffeomorphism @ such that the following diagram commutes (for a chosen
tg € SEO):

FUSE) -2 S, x F (k)
fIN / pri (47)

St
Now for R’ > R > Ry it is easy to defined a homeomorphism h such that

h: ((CaSE) - ((C, S}Jg/)v h|(C\SI'§0 = id.
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(for instance if te? = a + ib, define

aif a < Ry
h:(a,b) € R?— (hi(a),b), hi(a)= R — R )
( ) (1() ) 1() RO"'R_R;)(G_RO)IfaZRO

This being done we lift this homeomorphism by the fibration f, setting:

H: (C", f7H(SR) — (C" [ (Sk)
H =id on restriction to (C”\f*I(SEO)
H=®"'o(hxid)o® elsewhere

P SH)- FHSE) 5 (St Sh) x 71 (ko) "5 (S, S x 74 (t0) ™= (5 (S5) £ (S5)
fING /e pril \. /Sl

+ + L + +
(Sty SH) - (SHy St

By its very construction H is a homeomorphism.
Instead of working with the integrals /e*kfa with [T] € H)Y(C"),

r
Theorem 4.1 allows us to consider rather the integrals
10 = [ Mo, M € Ha(€" £ () (48)
r

for some R > Ry. This means working with a class of functions defined
modulo some exponentially decreasing functions when |k| — 400, argk =
6. Indeed, assume that I', IV € Z,(C", f~1(S}))) define the same class in
H,(C", f~1(SR)),

I —T'=c+0b, ceCu(f'(SE), be Crnyr(CM).

We remark that / e Mo = /d(e_kfcr) = 0 because e */o € Q*(C") is
b b

closed. Moreover, since ¢ € Cy,(f~1(S})) one has, for some fixed r > 0:

/eikfa
C

Also, Theorem 4.1 implies that a n-cycle I' € ZY(C") can be represented
by a relative n-cycle I' € Z,(C", f~1(S}))) and, thanks to the convergence

/eikfa—/efkfa
r r

3¢ =C(r) >0, < Ce IR k| > 1, arg(k) = 6.

3C > 0, < Ce IR |kl > 1, arg(k) = 6.

Consequently :
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Corollary 4.1.1. We assume that f € C[z] and that o = gdz; A -+ Adz,,
g € Clz]. We fix some R > Ry and r > 0. Then for |k| > r, arg(k) = 6 the

space of functions I(k) = / e "o, [T € HY(C") can be identified with
r

the space of functions I(k) = / e * g, [T € Hy(C™, f~1(S})) modulo the

r
exponentially decreasing functions of type R in |k|.

Remark : By the long exact homology sequence of the pair (C", f~1(S}))
(cf. Proposition A.0.3), one easily obtains that (for n > 2)

H, (C", fH(SE)) = Hoa(F7(SE))
because C™ is contractible. Then using (47) one deduces that

Ho(C", f7H(SR) = Hoa (f71(1),  t ¢ Atypy. (49)

4.2. The steepest-descent method

We still assume that f € C[z] so that the restriction map

C™\f~1(Atypy)
fll is a locally C*° trivial fibration, where Atyp; =

C\Atyps
{t1,-++,tn} C C is the finite set of atypical values. Our aim here is to
analyse the homology group H, (C", f~*(S%))), having in mind to extend
the steepest-descent method discussed in §2.2 for the Airy example.
Following ideas developed in Ref. 27, in the ¢-plane we draw the family
(L;)1i<i<n of closed half-lines L; = ¢; + e WRt for all t; € Atyps. We as-
sume also that 6 has been chosen generically so that no Stokes phenomenon
is currently occuring, i.e. all these half-lines are two-by-two disjoint. To ev-
ery t; € Atypy we associate a closed neighbourhood T; of L;, retractable by
deformation onto L;. It will be assumed that all these T; are disjoint from
one another, as shown in Fig. 16.

We construct a deformation-retraction of dr : (C, S%) — (S% L, Ti» S5)
: this means a continous map of pairs such that dr| SEUL, T = id while 7 o dr
is homotopic to the identity with i : (S} |, T3, S7;) < (C,S}) the canon-
ical injection. Here we add furthermore the condition that dr(C\ ||, T;) =
SE\L T
Since C\ |, T; is contractible, one easily lift dr by the trivialisation
FHC\ L T3) 5 C\ Wi Th x £ (to)

fIN. / pr1 (for a chosen to € Sj), thus ob-
C\u; T;
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W %
T
. 7 .
Y Li
% -
V7 %
»

Fig. 16. The family of half-lines L; and their closed neighbourhoods T; for 6 = 0.

taining a deformation-retraction Dr : (C",f—l(SE)) N (Uif_l(sjé U
T;), f_l(S;tf)), by setting;:

H =id on restriction to |_| )
H=9®"'o(drxid)o® elsewhere

“HC\L T B C\LL T x £ (ko) U5 S\ T x £ M (ko) B FH(SE L T)
fIN /pr1 pril \ / fl
C\L; T s S\, T

This gives the isomorphism (by Proposition A.0.4):
Ho(C", £ (Uf (SEUT), F71(s%))

Next, defining Ag = intSH\ U, (intS7;, N T;) where intS} is the interior
of S}, we note that (S5 U, Ti\Ar, S5 \Ar) is a deformation retract of
(St U, Ti, St), Fig. 17.

Now by excision (Corollary A.1.1) the pair (S7, | |, T:\Ar, S{\Ag) is homo-
topic to (L; 73, ;(S7 NT3)). Lifting this information through the fibration
f as previously done, one gets the isomorphism

(€ 7SR = B @ L@ sy)

Applying the relative Mayer-Vietoris exact homology sequence (Theorem
A.2) one deduces that
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t ////////////////////7//// t / 72
1G22 l ////%//
Ti Ti

L 7

t\ (G022
GLIL2002002002202207 /7///A
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Fig. 17. On the left the pair (SE UiTi\AR,S;’f\AR), on the right the pair
(U To, L (S N Ta)).

Ho(C", f~ - @ m(rimrimnsh) 6o

t;€Atypy

What we have obtained can be formulated as follows (compare to §2.2.3):

Proposition 4.1.1. Any relative n-cycle I' € Z,(C", f~1(S})) can be
represented

in its homology class [[] € H,(C", f~1(S}))) by asum I' = >, T; with
s € Zu(f~H(T0), fH(Ti 0 SE)).

4.3. Localisation

For each t; € Atypy, let D; be an open disc centred at t; with a small
radius 7; and D7 = D; N {t, R((t — t;)e’?) > 7}, 0 < 7 < n;. Then by a
deformation-retraction whose definition is left to the reader we get

H(C" NS0 = @ Ha(r D). s 7o) 61
t;€Atyp;

At this stage, we have localised our problem at “the target”. What we
would like to do is to localised the analysis at the source, like what we have
done in §2.2.4. For that we have to make some further assumptions on f:
Hypothesis : We assume that the (non-constant) polynomial function
f:C" — C (n > 2) has only isolated critical points and no singular point
at infinity. In particular Sing; is a finite subset of C™ and we have the
following topological triviality property at infinity :3° for any to € C and
for any R = R(to) > 0 large enough, there exists n(R) > 0 such that for
any 0 < 1 < n(R) the fibres f~1(t), t € D, cut OBp transversally where
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Bpr is the open ball of radius R centred at 0, and the restriction maps

(C"\Bgr) N f~1(Dy) OBrN f~H(Dy)
fll and f| | are C™ trivial fibrations.
D, D,

For each t; € Atyps we note {z;;} the subset of Singy above t; (f(z;) =
t;). We introduce also

Xij =Bi; N fH(Di), X=X f D)) (52)

where B;; C C” is an open ball centred at z;; with radius € small enough so
that the B;; are disjoints. Assuming that 7); has been chosen small enough,
one can assume that the X;; are Milnor balls (cf. Theorem 3.5).

For R > R’ > R(t;) we note

YVi=f"YD;)NBr, Y7 =fYDI)NBg
and
Zi= ' (D;)N(C"\Br), Z7=f"YDI)N(C"\Bg).

The couple {(Y;,Y,"), (Z;, ZT)} of pairs is an excisive couple of pairs (apply
Theorem A.1) so that the relative Mayer-Vietoris exact homology sequence
(Theorem A.2) can be applied:

<.

o Ha(Yi N 23, Y7 O Z7) 2 Ho (Y3, Y7) & Hy (23, Z])
5 Hy(f71(Dy), £71(DY)

H,  .(YiNZ,Y7NZ)—

lo =]

The topological triviality property at infinity implies that H,(Z;, Z]) =
H,(Y,NZ,Y"NZ)=H,_1(Y;NZ;,YT N Z]) =0 so that

H, (71 (D0, £71(D))) = Ha(Y, ¥7)

and we thus concentrate on H,,(Y;, Y;”). We follow the reasoning of Pham,?”

see also Broughton®7 : by the exact homology sequence of a triple (Corollary
A.2.1) one obtains (Vq):
- — Hp(; X5 U YT Y7) s Hy (Y, Y7) —

2

(53)
Hn(Yi, |_|j Xi; UYT) o n—1(|_|j Xy UY, YT) —

and by excision (by Corollary A.1.1) then by the relative Mayer-Vietoris
exact homology sequence one has

|_|XU UYT YT = |_|ij7 |_| @ (ija XT) (54)

J J
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Therefore (53) means that

it OH(Y, X,UY7) =0  with X, =] |X (55)

then

3

H,(Yi, Y7) = EBH (Xij, X7).

In the pair (V;, X; UY;") we excise Xi\axi where 0X; is the boundary of
Xi in Y;

Hy(Y;, X, UY)7) = Hy(Yi\Xy, 0X; U (Y;\XT))  with X7 = |_|XzTJ

By the exact homology sequence of a triple one has o
C o Hy(9%; U (YT\XT),0%;) — Hy(Yi\X;, 0X;)
— Hg(Yi\X;, 0X; U (Y\XT))
¢—-1(0X; U (Y\X7), 0X;) — -+ (57)
so that by (56) condition (55) reduces in the isomorphism
H,(Y:\X,;,0X;) = Hy(0X; U (Y\X7), 0X,). (58)

But by excision and denoting by X7 the boundary of X7 in Y7, (58) reads
H,(Y\X;,0X,;) = Hy(Y7\XT,0X7) (59)

and this last equality is true by a deformation-retraction argument, because
Y;

fl 1 isalocally trivial fibration (by the Ehresmann fibration theorem 3.1,
D;

since Y; is a manifold), thus a trivial fibration because D; is contractible.
What we have obtained is in particular the following proposition.

Proposition 4.1.2. Assume that the (non-constant) polynomial function
f:C" — C (n > 2) has only isolated critical points and no singular point
at infinity (in the sense of the above hypothesis). Then

H,(C", f~ = P P H.(xy X)) (60)
ti€Atypy zi;€Singy
where X;; is the Milnor ball associated with the critical point z;; € Singy,

f(zi5) = ti.

Remark : To see what happens in a more general case, see Tibar.30
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4.4. The asymptotics

To simplify we assume here that arg(k) = # = 0. From what precedes and
under some convenient hypotheses, we have reduced the analysis of our

integral I(k) = / e " g, [T € HY(C") into the analysis of the class of
r

functions
I(k) :/e*kfa, T € H,(X,X7). (61)
r

Up to a translation at the source and at the target, we can now assume
that f : (C",0) — (C,0) represents a germ of holomorphic functions at 0
which is an isolated critical point and

X=Bnf YD), X =Bnf YD)
with
B=DB(0,e)cC", D=D0,n)cCC,
DT=Dn{t,RN(t)>7},0<7<n

such that X is a Milnor ball (see Theorem 3.5). For later purpose it will be
convenient to note

DY =Dn{t,R(t) >0}, XT=Bnf D).

Since we have localised the problem, one can also assume that o € Q"(X).
We mention that if T, IV € Z,(X,X7) define the same class in
H, (X, XT7), then for some fixed r > 0:

/e_kfa—/ e to
F !

|k| > r, arg(k) =0

3C =C(r) >0, < CeTIH

(see the reasoning in §4.1) so that fr e o and fF, e *fo have the same
Poincaré asymptotics when k — 4o00.

4.4.1. Reduction to an incomplete Laplace transform

We know from Theorem 3.5 that X is contractible. This imply that
H,(X) = H,-1(X) = 0 (we assume that n > 2) and from the exact
homology sequence of the pair (X, X7) (Proposition A.0.3) one has

0= Ho(X) 25 Ho(X, X7) 25 Hy 1 (X7) 5 Hy 1 (X) = 0.
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Xt

Also, since DT is contractible, the restriction map f| | is a trivial fibra-
D+

tion. This induces an isomorphism (because D™ C DV is also contractible)

Hn—l(XT) - Hn—l(DT X th) - Hn—l(th)

for any chosen ty € D7. Putting things together, we have obtained an
isomorphism
O
H,(X,X") =% H,_1(X4,), toeD".
Consequence: in the class of a given element [I'] € H,(X,X") one can
choose a chain I'y, € C,(X) whose boundary oI'y, = v(to) belongs to
anl(XtQ)7 with tg € D7.
X+
In what follows we fix a tp > 0 in D”. By the trivial fibration f| |
D+
the cycle v(to) can be horizontally deformed into () € Z,,_1(X), t € D*.
Then :

Theorem 4.2. With the above notations and hypotheses,

to
I(k,to) = / Mo = / M () dt
N 0

to

g

= |j=t = Yot 1Log L(t), ey € C{t}.
~t) df 2

acQ*+,1€[[0,n—1]]
(62)

Proof. We follow Malgrange.?’ The holomorphic differential form e=*fo €
Q"(X) (for a fixed k) is closed (being of maximal order) and X being a Stein
contractible manifold (Theorem 3.5 and Proposition B.1.1), one deduces
from Corollary B.3.1 the existence of ¢ € Q" 1(X) such that
e ko =de.

Thus by the Stokes theorem

I(k,to) z/ e ko = dy z/ ©. (63)

r Tty ~(to)

to

‘We note
fort € DY, I(k,t) = / ®. (64)
v(t)
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Note that I(k,t) extends as a multivalued holomorphic function I(k,t) €
Op+ 1, in t for which Theorem 3.6 can be applied:

I(k,t) = > baat“Log '(t),  day € C{t}. (65)

acQt,€[[0,n—1]]

By Lemma 3.2.1 we know that

1
fOI‘tED+, I(k,t):—/ df/\QO
20T Sey(t) f —t

where 0; : H,_1(X:) — H,(X\X;) is the Leray coboundary operator.
@ ) de  df N

Therefore using the remark that d

f=t) f—t (-1
ol 1 af Ny
for t € .D+7 - k7t = -
ot ( ) 24T 8iy(t) (f - t)Q

1 d 1
s okf_9

um 8iy(t) f —t B 24w 8iy(t) f - t

Introducing X* = X\{0} we note that the restriction f|x~ is a submersion.
Also, 0 € Q*(X) being of maximal order, it can be written locally as
o = df A B. But X* is a Stein manifold (by Proposition B.1.2) so that
Proposition B.3.1 implies that

g g
I ey (x* =df A —.
df € X ( )a o f df
Therefore, by Fubini and the Cauchy formula,
ol o
forte DY, —(k,t :e_kt/ — | r=¢-

From (65) one finally gets that

to
I(k,to) :/0 e M </(t) %|f—t> dt
Y

with

/(t) %'fzt - ) Yaat® ' Log '(t),  au € C{t}.
Y

acQ*+,1e[[0,n—1]]
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4.4.2. The asymptotics
From Theorem 4.2 we know that
to
I(k,to) = / e Mo = / e M)
Ty, 0
with
J(t) = > Yo it® Log L(t),  thay € C{t}.
acQ*+,1€[[0,n—1]]

Since this is a finite sum, to analyse the asymptotics it is enough to consider
the case when

J(t) = bat* " Log (1)

n=0

for some a € Q* and [ € [[0,n — 1]] and we assume that the series ex-
pansion converges for |¢t| < 7, 7 > to. We also assume that Log (t) is the
principal determination of the logarithm function (real for ¢ > 0).

We adapt what we have done in §2.2.8. For k in the sectorial neighbourd-
hood of infinity ¥, 5 as defined in (7) one has, for any N € N:

to o0
I(k,to) :/ e (Z bnto‘_1+”Logl(t)> dt
0

n=0

+00 N
I(k,to) = / e M Z bat® 1 Log L(t) dt
0

n=0
+oo N
- / e " byt Log (1) dt
to n=0

to o
—l—/ e M Z bt 1+ Log !(t) dt
0 n=N+1

By (5) this means that
N !
d I'(a+n)
k3, () (Hotnd)
n=0
to —+o0
0 to

oo N
> bn/ e M Log Y1) dt—an/ e R4 Log L(t) dt.
n=0

n=N+1
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Therefore, making the change of variable ¢t = tgs,
I(a+n)
-5 (2) (522)
-(0)

= Z Log ?( < Z b t0°‘+"/ e Htosga=4n] 00 =P (5) ds
p=0 p n=N+1

N 00

- Zb71t0a+n/
n=0

e Ftos ga= 14y o0 1P (4) ds.)
1

1
We now introduce 0 < € < % In the / integral we have s*~17¢tn <
0

—+o0
s ¢tN while in the integral we have s®~1T¢tn < g@=¢+N_ Thep,

1
there exists Ac > 0 such that for k € X, 5,

zb< ) ()

Ac(1+ [Log (to)]) <Z |bn|t"+°‘> IWro etV (o)
(tosm( )|k|)

In other words, for a given X, s,

1
Ve €l0, 5], 3C >0, VN €N, Vk € 5,
I(a+n)
oS (&) ()

This provides the asymptotics we were looking for.

< CN+a—e+1F(N +o—e+ 1)
|k|N+a7€+1

(67)

4.5. An example

We illustrate the previous considerations with the following simple example.
We take

f(z1,22;8) = %21 + 20 + 2125, BeC*

which is a deformation of the Broughton’s polynomial (see §3.2.3). This
polynomial has two atypical values which are the critical values ¢t = +i(.
Each generic fibre f~1(¢), t € C\{%i} has only one connected component

for t # +if,  f7'(t) = {21 = (t — 22)/(6° + 23), 22 € C\{£iB}} (68)
so that Ho(f~1(t)) 2 Z, Hi(f~1(t)) 2 Z? and H,(f'(t)) = 0 otherwise.
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Note that the singular fibre f~1(i8) = {z1 € C, 20 = iB} U {1 =
—1/(iB+22), 20 € C\{—iB}} resp. f 1 (—iB) = {21 € C, 2o = —iB}U{z1 =
—1/(—=iB + z2), z22 € C\{iB}} can be written as the one point union
(wedge) of two connected spaces that intersect at the nondegenerate crit-
ical point (z1,22) = (%,iﬁ) resp. (z1,22) = (—%,—iﬂ). In particular

Ho(f~Y(£iB)) = Z, Hi(f 1 (£iB)) = Z and H,(f~1(£iB)) = 0 otherwise.
We would like to analyse the asymptotics when k — +o00 of the following
integral

Ip(k,ﬂ) = / 67kf(z17z2;6)g(21,22) dzy N dzo
T

= /~ efﬁkf(zl’zz;l)g(%a Bz) dz1 A dzp
T

where [['] € H;p(ﬁ)(Cz) and g € C[z1, 22]. Since Hy(f1(t)) 2 Z2 for t €
C\{£ip}, we deduce from Theorem 4.1 and (49) that

HYW(C?) = 72 (69)

From (68) it is easy to see that H;I’(ﬁ)(((:2) is generated by the following
two cycles I'y (the so-called Lefschetz thimbles),

IF'=mil'ys+m_I'_, mieZ
Ly ={z1=(B+r—2)/(°+23), r€[0,400, |22 —iB] =B}  (70)
I_={z=(—if+r—2)/(8°+23), r€0,400, |22+ i = 8}

Note that the data (H;I’(ﬁ)((cg))ﬁ . makes a local system on C* (in fact
e *

a constant sheaf of Z-modules).
One can recover (69) using Proposition 4.1.2:

HY(C?) = Hy(Xy,XT) @ Hy(X_, X7)

where X (resp. X_) is the Milnor ball associated with the nondegenerate
L) (resp. (21,22) = (—
—.,103) (resp. (21,22) = (—=—,
23 14 1,22 23
previous theoretical analysis, the asymptotics of Ir(k;3) just reduces in a
local analysis near each of the two critical points. Simple calculations gives

critical point (z1,22) = ( —i3)). From our
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for instance:

for g(z1,22) = a+ bz + cza,

. + it +icp L
In(k; B) = mye” Prr <a 2§k —+ 2(;@2 + OUVB))
a+ it +icp L)
+m_et Py ( 252 - 2(ﬂﬁk)2 + O(k3)>

(71)
where m4 are integers which depend only [T']. It can be shown that the
remainder terms O(k~3) are in fact zero functions. We do this by direct
calculation, using (70) which provides

+o0 ;
. _ + 7 — 29 dzo
I (k:3) — sz/ kr% i
r.(k;p)=e ; e a+b752+23 + ¢z i dr

that is

+oo
I Q) — ﬂ'ﬁk/ —kr [T ;T T ;
r. (k;B)=e ; e aﬁ+b(z2ﬂ2+2637‘)+cm dr
so that
, a+ib+ics u
T . 3) — Bk 28 B .
ry (kvﬁ) € T ( ﬁk + 2(ﬂk)2
Similarly,

7 b - b
oy ik [ T@tagticB g
Ir_ (ks ) = e* ”( Bk 2(ﬂk)2>'

4.6. To go further

By their very nature, the complex singular integrals considered in this paper
are crossroads for different scientific communities, from pure mathemati-
cians to physicists and chemists. In such various situations one often needs
to enlarge the methods presented in this paper, for instance for Laplace-
type integrals with boundaries. Also, it allows a theoretical and numeri-
cal control of the so-called Stokes phenomenon with a hyperasymptic and
resurgent viewpoint. To go futher in that direction, the reader may consult
Refs. 10 and 11 and references therein.
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Appendix A. Short Introduction to Singular Homology

For this appendix we mainly refer to Refs. 12, 16 and 28. In what follows
X is a topological space.

Appendix A.1. Simplexr and chain

e The standard (oriented) ¢-simplex in the affine space R9*! is by
definition

q q
AT={Y Nej, Y A =1,0<) <1} c R
j=0 §=0
that is the convex hull of (eg,- - ,eq), where (eg,--- ,€q) is the standard
basis of R9"L. (The orientation is chosen so that if a is a generic point

of A7, then a basis (v1,---,vq) € ToAY is positively oriented if the basis
q

1
(vo = E P I TR v,) determines the standard orientation of R4*1).
)
Jj=0

e A singular g-simplex of X is a continuous map
oc:AT— X

e A singular g-chain of X is a formal linear combination
m

CZani, n; €Z (resp.n; € K=R or C)
i=1

where the o; are singular g-simplices.
e We note by Cy(X) = the set of all singular g-chains. We remark
that Cy(X) is a Z-module (resp. a K-vector space).
Ezample: Co(X) =1 Z n;[x;]} where the x; are points of X.
finite

e The support of a singular g-simplex ¢ is || = 0(A?). The support
m

of a singular ¢g-chain ¢ = Zniai is |o| =U|oi]-
i=1
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Note that the support of a singular g-chain is always a compact subset of
X. Also, since any standard g-simplex is path connected, the support of
any ¢-simplex is contained in a path connected component of X.

Appendix A.2. Boundary operator

e For ¢ > 0 we define for i =0,--- ,q,
g—1 i—1 q—1
F1:A" 5 A9 FO ZAjej — ZAM 4 ijem
Jj=0 0 i

which maps AY~! onto the face [eg, -+ , &, -+ ,e4] of AL
Ezxample: for ¢ = 2,

F02 : doeo + A1er — Ager + Aiea

F12 : Xoeo + A1e1 — Ageg + Area

F22 : Aoeo + A1e1 — Ager + Arer

e If 0 : AY— X is a singular ¢g-simplexe, the i — th-face () of o is the
singular (¢ — 1)-simplex
o) =F"og=00F!: AT! = X.

This allows to define the boundary of o :
q

D0 = Z(_l)ja(j)'
§=0
elfc= Z n;o; is a singular g-chain, then one defines the boundary of ¢
i=1

by
8qC = Z niﬁqai.
i=1
In this way one have a homomorphism (of Z-modules, resp. of K-vector
spaces)
9q : Cq(X) — Cq—1(X)

which is the boundary operator.
o We set:

Cy(X)=0 for ¢<0

0, =0 for ¢ <0

Then it can be shown that:
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Proposition A.0.1.
Vq, 0q00441 =0.
Definition A.0.1. We note for every g,
Z4,(X) = {g-cycles} = 8;1(0) = ker 0,

By(X) = {g-boundaries} = 0,1 (Cyy1(X)) = im Oy

Two g-chains ¢; and ¢y are said to be homologous ¢ ~ ¢s if ¢y — ¢o is a
g-boundary.

Proposition A.0.1 say that the sequence

0, 0,
= G (X) 5 Cg(X) =5 Cqma(X) — -+

is a chain complex (Ce(X),ds) of Z-modules (resp. of K-vector spaces).
This allows to define:

Definition A.0.2. For every g,

Zy(X)
B,y(X)

Zy(X)
By(X)

Hq(X): (resp. Hq(X§K): )

is the g-th (singular) homology group of X (Z-module, resp. K-vector
space).

»

The homology class of a g-cycle ¢ is usually denoted by [c] € H,(X).
The graded (by the dimensions ¢) group He(X) = @Hq(X ) is the

q
total (singular) homology group of X.

Zo(X
Example Hy(X) = BOEX) >~ Z™ where m is the number of path-
0

connected components of X. Indeed, one has Zy(X) = Co(X) =
{ Z n;[x;]} where the z; are points of X and By(X) = { Z ni([2?] —
finite finite
[z}])} where for each i, x} and 2? are connected by a continuous path in
X.

More generally, if X is a Hausdorff topological space and if {X;} are its

path-connected components, then

Hq(X):@Hq(Xi)a Vq.

~
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Appendix A.3. Homomorphism induced by a continuous map

We consider two topological spaces X and Y and a continuous map
f: X->Y
To a given singular g-simplex o : A? — X of X there is a natural way of
associating a singular ¢g-simplex of Y,
foo:AT—Y.
We thus have a homomorphism (of Z-modules, resp. K-vector spaces)
Coll): Cy(X) = Cy¥), Cy(N( D mios) = 3 mif oo
finite finite
and it can be shown that
9q 0 Cq(f) = Cq=1(f) 0 0q.
We thus have a chain map C(f) which allows to define the homomorphism
of homology groups:
frt Hy(X) — Hy(Y).
Of course, if Z is another topological space and if g : Y — Z is a continuous

map, then (g o f)s = g« © fi. Also:

Proposition A.0.2. If f, g : X — Y are homotopic continuous maps, that
is there exists a continuous map

H:Xx[0,1]—=Y, H(z0)=f(z), H(z1)=g),
then f, = gx.

Example Let A C X and i : A — X the canonical injection. Assume that
one has a continuous map f : X — A which is a deformation-retraction,
that is:

(1) f is the identity on A : foi=1ida (f is a retraction).
(2) io f is homotopic to the identity : there exists a continuous map H :
X % [0,1] — X such that H(.,0) =idx and H(.,1) =io f.

(For instance f : z € R"™\{0} — z/|jz|] € S, H : (x,t) € R*™\{0} x
[0,1] — (1 — t)z + tz/||z] € R*1\{0}).

From condition 1. one obtains that f, oi, : Hy(A) — Hy(A) is the identity
map. Using Proposition A.0.2, condition 2. implies that i, o f, : Hy(X) —
H,(X) is also the identity map.
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Consequence : if A C X is a deformation-retract of X, then the ho-
mologies Ho(A) and He(X) are isomorphic. (For instance Ho(S™) =
Ha(R™1\{0}).

In particular if X is contractible, that is can be retract by deformation to
a point, then the homology of X is isomorphic to the homology of a point
:Vq#0, H(X) =0, Hy(X) =Z.

Appendix A.4. Homology of a pair

Let A C X be a subspace of the topological space X and we note i : A —
X the canonical injection. This mapping induces a natural homomorphism
ix 1 Cg(A) — Cy(X) so that the space Cy(A) can be seen as a sub Z-module
(resp. a sub K-vector space) of Cy(X).
Cq(X)
Cy(A)

o The quotient space Cy(X,A) = is the space of relative g-

chains of X with respect to A.

o A g-chain ¢ € Cy(X) is said to be a relative ¢g-cycle of X with
respect to A if 9,c € Cy_1(A).
We note

Z4,(X,A) = {relative ¢-cycles}.

o A g-chain ¢ € Cy(X) is said to be a relative g-boundary of X with
respect to A if there exists a ¢g-chain ¢ € C,(A) such that ¢ and ¢ are
homologous in X : ¢ — ¢’ € By(X).

One notes

By (X, A) = {relative g-boundaries}.

(See §2.2.2, Fig. 5).

We remark that B, (X, A) is a sub Z-module, (resp. sub K-vector space)
of Z,(X,A). (Indeed, if ¢ € By(X, A), then there exists ¢’ € Cy(A), there
exists d € Cyq1(X) such that ¢ = ¢’ + 0y41d. Therefore, dyc = 9, €
Cq-1(A)).

Definition A.0.3. For every ¢, the quotient group
 Zy(X,A)
~ By(X,A)

Z4¢(X,A)

Hy(X, A) m)

(resp. Hy(X, A K) =
is the ¢-th relative (singular) homology group (Z-module, resp. K-vector
space) of X with respect to A, or also the ¢-th (singular) homology group
of the pair (X, A).
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The canonical injection i : A — X induces for any ¢ the natural homo-
morphism

iy Hy(A) — Hy(X).

Since Z4(X) C Z4(X, A) and By(X) C By(X, A) (note that we have equal-
ity when A = @) one has also in a natural way the homomorphism

Jx +le] € Hy(X) = [c] € Hy(X, A).
The following boundary homomorphism
Oyt [c] € Hy(X, A) — [04¢] € Hy—1(A)

is also well-defined : take ¢ € Z, (X, A), that is ¢ € Cy(X) and 94c €
Cy—1(A). The homology class [c] € Hy(X, A) reads [c] = {c+ +d, ¢ €
Cq(A), d € By(X)}. Therefore

Oylc+ +d)= 9, + 9,
S qul(A) S qul(A)
With these definitions, one has:
Proposition A.0.3. The following homology sequence of the pair (X, A)
is exact:
o Hy(A) =5 Hy(X) 25 Hy(X, A) 25 Hyoa(A) = -
What have been said in §A.3 can be extended for pairs. Let X and Y

be two topological spaces and A C X, B C Y. From a continuous map of
pairs,

frxeX,A)—ye(Y,B), f(A)CB,
one can associated a homomorphism of homology groups
fo 1 Hy(X,A) — Hy (Y, B).
Example In §2.2.2 we have introduced the pairs (C,Xr(A4gs)). For R’ >
R, (C,Xr/(Ap,s)) is a sub-pair of (C,Xr(Ay,s)) and one has an homeomor-
phism

/

R
h:ze (C, ER(A&(;)) — EZ S (C, Y (Agyg))
from which is associated an isomorphism
h* . Hq((C, ZR(AQ’(;) — Hq(C, ER/ (Agy(;)).

One has the analogue of Proposition A.0.2:
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Proposition A.0.4. If f, g : (X, A) — (Y, B) are homotopic continuous
maps of pairs, that is if there exists a continuous map

H:(XvA) X [Ovl}H(YvB)v H(x,O):f(x), H(x,l):g(m%
then f, = g.

Example Let (Y, B) be a subpair of (X, A4) and i : (Y,B) — (X, A) the
canonical injection. Assume that the continuous map f : (X, A) — (Y, B)
is a deformation-retraction, that is:

(1) f is the identity on Y : foi =1idy (f is a retraction).
(2) io f is homotopic to the identity.

Then the homologies Ho(X, A) and H,(Y, B) are isomorphic.

Definition A.0.4. An inclusion map (Y, B) — (X, A) between topological
pairs is called an excision map if Y\B = X\ A.

The couple {X7, X5} made by two subsets of a given topological space is
an ezcisive couple of subsets if the inclusion chain map Ce(X1) + Co(X2) C
Ce(X1 U X3) induces an isomorphism of homology.

The couple {(X1, A1), (X2, A2)} of pairs in a given topological space is an
excisive couple of pairs if both {X1, X2} and {A1, A2} are excisive couple
of subsets.

Theorem A.1. e If X1 U Xy = intx,ux, X1 Uintx, ux, X2, then {Xl,XQ}
is an excisive couple.

o {X1, X5} is an excisive couple if and only if the excision map (X1, X1 N
Xo) — (X1 U X, X5) induces an isomorphism of homology.

Corollary A.1.1. We assume that U C A C X are subsets such that the
closure U of U is included in the interior intA of A. Then U can be excised,
that is

H‘I(XvA) :Hq(X\U7A\U)’ Vq.

Proof. The couple {X\U, A} is an excisive couple so that the excision map
(X\U, A\U) — (X, A) induces an isomorphism of homology. |

Theorem A.2 (Mayer-Vietoris). e Assume that {X1, X2} is an excisive
couple. Then the following Mayer-Vietoris homology sequence is exact:
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(ixqy,,—%x5,) Jxy,tix,
* * * *
LN *

= Ho(X1 N X2) Hy(X1) ® Hq(X2) Hy(X1U Xs)
o

N Hq_l(leXQ) N

ix, Jx, iXo Jxq
where X1 ﬂXQ — X1 — X1 UXQ and X1 ﬂXQ — XQ — X1 UXQ are the
canonical injections.
o Assume that {(X1, A1), (X2, A2)} is an excisive couple of pairs. Then the
following relative Mayer-Vietoris homology sequence is exact:

o= Hq(Xl N XQ,Al M Ag) ﬁ; Hq(Xl,Al) D Hq(XQ,AQ)
25 Hy(X) U Xa, Ay U Ay)
g qfl(leXg,Al ﬁAg)—>---

Note that for a given triple (X, A, B), B C A C X, the couple of pairs
{(X,B),(A,A)} and {(X, B), (AU, AUB)} are always an excisive couple of
pairs. One thus deduces from the relative Mayer-Vietoris homology exact
sequence that:

Corollary A.2.1. e Assume that B C A C X. Then the following homol-
ogy sequence of the triple (X, A, B) is exact:

-+ — Hy(A,B) 5 Hy(X, B) 2 Hy(X, A) % Hy1(A,B) — -

e Assume that A, B are two subsets of X such that {A, B} is an excisive
couple. Then the following homology sequence of the triad (X, A, B) is
exact:

- = Hy(A, ANB) - H,(X,B) 2 H (X, AUB) -% H,_1(A, ANB) — - --

Appendix A.5. Homology with support in a family

It is sometimes needed to extend the definition of homology to homology
defined by a family of supports (see?®).

Let X be a Hausdorfl topological space assumed to be locally compact
(i.e., every point has a local base of compact neighbourhoods) and para-
compact (i.e., every open cover admits an open locally finite refinement).

We introduce a family ® of closed subsets of X which satisfies the fol-
lowing properties:

(i) A, BEd=AUBed
(i5) BclosedC Ac®P=Becd (A1)
(791) Any A € ® has a neighbourhood which belongs to ®
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To define what is a a ¢g-chain ¢ with support in ® one modifies the
definition of a g-chain as follows :

e ¢ is a formal linear combination ¢ = E n;0; where the sum may be

i
infinite but is locally finite: any point = € X has a neighbourhood
U, C X which meets only a finite number of supports [o;] (the o; are
usual singular g-simplices). This implies that [¢] = U[Ui] is a closed
i
subset of X.
e moreover [c] € D.

The set of g-chains with support in ¥ makes the group C’;I’ (X) of g¢-
chains with support in ®. The boundary operator 9, can be defined in
an obvious way on CJ(X) (8, defines a map from C(X) into C ,(X)
by (i) of (A.1)). To the chain-complex (C&(X),d.) of Z-modules one can
then associate the homology groups

and H;I) (X) is called the g-th homology group with support in ®.

Examples e The family & = c¢ of all compact subsets of X satisfies
(A.1) and the associated homology coincides with the singular homology :
H{(X) = Hy(X).

e The family ® = F of all closed subsets of X satisfies (A.1) : HI(X)
is the homology with closed support (or Borel-Moore homology).

Appendix A.6. Homology and fibre bundle

We just mention here the following fundamental tool in algebraic topol-
ogy:

Theorem A.3 (Homotopy lifting Theorem). Assume that M and N

are topological spaces such that N is a paracompact Hausdorff space. As-
M

sume that f | is the projection of a fibre bundle. Then f has the homotopy
N

lifting property : for any given topological space X and for

— any homotopy H : X % [OL}] — N,

~ any continuous map ho : X — M lifting ho = H|xx{o},
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M
Eg/ L f, there exists a homotopy H : X x [0,1] — M lifting
X x {0} Lo
M
H, ﬁ/lf,with%zﬁb(x{o}-
xx1 LN

Appendix A.7. Integration

We assume here that X is a C°°-manifold. .
e If w is a differential ¢g-form on X and if ¢ = Z n;o; is a g-chain, then
i=1
by definition

m m
/w:Eni/wzgni/ ofw
¢ i=1 o i=1 Ad

(0fw = o} ow) with the following remarks:

e we remind the reader that the A? are oriented;
o to define the o}w, we assume that each o; is differentiable instead of

continuous, that is each o; is the restriction to A? of a C* function
m

Gi:Uw— X, A? C U c R?!. In that case the g-chain ¢ = Zmai is
i=1
said to be piecewise differentiable.

Note that any continuous function o : A? — X can be approximated
by a differentiable map. (Any continous function with compact support can
be uniformaly approximated by C2° functions, by regularisation).

This has the following consequence :

Proposition A.3.1. Each homology class [c] € Hy(X) of a g-cycle can
be represented by a piecewise differentiable g-cycle ¢, and each piecewise
differentiable null homologous ¢-cycle is the boundary of a piecewise differ-
entiable (¢ 4+ 1)-chain.

In this course, when an integral of a differential form along a chain is
considered, one always assume that this chain is piecewise differentiable.



202

Theorem A.4 (Stokes theorem). If ¢ is a differential (¢ — 1)-form on

X and if c is a q-chain, then
/dgo:/ ®.
c Jc

Corollary A.4.1. If ¢ is a closed differential g-form on X (dyp = 0), then
the integral / @ along a g¢-cycle ¢ only depends on the homology class

[c] € Hy(X).

Appendix B. Stein Manifolds and Some Consequences

We refer to Refs. 15 and 14 for this appendix.

Appendix B.1. Definition and main properties

In what follows it will be assumed that one works with paracompact
complex manifolds. We start with the following definition of Stein mani-
folds:

Definition B.0.1. A complex manifold X is called :
e holomorphically spreadable if for any point g € X there are holomorphic
functions f1,---, fyv on X such that zq is isolated in the set

N(f,-- In) ={z e X, fie) = = fn(z) = O}

e holomorphically convez if for any compact set K C X the holomorphically
convex hull K = {z € X, |f(z)| < supy |f| for every f € O(X)} is also
compact.

e a Stein manifold if X is connected and is holomorphically spreadable and
holomorphically convex.

Typical Stein manifolds are domains of holomorphy:

Theorem B.1. We assume that D C C" is a domain, that is D is a
connected open set of C™. Then:

D is a Stein manifold

)

D is holomorphically convex

)

D is a domain of holomorphy, that is there exists a function h € O(D)
that is completely singular at every point of 0D.
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We provide some example of domains of holomorphy.

Proposition B.1.1. e Every domain in C is a domain of holomorphy.

e Every affine convex open subset of C™ is a domain of holomorphy (for
instance C™ and any open ball of C™ are domains of holomorphy).

e Lvery cartesian product of domains of holomorphy is a domain of holo-
morphy.

o If G; C C™ and G5 C CP are domains of holomorphy and if f: G; — CP
is a holomorphic map, then f~1(G2) N Gy is a domain of holomorphy.

Example : A Milnor ball is a domain of holomorphy (and thus a Stein
manifold).
Next we give some properties for Stein manifolds.

Proposition B.1.2. e Every closed submanifold of a Stein manifold is
Stein.

o If X is a Stein manifold and if f € Ox(X), then X\N(f) is Stein.

o If X is a complex manifold and if Uy, Uy C X are two open Stein manifold,
then U; N Us is Stein.

e Every cartesian product of Stein manifolds is a Stein manifold.

o If f: X — Y is a holomorphic submersion between complex manifolds.
If X is Stein and if Z C Y is a Stein submanifold, then f~1(Z) is a Stein
manifold.

To go further, one needs the so-called theorem B of Cartan-Serre. We
first give some definitions.
We consider a complex manifold X and a sheaf F of Ox-modules. Let
s1, -+ ,8p € F(U) and consider the homomorphism

p
ou : (Gres 2 Gpe) € (Ox[0)” = 00 (G1as-+ » Gp) = D GiaSia € Flu
- (B.1)
(we note F|y the restriction sheaf to the open set U C X). One says that
Flu is generated by the sections s1,--- , s, if oy is surjective. (Every stalk
Fz, x € U is generated as a Og-module by the germs s14,- -, Spz)-
The sheaf F is said to be finite at x € X if there exists a neighbourhood U
of  and a finite number of sections s1,-- - , s, € F(U) which generate F|y.
The sheaf F is said to be finite on X if it is finite at every point xz € X.
If oy is an Ox|y-homomorphism as defined by (B.1), then the following
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sheaf of Ox|y-modules in (Ox|y)P

P
Rel(s1,---,8p) =keroy = U {(9125+ , Gpz) € (O2)F, Zgixsix =0}
i=1

zeU
is called the sheaf of relations of 51, -, sp.
The sheaf F is a finite relation sheaf at v € X if for every open neigh-
bourhood U of = and for arbitrary sections s1,--- , s, € F(U) the sheaf of
relations Rel(s1,- -, sp) is finite at z.

The sheaf F is said to be a finite relation sheaf if it is a finite relation
sheaf at every x € X. The Ox-sheaf F over X is said to be coherent
if it is finite and a finite relation sheaf.

Example : if X is a complex manifold of dimension n, then the O x-sheaves

0% are coherent (since Q% is locally free of rank (Z))

Theorem B.2 (Theorem B). We consider a complex manifold X . Then
X is Stein if and only if for every coherent Ox-sheaf F over X one has
HY(X,F)=0, Vg > 0.

Here we do not define cohomology with values in a sheaf. It will be
enough for our purpose to mention that

HY(X,F)=F(X)

where F(X) is the set of all global sections of the sheaf F.

Appendix B.2. Some applications

Appendix B.2.1. First applicaton

Let X be a complex manifold of dimension n. We note Q% the Ox-sheaf
of germs of holomorphic p-forms on X. Denoting by C the constant sheaf,
one has the following sequence of sheaf:

0-CL0x=0% 20, 402 2%...2qar %0 (B.2)

By the holomorphic Poincaré lemma we know that if U C X is a star-
shaped open set then any holomorphic closed p-form is exact; consequently
(B.2) is an exact sequence (in which case (B.2) is a so-called resolution of
the constant sheaf C). Furthermore if we assume that X is Stein, then the
Ox-sheaves Q% are coherent sheaves and by Theorem B.2 we get
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Vg>0,Vp>0, H/(X,Q%)=0.

In such case the resolution (B.2) is said to be acyclic and one has the
following de Rham theorem:

Theorem B.3 (de Rham theorem). We assume that X is a complex
manifold of dimension n. If (B.2) is an acyclic resolution of the constant
sheaf C then there exists natural C-isomorphisms

HO(X,C) 2 ker (d L O(X) — Ql(X))
ker (d L QP(X) — QPH(X))

o= (a:01(x) = @r(x))

This is true in particular when X is a Stein manifold.

In this theorem H®(X,C) stands for the singular cohomology de-
duced from the singular homology by duality (one defines the
set of g-cochains as C9(X) = Hom(Cy(X),C) and the cobound-
ary operator § as the dual map of the boundary operator O,
< 0,0C >=< Jo,C >). By the so-called universal coefficient theorem for
cohomology (cf.?8) one has the exact sequence

0 — Ext(Hys—1(X),C) —» HY(X,C) - Hom(Hy(X),C) — 0 (B.3)

where Ext(Hy—1(X),C) = 0 if H;_1(X) is a free Z-module. In particular
if X is contractible then V¢ # 0, Hy(X) = 0, Ho(X) = Z so that Vg #
0, H1(X,C) =0, H°(X,C) = C. Therefore by Theorem B.3:

Corollary B.3.1. If X is a contractible Stein manifold then every closed
holomorphic form is exact.

Appendix B.2.2. Second application

Assume that X is a complex manifold of dimension n and f: X — T C
C a (non constant) holomorphic map, where T is an open connected set.
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We define the following sheaf of holomorphic relative forms©:
e

QX/T = Ox, Q%{/T

Note that we have a (de Rham relative) chain complex

dx,T dX/T dX/T n-1 4/ ~n
QX/T - X/T QX/T Y5 'ds

where the differential dxr is defined in a natural way (dx/r[w] = dx/rlw+
df N = [d(w + df AT)] = [dw — df A dT] = [dw]).

From the very definition (B.4) one has the following exact sequence of
sheaves,

0—df NOE 5 Q% — Q% — 0. (B.5)

We know that the Q% are coherent sheaves of O x-modules. Since df /\Q%{l
is the image of Qg{l by the Ox-linear map df A. : Qg{l — Q% one deduces
that df A Q% ! are also coherent sheaves. In the exact sequence (B.5) since
two bheaves are coherent, then the third sheaf Q¢ /T is also coherent as a
consequence of the so-called “Three lemma”. ™

We now add the assumption that X’ C X is a Stein (sub)manifold.
From the short exact sequence of sheaves (B.5) we derive the following long

sequence of cohomology:
- HOX' df AQYTY) — HY(X',0%)
— H(X',Q%p) = H'(X',df ANQET) — -+ (B.6)

and by Theorem B.2 we know that H'(X',df A Q% ") = 0. This implies
that the homomorphim Q% (X’) — Qg(/T(X’) is a surjective map (V q).
We have also the following result which is used in this course:

Proposition B.3.1. We assume that X is a complex manifold of dimen-
sion n and that f: X — T C C a (non constant) holomorphic map where

°If F is a sheaf over X and G a subsheaf the collection of quotient spaces
(557)
gy open CX

presheaf. The collection of canonical homomorphisms F(U) —

f
makes as a rule only a presheaf and E is the sheaf generated by this

F(U)
GU)

F F
sheaf homomorphism ¢ : F — E which is surjective, that is for all z, ¢ : Fp — —

allows to define a

x
f
is surjective. However the homomorphisms ¢(U) : F(U) — a(U) are not surjective in

general.
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T is an open connected set. We assume furthermore that X’ C X is a Stein
(sub)manifold and that the restriction f|x- is a submersion.

dw
Then if w € Q"’I(X’) is dx,r-closed, then there exists — € QX

df

such that dw = df /\ df

Proof. The following sequence of sheaves

0 0% Dl TN AN gt g g

is exact on X': this is a consequence of Lemma 2.0.1 since f|x/ is a sub-
mersion. This implies that the following short sequence of sheaves is also
exact on X' :

0— 2 ot Mg Ayt -0

We thus derive the following long sequence of cohomology,

= HOX, Q%) — HY(X df AT — HY (X', Q% F) — -+, (B.T)

and since X' is Stein while Q’;&fp is a coherent sheaf we deduce that the
(df Ay HO(X, Q%Y — HOX df A%

is a surjective homomorphism.
Now, if w € Q}_l(X’) is dx,p-closed, then dw can be seen as an element

d
of HO(X',df A Q}_l) and the above result provides the existence of d—}d €

Q%1 (X') such that dw = df A c;_}u 0O
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HYPERGEOMETRIC FUNCTIONS
AND HYPERPLANE ARRANGEMENTS
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This is a short presentation of some relations between the arrangements of
hyperplanes and the theory of hypergeometric functions. All of this paper is
coming from the illuminating monograph written by P. Orlik and H. Terao®
where all the detailed proofs could be found. Moreover, we focus our interest
on the part of this theory which consists of the computation of the coho-
mology groups, part of the hypergeometric pairing. We mainly consider the
non-resonant weights and we just give some insight on the resonant case.

1. Classical Hypergeometric Functions
1.1. Classical hypergeometric series (Gauss)

The series which has become known as the ordinary hypergeometric se-
ries or the Gauss series is denoted
abx  ala+1)b(b+1) 22
Flla,b);cim] =14+ ——= 4 TP T2
(abhaal =1+ Tq+ =Ty =
When we introduce Appel’s notation (a,n) = a(a+1)(a+2)---(a+n—1)
we can write
(a,n)(b,n) z™
(¢,n) n!

Fl(a,b)ic;a] =

n>0

Notice that:

e If a =0 or b= 0 or is negative, then F' is a polynomial.
e If ¢ =0 or is negative, then F' is not defined.
e The series is convergent for |z |< 1.

The sum of the series inside its circle of convergence is called the hyperge-
ometric function, and the same name is used for its analytic continuation
outside the circle of convergence.



211

Barnes constructed more general hypergeometric series with p numera-
,ap) and g denominators parameters (c) =

tors parameters (a) = (a1,...

(c1,...,¢q)
(alﬂn) e (apﬂn) z"

(cr.n) - (cqum) nl

Therefore, the original Gauss series is oF}. It is also possible to express
many functions as hypergeometric series. Let us give some few examples:
n

e = Z % = QFQ[x]

n>0

n>0
z? gt
cos(x) = 1—§+E+...:0F1[1/2;_m2/4]

, 3 a2 9
sin(x) :x_§+§+ c=x.0F1[3/2; -2 /4]
2,3

log(1+x)=x— % + 3 +-=zoF1[(1,1);2; —2]

Lia (2 :Zﬁ_mﬁ1uumm]
n>0

1.2. Hypergeometric differential equation (Gauss)

The differential equation:

d%y dy
o 2+[c—(1+a+b)}£—aby:0

is satisfied by F[(a,b);c; x].

z(z —1)

1.3. Hypergeometric integral (Euler)

Let be the Gamma function I'(x) = / e “u” 1du and set
0

1
I(z) = /0 w11 —u)* 71 — zu) " ldu
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Then I(x) converges if Re(a) > 0 and Re(c —a) > 0.

-b _ nm_
Moreover, (1 —zu)™’ = %(b, n)u py

1
so I(z)= Z(b, n)x”/o w1 —w) T
n>0
B (b,n) ,T(a+n)I'(c—a)
N Z nl I'(c+mn)

n>0

_I‘(c—a)I‘(a) W b)c
- F(C) F[( 7b)’ ’ ]

Thus we obtain the integral representation

I'(c—a)'(a)
I'(c)

provided that |z |< 1, Re(a) > 0, and Re(c — a) > 0.

1
Fl(a,b);c; 2] = /0 w1 —w) 7 (1 — zu) "du

2. Modern Approach

This point of view is mainly due to Aomoto and Kita' on one hand, and
Gelfand” and Varchenko!! on the other hand.
Let M, =C\{0,1,27 '}, 2 # 0,1, and A = (A1, A2, \3) € C3. Let

D(u; Ay z) = (1 —w)Mu? (1 — zu)

which defines a multivalued holomorphic function on M,,.

In order to write down suitable integrals using homology and cohomology,
we must introduce twisted version where twisting comes from the change of
® as we prolong it by analytic continuation while moving around 0, 1,271,
so we have to introduce a rank one local system £ on M, given by the
representation

p: 71 (M) — Aut(C) = GI(1;C) ~ C*

v; o exp(—2mv—1);); 7=1,2,3

for any meridian loop «; about the hyperplane Hj;,7 = 1,2,3 where
H, = {1},H2 = {0}7H3 = {3}‘_1}.

More generally, let us define the multidimensional hypergeometric
functions as follows.
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Let A = {Hy,...,H,} be an affine arrangement of hyperplanes in V ~
Cland M = V' \ U H;. For each hyperplane H;, choose a degree one

i=1
polynomial «; such that H; = Kerq; and let A = (Aq,...,A,) € C" be a
collection of weights. Define
D(u; ) = Haf‘i =,
i=1
®, is a multivalued holomorphic function on, M
A generalized hypergeometric integral is of the form

/ ®yn

where o is a suitable domain of integration and 7 is a holomorphic form on
M. As for the classical hypergeometric integral, we have to introduce a rank
one local system £y on M defined with the monodromy exp(—2mv/—1\;)
around the hyperplanes H;, i =1,...,n.

The need to calculate the local system cohomoloy H*® (M, £y) arises in sev-
eral problems: the Aomoto-Gelfand theory of multivariable hypergeometric
integrals;"” representation theory of Lie algebras and quantum groups and
solutions of the Knizhnik-Zamolodchikov differential equations in confor-
mal field theory;!! determining the cohomology groups of the Milnor fiber
of the non-isolated hypersurface singularity at the origin obtained by coning
the arrangement.

3. Local Systems

Definition 3.1. A locally constant sheaf on M of complex vector spaces
of dimension r is called complex local system of rank r on M.

Example 3.1. Let r = 1, M = C*, and U an open set in C*. Define
L(U) = C{branch of \/u on U}. Then £(C*) = {0}, L(U) ~ Cif U is sim-

ply connected and L, ~ C. Then we get the monodromy representation

p:m(C*1) — GI(1;C) ~C*

yr— —1

where v is a generator of w1 (C*;1).
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Example 3.2. Let r = 1, M = C*, and U an open set in C*. Define
1

L(U) = C{branch of u= on U} where A\ = —————logpu , p = e~ 27V~1A,

(U) {branch of «~* on U} where ZW\/—_IOgMM €

Then £(C*) = {0}, L(U) =~ C if U is simply connected and £, ~ C. Then

we get the monodromy representation

p:m(C*1) — GI(1;C) ~C*

v
where v is a generator of m (C*;1).
Remark 3.1. There is a bijection between the isomorphism classes of

rank 7 local systems on M and the isomorphism classes of representations
m1 (M) — Gl(r; C).

Our central object is the local system £ on M defined as follows.
Let L,(U) = {f : U — C,holomorphic such that df +wx A f = 0} where

o
or = B~ dlog(®y).
A

Proposition 3.1. Ly defines a local system of rank 1 on M with the
monodromy representation p : (M) — GI(1;C) ~ C* where p(y;) —
e=2V=1\i gnd ~; are the generators of w1 (M).

Proof. Denote Vy =d + wyA .
d®
Va(®3 1) = 07240y + —2.071 =0
Dy
ddy
IfVa(f) =0, thendf = —fwy = _fq>—' Thus d(f®,) = dfPr+ fdPy =0
A

so f € (C@;\l. Cover M with contractible open sets to see that Ly is locally
constant. O

Let us point out that for any m = (mq,...,m,) € Z™, the local system
associated to A\ + m coincides with that associated to .

4. Hypergeometric Pairing

We have to interpret hypergeometric integrals as the result of the hyperge-
ometric pairing.



215

The rank one local system L) on M defines the cohomology groups
HP(M, Ly). On the other hand, the dual local system LY defines the homol-
ogy groups Hy(M, £Y). In fact, it is shown that we have a perfect pairing

HP(M, L) x Hy(M, L)) — C

(n,0) — / By

In this paper, we focus on the determination of the cohomology groups
HP (M, Ly).

5. Cohomology Groups HP(M, L))

Let O denote the sheaf of germs of holomorphic functions on M and let
Q°® be the de Rham complex of germs of holomorphic differentials on M,
where Q0 = @. Then we see that Vy : Q0 — Q! is a flat connection whose
kernel is £y. Extend to a derivation of degree one. The sequence

0Ly — 0 gt YA Vg
is exact.
Theorem 5.1. (Holomorphic de Rham theorem)
HP(M, L)) ~ HP(I'(M;Q°), V)
where I' denotes global sections on M.

Let QP (xA) be the group of p-rational forms on M with poles on (J;-_, H;.
Then QP (xA) C T'(M;Q°). But wy € QP(xA) then (2°(xA),V) is a com-
plex.

Theorem 5.2. (Algebraic de Rham theorem (Deligne, Grothendieck))
HP(T'(M;Q), V) =~ HP(QP(xA), V)

The problem is still difficult. We have to reduce the case of arbitrary poles
on N = |J, H; to the case of order one (i.e. logarithmic). Following
Deligne’s results, we must compactify M with a normal crossing divisor.
We embed V C CP! by adding the infinite hyperplane, H,. Define the
projective closure of A, as A. The divisor N(As) may have non-normal
crossings. Before going further, let us review some basic notions on hyper-
plane arrangements.
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6. Hyperplane Arrangements
6.1. Generalities

We refer the reader to Ref. 8 as a general reference on arrangements.
Let A= {Hy,...,H,} be an arrangement of hyperplanes over C, where H;
are affine hyperplanes of C!. A is also called [-arrangement. A is said to be

central if (. 4 H # 0. Define the complement M (A) = ch\ U H; and
i=1

L(A) the poset of nonempty intersections of hyperplanes of A with reverse

order

XL<YifyCX

Notice that the rank denoted rk satisfies rk(X) = codim(X). An element
X € L(A) is called an edge of A. The rank of A is the maximal number
of linearly independent hyperplanes in A. In the following, we will denote
r = rk(A).

Let N(A) = Uy H be the divisor of A. For each hyperplane H;, choose a

degree one polynomial «; such that H; = Kerq;. The product Q(A) = H o
i=1

is a defining polynomial for A.

The affine arrangement A gives rise to a central arrangement cA4 in CH1,
called the cone over A. Let Q be the homogenized Q(A) with respect to
the new variable ug. Then Q(cA) = uoQ.

Conversely, given a central arrangement A in V = C*!' and H € V, we
define an affine arrangement d .4, called the decone of A with respect to
H.

Embed V = C! in the complex projective space CP' and call the comple-
ment of V the infinite hyperplane denoted H .. Let H be the projective clo-
sure of H and write N(Aw) = (Ugea)H)U{H}. Then Q(As) = Q(cA).
We construct the projective quotient P.A and choose coordinates so that
PH = kerug is the hyperplane at infinity. By removing it, we obtain an
affine arrangement d g A.

Let p: L(A) — Z be the M&bius function of L(A) defined by u(V) =1,

and for X > Y by the recursion Z w(Y) =0.
Y<X

Definition 6.1. The characteristic polynomial of A is defined as

XA = > (X))t

XeL(A)
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Given an edge X € L(A), we define the subarrangement Ax of A by
Ax = {H € A| X C H} and the arrangement AX called restriction of
AXto X by AX ={XNH|HecAand X N H # 0}.

The deletion-restriction triple (A, A’,; A”) is a nonempty arrangement A
and H € A together with A’ = A\ {H} and A" = A",

6.2. Orlik-Solomon algebra

The Orlik-Solomon algebra is combinatorially defined. Let A =
{Hi,...,H,} be an affine arrangement and let {e1,...,e,} be a set. Let
E = Ac(e1,...,e,) be the free exterior algebra over C. If S = (i1,...,ip)
is an ordered p-tuple, denote the product e; A ---Ae;, by es. Then the
Orlik-Solomon algebra is defined as

A(A) = BT

where J ideal generated by all eg with ;.4 H; = () and the relations of

the form:
S

Z(—l)i71€i1 .. /6\” ... €y

j=1
forall 1 < i3 < ... < is < n such that rtk(H;; N---N H;,) < s, le.
the hyperplanes {H;,,---, H; .} are dependent and where ~ indicates an
omitted factor.
Notice that for a central arrangement, (,.g H; # 0 for any S.
We will denote ap (resp. ag) the image of ey (resp. eg) under the natural
projection and denote b,(A) = dimAP(A) the p-th Betti number of A°.
Let P(At) = > 5obp(A)tP be the Poincaré polynomial of A®. It is
shown that P(A,t) = > vcra) (X)) (—t)codim(X),
Moreover, P(cA,t) = (1 +t)P(A,1).
P(A,t) is closely related to the characteristic polynomial x(A,t). As an
important property of this algebra is the following theorem due to Orlik
and Solomon.

Theorem 6.1. The cohomology algebra and the Orlik-Solomon algebra are
isomorphic as graded algebras

A*(A) = H*(M(A); C).

6.3. Brieskorn algebra

Define the Brieskorn algebra denoted B®(A) as the C-algebra generated
d

by 1 and the forms wy = fon _ dlog(am), H € A.
ag
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The inclusion B*(A) C 3%, induces isomorphisms of graded algebras

B*(A) ~ H*(M(A),C)

6.4. Dense edges

Let A be a central arrangement in V. We call A decomposable if A is the
disjoint union of two nonempty subarrangements A; and As.

Definition 6.2. X € L(A) is called dense edge in A if and only if the
central arrangement Ax is not decomposable. Let D;(A) denote the set of

dense edges of dimension j and let D(A) = U D;.
Jj=0

The divisors N(A) and N(As) do not have normal crossings along a dense
edge.

Example 6.1. An l-arrangement A is called a general position ar-
rangement if for every subset {Hi,...,H,} C A with ¢ < [, then
r(HiN...NHy) = qand when ¢ > I, HyN...N Hy = 0. For such a
arrangement A, the set of dense edges D(A) = 0.

Lemma 6.1. Let A be an nonempty central arrangement with H € A. If
A" and A" are decomposable, then A is decomposable.

Example 6.2. Let A be the Selberg arrangement defined by
Q(A) = ur(ug — Dua(uz — 1)(ug — usg).
Label the hyperplanes in the order given by the factors in @) and write j in
place of H;. Let
Q(Asc) = uour(ur — uo)uz(uz — uo)(ur — uz) = uoQ(A).

Then Di(A) = {1,2,3,4,5}, Dao(A) = {135,245}. The additional dense
edges in its projective closure Ay, are {00, 1200, 3400}.

6.5. The 3 invariant

In higher dimensions, it is difficult to determine the dense edges. The fol-
lowing provides a numerical criterion to decide which edges are dense. Re-
call that the characteristic polynomial of the arrangement A is defined as

X(A,t) = ZXGL(_A) p (X)),
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Remark 6.1. Let A be a central arrangement, then x(A,1) = 0.

Definition 6.3. Let A be an arrangement of rank r. Define its beta in-
variant by

BA) = (=1)"x(A 1)

Remark 6.2. §(A) =le(M)|, where e(M) is the Euler characteristic of the
complement. 5(A) is a combinatorial invariant.

Remark 6.3. If A is a complexified real arrangement (i.e. the polynomials
defining the hyperplanes have real coefficients), then 5(.A) is the number of
bounded chambers of the complement of the real arrangement.

Theorem 6.2. Let A be an arrangement and let X € L(A). The following
conditions are equivalent:

1. X is dense,
2. Ax is not decomposable,

3. B(dAx) #0,
4. ﬂ(dAx) > 0.

The proof mainly uses the properties of the triple (A, A’, A”) where A" =
A\ {H} for a suitable H.

7. Resonance

Let Ao = — Z Am be the weights of Hyo. For X € L(Ax), define Ax € C

HeA
by

Ax= Y A, HeA

XCH

Let wx = Y e Anwn = d(log®y). Since wy Awy = 0, wedge product with
wy provides a finite dimensional subcomplex (B®, wyA) of (2°%(xA), V,):

N U2 YAY SO AR VAR Y

Theorem 7.1 (Refs. 4,10). Assume that Ax ¢ Z~q, for every dense edge
X € L(Aw). Then, for every p

HP (M, Ly) ~ HP?(B*(A),waN).
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Notice that the map ay — wpy induces an isomorphism of graded algebras

A*(A) — B*(A).

Let ay = Z Agag. Since ay A ay = 0, exterior product with a) provides
HeA

a complex (A®(A), axA)

ax/\ ax/\
ATy

0 — A0(A) B0 A1) DD DD 4 — o

Corollary 7.1 (Ref. 9). Assume that A\x ¢ Zsq, for every dense edge
X € L(Ax) Then, for every p

HP(M, L) ~ HP(B*(A),waA) ~ HP(A*(A), axN).

Example 7.1. Let A be a general position arrangement. Then for all p < [,
HP(A*(A),axN) = 0.

This completes the transformation of the analytic problem into a problem
in combinatorics.

We mention the following easy result which explains the assumption on the
weights. This result explains why it is assumed Moo = — > ;e 4 AH-

Proposition 7.1 (Refs. 5,12). If >y 4 Am # 0, then H*(A®, a\N) =
0.

Proof. Let 0 be the map defining by d(a;as) = ag — a;0as. Let denote dy
the left multiplication by ay. It follows that d)0 + 0d) = (ZHGAM Ap)id,
so that (3 pcq Am)~'0 is a chain contraction of (A®,axA). Thus
H*(A*,axn) =0. O

The case A = 0 implies the well-known result that A®(A) is isomorphic to
the ordinary cohomology H*(M;C).
The following result is due to S. Yuzvinsky.

Theorem 7.2 (Ref. 12). Assume that Ax ¢ Zxo, for every dense edge
X € L(Aw). Then

HI(A*(A),axN) =0 for q # r
and
dimH"((A*(A),axN) = dimH" (M, L)) =|e(M) |

Up to now, we considered some systems of weights which defined a subset
of C™:

W(A) ={AeC" | Ax ¢ Z>o for every dense edge X of A}
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For A € W(A), the local system cohomology groups are independent of the
weights. There exists a maximal dense open subset U(A) D W(A) where
the local system cohomology groups are independent of the weights. We
call weights A € U(A) non-resonant. Notice that there are in general
non-resonant weights which do not lie in the set W(A).

Much is known in such a case which is called of non-resonant weights. But
substantially less is known about resonant weights. This interest has been
a motivating factor in many works and we will refer to the paper of D.
Cohen and P. Orlik.? They study the local system cohomology using strat-
ified Morse theory following D. Cohen.? They construct a universal com-
plex (K}(A),A*(x)), where = (z1,...,x,) are non-zero complex vari-
ables, A = (C[mlil, ..., 1] denote the ring of complex Laurent polynomials,

K{(A) = A@c K{(A) ~ Ab(D where b,(A) = dimA9(A) = dimH?(M;C)
is the ¢g-th Betti number of M with trivial local coefficients C and A®(z) are
A-linear with the property that the specialization x; — t; = exp(—2miA;)
calculates H®(M, Ly).

There is also a similar universal complex, called the Aomoto complex

(A%(A), ayA) where y = (y1,...,yn) are variables, R = C[y1, ..., yn] is the
polynomial ring, where A% (A) = R®c A4(A) and boundary maps are given
by p(y) ® n — yip(y) ® am, An.

For A € C", the specialization y — X of the Aomoto complex yields the
Orlik-Solomon algebra (A®(A), ax/).

Theorem 7.3 (Ref. 3). For any arrangement A, the Aomoto complex
(A%(A), ayA) is chain equivalent to the linearization of the universal com-

plex (K} (A), A®(2)).

Recall that, for m € Z™, the local system associated to A + m coincides
with that associated to A. Finally, some lower and upper bounds could be
determined for arbitrary weights as following:

Supmezn AimHP(A®, axymA) < dimHP (M, Ly) < dimHP(M;C)

Thus a system of weights A € C" is non-resonant if the Betti numbers of
M with coefficients in the local system L are minimal.

8. The NBC Complex

Let A be an affine arrangement of hyperplanes over C, A = {Hy,..., H,},
define the linear order on A by H; < Hj if ¢ < j. An inclusion-minimal
dependent set is called a circuit. A broken circuit is a set S for which
there exist H < min(.S) such that {H}US is a circuit. The collection of the



222

empty set and the nonempty subsets of .4 which have nonempty intersection
and contain no broken circuit is called NBC(A). Since NBC(A) is closed
under taking subsets, it forms a pure (r—1)-dimensional simplicial complex.

Example 8.1. Let A be the Selberg arrangement as defined above. The
1-simplices of NBC(A) are {{1;3},{2,3},{1,4},{2,4},{1,5},{2,5}}.

Theorem 8.1 (Ref. 9). Let A be an l-arrangement of hyperplanes of rank
r > 1. Then NBC(A) has the homotopy type of a wedge of spheres,

Vﬂ(_A Srfl .

Idea of the proof: If v is a vertex of NBC(.A) then its star, denoted st(v),
consists of all the simplexes whose closure contains v. The closure st(v) is a
cone with cone point v. Let (A, A", A”) be a triple with respect to the last
hyperplane H,,. Then prove that NBC(A") ~ st(H,,) "NBC(A’). Consider
the Mayer-Vietoris sequence for the excisive couple {st(H, ), NBC(A")} to
get the long exact sequence and use the fact that st(H,,) is contractible. O

Theorem 8.2 (Ref. 9). Let A be an l-arrangement of hyperplanes of rank
r>1. Then

HP(NBC(A)) =0 itp#r—1
= free of rank B(A) f p=r—1

Idea of the proof: Use induction on r and consider the long exact sequence
of the previous theorem. O

A maximal independent set is called a frame. An (r — 1)-dimensional sim-
plex of NBC(A) is called an nbc frame. Following Ziegler,'? let define a
subset fnbc(A) of nbc(A) of cardinality G(A).

Let define a fnbc(A) frame B as a frame which is a nbc frame such that
for every H € B, there exists H' < H in A with (B\{H}U{H'} is a frame.
Let Snbc(A) be the set of all nbe(A) frames. When A is empty, we agree
that Snbc(A)= 0.

Let (A, A", A”) be a triple with respect to the last hyperplane H,,.
Then there is a disjoint union Snbe(A) = fBnbe(A’) U fnbe(A”) where
Bnbc(A") = {{v(B"),H,} | V" € fnbc(A”)} and v(X) = min(Ax).

For an nbc frame B €nbc(A), B* € C"~}(NBC(A)), denotes the (r — 1)-
cochain dual to B.

Theorem 8.3 (Ref. 6). The set {[B*] | B € fnbc(A)} is a basis for
H™Y(NBC(A)).
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Example 8.2. Let A be the Selberg arrangement as defined above. Then
Bnbc(A) = {{2,4},{2,5}}. So the cohomology classes [{2,4}]* and [{2, 5}]*
form a basis for H}(NBC(A)).

Let us back to the combinatorial complex (A®(A), axA).

Theorem 8.4 (Ref. 9). Let A be an affine arrangement with projective
closure Aso. Assume that Ax # 0 for every dense edge X € D(Ay), then

HP(A*(A),axA) ~ HP~H(NBC(A),C)
Let B = {H;,,---,H;,} be a fnbc frame and X; > --- > X, where
X, = ﬂ H;, for 1 < p < r. Define ((B) = /\ wx(X,) where wy(X) =
k=p

p=1

EHGAX AHWH € Bl(.A).

Theorem 8.5 (Ref. 9). Let A be an affine arrangement of rank r with
projective closure As.. Assume that Ax ¢ Z>o for every X € D(As).
Then the set

{¢(B) € H"(M, L)) | B € fnbc(A)}
is a basis for the only nonzero local system cohomology group, H" (M, Ly).
Thus, there is an explicit isomorphism between the only non trivial coho-

mology group H" (M, L) and H"~(NBC(A), C) under the non resonance
conditions.

Example 8.3. Let A be the Selberg arrangement once more. Assume the
weights of the dense edges satisfy suitable conditions. Then

C({2,4}) = (Mawa + Aaws + Asws) Aaws = AoAawas — A Aswas

C({2,5}) = (Mawa + Aaws + Asws) Asws = AaAswas + A Aswas
provide a basis for H2(M, L)).
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These notes are an expanded version of the lectures given in the frame
of the I.C.T.P. School held at Alexandria in Egypt from 12 to 24 November
2007.

Our purpose in this course was to give a survey of the various aspects,
algebraic, analytic and formal, of the functional equations which are sat-
isfied by the powers f° of a function f and involve a polynomial in one
variable by (s) called the Bernstein-Sato polynomial of f. Since this course
is intended to be useful for newcomers to the subject we give enough signif-
icant details and examples in the most basic sections, which are sections 1,
2, and also 4. The latter is devoted to the calculation of the Bernstein-Sato
polynomial for the basic example of quasi-homogeneous polynomials with
isolated singularities. This case undoubtedly served as a guide in the first
developments of the theory.

We particularly focused our attention on the problem of the meromor-
phic continuation of the distribution f§ in the real case, which in turn moti-
vated the problem of the existence of these polynomials, without forgetting
related questions like the Mellin transform and the division of distributions.
See the content of section 3. The question of the analytic continuation prop-
erty was brought up as early as 1954 at the congress of Amsterdam by .M.
Gelfand. The meromorphic continuation was proved 15 years later indepen-
dently by Atiyah and I.N. Bernstein-S.I. Gel’fand who used the resolution
of singularities. The existence of the functional equations proved by I.N.
Bernstein in the polynomial case allowed him to give a simpler proof which
does not use the resolution of singularities. His proof establishes at the
same time a relationship between the poles of the continuation and the
zeros of the Bernstein Sato polynomial. The already known rationality of
the poles gave a strong reason for conjecturing the famous result about the
rationality of the zeros of the b-function which was proved by Kashiwara
and Malgrange.
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We want also to mention another source of interest for studying func-
tional equations due to Mikio Sato. It concerns the case of the semi-
invariants of prehomogeneous actions of an algebraic group, and especially
of a reductive group. In the latter case the functional equation is of a very
particular type and the name b-function frequently employed as a shortcut
for the Bernstein-Sato Polynomial, comes from this theory. We give the
central step of the proof of the existence theorem in the reductive case in
section 2.4.

Let us summarize the contents of the different sections. In section 1, we
give the basic definitions and elementary facts about b-functions with em-
phasis on first hand examples. In section 2 we recall the proof of Bernstein
for the existence theorem in the polynomial case. Although also treated
by F. Castro in this volume we give it for the sake of completeness and
also to make it clear that the case of multivariable Bernstein-Sato polyno-
mials can be solved with the same proof in the algebraic case. In section
3 we give a detailed proof of the analytic continuation property using the
functional equation and we make a comparison with the proof which uses
the Mellin transform and asymptotic expansions in the way Atiyah and
Bernstein-Gel’fand first did. In section 4, we give a proof of the calculation
of the Bernstein polynomial in the quasi-homogeneous case. In so doing we
give a large view of a preprint less accessible to the public than a published
version which treats directly the more complicate case of a singularity non-
degenerate with respect to its Newton polygon. In section 5 we give the
main steps of the proof of the existence theorem for the local analytic case.
This proof is originally due to Kashiwara and uses a fairly large amount of
material from analytic D-module theory. In order to make this section 5
more readable we gathered a summary of the necessary material in section
7 refering to the literature for the details. Finally in section 6 we give an
account without proof of a very fundamental property of Bernstein-Sato
polynomials, the fact that their roots are negative rational number. This
result using different methods, is basically due to B. Malgrange and M.
Kashiwara.

I am aware of the fact that these notes do not cover all the aspects of
the subject or recent developments like the theory of the V filtration in the
continuity of Kashiwara and Malgrange results, the microlocal aspects, the
computational aspects in the algebraic case, the relative b-functions and
their link with deformations, the prehomogeneous space aspects. I refer
the reader to the bibliography and the references it contains for further
reading.

I wish to end this introduction first by thanking Professor Lé Dung
Trang who conceived and organized the school, as well as the local organizers
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and especially Professor Mohamed Darwish for their hospitality and the way

they took care of all the practical details of our stay in Alexandria.
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1 Introduction to Functional Equations

1.1 Definitions

Let us consider the ring O = C{z1, - ,x,} of germs of functions defined
by a convergent power series at the origin of C":

flay, -z, E ax® with 2% = of* -+ zon
a€eNn

Let D be the ring of differential operators with coefficients in O i.e. the
set of sums P of monomials in the variables x; and in the partial derivatives
denoted 0; or a%.

P= = > f3(2)d] with 2=l ... 9.
BEN
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Given a germ of an analytic function f € O = C{xy,---,x,} there
exists a non zero polynomial e(s) and an analytic differential operator
P(s) € D[s] polynomial in the indeterminate s such that

(1)

| P(s)f*t! = e(s)f°

The set of polynomials e(s) for which an equation of the type (1) exists
is clearly an ideal By of C(s), which is principal since C[s] is a principal
domain.

The Bernstein-Sato polynomial of f is by definition the monic generator
of this ideal denoted by b (s) or simply b(s):

By = Cls] - by(s)

Here are some variants and extensions of this definition

1) Algebraic case. In all what follows we denote K a field of char-
acteristic zero. When f € K[X1,---,X,] we consider the Weyl algebra
An(K) ie. the set of operators P(z,0,) = > ey fa(z)d? with polyno-
mial coefficients fg € K[X1,---,X,]. The global or algebraic Bernstein-
Sato polynomial is the monic generator of the ideal of polynomials e(s)
included in a functional equation as in (1) but with a polynomial operator
P(s) € An(K)[s].

2) We may also consider the formal analogue where f and the coefficients
of P(s) are in K[[X1, -+, X,]].

3) A generalisation: let fq,--- , f, be p elements in C{xz1,--- ,z,}. Then
there exists a non zero polynomial b(s1,-- -, sp) € C[s1, -+, s, and a func-
tional equation:

b(s1,--- s 8p)fit - fy" = Pls1, -, sp) fit ...f;pﬂ 2)
with
beClsy, - ,85], PED[s1, 8
The set of polynomials b(sy,---,sp) as in (2) is an ideal B, 1, of
K(s1,---,8p|. There is an algebraic variant of this notion of a Bernstein-

Sato ideal B(fl,"' o)

History of the existence theorem

This polynomial was simultaneously introduced by Mikio Sato in a dif-
ferent context in view of giving functional equations for relative invariants
of prehomogeneous spaces and of studying zeta functions associated with
them, see [33], [34]. The name b-function comes from this theory and the so-
called a,b,c functions of M. Sato, see [35] for definitions. The existence of a
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nontrivial equation as stated in (1), was first proved by I.N. Bernstein in the
polynomial case, see [6]. The polynomials bs(s) are called Bernstein-Sato
polynomials in order to take this double origin into account. The analytic
local case is due to Kashiwara in [21]. An algebraic proof by Mebkhout
and Narvaez can be found in [32]. The formal case is given by Bjork in his
book [9]

Nontrivial polynomials as in (2) were first introduced by C. Sabbah,
see [36]. In the algebraic case the proof is a direct generalisation of the
proof of Bernstein. For the analytic case see [36], completed by [3] where is
shown the necessity of using a division theorem proved in [1]. There is by
[36], [3] a functional equation (2) in which the polynomial b(s1, -, sp) is a
product of a finite number of affine forms. It is as far as I know an unsolved
problem to state the existence of a system of generators of By, ...;, made
of polynomials of this type.

1.2 A review of a number of elementary facts about
b-functions

e The functional equation (1) is an identity in Os, %] - f* which is the
rank one free module over the ring O[s, %], with s as an indeterminate.
The generator is denoted f° viewed as a symbol, in order to signpost
the fact that we give this module the D[s]-module structure in which
the action of the derivatives on a generic element g(z, s) - f*° is:

of

gz, 8)f* = [gai +g- Sﬁ%]fs

8331' -
We may notice that the multiplication by s on this module is D-linear.

e We consider the submodule D[s] - f* generated by f*. The equation
(1) means that the action of s on the quotient:

~. Dls]-f° Dis]-f?
55 PHET — DR

which is the D-linear map
[P(s)f°] = [sP(s)f°].

admits a minimal polynomial hence that the module % is finite
over D.

It is a remarkable fact due to Kashiwara that D[s] - f* itself is finite
over D. We sometimes denote f™ - f¢ = f$t™ which corresponds to
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the intuitive meaning and the change of s into s+m induces a D-linear
automorphism of O[s, %] - f%, which restrict to D[s] - f¥ — Dls]- f5T™
given by P(s)f* — P(s+m)fsT™.

Recall that there is a unique maximal ideal in O:

M= {fec0|f(0)=0}

-If f ¢ 9 is a unit in O then by = 1. Similarly, in the algebraic case
by = 1if f is a constant.

- If f is in the maximal ideal of O in the local analytic case, or if f is
not a constant in the polynomial case, we obtain by setting s = —1
in the functional equation: P(—1)-1 = b(—l)%, and this implies
b(—1) = 0. We write usually in this case b(s) = (s + 1)b(s).

Setting s = —1 in the equation now gives P(—1)-1 = 0 and therefore

=S A PO = (4100 + LA

Carrying this over to the functional equation leads to the following
result:

Lemma 1.1 The polynomial 5(5) is the minimal polynomial of the
Dls]-

action of s on (s—l—l)wfﬁl, This is the same as the unitary minimal
polynomial such that there is a functional equation:

T s S 0 s

bs)f* =[D_ Q) f+Ails)5—] - f

=1

We summarize this fact by writing b(s) f* € D[s|(f + J(f)) - f*, with
J(f) the jacobian ideal of f generated by (,;9 Ifl of

Y Oxp "

A first list of examples

When f is smooth we have b¢(s) = s+ 1. This can be seen easily
by reducing the calculation to the case f = x1. The converse is true:
the equality bs(s) = s + 1 may only happen in the smooth case. The
result can be found in [10] by Briangon and Maisonobe.
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e When f = z{* - 2% we obtain by a straightforward calculation:

o G ()

It is an easy exercise to prove that this equation does yield the minimal
polynomial for a monomial.

e Let f =29+ -+22 and let A be the Laplacian operator then there is
a functional equation leading to the polynomial b(s) = (s+1)(s+%).
To be precise:

AfSTE = (s 4 1)(4s +2n) - f*

The minimality of the polynomial is not so obvious but can be deduced
from calculations in the section 4 below. This is an example of a semi
invariant for the action on C" of the complex orthogonal group which
is reductive.

e Finding by blind calculatory means a functional equation in more
general cases is virtually impossible. The case of f = z2 + 33 is
already challenging. In section 4 we shall treat the case of all quasi-
homogeneous singularities which includes all the Pham-Brieskorn poly-
nomials

33‘111 +oo g

1.4 Remarks on variants of the definition

Let f € K[z1,--- , 2] be a polynomial with coefficients in K. For a given
a € K™ we may consider various Bernstein-Sato polynomials:
1) The usual Bernstein-Sato polynomial by = ba4, such that:

by(s)f* € An(K)[s] - f*+!
2) The local algebraic Bernstein-Sato polynomial bj,e, such that:

broc,a(5)f* € Ap(Chm, [s] - f5

with a functional equation having its coeflicients in the algebraic local ring
at a.

3) If K = C we may consider the local analytic Bernstein-Sato polyno-
mial b,, at a, characterised by

ban,a(s)fs € DC"#[S] ! f5+1
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Obviously we have the divisibility relations ban,a|bioc,a, and bioc,q|baig
but there is in in fact a much more precise relation

Proposition 1.2

ban,a = bioc,a, bf = lem (bioc,a) when K is algebraically closed

m
acK™
The proof of these results may be found in a more general setting in [11], in-
cluding the case of multivariables Bernstein-Sato polynomials b(s1, - -, sp).
We shall give the proof of proposition 1.2 in section 5.3.

Remark 1.3 If we consider the ring of differential operators with coef-
ficients in a ring of analytic functions O(U) on an open set in C™ this
proposition 1.2 is no longer valid. It is not even true that for f € O(U)
there is always a functional equation globally written on U.

2 On the existence of a functional equation in the poly-
nomial case

In this section we recall the proof by Bernstein of the existence of the
functional equation in the polynomial case. I put off giving a sketch of
the proof in the analytic case which requires more sophisticated tools, to
the last part of these notes. This section also covered in the course of
F. Castro, is inserted here for the sake of completeness and because it is
a natural and basic question. I also give a first approach in the algebraic
frame to fundamental notions (dimension, multiplicity, holonomicity) which
will be reformulated with more sophisticated tools in the analytic case.

2.1 Holonomic modules

We consider the Bernstein filtration of A, (K):

[r(An(K)) = Z o g 0"
(e, BEN™), ||+ B| <k

Let us first recall general results about holonomic modules on the Weyl
algebra A, (K):

Theorem 2.1 1) Let M be a finitely generated module on the Weyl algebra
A, (K), endowed with a good filtration Fe(M). Then there is a polynomial
x(T', M), such that for large k:

dim Fy. (M) = x(I', M) (k)



234

2) The leading term of this polynomial is independent of the choice of a

filtration. If we denote it e(M)%, then the coefficient e(M) is an integer
called the multiplicity of M, and the degree d is called the dimension of M.

Proposition 2.2 (basic properties) Let M be a finitely generated mod-
ule on the Weyl algebra A, (K) and N a sub-module then we have:

d(M) < max(d(N), d(M/N))
if d(N) =d(M/N) then e(M) = e(M) + e(M/N)

Theorem 2.3 (Bernstein inequality) For any finitely generated module
we have the inequalities:
n <d(M) <2n

Proposition-definition 2.4 A module M such that d(M) = n is called
holonomic if d(M) =mn. A holonomic module has finite length.

Let us end this section by a characterization of finitely generated mod-
ules which will be useful in the next section.

Lemma 2.5 Let M be an A, (K)-module with a filtration F' compatible
with the Bernstein filtration on A, (K) and such that for some constants
c1>0andcy >0 and any j €N

n

k
dim F*(M) < L+ ca(k+ 1)1
then M is finitely generated and holonomic with multiplicity e(M) < c;.

Proof Assume first that M is finitely generated: By the hypothesis
on M we may choose a good filtration Q2. The fact that 2 is good implies
the existence of an integer ¢ such that for all k € N:

Qk(M) C F]H_q(M)

In particular (2, M)(k) < 1 (qu) + co(k + g+ 1)"!, and the degree
of x is at most n, so that d(M) = n and M has the minimal dimension.
Looking at the leading term we also see that e(M) < ¢;.

Reduction to the finite case: Let N C M be a finitely generated
submodule. By applying part 1 to N with the filtration Fy NN we see that
N is holonomic of multiplicity < c¢;. This implies because of 2.4 that any
strictly ascending sequence:

O%N1CN2C"'CNT

of submodules of M has length r < ¢1, so that M must be finitely generated.
And we are reduced to part 1. O
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2.2 Bernstein equation

Theorem 2.6 Let f € K[xy, -+ ,x,] be a non zero polynomial. There is a
non zero polynomial b € K|[s] in one indeterminate s, and a differential
operator P(s) € A, (K)[s] such that

P(s)f** = b(s)f*

Proof We work in K[z1,--+ ,zp, %], given with its natural structure of a
module over the algebra A, (K), and also with the modules K[s][x1,- - , 2n, %]fs
and K (s)[x1, -+, Zn, %]fS seen as modules over the algebras A, (K)[s] and
An(K)(s). We remark that A, (K)[s] is not a Weyl algebra over a field but
that A, (K)(s) is the Weyl algebra for the field K(s) so that we can apply
dimension theory to this field as well.

Lemma 2.7 The module M = Klxy, -, &y, %] s a holonomic module
over A, (K).

Let N be the total degree of the polynomial f. We define a filtration on
M:

FM) = (5 | degg < (N + 1)

The space Fi(M) is isomorphic to the space of all polynomials of degree
< k(N + 1) in n variables. Thus:

dim Fy (M) — <k(N +1)+ n)

n

and looking at this expression as a